
INTRODUCTIONIn re
ent years, the theory of measurability of multifun
tions (loosely speaking, set-valuedfun
tions) has been developed extensively, with important appli
ations in di�erential in-
lusions, mathemati
al e
onomi
s, optimal 
ontrol and optimization (see [1℄, [3℄, [16℄,[21℄, [29℄, [33℄, [36℄, [37℄, [38℄, [45℄, [46℄, [57℄, [89℄, [90℄, [91℄, [94℄, [98℄, [100℄, and else-where).In various problems, one en
ounters measurability of multifun
tions of two variables.Obviously, ea
h multifun
tion of two variables x ∈ X and y ∈ Y may be treated as amultifun
tion of the single variable (x, y) ∈ X × Y . The essential di�eren
e is the pos-sibility of formulating hypotheses 
on
erning the multifun
tion in terms of its se
tion-wise properties. In this 
ase, we 
an speak about produ
t (sometimes 
alled joint) mea-surability and superpositional measurability (sup-measurability for short), i.e., roughlyspeaking, measurability with respe
t to the produ
t σ-�eld and measurability of theCarathéodory type superposition F (x,G(x)), respe
tively, where F and G are multifun
-tions.In the single valued version, the problem of produ
t measurability and sup-measu-rability has been studied very extensively in the last 40 years. An overview of somepapers in this �eld 
an be found in [41℄. Far less is known, however, in the multivalued
ase, although in various �elds of mathemati
s and its appli
ations, the superposition
F (x,G(x)) o

urs frequently (see for instan
e [1℄, [3℄, [21℄, [46℄ and [89℄).The di�eren
e between sup-measurability and joint measurability is essential. In gen-eral, neither of the in
lusions between the 
lass of joint measurable multifun
tions andthe 
lass of sup-measurable multifun
tions is true. It is easy to de�ne a joint Lebesguemeasurable real fun
tion that is not sup-measurable [106℄. On the other hand, Grande andLipi«ski have given an example of a sup-measurable real fun
tion whi
h is not measurableas a fun
tion of two variables [44℄.Several joint measurability results have been proved for single valued fun
tions of twovariables ([40℄, [41℄, [17℄, [18℄, [23℄, [24℄, [78℄, [80℄, [84℄ and others). It is well known thatif (X,M(X)) is a measurable spa
e, Y is a separable metri
 spa
e and Z is a metri
spa
e, then a Carathéodory fun
tion f : X × Y → Z (i.e., loosely speaking a fun
tionmeasurable in the �rst and 
ontinuous in the se
ond variable) is measurable with respe
tto the produ
t of the σ-�eld M(X) and the Borel σ-�eld of Y . This result was also provedin the 
ase of a multifun
tion ([111℄, [116℄). Unfortunately, without additional hypotheses,this result 
annot be extended to multifun
tions with a weaker semi
ontinuity assumptionin pla
e of 
ontinuity. Many new features appear in this 
ase whi
h are �hidden� in thesingle valued theory.

[5℄



6 G. Kwie
i«skaThe problem of sup-measurability was for the �rst time 
onsidered by Carathéodoryin his book [11℄. He formulated a su�
ient 
ondition for sup-measurability of a fun
tion
f : R

2 → R, namely, measurability as a fun
tion of the �rst variable for any y ∈ R and
ontinuity as a fun
tion of the se
ond variable, for almost every x ∈ R. Certain 
onditionsfor sup-measurability of fun
tions in abstra
t spa
es have been presented by Shragin in[106℄. Several results on sup-measurability of real fun
tions are given by Grande in [41℄and [39℄.The purpose of this paper is to prove some new produ
t measurability and sup-measurability results 
on
erning multifun
tions.The present monograph 
onsists of three 
hapters. Chapter 1 and Chapter 2 aredivided into se
tions: the �rst one into Se
tions 1�6, and the se
ond one into Se
tions7�11.In Chapter 1, we 
olle
t material that will be used in the next 
hapters: notation andterminology (Se
tion 1), fa
ts known in the literature (Se
tions 2 and 3), and fa
ts whi
hare new for multifun
tions of one variable (Se
tions 4, 5 and 6).In Se
tion 4, we start from the idea of the density of sets in a metri
 spa
e withrespe
t to some di�erentiation basis, generating a density topology in this spa
e, thenintrodu
e the 
on
ept of approximate 
ontinuity of multifun
tions and prove some basi
properties of su
h multifun
tions.Strong quasi-
ontinuity has been 
onsidered in the literature, �rst by Noiri [88℄ forfun
tions and then by Neubrunn [85℄ for multifun
tions; there, it meant 
ontinuity relativeto the α topology of a topologi
al spa
e. In the 
ase of real fun
tions, su
h strong quasi-
ontinuity 
oin
ides with the usual 
ontinuity (see [85℄).Strong quasi-
ontinuity of real fun
tions was also 
onsidered by Grande in [43℄ butin a di�erent sense. His de�nition of strong quasi-
ontinuity is based on the densitytopology in the spa
e of real numbers. In Se
tion 5, we generalize this notion to the 
aseof multifun
tions (in abstra
t spa
es) and show that a multifun
tion whi
h is stronglyquasi-
ontinuous is almost everywhere 
ontinuous.Many steps have been taken toward di�erential 
al
ulus for multifun
tions, amongthem one by Hukuhara [53℄ and another by Banks and Ja
obs [5℄. In Se
tion 6, thenotion of di�erentiability is developed, taking advantage of an idea used by Hukuharato give a de�nition of di�erentiability for a reasonably wide 
lass of multifun
tions. Butthe study of di�erentiability of multifun
tions is not the purpose of this paper. We giveonly some properties needed later on. We 
onsider multifun
tions from an interval to areal re�exive normed linear spa
e. In this 
ase, the derivative of a multifun
tion at apoint is a 
losed 
onvex and bounded set. This is essential for further 
onsiderations.The 
on
ept of π-di�erentiability of multifun
tions dis
ussed by Banks and Ja
obs ispresented, taking advantage of Rådström's embedding theorem. In this 
ase the derivativeof a multifun
tion at a point is a 
ontinuous linear mapping. (A 
omparison of the twonotions of di�erentiability is given.) Furthermore, a notion of a derivative multifun
tionis introdu
ed, making use of the notion of integral given by Banks and Ja
obs in [5℄.As we are mainly interested in multifun
tions of two variables, we study su
h multi-fun
tions in Chapters 2 and 3.



Measurability of multifun
tions of two variables 7Chapter 2 is devoted to produ
t measurability of multifun
tions. In Se
tion 7, a par-ti
ular emphasis is put on the possibility of repla
ing 
ontinuity in the se
ond variable ofa Carathéodory multifun
tion by a weaker assumption, keeping produ
t measurability.Among these possibilities, we show that in metri
 spa
es, 
ontinuity relative to a 
er-tain topology, �ner than the metri
 one, yields produ
t measurability. It also preservesadditional features.Se
tion 8 is 
on
erned with joint measurability of a multifun
tion in a metri
 spa
ewhose se
tions are approximately semi
ontinuous with respe
t to some di�erentiationbasis. These results were inspired by the results of Grande [41℄ for real fun
tions. Somenew properties arise in the 
ase of multifun
tions.The 
lassi
al result of Kempisty 
on
erning quasi-
ontinuity of real fun
tions whi
hare quasi-
ontinuous with respe
t to both variables has been extended to a 
lass of mul-tifun
tions [85℄. Roughly speaking, the upper (resp. lower) quasi-
ontinuity of a multi-fun
tion in the �rst and both upper quasi-
ontinuity and lower quasi-
ontinuity in these
ond variable imply its upper (resp. lower) quasi-
ontinuity. By the example of Mar
us[79℄, su
h a multifun
tion need not be produ
t measurable.If, in the notion of a Carathéodory multifun
tion, we repla
e the 
ontinuity in the se
-ond variable by semi
ontinuity, we obtain a semi-Carathéodory multifun
tion. In general,a multifun
tion whi
h is semi-Carathéodory need not be produ
t measurable (even if itis 
ompa
t valued). In Se
tion 9, we show that a lower semi-Carathéodory multifun
tionwhi
h is upper quasi
ontinuous in the se
ond variable is produ
t measurable.The situatoin is di�erent for the strong quasi-
ontinuity 
onsidered by Grande in [43℄.There exists a real fun
tion, strongly quasi-
ontinuous in both variables, whi
h is notstrongly quasi-
ontinuous (as a fun
tion of two variables). But it turns out that su
h afun
tion is produ
t measurable.Se
tion 9 is also devoted to the produ
t measurability of a multifun
tion (in a met-ri
 spa
e) whi
h is measurable in the �rst and both upper strongly quasi-
ontinuousand lower strongly quasi-
ontinuous with respe
t to a di�erentiation basis in the se
ondvariable.In Se
tion 10 we introdu
e a 
on
ept of multifun
tions (with values in a Bana
h spa
e)with the (J) property, whi
h may be 
onsidered as a multivalued 
ounterpart of the (J)property for real fun
tions given by Lipi«ski [78℄. We show that a multifun
tion with the(J) property whi
h is a derivative in the se
ond variable is produ
t measurable.We 
on
lude that 
hapter by introdu
ing multifun
tions having the S
orza-Dragoniproperties whi
h have 
lose 
onne
tions with produ
t measurable multifun
tions.The last 
hapter, Chapter 3, is 
on
erned with sup-measurability of multifun
tions.Shragin [106℄ introdu
ed a property of normalization of fun
tions between Borel mea-surability and Lebesgue measurability of fun
tions of two variables and proved that anynormalized fun
tion is sup-measurable. This theorem was generalized by Zygmunt to the
ase of multifun
tions [118℄, i.e., measurability with respe
t to the produ
t of a σ-�eldand the σ-�eld of Borel sets ensures sup-measurability.In Chapter 3, we begin with su�
ient 
onditions for sup-measurability of multifun
-tions whi
h are 
onsequen
es of theorems of Chapter 2 and Zygmunt's theorem.
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i«skaProdu
t measurability with respe
t to a σ-�eld more general than that required inZygmunt's theorem need not ensure sup-measurability of a multifun
tion. We presentsome ways to reinfor
e the produ
t measurability with additional assumptions on these
tions of the multifun
tion whi
h do se
ure its sup-measurability.It is easy to see that, in some spa
es, a 
ompa
t valued Carathéodory multifun
tion issup-measurable. This result 
an be extended to a general 
lass of multifun
tions. It turnsout that if the 
ontinuity of a Carathéodory multifun
tion in the se
ond variable is re-pla
ed by a more general 
ondition (for instan
e, R-integrability), then the multifun
tionwill still be sup-measurable.In general, a multifun
tion whi
h is semi-Carathéodory need not be sup-measurable(even if it is 
ompa
t valued). But if a lower semi-Carathéodory multifun
tion is moreoverassumed to be upper quasi-
ontinuous in the se
ond variable, then it is sup-measurable.Furthermore, we show that a multifun
tion with the (J) property whi
h is a derivativein the se
ond variable is sup-measurable. Finally, some additional density properties of aprodu
t measurable multifun
tion whi
h ensure its sup-measurability are 
onsidered.De�nitions, lemmas, theorems, 
orollaries, examples and remarks are numbered 
on-se
utively, but separately within ea
h 
hapter; thus Theorem 1.2 means the se
ond the-orem in Chapter 1. Independently, some important mathemati
al fa
ts (easy 
on
lusionsor known fa
ts) useful later are numbered (also separately within ea
h 
hapter); thus(2.7) means some statement in Chapter 2.Proofs are in
luded, as usual, when the assertions are more general than those whi
hhave appeared in the literature or when, in my opinion, the result is not known or theproof is simpler than the known one. Otherwise, the reader is referred to the 
orrespondingpapers. Numbers in square bra
kets refer to the bibliography at the end of the monograph.



1. PRELIMINARIES
1. Notations, basi
 de�nitions and properties

By means of this 
hapter, we want to make sure that the reader has be
ome a
quaintedwith the language and useful fa
ts on multifun
tions of one variable, needed when westart the main subje
t in the next 
hapters. Things will be presented in resonable gen-erality.We will use standard notations. In parti
ular, the sets of positive integers and realnumbers will be denoted by N and R, respe
tively. R
n will denote the n-dimensionalEu
lidean spa
e, L(Rn) the σ-�eld of Lebesgue measurable subsets of R

n and mn theLebesgue measure on L(Rn) (we will simply write m instead of m1). Capital 
alligraphi
letters will usually denote 
olle
tions, families or 
lasses of sets.Let S and Z be nonempty sets and let Φ be a mapping whi
h asso
iates to ea
h point
s ∈ S a nonempty set Φ(s) ⊂ Z. Su
h a mapping is 
alled a multifun
tion from S to Z,and we write Φ : S  Z. As a rule, we will denote fun
tions by f , g, h, φ, ψ, et
., andmultifun
tions by 
apital letters F , G, H, Φ, Ψ, et
.The graph of a multifun
tion Φ is de�ned by
(1.1) Gr(Φ) = {(s, z) ∈ S × Z : z ∈ Φ(s)}.Let P(Z) denote the family of all subsets of Z and P0(Z) the subfamily of all nonemptysubsets of Z. We will sometimes 
onsider a multifun
tion Φ as a fun
tion from S to
P0(Z). This will always be expli
itly indi
ated in order to avoid vagueness. For instan
e,the graph of a multifun
tion Φ from S to Z is a subset of S × Z (see (1.1)), whereasthe graph of a fun
tion Φ from S to P0(Z) is a subset of S × P0(Z), namely {(s, P ) ∈

S × P0(Z) : P = Φ(s)}.If Φ : S  Z is a multifun
tion, then for a set A ⊂ Z two inverse images of A under
Φ are de�ned as follows:
(1.2) Φ+(A) = {s ∈ S : Φ(s) ⊂ A} and Φ−(A) = {s ∈ S : Φ(s) ∩A 6= ∅}.One sees immediately that

Φ−(A) = S \ Φ+(Z \A) and Φ+(A) = S \ Φ−(Z \A).Furthermore, if I is a set of indi
es and Bi ⊂ Z for i ∈ I, then[9℄
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(1.3) Φ−

( ⋃

i∈I

Bi

)
=

⋃

i∈I

Φ−(Bi).Sin
e always Φ+(A) ⊂ Φ−(A) for A ⊂ Z, sometimes Φ+(A) and Φ−(A) are denotedby Φs(A) and Φw(A) and 
alled strong and weak 
ounterimages of A, respe
tively. If Φis treated as a fun
tion, then, as usual,
(1.4) Φ−1(G) = {s ∈ S : Φ(s) ∈ G} for G ⊂ P0(Z).The image of a set B ⊂ S under Φ is de�ned by
(1.5) Φ(B) =

⋃

b∈B

Φ(b).Any fun
tion φ : S → Z su
h that φ(s) ∈ Φ(s) for ea
h s ∈ S is 
alled a sele
tion of themultifun
tion Φ : S  Z.A fun
tion f : S → Z may be 
onsidered as a multifun
tion assigning to s ∈ S thesingleton {f(s)}. It is 
lear that in this 
ase we have f+(A) = f−(A) = f−1(A) for
A ⊂ Z.If (Z, T (Z)) is a topologi
al spa
e and A ⊂ Z, then we will use the notations Int(A),
Cl(A) and Fr(A) for the interior, 
losure and boundary of A, respe
tively. Furthermore,we will denote by B(Z) the σ-�eld of Borel subsets of Z and by Fσ(Z) and Gδ(Z) the�rst additive and multipli
ative 
lass, respe
tively, in the Borel hierar
hy of subsets of thespa
e (Z, T (Z)). By a Polish spa
e we mean a separable spa
e metrizable by a 
ompletemetri
. If (Z, T (Z)) is metrizable and Z is a 
ontinuous image of a Polish spa
e, then wewill say that (Z, T (Z)) is a Suslin spa
e. We will write (for short) that Z itself is a Polish(resp. Suslin) spa
e.We also introdu
e the following notations:

C(Z) = {A ∈ P0(Z) : A is 
losed};
K(Z) = {A ∈ C(Z) : A is 
ompa
t};
Cb(Z) = {A ∈ C(Z) : A is bounded}, whenever (Z, ̺) is a metri
 spa
e;
Cbc(Z) = {A ∈ Cb(Z) : A is 
onvex} and Kc(Z) = {A ∈ K(Z) : A is 
onvex},whenever (Z, ‖ · ‖) is a real normed linear spa
e.If z0 ∈ Z, then we will use B(z0) to denote the neighbourhood �lterbase of z0. Thegrill of B(z0) (see [6, p. 12℄) will be denoted by G(z0); it 
onsists of all sets A(z0) ⊂ Zsu
h that A(z0) ∩ U(z0) 6= ∅ for ea
h U(z0) ∈ B(z0), i.e., z0 ∈ Cl(A(z0)).If (Z, ̺) is a metri
 or pseudometri
 spa
e, z0 ∈ Z and A ⊂ Z, then, as usual, we willdenote by B(z0, r) the open ball 
entred at z0 with radius r > 0 and B(A, r) = {z ∈ Z :

̺(z,A) < r}, where ̺(z,A) = inf{̺(z, y) : y ∈ A}. The topology on Z generated by themetri
 ̺ will be denoted by T̺(Z).If (Z, δ) is a hemimetri
 spa
e (i.e., δ is a pseudometri
 whi
h fails to be symmetri
),then the open ball will be denoted as in the 
ase of a metri
 or pseudometri
. If interiorpoints and open sets are de�ned in the usual way for hemimetri
 spa
e (Z, δ), then thefamily of all open sets is a topology on the spa
e Z.
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tions of two variables 112. Continuity of multifun
tionsVarious de�nitions of 
ontinuity of multifun
tions are given in many papers. They allredu
e to the usual 
ontinuity if a single valued fun
tion is 
onsidered. We now state twodi�erent de�nitions of 
ontinuity for multifun
tions whi
h we shall use in this monograph.Let (Z, T (Z)) be a topologi
al spa
e. The topology on Z allows us to de�ne varioustopologies on P0(Z) and ea
h one yields a 
orresponding notion of 
ontinuity of a multi-fun
tion. Following Mi
hael (see [83, Appendix, p. 179℄), the upper (resp. lower) semi�nitetopology on P0(Z) is the topology obtained by taking as a basis (resp. sub-basis) for theopen sets all 
olle
tions of the form U = {A ∈ P0(Z) : A ⊂ G} (resp. L = {A ∈ P0(Z) :

A ∩ G 6= ∅}) with G ∈ T (Z); we denote it by TU (resp. TL). The �nite (or Vietoris)topology on P0(Z) is the join of both these topologies and is denoted by TV .If we try to adapt to multifun
tions the following two equivalent de�nitions of 
onti-nuity of a fun
tion f : R → R at a point x0 ∈ R:(i) ∀U(f(x0)) ∃U(x0) ∈ B(x0) U(x0) ⊂ f−1(U(f(x0)),(ii) ∀ε > 0 ∃δ > 0 ∀x|x− x0| < δ ⇒ |f(x) − f(x0)| < ε,then we obtain two notions of 
ontinuity whi
h are no longer equivalent. This unfortunatesituation led to two 
on
epts of semi
ontinuity.Let (S, T (S)) and (Z, T (Z)) be topologi
al spa
es. We will 
all a multifun
tion Φ :

S  Z upper (resp. lower) semi
ontinuous at a point s0 ∈ S if, for any open set G ⊂ Zsu
h that Φ(s0) ⊂ G (resp. Φ(s0) ∩ G 6= ∅), there exists a U(s0) ∈ B(s0) su
h that
U(s0) ⊂ Φ+(G) (resp. U(s0) ⊂ Φ−(G)); Φ is 
alled 
ontinuous at s0 ∈ S if it is bothupper and lower semi
ontinuous at s0.

Φ is 
alled 
ontinuous or upper (resp. lower) semi
ontinuous if it is 
ontinuous orupper (resp. lower) semi
ontinuous at ea
h point s ∈ S.Note that for a set G ⊂ Z, Φ−1({A ∈ P0(Z) : A ⊂ G}) = Φ+(G) and Φ−1({A ∈

P0(Z) : A ∩G 6= ∅}) = Φ−(G) (see (1.2) and (1.4)). Thus we 
an say that(1.6) If (S, T (S)) and (Z, T (Z)) are topologi
al spa
es and s0 ∈ S, then a multifun
tion
Φ : S  Z is upper (resp. lower) semi
ontinuous at s0 if and only if the fun
tion
Φ : S → (P0(Z), TU ) (resp. Φ : S → (P0(Z), TL)) is 
ontinuous at s0; Φ is
ontinuous at s0 if and only if the fun
tion Φ : S → (P0(Z), TV ) is 
ontinuousat s0.Note that the de�nition of 
ontinuity or semi
ontinuity of a multifun
tion is morehandy than the 
ondition (1.6), sin
e we do not need to indi
ate the topology on P0(Z)(the topology on Z is su�
ient).Evidently, in the 
ase of a single valued fun
tion the upper semi
ontinuity and lowersemi
ontinuity as well 
ontinuity 
oin
ide with the usual notion of 
ontinuity.The next de�nition of semi
ontinuity of a multifun
tion is based on the Hausdor�metri
 extended to P0(Z). If (Z, ̺) is a metri
 spa
e, we 
an introdu
e the topology on

P0(Z) generated by the hemimetri
 hu de�ned by
(1.7) hu(A,B) = sup{̺(x,A) : x ∈ B},
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alled the upper hemimetri
 topology on P0(Z), and denoted by Thu
. Dually, we 
anintrodu
e the lower hemimetri
 topology Thl

generated by the hemimetri
 hl de�ned by
(1.8) hl(A,B) = sup{̺(x,B) : x ∈ A}.The fun
tion h on the produ
t P0(Z) × P0(Z) given by

h(A,B) = max{hu(A,B), hl(A,B)}is a pseudometri
 on P0(Z) and it generates the Hausdor� topology on P0(Z) denotedby Th. Of 
ourse the spa
e (C(Z), h) is a metri
 spa
e. Note that(1.9) (i) Thu
⊂ TU and TL ⊂ Thl

, and the 
onverse in
lusions are not true, in general[58, Proposition 4.2.1℄.(ii) The topologi
al spa
es (K(Z), TV ) and (K(Z), Th) are equivalent (see [63,p. 21℄).If (S, T (S)) is a topologi
al spa
e and (Z, ̺) a metri
 spa
e, then a multifun
tion
Φ : S  Z is 
alled hemi-upper (h-upper for short) semi
ontinuous at a point s0 ∈ Sif, for ea
h ε > 0, there exists a U(s0) ∈ B(s0) su
h that Φ(s) ⊂ B(Φ(s0), ε) for all
s ∈ U(s0).Dually, Φ is 
alled hemi-lower (h-lower for short) semi
ontinuous at a point s0 ∈ Sif, for ea
h ε > 0, there exists a U(s0) ∈ B(s0) su
h that Φ(s0) ⊂ B(Φ(s), ε) for all
s ∈ U(s0).

Φ is 
alled hemi-
ontinuous (h-
ontinuous for short) at s0 ∈ S if it is both h-upper and
h-lower semi
ontinuous at s0; Φ is 
alled h-
ontinuous if it is h-
ontinuous at ea
h s ∈ S.Note that in the 
ontext of (1.7) and (1.8) we 
an say that(1.10) If (S, T (S)) is a topologi
al spa
e and (Z, ̺) is a metri
 spa
e, then a multi-fun
tion Φ : S  Z is h-upper semi
ontinuous at a point s0 ∈ S if and only ifthe fun
tion Φ : S → (P0(Z), hu) is 
ontinuous at s0; that is, for ea
h ε > 0,there exists a U(s0) ∈ B(s0) su
h that hu(Φ(s),Φ(s0)) < ε for all s ∈ U(s0).

Φ is h-lower semi
ontinuous at s0 ∈ S if and only if the fun
tion Φ : S →

(P0(Z), hl) is 
ontinuous at s0; that is, for ea
h ε > 0, there exists a U(s0) ∈

B(s0) su
h that hl(Φ(s),Φ(s0)) < ε for all s ∈ U(s0).As a 
onsequen
e of (1.9), we have the following properties.(1.11) Let (S, T (S)) be a topologi
al spa
e, (Z, ̺) a metri
 spa
e and Φ : S  Z amultifun
tion.(i) If Φ is upper semi
ontinuous, then it is h-upper semi
ontinuous.(ii) If Φ is h-lower semi
ontinuous, then it is lower semi
ontinuous.(iii) If Φ is 
ompa
t valued, then its upper (resp. lower) semi
ontinuity and
h-upper (resp. h-lower) semi
ontinuity are equivalent.In 
ases (i) and (ii), the 
onverses are not true.The de�nition of equi
ontinuity of a family of real fun
tions 
an be extended to mul-tifun
tions in the following way. Let {Φi}i∈I be a family of 
losed valued multifun
tions
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Φi : S  Z, i ∈ I, where I denotes a set of indi
es. The family {Φi}i∈I is 
alled h-lower (resp. h-upper) equi
ontinuous at a point s0 ∈ S if, for ea
h ε > 0, there existsan open neighbourhood U(s0) of s0 su
h that s ∈ U(s0) implies Φi(s0) ⊂ B(Φi(s), ε)(resp. (Φi(s) ⊂ B(Φi(s0), ε)) for ea
h i ∈ I.The family {Φi}i∈I is 
alled h-equi
ontinuous if it is both h-upper and h-lowerequi
ontinuous at ea
h s ∈ S.There are several ways of de�ning 
onvergen
e in P0(Z) and in 
onsequen
e its 
on-ne
tions with 
ontinuity.If (Z, ̺) is a metri
 spa
e, then a sequen
e (Φn)n∈N of 
losed valued multifun
tions
Φn : S  Z is 
alled 
onverging to a multifun
tion Φ : S  Z if for ea
h s ∈ S thesequen
e (Φn(s))n∈N 
onverges to Φ(s) with respe
t to the Hausdor� metri
 h generatedby ̺. We will write Φ = h-limn→∞ Φn.It is 
lear that(1.12) If s ∈ S and Φ(s) = h-limn→∞ Φn(s) then ̺(z,Φ(s)) = limn→∞ ̺(z,Φn(s)) forea
h z ∈ Z.Throughout the paper, 
onvergen
e in the spa
e C(Z) will be 
onvergen
e with respe
tto the Hausdor� metri
 h.The set valued notions of limits are rooted in the 
on
epts of lower and upper limitsof �ltered families of sets (see [6, p. 125℄).Let (S, T (S)) and (Z, T (Z)) be topologi
al spa
es. Let Φ : S  Z and s0 ∈ S. Then
R = (Φ(s) : s ∈ S,B(s0)) forms a �ltered family of sets [6, Example 3, p. 126℄. Theset of all limit points of R is 
alled the lower pseudo-limit of Φ at s0 and is denoted byp-lim infs→s0

Φ(s). The set of all 
luster points of R is 
alled the upper pseudo-limit of Φat s0 and denoted by p-lim sups→s0
Φ(s) (for the justi�
ation of �pseudo� see [6, p. 130℄).It is known [6, Theorems 1 and 1′, p. 127℄ that(1.13) (i) p-lim sup

s→s0

Φ(s) =
⋂

U∈B(s0)

Cl
( ⋃

s∈U

Φ(s)
),(ii) p-lim inf

s→s0

Φ(s) =
⋂

A∈G(s0)

Cl
( ⋃

s∈A

Φ(s)
).Let B be a basis of T (S) and s0 ∈ S. Let us repla
e the grill G(s0) in (1.13)(ii) by thefamily

(1.14) A(s0) = {V ∈ B : s0 ∈ Cl(V )}and denote the resulting operation by q-lim infs→s0
Φ(s), i.e.,

(1.15) q- lim inf
s→s0

Φ(s) =
⋂

V ∈A(s0)

Cl
( ⋃

s∈V

Φ(s)
)
.We have(1.16) (i) p-lim infs→s0

Φ(s) ⊂ q-lim infs→s0
Φ(s) ⊂ p-lim sups→s0

Φ(s).(ii) If (Z, T (Z)) is regular and Φ is 
losed valued, then
p- lim inf

s→s0

Φ(s) = Φ(s0) = p- lim sup
s→s0

Φ(s)at ea
h 
ontinuity point s0 ∈ S of Φ (see [76, Theorem 1.5℄).
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tion Φ we denote by D(Φ), Dl(Φ) and Du(Φ) the sets of all its dis-
ontinuity, lower dis
ontinuity and upper dis
ontinuity points, respe
tively. It is evidentthat
(1.17) {s0 ∈ S : q- lim inf

s→s0

Φ(s) 6= p- lim sup
s→s0

Φ(s)} ⊂ D(Φ).The following lemma will be useful (
f. [64, p. 182℄).Lemma 1.1. Let (S, T (S)) be a topologi
al spa
e and let (Z, T (Z)) be a se
ond 
ountabletopologi
al spa
e with a base B = {Bn}n∈N. Then for a multifun
tion Φ : S  Z wehave:(i) Dl(Φ) =
⋃

n∈N
(Φ−(Bn) \ Int(Φ−(Bn))).(ii) Let A = {(nk,1, nk,2, . . . , nk,j(k)) : nk,i ∈ N for i = 1, . . . , j(k) and k ∈ N}. If Φ is
ompa
t valued , then

Du(Φ) =
⋃

k∈N

(Φ+(Vk) \ Int(Φ+(Vk))),where Vk =
⋃
{Bnk,i

: i = 1, . . . , j(k) ∧Bnk,i
∈ B} for k ∈ N.

3. Measurability of multifun
tionsApart from semi
ontinuous multifun
tions, measurable multifun
tions will be very im-portant in the following. Throughout this se
tion we will denote by (S,M(S)) (resp.
(S,M(S), µ)) a measurable (resp. a measure) spa
e (with a nonnegative measure µ on
M(S)). A set N ⊂ S will be 
alled µ-negligible if there is an M(S)-measurable set A(i.e. A ∈ M(S)) su
h that N ⊂ A and µ(A) = 0. The measure µ is 
omplete if any
µ-negligible set N ⊂ S is M(S)-measurable. The σ-�eld M(S) is 
omplete if there is a
omplete measure µ on M(S).If A is a family of sets, then we denote by S(A) the family of sets obtained from Aby the Suslin operation.(1.18) If M(S) is 
omplete with respe
t to a σ-�nite measure, then it is 
losed underthe Suslin operation, i.e., S(M(S)) = M(S) (see [31, 6B(d), 1G and 1H(
)℄).By the 
ompletion of M(S) with respe
t to a measure µ on M(S) (µ-
ompletion forshort) we mean the σ-�eld Mµ(S) generated by M(S) and the µ-negligible sets in S. Themeasure µ admits a unique extension to Mµ(S). Thus the σ-�eld Mµ(S) is 
omplete.If (S, T (S)) is a topologi
al spa
e andM(S) is a σ-�eld of subsets of S, then a measure
µ on M(S) is 
alled regular (resp. Gδ-regular) if, for every ε > 0 and for ea
h A ∈ M(S),there is a 
losed set A1 ⊂ S and an open set A2 ⊂ S (resp. A1 ∈ Fσ(S) and A2 ∈ Gδ(S))su
h that A1 ⊂ A ⊂ A2 and for any B ∈ M(S) su
h that B ⊂ A2 \A1 we have µ(B) < ε(resp. µ(B) = 0). In the 
ase B(S) ⊂ M(S), the measure µ is regular (resp. Gδ-regular)if µ(A2 \A1) < ε (resp. µ(A2 \A1) = 0).If (T,M(T )) is also a measurable spa
e, then M(S)⊗M(T ) will denote the produ
t
σ-�eld in S×T , i.e., the σ-�eld of subsets of S×T generated by the family of sets A×B,
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tions of two variables 15where A ∈ M(S) and B ∈ M(T ). We shall denote by projS the proje
tion map from
S × T to S.We will say that the pair ((S,M(S)); (T, T (T ))), where (T, T (T )) is a topologi
alspa
e, has the proje
tion property if projS(A) ∈ M(S) for ea
h A ∈ M(S) ⊗ B(T ).If T is a Suslin spa
e and A ⊂ S × T , then projS(A) ∈ S(M(S)) provided A ∈

S(M(S) ⊗ B(T )) (see [15℄). Therefore, by (1.18) (
f. [20, Theorem 3.4℄ or [14, TheoremIII.23℄), we have the following assertion.(1.19) If T is a Suslin spa
e, then ((S,Mµ(S), µ);T ), where µ is σ-�nite, has theproje
tion property.The theory of measurability of multifun
tions, developed by numerous authors ([4℄,[12℄, [14℄, [20℄, [49℄, [52℄, [54℄, [65℄, [94℄, [99℄, and others), fo
uses almost ex
lusively onmultifun
tions de�ned on an abstra
t measurable spa
e and with values in a metrizablespa
e. We des
ribe measurability of multifun
tions without any metrizability assumption.Let (S,M(S)) be a measurable spa
e, (Z, T (Z)) a topologi
al spa
e, and Φ : S  Za multifun
tion. Consider the following properties:(a) Φ+(G) ∈ M(S) for ea
h G ∈ T (Z);(b) Φ−(G) ∈ M(S) for ea
h G ∈ T (Z).It is known (see [71, Proposition 1℄) that(1.20) (i) If (Z, T (Z)) is perfe
t, then (a) implies (b).(ii) If (Z, T (Z)) is perfe
tly normal and Φ is 
ompa
t valued, then also (b)implies (a).The example of Kaniewski (see [113, Example 2.4, p. 865℄) shows that the 
ompa
tnessof values of the multifun
tion Φ 
onsidered in (1.20)(ii) is essential.It is natural to say that Φ : S  Z is M(S)-measurable if 
ondition (a) is satis�ed,and weakly M(S)-measurable if (b) holds (
f. [49, p. 54℄).It is evident that in the 
ase of a single valued fun
tion f : S → Z, the notionsof measurability of f and weak measurability of f 
oin
ide with the usual notion ofmeasurability of f , i.e., f−1(G) ∈ M(S) for any G ∈ T (Z).We 
an now rephrase property (1.20) as follows.Proposition 1.2. If (S,M(S)) is a measurable spa
e, (Z, T (Z)) a perfe
t topologi
alspa
e, and Φ : S  Z a multifun
tion, then(i) M(S)-measurability of Φ implies weak M(S)-measurability of Φ.(ii) If (Z, T (Z)) is perfe
tly normal and Φ has 
ompa
t values , then M(S)-measurabi-lity of Φ and weak M(S)-measurability of Φ are equivalent.Ex
ellent sour
es of information on measurability properties of multifun
tions withvalues in a metri
 spa
e are the papers of Himmelberg [49℄ and Castaing and Valadier[14℄. We now mention those properties whi
h will be useful later on.Let (Z, ̺) be a metri
 spa
e. For z ∈ Z and Φ : S  Z we de�ne the fun
tion
gz : S → R by

gz(s) = ̺(z,Φ(s)).
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i«skaConsider the following properties:(
) For ea
h z ∈ Z the fun
tion gz is M(S)-measurable;(d) Φ admits a sequen
e (φn)n∈N of M(S)-measurable sele
tions su
h that Φ(s) =

Cl({φn(s) : n ∈ N}) for ea
h s ∈ S (the sequen
e (φn)n∈N is 
alled a Castaingrepresentation of Φ).(e) Gr(Φ) ∈ M(S) ⊗ B(Z).Proposition 1.3. If (Z, ̺) is separable and Φ : S  Z, then(i) Weak M(S)-measurability of Φ is equivalent to (
) [49, Theorem 3.3℄.(ii) If Φ is 
omplete valued , then weak M(S)-measurability of Φ is equivalent to (d)[14, Theorem III.9℄.(iii) If Φ is 
losed valued , then weak M(S)-measurability of Φ implies (e) [49, The-orem 3.3℄.(iv) If (Z, ̺) is σ-
ompa
t (i.e., Z =
⋃

n∈N
Zn and Zn is 
ompa
t for every n ∈ N)and Φ is 
losed valued , then (a) and (b) are equivalent [49, Theorem 3.5(ii)℄.(v) If M(S) is 
omplete with respe
t to a σ-�nite measure, (Z, ̺) is 
omplete and

Φ is 
losed valued , then (a)�(e) are equivalent [14, Theorem III.30℄.(vi) If Φ is 
ompa
t valued , then (a) and (b) are ea
h equivalent to M(S)-measurabi-lity of the fun
tion Φ : S → (K(Z), Th), where h is the Hausdor� metri
 gener-ated by ̺ [14, Theorem III.1℄.(vii) If Z is a Polish spa
e and Φ is 
losed valued , then Φ admits an M(S)-measurablesele
tion [66℄.The following proposition will be applied in the next 
hapter.Proposition 1.4 ([71, Proposition 2℄). Let (S,M(S)) be a measurable spa
e and let
(Z, T (Z)) be a regular se
ond 
ountable topologi
al spa
e. If Φ1,Φ2 : S  Z are 
losedvalued weakly M(S)-measurable multifun
tions , then

{s ∈ S : Φ1(s) 6= Φ2(s)} ∈ M(S).The next proposition on the interse
tion of 
losed valued weakly measurable multi-fun
tions will also be useful in the next 
hapter. The su�
ient 
onditions known earlierinvolve some 
ompa
tness assumptions either on Z or on the values of multifun
tions.Proposition 1.5 ([71, Proposition 3℄). Let (S,M(S), µ) be a measure spa
e, where µ is
σ-�nite, and let Z be a Suslin spa
e. Let Φn : S  Z, for n ∈ N, be a family of 
losedvalued weakly M(S)-measurable multifun
tions su
h that ⋂

n∈N Φn(s) 6= ∅ for ea
h s ∈ S.Then the multifun
tion Φ : S  Z given by
Φ(s) =

( ⋂

n∈N

Φn

)
(s) =

⋂

n∈N

Φn(s)is Mµ(S)-measurable.The proje
tion property of ((S,Mµ(S), µ);Z) in the above proposition is essential.We note that the interse
tion of two weakly M(S)-measurable multifun
tions with 
losedvalues may not be weakly M(S)-measurable (see [50, Example 2℄).Observe that, by (1.12) and Proposition 1.3(i), the following property is true.
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tions of two variables 17(1.21) If (Z, ̺) is a separable metri
 spa
e and (Φn)∈N is a sequen
e of 
losed valuedweakly M(S)-measurable multifun
tions Φn : S  Z, n ∈ N, 
onverging to amultifun
tion Φ : S  Z, then Φ is weakly M(S)-measurable.Similarly to the 
ase of ve
tor valued fun
tions the strong measurability of multifun
-tions 
an be de�ned. Let (S,M(S), µ) be a measurable spa
e, where µ is 
omplete, let
(Z, ‖ · ‖) be a re�exive real normed linear spa
e, and let Φ : S  Z be a multifun
-tion with Φ(s) ∈ Cbc(Z). Then Φ is said to be �nitely-valued if it is 
onstant on ea
hof a �nite number of disjoint M(S)-measurable sets Ei and equal to {θ} on S \

⋃
Ei(θ is the origin of Z); Φ is said to be a simple multifun
tion if it is �nitely-valued and

µ({s ∈ S : ‖Φ(s)‖ > 0}) < ∞, where ‖Φ(S)‖ = h(Φ(s), {θ}) (h is the Hausdor� metri
generated by the norm).A multifun
tion Φ is 
alled 
ountable-valued if it assumes at most a 
ountable set ofvalues in Cbc(Z), assuming ea
h value di�erent from {θ} on an M(S)-measurable subsetof S.A multifun
tion Φ : S  Z is 
alled strongly M(S)-measurable if there is a sequen
eof 
ountable-valued multifun
tions (Φn)n∈N su
h that
h- lim

n→∞
Φn(s) = Φ(s)for µ-almost every s ∈ S. If µ(S) < ∞, then we may repla
e �
ountable-valued� by�simple�.If Φ : S  Z is strongly M(S)-measurable, then it is weakly M(S)-measurable, butthe 
onverse is not true (see [21, Example 3.1, p. 23℄). Furthermore (see [21, Proposi-tion 3.3℄),(1.22) If S = [a, b] ⊂ R, Z is a separable Bana
h spa
e and Φ : S  Z has valuesin K(Z), then L(R)-measurability of Φ and strong L(R)-measurability of Φ areequivalent.

4. Approximate 
ontinuity of multifun
tionsThe notion of approximately 
ontinuous fun
tion, essential for the 
on
ept of densitytopology, has been studied for real fun
tions of real variable ([22℄, [35℄, [34℄, [72℄) andthen in various abstra
t spa
es (see [41℄, [73℄, [74℄, [75℄, [92℄, [103℄). In this se
tion weintrodu
e some 
on
epts of approximate 
ontinuity of a multifun
tion and give someproperties of approximately 
ontinuous multifun
tions whi
h will be essential for the
onsiderations of the next 
hapters.Throughout this se
tion we assume that (S, d,M(S), µ) is a measure metri
 spa
ewith metri
 d, with a σ-�nite 
omplete and Gδ-regular measure µ de�ned on a σ-�eld
M(S) 
ontaining the Borel sets; µ∗ will denote the outer measure generated by µ, i.e.,
µ∗(A) = inf{µ(B) : A ⊂ B ∧B ∈ M(S)} for a set A ⊂ S.(1.23) Let F ⊂ M(S) be a family of sets with nonempty interiors of positive and�nite measure µ, the boundaries of whi
h are µ-negligible. Let {In}n∈N ⊂ F
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i«skaand s ∈ S. We write In → s if s ∈ Int(In) for ea
h n ∈ N and the diameter of
In tends to zero as n→ ∞.We assume that for every s ∈ S, there exists a sequen
e (In)n∈N of sets from Fsu
h that In → s.The pair (F ,→) then forms a di�erentiation basis for the spa
e (S, d,M(S), µ) in Bru
k-ner's terminology [9, p. 30℄.Let A ⊂ S and s ∈ S. The upper outer density of the set A at the point s with respe
tto F is equal to

lim sup
In→s

µ∗(A ∩ In)

µ(In)
.Repla
ing lim sup by lim inf we obtain the lower outer density of A at s ∈ S with respe
tto F . These densities will be denoted by D∗

u(A, s) and D∗
l (A, s), respe
tively. If they areequal, their 
ommon value will be 
alled the outer density of A at s with respe
t to Fand denoted by D∗(A, s). If A ∈ M(S), then the outer density of A at s ∈ S with respe
tto F will be 
alled the density of A at s with respe
t to F and denoted with no asterisk.A point s ∈ S will be 
alled a density point of a set A ⊂ S with respe
t to F if thereexists a B ∈ M(S) su
h that B ⊂ A and the density of B at s with respe
t to F is equalto 1. We will write D(A, s) = 1.We will assume that(1.24) F has the density property, i.e., µ({s ∈ A : D∗

l (A, s) < 1}) = 0 for every A ⊂ S.By the density property of F , it is 
lear that(1.25) If µ-almost every point of A ⊂ S is a density point of A with respe
t to F , then
A is M(S)-measurable.An M(S)-measurable set will be 
alled homogeneous with respe
t to F if its densitywith respe
t to F is 1 at ea
h of its points. The spa
e S 
an be topologized by taking thehomogeneous sets with respe
t to F as open sets (see [68, p. 251℄). This topology will bedenoted by TD(S) (
f. [109℄ and [82℄). If A ⊂ S, then TD-Int(A) will denote the interiorof A relative to TD(S). Note that TD(S) is �ner than Td(S).Now we 
an generalize the notion of approximate 
ontinuity to the 
ase of multifun
-tions. Let (Z, T (Z)) be a topologi
al spa
e.Definition 1.6. A multifun
tion Φ : S  Z is 
alled approximately lower (resp. upper)semi
ontinuous at a point s0 ∈ S with respe
t to F if there is a set E ∈ M(S) in
luding s0su
h thatD(E, s0) = 1 and the restri
tion Φ|E is lower (resp. upper) semi
ontinuous at s0.If Φ is approximately lower (resp. upper) semi
ontinuous at ea
h point s ∈ S with respe
tto F , then it is 
alled approximately lower (resp. upper) semi
ontinuous with respe
t to F ;

Φ is 
alled approximately 
ontinuous with respe
t to F if it is both approximately lowersemi
ontinuous and approximately upper semi
ontinuous with respe
t to F .Remark 1.7. If S = R and M(S) = L(R), then the multifun
tion Φ will be simply
alled approximately lower (resp. upper) semi
ontinuous or approximately 
ontinuous.
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tions of two variables 19If (Z, ̺) is a metri
 spa
e and Φ|E , in the above de�nition, is h-lower (resp. h-upper)semi
ontinuous at s0 ∈ S with respe
t to F , then Φ will be 
alled approximately h-lower(resp. h-upper) semi
ontinuous at s0 with respe
t to F .
Φ is 
alled approximately h-
ontinuous with respe
t to F at s0 if it is both approxi-mately h-lower semi
ontinuous and approximately h-upper semi
ontinuous with respe
tto F at s0; Φ is 
alled approximately h-
ontinuous with respe
t to F if it is approximately

h-
ontinuous at every s ∈ S with respe
t to F .It was observed in [35℄ that a real fun
tion of a real variable 
ontinuous relative tothe density topology in the domain and the usual topology in the range, turns out to beexa
tly an approximately 
ontinuous fun
tion, whi
h is also true for multifun
tions.Proposition 1.8. Let Φ : S  Z be a multifun
tion and s0 ∈ S. Then Φ is approxi-mately lower (resp. upper) semi
ontinuous at s0 ∈ S with respe
t to F if and only if Φ islower (resp. upper) semi
ontinuous at s0 ∈ S relative to the topology TD(S).Proof. We only give the proof of the �lower� 
ase; the �upper� 
ase is similar.To prove su�
ien
y, let G ∈ T (Z) and Φ(s0) ∩ G 6= ∅. By the approximate lowersemi
ontinuity of Φ at s0 with respe
t to F , there exists an E ∈ M(S) su
h that s0 ∈ E,
D(E, s0) = 1 and Φ|E is lower semi
ontinuous at s0. Therefore there exists a U ∈ B(s0)su
h that E ∩ U ⊂ Φ−(G). Taking V = TD-Int(E ∩ U) we have V ∈ TD(S), s0 ∈ V and
V ⊂ E ∩ U ⊂ Φ−(G).The ne
essity is a straightforward 
onsequen
e of the lower semi
ontinuity of Φ at s0relative to TD(S).Note that if Φ : S  Z is approximately lower (resp. upper) semi
ontinuous at
s0 ∈ S with respe
t to F and G ∈ T (Z) with s0 ∈ Φ−(G) (resp. s0 ∈ Φ+(G)), then
D(Φ−(G), s0) = 1 (resp. D(Φ+(G), s0) = 1), and hen
e, by (1.25), we have the followingproposition (
f. [69, Theorem 2℄).Proposition 1.9. If a multifun
tion Φ : S  Z is µ-almost everywhere approximatelylower (resp. upper) semi
ontinuous with respe
t to F , then it is weakly M(S)-measurable(resp. M(S)-measurable).Remark 1.10. Let (Z, ̺) be a metri
 spa
e.(i) If a multifun
tion Φ : S  Z is approximately h-lower semi
ontinuous with re-spe
t to F , then it is weakly M(S)-measurable, by (1.11)(ii) and Proposition 1.9.(ii) If a 
ompa
t valued multifun
tion Φ : S  Z is approximately h-upper semi
on-tinuous, then it is M(S)-measurable, by (1.11)(iii) and Proposition 1.9.Definition 1.11. Let (Z, ̺) be a metri
 spa
e, let {Φi}i∈I be a family of 
losed valuedmultifun
tions Φi : S  Z for i ∈ I (where I denotes a set of indi
es), and let s ∈ S.The family {Φi}i∈I is said to be approximately h-lower (resp. h-upper) equi
ontinuousat s ∈ S with respe
t to F if there exists a set E(s) ∈ M(S), in
luding s, su
h that
D(E(s), s) = 1 and the family {Φi|E(s)}i∈I is h-lower (resp. h-upper) equi
ontinuous at
s ∈ S; {Φi}i∈I is 
alled approximately h-lower (resp. h-upper) equi
ontinuous with respe
tto F if it is approximately h-lower (resp. h-upper) equi
ontinuous with respe
t to F atevery s ∈ S.
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alled approximately h-equi
ontinuous with respe
t to F if it issimultaneously approximately h-lower and approximately h-upper equi
ontinuous withrespe
t to F .
5. Strong quasi-
ontinuity of multifun
tionsThe quasi-
ontinuity introdu
ed by Kempisty [55℄ for real fun
tions has been intensivelystudied. For multifun
tions this notion was introdu
ed by Popa [95℄ and widely 
onsideredby many authors, parti
ularly by Neubrunn [86℄, Ewert [26℄, [28℄, and Lipski [27℄.From now on let (S, T (S)) and (Z, T (Z)) be topologi
al spa
es. Following Neubrunn[86℄ we say that a multifun
tion Φ : S  Z is lower (resp. upper) quasi-
ontinuous at apoint s0 ∈ S if, for ea
h set G ∈ T (Z) su
h that s0 ∈ Φ−(G) (resp. s0 ∈ Φ+(G)) and forany U ∈ B(s0), there exists a nonempty open set V ⊂ U su
h that V ⊂ Φ−(G) (resp.

V ⊂ Φ+(G)); Φ is said to be lower (resp. upper) quasi-
ontinuous if it is lower (resp.upper) quasi-
ontinuous at ea
h s ∈ S.Note that for a single valued fun
tion the notions of lower quasi-
ontinuity and upperquasi-
ontinuity 
oin
ide with quasi-
ontinuity.A multifun
tion Φ : S  Z is said to be quasi-
ontinuous at a point s0 ∈ S if, forarbitrary sets G ∈ T (Z) and H ∈ T (Z) su
h that s0 ∈ Φ−(G) ∩ Φ+(H) and for every
U ∈ B(s0), there exists a nonempty open set V ⊂ U su
h that V ⊂ Φ−(G) ∩ Φ+(H).It is evident that a quasi-
ontinuous multifun
tion is both lower quasi-
ontinuous andupper quasi-
ontinuous. The 
onverse is not true (see [85, Example 1.2.7℄).As we know, a multifun
tion Φ : S  Z is 
ontinuous (resp. lower or upper semi
on-tinuous) if and only if it is 
ontinuous as a single valued fun
tion from S to P0(Z) withthe �nite topology (resp. lower or upper semi�nite topology). For quasi-
ontinuity thesituation is di�erent (see [85, 1.3.4℄).A set A ⊂ S is said to be quasi-open if there is an open set O su
h that O ⊂ A ⊂ Cl(O)[77℄.It is known (see [85, 1.2.5℄) that(1.26) A multifun
tion Φ : S  Z is lower (resp. upper) quasi-
ontinuous if and onlyif for any G ∈ T (Z) the set Φ−(G) (resp. Φ+(G)) is quasi-open.Upper quasi-
ontinuity of a multifun
tion 
an be 
hara
terized in terms of 
ontinuousrestri
tions. More pre
isely (see [87, Theorem 1℄):(1.27) If (S, T (S)) is a �rst 
ountable Hausdor� spa
e, (Z, T (Z)) a se
ond 
ountablespa
e, and Φ : S  Z a 
ompa
t valued multifun
tion, then Φ is upper quasi-
ontinuous at a point s0 ∈ S if and only if there is a quasi-open set A 
ontaining

s0 su
h that Φ|A is upper semi
ontinuous at s0.It may be shown that an analogous 
hara
terization of lower quasi-
ontinuity is notpossible [87, Example 4℄.The following proposition will be useful in the next 
hapter.
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tions of two variables 21Proposition 1.12. Let (S, T (S)) and (Z, T (Z)) be topologi
al spa
es.(i) If a multifun
tion Φ : S  Z is lower quasi-
ontinuous at a point s0 ∈ S, then
Φ(s0) ⊂ p-lim sups→s0

Φ(s).(ii) If (S, T (S)) is �rst 
ountable and (Z, T (Z)) is regular se
ond 
ountable, and ifa multifun
tion Φ : S  Z is 
ompa
t valued upper quasi-
ontinuous at a point
s0 ∈ S, then q-lim infs→s0

Φ(s) ⊂ Φ(s0).Proof. (i) Suppose that z ∈ Φ(s0) and U ∈ B(s0). Fix G ∈ B(z). By the lower quasi-
ontinuity of Φ at s0, for the sets G and U there is a nonempty open set V ⊂ U su
h that
V ⊂ Φ−(G). Therefore, there is an s ∈ V with Φ(s)∩G 6= ∅, i.e., z ∈ Cl(

⋃
s∈U Φ(s)), and�nally z ∈

⋂
U∈B(s0) Cl(

⋃
s∈U Φ(s)), whi
h �nishes the proof of (i) (see (1.13)(i)).(ii) Now suppose that z 6∈ Φ(s0). Sin
e the set Φ(s0) is 
losed and the spa
e Z isregular, there are V ∈ B(z) and G ∈ T (Z) su
h that Φ(s0) ⊂ G and G ∩ V = ∅. By theupper quasi-
ontinuity of Φ at s0, in view of (1.27), there is a quasi-open set A 
ontaining

s0 su
h that Φ|A is upper semi
ontinuous at s0. Thus, there exists a U ∈ B(s0) su
h that
Φ(s) ⊂ G for all s ∈ U ∩ A. Sin
e B = U ∩A is quasi-open ([77℄) and s0 ∈ B, there is aset O ∈ A(s0) su
h that Φ(s)∩V = ∅ for ea
h s ∈ O. Thus z 6∈

⋂
O∈A(s0)

Cl(
⋃

s∈O Φ(s)),and the proof of (ii) is �nished (see (1.15)).From now on let (S, d,M(S), µ) be a measure metri
 spa
e with a di�erentiation basis
(F ,→) with the density property (see (1.24)), and let (Z, T (Z)) be a topologi
al spa
e.Definition 1.13. A multifun
tion Φ : S  Z is 
alled strongly lower (resp. upper) quasi-
ontinuous at a point s0 ∈ S with respe
t to F if, for ea
h G ∈ T (Z) su
h that s0 ∈ Φ−(G)(resp. s0 ∈ Φ+(G)) and for ea
h U ∈ TD(S) in
luding s0, there exists a nonempty openset V ⊂ S su
h that V ∩U 6= ∅ and V ∩U ⊂ Φ−(G) (resp. V ∩U ⊂ Φ+(G)); Φ is said tobe strongly lower (resp. upper) quasi-
ontinuous with respe
t to F if it is strongly lower(resp. upper) quasi-
ontinuous with respe
t to F at ea
h s ∈ S.Observe that repla
ing, in the above de�nition, the density topology by the topologygenerated by the metri
 d, we obtain the notion of lower (resp. upper) quasi-
ontinuityof Φ. Sin
e Td(S)-open sets are TD(S)-open, we 
an say that(1.28) If a multifun
tion Φ : S  Z is strongly lower (resp. upper) quasi-
ontinuouswith respe
t to F , then it is lower (resp. upper) quasi-
ontinuous. The 
onverseis not true.By analogy with the de�nition of quasi-
ontinuity we de�ne the strong quasi-
onti-nuity of a multifun
tion.Definition 1.14. A multifun
tion Φ : S  Z is said to be strongly quasi-
ontinuouswith respe
t to F at a point s0 ∈ S if, for any G ∈ T (Z) and H ∈ T (Z) su
h that
s0 ∈ Φ−(G) ∩ Φ+(H) and for ea
h U ∈ TD(S) 
ontaining s0, there exists a nonemptyopen set V ⊂ S su
h that V ∩ U 6= ∅ and V ∩ U ⊂ Φ−(G) ∩ Φ+(H).It is evident that a multifun
tion Φ : S  Z whi
h is strongly quasi-
ontinuous withrespe
t to F is quasi-
ontinuous. Furthermore, if Φ is strongly quasi-
ontinuous with
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i«skarespe
t to F , then it is both strongly lower and strongly upper quasi-
ontinuous withrespe
t to F .Some 
onne
tions between the quasi-
ontinuity and the Denjoy property of real fun
-tions were 
onsidered by �alát [104℄. We now introdu
e more general properties for mul-tifun
tions.Definition 1.15. A multifun
tion Φ : S  Z has the D− (resp. D+) property if for ea
h
G ∈ T (Z) and ea
h nonempty open set U ⊂ S, the set U ∩ Φ−(G) (resp. U ∩ Φ+(G)) iseither empty or µ∗(U ∩ Φ−(G)) > 0 (resp. µ∗(U ∩ Φ+(G)) > 0).Proposition 1.16. If a multifun
tion Φ : S  Z is lower (resp. upper) quasi-
ontinuous ,then Φ has the D− (resp. D+) property.Proof. Let G ∈ T (Z) and let U ⊂ S be open. By the lower (resp. upper) quasi-
ontinuityof Φ, the set Φ−(G) (resp. Φ+(G)) is quasi-open (see (1.26)). Then U ∩ Φ−(G) (resp.
U ∩ Φ+(G)) is either empty or its interior is nonempty, i.e., µ∗(U ∩ Φ−(G)) > 0 (resp.
µ∗(U ∩ Φ+(G)) > 0).Proposition 1.17. If the spa
e (Z, T (Z)) is regular and se
ond 
ountable, and a multi-fun
tion Φ : S  Z is strongly lower quasi-
ontinuous with respe
t to F and has the D+property , then µ(Dl(Φ)) = 0.Proof. We �rst prove that
(1) If G ∈ T (Z) and s ∈ Φ−(G), then Du(Int(Φ−(G)), s)) > 0.Suppose, on the 
ontrary, that there is a G ∈ T (Z) with s∈Φ−(G) andDu(Int(Φ−(G), s))

= 0. Let A = S \ Φ−(G) = Φ+(Z \ G). Then Dl(Cl(A), s) = 1 = D(Cl(A), s). We 
anassume that A 6= ∅. Sin
e s ∈ Φ−(G), there is a z ∈ Φ(s) ∩ G. By the regularity of
Z, there is an open set V in
luding z su
h that Cl(V ) ⊂ G. Then s ∈ Φ−(V ). Let
W = S \Φ−(Cl(V )) = Φ+(Z \Cl(V )). Then W 6= ∅, sin
e A 6= ∅ and A ⊂W . Therefore,by the D+ property of Φ, µ∗(W ) > 0. Sin
e Cl(A) ⊂ Cl(W ) and D(Cl(A), s) = 1, itfollows that D(Cl(W ), s) = 1. Let B = TD-Int(Cl(W ))∪{s}. Then s ∈ B ∈ TD(S). Sin
e
Φ is strongly lower quasi-
ontinuous at s with respe
t to F , for the sets V and B thereis a nonempty open set U ⊂ S su
h that
(2) U ∩B 6= ∅ and U ∩B ⊂ Φ−(V ).On the other hand, however, U ∩B ∩W 6= ∅, i.e., (U ∩B) ∩ (S \ Φ−(Cl(V )) 6= ∅, whi
h
ontradi
ts (2), i.e., (1) is proved.Now we prove that µ(Dl(Φ)) = 0. Suppose, on the 
ontrary, that µ∗(Dl(Φ)) > 0.Let B = {Bn}n∈N be a base of T (Z). Then, by Lemma 1.1(i), there is an n ∈ N su
hthat µ∗(Φ−(Bn) \ Int(Φ−(Bn))) > 0. Let C = Φ−(Bn) \ Int(Φ−(Bn)) and V = TD-
Int(C). Then V is M(S)-measurable and V ∈ TD(S). If s ∈ C, then s ∈ Φ−(Bn), and so
Du(Int(Φ−(Bn)), s) > 0, by (1). Sin
e D(C, s) = 1, it follows that C ∩ Int(Φ−(Bn)) 6= ∅,whi
h is impossible.A similar proof works for a dual proposition.
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tions of two variables 23Proposition 1.18. Let the spa
e (Z, T (Z)) be se
ond 
ountable and normal. If a multi-fun
tion Φ : S  Z is 
ompa
t valued strongly upper quasi-
ontinuous with respe
t to Fand it has the D− property , then µ(Du(Φ)) = 0.By (1.28), Propositions 1.16, 1.17 and 1.18, we have the following proposition (
f. [43,Corollary 3℄).Proposition 1.19. If the spa
e (Z, T (Z)) is se
ond 
ountable and normal , and if amultifun
tion Φ : S  Z is 
ompa
t valued strongly lower quasi-
ontinuous and stronglyupper quasi-
ontinuous with respe
t to F , then Φ is µ-almost everywhere 
ontinuous.By Propositions 1.19 and 1.9, we have the following 
orollary.Corollary 1.20. If the spa
e (Z, T (Z)) is se
ond 
ountable and normal , and if Φ : S  

Z is a 
ompa
t valued multifun
tion strongly lower quasi-
ontinuous and strongly upperquasi-
ontinuous with respe
t to F , then Φ is M(S)-measurable.Remark 1.21. It is known that there is a quasi-
ontinuous fun
tion f : [0, 1] → R whi
his not Lebesgue measurable [79, (x), p. 49℄. So, if we suppose that the multifun
tion
Φ 
onsidered in the above 
orollary is both lower quasi-
ontinuous and upper quasi-
ontinuous, then Φ need not be M(S)-measurable.

6. Derivative multifun
tionsThe 
on
ept of di�erentiability for multifun
tions has been 
onsidered by many authorsfrom di�erent points of view (see [5℄, [19℄, [45℄, [53℄, [81℄, and others).Banks and Ja
obs redu
e di�erentiability of multifun
tions to di�erentiability of fun
-tions in linear normed spa
es by the Rådström embedding theorem. Another idea is givenby Hukuhara [53℄. In this 
ase di�erentiability of a multifun
tion at a point, roughlyspeaking, means the existen
e of a set whi
h is a limit of a di�eren
e quotient.In this se
tion the notion of di�erentiability is developed by taking advantage of anidea used by Hukuhara to give a de�nition of di�erentiability for a resonably wide 
lassof multifun
tions. For this purpose we give a more general de�nition of di�eren
es of setsthan that given by Hukuhara. Furthermore, the notion of a derivative multifun
tion isintrodu
ed. In order to get this we use the notion of the integral of a multifun
tion givenby Banks and Ja
obs in [5℄.Throughout the se
tion, unless otherwise stated, (Z, ‖ · ‖) will denote a real normedlinear spa
e with metri
 ̺ generated by the norm and θ will denote the origin of Z. Thesymbol co(A) will denote the 
onvex hull of a set A ⊂ Z.If A ⊂ Z, B ⊂ Z and λ ∈ R then, as usual,
A+B = {a+ b : a ∈ A ∧ b ∈ B} and λA = {λ a : a ∈ A}.(1.29) The following properties hold:(i) If A and B are 
onvex, and α, β ≥ 0, then (α+ β)A = αA+ βA.(ii) If A and B are 
losed and 
onvex subsets of Z and C ⊂ Z is bounded, then
A+ C = B + C implies A = B [97, Lemma 2℄.
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i«ska(iii) If Ai ∈ Cb(Z) and Bi ∈ Cb(Z) for i = 1, 2, then h(A1 + A2, B1 + B2) ≤

h(A1, B1)+h(A2, B2) [19, Lemma 2.2(ii)℄, where h is the Hausdor� metri
generated by the metri
 ̺.(iv) If (Z, ‖ · ‖) is re�exive, A ∈ Cbc(Z) and B ∈ Cbc(Z), then A + B ∈ Cbc(Z)[97, Theorem 2℄.(v) If (Z, ‖·‖) is re�exive and A,B,C ∈ Cbc(Z), then h(A,B) = h(A+C,B+C)[97, Lemma 3℄.In the results that follow, the requirement that (Z, ‖ · ‖) be re�exive 
an be repla
edby the assumption that (Z, ‖ · ‖) is a Bana
h spa
e if we agree to deal only with thesub
olle
tion Kc(Z).If (Z, ̺) is 
omplete, then (Cb(Z), h) is also 
omplete (see [62, p. 314℄). ThereforePri
e's inequality [96, (2.9), p. 4℄
h(co(A), co(B)) ≤ h(A,B)implies that(1.30) If (Z, ̺) is 
omplete, then a Cau
hy sequen
e in Cbc(Z) must 
onverge to anelement of Cbc(Z).Now suppose that (Z, ‖ · ‖) is re�exive.Definition 1.22. Let A,B ∈ Cbc(Z). We will say the di�eren
e A⊖B is de�ned if thereexists a set C ∈ Cbc(Z) su
h that either A = B + C or B = A−C, and we de�ne A⊖Bto be the set C.The di�eren
e A⊖B is uniquely determined.Example 1.23. (a) Let P ∈ Cbc(Z), A = αP and B = βP , where α ≥ 0 and β ≥ 0. Put

C = (α−β)P . Then, by (1.29)(i), A = B+C or B = A−C depending on whether α ≥ βor α < β. Therefore A⊖B exists and is equal to C.(b) If Z = R, A = [a, x] ⊂ Z and B = [b, y] ⊂ Z, then A⊖B exists and
A⊖B = [min{a− b, x− y},max{a− b, x− y}].(
) Let A = {(x, y) ∈ R

2 : 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 − x} and B = {(x, y) ∈ R
2 : 0 ≤

x ≤ 1 and 0 ≤ y ≤ 1
2 (1 − x)}. Then A⊖B does not exist.Indeed, suppose that there exists C ∈ Cbc(R

2) su
h that A = B+C. Sin
e (0, 1) ∈ A,there exist (a, b) ∈ B and (c, d) ∈ C su
h that (0, 1) = (a+ c, b+ d), where a ≥ 0. Then
c = −a and d = 1−b. On the other hand, (0, 0) ∈ B. Therefore (0, 0)+(c, d) = (−a, 1 − b)

∈ A and −a ≥ 0. Hen
e a = 0. Sin
e (c, d) = (0, 1 − b) ∈ C and (1, 0) ∈ B, we have
(1, 0) + (0, 1 − b) ∈ A and b = 1. Therefore, (a, b) = (0, 1) 6∈ B, whi
h is a 
ontradi
tion.Now suppose that there exists C ∈ Cbc(R

2) su
h that B = A − C. Let z ∈ C. Weobserve that for every x ∈ A, x−z ∈ A−C = B. Hen
e, A−z ⊂ B, i.e., some translationof A is 
ontained in B, whi
h is of 
ourse impossible.Remark 1.24. In ea
h 
ase of Example 1, with Z = R
n in (a), Hukuhara's di�eren
es ofthe relevant sets do not exist, sin
e Hukuhara's di�eren
e A H

−B of A,B ∈ Kc(Z) existsonly if diam(A) ≥ diam(B).
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tions of two variables 25Let A,B ∈ Cbc(Z). We write B ⊂t A if, for ea
h a ∈ Fr(A), there is z ∈ Z su
h that
a ∈ B + {z} ⊂ A.The following is known:Proposition 1.25 ([70, Theorem 2℄). If A,B ∈ Cbc(Z), then A ⊖ B exists and is equalto a set C ∈ Cbc(Z) if and only if either B ⊂t A or A ⊂t B, and C is a set su
h thateither A = B + C or B = A− C, respe
tively.Remark 1.26. When A,B ∈ Kc(Z) we 
an repla
e the sets Fr(A) and Fr(B) (used inthe above proposition) by the respe
tive sets of extreme points, appealing to the Krein�Milman theorem.It is easy to see that(1.31) (i) If A ∈ Cbc(Z) and z ∈ Z, then (A+ {z}) ⊖ A = {z}. In parti
ular, we have

A⊖A = {θ}.(ii) If A,B ∈ Cbc(Y ) and A⊖B exists, then
A⊖B = −(B ⊖A) and A⊖B = (−B) ⊖ (−A).(iii) If A ⊖ B exists, then h(A,B) = ‖A ⊖ B‖, where ‖C‖ = h(C, {θ}) for a set

C ⊂ Z.Now we 
an give a de�nition of di�erentiability for multifun
tions (
f. [53℄). From nowon we assume that I ⊂ R is an interval.Definition 1.27. A multifun
tion Φ : I  Z is said to be di�erentiable at a point x0 ∈ Iif there exists a set DΦ(x0) ∈ Cbc(Z) su
h that the limit
h- lim

x→x0

Φ(x) ⊖ Φ(x0)

x− x0exists and is equal to DΦ(x0).Of 
ourse, impli
it in the de�nition of DΦ(x0) is the existen
e of the di�eren
es
Φ(x) ⊖ Φ(x0).The set DΦ(x0) is 
alled the derivative of Φ at s0; Φ is 
alled di�erentiable if it isdi�erentiable at ea
h x ∈ I.Example 1.28. (a) Let B be the 
losed unit ball in Z and 
onsider the multifun
tion
Φ : (0, 2π) Z de�ned by the formula Φ(α) = (2+ sinα)B. Then Φ is di�erentiable and
DΦ(α) = (cosα)B.(b) The multifun
tion Φ : [0, 1] R

2 de�ned by
Φ(α) = {(x, y) ∈ R

2 : 0 ≤ x ≤ 1 ∧ 0 ≤ y ≤ α− αx}is not di�erentiable, sin
e the required di�eren
es do not exist.(
) Let Φ : I  R be a multifun
tion with values in Kc(R). Then Φ(x) = [i(x), s(x)],where i(x) = infx∈IΦ(x) and s(x) = supx∈I Φ(x). If the fun
tions i : I → R and s : I → Rare di�erentiable at x0 ∈ I, then Φ is di�erentiable at x0 and
DΦ(x0) =

{
[i′(x0), s

′(x0)] if i′(x0) ≤ s′(x0),
[s′(x0), i

′(x0)] if i′(x0) > s′(x0).
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i«skaHowever, in general, di�erentiability of Φ does not imply di�erentiability of i and s, asthe following example shows:
Φ(x) =

{
[0, x] if x ≥ 0,
[x, 0] if x < 0.It is 
lear that the multifun
tions 
onsidered in (a) and (
) of Example 1.28 are notdi�erentiable in Hukuhara's sense, be
ause Hukuhara's di�eren
es Φ(x)

H

−Φ(x0) do notexist.Proposition 1.29 ([70, Theorem 3℄). If a multifun
tion Φ : I  Z with Φ(x) ∈ Cbc(Z)is di�erentiable at a point x0 ∈ I, then Φ is h-
ontinuous at x0.Now we des
ribe the π-di�erentiability of multifun
tions dis
ussed by Banks andJa
obs in [5℄. As mentioned at the beginning of this se
tion, this de�nition makes use ofRådström's embedding theorem (see [97, Theorem 2℄): there is a real normed spa
e V(Z)and an isometri
 mapping π : Cbc(Z) → V(Z), where Cbc(Z) is metrized by the Hausdor�metri
 h, su
h that π(Cbc(Z)) is a 
onvex 
one in V(Z) with vertex π({θ}). Furthermore,addition in V(Z) indu
es addition in Cbc(Z) and multipli
ation by nonnegative s
alars in
V(Z) indu
es the 
orresponding operation in Cbc(Z).The spa
e V(Z) 
an be 
hosen minimal in the sense that if V1(Z) is any other realnormed linear spa
e into whi
h Cbc(Z) has been embedded in the above fashion, then
V1(Z) 
ontains a subspa
e 
ontaining Cbc(Z) whi
h is isomorphi
 to V(Z).We des
ribe the spa
e V(Z) in some detail, sin
e we make use of some of its propertieslater on.An equivalen
e relation ∼ is de�ned on Cbc(Z) × Cbc(Z) by de
laring that (A,B) ∼

(C,D) if A + D = B + C. The equivalen
e 
lass 
ontaining (A,B) will be denoted by
〈A,B〉. The spa
e V(Z) is the quotient spa
e Cbc(Z) × Cbc(Z)/∼, with addition de�nedby

〈A,B〉 + 〈C,D〉 = 〈A+ C,B +D〉and
α〈A,B〉 =

{
〈αA,αB〉 if α ≥ 0,
〈|α|B, |α|A〉 if α < 0.With addition and s
alar multipli
ation de�ned above the spa
e V(Z) be
omes a linearspa
e. The neutral element 〈θ, θ〉 of V(Z) is the equivalen
e 
lass {(A,A) : A ∈ Cbc(Z)}.The embedding π : Cbc(Z) → V(Z) is given by π(A) = 〈A, θ〉 for A ∈ Cbc(Z). We shalldenote π(A) by Â when A ∈ Cbc(Z), and hen
e the 
onvex 
one π(Cbc(Z)) by Ĉbc(Z).A metri
 δ on V(Z) × V(Z) is de�ned by

(1.32) δ(〈A,B〉, 〈C,D〉) = h(A+D,B + C).Sin
e δ is translation invariant and positively homogeneous, the relation
‖〈A,B〉‖ = δ(〈A,B〉, 〈θ, θ〉)de�nes a norm in V(Z) su
h that

(1.33) δ(〈A,B〉, 〈C,D〉) = ‖〈A,B〉 − 〈C,D〉‖.Note that
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tions of two variables 27(1.34) If A,B ∈ Cbc(Z) and A⊖B exists, then
Â− B̂ = 〈A, θ〉 − 〈B, θ〉 =

{
〈A⊖B, θ〉 if B ⊂t A,
〈θ,B ⊖A〉 if A ⊂t B.Indeed, we have 〈A, θ〉 − 〈B, θ〉 = 〈A,B〉. Let A ⊖ B = C, C ∈ Cbc(Z). If B ⊂t A, then

A = B+C, and so 〈A,B〉 = 〈B+C,B〉 = 〈C, θ〉 = 〈A⊖B, θ〉. If A ⊂t B, then B = A−C,and so 〈A,B〉 = 〈A,A− C〉 = 〈θ,−C〉 = 〈θ,B ⊖A〉, by (1.31)(ii).We should mention that the spa
e (V(Z), δ) need not be 
omplete when (Z, ̺) is
omplete (see [20, p. 363℄). But sin
e in this 
ase the spa
e (Cbc(Z), h) is 
omplete, so is
(Ĉbc(Z), δ).A fun
tion f : V → W , where V and W are arbitrary normed linear spa
es, is saidto be o(‖∆v‖) if ‖f(∆v)‖/‖∆v‖ → 0 as ‖∆v‖ → 0.Let (S, ‖ · ‖) be a real linear normed spa
e and let (Z, ‖ · ‖) be a re�exive Bana
hspa
e. Following Banks and Ja
obs [5℄, a multifun
tion Φ : S  Z with values in Cbc(Z)is 
alled π-di�erentiable at a point x0 ∈ S if the fun
tion Φ̂ : S → V(Z) is di�erentiableat x0, i.e., there is a 
ontinuous linear mapping Φ̂′(x0) : S → V(Z) su
h that
(1.35) Φ̂(x) − Φ̂(x0) − Φ̂′(x0)(x− x0) = o(‖x− x0‖).

Φ is π-di�erentiable if it is π-di�erentiable at every x ∈ S.If Φ̂′(x0)(x− x0) = 〈Ax−x0
, Bx−x0

〉, where x− x0 ∈ S and the sets Ax−x0
and Bx−x0belong to Cbc(Z), then, a

ording to (1.35), we have

〈Φ(x),Φ(x0)〉 − 〈Ax−x0
, Bx−x0

〉 = o(‖x− x0‖).If the spa
e (S, ‖ · ‖) is �nite-dimensional with basis v1, . . . , vn, then x − x0 = ∆x =∑n
i=1 ∆xivi for ∆x ∈ S. If Φ̂′(x0)(vi) = 〈Avi

, θ〉, i = 1, . . . , n, then Φ is 
alled 
oni
allydi�erentiable at x0 and we have
Φ̂′(x0)(∆x) =

n∑

i=1

∆xi〈Avi
, θ〉.The following proposition will be essential for the de�nition of a derivative multifun
tion.Proposition 1.30. Let (Z, ‖·‖) be a re�exive Bana
h spa
e. If a multifun
tion Φ : I  Zwith values in Cbc(Z) is 
oni
ally di�erentiable at a point x0 ∈ I and the di�eren
es

Φ(x) ⊖ Φ(x0) exist in a neighbourhood U(x0) of x0, then Φ is di�erentiable at x0 and
DΦ(x0) = Φ′(x0) provided Φ̂′(x0)(x− x0) = (x− x0)〈Φ′(x0), θ〉, where Φ′(x0) ∈ Cbc(Z).Proof. Using (1.32) and (1.33) we have

a = h

(
Φ(x) ⊖ Φ(x0)

x− x0
,Φ′(x0)

)
=

∥∥∥∥

〈
Φ(x) ⊖ Φ(x0)

x− x0
, θ

〉
− 〈Φ′(x0), θ〉

∥∥∥∥.Suppose that Φ(x0) ⊂t Φ(x). If x > x0, then
a =

1

x− x0
‖〈Φ(x) ⊖ Φ(x0), θ〉 − (x− x0)〈Φ

′(x0), θ〉‖

=
1

x− x0
‖Φ̂(x) − Φ̂(x0) − Φ̂′(x0)(x− x0)‖, by (1.34).
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i«skaThe last term tends to 0 as x→ x0, by (1.35). If x < x0, then
a =

∥∥∥∥
1

x− x0
〈θ,Φ(x0) ⊖ Φ(x)〉 − 〈Φ′(x0), θ〉

∥∥∥∥

=
1

|x− x0|
‖〈θ, (−Φ(x))⊖ (−Φ(x0))〉 − (x− x0)〈Φ

′(x0), θ〉‖, by (1.31)(ii).Sin
e −Φ(x0) ⊂t −Φ(x),
a =

1

|x− x0|
‖ − Φ̂(x0) − (−Φ̂(x)) − Φ̂′(x0)(x− x0)‖(see (1.34)). Thus, again, a→ 0 as x→ x0.Similar arguments apply to the 
ase Φ(x) ⊂t Φ(x0).Remark 1.31. Let Φ : [−1, 1] R be given by

Φ(x) = x · [−1, 1] =

{
[−x, x] if x ∈ [0, 1],
[x,−x] if x ∈ [−1, 0].Then DΦ(0) = [−1, 1]. But Φ is not π-di�erentiable at 0 (see [5, p. 251℄). Therefore the
onverse of Proposition 1.30 is not true.As mentioned earlier, the 
ompleteness of the re�exive real normed linear spa
e

(Z, ‖ · ‖) does not imply that the 
orresponding normed linear spa
e (V(Z), δ) is 
omplete,whi
h presents a minor di�
ulty when 
onsidering the integrability of multifun
tions withvalues in Cbc(Z).Let V(Z) be the 
ompletion of V(Z), whi
h is a Bana
h spa
e. Following Banks andJa
obs (see [5, p. 266℄), we give the de�nition of integrability for multifun
tions withvalues in Cbc(Z) (based on the de�nition of Debreu [20℄). We also quote some of theirresults whi
h we shall need later on.Definition 1.32. We say that a multifun
tion Φ : I  Z with values in Cbc(Z) isintegrable (Lebesgue measure m on Lebesgue measurable subsets of I is understood) ifthe fun
tion Φ̂ : I → V(Z) is Bo
hner integrable (in the sense of [25, De�nition 17,p. 112℄), and the integral of Φ̂ is denoted by T
I
Φ̂(x) dx or Tb

a
Φ̂(x) dx, where [a, b] = I.Lemma 1.33 ([5, Lemmas 5.4 and 5.5℄). Let (Z, ‖ · ‖) be a re�exive Bana
h spa
e, andlet a multifun
tion Φ : I  Z with values in Cbc(Z) be integrable. Then(i) T

I
Φ̂(x) dx belongs to the 
onvex 
one Ĉbc(Z).(ii) There is a sequen
e of measurable simple fun
tions Ŝn : I → Ĉbc(Z) su
h that

limn→∞ Ŝn(x) = Φ̂(x) almost everywhere on I and ‖Ŝn(x)‖ ≤ ‖Φ̂(x)‖ for every
n ∈ N and x ∈ I. Moreover , limn→∞

T
I
‖Ŝn(x) − Φ̂(x)‖ dx = 0.In view of the above lemma it makes sense to introdu
e the following de�nition.Definition 1.34. If a multifun
tion Φ : I  Z with values in Cbc(Z) is integrable, thenwe de�ne T

I
Φ(x) dx to be the set A ∈ Cbc(Z) su
h that T

I
Φ̂(x) dx = 〈A, θ〉.



Measurability of multifun
tions of two variables 29Let Φ,Φi : I  Z, i = 1, 2, be multifun
tions with values in Cbc(Z). If these multi-fun
tions are integrable, then
∥∥∥
〈\

I

Φ1(x) dx, θ
〉
−

〈\
I

Φ2(x) dx, θ
〉∥∥∥ = h

(\
I

Φ1(x) dx,
\
I

Φ2(x) dx
)

and
‖〈Φ1(x), θ〉 − 〈Φ2(x), θ〉‖ = h(Φ1(x),Φ2(x)).Therefore, by [25, Theorem 20(a), p. 114℄), we have

(1.36) h
(\

I

Φ1(x) dx,
\
I

Φ2(x) dx
)
≤
\
I

h(Φ1(x),Φ2(x)) dx.In parti
ular, ‖T
I
Φ(x) dx‖ ≤

T
I
‖Φ(x)‖ dx.Let Φ : I  Z be a multifun
tion; if there exists a Lebesgue integrable fun
tion

g : I → R su
h that ‖Φ(x)‖ ≤ g(x) almost everywhere in I, then Φ is 
alled integrablybounded.We see from the Bo
hner theorem [47, Theorem 3.7.4℄ that(1.37) If Φ : I  Z with values in Cbc(Z) is strongly L(R)-measurable and integrablybounded, then it is integrable.A di�erent approa
h to de�ning inegrability for multifun
tions is given by Hukuhara(see [53℄ in the 
ase Z = R
n and 
ompa
t 
onvex valued multifun
tions). This de�nition isbased on the de�nition of Riemann integral. Starting from Hukuhara's idea of integrabilitywe de�ne R-integrability of multifun
tions in a more general 
ase.Suppose that (Z, ‖ · ‖) is re�exive, I = [a, b] ⊂ R and Φ : I  Z is a multifun
tionwith values in Cbc(Z).Let ∆ = {a0, a1, . . . , an} be a partition of I and λ(∆) = maxi=0,...,n−1{ai+1 − ai}.Let P denote the family of all pairs (∆, τ ), where τ = (x0, x1, . . . , xn−1) is a sequen
e ofpoints su
h that xi ∈ [ai, ai+1] for i = 0, . . . , n− 1. Set
C(∆, τ ) =

n−1∑

i=0

(ai+1 − ai)Φ(xi)for (∆, τ ) ∈ P. Then C(∆, τ ) ∈ Cbc(Z), by (1.29)(iv).Definition 1.35. We say that a multifun
tion Φ : I  Z is R-integrable (on I) if thereexists a set B ∈ Cbc(Z) su
h that C(∆, τ ) → B as λ(∆) → 0, i.e.,
∀ε > 0 ∃η > 0 ∀(∆, τ ) ∈ P [λ(∆) < η ⇒ h(C(∆, τ ), B) < ε],and we de�ne (R)

T
I
Φ(x) dx to be the set B.In mu
h the same way as in the 
ase of real fun
tions it 
an be proved that(1.38) (i) If Φ : I  Z with values in Cbc(Z) is h-
ontinuous, then it is R-integrable(
f. [53, Se
tion 5℄).(ii) If Φ : I  Z with values in Cbc(Z) is R-integrable, then it is integrable and\

I

Φ(t) dt = (R)
\
I

Φ(x) dx.
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i«skaFor an integrable multifun
tion Φ : I  Z with values in Cbc(Z) we de�ne the multifun
-tion Ψ : I  Z by
x 7→ Ψ(x) =

x\
a

Φ(t) dt.A simple 
omputation shows that(1.39) If Φ is integrable and x0 ∈ [a, b], then the di�eren
e Ψ(x) ⊖ Ψ(x0) exists forevery x ∈ [a, b], and Tx
x0

Φ(t) dt = Ψ(x) ⊖ Ψ(x0).Indeed, if x > x0, then Txa Φ(t) dt =
Tx0

a
Φ(t) dt+

Tx
x0

Φ(t) dt, and so Tx
x0

Φ(t) dt = Ψ(x) ⊖

Ψ(x0). If x < x0, then Tx0

a
Φ(t) dt =

Tx
a

Φ(t) dt+
Tx0

x
Φ(t) dt, and so Tx0

x
Φ(t) dt = Ψ(x0) ⊖

Ψ(x), that is, Tx
x0

Φ(t) dt = Ψ(x) ⊖ Ψ(x0).Lemma 1.36. If a multifun
tion Φ : I  Z with values in Cbc(Z) is integrable and ε > 0,then the multifun
tion Φε : I  Z given by
Φε(x) =

x+ε\
x

Φ(t) dtis h-
ontinuous.Proof. Fix x0 ∈ I. Then
h(Φε(x0),Φε(x)) = h

( x0+ε\
x0

Φ(t) dt,

x+ε\
x

Φ(t) dt
)

= h
( x0+ε\

x0

Φ(t) dt+

x\
x0+ε

Φ(t) dt,

x\
x0+ε

Φ(t) dt+

x+ε\
x

Φ(t) dt
)
,by (1.29)(v). Thus

h(Φε(x0),Φε(x)) = h
( x\

x0

Φ(t) dt,

x+ε\
x0+ε

Φ(t) dt
)

≤
∥∥∥

x\
x0

Φ(t) dt
∥∥∥ +

∥∥∥
x+ε\
x0+ε

Φ(t) dt
∥∥∥ → 0 as x→ x0, by (1.36).From now on we suppose that (Z, ‖ · ‖) is a re�exive Bana
h spa
e. The followingresult is essential for the de�nition of a derivative multifun
tion.Proposition 1.37 ([5, Theorem 5.3℄). If a multifun
tion Φ : [a, b]  Z with values in

Cbc(Z) is integrable, then the multifun
tion Ψ : [a, b]  Z given by Ψ(x) =
Tx
a

Φ(t) dt is
oni
ally di�erentiable almost everywhere on [a, b]. Moreover , if Ψ̂(x) =
Tx
a

Φ̂(t) dt, then
Ψ̂′(x0)(∆x) = ∆xΦ̂(x0) for almost every x0 ∈ [a, b].Therefore, by (1.39) and Proposition 1.30, the following 
orollary holds.Corollary 1.38. If Φ : [a, b]  Z is an integrable multifun
tion with values in Cbc(Z),then the multifun
tion Ψ : [a, b]  Z given by Ψ(x) =

Tx
a

Φ(t) dt, is di�erentiable almosteverywhere on [a, b], and DΨ(x0) = Φ(x0) for almost every x0 ∈ [a, b].



Measurability of multifun
tions of two variables 31Similarly to the 
ase of fun
tions we will showProposition 1.39. If a multifun
tion Φ : I  Z with values in Cbc(Y ) is h-
ontinuous ,then DΨ(x0) = Φ(x0) for ea
h x0 ∈ I.Proof. Let x0 ∈ I and ε > 0. By h-
ontinuity of Φ at x0, there is an η > 0 su
h that
h(Φ(x),Φ(x0)) < ε whenever |x− x0| < η and x ∈ [a, b]. Note that

h
( x\

x0

Φ(t) dt,

x\
x0

Φ(x0) dt
)

= h
( x\

x0

Φ(t) dt, (x− x0)Φ(x0)
)
.Furthermore, by (1.36),

h
( x\

x0

Φ(t) dt,

x\
x0

Φ(x0) dt
)
≤

x\
x0

h(Φ(t),Φ(x0)) dt < ε(x− x0)provided 0 < x− x0 < η. Sin
e
1

x− x0

x\
x0

Φ(t) dt =
Ψ(x) ⊖ Ψ(x0)

x− x0
(see (1.39)),it follows that

1

x− x0
h
( x\

x0

Φ(t) dt, (x− x0)Φ(x0)
)

= h

(
1

x− x0

x\
x0

Φ(t) dt,Φ(x0)

)
< ε.Hen
e

DΨ(x0) = h- lim
x→x+

0

Ψ(x) ⊖ Ψ(x0)

x− x0
= Φ(x0).Just as above we show that

DΨ(x0) = h- lim
x→x−

0

Ψ(x) ⊖ Ψ(x0)

x− x0
= Φ(x0).Now we 
an de�ne the notion of a derivative multifun
tion.Definition 1.40. Let Φ : I  Z be an integrable multifun
tion and x0 ∈ I. Thestatement that Φ is a derivative at x0 ∈ I means that

Φ(x0) = h- lim
x→x0

1

x− x0

x\
x0

Φ(t) dt.The multifun
tion Φ is a derivative if it is a derivative at ea
h point x ∈ I.By Proposition 1.38, we haveCorollary 1.41. If a multifun
tion Φ : I  Z with values in Cbc(Z) is h-
ontinuous ,then it is a derivative.Finally, we show that an approximately h-
ontinuous multifun
tion is a derivative.Proposition 1.42. Let Φ : I  Z be a multifun
tion with values in Cbc(Z). Supposethat Φ is bounded , i.e., there is a totally bounded set K ⊂ Z su
h that Φ(x) ⊂ K for ea
h
x ∈ I. If Φ is approximately h-
ontinuous , then it is a derivative.
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i«skaProof. By Proposition 1.9, Φ is L(R)-measurable (see Remark 1.10) and, by (1.22), it isstrongly L(R)-measurable. Sin
e Φ is integrably bounded, it is integrable on any measur-able subset of I, by the Bo
hner theorem [47, Theorem 3.7.4℄. Let I = [a, b]. De�ne themultifun
tion Ψ : [a, b] Z by
Ψ(x) =

x\
a

Φ(t) dt.Let x0 ∈ I. Sin
e Φ is approximately h-
ontinuous at x0, there exists a measurable set
E ⊂ I with x0 ∈ E su
h that D(E, x0) = 1 and Φ|E is h-
ontinuous at x0. Suppose
∆x > 0 and x0 + ∆x ∈ [a, b]. Then

Ψ(x0 + ∆x) = Ψ(x0) +

x0+∆x\
x0

Φ(x) dxand thus
Ψ(x0 + ∆x) ⊖ Ψ(x0) =

x0+∆x\
x0

Φ(x) dx.Note that
h

(
Ψ(x0 + ∆x) ⊖ Ψ(x0)

∆x
,Φ(x0)

)
= h

(
1

∆x

x0+∆x\
x0

Φ(x) dx,Φ(x0)

)

= h

(
1

∆x

x0+∆x\
x0

Φ(x) dx,
1

∆x

x0+∆x\
x0

Φ(x0) dx

)

≤
1

∆x

x0+∆x\
x0

h(Φ(x),Φ(x0)) dx

=
1

∆x

\
[x0,x0+∆x]∩E

h(Φ(x),Φ(x0)) dx+
1

∆x

\
[x0,x0+∆x]\E

h(Φ(x),Φ(x0)) dx.As ∆x tends to 0, the �rst term above 
onverges to 0, sin
e Φ is h-
ontinuous on E,and the se
ond is majorized by 1
∆xm([x0, x0 +∆x] \E)2‖K‖, whi
h 
onverges to 0, sin
e

D(I \ E, x0) = 0.This, together with a similar 
al
ulation for ∆x < 0 and x0 + ∆x ∈ I, yields
h

(
Ψ(x0) ⊖ Ψ(x0 + ∆x)

∆x
,Φ(x0)

)
≤ ε,and so DΨ(x0) = Φ(x0). Hen
e Φ is a derivative at x0.



2. PRODUCT MEASURABILITY OF MULTIFUNCTIONSOF TWO VARIABLES
7. Carathéodory multifun
tionsLet X and Y be nonempty sets, let F : X×Y  Z be a multifun
tion, and let (x0, y0) ∈

X × Y . Then the multifun
tion Fx0
: Y  Z de�ned by Fx0

(y) = F (x0, y) is 
alled the
x0-se
tion of F , and the multifun
tion F y0 : X  Z de�ned by F y0(x) = F (x, y0) is
alled the y0-se
tion of F .Similarly, if E ⊂ X×Y and (x0, y0) ∈ X×Y , then the set Ex0

= {y ∈ Y : (x0, y) ∈ E}is 
alled the x0-se
tion of E, and Ey0 = {x ∈ X : (x, y0) ∈ E} is the y0-se
tionof E.It is well known that if f : R
2 → R is a Lebesgue measurable fun
tion, then these
tions fx and fy are Lebesgue measurable for almost every x ∈ R and almost every

y ∈ R. But the 
onverse is not true even if all se
tions of f are Lebesgue measurable.There are various su�
ient 
onditions on se
tions of f ensuring that f is measurable.The most important one (given by Ursell [112℄) is the 
ontinuity of the se
tions of f withrespe
t to the �rst variable and their measurability with respe
t to the se
ond variable.This result was extended in various ways for fun
tions in spa
es more general than R (see[12, Corollaire 3.1℄ or [64, Theorem 2, p. 387℄). In this se
tion we will 
onsider this topi
in the 
ase of multifun
tions.Let (X,M(X)) and (Y,M(Y )) be measurable spa
es, and let (Z, T (Z)) be a topo-logi
al spa
e. A multifun
tion F : X × Y  Z will be 
alled produ
t measurable (resp.weakly produ
t measurable) if it is measurable (resp. weakly measurable) with respe
t tothe produ
t σ-�eld M(X) ⊗M(Y ) or a more general σ-�eld in X × Y .If (Y, T (Y )) is a topologi
al spa
e, then F : X × Y  Z will be 
alled Carathéodory(or more pre
isely M(X)-Carathéodory) if the se
tion F y is M(X)-measurable for every
y ∈ Y , and Fx is 
ontinuous for every x ∈ X.A Carathéodory multifun
tion need not be produ
t measurable, in general.There are some results on the existen
e of a Carathéodory sele
tion of a Carathéodorymultifun
tion (some details and a survey of some papers in this �eld 
an be found in [59℄).It is also known that (under some 
onditions) the produ
t measurability of a multifun
tionwhose se
tions with respe
t to the �rst variable are lower semi
ontinuous, is equivalentto the existen
e of its Castaing representation 
onsisting of Carathéodory fun
tions (see[32, Theorem 1℄).The following result is well known (see [58, Lemma 13.2.3℄).[33℄
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i«skaLemma 2.1. If (X,M(X)) is a measurable spa
e, (Y, d) a separable metri
 spa
e and
(Z, ̺) a metri
 spa
e, and if f : X × Y → Z is a Carathéodory fun
tion, then f is
M(X) ⊗ B(Y )-measurable.As a straightforward 
onsequen
e of the above lemma and Proposition 1.3(vi) we havethe following result (
f. [116, Theorem 2℄)Proposition 2.2. If (X,M(X)) is a measurable spa
e, (Y, d) a separable metri
 spa
eand (Z, ̺) a metri
 spa
e, and if F : X × Y  Z is a 
ompa
t valued Carathéodorymultifun
tion, then F is M(X) ⊗ B(Y )-measurable.The purpose of this se
tion is to give a generalization of this result.Theorem 2.3. Let (X,M(X)) be a measurable spa
e. Let (Y, d) be a metri
 spa
e and let
T (Y ) be a separable topology on Y �ner than the metri
 topology. Fix a 
ountable T (Y )-dense subset S of Y . Suppose that ea
h point v ∈ Y has a neighbourhood U(v) ∈ T (Y )su
h that(i) for ea
h y ∈ S, V (y) = {v ∈ Y : y ∈ U(v)} ∈ B(Y, d) and the family

N (v) = {U(v) ∩B(v, 2−n) : n ∈ N}forms a �lterbase of T (Y )-neighbourhoods of v.If (Z, T (Z)) is perfe
tly normal and F : X × Y  Z is a multifun
tion su
h that F y is
M(X)-measurable for every y ∈ Y and Fx is T (Y )-
ontinuous for every x ∈ X, then Fis weakly M(X) ⊗ B(Y, d)-measurable.Proof. It is su�
ient to show that
(1) F+(D) ∈ M(X) ⊗ B(Y, d) whenever D is a 
losed subset of Z.Let D be an arbitrary 
losed subset of Z. Then, by perfe
t normality of Z, there existsa sequen
e (Gm)m∈N of open subsets of Z su
h that
(2) D =

⋂

n∈N

Gn =
⋂

n∈N

Cl(Gn) and Cl(Gn+1) ⊂ Gn for n ∈ N.Let S = {yk}k∈N. We shall prove that
(3) F+(D) =

⋂

n∈N

⋃

k∈N

({x ∈ X : F (x, yk) ⊂ Gn} × Vn(yk)),where Vn(yk) = {v ∈ Y : yk ∈ U(v) ∩B(v, 2−n)}.Let (u, v) ∈ F+(D) = {(x, y) ∈ X×Y : F (x, y) ⊂ D}. Then, by (2), F (u, v) ⊂ Gn forevery n ∈ N. Fix n ∈ N. Sin
e Fu is upper T (Y )-semi
ontinuous at v, it follows that(4) there exists a T (Y )-open neighbourhoodW (v) ∈ N (v) of v su
h that F (u, y) ⊂ Gnfor all y ∈W (v).Let K = {m ∈ N : ym ∈ W (v)}. We put m0 = min{m ∈ K : v ∈ Vn(ym)}. Then, by (4),
F (u, yk) ⊂ Gn for k = m0, whi
h implies u ∈ (F yk)+(Gn).Therefore, the in
lusion

F+(D) ⊂
⋂

n∈N

⋃

k∈N

(F yk)+(Gn) × Vn(yk)
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tions of two variables 35has been proved. Conversely, suppose, 
ontrary to our 
laim, that
(5) (u, v) ∈

⋂

n∈N

⋃

k∈N

(F yk)+(Gn) × Vn(yk),but (u, v) 6∈ F+(D). Then F (u, v) 6⊂ D, and so F (u, v) 6⊂
⋂

m∈N
Cl(Gm) by (2). Therefore,

F (u, v) ∩ (Z \ Cl(Gm)) 6= ∅ for some m ∈ N.Thus, by T (Y )-lower semi
ontinuity of Fu at v,(6) there is a T (Y )-open neighbourhood W (v) ∈ N (v) of v su
h that
F (u, y) ∩ (Z \ Cl(Gm)) 6= ∅ for all y ∈W (v).We see from (5) that to ea
h n ∈ N there 
orresponds an index k(n) ∈ N su
h that

u ∈ (F yk(n))+(Gn) and v ∈ Vn(yk(n)), i.e.,
(7) F (u, yk(n)) ⊂ Gn and yk(n) ∈ U(v) ∩B(v, 2−n).Hen
e, limn→∞ yk(n) = v, and so by (6), there is an n0 ∈ N su
h that yk(n) ∈W (v) and
(8) F (u, yk(n)) ∩ (Z \ Cl(Gm)) 6= ∅ for every n > n0.By (7) and (2), we arrive at the in
lusions

F (u, yk(n+j)) ⊂ Gn+j ⊂ Cl(Gn+j) ⊂ Gn for n ∈ N and j ∈ N.Fixing n = m, we obtain
(9) F (u, yk(m+j)) ⊂ Cl(Gm+j) ⊂ Gm for all j ∈ N.Let j ∈ N be su
h that m+ j > n0. Then, by (8), we have

F (u, yk(m+j)) ∩ (Z \ Cl(Gm+j)) 6= ∅,
ontrary to (9). Thus (3) has been proved.Observe that {x ∈ X : F (x, yk) ⊂ Gn} ∈ M(X), be
ause F yk is M(X)-measurable.Moreover, by assumption (i), Vn(yk) ∈ B(Y, d). Thus, by (3), it is 
lear that F+(D) ∈

M(X) ⊗ B(Y, d), whi
h proves (1).Remark 2.4.(i) If we suppose that the multifun
tion F 
onsidered in Theorem 2.3 is 
ompa
tvalued, then F will be M(X) ⊗ B(Y, d)-measurable, by Proposition 1.2(ii).(ii) If, in Theorem 2.3, we suppose that the spa
e (Z, T (Z)) is metrizable σ-
ompa
tand the multifun
tion F is 
losed valued, then F will be M(X)⊗B(Y, d)-measu-rable, by Proposition 1.3(iv).Below we give two examples of topologies on a metri
 spa
e (Y, d) ful�lling the re-quirements of Theorem 2.3. By the �rst example, it will be 
lear that if all x-se
tions ofa multifun
tion F are either right-
ontinuous or left-
ontinuous (in some sense) and allits y-se
tions are measurable, then F is weakly produ
t measurable.Example 2.5. Let (Y, d,≤) be a linearly ordered metri
 spa
e. We follow Drave
ký andNeubrunn [24℄ in assuming that (Y, d,≤) has the property U , i.e., (Y,≤) is a linearlyordered spa
e and there is a 
ountable dense set S = {yn}n∈N in (Y, d, ) su
h that forany y ∈ Y , we have y = limn→∞ yn, where y ≤ yn for n ∈ N. Then the topology T (Y )
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i«skagenerated by all open sets in (Y, d) and also by all intervals Ia = {y ∈ Y : y ≤ a}, a ∈ Y ,ful�ls the assumptions of Theorem 2.3.Indeed, �x y ∈ Y and r > 0. Then
Ur(y) = B(y, r) ∩ Iy = {x ∈ Y : d(x, y) < r ∧ x ≤ y}is a T (Y )-neighbourhood of y.Let x ∈ Ur(y). Then x ∈ B(y, r) and x ≤ y, and so there is an r1 > 0 su
h that

d(x, y) = r− r1. Let δ < min(r− r1, r1). Then B(x, δ) ⊂ B(y, r). Let n ∈ N be su
h that
2−n < δ. Then U2−n(x) ⊂ Ur(y) and {U2−n(y)}n∈N is a �lterbase of T (Y )-neighbourhoodsof y.The set S is also T (Y )-dense. It remains to show that

Vr(y) = {z ∈ Y : y ∈ Ur(z)}is a Borel set in (Y, d). First we will show that(1) If y0 6= y and y0 ∈ Vr(y), then there exists an r1 ∈ (0, r) su
h that Ur1
(y0) ⊂ Vr(y).Suppose, 
ontrary to our 
laim, that Ur1

(y0) 6⊂ Vr(y) for any 0 < r1 < r. Let n ∈ N besu
h that 1/n < r. Then there is a yn su
h that y ≤ yn and yn ∈ U1/n(y0) \ Vr(y), andso, for n > 1/r, we have
y ≤ yn ∧ d(yn, y0) < 1/n ∧ yn ≤ y0 ∧ (yn ≤ y ∨ d(yn, y) ≥ r).If it were true that d(yn, y0) < 1/n and y ≤ yn ≤ y0 and yn ≤ y, we would have

limn→∞ yn = y0 = y, 
ontradi
ting y 6= y0. Let d(y0, y) = ε. If it were true that
d(yn, y0) < 1/n and d(yn, y) ≥ r, we would have r ≤ d(yn, y) ≤ d(yn, y0) + d(y0, y) <

1/n + ε. Then 1/n > r − ε > 0 for almost every n ∈ N, whi
h is impossible. Thisestablishes (1).Our next 
laim is that(2) If y0 6= y and y0 ∈ Vr(y), then there is a δ > 0 su
h that B(y0, δ) ⊂ Vr(y).Indeed, a

ording to (1), there is an r1 ∈ (0, r) su
h that Ur1
(y0) ⊂ Vr(y). Let ε =

d(y0, y) < r and let δ < min(ε, r − ε, r1). If z ∈ B(y0, δ), then either d(y0, z) < δ and
z ≤ y0, or d(y0, z) < δ and y0 ≤ z. In the �rst 
ase, z ∈ Uδ(y0) ⊂ Vr(y). In the se
ond,
d(z, y) ≤ d(z, y0) + d(y0, y) < δ + ε < r − ε + ε = r and y ≤ z, showing that z ∈ Vr(y).Combining the two results we 
on
lude that B(y0, δ) ⊂ Vr(y), and (2) is proved.Thus the set {z ∈ Y : d(z, y) < r ∧ y ≤ z ∧ y 6= z} is open in (Y, d). Therefore,

Vr(y) = {y} ∪ {z ∈ Y : d(z, y) < r ∧ y ≤ z ∧ y 6= z} ∈ Fσ(Y, d) ∩ Gδ(Y, d),and �nally Vr(y) ∈ B(Y, d).Note that the topology T (Y ) in the above example may be viewed as a naturalgeneralization of the Sorgenfrey topology on the real line [114℄.By Theorem 2.3, we have the following 
orollary.Corollary 2.6. Let (X,M(X)) be a measurable spa
e and (Z, T (Z)) a perfe
tly normaltopologi
al spa
e. Then a multifun
tion F : X × R Z su
h that Fx is right-
ontinuous
(resp. left-
ontinuous) for every x ∈ X and F y is M(X)-measurable for every y ∈ Y , isweakly M(X) ⊗ B(R)-measurable.
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tions of two variables 37Now we give another example of a topology T (Y ) ful�lling the assumptions of Theo-rem 2.3.Example 2.7. Let (Y, ⋄, d) be a topologi
al group whose topology is indu
ed by aninvariant distan
e fun
tion d (i.e., d(θ, y) = d(v, y ⋄ v)), where θ denotes the neutralelement of Y . Furthermore we assume that (Y, d) is separable.Let U ⊂ Y be an open set su
h that θ is an a

umulation point of U . Let
Un = (B(θ, 2−n) ∩ U) ∪ {θ} and Vn(y) = y ⋄ Un = {y ⋄ v : v ∈ Un}for any n ∈ N and y ∈ Y . Then {Vn(y)}n∈N is a �lterbase of neighbourhoods of y ∈ Y ,and the topology T (Y ) generated by this base ful�ls all requirements of Theorem 2.3.Indeed, it su�
es to prove that {Un}n∈N is a base of neighbourhoods of θ. We have

Un ∩Um = Umin(n,m). Let n ∈ N and v ∈ Un. Then, by the de�nition of Vn(y), there is a
k ∈ N su
h that B(v, 2−k) = v ⋄B(θ, 2−k) ⊂ Un. Therefore, we 
on
lude that

∀n ∈ N ∀v ∈ Un ∃k ∈ N Vk(v) ⊂ Un.A 
ountable dense subset of (Y, d) is also T (Y )-dense. It remains to show that Vn(y) isa Borel set in (Y, d) for n ∈ N.Fix n ∈ N and let Φ : Y  Y be de�ned by Φ(y) = Vn(y). Then Φ is 
ontinuous and
Gr(Φ) = {(y, z) : z ∈ y ⋄Un} is homeomorphi
 to Y ×Un. Thus Vn(y) ∈ B(Y, d) for ea
h
n ∈ N.
8. Multifun
tions with approximately semi
ontinuous se
tionsIn this se
tion we assume that (X, d,M(X), µ) and (Y, ρ,M(Y ), ν) are measure metri
spa
es with 
omplete, σ-�nite and Gδ-regular measures µ and ν on the σ-�elds M(X)and M(Y ) 
ontaining B(X) and B(Y ), respe
tively; µ× ν is the produ
t measure on the

σ-�eld M(X) ⊗M(Y ), and Mµ×ν(X × Y ) is the µ × ν-
ompletion of M(X) ⊗M(Y );and F ⊂ M(X) and G ⊂ M(Y ) are families of sets (de�ned as in (1.23)) with the densityproperty (1.24).Let B ∈ M(X) ⊗M(Y ). We will write B ⊏ B if, for every (x, y) ∈ B, x is a densitypoint of By with respe
t to F and y is a density point of Bx with respe
t to G.The following lemma is known.Lemma 2.8 ([67, Lemma 2℄). If A ∈ Mµ×ν(X ×Y ), then there is a B ∈ M(X)⊗M(Y )su
h that B ⊂ A, B ⊏ B and µ× ν(A \B) = 0.The Gδ-regularity of the measures µ and ν in the above lemma is essential.Theorem 2.9. Let (Z, ̺) be a separable metri
 spa
e and F : X×Y  Z a 
losed valuedmultifun
tion. If {Fx}x∈X is approximately h-equi
ontinuous with respe
t to G and F y isweakly M(X)-measurable for ea
h y ∈ Y , then F is weakly Mµ×ν(X × Y )-measurable.Proof. By Proposition 1.3(i), it su�
es to prove that(1) the real fun
tion gz(x, y) = ̺(z, F (x, y)) is Mµ×ν(X × Y )-measurable for ea
h
z ∈ Z.
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i«skaFix z ∈ Z. To prove (1) we apply the Davies lemma [17℄, i.e., it is su�
ient to show thatfor every ε > 0 the family Hε = {H ∈ M(X) ⊗ M(Y ) : oscH(gz) ≤ ε} of sets satis�esthe following 
ondition:(D) for every A ∈ M(X) ⊗M(Y ) of positive µ × ν measure, there exists an H ∈ Hεsu
h that H ⊂ A and µ× ν(H) > 0.Fix A ∈ M(X) ⊗ M(Y ) with µ × ν(A) > 0 and ε > 0. By Lemma 2.8, there is a
B ∈ M(X) ⊗M(Y ) su
h that B ⊂ A, B ⊏ B and µ× ν(A \B) = 0.Let y0 ∈ Y be su
h that µ(By0) > 0. Sin
e F y0 is weakly M(X)-measurable, (gz)

y0is M(X)-measurable. Let δ > 0. By Lusin's theorem, there is a 
losed set C ⊂ X su
hthat (gz)
y0 |C is 
ontinuous and µ(X \ C) < δ. Sin
e F has the density property, µ-almost every point of C is its density point with respe
t to F . Thus (gz)

y0 is µ-almosteverywhere approximately 
ontinuous with respe
t to F . Therefore, there is an x0 ∈ By0su
h that (gz)
y0 is approximately 
ontinuous at x0 with respe
t to F . Thus, there existsa K ∈ M(X) su
h that D(K,x0) = 1 and |gz(x, y0) − gz(x0, y0)| < ε/4 for all x ∈ K.Let M = K ∩ By0 . Then M ∈ M(X) and D(M,x0) = 1, sin
e D(K,x0) = 1 and

D(By0 , x0) = 1. Furthermore,
(2) |gz(x, y0) − gz(x0, y0)| < ε/4 for all x ∈M.On the other hand, by the approximate h-equi
ontinuity of {Fx}x∈X at y0 with respe
tto G, there is an L(y0) ∈ M(Y ) su
h that D(L(y0), y0) = 1 and {Fx|L(y0)}x∈X is h-equi
ontinuous at y0. Thus, there is an open set V (y0) in
luding y0 su
h that
(3) h(Fx|L(y0)(y), Fx|L(y0)(y0)) < ε/8 for x ∈ X and y ∈ V (y0).Let N = L(y0) ∩ V (y0). Then N ∈ M(Y ) and D(N, y0) = 1. Let y ∈ N . Then, by (3),there is a z1 ∈ Fx(y) with ̺(z, Fx(y)) + ε/8 > ̺(z, z1) and there is a z2 ∈ Fx(y0) with
̺(z, Fx(y0)) + ε/8 > ̺(z, z2). Moreover, there is a z′ ∈ Fx(y) with ̺(z′, z2) < ε/8 and a
z′′ ∈ Fx(y0) with ̺(z′′, z1) < ε/8. Then

̺(z, Fx(y)) ≤ ̺(z, z′) ≤ ̺(z, z2) + ̺(z2, z
′) < ε/4 + ̺(z, Fx(y0)),and

̺(z, Fx(y0)) ≤ ̺(z, z′′) ≤ ̺(z, z1) + ̺(z1, z
′′) < ε/4 + ̺(z, Fx(y))for x ∈ X and y ∈ N . Thus

(4) |gz(x, y) − gz(x, y0)| < ε/4 for x ∈ X and y ∈ N .Set P = M ×N . We see from (4) and (2) that
|gz(x, y) − gz(x0, y0)| ≤ |gz(x, y) − gz(x, y0)| + |gz(x, y0) − gz(x0, y0)| < ε/2for every (x, y) ∈ P , and hen
e oscP (gz) ≤ ε.Now let H = P ∩ B. Sin
e B ∈ M(X) ⊗M(Y ) and P ∈ M(X) ⊗M(Y ), it followsthat H ∈ M(X) ⊗ M(Y ). Furthermore, µ × ν(H) > 0, sin
e ν(Hx) > 0 for µ-almostevery x ∈ X. Finally, H ⊂ B ⊂ A and oscH(gz) ≤ ε, whi
h proves (D).It is known (see [17, Theorem 2℄) that if all se
tions fx and fy of a fun
tion f : R

2 → Rare approximately 
ontinuous, then f is of the se
ond Baire 
lass.In this 
onne
tion, 
onsider the following example.
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tions of two variables 39Example 2.10. De
ompose the interval [0, 1] ⊂ R into two disjoint non-Borel sets A and
B and de�ne the multifun
tion F : [0, 1] × [0, 1] → R by putting

F (x, y) =






[−3, 3] if x 6= y,

[−1, 0] if x = y ∈ A

[1, 2] if x = y ∈ B.Then F is not B(R2)-measurable although all its x-se
tions and y-se
tions are approxi-mately lower semi
ontinuous (even lower semi
ontinuous).The above example shows that a multifun
tion F : X × Y  Z (even 
ompa
tvalued) having all x-se
tions approximately lower semi
ontinuous with respe
t to G andall y-se
tions approximately lower semi
ontinuous with respe
t to F may by �strange�.Let F × G = {E : E = A × B, A ∈ F , B ∈ G}. For ea
h P ⊂ X × Y we de�ne (asin Se
tion 4) the upper and lower outer density of P at (x, y) ∈ X × Y with respe
t to
F × G, and the density point of P with respe
t to F × G. The family F × G has thedensity property (see (1.24)), be
ause so do F and G (see [9, pp. 5 and 34℄).Proposition 2.11. Let (Z, ̺) be a metri
 spa
e and F : X × Y  Z a multifun
tion.If F y is approximately h-lower semi
ontinuous with respe
t to F for ea
h y ∈ Y and
{Fx}x∈X is approximately h-lower equi
ontinuous with respe
t to G, then F is approxi-mately h-lower semi
ontinuous with respe
t to F × G.Proof. Fix (x0, y0) ∈ X × Y and ε > 0. Sin
e F y0 is approximately h-lower semi
ontin-uous at x0 with respe
t to F , there exists a set A(x0) ∈ M(X) in
luding x0 su
h that
D(A(x0), x0) = 1 and F y0 |A(x0) is h-lower semi
ontinuous at x0. Thus, there is an openneighbourhood U(x0) of x0 su
h that
(1) F (x0, y0) ⊂ B(F (x, y0), ε/2) for all x ∈ U(x0) ∩A(x0).By the approximate h-lower equi
ontinuity of {Fx}x∈X at y0 with respe
t to G, there isa B(y0) ∈ M(Y ) in
luding y0 su
h that D(B(y0), y0) = 1 and {Fx|B(y0)}x∈X is h-lowerequi
ontinuous at y0. Therefore, there is an open neighbourhood V (y0) of y0 su
h that
(2) F (x, y0) ⊂ B(F (x, y), ε/2) for x ∈ X and y ∈ V (y0) ∩B(y0).Let E(x0, y0) = A(x0) × B(y0). Then D(E(x0, y0), (x0, y0)) = 1. It is su�
ient to showthat F |E(x0,y0) is h-lower semi
ontinuous with respe
t to F×G at (x0, y0). LetW (x0, y0) =

U(x0) × V (y0). Then, by (1) and (2),
F (x0, y0) ⊂ B(F (x, y0), ε/2) and F (x, y0) ⊂ B(F (x, y), ε/2)for ea
h (x, y) ∈W (x0, y0) ∩E(x0, y0). Thus, for (x, y) ∈W (x0, y0) ∩ E(x0, y0),

F (x0, y0) ⊂ B(F (x, y), ε),i.e., F |E(x0,y0) is h-lower semi
ontinuous at (x0, y0).A similar proof works when we repla
e �h-lower� by �h-upper� in Proposition 2.11,and we have a dual result.
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i«skaProposition 2.12. Let (Z, ̺) be a metri
 spa
e and F : X × Y  Z a multifun
tion.If F y is approximately h-upper semi
ontinuous with respe
t to F for every y ∈ Y and
{Fx}x∈X is approximately h-upper equi
ontinuous with respe
t to G, then F is approxi-mately h-upper semi
ontinuous with respe
t to F × G.Remark 2.13. We see from (1.11)(ii) and Proposition 1.9 that a multifun
tion F whi
hsatis�es the assumptions of Proposition 2.11 is weakly M(X)⊗M(Y )-measurable. If weadditionally assume that F is 
ompa
t valued, then it is M(X)⊗M(Y )-measurable, by(1.11)(iii) and Proposition 1.9.Now let (Z, T (Z)) be a topologi
al spa
e. We will show that the approximate lowersemi
ontinuity of all y-se
tions and upper semi
ontinuity of all x-se
tions of a multifun
-tion F : X × Y  Z are su�
ient for its produ
t measurability.We �rst prove the following proposition.Proposition 2.14. Let F : X×Y  Z be a multifun
tion su
h that F y is approximatelylower semi
ontinuous with respe
t to F for ea
h y ∈ Y . Then for ea
h n ∈ N, themultifun
tion Fn : X × Y  Z de�ned by
(2.1) Fn(x, y) = F (x,B(y, 2−n)) =

⋃

v∈B(y,2−n)

F (x, v)is approximately lower semi
ontinuous with respe
t to F × G.Proof. Fix n ∈ N, (x, y) ∈ X × Y and an open set G ⊂ Z su
h that Fn(x, y)∩G 6= ∅. By(2.1), there exists a v ∈ B(y, 2−n) su
h that F (x, v) ∩G 6= ∅. Sin
e F v is approximatelylower semi
ontinuous with respe
t to F at x, there is an E ∈ M(X) in
luding x su
hthat D(E, x) = 1 and F v|E is lower semi
ontinuous at x. Therefore, there is an openneighbourhood U(x) of x su
h that F (u, v) ∩G 6= ∅ whenever u ∈ E ∩ U(x).Observe that there exists an r > 0 su
h that
(1) F (u, v) ⊂ F (u,B(y0, 2

−n)) = Fn(u, y0) for all u ∈ U(x) and y0 ∈ B(y, r).Indeed, let r = 2−n − ρ(v, y). Then r > 0 and for every t ∈ B(y, r) we have
ρ(t, v) ≤ ρ(t, y) + ρ(y, v) < r + 2−n − r = 2−n.Therefore

t ∈ B(y, r) ⇒ v ∈ B(t, 2−n),and the in
lusion (1) holds on the set (E ∩ U(x)) × B(y, r). Thus Fn(u, v) ∩ G 6= ∅whenever (u, v) ∈ (E ∩ U(x)) ×B(y, r).Let V (x, y) = (E ∩ U(x)) × B(y, r). Then V (x, y) ∈ M(X) ⊗ M(Y ). Furthermore,
D(V (x, y), (x, y)) = 1 and Fn|V (x,y) is lower semi
ontinuous at (x, y).Lemma 2.15. Let (Z, T (Z)) be a regular spa
e and F : X × Y → Z a 
losed valuedmultifun
tion su
h that Fx is upper semi
ontinuous for ea
h x ∈ X. If (Fn)n∈N is asequen
e of multifun
tions from X×Y to Z de�ned by (2.1), then for ea
h (x, y) ∈ X×Ywe have

F (x, y) =
⋂

n∈N

Cl(Fn(x, y)).
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tions of two variables 41Proof. Fix (x, y) ∈ X × Y . Observe that F (x, y) ⊂ Fn(x, y) for any n ∈ N. Therefore
F (x, y) ⊂

⋂

n∈N

Cl(Fn(x, y)).Now suppose that z ∈ Z \F (x, y). Sin
e F (x, y) is 
losed, there exist an open set G ⊂ Zand an open neighbourhood W (z) of z su
h that F (x, y) ⊂ G and W (z)∩G = ∅. By theupper semi
ontinuity of Fx at y, there exists an m ∈ N su
h that F (x, v) ⊂ G for ea
h
v ∈ B(y, 2−m). Hen
e,

⋃

v∈B(y,2−m)

F (x, v) = Fm(x, y) ⊂ G,and so W (z) ∩ Cl(Fm(x, y)) = ∅. Thus z ∈ Z \
⋂

n∈N
Cl(Fn(x, y)), proving the in
lusion

F (x, y) ⊃
⋂

n∈N

Cl(Fn(x, y)).Theorem 2.16. Let Z be a Suslin spa
e. If F : X ×Y  Z is a 
losed valued multifun
-tion su
h that F y is approximately lower semi
ontinuous with respe
t to F for every y ∈ Yand Fx is upper semi
ontinuous for every x ∈ X, then F is Mµ×ν(X × Y )-measurable.Proof. Let (Fn)n∈N be the sequen
e of multifun
tions given by
Fn(x, y) = F (x,B(y, 2−n)).Then, by Proposition 2.14, Fn is approximately lower semi
ontinuous with respe
t to

F × G for ea
h n ∈ N, and hen
e, a

ording to Proposition 1.9,
(1) ea
h Fn is weakly M(X) ⊗M(Y )-measurable.Let (Fn)n∈N be the sequen
e of multifun
tions de�ned by

Fn(x, y) = Cl(Fn(x, y)) for (x, y) ∈ X × Y.Then ea
h Fn has 
losed values, and hen
e is weakly M(X)⊗M(Y )-measurable, by (1).Sin
e the x-se
tions of F are upper semi
ontinuous, it follows that
F (x, y) =

⋂

n∈N

Cl(Fn)(x, y) for ea
h (x, y) ∈ X × Y,by Lemma 2.15. Thus Proposition 1.5 �nishes the proof.The following example shows that the upper semi
ontinuity of x-se
tions of F in theabove theorem 
annot be repla
ed by lower semi
ontinuity.Example 2.17. Let E ⊂ R
2 be the Sierpi«ski set [107℄, i.e., E 6∈ L(R2) and for any y ∈ Rand any x ∈ R, the se
tions Ey and Ex have at most two elements. Let F : R

2
 R bethe multifun
tion given by

F (x, y) =

{
[0, 1] if (x, y) 6∈ E,

{0} if (x, y) ∈ E.Then F is not L(R2)-measurable although x-se
tions and y-se
tions are lower semi
on-tinuous.
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i«ska9. Multifun
tions with quasi-
ontinuous se
tionsLet (X,M(X)) be a measurable spa
e and let (Y, T (Y )) and (Z, T (Z)) be topologi
alspa
es. A multifun
tion F : X × Y  Z is 
alled lower (resp. upper) semi-Carathéodoryif F y is M(X)-measurable for ea
h y ∈ Y and Fx is lower (resp. upper) semi
ontinuousfor ea
h x ∈ X.If (Z, ̺) is a metri
 spa
e, then repla
ing lower (resp. upper) semi
ontinuity of Fx inthe above de�nition by h-lower (resp. h-upper) semi
ontinuity of Fx we obtain the notionof an h-lower (resp. h-upper) semi-Carathéodory multifun
tion.Note that F : X × Y  Z is Carathéodory if and only if it is simultaneously lowerand upper semi-Carathéodory.If F : X×Y  Z is given by F (x, y) = {f(x, y)}, where f : X×Y → Z is a fun
tion,then F is lower (resp. upper) semi-Carathéodory or Carathéodory if and only if f is aCarathéodory fun
tion.We see from Proposition 2.2 that if (Y, d) is a separable metri
 spa
e, (Z, ̺) a metri
spa
e, and F : X × Y  Z a 
ompa
t valued Carathéodory multifun
tion, then F is
M(X) ⊗ B(Y )-measurable.Example 2.17 shows that a multifun
tion whi
h is only lower semi-Carathéodoryneed not be produ
t measurable. It is easy to see that the same is true for upper semi-Carathéodory multifun
tions. For instan
e, the multifun
tion F in Example 2.17 is lowersemi-Carathéodory. But if we transpose the values of F , then F will be upper semi-Carathéodory and still not L(R2)-measurable.One 
an strengthen the lower semi-Carathéodory assumption to ensure produ
t me-asurability. For instan
e, Papageorgiou [94℄ gives the following result:Theorem 2.18. If (X,M(X), µ) is a measure spa
e, where µ is σ-�nite, Y is a separablere�exive Bana
h spa
e, and F : X × Y  Y is a lower semi-Carathéodory multifun
tionwith 
losed 
onvex values su
h that the se
tion Fx : Y  Yω is upper semi
ontinuous forevery x ∈ X (where Yω denotes Y with the weak topology), then F is Mµ(X) ⊗ B(Y )-measurable.Another possibility is given below.Theorem 2.19. Let (X,M(X)) be a measurable spa
e, Y a Polish spa
e and (Z, T (Z))a metrizable σ-
ompa
t spa
e. Suppose that a lower semi-Carathéodory multifun
tion F :

X × Y  Z with 
losed values has Fx upper quasi-
ontinuous for ea
h x ∈ X. Then Fis M(X) ⊗ B(Y )-measurable.Proof. Fix z ∈ Z. By Propositions 1.3(i) and (iv), it is enough to prove that
(1) the real fun
tion gz(x, y) = ̺(z, F (x, y)) is M(X) ⊗ B(Y )-measurable.Let B(z, r) ⊂ Z be an open ball 
entred at z with radius r > 0 and �x (x, y) ∈ X × Y .Sin
e F y is M(X)-measurable, it follows that F y is weaklyM(X)-measurable, by Propo-sition 1.2(i). Thus, (F y)−(B(z, r)) ∈ M(X). Note that

(F y)−(B(z, r)) = {x ∈ X : F y(x) ∩B(z, r) 6= ∅} = {x ∈ X : ρ(z, F y(x)) < r}

= (gy
z )−1(−∞, r).
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tions of two variables 43Therefore (gy
z )−1(−∞, r) ∈ M(X), i.e.,

(2) the y-se
tion of gz is M(X)-measurable.By the lower semi
ontinuity of Fx, we know that (Fx)−(B(z, r)) is an open subsetof Y . Sin
e
((gz)x)−1(−∞, r) = {y ∈ Y : ρ(z, Fx(y)) < r} = {y ∈ Y : Fx(y) ∩B(z, r) 6= ∅}

= (Fx)−(B(z, r)),it follows that ((gz)x)−1(−∞, r) is an open subset of Y . Thus
(3) the x-se
tion of gz is upper semi
ontinuous.By the upper quasi-
ontinuity of Fx at y, there exists a quasi-open set A(y) 
ontaining
y su
h that Fx|A(y) is upper semi
ontinuous at y (see (1.27)). Therefore,(4) there exists a nonempty open set O(y) su
h that O(y) ⊂ A(y) ⊂ Cl(O(y)), y ∈

Cl(O(y)) and Fx|O(y)∪{y} is 
ontinuous at y.Let S = {s1, s2, . . .} be a dense subset of Y . Then, by (4), to ea
h point (x, y) ∈ X×Ythere 
orresponds a sequen
e (sn(x, y))n∈N su
h that
(5) sn(x, y) ∈ S, lim

n→∞
sn(x, y) = y and lim

n→∞
gz(x, sn(x, y)) = gz(x, y),sin
e limn→∞ ρ(z, F (x, sn(x, y)) = ρ(z, F (x, y)).Now de�ne G : X  Y × R by

G(x) = {(y, r) ∈ Y × R : gz(x, y) ≥ r}.By (3), it is evident that
(6) G(x) ∈ C(Y × R) for every x ∈ X.We will show that
(7) G is weakly M(X)-measurable.Let {q1, q2, . . .} be an enumeration of the rational numbers. De�ne the sequen
e of fun
-tions fnm : X → Y × R by

fnm(x) = (sn(x, y),min(qm, gz(x, sn(x, y)))).It is 
lear that(8) fnm : X → Y ×R is M(X)-measurable and fnm(x) ∈ G(x) for ea
h x ∈ X and all
n,m ∈ N.Thus, {fnm(x) : n,m ∈ N} ⊂ G(x) for ea
h x ∈ X, and so, by (6),

(9) Cl({fnm(x) : n,m ∈ N}) ⊂ G(x).Now let (y, r) ∈ G(x), i.e., gz(x, y) ≥ r. We 
an 
hoose the sequen
e (qm)m∈N so that
qm≤gz(x, sn(x, y)) for ea
h m,n∈N, and limm→∞ qm =r. Then limn→∞ limm→∞ fnm(x)

= (y, r), and so (y, r) ∈ Cl({fnm(x) : n,m ∈ N}), whi
h, together with (9), gives theequality
(10) G(x) = Cl({fnm(x) : n,m ∈ N}).
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i«skaNow (7) is a simple 
onsequen
e of (8), (10) and Proposition 1.3(ii). Therefore
Gr(G) = {(x, y, r) ∈ X × Y × R : (y, r) ∈ G(x)} ∈ M(X) ⊗ B(Y × R),by Proposition 1.3(iii), and thus

(11) (Gr(G))r = {(x, y) ∈ X × Y : (x, y, r) ∈ Gr(G)} ∈ M(X) ⊗ B(Y ).Note that
(Gr(G))r = {(x, y) ∈ X × Y : (y, r) ∈ G(x)} = {(x, y) ∈ X × Y : gz(x, y) ≥ r}

= X × Y \ {(x, y) ∈ X × Y : gz(x, y) < r} = X × Y \ g−1
z (−∞, r).Therefore, by (11), we have g−1

z (−∞, r) ∈ M(X) ⊗ B(Y ), and (1) is proved.The 
lassi
al result of Kempisty [55℄ asserts that a real fun
tion of two real variableswhi
h is separately quasi-
ontinuous is quasi-
ontinuous as a fun
tion of two variables.But su
h a fun
tion may not be produ
t measurable, as shown by Mar
us (see [79, (x),p. 49℄). Some generalization of the result of Kempisty to the multivalued 
ase was givenby Neubrunn (see [85, 4.1.6 and 4.1.5℄).The situation is di�erent for strong quasi-
ontinuity. It is known that there is a fun
-tion f : R
2 → R having fx and fy 
ontinuous (and therefore also strongly quasi-
ontinu-ous), su
h that the set D(f) of its dis
ontinuity points is of positive m2 measure (see [43,Theorem 7℄). Thus, by Proposition 1.19, f is not strongly quasi-
ontinuous as a fun
tionof two variables. But it turns out that it is produ
t measurable.Now our aim is to show that if a multifun
tion is measurable in the �rst variable andboth lower and upper strongly quasi-
ontinuous in the se
ond variable, then it is produ
tmeasurable. For this purpose we introdu
e some auxiliary multifun
tions.Let X 6= ∅, let (Y, T (Y )) be a separable topologi
al spa
e with a 
ountable dense set

P , and let (Z, T (Z)) be a topologi
al spa
e. We de�ne two multifun
tionsG∗ : X×Y  Zand G∗ : X × Y  Z as follows:
G∗(x, y) = q- lim inf

t→y∧t∈P
(Fx)(t),(2.2)

G∗(x, y) = p- lim sup
t→y∧t∈P

(Fx)(t).(2.3)Proposition 1.12(i) impliesProposition 2.20. If F : X × Y  Z is a multifun
tion su
h that Fx is lower quasi-
ontinuous for every x ∈ X, then F (x, y) ⊂ G∗(x, y) for all (x, y) ∈ X × Y , where G∗ isgiven by (2.3).Similarly, Proposition 1.12(ii) yieldsProposition 2.21. If the spa
e (Z, T (Z)) is regular and se
ond 
ountable, and if F :

X×Y  Z is a 
ompa
t valued multifun
tion su
h that Fx is upper quasi-
ontinuous forevery x ∈ X, then G∗(x, y) ⊂ F (x, y) for all (x, y) ∈ X × Y , where G∗ is given by (2.2).Now we assume that (X,M(X), µ) is a measure spa
e and (Y, ρ,M(Y ), ν) is a sep-arable metri
 measure spa
e, where ν is σ-�nite and B(Y ) ⊂ M(Y ). We suppose that
(G,→) is a di�erentiation basis of (Y, ρ,M(Y ), ν) (see (1.23)) with the density property(see (1.24)).
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tions of two variables 45We are now in a position to prove the main theorem of this se
tion.Theorem 2.22. If Z is a Polish spa
e and F : X × Y  Z is a 
ompa
t valued multi-fun
tion su
h that(i) F y is weakly M(X)-measurable for ea
h y ∈ Y ,(ii) Fx is both lower and upper strongly quasi-
ontinuous with respe
t to G for ea
h
x ∈ X,then F is measurable with respe
t to the µ× ν-
ompletion of M(X) ⊗ B(Y ).Proof. We �rst note that

(1) ν(D(Fx)) = 0 for ea
h x ∈ X,by assumption (ii) and Proposition 1.19.Let P be a 
ountable dense subset of Y and let G∗ and G∗ be de�ned by (2.2) and(2.3), respe
tively. Then, by Propositions 2.20 and 2.21,
(2) G∗(x, y) ⊂ F (x, y) ⊂ G∗(x, y) for all (x, y) ∈ X × Y.Our next step is to show that both G∗ and G∗ are measurable with respe
t to the µ× ν-
ompletion of M(X) ⊗ B(Y ).Let B denote a 
ountable base of Y . We have (see (1.14) and (1.15))

G∗(x, y) =
⋂

U∈B∧y∈Cl(U)

Cl
( ⋃

t∈U∩P

F (x, t)
)
.For ea
h U ∈ B we de�ne the multifun
tion GU : X × Y  Z by

GU (x, y) =
⋃

t∈U∩P

F (x, t),and observe that for ea
h V ∈ T (Z) we have
GU

−(V ) =
{

(x, y) :
⋃

t∈U∩P

F (x, t) ∩ V 6= ∅
}

=
⋃

t∈U∩P

({x ∈ X : F (x, t) ∩ V 6= ∅} × Y )

=
⋃

t∈U∩P

((F t)
−

(V ) × Y ) ∈ M(X) ⊗ B(Y ),sin
e U ∩ P is 
ountable and all se
tions F t are weakly M(X)-measurable. Then themultifun
tion GU : X × Y  Z de�ned by
GU (x, y) = Cl(GU (x, y))is M(X) ⊗ B(Y )-measurable. Note that

G∗(x, y) =
⋂

{GU (x, y) : U ∈ B ∧ y ∈ Cl(U)}.Now we de�ne the multifun
tion HU : X × Y  Z by
HU (x, y) =

{
GU (x, y) if y ∈ Cl(U),
Z if y 6∈ Cl(U).Observe that for ea
h V ∈ T (Z) we have

HU
−(V ) = (GU )−(V ) ∩ (X × Cl(U)) ∪ (X × (Y \ Cl(U)) ∈ M(X) ⊗ B(Y ),
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i«skasin
e (GU )−(V ) ∈ M(X) ⊗ B(Y ). Therefore HU is weakly M(X) ⊗ B(Y )-measurable.Furthermore,
G∗(x, y) =

⋂

U∈B

HU (x, y).Thus, by Proposition 1.5, G∗ is measurable with respe
t to the µ × ν-
ompletion of
M(X) ⊗ B(Y ); the proof for G∗ is analogous.Now 
onsider the set

A = {(x, y) : G∗(x, y) 6= G∗(x, y)}.Sin
e G∗ and G∗ are measurable with respe
t to the µ× ν-
ompletion of M(X)⊗B(Y ),it is 
lear that A belongs to that 
ompletion, by Proposition 1.4. By (1), the x-se
tion of
A is ν-negligible for ea
h x ∈ X, sin
e Ax = {y ∈ Y : G∗(x, y) 6= G∗(x, y)} ⊂ D(Fx) (see(1.17)).Thus A is µ×ν-negligible. Furthermore, the double in
lusion (2) gives the impli
ation

G∗(x, y) = G∗(x, y) ⇒ G∗(x, y) = F (x, y),whi
h guarantees the µ× ν-negligibility of the set
(3) A1 = {(x, y) : G∗(x, y) 6= F (x, y)} ⊂ A.Next, let U be an arbitrary open subset of Z. Sin
e G∗ is in parti
ular weakly measurablewith respe
t to the µ× ν-
ompletion of M(X) ⊗ B(Y ), we 
an suppose that
(4) G−

∗ (U) = (B \A2) ∪A3,where B ∈ M(X) ⊗ B(Y ) and the sets A2 and A3 are µ× ν-negligible.Note that F−(U) = (F−(U) ∩ (X × Y \ A1)) ∪ (F−(U) ∩A1). Thus, by (3) and (4),we have
F−(U) = (G∗

−(U) ∩ (X × Y \A1)) ∪ (F−(U) ∩A1)

= [((B \A2) ∪A3) ∩ (X × Y \A1)] ∪ (F−(U) ∩A1)

= (B \ (A1 ∪A2)) ∪ [A3 ∩ (X × Y \A1)] ∪ (F−(U) ∩A1).Sin
e B ∈ M(X) ⊗ B(Y ) and the sets Ai are µ× ν-negligible for i = 1, 2, 3, Proposition1.2(ii) �nishes the proof.
10. Multifun
tions whose se
tions are derivativesThe purpose of this se
tion is to give some su�
ient 
onditions for joint measurability ofa multifun
tion with the (J) property.The (J) property for real fun
tions of two real variables was introdu
ed by Lipi«ski[78℄ and intensively studied by Grande in the 
ase of real fun
tions de�ned on moregeneral spa
es (see [41℄). Now we will 
onsider this topi
 in the 
ase of mltifun
tions.From now on we suppose that (X,M(X)) is a measurable spa
e, (Z, ‖·‖) is a re�exiveBana
h spa
e, and I ⊂ R is an interval.Definition 2.23. We will say that a multifun
tion F : X× I  Z with values in Cbc(Z)has the (J) property if, for ea
h y ∈ I, the se
tion F y is weakly M(X)-measurable, for
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h x ∈ X, the se
tion Fx is weakly L(R)-measurable, and for ea
h interval P ⊂ I, themultifun
tion ΦP : X  Z given by
(2.4) ΦP (x) =

\
P

F (x, y) dyis weakly M(X)-measurable.Example 2.17 shows that a multifun
tion with the (J) property need not be produ
tmeasurable.Proposition 2.24. Suppose that the σ-�eld M(X) is 
omplete with respe
t to a σ-�nitemeasure. If the spa
e (Z, ‖ · ‖) is separable and F : X × I  Z is a multifun
tion withvalues in Cbc(Z) su
h that Fx is R-integrable for ea
h x ∈ X and F y is weakly M(X)-measurable for ea
h y ∈ I, then F has the (J) property.Proof. Fix P = [c, d] ⊂ I. We only need to show that the multifun
tion ΦP given by(2.4) is weakly M(X)-measurable. Let yi = c+ i(d− c)/n for i = 0, 1, . . . , n and n ∈ N.If x ∈ X, then, by the R-integrability of Fx, we have
(R)
\
P

F (x, y) dy = h- lim
n→∞

n∑

i=1

1

n
Fx(yi) = h- lim

n→∞

1

n

n∑

i=1

F yi(x),and then, appyling (1.38)(ii), we have
ΦP (x) = h- lim

n→∞

1

n

n∑

i=1

F yi(x).Fix n ∈ N and de�ne the multifun
tion Φn : X  Z by
Φn(x) =

n∑

1=1

F yi(x).Then Φn(x) ∈ Cbc(Z) for x ∈ X (see (1.29)(iv)). Sin
e F yi is weakly M(X)-measurablefor i = 0, 1, . . . , n, so is Φn, by Theorem III.40 of [14℄. Thus ΦP is weakly M(X)-measu-rable, by (1.21).Now we 
an prove the main theorem of this se
tion.Theorem 2.25. If a multifun
tion F : X × I  Z with values in Cbc(Z) has the (J)property and Fx is a derivative for ea
h x ∈ X, i.e.,
Fx(y) = h- lim

∆y→0

1

∆y

y+∆y\
y

Fx(t) dt for y ∈ I,then F is weakly measurable with respe
t to the µ×m-
ompletion of M(X) ⊗ B(R).Proof. Fix n ∈ N and let ∆ = {y0,n, y1,n, . . . , yn,n} be a partition of I into n equalintervals, i.e., yi,n − yi−1,n = 1/n for i = 1, . . . , n. Set
Fn(x, y) =

{
n
Tyi,n

yi−1,n
F (x, y) dy if x ∈ X and y ∈ (yi−1,n, yi,n),

{θ} if x ∈ X and y = yi,n, i = 0, 1, . . . , n.



48 G. Kwie
i«skaLet Φi,n : X  Z, for i = 1, . . . , n, be given by
Φi,n(x) =

yi,n\
yi−1,n

F (x, y) dy.By the (J) property of F , we see that
(1) Φi,n is weakly M(X)-measurable for ea
h i = 1, . . . , n.De�ne Hn : X ×

⋃n
i=1(yi−1,n, yi,n) Z by

Hn(x, y) = Φi,n(x).If V ⊂ Z is open, then, by (1), we have
H−

n (V ) =
n⋃

i=1

Φ−
i,n(V ) × (yi−1,n, yi,n) ∈ M(X) ⊗ B(R).Therefore Fn is weakly M(X) ⊗ B(R)-measurable and by (1.21) we only need to showthat

(2) h- lim
n→∞

Fn(x, y) = F (x, y) for every x ∈ X and almost every y ∈ I.Fix (x0, y0) ∈ X × I su
h that y0 6= yi,n for n ∈ N and i = 1, . . . , n. Choose a sequen
e
(yn(i)) su
h that yn(i)−1 < y0 < yn(i). Sin
e Fx0

is a derivative at y0, it follows that
F (x0, y0) = h- lim

∆y→0

1

∆y

y0+∆y\
y0

F (x0, y) dy.Assume that
An =

1

y0 − yn(i)−1

y0\
yn(i)−1

F (x0, y) dy, Bn =
1

yn(i) − y0

yn(i)\
y0

F (x0, y) dyand
Cn =

1

yn(i) − yn(i)−1

yn(i)\
yn(i)−1

F (x0, y) dy.Then h- limn→∞An = F (x0, y0) and h-limn→∞Bn = F (x0, y0). Moreover
Fn(x0, y0) = Cn =

1

yn(i) − yn(i)−1

[ y0\
yn(i)−1

F (x0, y) dy +

yn(i)\
y0

F (x0, y) dy
]

=
y0 − yn(i)−1

yn(i)−yn(i)−1

An +
yn(i) − y0

yn(i) − yn(i)−1
Bn.Let αn =

y0−yn(i)−1

yn(i)−yn(i)−1
. Sin
e the sequen
e (αn) is bounded, we 
an take a subsequen
e

(αnk
)k∈N su
h that αnk

→ α0 ∈ [0, 1]. Then
h- lim

k→∞
Cnk

= h- lim
k→∞

(αnk
Ank

+ (1 − αnk
)Bnk

) = α0F (x0, y0) + (1 − α0)F (x0, y0),and we 
on
lude that
h- lim

k→∞
Cnk

= F (x0, y0),
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tions of two variables 49sin
e the set F (x0, y0) is 
onvex. Therefore any subsequen
e of (Fn(x0, y0))n∈N 
onvergesto F (x0, y0), whi
h �nishes the proof of (2).Remark 2.26. If, in Theorem 2.25, we suppose that the measure µ is σ-�nite, then themultifun
tion F will be measurable with respe
t to the µ×m-
ompletion ofM(X)⊗B(Y ),by 1.3(v).As a straightforward 
onsequen
e of (1.38)(i), Corollary 1.41, Proposition 2.24 andTheorem 2.25, we have the following 
orollary (
f. Proposition 2.2).Corollary 2.27. Let (X,M(X), µ) be a measure spa
e, where µ is σ-�nite, and let
(Z, ‖ · ‖) be separable. If a multifun
tion F : X × I  Z with values in Cbc(Z) has Fxh-
ontinuous for ea
h x ∈ X and F y weakly M(X)-measurable for ea
h y ∈ I, then F ismeasurable with respe
t to the µ×m-
ompletion of M(X) ⊗ B(R).

11. The S
orza-Dragoni property of multifun
tionsWe 
on
lude this 
hapter by introdu
ing multifun
tions having the S
orza-Dragoni prop-erty and giving their 
onne
tions with M(X) ⊗ B(Y )-measurable multifun
tions.G. S
orza-Dragoni [105℄ showed that every Carathéodory fun
tion f : X × Y → Zhas the property (now 
alled the S
orza-Dragoni property) that, given any ε > 0, there isa 
losed subset Xε of X with the measure of X \Xε less than ε, su
h that the restri
tionof f to Xε × Y is 
ontinuous. This result was extended in several dire
tions (also tomultifun
tions), and used e.g. in 
ontrol theory problems (see [2℄, [7℄, [10℄, [13℄, [36℄, [51℄,[56℄, [60℄, [110℄, [115℄, and others).Let (X, T (X),M(X), µ) be a topologi
al measure spa
e and let (Y, T (Y )) and
(Z, T (Z)) be topologi
al spa
es.We say that a multifun
tion F : X×Y  Z has the upper (resp. lower) S
orza-Dragoniproperty if, given ε > 0, one may �nd a 
losed subset Xε of X su
h that µ(X \Xε) < ε,and the restri
tion of F to Xε × Y is upper (resp. lower) semi
ontinuous. If F has boththe upper and lower S
orza-Dragoni property, then we say that F has the S
orza-Dragoniproperty.If (Z, ̺) is a metri
 spa
e, then repla
ing in the above de�nition the upper (resp. lower)semi
ontinuity of the restri
tion of F by its h-upper (resp. h-lower) semi
ontinuity, weobtain the h-upper (resp. h-lower) S
orza-Dragoni propoerty and the h-S
orza-Dragoniproperty of F .Most of the results on the S
orza-Dragoni property of a multifun
tion F have requiredthat its values are 
ompa
t and the se
tions Fx are 
ontinuous. In [48℄ it is shown that, if
(X, T (X)) is a lo
ally 
ompa
t Hausdor� spa
e and µ is a Radon measure on X, Y is aPolish spa
e and (Z, ̺) is a separable metri
 spa
e, then a 
ompa
t valued Carathéodorymultifun
tion has the S
orza-Dragoni property, while a 
losed valued Carathéodory mul-tifun
tion only has the lower S
orza-Dragoni property, in general.The most 
omplete presentation of multifun
tions having the S
orza-Dragoni proper-ties is 
ontained in the thesis [117℄. In that paper some relations between semi-Carathéo-
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i«skadory multifun
tions being weakly M(X) ⊗ B(Y )-measurable and having the S
orza-Dragoni property are established.Theorem 2.28 ([117, Theorem 4.2.5(i)℄). Let (X,M(X), µ) be a measure spa
e, where µis regular and σ-�nite, (Y, d) a 
omplete separable metri
 spa
e and (Z, ̺) a separable met-ri
 spa
e. Let F : X × Y  Z be a 
losed valued lower semi-Carathéodory multifun
tion.Then F has the lower S
orza-Dragoni property if and only if F is Mµ(X) ⊗ B(Y )-mea-surable.The following results are 
onsequen
es of the above theorem and Theorems 22.18 and22.19.Theorem 2.29. If (X,M(X), µ) is a measure spa
e with µ regular and σ-�nite, Y isa separable re�exive Bana
h spa
e, and F : X × Y  Y a lower semi-Carathéodorymultifun
tion with 
losed 
onvex values su
h that Fx : Y  Yω is upper semi
ontinuousfor ea
h x ∈ X (where Yω denotes Y with the weak topology), then F has the lowerS
orza-Dragoni property.Theorem 2.30. Let (X,M(X), µ) be a measure spa
e with µ regular and σ-�nite, Y aPolish spa
e, and (Z, ̺) a separable metri
 spa
e. If F : X × Y  Z is a 
ompa
t valuedlower semi-Carathéodory multifun
tion su
h that Fx is upper quasi-
ontinuous for every
x ∈ X, then F has the lower S
orza-Dragoni property.In the 
ase of an h-lower semi-Carathéodory multifun
tion an analogue to Theorem2.28 is not true, in general. Consider the following example.Example 2.31. Let I = [0, 1] and let F : I × R R

2 be given by
F (x, y) = {(α, xα) : α ∈ R}.Then F is h-lower semi-Carathéodory. It is also L(R) ⊗ B(R)-measurable. But, for ea
h

y ∈ R, F y is h-lower semi
ontinuous on no subset of I. Therefore, F does not have the
h-lower S
orza-Dragoni property.Theorem 2.32 ([117, Theorem 4.2.5(ii) and (iii)℄). Let (X,M(X), µ) be a measure spa
ewith µ regular and σ-�nite, (Y, d) a 
omplete separable metri
 spa
e, and (Z, ̺) a sep-arable metri
 spa
e. Let F : X × Y  Z be a 
losed valued h-lower semi-Carathéodorymultifun
tion. Then(i) If F has the h-lower S
orza-Dragoni property , then it is Mµ(X)⊗B(Y )-measur-able.(ii) If F is 
ompa
t valued , then it has the h-lower S
orza-Dragoni property if andonly if it is Mµ(X) ⊗ B(Y )-measurable.An analogue of Theorem 2.32(i) is also true for upper semi-Carathéodory multifun
-tions.Theorem 2.33 ([117, Theorem 4.2.7(ii)℄). Let (X,M(X), µ) be a measure spa
e with µregular and σ-�nite, (Y, d) a 
omplete separable metri
 spa
e, (Z, ̺) a separable metri
spa
e, and F : X ×Y  Z a 
losed valued upper semi-Carathéodory (resp. h-upper semi-
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tions of two variables 51Carathéodory) multifun
tion. If F has the upper (resp. h-upper) S
orza-Dragoni property ,then it is Mµ(X) ⊗ B(Y )-measurable.Note that the multifun
tion F in Example 2.31 is both upper semi-Carathéodory and
h-upper semi-Carathéodory. But it has neither the h-upper nor the upper S
orza-Dragoniproperty. In view of this example the problem arises to 
hara
terize those upper semi-Carathéodory multifun
tions whi
h have the upper S
orza-Dragoni property. A 
ru
ialrole in solving this problem is played by the Filippov 
ondition [30℄.If (X,M(X)) is a 
omplete measurable spa
e, Y is a Polish spa
e and (Z, T (Z)) isa topologi
al spa
e, then any M(X) ⊗ B(Y )-measurable multifun
tion F : X × Y  Zsatis�es the Filippov 
ondition, i.e., for ea
h open set U ⊂ Y and ea
h V ∈ T (Z), the set
{x ∈ X : F (x, U) ⊂ V } isM(X)-measurable (see [117, Theorem 4.2.8℄). Furthermore, theFilippov 
ondition is a su�
ient 
ondition for the S
orza-Dragoni property of a 
ompa
tvalued upper semi-Carathéodory multifun
tion (see [117, Theorem 4.2.9℄ or [1, Lemma5.1℄). Finally, in the �upper� 
ase, the following result is true.Theorem 2.34 ([117, Con
lusion 4.2.10℄). Let (X,M(X), µ) be a measure spa
e with µregular and σ-�nite, (Y, d) a 
omplete separable metri
 spa
e, (Z, ̺) a separable metri
spa
e, and F : X×Y  Z a 
ompa
t valued upper semi-Carathéodory (resp. h-upper semi-Carathéodory) multifun
tion. Then F has the upper (or equivalently h-upper) S
orza-Dragoni property if and only if it is Mµ(X) ⊗ B(Y )-measurable.An interesting result on upper semi-Carathéodory multifun
tions is given in [102℄. If
(X, d,M(X), µ) is a metri
 measure spa
e, where µ is σ-�nite 
omplete regular and Xis lo
ally 
ompa
t, and if (Y, ρ) and (Z, ̺) are separable metri
 spa
es, then for every
losed valued upper semi-Carathéodory multifun
tion F : X × Y  Z there is a 
losedvalued multifun
tion G : X×Y  Z whi
h has the S
orza-Dragoni property and satis�es
G(x, y) ⊂ F (x, y) for µ-almost every x ∈ X and for all y ∈ Y .



3. SUP-MEASURABILITY OF MULTIFUNCTIONSSup-measurability of multifun
tions has been 
onsidered in the literature (see for example[1℄, [61℄, [108℄, [111℄, [116℄ or [118℄). The purpose of this 
hapter is to give some newsu�
ient 
onditions for this property.Let (X,M(X)) be a measurable spa
e and let (Y, T (Y )) and (Z, T (Z)) be topologi
alspa
es. If F : X × Y  Z is a multifun
tion and the superposition of the Carathéodorytype H(x) = F (x,G(x)) isM(X)-measurable (resp. weaklyM(X)-measurable) for every
losed valued M(X)-measurable multifun
tion G : X  Y , then F is 
alled M(X)-sup-measurable (resp. weakly M(X)-sup-measurable).The following theorem is known (see [118, Theorem 1℄).Theorem 3.1. Let (X,M(X), µ) be a measure spa
e with µ σ-�nite. Let Y be a Polishspa
e and (Z, T (Z)) a topologi
al spa
e. If F : X × Y  Z is an Mµ(X) ⊗ B(Y )-measurable multifun
tion, then it is Mµ(X)-sup-measurable.Note that this is a generalization of Shragin's theorem to the multivalued 
ase (see[106, Theorem 2 and Theorem 6℄).The proje
tion property of the pair ((X,Mµ(X));Y ) in the above theorem is essential,sin
e F may not be M(X)-sup-measurable.Example 3.2. Let X = [0, 1], Y = N (the irrational numbers in (0, 1)) and Z = R. If
K ⊂ X × Y is 
losed with projX(K) 6∈ B(X) and F : X × Y  Z is given by

F (x, y) =

{
[0, 2] if (x, y) ∈ K,
[0, 1] if (x, y) 6∈ K,then F is B(X)⊗B(Y )-measurable and F−((1, 3)) = K ∈ B(X)⊗B(Y ). De�neG : X  Yby G(x) = Y . Then Gr(G) = X × Y . Set H(x) = F (x,G(x)). Then

H−((1, 3)) = {x ∈ X : F (x,G(x)) ∩ (1, 3) 6= ∅}

= {x ∈ X : F (x, y) ∩ (1, 3) 6= ∅ ∧ y ∈ G(x)}

= projX{(x, y) ∈ X × Y : F (x, y) ∩ (1, 3) 6= ∅ ∧ y ∈ G(x)}

= projX(F−((1, 3)) ∩ Gr(G)) = projX(K ∩X × Y ) = projX(K) 6∈ B(X),i.e., F is not weakly B(X)-sup-measurable.The above example also shows that a weakly M(X)⊗B(Y )-measurable multifun
tionmay not be weakly M(X)-sup-measurable.One 
an strengthen the weak M(X)⊗B(Y )-measurability assumption to ensure weak
M(X)-sup-measurability. To see this we need the following proposition.[52℄
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tions of two variables 53Proposition 3.3. Let (X,M(X)) be a measurable spa
e, Y a Polish spa
e and (Z, T (Z))a topologi
al spa
e. Suppose that F : X×Y  Z is a multifun
tion su
h that ea
h se
tion
Fx is lower semi
ontinuous , and for ea
h M(X)-measurable fun
tion h : X → Y , themultifun
tion H(x) = F (x, h(x)) is weakly M(X)-measurable. Then F is weakly M(X)-sup-measurable.Proof. LetG : X  Y be anM(X)-measurable multifun
tion with 
losed values. ThenGis weaklyM(X)-measurable and, by Proposition 1.3(ii), G has a Castaing representation.Thus there is a sequen
e (gn)n∈N of M(X)-measurable fun
tions gn : X → Y su
h that
G(x) = Cl({gn(x) : n ∈ N}) for ea
h x ∈ X. Let H(x) = F (x,G(x)) and U ∈ T (Z).Then

H−(U) = {x ∈ X : F (x,G(x)) ∩ U 6= ∅}

=
{
x ∈ X :

( ⋃

y∈G(x)

F (x, y)
)
∩ U 6= ∅

}

= {x ∈ X : ∃y ∈ G(x) F (x, y) ∩ U 6= ∅} = {x ∈ X : G(x) ∩ F−
x (U) 6= ∅}

= {x ∈ X : Cl({gn(x) : n ∈ N}) ∩ F−
x (U) 6= ∅}.By the lower semi
ontinuity of Fx, the set F−

x (U) is open for ea
h x ∈ X. Thus we
an omit the 
losure in the last term of the above expression to obtain
H−(U) = {x ∈ X : {gn(x) : n ∈ N} ∩ F−

x (U) 6= ∅} =
⋃

n∈N

{x ∈ X : F (x, gn(x)) ∩ U 6= ∅},and, by assumption, H−(U) ∈ M(X), sin
e gn is M(X)-measurable for every n ∈ N.Theorem 3.4. Let (X,M(X)) be a measurable spa
e, Y a Polish spa
e and (Z, T (Z)) atopologi
al spa
e. If a multifun
tion F : X × Y  Z is weakly M(X)⊗B(Y )-measurablewith Fx lower semi
ontinuous for ea
h x ∈ X, then F is weakly M(X)-sup-measurable.Proof. Let h : X → Y be an M(X)-measurable fun
tion and let H(x) = F (x, h(x)).Observe that for ea
h M ⊂ Z we have
(1) H−(M) = {x ∈ X : F (x, h(x)) ∩M 6= ∅} = {x ∈ X : (x, h(x)) ∈ F−(M)}.Let A ∈ M(X) and B ∈ B(Y ). Then

{x ∈ X : (x, h(x)) ∈ A×B} = A ∩ h−1(B) ∈ M(X),and so
(2) {x ∈ X : (x, h(x)) ∈ C} ∈ M(X) for ea
h C ∈ M(X) ⊗ B(X).Let V ∈ T (Z). By the weak M(X)⊗B(Y )-measurability of F , F−(V ) ∈ M(X)⊗B(Y ).Then H−(V ) ∈ M(X), by (1) and (2). Thus H is weakly M(X)-measurable and, byProposition 3.3, F is weakly M(X)-sup-measurable.As a straightforward 
onsequen
e of Theorem 3.1 and Proposition 2.2 we have thefollowing 
orollary (
f. [111℄ and [116℄).Corollary 3.5. If (X,M(X), µ) is a measure spa
e with µ σ-�nite, Y a Polish spa
e,
(Z, ̺) a separable metri
 spa
e, and F : X × Y  Z a 
ompa
t valued Carathéodorymultifun
tion, then F is Mµ(X)-sup-measurable.
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i«skaNote that the assumption of 
ompa
tness of values of F is essential.Example 3.6. LetX = [0, 1], Y = N and Z = R
2. Let E ⊂ X be a non-L(R)-measurableset. Then F : X × Y  Z given by

F (x, y) =






proj−1
X (x) if x 6= y,

proj−1
X (x) if x = y and x ∈ E,

{x} × [0, 1] if x = y and x ∈ X \ E,is a Carathéodory multifun
tion. But the multifun
tion H(x) = F (x, {x}) is not L(R)-measurable, sin
e H+((0, 1) × (0, 1)) = E 6∈ L(R).It is easy to see that a lower or upper semi-Carathéodory multifun
tion need not besup-measurable (even if it is 
ompa
t valued and the σ-�eld M(X) is 
omplete withrespe
t to a σ-�nite measure).Example 3.7. Consider F : R × R R de�ned by
F (x, y) =






[−1, 2] if x 6= y,
[−1, 0] if x = y and x ∈ A,

[1, 2] if x = y and x ∈ R \A,where A 6∈ L(R). It is 
lear that F is a lower semi-Carathéodory multifun
tion. But if
G(x) = {x} for x ∈ R, then H(x) = F (x,G(x)) is not L(R)-measurable.One 
an strengthen the lower semi-Carathéodory assumption to ensure sup-measura-bility. For instan
e, by Theorems 2.18 and 3.1 we have the following result.Theorem 3.8. If (X,M(X), µ) is a measure spa
e with µσ-�nite, Y a re�exive separableBana
h spa
e, and F : X × Y  Y a lower semi-Carathéodory multifun
tion with 
losed
onvex values su
h that ea
h Fx : Y  Yω is upper semi
ontinuous (where Yω denotes Ywith the weak topology), then F is Mµ(X)-sup-measurable.By Theorems 2.19 and 3.1, we obtain the following result.Theorem 3.9. Let (X,M(X), µ) be a measure spa
e with µ σ-�nite. Let Y be a Pol-ish spa
e and (Z, T (Z)) a metrizable σ-
ompa
t spa
e. If F : X × Y  Z is a 
losedvalued lower semi-Carathéodory multifun
tion su
h that ea
h se
tion Fx is upper quasi-
ontinuous , then F is Mµ(X)-sup-measurable.The next result follows at on
e from Theorems 2.28 and 3.1.Theorem 3.10. Let (X,M(X), µ) be a measure metri
 spa
e with µ σ-�nite and regular.Let Y be a Polish spa
e and (Z, ̺) a separable metri
 spa
e. If F : X × Y  Z is a
losed valued lower semi-Carathéodory multifun
tion whi
h has the lower S
orza-Dragoniproperty , then F is Mµ(X)-sup-measurable.Remark 3.11. Let (X,M(X), µ) be a measure spa
e with µσ-�nite, Y a Polish spa
eand (Z, T (Z)) a perfe
tly normal topologi
al spa
e. If F : X × Y  Z is a 
ompa
tvalued multifun
tion ful�lling the assumptions of Theorem 2.3, then F is M(X)⊗B(Y )-measurable (see Remark 2.4(i)), and hen
e alsoMµ(X)-sup-measurable, by Theorem 3.1.In parti
ular, by Corollary 2.6, we obtain the following result.
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tions of two variables 55Proposition 3.12. Let (X,M(X), µ) be a measure spa
e with µ σ-�nite, and (Z, T (Z))a perfe
tly normal topologi
al spa
e. If F : X ×R Z is a 
ompa
t valued multifun
tionsu
h that ea
h Fx is right-
ontinuous (resp. left-
ontinuous) and ea
h F y is M(X)-measurable, then F is Mµ(X)-sup-measurable.It is essential that the x-se
tions of F in the above proposition are all right-
ontinuous(or all left-
ontinuous).Example 3.13. Let F : [0, 1]2  R be given by
F (x, y) =






[1, 2] if x ∈ A and y ≤ x,
[1, 2] if x ∈ R \A and y < x,
{0} in other 
ases.where A ⊂ [0, 1] is non-Lebesgue measurable. Then some x-se
tions of F are right-
ontinuous, others are left-
ontinuous. Furthermore, ea
h y-se
tion is L(R)-measurable.But F is not L(R)-sup-measurable, sin
e H(x) = F (x, {x}) is not L(R)-measurable.Note that Proposition 3.12 remains true if we suppose that (Z, T (Z)) is metrizable

σ-
ompa
t and F is 
losed valued (see Remark 2.4(ii)).Now we shall 
onsider the sup-measurability of multifun
tions with the (J) property.Example 3.13 shows that su
h a multifun
tion may not be sup-measurable. One 
anstrengthen the (J) property assumption to ensure sup-measurability.Let (X,M(X)) be a measurable spa
e and (Z, ̺) a separable metri
 spa
e. Let
(Fn)n∈N be a sequen
e of 
losed valued multifun
tions Fn : X × Y  Z. Observe that(3.1) If F = h-limn→∞ Fn and ea
h Fn is M(X)-sup-measurable, then F is weakly

M(X)-sup-measurable.Indeed, let z ∈ Z. By (1.12), we have limn→∞ ̺(z, Fn(x, y)) = ̺(z, F (x, y)) for ea
h
(x, y) ∈ X × Y . Let G : X  Y be M(X)-measurable with 
losed values. Let x ∈ X,
Hn(x) = Fn(x,G(x)) for ea
h n ∈ N, and H(x) = F (x,G(x)). It is 
lear that
limn→∞ ̺(z,Hn(x)) = ̺(z,H(x)). Fix n ∈ N. Note that Fn being M(X)-sup-measura-ble implies Fn is weakly M(X)-sup-measurable. Hen
e Hn is weakly M(X)-measurable.Therefore, by Proposition 1.3 (i), the real fun
tion x 7→ ̺(z,Hn(x)) isM(X)-measurable.Thus the real fun
tion x 7→ ̺(z,H(x)) is M(S)-measurable and, again by Proposition1.3(i), H is weakly M(X)-measurable.From now on we assume that (X,M(X), µ) is a measure spa
e with µ σ-�nite, and
I ⊂ R is an interval.Theorem 3.14. Let (Z, ‖·‖) be a separable Bana
h spa
e. If a multifun
tion F : X×I  

Z with values in Kc(Z) has the (J) property and ea
h se
tion Fx is a derivative, then Fis Mµ(X)-sup-measurable.Proof. Let (x, y) ∈ X × I. Sin
e Fx is a derivative at y,
(1) F (x, y) = h- lim

∆y→0

1

∆y

y+∆y\
y

F (x, t) dt.
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i«skaFor every n ∈ N we de�ne Fn : X × I  Z by
Fn(x, y) = n

y+1/n\
y

F (x, t) dt.Then h-limn→∞ Fn(x, y) = F (x, y) for (x, y) ∈ X × Y , by (1). For �xed n ∈ N, ea
hse
tion (Fn)x is 
ontinuous, by Lemma 1.36 and (1.11)(iii). Sin
e F has the (J) property,
(Fn)y isM(X)-measurable for every y ∈ I. Thus Fn is a Carathéodory multifun
tion, andthus, by Corollary 3.5, it is Mµ(X)-sup-measurable. Then, by (3.1), F is weakly Mµ(X)-sup-measurable, and hen
e also Mµ(X)-measurable, sin
e its values are 
ompa
t.In parti
ular, by Proposition 2.24 and the above theorem, we have the following result.Corollary 3.15. If (Z, ‖ · ‖) is a separable Bana
h spa
e and F : X × I  Z is amultifun
tion with values in Kc(Z) su
h that ea
h Fx is an R-integrable derivative andea
h F y is M(X)-measurable, then F is Mµ(X)-sup-measurable.Theorem 3.1 implies that ea
h M(X) ⊗ B(Y )-measurable multifun
tion is Mµ(X)-sup-measurable whenever µ is σ-�nite and Y is a Polish spa
e. The following exampleshows that for σ-�elds in X × Y more general than the produ
t M(X) ⊗ B(Y ), thisproperty may not be true.Example 3.16. Let X = Y = R and let E 6∈ L(R). If F : R

2
 R is given by

F (x, y) =






[0, 2] if x 6= y,
[0, 1] if x = y ∧ x ∈ E,

{0} if x = y ∧ x 6∈ E,then F is L(R2)-measurable. But H(x) = F (x, {x}) is not L(R)-measurable, i.e., F isnot L(R)-sup-measurable.We end this 
hapter with some results on the sup-measurability of a multifun
tionwhi
h is measurable with respe
t to a 
omplete σ-�eld treated as a multifun
tion of twovariables.Theorem 3.17. Let (Z, ̺) be a separable metri
 spa
e and F : X×R Z a 
losed valuedweakly Mµ×m(X×R)-measurable multifun
tion su
h that ea
h se
tion Fx is weakly L(R)-measurable. If for ea
h open set V ⊂ Z,
(i) Dl(F

−
x (V ), y) > 2/3 and Dl(F

+
x (V ), y) > 2/3 for ea
h (x, y) ∈ X × R,then F is weakly Mµ(X)-sup-measurable.Proof. Let H : X  R be 
losed valued and Mµ(X)-measurable. By Proposition 1.3(i),it is su�
ient to prove that the real fun
tion

(1) gz(x) = ̺(z, F (x,H(x)) is Mµ(X)-measurable for every z ∈ Z.Fix z ∈ Z. To prove (1), we apply the Davies lemma [17℄, i.e., it is su�
ient to showthat, for every ε > 0, the family Dε = {D ∈ M(X) : oscD(gz) ≤ ε} satis�es the following
ondition:
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tions of two variables 57(D) for every A ∈ M(X) of positive measure µ there exists a D ∈ Dε su
h that D ⊂ Aand µ(D) > 0.Fix ε > 0. Let ([an, bn])n∈N be a sequen
e of intervals with nonnegative rational end-points su
h that bn − an < ε/4 for n ∈ N. Let A ∈ M(X) with µ(A) > 0, and put
An = {x ∈ A : an ≤ gz(x) ≤ bn} for n ∈ N.Then A =

⋃
n∈N

An. Sin
e µ(A) > 0, there is an n0 ∈ N su
h that µ∗(An0
) > 0.Furthermore, [an0

, bn0
] ⊂ [gz(x) − ε/2, gz(x) + ε/2] for x ∈ An0

and
(2) gz(x) = ̺(z, F (x,H(x)) = ̺

(
z,

⋃

y∈H(x)

F (x, y)
)
∈ [an0

, bn0
].Let fz : X × R → R be de�ned by fz(x, y) = ̺(z, F (x, y)) and let x0 ∈ An0

. We put
M = {(x, y) ∈ X × R : |fz(x, y) − gz(x0)| ≤ ε/2}.Observe that fz is Mµ×m(X×R)-measurable, sin
e F is weakly Mµ×m(X×R)-measur-able. Therefore

M = f−1
z ([gz(x0) − ε/2, gz(x0) + ε/2]) ∈ Mµ×m(X × R).Let x ∈ X. By the weak L(R)-measurability of Fx, the x-se
tion of fz is L(R)-measurable.Thus Mx ∈ L(R) for every x ∈ X. We will show that(3) for ea
h M(X)-measurable sele
tion h of H, there is a set C ∈ M(X) su
h that

An0
⊂ C and Du(Mx, h(x) ≥ 1/3 for all x ∈ C.Note that

Mx = {y ∈ R : fz(x, y) ≥ gz(x0) − ε/2} ∩ {y ∈ R : fz(x, y) ≤ gz(x0) + ε/2}

= R \ [(R \ (fz)
−1
x ((−∞, gz(x0) − ε/2))) ∪ (R \ (fz)

−1
x ((gz(x0) + ε/2,∞)))]

= R \ [(R \ F−
x (B(z, gz(x0) − ε/2))) ∪ (R \ F+

x (R \ Cl(B(z, gz(x0) + ε/2))))].By assumption (i), we have Dl(Mx, y) > 1/3 for ea
h y ∈ R. Furthermore,
fz(x, y) ∈ [an0

, bn0
] ⊂ [gz(x0) − ε/2, gz(x0) + ε/2] for x ∈ An0

and y ∈ H(x).In parti
ular, for every M(X)-measurable sele
tion h : X → R of H we have
{(x, h(x)) ∈ X × R : x ∈ An0

} ⊂M and Dl(Bx, h(x)) > 1/3 for x ∈ An0
.Let h be an M(X)-measurable sele
tion of H (guaranteed by Proposition 1.3(vii)). Then

M ∩ {(x, y) ∈ X × R : y ∈ B(h(x), 1/n)} ∈ Mµ×m(X × R).Let n ∈ N and put
Bn =

{
x ∈ An0

: U ⊂ B(h(x), 1/n) ∧ h(x) ∈ U ⇒
m(Mx ∩ U)

m(U)
>

1

3

}
,where U ⊂ R is an arbitrary open interval. Then Bi ⊂ Bi+1 for i ∈ N and An0

=
⋃

n∈N
Bn.Let i0 = min{i ∈ N : µ∗(Bi) > 0}. If n ≥ i0 and x ∈ Bn, then

Mx∩B(h(x), 1/n) ∈ L(R) and m(Mx∩B(h(x), 1/n)) > 1
3 ·m(B(h(x), 1/n)) = 2/(3n).
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i«skaIf we put
Cn =

{
x ∈ X : m

(
Mx ∩B

(
h(x),

1

n

))
>

2

3n

}
,then Bn ⊂ Cn and Cn ∈ M(X). Set

C =
⋃

k≥i0

⋂

n≥k

Cn.Then An0
⊂ C, sin
e Bk ⊂

⋂
n≥k Cn for k ≥ i0. Furthermore, C ∈ M(X) and

Du(Mx, h(x)) ≥ 1/3 for ea
h x ∈ C. Thus (3) is proved.Now suppose, on the 
ontrary, that for every D ∈ M(X) su
h that D ⊂ A and
µ(D) > 0 we have oscD gz > ε.Let D = A∩C. Then D ∈ M(X) and µ(D) > 0, sin
e An0

⊂ A∩C and µ∗(An0
) > 0.Thus, there is an x1 ∈ D su
h that |gz(x1) − gz(x0)| > ε/2. We have two possibilities:either gz(x1) > gz(x0) + ε/2 or gz(x1) < gz(x0) − ε/2.Suppose that gz(x1) > gz(x0) + ε/2. Then

(4) gz(x1) = ̺(z, F (x1, H(x1))) = ̺
(
z,

⋃

y∈H(x1)

F (x1, y)
)
> gz(x0) + ε/2.Furthermore,

{y ∈ R : ̺(z, F (x1, y)) > gz(x0) + ε/2} = {y ∈ R : fz(x1, y) > gz(x0) + ε/2}

= (fz)
−1
x1

((gz(x0) + ε/2,∞)) = F+
x1

(R \ Cl(B(z, gz(x0) + ε/2))).Then, by assumption (i) and (4), we have
Dl({y ∈ R : fz(x1, y) > gz(x0) + ε/2}, y) > 2/3 for ea
h y ∈ H(x1),and so

(5) Dl({y ∈ R : fz(x1, y) > gz(x0) + ε/2}, h(x1)) > 2/3,be
ause h(x1) ∈ H(x1). Sin
e x1 ∈ C, by (3) and (5), it follows that
(6) Mx1

∩ {y ∈ R : fz(x1, y) > gz(x0) + ε/2} 6= ∅.Then there is a t ∈ R su
h that
|fz(x1, t) − gz(x0)| ≤ ε/2 and fz(x1, t) > gz(x0) + ε/2,and we have a 
ontradi
tion.Now suppose that gz(x1) < gz(x0) − ε/2. Then

gz(x1) = ̺(z, F (x1, H(x1)) = ̺
(
z,

⋃

y∈H(x1)

F (x1, y)
)
< gz(x0) − ε/2.Therefore, there is a y1 ∈ H(x1) su
h that ̺(z, F (x1, y1)) < gz(x0) − ε/2. Furthermore,

{y ∈ R : ̺(z, F (x1, y)) < gz(x0) − ε/2} = {y ∈ R : fz(x1, y) < gz(x0) − ε/2}

= F−
x1

(B(z, gz(x0) − ε/2)).Thus, by (i) we have
Dl({y ∈ R : fz(x1, y) < gz(x0) − ε/2}, y1) > 2/3.



Measurability of multifun
tions of two variables 59The sele
tion h in (3) may be modi�ed if ne
essary by taking h(x1) = y1, without
hanging the set C. Then Du(Mx1
, y1) ≥ 1/3, by (3).As in the proof of (6), we show that

∃t ∈Mx1
∩ {y ∈ R : fz(x1, y) < gz(x0) − ε/2}.Thus |fz(x1, t)− gz(x0)| ≤ ε/2 and fz(x1, t) < gz(x0)− ε/2, and again we have a 
ontra-di
tion, whi
h �nishes the proof.Observe that by Theorem 3.17 and Propositions 1.8 and 1.9, we have the followingresult.Proposition 3.18. If (Z, ̺) is a separable metri
 spa
e and F : X × R Z is a 
losedvalued weakly Mµ×m(X × R)-measurable multifun
tion su
h that Fx is approximately
ontinuous for every x ∈ X, then F is weakly Mµ(X)-sup-measurable.Consider the following example.Example 3.19. Let C ⊂ [0, 1] be a Cantor set with m(C) > 0 and let A be a subset of Csu
h that A 6∈ L(R). By Theorem 13.1 of [93℄, there is a homeomorphism h : [0, 1] → [0, 1]su
h that h(A) ∈ L(R) and m(h(A)) = 0. Let B = h(A) and de�ne F : [0, 1]× [0, 1] Rby

F (x, y) =

{
[0, 1] if x ∈ [0, 1] ∧ y 6∈ B,

{0} if x ∈ [0, 1] ∧ y ∈ B.Then F is L(R2)-measurable and Fx is approximately lower semi
ontinuous for ea
h
x ∈ [0, 1]. But F is not weakly L(R)-sup-measurable, sin
e the multifun
tion G(x) =

F (x, {g(x)}), where g = h−1, is not L(R)-measurable. Therefore in Proposition 3.18 it isnot su�
ient to suppose that all the se
tions Fx are just approximately lower semi
on-tinuous.If we transpose the values of F , its x-se
tions will be approximately upper semi-
ontinuous and it will still be L(R2)-measurable, but not L(R)-sup-measurable. Again,Proposition 3.18 does not hold if we suppose that all the se
tions Fx are just approxi-mately upper semi
ontinuous.Observe that, by Theorem 3.14 and Proposition 1.42, we have the following 
orollary.Corollary 3.20. Let (X,M(X), µ) be a measure spa
e, where µ is σ-�nite, and let
(Z, ‖ · ‖) be a separable Bana
h spa
e. Let F : X × I  Z be a bounded multifun
tionwith F (x, y) ∈ Cbc(Z). If F has the (J) property and ea
h x-se
tion of F is approximately
ontinuous , then F is Mµ(X)-sup-measurable.The next 
orollary follows at on
e by Theorem 2.9, Proposition 3.18 and (1.11)(iii).Corollary 3.21. If (X,M(X), µ) is a measure spa
e, where µ is σ-�nite, (Z, ̺) is aseparable metri
 spa
e and F : X × R  Z is a 
ompa
t valued multifun
tion su
h that
{Fx}x∈X is approximately h-equi
ontinuous and F y is M(X)-measurable for every y ∈ R,then F is Mµ(X)-sup-measurable.
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