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Abstract

An ideal of N -tuples of operators is a class invariant with respect to unitary equivalence which
contains direct sums of arbitrary collections of its members as well as their (reduced) parts. New
decomposition theorems (with respect to ideals) for N -tuples of closed densely defined linear
operators acting in a common (arbitrary) Hilbert space are presented. Algebraic and order
(with respect to containment) properties of the class CDDN of all unitary equivalence classes
of such N -tuples are established and certain ideals in CDDN are distinguished. It is proved
that infinite operations in CDDN may be reconstructed from the direct sum operation of a pair.
Prime decomposition in CDDN is proposed and its uniqueness (in a certain sense) is established.
The issue of classification of ideals in CDDN (up to isomorphism) is discussed. A model for
CDDN is described and its concrete realization is presented. A new partial order of N -tuples
of operators is introduced and its fundamental properties are established. The importance of
unitary disjointness of N -tuples and the way how it ‘tidies up’ the structure of CDDN are
emphasized.
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1. INTRODUCTION

1.1. Preface

Criterions for unitary equivalence of two (bounded linear) operators (acting on Hilbert
spaces) and the classification of operators up to unitary equivalence are subjects which
fascinated many mathematicians inspired by methods and ideas from the quite well ex-
plored area of normal operators. The literature dealing with these and related topics is
still growing, let us mention here only a few: Brown [2] classified quasi-normal opera-
tors; Halmos and McLaughlin [17] reduced the issue of unitary equivalence of arbitrary
bounded operators to partial isometries; Ernest [9], Hadwin [15, 16] and others (e.g. [21])
investigated operator-valued spectra which generalized standard (scalar) spectrum of a
normal operator; Ernest [9], Brown, Fong and Hadwin [3] and Loebl [23] studied parts
(that is, suboperators) of operators. It was Ernest [9] who first showed that—in a sense—
the classification of all operators up to unitary equivalence is an essentially unattainable
objective, although he gave an equivalent condition for two (totally arbitrary) bounded
operators to be unitarily equivalent. It was formulated by means of certain (operator-
valued) spectra of operators and multiplicity theory extended from normal to all bounded
operators (roughly speaking, he adapted and generalized the classical Hahn–Hellinger
theorem).

The present paper is motivated by his approach to this subject. One of our aims is to
finish Ernest’s programme of exploring the realm of unitary equivalence classes of closed
densely defined operators by making no assumptions either on the dimension of Hilbert
spaces or on boundedness of operators (this solves the problem posed by Ernest in point
c of §7 of Chapter 5 of [9]). Even more, we study the class CDDN of finite systems (N -
tuples) of closed densely defined operators acting in (totally arbitrary) common Hilbert
spaces. Surprisingly, such general considerations lead to more elegant results and reveal
features which become invisible when one restricts only to separable spaces. Although
CDDN is not a set but a class, we shall show that it is ‘controlled’ by a single N -tuple
(acting in a nonseparable space; cf. Proposition 3.4.8) and this observation will enable us
to find an (algebraic as well as order) model for CDDN (Theorem 4.4.2). An elementary
form of the model will enable us to establish several interesting properties of CDDN

(e.g. (AO13)–(AO14), page 34). Also the central decomposition (of an operator acting
in a separable space) introduced by Ernest may be extended to a general context and
translated into a more attractive (at least for us) form of a ‘prime decomposition’ similar
to the one for natural numbers (Theorem 5.6.14).

[5]



6 1. Introduction

Another aspect discussed in this work concerns various (known) results on decom-
positions of operators. There are many results stating that a certain operator may be
uniquely decomposed into two (or more) parts, the first of which is of a special type and
the second has no nontrivial part of this type. The latter part is often named ‘completely
non-sth’ or ‘purely sth’. Let us mention only a few such results:

(DC1) a contraction operator may be decomposed into a unitary part and a completely
non-unitary one,

(DC2) a bounded operator may be decomposed into a normal (respectively selfadjoint)
part and a completely non-normal (resp. non-selfadjoint) one,

(DC3) a closed densely defined operator admits a unique decomposition into a normal,
a purely formally normal and a completely non-formally normal part ([33])

(other results in this fashion are included e.g. in [34], [10], [32], [5]). There is a striking
resemblance in the above statements. And this is not a coincidence. In this paper we put
all results of this type in one general frame. To be more precise, let us introduce the
notion of an ideal. It is any nonempty class A of closed densely defined operators which
satisfies the following three axioms:

• if A and B are unitarily equivalent, then A ∈ A⇔ B ∈ A,
• every part (including the trivial one acting on a zero-dimensional Hilbert space) of

a member of A belongs to A,
•
⊕

s∈S As ∈ A whenever {As}s∈S ⊂ A (and S is a nonempty set).

For every ideal A we denote by A⊥ the class of all operators A none of whose nontrivial
parts belongs to A. In Theorem 2.4.2 we show that whenever A and B are ideals, so
is A⊥, and every (closed densely defined) operator T acting in a (completely arbitrary)
Hilbert space H induces a unique decomposition H = H11 ⊕H10 ⊕H01 ⊕H00 such that
Hjk are reducing subspaces for T and T |H11 ∈ A ∩B, T |H10 ∈ A ∩B⊥, T |H01 ∈ A⊥ ∩B

and T |H00 ∈ A⊥ ∩ B⊥. This result covers (DC1)–(DC3) and all the above-mentioned
theorems on decompositions.

Ernest [9, Definition 1.7] introduced the notion of disjoint operators, say A and B.
In this paper we denote it by writing ‘A ⊥u B’ and call A and B unitarily disjoint.
(Unitary disjointness, as a relation, behaves as singularity of measures or orthogonality
in Hilbert spaces. Moreover, unitary disjointness is formulated in order-theoretic terms
in the same way as disjointness in Banach lattices, where the disjointness of two vectors
x and y is indicated by writing x ⊥ y. This is why we prefer using ‘⊥u’ rather than
Ernest’s original notation.) For Ernest the disjointness was only one of possible relations
between operators. His Lebesgue decomposition of one operator with respect to another
(Proposition 2.12 and Definition 2.13 in [9]) is merely one of many interesting results.
Another aim of our work is to emphasize the importance of (unitary) disjointness (for
example, we demonstrate how Ernest’s central decomposition, or our prime one, may be
translated into the ‘intrinsic’ language of operators, with the use of unitary disjointness;
also the proof of our Theorem 2.4.2 depends on the properties of unitary disjointness).
Roughly speaking, composing direct sums of arbitrary collections of operators is very
chaotic, while the direct sum of a family of mutually unitarily disjoint operators is well
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‘arranged’. We may compare this with representing a simple Borel function (i.e. one whose
range is finite) as a linear combination of the characteristic functions of Borel sets—this
may be done in infinitely many ways; there is however only one such representation in
which all the sets appearing form a partition of the domain of the function. This form
of a simple function tells us everything about the function. The same occurs in the
class CDDN (see e.g. Theorem 3.6.1) when an N -tuple is written as the direct sum of a
collection of mutually unitarily disjoint N -tuples. To distinguish between these specific
decompositions and ‘chaotic’ ones, we call every direct sum (as well as any collection)
of pairwise unitarily disjoint N -tuples regular. The notion of regularity may easily be
adapted to ‘continuous’ versions of direct sums (defined in Chapter 5.5 by means of
direct integrals). This generalization turns out to be crucial for formulating our Prime
Decomposition Theorem (Theorem 5.6.14).

The main tools we use are, as in Ernest’s work [9], techniques of von Neumann alge-
bras. In Chapters 2.1–5.1 and 6.1–6.2 we involve the dimension theory of W∗-algebras,
especially a property recently discovered by Sherman [31]. All results of these chapters
may be formulated and proved in the language of a ‘semigroup’ CDDN with the direct
sum of a pair as the only available operation (cf. Chapter 4.2). The remainder (Chap-
ters 5.2–5.6) depends on the reduction theory due to von Neumann [25]. This deals with
topological and measure-theoretic aspects which are introduced in Chapters 5.2–5.4. It
is assumed that the reader is familiar with basics of von Neumann algebras (it is enough
to know the material of [29], [18, 19] and [35]).

The main results of the paper are Theorems 2.4.2 (page 14), 3.6.1 (page 28), 4.4.2
(page 47), 5.6.14 (page 96) and 6.1.4 (page 101).

1.2. Basic notation and terminology

In this paper R+ = [0,∞) and all Hilbert spaces are over the complex field. H and K
denote (possibly trivial) Hilbert spaces. By an operator we mean a linear function between
linear subspaces of Hilbert spaces. The Hilbert space dimension of H is denoted by dimH.
B(H,K) and U(H,K) denote, respectively, the Banach space of all bounded operators
from H into K and the set of all unitary operators from H onto K, and B(H) = B(H,H)
and U(H) = U(H,H). Whenever A is an operator, D(A), R(A), D(A) and R(A) stand
for, respectively, the domain and the range of A and their closures. Additionally, N(A)
denotes the kernel of A. The direct sum of a collection of Hilbert spaces {Hs}s∈S is
denoted by

⊕
s∈S Hs and ⊕sxs is the member of

⊕
s∈S Hs corresponding to a family

{xs}s∈S of vectors such that xs ∈ Hs and
∑
s∈S ‖xs‖2 < ∞. The same notation is used

for direct sums of operators: if {As}s∈S is a family of operators, A =
⊕

s∈S As is an
operator with

D(A) =
{
⊕sxs ∈

⊕
s∈S

D(As) : xs ∈ D(As) (s ∈ S),
∑
s∈S
‖Asxs‖2 <∞

}
and for x = ⊕sxs ∈ D(A), Ax = ⊕s(Asxs) ∈

⊕
s∈S R(As).



8 1. Introduction

For two operators A and B acting in a common Hilbert space we write A ⊂ B provided
D(A) ⊂ D(B) and Bx = Ax for x ∈ D(A).

Let A be a closed densely defined operator in H. A closed linear subspace E of H
is said to be reducing for A if PEA ⊂ APE where PE is the orthogonal projection
onto E and D(APE) = P−1

E (D(A)). The reduced part of A to E is denoted by A|E
and it is the restriction of A to D(A) ∩ E. The set of all reducing subspaces for A is
denoted by red(A). A subspace E ∈ red(A) is centrally reducing if PEPK = PKPE
for any K ∈ red(A). The collection of all centrally reducing subspaces is denoted by
cred(A). The ∗-commutant of A is the set W ′(A) consisting of all T ∈ B(H) such that
TA ⊂ AT and T ∗A ⊂ AT ∗; and W ′′(A) = (W ′(A))′ is the ∗-bicommutant of A. When
A is bounded, we may also use W(A) to denote the smallest von Neumann algebra
containing A; in that case W(A) = W ′′(A) (thanks to von Neumann’s bicommutant
theorem). The polar decomposition of A has the form A = Q|A| where |A| is the square
root of A∗A (obtained e.g. by the functional calculus for unbounded selfadjoint operators)
and Q is a partial isometry with N(Q) = N(A). Whenever we use the notation ‘QT ’ with
T being a closed densely defined operator, this denotes the partial isometry appearing in
the polar decomposition of T .



2. GENERAL DECOMPOSITION THEOREM

2.1. Preliminaries

In the whole paper, N is a fixed positive integer corresponding to the length of tuples of
operators. Whenever H is a Hilbert space, CDD(H) is the collection of all closed densely
defined linear operators acting in H and CDDN (H) = [CDD(H)]N . That is, CDDN (H)
consists of all N -tuples of members of CDD(H). Further, we put

CDDN =
⋃
H

CDDN (H)

where H runs over all Hilbert spaces (including zero-dimensional). For simplicity, we
shall write CDD in place of CDD1. For every AAA = (A1, . . . , AN ) ∈ CDDN there is a
unique Hilbert space, denoted by D(AAA), such that AAA ∈ CDDN (D(AAA)). In particular,
D(AAA) = D(Aj) for j = 1, . . . , N .

Suppose AAA = (A1, . . . , AN ) ∈ CDDN . We define AAA∗, |AAA| and QQQAAA (as members of
CDDN ) in a coordinatewise manner: AAA∗ = (A∗1, . . . , A

∗
N ), |AAA| = (|A1|, . . . , |AN |) and

QQQAAA = (QA1 , . . . , QAN ). In the same way we may define other operations on N -tuples, if
only they can be made on each of their entries. For example, if each of Aj ’s is one-to-one
and has dense image, we may define AAA−1 as (A−1

1 , . . . , A−1
N ).

Everywhere below in items (DF1)–(DF11), AAA = (A1, . . . , AN ), BBB = (B1, . . . , BN ) and
AAA(s) = (A(s)

1 , . . . , A
(s)
N ) represent arbitrary members of CDDN . For a single operator,

some of the notions stated below are well-known and some of them were introduced in [9]
(with different notation). Probably the only new notion is the strong order ‘6s’ defined
in (DF8) below.

(DF1) Let
⊕

s∈SAAA
(s) = (

⊕
s∈S A

(s)
1 , . . . ,

⊕
s∈S A

(s)
N ). For a positive cardinal α define

α �AAA =
⊕

ξ<ξα
AAA(ξ) where ξα is the first ordinal of cardinality α and AAA(ξ) = AAA

for any ξ < ξα.
(DF2) AAA is trivial provided D(AAA) is zero-dimensional; otherwise AAA is nontrivial.
(DF3) AAA is bounded iff each of A1, . . . , AN is a bounded operator; for bounded AAA let

‖AAA‖ := max(‖A1‖, . . . , ‖AN‖), otherwise ‖AAA‖ := ∞. We say a bounded N -tuple
AAA assumes its norm provided there is x ∈ D(AAA) of norm 1 with

max(‖A1x‖, . . . , ‖ANx‖) = ‖AAA‖.
(DF4) Let red(AAA) =

⋂N
j=1 red(Aj) and for E ∈ red(AAA),

AAA|E = (A1|E , . . . , AN |E);
cred(AAA) consists of all E ∈ red(AAA) such that PEPK = PKPE for everyK ∈ red(AAA).

[9]
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(DF5) The ∗-commutant ofAAA is the setW ′(AAA) =
⋂N
j=1W ′(Aj) ⊂ B(D(AAA)) andW ′′(AAA) =

(W ′(AAA))′ is the ∗-bicommutant of AAA. When AAA is bounded, we may also use W(AAA)
to denote the smallest von Neumann algebra including {A1, . . . , AN}; in that case
W(AAA) =W ′′(AAA).

(DF6) AAA ≡ BBB (AAA and BBB are unitarily equivalent) iff there is U ∈ U(D(AAA),D(BBB)) such
that Aj = U−1BjU for j = 1, . . . , N .

(DF7) AAA 6 BBB iff AAA ≡ BBB|E for some E ∈ red(BBB).
(DF8) AAA 6s BBB iff AAA ≡ BBB|E for some E ∈ cred(BBB).
(DF9) AAA andBBB are unitarily disjoint, in symbolsAAA ⊥u BBB, if there is no nontrivialN -tuple

XXX ∈ CDDN with XXX 6 AAA and XXX 6 BBB.
(DF10) AAA is covered by BBB, in symbols AAA� BBB, if AAA 6 α�BBB for some cardinal α.
(DF11) The symbols ‘�’ and ‘�’ will often be used instead of ‘⊕’ and ‘

⊕
’ in situations

when all summands are mutually unitarily disjoint. So, whenever the notation
AAA�BBB or�s∈SAAA

(s) appears, this will always imply that AAA ⊥u BBB or, respectively,
AAA(s′) ⊥u AAA(s′′) for any distinct s′, s′′ ∈ S. The direct sum (a collection) is called
regular provided all its summands (elements) are mutually unitarily disjoint.

The reader should notice that a function red(AAA) 3 E 7→ PE ∈ W ′(AAA) establishes a one-to-
one correspondence between red(AAA) and the set E(W ′(AAA)) of all orthogonal projections
belonging to W ′(AAA). What is more, this map sends cred(AAA) onto E(W ′(AAA)) ∩Z(W ′(AAA))
where Z(W ′(AAA)) is the center of W ′(AAA).

It is quite easy to check that ‘≡’ is an equivalence relation on CDDN and thus for
each AAA ∈ CDDN we may consider the equivalence class of AAA with respect to ‘≡’, which
we shall denote by A. Let CDDN be the class of (all) equivalence classes of all members
of CDDN and let CDD = CDD1. Elements of CDDN will be denoted by A,B,X,Y and
so on, and their corresponding representatives by AAA,BBB,XXX,YYY . The symbol O is reserved
to denote the equivalence class of a trivial element of CDDN . O is the unique member
of CDDN whose representatives act on zero-dimensional Hilbert spaces. (It is also the
neutral element for ⊕’.) For every A ∈ CDDN , the following are well defined, in an obvious
manner: A∗, |A|, QA (corresponding to QQQAAA) and dim(A) = dim D(AAA). For simplicity, we
shall use the term ‘N -tuple’ for members of CDDN as well as of CDDN .

Some of the notions in (DF1)–(DF11) may be adapted to members of CDDN as
follows:

(UE1) Let
⊕

s∈S A(s) = X whereXXX =
⊕

s∈SAAA
(s). For any cardinal m > 0, put m�A = Y

where YYY = m�AAA. Additionally, let 0� A = O.
(UE2) A is bounded, nontrivial, trivial iff so is AAA. ‖A‖ = ‖AAA‖; A assumes its norm iff so

does AAA.
(UE3) A 6 B, A 6s B, A ⊥u B, A� B iff the corresponding relation holds for AAA and BBB.

Note that A 6s B⇒ A 6 B⇒ A� B.
(UE4) Notation A � B or �s∈S A(s) includes information that A ⊥u B or, respectively,

A(s′) ⊥u A(s′′) for any distinct indices s′, s′′ ∈ S. The direct sum of (a family of)
members of CDDN is regular iff all its summands (elements) are pairwise unitarily
disjoint.
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A starting point for all of our investigations is the following classical result (see e.g.
[9, Theorem 1.3]).

Proposition 2.1.1. ‘6’ and ‘6s’ are partial orders on CDDN . More precisely, if A 6 B
and B 6 A, then A = B.

2.2. The b-transform

This chapter is mainly devoted to single operators. We fix a Hilbert space H and an
operator T ∈ CDD(H). Let I be the identity operator on H.

Definition 2.2.1. The b-transform of T is the operator

b(T ) = T (I + |T |)−1 ∈ B(H).

The reader should verify with no difficulties

Proposition 2.2.2. Let S = b(T ).

(A) b(|T |) = |S| = |T |(I + |T |)−1 and QT = QS.
(B) ‖Sx‖ < ‖x‖ for each x ∈ H \ {0}.
(C) T = S(I − |S|)−1 =: ub(S).
(D) W ′(T ) = W ′(S). Consequently, red(T ) = red(S) and cred(T ) = cred(S). For every

E ∈ red(T ), b(T |E) = S|E.
(E) The b-transform establishes a one-to-one correspondence between closed densely de-

fined operators in H and operators S ∈ B(H) satisfying (B).
(F) b(

⊕
s∈S Ts) =

⊕
s∈S b(Ts) for an arbitrary family {Ts}s∈S ⊂ CDD.

The following result is slightly surprising.

Theorem 2.2.3. For every T ∈ CDD, b(T ∗) = [b(T )]∗.

Proof. Let T = Q|T | be the polar decomposition of T . Then T ∗ = Q∗|T ∗| is the polar
decomposition of T ∗. Put H = D(T ), S = b(T ) and S′ = b(T ∗). Fix x, y ∈ H, put
u = (I + |T |)−1x ∈ D(T ) and v = (I + |T ∗|)−1y ∈ D(T ∗) and observe that

〈Sx, y〉 = 〈Tu, (I + |T ∗|)v〉 = 〈Tu, v〉+ 〈Q|T |u, |T ∗|v〉
= 〈u, T ∗v〉+ 〈|T |u, T ∗v〉 = 〈(I + |T |)u, T ∗v〉 = 〈x, S′y〉,

which finishes the proof.

Involving the b-transform we now easily prove

Theorem 2.2.4. Let H be a nonseparable Hilbert space and {Ts}s∈S ⊂ CDD(H) be
a countable family of operators. For every nonzero x ∈ H there is a separable space
E ⊂ H containing x such that E ∈ red(Ts) for each s ∈ S.

Proof. By Proposition 2.2.2(D), we may assume each Ts is bounded (because we may
replace Ts by b(Ts)). Now it suffices to put E = lin{S1 · . . . · Snx : n > 1, S1, . . . , Sn ∈
{Ts : s ∈ S} ∪ {T ∗s : s ∈ S} ∪ {I}} where I is the identity operator on H.
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Now for AAA = (A1, . . . , AN ) ∈ CDDN put b(AAA) = (b(A1), . . . , b(AN )) and b(A) = X
where XXX = b(AAA). Below we list the most important properties of the b-transform on
CDDN and CDDN .

(BT1) b(A) = O⇔ A = O.
(BT2) b(A) is bounded, b(A∗) = [b(A)]∗, |b(A)| = b(|A|) and Qb(A) = QA.
(BT3) W ′(AAA) = W ′(b(AAA)), W ′′(AAA) = W(b(AAA)); red(AAA) = red(b(AAA)) and cred(AAA) =

cred(b(AAA)); for every E ∈ red(AAA), b(AAA|E) = b(AAA)|E .
(BT4) b(

⊕
s∈S A(s)) =

⊕
s∈S b(A(s)).

(BT5) If ‘∼’ denotes one of the relations =, 6, 6s, �, ⊥u, then A ∼ B⇔ b(A) ∼ b(B).

2.3. Background on von Neumann algebras

LetM be a von Neumann subalgebra of B(H). Denote by E(M) the set of all orthogonal
projections in M and by Z(M) the center of M. By ‘∼’ we shall denote the Murray–
von Neumann equivalence on E(M). Further, put E(M) = E(M)/∼ and let ‘4’ denote
the Murray–von Neumann order on E(M). Finally, for each p ∈ E(M), cp ∈ E(Z(M))
stands for the central support of p.

It was observed by several mathematicians that the order ‘6’ on CDD translates into
the Murray–von Neumann order between (equivalence classes of) projections in a suitable
von Neumann algebra. This was explicitly stated and proved in [9, Proposition 1.35]. It is
nothing new that the same idea works for tuples of operators. We formulate this precisely
in the next result which is the main tool of the paper.

Proposition 2.3.1. Let TTT ∈ CDDN (H), E,F ∈ red(TTT ),AAA = TTT |E andBBB = TTT |F . Further,
letM =W ′(TTT ), p = PE and q = PF (p, q ∈ E(M)). Then

(a) AAA ≡ BBB ⇔ p ∼ q,
(b) AAA 6 BBB ⇔ p 4 q,
(c) AAA 6s BBB ⇔ p ∼ cpq,
(d) AAA ⊥u BBB ⇔ cpcq = 0,
(e) AAA� BBB ⇔ p 6 cq.

Proof. We shall only prove (c), since the other points are covered by [9, Proposition 1.35]
((d) is stated there in another form; its present form may be deduced e.g. from [35,
Lemma 1.7]). For this purpose put M0 = qMq, z0 = cpq ∈ E(Z(M0)) and let K ∈
cred(BBB) be the range of z0. If z0 ∼ p, then by (a), AAA ≡ BBB|K and thus AAA 6s BBB. Conversely,
if the last inequality is satisfied, there is z0 ∈ E(Z(M0)) such that p ∼ z0 (again by (a)).
But Z(M0) = Z(M)q and hence z0 = zq for some z ∈ E(Z(M)). Finally, note that
cp = czq (since p ∼ zq) and czq = zcq and therefore zq = zcqq = cpq.

Some consequences of Proposition 2.3.1 are formulated below (these are adaptations
of suitable results of [9]).

(PR1) A ∼ X⊕ Y and A ⊥u Y imply A ∼ X when ‘∼’ is replaced by one of 6,6s,�.
(PR2) If A(s) ⊥u B(t) for all s ∈ S and t ∈ T , then

⊕
s∈S A(s) ⊥u

⊕
t∈T B(t).
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(PR3) The function cred(AAA) 3 E 7→ X(E) ∈ {B ∈ CDDN : B 6s A} where XXX(E) = AAA|E
is a (well defined) bijection.

(PR4) For every E ∈ red(AAA), AAA|E ⊥u AAA|E⊥ ⇔ E ∈ cred(AAA).
(PR5) For every pair (A,B) such that A 6s B there is a unique X ∈ CDDN such that

B = A� X. Notation: B� A := X. (So, B� A makes sense iff A 6s B.)
(PR6) For every X ∈ CDDN and a cardinal α, {Y ∈ CDDN : Y 6s α � X} = {α � Y :

Y 6s X}.

Following (PR5), let us adopt the following convention: whenever for a pair (A,B) there
is a unique X for which B = A ⊕ X, we shall denote X by B 	 A. Observe that A 6 B
provided B	 A makes sense.

Combining Proposition 2.3.1 with Sherman’s theorem [31], we obtain an interesting

Theorem 2.3.2. (CDDN ,6) is an order-complete lattice. Precisely, for every nonempty
family (i.e. a set) {A(s)}s∈S ⊂ CDDN there are members X and Y of CDDN such that
X 6 A(s) 6 Y for each s ∈ S and X′ 6 X (respectively Y 6 Y′) whenever X′ 6 A(s)

(respectively A(s) 6 Y′) for all s ∈ S.

Proof. Put A =
⊕

s∈S A(s) and M = W ′(AAA). By [31], (E(M),4) is an order-complete
lattice. So, using Proposition 2.3.1 we see that there are X and Y (both 6 A) which
correspond to the g.l.b. and l.u.b. (with respect to ‘4’) of the projections corresponding
to A(s)’s. Now if X′ and Y′ are as in the statement of the theorem, consider Ã = A⊕X′⊕Y′

and M̃ =W ′(ÃAA) and repeat the above argument. We skip the details.

As is usually done when working with lattices, for every nonempty collection A =
{A(s)}s∈S we shall denote by

∨
s∈S A(s) and

∧
s∈S A(s) the l.u.b. and the g.l.b. of A.

Observe that A ⊥u B iff A ∧ B = O.

2.4. Decompositions relative to ideals

Let A be a subclass of CDDN . We call A an ideal iff A satisfies the following four
conditions:

(ID1) A is nonempty,
(ID2) whenever AAA ∈ A and AAA ≡ BBB ∈ CDDN , then BBB ∈ A,
(ID3) for every AAA ∈ A and E ∈ red(AAA), AAA|E ∈ A,
(ID4)

⊕
s∈SAAAs ∈ A for any nonempty family {AAAs}s∈S ⊂ A.

Classical examples of ideals are discussed in Examples 2.4.3 below.
For every subclass F of CDDN put

F⊥ = {TTT ∈ CDDN : TTT ⊥u FFF for every FFF ∈ F}.

It is easily seen that F⊥ is an ideal for any F ⊂ CDDN (thanks to (PR2)). As we will
see later, the ‘converse’ is also true, that is, A is an ideal iff A = (A⊥)⊥. This resembles
the analogous characterization of closed linear subspaces of Hilbert spaces. However, the
above definition of the ‘orthogonal complement’ is in the spirit of the orthogonality in
spaces of measures, and not in Hilbert spaces.
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One of the main results of the paper is the following

Theorem 2.4.1. Let A ⊂ CDDN be an ideal. For every TTT ∈ CDDN there is a unique
E ∈ red(TTT ) such that

TTT |E ∈ A and TTT |E⊥ ∈ A⊥. (2.4.1)

Moreover, E ∈ cred(TTT ) and

E =
∨
{K ∈ red(TTT ) : TTT |K ∈ A}. (2.4.2)

Proof. First we shall show the existence of E satisfying (2.4.1). We may assume that
TTT /∈ A⊥. By Zorn’s lemma, there is a maximal family {Es}s∈S of mutually orthogonal
nontrivial reducing (for TTT ) subspaces with TTT |Es ∈ A for every s ∈ S. It is clear that
(2.4.1) is satisfied with E =

∨
s∈S Es.

Now assume that E ∈ red(TTT ) is as in (2.4.1). By (PR4), E ∈ cred(TTT ). To establish
the uniqueness and finish the proof, it is enough to check (2.4.2). But this simply follows
from (PR1) and Proposition 2.3.1. (Indeed, if K ∈ red(TTT ) is such that TTT |K ∈ A, then
TTT |K 6 TTT |E⊕TTT |E⊥ and TTT |K ⊥u TTT |E⊥ . So, we conclude from (PR1) that TTT |K 6 TTT |E . Thus,
by Proposition 2.3.1, PK 4 PE in M = W ′(TTT ). But PE ∈ Z(M) and hence PK 6 PE ,
which means that K ⊂ E.)

For simplicity, let us introduce the following notation. For every ideal A ⊂ CDDN ,
A(0) = A and A(1) = A⊥. With this notation, by a simple induction argument we obtain

Theorem 2.4.2. Let A1, . . . ,Ak ⊂ CDDN be ideals. For every TTT ∈ CDDN (H) there is
a unique system {Eδ}δ∈{0,1}k of reducing subspaces for TTT such that

(i) Eδ ⊥ Eδ′ for distinct δ, δ′ ∈ {0, 1}k; and H =
⊕

δ∈{0,1}k Eδ,

(ii) TTT |Eδ ∈
⋂k
j=1A

(δj)
j for each δ ∈ {0, 1}k.

Moreover, Eδ ∈ cred(TTT ) and Eδ =
∨
{K ∈ red(TTT ) : TTT |K ∈

⋂k
j=1A

(δj)
j } for every δ ∈

{0, 1}k.

We leave the proof of Theorem 2.4.2 to the reader.
Theorem 2.4.2 covers any known result on decomposition of a single operator into two

parts with one of them of a special class and the other ‘completely’ (or ‘hereditarily’) not
of this class. Examples are given below.

Examples 2.4.3.

(A) Let F be a closed subset of the complex plane C. Let N (F ) be the class of all normal
operators whose spectrum is contained in F . (Here we assume that operators on
zero-dimensional Hilbert spaces are normal and have empty spectra.) It is easily
checked that N (F ) is an ideal. Thus, every operator T ∈ CDD admits a unique
decomposition into a part in N (F ) and the remainder in N (F )⊥. This means that
there is a unique E ∈ red(T ) such that T |E is normal, σ(T |E) ⊂ F and T |E⊥
has no nontrivial reduced part which belongs to N (F ). When F = C, this is the
decomposition into the normal part and the completely non-normal part. When
F = R, we get the decomposition into the selfadjoint part and the completely non-
selfadjoint part. Finally, when F = {z ∈ C : |z| = 1}, the operator decomposes into
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the unitary part and the completely non-unitary part. These three cases are most
classical. (Compare with [9, p. 179].)

(B) Single operators of each of the following classes form an ideal: formally normal (for
the definition see e.g. [33]); quasinormal; hyponormal; subnormal; contractions. As
we will see in Proposition 2.4.4, also the following class A is an ideal: T ∈ A iff T is
the direct sum of bounded operators.

(C) Stochel and Szafraniec [33] showed that every operator T ∈ CDD admits a unique
decomposition of the form T = Tnor ⊕ Tpfn ⊕ Tcnfn where Tnor is normal, Tpfn is
purely formally normal (here ‘purely’ means that Tpfn is in addition completely non-
normal) and Tcnfn is completely non-formally normal. Their result is a special case
of Theorem 2.4.2.

(D) Ernest [9] distinguished an important class of bounded operators on separable Hilbert
spaces, the so-called smooth operators (see §6 of Chapter 1 in [9]). Let us say that an
operator T ∈ CDD(H) where H is separable is σ-smooth iff b(T ) is the direct sum
of countably (finitely or infinitely) many smooth operators. By Proposition 1.52
of [9] and Proposition 2.4.4 below, operators which are direct sums of σ-smooth
operators form an ideal. In particular, every closed densely defined operator acting
on a separable Hilbert space admits a unique decomposition into a σ-smooth operator
and a completely non-smooth one.

(E) Let us give some examples dealing with systems of operators. Let NN and ÑN
consist of all N -tuples (belonging to CDDN ) of, respectively, commuting normal
and arbitrary normal operators (commutativity may be defined by means of spectral
measures or, equivalently, b-transforms). It is clear that both NN and ÑN are ideals.
So, every TTT ∈ CDDN has a unique decomposition TTT = TTT jn ⊕ TTT psn ⊕ TTT cnsn where
TTT jn ∈ NN , TTT psn ∈ ÑN and no nontrivial reduced part of TTT psn is a member of NN ,
and no nontrivial reduced part of TTT cnsn belongs to ÑN . (The labels ‘jn’, ‘psn’ and
‘cnsn’ appearing here are abbreviations for jointly normal, purely separately normal
and completely non-separately normal.) We call an N -tuple A normal iff AAA ∈ NN .

(F) If A ⊂ CDD is an ideal, so are ∆N (A) ⊂ CDDN and A[N ] ⊂ CDDN where A[N ]

consists of all N -tuples (A1, . . . , AN ) with A1, . . . , AN ∈ A acting in a common
Hilbert space, and

∆N (A) = {(A1, . . . , AN ) : A1 = · · · = AN ∈ A}.

(G) Theorem 2.4.1 may be briefly reformulated in the following way: CDDN = A⊕A⊥
for every ideal A ⊂ CDDN . Using this notation, Theorem 2.4.2 with k = 2 asserts
that

CDDN = (A ∩ B)⊕ (A ∩ B⊥)⊕ (A⊥ ∩ B)⊕ (A⊥ ∩ B⊥) (2.4.3)

for any two ideals A and B in CDDN . The counterpart of (2.4.3) for linear subspaces
K and L of a Hilbert space H is satisfied only when PK and PL commute. Thus,
as we have said earlier, the ‘orthogonal complement’ for ideals behaves in a similar
manner to the orthogonal complement in lattices of measures (or in more general
structures such as abstract L-spaces).

The next result is useful for producing ideals.
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Proposition 2.4.4. Let A be a subclass of CDDN and ΘN be the class of all trivial
members of CDDN .

(a) The class

J(A) =
{
TTT ∈ CDDN : for some set S, TTT =

⊕
s∈S

XXX(s) with XXX(s) 6 YYY (s) ∈ A ∪ΘN

}
is an ideal and it is the smallest ideal which contains A.

(b) A is an ideal iff A = (A⊥)⊥.

Proof. To show (a), we only need to check that AAA ∈ J(A) provided AAA 6
⊕

s∈S YYY
(s) with

YYY (s) ∈ A. Assuming AAA is nontrivial, take a maximal family E = {Eγ}γ∈Γ of mutually
orthogonal nontrivial reducing subspaces for AAA such that AAA|Eγ 6XXX(γ) for someXXX(γ) ∈ A
(γ ∈ Γ). Let F be the orthogonal complement of

⊕
γ∈ΓEγ (in D(AAA)). We only need to

check that F is trivial. We infer from the maximality of E that AAA|F ∈ A⊥. Thus, thanks
to (PR2), AAA|F ⊥u

⊕
s∈S YYY

(s) and hence, by (PR1), AAA|F is trivial and we are done.
The ‘if’ part of (b) is immediate, while ‘only if’ follows from Theorem 2.4.1.

Remark 2.4.5. In Proposition 3.5.1 we shall show that for every ideal A there is a
(unique up to unitary equivalence under some additional assumptions on AAA) N -tuple AAA
such that A = {BBB : BBB � AAA}. Thus, our Theorem 2.4.1 is a generalization of Ernest’s
Proposition 2.12 in [9].

The rest of the paper is devoted to the class CDDN .



3. STRUCTURAL DECOMPOSITION

3.1. Strong order

Everywhere below the prefix ‘6s’ says that the relevant term is understood with respect
to this order. The aim of this chapter is to prove

Theorem 3.1.1. Let B be a nonempty set of members of CDDN and let A,B ∈ CDDN .

(A) B has the 6s-g.l.b.
(B) B has the 6s-l.u.b. if and only if every two-point subset of B is 6s-upper bounded.

In that case, inf6s B =
∧

B and sup6s B =
∨

B.
(C) The following conditions are equivalent:

(i) the set {A,B} is 6s-upper bounded,
(ii) A 6s A ∨ B and B 6s A ∨ B,
(iii) A and B may be written in the forms A = E � X and B = E � Y for some

E,X,Y ∈ CDDN such that X ⊥u Y.

(D) If {A,B} is 6s-upper bounded, then A 6 B⇔ A 6s B.

Proof. We begin with (C). The implications (iii)⇒(ii)⇒(i) are immediate (indeed, if (iii)
is fulfilled, A∨B = E�X�Y). To see that (iii) follows from (i), let F ∈ CDDN 6s-majorize
A and B. This means that AAA ≡ FFF |K and BBB ≡ FFF |L for some K,L ∈ cred(FFF ). Then PK
and PL commute and therefore K = M ⊕ K ′ and L = M ⊕ L′ where M = K ∩ L,
K ′ = M⊥ ∩K and L′ = M⊥ ∩L. Note that then EEE = FFF |M , XXX = FFF |K′ and YYY = FFF |L′ are
pairwise unitarily disjoint and A = E� X and B = E� Y.

Now we turn to (B). Suppose every two-point subset of B is 6s-upper bounded. Let
M be such that B 6 M for every B ∈ B. Put M = W ′(MMM). For every B ∈ B take
K(B) ∈ red(MMM) such that BBB ≡MMM |K(B) and put pB = PK(B) ∈M.

For a moment fix A,B ∈ B. By (C), there is F 6 M such that A 6s F and B 6s F.
We infer, involving Proposition 2.3.1, that there is a projection q ∈ E(M) for which
pA ∼ cpAq and pB ∼ cpBq. Then cpBpA ∼ cpBcpAq and cpApB ∼ cpAcpBq. This proves that

cpBpA ∼ cpApB (3.1.1)

for all A,B ∈ B. Now put w =
∨
{cpA : A ∈ B} ∈ Z(M). There is a family {zA}A∈B of

mutually orthogonal central projections in M such that zA 6 cpA for every A ∈ B and∑
A∈B zA = w. Put

q =
∑
A∈B

zApA ∈ E(M).

[17]
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For A,B ∈ B we have, by (3.1.1), zBcpAq = zBcpApB ∼ zBcpBpA = zBpA and consequently
(since w > cpA),

pA =
∑
B∈B

zBpA ∼
∑
B∈B

zBcpAq = cpAq.

Now if E ∈ red(MMM) is the range of q and MMM ′ = MMM |E , Proposition 2.3.1 shows that
A 6s M′ for every A ∈ B. Hence, replacing M by M′, we may assume that pA ∈ Z(M).
It is known that in that case

∨
A∈B pA and

∧
A∈B pA are, respectively, the l.u.b. and the

g.l.b. with respect to ‘4’ in E(M). It is left as an exercise that (B) now follows.
Finally, (A) follows from (B), and (D) is left to the reader.

As a very special case of Theorem 3.1.1 we get

Corollary 3.1.2. If {A(s)}s∈S is a nonempty family of mutually unitarily disjoint N -
tuples, then

∨
s∈S A(s) =�s∈S A(s).

Proof. One easily checks that�s∈S A(s) is the 6s-l.u.b. of {A(s)}s∈S . Thus the assertion
follows from Theorem 3.1.1.

Example 3.1.3. [N = 1] Let Ij for j = 1, 2 be the identity operator on a j-dimensional
Hilbert space. It is clear that I1 6 I2, I1 ∧ I2 = I1 and I1 ∨ I2 = I2, while inf6s{I1, I2} = O
and {I1, I2} is not 6s-upper bounded. This shows that 6s-g.l.b. in general differs from
6-g.l.b. (although both always exist).

Proposition 3.1.4.

(A) If A 6�s∈S B(s), then A =�s∈S(A ∧ B(s)).
(B) Suppose A(s) 6 X (s ∈ S 6= ∅) and B 6s X. Then[∨

s∈S
A(s)

]
∧ B =

∨
s∈S

[A(s) ∧ B].

If in addition
⊕

s∈S A(s) 6 X, then[⊕
s∈S

A(s)
]
∧ B =

⊕
s∈S

[A(s) ∧ B].

Proof. To prove (A), put B = �s∈S B(s). Since each B(s) corresponds to a central pro-
jection in W ′(BBB), the assertion easily follows. The same argument works for (B)—here B
corresponds to a central projection in W ′(XXX).

A counterpart of a part of Proposition 3.1.4 for the order ‘6’ will be proved in Theo-
rem 4.4.10. However, this will be much more complicated.

3.2. Steering projections in W∗-algebras

We would like to propose a slightly modified approach to the so-called dimension theory
of W∗-algebras (see e.g. [18, Chapter 5, §5] and [19, Chapter 6]; [35, Chapter 5, §1];
[13, 14]; [37]; [31]). Usually one decomposes a projection in aW∗-algebra into (in a sense)
‘homogeneous’ parts, as done by Griffin [13, 14], Tomiyama [37] and Sherman [31]. In
the next chapter we will do essentially the same but in a different manner, convenient for
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applications to the class CDDN . In everyW∗-algebraM we shall distinguish a projection,
called steering, and we shall show how it ‘controls’ the Murray–von Neumann order on
E(M). As we will see, the steering projection is defined in different ways for type II1;
type II∞; and type I or III algebras. Therefore we shall divide our investigations into
these three cases.

3.2.1. Type II1. When M is a type II1 W∗-algebra, it seems to be most appropriate
to call the unit ofM the steering projection.

3.2.2. Types I and III. We assume thatM is a type I or IIIW∗-algebra. We sayM is
quasi-commutative iff p ∼ cp for every p ∈ E(M). A projection p ∈ E(M) is quasi-abelian
iff p = 0 or pMp is quasi-commutative.

Lemma 3.2.1. For p ∈ E(M) the following conditions are equivalent:

(i) p is quasi-abelian,
(ii) for every q ∈ E(M) with q 6 p, q ∼ cqp,
(iii) for every q ∈ E(M), p 4 q ⇔ p 6 cq.

Proof. The equivalence of (i) and (ii) follows from the fact that the central support of
q ∈ E(pMp) with respect to pMp coincides with cqp (where cq is the central support of
q inM).

To show that (iii) follows from (ii), assume that 0 6= p 6 cq and take a maximal
family {ps}s∈S ⊂ E(M) of nonzero projections such that ps 6 p, ps 4 q for s ∈ S and
cpscptp = 0 for distinct s, t ∈ S. Notice that then p =

∑
s∈S cpsp and cpscptcp = 0 for

different s, t ∈ S. Now we infer from (ii) that cpsp 4 q and consequently cpsp 4 cpscpq.
So, p =

∑
s∈S cpsp 4 (

∑
s∈S cpscp)q 6 q.

Finally, under the assumption of (iii), for q 6 p put r = q + (1 − cq)p, notice that
cr = cp > p and thus, by (iii), p 4 r. Consequently, cqp 4 cqr = q and we are done.

A steering projection in (a type I or III W∗-algebra)M is a quasi-abelian projection
p ∈ E(M) such that cp = 1.

Theorem 3.2.2.

(I) SupposeM is type I. A projection p ∈ E(M) with cp = 1 is steering iff p is abelian.
In particular, M has a steering projection and any two steering projections are
Murray–von Neumann equivalent.

(II) SupposeM is type III.M has a steering projection and any two steering projections
are Murray–von Neumann equivalent.

Proof. Point (I) is left to the reader. We shall give a sketch of proof of (II). If p and q are
steering, then cp = cq = 1 and thus p 4 q and q 4 p, by Lemma 3.2.1. This establishes
uniqueness up to Murray–von Neumann equivalence. To show the existence, take a max-
imal family {ps}s∈S ⊂ E(M) of mutually centrally orthogonal nonzero projections each
of which is countably decomposable and put p =

∑
s∈S ps. Such a projection is steering

since each ps is quasi-abelian, e.g. by [19, Corollary 6.3.5].
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3.2.3. Type II∞. Finally, assume M is a type II∞ W∗-algebra. Since the unit of M
may be written in the form

∑∞
n=1 pn with pn ∼ 1 for each n > 1, for every projection

q ∈ E(M) there is a countable infinite family of mutually orthogonal projections each of
which is Murray–von Neumann equivalent to q. For each n ∈ {1, 2, . . .} ∪ {ω} we shall
write n � q to denote any projection (or, a unique member of E(M)) in M which is
the sum of (exactly) n copies of q. (Here by a copy we mean any projection which is
Murray–von Neumann equivalent to q; ω � q is the sum of ℵ0 copies of q.)

Lemma 3.2.3. For p ∈ E(M) the following conditions are equivalent:

(i) p is finite,
(ii) whenever p 6 cq for q ∈ E(M), there is a sequence (zn)∞n=1 of central projections in
M such that

∑∞
n=1 zn = 1 and znp 4 n� q for any n > 1.

Proof. Let q0 ∈ E(M) be a finite projection such that cq0 = 1. If (ii) is satisfied, then
znp 4 n�q0 for a suitable sequence (zn)∞n=1 of central projections. Then znp is finite and
thus so is (

∨
n>1 zn)p = p.

Conversely, if p is finite and p 6 cq, there is a family {qs}s∈S of mutually orthogonal
projections such that p =

∑
s∈S qs and qs 4 q for all s ∈ S. Let tr : pMp → Z(pMp) =

Z(M)p be the trace on pMp. There are central (inM) projections z(s)
n,k with 1 6 k 6 2n

and n > 1 such that

tr(qs) =
∞∑
n=1

( 2n∑
k=1

k

2n
z

(s)
n,kp

)
.

Since tr(z(s)
n,kp) 6 2n tr(qs), we have z

(s)
n,kp 4 2n�qs 4 2n�q. Moreover, we infer from the

relation p = tr(p) =
∑
s∈S tr(qs) that

∨
s,n,k z

(s)
n,k > p. Reindexing the family {z(s)

n,k}s,n,k
we obtain a collection {wt}t∈T ⊂ E(Z(M)) such that

wtp 4 m(t)� q and w :=
∨
t∈T

wt > p

where m(t) is some positive integer. Now let {vt}t∈T be a family of mutually orthogonal
central projections such that vt 6 wt (t ∈ T ) and

∑
t∈T vt = w. Let ∗ /∈ T , v∗ = 1 − w

and m(∗) = 1. Observe that vtp 4 m(t)�q for every t ∈ T∗ := T ∪{∗}, and
∑
t∈T∗ vt = 1.

Finally, define zn for n > 0 by zn =
∑
{vt : t ∈ T∗, m(t) = n}.

Let Eω(M) = {q ∈ E(M) : q ∼ ω � p for some finite projection p}.

Lemma 3.2.4.

(a) For every p ∈ Eω(M) and a properly infinite projection q ∈ E(M), p 4 q ⇔ p 6 cq.
(b) If p ∈ Eω(M) is such that cp = 1, then q ∼ cqp for every q ∈ Eω(M).
(c) If p ∈ Eω(M) and z ∈ E(Z(M)), then zp ∈ Eω(M).

Proof. Point (c) is immediate and (b) follows from (a) and (c). So, it suffices to check (a).
Assume p and q are as there and p 6 cq. Take a finite projection p0 such that p ∼ ω� p0.
By Lemma 3.2.3, znp0 4 n�q for a suitable sequence (zn)∞n=1 of central projections. Since
q is properly infinite, q ∼ ω� q and hence znp0 4 znq, which gives p0 4 q. Consequently,
p ∼ ω � p0 4 ω � q ∼ q and we are done.
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A steering projection in (a type II∞ W∗-algebra)M is a projection p ∈ Eω(M) with
cp = 1. Since Eω(M) consists of properly infinite projections, Lemma 3.2.4 ensures that
any two steering projections inM are Murray–von Neumann equivalent.

Now ifM is an arbitrary W∗-algebra, the steering projection ofM is defined as the
sum of the steering projections of type I, II1, II∞ and III parts ofM. It is clear that any
two steering projections inM are Murray–von Neumann equivalent. The reader should
also verify that if p ∈ E(M) is a steering projection, then cp = 1, and zp is a steering
projection ofMz for every central projection z inM.

3.3. Decomposition relative to a steering projection

Let us first generalize the idea of the previous chapter. Whenever α is an (arbitrary)
cardinal number and p and q are projections in a W∗-algebraM, p is said to be a copy
of q provided p ∼ q; and p ∼ α� q iff p is a sum of α copies of q. In particular, p ∼ 0� q
is equivalent to p = 0. When M contains α mutually orthogonal copies of q, we shall
also write p 4 α� q with the obvious meaning. Similarly, we shall say that p contains α
orthogonal copies of q iff q′ ∼ α� q for some projection q′ 6 p.

Using standard methods (such as Lemma 6.3.9 and Theorem 6.3.11 of [19]; cf. [1,
Proposition III.1.7.1]), similar to those in [13, 14], [37] or [31], one shows the next result
(we skip its proof). To simplify its statement, let us define ΛI = Card (the class of all
cardinals), ΛII = Card∞ ∪ {0, 1} and ΛIII = Card∞ ∪ {0} where Card∞ is the class of
all infinite cardinals. For any cardinal α, α+ is the immediate successor of α, that is,
α+ = min{β ∈ Card: β > α}. Below ‘∼’ refers to the Murray–von Neumann equivalence
in E(M).

Theorem 3.3.1. LetM be a properly infinite W∗-algebra, p a steering projection ofM
and let A = pMp. Let zI , zII , zIII ∈ Z(A) be projections such that zI + zII + zIII = p

and Azi is of type i for i = I, II, III. For every q ∈ E(M) there is a unique system
{zIα(q)}α∈ΛI ∪ {zIIα (q)}α∈ΛII ∪ {zIIIα (q)}α∈ΛIII ⊂ Z(A) of mutually orthogonal projections
such that for i = I, II, III,

∑
α∈Λi

ziα(q) = zi and cziα(q)q ∼ α� ziα(q) if only α ∈ Λi and
(i, α) 6= (II, 1), while czII1 (q)q is finite and zII1 (q) ∼ ω � czII1 (q)q.

What is more, ziα(q) may be characterized as follows:

zII1 (q) =
∨
{w ∈ E(A)| w 6 zII , ∀v ∈ E(A), 0 6= v 6 w :

cvq 6= 0 and q contains no copy of ω � v}

and when (i, α) 6= (II, 1),

ziα(q) =
∨
{w ∈ E(A)| w 6 zi, cwq ∼ α� w, ∀v ∈ E(A) :

0 6= v 6 w ⇒ q does not contain α+ orthogonal copies of v}.

The statement of the above theorem is complicated. We have formulated it in this
way, having in mind further applications to the class CDDN .
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For the purpose of this paper, let us introduce the following

Definition 3.3.2. Let i ∈ {I, II, III} and α ∈ Card∞. A W∗-algebraM is said to be of
(pure) type iα iffM is of pure type i and 1 ∼ α� p where p is the steering projection.

Recall that the above definition of type Iα W∗-algebras is equivalent to the classical
definition of this type, and that below types In for finite n and II1 are understood in the
usual sense.

Proposition 3.3.3. For every W∗-algebraM there is a unique system

{ziα : i ∈ {I, II, III}, α ∈ Λi \ {0}} ⊂ E(Z(M))

such that 1 =
∑
i,α z

i
α and for each i and α either ziα = 0 orMziα is of pure type iα.

To simplify the statements of next results, we fix i ∈ {I, II, III}, γ ∈ Card∞, a type
iγ W∗-algebra M and a steering projection p of M. Additionally, we put A = pMp

and Λ = {α ∈ Λi : α 6 γ}. For every q ∈ E(M) let zα(q) = ziα(q) where ziα(q) is as in
Theorem 3.3.1. It is easily seen that zα(q) = 0 for α > γ and

∑
α∈Λ zα(q) = p. Therefore

for every q ∈ E(M) we shall deal with a set {zα(q)}α∈Λ of projections.
We skip the proof of the next result (cf. [31]).

Proposition 3.3.4. For q, q′ ∈ E(M) the following conditions are equivalent:

(i) q 4 q′,
(ii) zβ(q)zα(q′) = 0 whenever α, β ∈ Λ and β > α; and cz1(q)cz1(q′)q 4 cz1(q)cz1(q′)q

′

provided i = II.

The following result explains the terminology proposed by us.

Proposition 3.3.5. Let q ∈ E(M) be nonzero. Then cq ∼ γ�q andM does not contain
γ+ orthogonal copies of q.

Proof. The second claim is left to the reader. For every positive cardinal β ∈ Λ let Sβ
be a set such that card(Sβ) = β and let κβ : Sγ × Sβ → Sγ be a bijection. Since M is
of type iγ , there is a collection {ps}s∈Sγ of mutually orthogonal projections which are
Murray–von Neumann equivalent to p and sum up to 1. For s ∈ Sγ let

qs =
∑

β∈Λ\{0}

czβ(q)

∑
t∈Sβ

pκβ(s,t).

Since czβ(q)ps ∼ zβ(q) and
∑
β∈Λ\{0} czβ(q) = cq, we have qs ∼ q for s ∈ Sγ . Finally,∑

s∈Sγ

qs =
∑

β∈Λ\{0}

czβ(q)

∑
(s,t)∈Sγ×Sβ

pκβ(s,t) =
∑

β∈Λ\{0}

czβ(q) = cq.

Proposition 3.3.6. For every q ∈ E(M) there are projections q#, q
# ∈ E(M) such that

1− q# ∼ q ∼ 1− q# and q# 4 q′ 4 q# for every q′ ∈ E(M) with 1− q′ ∼ q. Moreover,
q# ∼ 1 and q# ∼ 1− czγ(q).

Proof. Since for i = I, III arguments are similar, we shall only sketch the proof for i = II

(which is most complicated). Since 1 ∼ 2 � 1, it is clear that there is q# ∈ E(M) such
that q# ∼ 1 and 1−q# ∼ q. Thus we only need to find q#. For each β ∈ Λ let Sβ be a set
of cardinality β and {ps}s∈Sγ be a collection of mutually orthogonal projections which
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are Murray–von Neumann equivalent to p and sum to 1. We assume that Sβ ⊂ Sγ for
each β ∈ Λ. Let s1 ∈ S1. Take v ∈ E(M) with v 6 ps1 and v ∼ cz1(q)q, and put

q# = cz1(q)(ps1 − v) +
∑
β∈Λ

czβ(q)

∑
s∈Sγ\Sβ

ps.

Since
∑
β∈Λ czβ(q) = 1 and card(Sγ \Sβ) = γ if only β < γ, we infer that q# ∼ 1− czγ(q).

This implies that zγ(q#) = (1−czγ(q))p = p−zγ(q) =
∑
β∈Λ\{γ} zβ(q), z0(q#) = czγ(q)p =

zγ(q) and zβ(q#) = 0 for each β ∈ Λ \ {0, γ} (in particular, z1(q#) = 0). Further, observe
that cz1(q)v = v and thus

1− q# = v +
∑

β∈Λ\{1}

czβ(q)

∑
s∈Sβ

ps,

which yields 1 − q# ∼ q. Now let q′ ∈ E(M) be such that 1 − q′ ∼ q. Thanks to
Proposition 3.3.4, q# 4 q′ iff zβ(q#)zα(q′) = 0 whenever α, β ∈ Λ and α < β (because
z1(q#) = 0). In our situation this is equivalent to zβ(q)zα(q′) = 0 for all α, β ∈ Λ \ {γ}.
For such α and β we have

w := czβ(q)czα(q′) = wq′ + w(1− q′)

and w(1− q′) ∼ wq. But{
wq′ ∼ α� (wp) if α 6= 1,

wq′ is finite if α = 1,
and

{
wq ∼ β � (wp) if β 6= 1,

wq is finite if β = 1.

We conclude that either w is finite (and hence w = 0) or w ∼ max(α, β) � wp. At the
same time, thanks to e.g. Proposition 3.3.5, w ∼ γ � wp, which implies that w = 0 and
we are done.

Since in every finite W∗-algebra W, 1 − q′ ∼ q iff q′ ∼ 1 − q for any q, q′ ∈ E(W),
Proposition 3.3.6 gives

Theorem 3.3.7. Let W be a W∗-algebra and q ∈ E(W). There are projections q# and
q# such that 1 − q# ∼ q ∼ 1 − q# and q# 4 q′ 4 q# whenever q′ ∈ E(W) is such that
1 − q′ ∼ q. What is more, if W is properly infinite, then q# ∼ 1 and q# is Murray–von
Neumann equivalent to a central projection.

Our last aim of this chapter is

Proposition 3.3.8. Let S be an (infinite) set whose size is a limit cardinal. Let {ps}s∈S
be a family of mutually orthogonal projections in a W∗-algebra W which sum to 1.
For a nonempty set A ⊂ S put qA =

∑
s∈A ps. Then 1 is the l.u.b. of the family {qA :

A ⊂ S, 0 < card(A) < card(S)} with respect to the Murray–von Neumann order.

Proof. Thanks to Proposition 3.3.3, we may and do assume that W is of pure type iγ .
Since the assertion is known to be true for finite algebras W, we assume in addition that
W is properly infinite—that is, that γ is infinite. Finally, we reduce our considerations
to the case when the steering projection p of W is countably decomposable.

Let q ∈ E(W) be such that qA 4 q for each A ∈ S := {A ⊂ S : 0 < card(A) <
card(S)}. We need to show that q ∼ 1. Equivalently, we have to prove that ziα(q) = 0
provided α < γ. When i = II, czII1 (q)q is finite and czII1 (q)

∑
s∈A ps 4 czII1 (q)q for each
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A ∈ S, which implies that czII1 (q) 4 czII1 (q)q. Consequently, czII1 (q) is finite and thus
zII1 (q) = 0. Also when i = I and α is finite, ziα(q) = 0, because then α� p is finite.

Now let α be infinite. Then cziα(q)q ∼ α� ziα(q) ∼ α� (cziα(q)p) and cziα(q)qA 4 cziα(q)q

for any A ∈ S. Towards a contradiction, assume ziα(q) 6= 0. Replacing W by Wcziα(q),
we may assume cziα(q) = 1, that is, ziα(q) = p. We then have q ∼ α � p, 1 ∼ γ � p and
qA 4 q (A ∈ S). We consider two cases. When card(S) 6 α, we easily get ps 4 q and thus
1 =

∑
s∈S ps 4 α� q ∼ α2 � p, which contradicts the facts that α2 < γ and 1 ∼ γ � p.

Finally, assume that card(S) > α. Since p is countably decomposable and q ∼ α� p,
card({s ∈ A : ps 6= 0}) 6 α for any A ∈ S (because qA 4 q). We conclude that A := {s ∈
S : ps 6= 0} ∈ S (because card(S) > α+). But then 1 = qA 4 q and we are done.

Example 3.3.9. As the following example shows (compare with [37, Example 3]), the
assumption in Proposition 3.3.8 that the size of S is a limit cardinal is essential. Let H
be a Hilbert space of dimension ℵ1, S be a set of cardinality ℵ1 and let {es}s∈S be an
orthonormal basis of H. Further, let M = B(H) and for s ∈ S let ps ∈ E(M) be the
orthogonal rank-one projection onto the linear span of es. Now if qA’s are defined as in
Proposition 3.3.8, then qA 4 qJ for every nonempty set A ⊂ S of size less than ℵ1 where
J is a countable infinite subset of S and hence 1 is not equivalent to the l.u.b. (which
is qJ).

3.4. Minimal and semiminimal tuples

The idea of steering projections will now be adapted to the class CDDN . Following
Ernest [9], we say a nontrivial N -tuple A ∈ CDDN is (of ) type I, II, III iffW ′(AAA) is such.
Additionally, we let the trivial N -tuple be of each of these types.

We begin with a result which will find many applications.

Lemma 3.4.1. Every collection of mutually unitarily disjoint nontrivial N -tuples has car-
dinality not greater than 2ℵ0 .

Proof. Suppose
A(s) ⊥u A(s′) (3.4.1)

(and A(s) 6= O) for distinct s, s′ ∈ S. For n ∈ J = {1, 2, . . .} ∪ {ℵ0} let Hn be a fixed
Hilbert space of dimension n. By Theorem 2.2.4, for each s ∈ S there are n(s) ∈ J and
BBB(s) ∈ CDDN (Hn(s)) such that B(s) 6 A(s). We infer from (3.4.1) that BBB(s) 6= BBB(s′) for
distinct s, s′ ∈ S. Now the assertion easily follows from the fact that card(CDDN (Hn)) 6
2ℵ0 for every n ∈ J .

Definition 3.4.2. A ∈ CDDN is said to be minimal iff for every B ∈ CDDN ,

A� B ⇒ A 6 B.

A is said to be multiplicity free (A ∈MFN ) iff there is no nontrivial B ∈ CDDN for which
2� B 6 A, and is a hereditary idempotent (A ∈ HIN ) iff B = 2� B for every B 6 A. We
shall write A ∈ HIMN whenever A is both a hereditary idempotent and minimal.

Minimal members of CDDN correspond to quasi-abelian projections.
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Remark 3.4.3. The work of Ernest [9] deals with (single) bounded operators. In this con-
text, our definition of a multiplicity free operator is equivalent to Ernest’s (Definition 1.21
in [9]).

Theorem 3.4.4.

(I) For every A ∈ CDDN ,
A = 2� A⇔ A = ℵ0 � A.

(II) For A ∈ CDDN the following conditions are equivalent:

(i) A is minimal,
(ii) for each B ∈ CDDN , B 6 A⇒ B 6s A.

If A is minimal and B 6 A, then B is minimal as well.
(III) For A ∈ CDDN the following conditions are equivalent:

(i) A ∈MFN ,
(ii) A = O or W ′(AAA) is commutative.

In particular, if A ∈MFN and B 6 A, then B ∈MFN as well.
(IV) Every multiplicity free N -tuple is minimal and unitarily disjoint from any hereditary

idempotent.
(V) If A ∈ HIN and B� A, then B ∈ HIN as well.
(VI) There exist unique JI , JIII ∈ CDDN such that JI ∈ MFN , JIII ∈ HIMN , JI � JIII

is minimal and for every A ∈ CDDN :

(a) A ∈MFN iff A 6 JI ,
(b) A� JI iff A = O or W ′(AAA) is type I,
(c) A ∈ HIN iff A� JIII , iff A = O or W ′(AAA) is type III,
(d) A ∈ HIMN iff A 6 JIII ,
(e) A is minimal iff A 6 JI � JIII .

What is more, dim(JI) + dim(JIII) 6 2ℵ0 .

Proof. In all points of the theorem we make use of Proposition 2.3.1. The counterparts
of points (I) and (V) are well known for projections in W∗-algebras, (II) follows from
Lemma 3.2.1, (III) is immediate, (IV) is implied by (III) and the relevant definitions. To
prove (VI), take a maximal collection (cf. Lemma 3.4.1) of nontrivial mutually unitarily
disjoint multiplicity free N -tuples (respectively hereditary idempotents) whose represen-
tatives act in separable spaces and define JI (JIII) as the direct sum of this family. One
may check that the N -tuple obtained in this way belongs to MFN (HIMN ) and—since
JI and JIII are unitarily disjoint—that JI�JIII is minimal. It follows from the maximality
of the family considered and Theorem 2.2.4 that JI and JIII are the greatest members of
MFN and HIMN . The details are left to the reader (cf. Propositions 2.12, 1.27 and 1.29
and Corollary 1.37 in [9]). (For the proof of (b) and (c) see also Theorem 3.6.1.)

Theorem 3.4.4 shows that there is a greatest minimal N -tuple in CDDN , namely
JI � JIII , and that it covers all type I and III N -tuples. Since there are also type II ones,
we need to introduce one more notion.
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Definition 3.4.5. A ∈ CDDN is said to be semiminimal (A ∈ SMN ) iff it is unitarily
disjoint from every minimal N -tuple and satisfies the following condition. Whenever
B ∈ CDDN is such that A � B, A may be written in the form A = �∞n=1 An where
An 6 n� B for each n > 1.

Before stating the next result, we underline that there is no greatest semiminimal
member of CDDN .

Theorem 3.4.6.

(I) For A ∈ CDDN , A ∈ SMN iff A = O orW ′(AAA) is type II1. In particular, if A ∈ SMN

and B 6 A, then B ∈ SMN as well; the direct sum of finitely many semiminimal
N -tuples belongs to SMN .

(II) There is a unique JII ∈ CDDN such that for every A ∈ SMN there is B ∈ SMN for
which JII = ℵ0 � (A� B). Moreover, dim(JII) 6 2ℵ0 and

(a) for E,F ∈ CDDN with E 6 F 6 JII ,

E 6s F 6s JII ⇔ E = 2� E and F = 2� F, (3.4.2)

(b) A� JII iff A = O or W ′(AAA) is type II.

Proof. Point (I) follows from Lemma 3.2.3 and Theorem 3.4.4 from which we infer that
W ′(AAA) is type II for every A ∈ SMN (because every semiminimal N -tuple is unitarily
disjoint from JI�JIII). To prove (II), we proceed similarly to the proof of Theorem 3.4.4.
Take a maximal family A of mutually unitarily disjoint nontrivial members of SMN

whose representatives act in separable spaces and denote by S(A) its direct sum. Next
put JII = ℵ0�S(A). We check that S(A) ∈ SMN for every such A. Further, we note that
for two maximal families A and A′ one has S(A)� S(A′)� S(A) and consequently, by
the definition of semiminimality, ℵ0 � S(A′) = ℵ0 � S(A). Having this, one easily shows
the uniqueness of JII and all suitable properties of it. (For example, if E = 2 � E, then
E = ℵ0 � E and it suffices to apply Lemma 3.2.4.)

The reader should notice that JII corresponds to the steering projection of a type II∞
W∗-algebra.

Remark 3.4.7. Point (II) of Theorem 3.4.6 implies that JII is the greatest element of
the class SM∞N = {ℵ0 � A : A ∈ SMN} (and hence SM∞N is a set) and that for any
A,B ∈ SM∞N , A 6 B⇔ A 6s B.

Let us denote by J the N -tuple JI � JII � JIII . We call J the unity of CDDN . Since
every W∗-algebra admits a decomposition into type I, II and III parts, we have

Proposition 3.4.8. For every A ∈ CDDN , A� J.

Remark 3.4.9. It is worth noting that dim(Ji) = 2ℵ0 for i = I, II, III. We shall prove
this later (see Corollary 5.1.9). We conclude from this and Proposition 3.4.8 that for an
infinite cardinal α there exists A ∈ CDDN such that dim(A) = α and X 6 A whenever
dim(X) 6 α iff α > 2ℵ0 . If this happens, such an A is of course unique and one may check
that A = α� J.
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We shall also need

Proposition 3.4.10. For every nontrivial A 6 J there is B 6s A such that 0 < dim(B)
6 ℵ0.

Proof. By Theorem 2.2.4, there is a nontrivial B0 6 A such that BBB0 acts in a separable
Hilbert space. We may assume that B0 6 Ji for some i ∈ {I, II, III}. If i 6= II, we
automatically have B0 6s A; while when i = II, it suffices to notice that ℵ0�B0 6s ℵ0�A
(by (3.4.2)) and to apply (PR6) (page 13) to find B 6s A with ℵ0 � B = ℵ0 � B0.

Example 3.4.11. When N = 1, one may check that a bounded normal operator on a sep-
arable Hilbert space is multiplicity free iff it is ∗-cyclic (an operator T ∈ B(H) is ∗-cyclic
iff there is x ∈ H for which the linear span of {x} ∪ {S1 . . . Smx : m > 1, S1, . . . , Sm ∈
{T, T ∗}} is dense in H). Taking this into account, one may ask whether every ∗-cyclic
type I operator is multiplicity free. As this simple example shows, this fails to be true. Let
T =

(
0 0
1 0

)
and S = T⊕T . Of course, S /∈MF1. However, S is ∗-cyclic. (For u = (1, 0, 0, 1),

Su = (0, 1, 0, 0), S∗u = (0, 0, 1, 0) and S∗Su = (1, 0, 0, 0).)

3.5. Unities of ideals

Adapting conditions (ID1)–(ID4) (page 13) to the realm CDDN , we obtain the notion of
an ideal in CDDN . Equivalently, a nonempty class A ⊂ CDDN is an ideal provided A is
order-complete (i.e.

∨
F ∈ A for every nonempty set F ⊂ A) and m�A ∈ A whenever m

is a cardinal and A 6 B for some B ∈ A.
Theorem 2.4.1 asserts that for every ideal A ⊂ CDDN and X ∈ CDDN there is a

unique Y ∈ A such that Y 6s X and X � Y ∈ A⊥. We shall denote this unique Y by
E(X|A). Similarly, if A is any member of CDDN , E(X|A) := E(X|{B : B� A}). E(X|A) is
Ernest’s A-shadow of X (see [9, Definition 2.13]).

One may easily verify that

E
(⊕
s∈S

X(s)|A
)

=
⊕
s∈S

E(X(s)|A)

for every ideal A ⊂ CDDN and any family {X(s)}s∈S ⊂ CDDN . We shall use the above
property repeatedly.

Let A be an ideal in CDDN . The N -tuple J(A) := E(J|A) is uniquely determined by
A and is called the unity of A. Proposition 3.4.8 implies

Proposition 3.5.1. For every ideal A in CDDN ,

A = {X ∈ CDDN : X� J(A)},

J(A) 6s J and J(A) =
∨
{A 6 J : A ∈ A}.

Corollary 3.5.2. There is a one-to-one correspondence between ideals in CDDN and
members A of CDDN such that A 6s J. The correspondence is established by the assign-
ments A 7→ J(A) and A 7→ {B : B � A}. In particular, there are at most 22ℵ0 ideals in
CDDN .
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Example 3.5.3. Let NN ⊂ CDDN be the ideal of all normal N -tuples (see Ex-
amples 2.4.3(E)). Since W ′′(MMM) is commutative for every M ∈ NN , W ′(MMM) is type I
and hence M � JI . Here we shall give a description of J(NN ). First of all, M 6 J iff
W ′(MMM) is commutative (provided M 6= O and M ∈ NN ). When MMM acts in a separable
Hilbert space, this is equivalent to the fact thatMMM is ∗-cyclic. That is, there has to exist
x ∈ D(MMM) such that the smallest reducing subspace for MMM which contains x coincides
with D(MMM). (Indeed, if M ∈MFN ∩NN is such that 0 < dim(M) 6 ℵ0, then bothW ′(MMM)
and W ′′(MMM) are commutative, which means that W ′′(MMM) is a MASA and consequently
W ′′(MMM) is cyclic or, equivalently, MMM is ∗-cyclic. Conversely, if M ∈ NN and MMM is ∗-
cyclic, then MMM is unitarily equivalent to MMMµ for some probability Borel measure µ on
CN whereMMMµ = (Mz1 , . . . ,MzN ) and Mzj is the multiplication operator by zj in L2(µ).
One may show that W ′(MMMµ) coincides with the algebra of all multiplication operators
by members of L∞(µ) and hence M ∈MFN .) Having this, one shows that J(NN ) may be
represented as follows. Take a maximal family {µs}s∈S of mutually orthogonal probabil-
ity Borel measures on CN . For each s ∈ S let MMM (s) = MMMµs (defined as above). One may
check that J(NN ) = �s∈S M(s). Moreover, for two probability Borel measures µ and λ
on CN : (a)MMMµ 6MMMλ ⇔ µ� λ; (b)MMMµ ≡MMMλ ⇔ µ� λ� µ; (c)MMMµ ⊥uMMMλ ⇔ µ ⊥ λ.
A similar (and more detailed) construction will appear in Chapter 5.6.

Theorems 3.4.4 and 3.4.6 show that for i ∈ {I, II, III} the ideal

Ii = {X ∈ CDDN : X� Ji}
consists of all N -tuples of type i.

3.6. Decomposition relative to the unity

Recall that ΛI = Card, ΛII = Card∞ ∪{0, 1} and ΛIII = Card∞ ∪{0}. For simplicity, let
Υ = {(i, α) : i ∈ {I, II, III}, α ∈ Λi} and Υ∗ = Υ \ {(II, 1)}.

Theorem 3.6.1. For every A ∈ CDDN there are a unique regular collection

{Eiα(A) : (i, α) ∈ Υ}
and a unique Esm(A) ∈ CDDN such that for i ∈ {I, II, III},

Ji =�
α∈Λi

Eiα(A),

Esm(A) is semiminimal and EII1 (A) = ℵ0 � Esm(A), and

A = Esm(A)� �
(i,α)∈Υ∗

α� Eiα(A). (3.6.1)

What is more, Esm(A) = A ∧ EII1 (A) and Eiα(A)’s may be characterized as follows:

EII1 (A) =
∨
{E 6 JII | E� A, ∀F 6 E, F 6= O : ℵ0 � F 66 A} (3.6.2)

and for (i, α) ∈ Υ∗,

Eiα(A) =
∨
{E 6 Ji| α� E 6 A, ∀F 6 E, F 6= O : α+ � F 66 A}.
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Proof. By Proposition 3.4.8, there is an infinite cardinal γ such that A 6 γ� J =: B. Put
M =W ′(BBB), observe that JJJ corresponds (by Proposition 2.3.1) to a steering projection
of M and apply Theorem 3.3.1. (Use Theorem 3.4.6 to deduce that a suitable Esm(A)
is semiminimal. Note that if X and Y correspond, by Proposition 2.3.1, to projections p
and q, then p ∼ α� q is equivalent to X = α� Y.)

The system {Eiα(A) : (i, α) ∈ Υ} appearing in Theorem 3.6.1 is said to be the partition
of unity induced by A. (In general, a partition of unity is any regular collection {E(j)}j∈I
such that J =�j∈I E(j). Note that in that case E(j) 6s J for each j ∈ I.)

Remark 3.6.2. Theorem 3.6.1 may be equivalently formulated as follows: after fixing
a representative JJJ for J for everyAAA ∈ CDDN there are unique systems {Hi

α : (i, α) ∈ Υ} ⊂
cred(JJJ) and {Ki

α : (i, α) ∈ Υ} ⊂ cred(AAA) such that D(JJJ i) =
⊕

α∈Λi
Hi
α for i ∈ {I, II, III};

D(AAA) =
⊕

(i,α)∈ΥK
i
α;W ′(AAA|KII

1
) is type II1, ℵ0�AAA|KII

1
≡ JJJ |HII1 and for every (i, α) ∈ Υ∗,

AAA|Ki
α
≡ α� JJJ |Hiα .

(In particular, KI
0 , KII

0 and KIII
0 are trivial.)

As an immediate consequence of Proposition 3.3.4 we obtain

Proposition 3.6.3. For any A,B ∈ CDDN , A 6 B iff Eiα(A) ⊥u Eiβ(B) whenever
(i, α), (i, β) ∈ Υ and α > β; and Esm(A) ∧ EII1 (B) 6 Esm(B).

One may also show

Proposition 3.6.4. For any A,B ∈ CDDN , A 6s B iff Eiα(A) 6 Eiα(B) whenever (i, α)
∈ Υ is such that α 6= 0, and Esm(A) 6s Esm(B).

The proofs of Propositions 3.6.3 and 3.6.4 are skipped.
Other interesting consequences of Theorem 3.6.1 are stated below.

Corollary 3.6.5. Let A,B ∈ CDDN and let α be an arbitrary infinite cardinal number
such that α > max(dim(A),dim(B)).

(I) A� B⇔ α� A 6s α� B.
(II) A� B� A⇔ α� A = α� B.

Proof. In both items the implication ‘⇐’ is immediate. Conversely, observe that for each
X ∈ CDDN and (i, β) ∈ Υ, Eiβ(X) = O provided β > dim(X). This implies that if
β > max(ℵ0,dim(X)), then β � X = β � E for some E 6s J. This yields the direct
implication in both (I) and (II). (Observe that if E′ 6s E′′, then γ � E′ 6s γ � E′′ for
every cardinal γ.)

Corollary 3.6.6. A nonempty class A is an ideal iff A satisfies the following three
conditions:

(a) for every A ∈ CDDN and α ∈ Card∞, A ∈ A⇔ α� A ∈ A,
(b) whenever {A(s)}s∈S ⊂ A is a regular family of N -tuples such that 0 < dim(A) 6 ℵ0,

then �s∈S A(s) ∈ A,
(c) A 6s B and B ∈ A imply A ∈ A.
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Proof. The necessity is clear. The sufficiency is in fact a consequence of Corollary 3.6.5.
Indeed, if A 6 B and B ∈ A, then α � A 6s α � B for some infinite cardinal α (by
Corollary 3.6.5). It follows from (a) that α � B ∈ A and so α � A ∈ A (by (c)) and
A ∈ A, again by (a). Finally, if {A(j)}j∈I ⊂ A and A =

⊕
j∈I A(j), then for large

enough α ∈ Card∞ one has α � A(j) = α � E(j) with E(j) 6s J (j ∈ I) and α � A =
α � E for some E 6s J (see the proof of Corollary 3.6.5). Thanks to (a), E(j) ∈ A and
it is enough to show that E ∈ A. We see that E(j) 6s E and E =

∨
j∈I E(j). These

imply (cf. the proof of Theorem 3.1.1) that there is a regular family {B(j)}j∈I such that
�j∈I B(j) = E and B(j) 6s E(j) (j ∈ I). We infer from (c) that B(j) ∈ A for all j ∈ I.
Now thanks to Proposition 3.4.10, each B(j) may be written in the form �s∈Sj A(s,j)

with 0 < dim(A(s,j)) 6 ℵ0. Consequently, (c) yields A(s,j) ∈ A and hence E ∈ A as well,
by (b).

Example 3.6.7. Sometimes it may be useful to consider the common partition of unity
for several members of CDDN (in particular, to find the partition of unity induced by
their direct sum). It may be understood as follows. For simplicity, we shall describe this
idea only for two N -tuples. Below we involve Proposition 3.1.4 several times, with no
comment.

Let A,B ∈ CDDN . Let

Υ2 = {(i, α, β) : (i, α), (i, β) ∈ Υ} and Υ2
∗ = {(i, α, β) : (i, α), (i, β) ∈ Υ∗}.

For (i, α, β) ∈ Υ2 let Eiα,β = Eiα(A) ∧ Eiβ(B). Additionally, we put

Esm,α = Esm(A) ∧ EIIα (B) and Eα,sm = EIIα (A) ∧ Esm(B)

for α ∈ ΛII . One may check that then Ji =�α,β∈Λi
Eiα,β for i ∈ {I, II, III}; Eα,sm and

Esm,α are semiminimal and

EII1,α = ℵ0 � Esm,α and EIIα,1 = ℵ0 � Eα,sm (3.6.3)

for each α ∈ ΛII . Further,

A =
(
�

α∈Card∞

Esm,α
)
�
(
�

α∈Card∞

α� EIIα,1
)
�
(
�

(i,α,β)∈Υ2
∗

α� Eiα,β
)
� (Esm,1 � Esm,0)

(3.6.4)
and correspondingly

B =
(
�

α∈Card∞

α� EII1,α
)
�
(
�

α∈Card∞

Eα,sm
)
�
(
�

(i,α,β)∈Υ2
∗

β � Eiα,β
)
� (E1,sm � E0,sm).

(3.6.5)
In particular, thanks to (3.6.3),

A⊕ B = [Esm,0 � E0,sm � (Esm,1 ⊕ E1,sm)]� �
(i,α,β)∈Υ2

#

(α+ β)� Eiα,β
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where Υ2
# = Υ2 \ {(II, α, β) : (α, β) = (0, 1), (1, 0), (1, 1)}. So (below (i, γ) ∈ Υ∗),

Esm(A⊕ B) = Esm,0 � E0,sm � [Esm,1 ⊕ E1,sm],

EII1 (A⊕ B) = EII0,1 � EII1,0 � EII1,1,

Eiγ(A⊕ B) =�{Eiα,β : (i, α, β) ∈ Υ2
#, α+ β = γ}.

(3.6.6)

In a similar manner one may find formulas for A∨B and A∧B and the partitions of unity
induced by them.
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4.1. Algebraic and order properties

The following is folklore (see e.g. [19, Exercise 6.9.14]): if p and q are two projections in
a von Neumann algebraM such that n� p ∼ n� q for some n > 1, then p ∼ q. This has
an interesting consequence for the class CDDN :

(AO1) n� A = n� B⇒ A = B

provided n is positive and finite. Further properties in this style are listed below.

(AO2) For finite positive n and m: n�A = m�B⇔ A = k�X and B = l�X for some
X ∈ CDDN with k = m/GCD(n,m) and l = n/GCD(n,m) (‘GCD’ stands for
the greatest common divisor). If n 6= m, then n� A = m� A⇔ A = ℵ0 � A.

(AO3) If α and β are cardinals such that α < β and β is infinite, then

α� A = β � B ⇔ A = β � B.

((AO2) and (AO3) follow from (3.6.1); cf. also the beginning of Chapter 4.3.)
(AO4) For a nontrivial A ∈ CDDN the following conditions are equivalent:

(i) for any X,Y ∈ CDDN , A⊕ X = A⊕ Y ⇔ X = Y,
(ii) B 6s A and A⊕ B = A imply B = O,
(iii) W ′(AAA) is finite,
(iv) Eiα(A) = O for each i ∈ {I, II, III} and infinite α.

All N -tuples A satisfying (i) form a set, denoted by FINN . (FINN ,⊕) is a
semigroup which may be enlarged to an Abelian group (by (i)).

(AO5) For any A ∈ FINN and B > A there is a unique X such that A ⊕ X = B. Thus,
B	 A is well defined in that case.

(AO6) Let S be an infinite set whose size is a limit cardinal. For every family {A(s)}s∈S ⊂
CDDN ,⊕

s∈S
A(s) =

∨{⊕
s∈S′

A(s) : S′ ⊂ S, 0 < card(S′) < card(S)
}
. (4.1.1)

In particular, for every sequence (B(n))∞n=1 ⊂ CDDN ,
∞⊕
n=1

B(n) =
∞∨
n=1

B(1) ⊕ · · · ⊕ B(n),

[32]
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and for each A ∈ CDDN and an infinite limit cardinal γ,

γ � A =
∨
α<γ

α� A.

(By Proposition 3.3.8.)
(AO7) Whenever A 6 B, there are (B	A)∇, (B	A)∆ ∈ CDDN such that A⊕X = B iff

(B	A)∆ 6 X 6 (B	A)∇. Moreover, if B = 2�B, then (B	A)∆ 6s B = (B	A)∇.
B	 A is well defined iff (B	 A)∇ = (B	 A)∆. (See Theorem 3.3.7.)

(AO8) If A 6s B, then (B	 A)∆ = B� A. (Thanks to (PR1), page 12.)
(AO9) (B	 A)∆ 6 (B	 X)∆ ⊕ (X	 A)∆ 6 (B	 X)∇ ⊕ (X	 A)∇ 6 (B	 A)∇ whenever

A 6 X 6 B.
(AO10) (B	 A)∆ 6s (B	 A)∇ provided A 6 B.

Let us prove (AO10). We use the notation of Example 3.6.7. We infer from (3.6.4) and
(3.6.5) that A 6 B iff Esm,1 6 E1,sm, Esm,0 = O and for any γ ∈ Card∞ and (i, α, β) ∈ Υ2

∗
with α > β,

EIIγ,1 = Eiα,β = O.

In that case (3.6.4) reduces to

A =
(
�

α∈Card∞

Esm,α
)
�
(
�

(i,α,β)∈Υ2
∗

α6β

α� Eiα,β
)
� Esm,1,

while (3.6.5) is equivalent to

B =
(
�

α∈Card∞

α� EII1,α
)
�
(
�

(i,α,β)∈Υ2
∗

α6β

β � Eiα,β
)
� Esm(B).

Now we infer from the above formulas and (AO5) that

(B	 A)∆ = [Esm(B)	 Esm,1]�
(
�

α∈Card∞

α� EII1,α
)

�
(
�{(β − α)� Eiα,β : (i, α, β) ∈ Υ2

∗, α < β}
)

where β − α = β provided β is infinite (and β > α). The above formula may be written
in the following concise form:

(B	A)∆ = [Esm(B)	 (Esm(A)∧EII1 (B))]�
[
�

(i,α,β)∈Υ2
+

(β−α)� (Eiα(A)∧Eiβ(B))
]
(4.1.2)

where Υ2
+ = {(i, α, β) ∈ Υ2 : α < β, (i, α, β) 6= (II, 0, 1)}. It is also easy to verify

that (B 	 A)∇ = (B 	 A)∆ ⊕ X where X = �α∈Card∞
α � [EIα,α � EIIα,α � EIIIα,α]. Since

X ⊥u (B	 A)∆, the proof of (AO10) is finished. Recall that we have shown that

(B	 A)∇ � (B	 A)∆ = �
α∈Card∞
i∈{I,II,III}

α� (Eiα(A) ∧ Eiα(B)). (4.1.3)
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In particular, (B 	 A)∇ = (B 	 A)∆ if and only if Eiα(A) ⊥u Eiα(B) for every infinite α.
This proves

(AO11) Whenever A 6 B, B 	 A is well defined iff Eiα(A) ⊥u Eiα(B) for any α ∈ Card∞
and i ∈ {I, II, III}.

(AO12) (B	 X)∆ ∨ (X	 A)∆ 6 (B	 A)∆ whenever A 6 X 6 B.
(AO13) For any nonempty set {A(s)}s∈S ⊂ CDDN and B ∈ CDDN , B ∨ (

∧
s∈S A(s)) =∧

s∈S(B ∨ A(s)) and B ∧ (
∨
s∈S A(s)) =

∨
s∈S(B ∧ A(s)).

(AO14) For any nonempty set {A(s)}s∈S of N -tuples, any A,B ∈ CDDN and each α ∈
Card,

α� (A ∧ B) = (α� A) ∧ (α� B),

α� (
∧
s∈S A(s)) =

∧
s∈S(α� A(s)) if

α is finite or
∀s ∈ S : Esm(A(s)) = O,

α� (
∨
s∈S A(s)) =

∨
s∈S(α� A(s)).

For the proofs of (AO12)–(AO14) see Corollary 4.4.3, Theorem 4.4.10 and Proposi-
tion 4.4.11.

Example 4.1.1. Taking into account (AO14), it seems to be surprising that in general
α�(

∧
s∈S A(s)) differs from

∧
s∈S(α�A(s)) for infinite cardinals α, even if S is countable.

Let us give a counterexample. Let α > ℵ0 and X ∈ SMN be nontrivial. There is a
sequence (A(n))∞n=1 such that n � A(n) = X (see the beginning of Chapter 4.3). Then
α� A(n) = α� X 6= O, while

∧∞
n=1 A(n) = O.

(AO12) has an interesting consequence.

Proposition 4.1.2. Let A,B ⊂ CDDN be nonempty sets. Then
∨

(A ⊕ B) = (
∨

A) ⊕
(
∨

B) and
∧

(A⊕B) = (
∧

A)⊕ (
∧

B) where A⊕B = {A⊕ B : A ∈ A, B ∈ B}.

Proof. Since the case of l.u.b.’s is much simpler, we prove only the g.l.b. part. It is clear
that (

∧
A)⊕ (

∧
B) 6

∧
(A⊕B). To see the converse inequality, assume that X 6 A⊕ B

for any A ∈ A and B ∈ B. Fix B ∈ B and put E =
∧

(A⊕{B}). For each A ∈ A we clearly
have A⊕B > E > B and consequently, thanks to (AO12), (E	B)∆ 6 [(A⊕B)	B]∆ 6 A
where the last inequality follows from the definition of [. . .]∆. So, (E 	 B)∆ 6

∧
A and

therefore E = (E	 B)∆ ⊕ B 6 (
∧

A)⊕ B. This shows that∧
(A⊕ {B}) 6

(∧
A
)
⊕ B,

which yields ∧
(A⊕B) =

∧
B∈B

[∧
(A⊕ {B})

]
6
∧

B∈B

[(∧
A
)
⊕ B

]
=
∧(

B⊕
{∧

A
})
6
(∧

B
)
⊕
(∧

A
)
,

and we are done.

Corollary 4.1.3. Let A1,A2,A3, . . . be nonempty sets of members of CDDN and let
A = {

⊕∞
n=1 A(n) : A(n) ∈ An (n > 1)}. Then

∨
A =

⊕∞
n=1(

∨
An).
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Proof. It is clear that
∨

A 6
⊕∞

n=1(
∨

An). Conversely, by (AO6),
⊕∞

n=1(
∨

An) =∨
n>1

[
(
∨

A1) ⊕ · · · ⊕ (
∨

An)
]
. Now by induction and Proposition 4.1.2, (

∨
A1) ⊕ · · · ⊕

(
∨

An) =
∨

(A1 ⊕ · · · ⊕An) 6
∨

A.

In the next chapter we shall prove a counterpart of Corollary 4.1.3 for uncountable
collections of sets of N -tuples (see Theorem 4.2.2).

Example 4.1.4. It may be surprising that the counterpart of Corollary 4.1.3 for infima
fails to be true, even if each An is a finite collection of minimal normal N -tuples. That
is, in general

∧
(
⊕∞

n=1 An) differs from
⊕∞

n=1(
∧

An) where
⊕∞

n=1 An = {
⊕∞

n=1 A(n) :
A(n) ∈ An}. Let us justify this claim.

For every u ∈ L∞([0, 1]) we shall write, for simplicity, XXXu to denote the N -tuple
(Mu, . . . ,Mu) where Mu is the multiplication operator by u on L2([0, 1]). For each pair
(n,m) of naturals with 1 6 m 6 n let jn,m be the characteristic function of [0, 1] \
[(m − 1)/n,m/n]. Additionally, let id ∈ L∞([0, 1]) be the identity map on [0, 1]. Put
An,m = Xjn,m id and An = {An,j : j = 1, . . . , n}. Then An ⊂ MFN (because W ′(XXX id) =
{Mu : u ∈ L∞([0, 1])}) and

∧
An = O for every n > 1. However, if (mn)∞n=1 is any

sequence of natural numbers such that 1 6 mn 6 n, then
⊕∞

n=1 An,mn >
∨
n>1 An,mn =

Xid (the last equality holds since
⋃∞
n=1([0, 1] \ [(mn − 1)/n,mn/n]) is of full Lebesgue

measure in [0, 1]). Consequently,
∧

(
⊕∞

n=1 An) > Xid 6= O =
⊕∞

n=1(
∧

An).

One may deduce from Example 3.3.9 that the assumption in (AO6) that the size of
S is a limit cardinal is essential (in the next chapter we shall discuss (4.1.1) in detail
for sets S whose cardinality is not limit). However, for semiminimal parts of N -tuples a
stronger property (than (AO6)) holds in general (see below). For simplicity, for every set
S let us denote by Pf (S) and Pω(S) the families of all finite and, respectively, countable
(finite or infinite) subsets of S.

Proposition 4.1.5. Let S be an infinite set and {A(s)}s∈S be an arbitrary collection of
N -tuples, A =

⊕
s∈S A(s) and

A′ =
∨{⊕

s∈S0

A(s) : S0 ∈ Pf (S)
}
.

Then Esm(A) = Esm(A′) and Eiα(A) = Eiα(A′) for each (i, α) ∈ Υ with finite α.

Proof. It is clear that Ei0(A) = Ei0(A′) for i ∈ {I, II, III}. Further, let us prove that

EII1 (A) = EII1 (A′). (4.1.4)

Since A′ 6 A � A′, (3.6.2) (page 28) shows that EII1 (A) 6 EII1 (A′). Conversely, if Xa =
E(X|EII1 (A′)) for every X ∈ CDDN , then (A′)a =

∨{⊕
s∈S0

(A(s))a : S0 ∈ Pf (S)
}

and
Aa =

⊕
s∈S(A(s))a. But (A′)a = Esm(A′) ∈ SMN and hence (A′)a = Aa, thanks to

Proposition 4.1.6 (see below). So, Aa ∈ SMN and consequently, again by (3.6.2), EII1 (A′) 6
EII1 (A). This proves (4.1.4).

Now we have Esm(A) = E(A|EII1 (A)) = Aa = (A′)a = Esm(A′).
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It remains to check that EIn(A) = EIn(A′) for natural n. Let F = �∞n=1 EIn(A) and
F′ =�∞n=1 EIn(A′). It is enough to show that F = F′, which we leave to the reader (for it
is similar to the proof of (4.1.4)).

The following result is in the same spirit.

Proposition 4.1.6. Let S be an infinite set, {A(s)}s∈S ⊂ CDDN and let

A =
∨{⊕

s∈S0

A(s) : S0 ∈ Pf (S)
}
.

If A ∈ FINN , then A =
⊕

s∈S A(s).

Proof. Let M = W ′(AAA) and let ps ∈ E(M) correspond (by Proposition 2.3.1) to A(s)

(s ∈ S). Further, let tr : M→ Z(M) be the trace onM. For every s ∈ S put ws = tr(ps).
Since

⊕
s∈S0

A(s) 6 A where S0 ∈ Pf (S),
∑
s∈S0

ws 6 1 and consequently
∑
s∈S ws

is convergent and the sum is not greater than 1. Recall that for any q, q′ ∈ E(M),
q 4 q′ ⇔ tr(q) 6 tr(q′) (see e.g. [35, Corollary 5.2.8] or [19, Theorem 8.4.3]). This implies
that it is possible, well ordering the set S and using transfinite induction, to construct a
family {qs}s∈S of mutually orthogonal projections inM such that ps ∼ qs for any s ∈ S.
Hence

∑
s∈S qs 6 1, which yields

⊕
s∈S A(s) 6 A and we are done.

4.2. Reconstructing infinite operations

Classical algebraic structures deal with operations on pairs (such as the action of a
semigroup). However, some operations naturally make sense also for infinitely (possibly
uncountably) many arguments (e.g. unions of sets) and sometimes it is necessary to
use these extended ‘infinite’ operations in order to understand, formulate or prove some
statements. Unless infinite operations can be ‘defined’ (or characterized) in terms of their
finite versions, every such theorem may be seen as unformulable or unprovable in the
language of the original algebraic structure. The most typical example of an infinite
operation is the union of a family of sets. However, it may be characterized by means
of the union of two sets. Namely, for any family A put A∆ = {B : A ∪ B = B for
each A ∈ A} and then

⋃
A is the unique set B ∈ A∆ such that B ∪ C = C for any

C ∈ A∆. This characterization is possible for one simple reason: the union coincides
with the l.u.b. of the family with respect to the inclusion order which may be defined
in terms of the union of a pair. When we turn to the class CDDN , the direct sum
operation cannot be characterized in a similar manner, because

⊕
s∈S A(s) differs, in

general, from
∨
{
⊕

s∈S0
A(s) : S0 a finite subset of S}. Nevertheless, infinite direct sums

may be reconstructed from finite ones, and this is the subject of this chapter. Thus, every
result of the paper concerning unitary equivalence classes of N -tuples is a part of the
theory which starts with the class CDDN and the operation CDDN ×CDDN 3 (A,B) 7→
A⊕ B ∈ CDDN . (This refers to the material of Chapters 2.1–5.1, but not to the rest.)

Our aim is to show that
⊕

s∈S A(s) may be ‘recognized’ if the only admissible ‘tool’
in the class CDDN is the direct sum of a pair. Below we show step by step how to do
this. Each of the steps listed begins with a tool which may be defined.
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(ST1) ‘O’: It is the unique member A of CDDN such that A⊕X = X for every X ∈ CDDN .
(ST2) ‘6’: A 6 B iff B = A⊕X for some X ∈ CDDN . Accordingly, the l.u.b.’s and g.l.b.’s

are well defined.
(ST3) ‘⊥u’: A ⊥u B⇔ A ∧ B = O.
(ST4) ‘6s’: A 6s B iff B = A⊕ X for some X such that X ⊥u A.
(ST5) ‘�’ and ‘�’: A =�s∈S A(s) (S any set) iff A(s) ⊥u A(s′) for distinct s, s′ ∈ S and

A =
∨
s∈S A(s); if A 6s B, B�A is the unique X such that X ⊥u A and B = X⊕A.

(ST6) ‘
⊕∞

n=1’:
⊕∞

n=1 A(n) =
∨
n>1 A(1) ⊕ · · · ⊕A(n). In particular, ℵ0 �A is well defined

for each A.
(ST7) ‘�’: A� B iff there is no X 6= O such that X 6 A and X ⊥u B.
(ST8) ‘E(A|B)’: X = E(A|B)⇔ ∃Y : A = X⊕ Y, X� B and Y ⊥u B.
(ST9) ‘Multiplicity free N -tuples’: A ∈ MFN if and only if there is no X 6= O such that

X⊕ X 6 A. Accordingly, JI is well defined.
(ST10) ‘Minimal N -tuples’: A is minimal iff A 6 X whenever A� X.
(ST11) ‘Hereditary idempotents’: A ∈ HIN ⇔ B = B ⊕ B for each B 6 A. Accordingly,

the class HIMN and JIII are well defined, thanks to (ST10).
(ST12) ‘Semiminimal N -tuples’: Use (ST5), (ST7) and the definition of semiminimality.
(ST13) ‘JII ’: JII =

∨
{ℵ0 � X : X ∈ SMN} (use (ST6) and (ST12)).

(ST14) ‘α � A for A 6 Ji’ with i ∈ {I, II, III}: Thanks to (ST6), we may assume that
α > ℵ0. If i = II, α � A = α � (ℵ0 � A) and ℵ0 � A 6s JII ; while for i 6= II one
has A 6s Ji. These remarks show that we may assume that A 6s Ji. Under this
assumption, α � A may be characterized by transfinite induction with respect to
α. When α is limit, it suffices to apply (AO6) (page 32). On the other hand, if
α = β+ and A 6= O,

α� A =
∧
{X| ∀B 6s A, B 6= O : β � B � E(X|B)}.

(This formula may be deduced from Theorem 3.6.1.)
(ST15) ‘Eiα(A) and Esm(A)’: Use Theorem 3.6.1 and previous steps.
(ST16) ‘α� A’ (arbitrary A): Use (ST15), Theorem 3.6.1, (ST14) and (ST5).
(ST17) ‘ℵ0 · dim(A)’: Since

ℵ0 ·dim(A) =
∞∑
n=1

ℵ0 ·dim(EIn(A))+ℵ0 ·dim(EII1 (A))+
∑

α∈Card∞
i∈{I,II,III}

α[ℵ0 ·dim(Eiα(A))]

(cf. Theorem 3.6.1; dim(Esm(A)) = dim(EII1 (A))), it suffices to characterize the
cardinal number ℵ0 ·dim(A) for A 6s J. But in that case this is quite easy, thanks
to Proposition 3.4.10: ℵ0 · dim(A) (provided A 6s J is nontrivial) is the least
infinite cardinal α such that each regular subfamily of {X : O 6= X 6s A} has size
not greater than α.

Now we are ready to characterize infinite direct sums. For simplicity, let us put Dim(F) =
ℵ0 · dim(F), Ef (F) = EII1 (F) ��∞n=1 EIn(F) and Eα(F) = EIα(F) � EIIα (F) � EIIIα (F) for
α ∈ {0} ∪ Card∞ and any F ∈ CDDN . By (ST17) and (ST15), ‘Dim’, ‘Ef ’ and ‘Eα’
are well defined. Fix a collection {A(s)}s∈S of N -tuples and put A =

⊕
s∈S A(s) and
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Af =
∨
{
⊕

s∈S′ A
(s) : S′ ∈ Pf (S)}. Af is ‘known’ by (ST2). Thanks to (ST16) and (ST5),

it suffices to find Esm(A) and Eiα(A). By Proposition 4.1.5, Eiα(A) = Eiα(A′) for (i, α) ∈ Υ
with finite α and Esm(A) = Esm(A′). Since Eiα(A) = Eα(A)∧ Ji, we see that it remains to
find Eα(A) for infinite α (thanks to (ST9), (ST11) and (ST13)). Let us show that

Eα(A) =
∨

X (4.2.1)

where

X =
{

X 6s J� (E0(A)� Ef (A))
∣∣∣ ∀Y 6s X, Dim(Y) = ℵ0 :

∑
s∈S

Dim E(A(s)|Y) = α
}
.

It is clear that Eα(A) 6s J � (E0(A) � Ef (A)). Furthermore, if Y 6s Eα(A), then⊕
s∈S E(A(s)|Y) = E(A|Y) = α� Y and thus

ℵ0 ·
∑
s∈S

dim(E(A(s)|Y)) = α

provided Dim(Y) = ℵ0. This yields Eα(A) ∈ X. Consequently, the proof of (4.2.1) will
be complete if we show that X 6 Eα(A) for every X ∈ X. To get this inequality, it is
enough to check that X ⊥u Eβ(A) for any infinite β 6= α. Suppose Y′ = X ∧ Eβ(A) is
nontrivial. Since Y′ 6s J, we infer from Proposition 3.4.10 that there is Y 6s Y′ with
Dim(Y) = ℵ0. But then Y 6s X and E(A|Y) = β�Y (because Y 6s Eβ(A)). Consequently,
ℵ0 ·

∑
s∈S dim(E(A(s)|Y)) = β, which contradicts the fact that X ∈ X and finishes the

proof of (4.2.1).
The arguments of this chapter prove

Proposition 4.2.1. If Φ: CDDN → CDDN is a bijective assignment such that Φ(A⊕B)
= Φ(A)⊕ Φ(B) for any A,B ∈ CDDN , then Φ preserves all notions, features and opera-
tions appearing in (ST1)–(ST17) and

Φ
(⊕
s∈S

A(s)
)

=
⊕
s∈S

Φ(A(s))

for any set {A(s)}s∈S ⊂ CDDN .

Let us now discuss the relation between both sides of (4.1.1) for a set S whose cardi-
nality is not limit, i.e. card(S) = γ+ for some infinite cardinal γ. Let

A′ =
∨{⊕

s∈S′
A(s) : S′ ⊂ S, 0 < card(S′) 6 γ

}
.

By Proposition 4.1.5, Esm(A) = Esm(A′) and Eiα(A) = Eiα(A′) for every (i, α) ∈ Υ with
finite α. These equalities are more general: we claim that

Eiα(A) = Eiα(A′) (4.2.2)

provided α 6= γ, γ+. To show this, it suffices to check that Eiα(A′) 6 Eiα(A) for α 6= γ, γ+

and Eiγ(A′)�Eiγ+(A′) 6 Eiγ(A)�Eiγ+(A) (since we deal with partitions of unity). We need
to check only infinite α’s.

First assume ℵ0 6 α < γ. Fix X 6s Eiα(A′) with Dim(X) = ℵ0. Let

S′ = {s ∈ S : E(A(s)|X) 6= O}.
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If the size of S′ were greater than α, there would exist a subset S′′ of S′ with card(S′′) =
α+ 6 γ. Then we would have

⊕
s∈S′′ A

(s) 6 A′ and α�X = E(A′|X) >
⊕

s∈S′′ E(A(s)|X),
which contradicts the fact that Dim(α�X) = α < card(S′′) 6 Dim(

⊕
s∈S′′ E(A(s)|X)). We

infer that card(S′) 6 α. So, E(A|X) = E(A′|X). Consequently, E(A|Eiα(A′)) = E(A′|Eiα(A′))
= α� Eiα(A′) (thanks to Proposition 3.4.10). This means that Eiα(A′) 6 Eiα(A).

Now assume that α > γ+ = card(S). As before, take X 6s Eiα(A′) with Dim(X) = ℵ0.
Then α� X = E(A′|X) > E(A(s)|X) for every s ∈ S and thus E(A|X) =

⊕
s∈S E(A(s)|X) 6

card(S)� (α� X) = α� X = E(A′|X) 6 E(A|X). So, E(A|X) = E(A′|X) and consequently
Eiα(A′) 6 Eiα(A).

To finish the proof of (4.2.2), it remains to consider α = γ. For X = Eiγ(A′) we readily
have γ � X = E(A′|X) 6 E(A|X) =

⊕
s∈S E(A(s)|X) 6 card(S)� E(A′|X) = γ+ � X. These

inequalities imply that X 6 Eiγ(A)� Eiγ+(A) and we are done.
Having (4.2.2), we obtain Eiγ(A′) � Eiγ+(A′) = Eiγ(A) � Eiγ+(A). We also know that

Eiγ+(A′) 6s Eiγ+(A) (by the above argument and Theorem 3.1.1). So, Eiγ+(A) � Eiγ+(A′)
gives full information about the difference between A and A′. We have

Eiγ+(A)� Eiγ+(A′) =
∨
{Y 6s Eiγ(A′)| ∀X 6s Y, X 6= O :

card({s ∈ S : E(A(s)|X) 6= O}) = γ+}. (4.2.3)

Indeed, Eiγ+(A) � Eiγ+(A′) 6s Eiγ(A′) and if X 6s Eiγ+(A) � Eiγ+ (A′) is nontrivial, then
there is X′ 6s X with Dim(X′) = ℵ0 (by Proposition 3.4.10). Then

⊕
s∈S E(A(s)|X′) =

E(A|X′) = γ+ � X′ and

Dim(E(A(s)|X′)) 6 Dim(E(A′|X′)) = Dim(γ � X′) = γ,

which implies that the set {s ∈ S : E(A(s)|X′) 6= O} has cardinality γ+. Conversely, if Y
is a member of the set appearing on the right-hand side of (4.2.3), then necessarily Y ⊥u
Eiγ+(A′) and Y 6 Eiγ(A)� Eiγ+(A). So, we only need to show that Y ⊥u Eiγ(A). Suppose,
on the contrary, that Y′ = Y ∧ Eiγ(A) (6s Y) is nontrivial. Then there is X 6s Y′ such
that Dim(X) = ℵ0. Observe that

⊕
s∈S E(A(s)|X) = E(A|X) = γ � X, which contradicts

the fact that card({s ∈ S : E(A(s)|X) 6= O}) = γ+.
One may deduce from (4.2.2) and (4.2.3) that (below we use the notation introduced

in this chapter)
A = A′ ∨ [γ+ � (Eγ+(A)� Eγ+(A′))]. (4.2.4)

The above remarks show that Example 3.3.9 demonstrates all reasons for which it may
happen that (4.1.1) is false. We end the chapter with the announced

Theorem 4.2.2. Let S be a nonempty set and {As}s∈S be a collection of nonempty
subsets of CDDN . Then ∨(⊕

s∈S
As

)
=
⊕
s∈S

(∨
As

)
(4.2.5)

where
⊕

s∈S As = {
⊕

s∈S X(s) : X(s) ∈ As (s ∈ S)}.

Proof. The inequality ‘6’ in (4.2.5) is clear. We shall prove the converse by transfinite
induction on card(S). The cases when card(S) < ℵ0 or card(S) = ℵ0 are included in
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Proposition 4.1.2 and Corollary 4.1.3, respectively. Assume β is an uncountable cardinal
such that (4.2.5) is satisfied provided card(S) < β. Now suppose card(S) = β. If β is
limit, the assertion (i.e. the inequality ‘>’ in (4.2.5)) follows from (AO6) (page 32) and the
transfinite induction hypothesis. Thus we may assume that β = γ+. Put A =

⊕
s∈S As,

A(s) =
∨

As (s ∈ S), A =
⊕

s∈S A(s) and A′ =
∨
{
⊕

s∈S′ A
(s) : S′ ⊂ S, 0 < card(S′) 6 γ}.

From the transfinite induction hypothesis, A′ 6
∨

A. Hence, according to (4.2.4), we only
need to show that γ+� (Eγ+(A)�Eγ+(A′)) 6

∨
A. Having in mind the partition of unity

induced by
∨

A, we see that the last inequality will be satisfied if only

Eγ+(A)� Eγ+(A′) ⊥u Eiα
(∨

A
)

(4.2.6)

for every (i, α) ∈ Υ with α 6 γ. Suppose (4.2.6) is false for some α 6 γ. Then Proposi-
tion 3.4.10 implies that there is X ∈ CDDN such that 0 < dim(X) 6 ℵ0,

X 6s Eiα
(∨

A
)

and X 6s Eγ+(A)� Eγ+(A′). (4.2.7)

The first relation of (4.2.7) yields E(
∨

A|X) 6 α�X (by the characterization of Eiα(
∨

A)
given in Theorem 3.6.1). Consequently,

dim
(
E
(⊕
s∈S

B(s)|X
))
6 α (4.2.8)

whenever B(s) ∈ As (s ∈ S). But E(
⊕

s∈S B(s)|X) =
⊕

s∈S E(B(s)|X) and thus (4.2.8)
changes into

∑
s∈S dim(E(B(s)|X)) 6 α. So, whatever B(s) ∈ As we choose,

card({s ∈ S : B(s) 6⊥u X}) 6 γ. (4.2.9)

However, the second relation of (4.2.7) combined with (4.2.3) implies that the set S′ =
{s ∈ S : A(s) 6⊥u X} has size γ+. Observe that for s ∈ S, if Y ⊥u X for every Y ∈ As, then
necessarily A(s) =

∨
As ⊥u X and hence s /∈ S′. We conclude that for every s ∈ S′ there

is B(s) ∈ As such that B(s) 6⊥u X. Now (4.2.9) contradicts the fact that card(S′) = γ+.
Consequently, (4.2.6) is satisfied and we are done.

4.3. Semigroup of semiminimal tuples

This chapter is devoted to a deeper study of SMN . Thanks to (AO4) (page 32), SMN is
a set and (SMN ,⊕) is a semigroup which may be enlarged to an Abelian group.

A similar construction to the following may be found in [9, Proposition 1.41]. Fix
a nontrivial A ∈ SMN . Since W ′(AAA) is type II1, for every n > 1 there is a unique (by
(AO1), page 32) A(n) ∈ SMN such that A = n�A(n). We denote it by 1

n �A. Now if w is
a positive rational number and w = p/q with natural coprime p and q, we define w � A
as p� ( 1

q � A). Finally, for a positive real number t let

t� A =
∨
{w � A : w ∈ Q, w 6 t}.

Additionally, put t�O = O for each t ∈ R+. Using traces on ∗-commutants of semiminimal
N -tuples (i.e. on W ′(AAA) for A ∈ SMN ), one shows that for any s, t ∈ R+ and any
A,B ∈ SMN ,
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(VS1) 0� A = O; 1� A = A,
(VS2) s� A 6 t� A provided s 6 t,
(VS3) t� A =

∧
{x� A : x > t} and for t > 0, t� A =

∨
{x� A : 0 6 x < t},

(VS4) (st)� A = s� (t� A); (s+ t)� A = (s� A)⊕ (t� A),
(VS5) t� (A⊕ B) = (t� A)⊕ (t� B),
(VS6) if ‘∼’ denotes one of ‘6’, ‘6s’, ‘�’, ‘⊥u’ and t > 0, then t� A ∼ t� B⇔ A ∼ B,
(VS7) if A =

⊕
s∈S A(s), then t � A =

⊕
s∈S(t � A(s)) (this follows from (VS5), (VS6)

and Proposition 4.1.6),
(VS8) b(A) ∈ SMN and b(t� A) = t� b(A),
(VS9) for every sequence (tn)∞n=1 of nonnegative reals, (

∑∞
n=1 tn) � A =

⊕∞
n=1 tn � A

(where ∞ is identified with ℵ0, if applicable).

Now by (VS1), (VS4), (VS5) and (AO4) (page 32), there is a real vector space

(EN ,+, ·) ⊃ (SMN ,⊕,�).

The above inclusion means that addition and multiplication by reals in EN extend,
respectively, ‘⊕’ and ‘�’ defined above. SMN as a subset of EN is a cone (that is,
SMN + SMN ⊂ SMN , R+ · SMN ⊂ SMN and SMN ∩ (−SMN ) = {0} = {O}). We
may assume that EN = SMN − SMN . Under this assumption, we may consider the par-
tial order on EN induced by SMN : ξ1 6E ξ2 ⇔ ξ2 − ξ1 ∈ SMN (ξ1, ξ2 ∈ EN ). It may be
checked that for A,B ∈ SMN , A 6E B ⇔ A 6 B. So, ‘6E’ extends ‘6’ and therefore we
shall omit the subscript ‘E’ in ‘6E’. Since every nonempty subset of SMN which is upper
bounded in SMN has the l.u.b. (in SMN ), EN is a conditionally complete lattice (which
means that every nonempty upper bounded subset of EN has the l.u.b. in EN ). Our aim
is to find a ‘model’ for the lattice EN .

Until the end of the chapter we fix a representative JJJII of JII , a compact Hausdorff
space ΩII homeomorphic to the Gelfand spectrum of Z(W ′(JJJII)) and an isomorphism
Ψ: Z(W ′(JJJII)) → C(ΩII) of ∗-algebras where C(ΩII) is the algebra of all continuous
complex-valued functions on ΩII . Every A 6s JII corresponds to a unique central projec-
tion zA inW ′(JJJII). Let UA be a clopen (i.e. simultaneously closed and open) subset of ΩII
whose characteristic function coincides with Ψ(zA). ΩII is extremely disconnected (that
is, the closure of every open subset of ΩII is open as well; see [18, Theorem 5.2.1]) and
the assignment A 7→ UA establishes a one-to-one correspondence between all N -tuples
X ∈ SM∞N (where SM∞N = {X ∈ CDDN : X 6s JII} = {ℵ0�A : A ∈ SMN}) and all clopen
subsets of ΩII . Moreover, for A,B ∈ SM∞N , A 6s B⇔ UA ⊂ UB.

For every A ∈ SMN , Ã = ℵ0 � A 6s JII and thus UeA makes sense. This set is said
to be the support of A and denoted by suppΩII A. There is no difficulty in verifying
that suppΩII A ⊂ suppΩII B (respectively suppΩII A ∩ suppΩII B = ∅) provided A � B
(respectively A ⊥u B) and A,B ∈ SMN .

The following idea comes from the theory of W∗-algebras ([18, Definition 5.6.5]) es-
pecially when working with the so-called extended center valued traces (see the notes on
page 329 of [35] and Definition V.2.33 there). We consider the set

M(ΩII) = {f ∈ C(ΩII , [−∞,+∞]) : f−1(R) is dense in ΩII}.
To make the space M(ΩII) a real vector space, we need the following well-known result (it
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follows from [18, Corollary 5.2.11] or [35, Corollary III.1.8]; see also [12] for more general
results in this direction).

Lemma 4.3.1. If X and K are compact Hausdorff spaces and X is extremely disconnected,
then every continuous function of an arbitrary open dense subset of X into K is extendable
to a continuous function of X into K.

Now if f, g ∈M(ΩII), the set D = f−1(R)∩ g−1(R) is open and dense in ΩII and the
function f |D + g|D is well defined and continuous. Consequently, thanks to Lemma 4.3.1,
there is a unique member of M(ΩII), which we shall denote by f + g, which coincides
with the usual sum on D. Similarly one defines f · g and t · f for t ∈ R. We leave it as
an exercise that M(ΩII) is a real vector space with these operations. Further, we equip
M(ΩII) with the pointwise order. One may easily check that M(ΩII) is a lattice (i.e.
every finite nonempty subset of M(ΩII) has the l.u.b. and the g.l.b.). What is more,
M(ΩII) is conditionally complete, since ΩII is extremely disconnected (this follows from
[35, Proposition III.1.7]). We shall show that EN and M(ΩII) are lattice-isomorphic. For
every f ∈ M(ΩII) let supp f be the closure of the set {x ∈ ΩII : f(x) 6= 0}. Since ΩII is
extremely disconnected, supp f is clopen.

When X is a clopen subset of ΩII , let M(ΩII |X) be the set of all f ∈M(ΩII) for which
supp f ⊂ X. Then M(ΩII |X) is a sublattice of M(ΩII). By M+(ΩII) and M+(ΩII |X) we
denote the cones of nonnegative elements of the respective lattices.

For the next step of our considerations we need

Lemma 4.3.2. Let Ω be the Gelfand spectrum of a commutative W∗-algebra. Every dense
Gδ subset of Ω has dense interior. What is more, for each Borel function f : Ω→ R there
is an open dense set D ⊂ Ω such that f |D is continuous.

Lemma 4.3.2 follows from [18, Lemma 5.2.10] combined with Proposition III.1.15 and
Theorem III.1.17 of [35] (see also the note preceding Corollary III.1.16 there).

Let {fn}∞n=1 ⊂M+(ΩII) be such that
∑n
k=1 fk 6 g for some g ∈M+(ΩII) and each n.

We define
∑∞
n=1 fn ∈M+(ΩII) as follows. Let f : Ω→ R be given by f(x) =

∑∞
n=1 fn(x)

provided the series is convergent, and f(x) = 0 otherwise. By Lemma 4.3.2, there is an
open dense subset D of ΩII such that f |D is continuous. We define

∑∞
n=1 fn ∈M+(ΩII)

as the unique continuous extension of f |D. Since f 6 g, (
∑∞
n=1 fn)(x) =

∑∞
n=1 fn(x) for

x belonging to an open dense subset of ΩII . One may check that
∞∑
n=1

fn = sup
M(ΩII)

{ n∑
k=1

fk : n > 1
}
.

Fix a nontrivial X ∈ SMN . Let L[X] = {F ∈ SMN : F� X} and X = suppΩII X.

Theorem 4.3.3. There is a unique operator

L[X] 3 F 7→ dF
dX
∈M+(ΩII |X)

such that for any F,F(n) ∈ L[X] (n = 1, 2, . . .):

(TR0) dX
dX is the characteristic function of X,

(TR1) supp dF
dX ⊂ suppΩII F,
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(TR2) d(
L∞
n=1 F(n))

dX =
∑∞
n=1

dF(n)

dX if
⊕∞

n=1F
(n) ∈ SMN (see the remarks preceding the

theorem).

Moreover, the above operator has further properties:

(TR1′) supp dF
dX = suppΩII F for every F ∈ L[X],

(TR2′) whenever A ∈ L[X] is of the form A =
⊕

s∈S A(s),

dA
dX

=
∑
s∈S

dA(s)

dX
:= sup

M(ΩII |X)

{∑
s∈S0

dA(s)

dX
: S0 ∈ Pf (S)

}
,

(TR4′) d(t�F)
dX = t dFdX for each F ∈ L[X],

(TR5′) for any A,B ∈ L[X], A 6 B⇔ dA
dX 6

dB
dX ,

(TR6′) for every f ∈M+(ΩII |X) there is a unique F ∈ L[X] with dF
dX = f .

Proof. The existence of the operator may be deduced from the result on faithful nor-
mal extended center valued traces for semifinite W∗-algebras ([35, Theorem V.2.34])
applied to W ′(YYY ) with Y = ℵ0�X. The operator may also be constructed as follows. By
Theorem 3.4.6, there is X′ ∈ SMN such that JII = ℵ0 � (X � X′). Put X̃ = X � X′

and let M = W ′′(X̃XX). Then M′ = W ′(X̃XX). Since X̃ ∈ SMN , M′ is type II1 and
hence there is a trace tr : M′ → Z(M′) (with tr(1) = 1). Since Z(M′) = Z(M),
Z(W ′′(JJJII)) = Z(W ′(JJJII)) and the function M 3 T 7→ ℵ0 � T ∈ W ′′(JJJII) is an iso-
morphism of ∗-algebras, hence the function κ : Z(M′) 3 T 7→ ℵ0 � T ∈ Z(W ′(JJJII)) is a
well defined ∗-isomorphism. Define Tr: M′ → C(ΩII) by Tr = Ψ ◦ κ ◦ tr. Now if A � X,
by Definition 3.4.5, A may be written in the form A =�∞n=1 A(n) with A(n) 6 n�X. This
implies that 1

n �A(n) 6 X̃ and thus there is a projection pn inM′(X̃XX) which corresponds
(by Proposition 2.3.1) to 1

n � A(n). We put

dA
dX

=
∞∑
n=1

nTr(pn). (4.3.1)

Since A(n) ⊥u A(m) for n 6= m, supp Tr(pn) ∩ supp Tr(pm) = ∅ and thus (4.3.1) is well
understood, by Lemma 4.3.1. We leave it as an exercise that the definition is independent
of the choice of (A(n))∞n=1 and that all conditions of the theorem are fulfilled (observe
that X corresponds to a central projection inM′(X̃XX)). Here we focus on the uniqueness
of the operator.

If A 6s X, then X = A � B with B = X � A and suppΩII B = suppΩII X \ suppΩII A.
Consequently, by (TR0)–(TR2), dAdX is the characteristic function of suppΩII A. This shows
that dF

dX is uniquely determined by (TR0)–(TR2) for F ∈ F0 := {w�A : w ∈ Q+, A 6s X}.
Further, if A 6 X, then A may be written in the form A =

⊕∞
n=1 F(n) with F(n) ∈ F0

(this may be deduced, by means of the trace, from the representation of a continuous
function on an extremely disconnected compact Hausdorff space as a series of continuous
functions with finite ranges). So, according to (TR2), dB

dX is uniquely determined by
(TR0)–(TR2) for B = w�A with rational w and A 6 X. Finally, it suffices to recall that
if A ∈ L[X], then A =�∞n=1 A(n) with 1

n � A(n) 6 X.

Corollary 4.3.4. EN and M(ΩII) are isomorphic as ordered vector spaces.



44 4. Topological model

Proof. Take X ∈ SMN such that ℵ0�X = JII and define Φ+ : SMN 3 F 7→ dF
dX ∈M+(ΩII).

By Theorem 4.3.3, Φ+ is an additive bijection preserving orders. Now it suffices to extend
Φ+ in a standard way: Φ(ξ) = Φ(ξ+)− Φ(ξ−).

Proposition 4.3.5. If A,X,Y ∈ SMN are such that A� X� Y, then

dA
dY

=
dA
dX
· dX
dY

. (4.3.2)

Proof. Arguing as in the uniqueness part of Theorem 4.3.3, we only need to check that
(4.3.2) is satisfied for A 6s X. When A = X, (4.3.2) is clear. So, for arbitrary A 6s X,
(4.3.2) follows from (TR1) and (TR2).

We end the chapter with the following two remarks.

Remark 4.3.6. The notation ‘ dAdX ’ suggests denoting the inverse operator, from
M+(ΩII |X) onto L[X], by

∫
f dX. Thus, for f ∈ M+(ΩII |X),

∫
f dX = B iff B ∈ L[X]

is such that dB
dX = f . Arguing as in the proof of Theorem 4.3.3, one may show that the

operator M+(ΩII |X) 3 f 7→
∫
f dX ∈ L[X] is uniquely determined by the following three

conditions:

(AD1)
∫
jX dX = X where jX is the characteristic function of X,

(AD2) suppΩII (
∫
f dX) ⊂ supp f for each f ∈M+(ΩII |X),

(AD3) if f ∈M+(ΩII |X) has the form f =
∑∞
n=1 fn (with fn ∈M+(ΩII |X)), then∫

f dX =
∞⊕
n=1

∫
fn dX.

Note that (AD3) resembles Lebesgue’s classical monotone convergence theorem.

Remark 4.3.7. Specialists in Hilbert space operators would probably prefer the version
of ‘ dYdX ’ whose values are operators rather than functions. This is possible and may be
provided as follows. Since every bounded member of M+(ΩII) corresponds, by Ψ, to a
nonnegative element of Z(W ′(JJJII)), each member of M+(ΩII) corresponds to a (pos-
sibly unbounded) nonnegative selfadjoint operator A such that b(A) ∈ Z(W ′(JJJII)) (in
the theory of von Neumann algebras such an operator A is said to be affiliated with
Z(W ′(JJJII)); see e.g. [18, Definition 5.6.2]). Thus, if we let LLL[XXX] and Ẑ+(W ′(JJJII)) de-
note, respectively, the classes of all YYY ∈ CDDN whose unitary equivalence class is semi-
minimal and which are covered by XXX (i.e. YYY � XXX), and of all the above-mentioned
operators A, then Theorem 4.3.3 may be adapted to these settings in such a way that
dYYY
dXXX ∈ Ẑ+(W ′(XXX)) for any YYY ∈ LLL[XXX] and (here we list only those properties which do
not need additional explanations): (a) dXXX

dXXX is the unit of Z(W ′(XXX)) (so, dXXX
dXXX is a central

projection in W ′(JJJII)); (b) dYYY ′

dXXX = dYYY ′′

dXXX iff YYY ′ and YYY ′′ are unitarily equivalent; (c) if
AAA 6 m �XXX and BBB 6 n �XXX for some natural numbers m and n, then both dAAA

dXXX and
dBBB
dXXX are bounded and d(AAA⊕BBB)

dXXX = dAAA
dXXX + dBBB

dXXX ; (d) if YYY t is such that Yt = t � Y (for some
YYY ∈ LLL[XXX] and t > 0), then dYYY t

dXXX = t dYYYdXXX . The reader interested in this approach should
consult [18, Theorem 5.6.15].
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4.4. Model for the class

Now we shall develop the idea of the previous chapter. This will also be an adaptation
of the dimension theory for W∗-algebras. Let JJJ be a representative of J, Ω be a compact
Hausdorff space homeomorphic to the Gelfand spectrum of Z(W ′(JJJ)) and let

Ψ: Z(W ′(JJJ))→ C(Ω)

be an isomorphism of ∗-algebras. When the triple (JJJ,Ω,Ψ) is fixed, Ji for i = I, II, III

corresponds to a clopen subset Ωi of Ω. In what follows, we assume that Card ∩ R+ =
Z ∩ R+. We add and multiply two reals and two infinite cardinals in the usual way, and
additionally we put 0 ·α = α · 0 = 0 and t+α = α+ t = α+ 0 = 0 +α = α = t ·α = α · t
for t ∈ R+ \ {0} and α ∈ Card∞. We also extend the natural total orders on R+ and
Card∞ assuming that t < α for every real t and each infinite cardinal α. In this way the
order on R+ ∪ Card is total and complete. We equip every set Y ⊂ R+ ∪ Card with the
topology inherited from the linearly ordered space Iα := {ξ ∈ R+ ∪ Card: ξ 6 α} where
α = sup(Y ∪{ℵ0}) (cf. [8, Problem 1.7.4]). Since the topology of the linearly ordered space
Iα coincides with the topology inherited from Iβ whenever ℵ0 6 α < β, this definition of
the topology on Y causes no confusion. For every topological space X, we call a function
f : X → R+ ∪Card continuous if f is continuous as a function of X into f(X). One may
check that for every α ∈ Card∞, Iα is compact, the order is a closed subset of Iα × Iα
and the functions Iα × Iα 3 (ξ, ξ′) 7→ ξ + ξ′ ∈ Iα and Iα × Iα 3 (ξ, ξ′) 7→ ξ · ξ′ ∈ Iα are
continuous.

Let Λ(Ω) be the class of all continuous functions u : Ω→ R+∪Card such that u(ΩI) ⊂
Card and u(ΩIII) ⊂ {0} ∪Card∞. We add and multiply members of Λ(Ω) pointwise. We
shall also multiply elements of Λ(Ω) by cardinal numbers pointwise and we equip Λ(Ω)
with the pointwise order. For each f ∈ Λ(Ω), supp f is the closure of the (open) set
{x ∈ Ω: f(x) 6= 0}. Observe that supp f is clopen.

Suppose {fs}s∈S ⊂ Λ(Ω) is any family such that supp fs ∩ supp fs′ = ∅ for distinct
s, s′ ∈ S. We define

∑
s∈S fs ∈ Λ(Ω) in the following manner. Let D0 =

⋃
s∈S supp fs,

D = D0 ∪ int(Ω \ D0) (‘int’ stands for interior) and u : D → R+ ∪ Card be given by
u(x) = fs(x) for x ∈ supp fs (s ∈ S) and u(x) = 0 for x ∈ int(Ω \D0). It is clear that D
is open and dense in Ω and u is continuous. Now by Lemma 4.3.1, u may be (uniquely)
continuously extended to a member of Λ(Ω), denoted by

∑
s∈S fs. One may check that

in that case
∑
s∈S fs = supΛ(Ω){

∑
s∈S0

fs : S0 ∈ Pf (S)}.

Lemma 4.4.1. Let {fn}∞n=1 ⊂ Λ(Ω) and u, v : Ω → R+ ∪ Card be given by u(x) =
infn>1 fn(x) and v(x) = supn>1 fn(x) (x ∈ Ω). There are open dense subsets U and
V of Ω such that u|U and v|V are continuous.

Proof. Since the proofs for u and v differ, we shall present both. We start with u for which
the proof is simpler. Let U0 = u−1(R+) and for α ∈ Card∞ let Uα = intu−1({α}). Since
U0 =

⋃∞
n=1 f

−1
n (R+), U0 is open. Now the function u′ : Ω→ R+ given by u′(x) = u(x) for

x ∈ U0 and u′(x) = 0 otherwise is Borel (because on U0 it coincides with the infimum of a
sequence of continuous functions taking values in [0,∞], after a suitable change of fn’s).
Thus, according to Lemma 4.3.2, there is a dense open subset U ′ of Ω such that u′|U ′ is
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continuous. Consequently, u|U1 is continuous where U1 = U0 ∩ U ′ is open and dense in
U0. We see that U = U1 ∪

⋃
α∈Card∞

Uα is open and u|U is continuous. To show that U
is dense in Ω, it remains to check that the set G = int[Ω \ (U0 ∪

⋃
α∈Card∞

Uα)] is empty.
Suppose, for a contradiction, that G 6= ∅. Note that G is clopen and u(G) ⊂ Card∞. Let
α = minu(G) > ℵ0. We conclude from the definition of u that fn(x) > α for all x ∈ G
and n > 1. What is more, there is x0 ∈ G such that u(x0) = α and there exists m > 1
with u(x0) = fm(x0). Since α is an isolated point of fm(G), the set G0 = f−1

m ({α})∩G is
clopen (and nonempty). We see that then u(x) = α for each x ∈ G0 and hence G0 ⊂ Uα,
which contradicts the definition of G. This finishes the proof for u.

To show the assertion for v, we begin similarly: let F = v−1(Iℵ0) and

V∞ =
⋃

α∈Card∞

int v−1({α}).

The set F is closed since F =
⋂∞
n=1 f

−1
n (Iℵ0). We claim that

F ∪ clV∞ = Ω (4.4.1)

(‘cl’ stands for closure). Again, for contradiction suppose that D = Ω \ (F ∪ clV∞) is
nonempty. Since D is open, there is a clopen set G 6= ∅ such that G ⊂ D. Notice that
v(G) ⊂ Card∞ \ {ℵ0}. Let γ be the first infinite cardinal such that

int[G ∩ v−1(Iγ)] 6= ∅. (4.4.2)

Let W be any nonempty clopen subset of G ∩ v−1(Iγ). Let us show that

γ = sup{sup fn(W ) : n > 1} = sup v(W ) > ℵ0. (4.4.3)

Put γ′ = sup{sup fn(W ) : n > 1}. It is clear that γ′ 6 sup v(W ) 6 γ (as v(W ) ⊂ Iγ). On
the other hand, by the definition of v, v(x) 6 γ′ for each x ∈ W , which yields γ′ > ℵ0

(since W ⊂ G) and W ⊂ v−1(Iγ′)∩G. We now infer from the definition of γ that γ 6 γ′.
This proves (4.4.3).

Now let W0 be an arbitrary nonempty clopen subset of G∩ v−1(Iγ) (cf. (4.4.2)). Put
Z = W0 ∩

⋃∞
n=1 f

−1
n ({γ}). Then Z is Fσ and, by Baire’s theorem, intZ = ∅ (because,

thanks to (4.4.3), int[W0 ∩ f−1
n ({γ})] ⊂ int v−1({γ}) ⊂ V∞ and W0 ∩ V∞ = ∅). An

application of Lemma 4.3.2 shows that int(clZ) = ∅. This implies that there is a nonempty
clopen setW ⊂W0\Z. We conclude from the definition of Z that fn(x) < γ for any x ∈W
and n > 1. But since W is compact, fn assumes its maximum on W and consequently
γn := max(ℵ0, sup fn(W )) < γ. Now by (4.4.3),

sup
n>1

γn = γ. (4.4.4)

Further, by the minimality of γ, each of the sets Gn = G ∩ v−1(Iγn) has empty interior.
Moreover, the Gn’s are closed (Gn = G ∩

⋂∞
k=1 f

−1
k (Iγn)). Consequently, another appli-

cation of Baire’s theorem and Lemma 4.3.2 gives int[cl(G∞)] = ∅ where G∞ =
⋃∞
n=1Gn.

But G∞ = G ∩ v−1(Iγ \ {γ}) (by (4.4.4)). Finally, by (4.4.2), we obtain

int[G ∩ v−1({γ})] = int(G ∩ v−1(Iγ) \G∞) ⊃ int[G ∩ v−1(Iγ)] \ clG∞ 6= ∅,

which contradicts the fact that G ∩ V∞ = ∅. This finishes the proof of (4.4.1).
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Relation (4.4.1) means that the set E = Ω \ clV∞ is contained in F and consequently
v(E) ⊂ Iℵ0 . Observe that E is clopen and Iℵ0 is both homeomorphic and order-isomorphic
to [0, 1]. Therefore v|E is Borel and by Lemma 4.3.2 there is an open dense subset V0 of
E such that v|V0 is continuous. To end the proof, put V = V0 ∪ V∞.

Now assume (fn)∞n=1 is a sequence of members of Λ(Ω). Let v : Ω 3 x 7→
∑∞
n=1 fn(x) ∈

R+∪Card. (The series
∑∞
n=1 fn(x) is understood as the supremum of its partial sums.) It

is clear that v(ΩI) ⊂ Card and v(ΩIII) ⊂ {0}∪Card∞. By Lemma 4.4.1, there is an open
dense subset D of Ω such that v|D is continuous. Consequently, thanks to Lemma 4.3.1,
there is a unique ṽ ∈ Λ(Ω) which extends v|D. This unique extension ṽ will be denoted
by
∑∞
n=1 fn. One may check that

∑∞
n=1 fn = supΛ(Ω)

{∑n
k=1 fk : n > 1

}
.

Now let A ∈ CDDN . Put

s(A) = J� (EI0(A)� EII0 (A)� EIII0 (A)). (4.4.5)

Since s(A) 6s J, s(A) corresponds to a unique central projection zA ∈ M′(JJJ). There is
a unique clopen set in Ω, denoted by suppΩ A, whose characteristic function coincides
with Ψ(zA). It is clear that for A,B ∈ CDDN , A � B ⇔ suppΩ A ⊂ suppΩ B; and
A ⊥u B⇔ suppΩ A ∩ suppΩ B = ∅. When X,Y ∈ SMN are such that X� Y, u = dX/dY
is defined on ΩII and real-valued on an open dense subset D of ΩII . Extending u|D to a
continuous function of Ω into Iℵ0 by putting zero on ΩI ∪ΩIII and applying Lemma 4.3.1,
we may consider dX/dY as a member of Λ(Ω), as is done in this chapter. With this
understanding,{

dX
dY

: X ∈ SMN , X� Y
}

= {u ∈ Λ(Ω): suppu ⊂ suppΩ Y, u−1(R+) is dense in Ω} (4.4.6)

(by Theorem 4.3.3). Since addition is continuous on Iℵ0 , d(X′ ⊕ X′′)/dY = dX′/dY +
dX′′/dY whenever X′,X′′ � Y.

Throughout, jE denotes the characteristic function of a set E ⊂ Ω.

Theorem 4.4.2. Let T ∈ SMN be such that ℵ0 � T = JII (there exists such a T). There
is a unique assignment ΦT : CDDN → Λ(Ω) such that

(D0) ΦT(T) = jΩII , ΦT(JI) = jΩI and ΦT(JIII) = ℵ0 · jΩIII ,
(D1) supp ΦT(A) ⊂ suppΩ A for each A ∈ CDDN ,
(D2) ΦT(α� A) = α · ΦT(A) for any α ∈ Card and A ∈ CDDN ,
(D3) whenever {A(s)}s∈S ⊂ CDDN is a regular family (cf. (D1) and notes on page 45),

ΦT

(
�
s∈S

A(s)
)

=
∑
s∈S

ΦT(A(s)),

(D4) whenever (A(n))∞n=1⊂CDDN is such that
⊕∞

n=1 A(n)∈SMN (see notes above),

ΦT

( ∞⊕
n=1

A(n)
)

=
∞∑
n=1

ΦT(A(n)).

What is more, Λ(Ω) is order-complete and ΦT has further properties (below, A,B ∈
CDDN ):
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(D1′) supp ΦT(A) = suppΩ A; in particular, A � B (resp. A ⊥u B) iff suppΩ ΦT(A) ⊂
suppΩ ΦT(B) (resp. suppΩ ΦT(A) ∩ suppΩ ΦT(B) = ∅),

(D4′) for any sequence (A(n))∞n=1 ⊂ CDDN ,

ΦT

( ∞⊕
n=1

A(n)
)

=
∞∑
n=1

ΦT(A(n)),

in particular,
ΦT(A⊕ B) = ΦT(A) + ΦT(B), (4.4.7)

(D5) A 6 B⇔ ΦT(A) 6 ΦT(B),
(D6) A 6s B⇔ ΦT(A) = ΦT(B) · jE for some clopen set E ⊂ Ω,
(D7) for every X ∈ SMN , ΦT(X) = dX/dT,
(D8) for every u ∈ Λ(Ω) there is a unique X ∈ CDDN such that ΦT(X) = u.

Proof. Let us start with the uniqueness of ΦT. First of all, for A ∈ SMN , s(A) = ℵ0 � A
and hence suppΩ A coincides with suppΩII A introduced in the previous chapter. Therefore
(D0), (D1) and (D4) combined with Theorem 4.3.3 yield ΦT(A) = dA/dT for A ∈ SMN

(notice that A� T for every such A). Further, we infer from (D0) and (D2) that ΦT(JII) =
ℵ0 · jΩII and consequently, by (D3) and (D0),

ΦT(J) = jΩI + ℵ0 · jΩII∪ΩIII . (4.4.8)

Now if X 6s J, (D3) implies that ΦT(J) = ΦT(X) + ΦT(Y) with Y = J � X. What is
more, suppΩ X ∩ suppΩ Y = ∅, from which we conclude, thanks to (D1), that ΦT(X) =
ΦT(J) · jsuppΩ X. Finally, if A ∈ CDDN is arbitrary, the above combined with (D3) and
(D2) gives

ΦT(A) =
dEsm(A)
dT

+
∑

(i,α)∈Υ∗

α · ΦT(J) · jsuppΩ Eiα(A). (4.4.9)

To establish the existence of ΦT together with all suitable properties, define ΦT(A) by
(4.4.9) with ΦT(J) given by (4.4.8). Observe that (D0), (D1′), (D2) and (D7) are satis-
fied. We now show (4.4.7). We shall apply the calculations in Example 3.6.7. Under the
notation of that example, (4.4.9) and (3.6.6) give

ΦT(A⊕B) =
dEsm,0
dT

+
dEsm,1
dT

+
dE0,sm

dT
+
dE1,sm

dT
+

∑
(i,α,β)∈Υ2

#

(α+β)·(ΦT(J)·jsuppΩ Eiα,β
).

Further, it follows from Theorem 4.3.3 that
dEsm(A)
dT

=
dEsm,0
dT

+
dEsm,1
dT

+
∑

α∈Card∞

dEsm,α
dT

,

dEsm(B)
dT

=
dE0,sm

dT
+
dE1,sm

dT
+

∑
α∈Card∞

dEα,sm
dT

.

On the other hand, for (i, α)∈Υ∗, we have Eiα(A)=�β∈Λi
Eiα,β and Eiα(B)=�β∈Λi

Eiβ,α,
which means that

jsuppΩ Eiα(A) =
∑
β∈Λi

jsuppΩ Eiα,β
and jsuppΩ Eiα(B) =

∑
β∈Λi

jsuppΩ Eiβ,α
.
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Substituting the above in the formulas for ΦT(A) and ΦT(B), we see that (4.4.7) is
satisfied.

Now let g be an arbitrary member of Λ(Ω). For (i, α) ∈ Υ∗ let U iα = Ωi∩ int g−1({α})
and let U II1 be the closure of g−1(R+ \ {0})∩ΩII . Since Ω is extremely disconnected, the
sets U iα (with (i, α) ∈ Υ) are clopen and pairwise disjoint. The arguments used in the proof
of Lemma 4.4.1 show that their union is dense in Ω. This implies that there is a partition
of unity {Eiα}(i,α)∈Υ ⊂ CDDN such that suppΩ Eiα = U iα for every (i, α) ∈ Υ. Moreover,
thanks to (4.4.6), there is Esm ∈ SMN such that dEsm/dT = g · jUII1 . This implies that
suppΩ Esm = suppΩ EII1 and hence EII1 = ℵ0 � Esm. Now the formulas Eiα(A) := Eiα and
Esm(A) := Esm well define A ∈ CDDN such that ΦT(A) = g. Further, if ΦT(B) = g and
V iα = suppΩ Eiα(B) ((i, α) ∈ Υ), then V iα ⊂ U iα for (i, α) ∈ Υ, by (4.4.9). But the union
of all V iα’s is dense in Ω and U iα \ V iα is open. We infer that V iα = U iα and consequently
dEsm(B)/dT = dEsm(A)/dT and B = A. This shows (D8).

We are now able to prove (D5). Indeed, if A 6 B, then B = A ⊕ X for some X and
then, by (4.4.7), ΦT(B) = ΦT(A) + ΦT(X) > ΦT(A). Conversely, if ΦT(A) 6 ΦT(B), there
is g ∈ Λ(Ω) (see Corollary 4.4.3 below) for which ΦT(B) = ΦT(A) + g. We know from
the previous argument that g = ΦT(X) for some X ∈ CDDN . Consequently, ΦT(B) =
ΦT(A⊕ X) and by (D8), B = A⊕ X and we are done.

We have shown that ΦT is a bijective order isomorphism. This implies that Λ(Ω) is
order-complete (by Theorem 2.3.2) and for every nonempty set {A(s)}s∈S ⊂ CDDN ,

ΦT

(∨{⊕
s∈S0

A(s) : S0 ∈ Pf (S)
})

= sup
Λ(Ω)

{∑
s∈S0

ΦT(A(s)) : S0 ∈ Pf (S)
}
.

But this and (AO6) (page 32) imply (D3), (D4) and (D4′). Point (D6) is left to the
reader.

Let us call every topological space homeomorphic to Ω an underlying model space
for CDDN . We shall show that underlying model spaces for CDDN and CDDN ′ are
homeomorphic for any N and N ′. We shall also propose a simplified form of them.

Let us now list a few basic consequences of Theorem 4.4.2. Some of them were an-
nounced in Chapter 4.1. For simplicity, we fix T ∈ SMN such that ℵ0 � T = JII and for
each A ∈ CDDN , Â will denote ΦT(A). Since Λ(Ω) is order-complete, for every nonempty
set {fs}s∈S ⊂ Λ(Ω),

∨
s∈S fs and

∧
s∈S fs will stand for, respectively, supΛ(Ω){fs : s ∈ S}

and infΛ(Ω){fs : s ∈ S}.

Corollary 4.4.3. (B	 X)∆ ∨ (X	 A)∆ 6 (B	 A)∆ provided A 6 X 6 B.

Proof. It suffices to prove a counterpart of the corollary in the class Λ(Ω). Let f, g ∈ Λ(Ω)
be such that f 6 g. The set D0 = {x ∈ Ω: f(x) < f(y) or f(y) ∈ R+} is open in Ω and
there is a unique function u0 : D0 → R+ ∪ Card such that g(x) = u0(x) + f(x) for every
x ∈ D0. It may be easily seen that u0 is continuous. Let D(f, g) = D0 ∪ int(Ω \ D0)
and u ∈ Λ(Ω) be a unique continuous function (guaranteed by Lemma 4.3.1) such that
u(x) = u0(x) for x ∈ D0 and u(x) = 0 for x ∈ D(f, g) \D0. We see that g = f + u on
D(f, g) and hence g = f+u on Ω. It is easily seen that u is the least member of (Λ(Ω),6)
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with this property. We shall denote this u by (g − f)∆. It is clear that

̂(B	 A)∆ = (B̂− Â)∆

whenever A 6 B. Thus, we need to check that (h − g)∆ ∨ (g − f)∆ 6 (h − f)∆ if only
f 6 g 6 h. It suffices to check a suitable inequality on a dense subset of Ω. We leave it
as a simple exercise that it is satisfied for x ∈ D(f, g) ∩D(g, h) ∩D(f, h).

Remark 4.4.4. Using the same idea as in the proof of Corollary 4.4.3, one may show
that whenever A,B ∈ CDDN are such that A 6 B, then

[B	 (B	 A)∇]∆ 6s [B	 (B	 A)∆]∆ 6s A 66 [B	 (B	 A)∆]∇ = [B	 (B	 A)∇]∇.

Recall that the Souslin number of a topological space X, denoted by c(X) ([8, Prob-
lem 1.7.12]), is the least infinite cardinal α such that every family of mutually disjoint
nonempty open subsets of X has size not greater than α. Let us modify this by putting
c∗(∅) = 0 and c∗(X) = c(X) for nonempty topological spaces X. It turns out that the
modified Souslin numbers of certain clopen subsets of Ω may be used to give the formula
for dim(A) if only this dimension is infinite. Namely,

Proposition 4.4.5. Let A ∈ CDDN and f = Â. Let U II1 be the closure of the set
f−1(R+ \ {0}) ∩ ΩII and for (i, α) ∈ Υ∗ let U iα = Ωi ∩ int f−1({α}). Then

ℵ0 · dim(A) =
∑

(i,α)∈Υ

α · c∗(U iα).

Proof. In extremely disconnected spaces, the closures of two disjoint open sets are disjoint
as well. Consequently, whenever E is a clopen subset of Ω, c(E) is the least infinite cardinal
α such that every family of pairwise disjoint nonempty clopen sets has size not greater
than α. Since clopen sets correspond to N -tuples A such that A 6s J, the assertion follows
from the argument used in (ST17) (page 37). The details are left to the reader (cf. the
proof of (D8) in Theorem 4.4.2).

Remark 4.4.6. It is worth mentioning that it is impossible to recognize N -tuples whose
representatives act on finite-dimensional spaces by means of corresponding members of
Λ(Ω), unless we distinguish some special subsets of Ω, as is done in the next chapter.
To see this, it suffices to note that Â is the characteristic function of a one-point subset
of ΩI if e.g. AAA = (T, . . . , T ) ∈ CDDN where T is either the identity operator on C or a
unilateral shift on `2.

We shall now prove a useful

Lemma 4.4.7.

(A) For every clopen nonempty set E ⊂ Ω there is a family {Es}s∈S of pairwise disjoint
clopen nonempty sets such that c(Es) = ℵ0 for every s ∈ S and

⋃
s∈S Es is a dense

subset of E.
(B) Let {fs}s∈S be a nonempty set of members of Λ(Ω) and let u =

∧
s∈S fs and v =∨

s∈S fs. For every clopen nonempty set E ⊂ Ω with c(E) = ℵ0 there are a nonempty
set S(E) ∈ Pω(S) and an open dense subset D(E) of E with the following property.
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Whenever S′ ⊃ S(E) (S′ ⊂ S) and x ∈ D(E), then

u(x) = inf
s∈S′

fs(x) (4.4.10)

and if, in addition, v(E) ⊂ Iℵ0 , then also

v(x) = sup
s∈S′

fs(x).

Proof. (A): Let E = {Es}s∈S be a maximal family of pairwise disjoint nonempty clopen
sets such that c(Es) = ℵ0 and Es ⊂ E for every s ∈ S. Let D = E \ cl(

⋃
s∈S Es). We

have to show that D is empty. But this follows from Proposition 3.4.10. Indeed, we infer
from that result that every nonempty clopen subset of Ω contains a nonempty clopen set
G with c(G) = ℵ0. Consequently, since D is clopen and E is maximal, D = ∅.

(B): Let U1 = clu−1(R+) ∩ E and Uα = intu−1({α}) ∩ E for α ∈ Card∞. We know
(cf. the proof of Lemma 4.4.1) that the collection U = {Uα : α ∈ Card∞ ∪ {1}} consists
of pairwise disjoint clopen sets whose union is dense in E. Further, for each α ∈ Card∞
and s ∈ S put Uα,s = Uα ∩ f−1

s ({α}). Since fs > α on Uα and α is an isolated point
of Card \ {β ∈ Card: β < α}, Uα,s is clopen. It is clear that

⋃
s∈S Uα,s is dense in Uα.

(Indeed, the set G = Uα \ cl(
⋃
s∈S Uα,s) is clopen and fs(x) > α+ for any x ∈ G and

s ∈ S and thus u′ ∈ Λ(Ω) given by u′|G ≡ α+ and u′ = u on Ω \G is such that u′ 6 fs
(s ∈ S), which gives u′ 6 u and consequently G = ∅.) Let ‘<’ be a well order on S with
the first element s∗. We define clopen sets Vα,s by transfinite induction as follows. Let
Vα,s∗ = Uα,s∗ and for any s ∈ S \ {s∗},

Vα,s = Uα,s \ cl
( ⋃
s′<s

Vα,s′
)
.

We see that Vα,s ⊂ Uα,s and hence
u|Vα,s = fs|Vα,s . (4.4.11)

Further, the sets Vα,s (s ∈ S) are pairwise disjoint. Using transfinite induction one may
check that cl(

⋃
s′<s Vα,s′) = cl(

⋃
s′<s Uα,s′) for each s ∈ S and thus

cl
(⋃
s∈S

Vα,s

)
= Uα. (4.4.12)

Now we turn to the set U1. By definition, U1 is clopen and u(U1) ⊂ Iℵ0 . In what follows,
we assume U1 is nonempty. Let gs = fs ∧ ℵ0. We naturally identify Iℵ0 with [0,∞]. Let
τ : [0,∞] 3 x 7→ x

x+1 ∈ [0, 1] (with the convention that ∞
∞+1 = 1). Put u′ = τ ◦ u|U1 ∈

C(U1, [0, 1]) and g′s = τ ◦ gs|U1 ∈ C(U1, [0, 1]). Note that

u′ =
∧
s∈S

g′s. (4.4.13)

Since U1 is clopen in Ω and C(Ω) is a W∗-algebra, so is C(U1). Further, we conclude from
the fact that c(U1) = ℵ0 that C(U1) is countably decomposable. Thus, it may be inferred
from [35, Theorem III.1.18] or [29, Proposition 1.18.1] that C(U1) is isomorphic to L∞(µ)
for some probability space (X,M, µ). Under this isomorphism, g′s and u′ correspond to,
respectively, ξs ∈ L∞(µ) and w ∈ L∞(µ). Consequently, w = infL∞(µ){ξs : s ∈ S} (by
(4.4.13)). For a nonempty set S0 ∈ Pω(S) let wS0 : X 3 x 7→ infs∈S0 ξs(x) ∈ [0, 1]. Since
S0 is countable, wS0 is measurable and hence wS0 ∈ L∞(µ). Let
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c = inf
{∫

X

wS0 dµ : S0 ∈ Pω(S)
}
.

It is easily seen that there is S1 ∈ Pω(S) for which c =
∫
X
wS1 dµ. Now if s is an arbitrary

element of S, then wS1∪{s} 6 wS1 and
∫
X
wS1∪{s} dµ > c =

∫
X
wS1 dµ. These imply that

wS1∪{s} = wS1 (µ-almost everywhere) and consequently ξs > wS1 in L∞(µ). The last
inequality gives w > wS1 = infL∞(µ){ξs : s ∈ S1} and therefore w = wS1 (in L∞(µ)).
In C(U1) this is interpreted as u′ =

∧
s∈S1

g′s, which is equivalent to u|U1 =
∧
s∈S1

gs|U1 .
Now by Lemma 4.4.1, u(x) = infs∈S1 gs(x) for x ∈ D1 where D1 is an open dense subset
of U1. This implies that for each x ∈ D1(E) := D1 ∩ u−1(R+) ∩ E there is sx ∈ S1 such
that gsx(x) ∈ R+. Consequently, gsx(x) = fsx(x) and hence

u(x) = inf
s∈S1

fs(x) (4.4.14)

for x ∈ D1(E). Notice that D1(E) is dense in U1.
Further, observe that the family {U1} ∪ {Vα,s : s ∈ S, α ∈ Card∞} consists of pair-

wise disjoint clopen subsets of E. Since c(E) = ℵ0, the set J := {(α, s) : s ∈ S, α ∈
Card∞, Uα,s 6= ∅} is countable (finite or not). Put S(E) = S1 ∪ {s : (α, s) ∈ J} and
D(E) = D1(E) ∪

⋃
(α,s)∈J Vα,s. We see that S(E) ∈ Pω(S) and D(E) is open and dense

in E (by (4.4.12) and the density of D1(E) in U1). Take an arbitrary set S′ such that
S(E) ⊂ S′ ⊂ S. For each x ∈ Ω one has infs∈S′ fs(x) > u(x). On the other hand, if
x ∈ D(E), then either x ∈ D1(E) or x ∈ Vα,s for some (α, s) ∈ J . In the first case the
inequality infs∈S′ fs(x) 6 u(x) follows from (4.4.14), and in the second from (4.4.11).

If we additionally assume that v(E) ⊂ Iℵ0 , we have to enlarge the set S(E) defined
above and decrease D(E). Arguing as in the paragraph for U1 (that is, representing
C(E) as L∞(µ) for some probability measure µ), we see that there is S2 ∈ Pω(S) such
that v|E =

∨
s∈S2

fs. By Lemma 4.4.1, there is an open dense subset D2 of E such
that v(x) = sups∈S2

fs(x). Now it suffices to replace S(E) by S(E) ∪ S2 and D(E) by
D(E) ∩D2. (The details are left to the reader.)

Both points of Lemma 4.4.7 yield

Corollary 4.4.8. Let {fs}s∈S be a nonempty subset of Λ(Ω).

(A) There is an open dense subset D of Ω such that for all x ∈ D,(∧
s∈S

fs

)
(x) = inf

s∈S
fs(x).

(B) If E is a clopen subset of Ω such that (
∨
s∈S fs)(E) ⊂ Iℵ0 , then there exists an open

dense subset G of E such that for any x ∈ G, (
∨
s∈S fs)(x) = sups∈S fs(x).

Remark 4.4.9. We suspect that the counterpart of Corollary 4.4.8(A) for suprema fails
to be true in general. However, partial results in this direction may be shown. Let
u =

∨
s∈S fs. Put U1 = u−1(Iℵ0) and Uα = int f−1({α}) for α ∈ Card∞ \ {ℵ0}. The

argument used in the proof of Lemma 4.4.1 shows that U1 ∪
⋃
α>ℵ0

Uα is dense in Ω. By
Corollary 4.4.8, there is an open dense subset of U1 such that

u(x) = sup
s∈S

fs(x) (4.4.15)
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for x ∈ D1. We ask for which α ∈ Card∞ \ {ℵ0} there is an open dense subset Dα of
Uα such that (4.4.15) is satisfied for all x ∈ Dα. It is quite easy to show that this is so
when α = β+ for some β > ℵ0 (indeed, it suffices to put Dα = Uα∩

⋃
s∈S f

−1
s ({α}); since

fs 6 α on Uα and α is an isolated point of Iα, the set Dα is open; that clDα = Uα may
be proved by a standard argument on the difference of these sets). Slightly more difficult
is to prove that Dα exists for every limit cardinal α which has countable cofinality,
that is, when there is a sequence (βn)∞n=1 of cardinals such that βn < α for every n,
and α = supn>1 βn. In that case we put G = Uα ∩

⋂∞
n=1

⋃
s∈S f

−1
s (Card \ Iβn) and

D = Uα\clG. Our first claim is that D is empty. For if not, there would exist a nonempty
clopen set E ⊂ D. Then put En = E ∩

⋂
s∈S f

−1
s (Iβn). Noticing that E =

⋃∞
n=1En

(since E ∩ G = ∅) and En’s are closed, we infer from Baire’s theorem that W = intEn
is nonempty for some n and thus

∨
s∈S(fs|W ) 6 βn (W is clopen), contradicting the fact

that [
∨
s∈S(fs|W )](x) = u(x) = α for x ∈ W . So, D is indeed empty and hence G is a

dense Gδ subset of Uα. Now an application of Lemma 4.3.2 shows that Dα = intG is
dense in Uα as well.

The above arguments show that if (
∨
s∈S fs)(Ω) ∩ Card∞ consists only of cardinals

which are nonlimit or have countable cofinality, then
∨
s∈S fs may be computed pointwise

on an open dense set.

Theorem 4.4.10. For every nonempty set {A(s)}s∈S ⊂ CDDN and each B ∈ CDDN ,

B ∧
(∨
s∈S

A(s)
)

=
∨
s∈S

(B ∧ A(s)), (4.4.16)

B ∨
(∧
s∈S

A(s)
)

=
∧
s∈S

(B ∨ A(s)). (4.4.17)

Proof. As usual, we pass to Λ(Ω). Put fs = Â(s) and g = B̂. Let u =
∧
s∈S fs and

u′ =
∧
s∈S(g ∨ fs). By Corollary 4.4.8, there are open dense sets D and D′ such that

u(x) = infs∈S fs(x) for x ∈ D and u′(x) = infs∈S(g ∨ fs)(x) for x ∈ D′. Then for
x ∈ D ∩D′,

(g ∨ u)(x) = max(g(x), inf
s∈S

fs(x)) = inf
s∈S

(max(g(x), fs(x)) = u′(x),

which gives (4.4.17). Now we turn to (4.4.16).
Let v =

∨
s∈S fs and v′ =

∨
s∈S(g ∧ fs). We only need to show that v′ > g ∧ v. As

usual, put U0 = g−1(Iℵ0) ∩ v−1(Iℵ0), U1 = g−1(Iℵ0) \ v−1(Iℵ0) and Uα = int g−1({α})
for α ∈ Card∞ \ {ℵ0}. We know that each of these sets is clopen and their union is
dense in Ω. Hence it suffices to show that g ∧ v 6 v′ on a dense subset of Uα for any
α ∈ {0, 1} ∪ Card∞ \ {ℵ0}.

On U0 it suffices to apply Corollary 4.4.8: if v′(x) = sups∈S(g ∧ fs)(x) for x ∈ D′ and
v(x) = sups∈S fs(x) for x ∈ D, then v′ = v ∧ g on D ∩D′. Further, since v > ℵ0 on U1,
the set D1 = U1 ∩

⋃
s∈S f

−1
s (Card \ Iℵ0) is dense in U1. What is more, for every x ∈ D1

there is s ∈ S with fs(x) > ℵ0 and therefore v′(x) > (fs ∧ g)(x) = g(x). Consequently,
v′ > g ∧ v on D1 and we are done.

Now fix α ∈ Card∞ \ {ℵ0}. We divide Uα into two clopen parts: V1 = Uα ∩ v−1(Iα)
and V2 = Uα \ v−1(Iα). Let Dα = V1 ∪

⋃
s∈S [Uα \ f−1

s (Iα)]. Notice that fs 6 α on V1
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(hence v′ = v on V1) and for every x ∈ Dα \ V1 there is s ∈ S such that fs(x) > α (so,
v′ = g on Dα \V1). This proves that v′ > v ∧ g on Dα. Finally, standard argument shows
that Dα ∩ V2 is dense in V2, and this finishes the proof.

Proposition 4.4.11. The assertion of (AO14) (page 34) is satisfied.

Proof. Again, it suffices to prove the counterpart of (AO14) in the realm Λ(Ω). It is clear
that α · (f ∨ g) = (α · f) ∨ (α · g) and α · (f ∧ g) = (α · f) ∧ (α · g) for all f, g ∈ Λ(Ω)
and each α ∈ Card. Now let α = k be a positive finite cardinal. In order to show that
k · (
∨
s∈S fs) =

∨
s∈S(k ·fs) and k · (

∧
s∈S fs) =

∧
s∈S(k ·fs), let us consider an ‘extended’

version of Λ(Ω), namely Λ̃(Ω) which is defined in the same way as Λ(Ω) with the only
difference that members of Λ̃(Ω) send ΩI into R+∪Card. We shall prove in Corollary 6.1.2
that ΩI is homeomorphic to ΩII . Consequently, Λ̃(Ω) is order-complete. It is immediate
that the assignment Λ̃(Ω) 3 f 7→ k · f ∈ Λ̃(Ω) is a bijective order isomorphism. Hence
it preserves g.l.b.’s and l.u.b.’s computed in Λ̃(Ω). So, we only need to check that u :=
supeΛ(Ω) F and v := inf eΛ(Ω) F are in Λ(Ω) for every nonempty set F ⊂ Λ(Ω). Since the
proof for u is similar, we shall only show that v ∈ Λ(Ω). Let D0 = ΩI ∩ int v−1({0}),
B0 = v−1({0})∩ΩI \D0 and for any positive integer m let Dm = ΩI ∩ int v−1((m−1,m])
and Bm = v−1((m−1,m])∩ΩI\Dm. We claim thatD = (ΩI∩v−1(Card∞))∪

⋃∞
m=0Dm is

dense in ΩI (D is of course open). Indeed, ΩI \D =
⋃∞
m=0Bm. Since each Bm is nowhere

dense (by Lemma 4.3.2), Baire’s theorem yields our assertion. Now let v′ ∈ Λ(Ω) be such
that v′ = v on (ΩI ∩ v−1(Card∞))∪ΩII ∪ΩIII and v(Dm) ⊂ {m} for every integer m > 0
(see Lemma 4.3.1). We see that v(x) 6 v′(x) for x ∈ D ∪ ΩII ∪ ΩIII and consequently
v 6 v′. Moreover, since v 6 f ∈ Λ(Ω) for any f ∈ F , v′ 6 f as well (f ∈ F ) and hence
v = v′ ∈ Λ(Ω).

In the second part of the second claim of (AO14) one assumes that Esm(A(s)) = O,
which corresponds to fs(ΩII) ⊂ {0} ∪ Card∞. Here we shall weaken this, assuming that
fs(ΩII) ⊂ Card for each s ∈ S. It follows from Corollary 4.4.8 that there is an open
dense subset D of Ω such that for all x ∈ D, (

∧
s∈S fs)(x) = infs∈S fs(x) as well as

[(
∧
s∈S(α · fs)](x) = infs∈S(α · fs)(x). Since all values of (all) fs’s are cardinals, we see

that in the last two formulas ‘inf’ may be replaced by ‘min’. But α · mins∈S fs(x) =
mins∈S(α · fs(x)) and thus α · (

∧
s∈S fs)(x) = [

∧
s∈S(α · fs)](x) for x ∈ D, and we are

done.
We now turn to the last claim: that α ·

∨
f∈F f =

∨
f∈F (α · f) for every nonempty

set F ⊂ Λ(Ω) and α ∈ Card∞. The inequality ‘>’ is clear. To prove the converse, put
u =

∨
f∈F (α · f). It is enough to show that α · u = u. Equivalently, we have to check

that for each x ∈ Ω, u(x) > α or u(x) = 0. Suppose, to the contrary, that 0 < u(x0) < α

for some x0 ∈ Ω. Take a closed set B ⊂ Iα \ {α} such that u(x0) ∈ intB and put
D = intu−1(B). D is clopen and x0 ∈ D. Now let u′ ∈ Λ(Ω) be given by u′ = u on
Ω \D and u′ = 0 on D. We see that u′(x0) < u(x0). However, α · f 6 u′ for every f ∈ F .
Indeed, if x ∈ D, then α > u(x) > α · f(x), which implies that f(x) = 0. Thus, u is not
the l.u.b. of α · F , and this finishes the proof.

Remark 4.4.12. It is natural to ask which function corresponds to A =
⊕

s∈S A(s) for an

uncountable set S; in other words, how to express
∑
s∈S fs := Â by means of fs = Â(s)
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(s ∈ S). Lemma 4.4.1 and Theorem 4.4.2 show that for countable S,
∑
s∈S fs may

be computed pointwise on an open dense subset of Ω. Let us demonstrate how to find∑
s∈S fs when S is uncountable. We shall use here the arguments of Chapter 4.2. First

of all, let g =
∨
{
∑
s∈S′ fs : S′ ∈ Pf (S)} and Uf = cl g−1(R+). It may be deduced from

the arguments of Chapter 4.2 that
∑
s∈S fs = g on Uf and the function f :=

∑
s∈S fs

takes infinite values on Ω \ Uf . So, we only need to characterize Uα = int f−1({α}) for
α ∈ Card∞ (since we know that Uf ∪

⋃
α∈Card∞

Uα is dense in Ω). This is possible thanks
to (4.2.1). For this purpose, we define dimE u for u ∈ Λ(Ω) and a nonempty clopen set
E ⊂ Ω with c(E) = ℵ0 as follows:

dimE u =
∑
{α ∈ Card∞ : E ∩ intu−1({α}) 6= ∅}+ c∗(E ∩ clu−1(R+ \ {0}))

(notice that the last summand is either 0 or ℵ0). Now one may conclude from (4.2.1) that
Uα is the closure of the union of all clopen sets V ⊂ Ω \Uf such that

∑
s∈S dimE fs = α

for every nonempty clopen set E ⊂ V with c(E) = ℵ0 (of course, Uα may be empty). We
leave the details to the interested readers.

Remark 4.4.13. It is clear that the formula for ΦT essentially depends on T. However,
there is a quite simple connection between ΦT and ΦS for any two semiminimal N -tuples
T and S such that ℵ0�T = ℵ0�S = JII . Put u = jΩI∪ΩIII+dS/dT andD := u−1(R+\{0}).
We leave it as an easy exercise that D is dense in Ω and for every X ∈ CDDN , ΦS(X) is
the unique continuous extension of ( 1

uΦT(X))|D.

4.5. Types of tuples

As in the previous chapter, Â = ΦT(A) for each A ∈ CDDN where ΦT is as in Theo-
rem 4.4.2. This notation is in force until the end of the paper.

The following result is an immediate consequence of Proposition 3.5.1.

Proposition 4.5.1. For every clopen set E ⊂ Ω the class

I[E] := {A ∈ CDDN : supp Â ⊂ E}

is an ideal in CDDN . Conversely, for every ideal A ⊂ CDDN there is a (unique) clopen
set K ⊂ Ω such that A = I[K]. What is more, K = supp Ĵ(A).

For every ideal A, the unique clopen set K such that A = I[K] will be denoted by
suppΩ A. Below we give some related examples.

Examples 4.5.2. (A) Fix a nonnegative real number r and let I(r) be the class of all
N -tuples X for which ‖X‖ 6 r. It is clear that I(r) is an ideal. Put Ω(r) := suppΩ I(r)
and Ω(bd) :=

⋃
r>0 Ω(r). The set Ω(bd) is open in Ω and for every X ∈ CDDN ,

‖X‖ <∞ ⇔ supp X̂ ⊂ Ω(bd)

(indeed, use the fact that supp X̂ is compact). What is more, if ‖X‖ < ∞, then ‖X‖ =
min{r > 0: supp X̂ ⊂ Ω(r)}. The ideal I[cl Ω(bd)] consists of all N -tuples which are direct
sums of bounded N -tuples. Further, whenever 0 6 s < r, the ideal I[Ω(r) \Ω(s)] consists
of all N -tuples all of whose nontrivial reduced parts have norm greater than s but not
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greater than r. We conclude that Ω(s) = int(
⋂
r>s Ω(r)) for any s > 0. For positive r put

Ω{r} = Ω(r) \ cl(
⋃
s<r Ω(s)) and I{r} = I[Ω{r}]. The ideal I{r} consists of all N -tuples

with all nontrivial reduced parts having norm r.
(B) Now let I(b) := {b(A) : A ∈ CDDN}. It follows from the properties of the b-

transform that I(b) is an ideal. Let Ω(b) = suppΩ I(b). Notice that I(b) consists of all
N -tuples X such that either ‖X‖ < 1, or ‖X‖ = 1 and X does not assume its norm.
Consequently, Ω(b)  Ω(1). The ideal I[E] with E = Ω(1) \Ω(b) consists of all N -tuples
each of whose nontrivial reduced part has norm 1 and assumes its norm. In particular,
E ⊂ Ω{1} and the ideal I[Ω{1} \ E] = I[Ω{1} ∩ Ω(b)] coincides with the class of all N -
tuples each of whose nontrivial reduced parts has norm equal to 1 and does not assume
its norm.

As a consequence of Theorem 2.4.1 and Examples 4.5.2 we obtain

Corollary 4.5.3. Every contraction T acting on a Hilbert space H induces a unique
decomposition H = H0 ⊕H1 ⊕H2 such that H0,H1,H2 ∈ red(T ) and

(a) every nontrivial reduced part of T |H0 admits a nontrivial reduced part of norm less
than 1,

(b) T |H1 does not assume its norm (unless H1 is trivial) and each of its nontrivial reduced
parts has norm 1,

(c) every nontrivial reduced part of T |H2 has norm 1 and assumes its norm.

What is more, H0,H1,H2 ∈ cred(T ).

As done by Ernest [9], the types of W ′′(XXX) and W ′(XXX) may be assigned to XXX. It is
easily seen (and in fact, already used by us in Theorem 3.6.1) that for every nontrivial
XXX ∈ CDDN :

• W ′(XXX) is type Iα (α ∈ Card \ {0}) iff X = α� E for a unique E 6s JI ,
• W ′(XXX) is type IIIα (α ∈ Card∞) iff X = α� E for a unique E 6s JIII ,
• W ′(XXX) is type II1 iff X is semiminimal,
• W ′(XXX) is type IIα (α ∈ Card∞) iff X = α� E for a unique E 6s JII .

Ernest calls a bounded operator T of type iα provided W ′(T ) is of this type (cf. [9, Defi-
nition 1.28]). We call a nontrivial N -tuple X ∈ CDDN (of ) type In (with n = 1, 2, . . . ,∞),
II1, II∞ or III(∞) iffW ′′(XXX) is of type In, II1, II∞ and III(∞) (respectively). Additionally,
we agree that the trivial N -tuple is of each of these types.

Since a von Neumann algebra is type I, II, III iff so is its commutant, we see that
for nontrivial X, W ′′(XXX) is type III iff so is W ′(XXX) and thus the above definition causes
no confusion. Later we shall see that if a nontrivial X is type i∞ (i ∈ {I, II, III}), then
W ′′(XXX) is type iℵ0 and thus there is no need to use uncountable cardinals here.

Fix in ∈ {I1, I2, . . . , I∞, II1, II∞, III∞} and let Iin be the class of all N -tuples of
type in. Our first goal is

Proposition 4.5.4. Iin is an ideal in CDDN .

Proof. It suffices to verify all points of Corollary 3.6.6. Point (a) is fulfilled since for
any α ∈ Card∞ and nontrivial X, the von Neumann algebras W ′′(XXX) and W ′′(YYY ) are
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isomorphic where Y = α�X. Point (b) follows from the following result on W∗-algebras:
ifM is a W∗-algebra and {zs}s∈S is a family of mutually orthogonal central projections
inM which sum to 1 andMzs is type in for each s ∈ S, thenM itself is type in. Finally,
(c) is a consequence of a similar result: ifM is a type in W∗-algebra and z is a (nonzero)
central projection inM, thenMz is type in as well.

Now put Ωin = suppΩ Iin . It is clear that the sets ΩI1 , ΩI2 , . . . , ΩI∞ , ΩII1 , ΩII∞ and
ΩIII∞ are pairwise disjoint and their union is dense in Ω. It is obvious that ΩIII∞ = ΩIII .
Let us now check that if X is type i∞ (and nontrivial), then W ′′(XXX) is type iℵ0 . Indeed,
there is E 6s J (namely, E = s(X), cf. (4.4.5)) and an infinite cardinal α such that
α�X = α�E. This implies that W ′′(XXX) and W ′′(EEE) are isomorphic as W∗-algebras and
thusW ′′(EEE) is type i∞. Further, we conclude from Proposition 3.4.10 that E =�s∈S E(s)

for a suitable family such that 0 < dim(E(s)) 6 ℵ0. Consequently, W ′′(EEE(s)) is type i∞
for each s ∈ S and therefore (since EEE(s) acts in a separable Hilbert space) W ′′(EEE(s)) is
type iℵ0 . This implies that W ′′(EEE) (and hence W ′′(XXX)) is type iℵ0 as well.

One may easily check that II1 coincides with the ideal NN introduced in Examples
2.4.3(E) and studied in Example 3.5.3. Thus ΩI1 corresponds to normal N -tuples.

The sets ΩIn may be used to compute dim(X) for every X ∈ CDDN by means of X̂.
For this, let us introduce the strict Souslin number, cf (X), of a topological space X.
Namely, cf (X) = c(X) iff X is an infinite set and cf (X) = card(X) otherwise.

Proposition 4.5.5. Let X ∈ CDDN , f = X̂, U iα = Ωi ∩ int f−1({α}) for (i, α) ∈ Υ∗ and
U II1 = ΩII ∩ cl f−1(R+ \ {0}). Then

dim(X) =
∞∑

n,m=1

nm · cf (U In ∩ ΩIm) + ℵ0

∞∑
n=1

cf (U In ∩ ΩI∞)

+ ℵ0 · cf (U II1 ) +
∑

α∈Card∞

α[cf (U Iα) + cf (U IIα ) + cf (U IIIα )]. (4.5.1)

Proof. As in the proof of Proposition 4.4.5, we see that dim(X) =
∑

(i,α)∈Υ α·dim(Eiα(X))
and ℵ0 ·dim(Eiα(X)) = c∗(U iα) = ℵ0 ·cf (U iα). Moreover, dim(EII1 (X)) ∈ Card∞∪{0}. So, to
show (4.5.1), it suffices to check dim(EIn(X)) = ℵ0 ·cf (U In∩ΩI∞)+

∑∞
m=1m ·cf (U In∩ΩIm).

Write EIn(X) =�m=∞
m=1 En,m with En,m ∈ IIm and observe that suppΩ En,m = U In∩ΩIm =:

Vn,m. So, it is enough to show that

dim(En,m) = m · cf (Vn,m) (4.5.2)

(for m =∞ the above means that dim(En,∞) = ℵ0 · cf (Vn,∞)). If the set Vn,m is infinite,
then we may decompose it into arbitrarily (finitely) many pairwise disjoint nonempty
clopen sets, which shows that representatives of En,m act in infinite-dimensional Hilbert
spaces and hence (4.5.2) is satisfied in that case (e.g. by Proposition 4.4.5). On the other
hand, if Vn,m is finite, En,m may be decomposed into card(Vn,m) irreducible N -tuples of
type Im. Now (4.5.2) easily follows since an irreducible N -tuple of type Im acts in an
m-dimensional Hilbert space.
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5.1. Primes, semiprimes, atoms and fractals

Prime numbers may be defined in two ways (below, n, k and l are positive integers):

• n is prime iff n 6= 1, and n = kl implies k = 1 or l = 1,
• n is prime iff n 6= 1, and n = kl implies k, l ∈ {1, n}.

These two conditions may naturally be adapted to more general algebraic structures
(especially monoids, i.e. semigroups with neutral elements). However, in some structures
they may be inequivalent. We will see that this occurs in CDDN . Therefore we distinguish
the following two classes of N -tuples.

Definition 5.1.1. Let A ∈ CDDN be nontrivial. We say A is a prime iff A = X ⊕ Y
implies X,Y ∈ {O,A}. A is an atom iff A = X⊕ Y implies X = O or Y = O.

In case of a single bounded operator, our definition of an atom is equivalent to Ernest’s
definition of an irreducible operator ([9]). It is clear that every atom is a prime. But not
conversely. To see that, let us first prove

Proposition 5.1.2. For a nontrivial A ∈ CDDN the following conditions are equivalent:

(i) W ′(AAA) is a factor,
(ii) W ′′(AAA) is a factor,
(iii) {X ∈ CDDN : X 6s A} = {O,A},
(iv) exactly one of the following three conditions is fulfilled:

(a) there are unique X ∈MFN and a unique positive cardinal α such that A = α�X
and W ′(XXX) constists precisely of the scalar multiples of the identity operator;
what is more, 0 < dim(X) 6 ℵ0,

(b) there are unique X ∈ HIMN and a unique infinite cardinal α such that A = α�X
and W ′(XXX) is a (type III ) factor; what is more, dim(X) = ℵ0,

(c) there are (nonunique) X ∈ SMN and a unique cardinal α ∈ {1} ∪ Card∞ such
that A = α� X and W ′(XXX) is a (type II1) factor; what is more, dim(X) = ℵ0.

Proof. Points (i) and (ii) are clearly equivalent. Further, it follows from (PR3) (page 13)
that (i) is equivalent to (iii). Consequently, we infer from Theorem 3.6.1 that if W ′(AAA)
is a factor, then either A = Esm(A) or A = β � Eiβ(A) for some (i, β) ∈ Υ∗. In the first
situation put X = Esm and α = 1; in the second, we consider two cases: if i 6= II, put
X = Eiβ(A), otherwise take X ∈ SMN such that ℵ0 � X = EIIβ ; in both cases we put

[58]
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α = β. Note that A = α � X. Further, we conclude from (PR6) (page 13) that W ′(AAA)
is a factor iff so is W ′(XXX). Now Proposition 3.4.10 implies that dim(X) 6 ℵ0 provided
{Y ∈ CDDN : Y 6s X} = {O,X}. All the above shows that (i) is equivalent to (iv).

We now have

Proposition 5.1.3. Let A ∈ CDDN be nontrivial.

(A) A is an atom iff W ′(AAA) consists precisely of the scalar multiples of the identity
operator. If A is an atom, then A 6 JI and 0 < dim(A) 6 ℵ0.

(B) Suppose A ∈ CDDN is not an atom. Then A is a prime iff dim(A) = ℵ0 and W ′(AAA)
is a type III factor.

Proof. Point (A) is left to the reader. We turn to (B).
First note that if A is type III, then A� JIII . Consequently, if in addition dim(A) = ℵ0,

then A = EIIIℵ0
(A) and thus A is minimal. But then {X ∈ CDDN : X 6 A} = {X ∈

CDDN : X 6s A}. So, the sufficiency of the conditions formulated in the proposition for
A to be a prime follows from Proposition 5.1.2. Conversely, if A is a prime but not an
atom, an application of Proposition 5.1.2 shows that A = α � X for suitable α and X.
Since X 6 A, we infer that A = X. So, X /∈ MFN (because A is not an atom) and X
is not semiminimal since O 6= 1

2 � Y � Y for every nontrivial Y ∈ SMN . We infer that
X ∈ HIMN . Thus, W ′(AAA) is type III and, of course, it is a factor.

Let A be a prime which is not an atom. It follows from Proposition 5.1.3 that A =
ℵ0 � A. Consequently, red(AAA) is an infinite set. However, for every E ∈ red(AAA), AAA|E ≡ AAA
(because A is prime). Conversely, if BBB ∈ CDDN is such that card(red(BBB)) > 2 and
BBB|E ≡ BBB for any E ∈ red(BBB), then B is a prime and not an atom. This observation leads
us to

Definition 5.1.4. A fractal is a prime which is not an atom.

We see that every prime A is either an atom (if A 6= 2�A) or a fractal (if A = 2�A)
and that A is type I or type III. It is immediate that two different primes are unitarily
disjoint.

A counterpart of primes for type II N -tuples are semiprimes.

Definition 5.1.5. A nontrivial N -tuple A is said to be a semiprime iff A is not of the
form n�B where n is a natural number and B is a prime, and the following condition is
fulfilled: whenever O 6= X 6 A, there is a natural number m such that A 6 m� X.

Semiprimes may be characterized as follows.

Proposition 5.1.6.

(I) A nontrivial N -tuple A is a semiprime iff W ′(AAA) is a type II1 factor.
(II) Let A be a semiprime. Then A is semiminimal and dim(A) = ℵ0. If B� A, then B

is a semiprime iff B = t� A for some t ∈ R+ \ {0}.

Proof. First assume that W ′(AAA) is a type II1 factor. Then necessarily A 6= n�B for any
prime B, and A ∈ SMN . Moreover, W ′(ℵ0 � AAA) is a factor as well. We conclude that
suppΩII A consists of a single point (see Chapter 4.3). This implies that if O 6= X 6 A,
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then dX
dA = λ · dAdA for some real number λ > 0. But λ · dAdA = d(λ�A)

dA and therefore
X = λ � A. Now it suffices to take a natural number m such that mλ > 1 to see that
A 6 m� X. Consequently, A is a semiprime.

We now assume that A is a semiprime. Observe that then A = X � Y implies X = O
or Y = O. We infer that W ′(AAA) is a factor. So, according to Proposition 5.1.2, A = α�X
for suitable α and X. Since A is a semiprime and O 6= X 6 A, α � X 6 m � X for
some natural number m. This implies that either A = X ∈ HIMN or α 6 m. Again
taking into account that A is a semiprime, we see that A = X ∈ SMN and hence W ′(AAA)
is type II1 and dim(A) = ℵ0. Further, if B = t � A, then B is semiminimal (hence
W ′(BBB) is type II1) and the W∗-algebras Z(W ′(BBB)), Z(W ′(ℵ0�BBB)), Z(W ′(ℵ0�AAA)) and
Z(W ′(AAA)) are isomorphic (since ℵ0�B = ℵ0�A), which implies that W ′(BBB) is a factor.
Consequently, B is a semiprime. Finally, if B is a semiprime such that B� A, then from
the semiminimality of B it follows that 1

n�B 6 A for some natural number n. Now the first
paragraph of the proof shows that then 1

n �B = λ�A for some λ > 0, and we are done.

The reader will now easily check that if A is a prime or a semiprime and X ∈ CDDN is
arbitrary, then either A 6 n�X for some natural number n or A ⊥u X. It turns out that
a stronger property may be established, similar to a suitable property of prime numbers.
Namely:

Proposition 5.1.7. Let {X(s)}s∈S ∈ CDDN be a nonempty set and let A 6
⊕

s∈S X(s).

(I) If A is a prime, there is s ∈ S such that A 6 X(s).
(II) Suppose A is a semiprime. For each s ∈ S let λs = sup{t ∈ R+ : t � A 6 X(s)} ∈

R+ ∪ {ℵ0}. Then λs � A 6 X(s) (s ∈ S) and
∑
s∈S λs > 1.

Proof. To prove (I), observe that there is s ∈ S such that A and X(s) are not unitarily
disjoint. Since A is a prime, this yields A 6 X(s).

We now turn to (II). By (VS3) (page 41), A(s) := λs �A 6 X(s). Assume that λs < 1
for every s ∈ S and λ =

∑
s∈S λs < ∞. By the maximality of λs, (1 − λs) � A =

A 	 A(s) ⊥u X(s) 	 A(s) =: Y(s) and consequently A ⊥u Y(s). Thus, A ⊥u
⊕

s∈S Y(s).
Now since

⊕
s∈S X(s) = (

⊕
s∈S A(s))⊕ (

⊕
s∈S Y(s)), we infer from (PR1) (page 12) that

A 6
⊕

s∈S A(s). Further, we see that
∨
{
⊕

s∈S′ A
(s) : S′ ∈ Pf (S)} = λ�A. This, combined

with Proposition 4.1.6, yields λ� A =
⊕

s∈S A(s). So, A 6 λ� A and hence λ > 1.

Denote by aN , fN and sN the sets of all, respectively, atoms, fractals and semiprimes
in CDDN . Further, for n = 1, 2, . . . ,∞ let aN (n) be the set of all atoms of type In.
Similarly, we denote by sN (1) and sN (∞) the sets of all semiprimes of type II1 and II∞,
respectively. The reader should notice that an atom A belongs to aN (n) for some finite
n iff dim(A) = n (and A ∈ aN (∞) iff dim(A) = ℵ0). Finally, we put pN = aN ∪ fN ∪ sN .

Proposition 5.1.8. The sets aN (n) (n = 1, 2, . . . ,∞), fN , sN (1) and sN (∞) have cardi-
nality 2ℵ0 . Each of these sets contains a subset of size 2ℵ0 consisting of mutually unitarily
disjoint N -tuples.

Proof. Let us first justify that each of the sets a1(n), f1, s1(1) and s1(∞) contains at
least one bounded nonzero operator. For a1(n) this is clear, while for f1, s1(1) and s1(∞)
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it follows from the existence of factors of each type and the results on generators of such
factors [38], [11] (the same was in fact observed by Ernest, cf. [9, Proposition 1.30]).

Now let T be a bounded nonzero operator of a suitable type (here by a type we mean
an atom of type In, a fractal or a semiprime of type IIn). Notice that then {(rT, . . . , rT ) ∈
CDDN : r ∈ (0,∞)} is a family of mutually unitarily disjoint N -tuples of the same type
as T (indeed, if X is a bounded semiprime, then ‖t�X‖ = ‖X‖ for each t ∈ R+ \ {0} and
thus rXXX ⊥u sXXX for distinct r and s). This proves the second claim of the proposition. To
show the first one, it suffices to apply Lemma 3.4.1 and observe that if X is a semiprime,
then card({Y ∈ sN : Y 6⊥u X}) = card({t� X : t ∈ R+ \ {0}}) = 2ℵ0 .

As an immediate consequence of Proposition 5.1.8 we obtain the following result,
announced in Remark 3.4.9.

Corollary 5.1.9. For i = {I, II, III}, dim(Ji) = 2ℵ0 .

Denote by Id the ideal generated by pN and let Ic = (Id)⊥. In other words, A ∈ Id

if A =
⊕

X∈pN
βX � X for some family {βX}X∈pN ⊂ Card; and A ∈ Ic if P 6 A for no

P ∈ pN . Similarly, whenever A is an ideal in CDDN , Ad and Ac denote, respectively, the
ideals A ∩ Id and A ∩ Ic. The ideals Ad and Ac are called the discrete and continuous
parts of A. For example, we shall write IcIII , IdI1 , etc. We also define the discrete and
continuous parts of every member of CDDN and each clopen set in Ω: Xd = E(X|Id) and
Xc = E(X|Ic) for X ∈ CDDN ; Ωd = suppΩ Id and Ωc = suppΩ Ic; and Ed = E ∩ Ωd and
Ec = E ∩Ωc for a clopen set E ⊂ Ω. We underline that classically the terms discrete and
continuous as kinds of operators mean type I and without type I parts, respectively (as
used e.g. by Ernest—see [9, Definition 1.22]).

It may be easily checked that A ∈ pN iff Â has the form Â = c ·j{x} where either c = 1
and x ∈ ΩI or c ∈ R+ \ {0} and x ∈ ΩII , or c = ℵ0 and x ∈ ΩIII . Therefore Ωd is the
closure of the set of all isolated points of Ω. Consequently, we infer from Lemma 4.3.1
and Proposition 5.1.8 that

Proposition 5.1.10. Each of the spaces ΩdIn (n = 1, 2, . . . ,∞), ΩdII1 , ΩdII∞ and ΩdIII is
the Čech–Stone compactification of the discrete space of cardinality 2ℵ0 .

Proposition 5.1.10 and the next two results will be used later to classify ideals in
CDDN up to isomorphism (see Chapter 6.1 for definitions and details).

Proposition 5.1.11. Every nonempty clopen set E ⊂ Ωc with c(E) = ℵ0 is homeomor-
phic to the Gelfand spectrum of L∞([0, 1]).

Proof. There is a (unique) nontrivial A ∈ CDDN such that A 6s J and supp Â = E.
Since E ⊂ Ωc and c(E) = ℵ0,

A ∈ Ic and dim(A) = ℵ0. (5.1.1)

Further, since Z(W ′(JJJ)) is isomorphic to C(Ω), Z(W ′(AAA)) is isomorphic to C(E) (because
A 6s J). This means that E is the Gelfand spectrum of Z(W ′(AAA)). Now the assertion
easily follows from (5.1.1) and Theorem III.1.22 of [35] (which asserts that every commu-
tative von Neumann algebra acting on a separable Hilbert space which has no nonzero
minimal projections is isomorphic to L∞([0, 1])).
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Now for a clopen set E ⊂ Ω let κd(E) be the size of the set of all isolated points
of E and let κc(E) = c∗(Ec). Additionally, let us denote by D(m) the discrete space
of cardinality m and by X the Gelfand spectrum of L∞([0, 1]). Recall that for every
completely regular topological space X, βX stands for the Čech–Stone compactification
of X.

Theorem 5.1.12. Any clopen set E ⊂ Ω is homeomorphic to the topological disjoint
union of βD(κd(E)) and β[D(κc(E))× X].

Proof. By Lemma 4.4.7 and Proposition 5.1.11, Ec contains an open dense subset hom-
eomorphic to D(κc(E))× X. Now it suffices to apply Lemma 4.3.1 to infer that Ed and
Ec are homeomorphic to, respectively, βD(κd(E)) and β[D(κc(E))× X].

Example 5.1.13. It is clear that aN (1) is the collection of all N -tuples acting on a
one-dimensional Hilbert space. So, aN (1) may naturally be identified with CN .

One may also easily check that aN (2) consists of all N -tuples acting on a two-
dimensional Hilbert space which are not of type I1. In other words, if AAA = (A1, . . . , AN )
where A1, . . . , AN are 2 by 2 matrices, then A ∈ aN (2) iff AjA∗k 6= A∗kAj for some
j, k ∈ {1, . . . , N}.

For n > 3 the characterization of members of aN (n) is much more complicated.

5.2. Strongly unitarily disjoint families

Thanks to (BT3) (page 12) and suitable characterizations of the kinds of N -tuples ap-
pearing below, we see that for every X ∈ CDDN the following equivalences hold:

X is type I, In, II, II1, II∞, III, minimal, multiplicity free, a hereditary
idempotent, semiminimal, a prime, an atom, a fractal or a semiprime iff so
is b(X).

However, so far there was no need to use the b-transform, apart from Theorem 2.2.4.
From now on, this transform will be intensively exploited and without it the presentation
would be much more complicated.

We say that two classes A,B ⊂ CDDN are unitarily disjoint iff A ⊥u B, that is, if
AAA ⊥u BBB for any AAA ∈ A and BBB ∈ B. We begin with a classical

Proposition 5.2.1. Let AAA,BBB ∈ CDDN be nontrivial N -tuples and let XXX = AAA⊕BBB. The
following conditions are equivalent:

(i) AAA ⊥u BBB,
(ii) W ′(XXX) = {S ⊕ T : S ∈ W ′(AAA), T ∈ W ′(BBB)} =:W ′(AAA)⊕W ′(BBB),
(iii) I⊕0 ∈ W ′′(XXX) (where I is the identity operator on D(AAA) and 0 is the zero operator

on D(BBB)).

Proof. Using b-transform and taking into account properties (BT3)–(BT5) (page 12), we
may assume thatAAA andBBB are bounded. In that case the equivalence of (i) and (ii) follows
from Schur’s lemma (cf. Theorem 1.5 in [9]; see also Corollary 1.8 there). Further, (ii)
easily implies (iii), since I ⊕ 0 commutes with every member of W ′(AAA)⊕W ′(BBB). Finally,
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if (iii) is satisfied, then all elements of W ′(XXX) commute with I ⊕ 0 and thus are of the
form S ⊕ T . It is now easily verified that S ⊕ T commutes with each entry of XXX if and
only if S ∈ W ′(AAA) and T ∈ W ′(BBB).

We are mainly interested in the equivalence of (i) and (iii) in Proposition 5.2.1.
Adapting the concept due to Ernest [9] (see Definition 1.31 and §5.7.f there, especially

notes on page 187), let us consider the free complex algebra

F = F (z1, . . . , zN ;w1, . . . , wN )

in 2N noncommuting variables z1, . . . , zN , w1, . . . , wN . Each member of F may naturally
be identified with a polynomial in 2N noncommuting variables. Let ∗ be a unique invo-
lution on the algebra F such that z∗j = wj for j = 1, . . . , N . We denote by P(N) the
∗-algebra obtained in this way and equip it with the norm given by

‖p(z1, . . . , zN ; z∗1 , . . . , z
∗
N )‖ = sup

‖Tj‖61

‖p(T1, . . . , TN ;T ∗1 , . . . , T
∗
N )‖

where the supremum is taken over N -tuples of contractions acting on a (common, ar-
bitrary) Hilbert space. It follows from the definition that for every p ∈ P(N) and
XXX ∈ CDDN with ‖XXX‖ 6 1, ‖p(XXX,XXX∗)‖ 6 ‖p‖. The following is left as an easy exer-
cise (use the separability of P(N)).

Lemma 5.2.2. There is a sequence {MMMn}∞n=1 of atoms in CDDN acting on finite-dimen-
sional Hilbert spaces such that ‖MMMn‖ 6 1 (n > 1) and for every p ∈ P(N),

‖p‖ = sup
n>1
‖p(MMMn,MMM

∗
n)‖.

Making use of the above result and Kaplansky’s density theorem [20] (cf. [18, Theo-
rem 5.3.5], [35, Theorem II.4.8], [29, Theorem 1.9.1]) we shall now prove a result which is
a starting point for our further investigations. By P1(N) we denote the closed unit ball
of P(N). Everywhere below, I and 0 denote the identity and zero operators on suitable
Hilbert spaces. Recall that a net (Tσ)σ∈Σ of bounded operators acting on a Hilbert space
H converges ∗-strongly to an operator T ∈ B(H) iff for any x ∈ H, Tσx → Tx (σ ∈ Σ)
and T ∗σx→ T ∗x (σ ∈ Σ). We shall denote this by Tσ

∗s→ T .

Proposition 5.2.3.

(I) Let A and B be arbitrary subsets of CDDN . The following conditions are equivalent:

(i) A and B are unitarily disjoint,
(ii) there is a net (pσ)σ∈Σ ⊂ P1(N) such that for any AAA ∈ A and BBB ∈ B,

pσ(b(AAA), b(AAA)∗) ∗s→ I and pσ(b(BBB), b(BBB)∗) ∗s→ 0.

(II) If AAA and BBB are two N -tuples acting in separable Hilbert spaces, then AAA ⊥u BBB iff there
is a sequence (pn)∞n=1 ⊂ P1(N) such that pn(b(AAA), b(AAA)∗) ∗s→ I and pn(b(BBB), b(BBB)∗)
∗s→ 0.

Proof. (I): By (BT5) (page 12), (i) follows from (ii). To prove the converse, assume
A ⊥u B. Let AAA =

⊕
{XXX : XXX ∈ A} and BBB =

⊕
{YYY : YYY ∈ B}. By (PR2) (page 12), AAA ⊥u BBB.

Further, let {MMMn}∞n=1 be as in Lemma 5.2.2. LetMMM be the direct sum of allMMMn’s which
are unitarily disjoint from b(BBB) (MMM is trivial providedMMMn 6 b(BBB) for each n). Again by
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(PR2) and (BT5),MMM ⊕ b(AAA) ⊥u b(BBB). Put XXX = (MMM ⊕ b(AAA))� b(BBB), H1 = D(MMM ⊕ b(AAA))
and H2 = D(b(BBB)). It follows from our construction that for each p ∈ P(N),

‖p‖ = ‖p(XXX,XXX∗)‖. (5.2.1)

Let M = {p(XXX,XXX∗) : p ∈ P(N)}. It is a unital selfadjoint subalgebra of B(H1 ⊕ H2).
We infer from von Neumann’s double commutant theorem [24] ([18, Theorem 5.3.1],
[35, Theorem II.3.9], [29, Theorem 1.20.3]) that the closure of M in the strong operator
topology coincides with W ′′(XXX). Further, (5.2.1) implies that the closed unit ball in M

coincides with {p(XXX,XXX∗) : p ∈ P1(N)}. An application of Proposition 5.2.1 shows that
I ⊕ 0 ∈ W ′′(XXX) where I ∈ B(H1) and 0 ∈ B(H2). Finally, Kaplansky’s density theorem
asserts that there is a net (pσ)σ∈Σ ∈ P1(N) such that pσ(XXX,XXX∗) ∗s→ I ⊕ 0. Since every
member of A and B is a reduced part of AAA and BBB, respectively, (ii) holds.

To prove (II), repeat the above argument and observe that in that case both H1

and H2 are separable and hence Kaplansky’s density theorem asserts the existence of a
suitable sequence, since the closed unit ball in B(H) for separable H is metrizable in the
∗-strong topology (see e.g. [9, Proposition 2.2]).

Let us now introduce the following

Definition 5.2.4. Let A and B be arbitrary collections (sets or classes) of N -tuples. We
say that A and B are strongly unitarily disjoint, in symbols A ⊥s B, if there is a sequence
(pn)∞n=1 ⊂ P1(N) such that pn(b(AAA), b(AAA)∗)⊕pn(b(BBB), b(BBB)∗) ∗s→ I⊕0 for anyAAA ∈ A and
BBB ∈ B. Two N -tuples XXX,YYY ∈ CDDN are strongly unitarily disjoint (XXX ⊥s YYY ) provided
so are the sets {XXX} and {YYY }.

The reader should easily notice that for two sets A and B of N -tuples, A ⊥s B iff
(
⊕
A) ⊥s (

⊕
B). It is also clear that if A and B are strongly unitarily disjoint, then

A ⊥u B.

Remark 5.2.5. Let AAA and AAA′ be two unitarily equivalent N -tuples. Observe that then
p(b(AAA), b(AAA)∗) ≡ p(b(AAA′), b(AAA′)∗) for every p ∈ P(N). What is more, for every complex
number λ and a net (pσ)σ∈Σ ⊂ P(N), pσ(b(AAA), b(AAA)∗)→ λI ∗-strongly (strongly, weakly,
etc.) iff pσ(b(AAA′), b(AAA′)∗)→ λI in the same topology. This means that for any A ∈ CDDN

and p ∈ P(N), p(b(A), b(A)∗) is a well defined member of CDD and

pσ(b(A), b(A)∗) ∗s→ λI (5.2.2)

is well understood. (We do not write in (5.2.2) ‘I’ instead of ‘I’ because ‘I’ represents
here the identity operator on a Hilbert space of (arbitrary) suitable dimension. The usage
of I may lead to misunderstandings. In fact, (5.2.2) expresses only a property of the net
{pσ(b(A), b(A)∗)}σ∈Σ.) Consequently, in the same way as in Definition 5.2.4 we may define
strongly unitarily disjoint subclasses of CDDN . We use this concept in the next chapters.

Surely the main problem concerning strong unitary disjointness is when two unitarily
disjoint families of N -tuples acting in separable Hilbert spaces are strongly unitarily
disjoint. We will not answer this question. However, the reader should remember that
strong unitary disjointness and unitary disjointness are not equivalent even for families
of N -tuples acting on a one-dimensional Hilbert space. Indeed, such N -tuples may be
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naturally identified with points of CN . If p1, p2, . . . is an arbitrary sequence of members
of P(N) and λ ∈ C, the set {z ∈ CN : pn(b(z), b(z)∗)→ λ} is Fσδ in CN . Thus, if A ⊂ CN
is not Fσδ, then A ⊥u CN \A but A and CN \A are not strongly unitarily disjoint.

The next result is a consequence of Proposition 5.2.3. We omit its proof.

Proposition 5.2.6. Let A and B be two countable families of N -tuples acting in sep-
arable Hilbert spaces. Then A ⊥u B if and only if A ⊥s B.

We shall also need the following simple

Lemma 5.2.7. Let AAA be a bounded N -tuple acting on a separable Hilbert space such that
‖AAA‖ 6 1. For every T ∈ W(AAA) with ‖T‖ 6 1 there is a sequence (pn)∞n=1 ⊂ P1(N) such
that pn(AAA,AAA∗) ∗s→ T .

Proof. We mimic the proof of Proposition 5.2.3. As there, there is a sequence {MMMn}∞n=1

of N -tuples of contraction matrices such that MMMn ⊥u AAA for each n and ‖p‖ = ‖p(MMM ⊕
AAA,MMM∗ ⊕AAA∗)‖ for every p ∈ P(N) with MMM =

⊕∞
n=1MMMn. Since MMM ⊥u AAA, W ′(MMM ⊕AAA) =

W ′(MMM)⊕W ′(AAA) (by Proposition 5.2.1). Consequently, W ′′(MMM)⊕W ′′(AAA) ⊂ W ′′(MMM ⊕AAA)
and thus 0 ⊕ T ∈ W(MMM ⊕AAA). Finally, since MMM ⊕AAA acts on a separable Hilbert space,
Kaplansky’s density theorem finishes the proof (see the proof of Proposition 5.2.3).

Remark 5.2.8. Let P = {pσ}σ∈Σ ⊂ P1(N) be any net and let λ ∈ C. Denote by IP(λ)
the class of all X ∈ CDDN for which

pσ(b(X), b(X)∗) ∗s→ λI.

One easily checks that IP(λ) is an ideal and IP(λ) ⊥u IP(λ′) whenever λ′ 6= λ. For every
subclass A of CDDN let J(A) denote the smallest ideal in CDDN which contains A. The
above shows that for any two subclasses A and B of CDDN , A ⊥s B iff J(A) ⊥s J(B),
iff J(J(A)) ⊥s J(J(B)). In particular, strong unitary disjointness of sets or classes may
always be reduced to strong unitary disjointness of suitable N -tuples X and Y such that
X 6s J and Y 6s J.

5.3. Measure-theoretic preliminaries

Our next objective is a prime decomposition of N -tuples (Theorem 5.6.14). Essentially
this will be based on the same idea (that is, on central decompositions of von Neumann
algebras) as Ernest’s central decomposition of a bounded operator ([9, Chapter 3]). The
difference between his and our approaches (apart from greater generality) is the following.
Ernest has focused on a single operator T and studied its (nonscalar) spectrum T̂ and
quasi-spectrum T̃ . Central decomposition of the operator T ‘takes place’ in T̃ . Further
the author compares operators (and their central decompositions) which have the same
quasi-spectra. It seems to us that Ernest’s work was inspired by the spectral theorem for
a normal operator. Our work is inspired by the prime decomposition of natural numbers.
Our interpretation is therefore in a more algebraic fashion. Also comparing Ernest’s work
and ours, we may say that his approach is local, while ours is global.
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The road to the Prime Decomposition Theorem is long because of measure-theoretic
technicalities. First we shall define a Borel structure on the set SEPN ⊂ CDDN of all
nontrivial N -tuples whose representatives act in separable Hilbert spaces (this is done
in this chapter), next we shall generalize the notion of a direct integral to N -tuples
(Chapter 5.4) to define ‘continuous’ direct sums (Chapter 5.5) among which we shall
distinguish regular ones (which require unitary disjointness) and finally we shall show
that every member of CDDN admits a unique (in a sense) regular prime decomposition
(Chapter 5.6).

The concept of direct integrals (of Hilbert spaces, operators, von Neumann algebras,
etc.) is essentially due to von Neumann and is widely discussed in many classical textbooks
on von Neumann algebras. Here we shall focus on main ideas and many proofs will be
omitted. The reader interested in details should consult e.g. Chapters 2 and 3 of [9]; [6, 7];
[19, Chapter 14]; §IV.8, §V.6 and Appendix in [35]; [29, Chapter 3]; [30, Chapter I]; or
the original paper by von Neumann [25]. It is also assumed that the reader is familiar
with basics of measure theory and of reduction theory of von Neumann algebras.

Measurable sets (i.e. elements of a given σ-algebra) will also be called Borel. Every-
where below by a measurable or Borel function from a measurable space (X,M) into a
measurable space (Y,N) we mean any function f : X → Y such that f−1(B) ∈ M for
any B ∈ N. The function f is a Borel isomorphism if f is a bijection and f and f−1 are
measurable. For two measures µ and ν defined on a common σ-algebra M we shall write
µ � ν iff µ is absolutely continuous with respect to ν, and we call µ and ν (mutually)
singular iff µ ⊥ ν, i.e. µ and ν are concentrated on disjoint measurable sets. If A ∈M, µ|A
denotes the measure on M given by µ|A(B) = µ(A∩B). For a topological space X, B(X)
stands for the smallest σ-algebra containing all open subsets of X. Following Takesaki [35,
Appendix], we call a measurable space (X,M) a standard Borel space iff (X,M) is Borel
isomorphic to (Y,B(Y )) where Y is a Borel subset of a separable complete metric space.
Equivalently, (X,M) is standard iff (X,M) is Borel isomorphic to (A,B(A)) where A is
a countable (finite or not) subset of [0, 1] or A = [0, 1] (cf. [35, Corollary A.11]). If (X,M)
and (Y,N) are standard Borel spaces and f : X → Y is measurable, then (X×Y,M⊗N)
is a standard Borel space as well and Γ(f) ∈M⊗N where

Γ(f) = {(x, f(x)) : x ∈ X}

is the graph of f . The space (X,M) is Souslin–Borel iff it is the image of a standard
Borel space under a Borel function and X is countably separated (this means that there
are sets E1, E2, . . . ∈ M such that for any two distinct points x and y of X there is n
with card({x, y} ∩ En) = 1). In what follows, we shall often identify Iℵ0 with [0,∞].

Let (X,M, µ) be a measure space (µ need not be σ-finite or complete). We denote by
N(µ) the null σ-ideal in M induced by µ, that is,

N(µ) = {A ∈M : µ(A) = 0}.

(X,M, µ) is said to be a standard measure space (or, equivalently, µ is standard) iff µ
is nonzero σ-finite and X \ Z is a standard Borel space for some Z ∈ N(µ). By [35,
Corollary A.14], every σ-finite measure on a Souslin–Borel space is standard.
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For n = 1, 2, . . . let Hn be a fixed Hilbert space of dimension n and let H∞ be a fixed
separable infinite-dimensional Hilbert space (these spaces are fixed for this and the next
two chapters). Further, let H denote one of the spaces H1,H2, . . . ,H∞. The norm and
the weak topologies of H induce the same σ-algebra on H which is for us the default
Borel structure of H. Similarly, the ∗-strong, strong and weak operator topologies induce
the same Borel structures on B(H). In other words, the σ-algebra WH generated by
all open sets with respect to any of these topologies is independent of the topology we
choose. Moreover, (B(H),WH) is a standard Borel space, which means that (B(H),WH)
is isomorphic as a measurable space to ([0, 1],B([0, 1])). Addition and multiplication
are measurable as functions from (B(H) × B(H),WH ⊗WH) into (B(H),WH) and the
functions T 7→ T ∗, T 7→ |T |, T 7→ QT and T 7→ T−1 are measurable as well (the last
function is defined on the set of all invertible operators, which is measurable).

The following result will enable us to define a Borel structure on the set CDD(H).

Lemma 5.3.1. The open unit ball B of B(H) and the set b(H) of all T ∈ B(H) such that
‖Tx‖ < ‖x‖ for any nonzero x ∈ H are measurable. The b-transform is an isomorphism
between the measurable spaces B(H) and B.

Proof. We shall only explain why b(H) is measurable. Notice that T ∈ b(H) iff ‖T‖ 6 1
and N(I−T ∗T ) is trivial. Now if PT denotes the orthogonal projection onto N(I−T ∗T ),
then the function T 7→ PT is measurable, by [9, Proposition 2.4], and we are done.

Since the b-transform establishes a one-to-one correspondence between members of
CDD(H) and b(H), we may introduce

Definition 5.3.2. The Borel structure of CDD(H) is the unique Borel structure which
makes the b-transform an isomorphism. In other words, a set F ⊂ CDD(H) is measurable,
in symbols F ∈ B(CDD(H)), iff {b(X) : X ∈ F} ∈WH.

Lemma 5.3.1 implies that CDD(H) is a standard Borel space, that B(H) is a measur-
able subset of CDD(H) and that the original Borel structure of B(H) coincides with the
one inherited from the Borel structure of CDD(H).

Recall that CDDN (H) = CDD(H)N . We equip CDDN (H) with the product σ-algebra
B(CDDN (H)) = B(CDD(H))⊗· · ·⊗B(CDD(H)). Observe that CDDN (H) is a standard
Borel space and the b-transform is an isomorphism of the measurable space CDDN (H)
onto a measurable set b(H)N . Moreover, it follows from suitable properties of the b-
transform that each of the functions XXX 7→XXX∗, XXX 7→ |XXX| and XXX 7→QQQXXX (from CDDN (H)
into itself) is measurable.

Now let SEPN be the set of all A ∈ CDDN such that 0 < dim(A) 6 ℵ0. Observe
that the function Φ:

⋃n=∞
n=1 CDDN (Hn) 3 XXX 7→ X ∈ SEPN is a surjection. We define a

σ-algebra BN on SEPN by the rule: F ∈ BN iff for every n ∈ {1, 2, . . . ,∞}, Φ−1(F) ∩
CDDN (Hn) ∈ B(CDDN (Hn)). It is obvious that the definition of BN is independent of
the choice of Hn’s. For every A ∈ BN we shall denote by B(A) the σ-algebra of all sets
B ∈ BN contained in A.

As shown by Ernest (see [9, Corollary 2.33]), SEPN is not countably separated. This
makes the investigation of the Borel structure of SEPN difficult. The rest of this chapter
is devoted to establishing measurability of some (important for us) sets and functions.
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For n = 1, 2, . . . ,∞ let SEPN (n) consist of all A ∈ SEPN with dim(A) = n. It follows
from the definition of BN that SEPN (n) ∈ BN for every n. When n is finite, much more
can be said (cf. Proposition 2.46 and Corollary 2.47 in [9]):

Proposition 5.3.3. For every finite n, SEPN (n) is a standard Borel space and there are
a Borel set Sn ⊂ CDDN (Hn) and a Borel isomorphism χn : SEPN (n) 3 A 7→ TTTA ∈ Sn
such that TTTA is a representative of A for every A.

Proof. It is clear that CDDN (Hn) coincides with the space MN
n of all N -tuples of n× n

matrices. Let π : MN
n → SEPN (n) be the quotient map (i.e. π(XXX) = X). Equip SEPN (n)

with the quotient topology (induced by π). Since the unitary group of n× n matrices is
compact, SEPN (n) is locally compact and π is a proper continuous mapping. Moreover,
SEPN (n) is separable and metrizable. It is now clear that the σ-algebra generated by
all open sets coincides with the one inherited from BN . This shows that SEPN (n) is
a standard Borel space. The existence of Sn and χn may easily be deduced e.g. from
[22, Corollary XIV.2.1] applied to the partition {π−1({X}) : X ∈ SEPN (n)}, or from [22,
Corollary XIV.1.1] (see also [4]) applied to the multifunction SEPN (n) 3 X 7→ π−1({X})
⊂Mn.

Now we are mainly interested in the Borel structure of SEPN (∞). However, in some
arguments we shall need to work also with N -tuples acting on finite-dimensional Hilbert
spaces and therefore below we explore CDDN (H∞) as well as CDDN (Hn) with finite n.
Since our main interest is primes and semiprimes, we may restrict our considerations to
factor N -tuples defined below. Similar results to those presented below can be found in
Chapter 2 of [9].

As before, H denotes one of the spaces H1,H2, . . . ,H∞. The functions CDDN (H) 3
XXX 7→ W ′′(XXX) ∈ W (H) and CDDN (H) 3 XXX 7→ W ′(XXX) ∈ W (H) are measurable when
W (H) denotes the collection of all von Neumann subalgebras of B(H) and is equipped
with the Effros Borel structure [6, 7] (cf. [9, page 54] combined with Theorem IV.8.4
and Corollary IV.8.6 in [35]). Consequently, the following sets are measurable subsets of
CDDN (H) (compare with notes on page 55 of [9]; [35, Theorem V.6.6] and [26]):

• the set of all atoms, aN (H) = {AAA ∈ CDDN (H) : A ∈ aN},
• the set of all fractals, fN (H) = {AAA ∈ CDDN (H) : A ∈ fN},
• the set of all semiprimes, sN (H) = {AAA ∈ CDDN (H) : A ∈ sN},
• the set of all factor N -tuples,

FN (H) = {AAA ∈ CDDN (H) : W ′′(AAA) is a factor},

• the sets of all factor N -tuples of type I, In, II, II1, II∞ and III.

(The above properties imply that aN , fN , sN as well as

FN := {F ∈ SEPN : W ′′(FFF ) is a factor}

are members of BN . WhenH is finite-dimensional, sN (H) and fN (H) are of course empty.)
We infer from Proposition 5.1.2 that for every FFF ∈ FN (H) \ (aN (H) ∪ fN (H) ∪ sN (H))
either there exist a unique n ∈ {2, 3, . . . ,ℵ0} and a unique A ∈ aN such that F = n�A or
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there is (nonunique) A ∈ sN for which F = ℵ0�A. Everywhere below, n and m represent
positive integers or ∞.

The following result appears in [9, Corollary 2.11]. Below we give a shorter proof.

Lemma 5.3.4. The set

DN (n,m) = {(AAA,BBB) ∈ CDDN (Hn)× CDDN (Hm) : AAA ⊥u BBB}

is measurable (i.e. DN (n,m) ∈ B(CDDN (Hn))⊗B(CDDN (Hm))).

Proof. Let K = H∞ and let Uj : ℵ0 � Hj → K be unitary (ℵ0 � Hj stands for the
Hilbert space in which N -tuples of the form ℵ0 � XXX with XXX ∈ CDDN (Hj) act). Let
Q be the set of all p ∈ P such that ‖p‖ 6 2 and all coefficients of p belong to Q +
iQ. It may be deduced from Proposition 5.2.1 and Lemma 5.2.7 that AAA ⊥u BBB with
AAA ∈ CDDN (Hn) and BBB ∈ CDDN (Hm) iff there is a sequence (pk)∞k=1 ⊂ Q such that
Unpk(b(ℵ0�AAA), b(ℵ0�AAA)∗)U−1

n → I and Umpk(b(ℵ0�BBB), b(ℵ0�BBB)∗)U−1
m → 0 strongly

as k →∞. Now if d is a metric on D = {T ∈ B(K) : ‖T‖ 6 2} which induces the strong
operator topology of D, then for every p ∈ Q the function ψjp : CDDN (Hj) 3 XXX 7→
Ujp(b(ℵ0 �XXX), b(ℵ0 �XXX)∗)U−1

j ∈ D is measurable and thus so is θp : CDDN (Hn) ×
CDDN (Hm) 3 (XXX,YYY ) 7→ d(ψjp(XXX), I) + d(ψmp (YYY ), 0) ∈ R+. Finally, since Q is countable,
also the function u : CDDN (Hn) × CDDN (Hm) 3 (XXX,YYY ) 7→ infp∈Q θp(XXX,YYY ) ∈ R+ is
measurable. The observation that DN (n,m) = u−1({0}) finishes the proof.

Theorem 5.3.5. The sets

∆N (n,m) = {(AAA,BBB) ∈ FN (Hn)× FN (Hm) : AAA ≡ BBB}

and EN(n,m) = {(AAA,BBB) ∈ FN (Hn)× FN (Hm) : AAA 6 BBB} are measurable.

Proof. First of all, note that for (AAA,BBB) ∈ FN (Hn) × FN (Hm) we have: AAA 6⊥u BBB ⇔
ℵ0 � A = ℵ0 � B. So, Lemma 5.3.4 implies that the set C(n,m) = {(AAA,BBB) ∈ FN (Hn)×
FN (Hm) : ℵ0 � A = ℵ0 � B} is measurable. Put LN (n,m) = {(AAA,BBB) ∈ FN (Hn) ×
FN (Hm) : AAA � BBB} and RN (n,m) = {(AAA,BBB) : (BBB,AAA) ∈ LN (n,m)}. Observe that

EN(n,m) = ∆N (n,m) ∪ LN (n,m),

C(n,m) = ∆N (n,m) ∪ LN (n,m) ∪ RN (n,m) and the sets ∆N (n,m), LN (n,m) and
RN (n,m) are pairwise disjoint. Since C(n,m) is a standard Borel space, it therefore
suffices to show that each of these last sets is Souslin (cf. [35, Theorem A.3]). We see that
∆(n,m) = ∅ if n 6= m and ∆N (n, n) = {(AAA,UAAAU−1) : U ∈ U(Hn), AAA ∈ FN (Hn)} (where
U(A1, . . . , AN )U−1 = (UA1U

−1, . . . , UANU
−1)) is the image of a standard Borel space

U(Hn) × FN (Hn) under a Borel function and thus ∆N (n, n) is Souslin. Finally, the set
Ffin
N (Hn) of all N -tuples XXX ∈ FN (Hn) such that W ′(XXX) is finite is Borel and therefore
LN (n,m) is Souslin, since L(n,m) = ∅ for n > m or n = m <∞; for n < m:

LN (n,m) = {(AAA,U(AAA⊕GGG)U−1) : U ∈ U(Hn ⊕Hm−n,Hm),

AAA ∈ FN (Hn), (AAA,GGG) ∈ C(n,m− n)};
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and

LN (∞,∞) =
k=∞⋃
k=1

{
(AAA,U(AAA⊕GGG)U−1) : U ∈ U(H∞ ⊕Hk,H∞),

AAA ∈ Ffin
N (H∞), (AAA,GGG) ∈ C(∞, k)

}
.

The observation that RN (n,m) is the Borel image of LN (n,m) finishes the proof.

Corollary 5.3.6. Let F be a Borel subset of FN (Hn) such that the function Φ: F 3
XXX 7→ X ∈ CDDN is one-to-one. Then F̂ = {YYY ∈ CDDN (Hn) : YYY ≡ XXX for some XXX ∈ F}
is a Borel subset of CDDN (Hn) and F = {X : XXX ∈ F} ⊂ CDDN is measurable and it is
a standard Borel space.

Proof. By Theorem 5.3.5, the set D = ∆N (n, n) ∩ (CDDN (Hn) × F) is Borel. What
is more, it follows from the assumptions that the function D 3 (AAA,BBB) 7→ AAA ∈ F̂ is a
bijection. It is also Borel and thus F̂ ∈ B(CDDN (Hn)), by [35, Corollary A.7]. Since
{XXX ∈ CDDN (Hn) : X ∈ F} = F̂ , we find that F ∈ BN .

It is clear that Φ is a Borel bijection of F onto F. However, if B is a Borel subset
of F , then the above argument shows that {X : XXX ∈ B} ∈ BN and hence Φ is a Borel
isomorphism, and the assertion follows.

A variation of Theorem 5.3.5 is contained in

Lemma 5.3.7. For each t ∈ (0,∞) the sets ∆t
N = {(AAA,BBB) ∈ sN (H∞) × sN (H∞) : A =

t� B} and EtN = {(AAA,BBB) ∈ sN (H∞)× sN (H∞) : A 6 t� B} are measurable.

Proof. Since ∆t
N =EtN ∩ DtN where DtN= {(AAA,BBB) : (BBB,AAA) ∈EtN}, it is enough to prove

that EtN is measurable. It is clear that for every n > 1 the function sN (H∞) 3 AAA 7→
n � AAA ∈ sN (n � H∞) is measurable. Consequently, thanks to Theorem 5.3.5, the set
D(n,m) = {(AAA,BBB) ∈ sN (H∞) × sN (H∞) : n � A 6 m � B} is measurable as well. Now
if wk = mk/nk are rationals which decrease to t (as k increases to ∞), then EtN =⋂∞
k=1D(nk,mk), and we are done.

Whenever A,B ∈ sN are such that A � B, there is a unique positive real number
denoted by A : B such that

A = (A : B)� B. (5.3.1)

Further, we put O : X = 0 and (α � X) : X = α for any X ∈ FN and α ∈ Card∞, and
(n� A) : (m� A) = n/m for any A ∈ aN and positive integers n and m. It is clear that
(5.3.1) is satisfied whenever B ∈ Ffin

N (= FN ∩ FINN ) and A ∈ CDDN with A� B.
For n,m ∈ {1, 2, . . . ,∞} put ∇N (m,n) = {(AAA,BBB) ∈ FN (Hm)×Ffin

N (Hn) : A� B}. It
follows from Lemma 5.3.4 that ∇N (m,n) is a Borel subset of CDDN (Hm)×CDDN (Hn).
We want to show the measurability of the function

Div : ∇N (m,n) 3 (XXX,YYY ) 7→ X : Y ∈ Iℵ0 .

It may be easily shown that Div is measurable on ∇N (m,n) for finite n and on the
set ∇N (∞,∞) \ (sN (H∞) × sN (H∞)) (∇N (n,∞) is empty if n is finite). On the other
hand, Div−1((0, t]) ∩ (sN (H∞) × sN (H∞)) = EtN and therefore Div is measurable on
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∇N (∞,∞)∩(sN (H∞)×sN (H∞)) as well. Hence the sets {(t,AAA,BBB) ∈ (0,∞)×sN (H∞)×
sN (H∞) : A 6 t� B} and

RN (n,m) = {(A : B,BBB,AAA) ∈ Iℵ0 × Ffin
N (Hn)× FN (Hm) : A� B}
∪ {(ℵ0,BBB,BBB) : BBB ∈ FN (Hn) \ Ffin

N (Hn)} (5.3.2)

are measurable. This fact will be used in the proof of

Theorem 5.3.8. Let (X,M, µ) be a standard measure space, F ⊂ FN be a countably
separated measurable set and Φ: X 3 x 7→ A(x) ∈ F be a measurable function. Further,
let f : X → Iℵ0 \ {0} be a Borel function such that f(X \ Φ−1(sN )) ⊂ Card. Then there
are measurable sets X1, X2, . . . , X∞ ⊂ X and Borel functions Φn : Xn 3 x 7→ BBB(x) ∈
CDDN (Hn) (n = 1, 2, . . . ,∞) such that B(x) = f(x)�A(x) for each x ∈ X ′ :=

⋃n=∞
n=1 Xn

and µ(X \X ′) = 0. If, in addition,

A(x) ⊥u A(y) (5.3.3)

for distinct x, y ∈ X, then Φn(Xn) ∈ B(CDDN (Hn)) and Φn is a Borel isomorphism of
Xn onto its range.

Proof. Since Φ−1(FN \Ffin
N ) is measurable, we may change the function f (with no change

of f(x)� A(x)) so that f(x) = ℵ0 whenever Φ(x) /∈ Ffin
N . But then for every x ∈ X,

(f(x)� A(x)) : A(x) = f(x). (5.3.4)

Further, since µ is σ-finite, we may assume that it is finite. Let ν : B(F) 3 A 7→
µ(Φ−1(A)) ∈ R+. Since F is the Borel image of a standard Borel space

⋃n=∞
n=1 {XXX ∈

CDDN (Hn) : X ∈ F} (and F is countably separated), F is a Souslin-Borel space and
therefore ν is a standard measure on F (cf. [35, Corollary A.14]). So, we may assume
(reducing F and X) that F and X are standard Borel spaces. For each n = 1, 2, . . . ,∞
let Gn be the set of all N -tuples XXX ∈ CDDN (Hn) such that X ∈ F(n) := F ∩ SEPN (n).
Note that Gn ∈ B(CDDN (Hn)). Since F is a standard Borel space, it follows from [35,
Theorem A.16] that there are a set Fn ∈ B(F(n)) and a measurable function Fn 3 X 7→
GGG(X) ∈ Gn such that ν(F(n) \ Fn) = 0 and G(X) = X for each X ∈ Fn. Again, we may
assume that F =

⋃n=∞
n=1 Fn (since ν(F\

⋃n=∞
n=1 Fn) = 0). Put X(n) = {x ∈ X : A(x) ∈ Fn}

and TTT (x) = GGG(A(x)) for x ∈ X(n). Note that the function X(n) 3 x 7→ TTT (x) ∈ CDDN (Hn)
is measurable. This implies that the set Γn = {(x, f(x),TTT (x)) : x ∈ X(n)} is Borel in
X(n) × Iℵ0 × CDDN (Hn) (as the graph of a Borel function) and consequently for each
m = 1, 2, . . . ,∞ the set Bn,nm = {(x,YYY ) : Y = f(x)�A(x), x ∈ X(n), YYY ∈ FN (Hnm)}, as
the image of (Γn×FN (Hnm))∩(X(n)×RN (n, nm)) under the projection map (cf. (5.3.2)
and (5.3.4)), which is one-to-one on this set, is Borel as well. Now put X(n, nm) = {x ∈
X(n) : f(x) · dim(A(x)) = nm} and note that X(n, nm)’s are measurable sets such that
X(n) =

⋃m=∞
m=1 X(n, nm). Since the function pn,nm : Bn,nm 3 (x,YYY ) 7→ x ∈ X(n, nm)

is a Borel surjection, we deduce from [35, Theorem A.16] that there is a Borel func-
tion wn,nm : X(n, nm) → Bn,nm such that (pn,nm ◦ wn,nm)(x) = x for µ-almost all
x ∈ X(n, nm). For x ∈ X(n, nm) let BBB(x) ∈ FN (Hnm) be the second coordinate of
wn,nm(x). Then the function Φn,nm : X(n, nm) 3 x 7→ BBB(x) ∈ CDDN (Hnm) is measur-
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able and for µ-almost all x ∈ X,

B(x) = f(x)� A(x). (5.3.5)

Again, by reducing X, we may assume that (5.3.5) is satisfied for all x ∈ X. Finally,
put Xk =

⋃
{X(n, nm) : nm = k} and let Φk : Xk → CDDN (Hk) be given by Φk(x) =

Φn,nm(x) provided nm = k and x ∈ X(n, nm). Since the sets X(n, nm) are pairwise
disjoint, Φk is well defined and Borel. Thus, if (5.3.3) is satisfied, (5.3.5) implies that Φk
is one-to-one, and the assertion follows.

5.4. Direct integrals and measurable domains

In this chapter we establish only the most relevant (for our further investigations) prop-
erties of direct integrals. The ‘continuous’ operation in CDDN is defined and main results
on it appear in the next two chapters.

We now fix a standard measure space (X,M, µ). For a separable Hilbert space H the
Hilbert space L2(X,H) = L2(µ,H) consists of all (equivalence classes of) measurable
functions ξ : X → H such that ‖ξ‖22 =

∫
X
‖ξ(x)‖2 dµ(x) < ∞ (L2(µ,H) is separable).

Let X 3 x 7→ Tx ∈ CDD(H) be a measurable function. We define an operator T :=∫ ⊕
X
Tx dµ(x) in L2(µ,H) by

D(T ) =
{
ξ ∈ L2(µ,H) : ξ(x) ∈ D(Tx) for µ-almost all x ∈ X and∫

X

‖Txξ(x)‖2 dµ(x) <∞
}

and (Tξ)(x) = Txξ(x) for ξ ∈ D(T ) and (µ-almost all) x ∈ X. It is not obvious that Tξ
is measurable (for ξ ∈ D(T )) and that T ∈ CDD(H). These are guaranteed by the next
result which may be deduced from [36, Lemma VI.3.3] (cf. [36, Definition VI.3.4]).

Proposition 5.4.1. For every measurable function X 3 x 7→ Tx ∈ CDD(H) the operator∫ ⊕
X
Tx dµ(x) is well defined, closed and densely defined. What is more,

b

(∫ ⊕
X

Tx dµ(x)
)

=
∫ ⊕
X

b(Tx) dµ(x).

Now let Φ: X ′ 3 x 7→ TTT (x) ∈
⋃n=∞
n=1 CDDN (Hn), where X \ X ′ ∈ N(µ), be any

function and TTT (x) = (TTT (x)
1 , . . . ,TTT

(x)
N ) for each x ∈ X ′. If there are measurable sets

X1, X2, . . . , X∞ ⊂ X ′ such that µ(X ′ \
⋃n=∞
n=1 Xn) = 0 and Φ(Xj) ⊂ CDDN (Hj) (the

latter implies that Xj ’s are pairwise disjoint), and Φ|Xj : Xj → CDDN (Hj) is measurable
for each j, we call Φ integrable and define the direct integral

∫ ⊕
X
TTT (x) dµ(x) of the field

{TTT (x)}x∈X′ by∫ ⊕
X

TTT (x) dµ(x) =
n=∞⊕
n=1

(∫ ⊕
Xn

T
(x)
1 dµ(x), . . . ,

∫ ⊕
Xn

T
(x)
N dµ(x)

)
.

Below we list the most important (for our investigations) properties of direct integrals of
measurable fields of N -tuples.
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(di0) dim D(
∫ ⊕
X
TTT (x) dµ(x)) 6 ℵ0.

(di1) b(
∫ ⊕
X
TTT (x) dµ(x)) =

∫ ⊕
X

b(TTT (x)) dµ(x).
(di2) If X1, X2, . . . are pairwise disjoint measurable subsets of X such that µ(Xj) > 0

for each j and µ(X \
⋃∞
n=1Xn) = 0, then∫ ⊕
X

AAA(x) dµ(x) ≡
∞⊕
n=1

∫ ⊕
Xn

AAA(x) dµ(x).

(di3)
⊕∞

n=1(
∫ ⊕
X
TTT

(x)
n dµ(x)) ≡

∫ ⊕
X

(
⊕∞

n=1TTT
(x)
n ) dµ(x).

(di4) If TTT (x) ≡ SSS(x) for µ-almost all x ∈ X, then
∫ ⊕
X
TTT (x) dµ(x) ≡

∫ ⊕
X
SSS(x) dµ(x). This

follows from (BT5) (page 12), (di1) and the proof of [35, Theorem IV.8.28].
(di5) If ν is a σ-finite measure on (X,M) such that ν � µ� ν (that is, N(µ) = N(ν)),

then
∫ ⊕
X
TTT (x) dµ(x) ≡

∫ ⊕
X
TTT (x) dν(x).

(di6) If (Y,N, ν) is a standard measure space, X0 ∈ N(µ), Y0 ∈ N(ν) and ψ : Y \ Y0 →
X \X0 is a Borel isomorphism such that µ(ψ(A)) = ν(A) for every A ∈ N disjoint
from Y0, then ∫ ⊕

X

TTT (x) dµ(x) ≡
∫ ⊕
Y

TTT (ψ(y)) dν(y).

Further, let X 3 x 7→ A(x) ∈ SEPN be any function. If there exist Borel sets
X1, X2, . . . , X∞ ⊂ X and measurable functions

Xn 3 x 7→ AAA(x) ∈ CDDN (Hn) (5.4.1)

(n = 1, 2, . . . ,∞) such that µ(X \
⋃n=∞
n=1 Xn) = 0 and for each x ∈

⋃n=∞
n=1 Xn, AAA(x) is a

representative of A(x), we say the field {A(x)}x∈X is integrable and we define the direct
integral

∫ ⊕
X

A(x) dµ(x) as the unitary equivalence class of
n=∞⊕
n=1

∫ ⊕
Xn

AAA(x) dµ(x). (5.4.2)

Thanks to (di4),
∫ ⊕
X

A(x) dµ(x) is well defined, i.e. it is independent of the choice of mea-
surable functions (5.4.1). As is easily seen, in the above situation the function

⋃n=∞
n=1 Xn 3

x 7→ A(x) ∈ SEPN is measurable. We call a field Ψ: X 3 x 7→ B(x) ∈ SEPN almost mea-
surable (or almost Borel) iff Ψ|X\X0 is Borel for some X0 ∈ N(µ). Thus, every integrable
field is almost measurable.

In our investigations all almost measurable fields are defined on standard measure
spaces. Properties (di0)–(di6) may naturally be translated into the realm of unitary equiv-
alence classes of N -tuples:

(DI0)
∫ ⊕
X

A(x) dµ(x) ∈ SEPN .
(DI1) b(

∫ ⊕
X

A(x) dµ(x)) =
∫ ⊕
X

b(A(x)) dµ(x).
(DI2) If X1, X2, . . . are pairwise disjoint measurable subsets of X such that µ(Xj) > 0

for each j and µ(X \
⋃∞
n=1Xn) = 0, then∫ ⊕
X

A(x) dµ(x) =
∞⊕
n=1

∫ ⊕
Xn

A(x) dµ(x).

(DI3)
⊕∞

n=1(
∫ ⊕
X

T(x)
n dµ(x)) =

∫ ⊕
X

(
⊕∞

n=1 T(x)
n ) dµ(x).
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(DI4) If (Y,N, ν) is a standard measure space, X0 ∈ N(µ), Y0 ∈ N(ν), ψ : Y \Y0 → X\X0

is a Borel isomorphism and {ψ(B) : B ∈ N(ν), B ∩ Y0 = ∅} = {A ∈ N(ν) : A ∩X0

= ∅}, then ∫ ⊕
X

A(x) dµ(x) =
∫ ⊕
Y

A(ψ(y)) dν(y).

A counterpart of regular collections and direct sums ((UE4), page 10) for direct inte-
grals are regular fields and regular direct integrals ‘

∫ �’ which we define as follows. Assume
X 3 x 7→ A(x) ∈ SEPN is an integrable field. If for any two disjoint Borel sets A,B ⊂ X

one has ∫ ⊕
A

A(x) dµ(x) ⊥u
∫ ⊕
B

A(x) dµ(x), (5.4.3)

we call the field {A(x)}x∈X regular and write
∫ �
X

A(x) dµ(x) in place of
∫ ⊕
X

A(x) dµ(x).
(Condition (5.4.3) naturally corresponds to (PR2), page 12.) As in the case of direct
sums, the notation ‘

∫ �’ includes the information that the integrable field is regular.
In practice it is quite difficult to verify whether an almost measurable field is inte-

grable. However, as an immediate consequence of Proposition 5.3.3 we obtain

Proposition 5.4.2. Every almost measurable field of a standard measure space into
SEPN \ SEPN (∞) is integrable.

Proof. Let Φ: X → SEPN \ SEPN (∞) be measurable. The sets Xn = Φ−1(SEPN (n))
are Borel and if χn’s are as in Proposition 5.3.3, then χn ◦ Φ|Xn is a measurable field of
representatives for Φ.

In general we are unable to characterize integrable fields taking values in SEPN . This
is in fact not of interest to us. More preferable are regular fields taking values in FN . In
that case a characterization is possible and we formulate it in the next result. For this
purpose we introduce

Definition 5.4.3. A set F ∈ BN is said to be a measurable domain of strong unitary
disjointness iff there is a sequence (En)∞n=1 of subsets of CDDN which separates the points
of F and for every n > 1 the families F ∩ En and F \ En are strongly unitarily disjoint
(cf. Remark 5.2.5). We shall speak briefly of measurable domains.

It follows from the definition that measurable domains consist of pairwise unitarily
disjoint N -tuples. It may also be easily verified that the union of a countable family of
measurable domains any two of which are strongly unitarily disjoint as well as every mea-
surable subset of a measurable domain are again measurable domains. Another important
property of measurable domains is that they are Souslin–Borel. Indeed, when F is a mea-
surable domain, it is the Borel image of a standard Borel space (by the measurability
of F) and F is countably separated, for if E ⊂ CDDN is such that F ∩ E ⊥s F \ E, then
F∩E ∈ BN (because for every sequence (pn)∞n=1 ⊂ P1(N) and each complex scalar λ the
set of all TTT ∈ CDDN (Hk) such that pn(b(TTT ), b(TTT )∗) converges ∗-strongly to λI is Borel
and invariant under unitary equivalence), and thus our claim follows from Definition 5.4.3.
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Measurable domains are useful in producing regular fields, as is shown by

Proposition 5.4.4. Let (X,M, µ) be a standard measure space and Φ: X 3 x 7→ A(x) ∈
FN be any field. Then the following conditions are equivalent:

(i) {A(x)}x∈X is regular,
(ii) there is a Borel set X ′ ⊂ X such that X \X ′ ∈ N(µ), Φ(X ′) is a measurable domain

and Φ|X′ is a Borel isomorphism of X ′ onto its range.

Proof. First of all, by reducing X, we may assume that X is a standard Borel space. Sup-
pose condition (i) is satisfied. This implies that there is Z ∈ N(µ) and an integrable field
{AAA(x)}x∈X\Z ⊂

⋃n=∞
n=1 CDDN (Hn) of representatives for Φ. Take a separating sequence

X1, X2, . . . of measurable subsets of X. We infer from (di0), (5.4.3) and Proposition 5.2.3
that for each k > 1 there is a sequence (q(k)

n )∞n=1 ⊂ P1(N) such that

q(k)
n

(
b

(∫ ⊕
Xk

AAA(x) dµ(x)
)
, b

(∫ ⊕
Xk

AAA(x) dµ(x)
)∗)

∗s→ I,

q(k)
n

(
b

(∫ ⊕
X\Xk

AAA(x) dµ(x)
)
, b

(∫ ⊕
X\Xk

AAA(x) dµ(x)
)∗)

∗s→ 0.

Now taking into account that

p

(
b

(∫ ⊕
D

AAA(x) dµ(x)
)
, b

(∫ ⊕
D

AAA(x) dµ(x)
)∗)

=
∫ ⊕
D

p(b(AAA(x)), b(AAA(x))∗) dµ(x) (5.4.4)

for any measurable set D ⊂ X and p ∈ P(N) (cf. (di1)), we infer from [29, Propo-
sition 3.2.7] that there are a subsequence (p(k)

n )∞n=1 of (q(k)
n )∞n=1 and a measurable set

X ′k ⊂ X \ Z such that X \X ′k ∈ N(µ) and

p(b(AAA(x)), b(AAA(x))∗) ∗s→ jk(x)I (5.4.5)

for any x ∈ X ′k where jk is the characteristic function of Xk. Put X ′ =
⋂∞
k=1X

′
k and note

that µ(X \ X ′) = 0. Since {Xk}k>1 is a separating family and thanks to (5.4.5), Φ|X′
is one-to-one. It may also be deduced from Corollary 5.3.6 that Φ(X ′) is measurable.
Consequently, Φ(X ′) is a measurable domain, by (5.4.5). Now it suffices to apply [35,
Corollary A.10] to deduce that Φ|X′ is a Borel isomorphism.

We now turn to the converse implication. It follows from Theorem 5.3.8 that Φ is
integrable. So, let

{AAA(x)}x∈X′′ ⊂
n=∞⋃
n=1

CDDN (Hn)

be an integrable field of representatives for Φ where X ′′ ⊂ X ′ and X \X ′′ ∈ N(µ). Put
AAA =

∫ ⊕
X
AAA(x) dµ(x). Let E1,E2, . . . be a separating family for Φ(X ′) such that

Φ(X ′) ∩ Ek ⊥s Φ(X ′) \ Ek (5.4.6)

for every k. It follows from the observation preceding the proposition that Ek ∩Φ(X ′) ∈
BN . Consequently, the sets Xk = Φ−1(Ek) ∩ X ′′ (k = 1, 2, . . .) are measurable and
separate the points of X ′′ (because Φ is one-to-one on X ′ ⊃ X ′′). We infer, by [35,
Corollary A.12], that the σ-algebra of subsets of X ′′ generated by the Xk’s coincides with
M′′ := {A ⊂ X ′′ : A ∈ M}. Further, the space D(AAA) has the form

⊕n=∞
n=1 L2(X ′′n ,Hn)
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where X ′′1 , X ′′2 , . . . are pairwise disjoint members of M′′ whose union is X ′′. For each k let
Mk be multiplication by the characteristic function jk ofX ′′k on D(AAA). Fix for a moment k.
By (5.4.6), there is a sequence (pn)∞n=1 ⊂ P1(N) such that pn(b(AAA(x)), b(AAA(x))∗) converges
∗-strongly to jk(x)I for every x ∈ X ′′. Since in addition ‖pn(b(AAA(x)), b(AAA(x))∗)‖ 6 1,
Proposition 3.2.7 of [29] implies that∫ ⊕

X′′
pn(b(AAA(x)), b(AAA(x))∗) dµ(x) ∗s→

∫ ⊕
X′′

jk(x)I dµ(x).

This combined with (5.4.4) gives pn(b(AAA), b(AAA)∗) ∗s→Mk and consequently Mk ∈ W ′′(AAA).
In this way we have shown that {X1, X2, . . .} ⊂ N where N consists of all B ∈M′′ such
that multiplication M(B) by the characteristic function of B belongs toW ′′(AAA). Since N

is a σ-algebra, we finally obtain N = M′′.
Since W ′′(AAA) =W(b(AAA)) and each entry of b(AAA) is a decomposable operator, W ′′(AAA)

consists of decomposable operators. If B ∈ M, M(B ∩ X ′′) is a diagonalizable opera-
tor and hence M(B ∩ X ′′) ∈ Z(W ′′(AAA)). So,

∫ ⊕
B

A(x) dµ(x) (=
∫ ⊕
B∩X′′ A

(x) dµ(x)) and∫ ⊕
X\B A(x) dµ(x) correspond (by Proposition 2.3.1) to mutually orthogonal central pro-
jections in W ′′(AAA), from which we conclude that∫ ⊕

B

A(x) dµ(x) ⊥u
∫ ⊕
X\B

A(x) dµ(x).

Now (5.4.3) follows from (di2).

Remark 5.4.5. Since every Borel injection of a standard Borel space into a Souslin–
Borel one has measurable image and is a Borel isomorphism between its domain and
range (cf. Theorem A.6 and Corollary A.7 in [35]), condition (ii) of Proposition 5.4.4
may be weakened by replacing the assumption that Φ(X ′) is a measurable domain and
Φ|X′ is a Borel isomorphism by Φ|X′ is Borel and one-to-one and Φ(X ′) is contained in
a measurable domain.

For simplicity, let us call a σ-finite measure ν on a measurable set B ⊂ FN a regularity
measure (ν ∈ rgm(B)) if ν is standard and the identity field of B into FN is regular.
Equivalently, ν ∈ rgm(B) iff ν is concentrated on a measurable domain (since measurable
domains are Souslin–Borel and all σ-finite measures on such sets are standard). To shorten
statements, we shall write (µ,Φ) ∈ RGS(X,M) when µ is a standard measure on (X,M)
and Φ: X → FN is a regular field.

Suppose (µ,Φ) ∈ RGS(X,M). Let X ′ be as in Proposition 5.4.4(ii). Define a measure
ν = Φ∗(µ) : B(FN ) → [0,∞] by ν(B) = µ(Φ−1(B) ∩X ′). Notice that ν ∈ rgm(FN ) and∫ �
X

Φ(x) dµ(x) =
∫ �

FN
F dν(F), thanks to (DI4). This observation shows that it suffices to

consider regularity measures instead of abstract regular fields.
The following result is a link between regular fields and central decompositions of von

Neumann algebras.

Proposition 5.4.6. Let (X,M, µ) be a standard measure space, Φ: X 3 x 7→ AAA(x) ∈⋃n=∞
n=1 FN (Hn) an integrable field, and let

AAA =
∫ ⊕
X

AAA(x) dµ(x).
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Then the following conditions are equivalent:

(i) {A(x)}x∈X is regular,
(ii) {X ∈ CDDN : X 6s A} = {

∫ ⊕
B

A(x) dµ(x) : B ∈M},
(iii)

∫ ⊕
X
W ′′(AAA(x)) dµ(x) is the central decomposition of W ′′(AAA).

Proof. First of all, note that the field {W ′′(AAA(x))}x∈X is measurable according to [29,
Definition 3.2.9], since W ′′(AAA(x)) = W(b(AAA(x))). Further, under the assumptions of the
proposition, (iii) is equivalent to

(iii′) the von Neumann algebra A of all diagonalizable operators is contained in W ′′(AAA).

It is clear that (iii′) follows from (iii). Conversely, when (iii′) holds, W ′(AAA) consists
of (some) decomposable operators (thanks to [35, Corollary IV.8.16] or [19, Theo-
rem 14.1.10]). We see that so does W ′′(AAA) (since b(AAA) is an N -tuple of decomposable op-
erators) and hence A ⊂ W ′(AAA). This yields A ⊂ Z(W ′′(AAA)). Now using the terminology
of Kadison and Ringrose [19], we conclude thatW ′′(AAA) is decomposable (Theorem 14.1.16
and Proposition 14.1.18 in [19]), i.e. W ′′(AAA) =

∫ ⊕
X

Mx dµ(x) for some measurable field
{Mx}x∈X of von Neumann algebras. By the uniqueness of the decomposition b(AAA) =∫ ⊕
X

b(AAA(x)) dµ(x) (cf. (di1), page 73), we obtainW(b(AAA(x))) ⊂Mx for µ-almost all x ∈ X
and thus

∫ ⊕
X
W ′′(AAA(x)) dµ(x) ⊂ W ′′(AAA). Since the converse inclusion is immediate, we get

W ′′(AAA) =
∫ ⊕
X
W ′′(AAA(x)) dµ(x). This proves (iii) becauseW ′′(AAA(x)) is a factor for all x ∈ X

and consequently (by [35, Corollary IV.8.20]) Z(W ′′(AAA)) =
∫ ⊕
X
Z(W ′′(AAA(x))) dµ(x) = A.

We leave it as a simple exercise that the assertion of the proposition now easily
follows.

An important consequence of Proposition 5.4.6 is

Corollary 5.4.7. Let (µ,Φ) ∈ RGS(X,M), (ν,Ψ) ∈ RGS(Y,N) and let µ̂ = Φ∗(µ) and
ν̂ = Ψ∗(ν). For

X =
∫ �
X

Φ(x) dµ(x) and Y =
∫ �
Y

Ψ(y) dν(y)

we have:

(a) X = Y ⇔ µ̂� ν̂ � µ̂,
(b) X 6s Y ⇔ µ̂� ν̂.

Proof. We know that X =
∫ �

FN
F dµ̂(F) and Y =

∫ �
FN

F dν̂(F). Observe that (b) follows from
(a) and Proposition 5.4.6, and the implication ‘⇐’ in (a) is a consequence of (DI4). To
prove the converse, assume XXX =

∫ �
X
AAA(x) dµ(x) with A(x) = Φ(x) for µ-almost all x ∈ X,

YYY =
∫ �
Y
BBB(y) dν(y) with B(y) = Ψ(y) for ν-almost all y ∈ Y , and U is a unitary operator

such that U ·XXX ·U−1 = YYY . It then follows from Proposition 5.4.6 that U sends the algebra
of all diagonalizable operators on D(XXX) onto the algebra of all diagonalizable operators on
D(YYY ). Thus, according to [35, Theorem IV.8.23], there is a Borel isomorphism κ : Y \Y0 →
X \X0 where X0 ∈ N(µ) and Y0 ∈ N(ν) such that

κ∗(ν)� µ� κ∗(ν) (5.4.7)
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and U may be written in the form U =
∫ ⊕
X
Ux

√
dκ∗(ν)
dµ (x) dµ(x) where {Ux}x∈X is a

certain measurable field of unitary operators (for details we refer to Takesaki’s book
[35]). Since U · b(XXX) = b(YYY ) · U , we conclude from (di1) (page 73) that∫ ⊕

X

Ux · b(AAA(x))

√
dκ∗(ν)
dµ

(x) dµ(x) =
∫ ⊕
X

b(BBB(κ(x))) · Ux

√
dκ∗(ν)
dµ

(x) dµ(x).

Now thanks to the uniqueness of the decomposition of a bounded decomposable op-
erator and the positivity of the function

√
dκ∗(ν)/ dµ, the last equation implies that

Ux · b(AAA(x)) = b(BBB(κ(x))) · Ux for µ-almost all x ∈ X. Consequently, B(κ(x)) = A(x) for
µ-almost all x ∈ X. We leave it as an exercise that this combined with (5.4.7) gives
µ̂� ν̂ � µ̂, which finishes the proof.

A similar result was obtained by Ernest (cf. [9, Theorem 3.8]). However, he worked
with quasi-equivalence classes instead of unitary equivalence classes.

To avoid repetitions, let us say a function f : X → Iℵ0 fits to (µ,Φ) ∈ RGS(X,M)
iff f is almost measurable and there are disjoint measurable sets X1 and X2 such that
µ(X \ (X1 ∪ X2)) = 0, f(X1) ⊂ Card and Φ(X2) ⊂ sN . Note that if this happens, the
function f � Φ given by (f � Φ)(x) = f(x)� Φ(x) is well defined on X1 ∪X2.

Lemma 5.4.8. Let (µ,Φ) ∈ RGS(X,M) and f : X → Iℵ0 \ {0} be a function which fits to
(µ,Φ). Then (µ, f � Φ) ∈ RGS(X,M) as well.

Proof. It follows from Theorem 5.3.8 that f � Φ is integrable. Further, we infer from
(DI3) (page 73) that ℵ0 �

∫ ⊕
D
f(x) � Φ(x) dµ(x) =

∫ ⊕
D

(ℵ0 · f(x)) � Φ(x) dµ(x) = ℵ0 �∫ ⊕
D

Φ(x) dµ(x) and thus
∫ ⊕
D
f(x)� Φ(x) dµ(x) ⊥u

∫ ⊕
X\D f(x)� Φ(x) dµ(x) since∫ ⊕

D

Φ(x) dµ(x) ⊥u
∫ ⊕
X\D

Φ(x) dµ(x).

Whenever a function f : X → Iℵ0 fits to (µ,Φ) ∈ RGS(X,M), we define
∫ �
X
f(x) �

Φ(x) dµ(x) as follows. Put s(f) = {x ∈ X : f(x) > 0} and take X0 ∈ N(µ) such that f is
measurable on X \X0. If µ(s(f) \X0) > 0,

∫ �
X
f(x)�Φ(x) dµ(x) denotes

∫ �
s(f)\X0

f(x)�

Φ(x) dµ(x) (see Lemma 5.4.8). Otherwise let
∫ �
X
f(x) � Φ(x) dµ(x) = O. The usage of

‘
∫ �’ here is justified by Lemma 5.4.8.

Below we formulate a variation of [9, Proposition 3.2]. We shall use it in our theorem
on prime decomposition.

Lemma 5.4.9. Let A ∈ SEPN be the direct sum of a minimal N -tuple and a semiminimal
one.

(A) There exists µA ∈ rgm(pN ) such that A =
∫ �

pN
P dµA(P). For µ ∈ rgm(pN ), A =∫ �

pN
P dµ(P)⇔ µ� µA � µ.

(B) For B ∈ SEPN the following conditions are equivalent:

(i) B� A,
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(ii) there is an almost measurable function f : pN → Iℵ0 such that f(aN ) ⊂ Card,
f(fN ) ⊂ {0,ℵ0} and

B =
∫ �

pN

f(P)� P dµA(P). (5.4.8)

(C) Let (µ,Φ) ∈ RGS(X,M).

(a) If Φ(X) ⊂ aN ,
∫ �
X

Φ(x) dµ(x) ∈MFN .

(b) If Φ(X) ⊂ fN ,
∫ �
X

Φ(x) dµ(x) ∈ HIMN .
(c) If Φ(X) ⊂ sN and f : X → R+ is almost measurable,

∫ �
X
f(x) � Φ(x) dµ(x) ∈

SMN .

Proof. Let F ∈ SEPN and let FFF be a representative of F. It follows from the reduc-
tion theory of von Neumann algebras (see e.g. [35, Theorem IV.8.21]) that there is a
standard Borel space (X,M) with a probability Borel measure λ and a measurable field
{Mx}x∈X of factors (each of which acts on someHn) such that the von Neumann algebras
M :=

∫ ⊕
X

Mx dλ(x) and W ′′(FFF ) are spatially isomorphic. Write b(FFF ) = (T1, . . . , TN ).
Now, Tj corresponds (under the spatial isomorphism) to T ′j ∈ M. Since then b(FFF ) ≡
(T ′1, . . . , T

′
N ), we see that there is FFF ′ ∈ CDDN such that b(FFF ′) = (T ′1, . . . , T

′
N ) and con-

sequently FFF ′ ≡ FFF . Thus replacing FFF by FFF ′, we may assume that W ′′(FFF ) = M. Write
Tj =

∫ ⊕
X
T

(x)
j dλ(x) where T (x)

j ∈ Mx for λ-almost all x ∈ X. Since ‖Tj‖ 6 1, we also
have ‖T (x)

j ‖ 6 1 λ-almost everywhere. Further, the function x 7→ N(I − (T (x)
j )∗T (x)

j )
is measurable (in the target space we consider the Effros Borel structure separately on
each Hn) and hence the set X0 = {x ∈ X : N(I − (T (x)

j )∗T (x)
j ) 6= {0}} is measur-

able. Suppose λ(X0) > 0. Then there exists a measurable vector field x 7→ ξx such that
ξx ∈ N(I−(T (x)

j )∗T (x)
j ) and ‖ξx‖ 6 1 for λ-almost all x ∈ X, and

∫
X
‖ξx‖2 dλ(x) > 0 (see

Corollary after Theorem 2 in [6]; or [35, Corollary IV.8.3]). We infer that ξ =
∫ ⊕
X
ξx dλ(x)

is well defined and nonzero, and T ∗j Tjξ = ξ, which contradicts the fact that Tj is a value of
the b-transform. This shows that λ(X0) = 0 and hence for λ-almost all x ∈ X there is an
operator F (x)

j ∈ CDD such that b(F (x)
j ) = T

(x)
j . Put FFF (x) = (F (x)

1 , . . . , F
(x)
N ) and observe

that the function x 7→ FFF (x) is measurable (since the b-transform is an isomorphism) and
FFF =

∫ ⊕
X
FFF (x) dλ(x). Since the field x 7→ W ′′(FFF (x)) is measurable and W ′′(FFF (x)) ⊂ Mx,∫ ⊕

X
W ′′(FFF (x)) dλ(x) ⊂ M = W ′′(FFF ). At the same time, T1, . . . , TN ∈

∫ ⊕
X
W ′′(FFF (x)) dλ(x)

and therefore W ′′(FFF ) ⊂
∫ ⊕
X
W ′′(FFF (x)) dλ(x) as well. We conclude that W ′′(FFF (x)) = Mx

for λ-almost all x ∈ X and consequently
∫ ⊕
X
W ′′(FFF (x)) dλ(x) is the central decomposition

ofW ′′(FFF ). In particular, F(x) ∈ FN for λ-almost all x ∈ X. Now Proposition 5.4.6 implies
that F =

∫ �
X

Φ(x) dλ(x) where Φ: X 3 x 7→ F(x) ∈ FN . Let µF = Φ∗(λ) ∈ rgm(FN ). We
know that then

F =
∫ �

FN

X dµF(X). (5.4.9)

Further, since central decompositions of von Neumann algebras preserve the types ([18,
Theorem 14.1.21] or [35, Corollary V.6.7]), we infer that F is type I, In, II, II1, II∞ or
III iff µF-almost all X ∈ FN are. In particular, if F is the direct sum of a minimal N -
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tuple and a semiminimal one, W ′′(FFF ) decomposes into type I1, II1 and III parts (and no
other) and consequently µF-almost all X ∈ FN are type I1 (atoms) or II1 (semiprimes),
or III (fractals)—cf. Propositions 5.1.3 and 5.1.6. This proves the first claim of (A). The
remainder of (A) follows from Corollary 5.4.7.

We turn to (B). First of all, note that (5.4.8) makes sense thanks to Lemma 5.4.8.
Suppose that B is given by (5.4.8). We may assume that f is measurable. Then s(f) =
{P ∈ pN : f(P) > 0} ∈ BN . It follows from (DI3) (page 73) that

ℵ0 � B =
∫ ⊕

pN

(ℵ0 · f(P))� P dµA(P) = ℵ0 �
∫ ⊕
s(f)

P dµA(P) 6 ℵ0 � A

and thus B� A.
Now assume that B � A. Let µB ∈ rgm(FN ) be as in (5.4.9) with F = B. Since

B� A and A,B ∈ SEPN , ℵ0�B 6s ℵ0�A (cf. Corollary 3.6.5). So, (PR6) (page 13) and
Proposition 5.4.6 yield a measurable set B ⊂ pN such that ℵ0 � B = ℵ0 �

∫ �
B

P dµA(P).
Now we infer from (DI3) and Lemma 5.4.8 that∫ �

FN

ℵ0 � F dµB(F) =
∫ �

B

ℵ0 � P dµA(P). (5.4.10)

An application of Proposition 5.4.4 shows that there are measurable domains F0 ⊂ B

and G0 ⊂ FN such that µA(B \ F0) = 0, µB(FN \ G0) = 0, F∗0 = {ℵ0 � P : P ∈ F0} ∈ BN ,
G∗0 = {ℵ0 � F : F ∈ G0} ∈ BN , the sets F0, G0, F∗0 and G∗0 are standard Borel spaces
and the functions Φ: F0 3 P 7→ ℵ0 � P ∈ F∗0 and Ψ: G0 3 F 7→ ℵ0 � F ∈ G∗0 are
Borel isomorphisms. Put F = Φ−1(F∗0 ∩ G∗0) ∈ BN and G = Ψ−1(F∗0 ∩ G∗0) ∈ BN . Let
Θ = Ψ−1◦Φ|F. Observe that Θ is a Borel isomorphism of F onto G. One may deduce from
Corollary 5.4.7 and (5.4.10) that µA(B \ F) = 0 and µB(FN \ G) = 0, and λ� µA|F � λ

where λ(σ) = µB(Θ(σ ∩ F)) for measurable σ ⊂ pN . Consequently (by (DI4)),

B =
∫ �

F

Θ(P) dµA(P). (5.4.11)

Since Θ(P)� P for any P ∈ F, we may define f : pN → Iℵ0 by f(P) = Θ(P) : P for P ∈ F

and f(P) = 0 for P ∈ pN \F. Thanks to (5.4.11), it suffices to show that f |F is measurable.
Since F and G are standard Borel spaces, the graph Γ = {(P,Θ(P)) : P ∈ F} of Θ is a
Borel subset of F×G and u : F 3 P 7→ (P,Θ(P)) ∈ Γ is a Borel isomorphism. Finally, since
Div is Borel (see Chapter 5.3, page 70), so is the function v : Γ 3 (A,B) 7→ B : A ∈ Iℵ0

(here it is important that F and G are standard Borel spaces). The observation that
f |F = v ◦ u finishes the proof.

Finally, (C) follows from Proposition 5.4.6 and the fact that central decompositions
of von Neumann algebras preserve the types.

The formula (5.4.9) corresponds to Ernest’s central decomposition of a bounded op-
erator [9, Chapter III]. It is not however of interest to us. Also a variation of (5.4.8)
appears in [9, Lemma 4.4].

We shall need one more result.

Lemma 5.4.10. For µ, ν ∈ rgm(FN ) the following conditions are equivalent:

(i)
∫ �

FN
F dµ(F) ⊥u

∫ �
FN

F dν(F),
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(ii) there are measurable sets A,B ⊂ FN such that µ(FN \ A) = 0, ν(FN \ B) = 0 and
A ⊥u B,

(iii) there are measurable sets A,B ⊂ FN such that µ(FN \ A) = 0, ν(FN \ B) = 0 and
A ⊥s B,

(iv) µ ⊥ ν and µ+ ν ∈ rgm(FN ).

Proof. (i)⇒(iv): Put A =
∫ �

FN
X dµ(X), B =

∫ �
FN

X dν(X) and F = A� B, and let λ = µF

where µF is as in (5.4.9). Since A,B 6s F, we infer from Corollary 5.4.7 that µ, ν � λ.
So, µ + ν � λ and therefore µ + ν ∈ rgm(FN ). Further, there are measurable sets
A,B ⊂ FN such that µ � λ|A � µ and ν � λ|B � ν and consequently, again by
Corollary 5.4.7, A =

∫ �
A

X dλ(X) and B =
∫ �

B
X dλ(X). Since then

∫ �
A∩B

X dλ(X) 6s A,B,
one has λ(A ∩B) = 0 and hence µ ⊥ ν.

(iv)⇒(iii): Put λ = µ + ν and let A0 and B0 be disjoint measurable subsets of FN
on which (respectively) µ and ν are concentrated. Since λ ∈ rgm(FN ),

∫ ⊕
A0

F dλ(F) ⊥u∫ ⊕
B0

F dλ(F), which yields (cf. Proposition 5.2.3, and the proof of Proposition 5.4.4, or
[29, Proposition 3.2.7]) that there exist a sequence (pn)∞n=1 ⊂ P1(N) and a set Z ∈ N(λ)
such that pn(b(F), b(F)∗) ∗s→ j(F)I for each F ∈ (A0 ∪B0) \Z where j is the characteristic
function of A0. Consequently, µ and ν are concentrated on, respectively, A = A0 \Z and
B = B0 \ Z, and A ⊥s B.

Since (ii) obviously follows from (iii), it remains to show that (ii) implies (i). Suppose
(i) is false. This means that there are nontrivial N -tuples A 6s

∫ �
FN

F dµ(F) and B 6s∫ �
FN

F dν(F) such that ℵ0 � A = ℵ0 � B. By Corollary 5.4.7, there are measurable sets

A1,B1 ⊂ FN such that A =
∫ �

A1
F dµ(F) and B =

∫ �
B1

F dν(F). All these remarks combined
with (DI3) (page 73) and Lemma 5.4.8 give∫ �

A1∩A

ℵ0 � F dµ(F) =
∫ �

B1∩B

ℵ0 � F dν(F) (5.4.12)

where A and B are as in (ii). Thanks to Proposition 5.4.4, we may assume that F =
{ℵ0 � F : F ∈ A1 ∩A} and G = {ℵ0 � F : F ∈ B1 ∩B} are measurable. We conclude from
the unitary disjointness of A and B that

Φ∗(µ)(G) = 0 and Φ∗(ν)(F) = 0 (5.4.13)

where Φ: FN 3 F 7→ ℵ0�F ∈ FN . But (5.4.12) implies, by Corollary 5.4.7, that Φ∗(µ)�
Φ∗(ν)� Φ∗(µ). Consequently, it follows from (5.4.13) that µ(A1 ∩A) = 0 and ν(B∩B1)
= 0, contrary to the fact that A and B were nonzero.

Taking into account the above result, for arbitrary two measures µ, ν ∈ rgm(FN ) we
shall write µ ⊥s ν iff any of the equivalent conditions (i)–(iv) of Lemma 5.4.10 is fulfilled.

5.5. ‘Continuous’ direct sums

Property (DI4) (page 74) suggests replacing standard measures µ by their null σ-ideals
N(µ). In this chapter we follow this idea. In that way we shall extend the notion of the
(standard ‘discrete’) direct sum to a more general context.



82 5. Prime decomposition

Definition 5.5.1. A measurable space with nullity is a triple (X ,M,N) where (X ,M)
is a measurable space and N is a σ-ideal in M; that is, ∅ ∈ N ⊂ M,

⋃∞
n=1An ∈ N

whenever {An}∞n=1 ⊂ N, and {B ∈M : B ⊂ A} ⊂ N for every A ∈ N.
Whenever (X ,M,N) is a measurable space with nullity, N denotes the family of all

(possibly nonmeasurable) sets which are contained in members of N. Members of N are
called null sets, other subsets of X are called nonnull. For Y ∈M, (Y,M|Y ,N|Y ) is the
induced measurable space with nullity, i.e. M|Y = {B ∈M : B ⊂ Y } and N|Y = M|Y ∩N.
The space (X ,M,N) is trivial iff X ∈ N.

A function Φ: X1 → X2 is a null-isomorphism between measurable spaces with
nullities (X1,M1,N1) and (X2,M2,N2) if Φ is a Borel isomorphism such that N2 =
{Φ(Z) : Z ∈ N1}. If Ψ: X1 →X2 (with X1 ⊂X1) is a function such that there are sets
Z1 ∈ N1 and Z2 ∈ N2 for which X1 \ Z1 ⊂ X1 and Ψ|X1\Z1 is a null-isomorphism of
(X1 \Z1,M1|X1\Z1 ,N1|X1\Z1) onto (X2 \Z2,M2|X2\Z2 ,N2|X2\Z2), then Ψ is said to be
an almost null-isomorphism and the spaces (X1,M1,N1) and (X2,M2,N2) are almost
isomorphic. Similarly, a function u : X → Y (where X ⊂X , (X ,M,N) is a measurable
space with nullity and (Y,N) is a measurable space) is said to be almost measurable iff
there is a set X ′ ∈M contained in X such that X \X ′ ∈ N and u|X′ is measurable.

Of main interest to us are measurable spaces whose nullities come from certain mea-
sures. For this purpose we introduce

Definition 5.5.2. Let (X ,M,N) be a measurable space with nullity. A measurable
set A ⊂ X is standard iff (A,M|A,N|A) is almost isomorphic to (Y,N,N(ν)) for some
standard measure space (Y,N, ν). Standard sets are nonnull.

A family B is said to be a base of (X ,M,N) iff the following two conditions are
fulfilled:

• B consists of pairwise disjoint measurable sets and X \
⋃

B ∈ N,
• for any A ⊂

⋃
B we have: A ∈M (respectively A ∈ N) iff A∩B ∈M (A∩B ∈ N) for

any B ∈ B.

A base is standard iff it consists of standard sets. (X ,M,N) is called multi-standard iff
it admits a standard base.

Let F = {(Xs,Ms,Ns)}s∈S be a family of measurable spaces with nullities. The
direct sum of F , denoted by

⊕
s∈S(Xs,Ms,Ns), is a measurable space with nullity

(X ,M,N) defined as follows: X =
⋃
s∈S(Xs × {s}); π : X →

⋃
s∈S Xs is given by

π(x, s) = x; A ∈M (respectively A ∈ N) iff π(A∩ (Xs ×{s})) ∈Ms (π(A∩ (Xs ×{s}))
∈ Ns) for every s ∈ S. Note that {Xs ×{s}}s∈S is a base of

⊕
s∈S(Xs,Ms,Ns). We call

π the canonical projection.
Let (X ,M,N) be a multi-standard measurable space with nullity. Let X d be the set

of all points x ∈X such that {x} /∈ N. One may show that X d ∈M (since X is multi-
standard), M|X d is the power set of X d and N|X d = {∅}. Points of X d are called atoms,
while X d and its complement X c are called, respectively, the discrete and continuous
parts of X . Further, if (Y,N, µ) is a nonatomic standard measure space, then there is
Z ∈ N(µ) such that (Y \Z,N|Y \Z ,N(µ)|Y \Z) is isomorphic to ([0, 1],B([0, 1]),L0) where
L0 is the σ-ideal of all Borel subsets of [0, 1] whose Lebesgue measure is equal to 0 (by
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Theorem 14.3.9 on page 270 in [27]). Using this fact, one may check that there is a base
of (X ,M,N) each of whose members either consists of a single point belonging to X d

or is isomorphic to ([0, 1],B([0, 1]),L0). Since every base of the last space is countable
(finite or not; see the proof of Lemma 5.5.4 below), one deduces that either X c is null or
is a standard set, or every standard base of (X ,M,N) contains the same, uncountable,
number of sets almost isomorphic to ([0, 1],B([0, 1]),L0). We define two characteristic
cardinal numbers related to X as follows: ιd(X ) = card(X d) and ιc(X ) is either 0 (if
X c is null) or ℵ0 (if X c is standard), or is equal to the uncountable number of members
of a standard base which are almost isomorphic to ([0, 1],B([0, 1]),L0). We see that
two multi-standard measurable spaces with nullities X and Y are almost isomorphic iff
ιd(X ) = ιd(Y ) and ιc(X ) = ιc(Y ). What is more, for any α ∈ Card and β ∈ Card∞∪{0}
there is a multi-standard measurable space with nullity Z for which ιd(Z ) = α and
ιc(Z ) = β. (Indeed, take a set D of cardinality α and a set S disjoint from D whose
cardinality is either β if β 6= ℵ0 or 1 if β = ℵ0. For each s ∈ S let (Is,Ms,Ns) be a copy
of ([0, 1],B([0, 1]),L0) and for d ∈ D let (Id,Md,Nd) be a standard one-point measurable
space with nullity. Now it suffices to define Z as

⊕
x∈D∪S(Ix,Mx,Nx).)

From now on, (X ,M,N) and (X ′,M′,N′) denote multi-standard measurable spaces
with nullities. Let Φ: X 3 x 7→ B(x) ∈ SEPN be any function. If there exist Z ∈ N and
an integrable field X \ Z 3 x 7→ AAA(x) ∈

⋃n=∞
n=1 CDDN (Hn) such that A(x) = Φ(x) for all

x ∈X \Z, we call Φ a summable field and define
⊕N

x∈X B(x) as follows. If X is trivial,
we put

⊕N
x∈X B(x) = O. Otherwise let B be a standard base of (X ,M,N). For every

B ∈ B there is a standard measure µB on (B,M|B) such that N(µB) = N|B . We put⊕
x∈X

N
B(x) =

⊕
B∈B

∫ ⊕
B

B(x) dµB(x). (5.5.1)

The next result shows that
⊕N

x∈X B(x) is well defined.

Proposition 5.5.3. Formula (5.5.1) well defines
⊕N

x∈X B(x). That is, the right-hand
side of (5.5.1) is independent of the choice of a standard base B and standard mea-
sures µB; and {B(x)}x∈B is an integrable (with respect to µB) field for each B ∈ B.

Proof. Let B1 and B2 be standard bases for (X ,M,N) and {µ(j)
B : B ∈ Bj} (j = 1, 2)

corresponding families of standard measures. For each D ∈ Bj let D′ ∈ M|D be such
that D \D′ ∈ N and (D′,M|D′) is a standard Borel space. Then the set

I(D′,B3−j) = {E ∈ B3−j : D′ ∩ E 6= ∅} is countable (5.5.2)

(see the last fragment of the proof of Lemma 5.5.4 below). Additionally put

I = {(D1, D2) ∈ B1 ×B2 : D′1 ∩D′2 /∈ N}.

Thanks to (DI3) (page 73) and (5.5.2) we obtain⊕
A∈B1

∫ ⊕
A

B(x) dµ
(1)
A (x) =

⊕
A∈B1

(⊕{∫ ⊕
A′∩B′

B(x) dµ
(1)
A (x) : (A,B) ∈ I

})

=
⊕{∫ ⊕

A′∩B′
B(x) dµ

(1)
A (x) : (A,B) ∈ I

}
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and similarly⊕
B∈B2

∫ ⊕
B

B(x) dµ
(2)
B (x) =

⊕{∫ ⊕
A′∩B′

B(x) dµ
(2)
B (x) : (A,B) ∈ I

}
.

Now the fact that N(µ(1)
A |A′∩B′) = N(µ(2)

B |A′∩B′) combined with (DI4) (page 74) yields⊕
A∈B1

∫ ⊕
A

B(x) dµ
(1)
A (x) =

⊕
B∈B2

∫ ⊕
B

B(x) dµ
(2)
B (x).

The remainder is left to the reader.

It is easily seen that the restriction of a summable field to a measurable set is
summable as well. Thanks to Proposition 5.5.3, we may rewrite (5.5.1) in a new form:
whenever B is a standard base of (X ,M,N) and {A(x)}x∈X is summable,⊕

x∈X

N
A(x) =

⊕
B∈B

(⊕
x∈B

N
A(x)

)
. (5.5.3)

Using this, one may prove that (5.5.3) is satisfied for an arbitrary (not necessarily stan-
dard) base B.

Our next goal is to extend the notion of summability to a more general context. In
what follows, we equip R+∪Card with the Borel structure induced by the order topology
(precisely, each of the sets Iα with α ∈ Card∞ is equipped with this Borel structure).

Lemma 5.5.4. For a function f : X → R+∪Card the following conditions are equivalent:

(i) f is almost measurable,
(ii) there is Z ∈ N with the following properties:

(a) A = f−1(R+) \ Z ∈M and f |A : A→ R+ is measurable,
(b) for every α ∈ Card∞, f−1({α}) \ Z ∈M,
(c) for each standard set B ∈M there exists ZB ∈ N such that f(B \ ZB) ∩Card∞

is countable (finite or not).

Proof. Suppose all conditions of (ii) are fulfilled. In what follows we preserve the notation
of (ii). Let B be a standard base of X . Put Z = Z ∪

⋃
B∈B(B ∩ZB). Then Z ∈ N and

(a)–(c) imply that f |X \Z is measurable.
Now assume that Z ∈ N is such that f |X \Z is measurable. It is clear that (a) and (b)

are satisfied. To show (c), it suffices to prove the following claim: if (Y,N) is a standard
Borel space and u : Y → Iγ is measurable, then D = u(Y )∩Card∞ is countable. Since D
is well ordered, D is countable iff so is the subset D0 of D consisting of all elements of D
which have an immediate predecessor (relative to D) in D. Note that if α ∈ D0, then {α}
is open in D with respect to the topology inherited from Iγ . Consequently, every subset
of D0 is open in D and hence Y0 = u−1(D0) is Borel and u|Y0 is a Borel function of Y0

(which is a standard Borel space) onto the discrete space D0. It therefore follows from
the theory of Souslin sets that D0 is countable. (Indeed, if D0 were uncountable, there
would exist a continuous mapping of D0 onto a non-Souslin subset of [0, 1]. It would then
follow that a non-Souslin subset of [0, 1] could be the image of a standard Borel space
under a Borel function, which is impossible.)
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Lemma 5.5.4 has two important consequences: if f, g : X → R+ ∪ Card are almost
measurable and α ∈ Card, the functions f + g and α · f are almost measurable as well.
We shall use these facts several times.

In the next two paragraphs, Φ: D → SEPN is a summable field and f : D → R+∪Card
is an almost measurable function where D ∈M (notice that D is multi-standard).

We say that f fits to Φ iff there are two disjoint measurable sets D1 and D2 such that
D \ (D1 ∪D2) ∈ N, f(D1) ⊂ Card and Φ(D2) ⊂ SMN . (If f fits to Φ, f(x)�Φ(x) makes
sense for almost all x ∈ D .)

There is Z ∈ N such that the sets A = f−1(Iℵ0 \ {0}) \ Z and Aα = f−1({α}) \ Z
with uncountable α’s are measurable and the function f |A : A → Iℵ0 is Borel. We call
the pair (f,Φ) summable if f fits to Φ and the field A 3 x 7→ f(x) � Φ(x) ∈ SEPN is
summable. If this is the case, we define

⊕N
x∈D f(x)� Φ(x) by⊕

x∈D

N
f(x)� Φ(x) =

(⊕
x∈A

N
f(x)� Φ(x)

)
⊕
⊕
α>ℵ0

(
α�

⊕
x∈Aα

N
Φ(x)

)
.

It is clear that the summability of (f,Φ) and the formula for⊕
x∈D

N
f(x)� Φ(x)

are independent of the choice of Z. Notice that the summability of Φ is equivalent to the
summability of (δ,Φ) where δ : D → R+ ∪ Card is constantly equal to 1.

The following properties follow from (DI0)–(DI4) (page 73) and (5.5.3). Everywhere
below, (f, {A(x)}x∈X ) is a summable pair.

(CS0) For each D ∈ M the pair (f, {A(x)}x∈D) is summable as well and
⊕N

x∈D f(x) �
A(x) = O iff sD(f) := {x ∈ D : f(x) 6= 0} ∈ N;

⊕N
x∈D f(x)�A(x) ∈ SEPN iff there

is Z ∈ N such that sD(f) \ Z is standard and f(D \ Z) ⊂ Iℵ0 .
(CS1) The pair (f, {b(A(x))}x∈X ) is summable and

b
( ⊕
x∈X

N
f(x)� A(x)

)
=
⊕
x∈X

N
f(x)� b(A(x)).

(CS2) Whenever B is a base of (X ,M,N),⊕
x∈X

N
f(x)� A(x) =

⊕
B∈B

(⊕
x∈B

N
f(x)� A(x)

)
.

(CS3) (A) If (f, {B(x)}x∈X ) is summable, so is (f, {A(x) ⊕ B(x)}x∈X ) and⊕
x∈X

N
f(x)� (A(x) ⊕ B(x)) =

( ⊕
x∈X

N
f(x)� A(x)

)
⊕
( ⊕
x∈X

N
f(x)� B(x)

)
.

(B) For every α ∈ Card, the pair (α · f, {A(x)}x∈X ) is summable and⊕
x∈X

N
(α · f(x))� A(x) = α� (

⊕
x∈X

N
f(x)� A(x)).

(C) If in addition (g, {A(x)}x∈X ) is summable, so is the pair (f + g, {A(x)}x∈X )
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and ⊕
x∈X

N
(f(x) + g(x))� A(x) =

( ⊕
x∈X

N
f(x)� A(x)

)
⊕
( ⊕
x∈X

N
g(x)� A(x)

)
.

(CS4) If ψ : X ′ →X is an almost null-isomorphism, the pair (f ◦ψ, {A(ψ(x′))}x′∈X ′) is
summable and ⊕

x′∈X ′

N′

f(ψ(x′))� A(ψ(x′)) =
⊕
x∈X

N
f(x)� A(x).

Since properties (CS3)(B) and (CS3)(C) are of importance to us and are not so easy, let
us prove them. It is quite simple that both the pairs appearing in the two assertions are
summable. Thanks to (CS2), we may assume that X is standard. It then follows from
Lemma 5.5.4 that we may also assume that both f(X )∩Card∞ and g(X )∩Card∞ are
countable and f and g are Borel.

We start with (CS3)(B). Observe that (DI3) yields the assertion for α 6 ℵ0. So,
ℵ0 � (

⊕N
x∈X f(x)� A(x)) =

⊕N
x∈X (ℵ0 · f(x))� A(x). This implies that we may further

assume that f(X ) ⊂ Card∞ (replacing f by ℵ0 · f and reducing X to s(f) = sX (f)).
But then the assertion easily follows from (CS2) and the countability of f(X ).

We now turn to (CS3)(C). Put Af (ℵ0) = f−1(Iℵ0) and Af (α) = f−1({α}) for un-
countable α. In the same way define Ag(β) (corresponding to g) for β ∈ Card∞. Notice
that the sets If = {α ∈ Card∞ : Af (α) 6= ∅} and Ig = {α ∈ Card∞ : Ag(α) 6= ∅} are
countable and hence the family {Af (α)∩Ag(β) : (α, β) ∈ If ×Ig} is a base of (X ,M,N).
Therefore—using again (CS2)—we may assume that If and Ig consist of single cardi-
nals. The case If = Ig = {ℵ0} follows from (DI3), while the one when ℵ0 /∈ If ∪ Ig is
obvious. Finally, if e.g. If = {ℵ0} and Ig = {α} for some α > ℵ0, then (by (CS3)(B))⊕N

x∈X (f(x) + g(x))� A(x) =
⊕N

x∈X g(x)� A(x) = α �
⊕N

x∈X A(x) >
⊕N

x∈X ℵ0 � A(x)

and (again by (CS2) and (CS3)(B))⊕
x∈X

N
ℵ0 � A(x) =

( ⊕
x∈X

N
(ℵ0 · f(x))� A(x)

)
⊕
( ⊕
x/∈s(f)

N
ℵ0 � A(x)

)
≥ ℵ0 �

( ⊕
x∈X

N
f(x)� A(x)

)
>
⊕
x∈X

N
f(x)� A(x),

which finishes the proof.
We now repeat the idea of the previous chapter. Let (f, {A(x)}x∈X ) be a summable

pair. If ⊕
x∈D′

N
f(x)� A(x) ⊥u

⊕
x∈D′′

N
f(x)� A(x) (5.5.4)

for any two disjoint sets D ′,D ′′ ∈ M, we call the pair (f, {A(x)}x∈X ) regular and we
write�N

x∈X f(x)� A(x) in place of
⊕N

x∈X f(x)� A(x).
Similarly, a summable field {A(x)}x∈X is regular iff (5.5.4) is satisfied with f con-

stantly equal to 1. As usual, using �N
x∈X f(x) � A(x) presupposes that (f, {A(x)}x∈X )

is regular. Note that, by definition, regular pairs and fields are summable.
The next result collects fundamental facts on the notion defined above.
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Theorem 5.5.5. Let Φ: X 3 x 7→ A(x) ∈ FN be any function.

(I) The following conditions are equivalent:

(i) the field {A(x)}x∈X is regular,
(ii) for every standard set A ∈M there is Z ∈ N such that Φ(A\Z) is a measurable

domain and Φ|A\Z is a Borel isomorphism of A \ Z onto Φ(A \ Z).

(II) If Φ satisfies condition (I)(ii) and f : X → R+ ∪ Card is an almost measurable
function which fits to Φ, then (f, {A(x)}x∈X ) is regular. Moreover,{

Y ∈ CDDN : Y 6s�
x∈X

N

f(x)� A(x)
}

=
{
�
x∈D

N

f(x)� A(x) : D ∈M
}
. (5.5.5)

Proof. The implication ‘(i)⇒(ii)’ in (I) follows immediately from Proposition 5.4.4. To
prove the converse, first note that Φ is summable because of (ii), the existence of a
standard base of X and Proposition 5.4.4. Further, take two disjoint nonnull measurable
sets D1 and D2. Let Bj be a standard base of Dj . Since B1 ∪B2 is standard for Bj ∈ Dj ,
we infer from (ii) and Proposition 5.4.4 that

⊕N
x∈B1

A(x) ⊥u
⊕N

x∈B2
A(x). Consequently,⊕

B∈B1
(
⊕N

x∈B A(x)) ⊥u
⊕

B∈B2
(
⊕N

x∈B A(x)) and hence (i) follows from (CS2).
Now assume Φ and f are as in (II). We may assume that f is Borel. Define f0 : X →

Iℵ0 \ {0} by f0(x) = f(x) if f(x) ∈ Iℵ0 \ {0} and f0(x) = 1 otherwise. The function
f0 is Borel and fits to Φ. Let B ∈ M be a standard set. Then there is a standard
measure µ on (B,M|B) such that N(µ) = N|B . We infer from the assumptions that
(µ,Φ|B) ∈ RGS(B,M|B). Hence, Lemma 5.4.8 implies that

(µ, (f0 � Φ)|B) ∈ RGS(B,M|B). (5.5.6)

Consequently, if B1 and B2 are two disjoint standard (measurable) subsets of X , then⊕
x∈B1

N
f0(x)� A(x) ⊥u

⊕
x∈B2

N
f0(x)� A(x). (5.5.7)

We also conclude from (5.5.6) that (f0,Φ) is summable on every standard subset of X .
Since X is multi-standard, (f0,Φ) is therefore summable. It now follows from the defi-
nitions of f0 and of summability that (f,Φ) is summable as well.

Further, ifB is a standard subset of X , it follows from Lemma 5.5.4 and the definitions
of f0 and of

⊕N
x∈B f(x) � Φ(x) that

⊕N
x∈B f(x) � Φ(x) �

⊕N
x∈B f0(x) � A(x). This,

combined with (5.5.7), yields⊕
x∈B1

N
f(x)� A(x) ⊥u

⊕
x∈B2

N
f(x)� A(x) (5.5.8)

for any two disjoint standard sets B1, B2 ⊂ X . Now if D ′ and D ′′ are two arbitrary
disjoint nonnull Borel subsets of X , the fact that they are multi-standard together with
(CS2) and (5.5.8) gives (5.5.4). It therefore suffices to check (5.5.5). We have already
shown the inclusion ‘⊃’ in (5.5.5) (cf. (CS2)). Finally, fix Y ∈ CDDN such that

Y 6s�
x∈X

N

f(x)� A(x). (5.5.9)



88 5. Prime decomposition

Let B0 be a standard base of X . Thanks to Lemma 5.5.4, for every B ∈ B0 there are
pairwise disjoint measurable subsets WB

0 ,W
B
1 , . . . of B such that B \

⋃∞
n=0W

B
n ∈ N,

f(WB
0 ) ⊂ R+ \ {0} and f |WB

n
is constantly equal to some α ∈ Card∞ ∪ {0}. Notice that

then B = {WB
n : B ∈ B0, n > 0} \N is a standard base of X as well. Denote by Bf the

set of all B ∈ B for which f(B) ⊂ R+ \ {0} and let B′ = B \Bf . For each B ∈ B′ there
is a (unique) αB ∈ Card∞ ∪ {0} such that f(B) = {αB}. Now (CS2), (CS3) and a part
of (II) already proved give

�
x∈X

N

f(x)� A(x) =
[
�
B∈Bf

(
�
x∈B

N

f(x)� A(x)
)]
�
[
�
B∈B′

αB �
(
�
x∈B

N

A(x)
)]
. (5.5.10)

It may be deduced from (5.5.9) and (5.5.10) (using e.g. Proposition 3.1.4 and Theo-
rem 3.1.1) that Y is of the form

Y =
(
�
B∈Bf

YB
)
�
(
�
B∈B′

ỸB
)

where YB 6s �N
x∈B f(x) � A(x) for B ∈ Bf and ỸB 6s αB ��N

x∈B A(x) for B ∈ B′.
Further, by (PR6) (page 13), for each B ∈ B′ there is YB 6s �N

x∈B A(x) such that
ỸB = αB�YB . Since B consists of standard sets, we infer from Proposition 5.4.6 that for
every B ∈ B there exists a measurable set DB ⊂ B for which YB =�N

x∈DB
f(x)� A(x)

provided B ∈ Bf and YB =�N
x∈DB

A(x) if B ∈ B′. Put D =
⋃
B∈B DB and note that D

is Borel since B is a base. Finally, the family {DB : B ∈ B} is a base of D and hence we
deduce from (CS2) and (CS3) that

�
x∈D

N

f(x)� A(x) =�
B∈B

(
�
x∈DB

N

f(x)� A(x)
)

=
(
�
B∈Bf

YB
)
�
(
�
B∈B′

αB � YB
)

= Y,

and we are done.

Similarly to the previous chapter, for a field Φ: X → FN we shall write Φ ∈ RGSloc

or Φ ∈ RGSloc(X ) if Φ satisfies condition (ii) of Theorem 5.5.5.

5.6. Prime decomposition

Semiprimes are those members of pN which make the issue of prime decomposition of
N -tuples more complicated and ambiguous. To shape this in a way similar to that in
the ring of natural numbers, we have to allow multiplicity functions to take real values
(beside infinite cardinals) instead of (only) integer ones. Such an approach is therefore
similar to Ernest’s multiplicity theory (Chapter 4 of [9]) and will enable us to propose
the prime decomposition of an arbitrary N -tuple in an (essentially) unique form (see
Theorem 5.6.14). We consider this a more attractive manner of ‘factorial decomposing’
of N -tuples than Ernest’s central decomposition [9].

In this chapter (X ,Φ) is a fixed pair such that (X ,M,N) is a multi-standard mea-
surable space with nullity and Φ ∈ RGSloc(X ) is such that Φ(X ) ⊂ pN . After removing
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from X a null measurable set, we may assume Φ is measurable. Let

XI = Φ−1(aN ), XII = Φ−1(sN ), XIII = Φ−1(fN ).

Notice that XI ,XII and XIII are measurable, pairwise disjoint and XI∪XII∪XIII = X .

Definition 5.6.1. A function f : D → R+ ∪Card, where D ∈M, is admissible for Φ iff
f is almost measurable, f(XI ∩ D) ⊂ Card and f(XIII ∩ D) ⊂ {0} ∪ Card∞. The class
of all admissible functions on X is denoted by A (X ,Φ) or briefly by A (X ).

For each f ∈ A (X ), s(f) is the support of f , i.e. s(f) = {x ∈X : f(x) 6= 0} (s(f) is
measurable provided so is f).

Note that each admissible function fits to Φ. Thus, by Theorem 5.5.5, for every f ∈
A (X ) we may write �N

x∈X f(x) � Φ(x). As is practised in measure theory, the term
almost everywhere, abbreviated a.e., will mean that the relevant property (relation, etc.)
holds on X \ Z for some Z ∈ N.

As a consequence of Lemma 5.5.4 we obtain

Corollary 5.6.2. For f, g ∈ A (X ),

(a) f + g, f · g, f ∨ g, f ∧ g ∈ A (X ) where f ∨ g = max(f, g) and f ∧ g = min(f, g),
(b) α · f ∈ A (X ) for each α ∈ Card,
(c) if f(XI ∪XIII) ⊂ {0}, t · f ∈ A (X ) for every t ∈ R+,
(d) if f 6 g a.e., there is u ∈ A (X ) such that g = f + u a.e.

We leave the proof of Corollary 5.6.2 as an exercise. A part of it may be strengthened:

Lemma 5.6.3. Whenever f1, f2, . . . are admissible functions, so are
∧
n>1 fn : X 3 x 7→

infn>1 fn(x) ∈ R+ ∪ Card and
∨
n>1 fn : X 3 x 7→ supn>1 fn(x) ∈ R+ ∪ Card. In

particular,
∑∞
n=1 fn ∈ A (X ) (where (

∑∞
n=1 fn)(x) =

∑∞
n=1 fn(x)).

Proof. We leave it as an exercise that it is enough to show, thanks to Lemma 5.5.4,
that the closure of any countable subset K of Card∞ (in Iγ ⊃ K for any γ ∈ Card∞)
is countable as well (recall that countable compact Hausdorff spaces are metrizable, by
[9, Theorem 3.1.9]). But this is quite simple: for every element x (except the last) of
L = (clK) \ K there exists cx ∈ K which lies between x and its immediate successor
(relative to L) in L. Since L 3 x 7→ cx ∈ K is one-to-one, the assertion follows.

Proposition 5.6.4. For f, g ∈ A (X ),

�
x∈X

N

f(x)� Φ(x) =�
x∈X

N

g(x)� Φ(x) (5.6.1)

iff f = g a.e.

Proof. The ‘if’ part is clear. Suppose (5.6.1) holds. It follows from (CS3) (page 85) that
�N

x∈B u(x)�Φ(x)��N
x∈B Φ(x) for each B ∈M and u ∈ {f, g}. Since�N

x∈B Φ(x) ⊥u
�N

x/∈B Φ(x), (5.6.1) and (CS2) imply therefore that

�
x∈B

N

f(x)� Φ(x) =�
x∈B

N

g(x)� Φ(x) (5.6.2)
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for any B ∈M. Let D ∈M be standard. It suffices to check that f = g almost everywhere
on D . Thanks to Lemma 5.5.4 we may assume that f |D and g|D are Borel and

(f(D) ∪ g(D)) ∩ Card∞ is countable. (5.6.3)

By (5.6.3), the sets D+ = {x ∈ D : f(x) < g(x)} and D− = {x ∈ D : f(x) > g(x)} are
Borel. Suppose, to the contrary, that e.g. D+ /∈ N. We consider two cases.

Assume there are a nonnull measurable set B ⊂ D+ and two cardinals α and β such
that f(B) = {α} and g(B) = {β}. Let B =�N

x∈B Φ(x). We infer from (CS0) that B 6= O.
Moreover, since Φ(X ) ⊂ pN and Φ ∈ RGSloc, and B is standard, Lemma 5.4.9 implies
that B is the direct sum of a minimal N -tuple and a semiminimal one. Consequently,
α � B < β � B (use e.g. Theorem 3.6.1 and (AO4), page 32, if applicable). But this
contradicts (5.6.2) because�N

x∈B f(x)�Φ(x) = α�B and�N
x∈B g(x)�Φ(x) = β �B.

Finally, if there is no set B with all above-mentioned properties, it may be deduced
from (5.6.3) that there exists a nonnull measurable set B ⊂ D+ ∩XII such that f(B) ⊂
R+. Let B =�N

x∈B f(x)� Φ(x). As before, an application of Lemma 5.4.9 shows that

B ∈ SMN . (5.6.4)

On the other hand, there is a measurable function u : B → (R+ ∪ Card) \ {0} such
that g(x) = f(x) + u(x) for all x ∈ B. Then (CS3) combined with (5.6.2) gives B =
�N

x∈B g(x) � Φ(x) = B ⊕ (�N
x∈B u(x) � Φ(x)), which means, thanks to (5.6.4), that

�N
x∈B u(x)� Φ(x) = O (cf. (AO4)), contrary to (CS0).

Theorem 5.6.5. Let T =�N
x∈X Φ(x). Then{

�
x∈X

N

f(x)� Φ(x) : f ∈ A (X ,Φ)
}

= {X ∈ CDDN : X� T}.

Proof. It easily follows from (CS3) (page 85) that �N
x∈X f(x) � Φ(x) � T for every

f ∈ A (X ). We fix X ∈ CDDN such that X� T. Let {Bs}s∈S be a standard base of X .
We may assume that

⋃
s∈S Bs = X . For each s ∈ S put Ts = �N

x∈Bs Φ(x). We infer
from (CS0) that Ts ∈ SEPN and from (CS2) that T = �s∈S Ts. Let Xs = E(X|Ts).
Observe that X =�s∈S Xs and Xs � Ts. Suppose for each s ∈ S there is an admissible
function fs : Bs → R+ ∪ Card such that Xs = �N

x∈Bs fs(x) � Φ(x). Then the union
f : X → R+ ∪ Card of fs’s is admissible as well and it follows from (CS2) that

�
x∈X

N

f(x)� Φ(x) =�
s∈S

(
�
x∈Bs

N

fs(x)� Φ(x)
)

=�
s∈S

Xs = X.

The above argument reduces the problem to the case when X is standard. Then there
is a standard measure µ on M such that N(µ) = N. Consequently,

�
x∈X

N

f(x)� Φ(x) =
∫ �

X

f(x)� Φ(x) dµ(x) (5.6.5)

for every Borel function f : X → Iℵ0 which fits to Φ. Recall that for each A ∈ CDDN ,
s(A) is given by (4.4.5) (page 47) and s(A) =

∧
{E 6s J : A � E}. Since T ∈ SEPN

(because X is standard), s(T) ∈ SEPN as well. So, if X � T, then s(X) 6s s(T) and
consequently the set J = {(i, α) ∈ Υ: Eiα(X) 6= O} is countable.
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We infer from Lemma 5.4.9 that:

• T is the direct sum of a minimal N -tuple and a semiminimal one,
• there is λ ∈ rgm(pN ) such that T =

∫ �
pN

P dλ(P),
• for each (i, α) ∈ J there is a Borel function uiα : pN → Iℵ0 such that uiα(aN ) ⊂ Card,
uiα(fN ) ⊂ {0,ℵ0} and

Eiα(X) =
∫ �

pN

uiα(P)� P dλ(P) if (i, α) 6= (II, 1),

Esm(X) =
∫ �

pN

uiα(P)� P dλ(P) if (i, α) = (II, 1).
(5.6.6)

Further, it follows from Corollary 5.4.7 that

Φ∗(µ)� λ� Φ∗(µ) (5.6.7)

(cf. (5.6.5)). Since X is standard and Φ ∈ RGSloc(X ), we may assume that Φ is a Borel
isomorphism of X onto a measurable domain. Put giα = uiα ◦ Φ for (i, α) ∈ J and note
that giα ∈ A (X ). Now (5.6.5), (5.6.6) and (5.6.7) combined with (DI4) (page 74) for
every (i, α) ∈ J yield

Eiα(X) =�
x∈X

N

giα(x)� Φ(x) if (i, α) 6= (II, 1), (5.6.8)

Esm(X) =�
x∈X

N

giα(x)� Φ(x) if (i, α) = (II, 1). (5.6.9)

Let (i, α) and (i′, α′) be distinct elements of J . Suppose s(giα) ∩ s(gi′α′) /∈ N (s(giα)’s are
measurable since giα’s are). Then there is a nonnull measurable set B which is contained
in s(giα) ∩ s(gi′α′). Consequently, thanks to (CS3) and (5.6.8)–(5.6.9), ℵ0 ��N

x∈B Φ(x) 6
ℵ0�Eiα(X) as well as ℵ0��N

x∈B Φ(x) 6 ℵ0�Ei
′

α′(X), which is impossible since Eiα(X) ⊥u
Ei
′

α′(X) and�N
x∈B Φ(x) 6= O. This proves that s(giα)∩s(gi′α′) ∈ N for any distinct (i, α) and

(i′, α′) in J . It then follows from the countability of J that there is Z ∈ N such that the
sets S i

α = s(giα)\Z ((i, α) ∈ J) are pairwise disjoint. Now we define f : X → R+∪Card
by the rules: f(x) = α · giα(x) for x ∈ S i

α with (i, α) ∈ J \ {(II, 1)}; f(x) = gII1 (x) for
x ∈ S II

1 provided (II, 1) ∈ J ; and f(x) = 0 for x /∈
⋃

(i,α)∈J S i
α. It follows from the

construction that f ∈ A (X ). Finally, Theorem 3.6.1, (5.6.8)–(5.6.9), (CS2) and (CS3)
(page 85) give X =�N

x∈X f(x)� Φ(x).

Theorem 5.6.5 asserts that I(Φ) = {�N
x∈X f(x) � Φ(x) : f ∈ A (X )} is an ideal.

We call a quadruple (Y ,N,Z,Ψ) or a pair (Y ,Ψ) a covering for an ideal A ⊂ CDDN iff
(Y ,N,Z) is a multi-standard measurable space with nullity, Ψ ∈ RGSloc(Y ), Ψ(Y ) ⊂ pN
and I(Ψ) = A (with this terminology we are inspired by condition (ii) of Theorem 5.5.5).
Whenever the ideal A is irrelevant, we shall speak briefly of a covering. A full covering
is a covering for CDDN .

As usual, whenever D ∈M, jD stands for the characteristic function of D .
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Corollary 5.6.6. Let f, g, h1, h2, . . . ∈ A (X ), X = �N
x∈X f(x) � Φ(x) and Y =

�N
x∈X g(x)� Φ(x).

(A) X 6 Y iff f 6 g a.e.
(B) X ⊥u Y iff f · g = 0 a.e.
(C) X� Y iff s(f) \ s(g) ∈ N.
(D) X 6s Y iff f = g · jD a.e. for some D ∈M.
(E) �N

x∈X [
∑∞
n=1 hn(x)]� Φ(x) =

⊕∞
n=1[�N

x∈X hn(x)� Φ(x)].

Proof. Observe that (D) is an immediate consequence of (5.5.5) (page 87) and Proposi-
tion 5.6.4; (B) follows from (A) and Theorem 5.6.5; (E) is a consequence of (A), (CS3)
(page 85) and (AO6) (page 32); while (C) follows from (CS3) and (B). It therefore suf-
fices to prove (A). The implication ‘⇐’ is a consequence of (CS3) and Corollary 5.6.2(d).
Finally, the converse follows from Proposition 5.6.4 and Theorem 5.6.5. Indeed, if X 6 Y,
there is A ∈ CDDN such that Y = X ⊕ A. Then A ∈ I(Φ) and consequently there
is h ∈ A (X ) for which A = �N

x∈X h(x) � Φ(x). We now deduce from (CS3) that

�N
x∈X g(x)�Φ(x) =�N

x∈X (f+h)(x)�Φ(x) and hence, by Proposition 5.6.4, g = f+h

a.e.

For the next result, we put XIn = Φ−1(aN (n)), XII1 = Φ−1(sN (1)) and XII∞ =
Φ−1(sN (∞)). Observe that these sets are pairwise disjoint, XI =

⋃n=∞
n=1 XIn and XII =

XII1 ∪XII∞ . For simplicity, we assume that Φ is measurable, which implies that all these
sets are measurable as well.

Corollary 5.6.7. Let f ∈ A (X ) and A =�N
x∈X f(x)� Φ(x).

(a) A ∈ MFN (respectively A ∈ HIMN ; A ∈ SMN ) iff f = jD a.e. for some measurable
D ⊂XI (respectively f = ℵ0 ·jD a.e. for some measurable D ⊂XIII ; there is Z ∈ N

such that f((XI∪XIII)\Z ) ⊂ {0} and f(XII\Z ) ⊂ R+). In particular,�N
x∈X Φ(x)

is the direct sum of a minimal N -tuple and a semiminimal one.
(b) A ∈ SEPN (respectively A ∈ aN ; A ∈ fN ; A ∈ sN ; A ∈ FN ) iff there is Z ∈ N such

that s(f) \Z is standard and f(X \Z ) ⊂ Iℵ0 (respectively f = j{x} a.e. for some
x ∈ XI ∩X d; f = ℵ0 · j{x} a.e. for some x ∈ XIII ∩X d; f = t · j{x} a.e. for some
x ∈XII ∩X d and t ∈ R+ \{0}; f = s · j{x} a.e. for some x ∈X d and s ∈ Iℵ0 \{0}).

(c) A is type I; In; II; II1; II∞; III iff, respectively, s(f) \XI ; s(f) \XIn ; s(f) \XII ;
s(f) \XII1 ; s(f) \XII∞ ; s(f) \XIII is a member of N.

(d) Ad =�x∈X d f(x)� Φ(x) and Ac =�N
x∈X c f(x)� Φ(x).

(e) Let Z ∈ N be such that f |X \Z is Borel and X \ Z is the union of a base B

consisting of sets each of which is isomorphic either to ([0, 1],B([0, 1]),L0) or to a
one-point nontrivial measurable space with nullity (there exists such Z ). Put Esm =
f−1(R+ \ {0}) ∩ XII \ Z and E i

α = f−1({α}) ∩ Xi \ Z for (i, α) ∈ Υ∗. Then
E = {E i

α : (i, α) ∈ Υ∗} ∪ {Esm} is a base of X ; and Esm(A) =�N
x∈Esm

f(x)� Φ(x),
Eiα(A) = �N

x∈E iα
Φ(x) for (i, α) ∈ Υ with i 6= II and α 6= 0, and EIIα (A) = ℵ0 �

�N
x∈E IIα

Φ(x) for α ∈ Card∞.

Proof. Points (a)–(d) are left as exercises. They are almost immediate consequences of
Propositions 4.5.4, 5.4.6 and the fact that central decompositions of von Neumann alge-
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bras preserve the types. Note also that�N
x∈X d f(x)�Φ(x) =�x∈X d f(x)�Φ(x) since

N|X d = {∅}.
To prove (e), it suffices to show that E is a base of X , since then the remainder

will follow from (CS2), (CS3) (page 85), (a) and the uniqueness in Theorem 3.6.1. It
is clear that E consists of pairwise disjoint, measurable sets (because f is measurable
on X \ Z ) and X \

⋃
E = Z . Now assume A ⊂ X \ Z is such that A ∩ E ∈ M

(respectively A ∩ E ∈ N) for any E ∈ E. Let B be as in (e). It follows from the proof
of Lemma 5.5.4 that f(B) ∩ Card∞ is countable for each B ∈ B. Consequently, also the
set E(B) = {E ∈ E : E ∩ B 6= ∅} is countable and thus A ∩ B =

⋃
E∈E(B)[(A ∩ E) ∩ B]

is a member of M (respectively N) for any B ∈ B. Since B is a base, we obtain A ∈M

(A ∈ N) and we are done.

Remark 5.6.8. For every measurable set D ⊂ X , let jD denote an admissible function
which is 0 off D , 1 on D \XIII and ℵ0 on D ∩XIII .

Using Corollary 5.6.6(E) as well as (CS2) and (CS3)(B) (page 85), one may show
that whenever (X ,M,N,Φ) is a covering, the regular (continuous) direct sums of the
form�N

x∈X f(x)�Φ(x) with f ∈ A (X ) may be defined by axioms (AX0)–(AX3) stated
below. Namely, it is now quite easy to prove that if Ψ: A (X )→ CDDN is an assignment
such that

(AX0) for every D ∈M, Ψ(jD) =�N
x∈D Φ(x),

(AX1) whenever B is a base of X , Ψ(f) =
⊕

B∈B Ψ(jB · f) for every f ∈ A (X ),
(AX2) Ψ(α · f) = α�Ψ(f) for any α ∈ Card and f ∈ A (X ),
(AX3) Ψ(

∑∞
n=1 fn) =

⊕∞
n=1 Ψ(fn) for all f1, f2, . . . ∈ A (X ),

then Ψ(f) =�N
x∈X f(x)�Φ(x) for any f ∈ A (X ) (to show this, use Corollary 5.6.7(e)

and the fact that a real-valued measurable function may be written as a series of rational-
valued simple functions). However, at this moment we do not know whether Φ is uniquely
determined (up to a.e. equality) by ‘its’ continuous direct sums appearing in (AX0). This
(and even more) will be proved later, in Theorem 5.6.17.

The next result follows from Corollary 5.6.7 and its proof is left to the reader.

Corollary 5.6.9. Let (Y ,Ψ) be a covering for an ideal A ⊂ CDDN and let B = J(A).
Then ιd(Y ) = card({X ∈ FN : X 6s B}) and ιc(Y ) = dim(Bc).

Our next aim is to establish (in a sense) the uniqueness (Theorem 5.6.10 and Corol-
lary 5.6.11 below) and the existence (Proposition 5.6.13) of coverings for arbitrary ideals
in CDDN .

Theorem 5.6.10. Let (X1,M1,N1,Φ1) and (X2,M2,N2,Φ2) be two coverings such that

�
x∈X1

N1

Φ1(x) =�
x∈X2

N2

Φ2(x). (5.6.10)

Then there are sets Zj ∈ Nj (j = 1, 2) and a null-isomorphism τ : X1 \Z1 → X2 \Z2

such that Φ1(x) = Φ2(τ(x)) for each x ∈X1 \Z1.
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Proof. Let Bj be a standard base of Xj . For B ∈ Bj put T(j)
B =�Nj

x∈B Φj(x). It follows
from (CS2) and (5.6.10) that

�
B∈B1

T(1)
B =�

B∈B2

T(2)
B . (5.6.11)

Let I = {(B1, B2) ∈ B1 × B2 : TB1,B2 := T(1)
B1
∧ T(2)

B2
6= O}. We conclude from (5.6.11)

that

T(1)
B =�{TB,B′ : (B,B′) ∈ I} (B ∈ B1), (5.6.12)

T(2)
B =�{TB′,B : (B,B′) ∈ I} (B ∈ B2). (5.6.13)

It follows from Corollary 5.6.6 and (5.6.12)–(5.6.13) that for any B′ ∈ B1 and B′′ ∈ B2

the sets I2(B′) = {B2 ∈ B2 : (B′, B2) ∈ I} and I1(B′′) = {B1 ∈ B1 : (B1, B
′′) ∈ I}

are countable (since T(j)
B ∈ SEPN ) and thus there are families of pairwise disjoint sets

{D1
B′,B}B∈I2(B′) ⊂ M1 and {D2

B,B′′}B∈I1(B′′) ⊂ M2 such that B′ =
⋃
B∈I2(B′)D

1
B′,B ,

B′′ =
⋃
B∈I1(B′′)D

2
B,B′′ and

TB1,B2 = �
x∈D1

B1,B2

N1

Φ1(x) = �
x∈D2

B1,B2

N2

Φ2(x) (5.6.14)

for any (B1, B2) ∈ I (cf. Corollary 5.6.6 or Theorem 5.5.5). We also infer from the
countability of I1(B2) and I2(B1) that

{Dj
B1,B2

: (B1, B2) ∈ I} is a base of Xj . (5.6.15)

Fix (B1, B2) ∈ I. Since Dj
B1,B2

is standard and Φj ∈ RGSloc, there is a Borel set Gj ⊂
Dj
B1,B2

such that Dj
B1,B2

\ Gj ∈ Nj , Φj(Gj) is a measurable domain and Φj |Gj is a
Borel isomorphism of Gj onto Φj(Gj). Let µj be a standard measure on Mj |Gj for
which Nj |Gj = N(µj). Relation (5.6.14) shows that

∫ �
G1

Φ1(x) dµ1(x) =
∫ �
G2

Φ2(x) dµ2(x).
Hence Corollary 5.4.7 implies that µ̂1 � µ̂2 � µ̂1 where µ̂j(F) = µj(Φ−1

j (F) ∩ Gj) for
F ∈ B(pN ). Consequently, ZjB1,B2

= Dj
B1,B2

\ [Φ−1
j (Φ1(G1) ∩ Φ2(G2)) ∩ Gj ] ∈ Nj and

τB1,B2 : D1
B1,B2

\ Z1
B1,B2

3 x 7→ (Φ2|G2)−1(Φ1(x)) ∈ D2
B1,B2

\ Z2
B1,B2

is a well defined
null-isomorphism such that{

τB1,B2 : D1
B1,B2

\ Z1
B1,B2

→ D2
B1,B2

\ Z2
B1,B2

,

Φ2 ◦ τB1,B2 = Φ1|D1
B1,B2

\Z1
B1,B2

.
(5.6.16)

Now it suffices to put Zj = (Xj \
⋃

Bj)∪
⋃

(B1,B2)∈I Z
j
B1,B2

and to define τ : X1 \Z1 →
X2 \ Z2 as the union of {τB1,B2}(B1,B2)∈I . It follows from (5.6.15) and (5.6.16) that
Zj ∈ Nj and τ is a null-isomorphism we searched for.

Corollary 5.6.11. Let A be an ideal and (X 1,M1,N1,Φ1) and (X 2,M2,N2,Φ2) be
two coverings for A. Then there are sets Z j ∈ Nj (j = 1, 2), a Borel function u : X 1 →
R+ \ {0} with u(X 1

I ∪X 1
III) ⊂ {1}, and a null-isomorphism τ : X 1 \ Z 1 → X 2 \ Z 2

such that Φ2(τ(x)) = u(x)� Φ1(x) for every x ∈X 1 \Z 1.
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Proof. Let Tj =�Nj

x∈X j Φj(x). It follows from the assumptions and Theorem 5.6.5 that

T1 � T2 (5.6.17)

and there is f ∈ A (X 1) such that

T2 = �
x∈X 1

N1

f(x)� Φ1(x). (5.6.18)

Now Corollary 5.6.7 implies that T2 is the direct sum of a minimal N -tuple and a semi-
minimal one, and consequently there is Z ∈ N1 such that A := s(f) \ Z ∈ M1, f |A is
Borel, f(A∩X 1

I ) ⊂ {1}, f(A∩X 1
III) ⊂ {ℵ0} and f(A∩X 1

II) ⊂ R+ \{0}. Further, Corol-
lary 5.6.6 combined with (5.6.17) shows that X 1 \ s(f) ∈ N1 and hence X 1 \ A ∈ N1.
Define u : X 1 → R+ \ {0} by u(x) = f(x) for x ∈ A \XIII and u(x) = 1 otherwise.
Observe that u is Borel and fits to Φ1, and u(x)� Φ1(x) = f(x)� Φ1(x) for x ∈ A. So,
(5.6.18) gives

�
x∈X 2

N2

Φ2(x) = �
x∈X 1

N1

u(x)� Φ1(x). (5.6.19)

Finally, since u is real-valued, (u � Φ1)(X 1) ⊂ pN and we deduce from Theorem 5.5.5
that (X 1, u � Φ1) is a covering. So, the assertion follows from Theorem 5.6.10, thanks
to (5.6.19).

To establish the existence of coverings, we need the following

Lemma 5.6.12. Let E ⊂ rgm(pN ) be a family such that

µ ⊥s ν if µ 6= ν and µ, ν ∈ E . (5.6.20)

Let (X ,M,N) =
⊕

µ∈E (pN ,B(pN ),N(µ)) and Φ: X → pN be the canonical projection.
Then (X ,Φ) is a covering and

�
x∈X

N

Φ(x) =�
µ∈E

∫ �
pN

P dµ(P). (5.6.21)

Proof. First of all, the usage of ‘�µ∈E ’ is allowed by Lemma 5.4.10, thanks to (5.6.20).
Further, since regularity measures are concentrated on measurable domains which are
Souslin–Borel sets, (X ,M,N) is a multi-standard measurable space with nullity and
{pN × {µ}}µ∈E is a standard base of X . Thus, it suffices to check that Φ ∈ RGSloc(X )
(then (5.6.21) will automatically be satisfied). It is clear that Φ is Borel.

Let A ∈M be standard. We will show that condition (ii) of Theorem 5.5.5 is fulfilled.
Since A is standard, the set E ′ = {µ ∈ E : Φ(A) /∈ N(µ)} is countable. Observe that
Z0 = A ∩ [

⋃
µ/∈E ′(pN × {µ})] ∈ N. Since A \ Z0 ⊂ pN × E ′ ∈M, we may assume that

A = pN × E ′. (5.6.22)

For µ ∈ E ′ let Tµ =
∫ �

pN
P dµ(P). Put T = �µ∈E ′ Tµ. It follows from Lemma 5.4.9(C)

that Tµ (µ ∈ E ′) is the direct sum of a minimal N -tuple and a semiminimal one, and
thus so is T. Moreover, since E ′ is countable, T ∈ SEPN (T 6= O because standard sets
are nonnull). Now Lemma 5.4.9(A) asserts that there is a measure λ ∈ rgm(pN ) such
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that T =
∫ �

pN
P dλ(P). Since Tµ 6s T, we conclude from Corollary 5.4.7 that

µ� λ (µ ∈ E ′). (5.6.23)

Further, it follows from (5.6.20) and the countability of E ′ that there is a collection
{Sµ}µ∈E ′ of pairwise disjoint measurable subsets of pN such that µ(pN \ Sµ) = 0 for
every µ ∈ E ′. Finally, let F ⊂ pN be a measurable domain such that λ(pN \ F) = 0. Put

D =
⋃
µ∈E ′

[(Sµ ∩ F)× {µ}].

Observe that D ⊂ A (by (5.6.22)), A \D ∈ N (pN \ (Sµ ∩ F) ∈ N(µ) by (5.6.23)), Φ|D is
one-to-one (since the Sµ’s are pairwise disjoint) and Φ(D) ⊂ F. So, Remark 5.4.5 finishes
the proof.

Proposition 5.6.13. Let T ∈ CDDN be the direct sum of a minimal N -tuple and a
semiminimal one. There is a covering (X ,M,N,Φ) such that

T =�
x∈X

N

Φ(x).

Proof. By Zorn’s lemma, there is a maximal family E ⊂ rgm(pN ) such that (5.6.20) is
satisfied and Tµ :=

∫ �
pN

P dµ(P) 6s T for each µ ∈ E (since Tµ 6= O; cf. Lemma 3.4.1).
It follows from Lemma 5.6.12 and its proof that �µ∈E Tµ 6s T and that it is enough
to show that X := T � (�µ∈E Tµ) is equal to O. Suppose, to the contrary, that X 6= O.
Since T 6 J, we infer from Proposition 3.4.10 that there is Y ∈ SEPN such that Y 6s X.
Then Y is the direct sum of a minimal N -tuple and a semiminimal one (because X 6s T).
Now Lemma 5.4.9 yields ν ∈ rgm(pN ) such that

∫ �
pN

P dν(P) = Y (6s T). Finally, since
Y ⊥u Tµ for every µ ∈ E , Lemma 5.4.10 asserts that ν ⊥s µ for any µ ∈ E , contrary to
the fact that E is maximal.

The next theorem is an immediate consequence of all previously established properties.
This result may be formulated for arbitrary coverings. Of main interest to us, however,
are the full coverings. To make the theorem most transparent, we repeat some of the
properties proved earlier.

Theorem 5.6.14 (Prime Decomposition).

(I) There exists a full covering. What is more, for every T ∈ SMN with ℵ0 � T = JII
there is a full covering (X ,M,N,Φ) such that �N

x∈X Φ(x) = JI � T� JIII .
(II) Let (X 1,M1,N1,Φ1) and (X 2,M2,N2,Φ2) be full coverings. There are a Borel

function u : X 1 → R+ \ {0} such that u(X 1
I ∪X 1

III) = {1} and an almost null-
isomorphism τ : X 1 →X 2 such that Φ2 ◦ τ = u�Φ1 a.e. In particular, for every
f ∈ A (X 2), (f ◦ τ)u ∈ A (X 1) and

�
x∈X 2

N2

f(x)� Φ2(x) = �
x∈X 1

N1

[(f ◦ τ)u](x)� Φ1(x).

(III) Let (X ,M,N, {Px}x∈X ) be a full covering.
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(A) For each A ∈ CDDN there is f ∈ A (X ) such that A =�N
x∈X f(x)� Px.

(B) For any f1, f2, f3, . . . ∈ A (X ),

�
x∈X

N [ ∞∑
n=1

fn(x)
]
� Px =

∞⊕
n=1

[
�
x∈X

N

fn(x)� Px
]
.

(C) Let f, g ∈ A (X ). Put X =�N
x∈X f(x)�Px and Y =�N

x∈X g(x)�Px. Then:

(a) X = Y ⇔ f = g a.e.,
(b) X 6 Y ⇔ f 6 g a.e.,
(c) X 6s Y ⇔ f = g · jD a.e. for some D ∈M,
(d) X� Y ⇔ s(f) \ s(g) ∈ N,
(e) X ⊥u Y ⇔ f · g = 0 a.e. ⇔ s(f) ∩ s(g) ∈ N,
(f) α� X =�N

x∈X (α · f)(x)� Px for any α ∈ Card,
(g) X ∈ SMN ⇔ s(f) \XII ∈ N and f−1(Card∞) ∈ N; if X ∈ SMN , then

t� X =�N
x∈X [t · f(x)]� Px for each t ∈ R+,

(h) X ∈ SEPN iff there is Z ∈ N such that s(f)\Z is standard and f(X \Z )
⊂ Iℵ0 .

We leave the proofs of (g) and of a part of (II) as exercises.
Theorem 5.6.14 says that after fixing T ∈ SMN such that ℵ0 � T = JII , there is a

unique (up to almost null-isomorphism) full covering (X ,M,N,Φ) such that

�
x∈XII

N

Φ(x) = T.

Then for every A ∈ CDDN there is a unique (up to almost everywhere equality) function
m ∈ A (X ) such that

A =�
x∈X

N

m(x)� Φ(x). (5.6.24)

The function m is called the multiplicity function of A (relative to T) (compare with
Chapter 4 of [9]) and the formula (5.6.24) is called the prime decomposition of A (relative
to T). One may check that A ∈ CDDN has a multiplicity function (respectively a prime
decomposition) of a unique (i.e. independent of the choice of T) form iff Esm(A) = 0
(respectively A ⊥u JII).

Since aN (n) for finite n consists of bounded N -tuples, Theorem 5.6.14 implies that
every N -tuple X whose type I∞, II and III parts vanish admits a decomposition in the
form X =

⊕∞
n=1 X(n) where each X(n) is bounded. So, in the notation of Examples 4.5.2,

every such X belongs to I[cl Ω(bd)].

Remark 5.6.15. Theorem 5.6.14 implies that all measurable spaces with nullities being
ingredients of full coverings are almost isomorphic. One may therefore ask about their
(common) characteristic numbers ιd and ιc. Using the results of the next chapter and
Corollary 5.6.9 one may show that both numbers are equal to 2ℵ0 . Even more: whenever
(X ,Φ) is a full covering, for Y ∈ {X ,XI ,XI1 ,XI2 , . . . ,XI∞ ,XII ,XII1 ,XII∞ ,XIII}
one has ιd(Y ) = ιc(Y ) = 2ℵ0 .
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Remark 5.6.16. There is a striking resemblance between Theorems 4.4.2 and 5.6.14,
and between the forms of Λ(Ω) (where Ω is an underlying model space) and of A (X ,Ψ)
(where (X ,Ψ) is a full covering). It is not a coincidence. When (X ,M,N,Ψ) is a full
covering, A = L∞(X ,M,N) is a W∗-algebra (since X is multi-standard—see the first
paragraph of §1.18 in [29]). Now if Ω is the Gelfand spectrum of A, there is a one-to-
one correspondence between clopen subsets of Ω and members of M which naturally
correspond to N -tuples X such that X 6s T̃ := JI � T � JIII where T :=�N

x∈XII
Ψ(x).

Since Z(W ′′(T̃TT )) is isomorphic to Z(W ′′(JJJ)) (because T̃ � J � T̃; cf. (PR6), page 13),
Ω is therefore homeomorphic to the Gelfand spectrum of Z(W ′′(JJJ)), that is, Ω is an
underlying model space. Further, using results of Chapters 4.4 and 5.6, one may show
that there is a ‘natural’ correspondence, f 7→ f̂ , between Λ(Ω) and A (X ) (induced by
the isomorphism between C(Ω) and A) where in A (X ) we identify functions which are
equal almost everywhere. One may check then that the assignment

Λ(Ω) 3 f 7→�
x∈X

N

f̂(x)�Ψ(x)

is inverse to ΦT introduced in Theorem 4.4.2. Thus A (X ) may be considered as a
‘concrete realization’ of Λ(Ω). With such an approach, the multiplicity function m ∈
A (X ) (relative to T) of X ∈ SMN corresponds to dX/dT.

Theorem 5.6.17. Let (X ,M,N) be a multi-standard measurable space with nullity.

(I) Let Φ: X → pN be such that (X ,Φ) is a covering and let µ : M→ CDDN be given
by

µ(A ) =�
x∈A

N

Φ(x) (A ∈M). (5.6.25)

Then:

(M1) µ(X ) is the direct sum of a minimal N -tuple and a semiminimal one,
(M2) for every A ∈M, µ(A ) = O⇔ A ∈ N,
(M3) whenever A and B are two measurable disjoint sets, µ(A ∪B) = µ(A ) �

µ(B),
(M4) for every A ∈ CDDN such that A 6s µ(X ) there exists A ∈ M for which

µ(A ) = A.

(II) For every function µ : M → CDDN satisfying conditions (M0)–(M3) there exists a
unique (up to almost everywhere equality) function Φ: X → pN such that (X ,Φ)
is a covering and (5.6.25) is satisfied.

Proof. Point (I) is left to the reader.
Let µ be as in (II). Put T = µ(X ). Observe that:

(M4) for any A ,B ∈M, µ(A ) 6s µ(B) iff A \B ∈ N,
(M5) {µ(A ) : A ∈M} = {A ∈ CDDN : A 6s T}.
Indeed, (M5) easily follows from (M2) and (M3), because T = µ(A ) � µ(X \ A ) for
every measurable A . To prove (M4), first of all note that

µ(A ) = µ(B)⇔ (A \B) ∪ (B \A ) ∈ N, (5.6.26)
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since, by (M2), µ(A ) = µ(A \ B) � µ(A ∩ B), µ(B) = µ(B \ A ) � µ(A ∩ B) and
(again thanks to (M2)) µ(A \ B) ⊥u µ(B \ A ). These remarks combined with (M1)
give (5.6.26). Now if A \ B ∈ N, we infer from (5.6.26) that µ(A ) = µ(A ∩ B) and
hence, by (M2), µ(B) = µ(B \A ) � µ(A ), which yields µ(A ) 6s µ(B). Conversely, if
the last inequality is satisfied, we conclude from (M5) that there is C ∈ M such that
µ(C ) = µ(B) � µ(A ). Since then (again by (M2)) µ(C ∪ A ) = µ(C ) � µ(A \ C ) =
µ(A )�µ(C \A ), µ(C ) ⊥u µ(A ) and µ(A \C ) ⊥u µ(C \A ), we get µ(A ) = µ(A \C )
and consequently µ(A ∪ C ) = µ(C ) � µ(A ) = µ(B). So, (5.6.26) yields the assertion
of (M4).

Further, it follows from (M0) and Proposition 5.6.13 that there exists a covering
(X ′,M′,N′,Ψ) such that T =�N′

x∈X ′ Ψ(x). Put µ′ : M′ 3 A 7→�N′

x∈A Ψ(x) ∈ CDDN .
It may be inferred from Proposition 5.6.4, Theorem 5.6.5 and Corollary 5.6.6 that con-
ditions (M4) and (M5) as well as (5.6.26) are satisfied when µ, M and N are replaced
by (respectively) µ′, M′ and N′. Let M and M′ denote the quotient (abstract) Boolean
σ-algebras M/N and M′/N′ (respectively). We shall denote the equivalence class in M

(in M′) of A ∈ M (of A ∈ M′) by [A ]N (by [A ]N′). (M4), (M5) and (5.6.26) for both
µ and µ′ imply that the rule

τ([A ]N) = [B]N′ ⇔ µ(A ) = µ′(B)

well defines an order isomorphism τ : M→M′. Hence whenever τ([A ]N) = [B]N′ , then

A is standard ⇔ B is standard.

Since τ is an order isomorphism, it is an isomorphism of Boolean σ-algebras as well.
Now an application of [27, Corollary 14.4.12] separately for every member of a standard
base of X shows that there are sets Z ∈ N and Z ′ ∈ N′, and a null-isomorphism
ϕ : X \Z →X ′\Z ′ such that τ([A ]N) = [ϕ(A \Z )]N′ for every A ∈M. In particular,
µ(A ) = µ′(ϕ(A \Z )) or, equivalently,

µ(A ) = �
y∈ϕ(A \Z )

N′

Ψ(y) = �
x∈A \Z

N

(Ψ ◦ ϕ)(x)

for any A ∈ M. So, to obtain (5.6.25) it suffices to define Φ: X → pN as an arbitrary
extension of Ψ ◦ ϕ.

Now assume that Φ′ : X → pN is another function such that (X ,Φ′) is a covering
and µ(A ) = �N

x∈A Φ′(x) for every A ∈ M. Then �N
x∈X Φ(x) = �N

x∈X Φ′(x) and
consequently—by Theorem 5.6.10—there is an almost null-isomorphism κ : X → X

such that Φ′ = Φ ◦ κ almost everywhere. It suffices to check that κ(x) = x for almost
all x ∈ X . Take Z ∈ N such that κ|X \Z is a null isomorphism of X \ Z onto its
(measurable) range. For simplicity, for every A ∈M put A∗ = A \Z . Notice that then

�
x∈A∗

N

Φ(x) = �
x∈κ(A∗)

N

Φ(x).

This implies (cf. Proposition 5.6.4) that (A∗ \ κ(A∗)) ∪ (κ(A∗) \A∗) ∈ N. Equivalently,
[A∗]N = [κ(A∗)]N for every A ∈ M. Since X is multi-standard, it follows from the
uniqueness in [27, Theorem 14.4.10] that κ(x) = x almost everywhere and we are done.



6. CLASSIFICATION OF IDEALS

6.1. Types of isomorphisms

This is the only part where we will compare ideals of tuples of different lengths (that is,
ideals in CDDN as well as in CDDN ′ with N ′ 6= N).

We begin with

Example 6.1.1. It is known that every properly infinite or type I von Neumann algebra
acting in a separable Hilbert space is singly generated ([38], [28], [11]). There are also
examples of singly generated type II1 factors ([11]). Also tensor products of two singly
generated von Neumann algebras acting in separable Hilbert spaces are singly generated
([28, Corollary 2.1]). Further, according to [29, Theorem 2.6.6], the W∗-tensor product
of a type In, II1, II∞ or III W∗-algebra and L∞([0, 1]) is of the same type. Also, for a
factor M,

Z(M ⊗̄ L∞([0, 1])) ∼= L∞([0, 1]), (6.1.1)

by [29, Proposition 2.6.7] or [35, Corollary IV.5.11]. Finally, if T is a bounded operator
and TTT = (T, . . . , T ) ∈ CDDN , then W(T ) = W(TTT ). All this shows that the ideals IcIn ,
IcII1 , IcII∞ and IcIII are nonntrivial. (Indeed, take a singly generated factor M acting in a
separable Hilbert space of a fixed type i and let T be a generator of M⊗̄L∞([0, 1]). Then
TTT = (T, . . . , T ) ∈ Ici , by (6.1.1).)

Corollary 6.1.2. Let Ω denote the underlying model space for CDDN . Each of the
spaces Ω, ΩI , ΩIn (n = 1, 2, . . . ,∞), ΩII , ΩII1 , ΩII∞ and ΩIII is homeomorphic to the
topological disjoint union of βD(2ℵ0) and β[D(2ℵ0) × X] where D(2ℵ0) is the discrete
space of size 2ℵ0 and X is the Gelfand spectrum of L∞([0, 1]).

Proof. By Theorem 5.1.12, it suffices to show that κc(E) = 2ℵ0 where E denotes any of
the spaces in question. Equivalently (cf. Proposition 4.4.5), this is to say that dim(J(A))
= 2ℵ0 where A is one of IcIn , IcII1 , IcII∞ , IcIII . To simplify the argument, let (i, k,Z) be
one of (I, n, aN (n)) (where n ∈ {1, 2, . . . ,∞}), (II, 1, sN (1)), (II,∞, sN (∞)), (III,∞, fN )
and let A = Icik . By Example 6.1.1 we know A is nontrivial. Hence (e.g. by Propo-
sition 3.4.10) there is A ∈ A ∩ SEPN which is either minimal or semiminimal. Now
according to Lemma 5.4.9, there is µ ∈ rgm(pN ) such that

A =
∫ �

pN

P dµ(P).

[100]
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There is a measurable domain F on which µ is concentrated. Since µ is standard, we
may assume that F is a standard Borel space, and that F ⊂ Z, by Corollary 5.6.7(c). We
infer from Ac = A that µ is nonatomic and consequently that F is uncountable. So, F

is Borel isomorphic to [0, 1], which implies that there is a family {λt}t∈R of probability
nonatomic Borel measures on F which are mutually singular. Since every measure on F is
a regularity measure, Lemma 5.4.10 shows that Xs :=

∫ �
F

P dλs(P) ⊥u
∫ �

F
P dλt(P) = Xt

for any distinct real numbers s and t. Finally, again thanks to Corollary 5.6.7, Xs ∈ A

(because F ⊂ Z and λs is nonatomic) and Xs is minimal or semiminimal for every s ∈ R.
Consequently, X := �s∈R Xs is a minimal or semiminimal member of A as well. This
gives X 6 J(A) and therefore dim(J(A)) > dim(X) = 2ℵ0 (since Xs ∈ SEPN for each
s ∈ R).

An important consequence of Corollary 6.1.2 is that the underlying model space for
CDDN and its ‘characteristic’ subsets are independent of N . This will be crucial to our
investigations. Hence, we may briefly speak of an underlying model space.

Everywhere below, A and B denote arbitrary ideals in CDDN and CDDN ′ (respec-
tively).

Definition 6.1.3. A function Φ: A → B is an isomorphism iff Φ is a bijection and
Φ(
⊕

s∈S As) =
⊕

s∈S Φ(As) for every collection {As}s∈S ⊂ A (where, of course, S is a
set). An isomorphism Φ: A→ B is

• an s-isomorphism iff dim Φ(A) = dim A for every A ∈ A,
• a t-isomorphism iff for each A ∈ A the following condition is fulfilled: Φ(A) is of type
ik iff so is A, where ik is one of In (n = 1, 2, . . . ,∞), II1, II∞, III∞.

Two ideals are isomorphic, s-isomorphic or t-isomorphic if there exists a suitable isomor-
phism between them.

Let ‘i’ be the empty, ‘s’ or ‘t’ prefix. We write A ∼=i B iff A and B are i-isomorphic.
Additionally, we write A 4i B if A ∼=i B′ for some ideal B′ ⊂ B.

As is easily seen, every t-isomorphism is an s-isomorphism. Therefore:

A ∼=t B⇒ A ∼=s B⇒ A ∼= B,

A 4t B⇒ A 4s B⇒ A 4 B.

It is also clear that ‘4i’ is transitive, while ‘∼=i’ is an equivalence relation.
The main tool of this part is the following

Theorem 6.1.4. If Φ: A→ B is a bijection such that

Φ(X⊕ Y) = Φ(X)⊕ Φ(Y) (6.1.2)

for any X,Y ∈ A, then Φ is an isomorphism and Φ preserves all notions, features and
operations appearing in (ST1)–(ST17) (pp. 36–37).

The above result is a generalization of Proposition 4.2.1 and its proof goes similarly
(see Chapter 4.2). In particular, for every isomorphism Φ: A → B and each A ∈ A one
has: dim Φ(A) is uncountable iff so is dim(A), and if this is the case, they are equal. So,
Φ is an s-isomorphism if Φ preserves ‘dim’ for members of SEP (the prefix ‘s’ is from
‘separable’). One may also check that Φ preserves atoms, fractals, semiprimes (using
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their definitions and the observation on page 59 after Definition 5.1.4), factor tuples (by
Proposition 5.1.2) and types I, II and III. Consequently, Φ(Ad) = Bd and Φ(Ac) = Bc.

6.2. Classification of ideals up to isomorphism

We shall now define characteristics of ideals which will turn out to be sufficient to deter-
mine whether A ∼=i B or A 4i B.

Definition 6.2.1. For any D ∈ {I, I1, I2, . . . , I∞, II, II1, II∞, III} let

χdD(A) = card({X : X ∈ FN ∩ ID, X 6s J(A)}),

χcD(A) = dim(J(Ac ∩ ID)) and χD(A) = (χdD(A), χcD(A)). Finally, let

χ(A) = (χI(A);χII(A);χIII(A)),

χs(A) = (χdI1(A), χdI2(A), . . . , χdI∞(A)),

χt(A) = (χI1(A);χI2(A); . . . , χI∞(A);χII1(A);χII∞(A)).

When comparing sequences (finite or infinite) of the same length whose entries are
cardinals, ‘6’ will denote the coordinatewise order.

Let Ω be an underlying model space and let ΨN = ΦT : CDDN → Λ(Ω) be as
in Theorem 4.4.2. For E = suppΩ A we have (under the notation of Definition 6.2.1)
χdD(A) = κd(E ∩ΩD) and χcD(A) = κc(E ∩ΩD) (cf. Proposition 4.4.5). So, according to
Theorem 5.1.12 (page 62; below ‘∼=’ means ‘homeomorphic’),

ΩD ∩ suppΩ A ∼= ΩD ∩ suppΩ B ⇔ χD(A) = χD(B). (6.2.1)

As an application of Theorem 6.1.4, Theorem 4.4.2, Corollary 6.1.2 and (6.2.1) we obtain

Theorem 6.2.2. Let N and N ′ be positive integers, and A ⊂ CDDN and B ⊂ CDDN ′

be ideals.

(I) CDDN
∼=t CDDN ′ . What is more, each entry of χ(CDDN ), of χs(CDDN ) as well

as of χt(CDDN ) is equal to 2ℵ0 .
(II) A ∼= B⇔ χ(A) = χ(B); A 4 B⇔ χ(A) 6 χ(B).
(III) A ∼=s B ⇔ χ(A) = χ(B) and χs(A) = χs(B); A 4s B ⇔ χ(A) 6 χ(B) and

χs(A) 6 χs(B).
(IV) A ∼=t B ⇔ χ(A) = χ(B) and χt(A) = χt(B); A 4t B ⇔ χ(A) 6 χ(B) and

χt(A) 6 χt(B).
(V) Up to isomorphism (resp. t-isomorphism), there are only γ (resp. 2ℵ0) different

ideals where γ = card({α ∈ Card: α 6 2ℵ0}).

Proof. The second claim of (I) follows from Corollary 6.1.2 and Proposition 5.1.8. Since
(V) and the remainder of (I) follow from (IV), it is sufficient to prove (II)–(IV). Since
their proofs are based on the same idea, we only handle (IV).

Since representatives of members of Ic act in infinite-dimensional Hilbert spaces,
Theorem 6.1.4 shows that if Φ: A → A′ ⊂ B is a t-isomorphism, then necessarily
χ(A) = χ(A′) 6 χ(B) and χt(A) = χt(A′) 6 χt(B). Conversely, if χ(A) 6 χ(B)
and χt(A) 6 χt(B) (respectively χ(A) = χ(B) and χt(A) = χt(B)), then there is an
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ideal A′ ⊂ B (A′ = B) for which χ(A′) = χ(A) and χt(A′) = χt(A) (this may be de-
duced e.g. from (6.2.1); A′ may be defined as I[F ] for suitable clopen set F ⊂ suppΩ B).
Now Theorem 5.1.12 combined with (6.2.1) implies that there are homeomorphisms
hD : ΩD ∩ suppΩ A → ΩD ∩ suppΩ A′ where D runs over I1, I2, . . . , I∞, II1, II∞, III. De-
fine a homeomorphism H : suppΩ A → suppΩ B as the unique continuous extension of
the union of all hD’s. Finally let Φ: A → B be defined as follows. For A ∈ A put
f = ΨN (A) ∈ Λ(Ω). Since supp f ⊂ suppΩ A, the rules g = f ◦H−1 on suppΩ B and g = 0
elsewhere well define g ∈ Λ(Ω) such that supp g ⊂ suppΩ B. We put Φ(A) = Ψ−1

N ′ (g). It is
easily seen that Φ is a well defined bijection. What is more, Φ satisfies condition (6.1.2),
by Theorem 4.4.2(D4′). Consequently, Theorem 6.1.4 shows that Φ is an isomorphism. It
follows from the construction that Φ is in fact a t-isomorphism.

Corollary 6.2.3. If A 4i B and B 4i A, then A ∼=i B.

Corollary 6.2.4. CDDN
∼=t I(1) where I(1) ⊂ CDD is the ideal of all contraction

operators.

Proof. Thanks to Theorem 6.2.2 we may assume that N = 1. Observe that the b-
transform is a t-isomorphism of CDD onto a subideal of I(1). So, the assertion follows
from Corollary 6.2.3.

Corollary 6.2.5. Let U be the ideal of all single unitary operators.

(1) The ideal II1 of all normal N -tuples is t-isomorphic to U.
(2) The ideal II of all N -tuples of type I is s-isomorphic to U.

Proof. Observe that all entries of the suitable characteristics of the ideals in question
coincide (and each is either 0 or 2ℵ0) and apply Theorem 6.2.2.

The above corollaries say that whatever can be said about single (unitary) contraction
operators in the language of ‘discrete’ direct sums, this will have its natural counterpart
for arbitrary (type I) N -tuples.

Remark 6.2.6. Since CDDN
∼=t CDDN ′ for any N and N ′, we may also speak of spa-

tially i-isomorphic ideals. Precisely, ideals A ⊂ CDDN and A′ ⊂ CDDN ′ are spatially
i-isomorphic (as usual, ‘i’ is the empty, ‘s’ or ‘t’ prefix) iff there is an i-isomorphism
Φ: CDDN → CDDN ′ which sends A onto A′. However, this idea brings nothing new.
Indeed, it is quite easy to check that A and A′ are spatially i-isomorphic iff A ∼=i A′

and A⊥ ∼=i (A′)⊥. So, we only have to double the length of characteristics. However,
one relevant information may be interesting: up to spatial isomorphism, there are only
card({α ∈ Card: α 6 2ℵ0}) different ideals. So, under the continuum hypothesis, this
number is countable.

6.3. Concluding remarks

6.3.1. Finite-dimensional tuples. The results of Chapters 5.4–5.6, especially Lem-
mas 5.4.9 and 5.6.12, prove that it is good to know how to recognize regularity mea-
sures, especially in finite-dimensional case, since Proposition 5.4.2 simply characterizes
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summable fields of N -tuples. The author is not aware of the existence of any result in
this direction. We make

Conjecture. Every σ-finite (Borel) measure on aN (n) for finite n is concentrated on a
measurable domain.

Below we confirm the conjecture for n = 1. (This is surely well known. However, we
could not find anything about it in the literature.) Let us first make some comments
on consequences of the conjecture. If it is true, then every pair (X , {Px}x∈X ) where
(X ,M,N) is standard and X 3 x 7→ Px ∈

⋃∞
n=1 aN (n) is a one-to-one Borel function

is a regular system, i.e. Px’s form the prime decomposition of some X ∈ SEPN . Indeed,
the sets Xn = {x ∈ X : dim(Px) = n} (n = 1, 2, . . .) are measurable and there is a
finite Borel measure µn on aN (n) such that Xn 3 x 7→ Px ∈ aN (n) is an almost null-
isomorphism between (Xn,M|Xn

,N|Xn
) and (aN (n),B(aN (n)),N(µn)). Now it follows

from the conjecture that µn ∈ rgm(aN (n)) and consequently {Px}x∈Xn
∈ RGSloc. Put

Xn = �N
x∈Xn

Px(=
∫ �

aN (n)
P dµn(P)). We conclude from Corollary 5.6.7 that Xn ∈ IIn .

So, Xn ⊥u Xm for n 6= m and therefore µn ⊥s µm, thanks to Lemma 5.4.10. Now it suffices
to apply Lemma 5.6.12 to deduce that {Px}x∈X ∈ RGSloc (and�∞n=1 Xn =�N

x∈X Px).
The work of Ernest shows that there are standard Borel measures on pN ∩ SEPN (∞)

which are not concentrated on measurable domains (see Propositions 1.53 and 3.13 in [9]).
Let us now show that every σ-finite Borel measure µ on CN is concentrated on a

measurable domain. Since there is a finite Borel measure ν on CN such that µ � ν,
we may assume µ is finite. First assume µ is concentrated on a compact set. Put TTT =∫ ⊕

CN ξ dµ(ξ). It follows from the Stone–Weierstrass theorem that Mf ∈ W(TTT ) for every
f ∈ C(K) where Mf is multiplication by f . This implies that Mu ∈ W(TTT ) for every
u ∈ L∞(µ) as well. Consequently, Mu ∈ Z(W(TTT )) (since W(TTT ) consists of decomposable
operators) and hence

∫ ⊕
A
ξ dµ(ξ) ⊥u

∫ ⊕
CN\A ξ dµ(ξ), which shows that T =

∫ �
CN ξ dµ(ξ)

and thus µ ∈ rgm(CN ).
Now if µ is arbitrary, there is a sequence (Kn)∞n=1 of compact pairwise disjoint subsets

of CN such that µ(CN \
⋃∞
n=1Kn) = 0. The above argument proves that µ|Kn ∈ rgm(CN )

for every n. Put Xn =
∫ �
Kn

ξ dµ(ξ). Now we repeat an earlier argument: Xn ⊥u Xm for
n 6= m (by Lemma 5.4.10) and thus µ ∈ rgm(CN ), thanks to Lemma 5.6.12.

6.3.2. Problem of axiomatization. Theorem 5.6.17 (cf. also Remark 5.6.8) establishes
a one-to-one correspondence between coverings and functions µ : M→ CDDN satisfying
conditions (M0)–(M3) (see Theorem 5.6.17). These conditions are purely ‘discrete’, i.e.
they need no measure-theoretic nor topological background and are formulated in terms
of the direct sum operation for pairs. So, it seems to be interesting (and may turn out to
be relevant) which topological or measure-theoretic notions (operations, features, tools,
etc.) are sufficient to reconstruct from µ the covering to which it corresponds.

6.3.3. ‘Continuous’ ideals. Just as we defined continuous direct sums, one may try to
define ‘continuous’ ideals in CDDN . This may be done in a few ways. Here we propose
only one of them. Let us call an ideal A ⊂ CDDN continuous if A satisfies the following
condition. Whenever (X ,M,N,Φ) is a full covering and A = �N

x∈X m(x) � Φ(x) for
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some m ∈ A (X ), then A ∈ A if and only if there is a set Z ∈ N such that Φ(x) ∈ A

for every x ∈ s(m) \ Z . Using Theorem 5.6.14 one may easily check that it suffices to
verify the above condition for a fixed full covering and only for A ∈ SEPN . For example,
Ii is a continuous ideal for each i ∈ {I, I1, I2, . . . , I∞, II, II1, II∞, III}, while Ici and Idi
are not. A p-isomorphism (the ‘p’ refers to ‘prime decomposition’) between continuous
ideals is an isomorphism Ψ: A→ B such that whenever A =�N

x∈X m(x)�Px is a prime
decomposition of A ∈ A, a prime decomposition of Ψ(A) may be written in the form
�N

x∈X m(x)�Ψ(Px), and the same for Ψ−1. The following problem may be interesting.

Question. Are CDDN and CDDN ′ p-isomorphic?

6.3.4. Length of tuples. Our last remark is about the length of tuples. Readers inter-
ested in sequences (that is, countable infinite families) of closed densely defined operators
acting in common Hilbert spaces may verify that most of the results (with no changes
in proofs) of this work remain true also in that case, i.e. for N = ∞. (However, when
working with uncountable families, a counterpart of crucial Theorem 2.2.4 fails to be
true, which causes the whole theory to break down in that case.) Since infinite sequences
are rarely investigated, we restricted our study to finite collections.
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