Introduction

It is well known that the spaces of homogeneous type introduced by Coifman and Weiss
in [4] include R™, the surface of the unit ball and the n-torus in R™, the C*° compact
Riemannian manifolds, and in particular, the d-sets in R™ as special models. It has been
proved by Triebel in [33] that these d-sets in R™ include various kinds of fractals.

Homogeneous Besov and Triebel-Lizorkin spaces on spaces of homogeneous type have
been studied in [23]. In [20], inhomogeneous Besov and Triebel-Lizorkin spaces on spaces
of homogeneous type were introduced via generalized Littlewood—Paley g-functions when
p,q > 1. In [21], inhomogeneous Triebel-Lizorkin spaces were generalized to the cases
where pp < p < 1 < g < oo via generalized Littlewood—Paley S-functions, where pg is a
positive number. In the case of d-sets, py = 1/2.

The motivation for this paper is to answer a question posed by Triebel in [34]. Let
I' be a compact d-set in R™ with 0 < d < n; see [33] for the definition. Triebel has
introduced the spaces By, (I') for s > 0 by use of two different but equivalent methods,
namely, traces in [33] and quarkonial decompositions in [34]. He asked in [34] if these
spaces B;Q(F) are the same as those defined by regarding I" as a space of homogeneous
type. In [36], we answered this question. Moreover, our methods can be used to intro-
duce new spaces ng(F) with 1l < g <ococand 1 <p<ocoorg=1andp= 1,00,
and new spaces F,, (") with s € (-=1,1), 1 < p < o0 and 1 < ¢ < oo, which cannot
be defined by the trace method or quarkonial method. We point out that the spaces
Bgl(F ) for 1 < p < oo are introduced by quarkonial decompositions; see Definition
9.29(ii) in [34]. One of the main purposes of this paper is to obtain some estimates of
the entropy numbers of compact embeddings between these spaces. To do this, we first
need some frame characterizations for these function spaces. It is well known that the
atomic decomposition characterizations of these spaces are not enough to obtain esti-
mates of the entropy numbers, since atoms depend on functions; see [34]. We will do
this in the setting of general homogeneous type spaces. We have given some applications
of these estimates for entropy numbers to estimates of the eigenvalues of some fractal
differential operators on d-sets in [36] and Riesz potentials on quasi-metric spaces in
[35]. Another main purpose of this paper is to show that the fractional integrals and
derivatives can be used as a lifting tool in these function spaces on homogeneous type
spaces.

We begin with briefly reviewing the definition of spaces of homogeneous type. A
quasi-metric o on a set X is a function g : X x X — [0, 00) satisfying

(i) o(z,y) =0 if and only if z = y.
(i) o(x,y) = o(y, ) for all z,y € X.
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(iii) There exists a constant A € [1,00) such that for all z,y,z € X

o(z,y) < Alo(z, 2) + o(z,y)].

Any quasi-metric defines a topology, for which the balls B(z,r) = {y € X : o(y, )
< r} for all z € X and all > 0 form a basis.

The following spaces of homogeneous type are variants of those introduced by Coif-
man and Weiss in [4]. In what follows, we set diam X = sup{o(z,y) : z,y € X}, and
A ~ B means that there are two constants C; > 0 and C5 > 0 independent of the main
parameters such that C; < A/B < Cj.

DEFINITION 0.1. Let d > 0 and 0 < 6 < 1. A space of homogeneous type (X, 0,1t)a,0 is
a set X together with a quasi-metric p and a nonnegative Borel measure p on X with
supp p = X such that there exists a constant 0 < C' < oo such that for all 0 < r < diam X
and all z,2",y € X,

(0.1) w(B(z,r)) ~r,
(0.2) lo(2,y) — o(z’,y)| < Colw,2")[o(z,y) + o2, y)]" .

REMARK 0.1. It is easy to see that if diam X < oo, then (0.1) holds for all 0 < r < diam X
if and only if it holds for all 0 < r < 1.

REMARK 0.2. From (0.1), it is easy to deduce u({z}) = 0 for all z € X. This means that
spaces of homogeneous type defined by Definition 0.1 are atomless measure spaces.

Macias and Segovia [26] have proved that our spaces (X, g, t)q0 for d = 1 are just
the spaces of homogeneous type in the sense of Coifman and Weiss, whose definitions
only require that p is a quasi-metric without (0.2) and p satisfies the following doubling
condition weaker than (0.1): there is a constant 0 < A’ < oo such that for all z € X and
all r > 0,

(0.3) u(B(w,2r)) < A'p(B(x, 7).

However, in [26], Macias and Segovia have shown that for spaces of homogeneous type in
the sense of Coifman and Weiss, one can replace the original quasi-metric ¢ by another
quasi-metric g, which yields the same topology on X as g, such that there exist C' > 0
and some 6 € (0, 1] satisfying

o(z,y) ~ inf{u(B) : B is a ball containing « and y}

and (0.2) with ¢ and 6 replaced, respectively, by g and f, and that u satisfies (0.1) with
d = 1 for balls corresponding to this new quasi-metric. Moreover, there is a positive
constant Cy such that §(:E,y)1/00 is equivalent to a metric on X x X. It is easy to
see that the set X with this new quasi-metric g, the original measure 2 and the balls
corresponding to the new quasi-metric satisfies (0.1) with d =1 and (0.2).

The above definition of spaces of homogeneous type turns out to be convenient for our
purposes. In fact, (R", p,m)y 1 is just the usual R”, where g is the standard Euclidean
metric and m is the n-dimensional Hausdorff measure, or, equivalently, the n-dimensional
Lebesgue measure. Moreover, it is also easy to see that any bounded d-set I' in R™ with
0<d<mnisjust (I, )41, where g is again the standard Euclidean metric and p is a
Radon measure on I" with supp p = I'; see [33] and [36]. We remark that in some cases,
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the Borel measure p appearing in Definition 0.1 can be proved to be actually a Radon
measure. In fact, in Definition 3.1 of d-sets in [33, p. 5], I" is not necessarily bounded and
the Borel measure g in R™ satisfies (0.1) only for 0 < r < 1. However, Triebel [33] has
shown that this Borel measure is actually a Radon measure by using some results of [27].

In addition, we also point out that the 6 in (0.2) is crucial to us. In fact, the spaces
B;,(X) and Fj,(X) introduced in [20] have the restriction |s| < 6. In particular, when
X = R” for n € N, if we take d = n, u the n-dimensional Hausdorff measure and
o(z,y) = |x — y| for any x,y € R", then we have § = 1 and all the spaces B, (X) and
F;,(X) with [s| < 1; and if we take d = 1, o the n-dimensional Hausdorff measure and
o(z,y) = |z —y|* for any x,y € R", then we have § = 1/n and all the spaces B (X) and
F 5, (X) with [5] < 1/n. In the next section, we will show that B3 (X) = B}*(X) and
F5 . (X) = F}3(X). Note that [5| < 1/n if and only if n|5] < 1. We see that we still obtain
all the spaces B,,(X) and Fj, (X) for all |s| < 1. However, if we choose d = n?, u the
n-dimensional Hausdorff measure and g(z,y) = |z —y|"/" for any z,y € R”, then we have
6 = 1/n and all the spaces qu(X) and ffq(X) with [5] < 1/n. We will also show that in
this case, E;};(XN) = B,,(X) and EZIS(X) = F3 (X)) for |s| < 1/n?. From this, we can see
that if we take d = n?, u the n-dimensional Hausdorff measure and g(x,y) = |z — y|'/"
for any x,y € R"™, then, by our method, we cannot obtain all the spaces B;q(X) and
ng(X) for all |s| < 1. Thus, in any case, by suitably choosing g such that we can take a
maximum corresponding 6 in (0.2), we can obtain more spaces by the procedure in [20];
see also [23]. This reflects the flexibility of the above definition of spaces of homogeneous
type.

Let € > 0. By (0.1), it is easy to deduce that

S o(z, ) 4du(z) ~ r° and S o(z,x) "4 S du(z) ~r=.
B(z,r) X\B(z,r)
In this paper, we assume that the total measure of X can be finite or infinite. But, in
some places, we make the restriction p(X) < oo, which will be explicitly indicated. Also,
we let

LP(X) ={f: X — Cis a p-measurable function and || f||.»x) < oo}

for p € (0, 00, where

1
1Flrco = { § 7@ P dn@)} " forpe 0.00).  fllumo) = esssup @)
X zeX

The organization of this paper is as follows. In the next section, we will recall all the
related theory of spaces of homogeneous type. Most of it is known and will be used in
the later sections. In particular, we will show the independence of the spaces B;Q(X ) and
F;,(X) from the equivalent quasi-metrics satisfying (0.2), and the above two claims. We
will also give a new characterization for B, (X) and F,, (X) in terms of smooth blocks
when s > 0.

In Section 2, we will introduce fractional integrals and derivatives on spaces of homo-
geneous type, which are just the discrete and inhomogeneous versions of the fractional
integrals and derivatives introduced by Gatto, Segovia and Végi in [11]; see [11, Theo-
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rem 1.6]. Such discrete and inhomogeneous fractional integrals and derivatives were also
considered by Nahmod in [28] and [29]. We will show that they can be used as lifting
tools. Using them, we will show that B, (X) and F};, (X) have the lifting properties when
|s| < 0; see also [31] for the lifting property of these spaces on R™. Thus, our results give
a new characterization of these spaces.

In Section 3, we will give explicit representations for the left and right inverses of
fractional integrals and derivatives introduced in Section 2 for pu(X) < co. The left in-
verses and right inverses of fractional integrals and derivatives on spaces of homogeneous
type are not the same, in contrast to the case of Fuclidean spaces. By using these explicit
representations, we show that the fractional integrals and derivatives are independent of
the choices of approximations to the identity. These results are new even when X = R".
If (X)) < 0o, we then establish some basic properties of these left and right inverses. In
particular, we are able to introduce fractional Sobolev spaces for all |s| < g < € and
1(X) < oo, which complete and generalize those fractional Sobolev spaces for pu(X) = oo
introduced by Gatto and Vagi in [12] when s is positive and small; see Theorem 2.1 in
[22] and Theorem 6 in [10]. For Sobolev functions in Fyj,(X) with s > 0 small enough,
1 < p < oo and pu(X) < oo, by using the above fractional derivatives and their left in-
verses, we also obtain some Poincaré-type inequalities. We remark that our results in this
section and Section 2 have homogeneous versions. We will discuss that in another paper.

In Section 4, we will establish frame decomposition characterizations for B;q(X ) and
F;,(X) by using the discrete Calderén reproducing formulae established in [22]. Such
frames are called Banach frames in [13] and [8]. These frame characterizations will play a
key role in estimates of entropy numbers for compact embeddings between these spaces
and they are new even when X = R"™ or X is a d-set in R".

In Section 5, by applying the frame characterizations, we will obtain estimates for
entropy numbers of compact embeddings between B, (X) or F,, (X) when u(X) < oo.
Part of these results is new even when X is a d-set in R™. We also consider some limiting
embeddings between these spaces; see also [17] for homogeneous versions. By considering
the spaces LP(logL),(X) for p € (0,00) and a € R, which were first introduced by
Haroske in [24] in terms of an equivalent norm (see [6, Theorem 2.6.2/1] and its proof),
we then establish some limiting compact embeddings when p(X) < oo and obtain some
estimates of entropy numbers for these embeddings when p(X) < cc.

In metric spaces with doubling Borel measures, the Sobolev spaces of order 1 were
introduced by Hajtasz in [14]; see also [16], [15] and [25]. We recall that if X is a metric
space admitting a Borel regular measure p such that (0.1) holds, then X is called an
Ahlfors d-regular metric measure space; see |25, p. 62]. If X is just a subset of R™, then
X is also called strictly d-regular; see [14]. In all these cases, the € in (0.2) equals 1. In
Section 6, for any Ahlfors d-regular metric measure space, we will establish the connection
between the Sobolev spaces of order 1 defined by Hajlasz in [14] and the spaces defined
by our methods.

Finally, in Section 7, by using Carl’s well known inequality (see [2], [6] and [33]),
which connects spectral properties of compact operators with their geometry described
in terms of entropy numbers, and the estimates of entropy numbers in Section 5, we
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obtain estimates of eigenvalues of some positive-definite self-adjoint operators related
to quadratic forms in L?(X), which is a version of Theorem 25.2 in [33] in spaces of
homogeneous type.

More applications can be found in [35] and [36]; see also [6] and [33].

We now make some conventions. Throughout the paper, if X; and X5 are two Banach
spaces, X1 C X, means that there is a constant C' > 0 such that for all x € X7,

2]l x, < Cll]x,,

where ||z||x is the norm of z in the Banach space X. In what follows, we will use C' to
denote a positive constant which is independent of the main parameters, but may vary
from line to line.

1. Preliminaries

In this section, we consider spaces of homogeneous type (X, o, it)a,0, as defined in Defi-
nition 0.1. Most of these results are well known when d = 1 or when X = R"™ (d = n).
Generalizations to general (X, g, t)q4,9 are obvious. We will omit all the details. Moreover,
we will show the independence of our spaces from the equivalent quasi-metrics satisfying
(0.2), and we prove two claims stated in the introduction. Finally we will also give a
new characterization for the spaces B, (X) and F; (X) in terms of smooth blocks when
5> 0.

Let us first recall the definition of spaces of test functions on X in [23]; see also [18].

DEFINITION 1.1. Fix v > 0 and # > 8 > 0. A function f defined on X is said to be a
test function of type (xo,r,5,7) with g € X and r > 0 if:

@) [f(z)] < O(T—i— g(x,xo))“W;

(@U@%ﬂMSC(Qmw for o(z,y) < == [r+o(z, z0)].

rY

B
r+ o(z, Zo)) (r+ o(x,20)) 47 T 24
If f is a test function of type (zg,r, 3,7), we write f € G(xo,7,3,7), and the norm of f
in G(xo,r,3,7) is defined by

Ilfllg(zo,r,8,y) = inf{C : (i) and (ii) hold}.
Here and in what follows, € is the same as in (0.2).
Now fix z¢p € X and let G(8,7) = G(zo, 1,8,7). It is easy to see that
g(xlaraﬂav) = g(ﬁaf)/)

with equivalent norms for all z; € X and r > 0. Furthermore, it is easy to check that
G(B,7) is a Banach space with respect to the norm in G(83,~). Also, let

Go(o, 7, 3,7) = { 1 € Glwo,.6,7) : | f(@) dp(w) = 0}
X
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and let the dual space (G(53,7v))" be all linear functionals £ from G(3,~) to C with the
property that there exists a finite constant C' > 0 such that for all f € G(3,7),

LN < Cllillg.-

We denote by (h, f) the natural pairing of h € (G(8,v)) and f € G(B8,7). It is easy to
see that f € G(zg,r,3,7) with g € X and r > 0 if and only if f € G(8,). Thus, for all
€ (G(8,7)), (h, f) is well defined for all f € G(xo,r,3,7) with 2o € X and r > 0.
To state the definition of the inhomogeneous Besov and Triebel-Lizorkin spaces
B;,(X) and F, (X) studied in [20], we need the following approximations to the identity
which were first introduced in [18].

DEFINITION 1.2. A sequence {Sk}r>o of linear operators is said to be an approzimation
to the identity if there exist e € (0,6] and 0 < C' < oo such that for all k¥ > 0 and all
xz,2',y,y € X, the kernel Si(x,y) of S is a function from X x X into C satisfying

(i) Sk(z,y) =0if o(x,y) = C27% and ||Sk L (x) < C2%;

(i) [Sk(z,y) — Sk(a’,y)| < C2FE@+e) g(z, 2')%;

(ili) [Sk(z,y) — Sk(z,y’)| < C2MET) oy, )%

(iv) |[Sk(@,y) = Sk(@,y)] = [Sk(a’,y) — Sk(@’,y)]| < C25@H2) o2, 2")F 0(y, y')%;
(v) \ Sk(z,y)duly) = 1;

Sk(z,y) du(z) = 1.

!
)

Here, that Si(x,y) is the kernel of S means that for suitable functions f,

Sif(x) = | S, v)f(y) du(y).

X
REMARK 1.1. The approximation to the identity can be defined in a more general form
as follows. A sequence {Sj}r>o of linear operators is said to be an approzimation to the
identity if there exist 8, € (0,6], e,0 > 0 and 0 < C' < oo such that for all ¥ > 0 and
all x,2',y,y € X, the kernel Si(x,y) of Sg is a function from X X X into C satisfy-
ing

2flce

(27F + o(z,y)) "’

x,x 7 2~ ke
(i) |Sk(z,y) — Sk(a',y)| < C(g—kgi g(.r), y)> (2% + o(x, y))‘”s

(i) [Sk(z,y)| < C

for o(x,2') < —(2 by o(x,y));

2A
g(y, y/) >ﬁ 9—ke
27F +o(z,y) ) (27F + oz, y))*te

(i) |Sk(z,9) — Si(z,9)| < c(

for o(y,/) < 5 (27" + ol v)):
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(iv) |[Sk(z,y) = Sk(x, y)] = [Sk(a’,y) = Sk, /)]

Y 2k:z7
<2 ’“r@a:y) (2 ’“r@a:y) (27F 4 o(x,y))dte
1
< V) <5727+ el w);

SSk:cydu (y) =1,
X

SSkxydu z)=1.

Moreover, as pointed out in [19], in the above, we can take § = ¢ € (0,0], v = ¢’ and
o = ¢ — ¢, where £ can be any positive number less than e. Also, 1/2 can be replaced
by any § € (0,1). See also [5].

REMARK 1.2. By Coifman’s similar construction in [5], one can construct an approxima-
tion to the identity with compact supports as in Definition 1.2 for spaces of homogeneous
type from Definition 0.1. Furthermore, one can show that for such an approximation to
the identity, {Sk}72 o, limg—oo Sk, = I, the identity operator on L?(X), in the strong
operator topology on L?(X); see [5] or [23, p. 11]. By this fact, it is easy to show that
any space of test functions, G(3,v), with 0 < 3, < 6, is a dense subset of L?(X).

The following inhomogeneous Calderén reproducing formulae established in [18] play
an important role in the whole paper.

LEMMA 1.1. Suppose that {Sk}r>0 is an approzimation to the identity as in Definition
1.2. Let Dk = Sy — Sg_1 for k > 1 and Dy = Sy. Then there exist families of linear
operators Dy and Ey for k € NU{0} and a fized large integer N € N such that for
f€G(B1,m) with 0 < B1,m <,

(1.1) = Zﬁka(f) = ZDkEk(f)
k=0 k=0

where the series converge in the norm of G(81,71) for 0 < B < 1 and 0 < 7] < 7.
Moreover, the kernels of the operators Dy, satisfy conditions (i) and (ii) of Remark 1.1
with € replaced by ' for 0 < &' < ¢, and

N - 17 k:o71,...7N7
SDk(x,y) du(y) = SDH%WW@ = {o k>N+1
X X 7 B ,

and the kernels of the operators Ek have the same properties.

REMARK 1.3. By a similar argument to the proof of Theorem 3.9 in [23], one can also
show that (1.1) holds for all f € LP(X) with 1 < p < oo with the series converging in
LP(X). Moreover, G(3,7), with 0 < 3,7 < 0, is a dense subset of LP(X) for 1 < p < 0.

The next lemma was obtained in [18] by a duality argument from Lemma 1.1.

LEMMA 1.2. With the notation of Lemma 1.1, for all f € (G(B1,71))" with 0 < (1,71 < &,
(1.1) holds with the series converging in (G(B1,v1)) fore > 1 > f1 and e > 4] > 7.
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Now, we can introduce the spaces B;, (X) and Fj, (X) via approximations to the
identity; these spaces were first studied in [20].

DEFINITION 1.3. Let € € (0,6], s € (—¢,¢e) and {Sk}3>, be an approximation to the
identity and let Ey, = Sy, — Si_1 for K > 1 and Ey = Sy. The inhomogeneous Besov space
By, (X) for 1 < p,q < oo is the collection of f € (G(8,7))" for max(0, —s) < 3 < ¢ and
0 < v < € such that

0o 1/
1l Bs,x) = { Z[2kSIIEk(f)IILp(x>]q} <.

k=0
The inhomogeneous Triebel-Lizorkin space F;, (X)forl<p<ooandl<qg<ooisthe
collection of f € (G(8,~))’ for max(O —s) < <eand 0 <+ < ¢ such that

1/q
||f\F;q(X>—H{ 2’“|Ek (NI}

Lr(X)

It was proved in [20] that the above definitions are independent of the choices of
approximations to the identity and the pair (5,v) with max(0,—s) < 8 < € and 0 <
v < €. Moreover, by a similar argument, we can show that the above definitions are also
independent of taking equivalent quasi-metrics satisfying (0.2). We say that a quasi-metric
0 is equivalent to another quasi-metric ¢’ if there is a constant C' > 0 such that for all
T,y € X,

C~1' (x,y) < ola,y) < Cd (z,y).

PROPOSITION 1.1. Let ¢ and o' be two equivalent quasi-metrics satisfying (0.2) with 6
and ¢, respectively. Suppose € € (0,0], e’ € (0,6'] and |s| < min(e, ). Let {Sk}72, and
{SL12 be two approximations to the identity with respect to o, € and o', €', respectively,
as in Definition 1.2 (or Remark 1.1). Let {Ej}renuqoy be as in Definition 1.3, Ej =
S, — S,y for k € N and E| = S|. Then there is a constant C > 0 such that for all
Fe€(G(B,7) with 0 < B,y <e, if

oo

1/
{3 1B} < o0
k=0

J{ ez}

for 1 <p,q< o0, or

o
LP(X)
orl <p<ooan < Soo then
for1<p d1<gq ; h
(SR I P’} < Of S 1B o))
k=0 k=0

for 1 <p,q < oo, or
1/q
[{ e e}

forl<p< oo and1<q§oo.
The converses are also true.

<ol e mny
Lr(X) k

k=0

Lr(X)
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Proof. The proofs of these inequalities are similar, and are also similar to the proof of
Lemma 1.3 in [20] and the proof of Proposition 4.1 in [23] by using Lemma 1.2. Let us just
give an outline for the proof of the first inequalities. Let f € (G(3,7)) with 0 < 8,y <e¢
and

{3 R 1B et} < oo
k=0

By Lemma 1.2, there is a family of linear operators Ek and a large NV € N satisfying the
conditions in Lemma 1.2 such that

(1.2) f=> DiEx(f),
k=0

where the series converges in (G(0',") withe > ' > § and € > +' > ~. Moreover, the
kernels of Dy’s satisfy the conditions (i) and (ii) of Remark 1.1 with any o1 € (0,¢):

271@0’1

(27F + o(z,y))*Tor
2—ko’1

27 + o(x, y)) 4+

(1.3) 1Sk(z,y)| < C

(14)  [Sk(z,y) = Sk, y)| < C(z—kg(f’ggig y)) 1(

1
f N < —(27Fk )
or o(z,z') < 2A( + o(z,y))

We now claim that for any oo € (s, min(e,e’)), there is a constant C' > 0 such that

for all k,l e NU{0} and all z,y € X,
2—(k/\l)<72

(27(k/\l)0 + Q(l’, y))d+02 5
where k Al = min(k,1). The proof of (1.5) is completely similar to the proof of (1.6) in
[20] and (3.9) in [18]; see also (2.15) below. For the convenience of the reader, we give the
details by assuming {5}, }72, is an approximation to the identity as in Remark 1.1 with o
and € replaced by ¢’ and &', respectively. We recall that Ej, = S{ and E; = S}, — S},_, for
k € N. For a given o9 € (s, min(g,€")), we choose o1 € (0,¢) satisfying o1 > 03. Suppose
I >k>0.By (1.3), and (i) and (ii) of Remark 1.1, we have

(ELD) @,y = | § Bifa,2)Dilzy) dul=)| = | [ (B (e, 2) = By, )| Dil=,y) du(2)

(1.5) (ELDy)(z,y)| < C2~Ik=loz

< | | B (. 2) — B (x,9) || Diz, )| dps(2)
{z:0"(z,9)< 55 2 F+0' (=)}
+ | | B (2, )| | Du(z, )| dpa(2)
{z:0'(z,9)> 55 2% +0' (z,9))}
- | | B (2, )| Di(z, )| dp(2)
{z:0"(2,9)> 55 2% +¢' (z,9))}
C

o 27lc71
= (2=F + o(z, y))dto2 )S(g(z,y) (271 o(z,y))*tor dp(2)




14 Y. S. Han and D. C. Yang

2o
+ V1B (. 2)] dp(2)
—k d+o
(27F + o(z,y)) 42
27’(70’2 27l(0170'2)

+ 02~k du(z
BT o ) BT g gy )

< 09— (ko2 g ko

27 + o(x,y))*to>
Thus, (1.5) is true in this case. If k > [ > 0, by (1.4) and (i), we can also show (1.5) in a
similar way. The proof of (1.5) for [ = k = 0 is trivial.
From (1.2), (1.5), and the Holder inequality, it follows that for 1 < p < oo and
1<g<oo,

(S I} <o [ 2 ()]}
k=0 k=0 =0
< O 3 [Soat e tentins) " [ ot ectes o ) 1]}
k=0 =0 =0
> /
<] SR B )t}
=0

When g = oo, the proof is trivial.
This finishes the proof of Proposition 1.1.

In [20], the atomic decompositions for these spaces were also given. To state these,
we need the following construction of Christ [3], which provides an analogue of the grid
of Euclidean dyadic cubes on a space of homogeneous type.

LEMMA 1.3. Let (X, 0, 1t)a,0 be a space of homogeneous type. Then there exists a collec-
tion {Q% C X : k e NU{0}, a € My} of open subsets, where My, is some (possibly finite)
index set, and constants § € (0,1), ag > 0 and 0 < C < oo such that

(i) WX\ U, Q%) =0 for each fired k and QN QL =0 if a# f;

(ii) for any «, B,k, 1 with 1 > k, either QIZB C QF or Qlﬁ Nk = 0;

(iii) for each (k,a) and each | < k there is a unique (3 such that QX C Qﬁ;;

(iv) diam(QF) < C6*;

)

(v) each QF contains some ball B(zE, aqd*), where zF € X.

In fact, we can think of QF as being essentially a dyadic cube with diameter roughly
6% and center z£.

The following (dyadic) smooth atoms on a space of homogeneous type were introduced
in [23].

DEFINITION 1.4. Fix § € (0,1) and a collection {Q* € X : k € NU {0}, 7 € My} of open
subsets satisfying the conditions of Lemma 1.3. A function aqr defined on X is said to
be a y-smooth atom for QF if
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(i) suppagr C B(2F 3ACH*);

(i) | agx (@) dp(x) = 0;
X
(1) Jags (@) < p(@4)~12 and Jag(x) — ags (1) < p(@4) /> 4g(a,y)".
A function agr defined on X is said to be a y-smooth block for QF if aqr satisfies
only (i) and (iii) above.

As in the case X = R™ (see [9]), we also define certain inhomogeneous spaces of
sequences indexed by “dyadic cubes” {Q*}, ¢ My, keNufoy = J in X, which will charac-
terize the coefficients in atomic and molecular decompositions of B, (X) and Fy, (X). For
—e<s<eg, 1<p,q< o0, welet by (X) be the collection of all sequences A = {\qg}qes
such that

oo

||/\||b;q(x) = { Z [ Z (N(Qﬁ)_S/d_1/2+1/p|AQﬁ|)p:| q/p}l/q

k=0 7€M,

is finite; and, for —e < s <, 1 <p < oo, 1 < g < oo, let f,,(X) be the collection of all
sequences A = {\g}ges such that

> /
Fa,(X) = H{ > (M(Qf-)fs/dflmp\cgl;|X@f;)q}1 q‘

k=0T1€M)

1A

L (X)

is finite, where xqe is the characteristic function of Q.
We have the following atomic decompositions for B, (X) and Fj, (X), which were
proved in [20].

LEMMA 1.4. Suppose —e < s < €.
(i) If 1 <p,g< o0 and f € By (X)N(G(B,7)) with 0 < B,y < ¢, then there exist a

sequence A = {A\qk fqres € by, (X), e-smooth atoms {agk }reN, rem, and e-smooth blocks
{ago trem, such that

F=2_ 2 Aorags
k=0 1€ M}
with convergence both in the norm of By (X) and in (G(3,7))" when 1 < p,q < oo and
only in (G(B,7)) when 1 < p,q < max(p,q) = oo, and
[Allbs, (x) < CIIS

Similarly, if 1 <p <oo,1<qg< o0 and f € Fy (X)N(G(8,7)) with 0 < B,y <e, then
there exist a sequence X\ = {Aqgrtoreg € fpg(X), e-smooth atoms {aqgk breN, renr, and
g-smooth blocks {aqo }rem, such that

F=0 Agrags

k=0 T€M

B;,(X)-

with convergence both in the norm of F, (X) and in (G(B,7))" when 1 < p,q < co and
only in (G(B,7)) when 1 < p < oo and ¢ = 00, and

[Alls,0x) < ClIS

Fpq(X):
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(ii) Conwversely, suppose
F=2 Agragy
k=0 r€My
in (G(B8,7)) with max(0,—s) < 8 < e and 0 < v < ¢, where ago’s for T € My are
e-smooth blocks and aqr’s for k € N and T € My, are e-smooth atoms. Then
1B, x) < ClIA
1f1lFs,x) < ClIAlgs,x)  for 1 <p<o0,1<q< o0.

bs o (X) fO'f’lSp,ngO,

Characterizations of “smooth molecules” for B, (X) and Fy, (X) are also important
in applications. In fact, we will use them and Lemma 1.4 to obtain the boundedness of
fractional integrals and derivatives in the next section. See [20] for the proof of Lemma
1.5 below.

DEFINITION 1.5. Fix § € (0,1) and a collection {Q* ¢ X : k € NU{0}, 7 € M} of
open subsets as in Lemma 1.3. A function mgqe defined on X is said to be a (8,7)-smooth
molecule for QF if

(i) | mas (@) du(z) =0;
X

(i) Imqe ()] < p(QF)~/2(1 + 07 *o(w, 27)) =7,

(i) [ () — mi(a’)] < mcz’:w/”/dg(x,x')ﬁ{ !

(1467 o(x, 2§))

1
e +5kg<x',z':>>d+v}'
A function mqr defined on X is said to be a (83, y)-smooth unit for Qk if mqr satisfies

only (ii) and (iii) above.

LEMMA 1.5. Suppose {Q’i}keNu{o}, rem, are dyadic cubes in X as in Lemma 1.3 and that
mqo is a (3,7)-smooth unit for QY and T € My and mqx is a (3,7)-smooth molecule
for Q¥ k € N and 7 € M, with max(0,—s) < 3 < ¢ and 0 < v < . Then for

A={Agrtqress

H iZ/\QﬁmQﬁ
k

=0 T
oo

|33 Aasman
k=0 T

In [22], inhomogeneous discrete Calderén reproducing formulae on X were established.
We will use these formulae to establish frame characterizations of B, (X) and Fj, (X) in
Section 5. To state these results, we need more notation. In the following, we will denote
by Q8 v =1,2,...,N(k,7), the set of all cubes fo,"'j C QF, where j is a fixed large
positive integer. Denote by y*¥ a point in Q¥".

< )| Alps —e<s<eandl <p,q< oo,
B (x) = [Allbs, (x) ~ for s<eand1<p,q< oo

< C||A|] #s —e<s<eandl<p<oo,1<g< 0.
Fa(0) = [Allgs,x)  for s an p < 00 q < oo

The following discrete Calderén reproducing formulae are the main results in [22].



Homogeneous type spaces and fractals 17

LEMMA 1.6. Suppose that {Sk}r>0 is an approxzimation to the identity as in Definition
1.2. Let { Dy }penugoy be as in Lemma 1.1. Then there exist families of linear operators Dy,
and E), for k € N, and EQ’” forte My and v=1,...,N(0,7), and a fized large integer
N € N such that for any fized y&v € Q%Y with k € N, 7 € My, and v € {1,...,N(k,7)}
and all f € G(By1,71) with 0 < By, 71 < &,

N(0,7) N(k,T)
(L6) f=> > wl@¥)DY(@)Dyi(f) +Z > > @) Dia,yr") D (f)
7€My v=1 k=1T1eM,; v=1
N(k,T)

+ Z > w@QE) Dy, yE ) Di(f)(E)

k=N+171eM; v=1

N(0,7) B N N(k,T)
= > > w@DI@EX () +Y S ST @)D (@) Ex(f) (yE")
TEMy v=1 k=11eM,; v=1
N (k,T)

E Y Y w@E D) B ),

k=N+11€eM; v=1
where the series converge in the norms of both LP(X), 1 < p < oo, and G(B,71) for
0< By <pBrand0 <~ <v1; DYV (x) fort € My and v =1,...,N(0,7) is a function
satisfying
(i) | DO () du(w) =1,
X

(i1) for any given €' € (0,¢), there is a constant C > 0 such that
~ 1

I Y R

D2 (0)] < O rarsoriare

forallz € X andy €

oz, 2) )6/ 1
L+o(z,y)) (1+o(z,y))Ht

for all x,z € X and all y € Q%Y satisfying o(x, z) < ﬁ(l + o(z,y)); and

EX(f) =\ B2 () f(y) duy)

X

G0 - D<o

forTe My andv =1,...,N(0,7), and E%"(z) satisfies the same conditions as D% (x);
fork=0,1,... . N, 7€ My andv=1,...,N(k, 1),

DY (f) = | DY (9)f () duty),

X
and Dfly(y) is defined by
1
Dy (y) = o~ | Dr(zy)du(z)
! Q) )
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and the function Df;’(x) is defined by
, 1
DY (@) = —— | Di(a,2)du(2),
/’L( 7'7 )Qk,u

Moreover, the kernels of the linear operators ﬁk and E‘k satisfy the same conditions as
in Lemma 1.1.
The following lemma was obtained in [22] by a dual argument.

LEMMA 1.7. With the notation of Lemma 1.6, for all f € (G(B1,71)) with 0 < p1,71 < &,
(1.6) holds with the series converging in (G(B1,7v1)) fore > 81 > (1 and € > ] > 7.

In [20], the following dual spaces of the spaces By (X) and F}, (X) were established.

LEMMA 1.8. Suppose —e < s < €.

(A) (Bpo(X))* = B,o/(X) for 1 < p,qg < oo with 1/p+1/p' =1/q+1/¢" = 1.
More precisely, given g € B,% (X), then Ly(f) = (f.g) defines a linear functional on
G(e',e") N By, (X) with 0 < &' < ¢ such that

1Lg(f) < Clf]

and this linear functional can be extended to By (X) with norm at most C|lg|l 5= (x)-
p’q’

B;q(X)”g”B;,z,(X)v

Conversely, if L is a linear functional on B;q(X), then there exists a unique g €

B2 (X) such that L4(f) = (f,g) defines a linear functional on G(&',€") N By, (X), and

L is the extension of Ly with
l9ll5-,cx) < CIEI-

(B) (Fpo(X))* = F,0(X) for 1 < p,q < oo with 1/p+1/p" =1/q+1/¢ = 1.
More precisely, given g € Fp_/;,(X), then Lq4(f) = (f,g) defines a linear functional on
G(e',e") Ny (X) with 0 < €’ < e such that

1Lg() < Cllf]

and this linear functional can be extended to F (X) with norm at most OHQHFJZ’(X)'

Fs,(X) ”g“Fp_,Z,(X)’

Conversely, if L is a linear functional on F, (X), then there exists a unique g €
FLo(X) such that Lo(f) = (f,g) defines a linear functional on G(&',€') N Fy (X), and
L is the extension of L4 with

l9ll £, x) < CIL]-
r'q

REMARK 1.4. We first remark that by Proposition 3.3 in [20], we know that for 0 <
e <e,G(e,e)N B, (X) and G(¢',¢") N F,(X) are dense, respectively, in By, (X) with
1 <p,q<ocand Fj (X) with 1 < p,q < oo; see also Proposition 4.11 in [23].

REMARK 1.5. We point out that Lemma 1.8(A) in [20] has the restriction min(p, q) > 1.
But, by a similar proof to that of Theorem 7.1 in [23], one can show that Lemma 1.8(A)
holds even when min(p,q) = 1. This is still true for Theorem 7.1 in [23]. Moreover,

let us now define BZQ(X) with —¢ < s < e and 1 < p,q < oo as the completion of
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Uocer<c G(€',€') in B;, (X) endowed with the quasi-norm of By, (X). Then, in the sense
of Lemma 1.8, we have

(1.7) (B5,(X))" = B3 (X)

with p’ and ¢’ as in Lemma 1.8. (1.7) is new only for the case max(p, ¢) = oo in comparison
with Lemma 1.8(A). This fact can be easily proved by combining the argument in [23,
pp. 116-120] with that in [31, p. 180]; see also [30, pp. 121-122]. We omit the details.

We also need the following lemma which can be found in [23, p. 93]; see also [9].
LEMMA 1.9. Let 1 <p < oo, u,n € NU{0} with n < p and for “dyadic cubes” Q¥,
fae (@) < (1+27g(z, 21)) 7,
where z/ is the “center” of QM as in Lemma 1.3 and o > 0 (recall that p(Q*) ~ 27#4).

Then
1/p
H > Aorfor ”)

> Matllfer (@)] < 0207 ">dM(Z|AQu|xQu)< )

where C' is independent of x, u and n, and M is the Hardy—Littlewood mazximal operator
on X.

< CQ(M*ﬂ)dQ*Hd/P( A
Lr(X) Z| Qr

and

The following lemma was established in [22].
LEMMA 1.10. For 1 < p < oo, F})(X) = LP(X) with equivalent norms.

The following trivial properties of the spaces B, (X) and Fy,(X) can be obtained by
combining their definitions with Hélder’s inequality; see Proposition 2 in [31, p. 47]. We
omit the details.

PROPOSITION 1.2. Let —e < s<¢e and —¢ < 81 < s9 < . Then

(i) Bpz,,(X) C By, (X) for 1 <p,q1,q2 < o0;

(il) B4, (X) C B3, (X) for L<p<ooand 1< g <qi < o0;
(iit) Fy2 (X) C F3L (X) for 1 <p < oo and 1 < q1,q2 < 00;

(iv) Fj,,(X) CF; (X)) forl<p<ooand 1<g<q <oo.

Now let us use Lemma 1.4 to show our two claims in the introduction. Let |3] < 1/n.
We first show that B (X) = B (X) for 1 < p,q < oo and F§ (X) = F5(X) for
l1<p<ooand 1l < q < oco. We only show the first equality; the proof of the second is
similar. Obviously, we can take {Q¥ : k € NU{0}, 7 € M}} in Lemma 1.3 corresponding
to d =n and o(z,y) = |z — y| for all z,y € R™ to be the usual dyadic cubes, that is,
Qf ={z eR*:27%; <a; < 27%(r; +1),i = 1,...,n}, where we let 7 € M} = Z".
We then take {Q"F : k € NU {0}, 7 € M,;} in Lemma 1.3 corresponding to d = 1 and
o(x,y) = |x —y|™ for all z,y € R™ to be Q¥ = Q* and M, = M;,. By Lemma 1.4, we

then have - -
F=22 2 Agmagu =3 D Aarags

k=0 7N k=0 T€ My
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and
oo

_ _ /Py 1/
1f 55, x) ~ {Z { > (N(Q¢k>_8—1/2+1/9|)\62k|)P}q P}l P

k=0 TGMT,,;C
0o

X w@y g p] Y i

k=0 T€M;

Bri(X)»

since d = n and d = 1.

Let |s| < 1/n?. Now let us show E;};(X) = B,,(X) for 1 < p,q < oo and f‘;ﬁIS(X) =
Fj,(X) for 1 <p < oo and 1 < g < oco. As above, we only show the first equality. We
now take {Q* : k € NU{0}, 7 € M} in Lemma 1.3 corresponding to d = n* and
o(x,y) = |z — y|*/" for all z,y € R" to be Qk = Q"* and My = M, and we take
{Q™ : k e NU{0}, 7 € M,;,} as those cubes in Lemma 1.3 corresponding to d = 1 and
o(z,y) = |x —y| for all 2,y € R™. By Lemma 1.4, we then have

F=20 2 dasage =2 X Aamagu

k=0, 1, k=0 TEM,},

and

Hf”ﬁg;(X) ~ {i[ Z (QF)=s/n= 1/2+1/p‘)\N % }q/p}l/p

k=0 TEMk

AT S @by ] g o,
k=0

TEMni
since d = n? and d = n.

In fact, by a technical modification of the above proofs, we can prove a more general
result, where the quasi-metric is |z — y|* for any given x > 0 and all z,y € R™, and p is
the n-dimensional Lebesgue measure. In this case, d=n/kand § = kif k < lor 0 =1/k
if Kk > 1. We omit the details.

Finally, we establish a generalization of Lemma 1.4 which will be used in Section 6.
In the following, we say a function agx is a y-smooth block for QF if agr only satisfies (i)
and (iii) in Definition 1.4.

THEOREM 1.1. Suppose 0 < s < €.

(i) If 1<p,g<ooand f € B, (X)N(G(B,7)) with 0 < B,7 <e, then there exist a

sequence A = {Aqr }qreg € by (X) and e-smooth blocks {aqr }reNugoy, rem, Such that

F=20 Agragy

k=0 7€M,
with convergence both in the norm of By (X) and in (G(3,7))" when 1 < p,q < oo and
only in (G(B,7)) when 1 < p,q < max(p,q) = oo, and
[Allbs, (x) < Cllfll s, (x)-
Similarly, if 1 <p < oo, 1< g< o0 and f € F;(X)N(G(B,7)) with0< 3, v <e, then
there exist a sequence A = {Aqk fqreg € fpq(X) and e-smooth blocks {agk }reNugoy, re,
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such that
o0
F=30 D0 Aqrage
k=0 1€ M}

with convergence both in the norm of F, (X) and in (G(B,7))" when 1 < p,q < co and
only in (G(B,7)) when 1 < p < oo and g = oo, and

M 5,0 < Cllf g, (x)-
(ii) Conwversely, suppose
F=3"2" Agrags
k=0 7€M,
in (G(B,7))" with 0 < B, < &, where agr for k € NU{0} are e-smooth blocks. Then

/]
/]

Proof. (i) is just a corollary of Lemma 1.4. To show (ii), let {S;}32, be an approximation
to the identity, By = Sy — Sg_1 for K € N and Ey = Sy. We need to establish that for
k,le NU{0} k<Il, 7€ M, and all z € X,

Bs,(x) < ClAllog,(x)  for 1 <p,q < o0,

Fsx) S ClAl

F2,(X) forl<p<ooandl < q< 0.

(18) [Blagu) (@)] < Cp(Q) /22717091 4+ 2¥g(a, 2L)) (449
and that for £,1 e NU{0}, k >1,7€ M, and all z € X,
(1.9) |Er(ag)(x)] < Cu(QL) /227 F=0e(1 4 2'g(a, 2L)) ~(419),

where C' is independent of k, [, 7 and x.
(1.9) is just (2.10) in [20]; see also (6.16) in [23]. To show (1.8), by Definitions 1.2 and
1.4, we have supp Ex(aq:) C {z € X : o(, 2l) < 4A2027F}. Thus,

|Ek(anT)(l')‘ = ‘ S Ek(xay)aQﬁ (y) dlu’(y) X{IEX:g(r,zﬁ_)§4A202*k}(x)
X

< Cp(QL) 227 RN e ooy <anzco-y ()
< Cp(@L)~1/22-1-M(1 4 2¥ g(z, 21))~(@+),
Thus, (1.8) holds.
Using (1.8), (1.9) and the fact that s > 0, together with an argument similar to [23,
pp. 94-96] or [20], we can prove (ii).
This finishes the proof of Theorem 1.1.

2. Fractional integrals and derivatives

In this section, we work on spaces of homogeneous type, (X, 0, tt)d,9, as defined in Defi-
nition 0.1. We introduce fractional integrals and derivatives by means of approximations
to the identity and then by using atomic and molecular decomposition characterizations,
we establish their invertibility on B, (X) and F,, (X).
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DEFINITION 2.1. Let (X, o, it)q,0 be a space of homogeneous type as in Definition 0.1. Let
{S1}72, be an approximation to the identity as in Definition 1.2 and let B} = S; — S;_1
for I > 1 and Ey = Sp. Let o € R. Then the operator I, for f € G(3,7) with 0 < 3 < 6
and 0 < v is defined by

oo

L(f)(x) =) 27 E(f)(x),

1=0
where x € X.

Obviously, when a > 0, I, is the discrete and inhomogeneous version of the fractional
integrals introduced in [11] and [12]; while when o < 0, I, is the discrete and inhomoge-
neous version of the fractional derivatives introduced there. When o = 0, I, is just the
identity. We also mention that in [28] and [29], Nahmod has considered some discrete and
inhomogeneous fractional integrals and derivatives similar to the above.

THEOREM 2.1. Lete € (0,0, € R, 0> >0, >a+ >0 and v > max(«,0). Then
I, maps G(B,7) continuously into G(8 + a,y — max(a,0)), namely, there is a constant
C > 0 independent of f such that for all f € G(8,7),

1T (F)lg(3+anr—max(a,0) < Cllflgsq-
Proof. Let f € G(8,7v). We have
1) 1E()@)] = | § Bo@,n)f @) duly)|

X

1
<Iflesy | IEo(@y) du(y)
s 1+ , d+ry
(onlom) <C) (1+ o(y,z0))

1
<C ,
S Hf”g(ﬂﬁ) (1+ oz, zo))t7
since 1+ o(z,z0) < A(1+ C)(1 4+ o(y, xo)).
For | € N, we then have

22) BN = By du)| - |
X

Ei(z,y)(f(y) — f(2)) duly)

I fll(s.)
= (1+ o(z, xg))dt+0s

X
| |Bi(z, y)l o, y)” du(y)
{z: o(w,y)<C271}
1
(1 + o(x, xg))d+7+A°

< C27"||fllg(s,)

By (2.1) and (2.2), we obtain

_ = —la 1 - —l(a+p3)
23) L@ = | S B0O)] < Ol lsta gz 222
< Clfllges -

(14 o(w,0))d+7”
since a4 3 > 0.



Homogeneous type spaces and fractals 23

Now, if 4= < o(z,2") < 55(1+ o(, z9)), by (2.2) for | € N, we obtain
(2.4)  a(f)(@)=La(f) @) < [Eo(f)(2) |+Z2 B @)+ B ()]

< | §(Eolw,y) = Eola’ ) () — S(@) du(y)\
X

E ' —l(a+p)
ot 22 {<1 + olwz) T8 (T g(x',a:o»dﬂw}

1fllg(s.7) /
T VUGl + o llty. )7 du(y) |

||f||g (8,7)
(1+ o(x,70))

T L+ o, 7))

a+0
o(x,z') 1
< CHf”g(ﬁ,’Y) (1 + Q(I7.’EQ)> (1 + g(m,mo))d+7—max(a,0)’

since 1 + p(z, o) < 2A(1 + o(2’,20)) and o + 3 > 0, where for the term [ = 0, we used
the fact that o(y,x) < AC + Ap(x,2’) if o(a’,y) < C.

Now, we suppose that there is an [; € N such that

2—l1 , 21—11
m<@(.’1),$>§ 4A2 .

For the terms with [ > [1, by (2.2), we obtain

(25) L)) - |f\22 (B(f) (@) ~ B ) ()]

< ZQ‘la|El(f)(x) )| + Z 27 E(f) ()] + |Ei(f)(")]]
=0

I=l1+1

722 la

Vi) = B 1) = 1) dy)

+ Z 27 Bu(f) ()] + B (f) ()]

I=l1+1

1 l(e—a—0) ()
< CHng(ﬁ,y)(l+Q(m,$0))d+v+ﬁ{ o(z,z") 22 e +llz:12 }
1+

o(x, ')+’

(14 o(m,mp) )4t +8’

< Clfllg.q

since o + 3 € (0, ¢).
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Thus, if o(z,2") < 55 (1 + o(z,20)), by (2.4) and (2.5), we obtain

a+f3
1+ Q(xa -770)) (1 + g(g;, xo))dJr’Yfmax(a,O) :

By (2.3) and (2.6), the proof of Theorem 2.1 is complete.

(2.6) |Ia(f)(x)—fa(f)(fv')|<C||f||g(ﬂ,v>< T 1

REMARK 2.1. We remark that in the proof of Theorem 2.1, only regurality in the first
variable of the kernels of Ej is necessary; this fact will be used in Section 3.

REMARK 2.2. By a similar argument, we can show Theorem 2.1 is still true if I, is
defined by use of approximations to the identity without compact supports as in Re-
mark 1.1.

Let {Ey}renuoy be as in Definition 2.1. We define a new family of linear operators
{EL}renugoy by letting their kernels E}(z,y) be Ey(y,z) for all & € NU {0} and all
z,y € X. For a € R, we define

L(f)(@) =Y 2 " EL(f) ()
k=0

for all test functions f. We now generalize the fractional integrals to the dual spaces by
use of this operator.

DEFINITION 2.2. Let a € (—¢£,¢), 0 < 8 < 60,0 < 8+ a < € and v > max(«,0). We
define I, on (G(6 + o,y — max(«,0)))" by

(Ia(f),0) = ([ Io(0))  for f € (G(B+ a7y — max(a,0))) and ¢ € G(B,7).

We will use the atomic and molecular characterizations of B, (X) and Fj (X) to
establish the boundedness of I, on these spaces.

THEOREM 2.2. Let s,a € (—¢,¢) be such that a + s € (—¢,¢). Then I, maps B, (X)
continuously into B;;ra(X) for 1 <p,q < oo and F, (X) continuously into F;q*a(X) for
l1<p<ooand 1< q< oo, namely, there is a constant C > 0 independent of f such
that

1)l gssecy < Cllfllpe, x)  for all f € Biy(X),
Mol gz < Clflli ) for all £ € F3,(X).

Proof. Let 0 < v < & and max(0, —s — a) < 8 < e. Let {agk }reN renm, be e-smooth
atoms and {aqo }ren, be e-smooth blocks as in Definition 1.4 with § = 1/2. In the rest
of the paper, we suppose § = 1/2; see [23, pp. 96-98] for how to remove this restriction.
For k € NU {0} and 7 € My, we define

mqk () = oker, (agr)(z).

By Lemmas 1.4 and 1.5, we only need to verify that mqr is a (8,~)-smooth molecule for
k k€ Nand 7 € My, and that mqo is a (,7)-smooth unit for Q" and 7 € My. Let us
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begin with the latter. Obviously, we can suppose a # 0. We have

Imqo ()] < |Eo(age)(@)| + Y 27| Ei(age) (v)]
=1
<C+>y 2l
=1

§ B, y) (a0 (2) — ago () du(y)|
X

< c+i 271 | | By, y)|m(@9) 7>/ ol y)* duly) < C+i ek

=1 X =1

since v > —e. Noting that suppmgo C {z € X : o(z,2?) < 4A2C}, we have
(2.7) [mao ()] < Cr(Q9) 1 2(1+ ola, 27)) .

Now we claim that there are § and «y satisfying 0 < v < € and max(0, —s—a) < f < ¢
such that

(2.8)  |mqo(x) — mqo(2)|

0y—1/2—-8/d ne ! :
= Cn(@r) ol ) { L+ o, 20)7 (T + olal, 20))77 }

We consider three cases.
Case 1: o(z,x") > 6AC. In this case, since mgo satisfies (2.7), we have

/ —1/2 1 1
Mo (2) — mao ()] < Cu(Q2)~Y {(1 oz )T T g(xf,zg))dﬂ}

0\—1/2—-8/d AYe) 1 .
< COu(@7) ofw, ') { 0+ 0@, )77 (L + ola, 20))75 }

Thus, (2.8) holds in this case.
Case 2: o(z,7") < 6A%2C and o(z,22) > 12A3C. In this case, it is easy to see that

o(z',2%) > 6A%C.
Thus, mgo (7) = mqo(z') = 0 and (2.8) holds.
Case 3: o(z,7") < 6A%2C and o(z,29) < 1243C. In this case, we also have
o(2',2%) < 184%C.
We further suppose that there is an [; € N such that
6420271 < p(x,2') < 6420270 FL,
We then write

Imas (2) = mao (@) = | D27 (Bulage)(@) — Eulage) (@)
=0
5
< |Eo(age)(@) = Bolage)(@)] +| Y- 27 (Ei(age) (@) — Eulage) (@)
=1

+ Y 27" (|Ei(ago)(@)] + | Eilage)(a")))
I=l1+1
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< | (Bolw,y) — Eola’,y))ags (v) du(y)
X
(Bi(w,y) — B’ 9)) (ago (v) — ago («)) du(y)|

l
+ZI:2*“1

=1 X
+ Z 27loz|:

| B, y) (g0 () — aqo (@) du(y)|

1=l +1 X
+ ‘ S E(z',y)(ago(y) — agoe(z)) du(y)H
X

11 oo
< Co(z,2")* + Co(z,2')® Z 27l 4 Z g~ late)
=1 I=l;+1
Co(z,z')®, a >0,
<
- {Cg(a:,x’)ﬁa, —e<a<0.
Thus, if we take 8 =¢ for a > 0 and f = e+ a for —¢ < a < 0, then (2.8) also holds in
this case.
From (2.7) and (2.8), we deduce that mgo is a (3, ~)-smooth unit for QY and 7 € M,
multiplied with a normalizing constant.
Let k € Nand 7 € Mj. We intend to show that there are 3 and - satisfying 0 < v < ¢
and max(0, —s — a) < (# < € such that mqe is a (3,7)-smooth molecule for Qk. We first
write

) k 00
maqk (z) = ZQ(k—l)aEl(aQﬁ)(m) — ZQ(k—l)aEl(aQﬁ)(m) + Z .=G1+G,.
=0 =0 I=k+1

For 0 < < k, we have

|Bilag)(@)] = | § Eu@,v)aqx (4) di(y) X (o ot o) can2051 (0)
X

= ‘ S (El(x7 y) - El($7 Z-{f))aQﬁ (y) d/,l/(y)‘X{m Q(I,Z§)§4A202*l}(x)
X
< Ou(QF) 12 (1 4 2F p(w, 2F)) () gk=D(r—e)

From this, it follows that

k
|G| < Cu(QF) 1 2(1 + 25w, 25)) ~ (1) Y " gthmhi=ete)
1=0
< Cp(@) ™2 (1 + 2% o(w, 25)) 4,
if we choose v < ¢ — a.
For k+1 <[ < oo, we have

|Bi(age)(@)| = | § Eu(a, y)ags () din(w) X o oo sy 2412004 (2)

X

- ’ | Ev(z,)(age (1) — age (:c))dﬂ(y)‘x{x;g(w,zzﬁ)gﬂcg_k}(@
X

< Cu(QF) V2 (1 + 2k (a, 2k)) (M ok=De,
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From this, it follows that

|Ga| < Cu(QF) 71 2(1 + 28w, 2K)) () Y~ alk=hiete)
l=k+1
< Cp(@F) 21+ 2% g(w, 7))~
since € + a > 0. Thus, we have
(2.9) Imae(@)] < C(Q7) ™21+ 2% 0(w, 27) 7.

Now we claim that there are 5 and + satisfying 0 < v < € and max(0,—s—a) < f < &
such that

(2:10) [ mgx () — mau(a')] < C(QE) >~y a')’

)

1 1
: { (L + 20l )7 T (T4 25 g(al, )7 }
To do this, we consider two cases.
Case 1: o(z,7") > 6A%2C27%. In this case, by (2.9), it is easy to obtain (2.10).
Case 2: o(z,7") < 6A2C27F. In this case, we write

oo

maqe (x) — mae (@) < > 207D Ey(age) () — Ei(age)(a)]
=0
k 00
= > 207D Ey(age)(x) — Ei(age) (@) + Y ... =Hi + H,.
=0 l=k+1
Then, for Hy, we have
k
Hy =Y 2070 Ey(age)(x) — Eilagy)(a)]
=0

X [X{a: o(z, zk)<4A2C2*l}(x) + X{z': g(az’,z’j)gélA?CQ*l}(x/)]

Z2<k Vel ([Bu(z,y) — BEu@,y)] — [Bu(x, 2%) — By(2/, 28)])agx (y) du(y)
=0 X

[ {m o(w,zk)<4A2C2- l}( ) + X{x’:g(r’,z§)§4A202*l}(x/)]

C[Z Q(k—l)(a+’y—2€)] W(QF)~Y2P/d (g, )P

1 1
§ {<1 ) A G 2k9<x,,2¢)w}

1 1
k\—1/2—3/d "B
< Ou(@b) ol ) {u T gz, )T (L4 Pl 2K }

since a 4+ v — 2e < 0.
For Hs, if o(x,z¥) > 1243C27% we have o(2/,2F) > 642027 since o(z,2') <

6A2C27%. Thus, in this case, Hy = 0. Now we suppose that o(z,z*) < 1243C27% and
there is an [; € N such that

64202~ ) < p(z,2") < 64202~ k+a—D),
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We then write

k414 [e%e]
Hy= Y 20799 E(agr)(2) - Eiage) (@) + Y
I=kt1 1=Kty +1
k+1q
= > 20700 {[Bu(a,y) - B’ w)llags (v) — ags (2)] du(y)
l=k+1 X
+ > 20| § B y)lage(y) — ags (2)] du(y)|
I=k+11+1 X
+ | § B’ y)lagx (v) — aqe(a)] duuty)|
X
k-‘rll oo
SCM(QI;)A/%e/d{Q(x’x/)E Z kDo Z 2(1«71)%15}
farar I=ktly+1
< Cu(QR)=1/2=¢ldp(x, 2)e, a >0,
> CM(Qi)—l/Z—(E-i-a)/dQ(I’x/)a—i—a’ a < 0.

Thus, if we choose 8 = ¢ for @ > 0 and § = ¢ + a for a < 0, then (2.10) also holds in
this case.

By (2.9) and (2.10), we know that mqs is a (8,7)-smooth molecule for Q%, k € N
and 7 € My, multiplied with a normalizing constant.

The proof of Theorem 2.2 is finished.

The converse of Theorem 2.2 is also true, that is, By, (X) and F}, (X) have the lifting
properties by using I, as a lifting tool; see [31].
THEOREM 2.3. Let s,a € (—¢,¢&) be such that o+ s € (—¢,¢e). Let o < s + € when

$ <0 and a > s —¢e when s > 0. Then there exists ag(s) € (0,¢) and a constant C > 0
independent of f such that if —ap(s) < a < ap(s), then

135,00 < CMalP) gy for 1 <pa < oo,

1, 000 < CIE(F)]

The key point to show Theorem 2.3 is to prove the invertibility of IoI_, on B, (X)
and F}j, (X). To do this, we will use a similar idea to that used in [18] to establish
inhomogeneous Calderén reproducing formulae on spaces of homogeneous type. Let I be

the identity operator on B, (X) or F; (X) and let E; = 0 for [ < 0. For any given N € N,
we write

o0 o0
(211)  IT—IJ o= Z Z (1 —2')EyEpys + Z Z (1 —2'*)EyEpy = Tn + Ru.
k=0 |I|<N k=0 |l|>N

Fifo(x) forl<p<ooandl < qg< .

We will show that if N is sufficiently large and if |a| is small enough, then the operators
T and Ry are bounded on By, (X) and Fy, (X) with small operator norms. To do that,
we need some properties of the operators EjEj ;. In what follows, we denote the kernels
of the operators EyFEjy; just by (ExEg4i)(z,y) for z,y € X. All the estimates in the
following lemma are special cases of (3.9)—(3.12) in [18]. Moreover, estimates similar to
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those in Lemma 2.1 still hold if {Sx}22, and {S;}?2, are two approximations to the
identity as in Remark 1.1 with kernels not having compact supports; see [18]. But, for
completeness, we will give a proof of the following lemma. Recall that for a,b € R, we
denote the minimum of a and b by a A b.

LEMMA 2.1. Let {Sp}32, and {gk}gozo be two approximations to the identity as in Def-
inition 1.2. Let Ey, = S, — Si_1 and Ek = §k — §k,1 for k € N, Eqg = S, Eo = go,
and Ey =0 = E; forl € Z\ (NU{0}). Then (EyEx1)(x,y), the kernels of the operators
EkEkH, have the following basic properties:

(212)  supp(ExEry) C {(z,y) € X x X : o(z,y) < AC27*} for k,1 > 0;

(213)  supp(ExEry) C {(z,y) € X x X : o(z,y) < AC27F1} for k > 0,1 < 0 and
k+1>0;

214)  § (BuBrp)(z,y)du(z) = 0 = § (ExEyp)(z,y) duly) for I # 0, k > 0 and
k+1>0, and forl =0 and k > 0.

Moreover, for any given o € (0,1), there exists a constant C' > 0 such that for k > 0,
leNandk+12>0,

(215)  [(BxBy 1) (w,y)| < C27Megniring,
(2.16)  [(BxErst)(@,y) — (BxBrir) (@, y)| < C27 175 gy, 3 ) =22 bAGHD) (1 =0)s),
(217)  |(ExExrd)(z,y) — (BxEry) (@, y)| < 0271178 g, oy L= (RAGAD) (d+ (1~ 0)6)
(2.18)  |[(ExEryi)(z,y) — (ExEry)(z,y')] — [(EkEkH)( y) — (EkEk+l)(£U )]

< 027”‘0’60('1:, z )(1 U)Eg(y’ y )(1 0)52(16/\(k+l))(d+2(170)5).

Proof. (2.12)—(2.14) are obvious. Without loss of generality, we suppose [ > 0 in the
following. Let us first show (2.15). We write

(BrBrin) (@,9)|=| | B, 2) Boni(2,9) du(2)| = | | [Bulw, 2) = B, )] Bz, y) di2)
X X

<C2kldte) S 0(2,9)° | Exya(z, )| du(z) < C271528,
X
This is (2.15).
To show (2.16), we first note that if o(y,y’) < 3AC2~F+D and o(z,y') < C2-F+D,
then o(z,y) < 4A2C2~*+D and

(219)  [(BeBusn) @)~ (BeBren) @ y')| = | § Bl 2) Broa(z,9) = Busa(z,9')) du(2)
X

= |V [Bu(e,2) = Bu(a p)Brn(z9) = Brna(z9)] du(2)|
X

< Co(y,y') 2k dre)gtrhdte) | o(y, 2)° du(z)
{z: 0(z,y)<4A2C2~ (k+D)}

< Co(y,y')2kd+e).

Note that if o(y,y’) > 3AC2~*+1 and either o(z,y) < C2~*+D or o(2,y') < C2~k+D
then o(z,9/) < C2=*+D or o(z,y) < C2-*+D | respectively. From this, it is easy to
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deduce that if o(y,y’) > 3AC2~*+D_ then

(220)  [(BxExy1)(@,y) — (BiBryr) (@, y))]
= | §1Bw (@, 2) = Bu(aw, )] B (2,9) du(z) = §[Br(@, 2) = Ex(a, g | Brsa(z,y) du(2)|

X X
=| | (B2 — B y)lBrn(zy) - Brnalzy)] du2)
{z: 0(z,9)<C2=(k+D}
- | [B(w,2) ~ Br(a,y NBrri(z,y) — Brsalzy) du(2)|

{zi0(z,y)<C2- (D}
< Og(y, y/)EQk(d*‘rE).
For any o € (0, 1), by the geometric mean of (2.15), (2.19) and (2.20), we obviously have
(B Ert)(@,y) — (BrBrii) (@, y)|
= |(BxEy ) (@, y) — (ExEr10) (2, 9) 7| (B By ) (@, y) — (BxEgy0)(2,9)] 7
< 271192 (3 Y 1= BAGD) (A1 =)o),

Thus (2.16) holds. The proof of (2.17) is similar.
We now show (2.18). Similarly to (2.19), we find that if o(y,y’) < 3AC2~*+V then

(2.21) H(EkEkH)(l“,y) — (ExEr)(@,9)] — [(ExEre) (@, y) — (ExEr) (@', )]

S
X
V{(Br(w,2) = Br(a', 2)] = [Bi(z,) = Ex(@',9)}Erii(2,9) = Bra(z,y)] dp(2)
X

< CQ(.’E’ x/)eg(y’ y/)azk(d+2a)2(k+l)(d+a) S Q(y7 Z)E d,u(z)
{z: 0(2,y)<4A2C2-(k+D}

< CQ(.’E, x’)ag(y, y/)EQk(dJrZs)'
If o(y,y') > 3AC2~++0 then similarly to (2.20), we have

(222)  [[(EeBio) (@) — (BxBrd)(w,9')] = [(BeBr) (@) - (BeBie) @3]
<| J{1B(@,2) - Bula', 2] - [Bule,y) = Bula’, )]} Brsa(,9) da(2)|
X

+| 4Bk, 2) = Bua', )] = [Bu(e, ) = Bul@!, o ) Bz, 9')] dp(2)|
X

<| { {[Br(a,2) = (@', 2)] = [B(w,y) - Bi(@',p)]}
{2zt 0(z,y)<C2=(k+D}

X [EkJrl(Z, y) — Ek+l(27 y/)} dﬂ(z)
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' ‘ S {[Br(z,2) — Br(2', 2)]
{21 0(z,y)<C2- (D}

— [B(2,y") — Er(2', ¢ )} Ers1(2,y) — Ersa(2,9)] du(z)

< CQ(Z’, x’)fg(y, y/)52k(d+25).

Now, by the geometric mean of (2.15), (2.21) and (2.22), we obtain (2.18).
This finishes the proof of Lemma 2.1.

Proof of Theorem 2.3. As pointed out above, we need to show that the operators T
and Ry are bounded in B, (X) and F, (X) with small operator norms when N is large
enough and s is small enough. We do this by using Lemmas 1.4 and 1.5. Let us first
consider Ry. Let 0 < v < ¢ and max(0, —s) < 8 < ¢ and {aqk }reN,ren, be e-smooth
atoms and {aqgo },en, be e-smooth blocks as in Definition 1.4 with 6 = 1/2. For 7 € Mo,
we verify that

v(ago)( Z > (1-2")EpEra(ago)(x)

k=0 |I|>N, k+1>0

is a (3,7)-smooth unit for Q%, multiplied with a small normalizing constant, when N is
large enough. We write

R (ago)( Z > (1 =2"EpEplag) (@)

k=01l|>N, k+1>0

(XXX X )0-2EBueg) (@)
k=01>N k=0I<—N,k+I>0

=Ji + Jo.

For Ji, by (2.14), (2.15) and (2.12), we have

= | 30 300 = 2) [ (BB w,5) 002 1) — agn (@) duy)

k=0I>N X
oo
< OZ Z(l + 2la)2—l52—ks < 02_61\[,
k=0I>N

where C' is independent of N and § = min(e,e — a). Moreover, since supp J; C {z € X :
o(z,20) < 4A%C}, we have |J;| < C27N pu(Q9)~1/2(1 + o(x, 22))~(4+7),
For J, by (2.14), (2.15) and (2.13), we have

l=]30 > (=2 (BB (@, v)(age () — ago (@) diuly)

k=01<—N, k+1>0 X
§ Cz Z (1 + 2la)2l527(k+l)5 S CQ*(SN’
k=01<—N, k+1>0

where C is independent of N and § = min(e, e + a). Since supp Jo C {z € X : o(z, 20) <
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4A%CY}, we have
| Ja] < 27N (@) 72 (1 + oz, 22)) .

Thus, if we choose § = min(e + a, & — ), then
(2.23) | R (ago)(@)] < C27Nu(@Q9) 72 (1 + o, 29)) = ).

Now we claim that there are § > 0 independent of N, and § and + satisfying 0 < v < ¢
and max(0, —s) < # < e such that

(2.24)  |Rn(aqgo)(z) — Rn(ago) (=)l
1 1
< 099N ,,(O0)-1/2-B/d N .
= C2 Q) T T gy T T el )
Similarly to the proof of (2.8), we also have three cases.
Case 1: o(z,2") > 6A%C. In this case, (2.24) can be deduced easily by (2.23).
Case 2: o(z,2") < 6A2C and o(z, 20) > 12A3C. In this case, it is easy to see that
o(x',22) > 6A2C. Thus, Ry (ago)(x) = Ry (ago)(x’) = 0 and (2.24) holds.
Case 3: o(z,2') < 6A2C and o(x, 22) < 12A3C. In this case, we also have g(2’, 22) <
18A44C. We further suppose that there is an I; € N such that

6A2C270 < g(x,2") < 6A2C27 0L,

We then write
|Rn(ago)(x) — Ry(ago)(z")|

=13 Y (- 2)BB(agy) (@) — ExBisilagy)()]|

k=0 |I|>N, k+1>0

< CZ Z(l + 2| ErEpyi(ago)(x) — ExEpyi(ago)(2))] + Z Z

k=01>N k=01<—N, k+1>0
=K + Ks.
By (2.14) (2.17) and (2.12), we have

K1<C’ZZ 142

k=0I>N

DI N TS Hg (BiBi) (@) (agy (1) — age (2) du(y)|

k=lL1+1I>N

+ | J (BB @ y) (age () — age () duy) |
X

VBB 1)(9) = (BuBin) o )09 ) — agy() au(y)|

Iy oo
< CQ(LL‘, x/)(l—o‘)s Z Z(l + 2la)2—l052—k05 +C Z Z(l + 2la>2—l52—ks
k=01>N k=l +11>N
< 0275N9(m7x/)(170)5

)

where we choose o € (0,1) such that (1 — o)e > max(0,s), oe > o and § = g€ — .
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For Ks, by (2.14), (2.17) and (2.13), we have
Ky <C Y > (142

I<—N 0<k<ly—1,k+1>0

x| $IBB)0,0) = (B o ) aag ) — () du(y)|

+ Z > a+29 HS(EkEHl)(x,y)(an(y)—aQ9<x>>du<y>\

I<—Nl1—I<k

+ | § (BB (@ ) (ago (v) — agy (+') du(y)|
X
111
< Cg(xvl,/)(lfo)a Z (2l(0’6+(1*0’)6711) + 2l(0€+a+(170)€71/)) Z Qk((lfo)afz/)

I<—N k=0
+C Z (1+2la)2l6 Z 2—(k+l)€
I<—N k=l1—1+1

< 02_5NQ($,(L‘/)(1_0)6,

where we choose o € (0,1) and v € (0, ¢) such that (1 —o)e > max(0,s), (1 —o)e <v <
min(e, e + «) and 6 = min(e — v,& + a — v). Here we used the fact that

lago (y) — ago ()] < Coly,2")".
This can be easily proved by the definition of the blocks.
Thus, (2.24) holds. From (2.23) and (2.24), we see that Ry(ago) is a (3, 7)-smooth
unit for Q2, multiplied with a normalizing constant which can be estimated from above

by C27%N for some § > 0, where max(0, —s) < 8 <¢, 0 <7 < ¢, and C is independent
of N.

Now, we intend to show that for the above § and -, RN(aQJT-) with j € Nand 7 € M;
is a (0, ~)-smooth molecule for @7, multiplied with a normalizing constant which can be
estimated from above by C27%N for some § > 0. Obviously, we have

(2.25) | Rv(ag)) (@) du(x) =0.
X

To establish an estimate for Ry (ag; ), similar to (2.23), we first estimate

L= ’ >SS a- 2[“)EkEk+l(aQJT-)(x)‘

k=0I>N

J
< Z Z(l + 2la)|EkEk+l(aQZ)(x)|X{z: g(r,zi)§4A2C2*k}(I>
k=0I>N

+ Z Z(l-l-2la)|EkEk+l(aQ1)($)‘X{m;Q(LZ;')SA;AZCQ—J'}(QC)
k=j+11>N

V(BB ) (2,y) — (BB (2, 2)ags (v) diu(y)
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x X{w o(w, 51 )<aa202-11 (T)

+ Z S +2) S (BiEreri) (@, y)ags (y) — ags (x)] du(y)
k=j+11>N

x X{z:g(z,z$)§4A2C2*1}(x)
J
< Cu(Qi)71/2(1 + 2jg(x’ Zz))f(d+"/){ Z Z(l + Qla)27l06+(k7j)((170)577)
k=01>N

4 Z Z(l 4 2[a)2716+(j7k)5}
k=j+11>N
< C27°Nu(Q1) A1 + Y o(, 1)),
where we choose ¢ € (0, 1) such that (1 —o)e >y >0, oe > o and § = min(oe, 0e — ).

Here we used the condition that o < s +¢if s < 0.
We also write

- ‘ oY -2"EE(ag) (@)

k=01<—N,k+1>0

Z Z (1 +2la)‘EkEk+l(aQi)(x)|X{x;Q(x7zg)§4Azc2—k—l}($)

I<—NO0<k<j—1l,k+1>0

+ Z Z 1+2l |EkEk+l(aQ1)(x)|X{x;g(gg,zl)gzlAQCQ—j}(x)
I<—N k=j—l+1

S0 42| (BB @,y) — (BB (@, 2)agy (v) duy)|

I<—N0<k<j—L,k+1>0 X

IN

X X{z o(z, 21)<4A2C2*k*l}(x)

Y W2 (BB 0)ogs ) - agy @) duty)

I<—Nk=j—1+1 X

x X{x:g(x,z1)§4A202*j}(x)

< CM(Q1)71/2(1 + 2jg(x,zj —(d+~) { Z Z (1+ 2[0{)2[0’64’(/@7]‘4’”((170)677)
1<—N0<k<j—1, k+1>0

" Z Z (1 + 2lo)2le= (k+lfj)e}

I<—Nk=j—1+1
< C27Np(Q1) MR (1 4+ 2 p(, 20)) 4,

where we choose o € (0,1) such that o > —a, (1—0)e >y > 0 and § = min(oe, oe + ).
Thus, we can choose € > v > 0 and ¢ > 0 such that

(2.26) R (ag;) (@) < C27N (@) ™2 (1 + 2 o(x, 23)) 7).

Now let us show that there are 4 > 0 independent of N, and 8 and 7 satisfying
0 < v < ¢ and max(0, —s) < 8 < € such that
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(2.27)  |Rn(agy)(x) — Ry(ags)(z')]

_§N j\—1/2—3/d s ! 1 }
=02 uQr) ol ) {(1+2ﬂp( ) (Lt 2ig(al, )

We have two cases.
Case 1: o(z,2") > 6A2C277. In this case, we can easily obtain (2.27) by (2.26).
Case 2: o(x,7") < 6A2C277. In this case, we write

|Rn(ags) (@) — Bn(ag ) (@)

=3 Y -2 EBilagy) @) - ErFrilags) @)

k=0 |I|>N, k+1>0

<D (142 EpBrpilag ) (@) — ExBrilag) @)+ Y Y
k=0I>N I<—N 0<k,0<k+I
=01 + O,.

For Oy, we further decompose it into

=Y > (1+2")ExErpi(ag) (@) — ExEyyi(ag; ) (2)]

k=01>N

= Z Z +2'%)|ExBrqi(ag; ) () — ExEryiags ) ()| + Z Z e
k=0I>N k=j+1I>N

=01 +Of.

For O}, we have
J
O1 => > (142')|ExEryi(ag ) () — ExEryi(ag (@)
k=01>N
x [X{z o(z, z.J,;)<4A2C2_k}(x) + X{w': g(z’,zi)§4AZC2_k}('r/)}

:ZZ (14 2')

k=0I>N

S {(BxBr11)(z,y) — (ExEra) (2, y)]

(BeBsd) (@, #) — (Beesn) (o', 2] }agy (v) diy)
x [X{z g(w,zﬁ;)gélA?CQ*k}(x) + X{w': g(z’,zi)§4AZC2*k}('r/)}

i\—1/2 N(l—o)e 1 ! }
< Ou(@7)" ol ') {(1+2J‘g(x,zi))d+7 0 gl )

J
« Z Z(l + 2[&)2710’64’]‘(’}/7(170)6)4’]@(2(170)67’}/)
k=01>N
< 02—N5 (Q]) 1/2—(1— o)s/dQ(x7x/)(1—o)s{ 1 + 1 }
- (L+ o, ) (1+ (e, )+
where we choose o € (0, 1) such that oe > a, 0 < v < 2(1 —0)e and § = min(oe, oe — ).
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Now, if g(z,27) > 12430277, then we also have g(z',22) > 6A2C277. Thus, in this
case, we have O% = 0 and (2.27) holds. Now we suppose that o(x,z) < 1243C277 and
there is a j; € N such that

64202701 < p(z, ") < 642027 0D,
We now write
J+i1

07 < > D (1+2")ExEryilag ) (@) — BxErqalags ) (2)]
k=j+11>N

+ Y Y (12 (|BkErilag: ) (@)| + [BxEri(ags ) (@)
k=j+j1+1I>N
J+i1

> @42

k=j+11>N

b S 2| (BB lagy ) — agy ()] du)
X

k=j+j1+1I1>N

S (ErErr) (2, y) — (ExEr) (@ 9)]lags (y) — ags (x)] duly)

+ | J BB @ plag (9) = ag, @) du(y)]|

X
‘ Jjti
< CM(Q1)71/275/d{Q(1,’x/)(lfo)s Z Z(l + 2la)2flae+k((lfo)sfa)
k=j+1I>N

+ i Z(]‘ + 2lo¢)2flefka}

k=j+j1+1I>N
< CQf(SNM(QZ_)71/27(170)5/d9(x’ 1,/)(170)5

b

where we choose o € (0, 1) such that oe >, (1—0)e>max(0, —s) and § =min(oe, ce—a).
We now estimate O,. We first have

Or= > > (1+2*)|EEryiag ) () — ExEryilag (@)

I<—N 0<k,0<k-+l

YooY (A 2EErulagy) (@) - ExEralag) @)+ > D -

I<—N 0<k<j—1,0<k+l I<—Nj—l<k
1 2
=05 + 03.

The estimate for O3 is similar to that for Of. In fact, we have

= Y a2 HEEw) (@, y) — (BB (@, y)]

I<—N 0<k<j—1,0<k+l X

— [(BxEpy1) (2, 22) — (BxEyya) (@', 23)]Yags (y) duly)

x [X{az g(az,zl)§4A2C2*k*l}($> + X{a:’: g(z/,zl)§4A202*k*l}(x/)]

i\ — —(1-0o —o 1
SC,U/(QZ—) 1/2—-(1 )E/dQ($,$/)(1 )E{(1+2] (

1
: + : :
z7)) 4y (14 29p(a’, 27)) 47 }
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% Z Z (1+2lo¢)2l05+(k+l—j)(2(1—0)5—'}/)
I<—NO0<k<j—1,0<k+1
< O2—N6 (Q]) 1/2—(1— 0)5/d9($7x/)(1—0)5{ 1 + 1 }
(1+2o(x, 24))H+7 (1 +27g(a’, 27)) 4+

where we take o € (0,1) such that e > —a, 2(1 —0)e > v > 0 and § = min(oe, o + o¢).
The estimate for O3 is similar to that for O%. If o(x, 27) > 12A3C277, then we also
have o(z',27) > 6A2C277. Thus, in this case, we have O3 = 0 and (2.27) holds. Now we
suppose that o(x,20) < 1243C277 and there is a j; € N such that
6A2C2- U+ < p(z, ') < 64202701,
We estimate O3 by

> Y. (429 EEru(ag ) (@) — ExEralag; )(«)]

I<—N j—I<k<j+ji1—1

+ Y > (142 (|EkErilag: ) (@)| + |ExEryi(ag; ) (2')))
I<—=N k>j+j1—1

o) (a+2v

I<—N j—l<k<j+j1—1

x| VBB 3) = (BuBin) o' )ty () — 0y (o) duly)|

+Z >+ 2 || [ (BB (0,9)lagy (4) — agy (@)] duly)

I<=Nk>j+j1—-1 X
+ | § BB @ y)lags () — agy (@] duy)|
X

< CM(QJT‘)—1/2—a/d{Q(I7x/)u—a)e Z Z (1 + 2loygloe—(ktD)oe

I<—=N j=I<k<j+ji1—1

+ 3 Y (et tined

I<—=N k>j+j1—1
SCQféN (Qg) 1/2—(1— o)s/dg(x’x/)(lfo)s’

where we choose o € (0,1) such that e > —a, (1 — 0)e > max(0,—s) and § =
min(oe,e0 + «). Here we used the condition that « > s — ¢ if s > 0.

Thus, (2. 27) is true. From (2.25)-(2.27), we deduce that Ry(ag;) is a (3,7)-smooth
molecule for @7, multiplied with a normalizing constant which can be estimated from
above by C27°Y for some § > 0. By Lemmas 1.4 and 1.5, Ry is bounded in B} (X)
and F;q(X ) with operator norms no more than C127%N for some § > 0, where Cy is
independent of N. Moreover, if we take dp > 0 small enough and if || < &g, then Cj is
independent of N and «, but it depends on dg. This is a desired estimate for Ry.

Now we show that Ty is bounded in B, (X) and F;, (X) with small operator norms
when |a] is small. We write

Tn = Z (1 —2!) Z EvEpy = Z (1 —2!yT%.

<N k=0 <N
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For any given N € N, we will use Lemmas 1.4 and 1.5 to show that T% is bounded in
B;,(X) and F,, (X) uniformly in [ with || < N.
Let {aqo }rem, be e-smooth blocks. For 0 <1 < N, we have

ITh (age) (= v]ZEkEHz ago)( \gzyg B Er11)(,y) (age (+) — age (1)) du(y)
k=0 k=0 X

[
< 02—l5 Zz—ks < Cz—ls.
k=0

Noting that supp T} (ago) C {z € X : p(z, 22) < 4A?C}, we have
Th (age) (@) < G2 p(age) ™ 2(1 + o(w, 29)) (4.

For —N <1 <0, we have

Theg) @l =| > EcBrulagy)@)
k>0, k+1>0
< Y|SB @, y)(0gn (@) — ago(y) duly)

k>0,k+1>0 X

oo
S CQlE Z 2—(k‘+l)6 S Cng.
k+1=0

By noting that supp Tk (ago) C {z € X : o(z, 2)) < 4A%C}, we also have
T (ago)(2)] < C2°plage) ™" /*(1 + o(x, 27)) "7,
Thus, for |I| < N, we have
(2.28) T (age)(@)] < €27 p(age) ™V2(1 + o(x, 29)) "+,

where C' is independent of [.
Let o € (0,1) be such that (1 — o)e > max(0,—s). We now show that for |I| < N,
there is a 7y satisfying 0 < v < € such that

(220) [T (aqe)(®) — Th(age)(')| < C2M172(QY) 7121/ dg g gf)1-0)2

1 1
: { (1t o, 20)7 " [T+ o 2070 }

Similarly to the estimate for (2.24), we consider three cases.

Case 1: o(z,z") > 6A2C. In this case, it is easy to obtain (2.29) by (2.28).

Case 2: o(z,2") < 6A2C and o(z,20) > 1243C. In this case, it is easy to see that
o(x',22) > 6A2C. Thus, Tk (ago)(z) = Th (ago)(a’) = 0. Therefore, in this case, we also
have (2.29).

Case 3: o(z,2") < 6A%C and g(x,22) < 1243C. In this case, we also have p(z’, 29) <
18A*C. We further suppose that there is an [; € N such that

6420270 < o(x,2') < 642C271HL,
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For 0 <1 < N, we have

[Ex Eyi(ago)(x) — EkEkH(“QQ)(xI)]‘

NE

[Th(agy () = Thy(ags)(@')| = |

Iy

b
Il

0

V(BLBw ) (@) — (BuBii)(@'y)lage (1) — ago ()] du(y)|
k=0 X

+ 3 |V BB @ v)lage () — age @)] duy)|

k=l;+1 X

+ | § (BB @ y)lage (4) — aqe (@)] diy)|
X

ll o0
< CZ_IUEQ(QJ,QL‘/)(l_U)E Z Qk((l—o)s—s) +C Z 2—ls—ks < CQ_IGEQ(x,x/)(l_U)E.

k=0 k=l1+1
For —N <1 < 0, we have
IThi(aqe) () = Thlagn) @) = | Y [BeBrialage)(@) — BuErsilage)@)]
k>0, k+1>0
< Y | NEBG) @) ~ (BB yllage (v) — o (@) duly)|

0<k<li—1,k+1>0 X

+ 3 || VBB @ wlaqn () — o (@) dutw)
k>0—-1 X

+ | (BB @' y)lago (v) — aqe (@)] diy)
b'e
< CQZO‘EQ(:I:,ml)(l—U)E Z 2—(k+l)as +C Z 2ls—(k+l)s < CQZGEQ(:I;’x/>(1—G')E.
0<k+I<ly k4>l
Thus (2.29) holds.

By (2.28) and (2.29), we see that for || < N and 7 € My, TJl\,(aQQ) is an (&', y)-smooth
unit for QY, multiplied with a normalizing constant which can be estimated from above
by C27117¢ | where C' is independent of I and 7.

Now for j € N and 7 € Mj, let ag; be an e-smooth atom for Q7 and let |I] < N. We
intend to show that 7% (a ags) is a (B,7)-smooth molecule for Q7, multiplied with some
normalizing constant, where max(0,—s) < f <eand 0 <y < e.

For 0 <1 < N, we have

Thi(aga) (@) = | Y BrBislagy)(@)

k=0

J
< Z ‘EkEkHH (aQZ_)(x) |X{z g(z,zi)§4A2C2’k}($>
k=0
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+ Z |Ey Bt (aQZ_)(x) |X{w; Q(x7zl)g4A2cz—j}(x)
k=j+1

J

< ZH (ExBrei)(, ) = (BxBiin) (21 1) di0) [X s oty <1022 (@)
k=0 X

0 [N BB (@9 (4) = agy (@] ()| X o paet) ca202-1 (@)
k=j+1 X

J
SCM(Q1)71/2(1+2]'Q(-T,ZJ) —(d+~) {2 la’EZQk H((l—o)e— 7)_|_2 le Z 92— (k—j)e }
k=0 k=j+1

<0277 p(Q) TP (1 + Y p(w, 22)) (.
For —N <1 <0, we have

Thag)@l =] > EcBrulagy)@)|
k>0, k+1>0
< Z |EkEk+l(aQ;)(9«")‘X{I: Q(m’zg)gmzcgfkfl}(x)

0<k<j—I,k+1>0

+ Z |EkEk+l(aQ-1)(x) |X{x; o(z,21)<4A202-3} (z)
k=j—1+1

< Y VBB — (BB @, 2Dlg) ) duty)|

0<k<j—l,k+1>0 X

X Xa: g(m,Zi)§4AZszkfl}($)

+ Z ‘ S (EkEk-H)(x’ y) [an_ (y) A (.13)] d'u(y) ‘X{w: Q($7Z£)S4AQC2*j}(m)
k=j—l+1 X

< Cu(@L) V21 + 2 p(x, 22)) @)

o0

X{gloe S otk gle §7 2—<k+z—j>e}
0<k+I<j k=j—1+1

< 027 u(Q1) M2 (1 + 22 p(w, 22)) (44,
Thus, for |I| < N, we have
(2:30) T (ags)(2)] < C27 172 (@Q1) ™2 (1 + 2 o(w, 1)) (7,

where o € (0,1) is such that (1 —o)e >y > 0 and C is independent of I, N, j and 7.
Now we show that for |I| < N, there is a v satisfying 0 < v < € such that

(231)  [Th(agy) (@) = Ti(agy)(a")| < C27 1172 (@1~ /2= U=/ dg (g, o)1 =0)e

ST e
(L+ ol D) T (Lt o(@ =)™
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where we take o € (0,1) such that (1 —o)e > max(0,—s), 2(1 —o)e > v > 0 and C is
independent of [, N, j and 7.

Similarly to the estimate for (2.27), we consider two cases.

Case 1: o(z,2") > 6A2C279. In this case, it is easy to obtain (2.31) by (2.30).

Case 2: o(z,2') < 6A2C277. In this case, we further suppose that there is a j; € N
such that 6A2C277177 < p(x,2') < 6A2C2~ =i+,

Now if 0 <1 < N, we have

Th(ags) (@) = Thy(ag) (@) = | Y [ErBriilags) (@) = BrBrsilagy)@)]

M- 11

0
< |EkEr+i(ag;)(2) — ExEra(ag: ) (@) + Z e
k=0 k=j+1
= P} + P

For P!, we have

J
= 3" 1BiBiiilag))(@) — ExBriilagy ) (@)
k=0
X (X(a: oo, ) <02202-1) (B) F X (r: (o 2) <2202+ (7))
= 3| HIBEw)@.y) - (BeBrn) @' y)]
k=0 X

~ (BeBrin)(@, 21) = (BeEin)(@', )] }ags (v) du(y)|

x (X{w:g(w,zi)§4A2C2*k}(m) + X{w’:g(aj 7 )<4A2C2- k}( /))

J
< C2floa (Qg) 1/2—(1— o)s/dg(x7x/)(lfo)s Z 2(k7])(2(170’)€7"{)
k=0

1 1
{ ; |
(1+ o(w, )7 (14 o(a!, 21))4+7

< CQ—ZO‘E (Q]) 1/2—(1— o)s/dg(x’x/>(1—o)s{ 1 n 1 }

a (1+ o(w, )7 (1+ o, 27))4+7

Now if o(z, 27) > 12A3C277, then o(z',2L) > 6A2C277. Thus P = 0 in this case
and we have (2.31). If o(x,22) < 12A3C277, we also have p(z',2) < 18A*C27J. Thus,
we obtain

J+i1 0

> |BuBusilag ) (@) - ExErilagy) (@) + Y

k=j+1 k=j+j1+1

J+i1

= > | VBB @,9) = (BBe) @ )llagy (4) — agy (@) diuly)
k=j+1 X

+ Y |V BB @ wlag ) - ag @) duy)|

k=j+j1+1 X
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| S BB (@ 9)lags (4) — age ()] diu(y)|

Jj+i1 o
< CN(QZ_>—1/2—(1—U)E/d |:2—lo'6g(x7 (IJI>(1_U)E Z 2—(k—j)ae + 2—l5+j06 Z 2—k€:|
k=j+1 k=j+j1+1

< 02405”(@1)71/27(170)5/119(% x/)(ka)e.
Now letting —N <1 < 0, we write
Thi(ag)) (@) = Thy{agy ()]

=| > [BBunlagy)@) ~ BxBrilagy)(@))|

k>0, k+1>0
oo
S Z |EkEk+l(an_)(.’E) _EkEk;Jrl(aQ_Z')(x/)‘ + Z :P21 +P22
0<k<j—l,k+120 k=j—1+1

For Pj, we have
Bl= Y BBiilag)@) - ByBrlag)@)
k>0, k-+1>0

X (X{m o(x,22)<4A2C2-k—1} (x) + X{z’: g(x’,zi)§4A202*k*l}(x/))

- > | BB @y - BB @)

k>0,k+1>0 X
~ [(BxBria) (@, 2) = (BxBrey)(@'s 2)]Yagy (v) diu(y)|

X (X{m o(x,22)<4A2C2-k—1} (x) + X{z’: g(at’,z.J,..)§4A202*k*l}(x/))

< CQZUE/L(Qi)71/27(170_)5/dg(1‘, x/)(lfo)s Z 2(k+l7j)(2(lfo)sf'y)
0<k+I<j

T
(1+ o(x, )47 (14 g(a!, 22)) T

: 1 1
< C2l05 z_ —1/2—(1—0)e/d JZ,LL‘/ (10)5{ . + . }
= N W et A U e Dy
Now if g(z,24) > 12A3C277, then it is easy to see that o(z’,24) > 6A2C279. Thus
P§ = 0 in this case and we have (2.31). If o(z,27) < 1243C277, then o(2/,21) <
18A%*C277. Therefore, we have

J+ii—l e
Pi= S |BiBralag:)(@) — ByBralag) @)+ 3
k=j—1+1 k=j—l+j1+1
J—l+j1
= Y | VBB (,9) — (BeBrin) (@ 9)]lagy (4) — agy (@) du(y)
k=j—l+1 X

oo

+ Y [ VBB @ plag W) — ags ()] duy)
k=j—l+ji1+1 X



Homogeneous type spaces and fractals 43

| S BB (@ 9)lags (4) — agy ()] dia(y)|

< Cu(QZ_)—l/Q—(l—o)s/d

J—l+71 0
~ |:2l0'59($7 x/)(l—o)s Z 2—(k+l—j)as + gletjoe Z 2—(k+l)s}
k=j—1+1 k=j—l+j1+1

< C2ZUEM(Q{_)—1/2—(1—0)5/dg(x’ x/)(l—a)s.

Thus (2.31) holds. This means that T}V(aQJT-) is a ((1 — o)e,~)-smooth molecule for
@7, multiplied with a normalizing constant bounded above by C27 117 where 0 < v < ¢
and C is independent of [, N, k and 7. Thus, by Lemmas 1.4 and 1.5, T}V is bounded in
B, (X) and F;, (X) with operator norms no more than Cy27 112 “and thus Ty is bounded
in B, (X) and Fj, (X) with operator norms no more than C2 3 <y |1 — 2lajp=llloe
where C is independent of a and N. By combining the estimates for Ry and Ty, we
find that I — I,I_, is bounded in By (X) and Fj, (X) with operator norms no more
than C127N 4+ Cy 2N 11— 2le|2= e swhere € is independent of N and «, provided
|l < o with dp > 0 small enough. Now, obviously, we can choose ag(s) € (0, do] such
that if || < ag(s), then C127N +Cy 2ol<n |1—2|2= 1% < 1. Thus, when |a| < ag(s),
IoI o and I_,1, are invertible in By (X) and Fj, (X). Therefore, for f € B; (X), by
Theorem 2.2 and the above facts, we have

1185, 0 = 1(T—ada) " ada(f)]l s, (x) < Cl-ala(f)]

where C' is independent of f.

By (X) = C||Ia(f)||B;q+“(X)a

We can prove a similar conclusion for £, (X).
This finishes the proof of Theorem 2.3.

From Theorems 2.2 and 2.3, we deduce the following corollary on the lifting property
of the spaces B, (X) and Fj, (X), and the independence from the approximation to the
identity in the definition of the fractional integrals and derivatives.

COROLLARY 2.1. Let s € (—¢,e) and ao(s) be as in Theorem 2.3. Let o € (—¢,e) with
la] < ap(s) and s+ o € (—¢,¢). Let o« < s+ € when s <0 and o« > s — e when s > 0.
Then there is a constant independent of f such that

1
EHf”ng(X) < HalHllpggexy < Cllflls,x)  for 1 <p,q < oo,

1
171

F5y(X) < HIoz(f)HF;;ra(X) < C||f]

F,(X) forl<p<ooandl < q< 0.

Moreover, let {S}2, and {S,}52, be two approximations to the identity as in Defi-
nition 1.2 and let B, =8, —S;_1 and E; =S, — S;_1 for1>1, Ey =Sy and Eq = 8.
If we let

L(f) =Y _27"E(f) and T.(f)=> 27"Eu(f),
=0 =0
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then there is a constant C independent of f such that
1 _ _
cMaDllgpexy < MalHllpgiex) < ClilalNlpgiexy forl<pa<oo,

1 - _
ey < HalHllggiex) < ClMalPllpgex)  for 1<p<oo and 1<g<co.

We remark that the independence from the approximations to the identity can also
be seen from Theorem 1.6 of [11]. In [11], Gatto, Segovia and Végi first introduced their
fractional integrals and derivatives by using some quasi-metrics related to the approxima-
tions to the identity which were proved to be equivalent to the original quasi-metric of the
relevant space of homogeneous type. They then established some representation formulae
for the fractional integrals and derivatives. Our definitions are just the discrete and inho-
mogeneous versions of their representation formulae. Thus, in some sense, the fractional
integrals and derivatives are only related to the given quasi-metric of the relevant space
of homogeneous type.

3. Explicit representations of inverses

In this section, we first establish explicit representation formulae in spaces of test func-
tions for left and right inverses of fractional integrals and derivatives. The left and right
inverses do not coincide, which contrasts with the case of spaces of homogeneous type and
Euclidean spaces. We then give some basic properties of these inverses when pu(X) < oo.
At the end of this section, we use the left inverses of fractional derivatives and Theorem
2.2 to establish some Poincaré-type inequalities for functions in Fj5,(X) when p(X) < oo,
1 < p < oo and s > 0 is small enough.

We have shown, in Section 2, that the fractional integrals and derivatives are invertible
in By, (X) and F};,(X) when [s| < ¢ and |a] is small enough, where ¢ € (0, 6]. To do that,
we used the well known atomic and molecular theories on these spaces for |s| < . Now,
we are going to establish explicit representation formulae in spaces of test functions for
the left and right inverses of fractional integrals and derivatives by using the theory of
singular integrals in spaces of test functions; see Theorem 1 in [18]. This means that to
show I,I_, is invertible in spaces of test functions, we will show I — I, I_, is a singular
integral with a standard kernel, say K(x,y), where I is the identity operator on these
spaces. We will also show K(z,y) has a “strong” weak boundedness property. Let || K|
be the smallest constant in all these estimates satisfied by K(z,y). The key point here
is that we will show that ||K]| can be small if || is small. In fact, we will show that
||| can go to 0 as |a| — 0. We point out that some ideas used here are similar to those
used in [18] to establish the Calderén reproducing formulae on spaces of homogeneous
type; see also the proof of Theorem 2.3. Also, in [11], Gatto, Segovia and Vigi have
shown that the homogeneous and continuous version of I,I_, is a Calderén—Zygmund
operator; see Theorems 1.4 and 1.5 in [11]. This means that I,I_, is also bounded in
L?(X) and therefore in LP(X) for p € (1,00), which can also be deduced from Theorem
2.3 and Lemma 1.10; see also Theorem 2.1 in [22].
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Now let us recall some definitions. For 6 > n > 0, let CJ(X) be the space of all
continuous functions on X with compact support such that

) —
g = 1=+ s LI < o
We denote the dual space of CJ(X) by (C{(X))'.

By Remark 1.2, for spaces of homogeneous type as in Definition 0.1, one can construct
an approximation to the identity, {Sk}keNu{o}a with compact supports as in Definition
1.2 such that limy .o, Sy = I, the identity operator on L?(X), in the strong operator
topology of L?(X). By using this fact, it is easy to show that for any 0 < n < 6, CJ(X)
is a dense subset of L?(X).

DEFINITION 3.1. A continuous complex-valued function K (x,y) defined on
2={(w,y) e X x X:x#y)

is called a standard kernel if there exist ¢ € (0,0] and 0 < C' < oo such that for all
z,y € X with x # y,

3.1)  |K(z,y)| < Colx,y)~?

(3.2)  |K(x,y) — K(z',y)| < Co(z,z')o(x,y) ") for o(z,z') < o(z,y)/(24),

(3.3)  |K(z,y) — K(z,y)| < Coly.y)olz,y) ") for o(y,y) < o(z,y)/(24).
DEFINITION 3.2. A continuous linear operator 7' : CJ(X) — (CJ(X)) is a singular

integral operator if there is a standard kernel K such that

(Tf,9) =\ | K(z,9)f(v)g(x) du(y) du(x)
X X
for all f,g € CJ(X) whose supports are separated by a positive distance. We then write
T € CZK(e).
We also need the following notion; see [23, p. 10].

DEFINITION 3.3. A singular integral operator T is said to have the “strong” weak bound-
edness property if there exist n > 0 and a constant 0 < C' < oo such that for all » > 0,

(3.4) (K, f)] < Cr?

for all » > 0 and all continuous f on X x X with supp f C B(x1,7) x B(y1,r), where
r1,91 € X, [[fllo=xxx) <1,

sup |f($7y) — f(zvy)| < —
T#z Q(CL’,Z)”

for all y € X and
sup |f(33,y) — f($72)| < —
YF#z g(y,z)"

for all x € X. We will denote this by T" € SWBP.

To apply Theorem 1 in [18], we also need to verify that the kernel K (z,y) satisfies
(35) [[K(z,y) - K(z',9)] - [K(z,y) = K(@',y)]| < Colx,2") 0y, y') o(x,y)~+2)
for o(x,2'), 0(y, ') < sz o(x,y).
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We will denote by ||K|| the smallest constants appearing in (3.1)—(3.5).

We have the following estimate for the kernel K(z,y) of I — I,I_, which plays a
crucial role in establishing explicit formulae for the inverses of fractional integrals and
derivatives.

THEOREM 3.1. Let K(x,y) be the kernel of I — I,I_, for |a| < e. There are ay1,9,8; €
(0,e) and constants Cy,Cy > 0 such that if |a| < vy, then for any given N € N,
K[| < Ci27N +Cp Y 1 =227l
ltI<N
where Cy and Cy are independent of N and «, but Cy may depend on c; and 8. Moreover,

a1 and & can be any positive number less than e.

Proof. For any given N € N, we write

T=I-1,1_,= Z Z (1 —2'EpEry + Z Z (1 —2'EL By

[I<N k>0, k+1>0 l|>N k>0, k+1>0
= Z (1-2")T4 + Ry = Tn + Ry.
[L<N
We denote the kernels of T, T%, R, and Ry by Tx(z,y), Tk (2,y), Rn(z,y) and
Rl (x,y), respectively.
Let us first establish (3.1). By (2.12), (2.13) and (2.15), we have

llogs 5A%5] [log2 5755
|TN($7y)‘ <C Z |1 _ 2104‘ Z g—legkd +C Z |1 _ 21a| Z 2l52(k+l)d
0<I<N k=0 _N<I<0 k-+1=0
c
S 1 _ 2la 2—‘”57
o(z, y)? 2| |

<N

where [a] is the maximum integer no more than a, and C is independent of @ and N.
By (2.12), (2.13) and (2.15), we have

(logy %] [logy g{i—_c;,)]
‘RN (1‘, y)| <C Z(l + 2la) Z g—legkd +C Z (1 + 2[&) Z 2152(k+l)d
>N k=0 I<—-N k+1=0
C { 1 —l(e— —6N 1
< 9—le L 9 (e—a) + 2la + 2l(a+a) } <C2 é ,
o(x,y)* l;v( ) Z;N( ) o(@,y)

where we choose |a| < &, § = min{e — o, + a}, and C is independent of N. Moreover,
if |a| < a; < g, then C is also independent of «, but it may depend on «;. Thus, (3.1)
holds.

Now let us prove (3.2). Let o(z,z') < o(z,y)/(24). Then by (2.12), (2.13) and (2.17),
we have

|K($ay)*K(x/,y)| < Z Z |1,2la”(EkEk+l)(x,y)7(EkEk+l)(x/’y)|
[l|<N k>0, k+1>0

+> Y A+ 2)(ExBr) (2, y) — (ExEr)(@,y)]

[1|>N k>0, k+1>0
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[lOgQ g(z y)]
< Q(l',x’)(lfa)s{c Z |1 — 21a| Z 9—loegk(d+(1—0)e)
0<I<N =0

[log, 247 ]
+ C Z ‘1 _ 2lo¢‘ Z 2la’52(k+l)(d+(lfa)s)
—N<I<0 k+1=0
llog, 24%€]
+ C Z(l + 2la> Z 27[0’62]{7((14’(170’)6)
I>N k=0
llog, 242G ]
LC Z (1+ 21 Z 2l052(k+l)(d+(170)a)}
I<—N k+1=0

Q(CL‘ T )(1 o)e

< Q(x y)d+(1 . {02 Z |1 2la|2 \llaa+0 [2—N0’E+2—N(O’E a)+2—N(oa+a)]}

<N

IN

3 B Q(.’L‘, x/)(l—a)e
012 5N+02 ‘1_2la|2 |Ho’6} ,
{ ”Z:N o(x,y)d+-o)e

where we choose o € (0,1) such that |a| < oe, § = min{oe — o, 0¢ + a}, and Cy and Cs
are as in the theorem. Thus, (3.2) holds. The proof of (3.3) is similar.

Now let us prove (3.5). By (2.18), (2.12) and (2.13), for o(z,2’) < o(x,y)/(34%) and
o, y) < o(x,y)/(24%), or o(x,2') < o(x,y)/(24%) and o(y,y') < o(x,y)/(3A?), we have
(K (z,y) — K(2',9)] — [K(2,') = K(2',9/)]]

<D Y N=2[(BeBry)(w,y) — (BrkEryi) (@', y)]
[I|<N k>0, k+1>0

— [(BxErya)(2,y") — (BxErqa) (2, y)]]

+ >0 Y A+ 2[(BrEr) (2, y) — (ExErp) (2, y)]

[1|>N k>0, k+1>0
— [(ErErri)(z,y') — (ExErqa) (@', y)]|

[log, SA°C]
Sg(x’m/)(lfa)s (y, (1 G‘E{C Z 2la‘ Z 9—locgk(d+2(1-0)e)

0<I<N k=0

6A3C
llog2 3ty
+ C § |1 _ 2la| E 2[062(k+l)(d+2(170)5)
—N<I<0 k+1=0

[log, S4°C ]
+CY (1+2%) Y 27logkdRiza)e)
I>N k=0
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[log, $4°C ]
. Z (14 21 Z 2102(k+l)(d+2(170)5)}
I<—N k+1=0

(1—o)e

_ o, 2) "0y, y)
— Q(x’y)d+2(170)5

+C Y \1f21°‘\2*|”“}

<N

_ iloe @@, ) p(y, ) 1m)E
< {012 SN + Oy 1— 2la 2 |l\o’5} ,
|zz<;v | | o(x,y)d+2(=o)e

{Cl [2—Noa +2—N(oa—a) + 2—N(as+a)]

where we choose o € (0,1) such that |a| < oe, § = min{oe — a,0¢ + a}, and C; and
Cy are as in the theorem. Thus, (3.5) holds for o(z,2") < o(z,y)/(34%) and o(y,y’) <

o(x,y)/(24%), or o(x,2") < o(x,y)/(24%) and o(y,y') < o(x,y)/(34%). Tf o(x,y)/(34%) <
o(x, ") and o(y,y’) < o(w,y)/(2A?), then (3.5) can be deduced from (3.2) and (3.3).
Thus, in any case, (3.5) holds.

Finally, let us show (3.4). Let f be a continuous function on X x X with
Suppf - B(‘Tl,r) X B(yla T)a
where 21 and y1 € X, || f|lpe(xxx) <1,

|f(x,y) — f(Z,y)| < g

sup < for all y € X,
r#z Q(Z, 2)77
sup |f(z,9) = f(, 2)] <r ™ foralzelX.
yF#z g(y, Z)n

We first establish some estimates on |(EEg4;)(f)| whose proofs are similar to those of
(3.18), (3.23), (3.24) and (3.25) in [18]. For k > 0, ] € N and k+1 > 0, by (2.15), we have

(3.6) (BxBrit, ) = | § [ (BeBisn) (@.9) £ (2, ) diu() du(y)
X X

< O27 1) f]l oo (x x x)yr? < C27 e,

where C' is independent of [ and 7.
If k>0,leNand k+1>0, by (2.14) and (2.15), we have

(37 BB ) = | § § § Bel@,2) Bz, 9)f (2, y) diu(z) diu() du(y)|

XXX
= ‘ V1 ) B 2) Bz, 9) [ f (2, y) = f(2,2)] duz) dp() d,u(y)‘
XXX
<r { { V1B, 2) Bra(z, 002, 9) 7" dual2) dp(z) dps(y)
XXX

< C2_(k+l)"7"_"rd,

where C' is independent of [ and r.
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If k>0,l€Nand k+1 >0, we also have the following trivial estimate:
(3.8) (Ex By, £)] < C20402,

where C' is independent of [ and 7.
Now by (3.6) and (3.7), for k > 0,1 € N and k + [ > 0, we have

(3_9) |<EkEk+l; f>| < 02—\l|€<72—(k+l)”7(1—0)7a—77(1—0)rd,

where o can be any number in (0,1), and C' is independent of I, o and 7.
By (3.6) and (3.8), for £ > 0,1 € N and k41 > 0, we have

(3.1()) ‘<Ek:Ek:+l7 f>| < C«Q—\l|s¢72(k+l)d(1—(7)7ﬂd(1—cr)7ﬂd7

where o can be any number in (0,1), and C' is independent of I, o and 7.
Now, by (3.6), (3.9) and (3.10), we have

(R, DI= Y >0 (=2 (BB, )|

[1|>N k>0, k+1>0

IN

DL H2ELE NI+ DL DD (12 (BB, )

I<—N [1|>N k1>0,2- (4D <7

+ Z Z (14 2'Y(ExEgy1, f)|

[l|>N k+41>0,2—(+D) >
< C Z +2la 2l8 d

I<—N
+C Z Z (1 + 2la)2—|l\502—(k+l)n(1—a—)T—n(1_g)rd
[U>N k+1>0,2=¢k+D <
+C Z Z (1 + 210‘)2*Il\saQ(kH)d(kg)rd(l,(,)rd

[l[>N k+1>0,2=(k+D) >p
< 0(2—Ns + 2—N(a+5) + 2—Nsa' + 2—N(sa‘+a) + 2—N(so‘—o¢))rd < 012—5N7,d7
where we take o € (0,1) such that |a| < o, § = min(eo + o, c0 — ) and C} is as in the

theorem.
For 0 <! < N, by (3.6), (3.9) and (3.10), we have

(Th, I <Y (ExBry, f)

k+1>0

<C Z 27l€c727(k+l)n(170),’q777(170)7,d
k4+1>0,2—(k+D) <

+C Z 27l502(k+l)d(170)rd(lfo),r,d
k41>0,2- (k40 >

< CQflaord’

where o € (0,1) and C' is independent of r and I.
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For I =0, by (3.6), (3.9) and (3.10), we have
(Tx, F)I < EREx, /)] = [(EoEo, /)| + Y (ExEx, )|

k>0 k>0
< Crd{l + Z 9~ kn(l=e)p—n(l=-c) 4 Z de(l_a)rd(l_a)} < Crd,
keN,2-k<p keN,2=k>p
where o € (0,1) and C' is independent of 7.
For —N <1 <0, by (3.6), (3.9) and (3.10), we have

(TR, A< D (EBiy, )]

k>0, k+1>0
= [(E-1Eo, )| + > (EkErt1, f)] + > (ExErt1, [)]
k+1>0,2—(k+D) < k+1>0,2= (k4D >p
< CQlE’I"d +C Z 2l502—(k+l)7](1—a‘)T—n(l—a)rd
k+1>0,2—(k+D) <p
+ Z 2l€<72(k:+l)d(170)7,,d(170)7,_d
k>0, 2— (k+D >

< C2lsard

where o € (0,1) and C is independent of r and I.

By summing up all the estimates on (T%, f) and (Ry, f), we conclude that (3.4)
holds.

This finishes the proof of Theorem 3.1.

In the following, for |a| < &, we define the left inverse, (I,); !, and the right inverse,
(I,); Y, respectively, by
(La)] o =1 = La(La); !

in G(8,7) for 0 < 3, < €. The following theorem guarantees the existence of (Ioé)f1 and
(I,);-1. Moreover, we have their obvious expressions.

THEOREM 3.2. Let 0 < 3,7 < e. There exists an ao(B3,7) € (0,¢) such that if |a| <
ao(B3,7), then (1,); " and (I,);! exist in G(3,7). Moreover,

o0 o0

(L)' =) "2"E, and (L);'=)_ 2Dy,

k=0 k=0
where Ey and Dy, are linear operators whose kernels, Ek(x,y) and Ek(:my), have the
following properties:

@) | Br(z,y) du(z) = | Bx(z,y) du(y) = {(1) ﬁjﬁ’;;&
X X
~ _k’y,

(i) |Ex(z,y)| < C 2 for ke NU{0};

(27% + o(z, y))
2~k
(27F + o(x,y))
(27% 4 o(z,y)) and k € NU{0};

(i) [Ex(v,y) = Br(a',y)| < C(z—kg (f;az y>>

1
!
< —
for o(z,2") < 5
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(iv) | Di(2,y) du(x) = | Dila,y) duly) = {(1) ;Z: Z ;g’-

X X ’
27

(27F + o(x,y)) 4+
o(y.y') )E 2~k
27k +o(z,y) ) (27F + o(x,y))d+
1
for o(y,y') < ﬂ(T’“ + o(z,y)) and k € NU{0}.

Here B <é& <eand v <+ <e. Moreover, if 0 < 1 << fa<eand 0 <y <~v<
Yo < €, then ag(B,7) can be independent of B and ~, but it may depend on (1, P2,
and ~s.

(v) |Di(z,y)| < C for ke NU{0};

(vi) |Dr(a,y) — Dila.y')] < c(

Proof. Let us first establish the representation formula for (Ia)fl. Let T=1-1_,1,
and K be its kernel, where I is the identity in the space G(f3,~). Then, obviously, T'(1) =
T%(1) = 0. Let us first show

— —tlx —ltle 1
(1) [(TEo) ()| < (C27Y + 0 EN -2 ) e
and
(312) |(TE0)(x,y) o (TEO)(Z‘/,y” < (012—5N + Oy Z |1 — 2_la|2_|”05)

[N

o(z, 2") (1=0)e 1
(1 + Q(w,y)) (1+ o(x,y))
for o(z,2") < 55 (14 o(x,y)), where Cy, Cs and § are as in Theorem 3.1 and o € (0,1).
For any given N € N, we write

T=1-1I_,I,
=Y > (-2"EEu+ Y, Y, (1-27')E.Ew =Ty +Ry.
|l|<N k>0, k+1>0 |l|>N k>0, k+1>0

Similarly to (2.23), by (2.12)—(2.15), we have
(R Eo)(x,y)|

= ’ > (1=27")Y (BxEriBo)(z,y)+ > (1-27') > (ExBxiEo)(x,y)

I>N k=0 I<—N k>0, k+1>0

< 0+ 27X () ooy <2420} (2, Y)

(ExEresi)(w, 2) (Eol2,y) — Eo(w,)) du(2)|

X
M8
S

+ 3 a2y Y | [ (BB 2) (Boz,y) - Bolw,y) du()
I<—N k>0,k+1>0 X

X X{ () o(w,y) <2420} (T, Y)
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< Z (1 + 271&) Z 27[627]66)({(%1/): o(z,y)<2A2C} (33, y)

I>N k=0
+ Z (1 + 27101) Z 21527(k+l)6X{(x7y): o(z,y)<242C} ($7 y)
I<—N k+1>0
< 02—5N 1

(1 + o(z, y))H+"
where § = min(e + o, € — ).
Similarly to (2.28), by (2.12)—(2.15) we have

(oo}

(TyEo) )l = | Y (=27 > (BiByiEo)(,y)

0<I<N k=0

+ Z (1—271) Z (ExExq1Eo) (7, y)

~N<I<0 k>0, k+1>0

< Y =23 | BB (@ 2) (Bo(z ) — Eole,y)) du(z)
0<I<N k=0 X

X X{(): o(a,y)<242C} (T, Y)

+ Y -2t M }S(EkEkH)(x,Z)(Eo(z,y)—Eo(fmy))du(Z)‘

—N<I<0 k>0,k+1>0 X

X X{(2,9): o(z.y)<242C} (T, Y)

< Z |]- - 27lo¢| Z 2ila2ikEX{(x,y): o(z,y)<2A2C} (xv y)

0<I<N k=0
+Y =27 Y 2 N ey <2420y (2, 9)
—N<I<0 k+1>0

1

<C 1—o-lajg-lle =
<C Q| 2 @y

[HI<N

Thus, (3.11) holds.

Now, let us show (3.12). Similarly to (2.24) and (2.29), we also consider three cases.

Case 1: 6A%C < o(z,2") < 55(1+ o(z,y)). In this case, (3.12) can be deduced easily
from (3.11).

Case 2: o(z,2') < 6A2C and o(x,y) > 12A3C. In this case, it is easy to deduce
o(2',y) > 6A%C. Thus, TEq(x,y) = TEy(z',y) = 0 and (3.12) holds.

Case 3: o(w,2') < 6A2C and o(x,y) < 1243C. We further suppose that there is an
l1 € N such that 6420271 < gz, 2') < 6A42C27 1+ We then write

(TEo)(z,y) — (TEo) (2", y)| l

< 3 =27 Y (BB Eo) () — (BrErsiBo) (')
0<I<N k=0
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b Y 1BBiE) @ )| + (BB (' )]

k=Il1+1

+ Y |1—2_la|{ > [(BkEx+1Eo)(x,y) — (ExEr1Eo) (2, y)]
—N<I<0 0<k<l1—1,k+1>0

+ Y I(BkEriBo) (@, 9)] + |(Ex Bt o)« )]}
k>11—1

L
+ 1+ 24&){ Y (ErErniBo)(w,y) — (ErEpriEo) (@', y)|
>N k=0

+ Z |(ExEx1E0)(z,y)| + |(ExEx11Eo) (2, y)H}

53

k=01 +1
+ Z (1+ Q*la){ Z |(ExEr+1Eo) (2, y) — (ExExtiEo) (2, y)]

I<-N 0<k<ly—1, k+120
+ Z |(ExEr1E0)(z,y)| + |(Ex Ex1Eo) (2, Z/)H}

k>11—1

l1

Z 1- 24&\{ S[(EkEkH)(xa 2) — (ExExy1) (2, 2)][Eo(2,y) — Eo(x,y)] dp(2)
0<l<N k=0 X
£ 3 (| VBB ) Eo ) — Eote )] di2)

k=l;+1 X
+| (BB @, D) Eo(zy) - Bo(a' y)] du=)] |}
X

+ Y =l Y BB @) - (BB @, 2)

—N<I<0 0<k<li—Il,k+I>0 X

x [Eo(z,) = Folw,y)) du(=)|

+ 3 [| S BB @ 2) Bz, y) — Bolw,y) du(z)
k>11—1 X

+ \ V(BB )@, ) Eo(2) — Eoe!, )] du(2)] |}

Iy

+3 (12 { S VBB ) (@, 2) — (BrBry) (@, 2)]
I>N k=0 X

X [Eo(z,y) — Eolw, )] dp(2)|

i Z HS EyEp)(z,2)[Eo(2,y) — Eo(z,y)] du(Z)‘
k=Il1+1 X

| S (BB ) (o, ) B (2,9) — Bo(a! )] dpu(2)| |}
X

+ Y arrf 3 ‘S[(EkEkH)(a:,z)f(EkEkH)(x’,z)]
I<—N 0<k<l1—Il,k+I>0 X

X [Eo(=y) = Eo(a,y)] du(2)|
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+ 2 (| VBB @ ) Eo(zy) - Eoe,y)] du2)

| S (BB ) (o, 2B (2,9) — Bo(a! )] dpu(2)| |}

X
I 0o
<C Z |1 _ 271a|{27l059($7x/)(170)5 Z g—koe | Z 271671@6}
k=0

0<I<N e

+C Y - 2—la|{2l069($7x/)(1—a>e $ glres § Qze—om)e}
—N=i<0 0<k i<l ktisls
1 o

+ Z(l + 27la){27l059($’l,/)(170)5 Z 9—koe Z 27l€7k5}

I>N P et
+ Z (1_‘_Qfla){QlasQ(x’x/)(lfa)s Z 27(k+l)ae+ Z 2167(k+l)5}

I<=N 0<k+<l ksl

< (G2 ey 3 -t ol )00
<N

where we choose o € (0,1) such that |a| < e, and §, C; and Cs are the same constants
as in Theorem 3.1. Thus, (3.12) holds.
Obviously we have

(3.13) \(TEo) (@, y) duly) = 0 = \ (TEo)(z,y) du(z).
X X
By Theorem 3.1, T satisfies all the conditions of Theorem 1 in [18]. Thus, by that
theorem, T maps Go(z1,r, 3,7) with z; € X, r > 0 and 0 < 8,7 < € continuously into
Go(x1,m,B,7). That is, there is a constant C3 independent of 21 and r such that for all
[ €Go(z1,7,8,7),

1T fllgo(21,r.8.4) < C3 (012*” +Cy Y 1 2’lal27”'51)Hfllgo(xl,r,ﬁ,w)-
<N

Now we choose ag(8,7) € (0,¢) such that if |a] < ag(8,7), then

(3.14) Oy = Cs (012*” +C Y - 2*la|2*‘”51) <1
[lI<N

Since C1, Cy and C5 are independent of 21 and r, obviously, ag (83, ) is also independent
of 21 and r. Moreover, by all the above proofs and the proof of Theorem 1 in [18], we can
see that C; and C are independent of 3, v, ¢ — 3 and € — vy and at most C5 is the linear
combination of 1/, 1/, 1/(¢ — 8) and 1/(¢ — ). Thus, if 0 < f; < 8 < 3 < ¢ and
0 <7 <7v <792 < e, we can then easily control Cs by the linear combination of 1/8;,
1/41,1/(e—02) and 1/(e—7y2). Therefore, in this case, we can choose ag(3,y) independent
of B and v (but depending on (1, B2, 71 and 73) such that when |o| < ag(8,7), (3.14)
holds.

Now, let |a] < ap(8,7). Since 3 < ¢’ and v < 4/, we have G(¢/,7") C G(8,~) and
therefore,

I=(I_oIy) T oI,
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in G(¢’,4"). Thus, we see that

L) = (al) Lo = 320 3175},

k=0 m=0
where T° = I, the identity operator, and for m € N, T™ = TT...T (m times). Thus,
By=Y TME;.
m=0

Obviously, the kernel Ej(z,y) of Ej, satisfies (i) of the theorem.
We now verify (i) and (iii). If & € N, since Ex(x,y) € Go(y,27%,¢',~"), by Theorem
1 in [18] and (3.14), we know that (R™E})(z,y) € Go(y,27%,¢',~') and
o0 / ’
~ 92—ky 9—kvy
E < cy)™ <C .
Bl € 2 (00" Gz gyt < O g

m=0

Thus, (ii) holds for k& € N. Moreover, for o(z,2') < 55 (27% + o(z,y)), we have
2=k
278 + o(x, y)) 4+

|Ex(z,y) - Ex(a/,y)| < Z@)’”(zkg (f;)y)) (

oz, z)  \° 2~k
C<2"“ + o(z, y)) (27F + oz, y))4t"

IN

That is, (iii) holds for k € N.

By (3.11)—(3.13), (TEp)(z,y) € Go(y,1,&’,+"). Thus, by Theorem 1 in [18] and (3.14)
again, (ii) and (iii) also hold for k¥ = 0. This establishes the representation formula for
(La);

To establish the representation formula for (I,),; !, we need to replace the above
operator T by T=1-1,I_, and we can then show that

(L)t = I o(Ind o)t = 22’“1{ 3 EkT’”}.
k=0 m=0
Then by Theorem 3.1 and Theorem 1 in [18] and a proof similar to the above, we can
obtain the representation formula for (I,),!. We omit the details.
This finishes the proof of Theorem 3.2.

Now let us introduce the definition of the transpose, T¢, of an operator T which is
defined on spaces of test functions or dual spaces.

DEFINITION 3.4. Let 6 > 3> 0 and v > 0. Let T be an operator defined on G(3,v). We
then define the transpose, 7%, of T on (G(3,7))" by (Ttg, f) = (g, Tf) for all f € G(5,7)
and all g € (G(8,7)). Let T be an operator defined on (G(3,7))’. We then define the
transpose, T%, of T on G(B,7) by (9,Ttf) = (Tg, f) for all f € G(B3,7) and all g €
(G(8,7))"

The left inverses and right inverses of fractional integrals and derivatives in dual
spaces are defined as follows.
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DEFINITION 3.5. Let |a| < 6, 0 < 8 < 0 and v > 0. We say that (I,); ' and (I,); ! exist
in (G(B,7))" if (IL); ! and (I*); ! exist in G(3,7). The transposes of the left inverse and
right inverse of I’ in G(f3,7) are said to be, respectively, the right inverse and left inverse
of I, in (G(B,7))’, and we then write (Ia)l_lfa =I,(I,); ' =Tin (G(B,7))".

In the rest of this section, we assume p(X) < co. But some of our results still hold for
1w(X) = co. We will indicate this in each case. Under this restriction, the « in the space
of test functions, G(f, ), becomes unimportant. In fact, for all v > 0, the G(3, ) define
the same space, Lip(8); see [11] for the definition of the latter. Based on this, we obtain
the following improved version of Theorem 2.1 which has uniform forms for a > 0 and
a < 0. Let us state it in a general form.

THEOREM 3.3. Let u(X) <o00,e€(0,0],aeR, 0>03>0,e>a+F>0and v>0.
Let

oo

I, = Z 2 lo g

=0

where E;’s are linear operators for 1 € NU {0} with kernels, Ej(z,y), satisfying

. 1 forl=0,
(i) )S(El(fﬂ,y)dﬂ(y) {0 forleN;
27l5

(i) [Ei(z,y)| < C

@ T oy [rIENCUR

/ .’L‘,.Z'/ € 2—la
(111) |El($,y) - El(x 7y)‘ < C(Q—IQ:_ Q(;v y)) (2_l + Q(x, y))d+s

1
for o(z,z') < ﬂ(Q_l + o(z,y)) and k € NU{0}.
Then I, maps G(B,7) continuously into G(B + a,7), namely, there is a constant C
independent of f such that

Ha(Pllg@tanyn < Cliflge-

Proof. The proof is just a repeat of Theorem 2.1 by noting that 1+ o(z,z¢) ~ 1 due to
(X)) < oo; see also Remark 2.1. We omit the details.

From this theorem, we can obtain more information on the left inverses and right
inverses in Theorem 3.2.

COROLLARY 3.1. Let pu(X) < o0, 0< 8 <e and 0 <. Let ag(B,7) be as in Theorem
3.2. Suppose |a| < min(B, ag(B,7)). Let (Io); ' and (I.); be as in Theorem 3.2. Then:

(i) (I); ' maps G(B + «,7) continuously into G(3,7), namely, there is a constant
C > 0 independent of f such that

1(72) " (Dllgs.) < 1F lga+am;

(i) (I,);' maps G(B,v) continuously into G(B3 — a,~), namely, there is a constant
C > 0 independent of f such that

1(Za)r  (Pllg-am < 1fllgs,q;
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(iii) If @ > 0, then (I); " = (Ia);Y|G(B + 7). This means that when we restrict
(In); and (I,); to G(B+ «a,7), they are the same;

(iv) If a <0, then (1)t = (1,); '|G(B, 7). This means that when we restrict (I,); "
and (I,);! to g(ﬂ v), they are the same;

(v) (I8)7 = ()7 holds in both G(5,7) and (G(5 — a,))';

(vi) (IL); Yt = (I,); " holds in both G(B+ a,) and (G ( 7).
Proof. (i) is a simple corollary of Theorems 3.2 and 3.3; so is (ii). In fact, to see (ii), by
the proof of Theorem 3.2, we have

(Ia);l = I—a(IaI—a)71

and (I,I_,)~! is the inverse of the Calderén—Zygmund operator I,I_, in G(3,7). This
means that there is a constant C' > 0 such that for all f € G(8,7) = G(z0,1,8,7), we
have

IZaT-a) " (Hllgs,m < Cllfllgism-

To see this, let T = I — I,I_,, be as in the proof of Theorem 3.2 and K be its kernel.
By Theorem 3.1, K satisfies (3.1)(3.5). Moreover, let C3 be the constant appearing in
Theorem 1 in [18]. By the proof of Theorem 3.2, we know that C3|| K| < 1; see (3.14).
Also, we can show that for any f € G(3,~) and this special T, Tf € Go(3,7) and

Tl < CsllKIIfllgsm,

where Cj is independent of f; see the proofs of (3.11) and (3.12). Thus, by Theorem 1 in
[18], we have

I(IaZ-a) " (Pllg s,y < Z IT™ fllg(s.)

N

IN

{1+ GBI+ 32 IR} lota < Cllfllogan
=2

Thus, our claim is true. Therefore, by Theorem 3.3, we obtain (ii).
Now let us show (iii). Since a > 0, we have G(8 + a,v) C G(B,7). By the proof of
Theorem 3.2, we have

(I); ' = (Toada) M g and (In); ' =T o(Ial-o)!

where (I_,1,)" ! and (I,1_,)~" are respectively the inverse operators of the Calderén—
Zygmund operators I_,I, and I,1_, in G(B3,7). Thus, I = I,I_o(I,I_,)~! also holds
in G(B + a,v). By multiplying this with (I,);' = (I_als) " '1_q, We obtain

(L)t = (T—ado) o ad o (Tnd_o) 7"

By recombining them, we obtain (I,); " = (1)t

The proof of (iv) is similar. In fact, since @ < 0, we have G(5 — «,7) C G(8,7).
Thus, I = (I olo) 141, also holds in G(B — «,~). By multiplying this with (I,);! =

I_o(I,1_,)"1, we obtain
(Ia)_l = (Ifala)_llfalalfa(Ialfa)_l

r

By recombining them, we obtain (iv).
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The proofs of (v) and (vi) can be given by using definitions. We omit the details.
This finishes the proof of Corollary 3.1.

The theorem below yields the independence from the choices of approximations to
the identity for fractional integrals and derivatives.

THEOREM 3.4. Let {S;}32, and {Si}32, be two approzimations to the identity as in
Definition 1.2 with ¢ € (0,0]. Let By, = S, — Sx—1 and Ey = S — Sy for k € N,
Ey= Sy and Ey = Sy. For |a| < e, let

I, = Z 27keg, and I, = ZQ—kaEk.
k=0 k=0

(i) Let 0 < s,3<¢ and |a|,[a@] <e with s+a=5+a<e. If (I_o);" and (I_);"
exist in (G(B,7)) with 0 < B,v < e, then for all f € (G(B,7)),

(3.15) 1o flls, ) ~ 1T f]
(3.16) 1aflles ) ~ I f]
(i) Let —e < 8,5 < 0 and |al,|a] < e with s +a =35+a > —e. If (I_,); ! and

r

(I_5);7t exist in (G(B,7)) with max(—s,—3) < B < ¢ and 0 < v < &, then for all
fe@B,7),

(3.17) 1(1-a); ]
(3.18) [(1-a); /]

Proof. We only show (i). The proof of (ii) is similar. To do that, we only need to show
that there is a constant C' > 0 independent of f such that

(3.19) H-oT-a); flly,x) < CI]
(3.20) H—a(=a); " fllgg,x) < ClIf
By Theorem 3.2, we have

ng fOT’lSp,QSOO,

F, forl<p<oo,1l<q<oo.

B, x) ~ l(I-a); fllss,  for1<p,q< oo,
Fo,00) ~ [(Ta)y Hfllgg,  for1<p<oo,1<q<oo.

ng fOI'lSp,ngO,

F3, for1<p<oo,1<qg< 0.

(o)=Y 2" F,
=0

where Ej’s satisfy (i)-(iii) of Theorem 3.2. Let {P:}?2, be an approximation to the
identity as in Definition 1.2. Let Dy = Py, — Px_1 for k € N and Dy = Py. To show (3.19)
and (3.20), it suffices to establish the following estimates:

2—(k/\l)a

(2=AD + o(z, y))dte”
where o > 0,e > g9 > s+ a —a and C > 0 are independent of z,y, k and [; see [20] or
[23, pp. 70-74].

Let ¢/ € (0,¢) be as in Theorem 3.2 and €’ can be any positive number close to €.
Then, for any ¢” € (0,¢') and § € (0,1), there is a constant C' > 0 independent of
n € NU{0} and m € NU {0} such that

(3.21) DI o(I )] ' Di)(z, y)| < €21 @@ 2l(k=Dn0l0

92— (nAm)e’

3.22 EnEm , < CQ*\nfmla// 7
( ) I( )@, y)| < (2—=(Am) 4 p(xz, y))d+e
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and

_ - - , —\n—ml&:‘” Q(x,ml> (175)5/
(3.23) |(BnEm)(z,y) — (B En) (2, y)] < C2 (27(n/\m) + o(x y))

92— (nAm)e’

X
(2=(Am) 4 o(x, y))d+e’

for o(z,2") < ﬁ(Z_("Am) + o(x,y)), where C' depends on § and is independent of n, m,

2 and y. The proofs of (3.22) and (3.23) are, respectively, completely similar to those of
(3.9) and (3.11) in [18]; see also Lemma 2.1. We omit the details.

Now let us show (3.21). We consider four cases. In the following, we always write, for
1l e NU{0},

(D _oI_a); 'Dil(z,y) = > 2" " (DyEnEp D) (,y)
n, meNU{0}
= Z 2na—m&(DlEnEka)(x’y)+ Z
0<m<n 0<n<m
= ) 2"TNDE.E.DY)(y)+ > o+ Y
0<i<m<n 0<m<i<n 0<m<n<l
D e YT
0<l<n<m 0<n<iI<m 0<n<m<l
=Q1+0Q2+Q3+ Qs+ Q5+ Qs.

Case 1: 0 <1<k and o(z,y) < 4A2C27'. 1In this case, for Q1, if o < @, by (3.22),
we have

Qi =] >0 2§ § Die, u) (BB (1, 2) Di(2,y) dp(u) dia(2)|
0<i<m<n XX
—_ " 2 ms
< 2na—ma—(n—7n)5 +ld D
<C Z S| k(2,9 S 2m+guz))d+e/dﬂ(“) du(z)
0<i<m<n X X

< CQld Z Z 2n(a76”)2m(5”75) < C2ld Z 2m(afﬁ) < CQl(ozfa)2ld’

m=Iln=m m=l
which is a desired estimate.

Now, if a > @ and n = 0, then in this case we obviously have [ = m = n = 0 and by
(3.22), it is easy to show

(3.24) Q1| = |(DoEoEoDy) (2, 9)| < C,

which is a desired estimate.
If « > @ and n > 0, then, in this case, we choose v € [¢”, ). Noting that

| V(BuBp) (u, 2)Da(z, ) dun(u) dp(z) = 0,
X X
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by (3.22), we now have
@il =] > 2@ { (i, u) — Die, 2))(EnEn)(w, 2) Da(z, ) dp(u) dia(2)
0<i<m<n X X

<C Z 2na—m6—(n—m)a”—ms’-{-l(d—i-l/)
0<i<m<n

) o 22 duto) D)l )

X X

) )
< CQl(d+u) Z 2—m(&+u—s”) Z 2—n(s"—a) < C2l(o¢—a)2ld,
m=l n=m

where we choose ¢’ > « and therefore, v > &’ > o — @. This is also a desired estimate.
Now we estimate Q3. By (3.22), we have

Q=] Y 2T N(DELEnDy) ()|
0<m<i<n
— ( ) " ld 2_m8,
<C Z gna—ma—(n—m)e"’+ S |Dk(z7y){ S (27m n (u Z))dJrE' du(u)} d/A(Z)
0<m<I<n X X o\u,

I oo
< C2ld Z Z 2n(a—a”)2m(5”—6) < C2l(a—a)2ld7
m=0 n=[
where we take ¢” > max(«, @). This is a desired estimate for Qs.

For @3, we have two cases. If ] = 0, then [ = m = n = 0 and by (3.24), we have a
desired estimate for (Y3 in this case.

Now, if [ > 0, since

(3.25) \ Du(z, w) dps(u) =0,
X
by (3.23), we have
|Q3| = ‘ Z 2na_ma(DlEnEka)(xvy)‘
0<m<n<l
< > 2 (| Dy, w)[(BnBm) (1, 2) = (BnEn) (3, 2)]Di(2, y) dps(u) dp(2)
0<m<n<l XX
<C Z Qnafmaf(nfm)és”fmel
0<m<n<l
o(u, x)1 =0
<\ § 1D )Pk ey () du(z)
XX o\u,

l l
< C2—l(1—6)6’+ld Z Z 2n(a—65”)2m(58”+(1—6)a/—a) < C2l(a—&)2ld

m=0n=m

where we choose § € (0,1) such that é¢” > a and (1 — §)e’ > @ — a. This is a desired
estimate for Q3.
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The estimates for 4, Q5 and Qg are, respectively, similar to those for @1, @2 and

Q3. In fact, we only need to exchange the roles of n and m. This finishes the proof of the
Case 1.

Case 2: 0 <1<k and o(x,y) > 4A2C27!. In this case, by (3.22), we have

@il =] > 2§ § D, u)(BuBn) (s 2) Di(z,) dp(u) dia(2)
0<i<m<n XX
<C Z 27La—ma—(n—m)s”—m5'
0<i<m<n
1
NV 1D )l gy 1P ) ) ()

X X

’

oo oo —le
< CQ(Z’, y)—(d+5 ) Z Z 27z(a—a )2—m(6+5 —e’") < C2l(a—6) Q(x y)d+€/ 7
m=l n=l ’

where in the second step to the last, we use the fact that o(u, z) > o(z,y)/(242%) and we
take ¢’ > €” > a. This is a desired estimate.

Now let us estimate Q2 with [ = 0. We then also have m = 0. Thus, in this case,
similarly to the above estimate on @1, by (3.22), we have

(3.26) Qo] = ‘ S 2 (| Do (o, u) (B, Eo) (u, 2) Di (2 y) dps(u) dpu(2)

n=0 XX

00 na—ne'’’ ; . . .
SC;::OQ §(§(|Do(x,u)|(1+Q(u’z>)d+a,|Dk( )| () dpa(2)

oo
’ " 1
< C’Q(ac,y)_(d"'s ) Z onla—e") < Cid
— - JFE, )
v o(z,y)

which is a desired estimate.
For Q2 with [ > 0, by (3.25) and (3.23), we have

Q=] X 2 DB EnD )|
0<m<I<n
< > 2@\ Diw, w)[(Bn ) (u, 2) = (En B (@, 2)] Di(2, ) dp(u) dps(2)
0<m<i<n XX
<C Z 2no¢—ma—(n—m)5s”—ms’
0<m<Ii<n
Q(% x)(l—é)a’
<\ V1D 1Dz )| gy A du2)
XX
9—1(1-0)’ —1(1—6)e’

m(ée” — @) n(a—oée" (lo—2@)_ =~ =~
= Cg(x y)d+ (=8 Z 2 Z 2 gery (ac y)dt(a=8)e’

where we choose ¢ € (0, 1) such that (58” > max(a, @). This is a desired estimate for Q5.

For Y3, we consider three cases. The first is [ = 0. Then I = n = m = 0. Thus, by
(3.24), we have a desired estimate. The second case is I > 0 and o — @ > 0. In this case,
similarly to the estimate for @2, by (3.22) and (3.23), we have
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‘QB‘ < Z Qna—ma

V| Dia, w)[(EnBm) (1, 2) = (BnEpn) (@, )] Da (2, y) dpa(w) du(2)

0<m<n<l X X
<C Z 2nozfmaf(n7m)5s”fma'
0<m<n<l
o(u, @)=
<\ { [Du(, w)l|Di(2,p)] T T ou e W) du(?)
X X ’
9—1(1-5)¢’ l ., ! , 9—1(1-0)e’
<C . Z 27”(56 —@) Z 2n(a—6a ) < C2l(a—&)

o(, y)d+(1-9)e o(x, y)d+1=0)e"

m=0 n=m

where we take 6 € (0, 1) such that de” > max(«, @). This is a desired estimate. The third
case is I > 0 and o« — @ < 0. In this case, we take ¢ € (0,1) such that (1 — )’ >a — «
and v > 0 small enough such that (1 — )¢’ > v + @ — a. By the above estimate, we have

Qsl < > 2n @\ | D, w)[(BnEpn) (u, 2) = (En B (@, 2)] Di(2, ) dpa(w) dps(2)

0<m<n<l XX
<C § 2no¢—ma—(n—m)5s”—ms’
0<m<n<li

Q(% x)(l—é)a’

<\ V1D lIDu(e )| G gy de() du2)

XX

1(1—-6
=¢ ( )di(l( DE - )— Z 2m(68 o) Z gnles <
Q xT y Oé (03 14

27l((175)5 71/7&4’&)

< 02l(a7&)

Q(I, y)d+(1—6)6’—u—a+a ’

which is also as desired.

Similarly to Case 1, the estimates for Q4, @5 and Qg are, respectively, similar to those
for @1, Q2 and Q3. We omit the details. This proves Case 2.

Case 8: 0 < k < [ and o(z,y) > 4A%2C27F. In this case, the estimates for Q, Q-
and Q3 are completely similar to those in Case 2. Let us show how to estimate @4, Q5
and Qg. For Q4, by (3.22), we have

Qi =| >0 2§ | Dia, u) (EnFon) (1, 2) Di(,y) dpw) dp2)
0<Ii<n<m XX
<C Z 2na—ma—(m—n)e”—na/
o<i<n<m

1
x )SQS( 1D, )| G g gy 1P () i) dn(2)
27la’

—(d+¢€") m(a+e’)on(a—e'+e’’) l(a—@)
< Co(z,y) ZZQ 2 < (C2 oz, g)

m=Il n=lI

where in the second step to the last, we use the fact that o(u, z) > o(x,)/(242) and we
take ¢’ > &” > —a. This is a desired estimate.
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For @5, we always have [ > 0. By (3.25) and (3.23), we have

Qsl=| > 2T (DB, EnDy)(a,y)
0<n<i<m
< > 2@\ Diw, w)[(Bn ) (w, 2) = (En B (@, 2)] Di(2, ) dpa(w) dps(2)
0<n<I<m XX
<C Z 2nozfmaf(mfn)5s”7ns'
0<n<i<m

o(u, m)(l—&)s’
NV IDi@ D) G oy dr) du2)

X X
2—l(1—5)s’ . 2—l(1—5)s’
n(de’’ +a) —m(a+ée’) l(a—@)
Q(x, y)d+(1—6)a Z 2 Zl 2 <02 (x, y>d+(1—6)6’ ’

where we choose § € (0, 1) such that ée” > max(—a, —@). This is a desired estimate for Q5.

For Qg, we consider two cases. The first is @« — @ > 0. In this case, similarly to the
estimate for @5, by (3.22) and (3.23), we have

Qsl < > 2| | Dula, w)[(BnB) (w. 2) = (EnEin) (2, 2)| Di (2, y) dps(u) dpa(2)

0<n<m<l X X
<C § 2na—m&—(m—n)65”—na/
0<n<m<l

g(u’ x)(l—é)e’

<\ V1D wlIDw(e )| G o du(w) i)
XX ’
—1(1-6 —1(1-6)e’
< CL Z g—m(de” +a) Z2n (atde"”) < rglla—a) 2~ l(1=d)e

Q(l’ y)d+(1 d)e

where we take ¢ € (0,1) such that 6" > —a. This is a desired estimate. The second case
is « — @ < 0. In this case, we take § € (0,1) such that (1 —§)e’ > @ — « and v > 0 small
enough such that (1 —d)e’ >v+a—aand (1 -6 —v—a+a>s+ a—a. By the
above estimate, we have

Q< S 2 | | D ) (BB (1, 2) — (BB (2, 2)] Dz, ) dpu) dp(2)

0<n<m<l X X

<C Z Qnafmﬁf(mfn)és”fnsl

0<n<m<l

= o, y) A9

1-68)e’

o(u,z)
x )S”S( D1 Wl|Duz ) | G gy () di(2)

9—i(1- 5)e’

n(8e” +a+v) m(a+se)
S CQ(I y)d+(1 de'—(a—a)—v Z 2 Z 2”
’ m=n+1

- 92— 1((1=6)e’ —v— a+a)
< C2l(a7a)

Q(Jf, y)d+(1—5)s’—v—a+a ’

which is also a desired estimate. This finishes the proof of Case 3.
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Case 4: 0 <k <l and o(z,y) < 4A20C27%. Similarly to Case 1, we only estimate Q1,
Q> and Q3. To do so, we choose 171 € C*(R), n1(z) = 1 for |x| < 1 and 7;(z) = 0 for
|x] > 2 and we define 172( )=1-—m(z). By (3 25) we have

Qi =| Y 2§ i, u) (BB (1, 2) D2, ) du(u) dp2)
0<i<m<n X X

< > 2@\ Dy, u)(BnB) (u, 2)[Di(2,y) — Di(a,y)]
0<i<m<n XX

\ \ Dua, W) [(Bn E) (u, 2) = (BnEp) (x, 2)]
X X

< [Di(29) - Deles ) (9(;_’5”)) i) d(2)
=Qi+@Qt

For Q1, we consider two cases. The first is o — @ < 0. In this case, by (3.22),
@il<C Z gna—ma+k(d+e)—le—(n—m)e” —me’

+ Z gna—ma

0<i<m<n

0<li<m<n
1 o(z,x)
x| |Dz(:r:,u)|(27m+Q(uvz))d+6, m( oo )‘du(w du(2)
X X
2(k7l)€+kd Z 21’7,(0478”) 27771(575”)

o(k—D)e+kd Z gn(a—a) < colla—a)g(h—Dethd

where we take €” > a. The second case is @« — @ > 0. In this case, we take v € (0,¢’) such
that @+ v > ¢”. Since ~

V(B0 Bm) (u, 2) dpa(u) = 0,

X
we then have

‘Qﬂ < Z gna—ma

0o<i<m<n

V Vi@, u) = Diar, 2))(EnEm) (u, 2)[Dr(2,y) = Die(er,y)]
X X

o (2557 dutwy aute)

<C Z 2na7ma+l(d+u)7(n7m)€”7m5'+k(d+s)

0<Ii<m<n
| ot gyl (22t e

X X

o0 o0
< (oke—letivgkd Z 27z(a—a”) Z 2m(6”—&—1/) < Cv2l(o¢—a)Q(k—l)fs-i-kd7

n=l m=l

where we take ” > a.
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Now let us turn to estimating Q%. We choose 6 € (0,1) and v € (0,¢) such that
0" >aand e — ¢’ <v <min((1 —0)e’,e + @ — d¢”). Thus, by (3.23), we have

‘Qﬂ <C Z gna—ma—(n—m)ée"’ —me’—k(d+e)

0<i<m<n
o(w,u)” o(z, @)
| 100y s o () ) )
X X ’
[ oo
< 02—lu2k(d+s) Z 2n(a—5s”) Z 2m(u—5+5s”—a) < CQZ(Q—H)Q(k—l)s+kd.

n=l m=l
This finishes the estimate for Q.
For @2, we choose g9 > s+« — @ and 6 € (0,1) such that de” > « and
g0 < min((1 — &)’ + 6" —a@, " + (1 —9)e’).
By (3.25), (3.22) and (3.23), we have

@l =] > 2@ § Dia, u)(BuBn) (w, 2) Dalz, ) dp(u) dia(2)
0<m<I<n X X
< > omerm® (| Dy(@,u)(Bn Bm) (u, 2)[Di(2,9) — Di(,)]
0<m<Ii<n X X
o (4527 ) ) du)
+ 3 2 | D, ) (BB (0, 2) = (BpEm) (0, 2)]
0<m<i<n X X
< Du(evn) - a5 ) dutw) due)
<C Z 2na—ma+k(d+s)—la—(n—m)e”—me’
0<m<I<n
1 o(z,x)
e e (4 ) |t auce)

+C Z 2na_ma—(TL—7n)55”_mE/_k(d+ao) S S ‘Dl (l’, u)|
0<m<i<n XX
. ofz.)
22 ) g d
(27m T Q(IE, Z))d+5,+(176 T2 2-[ M(u) N(Z)

oo l
< CQ(k*l)EJrde Qn(afs”) Z 27m(675”)
n=I

ol )%

m=0
00 l
+ C2fl(176)5/2k(d+€0) Z 2n(a765”) Z 2m((176)5'7eo+6a’/75)
n=I m=0

S C2l(a—a)2(k—l)5+kd + C«2l(o¢—a)2(/6—[)50—‘,-kd7

where we take £’ > max(«, @). This is a desired estimate for Q2 in this case.
Finally, we estimate Q3. In this case, we choose § € (0, 1) such that (1 —9)e’ >a—«
and g9 > s+« — @ such that g < o — @+ (1 — d)e’. By (3.25), (3.22) and (3.23),
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Qal =] > 27| | Diarw) (BB (u. 2) Di(z,y) dia(u) dia(2)
0<m<n<] X X
< > 2 | | Dile,w)[(BaEm)(u, 2) = (EnE)(3, 2)]
0<m<n<l XX

% [Dy(2,9) — D, y)lm (9(“)> dp(u) du(2)

2—[
+ Z gna—ma

0<m<n<l

\ \ Dua, W) [(Bn E) (u, 2) = (BnEp)(x, 2)]

XX
< [Di(29) - Deles )l (9(;_’5”)) i) d2)

<c Y gnemmak(etestnomie=me [ {1 (2, )|
0<m=n<l X

o(a, u) =< m <9(22_’f)> ‘ dp(w) dp(z)

(2™ + o(z, 2))dt+e'+1=0)’ o(z, )

+C Z 2noz7maf(n7m)6s”7ma'7k(d+so) S S \Dl(x,u)|
0<m<n<l XX

o(a, u) =< - (Q(;’f)> ’ dp(w) dp(z)

(2™ + o(z, 2))d+e+(1=0)e o(, 2)%
l
< C2(k—l)a+kd—l(1—6)5’ Z 2m((1—6)6’+6a”—6) Z 2n(a—6a”)

l

m=0 n=m
l l
+ CQfl(176)5/2k(d+ag) Z 2m((176)€’+65”75075) Z 271((1756”)
m=0 n=m

S CQZ(Q*E)2(k7Z)E+’Cd + C2l(0¢75)2(k77l)60+kd,
which is a desired estimate for Q3.
Thus, (3.21) is true with eg € (s + a —@,6) and o € (0,0).
This finishes the proof of (3.15) and (3.16) and the proof of Theorem 3.4.

We point out that Theorem 3.4 is also true when u(X) = co. Moreover, if |s + o] =

[s+al <, it is also true for « = 0 or @ = 0.

Now let us give an application of the left inverses of fractional derivatives and Theorem
2.2. We establish Poincaré-type inequalities for functions in F,(X) with pu(X) < oo,
1 < p < o and with s > 0 being small enough; see also [14] and [25, p. 39] for Poincaré

inequalities for functions in Hajlasz—Sobolev spaces on metric spaces.

THEOREM 3.5. Let (X, 0, 1t)q,0 be a space of homogeneous type as in Definition 0.1 with
w(X) < oo. Let 1 < p < oo. If s> 0 is small enough, then there is a constant C > 0

such that for all f € F3(X),

1
@ 1) s LI auty

X

p
du(x) < CILof 17, ) < CIIf]

p
Fi(X)

where C' is independent of f, but it may depend on p, s and diam X.
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Proof. Let {Si}icnufoy be an approximation to the identity as in Definition 1.2 with

€ (0,0] and s € (—¢,¢). Let B} = 5, — S;—1 for I € N and Ey = Sp. Let f € Fj,(X).
Since s > 0, by Proposition 1.2 and Lemma 1.10, we have F3 (X) C Fp(X) = LP(X).
Moreover, by Remark 1.4, we can further suppose f € G(8,v) with /2 < 5,7 < 6. In
fact, since pu(X) < oo, 7 is not important. We then have the fractional derivative I_f
defined by

If=> 2"E(f)
=0

By Theorem 3.2, there is an ;7 > 0 such that if 0 < s < a3, then (I_s)l_1 exists in
G(B,7v). Thus, when 0 < s < a7, we have

fla) = (I-s); s f(x)
for all x € X. Moreover, by Theorem 3.2,

-1 _ i 27ksEk’
k=0

where Ej’s satisfy the same conditions as in Theorem 3.2. Let g = I_5f. By Theorem
2.2 and Lemma 1.10, g € F,(X) = LP(X), and
lgllre(x) < CllfllEgx)

where C' is independent of f. We now write

5 \—\Zz ©[By(9)(x) — Brl9)(w)]

= |2 [ Bl ) - Buly. o) du)
k=0 X

<y ok | |Ex(x, 2) — Ex(y, 2)ll9(2)| du(2)

k=0 {z:0(z,y)< 55 (2 F40o(x,2))}

#3007 [ Bule2)llga) dz) + 3227 | 1Bty 2)l(2)] di)

k=0 X k=0 X
= Ry + Ry + Rs.
By Theorem 3.2(iii), we can choose some &’ > s such that
= . olz,y) 17
(3.28) R < CZQ S [_k}
- 27k + o(z, 2)
k=0 {z:0(z,y) <57 (27 F+o(z,2))}
9—ke’

T o 19(2)l diu(2)

—ke’
<022 Vo kfg(m))dﬁ, 9(2)] du(2)
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where M is the Hardy—Littlewood maximal function of g, C' > 0 is independent of =, y
and f, and in the second inequality to the last, we used the fact that s > 0.

By Theorem 3.2(ii) and s > 0, we have
2—k€

@+ ola, )

(3.29) Ry < Ci 27k |
k=0 X

<CY 27" M(g)(x) < CM(g)(a),
k=0

l9(2)| dp(z)

where C' > 0 is independent of x, y and f.
Similarly, by Theorem 3.2(ii) and s > 0, we have
27k5

3.30 Ry <O 27ks
(3:30) =02 S(2*’“+Q(y7z

k=0 X

<C> 278 M(g)(y) < CM(g)(y),
k=0

sy 19(2)] du(2)

where C' > 0 is independent of x, y and f.
By combining (3.28)—(3.30), we have

[f (&) = f(y)] < C[M(g)(x) + M(9) ()],

where C' > 0 is independent of z, y and f. From this, the L”(X)-boundedness of the
Hardy-Littlewood maximal function (see [4] and [25]) and Hélder’s inequality, we deduce

1
@ -5 )S(f(y) du(y)| < —= )S( () — f(y)| du(y)

< {M(9)(@) + Mlg) ()] duly)
X
C
W HgHLP(X)7

where C' > 0 is independent of x, y, diam X and f. From this and the LP(X)-boundedness
of the Hardy-Littlewood maximal function, we finally conclude that when 0 < s < aq,

| ‘f(f@ - ﬁ | £v) duy) pdu(fv>

X
< €| M(g)@) du(x) + Cllal ) < Cllaloxy < IR, (v
X
where C' > 0 is independent of f and it may depend on s, p and diam X.
This finishes the proof of Theorem 3.5.

We mention here again that since s > 0, I_,f is the discrete and inhomogeneous
version of the fractional derivative of f introduced by Gatto, Segovia and Végi in [11];
see also [12].

We also remark that the difference between the Poincaré-type inequalities here and
the Poincaré inequalities in [14] and [25] for functions in Hajtasz—Sobolev spaces on metric
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spaces is that we do not have the factor (diam X)* on the right hand side of (3.27) and
the positive constant C here also depends on this. We also note that even on R”, there
are many domains such that the Poincaré inequality does not hold; see [25, p. 39].

4. Frame characterizations

In this section, we establish frame decomposition characterizations of B;,(X) and Fj;, (X)
by using the discrete Calderén reproducing formulae established in [22]. These frame char-

acterizations will play a key role in estimates of entropy numbers for compact embeddings
between B; (X) or F (X).

THEOREM 4.1. Suppose that {S;}72, is an approximation to the identity as in Definition
1.2. Let Dy = Sy — Sx—1 for k € N and Dy = Sy. Then there exist families of linear
operators Dy, for k € N, functions 152"(33) forT € My and v = 1,...,N(0,7), and a
fized large N € N satisfying the same conditions as in Lemma 1.7 such that for any fived
y*v e Q8 with k € N, 7 € My and v € {1,...,N(k,7)} and all f € (G(B1,71)) with
0<f1,m <e,

N(0,7)
(4.1) = > > w@Y)DY (@)D (f)
7€My v=1

N(k,7)

+ Z > D @) Drla,yr) DY (f)

k=17eM; v=1
N(k,T)

+ Z ST ST @) Dila, g DR(F) (R,

k=N+171eM; v=1
where the series converge in (G(01,71)) with f1 < f] <& and y1 <] < . Moreover,
(i) if f € By (X) with —e < s <e and 1 < p,q < oo, then
N(k,T)
v alp
(42)  [1flsz00 ~ {Z (> Z u(QEY)) /P DY ()P
k=0 Tt€M; v=1
N k. da1 K, a/py1/q
Y (XX (@ ptr) )
k=N+1 7€M, v=1
and the series in (4.1) also converge in the norm of B;q(X) if 1<p,q<oc;
(ii) if f € Fy(X) with —e <s<e, 1 <p <oo and 1 < q < oo, then
N (k,T)
V) —S k,v
r00 ~ | S @) DA (g O
k=0T1eM; v=1
N (k,T)

Y Y S (@) D g (7} |

k=N+171€M; v=1

4.3)  Ifl

L (X)

and the series in (4.1) also converge in the norm of Fy (X) if 1 <p,q < oco.
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Proof. (4.1) is guaranteed by Lemma 1.7. We only need to show (4.2) and (4.3), and the
convergence in the norms of B, (X) or F,, (X) of the series in (4.1). Let us first show
that the right hand sides of (4.2) and (4.3) are controlled, respectively, by the left hand
sides of (4.2) and (4.3). For (4.2), we use Lemma 1.2. Let f € B, (X). Then there are

linear operators E;’s with [ € NU {0} such that
(4.4) f= Z DiEy(f)

where E;’s satisfy conditions (i) and (iii) of Remark 1.1 with € replaced by any &’ € (0,¢),
and the kernels of E;’s satisfy

- - 1, 1=0,1,...,N,
[ o) duty) = | Bt ) = (o o
with N € N as in the theorem. Let 1/p+ 1/p’ = 1. For k =0,1,..., N, by (4.4), (2.12),
(2.13), (2.15), Lemma 1.3 and Holder’s inequality, we have
N(k,T)

W (X3 @)
TEM;, v=1 N
(55 o
TEM), v=1 Y
( O)S([u ) §V|(Dle)(Z’y)d“(z)]@l(f)(y)ldu(y))])
N (k,7) o
(Z Z (QE)=sp/a+1
TG]WO;CO v=1 »
: {IZ; <§( L(Ql’ﬁ’”) S |(Dle)(Zvy)|dﬂ(Z)} [E(f) ()P du(z;))
- Qb
( k, S S (DiDi) (2, y)| du(y) dp(= )) v }p> v
kr)k : -
(Z Z oksp )y ( Qku[ 2 |k— za/p{SEl
|:T€Mf N 18 (DD l|(; :| Xi/P]p>1/ZD
%o~ 4
Q5 A kD) (2, y)| dp(z
< Ci o—lk—lle/p' 9ks
- N(k,7) )
ATEO@P] Y Y | 000Gy du)] dutw) )
X TEM)y v=1 kv

o0
<Y 27 B By ()] o ()
1=0



Homogeneous type spaces and fractals 71

By (4.4), (2.12), (2.13), (2.15), Lemma 1.3 and Hoélder’s inequality, for &k > N + 1,
N(k,7)

(4.6) (Z Z Qku s/d+1/p|Dk(f)(lec,u)Hp)1/p
TEM, v=1
N(k,T)
C( Z Z Qku —sp/d+1
TeEM;, v=1
= / ~ /pypy\1/p
< [ ot L (DD B )P dut) s )
1=0 X
o) N(k,T)
< 0227“@7”6/1)'{ Z Z le/ —sp/d+1
=0 TeM;, v=1
~ /
< 1D D)W DB W) d) )"

X

(oo}
<O 2R B () o)
=0

From (4.5) and (4.6), by Holder’s inequality, we deduce that the right hand side of (4.3)
is controlled by

(4.7) C{Z(ZQ Ik=llegks|| £, ( )HLP(X))q}l/q
=0 =0
< C{ i (zk:Q—(k—zxs_s)st|El(f>”m(x))q}1/q

k=0 =0

o0

+C{ i( > 2*<lfk><s+s>2“llﬁz(f)IILP<X>)q}1/q

k=0 I=k+1

s ~ 1/p
<> NENN i} < Ol 00,
=0

where C is independent of f and we have used Remark 2.1 of [20].
We now consider (4.3). First, by (2.12), (2.13) and (2.15), for k = 0,1,...,N, [ €
Nu{0}, 7€ My and v =1,...,N(k,7), we have

(4.8)  |DEYDEI(f)xgre ()|

_ } - | 00 au)| B du<y>]><@¢,u<m>

k,
X /J/( TV) Qf—"u

< O Ellsgtnnd | B(£) ()] du(y) X oo (@)
{yeX: o(z,y)<2AC2—kAL}

< C2 UM (By(£)) (2)x e (),
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where C' is independent of k, [, v, 7 and z, and M is the Hardy—Littlewood maximal
function. By (2.12), (2.13) and (2.15), for k > N+ 1, l € NU{0}, 7 € M}, and v =
1,...,N(k,7), we have

(4.9)  [DeDE(S) (Y5 xger (@)
= | DD WE ) B £) ) dp) e (2)

X
< ¢ k=lleg(hntyd | B(£) ()] du(y) Xger (@)
{yeX: o(yr” y)<AC2-RALY
< C2Iktleglindd { \E() )] dpaly) x e (@)

{yeX: o(z,y)<2AC2-kA}

< C2 UM (By( ) () xgre (2):
where C' is independent of k, I, v, 7 and z. From (4.8) and (4.9), by Holder’s inequality
and the Fefferman—Stein vector-valued inequality of [7], we deduce that the right hand
side of (4.3) is controlled by
N (k,T)

ai) {2 S MBI e 0}

k=0TeM,; v=1 T 1=0

- {3 [Let o)}

Lr(X)

Lr(X)

<c|{ gzlsq[M(Ez(f))(')]q}l/q‘

LP(X)

> ~ 1/q
<cl{>2mmi} | <Ol
0 Lr(X)
where C' is independent of f and we used Remark 2.2 of [20] again.

The reverse inequalities of (4.7) and (4.10) will be deduced from the proposition
below.

Finally, let us show that the series in (4.1) also converge in the norm of B;, (X) or in
the norm of F, (X) to f when f € By (X) and 1 < p,q < oo or when f € F, (X) and
1 < p,q < oo. To do that, for L € N and L > N, we define the partial sum, S f, of the
series in (4.1) by

N(0,7) N(k,T)
Spf(x)=3_ > w@)Dy"(«)DXY(f) +Z S > Q) Dia,yr) DY (f)
7€My v=1 k=11€eM,; v=1
N(k,T)

+ Z S ST w(@E") Dila, g ) Dl £)(5E)-

k=N+171eM; v=1

Since f € By (X) or f € F,,(X), the right hand sides of (4.2) and (4.3) are controlled,
respectively, by || f| Bs,(x) and I/ Fs,(x)- Thus, by Proposition 4.1 below, we know that
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as L — oo, S1.f converges in the norm of B, (X) to some g € B, (X) when f € B, (X)),
or Spf converges in the norm of £, (X) to some g € Fy,(X) when f € F, (X). From
this, we deduce that if max(—s,0) < § < e and 0 < v < ¢, then Sp.f — ¢ in (G(5,7))
as L — o0; see the proof of Proposition 4.1 below. By the assumption, we know that
SLf — g in (G(8),7}))". Note that if 5, > f and 7 > 7, then (G(3,7)) C (G(B1, 1))
From this, Lemma 1.7 and the above discussion, we deduce that f = g in (G(8,~))’ for
some (3 and v satisfying max(—s,0) < § < £ and 0 < v < e. From this and the definitions
of these spaces, we obtain f = g also in the norm of B, (X) when f € B, (X) or in the
norm of Fy (X).

This finishes the proof of Theorem 4.1.

We remark that when p = oo or ¢ = oo, the series in (4.1) cannot converge in the
norm of By (X) or F, (X). This is well known when X = R".

Now, we establish the reverse inequalities of (4.5) and (4.6). We will prove the fol-
lowing stronger proposition.
PROPOSITION 4.1. With the notation of Theorem 4.1, let

Mok eNU{0}, 7€ My, v=1,...,N(k,7)}

be a sequence of numbers.

() If —e<s<e, 1<p, g< o0 and
N (k) a/py1/q
(4.11) {Z( S 3 @) T <o
k=0 7€M v=1
then the series

N(0,7) N(k,7)
(4.12) >3 w@v)D /\0”+Z SN w@EY) D,y Ak
TEMy v=1 k=1T1eM; v=1

converge to some [ € B, (X) both in the norm of By (X) and in (G(B,7))" with
max(—s,0) < 8 < e and 0 <y < e when 1 < p,q < oo and only in (G(5, ’y))' when
1 < p,q < max(p,q) = co. Moreover,
N a/py1/q
B, (X) < C{Z( YD @) s/d+1/”\>\’ﬁ’”|]”) } :
k=0 Tt€M; v=1
where C is independent of f.
(ii) If —e<s<e, 1l<p<oo,1<qg<oo and
N(k,T) 1/q
a [{E TS @ g (|
k=0T1eM; v=1
then the series in (4.12) converge to some f € F; (X) both in the norm of Fj (X) and
n (G(8,7)) with max(—s,0) < 3 <e and 0 <y < e when 1 < p,q < o0, and only in
(G(B,7))" when 1 <p < oo and ¢ = oo. Moreover,
N(k,T)
o <C{S Y @)
k=0TeM;, v=1
where C' is independent of f.

(4.13) /1

< 00,
LP(X)

(4.15)  [|f]

EI 0

Lr(X)
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Proof. We first remark that if the series in (4.12) converge in the norm of B, (X) when
1 < p,q < oo or in the norm of F;, (X) when 1 < p,q < oo, then by a duality argument,
Lemma 1.8 and the facts that for max(—s,0) < f<eand 0 <y < ¢,

(416) G(3.7) € By (X) N Eya(X)
(see Remark 4.1 below), they also converge in (G(8,7))’; here and in what follows,

Ip+1/p=1=1/qg+1/q.
Thus, in these cases, we only need to show the former.
Let us first consider the convergence of the series (4.12) in the norm of B, (X) when
1 < p,q < co. In these cases, when p = 1 or when ¢ = 1, we need to use (1.7) of Remark
1.5. We first note that for all k € NU {0} and all 7 € My, N(k,7) is a finite set; see the
proof of Proposition 5.1. Now, if M}, is a finite set, by (4.16) or Remark 4.1, it is easy to
see that

N(0,7) N (k,T)
Do > w@E)DE@AF and Y Y (@) D,y )N
TEMy v=1 TEM) v=1

for k € N are in B, (X). We claim that this is also true if M, is an infinite set. To show

this, without loss of generality, we may assume that M, = N and we only show this for

k € N. The proof for k£ = 0 is just a literal repeat. Now, for any given k, L € N, we define
N (k,T)

SE= Y > ulQE¥) Dz, yb)NE.

TEMy, <L v=1
We show that for any given k € N, {S¥}, y is a Cauchy sequence in By, (X), using
Lemma 1.2 and a duality argument. Let g € B,,7,(X) N G(0,0) for 0 < o < e. We define
the operator 5;: by letting its kernel be 5;:(:0, y) = Dy (y, ). By Holder’s inequality, for
Ly,Ly € N with Ly < Lo,
L, N(k7)
(417) Sk, = SELal =] > D m@ENEDilg) (h")
r=Li+1 v=1
Z Zlc:r) Qk v s/d+1/p|)\§,y|]p) 1/p
r=Li+1 v=1
N(k,T)

(3 M@y B i)

T=L1+1 v=1

We now claim
& kl/ s/d+1/ * k,v N
1) ( S Y @t YD) I ) T < Cllglls e ix,
7=L1+1 v=1
where C' is independent of g, Ly and Ls.
Since y*¥ € Q% it is easy to see that for any y €

’

2—ke

(4.19) | Di(,y5")| < 0(2 K o(z,y))dte
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’

and
~ ~ / e 9—ke

4.20 Di(a,y"") — Dy(a, y* <C< olr, 2') > ,
( ) | k( Yr ) k( Yr )| = 92—k 1 Q(-ﬁ,y) (2_k + g(:c,y))d+5
for o(x,2") < (27F4o(x,y))/(2A), where C is independent of z, z',y, k, 7 and v. We now
use (4.4) with g instead of f. By Lemma 1.7, D%"(z) for 7 € My and v = 1,..., N(0,7)
also satisfies (4.19) and (4.20). Now, (4.19), (4.20) and a similar argument to (2.15) (see
also (2.5) in [17] and (1.6) in [20]) show that for any y € Q%

1
(1+ eo(y, z))4+<"”

where [ e NU{0}, 7 € My, v=1,...,N(0,7), and C is independent of z, y, [, 7 and v,
and that for any y € Q%

(4.21) \ | DY (2)Dia, ) dpu()| < 027
X

2—(]6/\[)6/

(2=®AD 1 o(y, 2)) &+
where ] e NU{0}, ke N, 7€ M, v=1,...,N(k,7) and C is independent of z, y, k, [,
7 and v. Now, by using (4.22), (4.4) with g instead of f, and Holder’s inequality, we see

that the left hand side of (4.18) is controlled by
Lo N(k,T)

( Z Z Qku sp’Jd+1

7=L14+1 v=1

[t } DBz B P e} ")
=0

(4.22) IDiDi(yl", 2)| < C27 1R

o / N(k,T) _ , /v’
<0y 2t /pz—ks(g [ w@NBD) 6 ) Blo) ) du())
1=0 TEM, v=1

For any [ € NU {0} and any z € X, by (4.21), we have

N(0,7)
(423) > w(@)|§ DY (2)Dife, 2) du()|
TEMy v=1 X
N(0,7) 1
Ou —ls
S I DR P s

N(0,7)

< (2™ le’ Z Z S Wdﬂ(m) < CQ?ZE/?

TEMy v=1 o,u
where y can be any point in Q%" and C is mdependent of [, v, 7, z and y. For any k € N,
1 € NU{0} and any z € X, by (4.22), we have

N(k,7)
424) D> > w@E)(DED) (YR, 2)]
TEM v=1 N(k,7) 9 (kADE’
Ew\o—|k—1|e’
SOY Y @
TEM; v=1
N(k,) —(kAl)e’

2 ,
k=1’ —lk—1]
< ool NN S T T g 2)) T du(z) < C2 e

TEM, v=1 QEV
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where y can be any point in Q¥ and C is independent of k, [, v, 7, z and y. Putting all
these estimates together, we see that the left hand side of (4.18) is controlled by

o ) . , 1/q
O 2 YR By(g) | ey < CL D 27 N Bi9) 1L, }
—o =0

< Cllgllp (X))

where we have used some techniques similar to (4.7), and C is independent of g and
k € NU{0}. Now by replacing (4.18) into (4.17) and by Lemma 1.8 and (1.7), we obtain

N(k,T) | ]p)l/p7

(4.25) 155, = Sk lg,00 < € Z 37 (@)
T=L1+1 v=1

where C'is independent of L; and Lq. Now, from this and (4.11), we deduce that {S¥} o

is a Cauchy sequence. Thus, it converges in the norm of B;q(X) to

N(0,7)
Z Z Qku DOV( ))\9_,1/
TEMy v=1
for k =0, and to
N(k,T)
Z Z le/ Dk LU yﬁ,y))\lﬁ,u
TEM, v=1

for k € N. We still need to show that the first summation of the series in (4.12) also
converges in the norm of By (X). To see this, for L € N, we define

N(0,7) N(k,7)
SL — Z Z Qk v DO v )\O v + Z Z Z Qk v Dk x yf,l/))\ﬁ,u.
TEMy v=1 k=11eM; v=1

By a similar argument to the above, we can show that { S} cn is also a Cauchy sequence
in By, (X). In fact, let g € B,7, (X)NG(0,0) for 0 <o <eand 1/p+1/p=1=1/g+1/q".
By Holder’s inequality, for Ly, L2 € Nand Ly < Lo,
N (k,T)
(4.26)  (Se, — Se,,0) = | S Y M@ B )
k=Li+17€M; v=1
N(k,T)

{ Z (Z > (@) S/d+1/p|A§_,u|]p>q/p}1/q

k=L1+1 71€M; v=1

N (k) N J ANd /PN 1/d
Z (> > @) Dig) )
k=L1+1 7€M, v=1

We now claim that
N(k,T)

(4.27) { Z ( Z Z 1(QF)) s/d+1/p’ |D (9)(y TV)”p/)q//p'}l/q/

k=Li+1 T€M; v=1
< CHQHB;,‘;,(X)a

where C' is independent of g, Ly and Ls.
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By using (4.22), (4.4) with g instead of f, (4.24) and Hoélder’s inequality, we deduce
that the left hand side of (4.27) is controlled by
N(k,T)

C{ Z (Z Z [(Q)] sp/d+l|:22 |k—1|e’ /p

k=L1+1 71€EM, v=1

< 1B 2 B auta)} )

X
cof 3 [Sarrme([[ 5 Y Bk
k=Li+1 (=0 X reM, v=l1
B du) ]}
< C{ i {igf\kfz\s/Q(sz)stﬂ@l(g)”LPI(X)}q’} /d
k=0 [=0

>0 _lsq’ l/q
<O{ X2 NEWI, ) <Clala
=0

where we have used some techniques similar to (4.7), and C' is independent of g, Lq
and Ls.

Thus our claim (4.27) is true. By putting (4.27) into (4.26) and by Lemma 1.8 and
(1.7), we obtain

N(k,T) 1
B;q(X) < C{ Z ( Z Z Qk: R S/d+1/P|>\{I€_,V|]p)q/P} /q’
k=L1+1 71€M; v=1

where C' is independent of Ly and Ly. From this and (4.11), we deduce that {Sp}eN
is a Cauchy sequence in B; (X). Thus, it converges in the norm of B; (X) to some
J € B, (X) when 1 < p,q < oo.

Now, consider the cases 1 < p,q < max(p,q) = oo. Since the cases ¢ = oo and
1 < p < oo can be dealt with similarly, we only consider the cases p = co and 1 < ¢ < 0.
In these cases, the right hand side of (4.25) may not converge to 0 as Ly, Ly — oo. This
is also true for the right hand side of (4.28) when ¢ = co. Thus, in these cases, the series
in (4.12) may not converge in the norm of B; (X). But, since p’ = 1, by (4.18), we see
that the left hand side of (4.18) converges to 0 as L1, Ly — oo. For k € N, let

(428) HSL2 - SLl ‘

N(k,T)
Z Z Qk” Dk T yf’”)/\f’”.
TEM;) v=1

Thus, for any given g € G(3,v) with max(—s,0) < § < e and 0 < v < €, by Remark 4.1,
(4.17) and (4.18), we see that as L — oo,

This just means that for any given k € N, S¥ converges to S% in (G(3,7))’. Similarly,
let S be the series in (4.12). For ¢ = 1, by (4.26), Remark 4.1, (4.27) and the fact that
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as L — oo,
o0

> sup (w(@QF"))~

k=L+1 TEMy,v=1,...,N(k,T)

=)

by (4.11), we find that for any given g € G(3,~) with max(—s,0) < S <eand 0 <y < ¢,
<S<X> - SLag> —0

as L — oo. Thus, in this case, the series in (4.12) converge in (G(53,7))". If p = co and
1 < g < o0, for any given g € G(8,~) with max(—s,0) < f < e and 0 < v < ¢, by (4.27)
and Remark 4.1, we have

N(k,T)

[ (X X w@ b)) ~o

k=L+1 71€M; v=1
as L — oo. From this and (4.26), we deduce that (Soc — Sr,g) — 0 as L — oco. Thus, in
these cases, the series in (4.12) also converge in (G(3,7))’.

To finish the proof of (i), we still need to estimate the norm of f. Let again g €
B%,(X)NG(o,0) for 0 < o < e. By Holder’s inequality,

prq
N(0,7)
ol =] >0 3 ul @“AO“SDOV()@)du(x)
TEMy v=1
N(k,T)

+ZZ Z Qku )\kuD*( )( u)
k=17eM,; v=1
N (k,T)

{Z( Z Z Qku 5/d+1/P‘)\¢,u|]P)q/p}l/q
k=0 7€M, v=1
(2 f)[ (@)1 | § B (@)g(o) duta)| )"
7€My v=1 2

N(k,T)

+ N ( Z Z 1(QF))S/ Y| D (g) (3 D)Hp,)q’/p’}l/q’.

k=1 teM, v=1
By Lemma 1.8 and (1.7), to obtain (4.13), we now only need to show

N(0,7)

(4.29) {( Z Z [ Q")) s/d+1/p’

TEMy v=1
N(k,T)

Nd' /P y1/d
Y (S W@y B ) Y < Clally .

k=N+1 teM; v=1

§ D2 (@(e) duta)]) )"
X

where C' is independent of g.
To show this, by using (4.21), (4.22), (4.4) with g instead of f, Holder’s inequality,
(4.23) and (4.24), we find that the left hand side of (4.29) is controlled by
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N(0,7)
( Z Z QOV sp’/d+1
T€EMy v=1
<[ §|§ B0 @D, 2) dut)|Bito) () dna) } )Y
=0 X X
o N(k,T)
(X X @by
k=1 rteM, v=1
< [t [ (DD Bl duta} )Y
=0 X
0o 0,7)
e[S [[ X3 w@)|§ 52 wne. ) duto|
=0 X T€EMy v=1 X
~ 1/p'7d
< |E(g)()I" du()} |
P30 [t g g[z f) (@)(DE D) (", 2) ]
k=1 [=0 ) TEM; v=1
<)) du) "]’ }”q
< C’{ i [i2_‘k_l‘5/2(l_k)52_lsHEl(Q)HLP’(X)}q/}l/q/
k 0 [=0

s ’ 1/‘1
<of 22 “NB) Sy} < Cllgllns oo

where we have used some techniques similar to (4.7), and C' is independent of g. Thus,
(4.29) is true and the proof of (i) is finished.

Now let us prove (ii). We first remark that, in a similar way, we can show that the series
in (4.12) converge in the norm of F, (X) to some f € F} (X) when 1 < p,q < oo. We
omit the details. Now we establish (4.15) for 1 < p,¢ < co. Forany g € F,> (X)NG(0,0),
by (4.4) with g instead of f, we have

N(0,7)
(4.30) = D A SDQ’”(x)y(@du(x)
TEMy v=1
N(k,T)

+ZZ > A W@E)Di(9) (EY)

k=17€eM; v=1

o N(0,7)
=32 > @) | | § DY @)Di, 2) du(a)| Eilg) (=) du()
=0 T€EMy v=1 X X
N(k,T)

+ZZZ > Neru(QE¥) Dy Dy Ei(g) (yE")

=0 k=17€eM; v=1
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N(0,7)

=30 {2 X Mm@ HDO’”(w)Dz(w,Z)du(x)}}Ez(g)(Z)du(Z)
=0 X 7€My v=1
[cSIINe'S) N(k,T)
YV E@E] Y Y M (@) (DiD) W, 2)] du(2).
I=0k=1X 7€M, v=1
By (4.21) and Lemma 1.9, we have
N(0,7) ~
(431) 3 > @) § D2 (@) Dile =) dpu(a)]|
TEMy v=1 X
N(0,7)
<c MY Y D Iger ) (2)
TEMy v=1

where M is the Hardy-Littlewood maximal function and C' is independent of I, 7, v
and z. By (4.22) and Lemma 1.9, for k € N,
N(k,7)

(432) ) > NEu@E)(DiD) (Y, )]
TEM) v=1
N(k,7)
S02—\k—l\5/2(kAl)d2[k—(k/\l)]dM< Z Z |)\1;,V|XQIQ,V>(Z)’
TeEM; v=1

where C is independent of k, I, 7, v and z. Thus, by combining (4.31) and (4.32) with
(4.30), we have

i)
zzf'k-“fﬂ (53 D lgse ) Bt duce)
=0 k=0 X reM, v=1
S lsq’ q 1/q'
o)
ady N(k,7) »
X{;[’;les/2(lk)82k5M(TeZM ; ‘)‘7]?7V|XQ’;W)(Z)}(I}/ ()
Cﬁ{fﬁ o | g o) }
X 1=0
o0 -
x{kz_%gksq[ (T;;[k Vzk:l Ao ) )} }l/qdu(z)
o0 (kr) .
H{kz_%){ (TEMk v=1 (u (Qﬁyu))is/dp‘]:”XQ’i’")(')} }1/ LP(X)
e im@or} ),

Il
=]

N(k,T)

{ (Z Z Q")) s/d|)\ﬁ,V|XQ§YU)(.):|Q}1/q

0 TeEM;, v=1

Mg

=cl{

Lo(X) ”g”Fz;::(Xy

~
Il
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where we have used the Fefferman—Stein vector-valued inequality in [7] and some tech-
niques similar to (4.10). From this, by Lemma 1.8, it is easy to deduce (4.15) when
1<p,qg<oo.

We still need to show (ii) for 1 < p < oo and ¢ = co. Since in these cases, we do not
have dual spaces, we have to directly use the definitions by combining some estimates.

Let us first show the series in (4.12) converge in (G(8,7)) with max(—s,0) < 8 < e
and 0 < v < € in these cases. We only show this for the sum on k in (4.12); the proof for
the sum on 7 is similar. Let g € G(zo, 1, 3,7) = G(8,7) with zg € X. By a similar proof
0 (4.22), for any z € Q%

‘ S Dy (z,y*")g(x) d,u(;c)‘ < 9 kB 1
X

(1 + o(zo, 2))4tA8’

where C' is independent of k, 7, v and z. From this and the arbitrariness of z, we deduce
that for any L € N,

N(k,T)
1523 > w@)N | Dita gt )g(a) du(w)
k>LteM, v=1 X
N(k,7) 1
< C 2—kﬂ Qku | kz/|
POLEP I I e
N(k,7)
1
<cy 27 p(QE) NP dp(y)
27 2 2 M ) g,y
<cy ot 5H>§{ sup [(@QE) X g (0) |
kL keNu{0}, re My, v=1,...,N(k,T)
1
X d
(T oo, g )
. k,ow\1—s/d|\k,v .
< sup @5 e O,

keNu{0}, re My, v=1,...,N(k,T)

1 1/17/
9—k(B+s) d
> Sa+@umwMHWW H)

k>L
<0y o7k
E>L
as L — oo, since § > —s, where C' is independent of k and L. This shows that the series
n (4.12) converge in (G(3,7))’ in these cases.
Finally, let us establish (4.15) in these cases. Let {D;};enugoy be as in Theorem 4.1
and let f be the series in (4.12). For [ € NU {0}, by what we have just proved,

N(0,7)
= 2: (Q¥")(DID¥) () A3
TEMy v=1
N(k,T)

+Z SN @k (DD (z, yEV )AE

k=17eM; v=1
n (G(8,7)) with max(—s,0) < f<eand 0 <~y <e.
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By (4.21), for any [ € NU {0}, any y € Q% and any &’ € (0,¢), we have

N(0,7) N(0,7)
)\O 1/|
4 33 ‘ 0, l/ D DO v )\O v < C 2~ le’ |
S D S S
T 0o vV TEMy v=1
N(0,7) 1
<C A0 g~ te’ - = 4
= Z Z Az S (1 o(a, 2)# p(z)
TEMy v=1 T
/ 1
<C27e sup w(Q% —s/d A |x o (2) } o dpu(2),
)S({TEM(),V—l,...,N(k,T)[ ( )] ‘ | Q- ( )}(1+Q($7z))d+s ( )

where C' is independent of z.
Similarly, by (4.22), for any [ € NU {0}, any y € Q%" and any ¢’ € (0,¢), we ob-
tain

N(k,T)

(4.34) ‘ZZ S (@) (DD (g )NE

k=171eM,; v=1

00 N(k,) " 9—(kAD)e'
<C (O ;
2 2 2 MmN G
%) N(k,T) _ ,
2 (kAl)e
PSP Py ) T g e )
= v= Qrv

<cl{ sup (@] INE [x e (2)}
X keN, re My, v=1,...,N(k,T)

o 9—(kADE
—|k—lle"'9—ks
X E :2 2 (2-GAD 1 o(x, 2))d+ dp(z),

where C' is independent of [ and x.

By combining (4.33) and (4.34) and by Hoélder’s inequality, for all I € NU {0} and all
zeX,

2| Dy(f)(@)| < C |{ sup [(@QE] AN x g (2)}
X keN, re My, v=1,....N(k,T)
XZQ k=t ks 2 e dp(z)
z
= (@20 g, 2)) 7
<c[{ sup (@)Y [x g ()}
X keN, re My, v=1,...,N(k,7)
92— (kAL)E’ 1/p
|k—lle' 9g—ks
x ;) 2 oty )]

where C' is independent of [ and =x.
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From this, it is easy to deduce

/1

prox) =l sup 2°[Di(f)llLr(x)
leNu{o}

<C| sup [1(QF )] /4| \E
keN, re My, v=1,...,N(k,T)

Xqkwv () ||LP(X),

where C' is independent of f.
This finishes the proof of Proposition 4.1.

We remark that Theorem 4.1 and Proposition 4.1 are true for both u(X) < oo and
(X)) = oo.

REMARK 4.1. Let s € (—¢,¢), max(s,0) < f < e and 0 < . Then
G(B,7) € Bpy(X)  for1<p,q <o,
G(8,7) C Fp(X) forl<p<ooand1l<q<oo.

This is true for both p(X) < 0o and p(X) = co and it can be easily seen from the proof
of Theorem 2.2 in [20]. See also Remark 2.1 in [20] and the remark in [23, p. 100]. In both
remarks, it is also required that max(—s,0) < v < e, which is in fact not necessary.

REMARK 4.2. We point out that the methods applied for the cases F;. (X) also work
for all other cases.

5. Embeddings

In this section, we first estimate the entropy numbers of compact embeddings between
By, (X) or Fj (X) spaces when p(X) < co by using the frame characterizations of these
spaces, namely, Theorem 4.1 and Proposition 4.1. Some limiting embeddings between
these spaces are also obtained. We remark that the atomic decompositions of these spaces
are not enough to obtain these estimates.

Let us now recall the definition of the entropy numbers; see [6] and [33]. In the
following, if B is a quasi-Banach space, then Up = {b € B : ||b]|p < 1} stands for the
unit ball in B.

DEFINITION 5.1. Let A and B be quasi-Banach spaces and T be a linear continuous
operator from A to B. Then for all k € N, the kth entropy number, ey (T), of T is defined
by

2)6—1

er(T) = inf {5 >0:T(Us) C U (bj + eUp) for some by, ..., bor—1 € B}.
j=1
By using some ideas from the proof of Proposition 20.5 in [33], we can now establish

upper estimates for the entropy numbers of compact embeddings between B;Q(X ) and
F;,(X) spaces when p(X) < oo. We point out that our results for By (X) when X is a
d-set (see [33]) and 0 < s < 1 are included in Proposition 20.5 in [33]. The other cases,
even when X is a d-set, are new. Since there is no quarkonial decomposition on spaces of
homogeneous type, which plays a key role in [33], the new idea here is to use the frame
decompositions for By (X) and F,, (X), discussed in Theorem 4.1 and Proposition 4.1.
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PROPOSITION 5.1. Let (X, 0, 1t)a,0 be a space of homogeneous type with (X) < co. Let
By, (X) for 1 < p,q < oo and Fy (X) for 1 <p < oo and 1 < q < oo be the spaces in
Definition 1.3 with |s| < 0. Let —0 < 55 < 51 < 8.

(i) If 1 <p1,p2 <00, 1 < q1,q2 <00 and

1 1
S -sm—d(5 -] >0,
bt D2/

where x4 = max(z,0), then the embedding of B,t, (X) into B2, (X) is compact and
there is a constant C' > 0 such that

er(id: B3, (X) — B2, (X)) < Ck~ 1752/ for qil k € N.

Pri1q1 P2q2

(ii) If 1 < p1,p2 < 00, 1 < 1,92 < 00 and §4 > 0, then the embedding of F21, (X)

P1q1
into Fy2, (X) is compact and there is a constant C' > 0 such that

en(id: F31 (X) — F32 (X)) < Ck~1=%2/4 for qll k € N.

pP1q1 p2q2

Proof. By Proposition 13.6 in [33], it is easy to see that for s € (—6,6), 1 < p < 0o and
1 < ¢ < o0, we have the following continuous embedding;:

(5.1) B:,(X) C F3y(X) € Biy(X),
where u = min(p, ¢) and v = max(p, q). By (5.1) it is easy to see that it is sufficient to
prove (i). We consider two cases.
Case 1: ps > p1. In this case, we have
1 1
(5:5+281—52—d<———> > 0.
P11 P2

We will use Theorem 4.1 and Proposition 4.1. In the following part of this section, for
M, of Lemma 1.3, we will also write My, for the set {1,..., My}. We first claim that if
u(X) < oo and we take § = 1/2 in Lemma 1.3, then in Lemma 1.3 we have M), satisfying
My, ~ 2%4_TIn fact, by Lemma 1.3(i), (iv), we have

p(X) =u( U Q’ﬁ) = > u(@) <27y
TEMy TEM},
Thus, M, > C2*?. By Lemma 1.3(i), (v), we then have
p(X) = u( U Q’;) = > @)= > w(B(F,a027%)) > €27 M.
TEM} TEMy TE My

From this, we see that M, < C2*¢. Thus our claim holds. In a similar way, we can show
N(k,7) ~ 2/ for any k € NU {0} and 7 € M. Thus, for any fixed j € N,

> N(k,7)~ 2"

TEM],

In the rest of this proof, we denote N(k,7) by My for k € NU{0} and we use

the same notation of Theorem 4.1.

TEM},
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Now suppose f € B;!, (X). By Theorem 4.1, we have

N(0,7)
(5.2) = > > w@¥)DY (x)DYY(f)
TEMy v=1
N(k,r)
+Z ST wQE) Dl yE) DEY ()
k=171eM; v=1
N(k,r)

+ Z Z Z Qky Dk x yf’y)Dk(f)(yI;’y)'

k=N+11eM,; v=1

Moreover,
N N(k,T) . a1 /p1
(5:3)  Wflog,oo~ {2 (D D0 lw@sy)y—=/41/mpky()m)
k=0 reM; v=1
= & k) Jd+1/ kv a/pyt/a
+ 3 (XS @y Dy E )
k=N+1 7€M, v=1
Let
n’“’”={2 Righ(si=d/p) DRV (f), k=0,1,....,N, 7€ My, v=1,...,N(k,7),
T 2= koQk(si=d/p) Dy (£)(y*"), k=N+1,..., 7€ My, v=1,...,N(k,7).

We now define the (nonlinear) operator S from B;!, (X) to lq1(2”5lg") by letting

(5.4) Sf=n={n"":keNuU{0}, re Myandv=1,...,N(k,7)}

for f € By, (X) having the above decomposition (5.2). Here by Zq1(2”5l£71[V) we mean

the linear space of all complex sequences
A={\ i keNU{0}, 7=1,...,Mpandv=1,...,N(k,7)}

endowed with the norm
N (k,T)

a1/p1y1/q
H H 2MZMV) {Z{ Z Z 2k6p1|)\ku|p1} 1 1} 1;

k=0 reM; v=1

see [33, p. 38]. By (5.2) and (5.3), S is bounded from Bj!, (X) to Zq1(2”5l£71[“). That is,
there is a constant C' > 0 such that for all f € B5' (X), we have

P1q1
H f” (2,,5ZMV) = Pl‘ll(X).
Now we define another linear operator T' from [, (l;,v;) to B2, (X) by letting
N(0,7)
(5.5) = 30 D Kttt Q)) DY (a)
TEMy v=1
N(k,T)

FYN Y sl Dy )

k=171eM; v=1
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for

k= {kE" Rk eNU{0}, 7=1,...,Myand v = 1,..., N(k,7)} € L, (I2").
By Proposition 4.1, T is also bounded from I, (lgV) to B2, (X). That is, there is a
constant C' > 0 such that for all x € I, (1)),

ITx|

B;%QQ (X) S CHK/”qu (lgu)

Let id : I, (2”5%\?”) — g (ZZ"). Then, by Theorem 9.2 in [33], id is compact. By our
above definitions of S and T, that is, (5.4) and (5.5), and (5.2), it is easy to see that

id(Bt, (X)— B2, (X))=ToidoS.

P1q1 P292
Thus, id : By, (X) — B2, (X) is compact. Moreover, by Theorem 9.2 with u; = us
= oo and by Proposition 5.4(ii) in [33], we have
ex(id : BS, (X) = B2, (X)) < Ceg(id : 1g, (27013 ) — 10, (101)) < Ok~ (s1752)/d,
This finishes the proof of Case 1.

Case 2: ps < py. In this case, we first show that
(5.6) B2 (X)c B2, (X).

P1q2 P2q2
To show (5.6), let {S;}72, be an approximation to the identity as in Definition 1.2. Let
Ey = Si — Sk—1 for k € N and Ey = Sp. Since pu(X) < oo, by Holder’s inequality, we
have
IER(F) | Lr2 ) < 1Bk (F) e coyp(X)HP210,
From this and Definition 1.3, we have (5.6). Now our result in this case can be deduced
from (5.6) and Case 1 applied to p1 = pa.
This finishes the proof of Proposition 5.1.

Now we are going to use Proposition 5.1, Theorem 1.1 and Lemma 1.10 to establish
lower estimates for those entropy numbers in Proposition 5.1; see also Theorem 20.6 and
Theorem 23.2 in [33]. We also remark that if X is a d-set and 0 < s < 1, our results on
B, (X) are included in Theorem 20.6 in [33] and the other cases are new.

THEOREM 5.1. Let (X, 0,1)a0 be a space of homogeneous type with pu(X) < oo. Let
By, (X) for 1 < p,q < oo and Fj (X) for 1 <p < oo and 1 < q < oo be the spaces in
Definition 1.3 with |s| < 0. Let —0 < s3 < s1 < 0.

(i) If 1 <p1,p2 <00, 1 < q1,q2 < 00 and

1 1
G sm—d( o0 >0,
bt D2/

then the embedding of BSt, (X) into B2, (X) is compact and

pP1q1 P29q2

ep(id: B3, (X) — B2, (X)) ~k~(1752)/d for gl k € N.

P14q1 P2q2
(ii) If 1 < p1,p2 <00, 1 < q1,q2 < 00 and 04 > 0, then the embedding of Fjl, (X)
into F22, (X) is compact and

P29q2
er(id: F5t (X)) — F52 (X)) ~ k=724 for qll ke N.

P1q1 P2qz2
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Proof. Similarly to the proof of Proposition 5.1, we only need to show (i). The estimate
of e}, from above by Ck~(51752)/4 ig covered by Proposition 5.1. To establish the estimate
from below, we use some ideas of the proofs of Theorems 20.6 and 23.2 in [33]. We have
to show that there is a constant C' > 0 such that

erlid s Bil,, (X) = By, (X))Re /1 > ¢

p1q1 P2q2
for all kK € N. Assume that there is no such C' > 0. Then we find a sequence k; — oo such
that

(5.7) er, (id . Bt (X) _, B2 (X))k(sl—SQ)/d ~0

P1q1 P2q2 J
as j — oo. We can always find 6§ > s3 > s; and —0 < s4 < so such that by Proposition
5.1, for k € N,

(5~8) €L (id : BSS (X) — B;iql (X)) < Ck*(sgfﬁ)/d,
(59) ex(id: BE,, (X) = B3(X)) < Ch™(ems2)/t,

By (5.7)—(5.9) and the multiplication property of entropy numbers (see (5.8) in [33] or
[6]),
(5.10) ean, (id : B33(X) — Big(X))ki= 0/ ¢
as j — oo. We may assume s4 < 0 < s3. By Lemma 1.10, we have
L*(X) = F3(X) = By (X).
Taking o € (0,1) such that (1 — o)s3 + ogs4 = 0, by Definition 1.3, we obtain
(5.11) 1fllz2x) < Cllf

By the interpolation property for entropy numbers in [6, p. 13], we deduce from (5.10)
and (5.11) that

(5.12) ek e, (id : B33(X) — L*(X))
< Cleay, (id : B33(X) — B3 (X)ky™ ) — 0

1-0 0
B3 00 1 1 B38 )

as j — 00. We will show this is impossible. Choose two C'* nonnegative functions, ¢ and
¥, on R with supports in (—ag, ag), where ag is as in Lemma 1.3. Then choose C; ; such
that

(5.13) C;-2 | 0(27 o(x, 20))(2 o(w, 22)) dp(z) = 1
X

for j € NU {0} and 7 € M;, where M; ~ 27¢; see the proof of Proposition 5.1. Here, as in
the proof of Proposition 5.1, we identify M}, of Lemma 1.3 with the set {1,..., M} for
k € NU{0}. Moreover, we can suppose ¢(z) > C and ¢(z) > C when = € (—ag/2,a9/2).
Then, by (0.1), we may assume that there are constants 0 < C7 < Cy < oo such that
Cy <Cj; <C5forall j e NU{0} and 7 € M;. We now define a linear operator A from
20(sa=d/2 M5 1 B33 (X) by letting

M;
Ala; : 7=1,.. -an} = Zar@@j@(%zi))
T=1
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and a linear operator B from L?(X) into Q’jd/Qléw" by letting
Bf = {32 | f@)i(2 ole,20)) dpu(w) : 7 =1, M, |,
X
Noting that 2/%/2p(27o(x,27)) is an e-block for @7, multiplied with an unimportant
normalizing constant, by Theorem 1.1, we have
1A{ar s 7 =10 Milggg ) < CPC a7 =1, MYl
where C' is independent of j. Now, let

b, = Cpr 2\ f(@) (2 ol 1)) du(e).
X

By Lemma 1.3(v), if 71 # 72, then
supp (2’ o(, 2, )) Nsupp (2’ o(, 2,)) = 0.
By this fact and Hoélder’s inequality, we have
b7 < 22 | (@) dp()279 < 024 | |f(@)]? dpa(a)
{z: o(x,2%,)<ao279} QL

and
Mo \1/2 ,
1Bl = (S 16ER) " < 022 £l o,
T=1

where @7 is as in Lemma 1.3 and C is independent of j. Thus, A and B are bounded
linear operators with operator norms independent of j. Moreover, if we let id’ be the
embedding from 29(sa=4/21)5 to 2-34/21} and id be the embedding from B33(X) to
L*(X), then, by (5.13), we have id’ = Boid o A and consequently, by Proposition 6.4 in
[33], we have

(5.14) ex(id?) < Cei(id)  for all k € N,
where C' is independent of j and k. By Proposition 5.2 with k = 2M; ~ 27¢ in [33], we
obtain
(5.15) ecnia(id?) = 27907 d/29734/2¢ o (id - 1y — ;7)) > €279,
where C' > 0 and C’ > 0 are independent of j. By (5.15) and (5.14), it is easy to deduce
that there is a constant C' > 0 such that for all k£ € N,

en(id : B53(X) — L*(X)) > Ck—*/4,

which implies that (5.12) is impossible.
This finishes the proof of Theorem 5.1.

Now, let us consider some limiting embeddings between these spaces which correspond
to the case d; = 0 of Theorem 5.1. We first have the following theorem; see [17] for its
homogeneous version. The main idea of the proof is also similar to that in [17]. For
completeness, we give the details. Moreover, we correct a mistake in the proof in [17].
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THEOREM 5.2. Let (X, 0,4t)a,0 be a space of homogeneous type. Let By (X) for 1 <p,q
< oo and szq(X) for1 < p<ooand 1< q< oo bethe spaces as in Definition 1.3 with
|s| < 0. Let —0 < s9 < s1 < 0. Then

(i) Bply(X) C Bz (X) for 1 < ¢ < o0, 1 < p1,p2 < 00 and =0 < sy —d/p1 =

p1g P2q
—d/p2<9
(i) Fyplg, (X) C Fp2,,(X) for 1 < pi,p2 <00, 1 < q1,q2 < 00 and —0 < 81 —d/p1 =
—d/py <90.

Proof. We use the inhomogeneous Calderén reproducing formulae of [18]. Suppose
{Sk}32, is an approximation to the identity with ¢ € (0,6]. Let Ej, = Sy — Sk_1 for
k € N and Ey = Sy. Then by Lemma 1.2, for all f € (G(3,7))" with 0 < 3,7 < ¢, there
is a sequence of linear operators {Ek}zo:o and an N € N such that

(5.16) f=> ExEx(f)
k=0

n (G(6,7)) with 8’ > § and v > 7, where the kernel, Ek(x, y), of E), satisfies

~ ~ 1 ifk:0717~~'7N7

X X

and (i) and (ii) of Remark 1.1 with ¢ replaced by any &’ € (0,¢). We take ¢’ € (0,¢) such
that —¢’ < 59 < 51 < &’ and —¢’ < 81 — d/p1 = $2 — d/p2 < &’. By a similar proof to
(2.15) (see also (2.5) in [17] and (1.6) in [20]), we can show that for all k, j € NU {0},

9—(kAj)e’
(27 (M) + p(x, y))d+e"”
where C' is independent of k, j,  and y. Noting that ps/p; > 1, by (5.16), Holder’s
inequality, Young’s inequality and (5.17), for any k£ € NU {0},

(5.17) (ExEj)(w,y)| < G271

LP2(X)

Il = | S BEE (1)
j=0

{ {S I( EkE (z,9)||E; (f) ()" d,u(y)}pz/pl
0 X X

[ BB sty )

b

X

< O3 2 WL | [ IBE) @l E O dut)]”" du(w) "
=0 X X

<0y 2 kB (W [ § IEE) @ r du)] " duw)}
j=0 X X

o0
<C Z 9—lk—jle’9—(kAj)d(1/p2—1/p1) B ()] Los ()
§=0

where 1/p; + 1/p] = 1.



90 Y. S. Han and D. C. Yang

From this and s; — d/p; = s2 — d/ps, it follows that

1/q
Bigax) = {Zz’“ank Mo}

= {22’“"‘"[22 3 g ) B ) ]}

k=0

('] k . 1
< C{ {ZQUH)(”_E)2jsl||Ej(f)HLm(X)}q} o
k=0 j=0
ad e , N qy1/q
+O{Z[ Z 2—(J—k)(sl+s)2Jsl||Ej(f)||Lp1(X)} }
k=0 j=k+1
1/q
<C{Z2””H oo} < Clflsgac0

where we used the Young inequality for number sequences, and C' is independent of f.
This proves (i).

To prove (ii), by homogeneity, without loss of generality, we may suppose | f|| Fila (X)
= 1. From this, (5.16), Holder’s inequality and (5.17), we deduce that for any k£ € NU {0}
and any z € X,

|BW(f)(@)] = \ZEkE Ej()(@)| < 072 I 2 By () 1 x)
=0
< CZ 9—lk—jle’ o(kAj)d/pro—js1
=0

Thus, for any fixed N € NU {0}, we have

(5.18) 3 g B(H@=) "
k=0

A

oks2q2

IA

1= 114

(oo}
3 okl g/ g

qz}l/qz

k
< C{ 9ks2q2 Z 2—(k—j)5l2jd/il71 9=Js1 = }1/(12
k=0 =0
N > a2y 1/qz
+ C{ Z 2k32q2 Z 27(j7k)€'2krd/p1 27]’51 }

k=0 j=k+1
k

N a2y 1/q2
{szdqz/m{ Qf(k*j)(s'*Sﬁd/pl)} }
k= j=0

C XN:deq /p i —(5—k)("+51) Y
ro{ | 1)
k=0 j=k+
N

{Zde%/Pz} /a2 :CVOQNd/Pz7

=0
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since s1 > —¢’ and €’ > s1 — d/p;1, where Cy is independent of N and we have used the
fact that S1 — d/p1 = So9 — d/pg.
On the other hand, for any N € NU {0},

G10) { Y 2emm (@)

k=N+1
e 1/q2
< Z Qk(STSl)q?kalq?|Ek(f)(:£)|q"’}
k=N+1
Z ok(s2—s1) 2} /Q2{ Z oksia1 |E )|Q1 }l/ql
k=N+1

1/q1
< CO2N(52731){Z2k81q1|Ek(f)(x)|q1} ? ,
k=0

since so < s1, where Cj is independent of N. In particular,
o0

/a2
(G200 {2 im (@)}
k=0
< { i ok(s2—51)d2 }1/(12{ i oks1a| B (f) ()™ }Uql
k=0 k=0
<o S B}
k=0

Thus, noting that ps > p1, by (5.18)—(5.20), we have

£, = P2 J 7 u({ € X [Ej?k@%LEk @] > t}) d
2‘12
0
2Cy

= P2 § L‘pz_lu({x €X: [;wmmk(f)(x)wz}1/” > t}) dt
oo 2C2(N+1)d/p2

- Z S tP2—1u({x €X: {ﬁ:2k52q2|Ek(f)(x)|q2]1/q2

N=0 202N d/p2 k=0
3 1/q2
Z oks2az| B (£)(x )|q2} >t}) dt
k=N+1
2Co 1/q1
< pa(2Ce)r2 P | gmi! ({:ceX [Zwmm )|q1} >t/CO}) dt
0

o 2002(N+1)d/172 00

+3 | tprlu({x €X: [ 3 2k82q2|Ek(f)(x)|q2r/q2 > t/2}) dt

N=0 2002Nd/p2 k=N+1
o 2C02(N+1)d/p2
<Cc+C) | 2

N=0 202N d/p2
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. S ksiqy Ve N(s1—s2)
X ,u({az €X: [k_ZNHQ @B (f) ()] } > 12 /(200)}) dt
oo 2(N+DA/py

-1 . = ksiq1 Yo
§C+ON§=:O 2N§/m r ﬂ({xeX'[k_EN:H? ME(f)@)"] T >t} )de<C

This proves (ii) and finishes the proof of Theorem 5.2.

We remark that Theorem 5.2 is true even when p(X) = oo. However, the embeddings
in Theorem 5.2 cannot be compact even when X is a compact space of homogeneous type.
For example, when X is a d-set, one can find a proof of this fact in [33, pp. 169-170].

Now we consider some limiting compact embeddings for spaces of homogeneous type.
First, we need to estimate some embedding constants. Let max(1,d) < p < ¢ < co. Then
by Theorem 5.2 and Proposition 1.2, Byp”(X) € LY(X) and Fy”(X) C LY(X). Let id, 4
be one of these embedding operators. Our theorem below corresponds to Theorem 2.7.2
n [6], but our proof is essentially different. The key for the proof in [6] is Nikol’skii’s well
known inequality for L? functions with Fourier transforms having compact supports; see
[6] and [31]. Since there is no theory of the Fourier transform on spaces of homogeneous
type, we use approximations to the identity and the inhomogeneous Calderén reproducing
formulae of [18]. The main ideas of our proof are similar to that of Theorem 5.2.

THEOREM 5.3. Let max(1,d) < p < oo. Then there is a constant C > 0 depending on p
such that
(5.21) lidy 4|l < Cg* =P for every q with p < ¢ < oc.

Proof. We use the notation of the proof of Theorem 5.2. Let {E}}7° , and {Ek}z';o be
as in that proof. By (5.17), Holder’s inequality and Young’s inequality, we have

1B By (Pl = { § | § BB @) (1) ) duw)| da)}
X X

<{§[§ |<EkEj><x,y>||Ej<f><y>|pdu<y>]””[ [ 1B @l duw)”” dut)}”

X X X

< 0 W VTV BB @B @) )] du)}

X
G sy ~ r/q 1/p
< Co WL B (N WP | § IBE) @) /7 dy(@)] ™ du(y) |
X X
< 02—|k—j‘5/2—(k/\j)d(1/q—1/1’)||Ej(f)||Lp(X)7
where 1/p1 +1/pf =1,¢ > 0is as in (5.17) and C is independent of q.
From this, (5.16) and Hélder’s inequality, we deduce that

(5:22)  fllLecx) <ZZHEkEE M zacx)

Jj= Ok: 0
1EE B (Hllpac + Y. > -

0 =0 k=j+1

OB
Mb

<
I
<
E
I
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9—(i—k)e'9—kd(1/q—1/p) 1E;(f)

Mm.

<cy

e x)
§=0 k=0
LOS Y 2y D () )
] Ok_J+1
> .
< CY 27PN, () oo (x)
j=0

e 1/p
<oy ot} {ZzﬂnE o a1 Py
=0

where C' is independent of g. This shows (5.21) in the case of B%p(X).
Now let us prove (5.21) for Fj;p(X). If d > 2, by (5.1) and (5.21) in the case of

B%]D(X)7 we deduce (5.21) for deQ/p(X) and d < p <oo.If0 <d <2, by (5.1) and (5.32)
in the case of Bd/p(X), we deduce (5.32) for F;Q/p(X) and 2 < p < co. We still need to

show (5.32) in the case of Fd/p( X)for 0 <d< 2 max(l,d) < p<2andp<gq< o0.
We only show this for 2 < g < oo. The extension to the case p < ¢ < 2 is obvious.
We need to establish an inequality similar to (5.22) with Bis?(X) replaced by F;Z/ P(X).

By homogeneity, we may suppose Hf||Fd/p(X) = 1. From (5.16), Hélder’s inequality and
(5.17), we deduce that for any k € NU {0} and any x € X,
[e.e]
(5.23) [Bx(f)(@)| = | Z EVESE;(f)(@)] < CY 2 27 W0 e m e 55 )|
j=0
< CZ o~ |k=ile"g(kni)d/pg—jd/p
j=0

where ¢’ € (0,¢), C is independent of ¢, and C' depends on ¢’.
Thus, for any fixed N € N U {0}, by (5.16), (5.23) and Hélder’s inequality, we have

N
(5.24) D |E(f)(x)| < OZZ |ELESE;(f)(z)|
k=0 k=0 j=0
N k N &S]
< CZ Z 9—(k=j)e’ | CZ Z 9~ (i=k)e'gkd/po=id/p _ O\ N,
k=0 j=0 k=0 j=k+1
where C is independent of N and ¢q. We also have
(5.25) S EN@I<C Y 2N o g (f)()}
k=N+1 k=N+1 k=0
> 1/2
< Cra NSkl B ()P}
k=0
and in particular,
o o2k 2 M2
(5.26) Z|Ek Dl < Y 2B (@)}
k=0

where C is independent of N and gq.
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By (5.24)—(5.26), we have

o0

1A%y =a | € e € X < 1f(@)] > 1)) dt
0

2C, o 2C1(N+1)
<q | e e X f@) > A+ > g |
0 N=1 2C1 N
2C1 > 1/2
q(20)77 | t”’lp({xeX:Cl{Z2de/p|Ek(f)(m)|2} >t})dt
0 k=0

(%) 2CI(N+1) N oo
>0 | eu({eex: Y IBM@I+ Y IB(N@)] > t]) de
N=1 201N k=0 k=N-+1
o 201 (N+1)

<c@e)Pq+ Y q | 1 ({:ceX Z \E(f |>t/2}>

N=1 201N k=N+1
00 2C1(N+1)

< C(201)7Pq + Z q S A
N=1 QClN

X ﬂ<{x €X: 012_Nd/”[if’“d/f’\Ek(f)(x)ﬂ A t/2}) dt

k=0
o (N-41)2Va/p
- (20, )INa—P
< C(20,)1 pC]+Cqu S

tp—1

N2Nd/p

X ({meX [ZQW/HE )|}/ >t}) dt,

where C' and C; are independent of q. Moreover, it is easy to see that there is a constant
Cp,q independent of ¢ and N such that
N <C, alg — p)lfl/pQNd/(qu)'

Hence,
1£1194x) < C2C1)T g + Cq(2C1)1Ch P (g — p) /PP,

Noting that ¢*/9 < C and (q —p)~PU1-1/P)/a < Cp, where C' and C), are independent of g,
we have

1flzacx) < Cqt =7

and (5.32) holds for 2 < ¢ < 0.
This finishes the proof of Theorem 5.3.

Based on this theorem, we can now consider some limiting compact embeddings. Let
us first recall the definition of the spaces LP(log L), (X); see [6], [33], [24] and [1].

DEFINITION 5.2. Let (X, 0, t)q,0 be a space of homogeneous type as in Definition 0.1
with p(X) < oc.
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(i) Let 0 < p < oo and a € R. Then LP(logL),(X) is the set of all y-measurable
complex-valued functions f such that

[ 1£@)[P 1og™ (2 + | (2))) dia() < oc.

(ii) Let a < 0. Then L*(log L),(X) is the set of all p-measurable complex-valued
functions f for which there exists a constant A > 0 such that

| exp{ M £ (@) 7/} du(w) < oc.

This is just a special case of Definition 6.11 in [1, p. 252]; see also [24] for another
equivalent definition. By introducing some equivalent norms in these spaces, one can
show that if ]l <p<ooanda € R,orp=occand a <0, or p=1 and a > 0, then the
spaces LP(log L),(X) can be regarded as Banach spaces; see Theorem 8.3 in [1] and [6,
pp. 66-67]. One can also find some basic properties of these spaces in [6]. For example,
by the above definition, one can easily show the following proposition; see Proposition 1
in [6, p. 67].

PROPOSITION 5.2. Let (X, 0, 1t)a,0 be a space of homogeneous type with p(X) < oo.
(i) Let 0 < 0 < p < o0 and —oo < az < a; < co. Then
LPT7(X) C LP(log L)4, (X) C LP(log L)4,(X) C LP77(X),
LP(logL),(X) C LP(X) C LP(log L) _»(X).
(ii) Let —oo < by < by < 0. Then
L>°(X) C L™ (log L)y, (X) € L (log L)p, (X).

Moreover, one can show the following proposition by repeating the proof of Theorem
1 in Section 2.6.2 of [6]. We omit the details.

PROPOSITION 5.3. Suppose that 0 < p < 00, a <0 and pu(X) < co. Then LP(log L), (X)
is the set of all measurable functions f : X — C such that

g

1/p
(5.27) (o1l P 21 <00
0

(with the usual modification if p = c0) for e >0, and (5.27) defines an equivalent quasi-
norm on LP(log L), (X). Furthermore, (5.27) can be replaced by the equivalent quasi-norm

= 1/p
(5.28) {2 s ) <00
J:

(with the usual modification if p = o) for J € N. Here 1/p° = 1/p+o/d and o; = 277.

Now we can establish the following limiting compact embeddings; see Theorem 2.7.3
in [6].

THEOREM 5.4. Let (X, 0,1)a0 be a space of homogeneous type with p(X) < oo. Let
max(1l,d) < p < oo and a < 0.
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(i) The embedding
id : BY?(X) — L*(log L)a(X)
exists if and only if a < 1/p — 1, and it is compact if and only if a < 1/p — 1.
(ii) The embedding
id: Fiy?(X) — L= (log L)a(X)
exists if and only if a < 1/p — 1, and it is compact if and only if a < 1/p — 1.

Proof. The main idea of the proof is similar to that of Theorem 2.7.3 in [6]. We only
show case (i). Obviously, (5.28) in Proposition 5.3 is equivalent to

(5.29) I £1l Lo (tog £)a (x) ~ SUP JI fll i (x)
jeN

for a < 0. By (5.29), Theorem 5.3 and its proof, it is easy to see that
(5.30) id : BYP(X) — L*(log L)a(X)

exists and is continuous if a < 1/p — 1. On the other hand, if X is a bounded domain
in R” with C*° boundary, then Theorem 2.7.2 in [6] shows that the embedding in (5.30)
does not exist if @ > 1/p — 1 and is not compact if @ = 1/p — 1. We now show that if
a < 1/p—1, then id in (5.30) is compact. In fact, by Theorem 5.1, if max(1,d) < ¢ < oo,
then

id: Fiy9(X) — LY(X)
is compact. By Theorem 5.2, we have

d
BYr(X) = FYP(X) C Fig(X)

if max(1,d) < p < ¢ < co. Thus,
(5.31) id : BYP(X) — LY(X)
is compact. Then by (5.31) and (5.29), we can easily show that (5.30) is compact if

a<l/p—1.
This finishes the proof of Theorem 5.4.

We now turn to estimating the entropy numbers for the compact embeddings in
Theorem 5.4. We will consider more general cases. We first claim that if 1 < p < oo,
s> 0and 1 < p° < oo, then the embedding

(5.32) id : Bp.;(X) — LP(X)
is continuous. In fact, by (5.1), Theorem 5.2 and Lemma 1.10, we have
Bj.1(X) C Fop(X) C Fh(X) = LP(X).

Noting that (5.1) is true even when u(X) = oo, we know that (5.32) is true for both
w(X) = o0 and p(X) < co. But, even when p(X) < oo, the embedding in (5.32) cannot
be compact; see (21.2) in [33]. However, if we replace LP(X) by L?(log L),(X) with some
a < 0, we get a compact embedding. In fact, we will give a similar result to Theorem
21.7 in [33], which is more general than this claim. We need the fact that if u(X) < oo,
0<o<s,p’>1and 1< g < o0, then
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(5.33)  en(id: Bs. (X) — P’ (X)) < C§—1-2(1/p°=1/p%) j.—6/d+1/p —1/p°
< CJ—1—2(s—a)/dk—s/d < C/U—l—Qs/dk—s/d

for all k € N, where 6 = s — d/p® + d/p° = o and positive constants C' and C’ are
independent of . (5.33) can be proved similarly to (i) of Proposition 5.1 by replacing
Theorem 9.2 in [33] by Corollary 9.4 in [33]; see also (21.14) in [33].

THEOREM 5.5. Let (X, 0,1)a0 be a space of homogeneous type with p(X) < oo. Let
1l<p<oo,s>0,p°>11<g< o and a < —1—2s/d. Then the embedding of
By (X) into LP(log L)a(X) is compact and
ex(id : BS.,(X) — LP(log L)a(X)) ~ k~*/*  for all k € N.

The proof is a literal repeat of Theorem 21.7 in [33] by replacing (21.14) and (21.4)
in [33], respectively, by (5.33) and
(5.34) ex(id : By (X) — L7 (X)) ~ k—/1
for all k € N, where 0 < 0 < s, p* > 1 and 1 < ¢ < c0. (5.34) is a simple corollary of
Theorem 5.1.

Similarly to Corollary 21.10 in [33], by Theorem 5.5, Proposition 5.1 and Proposition
5.3, we can also deduce the following corollary; see [33, pp. 178-179] for the details.

COROLLARY 5.1. Let (X, 0,1)a0 be a space of homogeneous type with u(X) < oo. Let
l<p<oo,s>0,p°>1and —(d+2s)/d < a<0. Then the embedding of B;.;(X) into
LP(log L)o(X) is compact and for any € > 0, there is a constant C. > 0 such that

ex(id : By (X) — LP(log L)o(X)) < Cek##7°%S for all k € N.

6. Relations with Sobolev spaces on metric spaces

Now let ¢ in Definition 0.1 be a metric. In this case, we can choose # = 1 in (0.2). Then
(X, 0,1t)a,1 is an Ahlfors d-regular metric measure space if we further assume the Borel
measure f to be a Borel regular measure; see [25, p. 62]. But, for the rest of this section,
it is enough to assume that p is just a finite positive Borel measure. In this section, for
such an Ahlfors d-regular metric measure space, we discuss the relationship between the
spaces W1P(X, o, 1) for 1 < p < oo defined by Hajlasz in [14] and the spaces By, (X)
and F5 (X). Let us first recall the definition of W (X, g, u1); see [14], [16], [15] and [25].

DEFINITION 6.1. Let (X, o, i) be a metric space (X, o) with a finite positive Borel mea-
sure p and p(X) < oo. Let 1 < p < co. The Sobolev space WP(X, o, 1) is defined by

WP (X, 0, 1) = {u € LP(X) : there is a set E C X, u(FE) =0,
and a function g > 0, g € LP(X) such that

u(z) —u(y)| < o(x, y)(g9(x) + g(y)) for all 2,y € X \ E},
where g is called a generalized gradient of u. Moreover, we define

Hu||W1=P(X,g,u) = HUHLP(X) +ifglf ||9||Lp(x),

where the infimum is taken over all generalized gradients of u.
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The theorem below clears up the relationship between WP (X, o, ) and the spaces
Bz, (X) and F5,(X).
THEOREM 6.1. Let (X, 0,1)q,1 be an Ahlfors d-regular metric measure space with pu(X)
< 0o. Then

(i) WhP(X, 0, 1) C Bj,(X) for 1 <qg<oo,1<p<ooand—-1<s<I;

(i) WP (X, o, pu) C F5(X) for 1 < g <o0,1<p<ooand —1<s<1.

Proof. Let {S;}72, be an approximation to the identity as in Definition 1.2 (or Remark
1.1) with e = 1. Let Ej, = S, — Sg_1 for k € Nand Ey = Sp. Let f € WYP(X, o, 1) and g
be any generalized gradient of f. We first establish the estimates

(6.1) |Eo(£)(@)] < Cp(@) P\ flleo(x)s
(6.2) |E;(f)(z)] < C277M(g)(z) for j €N,

where M is the Hardy-Littlewood maximal function on X and C in both (6.1) and (6.2)
is independent of z, j, f and g.
For (6.1), by Holder’s inequality and (i) in Definition 1.2, we have

[Bo(£)@)| = | | Bo(w,9) £ () dulw)| < C § 1£w)] dpy) < Cu(X) 7)o
X X

For (6.2), since j € N and {, Ej(x,y) du(y) = 0, we have

D) = | | Bila.y)f () duty)| = \ (@) () — F@)] dp(y)
X

< 0277 | |Ej (2, y)|(9(x) +g<y>> du(y)
X

< C27{g(x) + M(g)(2)} < C27 M(g)(x).

Now let f € WYP(X, o, 1) and g be any generalized gradient of f. Then, by (6.1) and
(6.2), we have

1/
1115, ) —H{sz\E (@)}

< 1B + [{ 21 (1)

Lr(X)

Lr(X)

R 1/q
< Ol + C{ o201} Uil < Gl + s,
j=1

P(X)

since s < 1 and M is bounded on LP(X) for 1 < p < oo; see Theorem 2.2 in [25] and
Theorem 14.13 in [15]. By taking the infimum over g, we obtain

/]

where C' is independent of f. This proves (ii). The proof of (i) is similar.
This finishes the proof of Theorem 6.1.

Fa,(x) S Cllfllwrrx,om);
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7. Quadratic forms

In this section, we give some applications of the estimates of entropy numbers obtained in
Section 5 to the spectral theory of positive-definite self-adjoint operators relative to some
quadratic forms. The main ideas come from [33]. See [36] and [35] for more applications.

Let us recall some basic facts of [6] and [33]. Let B be a (complex) quasi-Banach
space and T be a compact operator on B. Edmunds and Triebel [6] have shown that
the spectrum of T', apart from the point 0, consists only of eigenvalues of finite algebraic
multiplicity; see also [37] for the case of Banach spaces. Let A be an eigenvalue of T
and I be the identity operator on B. The algebraic multiplicity of A is defined to be the
dimension of the space J,—; ker(T — AI)¥; see [6]. Let {ux(T)}ren be the sequence of
all nonzero eigenvalues of T', repeated according to algebraic multiplicity and ordered so
that

(7.1) (1 (T)| = [p2(T)] = ... — 0.

If T has only m € N different eigenvalues and M is the sum of their algebraic multiplici-
ties, then let p,(T) = 0 for all n > M.

The following inequality, called Carl’s inequality, connects spectral properties of com-
pact operators with their geometry described in terms of entropy numbers.

LEMMA 7.1. Let B be a (complex) quasi-Banach space and T be a compact operator on
B. Let {pi(T)}ren be the sequence of all nonzero eigenvalues of T, repeated according
to algebraic multiplicity and ordered as in (7.1). Then for all k € N,

(7.2) o (T)| < V2er(T).

If B is a (complex) Banach space, (7.2) was obtained by Carl [2]. Lemma 7.1 was
proved by Edmunds and Triebel [6]. This inequality plays a key role in applications of
estimates of entropy numbers to estimates of the eigenvalues for differential operators;
see [33], [6], [36] and [35].

We also need to use approximation numbers; see [33, pp. 191-192] and [6] for some
basic properties of approximation numbers.

DEFINITION 7.1. Let A and B be complex quasi-Banach spaces and let T be a bounded
operator from A into B. Then

ap(T) =inf{||T — S| : S € L(A, B), rank S < k}, keN,
is the kth approxzimation number of T', where rank .S is the dimension of the range of S.
Let (X, o, t)q,0 be a homogeneous type space as in Definition 0.1. For |s| < 0, we let
H?(X) = B3, (X) = F5,(X).
Then H?(X) is a Hilbert space with scalar product
(o9 a0 = HIF + 9120y = 1 = 93y + 1 + gl ) — ilLF = gl )}

for all f,g € H*(X); see [32, p. 95] or [33, p. 193]. If 0 < s < 6, by Proposition 1.2 and
Lemma 1.10, we have F3,(X) C F,(X) C L?(X) and there is a constant C' > 0 such
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that
(7.3) I fllz2x) < Cllfllas(x)
for all f € H*(X). Thus, according to §24.2 in [33],
a(fag):(fag)Hs(X)v D:HS(X)a
is a closed quadratic form in the Hilbert space L?(X). Let A, be the related self-adjoint
operator according to (24.9) in [33], namely,
a(fa g) = (Ai/2fa Ai/Qg)Lz(X)
forall f,g € dom(Ai/2) = H*(X). By (7.3), this operator is positive-definite and we have
IAY2 fll 2 xy = 1)l (x),  dom(AY?) = H(X).

The following theorem is a version of Theorem 25.2 of [33] in spaces of homogeneous
type.

THEOREM 7.1. Let (X, 0, 1)a0 be a homogeneous type space with u(X) < oo. Let 6 >
s> 0 and let Ag be the operator as above, in particular,

(f,9)msx) = (Asf,9)12(x), [ € dom(Ay), g€ H*(X).
Then A is a positive-definite self-adjoint operator in L*(X) with pure point spectrum,
and there are two numbers 0 < C7; < Cy < oo with
(7.4) C1k*/% <y, < Cok*/?, k€N,
where pui’s are the eigenvalues of As ordered by (7.1).
Proof. We follow the proof of Theorem 25.2 in [33]. The eigenvalues of the nonnegative
compact self-adjoint operator AQI/Q in L2(X) are v, = MISI/Z. Furthermore, A;l/z is an
isomorphism from L?(X) onto H*(X). Thus, since
(7.5)  ATV2(Lo(X) — La(X)) = id(H*(X) — L*(X)) 0 A;V2(LA(X) — H*(X)),
(7.3), Theorem 5.1 and Lemma 7.1 imply that

v < Cep(id : H¥(X) — L*(X)) < Ck™*/4, keN.

This proves the left hand side of (7.4).

We now prove the converse assertion. We use the construction in the proof of Theorem
5.1; see also Step 2 of the proof of Theorem 20.6 in [33]. Let the notation be as in the
proof of Theorem 5.1. In particular, we define the linear operator A from 2j(s_d/2)léwj
to H*(X) and the linear operator B from L?(X) into 2‘jd/2lé\/lj as in that proof. Note
that 279/2¢(27 o(x, 27)) is an e-block for @7, multiplied with an unimportant normalizing
constant. By Theorem 1.1, we now have

[A{ar :7=1,..., M}mo(x) < C2C7 Y2 | {ar 7 = 1,0, M| oy,
2
where C' is independent of j. Now, by the proof of Theorem 5.1, we also have
1B lpe; < C2V2f L2,

where C' is independent of j. Thus, A and B are bounded linear operators with operator
norms independent of j. Moreover, if we let id” be the embedding from 27(s—4/ 2)lé\4 7 into
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2*jd/2léwj and id be the embedding from H*(X) to L?(X), then, by (5.13), we have
id?” = Boid o A and consequently, by the multiplication properties of the approximation
numbers which may be found e. g. in [33], (24.13), we have

(7.6) ay(id?) < Cay(id)

for all k € N, where C is independent of j and k. It is easy to see that id’ has the
same approximation numbers as the embedding from 2jsléwj to léwj. By (7.5), (7.6) and
Proposition 24.5(iii) of [33], we obtain

ay(id’ : 23'3[;\4]' — léwj) <cy, keN.
Hence by Proposition 24.5(ii) of [33] with k = M; — 1 ~ 299, we have
279 < C'vggia, jEN.

This proves the right hand inequality of (7.4) and finishes the proof of Theorem 7.1.
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