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Abstract

An ideal of N-tuples of operators is a class invariant with respect to unitary equivalence which
contains direct sums of arbitrary collections of its members as well as their (reduced) parts. New
decomposition theorems (with respect to ideals) for N-tuples of closed densely defined linear
operators acting in a common (arbitrary) Hilbert space are presented. Algebraic and order
(with respect to containment) properties of the class CDDy of all unitary equivalence classes
of such N-tuples are established and certain ideals in CDDy are distinguished. It is proved
that infinite operations in €DD n may be reconstructed from the direct sum operation of a pair.
Prime decomposition in CDD y is proposed and its uniqueness (in a certain sense) is established.
The issue of classification of ideals in CDDy (up to isomorphism) is discussed. A model for
CDDny is described and its concrete realization is presented. A new partial order of N-tuples
of operators is introduced and its fundamental properties are established. The importance of
unitary disjointness of N-tuples and the way how it ‘tidies up’ the structure of CDDy are
emphasized.
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1. INTRODUCTION

1.1. Preface

Criterions for unitary equivalence of two (bounded linear) operators (acting on Hilbert
spaces) and the classification of operators up to unitary equivalence are subjects which
fascinated many mathematicians inspired by methods and ideas from the quite well ex-
plored area of normal operators. The literature dealing with these and related topics is
still growing, let us mention here only a few: Brown [2] classified quasi-normal opera-
tors; Halmos and McLaughlin [I7] reduced the issue of unitary equivalence of arbitrary
bounded operators to partial isometries; Ernest [9], Hadwin [I5], [16] and others (e.g. [21])
investigated operator-valued spectra which generalized standard (scalar) spectrum of a
normal operator; Ernest [9], Brown, Fong and Hadwin [3] and Loebl [23] studied parts
(that is, suboperators) of operators. It was Ernest [9] who first showed that—in a sense—
the classification of all operators up to unitary equivalence is an essentially unattainable
objective, although he gave an equivalent condition for two (totally arbitrary) bounded
operators to be unitarily equivalent. It was formulated by means of certain (operator-
valued) spectra of operators and multiplicity theory extended from normal to all bounded
operators (roughly speaking, he adapted and generalized the classical Hahn—Hellinger
theorem).

The present paper is motivated by his approach to this subject. One of our aims is to
finish Ernest’s programme of exploring the realm of unitary equivalence classes of closed
densely defined operators by making no assumptions either on the dimension of Hilbert
spaces or on boundedness of operators (this solves the problem posed by Ernest in point
c of §7 of Chapter 5 of [9]). Even more, we study the class CDDy of finite systems (N-
tuples) of closed densely defined operators acting in (totally arbitrary) common Hilbert
spaces. Surprisingly, such general considerations lead to more elegant results and reveal
features which become invisible when one restricts only to separable spaces. Although
CDDy is not a set but a class, we shall show that it is ‘controlled’ by a single N-tuple
(acting in a nonseparable space; cf. Proposition and this observation will enable us
to find an (algebraic as well as order) model for €DDy (Theorem [£.4.2). An elementary
form of the model will enable us to establish several interesting properties of CDD
(e.g. (AO13)-(AO14), page [4). Also the central decomposition (of an operator acting
in a separable space) introduced by Ernest may be extended to a general context and
translated into a more attractive (at least for us) form of a ‘prime decomposition’ similar
to the one for natural numbers (Theorem [5.6.14).

(5]



6 1. Introduction

Another aspect discussed in this work concerns various (known) results on decom-
positions of operators. There are many results stating that a certain operator may be
uniquely decomposed into two (or more) parts, the first of which is of a special type and
the second has no nontrivial part of this type. The latter part is often named ‘completely
non-sth’ or ‘purely sth’. Let us mention only a few such results:

(DC1) a contraction operator may be decomposed into a unitary part and a completely
non-unitary one,

(DC2) a bounded operator may be decomposed into a normal (respectively selfadjoint)
part and a completely non-normal (resp. non-selfadjoint) one,

(DC3) a closed densely defined operator admits a unique decomposition into a normal,
a purely formally normal and a completely non-formally normal part (|33])

(other results in this fashion are included e.g. in [34], [10], [32], [5]). There is a striking
resemblance in the above statements. And this is not a coincidence. In this paper we put
all results of this type in one general frame. To be more precise, let us introduce the
notion of an ideal. It is any nonempty class A of closed densely defined operators which
satisfies the following three axioms:

e if A and B are unitarily equivalent, then A € A < B € A,

e every part (including the trivial one acting on a zero-dimensional Hilbert space) of
a member of A belongs to A,

o P,.sAs € A whenever {Ag}cs CA (and S is a nonempty set).

For every ideal A we denote by A+ the class of all operators A none of whose nontrivial
parts belongs to A. In Theorem [2.4.2| we show that whenever A and B are ideals, so
is A+, and every (closed densely defined) operator T' acting in a (completely arbitrary)
Hilbert space H induces a unique decomposition H = Hi1 & Hig ® Ho1 D Hoo such that
H,jy are reducing subspaces for T and T'|y,, € ANB, Tlp,, € ANBL, Tlyy, € ALNB
and T|y,, € A+ N BL. This result covers (DC1)—(DC3) and all the above-mentioned
theorems on decompositions.

Ernest [9, Definition 1.7] introduced the notion of disjoint operators, say A and B.
In this paper we denote it by writing ‘A 1, B’ and call A and B unitarily disjoint.
(Unitary disjointness, as a relation, behaves as singularity of measures or orthogonality
in Hilbert spaces. Moreover, unitary disjointness is formulated in order-theoretic terms
in the same way as disjointness in Banach lattices, where the disjointness of two vectors
x and y is indicated by writing = L y. This is why we prefer using ‘1.’ rather than
Ernest’s original notation.) For Ernest the disjointness was only one of possible relations
between operators. His Lebesgue decomposition of one operator with respect to another
(Proposition 2.12 and Definition 2.13 in [9]) is merely one of many interesting results.
Another aim of our work is to emphasize the importance of (unitary) disjointness (for
example, we demonstrate how Ernest’s central decomposition, or our prime one, may be
translated into the ‘intrinsic’ language of operators, with the use of unitary disjointness;
also the proof of our Theorem depends on the properties of unitary disjointness).
Roughly speaking, composing direct sums of arbitrary collections of operators is very
chaotic, while the direct sum of a family of mutually unitarily disjoint operators is well
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‘arranged’. We may compare this with representing a simple Borel function (i.e. one whose
range is finite) as a linear combination of the characteristic functions of Borel sets—this
may be done in infinitely many ways; there is however only one such representation in
which all the sets appearing form a partition of the domain of the function. This form
of a simple function tells us everything about the function. The same occurs in the
class €DDy (see e.g. Theorem when an N-tuple is written as the direct sum of a
collection of mutually unitarily disjoint N-tuples. To distinguish between these specific
decompositions and ‘chaotic’ ones, we call every direct sum (as well as any collection)
of pairwise unitarily disjoint N-tuples regular. The notion of regularity may easily be
adapted to ‘continuous’ versions of direct sums (defined in Chapter by means of
direct integrals). This generalization turns out to be crucial for formulating our Prime
Decomposition Theorem (Theorem [5.6.14).

The main tools we use are, as in Ernest’s work [9], techniques of von Neumann alge-
bras. In Chapters [2.IH5.1] and [6.IH6.2) we involve the dimension theory of W*-algebras,
especially a property recently discovered by Sherman [3I]. All results of these chapters
may be formulated and proved in the language of a ‘semigroup’ C€DD y with the direct
sum of a pair as the only available operation (cf. Chapter 4.2). The remainder (Chap-
ters depends on the reduction theory due to von Neumann [25]. This deals with
topological and measure-theoretic aspects which are introduced in Chapters It
is assumed that the reader is familiar with basics of von Neumann algebras (it is enough
to know the material of [29)], |18, [19] and [35]).

The main results of the paper are Theorems (page [14)), (page [28),
(page [47), [5.6.14] (page [06) and (page [10T)).

1.2. Basic notation and terminology

In this paper Ry = [0,00) and all Hilbert spaces are over the complex field. H and K
denote (possibly trivial) Hilbert spaces. By an operator we mean a linear function between
linear subspaces of Hilbert spaces. The Hilbert space dimension of H is denoted by dim H.
B(H,K) and U(H, ) denote, respectively, the Banach space of all bounded operators
from H into K and the set of all unitary operators from H onto K, and B(H) = B(H,H)
and U(H) = U(H,H). Whenever A is an operator, D(A), R(A), D(A) and R(A) stand
for, respectively, the domain and the range of A and their closures. Additionally, N(A)
denotes the kernel of A. The direct sum of a collection of Hilbert spaces {Hs}scs is
denoted by @, g Hs and @z, is the member of P, g Hs corresponding to a family
{s}ses of vectors such that z, € Hs and >, ¢ [|#s]|* < co. The same notation is used
for direct sums of operators: if {As}scs is a family of operators, A = @, o As is an
operator with

D(A) = {EBSJUS e PD(A): 2, € D(A,) (s€8), S [ Agal? < oo}

ses sES

and for © = ®,x, € D(A), Az = B,(Aszs) € P,eg R(As).

seS
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For two operators A and B acting in a common Hilbert space we write A C B provided
D(A) C D(B) and Bz = Ax for x € D(A).

Let A be a closed densely defined operator in H. A closed linear subspace E of H
is said to be reducing for A if PgkA C APg where Pg is the orthogonal projection
onto E and D(APg) = P, (D(A)). The reduced part of A to E is denoted by A|g
and it is the restriction of A to D(A) N E. The set of all reducing subspaces for A is
denoted by red(A). A subspace E € red(A) is centrally reducing if PgPx = PgPg
for any K € red(A). The collection of all centrally reducing subspaces is denoted by
cred(A). The *-commutant of A is the set W/(A) consisting of all T' € B(H) such that
TA C AT and T*A C AT*; and W' (A) = W'(A))’ is the *-bicommutant of A. When
A is bounded, we may also use W(A) to denote the smallest von Neumann algebra
containing A; in that case W(A) = W"(A) (thanks to von Neumann’s bicommutant
theorem). The polar decomposition of A has the form A = Q|A| where |A] is the square
root of A*A (obtained e.g. by the functional calculus for unbounded selfadjoint operators)
and @ is a partial isometry with N(Q) = N(A). Whenever we use the notation ‘Qp’ with
T being a closed densely defined operator, this denotes the partial isometry appearing in
the polar decomposition of T'.



2. GENERAL DECOMPOSITION THEOREM

2.1. Preliminaries

In the whole paper, N is a fixed positive integer corresponding to the length of tuples of
operators. Whenever H is a Hilbert space, CDD(H) is the collection of all closed densely
defined linear operators acting in H and CDDy(H) = [CDD(H)]¥. That is, CDDy(H)
consists of all N-tuples of members of CDD(H). Further, we put
CDDy = |_JCDDy(H)
H
where H runs over all Hilbert spaces (including zero-dimensional). For simplicity, we

shall write CDD in place of CDD;. For every A = (Ay,...,Ay) € CDDy there is a
unique Hilbert space, denoted by D(A), such that A € CDDy(D(A)). In particular,
D(A) =D(4;) for j=1,...,N.

Suppose A = (A1,...,Ay) € CDDy. We define A*, |A| and Q4 (as members of
CDDy) in a coordinatewise manner: A* = (A7,...,A%), |A] = (J44],...,|An|) and
Qa=(Qa,,...,Qay). In the same way we may define other operations on N-tuples, if
only they can be made on each of their entries. For example, if each of A;’s is one-to-one
and has dense image, we may define A~! as (Al*l7 o ,Aj\,l).

Everywhere below in items (DF1)-(DF11), A = (A4,...,An), B=(Bi,...,By) and
AG) = (Ags), e ,Ag\?)) represent arbitrary members of CDDy. For a single operator,
some of the notions stated below are well-known and some of them were introduced in [9]
(with different notation). Probably the only new notion is the strong order ‘<*®’ defined
in (DF8) below.

(DF1) Let P, A®) = (B,cs AgS)v“'v@ses AW, For a positive cardinal o define
a©A =D, A©) where &, is the first ordinal of cardinality v and A®) = A
for any £ < &,.

(DF2) A is trivial provided D(A) is zero-dimensional; otherwise A is nontrivial.

(DF3) A is bounded iff each of Ay,..., Ax is a bounded operator; for bounded A let

|A]] := max(||Asll,- .., ||An]|), otherwise ||A]| := co. We say a bounded N-tuple
A assumes its norm provided there is 2 € D(A) of norm 1 with
max([|Avzl],.... [[Anvzl)) = [|All-

(DF4) Let red(A) = ﬂjvzl red(A;) and for E € red(A),
Alg = (Ailg, ..., AN|E);
cred(A) consists of all E' € red(A) such that PgPx = Pk Pg, for every K € red(A).

(91



10 2. General decomposition theorem

(DF5) The x-commutant of A is the set W/ (A) = ﬂjvzl W'(A;) C B(D(A)) and W"(A) =
(W'(A))" is the *-bicommutant of A. When A is bounded, we may also use W(A)
to denote the smallest von Neumann algebra including {41, ..., Ax}; in that case
W(A) = W"(A).

(DF6) A = B (A and B are unitarily equivalent) iff there is U € U(D(A), D(B)) such
that A; =U"'B;U for j=1,...,N.

(DF7) A < B iff A= B|g for some E € red(B).

(DF8) A <* B iff A = B|g for some E € cred(B).

(DF9) A and B are unitarily disjoint, in symbols A 1, B, if there is no nontrivial N-tuple
X € CDDy with X <A and X < B.

(DF10) A is covered by B, in symbols A < B, if A < a ® B for some cardinal .

(DF11) The symbols ‘B’ and ‘HH’ will often be used instead of ‘@’ and ‘@’ in situations
when all summands are mutually unitarily disjoint. So, whenever the notation
AHB or HH, g A®) appears, this will always imply that A L, B or, respectively,
AG) 1, AG") for any distinct s',s” € S. The direct sum (a collection) is called
regqular provided all its summands (elements) are mutually unitarily disjoint.

The reader should notice that a function red(A) > E — Pgr € W’(A) establishes a one-to-
one correspondence between red(A) and the set E(W'(A)) of all orthogonal projections
belonging to W’ (A). What is more, this map sends cred(A) onto E(W'(A)) N Z(W'(A))
where Z(W'(A)) is the center of W/(A).

It is quite easy to check that ‘=’ is an equivalence relation on CDDy and thus for
each A € CDDy we may consider the equivalence class of A with respect to ‘=’, which
we shall denote by A. Let CDDy be the class of (all) equivalence classes of all members
of CDDy and let CDD = CDD;. Elements of DDy will be denoted by A, B, X,Y and
so on, and their corresponding representatives by A, B, X,Y. The symbol O is reserved
to denote the equivalence class of a trivial element of CDDy. O is the unique member
of DDy whose representatives act on zero-dimensional Hilbert spaces. (It is also the
neutral element for @’.) For every A € CDDy, the following are well defined, in an obvious
manner: A*, |A|, Qa (corresponding to @4) and dim(A) = dim D(A). For simplicity, we
shall use the term ‘N-tuple’ for members of CDD y as well as of CDD .

Some of the notions in (DF1)—-(DF11) may be adapted to members of CDDy as
follows:

(UE1) Let B, A®) = X where X = @B,cs A For any cardinal m > 0, put mOA =Y
where Y = m ® A. Additionally, let 0© A = O.

(UE2) A is bounded, nontrivial, trivial iff so is A. ||A|| = ||A]|; A assumes its norm iff so
does A.

(UE3) A<B,A<®*B, A l, B, A< B iff the corresponding relation holds for A and B.
Note that A<* B=A<B=A<KB.

(UE4) Notation AHB or HH . A®) includes information that A L, B or, respectively,
AC) 1, AC™) for any distinct indices s',s” € S. The direct sum of (a family of)
members of CDDy is regular iff all its summands (elements) are pairwise unitarily
disjoint.
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A starting point for all of our investigations is the following classical result (see e.g.
[0, Theorem 1.3]).

ProPOSITION 2.1.1. ‘<’ and ‘<®°’ are partial orders on CDD . More precisely, if A < B
and B < A, then A =B.

2.2. The b-transform

This chapter is mainly devoted to single operators. We fix a Hilbert space H and an
operator T' € CDD(H). Let I be the identity operator on H.

DEFINITION 2.2.1. The b-transform of T is the operator
o(T) =T(I+|T|)~" € B(H).
The reader should verify with no difficulties
PROPOSITION 2.2.2. Let S =b(T).
(A) 6(T]) = S| = [TI( + |T])" and Qr = Qs.

(B) ||Sz|| < ||z|| for each x € H \ {0}.
(C) T=S(I—|S])~! = ub(S).
(D) W/(T) = W'(S). Consequently, red(T) = red(S) and cred(T) = cred(S). For every

E ered(T), b(T|g) = S|E.

(E) The b-transform establishes a one-to-one correspondence between closed densely de-
fined operators in H and operators S € B(H) satisfying (B).

(F) 6(D,esTs) = D,egb(Ts) for an arbitrary family {Ts}ses C CDD.

The following result is slightly surprising.
THEOREM 2.2.3. For every T' € CDD, b(T*) = [b(T)]*.

Proof. Let T = Q|T| be the polar decomposition of T. Then T* = Q*|T*| is the polar
decomposition of T*. Put H = D(T), S = b(T) and S’ = b(T*). Fix z,y € H, put
u=({I+|T)) 'z € D(T) and v = (I + |T*|)~'y € D(T*) and observe that
(Sz,y) = (Tu, (I +|T"|)v) = (Tu,v) + (QIT |u, [T"|v)
= (u, T*v) + (|T|u, T*v) = (I + |T|)u, T*v) = {x, S"y),
which finishes the proof. m

Involving the b-transform we now easily prove

THEOREM 2.2.4. Let H be a nonseparable Hilbert space and {Ts}scs C CDD(H) be
a countable family of operators. For every monzero x € H there is a separable space
E C H containing x such that E € red(Ts) for each s € S.

Proof. By Proposition D), we may assume each Ty is bounded (because we may
replace T by b(Ty)). Now it suffices to put £ = lin{S; ... - Spz:n > 1, Sy,...,S, €
{Ts: s€ S}U{Ts: se S}U{I}} where I is the identity operator on H. m
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Now for A = (Ay,...,Ax) € CDDy put b(A) = (b(A1),...,b(Ay)) and b(A) = X
where X = b(A). Below we list the most important properties of the b-transform on
GDDN and CDDN

(BT1) b(A)=0< A=0.

(BT2) b(A) is bounded, b(A*) = [b(A)]*, [b(A)| = b(|A[) and Qp(a) = Qa-

(BT3) W'(A) = W/(b(A)), W'(A) = W(b(A)); red(A) = red(b(A)) and cred(4) =
cred(b(A)); for every E € red(A), b(A|g) = ( ) Ee-

(BT4) b(@,c5A) = B,cs bAW).

(BT5) If ‘~’ denotes one of the relations =, <, <%, <, 1, then A ~ B < b(A) ~ b(B).

2.3. Background on von Neumann algebras

Let M be a von Neumann subalgebra of B(H). Denote by E(M) the set of all orthogonal
projections in M and by Z(M) the center of M. By ‘~’ we shall denote the Murrayf
von Neumann equivalence on E(M). Further, put £(M) = E(M)/~ and let ‘<’ denote
the Murray—von Neumann order on £(M). Finally, for each p € E(M), ¢, € E(Z(M))
stands for the central support of p.

It was observed by several mathematicians that the order ‘<’ on €DD translates into
the Murray—von Neumann order between (equivalence classes of) projections in a suitable
von Neumann algebra. This was explicitly stated and proved in [9, Proposition 1.35]. It is
nothing new that the same idea works for tuples of operators. We formulate this precisely
in the next result which is the main tool of the paper.

PROPOSITION 2.3.1. LetT € CDDy(H), E,F € red(T), A=T|g and B =T|p. Further,
let M =W'(T), p= Pg and g = Pr (p,q € E(M)). Then

(a) A=B&prg,
(b)) A<KB&p<y,
(c) A< B&p e~
(d) AL, B< ¢y =0,
() A B&p<e,.

Proof. We shall only prove (c), since the other points are covered by [9, Proposition 1.35]
((d) is stated there in another form; its present form may be deduced e.g. from [35]
Lemma 1.7]). For this purpose put My = gMgq, 20 = cpq € E(Z(My)) and let K €
cred(B) be the range of zp. If zg ~ p, then by (a), A = B|k and thus A <* B. Conversely,
if the last inequality is satisfied, there is zy € E(Z(My)) such that p ~ 2z (again by (a)).
But Z(Mjp) = Z(M)q and hence zyp = zq for some z € E(Z(M)). Finally, note that
Cp = Czq (since p ~ zq) and c.q = zcq and therefore zg = zcqq = cpg. =

Some consequences of Proposition are formulated below (these are adaptations
of suitable results of [9]).

(PR1) A~X@®Y and A L, Y imply A ~ X when ‘~’ is replaced by one of <, <%, <.
(PR2) If AW 1, B forall s € Sand t € T, then @, 4 A® L, @, BY.
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(PR3) The function cred(4) 3 E +— X(E) € {B € CDDy: B <* A} where X(F) = A|g
is a (well defined) bijection.

(PR4) For every E € red(A), A|lg L, Alg. < F € cred(A).

(PR5) For every pair (A, B) such that A <*® B there is a unique X € DDy such that
B = AH X. Notation: BHA := X. (So, BH A makes sense iff A <* B.)

(PR6) For every X € CDDy and a cardinal o, {Y € CDDy: Y < a0 X} ={aOVY:
Y <*f X}

Following (PR5), let us adopt the following convention: whenever for a pair (A, B) there

is a unique X for which B = A @ X, we shall denote X by B © A. Observe that A < B

provided B © A makes sense.

Combining Proposition with Sherman’s theorem [31], we obtain an interesting

THEOREM 2.3.2. (CDDy, <) is an order-complete lattice. Precisely, for every nonempty
family (i.e. a set) {A®)Ycq € CDDy there are members X and Y of @€DDy such that
X < A®) v for each s € S and X' < X (respectively Y < Y') whenever X' < A®)
(respectively A < Y') for all s € S.

Proof. Put A = @, ¢ A®) and M = W/(A). By [31], (£(M), <) is an order-complete
lattice. So, using Proposition we see that there are X and Y (both < A) which
correspond to the g.l.b. and Lu.b. (with respect to ‘x’) of the projections corresponding
to AC)’s. Now if X" and Y’ are as in the statement of the theorem, consider A=AaXaY
and M = W (A) and repeat the above argument. We skip the details. m

As is usually done when working with lattices, for every nonempty collection A =
{A®)} cs we shall denote by V,.gA®) and A, gA® the Lub. and the glb. of A.
Observe that A 1, Biff AAB=0.

2.4. Decompositions relative to ideals

Let A be a subclass of CDDy. We call A an ideal iff A satisfies the following four

conditions:

(ID1) A is nonempty,

(ID2) whenever A € A and A= B € CDDy, then B € A,
(ID3) for every A € Aand E € red(A), Alg € A,

(ID4) P, .5 As € A for any nonempty family {A,}ses C A.

Classical examples of ideals are discussed in Examples below.
For every subclass F of CDDy put

FL ={T €CDDy:T L, F for every F € F}.

It is easily seen that F1 is an ideal for any F C CDDy (thanks to (PR2)). As we will
see later, the ‘converse’ is also true, that is, A is an ideal iff A = (A+)+. This resembles
the analogous characterization of closed linear subspaces of Hilbert spaces. However, the
above definition of the ‘orthogonal complement’ is in the spirit of the orthogonality in
spaces of measures, and not in Hilbert spaces.
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One of the main results of the paper is the following

THEOREM 2.4.1. Let A C CDDy be an ideal. For every T € CDDy there is a unique
E € red(T) such that
TlgcA and T|g. € A" (2.4.1)

Moreover, E € cred(T) and
E=\/{K €red(T): T|x € A}. (2.4.2)

Proof. First we shall show the existence of E satisfying . We may assume that
T ¢ Al. By Zorn’s lemma, there is a maximal family {E,}scs of mutually orthogonal
nontrivial reducing (for T') subspaces with T'|g, € A for every s € S. It is clear that
is satisfied with E = \/, g Es.

Now assume that E € red(T) is as in (2.4.1)). By (PR4), E € cred(T). To establish
the uniqueness and finish the proof, it is enough to check . But this simply follows
from (PR1) and Proposition (Indeed, if K € red(T) is such that T|x € A, then
Tk <Tg®T|gr and T|x L, T|ge. So, we conclude from (PR1) that T'|x < T'|g. Thus,
by Proposition Px < Pgin M = W'(T). But P € Z(M) and hence Pk < Pg,
which means that K C E.) =

For simplicity, let us introduce the following notation. For every ideal A C CDDy,
A = A and AM = AL, With this notation, by a simple induction argument we obtain

THEOREM 2.4.2. Let Ay,...,Ar C CDDy be ideals. For every T € CDDy(H) there is
a unique system {E(;}(;E{O,l}k of reducing subspaces for T such that

(i) Es L Es for distinct §,0" € {0,1}*; and H = DBiscio1y- Eo
(ii) Tz, € Ny AP for each § € {0, 1}*.

Moreover, E5 € cred(T) and Es = \/{K € red(T): T|x € ﬂ?zl A;éj)} for every § €
{0, 1}*.

We leave the proof of Theorem to the reader.

Theorem [2.4.2] covers any known result on decomposition of a single operator into two
parts with one of them of a special class and the other ‘completely’ (or ‘hereditarily’) not
of this class. Examples are given below.

EXAMPLES 2.4.3.

(A) Let F be a closed subset of the complex plane C. Let A/(F) be the class of all normal
operators whose spectrum is contained in F. (Here we assume that operators on
zero-dimensional Hilbert spaces are normal and have empty spectra.) It is easily
checked that A/(F) is an ideal. Thus, every operator T € CDD admits a unique
decomposition into a part in N'(F) and the remainder in A'(F)1. This means that
there is a unique E € red(T) such that T|g is normal, o(T|g) C F and T|g.
has no nontrivial reduced part which belongs to N(F). When F = C, this is the
decomposition into the normal part and the completely non-normal part. When
F =R, we get the decomposition into the selfadjoint part and the completely non-
selfadjoint part. Finally, when F = {z € C: |z| = 1}, the operator decomposes into
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the unitary part and the completely non-unitary part. These three cases are most
classical. (Compare with [9] p. 179].)

Single operators of each of the following classes form an ideal: formally normal (for
the definition see e.g. [33]); quasinormal; hyponormal; subnormal; contractions. As
we will see in Proposition [2:4.4] also the following class A is an ideal: T € A iff T is
the direct sum of bounded operators.

Stochel and Szafraniec [33] showed that every operator T € CDD admits a unique
decomposition of the form T = Tyor @ Tpm ® Tentm Where Thop is normal, Tpg, is
purely formally normal (here ‘purely’ means that T, is in addition completely non-
normal) and Tenp, is completely non-formally normal. Their result is a special case
of Theorem [2.4.2]

Ernest [9] distinguished an important class of bounded operators on separable Hilbert
spaces, the so-called smooth operators (see §6 of Chapter 1 in [9]). Let us say that an
operator T' € CDD(H) where H is separable is o-smooth iff b(T') is the direct sum
of countably (finitely or infinitely) many smooth operators. By Proposition 1.52
of [9] and Proposition below, operators which are direct sums of o-smooth
operators form an ideal. In particular, every closed densely defined operator acting
on a separable Hilbert space admits a unique decomposition into a o-smooth operator
and a completely non-smooth one.

Let us give some examples dealing with systems of operators. Let Ay and N, N
consist of all N-tuples (belonging to CDDy) of, respectively, commuting normal
and arbitrary normal operators (commutativity may be defined by means of spectral
measures or, equivalently, b-transforms). It is clear that both Ay and N, n are ideals.
So, every T € CDDy has a unique decomposition T = T'j, @ Tpesn ® Tensn Where
T, € Ny, Tosn € /\7N and no nontrivial reduced part of T, is a member of Ny,
and no nontrivial reduced part of T'¢,sn, belongs to N, ~n. (The labels ‘jn’, ‘psn’ and
‘cnsn’ appearing here are abbreviations for jointly normal, purely separately normal
and completely non-separately normal.) We call an N-tuple A normal iff A € Ny.
If A C CDD is an ideal, so are Ay(A) € CDDy and AN ¢ CDDy where AM]

consists of all N-tuples (Ay,...,Ay) with A4;,..., Ay € A acting in a common
Hilbert space, and
AN(A> ={<A1,...7AN)Z A =---= AN GA}

Theorem may be briefly reformulated in the following way: CDDy = A @ A+
for every ideal A C CDDy. Using this notation, Theorem with k = 2 asserts
that

CDDy = (ANB) @ (ANBYH @ (At NB) & (At N BY) (2.4.3)

for any two ideals A4 and B in CDD y. The counterpart of for linear subspaces
K and L of a Hilbert space H is satisfied only when Px and Pp commute. Thus,
as we have said earlier, the ‘orthogonal complement’ for ideals behaves in a similar
manner to the orthogonal complement in lattices of measures (or in more general
structures such as abstract L-spaces).

The next result is useful for producing ideals.
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PRrROPOSITION 2.4.4. Let A be a subclass of CDDy and ©n be the class of all trivial
members of CDD .

(a) The class

J(A) = {T € CDDy : for some set S, T = @X(S) with X©®) <Y ¢ AU@N}
ses

is an ideal and it is the smallest ideal which contains A.
(b) A is an ideal iff A = (A+)*.
Proof. To show (a), we only need to check that A € J(A) provided A < @, 4 Y with
Y ) € A. Assuming A is nontrivial, take a maximal family & = {E,}yer of mutually
orthogonal nontrivial reducing subspaces for A such that A|p, <X () for some X € A
(v € ). Let F' be the orthogonal complement of €. . E, (in D(A)). We only need to
check that F is trivial. We infer from the maximality of £ that A|r € A*. Thus, thanks
to (PR2), Alp L, @, Y™ and hence, by (PR1), A|r is trivial and we are done.

The ‘if” part of (b) is immediate, while ‘only if’ follows from Theorem L]

REMARK 2.4.5. In Proposition [3.5.1] we shall show that for every ideal A there is a
(unique up to unitary equivalence under some additional assumptions on A) N-tuple A

such that A = {B: B < A}. Thus, our Theorem is a generalization of Ernest’s
Proposition 2.12 in [9].

The rest of the paper is devoted to the class CDDy.



3. STRUCTURAL DECOMPOSITION

3.1. Strong order

Everywhere below the prefix ‘<®’ says that the relevant term is understood with respect
to this order. The aim of this chapter is to prove

THEOREM 3.1.1. Let B be a nonempty set of members of CDDy and let A,B € CDDy.

(A) B has the <°-g.l.b.

(B) B has the <°-Lu.b. if and only if every two-point subset of B is <*-upper bounded.
In that case, inf<. B = \B and sup. B = \/B.

(C) The following conditions are equivalent:

(i) the set {A,B} is <*-upper bounded,
(i) A<*AVB and B <* AVB,
(iii) A and B may be written in the forms A = EEH X and B = EBY for some
E.X,Y € CDDy such that X 1L, Y.
(D) If {A,B} is <®-upper bounded, then A < B < A <° B.
Proof. We begin with (C). The implications (iii)=(ii)=-(i) are immediate (indeed, if (iii)
is fulfilled, AVB = EEXHY). To see that (iii) follows from (i), let F € DDy <*-majorize
A and B. This means that A = F|x and B = F|, for some K, L € cred(F). Then Pg
and P commute and therefore K = M & K’ and L = M & L’ where M = KN L,
K'= M*NK and L' = M+ N L. Note that then E = F|y;, X = F|x: and Y = F|/ are
pairwise unitarily disjoint and A=EHX and B=EBRY.
Now we turn to (B). Suppose every two-point subset of B is <*-upper bounded. Let
M be such that B < M for every B € B. Put M = W/(M). For every B € B take
K(B) € red(M) such that B = M|k g, and put pg = Pgm) € M.
For a moment fix A,B € B. By (C), there is F < M such that A <* F and B <* F.
We infer, involving Proposition that there is a projection g € E(M) for which
DA ~ Cpaq and pg ~ cpgq. Then cpgpa ~ cpgpaq and cpaPB ~ CppCpgq- This proves that

CpgPA ™~ CppPB (3.1.1)
for all A,B € B. Now put w = \/{cp,: A € B} € Z(M). There is a family {za}aen of
mutually orthogonal central projections in M such that za < ¢p, for every A € B and
Y acs 2A = w. Put

q= Z zapa € E(M).

AeB
(17]
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For A,B € B we have, by (3.1.1)), 28¢ppq = 2BCpaPB ~ 2BCpgPA = zBPA and consequently

(since w = ¢p,),
PA = E ZBPA ™~ E ZBCpaqd = Cpaq-
BeB Be®B

Now if F € red(M) is the range of ¢ and M’ = M|, Proposition shows that

A <* M’ for every A € B. Hence, replacing M by M’, we may assume that pp € Z(M).

It is known that in that case \/ocq PA and Ascos PA are, respectively, the Lu.b. and the

g.l.b. with respect to ‘<’ in E(M). It is left as an exercise that (B) now follows.
Finally, (A) follows from (B), and (D) is left to the reader. m

As a very special case of Theorem [3.1.1] we get
COROLLARY 3.1.2. If {A(S)}ses is a monempty family of mutually unitarily disjoint N -
tuples, then \/ g AL = H.cs AL,
Proof. One easily checks that F g A®) is the <5-l.u.b. of {A(S)}ses. Thus the assertion
follows from Theorem B.1.1l

EXAMPLE 3.1.3. [N = 1| Let I; for j = 1,2 be the identity operator on a j-dimensional
Hilbert space. It is clear that I3 <o, I Ale =13 and Iy V I3 = lg, while inf<<{l1,l2} =0
and {ly,lo} is not <*-upper bounded. This shows that <*-g.Lb. in general differs from
<-g.Lb. (although both always exist).

ProPOSITION 3.1.4.

(A) If A< H,csB"Y, then A = H,cs(AABW).
(B) Suppose A®) <X (s € § #0) and B <* X. Then

[\/ A<s)] AB=\/[A®) AB].

sES seS
A®) < X, then

[@ A<s)] A B =DIA® ABJ.

ses SES

If in addition @, g

Proof. To prove (A), put B = g B*). Since each B(* corresponds to a central pro-
jection in W/(B), the assertion easily follows. The same argument works for (B)—here B
corresponds to a central projection in W/ (X). m

A counterpart of a part of Proposition for the order ‘<’ will be proved in Theo-
rem However, this will be much more complicated.

3.2. Steering projections in W*-algebras

We would like to propose a slightly modified approach to the so-called dimension theory
of W*-algebras (see e.g. [I8, Chapter 5, §5] and [I9, Chapter 6]; [35, Chapter 5, §1];
[13, [14]; [37]; [31]). Usually one decomposes a projection in a W*-algebra into (in a sense)
‘homogeneous’ parts, as done by Griffin [I3], I4], Tomiyama [37] and Sherman [3I]. In
the next chapter we will do essentially the same but in a different manner, convenient for
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applications to the class CDDy. In every W*-algebra M we shall distinguish a projection,
called steering, and we shall show how it ‘controls’ the Murray—von Neumann order on
E(M). As we will see, the steering projection is defined in different ways for type IIy;
type Il.; and type I or III algebras. Therefore we shall divide our investigations into
these three cases.

3.2.1. Type II;. When M is a type II; W*-algebra, it seems to be most appropriate
to call the unit of M the steering projection.

3.2.2. Types I and ITI. We assume that M is a type I or ITII W*-algebra. We say M is
quasi-commutative iff p ~ ¢, for every p € E(M). A projection p € E(M) is quasi-abelian
iff p = 0 or pMp is quasi-commutative.

LEMMA 3.2.1. For p € E(M) the following conditions are equivalent:

(i) p is quasi-abelian,
(ii) for every g € E(M) with ¢ < p, g ~ ¢4p,
(iii) for every g € E(M), p< ¢ < p < cq.

Proof. The equivalence of (i) and (ii) follows from the fact that the central support of
q € E(pMp) with respect to pMp coincides with c¢,p (where ¢, is the central support of
q in M).

To show that (iii) follows from (ii), assume that 0 # p < ¢; and take a maximal
family {ps}ses C E(M) of nonzero projections such that ps < p, ps < ¢ for s € S and
¢p,Cp,p = 0 for distinct s,z € S. Notice that then p = ) ¢
different s,¢ € S. Now we infer from (ii) that ¢,,p < ¢ and consequently c¢,.p < ¢p,cpq.
So, p = Zses CpD = (Zses Cpscp)q <q.

Finally, under the assumption of (iii), for ¢ < p put r = ¢ + (1 — ¢4)p, notice that
¢r = ¢p 2 p and thus, by (iii), p < . Consequently, c;p < ¢,m = ¢ and we are done. m

cp.p and ¢, cp,cp = 0 for

A steering projection in (a type I or III W*-algebra) M is a quasi-abelian projection
p € E(M) such that ¢, = 1.

THEOREM 3.2.2.

(I) Suppose M is type 1. A projection p € E(M) with ¢, = 1 is steering iff p is abelian.
In particular, M has a steering projection and any two steering projections are
Murray—von Neumann equivalent.

(IT) Suppose M is type III. M has a steering projection and any two steering projections
are Murray—von Neumann equivalent.

Proof. Point (I) is left to the reader. We shall give a sketch of proof of (II). If p and ¢ are
steering, then ¢, = ¢, = 1 and thus p < ¢ and ¢ < p, by Lemma @ This establishes
uniqueness up to Murray—von Neumann equivalence. To show the existence, take a max-
imal family {ps}ses C E(M) of mutually centrally orthogonal nonzero projections each
of which is countably decomposable and put p =} _«p,. Such a projection is steering
since each ps is quasi-abelian, e.g. by [I9, Corollary 6.3.5]. m
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3.2.3. Type II,. Finally, assume M is a type II,, W*-algebra. Since the unit of M
may be written in the form Y 7, p, with p, ~ 1 for each n > 1, for every projection
q € E(M) there is a countable infinite family of mutually orthogonal projections each of
which is Murray—von Neumann equivalent to ¢. For each n € {1,2,...} U {w} we shall
write n ® ¢ to denote any projection (or, a unique member of £(M)) in M which is
the sum of (exactly) n copies of ¢q. (Here by a copy we mean any projection which is
Murray—von Neumann equivalent to ¢; w ® ¢ is the sum of X copies of q.)

LEMMA 3.2.3. For p € E(M) the following conditions are equivalent:

(i) p is finite,
(ii) whenever p < ¢cq for g € E(M), there is a sequence (zn)ney of central projections in
M such that > 0" |z, =1 and z,p < n®q for anyn > 1.

Proof. Let qo € E(M) be a finite projection such that ¢4, = 1. If (ii) is satisfied, then
zZnD < N®qo for a suitable sequence (z,)%2 ; of central projections. Then z,p is finite and
thus so is (V,,5; zn)p = p.

Conversely, if p is finite and p < ¢, there is a family {g;}ses of mutually orthogonal
projections such that p = ) _¢¢qs and ¢ < ¢ for all s € S. Let tr: pMp — Z(pMp) =
Z(M)p be the trace on pMp. There are central (in M) projections 2}(183@ with 1 < k< 2"
and n > 1 such that

tr(gs) = i (i 2]1 ffip)

n=1 ‘k=1

Since tr(z( Lp) 2™ tr(gs), we have zfl Lp 2" ®¢qs < 2™ ®q. Moreover, we infer from the

relation p = tr(p) = > g tr(gs) that \/_ SL > p. Reindexing the family {zn k}S nk
we obtain a collection {w;}ter C E(Z (/\/l)) such that

wp K< m(t) ©¢ and w:= \/wt >p
teT
where m(t) is some positive integer. Now let {v;}ier be a family of mutually orthogonal
central projections such that v; <w; (t € T) and ) ,cpvr = w. Let * ¢ T, v, =1 —w
and m(x) = 1. Observe that vip < m(t) ©q for every t € T, :=TU{*},and >, . vy = 1.
Finally, define z,, for n > 0 by z, => {v: t € Ty, m(t) =n}. =

Let E, (M) ={q € E(M): ¢ ~w® p for some finite projection p}.
LEMMA 3.2.4.

(a) For every p € E, (M) and a properly infinite projection ¢ € E(M), p < q¢< p < ¢,.
(b) If p € E, (M) is such that ¢, =1, then q ~ c4p for every q € E, (./\/l)
(c) If pe E,(M) and z € E(Z(M)), then zp € E,(M).

Proof. Point (c) is immediate and (b) follows from (a) and (c). So, it suffices to check (a).
Assume p and ¢ are as there and p < ¢,. Take a finite projection pg such that p ~ w ® po.
By Lemmal[3.2.3] z,,po < n®q for a suitable sequence (z,)32; of central projections. Since
q is properly infinite, ¢ ~ w ® ¢ and hence z,py < z,q, which gives pg < ¢. Consequently,
pr~wOP)XwO®q~ qand we are done. m
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A steering projection in (a type Il W*-algebra) M is a projection p € E,, (M) with
¢p = 1. Since E,,(M) consists of properly infinite projections, Lemma ensures that
any two steering projections in M are Murray—von Neumann equivalent.

Now if M is an arbitrary W*-algebra, the steering projection of M is defined as the
sum of the steering projections of type I, 11, II,, and III parts of M. It is clear that any
two steering projections in M are Murray—von Neumann equivalent. The reader should
also verify that if p € E(M) is a steering projection, then ¢, = 1, and zp is a steering
projection of Mz for every central projection z in M.

3.3. Decomposition relative to a steering projection

Let us first generalize the idea of the previous chapter. Whenever « is an (arbitrary)
cardinal number and p and ¢ are projections in a WW*-algebra M, p is said to be a copy
of g provided p ~ ¢; and p ~ o ® q iff p is a sum of « copies of ¢. In particular, p ~ 0® q
is equivalent to p = 0. When M contains o mutually orthogonal copies of ¢, we shall
also write p < a ® g with the obvious meaning. Similarly, we shall say that p contains «
orthogonal copies of ¢ iff ¢ ~ a ® ¢q for some projection ¢’ < p.

Using standard methods (such as Lemma 6.3.9 and Theorem 6.3.11 of [19]; cf. [II
Proposition II1.1.7.1]), similar to those in [13} 4], [37] or [3I], one shows the next result
(we skip its proof). To simplify its statement, let us define A; = Card (the class of all
cardinals), Aj; = Card,, U {0,1} and Ay = Cardy, U {0} where Card., is the class of
all infinite cardinals. For any cardinal «, o™ is the immediate successor of o, that is,
at =min{g € Card: 8 > a}. Below ‘~’ refers to the Murray—von Neumann equivalence

in E(M).

THEOREM 3.3.1. Let M be a properly infinite W*-algebra, p a steering projection of M
and let A = pMp. Let 2%, 211 2 ¢ Z(A) be projections such that 2z + 2z + 21T = p
and Az is of type i for i = I,II,IIl. For every q € E(M) there is a unique system
{28()Yaen, U{zE (@) Yoery U{zH (@) aery C Z(A) of mutually orthogonal projections
such that for i = 1,11, 1II, 3 c\. 2t (q) = 2 and Cai ()d ~ O 2 (q) if only o € A; and
(i,a) # (II,1), while c.uqq is finite and g ~wo .11 ()4

What is more, 2*,(q) may be characterized as follows:

2 (q) = \/{w € BE(A)| w< 2", Yoe E(A), 0#v < w:
cvq # 0 and q contains no copy of w ® v}
and when (i,«) # (11, 1),
2t (q) = \/{w € B(A)| w< 2, cog~a®w, Yo E(A):
0 # v < w = q does not contain o orthogonal copies of v}.

The statement of the above theorem is complicated. We have formulated it in this
way, having in mind further applications to the class CDDy.
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For the purpose of this paper, let us introduce the following

DEFINITION 3.3.2. Let i € {I,II,IIl} and « € Card,. A W*-algebra M is said to be of
(pure) type i, iff M is of pure type i and 1 ~ a @ p where p is the steering projection.

Recall that the above definition of type I, W*-algebras is equivalent to the classical
definition of this type, and that below types I,, for finite n and II; are understood in the
usual sense.

PROPOSITION 3.3.3. For every W*-algebra M there is a unique system
{2t i e {I,II,IIT}, o € A;\ {0}} C B(Z(M))
such that 1 =", 2! and for each i and o either zi, = 0 or M2z!, is of pure type i,.

i, “a
To simplify the statements of next results, we fix i € {I,II,IIl'}, v € Card, a type
iy W*-algebra M and a steering projection p of M. Additionally, we put A = pMp
and A = {a € A;: a < v} For every ¢ € E(M) let 2,(q) = 2% (q) where z{(q) is as in
Theorem It is easily seen that z,(¢q) = 0 for a >y and ) .\ 2a(q) = p. Therefore
for every ¢ € E(M) we shall deal with a set {24(q)}aea of projections.
We skip the proof of the next result (cf. [3I]).

PROPOSITION 3.3.4. For q,q' € E(M) the following conditions are equivalent:

(i) a4,

(ii) 28(q)2a(q") = 0 whenever o, B € A and B > a; and c.,(g)C, (¢4 < Czy(q)Co1(q)q
provided ¢ = II.

The following result explains the terminology proposed by us.

PROPOSITION 3.3.5. Let g € E(M) be nonzero. Then cy ~v©®q and M does not contain
~T orthogonal copies of q.

Proof. The second claim is left to the reader. For every positive cardinal 8 € A let Sg
be a set such that card(Sg) = 8 and let k3: Sy x Sz — S, be a bijection. Since M is
of type i,, there is a collection {p,}ses, of mutually orthogonal projections which are
Murray-von Neumann equivalent to p and sum up to 1. For s € S let

qs = Z CZ[;(q) Z p/{ﬁ(s,t)-
BeA\{0} teSg

Since ¢, (q)ps ~ 2p(q) and ZBEA\{O} C25(q) = Cq» We have g5 ~ ¢ for s € S,. Finally,

Z qs = Z Cz5(q) Z Prg(st) = Z Czp(q) = Cq- ®

sES, peA\{0} (s,t)€S, X Sg BeA\{0}
PROPOSITION 3.3.6. For every ¢ € E(M) there are projections q4,q" € E(M) such that
1—qgg~q~1—q" and g < ¢ < g for every ¢ € E(M) with 1 — ¢’ ~ q. Moreover,
q* ~1 and g ~1— €z (q)-
Proof. Since for ¢ = I, IIl arguments are similar, we shall only sketch the proof for ¢ = IT
(which is most complicated). Since 1 ~ 2 ® 1, it is clear that there is ¢* € E(M) such
that ¢# ~ 1 and 1 —¢# ~ q. Thus we only need to find g4. For each 3 € A let Sz be a set
of cardinality 8 and {p,}ses, be a collection of mutually orthogonal projections which
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are Murray-von Neumann equivalent to p and sum to 1. We assume that Sg C S, for
each 3 € A. Let sy € S1. Take v € E(M) with v < p,, and v ~ c;,(¢)¢, and put

qu = CZ1(CI)(p51 —v) + Z Cz5(q) Z Ds-
BEA SESW\SQ
Since ZﬁeA Cy(q) = 1 and card(S, \ Sg) = v if only 8 <, we infer that gz ~ 1 —c,_(g)-

This implies that 2 (g4) = (L—Cx, )P = P—+(0) = Sgens () 28(0)s 20(a) = €2, (P =
2v(q) and zg(g4) = 0 for each 8 € A\ {0,~} (in particular, z1(gx) = 0). Further, observe

that ¢, (v = v and thus
1_q#:'U+ Z Czﬁ(q) Zpsa
BeA\{1} s€Sg

which yields 1 — gz ~ ¢. Now let ¢ € E(M) be such that 1 — ¢’ ~ ¢. Thanks to
Proposition gx < ¢ iff z23(q4)za(¢’) = 0 whenever o, 3 € A and a < 3 (because
z1(qz) = 0). In our situation this is equivalent to z3(¢)za(¢’) = 0 for all o, 3 € A\ {7}
For such « and 3 we have

W= Copy(q)Can(q) = WG +w(l—¢")

and w(l — ¢') ~ wq. But

{w¢~a@@@ if o # 1, {w~ﬁ®@w)ﬁﬁ#L
and

wq'  is finite ifa=1, wq is finite if #=1.

We conclude that either w is finite (and hence w = 0) or w ~ max(«, 5) ©® wp. At the
same time, thanks to e.g. Proposition [3.3.5] w ~ v ® wp, which implies that w = 0 and
we are done. m

Since in every finite W*-algebra W, 1 — ¢ ~ q iff ¢ ~ 1 — ¢ for any q,¢' € E(W),
Proposition [3.3.6] gives
THEOREM 3.3.7. Let W be a W*-algebra and ¢ € E(W). There are projections ¢ and
qy such that 1 —qu ~q~1—q" and qu < ¢ < ¢ whenever ¢ € E(W) is such that
1 —¢ ~ q. What is more, if W is properly infinite, then ¢# ~ 1 and gy is Murray-von
Neumann equivalent to a central projection.

Our last aim of this chapter is

PROPOSITION 3.3.8. Let S be an (infinite) set whose size is a limit cardinal. Let {ps}scs
be a family of mutually orthogonal projections in a W*-algebra W which sum to 1.
For a nonempty set A C S put qa = ), 4 ps- Then 1 is the Lu.b. of the family {qa:
ACS,0<card(A) < card(S)} with respect to the Murray—von Neumann order.

Proof. Thanks to Proposition we may and do assume that W is of pure type i,.
Since the assertion is known to be true for finite algebras W, we assume in addition that
W is properly infinite—that is, that + is infinite. Finally, we reduce our considerations
to the case when the steering projection p of W is countably decomposable.

Let ¢ € E(W) be such that g4 < ¢ for each 4 € § := {A C S:0 < card(4) <
card(S)}. We need to show that ¢ ~ 1. Equivalently, we have to prove that z¢(q) = 0
provided a < . When ¢ = II, .1 (q)q is finite and ) Doecabs S C.11(q)4 for each
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A € 8, which implies that Cai(g) = Curr(g)- Consequently, Co11(q) 18 finite and thus
2 (q) = 0. Also when i = I and « is finite, 2% (q) = 0, because then o ® p is finite.

Now let o be infinite. Then c.i ()¢ ~ @ ® 2i(g) ~a® (czi (9p) and c.i ()q4 < C2i (9)q
for any A € 8. Towards a contradiction, assume 2% (q) # 0. Replacing W by Wesi (g
we may assume c.i () = 1, that is, 2! (q) = p. We then have ¢ ~ a ®p, 1 ~ v ® p and
ga < q (A € 8). We consider two cases. When card(S) < «, we easily get p; < ¢ and thus
1=3 cgPsSa®qr~ a? ® p, which contradicts the facts that a? <y and 1 ~ v ® p.

Finally, assume that card(S) > «. Since p is countably decomposable and ¢ ~ a ® p,
card({s € A: p; #0}) < « for any A € § (because g4 < ¢). We conclude that A := {s €
S: ps # 0} € 8 (because card(S) > at). But then 1 = g4 < ¢ and we are done. m

EXAMPLE 3.3.9. As the following example shows (compare with [37, Example 3]), the
assumption in Proposition [3:3.8] that the size of S is a limit cardinal is essential. Let H
be a Hilbert space of dimension Ry, S be a set of cardinality N; and let {es}scs be an
orthonormal basis of H. Further, let M = B(H) and for s € S let p, € E(M) be the
orthogonal rank-one projection onto the linear span of e;. Now if g4’s are defined as in
Proposition [3:3:8] then g4 < ¢ for every nonempty set A C S of size less than R; where
J is a countable infinite subset of S and hence 1 is not equivalent to the lL.u.b. (which

is q7).

3.4. Minimal and semiminimal tuples

The idea of steering projections will now be adapted to the class CDDy. Following
Ernest [9], we say a nontrivial N-tuple A € CDDy is (of ) type I, 1T, IIT iff W'(A) is such.
Additionally, we let the trivial N-tuple be of each of these types.

We begin with a result which will find many applications.

LEMMA 3.4.1. Ewvery collection of mutually unitarily disjoint nontrivial N -tuples has car-
dinality not greater than 2%,

Proof. Suppose

A 1, AL (3.4.1)
(and A®) £ 0) for distinct s, € S. For n € J = {1,2,...} U{Ro} let H, be a fixed
Hilbert space of dimension n. By Theorem for each s € S there are n(s) € J and
B®) € CDDy(H,(s)) such that B®) < AL, We infer from (3.4.1) that B) # B for
distinct s, s’ € S. Now the assertion easily follows from the fact that card(CDDy (H,,)) <
2% for every n € J. m
DEFINITION 3.4.2. A € CDDy is said to be minimal iff for every B € CDD y,

A<B = A<B.

A is said to be multiplicity free (A € MF ) iff there is no nontrivial B € €DD y for which
2® B < A, and is a hereditary idempotent (A € HIy) iff B=2® B for every B < A. We
shall write A € HIMy whenever A is both a hereditary idempotent and minimal.

Minimal members of €DD y correspond to quasi-abelian projections.
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REMARK 3.4.3. The work of Ernest [9] deals with (single) bounded operators. In this con-
text, our definition of a multiplicity free operator is equivalent to Ernest’s (Definition 1.21
in [9]).

THEOREM 3.4.4.

(I) For every A € CDDy,
A=20A A=A
(II) For A € CDDy the following conditions are equivalent:
(i) A is minimal,
(ii) for each B € CDDy, B<K A= B <°A.

If A is minimal and B < A, then B is minimal as well.
(III) For A € CDDy the following conditions are equivalent:

(i) AeMIy,
(ii) A=0 or W(A) is commutative.

In particular, if A € MFy and B < A, then B € MFy as well.

(IV) Ewvery multiplicity free N -tuple is minimal and unitarily disjoint from any hereditary
idempotent.

(V) If A€ HIn and B < A, then B € HIn as well.

(VI) There exist unique Jr,dmr € CDDy such that J; € MFy, Jir € HIMy, Jr B Iy
is minimal and for every A € CDDy:

(a) A e MFy iff A< Jp,

(b) A< J; iff A=0 or W(A) is type I,

(c) Ae HIy iff A< I, iff A= 0 or W/(A) is type 111,
(d) A e HIMy foA < Jm,

(e) A is minimal iff A< Jy B Jpgr.

What is more, dim(J;) + dim(Jz) < 280,

Proof. In all points of the theorem we make use of Proposition [2.3.1} The counterparts
of points (I) and (V) are well known for projections in W*-algebras, (II) follows from
Lemma [3.2.1] (III) is immediate, (IV) is implied by (III) and the relevant definitions. To
prove (VI), take a maximal collection (cf. Lemma of nontrivial mutually unitarily
disjoint multiplicity free N-tuples (respectively hereditary idempotents) whose represen-
tatives act in separable spaces and define J; (Jj7) as the direct sum of this family. One
may check that the N-tuple obtained in this way belongs to MFy (HIMy) and—since
Jr and Jy7 are unitarily disjoint—that J;BJpy is minimal. It follows from the maximality
of the family considered and Theorem |T_ﬂ| that J; and Jyr are the greatest members of
MFy and HIMy. The details are left to the reader (cf. Propositions 2.12, 1.27 and 1.29
and Corollary 1.37 in [9]). (For the proof of (b) and (c) see also Theorem [3.6.1]) m

Theorem shows that there is a greatest minimal N-tuple in CDDy, namely
Jr B Jyr, and that it covers all type I and IIT N-tuples. Since there are also type II ones,
we need to introduce one more notion.
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DEFINITION 3.4.5. A € CDDy is said to be semiminimal (A € 8My) iff it is unitarily
disjoint from every minimal N-tuple and satisfies the following condition. Whenever
B € DDy is such that A < B, A may be written in the form A = ;- ; A,, where
A, <n@®Bforeachn>1.

Before stating the next result, we underline that there is no greatest semiminimal
member of CDDy.

THEOREM 3.4.6.

(I) For A€ CDDy, A € SMy iff A= 0 or W(A) is type II,. In particular, if A € SMy
and B < A, then B € SMy as well; the direct sum of finitely many semiminimal
N -tuples belongs to SMy .

(IT) There is a unique Jig € CDDy such that for every A € SMy there is B € SMy for
which Jip = Ro ® (ABB). Moreover, dim(J;r) < 2% and

(a) for E,F € DDy with E < F < Jp,
E<F<Jy © E=20Eand F=20F, (3.4.2)
(b) A< Jir iff A= 0 or W (A) is type I1.

Proof. Point (I) follows from Lemma and Theorem from which we infer that
W'(A) is type II for every A € 8My (because every semiminimal N-tuple is unitarily
disjoint from J; B Jyyr). To prove (II), we proceed similarly to the proof of Theorem [3.4.4]
Take a maximal family A of mutually unitarily disjoint nontrivial members of SMy
whose representatives act in separable spaces and denote by S(A) its direct sum. Next
put Jir = Ng ©S(A). We check that S(A) € SMy for every such A. Further, we note that
for two maximal families A and A’ one has S(A) <« S(A’) < S(A) and consequently, by
the definition of semiminimality, 8o ® S(A’) = Ry ® S(A). Having this, one easily shows
the uniqueness of Jj; and all suitable properties of it. (For example, if E = 2 ® E, then
E = Ny ® E and it suffices to apply Lemma, ) [

The reader should notice that Jj; corresponds to the steering projection of a type Il
W*-algebra.

REMARK 3.4.7. Point (II) of Theorem implies that Jj is the greatest element of
the class SMY = {Rg © A: A € SMy} (and hence SMY is a set) and that for any
AB e SM, A<B & A< B.

Let us denote by J the N-tuple J; B Jy B Jyr. We call J the unity of CDDy. Since
every W*-algebra admits a decomposition into type I, II and III parts, we have

PROPOSITION 3.4.8. For every A € CDDy, A < J.

REMARK 3.4.9. It is worth noting that dim(J;) = 2% for i = I, II, IIl. We shall prove
this later (see Corollary [5.1.9). We conclude from this and Proposition that for an
infinite cardinal « there exists A € €DDy such that dim(A) = a and X < A whenever
dim(X) < « iff o > 2%0. If this happens, such an A is of course unique and one may check
that A=a © J.
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We shall also need

PROPOSITION 3.4.10. For every nontrivial A < J there is B <® A such that 0 < dim(B)
< N

Proof. By Theorem there is a nontrivial By < A such that By acts in a separable
Hilbert space. We may assume that By < J; for some i € {I,II,III}. If i # II, we
automatically have By <*® A; while when 7 = II, it suffices to notice that Rg®Bg <°* Rg©OA

(by (3.4.2))) and to apply (PR6) (page to find B <* A with g ©B =Ry ® Bg. =

EXAMPLE 3.4.11. When N = 1, one may check that a bounded normal operator on a sep-
arable Hilbert space is multiplicity free iff it is *-cyclic (an operator T' € B(H) is *-cyclic
iff there is @ € H for which the linear span of {z} U {S;...Spax:m > 1, 51,...,5, €
{T,T*}} is dense in H). Taking this into account, one may ask whether every x-cyclic
type I operator is multiplicity free. As this simple example shows, this fails to be true. Let
T = ((1J 8) and S = T@T. Of course, S ¢ MTF;. However, S is x-cyclic. (For v = (1,0,0,1),
Su = (0,1,0,0), S*u = (0,0,1,0) and S*Su = (1,0,0,0).)

3.5. Unities of ideals

Adapting conditions (ID1)—-(ID4) (page to the realm CDDy, we obtain the notion of
an ideal in CDDy. Equivalently, a nonempty class A C CDDy is an ideal provided A is
order-complete (i.e. \/ F € A for every nonempty set F C A) and m® A € A whenever m
is a cardinal and A < B for some B € A.

Theorem [2.4.1] asserts that for every ideal A C €DDy and X € CDDy there is a
unique Y € A such that Y <* X and XBY € AL. We shall denote this unique Y by
E(X]A). Similarly, if A is any member of CDDy, E(X|A) := E(X|{B: B < A}). E(X]A) is
Ernest’s A-shadow of X (see [9, Definition 2.13]).

One may easily verify that

E (EB X () |A) — P EXC)|A)
seS ses

for every ideal A C DDy and any family {X¥},cs € @DDy. We shall use the above
property repeatedly.

Let A be an ideal in €DDy. The N-tuple J(A) := E(J|A) is uniquely determined by
A and is called the unity of A. Proposition |3.4.8 implies

PRrROPOSITION 3.5.1. For every ideal A in CDDy,
A={XeCDDy: XK JA)},
JA) < Jand J(A) = V{A < J: Ac A}

COROLLARY 3.5.2. There is a one-to-one correspondence between ideals in CDDy and
members A of CDDy such that A <* J. The correspondence is established by the assign-
ments A — J(A) and A — {B: B < A}. In particular, there are at most 22" ideals in
CDDy.
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ExaMPLE 3.5.3. Let Ny C CDDy be the ideal of all normal N-tuples (see Ex-
amples E)). Since W/(M) is commutative for every M € Ny, W/(M) is type I
and hence M < J;. Here we shall give a description of J(Ny). First of all, M < J iff
W'(M) is commutative (provided M # O and M € Ny ). When M acts in a separable
Hilbert space, this is equivalent to the fact that M is x-cyclic. That is, there has to exist
x € D(M) such that the smallest reducing subspace for M which contains z coincides
with D(M). (Indeed, if M € MFy NNy is such that 0 < dim(M) < Rg, then both W/(M)
and W (M) are commutative, which means that W (M) is a MASA and consequently
W"(M) is cyclic or, equivalently, M is *-cyclic. Conversely, if M € Ny and M is x-
cyclic, then M is unitarily equivalent to M, for some probability Borel measure ;1 on
CY where M, = (M, ,..., M., ) and M., is the multiplication operator by z; in L?(p).
One may show that W'(M,,) coincides with the algebra of all multiplication operators
by members of L>°(y) and hence M € MFy.) Having this, one shows that J(Nx) may be
represented as follows. Take a maximal family {us}ses of mutually orthogonal probabil-
ity Borel measures on CV. For each s € S let M(*) = M, (defined as above). One may
check that J(Ny) = H,cq M), Moreover, for two probability Borel measures p and A
onCV:(a) M, <Myeu<\(b)M, =M, e u< A<y ()M, L, My<p LA
A similar (and more detailed) construction will appear in Chapter
Theorems and show that for ¢ € {I,II, IIT} the ideal
J; = {X e CDDy: XK JZ}

consists of all N-tuples of type i.

3.6. Decomposition relative to the unity

Recall that A; = Card, Ay = Carde U{0,1} and Ay = Cardy, U {0}. For simplicity, let
YT={G,a): i€ {[,II,OI}, € A;} and T, =T\ {(II,1)}.

THEOREM 3.6.1. For every A € CDDy there are a unique reqular collection
{EL(A): (i,a) € T}
and a unique Egp,(A) € CDDy such that fori e {I,I1I, 1T},

s =H e,

aEN;
Esm (A) is semiminimal and E{I(A) =Ny © Egn(A), and

A=EnnB HH eoEm) (3.6.1)
(i,a) €Y,
What is more, Eqn(A) = AAEI(A) and EX(A)’s may be characterized as follows:
Ef(A) = \/{E<Jul E<A VF<E F#0:RoF £ A} (3.6.2)

and for (i,a) € Ty,
EL(A)=\/{E<J|a®E<A VF<EF#0:a"©F LA}
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Proof. By Proposition there is an infinite cardinal 7 such that A < v® J =: B. Put
M = W'(B), observe that J corresponds (by Proposition to a steering projection
of M and apply Theorem (Use Theorem to deduce that a suitable Eg,, (A)
is semiminimal. Note that if X and Y correspond, by Proposition to projections p
and ¢, then p ~ a ® ¢ is equivalent to X=a ®Y.) n

The system {E’,(A): (i,a) € T} appearing in Theorem is said to be the partition
of unity induced by A. (In general, a partition of unity is any regular collection {E(j )}je I
such that J = EEjeI EU). Note that in that case EY) <5 J for each jel)

REMARK 3.6.2. Theorem [3.6.1] may be equivalently formulated as follows: after fixing
arepresentative J for J for every A € CDDy there are unique systems {H’ : (i,a) € T} C
cred(J) and {K,: (i, ) € T} C cred(A) such that D(J;) = @, HE fori € {I,1I, IIT};
D(A) = D a)er K W' (A|gn) is type I, Rg© A[ i = J|u and for every (i, a) € T,

A

(In particular, K, KII and K are trivial.)

K&EQQJ

Hi-

As an immediate consequence of Proposition [3.3.4) we obtain

PROPOSITION 3.6.3. For any A,B € €DDy, A < B iff EL(A) L, Eg(B) whenever
(i,a), (i,8) € T and o > 3; and Egn(A) AEY(B) < Eqn(B).

One may also show

PROPOSITION 3.6.4. For any A,B € CDDy, A <* B iff E%,(A) < E.(B) whenever (i,a)
€ Y is such that a # 0, and Egp, (A) <° Egn(B).

The proofs of Propositions and are skipped.
Other interesting consequences of Theorem are stated below.

COROLLARY 3.6.5. Let A,B € CDDy and let a be an arbitrary infinite cardinal number
such that o > max(dim(A), dim(B)).

I) Ak B&aoA< aGB.
(II) Ak BKA& a0OA=a0B.

Proof. In both items the implication ‘<=’ is immediate. Conversely, observe that for each
X € CDDy and (3,5) € T, E};(X) = O provided § > dim(X). This implies that if
8 = max(Xg,dim(X)), then § ®@ X = §©® E for some E <* J. This yields the direct
implication in both (I) and (II). (Observe that if E' <* E”, then y © E' <* v © E” for
every cardinal 7.) m

COROLLARY 3.6.6. A nonempty class A is an ideal iff A satisfies the following three
conditions:

(a) for every A€ CDDy and a € Cardoy, AEA S aOAEA,

(b) whenever {/—\(S)}Ses C A is a regular family of N-tuples such that 0 < dim(A) < Ny,
then F,cs A € A,

(c) A< B and B e A imply A € A.
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Proof. The necessity is clear. The sufficiency is in fact a consequence of Corollary
Indeed, if A < B and B € A, then a ©® A <* a ® B for some infinite cardinal a (by
Corollary [3.6.5). It follows from (a) that « ® B € A and so a ® A € A (by (c)) and
A € A, again by (a). Finally, if {A(j)}je[ C Aand A = @, AU then for large
enough a € Cardy, one has a © AY) = o ® EY) with EY) <5 J (j € I) and a ® A =
o ® E for some E <* J (see the proof of Corollary [3.6.5). Thanks to (a), E¥) € A and
it is enough to show that E € A. We see that 2% <® E and E = \/jeI EG). These

imply (cf. the proof of Theorem D that there is a regular family { BU )}je 7 such that
H,er BUY) = E and BY) < EY) (j € I). We infer from (c) that BY) € A for all j € I.
Now thanks to Proposition [3.4.10, each BY) may be written in the form Bﬂsesj A7)

with 0 < dim(A®?)) < Rg. Consequently, (c) yields A®7) ¢ A and hence E € A as well,
by (b). m

EXAMPLE 3.6.7. Sometimes it may be useful to consider the common partition of unity
for several members of DDy (in particular, to find the partition of unity induced by
their direct sum). It may be understood as follows. For simplicity, we shall describe this
idea only for two N-tuples. Below we involve Proposition several times, with no
comment.

Let A,B € @DDy. Let
2 ={(i,, 8): (i,0), (4,8) € T} and T? = {(i,e,B): (i,q), (i, 8) € T.}.
For (i,a,8) € Y2 let E, 5 = E,(A) A Ej;(B). Additionally, we put
Esma = Esm(A)AEZ(B) and E,gmn = EY(A) AEgn(B)

for a € Apy. One may check that then J; = Hﬂaﬁem Eéﬁ for ¢ € {I,II, IIl'}; E, s, and
Esm,o are semiminimal and

E{{a - NO © Esm,a and Eg,l - NO O] Ea,sm (363)

for each o € Ayy. Further,

A:( -+ Esm,a)aa( H- a@Eg{l)aa( - a@E;ﬁ)Bﬂ(Esm,lﬁﬂEsm,o)

a€Card a€cCardo (i,a,8)€Y2
(3.6.4)

and correspondingly

B — ( H «o E{{a) B ( H Ea,sm> = ( HH se Egﬂ) B (Ex,sm B Eo,om).-

acCards a€Card s (4,0,8)€T2
(3.6.5)

In particular, thanks to (3.6.3),

A S B = [Esm,O H EO,sm H (Esm,l ©® El,sm)] H % (a + ﬁ) ® Efx,ﬁ
(i,a,ﬁ)ETi
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where Ti =7T2\{(II,a,B): (o, 3) = (0,1),(1,0),(1,1)}. So (below (i,7) € YT),
Esm(A S B) = Esm,O H EO,sm B [Esm,l S El,sm]a
Ef (AeB) =E), BE]BE],, (3.6.6)
E(AaB) = HH{EL 5+ o B) €12, at+ B =1}

In a similar manner one may find formulas for AV B and AAB and the partitions of unity
induced by them.



4. TOPOLOGICAL MODEL

4.1. Algebraic and order properties

The following is folklore (see e.g. [19, Exercise 6.9.14]): if p and ¢ are two projections in
a von Neumann algebra M such that n ®p ~ n ® ¢ for some n > 1, then p ~ ¢. This has
an interesting consequence for the class CDD y:

(AO1) nOA=neGB=A=B
provided n is positive and finite. Further properties in this style are listed below.

(AO2) For finite positive n and m: n©A=mo©B & A=k®X and B =10 X for some
X € DDy with £ = m/GCD(n,m) and | = n/ GCD(n,m) (‘GCD’ stands for
the greatest common divisor). If n #m, then n©A=mOA < A=RyOA.

(AO3) If @ and S are cardinals such that o < 3 and 3 is infinite, then

a®OA=p60B & A=50B.

((AO2) and (AO3) follow from (3.6.I); cf. also the beginning of Chapter [£.3])
(AO4) For a nontrivial A € CDDy the following conditions are equivalent:

(i) for any X,Y € CDDy, ABX=ABY & X =Y,
(i) B<®* Aand A@ B = A imply B= 0,
(iii) W'(A) is finite,

(iv) EL(A) = O for each i € {I,II, IIl} and infinite a.

All N-tuples A satisfying (i) form a set, denoted by FINy. (FINy,®) is a
semigroup which may be enlarged to an Abelian group (by (i)).

(AO5) For any A € FINy and B > A there is a unique X such that A & X = B. Thus,
B © A is well defined in that case.

(AO6) Let S be an infinite set whose size is a limit cardinal. For every family {A®)},cg €
DDy,

PAL) = \/{ P A5 8,0 < card() < card(S)}. (4.1.1)

seS ses’

In particular, for every sequence (B(")) 1 C CDDy,

éB(") — \/ B ) B(”),
n=1 n=1

(32]
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and for each A € CDDy and an infinite limit cardinal ~,
voA=\ a0A

a<ly

(By Proposition [3.3.8])

(AO7) Whenever A < B, there are (BOA)Y, (BoA)a € €DDy such that A® X = B iff
(BoA)A < X < (BoA)Y. Moreover, if B = 2B, then (BoA)a <* B = (BoA)V.
B A is well defined iff (B© A)Y = (B © A)a. (See Theorem [3.3.7])

(AOB) If A <* B, then (B & A)a = BEA. (Thanks to (PR1), page[12])

(AO9) (BoAA < (BeX)a@(XoA)A <(BeX)Va(XoA)Y < (BoA)Y whenever
A< XLB.

(AO10) (B A)a <° (BOA)Y provided A < B.

Let us prove (AO10). We use the notation of Example We infer from (3.6.4)) and
(3.6.5) that A < B iff Egn1 < Eq sm, Esm,0 = O and for any v € Cardy and (4, a, 3) € Y2
with o > 3,

B =E.s=0.

In that case (3.6.4} reduces to

A:( H- Esm@)EH( H- a@E;,B)BHEsm;,

a€Cardeo (i,0,8)€Y2
as<p

while (3.6.5)) is equivalent to

B=( H ecel)as( HH soE,)@E.0)

a€Cardoo (i,0,8)€Y?
as<p

Now we infer from the above formulas and (AO5) that

(BOA)s = [Ean(B) 0 En] B ( HH 0oEl,)

a€eCardo

@ (HHt6 - o oEL: o.p) €12 0 <))

where 8 — a = 8 provided § is infinite (and 3 > «). The above formula may be written
in the following concise form:

(BOA)a = [En(B)O Ean (M AEI BB HH (5-0)o (ELA)AEL®)] (412)
(i,0,8)€TE
where T2 = {(i,a,0) € T?: a < 8, (i,a,8) # (II,0,1)}. It is also easy to verify
that (B A)Y = (BS A)a @& X where X = HH,ccara. @ © [EL o BEY, BEN,]. Since
X 1, (B& A)a, the proof of (AO10) is finished. Recall that we have shown that

BeABBoAN= HH oo E®) AE®B). (4.1.3)
acCardoo
e {11111}
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In particular, (B © A)Y = (B & A)a if and only if E? (A) L, E!(B) for every infinite a.

This proves

(AO11) Whenever A < B, B © A is well defined iff E’ (A) L, E,(B) for any o € Cardq,
and i € {I,II, IIT}.

(AO12) (BeX)aV (XEA)a < (BOA)a whenever A < X < B.

(AO13) For any nonempty set {A®)},cg C CDDy and B € €DDy, BV (Nscs AB)) =

Nses(BV A(S)) and BA (V,eg A(S)) = V,es(BA A(S))-
(AO14) For any nonempty set {A(S)}Ses of N-tuples, any A,B € CDDy and each « €
Card,

a®(AAB)=(a®A)A(a®B),
a® (Nees AY) = Apesl@@AY) if
@ ® (Vs AY) =V, eg(@@AY).

For the proofs of (AO12)-(AO14) see Corollary Theorem [4.4.10| and Proposi-
tion 4111

« is finite or
Vs € S: Egm(A®)) =0,

S

EXAMPLE 4.1.1. Taking into account (AO14), it seems to be surprising that in general
a®(Nses A®)) differs from /\Ses(aG)A(S)) for infinite cardinals «, even if S is countable.
Let us give a counterexample. Let o > Ny and X € 8Mpy be nontrivial. There is a
sequence (A™)2 such that n © A™ = X (see the beginning of Chapter . Then
a®A™ =a©X#0, while AZ A™ = 0.

(AO12) has an interesting consequence.

PROPOSITION 4.1.2. Let A,B C CDDy be nonempty sets. Then \/(A D B) = (VA) &
(VB) and N (A®B) =(ANA) @ (A\B) where AdB={A®&B: Ac A, Be B}.

Proof. Since the case of l.u.b.’s is much simpler, we prove only the g.l.b. part. It is clear
that (AA) ® (AB) < A(A @ B). To see the converse inequality, assume that X <A@ B
for any A € A and B € B. Fix B € B and put E = A(A® {B}). For each A € A we clearly
have A®B > E > B and consequently, thanks to (AO12), (EcB)a < [(A@B)&B]a <A
where the last inequality follows from the definition of [...Ja. So, (E&B)a < AA and
therefore E = (E© B)a ® B < (A A) ® B. This shows that

A4 e {B)) < (/\A) @ B,

which yields

AAaes) = A Ao Bh] < A [(A4) o8|

Be3B BeB

Ao {A4}) < (A=) @ (A4)

and we are done. m

COROLLARY 4.1.3. Let Ay, Az, Az, ... be nonempty sets of members of CDDy and let

A={®> AW AN c A, (n>1)}. Then VA =@, (VA,).
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Proof. Tt is clear that VA < @,-,(V Ax). Conversely, by (AO6), @, ,(VA,) =

Vi1 (VA1) @ ® (VAy)]. Now by induction and Proposition VA) S - &
VA =VA @& BA)<VA =

In the next chapter we shall prove a counterpart of Corollary [£.1.3] for uncountable
collections of sets of N-tuples (see Theorem [4.2.2)).

EXAMPLE 4.1.4. It may be surprising that the counterpart of Corollary for infima
fails to be true, even if each A, is a finite collection of minimal normal N-tuples. That
is, in general \(D,_, A,) differs from @, (A A,) where @, A, = {D,~; A
A ¢ Ap}. Let us justify this claim.

For every u € L°([0,1]) we shall write, for simplicity, X, to denote the N-tuple
(M, ..., M,) where M, is the multiplication operator by u on L?([0,1]). For each pair
(n,m) of naturals with 1 < m < n let j,,, be the characteristic function of [0, 1] \
[(m — 1)/n,m/n]. Addltlonally, let id € L*°([0,1]) be the identity map on [0,1]. Put
Apm =X, nia and Ay, = {A, j:j=1,...,n}. Then A, C MFy (because W' (Xiq) =
{My,: v € L*>*(]0,1])}) and A A, = O for every n > 1. However, if (my,)22, is any
sequence of natural numbers such that 1 < m,, < n, then @, | A, > \/7121 Anm, =
Xia (the last equality holds since |, ([0,1] \ [(m, — 1)/n, mn/n]) is of full Lebesgue
measure in [0,1]). Consequently, A(P,—; An) = Xia #0 =P, (A An).

One may deduce from Example that the assumption in (AOG6) that the size of
S is a limit cardinal is essential (in the next chapter we shall discuss in detail
for sets S whose cardinality is not limit). However, for semiminimal parts of N-tuples a
stronger property (than (AOG6)) holds in general (see below). For simplicity, for every set
S let us denote by P;(S) and P, (S) the families of all finite and, respectively, countable
(finite or infinite) subsets of S.

PROPOSITION 4.1.5. Let S be an infinite set and {A(S)}Seg be an arbitrary collection of
N-tuples, A = P, A®) and

A = \/{ DA 5 e Pf(S)}.

SESH

Then Egm(A) = Eqn(A') and EX(A) = E* (A") for each (i,a) € T with finite a.
Proof. Tt is clear that Ej(A) = E§(A) for i € {I, I, Il }. Further, let us prove that

EX(A) = EF(A). (4.1.4)
Since A’ < A < A', (3.6.2) (page [28) shows that EF(A) < EY(A"). Conversely, if X, =
E(X|E{(A")) for every X € CDDy, then (A'), = V{@,cs,(A™)a: So € Py(S)} and
Ay = @,cg(AY),. But (A'), = Egn(A) € 8My and hence (A'), = A,, thanks to
Proposition [4.1.6 (see below). So, A, € SMy and consequently, again by (3.6.2)), Ef' (A") <
E(A). This proves (&.1.4).

Now we have Eg,(A) = E(A[EY(A)) = A, = (A), = Egm(A).
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It remains to check that E.(A) = EL(A’) for natural n. Let F = %, EL(A) and

n=1

F' = E22, EL(A'). Tt is enough to show that F = F’, which we leave to the reader (for it
is similar to the proof of (4.1.4)). =

The following result is in the same spirit.

PROPOSITION 4.1.6. Let S be an infinite set, {A(S)}Ses C CDDy and let

A= \/{ D AV: s € Pf(S)}.

sSESp
If A€ FINy, then A =@, g A,

Proof. Let M = W'(A) and let p; € E(M) correspond (by Proposition to Al
(s € S). Further, let tr: M — Z(M) be the trace on M. For every s € S put wy = tr(ps).
Since D¢, A < A where Sy € Py(8), Y seso Ws < 1 and consequently ) g ws
is convergent and the sum is not greater than 1. Recall that for any ¢,¢' € E(M),
q=q < tr(q) <tr(¢') (see e.g. [35, Corollary 5.2.8] or [19, Theorem 8.4.3]). This implies
that it is possible, well ordering the set S and using transfinite induction, to construct a
family {gs}ses of mutually orthogonal projections in M such that ps ~ ¢, for any s € S.

Hence ), ¢ ¢s < 1, which yields A®) < A and we are done. =

seS

4.2. Reconstructing infinite operations

Classical algebraic structures deal with operations on pairs (such as the action of a
semigroup). However, some operations naturally make sense also for infinitely (possibly
uncountably) many arguments (e.g. unions of sets) and sometimes it is necessary to
use these extended ‘infinite’ operations in order to understand, formulate or prove some
statements. Unless infinite operations can be ‘defined’ (or characterized) in terms of their
finite versions, every such theorem may be seen as unformulable or unprovable in the
language of the original algebraic structure. The most typical example of an infinite
operation is the union of a family of sets. However, it may be characterized by means
of the union of two sets. Namely, for any family A put A® = {B: AUB = B for
each A € A} and then |JA is the unique set B € A® such that BUC = C for any
C € A”. This characterization is possible for one simple reason: the union coincides
with the Lu.b. of the family with respect to the inclusion order which may be defined
in terms of the union of a pair. When we turn to the class CDDy, the direct sum
operation cannot be characterized in a similar manner, because @, g A®) differs, in
general, from \/{(D,cs, A®): Sy a finite subset of S}. Nevertheless, infinite direct sums
may be reconstructed from finite ones, and this is the subject of this chapter. Thus, every
result of the paper concerning unitary equivalence classes of N-tuples is a part of the
theory which starts with the class €DD and the operation DDy x CDDy > (A,B) —
A @B € CDDy. (This refers to the material of Chapters but not to the rest.)

Our aim is to show that P, g A® may be ‘recognized’ if the only admissible ‘tool’
in the class CDDy is the direct sum of a pair. Below we show step by step how to do
this. Each of the steps listed begins with a tool which may be defined.



(ST1)
(ST2)

(ST3)
(ST4)
(ST5)

(ST6)

(ST7)
(STS)
(ST9)

(ST10)
(ST11)

(ST12)
(ST13)
(ST14) ¢

(ST15)
(ST16)
(ST17)
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‘O’: It is the unique member A of CDD y such that A@X = X for every X € CDD .
‘<A Biff B=A@X for some X € CDDy. Accordingly, the l.u.b.’s and g.l.b.’s
are well defined.

‘1, AL, B&AAB=0.

‘<AL B B=A@® X for some X such that X L, A.

‘B and ‘B A = H,cg A® (S any set) iff A®) 1, AC) for distinct s, s’ € S and
A= Vses AL if A <5 B, BEA is the unique X such that X L, A and B = X®A.
‘DD A (n) — \/n>1 AW @ ... A In particular, Ry ® A is well defined
for each A.

‘<’ A < B iff there is no X # O such that X < A and X L, B.

‘E(AIB): X=E(AIB) ©3JdY: A=XaY, X<BandY 1, B.

‘Multiplicity free N-tuples’: A € MJFy if and only if there is no X # O such that
X @ X < A. Accordingly, J; is well defined.

‘Minimal N-tuples’: A is minimal iff A < X whenever A < X.

‘Hereditary idempotents”: A € HIy < B = B @ B for each B < A. Accordingly,
the class HIMy and Jyr are well defined, thanks to (ST10).

‘Semiminimal N-tuples’: Use (ST5), (ST7) and the definition of semiminimality.

I g = \/{No OX: Xe SMN} (use (STG) and (ST12)).

a®A for A < J; with ¢ € {I,II,IIl'}: Thanks to (ST6), we may assume that
a>N. Ifi=I,a0A=a0 Xy ®A) and Xy ® A <° Jy; while for ¢ # II one
has A <° J;. These remarks show that we may assume that A <® J;. Under this
assumption, a ® A may be characterized by transfinite induction with respect to
. When « is limit, it suffices to apply (AOG) (page . On the other hand, if
a=pTand A#O,

a®A=/\{X|VB<* A B#0:30BZEX|B)}.

(This formula may be deduced from Theorem [3.6.1} )

‘E!,(A) and E,,(A)’: Use Theorem and previous steps.

‘a ® A’ (arbitrary A): Use (ST15), Theorem 1} (ST14) and (ST5).
‘Rg - dim(A)’: Since

No - dim(A Z Ro-dim(E}(A)) +Ro-dim(E{ (A)+ > a[Ry-dim(E,(A))]
{1ty

(cf. Theorem dim(E,,, (A)) = dim(EZ(A))), it suffices to characterize the

cardinal number Ry - dim(A) for A <° J. But in that case this is quite easy, thanks

to Proposition [3.4.10; Yo - dim(A) (provided A <* J is nontrivial) is the least

infinite cardinal « such that each regular subfamily of {X: O # X <* A} has size

not greater than a.

Now we are ready to characterize infinite direct sums. For simplicity, let us put Dim(F) =

o - dim(F), Ef(F) = E(F) @ S, EL(F) and Eo(F) = EL(F) @ E” (F) 8 E(F) for
a € {0} U Cardy and any F € CDDy. By (ST17) and (ST15), ‘Dim’, ‘E;’ and ‘E,’
are well defined. Fix a collection {A®},cg of N-tuples and put A = D.cs A®) and
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Ar =V {B,ce A?: S" € Ps(S)}. Ay is ‘known’ by (ST2). Thanks to (ST16) and (ST5),
it suffices to find E,,,(A) and E (A). By Proposition EL(A) = EL(A) for (i,a) € T
with finite o and Eg,,(A) = Eg,, (A'). Since EZ(A) = Eo(A) A J;, we see that it remains to
find E, (A) for infinite o (thanks to (ST9), (ST11) and (ST13)). Let us show that

=\/X (4.2.1)

where
x = {x <* JB (Eo(A) B Ef(A))‘ VY <° X, Dim(Y) = ®: Y DimE(AC)]Y) = a}.
sES
It is clear that E,(A) <° J B (Eo(A) B Ef(A)). Furthermore, if Y <* E,(A), then
D.cs EAP|Y) =E(AlY) =a®Y and thus
Rg - Zdlm (AD]Y)) =
ses

provided Dim(Y) = Ry. This yields E,(A) € X. Consequently, the proof of will
be complete if we show that X < E,(A) for every X € X. To get this inequality, it is
enough to check that X L, Eg(A) for any infinite 8 # . Suppose Y = X A Eg(A) is
nontrivial. Since Y’ <* J, we infer from Proposition that there is Y <® Y’ with
Dim(Y) = Ng. But then Y <* X and E(A]Y) = @Y (because Y <°® Eg(A)). Consequently,
No - D ies dim(E(A®)|Y)) = 8, which contradicts the fact that X € X and finishes the

proof of (4.2.1)).

The arguments of this chapter prove

PROPOSITION 4.2.1. If ®: CDDy — CDDy is a bijective assignment such that P(AGB)
= ®(A) ¢ ®(B) for any A,B € CDDy, then O preserves all notions, features and opera-
tions appearing in (ST1)—(ST17) and

o(PA™) = Poan)
ses sES
for any set {A®)},cg C CDDy.

Let us now discuss the relation between both sides of (4.1.1)) for a set S whose cardi-
nality is not limit, i.e. card(S) = T for some infinite cardinal ~y. Let

A = \/{@ AP S S, 0< card(S") < ’y}.

seS’
By Proposition Esm(A) = Eqn(A') and EY (A) = EL(A') for every (i,a) € T with
finite o. These equahtles are more general: we claim that

E! (A) = EL(A) (4.2.2)
provided a # 7,7 To show this, it suffices to check that E'(A") < EL(A) for o # 7,7t
and E! (A")BE.+(A") < E.(A)BE.+(A) (since we deal with partitions of unity). We need
to check only infinite a’s.
First assume Xy < a < v. Fix X <* E',(A") with Dim(X) = Ro. Let
S ={seS: E(AP|X) # 0}.
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If the size of S’ were greater than «, there would exist a subset S” of S’ with card(S”) =
at < 7. Then we would have @, ¢, A < A" and a® X = E(A'|X) = @, g E(A®|X),
which contradicts the fact that Dim(a®X) = a < card(S”) < Dim(, g~ E(A®)|X)). We
infer that card(S’) < a. So, E(A|X) = E(A’|X). Consequently, E(A|E, (A")) = E(A’|E, (A"))
= a®E, (A") (thanks to Proposition . This means that E. (A") < E. (A).

Now assume that a > v+ = card(S). As before, take X <* E’,(A’) with Dim(X) = R.
Then a ®X = E(A'[X) > E(A)|X) for every s € S and thus E(A|X) = @, s E(AY|X) <
card(S9) ® (a ® X) = a ® X = E(A'|X) < E(A|X). So, E(A|X) = E(A’|X) and consequently
EL(A) S EL(A).

To finish the proof of , it remains to consider a = . For X = Ef/ (A") we readily
have v ® X = E(A'|X) < E(AIX) = @,.4 E(A®|X) < card(S) ® E(A'[X) = v © X. These
inequalities imply that X < E’ (A) B E!+(A) and we are done.

- Having , we obtain E;(A/) B Ei+ (A") = E%(A) B E . (A). We also know that
'+ (A") <* EL+(A) (by the above argument and Theorem . So, E%+(A)BEL: (A)
gives full information about the difference between A and A’. We have

Lo (A)BEL(A) = \{Y <P EL(A)| X <° Y, X #0:
card({s € S: E(AW|X) £ 0}) =~} (4.2.3)
Indeed, Ei+ (A) B Ei+ (A") <® EQ(A') and if X <* Ef/+ (A)B Ei+ (A") is nontrivial, then
there is X' < X with Dim(X’) = Ry (by Proposition [3.4.10). Then €, g E(A®|X) =
E(AIX') =~T ® X" and
Dim(E(A®|X’)) < Dim(E(A'X’)) = Dim(y ® X) = 7,
which implies that the set {s € §: E(A®)|X) # O} has cardinality v+. Conversely, if Y
is a member of the set appearing on the right-hand side of (4.2.3)), then necessarily Y L,
S+ (A") and Y < EL(A) BE . (A). So, we only need to show that Y L, E’ (A). Suppose,
on the contrary, that Y’ =Y A E.(A) (<* Y) is nontrivial. Then there is X <* Y’ such
that Dim(X) = Ro. Observe that @, g E(A®)|X) = E(AIX) = v ® X, which contradicts
the fact that card({s € S: E(A®)|X) # 0}) = 4.
One may deduce from (4.2.2) and (4.2.3)) that (below we use the notation introduced

in this chapter)
A=AV}t o (E+(A)BE,+(A))). (4.2.4)

The above remarks show that Example [3.3.9] demonstrates all reasons for which it may
happen that (4.1.1)) is false. We end the chapter with the announced

THEOREM 4.2.2. Let S be a nonempty set and {As}ses be a collection of nonempty

subsets of CDD . Then
v(%AS) -B(VA) (4.2.5)

seS
where @ g As = {@.eg X X € Ay (s € 9)}.

Proof. The inequality ‘<’ in (4.2.5) is clear. We shall prove the converse by transfinite
induction on card(S). The cases when card(S) < Rg or card(S) = Ry are included in
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Proposition and Corollary respectively. Assume 3 is an uncountable cardinal
such that is satisfied provided card(S) < 8. Now suppose card(S) = g. If § is
limit, the assertion (i.e. the inequality ‘>’ in ([£.2.5))) follows from (AO6) (page[32) and the
transfinite induction hypothesis. Thus we may assume that 3 = vT. Put A = D.csAs,

A =\ A, (s€8),A=@, s A and A" = \/{D,s AY: S C S, 0< card(S') <H)
From the transfinite induction hypothesis, A" < \/ A. Hence, according to ( , we only
need to show that = ® (E,+ (A)BE,+(A")) < \/ A. Having in mind the partltlon of unity
induced by \/ A, we see that the last inequality will be satisfied if only

E.«(A)BE,+ (A’) 1, EL (\/ A) (4.2.6)

for every (i,a) € T with a < 7. Suppose (4 is false for some « < 7. Then Proposi-
tion [3.4.10| implies that there is X € CDDy such that 0 < dim(X) < NO,

X <* EL (\/A) and X <* E,+ (A)BE,«(A). (4.2.7)

The first relation of - 4.2.7) yields E(\/ A|X) < a® X (by the characterization of E, (\/ A)
given in Theorem . Consequently,
dim(E(DBYX)) <a (4.2.8)
ses
whenever B € A, (s € S). But E(@,.4B”[X) = @, E(B|X) and thus (£2:§)
dim(E(B®|X)) < . So, whatever B®) € A, we choose,
card({s € S: B®) 1, X}) <~. (4.2.9)
However, the second relation of - combined with (4.2.3) implies that the set S’/ =
{seS: A(s) L X} has size vT. Observe that for s € S, 1f Y 1, Xfor every Y € A, then
necessarily A®®) = V As Ly X and hence s ¢ S’. We conclude that for every s € S there

is B®) € A, such that B®) £, X. Now (£.2.9) contradicts the fact that card(S’) = v+.
Consequently, (4.2.6)) is satisfied and we are done. m

changes into )

4.3. Semigroup of semiminimal tuples

This chapter is devoted to a deeper study of SMy. Thanks to (AO4) (page [32), SMy is
a set and (SMy, @) is a semigroup which may be enlarged to an Abelian group.

A similar construction to the following may be found in [9, Proposition 1.41]. Fix
a nontrivial A € 8Mpy. Since W/(A) is type 11y, for every n > 1 there is a unique (by
(AO1), page A ¢ §My such that A = n® A" . We denote it by L ®A. Now if w is
a positive rational number and w = p/q with natural coprime p and ¢, we define w ® A
asp® (% ® A). Finally, for a positive real number ¢ let

t@Az\/{w@A:weQ,wgt}.

Additionally, put t©0 = O for each t € R.. Using traces on *-commutants of semiminimal
N-tuples (i.e. on W/(A) for A € 8My), one shows that for any s,t € Ry and any
A,B € SMy,
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VS1
VS2
VS3) toA=A{z0A: z>t}andfort >0, t0A=V{zOA: 0 <z <t}

( JOOA=0;10A=A,

(VS2)

(VS3)

(VS4) (st) ©A=50(tOA); (s+t) 0A=(s0A)® (tOA),
(VS5)

(VS6)

(VST7)

s®A < t®A provided s < t,

VS5) tO (A®B)=(tOA) D (t®B),

VS6) if ‘~’ denotes one of ‘<’, ‘<*’, ‘«’, ‘L, and t >0, then t ©>A~t©®B < A~ B,

VST) if A = @,.s A, then t @ A = @, 4(t © A) (this follows from (VS5), (VS6)
and Proposition [4.1.6)),

(VS8) b(A) € SMy and b(t © A) =t © b(A),

(VS9) for every sequence (£,)22; of nonnegative reals, (30" t,) ©A = @, t, ©A
(where oo is identified with Ry, if applicable).

Now by (VS1), (VS4), (VS5) and (AO4) (page [32)), there is a real vector space
(ENv =+, ) ) (SMNa D, ®)

The above inclusion means that addition and multiplication by reals in €y extend,
respectively, ‘@’ and ‘®’ defined above. SMy as a subset of €y is a cone (that is,
SMy + SMpy C SMN, RJr - 8My C SMpy and SMy N (—SMN) = {0} = {O}) We
may assume that &y = SMy — SMpy. Under this assumption, we may consider the par-
tial order on €y induced by SMy: & <¢g & & & — & € SMpy (€1,&2 € En). It may be
checked that for A,B € SMy, A <¢ B & A < B. So, ‘<¢’ extends ‘<’ and therefore we
shall omit the subscript ‘€’ in ‘<¢’. Since every nonempty subset of SMy which is upper
bounded in 8My has the L.u.b. (in 8My), Ex is a conditionally complete lattice (which
means that every nonempty upper bounded subset of £y has the Lu.b. in €y). Our aim
is to find a ‘model’ for the lattice & .

Until the end of the chapter we fix a representative Jj; of Jj, a compact Hausdorff
space Q0 homeomorphic to the Gelfand spectrum of Z(W'(Jyr)) and an isomorphism
U: ZW'(Jir)) — C(Qr) of x-algebras where C(2y7) is the algebra of all continuous
complex-valued functions on ;7. Every A <* Jj; corresponds to a unique central projec-
tion za in W/ (J 7). Let Ua be a clopen (i.e. simultaneously closed and open) subset of Q7
whose characteristic function coincides with ¥(za). Qp is extremely disconnected (that
is, the closure of every open subset of Qj is open as well; see [I8, Theorem 5.2.1]) and
the assignment A — Up establishes a one-to-one correspondence between all N-tuples
X € 8MY (where SMFY ={X € CDDy: X< Iy} ={Ro®A: A€ SMy}) and all clopen
subsets of £277. Moreover, for A,B € SM¥, A <°* B & Ua C Us.

For every A € SMy, A= RNg © A <° Jyy and thus Ui makes sense. This set is said
to be the support of A and denoted by suppg, A. There is no difficulty in verifying
that suppg, A C suppg, B (respectively suppg, A Nsuppg, B = 0) provided A < B
(respectively A 1, B) and A,B € SMy.

The following idea comes from the theory of W*-algebras ([I8, Definition 5.6.5]) es-
pecially when working with the so-called extended center valued traces (see the notes on
page 329 of [35] and Definition V.2.33 there). We consider the set

M(Qr) = {f € C(Qz, [~00, +00]): f~H(R) is dense in Qr}.

To make the space M(€2j7) a real vector space, we need the following well-known result (it
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follows from [I8], Corollary 5.2.11] or [35, Corollary I11.1.8]; see also [I2] for more general
results in this direction).

LEMMA 4.3.1. If X and K are compact Hausdorff spaces and X is extremely disconnected,
then every continuous function of an arbitrary open dense subset of X into K is extendable
to a continuous function of X into K.

Now if f,g € M(Qyr), the set D = f~}(R) N g~ !(R) is open and dense in Q7 and the
function f|p + g|p is well defined and continuous. Consequently, thanks to Lemmam
there is a unique member of M(€;), which we shall denote by f + g, which coincides
with the usual sum on D. Similarly one defines f - g and ¢ - f for ¢t € R. We leave it as
an exercise that M(Qy) is a real vector space with these operations. Further, we equip
M(Qyr) with the pointwise order. One may easily check that M(Qp) is a lattice (i.e.
every finite nonempty subset of M(€;;) has the lL.u.b. and the g.l.b.). What is more,
M(yr) is conditionally complete, since 7 is extremely disconnected (this follows from
[35, Proposition I11.1.7]). We shall show that &x and M(Q2y7) are lattice-isomorphic. For
every f € M(Qpr) let supp f be the closure of the set {x € Qp: f(z) # 0}. Since Qpy is
extremely disconnected, supp f is clopen.

When X is a clopen subset of Qz, let M(27|X) be the set of all f € M(Qyr) for which
supp f C X. Then M(Qy|X) is a sublattice of M(Qyr). By M4 (Qy) and My (Q|X) we
denote the cones of nonnegative elements of the respective lattices.

For the next step of our considerations we need

LEMMA 4.3.2. Let Q be the Gelfand spectrum of a commutative YW*-algebra. Every dense
Gs subset of Q) has dense interior. What is more, for each Borel function f: Q0 — R there
is an open dense set D C Q such that f|p is continuous.

Lemma follows from [I8, Lemma 5.2.10] combined with Proposition I111.1.15 and
Theorem IIL1.1.17 of [35] (see also the note preceding Corollary I111.1.16 there).

Let {f,}52, C M4 (Qyr) be such that Y7, fr < g for some g € M4 (Qyr) and each n.
We define Y7 | f, € M4 (Qy) as follows. Let f: @ — R be given by f(z) => 7", fu(2)
provided the series is convergent, and f(z) = 0 otherwise. By Lemma there is an
open dense subset D of Q such that f|p is continuous. We define >°°° ; f,, € My (Qr)
as the unique continuous extension of f|p. Since f < g, (3o fn)(x) =Yooy fu(x) for
x belonging to an open dense subset of €2;;. One may check that

> g {3 sienz1)

(€r) “pmy
Fix a nontrivial X € SMN. Let LIX] = {F € $My: F < X} and X = suppg,, X.
THEOREM 4.3.3. There is a unique operator
dF

such that for any F,F™ e LIX] (n=1,2,...):

(TRO) 4 W is the characteristic function of X,
(TR1) supp dx C suppg,, F,
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oo (n) n
(TR2) % =3, F( ) if @, F) ¢ SMy (see the remarks preceding the
theorem).

Moreover, the above operator has further properties:

(TR1’) supp % = suppq,, F for every F € L[X],

(TR2') whenever A € L[X] is of the form A = @, .4 A )}
dA dA®) JA)
= ———— = sup { :SOE'Pf(S)},
dX = dX T vanm G5 X

(TR4") d(fg(F) =tox db for each F € L[X]

(TR5') for any A, B elLX,A<B& &2 g %}

(TRE') for every f € My (| X) there is a unique F € L[X] with % = f.

Proof. The existence of the operator may be deduced from the result on faithful nor-
mal extended center valued traces for semifinite W*-algebras ([35, Theorem V.2.34])
applied to W’ Y) with Y = Ry ® X. The operator may also be constructed as follows. By
Theorem there is X' € $My such that Jy = NO o (X@EX). Put X = Xx@x
and let /\/l W”(X). Then M’ = W/(X). Since X € SMy, M’ is type II; and
hence there is a trace tr: M’ — Z(M’) (with tr(1) = 1). Since Z(M’') = Z(M),
ZW"(J)) = ZW'(Jir)) and the function M > T +— Ro 0T € W'(J) is an iso-
morphism of x-algebras, hence the function k: Z(M") 3T — Ry 0T € ZW'(Jy)) is a
well defined *-isomorphism. Define Tr: M’ — C(Qr) by Tr = ¥ o s o tr. Now if A < X,
by Definition El, A may be written in the form A = F3°2; A" with A™ < n©X. This
implies that = © A < X and thus there is a projection p, in M’(f() which corresponds

by Proposition [2.3.1) to £ ® A" . We put
(by n

if( = nTr(p,). (4.3.1)
n=1

Since A™ L, AU™ for n 7é m, supp Tr(p,) N supp Tr(p,,) = @ and thus is well
understood, by Lemma 1l We leave it as an exercise that the definition is independent
of the choice of (A(”)) > and that all conditions of the theorem are fulfilled (observe
that X corresponds to a central projection in M’(X)). Here we focus on the uniqueness
of the operator.

If A<® X, then X =AHEB With B = XHA and suppg,, B = suppg,, X \ suppg,, A.
Consequently, by (TR0)-(TR2), 4 is the characteristic function of suppg,,, A. ThlS shows
that 4% is uniquely determined by (TR0)-(TR2) for F € F := {woA: w € Qy, A <°* X}.

Further, if A < X, then A may be written in the form A = @), F™ with F(") e Fo
(this may be deduced, by means of the trace, from the representation of a continuous
function on an extremely disconnected compact Hausdorff space as a series of continuous
functions with finite ranges). So, according to (TR2), 4 W is uniquely determined by
(TRO)—(TR2) for B = w ® A with rational w and A < X. Finally, it suffices to recall that
if A€ L[X], then A= H>, A™ with L © AW < X. m

COROLLARY 4.3.4. &y and M(Qyr) are isomorphic as ordered vector spaces.
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Proof. Take X € SMy such that Rg®X = Jj; and define @, : SMy > F — % € My (Qpp).
By Theorem [£.3:3] @ is an additive bijection preserving orders. Now it suffices to extend
@, in a standard way: ®(§) = P({4) —P(-). =

PrROPOSITION 4.3.5. If A, XY € SMy are such that A << X <Y, then

dA dA dX

Yy — dX dY’
Proof. Arguing as in the uniqueness part of Theorem we only need to check that
4.3.2)) is satisfied for A <® X. When A = X, (4.3.2) is clear. So, for arbitrary A <*® X,

.3.2) follows from (TR1) and (TR2). m

(4.3.2)

=

We end the chapter with the following two remarks.

REMARK 4.3.6. The notation ‘%’ suggests denoting the inverse operator, from

M4 (2p|X) onto L[X], by [ fdX. Thus, for f € M4 (Qy|X), [ fdX = B iff B € L[X]
is such that % = f. Arguing as in the proof of Theorem one may show that the
operator M4 (Q|X) > f +— [ fdX € L[X] is uniquely determined by the following three
conditions:

(AD1) [ jx dX =X where jy is the characteristic function of X,
(AD2) suppg,, ([ fdX) C supp f for each f € My (Qp|X),
(AD3) if f € My (Qy|X) has the form f =3 f, (with f, € M4 (Q]X)), then

/fdxzn@l/fndx.

Note that (AD3) resembles Lebesgue’s classical monotone convergence theorem.

REMARK 4.3.7. Specialists in Hilbert space operators would probably prefer the version
of ‘%’ whose values are operators rather than functions. This is possible and may be
provided as follows. Since every bounded member of M, () corresponds, by ¥, to a
nonnegative element of Z(W'(Jr)), each member of M4 () corresponds to a (pos-
sibly unbounded) nonnegative selfadjoint operator A such that b(A4) € ZW'(J 1)) (in
the theory of von Neumann algebras such an operator A is said to be affiliated with
ZOW'(Jp1)); see e.g. [I8, Definition 5.6.2]). Thus, if we let L[X] and Z, (W' (Jy)) de-
note, respectively, the classes of all Y € CDDy whose unitary equivalence class is semi-
minimal and which are covered by X (i.e. Y <« X), and of all the above-mentioned
operators A, then Theorem may be adapted to these settings in such a way that
ax e Z,(W/(X)) for any Y € L[X] and (here we list only those properties which do
not need additional explanations): (a) 4% is the unit of Z(W' (X)) (so, 5% is a central
projection in W/ (Jp)); (b) 2% = 4¥° iff Y/ and Y” are unitarily equivalent; (c) if

dx X
A <m®X and B < n® X for some natural numbers m and n, then both j}% and
4B are bounded and % = % + 4B, (d) if Y is such that Y; =t ® Y (for some

Y € L[X] and t > 0), then ”g('f = t%. The reader interested in this approach should
consult [I8, Theorem 5.6.15].
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4.4. Model for the class

Now we shall develop the idea of the previous chapter. This will also be an adaptation
of the dimension theory for W*-algebras. Let J be a representative of J, 2 be a compact
Hausdorff space homeomorphic to the Gelfand spectrum of Z(W'(J)) and let

U ZW (J)) — C(Q)

be an isomorphism of x-algebras. When the triple (J,Q, V) is fixed, J; for i = I,II, II]
corresponds to a clopen subset €2; of Q. In what follows, we assume that Card "Ry =
ZNR,. We add and multiply two reals and two infinite cardinals in the usual way, and
additionally we put 0-a=a-0=0andt+a=a+t=a+0=0+a=a=t-a=a«a-t
for t € Ry \ {0} and o € Cards,. We also extend the natural total orders on R4 and
Card, assuming that ¢t < « for every real ¢t and each infinite cardinal «. In this way the
order on R U Card is total and complete. We equip every set Y C Ry U Card with the
topology inherited from the linearly ordered space I, := {£ € Ry U Card: £ < a} where
a = sup(YU{Ng}) (cf. [8 Problem 1.7.4]). Since the topology of the linearly ordered space
1, coincides with the topology inherited from I3 whenever Xy < o < (3, this definition of
the topology on Y causes no confusion. For every topological space X, we call a function
f+ X — Ry UCard continuous if f is continuous as a function of X into f(X). One may
check that for every a € Card.,, I, is compact, the order is a closed subset of I, x I,
and the functions I, X I, 2 (£,£)— &+ ¢& €I, and I, x I, 5 (§,&) — £-& € 1, are
continuous.

Let A(2) be the class of all continuous functions u: Q@ — Ry UCard such that u(2;) C
Card and u(Qr) C {0} U Cards,. We add and multiply members of A(£2) pointwise. We
shall also multiply elements of A(2) by cardinal numbers pointwise and we equip A(Q)
with the pointwise order. For each f € A(Q), supp f is the closure of the (open) set
{z € Q: f(x) # 0}. Observe that supp f is clopen.

Suppose {fs}tses C A(Q) is any family such that supp fs N supp fs = 0 for distinct
s,s' € S. We define ) ¢ fo € A(Q) in the following manner. Let Dy = (J,cgsupp fs,
D = Do Uint(2\ Dy) (‘int’ stands for interior) and w: D — Ry U Card be given by
u(z) = fs(z) for z € supp fs (s € S) and u(z) = 0 for x € int(2\ Dy). It is clear that D
is open and dense in  and wu is continuous. Now by Lemma u may be (uniquely)
continuously extended to a member of A(Q2), denoted by > ¢ fs. One may check that

in that case ), g fs = supy () {2 .es, fs: S0 € Pr(9)}

LEMMA 4.4.1. Let {fn}52, C A(Q) and u,v: Q@ — Ry U Card be given by u(z) =
inf,>1 fu(x) and v(z) = sup, > fu(z) (x € Q). There are open dense subsets U and
V of Q such that u|y and v|y are continuous.

Proof. Since the proofs for v and v differ, we shall present both. We start with u for which
the proof is simpler. Let Uy = u=*(R,) and for a € Cardy, let U, = intu~*({a}). Since
Uo=U,2, ' (R}), Uy is open. Now the function u’: @ — Ry given by u/(z) = u(z) for
x € Up and /() = 0 otherwise is Borel (because on Uy it coincides with the infimum of a
sequence of continuous functions taking values in [0, oo], after a suitable change of f,’s).
Thus, according to Lemma there is a dense open subset U’ of ) such that u/|y is
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continuous. Consequently, u|y, is continuous where Uy = Uy N U’ is open and dense in
Uy. We see that U = Uy U Uaecardm U, is open and u|y is continuous. To show that U
is dense in €2, it remains to check that the set G = int[Q\ (Uo UU,ecara.. Ua)] is empty.
Suppose, for a contradiction, that G # ). Note that G is clopen and u(G) C Carde. Let
a = minu(G) > Xg. We conclude from the definition of u that f,(z) > « for all z € G
and n > 1. What is more, there is £y € G such that u(zg) = a and there exists m > 1
with u(xg) = fm (o). Since « is an isolated point of f,,(G), the set Go = f,,1({a}) NG is
clopen (and nonempty). We see that then u(z) = « for each € Gy and hence Gy C U,,
which contradicts the definition of G. This finishes the proof for u.
To show the assertion for v, we begin similarly: let F' = v=1(Iy,) and

V= |J intv'({a})

acCardeo
The set F is closed since F = (2, fr ' (Ix,). We claim that
FUdV =Q (4.4.1)

(‘cl’ stands for closure). Again, for contradiction suppose that D = Q\ (F U clVy) is
nonempty. Since D is open, there is a clopen set G # ) such that G C D. Notice that
v(G) C Carde \ {Ro}. Let v be the first infinite cardinal such that

int[G Nv~ (1)) # 0. (4.4.2)

Let W be any nonempty clopen subset of G Nv~!(I,). Let us show that
~v = sup{sup fr,(W): n > 1} = supv(W) > Ry. (4.4.3)
Put 4" = sup{sup f,(W): n > 1}. It is clear that 4" < supv(W) < v (as v(W) C I,). On
the other hand, by the definition of v, v(z) < 7 for each € W, which yields 4" > R
(since W C G) and W C v~!(I,/) N G. We now infer from the definition of v that v < /.

This proves (4.4.3)).

Now let Wy be an arbitrary nonempty clopen subset of G Nv~1(L,) (cf. (4.4.2)). Put
Z =WonU,—, f-*({7}). Then Z is F, and, by Baire’s theorem, int Z = () (because,
thanks to ([(.4.3)), int[Wo N £, 1({7})] C intv= ({y}) C Ve and Wy N Vo = 0). An
application of Lemma shows that int(cl Z) = (. This implies that there is a nonempty

clopen set W C Wy\Z. We conclude from the definition of Z that f,(z) < v forany x € W
and n > 1. But since W is compact, f,, assumes its maximum on W and consequently

Yn += max(Ro, sup fr(W)) < 7. Now by (£.4.3),

Sup v, = 7. (4.4.4)
n>1

Further, by the minimality of v, each of the sets G,, = G Nv~!(I,,) has empty interior.
Moreover, the G,,’s are closed (G, = G N[y, fx ' (I,,)). Consequently, another appli-
cation of Baire’s theorem and Lemma gives int[cl(Goo)] = 0 where Go = U~ | G-

But Goo = GNov (L, \ {7}) (by (#4.4)). Finally, by (4.4.2), we obtain
int[G Nv ' ({y})] = int(G Nv(I,) \ Goo) D int[G Nv ™ (1,)] \ el G # 0,
which contradicts the fact that G N Vo = 0. This finishes the proof of (4.4.1).
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Relation means that the set E = Q) ¢l V, is contained in F' and consequently
v(E) C Iy,. Observe that E is clopen and Iy, is both homeomorphic and order-isomorphic
to [0,1]. Therefore v|p is Borel and by Lemma [4.3.2) there is an open dense subset Vg of
E such that vly, is continuous. To end the proof, put V=1,UV,. n

Now assume (f,,)52; is a sequence of members of A(Q). Let v: @23z +— > 0 | fu(z) €
R4 UCard. (The series > - | fu(z) is understood as the supremum of its partial sums.) It
is clear that v(€2;) C Card and v(€y7) C {0} UCards,. By Lemma[4.4.1] there is an open
dense subset D of 2 such that v|p is continuous. Consequently, thanks to Lemmam
there is a unique ¥ € A(Q?) which extends v|p. This unique extension o will be denoted
by 07, fn. One may check that > 2 | f, = SUPA(Q){ZZ=1 fezn =1}

Now let A € CDDy. Put

s(A) = JB (E5(A) BEY(A) BEI(A)). (4.4.5)

Since s(A) <*® J, s(A) corresponds to a unique central projection za € M’(J). There is
a unique clopen set in €2, denoted by suppg A, whose characteristic function coincides
with W¥(za). It is clear that for A/B € CDDy, A € B < suppg A C suppg B; and
A 1, B < suppg A Nsuppg B = 0. When X, Y € 8My are such that X < Y, u = dX/dY
is defined on €j; and real-valued on an open dense subset D of ;. Extending u|p to a
continuous function of Q into Iy, by putting zero on Q;UQ; and applying Lemma[4.3.1]
we may consider dX/dY as a member of A(Q2), as is done in this chapter. With this
understanding,

dX
—:XeESMy, XKLY
i x o0, xv)

={u € A(R): suppu C suppq Y, u ' (R,) is dense in Q} (4.4.6)
(by Theorem [4.3.3). Since addition is continuous on Iy,, d(X' @ X")/dY = dX'/dY +

dX" /dY whenever X', X" < Y.
Throughout, jr denotes the characteristic function of a set £ C €.

THEOREM 4.4.2. Let T € SMy be such that Rg © T = Jy; (there exists such a T). There
is a unique assignment &1: CDDy — A(Q) such that

) @1(T) = Jay, ®v(r) = jo, and S1v(Jur) = Vo * o,
(D1) supp ®1(A) C suppg A for each A € DDy,
(D2) o1r(a @A) =a-P1(A) for any o € Card and A € DDy,
(D3) whenever {A®)},eg C DDy is a regular family (cf. (D1) and notes on page ,

or(FHA®) = S er(a®),

ses sES

(D4) whenever (A™)2, c@DDy is such that b, A e8My (see notes above),

n=1
Ot (é AM) = i Br(AM).
n=1 n=1

What is more, A(Q) is order-complete and ®1 has further properties (below, A,B €
CDDy):
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(D1’) supp @1(A) = suppg A; in particular, A < B (resp. A L, B) iff suppg ®1(A) C
suppg, @1(B) (resp. suppg @1(A) N suppg, @1(B) = 0),
(D4') for any sequence (AT™)>° | C DDy,

or(PAT) = 3 oA,
n=1 n=1
in particular,

(D5) A< B d1(A) < o1(B),

(D6) A <®* B & O1(A) = O1(B) - jg for some clopen set E C €,

(D7) for every X € My, &1(X) = dX/dT,

(D8) for every u € A(Q) there is a unique X € CDDy such that D1(X) = u.

Proof. Let us start with the uniqueness of ®1. First of all, for A € My, s(A) =Rg O A
and hence suppg, A coincides with suppg, , A introduced in the previous chapter. Therefore
(D0), (D1) and (D4) combined with Theorem yield ®1(A) = dA/dT for A € SMy
(notice that A <« T for every such A). Further, we infer from (D0) and (D2) that ®+(Jy) =
Ng - ja, and consequently, by (D3) and (D0),

Or(J) = ja, + No * Jayuem- (4.4.8)

Now if X <*® J, (D3) implies that &1+(J) = &1(X) + &1(Y) with Y = JB X. What is
more, suppg X Nsuppg, Y = @, from which we conclude, thanks to (D1), that &+(X) =
®1(J) - Jsuppg x- Finally, if A € €DDy is arbitrary, the above combined with (D3) and
(D2) gives

(I)T(A) = dESdLT(A) + Z a- <I)T(J) : jsupr E: (A): (449)

(,0) €T

To establish the existence of &1 together with all suitable properties, define ®1(A) by
with ®(J) given by (4.4.8). Observe that (D0), (D1’), (D2) and (D7) are satis-
fied. We now show . We shall apply the calculations in Example Under the
notation of that example, (4.4.9) and (3.6.6) give

dEsm,O dEsm71 dEO,sm dELsm .
ottt =2t Y (a4 B) (@1() dsuppg
(i,a,ﬁ)ETi

o+ (A®B) =

).

3
a8

Further, it follows from Theorem that

dEsm(A) _ dEsm70 dEsm,l dEsm,a
PR S D D o

a€eCard

dEsm(B) o dEO,sm dEl,sm dEa,sm
i S S D Dl

a€eCard o
On the other hand, for (i, ) €Y., we have E’ (A) =Hsea, Eg”@ and E,(B) = Hsea, Eg’w

which means that

Jsuppg, Ei (A) — Z Jsuppg, Ef%ﬂ and Jsuppg, EL (B) — Z Jsuppg E'[ij,a'
BEN; BeA;
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Substituting the above in the formulas for ®7(A) and ®1(B), we see that is
satisfied.

Now let g be an arbitrary member of A(Q). For (i,a) € Y, let U} = Q;Nint g~ ({a})
and let U{! be the closure of g7t (R, \ {0}) N Q. Since € is extremely disconnected, the
sets Ul (with (i, ) € Y) are clopen and pairwise disjoint. The arguments used in the proof
of Lemma [£.4.1] show that their union is dense in €. This implies that there is a partition
of unity {EZ}(i,a)eT C @DDy such that suppg E;, = U for every (i,a) € Y. Moreover,
thanks to , there is Eg,, € SMpy such that dEs,, /dT = ¢ - leu. This implies that
suppg Esm = suppg Ei’ and hence Eff = Ry ® E,,,. Now the formulas E, (A) := E!, and
Esm(A) := Egpp, well define A € CDDy such that &1(A) = g. Further, if &1(B) = g and
Vi = suppg EL(B) ((i,a) € T), then V! c U? for (i,a) € T, by ([:4.9). But the union
of all V/’s is dense in Q and U. \ V! is open. We infer that V! = U and consequently
dEsm(B)/dT = dEs;,, (A)/dT and B = A. This shows (D8).

We are now able to prove (D5). Indeed, if A < B, then B = A @ X for some X and
then, by (£.4.7), ®1(B) = ®1(A) + ®1(X) > ®1(A). Conversely, if 1(A) < @(B), there
is g € A(Q) (see Corollary below) for which ®1(B) = &1(A) + g. We know from
the previous argument that g = ®&1(X) for some X € CDDy. Consequently, &1(B) =
&1 (A @ X) and by (D8), B= A ® X and we are done.

We have shown that @t is a bijective order isomorphism. This implies that A() is
order-complete (by Theorem and for every nonempty set {A(S)}Ses C CDDy,

[o2S A(s)t Sy € Pf(S) = sup @T(A(S)): So € Pf(S) .
VD P= i j
But this and (AO6) (page imply (D3), (D4) and (D4'). Point (D6) is left to the

reader. m

Let us call every topological space homeomorphic to Q an wunderlying model space
for CDDy. We shall show that underlying model spaces for DDy and CDD . are
homeomorphic for any N and N’. We shall also propose a simplified form of them.

Let us now list a few basic consequences of Theorem [£.4.2] Some of them were an-
nounced in Chapter For simplicity, we fix T € SMy such that Ng ® T = J;; and for
cach A € CDD y, A will denote &1 (A). Since A(Q) is order-complete, for every nonempty

set {fs}ses € A(Q), V,es fs and A ¢ fs will stand for, respectively, supy ) {fs: s € S}
and infyo){fs: s € S}.

COROLLARY 4.4.3. (B&X)aV (X&A)A < (BOA)a provided A < X < B.

Proof. It suffices to prove a counterpart of the corollary in the class A(Q). Let f,g € A(Q2)
be such that f < g. The set Dy = {z € Q: f(z) < f(y) or f(y) € Ry} is open in Q and
there is a unique function ug: Dy — R4 U Card such that g(z) = ug(x) + f(x) for every
x € Dg. It may be easily seen that ug is continuous. Let D(f,g) = Do U int(Q2 \ Do)
and u € A(Q) be a unique continuous function (guaranteed by Lemma such that
u(x) = up(x) for x € Dy and u(z) = 0 for x € D(f,g) \ Dog. We see that g = f + u on
D(f,g) and hence g = f+wu on Q. It is easily seen that u is the least member of (A(2), <)
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with this property. We shall denote this u by (g — f)a. It is clear that
(BEA)s=(B-A)x

whenever A < B. Thus, we need to check that (h — g)a V (g — f)a < (h — f)a if only
f < g < h. It suffices to check a suitable inequality on a dense subset of 2. We leave it
as a simple exercise that it is satisfied for x € D(f,g) N D(g,h) N D(f,h). m

REMARK 4.4.4. Using the same idea as in the proof of Corollary £.4:3] one may show
that whenever A;B € CDDy are such that A < B, then

Be(BoAV|a< Be(BOAaA< ALK [Bo(BoAY =[Ba(BoAVV.

Recall that the Souslin number of a topological space X, denoted by ¢(X) (|8, Prob-
lem 1.7.12]), is the least infinite cardinal « such that every family of mutually disjoint
nonempty open subsets of X has size not greater than a. Let us modify this by putting
c«(0) = 0 and c.(X) = ¢(X) for nonempty topological spaces X. It turns out that the
modified Souslin numbers of certain clopen subsets of {2 may be used to give the formula
for dim(A) if only this dimension is infinite. Namely,

PrROPOSITION 4.4.5. Let A € CDDy and f = A. Let UL be the closure of the set
RN A{0}) NQyr and for (i,a) € Ty let UL = Q; Nint f~*({a}). Then

Ro-dim(A) = > a-c(U)).

(i,a)eY

Proof. In extremely disconnected spaces, the closures of two disjoint open sets are disjoint
as well. Consequently, whenever E is a clopen subset of 0, ¢(FE) is the least infinite cardinal
a such that every family of pairwise disjoint nonempty clopen sets has size not greater
than a. Since clopen sets correspond to N-tuples A such that A <* J, the assertion follows
from the argument used in (ST17) (page [37). The details are left to the reader (cf. the

proof of (D8) in Theorem |4.4.2)). m

REMARK 4.4.6. It is worth mentioning that it is impossible to recognize N-tuples whose
representatives act on finite-dimensional spaces by means of corresponding members of
A(Q), unless we distinguish some special subsets of €2, as is done in the next chapter.
To see this, it suffices to note that A is the characteristic function of a one-point subset
of Qrifeg. A= (T,...,T) € CDDy where T is either the identity operator on C or a
unilateral shift on /#5.

We shall now prove a useful

LEMMA 4.4.7.

(A) For every clopen nonempty set E C Q) there is a family {Es}scs of pairwise disjoint
clopen nonempty sets such that c¢(Es) = Rg for every s € S and |
subset of E.

(B) Let {fs}ses be a nonempty set of members of A(Q) and let u = N\ g fs and v =
Vs fs- For every clopen nonempty set £ C Q with ¢(E) = N there are a nonempty
set S(E) € P,(S) and an open dense subset D(E) of E with the following property.

ses Es s a dense
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Whenever S" O S(E) (8" C S) and x € D(E), then
u(z) = siélgl fs(z) (4.4.10)
and if, in addition, v(E) C Iy,, then also
v(z) = sup fs(x).
ses’
Proof. (A): Let € = {Es}scs be a maximal family of pairwise disjoint nonempty clopen
sets such that c¢(Es) = 8o and E; C E for every s € S. Let D = E \ cl({U,cg Es). We
have to show that D is empty. But this follows from Proposition Indeed, we infer
from that result that every nonempty clopen subset of €2 contains a nonempty clopen set
G with ¢(G) = Xy. Consequently, since D is clopen and & is maximal, D = §.

(B): Let Uy = clu ' (Ry)N E and U, = intu=1({a}) N E for a € Card,. We know
(cf. the proof of Lemma that the collection U = {U,: a € Cardo, U {1}} consists
of pairwise disjoint clopen sets whose union is dense in E. Further, for each o € Cardy
and s € S put Uy s = Uy N f;1({a}). Since fs > a on U, and « is an isolated point
of Card \ {# € Card: 8 < a}, Us,,s is clopen. It is clear that (J, g
(Indeed, the set G = U, \ cl(U,cg Ua,s) is clopen and fs(z) > o™ for any x € G and
s € S and thus v’ € A(Q) given by v/|¢ = a™ and v/ = v on Q\ G is such that v < f
(s € S), which gives u' < u and consequently G = ().) Let ‘<’ be a well order on S with

Uq,s is dense in U,.

the first element s,.. We define clopen sets V,, s by transfinite induction as follows. Let
Va,s. = Uaq,s, and for any s € S'\ {s.},

Vas = Uss el Vo)

s'<s
We see that V,, s C U,,s and hence

uly, . = fslva.- (4.4.11)

Further, the sets V, s (s € S) are pairwise disjoint. Using transfinite induction one may
check that cl(lJ, . Va.s) = cl(U U, s ) for each s € S and thus

s'<s V8 s'<s Y a,
cl(U Va,s) = U.. (4.4.12)

ses
Now we turn to the set Uy. By definition, U; is clopen and u(Uy) C Iy,. In what follows,
we assume Uj is nonempty. Let g, = fs A Ng. We naturally identify Iy, with [0, co]. Let
7:[0,00] 3 z — %= € [0,1] (with the convention that =1). Put v =7ouly, €

x+1
C(U1,[0,1]) and ¢, = 7 o gs|u, € C(Uy,[0,1]). Note that

u'= )\ g (4.4.13)
SES

_0
co+1

Since Uy is clopen in © and C(Q) is a W*-algebra, so is C(U;). Further, we conclude from
the fact that ¢(Uy) = Ny that C(Uy) is countably decomposable. Thus, it may be inferred
from [35, Theorem II1.1.18] or [29, Proposition 1.18.1] that C(Uy) is isomorphic to L (u)
for some probability space (X, 9, ). Under this isomorphism, ¢, and v’ correspond to,
respectively, £, € L>(u) and w € L>(u). Consequently, w = infye(,y{&s: s € S} (by
(4.4.13)). For a nonempty set Sp € P, (5) let wg,: X 3 x — infyeg, &() € [0,1]. Since
So is countable, wg, is measurable and hence wg, € L™ (u). Let
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c= inf{/ wg, dp: Sy € Pw(S)}.
X

It is easily seen that there is S1 € P,,(S) for which ¢ = [, wg, du. Now if s is an arbitrary
element of S, then wg, (s} < ws, and [y wg,ugs) dp > ¢ = [ wg, dp. These imply that
Wg,ufs} = Ws, (p-almost everywhere) and consequently & > ws, in L>(u). The last
inequality gives w > ws, = infre(,y{s: s € S1} and therefore w = wgs, (in L>(u)).
In C(Uy) this is interpreted as u’ = A g, g5, which is equivalent to ulu, = A,cg, 9slv; -
Now by Lemma[f.4.1] u(z) = infyes, g5(2) for 2 € Dy where D; is an open dense subset
of U;. This implies that for each z € D1(E) := D; Nu~Y(Ry) N E there is s, € S; such
that g (x) € Ry. Consequently, g, (z) = fs,(x) and hence

u(z) = Siensf1 fs(x) (4.4.14)

for x € D1(F). Notice that D;(FE) is dense in Uj.

Further, observe that the family {U;} U {V,s: s € S, o € Card} consists of pair-
wise disjoint clopen subsets of E. Since ¢(E) = Rg, the set J := {(a,8): s € S, a €
Cards, Ua,s # 0} is countable (finite or not). Put S(E) = Sy U{s: (a,s) € J} and
D(E) = D1(E)UU 4,5y Va,s- We see that S(E) € P, (S) and D(E) is open and dense
in E (by and the density of D1(E) in Up). Take an arbitrary set S’ such that
S(E) c 8" C S. For each z € Q one has infses fs(z) = u(z). On the other hand, if
x € D(FE), then either z € Dy(E) or z € V, s for some («,s) € J. In the first case the
inequality infscg fs(z) < u(z) follows from , and in the second from .

If we additionally assume that v(F) C Iy,, we have to enlarge the set S(F) defined
above and decrease D(F). Arguing as in the paragraph for U; (that is, representing
C(E) as L () for some probability measure ), we see that there is Ss € P, (S) such
that v|p = \/5632 fs- By Lemma there is an open dense subset Ds of E such
that v(z) = sup,cg, fs(z). Now it suffices to replace S(E) by S(E)U S, and D(E) by
D(E) N Ds. (The details are left to the reader.) =

Both points of Lemma [1.4.7] yield
COROLLARY 4.4.8. Let {fs}scs be a nonempty subset of A(£2).
(A) There is an open dense subset D of Q0 such that for all x € D,

()= s
s€S
(B) If E is a clopen subset of 2 such that (\/ g fs)(E) C Ix,, then there exists an open
dense subset G of E such that for any x € G, (\/ g [s)(x) = sup,eg fs(7).

REMARK 4.4.9. We suspect that the counterpart of Corollary A) for suprema fails
to be true in general. However, partial results in this direction may be shown. Let
u = \,cq fs- Put Uy = u=!(Iy,) and U, = int f~!({a}) for @ € Cards \ {No}. The
argument used in the proof of Lemma shows that U; U U, is dense in ). By
Corollary there is an open dense subset of Uy such that

u(z) = sup fs(x) (4.4.15)
ses

a>Ng
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for x € D;. We ask for which a € Cardy \ {No} there is an open dense subset D, of
U, such that is satisfied for all x € D,,. It is quite easy to show that this is so
when a = 37 for some 3 > Ny (indeed, it suffices to put Do = U N e fo ' ({}); since
fs < aon U, and « is an isolated point of I, the set D, is open; that cl D, = U, may
be proved by a standard argument on the difference of these sets). Slightly more difficult
is to prove that D, exists for every limit cardinal « which has countable cofinality,
that is, when there is a sequence (f3,)22; of cardinals such that 8, < « for every n,
and o = sup,>; B,. In that case we put G = Uy N2, Useg fo ' (Card \ Ig,) and
D = U, \clG. Our first claim is that D is empty. For if not, there would exist a nonempty
clopen set E C D. Then put E, = EN(\,cqfs'(Is,). Noticing that E = {J)~, E,
(since ENG = {)) and E,’s are closed, we infer from Baire’s theorem that W = int E,
is nonempty for some n and thus \/,_s(fslw) < Bn (W is clopen), contradicting the fact
that [V, cg(fslw)](x) = u(r) = a for x € W. So, D is indeed empty and hence G is a
dense Gs subset of U,. Now an application of Lemma m shows that D, = intG is
dense in U, as well.

The above arguments show that if (\/ g fs)(©2) N Cards, consists only of cardinals
which are nonlimit or have countable cofinality, then \/,_ ¢ fs may be computed pointwise
on an open dense set.

THEOREM 4.4.10. For every nonempty set {A(S)}Ses C CDDy and each B € CDDy,

BA (\/ A<S>) = \/ (BAA®), (4.4.16)

ses seS
BV (/\ A(S)) = A\ (BVA®) (4.4.17)
seS ses

Proof. As usual, we pass to A(Q2). Put f; = A®) and g = B. Let u = Nses fs and
u' = N,es(gV fs). By Corollary W, there are open dense sets D and D’ such that
u(z) = infses fo(x) for & € D and u/'(x) = infees(g V fs)(z) for & € D’. Then for
zeDND,

(g \ u)(x) = max(g(x), Slrelg fs(x)) - Sirelg(max(g(:n), fs(x)) = ’U/(LE),

which gives (4.4.17). Now we turn to (4.4.16|).
Let v = \/,cg fs and v' = \/,.4(g A fs). We only need to show that v’ > g Av. As

usual, put Uy = g~ (In,) Nv 1 (Iy,), Ur = g7 (Iy,) \ v (Iy,) and U, = int g~ ({a})
for @ € Carde \ {Ro}. We know that each of these sets is clopen and their union is
dense in Q. Hence it suffices to show that g A v < v’ on a dense subset of U, for any
[OAS {0, 1} @] Cardoo \ {N()}.

On Uy it suffices to apply Corollary if V() = sup,eg(g A fs)(z) for z € D’ and
v(x) = sup,eg fs(z) for x € D, then v' = v A g on DN D’. Further, since v > Xy on Uy,
the set Dy = Uy NJ,eq f5 '(Card \ Iy,) is dense in U;. What is more, for every 2 € D,
there is s € S with fy(z) > N and therefore v'(z) = (fs A g)(x) = g(z). Consequently,
v’ > g Av on Dy and we are done.

Now fix a € Cardy, \ {Ro}. We divide U, into two clopen parts: V; = U, Nv~1(1,)
and Vo = Uy \ v ! (Iy). Let Dy = V1 U, c5lUa \ fi'(1o)]- Notice that fo < o on V)
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(hence v" = v on Vi) and for every z € D, \ V; there is s € S such that fs(z) > « (so,
v' =g on D, \ V7). This proves that v’ > v A g on D,,. Finally, standard argument shows
that D, N V5 is dense in V5, and this finishes the proof. m

PROPOSITION 4.4.11. The assertion of (AO14) (page is satisfied.

Proof. Again, it suffices to prove the counterpart of (AO14) in the realm A(Q). It is clear

that «- (fVg) = (a-f)V(a-g)and a- (fAg) = (a- f)A(a-g) for all f,g € A(Q)
and each a € Card. Now let @ = k be a positive finite cardinal. In order to show that

k'(\/ses fs) = Vses(k'fi) and k'(/\ses fs) = /\Ses(k-fs), let us consider an ‘extended’
version of A(Q2), namely A(£2) which is defined in the same way as A(Q2) with the onl
difference that members of K(Q) send €2 into R, UCard. We shall prove in Corollary
that ; is homeomorphic to Q. Consequently, 1~\(Q) is order-complete. It is immediate
that the assignment A(Q) > f — k- f € A(Q) is a bijective order isomorphism. Hence
it preserves g.1.b.’s and Lu.b.’s computed in A(£2). So, we only need to check that u :=
SUpj ) £ and v := infy ) F" are in A() for every nonempty set F' C A(€2). Since the
proof for u is similar, we shall only show that v € A(Q). Let Dy = Q; Nintv=1({0}),
Bo = v~ 1({0})NQ;\ Dy and for any positive integer m let D,,, = QrNint v~ ((m —1,m])
and B, = v~ *((m—1,m])NQ\ D,,. We claim that D = (Q;Nv~(Cards))UU,>_y D is
dense in Q; (D is of course open). Indeed, Q;\ D = |J.°_, By, Since each B, is nowhere
dense (by Lemma[4.3.2)), Baire’s theorem yields our assertion. Now let v’ € A(£2) be such
that v/ = v on (Q;Nv ™1 (Cardy,)) UQy UQy and v(D,,) C {m} for every integer m > 0
(see Lemma [4.3.1)). We see that v(z) < v'(z) for « € D UQy UQyy and consequently
v < v'. Moreover, since v < f € A(Q) for any f € F, v < f as well (f € F) and hence
v=1v" € A(Q).

In the second part of the second claim of (AO14) one assumes that E,,, (A®)) = O,
which corresponds to fs(€2;r) C {0} U Cards. Here we shall weaken this, assuming that
fs(Qp) C Card for each s € S. It follows from Corollary that there is an open
dense subset D of © such that for all z € D, (A g fs)(z) = infses fs(z) as well as
[(Aseg(a- fo)l(z) = infses(a - f)(x). Since all values of (all) f,’s are cardinals, we see
that in the last two formulas ‘inf’ may be replaced by ‘min’. But « - mingeg fs(z) =
minges(a - fs(x)) and thus a - (A,cg fs)(®) = [Ases(a- fo)](x) for x € D, and we are
done.

We now turn to the last claim: that « - erF f= \/feF(a - f) for every nonempty
set F C A(Q) and o € Cards,. The inequality ‘>’ is clear. To prove the converse, put
u = \/feF(a - f). It is enough to show that « - u = u. Equivalently, we have to check
that for each x € Q, u(z) > a or u(x) = 0. Suppose, to the contrary, that 0 < u(zg) < «
for some xy € 2. Take a closed set B C I, \ {a} such that u(zg) € int B and put
D = intu ! (B). D is clopen and zo € D. Now let u/ € A(Q) be given by v’ = u on
Q\ D and v’ = 0 on D. We see that u/(zg) < u(zo). However, a- f < o’ for every f € F.
Indeed, if z € D, then a > u(x) > a - f(x), which implies that f(x) = 0. Thus, u is not
the Lu.b. of a - F, and this finishes the proof. =

REMARK 4.4.12. It is natural to ask which function corresponds to A = @, ¢ A®) for an

uncountable set S; in other words, how to express } g fs := A by means of f, = Al
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(s € S). Lemma and Theorem show that for countable S, > _¢ f, may

be computed pointwise on an open dense subset of €. Let us demonstrate how to find
> scs s when S is uncountable. We shall use here the arguments of Chapter First
of all, let g = \/{D ,cq fs: 5" € Pr(S)} and Uy = clg™(Ry). It may be deduced from
the arguments of Chapter that > g fs = g on Uy and the function f := > _q fs
takes infinite values on Q \ Uy. So, we only need to characterize U, = int f~!({a}) for
a € Carde (since we know that Uy U, ccarq.. Ua is dense in ). This is possible thanks
to (4.2.1). For this purpose, we define dimp u for v € A(Q) and a nonempty clopen set
E C Q with ¢(F) = Rq as follows:

dimpu = Z{a € Cardy: ENintu=({a}) # 0} + c.(ENnclu' (R, \ {0}))
(notice that the last summand is either 0 or Xg). Now one may conclude from (4.2.1)) that
U, is the closure of the union of all clopen sets V' C Q\ Uy such that ) __gdimg f, = a

for every nonempty clopen set E C V with ¢(E) = Xg (of course, U, may be empty). We
leave the details to the interested readers.

REMARK 4.4.13. It is clear that the formula for @t essentially depends on T. However,
there is a quite simple connection between ®1 and ®s for any two semiminimal N-tuples
T and S such that Rg®OT = Rg®S = Jyr. Put u = jo,u0,, +dS/dT and D := u=1 (R4 \{0}).
We leave it as an easy exercise that D is dense in © and for every X € €DDy, Ps(X) is
the unique continuous extension of (1 ®+(X))|p.

4.5. Types of tuples

As in the previous chapter, A = ®1(A) for each A € CDDy where @t is as in Theo-
rem [£.4.2] This notation is in force until the end of the paper.
The following result is an immediate consequence of Proposition [3.5.1]
PROPOSITION 4.5.1. For every clopen set E C () the class
JIE] :={A € CDDy: supp A C E}
is an ideal in CDDy. Conversely, for every ideal A C CDDy there is a (unique) clopen

_—

set K C Q such that A = IJ[K]. What is more, K = supp J(A).

For every ideal A, the unique clopen set K such that A = J[K] will be denoted by
suppg A. Below we give some related examples.

ExaMPLES 4.5.2. (A) Fix a nonnegative real number r and let J(r) be the class of all
N-tuples X for which ||X]|| < 7. It is clear that J(r) is an ideal. Put Q(r) := suppg I(r)
and Q(bd) := U, Q(r). The set 2(bd) is open in 2 and for every X € CDDy;,

IX]| < o0 < supp X C Q(bd)

(indeed, use the fact that supp X is compact). What is more, if ||X|| < oo, then ||X| =
min{r > 0: suppX C Q(r)}. The ideal J[cl Q(bd)] consists of all N-tuples which are direct
sums of bounded N-tuples. Further, whenever 0 < s < 7, the ideal IJ[Q(r) \ Q(s)] consists
of all N-tuples all of whose nontrivial reduced parts have norm greater than s but not
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greater than r. We conclude that Q(s) = int([,.,, €©(r)) for any s > 0. For positive r put
Ur} =Q(r) \ (U, ., Qs)) and I{r} = I[Q{r}]. The ideal J{r} consists of all N-tuples
with all nontrivial reduced parts having norm 7.

(B) Now let J(b) := {b(A): A € CDDy}. It follows from the properties of the b-
transform that J(b) is an ideal. Let €2(b) = suppg I(b). Notice that J(b) consists of all
N-tuples X such that either ||X|| < 1, or ||X|| = 1 and X does not assume its norm.
Consequently, Q(b) ¢ (1). The ideal J[E] with E = Q(1) \ ©(b) consists of all N-tuples
each of whose nontrivial reduced part has norm 1 and assumes its norm. In particular,
E c Q{1} and the ideal J[Q{1} \ E] = J[Q{1} N (b)] coincides with the class of all N-
tuples each of whose nontrivial reduced parts has norm equal to 1 and does not assume
its norm.

As a consequence of Theorem and Examples we obtain

COROLLARY 4.5.3. Every contraction T acting on a Hilbert space H induces a unique
decomposition H = Ho ® H1 ® Ha such that Ho, H1,Hs € red(T) and

(a) every nontrivial reduced part of T|y, admits a nontrivial reduced part of norm less
than 1,

(b) T|#, does not assume its norm (unless Hy is trivial) and each of its nontrivial reduced
parts has norm 1,

(c) every nontrivial reduced part of T'|y, has norm 1 and assumes its norm.

What is more, Ho, H1,Ha € cred(T).

As done by Ernest [9], the types of W”(X) and W/(X) may be assigned to X. It is
easily seen (and in fact, already used by us in Theorem [3.6.1)) that for every nontrivial
X € CDDy:

W/(X) is type I, (a € Card \ {0}) iff X = @ ©® E for a unique E <* Jy,
W/(X) is type I, (o € Cardy) iff X = a ® E for a unique E <° Jy,
W'(X) is type II; iff X is semiminimal,

W/ (X) is type I, (o € Cardy,) iff X = a @ E for a unique E <* Jj7.

Ernest calls a bounded operator T of type i, provided W'(T) is of this type (cf. [, Defi-
nition 1.28]). We call a nontrivial N-tuple X € CDDy (of) type I (withn = 1,2,...,00),
I, 11°° or IT1(®) iff W"(X) is of type I, 111, Il and 11l o (respectively). Additionally,
we agree that the trivial N-tuple is of each of these types.

Since a von Neumann algebra is type I, II, III iff so is its commutant, we see that
for nontrivial X, W”(X) is type III iff so is W’(X) and thus the above definition causes
no confusion. Later we shall see that if a nontrivial X is type i> (i € {I,II, Il }), then
W (X) is type iy, and thus there is no need to use uncountable cardinals here.

Fix " € {I',I%,..., I, I I III*°} and let J; be the class of all N-tuples of
type i". Our first goal is

PROPOSITION 4.5.4. J; is an ideal in CDDy.

Proof. 1t suffices to verify all points of Corollary Point (a) is fulfilled since for
any a € Card, and nontrivial X, the von Neumann algebras W (X) and W”(Y) are
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isomorphic where Y = a® X. Point (b) follows from the following result on W*-algebras:
if M is a W*-algebra and {z;}scs is a family of mutually orthogonal central projections
in M which sum to 1 and Mz; is type i, for each s € S, then M itself is type i,,. Finally,
(¢) is a consequence of a similar result: if M is a type i,, W*-algebra and z is a (nonzero)
central projection in M, then Mz is type i, as well. m

Now put §2;, = suppg J;,. It is clear that the sets Qr,, Qr,, ..., Qr_, Qr,, Qi and
Q.. are pairwise disjoint and their union is dense in 2. It is obvious that Q= Qur.
Let us now check that if X is type ¢ (and nontrivial), then W”(X) is type ix,. Indeed,
there is E <* J (namely, E = s(X), cf. (£.4.5)) and an infinite cardinal « such that
a®X = a®E. This implies that W”(X) and W' (FE) are isomorphic as W*-algebras and
thus W (E) is type ioo. Further, we conclude from Propositionthat E=H.cs E()
for a suitable family such that 0 < dim(E(s)) < Ng. Consequently, W (E(®)) is type iqo
for each s € S and therefore (since E(*) acts in a separable Hilbert space) W (E®)) is
type ix,. This implies that W"(E) (and hence W (X)) is type ix, as well.

One may easily check that J;, coincides with the ideal Ny introduced in Examples
E) and studied in Example m Thus Q;, corresponds to normal N-tuples. R

The sets §2;, may be used to compute dim(X) for every X € €DDy by means of X.
For this, let us introduce the strict Souslin number, c;(X), of a topological space X.
Namely, c;(X) = ¢(X) iff X is an infinite set and ¢;(X) = card(X) otherwise.

PROPOSITION 4.5.5. Let X € CDDy, f =X, Ut = Q; Nint f~({a}) for (i,a) € T, and
Ul =Qpne f~1 (R4 \ {0}). Then

dim(X) = Z nm-c; (UL NQr,) + Ro Zcf(Uf; NQr)
n,m=1 n=1
+Ro e (U + Y ales(Ud) + ¢ (UL + ep (U] (45.1)
a€eCard

Proof. As in the proof of Proposition we see that dim(X) =3, v a-dim(E’, (X))
and Ry -dim(E’ (X)) = ¢.(UL) = Ro-cp(UZ). Moreover, dim(E{ (X)) € Card., U{0}. So, to
show (.5.1)), it suffices to check dim(EZ (X)) = Ro-c;(ULNQr )+ 300 m-cp(ULNQy, ).
Write EX (X) = EB7Z5° Epm with E,, . € Ir, and observe that suppg E,, . = ULNQ, =:

Vi,m- S0, it is enough to show that
dim(Epn ;) =m - ¢ (Vam) (4.5.2)

(for m = oo the above means that dim(E,, o) = Ro - ¢f(Vp,00)). If the set V;, ,, is infinite,
then we may decompose it into arbitrarily (finitely) many pairwise disjoint nonempty
clopen sets, which shows that representatives of E,, ,,, act in infinite-dimensional Hilbert
spaces and hence is satisfied in that case (e.g. by Proposition . On the other
hand, if V,, ,, is finite, E,, ,,, may be decomposed into card(V}, ., ) irreducible N-tuples of
type I™. Now easily follows since an irreducible N-tuple of type I'™ acts in an
m-~dimensional Hilbert space. m



5. PRIME DECOMPOSITION

5.1. Primes, semiprimes, atoms and fractals

Prime numbers may be defined in two ways (below, n, k and [ are positive integers):

e n is prime iff n # 1, and n = kl implies k=1 or [ =1,
e n is prime iff n # 1, and n = kI implies k,l € {1,n}.

These two conditions may naturally be adapted to more general algebraic structures
(especially monoids, i.e. semigroups with neutral elements). However, in some structures
they may be inequivalent. We will see that this occurs in DD y. Therefore we distinguish
the following two classes of N-tuples.

DEFINITION 5.1.1. Let A € CDDy be nontrivial. We say A is a prime iff A = XY
implies X,Y € {O,A}. A is an atom iff A= X @Y implies X=0 or Y = O.

In case of a single bounded operator, our definition of an atom is equivalent to Ernest’s
definition of an irreducible operator ([9]). It is clear that every atom is a prime. But not
conversely. To see that, let us first prove

PROPOSITION 5.1.2. For a nontrivial A € CDDy the following conditions are equivalent:

(i) W'(A) is a factor,
(ii) W"(A) is a factor,
(i) {X € @DDy: X< A} = {0,A},
(iv) ezxactly one of the following three conditions is fulfilled:

(a) there are unique X € MFn and a unique positive cardinal a such that A = a©®X
and W'(X) constists precisely of the scalar multiples of the identity operator;
what is more, 0 < dim(X) < Ny,

(b) there are unique X € HIMy and a unique infinite cardinal o such that A = a®X
and W'(X) is a (type III) factor; what is more, dim(X) = Vo,

(c) there are (nonunique) X € SMy and a unique cardinal o € {1} U Cards, such
that A= a ® X and W/(X) is a (type 1) factor; what is more, dim(X) = Rq.

Proof. Points (i) and (ii) are clearly equivalent. Further, it follows from (PR3) (page
that (i) is equivalent to (iii). Consequently, we infer from Theorem that if W/(A)
is a factor, then either A = E,(A) or A = 8 ® Ej(A) for some (i,3) € T.. In the first
situation put X = Eg,,, and o = 1; in the second, we consider two cases: if i # II, put
X = E};(A), otherwise take X € SMpy such that Ry © X = E ; in both cases we put

(58]
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a = . Note that A = a ® X. Further, we conclude from (PR6) (page that W'(A)
is a factor iff so is W/(X). Now Proposition implies that dim(X) < Rg provided
{Y € CDDpn: Y < X} = {0, X}. All the above shows that (i) is equivalent to (iv). m

We now have
PROPOSITION 5.1.3. Let A € CDDy be nontrivial.

(A) A is an atom iff W/(A) consists precisely of the scalar multiples of the identity
operator. If A is an atom, then A < J; and 0 < dim(A) < No.

(B) Suppose A € €DDy is not an atom. Then A is a prime iff dim(A) = Ry and W'(A)
1s a type III factor.

Proof. Point (A) is left to the reader. We turn to (B).

First note that if A is type III, then A < Jz7. Consequently, if in addition dim(A) = Ry,
then A = Egg(A) and thus A is minimal. But then {X € CDDy: X < A} = {X €
CDDy: X <* A}. So, the sufficiency of the conditions formulated in the proposition for
A to be a prime follows from Proposition Conversely, if A is a prime but not an
atom, an application of Proposition shows that A = a ® X for suitable a and X.
Since X < A, we infer that A = X. So, X ¢ MFy (because A is not an atom) and X
is not semiminimal since O # % ©Y S Y for every nontrivial Y € 8My. We infer that
X € HIMy. Thus, W'(A) is type III and, of course, it is a factor. m

Let A be a prime which is not an atom. It follows from Proposition that A =
Ry ® A. Consequently, red(A) is an infinite set. However, for every F € red(A), A|lp = A
(because A is prime). Conversely, if B € CDDy is such that card(red(B)) > 2 and
B|g = B for any F € red(B), then B is a prime and not an atom. This observation leads
us to

DEFINITION 5.1.4. A fractal is a prime which is not an atom.

We see that every prime A is either an atom (if A # 2 ® A) or a fractal (if A=20A)
and that A is type I or type III. It is immediate that two different primes are unitarily
disjoint.

A counterpart of primes for type II N-tuples are semiprimes.

DEFINITION 5.1.5. A nontrivial N-tuple A is said to be a semiprime iff A is not of the

form n ® B where n is a natural number and B is a prime, and the following condition is
fulfilled: whenever O # X < A, there is a natural number m such that A < m © X.

Semiprimes may be characterized as follows.
PROPOSITION 5.1.6.

(I) A nontrivial N-tuple A is a semiprime iff W'(A) is a type II; factor.
(IT) Let A be a semiprime. Then A is semiminimal and dim(A) = Ry. If B < A, then B
is a semiprime iff B=1t® A for some t € Ry \ {0}.

Proof. First assume that W/(A) is a type II; factor. Then necessarily A # n ® B for any
prime B, and A € SMy. Moreover, W/ (Xy ® A) is a factor as well. We conclude that
suppq,, A consists of a single point (see Chapter . This implies that if O £ X < A,
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then % = A % for some real number A > 0. But A - % = d()ﬁA) and therefore
X = A ® A. Now it suffices to take a natural number m such that mA > 1 to see that
A < m © X. Consequently, A is a semiprime.

We now assume that A is a semiprime. Observe that then A = XHY implies X = O
or Y = O. We infer that W/(A) is a factor. So, according to Proposition A=aoX
for suitable o and X. Since A is a semiprime and O # X < A, a © X < m ® X for
some natural number m. This implies that either A = X € HIMy or a < m. Again
taking into account that A is a semiprime, we see that A = X € SMy and hence W'(A)
is type II; and dim(A) = ¥y. Further, if B = ¢ ® A, then B is semiminimal (hence
W (B) is type II;) and the W*-algebras Z(W'(B)), Z(W' (Rg ©® B)), Z(W'(Rg ® A)) and
Z(W'(A)) are isomorphic (since X @ B = Xy ® A), which implies that W' (B) is a factor.
Consequently, B is a semiprime. Finally, if B is a semiprime such that B < A, then from
the semiminimality of B it follows that %@B < A for some natural number n. Now the first
paragraph of the proof shows that then % ©®B = A®A for some A > 0, and we are done. m

The reader will now easily check that if A is a prime or a semiprime and X € CDDy is
arbitrary, then either A < n ® X for some natural number n or A 1, X. It turns out that
a stronger property may be established, similar to a suitable property of prime numbers.
Namely:

PROPOSITION 5.1.7. Let {X®)},c5 € CDDy be a nonempty set and let A < D.cs X (),

(I) If A is a prime, there is s € S such that A < X&)
(IT) Suppose A is a semiprime. For each s € S let \s = sup{t € Ry :t © A < X(S)} €
Ry U{Ro}. Then Ay @ A <X (s € 8) and 3, g As > 1.

Proof. To prove (I), observe that there is s € S such that A and X are not unitarily
disjoint. Since A is a prime, this yields A < X,

We now turn to (II). By (VS3) (page , A = X\, © A < X®). Assume that A, < 1
for every s € S and A = ) g\ < co. By the maximality of As, (1 —X;) ©A =
AcA® 1, X® oA = v and consequently A L, Y. Thus, A 1, @, .oY".
Now since @, g X = (B.cs A @ (B.cs Y®)), we infer from (PR1) (page that
A<P,cq A®)_ Further, we sce that VIiB.cs AB): 5 ¢ P¢(S)} = A®A. This, combined
with Proposition yields \O A=, ¢ AL So, A< A®Aand hence A\ > 1. =

Denote by ay, fy and sy the sets of all, respectively, atoms, fractals and semiprimes
in CDDy. Further, for n = 1,2,...,00 let ax(n) be the set of all atoms of type I".
Similarly, we denote by sx (1) and sy (cc) the sets of all semiprimes of type IT* and I1°°,
respectively. The reader should notice that an atom A belongs to ay(n) for some finite
n iff dim(A) =n (and A € ay(oc0) iff dim(A) = Ny). Finally, we put py = ay Ufn Usn.

PROPOSITION 5.1.8. The setsay(n) (n=1,2,...,00), fn, s5(1) and sy (00) have cardi-
nality 280 . Each of these sets contains a subset of size 280 consisting of mutually unitarily
disjoint N -tuples.

Proof. Let us first justify that each of the sets aj(n), fi, $1(1) and s1(c0) contains at
least one bounded nonzero operator. For ay (n) this is clear, while for f;, s1(1) and s (c0)
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it follows from the existence of factors of each type and the results on generators of such
factors [38], [I1] (the same was in fact observed by Ernest, cf. [9, Proposition 1.30]).

Now let T be a bounded nonzero operator of a suitable type (here by a type we mean
an atom of type I, a fractal or a semiprime of type II"). Notice that then {(rT,...,rT) €
CDDy: 7 € (0,00)} is a family of mutually unitarily disjoint N-tuples of the same type
as T (indeed, if X is a bounded semiprime, then ||t ® X|| = || X|| for each t € Ry \ {0} and
thus rX 1, sX for distinct r and s). This proves the second claim of the proposition. To
show the first one, it suffices to apply Lemma [3.4.1] and observe that if X is a semiprime,
then card({Y € sy: Y L, X}) =card({t @ X: t e Ry \ {0}}) =2%. m

As an immediate consequence of Proposition we obtain the following result,
announced in Remark

COROLLARY 5.1.9. For i = {I,II, IIl}, dim(J;) = 2%.

Denote by J¢ the ideal generated by py and let ¢ = (J%)+. In other words, A € J¢
if A = @xcp, Ox © X for some family {Bx}xepy C Card; and A € J° if P < A for no
P € py. Similarly, whenever A is an ideal in €DDy, A% and A€ denote, respectively, the
ideals A N J% and A N J¢. The ideals A% and A¢ are called the discrete and continuous
parts of A. For example, we shall write J¢;, fJCIll, etc. We also define the discrete and
continuous parts of every member of DDy and each clopen set in Q: X = E(X|J%) and
X¢ = E(X|3¢) for X € CDDy; QF = supp, I¢ and Q° = suppg, I and E4 = EN Q7 and
E¢ = ENQF° for a clopen set £ C ). We underline that classically the terms discrete and
continuous as kinds of operators mean type I and without type I parts, respectively (as
used e.g. by Ernest—see [9, Definition 1.22]).

It may be easily checked that A € p iff A has the form A = ¢ Jizy where either ¢ =1
and x € Q7 or ¢c € Ry \ {0} and = € Qyp, or ¢ = Ry and x € Q. Therefore Q4 is the
closure of the set of all isolated points of Q. Consequently, we infer from Lemma
and Proposition that

PROPOSITION 5.1.10. Each of the spaces Qf (n=1,2,...,00), Q% , Qf  and Qf; is
the Cech-Stone compactification of the discrete space of cardinality 2%°.

Proposition [5.1.10] and the next two results will be used later to classify ideals in
CDDy up to isomorphism (see Chapter for definitions and details).

PROPOSITION 5.1.11. Ewvery nonempty clopen set E C Q¢ with ¢(E) = Rq is homeomor-
phic to the Gelfand spectrum of L*°(]0,1]).

Proof. There is a (unique) nontrivial A € DDy such that A < J and suppﬂ = FE.
Since E C Q¢ and ¢(E) = Ny,

Ac€J® and dim(A)=R,. (5.1.1)
Further, since Z(W'(J)) is isomorphic to C(Q2), Z(W'(A)) is isomorphic to C(E) (because
A <*® J). This means that E is the Gelfand spectrum of Z(W'(A)). Now the assertion
easily follows from (5.1.1)) and Theorem II1.1.22 of [35] (which asserts that every commu-

tative von Neumann algebra acting on a separable Hilbert space which has no nonzero
minimal projections is isomorphic to L>([0,1])). m
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Now for a clopen set E C Q let kq(F) be the size of the set of all isolated points
of E and let k.(F) = c.(E°). Additionally, let us denote by D(m) the discrete space
of cardinality m and by X the Gelfand spectrum of L>°([0,1]). Recall that for every
completely regular topological space X, X stands for the Cech-Stone compactification
of X.

THEOREM 5.1.12. Any clopen set E C € is homeomorphic to the topological disjoint
union of BD(kq(E)) and B[D(k.(E)) x X].

Proof. By Lemma [£.4.7] and Proposition [5.1.11} E contains an open dense subset hom-
eomorphic to D(k.(F)) x X. Now it suffices to apply Lemma to infer that E¢ and
E* are homeomorphic to, respectively, 8D (kq(E)) and S[D(ke(E)) x X]|. m

EXAMPLE 5.1.13. It is clear that an(1) is the collection of all N-tuples acting on a
one-dimensional Hilbert space. So, ax (1) may naturally be identified with C".

One may also easily check that ax(2) consists of all N-tuples acting on a two-
dimensional Hilbert space which are not of type I;. In other words, if A = (A44,...,AN)
where Aq,..., Ay are 2 by 2 matrices, then A € an(2) iff A;A; # A;A; for some
jked{l,...,N}

For n > 3 the characterization of members of ay(n) is much more complicated.

5.2. Strongly unitarily disjoint families

Thanks to (BT3) (page and suitable characterizations of the kinds of N-tuples ap-
pearing below, we see that for every X € €DDy the following equivalences hold:

X is type I, I™, II, IT*, II*®, III, minimal, multiplicity free, a hereditary

idempotent, semiminimal, a prime, an atom, a fractal or a semiprime iff so

is b(X).
However, so far there was no need to use the b-transform, apart from Theorem
From now on, this transform will be intensively exploited and without it the presentation
would be much more complicated.

We say that two classes A, B C CDDy are unitarily disjoint iff A 1, B, that is, if

A 1, B for any A € A and B € B. We begin with a classical

PROPOSITION 5.2.1. Let A, B € CDDy be nontrivial N-tuples and let X = A @ B. The
following conditions are equivalent:

(i) A L, B,

(i) WX)={SeT: SeW(A), TeW(B)}=W(A) ae&W(B),

(iii) T®0 € W"(X) (where I is the identity operator on D(A) and 0 is the zero operator

on D(B)).

Proof. Using b-transform and taking into account properties (BT3)—(BT5) (page[12), we
may assume that A and B are bounded. In that case the equivalence of (i) and (ii) follows
from Schur’s lemma (cf. Theorem 1.5 in [9]; see also Corollary 1.8 there). Further, (ii)
easily implies (iii), since I ® 0 commutes with every member of W/(A) & W' (B). Finally,
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if (iii) is satisfied, then all elements of W/(X) commute with I @ 0 and thus are of the
form S @ T. It is now easily verified that S @ T commutes with each entry of X if and
only if S € W/(A) and T € W/ (B). m

We are mainly interested in the equivalence of (i) and (iii) in Proposition
Adapting the concept due to Ernest [9] (see Definition 1.31 and §5.7.f there, especially
notes on page 187), let us consider the free complex algebra

F=F(z1,...,2N;W1,...,WN)

in 2N noncommuting variables z1, ..., zN, w1, ..., wy. Each member of F' may naturally
be identified with a polynomial in 2N noncommuting variables. Let * be a unique invo-
lution on the algebra I' such that 2; = w; for j = 1,..., N. We denote by P(N) the
x-algebra obtained in this way and equip it with the norm given by
lp(z1,. -y zn; 20, -zl = sup |lp(Ta, . T T oo TN ]
175 1I<1

where the supremum is taken over N-tuples of contractions acting on a (common, ar-
bitrary) Hilbert space. It follows from the definition that for every p € P(N) and
X € CDDy with || X]| < 1, ||[p(X,X*)|| < |Ipl|.- The following is left as an easy exer-
cise (use the separability of P(NV)).

LEMMA 5.2.2. There is a sequence {M,}52, of atoms in CDDy acting on finite-dimen-
sional Hilbert spaces such that |[M || < 1 (n > 1) and for every p € P(N),

pll = sup ||p(M,,, M},)].
n>1

Making use of the above result and Kaplansky’s density theorem [20] (cf. [I8, Theo-
rem 5.3.5], [35, Theorem I1.4.8], |29, Theorem 1.9.1]) we shall now prove a result which is
a starting point for our further investigations. By P1 (V) we denote the closed unit ball
of P(N). Everywhere below, I and 0 denote the identity and zero operators on suitable
Hilbert spaces. Recall that a net (7,),cx of bounded operators acting on a Hilbert space
H converges x-strongly to an operator T € B(H) iff for any x € H, Tox — Tx (0 € X)
and T¥z — T*x (0 € ). We shall denote this by T, =3 T.

PRrROPOSITION 5.2.3.
(I) Let A and B be arbitrary subsets of CDDy. The following conditions are equivalent:

(i) A and B are unitarily disjoint,
(i) there is a net (po)oexs C P1(N) such that for any A € A and B € B,
po(b(A),b(A)*) 3 I and p,(b(B),b(B)*) = 0.

(IT) If A and B are two N-tuples acting in separable Hilbert spaces, then A L,, B iff there
is a sequence (pn)°%, C P1(N) such that p,(b(A),b(A)*) =2 I and p,(b(B),b(B)*)

*S
— 0.

Proof. (I): By (BT5) (page [12), (i) follows from (ii). To prove the converse, assume
AL, B Lt A=@{X: X € A} and B=@{Y: Y € B}. By (PR2) (page[12), A L, B.
Further, let {M,,}32, be as in Lemma[5.2.2] Let M be the direct sum of all M,,’s which
are unitarily disjoint from b(B) (M is trivial provided M,, < b(B) for each n). Again by
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(PR2) and (BT5), M ®b(A) 1L, b(B). Put X = (M @ b(A))Bb(B), H; = D(M ©b(A))
and Hy = D(b(B)). It follows from our construction that for each p € P(N),

Ipll = llp(X, X™)]]. (5.2.1)

Let M = {p(X,X*): p € P(N)}. It is a unital selfadjoint subalgebra of B(H1 @ Ha).
We infer from von Neumann’s double commutant theorem [24] ([18, Theorem 5.3.1],
[35, Theorem II.3.9], [29, Theorem 1.20.3]) that the closure of M in the strong operator
topology coincides with W (X). Further, implies that the closed unit ball in M
coincides with {p(X,X*): p € P1(N)}. An application of Proposition shows that
I®0eW!'(X) where I € B(H1) and 0 € B(Hz). Finally, Kaplansky’s density theorem
asserts that there is a net (py)oex € P1(N) such that p,(X,X*) 23 I @ 0. Since every
member of A and B is a reduced part of A and B, respectively, (ii) holds.

To prove (II), repeat the above argument and observe that in that case both H;
and Hs are separable and hence Kaplansky’s density theorem asserts the existence of a
suitable sequence, since the closed unit ball in B(H) for separable H is metrizable in the
x-strong topology (see e.g. [9, Proposition 2.2]). =

Let us now introduce the following

DEFINITION 5.2.4. Let A and B be arbitrary collections (sets or classes) of N-tuples. We
say that A and B are strongly unitarily disjoint, in symbols A 1 B, if there is a sequence
(pn)5%; € P1(N) such that p,(b(A), b(A)*)@p,(6(B),b(B)*) =3 I©0 for any A € A and
B € B. Two N-tuples X, Y € CDDy are strongly unitarily disjoint (X L, Y') provided
so are the sets {X} and {Y'}.

The reader should easily notice that for two sets A and B of N-tuples, A L B iff
(P A Ls (PB). It is also clear that if A and B are strongly unitarily disjoint, then
AL, B

REMARK 5.2.5. Let A and A’ be two unitarily equivalent N-tuples. Observe that then
p(b(A),b(A)*) = p(b(A’),b(A")*) for every p € P(IN). What is more, for every complex
number A and a net (py)oes C P(N), po(6(A), 6(A)*) — AI x-strongly (strongly, weakly,
etc.) iff p,(6(A"),b(A")*) — A in the same topology. This means that for any A € CDDy
and p € P(N), p(b(A),b(A)*) is a well defined member of CDD and

Po(b(A), b(A)") %5 AT (5.2.2)

is well understood. (We do not write in ‘I” instead of ‘I’ because ‘I’ represents
here the identity operator on a Hilbert space of (arbitrary) suitable dimension. The usage
of | may lead to misunderstandings. In fact, expresses only a property of the net
{ps(6(A),b(A)*)}sex.) Consequently, in the same way as in Definition [5.2.4] we may define
strongly unitarily disjoint subclasses of CDD . We use this concept in the next chapters.

Surely the main problem concerning strong unitary disjointness is when two unitarily
disjoint families of N-tuples acting in separable Hilbert spaces are strongly unitarily
disjoint. We will not answer this question. However, the reader should remember that
strong unitary disjointness and unitary disjointness are not equivalent even for families
of N-tuples acting on a one-dimensional Hilbert space. Indeed, such N-tuples may be
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naturally identified with points of CY. If pi,po, ... is an arbitrary sequence of members

of P(N) and A € C, the set {z € CV: p,(b(2),b(2)*) — A} is Fps in CV. Thus, if A ¢ CV

is not F,s, then A 1, CV'\ A but A and CV \ A are not strongly unitarily disjoint.
The next result is a consequence of Proposition [5.2.3] We omit its proof.

PROPOSITION 5.2.6. Let A and B be two countable families of N-tuples acting in sep-
arable Hilbert spaces. Then A L, B if and only if A L4 B.

We shall also need the following simple

LEMMA 5.2.7. Let A be a bounded N-tuple acting on a separable Hilbert space such that
lA]| < 1. For every T € W(A) with ||T|| < 1 there is a sequence (pp)22; C P1(N) such
that p,(A,A*) 3 T,

Proof. We mimic the proof of Proposition As there, there is a sequence {M,,}22 ;
of N-tuples of contraction matrices such that M,, 1, A for each n and ||p|| = ||[p(M &
A M* @ A*)| for every p € P(N) with M = @, M,,. Since M 1L, A, W (M @ A) =
W'(M) & W'(A) (by Proposition [5.2.1)). Consequently, W (M) & W' (A) C W' (M & A)
and thus 0@ T € W(M @ A). Finally, since M @& A acts on a separable Hilbert space,
Kaplansky’s density theorem finishes the proof (see the proof of Proposition . n

REMARK 5.2.8. Let B = {p,}sex C P1(IN) be any net and let A € C. Denote by Jp ()
the class of all X € €DDy for which

Po(b(X), b(X)") = AL

One easily checks that Jg () is an ideal and Jp(A) L, Jp(N') whenever X' # X. For every
subclass A of DDy let J(A) denote the smallest ideal in CDD y which contains A. The
above shows that for any two subclasses A and B of DDy, A L, B iff J(A) Ly J(B),
iff J(J(A)) Ls J(J(B)). In particular, strong unitary disjointness of sets or classes may
always be reduced to strong unitary disjointness of suitable N-tuples X and Y such that
X<FJand Y < J.

5.3. Measure-theoretic preliminaries

Our next objective is a prime decomposition of N-tuples (Theorem [5.6.14]). Essentially
this will be based on the same idea (that is, on central decompositions of von Neumann
algebras) as Ernest’s central decomposition of a bounded operator (J[9, Chapter 3]). The
difference between his and our approaches (apart from greater generality) is the following.
Ernest has focused on a single operator T' and studied its (nonscalar) spectrum T and
quasi-spectrum T. Central decomposition of the operator T ‘takes place’ in T. Further
the author compares operators (and their central decompositions) which have the same
quasi-spectra. It seems to us that Ernest’s work was inspired by the spectral theorem for
a normal operator. Our work is inspired by the prime decomposition of natural numbers.
Our interpretation is therefore in a more algebraic fashion. Also comparing Ernest’s work
and ours, we may say that his approach is local, while ours is global.
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The road to the Prime Decomposition Theorem is long because of measure-theoretic
technicalities. First we shall define a Borel structure on the set SEPy C CDDy of all
nontrivial N-tuples whose representatives act in separable Hilbert spaces (this is done
in this chapter), next we shall generalize the notion of a direct integral to N-tuples
(Chapter to define ‘continuous’ direct sums (Chapter among which we shall
distinguish regular ones (which require unitary disjointness) and finally we shall show
that every member of CDDy admits a unique (in a sense) regular prime decomposition
(Chapter [5.6)).

The concept of direct integrals (of Hilbert spaces, operators, von Neumann algebras,
ete.) is essentially due to von Neumann and is widely discussed in many classical textbooks
on von Neumann algebras. Here we shall focus on main ideas and many proofs will be
omitted. The reader interested in details should consult e.g. Chapters 2 and 3 of [9]; [6][7];
[19, Chapter 14]; §IV.8, §V.6 and Appendix in [35]; [29, Chapter 3]; [30, Chapter IJ; or
the original paper by von Neumann [25]. It is also assumed that the reader is familiar
with basics of measure theory and of reduction theory of von Neumann algebras.

Measurable sets (i.e. elements of a given o-algebra) will also be called Borel. Every-
where below by a measurable or Borel function from a measurable space (X,90) into a
measurable space (Y, M) we mean any function f: X — Y such that f~1(B) € 9 for
any B € M. The function f is a Borel isomorphism if f is a bijection and f and f~! are
measurable. For two measures p and v defined on a common o-algebra 9t we shall write
u < v iff p is absolutely continuous with respect to v, and we call p and v (mutually)
singular iff p L v, i.e. p and v are concentrated on disjoint measurable sets. If A € 9, p|a
denotes the measure on M given by u|a(B) = (AN B). For a topological space X, B(X)
stands for the smallest o-algebra containing all open subsets of X . Following Takesaki [35]
Appendix|, we call a measurable space (X, ) a standard Borel space iff (X, 1) is Borel
isomorphic to (Y,B(Y")) where Y is a Borel subset of a separable complete metric space.
Equivalently, (X, 97) is standard iff (X, 97) is Borel isomorphic to (A4,B(A)) where A is
a countable (finite or not) subset of [0,1] or A = [0, 1] (cf. [35, Corollary A.11]). If (X, )
and (Y, 91) are standard Borel spaces and f: X — Y is measurable, then (X x Y, 9 ®9)
is a standard Borel space as well and I'(f) € 9t ® 91 where

I(f) ={(z, f(x)): z € X}

is the graph of f. The space (X,9M) is Souslin—Borel iff it is the image of a standard
Borel space under a Borel function and X is countably separated (this means that there
are sets E1, Fo,... € 9 such that for any two distinct points = and y of X there is n
with card({z,y} N E,) = 1). In what follows, we shall often identify Iy, with [0, co].

Let (X, 91, 1) be a measure space (i need not be o-finite or complete). We denote by
N(p) the null o-ideal in 9 induced by pu, that is,

N(p) = {A € M: pu(4) =0}

(X, 01, 1) is said to be a standard measure space (or, equivalently, p is standard) iff p
is nonzero o-finite and X \ Z is a standard Borel space for some Z € N(u). By [35]
Corollary A.14], every o-finite measure on a Souslin—Borel space is standard.
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Forn=1,2,... let H, be a fixed Hilbert space of dimension n and let H, be a fixed
separable infinite-dimensional Hilbert space (these spaces are fixed for this and the next
two chapters). Further, let H denote one of the spaces Hi, Ha,. .., He. The norm and
the weak topologies of H induce the same c-algebra on H which is for us the default
Borel structure of H. Similarly, the *-strong, strong and weak operator topologies induce
the same Borel structures on B(H). In other words, the o-algebra 203, generated by
all open sets with respect to any of these topologies is independent of the topology we
choose. Moreover, (B(H),2) is a standard Borel space, which means that (B(H),20%)
is isomorphic as a measurable space to ([0,1],%5([0,1])). Addition and multiplication
are measurable as functions from (B(H) x B(H), 20y ® W) into (B(H), W) and the
functions T + T*, T + |T|, T +— Qr and T + T~! are measurable as well (the last
function is defined on the set of all invertible operators, which is measurable).

The following result will enable us to define a Borel structure on the set CDD(H).

LEMMA 5.3.1. The open unit ball B of B(H) and the set b(H) of all T € B(H) such that
|Tx|| < ||z|| for any nonzero x € H are measurable. The b-transform is an isomorphism
between the measurable spaces B(H) and B.

Proof. We shall only explain why b(7#) is measurable. Notice that T' € b(H) iff ||T]| < 1
and N(I —T*T) is trivial. Now if Pr denotes the orthogonal projection onto N(I —T*T),
then the function T — Pr is measurable, by [9, Proposition 2.4], and we are done. =

Since the b-transform establishes a one-to-one correspondence between members of
CDD(H) and b(H), we may introduce

DEFINITION 5.3.2. The Borel structure of CDD(H) is the unique Borel structure which

makes the b-transform an isomorphism. In other words, a set F' C CDD(H) is measurable,
in symbols F € B(CDD(H)), iff {6(X): X € F} € Wy.

Lemma [5.3.1) implies that CDD(H) is a standard Borel space, that B() is a measur-
able subset of CDD(H) and that the original Borel structure of B(H) coincides with the
one inherited from the Borel structure of CDD(H).

Recall that CDD y (H) = CDD(H)". We equip CDD y(H) with the product o-algebra
B(CDDy(H)) = B(CDD(H))®- - -@B(CDD(H)). Observe that CDD  (H) is a standard
Borel space and the b-transform is an isomorphism of the measurable space CDD y(H)
onto a measurable set b(H)™. Moreover, it follows from suitable properties of the b-
transform that each of the functions X — X*, X — |X| and X — Qx (from CDDy(H)
into itself) is measurable.

Now let 8EPx be the set of all A € CDDy such that 0 < dim(A) < V. Observe
that the function ®: (JIZ° CDDn(H,) 2 X — X € 8&Py is a surjection. We define a
o-algebra B on SEPy by the rule: F € By iff for every n € {1,2,...,00}, @~ H(F) N
CDDy (Hy,) € B(CDDy(H,,)). It is obvious that the definition of B is independent of
the choice of H,,’s. For every A € By we shall denote by B(A) the o-algebra of all sets
B € By contained in A.

As shown by Ernest (see [9, Corollary 2.33]), SEPy is not countably separated. This
makes the investigation of the Borel structure of SEP difficult. The rest of this chapter
is devoted to establishing measurability of some (important for us) sets and functions.
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For n = 1,2,...,00 let S8EPN(n) consist of all A € SEPy with dim(A) = n. It follows
from the definition of By that SEPy(n) € By for every n. When n is finite, much more
can be said (cf. Proposition 2.46 and Corollary 2.47 in [9]):

PROPOSITION 5.3.3. For every finite n, SEP N (n) is a standard Borel space and there are
a Borel set S,, C CDDy(H,,) and a Borel isomorphism x,: SEPn(n) 3 A — Tha € S,
such that T'a is a representative of A for every A.

Proof. Tt is clear that CDD y(H,,) coincides with the space MY of all N-tuples of n x n
matrices. Let 7: MY — 8€Px(n) be the quotient map (i.e. 7(X) = X). Equip $EPx(n)
with the quotient topology (induced by ). Since the unitary group of n x n matrices is
compact, SEPy(n) is locally compact and 7 is a proper continuous mapping. Moreover,
S8EPN(n) is separable and metrizable. It is now clear that the o-algebra generated by
all open sets coincides with the one inherited from 9. This shows that SEPy(n) is
a standard Borel space. The existence of S, and x, may easily be deduced e.g. from
[22, Corollary XIV.2.1] applied to the partition {7=1({X}): X € 8€Px(n)}, or from [22]
Corollary XIV.1.1] (see also [4]) applied to the multifunction SEPy(n) > X — 7= L1({X})
CM,. =u

Now we are mainly interested in the Borel structure of SEPy(c0). However, in some
arguments we shall need to work also with N-tuples acting on finite-dimensional Hilbert
spaces and therefore below we explore CDDy(H) as well as CDDy (H,,) with finite n.
Since our main interest is primes and semiprimes, we may restrict our considerations to
factor N-tuples defined below. Similar results to those presented below can be found in
Chapter 2 of [9].

As before, H denotes one of the spaces Hi,Ha, ..., Hs. The functions CDDy(H) 2
X — W'(X) € #(H) and CDDy(H) > X — W/(X) € #(H) are measurable when
# (H) denotes the collection of all von Neumann subalgebras of B(H) and is equipped
with the Effros Borel structure [6, [7] (cf. [9, page 54| combined with Theorem IV.8.4
and Corollary IV.8.6 in [35]). Consequently, the following sets are measurable subsets of
CDDy(H) (compare with notes on page 55 of [9]; [35, Theorem V.6.6] and [26]):

the set of all atoms, ay(H) = {A € CDDy(H): A € an},
the set of all fractals, {5 (H) = {A € CDDy(H): A € fn},
the set of all semiprimes, sy(H) = {A € CDDn(H): A € sy},
the set of all factor N-tuples,
Sn(H) = {A € CDDy(H): W(A) is a factor},

e the sets of all factor N-tuples of type I, I, II, II', 11> and III.

(The above properties imply that ay,fy, sy as well as
Sy :={F € 8&Pyn: W(F) is a factor}
are members of B . When H is finite-dimensional, s 5 (H) and fx (H) are of course empty.)

We infer from Proposition that for every F € §n(H) \ (an(H) U fn(H) Usn(H))
either there exist a unique n € {2,3,...,8y} and a unique A € ay such that F=n®A or
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there is (nonunique) A € sy for which F = Xy ® A. Everywhere below, n and m represent
positive integers or oco.

The following result appears in [9, Corollary 2.11]. Below we give a shorter proof.

LEMMA 5.3.4. The set
Dn(n,m)={(A,B) € CDDy(H,) x CDDyN(H,): A L, B}
is measurable (i.e. Dy (n,m) € B(CDDy(H,)) @ B(CDDy(Hpm)))-

Proof. Let K = Hy and let U;: Xg ©® H; — K be unitary (Rg ® H; stands for the
Hilbert space in which N-tuples of the form Ry ® X with X € CDDy(H;) act). Let
Q be the set of all p € P such that ||p|| < 2 and all coefficients of p belong to Q +
1Q. It may be deduced from Proposition and Lemma that A 1, B with
A € CDDyN(H,,) and B € CDDy(H,,) iff there is a sequence (pg)32; C Q such that
Unpe(6(Rg ®A), 6(Rg ®A)*)U,7 — T and Uy, pi(6(Rg ©® B), b(Xg ® B)*)U,;! — 0 strongly
as k — oo. Now if d is a metric on D = {T € B(K): ||T|| < 2} which induces the strong
operator topology of D, then for every p € Q the function zpi: CDDN(H;) > X —
U;p(b(Rg ® X),b(Ng @X)*)Uj_1 € D is measurable and thus so is 6,: CDDy(H,) X
CDDN(Hpm) 2 (X,Y) = d(¥)(X), I) + d(¢;*(Y),0) € R, Finally, since Q is countable,
also the function w: CDDy(H,) X CDDn(Hy,) 3 (X,Y) — inf,c00,(X.Y) € Ry is
measurable. The observation that Dy (n,m) = u~1({0}) finishes the proof. m

THEOREM 5.3.5. The sets
An(n,m) ={(A,B) € n(H») x §n(Hm): A= B}
and <y(n,m) ={(A,B) € Fn(Hn) X FN(Hm): A < B} are measurable.

Proof. First of all, note that for (A,B) € Fn(Hn) X §n(Hym) we have: A Y, B &
Ng ® A =Ry ®B. So, Lemma implies that the set C'(n,m) = {(4,B) € Fn(Hn) X
Sn(Hm): Rg @ A = Ry © B} is measurable. Put Ly(n,m) = {(4,B) € §n(Hn) X
Sv(Hm): AS B}y and Ry(n,m) = {(A,B): (B,A) € Ly(n,m)}. Observe that

S]N(nv m) =Ap (na m) ULn (na m)a

C(n,m) = Anx(n,m) U Ly(n,m) U Ry(n,m) and the sets Ax(n,m), Ly(n,m) and
Ry (n,m) are pairwise disjoint. Since C(n,m) is a standard Borel space, it therefore
suffices to show that each of these last sets is Souslin (cf. [35, Theorem A.3]). We see that
A(n,m) =0 if n # m and Ay (n,n) = {(A,UAUY): U € U(H,), A € Fn(H,)} (where
U(Ay,..., AN UL = (UA UL, ..., UANUY)) is the image of a standard Borel space
U(Hp) X §n(Hy) under a Borel function and thus Ay (n,n) is Souslin. Finally, the set
Shin(H,,) of all N-tuples X € Fn(Hy,) such that W'(X) is finite is Borel and therefore
Ly (n,m) is Souslin, since L(n,m) = () for n > m or n = m < oo; for n < m:

Ly(n,m)={(A,UASGU):UcU(Hn®Hm_n,Hmn),
Ace S:N(Hn)a (AaG) € C(nvm - n)}7
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and
k=00
Ly(00,00) = | J{(A,U(A®G)U™"): U € U(Hoo ® Hi, Ho),
k=1

AeF(HL), (A,G) € O, k)}
The observation that Ry (n,m) is the Borel image of Ly (n, m) finishes the proof.

COROLLARY 5.3.6. Let F be a Borel subset of §n(Hyp) such that the function ®: F >
X — X € @DDy is one-to-one. Then F = {Y € CDDy(H,): Y = X for some X € F}
is a Borel subset of CDDn(H,) and F = {X: X € F} C CDDy is measurable and it is
a standard Borel space.

Proof. By Theorem the set D = An(n,n) N (CDDy(H,) x F) is Borel. What
is more, it follows from the assumptions that the function D > (A,B) — A € F is a
bijection. It is also Borel and thus F € B(CDDy(H,)), by [35, Corollary A.7]. Since
{X € CDDy(H,): X € F} = F, we find that F € By.

It is clear that @ is a Borel bijection of F onto F. However, if B is a Borel subset
of F, then the above argument shows that {X: X € B} € By and hence ® is a Borel
isomorphism, and the assertion follows. m

A variation of Theorem [5.3.5] is contained in

LEMMA 5.3.7. For each t € (0,00) the sets A, = {(A,B) € sy(Hoo) X sn(Hoo): A=
t ® B} and <% = {(A,B) € sn(Hoo) X 58 (Hoo): A< t©® B} are measurable.

Proof. Since Al =<4, N >4 where 4= {(A,B): (B,A) € <Y}, it is enough to prove
that <% is measurable. It is clear that for every n > 1 the function sy(Heo) > A —
n®A € sy(n® Hs) is measurable. Consequently, thanks to Theorem the set
D(n,m) = {(A,B) € sy(Hw) X sN(Hoo): n© A < m @ B} is measurable as well. Now
if wy = my/ny are rationals which decrease to ¢ (as k increases to oo), then <4 =
Mi; D(ng, my), and we are done. m

Whenever A,B € sy are such that A < B, there is a unique positive real number
denoted by A : B such that
A=(A:B)o®B. (5.3.1)

Further, we put O : X =0 and (¢« ® X) : X = « for any X € §y and a € Cards,, and
(n®A): (m©®A)=n/m for any A € ay and positive integers n and m. It is clear that
is satisfied whenever B € i (= §x N FINy) and A € CDDy with A < B.

For n,m € {1,2,...,00} put Vy(m,n) = {(A,B) € §n(Hm) x T (H,): A< B} It
follows from Lemmathat Vn(m,n) is a Borel subset of CDD y (H,,) x CDDy (Hy,).
We want to show the measurability of the function

Div: Vy(m,n) > (X,Y) — X:Y € Iy,.
It may be easily shown that Div is measurable on Vy(m,n) for finite n and on the

set Vi (00,00) \ (58 (Hoo) X 58 (Hoo)) (VN (n,00) is empty if n is finite). On the other
hand, Div™'((0,%]) N (sx(Heo) X s5x(Heo)) = < and therefore Div is measurable on
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Vn(00,00)N(sn(Hoo) X 5n(Hoo)) as well. Hence the sets {(¢, A, B) € (0,00) X sy (Hoo) X
snv(Hoo): Aét@B} and

Zn(n,m) ={(A:B,B,A) € Iy, x 3 H,) x Fn(Hm): A < B}
U{(Ro,B,B): B € §n(Hn) \ Ti2(H,)} (5.3.2)

are measurable. This fact will be used in the proof of

THEOREM 5.3.8. Let (X, 0, 1) be a standard measure space, F C §n be a countably
separated measurable set and ®: X 3 x — A®) ¢ F be a measurable function. Further,
let f: X — Iy, \ {0} be a Borel function such that f(X \ @ *(sy)) C Card. Then there
are measurable sets X1, Xa,...,Xoo C X and Borel functions ®,,: X,, 2 = — B ¢
CDDy(Hy) (n=1,2,...,00) such that B = f(z) ©A® for each z € X' == J'=° X,
and (X \ X') = 0. If, in addition,

A@ 1, AW (5.3.3)

for distinct x,y € X, then ®,(X,,) € B(CDDy(H,,)) and ®,, is a Borel isomorphism of
X, onto its range.

Proof. Since ®~!(Fn \Fi") is measurable, we may change the function f (with no change
of f(z) ® A®)) so that f(z) = Ry whenever ®(x) ¢ Fi». But then for every = € X,

(f(z) © A®Y) : A® = £(2). (5.3.4)

Further, since p is o-finite, we may assume that it is finite. Let v: B(F) > A —
p(® 1(A)) € Ry. Since F is the Borel image of a standard Borel space |JI—"{X €
CDDy(Hp): X € F} (and F is countably separated), F is a Souslin-Borel space and
therefore v is a standard measure on JF (cf. [35, Corollary A.14]). So, we may assume
(reducing F and X) that F and X are standard Borel spaces. For each n = 1,2,...,00
let G, be the set of all N-tuples X € CDDy(H,,) such that X € F(n) := FNEEPN(n).
Note that G, € B(CDDy(Hy)). Since F is a standard Borel space, it follows from [35]
Theorem A.16] that there are a set F,, € B(F(n)) and a measurable function F, 3 X —
G™) ¢ G, such that 1/( ( )\ Fn) =0 and G X) — X for each X € F,. Again, we may
assume that F = J'—{° F, (since v(F\U—;" F,) = 0). Put X(n) = {z € X: A® ¢ F,}
and T@) = GA™) for z € X(n). Note that the function X (n) 3 x +— T®) € CDDy(H,)
is measurable. This implies that the set T',, = {(x, f(2),T®): x € X(n)} is Borel in
X (n) x Iy, x CDDy(H,,) (as the graph of a Borel function) and consequently for each
m=1,2,...,00 the set By, nm = {(2,Y): Y = f(2) 0A® 2 € X(n), Y € Fn(Hnm)}, as
the image of (T'y, X §n (Hpm)) N (X (n) X Zn (n,nm)) under the projection map (cf.
and (5.3.4))), which is one-to-one on this set, is Borel as well. Now put X (n,nm) = {z €
X(n): f(x) - dim(A®) = nm} and note that X (n,nm)’s are measurable sets such that
X(n) = U= X(n,nm). Since the function p, pm: Bunm 2 (2,Y) — z € X(n,nm)
is a Borel surjection, we deduce from [35, Theorem A.16] that there is a Borel func-
tion Wy nm: X(n,nm) — By pm such that (pypm © Wpnm)(z) = x for p-almost all
x € X(n,nm). For x € X(n,nm) let B® € Fxn(Hum) be the second coordinate of
Wy, nm (). Then the function @, pp,: X(n,nm) > = +— B®) ¢ CDDy(Hyym) is measur-



72 5. Prime decomposition

able and for p-almost all x € X,
B = f(z) @ A®. (5.3.5)

Again, by reducing X, we may assume that is satisfied for all x € X. Finally,
put Xx = J{X(n,nm): nm = k} and let ®;: X;, — CDDy(Hy) be given by &y (x) =
D, m(x) provided nm = k and x € X(n,nm). Since the sets X (n,nm) are pairwise
disjoint, @, is well defined and Borel. Thus, if is satisfied, (5.3.5)) implies that ®y,
is one-to-one, and the assertion follows. m

5.4. Direct integrals and measurable domains

In this chapter we establish only the most relevant (for our further investigations) prop-
erties of direct integrals. The ‘continuous’ operation in €DD y is defined and main results
on it appear in the next two chapters.

We now fix a standard measure space (X, 9, ). For a separable Hilbert space H the
Hilbert space L*(X,H) = L?(u,H) consists of all (equivalence classes of) measurable
functions &: X — H such that [|£]]3 = [y [|€(@)]]? du(z) < oo (L*(p, H) is separable).
Let X 2 2 — T, € CDD(H) be a measurable function. We define an operator T :=
J¥ Todp() in L2(, H) by

D(T) = {f € L*(p, H): £(z) € D(T,) for p-almost all x € X and

| ITs@IF duto) <oo}

and (T€)(x) = T¢(x) for £ € D(T) and (p-almost all) z € X. It is not obvious that T¢
is measurable (for £ € D(T)) and that T € CDD(H). These are guaranteed by the next
result which may be deduced from [36, Lemma VI1.3.3] (cf. [36, Definition VI.3.4]).

PROPOSITION 5.4.1. For every measurable function X 3 x — T, € CDD(H) the operator
f)e; T, du(z) is well defined, closed and densely defined. What is more,

o/ 1, i) = [ " o(Ty) d(a).

Now let ®: X’ > x — T®@ ¢ (J'Z°CDDy(H,), where X \ X’ € N(u), be any
function and T®*) = (T?),...,Tg\“;)) for each x € X’. If there are measurable sets
X1,Xs,..., X0 C X’ such that p(X’\ U'Z° X,) = 0 and ®(X;) C CDDy(H;) (the
latter implies that X;’s are pairwise disjoint), and ®|x; : X; — CDDy(H,;) is measurable
for each j, we call ® integrable and define the direct integral ff? T® du(z) of the field

{T(w)}rEX’ by
2] n=00 52 @
/ T dp(x) = @ </ Tl(w) du(z),. .., / TJ(\;E) d,u(z)).
b's Xn Xn

n=1
Below we list the most important (for our investigations) properties of direct integrals of
measurable fields of N-tuples.
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<d' > dimﬂf@w du( )) < Ro.

(/T dyu(x)) = [ b(T®) du(a).
(d ) If X7, Xo,... are palrvvlse disjoint measurable subsets of X such that pu(X;) > 0
for each j and p(X \ U,—; X») =0, then

/EB A@ du(z) = é/@ A®) dy(x)

(i3) @2 (fx T du(@) = [ (@7 T) du(e).

(did) If T® = 8@ for p- almost all z € X, then f T@ du(z f S@) dy(x). This
follows from (BT5) (page[12)), (dil) and the proof of [35] Theorem Iv.8.28].

(di5) If v is a o-finite measure on (X7 M) such that v < p < v (that is, N(u) = N(v)),
then f)e? T@) du(x) = f)? T® dy(z).

(di6) If (Y, M, v) is a standard measure space, Xog € N(p), Yy € N(v) and ¢: Y\ Yy —
X \ Xo is a Borel isomorphism such that u(¢(A)) = v(A) for every A € M disjoint

from Yp, then
/ T dp(x / T (y).

Further, let X > z — A ¢ 8Py be any function. If there exist Borel sets
X1, Xs,..., Xo C X and measurable functions

X, 32— A® ¢ CDDy(H,,) (5.4.1)

(n=1,2,...,00) such that u(X \ UL_° X,,) = 0 and for each z € [JI_° X,,, A® is a
representative of A®) | we say the field {A(I)}me x is integrable and we define the direct
integral [ )? A®) du(x) as the unitary equivalence class of

=0 .
2 /X A du(a). (5.4.2)

Thanks to (di4), ff A@ du(x) is well defined, i.e. it is independent of the choice of mea-
surable functions (5.4.1)). As is easily seen, in the above situation the function |J]Z{° X, 3
z — A®) ¢ &Py is measurable. We call a field ¥: X > z — B® € 8€Py almost mea-
surable (or almost Borel) iff ¥|x\ x, is Borel for some Xo € N(u). Thus, every integrable
field is almost measurable.

In our investigations all almost measurable fields are defined on standard measure
spaces. Properties (di0)—(di6) may naturally be translated into the realm of unitary equiv-
alence classes of N-tuples:

(DI0) f@ A® du(z) € sefPN

(DI1) b( [y A du(z)) = [ b( du(z).
(DI2) If X, X5,... are palrwme dleOlIlt measurable subsets of X such that pu(X;) > 0
for each j and (X \ U,—, X,,) =0, then

/ A dp(z @ / A du(z
X

(DI3) @0, ([ T du(z)) = [ (D T(w))du(x).
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(DI4) If (Y, M, v) is a standard measure space, Xog € N(u), Yo € N(v), ¥: Y\Yy — X\ X,
is a Borel isomorphism and {¢/(B): B€ N(v), BNYy =0} ={A e N(v): An X,

= ()}, then
D 5]
/ A du(x):/ ATD) du(y).

X Y
A counterpart of regular collections and direct sums ((UE4), page for direct inte-
grals are reqular fields and regular direct integrals ¢ f " which we define as follows. Assume
X 52— A® € 8Py is an integrable field. If for any two disjoint Borel sets 4, B C X
one has
® ®
/ A® du(z) J_u/ A du(z), (5.4.3)
A B
we call the field {A®},cx regular and write f)EE A@ du(x) in place of ff A@ dp(x).
(Condition (5.4.3) naturally corresponds to (PR2), page [12}) As in the case of direct
sums, the notation ‘[ B> includes the information that the integrable field is regular.

In practice it is quite difficult to verify whether an almost measurable field is inte-
grable. However, as an immediate consequence of Proposition we obtain

PROPOSITION 5.4.2. Every almost measurable field of a standard measure space into
SEPN \ SEPN(00) is integrable.

Proof. Let ®: X — 8&Px \ 8€Py(c0) be measurable. The sets X,, = &1 (8EPy(n))
are Borel and if x,,’s are as in Proposition then x, o ®|x, is a measurable field of
representatives for ©. m

In general we are unable to characterize integrable fields taking values in SEP . This
is in fact not of interest to us. More preferable are regular fields taking values in §y. In
that case a characterization is possible and we formulate it in the next result. For this
purpose we introduce

DEFINITION 5.4.3. A set F € By is said to be a measurable domain of strong unitary
disjointness iff there is a sequence (€,,)22 ; of subsets of CDD  which separates the points
of F and for every n > 1 the families ¥ N E,, and F\ &,, are strongly unitarily disjoint
(cf. Remark . We shall speak briefly of measurable domains.

It follows from the definition that measurable domains consist of pairwise unitarily
disjoint N-tuples. It may also be easily verified that the union of a countable family of
measurable domains any two of which are strongly unitarily disjoint as well as every mea-
surable subset of a measurable domain are again measurable domains. Another important
property of measurable domains is that they are Souslin—Borel. Indeed, when F is a mea-
surable domain, it is the Borel image of a standard Borel space (by the measurability
of F) and F is countably separated, for if € C CDDy is such that FNE Ly F\ &, then
FNE € By (because for every sequence (p,)52; C P1(N) and each complex scalar A the
set of all T € CDDy(Hy) such that p,(b6(T),b(T)*) converges *-strongly to AI is Borel
and invariant under unitary equivalence), and thus our claim follows from Deﬁnition
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Measurable domains are useful in producing regular fields, as is shown by

PROPOSITION 5.4.4. Let (X, 0, 1) be a standard measure space and ®: X 3 x +— A®) ¢
S~ be any field. Then the following conditions are equivalent:

(i) {A@),ex is regular,
(i) there is a Borel set X' C X such that X\ X' € N(u), ®(X’) is a measurable domain
and ®|x is a Borel isomorphism of X' onto its range.

Proof. First of all, by reducing X, we may assume that X is a standard Borel space. Sup-
pose condition (i) is satisfied. This implies that there is Z € N(x) and an integrable field
{A= )}zeX\Z C U= CDDy (Hy,) of representatives for ®. Take a separating sequence
X1, X, ... of measurable subsets of X. We infer from (di0), and Proposition [5.2.3]
that for each k > 1 there is a sequence (qék))ff:l C P1(N) such that

D b *
g (b( A@ d,@)),b( A@ d,u(x)) ) gy
Xk Xk
S5} (&3] *
(o[ A9} [ A ) ) o
X\ Xk X\ Xk

Now taking into account that

((/ A® dp(x > (/ A® du(x )):/D@p(b(A(’”))vb(A(’”))*)du(a:) (5.4.4)

for any measurable set D C X and p € P(N) (cf. (dil)), we infer from [29, Propo-
sition 3.2.7] that there are a subsequence (p;’”)oo_ of (qflk))

n=1
X, C X\ Z such that X \ X}, € N(u) and
p(0(A™)), b(A®)*) =3 ji(a)1 (5.4.5)

for any x € X, where jy, is the characteristic function of Xj. Put X’ = (;—; X}, and note
that (X \ X’) = 0. Since {Xj}x>1 is a separating family and thanks to (5.4.5), ®|x/
is one-to-one. It may also be deduced from Corollary that ®(X') is measurable.
Consequently, ®(X’) is a measurable domain, by . Now it suffices to apply [35]
Corollary A.10] to deduce that ®|x/ is a Borel isomorphism.

We now turn to the converse implication. It follows from Theorem [5.3.8] that & is
integrable. So, let

o0

> ; and a measurable set

n=oo

{A(x)}mex// C U CDDN(HH)
be an integrable field of representatives for ® where X” € X’ and X \ X" € N(u). Put
A= ff(a A®) du(x). Let €1, E,,... be a separating family for ®(X’) such that

(X)) NE, Ly DX\ & (5.4.6)

for every k. It follows from the observation preceding the proposition that &, N ®(X') €
B . Consequently, the sets X, = ® (&) N X" (k = 1,2,...) are measurable and
separate the points of X" (because ® is one-to-one on X' O X”). We infer, by [35]
Corollary A.12], that the o-algebra of subsets of X" generated by the X}’s coincides with

":={A C X": A € M} Further, the space D(A) has the form ) _° L?(X)/, H,)
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where X', X/, ... are pairwise disjoint members of 9" whose union is X”. For each k let
M;, be multiplication by the characteristic function ji, of X}’ on D(A). Fix for a moment .
By (5.4.6)), there is a sequence (p, )32, C P1(N) such that Pr(6(A®), b(A®)*) converges
*-strongly to ji(z)I for every x € X”. Since in addition ||p,(b(A®),b(A@)*)| < 1,
Proposition 3.2.7 of [29] implies that

52 . 53]
[ o646 duw) = [ jula) T duo).

o
This combined with gives p, (b(A),b(A)*) =3 M, and consequently M, € W”(A).
In this way we have shown that {X;, Xs,...} C O where N consists of all B € 9" such
that multiplication M (B) by the characteristic function of B belongs to W (A). Since N
is a o-algebra, we finally obtain 91 = 9”.

Since W (A) = W(b(A)) and each entry of b(A) is a decomposable operator, W' (A)
consists of decomposable operators. If B € 9, M(B N X") is a diagonalizable opera-
tor and hence M(B N X") € ZW"(A)). So, [ A® du(z) (= [5cn A® du(zx)) and
/ ;?\ B A du(x) correspond (by Proposition to mutually orthogonal central pro-
jections in W (A), from which we conclude that

® o
/ A du(z) L, / A® dp(z).
X\B

B

Now (5.4.3) follows from (di2). =

REMARK 5.4.5. Since every Borel injection of a standard Borel space into a Souslin—
Borel one has measurable image and is a Borel isomorphism between its domain and
range (cf. Theorem A.6 and Corollary A.7 in [35]), condition (ii) of Proposition m
may be weakened by replacing the assumption that ®(X’) is a measurable domain and
®|x: is a Borel isomorphism by ®|x is Borel and one-to-one and ®(X') is contained in
a measurable domain.

For simplicity, let us call a o-finite measure v on a measurable set B C § a regularity
measure (v € rgm(B)) if v is standard and the identity field of B into Fn is regular.
Equivalently, v € rgm(B) iff v is concentrated on a measurable domain (since measurable
domains are Souslin-Borel and all o-finite measures on such sets are standard). To shorten
statements, we shall write (u, ®) € RGS(X, ) when u is a standard measure on (X, )
and ®: X — Fy is a regular field.

Suppose (u, @) € RGS(X,M). Let X’ be as in Proposition [5.4.4|ii). Define a measure
v==®*(u): B(Fn) — [0,00] by v(B) = u(®~(B) N X’). Notice that v € rgm(Fy) and
ff O (x) du(z) = fSEEN F dv(F), thanks to (DI4). This observation shows that it suffices to
consider regularity measures instead of abstract regular fields.

The following result is a link between regular fields and central decompositions of von
Neumann algebras.

PROPOSITION 5.4.6. Let (X,9, 1) be a standard measure space, ®: X > x — A®) ¢
UL S~ (Hy) an integrable field, and let

[S7]
A:/‘N”@@)
X
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Then the following conditions are equivalent:

(i) {A@Y cx is regular,
(ii) {X € CDDy: X <* A} = { [ A® du(z): B € m},
(iii) ff? W' (A®)) du(z) is the central decomposition of W' (A).

Proof. First of all, note that the field {W”(A®)},cx is measurable according to [29,
Definition 3.2.9], since W”(A®) = W(b(A®))). Further, under the assumptions of the
proposition, (iii) is equivalent to

(iii’) the von Neumann algebra A of all diagonalizable operators is contained in W' (A).

It is clear that (iii’) follows from (iii). Conversely, when (iii’) holds, W'(A) consists
of (some) decomposable operators (thanks to [35, Corollary IV.8.16] or [19, Theo-
rem 14.1.10]). We see that so does W (A) (since b(A) is an N-tuple of decomposable op-
erators) and hence A C W/(A). This yields A C Z(W"(A)). Now using the terminology
of Kadison and Ringrose [19], we conclude that W (A) is decomposable (Theorem 14.1.16
and Proposition 14.1.18 in [19]), i.e. W/ (A) = f)e? M, du(z) for some measurable field
{M; }rex of von Neumann algebras. By the uniqueness of the decomposition b(A4) =
f)e; 6(A@) du(x) (cf. (dil), page7 we obtain W(b(A®))) C M, for y-almost all z € X
and thus f® W’ ( A("” )d,u( ) € W(A). Since the converse inclusion is immediate, we get
W' (A fX W' (A®) dp(z). This proves (iii) because W”(A(’C)) is a factor for all x € X
and consequently (by [35] Corollary IV.8.20]) Z(W" (A fX ZW"(A®)) du(z) = A.

We leave it as a simple exercise that the assertlon of the proposition now easily
follows. m

An important consequence of Proposition is

COROLLARY 5.4.7. Let (pu, ®) € RGS(X, M), (v, ¥) € RGS(Y,N) and let 1 = &*(u) and
v=U*(v). For
B B
X = / O(z)du(x) and Y = / U(y) dv(y)
X Y
we have:

() X=Y e i< <],
b) X<*Y & i < 7.

Proof. We know that X = fﬁi Fdi(F)andY = fEN F d(F). Observe that (b) follows from
(a) and Proposition and the implication ‘<=’ in (a) is a consequence of (DI4). To
prove the converse, assume X = f)E(E A dp(z) with A® = &(x) for p-almost all z € X,
Y = f)E,a B® du(y) with BY) = W(y) for v-almost all y € Y, and U is a unitary operator
such that U-X -U~! =Y. It then follows from Proposition [5.4.6that U sends the algebra
of all diagonalizable operators on D(X) onto the algebra of all diagonalizable operators on
D(Y). Thus, according to [35, Theorem IV.8.23], there is a Borel isomorphism x: Y\ Yy —
X \ Xo where Xy € N(u) and Yy € N(v) such that

K (V) € p < k" (V) (5.4.7)
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and U may be written in the form U = ff U, d";ﬁy) () du(x) where {Uz}rex is a
certain measurable field of unitary operators (for details we refer to Takesaki’s book
[35]). Since U - b(X) = b(Y) - U, we conclude from (dil) (page[73) that

(&) dn*(l/) D *
/XUz (A [ F 0 @) duo) /Xb<B ) Uy [ P2 @) dita)

Now thanks to the uniqueness of the decomposition of a bounded decomposable op-
erator and the positivity of the function y/dk*(v)/dp, the last equation implies that

b(A®) = b(B*()) . U, for p-almost all z € X. Consequently, B"(®) = A®@ for
p-almost all z € X. We leave it as an exercise that this combined with gives
[ € U < i, which finishes the proof. m

A similar result was obtained by Ernest (cf. [0, Theorem 3.8]). However, he worked
with quasi-equivalence classes instead of unitary equivalence classes.

To avoid repetitions, let us say a function f: X — Iy, fits to (u, ®) € RGS(X, M)
iff f is almost measurable and there are disjoint measurable sets X; and Xs such that
(X \ (X7 UXs)) =0, f(X;) C Card and ®(X5) C sy. Note that if this happens, the
function f @ ® given by (f © ®)(z) = f(z) © ®(x) is well defined on X; U X».

LEMMA 5.4.8. Let (u, ®) € RGS(X,9M) and f: X — In, \ {0} be a function which fits to
(1, @). Then (u, f © ®) € RGS(X, M) as well.

Proof. Tt follows from Theorem that f @ (I) is integrable. Further, we infer from
(DI3 page that Ng © fga d(z) fga (Ng - f(z)) © O(x) du(z) = Ry ©
fD ) and thus fD ( )d,u L fX\D f(z) ® ®(z) du(x) since

€3] €3]
/ O(z)du(x) L, / O(x)dp(x). m

D X\D

Whenever a function f: X — Iy, fits to (u, ) € RGS(X, M), we define ff f(@)o
®(x) du(x) as follows. Put s(f) = {zr € X: f(x) > 0} and take Xy € N(u) such that f is
measurable on X \ Xq. If u(s(f)\ Xo) > 0, f)a(a f(z) ®®(z) du(z) denotes fsa(af)\xo f@)oe

®(x) du(x) (see Lemma . Otherwise let f)Ef f(x) ® ®(z) du(x) = O. The usage of
0 ® here is justified by Lemma

Below we formulate a variation of [, Proposition 3.2]. We shall use it in our theorem
on prime decomposition.

LEMMA 5.4.9. Let A € SEPN be the direct sum of a minimal N -tuple and a semiminimal
one.

. H
(A) There exists pa € rgm(py) such that A = pr Pdua(P). For p € rgm(py), A =
Jo2 Pdu(P) & i < jia < pt.
(B) For B € 8EPy the following conditions are equivalent:

(i) B< A,
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(i) there is an almost measurable function f: py — In, such that f(ay) C Card,
f(fn) € {0, Ro} and

B
B :/ F(P)© Pdua(P). (5.4.8)
PN
(C) Let (u, ®) € RGS(X,M).

(2) If (X) Can, [y ®(z)dp(z) € MTy.
(b) If &(X) C f. [x ®()dpu(z) € HIM .
(

(c) If ®(X) C sy and f. X — Ry is almost measurable, ff f(z) @ ®(x)du(x) €
SMy .

Proof. Let F € 8EPN and let F be a representative of F. It follows from the reduc-
tion theory of von Neumann algebras (see e.g. [35, Theorem IV.8.21]) that there is a
standard Borel space (X, 9t) with a probability Borel measure A and a measurable field
{M; }zex of factors (each of which acts on some H,,) such that the von Neumann algebras
M = ff? M, dA\(z) and W'(F) are spatially isomorphic. Write b(F) = (11,...,In).
Now, T; corresponds (under the spatial isomorphism) to 77 € M. Since then b(F) =
(Ty,...,Ty), we see that there is F' € CDDy such that b(F') = (T7,...,Ty) and con-
sequently F’' = F. Thus replacmg F by F’, we may assume that W/ (F) = M. Write
T; = fX T dA(z) where T ) e M, for A almost all z € X. Since ||T}|| < 1, we also
have ||Tj(w | < 1 M\-almost everywhere. Further, the function x — N(I — (Tj(w))*Tj(z))
is measurable (in the target space we consider the Effros Borel structure separately on
each H,) and hence the set Xg = {x € X: N(I — (T($))*T I)) # {0}} is measur-
able. Suppose A(Xp) > 0. Then there exists a measurable vector field x — &, such that
& eN(I— (Tjgw))*Tj(I)) and [|&,]] < 1 for A-almost all 2 € X, and [ [|&;[|* dA(z) > 0 (see
Corollary after Theorem 2 in [6]; or [35], Corollary IV.8.3]). We infer that £ = f)e? &z dA\(x)
is well defined and nonzero, and T;T;£ = £, which contradicts the fact that 7} is a value of
the b-transform. This shows that A(X() = 0 and hence for A\-almost all z € X there is an
operator Fj(f) € CDD such that b(Fj(r)) = TJ(I) Put F(®) = (Fl(m)7 . ,F](f)) and observe
that the function x +— F(*) is measurable (since the b-transform is an isomorphism) and
F = f® F($) d\(x). Since the field  — W' (F®)) is measurable and W (F®)) c M,,
f W(F@)d\(z) € M = W”(F) At the same time, T1,...,Tx € ff W (F@) d\(x)
and therefore W (F) C fX W' (F®)d\(z) as well. We conclude that W (F®)) = M,
for A-almost all z € X and consequently f < W'(F (#)) d\(z) is the central decomposition
of W(F). In particular F@) ¢ Fy for A-almost all z € X. Now Propositionimplies
that F = [ ®(z)dA(z) where ®: X 5 2 — F®) € . Let pp = ®*()) € rgm(3n). We
know that then

F= /E X dyr (X). (5.4.9)

Further, since central decompositions of von Neumann algebras preserve the types ([I8]
Theorem 14.1.21] or |35, Corollary V.6.7]), we infer that F is type I, I", IT, 11}, 1I*°® or
IIT iff pp-almost all X € §n are. In particular, if F is the direct sum of a minimal N-
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tuple and a semiminimal one, W"(F') decomposes into type I;, II; and III parts (and no
other) and consequently jp-almost all X € Fx are type I' (atoms) or II* (semiprimes),
or IIT (fractals)—cf. Propositions and This proves the first claim of (A). The
remainder of (A) follows from Corollary

We turn to (B). First of all, note that makes sense thanks to Lemma m
Suppose that B is given by . We may assume that f is measurable. Then s(f) =
{P€pn: f(P) >0} € By. It follows from (DI3) (page [73) that

53]

@
Roe©B= [ (- F(P) PP R0 [ Pdua(P) <Xy A
PN s(f)

and thus B < A.

Now assume that B < A. Let pug € rgm(Fy) be as in with F = B. Since
B<AandA,B € 8EPy, Rg®B <* Ry ®A (cf. Corollary [3.6.5). So, (PR6) (page [13) and
Proposition yield a measurable set B C py such that Rg © B =Ry © fE P dua(P).
Now we infer from (DI3) and Lemma [5.4.8] that

a5} 23]
/ Ro © F dyug(F) :/ No ® P dpa(P). (5.4.10)
5 B

N

An application of Proposition shows that there are measurable domains ¥y C B
and Gy C §n such that pua(B\ Fo) =0, us(Fn \G0) =0, F5 ={Rg O P: P € Fy} € By,
G5 = {No ©F: F € Go} € By, the sets Fo, Go, F§ and G are standard Borel spaces
and the functions ®: ¥y > P — Ry ©P € F5 and ¥: G > F — Xg © F € G§ are
Borel isomorphisms. Put F = &~ 1(F; N G;) € By and § = U 1(F5 N G5) € Bn. Let
© = U~1od|5. Observe that O is a Borel isomorphism of F onto §. One may deduce from
Corollary [5.4.7] and (5.4.10)) that ua(B\ F) =0 and ps(Fn \ G) =0, and A < pals < A
where A(0) = pg(0©(0 N F)) for measurable o C py. Consequently (by (DI4)),

B
B:/ O(P) dya(P). (5.4.11)
F

Since ©(P) <« P for any P € &, we may define f: py — Iy, by f(P)=0(P):PforP e F
and f(P) = 0 for P € py\F. Thanks to (5.4.11)), it suffices to show that f|s is measurable.
Since F and § are standard Borel spaces, the graph ' = {(P,O(P)): P € F} of ©® is a
Borel subset of Fx G and u: F 5 P +— (P,0O(P)) € I is a Borel isomorphism. Finally, since
Div is Borel (see Chapter page , so is the function v: I' 5 (A,B) — B : A € Iy,
(here it is important that F and G are standard Borel spaces). The observation that
fl# = v ou finishes the proof.

Finally, (C) follows from Proposition and the fact that central decompositions
of von Neumann algebras preserve the types. m

The formula (5.4.9) corresponds to Ernest’s central decomposition of a bounded op-
erator [9, Chapter III]. It is not however of interest to us. Also a variation of (5.4.8)
appears in [9, Lemma 4.4].

We shall need one more result.

LEMMA 5.4.10. For p,v € rgm(§n) the following conditions are equivalent:

(i) fo. Fdu(F) L, [ Fdu(F),
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(ii) there are measurable sets A, B C Fn such that u(Fn \A) =0, v(F~n \ B) =0 and
Al, B,

(iii) there are measurable sets A, B C Fn such that p(Fn \A) =0, v(Fn \ B) =0 and
AL, B,

(iv) p L v and p+v € rgm(Fn).

Proof. (i)=(iv): Put A = féﬂN Xdu(X), B = fSEEN Xdv(X) and F = AHB, and let A = pp
where uf is as in . Since A, B <* F, we infer from Corollary that p, v < A
So, p+ v < X and therefore y + v € rgm(Fy). Further, there are measurable sets
A, B C Fy such that p < Mg < p and v < Mg < v and consequently, again by
Corollary A= [FXAAX) and B = [£XdA(X). Since then [Z X dA(X) <* A, B,
one has A(AN3B) =0 and hence p L v.

(iv)=-(iii): Put A = g+ v and let Ay and By be disjoint measurable subsets of Fn
on which (respectively) p and v are concentrated. Since A € rgm(Fn), ff&) FdA(F) L,
fgeo F d\(F), which yields (cf. Proposition and the proof of Proposition |5.4.4] or
[29, Proposition 3.2.7]) that there exist a sequence (p,)5; C P1(N) and a set Z € N()\)
such that p,, (b(F), b(F)*) =3 j(F)I for each F € (AoUBy)\ Z where j is the characteristic
function of Ag. Consequently, 1 and v are concentrated on, respectively, A = Ag \ Z and
B:B()\Z7 andAJ_SB.

Since (ii) obviously follows from (iii), it remains to show that (ii) implies (i). Suppose
(i) is false. This means that there are nontrivial N-tuples A <* ICSHN Fdu(F) and B <*
fSEBN Fdv(F) such that Xg ® A = Xy ® B. By Corollary there are measurable sets

A1, B1 C Fn such that A = fi Fdu(F) and B = fi F dv(F). All these remarks combined
with (DI3) (page|[73]) and Lemma give

H H
/ Ro © F dpu(F) = / Ro @ F du(F) (5.4.12)
ANA B1NB

where A and B are as in (ii). Thanks to Proposition we may assume that F =
{NooOF: FeA NA} and §={Rg®F: F € By NB} are measurable. We conclude from
the unitary disjointness of A and B that

®*(u)(§) =0 and O*(v)(F)=0 (5.4.13)
where ®: §ny > F — Rg©F € Zn. But (5.4.12)) implies, by Corollary that ®*(u) <

O*(v) < P*(u). Consequently, it follows from (5.4.13]) that pu(A; NA) =0 and v(BNBy)
= 0, contrary to the fact that A and B were nonzero. m

Taking into account the above result, for arbitrary two measures u,v € rgm(Fny) we
shall write L, v iff any of the equivalent conditions (i)—(iv) of Lemma|5.4.10]is fulfilled.

5.5. ‘Continuous’ direct sums
Property (DI4) (page suggests replacing standard measures p by their null o-ideals

N(w). In this chapter we follow this idea. In that way we shall extend the notion of the
(standard ‘discrete’) direct sum to a more general context.
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DEFINITION 5.5.1. A measurable space with nullity is a triple (2,9, N) where (2, M)
is a measurable space and N is a o-ideal in 9M; that is, 0 € N c M, U,_; 4, € N
whenever {A4,,}22, C N, and {B € 9MM: B C A} C N for every A € N.

Whenever (2,9, N) is a measurable space with nullity, N denotes the family of all
(possibly nonmeasurable) sets which are contained in members of N. Members of N are
called null sets, other subsets of 2 are called nonnull. For Y € M, (Y, M|y, Nl]y) is the
induced measurable space with nullity, i.e. M|y = {B € M: B C Y} and N|y = M|y NN.
The space (27,9, N) is trivial iff 27 € N.

A function ®: Z7 — 25 is a null-isomorphism between measurable spaces with
nullities (27,91, N1) and (Z3, My, Ny) if ¢ is a Borel isomorphism such that Ny =
{®(2): ZeN}. It ¥: X1 — 25 (with Xy C 27) is a function such that there are sets
Zy € Ny and Zy € Ny for which 271\ Z1 C X and V¥|g,\z, is a null-isomorphism of
(% \ Zl,ml\%\zl,Nﬂ%\Zl) onto (%2 \ Zg,m2|g2\z277\f2|%2\22), then W is said to be
an almost null-isomorphism and the spaces (27,91, N1) and (23, M2, Na) are almost
isomorphic. Similarly, a function u: X — Y (where X € 27, (27,9, N) is a measurable
space with nullity and (Y,91) is a measurable space) is said to be almost measurable iff
there is a set X’ € 9 contained in X such that X \ X’ € N and u|x- is measurable.

Of main interest to us are measurable spaces whose nullities come from certain mea-
sures. For this purpose we introduce

DEFINITION 5.5.2. Let (27,91, N) be a measurable space with nullity. A measurable
set A C 2 is standard iff (A, 9| 4,N]4) is almost isomorphic to (Y, 9, N(v)) for some
standard measure space (Y, 0, v). Standard sets are nonnull.

A family B is said to be a base of (2,0, N) iff the following two conditions are
fulfilled:

e B consists of pairwise disjoint measurable sets and 2"\ |JB € N,
e for any A C |JB we have: A € M (respectively A € N) iff ANB € M (AN B € N) for
any B € B.

A base is standard iff it consists of standard sets. (27,0, N) is called multi-standard iff
it admits a standard base.

Let # = {(%Z5,Ms,Ns)}ses be a family of measurable spaces with nullities. The
direct sum of .7, denoted by @, s(Zs,Ms, Ns), is a measurable space with nullity
(27,9, N) defined as follows: 2" = |J,cg(Zs x {s}); m: & — U,cq £ is given by
w(x,s) =x; A€ M (respectively A € N) iff m(AN(Zs x {s})) € M, (n(AN(Z5 x {s}))
€ N;) for every s € S. Note that {2 X {s}}ses is a base of @, (2%, My, Ny). We call
7 the canonical projection.

Let (27,9, N) be a multi-standard measurable space with nullity. Let 2" be the set
of all points z € 2" such that {z} ¢ N. One may show that 2°¢ € 9 (since 2~ is multi-
standard), 9| 4« is the power set of 2°¢ and N| 4-a = {0}. Points of 2% are called atoms,
while 2°% and its complement .2°¢ are called, respectively, the discrete and continuous
parts of 2. Further, if (Y,91, 1) is a nonatomic standard measure space, then there is
Z € N(p) such that (Y'\ Z, M|y z, N(u)]y z) is isomorphic to ([0, 1], B([0, 1]), Lo) where
Lo is the o-ideal of all Borel subsets of [0, 1] whose Lebesgue measure is equal to 0 (by
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Theorem 14.3.9 on page 270 in [27]). Using this fact, one may check that there is a base
of (2,9, N) each of whose members either consists of a single point belonging to 2%
or is isomorphic to ([0, 1],%B([0, 1]),Lo). Since every base of the last space is countable
(finite or not; see the proof of Lemma below), one deduces that either 2°¢ is null or
is a standard set, or every standard base of (2,01, N) contains the same, uncountable,
number of sets almost isomorphic to ([0,1],5([0,1]),Lo). We define two characteristic
cardinal numbers related to 2" as follows: 14(2") = card(2'?) and 1°(.2") is either 0 (if
¢ is null) or Ry (if 27¢ is standard), or is equal to the uncountable number of members
of a standard base which are almost isomorphic to ([0,1],98([0,1]),Lp). We see that
two multi-standard measurable spaces with nullities 2~ and # are almost isomorphic iff
HZ) = 1HZ) and 15(Z7) = 1°(#). What is more, for any o € Card and 3 € Card,,U{0}
there is a multi-standard measurable space with nullity 2 for which :4(Z) = o and
(%) = 8. (Indeed, take a set D of cardinality o and a set S disjoint from D whose
cardinality is either 8 if 8 # Ng or 1 if 8 = Rg. For each s € S let (I, M, N;) be a copy
of ([0,1],B([0,1]), L) and for d € D let (I, Mg, N4) be a standard one-point measurable
space with nullity. Now it suffices to define 27 as @, gLz, Mz, Ne).)

From now on, (£, 9, N) and (2", M, N’) denote multi-standard measurable spaces
with nullities. Let ®: 2" 3 2 — B®) ¢ 8EPN be any function. If there exist Z € N and
an integrable field 27\ Z 3 2 — A®@ € |JIZ5° CDDy(H,,) such that A®) = @(z) for all
x € X\ Z, we call ® a summable field and define EB?E% B®) as follows. If 2 is trivial,
we put @i\fej?f B(®) = 0. Otherwise let B be a standard base of (2,9, N). For every
B € B there is a standard measure pp on (B, 91| p) such that N(up) = N|z. We put

N @
@ 8 =P / B dyup (). (5.5.1)
TEX Bep /B

The next result shows that @i\fe Z B®) is well defined.

PROPOSITION 5.5.3. Formula (5.5.1) well defines EB?E% B®@). That is, the right-hand
side of (5.5.1) is independent of the choice of a standard base B and standard mea-
sures up; and {B},cp is an integrable (with respect to ug) field for each B € B.

Proof. Let By and By be standard bases for (27,9, N) and {ug): B e B;} (j =1,2)
corresponding families of standard measures. For each D € B; let D’ € M|p be such
that D\ D' € N and (D’,M|p/) is a standard Borel space. Then the set

I(D',Bs_j) ={F €Bs_;: D'NE #0} is countable (5.5.2)
(see the last fragment of the proof of Lemma below). Additionally put
7 ={(D1,Ds) € By x By: D\ N D} ¢ N}.
Thanks to (DI3) (page [73) and we obtain

P /A B0 D) = @D (@{ /A iB/ B@ du})(x): (A, B) eI})

AeB, AeB,

- @{/@ B® duV (2): (A, B) € I}

A'NB’
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and similarly

D /B@ B dufy () = 69{/:9@ B® du?) (2): (A, B) ez},

BeB-

Now the fact that N(MS)M/QB/) = N(,u(BZ) |a’np’) combined with (DI4) (page yields

57 57
@ [ Bal@- @ [ eaPw.

A€eB, BeB-
The remainder is left to the reader. m

It is easily seen that the restriction of a summable field to a measurable set is
summable as well. Thanks to Proposition [5.5.3] we may rewrite (5.5.1) in a new form:
whenever B is a standard base of (27,9, N) and {A®},¢ 5~ is summable,

@N AW = D (@N A(”)). (5.5.3)

T€X BeB zeB
Using this, one may prove that is satisfied for an arbitrary (not necessarily stan-
dard) base B.
Our next goal is to extend the notion of summability to a more general context. In
what follows, we equip Ry UCard with the Borel structure induced by the order topology
(precisely, each of the sets I, with @ € Cardy is equipped with this Borel structure).

LEMMA 5.5.4. For a function f: Z — Ry UCard the following conditions are equivalent:

(i) f is almost measurable,
(i) there is Z € N with the following properties:

(a) A= f1 Ry )\ Z €M and fla: A — Ry is measurable,

(b) for every a € Cardy, f~1({a})\ Z € M,

(c) for each standard set B € M there exists Zg € N such that f(B\ Zg) N Cards
is countable (finite or not).

Proof. Suppose all conditions of (ii) are fulfilled. In what follows we preserve the notation
of (ii). Let B be a standard base of Z". Put 2 = Z Uz (BN Zp). Then 2 € N and
(a)—(c) imply that f|\ # is measurable.

Now assume that Z € N is such that f| 4\ z is measurable. It is clear that (a) and (b)
are satisfied. To show (c), it suffices to prove the following claim: if (Y, ) is a standard
Borel space and u: Y — I, is measurable, then D = u(Y") N Card is countable. Since D
is well ordered, D is countable iff so is the subset Dy of D consisting of all elements of D
which have an immediate predecessor (relative to D) in D. Note that if & € Dy, then {a}
is open in D with respect to the topology inherited from I.,. Consequently, every subset
of Dy is open in D and hence Yy = u~*(Dy) is Borel and uly, is a Borel function of Yj
(which is a standard Borel space) onto the discrete space Dy. It therefore follows from
the theory of Souslin sets that Dy is countable. (Indeed, if Dy were uncountable, there
would exist a continuous mapping of Dy onto a non-Souslin subset of [0, 1]. It would then
follow that a non-Souslin subset of [0, 1] could be the image of a standard Borel space
under a Borel function, which is impossible.) m
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Lemma has two important consequences: if f,g: 2 — R4 U Card are almost
measurable and « € Card, the functions f + g and « - f are almost measurable as well.
We shall use these facts several times.

In the next two paragraphs, ®: 2 — SEPy is a summable field and f: 2 — R, UCard
is an almost measurable function where 2 € 9 (notice that & is multi-standard).

We say that f fits to @ iff there are two disjoint measurable sets Dy and Dy such that
2\ (D1 UD3) €N, f(D;y) C Card and ®(D3) C SMy. (If f fits to @, f(z) © ®(x) makes
sense for almost all z € 2.)

There is Z € N such that the sets A = f~}(Iy, \ {0}) \ Z and A, = f~1({a})\ Z
with uncountable a’s are measurable and the function f|s: A — Iy, is Borel. We call
the pair (f, ®) summable if f fits to ® and the field A 3> z — f(z) © ®(z) € SEPy is
summable. If this is the case, we define @1\[6@ f(z) ® ®(z) by

D" rmerm = (B rmorw)e @ (a0 @ ¢w)

TED z€A a>Ng T€EAL
It is clear that the summability of (f, ®) and the formula for
N
D fx)o ()
€D

are independent of the choice of Z. Notice that the summability of ® is equivalent to the
summability of (§, ®) where §: 2 — R, U Card is constantly equal to 1.

The following properties follow from (DI0)—(DI4) (page [73) and (5.5.3). Everywhere
below, (f, {A®},c4) is a summable pair.

(CS0) For each 2 € M the pair (f, {A®},cz) is summable as well and 6933\[69 fl@) o
A = Qiff so(f) :={z € P: f(x) A0} eN; @i\reg f(@)©A® € $&Py iff there
is Z € N such that so(f) \ Z is standard and f(Z2\ Z) C Iy,.

(CS1) The pair (f, {6(A™)},c ) is summable and

N N
b( D o A<m>) = P f@)©b(A®).
zeX e
(CS2) Whenever B is a base of (£, M, N),

D 1w oa” = B (D ) 0a®).

reX BeB z€B
(CS3) (A) If (f, {B(m)}zegg) is summable, so is (f, {A(‘r) ®B™},cq) and
@ f(z A(w) ® B(w) ( @ fla A(w)) ( @ f(z)®B w))
reX reX reX

(B) For every o € Card, the pair (a - f, {A®},c ) is summable and
N

D (0 @) oA =a0 (@ 1) ©A®).

e e

(C) If in addition (g, {A®},c ) is summable, so is the pair (f + g, {A®},c )



86 5. Prime decomposition

and
N

B (@) +9@) oA = (@ 1) oA & (D gla) 0 AW).

rzeX reX e

(CS4) If¢p: 27 — 2 is an almost null-isomorphism, the pair (f o, {A(w(ml))}xlegg/) is

summable and
N / N
D rwE)oAT) = G fz)oA”
v ex’ €L
Since properties (CS3)(B) and (CS3)(C) are of importance to us and are not so easy, let
us prove them. It is quite simple that both the pairs appearing in the two assertions are
summable. Thanks to (CS2), we may assume that 2 is standard. It then follows from
Lemma [5.5.4) that we may also assume that both f(27) N Carde and g(2") N Card., are
countable and f and g are Borel.

We start with (CS3)(B). Observe that (DI3) yields the assertion for a < Rg. So,
Ng © (@i\;% f(z)®A®)) = @i\[e%(NO - f(z)) © A®). This implies that we may further
assume that f(%2") C Cardy (replacing f by R - f and reducing 2" to s(f) = sa (f)).
But then the assertion easily follows from (CS2) and the countability of f(.27).

We now turn to (CS3)(C). Put A;(Ro) = f~(Ix,) and Ay(a) = f~*({a}) for un-
countable . In the same way define A,(3) (corresponding to g) for § € Card. Notice
that the sets Iy = {a € Cardo: Af(or) # 0} and I, = {a € Carde: Ay(a) # 0} are
countable and hence the family {Af(a)NA4(8): (o, 8) € Iy x 14} is a base of (£, M, N).
Therefore—using again (CS2)—we may assume that I; and I, consist of single cardi-
nals. The case Iy = I, = {Ro} follows from (DI3), while the one when Ry ¢ Iy U I, is
obvious. Finally, if e.g. Iy = {Ro} and I; = {a} for some o > Ry, then (by (CS3)(B))
Brea (f(@) +9(2) 0 AY =@y 9(2) ©AY = a 0 Bcy AV > B o R0 © AW
and (again by (CS2) and (CS3)(B))

D oo = (@ (- ) 0A?) & (@ RoA®)

zed zeX z¢s(f)
N N :
200 (D f@)0A?) > @ fa)oA”,
reX e

which finishes the proof.
We now repeat the idea of the previous chapter. Let (f, {A(‘”)}megg) be a summable
pair. If
N
P @) oA® L, @ flz) o A®@ (5.5.4)

€D’ xeP"

for any two disjoint sets 2’, 2" € M, we call the pair (f, {A®},ca) regular and we
write BE]?G% f(x) © A® in place of @i\fe% flz) o A,

Similarly, a summable field {A m)}xe 2 1s regular iff ( is satisfied with f con-
stantly equal to 1. As usual, using EEIEE% flz) o A® prebupposes that (f, {A®},ca)
is regular. Note that, by definition, regular pairs and fields are summable.

The next result collects fundamental facts on the notion defined above.
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THEOREM 5.5.5. Let ®: 2 3z — A® € Fy be any function.

(I) The following conditions are equivalent:

(i) the field {A®} e o is regular,
(ii) for every standard set A € M there is Z € N such that ®(A\ Z) is a measurable
domain and ®| 4\ is a Borel isomorphism of A\ Z onto ®(A\ Z).

(IT) If ® satisfies condition (I)(ii) and f: Z° — Ry U Card is an almost measurable
function which fits to @, then (f, {/—\(’”)}zegg) is reqular. Moreover,

N N
[Yeeppy: v < H e AL = HH 1@ eoa@: 9e m}. (55.5)
reX z€ED
Proof. The implication ‘(i)=-(ii)’ in (I) follows immediately from Proposition To
prove the converse, first note that ® is summable because of (ii), the existence of a
standard base of 2" and Proposition Further, take two disjoint nonnull measurable
sets 71 and %5. Let B; be a standard base of Z;. Since B; U Bj is standard for B; € 9;,
we infer from (ii) and Proposition that @163 A@ 1, @N A® Consequently,

Bpes, (@lcs AY) Ly @3632(@063 A@) and hence (i) follows from (CS2).

Now assume ® and f are as in (II). We may assume that f is Borel. Define fo: 2" —
Iy, \ {0} by fo(z) = f(x) if f(x) € Iy, \ {0} and fo(z) = 1 otherwise. The function
fo is Borel and fits to ®. Let B € 91 be a standard set. Then there is a standard
measure pu on (B,M|p) such that N(u) = N|p. We infer from the assumptions that
(1, ®|5) € RGS(B,M|p). Hence, Lemma [5.4.8] implies that

(1, (fo © ®)|B) € RGS(B, M|p). (5.5.6)
Consequently, if By and By are two disjoint standard (measurable) subsets of 2", then
B @) oA L, @ folz) 0 A, (5.5.7)
r€B1 € B2

We also conclude from that (fo, ®) is summable on every standard subset of 2 .
Since £ is multi-standard, (fy, ®) is therefore summable. It now follows from the defi-
nitions of fy and of summability that (f, ®) is summable as well.

Further, if B is a standard subset of 2", it follows from Lemmal|5.5.4and the definitions
of fo and of EB;\IEB f(z) © ®(z) that @?EB flz) @ o(x) < EBi\feB fo(z) ® A®_ This,
combined with , yields

N N
P @A 1, @ f@) oA (5.5.8)
rEB, rEB>
for any two disjoint standard sets By, Bo C 2. Now if 2’ and 2" are two arbitrary
disjoint nonnull Borel subsets of 27, the fact that they are multi-standard together with

(CS2) and (5.5.8)) gives (5.5.4). It therefore suffices to check (5.5.5). We have already
shown the inclusion ‘D’ in (5.5.5)) (cf. (CS2)). Finally, fix Y € CDDy such that

Y < EHN f(x) © A@), (5.5.9)

zeX
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Let Bg be a standard base of 2. Thanks to Lemma for every B € By there are
pairwise disjoint measurable subsets WE, W, ... of B such that B\ |J,—, W,” € N,
JWF) cRy \ {0} and flw s is constantly equal to some o € Cards, U {0}. Notice that
then B = {W,.B: B € By, n > 0} \ N is a standard base of 2" as well. Denote by B the
set of all B € B for which f(B) C Ry \ {0} and let B’ = B\ B;. For each B € B’ there
is a (unique) ap € Cards U {0} such that f(B) = {ap}. Now (CS2), (CS3) and a part
of (IT) already proved give

™ r@ o - ' (HHNJ“(:U)GA(”)}HH[HH op © (EE|NAW)] (5.5.10)
xeX BeB; z€EB BeB’ z€B

It may be deduced from (5.5.9) and (5.5.10) (using e.g. Proposition and Theo-
rem |3.1.1)) that Y is of the form

= (EH o) (H V)

BeB; BeB’

where Yp <* Hﬂi\feB f(z) ©A® for B € By and Yp <* ap © EE]i\reB A® for B € B
Further, by (PR6) (page , for each B € B’ there is Yp <*° EE];VGB A®) such that
Y B = ap®Yp. Since B consists of standard sets, we infer from Propositionthat for
every B € B there exists a measurable set 25 C B for which Yg = Bﬂi\{g@B flx)o A@)
provided B € By and Yp = EE]?E@B A@ if Be B/ Put 2 = Upes 2B and note that 2
is Borel since B is a base. Finally, the family {Z5: B € B} is a base of 2 and hence we
deduce from (CS2) and (CS3) that

™ o ae - EH(EHf yoa®) = (EH vs) @ (HHesovs) =V,

€D BeB xz€9p BeB; BeB’

and we are done. m

Similarly to the previous chapter, for a field ®: 2~ — Fn we shall write ® € RGSjo¢
or & € RGSjpc(Z) if @ satisfies condition (ii) of Theorem m

5.6. Prime decomposition

Semiprimes are those members of py which make the issue of prime decomposition of
N-tuples more complicated and ambiguous. To shape this in a way similar to that in
the ring of natural numbers, we have to allow multiplicity functions to take real values
(beside infinite cardinals) instead of (only) integer ones. Such an approach is therefore
similar to Ernest’s multiplicity theory (Chapter 4 of [9]) and will enable us to propose
the prime decomposition of an arbitrary N-tuple in an (essentially) unique form (see
Theorem . We consider this a more attractive manner of ‘factorial decomposing’
of N-tuples than Ernest’s central decomposition [9].

In this chapter (27, ®@) is a fixed pair such that (2,9, N) is a multi-standard mea-
surable space with nullity and ® € RGSjoc(Z) is such that ®(2") C py. After removing
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from 2" a null measurable set, we may assume ® is measurable. Let
21 =0 "an), Zu= '(sn), 2Zm =2 (fn).
Notice that 27, 277 and 277 are measurable, pairwise disjoint and 27U ZUZ T = 2.

DEFINITION 5.6.1. A function f: 2 — R4 U Card, where & € 9, is admissible for @ iff
f is almost measurable, (27N 2) C Card and f(Zm N Z) C {0} U Cards. The class
of all admissible functions on 2 is denoted by &/ (£, ®) or briefly by </ (Z").

For each f € &/ (%), s(f) is the support of f,ie. s(f) ={x € Z: f(x) #0} (s(f) is

measurable provided so is f).

Note that each admissible function fits to ®. Thus, by Theorem [5.5.5] for every f €
o (Z) we may write Eﬂi\fegg f(z) © ®(x). As is practised in measure theory, the term
almost everywhere, abbreviated a.e., will mean that the relevant property (relation, etc.)
holds on 2"\ Z for some Z € N.

As a consequence of Lemma [5.5.4] we obtain

COROLLARY 5.6.2. For f,g € o/ (Z),

(a) f+g} f’g; f\/g; f/\ggd(‘%-) wheref\/g:max(f,g) andf/\g:min(fag))
(b) a-f e A(Z) for each o € Card,

(©) if (210 Zim) C {0}, t- f € o/(X) for every t € R,

(d) if f < g a.e., thereisu € A (Z) such that g = f + u a.e.

We leave the proof of Corollary [5.6.2] as an exercise. A part of it may be strengthened:

LEMMA 5.6.3. Whenever f1, fa,... are admissible functions, so are /\n>1 fn: X' o2z
infn>1 fo(z) € Ry UCard and V5, fo: 27 3 @ sup,>, fu(z) € Ry U Card. In
particular, Y7 | fn € F(Z) (where (307 fu)(®) =D 07 folx)).

Proof. We leave it as an exercise that it is enough to show, thanks to Lemma [5.5.4
that the closure of any countable subset K of Card, (in I, D K for any v € Card)
is countable as well (recall that countable compact Hausdorff spaces are metrizable, by
[9) Theorem 3.1.9]). But this is quite simple: for every element z (except the last) of
L = (1K) \ K there exists ¢, € K which lies between x and its immediate successor
(relative to L) in L. Since L 3 x +— ¢, € K is one-to-one, the assertion follows. m

PROPOSITION 5.6.4. For f,g € &/ (%),

EHN f(x) © ®(x) = EHNg(x) © () (5.6.1)

e weZ
iff f=g a.e.
Proof. The ‘if’ part is clear. Suppose holds. It follows from (CS3) (page [85)) that
EEi\[e@ u(z) ©P(r) < EElfje@ ®(z) for each B € M and u € {f, g}. Since EEl?E\IE% D(x) L,
EEIi\Ie@ d(x), and (CS2) imply therefore that
H 1@ oew - B o oow (5.6

TERB TERB
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for any # € 9. Let Z € M be standard. It suffices to check that f = g almost everywhere
on 2. Thanks to Lemma we may assume that f|4 and g|y are Borel and

(f(2)Ug(2)) N Carde is countable. (5.6.3)

By (5.6.3), the sets 2, = {z € Z: f(z) < g(2)} and Z_ = {x € Z: f(z) > g(x)} are
Borel. Suppose, to the contrary, that e.g. Z+ ¢ N. We consider two cases.

Assume there are a nonnull measurable set 4 C 2, and two cardinals a and § such
that f(#) = {a} and g(B) = {8}. Let B = Eﬂi\re@ ®(x). We infer from (CS0) that B # O.
Moreover, since ®(Z") C pny and ® € RGSjy¢, and &£ is standard, Lemma implies
that B is the direct sum of a minimal N-tuple and a semiminimal one. Consequently,
a®B < 8®B (use e.g. Theorem and (AO4), page if applicable). But this
contradicts because Bﬂi\[e@ f(@)©®(x) =a©®Band H,cz9(z) © ®(x) = O B.

Finally, if there is no set 4 with all above-mentioned properties, it may be deduced
from (5.6.3) that there exists a nonnull measurable set B C 2+ N 27 such that f(B) C
Ry. Let B EHzE@ f(z) ® ®(z). As before, an application of Lemmashows that

B e SMy. (564)

On the other hand, there is a measurable function u: 4 — (Ry U Card) \ {0} such
that g(x) = f(x) + u(z) for all z € L. Then (CS3) combined with ( glves B =
Eﬁge%g(x) ©d(z) =Ba® (EHmega u(z) © ®(x)), which means, thanks to (5.6.4), that
Hyez u(z) © ®(x) = O (cf. (AO4)), contrary to (CS0). m

THEOREM 5.6.5. Let T = H0 - ®(x). Then

N
{Hﬂ f@)© @(x): f € /(2,8)} = X € €DDy: X < T},
zeX
Proof. Tt easily follows from (CS3) (page that EE@IE% f(z) ® ®(z) < T for every
fed(Z). We fix X € CDDy such that X <« T. Let {Bs}ses be a standard base of 2.
We may assume that (J, g Bs = 2. For each s € S put T, = Hﬂi\feBs ®(z). We infer
from (CS0) that T, € 8EPy and from (CS2) that T = HH, g Ts. Let X, = E(X|T,).
Observe that X = FH ses Xs and Xy < T,. Suppose for each s € S there is an admissible
function fs: Bs — Ry U Card such that X; = EEli\[eBs fs(z) © ®(x). Then the union
f+ 2 — Ry UCard of fy’s is admissible as well and it follows from (CS2) that

HEl f@) o @(x EB(HH fole )):EBxs:x.

e sES xzE€B; seS
The above argument reduces the problem to the case when £ is standard. Then there
is a standard measure p on 9 such that N(u) = N. Consequently,

EEI fl@) © oz /f ) © ®(z) dpu(z) (5.6.5)

zeX
for every Borel function f: 2 — Iy, which fits to ®. Recall that for each A € CDDy,
s(A) is given by (page and s(A) = A{E <°® J: A < E}. Since T € 8Py
(because 2" is standard), s(T) € SEPy as well. So, if X <« T, then s(X) <* s(T) and
consequently the set J = {(i,a) € T: E., (X) # O} is countable.
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We infer from Lemma [5.4.9] that:

e T is the direct sum of a minimal N-tuple and a semiminimal one,

o there is \ € rgm(py) such that T = [} PdA(P),

o for each (i,a) € J there is a Borel function u’,: py — Iy, such that «! (ay) C Card,
ul (fn) C {0,Rg} and

) H
E;(X):/ W' (PYOPAAP) if (i,a) # (II,1),
N (5.6.6)

Esm(X):/ u’,(P) @ PdA(P) if (i,a) = (II,1).
PN

Further, it follows from Corollary that
D () < A< D" (1) (5.6.7)

(cf. (5.6.5). Since 2" is standard and ® € RGSjc(Z"), we may assume that @ is a Borel
isomorphism of 2" onto a measurable domain. Put ¢, = u? o ® for (i,a) € J and note

that g/, € «7(2). Now (5.6.5)), (5.6.6) and (5.6.7) combined with (DI4) (page [74) for

every (i,a) € J yield

e = B g o o) it a) £ (11,1), (5.6.8)
zeX
N
EnX) = FHH di@) 0 0@) if (1.0) = (11,1). (5.6.9)
ze X

Let (i,c) and (i/,0/) be distinct elements of .J. Suppose s(g’,) N s(g,) ¢ N (s(gt,)’s are
measurable since g?,’s are). Then there is a nonnull measurable set % which is contained
in s(g%) Ns(g’,). Consequently, thanks to (CS3) and (6-6.8)-(5.6.9), o ® EE@{E% D(z) <
Ro @ EL (X) as well as R © {0 5 ®(z) < Ro @ EY, (X), which is impossible since EX, (X) L,
EZ,(X) and Ech\fegB ®(x) # O. This proves that s(g’,)Ns(g’,) € N for any distinct (i, ) and
(¢,a’) in J. It then follows from the countability of J that there is 2 € N such that the
sets 74 = s(g! )\ Z ((i,«) € J) are pairwise disjoint. Now we define f: 2~ — R+ U Card
by the rules: f(z) = a - ¢ (x) for z € .7 with (i,a) € J\{(II 1)} f(z) = gf(z) for

€ . provided (II,1) € J; and f(z) = 0 for ¢ | ioyes Lo 1t follows from the
construction that f € /(2. Finally, Theorem [3.6.1} m (]m[) (CS2) and (CS3)
(page give X = EEI;JC\{Egg f)©o®(z). m

Theorem asserts that J(®) = {EEIi\Ie% flx) @ ®(x): f € (Z2)} is an ideal.
We call a quadruple (#,M, Z, ) or a pair (%, ¥) a covering for an ideal A C CDD y iff
(%', M, 2) is a multi-standard measurable space with nullity, ¥ € RGSj,.(#), U(#) C pn
and J(¥) = A (with this terminology we are inspired by condition (ii) of Theorem [5.5.5)).
Whenever the ideal A is irrelevant, we shall speak briefly of a covering. A full covering
is a covering for CDDy.

As usual, whenever 2 € 9, j4 stands for the characteristic function of 2.



92 5. Prime decomposition

COROLLARY 5.6.6. Let f,g,h1,ha,... € (2), X = By f(x) © ®(x) and Y =
He s g(x) © O(x).
(A) XY iff f<g ae
(B )XJ_ Y iff f-g=0 a.e.
(C) X< Y iff s(f) \ s(9) €N.
D) X<EY iff f=g-jo ae. for some I € M.
(B) Hiea 0051 hn(@) © 8(x) = @7l [Hica halz) © ().
Proof. Observe that (D) is an immediate consequence of (page and Proposi-
tion [5.6.45 (B) follows from (A) and Theorem [5.6.5} (E) is a consequence of (A), (CS3)
(page [85) and (AO6) (page [32); while (C) follows from (CS3) and (B). It therefore suf-
fices to prove (A). The implication ‘<’ is a consequence of (CS3) and Corollary [5.6.2{d)
Finally, the converse follows from Proposition [5.6.4] and Theorem [5.6.5] Indeed, if X <Y,
there is A € CDDy such that Y = X @ A. Then A € J(®) and consequently there
is h € /(%) for which A = EEi\re% h(z) ® ®(x). We now deduce from (CS3) that
Bﬂgfe% g(x)0®(x) = EE@IE% (f+h)(z) ©®(z) and hence, by Proposition g=f+h
a.e m

For the next result, we put 27, = ® an(n)), 2, = @ 1(sn(1)) and 27 =
@ !(sn(oc)). Observe that these sets are pairwise disjoint, 27 = J_~ 27, and 27 =
Zr, U Zr,, . For simplicity, we assume that ® is measurable, which implies that all these
sets are measurable as well.

COROLLARY 5.6.7. Let f € o/ (Z) and A = BEI;\IE% f(z) © O(z).

(a) A e MFy (respectively A € HIMy; A € SMy) iff f = jo a.e. for some measurable
92 C X7 (respectively f = Rg-jg a.e. for some measurable 9 C X ; there is Z € N
such that f(Z1UZm)\Z") C {0} and f(Zu\Z) C Ry). In particular, Bﬂi\[e% D(x)
is the direct sum of a minimal N-tuple and a semiminimal one.

(b) A € 8EPN (respectively A € an; A € fv; A€ sn; A € Fn) iff there is & € N such
that s(f)\ 2 is standard and f(2"\ &) C Iy, (respectively f = ji,y a.e. for some
e 2N fF=X “J{a} a-e. for some x € Xy N 2 f = L j{z) a-e. for some
ve 2unZ®andt € R \{0}; f =s-j(u a.e. for somex € 2% and s € Iy, \{0}).

(c) A s type I; I™; IT; II'*; II>°; IIT iff, respectively, s(f)\ Z1; s(f)\ 21,; s(f)\ Zu;
s(ON 2y s(H)\ Zu; s(f)\ Zur is a member of N.

(d) AY = H,cpa () © B(x) and A° = L 5 f(x) © B(x).

(e) Let Z € N be such that f|g\ 4 is Borel and 2"\ Z is the union of a base B
consisting of sets each of which is isomorphic either to ([0,1],B([0,1]),Lo) or to a
one-point nontrivial measurable space with nullity (there exists such %). Put s, =
RN N 2\ Z and & = f~1{a}) N 2Z;\ Z for (i,a) € Y.. Then
E={&: (i,a) € Yo} U{Em} is a base of X'; and Egp(A) = Eﬂi\feg flz) © ®(z),
EL(A) = Ech\[eé”;' ®(x) for (i,a) € T with i # I and o # 0, and EX(A) = Ry ®
EEli\fegéz O (z) for a € Cardy

Proof. Points (a)-(d) are left as exercises. They are almost immediate consequences of
Propositions [£.5.4] [5-4.6] and the fact that central decompositions of von Neumann alge-
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bras preserve the types. Note also that EEli\[eggd f(z) ©®(x) = H,c 9 f(x) © P(z) since
Nlgra = {0}

To prove (e), it suffices to show that € is a base of 2, since then the remainder
will follow from (CS2), (CS3) (page [8F)), (a) and the uniqueness in Theorem It
is clear that € consists of pairwise disjoint, measurable sets (because f is measurable
on Z\Z)and £\ JE = Z. Now assume A C 2"\ Z is such that AN& € M
(respectively AN & € N) for any & € €. Let B be as in (e). It follows from the proof
of Lemma that f(B) N Cards is countable for each B € B. Consequently, also the
set E(B) = {E € £&: EN B # 0} is countable and thus AN B = Upcep) (AN E) N B
is a member of 9 (respectively N) for any B € B. Since B is a base, we obtain A € M
(A € N) and we are done. =

REMARK 5.6.8. For every measurable set 2 C 2, let j denote an admissible function
which is 0 off Z, 1 on 2\ Zr and Xg on 2N Ly

Using Corollary [5.6.6(E) as well as (CS2) and (CS3)(B) (page [8F), one may show
that whenever (27, M, N, ®) is a covering, the regular (continuous) direct sums of the
form EEI?;FE% f(x)©o®(z) with f € &/(Z") may be defined by axioms (AX0)—(AX3) stated
below. Namely, it is now quite easy to prove that if ¥: &/ (2") — CDDy is an assignment
such that

(AXO0) for every 2 € M, U(jgp) = EE]?EQ b (z),

(AX1) whenever B is a base of 27, U(f) = @gcp Y(ip - f) for every f € o/ (2),
(AX2) ¥(a- f)=a @ ¥(f) for any a € Card and f € &(Z),

(AX3) (Zn:1 fn) = @n:1 V(fn) for all fi, fa,... € F(Z),

then ¥(f) = Hfli\fegg f(z) © ®(x) for any f € &/(Z") (to show this, use Corollary e)

and the fact that a real-valued measurable function may be written as a series of rational-
valued simple functions). However, at this moment we do not know whether @ is uniquely
determined (up to a.e. equality) by ‘its’ continuous direct sums appearing in (AX0). This
(and even more) will be proved later, in Theorem

The next result follows from Corollary [5.6.7) and its proof is left to the reader.

COROLLARY 5.6.9. Let (%, %) be a covering for an ideal A C CDDy and let B = J(A).
Then 14(%) = card({X € Fn: X <* B}) and 1(#) = dim(B°).

Our next aim is to establish (in a sense) the uniqueness (Theorem [5.6.10] and Corol-
lary [5.6.11| below) and the existence (Proposition [5.6.13)) of coverings for arbitrary ideals
in CDDy.

THEOREM 5.6.10. Let (27,91, N1, ®1) and (22, M3, Na, Do) be two coverings such that

EElNl ®i(2) = EE|N2 D3(z). (5.6.10)

e ze€X>

Then there are sets 25 € N; (j = 1,2) and a null-isomorphism 7: Z1\ 24 — 22\ £
such that ®1(x) = Oa(7(x)) for each x € 21\ Z1.
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Proof. Let B; be a standard base of ;. For B € B, put Tg) = EEIIéB @, (z). It follows
from (CS2) and ) that

HH = FH 2. (5.6.11)

BeB BeB,

Let I = {(B1.B2) € By x By: T, 3, = Ty) AT) # O}. We conclude from (5.6.11)
that

0 o BB ey (BeB, (5.6.12)
T = EH{TB,,B: (B,B) eI} (BeBy). (5.6.13)

It follows from Corollary [5.6.6{ and (5.6.12)—(5.6.13)) that for any B’ € B; and B” € By
the sets 12( ) = {B2 € Boy: (B/,BQ) S I} and Il(B”) = {Bl € By: (BhBH) S I}
are countable (since Tg) € SEPy) and thus there are families of pairwise disjoint sets
{DlB’,B}Befz(B') C M, and {D2B,B”}BEI1(B”) C M such that B = UBEIQ(B’)DlB’,B7
B" =Uper, 57 D% pr and

Thi.B, = h Py (z) = EHNZ Dy () (5.6.14)

1
£€D31 Ba leDBl =P

for any (By,Bs) € I (cf. Corollary [5.6.6) or Theorem [5.5.5). We also infer from the
countability of I1(Bs) and I>(B;) that

{DB1 B, (B1,B2) € I} is a base of 2. (5.6.15)

Fix (B, B2) € I. Since D LB, 18 standard and ®; € RGSjqc, there is a Borel set G C
DB B, such that DB B» \G € Nj, ®;(G;) is a measurable domain and ®;|g, is a
Borel isomorphism of G onto P, (G ). Let u; be a standard measure on M;|q, for
which Nj|q, = (Mj) Relation shows that fgﬂ O (z) dps (x fG Do () dusa(x).
Hence Corollary implies that f1 < 2 < fy where 7i;(F) = p; (@ YF)NnaG,) for
F e Bpn). Consequently, ZB B Dgl By \ [<I> L@ (G1) N ®y(Go)) N G,] € N; and
TBy.Bs D}31732 \ZBLB2 >z (Po|g,)” 1(<I>1(x)) S DBMB2 \ ZBl732 is a well defined
null-isomorphism such that

. 1 1 2 2
{7-31’32 DBI B> \Z31 By DBl,Bg \ZBl,B2’

(I)g OTBl,Bz = ¢1|D}5 By

(5.6.16)

\Z5, By

Now it suffices to put 2 = (25 \UB;) UUp, p,)er 73, p, and to define 7: 27\ 27 —
2>\ % as the union of {75, B,} B, By)er- It follows from (5.6.15) and (5.6.16) that

Z; € Nj and 7 is a null-isomorphism we searched for. m

COROLLARY 5.6.11. Let A be an ideal and (21,9, N1, ®1) and (272, M2, N?, ®2) be
two coverings for A. Then there are sets 27 € N7 (j = 1,2), a Borel function u: 2 —
Ry \ {0} with w(27 U 23;) C {1}, and a null-isomorphism 7: 21\ 21 — 272\ 27
such that ®*(1(z)) = u(z) © ®1(x) for every x € 271\ 2.
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Proof. Let T; = EE]?Z a5 ®I(z). It follows from the assumptions and Theorem that

T < Ty (5.6.17)
and there is f € «7(2!) such that
Nl
Ty = Hﬂ f(z) ® @ (x). (5.6.18)
ze X1

Now Corollary [5.6.7] implies that Ty is the direct sum of a minimal N-tuple and a semi-
minimal one, and consequently there is Z € N! such that A := s(f)\ Z € M, f|a is
Borel, f(ANZ}) C {1}, f(ANZ3;) € {Ro} and f(AN2Z}}) € Ry \{0}. Further, Corol-
lary combined with shows that 2"\ s(f) € N! and hence 21\ A € N'.
Define u: 2’1 — Ry \ {0} by u(z) = f(z) for z € A\ 2y and u(z) = 1 otherwise.
Observe that u is Borel and fits to ®!, and u(z) ® ®!(z) = f(z) ® ®!(z) for x € A. So,
gives

2

HHN ®2(z) = EHNI u(z) © (). (5.6.19)

rzeX? et
Finally, since u is real-valued, (u ® ®1)(2™!) C py and we deduce from Theorem m
that (21, u ® ®!) is a covering. So, the assertion follows from Theorem [5.6.10 thanks
to (5.6.19). =

To establish the existence of coverings, we need the following
LEMMA 5.6.12. Let & C rgm(py) be a family such that
wlsv if p#vand pvedéd. (5.6.20)

Let (27, M N) = D ,cs(pn, B(pn), N(p) and @: 2" — py be the canonical projection.
Then (Z°,®) is a covering and

HHN@(:C) -H /E P du(P). (5.6.21)

reX nes PN

Proof. First of all, the usage of ‘EH#eéa’ is allowed by Lemma [5.4.10] thanks to (5.6.20)).

Further, since regularity measures are concentrated on measurable domains which are
Souslin—Borel sets, (Z,9,N) is a multi-standard measurable space with nullity and
{pn x {u}}uce is a standard base of Z". Thus, it suffices to check that ® € RGSjoc(Z2")
(then will automatically be satisfied). It is clear that @ is Borel.

Let A € M be standard. We will show that condition (ii) of Theorem [5.5.5]is fulfilled.
Since A is standard, the set &' = {u € &: ®(A) ¢ N(u)} is countable. Observe that
Zo =AN[U,ge (pnv x {p})] € N. Since A\ Zp C py x &’ € M, we may assume that

A=py x &' (5.6.22)
For 11 € & let T, = [ Pdu(P). Put T = [, e T,i. It follows from Lemma [5.4.9(C)
that T, (4 € &’) is the direct sum of a minimal N-tuple and a semiminimal one, and

thus so is T. Moreover, since &’ is countable, T € 8EPy (T # O because standard sets
are nonnull). Now Lemma A) asserts that there is a measure A\ € rgm(py) such
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that T = pri P dA(P). Since T, <° T, we conclude from Corollary that
p<<X (ped’). (5.6.23)

Further, it follows from (5.6.20) and the countability of &’ that there is a collection
{S, }ece of pairwise disjoint measurable subsets of py such that p(py \ S,) = 0 for
every u € &'. Finally, let ¥ C py be a measurable domain such that A(py \ F) = 0. Put

D= J(S.nF) x {u}]

peé&’!

Observe that D C A (by (5.6.22))), A\ D € N (pn \ (S, NF) € N(p) by (5.6.23)), ®|p is
one-to-one (since the S),’s are pairwise disjoint) and ®(D) C F. So, Remark finishes

the proof. m

PROPOSITION 5.6.13. Let T € CDDy be the direct sum of a minimal N-tuple and a
semiminimal one. There is a covering (2, M, N, @) such that

N
T= BH O(z).
e
Proof. By Zorn’s lemma, there is a maximal family & C rgm(py) such that (5.6.20) is
satisfied and T, := pri Pdu(P) <° T for each p € & (since T, # O; cf. Lem.
It follows from Lemma and its proof that FH pee Tp < T and that it is enough
to show that X :=TH (EElueg T,) is equal to O. Suppose, to the contrary, that X # O.
Since T < J, we infer from Proposition that there is Y € 8€Py such that Y <& X.
Then Y is the direct sum of a minimal N-tuple and a semiminimal one (because X <* T).
Now Lemma yields v € rgm(py) such that pri Pdv(P) =Y (<* T). Finally, since
Y L, T, for every u € &, Lemma asserts that v L pu for any p € &, contrary to
the fact that & is maximal. m

The next theorem is an immediate consequence of all previously established properties.
This result may be formulated for arbitrary coverings. Of main interest to us, however,
are the full coverings. To make the theorem most transparent, we repeat some of the
properties proved earlier.

THEOREM 5.6.14 (Prime Decomposition).

(I) There exists a full covering. What is more, for every T € SMy with Rg © T = Jyy
there is a full covering (2,9, N, ®) such that EE{?E% O(x)=JrBTBInm.

(1) Let (271, M, NY @) and (272, M2, N2, &%) be full coverings. There are a Borel
function u: 1 — Ry \ {0} such that u(2} U 23) = {1} and an almost null-
isomorphism 7: X' — X2 such that ®%2 o1 = u® ®' a.e. In particular, for every

fed (22, (for)ue Z(21) and

H rwee@= " (7onue oa@.

TzeX? reX!
(III) Let (2,9, N, {Ps}zc2) be a full covering.
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(A) For each A € CDDy there is f € o/ (Z) such that A = Bﬂi\fe% f(z) ©Py.
(B> For any f17f2af3a"' eﬂ(%%

' [> hew)or @ B rnwer].

e  n=1 e
(C) Let f,g € F(X). Put X = EE{?E% f(x)OP, andY = EE{?E% g(x)®P,. Then:

(a) X=Y & f=g ae,

(b) X<Y & f<g ae,

(c) XY & f=g-jgp ae. for some I € M,

(@) X <Y & () \ s(g) € N,

(e) X Ly Y@f g=0ae < s(f)Ns(g) €N,

) aOX= EE{IE%( - f)(x) © Py for any o € Card,

(g) X € My < s(f)\ Zn € N and f~'(Cardy,) € N; if X € My, then
t@x—EEzegg[ - f(z)] ©@ Py for each t € Ry,

(h) X € 8EPy iff there is Z € N such that s(f)\ Z is standard and f(Z \ Z)
CINO'

We leave the proofs of (g) and of a part of (II) as exercises.
Theorem [5.6.14] says that after fixing T € SMy such that Xg © T = Jp, there is a
unique (up to almost null-isomorphism) full covering (£, 9, N, ®) such that

[ ) -

€ Xr

Then for every A € CDDy there is a unique (up to almost everywhere equality) function
m € &/ (Z) such that

N
A=HH m@oow. (5.6.24)
e

The function m is called the multiplicity function of A (relative to T) (compare with
Chapter 4 of [9]) and the formula (5.6.24) is called the prime decomposition of A (relative
to T). One may check that A € CDDy has a multiplicity function (respectively a prime
decomposition) of a unique (i.e. independent of the choice of T) form iff E,,,(A) = 0
(respectively A L, Jpr).

Since ay(n) for finite n consists of bounded N-tuples, Theorem implies that
every N-tuple X whose type I°°, II and III parts vanish admits a decomposition in the
form X = @°° , X™ where each X™ is bounded. So, in the notation of Examples m
every such X belongs to J[cl Q(bd)].

REMARK 5.6.15. Theorem [5.6.14] implies that all measurable spaces with nullities being
ingredients of full coverings are almost isomorphic. One may therefore ask about their
(common) characteristic numbers (% and °. Using the results of the next chapter and
Corollary one may show that both numbers are equal to 2%°. Even more: whenever
(3{, (I)) is a full COVGI‘ng, for ¥ € {%, %, %]1, %[2, ey %]m, .jmf[[, r/152//[[1, e/ﬁbr[]oo, %‘III}
one has 14(%) = 15(#) = 2%o.
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REMARK 5.6.16. There is a striking resemblance between Theorems [.4.2] and [5.6.14]
and between the forms of A(Q2) (where € is an underlying model space) and of &7 (2", ¥)
(where (27, 9) is a full covering). It is not a coincidence. When (27,9, N, ¥) is a full
covering, A = L (2, M, N) is a W*-algebra (since 2 is multi-standard—see the first
paragraph of §1.18 in [29]). Now if Q is the Gelfand spectrum of A, there is a one-to-
one correspondence between clopen subsets of 2 and members of 91 which naturally
correspond to N-tuples X such that X <° T .= J;EBTHEJy where T := EEZE\[G%H U(x).
Since Z(W”(T’)) is isomorphic to Z(W"(J)) (because T < J < T; cf. (PR6), page ,
Q) is therefore homeomorphic to the Gelfand spectrum of Z(W"(J)), that is, Q is an
underlying model space. Further, using results of Chapters [£.4] and [5.6] one may show
that there is a ‘natural’ correspondence, f — f, between A(Q) and &7 (Z") (induced by
the isomorphism between C(Q2) and A) where in &/ (2") we identify functions which are
equal almost everywhere. One may check then that the assignment

A5 fe B Ty o w)

e
is inverse to @t introduced in Theorem Thus «7(%") may be considered as a

‘concrete realization’ of A(£2). With such an approach, the multiplicity function m €
A (Z) (relative to T) of X € SMy corresponds to dX/dT.

THEOREM 5.6.17. Let (27,9, N) be a multi-standard measurable space with nullity.

(1) Let ®: & — pn be such that (2, ®) is a covering and let p: M — CDDy be given
by

wey= B 0@ (o cm). (5.6.25)

Then:

(M1) u(Z) is the direct sum of a minimal N-tuple and a semiminimal one,
(M2) for every o € M, u(f) =0 & o/ € N,
(M3) whenever o/ and B are two measurable disjoint sets, u(o/ U B) = p(</) B

w(#),
(M4) for every A € CDDy such that A <° u(Z") there exists o/ € M for which
w( ) = A.

(IT) For every function p: M — CDDy satisfying conditions (MO)—(M3) there exists a
unique (up to almost everywhere equality) function ®: & — py such that (Z, D)

is a covering and (5.6.25)) is satisfied.

Proof. Point (I) is left to the reader.
Let p be as in (II). Put T = u(2"). Observe that:

(M4) for any o7, B € M, p() <° u(PB) ift o/ \ B €N,

(M5) {u(): o e M} ={AcCDDN: AL T}.

Indeed, (M5) easily follows from (M2) and (M3), because T = u(&) B u(2" \ &) for
every measurable «7. To prove (M4), first of all note that

W) = w(B) = (o \ B)U(B\ o) €N, (5.6.26)
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since, by (M2), () = p(o \ B) B u(d N AB), W(B) = n(PB\ &) B u(ed N AB) and
(again thanks to (M2)) u(/' \ B) L, u(B\ ). These remarks combined with (M1)
give (5.6.26). Now if &/ \ # € N, we infer from that p(2) = p(«/ N PB) and
hence, by (M2), (%) = n(#\ <) B u(«), which yields pu(2?) <* u(A). Conversely, if
the last inequality is satisfied, we conclude from (M5) that there is € € 9 such that
w(®) = w(PB) B u(«). Since then (again by (M2)) u(€ U ) = pu(€) B u(d \ €) =
() Bu(E\ ), w(€) Ly p() and p(F\C) Ly p(6\ ), we get u() = p(/ \ C)
and consequently u(o/ U%) = u(€) B u(/) = u(%). So, yields the assertion
of (M4).

Further, it follows from (MO0) and Proposition that there exists a covering
(27,9, N', ) such that T = F2% 5 (). Put p/: M > o — e, U(z) € EDDy.
It may be inferred from Proposition [5.6.4] Theorem [5.6.5] and Corollary [5.6.6] that con-
ditions (M4) and (M5) as well as are satisfied when p, 91 and N are replaced
by (respectively) p/, 9 and N’. Let M and M’ denote the quotient (abstract) Boolean
o-algebras /N and D' /N’ (respectively). We shall denote the equivalence class in M
(in M) of & € M (of &7 € M) by [N (by []n). (M4), (M5) and for both
i and g/ imply that the rule

T([#]n) = [Bln & w() = p'(B)
well defines an order isomorphism 7: M — M’. Hence whenever 7([«7]n) = [#]n’, then
&/ is standard < % is standard.

Since 7 is an order isomorphism, it is an isomorphism of Boolean o-algebras as well.
Now an application of [27, Corollary 14.4.12] separately for every member of a standard
base of 2" shows that there are sets 2 € N and 27 € N, and a null-isomorphism
o: Z\Z — Z'\Z' such that 7([]n) = [p(F\ Z)]|n for every &7 € M. In particular,
w() = (p( \ Z)) or, equivalently,

we) = F vw - FH wenw

yep(F\Z) reI\ZY
for any & € 9. So, to obtain it suffices to define ®: 2" — py as an arbitrary
extension of W o .

Now assume that ®': 2" — py is another function such that (27, ®’) is a covering
and p(o) = Bﬂgfed ®'(x) for every &7 € 9. Then Bﬂi\;% d(x) = EE]i\FE% ®’(x) and
consequently—by Theorem [5.6.10}—there is an almost null-isomorphism x: 2~ — 2
such that ® = ® o x almost everywhere. It suffices to check that k(z) = x for almost
all z € 2. Take 2 € N such that s[g\ % is a null isomorphism of 2"\ 2 onto its
(measurable) range. For simplicity, for every &/ € 9 put o7 = &/ \ Z. Notice that then

EE|N<1>(x) - HHN(I’(Q:).

T €l zER(S,)
This implies (cf. Proposition [5.6.4)) that (@ \ k(2%)) U (k(#) \ %) € N. Equivalently,
[iln = [k()]w for every o € M. Since 2 is multi-standard, it follows from the
uniqueness in [27, Theorem 14.4.10] that x(z) = = almost everywhere and we are done. m



6. CLASSIFICATION OF IDEALS

6.1. Types of isomorphisms

This is the only part where we will compare ideals of tuples of different lengths (that is,
ideals in CDDy as well as in CDD s with N’ £ N).
We begin with

EXAMPLE 6.1.1. It is known that every properly infinite or type I von Neumann algebra
acting in a separable Hilbert space is singly generated ([38], [28], [I1]). There are also
examples of singly generated type II; factors ([11]). Also tensor products of two singly
generated von Neumann algebras acting in separable Hilbert spaces are singly generated
(|28, Corollary 2.1]). Further, according to [29, Theorem 2.6.6], the W*-tensor product
of a type I, II;, I, or III W*-algebra and L°°([0, 1]) is of the same type. Also, for a
factor M,

ZM & L=([0,1])) = L=([0, 1)), (6.1.1)

by [29, Proposition 2.6.7] or [35, Corollary IV.5.11]. Finally, if T is a bounded operator
and T = (7,...,T) € CDDy, then W(T) = W(T). All this shows that the ideals J7 ,
3%, I and Jg; are nonntrivial. (Indeed, take a singly generated factor M acting in a
separable Hilbert space of a fixed type ¢ and let T be a generator of M®L> ([0, 1]). Then

T = (T,...,T) €%, by (11).)

COROLLARY 6.1.2. Let Q denote the underlying model space for CDDy. Each of the
spaces 2, Qp, Q. (n=1,2,...,00), Qu, Qur,, Q.. and Qr is homeomorphic to the
topological disjoint union of BD(2%0) and B[D(2%0) x X] where D(2%°) is the discrete
space of size 280 and X is the Gelfand spectrum of L*([0,1]).

Proof. By Theorem it suffices to show that x.(E) = 2%° where E denotes any of
the spaces in question. Equivalently (cf. Proposition , this is to say that dim(J(A))
= 2% where A is one of J§ , J§ | JH , JIH To simplify the argument, let (i,k,3) be
one of (I,n,an(n)) (where n € {1,2,...,00}), (II,1,5n5(1)), (II, 00,8y (00)), (I, 00,fn)
and let A = J7 . By Example we know A is nontrivial. Hence (e.g. by Propo-
sition there is A € A N 8EPxn which is either minimal or semiminimal. Now
according to Lemma there is € rgm(py) such that

A= /EE P du(P).

PN
[100]
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There is a measurable domain F on which p is concentrated. Since p is standard, we
may assume that F is a standard Borel space, and that F C 3, by Corollary (c) We
infer from A° = A that p is nonatomic and consequently that F is uncountable. So, F
is Borel isomorphic to [0, 1], which implies that there is a family {A}+cr of probability
nonatomic Borel measures on ¥ which are mutually singular. Since every measure on & is
a regularity measure, Lemma [5.4.10]shows that X, := [5 Pd\,(P) Ly [s PdA(P) = X;
for any distinct real numbers s and t. Finally, again thanks to Corollary Xs €A
(because F C 3 and A, is nonatomic) and X is minimal or semiminimal for every s € R.
Consequently, X := Hj, g X is a minimal or semiminimal member of A as well. This
gives X < J(A) and therefore dim(J(A)) > dim(X) = 2% (since Xy € §EPy for each
seER). =

An important consequence of Corollary [6.1.2] is that the underlying model space for
CDDy and its ‘characteristic’ subsets are independent of N. This will be crucial to our
investigations. Hence, we may briefly speak of an underlying model space.

Everywhere below, A and B denote arbitrary ideals in CDDy and CDDy. (respec-
tively).

DEFINITION 6.1.3. A function ®: A — B is an isomorphism iff ® is a bijection and
(D cgAs) = D,cg P(As) for every collection {As}ses C A (where, of course, S is a
set). An isomorphism ¢: A — B is

e an s-isomorphism iff dim ®(A) = dim A for every A € A,
e a t-isomorphism iff for each A € A the following condition is fulfilled: ®(A) is of type
i* iff so is A, where i* is one of I" (n =1,2,...,00), II'', II> II[*.

Two ideals are isomorphic, s-isomorphic or t-isomorphic if there exists a suitable isomor-
phism between them.

Let i’ be the empty, ‘s’ or ‘t’ prefix. We write A = B iff A and B are i-isomorphic.
Additionally, we write A <* B if A 2 B’ for some ideal B’ C B.

As is easily seen, every t-isomorphism is an s-isomorphism. Therefore:
A B= A B ASB,
ASIB=A<*B=A=<B.

*” is an equivalence relation.

o~

It is also clear that ‘<?’ is transitive, while ¢
The main tool of this part is the following

THEOREM 6.1.4. If &: A — B is a bijection such that
PXpY)=d(X)Do(Y) (6.1.2)
for any X, Y € A, then ® is an isomorphism and ® preserves all notions, features and
operations appearing in (ST1)—(ST17) (pp. [36H37).
The above result is a generalization of Proposition and its proof goes similarly
(see Chapter [4.2)). In particular, for every isomorphism ®: A — B and each A € A one
has: dim ®(A) is uncountable iff so is dim(A), and if this is the case, they are equal. So,

® is an s-isomorphism if ® preserves ‘dim’ for members of SEP (the prefix ‘s’ is from
‘separable’). One may also check that ® preserves atoms, fractals, semiprimes (using
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their definitions and the observation on page [59| after Definition [5.1.4), factor tuples (by
Proposition [5.1.2)) and types I, II and III. Consequently, ®(A?) = B¢ and ®(A°) = Be.

6.2. Classification of ideals up to isomorphism

We shall now define characteristics of ideals which will turn out to be sufficient to deter-
mine whether A 2 B or A <* B.

DEFINITION 6.2.1. For any D € {I,I1,1s,..., I, I, II;, I, IIT} let
XD(A) = card({X: X € x NIp, X <* J(A)}),
X5 (A4) = dim(J(A° 1)) and xp(A) = (xb(A), Xp(A)). Finally, let
X(A) = (xr(A); xmr(A); xam (A)),
Xs(A) = (X7, (A), X3, (A)s - X7 (A),
Xe(A) = (X (A)i X1 (A); -5 Xawe (A); Xy (A); Xire (A))-
When comparing sequences (finite or infinite) of the same length whose entries are
cardinals, ‘<’ will denote the coordinatewise order.
Let © be an underlying model space and let Uy = &1: CDDy — A(Q) be as
in Theorem For E = suppg A we have (under the notation of Definition [6.2.1])
X4 (A) = ka(ENQp) and x5 (A) = k.(ENQp) (cf. Proposition |4.4.5). So, according to
Theorem [5.1.12| (page below ‘=’ means ‘homeomorphic’),
Qp Nsuppg A =2 Qp Nsuppa B < xp(A) = xp(B). (6.2.1)

As an application of Theorem Theorem Corollary and (6.2.1)) we obtain

THEOREM 6.2.2. Let N and N’ be positive integers, and A C CDDy and B C CDD
be ideals.

(I) DDy = CDDN+. What is more, each entry of x(€DDy), of xs(€DDy) as well

as of xt(CDDy) is equal to 2%,

(II) A=B < x(A) =x(B); A< B+ x(A) <x(B).

(III) A =% B & x(A) = x(B) and xs(A) = xs(B); A ° B « x(A) < x(B) and
Yol ) < xa(B).

(IV) A 2 B & x(A) = \(B) and xi(A) = x(B); A < B & x(A) < x(B) and
xt(A) < xi(B).

(V) Up to isomorphism (resp. t-isomorphism), there are only v (resp. 2%°) different
ideals where v = card({a € Card: a < 2%0}).

Proof. The second claim of (I) follows from Corollary and Proposition Since
(V) and the remainder of (I) follow from (IV), it is sufficient to prove (II)-(IV). Since
their proofs are based on the same idea, we only handle (IV).

Since representatives of members of J¢ act in infinite-dimensional Hilbert spaces,
Theorem shows that if ®: A — A’ C B is a t-isomorphism, then necessarily
X(A) = x(A') < x(B) and x¢(A) = xe(A') < x¢(B). Conversely, if x(A) < x(B)
and x:(A) < x:(B) (respectively x(A) = x(B) and x+(A) = x:(B)), then there is an
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ideal A” C B (A’ = B) for which x(A’) = x(A) and x:(A’) = x:(A) (this may be de-
duced e.g. from (6.2.1)); A’ may be defined as J[F] for suitable clopen set F' C supp, B).
Now Theorem combined with implies that there are homeomorphisms
hp: Qp Nsuppg A — Qp Nsuppg A’ where D runs over Iy, Is, . .., Ino, II1, Il o, III. De-
fine a homeomorphism H: suppgp A — suppg B as the unique continuous extension of
the union of all hp’s. Finally let ®: A — B be defined as follows. For A € A put
f=Un(A) € A(). Since supp f C suppg A, the rules g = fo H~! on suppy, B and g = 0
elsewhere well define g € A(Q) such that supp g C suppg, B. We put ®(A) = U1 (g). It is
easily seen that ® is a well defined bijection. What is more, ® satisfies condition ,
by Theorem M(Dél’ ). Consequently, T heorem shows that ® is an isomorphism. It
follows from the construction that ® is in fact a t-isomorphism. m

COROLLARY 6.2.3. If A <* B and B <* A, then A = B.

COROLLARY 6.2.4. CDDy ' J(1) where J(1) C CDD is the ideal of all contraction
operators.

Proof. Thanks to Theorem we may assume that N = 1. Observe that the b-
transform is a t-isomorphism of CDD onto a subideal of J(1). So, the assertion follows

from Corollary [6.2.3] =
COROLLARY 6.2.5. Let U be the ideal of all single unitary operators.

(1) The ideal 37, of all normal N-tuples is t-isomorphic to U.
(2) The ideal 31 of all N-tuples of type I is s-isomorphic to U.

Proof. Observe that all entries of the suitable characteristics of the ideals in question
coincide (and each is either 0 or 2%°) and apply Theorem "

The above corollaries say that whatever can be said about single (unitary) contraction
operators in the language of ‘discrete’ direct sums, this will have its natural counterpart
for arbitrary (type I) N-tuples.

REMARK 6.2.6. Since CDDy =t CDDy+ for any N and N’, we may also speak of spa-
tially i-isomorphic ideals. Precisely, ideals A C CDDy and A" C DDy are spatially
i-isomorphic (as usual, ‘i’ is the empty, ‘s’ or ‘t’ prefix) iff there is an i-isomorphism
d: DDy — CDDps which sends A onto A’. However, this idea brings nothing new.
Indeed, it is quite easy to check that A and A’ are spatially i-isomorphic iff A =° A’
and At = (A’)*. So, we only have to double the length of characteristics. However,
one relevant information may be interesting: up to spatial isomorphism, there are only
card({a € Card: a < 2%0}) different ideals. So, under the continuum hypothesis, this
number is countable.

6.3. Concluding remarks

6.3.1. Finite-dimensional tuples. The results of Chapters [5.445.6] especially Lem-
mas [5.4.9] and [5.6.12] prove that it is good to know how to recognize regularity mea-
sures, especially in finite-dimensional case, since Proposition [5.4.2] simply characterizes



104 6. Classification of ideals

summable fields of N-tuples. The author is not aware of the existence of any result in
this direction. We make

CONJECTURE. Ewvery o-finite (Borel) measure on ay(n) for finite n is concentrated on a
measurable domain.

Below we confirm the conjecture for n = 1. (This is surely well known. However, we
could not find anything about it in the literature.) Let us first make some comments
on consequences of the conjecture. If it is true, then every pair (Z,{P.}zc2) where
(2 ,M,N) is standard and 2" > z — P, € |J,_, ay(n) is a one-to-one Borel function
is a regular system, i.e. P,’s form the prime decomposition of some X € SEPy. Indeed,
the sets 2, = {z € Z: dim(P,) = n} (n = 1,2,...) are measurable and there is a
finite Borel measure p,, on ay(n) such that 2, > ¢ — P, € ay(n) is an almost null-
isomorphism between (£, M| 2, ,N|2,) and (ay(n), B(an(n)),N(un)). Now it follows
from the conjecture that u, € rgm(ay(n)) and consequently {P,}se2, € RGSioc. Put
Xp = Eﬂi\re%n P.(= ffi(n) P du,(P)). We conclude from Corollary |5.6.7| that X,, € Iy, .
So, Xy, Ly Xy, for n # m and therefore p,, L pirn, thanks to Lemmal5.4.10] Now it suffices
to apply Lemma to deduce that {P;},c2 € RGSjoc (and FH,—; X, = EEB;[G% Ps).

The work of Ernest shows that there are standard Borel measures on py NSEPy(c0)
which are not concentrated on measurable domains (see Propositions 1.53 and 3.13 in [9]).

Let us now show that every o-finite Borel measure pu on CV is concentrated on a

measurable domain. Since there is a finite Borel measure v on CV such that p < v,
we may assume g is finite. First assume g is concentrated on a compact set. Put T =
féBN &dp(€). It follows from the Stone-Weierstrass theorem that M; € W(T) for every
f € C(K) where My is multiplication by f. This implies that M, € W(T) for every
u € L*™(u) as well. Consequently, M,, € Z(W(T)) (since W(T') consists of decomposable
operators) and hence ff{du(ﬁ) L, f(?N\Afd,u(f), which shows that T = IEN Edu(f)
and thus p € rgm(CV).

Now if p is arbitrary, there is a sequence (K,,)52 ; of compact pairwise disjoint subsets
of CV such that u(CV\|J,—, K,) = 0. The above argument proves that p|x, € rgm(C")

for every n. Put X,, = | - &du(€). Now we repeat an earlier argument: X,, L, X, for

n # m (by Lemma [5.4.10) and thus g € rgm(C¥), thanks to Lemma

6.3.2. Problem of axiomatization. Theorem|5.6.17] (cf. also Remark [5.6.8) establishes
a one-to-one correspondence between coverings and functions p: 9 — CDD y satisfying
conditions (M0)—(M3) (see Theorem [5.6.17). These conditions are purely ‘discrete’, i.e.
they need no measure-theoretic nor topological background and are formulated in terms
of the direct sum operation for pairs. So, it seems to be interesting (and may turn out to
be relevant) which topological or measure-theoretic notions (operations, features, tools,
etc.) are sufficient to reconstruct from p the covering to which it corresponds.

6.3.3. ‘Continuous’ ideals. Just as we defined continuous direct sums, one may try to
define ‘continuous’ ideals in €DD . This may be done in a few ways. Here we propose
only one of them. Let us call an ideal A C CDDy continuous if A satisfies the following
condition. Whenever (£, 9%, N, ®) is a full covering and A = EE?@EK m(x) © ®(zx) for
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some m € &/ (Z°), then A € A if and only if there is a set 2 € N such that &(z) € A
for every x € s(m) \ Z. Using Theorem one may easily check that it suffices to
verify the above condition for a fixed full covering and only for A € SEP . For example,
J; is a continuous ideal for each i € {I, Iy, I, ..., I, II, I, Il IIT}, while J$¢ and J¢
are not. A p-isomorphism (the ‘p’ refers to ‘prime decomposition’) between continuous
ideals is an isomorphism ¥: A — B such that whenever A = EH?E 2 m(z) ©P, is a prime
decomposition of A € A, a prime decomposition of ¥(A) may be written in the form
EE?IG% m(z) ® ¥(P,), and the same for ¥~!. The following problem may be interesting.

QUESTION. Are CDDy and CDDy: p-isomorphic?

6.3.4. Length of tuples. Our last remark is about the length of tuples. Readers inter-
ested in sequences (that is, countable infinite families) of closed densely defined operators
acting in common Hilbert spaces may verify that most of the results (with no changes
in proofs) of this work remain true also in that case, i.e. for N = co. (However, when
working with uncountable families, a counterpart of crucial Theorem [2:2.4] fails to be
true, which causes the whole theory to break down in that case.) Since infinite sequences
are rarely investigated, we restricted our study to finite collections.
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