
Introduction

The theory of function spaces is a well established mathematical theory in its own right.

Its purpose is best described by the title of H. Triebel’s beautiful essay How to measure

smoothness , which forms Chapter I of his monograph [79]. The theory of function spaces

has, however, always had close relations to other mathematical fields such as the theory

of (partial) differential operators, potential theory, or approximation theory, to mention

just a few.

The function spaces we are interested in appeared in their generality for the first time

in the work of A. Beurling and J. Deny [8], [9] (see also [17]) on Dirichlet spaces. In

general, they are contained neither in the Besov Bspq or Triebel–Lizorkin F spq scales nor

in the classes of anisotropic spaces considered so far.

By definition a Dirichlet space (on R
n for simplicity) is a pair (F , E) consisting of a

space F ⊂ L2(R
n) of real-valued functions and a symmetric quadratic form E : F×F → R

which is closed, densely defined, non-negative, and satisfies the following contraction

condition:

if u ∈ F then v := (0 ∨ u) ∧ 1 ∈ F and E(v, v) ≤ E(u, u).

All translation invariant (symmetric) Dirichlet forms (on Rn) are given by

Eψ(u, v) =
\

Rn

ψ(ξ)û(ξ)v̂(ξ) dξ, u, v ∈ S(Rn),

where ψ : R
n → R is a continuous negative definite function, i.e. ψ(0) ≥ 0 and for all

t > 0 the function ξ 7→ e−tψ(ξ) is positive definite in the usual sense. The domain Fψ of

Eψ is then given by

Fψ := Hψ,1
2 (Rn) :=

{
u ∈ L2(R

n) :
\

Rn

(1 + ψ(ξ))|û(ξ)|2 dξ <∞
}
.

It is well known that we can associate with ψ (or with (Fψ, Eψ)) the operator semigroup

(T
(2)
t )t≥0 on L2(R

n) defined by

T
(2)
t u(x) = (2π)−n/2

\
Rn

eix·ξe−tψ(ξ)û(ξ) dξ =
\

Rn

u(x− y)µt(dy),(1)

where (µt)t≥0 is a vaguely continuous convolution semigroup of sub-probability measures

on Rn with Fourier transform µ̂t(ξ) = (2π)−n/2 e−tψ(ξ).

The generator (A(2), D(A(2))) of the semigroup (T
(2)
t )t≥0 is given by

A(2)u(x) = −ψ(D)u(x) = −(2π)−n/2
\

Rn

eix·ξψ(ξ)û(ξ) dξ
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with domain

Hψ,2
2 (Rn) :=

{
u ∈ L2(R

n) :
\

Rn

(1 + ψ(ξ))2|û(ξ)|2 dξ <∞
}
.

Let us mention that the measures µt are also the transition probabilities for a Lévy

process (Xt)t≥0 and therefore we have

E(eiXtξ) = e−tψ(ξ).(2)

Thus ψ is also a characteristic exponent of a Lévy process.

Since Lévy processes are infinitely divisible, the function ψ has a Lévy–Khinchin

representation

ψ(ξ) = c+ i

n∑

j=1

bj ξj +

n∑

j,l=1

qjl ξjξl +
\

Rn\{0}

(
1 − e−ix·ξ − ix · ξ

1 + |x|2
)

1 + |x|2
|x|2 µ(dx)

which in the case of a real-valued function reduces to

ψ(ξ) = c+
n∑

j,l=1

qjl ξjξl +
\

Rn\{0}

(1 − cos(x · ξ))1 + |x|2
|x|2 µ(dx).(3)

From (3) we may derive a further representation of Eψ, namely its Beurling–Deny repre-

sentation

Eψ(u, v) =
\

Rn

cu(x)v(x) dx+

n∑

j,l=1

\
Rn

qjl
∂u(x)

∂xj

∂v(x)

∂xl
dx

+
\

Rn

\
Rn

(u(x+ y) − u(x))(v(x+ y) − v(y)) J(dx, dy)

where J(dx, dy) is a suitable symmetric measure on Rn × Rn which does not charge the

diagonal.

Let us assume in what follows that c = 0 and qjl = 0 for j, l = 1, . . . , n. Then we have

(on a suitable subspace of Fψ) the following equivalent descriptions of the scalar product

in the Hilbert (function) space (Fψ, Eψ1 ), Eψ1 = Eψ + (·, ·)L2
:

Eψ1 (u, u) =
\

Rn

(1 + ψ(ξ))|û(ξ)|2 dξ =
\

Rn

|u(x)|2 dx+
\

Rn

\
Rn

(u(x+ y) − u(x))2 J(dx, dy).

Of course, we also have some abstract characterizations of this scalar product, for example

we find

Eψ1 (u, u) = ‖u |L2(R
n)‖2 + ‖(−A(2))1/2u |L2(R

n)‖2.

One can also use the carré du champ operator which is a bilinear operator and can be

defined for u, v ∈ D(A(2)) such that u · v ∈ D(A(2)) by

Γ (u, v) := A(2)(u · v) − uA(2)v − vA(2)u.

The scalar product is then given by

Eψ1 (u, u) = ‖u |L2(R
n)‖2 + ‖Γ (u, u) |L1(R

n)‖.
The carré du champ operator was introduced by J.-P. Roth [66] (see also P.-A. Meyer [60]),

and has been thoroughly explored in the monograph [13] of N. Bouleau and F. Hirsch.
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The main reason for introducing Dirichlet forms was to give an axiomatic approach to

potential theory starting with the notion of energy. Having this fact in mind one should

not be surprised that within the framework of Dirichlet spaces many potential-theoretical

considerations can be done. Notions like capacities, energy, (equilibrium) potentials, re-

duced functions, and balayage are best studied. We refer to the classical monograph by

M. Fukushima [25] and mention also the books [13], [29], [57] and [71].

Once the function space Hψ,1
2 (Rn) is understood to be a “good” space for potential-

theoretic questions it is natural to extend Hψ,1
2 (Rn) to a scale of spaces in order to handle

operators derived from ψ(D) in an Lp-context.

Just as in the theory of Sobolev spaces, it is clear that different representations of Eψ1
will, in general, lead to different and non-equivalent Lp-norms. For a concrete problem

but quite general Dirichlet forms or L2-sub-Markovian semigroups, such extensions are

discussed in the paper [34] of F. Hirsch. Some related considerations, mainly in infinite

dimensions, can be found in the papers by D. Feyel and A. de la Pradelle [21], [23] (see

also [20]).

Although we feel that from the mathematical point of view investigating Lp-variants

of the spaces Hψ,1
2 (Rn) does not need any justification—it is interesting and non-trivial

mathematics in itself—let us point out some important arguments for a systematic ap-

proach to these spaces.

Our starting point is formula (2) telling us that continuous negative definite functions

are closely related to Lévy processes. As a matter of fact, every reasonable Feller process

with state space Rn is characterized by a family (parametrized by Rn) of continuous

negative definite functions. More precisely, following [47] (see also [70]), we find for the

Feller process ((Xt)t≥0, P
x)x∈Rn that

−q(x, ξ) = lim
t→0

Ex(ei(Xt−x)·ξ) − 1

t

is the symbol of the generator of the semigroup

Ttu(x) = Ex(u(Xt))

associated with ((Xt)t≥0, P
x)x∈Rn , i.e. on C∞

0 (Rn) we have

Au(x) = −q(x,D)u(x) = −(2π)−n/2
\

Rn

eix·ξq(x, ξ)û(ξ) dξ.(4)

Moreover, ξ 7→ q(x, ξ) is for each x ∈ Rn a continuous negative definite function. Note

that this result complements a theorem of P. Courrège [14] which states that on C∞
0 (Rn)

the generator of a Feller semigroup has necessarily the structure (4).

Now, assuming for example that q(x, ξ) ∼ ψ(ξ) where ψ : R
n → R is a fixed continuous

negative definite function, one should expect that the operator q(x,D) behaves like a

perturbation of ψ(D). Hence the scales of spaces associated with ψ should play for q(x,D)

the same role as Sobolev or Besov and Triebel–Lizorkin spaces do for elliptic operators

in the classical situation, i.e. for operators with symbol q(x, ξ) ∼ |ξ|2m. We can, however,

also ask the converse question: when does an operator given by (4) (defined on C∞
0 (Rn))

admit an extension to a generator of a Markov process? It is a cornerstone of the modern

theory of stochastic processes that with each (regular) Dirichlet form one can associate
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a stochastic process. This result is originally due to M. Fukushima [24]. Constructions

of stochastic processes starting with −q(x,D) either in the Hilbert space situation (i.e.,

Dirichlet space case) or in the Feller situation (i.e. in C∞(Rn), the space of continuous

functions vanishing at infinity) were first obtained by one of the present authors and

subsequently extended in a series of papers by W. Hoh [35]–[38]; see also [39]. We refer as

well to more recent (and special) considerations due to F. Baldus [5] and V. Kolokoltsov

[56]. In fact, even operators of variable order of differentiability were handled, notably in

the papers [37] of W. Hoh, [55] of K. Kikuchi and A. Negoro, [62] of A. Negoro and [51]

of H. G. Leopold and one of the present authors. In some of these cases spaces of variable

order of differentiation are needed. The interested reader should also consult the survey

[52] by G. A. Kaljabin and P. I. Lizorkin on function spaces of generalized smoothness.

From the probabilistic point of view, working with processes associated with Dirichlet

spaces has a disadvantage. The process is only defined up to an exceptional set, i.e. a

set of capacity zero. It seems that H. Kaneko [53] was the first who proposed to use an

Lp-setting to overcome this difficulty. He considered certain Lp-Bessel potential spaces

associated with a sub-Markovian semigroup. With such an Lp-Bessel potential space there

is always associated a capacity, but for p sufficiently large it might happen that the only

exceptional set, i.e. the only set of capacity zero, is the empty set.

In this case no problems occur when constructing the associated Markov process.

Thus it is clear that Lp-variants of Dirichlet spaces are of greater interest for probabilistic

reasons.

This paper is devoted to the study of Bessel potential spaces associated with a given

real-valued continuous negative definite function ψ : Rn → R. It can be regarded as the

second paper in a series of papers “Function spaces associated with continuous negative

definite functions”. As a first part one should consider Section 4.10 in [49] where analogues

to the Hörmander spaces Bk,p(R
n) (see L. Hörmander [42]) are discussed. Further work on

different scales of function spaces associated with a continuous negative definite function

is in preparation.

Before briefly describing the content of this paper let us make a remark about the

style. There are at least four groups of colleagues we want to reach with our investigations:

specialists in the theory of function spaces, colleagues working on pseudo-differential

operators, potential theorists, and probabilists working in stochastic processes. Since this

paper is intended to be readily accessible to all of them, we have taken the liberty to

include more background material than usual and to give detailed proofs also in situations

where we could have referred to an analogue in the literature.

In Sections 1.1 to 1.3 only known background material is collected. We recall basic

properties of continuous negative definite functions and convolution semigroups, intro-

duce Bernstein functions, and collect basic facts on one-parameter semigroups. Section 1.4

is devoted to subordination in the sense of S. Bochner and includes some new material

related to norm estimates for the perturbed subordinate generator. In Section 1.5 we

introduce abstract Bessel potential spaces. They are obtained as the image of Lp-spaces

under the Γ -transform of a given Lp-sub-Markovian semigroup (T
(p)
t )t≥0. This construc-

tion is well known, but it seems that in [19] for the first time systematic use is made
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of the fact that the Γ -transform is a special case of subordination. Again we take this

point of view. This allows us to identify the introduced abstract Bessel potential spaces

as domains of certain operators, namely (id−A(p))r/2, r > 0, A(p) being the generator

of (T
(p)
t )t≥0, and we show in the general case the equivalence of norms associated with

Riesz and Bessel potentials. Our proofs rely mainly on a functional calculus of generators

of semigroups related to subordination.

Chapter 2 deals with ψ-Bessel potential spaces, i.e. Bessel potential spaces associated

with a fixed continuous negative definite function ψ : Rn → R. Of course, we could

introduce these spaces in an abstract way along the lines of Section 1.5, but our aim is

to identify these spaces with concrete function spaces.

The first and obvious attempt to define these spaces would be to take all tempered

distributions u ∈ S ′(Rn) such that

‖F−1[(1 + ψ(·))r/2û] |Lp(Rn)‖ <∞
is finite. The problem is, however, that in general ψ is a continuous but not differentiable

function, hence (1 + ψ(·))r/2 û is a priori not well defined. We overcome this difficulty in

Section 2.1 where we introduce the space Hψ,2
p (Rn) by making use of the Lévy–Khinchin

formula to decompose ψ. This makes it possible to identify

Hψ,2
p (Rn) := {u ∈ Lp(R

n) : ‖F−1[(1 + ψ(·))û] |Lp(Rn)‖ <∞}
with the domain of definition of the operator −ψ(D) as generator of the Lp-sub-Markovian

semigroup (T
(p)
t )t≥0 given by (1). This enables us in Section 2.2 to introduce the scale

Hψ,s
p (Rn), 1 < p < ∞ and s ∈ R, first by using the functional calculus for the operator

−ψ(D) and then by identifying this space with the closure of S(Rn) with respect to the

norm ‖F−1[(1 + ψ(·))s/2 û] |Lp(Rn)‖.
We prove elementary properties of these spaces and give a characterization of the dual

space. Note that these scales contain both the classical Bessel potential spaces (we just

have to take ψ(ξ) = |ξ|2) and the classical anisotropic Bessel potential spaces associated

with the anisotropic distance function
√
ψ where ψ(ξ) = |ξ1|2/a1 +. . .+|ξn|2/an for ak ≥ 1,

k = 1, . . . , n.

However, we want to emphasize that due to our examples of continuous negative

definite functions (see Section 1.1, in particular Examples 1.1.15 and 1.1.16), the class

under consideration is much larger (even than the classes studied in [52] and in [61]) and

contains function spaces not considered so far.

Section 2.3 collects the embedding results and in Section 2.4 we calculate complex

interpolation spaces. In Section 2.5 we make use of the fact that the semigroup (T
(p)
t )t≥0

and the operators (id−A(p))−r/2, r > 0, are positivity preserving. Therefore we can

associate a capacity capψr,p with each of the spaces Hψ,r
p (Rn), r > 0. This capacity en-

ables us to consider (r, p)-quasi-continuous modifications of elements u ∈ Hψ,r
p (Rn), and

we show that each u ∈ Hψ,r
p (Rn) has a unique quasi-continuous modification (up to

(r, p)-quasi-everywhere equality). Further, we obtain comparison results for capψ1
r1,p1 and

capψ2
r2,p2

based on embedding theorems.

Following H. Triebel [78], [79], for a normed space X we denote by ‖x |X‖ the norm

of the vector x ∈ X. The rest of the notation is standard.
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1. Auxiliary results

In this chapter we collect auxiliary material for later purposes. Section 1.1 presents re-

sults related to continuous negative definite functions and convolution semigroups, while

Section 1.2 gives results on Bernstein functions and convolution semigroups supported

in [0,∞). In Section 1.3 we collect basic facts on one-parameter semigroups. In these

sections no new results are contained.

Section 1.4 treats subordination in the sense of Bochner and related functional calculi

for generators of semigroups. Starting from Proposition 1.4.9 our results seem to be new.

In Section 1.5 we introduce abstract Bessel potential spaces. The main results in this

section are essentially all new.

1.1. Negative definite functions and convolution semigroups. The concept and

definition of negative definite functions is due to I. J. Schoenberg [72], who introduced it

in connection with isometric embeddings of metric spaces into Hilbert spaces. For Rn his

result may be stated as follows:

Let d be a metric on Rn. In order that the metric space (Rn, d) is isometric to a

Hilbert space (Rn, (·, ·)) it is necessary and sufficient that for all m ∈ N, all points ξ0, ξ1,

. . . , ξm ∈ R
n, and all cj ∈ R, 1 ≤ j ≤ m, the inequality

m∑

k,l=1

(d2(ξ0, ξk) + d2(ξ0, ξl) − d2(ξk, ξl))ckcl ≥ 0

is satisfied. Setting ψ(ξ − η) := d2(ξ, η) we find

m∑

k,l=1

(ψ(ξ0 − ξk) + ψ(ξ0 − ξl) − ψ(ξk − ξl))ckcl ≥ 0.

In particular, using the symmetry of d and replacing ξ0 − ξk by ξk, we have
m∑

k,l=1

(ψ(ξk) + ψ(ξl) − ψ(ξl − ξk))ckcl ≥ 0.(1.1.1)

Hence, given an even function ψ : R
n → R satisfying for all m ∈ N0, ξ

k ∈ R
n, 1 ≤ k ≤ m,

and ck ∈ R, 1 ≤ k ≤ m, the inequality (1.1.1), one can expect that (ξ, η) 7→ ψ1/2(ξ − η)

behaves like a metric.

The following presentation is based on the monograph [7] by C. Berg and G. Forst

(see also [49]).

Recall that a function g : Rn → C is called positive definite if for any k ∈ N and any

vectors ξ1, . . . , ξk ∈ Rn the matrix (g(ξj − ξl))j,l=1,...,k is positive Hermitian, that is,

k∑

j,l=1

g(ξj − ξl) zjzl ≥ 0

for any numbers z1, . . . , zk ∈ C.

It is not hard to see that the Fourier transform µ̂ of a bounded Borel measure µ on

R
n is a positive definite function.
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Bochner’s theorem states the converse: given a continuous positive definite function g

on R
n there exists a bounded Borel measure µ with Fourier transform µ̂ = g. Note that

for a fixed x ∈ R
n the function ξ 7→ e−ix·ξ is a continuous positive definite function.

We are now able to give the definition of a negative definite function.

Definition 1.1.1. A function ψ : Rn → C is called negative definite if for any k ∈ N

and all vectors ξ1, . . . , ξk ∈ Rn the matrix (ψ(ξj)+ψ(ξl)−ψ(ξj − ξl))j,l=1,...,k is positive

Hermitian.

The following result is known as Schoenberg’s theorem.

Theorem 1.1.2. A continuous function ψ : Rn → C is negative definite if , and only if ,

ψ(0) ≥ 0 and for all t > 0 the function ξ 7→ e−tψ(ξ) is continuous and positive definite.

Let us first state elementary properties of continuous negative definite functions.

Clearly, the set of all continuous negative definite functions is a convex cone which is

closed under locally uniform convergence.

Lemma 1.1.3. (i) If ψ : Rn → C is a continuous negative definite function then for all

ξ, η ∈ Rn, √
|ψ(ξ + η)| ≤

√
|ψ(ξ)| +

√
|ψ(η)|

and

|ψ(ξ) + ψ(η) − ψ(ξ ± η)| ≤ 2(Reψ(ξ))1/2 · (Reψ(η))1/2.

(ii) If ψ : Rn → C is a continuous negative definite function then

|ψ(ξ)| ≤ cψ(1 + |ξ|2) for all ξ ∈ R
n,

where cψ = 2 sup|η|≤1 |ψ(η)|.
The next results indicate the closeness of continuous negative definite functions to

metrics, in fact to slowly varying metrics in the sense of L. Hörmander [43].

Lemma 1.1.4. Let ψ : Rn → C be a continuous negative definite function. Then

1 + |ψ(ξ)|
1 + |ψ(η)| ≤ 2(1 + |ψ(ξ − η)|) for any ξ, η ∈ R

n.(1.1.2)

Moreover , we have

1 + |ψ(ξ ± η)| ≤ (1 + |ψ(ξ)|)(1 +
√

|ψ(η)|)2 for any ξ, η ∈ R
n.(1.1.3)

The validity of (1.1.2) was first noted by W. Hoh [35], whereas the inequality (1.1.3)

is due to R. L. Schilling (see also [49]).

Every continuous negative definite function admits a Lévy–Khinchin representation:

Theorem 1.1.5. If ψ : Rn → C is a continuous negative definite function then there

exist : a constant c > 0, a vector d ∈ Rn, a symmetric positive semidefinite quadratic form

q on Rn and a finite measure µ on Rn \ {0} such that

ψ(ξ) = c+ i(d · ξ) + q(ξ) +
\

Rn\{0}

(
1 − e−ix·ξ − ix · ξ

1 + |x|2
)

1 + |x|2
|x|2 µ(dx).(1.1.4)

The quadruple (c, d, q, µ) is uniquely determined by ψ.
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Conversely , given (c, d, q, µ) as above, the function ψ defined by (1.1.4) is continuous

and negative definite.

Let us state the Lévy–Khinchin formula for real-valued continuous negative definite

functions explicitly.

Corollary 1.1.6. Let ψ : Rn → R be a real-valued continuous negative definite function.

Then we have the representation

ψ(ξ) = c+ q(ξ) +
\

Rn\{0}

(1 − cos(x · ξ))1 + |x|2
|x|2 µ(dx)(1.1.5)

with c, q, and µ as in Theorem 1.1.5. In addition, µ is a symmetric measure.

Instead of the measure µ it is often convenient to use the Lévy measure associated

with ψ, i.e. the measure

ν(dx) :=
1 + |x|2
|x|2 µ(dx).

Thus ν is a Radon measure on Rn \ {0} satisfying the integrability condition\
Rn\{0}

(|x|2 ∧ 1)ν(dx) <∞.

The following result is due to W. Hoh [36, Proposition 2.1] and it relates the smoothness

of ψ to integrability properties of ν.

Theorem 1.1.7. Let ψ : Rn → R be a continuous negative definite function with Lévy–

Khinchin representation (1.1.5). Suppose that for 2 ≤ l ≤ m all absolute moments of the

Lévy measure ν exist , i.e.

Ml :=
\

Rn\{0}

|x|l ν(dx) <∞, 2 ≤ l ≤ m.

Then ψ is of class Cm(Rn) and for α ∈ N
n
0 , |α| ≤ m, we have the estimate

|∂αψ(ξ)| ≤ c|α| ·





ψ(ξ), α = 0,

ψ1/2(ξ), |α| = 1,

1, |α| ≥ 2,

(1.1.6)

with c0 = 1, c1 = (2M2)
1/2 + 2λ1/2, c2 = M2 + 2λ and cl = Ml for 3 ≤ l ≤ m, where λ

is the maximal eigenvalue of the quadratic form q in (1.1.5).

For our purposes it is more convenient to restrict ourselves to continuous negative

definite functions ψ : R
n → R of the form

ψ(ξ) =
\

Rn\{0}

(1 − cos(x · ξ)) ν(dx),(1.1.7)

where ν is a Lévy measure on Rn \ {0}.
Corollary 1.1.8. Suppose that the Lévy measure ν associated with the continuous nega-

tive definite function ψ from (1.1.7) has its support in a bounded set , i.e. supp ν ⊂ B(0, R)

for some R > 0. Then the function ψ is infinitely differentiable and the function itself ,

as well as all its partial derivatives, are of at most quadratic growth.
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Moreover, we have the obvious

Lemma 1.1.9. Let ψ be a continuous negative definite function given by (1.1.7). If the

support of the Lévy measure ν satisfies supp ν ⊂ Bc(0, R) for some R > 0, then ψ is a

bounded continuous function.

From Corollary 1.1.8 and Lemma 1.1.9 we find that every continuous negative definite

function ψ : Rn → R with representation (1.1.7) has a decomposition ψ = ψR+ψ̃R, R > 0,

into continuous negative definite functions ψR and ψ̃R such that ψR is infinitely often

differentiable and ψR as well as its partial derivatives are at most of quadratic growth,

and ψ̃R is bounded and continuous. In fact, we just have to define

ψR(ξ) =
\

Rn\{0}

(1 − cos(x · ξ))χB(0,R)(x) ν(dx),(1.1.8)

ψ̃R(ξ) =
\

Rn\{0}

(1 − cos(x · ξ))χBc(0,R)(x) ν(dx).(1.1.9)

For the following it is important to note that there is a one-to-one correspondence be-

tween convolution semigroups of sub-probability measures on Rn and continuous negative

definite functions.

Definition 1.1.10. A family (µt)t≥0 of sub-probability measures on Rn is called a

convolution semigroup if the following conditions are satisfied:

(i) µt ∗ µs = µt+s for any s, t > 0 and µ0 = ε0 (Dirac measure);

(ii) µt → ε0 vaguely for t→ 0.

Note that some authors do not require the normalization µ0 = ε0.

Theorem 1.1.11. For every convolution semigroup (µt)t≥0 of sub-probability measures

on Rn there exists a unique continuous negative definite function ψ : Rn → C such that

µ̂t(ξ) = (2π)−n/2 e−t ψ(ξ), t ≥ 0 and ξ ∈ R
n.(1.1.10)

Conversely , given a continuous negative definite function ψ : R
n → C there exists a

unique convolution semigroup (µt)t≥0 on Rn such that (1.1.10) holds.

Example 1.1.12. For any α, β ∈ (0, 1] the functions ξ 7→ |ξ|2α and ξ 7→ |ξ|2α + |ξ|2β,
ξ ∈ R

n, are continuous and negative definite.

Example 1.1.13. Let a1, . . . , an be real numbers such that ak ≥ 1 for k = 1, . . . , n. The

function ψ : R
n → R defined by

ψ(ξ) = |ξ1|2/a1 + . . .+ |ξn|2/an(1.1.11)

is continuous and negative definite. This is a simple consequence of the previous example

and elementary properties of continuous negative functions.

The function
√
ψ, where ψ is given by (1.1.11), is a so-called anisotropic distance

function; see for example H.-J. Schmeisser and H. Triebel [73, Subsection 4.2.1] and

M. Yamazaki [83]. We will return to this example in Remark 2.2.12.

Example 1.1.14. From the Lévy–Khinchin formula we deduce immediately that

(i) any symmetric positive semidefinite quadratic form q on Rn,

(ii) any function of the form ξ 7→ iℓ · ξ, ℓ ∈ R
n,
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(iii) the functions ξ 7→ 1 − e−ih·ξ and ξ 7→ 1 − cos(h · ξ) with h ∈ Rn,

(iv) any combination of (i)–(iii)

are continuous and negative definite functions.

Example 1.1.15. Fix any λ ∈ (0, 2) and chooseM = M(λ) ∈ N such thatM > 2/(2−λ).

Then the measure

ν(dx) :=
∞∑

j=1

2λM
j−jε2−Mj (dx)

is easily seen to be a Lévy measure. Therefore the function ψ : R → R,

ψ(ξ) :=
\

Rn\{0}

(1 − cos(xξ)) ν(dx) =
∞∑

j=1

2λM
j−j(1 − cos(2−M

j

ξ)),(1.1.12)

is continuous and negative definite. It enjoys the following properties:

lim inf
|ξ|→∞

ψ(ξ) = 0;(1.1.13)

lim sup
|ξ|→∞

ψ(ξ)

|ξ|λ−̺ = ∞ for ̺ > 0;(1.1.14)

lim
|ξ|→∞

ψ(ξ)

|ξ|λ+̺
= 0 for ̺ > 0.(1.1.15)

Proof. We will need the following elementary inequalities:

t2

2

(
1 − t2

12

)+

≤ 1 − cos(t) ≤ t2

2
(1.1.16)

and

1 − cos(t) ≤ 21−λ|t|λ.(1.1.17)

Consider the sequence {2π2M
k}k∈N. Clearly, limk→∞ 2π2M

k

= ∞ and 2M
k

2−M
j ∈ N

for j ≤ k. Thus, using (1.1.16) and the fact that λ < 2, we get

ψ(2π2M
k

) =
∞∑

j=1

2λM
j−j(1 − cos(2π2M

k

2−M
j

))

=
∑

j>k

2λM
j−j(1 − cos(2π2M

k

2−M
j

)) ≤ 2π2
∑

j>k

2(λ−2)Mj−j22Mk

≤ 2π2
∑

j>k

2(λ−2)Mk+1−j 22Mk

= 2π2 2(Mλ−2M+2)Mk
∑

j>k

2−j .

By the choice of M = M(λ) we have Mλ − 2M + 2 ≤ 0, thus limk→∞ ψ(2π2M
k

) = 0,

and (1.1.13) follows.

Using (1.1.17) we find for any ξ ∈ Rn that

ψ(ξ) =

∞∑

j=1

2λM
j−j(1 − cos(2−M

j

ξ)) ≤ 21−λ
∞∑

j=1

2λM
j−j2−λM

j |ξ|λ = 21−λ |ξ|λ,
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which proves (1.1.15). For ̺ > 0, ξ ∈ Rn and any k ∈ N we have, by (1.1.16),

ψ(ξ)

|ξ|λ−̺ = |ξ|−λ+̺
∞∑

j=1

2λM
j−j(1 − cos(2−M

j

ξ))

≥ |ξ|−λ+̺2λM
k−k(1 − cos(2−M

k

ξ)) ≥ 1

2
|ξ|2−λ+̺2(λ−2)Mk−k

(
1 − ξ2

12
2−2Mk

)
.

Setting ξk := 2M
k

yields

ψ(ξk)

|ξk|λ−̺
≥ 1

2
2̺M

k−k

(
1 − 1

12

)
→ ∞ as k → ∞,

and (1.1.14) follows.

Example 1.1.16. Pick 0 < κ < λ < 2 and denote by ψλ(ξ) the function constructed in

Example 1.1.15. Then

ψ(ξ) := ψλ(ξ) + |ξ|κ(1.1.18)

is a continuous negative function that oscillates for |ξ| → ∞ between the curves ξ 7→ |ξ|κ
and ξ 7→ 2|ξ|λ. Moreover, ψ(ξ) = O(|ξ|λ) as |ξ| → ∞.

Example 1.1.17. Further examples of continuous negative definite functions with pre-

scribed asymptotic behaviour can be constructed along the lines of Lemma 3.4 in [40].

1.2. Bernstein functions and convolution semigroups supported in [0,∞). Con-

volution semigroups of measures (ηt)t≥0 supported in [0,∞), i.e. with supp ηt ⊂ [0,∞),

are of particular interest. It turns out that they are better described by their (one-sided)

Laplace transforms L(ηt) than by their Fourier transforms.

We need some preparation. Again we refer to the monograph [7] of C. Berg and

G. Forst as a standard reference; see also again [49].

Definition 1.2.1. (i) An infinitely often differentiable function f : (0,∞) → R is said

to be completely monotone if

(−1)k f (k) ≥ 0 for all k ∈ N.

(ii) An infinitely often differentiable function f : (0,∞) → R with continuous exten-

sion to [0,∞) is called a Bernstein function if

f ≥ 0 and (−1)kf (k) ≤ 0 for all k ∈ N.

These two classes of functions are closely related.

Theorem 1.2.2. For a function f : (0,∞) → R the following assertions are equivalent :

(i) f is a Bernstein function;

(ii) f ≥ 0 and for all t > 0 the function x 7→ e−tf(x) is completely monotone.

Bernstein functions have a representation formula which is analogous to the Lévy–

Khinchin formula.
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Theorem 1.2.3. Let f be a Bernstein function. Then there exist constants a, b ≥ 0 and

a measure µ on (0,∞) satisfying

∞\
0+

s

1 + s
µ(ds) <∞(1.2.1)

such that

f(x) = a+ bx+

∞\
0+

(1 − e−xs)µ(ds), x > 0.(1.2.2)

The triple (a, b, µ) is uniquely determined by f .

Conversely , if a, b ≥ 0 and µ is a measure satisfying (1.2.1), then (1.2.2) defines a

Bernstein function.

There is a one-to-one correspondence between Bernstein functions and convolution

semigroups on [0,∞).

Theorem 1.2.4. Let f : (0,∞) → R be a Bernstein function. Then there exists a unique

convolution semigroup (ηt)t≥0 supported in [0,∞) such that

L(ηt)(x) =

∞\
0−

e−sxηt(ds) = e−tf(x), x > 0 and t > 0.(1.2.3)

Conversely , for any convolution semigroup (ηt)t≥0 supported in [0,∞) there exists a

unique Bernstein function f such that (1.2.3) holds.

It is not difficult to see that every Bernstein function f extends to the half-plane

Re z ≥ 0. From this we may deduce one of the most important properties of Bernstein

functions: they operate on negative definite functions.

Proposition 1.2.5. For any Bernstein function f and any continuous negative definite

function ψ : Rn → C the function f ◦ ψ is again continuous and negative definite.

Now let ψ and f be as in Proposition 1.2.5. Since f ◦ψ is a continuous negative definite

function on R
n, there exists a convolution semigroup (µft )t≥0 associated with f ◦ ψ.

Theorem 1.2.6. Let ψ : R
n → C be a continuous negative definite function with associ-

ated convolution semigroup (µt)t≥0 on Rn. Let f be a Bernstein function with associated

semigroup (ηt)t≥0 supported in [0,∞). The convolution semigroup (µft )t≥0 on Rn associ-

ated with the continuous negative definite function f ◦ ψ is given by\
Rn

ϕ(x)µft (dx) =

∞\
0−

\
Rn

ϕ(x)µs(dx) ηt(ds), ϕ ∈ C∞
0 (Rn).(1.2.4)

Remark 1.2.7. Instead of (1.2.4) we will sometimes write

µft =

∞\
0−

µs ηt(ds) vaguely.(1.2.5)

Definition 1.2.8. In the situation of Theorem 1.2.6 we call the convolution semigroup

(µft )t≥0 the semigroup subordinate (in the sense of Bochner) to (µt)t≥0 (with respect

to (ηt)t≥0). The convolution semigroup (ηt)t≥0 is sometimes called a subordinator.



ψ-Bessel potential spaces 17

Example 1.2.9. The function x 7→ a, a ≥ 0, is a Bernstein function, as is the function

x 7→ bx, b ≥ 0. The associated semigroups are (e−atε0)t≥0 and (εbt)t≥0, respectively.

Example 1.2.10. If s ≥ 0 the function f(x) = 1 − e−xs is a Bernstein function. It

corresponds to the Poisson semigroup with jumps of size s, i.e.

ηt =
∞∑

k=0

e−t
tk

k!
εsk, t ≥ 0.

Example 1.2.11. The function f(x) = log(1 + x) is a Bernstein function. Note that

log(1 + x) =

∞\
0

(1 − e−xs)s−1e−s ds, x > 0.

The semigroup associated with this Bernstein function is called the Γ -semigroup; it is

given by ηt = gt(·)λ(1) where

gt(x) = χ(0,∞)(x)
1

Γ (t)
xt−1e−x.

Clearly, x 7→ 1
2 log(1 + x) is also a Bernstein function with corresponding convolution

semigroup

ηt(ds) = χ(0,∞)(s)
1

Γ (t/2)
st/2−1e−sλ(1)(ds).

We call this semigroup the modified Γ -semigroup. It will become of great importance

later on.

Example 1.2.12. For α ∈ [0, 1] the function fα(x) = xα is a Bernstein function. For

α = 0 or α = 1 this is obvious, for α ∈ (0, 1) we note

xα =
α

Γ (1 − α)

∞\
0

(1 − e−xs)s−α−1 ds, x ≥ 0.

The corresponding semigroup is called the one-sided stable semigroup of order α and is

denoted by (σαt )t≥0. Only for α = 1/2 a closed expression for σαt is known:

σ
1/2
t (ds) = χ(0,∞)(s)

1√
4π
ts−3/2e−t

2/(2s)λ(1)(ds).

Often we will work with a subclass of Bernstein functions.

Definition 1.2.13. A function f : (0,∞) → R is called a complete Bernstein function

if there exists a Bernstein function g such that

f(x) = x2L(g)(x).

Theorem 1.2.14. A complete Bernstein function is itself a Bernstein function. More-

over , the following assertions are equivalent :

(i) f is a complete Bernstein function.

(ii) f is a Bernstein function having the representation

f(x) = a+ bx+

∞\
0+

(1 − e−sx)µ(ds), x > 0,
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where a and b are non-negative constants and the measure µ is given by

µ(ds) = m(s)λ(1)(ds), m(s) =

∞\
0+

e−ts τ (dt), s > 0,

where τ is a measure on (0,∞) satisfying

∞\
0+

1

t(t+ 1)
τ (dt) <∞.

(iii) f has the representation

f(x) = a+ bx+

∞\
0+

x

λ+ x
̺(dλ)

with a measure ̺ satisfying
∞\
0+

1

1 + λ
̺(dλ) <∞.

(iv) f has the representation

f(x) = a+ bx+

∞\
0+

x

1 + tx
µ̃(dt)

with a measure µ̃ on (0,∞) satisfying

∞\
0+

1

1 + t
µ̃(dt) <∞.

Remark 1.2.15. There are several additional characterizations for complete Bernstein

functions (see [67], [69] or [49]). The fourth assertion in Theorem 1.2.14 is taken from

F. Hirsch [33].

Example 1.2.16. The following functions are complete Bernstein functions:

sα =
sin(απ)

π

∞\
0

s

s+ r
rα−1 dr, 0 < α < 1;

s

s+ λ
=

∞\
0

s

s+ r
ελ(dr), λ > 0;

log(1 + s) =

∞\
0

s

s+ r
χ[1,∞)(r)

dr

r
.

1.3. One-parameter operator semigroups. Let (µt)t≥0 be a convolution semigroup

of sub-probability measures on Rn. For t ≥ 0 we define the operator

Ttu(x) =
\

Rn

u(x− y)µt(dy) = µt ∗ u(x).

Obviously, Tt is defined for all u ∈ S(Rn). We find, using the convolution theorem,

(Ttu)
∧(ξ) = (2π)n/2û(ξ)µ̂t(ξ) = û(ξ)e−tψ(ξ),(1.3.1)
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where ψ : Rn → C is the continuous negative definite function associated with (µt)t≥0. It

is easy to prove that Tt extends from S(Rn) to Lp(R
n), 1 < p <∞, as well as to C∞(Rn).

These extensions will also be denoted by Tt. For the moment we will write (X, ‖ · |X‖)
for any of the above Banach spaces.

The (extended) operators Tt, t ≥ 0, have the following properties on (X, ‖ · |X‖):
(i) Tt+s = Tt ◦ Ts and T0 = id;

(ii) limt→0 ‖Ttu− u |X‖ = 0;

(iii) ‖Ttu |X‖ ≤ ‖u |X‖.
Furthermore, we have in the case of the spaces Lp(R

n),

0 ≤ u ≤ 1 a.e. implies 0 ≤ Ttu ≤ 1 a.e.,(1.3.2)

and in the context of C∞(Rn),

0 ≤ u ≤ 1 implies 0 ≤ Ttu ≤ 1.(1.3.3)

Definition 1.3.1. A family of linear operators (Tt)t≥0 on a Banach space (X, ‖· |X‖) is

called a strongly continuous contraction semigroup if the conditions (i)–(iii) are satisfied.

Since we are only considering either convolution semigroups of sub-probability mea-

sures or strongly continuous contraction semigroups we will sometimes write just “semi-

groups” for short.

Definition 1.3.2. (i) A strongly continuous contraction semigroup on Lp(R
n), 1 ≤ p

<∞, is called an Lp-sub-Markovian semigroup if (1.3.2) is satisfied.

(ii) A strongly continuous contraction semigroup on C∞(Rn) satisfying (1.3.3) is called

a Feller semigroup.

From our introductory considerations we conclude that a family (Tt)t≥0 of operators

defined on a small space can be extended to different Banach spaces as a strongly contin-

uous contraction semigroup. In particular, extensions to the spaces Lp(R
n), 1 ≤ p < ∞,

will be denoted by (T
(p)
t )t≥0 and the extension to C∞(Rn) will be denoted by (T

(∞)
t )t≥0.

Most important is the definition of the generator of a semigroup.

Definition 1.3.3. Let (Tt)t≥0 be strongly continuous contraction semigroup on a Banach

space (X, ‖ · |X‖). Its (infinitesimal) generator is the operator

Au := lim
t→0

Ttu− u

t
(strong limit)

with domain

D(A) :=

{
u ∈ X : lim

t→0

Ttu− u

t
exists strongly in X

}
.

The generator is always a densely defined closed operator which is dissipative, i.e. the

inequality

λ‖u |X‖ ≤ ‖(λ−A)u |X‖
is satisfied for all λ > 0 and all u ∈ D(A).

A major problem is to determine the domain D(A) of A. In particular, for Lp-sub-

Markovian semigroups it is interesting to characterize D(A) in terms of function spaces.
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It is also possible to define the weak generator of (Tt)t≥0 by

Awu := w- lim
t→0

Ttu− u

t
(weak limit)

with domain

D(Aw) :=

{
u ∈ X : w- lim

t→0

Ttu− u

t
exists

}
.

However, this does not lead to a new object as the following theorem shows (see

A. Pazy [64, Theorem 1.3, p. 43]).

Theorem 1.3.4. Let (Tt)t≥0 be a strongly continuous contraction semigroup on a Banach

space (X, ‖ · |X‖). Then its weak generator coincides with its strong generator.

A strongly continuous semigroup (Tt)t≥0 on L2(R
n) is called symmetric if

(Ttu, v)L2(Rn) = (u, Ttv)L2(Rn) for all u, v ∈ L2(R
n).

Theorem 1.3.5. Let (T
(2)
t )t≥0 be a symmetric sub-Markovian semigroup on L2(R

n).

Then it extends from L2(R
n) ∩ Lp(R

n) to a sub-Markovian semigroup (T
(p)
t )t≥0 on

Lp(R
n), p ∈ [1,∞).

For a proof of this result see for example E. B. Davies [16].

A semigroup is called analytic if t 7→ Ttu admits an analytic extension z 7→ Tzu to

some sector Sθ,d0 := {z ∈ C : arg(z − d0) < θ}. A result of E. M. Stein [75] says that in

the case of a symmetric sub-Markovian semigroup (T
(2)
t )t≥0 on L2(R

n) this semigroup as

well as its extensions to Lp(R
n), 1 < p < ∞, are analytic. For every analytic semigroup

(Tt)t≥0 on a Banach space the following regularization result holds:

Ttu ∈
⋂

k≥0

D(Ak), u ∈ X.

Here D(Ak) is the domain of the kth power of the generator of (A,D(A)).

We want to characterize the generators of Feller semigroups and Lp-sub-Markovian

semigroups.

First we recall a version of the classical Hille–Yosida theorem (see S. Ethier and

T. Kurtz [18, p. 16]).

Theorem 1.3.6. A linear operator on a Banach space (X, ‖ · |X‖) is closable and its

closure A is the generator of a strongly continuous contraction semigroup on X if , and

only if , the following three conditions are satisfied :

(i) D(A) ⊂ X is dense;

(ii) A is dissipative;

(iii) for some λ > 0 the range R(λ−A) of λ−A is dense in X.

For Feller semigroups we have the following characterization (see [18, p. 165]).

Theorem 1.3.7. A linear operator (A(∞), D(A(∞))) on C∞(Rn) is closable and its clo-

sure is the generator of a Feller semigroup if , and only if , the following three conditions

are satisfied :

(i) D(A(∞)) ⊂ C∞(Rn) is dense;



ψ-Bessel potential spaces 21

(ii) A(∞) satisfies the positive maximum principle, i.e.

u(x0) = sup
x∈Rn

u(x) ≥ 0 implies A(∞)u(x0) ≤ 0;

(iii) for some λ > 0 the range R(λ−A(∞)) of λ−A(∞) is dense in C∞(Rn).

Remark 1.3.8. Theorem 1.3.7 is often called the Hille–Yosida–Ray theorem.

Definition 1.3.9. A closed linear operator (A(p), D(A(p))) on Lp(R
n), 1 < p < ∞, is

called an Lp-Dirichlet operator if\
Rn

A(p)u ((u− 1)+)p−1 dx ≤ 0

for all u ∈ D(A(p)).

Remark 1.3.10. In the case of a self-adjoint operator on L2(R
n) the notion of Dirich-

let operator was introduced by N. Bouleau and F. Hirsch [12] and for non-symmetric

operators in L2(R
n) it is due to Z.-M. Ma and M. Röckner [57]. The Lp-analogue was

introduced by the second named author in [48] (see also [49]).

Theorem 1.3.11. Let (A(p), D(A(p))) be an Lp-Dirichlet operator which is the generator

of a strongly continuous contraction semigroup (T
(p)
t )t≥0 on Lp(R

n). Then (T
(p)
t )t≥0 is

sub-Markovian.

Conversely , if (A(p), D(A(p))) is the generator of a sub-Markovian semigroup (T
(p)
t )t≥0

on Lp(R
n) then (A(p), D(A(p))) is an Lp-Dirichlet operator.

The resolvent (RAλ )λ>0 of a generator (A,D(A)) of a strongly continuous contraction

semigroup (Tt)t≥0 on a Banach space (X, ‖ · |X‖) is defined by

RAλ u = (λ−A)−1u,

and we have the representation

RAλ u =

∞\
0

e−λtTtu dt.

1.4. Subordination in the sense of Bochner and a functional calculus for gen-

erators. We have already used in Section 1.2, Proposition 1.2.5–Remark 1.2.7, Bernstein

functions in order to obtain new negative definite functions, and thus new convolution

semigroups, from a given one.

Let us now take formula (1.2.5) as our starting point in order to treat subordination

of contraction semigroups.

Denote by (X, ‖· |X‖) some Banach space of functions, which will be in later sections

Lp(R
n), 1 ≤ p < ∞, or C∞(Rn), and let (Tt)t≥0 be a strongly continuous contraction

semigroup on X with generator (A,D(A)). We denote by (ηt)t≥0 a convolution semigroup

of sub-probability measures supported in [0,∞) which is associated with the Bernstein

function f of the form (1.2.2) (see Section 1.2). Define

T ft u :=

∞\
0

Tsu ηt(ds), t ≥ 0, u ∈ X,(1.4.1)
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where the right-hand side is given by a Bochner integral. Since ‖Ttu |X‖ ≤ ‖u |X‖ and

since ηt is a sub-probability measure, (1.4.1) is well defined. Moreover, it is not hard to

see that (T ft )t≥0 is a strongly continuous contraction semigroup and that T ft is again a

sub-Markovian or Feller operator whenever (Tt)t≥0 is.

Definition 1.4.1. Let (Tt)t≥0 be a strongly continuous contraction semigroup on the

Banach space (X, ‖ · |, X‖) and let (ηt)t≥0 be a subordinator with associated Bernstein

function f . Then the semigroup (T ft )t≥0 given by (1.4.1) is called subordinate to (Tt)t≥0

(with respect to the Bernstein function f). Its generator will be denoted by (Af , D(Af )).

The notion of subordination essentially goes back to S. Bochner (see [10] and [11]).

The next theorem describes the structure of Af . It is due to R. S. Phillips [65].

Theorem 1.4.2. Let (Tt)t≥0 be a strongly continuous contraction semigroup on X and

(T ft )t≥0 be the semigroup obtained by subordination with respect to the Bernstein function

f(x) = a+ bx+

∞\
0+

(1 − e−xs)µ(ds).

Then

Afu = −au+ bAu+

∞\
0+

(Tsu− u)µ(ds), u ∈ D(A),(1.4.2)

and , for each k ∈ N, the set D(Ak) is an operator core for (Af , D(Af )), i.e., Af |D(Ak)

= Af in the sense of closed operators.

Little is known, in general, about D(Af ). Clearly, D(Af ) = X if either A or f is

bounded (in this case Af is bounded). Apart from this trivial case,

D(Af ) = D(A) if, and only if, b = lim
x→∞

f(x)

x
6= 0

(cf. [68] and [69]). More information is available if we restrict ourselves to the class of

complete Bernstein functions (see Definition 1.2.13).

Theorem 1.4.3. Let (Tt)t≥0 be a strongly continuous contraction semigroup on X and

(T ft )t≥0 be the semigroup obtained by subordination with respect to the complete Bernstein

function

f(x) = a+ bx+

∞\
0+

x

x+ λ
̺(dλ).

Then

Afu = −au+ bAu+

∞\
0+

ARAλ u ̺(dλ), u ∈ D(A).(1.4.3)

Moreover , if b 6= 0 then D(Af ) = D(A), and if b = 0 then

D(Af ) =
{
u ∈ X : lim

k→∞

k\
0

ARAλ u ̺(dλ) exists (weakly) in X
}

=
{
u ∈ X : lim

k→∞

∞\
0

(Ttu− u)mk(t) dt exists (weakly) in X
}

where mk(t) =
Tk
0
e−st τ (ds) in the notation of Theorem 1.2.14(ii).
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Remark 1.4.4. Variants of Theorem 1.4.3 are due to F. Hirsch [32], C. Berg, K. Boya-

dzhiev and R. deLaubenfels [6] (see also [69]).

Formula (1.4.3) is a generalization of Balakrishnan’s formula for fractional powers of

order α ∈ (0, 1) (see A. V. Balakrishnan [4] or K. Yosida [84, Section IX.11]). Indeed, we

have

Afαu = −(−A)αu =
sin(πα)

π

∞\
0

λα−1ARAλ u dλ,(1.4.4)

fα(x) = xα, and it is known that in this case the Bernstein functional calculus is in

accordance with the classical Dunford–Taylor integral. This carries over in the following

sense (see [68]).

Theorem 1.4.5. Let f be a complete Bernstein function and (A,D(A)) be the generator

of some strongly continuous contraction semigroup on X. Then

Af = −f(−A)

in the sense that for λ > 0 and ε > 0,

R
(A−ε id)f

λ = (λ− (A− ε id)f )−1 = (λ+ f(ε id−A))−1,(1.4.5)

where the two left-hand side members are the resolvent of (A− ε id)f , whereas the right-

hand side is defined as the Dunford–Taylor integral for g(x) = 1/(λ + f(−x)) of the

unbounded operator A− ε id. Both sides in (1.4.5) converge as ε→ 0.

The representation for (Af , D(Af )) obtained in Theorem 1.4.3 allows us to derive a

functional calculus for complete Bernstein functions. From now on we will write Af or

−f(−A) whichever notation seems to be more appropriate.

Theorem 1.4.6. Let (Tt)t≥0 be a strongly continuous contraction semigroup on X and

let f, g be two complete Bernstein functions. Then the following identities are true in the

sense of closed operators :

(i) (cf)(−A) = cf(−A), c ≥ 0;

(ii) (f + g)(−A) = f(−A) + g(−A);

(iii) (f ◦ g)(−A) = f(g(−A));

(iv) (fg)(−A) = f(−A) ◦ g(−A) = g(−A) ◦ f(−A) whenever the product fg is a

complete Bernstein function;

(v) ϕ(x) := x/f(x) is a complete Bernstein function, hence A = −f(−A) ◦ϕ(−A) =

−ϕ(−A) ◦ f(−A).

If f1, . . . , fN are complete Bernstein functions , so is f1/N := f
1/N
1 · . . . · f1/N

N , and we

can define

f(−A) := (f
1/N
1 (−A) · . . . · f1/N

N (−A))N(1.4.6)

in the sense of integer powers of closed operators. This definition is independent of N

and extends (i)–(iv) to the algebra generated by the complete Bernstein functions.

Remark 1.4.7. Theorem 1.4.6 is due to F. Hirsch [32] and to [69].

For later purposes we need to have a closer look at fractional powers (−A)γ , γ ≥ 0,

for generators of strongly continuous contraction semigroups. Many important results in
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this field are due to U. Westphal [81], [82]. In particular, it should be noted that for

α, γ > 0 we have (as an identity for closed operators)

(−A)α ◦ (−A)γ = (−A)α+γ

(compare also with (1.4.6)), and this equality has an appropriate extension to α, γ

∈ R. Moreover, there is a generalization of A. V. Balakrishnan’s formula (1.4.4): see

A. V. Balakrishnan [4] or U. Westphal [81], [82].

Theorem 1.4.8. Let (A,D(A)) be the generator of a strongly continuous contraction

semigroup (Tt)t≥0 with resolvent (RAλ )λ>0 on the Banach space X. For m < γ < m+ 1,

m ∈ N, and u ∈ D(Am+1) we have

(−A)γu =
sinπ(γ −m)

π

∞\
0

λγ−m−1RAλA
m+1u dλ.

We close this section with some perturbation results related to the functional calculus

discussed above. One should note that a variant of the following proposition was obtained

by T. Ando [3] for certain matrices A instead of generators of semigroups.

Proposition 1.4.9. Let A,B be two generators of strongly continuous contraction semi-

groups on X such that their difference A−B is a bounded operator (extended to the whole

of X). Then for any complete Bernstein function f we have

‖f(−A) − f(−B)‖ ≤ 3f(‖A−B‖)
where ‖ · ‖ denotes the operator norm for bounded operators acting on the Banach space

(X, ‖ · |X‖).
Proof. We have, for λ > 0 and u ∈ X,

(−A)RAλ u− (−B)RBλ u = u− λRAλ u− u+ λRBλ u

= λRBλ u− λRAλ u

= λRAλ (B − A)RBλ u.

From the last two lines we get for the operator norms ‖(−A)RAλ − (−B)RBλ ‖ ≤ 2, and

for λ > 0,

‖(−A)RAλ − (−B)RBλ ‖ ≤ ‖A−B‖
λ

.

We will need the following elementary inequalities:

2 ≤ 3
‖A−B‖

λ+ ‖A−B‖ for λ ≤ ‖A−B‖
2

and
‖A−B‖

λ
≤ 3

‖A−B‖
λ+ ‖A−B‖ for λ ≥ ‖A−B‖

2
.

Using the definition of f(−A) and f(−B) we find

‖f(−A) − f(−B)‖ ≤ b‖A−B‖ +

∞\
0+

‖(−A)RAλ − (−B)RBλ ‖ ̺(dλ)
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≤ b‖A−B‖ +

‖A−B‖/2\
0+

2 ̺(dλ) +

∞\
‖A−B‖/2

‖A−B‖
λ

̺(dλ)

≤ b‖A−B‖ + 3

‖A−B‖/2\
0+

‖A−B‖
λ+ ‖A−B‖ ̺(dλ)

+3

∞\
‖A−B‖/2

‖A−B‖
λ+ ‖A−B‖ ̺(dλ)

≤ 3f(‖A−B‖).

Let us apply Proposition 1.4.9 in two important special cases.

Corollary 1.4.10. Let (A,D(A)) be the generator of a strongly continuous contraction

semigroup. Then B = A− id also generates a strongly continuous contraction semigroup

and for the fractional powers we have

‖(−A)α − (id−A)α‖ ≤ 3, 0 ≤ α ≤ 1.

Remark 1.4.11. Note that the constant 3 is not optimal. A direct calculation along the

lines of the proof of Proposition 1.4.9 yields the optimal constant 1, i.e.

‖(−A)α − (id−A)α‖ ≤ 1, 0 ≤ α ≤ 1.(1.4.7)

Our next corollary already uses the fact that for a continuous negative definite function

ψ the associated pseudo-differential operator −ψ(D) generates a strongly continuous

contraction semigroup on Lp(R
n), 1 ≤ p < ∞, and on C∞(Rn). If ψ is characterized by

the Lévy–Khinchin formula (1.1.4) it follows that on C∞
0 (Rn) the operator ψ(D) has the

following representation as an integro-differential operator:

ψ(D)u(x) = cu(x) +

n∑

j=1

dj
∂u(x)

∂xj
−

n∑

j,k=1

qjk
∂2u(x)

∂xj∂xk

+
\

Rn\{0}

(
u(x) − u(x− y) − 1

1 + |y|2
n∑

j=1

yj
∂u(x)

∂xj

)
1 + |y|2
|y|2 µ(dy).

Corollary 1.4.12. Let ψ1 and ψ2 be two continuous real-valued negative definite func-

tions with representations

ψj(ξ) =
\

Rn\{0}

(1 − cos(y · ξ)) νj(dy).

Assume that the bounded variation norm of the signed measure π := ν1−ν2 is finite, i.e.,

‖π‖BV <∞. Then

‖ψ1(D) − ψ2(D)‖ ≤ 2‖π‖BV,

and for 0 < α < 1,

‖(id+ψ1(D))α − (id +ψ2(D))α‖ ≤ 3(2‖π‖BV)α.
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Proof. From the integro-differential representation of ψj(D), j = 1, 2, and the fact that

ψj is real-valued, we deduce that for u ∈ C∞
0 (Rn),

(ψ1(D) − ψ2(D))u(x) =
\

Rn\{0}

(u(x) − u(x− y))π(dy).

Using now the Minkowski inequality for double integrals we get, for 1 ≤ p <∞,

‖(ψ1(D) − ψ2(D))u |Lp(Rn)‖ =
∥∥∥

\
Rn\{0}

(u(·) − u(· − y))π(dy)
∣∣∣Lp(Rn)

∥∥∥

≤
∥∥∥

\
Rn\{0}

|u(·) − u(· − y)| · |π|(dy)
∣∣∣Lp(Rn)

∥∥∥

≤
\

Rn\{0}

‖u(·) − u(· − y) |Lp(Rn)‖ · |π|(dy)

≤ 2‖u |Lp(Rn)‖ · ‖π‖BV,

and the obvious modification for the Feller case (C∞(Rn), ‖ · |L∞‖).
The second part of the assertion now follows directly from Proposition 1.4.9 and the

usual density argument for test functions.

1.5. Sub-Markovian semigroups and abstract Bessel potential spaces. Let

(X, ‖ · |X‖) be a Banach space of real-valued functions defined on some topological

space G. Further, we assume that there exists a natural notion of pointwise inequalities

for elements of X. By this we mean that u ≤ v has the natural meaning. In the case of

Lp-spaces, i.e. the spaces Lp(G,µ) with a suitable measure µ on B(G), u ≤ v will always

mean that u(x) ≤ v(x) for µ-almost all x ∈ G.

In accordance with Definition 1.3.2 we call a strongly continuous contraction semi-

group (Tt)t≥0 on X a sub-Markovian semigroup if 0≤u≤1 implies 0≤Ttu≤1 for u∈X.

Definition 1.5.1. Let (X, ‖ · |X‖) be a Banach space. The Γ -transform (Vr)r≥0 of a

sub-Markovian semigroup (Tt)t≥0 on X is defined by

Vru :=
1

Γ (r/2)

∞\
0

tr/2−1e−tTtu dt

for r > 0 and V0 = id.

Remark 1.5.2. Note that

ηr(ds) := χ[0,∞)(s)
1

Γ (r/2)
sr/2−1e−sλ(1)(ds)

yields a convolution semigroup with support [0,∞), the so-called modified Γ -semigroup

(see Example 1.2.11). It is associated with the Bernstein function f(s) = 1
2 log(1+s).

Therefore the Γ -transform (Vr)r≥0 of a sub-Markovian semigroup is again a sub-Markov-

ian semigroup on X, namely the semigroup obtained from (Tt)t≥0 by subordination in

the sense of Bochner with respect to (ηr)r≥0 (or f , respectively); see Section 1.4.

In particular, we have Vr1 ◦ Vr2 = Vr1+r2 and

‖Vru |X‖ ≤ ‖u |X‖,(1.5.1)

i.e. each of the operators Vr, r ≥ 0, is a contraction.
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The following result is taken from [19, Theorem 4.1].

Theorem 1.5.3. Let (X, ‖ · |X‖) be a Banach space and let (Tt)t≥0 be a sub-Markovian

semigroup on X having generator (A,D(A)). Then for all r > 0 and all u ∈ X,

Vru = (id−A)−r/2u.

In particular , each of the operators Vr is injective and contractive.

Using the injectivity of the operators Vr, r ≥ 0, we may define abstract Bessel potential

spaces (see also F. Hirsch [34]) by

Fr,A,X := Vr(X) and ‖u | Fr,A,X‖ := ‖v |X‖ for u = Vrv.

Clearly, (Fr,A,X , ‖ · | Fr,A,X‖) is a Banach space which is separable whenever X is.

Remark 1.5.4. Note that often the general theory requires the regularity of the space

Fr,A,X , i.e. the density of C∞(G) ∩ Fr,A,X in both

(Fr,A,X , ‖ · | Fr,A,X‖) and (C∞(G), ‖ · |C∞(G)‖).
In introducing the spaces Fr,A,X we are, of course, motivated by the considerations of

P. Malliavin [58] and, in particular, by those of M. Fukushima (and co-workers) [26]–[28]

(see also [53]), and the work of I. Shigekawa [54] and [74].

Corollary 1.5.5. In the situation of Theorem 1.5.3 we have Fr,A,X = D((id−A)r/2).

A proof of this corollary is given in [19, Corollary 4.2].

Lemma 1.5.6. Let (A,D(A)) be the generator of a sub-Markovian semigroup (Tt)t≥0 on

the Banach space (X, ‖ · |X‖). For all r > 0 and all u ∈ D((id−A)r/2) = Fr,A,X we

have

‖u |X‖ ≤ ‖(id−A)r/2u |X‖.(1.5.2)

Moreover , if s, r ≥ 0 then the following continuous embedding holds :

Fr+s,A,X →֒ Fr,A,X .(1.5.3)

Proof. Since id = (id−A)−r/2(id−A)r/2 = Vr(id−A)r/2 it follows from (1.5.1) that on

Fr,A,X one has

‖u |X‖ = ‖Vr(id−A)r/2u |X‖ ≤ ‖(id−A)r/2u |X‖
and this proves (1.5.2).

Assertion (1.5.3) follows from the semigroup property of (Vr)r≥0 (see [19, Lemma

5.1.A] for a proof).

Let u∈Fr,A,X . Then (id−A)r/2u ∈ X, which yields ‖u | Fr,A,X‖ = ‖(id−A)r/2u |X‖.
Our aim is to prove the equivalence of the norms

‖ · | Fr,A,X‖ and ‖(−A)r/2u |X‖ + ‖u |X‖.
A first result follows from Corollary 1.4.10.

Theorem 1.5.7. Let (A,D(A)) be the generator of a strongly continuous contraction

semigroup on the Banach space (X, ‖ · |X‖). Let 0 ≤ r ≤ 1. Then for all u ∈ D(A) we
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have

1
3 (‖(−A)ru |X‖ + ‖u |X‖) ≤ ‖(id−A)ru |X‖ ≤ ‖(−A)ru |X‖ + ‖u |X‖.(1.5.4)

In particular , D((−A)r) = D((id−A)r).

Proof. Using (1.4.7) we find

‖(−A)ru |X‖ − ‖(id−A)r |X‖ ≤ ‖(−A)ru− (id−A)ru |X‖ ≤ ‖u |X‖,
which gives, by (1.5.2),

‖(−A)ru |X‖ + ‖u |X‖ ≤ ‖(id−A)ru |X‖ + 2‖u |X‖ ≤ 3‖(id−A)ru |X‖.
On the other hand, we have

‖(id−A)ru |X‖ − ‖(−A)ru |X‖ ≤ ‖(id−A)ru− (−A)ru |X‖ ≤ ‖u |X‖
or

‖(id−A)ru |X‖ ≤ ‖(−A)ru |X‖ + ‖u |X‖,
and (1.5.4) follows. Since D(A) = D(id−A) and since D((−A)r) and D((id−A)r) are

obtained by completion of D(A) with respect to the equivalent norms

‖(−A)ru |X‖ + ‖u |X‖ and ‖(id−A)ru |X‖,
respectively, we have proved the theorem by noting that, according to Theorem 1.4.2,

D(A) = D(id−A) is an operator core for both (−A)r and (id−A)r.

To extend Theorem 1.5.7 to k+r, k ∈ N0, 0 ≤ r < 1, we need some preparations. First

we recall from Section 1.4 the following results on the functional calculus for generators

of strongly continuous contraction semigroups (see Theorem 1.4.6).

For r, s ≥ 0 we have

D((−A)s+r) = {u ∈ D((−A)r) : (−A)ru ∈ D((−A)s)}
= {u ∈ D((−A)s) : (−A)su ∈ D((−A)r)},

and on D((−A)s+r) one has (−A)r(−A)s = (−A)r+s = (−A)s(−A)r.

From the proof of Theorem V.1.2.4, p. 259, in H. Amann [2] we deduce that for any

0 ≤ r < s one has the estimate

‖(id−A)ru |X‖ ≤ γ‖(id−A)su |X‖r/s‖u |X‖(s−r)/s

for all u ∈ D((−A)s) and some constant γ > 0. Using the inequality

aλb1−λ ≤ εa+
1

ελ/(1−λ)
b,

which holds for a, b ≥ 0, ε > 0 and λ ∈ (0, 1), we arrive at

‖(id−A)ru |X‖ ≤ ε‖(id−A)su |X‖ +
γs/(s−r)

εr/(s−r)
‖u |X‖,(1.5.5)

for any u ∈ D((id−A)s).

Lemma 1.5.8. Let (A,D(A)), (Tt)t≥0 and (X, ‖ · |X‖) be as in Theorem 1.5.7. Further ,

let k ∈ N0 and 0 ≤ r < 1. Then for all u ∈ D((−A)k+1) we have

‖(−A)k+ru |X‖ ≤ 3 · 2k‖(id−A)k+ru |X‖.(1.5.6)
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Proof. We prove (1.5.6) by induction. For k = 0 this estimate was proved in Theo-

rem 1.5.7. Assuming (1.5.6) for k ∈ N0 fixed we prove that

‖(−A)k+1+ru |X‖ ≤ 3 · 2k+1‖(id−A)k+1+ru |X‖
is valid for all u ∈ D((−A)k+2). Using the fact that (id−A)−1 is a contraction we find

‖(−A)k+1+ru |X‖ = ‖(−A)k+r(−A)u |X‖ ≤ 3 · 2k‖(id−A)k+r(−A)u |X‖
≤ 3 · 2k ‖(id−A)k+1+ru |X‖ + 3 · 2k ‖(id−A)k+ru |X‖
≤ 2 · 3 · 2k ‖(id−A)k+1+ru |X‖,

which proves the lemma.

Lemma 1.5.9. In the situation of Lemma 1.5.8 we have for all u ∈ D((−A)k+1) the

estimate

‖(id−A)k+ru |X‖ ≤ ck,r(‖(−A)k+ru |X‖ + ‖u |X‖).(1.5.7)

Proof. Again we use induction and note that the case k = 0 was proved in Theorem 1.5.7.

Now assuming (1.5.7) we will prove

‖(id−A)k+1+ru |X‖ ≤ ck+1,r(‖(−A)k+1+ru |X‖ + ‖u |X‖).
For u ∈ D((−A)k+2) it follows that

‖(id−A)k+1+ru |X‖ = ‖(id−A)k+r(id−A)u |X‖
≤ ‖(id−A)k+r(−A)u |X‖ + ‖(id−A)k+ru |X‖
≤ ck,r‖(−A)k+1+ru |X‖ + ck,r‖ −Au |X‖

+1
4‖(id−A)k+1+ru |X‖ + c′‖u |X‖,

where in the last step we used inequality (1.5.5) with ε = 1/4 noting that D((−A)k+2)

= D((id−A)k+2) ⊂ D((id−A)k+1).

Thus we obtain

3
4‖(id−A)k+1+ru |X‖ ≤ ck,r‖(−A)k+1+ru |X‖ + ck,r‖ −Au |X‖ + c′‖u |X‖

≤ ck,r‖(−A)k+1+ru |X‖ + ck,r‖(id−A)u |X‖ + c′′‖u |X‖
and a further application of (1.5.5) yields

1
2‖(id−A)k+1+ru |X‖ ≤ ck,r‖(−A)k+1+ru |X‖ + c̃‖u |X‖,

which finally proves the lemma.

Combining Lemmas 1.5.8 and 1.5.9 we get

Theorem 1.5.10. Let (A,D(A)), (Tt)t≥0 and (X, ‖ · |X‖) be as in Theorem 1.5.7. Let

k ∈ N0 and 0 ≤ r < 1. Then there exist constants γ̃k,r such that for any u ∈ D((−A)k+1),

1

3 · 2k + 1
(‖u |X‖ + ‖(−A)k+ru |X‖)

≤ ‖(id−A)k+ru |X‖ ≤ γ̃k,r(‖u |X‖ + ‖(−A)k+ru |X‖).
Furthermore, D((−A)k+r) = D((id−A)k+r).

Remark 1.5.11. We want to indicate an alternative proof of Theorem 1.5.10 using the

following result due to L. Hörmander (cf. K. Yosida [84, p. 79]).
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Let Λj , j = 1, 2, be two linear operators defined on D(Λj) ⊂ X into the Banach space

(X, ‖ · |X‖). If Λ1 is closed, Λ2 is closable, and if D(Λ1) ⊂ D(Λ2), then there exists a

constant c > 0 such that

‖Λ2u |X‖ ≤ c(‖Λ1u |X‖ + ‖u |X‖)(1.5.8)

for all u ∈ D(Λ1).

In order to apply this result one first extends Theorem 1.5.7 to

D((−A)r) = D((id−A)r)(1.5.9)

for all r > 0, which can be done by induction with respect to k ∈ N, r ∈ (0, k].

Once (1.5.9) is proved, noting that the operators ((−A)r, D((−A)r)) and ((id−A)r,

D((id−A)r)) are closed, from (1.5.8) we obtain

‖(−A)ru |X‖ ≤ cr(‖(id−A)ru |X‖ + ‖u |X‖)
and

‖(id−A)ru |X‖ ≤ c̃r(‖(−A)ru |X‖ + ‖u |X‖),
which implies the assertion of Theorem 1.5.10.

2. Bessel potential spaces

associated with continuous negative definite functions

This chapter is devoted to a systematic study of Bessel potential spaces associated with

a real-valued continuous negative definite function ψ : Rn → R. First we identify with a

function space Hψ,2
p (Rn) the Lp-domain of the generator A(p) of the Lp-sub-Markovian

semigroup associated with a Lévy process with characteristic exponent ψ. In the next

section we extend Hψ,2
p (Rn) to the scale Hψ,s

p (Rn), s ∈ R. In particular, we prove density

results, mapping properties of the operators (id−A(p))r/2, r ∈ R, within this scale,

and we characterize the dual spaces. In Section 2.3 embedding theorems are discussed.

We consider continuous embeddings j : Hψ1,s
p (Rn) →֒ Hψ2,r

q (Rn) and the embedding of

Hψ,s
p (Rn) into the space C∞(Rn).

This yields a characterization of the complex interpolation spaces [Hψ0,s0
p0 (Rn),

Hψ1,s1
p1 (Rn)]θ. In the final section we make use of the fact that the semigroup (T

(p)
t )t≥0 and

the operators (id−A(p))−r/2, r > 0, are positivity preserving. This enables us to associate

a capacity capψr,p with each of the spaces Hψ,r
p (Rn). Using this capacity we may introduce

the notion of an (r, p)-quasi-continuous modification of an element u ∈ Hψ,r
p (Rn) and we

show that each u ∈ Hψ,r
p (Rn) has (up to (r, p)-quasi-everywhere equality) a unique quasi-

continuous modification. Further, we show a comparison result for capψ1
r,p and capψ2

r,p based

on embedding theorems.

2.1. The space Hψ,2
p (Rn) as a domain of A(p). Let S(Rn,R) be the Schwartz space of

all real-valued rapidly decreasing C∞-functions on Rn equipped with the usual topology.

We denote by S ′(Rn,R) the space of all real-valued tempered distributions on Rn. If

ϕ ∈ S(Rn,R) then ϕ̂ = Fϕ and F−1ϕ are, respectively, the Fourier and inverse Fourier

transform of ϕ. One extends F and F−1 in the usual way from S(Rn,R) to S ′(Rn,R).
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If there is no danger of confusion, we will omit Rn and/or R in S(Rn,R) and in the

other function spaces below.

Let ψ : Rn → R be a fixed continuous negative definite function with corresponding

convolution semigroup (µt)t≥0. We assume that the function ψ has the Lévy–Khinchin

representation

ψ(ξ) =
\

Rn\{0}

(1 − cos(x · ξ)) ν(dx)(2.1.1)

where the Lévy measure ν integrates the function y 7→ |y|2 ∧ 1.

The sub-Markovian semigroup on Lp(R
n), 1 ≤ p < ∞, associated with (µt)t≥0 is

denoted by (T
(p)
t )t≥0, its generator by (A(p), D(A(p))), D(A(p)) ⊂ Lp(R

n,R).

The Feller semigroup associated with (µt)t≥0 is denoted by (T
(∞)
t )t≥0 and its gener-

ator by (A(∞), D(A(∞))), D(A(∞)) ⊂ C∞(Rn,R).

Note that if 1 ≤ p, q ≤ ∞ then

T
(p)
t u = T

(q)
t u for all u ∈ S(Rn).(2.1.2)

Since ψ is real-valued, the operator (A(2), D(A(2))) is self-adjoint, and (T
(p)
t )t≥0 is an

analytic semigroup by a result of E. M. Stein (cf. Section 1.3).

Proposition 2.1.1. For 1 < p ≤ ∞ the space S(Rn) is contained in D(A(p)) and

on S(Rn) one has

A(p)u(x) = −ψ(D)u(x) = −(2π)−n/2
\

Rn

eix·ξψ(ξ)û(ξ) dξ.(2.1.3)

Proof. First note that from (1.3.1) for u ∈ S(Rn) we get

T
(p)
t u− u

t
+ ψ(D)u = F−1

[(
e−tψ − 1

t
+ ψ

)
û

]
.(2.1.4)

Now the inequality ∣∣∣∣
e−at − 1 + at

t

∣∣∣∣ ≤
1

2
a2t, a > 0, t > 0,

and Plancherel’s theorem yield

∥∥∥∥
T

(2)
t u− u

t
+ ψ(D)u

∣∣∣∣L2

∥∥∥∥ =

∥∥∥∥
(
e−tψ − 1

t
+ ψ

)
û

∣∣∣∣L2

∥∥∥∥

≤ 1
2 t‖ψ2 û |L2‖ ≤ ct‖(1 + | · |2)2 û |L2‖.

Thus,

lim
t→0

∥∥∥∥
T

(2)
t u− u

t
+ ψ(D)u

∣∣∣∣L2

∥∥∥∥ = 0,(2.1.5)

since for u ∈ S(Rn) the term ‖(1+ | · |2)2û |L2‖ is finite. This proves (2.1.3) and S(Rn) ⊂
D(A(2)).
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Next observe that (2.1.4) also implies
∥∥∥∥
T

(∞)
t u− u

t
+ ψ(D)u

∣∣∣∣L∞

∥∥∥∥ = (2π)−n/2
∥∥∥∥
\

Rn

ei(·,ξ)
(
e−tψ(ξ) − 1

t
+ ψ(ξ)

)
û(ξ) dξ

∣∣∣∣L∞

∥∥∥∥

≤ c̃t
\

Rn

(1 + |ξ|2)2|û(ξ)| dξ,

which for u ∈ S(Rn) leads to

lim
t→0

∥∥∥∥
T

(∞)
t u− u

t
+ ψ(D)u

∣∣∣∣L∞

∥∥∥∥ = 0,(2.1.6)

and this in turn gives S(Rn) ⊂ D(A(∞)).

Combining (2.1.5), (2.1.6), and (2.1.2) we find for 2 ≤ p <∞ and u ∈ S(Rn) that
∥∥∥∥
T

(p)
t u− u

t
+ ψ(D)u

∣∣∣∣Lp
∥∥∥∥

≤
∥∥∥∥
T

(p)
t u− u

t
+ ψ(D)u

∣∣∣∣L∞

∥∥∥∥
(p−2)/p

·
∥∥∥∥
T

(p)
t u− u

t
+ ψ(D)u

∣∣∣∣L2

∥∥∥∥
2/p

,

from which we conclude that S(Rn) ⊂ D(A(p)) for 2 ≤ p <∞.

For 1/p+ 1/p′ = 1, 1 < p ≤ 2, the equality\
Rn

(
T

(p)
t u− u

t
+ ψ(D)u

)
· v dx =

\
Rn

u ·
(
T

(p′)
t v − v

t
+ ψ(D)v

)
dx

holds for u, v ∈ S(Rn) and implies that S(Rn) is in the domain of the weak generator

of (T
(p)
t )t≥0. But the weak generator coincides with the (strong) generator (see Theo-

rem 1.3.4), and it follows that S(Rn) ⊂ D(A(p)) for all 1 < p <∞.

Remark 2.1.2. (i) Let 1 ≤ p ≤ ∞. From the considerations in Section 1.5 we have

‖u |Lp(Rn)‖ ≤ ‖(id−A(p))u |Lp(Rn)‖ = ‖(id +ψ(D))u |Lp(Rn)‖(2.1.7)

for any u ∈ S(Rn).

(ii) Let us point out that the case 1 < p < 2 often requires other techniques and

assumptions than the case p ≥ 2.

In order to introduce a Bessel potential space which will characterize D(A(p)) as a

function space we need some preparatory considerations.

Suppose that the continuous negative definite function ψ has the representation

(2.1.1). As already pointed out in Section 1.1 for R > 0 we may decompose ψ into

the sum of two continuous negative definite functions by setting

ψR(ξ) :=
\

Rn\{0}

(1 − cos(x · ξ))χB(0,R)(x) ν(dx)(2.1.8)

and

ψ̃R(ξ) := ψ(ξ) − ψR(ξ) =
\

Rn\{0}

(1 − cos(x · ξ))χBc(0,R)(x) ν(dx);(2.1.9)

see (1.1.8) and (1.1.9).
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Note that both functions ψR and ψ̃R are again continuous and negative definite.

We know that ψR is infinitely often differentiable and has, together with its partial

derivatives, at most quadratic growth. We also know that ψ̃R is a bounded continuous

negative definite function.

For u ∈ S(Rn) we define the operators

ψR(D)u(x) = (2π)−n/2
\

Rn

eix·ξψR(ξ)û(ξ) dξ

and

ψ̃R(D)u(x) = (2π)−n/2
\

Rn

eix·ξ ψ̃R(ξ) û(ξ) dξ.

Thus on S(Rn) we have ψ(D) = ψR(D) + ψ̃R(D). Moreover, using (2.1.9), we find that

on S(Rn),

ψ̃R(D)u(x) =
\

Bc(0,R)

(u(x) − u(x− y)) ν(dy).(2.1.10)

Now, whenever ‖ · ‖ is a norm having the property that there exists γ > 0 with

‖u(· + y)‖ ≤ γ‖u(·)‖ for all y ∈ R
n, u ∈ S(Rn),

we deduce from (2.1.10) that

‖ψ̃R(D)u‖ ≤
\

Bc(0,R)

‖u(·) − u(· − y)‖ ν(dy) ≤ (1 + γ)ν(Bc(0, R))‖u‖,(2.1.11)

i.e., the operator ψ̃R(D) extends to a continuous operator from the closure of S(Rn)

under the norm ‖ · ‖ into itself.

Corollary 2.1.3. Let 1 ≤ p < ∞. For any R > 0 the operator ψ̃R(D) extends to a

continuous operator from Lp(R
n) into itself.

Since ψR ∈ C∞(Rn) is of at most quadratic growth, it is a multiplier for S ′(Rn).

Consequently, we can extend the operator ψR(D) from S(Rn) to S ′(Rn) by

ψR(D)u = F−1(ψRû), u ∈ S ′(Rn),

where û is considered as a tempered distribution.

Thus we may extend ψ(D) to Lp(R
n) by the identity

ψ(D)u := F−1(ψRû) +
\

Bc(0,R)

(u(· + y) − u(·)) ν(dy), u ∈ Lp(R
n),

and so ψ(D)u ∈ S ′(Rn).

It is, therefore, possible to look for all u ∈ Lp(R
n) such that ψ(D)u ∈ Lp(R

n).

Let us define the family of norms

‖u‖ψ,R,p := ‖(id+ψR(D))u |Lp(Rn)‖(2.1.12)

for those u ∈ Lp(R
n) for which (2.1.12) is finite. This is, in particular, the case for

u ∈ S(Rn).

Moreover, since ψR is a continuous negative definite function we may associate an

operator semigroup (T
(p,R)
t )t≥0 on Lp(R

n), 1 < p <∞, with ψR.
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Proposition 2.1.1 implies that S(Rn) ⊂ D(A(p,R)) and applying the results from

Section 1.5 we conclude that for all u ∈ S(Rn),

‖u |Lp(Rn)‖ ≤ ‖u‖ψ,R,p.(2.1.13)

The next lemma is an immediate consequence of Corollary 1.4.12 with ψ1 = ψR and

ψ2 = ψS .

Lemma 2.1.4. If 0 < R < S then the norms ‖ · ‖ψ,R,p and ‖ · ‖ψ,S,p are equivalent

on S(Rn).

Lemma 2.1.4, (2.1.11), (2.1.13), and (2.1.7) prove that for any R > 0 and any u ∈
S(Rn) we have the estimates

‖(id+ψ(D))u |Lp(Rn)‖ = ‖(id+ψR(D))u+ ψ̃R(D)u |Lp(Rn)‖
≤ c(‖u‖ψ,R,p + ‖u |Lp(Rn)‖) ≤ 2c‖u‖ψ,R,p

and

‖u‖ψ,R,p ≤ ‖(id +ψR(D))u+ ψ̃R(D)u |Lp(Rn)‖ + ‖ψ̃R(D)u |Lp(Rn)‖
≤ ‖(id +ψ(D))u |Lp(Rn)‖ + c′‖u |Lp(Rn)‖ ≤ c′′‖(id+ψ(D))u |Lp(Rn)‖.

This motivates the next definition.

Definition 2.1.5. Let ψ : R
n → R be a real-valued continuous negative definite function.

The ψ-Bessel potential space of order 2 with respect to Lp(R
n) (1 ≤ p <∞) is the space

Hψ,2
p (Rn) = {u ∈ Lp(R

n) : ‖u |Hψ,2
p (Rn)‖ <∞}

where

‖u |Hψ,2
p (Rn)‖ := ‖(id +ψ(D))u |Lp(Rn)‖.

Remark 2.1.6. (i) By definition for every u ∈ Hψ,2
p (Rn) there exists a unique f ∈ Lp(R

n)

such that u+ ψ(D)u = f and ‖u |Hψ,2
p (Rn)‖ = ‖f |Lp(Rn)‖.

(ii) If ψ is of the form (2.1.1), then it is clear that for any R > 0 the norms ‖ · ‖ψ,R,p
and ‖ · |Hψ,2

p (Rn)‖ are equivalent. Note that ‖ · ‖ψ,R,p = ‖ · |HψR,2
p (Rn)‖ and that

Hψ,2
p (Rn) = HψR,2

p (Rn) for all R > 0.

Moreover, for u ∈ S(Rn) it follows that u ∈ Hψ,2
p (Rn), and also

‖u |Hψ,2
p (Rn)‖ = ‖F−1[(1 + ψ(·))û] |Lp(Rn)‖.

Remark 2.1.7. (i) Note that if ψ(ξ) = |ξ|2 or ψ(ξ) = q(ξ) is a non-degenerate, pos-

itive definite, symmetric quadratic form, then Hψ,2
p (Rn) is the classical Sobolev space

W 2
p (Rn) = H2

p (R
n).

Moreover, for the continuous negative definite function ξ 7→ (1 + | · |2)r/2, 0 < r < 2,

we obtain the classical Bessel potential space Hr
p(R

n).

(ii) Let ψ be a continuous negative definite function of the form (2.1.1) and let q(ξ)

be a non-degenerate, positive definite, symmetric quadratic form. Then Ψ := q + ψ is

again continuous negative definite, and we have HΨ,2
p (Rn) = H2

p (R
n) = W 2

p (Rn).
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Indeed, using the integro-differential representation (1.4.8) for ψR(D), ψR as in (2.1.8),

and Taylor’s theorem, we find

‖ψR(D)u |Lp(Rn)‖ ≤
( \
B(0,R)\{0}

|x|2 ν(dx)
)∥∥∥∥

n∑

j,k=1

∂2u

∂xj∂xk

∣∣∣∣Lp(R
n)

∥∥∥∥.(2.1.14)

The continuous injection W 2
p (Rn) →֒ HΨ,2

p follows directly from (2.1.14) and the fact that

ψ̃R(D) is a bounded operator in Lp(R
n).

For the converse inclusion we fix some ̺ > 0 with
T
B(0,̺)\{0}

|x|2 ν(dx) < 1/2. Then
∥∥∥∥

n∑

j,k=1

∂2u

∂xj∂xk

∣∣∣∣Lp(R
n)

∥∥∥∥ ≤
∥∥∥∥

n∑

j,k=1

∂2u

∂xj∂xk
+ ψ̺(D)u

∣∣∣∣Lp(R
n)

∥∥∥∥ + ‖ψ̺(D)u |Lp(Rn)‖

≤
∥∥∥∥

n∑

j,k=1

∂2 u

∂xj∂xk
+ ψ̺(D)u

∣∣∣∣Lp(R
n)

∥∥∥∥

+
1

2

∥∥∥∥
n∑

j,k=1

∂2u

∂xj∂xk

∣∣∣∣Lp(R
n)

∥∥∥∥,

so that ∥∥∥∥
n∑

j,k=1

∂2u

∂xj∂xk

∣∣∣∣Lp(R
n)

∥∥∥∥ ≤ 2

∥∥∥∥
n∑

j,k=1

∂2u

∂xj∂xk
+ ψ̺(D)u

∣∣∣∣Lp(R
n)

∥∥∥∥

≤ c̺(‖Ψ(D)u |Lp(Rn)‖ + ‖u |Lp(Rn)‖).
Choosing r = 1 and A = −Ψ(D) in Theorem 1.5.7 shows that HΨ,2

p (Rn) →֒W 2
p (Rn).

Because of this remark we can without loss of generality restrict ourselves to negative

definite functions without quadratic part. We will do so if this helps to avoid cumbersome

notation.

(iii) For p = 2 the spaces Hψ,2
2 (Rn) are Hilbert spaces and are denoted by Hψ,2(Rn).

The spaces Hψ,2(Rn) coincide with the analogue of the Hörmander-Bk,p-spaces; these

are denoted by B2
ψ,2(R

n) and are discussed in detail in [49, Section 4.10].

Example 2.1.8. If ψ(ξ) = |ξ1|2/a1 + . . . + |ξn|2/an where a1, . . . , an ≥ 1 (cf. Ex-

ample 1.1.13), then Hψ,2
p is the (classical) anisotropic Bessel potential space (of order

2); see [63] and [73, Section 4.2.2].

As usual, for t ∈ R we denote by Ht(Rn) the classical Bessel potential space, i.e. the

collection of all u ∈ S ′(Rn) such that

‖u |Ht(Rn)‖ = ‖F−1[(1 + | · |2)t/2û] |L2(R
n)‖ <∞.

Lemma 2.1.9. The operator id +ψ(D) maps S(Rn) into
⋂
t≥0H

t(Rn) ⊂ C∞
∞ (Rn) and

for any R > 0 the operator id +ψR(D) maps S(Rn) into itself.

Proof. Let u ∈ S(Rn) and α ∈ Nn0 . Then

‖Dα(id+ψ(D))u |L2(R
n)‖2 =

\
Rn

|ξα(1 + ψ(ξ))|2|û(ξ)|2 dξ

≤ c
\

Rn

(1 + |ξ|2)|α|(1 + |ξ|2)2|û(ξ)|2 dξ = c‖u |H |α|+2(Rn)‖
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implying Dα(id+ψ(D))u ∈ L2(R
n). Since α ∈ Nn0 was arbitrary, this leads to the first

part of the conclusion.

Next let us remark that for α, β ∈ Nn0 we find

(2π)n/2xβDα
xψR(D)u(x) = xβDα

x

\
Rn

eix·ξψR(ξ)û(ξ) dξ

=
\

Rn

ξα(−i∂ξ)β(eix·ξ)ψR(ξ)û(ξ) dξ

= i|β|
\

Rn

eix·ξξα∂βξ [ψR(ξ)û(ξ)] dξ,

which yields

sup
x∈Rn

|xβDα
xψR(D)u(x)| ≤ c̃

\
Rn

dξ

(1 + |ξ|2)(n+1)/2
· sup
η∈Rn

|ηα(1 + |η|2)(n+1)/2∂βη [ψR(η)û(η)]|.

Using the fact that û ∈ S(Rn) and that ψR is an infinitely often differentiable function

which has, together will all its partial derivatives, at most quadratic growth, we get by

standard arguments the second conclusion of the lemma.

Remark 2.1.10. Note that for a general continuous negative definite function we cannot

expect id +ψ(D) to map S(Rn) into S(Rn).

Lemma 2.1.11. Let ψ : Rn → R be a continuous negative definite function and define

the function ψR, R > 0, as in (2.1.8). In addition, we define for λ > 0 on S(Rn) the

operator (λ id+ψR(D))−1 by

(λ id+ψR(D))−1u = (2π)−n/2
\

Rn

eix·ξ
1

λ+ ψR(ξ)
û(ξ) dξ.

Then the operator (λ id+ψR(D))−1 maps S(Rn) continuously into itself and is the in-

verse of λ id+ψR(D) on S(Rn).

Proof. We may argue as in the second part of the proof of Lemma 2.1.9 to get

sup
x∈Rn

|xβDα
x (λ id+ψR(D))−1u|

≤ c
\

Rn

1

(1 + |ξ|2)(n+1)/2
dξ · sup

η∈Rn

∣∣∣∣η
α(1 + |η|2)(n+1)/2∂βη

(
û(η)

λ+ ψR(η)

)∣∣∣∣,

which implies that (λ id+ψR(D))−1 maps S(Rn) continuously into itself. Moreover, for

u ∈ S(Rn) we find

(λ id+ψR(D))−1(λ id+ψR(D))u = F−1

[
1

λ+ ψR
F((λ id +ψR(D))u)

]

= F−1

[
1

λ+ ψR
(λ+ ψR)û

]
= u,

and an analogous calculation shows (λ id +ψR(D))(λ id+ψR(D))−1u = u on S(Rn).

Remark 2.1.12. (i) Recall that the operator (id +ψR(D))−1 is also an Lp-contraction

by our considerations in Section 1.5 and by Remark 2.1.2.
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(ii) From Lemma 2.1.11 it is clear that S(Rn) ⊂ D(A
(1)
R ) where

A
(1)
R |S(Rn) = −ψR(D)|S(Rn)

and ψR(D) is defined as above.

By Corollary 2.1.3 we also know that ψ̃R(D) is a bounded operator in L1(R
n). In

addition, since (−ψ̃R(D),S(Rn)) is a pre-generator of a strongly continuous contraction

semigroup on Lp(R
n), 1 < p ≤ 2, we have

‖λu+ ψ̃R(D)u |Lp(Rn)‖ ≥ λ‖u |Lp(Rn)‖ for 1 < p ≤ 2

leading to

‖λu+ ψ̃R(D)u |L1(R
n)‖ ≥ λ‖u |L1(R

n)‖
for all u, v ∈ S(Rn); note that |v|p ≤ |v| + |v|2 for 1 < p ≤ 2. Now it follows by

standard perturbation arguments for the L1(R
n)-generator (A(1), D(A(1))) of (T

(1)
t )t≥0

(see S. N. Ethier and T. G. Kurtz [18], p. 37) that

D(A(1)) = D(A
(1)
R ) ∩D(−ψ̃R(D)) = D(A

(1)
R ) ⊃ S(Rn),

i.e., we have proved that also for p = 1 the space S(Rn) is contained in D(A(1)).

Theorem 2.1.13. For 1 ≤ p <∞ the space S(Rn) is dense in Hψ,2
p (Rn).

Proof. By Remark 2.1.12 we know for u ∈ Hψ,2
p (Rn) and R > 0 that (id+ψR(D))u =

f ∈ Lp(R
n), i.e. u = (id+ψR(D))−1f .

Let (ϕj)j∈N be a sequence in S(Rn) such that limj→∞ ‖ϕj − f |Lp(Rn)‖ = 0. Then

from Lemma 2.1.11 it follows

vj := F−1[(1 + ψR(·))−1ϕ̂j ] = (id+ψR(D))−1ϕj ∈ S(Rn),

and ‖u− vj‖ψ,R,p = ‖f − ϕj |Lp(Rn)‖, which implies that limj→∞ ‖u− vj‖ψ,R,p = 0.

From (2.1.13) we also have limj→∞ ‖u−vj |Lp(Rn)‖ = 0. By the Lp-continuity of the

operator ψ̃R(D) we obtain limj→∞ ‖ψ̃R(D)u− ψ̃R(D)vj |Lp(Rn)‖ = 0.

Consequently, by Remark 2.1.6(ii),

lim
j→∞

‖u− vj |Hψ,2
p (Rn)‖ ≤ lim

j→∞
‖u− vj‖ψ,R,p + lim

j→∞
‖ψ̃R(D)u− ψ̃R(D)vj |Lp(Rn)‖ = 0

and the theorem is proved.

We want to strengthen Theorem 2.1.13, namely to prove that S(Rn) is an operator

core for A(p) and that D(A(p)) = Hψ,2
p (Rn). For this we need the following auxiliary

result. A semigroup version of this result can be found in E. B. Davies [16, Theorem 1.9].

Lemma 2.1.14. Let (A,D(A)) be the generator of a strongly continuous contraction

semigroup (Tt)t≥0 on a Banach space (X, ‖ · |X‖) and denote by (RAλ )λ>0 the resolvent

of (A,D(A)), i.e. RAλ = (λ id−A)−1. If D ⊂ D(A) is a cone such that D is a dense

subset and RAλ (D) ⊂ D for all λ > 0, then D is an operator core for (A,D(A)).

Proof. Write |||u|||A = ‖u |X‖ + ‖Au |X‖ for the graph norm of the operator (A,D(A)).

We have to prove that D|||·|||A
= D(A).

Since D ⊂ X is dense, we find for every f ∈ D(A) a sequence (fk)k∈N such that

lim
k→∞

‖f − fk |X‖ = 0.
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Since RAλ preserves D we have RAλ fk ∈ D, so

|||RAλ fk −RAλ f |||A = ‖RAλ fk −RAλ f |X‖ + ‖ARAλ fk −ARAλ f |X‖

≤ 1

λ
‖fk − f |X‖ + 2‖fk − f |X‖

since ‖ARAλ ‖ ≤ 2. It follows that (RAλ fk)k∈N is a sequence in D which converges in

the graph norm ||| · |||A to RAλ f and RAλ f ∈ D|||· |||A
. Since D is a cone, we also have

λRAλ f ∈ D|||· |||A
and we find

|||λRAλ f − f |||A = ‖λRAλ f − f |X‖ + ‖λARAλ f −Af |X‖

≤
∞\
0

λe−λt‖Ttf − f |X‖ dt+
∞\
0

λe−λt‖TtAf −Af |X‖ dt

=

∞\
0

e−s(‖Ts/λf − f |X‖ + ‖Ts/λAf −Af |X‖) ds.

Using the dominated convergence theorem, and recalling that f ∈ D(A) and Ts/λ is a

contraction, for λ→ ∞ we get

λRAλ f → f ∈ D|||·|||A

where the convergence is with respect to the norm ||| · |||A. Hence D(A) ⊂ D|||·|||A
and the

lemma follows.

Theorem 2.1.15. Let 1 ≤ p < ∞. For any continuous negative definite function ψ :

Rn → R of the form (2.1.1) we have D(A(p)) = Hψ,2
p (Rn), and S(Rn) is an operator core

for (A(p), D(A(p))).

Proof. Consider the operator ψR(D) where ψR is given by (2.1.8). We already know that

−ψR(D) extends to a generator of a strongly continuous Lp-semigroup which we will

denote by (A
(p)
R , D(A

(p)
R )). Lemma 2.1.11 shows that its resolvent has the property that

R
A

(p)

R

λ |S(Rn) = (λ+ ψR(D))−1

and that each of the operators R
A

(p)

R

λ preserves S(Rn). Now Lemma 2.1.14 is applicable,

showing that S(Rn) is a core for (A
(p)
R , D(A

(p)
R )), and because of Theorem 2.1.13 we get

D(A
(p)
R ) = S(Rn)

|||·|||
A

(p)

R = HψR,2
p (Rn) = Hψ,2

p (Rn),

where the last equality is essentially Remark 2.1.6(ii). Since S(Rn) ⊂ Lp(R
n) is dense

and since

(A(p) −A
(p)
R )|S(Rn) = (ψR(D) − ψ(D))|S(Rn)

is (uniformly) bounded for R ≥ 1, we also see that D(A(p)) = Hψ,2
p (Rn).

It remains to show that S(Rn) is also a core for A(p). This, however, is clear since

A(p) = A
(p)
R + (A(p) − A

(p)
R ) and the second summand is a lower order perturbation, in

fact it is an Lp-bounded operator.

We want to return to Remark 2.1.10 and to Lemma 2.1.9 and investigate the operator

ψ(D) on the space
⋂
t≥0H

t(Rn) ∩ Lp(Rn).
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Lemma 2.1.16. Let f ∈ ⋂
t≥0H

t(Rn), let λ > 0 and define

u := F−1

[
1

λ+ ψ(·) f̂(·)
]
.

Then u ∈ ⋂
t≥0H

t(Rn) and (λ+ ψ(D))u = f .

If , in addition, f ∈ Lp(R
n), 1 < p <∞, then u ∈ ⋂

t≥0H
t(Rn) ∩Hψ,2

p (Rn).

Proof. For α ∈ Nn0 we find

Dαu(x) = (2π)−n/2
\

Rn

eix·ξ
1

λ+ ψ(ξ)
(Dαf)∧(ξ) dξ,

and by Plancherel’s theorem we have

‖Dαu |L2(R
n)‖ = ‖(Dαu)∧ |L2(R

n)‖ =

( \
Rn

∣∣∣∣
1

λ+ ψ(ξ)
(Dαf)∧(ξ)

∣∣∣∣
2

dξ

)1/2

≤ 1

λ
‖(Dαf)∧ |L2(R

n)‖ =
1

λ
‖Dαf |L2(R

n)‖,

which implies u ∈ ⋂
t≥0H

t(Rn).

Further, we have

(λ+ ψ(D))u = F−1[(λ+ ψ)û] = F−1

[
(λ+ ψ)

1

λ+ ψ
f̂

]
= f.

Thus f ∈ Lp(R
n) yields (λ + ψ(D))u ∈ Lp(R

n), i.e. u ∈ ⋂
t≥0H

t(Rn) ∩Hψ,2
p (Rn), and

this proves the lemma.

Proposition 2.1.17. For 1 < p < ∞ the space
⋂
t≥0H

t(Rn) ∩ Hψ,2
p (Rn) is contained

in D(A(p)).

Proof. For u ∈ ⋂
t≥0H

t(Rn)∩Hψ,2
p (Rn) the norm ‖(1 + | · |)2 û(·) |L2(R

n)‖ is finite and

(1/t)(T
(2)
t u − u) + ψ(D)u belongs to L2(R

n), hence we may argue as in the proof of

Proposition 2.1.1.

In fact, all arguments remain true for u ∈ Hψ,2(Rn) since then ψ(·)û ∈ L2(R
n).

On the other hand, for u ∈ ⋂
t≥0H

t(Rn) ⊂ C∞
∞ (Rn) it follows that ψ(D)u ∈ L∞(Rn)

and therefore we find
∥∥∥∥
T

(∞)
t u− u

t
+ ψ(D)u

∣∣∣∣L∞(Rn)

∥∥∥∥

=

∥∥∥∥F−1

[(
e−tψ − 1

t
+ ψ

)
û

] ∣∣∣∣L∞(Rn)

∥∥∥∥

=

∥∥∥∥F−1

[(
e−tψ − 1

t
+ ψ

)
(1 + | · |2)−n−2(1 + | · |2)n+2û

] ∣∣∣∣L∞(Rn)

∥∥∥∥.

Applying elementary properties of the inverse Fourier transform and using Plancherel’s
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formula we get
∥∥∥∥
T

(∞)
t u− u

t
+ ψ(D)u

∣∣∣∣L∞(Rn)

∥∥∥∥

≤ (2π)−n/2
∥∥∥∥
(
e−tψ − 1

t
+ ψ

)
(1 + | · |2)−n−2

∣∣∣∣L2(R
n)

∥∥∥∥ · ‖(id−∆)n+2u |L2(R
n)‖

≤ (2π)−n/2
t

2
‖ψ2(1 + | · |2)−n−2 |L2(R

n)‖ · ‖(id−∆)n+2u |L2(R
n)‖

≤ ct‖(1 + | · |2)2(1 + | · |2)−n−2 |L2(R
n)‖ · ‖u |H2n+4(Rn)‖,

which implies

lim
t→0

∥∥∥∥
T

(∞)
t u− u

t
+ ψ(D)u

∣∣∣∣L∞(Rn)

∥∥∥∥ = 0 for u ∈
⋂

t≥0

Ht(Rn).

For p ≥ 2 and u ∈ ⋂
t≥0H

t(Rn) ∩ Hψ,2
p (Rn) the expression (1/t)(T

(p)
t u − u) + ψ(D)u

belongs to Lp(R
n), and we may argue again as in Proposition 2.1.1 to see that

lim
t→0

∥∥∥∥
T

(p)
t u− u

t
+ ψ(D)u

∣∣∣∣Lp(R
n)

∥∥∥∥ = 0,

and this means that
⋂
t≥0H

t(Rn) ∩Hψ,2
p (Rn) ⊂ D(A(p)) for p ≥ 2.

Let now 1 < p ≤ 2, u ∈ Hψ,2
p (Rn) and v ∈ S(Rn). First we observe that in this

situation
T
Rn
ψ(D)u · v dx =

T
Rn
u · ψ(D)v dx, and for 1/p+ 1/p′ = 1 this leads to\

Rn

(
T

(p)
t u− u

t
+ ψ(D)u

)
· v dx =

\
Rn

u ·
(
T

(p′)
t v − v

t
+ ψ(D)v

)
dx.

But now we may argue as in the proof of Proposition 2.1.1 to see that
⋂
t≥0H

t(Rn) ∩
Hψ,2
p (Rn) belongs to the domain of the weak generator of (T

(p)
t )t≥0, hence it is a subspace

of the domain of the generator.

Remark 2.1.18. Lemma 2.1.16 and Proposition 2.1.17 give an alternative proof for

D(A(p)) = Hψ,2
p (Rn), 1 < p <∞.

We may consider the operator −ψ(D) on Lp(R
n) with domain

⋂
t≥0H

t(Rn) ∩
Hψ,2
p (Rn) or S(Rn) and prove that it extends to a generator of an Lp-sub-Markovian

semigroup having domain Hψ,2
p (Rn). Then it is possible to identify this extension with

(A(p), D(A(p))).

2.2. The spaces Hψ,s
p (Rn). Let ψ : R

n → R be a fixed continuous negative definite

function. We denote again by A(p), 1 ≤ p < ∞, the generator of the Lp-sub-Markovian

semigroup (T
(p)
t )t≥0 associated with ψ. From Theorem 2.1.15 we know that D(A(p)) =

Hψ,2
p (Rn).

Let s ≥ 0. Using the considerations from Section 1.5 we define the abstract Bessel

potential space associated with A(p) by

Hψ,s
p (Rn) := Fs,A(p),Lp(Rn) := (id−A(p))−s/2(Lp(R

n)), s > 0, 1 ≤ p <∞.



ψ-Bessel potential spaces 41

For s = 0 we set Hψ,0
p (Rn) = Lp(R

n). The norm on Fs,A(p),Lp(Rn) is given by

‖u | Fs,A(p),Lp(Rn)‖ = ‖f |Lp(Rn)‖ for u = (id−A(p))−s/2f.

From Section 1.5 we know that Hψ,s+t
p (Rn) →֒ Hψ,s

p (Rn) for s, t ≥ 0.

In what follows we will use the fact that (id−A(p))−s/2 is the operator Vs introduced

in Section 1.5 by

Vsu =
1

Γ (s/2)

∞\
0

ts/2−1e−tT
(p)
t u dt

(compare Theorem 1.5.3). In particular, we use the fact that (id−A(p))−s/2 is a contrac-

tion on Lp(R
n), and that we have the semigroup property

(id−A(p))−s/2 ◦ (id−A(p))−t/2 = (id−A(p))−(s+t)/2,

which holds on Lp(R
n) for any s, t ≥ 0.

The aim of this section is to identify Fs,A(p),Lp(Rn) with a function space. More pre-

cisely, we want to show that Fs,A(p),Lp(Rn) coincides with the closure of S(Rn) with respect

to the norm

‖u |Hψ,s
p (Rn)‖ = ‖F−1[(1 + ψ)s/2û] |Lp(Rn)‖.(2.2.1)

A first result is obtained by using Corollary 1.5.5.

Corollary 2.2.1. For s ≥ 0, 1 ≤ p < ∞, and a fixed continuous negative definite

function ψ : R
n → R we have Hψ,s

p (Rn) = D((id−A(p))s/2).

In particular, Hψ,s
p (Rn) →֒ Lp(R

n) →֒ S ′(Rn).

Another immediate consequence is that for u ∈ Hψ,s
p (Rn) we find (id−A(p))s/2u ∈

Lp(R
n) implying that

‖u |Hψ,s
p (Rn)‖ = ‖(id−A(p))s/2u |Lp(Rn)‖.

Now we may apply the calculus for fractional powers of generators of contraction semi-

groups to the family of operators (id−A(p))s/2, s ≥ 0.

Let s, r ≥ 0. As an identity of (closed) operators we have

(id−A(p))s/2 ◦ (id−A(p))r/2 = (id−A(p))(s+r)/2

and the equality

‖u |Hψ,s+r
p (Rn)‖ = ‖(id−A(p))r/2u |Hψ,s

p (Rn)‖, u ∈ Hψ,s+r
p (Rn),

holds. Moreover, we have

(id−A(p))−s/2 ◦ (id−A(p))r/2 = (id−A(p))(r−s)/2

and also the estimate

‖(id−A(p))r/2u |Lp(Rn)‖ ≤ ‖(id−A(p))(s+r)/2u |Lp(Rn)‖.
In this concrete setting the abstract Lemma 1.5.6 reads as follows:

Corollary 2.2.2. (i) For all s, t ≥ 0 we have Hψ,s+t
p (Rn) →֒ Hψ,s

p (Rn), 1 ≤ p <∞.

(ii) For all s ≥ 0 the operator (id−A(p))s/2 : Hψ,s+r
p (Rn) → Hψ,r

p (Rn), 1 ≤ p < ∞,

is continuous.
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For k ∈ N and u ∈ S(Rn) we have the representation

(id−A(p))ku(x) = (2π)−n/2
\

Rn

eix·ξ(1 + ψ(ξ))kû(ξ) dξ,

which implies S(Rn) ⊂ ⋂
t≥0H

ψ,t
p (Rn).

By Corollary 2.2.2(ii) we conclude that

(id−A(p))s/2u ∈
⋂

t≥0

Hψ,t
p (Rn) for s ≥ 0, u ∈ S(Rn).

Further, we find that for all r, s, t ≥ 0 such that s− r ≥ 0 the operators

(id−A(p))s/2 ◦ (id−A(p))−r/2 : Hψ,t
p (Rn) → Hψ,t+s−r

p (Rn)(2.2.2)

and

(id−A(p))−r/2 ◦ (id−A(p))s/2 : Hψ,t
p (Rn) → Hψ,t+s−r

p (Rn)(2.2.3)

are continuous. From (2.2.2) and (2.2.3) we conclude that the operator (id−A(p))s/2 :

Hψ,s+t
p (Rn) → Hψ,t

p (Rn) is injective for s ≥ 0. For g ∈ Hψ,t
p (Rn) there exists f ∈ Lp(R

n)

such that g = (id−A(p))−t/2f . Setting

u := (id−A(p))−s/2g = (id−A(p))−(t+s)/2f ∈ Hψ,s+t
p (Rn)

we find (id−A(p))s/2u = g, i.e., we have proved

Corollary 2.2.3. For s, t ≥ 0 and 1 ≤ p <∞ the operator (id−A(p))s/2 : Hψ,s+t
p (Rn)

→ Hψ,t
p (Rn) is a bijective continuous operator with continuous inverse.

Proposition 2.2.4. For any s ≥ 0 the space S(Rn) is dense in Hψ,s
p (Rn), 1 ≤ p <∞.

Proof. Let u ∈ Hψ,s
p (Rn) and set f := (id−A(p))s/2u, so ‖u |Hψ,s

p (Rn)‖ = ‖f |Lp(Rn)‖.
For ε > 0 there exists vε ∈ S(Rn) such that ‖f − vε |Lp(Rn)‖ < ε.

Defining ωε := (id−A(p))−s/2vε we deduce that ωε ∈ Hψ,s
p (Rn), and

‖u− ωε |Hψ,s
p (Rn)‖ = ‖f − vε |Lp(Rn)‖ < ε.

As an immediate consequence of Proposition 2.2.4 we deduce thatHψ,s+t
p (Rn) is dense

in Hψ,s
p (Rn) for any t, s ≥ 0.

Theorem 2.2.5. Let s ≥ 0, 1 ≤ p <∞, and ψ : Rn → R be a fixed continuous negative

definite function. Then for all u ∈ S(Rn) we have

(id−A(p))su = F−1[(1 + ψ)s û].(2.2.4)

Proof. Let u ∈ S(Rn), s = k + σ, k ∈ N0 and 0 ≤ σ < 1. Using Theorem 1.4.8 we have

the representation

(id−A(p))su(x)

=
sin πσ

π

∞\
0

λσ−1R
(A(p)−id)
λ (id−A(p))k+1u(x) dλ

= (2π)−n/2
sin πσ

π

∞\
0

\
Rn

eix·ξλσ−1(λ+ (1 + ψ(ξ)))−1(1 + ψ(ξ))k+1û(ξ) dξ dλ
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where we used the fact that for l ∈ N0 and u ∈ S(Rn) the formulae

(id−A(p))lu = F−1[(1 + ψ)l û](2.2.5)

and

R
(A(p)−id)
λ u = F−1

[(
1

λ+ (1 + ψ)

)
û

]

hold. Taking into account that û ∈ S(Rn) and that for a > 0,

∞\
0

λσ−1

λ+ a
dλ =

Γ (σ)Γ (1 − σ)

Γ (1)
aσ−1 =

π

sin πσ
aσ−1,

we further find

(id−A(p))su(x) = (2π)−n/2
sinπσ

π

\
Rn

eix·ξ(1 + ψ(ξ))k+1
∞\
0

λσ−1

(λ+ (1 + ψ(ξ))
dλ û(ξ) dξ

= (2π)−n/2
sinπσ

π

π

sin πσ

\
Rn

eix·ξ(1 + ψ(ξ))k+σû(ξ) dξ

= (2π)−n/2
\

Rn

eix·ξ(1 + ψ(ξ))sû(ξ) dξ.

Since for s = k ∈ N0 formula (2.2.4) is already known, the theorem is proved.

From (2.2.4) we deduce that for u ∈ S(Rn),

‖u |Hψ,s
p (Rn)‖ = ‖(id−A(p))s/2u |Lp(Rn)‖ = ‖F−1[(1 + ψ)s/2û] |Lp(Rn)‖,

which means that (2.2.1) is proved.

Moreover, since S(Rn) is dense in Hψ,s
p (Rn) it follows that Hψ,s

p (Rn) is the closure

of S(Rn) with respect to the norm ‖F−1[(1 + ψ)s/2û] |Lp(Rn)‖.
From the proof of Theorem 2.2.5 we get the following

Corollary 2.2.6. Let s ≥ 0, 1 < p < ∞, and ψ : Rn → R be a continuous negative

definite function. On S(Rn) the operator (−A(p))s has the representation

(−A(p))su(x) = (2π)−n/2
\

Rn

eix·ξ(ψ(ξ))sû(ξ) dξ.

Now we may apply Theorem 1.5.10.

Theorem 2.2.7. For u ∈ S(Rn) and 1 ≤ p <∞ the following estimates hold :

(2.2.6) γ0(‖F−1[ψs/2û] |Lp(Rn)‖ + ‖u |Lp(Rn)‖)
≤ ‖u |Hψ,s

p (Rn)‖ ≤ γ1(‖F−1[ψs/2û] |Lp(Rn)‖ + ‖u |Lp(Rn)‖).
By a density argument, (2.2.6) extends to all u ∈ Hψ,s

p (Rn) with an appropriate

interpretation of F−1[ψs/2û] and F−1[(1 + ψ)s/2û], respectively.

Remark 2.2.8. Note that (2.2.6) says that for the classical Bessel potential spaces

Hs
p(R

n) (corresponding to ψ(ξ) = |ξ|2),
γ0(‖(−∆)s/2 |Lp(Rn)‖ + ‖u |Lp(Rn)‖)

≤ ‖u |Hψ,s
p (Rn)‖ ≤ γ1(‖(−∆)s/2 |Lp(Rn)‖ + ‖u |Lp(Rn)‖),
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i.e. it gives a comparison of the Lp-norms of Riesz potentials and Bessel potentials (com-

pare E. M. Stein [76, Section V.3.2]).

In the previous considerations we have introduced the spaces Hψ,s
p (Rn) for s ≥ 0 and

we have seen in Proposition 2.2.4 that S(Rn) is dense in Hψ,s
p (Rn).

In what follows we define the spaces Hψ,s
p (Rn) for s < 0, and determine the dual of

Hψ,s
p (Rn) for the whole scale of parameters s ∈ R.

Definition 2.2.9. Let ψ : Rn → R be a continuous negative definite function, let

1 ≤ p <∞ and s < 0. The space Hψ,s
p (Rn) is the closure of S(Rn) in the norm

‖u |Hψ,s
p (Rn)‖ = ‖F−1[(1 + ψ)s/2û] |Lp(Rn)‖.(2.2.7)

Thus we have a scale of Bessel potential spaces Hψ,s
p (Rn), s ∈ R, for which S(Rn) is

a dense subset with respect to the norm (2.2.7).

Consequently, a continuous linear functional on Hψ,s
p (Rn) can be interpreted in the

usual way as an element of S ′(Rn).

More precisely, l ∈ S ′(Rn) belongs to the topological dual space (Hψ,s
p (Rn))′ of

Hψ,s
p (Rn) if, and only if, there exists c > 0 such that

|l(ϕ)| ≤ c‖ϕ |Hψ,s
p (Rn)‖ for all ϕ ∈ S(Rn).(2.2.8)

The duality assertion must always be understood in this sense.

Recall that all function spaces which are considered here are real.

Theorem 2.2.10. Let ψ : R
n → R be a continuous negative definite function, let s ∈ R,

let 1 < p < ∞ and 1/p + 1/p′ = 1. The topological dual space of Hψ,s
p (Rn) is the space

Hψ,−s
p′ (Rn) in the sense that for any l ∈ (Hψ,s

p (Rn))′ there exists v ∈ Hψ,−s
p′ (Rn) such

that for all ϕ ∈ S(Rn),

l(ϕ) =
\

Rn

F−1[(1 + ψ)−s/2v̂](x) · F−1[(1 + ψ)s/2ϕ̂](x) dx.(2.2.9)

The norm of l is given by ‖v |Hψ,−s
p′ (Rn)‖.

Conversely , for any v ∈ Hψ,−s
p′ (Rn) an element of (Hψ,s

p (Rn))′ is defined by (2.2.9).

Proof. Step 1. We first prove that for any v ∈ Hψ,−s
p′ (Rn) we can define a continuous

linear functional by (2.2.9).

Clearly, the integral in (2.2.9) converges, as a simple application of Hölder’s inequality

shows:

|l(ϕ)| ≤ ‖v |Hψ,−s
p′ (Rn)‖ · ‖ϕ |Hψ,s

p (Rn)‖.
By standard arguments we immediately deduce that the functional l defined by (2.2.9)

has norm ‖l‖ = ‖v |Hψ,−s
p′ (Rn)‖.

Step 2. Conversely, assume that a linear functional l on Hψ,s
p (Rn) is given and assume

that (2.2.8) holds.

On S(Rn) we introduce the norm

|||ϕ||| = ‖ϕ |Hψ,s
p (Rn)‖ = ‖F−1[(1 + ψ)s/2ϕ̂] |Lp(Rn)‖.
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The continuous linear functional l on (S(Rn), ||| · |||) has a representation by a function

w ∈ Lp′(R
n), i.e.

l(ϕ) =
\

Rn

F−1[(1 + ψ)s/2ϕ̂](x) · w(x) dx, ϕ ∈ S(Rn).(2.2.10)

Since w ∈ Lp′(R
n), there exists a sequence (wn)n∈N ⊂ S(Rn) such that

‖wn − w |Lp′(Rn)‖ → 0 as n→ ∞.

We remark that vn = F−1[(1 + ψ)s/2ŵn] ∈ Hψ,−s
p′ (Rn). Moreover, for m 6= n,

‖F−1[(1 + ψ)s/2F(wn − wm)] |Hψ,−s
p′ (Rn)‖ = ‖wn − wm |Lp′(Rn)‖

and this implies that (vn)n∈N is a Cauchy sequence in Hψ,−s
p′ (Rn). Denote by v ∈

Hψ,−s
p′ (Rn) the limit of (vn)n∈N in Hψ,−s

p′ (Rn). Since wn = F−1[(1 + ψ)−s/2v̂n] it fol-

lows that

w = F−1[(1 + ψ)−s/2v̂] ∈ Lp′(R
n).(2.2.11)

But (2.2.11) says that (2.2.10) is in fact exactly the desired formula (2.2.9), and the

theorem is proved.

Remark 2.2.11. (i) Note that if ψ(ξ) = |ξ|2 then Hψ,s
p (Rn) is the classical Bessel

potential space Hs
p(R

n).

(ii) For p = 2 the spacesHψ,s
2 (Rn) are Hilbert spaces and will be denoted byHψ,s(Rn).

In particular, we write Hs(Rn) if ψ(ξ) = |ξ|2.

Remark 2.2.12. (i) If

ψ(ξ) = |ξ1|2/a1 + . . .+ |ξn|2/an(2.2.12)

where a1, . . . , an ≥ 1 (cf. Example 1.1.13), then Hψ,s
p is the (classical) anisotropic Bessel

potential space, denoted by Hs,a
p (Rn); see [63] and [73, Section 4.2.2].

(ii) Recall that the classical anisotropic Bessel potential space Hs,a
p (Rn) is defined via

an anisotropic distance function associated with a = (a1, . . . , an).

Given a1, . . . , an ≥ 1, a function ̺ : Rn → R is called an anisotropic distance function

associated with a = (a1, . . . , an) if ̺(ξ) > 0 for any ξ ∈ Rn and

̺(ta1ξ1, . . . , t
anξn) = t̺(ξ), t > 0, ξ = (ξ1, . . . , ξn) ∈ R

n.

It is well known that any two anisotropic distance functions ̺1 and ̺2 associated with a

are equivalent in the sense that there exist two constants c, C > 0 such that

c̺1(ξ) ≤ ̺2(ξ) ≤ C̺1(ξ), ξ ∈ R
n.

For every a = (a1, . . . , an) there exists an anisotropic distance function ̺ ∈ C∞(Rn\{0}).
For fixed s ∈ R and 1 < p <∞ equivalent anisotropic distance functions generate the

same anisotropic Bessel potential space.

The function
√
ψ, where ψ is given in (2.2.12), is an anisotropic distance function.

Remark 2.2.13. It is not hard to see that the scale Hψ,s
p (Rn) covers as particular cases

all of the so-called generalized Liouville spaces L
(µ)
p from [52, Definition 2.5] where con-
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tinuous negative definite functions ψ of the form

ψ(ξ)s/2 = µ1(|ξ1|) + . . .+ µn(|ξn|),
with appropriate one-variable functions µ1, . . . , µn, are considered.

2.3. Embeddings for the spaces Hψ,s
p (Rn). Some embeddings for the spacesHψ,s

p (Rn)

were tacitly stated in the previous section. We will collect them now systematically.

Theorem 2.3.1. Let ψ : Rn → R be a continuous negative definite function, 1 < p <∞,

and t ≥ 0. Then for any s ∈ R,

Hψ,s+t
p (Rn) →֒ Hψ,s

p (Rn).(2.3.1)

(If s ≥ 0, then (2.3.1) also holds for p = 1.)

Proof. If s ≥ 0 and 1 ≤ p <∞, then the embedding (2.3.1) is just Corollary 2.2.2.

If s < 0 and 1 < p <∞ we distinguish two cases: −s− t ≥ 0 and −s− t < 0.

Case 1. If −s− t ≥ 0, then again by Corollary 2.2.2 we have the embedding

Hψ,−s
p′ (Rn) →֒ Hψ,−s−t

p′ (Rn) where 1/p+ 1/p′ = 1,

which leads, after applying the duality theorem (see Theorem 2.2.10), to (2.3.1).

Case 2. If −s− t < 0, then Hψ,s+t
p (Rn) →֒ Lp(R

n). Since Hψ,−s
p′ (Rn) →֒ Lp′(R

n) we

obtain the embedding (2.3.1) again by applying the duality theorem, and this completes

the proof.

Let 1 ≤ p, q ≤ ∞ and denote by Mp,q the collection of Fourier multipliers of type

(p, q). Recall a tempered distribution m ∈ S ′(Rn) is called a Fourier multiplier of type

(p, q) if

‖m |Mp,q‖ = sup

{‖F−1[mϕ̂] |Lq(Rn)‖
‖ϕ |Lp(Rn)‖

: 0 6= ϕ ∈ S(Rn)

}
<∞.

For standard properties of the space Mp,q we refer to L. Hörmander [41]. Let us only

mention that

F(L1(R
n)) ⊂ Mp,p ⊂ M2,2 = L∞(Rn), 1 < p <∞,

and

M1,q ⊂ Mq′,∞ = F(Lq(R
n)) for 1 < q ≤ ∞, 1/q + 1/q′ = 1.(2.3.2)

Moreover, if q ≤ 2 the space Mp,q contains locally integrable functions.

We are now in a position to state a general embedding theorem for the spacesHψ,s
p (Rn)

using the notion of Fourier multipliers.

Theorem 2.3.2. Let ψ1, ψ2 : Rn → R be two continuous negative definite functions , let

s, r ∈ R and 1 ≤ p, q <∞. Then

Hψ1,s
p (Rn) →֒ Hψ2,r

q (Rn)(2.3.3)

if , and only if ,

m := (1 + ψ2)
r/2 (1 + ψ1)

−s/2 ∈ Mp,q.(2.3.4)
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Proof. We first assume that (2.3.4) is satisfied. Let u ∈ S(Rn) →֒ Hψ1,s
p (Rn) and v :=

F−1[(1 + ψ1)
s/2û] ∈ Lp(R

n). Consequently, we have

‖u |Hψ2,r
q (Rn)‖ = ‖F−1[(1 + ψ2)

r/2û] |Lq(Rn)‖ = ‖F−1[mv̂] |Lq(Rn)‖
≤ ‖m |Mp,q‖ · ‖v |Lp(Rn)‖ = c‖u |Hψ1,s

p (Rn)‖,
which proves, by standard density arguments, the embedding (2.3.3).

Assume now the embedding (2.3.3) and let ϕ ∈ S(Rn). Then

‖F−1[mϕ̂] |Lq(Rn)‖ = ‖F−1[(1 + ψ1)
−s/2ϕ̂] |Hψ2,r

q (Rn)‖
≤ c‖F−1[(1 + ψ1)

−s/2ϕ̂] |Hψ1,s
p (Rn)‖ = c‖ϕ |Lp(Rn)‖

and this is (2.3.4).

One can easily obtain several embedding results from the above theorem.

Corollary 2.3.3. (i) Let 1 < p < ∞ and let ψ : Rn → R be a continuous negative

definite function which is unbounded. Then Hψ,s
p (Rn) →֒ Hψ,r

p (Rn) if , and only if , s ≥ r.

(ii) Let 1 < p <∞, s > 0, and ψ1, ψ2 : Rn → R be continuous negative definite func-

tions. Then the embedding Hψ1,s
p (Rn) →֒ Hψ2,s

p (Rn) implies that there exists a constant

c > 0 such that

1 + ψ2(ξ) ≤ c(1 + ψ1(ξ)), ξ ∈ R
n.

If , in particular , Hψ1,s
p (Rn) = Hψ2,s

p (Rn), we have

1

c
(1 + ψ1(ξ)) ≤ 1 + ψ2(ξ) ≤ c(1 + ψ1(ξ)).

The converse assertions hold for p = 2.

Proof. (i) If s ≥ r then the assertion was proved in Theorem 2.3.1 even for the case when

ψ is bounded.

Assume now Hψ,s
p (Rn) →֒ Hψ,r

p (Rn). By Theorem 2.3.2,

m = (1 + ψ)(r−s)/2 ∈ Mp,p ⊂ L∞(Rn).

Since ψ is unbounded, s ≥ r.

(ii) We only have to use Theorem 2.3.2 and the fact that Mp,p ⊂ L∞(Rn).

We now present a Sobolev type embedding for the space Hψ,s
p (Rn).

Theorem 2.3.4. Let ψ : R
n → R be a real-valued continuous negative definite function,

1 < p <∞, and s ∈ R. Then

Hψ,s
p (Rn) →֒ C∞(Rn)(2.3.5)

if , and only if ,

F−1[(1 + ψ)−s/2] ∈ Lp′(R
n)(2.3.6)

where 1/p+ 1/p′ = 1.

Remark 2.3.5. Note that according to (2.3.2) condition (2.3.6) is equivalent to the fact

that the function (1 + ψ)−s/2 is a Fourier multiplier of type (p,∞).
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Proof of Theorem 2.3.4. First assume that (2.3.6) is satisfied.

Let M(·) := (1+ψ(·))−s/2. Using the definition of a Fourier multiplier of type (p,∞),

for any u ∈ S(Rn) ⊂ Hψ,s
p (Rn) we have

‖u |L∞(Rn)‖ = ‖F−1{(1 + ψ)−s/2F(F−1[(1 + ψ)s/2û])} |L∞(Rn)‖
≤ ‖M |Mp,∞‖ · ‖F−1[(1 + ψ)s/2û] |Lp(Rn)‖ = c‖u |Hψ,s

p (Rn)‖.
Since S(Rn) is dense in Hψ,s

p (Rn) each element u ∈ Hψ,s
p (Rn) is a uniform limit of

continuous functions. Therefore, it has a continuous representative, and the embedding

(2.3.5) follows.

Conversely, if (2.3.5) is satisfied then

|u(0)| ≤ c‖u |Hψ,s
p (Rn)‖, u ∈ S(Rn).

This means that ε0 (Dirac’s distribution) is a continuous linear functional on Hψ,s
p (Rn),

hence by the duality theorem (Theorem 2.2.10),

ε0 ∈ Hψ,−s
p′ (Rn).

By the definition of the space Hψ,−s
p′ (Rn), the last condition is equivalent to (2.3.6).

Remark 2.3.6. (i) Theorem 2.3.4 extends the result of L. P. Volevich and B. P. Paneyakh

[80, Theorem 13.2] to the the case of general negative definite functions.

(ii) The essential step in the first part of the proof of Theorem 2.3.4 has a nice

interpretation from the point of view of operator theory. For u ∈ D((id+ψ(D))s/2) =

Hψ,s
p (Rn) it follows that

u = ((id+ψ(D))s/2)−1 ◦ (id+ψ(D))s/2u,

and

‖u |L∞(Rn)‖ ≤ ‖((id+ψ(D))s/2)−1 |Lp(Rn) → L∞(Rn)‖ · ‖u |Hψ,s
p (Rn)‖.

Since ((id+ψ(D))s/2)−1 = (id +ψ(D))−s/2 = (R
−ψ(D)
1 )s/2 (where R

−ψ(D)
1 is the resol-

vent of −ψ(D) at 1) we are searching for a bound for ‖((id+ψ(D))s/2)−1 |Lp(Rn) →
L∞(Rn)‖. This operator, however, is defined on S(Rn) by

(id+ψ(D))−s/2u = F−1[(1 + ψ)−s/2û],

and therefore

‖(1 + ψ)−s/2 |Mp,∞‖ = ‖(id +ψ(D))−s/2 |Lp(Rn) → L∞(Rn)‖
= ‖(R−ψ(D)

1 )s/2 |Lp(Rn) → L∞(Rn)‖.
Remark 2.3.7. Theorem 2.3.4 is the natural extension of the embedding result stated in

Theorem 2.3.2. In fact if we put q = ∞, ψ2 = ψ1 = ψ and r = 0 then via the identification

Hψ,0
∞ (Rn) = L∞(Rn) condition (2.3.4) becomes

m = (1 + ψ)−s/2 ∈ Mp,∞ = F(Lp′(R
n))

and this is exactly (2.3.6).

Example 2.3.8. Let s ∈ R and 1 < p < ∞. Recall that if ψ(ξ) = |ξ|2 then Hψ,s
p (Rn) is

the classical Bessel potential space Hs
p(R

n). Using the considerations from [63, Section

8.1], where the asymptotic behaviour of the Fourier transform of (1+ |x|2)−s/2 is studied
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(see in particular formula (6) on p. 291), it is easy to see that (2.3.6) is equivalent to

s > n/p.

So we recover the classical result that for 1 < p < ∞ the space Hs
p(R

n) is embedded

in C∞(Rn) if, and only if, s > n/p.

Example 2.3.9. Let s ∈ R, 1 < p <∞ and let a1, . . . , an ≥ 1. If ψ is a continuous nega-

tive definite function such that the metric
√
ψ is equivalent to a smooth anisotropic dis-

tance function associated with a = (a1, . . . , an), then Hψ,s
p (Rn) is the classical anisotropic

Bessel potential space Hs,a
p (Rn).

Let us remark that in this case (2.3.6) is equivalent to s > n/p. Indeed, (2.3.6) means

then ε0 ∈ H−s,a
p′ (Rn), implying −s < n(1/p′ − 1) (with a proof similar to that in the

isotropic case) and this is s > n/p.

Consequently, we recover the classical result stated for example in [63, Sections 6.3,

5.6.3] (see also [73, Section 4.2.3]).

Let us remark that in [15, formula (3.9)] it was already observed that s > n/p implies

(2.3.6) for smooth anisotropic distance functions associated with a = (a1, . . . , an).

We take a closer look at condition (2.3.6). For simplicity write

M(x) = (1 + ψ(x))−s/2.

A useful criterion for testing (2.3.6) is the so-called Carlson–Beurling inequality stated

below. A proof can be found for example in [15, Lemma 1.2] where also a more detailed

analysis is done.

Lemma 2.3.10. Let 1 ≤ p′ < 2, let κ = n(1/p′ − 1/2) and let N > κ be an integer. If M

is measurable with distributional derivatives DσM ∈ L2(R
n), |σ| ≤ N , then

‖F−1M |Lp′(Rn)‖ ≤ c‖M |L2(R
n)‖1−κ/N

∑

|σ|=N

‖DσM |L2(R
n)‖κ/N .

Remark 2.3.11. Let 0 < p′ ≤ 2 and let K0 = {x ∈ Rn : |x| ≤ 1} and Kj = {x ∈ Rn :

2j−1 ≤ |x| ≤ 2j} for j = 1, 2, . . . According to Remark 1.5.2/1 and formula (1.5.2/11)

in [78], as a simple application of Hölder’s inequality with exponents 2/(2 − p′) and 2/p′

we have

‖F−1M |Lp′(Rn)‖ ≤ c
( ∞∑

j=0

(
2jn(1/p′−1/2)

( \
Kj

|F−1M(x)|2 dx
)1/2)p′)1/p′

.(2.3.7)

Remark 2.3.12. Let 0 < p′ ≤ 2 and κ = n(1/p′ − 1/2). According to [78, Subsection

1.5.4] (see also [73, Subsection 1.7.5]), the right-hand side of (2.3.7) is an equivalent

quasi-norm (norm if p′ ≥ 1) in the Besov space Bκ2,p′(R
n). Consequently,

‖F−1M |Lp′(Rn)‖ ≤ c‖M |Bκ2,p′(Rn)‖.(2.3.8)

Corollary 2.3.13. If M = (1 + ψ)−s/2 ∈ Bκ2,p′(R
n) where 0 < p′ ≤ 2, then F−1M ∈

Lp′(R
n).

Proposition 2.3.14. If 0 < p′ ≤ 2, t > κ, and if M ∈ Ht(Rn), then F−1M ∈ Lp′(R
n).
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Proof. Due to our assumption on t there exists the following elementary embedding

between Besov spaces (see for example [78, Proposition 2.3.2/2]):

Bt2,2(R
n) = Ht(Rn) →֒ Bκ2,p′(R

n),(2.3.9)

and the proposition is now a simple application of (2.3.8).

Remark 2.3.15. One can prove Proposition 2.3.14 directly, without using the elementary

embedding (2.3.9). For this one has to use the equivalence (of Littlewood–Paley type)

‖M |Ht(Rn)‖ ∼
( ∞∑

j=0

22jt‖F−1M |L2(Kj)‖2
)1/2

(if t > 0) and the inequality (2.3.7).

Let us, finally, give explicit conditions on a continuous negative definite function

ψ : R
n → R of the form (2.1.1) that guarantee the validity of the continuous embedding

Hψ,s
p (Rn) →֒ C∞(Rn).

Theorem 2.3.16. Suppose that ψ : Rn → R is a continuous negative definite function

with representation (2.1.1) and such that

1 + ψ(ξ) ≥ c0(1 + |ξ|2)r0 , ξ ∈ R
n,(2.3.10)

for some constant c0 > 0 and some 0 < r0 ≤ 1. Fix 0 < ε < 1, choose 1/(2− ε) < θ < 1,

and set

p = pε,θ :=
1 + θε

1 + (ε− 1)θ
.

Then for this p and its conjugate p′ = 1/θ + ε we have the following continuous embed-

dings :

Hψ,θn/r0
p (Rn) →֒ C∞(Rn) and H

ψ,θn/r0
p′ (Rn) →֒ C∞(Rn).

Proof. Fix R > 0 and denote by ψR the continuous negative definite function (2.1.8)

whose Lévy measure is supported in the ball B(0, R). From the considerations of Section

2.1 we know that the norms ‖ · |Hψ,s
p (Rn)‖ and ‖ · |HψR,s

p (Rn)‖ are equivalent for all

s ≥ 0 and any R > 0. Therefore, it is enough to prove the continuous embeddings

HψR,θn/r0
p (Rn) →֒ C∞(Rn) and H

ψR,θn/r0
p′ (Rn) →֒ C∞(Rn).

The advantage is, of course, that ψR is a smooth function whereas ψ is, in general, only

continuous. Moreover, the derivatives of ψR can be estimated using (1.1.6).

It is not hard to see that (2.3.10) holds if and only if

1 + ψR(ξ) ≥ cR (1 + |ξ|2)r0 , ξ ∈ R
n,(2.3.11)

is satisfied with the same r0 and some constant cR > 0.

In view of Theorem 2.3.4 we have to show that

F−1[(1 + ψR)θn/(2r0)] ∈ Lp(R
n) ∩ Lp′(Rn)

where

p =
1 + θε

1 + (ε− 1)θ
∈ (2,∞) and p′ =

1

θ
+ ε ∈ (1, 2).
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Recall that for two infinitely differentiable functions f : R → R and g : Rn → R and

for any α ∈ N
n
0 one has

∂α(f ◦ g) =

|α|∑

j=1

f (j)(g(·))
∑ α!

δβ!δγ ! · . . . · δω!

(
∂βg(·)
β!

)δβ
· . . . ·

(
∂ωg(·)
ω!

)δω
(2.3.12)

where the second sum extends over all pairwise different multi-indices 0 6= β, γ, . . . , ω ∈
Nn0 and all δβ, δγ , . . . , δω ∈ N such that δββ+δγγ+. . .+δωω = α and δβ+δγ+. . .+δω = j.

Since
θn

2r0
2r0p

′ = θn

(
1

θ
+ ε

)
= n+ θnε > n,

we conclude from (2.3.11), (2.3.12), and (1.1.6) that

∂α((1 + ψR)−θn/(2r0)) ∈ Lp′(R
n)(2.3.13)

for all α ∈ Nα0 . Since p′ < 2, we find using the Hausdorff–Young theorem that

F−1[∂α((1 + ψR)−θn/(2r0))] ∈ Lp(R
n)(2.3.14)

for any α ∈ Nn0 . This shows the embedding H
ψR,θn/r0
p′ (Rn) →֒ C∞(Rn).

For m ∈ N we observe that

F−1[(1 + ψR)−θn/(2r0)](ξ) = (1 + |ξ|2)−m(1 + |ξ|2)mF−1[(1 + ψR)−θn/(2r0)](ξ)

= (1 + |ξ|2)−mF−1[(1 −∆)m((1 + ψR)−θn/(2r0))](ξ).

An application of Hölder’s inequality gives

‖F−1[(1 + ψR)−θn/(2r0)] |Lp′(Rn)‖p
′

=
\

Rn

(1 + |ξ|2)−mp′ |F−1[(1 −∆)m((1 + ψR)−θn/(2r0))](ξ)|p′ dξ

≤
( \

Rn

(1 + |ξ|2)−mp′p/(p−p′) dξ
)1−p′/p

×
( \

Rn

|F−1[(1 −∆)m((1 + ψR)−θn/(2r0))](ξ)|p dξ
)p′/p

.

(Observe that p′ < 2 < p.) Choosing m large enough we find

‖F−1[(1 + ψR)−θn/(2r0)] |Lp′(Rn)‖
≤ c(m, p, p′)‖F−1[(1 −∆)m((1 + ψR)−θn/(2r0))] |Lp(Rn)‖ <∞

because of (2.3.14). This means that F−1[(1 + ψR)−θn/(2r0)] ∈ Lp′(R
n), and by Theo-

rem 2.3.4 we find H
ψR,θn/r0
p (Rn) →֒ C∞(Rn).

Remark 2.3.17. Note that the limiting case of Theorem 2.3.16 as θ → 1/(2 − ε) gives

p = p′ = 2 and

H
ψ,n/(2−ε)r0
2 (Rn) →֒ C∞(Rn), 0 < ε < 1,

and letting ε→ 0 we get

Hψ,s
2 (Rn) →֒ C∞(Rn), s >

n

2r0
.
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This, however, also follows from a direct calculation in L2(R
n) involving Plancherel’s

theorem.

2.4. Complex interpolation. We are now going to present some complex interpolation

results for the ψ-Bessel potential spaces.

Let us recall some basic facts on complex interpolation of Banach spaces following the

presentation of [77, Section 1.9] where one can find further properties and references; see

also [79, Section 1.6.3].

Let {X0, X1} be an interpolation couple, that is to say, there exists a linear complex

Hausdorff space H such that both X0 and X1 are linearly and continuously embedded

in H. Assume that X0 and X1 are Banach spaces and set X = X0 +X1.

Let G = {z ∈ C : 0 < Re z < 1} be a strip in the complex plane.

Let W (G,X) be the collection of all functions w defined on G with the following

properties:

(α) w is X-continuous in G and X-analytic in G with supz∈G ‖w(z) |X‖ <∞.

(β) w(iy) ∈ X0 and w(1 + iy) ∈ X1 with y ∈ R are continuous with respect to y in

the respective Banach spaces.

(γ) ‖w |W (G,X)‖ = max(supy∈R
‖w(iy) |X0‖, supy∈R

‖w(1 + iy) |X1‖) <∞.

By the maximum principle W (G,X) is a Banach space.

Definition 2.4.1. Let {X0, X1} be an interpolation couple of Banach spaces, let X =

X0 +X1 and let 0 < θ < 1. Then

[X0, X1]θ = {u ∈ X : there exists w ∈W (G,X) such that w(θ) = u}
and

‖u | [X0, X1]θ‖ = inf{‖w |W (G,X)‖ : w ∈W (G,X), w(θ) = u}.(2.4.1)

An equivalent norm in [X0, X1]θ is given in the next lemma.

Lemma 2.4.2. Let {X0, X1} be an interpolation couple of Banach spaces and let 0 <

θ < 1. Then

‖u | [X0, X1]θ‖ = inf
w
{(sup
y∈R

‖w(iy) |X0‖)1−θ · (sup
y∈R

‖w(1 + iy) |X1‖)θ},(2.4.2)

the infimum ranging over all w ∈W (G,X) such that w(θ) = u.

Proof. Step 1. According to condition (γ) from the definition of the space W (G,X) we

have

sup
y∈R

‖w(iy) |X0‖, sup
y∈R

‖w(1 + iy) |X1‖ ≤ ‖w |W (G,X)‖,

and consequently the right-hand side of (2.4.2) does not exceed the left-hand side.

Step 2. In order to prove the converse inequality we observe that z 7→ az−θw(z),

a > 0, is an admissible function for the infimum in (2.4.1). Using condition (γ) again, we

have

‖u | [X0, X1]θ‖ ≤ max{a−θ sup
y∈R

‖w(iy) |X0‖, a1−θ sup
y∈R

‖w(1 + iy) |X1‖}.(2.4.3)
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If now ‖w(1 + iy) |X1‖ ≡ 0, then a → ∞ in (2.4.3) yields the desired conclusion.

Otherwise we choose

a =
supy∈R

‖w(iy) |X0‖
supy∈R ‖w(1 + iy) |X1‖

in (2.4.3), and deduce that the left-hand side of (2.4.2) does not exceed the right-hand

side.

Remark 2.4.3. The above lemma is a general version of Lemma 2.4.6/3 in [78].

Example 2.4.4. Let 1 < p0, p1 < ∞, let 0 < θ < 1, and let 1/p = (1 − θ)/p0 + θ/p1.

Then it is well known (see for example [77, Theorem 1.18.4]) that

[Lp0(R
n), Lp1(R

n)]θ = Lp(R
n).(2.4.4)

Applying Lemma 2.4.2 to (2.4.4) we have

‖v |Lp(Rn)‖ = inf
g
{(sup
y∈R

‖g(iy) |Lp0(Rn)‖)1−θ · (sup
y∈R

‖g(1 + iy) |Lp1(Rn)‖)θ},(2.4.5)

the infimum being taken over all g ∈W (G,S ′(Rn)) such that g(θ) = v.

Since −ψ(D) generates a sub-Markovian semigroup, the operator id +ψ(D) is a pos-

itive operator , i.e., (−∞, 0] is contained in the resolvent set and we have the estimate

‖(id +ψ(D) − λ id)−1‖ ≤ c

1 + |λ| , λ ∈ (−∞, 0].

By standard techniques (cf. H. Amann [2, Example 4.7.3(c), p. 164,], or H. Triebel [77,

Theorem 1.15.3, p. 103]), we conclude that the imaginary powers of id +ψ(D) are locally

bounded.

Lemma 2.4.5. Let ψ : Rn → R be a continuous negative definite function and 1 < p <∞.

Then there exist constants γ ≥ 0 and Cγ ≥ 1 such that

‖(id +ψ(D))iyu |Lp(Rn)‖ ≤ Cγe
γ|y|‖u |Lp(Rn)‖(2.4.6)

for all y ∈ R.

We return to our spaces Hψ,s
p (Rn) and prove the main result of this section.

Theorem 2.4.6. Let ψ : Rn → R be a continuous negative definite function, let s0, s1 ∈
R, let 1 < p0, p1 <∞, and 0 < θ < 1. Set

s = (1 − θ)s0 + θs1,
1

p
=

1 − θ

p0
+

θ

p1
.

Then

[Hψ,s0
p0 (Rn), Hψ,s1

p1 (Rn)]θ = Hψ,s
p (Rn).

Proof. Let X = Hψ,s0
p0 (Rn) +Hψ,s1

p1 (Rn) →֒ S ′(Rn) and G = {z ∈ C : 0 < Re z < 1}. For

simplicity let us write Hθ(R
n) = [Hψ,s0

p0 (Rn), Hψ,s1
p1 (Rn)]θ.

Step 1. Let u ∈ Hθ(R
n) and choose any w ∈ W (G,X) with w(θ) = u. We define on

G the function gw by

gw(z) = F−1[e(z−θ)
2

(1 + ψ)((1−z)s0+zs1)/2F(w(z))].(2.4.7)
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Let us check that gw satisfies conditions (α)–(γ) for the interpolation couple Lpk(R
n),

k = 0, 1. It is clear that gw is analytic in G, continuous in G, and the boundedness

condition of (α) is readily verified. Moreover,

gw(iy) = e(iy−θ)
2

(1 + ψ(D))iy(s1−s0)/2F−1[(1 + ψ)s0/2F(w(iy))],

gw(1 + iy) = e(iy+1−θ)2(1 + ψ(D))iy(s1−s0)/2F−1[(1 + ψ)s1/2F(w(1 + iy))].

By Lemma 2.4.5 we find for some γ = γ(s0, s1) ≥ 0 and Cγ ≥ 1 that

‖gw(iy) |Lp0(Rn)‖ ≤ |e(iy−θ)2 | · ‖(1 + ψ(D))iy(s1−s0)/2‖(2.4.8)

×‖F−1[(1 + ψ)s0/2F(w(iy))] |Lp0(Rn)‖
≤ Cγe

−y2+θ2 eγ|y|‖F−1[(1 + ψ)s0/2F(w(iy))] |Lp0(Rn)‖
≤ Mγ‖F−1[(1 + ψ)s0/2F(w(iy))] |Lp0(Rn)‖
= Mγ‖w(iy) |Hψ,s0

p0 (Rn)‖,
where

Mγ = sup
y∈R

Cγe
−y2+θ2 eγ|y| <∞.

In particular, gw(iy) ∈ Lp0(R
n). A similar calculation shows gw(1 + iy) ∈ Lp1(R

n) and

‖gw(1 + iy) |Lp1(Rn)‖ ≤ M̃γ‖w(1 + iy) |Hψ,s1
p1 (Rn)‖.(2.4.9)

Finally, observe that

gw(θ) = F−1[(1 + ψ)s/2F(w(θ))] =: v.

Using the interpolation result between the spaces Lpk(R
n), k = 0, 1 (cf. Example 2.4.4),

we find

‖u |Hψ,s1
p1 (Rn)‖ = ‖F−1[(1 + ψ)s/2F(w(θ))] |Lp(Rn)‖ = ‖v |Lp(Rn)‖

= inf
g∈W (G,S′(Rn))

g(θ)=v

{sup
y∈R

‖g(iy) |Lp0(Rn)‖1−θ · sup
y∈R

‖g(1 + iy) |Lp1(Rn)‖θ}

≤ sup
y∈R

‖gw(iy) |Lp0(Rn)‖1−θ · sup
y∈R

‖gw(1 + iy) |Lp1(Rn)‖θ,

where gw is the function (2.4.7)—notice that gw is an admissible function for the “inf”.

By (2.4.8) and (2.4.9) we have

‖u |Hψ,s
p (Rn)‖ ≤M1−θ

γ M̃θ
γ sup
y∈R

‖w(iy) |Hψ,s0
p0 (Rn)‖1−θ · sup

y∈R

‖w(1 + iy) |Hψ,s1
p1 (Rn)‖θ.

Since w ∈ W (G,X) with w(θ) = u was arbitrary, we can pass to the infimum over

these w, and conclude from Lemma 2.4.2 that

‖u |Hψ,s
p (Rn)‖ ≤M1−θ

γ M̃θ
γ‖u |Hθ‖.

This proves [Hψ,s0
p0

(Rn), Hψ,s1
p1

(Rn)]θ = Hθ →֒ Hψ,s
p (Rn).

Step 2. For the converse inclusion we assume that u ∈ Hψ,s
p (Rn). Observe that

(id +ψ(D))s/2(Hψ,s
p (Rn)) = Lp(R

n), so v := F−1[(1 + ψ)s/2Fu] ∈ Lp(R
n). Using Ex-

ample 2.4.4 we get [Lp0(R
n), Lp1(R

n)]θ = Lp(R
n), and we may choose an arbitrary

g ∈ W (G,S ′(Rn)) with g(θ) = v and g(k + iy) ∈ Lpk(R
n), k = 0, 1. In analogy to
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(2.4.7) we introduce a function wg by

wg(z) := F−1[e(z−θ)
2

(1 + ψ)(z−1)s0/2−zs1/2F(g(z))].

Using calculations similar to those in Step 1, one checks that wg(θ) = u and that wg
satisfies conditions (α)–(γ) for the interpolation couple Hψ,sk

pk
(Rn), k = 0, 1. Invok-

ing again Lemmas 2.4.2 and 2.4.5 we find—just as in the first part of the proof—that

Hψ,s
p (Rn) →֒ Hθ = [Hψ,s0

p0 (Rn), Hψ,s1
p1 (Rn)]θ.

2.5. Capacities and quasi-continuous modifications. So far we have not used

the fact that the Lp-sub-Markovian semigroup (T
(p)
t )t≥0 associated with a continuous

negative definite function ψ : R
n → R is sub-Markovian and that therefore each of

the operators V
(p)
r = (id−A(p))−r/2 is positivity preserving, i.e. u ≥ 0 a.e. implies

T
(p)
t u ≥ 0 a.e. and V

(p)
r u ≥ 0 a.e. This property will now be used to study elements of

the space Hψ,r
p (Rn) using capacities. We will associate with the semigroup (T

(p)
t )t≥0 a

one-parameter family (capr,p)r>0 of (r, p)-capacities which should in fact be considered

as a two-parameter family (capψr,p)r>0, p>1 associated with the real-valued continuous

negative definite function ψ.

The concept of (r, p)-capacities was introduced by P. Malliavin in [58] for symmetric

sub-Markovian semigroups (see also [59]), and many investigations have been done in the

context of sub-Markovian semigroups by M. Fukushima and H. Kaneko (see [26]–[28] and

[53]). We will follow these papers to a certain extent and omit some proofs.

For an open set G ⊂ Rn we introduce the (r, p)-capacity (associated with a continuous

negative definite function ψ : Rn → R) by

capψr,p(G) := inf{‖u |Hψ,r
p (Rn)‖p : u ∈ Hψ,r

p (Rn) and u ≥ 1 a.e. on G}.

For an arbitrary set E ⊂ Rn we put

capψr,p(E) = inf{capψr,p(G) : E ⊂ G and G open},

which turns capψr,p into an outer capacity.

Remark 2.5.1. (i) Note that (r, p)-capacities can be defined for the (abstract) Bessel

potential spaces Fr,A,Lp(Rn) when A is the generator of an Lp-sub-Markovian semigroup;

see [28] and [34].

(ii) Whenever it is clear which ψ is meant, we will write capr,p instead of capψr,p.

For a proof of the next result one should consult [28] or the very detailed discussion

in the second chapter of [50].

Theorem 2.5.2. Let ψ : Rn → R be a continuous negative definite function, 1 < p <∞,

and r > 0.

(i) For any measurable set E ⊂ Rn we have λ(n)(E) ≤ capr,p(E), i.e. any measurable

set of (r, p)-capacity zero is necessarily of Lebesgue measure zero.

(ii) If E ⊂ F ⊂ Rn, then capr,p(E) ≤ capr,p(F ).

(iii) If r ≤ r′ and p ≤ p′, then capr,p(E) ≤ capr′,p′(E) for all E ⊂ R
n.
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(iv) For any sequence (Ej)j∈N of subsets of Rn we have

capr,p

( ∞⋃

j=1

Ej

)
≤

∞∑

j=1

capr,p(Ej).

(v) For any decreasing sequence (Kj)j≥1 of compact sets Kj ⊂ Rn we have

capr,p

( ∞⋂

j=1

Kj

)
= lim

j→∞
capr,p(Kj) = inf

j≥1
capr,p(Kj).

Definition 2.5.3. Let ψ : Rn → R be a continuous negative definite function, 1 < p

<∞, r > 0, and let capr,p be its (r, p)-capacity.

(i) A set N ⊂ Rn with capr,p(N) = 0 is called an (r, p)-exceptional set (with respect

to ψ).

(ii) A statement is said to hold (r, p)-quasi-everywhere (with respect to ψ) if there

exists an (r, p)-exceptional set N such that the statement holds on Rn \N . We will use

the abbreviation (r, p)-q.e. for (r, p)-quasi-everywhere.

(iii) A real-valued function u defined (r, p)-quasi-everywhere on Rn is called (r, p)-

quasi-continuous (with respect to ψ) if for every ε > 0 there exists an open set G ⊂ Rn

such that capr,p(G) < ε and u|Gc is continuous.

(iv) A function ũ ∈ Hψ,r
p (Rn) is called an (r, p)-quasi-continuous modification of

u ∈ Hψ,r
p (Rn) if ũ is quasi-continuous and u = ũ almost everywhere.

The following results were proved for abstract Bessel potential spaces Fr,A,Lp(Rn) in

[27]; detailed proofs are again given in [50]. We state these results for Fr,A,Lp(Rn) =

Hψ,r
p (Rn). Note that in [27] the regularity of Fr,A,Lp(Rn) is required; see Remark 1.5.4.

In the case considered here, i.e. Fr,A,Lp(Rn) = Hψ,r
p (Rn), the regularity is guaranteed

by Proposition 2.2.4.

Proposition 2.5.4. Let u ∈ Hψ,r
p (Rn) be (r, p)-quasi-continuous and u ≥ 0 a.e. on an

open set G. Then u ≥ 0 (r, p)-q.e. on G.

Theorem 2.5.5. (i) Each u ∈ Hψ,r
p (Rn) admits an (r, p)-quasi-continuous modification

ũ which is unique up to (r, p)-quasi-everywhere equality.

Moreover , for any ̺ > 0 we have the following Chebyshev-type inequality :

capψr,p({|ũ| > ̺}) ≤ 2

̺p
‖u |Hψ,r

p (Rn)‖p, 1 < p <∞.

(ii) Let (uk)k∈N be a sequence in Hψ,r
p (Rn) converging to u ∈ Hψ,r

p (Rn). Then there

exists a subsequence (ukl)l∈N such that

lim
l→∞

ukl(x) = ũ(x) (r, p)-q.e.

where again ũ is the (r, p)-quasi-continuous modification of u.

An important result proved by S. Albeverio and Z. M. Ma in [1] in the abstract Bessel

potential situation gives the possibility to obtain ũ from a kernel representation.
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Theorem 2.5.6. There exists a kernel v
(p)
r (x, dy) such that for all u ∈ Hψ,r

p (Rn) given

by u = (id−A(p))−r/2f , where f ∈ Lp(R
n), an (r, p)-quasi-continuous version of u is

given by x 7→
T
Rn
f(y) v

(p)
r (x, dy).

Remark 2.5.7. Note that from the formula

(id−A(p))−r/2u =
1

Γ (r/2)

∞\
0

tr/2−1e−tTtu dt

it is clear that (id−A(p))−r/2 has a kernel representation.

The importance of Theorem 2.5.6 is that we may use a single kernel to get for each

u ∈ Hψ,r
p (Rn) an (r, p)-quasi-continuous representation.

We follow again the general line of [27] and [28].

Theorem 2.5.8. For any A ⊂ R
n with finite (r, p)-capacity there exists a unique function

uA ∈ {u ∈ Hψ,r
p (Rn) : ũ ≥ 1 (r, p)-q.e. on A} which minimizes the norm ‖ · |Hψ,r

p (Rn)‖.
The function uA is non-negative and satisfies

capr,p(A) = ‖uA |Hψ,r
p (Rn)‖p.(2.5.1)

Definition 2.5.9. The function uA satisfying (2.5.1) is called the (r, p)-equilibrium po-

tential of the set A.

Using the existence of the equilibrium potential, one can prove that capr,p is in fact

a Choquet capacity.

Theorem 2.5.10. (i) If a sequence (uν)ν∈N of (r, p)-quasi-continuous functions uν ∈
Hψ,r
p (Rn) converges to u ∈ Hψ,r

p (Rn) in the norm ‖ · |Hψ,r
p (Rn)‖, then a subsequence

of (uν)ν∈N converges (r, p)-quasi-everywhere to an (r, p)-quasi-continuous modification ũ

of u.

(ii) If (Aν)ν∈N is an increasing family of sets we have

capr,p

( ∞⋃

ν=1

Aν

)
= sup

ν∈N

capr,p(Aν).

Clearly a corollary to this theorem is that capψr,p is a Choquet capacity.

Let u ∈ Hψ,r
p (Rn) and ũ be an (r, p)-quasi-continuous modification of u. Further, let

E ⊂ Rn be any set and consider the space

Hψ,r
p,E(Rn) := {u ∈ Hψ,r

p (Rn) : ũ = 0 (r, p)-q.e. on E}.

From Theorem 2.5.5(ii) we deduce that Hψ,r
p,E(Rn) is a closed subspace of Hψ,r

p (Rn). It is

of great interest whether the following (ψ, r, p)-spectral synthesis problem (in the sense of

L. Hedberg [31]) is solvable:

Problem 2.5.11. Let F ⊂ Rn be a closed set, let 0 < r ≤ 1 and let u ∈ Hψ,r
p,F (Rn). Does

there exist a sequence (uk)k∈N,

uk ∈ H̊ψ,r
p (F c) := C∞

0 (F c)
‖· |Hψ,rp (Rn)‖

,

with the interpretation C∞
0 (F c) ⊂ C∞

0 (Rn), such that limk→∞ ‖uk − u |Hψ,r
p (Rn)‖ = 0?
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Since in this paper we are mainly interested in properties of the spaces Hψ,r
p (Rn) as

function spaces, we will not discuss the balayage problem in these spaces here.

Let us, finally, consider the question of comparability of (r, p)-capacities associated

with different continuous negative definite functions ψj : Rn → R, j = 1, 2. For the case

p = 2 and r = 1, i.e. the symmetric Dirichlet space situation, such a comparison result is

due to J. Hawkes [30]. Stated in our context, his theorem reads as follows:

Theorem 2.5.12. Let ψj : Rn → R, j = 1, 2, be two continuous negative definite

functions such that for all ξ ∈ R
n,

1

M
· 1

λ+ ψ1(ξ)
≤ 1

λ+ ψ2(ξ)

holds for some M > 0 and some λ > 0. Then

1
4M capψ1

1,2(A) ≤ capψ2

1,2(A)

for all analytic sets A ⊂ Rn.

A combination of Theorem 2.5.8, equality (2.5.1), and Theorem 2.5.10(ii) enables

us to obtain a comparison result for capacities from embedding results for the spaces

Hψ1,r1
p1

(Rn) and Hψ2,r2
p2

(Rn).

Corollary 2.5.13. Let ψj : Rn → R, j = 1, 2, be two continuous negative definite

functions and 0 < r1, r2 < ∞, 1 < p1, p2 < ∞. If the space Hψ2,r2
p2 (Rn) is continuously

embedded in the space Hψ1,r1
p1 (Rn) and the estimate

‖u |Hψ1,r1
p1 (Rn)‖ ≤ c‖u |Hψ2,r2

p2 (Rn)‖(2.5.2)

holds , then for all analytic sets A ⊂ R
n,

capψ1
r1,p1

(A) ≤ c capψ2
r2,p2

(A).

Note that in Section 2.3 we give some conditions in order that (2.5.2) holds. Corol-

lary 2.3.3 in particular generalizes Hawkes’ result, i.e. if 1 + ψ2 ≤ c(1 + ψ1) then

c′ capψ1

r,2 ≤ capψ2

r,2 for any r > 0.

An immediate consequence of Theorem 2.3.4 is

Corollary 2.5.14. If F−1[(1 + ψ)−r/2] ∈ Lp′(R
n), 1/p+ 1/p′ = 1, then capr,p(A) = 0

implies A = ∅.
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