INTRODUCTION

In recent years, the theory of measurability of multifunctions (loosely speaking, set-valued
functions) has been developed extensively, with important applications in differential in-
clusions, mathematical economics, optimal control and optimization (see [1], [3], [16],
[21], [29], [33], [36], [37], [38], [45], [46], [57], [89], [90], [91], [94], [98], [100], and else-
where).

In various problems, one encounters measurability of multifunctions of two variables.
Obviously, each multifunction of two variables x € X and y € Y may be treated as a
multifunction of the single variable (x,y) € X X Y. The essential difference is the pos-
sibility of formulating hypotheses concerning the multifunction in terms of its section-
wise properties. In this case, we can speak about product (sometimes called joint) mea-
surability and superpositional measurability (sup-measurability for short), i.e., roughly
speaking, measurability with respect to the product o-field and measurability of the
Carathéodory type superposition F(z, G(x)), respectively, where F and G are multifunc-
tions.

In the single valued version, the problem of product measurability and sup-measu-
rability has been studied very extensively in the last 40 years. An overview of some
papers in this field can be found in [41]. Far less is known, however, in the multivalued
case, although in various fields of mathematics and its applications, the superposition
F(z,G(x)) occurs frequently (see for instance [1], [3], [21], [46] and [89]).

The difference between sup-measurability and joint measurability is essential. In gen-
eral, neither of the inclusions between the class of joint measurable multifunctions and
the class of sup-measurable multifunctions is true. It is easy to define a joint Lebesgue
measurable real function that is not sup-measurable [106]. On the other hand, Grande and
Lipiniski have given an example of a sup-measurable real function which is not measurable
as a function of two variables [44].

Several joint measurability results have been proved for single valued functions of two
variables ([40], [41], [17], [18], [23], [24], [78], [80], [84] and others). It is well known that
if (X, M(X)) is a measurable space, Y is a separable metric space and Z is a metric
space, then a Carathéodory function f : X x Y — Z (i.e., loosely speaking a function
measurable in the first and continuous in the second variable) is measurable with respect
to the product of the o-field M(X) and the Borel o-field of Y. This result was also proved
in the case of a multifunction ([111], [116]). Unfortunately, without additional hypotheses,
this result cannot be extended to multifunctions with a weaker semicontinuity assumption
in place of continuity. Many new features appear in this case which are “hidden” in the
single valued theory.

(5]
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The problem of sup-measurability was for the first time considered by Carathéodory
in his book [11]. He formulated a sufficient condition for sup-measurability of a function
f : R? — R, namely, measurability as a function of the first variable for any y € R and
continuity as a function of the second variable, for almost every x € R. Certain conditions
for sup-measurability of functions in abstract spaces have been presented by Shragin in
[106]. Several results on sup-measurability of real functions are given by Grande in [41]
and [39].

The purpose of this paper is to prove some new product measurability and sup-
measurability results concerning multifunctions.

The present monograph consists of three chapters. Chapter 1 and Chapter 2 are
divided into sections: the first one into Sections 1-6, and the second one into Sections
7-11.

In Chapter 1, we collect material that will be used in the next chapters: notation and
terminology (Section 1), facts known in the literature (Sections 2 and 3), and facts which
are new for multifunctions of one variable (Sections 4, 5 and 6).

In Section 4, we start from the idea of the density of sets in a metric space with
respect to some differentiation basis, generating a density topology in this space, then
introduce the concept of approximate continuity of multifunctions and prove some basic
properties of such multifunctions.

Strong quasi-continuity has been considered in the literature, first by Noiri [88] for
functions and then by Neubrunn [85] for multifunctions; there, it meant continuity relative
to the a topology of a topological space. In the case of real functions, such strong quasi-
continuity coincides with the usual continuity (see [85]).

Strong quasi-continuity of real functions was also considered by Grande in [43] but
in a different sense. His definition of strong quasi-continuity is based on the density
topology in the space of real numbers. In Section 5, we generalize this notion to the case
of multifunctions (in abstract spaces) and show that a multifunction which is strongly
quasi-continuous is almost everywhere continuous.

Many steps have been taken toward differential calculus for multifunctions, among
them one by Hukuhara [53] and another by Banks and Jacobs [5]. In Section 6, the
notion of differentiability is developed, taking advantage of an idea used by Hukuhara
to give a definition of differentiability for a reasonably wide class of multifunctions. But
the study of differentiability of multifunctions is not the purpose of this paper. We give
only some properties needed later on. We consider multifunctions from an interval to a
real reflexive normed linear space. In this case, the derivative of a multifunction at a
point is a closed convex and bounded set. This is essential for further considerations.
The concept of m-differentiability of multifunctions discussed by Banks and Jacobs is
presented, taking advantage of Radstrém’s embedding theorem. In this case the derivative
of a multifunction at a point is a continuous linear mapping. (A comparison of the two
notions of differentiability is given.) Furthermore, a notion of a derivative multifunction
is introduced, making use of the notion of integral given by Banks and Jacobs in [5].

As we are mainly interested in multifunctions of two variables, we study such multi-
functions in Chapters 2 and 3.
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Chapter 2 is devoted to product measurability of multifunctions. In Section 7, a par-
ticular emphasis is put on the possibility of replacing continuity in the second variable of
a Carathéodory multifunction by a weaker assumption, keeping product measurability.
Among these possibilities, we show that in metric spaces, continuity relative to a cer-
tain topology, finer than the metric one, yields product measurability. It also preserves
additional features.

Section 8 is concerned with joint measurability of a multifunction in a metric space
whose sections are approximately semicontinuous with respect to some differentiation
basis. These results were inspired by the results of Grande [41] for real functions. Some
new properties arise in the case of multifunctions.

The classical result of Kempisty concerning quasi-continuity of real functions which
are quasi-continuous with respect to both variables has been extended to a class of mul-
tifunctions [85]. Roughly speaking, the upper (resp. lower) quasi-continuity of a multi-
function in the first and both upper quasi-continuity and lower quasi-continuity in the
second variable imply its upper (resp. lower) quasi-continuity. By the example of Marcus
[79], such a multifunction need not be product measurable.

If, in the notion of a Carathéodory multifunction, we replace the continuity in the sec-
ond variable by semicontinuity, we obtain a semi-Carathéodory multifunction. In general,
a multifunction which is semi-Carathéodory need not be product measurable (even if it
is compact valued). In Section 9, we show that a lower semi-Carathéodory multifunction
which is upper quasicontinuous in the second variable is product measurable.

The situatoin is different for the strong quasi-continuity considered by Grande in [43].
There exists a real function, strongly quasi-continuous in both variables, which is not
strongly quasi-continuous (as a function of two variables). But it turns out that such a
function is product measurable.

Section 9 is also devoted to the product measurability of a multifunction (in a met-
ric space) which is measurable in the first and both upper strongly quasi-continuous
and lower strongly quasi-continuous with respect to a differentiation basis in the second
variable.

In Section 10 we introduce a concept of multifunctions (with values in a Banach space)
with the (J) property, which may be considered as a multivalued counterpart of the (J)
property for real functions given by Lipiriski [78]. We show that a multifunction with the
(J) property which is a derivative in the second variable is product measurable.

We conclude that chapter by introducing multifunctions having the Scorza-Dragoni
properties which have close connections with product measurable multifunctions.

The last chapter, Chapter 3, is concerned with sup-measurability of multifunctions.
Shragin [106] introduced a property of normalization of functions between Borel mea-
surability and Lebesgue measurability of functions of two variables and proved that any
normalized function is sup-measurable. This theorem was generalized by Zygmunt to the
case of multifunctions [118], i.e., measurability with respect to the product of a o-field
and the o-field of Borel sets ensures sup-measurability.

In Chapter 3, we begin with sufficient conditions for sup-measurability of multifunc-
tions which are consequences of theorems of Chapter 2 and Zygmunt’s theorem.
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Product measurability with respect to a o-field more general than that required in
Zygmunt’s theorem need not ensure sup-measurability of a multifunction. We present
some ways to reinforce the product measurability with additional assumptions on the
sections of the multifunction which do secure its sup-measurability.

It is easy to see that, in some spaces, a compact valued Carathéodory multifunction is
sup-measurable. This result can be extended to a general class of multifunctions. It turns
out that if the continuity of a Carathéodory multifunction in the second variable is re-
placed by a more general condition (for instance, R-integrability), then the multifunction
will still be sup-measurable.

In general, a multifunction which is semi-Carathéodory need not be sup-measurable
(even if it is compact valued). But if a lower semi-Carathéodory multifunction is moreover
assumed to be upper quasi-continuous in the second variable, then it is sup-measurable.
Furthermore, we show that a multifunction with the (J) property which is a derivative
in the second variable is sup-measurable. Finally, some additional density properties of a
product measurable multifunction which ensure its sup-measurability are considered.

Definitions, lemmas, theorems, corollaries, examples and remarks are numbered con-
secutively, but separately within each chapter; thus Theorem 1.2 means the second the-
orem in Chapter 1. Independently, some important mathematical facts (easy conclusions
or known facts) useful later are numbered (also separately within each chapter); thus
(2.7) means some statement in Chapter 2.

Proofs are included, as usual, when the assertions are more general than those which
have appeared in the literature or when, in my opinion, the result is not known or the
proof is simpler than the known one. Otherwise, the reader is referred to the corresponding
papers. Numbers in square brackets refer to the bibliography at the end of the monograph.



1. PRELIMINARIES

1. Notations, basic definitions and properties

By means of this chapter, we want to make sure that the reader has become acquainted
with the language and useful facts on multifunctions of one variable, needed when we
start the main subject in the next chapters. Things will be presented in resonable gen-
erality.

We will use standard notations. In particular, the sets of positive integers and real
numbers will be denoted by N and R, respectively. R” will denote the n-dimensional
Euclidean space, L(R™) the o-field of Lebesgue measurable subsets of R™ and m,, the
Lebesgue measure on L(R"™) (we will simply write m instead of m). Capital calligraphic
letters will usually denote collections, families or classes of sets.

Let S and Z be nonempty sets and let ® be a mapping which associates to each point
s € S a nonempty set ®(s) C Z. Such a mapping is called a multifunction from S to Z,
and we write ® : S ~» Z. As a rule, we will denote functions by f, g, h, ¢, ¥, etc., and
multifunctions by capital letters F', G, H, ®, ¥, etc.

The graph of a multifunction ® is defined by
(1.1) Gr(®) ={(s,2) € S x Z:z € ¥(s)}.

Let P(Z) denote the family of all subsets of Z and Py(Z) the subfamily of all nonempty
subsets of Z. We will sometimes consider a multifunction ® as a function from S to
Po(Z). This will always be explicitly indicated in order to avoid vagueness. For instance,
the graph of a multifunction ® from S to Z is a subset of S x Z (see (1.1)), whereas
the graph of a function ® from S to Py(Z) is a subset of S x Py(Z), namely {(s, P) €
SxPy(Z): P=2®(s)}.

If ®: S~ Z is a multifunction, then for a set A C Z two inverse images of A under
® are defined as follows:

(1.2) PT(A)={se€S:P(s)C A} and @ (A)={scS:Pd(s)NAH#N}.
One sees immediately that
P (A) =8\ P (Z\A) and dT(A)=8\d (Z\ A).

Furthermore, if Z is a set of indices and B; C Z for i € Z, then

0]
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(1.3) o~ ( U BZ-) - Jo By
i€T i€T
Since always ®1(A) C & (A) for A C Z, sometimes & (A) and &~ (A) are denoted
by ®°(A) and ®¥(A) and called strong and weak counterimages of A, respectively. If @
is treated as a function, then, as usual,

(1.4) P HG)={scS:®(s)cG} forGcCPy(Z).
The image of a set B C S under @ is defined by

(1.5) o(B) = @)

beB
Any function ¢ : S — Z such that ¢(s) € ®(s) for each s € S is called a selection of the
multifunction ® : S ~~ Z.

A function f : S — Z may be considered as a multifunction assigning to s € S the
singleton {f(s)}. It is clear that in this case we have f*(A4) = f=(A) = f~1(A) for
AcCZ.

If (Z,7(Z)) is a topological space and A C Z, then we will use the notations Int(A),
Cl(A) and Fr(A) for the interior, closure and boundary of A, respectively. Furthermore,
we will denote by B(Z) the o-field of Borel subsets of Z and by F,(Z) and G5(Z) the
first additive and multiplicative class, respectively, in the Borel hierarchy of subsets of the
space (Z,7(Z)). By a Polish space we mean a separable space metrizable by a complete
metric. If (Z,7(Z)) is metrizable and Z is a continuous image of a Polish space, then we
will say that (Z,7(Z)) is a Suslin space. We will write (for short) that Z itself is a Polish
(resp. Suslin) space.

We also introduce the following notations:

C(Z)={A e Py(Z): Ais closed};

K(Z)={A€C(Z): Ais compact};
Co(Z)={A€C(Z): Ais bounded}, whenever (Z,p) is a metric space;
Coe(Z)={A € Cp(Z): Ais convex} and K.(Z)={A€K(Z): A is convex},
whenever (Z, ] - ||) is a real normed linear space.

If zp € Z, then we will use B(zp) to denote the neighbourhood filterbase of zy. The
grill of B(zg) (see [6, p. 12]) will be denoted by G(zp); it consists of all sets A(zg) C Z
such that A(zo) N U(zg) # 0 for each U(zg) € B(zp), i.e., z0 € Cl(A(20)).

If (Z, 9) is a metric or pseudometric space, 29 € Z and A C Z, then, as usual, we will
denote by B(zg,r) the open ball centred at zp with radius r > 0 and B(A,r) ={z € Z:
o(z, A) < r}, where o(z, A) = inf{o(z,y) : y € A}. The topology on Z generated by the
metric g will be denoted by 7,(Z).

If (Z,6) is a hemimetric space (i.e., § is a pseudometric which fails to be symmetric),
then the open ball will be denoted as in the case of a metric or pseudometric. If interior
points and open sets are defined in the usual way for hemimetric space (Z,§), then the
family of all open sets is a topology on the space Z.
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2. Continuity of multifunctions

Various definitions of continuity of multifunctions are given in many papers. They all
reduce to the usual continuity if a single valued function is considered. We now state two
different definitions of continuity for multifunctions which we shall use in this monograph.

Let (Z,7(Z)) be a topological space. The topology on Z allows us to define various
topologies on Py(Z) and each one yields a corresponding notion of continuity of a multi-
function. Following Michael (see [83, Appendix, p. 179]), the upper (resp. lower) semifinite
topology on Py(Z) is the topology obtained by taking as a basis (resp. sub-basis) for the
open sets all collections of the form U = {A € Py(Z) : A C G} (resp. L={A € Py(2) :
ANG # 0}) with G € T(Z); we denote it by Ty (resp. 7z). The finite (or Vietoris)
topology on Py(Z) is the join of both these topologies and is denoted by 7y .

If we try to adapt to multifunctions the following two equivalent definitions of conti-
nuity of a function f: R — R at a point g € R:

(i) YU(f(z0)) U (w0) € B(xo) U(xo) C f~(U(f(w0)),
(ii) Ve > 035 > 0 Va|r — zo] < 6 = |f(z) — f(z0)| <,

then we obtain two notions of continuity which are no longer equivalent. This unfortunate
situation led to two concepts of semicontinuity.

Let (S,7(S)) and (Z,7(Z)) be topological spaces. We will call a multifunction ® :
S ~» Z upper (resp. lower) semicontinuous at a point so € S if, for any open set G C Z
such that ®(sg) C G (resp. ®(s9) N G # 0), there exists a U(sg) € B(sg) such that
U(sg) € ®1(GQ) (resp. U(sg) C (G)); @ is called continuous at so € S if it is both
upper and lower semicontinuous at sg.

® is called continuous or upper (resp. lower) semicontinuous if it is continuous or
upper (resp. lower) semicontinuous at each point s € S.

Note that for a set G C Z, @1 ({A € Py(Z2) : A C G}) = &7(G) and &' ({4 €
Po(Z): ANG # 0}) = &7 (G) (see (1.2) and (1.4)). Thus we can say that

(1.6) If(S,7(S))and (Z,7(2)) are topological spaces and sy € S, then a multifunction
® : S~ Z is upper (resp. lower) semicontinuous at s if and only if the function
®:S — (Po(Z),Ty) (vesp. ® : S — (Po(Z),7z)) is continuous at so; P is
continuous at sp if and only if the function ® : S — (Py(Z), 7y ) is continuous
at sg.

Note that the definition of continuity or semicontinuity of a multifunction is more
handy than the condition (1.6), since we do not need to indicate the topology on Py(Z)
(the topology on Z is sufficient).

Evidently, in the case of a single valued function the upper semicontinuity and lower
semicontinuity as well continuity coincide with the usual notion of continuity.

The next definition of semicontinuity of a multifunction is based on the Hausdorff
metric extended to Py(Z). If (Z, o) is a metric space, we can introduce the topology on
Po(Z) generated by the hemimetric h,, defined by

(1.7) hy(A, B) = sup{o(z, A) : © € B},
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called the upper hemimetric topology on Py(Z), and denoted by 7j,. Dually, we can
introduce the lower hemimetric topology 71, generated by the hemimetric h; defined by

(1.8) hi(A, B) = sup{o(z,B) : x € A}.
The function h on the product Py(Z) x Po(Z) given by
h(A, B) = max{hy(A, B), (A, B)}

is a pseudometric on Py(Z) and it generates the Hausdorff topology on Py(Z) denoted
by 7. Of course the space (C(Z), h) is a metric space. Note that

(1.9) (i) 7n, C Ty and Tz C Tp,, and the converse inclusions are not true, in general
[568, Proposition 4.2.1].
(ii) The topological spaces (K(Z),7v) and (K(Z),7s) are equivalent (see [63,
p. 21]).

If (S,7(5)) is a topological space and (Z, p) a metric space, then a multifunction
® : S~ Z is called hemi-upper (h-upper for short) semicontinuous at a point sg € S
if, for each ¢ > 0, there exists a U(sg) € B(so) such that ®(s) C B(®(so),¢) for all
s € U(so).-

Dually, ® is called hemi-lower (h-lower for short) semicontinuous at a point sg € S
if, for each ¢ > 0, there exists a U(sg) € B(so) such that ®(so) C B(®(s),¢) for all
s € U(so).-

® is called hemi-continuous (h-continuous for short) at so € S if it is both h-upper and
h-lower semicontinuous at sg; ® is called h-continuous if it is h-continuous at each s € S.

Note that in the context of (1.7) and (1.8) we can say that

(1.10) If (S,7(S)) is a topological space and (Z, ¢) is a metric space, then a multi-
function ® : S ~» Z is h-upper semicontinuous at a point sg € S if and only if
the function ® : S — (Py(Z), h,,) is continuous at sg; that is, for each € > 0,
there exists a U(sg) € B(sg) such that h,(®(s), ®(so)) < € for all s € U(sp).
® is h-lower semicontinuous at sy € S if and only if the function ® : S —
(Po(Z), h;) is continuous at so; that is, for each € > 0, there exists a U(sg) €
B(sp) such that h;(P(s), P(so)) < € for all s € U(sop).

As a consequence of (1.9), we have the following properties.

(1.11)  Let (S,7(S)) be a topological space, (Z, ) a metric space and ® : S ~ Z a
multifunction.

(i) If ® is upper semicontinuous, then it is h-upper semicontinuous.
(ii) If @ is h-lower semicontinuous, then it is lower semicontinuous.
(iii) If @ is compact valued, then its upper (resp. lower) semicontinuity and
h-upper (resp. h-lower) semicontinuity are equivalent.

In cases (i) and (ii), the converses are not true.

The definition of equicontinuity of a family of real functions can be extended to mul-
tifunctions in the following way. Let {®;};cz be a family of closed valued multifunctions
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O, : S~ Z i €T, where T denotes a set of indices. The family {®;};c7 is called h-
lower (resp. h-upper) equicontinuous at a point sy € S if, for each £ > 0, there exists
an open neighbourhood U(sg) of sy such that s € U(sg) implies ®;(s9) C B(P,(s),¢)
(resp. (®;(s) C B(®;(s0),¢)) for each i € T.

The family {®;};c7 is called h-equicontinuous if it is both h-upper and h-lower
equicontinuous at each s € S.

There are several ways of defining convergence in Py(Z) and in consequence its con-
nections with continuity.

If (Z,0) is a metric space, then a sequence (®,,),ecn of closed valued multifunctions
®,, 1 S ~ Z is called converging to a multifunction ® : S ~» Z if for each s € S the
sequence (D, (s))nen converges to ®(s) with respect to the Hausdorff metric h generated
by 0. We will write ® = h-lim,,_, o, ®,,.

It is clear that

(1.12) If s € S and ®(s) = h-lim, 00 Py (s) then o(z, D(s)) = lim,, o0 0(2, P (s)) for
each z € Z.

Throughout the paper, convergence in the space C(Z) will be convergence with respect
to the Hausdorff metric h.

The set valued notions of limits are rooted in the concepts of lower and upper limits
of filtered families of sets (see [6, p. 125]).

Let (S,7(S)) and (Z,7(Z)) be topological spaces. Let ® : S ~» Z and s¢g € S. Then
R = (®(s) : s € S,B(s0)) forms a filtered family of sets [6, Example 3, p. 126]. The
set of all limit points of R is called the lower pseudo-limit of ® at sy and is denoted by
p-liminfs .5, ®(s). The set of all cluster points of R is called the upper pseudo-limit of ®
at s and denoted by p-limsup, . ®(s) (for the justification of “pseudo” see [6, p. 130]).

It is known [6, Theorems 1 and 1’, p. 127] that

(113) (i) p-limsup &(s) = N CI(U ))

U€B(so) seU
(ii) p- hsrglgr(}f@ ﬂ Cl ( U ))
A€eG(so) s€A

Let B be a basis of 7(5) and sg € S. Let us replace the grill G(sp) in (1.13)(ii) by the
family
(1.14) A(sg) ={V e B:sy € Cl(V)}

and denote the resulting operation by g-liminf,_, s, ®(s), i.e.,

(1.15) g liminfa(s) = () c1((Ja(s)).

We have o VEA(s) €V
(1.16) (i) p-liminf, ., ®(s) C g-liminf,_,, ®(s) C p-limsup, ., P(s).
(i1) If (Z,7(Z)) is regular and ® is closed valued, then
p-liminf ®(s) = ®(sg) = p-limsup P(s)
s—Sgo 5— 50

at each continuity point so € S of ® (see [76, Theorem 1.5]).
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For a multifunction ® we denote by D(®), D;(®) and D, (P) the sets of all its dis-
continuity, lower discontinuity and upper discontinuity points, respectively. It is evident
that
(1.17) {s0 € S : g-liminf ®(s) # p-limsup ®(s)} C D(P).

s— 380

s—S0

The following lemma will be useful (cf. [64, p. 182]).

LEMMA 1.1. Let (S,7(S)) be a topological space and let (Z,T(Z)) be a second countable
topological space with a base B = {Bp}nen. Then for a multifunction ® : S ~ Z we
have:

() Di(®) = Upen(®™(Bn) \ Int (¢ (By)))-
(ii) Let A= {(nk,1,Mk2,. - k) : ks €N fori=1,...,5(k) and k € N}. If ® is
compact valued, then

Dy (®) = [J (@7 (Vi) \ Int(2* (VA))),

keN
where Vi =\ {Bn,, :i=1,...,j(k) AN By, , € B} forkeN.

3. Measurability of multifunctions

Apart from semicontinuous multifunctions, measurable multifunctions will be very im-
portant in the following. Throughout this section we will denote by (S, M(S)) (resp.
(S, M(S),p)) a measurable (resp. a measure) space (with a nonnegative measure y on
M(S)). A set N C S will be called u-negligible if there is an M(S)-measurable set A
(iie. A € M(S)) such that N C A and p(A) = 0. The measure u is complete if any
p-negligible set N C S is M(S)-measurable. The o-field M(S) is complete if there is a
complete measure p on M(S).

If A is a family of sets, then we denote by S(.A) the family of sets obtained from .4
by the Suslin operation.

(1.18)  If M(S) is complete with respect to a o-finite measure, then it is closed under
the Suslin operation, i.e., S(M(S)) = M(S) (see [31, 6B(d), 1G and 1H(c)]).

By the completion of M(S) with respect to a measure p on M(S) (u-completion for
short) we mean the o-field M,,(S) generated by M(S) and the p-negligible sets in .S. The
measure ;¢ admits a unique extension to M, (S). Thus the o-field M, (S) is complete.

If (S, 7(S)) is a topological space and M (SS) is a o-field of subsets of S, then a measure
won M(S) is called regular (resp. Gs-regular) if, for every € > 0 and for each A € M(S),
there is a closed set A; C S and an open set Ay C S (resp. 41 € F,(S) and As € Gs(S))
such that A1 C A C A, and for any B € M(S) such that B C Ay \ A; we have u(B) < ¢
(resp. p(B) = 0). In the case B(S) C M(S), the measure i is regular (resp. Gs-regular)
if u(Az\ A1) < e (resp. u(A2\ A1) =0).

If (T, M(T)) is also a measurable space, then M(S) ® M(T) will denote the product
o-fieldin S x T, i.e., the o-field of subsets of S x T" generated by the family of sets A x B,
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where A € M(S) and B € M(T). We shall denote by projg the projection map from
SxTtoS.

We will say that the pair ((S, M(S));(T,7(T))), where (T,7(T)) is a topological
space, has the projection property if projg(A) € M(S) for each A € M(S) ® B(T).

If T is a Suslin space and A C S x T, then projg(A) € S(M(S)) provided A €
S(M(S) ® B(T)) (see [15]). Therefore, by (1.18) (cf. [20, Theorem 3.4] or [14, Theorem

I11.23]), we have the following assertion.

(1.19) If T is a Suslin space, then ((S, M, (S),n);T), where u is o-finite, has the
projection property.

The theory of measurability of multifunctions, developed by numerous authors ([4],
[12], [14], [20], [49], [52], [54], [65], [94], [99], and others), focuses almost exclusively on
multifunctions defined on an abstract measurable space and with values in a metrizable
space. We describe measurability of multifunctions without any metrizability assumption.

Let (S, M(S)) be a measurable space, (Z,7(Z)) a topological space, and ® : § ~» Z
a multifunction. Consider the following properties:

(a) @1 (G) € M(S) for each G € T(Z);

(b) @ (G) € M(S) for each G € T(Z).
It is known (see [71, Proposition 1]) that
(1.20) (i) If (Z,7(Z)) is perfect, then (a) implies (b).

(ii) If (Z,7(Z)) is perfectly normal and ® is compact valued, then also (b)
implies (a).

The example of Kaniewski (see [113, Example 2.4, p. 865]) shows that the compactness
of values of the multifunction ® considered in (1.20)(ii) is essential.

It is natural to say that ® : S ~» Z is M(S)-measurable if condition (a) is satisfied,
and weakly M(S)-measurable if (b) holds (cf. [49, p. 54]).

It is evident that in the case of a single valued function f : S — Z, the notions
of measurability of f and weak measurability of f coincide with the usual notion of
measurability of f, i.e., f~1(G) € M(S) for any G € T(Z).

We can now rephrase property (1.20) as follows.

ProposITION 1.2. If (S, M(S)) is a measurable space, (Z,T(Z)) a perfect topological
space, and ® : S ~~ Z a multifunction, then

(i) M(S)-measurability of ® implies weak M(S)-measurability of .
(ii) If (Z,7T(2)) is perfectly normal and ® has compact values, then M(S)-measurabi-
lity of ® and weak M(S)-measurability of ® are equivalent.

Excellent sources of information on measurability properties of multifunctions with
values in a metric space are the papers of Himmelberg [49] and Castaing and Valadier
[14]. We now mention those properties which will be useful later on.

Let (Z,0) be a metric space. For z € Z and ® : S ~» Z we define the function
g.:S — R by

9:(s) = o(z,®(s)).
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Consider the following properties:

(¢) For each z € Z the function g, is M(S)-measurable;

(d) ® admits a sequence (¢ )nen of M(S)-measurable selections such that ®(s) =
Cl({¢n(s) : n € N}) for each s € S (the sequence (¢, )nen is called a Castaing
representation of @).

(e) Gr(®) e M(S)® B(Z).
PROPOSITION 1.3. If (Z,0) is separable and ® : S ~ Z, then

(1) Weak M(S)-measurability of ® is equivalent to (c) [49, Theorem 3.3].

(it) If @ is complete valued, then weak M(S)-measurability of ® is equivalent to (d)
[14, Theorem IIL.9].

(iii) If @ is closed valued, then weak M(S)-measurability of ® implies (e) [49, The-
orem 3.3].

(iv) If (Z,0) is o-compact (i.e., Z =, cny Zn and Z, is compact for every n € N)
and ® is closed valued, then (a) and (b) are equivalent [49, Theorem 3.5(ii)].

(v) If M(S) is complete with respect to a o-finite measure, (Z, ) is complete and
O is closed valued, then (a)—(e) are equivalent [14, Theorem II1.30].

(vi) If @ is compact valued, then (a) and (b) are each equivalent to M(S)-measurabi-
lity of the function ® : S — (K(Z),Tn), where h is the Hausdorff metric gener-
ated by o [14, Theorem IIIL.1].

(vil) If Z is a Polish space and ® is closed valued, then ® admits an M(S)-measurable
selection [66].

The following proposition will be applied in the next chapter.

ProPOSITION 1.4 ([71, Proposition 2]). Let (S, M(S)) be a measurable space and let
(Z,T(Z)) be a regular second countable topological space. If 1, Py : S ~ Z are closed
valued weakly M(S)-measurable multifunctions, then

(s€5:Di(s) £ Bals)} € M(S).

The next proposition on the intersection of closed valued weakly measurable multi-
functions will also be useful in the next chapter. The sufficient conditions known earlier
involve some compactness assumptions either on Z or on the values of multifunctions.

PROPOSITION 1.5 (|71, Proposition 3]). Let (S, M(S), 1) be a measure space, where i is
o-finite, and let Z be a Suslin space. Let ®,, : S ~ Z, for n € N, be a family of closed
valued weakly M(S)-measurable multifunctions such that (", n ®n(s) # 0 for each s € S.
Then the multifunction ® : S ~> Z given by

B(s) = ( N @n)(s) = (] ®uls)

neN neN
is M,,(S)-measurable.

The projection property of ((S, M, (S),1); Z) in the above proposition is essential.
We note that the intersection of two weakly M (S)-measurable multifunctions with closed
values may not be weakly M (S)-measurable (see [50, Example 2]).

Observe that, by (1.12) and Proposition 1.3(i), the following property is true.
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(1.21) If (Z,0) is a separable metric space and (®,)cy is a sequence of closed valued
weakly M (S)-measurable multifunctions ®,, : S ~» Z, n € N, converging to a
multifunction ® : S ~» Z, then & is weakly M (.S)-measurable.

Similarly to the case of vector valued functions the strong measurability of multifunc-
tions can be defined. Let (S, M(S), 1) be a measurable space, where p is complete, let
(Z,]] - I) be a reflexive real normed linear space, and let ® : S ~» Z be a multifunc-
tion with ®(s) € Cp(Z). Then ® is said to be finitely-valued if it is constant on each
of a finite number of disjoint M (S)-measurable sets F; and equal to {6} on S\ JE;
(6 is the origin of Z); ® is said to be a simple multifunction if it is finitely-valued and
p{s € S :||®(s)|| > 0}) < oo, where | ®(S)|| = h(P(s),{0}) (h is the Hausdorfl metric
generated by the norm).

A multifunction ® is called countable-valued if it assumes at most a countable set of
values in Cp.(Z), assuming each value different from {6} on an M(S)-measurable subset
of S.

A multifunction @ : S ~ Z is called strongly M(S)-measurable if there is a sequence
of countable-valued multifunctions (®,,),ecn such that

h- lim ®,(s) = ®(s)

for p-almost every s € S. If u(S) < oo, then we may replace “countable-valued” by
“simple”.

If ®: S ~ Z is strongly M(S)-measurable, then it is weakly M (S)-measurable, but
the converse is not true (see [21, Example 3.1, p. 23]). Furthermore (see [21, Proposi-
tion 3.3]),

(1.22) If S = [a,b] C R, Z is a separable Banach space and ® : S ~» Z has values
in K(Z), then L(R)-measurability of ® and strong £(R)-measurability of ® are
equivalent.

4. Approximate continuity of multifunctions

The notion of approximately continuous function, essential for the concept of density
topology, has been studied for real functions of real variable (|22], [35], [34], [72]) and
then in various abstract spaces (see [41], [73], [74], [75], [92], [103]). In this section we
introduce some concepts of approximate continuity of a multifunction and give some
properties of approximately continuous multifunctions which will be essential for the
considerations of the next chapters.

Throughout this section we assume that (S5,d, M(S), 1) is a measure metric space
with metric d, with a o-finite complete and Gs-regular measure p defined on a o-field
M(S) containing the Borel sets; p* will denote the outer measure generated by u, i.e.,
pw(A) =inf{u(B): ACBABe M(S)} foraset ACS.

(1.23)  Let F C M(S) be a family of sets with nonempty interiors of positive and
finite measure u, the boundaries of which are p-negligible. Let {I,,}pen C F
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and s € S. We write I, — s if s € Int([,,) for each n € N and the diameter of
I,, tends to zero as n — oo.

We assume that for every s € S, there exists a sequence (I, )nen of sets from F
such that I,, — s.

The pair (F, —) then forms a differentiation basis for the space (.5, d, M(S), ) in Bruck-
ner’s terminology [9, p. 30].
Let A C S and s € S. The upper outer density of the set A at the point s with respect
to F is equal to
lim sup A (A0 )
I,—s M(In)

Replacing lim sup by lim inf we obtain the lower outer density of A at s € S with respect
to F. These densities will be denoted by D (A, s) and D/ (A, s), respectively. If they are
equal, their common value will be called the outer density of A at s with respect to F
and denoted by D*(A, s). If A € M(S), then the outer density of A at s € S with respect
to F will be called the density of A at s with respect to F and denoted with no asterisk.

A point s € S will be called a density point of a set A C .S with respect to F if there
exists a B € M(S) such that B C A and the density of B at s with respect to F is equal
to 1. We will write D(A,s) = 1.

We will assume that
(1.24)  F has the density property, i.e., u({s € A: Df(A,s) <1}) =0 for every A C S.
By the density property of F, it is clear that

(1.25)  If p-almost every point of A C S is a density point of A with respect to F, then
A is M(S)-measurable.

An M(S)-measurable set will be called homogeneous with respect to F if its density
with respect to F is 1 at each of its points. The space S can be topologized by taking the
homogeneous sets with respect to F as open sets (see [68, p. 251]). This topology will be
denoted by 7p(S) (cf. [109] and [82]). If A C S, then Tp-Int(A) will denote the interior
of A relative to 7p(S). Note that 7p(S) is finer than 74(S5).

Now we can generalize the notion of approximate continuity to the case of multifunc-
tions. Let (Z,7(Z)) be a topological space.

DEFINITION 1.6. A multifunction ® : S ~» Z is called approzimately lower (resp. upper)
semicontinuous at a point sg € S with respect to F if there is a set E € M(S) including sg
such that D(F, s9) = 1 and the restriction ®|g is lower (resp. upper) semicontinuous at sg.
If ® is approximately lower (resp. upper) semicontinuous at each point s € S with respect
to F, then it is called approzimately lower (resp. upper) semicontinuous with respect to F;
® is called approximately continuous with respect to F if it is both approximately lower
semicontinuous and approximately upper semicontinuous with respect to F.

REMARK 1.7. If S = R and M(S) = L(R), then the multifunction ® will be simply
called approzimately lower (resp. upper) semicontinuous or approxzimately continuous.
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If (Z, 0) is a metric space and ®|g, in the above definition, is h-lower (resp. h-upper)
semicontinuous at sg € S with respect to F, then ® will be called approzimately h-lower
(resp. h-upper) semicontinuous at sg with respect to F.

® is called approxzimately h-continuous with respect to F at sg if it is both approxi-
mately h-lower semicontinuous and approximately h-upper semicontinuous with respect
to F at so; @ is called approzimately h-continuous with respect to F if it is approximately
h-continuous at every s € S with respect to F.

It was observed in [35] that a real function of a real variable continuous relative to
the density topology in the domain and the usual topology in the range, turns out to be
exactly an approximately continuous function, which is also true for multifunctions.

PROPOSITION 1.8. Let ® : S ~» Z be a multifunction and sy € S. Then ® is approzi-
mately lower (resp. upper) semicontinuous at sg € S with respect to F if and only if © is
lower (resp. upper) semicontinuous at so € S relative to the topology Tp(S).

Proof. We only give the proof of the “lower” case; the “upper” case is similar.

To prove sufficiency, let G € 7(Z) and ®(sg) N G # (). By the approximate lower
semicontinuity of ® at sy with respect to F, there exists an E € M(S) such that sy € E,
D(E,sp) =1 and ®|g is lower semicontinuous at sg. Therefore there exists a U € B(s)
such that ENU C & (G). Taking V = Tp-Int(ENU) we have V € Tp(S5), sp € V and
VCENUC® (G).

The necessity is a straightforward consequence of the lower semicontinuity of ® at sq
relative to 7p(S). m

Note that if ® : S ~» Z is approximately lower (resp. upper) semicontinuous at
so € S with respect to F and G € 7(Z) with s9 € ®~(G) (resp. sp € PT(G)), then
D(®~(G), s0) =1 (resp. D(®1(G), sg) = 1), and hence, by (1.25), we have the following
proposition (cf. [69, Theorem 2]).

ProproSITION 1.9. If a multifunction ® : S ~» Z s p-almost everywhere approximately
lower (resp. upper) semicontinuous with respect to F, then it is weakly M(S)-measurable

(resp. M(S)-measurable).
REMARK 1.10. Let (Z, o) be a metric space.

(i) If a multifunction ® : S ~» Z is approximately h-lower semicontinuous with re-
spect to F, then it is weakly M (S)-measurable, by (1.11)(ii) and Proposition 1.9.

(ii) If a compact valued multifunction ® : S ~» Z is approximately h-upper semicon-
tinuous, then it is M(.S)-measurable, by (1.11)(iii) and Proposition 1.9.

DEFINITION 1.11. Let (Z, ) be a metric space, let {®;};cz be a family of closed valued
multifunctions ®; : S ~» Z for i € T (where Z denotes a set of indices), and let s € S.
The family {®;};c7 is said to be approzimately h-lower (resp. h-upper) equicontinuous
at s € S with respect to F if there exists a set E(s) € M(S), including s, such that
D(E(s),s) = 1 and the family {®;|g(s)}icz is h-lower (resp. h-upper) equicontinuous at
s € 5;{®;}icz is called approximately h-lower (resp. h-upper) equicontinuous with respect
to F if it is approximately h-lower (resp. h-upper) equicontinuous with respect to F at
every s € S.
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The family {®;};c7 is called approzimately h-equicontinuous with respect to F if it is
simultaneously approximately h-lower and approximately h-upper equicontinuous with
respect to F.

5. Strong quasi-continuity of multifunctions

The quasi-continuity introduced by Kempisty [55] for real functions has been intensively
studied. For multifunctions this notion was introduced by Popa [95] and widely considered
by many authors, particularly by Neubrunn [86], Ewert [26], [28], and Lipski [27].

From now on let (S,7(S)) and (Z,7(Z)) be topological spaces. Following Neubrunn
[86] we say that a multifunction ® : S ~» Z is lower (resp. upper) quasi-continuous at a
point sy € S if, for each set G € T(Z) such that sg € @ (G) (resp. sp € P(G)) and for
any U € B(sg), there exists a nonempty open set V C U such that V' C & (G) (resp.
V C ®F(G)); @ is said to be lower (resp. upper) quasi-continuous if it is lower (resp.
upper) quasi-continuous at each s € S.

Note that for a single valued function the notions of lower quasi-continuity and upper
quasi-continuity coincide with quasi-continuity.

A multifunction ® : S ~» Z is said to be quasi-continuous at a point sqg € S if, for
arbitrary sets G € 7(Z) and H € 7(Z) such that so € ®(G) N ®7(H) and for every
U € B(so), there exists a nonempty open set V C U such that V C &~ (G) N &+ (H).

It is evident that a quasi-continuous multifunction is both lower quasi-continuous and
upper quasi-continuous. The converse is not true (see [85, Example 1.2.7]).

As we know, a multifunction ® : S ~» Z is continuous (resp. lower or upper semicon-
tinuous) if and only if it is continuous as a single valued function from S to Py(Z) with
the finite topology (resp. lower or upper semifinite topology). For quasi-continuity the
situation is different (see [85, 1.3.4]).

A set A C S is said to be quasi-open if there is an open set O such that O C A C C1(O)
[77].

It is known (see [85, 1.2.5]) that

(1.26) A multifunction ® : S ~» Z is lower (resp. upper) quasi-continuous if and only
if for any G € 7(Z) the set ®~(G) (resp. ®T(G)) is quasi-open.

Upper quasi-continuity of a multifunction can be characterized in terms of continuous
restrictions. More precisely (see [87, Theorem 1]):

(1.27)  If (S,7(5)) is a first countable Hausdorff space, (Z,7(Z)) a second countable
space, and ® : S ~» Z a compact valued multifunction, then ® is upper quasi-
continuous at a point sy € S if and only if there is a quasi-open set A containing
so such that ®|4 is upper semicontinuous at sg.

It may be shown that an analogous characterization of lower quasi-continuity is not
possible [87, Example 4].

The following proposition will be useful in the next chapter.
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PROPOSITION 1.12. Let (S,7(S)) and (Z,7(Z)) be topological spaces.

(i) If a multifunction ® : S ~ Z is lower quasi-continuous at a point so € S, then
®(sp) C p-limsup,_, ¢, D(s).

(i1) If (S,7(S)) is first countable and (Z,7(Z)) is regular second countable, and if
a multifunction ® : S ~ Z is compact valued upper quasi-continuous at a point
so € S, then q-liminf, ., ®(s) C ®(sp).

Proof. (i) Suppose that z € ®(sg) and U € B(sp). Fix G € B(z). By the lower quasi-
continuity of ® at sg, for the sets G and U there is a nonempty open set V' C U such that
V C @ (G). Therefore, there is an s € V with ®(s) NG # 0, i.e., z € Cl({U,cy ®(s)), and
finally 2 € Nyep(sy) ClUser @(s)), which finishes the proof of (i) (see (1.13)(i)).

(ii) Now suppose that z ¢ ®(sg). Since the set ®(sg) is closed and the space Z is
regular, there are V € B(z) and G € T(Z) such that ®(sg) C G and GNV = (. By the
upper quasi-continuity of ® at s, in view of (1.27), there is a quasi-open set A containing
so such that ®| 4 is upper semicontinuous at sg. Thus, there exists a U € B(sg) such that
®(s) C G for all s € UN A. Since B = U N A is quasi-open ([77]) and s¢ € B, there is a
set O € A(so) such that ®(s) NV = () for each s € O. Thus z € (e 4(sy) CUUseo 2(5)),
and the proof of (ii) is finished (see (1.15)). m

From now on let (S, d, M(S), 1) be a measure metric space with a differentiation basis
(F,—) with the density property (see (1.24)), and let (Z,7(Z)) be a topological space.

DEFINITION 1.13. A multifunction ® : S ~ Z is called strongly lower (resp. upper) quasi-
continuous at a point sg € S with respect to F if, for each G € T (Z) such that sg € &~ (G)
(resp. sp € ®T(G)) and for each U € Tp(S) including sg, there exists a nonempty open
set V' C S such that VNU # 0 and VNU C & (G) (resp. VNU C D1(G)); ® is said to
be strongly lower (resp. upper) quasi-continuous with respect to JF if it is strongly lower
(resp. upper) quasi-continuous with respect to F at each s € S.

Observe that replacing, in the above definition, the density topology by the topology
generated by the metric d, we obtain the notion of lower (resp. upper) quasi-continuity
of ®. Since 7;(S)-open sets are 7p(.S)-open, we can say that

(1.28)  If a multifunction ® : S ~ Z is strongly lower (resp. upper) quasi-continuous
with respect to F, then it is lower (resp. upper) quasi-continuous. The converse
is not true.

By analogy with the definition of quasi-continuity we define the strong quasi-conti-
nuity of a multifunction.

DEFINITION 1.14. A multifunction ® : S ~» Z is said to be strongly quasi-continuous
with respect to F at a point so € S if, for any G € T(Z) and H € T(Z) such that
sp € 7 (G) N ®*T(H) and for each U € Tp(S) containing sg, there exists a nonempty
open set V C S such that VNU #@and VNU C & (G)N DT (H).

It is evident that a multifunction ® : S ~» Z which is strongly quasi-continuous with
respect to F is quasi-continuous. Furthermore, if ® is strongly quasi-continuous with
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respect to F, then it is both strongly lower and strongly upper quasi-continuous with
respect to F.

Some connections between the quasi-continuity and the Denjoy property of real func-
tions were considered by Salat [104]. We now introduce more general properties for mul-
tifunctions.

DEFINITION 1.15. A multifunction @ : S ~ Z has the D~ (resp. D) property if for each
G € T(Z) and each nonempty open set U C S, the set U N ®~(G) (resp. U NPT(G)) is
either empty or pu*(U N®~(G)) > 0 (resp. p*(UN®T(G)) > 0).

PROPOSITION 1.16. If a multifunction ® : S ~ Z is lower (resp. upper) quasi-continuous,
then ® has the D~ (resp. DY) property.

Proof. Let G € T(Z) and let U C S be open. By the lower (resp. upper) quasi-continuity
of @, the set @ (G) (resp. ®T(G)) is quasi-open (see (1.26)). Then U N &~ (G) (resp.
UN®+(Q)) is either empty or its interior is nonempty, i.e., u*(U N ®(G)) > 0 (resp.
pr(UN®T(G)) >0). m

PROPOSITION 1.17. If the space (Z,7T(Z)) is regular and second countable, and a multi-
function ® : S ~ Z is strongly lower quasi-continuous with respect to F and has the D™
property, then u(Dy(®)) = 0.

Proof. We first prove that
(1) If GeT(Z)and s € & (G), then D, (Int(®(G)), s)) > 0.

Suppose, on the contrary, that thereisa G € 7(Z) with s€ &~ (G) and D, (Int(®~(G), 5))
=0.Let A=S\P (G) = " (Z\ G). Then D;(Cl(A),s) =1 = D(CI(A),s). We can
assume that A # (). Since s € @ (G), there is a z € ®(s) N G. By the regularity of
Z, there is an open set V including z such that Cl(V) C G. Then s € & (V). Let
W =8\ (C(V)) =D (Z\CIV)). Then W # (), since A # () and A C W. Therefore,
by the Dt property of ®, u*(W) > 0. Since Cl(A) C CI(W) and D(CI(A),s) = 1, it
follows that D(CL(W), s) = 1. Let B = Tp-Int(CL(W))U{s}. Then s € B € Tp(S). Since
® is strongly lower quasi-continuous at s with respect to F, for the sets V and B there
is a nonempty open set U C S such that

(2) UNB#0 and UNBC® (V).

On the other hand, however, UN BNW # 0, i.e.,, (UNB)N(S\ @ (CLV)) # 0, which
contradicts (2), i.e., (1) is proved.

Now we prove that u(D;(®)) = 0. Suppose, on the contrary, that p*(D;(®)) > 0.
Let B = {B,}nen be a base of 7(Z). Then, by Lemma 1.1(i), there is an n € N such
that p*(®7(By) \ Int(®(B,))) > 0. Let C = &~ (B,) \ Int(®~(B,)) and V = Tp-
Int(C'). Then V is M(S)-measurable and V € Tp(S5). If s € C, then s € &7 (B,,), and so
D, (Int(®~(B,)),s) > 0, by (1). Since D(C, s) = 1, it follows that C N Int(®~(B,)) # 0,
which is impossible. m

A similar proof works for a dual proposition.
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PROPOSITION 1.18. Let the space (Z,T(Z)) be second countable and normal. If a multi-
function ® : S ~~ Z is compact valued strongly upper quasi-continuous with respect to F
and it has the D~ property, then pu(D,(®)) = 0.

By (1.28), Propositions 1.16, 1.17 and 1.18, we have the following proposition (cf. [43,
Corollary 3]).

ProprosiTION 1.19. If the space (Z,7T(Z)) is second countable and normal, and if a
multifunction ® : S ~ Z is compact valued strongly lower quasi-continuous and strongly
upper quasi-continuous with respect to F, then ® is p-almost everywhere continuous.

By Propositions 1.19 and 1.9, we have the following corollary.

COROLLARY 1.20. If the space (Z,T(Z)) is second countable and normal, and if ® : S ~
Z 1s a compact valued multifunction strongly lower quasi-continuous and strongly upper
quasi-continuous with respect to F, then ® is M(S)-measurable.

REMARK 1.21. It is known that there is a quasi-continuous function f : [0, 1] — R which
is not Lebesgue measurable |79, (x), p. 49]. So, if we suppose that the multifunction
® considered in the above corollary is both lower quasi-continuous and upper quasi-
continuous, then ® need not be M(S)-measurable.

6. Derivative multifunctions

The concept of differentiability for multifunctions has been considered by many authors
from different points of view (see [5], [19], [45], [53], [81], and others).

Banks and Jacobs reduce differentiability of multifunctions to differentiability of func-
tions in linear normed spaces by the Radstrom embedding theorem. Another idea is given
by Hukuhara [53]. In this case differentiability of a multifunction at a point, roughly
speaking, means the existence of a set which is a limit of a difference quotient.

In this section the notion of differentiability is developed by taking advantage of an
idea used by Hukuhara to give a definition of differentiability for a resonably wide class
of multifunctions. For this purpose we give a more general definition of differences of sets
than that given by Hukuhara. Furthermore, the notion of a derivative multifunction is
introduced. In order to get this we use the notion of the integral of a multifunction given
by Banks and Jacobs in [5].

Throughout the section, unless otherwise stated, (Z, || - ||) will denote a real normed
linear space with metric p generated by the norm and # will denote the origin of Z. The
symbol co(A) will denote the convex hull of a set A C Z.

IfAC Z, BC Z and X € R then, as usual,

A+B={a+b:ac ANbe B} and XA ={la:a€ A}
(1.29)  The following properties hold:

(i) If A and B are convex, and «, 5 > 0, then (o + 5)A = aA + SA.
(ii) If A and B are closed and convex subsets of Z and C' C Z is bounded, then
A+ C =B+ C implies A = B [97, Lemma 2].



24 G. Kwiecinska

(111) If A; € Cb(Z) and B; € Cb(Z) for ¢ = 1,2, then h(Al + Ao, By + Bg) <
h(A1, B1)+ h(Az, By) [19, Lemma 2.2(ii)], where h is the Hausdorff metric
generated by the metric o.

(iv) If (Z,] - ||) is reflexive, A € Cpe(Z) and B € Cpe(Z), then A+ B € Cpe(2)
[97, Theorem 2].

(v) If (Z,]|-]]) is reflexive and A, B, C' € Cpe(Z), then h(A, B) = h(A+C, B+C)
[97, Lemma 3].

In the results that follow, the requirement that (Z, || - ||) be reflexive can be replaced
by the assumption that (Z,| - ||) is a Banach space if we agree to deal only with the
subcollection KC.(Z).

If (Z,p) is complete, then (Cy(Z),h) is also complete (see [62, p. 314]). Therefore
Price’s inequality [96, (2.9), p. 4]

h(co(A), co(B)) < h(A, B)
implies that

(1.30) If (Z,p) is complete, then a Cauchy sequence in Cp.(Z) must converge to an
element of Cp.(Z).

Now suppose that (Z, || - ||) is reflexive.

DEFINITION 1.22. Let A, B € Cp.(Z). We will say the difference A& B is defined if there
exists a set C' € Cp(Z) such that either A= B+ C or B= A — C, and we define A© B
to be the set C.

The difference A © B is uniquely determined.

ExaMPLE 1.23. (a) Let P € Cp.(Z), A = aP and B = 8P, where @ > 0 and § > 0. Put
C = (a— B)P. Then, by (1.29)(i), A= B+ C or B = A—C depending on whether o > 3
or a < 3. Therefore A © B exists and is equal to C.

(b)If Z=R, A=[a,z] C Z and B = [b,y] C Z, then A S B exists and

A S B = [min{a — b,z — y},max{a — b,z — y}].

(c)Let A={(z,y) eR?:0<2x<land0<y<1-—=z}and B={(z,y) eR?:0<
z<1land 0<y<1(1-2)}. Then AS B does not exist.

Indeed, suppose that there exists C' € Cp.(R?) such that A = B+ C. Since (0,1) € A,
there exist (a,b) € B and (¢,d) € C such that (0,1) = (a + ¢,b + d), where a > 0. Then
¢ = —a and d = 1—b. On the other hand, (0,0) € B. Therefore (0,0)+(c,d) = (—a,1 —b)
€ A and —a > 0. Hence a = 0. Since (¢,d) = (0,1 —b) € C and (1,0) € B, we have
(1,0) + (0,1 —b) € A and b = 1. Therefore, (a,b) = (0,1) ¢ B, which is a contradiction.

Now suppose that there exists C' € Cp.(R?) such that B = A — C. Let z € C. We
observe that for every x € A,z —2 € A—C = B. Hence, A—z C B, i.e., some translation
of A is contained in B, which is of course impossible.

REMARK 1.24. In each case of Example 1, with Z = R” in (a), Hukuhara’s differences of

the relevant sets do not exist, since Hukuhara’s difference A “Bof A,B € K.(Z) exists
only if diam(A4) > diam(B).
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Let A, B € Cpe(Z). We write B C; A if, for each a € Fr(A), there is z € Z such that
a € B+ {z} C A
The following is known:

PROPOSITION 1.25 (70, Theorem 2]). If A, B € Cyp.(Z), then A© B exists and is equal
to a set C € Cpo(Z) if and only if either B Cy A or A Cy B, and C is a set such that
either A= B+ C or B=A— C, respectively.

REMARK 1.26. When A, B € K.(Z) we can replace the sets Fr(A) and Fr(B) (used in
the above proposition) by the respective sets of extreme points, appealing to the Krein—
Milman theorem.

It is easy to see that

(1.31) (i) If A € Cp(Z) and z € Z, then (A + {z}) © A = {z}. In particular, we have
Asc A= {6}
(ii) If A, B € Cpe(Y) and A © B exists, then
AoB=—-(BoA) and Ao B=(-B)o(-A4).

(iii) If A© B exists, then h(A, B) = ||A © B||, where |C|| = h(C, {0}) for a set
CccZz.

Now we can give a definition of differentiability for multifunctions (cf. [53]). From now
on we assume that I C R is an interval.

DEFINITION 1.27. A multifunction ® : I ~» Z is said to be differentiable at a point xq € I
if there exists a set D®(z9) € Cp(Z) such that the limit
) )
b () © ()
T—Ig r — X

exists and is equal to D®(z).

Of course, implicit in the definition of D®(xz() is the existence of the differences
O(x) © P(x).

The set D®(xp) is called the derivative of ® at so; ® is called differentiable if it is
differentiable at each = € I.

ExAMPLE 1.28. (a) Let B be the closed unit ball in Z and consider the multifunction
®: (0,27) ~ Z defined by the formula ®(«) = (2+sin «)B. Then & is differentiable and
D®(a) = (cosa)B.

(b) The multifunction @ : [0, 1] ~» R? defined by

Pla) ={(z,y) eR?:0<2<1AN0<y<a-—oazx}

is not differentiable, since the required differences do not exist.

(c) Let @ : I ~» R be a multifunction with values in K.(R). Then ®(z) = [i(x), s(z)],
where i(z) = infyc7®(x) and s(z) = sup,c; ®(x). If the functionsi: I - Rands: I — R
are differentiable at xg € I, then ® is differentiable at xy and

{ [ (o), 8" (o)]  if ' (w0) < 8'(20),

PO (o), #w0) it #(20) > o (o).
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However, in general, differentiability of ® does not imply differentiability of ¢ and s, as
the following example shows:

[0,2] ifz>0,
®(r) = .
[z,0] ifz<0.
It is clear that the multifunctions considered in (a) and (c) of Example 1.28 are not

differentiable in Hukuhara’s sense, because Hukuhara’s differences ®(x) z ®(xg) do not
exist.

ProPosITION 1.29 ([70, Theorem 3]). If a multifunction ® : I ~ Z with ®(z) € Cp.(2)
18 differentiable at a point xo € I, then ® is h-continuous at .

Now we describe the m-differentiability of multifunctions discussed by Banks and
Jacobs in [5]. As mentioned at the beginning of this section, this definition makes use of
Radstrom’s embedding theorem (see [97, Theorem 2]): there is a real normed space V(Z)
and an isometric mapping 7 : Cpe(Z) — V(Z), where Cpo(Z) is metrized by the Hausdorff
metric h, such that 7(Cpe(Z)) is a convex cone in V(Z) with vertex w({6}). Furthermore,
addition in V(Z) induces addition in Cp.(Z) and multiplication by nonnegative scalars in
V(Z) induces the corresponding operation in Cp.(Z).

The space V(Z) can be chosen minimal in the sense that if V;(Z) is any other real
normed linear space into which Cp.(Z) has been embedded in the above fashion, then
V1(Z) contains a subspace containing Cp.(Z) which is isomorphic to V(Z).

We describe the space V(Z) in some detail, since we make use of some of its properties
later on.

An equivalence relation ~ is defined on Cp.(Z) X Cpe(Z) by declaring that (A, B) ~
(C,D) if A+ D = B+ C. The equivalence class containing (A, B) will be denoted by
(A, B). The space V(Z) is the quotient space Cp.(Z) X Cp.(Z)/~, with addition defined
by

(A,B)+(C,D) = (A+C,B+ D)
and
(A, aB) if a >0,
a{4, B) = { (a|B,|alA) if a < 0.
With addition and scalar multiplication defined above the space V(Z) becomes a linear
space. The neutral element (6, 0) of V(Z) is the equivalence class {(A, A) : A € Cpc(Z)}.

The embedding 7 : Cp.(Z) — V(Z) is given by 7(A) = (A, 0) for A € Cp.(Z). We shall
denote 7(A) by A when A € Cye(Z), and hence the convex cone 7(Cpe(Z)) by Coe(Z).

A metric § on V(Z) x V(Z) is defined by

(1.32) 3((A,B),(C,D))=h(A+D,B+C).

Since ¢ is translation invariant and positively homogeneous, the relation
{4, B)|| = 0((4, B), (0,0))

defines a norm in V(Z) such that

Note that
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(1.34) If A, B € Cp(Z) and A © B exists, then

~ - (Ae B,6) if Bc, A,
AB—<A,0><B,9>—{ ]

<9,B@A> lfACtB
Indeed, we have (A,6) — (B,0) = (A,B). Let A6 B=C, C € Cp.(Z). If B C; A, then
A=B+C,andso (4,B) = (B+C,B) =(C,0) = (AcB,0).If A C; B,then B=A-C,
and so (A,B) = (A,A—-C) =(0,-C) = (6, Bo A), by (1.31)(ii).

We should mention that the space (V(Z),0) need not be complete when (Z, o) is
complete (see [20, p. 363]). But since in this case the space (Coc(Z),h) is complete, so is
(Cbc(Z)a 5)

A function f: V — W, where V and W are arbitrary normed linear spaces, is said
to be of[|Av]]) if [|f(Av)[|/|Av]| — 0 as |Av]| — 0.

Let (S, - ||) be a real linear normed space and let (Z, | - ||) be a reflexive Banach
space. Following Banks and Jacobs [5], a multifunction ® : S ~» Z with values in Cp.(Z)
is called 7-differentiable at a point xo € S if the function ® : S — V(Z) is differentiable
at xo, i.e., there is a continuous linear mapping ®'(zg) : S — V(Z) such that
(1.35) O(z) — B(x0) — @' (z0)(2 — z0) = ol ||z — zol))-

D is w-differentiable if it is w-differentiable at every x € S.
If ®'(zo)(z — x0) = (Az—2ys Bi—uyo), Where x — g € S and the sets A,_,, and By_,,
belong to Cp.(Z), then, according to (1.35), we have

(@(x), ®(20)) = (Az—2g) Ba—a,) = o[l — 20l]).

If the space (S,| - ||) is finite-dimensional with basis vy, ..., v, then x — g = Az =
S Az'y; for Az € S. If ®(20)(v;) = (Ay,;,0), i = 1,...,n, then ® is called conically

differentiable at xo and we have

Az) =" Az'(A,,,0).
=1

The following proposition will be essential for the definition of a derivative multifunction.

PrOPOSITION 1.30. Let (Z, ||-||) be a reflezive Banach space. If a multifunction ® : I ~ Z
with values in Cp.(Z) is conically differentiable at a point ©o € I and the differences
O(x) © (zg) exist in a neighbourhood U(xg) of xo, then ® is differentiable at xo and
D®(zq) = O/ (z0) provided &' (z0)(x — z0) = (z — 20)(P' (0), 0), where ' (x0) € Cpe(Z).

Proof. Using (1.32) and (1.33) we have
a:h<<1>( )9@(% &'( ) H< z) & B( :co)79>_<(1),(x0)’9>H.
Tr — Zo T — T

Suppose that ®(zg) C; ®(z). If 2 > 20, then
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The last term tends to 0 as x — x¢, by (1.35). If x < ¢, then

a =

- 10.0(a0) 0 0(a) — (¥ )|

1

= o= | 10, (=@ (2)) & (=P (w0))) — (x — 20){®'(x0),O)|I, by (1.31)(ii).

Since —®(xzg) C; —P(z),

0= = B(r) — ()~ )~ )|

(see (1.34)). Thus, again, a — 0 as  — .

Similar arguments apply to the case ®(x) C; P(zg). =
REMARK 1.31. Let ®: [—1,1] ~ R be given by
[z,2] ifzel0,1],
[x,—z] ifze[-1,0].

Then D®(0) = [—1,1]. But ® is not w-differentiable at 0 (see [5, p. 251]). Therefore the
converse of Proposition 1.30 is not true.

@(x):x.[_m:{

As mentioned earlier, the completeness of the reflexive real normed linear space
(Z,] - ||) does not imply that the corresponding normed linear space (V(Z), §) is complete,
which presents a minor difficulty when considering the integrability of multifunctions with
values in Cp.(Z).

Let V(Z) be the completion of V(Z), which is a Banach space. Following Banks and
Jacobs (see [5, p. 266]), we give the definition of integrability for multifunctions with
values in Cp.(Z) (based on the definition of Debreu [20]). We also quote some of their
results which we shall need later on.

DEFINITION 1.32. We say that a multifunction ® : I ~~ Z with values in Cp.(Z) is
integrable (Lebesgue measure m on Lebesgue measurable subsets of I is understood) if
the function ® : I — V(Z) is Bochner integrable (in the sense of [25, Definition 17,

p. 112]), and the integral of ® is denoted by S[ i(x) dz or SZ @(m) dx, where [a,b] = I.

LEMMA 1.33 ([5, Lemmas 5.4 and 5.5]). Let (Z,| - ||) be a reflexive Banach space, and
let a multifunction ® : I ~ Z with values in Cpe(Z) be integrable. Then

(1) S[ &)(x) dx belongs to the conver cone CAbc(Z).

(ii) There is a sequence of measurable simple functions S, 1 — CAbC(Z) such that
lim;, 00 Sp(x) = ®(z) almost everywhere on I and ||Sy(x)| < |®(x)| for every
n €N and z € I. Moreover, lim,,_, SI ||Sn(z) — ®(x)| dz = 0.

In view of the above lemma it makes sense to introduce the following definition.

DEFINITION 1.34. If a multifunction ® : I ~» Z with values in Cp.(Z) is integrable, then
we define {, ®(x) dx to be the set A € Cyo(Z) such that |, ®(x)dx = (A,0).
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Let &,®, : [ ~ Z, i = 1,2, be multifunctions with values in Cp.(Z). If these multi-
functions are integrable, then

H<S<I>1(x) dm,0> - <§<I>2(x) dx,0>H - h(SCI)l(x) dz, | @a(2) dw)
I I I I

and
[{@1(2),0) — (P2(x), O) || = h(P1(2), Po(x)).
Therefore, by [25, Theorem 20(a), p. 114]), we have

(1.36) h(S@l(x) dz, | @ (x) dx) < [ 1(®1(x), By(x)) da.
I I I

In particular, || SI O(x)dz|| < SI |®(x)] da.

Let ® : I ~~ Z be a multifunction; if there exists a Lebesgue integrable function
g : I — R such that ||®(z)]] < g(z) almost everywhere in I, then ® is called integrably
bounded.

We see from the Bochner theorem [47, Theorem 3.7.4] that

(1.37) If ®: I~ Z with values in Cpc(Z) is strongly £(R)-measurable and integrably
bounded, then it is integrable.

A different approach to defining inegrability for multifunctions is given by Hukuhara
(see [53] in the case Z = R™ and compact convex valued multifunctions). This definition is
based on the definition of Riemann integral. Starting from Hukuhara’s idea of integrability
we define R-integrability of multifunctions in a more general case.

Suppose that (Z,] - ||) is reflexive, I = [a,b] C R and ® : I ~» Z is a multifunction
with values in Cp.(Z).

Let A = {ag,a1,...,a,} be a partition of I and A(A) = max;=g__ n—1{ai+1 — a;}.

Let P denote the family of all pairs (A, 7), where 7 = (2o, x1,...,Z,—1) is a sequence of
points such that z; € [a;,a;41] for i =0,...,n — 1. Set
n—1
C(A,7) = (a1 — a;)®(x,)
i=0

for (A,7) € P. Then C(A,7) € Cp(Z), by (1.29)(iv).

DEFINITION 1.35. We say that a multifunction ® : I ~» Z is R-integrable (on I) if there
exists a set B € Cp(Z) such that C(A,7) — B as A(A) — 0, i.e.,

Ve>03In>0V(A,7)eP [AMA) <n= h(C(A,T1),B) <¢],
and we define (R) SI ®(z) dx to be the set B.
In much the same way as in the case of real functions it can be proved that

(1.38) (i) If @ : I ~~ Z with values in Cp.(Z) is h-continuous, then it is R-integrable
(cf. [53, Section 5]).
(ii) If @ : I ~» Z with values in Cp.(Z) is R-integrable, then it is integrable and

Vo) dt = (R) | @(2) da.
I I
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For an integrable multifunction ® : I ~~ Z with values in Cp.(Z) we define the multifunc-
tion ¥ : [ ~~ Z by

© - U(z) = §<I>(t) dt.

A simple computation shows that

(1.39) If ® is integrable and xy € [a,b], then the difference ¥(x) & ¥(x) exists for
every z € [a,b], and Szo O(t)dt = ¥(z) © U(xp).

Indeed, if z > xq, then SZ O(t)dt = SZU O(t)dt + Szo O(t)dt, and so Sio O(t)dt = U(x) ©

U(wo). If © < o, then { " ®(t)dt = " ®(t)dt + °° (t) dt, and so {° O(t) dt = U(x) ©

U(x), that is, Szo O(t)dt = U(x) © U(xo).

LEMMA 1.36. If a multifunction ® : I ~ Z with values in Cp.(Z) is integrable and € > 0,
then the multifunction ®. : I ~ Z given by
x+e
O(x) = | @(t)dt

18 h-continuous.

Proof. Fix xg € I. Then

xTo+e x+e
h((bs(xo),cbs(x)):h( | e, | @(t)dt)
E:is ’ xT xT xr+e
:h( | ewyat+ | o@ar, | o@d+ | @(t)dt),
xo xo+e To+e x
by (1.29)(v). Thus
x x+e
h(@g(mo),fbs(:c)):h(g@(t)dt, | @(t)dt)
xo xo+€

T zt+e
< H | o) dtH + H K0 dtH 0 asx — a0, by (1.36). =
xo xo+e

From now on we suppose that (Z, | - ||) is a reflexive Banach space. The following

result is essential for the definition of a derivative multifunction.
PropPoOSITION 1.37 ([5, Theorem 5.3]). If a multifunction ® : [a,b] ~ Z with values in
Cvc(Z) is integrable, then the multifunction ¥ : [a,b] ~ Z given by ¥(x) = Sz d(t) dt is
conically differentiable almost everywhere on [a,b]. Moreover, if \i'(x) = SZ ;I\)(t) dt, then
U/ (20)(Az) = Axd(x0) for almost every zo € [a, b].

Therefore, by (1.39) and Proposition 1.30, the following corollary holds.
COROLLARY 1.38. If @ : [a,b] ~ Z is an integrable multifunction with values in Cpe(Z),
then the multifunction ¥ : [a,b] ~ Z given by ¥(z) = SZ ®(t) dt, is differentiable almost
everywhere on [a,b], and DU (xg) = ®(xg) for almost every xo € [a, b].
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Similarly to the case of functions we will show

PROPOSITION 1.39. If a multifunction ® : I ~~ Z with values in Cp.(Y') is h-continuous,
then DU (xzq) = ®(x0) for each xo € I.

Proof. Let zg € I and € > 0. By h-continuity of ® at xg, there is an 1 > 0 such that
h(®(z), ®(xo)) < € whenever |x — xo| < n and x € [a, b]. Note that

h( § o(1) dt, § (o) dt) - h( § o(t) dt, (x — x0)<1>(m0)).
Furthermore, by (1.;6), D O
h( g o (1) dt, § ®(0) dt) < § h(®(t), D(x0)) dt < e(z — x0)

provided 0 <  — z¢ < 7). Since

T — X
T

Hence

(e =t HE 2T < ot
Just as above we show that
L R
DU(z0) = h- lim Y B EL@) gy

T—T r — X9
Now we can define the notion of a derivative multifunction.

DEFINITION 1.40. Let ® : I ~» Z be an integrable multifunction and o € I. The
statement that ® is a derivative at xo € I means that

§ (t) dt.

Zo

®(z9) = h- lim

T—T0 T — T

The multifunction ® is a derivative if it is a derivative at each point = € I.
By Proposition 1.38, we have

COROLLARY 1.41. If a multifunction ® : I ~ Z with values in Cp.(Z) is h-continuous,
then 1t is a dertvative.

Finally, we show that an approximately h-continuous multifunction is a derivative.

PROPOSITION 1.42. Let ® : I ~~ Z be a multifunction with values in Cp.(Z). Suppose
that ® is bounded, i.e., there is a totally bounded set K C Z such that ®(x) C K for each
x € I. If ® is approrimately h-continuous, then it is a derivative.
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Proof. By Proposition 1.9, ® is £(R)-measurable (see Remark 1.10) and, by (1.22), it is
strongly £(R)-measurable. Since ® is integrably bounded, it is integrable on any measur-
able subset of I, by the Bochner theorem [47, Theorem 3.7.4]. Let I = [a, b]. Define the
multifunction ¥ : [a,b] ~ Z by

U(z) = | (t) dt.
Let x¢ € I. Since @ is approximately h-continuous at xg, there exists a measurable set
E C I with ¢ € E such that D(E,z9) = 1 and ®|g is h-continuous at xy. Suppose
Az >0 and zg + Az € [a,b]. Then
zo+Ax
U(zg+Az) = V(o) + | ®(@)dz

Zo

and thus
xo+Ax
U(zo+Az) 0 U(wg) = | ®(x)da.
Note that
U(zo + Ax) © (o)  retae
0 0 (L
a ) o) =5 | o) dnate)
1 To+Ax zo+Ax
:h(E S @(sc)dm,—x S <I>(:Co)d:v>
1 xo+Ax
< &= | @), 0(20)) da
L h@@.e)dr | A(©(), D) d
= Az z), ®(xg)) dr Ar x), P(xzg)) dx.
[xo,z0+AZ]NE [zo,z0+AZ]\E

As Az tends to 0, the first term above converges to 0, since ® is h-continuous on FE,
and the second is majorized by 2-m([zo, 2o+ Az]\ E)2||K||, which converges to 0, since
D(I\ E,z)=0.

This, together with a similar calculation for Az < 0 and xg + Az € I, yields

h(@(xo) S) Z;xo + Az) 7 @(xo)) <e

and so DU (xzg) = ®(x). Hence P is a derivative at z5. m




2. PRODUCT MEASURABILITY OF MULTIFUNCTIONS
OF TWO VARIABLES

7. Carathéodory multifunctions

Let X and Y be nonempty sets, let F': X xY ~» Z be a multifunction, and let (zq, yo) €
X x Y. Then the multifunction F,, : Y ~» Z defined by F,,(y) = F(x0,y) is called the
xo-section of F, and the multifunction F¥% : X ~» Z defined by F¥ (z) = F(x,yo) is
called the yg-section of F.

Similarly, if E C X XY and (zg,yo) € X XY, then theset E,, = {y € Y : (wo,y) € E}
is called the zg-section of E, and E¥ = {x € X : (x,y0) € E} is the yg-section
of E.

It is well known that if f : R2 — R is a Lebesgue measurable function, then the
sections f, and fY are Lebesgue measurable for almost every x € R and almost every
y € R. But the converse is not true even if all sections of f are Lebesgue measurable.
There are various sufficient conditions on sections of f ensuring that f is measurable.
The most important one (given by Ursell [112]) is the continuity of the sections of f with
respect to the first variable and their measurability with respect to the second variable.
This result was extended in various ways for functions in spaces more general than R (see
[12, Corollaire 3.1] or [64, Theorem 2, p. 387]). In this section we will consider this topic
in the case of multifunctions.

Let (X, M(X)) and (Y, M(Y)) be measurable spaces, and let (Z,7(Z)) be a topo-
logical space. A multifunction F : X x Y ~ Z will be called product measurable (resp.
weakly product measurable) if it is measurable (resp. weakly measurable) with respect to
the product o-field M(X) ® M(Y) or a more general o-field in X x Y.

If (Y,7(Y)) is a topological space, then F' : X XY ~» Z will be called Carathéodory
(or more precisely M(X)-Carathéodory) if the section F¥ is M(X)-measurable for every
y €Y, and F, is continuous for every z € X.

A Carathéodory multifunction need not be product measurable, in general.

There are some results on the existence of a Carathéodory selection of a Carathéodory
multifunction (some details and a survey of some papers in this field can be found in [59]).
It is also known that (under some conditions) the product measurability of a multifunction
whose sections with respect to the first variable are lower semicontinuous, is equivalent
to the existence of its Castaing representation consisting of Carathéodory functions (see
[32, Theorem 1J).

The following result is well known (see [58, Lemma 13.2.3]).

(33]
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LEMMA 2.1. If (X, M(X)) is a measurable space, (Y,d) a separable metric space and
(Z,0) a metric space, and if f : X xY — Z is a Carathéodory function, then f is
M(X) @ B(Y')-measurable.

As a straightforward consequence of the above lemma and Proposition 1.3(vi) we have
the following result (cf. [116, Theorem 2|)

ProposITION 2.2. If (X, M(X)) is a measurable space, (Y,d) a separable metric space
and (Z,0) a metric space, and if F' : X XY ~ Z is a compact valued Carathéodory
multifunction, then F is M(X) ® B(Y')-measurable.

The purpose of this section is to give a generalization of this result.

THEOREM 2.3. Let (X, M(X)) be a measurable space. Let (Y, d) be a metric space and let
T(Y) be a separable topology on'Y finer than the metric topology. Fix a countable T (Y)-
dense subset S of Y. Suppose that each point v € Y has a neighbourhood U(v) € T(Y)
such that

(i) foreachye S, V(y)={veY :yeU(v)} € B(Y,d) and the family
N () ={U(v)NB(v,27"):n € N}
forms a filterbase of T (Y')-neighbourhoods of v.

If (Z,T(Z)) is perfectly normal and F : X XY ~» Z is a multifunction such that FY is
M(X)-measurable for every y € Y and F, is T (Y')-continuous for every x € X, then F
is weakly M(X) ® B(Y, d)-measurable.

Proof. Tt is sufficient to show that
(1) FT(D) e M(X)® B(Y,d) whenever D is a closed subset of Z.

Let D be an arbitrary closed subset of Z. Then, by perfect normality of Z, there exists
a sequence (G, )men of open subsets of Z such that

(2) D=()Gn=)CUG,) and ClGny1)C G, forneN.
neN neN
Let S = {yr }xen. We shall prove that
(3) Fr (D)= () J{z € X : Fz, ) C Gn} x Valyr)),
neN keN

where V,,(yx) ={v €Y 1y, € U(v) N B(v,27™)}.

Let (u,v) € F*(D) = {(z,y) € X XY : F(z,y) C D}. Then, by (2), F(u,v) C G,, for
every n € N. Fix n € N. Since F, is upper 7 (Y)-semicontinuous at v, it follows that
(4)  there exists a 7 (Y')-open neighbourhood W (v) € N (v) of v such that F(u,y) C G,

for all y € W(v).

Let K ={m eN:y,, € W(v)}. We put mg = min{m € K : v € V,,(ym)}. Then, by (4),
F(u,yx) C Gy, for k = mg, which implies u € (F¥*)T(G,).

Therefore, the inclusion

FHD)c () JE™)"(G) x Valyn)

neN keN
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has been proved. Conversely, suppose, contrary to our claim, that
(5) (u,0) € () JE)T(Gn) x Vi),
neN keN
but (u,v) ¢ F*(D). Then F(u,v) ¢ D, and so F(u,v) ¢ (,,en Cl(Gm) by (2). Therefore,
F(u,v) N (Z\ ClG,)) # 0 for some m € N.
Thus, by 7 (Y)-lower semicontinuity of F), at v,
(6)  there is a 7 (Y)-open neighbourhood W (v) € N'(v) of v such that
Fu,y) N (Z\ Cl(Gp)) #0  for all y € W(v).
We see from (5) that to each n € N there corresponds an index k(n) € N such that
u € (F¥)H(Gy) and v € V;, (y(n)), L€,
(7) F(u,ypn)) € Gn and  ygm) € U(v) N B(v,27").
Hence, lim,, oo Yr(n) = v, and so by (6), there is an ng € N such that y,,,) € W(v) and
(8) F(u, Yn)) N (Z\ CI(Gy)) # 0 for every n > ny.
By (7) and (2), we arrive at the inclusions
F(u,Yi(ntj)) C Gnyj C Cl(Gpyj) C Gy forneNand jeN,
Fixing n = m, we obtain
9) F(t Y(msg) € Cl(Gnj) C Gy forall j € N.
Let j € N be such that m + j > ng. Then, by (8), we have

F (s Yr(mg)) N (Z\ CUGimyy)) # 0,
contrary to (9). Thus (3) has been proved.
Observe that {z € X : F(x,yx) C G} € M(X), because F¥ is M(X)-measurable.
Moreover, by assumption (i), V,,(yx) € B(Y,d). Thus, by (3), it is clear that F(D) €
M(X) ® B(Y,d), which proves (1). m

REMARK 2.4.

(i) If we suppose that the multifunction F' considered in Theorem 2.3 is compact
valued, then F' will be M(X) ® B(Y, d)-measurable, by Proposition 1.2(ii).

(ii) If, in Theorem 2.3, we suppose that the space (Z,7 (7)) is metrizable o-compact
and the multifunction F is closed valued, then F' will be M(X) ® B(Y, d)-measu-
rable, by Proposition 1.3(iv).

Below we give two examples of topologies on a metric space (Y, d) fulfilling the re-
quirements of Theorem 2.3. By the first example, it will be clear that if all z-sections of
a multifunction F are either right-continuous or left-continuous (in some sense) and all
its y-sections are measurable, then F' is weakly product measurable.

ExXAMPLE 2.5. Let (Y, d, <) be a linearly ordered metric space. We follow Dravecky and
Neubrunn [24] in assuming that (Y, d, <) has the property U, i.e., (Y,<) is a linearly
ordered space and there is a countable dense set S = {y, }nen in (Y,d,) such that for
any y € Y, we have y = lim,, o Yn, where y < y,, for n € N. Then the topology 7 (V)



36 G. Kwiecinska

generated by all open sets in (Y, d) and also by all intervals I, ={y € Y :y <a},a €Y,
fulfils the assumptions of Theorem 2.3.
Indeed, fix y € Y and 7 > 0. Then

Ury) =Bly,r)NI,={z €Y :d(z,y) <rAz <y}

is a 7 (Y)-neighbourhood of y.

Let z € U.(y). Then z € B(y,r) and = < y, and so there is an 7y > 0 such that
d(xz,y) =r—r1. Let § < min(r —ry,71). Then B(z,d) C B(y,r). Let n € N be such that
27" < §. Then Uy—n (z) C U, (y) and {Us—n (y) }nen is a filterbase of 7 (Y')-neighbourhoods
of y.

The set S is also 7 (Y)-dense. It remains to show that

Vily) ={z €Y :ycU(z)}
is a Borel set in (Y, d). First we will show that
(1) Ifyo # yand yo € V;.(y), then there exists an 1 € (0,7) such that U, (yo) C V3 (y).

Suppose, contrary to our claim, that U, (yo) ¢ V,-(y) for any 0 < r; < r. Let n € N be
such that 1/n < 7. Then there is a y, such that y < y, and y, € Uy, (y0) \ V2 (y), and
so, for n > 1/r, we have

Y < Yn ANd(Yn,v0) <1/nAyn <o A(yn <yVd(yn,y) >r).

If it were true that d(yn,y0) < 1/n and y < y, < yo and y, < y, we would have
lim, oo ¥n = Yo = y, contradicting y # yo. Let d(yo,y) = e. If it were true that
d(yn,y0) < 1/n and d(yn,y) > 7, we would have r < d(yn,vy) < d(yn,y0) + d(yo,y) <
1/n+e. Then 1/n > r — e > 0 for almost every n € N, which is impossible. This
establishes (1).

Our next claim is that

(2) Ifyo # y and yo € V,.(y), then there is a § > 0 such that B(yg,d) C V,-(y).

Indeed, according to (1), there is an r1 € (0,7) such that Uy, (yo) C Vi.(y). Let e =
d(yo,y) < r and let § < min(e,r —e,r). If z € B(yo,d), then either d(yo,z) < 6 and
z < yo, or d(yo, z) < ¢ and yo < z. In the first case, z € Us(yo) C V;-(y). In the second,
d(z,y) < d(z,y0) +d(yo,y) <d+e<r—e+e=randy < z showing that z € V,.(y).
Combining the two results we conclude that B(yo,d) C V,.(y), and (2) is proved.

Thus the set {z € Y :d(z,y) <r Ay < zAy# z} is open in (Y, d). Therefore,

Vily) ={ytU{z €Y :d(z,y) <r Ay <z Ay # z} € Fo(Y,d) N G5(Y. d),
and finally V;.(y) € B(Y, d).
Note that the topology 7(Y) in the above example may be viewed as a natural

generalization of the Sorgenfrey topology on the real line [114].
By Theorem 2.3, we have the following corollary.

COROLLARY 2.6. Let (X, M(X)) be a measurable space and (Z,7T(Z)) a perfectly normal
topological space. Then a multifunction F : X X R ~> Z such that F, is right-continuous
(resp. left-continuous) for every x € X and FY is M(X)-measurable for every y € Y, is
weakly M(X) ® B(R)-measurable.
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Now we give another example of a topology 7 (V') fulfilling the assumptions of Theo-
rem 2.3.

ExaMPLE 2.7. Let (Y,¢,d) be a topological group whose topology is induced by an
invariant distance function d (i.e., d(6,y) = d(v,y ¢ v)), where 6 denotes the neutral
element of Y. Furthermore we assume that (Y, d) is separable.

Let U C Y be an open set such that 6 is an accumulation point of U. Let

U,=(B0,27")NU)U{8} and V,(y)=yoU,={yov:veUy,}

for any n € N and y € Y. Then {V,,(y) }nen is a filterbase of neighbourhoods of y € Y,
and the topology 7 (Y) generated by this base fulfils all requirements of Theorem 2.3.

Indeed, it suffices to prove that {U, }nen is a base of neighbourhoods of . We have
Upn N U = Unin(n,m)- Let n € N and v € U,. Then, by the definition of V,,(y), there is a
k € N such that B(v,27%) = vo B(§,27%) C U,. Therefore, we conclude that

YneNWVweU,dkeN Vi(v) CU,.

A countable dense subset of (Y,d) is also 7 (Y)-dense. It remains to show that V,,(y) is
a Borel set in (Y, d) for n € N.

Fix n € Nand let ® : Y ~» Y be defined by ®(y) = V,,(y). Then @ is continuous and
Gr(®) = {(y,2) : 2 € yo Uy,} is homeomorphic to Y x U,,. Thus V,,(y) € B(Y,d) for each
n € N.

8. Multifunctions with approximately semicontinuous sections

In this section we assume that (X,d, M(X), u) and (Y, p, M(Y),v) are measure metric
spaces with complete, o-finite and Gs-regular measures p and v on the o-fields M(X)
and M(Y') containing B(X) and B(Y'), respectively; p x v is the product measure on the
o-field M(X) @ M(Y), and M,», (X x Y) is the u x v-completion of M(X) @ M(Y);
and F C M(X) and G C M(Y") are families of sets (defined as in (1.23)) with the density
property (1.24).

Let B € M(X) @ M(Y). We will write B C B if, for every (z,y) € B, z is a density
point of BY with respect to F and y is a density point of B, with respect to G.

The following lemma is known.

LEMMA 2.8 ([67, Lemma 2|). If A€ M, ., (X xY), then there is a B € M(X)® M(Y)
such that BC A, BC B and u x v(A\ B) =0.

The Gs-regularity of the measures p and v in the above lemma is essential.

THEOREM 2.9. Let (Z, 0) be a separable metric space and F : X XY ~» Z a closed valued
multifunction. If {F,}.rex is approzimately h-equicontinuous with respect to G and FY is

weakly M(X)-measurable for each y € Y, then F is weakly M, ., (X x Y)-measurable.
Proof. By Proposition 1.3(i), it suffices to prove that

(1)  the real function g.(z,y) = o(z, F(z,y)) is Myx, (X x Y)-measurable for each
z€Z.
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Fix z € Z. To prove (1) we apply the Davies lemma [17], i.e., it is sufficient to show that
for every e > 0 the family H. = {H € M(X) @ M(Y) : osci(g;) < €} of sets satisfies
the following condition:

(D) for every A € M(X)® M(Y) of positive 1 X v measure, there exists an H € H,
such that H C A and pu x v(H) > 0.

Fix A € M(X)®@ M(Y) with g x v(A) > 0 and ¢ > 0. By Lemma 2.8, there is a
B e M(X)®M(Y) such that BC A, BC Band uxv(A\B)=0.

Let yo € Y be such that p(BY) > 0. Since F¥ is weakly M (X )-measurable, (g,)¥°
is M(X)-measurable. Let 6 > 0. By Lusin’s theorem, there is a closed set C C X such
that (g.)¥|c is continuous and p(X \ C) < 4. Since F has the density property, p-
almost every point of C is its density point with respect to F. Thus (g,)% is p-almost
everywhere approximately continuous with respect to F. Therefore, there is an xy € BY°
such that (g,)¥° is approximately continuous at x¢ with respect to F. Thus, there exists
a K € M(X) such that D(K,zo) =1 and |g.(x,y0) — 9. (w0, y0)| < £/4 for all z € K.

Let M = KN BY. Then M € M(X) and D(M,x¢) = 1, since D(K,z9) = 1 and
D(BY, x4) = 1. Furthermore,

(2) lg:(x,y0) — g2 (x0,90)| <e/4 for all z € M.

On the other hand, by the approximate h-equicontinuity of { F;, } .c x at yo with respect

to G, there is an L(yo) € M(Y') such that D(L(yo),y0) = 1 and {Fi|r(y,) zex is h-
equicontinuous at yg. Thus, there is an open set V (yg) including yo such that
(3) h(Fa|L(yo) (¥); Felriye) (y0)) <&/8  for z € X and y € V(yo).
Let N = L(yo) N V(yo). Then N € M(Y) and D(N,yo) = 1. Let y € N. Then, by (3),
there is a 21 € Fy(y) with o(z, Fi(y)) + €/8 > o(z, z1) and there is a 2o € F;(yo) with
o(z, Fi(yo)) + €/8 > 0(z, z2). Moreover, there is a 2z’ € F,(y) with o(2’,22) < &£/8 and a
2" € F(yo) with o(2”,21) < /8. Then

0(2, Faly)) < 0(2,7') < 0(2,22) + 0(22,2") < e/4+ o(z, Fa(yo)),
and

Q(Z’ Fm(yo)) < o(z, Z”) < o(z, Zl) + o(z1, z//) < 5/4 + Q(Z’ Fw(y))
for x € X and y € N. Thus
(4) |9:(2,y) — g-(2,90)| <e/4 forz € X andy € N.

Set P = M x N. We see from (4) and (2) that

192(2,9) = 9=(x0, y0)| < 19:(2,y) = g:(, yo)| + 192 (2, 50) = 9=(20, Yo)| < /2
for every (z,y) € P, and hence oscp(g,) < e.
Now let H = PN B. Since B € M(X)®@ M(Y) and P € M(X) ® M(Y), it follows
that H € M(X) ® M(Y). Furthermore, y X v(H) > 0, since v(H,) > 0 for py-almost
every © € X. Finally, H C B C A and oscg(g.) < €, which proves (D). m

It is known (see [17, Theorem 2|) that if all sections f, and fY of a function f : R> — R
are approximately continuous, then f is of the second Baire class.
In this connection, consider the following example.
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EXAMPLE 2.10. Decompose the interval [0, 1] C R into two disjoint non-Borel sets A and
B and define the multifunction F : [0, 1] x [0,1] — R by putting

[-3,3] ifx#y,
[-1,0] fz=yeA
1,2] ifz=yeB.

F(.’E,y) =

Then F is not B(R?)-measurable although all its x-sections and y-sections are approxi-
mately lower semicontinuous (even lower semicontinuous).

The above example shows that a multifunction F : X x Y ~» Z (even compact
valued) having all z-sections approximately lower semicontinuous with respect to G and
all y-sections approximately lower semicontinuous with respect to F may by “strange”.

Let FxG={E: E=AxB,AeF, Be G} Foreach P C X xY we define (as
in Section 4) the upper and lower outer density of P at (x,y) € X x Y with respect to
F x G, and the density point of P with respect to F x G. The family F x G has the
density property (see (1.24)), because so do F and G (see [9, pp. 5 and 34]).

PROPOSITION 2.11. Let (Z, 0) be a metric space and F : X XY ~~ Z a multifunction.
If FY is approzimately h-lower semicontinuous with respect to F for each y € Y and
{F:}zex is approzimately h-lower equicontinuous with respect to G, then F is approxi-
mately h-lower semicontinuous with respect to F X G.

Proof. Fix (z9,y0) € X XY and € > 0. Since F¥ is approximately h-lower semicontin-
uous at xg with respect to F, there exists a set A(zg) € M(X) including z( such that
D(A(zo),70) = 1 and F¥°| (4, is h-lower semicontinuous at 2¢. Thus, there is an open
neighbourhood U(xg) of zy such that

(1) F(zo,y0) C B(F(2,90),e/2) forall x € U(xg) N A(xg).

By the approximate h-lower equicontinuity of {F}},ex at yo with respect to G, there is
a B(yo) € M(Y) including yo such that D(B(yo),%0) = 1 and {F%|p(yy) tzcx is h-lower
equicontinuous at yo. Therefore, there is an open neighbourhood V' (yg) of yo such that

(2) F(x,y0) C B(F(z,y),e/2) forxz e X andy € V(yo) N B(yo)-

Let E(x0,90) = A(zg) X B(yo). Then D(E(zo,yo0), (0,y0)) = 1. It is sufficient to show
that F|g(z,y0) 1S h-lower semicontinuous with respect to F xG at (zo, yo). Let W (o, yo) =
U(zo) x V(yo). Then, by (1) and (2),

F(zo,y0) C B(F(x,y0),¢/2) and F(x,y9) C B(F(z,y),&/2)
for each (z,y) € W(xo,y0) N E(x0,yo)- Thus, for (z,y) € W(xo,y0) N E(xo,0);
F(xo,y0) C B(F(2,y),¢),
i.e., F'|E(zg,y0) 18 h-lower semicontinuous at (xo,%o). =

A similar proof works when we replace “h-lower” by “h-upper” in Proposition 2.11,
and we have a dual result.
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PROPOSITION 2.12. Let (Z,0) be a metric space and F : X XY ~~ Z a multifunction.
If FY is approzimately h-upper semicontinuous with respect to F for every y € Y and
{F:}zex 1is approzimately h-upper equicontinuous with respect to G, then F is approxi-
mately h-upper semicontinuous with respect to F X G.

REMARK 2.13. We see from (1.11)(ii) and Proposition 1.9 that a multifunction F' which
satisfies the assumptions of Proposition 2.11 is weakly M(X) ® M(Y)-measurable. If we
additionally assume that F' is compact valued, then it is M(X) ® M (Y )-measurable, by
(1.11)(iii) and Proposition 1.9.

Now let (Z,7(Z)) be a topological space. We will show that the approximate lower
semicontinuity of all y-sections and upper semicontinuity of all z-sections of a multifunc-
tion F': X XY ~» Z are sufficient for its product measurability.

We first prove the following proposition.

PROPOSITION 2.14. Let F : X XY ~» Z be a multifunction such that FY is approrimately
lower semicontinuous with respect to F for each y € Y. Then for each n € N, the
multifunction F,, : X XY ~~ Z defined by

(2.1) Fo(z,y)=F(x,B(y.27") = |J Flzv)
vEB(y,2™™)
is approzimately lower semicontinuous with respect to F X G.
Proof. Fixn €N, (z,y) € X xY and an open set G C Z such that F,(z,y) NG # 0. By
(2.1), there exists a v € B(y,2™") such that F(z,v) NG # . Since F"¥ is approximately
lower semicontinuous with respect to F at x, there is an E € M(X) including x such
that D(E,z) =1 and F"|g is lower semicontinuous at z. Therefore, there is an open
neighbourhood U(z) of x such that F'(u,v) N G # () whenever u € ENU(x).
Observe that there exists an 7 > 0 such that

(1)  F(u,v) C F(u,B(y0,2™ ")) = Fp(u,y0) forall u € U(x) and yo € B(y,r).
Indeed, let 7 = 27" — p(v,y). Then r > 0 and for every ¢ € B(y,r) we have

p(t,v) < p(t,y) + ply,v) <r4+27"—r=27"
Therefore

te B(y,r) = veB(t27"),

and the inclusion (1) holds on the set (F N U(z)) x B(y,r). Thus F,(u,v) NG # 0
whenever (u,v) € (ENU(z)) x B(y,r).

Let V(z,y) = (ENU(x)) x B(y,r). Then V(z,y) € M(X) ® M(Y). Furthermore,
DV (z,y),(z,y)) = 1 and F,|y (4, is lower semicontinuous at (z,y). m

LEMMA 2.15. Let (Z,7(Z)) be a regular space and F : X XY — Z a closed valued
multifunction such that F, is upper semicontinuous for each x € X. If (Fy)nen i a
sequence of multifunctions from X xY to Z defined by (2.1), then for each (x,y) € X XY

we have
x,y) = m Cl(F,(x
neN
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Proof. Fix (z,y) € X x Y. Observe that F(z,y) C F,(z,y) for any n € N. Therefore
F(z,y) C [ CUFu(z,y)).
neN

Now suppose that z € Z\ F(x,y). Since F(x,y) is closed, there exist an open set G C Z
and an open neighbourhood W (z) of z such that F'(z,y) C G and W(z) NG = (). By the
upper semicontinuity of F), at y, there exists an m € N such that F(x,v) C G for each
v € B(y,27™). Hence,

U F(m,v):Fm(x,y)CG,
vEB(y,2—™)
and so W (z) N Cl(Fy,(z,y)) = 0. Thus z € Z \ ),y Cl(F(z,y)), proving the inclusion
F(z,y) D[] CUFu(,)). =
neN

THEOREM 2.16. Let Z be a Suslin space. If F : X XY ~» Z is a closed valued multifunc-
tion such that FY is approrimately lower semicontinuous with respect to F for everyy € Y
and F is upper semicontinuous for every x € X, then F is M, x, (X x Y)-measurable.

Proof. Let (Fy)nen be the sequence of multifunctions given by
Fo(z,y) = F(z, B(y,27")).

Then, by Proposition 2.14, F,, is approximately lower semicontinuous with respect to
F x G for each n € N, and hence, according to Proposition 1.9,

(1) each F), is weakly M(X) ® M(Y)-measurable.
Let (F,)nen be the sequence of multifunctions defined by
Fo(e,y) = Ol Fuz,y))  for (,5) € X x V.

Then each F,, has closed values, and hence is weakly M (X) ® M (Y )-measurable, by (1).
Since the x-sections of F' are upper semicontinuous, it follows that

F(x,y) = m Cl(F,)(x,y) for each (x,y) € X x Y,
neN

by Lemma 2.15. Thus Proposition 1.5 finishes the proof. =

The following example shows that the upper semicontinuity of z-sections of F' in the
above theorem cannot be replaced by lower semicontinuity.

EXAMPLE 2.17. Let E C R? be the Sierpinski set [107], i.e., E ¢ £(R?) and for any y € R
and any = € R, the sections EY and E, have at most two elements. Let F : R? ~ R be
the multifunction given by

[0,1] if (z,y) € E,
{0} if (z,y) € E.

Then F is not £(R?)-measurable although z-sections and y-sections are lower semicon-

Pl = {

tinuous.
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9. Multifunctions with quasi-continuous sections

Let (X, M(X)) be a measurable space and let (Y,7(Y)) and (Z,7(Z)) be topological
spaces. A multifunction F': X x Y ~~ Z is called lower (resp. upper) semi-Carathéodory
if FY is M(X)-measurable for each y € Y and F}; is lower (resp. upper) semicontinuous
for each x € X.

If (Z, 0) is a metric space, then replacing lower (resp. upper) semicontinuity of F, in
the above definition by h-lower (resp. h-upper) semicontinuity of F, we obtain the notion
of an h-lower (resp. h-upper) semi-Carathéodory multifunction.

Note that F': X x Y ~» Z is Carathéodory if and only if it is simultaneously lower
and upper semi-Carathéodory.

IfF:XXxY ~ Zisgiven by F(z,y) = {f(z,y)}, where f : X XY — Z is a function,
then F' is lower (resp. upper) semi-Carathéodory or Carathéodory if and only if f is a
Carathéodory function.

We see from Proposition 2.2 that if (Y, d) is a separable metric space, (Z, ) a metric
space, and F' : X XY ~» Z a compact valued Carathéodory multifunction, then F' is
M(X) ® B(Y)-measurable.

Example 2.17 shows that a multifunction which is only lower semi-Carathéodory
need not be product measurable. It is easy to see that the same is true for upper semi-
Carathéodory multifunctions. For instance, the multifunction F' in Example 2.17 is lower
semi-Carathéodory. But if we transpose the values of F', then F' will be upper semi-
Carathéodory and still not £(R?)-measurable.

One can strengthen the lower semi-Carathéodory assumption to ensure product me-
asurability. For instance, Papageorgiou [94] gives the following result:

THEOREM 2.18. If (X, M(X), p) is a measure space, where u is o-finite, Y is a separable
reflexive Banach space, and F': X XY ~~Y is a lower semi-Carathéodory multifunction
with closed convex values such that the section F, :'Y ~>Y,, is upper semicontinuous for
every © € X (where Y,, denotes Y with the weak topology), then F is M, (X) ® B(Y)-
measurable.

Another possibility is given below.

THEOREM 2.19. Let (X, M(X)) be a measurable space, Y a Polish space and (Z,T(Z))
a metrizable o-compact space. Suppose that a lower semi-Carathéodory multifunction F :
X XY ~ Z with closed values has F, upper quasi-continuous for each x € X. Then F
is M(X) ® B(Y)-measurable.

Proof. Fix z € Z. By Propositions 1.3(i) and (iv), it is enough to prove that
(1) the real function g,(x,y) = o(z, F(z,y)) is M(X) ® B(Y)-measurable.

Let B(z,7) C Z be an open ball centred at z with radius » > 0 and fix (z,y) € X x Y.
Since FY is M (X )-measurable, it follows that F¥ is weakly M (X )-measurable, by Propo-
sition 1.2(i). Thus, (F¥)~(B(z,r)) € M(X). Note that
(FY)"(B(z,r))={z € X : FY(z) N B(z,7) # 0} = {x € X : p(2, F¥(z)) < r}
= (g¢) " (o0, 7).
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Therefore (g¥) " (—o0,r) € M(X), i.e.,
(2) the y-section of g, is M(X)-measurable.

By the lower semicontinuity of F,, we know that (F})” (B(z,r)) is an open subset
of Y. Since

((9:)a) " (mo0,r) ={y €Y 1 p(2, Fuly)) <r} ={y €Y : Fo(y) N B(z,7) # 0}
= (F2)"(B(z,7)),
it follows that ((g,).) !(—oo,r) is an open subset of Y. Thus
(3) the x-section of g, is upper semicontinuous.

By the upper quasi-continuity of F, at y, there exists a quasi-open set A(y) containing
y such that Fy|4(,) is upper semicontinuous at y (see (1.27)). Therefore,

(4)  there exists a nonempty open set O(y) such that O(y) C A(y) C Cl(O(y)), y €
Cl(O(y)) and Fy|o(y)u{y is continuous at y.

Let S = {s1, s2,...} be a dense subset of Y. Then, by (4), to each point (x,y) € X xY
there corresponds a sequence (s, (z,y))nen such that

(5) sn(x,y) €S, lim s,(z,y) =y and lim g,(z,s,(x,y)) = g.(z, ),

since lim,, o p(z, F(z, sn(z,y)) = p(z, F(z,y)).
Now define G : X ~ Y X R by

G(z) ={(y,r) €Y xR: g:(z,y) 2 7}
By (3), it is evident that

(6) G(z) e C(Y xR) for every z € X.
We will show that
(7) G is weakly M(X)-measurable.

Let {q1,¢2, ...} be an enumeration of the rational numbers. Define the sequence of func-
tions frm, : X — Y xR by

Jom(2) = (sn(2,y), min(gm, g-(x, sn(,y)))).
It is clear that

(8)  fam:X — Y xR is M(X)-measurable and f,,,(z) € G(z) for each z € X and all
n,m € N.

Thus, {fnm(x) : n,m € N} C G(z) for each z € X, and so, by (6),

©)) Cl({ fom(x) : n,m € N}) C G(z).

Now let (y,r) € G(z), i.e., g.(z,y) > r. We can choose the sequence (¢ )men so that
Gm <g.(x, sp(x,y)) for each m,n €N, and lim,;, o0 ¢m =7. Then lim,, oo limyy, 00 frm (@)

= (y,r), and so (y,7) € Cl({fum(x) : n,m € N}), which, together with (9), gives the
equality

(10) G(z) = C1({fum () : n,m € N}).
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Now (7) is a simple consequence of (8), (10) and Proposition 1.3(ii). Therefore
Gr(G) ={(z,y,r) e X xY xR: (y,r) € G(x)} € M(X) @ B(Y xR),
by Proposition 1.3(iii), and thus
(11) (Gr(@)" ={(z,y) e X XY : (z,y,7) € Gr(G)} € M(X) ® B(Y).
Note that
(Gr(@)" = {(z,y) € X x Y : (y,7) € G(2)} = {(2,y) € X XV 1 g:(2,9) = 1}
=X xY\{(z,y) € X xY :g.(z,y) <r} =X x Y\ g; *(—o00,7).
Therefore, by (11), we have g (—o0,r) € M(X)® B(Y), and (1) is proved. =

The classical result of Kempisty [55] asserts that a real function of two real variables
which is separately quasi-continuous is quasi-continuous as a function of two variables.
But such a function may not be product measurable, as shown by Marcus (see [79, (x),
p. 49]). Some generalization of the result of Kempisty to the multivalued case was given
by Neubrunn (see [85, 4.1.6 and 4.1.5]).

The situation is different for strong quasi-continuity. It is known that there is a func-
tion f : R? — R having f, and fY continuous (and therefore also strongly quasi-continu-
ous), such that the set D(f) of its discontinuity points is of positive msy measure (see [43,
Theorem 7]). Thus, by Proposition 1.19, f is not strongly quasi-continuous as a function
of two variables. But it turns out that it is product measurable.

Now our aim is to show that if a multifunction is measurable in the first variable and
both lower and upper strongly quasi-continuous in the second variable, then it is product
measurable. For this purpose we introduce some auxiliary multifunctions.

Let X # 0, let (Y,7(Y)) be a separable topological space with a countable dense set
P, and let (Z,7(Z)) be a topological space. We define two multifunctions G, : X XY ~ Z
and G*: X XY ~~ Z as follows:

(2.2) Gu(w,y) = ¢ liminf (F2)(2),
(2.3) G*(z,y) = p- limsup (F,)(?).
t—yAteP

Proposition 1.12(i) implies

PROPOSITION 2.20. If F : X XY ~~ Z is a multifunction such that F, is lower quasi-
continuous for every x € X, then F(x,y) C G*(x,y) for all (z,y) € X XY, where G* is
given by (2.3).

Similarly, Proposition 1.12(ii) yields

PROPOSITION 2.21. If the space (Z,7(Z)) is reqular and second countable, and if F :
X XY ~ Z is a compact valued multifunction such that F, is upper quasi-continuous for
every x € X, then G.(z,y) C F(z,y) for all (z,y) € X x Y, where G, is given by (2.2).

Now we assume that (X, M(X), u) is a measure space and (Y, p, M(Y),v) is a sep-
arable metric measure space, where v is o-finite and B(Y) C M(Y). We suppose that
(G, —) is a differentiation basis of (Y, p, M(Y),v) (see (1.23)) with the density property
(see (1.24)).
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We are now in a position to prove the main theorem of this section.

THEOREM 2.22. If Z is a Polish space and F : X XY ~~ Z is a compact valued multi-
function such that

(i) FY is weakly M(X)-measurable for eachy €Y,
(ii) F, is both lower and upper strongly quasi-continuous with respect to G for each
re X,

then F is measurable with respect to the i x v-completion of M(X) ® B(Y').
Proof. We first note that
(1) v(D(F;)) =0 for each z € X,
by assumption (ii) and Proposition 1.19.
Let P be a countable dense subset of Y and let G, and G* be defined by (2.2) and
(2.3), respectively. Then, by Propositions 2.20 and 2.21,
(2) G«(z,y) C F(z,y) C G*(x,y) for all (z,y) € X x Y.
Our next step is to show that both G, and G* are measurable with respect to the u x v-
completion of M(X) ® B(Y).
Let B denote a countable base of Y. We have (see (1.14) and (1.15))
Gi(z,y) = ﬂ Cl( U F(x,t)).
UeBAyeCL(U) teUnP
For each U € B we define the multifunction Gy : X X Y ~» Z by

Gu(z,y) = U F(x,t),

teUnpP
and observe that for each V € 7(Z) we have

GU_(V):{(sc,y): U F(w,t)ﬂV;«é(Z)}z U {eeX:FanV £0}xY)

teUNP teUNP

= |J (FHY (V) xY) e M(X)® B(Y),

teUNP

since U N P is countable and all sections F! are weakly M /(X )-measurable. Then the
multifunction Gy : X x Y ~ Z defined by

Gu(e,y) = CUGu(z,1))
is M(X) ® B(Y)-measurable. Note that
Gu(x,y) = {Gu(x,y) : U € BAy € CIU)}.

Now we define the multifunction Hyy : X X Y ~~ Z by

Gy (z, ify € CI(U),

Hy(z,y) = v(z,y) . Y (U)

Z if y ¢ CI(U).

Observe that for each V € T(Z) we have
Hy~(V) = (Gu)™ (V) 1 (X x CLU)) U (X x (V' CI(T)) € M(X) @ B(Y),
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since (Gy)~ (V) € M(X) ® B(Y). Therefore Hy is weakly M(X) @ B(Y)-measurable.

Furthermore,
z,y) = () Hulz,y).
UeB

Thus, by Proposition 1.5, G, is measurable with respect to the p X v-completion of
M(X) ® B(Y); the proof for G* is analogous.
Now consider the set

A={(z,y) : Gulz,y) # G*(2,9)}.
Since G, and G* are measurable with respect to the p X v-completion of M(X) ® B(Y),
it is clear that A belongs to that completion, by Proposition 1.4. By (1), the z-section of
A is v-negligible for each z € X, since A, = {y € Y : Gi(z,y) # G*(z,y)} C D(F,) (see
(1.17)).
Thus A is u X v-negligible. Furthermore, the double inclusion (2) gives the implication

G*(mvy) = G*(J?,y) = G*('Tay) = F('Tay)7
which guarantees the p x v-negligibility of the set
(3) Al:{(xvy)G*(xvy)#F(xvy)}CA

Next, let U be an arbitrary open subset of Z. Since G, is in particular weakly measurable
with respect to the u x v-completion of M(X) ® B(Y'), we can suppose that

(4) G (U) = (B\ Az)U 43,
where B € M(X) ® B(Y) and the sets A; and Az are p X v-negligible.

Note that F~(U) = (F-(U)N(X x Y \ A1))U (F~(U)N Ay). Thus, by (3) and (4),
we have

F2(U) = (G~ (U)N (X x Y\ A1) U (F~(U) N Ay)

= [((B\ A2) U A3) N (X x Y\ AU (F~(U) N Ay)

=(B\ (A1 UA))U[AsN (X x Y\ A))]|U(F(U) N Ay).

Since B € M(X) ® B(Y) and the sets A; are p X v-negligible for i = 1,2, 3, Proposition
1.2(ii) finishes the proof. =

10. Multifunctions whose sections are derivatives

The purpose of this section is to give some sufficient conditions for joint measurability of
a multifunction with the (J) property.

The (J) property for real functions of two real variables was introduced by Lipinski
[78] and intensively studied by Grande in the case of real functions defined on more
general spaces (see [41]). Now we will consider this topic in the case of mltifunctions.

From now on we suppose that (X, M(X)) is a measurable space, (Z, ||-]|) is a reflexive
Banach space, and I C R is an interval.

DEFINITION 2.23. We will say that a multifunction F' : X x I ~ Z with values in Cp.(Z)
has the (J) property if, for each y € I, the section FY is weakly M (X )-measurable, for
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each z € X, the section F, is weakly £(R)-measurable, and for each interval P C I, the
multifunction ®p : X ~» Z given by

(24) bp(a) = | Fla,y)dy
P

is weakly M (X )-measurable.

Example 2.17 shows that a multifunction with the (J) property need not be product
measurable.

PROPOSITION 2.24. Suppose that the o-field M(X) is complete with respect to a o-finite
measure. If the space (Z,| - ||) is separable and F : X x I ~~ Z 1is a multifunction with
values in Cp.(Z) such that F, is R-integrable for each x € X and FY is weakly M(X)-
measurable for each y € I, then F has the (J) property.

Proof. Fix P = [¢,d] C I. We only need to show that the multifunction ®p given by
(2.4) is weakly M(X)-measurable. Let y; = ¢+ i(d —¢)/n for i =0,1,...,n and n € N.
If x € X, then, by the R-integrability of F,, we have

(R) | F(z,y)dy = h- lim >~ %Fm(yi) — b lim © S (a),
i=1 i=1

n— oo n—oo N, 4
P

and then, appyling (1.38)(ii), we have
1 n
¢ =h- lim — ) FY%(z).
p(x) = h- lim — ; (2)
Fix n € N and define the multifunction ®,, : X ~» Z by
O, (z) = > F¥(x).
1=1

Then ®@,,(z) € Cpe(Z) for z € X (see (1.29)(iv)). Since F¥ is weakly M (X )-measurable
fori =0,1,...,n, so is ®,, by Theorem I11.40 of [14]. Thus ®p is weakly M (X )-measu-
rable, by (1.21).

Now we can prove the main theorem of this section.

THEOREM 2.25. If a multifunction F : X x I ~ Z with values in Cp.(Z) has the (J)
property and F,, is a derivative for each © € X, i.e.,
y+Ay
Fy(y) = h- i x S Fy,(t)ydt foryel,
then F' is weakly measurable with respect to the u x m-completion of M(X) ® B(R).

Proof. Fix n € N and let A = {yo.n,Y1,n,---,Ynn} be a partition of I into n equal
intervals, i.e., yipn — Yic1,n = 1/nfori=1,...,n. Set

Yi—1,n

Foo) n Sym F(z,y)dy ifrxe X and y € (Yi—1.n,Yin),
n\L, =
Y {6} ifreXandy=yn, 1=0,1,...,n
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Let ®;,,: X ~ Z, fori=1,...,n, be given by
Yin
D () = S F(z,y)dy.
Yi—1,n

By the (J) property of F', we see that
(1) D, ,, is weakly M(X)-measurable for each i =1,...,n.
Define H, : X x !, (Yi—1,n,Yin) ~ Z by
Hn(z,y) = ®in(2).
If V C Z is open, then, by (1), we have

Hy (V) =

n

-

(b;,n(v) X (yifl,nyyi,n) S M(X) & B(R)

1
X) ® B(R)-measurable and by (1.21) we only need to show

~ =

Therefore F;, is weakly M
that

(2) h- lim F,(z,y) = F(x,y) for every x € X and almost every y € I.
n—oo

Fix (x0,y0) € X x I such that yo # y; », for n € Nand ¢ = 1,...,n. Choose a sequence
(Un(i)) such that y,,;y—1 < Yo < Yn(i)- Since Fy is a derivative at ypo, it follows that

yo+Ay
F(wo.yo) = h- Jim | Flwo,y)dy.
Yo
Assume that
1 Yo 1 Yn(s)
Av=—— | Faoydy, B.=——— | Floo,y)dy
Yo — Yn(i)—1 Yn(iy—1 Yn(i) — Yo %
and
1 Yn(i)
Cpn=——"— | Flaoy)dy.
Yn(i) — Yn(i)—1 Uiyt

Then h-lim, o A, = F(zo,y0) and h-lim, .., B,, = F(xo,yo). Moreover

Yo Yn (i)
1
Fu(@o,o) = Cn = ————[ | Flao,p)dy+ | Flwo,y)dy]
Yn(i) — Yn(i)—1 Ui
n(i)—1 Yo
_ Yo — Yn(i)—1 A, + Yn(i) — Yo B,.
Yn(i)=yn(i)—1 Yn(i) = Yn(i)—1
Let o, = 2 ¥"W-1_ Gince the sequence (c,) is bounded, we can take a subsequence

Yn(i) =" Yn(i)—1
(tn,, Jken such that ay,, — ag € [0,1]. Then

h- klinolo an = h- kllnolo(ankAnk + (1 - Oénk)Bnk) = QOF(anyO) + (1 - QO)F(anyO)v

and we conclude that

h- klim Ch,, = F(z0,y0),
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since the set F'(z,yo) is convex. Therefore any subsequence of (F, (2o, Yo))nen converges
to F(xo,Yo), which finishes the proof of (2). m

REMARK 2.26. If  in Theorem 2.25, we suppose that the measure p is o-finite, then the
multifunction F' will be measurable with respect to the uxm-completion of M(X)®B(Y),
by 1.3(v).

As a straightforward consequence of (1.38)(i), Corollary 1.41, Proposition 2.24 and
Theorem 2.25, we have the following corollary (cf. Proposition 2.2).

COROLLARY 2.27. Let (X, M(X), 1) be a measure space, where u is o-finite, and let
(Z,]| - ||) be separable. If a multifunction F : X x I ~~ Z with values in Cp.(Z) has F,
h-continuous for each x € X and FY weakly M(X)-measurable for each y € I, then F is
measurable with respect to the p x m-completion of M(X) ® B(R).

11. The Scorza-Dragoni property of multifunctions

We conclude this chapter by introducing multifunctions having the Scorza-Dragoni prop-
erty and giving their connections with M(X) ® B(Y')-measurable multifunctions.

G. Scorza-Dragoni [105] showed that every Carathéodory function f : X xY — Z
has the property (now called the Scorza-Dragoni property) that, given any € > 0, there is
a closed subset X, of X with the measure of X \ X, less than ¢, such that the restriction
of f to X, x Y is continuous. This result was extended in several directions (also to
multifunctions), and used e.g. in control theory problems (see [2], [7], [10], [13], [36], [51],
[56], [60], [110], [115], and others).

Let (X,7(X),M(X),u) be a topological measure space and let (Y,7(Y)) and
(Z,T(Z)) be topological spaces.

We say that a multifunction F' : X XY ~~ Z has the upper (resp. lower) Scorza-Dragoni
property if, given € > 0, one may find a closed subset X. of X such that u(X \ X.) < ¢,
and the restriction of F' to X, x Y is upper (resp. lower) semicontinuous. If F' has both
the upper and lower Scorza-Dragoni property, then we say that F' has the Scorza-Dragoni
property.

If (Z, 0) is a metric space, then replacing in the above definition the upper (resp. lower)
semicontinuity of the restriction of F' by its h-upper (resp. h-lower) semicontinuity, we
obtain the h-upper (resp. h-lower) Scorza-Dragoni propoerty and the h-Scorza-Dragoni
property of F.

Most of the results on the Scorza-Dragoni property of a multifunction F' have required
that its values are compact and the sections F are continuous. In [48] it is shown that, if
(X, 7T (X)) is a locally compact Hausdorff space and u is a Radon measure on X, Y is a
Polish space and (Z, g) is a separable metric space, then a compact valued Carathéodory
multifunction has the Scorza-Dragoni property, while a closed valued Carathéodory mul-
tifunction only has the lower Scorza-Dragoni property, in general.

The most complete presentation of multifunctions having the Scorza-Dragoni proper-
ties is contained in the thesis [117]. In that paper some relations between semi-Carathéo-
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dory multifunctions being weakly M(X) ® B(Y)-measurable and having the Scorza-
Dragoni property are established.

THEOREM 2.28 ([117, Theorem 4.2.5(1)]). Let (X, M(X), 1) be a measure space, where
is reqular and o-finite, (Y, d) a complete separable metric space and (Z, o) a separable met-
ric space. Let F': X XY ~» Z be a closed valued lower semi-Carathéodory multifunction.
Then F' has the lower Scorza-Dragoni property if and only if F' is M, (X) ® B(Y)-mea-
surable.

The following results are consequences of the above theorem and Theorems 22.18 and
22.19.

THEOREM 2.29. If (X, M(X),u) is a measure space with y reqular and o-finite, Y is
a separable reflexive Banach space, and F : X XY ~~ Y a lower semi-Carathéodory
multifunction with closed convex values such that F,, :' Y ~~Y,, is upper semicontinuous
for each x € X (where Y, denotes Y with the weak topology), then F has the lower
Scorza-Dragoni property.

THEOREM 2.30. Let (X, M(X),u) be a measure space with u regular and o-finite, Y a
Polish space, and (Z, ) a separable metric space. If F : X XY ~~ Z is a compact valued
lower semi-Carathéodory multifunction such that F, is upper quasi-continuous for every
x € X, then F has the lower Scorza-Dragoni property.

In the case of an h-lower semi-Carathéodory multifunction an analogue to Theorem
2.28 is not true, in general. Consider the following example.

EXAMPLE 2.31. Let I =[0,1] and let F': I x R ~ R? be given by
F(z,y) = {(a,za) : o € R}.

Then F is h-lower semi-Carathéodory. It is also £(R) ® B(R)-measurable. But, for each
y € R, FY is h-lower semicontinuous on no subset of I. Therefore, F' does not have the
h-lower Scorza-Dragoni property.

THEOREM 2.32 ([117, Theorem 4.2.5(ii) and (iii)]). Let (X, M(X), 1) be a measure space
with p regular and o-finite, (Y,d) a complete separable metric space, and (Z, ) a sep-
arable metric space. Let F' : X XY ~~ Z be a closed valued h-lower semi-Carathéodory
multifunction. Then

(i) If F has the h-lower Scorza-Dragoni property, then it is M, (X) @ B(Y)-measur-
able.

(ii) If F is compact valued, then it has the h-lower Scorza-Dragoni property if and
only if it is M, (X) ® B(Y')-measurable.
An analogue of Theorem 2.32(1) is also true for upper semi-Carathéodory multifunc-

tions.

THEOREM 2.33 ([117, Theorem 4.2.7(ii)]). Let (X, M(X), 1) be a measure space with p
reqular and o-finite, (Y,d) a complete separable metric space, (Z,0) a separable metric
space, and F : X XY ~ Z a closed valued upper semi-Carathéodory (resp. h-upper semi-
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Carathéodory) multifunction. If F' has the upper (resp. h-upper) Scorza-Dragoni property,
then it is M, (X) ® B(Y')-measurable.

Note that the multifunction F' in Example 2.31 is both upper semi-Carathéodory and
h-upper semi-Carathéodory. But it has neither the h-upper nor the upper Scorza-Dragoni
property. In view of this example the problem arises to characterize those upper semi-
Carathéodory multifunctions which have the upper Scorza-Dragoni property. A crucial
role in solving this problem is played by the Filippov condition [30].

If (X, M(X)) is a complete measurable space, Y is a Polish space and (Z,7(Z)) is
a topological space, then any M(X) ® B(Y)-measurable multifunction F' : X XY ~» Z
satisfies the Filippov condition, i.e., for each open set U C Y and each V € T(Z), the set
{r € X :F(z,U) C V}is M(X)-measurable (see [117, Theorem 4.2.8]). Furthermore, the
Filippov condition is a sufficient condition for the Scorza-Dragoni property of a compact
valued upper semi-Carathéodory multifunction (see [117, Theorem 4.2.9] or [1, Lemma
5.1]). Finally, in the “upper” case, the following result is true.

THEOREM 2.34 ([117, Conclusion 4.2.10]). Let (X, M(X), pu) be a measure space with p
reqular and o-finite, (Y,d) a complete separable metric space, (Z,0) a separable metric
space, and F : X XY ~~ Z a compact valued upper semi-Carathéodory (resp. h-upper semi-
Carathéodory) multifunction. Then F has the upper (or equivalently h-upper) Scorza-
Dragoni property if and only if it is M, (X) ® B(Y')-measurable.

An interesting result on upper semi-Carathéodory multifunctions is given in [102]. If
(X,d, M(X), 1) is a metric measure space, where p is o-finite complete regular and X
is locally compact, and if (Y, p) and (Z,0) are separable metric spaces, then for every
closed valued upper semi-Carathéodory multifunction F' : X X Y ~» Z there is a closed
valued multifunction G : X xY ~~ Z which has the Scorza-Dragoni property and satisfies
G(z,y) C F(zx,y) for p-almost every € X and for ally € Y.



3. SUP-MEASURABILITY OF MULTIFUNCTIONS

Sup-measurability of multifunctions has been considered in the literature (see for example
[1], [61], [108], [111], [116] or [118]). The purpose of this chapter is to give some new
sufficient conditions for this property.

Let (X, M(X)) be a measurable space and let (Y, 7 (Y)) and (Z, 7 (Z)) be topological
spaces. If F': X XY ~» Z is a multifunction and the superposition of the Carathéodory
type H(z) = F(z,G(x)) is M(X)-measurable (resp. weakly M (X )-measurable) for every
closed valued M (X)-measurable multifunction G : X ~» Y, then F is called M(X)-sup-
measurable (resp. weakly M(X)-sup-measurable).

The following theorem is known (see [118, Theorem 1]).

THEOREM 3.1. Let (X, M(X), ) be a measure space with ji o-finite. Let Y be a Polish
space and (Z,T(Z)) a topological space. If F : X XY ~» Z is an M,(X) ® B(Y)-
measurable multifunction, then it is M, (X)-sup-measurable.

Note that this is a generalization of Shragin’s theorem to the multivalued case (see
[106, Theorem 2 and Theorem 6]).

The projection property of the pair ((X, M, (X));Y") in the above theorem is essential,
since F' may not be M(X)-sup-measurable.

EXAMPLE 3.2. Let X = [0,1], Y = N (the irrational numbers in (0,1)) and Z = R. If
K C X xY is closed with projx(K) € B(X) and F' : X x Y ~ Z is given by
0,2] if (z,y) € K,
Fz,y) = { .
[0,1] if (z,y) & K,
then F'is B(X)®B(Y)-measurable and F~((1,3)) = K € B(X)®B(Y). Define G : X ~ Y
by G(z) =Y. Then Gr(G) = X x Y. Set H(z) = F(x,G(z)). Then
H((1,3)) = {z € X : Pz, G(2)) N (1,3) £ 0}
={zeX :F(z,y)N(1,3) DAy e G(x)}
— projx{(z,y) € X x V' : F(z,4) N (1,3) £ 0 Ay € G(x)}
= projx (F((1,3)) N Gr(G)) = projx (K N X x Y) = projx (K) & B(X),
i.e., F' is not weakly B(X)-sup-measurable.
The above example also shows that a weakly M(X)® B(Y')-measurable multifunction
may not be weakly M (X )-sup-measurable.

One can strengthen the weak M(X) ® B(Y')-measurability assumption to ensure weak
M(X)-sup-measurability. To see this we need the following proposition.

(52]
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PROPOSITION 3.3. Let (X, M(X)) be a measurable space, Y a Polish space and (Z,T (Z))
a topological space. Suppose that F : X XY ~~ Z is a multifunction such that each section
F, is lower semicontinuous, and for each M(X)-measurable function h : X — Y, the
multifunction H(z) = F(z, h(z)) is weakly M(X)-measurable. Then F is weakly M(X)-
sup-measurable.

Proof. Let G : X ~»Y be an M(X)-measurable multifunction with closed values. Then G
is weakly M (X )-measurable and, by Proposition 1.3(ii), G has a Castaing representation.
Thus there is a sequence (g, )nen of M(X)-measurable functions g, : X — Y such that
G(z) = Cl({gn(x) : n € N}) for each x € X. Let H(z) = F(x,G(z)) and U € T(Z).
Then
H (U)={zeX:F(z,G(x))NU # 0}
:{zGX: ( U F(z,y))ﬂU%@}
yeG(x)
={reX:IyeGx) Fla,yyNnU#0}={zeX:Glx)NnE, (U)#0}
={z € X :Cl{gn(z) :n e N})NF,_(U) # 0}.
By the lower semicontinuity of F., the set F, (U) is open for each 2 € X. Thus we
can omit the closure in the last term of the above expression to obtain
H U)={ze X :{gu(x):neN}NF, (U)#£0} = U{meX:F(sc,gn(x))ﬂU;é(Z)},
neN
and, by assumption, H~(U) € M(X), since g,, is M(X )-measurable for every n € N. m
THEOREM 3.4. Let (X, M(X)) be a measurable space, Y a Polish space and (Z,7T(Z)) a

topological space. If a multifunction F : X XY ~» Z is weakly M(X) ® B(Y)-measurable
with F, lower semicontinuous for each x € X, then F is weakly M(X)-sup-measurable.

Proof. Let h : X — Y be an M(X)-measurable function and let H(z) = F(z, h(x)).
Observe that for each M C Z we have

(1) H (M={zeX:F(xhlx)NM#£0}={zxe X :(z,h(z)) € F-(M)}.
Let A€ M(X) and B € B(Y). Then
{re X :(x,h(z)) € Ax B}y = Anh™'(B) € M(X),
and so
(2) {reX:(z,h(z))eC} e M(X) foreach C e M(X)® B(X).

Let V € T(Z). By the weak M(X) ® B(Y)-measurability of F', F~ (V) € M(X) @ B(Y).
Then H= (V) € M(X), by (1) and (2). Thus H is weakly M(X)-measurable and, by
Proposition 3.3, F is weakly M(X)-sup-measurable. m

As a straightforward consequence of Theorem 3.1 and Proposition 2.2 we have the
following corollary (cf. [111] and [116]).

COROLLARY 3.5. If (X, M(X), 1) is a measure space with i o-finite, Y a Polish space,
(Z,0) a separable metric space, and F : X XY ~ Z a compact valued Carathéodory
multifunction, then F is M, (X)-sup-measurable.
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Note that the assumption of compactness of values of F' is essential.

EXAMPLE 3.6. Let X = [0,1],Y = N and Z = R?. Let E C X be anon-£L(R)-measurable
set. Then F': X XY ~~ Z given by

projx' (z) ifx #y,
F(x,y) = { projy'(z) ifr=yandx€FE,
{z} x[0,1] fz=yandz e X\E,
is a Carathéodory multifunction. But the multifunction H(x) = F(z, {z}) is not L(R)-
measurable, since H((0,1) x (0,1)) = E ¢ L(R).

It is easy to see that a lower or upper semi-Carathéodory multifunction need not be
sup-measurable (even if it is compact valued and the o-field M(X) is complete with
respect to a o-finite measure).

ExampPLE 3.7. Consider F' : R x R ~~ R defined by
-1,2) ifa Ay,
F(z,y) =4 [-1,0] ifz=yandz€ A,
1,2] ifx=yandxeR\A,
where A & L(R). It is clear that F is a lower semi-Carathéodory multifunction. But if
G(z) = {z} for z € R, then H(z) = F(x,G(x)) is not L(R)-measurable.

One can strengthen the lower semi-Carathéodory assumption to ensure sup-measura-
bility. For instance, by Theorems 2.18 and 3.1 we have the following result.

THEOREM 3.8. If (X, M(X), ) is a measure space with s o-finite, Y a reflezive separable
Banach space, and F : X XY ~~Y a lower semi-Carathéodory multifunction with closed
convez values such that each F, : Y ~Y,, is upper semicontinuous (where Y,, denotes' Y
with the weak topology), then F is M, (X)-sup-measurable.

By Theorems 2.19 and 3.1, we obtain the following result.

THEOREM 3.9. Let (X, M(X),u) be a measure space with p o-finite. Let Y be a Pol-
ish space and (Z,7T(Z)) a metrizable o-compact space. If F : X XY ~» Z is a closed
valued lower semi-Carathéodory multifunction such that each section F, is upper quasi-
continuous, then F' is M, (X)-sup-measurable.

The next result follows at once from Theorems 2.28 and 3.1.

THEOREM 3.10. Let (X, M(X), ) be a measure metric space with p o-finite and regular.
Let Y be a Polish space and (Z, ) a separable metric space. If F : X XY ~ Z is a
closed valued lower semi-Carathéodory multifunction which has the lower Scorza-Dragoni
property, then F is M, (X )-sup-measurable.

REMARK 3.11. Let (X, M(X), 1) be a measure space with po-finite, ¥ a Polish space
and (Z,7(Z)) a perfectly normal topological space. If F' : X x Y ~» Z is a compact
valued multifunction fulfilling the assumptions of Theorem 2.3, then F is M(X)® B(Y)-
measurable (see Remark 2.4(i)), and hence also M, (X)-sup-measurable, by Theorem 3.1.

In particular, by Corollary 2.6, we obtain the following result.
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PROPOSITION 3.12. Let (X, M(X), 1) be a measure space with u o-finite, and (Z,T(Z))
a perfectly normal topological space. If F : X X R ~~ Z is a compact valued multifunction
such that each F, is right-continuous (resp. left-continuous) and each FY is M(X)-
measurable, then F is M, (X)-sup-measurable.

It is essential that the x-sections of F' in the above proposition are all right-continuous
(or all left-continuous).

EXAMPLE 3.13. Let F :[0,1]? ~ R be given by
[1,2] ifz € Aandy<uz,
F(z,y)=1< [1,2] ifzeR\Aandy<uz,
{0} in other cases.

where A C [0,1] is non-Lebesgue measurable. Then some z-sections of F are right-
continuous, others are left-continuous. Furthermore, each y-section is £(R)-measurable.
But F' is not £(R)-sup-measurable, since H(z) = F(x,{z}) is not £(R)-measurable.

Note that Proposition 3.12 remains true if we suppose that (Z,7(Z)) is metrizable
o-compact and F is closed valued (see Remark 2.4(ii)).

Now we shall consider the sup-measurability of multifunctions with the (J) property.
Example 3.13 shows that such a multifunction may not be sup-measurable. One can
strengthen the (J) property assumption to ensure sup-measurability.

Let (X, M(X)) be a measurable space and (Z,p) a separable metric space. Let
(F)nen be a sequence of closed valued multifunctions F), : X x Y ~» Z. Observe that

(3.1) If F = h-lim, o F), and each F,, is M(X)-sup-measurable, then F' is weakly
M (X)-sup-measurable.

Indeed, let z € Z. By (1.12), we have lim,_, 0(z, Fr(z,y)) = o(z, F(z,y)) for each
(x,y) € X xY.Let G: X ~ Y be M(X)-measurable with closed values. Let = € X,
H,(x) = F,(z,G(z)) for each n € N, and H(z) = F(x,G(x)). It is clear that
lim,, . 0(2, Hy(x)) = o(z, H(z)). Fix n € N. Note that F),, being M(X)-sup-measura-
ble implies F), is weakly M (X)-sup-measurable. Hence H,, is weakly M (X )-measurable.
Therefore, by Proposition 1.3 (i), the real function z — o(z, H,(x)) is M(X)-measurable.
Thus the real function z — o(z, H(z)) is M(S)-measurable and, again by Proposition
1.3(i), H is weakly M(X)-measurable.

From now on we assume that (X, M(X), u) is a measure space with p o-finite, and
I C R is an interval.

THEOREM 3.14. Let (Z,||-]|) be a separable Banach space. If a multifunction F' : X X I ~~
Z with values in K.(Z) has the (J) property and each section F, is a derivative, then F
is M, (X)-sup-measurable.

Proof. Let (x,y) € X x I. Since F, is a derivative at y,
y+Ay

(1) F(:c,y):h_&gw—y | Fa,t)dt.
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For every n € N we define F,, : X x I ~» Z by
y+1/n
F.(x,y)=n S F(z,t)dt.
Yy

Then h-lim, o Fy(z,y) = F(x,y) for (z,y) € X xY, by (1). For fixed n € N, each
section (F),), is continuous, by Lemma 1.36 and (1.11)(iii). Since F" has the (J) property,
(F)Y is M(X)-measurable for every y € I. Thus F, is a Carathéodory multifunction, and
thus, by Corollary 3.5, it is M, (X )-sup-measurable. Then, by (3.1), F'is weakly M, (X)-
sup-measurable, and hence also M, (X )-measurable, since its values are compact. m

In particular, by Proposition 2.24 and the above theorem, we have the following result.

COROLLARY 3.15. If (Z,| - ||) is a separable Banach space and F : X x I ~ Z is a
multifunction with values in K.(Z) such that each F, is an R-integrable derivative and

each FY is M(X)-measurable, then F is M,,(X)-sup-measurable.

Theorem 3.1 implies that each M(X) ® B(Y)-measurable multifunction is M, (X)
-sup-measurable whenever p is o-finite and Y is a Polish space. The following example
shows that for o-fields in X X Y more general than the product M(X) ® B(Y), this
property may not be true.

EXAMPLE 3.16. Let X =Y =R and let E & L(R). If F : R? ~ R is given by
0,2 ity
F(z,y) =4 [0,1] fz=yAzxz€E,
{0} fz=yAxgE,
then F is £(R?)-measurable. But H(z) = F(z,{z}) is not £(R)-measurable, i.e., F' is
not £(R)-sup-measurable.

We end this chapter with some results on the sup-measurability of a multifunction
which is measurable with respect to a complete o-field treated as a multifunction of two
variables.

THEOREM 3.17. Let (Z, 9) be a separable metric space and F : X xR ~» Z a closed valued
weakly M, m (X XR)-measurable multifunction such that each section F, is weakly L(R)-
measurable. If for each open set V C Z,

(i) Dy(F;(V),y)>2/3 and D|(Ff(V),y)>2/3 for each (z,y) € X x R,
then F is weakly M, (X)-sup-measurable.

Proof. Let H : X ~> R be closed valued and M,,(X)-measurable. By Proposition 1.3(i),
it is sufficient to prove that the real function

(1) g:(x) = o(z, F(z, H(z)) is M, (X)-measurable for every z € Z.

Fix z € Z. To prove (1), we apply the Davies lemma [17], i.e., it is sufficient to show
that, for every & > 0, the family D, = {D € M(X) : oscp(g.) < €} satisfies the following
condition:
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(D) for every A € M(X) of positive measure y there exists a D € D, such that D C A
and p(D) > 0.

Fix € > 0. Let ([an,bn])nen be a sequence of intervals with nonnegative rational end-
points such that b, — a,, < /4 for n € N. Let A € M(X) with u(A4) > 0, and put

A, ={x€A:a, <g,(x)<b,} forneN.

Then A = |J,cn An- Since pu(A) > 0, there is an ny € N such that p*(4,,) > 0.
Furthermore, [an,, bn,] C [92(x) — €/2, g:(x) +€/2] for x € A,,, and
(2) 9:(2) = oz, P, H@) = 0z | F(@,9)) € [angbuo)

yEH (z)

Let f, : X x R — R be defined by f,(z,y) = o(z, F(x,y)) and let xy € A,,. We put

M ={(z,y) € X xR: |f.(2,9) — g.(w0)| < /2}.

Observe that f, is M, xm (X x R)-measurable, since F' is weakly M, ., (X x R)-measur-
able. Therefore

M = [ ([g:(z0) — /2, 9:(w0) +/2]) € Myuxm (X X R).

Let x € X. By the weak £(R)-measurability of F;, the z-section of f, is £L(IR)-measurable.
Thus M, € L(R) for every x € X. We will show that

(3)  for each M(X)-measurable selection h of H, there is a set C € M(X) such that
A, C C and Dy (M, h(z) > 1/3 for all z € C.

Note that
My ={y €R: fa(z,y) = g:(w0) —&/2} N{y €R: fa(2,y) < g:(0) +¢/2}
=R\ [(R\ (£2)7 (=00, g:(20) = £/2))) U (R\ (£2)7 ' ((g:(z0) + /2, 00)))]
=R\ [R\ F, (B(2,9:(w0) — £/2))) U (R\ F,/ (R \ CL(B(z, g:(w0) +¢/2))))].
By assumption (i), we have D;(M,,y) > 1/3 for each y € R. Furthermore,
f2(x,y) € [ang, bng| C [92(20) —€/2,9.(x0) +€/2] forz € A,, and y € H(x).
In particular, for every M(X)-measurable selection h : X — R of H we have
{(z,h(z)) e X xR:z € Ay} CM and Dy(Bg, h(x))>1/3 forxe A,,.
Let h be an M (X )-measurable selection of H (guaranteed by Proposition 1.3(vii)). Then
Mn{(z,y) e X xR:y € B(h(z),1/n)} € M, xm(X xR).
Let n € N and put

m(M,NU) _ 1
B, = {.'17 S Ang :U C B(h(m),l/n) /\h(l’) el = W > 5},
where U C R is an arbitrary open interval. Then B; C B;4; fori € Nand A, = UneN B,.
Let 49 = min{i € N: p*(B;) > 0}. If n > ip and = € B,,, then

M,NB(h(z),1/n) € LR) and m(M,NB(h(z),1/n)) > L-m(B(h(z),1/n)) = 2/(3n).
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C, = {ng:m(MxﬂB<h(z),%)> > %}

then B,, C C,, and C,, € M(X). Set

c=J N e

k>io n>k
Then A,, C C, since By, C (), Cn for k > ip. Furthermore, C € M(X) and
Dy (M,,h(x)) > 1/3 for each z € C. Thus (3) is proved.

Now suppose, on the contrary, that for every D € M(X) such that D C A and
w(D) > 0 we have oscp g, > e.

Let D= ANC. Then D € M(X) and pu(D) > 0, since A,,, C ANC and p*(A,,) > 0.
Thus, there is an z; € D such that |g.(z1) — g.(zo)| > £/2. We have two possibilities:
either g, (z1) > g.(xo) +€/2 or g.(x1) < g-(x0) — /2.

Suppose that g,(z1) > g.(x¢) +€/2. Then

@) gl =eFanHe)) =z | Feny) > g.(e0) +2/2
yEH (x1)

If we put

Furthermore,
{y €R: 0(z, F(21,y)) > g:(x0) +¢/2} = {y € R: fo(1,9) > g=(z0) +/2}
= (£2)2, ((92(z0) + /2, 00)) = FJ (R\ CUB(2, g:(w0) +¢/2)))-
Then, by assumption (i) and (4), we have
Di({y eR: f.(z1,y) > g.(x0) +€/2},y) > 2/3 for each y € H(x1),

and so

(5) Di({y e R: fo(x1,y) > g.(x0) +€/2}, h(z1)) > 2/3,
because h(x1) € H(x1). Since 21 € C, by (3) and (5), it follows that
(6) My, 0 {y € R: fa(w1,9) > g:(w0) +2/2} # 0.

Then there is a t € R such that
|f2(-7317t) _92(x0)| < 5/2 and fz(l‘l,t) > QZ(xO) +€/2a

and we have a contradiction.
Now suppose that g,(x1) < g.(zo) — £/2. Then

9:(z1) = o(z, F(x1, H(zy —,Q(Z U F(z1,y ) < gz (z0) —€/2.
yEH (1)
Therefore, there is a y; € H(x1) such that o(z, F(z1,11)) < gz(x0) — £/2. Furthermore,
{y eR:o(z, F(21,y)) < g=(z0) —¢/2} = {y € R: f.(21,y) < g=(20) — /2}
= F,, (B(2,9:(z0) — €/2)).
Thus, by (i) we have
Di({y e R: fo(21,y) < gz(w0) —€/2},31) > 2/3.
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The selection h in (3) may be modified if necessary by taking h(z;) = y;, without
changing the set C. Then D, (M,,,y1) > 1/3, by (3).
As in the proof of (6), we show that

3t e My, N{y € R: f.(x1,y) < g-(x0) —€/2}.

Thus |f,(x1,t) — g:(z0)| < e/2 and f.(x1,t) < g.(z0) —€/2, and again we have a contra-
diction, which finishes the proof. m

Observe that by Theorem 3.17 and Propositions 1.8 and 1.9, we have the following
result.

ProPoOSITION 3.18. If (Z,0) is a separable metric space and F' : X x R~ Z is a closed
valued weakly M xm(X x R)-measurable multifunction such that F, is approzimately
continuous for every x € X, then F is weakly M, (X )-sup-measurable.

Consider the following example.

EXAMPLE 3.19. Let C C [0, 1] be a Cantor set with m(C') > 0 and let A be a subset of C
such that A ¢ L(R). By Theorem 13.1 of [93], there is a homeomorphism A : [0,1] — [0, 1]
such that h(A) € L(R) and m(h(A)) = 0. Let B = h(A) and define F' : [0,1] x [0,1] ~ R
by

0,1] ifze€[0,1]A Ny & B,

{0} ifze(0,1]Ay€E B.
Then F is £(R?)-measurable and F, is approximately lower semicontinuous for each
x € [0,1]. But F' is not weakly £(R)-sup-measurable, since the multifunction G(x) =
F(x,{g(z)}), where g = h™!, is not £(R)-measurable. Therefore in Proposition 3.18 it is
not sufficient to suppose that all the sections F, are just approximately lower semicon-
tinuous.

If we transpose the values of F, its z-sections will be approximately upper semi-
continuous and it will still be £(R?)-measurable, but not £(R)-sup-measurable. Again,
Proposition 3.18 does not hold if we suppose that all the sections F, are just approxi-
mately upper semicontinuous.

Observe that, by Theorem 3.14 and Proposition 1.42, we have the following corollary.

COROLLARY 3.20. Let (X, M(X), 1) be a measure space, where u is o-finite, and let
(Z,]| - 1|) be a separable Banach space. Let F : X X I ~~ Z be a bounded multifunction
with F(z,y) € Coe(Z). If F has the (J) property and each x-section of F' is approzimately
continuous, then F is M, (X)-sup-measurable.

The next corollary follows at once by Theorem 2.9, Proposition 3.18 and (1.11)(iii).

COROLLARY 3.21. If (X, M(X), ) is a measure space, where p is o-finite, (Z, ) is a
separable metric space and F : X X R ~~ Z is a compact valued multifunction such that
{F.}zex 1s approximately h-equicontinuous and FY is M(X)-measurable for everyy € R,
then F' is M, (X)-sup-measurable.
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