
Introdu
tionThe title of this dissertation 
ontains two terms: stability analysis and ve
tor optimization.Stability analysis is the study of how the output of a model varies as a fun
tion of inputdata and the model parameters. It is a prerequisite for the 
orre
t model building in ageneral setting (
f. e.g. Babu²ka, Hlavá£ek and Chleboun [13℄, Eslami [58℄, Frank [62℄,Wierzbi
ki [152℄). Stability analysis is investigated for phenomena modelled by ordinaryor partial di�erential equations (
f. e.g. Malanowski [107℄, Sokoªowski and Zolesio [142℄,Sokoªowski and �o
howski [141℄). Stability analysis is extensively studied in s
alar opti-mization (
f. e.g. Bonnans and Shapiro [39℄, Dont
hev and Zolezzi [57℄, Pallas
hke andRolewi
z [118℄). For the 
lassi
al problems of linear algebra, e.g. stability of solutions tosystems of linear equations and the eigenvalue problem was investigated e.g. by Lewis[102℄ and Roussellet and Chenais [138℄.From the mathemati
al viewpoint, stability analysis relies on investigation of 
onti-nuity or/and Lips
hitz (Hölder) 
ontinuity properties of solutions. Traditionally, inves-tigation of di�erentiability properties of solutions is 
alled sensitivity analysis (
f. e.g.Fia

o [61℄). In optimization, sensitivity analysis 
onstitutes a natural sour
e of non-smooth mappings su
h as optimal value fun
tions and optimal solution mappings whi
hare of interest in nonsmooth analysis (
f. e.g. Kiwiel [89℄).Ve
tor optimization or multiple obje
tive optimization is gaining momentum in de-velopment of its theory and appli
ations. It has its origin primarily in e
onomi
s, inequilibrium and welfare theories. The most 
ommon and natural ne
essity to optimizemultiple obje
tives arises in so
ial setting when individuals are trying to maximize theirbene�t, whi
h often leads to 
ompetition. Nowadays, ve
tor optimization is exploited alsoin solving engineering problems.The underlying 
on
ept in ve
tor optimization is the 
on
ept of e�
ient (or nondom-inated) point. Let Y be a topologi
al ve
tor spa
e with a 
losed 
onvex pointed 
one
K ⊂ Y . Let C ⊂ Y be a subset of Y . An element y ∈ C is e�
ient, written y ∈ E(C)(also EK(C)), if (y −K) ∩ C = {y}.Let X be a topologi
al spa
e. Let f : X → Y be a mapping and A be a subset of X.The ve
tor optimization problem

(P )
minK f(x)subje
t to x ∈ A
onsists in �nding the set E(f, A) = E(f(A)) 
alled the e�
ient (or nondominated) pointset of (P ) and the solution set S(f, A) = {x ∈ A : f(x) ∈ E(f, A)}. In the following we[5℄



6 Introdu
tionoften refer to problem (P ) as the original problem or the unperturbed problem. The spa
e
X is 
alled the de
ision spa
e and Y is 
alled the out
ome spa
e.Let U be a topologi
al spa
e. We embed problem (P ) into a family (Pu) of ve
toroptimization problems parametrized by a parameter u ∈ U ,

(Pu)
minK f(u, x)subje
t to x ∈ A(u)where f : U × X → Y is the parametrized obje
tive fun
tion and A(u) ⊂ X is theparametrized feasible subset of X. The sets A(u) give rise to the feasible set-valuedmapping A : U →→ X, A(u) = A(u), A(u0) = A. Problem (P ) 
orresponds to a givenparameter value u0 ∈ U .The performan
e set-valued mapping P : U →→ Y is de�ned as P(u) = E(f(u, ·), A(u)),

P(u0) = E(f, A), and the solution set-valued mapping S : U →→ X is de�ned as
S(u) = S(f(u, ·), A(u)) and S(u0) = S(f, A).Our aim is to perform a systemati
 study of stability properties of the performan
emapping P and the solution mapping S. We fo
us on 
onditions ensuring Hausdor�,Lips
hitz and Hölder behaviour of P and S with respe
t to the parameter u. To enlargethe appli
ability of the results we do not assume any parti
ular form of the feasible setand we tend to avoid as mu
h as possible 
ompa
tness assumptions whi
h are frequentlyover-used (see e.g. [148℄).Convergen
e and rates of 
onvergen
e of solutions to perturbed optimization problemsare one of 
ru
ial topi
s of stability analysis in optimization both from the theoreti
aland numeri
al viewpoints. For s
alar optimization these topi
s were investigated by manyauthors (see e.g., [2, 56, 86, 103, 112, 113, 118, 132, 153, 154℄ and many others). Anexhaustive survey of the 
urrent state of resear
h is given in the books by Bonnansand Shapiro [39℄, Dont
hev and Zolezzi [57℄, Pallas
hke and Rolewi
z [118℄. In ve
toroptimization the results on Lips
hitz 
ontinuity of solutions are s
arse and refer only tosome 
lasses of problems (
f. e.g. [47℄, [48℄, [49℄ for the linear 
ase and [37℄, [50℄ for the
onvex 
ase).A 
hara
teristi
 feature of ve
tor optimization problems is that the out
ome spa
esare equipped with partial orderings whi
h are not linear in general. These partial or-ders are generated by 
ones whose properties play an important role in existen
e resultsand optimality 
onditions. To derive stability results we make use of two new 
on
eptspertaining to sets and 
ones in the out
ome spa
e, namely the 
ontainment property,introdu
ed in [21℄, and the stri
t e�
ien
y, introdu
ed in [17℄.The 
ontainment property (CP) is used to study upper semi
ontinuities (in the senseof Hausdor�, Lips
hitz, or Hölder) of e�
ient points (
f. [16, 21℄) under perturbation ofa set. This property 
an be viewed as a variant of the domination property (DP) appearingfrequently in the 
ontext of stability of solutions to �nite-dimensional parametri
 ve
toroptimization problems. To study upper Hölder 
ontinuity of e�
ient points and solutionsto (P ) we introdu
e the 
ontainment rate of a set with respe
t to a 
one, whi
h is a real-valued fun
tion of a s
alar argument and 
hara
terizes the 
ontainment property (CP).Stri
t e�
ien
y is introdu
ed in [31, 18℄ to study lower (Hausdor�, Hölder) semi
on-tinuities of e�
ient points. In normed spa
es, stri
t e�
ien
y is implied by the super
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tion 7e�
ien
y in the sense of Borwein and Zhuang [42℄. To study lower Hölder 
ontinuity ofe�
ient points and solutions to (P ) we de�ne the modulus of stri
t e�
ien
y ([18℄). Inve
tor optimization the 
on
ept of stri
t e�
ien
y leads to the notion of sharp and weaksharp solutions (lo
al and global) ([27℄). Both sharp and weak sharp solutions 
an beviewed as ve
tor 
ounterparts of sharp (and weak sharp) minimality and growth 
ondi-tions appearing in s
alar optimization (
f. [39℄, [38℄, [43℄).The organization of the book is as follows. In Chapter 2 we investigate the stri
te�
ien
y and the modulus of stri
t e�
ien
y. Spe
ial attention is paid to stri
t e�
ien
yin the �nite-dimensional 
ase.In Chapter 3 we derive su�
ient 
onditions for lower Hausdor� semi
ontinuity ofthe e�
ient point set-valued mapping E , E(u) = E(C(u)), where C : U →→ Y is a givenset-valued mapping.In Chapter 4 we formulate 
onditions for lower Hölder 
ontinuity and lower-pseudo-Hölder 
ontinuity of E .In Chapter 5, the 
ontainment property (CP) and the 
ontainment rate are inves-tigated. Spe
ial attention is paid to the �nite-dimensional linear and 
onvex 
ases. InChapter 6, by using the 
ontainment property we prove su�
ient 
onditions for upperHausdor� 
ontinuity of e�
ient points and in Chapter 7 the 
ontainment rate is used toinvestigate upper Hölder 
ontinuity and upper pseudo-Hölder behaviour of E . We applythe results obtained to formulate su�
ient 
onditions for the Hölder 
ontinuity of theperforman
e set-valued mapping P for parametri
 problems (Pu).In Chapter 8 we de�ne φ-sharp and weak φ-sharp solutions to (P ). When applied tos
alar optimization problems the notions of φ-sharp and weak φ-sharp solutions redu
eto the notions of sharp and weak sharp minima, respe
tively, introdu
ed by Studniarskiand Ward [147℄, Burke and Ferris [44℄. Sharp and weak sharp minima were used e.g. byAttou
h and Wets [7℄, Bonnans and Shapiro [39℄ to derive stability results for parametri
problems.In Chapter 9, basing on properties of ε-solutions to ve
tor optimization problems wede�ne well-posedness of (P ). We investigate relationships between well-posedness of (P )and sharpness or weak sharpness of solutions. In 
lasses of well-posed problems we in-vestigate upper Hausdor� semi
ontinuity and upper Lips
hitz (Hölder) 
ontinuity of thesolution mapping S, S(u) = S(f, A(u)). By exploiting the notions of lo
al sharp and lo
alweak sharp solutions we prove Hölder 
almness of S.
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1. PRELIMINARIESThe general framework of our developments are Hausdor� topologi
al ve
tor spa
es(t.v.s.) over the �eld R of real numbers. A linear spa
e Y is a topologi
al ve
tor spa
e if
Y is equipped with a topology 
ompatible with the linear spa
e stru
ture, that is, bothlinear spa
e operations (y1, y2) → y1 + y2, y1, y2 ∈ Y, and (r, y) → ry, r ∈ R, y ∈ Y, are
ontinuous on their domains, Y × Y and R × Y, respe
tively. It is a 
onsequen
e of the
ontinuity of the linear spa
e operations that the topologi
al stru
ture of Y is determinedby a base of neighbourhoods of the origin.If V is a base of neighbourhoods of the origin, then for ea
h V ∈ V ,(i) V is absorbing, i.e., for any y ∈ Y there is some λ > 0 su
h that λy ∈ V for any

0 ≤ λ ≤ λ,(ii) there exists a balan
ed neighbourhood V ⊂ V , i.e., for all v ∈ V , λv ∈ Vwhenever |λ| ≤ 1,(iii) there exists W ∈ V su
h that W + W ⊂ V .A topologi
al spa
e is Hausdor� (or separated) if any two distin
t points have disjointneighbourhoods. If V is a base of neighbourhoods in a topologi
al ve
tor spa
e Y , then
Y is a Hausdor� spa
e if and only if ⋂

V ∈V V = {0}. We use the standard notations cl(·),
int(·), and ∂(·) for 
losure, interior, and boundary, respe
tively.Let C be a subset of Y . We say that C is 
onvex if λx + (1− λ)y ∈ C for all x, y ∈ Cand 0 ≤ λ ≤ 1. The (linear) segment [a, b] with end-points a ∈ Y and b ∈ Y is given as

[a, b] = {z ∈ Y : z = λx + (1 − λ)y, 0 ≤ λ ≤ 1}.For any nonempty subsets C and D of Y the algebrai
 sum of C and D is de�ned as
C + D = {c + d : c ∈ C, d ∈ D}and the algebrai
 di�eren
e of C and D is de�ned as
C − D = {c − d : c ∈ C, d ∈ D}.Moreover, the algebrai
 sum and di�eren
e are empty if any of the sets C and D is empty.For any subset C of Y and λ ∈ R,

λC = {λy : y ∈ C}.By a lo
ally 
onvex spa
e we mean a topologi
al ve
tor spa
e with a base of 
onvexneighbourhoods of the origin. A lo
ally 
onvex spa
e Y has a base V of neighbourhoodsof the origin with the following properties: [9℄



10 1. Preliminaries(i) if V ∈ V and λ 6= 0, then λV ∈ V ,(ii) ea
h V ∈ V is absolutely 
onvex (i.e., balan
ed and 
onvex).Let Y ∗ be the topologi
al dual of Y , i.e., the spa
e of all 
ontinuous fun
tionals de�nedon Y . If Y is a Hausdor� lo
ally 
onvex spa
e, then Y ∗ separates points, i.e., for anytwo di�erent points y1, y2 ∈ Y there exists f ∈ Y ∗ su
h that f(y1) 6= f(y2) (see e.g.Holmes [78, Cor. 11.E℄).
1.1. Cones in topologi
al ve
tor spa
esIn this se
tion we 
olle
t basi
 fa
ts about 
ones. A subset K of a ve
tor spa
e Y is a
one if

y ∈ K and λ ≥ 0 ⇒ λy ∈ K.By de�nition, ea
h nonempty 
one 
ontains the origin and {0} is the trivial 
one. A 
onvex
one is a 
one whi
h is a 
onvex subset of Y . A 
one K is pointed if K ∩ (−K) = {0}.Definition 1.1.1. Let {0} 6= K ⊂ Y be a 
onvex 
one. A nonempty 
onvex subset Θ of
K is a base of K if 0 6∈ cl Θ and K =

⋃{λΘ : λ ≥ 0}.A based 
one is ne
essarily pointed and 
onvex. The example below shows that Def-inition 1.1.1 does not ensure the uniqueness of the representation of elements of K viaelements of a base.Example 1.1.1. Let Y = R
2, K = R

2
+. The set

Θ = K ∩ {(y1, y2) : −y1 + 2 ≤ y2 ≤ −y1 + 4}is a base of K. Ea
h 0 6= k ∈ K 
an be represented as (k1, k2) = λ(y1, y2), where λ > 0and (y1, y2) ∈ Θ. It is enough to take any λ satisfying (k1 + k2)/4 ≤ λ ≤ (k1 + k2)/2.Conditions ensuring uniqueness of representation are given in the following proposi-tion.Proposition 1.1.1 (Peressini [122℄, Jahn [82℄). Let Y be a ve
tor spa
e. Let K be a
onvex 
one in Y and let Θ be a nonempty 
onvex subset of K. The following 
onditionsare equivalent:(i) ea
h nonzero element y ∈ K has a unique representation of the form y = λθ,where λ > 0, θ ∈ Θ,(ii) K =
⋃{λΘ : λ ≥ 0} and the smallest linear manifold in Y 
ontaining Θ does not
ontain 0.Proof. If (i) holds, then K =

⋃{λΘ : λ ≥ 0}. The smallest linear manifold 
ontaining Θis L = {µθ + (1− µ)θ′ : θ, θ′ ∈ Θ, µ ∈ R}. If 0 ∈ L, there would be µ0 > 1 and θ0, θ
′
0 ∈ Θsu
h that µ0θ0 = (µ0 − 1)θ′0, 
ontrary to (i).To show uniqueness in (i), suppose on the 
ontrary that λθ = λ′θ′ for θ, θ′ ∈ Θ, andpositive reals λ, λ′, λ 6= λ′. Then

0 =
1

λ − λ′
{λθ − λ′θ′} ∈ L
ontrary to (ii).



1.1. Cones in topologi
al ve
tor spa
es 11In some textbooks the base of a 
one is de�ned as a nonempty 
onvex subset of the
one satisfying 
ondition (i) of Proposition 1.1.1 (see e.g. [82, 83, 85, 122℄). If Θ satis�esthat 
ondition, then 0 6∈ Θ.In lo
ally 
onvex spa
es, any based 
onvex 
one has a base satisfying 
ondition (i) ofProposition 1.1.1.Proposition 1.1.2. Let Y be a lo
ally 
onvex Hausdor� topologi
al ve
tor spa
e and let
K be a 
onvex 
one in Y with a base Θ. There exists another base Θ1 of K su
h that
Θ1 = f−1(1)∩K, where f is a 
ontinuous linear fun
tional on Y satisfying 
ondition (i)of Proposition 1.1.1.Proof. Sin
e 0 6∈ cl Θ, there exists a 
onvex 0-neighbourhood V in Y su
h that V ∩
clΘ = ∅. By separation arguments (see e.g. Holmes [78, Th. 11.E, 12.F℄), there exists a
ontinuous linear fun
tional f on Y su
h that f(θ) > 0 for θ ∈ Θ. Hen
e, Θ1 = f−1(1)∩Kis a base of K whi
h satis�es 
ondition (i) of Proposition 1.1.1.We say that a subset C of Y is K-
losed if C +K is 
losed, and C is K-
onvex if C +Kis 
onvex.For any 
one K ⊂ Y, its dual K∗ ⊂ Y ∗ of Y ∗ is de�ned as

K∗ = {f ∈ Y ∗ : f(y) ≥ 0 for all y ∈ K}.The dual 
one K∗ is nonempty and weak∗ 
losed. To see the latter suppose that fω is anet of fun
tionals from K∗ 
onverging weak∗ to f . Then fω(y) 
onverges to f(y) for all
y ∈ Y , in parti
ular, fω(k) 
onverges to f(k) for any k ∈ K. This entails f(k) ≥ 0 for all
k ∈ K sin
e fω(k) ≥ 0 for all ω and all k ∈ K.For any subset C of a topologi
al ve
tor spa
e Y the polar C◦ ⊂ Y ∗ of C is de�nedas

C◦ = {f ∈ Y ∗ : f(y) ≤ 1 for all y ∈ C}.The polar is nonempty sin
e 0 ∈ C◦, and weak∗ 
losed. We have K∗ = −K◦. In the sameway, for any subset C ⊂ Y ∗, we de�ne the polar C◦ ⊂ Y as
C◦ = {y ∈ Y : f(y) ≤ 1 for all f ∈ C}.The bipolar C◦◦ ⊂ Y of a subset C ⊂ Y is

C◦◦ = {y ∈ Y : f(y) ≤ 1 for all f ∈ C◦}.If C is a subset of a lo
ally 
onvex spa
e Y, then
C◦◦ = cl((conv{0 ∪ C}),where 
onv stands for 
onvex hull (
f. Holmes [78, Th. 12.C℄). Hen
e, the bidual 
one

K∗∗,
K∗∗ = {y ∈ Y : f(y) ≥ 0 for f ∈ K∗},is 
onvex and weakly 
losed, and in lo
ally 
onvex spa
es K = K∗∗ if and only if K is
onvex and weakly 
losed (in normed spa
es 
f. Kur
yusz [98, Lemma 8.6℄).A topologi
al linear spa
e Y is said to be a Ma
key spa
e (
f. e.g. [85℄) if B◦ ⊂ Y isa 0-neighbourhood in Y whenever B ⊂ Y ∗ is a 
onvex and weak∗ 
ompa
t subset of Y .



12 1. PreliminariesTheorem 1.1.1 (Jameson [85, Th. 3.8.6℄). Let K be a 
onvex 
one in a lo
ally 
onvextopologi
al spa
e Y . Then(i) if K has an interior point, then K∗ has a weak∗ 
ompa
t base,(ii) if Y is a Ma
key spa
e, K is 
losed and K∗ has a weak∗ 
ompa
t base, then Khas an interior point.Proof. (i) Let e ∈ intK and let Θ = {f ∈ K∗ : f(e) = 1}. Then Θ is a base of K∗. Now
K− e is a 0-neighbourhood in Y and hen
e (K− e)∗ is weak∗ 
ompa
t. The result followssin
e Θ is a weak∗ 
losed subset of (K − e)∗.(ii) Suppose that Θ is a weak∗ 
ompa
t base of K∗. There is an element y0 of Y su
hthat f(y0) ≥ 1 for f ∈ Θ. Sin
e Y is a Ma
key spa
e, Θ◦ is a 0-neighbourhood in Y. For
y ∈ Θ◦ and f ∈ Θ, f(y0 + y) ≥ 0, so y0 + y ∈ K∗∗ = K. Hen
e, y0 + Θ◦ ⊂ K.Below we give an example of a 
one with empty interior su
h that K∗ has a boundedand 
losed base in the norm topology.Example 1.1.2 (Jameson [85, p. 123℄). Let Y = c0 be the spa
e of real sequen
es 
on-verging to zero with the usual 
one c+

0 of nonnegative elements. Then c+
0 has no interiorpoints, and (c+

0 )∗ is the usual nonnegative 
one ℓ+1 in ℓ1. The set of sequen
es {ξn} ⊂ (c+
0 )∗su
h that ∑

ξn = 1 is a base for (c+
0 )∗ that is bounded and 
losed in the norm topology.The set

K∗i = {f ∈ K∗ : f(y) > 0 for all y ∈ K \ {0}}is 
alled the quasi-interior of K∗. Note that K∗i may be empty. The set
Ki = {y ∈ Y : f(y) > 0 for all f ∈ K∗ \ {0}}is 
alled the quasi-interior of K (
f. e.g. [140, 122℄). In lo
ally 
onvex spa
es, Ki ⊂ K\{0},and if intK 6= ∅, then intK = Ki. Moreover, by Lemma 5.5 of [46℄,

K = {y ∈ Y : f(y) ≥ 0 for all f ∈ K∗i}.Indeed, suppose that y 6∈ K. Sin
e Y is lo
ally 
onvex, there exists f ∈ K∗ su
h that
f(y) < 0. Let g ∈ K∗i. By 
hoosing α > 0 su
h that f(y) + αg(y) < 0 we get h =

f + α · g ∈ K∗i and h(y) < 0.Example 1.1.3 (Peressini [122, Ex. 3.7b, p. 27℄). Let Y = B[a, b] be the set of allbounded, real-valued fun
tions on the interval 〈a, b〉 and
K = {f ∈ B[a, b] : f(y) ≥ 0 for all y ∈ [a, b]}.The quasi-interior K∗i of K is empty.Ne
essary and su�
ient 
onditions for K∗i to be nonempty were given by Dauer andGallagher in [46℄.Proposition 1.1.3 (Dauer and Gallagher [46℄). Let Y be a topologi
al ve
tor spa
e andlet K be a 
onvex 
one in Y . Then K∗i is nonempty if and only if there exists an open
onvex subset Q in Y satisfying(i) 0 6∈ Q,(ii) K ⊂ cone(Q) =

⋃{λQ : λ ≥ 0}.



1.1. Cones in topologi
al ve
tor spa
es 13Proof. If K∗i 6= ∅, then the set Q = {y ∈ Y : f(y) > 0}, f ∈ K∗i, satis�es (i) and (ii).Let Q be a subset of Y satisfying (i) and (ii). Sin
e 0 6∈ Q, by separation arguments(see [139, p. 58℄), there exists f ∈ Y ∗ su
h that f(0) < f(q) for q ∈ Q. Thus, f(q) > 0for all q ∈ Q. From (ii) it follows that f ∈ K∗i.By Proposition 1.1.3, for any 
onvex 
one K in a lo
ally 
onvex spa
e Y , K∗i isnonempty if and only if K is based. If Y is separable and K is 
losed 
onvex and pointed,then K∗i is nonempty (see [94, Thm. 2.1℄).Let C be a subset of a linear spa
e Y . The set
coreC = {z ∈ C : ∀y ∈ Y ∃λ > 0 with z + λy ∈ C for 0 ≤ λ ≤ λ}is 
alled the algebrai
 interior or the 
ore of C. For any 
one K in a linear ve
tor spa
e Y ,the fa
t that coreK 6= ∅ implies that K is reprodu
ing, i.e., K −K = Y (see Lemma 1.13of [82℄ and [83℄).Theorem 1.1.2 (Jahn [82, Lemmas 1.25, 1.26℄). Let K be a 
losed 
onvex 
one in atopologi
al ve
tor spa
e Y with K∗ 6= {0}. Then(i) coreK ⊂ Ki,(ii) if Y ∗ separates points of Y and K∗i 6= ∅, then coreK∗ ⊂ K∗i.Proof. (i) Let k ∈ coreK. Thus, k ∈ K and for any y ∈ Y there exists λ > 0 with

k + λy ∈ K for 0 ≤ λ ≤ λ. Hen
e, for any f ∈ K∗ \ {0}, f(k + λy) ≥ 0 for any 0 ≤ λ ≤ λ.Sin
e f ∈ K∗ \ {0}, there exists y0 ∈ Y with f(y0) < 0 and we get f(k) ≥ −λf(y0) > 0.Hen
e, f(k) > 0.(ii) Let f ∈ coreK∗. Thus, f ∈ K∗ and for any g ∈ Y ∗ there exists λ > 0 with
f + λg ∈ K∗ for 0 ≤ λ ≤ λ. Hen
e, (f + λg)y ≥ 0 for any y ∈ K and any 0 ≤ λ ≤ λ. Bytaking any g0 ∈ Y ∗ with g0(y) < 0 we get f(y) ≥ −λg0(y) > 0. Hen
e, f(y) > 0.When K∗ = {0} Theorem 1.1.2 is not true; to see this it is enough to take K = Y . Asshown in [82, Lemma 1.27℄, in any linear ve
tor spa
e Y , the 
one K∗ is pointed whenever
coreK 6= ∅. Then, by Theorem 1.1.2, K∗ is based. Moreover, if coreK∗ 6= ∅, then K isbased (see [78, Theorem I.5C℄).Proposition 1.1.4. Let Y be a lo
ally 
onvex topologi
al ve
tor spa
e and let K be a
losed 
onvex 
one in Y . If Ki 6= ∅, and K∗ is nontrivial, then K∗ has a base.Proof. Let y0 ∈ Ki. Then the set(1.1) Θ∗ = {θ∗ ∈ K∗ : θ∗(y0) = 1}is a base of K∗. It is 
onvex, weak∗ 
losed, 0 6∈ w∗-
lΘ∗, where w∗-
l stands for the weak∗
losure. Moreover, for any 0 6= f ∈ K∗, we have f(y0) = λf 6= 0, and f/λf ∈ Θ∗.In the following we refer to any base of the form (1.1) as a standard base. By Theorem1.1.2, coreK ⊂ Ki, and by Proposition 1.1.4, if coreK 6= ∅ and K∗ 6= {0}, then K∗ isbased. By similar arguments, K∗i is always based.
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on
epts of e�
ien
yLet Y be a topologi
al ve
tor spa
e and let K be a 
losed 
onvex 
one in Y. The orderingrelation � (we write also �K) in Y asso
iated with K is de�ned as
y1 �K y2 ⇔ y1 − y2 ∈ K.The relation �K is re�exive and transitive, and it is antisymmetri
 if and only if K ispointed, i.e., K ∩ (−K) = {0}. Let C be a subset of Y . An element y ∈ C is e�
ient (ornondominated) for C with respe
t to K, written y ∈ E(C) (or y ∈ EK(C)), if C∩(y−K) ⊂

K. WhenK is pointed, an element y ∈ C is e�
ient if C∩(y−K) = {y}. When intK 6= ∅ wesay that an element y ∈ C is weakly e�
ient, and we write y ∈ WE(C) (or y ∈ WEK(C)),if C ∩ (y − intK) = ∅. Clearly, E(C) ⊂ WE(C).An element y ∈ C is lo
ally e�
ient (or lo
ally nondominated) in C with respe
t to
K, and we write y ∈ LE(C) (or y ∈ LEK(C)), if there exists a 0-neighbourhood V in Ysu
h that y ∈ EK(C ∩ (y + V )). If C ⊂ Y is a 
onvex subset of Y , then(1.2) EK(C) = LEK(C).To see this, suppose that y0 6∈ EK(C). There exists y1 ∈ C su
h that y1 − y0 ∈ −K.By 
onvexity, λy0 + (1 − λ)y1 ⊂ C ∩ (y0 − K), 0 ≤ λ ≤ 1, and λy0 + (1 − λ)y1 ∈ V for
0 ≤ λ ≤ λ ≤ 1. Hen
e, y0 6∈ EK(C ∩ V ).A well-known fa
t is that the 
ompa
tness of C implies that E(C) 6= ∅. Numerousattempts have been made to weaken the 
ompa
tness requirement (see e.g. [145℄, [40℄,[36℄, [149℄).We will use the following fundamental existen
e theorem.Theorem 1.2.1 ([83, Th.6.5℄). Let C be a nonempty subset of a real lo
ally 
onvexspa
e Y . If C is weakly 
ompa
t, then for every 
losed 
onvex 
one K in Y the set Chas at least one e�
ient point with respe
t to the partial ordering indu
ed by K.

1.3. Ve
tor optimization problemsLet X and Y be Hausdor� topologi
al ve
tor spa
es. Let K be a 
losed 
onvex 
one in
Y . We 
onsider the ve
tor optimization problem

(P )
minK f(x)subje
t to x ∈ A,where f : X → Y is a mapping and A is a subset of X.The set E(f, A) of (global) e�
ient points to (P ) (we write also EK(f, A)) is de�nedas E(f, A) := E(f(A)). The set

S(f, A) := {x ∈ A : f(x) ∈ E(f, A)}(we write also SK(f, A)) is the set of (global) solutions to (P ) (see Jahn [82, 83℄, Lu
[105℄). Clearly, S(f, A) = A ∩ f−1(E(f, A)).An element x ∈ A is a lo
al solution to (P ), x ∈ LS(f, A) (we write also x ∈
LSK(f, A)), if there exists a 0-neighbourhood Q in X su
h that x ∈ A∩f−1(E(f(A∩Q))).



1.3. Ve
tor optimization problems 15An element y ∈ f(A) is a lo
ally e�
ient point for (P ), y ∈ LE(f, A) (we write also
y ∈ LEK(f, A)), if there exists a 0-neighbourhood W su
h that y ∈ EK(f(A) ∩ W ). Ingeneral, LS(f, A) di�ers from A ∩ f−1(LE(f, A)).Proposition 1.3.1. Let X and Y be Hausdor� topologi
al ve
tor spa
es and let K be a
losed 
onvex 
one in Y . Let A be a subset of X and f : X → Y be 
ontinuous on A.Then

A ∩ f−1(LEK(f, A)) ⊂ LSK(f, A).Proof. Let x0 ∈ A ∩ f−1(LEK(f, A)). Then f(x0) ∈ LEK(f(A)) and there exists a 0-neighbourhood W in Y su
h that (f(A) ∩ (f(x0) + W ) − f(x0)) ∩ (−K) ⊂ K. By the
ontinuity of f, there exists a 0-neighbourhood Q in X su
h that f(x0 +Q) ⊂ f(x0)+W .Hen
e, f((x0 + Q) ∩ A) ⊂ f(x0 + Q) ∩ f(A) ⊂ (f(x0) + W ) ∩ f(A), and
(f((x0) + Q) ∩ A) − f(x0)) ∩ (−K) ⊂ K,whi
h means that x0 ∈ LSK(f, A).The opposite in
lusion to that of Proposition 1.3.1 does not hold in general.If Y = R

m and A ⊂ R
n is given as the solution set to a �nite system of equationsand/or inequalities and the mapping f : R

n → R
m is given as

f = (f1, . . . , fm),where fi : R
n → R, 1 ≤ i ≤ m, are (s
alar) 
riteria (obje
tives), problem (P ) takes theform of a multi
riteria optimization problem

(MOP )

minK (f1, . . . , fm)subje
t to
x ∈ A = {x ∈ R

n : gi(x) ≤ bi, i ∈ I, hj(x) = dj , j ∈ J},where I and J are �nite systems of indi
es, gi : R
n → R and bi ∈ R for i ∈ I, hj : R

n → Rand dj ∈ R for j ∈ J .In the literature there exist a number of de�nitions of properly e�
ient points (andsolutions) for (P ) and (MOP ). Properly e�
ient points are e�
ient points whi
h sat-isfy additional 
onditions in order to eliminate some undesirable behaviour (e.g. the un-bounded growth of trade-o� 
oe�
ients). The de�nitions of properly e�
ient points wereoriginally proposed by Geo�rion [65℄ and Kuhn and Tu
ker [96℄. In the �nite-dimensionalsetting properly e�
ient points were also investigated by Benson [34℄, Hartley [71℄ andHenig [73℄. The de�nition of proper e�
ien
y proposed by Henig in [73℄ 
an be naturallygeneralized to the in�nite-dimensional setting. The de�nitions of proper e�
ien
y in in-�nite dimensions were also proposed by Borwein [40, 41℄ and Borwein and Zhuang [42℄.The relationships between di�erent notions of proper e�
ien
y were elu
idated in [70℄.Dual problems to (P ) and (MOP ) were proposed by many authors. For a surveyof the existing approa
hes and generalizations we refer to Song [143℄ and the referen
estherein.Parametri
 problems related to (P ) were investigated on di�erent levels of generality.Convergen
e of sequen
es of e�
ient point sets E(Cn) was investigated by Mighlierinaand Molho [110, 111℄. The 
onstru
tion of polarities was exploited in proving di�erenttype of 
onvergen
e of e�
ient point sets by Dole
ki [53, 54℄, Dole
ki and Malivert [55℄,



16 1. PreliminariesMalivert [108℄. K-semi
ontinuities of e�
ient sets were investigated by Sterna-Karwat[144℄ and Sterna-Karwat and Penot [120, 121℄.Bibliographi
al note. Classi
 textbooks on topologi
al ve
tor spa
es are e.g. Alexie-wi
z [1℄, S
haefer [140℄, Robertson and Robertson [127℄. The books by Peressini [122℄ andJameson [85℄ are devoted to ordered topologi
al ve
tor spa
es. Presentations of di�erentaspe
ts of the theory of set-valued mappings 
an be found e.g. in books by Berge [35℄,Aubin and Frankowska [11℄, Kuratowski [97℄. The theory of ve
tor optimization in topo-logi
al ve
tor spa
es with numerous extensions is presented in the books by Jahn [82, 83℄,Lu
 [105℄, Hyers, Isa
 and Rassias [79℄, Gopfert, Riahi, Tammer and Zalines
u [68℄.



2. STRICT EFFICIENCYIn this 
hapter we introdu
e the 
on
ept of stri
t e�
ien
y and the modulus of stri
te�
ien
y. These 
on
epts 
onstitute main ingredients of su�
ient 
onditions for the lowersemi
ontinuity and lower Hölder (and lower pseudo-Hölder) 
ontinuity of e�
ient pointsformulated in Chapters 3 and 4. Stri
t e�
ien
y 
an be viewed as a kind of propere�
ien
y (
f. e.g. [42, 73℄). We show that stri
t e�
ien
y is weaker than the propere�
ien
y in the sense of Henig [73℄ and weaker than the super e�
ien
y as de�ned byBorwein and Zhuang [42℄. The question of density of proper e�
ient points in the set ofall e�
ient points was addressed by many authors (
f. e.g. [3, 32, 42, 46, 63, 67℄). Basedon those results we get density results for stri
tly e�
ient points.In Se
tion 2.1 we de�ne strong proper e�
ien
y whi
h is stronger than Henig propere�
ien
y. In Se
tion 2.2 we introdu
e the notion of stri
t e�
ien
y; we investigate prop-erties of stri
tly e�
ient points and we provide a 
hara
terization of stri
t e�
ien
y interms of nets. In Se
tion 2.3 we investigate stri
t e�
ien
y for 
onvex sets. In Se
tion 2.4we de�ne the modulus of stri
t e�
ien
y and we prove 
hara
terizations of stri
t e�
ien
yin terms of properties of the modulus of stri
t e�
ien
y.2.1. Strong proper e�
ien
yLet Y be a Hausdor� topologi
al ve
tor spa
e and let K be a 
losed 
onvex pointed 
onein Y. Let C be a subset of Y .Definition 2.1.1. A point y0 ∈ C is strongly properly e�
ient (see [16℄), y0 ∈ SPE(C),if there exists a 
losed 
onvex 
one K0, K0 6= Y, intK0 6= ∅, K \ {0} ⊂ intK0, su
h thatfor ea
h 0-neighbourhood W there exists a 0-neighbourhood O su
h that(2.1) (K \ W ) + O ⊂ K0,and y0 ∈ EK0
(C).Re
all that a 
one K has a base Θ if Θ is 
onvex, 0 6∈ cl Θ, where cl stands for 
losure,and K = cone(Θ). For any 0-neighbourhood V we put

Kd(V ) = cone(Θ + V ).Proposition 2.1.1. Let K ⊂ Y be a 
losed 
onvex 
one with a base Θ and let K0 be a
losed 
onvex 
one, K0 6= Y, intK0 6= ∅, K \ {0} ⊂ intK0. If K0 satis�es (2.1), then(2.2) Kd(V ) ⊂ K0for some 0-neighbourhood V. [17℄



18 2. Stri
t e�
ien
yProof. Sin
e 0 6∈ clΘ, there exists a 0-neighbourhood W su
h that Θ ∩W = ∅. By (2.1),there exists a 0-neighbourhood O su
h that Θ+O ⊂ K0, or Kd(O) = cone(Θ+O) ⊂ K0.Proposition 2.1.2. Let K be a 
losed 
onvex 
one in Y with a topologi
ally boundedbase Θ. For any 0-neighbourhood V, the 
one Kd(V ) satis�es 
ondition (2.1), i.e., forea
h 0-neighbourhood W there exists a 0-neighbourhood O su
h that(2.3) (K \ W ) + O ⊂ Kd(V ).Proof. Let W be a 0-neighbourhood. Sin
e Θ is topologi
ally bounded, there exists λ > 0su
h that λΘ ⊂ W for 0 ≤ λ ≤ λ and for x ∈ K \ W we have x = λxθx, where λx > λ.Moreover, there exists a 0-neighbourhood O su
h that O ⊂ λV. Hen
e
x + O ⊂ λxθx + λV = λx

(
θx +

λ

λx
V

)
⊂ cone(Θ + V ).In Proposition 2.1.2, the boundedness of Θ is important as shown by the examplebelow.Example 2.1.1. Let Y = ℓ∞, and K = ℓ∞+ . The fun
tional f(x) =

∑∞
n=1 xn/2n has theproperty that f(x) > 0 for x ∈ K \ {0}. Hen
e, the set

Θ = {x ∈ K : f(x) = 1}is a base of K. It is unbounded sin
e the sequen
e (xk) ⊂ Θ,

xk = (0, . . . , 0, 2k
︸︷︷︸

kth position, 0, . . .),is unbounded and the 
ondition (2.3) is not satis�ed. To see this take a sequen
e (yk) ⊂
K \ W, W = {x ∈ ℓ∞ : supn |xn| < 1} and (qk), where

yk =
1

k
xk, and qk =

(
0, . . . , 0,

1

k︸︷︷︸
kth position, 0, . . .

)
.

Now, yk + qk 6∈ cone(Θ + V ) for any 0-neighbourhood V 
ontained in V = {x ∈ ℓ∞ :

supn |xn| < 1}, sin
e
zk = yk + qk =

1

k
xk + qk =

1

k
[xk + pk],where pk = (0, . . . , 0, 1︸︷︷︸

kth position, 0, . . .). The main feature here is that yk has the represen-tation yk = λkθk with (λk) tending to zero.Corollary 2.1.1. Let K be a 
losed 
onvex 
one with a topologi
ally bounded base Θin a lo
ally 
onvex spa
e Y and let C be a subset of Y. The following 
onditions areequivalent:(i) y ∈ SPE(C),(ii) y ∈ EclKd(V )(C), where V is a 
onvex 0-neighbourhood.Proof. (ii)⇒(i). If y ∈ EclKd(V )(C), by Proposition 2.1.2, clKd(V ) satis�es 
ondition(2.1), and hen
e y ∈ SPE(C).
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ien
y 19(i)⇒(ii). Let y ∈ SPE(C). Then y ∈ EK0
(C), where K0 satis�es (2.1). By Propo-sition 2.1.1, there exists a 0-neighbourhood V su
h that (2.2) holds, and hen
e y ∈

EclKd(V )(C).Let us note that in any lo
ally 
onvex spa
e, for all su�
iently small neighbourhoods
V, Kd(V ) is pointed, whi
h may not be the 
ase for clKd(V ).

2.2. Stri
t e�
ien
yLet K be a 
losed 
onvex pointed 
one in a Hausdor� topologi
al ve
tor spa
e Y . Let Cbe a subset of Y .Definition 2.2.1 ([17, 18℄). A point y0 ∈ C is stri
tly e�
ient, y0 ∈ StE(C) (we writealso StEK(C)), if for any 0-neighbourhood W there exists a 0-neighbourhood O su
hthat(2.4) ((C \ (y0 + W )) + O) ∩ (y0 −K) = ∅.Equivalently(2.5) (C − y0) ∩ (O −K) ⊂ W.Ea
h stri
tly e�
ient point is e�
ient,
StE(C) ⊂ E(C).Indeed, if y0 6∈ E(C), there exists y ∈ C, y 6= y0, su
h that y ∈ (C − y0) ∩ (−K). On theother hand, there exists a 0-neighbourhood W su
h that y 6∈ y0+W . Hen
e y0 6∈ StE(C).If K1 ⊂ K for a 
losed 
onvex 
one K1, then StEK(C) ⊂ StEK1

(C).The following proposition establishes the relationship between strongly properly e�-
ient points and stri
tly e�
ient points.Proposition 2.2.1. For any subset C of Y we have
SPE(C) ⊂ StE(C).Proof. Let y0 ∈ SPE(C) and let W be a 0-neighbourhood. By (2.1), there exists a 0-neighbourhood O su
h that (K \ W ) + O ⊂ K0. Let W1 be a 0-neighbourhood su
h that

W1 + W1 ⊂ W. By O1 we denote a 0-neighbourhood su
h that (K \ W1) + O1 ⊂ K0.We 
laim that (C − y0) ∩ (O1 ∩W1 −K) ⊂ W. Indeed, take any z ∈ (C − y0) ∩ (O1 ∩
W1 −K). Hen
e,

z = y − y0 = q − k, where y ∈ C, q ∈ O1 ∩ W1, k ∈ K.If z 6∈ W , we would have k ∈ K \ W1 and by (2.1), −k − q = y − y0 ∈ −K0, whi
h would
ontradi
t the strong proper e�
ien
y of y0. This proves that y0 ∈ StE(C).Stri
t e�
ien
y 
an be 
hara
terized via upper Hausdor� semi
ontinuity (for thede�nition see the beginning of Chapter 3) of the se
tion mapping SecC : Y →→ Y ,
SecC(y) = Cy = C ∩ (y −K) (
f. also Th. 2 and Corollaries 1 and 2 of [31℄).



20 2. Stri
t e�
ien
yProposition 2.2.2. Let K be a 
losed 
onvex pointed 
one in a Hausdor� topologi
alve
tor spa
e Y . Let C be a subset of Y . An element y0 ∈ E(C) is stri
tly e�
ient if andonly if SecC is upper Hausdor� semi
ontinuous at y0.Proof. It is enough to note that Secc(y0) = {y0}. Then the stri
t e�
ien
y of y0 
an beequivalently rewritten as
SecC(y) ⊂ SecC(y0) + W for any y ∈ y0 + O,whi
h amounts to the upper Hausdor� semi
ontinuity of SecC at y0.Re
all that a 
one K is normal in a topologi
al ve
tor spa
e Y if there exists a basis

V of neighbourhoods of Y su
h that (O + K) ∩ (O −K) = O for any O ∈ V .Proposition 2.2.3. If K is normal, then 0 ∈ StE(K).Proof. Sin
e K is normal, for ea
h 0-neighbourhood W , there exists a 0-neighbourhood
O su
h that (O + K) ∩ (O −K) ⊂ W and hen
e K ∩ (O −K) ⊂ W.The following proposition gives a 
hara
terization of stri
t e�
ien
y in terms of nets.Proposition 2.2.4. Let C be a subset of the spa
e Y and y0 ∈ E(C). The following areequivalent:(i) y0 ∈ StE(C),(ii) for any nets (xα), (yα) su
h that (xα) ⊂ C, yα ∈ xα + K and yα → y0, we have

xα → y0.Proof. Suppose on the 
ontrary that there exist two nets (xα), (yα) su
h that (xα) ⊂ C,

yα → y0, xα �K yα, and xα does not tend to y0. This means that there exists a 0-neighbourhood W su
h that for a 
ertain subnet (xβ) ⊂ (xα) we have xβ − y0 6∈ W. Onthe other hand, yβ = xβ + cβ for some cβ ∈ K, or
xβ − y0 = yβ − y0 − cβ.Sin
e (yβ) tends to y0, for ea
h 0-neighbourhood V we have yβ − y0 ∈ V for β ≥ βv.Hen
e, (xβv

) forms a subnet of (xβ) and xβv
−y0 ∈ (C−y0)∩ (V −K), but xβv

−y0 6∈ W ,whi
h 
ontradi
ts the stri
t e�
ien
y of y0.Suppose now that y0 6∈ StE(C). There exists a 0-neighbourhood W su
h that for ea
h
0-neighbourhood V one 
an �nd xv ∈ C, qv ∈ V, cv ∈ K su
h that

xv − y0 = qv − cv,where qv tends to zero and xv − y0 6∈ W. Moreover, xv + cv = qv + y0, i.e., xv �K yv =

qv + y0, and {yv} tends to y0 but {xv} does not. This 
ontradi
ts (ii).By Propositions 2.2.3, 2.2.4 and Proposition 1.3 of [122℄ we get the following 
orollary.Corollary 2.2.1. K is normal if and only if 0 ∈ StE(K).Below we determine StE(C) for C in some �nite-dimensional and in�nite-dimensionalspa
es.Example 2.2.1. 1. Let Y = R
2 and K = R

2
+. Let

C = {(y1, y2) : y2 ≥ ey1} ∪ {(y1, y2) : y2 ≥ y1}.
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t e�
ien
y 21Clearly, E(C) = {(y1, y2) : y2 ≥ y1, y1 ≥ 0} and StE(C) = E(C). For
C = {(y1, y2) : y2 ≥ ey1} ∪ R

2
+we get E(C) = {0} and StE(C) = ∅.2. Let Y = ℓ∞, and K = ℓ∞+ be the natural ordering 
one, K = {x = (xn) ∈ ℓ∞ :

xn ≥ 0, n ≥ 1}. Let
C = {x ∈ ℓ∞ : ‖x‖∞ ≤ 1}.We have y0 = (−1,−1 . . . ,−1, . . .) ∈ E(C) and y0 ∈ StE(C). To see the latter we needto show that for every ε > 0 there exists δ > 0 su
h that for all y ∈ (C − y0) ∩ (Q −K),where Q = {q ∈ ℓ∞ : ‖q‖∞ < δ}, we have ‖y‖∞ < ε. Indeed, let y − y0 = q − k, where

y ∈ C, q ∈ Q, k ∈ K. Sin
e ‖y0 + q − k‖∞ ≤ 1 we have kn � qn for all n ≥ 1 and
onsequently
|qn − kn| ≤ qn + kn ≤ 2qn,whi
h means that it is enough to take δ = ε/2.3. As previously, let Y = ℓ∞ and K = ℓ∞+ . Let
C = {x ∈ ℓ∞ : f(x) = 0}where f is the 
ontinuous linear fun
tional f(x) =

∑∞
n=1 xn/2n. The set C is a subspa
e,

E(C) = C and StE(C) = ∅. First we show that 0 6∈ StE(C). Consider the sequen
e
(yk) ⊂ C de�ned as

yk = (1/k, 0, . . . 0, −2k−1/k︸ ︷︷ ︸
kth position, 0, . . .).

We have yk = qk − ck, where
qk = (1/k, 0, . . .), ck = (0, . . . , 0, 2k−1/k︸ ︷︷ ︸

kth position, 0, . . .) ∈ K,

and ‖qk‖∞ = 1/k, ‖yk‖∞ = 2k−1/k ≥ 1. A

ording to Proposition 2.2.4, 0 6∈ StE(C). Tosee that y 6∈ StE(C) for any y ∈ C, 
onsider the sequen
e (zk) ⊂ C, zk = yk + y. It isenough to observe that zk − y = qk − ck and to apply Proposition 2.2.4.The following theorem provides 
onditions for the in
lusion E(C) ⊂ StE(C) to hold.Theorem 2.2.1. Let Y be a lo
ally 
onvex spa
e and let K be a 
losed 
onvex pointed
one in Y . If C is a weakly 
ompa
t subset in Y , then
E(C) ⊂ StE(C).Proof. Let y0 6∈StE(C). There exists a 0-neighbourhood W su
h that for any 0-neighbour-hood Q one 
an �nd zq ∈ C, zq − y0 6∈ W su
h that

zq − y0 = q − kq, where q ∈ Q, kq ∈ K.Sin
e C is weakly 
ompa
t, (zq) 
ontains a weakly 
onvergent subnet with limit point
z0 ∈ C, z0 6= y0. Sin
e K is weakly 
losed, the 
orresponding subnet of (kq) 
onverges toa nonzero k0 ∈ K and z0 − y0 = −k0, whi
h proves that y0 6∈ E(C).



22 2. Stri
t e�
ien
yWhen Y = (Y, ‖ · ‖) is a normed spa
e with open unit ball BY , the stri
t e�
ien
y
an be rewritten as follows: y0 ∈ C is stri
tly e�
ient if for any ε > 0 there exists δ > 0su
h that
(C − y0) ∩ (δBY −K) ⊂ εBY .

Fig. 2.1 Stri
t e�
ien
y of y ∈ CNow we establish the relationship between stri
t e�
ien
y and proper Henig e�
ien
y.We say that y0 ∈ C is proper Henig e�
ient, [72℄, y0 ∈ HE(C), if there exists a 
losed
onvex 
one Ω ⊂ Y , Ω 6= Y , K \ {0} ⊂ int Ω su
h that y0 ∈ EΩ(C).Theorem 2.2.2. Let Y = (Y, ‖ · ‖) be a normed spa
e and let K be a 
losed 
onvex andpointed 
one in Y . For any subset C of Y ,
HE(C) ⊂ StE(C).Proof. Suppose that y0 6∈ StE(C). There exists ε0 > 0 and sequen
es (yn) ⊂ C, (kn) ⊂ K,

(bn) ⊂ BY su
h that for all n ≥ 1,
yn − y0 =

1

n
bn − kn, ‖yn − y0‖ > ε0.Hen
e, d(yn − y0,−K) → 0. Consequently, y0 6∈ EΩ(C) for any 
one Ω ⊂ Y with K \ {0}

⊂ int Ω, whi
h proves that y0 6∈ HE(C).In general, the in
lusion StE(C) ⊂ HE(C) does not hold as shown by the followingexample.Example 2.2.2. Let Y = R
2 and K = R

2
+. For the set C = clBY we have

E(C) = {(y1, y2) : −1 ≤ y1 ≤ 1, y2 = −
√

1 − y2
1},

E(C) = StE(C) and HE(C) = E(C) \ {(−1, 0), (0,−1)}.We say that y0 ∈ C is super e�
ient [42℄, y0 ∈ SE(C), if there exists a number M > 0su
h that
cl cone(C − y0) ∩ (BY −K) ⊂ MBY .
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y 23Theorem 2.2.3. For any subset C of a normed spa
e (Y, ‖ · ‖),
SE(C) ⊂ StE(C).Proof. Suppose that y0 6∈ StE(C). There exists ε0 > 0 su
h that for ea
h n ≥ 1,

((C − y0) \ ε0BY ) ∩
(

1

n
BY −K

)
6= ∅,and one 
an 
hoose yn ∈ C su
h that

yn − y0 =
1

n
(bn − kn), ‖yn − y0‖ > ε0,where bn ∈ BY , kn ∈ K. Consequently,

n(yn − y0) = bn − kn and ‖n(yn − y0)‖ → ∞,whi
h proves that y0 6∈ SE(C).Theorem 2.2.4. Let (Y, ‖ · ‖) be a normed spa
e and let K be a 
losed 
onvex pointed
one in Y with a bounded base Θ. For any subset C of Y ,
SPE(C) = SE(C).Proof. If y0 ∈ SPE(C), by Proposition 2.1.1, there exists ε > 0 su
h that

(C − y0) ∩ (−Kd(ε)) = {0},where, as previously, Kd(ε) = cone(Θ +εBY ). Thus, cone(C−y0)∩ (εBY −Θ) = ∅. Now,by the same arguments as those used in the proof of Proposition 3.4 of [42℄, we 
on
ludethat y0 ∈ StE(C).Suppose now that y0 6∈ SPE(C). By Proposition 2.1.1, for any ε > 0,
(C − y0) ∩ [− cone(Θ + εBY )] 6= ∅.Equivalently, cone(C − y0) ∩ (−Θ + εBY ) 6= ∅. By the same arguments as those used inthe proof of Theorem 4.1 of [70℄, y0 6∈ StE(C), whi
h 
ompletes the proof.Now we introdu
e lo
al stri
t e�
ien
y. Let C ⊂ Y be a subset of a Hausdor� topo-logi
al ve
tor spa
e Y .Definition 2.2.2. An element y0 ∈ C is a lo
al stri
tly e�
ient point, y0 ∈ LStE(C), ifthere exists a 0-neighbourhood V in Y su
h that y0 ∈ StE(C ∩ (y0 + V )), i.e., for ea
h

0-neighbourhood W there exists a 0-neighbourhood O su
h that
(C ∩ (y0 + V ) \ (y0 + W )) ∩ ((y0 + O) −K) = ∅.Equivalently,

(C − y0) ∩ V ∩ (O −K) ⊂ W.For instan
e, if
C = {(y1, y2) : y2 ≥ ey1} ∪ R

2
+as in Example 2.2.1, then E(C) = {0} and 0 is a lo
al stri
tly e�
ient point.Clearly,

StE(C) ⊂ LStE(C) ⊂ LE(C).



24 2. Stri
t e�
ien
yFor the set C ⊂ R
2
+,
C = {(y1, y2) : 0 < y1 ≤ 1, 0 ≤ y2 ≤ 1} ∪ {(0, 1)},and K = R

2
+, we have LE(C) = E(C) = {(0, 1)}, LStE(C) = StE(C) = ∅.

2.3. Stri
t e�
ien
y for 
onvex setsExample 2.2.1 shows that StE(C) may di�er from E(C). In some instan
es we 
an provethe equality E(C) = StE(C) for 
onvex sets C.Theorem 2.3.1. Let (Y, ‖·‖) be a normed spa
e and let K ⊂ Y be a 
losed 
onvex pointed
one with a weakly 
ompa
t base Θ. Let C be a 
losed 
onvex subset of Y . Then
E(C) ⊂ StE(C).Proof. Suppose that y0 6∈ StE(C). There exist ε0 > 0 and a sequen
e (yn) ⊂ C su
h that(2.6) yn = y0 +

1

n
bn − αnθn, ‖yn − y0‖ > ε0 for n ≥ 1,where bn ∈ BY , θn ∈ Θ, and αn > 0. Sin
e Θ is bounded we have
‖θ‖ ≤ ε0/2 for any θ ∈ Θ.Moreover, αn ≥ 1 for all n su�
iently large sin
e

ε0 ≤ ‖yn − y0‖ ≤ 1

n
‖bn‖ + αn

ε0

2
≤ ε0

2
(1 + αn)for all n su�
iently large.In view of the 
onvexity of C, for 0 < λn = 1/αn ≤ 1 we get

zn = λnyn + (1 − λn)y0 = y0 + λn 1/n bn − θn ∈ C.Without loosing generality we 
an assume that (θn) weakly 
onverges to 0 6= θ0 ∈ Θ and
onsequently, (zn) weakly 
onverges to z0 = y0 − θ0 ∈ C, whi
h 
ontradi
ts the e�
ien
yof y0.In the in�nite-dimensional 
ase, weak 
ompa
tness of the base Θ is a restri
tive as-sumption. We 
an relax this assumption by imposing more restri
tions on C.We say that a 
losed 
onvex subset C of a normed spa
e Y is uniformly rotund (
f.e.g. Holmes [78, p. 162℄) if there exists a nonde
reasing fun
tion φ : R+ → R+, φ(0) = 0,
φ(t) > 0 for t > 0 su
h that for any y1, y2 ∈ C we have

1

2
(y1 + y2) + φ(‖y1 − y2‖)BY ⊂ C.Then we 
an prove the following theorem.Theorem 2.3.2 (
f. [110℄). Let K be a 
losed 
onvex pointed 
one in a normed spa
e Y .Let C be a uniformly rotund subset of Y . Then

E(C) ⊂ StE(C).
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ontradi
tion, suppose that there exists y0 ∈ E(C) \ StE(C). There exist
ε0 > 0 and a sequen
e (yn) ⊂ C su
h that for n ≥ 1,

yn = y0 + qn − kn,where (qn) ⊂ Y , qn → 0, (kn) ⊂ K, ‖qn − kn‖ > ε0. Then
d

(
1

2
(yn − y0),−K

)
→ 0and

d

(
1

2
(yn − y0), Y \ C

)
→ 0,sin
e y0 ∈ E(C), whi
h 
ontradi
ts the uniform rotundity of C.As a 
onsequen
e of Theorem 2.3.2, in the spa
es Lp, p ∈ (1,∞), we have

E(clBLp) = StE(clBLp).Corollary 2.3.1. Let C be a 
losed 
onvex subset of R
m and let K be a 
losed 
onvexpointed 
one in R

m. Then E(C) = StE(C).Proof. Follows from Proposition 2.3.1 sin
e in �nite-dimensional spa
es any 
losed 
onvexpointed 
one has a 
ompa
t base.It is known that E(C) is 
losed for 
losed 
onvex subsets C of R
2 and K = R

2
+. Thisis no longer true in R

3. Hen
e, by Corollary 2.3.1, we dedu
e that StE(C) may not be
losed even when C is a 
losed and 
onvex subset of R
3.Example 2.3.1 ([3℄). Let Y = R

3, K = R
3
+ and let D ⊂ R

3,
D = {(x, y, 1) : (x − 1)2 + (y − 1)2 = 1, 0 ≤ x, y ≤ 1}.Let C = conv(D ∪ {(1, 0, 0)}). The point (1, 0, 1) is not e�
ient but (1, 0, 1) ∈ clE(C).

Fig. 2.2 The set C from Example 2.3.1
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yWe 
lose this se
tion by showing that for 
onvex sets C, the equality LStE(C) =

StE(C) holds.Proposition 2.3.1. Let Y = (Y, ‖ · ‖) be a normed spa
e with a 
losed 
onvex pointed
one K. If C is a 
onvex subset of Y , then
LStE(C) = StE(C).Proof. We need to show that LStE(C) ⊂ StE(C). Take any y0 6∈ StE(C). By de�nition,there exist an ε0 > 0 and (yn) ⊂ C su
h that

yn − y0 ∈ 1

n
BY −K, ‖yn − y0‖ > ε0 for n ≥ 1.Sin
e C is 
onvex, zn = y0 + λ(yn − y0) ∈ C for any 0 ≤ λ ≤ 1.For any 0 ≤ λ ≤ 1,

zn − y0 =
λε0

‖yn − y0‖
(yn − y0) ∈

λε0

n
BY −K.Moreover, for any 0-neighbourhood V we get zn − y0 = λ(yn − y0) ∈ (C − y0) ∩ V for

λ > 0 small enough, whi
h proves that y0 6∈ LStE(C).
2.4. Modulus of stri
t e�
ien
yIn this se
tion Y = (Y, ‖ · ‖) is a normed spa
e with open unit ball BY and K is a 
losed
onvex pointed 
one in Y.Let C be a subset of Y . Re
all that y0 ∈ StE(C) if for ea
h ε > 0 there exists δ > 0su
h that
(C \ (y0 + εBY )) ∩ ((y0 + δBY ) −K) = ∅.For any y ∈ Y put

‖y‖− = d(y,−K),where for any y ∈ Y and any subset D of Y , d(y, D) = inf{‖y − d‖ : d ∈ D}. For any
r > 0,

‖y‖− ≥ r ⇔ (y + rBY ) ∩ (−K) = ∅.Definition 2.4.1. Let C be a subset of Y and y0 ∈ C. The fun
tion ν : R+ → R+de�ned as
ν(ε) = inf{‖z − y0‖− : z ∈ C \ (y0 + εBY )}.is 
alled the modulus of stri
t e�
ien
y of y0 with respe
t to C and K.A fun
tion φ : R+ → R+ is admissible if φ is nonde
reasing, φ(t) > 0 for t > 0 and

φ(0) = 0.Proposition 2.4.1 (
f. also [155℄). Let K be a 
losed 
onvex pointed 
one in a normedspa
e Y = (Y, ‖ · ‖). Let C be a subset of Y and let y0 ∈ C be a nonisolated point of C.Then y0 ∈ StE(C) if and only if
ν(‖y − y0‖) ≤ ‖y − y0‖− for y ∈ C,
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y 27where ν : R+ → R+ is an admissible fun
tion of the form
ν(ε) = inf{‖z − y0‖− : z ∈ C \ (y0 + εBY )}.Proof. Clearly, ν is nonde
reasing and ν(0) = 0. Take any y ∈ C, y 6= y0. Hen
e,

y ∈ C \ (y0 + εBY ) for some ε > 0. By the stri
t e�
ien
y of y0, there exists δ > 0 su
hthat y − y0 6∈ δBY −K. Hen
e,
0 < δ ≤ ν(ε) ≤ ν(‖y − y0‖) ≤ ‖y − y0‖−.On the other hand, take any ε > 0 and y ∈ C \ (y0 + εBY ). Hen
e,
0 < δ := ν(ε) ≤ ν(‖y − y0‖) ≤ ‖y − y0‖−,whi
h proves that y0 ∈ StE(C).In what follows we shall 
onsider stri
tly e�
ient points with some spe
i�
 forms of ν.To stress the role of ν we say that y0 ∈ C is ν-stri
tly e�
ient and we write y0 ∈ StEν(C).Hen
e, equivalently, y0 ∈ StEν(C) if

(y − y0) ∩ (ν(‖y − y0‖)BY −K) = ∅ for y ∈ C, y 6= y0.In parti
ular, an element y0 ∈ C is stri
tly e�
ient of order q > 0, y0 ∈ StEq(C), if thereexists a 
onstant β > 0 su
h that ν(·) = β(·)q.In De�nition 2.2.2 we de�ned lo
al stri
tly e�
ient points y0 ∈ LStE(C). Equiva-lently, y0 is a lo
al ν-stri
tly e�
ient point of C, y0 ∈ LStEν(C), if and only if thereexists a 
onstant ts > 0 su
h that
ν(‖y − y0‖) ≤ ‖y − y0‖− for y ∈ C ∩ (y0 + tsBY ).Or

y − y0 6∈ ν(‖y − y0‖)BY −K for y ∈ C ∩ (y0 + tsBY ), y 6= y0.Similarly, y0 ∈ C is a lo
al stri
tly e�
ient point of order q, y0 ∈ LStEq(C), if
y0 ∈ LStEν(C) with ν(·) = β(·)q for some β > 0.A y0 ∈ C is a lo
al proper Henig e�
ient point, y0 ∈ LHE(C), if there exists a 
losed
onvex 
one Ω, K \ {0} ⊂ int Ω, su
h that y0 ∈ LEΩ(C).Below we show that under some assumptions, lo
al proper Henig e�
ient points 
o-in
ide with lo
al stri
tly e�
ient points of order 1.Re
all that a ve
tor d ∈ Y is tangent to the set C at y0 ∈ cl C if there exist a sequen
e
(dn) ⊂ Y , dn → d, and a sequen
e (tn) ⊂ R, tn ↓ 0, su
h that y0 + tndn ∈ C. The 
one
TC(y0) of all tangent ve
tors to C at y0 is 
alled the Bouligand tangent 
one.We start with the following 
hara
terization of lo
al proper Henig e�
ient points.Proposition 2.4.2. Let Y be a normed spa
e and let K be a 
losed 
onvex pointed 
onein Y with a 
ompa
t base Θ. Let C be a subset of Y and y0 ∈ C. Then y0 ∈ LHE(C) ifand only if

TC(y0) ∩ (−K) = {0}.Proof. Suppose that there exists a nonzero ve
tor d ∈ TC(y0) ∩ (−K). There exist se-quen
es (dn) ⊂ Y , dn → d, and (tn) ⊂ R+, tn ↓ 0, su
h that
y0 + tndn = yn ∈ C.
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ien
yHen
e, for any 0-neighbourhood V in Y and any 
losed 
onvex 
one Ω ⊂ Y with K\{0} ⊂
int Ω, we get tndn ∈ Ω for all n su�
iently large and

yn ∈ (y0 − Ω) ∩ (C ∩ (y0 + V )) for all n su�
iently large.Conversely, suppose that y0 6∈ LHE(C). For the 
losed 
onvex 
one Ωn = cl cone(Θ +
1
nBY ), n ≥ 1, there exists yn ∈ C su
h that yn − y0 ∈ 1

nBY and yn ∈ y0 − Ωn. Hen
e,
yn = y0 − λn

(
θn +

1

n
bn

)
, where θn ∈ Θn, bn ∈ BY , λn > 0.Sin
e yn → y0, we must have λn → 0 and

1

λn
(yn − y0) = −θn − 1

n
bn.Without loss of generality we 
an assume that θn → θ ∈ Θ, θ 6= 0. Consequently,

1

λn
(yn − y0) = −θn − 1

n
bn → −θand −θ ∈ TC(y0) ∩ (−K), whi
h is a 
ontradi
tion.Now we are in a position to prove the following theorem.Theorem 2.4.1. Let K be a 
losed 
onvex pointed 
one in a normed spa
e Y with a
ompa
t base Θ. For any subset C ⊂ Y we have

LHE(C) = LStE1(C).Proof. By Proposition 2.4.2, it is enough to show that y0 ∈ LStE1(C) if and only if
TC(y0) ∩ (−K) = {0}.By 
ontradi
tion, suppose that there exists d ∈ TC(y0)∩ (−K), ‖d‖ = 1. There existsa sequen
e (yn) ⊂ C, yn → y0, su
h that

yn − y0

‖yn − y0‖
→ dand hen
e, for any c > 0,

yn − y0

‖yn − y0‖
∈ d + cBY for all n su�
iently large.In other words,

yn − y0 ∈ ‖yn − y0‖d + c‖yn − y0‖BY , where d ∈ −K,i.e. ‖yn − y0‖− < c‖yn − y0‖, whi
h means that y0 6∈ LStE1(C).Suppose now that y0 6∈ LStE1(C). For ea
h n ≥ 1 there exists yn ∈ C ∩ (y0 + 1
nBY ),

yn 6= y0, su
h that
yn − y0 =

1

n
‖yn − y0‖bn − dn, where bn ∈ BY , dn ∈ K.Moreover, for any n ≥ 1 we have dn = λnθn with λn > 0 and θn ∈ Θ. Clearly, λn → 0.The sequen
e (λn/‖yn − y0‖) is bounded sin
e
yn − y0

‖yn − y0‖
=

1

n
bn − λn

‖yn − y0‖
θn
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an assume that (
λn

‖yn−y0‖
θn

)
→ d ∈ K, d 6= 0. Hen
e,

yn − y0

‖yn − y0‖
→ −d ∈ TC(y0) ∩ (−K).As a 
orollary from Theorem 2.4.1 we obtain the following 
hara
terization of lo
alstri
t e�
ien
y of order 1.Corollary 2.4.1. Let Y be a normed spa
e and let K be a 
losed 
onvex pointed 
onein Y with a 
ompa
t base Θ. Let C be a subset of Y and y0 ∈ C. Then y0 ∈ LStE1(C)if and only if

TC(y0) ∩ (−K) = {0}.In �nite-dimensional spa
es, Corollary 2.4.1 takes the following form.Corollary 2.4.2. Let K be a 
losed 
onvex pointed 
one in R
m. Let C be a subset of

R
m and y0 ∈ C. Then y0 ∈ LStE1(C) if and only if

TC(y0) ∩ (−K) = {0}.In the example below we 
al
ulate moduli of stri
t e�
ien
y for e�
ient points forthe 
losed unit ball in R
2.Example 2.4.1. Let Y = R

2 with the Eu
lidean norm, K = R
2
+ and C = cl BY . ByTheorem 2.3.1, E(C) = StE(C). For η = (−1, 0) ∈ E(C) and any y = (y1, y2) ∈ C,

y 6= y0 we have
d(y − η,−K) = ‖y − η‖− =

{‖y − η‖ for y2 ≥ 0,

1 + y2 for y2 ≤ 0.Hen
e, y0 = (−1, 0) ∈ LStE2(C) sin
e for y ∈ y0 + BY ,
1 + y1 =

1

2
(2 + 2y1) ≥

1

2
((1 + y2

1)2 + y2
2) =

1

2
‖y − (−1, 0)‖2,and

d(y − y0,−K) ≥ min

{
‖y − y0‖,

1

2
‖y − y0‖2‖

}
=

1

2
‖y − y0‖2.Analogously, (0,−1) ∈ LStE2(C). For other η = (η1, η2) ∈ E(C), η 6= (−1, 0), η 6= (0,−1)by Theorem 2.4.1, η ∈ LStE1(C). Indeed, put f(x) := −

√
1 − x2 for 0 < x < 1. For any

z = (z1, z2) ∈ C,
d(z − η,−K) ≥ 1√

1 + (f ′(η1))2
‖z − η‖ for z1 ≥ η1, z2 ≤ η2and

d(z − η,−K) ≥ 1√
1 + (f ′(η2))2

‖z − η‖ for z1 ≤ η1, z2 ≥ η2.Thus, d(z − η,−K) ≥ β‖z − η‖ for η 6= (−1, 0), η 6= (0,−1) with β =

1/
√

1 + max{(f ′(η1))2, (f ′(η2))2}.



3. LOWER CONTINUITY OF EFFICIENT POINTS UNDERPERTURBATIONS OF A SETThe questions of lower semi
ontinuity of e�
ient points arise in many problems, forinstan
e, in investigation of the solvability of ve
tor variational inequalities and in dualitytheory. The results obtained in this 
hapter 
an be dire
tly applied to stability of ve
toroptimization problems.In in�nite-dimensional spa
es, lower semi
ontinuity of e�
ient points was investigatedby several authors, e.g., by Attou
h and Riahi [5℄, Penot and Sterna-Karwat [121℄, thepresent author [18℄, and in �nite-dimensional spa
es by Gorokhovik and Ra
hkovski [69℄,Tanino, Nakayama and Sawaragi [148℄.In �nite-dimensional spa
es, the key requirement whi
h allows us to prove lower semi-
ontinuity of e�
ient points under perturbations is the density of properly e�
ient pointsin the set of e�
ient points (see e.g. [69℄). Under some additional assumptions, e.g. under
onvexity of the original set C, the density of properly (stri
tly) e�
ient points in the setof all e�
ient points is not needed for the lower semi
ontinuity of e�
ient points underperturbations (see the results below and e.g. [109℄).In Se
tion 3.1 we prove our main results (Theorems 3.1.1 and 3.1.2) providing su�-
ient 
onditions for lower semi
ontinuity of e�
ient points under perturbations. The keyrequirement is the density of stri
tly e�
ient points de�ned in Chapter 2 in the set E(C).In Theorem 3.1.4 we get rid of the above density requirement by assuming that 0 is astri
tly e�
ient point of K. In Se
tion 3.2 we prove several variants of our main resultsfor set-valued mappings taking values in normed spa
es (Theorems 3.2.3, 3.2.2, 3.2.6).There exist many ways of dealing with perturbations whenever they appear. We ex-press perturbations by set-valued mapping C : U →→ Y de�ned on a spa
e of perturbations
U . For any set-valued mapping we de�ne its domain and graph as follows:

dom C = {u ∈ U : C(u) 6= ∅}, graph C = {(u, y) ∈ U × Y : y ∈ C(u)}.A set-valued mapping C : U →→ Y is:
• upper Hausdor� semi
ontinuous at u0 if for every 0-neighbourhood W in Y thereexists a neighbourhood U0 of u0 su
h that C(u) ⊂ C(u0) + W for u ∈ U0,
• lower semi
ontinuous at (u0, y0) ∈ graph C if for any 0-neighbourhood W thereexists a neighbourhood U0 of u0 su
h that (y0 + W ) ∩ C(u) 6= ∅ for all u ∈ U0,
• lower uniformly semi
ontinuous on a subset X0 ⊂ C(u0) if for any 0-neighbourhood

W there exists a neighbourhood U0 of u0 su
h that for every x0 ∈ X0 we have
(x0 + W ) ∩ C(u) 6= ∅ for all u ∈ U0, [30℄
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• lower semi
ontinuous at u0 if for any 0-neighbourhood W and any y0 ∈ C(u0) thereexists a neighbourhood U0 of u0 su
h that (y0 + W ) ∩ C(u) 6= ∅ for all u ∈ U0,
• lower Hausdor� semi
ontinuous at u0 if it is uniformly lower 
ontinuous on C(u0),i.e., for any 0-neighbourhood W there exists a neighbourhood U0 of u0 su
h that
C(u) ⊂ C(u0) + W for all u ∈ U0,

• Hausdor� 
ontinuous at u0 if it is lower and upper Hausdor� 
ontinuous at u0.Following Nikodem [117℄ we de�ne K-Hausdor� semi
ontinuities. Let CK : U →→ Y be aset-valued mapping de�ned as
CK(u) = C(u) + K, u ∈ U.We say that C : U →→ Y is:

• K-upper Hausdor� semi
ontinuous at u0 if CK is upper Hausdor� semi
ontinuousat u0, i.e., for every 0-neighbourhood W there exists a neighbourhood U0 of u0 su
hthat C(u) ⊂ C(u0) + W + K for u ∈ U0,
• K-lower Hausdor� semi
ontinuous at u0 if CK is lower Hausdor� semi
ontinuous at

u0, i.e., for every 0-neighbourhood W there exists a neighbourhood U0 of u0 su
hthat C(u0) ⊂ C(u) + W + K for u ∈ U0,
• K-lower semi
ontinuous at u0 (
f. [120℄) if CK is lower semi
ontinuous at u0, i.e.,for every y0 ∈ C(u0) and every 0-neighbourhood W there exists a neighbourhood

U0 of u0 su
h that C(u) ∩ (y0 + W −K) 6= ∅ for u ∈ U0.Here we adopt the standard de�nitions of lower and upper semi
ontinuities as de�nedby Kuratowski [97℄. In the 
ontext of ve
tor optimization K-semi
ontinuities of e�
ientpoints (C) under perturbation of C were investigated in [144℄, [120℄, [121℄.Let X be a topologi
al spa
e. A fun
tion f : X → Y is K-lower 
ontinuous at x0 iffor ea
h 0-neighbourhood W in Y there exists a neighbourhood O of x0 in X su
h that
f(x) ∈ f(x0) + W + K for all x ∈ O. Analogously, f : X → Y is K-upper 
ontinuous at
x0 if for ea
h 0-neighbourhood W in Y there exists a neighbourhood O of x0 in X su
hthat f(x) ∈ f(x0) + W −K for all x ∈ O (see also [72℄, [106℄).

3.1. Su�
ient 
onditions for lower semi
ontinuityof e�
ient pointsIn this se
tion we give su�
ient 
onditions for the lower semi
ontinuity of the e�
ientpoint set E(C) when C is subje
ted to perturbations. We study properties of the e�
ientpoint set-valued mapping E : U →→ Y de�ned as
E(u) = EK(C(u)),where perturbations of C are de�ned by a set-valued mapping C : U →→ Y , C(u) = C(u),

C(u0) = C. For parametri
 ve
tor optimization problems
(Pu)

minK f(u, x)subje
t to x ∈ A(u),
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ontinuity of e�
ient points under perturbations of a setthe performan
e set-valued mapping P de�ned in Introdu
tion is the e�
ient point set-valued mapping E with C(u) = f(u, A(u)). Re
all that the domination property (DP)holds for C (
f. [105℄) if
C ⊂ E(C) + K.In Chapter 5 we will dis
uss the domination property and its variants in a more detailedway.Theorem 3.1.1. Let Y be a Hausdor� topologi
al ve
tor spa
e and let K ⊂ Y be a 
losed
onvex pointed 
one in Y . Let u0 ∈ dom C and let y0 ∈ E(C). If(i)(3.1) y0 ∈ cl StE(C),(ii) (DP) holds for all C(u) in a 
ertain neighbourhood U0 of u0,(iii) C is K-lower semi
ontinuous and upper Hausdor� semi
ontinuous at u0 ∈ dom C,then E is lower semi
ontinuous at (u0, y0) ∈ graph E .Proof. Note �rst that u0 ∈ int dom E . Indeed, sin
e C 6= ∅ and C is K-lower semi
ontin-uous at u0 ∈ dom C we must have C(u) 6= ∅ for u in some neighbourhood U1 of u0 andhen
e by (DP), E(C(u)) 6= ∅ for u ∈ U1 ∩ U0.Let W be a 0-neighbourhood, and let W1, W2 be 0-neighbourhoods su
h that W1 +

W1 ⊂ W and W2 + W2 ⊂ W1. By (3.1), there exists y ∈ StE(C), y ∈ y0 + W2. By stri
te�
ien
y of y, there exists a 0-neighbourhood O su
h that ((C\(y+W2))+O)∩(y−K) = ∅.Therefore,(3.2) ((C \ (y + W2)) + O1) ∩ (y + O1 −K) = ∅for any 0-neighbourhood O1 su
h that O1 + O1 ⊂ O.Let u ∈ U0∩U1. By the K-lower semi
ontinuity of C, for ea
h u ∈ U1 there is z ∈ C(u)satisfying
z ∈ (y + O1 ∩ W2 −K) ∩ C(u).Consequently, z −K ⊂ y + O1 ∩ W2 −K and in view of (3.2),

(z −K) ∩ ((C \ (y + W2)) + O1) = ∅.By the upper Hausdor� semi
ontinuity of C,
C(u) ⊂ C + O1 ∩ W2 ⊂ ((C \ (y + W2)) + O1 ∩ W2) ∪ (y + W1).Consequently,

(z −K) ∩ C(u) ⊂ y + W1 ⊂ y0 + W.By (DP), there exists η ∈ E(C(u)) su
h that
η ∈ (z −K) ∩ C(u) ⊂ y0 + W,whi
h 
ompletes the proof.Note that in the proof we use K-lower semi
ontinuity of C only in the vi
inity of y0.Moreover, (ii) 
an be repla
ed by a slightly weaker 
ondition

(ii)′ C(u) ⊂ clE(C(u)) + K for all u ∈ U0.



3.1. Su�
ient 
onditions for lower semi
ontinuity of e�
ient points 33Theorem 3.1.2. Let K be a 
losed 
onvex pointed 
one in Y and u0 ∈ dom C. Assumethat(3.3) E(C) ⊂ cl StE(C),and (DP) holds for all C(u) in a 
ertain neighbourhood U0 of u0. If C is K-lower semi
on-tinuous at u0 and upper Hausdor� semi
ontinuous at u0, then E is lower semi
ontinuousat u0 ∈ dom E .In view of Proposition 2.2.1, by Theorem 3.1.2, we obtain the following result whi
hgeneralizes Theorem 3.1 of [16℄.Theorem 3.1.3. Let K be a 
losed 
onvex pointed 
one in Y and u0 ∈ dom C. If(3.4) E(C) ⊂ cl SPE(C),

C is upper Hausdor� semi
ontinuous at u0 and K-lower semi
ontinuous at u0 and (DP)holds for all C(u) in some neighbourhood of u0, then E is lower semi
ontinuous at u0 ∈
dom E .Su�
ient 
onditions for lower semi
ontinuity of e�
ient points 
an also be given byassuming that 0 is a stri
tly e�
ient point of K, whi
h, by Corollary 2.2.1, amounts tosaying that K is normal. We have the following result.Theorem 3.1.4. Let K ⊂ Y be a 
losed 
onvex normal 
one in Y. Assume that C is
losed, cl E(C) is 
ompa
t, and (DP) holds for all C(u) in a 
ertain neighbourhood U0 of
u0 ∈ dom C. If C is K-lower semi
ontinuous and upper Hausdor� semi
ontinuous at u0,then E is lower semi
ontinuous at u0 ∈ dom E .Proof. Let y0 ∈ E(C). We start by showing that, under our assumptions, for any 0-neighbourhood W there exists a 0-neighbourhood V su
h that(3.5) (((E(C) + K) \ (y0 + W )) + V ) ∩ (y0 −K) = ∅.To see this, suppose on the 
ontrary that there exists a 0-neighbourhood W su
h thatfor any 0-neighbourhood V there exists v ∈ V su
h that

y0 − kv = ηv + k1
v + qv = zv + qv,where kv, k1

v ∈ K, ηv ∈ E(C), zv = ηv + k1
v 6∈ y0 + W, and the net (qv) tends to 0. Sin
e

clE(C) is 
ompa
t, the net (ηv) 
ontains a 
onvergent subnet. Without loss of generalitywe may assume that the net itself 
onverges to a 
ertain η ∈ C(u). Consequently,(3.6) y0 − η = lim
v

(kv + k1
v),and, sin
e K is 
losed, y0−η ∈ K, whi
h implies that y0 = η. By (3.6), limv(kv +k1

v) = 0,and, sin
e K is normal, by Proposition 1.3, p. 62 of [122℄, (kv) and (k1
v) both tend tozero. By taking any 0-neighbourhood W1 su
h that W1 + W1 ⊂ W, one 
an �nd a 0-neighbourhood V0 su
h that for all V ⊂ V0 we have ηv + k1

v ⊂ η + W1 + W1 ⊂ y0 + W,whi
h 
ontradi
ts the assumption that ηv + k1
v 6∈ y0 + W. This proves (3.5).Let W1 be a 0-neighbourhood su
h that W1 + W1 ⊂ W. By (3.5), there exists a

0-neighbourhood V1 su
h that for any 0-neighbourhood V2, V2 + V2 ⊂ V1, we have
(((E(C) + K) \ (y0 + W1)) + V2) ∩ ((y0 + V2) −K) = ∅.



34 3. Lower 
ontinuity of e�
ient pointsOn the other hand, sin
e (DP) holds for C,

C + V2 ∩ W1 ⊂ (((E(C) + K) \ (y0 + W1)) + V2 ∩ W1) ∪ (y0 + W ).There exists a neighbourhood U1 of u0 su
h that(3.7) C(u) ⊂ (((E(C) + K) \ (y0 + W1)) + V2 ∩ W1) ∪ (y0 + W )for u ∈ U1. Moreover, there exists a neighbourhood U2 of u0 su
h that
(y0 + V2 ∩ W1 −K) ∩ C(u) 6= ∅,for u ∈ U2. Hen
e, for u ∈ U2 there exists yu ∈ C(u) ∩ (y0 + V2 ∩ W1 −K) and

yu −K ⊂ y0 + V2 ∩ W1 −K.Sin
e yu ∈ V2 ∩ W1 ⊂ V2, by (3.5),
(yu −K) ∩ [((E(C) + K) \ (y0 + W1)) + V2 ∩ W1] = ∅.By (3.7) and by (DP), for u ∈ U0 ∩ U1 ∩ U2 there exists ηu ∈ E(C(u)) su
h that(3.8) ηu ∈ (yu −K) ∩ C(u) ⊂ (y0 + W ).This 
ompletes the proof.In view of Theorems 1.2.1 and 2.2.1 we obtain the following variant of Theorem 3.1.2.Theorem 3.1.5. Let Y be a lo
ally 
onvex spa
e and let K be a 
losed 
onvex pointed
one in Y . Assume that there exists a neighbourhood U0 of u0 su
h that all C(u) arenonempty and weakly 
ompa
t for u ∈ U0. If C is upper Hausdor� semi
ontinuous and

K-lower semi
ontinuous at u0 ∈ dom C, then E is lower semi
ontinuous at u0 ∈ dom E .Proof. It is enough to note that by Theorem 1.2.1, (DP) holds for all C(u), u ∈ U0.
3.2. Lower semi
ontinuity of e�
ient points in normed spa
esLet Y = (Y, ‖ · ‖) be a real normed linear spa
e with open unit ball BY .Definition 3.2.1 ([92℄, [93℄). We say that a 
one K ⊂ Y allows plastering K0, where K0is another 
losed 
onvex pointed 
one, if there exists a 
onstant δ > 0 su
h that for ea
h

k ∈ K,
k + δ‖k‖BY ⊂ K0.Proposition 3.2.1. Let K be a 
losed 
onvex pointed 
one in Y . The following areequivalent:(i) there exists a 
losed 
onvex pointed 
one K0 satisfying 
ondition (2.1),(ii) K allows plastering K0,(iii) K has a bounded base.Proof. (i)⇔(ii). If K allows plastering K0, then intK0 6= ∅, K \ {0} ⊂ intK0. For any

ε > 0 and any k ∈ K with ‖k‖ ≥ ε we have k+δεBY ⊂ K0 and K0 satis�es 
ondition (2.1).Suppose now that K0 satis�es 
ondition (2.1). There exists δ > 0 su
h that for k ∈ K,

‖k‖ ≥ 1, we have
k + δBY ⊂ K0.
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ontinuity of e�
ient points in normed spa
es 35Hen
e, for any k ∈ K, k/‖k‖ + δBY ⊂ K0 and 
onsequently, k + b‖k‖BY ⊂ K0, whi
hmeans that K allows plastering K0.(ii)⇒(iii). Suppose that K allows plastering K0. This means that there exists a 
on-tinuous linear fun
tional f ∈ K+
0 whi
h is stri
tly uniformly positive on K, i.e. there exists

δ > 0 su
h that
f(x) ≥ δ‖x‖ for x ∈ K.The set Θ = {x ∈ K : f(x) = 1} is 
learly bounded, 
losed and 
onvex, 0 6∈ Θ, and

K = cone(Θ).(iii)⇒(ii). For the proof of this part see Krasnosel'ski�� [92℄.Let Kα be a Bishop�Phelps 
one, i.e.,
Kα = {y ∈ Y : f(y) ≥ α‖y‖‖f‖},where f is a 
ontinuous linear fun
tional on Y and 0 < α < 1. This is a 
losed 
onvexpointed 
one. If it is nontrivial, then Kα has a bounded base

Θ = {z ∈ K : f(z) = 1}.The following holds true.Proposition 3.2.2. Let Y be a normed spa
e, C a nonempty subset of Y and y0 ∈
EKα

(C). If there exists β < α su
h that y0 ∈ EKβ
(C), then y0 ∈ SPEKα

(C).Proof. By Proposition 3.2.1, the 
one Kβ satis�es 
ondition (2.1). Moreover, for z ∈
Kα, ‖z‖ ≥ ε, and any y ∈ Y we have

f(z + y) = f(z) + f(y) ≥ α‖f‖ · ‖z‖ + f(y)

≥ α‖z + y‖ · ‖f‖ − α‖f‖ · ‖y‖ − ‖f‖ · ‖y‖

≥ ‖f‖ · ‖z + y‖
[
α − (α + 1)‖y‖

ε − ‖y‖

]
.To have α − (α + 1)‖y‖/(ε − ‖y‖) > β we 
hoose

‖y‖ <
(α − β)ε

2α + 1 − β
.By Proposition 3.2.2, Kα allows plastering Kβ , β < α, b = (α − β)/(2α + 1 − β).For Bishop�Phelps 
ones, the following well known result [125℄ gives su�
ient 
ondi-tions for the domination property to hold.Theorem 3.2.1. Let Y be a Bana
h spa
e and C a nonempty 
losed subset of Y. If thereexists a fun
tional f on Y su
h that inf f(C) > −∞, then for any y ∈ C there exists

y0 ∈ C su
h that y0 ∈ y −Kα and y0 ∈ E(C).By Theorem 3.2.1 and Proposition 3.2.2 we obtain the following stability result.Theorem 3.2.2. Let Y be a Bana
h spa
e and C 6= ∅. Assume that there exists a neigh-bourhood U0 of u0 su
h that all the sets C(u) are 
losed and infy∈C(u) f(y) > −∞. If(3.9) EKα
(C) ⊂ cl

( ⋃

β<α

EKβ
(C)

)
,



36 3. Lower 
ontinuity of e�
ient pointsand C is Kα-lower semi
ontinuous and upper Hausdor� semi
ontinuous at u0 ∈ dom C,then E is lower semi
ontinuous at u0 ∈ dom E .Proof. Follows from Theorem 3.2.1, Proposition 3.2.2, and Theorem 3.1.3.Theorem 3.2.2 
an be viewed as a variant of the stability result proved in [5℄.In normed spa
es we have the following variant of Theorem 3.1.3.Theorem 3.2.3. Let Y be a normed spa
e and K a 
losed 
onvex pointed 
one in Y. Let
u0 ∈ dom C and y0 ∈ E(C). Suppose that(3.10) y0 ∈ cl SE(C),and (DP) holds for all C(u) in a 
ertain neighbourhood U0 of u0. If C is K-lower semi-
ontinuous at (u0, y0) ∈ graph C and upper Hausdor� semi
ontinuous at u0, then E islower semi
ontinuous at (u0, y0) ∈ graph E .Proof. By Theorem 2.2.3, ea
h super e�
ient point is stri
tly e�
ient, and by Theorem3.1.1, the assertion follows.Conditions (3.1) of Theorem 3.1.1, (3.4) of Theorem 3.1.3 and (3.10) of Theorem 3.2.3are density type requirements. The density property has been investigated on di�erentlevels of generality and for di�erent notions of proper minimality (e.g., [42℄, [46℄, [123℄,[82℄). Here we make use of the result of Borwein and Zhuang [42℄.We say that a subset C of Y is K-lower bounded if there is a 
onstant M > 0 su
hthat

C ⊂ MBY + K.A subset C ⊂ Y is K-lower bounded if either it is topologi
ally bounded, i.e., C ⊂ MBYfor some positive 
onstant M > 0, or there exists an element z0 ∈ Y su
h that y−z0 ∈ Kfor all y ∈ C.Theorem 3.2.4 (Borwein and Zhuang [42℄). Let Y be a Bana
h spa
e, K ⊂ Y a 
losed
onvex pointed 
one and C ⊂ Y a nonempty subset. Assume that K has a 
losed andbounded base Θ. If either of the following 
onditions is satis�ed, then SE(C) is norm-dense in the nonempty set E(C):(i) C is weakly 
ompa
t,(ii) C is weakly 
losed and K-lower bounded while Θ is weakly 
ompa
t.For 
onvex sets 
ondition (ii) follows from the 
ondition
(ii)′ C is 
onvex and 
losed and K-lower bounded while Θ is weakly 
ompa
t.By Theorems 3.2.4 and 3.1.2 we obtain the following result.Theorem 3.2.5. Let Y be a Bana
h spa
e and let K be a 
losed 
onvex pointed 
one in Y.Assume that K has a 
losed and bounded base Θ. Let C be upper Hausdor� semi
ontinuousand K-lower semi
ontinuous at u0 ∈ dom C and suppose (DP) holds for all C(u) in a
ertain neighbourhood of u0. If either of the following 
onditions is satis�ed, then E islower semi
ontinuous at u0 ∈ dom E :(i) C is weakly 
ompa
t,(ii) C is weakly 
losed and K-lower bounded while Θ is weakly 
ompa
t.
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ontinuity of e�
ient points in normed spa
es 37In view of Theorems 2.3.1 and 2.3.2, we obtain the following results.Theorem 3.2.6. Let K be a 
losed 
onvex 
one with a weakly 
ompa
t base in a normedspa
e Y . Let C be upper Hausdor� semi
ontinuous and K-lower semi
ontinuous at u0 ∈
dom C. If C is 
losed and 
onvex and (DP) holds for all C(u) in a 
ertain neighbourhoodof u0, then E is lower semi
ontinuous at u0 ∈ dom E .Theorem 3.2.7. Let K be a 
losed 
onvex pointed 
one in a normed spa
e Y . Let Cbe upper Hausdor� semi
ontinuous and K-lower semi
ontinuous at u0 ∈ dom C. If C isuniformly rotund and (DP ) holds for all C(u) in a 
ertain neighbourhood of u0, then Eis lower semi
ontinuous at u0 ∈ dom E .We 
lose this se
tion with su�
ient 
onditions for lower Hausdor� semi
ontinuityof the e�
ient point set-valued mapping in whi
h we exploit the (global) modulus ofminimality.Definition 3.2.2. The fun
tion mod : R+ → R+ de�ned as

mod(ε) = inf{νη(ε) : η ∈ E(C)}is 
alled the modulus of stri
t e�
ien
y of C.We have
mod(ε) = inf{‖z − η‖− : z ∈ C \ B(E(C), ε), η ∈ E(C)}.Theorem 3.2.8. Let Y be a normed spa
e and let K be a 
losed 
onvex pointed 
one in

Y. Assume that C : U →→ Y is a set-valued mapping de�ned on a normed spa
e U and
u0 ∈ dom C. If(i) modC(ε) > 0,(ii) (DP) holds for all C(u) in some neighbourhood U1 of u0,(iii) C is Hausdor� 
ontinuous at u0 ∈ dom C,then E is lower Hausdor� semi
ontinuous at u0.Proof. Fix any ε > 0, and y ∈ E(C). By Proposition 2.4.1, y ∈ StE(C), and

((C \ (y + 1
2εBY )) + mod( 1

2ε)BY ) ∩ (y −K) = ∅.Let r(ε) = min
{
mod(ε), 1

2ε
}
. Hen
e,(3.11) ((C \ (y + 1

2εBY )) + 1
2r( 1

2ε)BY ) ∩ (y + 1
2r( 1

2ε)BY −K) = ∅.By the upper Hausdor� semi
ontinuity of C, for u ∈ U0,(3.12) C(u) ⊂ C + 1
2r( 1

2ε)BY

⊂ ((C \ (y + 1
2εBY )) + 1

2r( 1
2ε)BY ) ∪ (y + ( 1

2r( 1
2ε) + 1

2ε)BY )),and by the lower Hausdor� semi
ontinuity of C, for u ∈ U2 there exists y1 ∈ C(u) su
hthat
y1 ∈ y + 1

2r( 1
2ε)BY , y1 −K ⊂ y + 1

2r( 1
2ε)BY −K.By (3.11),

(y1 −K) ∩ ((C(u) \ (y + 1
2ε · BY )) + 1

2r( 1
2ε) · BY ) = ∅.
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ontinuity of e�
ient pointsNow, by (3.12), for u ∈ U2,

(y1 −K) ∩ C(u) ⊂ y + ( 1
2r( 1

2ε) + 1
2ε)BY .Sin
e (DP) holds for C(u), for u ∈ U1 there exists η1 ∈ E(u), u ∈ U1 ∩ U2, su
h that

η1 ⊂ (y1 −K) ∩ C(u) ⊂ y + ( 1
2r( 1

2ε) + 1
2ε)BY ,and sin
e r( 1

2ε) ≤ 1
4ε,

η1 ∈ y + 5
8εBY ⊂ y + εBY .This means that E(C) ⊂ E(u) + εBY for u ∈ U1 ∩ U2, whi
h 
ompletes the proof.



4. LOWER HÖLDER CONTINUITY OF EFFICIENT POINTSUNDER PERTURBATIONS OF A SETIn this 
hapter we formulate su�
ient 
onditions for lower Hölder 
ontinuity and lowerpseudo-Hölder 
ontinuity of E at u0 ∈ dom E and at (u0, y0) ∈ graph E , respe
tively. Basedon an auxiliary proposition we also derive 
riteria for Hölder 
ontinuity and pseudo-Hölder
ontinuity of E .Re
all that C : U →→ Y is a set-valued mapping, C(u0) = C and C(u) = C(u) and
E : U →→ Y is the e�
ient point set-valued mapping, E(u0) = E(C) and E(u) = E(C(u)).Let U = (U, ‖ · ‖) and Y = (Y, ‖ · ‖) be normed spa
es with open unit balls BU and
BY , respe
tively. We say that a set-valued mapping C : U →→ Y is:

• upper Hölder 
ontinuous of order q > 0 at u0 ∈ dom C with 
onstants L > 0 and
t > 0 if

C(u) ⊂ C(u0) + L‖u − u0‖qBY for u ∈ u0 + tBU ,

• lower Hölder 
ontinuous of order q > 0 at u0 ∈ dom C with 
onstants L > 0 and
t > 0 if

C(u0) ⊂ C(u) + L‖u − u0‖qBY for u ∈ u0 + tBU ,

• Hölder 
ontinuous of order q > 0 at u0 ∈ dom C if it is upper and lower Hölder
ontinuous of order q at u0,
• Hölder 
ontinuous of order q > 0 around u0 ∈ dom C with 
onstants L > 0 and

t > 0 if
C(u′) ⊂ C(u) + L‖u′ − u‖qBY for u′, u ∈ u0 + tBU ,

• upper pseudo-Hölder (or Hölder 
alm) of order q > 0 at (u0, y0) ∈ graph C with
0-neighbourhood V0 and positive 
onstants L > 0, t > 0 if

C(u) ∩ V0 ⊂ C(u0) + L‖u − u0‖qBY for u ∈ u0 + tBU ,

• lower pseudo-Hölder of order q > 0 at (u0, y0) ∈ graph C with 0-neighbourhood V0and positive 
onstants L > 0, t > 0 if
C(u0) ∩ V0 ⊂ C(u) + L‖u − u0‖qBY for u ∈ u0 + tBU ,

• pseudo-Hölder of order q > 0 at (u0, y0) ∈ graph C with 0-neighbourhood V0 andpositive 
onstants L > 0, t > 0 if it is upper and lower pseudo-Hölder (u0, y0) ∈
graph C with 0-neighbourhood V0 and positive 
onstants L > 0, t > 0,

• pseudo-Hölder of order q > 0 around (u0, y0) ∈ graph C with 0-neighbourhood V0and positive 
onstants L > 0, t > 0 if
C(u′) ∩ V0 ⊂ C(u) + L‖u′ − u‖qBY for u′, u ∈ u0 + tBU .[39℄



40 4. Lower Hölder 
ontinuity of e�
ient points under perturbations of a setWe say that any of the above properties holds for C in the sense of Lips
hitz if itholds in the sense of Hölder with q = 1. Pseudo-Lips
hitzness around (u0, y0) ∈ graph Cwas introdu
ed in [11℄. Upper Lips
hizness was introdu
ed in [128, 130, 131℄. Clearly, if
C is Hölder 
ontinuous around u0 ∈ dom C, then C is upper and lower Hölder 
ontinuousat u0. If C is pseudo-Hölder 
ontinuous around u0 ∈ dom C, then C is upper and lowerpseudo-Hölder 
ontinuous at u0. For q = 1 the upper pseudo-Hölder 
ontinuity redu
esto 
almness (see [75℄, [91℄). Criteria for 
almness of set-valued mappings 
an be found,e.g., in [74℄. For instan
e, if S(y) = [−s(y), s(y)], where s(y) = 1 +

√
|y|, y ∈ R, then Sis not 
alm at (0, 1) (see [91℄), but it is Hölder 
alm at (0, 1) with order 1/2.The following proposition will be often used in what follows.Proposition 4.0.3. Let U = (U, ‖ · ‖) and Y = (Y, ‖ · ‖) be normed spa
es. For anyset-valued mapping C : U →→ Y the following equivalen
es hold true:(i) C is Hölder around u0 ∈ dom C if and only if it is uniformly upper Hölder onsome neighbourhood U0 of u0,(ii) C is Hölder around u0 ∈ dom C if and only if it is uniformly lower Hölder onsome neighbourhood U0 of u0,(iii) C is pseudo-Hölder around (u0, y0) ∈ graph C if and only if it is uniformly upperpseudo-Hölder at (u0, y0) ∈ graph C on a neighbourhood U0 of u0,(iv) C is pseudo-Hölder around (u0, y0) ∈ graph C if and only if it is uniformly lowerpseudo-Hölder at (u0, y0) ∈ graph C on some neighbourhood U0 of u0.Proof. It is enough to note that for any set-valued mapping C : U →→ Y , C is uniformlyupper (resp. lower) Hölder on a subset U0 ⊂ U if there exist Lc > 0 and tc > 0 su
h thatfor any u ∈ U0,

C(u) ⊂ C(u) + Lc‖u − u‖BY for u ∈ u + tcBU ,(resp.
C(u) ⊂ C(u) + Lc‖u − u‖BY for u ∈ u + tcBU .)Let us prove (ii). Assume that there exists t > 0 su
h that for u ∈ u′ + tBU we have
C(u′) ⊂ C(u) + Lc‖u − u′‖BY for u ∈ u′ + tBU .Hen
e, by taking u, u′ ∈ u0 + (t/2)BU we get u − u′ ∈ tBU and the 
on
lusion follows.Moreover, C is uniformly upper (lower) pseudo-Hölder at (u0, y0) ∈ dom C on a subset

U0 ⊂ U if there exist a 0-neighbourhood V and 
onstants Lc > 0, tc > 0 su
h that forany u ∈ U0,
C(u) ∩ (y0 + V ) ⊂ C(u) + Lc‖u − u‖BY for u ∈ u + tcBU ,(resp.
C(u) ∩ (y0 + V ) ⊂ C(u) + Lc‖u − u‖BY for u ∈ u + tcBU .)Let us prove (iv). Let y0 ∈ C(u0). Assume that C is uniformly lower pseudo-Hölder
ontinuous at (u0, y0) ∈ graphC. There exist a 0-neighbourhood V in Y and t > 0 su
hthat for u ∈ u′ + tBU we have
C(u′) ∩ (y0 + V ) ⊂ C(u) + Lc‖u − u′‖BY for u ∈ u′ + tBU .Hen
e, by taking u, u′ ∈ u0 + (t/2)BU we get u− u′ ∈ tBU and the 
on
lusion follows.



4.1. Lower Hölder 
ontinuity of e�
ient points 414.1. Lower Hölder 
ontinuity of e�
ient pointsThe main result of this se
tion provides su�
ient 
onditions for lower Hölder 
ontinuityof the e�
ient point set-valued mapping E .Theorem 4.1.1. Let K be a 
losed 
onvex pointed 
one in a normed spa
e Y and let Cbe a subset in Y . Assume that(i) there exist β > 0 and q ≥ 1 su
h that
‖y − y‖− ≥ β‖y − y‖q for all y ∈ E(C), y ∈ C,(ii) C is Hölder 
ontinuous of order p ≥ 1 at u0 ∈ dom C with 
onstants Lc > 0 and

0 < tc < 1,(iii) (DP) holds for all C(u), u ∈ u0 + tcBU .Then E is lower Hölder 
ontinuous of order p/q at u0 ∈ dom E . Pre
isely,
E(C) ⊂ E(C(u)) + (Lc + (2Lc/β)1/q)‖u − u0‖p/qBYfor u ∈ u0 + tcBU .Proof. Take any u ∈ u0 + tcBU and y0 ∈ E(C). By (ii), there exists z ∈ C(u) su
h that

z − y0 ∈ Lc‖u − u0‖pBY .If z ∈ E(C(u)), the 
on
lusion follows. If z 6∈ E(C(u)), by (iii), there exists z0 ∈ E(C(u))su
h that z0 ∈ z−K. Again by (ii), there exists y ∈ C su
h that z0−y ∈ Lc‖u−u0‖pBY .Therefore,
y − y0 = (y − z0) + (z0 − z) + (z − y0) ∈ 2Lc‖u − u0‖pBY −K.On the other hand, by (i),

y − y0 6∈ β‖y − y0‖qBY −K,whi
h entails that β‖y − y0‖q ≤ 2Lc‖u − u0‖p and therefore
‖y − y0‖ ≤ (2Lc/β)1/q‖u − u0‖p/q.Finally,

‖y0 − z0‖ ≤ ‖y − y0‖ + ‖y − z0‖ ≤ (Lc + (2Lc/β)1/q)‖u − u0‖p/q,whi
h 
ompletes the proof.In view of Proposition 4.0.3, Theorem 4.1.1 leads to the following 
onditions for Hölder
ontinuity of E around u0.Theorem 4.1.2. Let K be a 
losed 
onvex pointed 
one in a normed spa
e Y and let Cbe a subset in Y . Assume that(i) there exist 0 < t < 1, β > 0 and q ≥ 1 su
h that
‖z − z‖− ≥ β‖z − z‖q for all z ∈ E(C(u)), z ∈ C(u), u ∈ u0 + tBU ,(ii) C is Hölder 
ontinuous of order p ≥ 1 around u0 ∈ dom C with 
onstants Lc > 0and t,(iii) (DP) holds for all C(u), u ∈ u0 + tBU .



42 4. Lower Hölder 
ontinuity of e�
ient points under perturbations of a setThen E is Hölder 
ontinuous of order p/q around u0 ∈ dom E . Pre
isely,
E(C(u′)) ⊂ E(C(u)) + (Lc + (2Lc/β)1/q)‖u − u′‖p/qBYfor u, u′ ∈ u0 + (t/4)BU .Proof. By Theorem 4.1.1, for any u′ ∈ u0 + (t/2)BU ,
E(C(u′)) ⊂ E(C(u)) + (Lc + (2Lc/β)1/q)‖u − u′‖p/qBYfor u ∈ u′ + (t/2)BU . This means that E is uniformly lower Hölder 
ontinuous on

B(u0, t/2). Hen
e, by taking any u, u′ ∈ u0 + (t/4)BU we get u − u′ ∈ (t/2)BU andthe 
on
lusion follows.The following 
orollary is an immediate 
onsequen
e of Theorem 1.2.1.Corollary 4.1.1. Let K be a 
losed 
onvex pointed 
one in a normed spa
e Y and let
C(u) be nonempty weakly 
ompa
t subsets of Y for all u in some neighbourhood of u0. If(i) there exist β > 0 and q ≥ 1 su
h that

‖y − y‖− ≥ β‖y − y‖q for all y ∈ E(C), y ∈ C,(ii) C is Hölder 
ontinuous of order p ≥ 1 at u0 ∈ dom C with 
onstants Lc > 0 and
0 < tc < 1,then E is lower Hölder 
ontinuous of order p/q at u0 ∈ dom E .Now we apply Theorem 4.1.1 to parametri
 ve
tor optimization problems

(Pu)
minK f(u, x)subje
t to x ∈ A(u).For u = u0 we obtain problem (P ),

(P )
minK f(x)subje
t to x ∈ A.We formulate su�
ient 
onditions for lower Hölder 
ontinuity of the performan
e set-valued mapping P : U →→ Y ,

P(u) = E(f(u, ·), A(u))at u0 ∈ domP.To this end we need a te
hni
al lemma. Let f : X → Y be a mapping from a normedspa
e X into a normed spa
e Y . We say that f is Lips
hitz on a subset D ⊂ X with
onstant Lf > 0 if(4.1) ‖f(x′) − f(x)‖ ≤ Lf‖x − x′‖ for x, x′ ∈ D.In parti
ular, f is Lips
hitz around x0 if f satis�es (4.1) for D = x0+tfBX , where tf > 0.We say that f : U ×X → Y is Lips
hitz around {u0}×D with 
onstants Lf > 0 and
tf > 0 if(4.2) ‖f(u′, x′) − f(u, x)‖ ≤ Lf (‖u′ − u‖ + ‖x′ − x‖)for all x′, x ∈ D and u′, u ∈ u0 + tfBU . In parti
ular, f is Lips
hitz around (u0, x0) if fsatis�es (4.2) around {u0} × D, where D is a neighbourhood of x0.



4.2. Lower pseudo-Hölder 
ontinuity of e�
ient points 43Let A : U →→ Y be a set-valued mapping, A(u) = A(u), A(u0) = A. The image of Aunder a mapping f : X → Y is de�ned asAf : U →→ Y ,Af (u) = f(A(u)),Af (u0) = f(A).Clearly, domAf = domA.Proposition 4.1.1. Let X and Y be normed spa
es. Let f : X → Y be Lips
hitz on Xwith 
onstant Lf > 0.(i) If A is lower Hölder 
ontinuous at u0 ∈ domA of order p > 0 with 
onstants
La > 0 and ta > 0, then Af is lower Hölder 
ontinuous at u0 ∈ domA of order
p > 0 with 
onstants LfLa > 0 and ta > 0.(ii) If A is upper Hölder 
ontinuous at u0 ∈ domA of order p > 0 with 
onstants
La > 0 and ta > 0, then Af is upper Hölder 
ontinuous at u0 ∈ domA of order
p > 0 with 
onstants LfLa > 0 and ta > 0.(iii) If A is Hölder 
ontinuous at u0 ∈ domA of order p > 0 with 
onstants La > 0and ta > 0, then Af is Hölder 
ontinuous at u0 ∈ domA of order p > 0 with
onstants LfLa > 0 and ta > 0.In view of Proposition 4.1.1 and Theorem 4.1.1 we obtain the following result.Theorem 4.1.3. Let X and Y be normed spa
es and let K be a 
losed 
onvex pointed
one in Y . Assume that(i) there exists β > 0 and q ≥ 1 su
h that

‖f(x) − f(x)‖− ≥ β‖f(x) − f(x)‖q for all x ∈ S(f, A), x ∈ A,(ii) f is Lips
hitz on X with 
onstant Lf > 0, A is Hölder 
ontinuous of order p ≥ 1at u0 ∈ domA with 
onstants La > 0 and 0 < t < 1,(iii) (DP) holds for all f(A(u)), u ∈ u0 + tBU .Then P is lower Hölder 
ontinuous of order p/q at u0 ∈ domP. Pre
isely,
E(f, A) ⊂ E(f, A(u)) + (LfLa + (2LfLa/β)1/q)‖u − u0‖p/qBY for u ∈ B(u0, t).

4.2. Lower pseudo-Hölder 
ontinuity of e�
ient pointsIn the present se
tion we give su�
ient 
onditions for lower pseudo-Hölder 
ontinuity of
E at (u0, y0) ∈ graph E .Theorem 4.2.1. Let K be a 
losed 
onvex pointed 
one in a normed spa
e Y and let Cbe a subset in Y . Let y0 ∈ E(C). Assume that(i) there exist β > 0 and q ≥ 1 and a 0-neighbourhood V su
h that

‖y − y‖− ≥ β‖y − y‖q for all y ∈ E(C) ∩ (y0 + V ), y ∈ C,(ii) C is lower pseudo-Hölder 
ontinuous of order p ≥ 1 at (u0, y0) ∈ graph C with 0-neighbourhood V and 
onstants Lc > 0, 0 < tc < 1 and upper Hölder 
ontinuousof order p ≥ 1 at u0 ∈ dom C with 
onstants Lc > 0, 0 < tc < 1,(iii) (DP) holds for all C(u), u ∈ u0 + tcBU .



44 4. Lower Hölder 
ontinuity of e�
ient points under perturbations of a setThen E is lower pseudo-Hölder 
ontinuous of order p/q at (u0, y0) ∈ graph E . Pre
isely,
E(C) ∩ (y0 + V ) ⊂ E(C(u)) + (Lc + (2Lc/β)1/q)‖u − u0‖p/qBYfor u ∈ u0 + tcBU .Proof. Take any u ∈ u0 + tcBU and y ∈ E(C) ∩ (y0 + V ). By (ii), there exists z ∈ C(u)su
h that

z − y ∈ Lc‖u − u0‖pBY .If z ∈ E(C(u)), the 
on
lusion follows. Otherwise, by (iii), there exists z ∈ E(C(u)) su
hthat z ∈ z − K. Again by (ii), there exists y ∈ C su
h that z − y ∈ Lc‖u − u0‖pBY .Therefore,
y − y = (y − z) + (z − z) + (z − y) ∈ 2LcBY −K.On the other hand, by (i),

y − y 6∈ β‖y − y‖qBY −K,whi
h gives that β‖y − y‖q ≤ 2Lc‖u − u0‖p and therefore
‖y − y‖ ≤ (2Lc/β)1/q‖u − u0‖p/q.Finally,

‖y − z‖ ≤ ‖y − y‖ + ‖y − z‖ ≤ (Lc + (2Lc/β)1/q)‖u − u0‖p/q,whi
h 
ompletes the proof.By 
ondition (i) of Theorem 4.2.1, all y ∈ E(C)∩(y0+V ) are globally stri
tly e�
ientof order q with the same 
onstant β.Sin
e lower pseudo-Hölder 
ontinuity is of lo
al 
hara
ter the question arises whetherwe 
an prove lower pseudo-Hölder 
ontinuity of E at (u0, y0) by assuming 
ondition (i)for lo
al stri
tly e�
ient points. To this end we need the following de�nition.Let C ⊂ Y be a subset of Y .Definition 4.2.1. The lo
al domination property (LDP) holds for C at y0 ∈ Y if thereexists a 0-neighbourhood V su
h that for any y ∈ C ∩ (y0 + V ) there exists η ∈ E(C) ∩
(y0 + V ) su
h that

η ∈ y −K.

(DP) is equivalent to (LDP) with V = Y . Note that whenever (DP) holds for C, any
y ∈ C ∩ (y0 + V ) is dominated by some η ∈ E(C) but in general η 6∈ E(C) ∩ (y0 + V ).By using (LDP) we formulate the following theorem.Theorem 4.2.2. Let K be a 
losed 
onvex pointed 
one in a normed spa
e (Y, ‖ · ‖). Let
C be a subset in Y and let y0 ∈ E(C). Assume that(i) there exist 
onstants β > 0, q ≥ 1, ts > 0 and a 0-neighbourhood V su
h that

‖y − y‖− ≥ β‖y − y‖q for all y ∈ E(C) ∩ (y0 + V ), y ∈ C ∩ (y + tsBY ),(ii) C is pseudo-Hölder 
ontinuous of order p ≥ 1 at (u0, y0) ∈ graph C with 0-neighbourhood V and 
onstants Lc > 0, 0 < tc < 1,(iii) (LDP) holds for all C(u), u ∈ u0 + tcBU at y0 with a neighbourhood V ⊂
V ∩ 1

2 tsBY .



4.3. Pseudo-Hölder 
ontinuity of e�
ient points 45Then E is lower pseudo-Hölder 
ontinuous of order p/q at (u0, y0) ∈ graph E . Pre
isely,there exists a 0-neighbourhood Ṽ ⊂ V su
h that
E(C) ∩ (y0 + Ṽ ) ⊂ E(C(u)) + (Lc + (2Lc/β)1/q)‖u − u0‖p/qBYfor u ∈ u0 + tcBU .Proof. Take any u ∈ u0 + tcBU . Let Ṽ be any 0-neighbourhood satisfying Ṽ + Lctc ⊂ V .Let y ∈ E(C) ∩ (y0 + Ṽ ). By (ii), there exists z ∈ C(u) su
h that

z − y ∈ Lc‖u − u0‖pBY .Clearly, z − y0 ⊂ Ṽ + LctcBY ⊂ V . By (iii), there exists z ∈ E(C(u)) ∩ (y0 + V ) su
hthat z ∈ z −K. Sin
e z − y0 ∈ V ⊂ V , by (ii), there exists y ∈ C su
h that
z − y ∈ Lc‖u − u0‖pBYand y−y0 = (y−z)+(z−y0) ∈ LctcBY +V . If y = y, the 
on
lusion follows. So, assumethat y 6= y. We have

y − y = (y − z) + (z − z) + (z − y) ∈ 2LcBY −Kand y − y = (y − y0) + (y0 − y) ∈ LctcBY + V + Ṽ ⊂ V + V ⊂ tsBY . Hen
e, by (i),
y − y 6∈ β‖y − y‖qBY −K,whi
h yields the inequality β‖y − y‖q ≤ 2Lc‖u − u0‖p and therefore

‖y − y‖ ≤ (2Lc/β)1/q‖u − u0‖p/q.Finally,
‖y − z‖ ≤ ‖y − y‖ + ‖y − z‖ ≤ (Lc + (2Lc/β)1/q)‖u − u0‖p/q,whi
h 
ompletes the proof.
4.3. Pseudo-Hölder 
ontinuity of e�
ient pointsIn this se
tion we formulate su�
ient 
onditions for pseudo-Hölder 
ontinuity of e�
ientpoints under perturbations of sets.Theorem 4.3.1. Let K be a 
losed 
onvex pointed 
one in a normed spa
e Y . Let C bea nonempty subset in Y and y0 ∈ E(C). Assume that(i) there exist a 0-neighbourhood V and 
onstants 0 < t < 1, β > 0, q ≥ 1, ts > 0su
h that

‖z−z‖−≥β‖z−z‖q for z∈E(C(u))∩(y0+V ), z∈C(u)∩(z+tsBY ), u∈u0+tBU ,(ii) C is Hölder 
ontinuous of order p ≥ 1 around u0 ∈ dom C with 
onstants Lc > 0and t,(iii) (LDP) holds for all C(u) for u ∈ u0 + tBU with a 0-neighbourhood V ⊂ 1
2 tsBY .Then E is pseudo-Hölder 
ontinuous of order p/q at (u0, y0) ∈ graph E . Pre
isely, there



46 4. Lower Hölder 
ontinuity of e�
ient points under perturbations of a setexists a 0-neighbourhood Ṽ su
h that
E(C(u′)) ∩ (y0 + Ṽ ) ⊂ E(C(u)) + (Lc + (2Lc/β)1/q)‖u′ − u‖p/qBYfor u, u′ ∈ u0 + t/4BU .Proof. It is enough to note that under the assumptions, for any u′ ∈ u0 + t/2BU ,
E(C(u′)) ∩ (y0 + Ṽ ) ⊂ E(C(u)) + (Lc + (2Lc/β)1/q)‖u − u′‖p/qBYfor u ∈ u′ + t/2BU . This means that E is uniformly lower pseudo-Hölder at (u0, y0) ∈

graph E . The 
on
lusion follows by Proposition 4.0.3.In parti
ular, Theorem 4.3.1 gives rise to the following 
onditions for upper pseudo-Hölder 
ontinuity of E at (u0, y0) ∈ graph E .Theorem 4.3.2. Let K be a 
losed 
onvex pointed 
one in a normed spa
e Y . Let C bea subset in Y and y0 ∈ E(C). Assume that(i) there exist a 0-neighbourhood V and 
onstants 0 < t < 1, β > 0, q ≥ 1, ts > 0su
h that
‖z − z‖− ≥ β‖z − z‖q for z ∈ E(C(u)) ∩ (y0 + V ), z ∈ C(u) ∩ (z + tsBY ),

u ∈ u0 + tBU ,(ii) C is Hölder 
ontinuous of order p ≥ 1 at u0 ∈ dom C with 
onstants Lc > 0and t,(iii) (LDP) holds for C with a 0-neighbourhood V ⊂ 1
2 tsBY .Then E is upper pseudo-Hölder 
ontinuous of order p/q at (u0, y0) ∈ graph E . Pre
isely,there exists a 0-neighbourhood Ṽ su
h that

E(C(u)) ∩ (y0 + Ṽ ) ⊂ E(C) + (Lc + (2Lc/β)1/q)‖u − u0‖p/qBYfor u ∈ u0 + tBU .



5. CONTAINMENT PROPERTYLet C be a subset of a Hausdor� topologi
al ve
tor spa
e Y equipped with a 
losed
onvex pointed 
one K. The domination property (DP) holds for C if C ⊂ E(C) + K.Conditions ensuring the domination property 
an be found in [72, 106, 124, 149℄. For ave
tor optimization problem
(P )

minK f(x)subje
t to x ∈ Athe domination property (DP) holds if f(A) ⊂ E(f, A) + K. It says that for ea
h x ∈ Athere exists x0 ∈ S(f, A) su
h that f(x) − f(x0) ∈ K. Let us note that if f : X → R,the set ER+
(f, A) 
onsists of at most a single element and the domination propertyholds whenever the solution set is nonempty. This one-dimensional fa
t was generalizedto �nite-dimensional spa
es Y = R

m by Henig [72℄ who proved that for K-
onvex and
K-
losed sets C the domination property (DP) is equivalent to E(C) 6= ∅.

5.1. Containment propertyLet Y be a Hausdor� topologi
al ve
tor spa
e and let K be a 
losed 
onvex pointed 
onein Y . Let C be a subset of Y . For any 0-neighbourhood W in Y , de�ne
C(W ) := C \ (E(C) + W ).Definition 5.1.1 ([16℄). We say that the 
ontainment property (CP) holds for C if forevery 0-neighbourhood W there exists a 0-neighbourhood O su
h that(5.1) C(W ) + O ⊂ E(C) + K.Clearly, if C 6= ∅ and (CP) holds for C, then E(C) 6= ∅ and(5.2) C ⊂ cl E(C) + K,where cl(·) stands for the 
losure of a set. Indeed, if y ∈ C \ clE(C) there exists a 0-neighbourhood W su
h that y 6∈ E(C)+W and hen
e, by (CP), y ∈ E(C)+K. In Se
tion5.1.2 we give examples of sets for whi
h (CP) does not hold.Proposition 5.1.1. Let intK 6= ∅ and let C be a subset of Y . If (CP) holds for C, then

WE(C) ⊂ cl E(C).Proof. On the 
ontrary, suppose that there is y ∈ WE(C) \ clE(C). Hen
e, (y− intK)∩
C = ∅ and
(∗) (y − intK) ∩ (E(C) + K) = ∅.[47℄



48 5. Containment propertySin
e y 6∈ cl E(C) and Y is Hausdor�, by (CP), there exists a 0-neighbourhood O in Ysu
h that y + O ⊂ E(C) + K and 
onsequently (y − intK) ∩ (E(C) + K) 6= ∅, whi
h
ontradi
ts (∗).If C is 
losed, WE(C) is 
losed (Theorem 1.1 of [105℄, p. 136), and hen
e clE(C) ⊂
WE(C). Hen
e, by Proposition 5.1.1 we obtain the following 
orollary.Corollary 5.1.1. Let C be a 
losed subset of Y . Assume that intK 6= ∅. If (CP) holdsfor C, then WE(C) = cl E(C). If (CP) holds for C and E(C) = WE(C), then (DP)holds for C.Proposition 5.1.2. Let intK 6= ∅ and let C be a nonempty 
ompa
t subset of Y . Thefollowing 
onditions are equivalent:(i) (CP) holds for C,(ii) clE(C) = WE(C).Proof. (ii)⇒(i). In view of 
ompa
tness of C, by Theorem 1 of [40℄, (DP) holds for C.Let W be a 0-neighbourhood. Take any y ∈ C(W ). Sin
e y 6∈ WE(C), by (DP), thereexist k1 ∈ intK, k ∈ K, and η ∈ E(C) su
h that y = η + k, k = k1 + k ∈ intK. Hen
e,for any y ∈ C(W ) there exists a 0-neighbourhood Oy su
h that y + k + Oy ⊂ E(C) +K.The family {Oy}y∈C(W ) forms a 
overing of C(W ). Sin
e C(W ) is 
ompa
t, this 
overing
ontains a �nite sub
overing O1, . . . , Or and by putting O =

⋂r
i=1 Or, (i) follows.(i)⇒(ii). Follows from Corollary 5.1.1.The following proposition gives a 
hara
terization of (CP) whenever intK 6= ∅.Proposition 5.1.3. Let K be a 
losed 
onvex pointed 
one in Y with intK 6= ∅, and let

C be a subset of Y . The following statements are equivalent:(i) (CP) holds for C,(ii) for ea
h 0-neighbourhood W there exists a 0-neighbourhood O su
h that:(C) for any y ∈ C(W ) there is η ∈ E(C) satisfying(5.3) (y − η) + O ⊂ K.Proof. (i)⇒(ii). For any 0-neighbourhood O de�ne
KO = {k ∈ K : k + O ⊂ K}.Clearly, intK =

⋃
O∈N KO. We show that for any 0-neighbourhood Q there exists a

0-neighbourhood O su
h that(5.4) (E(C) + K)Q ⊂ E(C) + KO,where (E(C) + K)Q = {y ∈ Y : y + Q ⊂ E(C) + K}. Indeed, let c ∈ (E(C) + K)Q. Thismeans that c+Q ⊂ E(C)+K. Sin
e 0 ∈ cl(−K), for any 0-neighbourhood Q there existsa 0-neighbourhood O su
h that Q ∩ (−KO) 6= ∅. Thus there exists q ∈ Q ∩ (−KO) su
hthat c + q ∈ E(C) + K, i.e., c ∈ E(C) + KO By (i), for ea
h 0-neighbourhood W thereexists a 0-neighbourhood Q su
h that for any y ∈ C(W ), y ∈ (E(C)+K)Q, and by (5.4),for some 0-neighbourhood O, y ∈ E(C) + KO.(ii)⇒(i). Obvious.



5.1. Containment property 49Although in De�nition 5.1.1 we do not assume expli
itly that intK 6= ∅, this as-sumption is essential for the 
hara
terization of (CP) given in Proposition 5.1.3. In turn,Proposition 5.1.3 is exploited in stability theorems of next se
tions. However, in someimportant spa
es, the 
ones of nonnegative elements may have empty interiors. This isthe 
ase, for example, in the spa
e of integrable fun
tions Lp(Ω), 1 ≤ p < ∞, for the
one KLp(Ω) of nonnegative elements
KLp(Ω) = {f ∈ Lp(Ω) : f ≥ 0 almost everywhere in Ω},as well as in the spa
e ℓp, 1 ≤ p < ∞, of summable sequen
es s = (si) for the 
one

Kℓp(Ω) = {s ∈ ℓp : si ≥ 0}(see [82℄).5.1.1. Containment property in normed spa
es. Let Y = (Y, ‖ · ‖) be a normedspa
e with open unit ball BY . For any subset C of Y , set d(y, C) = inf{‖y − c‖ :

c ∈ C}, B(C, ε) = {y ∈ Y : d(y, C) < ε}. For ε > 0 put
C(ε) := C \ B(E(C), ε).Then (CP) holds for C if for any ε > 0 there is δ > 0 su
h that
C(ε) + δBY ⊂ E(C) + K.Let (Y, ‖ · ‖) be a Bana
h spa
e and let f ∈ Y ∗, ‖f‖ = 1. For any 0 < α ≤ 1 the 
one

Kα = {y ∈ Y : f(y) ≥ α‖y‖}is the Bishop�Phelps 
one (
f. Se
tion 3.2 and De�nition 2.9 of [124℄). It is a 
losed 
onvexpointed 
one with nonempty interior intKα = {y ∈ Y : f(y) > α‖y‖}. Moreover, Kα hasa bounded base Θ = {k ∈ Kα : f(k) = 1}. Bishop�Phelps 
ones were investigated e.g.in [123℄, where it is shown that in normed spa
es for any 
onvex 
one Ω with a 
losedbounded base there exist an equivalent norm and a fun
tional f su
h that Ω 
an berepresented as a Bishop�Phelps 
one.Theorem 5.1.1. Let C be a 
onvex subset of Y . The following statements are equivalent:(i) (CP) holds for C with respe
t to Kα,(ii) for ea
h ε > 0 there exists 1 > β > α su
h that C(ε) ⊂ EKα
(C) + Kβ.Proof. (i)⇒(ii). Let ε > 0. By (CP), there exists δ > 0 su
h that

C(ε) + δBY ⊂ EKα
(C) + Kα.Sin
e C is 
onvex, for any y ∈ C(ε) and η ∈ EKα
(C),

z = η +
ε

‖y − η‖ (y − η) ∈ C, ‖z − η‖ = ε.By Proposition 5.1.3, there exists η ∈ EKα
(C) su
h that z−η±w ⊂ Kα for any ‖w‖ < δ.Consequently, f(z − η ± w) ≥ α‖f‖ ‖z − η ± w‖ and

f(z − η) − |f(w)| ≥ αε‖f‖ − αδ‖f‖.Hen
e
f(z − η) ≥ αε‖f‖ − αδ‖f‖ + δ sup

w∈δBY

|f(w/δ)|,



50 5. Containment propertyand
f(z − η) ≥ αε‖f‖ − αδ‖f‖ + δ‖f‖ = ε‖f‖(α − αδ/ε + δ/ε).By taking β = α + (δ/ε)(1 − α) we obtain (ii).(ii)⇒(i). Let ε > 0. By (ii), there exists β > α su
h that C(ε) ⊂ EKα

(C)+Kβ. Hen
e,for any y ∈ C(ε) there exists η ∈ EKα
(C) su
h that

f(y − η) ≥ β‖f‖ ‖y − η‖.For any w ∈ Y, we have f(y − ηy − w) = f(y − ηy) − f(w) ≥ β‖f‖ ‖y − ηy‖ − f(w), and
onsequently
f(y − η − w) ≥ β‖f‖ ‖y − η − w + w‖ − ‖f‖ ‖w‖

≥ ‖f‖ ‖y − η − w‖
[
β − β‖w‖ + ‖w‖

‖y − η − w‖

]

≥ ‖f‖ ‖y − η − w‖
[
β − β‖w‖ + ‖w‖

ε − ‖w‖

]
.By taking

‖w‖ <
ε(β − α)

2β − α + 1we obtain
‖f‖ ‖y − η − w‖

[
β − β‖w‖ + ‖w‖

ε − ‖w‖

]
≤ β − αand 
onsequently f(y − η − w) ≥ α‖f‖ ‖y − η − w‖, whi
h implies (CP).5.1.2. Containment property in �nite-dimensional spa
es. Let Y = (Rm, ‖ ·‖) bethe m-dimensional spa
e. Let K be a 
losed 
onvex 
one in Y . If K is pointed it admitsa 
ompa
t base (see [123℄).

Fig. 5.1. Containment property for the set C with respe
t to the nonnegative 
one R
2
+



5.1. Containment property 51Let C ⊂ R
m. Note that E(C) need not be 
losed even if C is 
onvex and 
losed(
f. [3℄). Hen
e, even for 
losed 
onvex sets of a �nite-dimensional spa
e, (CP) does notimply (DP). We start by investigating relationships between the two properties.Theorem 5.1.2. Let K be a 
losed 
onvex pointed 
one in R

m with intK 6= ∅. Let C bea 
losed 
onvex subset of R
m su
h that cl E(C) is 
ompa
t. If cl E(C) = WE(C) and

(DP) holds for C, then (CP) holds for C.Proof. The set clE(C) + K is 
losed and 
onvex, sin
e clE(C) is 
ompa
t and C + K =

clE(C) + K.Suppose on the 
ontrary that (CP) does not hold for C. There exist ε0 > 0 andsequen
es (zn), (yn) su
h that zn ∈ C(ε0), yn ∈ B(zn, 1/n), and yn 6∈ cl E(C) + K. By
(DP), zn = ηn + kn, where ηn ∈ E(C), kn ∈ K, ‖kn‖ > ε0.Let Θ be a 
ompa
t base of K. We have M0 ≤ ‖θ‖ ≤ M for any θ ∈ Θ and some
M0, M > 0. Moreover, kn = λnθn with λn > 0 and θn ∈ Θ. Sin
e ε0 < ‖zn − ηn‖ =

λn‖θn‖ ≤ λnM, the sequen
e (βn), βn = 1/λn, is bounded. We 
an assume that 0 <

βn ≤ 1. By 
onvexity of C,
ηn + θn = βnzn + (1 − βn)ηn ∈ A.Sin
e cl E(C) is 
ompa
t, (ηn) 
ontains a 
onvergent subsequen
e with limit point η ∈

clE(C). We 
an assume that (ηn) 
onverges to η ∈ C and (θn) 
onverges to θ ∈ Θ. Thesequen
e (rn), rn = ηn + θn, tends to r = η + θ ∈ C. Clearly, r 6∈ clE(C).We must have r ∈ WE(C). Indeed, if (r− intK)∩C 6= ∅, then r = y+k, where y ∈ Cand k ∈ intK. Hen
e, k + ε̃BY ⊂ K for some ε̃ > 0 and
zn = r + (rn − r) + (λn − 1)θn = y + k + (rn − r) + (λn − 1)θn = y + kn,where kn ∈ k + (ε̃/2)BY ⊂ K for all n su�
iently large. Consequently, yn = zn + (yn −

zn) = y + pn, pn ∈ k + (ε̃/3)BY ⊂ K for all n su�
iently large, whi
h 
ontradi
ts the
hoi
e of yn. Hen
e, r ∈ WE(C) \ cl E(C), whi
h is impossible.One 
an easily give examples showing that in the above proposition the equality
clE(C) = WE(C) 
annot be dropped.Example 5.1.1. Let K = R

2
+ = {(y1, y2) : y1, y2 ≥ 0} and

C = {(y1, y2) : 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1}.Here E(C) = {(0, 0)}, WE(C) = {(y1, y2) ∈ C : y1 = 0 or y2 = 0}, (DP) holds for C and
(CP) does not.Note that 
onvexity and 
losedness of C 
annot be weakened respe
tively to K-
onvexity and K-
losedness. The following theorem provides a further re�nement of theabove theorem.Theorem 5.1.3 ([34, 72℄, see also [105℄). Let K be a 
losed 
onvex 
one in R

m. Let C bea K-
onvex and K-
losed subset of R
m. The following statements are equivalent:(i) (DP) holds for C,(ii) E(C) 6= ∅.As a 
onsequen
e of this result we obtain the following 
orollary.



52 5. Containment propertyCorollary 5.1.2. Let K be a 
losed 
onvex pointed 
one in R
m with intK 6= ∅. Let

C be a 
losed 
onvex subset of R
m with cl E(C) 
ompa
t. The following 
onditions areequivalent:(i) E(C) 6= ∅, cl E(C) = WE(C),(ii) (CP) holds for C.Proof. This follows from Theorem 5.1.2 and Corollary 3 of [72℄.Consider now the 
ase where C ⊂ R

m is polyhedral , i.e., C is the solution set to asystem of a �nite number of linear inequalities,(5.5) C = {y ∈ R
m : 〈bi, y〉 ≤ ci, i ∈ I}.In this 
ase we prove an analogue of Theorem 5.1.2 without assuming 
ompa
tness of

E(C). The re
ession 
one Rec(C) of C is given by the system of homogeneous inequalities,
Rec(C) = {y ∈ R

m : 〈bi, y〉 ≤ 0, i ∈ I},and E(C) 6= ∅ if and only if Rec(C) ∩ (−K) = {0} (Th. 3.18 of Ch. 1 of [105℄).To make the presentation self-
ontained we prove 
losedness of E(C) and of E(C)+Kwhenever C is a polyhedral set. Usually, the 
losedness of E(C) is proved as a 
onsequen
eof the s
alarization of linear multiple obje
tive optimization problems with polyhedral
ones. Here we prove the 
losedness of E(C) dire
tly for any 
losed 
onvex 
one K. Re
allthat the lineality spa
e ℓ(K) of K is de�ned as ℓ(K) = K ∩ (−K).Proposition 5.1.4. If C is a polyhedral subset of R
m given by (5.5) and K ⊂ R

m is a
losed 
onvex 
one, then E(C) is 
losed.Proof. Suppose on the 
ontrary that E(C) is not 
losed. There exists a sequen
e ofe�
ient points (ηn) ⊂ E(C) whi
h 
onverges to η ∈ C and η 6∈ E(C). Hen
e, there is an
η ∈ C su
h that η − η ∈ K \ ℓ(K).Passing to a subsequen
e if ne
essary, one 
an �nd a subset I1 ⊂ I su
h that

〈bi, ηn〉 = ci, i ∈ I1, and 〈bi, ηn〉 < ci, i ∈ I \ I1.Hen
e, 〈bi, η〉 = ci and 〈bi, η〉 ≥ 〈bi, η〉 for i ∈ I1. Moreover, 〈bi, η〉 > 〈bi, η〉 for some
i ∈ I \ I1 sin
e otherwise 0 6= −k = η − η ∈ Rec(C). Thus, there are two index subsets
I2, I3 ⊂ I with I3 6= ∅ su
h that

〈bi, η − η〉 ≤ 0, i ∈ I2 ⊃ I1, and 〈bi, η − η〉 > 0, i ∈ I3.For ea
h n ≥ 1 put
γn = min

i∈I3

ci − 〈bi, ηn〉
〈bi, η − η〉 > 0,and 
onsider wn = ηn + γn(η − η). We have wn ∈ C and wn − ηn ∈ (−K) \ ℓ(K). This
ontradi
ts the e�
ien
y of ηn.Proposition 5.1.5. For any polyhedral set C ⊂ R

m given by (5.5) and any 
losed 
onvexpointed 
one K in R
m the set E(C) + K is 
losed.Proof. If E(C) = ∅, the set E(C)+K is empty, hen
e 
losed. Assume that E(C) 6= ∅ andlet Θ ⊂ K be a base of K.



5.1. Containment property 53Consider any 
onvergent sequen
e (zn) ⊂ E(C) + K, limn zn = z. We have zn =

xn + λnθn, where xn ∈ E(C), θn ∈ Θ and λn ≥ 0. In view of the 
ompa
tness of Θ,without loss of generality, we may assume that the sequen
e (θn) 
onverges to θ ∈ Θ.We start by showing that under our assumptions, (λn) 
ontains a bounded subse-quen
e. Indeed, if λn → +∞, then
1

λn
(xn + λnθn) =

1

λn
xn + θn → 0,and limn

1
λn

xn = −θ sin
e θn → θ 6= 0. On the other hand,
〈

bi,
1

λn
xn

〉
≤ 1

λn
ci, i ∈ I,and, by passing to the limit, 〈bi,−θ〉 ≤ 0, i.e., −θ ∈ Rec(C) ∩ (−K), whi
h 
ontradi
tsthe assumption that E(C) 6= ∅ (see the remark above).Consequently, (λn) 
ontains a 
onvergent subsequen
e (λnℓ

), λnℓ
→ λ ≥ 0. Moreover,

λnℓ
θnℓ

→ k ∈ K and xnℓ
→ x ∈ E(C) sin
e E(C) is 
losed by Proposition 5.1.4. Finally,

z = x + k ∈ E(C) + K.If E(C) = WE(C) and (DP) holds for C, then(5.6) C ⊂ WE(C) + intK ∪ {0}.Theorem 5.1.4. Let K be a 
losed 
onvex pointed 
one in R
m. Let C ⊂ R

m be a polyhe-dral set of the form (5.5). The following statements are equivalent:(i) (DP ) holds for C and E(C) = WE(C),(ii) (CP) holds for C.Proof. The impli
ation (ii)⇒(i) is immediate. To prove that (i)⇒(ii) suppose on the
ontrary that (CP) does not hold for C. There exist ε0 > 0 and a sequen
e (yn) ⊂ C(ε0)su
h that B(yn, 1/n) ∩ (C + K)c 6= ∅. Consequently, one 
an 
hoose a sequen
e (zn) ⊂
∂(E(C) + K), where ∂(·) stands for the boundary, with limn(yn − zn) = 0. If zn ∈ Cfor at least one n ≥ 1, then zn ∈ WE(C) \ E(C), a 
ontradi
tion. Hen
e, zn 6∈ C for all
n ≥ 1 and(5.7) (zn −K) ∩ (E(C) + K) ⊂ ∂(E(C) + K).By Proposition 5.1.5, E(C) +K is 
losed, and hen
e, zn = ηn + λnθn, where ηn ∈ E(C),
θn ∈ Θ and λn ≥ 0. Moreover, sin
e there exists M > 0 su
h that ‖θ‖ ≤ M , we have

λnM ≥ λn‖θn‖ = ‖zn − ηn‖ > ε0and λn > ε0/M . We 
an assume that λn > 1.Sin
e zn 6∈ C, there is a subset I1 of the index set I su
h that
〈bi, zn〉 > ci for i ∈ I1 and 〈bi, zn〉 ≤ ci for i ∈ I \ I1.We 
laim that there exist an in�nite subset N1 ⊂ N and an index i ∈ I1 su
h that

〈bi, ηn〉 = ci for n ∈ N1. Indeed, if 〈bi, ηn〉 < ci for all n ≥ 1 and i ∈ I1, then
βn =

1

2
min
i∈I1

ci − 〈bi, ηn〉
〈bi, θn〉

> 0.



54 5. Containment propertyClearly, λn > (ci − 〈bi, ηn〉)/〈bi, θn〉 > βn for all i ∈ I1 and n ≥ 1. There is a subset
I2 ⊂ I su
h that 〈bi, θn〉 > 0 for i ∈ I2, and 〈bi, θn〉 ≤ 0 for i ∈ I \ I2, where I1 ⊂ I2.Hen
e,
〈bi, zn − (λn − βn)θn〉 =





〈bi, ηn〉 + βn〈bi, θ〉 ≤ 〈bi, ηn〉 + ci−〈bi,ηn〉
〈bi,θn〉 〈bi, θn〉 = ci, i ∈ I1,

〈bi, ηn〉 + βn〈bi, θn〉 ≤ 〈bi, ηn〉 + λn〈bi, θn〉 ≤ ci, i ∈ I2 \ I1,

〈bi, ηn〉 ≤ ci, i ∈ I \ I2.This means that wn = zn − (λn − βn)θn ∈ C ∩ (zn −K), and by (5.6),
wn ∈ E(C) + intK ⊂ int(E(C) + K),
ontrary to (5.7). This proves that 〈bi, ηn〉 = ci for some i ∈ I1 and n ∈ N1 ⊂ N .By letting Hi = {y ∈ R

m : 〈bi, y〉 = ci} we get
‖yn − zn‖ ≥ d(zn, Hi) =

〈bi, zn〉 − ci√
(bi)2

=
λn〈bi, θn〉√

(bi)2
,whi
h implies that λn → 0. This is a 
ontradi
tion.Theorem 5.1.5. Let K be a 
losed 
onvex pointed 
one in R

m. Let C ⊂ R
m be a polyhe-dral set of the form (5.5). The following statements are equivalent:(i) Rec(C) ∩ (−K) = {0} and E(C) = WE(C),(ii) (CP) holds for C.Proof. See [31℄.

5.2. Dual 
ontainment propertyIn this se
tion we de�ne the dual 
ontainment property (DCP) whi
h in some instan
esprovides a dual 
hara
terization of (CP).Let K be a 
losed 
onvex pointed 
one in a lo
ally 
onvex spa
e Y and let K∗ be itsdual with base Θ∗. Let C be a subset of Y .Definition 5.2.1. The dual 
ontainment property (DCP) holds for C with respe
t to
Θ∗ if for every 0-neighbourhood W there exists δ > 0 for whi
h the following 
onditionholds:(C1) for ea
h y ∈ C(W ) there exists ηy ∈ E(C) satisfying

θ∗(y − ηy) > δ for ea
h θ∗ ∈ Θ∗.Note that if θ∗(y − ηy) > δ for some positive δ > 0 and all θ∗ ∈ Θ∗, then y − ηy ∈ Ki,where Ki is de�ned in Se
tion 1.1. In the spa
es ℓp, Lp(Ω), p ≥ 1, the quasi-interior Ki
+of the positive 
one K+,

Ki
+ = {k ∈ K+ : f(k) > 0 for f ∈ K∗

+ \ {0}}.
oin
ides with the set of weak order units (see [122, p. 184℄), i.e., for any y0 ∈ Ki
+ and any

y ∈ K+, y 6= 0, there exists z ∈ K+, z 6= 0, su
h that z � y0 and z � y. Chara
terizationsof quasi-interiors of 
ones of nonnegative elements are given by Peressini (see [122, Ex. 4.4,p. 186℄).



5.2. Dual 
ontainment property 55Example 5.2.1. 1. Let Y = R
m, K ⊂ Y be a 
losed 
onvex pointed 
one. For any 
onvexset C in Y , core(C) 
oin
ides with int C. Hen
e, for K = {(y1, y2) : y1 ≥ 0, y1 = y2} weget K∗ = {(f1, f2) : f2 ≥ −f1} and Ki = ∅.2. For any p ∈ [1,∞) 
onsider the sequen
e spa
e ℓp of sequen
es s = (si) with realterms,

ℓp =
{

s = (si) :

∞∑

i=1

|si|p < ∞
}

,with the natural ordering 
one
ℓp
+ = {s = (si) ∈ ℓp : si ≥ 0}.The ordering 
one ℓp

+ has empty topologi
al interior and empty algebrai
 interior, core(ℓp
+)

= ∅. But (ℓp
+)i = {s = (si) ∈ ℓp : si > 0}.3. For any p ∈ [1,∞), 
onsider the spa
e of all Lebesgue p-integrable fun
tions f :

Ω → R with the natural ordering 
one
Lp

+ = {f ∈ Lp : f(x) ≥ 0 almost everywhere on Ω}.The topologi
al interior int(Lp
+) and core(Lp)+ are both empty but (Lp

+)i 6= ∅. To seethis re
all that
(Lp

+)i =
{
f ∈ Lp :

\
Ω

fg dµ > 0 for all g ∈ Lq
+ \ {0}

}
,

1/p + 1/q = 1, and
(Lp

+)i = {f ∈ Lp : f(x) > 0 almost everywhere on Ω}.We say that the dual 
ontainment property (DCP) holds for C if there exists a base
Θ∗ of K∗ su
h that (DCP) holds for C with respe
t to Θ∗. If intK 6= ∅ and e ∈ intK,then Θ∗ = {f ∈ K∗ : f(e) = 1} (see Theorem 1.1.1 of Se
tion 1.1) is a base of K∗. Let
y0 ∈ Ki. Re
all that the standard base of K∗ related to y0 has the form(5.8) Θ∗(y0) = {θ∗ ∈ K∗ : θ∗(y0) = 1}.We have the following proposition.Proposition 5.2.1. Let Y be a Hausdor� topologi
al ve
tor spa
e with a 
losed 
onvex
one K ⊂ Y . Assume that (DCP) holds for C with respe
t to a standard base Θ∗(y0)of K∗, y0 ∈ Ki. Then(i) (DCP) holds for C with respe
t to any standard base Θ∗(y) of K∗, y ∈ Ki, where

y0 ∈ ̺ · y + K, ̺ > 0,(ii) if Θ∗(y0) is bounded, (DCP) holds for C with respe
t to any standard base Θ∗(y),
y ∈ Ki, of K∗.Proof. (i) For ea
h θ∗ ∈ Θ∗(y) there is θ∗0 ∈ Θ∗(y0) su
h that(5.9) θ∗(k) = θ∗(y0)θ

∗
0(k) for all k ∈ K.Sin
e y0 = ̺·y+k0, k0 ∈ K, we get θ∗(y0) = ̺+θ∗(k0) ≥ ̺. Hen
e, θ∗(k) = θ∗(y0)θ

∗
0(k) ≥

̺θ∗0(k) and the 
on
lusion follows.



56 5. Containment property(ii) By (5.9), 1 = θ∗0(y)θ∗(y0). Sin
e Θ∗(y0) is bounded, there exists m0 > 0 su
hthat θ∗0(y) ≤ m0 and θ∗(y0) = 1/θ∗0(y) ≥ 1/m0 for some m0 > 0 and, as previously, the
on
lusion follows.In lo
ally 
onvex spa
es, if (DCP) holds for C, then(5.10) C ⊂ cl E(C) + K.Indeed, if y ∈ C \ cl E(C) there exists ε > 0 su
h that y 6∈ B(E(C), ε). By (DCP),there exist η ∈ E(C) and δ > 0 su
h that θ∗(y − η) > δ for ea
h θ∗ ∈ Θ∗ and hen
e
y − η ∈ Ki ⊂ K.When Y is an order 
omplete ve
tor latti
e of e�
ient type (see [140, Ch. V, p. 213℄),any point k ∈ Ki is proved to be a quasi-interior point of K, where k ∈ K is said to bea quasi-interior point of K if the order interval [0, k] is a total subset of Y in the sensethat its linear hull is dense in Y (see S
haefer [140, Ch. V. 8, Th. 7.7℄, and Peressini [122,Ch. 4.4℄). Moreover, ea
h k ∈ Ki is a weak order unit (see [122℄), i.e., for ea
h y ∈ K thereexists z ∈ K with z �K y and z �K k.Example 5.2.2. Let Y = (R2, ‖ · ‖) and let K = {(y1, y2) : y1 ≥ 0}. Let C = {(y1, y2) :

|y1| + |y2| ≤ 1}. We have K∗ = {(f1, f2) : f1 ≥ 0, f2 = 0} and E(C) = {(−1, 0)}.Consider Θ∗ = {(f1, f2) ∈ K∗ : f1 = 1}. Take ε > 0. For any (y1, y2) ∈ C(ε) we have
y1 ≥ −1+

√
ε/2 and hen
e, for any θ∗ ∈ Θ∗, we have θ∗(y1 +1, y2) = y1 +1 ≥

√
ε/2 = δand (DCP) holds.Example 5.2.3. Let Y, K, and Θ∗ be as in the previous example. Let C = {(y1, y2) :

max{|y1|, |y2|} ≤ 1} \ {(y1, y2) : y1 = 1,−1 < y2 ≤ 1}. We have E(C) = {(−1,−1)},
(DCP) does not hold for Θ∗ sin
e for yn = (−1+1/n, 1) ∈ C we have θ∗(yn−(−1,−1)) =

1/n → 0.Example 5.2.4. Let Y = ℓ1 and K = ℓ+1 . We have (ℓ+1 )i = {y = (yi) ∈ ℓ1 : y1 > 0}.Take y0 = (1/i2) ∈ (ℓ+1 )i. Let Θ∗ ⊂ (ℓ+1 )∗ be a base of (ℓ+1 )∗ of the form
Θ∗ = {θ ∈ K∗ : θ∗(y0) = 1}.Let y1 = 2y0 + (0, 1, 0, . . .), y2 = 3y0. Taking C = conv(y0, y1, y2), where conv stands for
onvex hull, we have E(C) = {y0} and for any y ∈ C, y = λ0y0 + λ1y1 + λ2y2, λi ≥ 0,

i = 0, 1, 2, λ0 + λ1 + λ2 = 1. For any ε > 0,
C(ε) = {y ∈ C : ‖y − y0‖ > ε} = {y ∈ C : λ1π

2/6 + λ1 + 2λ2π
2/6 > ε}.For any θ∗ = (θi) ∈ Θ∗ and y ∈ C(ε) we have

θ∗(y − y0) = θ∗(λ1y0 + λ1(0, 1, 0, . . .) + 2λ2y0) = λ1 + θ2λ1 + 2λ2 ≥ λ1 + λ2 > 3ε/π2 = δ,whi
h proves that (DCP) holds for C.Let y0 ∈ Ki and let Θ∗(y0) be the standard base of the dual 
one K∗. If (DCP) holdsfor the base Θ∗(y0), 
ondition (C1) 
an be rewritten as(C2) for ea
h y ∈ C(W ) there exists ηy ∈ E(C) satisfying
y − ηy − δy0 ∈ Ki.



5.3. Containment rate 57Proposition 5.2.2. Let Y be a lo
ally 
onvex spa
e and let K ⊂ Y be a 
losed 
onvex
one with intK 6= ∅. For any subset C of Y , (CP) is equivalent to (DCP).Proof. Let W be a 0-neighbourhood. By (CP), there exists a 0-neighbourhood O su
hthat for ea
h y ∈ C(W ),
y − ηy + O ⊂ K for some ηy ∈ E(C).Take any y0 ∈ Ki = intK. Sin
e O 
an be assumed to be radial, −δy0 ∈ O for some δ > 0and y − ηy − δy0 ∈ K, whi
h means that (DCP) holds for C.To see the 
onverse impli
ation, note that by Theorem 1.1.1, K∗ has a weak∗ 
ompa
t,hen
e bounded base Θ∗. By Proposition 5.2.1, (DCP) holds for Θ∗.Proposition 5.2.3. Let Y be a lo
ally 
onvex spa
e and let K be a 
losed 
onvex 
onein Y . Let K∗ have a bounded base Θ∗. If (DCP) holds for C, then intK 6= ∅.Proof. Let W be a 0-neighbourhood. By (DCP), there exists δ > 0 su
h that for ea
h

y ∈ C(W ) there is ηy ∈ E(C) su
h that θ∗(y − ηy) > δ for θ∗ ∈ Θ∗. Sin
e Θ∗ is boundedthere exists a 0-neighbourhood Q su
h that for any θ∗ ∈ Θ∗ we have −δ/2 < θ∗(q) < δ/2for q ∈ Q. Consequently, θ∗(y − ηy + q) > δ/2 for any θ∗ ∈ Θ∗, whi
h proves that
y − ηy + Q ∈ K.

5.3. Containment rateNumerous 
on
epts in fun
tional analysis 
an be 
hara
terized by 
onstants and fun
tionsof a single real variable. For instan
e, by using the modulus of 
onvexity δX(ε) due toClarkson [45℄,
δX(ε) = inf{1 − ‖ 1

2 (x + y)‖ : x, y ∈ BX , ‖x − y‖ ≥ ε}one 
an 
hara
terize stri
t 
onvexity and uniform rotundity of the unit ball BX in thespa
e X. In the present se
tion we de�ne the 
ontainment rate (
f. [19, 20℄) whi
h isa nonde
reasing fun
tion of a single variable. The 
ontainment rate is used to 
hara
-terize the 
ontainment property. The properties of the 
ontainment rate are used in thenext 
hapters to investigate Lips
hitz and/or Hölder behaviour of e�
ient points underperturbations. Similar approa
hes have been applied in many other domains (see e.g.[12, 51, 80, 81, 119, 113℄).Let Y = (Y, ‖ · ‖) be a normed spa
e and let K be a 
losed 
onvex pointed 
onein Y . Re
all that for any subset C of Y and any ε > 0, the ball of radius ε around Cis B(C, ε) = {y ∈ Y : d(y, C) < ε}, and C(ε) = C \ B(E(C), ε), and the 
ontainmentproperty (CP) holds for C if for every ε > 0 there exists δ > 0 su
h that(5.11) C(ε) + δBY ⊂ E(C) + K.Re
all that φ : R+ → R+ is an admissible fun
tion, i.e. φ is nonde
reasing, φ(t) > 0for t > 0 and φ(0) = 0.The following immediate observation is the starting point for our 
onsiderations inthis se
tion: if there exists an admissible fun
tion φ su
h that for ea
h y ∈ C there exists
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η ∈ E(C) satisfying(5.12) y − η + φ(d(y, E(C)))BY ⊂ K,then (CP) holds for C. Indeed, if we take any ε > 0 and y ∈ C(ε), then by taking
δ := φ(ε) ≤ φ(d(y, E(C))) we immediately get (5.11).Below we give a 
onstru
tion of an admissible fun
tion φ whi
h provides a 
hara
ter-ization of (CP).We start with the de�nition of the 
ontainment fun
tion for a 
losed 
onvex pointed
one K in Y .Definition 5.3.1 ([19℄). The fun
tion cont : K → R+ de�ned as

cont(k) = sup{r ≥ 0 : k + rBY ⊂ K}is 
alled the primal 
one 
ontainment fun
tion.The supremum in the above de�nition is attained sin
e K is 
losed. The fun
tion contis positively homogeneous and superlinear and
domcont = {k ∈ K : cont(k) > −∞} = K.Clearly, cont(k) ≤ ‖k‖ for any k ∈ K and cont ≡ 0 whenever intK = ∅. For k ∈ K wehave cont(k) = −∆K(k), where ∆K(y) = d(y,K) − d(y, Y \ K), y ∈ Y . The fun
tion ∆Kwas introdu
ed in [76, 77℄ to derive optimality 
onditions in nonsmooth optimization. Itwas also used in [155℄ as a s
alarizing fun
tion for ve
tor optimization problems.Let C be a subset of Y and let y ∈ Y . Re
all that the set

Cy = C ∩ (y −K)is the se
tion of C with respe
t to K and y (
f. Se
tion 2.2).Definition 5.3.2 ([19, 20℄). The fun
tion µ : Y → R de�ned as(5.13) µ(y) = sup{cont(y − η) : η ∈ E(C)y}is the 
ontainment rate of y with respe
t to C and K.For any y ∈ Y put
‖y‖+ = d(y, Y \ K).For any r ≥ 0,

‖y‖+ ≥ r ⇔ y + rBY ⊂ K.Hen
e, for k ∈ K we have cont(k) = ‖k‖+ and
µ(y) = sup{‖y − η‖+ : y ∈ E(C)y}.We have

domµ = {y ∈ Y : µ(y) > −∞} = E(C) + K.Clearly, µ(y) = 0 for y ∈ E(C). If intK 6= ∅ and y ∈ E(C) + K we have µ(y) ≥ 0 andmoreover, µ(y) = 0 if and only if y ∈ WE(C) (see Proposition 5.3.6 below).The value µ(y) gives the maximal radius r su
h that k+rBY ⊂ K for all k ∈ y−E(C)y.In this sense µ(y) measures the deviation from e�
ien
y for y.



5.3. Containment rate 59Definition 5.3.3 ([19, 20℄). The fun
tion δ : R+ → R ∪ {+∞,−∞} de�ned as
δ(ε) = inf{µ(y) : y ∈ C(ε)}is the 
ontainment rate of C with respe
t to K.The domain of δ is

dom δ = {ε ∈ R+ : δ(ε) < ∞} = {ε ∈ R+ : C(ε) 6= ∅}.Below we prove that δ is an admissible fun
tion if and only if (CP) holds for C. Westart with 
onditions ensuring that the supremum in the de�nition of the fun
tion µ isattained.Proposition 5.3.1. Let Y = (Y, ‖ · ‖) be a normed spa
e. Let K be a 
losed 
onvexpointed 
one in Y and let C be a subset of Y . Let y ∈ E(C) + K. If E(C)y is weakly
ompa
t, then there exists ηy ∈ E(C) su
h that y − ηy + µ(y)BY ⊂ K.Proof. Let y ∈ E(C) + K. For ea
h n ≥ 1, we have y = ηn + kn, where ηn ∈ E(C)y and
kn + cont(kn)BY ⊂ K satisfy

cont(kn) ≤ µ(y) and cont(kn) > µ(y) − 1/n.Sin
e E(C)y is weakly 
ompa
t, there exists a weakly 
onvergent subsequen
e (ηnm
) withlimit point η0 ∈ E(C)y. Consequently, knm

= y − ηnm

onverges weakly to some k0 ∈ Kand y = η0 + k0.To 
omplete the proof we show that k0 + µ(y)BY ⊂ K. On the 
ontrary, if k0 + µ(y)b

6∈ K for some b ∈ BY , then by separation arguments
f(k0 + µ(y)b) < 0 < f(k) for k ∈ K,for some f ∈ K∗. Sin
e knm

w→ k0 and (cont(knm
) − µ(y))b → 0, we would have

f(knm
+ cont(knm

)b) = f(k0 + µ(y)b) + f(knm
− k0) + f((cont(knm

) − µ(y))b) < 0,whi
h 
ontradi
ts the fa
t that knm
+ cont(knm

)BY ⊂ K.The assertion of Proposition 5.3.1 
an also be obtained as a 
onsequen
e of the Weier-strass theorem on existen
e of in�mum over 
ompa
t sets. To this end it is enough tonote that ‖y − ·‖+ is a weakly lower semi
ontinuous fun
tion.Following [42℄ we say that Rσ(C) is the generalized re
ession 
one of a set C ⊂ Y if
Rσ(C) = {v ∈ Y : there exist λn > 0 with λn → 0 and cn ∈ C su
h that

λncn tends weakly to v}.A set C ⊂ Y is K-lower bounded if there is a 
onstant M > 0 su
h that
C ⊂ MBY + K.If C ⊂ Y is K-lower bounded, then Rσ(C) ⊂ K (see [42℄).



60 5. Containment propertyProposition 5.3.2. Under any of the 
onditions:(i) E(C) is weakly 
ompa
t,(ii) E(C) is K-lower bounded and weakly 
losed and K has a weakly 
ompa
t base,the se
tions E(C)y are weakly 
ompa
t for y ∈ E(C) + K.Proof. Let y ∈ E(C) + K. For ea
h n ≥ 1 there is a representation y = ηn + kn with
ηn ∈ E(C), kn + cont(kn)BY ⊂ K satisfying

cont(kn) ≤ µ(y) and cont(kn) > µ(y) − 1/n.We start by proving that under any of the 
onditions (i) or (ii) the sequen
es (ηn) and
(kn) 
ontain 
onvergent subsequen
es with limit points η0 and k0, respe
tively, and(5.14) y = η0 + k0.If (i) holds, then (ηn) 
ontains a weakly 
onvergent subsequen
e. We 
an assume that
(ηn) weakly 
onverges to some η0 ∈ E(C). Sin
e K is 
losed and 
onvex, the sequen
e
(kn), kn = y − ηn, 
onverges weakly to k0 ∈ K and y = η0 + k0.Suppose now that (ii) holds and Θ is a weakly 
ompa
t base of K. Then kn = λnθn,where λn ≥ 0 and (θn) ⊂ Θ 
ontains a weakly 
onvergent subsequen
e. We 
an assumethat (θn) 
onverges to θ0 ∈ Θ. If λn → ∞, then

1

λn
(ηn − y)

w→ −θ0and −θ0 ∈ Rσ(E(C)) ∩ (−K), whi
h 
ontradi
ts the K-lower boundedness of E(C).Hen
e, (λn) is bounded and (kn) weakly 
onverges to some k0 = λ0θ0 ∈ K. Consequently,
ηn = y − kn 
onverges weakly to some η0 ∈ E(C) and we get (5.14).Now we are in a position to prove the main propositions of this se
tion.Proposition 5.3.3. Let Y be a normed spa
e and let K be a 
losed 
onvex pointed 
onewith intK 6= ∅. Let C be a nonempty subset of Y . The following are equivalent:(i) (CP ) holds for C,(ii) δ : dom δ → R+ is an admissible fun
tion.Proof. (i)⇒(ii). Clearly, δ is nonde
reasing and δ(0) = 0. By Proposition 5.1.3, for any
ε ∈ dom δ there exists γ > 0 su
h that for y ∈ C(ε) 6= ∅ one 
an �nd η ∈ E(C) satisfying
(y − η) + γBY ⊂ K. Consequently, µ(y) ≥ γ and δ(ε) ≥ γ > 0.(ii)⇒(i). Let ε∈dom δ, ε>0. Hen
e, δ(ε)=γ >0 and µ(y)≥γ for any y∈C(ε), whi
hmeans there exists η∈E(C) su
h that (y−η)+(γ/2)BY ⊂K. Thus, (CP) holds for C.Proposition 5.3.4. Let K be a 
losed 
onvex pointed 
one in a normed spa
e Y with
intK 6= ∅. Let C be a nonempty subset of Y and assume (CP) holds for C. If all these
tions E(C)y for y ∈ E(C) + K are weakly 
ompa
t then for any ε > 0,(i) C(ε) + δ(ε)BY ⊂ E(C) + K,(ii) for all ε > 0 and for ea
h y ∈ C(ε) there exists η ∈ E(C) su
h that y − η +

δ(ε)BY ⊂ K.Proof. (ii) follows dire
tly from Proposition 5.3.1. (i) follows from (ii).



5.3. Containment rate 61In the example below we 
al
ulate µ(y) for y from the 
losed unit ball.Example 5.3.1. Let Y = R
2, K = R

2
+ and C = clBY . Clearly, (DP) and (CP) hold for

C and
E(C) = {(η1, η2) ∈ C : η2 = −

√
1 − η2

1 , −1 ≤ η1 ≤ 0}.For any representation of (0, 0) in the form (0, 0) = η + kη, where η ∈ E(C), kη ∈ K, wehave η = (η1, η2) ∈ E(C)(0,0) = E(C) and
cont(kη) = min{−η1,

√
1 − η2

1} =

{√
1 − η2

1 for −1 ≤ η1 ≤ −1/
√

2,
−η1 for −1/

√
2 ≤ η1 ≤ 0,and µ((0, 0)) = sup{−1≤η1≤0} cont(kη) = 1/

√
2. For y ∈ C with y2 ≥ 0 we have

E(C)(y1,y2) = {(η1, η2) : η2 = −
√

1 − η2
1 , −1 ≤ η1 ≤ min{0, y1}}and

µ(y) = max
{−1≤η1≤min{0,y1}}

cont(kη) = max
{−1≤η1≤min{0,y1}}

min{y1 − η1, y2 +
√

1 − η1}.For y ∈ C with y2 < 0 we have
E(C)(y1,y2) = {(η1, η2) : η2 = −

√
1 − η2

1 , −
√

1 − y2
2 ≤ η1 ≤ min{0, y1}}and

µ(y) = max
{−

√
1−y2

2
≤η1≤min{0,y1}}

cont(kη)

= max
{−

√
1−y2

2
≤η1≤min{0,y1}}

min{y1 − η1, y2 +
√

1 − η2
1}.We 
lose this se
tion with 
hara
terizations of (DP) and weak e�
ien
y in terms od

δ and µ, respe
tively.Proposition 5.3.5. Let Y be a normed spa
e and let K be a 
losed 
onvex pointed 
one.Let C be a nonempty subset of Y with E(C) nonempty and 
losed. The following state-ments are equivalent:(i) (DP) holds for C,(ii) δ(ε) ≥ 0 for all ε ∈ dom δ.Proof. (ii)⇒(i). Suppose that (DP) does not hold for C. There exists y ∈ C whi
h 
annotbe represented in the form y = η + k, where η ∈ E(C) and k ∈ K. Hen
e, µ(y) = −∞.By 
losedness of E(C), y ∈ C(ε) for some ε > 0. Consequently, δ(ε) = −∞, whi
h
ontradi
ts (ii).(i)⇒(ii). By (DP), for ea
h y ∈ C we have y = η + k where η ∈ E(C) and k ∈ K.Hen
e, µ(y) ≥ 0 and (ii) follows.Proposition 5.3.6. Let Y be a normed spa
e and let K be a 
losed 
onvex 
one in Ywith intK 6= ∅. Let C be a nonempty subset of Y and assume (DP) holds for C. Thefollowing are equivalent:(i) µ(y) = 0,(ii) y ∈ WE(C).



62 5. Containment propertyProof. (i)⇒(ii). By (i), any representation of y in the form y = η + k, where η ∈ E(C)and k ∈ K, satis�es k ∈ ∂K, whi
h means that C ∩ (y − intK) = ∅, i.e., y ∈ WE(C).(ii)⇒(i). If µ(y) ≥ α > 0, then y = η + k with η ∈ E(C) k + αBY ⊂ K whi
h impliesthat y 6∈ WE(C).
5.4. Dual 
ontainment rateLet K be a 
losed 
onvex pointed 
one in a normed spa
e (Y, ‖·‖) with the dual K∗ ⊂ Y ∗.Let Θ∗ be a base of K∗.Definition 5.4.1 ([20℄). The fun
tion dcontΘ∗ : K → R+ de�ned as
dcontΘ∗(k) = inf{θ∗(k) : θ∗ ∈ Θ∗}is 
alled the Θ∗-dual 
one 
ontainment fun
tion.If it is 
lear from the 
ontext whi
h base Θ∗ is used, we omit the index Θ∗ in the no-tation. The terminology �primal 
one 
ontainment fun
tion� and �dual 
one 
ontainmentfun
tion� is motivated by the fa
t that in some instan
es these fun
tions yield a pair ofdual linear programming problems.Let C be a subset of Y and y ∈ Y . Re
all that E(C)y = E(C) ∩ (y −K).Definition 5.4.2 ([20℄). The fun
tion ν : Y → R ∪ {±∞} de�ned as

ν(y) = sup{dcontΘ∗(y − η) : η ∈ E(C)y}is the dual 
ontainment rate of y with respe
t to C and K.It follows dire
tly from the de�nition that {y ∈ Y : ν(y) > −∞} = E(C) + K and
ν(y) ≥ 0 for y ∈ E(C) + K.Definition 5.4.3 ([20℄). The fun
tion d : R+ → R de�ned as

d(ε) = inf{ν(y) : y ∈ C(ε)}is the dual 
ontainment rate of C with respe
t to K.Proposition 5.4.1. Let (Y, ‖ · ‖) be a normed spa
e with a 
losed 
onvex pointed 
one
K and let K∗ ⊂ Y ∗ be its dual 
one with base Θ∗. Let C be a subset of Y with E(C)yweakly 
ompa
t for y ∈ E(C) + K. For any y ∈ E(C) + K there exists ηy ∈ E(C) su
hthat

ν(y) = dcontΘ∗(y − ηy) = inf{θ∗(y − ηy) : θ∗ ∈ Θ∗}.Proof. Let y ∈ E(C)+K. Clearly, dcontΘ∗(y−η) ≤ ν(y) for any η ∈ E(C)y and for ea
h
̺ > 0 there exists η̺ ∈ E(C)y su
h that for any θ∗ ∈ Θ∗,

θ∗(y − η̺) ≥ dcontΘ∗(y − η̺) > ν(y) − ̺.The net (η̺) 
ontains a weakly 
onvergent subnet; we 
an assume that (η̺) itself 
onvergesweakly to ηy ∈ E(C)y. Sin
e K is weakly 
losed, the net (k̺), k̺ = y − η̺, tends to some
ky ∈ K and y = ηy + ky. Thus, dcontΘ∗(y − ηy) ≥ ν(y), whi
h 
ompletes the proof.



5.4. Dual 
ontainment rate 63Proposition 5.4.2. Let (Y, ‖ · ‖) be a normed spa
e and let C be a subset of Y . Let Kbe a 
losed 
onvex pointed 
one in Y and let K∗ be its dual with a base Θ∗. The following
onditions are equivalent:(i) (DCP) holds for C,(ii) d(ε) > 0 for ea
h ε > 0.Proof. (i)⇒(ii). Take any ε > 0 and y ∈ C(ε). By (DCP ), there exist δ > 0 and
ηy ∈ E(C) su
h that dcontΘ∗(y − ηy) ≥ δ. Hen
e,

ν(y) = sup{dcontΘ∗(y − η) : η ∈ E(C)y} ≥ δ,and d(ε) = inf{ν(y) : y ∈ C(ε)} ≥ δ > 0.(ii)⇒(i). Let d(ε) = α > 0. For ea
h y ∈ C(ε),
ν(y) = sup{dcontΘ∗(y − η) : η ∈ E(C)y} ≥ α,and 
onsequently, dcontΘ∗(y − ηy) > α/2 for some ηy ∈ E(C)y, i.e., (DCP) holds.Proposition 5.4.3. Let K be a 
losed 
onvex pointed 
one in a topologi
al ve
tor spa
e

Y with Ki 6= ∅. If Θ∗
1 and Θ∗

2 are any two bases of the form (5.8) with y1, y2 ∈ Ki su
hthat y2 ∈ ry1 + K, where r > 0, then there exists γ > 0 with
dcontΘ∗

1
(k) ≥ γ dcontΘ∗

2
(k).Proof. Let

Θ∗
1 = {θ∗1 ∈ K∗ : θ∗1(y1) = 1}, Θ∗

2 = {θ∗2 ∈ K∗ : θ∗2(y2) = 1},where y1, y2 ∈ Ki. For any k ∈ K and θ∗1 ∈ Θ∗
1 , there exists θ

∗
2 ∈ Θ∗

2 su
h that θ∗1(k) =

θ∗1(y2)θ
∗
2(k) with θ∗1(y2) > 0. Hen
e,

θ∗1(k) ≥ θ∗1(y2) inf
θ
∗

2∈Θ∗

2

θ
∗
2(k) ≥ θ∗1(y2) inf

θ∗
2
∈Θ∗

2

θ∗2(k),and(5.15) inf
θ∗
1
∈Θ∗

1

θ∗1(k) ≥ inf
θ∗
1
∈Θ∗

1

θ∗1(y2) inf
θ∗
2
∈Θ∗

2

θ∗2(k),Sin
e y2 ∈ ry1 + K, by putting γ := infθ∗
1
∈Θ∗

1
θ∗1(y2) > 0 we get the assertion.Example 5.4.1. Let Y = (Rm, ‖ · ‖∞), K = R

m
+ . A

ording to De�nition 5.3.1,

(LP ) cont(k) = max rsubje
t to
ki − r ≥ 0, i = 1, . . . , m.In view of De�nition 5.4.1,

(DP ) dcont(k) = min c1k1 + · · · + cmkmsubje
t to
c1 + · · · + cm = 1

ci ≥ 0, i = 1, . . . , m.By linear programming duality, dcont(k) ≥ cont(k) for k ∈ K.Let Y be a Bana
h spa
e and Ki 6= ∅. Consider a standard base of K∗,
Θ∗ = {θ∗ ∈ K∗ : θ∗(y0) = 1}, where y0 ∈ Ki.



64 5. Containment propertyFor any k ∈ K, the problem of �nding(5.16) dcont(k) = inf{θ∗(k) : θ∗(y0) = 1, θ∗ ∈ K∗}
an be viewed as an in�nite-dimensional linear programming problem. By applying theduality theory (see e.g. Barbu and Pre
upanu [15, Ch. 3, par. 3, p. 233℄) the dual takesthe form(5.17) sup{r ∈ R : k − ry0 ∈ K},(
ompare also [15, Ch. 3, Th. 3.4, p. 235℄). Thus, (5.17) and (5.16) form a pair of dualproblems and by Proposition 2.1, Ch. 3, p. 197 of [15℄, we have
0 ≤ sup{r ∈ R : k − ry0 ∈ K} ≤ inf{θ∗(k) : θ∗(y0) = 1, θ∗ ∈ K∗} = r.The fun
tion

q(k) = sup{r > 0 : r−1k ∈ y0 + K}has also been 
onsidered in other 
ontext (see Namioka [115℄). It is superlinear and itshypograph
hgraph(q) = {(k, r) : q(k) ≥ r}is a 
one in Y × R.Below we give an example of an problem with r = 0.Example 5.4.2. Let p > 1, Y = ℓp, K = ℓp

+. As observed before,
(ℓp

+)i = {(si) ∈ ℓp : si > 0 for ea
h i ≥ 1}.By taking y0 = (1/i2) and k0 = (1/i3) we see that for any r > 0 there exists an index i0su
h that 1/i3 − r/i2 < 0 for i > i0 and hen
e r = 0.
5.5. Containment rate for 
onvex setsIn this se
tion we investigate the 
ontainment rate δ(·) for 
onvex sets. De�ne

CEQ(ε) = {y ∈ C : d(y, E(C)) = ε}.Lemma 5.5.1. Let K be 
losed 
onvex 
one in Y with intK 6= ∅. Let C be a 
onvex subsetof Y with weakly 
ompa
t se
tions E(C)y for y ∈ E(C) + K. Then(5.18) δ(ε) = inf{µ(y) : y ∈ CEQ(ε)}.Proof. Clearly δ(ε) ≤ inf{µ(y) : y ∈ CEQ(ε)}. If δ(ε) < inf{µ(y) : y ∈ CEQ(ε)} = e,then µ(y) < e for a 
ertain y ∈ C, d(y, E(C)) > ε. In view of Proposition 5.3.1, y = ηy+ky,
ky + µ(y)BY ⊂ K.Sin
e [ηy, y] ⊂ C, one 
an �nd z ∈ CEQ(ε), z = ληy + (1− λ)y. Hen
e, z = ηy + (1−
λ)ky = ηy+kz, kz = (1−λ)ky, kz+(1−λ)µ(y)BY ⊂ K and µ(y) ≥ (1−λ)µ(y) = µ(z) ≥ e,
ontrary to the 
hoi
e of y.Lemma 5.5.2. Let K be 
losed 
onvex 
one in Y with intK 6= ∅. Let C be a 
onvex subsetof Y with weakly 
ompa
t se
tions E(C)y for y ∈ E(C) + K. Then for any 0 ≤ β ≤ 1,

µ(y(β)) = βµ(y),where y = ηy + ky, ηy ∈ E(C), ky + µ(y)BY ∈ K and y(β) = ηy + β · ky.



5.5. Containment rate for 
onvex sets 65Proof. Let y ∈ E(C). By Proposition 5.3.1, y = ηy + ky, where ηy ∈ E(C) and ky +

µ(y)BY ⊂ K. Sin
e βky + βµ(y)BY ⊂ K for any β ≥ 0, we have µ(y(β)) ≥ βµ(y). If
µ(y(β)) > βµ(y), then y(β) = η + k, where k + µ(y(β))BY ⊂ K. Then for 0 ≤ β ≤ 1,

k = y − η = y − y(β) + y(β) − η = (1 − β)ky + k ∈ Kand cont(k) ≥ (1 − β) + µ(y(β)) > µ(y), 
ontrary to the de�nition of µ(y).Applying Lemmas 5.5.1 and 5.5.2 we prove the 
on
avity of the 
ontainment rate µand the quasi-
onvexity of δ.Proposition 5.5.1. Let K be 
losed 
onvex 
one in Y with intK 6= ∅. Let C be a 
onvexsubset of Y and let (DP) hold for C. If E(C)y are weakly 
ompa
t for y ∈ E(C) + K,the 
ontainment rate µ is 
on
ave on E(C) + K.Proof. Let y1, y2 ∈ E(C) + K and 0 ≤ λ ≤ 1. By Proposition 5.3.1, there exist η1, η2 ∈
E(C) su
h that

y1 − η1 + µ(y1)BY ⊂ K and y2 − η2 + µ(y2)BY ⊂ K.Sin
e K is 
onvex,
y(λ) − η(λ) + (λµ(y1) + (1 − λ)µ(y2))BY ⊂ K,where y(λ) = λy1+(1−λ)y2, η(λ) = λη1+(1−λ)η2. Sin
e C is 
onvex and (DP) holds for

C, E(C) + K is 
onvex and η(λ) = η + k, where η ∈ E(C) and k ∈ K, and 
onsequently,
y(λ) − η + (λµ(y1) + (1 − λ)µ(y2))BY ⊂ K,whi
h proves the 
on
avity of µ.Corollary 5.5.1. Under the assumptions of Proposition 5.5.1 the fun
tion µ is lo
allyLips
hitz and weakly upper semi
ontinuous on E(C) + intK.Proof. See Theorem 10 of [66℄.Now we are in a position to prove the quasi-
onvexity of δ.Theorem 5.5.1. Let K be a 
losed 
onvex pointed 
one in a normed spa
e (Y, ‖ · ‖) with

intK 6= ∅. Let C be a 
onvex subset of Y and let (DP) hold for C. If E(C)y are weakly
ompa
t for y ∈ E(C) + K, then δ is quasi
onvex on dom δ.Proof. By Lemma 5.5.1, δ(ε) = inf{µ(y) : y ∈ CEQ(ε)}. Let ε1, ε2 ∈ dom δ, ε2 < ε1. Forany α > 0 there is yα ∈ CEQ(ε1) su
h that µ(yα) < δ(ε1) + α. In view of Proposition5.3.1, there is ηα ∈ E(C) with yα − ηα + µ(yα) ∈ K.Let 0 ≤ λ ≤ 1. Sin
e the distan
e fun
tion d(·, E(C)) is 
ontinuous, there exists
0 ≤ λ ≤ 1 su
h that d(λyα + (1 − λ)ηα, E(C)) = λε1 + (1 − λ)ε2. By Lemma 5.5.2,
µ(λyα + (1 − λ)ηα) = λµ(yα). Hen
e,

δ(λε1 + (1 − λ)ε2) = inf{µ(y) : y ∈ CEQ(λε1 + (1 − λ)ε2)}
≤ µ(λyα + (1 − λ)ηα) = λµ(yα) < δ(ε1) + α.Sin
e α > 0 is arbitrary and δ is nonde
reasing we get δ(λε1 + (1 − λ)ε2) ≤

max{δ(ε1), δ(ε2)}.



6. UPPER HAUSDORFF SEMICONTINUITY OF EFFICIENT POINTSIn this 
hapter we derive 
riteria for upper Hausdor� semi
ontinuity of the e�
ient pointset EK(C) of a given subset C of a spa
e Y with respe
t to a 
losed 
onvex pointed 
one
K ⊂ Y when C is subje
ted to perturbations.Perturbations u belong to a topologi
al spa
e U and are handled by a set-valuedmapping C : U →→ Y taking values in a topologi
al Hausdor� ve
tor spa
e Y, C(u) = C(u),
C(u0) = C. Re
all that by E : U →→ Y, we denote the e�
ient point set-valued mappingde�ned as

E(u) = E(C(u)).Upper Hausdor� semi
ontinuity of P enters into stability results of the solution mapping
S. This aspe
t will be dis
ussed in detail in Chapter 9.In Se
tion 6.1 we derive su�
ient 
onditions for upper Hausdor� semi
ontinuity ofe�
ient points (Theorems 6.1.1, 6.1.3) for a 
one K with nonempty interior with the helpof the 
ontainment property introdu
ed in Se
tion 5.1. In Se
tion 6.2, by applying theresults from Se
tion 6.1 to the mapping C(u) = f(u, A(u)) we derive su�
ient 
ondi-tions for upper Hausdor� 
ontinuity of the performan
e mapping P to parametri
 ve
toroptimization problems of the form (Pu).
6.1. Su�
ient 
onditions for upper Hausdor� semi
ontinuity ofe�
ient pointsLet U be a topologi
al spa
e (spa
e of parameters) and let Y be a Hausdor� topologi
alve
tor spa
e. Let K be a 
losed 
onvex pointed 
one in Y .Let C : U →→ Y be a set-valued mapping, C(u) = C(u), C(u0) = C.A

ording to the notation introdu
ed in Se
tion 5.1, for any 0-neighbourhood W ,

C(W ) = (C \ E(C)) + W.We start with the main result of this se
tion.Theorem 6.1.1 ([21℄). Let U be a topologi
al spa
e and let Y be a Hausdor� topologi
alve
tor spa
e. Let K be a 
losed 
onvex pointed 
one in Y with intK 6= ∅. Assume that(i) C is upper Hausdor� semi
ontinuous at u0 ∈ dom C and K-lower semi
ontinuousat u0, uniformly on E(C),(ii) (CP) holds for C.Then E is upper Hausdor� semi
ontinuous at u0 ∈ dom C.[66℄



6.1. Su�
ient 
onditions for upper Hausdor� semi
ontinuity 67Proof. Let W1, W be 0-neighbourhoods su
h that W1 + W1 ⊂ W . By Proposition 5.1.3,there exists a 0-neighbourhood O su
h that for any y ∈ C(W1) there exists η ∈ E(C)satisfying(6.1) (y − η) + O ⊂ K.Let O1 be a 0-neighbourhood su
h that O1+O1 ⊂ O. By (i), there exists a neighbourhood
U0 of u0 su
h that(6.2) C(u) ⊂ C + W1 ∩ O1, (η + O1 −K) ∩ C(u) 6= ∅ for u ∈ U0.Take any u ∈ U0. If E(u) = ∅, the 
on
lusion follows. Hen
e, suppose that E(u) 6= ∅ and
z ∈ E(u). By (6.2) there is y ∈ C su
h that z − y ∈ W1 ∩ O1.If y 6∈ E(C) + W1, then y ∈ C(W1) and by (6.1) there exists η ∈ E(C) su
h that

y − η + O ⊂ K.Moreover, by (6.2), there exists z ∈ C(u) su
h that z − η ∈ O1 − K and so z = z sin
eotherwise
z − z = (z − y) + (y − η) + (η − z) ∈ W1 ∩ O1 + (y − η) + O1 + K ⊂ (y − η) + O ⊂ K,whi
h is impossible sin
e z ∈ E(C(u)).If y ∈ E(C) + W1, then z ∈ E(C) + W , whi
h �nishes the proof.Below we give an example showing that the uniform K-lower semi
ontinuity assump-tion is essential in Theorem 6.1.1.Example 6.1.1. Let U = cl{1/n : n = 1, . . .} with natural topology and u0 = 0 and let
C : U →→ R

2 be de�ned as follows:
C(0) = C := {(y1, y2) : y2 = −y1} ∪

∞⋃

k=1

(k,−k + 1),

C(1/n) = C(1/n) := {(y1, y2) : y2 = −y1 + 1/n, −n ≤ y1 ≤ n} ∪
∞⋃

k=1

(k,−k + 1).Now E(C) = {(y1, y2) : y2 = −y1} and
E(C(1/n)) = {(y1, y2) : y2 = −y1 + 1/n, −n ≤ y1 ≤ n} ∪

∞⋃

k=n+1

(k,−k + 1).Theorem 6.1.2. Let U be a topologi
al spa
e and let Y be a Hausdor� topologi
al ve
torspa
e. Let K be a 
losed 
onvex pointed 
one in Y with intK 6= ∅. If C is Hausdor�
ontinuous at u0 ∈ dom C and (CP) holds for C, then E is upper Hausdor� semi
ontinuousat u0 ∈ dom C.By Proposition 5.1.2, we obtain the following 
orollary.Corollary 6.1.1. Let U be a topologi
al spa
e and let Y be a Hausdor� topologi
al ve
torspa
e. Let K be a 
losed 
onvex pointed 
one in Y with intK 6= ∅. Let C be a 
ompa
tsubset of Y and cl E(C) = WE(C). If C is Hausdor� 
ontinuous at u0 ∈ dom C, then Eis upper Hausdor� semi
ontinuous at u0 ∈ dom E .



68 6. Upper Hausdor� semi
ontinuity of e�
ient pointsIn the proof of Theorem 6.1.1 we make use of Proposition 5.1.3 whi
h holds true when
intK 6= ∅. There are numerous examples of 
ones satisfying this 
ondition. For instan
e,the 
one R

m
+ of nonnegative elements in R

m as well the 
ones of nonnegative elements inthe spa
es below have nonempty interiors.Example 6.1.2. 1. In the spa
e ℓ∞ of sequen
es s = (si) with real terms,
ℓ∞ = {s = (si) : sup

i∈N

|si| < ∞}the 
one
ℓ∞+ = {s = (si) ∈ ℓ∞ : si ≥ 0}has nonempty interior.2. In the spa
e L∞(Ω) of essentially bounded fun
tions f : Ω ⊂ R

n → R with
ess supx∈Ω |f(x)| < ∞ the natural ordering 
one

L∞(Ω) = {f ∈ L∞(Ω) : f(x) ≥ 0 almost everywhere on Ω}has nonempty interior.A subset F of Y ∗ is equi
ontinuous ([78, 12.D℄) if for any ε > 0 there exists a 0-neighbourhood W su
h that |f(W )| < ε for any f ∈ F. Equivalently, there exists abalan
ed 0-neighbourhood W su
h that f(W ) ≤ 1 for ea
h f ∈ F. A

ording to thede�nition of the polar set A◦ of a given set A, F is equi
ontinuous if and only if F ⊂ W ◦for a balan
ed 0-neighbourhood W. By the Bana
h�Alaoglu theorem, W ◦ is relativelyweak∗ 
ompa
t. When Y is a normed linear spa
e, F ⊂ Y ∗ is equi
ontinuous if and onlyif it is bounded in the norm topology of Y ∗.Now we formulate a variant of Theorem 6.1.1 with the help of the dual 
ontainmentproperty (DCP ), whi
h 
an be applied to 
ones K whi
h are not pointed.Theorem 6.1.3. Let U be a topologi
al spa
e and let Y be a Hausdor� lo
ally 
onvextopologi
al ve
tor spa
e. Let K ⊂ Y be a 
losed 
onvex 
one in Y and let K∗ have anequi
ontinuous base Θ∗. If(i) C is upper Hausdor� semi
ontinuous at u0 ∈ dom C and K-lower semi
ontinuousat u0, uniformly on E(C),(ii) (DCP) holds for C,then the set-valued mapping E is upper Hausdor� semi
ontinuous at u0 ∈ dom E .Proof. Follows from Theorem 6.1.1 and Proposition 5.2.2.The following example shows that Theorem 6.1.3 
annot be applied to some 
ones in�nite-dimensional spa
es.Example 6.1.3. Let K be a 
onvex 
losed 
one in R
n with empty interior. Then K∗ hasno base sin
e the set KT = {y ∈ K∗ : y · x = 0 for ea
h x ∈ K} is a nontrivial linearsubspa
e 
ontained in K∗.The assumption of equi
ontinuity of the base Θ∗ is restri
tive. The 
one of nonnegativeelements in Lp(Ω), 1 < p < ∞, does not have an equi
ontinuous base sin
e it does nothave a bounded base (see [46℄).



6.2. Upper Hausdor� semi
ontinuity of the performan
e mapping 696.2. Upper Hausdor� semi
ontinuity of the performan
emapping for parametri
 ve
tor optimization problemsIn this se
tion we apply Theorems 6.1.1 and 6.1.2 to prove the upper Hausdor� semi-
ontinuity of the performan
e set-valued mapping P for parametri
 ve
tor optimizationproblems
(Pu)

minK f(x)subje
t to x ∈ A(u).We start with two te
hni
al propositions.Proposition 6.2.1. Let U be a topologi
al spa
e and let X and Y be Hausdor� topologi
alve
tor spa
es. If a set-valued mapping A : U →→ Y is upper Hausdor� semi
ontinuous at
u0 ∈ domA, and f : X → Y is uniformly 
ontinuous on A(u0), then Af : U →→ Y,

Af (u) = f(A(u)), is upper Hausdor� semi
ontinuous at u0 ∈ domAf .Proof. Let W be a 0-neighbourhood in Y. There exists a 0-neighbourhood Q in X su
hthat f(x + Q) ⊂ f(x) + W for x ∈ A(u0). Thus, f(A(u0) + Q) ⊂ f(A(u0) + W. By theupper Hausdor� semi
ontinuity of A, there exists a neighbourhood U0 of u0 su
h that
A(u) ⊂ A(u0) + Q for u ∈ U0. Consequently, f(A(u)) ⊂ f(A(u0)) + W for u ∈ U0.Proposition 6.2.2. Let U be a topologi
al spa
e and let X and Y be Hausdor� topologi
alve
tor spa
es. If f : X → Y is a (uniformly) upper semi
ontinuous fun
tion, and a set-valued mapping A : U →→ Y is lower (Hausdor�) semi
ontinuous at u0, then Af is lower(Hausdor�) semi
ontinuous at u0 ∈ domAf .Proof. Let W be a 0-neighbourhood in Y. There exists a 0-neighbourhood Q in X su
hthat f(x + Q) ⊂ f(x) + W for x ∈ A(u0). In view of the lower semi
ontinuity of A, thereexists a neighbourhood U0 of u0 su
h that (x + Q) ∩ A(u) 6= ∅ for u ∈ U0. By putting
xu ∈ (x + Q) ∩A(u) for u ∈ U0, we get f(xu) ∈ C(u) ∩ (f(x) + W ) for u ∈ U0.By Theorem 6.1.2, we get the following stability result for problems (Pu) with (Pu0

)being (P ). Let A : U →→ Y be a set-valued mapping, A(u) = A(u), A(u0) = A.Theorem 6.2.1. Let U be a topologi
al spa
e and let Y be a Hausdor� topologi
al ve
torspa
e. Let K be a 
losed 
onvex pointed 
one in Y with intK 6= ∅. Let f : X → Y be auniformly 
ontinuous fun
tion on A and A be Hausdor� 
ontinuous at u0 ∈ domA. If
(CP) holds for f(A), then P is upper Hausdor� semi
ontinuous at u0 ∈ domP.Su�
ient 
onditions for upper Hausdor� semi
ontinuity of the set-valued mapping
A : U →→ X,

A(u) = {x ∈ X : G(x) ∩ (u − Ω) 6= ∅},where G : X →→ Y and Ω ⊂ Y is a 
losed 
onvex and pointed 
one in U , were investigatedby many authors. In parti
ular, when G is a single-valued mapping,
A(u) = {x ∈ X : G(x) �Ω u}.Continuity properties of this mapping depend heavily on the properties of the 
one Ω. Inthe 
ase where int Ω 6= ∅, C-lower semi
ontinuity was investigated by Ferro [59, 60℄. For
ones with possibly empty interiors, 
ontinuity of A was investigated by Muselli [114℄.



70 6. Upper Hausdor� semi
ontinuity of e�
ient points6.2.1. Multiobje
tive optimization problems. In this se
tion we 
onsider multiob-je
tive optimization problems
(MOP )

minK f(x)subje
t to x ∈ A,where f = (f1, . . . , fm) : R
n → R

m, A ⊂ R
n and K ⊂ R

m is a 
losed 
onvex pointed
one.Theorem 6.2.2. Assume that fi, i = 1, . . . , m, are linear fun
tions and
A = {x ∈ R

n : 〈bi, x〉 ≤ ci, i ∈ I}.If E(f, A) 6= ∅ and E(f, A) = WE(f, A), then (CP) holds for f(A).Proof. It is enough to observe that f(A) is a polyhedral set and apply Theorem 5.1.4and Corollary 3 of [72℄.Theorem 6.2.3. Suppose that fi, i = 1, . . . , m, are linear, A ⊂ R
n is 
onvex, and

E(f, A) 6= ∅. If E(f, A) is 
ompa
t, then (CP) holds for f(A).Proof. Note that f(A) is 
onvex and apply Corollary 5.1.2.Consider parametri
 multiobje
tive problems
(MOPu)

minK f(x)subje
t to x ∈ A(u),where f : R
n → R

m is 
ontinuous. Let U be a topologi
al spa
e and A : U →→ R
n be aset-valued mapping, A(u) = A(u), A(u0) = A.We apply Theorem 6.1.1 to the above parametri
 problem. We start with the followingstability results.Theorem 6.2.4. Let f = (f1, . . . , fm) : R

n → R
m be a linear mapping and let A : U →→

R
n be a set-valued mapping given by

A(u) = {x ∈ R
n : gj(u, x) ≤ 0, j ∈ J},where, for ea
h j ∈ J, the fun
tion gj(u0, ·) : R

n → R is 
onvex. If
• Af : U →→ R

m, Af (u) = f(u, A(u)), is Hausdor� 
ontinuous at u0 ∈ domA,

• E(f(A)) is nonempty and 
ompa
t, E(f(A)) = WE(f(A)),then E is upper Hausdor� semi
ontinuous at u0 ∈ dom E .Proof. Sin
e f is linear with respe
t to x and gj(u0, ·), j ∈ J, are 
onvex, the set Af (u0) =

f(A) is 
onvex. By Theorems 5.1.2 and 6.2.3, (CP) holds for f(A). By Theorem 6.1.1,the 
on
lusion follows.To 
lose this se
tion let us note that set-valued mappings A : U →→ R
n given by(6.3) A(u) = {x ∈ R

n : gj(u, x) ≤ 0, j ∈ J},where, for ea
h j ∈ J, gj : U × R
n → R is a linear fun
tion with respe
t to x, gj(u, x) =

〈bj(u), x〉 − cj(u), j ∈ J, bj : U → R
n, cj : U → R, were investigated e.g. in [14℄.



6.2. Upper Hausdor� semi
ontinuity of the performan
e mapping 71Theorem 6.2.5. Let f = (f1, . . . , fm) : U × R
n → R

m be a linear fun
tion of x ∈ R
nand let A : U →→ R

n be a feasible set mapping given by
A(u) = {x ∈ R

n : gj(u, x) ≤ 0, j ∈ J},where, for ea
h j ∈ J, gj : U × R
n → R is a linear fun
tion with respe
t to x, gj(u, x) =

〈bj(u), x〉 − cj(u), j ∈ J, bj : U → R
n, cj : U → R. If

• A : U →→ R
n is upper and lower Hausdor� semi
ontinuous at u0 ∈ domA,

• E(f(A)) is nonempty, and E(f(A)) = WE(f(A)),then E is upper Hausdor� semi
ontinuous at u0 ∈ dom E .Proof. Follows from Theorem 6.1.2 and Propositions 6.2.1, 6.2.2.



7. UPPER HÖLDER CONTINUITY OF EFFICIENT POINTSWITH RESPECT TO PERTURBATIONS OF A SETIn this 
hapter we derive 
riteria for upper Hölder 
ontinuity and 
almness of the e�
ientpoint sets E(C(u)). These properties appear in many 
ontexts of optimization theory andsensitivity analysis (see e.g. [100, 101, 56, 64, 91℄). Criteria for 
almness of some set-valuedmappings are given in [74, 75℄. Upper Hölder 
ontinuity of order q and Hölder 
almnessof the set-valued mapping E at u0 provide an estimate of the distan
e of any e�
ientpoint of the perturbed problem (Pu) to the e�
ient point set of (Pu0
) via the distan
e ofthe perturbations, ‖u − u0‖q. Hen
e, the upper Hölder property is of interest wheneverit is impossible or too di�
ult to deal with the original problem and one wants to knowthe magnitude of the error made by a

epting a solution of a perturbed problem as asolution of the original problem. For instan
e, numeri
al representation of problems leadsto perturbations due to �nite pre
ision. As a parti
ular 
ase we obtain 
onditions forthe upper Lips
hitz 
ontinuity of e�
ient points. The upper Lips
hitz property (upperHölder property with q = 1) has already appeared in investigation of stability of variousproblems (see e.g. [128, 130, 131℄).In Se
tions 4.1 and 4.2 we investigate upper Hölder 
ontinuity and Hölder 
almness of

E(C(u)) at a given point u0. The main requirement we impose is that for small argumentsthe 
ontainment rate δ is a su�
iently fast growing fun
tion.In Se
tion 4.3 we apply the results obtained in Se
tions 4.1 and 4.2 to investigate Lip-s
hitzness and Hölder properties of the performan
e set-valued mapping P for parametri
ve
tor optimization problems.
7.1. Upper Hölder 
ontinuity of e�
ient pointsLet U = (U, ‖ · ‖) and Y = (Y, ‖ · ‖) be normed spa
es and let C : U →→ Y be a set-valuedmapping, C(u) = C(u), C(u0) = C.In this se
tion we prove su�
ient 
onditions for upper Hölder 
ontinuity of the e�
ientpoint set-valued mapping E : U →→ Y ,

E(u) = E(C(u)).At the beginning of this 
hapter we indi
ated some situations where upper Hölder 
on-tinuity has a natural signi�
an
e. One more example 
omes from parametri
 ve
tor op-timization. Theorem 6.4 of [16℄ and Theorem 6.2 of [17℄ reveal the importan
e of upper[72℄



7.1. Upper Hölder 
ontinuity of e�
ient points 73type 
ontinuities of the performan
e set-valued mapping P in ensuring the 
ontinuity ofsolutions to parametri
 ve
tor optimization problems.We start with su�
ient 
onditions for upper Hölder 
ontinuity of the e�
ient pointset-valued mapping E .Theorem 7.1.1. Let Y = (Y, ‖ · ‖) and U = (U, ‖ · ‖) be normed spa
es. Let K be a 
losed
onvex pointed 
one in Y with intK 6= ∅. If(i) C : U →→ Y is Hölder 
ontinuous of order p ≥ 1 at u0 ∈ dom C with 
onstants
Lc > 0 and 0 < tc < 1,(ii) the se
tions E(C)y are weakly 
ompa
t for y ∈ E(C) + K,(iii) the 
ontainment rate δ of the set C satis�es the following 
ondition: for any
ε ∈ dom δ,

δ(ε) ≥ αεq for some α > 0 and q ≥ 1,then E is upper Hölder 
ontinuous of order p/q at u0 ∈ dom E . Pre
isely,
E(C(u)) ⊂ E(C) + (Lc + (2Lc/α)1/q)‖u − u0‖p/qBYfor all u ∈ u0 + tcBU .Proof. Take any y ∈ E(C(u)), u ∈ u0 + tcBU . By (i), there exists z ∈ C su
h that

‖y − z‖ ≤ Lc‖u − u0‖p.If z ∈ E(C), the 
on
lusion follows. If
d(z, E(C)) > ε0 := (2Lc/α)1/q‖u − u0‖p/q,then by (ii) and Proposition 5.3.4, there is η ∈ E(C) su
h that

z − η + δ(ε0)BY ⊂ Kand by (iii), δ(ε0) ≥ 2Lc‖u − u0‖p. By (i), there is y ∈ C(u) su
h that
‖y − η‖ ≤ Lc‖u − u0‖p.and so y = y sin
e otherwise

y − y = (y − z) + (z − η) + (η − y) ∈ (z − η) + 2Lc‖u − u0‖pBY ⊂ K,whi
h 
ontradi
ts the fa
t that y ∈ E(C(u)). If
d(z, E(C)) ≤ (2Lc/α)1/q‖u − u0‖p/q,then for u ∈ u0 + tcBU we get

d(y, E(C)) ≤ ‖y − z‖ + d(z, E(C)) ≤ (Lc + (2Lc/α)1/q)‖u − u0‖p/q,whi
h 
ompletes the proof.By applying Proposition 4.0.3 we obtain the following 
onditions for Hölder 
ontinuityof E .Theorem 7.1.2. Let Y = (Y, ‖ · ‖) and U = (U, ‖ · ‖) be normed spa
es. Let K be a 
losed
onvex pointed 
one in Y with intK 6= ∅. If



74 7. Upper Hölder 
ontinuity of e�
ient points with respe
t to perturbations of a set(i) C : U →→ Y is Hölder 
ontinuous of order p ≥ 1 around u0 ∈ dom C with 
onstants
Lc > 0 and 0 < t < 1,(ii) for all u ∈ u0 + tBU the se
tions E(C(u))z are weakly 
ompa
t for z ∈ E(C(u))

+ K,(iii) all the 
ontainment rates δ of the sets C(u) with u ∈ u0 + tBU satisfy the
ondition: for any ε ∈ dom δ,
δ(ε) ≥ αεq for some α > 0 and q ≥ 1,then E is Hölder 
ontinuous of order p/q around u0 ∈ dom E . Pre
isely,

E(C(u)) ⊂ E(C(u′)) + (Lc + (2Lc/α)1/q)‖u − u′‖p/qBYfor all u, u′ ∈ u0 + (t/4)BU .Proof. It is enough to note that under the above assumptions, for every u′ ∈ u0+(t/2)BU ,
E(C(u)) ⊂ E(C(u′)) + (Lc + (2Lc/α)1/q)‖u − u′‖p/qBYfor u ∈ u′ + (t/2)BU . This means that E is uniformly upper Hölder 
ontinuous at u′ ∈

u0 + (t/2)BU and by Proposition 4.0.3, the 
on
lusion follows.Corollary 7.1.1. Let Y = (Y, ‖ · ‖) and U = (U, ‖ · ‖) be normed spa
es. Let K be a
losed 
onvex pointed 
one in Y with intK 6= ∅. Let C be Hölder 
ontinuous of order
p ≥ 1 at u0 ∈ dom C with 
onstants Lc > 0 and tc > 0. Suppose that one of the following
onditions hold:(i) E(C) is weakly 
ompa
t,(ii) E(C) is K-lower bounded and weakly 
losed and K has a weakly 
ompa
t base.If the 
ontainment rate δ of C satis�es the 
ondition: for any ε > 0,

δ(ε) ≥ αεq for some q ≥ 1 and α > 0,then the e�
ient point set-valued mapping E is upper Hölder 
ontinuous of order p/q at
u0 ∈ dom E with 
onstant Lc + (2Lc/α)1/q and order p/q.Proof. This follows from Theorem 7.1.1 and Proposition 5.3.2.Corollary 7.1.2. Let Y = (Y, ‖ · ‖), U = (U, ‖ · ‖) be normed spa
es. Let K be a 
losed
onvex pointed 
one in a normed spa
e Y with intK 6= ∅. Let C be Lips
hitz 
ontinuousat u0 ∈ dom C with 
onstants Lc > 0 and tc > 0. Suppose that one of the following
onditions holds:(i) E(C) is weakly 
ompa
t,(ii) E(C) is K-lower bounded and weakly 
losed and K has a weakly 
ompa
t base.If the 
ontainment rate δ of C satis�es the 
ondition: for any ε > 0,

δ(ε) ≥ αε for some α > 0,the e�
ient point set-valued mapping E is upper Lips
hitz 
ontinuous at u0 ∈ dom E with
onstant Lc + 2Lc/α.Proof. This follows from Theorem 7.1.1 and Proposition 5.3.2.
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almness of e�
ient points 757.2. Hölder 
almness of e�
ient pointsThe results of the previous se
tion are of global 
hara
ter in the sense that they refer tothe behaviour of the whole set E(C) as a fun
tion of the parameter u.In the present se
tion we formulate su�
ient 
onditions for upper pseudo-Hölder
ontinuity (Hölder 
almness) of the set-valued mapping E .Let y0 ∈ E(C) and tr > 0.Definition 7.2.1. The fun
tion δtr
: R+ → R+,

δtr
(ε) = inf{µ(y) : y ∈ C ∩ (y0 + trBY ) \ E(C) + εBY }is 
alled the lo
al 
ontainment rate of C at y0 ∈ E(C) with respe
t to K.Note that the only di�eren
e between the lo
al 
ontainment rate δtr

and the global
ontainment rate δ is that now the in�mum is taken over all y ∈ C ∩ (y0 + trBY ). Hen
e,for any ε ∈ dom δtr
,

δtr
(ε) ≥ δ(ε).Theorem 7.2.1. Let Y = (Y, ‖ · ‖) and U = (U, ‖ · ‖) be normed spa
es. Let K be a 
losed
onvex pointed 
one in Y with intK 6= ∅ and y0 ∈ E(C). If(i) C is upper pseudo-Hölder 
ontinuous of order p ≥ 1 with 0-neighbourhood V at

(u0, y0) ∈ graph C and 
onstants Lc > 0, tc > 0 and C is lower Hölder 
ontinuousof order p ≥ 1 at u0 ∈ dom C with 
onstants Lc > 0, tc,(ii) there exists a 
onstant tr > 0 su
h that the se
tions E(C)y for y ∈ C∩(y0+trBY )are weakly 
ompa
t,(iii) for any ε > 0 the lo
al 
ontainment rate δtr
satis�es the 
ondition

δtr
(ε) ≥ αεq for some α > 0, q ≥ 1,then the set-valued mapping E is upper pseudo-Hölder (Hölder 
alm) of order p/q at

(u0, y0) ∈ graph E . Pre
isely, there exists tv > 0 su
h that
E(C(u)) ∩ (y0 + tvBY ) ⊂ E(C) + (Lc + (2Lc/α)1/q)‖u − u0‖p/qBYfor all u ∈ u0 + tcBU .Proof. The proof follows the lines of the proof of Theorem 7.1.1. Let tv > 0 be anynumber satisfying (Lctc + tv)BY ⊂ V ⊂ trBY . Take any y ∈ E(C(u)) ∩ (y0 + tvBY ),

u ∈ u0 + tcBU . By (i), there is z ∈ C su
h that ‖y − z‖ ≤ Lc‖u − u0‖p. Moreover,
z − y0 = (z − y) + (y − y0) ∈ (Lctc + tv)BY ⊂ trBY . If z ∈ E(C), the 
on
lusion follows.If

d(z, E(C)) > (2Lc/α)1/q‖u − u0‖p/q,there is η ∈ E(C) su
h that z − η + µ(z)BY ⊂ K. By (iii),
µ(z) ≥ δtr

((2Lc/α)1/q‖u − u0‖p/q) ≥ 2Lc‖u − u0‖p.By (i), there is y ∈ C(u) su
h that ‖η − y‖ ≤ Lc‖u − u0‖p and so y = y sin
e otherwise
y − y = (y − z) + (z − η) + (η − y) ∈ K,



76 7. Upper Hölder 
ontinuity of e�
ient points with respe
t to perturbations of the setwhi
h is impossible sin
e y ∈ E(C(u)). If
d(z, E(C)) ≤ (2Lc/α)1/q‖u − u0‖p/q,then

d(y, E(C)) ≤ ‖y − z‖ + d(z, E(C)) ≤ (Lc + (2Lc/α)1/q)‖u − u0‖p/q,whi
h 
ompletes the proof.
7.3. Upper Hölder 
ontinuity of e�
ient points to ve
toroptimization problemsIn the present se
tion we apply Theorems 7.1.1 and 7.2.1 to parametri
 ve
tor optimiza-tion problems (Pu),

(Pu)
minK f(u, x)subje
t to x ∈ A(u).For u = u0 we obtain problem (P ),

(P )
minK f(x)subje
t to x ∈ A.We formulate su�
ient 
onditions for upper Hölder and upper pseudo-Hölder 
ontinuityof the performan
e set-valued mapping P : U →→ Y ,

P(u) = E(f(u, ·), A(u))at u0 ∈ domP.Based on Proposition 4.1.1 and Theorem 7.1.1 we obtain the following result.Theorem 7.3.1. Let Y = (Y, ‖ · ‖) and U = (U, ‖ · ‖) be normed spa
es. Let K be a 
losed
onvex pointed 
one in Y with intK 6= ∅. Let f : X → Y sa�sfy the Lips
hitz 
ondition(4.1) on X with 
onstant Lf > 0. If(i) A : U →→ X is Hölder 
ontinuous of order p ≥ 1 at u0 ∈ domA with 
onstants
La > 0 and 0 < ta < 1,(ii) for y ∈ f(A) the se
tions E(f, A)y are weakly 
ompa
t,(iii) for ε ∈ dom δ the 
ontainment rate δ of the set f(A) satis�es the 
ondition

δ(ε) ≥ αεq for 
ertain α > 0 and q ≥ 1,then P is upper Hölder 
ontinuous of order p/q at u0 ∈ domP. Pre
isely,
E(f, A(u)) ⊂ E(f, A) + (LfLa + (2LfLa/α)1/q)‖u − u0‖p/qBYfor all u ∈ u0 + taBU .Below we de�ne φ-strong domination property φ-(SDP) whi
h allows us to provesu�
ient 
onditions for the upper Hölder 
ontinuity of P without the assumption thatall se
tions E(f, A)y, y ∈ f(A) are weakly 
ompa
t.Let C ⊂ Y be a subset of a normed spa
e Y .
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ontinuity of e�
ient points to ve
tor optimization problems 77Definition 7.3.1. We say that the φ-strong domination property φ-(SDP) holds for Cif for ea
h y ∈ C there exists η ∈ E(C) su
h that
y �K η + φ(‖y − η‖)BY , i.e., y − η + φ(‖y − η‖)BY ⊂ K,where φ : R+ → R+ is an admissible fun
tion. In parti
ular, we say that the strongdomination property of order q > 0 holds for C if φ-(SCP) holds for C with φ(·) = α(·)q,where α > 0.A

ordingly, we say that φ-strong domination property φ-(SDP) holds for (P ) if the

φ-strong domination property φ-(SDP) holds for f(A), i.e. for ea
h x ∈ A there exists
x ∈ S(f, A) su
h that
f(x) �K f(x) + φ(‖f(x) − f(x)‖)BY , i.e., f(x) − f(x) + φ(‖f(x) − f(x)‖)BY ⊂ K,where φ : R+ → R+ is an admissible fun
tion. In parti
ular, we say that the strongdomination property of order q > 0 holds for (P ) if φ-(SCP) holds for (P ) with φ(·) =

α(·)q, where α > 0.In other words,
‖f(x) − f(x)‖+ ≥ α‖f(x) − f(x)‖q,where ‖ · ‖+ = d(·,Kc), and Dc denote the 
omplement of D. If f(A) is uniformly rotundwith an admissible fun
tion φ (see Se
tion 2.3) and the se
tions f(A)y, y ∈ f(A), are
ompa
t, then φ-(SDP ) holds for (P ).Proposition 7.3.1. Let X = (X, ‖ · ‖) and Y = (Y, ‖ · ‖) be normed spa
es. Let K bea 
losed 
onvex pointed 
one in Y with intK 6= ∅. If φ-(SDP) holds for (P ), then (CP)holds for f(A) and δ(ε) ≥ φ(ε) for any ε ∈ dom δ.Proof. Take 0 < ε ∈ dom δ and x ∈ A su
h that d(f(x), E(f, A)) ≥ ε. Sin
e φ isnonde
reasing, by φ-(SDP), there exists x ∈ S(f, A) su
h that

f(x) − f(x) + φ(ε)BY ⊂ f(x) − f(x) + φ(‖f(x) − f(x)‖)BY ⊂ K,whi
h, by Proposition 5.1.3, amounts to saying that (CP) holds for f(A). Moreover,
‖f(x) − f(x)‖+ ≥ φ(‖f(x) − f(x)‖).Consequently, µ(f(x)) ≥ φ(‖f(x) − f(x)‖) ≥ φ(ε) and δ(ε) ≥ φ(ε).Theorem 7.3.2. Let X = (X, ‖ · ‖), Y = (Y, ‖ · ‖), U = (U, ‖ · ‖) be normed spa
es. Let

K be a 
losed 
onvex pointed 
one in Y with intK 6= ∅. Let f : X → Y be a Lips
hitzmapping with 
onstant Lf > 0. If(i) A is Hölder 
ontinuous at u0 ∈ domA of order p ≥ 1 with 
onstants La > 0 and
ta > 0,(ii) (SDP) of order q ≥ 1 with 
onstant α > 0 holds for (P ),then the performan
e set-valued mapping P is upper Hölder 
ontinuous at u0 ∈ domP oforder p/q with 
onstants LfLa + (2LfLa/α)p/q and ta > 0.Proof. Take any y = f(x) ∈ E(f, A(u)), u ∈ u0 + taBU . By (i), there exists z ∈ A su
hthat

‖x − z‖ ≤ La‖u − u0‖p,



78 7. Upper Hölder 
ontinuity of e�
ient points with respe
t to perturbations of the setand by the Lips
hitzness of f , ‖f(x) − f(z)‖ ≤ LfLa‖u − u0‖p. If z ∈ S(f, A), the
on
lusion follows. Otherwise, by (ii), there exists z ∈ S(f, A) su
h that
f(z) − f(z) + α‖f(z) − f(z)‖qBY ⊂ K.If α‖f(z) − f(z)‖q > 2LfLa‖u − u0‖p, then by (i), there exists x ∈ A(u) su
h that

‖f(x) − f(z)‖ ≤ LfLa‖u − u0‖p and so f(x) = f(x) sin
e otherwise
f(x) − f(x) = (f(x) − f(z)) + (f(z) − f(z)) + (f(z) − f(x))

∈ (f(z) − f(z)) + 2La‖u − u0‖pBY ⊂ K,
ontradi
ting the fa
t that y ∈ E(f, A(u)). If
α‖f(z) − f(z)‖q ≤ 2LfLc‖u − u0‖p,then for u ∈ u0 + taBU we get

d(y, E(f, A)) ≤ ‖y − f(z)‖ ≤ ‖y − f(z)‖ + ‖f(z) − f(z)‖
≤ (LfLa + (2LfLa/α)1/q)‖u − u0‖p/qwhi
h 
ompletes the proof.



8. SHARP AND FIRM SOLUTIONSTO VECTOR OPTIMIZATION PROBLEMSIn this 
hapter we introdu
e φ-sharp and weak φ-sharp solutions (lo
al and global) toproblem (P ). When applied to s
alar optimization problems, the 
on
ept of weak φ-sharp solutions redu
es to the 
on
ept of weak sharp minima due to Polyak [126℄. Ins
alar optimization weak sharp minima were also investigated via growth 
onditions, e.g.by Burke and Deng [43℄, Burke and Ferris [44℄, Henrion, Jourani and Outrata [74℄, Ng andZheng [116℄, Studniarski and Ward [147℄, Ward [150, 151℄. Weak sharp minima play animportant role in deriving 
onditions for Hölder 
almness of solutions in s
alar parametri
optimization (see e.g. [39, 100, 101℄). In the next 
hapter we will investigate stability for
φ-sharp and weak φ-sharp solutions.

8.1. Sharp solutionsLet X = (X, ‖ · ‖) and Y = (Y, ‖ · ‖) be normed spa
es with open unit balls BX and
BY , respe
tively, and let K ⊂ Y be a 
losed 
onvex pointed 
one. Consider a ve
toroptimization problem

(P )
minK f(x)subje
t to x ∈ A.Let φ, ν : R+ → R+ be admissible fun
tions. Re
all that y0 = f(x0) ∈ f(A) is a ν-stri
tlye�
ient point to (P ) if

f(x) − f(x0) 6∈ ν(‖f(x) − f(x0)‖)BY −K for x ∈ A, f(x) 6= f(x0).For any η ∈ f(A) put
Sη := {x ∈ A : f(x) = η}.Definition 8.1.1. We say that x0 ∈ A, f(x0) = η, is a φ-sharp solution, x0 ∈ Shφ(f, A),if(8.1) f(x) − f(x0) 6∈ φ(‖x − x0‖)BY −K for x ∈ A \ Sη.Moreover, x0 ∈ A is sharp of order q > 0, x0 ∈ Shq(f, A), if x0 is φ-sharp with φ(·) =

τ‖ · ‖q, where τ > 0.For any y ∈ Y put
‖y‖− = d(y,−K).In Proposition 2.4.1 we have shown that y0 ∈ StE(f(A)) i� there exists an admissiblefun
tion ν : R+ → R+ su
h that [79℄
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tor optimization problems
ν(‖y − y0‖) ≤ ‖y − y0‖− for all y ∈ f(A),and ν 
an be 
hosen in the form

ν(ε) = inf{‖z − y0‖− : z ∈ f(A) \ (y0 + εBY )}.Equivalently, y0 ∈ StEν(f(A)) i�(8.2) (y − y0) ∩ (ν(‖y − y0‖)BY −K) = ∅ for y ∈ f(A) \ {y0}.As de�ned in Se
tion 2.4, y0 ∈ f(A) is a lo
ally ν-stri
tly e�
ient point, y0 ∈
LStEν(f(A)), if there exists a neighbourhood V of zero in Y su
h that

(y − y0) ∩ (ν(‖y − y0‖)BY −K) = ∅ for y ∈ f(A) ∩ (y0 + V ) \ {y0}.In parti
ular, y0∈f(A) is a lo
ally stri
tly e�
ient point of order q > 0, y0∈LStEq(f(A)),if there exists a 
onstant β > 0 su
h that y0 ∈ LStEφ(f(A)) with φ(·) = β(·)q, i.e.,
β‖y − y0‖q ≤ ‖y − y0‖− for y ∈ f(A) ∩ (y0 + V ).Or, in other words, y0 ∈ f(A) is a lo
al sharp minimum of order q > 0 (
f. [147℄) of thefun
tion ‖ · −y0‖− over the set f(A). We put StEν(f, A) := StEν(f(A)).Let us note that if f(A) is uniformly rotund (see Se
tion 2.3) with an admissiblefun
tion ν, then E(f, A) = StEν(f, A). Indeed, suppose there exists x0 ∈ E(f, A),

f(x0) = η, su
h that x0 6∈ StEν(f, A). There exists x ∈ A \ Sη satisfying f(x) − f(x0) ∈
ν(‖f(x) − f(x0)‖)BY − K. Hen
e, there exist 0 6= b ∈ BY and 0 6= k ∈ K su
h that
1
2 (f(x) + f(x0)) = f(x0) − ν(‖f(x) − f(x0)‖)b − k. In view of the uniform rotundityof f(A), this entails that there exists x̃ ∈ A \ Sη su
h that f(x̃) ∈ f(x0) − K, whi
h
ontradi
ts the fa
t that x0 ∈ E(f, A).Equivalently, the relation (8.1) 
an be rephrased as(8.3) ‖f(x) − f(x0)‖− ≥ φ(‖x − x0‖) for x ∈ A \ Sη.Ea
h sharp solution is a solution. Indeed, if y0 = f(x0), x0 ∈ A, is a sharp solution, thenby (8.1),

f(x) − f(x0) 6∈ −K for x ∈ A, f(x) 6= f(x0).The relationship between sharp solutions and stri
tly e�
ient points is 
lari�ed in thenext proposition.Proposition 8.1.1. Let K be a 
losed 
onvex pointed 
one in a normed spa
e Y. Let
f : X → Y be a Lips
hitz mapping on A with 
onstant Lf > 0. If x0 ∈ Shφ(f, A), then
f(x0) ∈ StEν(f, A) with ν(·) = φ( 1

Lf
·).Proof. Let x0 ∈ Shφ(f, A) and f(x0) = η. Hen
e,

f(x) − f(x0) 6∈ φ(‖x − x0‖)BY −K for x ∈ A \ Sη.Sin
e ‖f(x) − f(x0)‖ ≤ Lf‖x − x0‖ and φ is nonde
reasing, φ( 1
Lf

‖f(x) − f(x0)‖) ≤
φ(‖x − x0‖) and

f(x) − f(x0) 6∈ φ

(
1

Lf
‖f(x) − f(x0)‖

)
BY −K for x ∈ A \ Sη,whi
h proves that η = f(x0) is ν-stri
tly e�
ient with ν(·) = φ( 1

Lf
·).



8.1. Sharp solutions 81In view of Proposition 8.1.1,
Shφ(f, A) ⊂ A ∩ f−1(StEν(f, A)) with ν(·) = φ

(
1

Lf
·
)

.In parti
ular, it follows from Proposition 8.1.1 that if f is Lips
hitz on A with 
onstant
Lf > 0 and x0 ∈ Shq(f, A) with 
onstant τ , then f(x0) ∈ StEq(f, A) with 
onstant

β = τ/Lq
f .Definition 8.1.2. We say that x0 ∈ A with f(x0) = η is a lo
al φ-sharp solution to (P ),

x0 ∈ LShφ(f, A), if there exists r > 0 su
h that
f(x) − f(x0) 6∈ φ(‖x − x0‖)BY −K for x ∈ A ∩ (x0 + rBX), x 6∈ Sη.Any lo
al φ-sharp solution x0 ∈ LShφ(f, A), where φ(t) = τtq for t ∈ R+ with τ > 0 and

q > 0 is 
alled a lo
al sharp solution of order q (
f. Jiménez [87, 88℄ for Sη = {x0}).Clearly, ea
h global sharp solution is a lo
al sharp solution. We prove the 
onversefor K-
onvex fun
tions.Re
all that f : X → Y is K-
onvex on X if for any λ ∈ [0, 1] and x, x′ ∈ X,
f(λx + (1 − λ)x′) ∈ λf(x) + (1 − λ)f(x′) −K for any λ ∈ [0, 1], x, x′ ∈ X.Note that if A is 
onvex and f is K-
onvex on A, then the sets Sη with η ∈ E(f, A) are
onvex. Indeed, for any x, x′ ∈ Sη,

f(λx + (1 − λ)x′) ∈ η −Kand so f(λx + (1 − λ)x′) = η sin
e η ∈ E(f, A).Proposition 8.1.2. Let A be 
onvex and let f be K-
onvex. Let x0 ∈ Sη. If x0 ∈
LSh1(f, A) with 
onstant τ > 0, then x0 ∈ Sh1(f, A) with 
onstant τ .Proof. Suppose on the 
ontrary that x0 is not a global sharp solution of order 1 with
onstant τ . There exists x ∈ A \ Sη su
h that

f(x) − f(x0) ∈ τ‖x − x0‖BY −K.Let λ ∈ [0, 1]. Set x(λ) := λx + (1 − λ)x0. For any r > 0 there is λ ∈ [0, 1] su
h that
x(λ) ∈ B(x0, r) and by the 
onvexity assumptions
f(x(λ)) − f(x0) ∈ λ(f(x) − f(x0)) −K ⊂ τλ‖x − x0‖BY −K = τ‖x(λ) − x0‖BY −K,whi
h proves that x0 is not a lo
al sharp solution of order 1 with 
onstant τ .Below we give an example of problem (P ) with sharp solutions.Example 8.1.1. Let X = R

2, Y = R
2 and K = R

2
+. Let f : R

2 → R
2 be given as

f(x1, x2) = (x2
1 + x2

2, exp(x1) + x2)and A = {(x1, x2) ∈ R
2 : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1}. Then (0, 1) ∈ E(f, A) and

(0, 0) ∈ S(f, A) and (0, 0) ∈ Sh2(f, A) with 
onstant τ = 0.5, i.e.
‖f(x) − f(0, 0)‖− ≥ 0.5‖x − (0, 0)‖2.
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Fig. 8.1 The set f(A) from Example 8.1.1

Fig. 8.2 The level sets of the fun
tion ‖f(x) − f(0, 0)‖
−
in Example 8.1.1We de�ne dire
tional di�erentiability of f at x0 in the dire
tion u via the 
ontingentderivative

f ′(x0; u) = lim
(t,v)→(0+,u)

f(x0 + tv) − f(x0)

tand we say that f is dire
tionally di�erentiable at x0 if f is dire
tionally di�erentiableat x0 in any dire
tion v ∈ X.
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Fig. 8.3 The graph of the fun
tion ‖f(x) − f(0, 0)‖
−
− 0.5‖x − (0, 0)‖2 in Example 8.1.1

The following proposition provides su�
ient 
onditions for sharp solutions in termsof 
ontingent dire
tional derivatives.Proposition 8.1.3. Let X be a �nite-dimensional spa
e. Let f be dire
tionally di�eren-tiable at x0 ∈ A, f(x0) = η. If, for any tangent dire
tion 0 6= v ∈ TA\Sη
(x0),

f ′(x0; v) 6∈ τ cl BY −K,then x0 is a lo
al sharp solution of order 1 to (P ) with 
onstant τ > 0.Conversely, if x0 ∈ A is a lo
al sharp solution of order 1 with 
onstant τ > 0, thenfor any tangent dire
tion v ∈ TA\Sη
(x0), v 6= 0,

f ′(x0; v) 6∈ τBY −K.Proof. Suppose that x0, f(x0) = η, is not a lo
al sharp solution with 
onstant τ > 0. Forea
h n ≥ 1 there exists xn ∈ A ∩ B(x0, 1/n), xn 6∈ Sη, xn → x0, su
h that
f(xn) − f(x0) ∈ τ‖xn − x0‖BY −K.Putting vn := (xn − x0)/‖xn − x0‖ we get vn → v ∈ TA\Sη

(x0), v 6= 0, and
f(xn) − f(x0)

‖xn − x0‖
∈ τBY −K, i.e. f ′(x0; v) ∈ τ cl BY −K.To prove the se
ond assertion suppose that there exists v ∈ TA\Sη

(x0), v 6= 0, su
h that
f(x0; v) ∈ τBY − K. Clearly, we may suppose that ‖v‖ = 1. There exists a sequen
e
(xn) ⊂ A \ Sα, xn → x0 su
h that by putting vn := (xn − x0)/‖xn − x0‖ and tn :=

‖xn − x0‖ we get vn → v ∈ TA\S̃α
(x0). Moreover, f(x0 + tnvn)− f(x0) ∈ τtnBY −K forall n su�
iently large, whi
h 
ontradi
ts the sharp e�
ien
y of x0.



84 8. Sharp and �rm solutions to ve
tor optimization problemsCorollary 8.1.1. Let X be a �nite-dimensional spa
e and let f be dire
tionally di�er-entiable at x0 ∈ A with f(x0) = η. Then x0 is a lo
al sharp solution of order 1 to (P ) ifand only if for any v ∈ TA\Sη
, v 6= 0,

f ′(x0; v) 6∈ −K.Proof. The proof of the �if� part is the same as the proof of the �if� part of Proposi-tion 8.1.3 with τ = 1/n.To 
omplete the proof, assume that there exists v ∈ TA\S̃α
, v 6= 0, su
h that

f ′(x0; v) = k0 ∈ −K.The remaining part of the proof follows the lines of the se
ond part of the proof ofTheorem 4.1 of [88℄.Now we dis
uss the relationships between lo
al sharp solutions and lo
al Henig propersolutions.Re
all that η ∈ E(f, A) is a lo
al Henig proper e�
ient point for (P ) if there exist a
losed 
onvex 
one Ω ⊂ Y , int Ω 6= ∅, K \ {0} ⊂ int Ω and ̺ > 0 su
h that
(f(x) − η) ∩ (−Ω) = {0} for x ∈ A ∩ B(x0, ̺).Moreover, x0 ∈ S(f, A), f(x0) = η, is a lo
al Henig proper solution to (P ) if η is a lo
alHenig proper e�
ient point for (P ).Proposition 8.1.4. Let K be a 
losed 
onvex 
one with a 
ompa
t base Θ.(i) η ∈ E(f, A) is a lo
al Henig proper e�
ient point for (P ) if and only if η is alo
al stri
tly e�
ient point of order 1.(ii) Let f be lo
ally Lips
hitz around x0 ∈ A. If x0 is a lo
al sharp solution of order

1 to (P ), then x0 is a lo
al Henig proper solution.Proof. (i) Suppose that η is not a lo
al stri
tly e�
ient point of order 1 to (P ). For ea
h
n ≥ 1 there exists xn ∈ A \ Sη, xn → x0 su
h that

f(xn) − f(x0) ∈
1

n
‖f(xn) − f(x0)‖BY −K,i.e., there exist λn > 0 and θn ∈ Θ su
h that(8.4) f(xn) − f(x0) =

1

n
‖f(xn) − f(x0)‖bn − λnθn for some bn ∈ BY .Hen
e,

f(xn) − f(x0)

‖f(xn) − f(x0)‖
=

1

n
bn − λn

‖f(xn) − f(x0)‖
θn.Sin
e Θ is bounded, ‖θn‖ ≤ M for some M > 0 and

1 ≤ 1

n
+

λn

‖f(xn) − f(x0)‖
Mand 
onsequently, for all n su�
iently large,

λn

‖f(xn) − f(x0)‖
≥ 1

2M
.



8.2. Weak sharp solutions 85This proves ‖f(xn) − f(x0)‖/λn ≤ 2M and εn := ‖f(xn) − f(x0)‖/(nλn) → 0. Finally,
f(xn) − f(x0) = −λn(εn(−bn) + θn)whi
h proves that η is not a lo
al Henig proper e�
ient point.Suppose now that η is not a lo
al Henig proper e�
ient point. For ea
h n ≥ 1 thereexists xn ∈ A, f(xn) 6= f(x0), xn → x0, su
h that
f(xn) − f(x0) ∈ − cone

(
1

n
BY + Θ

)
,i.e., there exist λn > 0 and θn ∈ Θ su
h that(8.5) f(xn) − f(x0) =

λn

n
bn − λnθn, where bn ∈ BY .Hen
e,

f(xn) − f(x0)

λn
=

1

n
bn − θn,and sin
e Θ is 
ompa
t, we 
an assume that θn → θ0 ∈ Θ, θ0 6= 0 and

vn :=
f(xn) − f(x0)

λn
→ −θ0.This proves that there exists M > 0 su
h that ‖f(xn) − f(x0)‖/λn ≥ M and 
onsequently

λn

‖f(xn) − f(x0)‖
≤ 1

M
.Hen
e, εn := λn

n‖f(xn)−f(x0)‖
→ 0 and by (8.5),

f(xn) − f(x0) = εn‖f(xn) − f(x0)‖bn − kn, where kn ∈ K.This proves that η is not a lo
al stri
tly e�
ient point.(ii) If x0 ∈ A, f(x0) = η, is a lo
al sharp solution of order 1 to (P ), then by Proposition8.1.1, η is a lo
al stri
tly e�
ient point of order 1, and by part (i), η is a lo
al Henigproper solution to (P ).
8.2. Weak sharp solutionsIn the present se
tion we dis
uss weak sharp solutions to (P ) and growth 
onditionsfor ve
tor-valued fun
tions. Let us note that one 
an easily generalize the de�nitionsgiven below to φ-weak sharp solutions and φ-growth 
onditions, where φ is an admissiblefun
tion. In view of further appli
ations we limit our attention to fun
tions φ of the form

φ(·) = τ (·)q, where τ > 0 and q > 0 are given 
onstants.Re
all that Sη = {x ∈ A : f(x) = η}.Definition 8.2.1. We say that x0 ∈ A with f(x0) = η is a (global) weak sharp solutionof order q > 0 to (P ), x0 ∈ Whq(f, A), if there exists τ > 0 su
h that(8.6) f(x) − f(x0) 6∈ τ (d(x, Sη))qBY −K for x ∈ A \ Sη.Relation (8.6) 
an be rewritten as(8.7) ‖f(x) − f(x0)‖− ≥ τ (d(x, Sη))q for x ∈ A \ Sη.



86 8. Sharp and �rm solutions to ve
tor optimization problemsEa
h weak sharp solution to (P ) is a solution to (P ). If x0 ∈ Shq(f, A), then x0 ∈
Whq(f, A). If x0 ∈ Whq(f, A), then Sη = {x ∈ A : f(x) = f(x0) = η} ⊂ Whq(f, A).Moreover, if x0 ∈ Whq(f, A), then(8.8) f(x) − f(x0) 6∈ τ (d(x, S(f, A))qBY −K for x ∈ A \ S(f, A).In the 
ase where f0 : X → R is a real-valued fun
tion, with the notation m0 =

inf{f0(x) : x ∈ A0}, x0 ∈ S(f0, A0) = {x ∈ A0 : f0(x) = m0}, relation (8.6) takes theform
f0(x) ≥ m0 + τ (d(x, S(f0, A0)))

q for x ∈ A0,whi
h means that S(f0, A0) is the set (global) weak sharp minima of order q of f0 over
A0 as de�ned e.g. in [43, 116, 147℄.Definition 8.2.2. We say that the global growth 
ondition of order q > 0 holds forproblem (P ) on S ⊂ S(f, A) if there exists τ > 0 su
h that for any x ∈ S and x ∈
A \ S(f, A) we have(8.9) (f(x) − f(x)) ∩ (τ (d(x, S(f, A)))qBY −K) = ∅.Note �rst that if the global growth 
ondition of order q holds for S ⊂ S(f, A), thenfor any x ∈ S,

Sη = {x ∈ A : f(x) = f(x) = η} ⊂ S.Moreover, the global growth 
ondition holds for (P ) on S(f, A) i� for any x ∈ S(f, A),(8.10) f(x) − f(x) 6∈ τ (d(x, S(f, A))qBY −K for x ∈ A \ S(f, A).The following proposition establishes the relationship between global weak sharp so-lutions and the global growth 
ondition.Proposition 8.2.1. Let X and Y be normed spa
es and let K be a 
losed 
onvex pointed
one in Y . If there exists a subset S ⊂ S(f, A) su
h that all x ∈ S are global weak sharpsolutions to (P ) of order q with 
onstant τ > 0, then the global growth 
ondition of order
q holds for (P ) on S with 
onstant τ .Proof. This follows immediately from the observation that for any x ∈ S,

Sη = {x ∈ A : f(x) = f(x) = η} ⊂ Sand hen
e
f(x) − f(x) 6∈ τ (d(x, S(f, A)))qBY −K for x ∈ A \ S,whi
h proves the assertion.Lo
al versions of the above notions 
an be obtained in several ways. The de�nitionsgiven below are shaped so as to be versatile for appli
ations presented in the next se
tions.Definition 8.2.3. We say that x0 ∈ A, f(x0) = η, is a lo
al weak sharp solution of order

q > 0 to (P ), x0 ∈ LWhq(f, A), if there exist a 0-neighbourhood V in X and 
onstant
τ > 0 su
h that for x ∈ A ∩ (x0 + V ), x 6∈ Sη,

(f(x) − f(x0)) ∩ (τ (d(x, Sη))qBY −K) = ∅.



8.2. Weak sharp solutions 87Clearly, ea
h lo
al sharp solution of order q to (P ) is a lo
al weak sharp solution oforder q to (P ) and ea
h lo
al weak sharp solution of order q to (P ) is a lo
al solutionto (P ). Or, equivalently, x0 ∈ A is a lo
al weak sharp solution to (P ) i� x0 is a lo
alweak sharp minimum ([43, 116, 147℄) of the fun
tion ‖f(·) − f(x0)‖− over A.Definition 8.2.4. The (lo
al) growth 
ondition of order q > 0 holds for (P ) on S ⊂
S(f, A) if there exist a 0-neighbourhood V in X and τ > 0 su
h that for any x ∈ S and
x ∈ A ∩ (x + V ), x 6∈ S, we have

(f(x) − f(x)) ∩ (τ (d(x, S(f, A)))qBY −K) = ∅.Moreover, we say that the lo
al growth 
ondition of order q holds for (P ) around
x0 ∈ S(f, A) if there exists a 0-neighbourhood V in X and a 
onstant τ > 0 su
h thatfor any x ∈ S = S(f, A) ∩ (x0 + V ) and any x ∈ A ∩ (x + V ) we have

τ (d(x, S(f, A)))q ≤ ‖f(x) − f(x)‖−.Or equivalently, for x ∈ A ∩ (x + V ), x 6∈ S,
f(x) − f(x) 6∈ τ (d(x, S(f, A)))qBY −K.This means that ea
h x ∈ S(f, A) ∩ (x0 + V ) is a lo
al weak sharp minimum of order q(
f. [43, 116, 147℄) of the fun
tion ‖f(·) − f(x)‖− over A with the same 
onstant τ > 0.Consider now the s
alar 
ase with f0 : X → R, K+ = R+, and m0 = f0(x0) =

inf{f0(x) : x ∈ A0}. Then, by de�nition, the growth 
ondition of order q > 0 holds for f0on a subset S ⊂ S(f0, A0), f0(S) = m0, if there is a neighbourhood V of zero in X anda 
onstant τ > 0 su
h that(8.11) f0(x) ≥ m0 + τd(x, S(f0, A0))
q for x ∈ A ∩ (S + V )whi
h means that ea
h x ∈ S is a lo
al weak sharp minimum of order q of f0 over A0.Re
all ([39, Ch. 3.1, Def. 3.1℄) that the growth 
ondition of order q > 0 holds for a real-valued fun
tion f0 on S ⊂ S(f0, A0) if there exist a 
onstant τ > 0 and a neighbourhood

V of zero in X su
h that(8.12) f0(x) ≥ m0 + αd(x, S)q for x ∈ A ∩ (S + V ).Thus, if S = S(f, A) 
onditions (8.11) and (8.12) 
oin
ide.The question of relationships between well-posedness and weak sharp solutions willbe addressed in the next 
hapter.Proposition 8.2.2. Let f : X → Y be a Lips
hitz mapping on X with 
onstant Lf > 0.If x0 ∈ A is a weak sharp solution of order q with 
onstant τ > 0, then f(x0) is a stri
tlye�
ient point of order q with 
onstant β = τ/Lq
f .Proof. By de�nition, if x0 ∈ S(f, A), f(x0) = η, is a weak sharp solution of order q with
onstant τ , then (f(x) − f(x0) ∩ τ (d(x, Sη))qBY −K) = ∅ for any x ∈ A \ Sη. Sin
e f isLips
hitz on X, ‖f(x) − f(x0)‖ ≤ Lf‖x − x0‖. Consequently, ‖f(x) − η‖ ≤ Lfd(x, Sη),and

f(x) − η 6∈ τ

Lq
‖f(x) − η‖BY −K for x ∈ A, f(x) 6= η,whi
h proves that η ∈ StEq(f, A) with 
onstant τ/Lq.



88 8. Sharp and �rm solutions to ve
tor optimization problemsIn the theorem below we prove lower Hölder 
ontinuity of the performan
e set-valuedmapping P at a given u0 ∈ domP for a family of parametri
 problems of the form
(Pu)

minK f(x)subje
t to x ∈ A(u).Let A : U →→ X be a set-valued mapping de�ned on a normed spa
e U , A(u) = A(u),
A(u0) = A.Theorem 8.2.1. Let Y = (Y, ‖·‖) be a normed spa
e and let K be a 
losed 
onvex pointed
one in Y. If(i) all x ∈ S(f, A) are weak sharp solutions of order q ≥ 1 with 
onstant τ > 0,(ii) there exists 0 < t < 1 su
h that (DP) holds for all f(A(u)), u ∈ u0 + tBU ,(iii) A is Hölder 
ontinuous of order p ≥ 1 with 
onstants La > 0 and t at u0 ∈ domAand f is Lips
hitz on X with 
onstant Lf > 0,then P is lower Hölder 
ontinuous of order p/q at u0 ∈ domP, i.e.

E(f, A) ⊂ E(f, A(u)) + (LfLa + (2Lq
fLa/τ )1/q)‖u − u0‖p/qBYfor u ∈ u0 + tBU .Proof. Note �rst that under our assumptions the set-valued mapping Af is lower andupper Hölder 
ontinuous of order p at u0 ∈ domA. Now, it is enough to observe that byProposition 8.2.2, if all the solutions S(f, A) are weak sharp of order q ≥ 1, with 
onstant

τ > 0, then all η ∈ E(f, A) are stri
tly e�
ient of order q with 
onstant τ . The 
on
lusionfollows from Theorem 4.1.1.Note that we 
an spe
ify the above result for parametri
 ve
tor optimization problemsin the same way as in Theorem 4.1.3.Theorem 8.2.2. Let X and Y be normed spa
es and let K be a 
losed 
onvex pointed
one in Y . Assume that(i) there exist τ > 0 and q ≥ 1 su
h that for any x ∈ S(f, A),
f(x) − f(x) 6∈ τ (d(x, Sη))qBY −K for x ∈ A \ Sη,(ii) f is Lips
hitz on X with 
onstant Lf > 0, A is Hölder 
ontinuous of order p ≥ 1at u0 ∈ domA with 
onstants La > 0 and 0 < t < 1,(iii) (DP) holds for all f(A(u)) and u ∈ B(u0, t).Then P is lower Hölder 
ontinuous of order p/q at u0 ∈ domP and

E(f, A) ⊂ E(f, A(u)) + Lf (La + (La/τ )1/q)‖u − u0‖p/qBYfor u ∈ B(u0, t).In Theorem 7.3.2 we derived 
onditions for the upper Hölder 
ontinuity of P withthe help of the (SDP) property. In deriving the stability 
onditions for di�erent type of
ontinuities we 
an relax the (SDP) (or (CP)) property by imposing stronger assumptionson solutions (sharpness, weak sharpness).



8.3. Firm solutions 89Below we prove the upper Hölder 
ontinuity of P by assuming that all the solutionsto all (Pu) in some neighbourhood of u0 are weak sharp with the same 
onstant. Notethat in the result below we do not assume that intK 6= ∅.Theorem 8.2.3. Let X = (X, ‖ · ‖), Y = (Y, ‖ · ‖), U = (U, ‖ · ‖) be normed spa
es. Let
K be a 
losed 
onvex pointed 
one in Y with intK 6= ∅. Let f : X → Y be a Lips
hitzmapping with 
onstant Lf > 0. If(i) A is Hölder 
ontinuous at u0 ∈ domA of order p ≥ 1 with 
onstants La > 0 and

t > 0,(ii) (DP) holds for (P ),(iii) all z ∈ S(f, A(u)) for u ∈ B(u0, t) are weak sharp of order q ≥ 1 with the same
onstant τ , i.e.
f(z) − f(z) 6∈ τ (d(z, Sf(z)(u)))qBY −K for z ∈ A(u), z 6∈ Sf(z)(u),where Sf(z)(u) = {z ∈ S(f, A(u)) : f(z) = f(z)},then the performan
e set-valued mapping P is upper Hölder 
ontinuous at u0 ∈ domP oforder p/q with 
onstants Lf (La + (2LaLf/τ)1/q) and t > 0.Proof. Take any y = f(z) ∈ E(f, A(u)), u ∈ u0 + taBU . By (i), there exists x ∈ A su
hthat

‖z − x‖ ≤ La‖u − u0‖pand by the Lips
hitz property ‖f(z) − f(x)‖ ≤ LfLa‖u − u0‖p. If x ∈ S(f, A), the
on
lusion follows. Otherwise, by (ii), there exists x ∈ S(f, A), f(x) 6= f(x), su
h that
f(x) ∈ f(x) − K. By (i), there exists z ∈ A(u) su
h that ‖x − z‖ ≤ La‖u − u0‖p and
‖f(x) − f(z)‖ ≤ LfLa‖u − u0‖p. If f(z) = f(z), the 
on
lusion follows. Otherwise,

f(z) − f(z) ∈ 2LfLa‖u − u0‖p −Kand sin
e by Proposition 8.2.2, f(z) is a stri
tly e�
ient point of order q for (Pu) with
onstant τ/Lq
f , we obtain

f(z) − f(z) 6∈ τ

Lq
f

‖f(z) − f(z)‖qBY −K.Hen
e,
‖f(z) − f(z)‖ ≤ Lf (2LaLf/τ)1/q‖u − u0‖p/qand 
onsequently

f(z) − f(x) = (f(z) − f(z)) + (f(z) − f(x)) ∈ Lf (La + (2LaLf/τ)1/q)‖u − u0‖p/q.

8.3. Firm solutionsIn a series of publi
ations Attou
h andWets [6℄�[8℄ developed an approa
h to investigatingquantitative stability of variational systems as de�ned by Ro
kafellar and Wets [133℄. In[6℄ Lips
hitz and Hölder 
ontinuities are investigated for φ-lo
al minimizers to parametri
s
alar minimization problems. Given a fun
tion f0 : X → R an element x0 ∈ X is 
alled



90 8. Sharp and �rm solutions to ve
tor optimization problemsa φ-lo
al minimizer of f0 if f0(x) ≥ f0(x0) + φ(‖x − x0‖) for all x in some ball around
x0 and φ : R+ → R+ is an admissible fun
tion, i.e. φ is nonde
reasing, φ(0) = 0 and
φ(t) > 0 for t > 0.In this se
tion we generalize the above idea to ve
tor-valued fun
tions by de�ning
φ-�rm solutions to ve
tor optimization problems. We exploit this notion to investigateHölder behaviour of the performan
e set-valued mapping P.Let f : X → Y be a mapping and A be a subset of X. Consider a ve
tor optimizationproblem

(P )
minK f(x)subje
t to x ∈ A.In De�nition 7.3.1 we de�ned φ-strong 
ontainment property. Now we de�ne its analogfor problem (P ). Let φ : R+ → R+ be an admissible fun
tion.Definition 8.3.1. We say that the e�
ient point set E(f, A) to (P ) is φ-dominated if

φ-(SDP) holds for f(A), i.e., if for ea
h x ∈ A there exists x ∈ S(f, A) su
h that
f(x) �K f(x) + φ(‖f(x) − f(x)‖)BY , i.e., f(x) − f(x) + φ(‖f(x) − f(x)‖)BY ⊂ K.Moreover, E(f, A) is dominated of order q > 0 if E(f, A) is φ-dominated with φ(·) = α(·)qwith some α > 0.Definition 8.3.2. The solution set S(f, A) to (P ) is 
alled φ-�rm or φ-dominated if forea
h x ∈ A there exists x ∈ S(f, A) su
h that

f(x) �K f(x) + φ(‖x − x‖)BY , i.e., f(x) − f(x) + φ(‖x − x‖)BY ⊂ K.In parti
ular, S(f, A) is �rm of order q if S(f, A) is φ-�rm with φ(·) = ̺(·)q with some
̺ > 0, i.e., for ea
h x ∈ A there exists x ∈ S(f, A) su
h that

f(x) − f(x) + ̺‖x − x‖qBY ⊂ K.Proposition 8.3.1. Let X = (X, ‖ · ‖) and Y = (Y, ‖ · ‖) be normed spa
es. Let Kbe a 
losed 
onvex pointed 
one in Y with intK 6= ∅. Let f : X → Y be a Lips
hitzmapping with 
onstant Lf > 0. If S(f, A) is φ-�rm, then E(f, A) is µ-dominated with
µ(·) = φ( 1

Lf
·).Proof. By assumption, for ea
h x ∈ A there exists x ∈ S(f, A) su
h that

f(x) − f(x) + φ(‖x − x‖)BY ⊂ K.Sin
e ‖f(x)−f(x)‖ ≤ Lf‖x−x‖ and φ is nonde
reasing, φ( 1
Lf

‖f(x)−f(x)‖) ≤ φ(‖x−x‖)and
f(x) − f(x) + φ

(
1

Lf
‖f(x) − f(x)‖

)
BY ⊂ f(x) − f(x) + φ(‖x − x‖)BY ⊂ K,whi
h proves the assertion.In parti
ular, if f is Lips
hitz on A with 
onstant Lf > 0 and the solution set S(f, A)is �rm of order q with 
onstant ̺ > 0, then E(f, A) is dominated of order q with 
onstant

̺/Lq
f .



8.3. Firm solutions 91Let C be a subset of Y. Re
all that the domination property (DP) holds for C if
C ⊂ E(C) +K, and the domination property (DP) holds for (P ) if (DP) holds for f(A),i.e., for ea
h x ∈ A there is x ∈ S(f, A) su
h that f(x) − f(x) ⊂ K.Let intK 6= ∅. We say that the (global) strong domination property (SDP) of order
q > 0 holds for C if there exists ̺ > 0 su
h that for ea
h y ∈ C there exists η ∈ E(C)su
h that(8.13) y − η − ̺‖y − η‖qBY ⊂ K.We say that the (lo
al) strong domination property (LSDP ) of order q > 0 holds for Caround y0 ∈ C if there exist a neighbourhood W of zero in Y and ̺ > 0 su
h that forea
h y ∈ C ∩ (y0 + W ) there exists η ∈ E(C) ∩ (y0 + W ) su
h that (8.13) holds.To 
ast the notions of φ-�rm (or �rm of order q) solutions (see De�nitions 8.3.2)into the framework of variants of the domination property we say that the (global) �rmdomination property (FDP) of order q > 0 holds for (P ) if the solution set S(f, A) is �rmof order q, i.e., there exists a 
onstant ̺ > 0 su
h that for ea
h x ∈ A \ S(f, A) thereexists x ∈ S(f, A) with(8.14) f(x) − f(x) − ̺‖x − x‖qBY ⊂ K.Equivalently, (FDP) of order q holds for (P ) i� there exists ̺ > 0 su
h that for ea
h
x ∈ A \ S(f, A) there exists x ∈ S(f, A) su
h that

̺‖x − x‖q ≤ ‖f(x) − f(x)‖+,where ‖ ·‖+ = d(·,Kc) and Dc denotes the 
omplement of a subset D. If f is Lips
hitz on
X with 
onstant Lf > 0 and (FDP ) of order q with 
onstant ̺ > 0 holds for (P ), then
(SDP ) of order q with 
onstant ̺/Lf holds for (P ) (
f. De�nition 7.3.1 and (8.13)).Definition 8.3.3 ([19℄). Let intK 6= ∅. We say that the (lo
al) �rm domination property
(LFDP ) of order q > 0 holds for (P ) around x0 ∈ A if there exist a 0-neighbourhood Vin X and ̺ > 0 su
h that for ea
h x ∈ A ∩ (x0 + V ) there exists x ∈ S(f, A) ∩ (x0 + V )with

f(x) − f(x) + ̺‖x − x‖qBY ⊂ K.Equivalently, (LFDP ) of order q holds for (P ) around x0 ∈ A i� there exist a neigh-bourhood V of zero in X and ̺ > 0 su
h that for ea
h x ∈ A ∩ (x0 + V ), there is
x ∈ S(f, A) ∩ (x0 + V ) with(8.15) ̺‖x − x‖q ≤ ‖f(x) − f(x)‖+.If f0 : X → R, K+ = R+, and m0 = f0(x0) = inf{f0(x) : x ∈ A0}, then, by de�nition,
(LFDP ) of order q holds around x0 ∈ A0 if there are a 0-neighbourhood V in X and
̺ > 0 su
h that for any x ∈ A0 ∩ (x0 + V ), there is x ∈ S(f0, A0) ∩ (x0 + V ) satisfying(8.16) f0(x) ≥ m0 + ̺‖x − x‖q ≥ m0 + ̺d(x, S(f0, A0))

q,whi
h means that x0 is a lo
al weak sharp minimum of order q of f0 over A0 (
f. [43,116℄). Note that (8.16) 
oin
ides with (8.11) for S = {x0}, whi
h means that for s
alar-valued fun
tions the growth 
ondition of order q around x0 
oin
ides with the lo
al �rmdomination property of order q around x0.



92 8. Sharp and �rm solutions to ve
tor optimization problemsIt is worth noti
ing that, in general, if (LFDP ) holds around x0 ∈ A with a neigh-bourhood V, then it may not hold around x0 with a smaller neighbourhood V1 ⊂ V.Example 8.3.1. Let Y = R
2, K = R

2
+, f = id and A ⊂ R

2 is the union of three segmentsof the form
A = [(−10, 1/2), (−1, 1)] ∪ [(−1, 1), (0, 0)] ∪ [(0, 0), (20, 1)].We have (0, 0) ∈ S(id, A). (LFDP ) holds around (0, 0) with V = 11BY , but not with

V = 5BY , sin
e (−1, 1) ∈ 5BY and there is no s ∈ S(id, A)∩ 5BY su
h that (8.15) holds.Example 8.3.2. Let Y = ℓ∞, f = id, and let K = ℓ∞+ . Consider
A = {y ∈ ℓ∞ : 0 ≤ f(y) ≤ 1},where f is the 
ontinuous linear fun
tional given by f(y) =

∑∞
n=1 yn/2n. We have

E(id, A) = {y ∈ A : f(y) = 0} and the strong domination property of order one holds for
A. It has been shown in [20℄ that StE(A) = ∅.



9. STABILITY OF SOLUTIONSIn this 
hapter we investigate Hausdor�, Hölder and pseudo-Hölder 
ontinuities of solu-tions to parametri
 ve
tor optimization problems. To this end we propose several de�ni-tions of well-posedness for ve
tor optimization problems. These de�nitions are based onproperties of ε-solutions to ve
tor optimization problems (
f. [50, 52, 99, 104℄).The notion of well-posedness and its various generalizations appear to be very fruitfulin s
alar optimization, espe
ially in stability analysis. Well-posedness plays an importantrule in establishing 
onvergen
e of algorithms for solving s
alar optimization problems.In ve
tor optimization there is no 
ommonly a

epted de�nition of well-posed problem.Some attempts in this dire
tion have been already made by Miglierina and Molho [110℄and the present author [21�23℄.In Se
tion 9.1, on the basis of 
ontinuity properties of ε-solution mappings we de-�ne well-posed ve
tor optimization problems. We establish relationships between well-posedness, sharp and weak sharp solutions. In Se
tion 9.2 we give su�
ient 
onditionsfor the solution set-valued mapping S to be upper Hausdor� semi
ontinuous (Theorem9.2.1). In Se
tion 9.3 we prove lower Lips
hitz 
ontinuity (Theorems 9.3.1, 9.3.3) of S. InSe
tion 9.4 we formulate su�
ient 
onditions for upper Lips
hitz 
ontinuity of S (Theo-rems 9.4.1�9.4.3). In Se
tion 9.5 lower Hölder and lower pseudo-Hölder 
ontinuities of Sare investigated. In Se
tion 9.6 upper Hölder and upper pseudo-Hölder 
ontinuities of Sare investigated (Theorem 9.C.1) as well as Hölder 
almness (Theorem 9.6.2).Let Y be a Hausdor� topologi
al ve
tor spa
e ordered by a partial ordering relation
�K generated by a 
losed 
onvex pointed 
one K (see Se
tion 1.2). Let X and U betopologi
al spa
es. Let f : X → Y and A ⊂ X. We 
onsider ve
tor optimization problems

(P )
minK f(x)subje
t to x ∈ Aand the family (Pu) of parametri
 ve
tor optimization problems parametrized by a pa-rameter u ∈ U ,

(Pu)
minK f(x)subje
t to x ∈ A(u)with A(u0) = A. It is worth noti
ing that the results of the present 
hapter 
an be easilygeneralized to parametri
 problems (Pu) with parametrized mapping f .In relation to Propositions 6.2.1 and 6.2.2 we have the following te
hni
al result.Theorem 9.0.1. Let X, U be topologi
al spa
es and let Y be a Hausdor� topologi
alve
tor spa
e. Let f : X → Y be a K-upper 
ontinuous (respe
tively, K-lower 
ontinuous)[93℄



94 9. Stability of solutionsmapping and let A : U →→ X be lower semi
ontinuous at u0 ∈ domA. Then the set-valued mapping (Af : U) →→ (Y ), Af (u) = f(A(u)) for u ∈ U , is sup-lower 
ontinuous(respe
tively, inf-lower 
ontinuous) at u0 ∈ domA.Proof. Let y0 ∈ Af (u0). Choose any open 0-neighbourhoood Q in Y . There exists an
x0 ∈ A(u0) su
h that f(x0) = y0 and, by the upper 
ontinuity of f (respe
tively, lower
ontinuity of f), there exists an open neighbourhood W of x0 su
h that f(W ) ⊂ y0+Q−K(respe
tively, f(W ) ⊂ y0 + Q + K). Sin
e A is lower semi
ontinuous at u0, there existsa neighbourhood U of u0 su
h that W ∩ A(u) 6= ∅ for u ∈ U. Now, by taking any
x ∈ A(u), x ∈ W, u ∈ U , we obtain f(x) ∈ FA(u), f(x) ∈ y0 + Q − K (respe
tively,
f(x) ∈ y0+Q+K) and hen
e (y0+Q−K)∩Af (u) 6= ∅ (respe
tively, (y0+Q+K)∩FA(u) 6=
∅) for u ∈ U .

9.1. Well-posed ve
tor optimization problemsLet X and Y be Hausdor� topologi
al ve
tor spa
es and let K be a 
losed 
onvex pointed
one in Y with intK 6= ∅. Basing ourselves on the 
ontinuity properties of ε-solutions toa ve
tor optimization problem
(P )

minK f(x)subje
t to x ∈ Awe introdu
e several 
on
epts of well-posedness for (P ). To this end we exploit ε-solutionsto (P ) as de�ned e.g. in [99℄ and [104℄.Definition 9.1.1. Let ε ∈ K. A point x ∈ A is an ε-Pareto solution to (P ) if there is no
x ∈ A su
h that f(x) − ε − f(x) ∈ K \ {0}.We denote by Sε(f, A) the set of all ε-solutions to (P ) and by Eε(f, A) the set of all
ε-points for (P ) (i.e. the image of Sε(f, A) under f). Thus, Sε(f, A) = A∩f−1(Eε(f, A)).Let K0 = intK ∪ {0} and η ∈ E(f, A). Let Πη : K0

→→ X be the set-valued mappingde�ned as
Πη(ε) := {x ∈ A : η + ε − f(x) ∈ K}.The set-valued mapping Πη is 
alled the η-ε-solution mapping. We have

Πη(ε) = A ∩ f−1(η + ε −K).Moreover, Πη(0) = {x ∈ S(f, A) : f(x) = η} = Sη and ⋃
η∈E(f,A) Πη(0) = S(f, A). Thesets Πη(ε) were used in [4℄ to investigate some stability properties of sequen
es of ve
toroptimization problems.Let Π : K0

→→ X be the set-valued mapping de�ned as
Π(ε) =

⋃

η∈E(f,A)

Πη(ε) = {x ∈ A : f(x) ∈ E(f, A) + ε −K}.It is 
alled the ε-solution mapping. We have
Π(ε) = A ∩ f−1(E(f, A) + ε −K).Moreover, Π(ε) ⊂ Sε(f, A) and Π(0) = S(f, A).



9.1. Well-posed ve
tor optimization problems 95We start with the following de�nition of well-posedness of (P ) in normed spa
es X and Y .Definition 9.1.2. Problem (P ) is Hausdor� well-posed if(i) E(f, A) 6= ∅,(ii) the ε-solution mapping Π is upper Hausdor� semi
ontinuous at 0 ∈ dom Π, i.e.for any M > 0 there exists t > 0 su
h that
Π(ε) ⊂ S(f, A) + MBX for ε ∈ K0 ∩ tBY .Definition 9.1.3. Let η ∈ E(f, A). Problem (P ) is η-Hausdor� well-posed if the η-ε-solution mapping Πη is upper Hausdor� semi
ontinuous at 0 ∈ dom Πη, i.e. for any

M > 0 there exists t > 0 su
h that
Π(ε) ⊂ Sη + MBX for ε ∈ K0 ∩ tBY .Definition 9.1.4. Let (xn) ⊂ A be a sequen
e of feasible elements. It is a minimizingsequen
e for (P ) if for ea
h n ≥ 1 there exist yn ∈ K, limn yn = 0, and ηn ∈ E(f, A) su
hthat f(xn) �K ηn + yn.The following proposition gives a 
hara
terization of Hausdor� well-posedness in termsof minimizing sequen
es.Proposition 9.1.1. Let X and Y be normed spa
es and let K be a 
losed 
onvex pointed
one in Y . The following 
onditions are equivalent:(i) (P ) is Hausdor� well-posed,(ii) E(f, A) 6= ∅, and for any minimizing sequen
e (xn) ⊂ A and every 0-neighbour-hood W in X,
xn ∈ S(f, A) + W for all n su�
iently large.Proof. Follows dire
tly from the de�nitions.The following proposition establishes the relationships between well-posedness, φ-sharp, and weak φ-sharp solutions.Proposition 9.1.2. Let X and Y be normed spa
es and let K be a 
losed 
onvex pointed
one in Y with intK 6= ∅. Let η ∈ E(f, A).(i) If Sη ∩ Shφ(f, A) 6= ∅, then (P ) is η-Hausdor� well-posed. Moreover, if Sη =

{x0}, then (P ) is η-Hausdor� well-posed if and only if x0 ∈ Shφ(f, A).(ii) If S(f, A) = Shφ(f, A) (i.e. all solutions are φ-sharp with the same fun
tion φ),then (P ) is Hausdor� well-posed.(iii) (P ) is Hausdor� well-posed if and only if the global φ-growth 
ondition holds for
(P ), i.e. for any x ∈ S(f, A),

f(x) − f(x) 6∈ φ(d(x, S(f, A))BY −K for x ∈ A \ S(f, A).Proof. (i) Suppose that Πη is not upper Hausdor� semi
ontinuous at 0 ∈ domΠη. Thereexists M0 > 0 su
h that for all n ≥ 1 one 
an �nd εn ∈ K0 ∩ (1/n)BY and zn ∈ Πη(εn)su
h that zn ∈ Πη(εn) and d(zn, Sη) ≥ M0. Thus, for any x ∈ Sη,
f(zn) − f(x) ∈ εn −K ⊂ 1

n
BY −K.This proves that no x ∈ Sη is φ-sharp sin
e φ(‖zn − x‖) ≥ φ(M0) ≥ 1/n.



96 9. Stability of solutions(ii) Suppose that (P ) is not Hausdor� well-posed. There exists M0 > 0 su
h that forall n ≥ 1 there are εn ∈ K0 ∈ (1/n)BY and zn ∈ Π(εn) su
h that d(zn, S(f, A)) ≥ M0.Thus, there exists xn ∈ S(f, A) su
h that
f(zn) − f(xn) ∈ εn −K ⊂ 1

n
BY −K.This proves that xn is not φ-sharp sin
e φ(‖zn − xn‖) ≥ φ(M0) ≥ 1/n.(iii) The proof is similar to (ii).With the de�nitions introdu
ed below we 
an 
hara
terize global sharp and weaksharp solutions of order q to (P ).Definition 9.1.5. Problem (P ) is Hölder well-posed of order q > 0 if(i) E(f, A) 6= ∅,(ii) the ε-solution mapping Π is upper Hölder of order q > 0 at 0 ∈ domΠ, i.e. thereexist 
onstants L > 0 and t > 0 su
h that

A ∩ f−1(E(f, A) + ε −K) ⊂ S(f, A) + L‖ε‖qBX .We say that (P ) is Lips
hitz well-posed if (P ) is Hölder well-posed with q = 1.Definition 9.1.6. Let η ∈ E(f, A). Problem (P ) is η-Hölder well-posed of order q > 0if the η-ε-solution mapping Πη is upper Hölder of order q > 0 at 0 ∈ domΠη, i.e. thereexist 
onstants L > 0 and t > 0 su
h that
A ∩ f−1(η + ε −K) ⊂ Sη + L‖ε‖qBX .We say that (P ) is η-Lips
hitz well-posed if (P ) is η-Hölder well-posed with q = 1.The following proposition establishes the relationships between sharp solutions andwell-posedness introdu
ed in De�nitions 9.1.5 and 9.1.6. Re
all that Sη = A ∩ f−1(η).Proposition 9.1.3. Let X and Y be normed spa
es and let K be a 
losed 
onvex pointed
one in Y with intK 6= ∅. Let η ∈ E(f, A).(i) If Sη ∩ Shq(f, A) 6= ∅, then (P ) is η-Hölder well-posed of order 1/q. Moreover,if Sη = {x0}, then (P ) is η-Hölder well-posed if and only if x0 ∈ Shq(f, A).(ii) If all x ∈ S(f, A) are sharp of order q with 
onstant τ > 0, then (P ) is Hölderwell-posed of order 1/q.Proof. By de�nition, Πη is upper Hölder of order 1/q at 0 ∈ domΠη if there are 
onstants

L > 0 and t > 0 su
h that
A ∩ f−1(η + ε −K) ⊂ Sη + L‖ε‖1/qBX for ε ∈ K0 ∩ tBX .(i) Suppose now that Πη is not upper Hölder of order 1/q at 0 ∈ domΠη. Forea
h n ≥ 1 there exist εn ∈ K0 ∩ (1/n)BY and xn ∈ A ∩ f−1(η + εn − K) su
h that

d(xn, Sη) > n‖εn‖1/q. Hen
e, ‖xn − x0‖q > nq‖εn‖ for any x0 ∈ Sη and
f(xn) − f(x0) ∈

1

nq
‖xn − x0‖q εn

1
nq ‖xn − x0‖q

−K ⊂ 1

nq
‖xn − x0‖qBY −K,whi
h proves that Sη ∩ Shq(f, A) = ∅.



9.1. Well-posed ve
tor optimization problems 97To see the se
ond part of (i) suppose on the 
ontrary that x0 is not sharp of order q.For ea
h n ≥ 1 there exists xn ∈ A \ Sη su
h that
f(xn) − f(x0) ∈

1

n
‖xn − x0‖qBY −K.By taking any ε ∈ intK, ‖ε‖ = 1, and λ > 0 su
h that BY ⊂ λε −K we get

f(xn) − f(x0) ∈
λ

n
‖xn − x0‖qε −K,whi
h means that xn ∈ Πη(λ

n‖xn − x0‖qε). On the other hand,
‖xn − x0‖ = d(xn, Sη) 6≤ (λ/n)1/q‖xn − x0‖.(ii) Suppose on the 
ontrary that Π is not upper Hölder of order 1/q at 0 ∈ domΠ.For ea
h n ≥ 1 there exist εn ∈ K0 ∩ (1/n)BY and zn ∈ A∩ f−1(E(f, A) + εn −K) su
hthat d(zn, S) > n‖εn‖1/q. Thus, there exists xn ∈ S(f, A) su
h that

f(zn) − f(xn) ∈ εn −K.On the other hand, ‖zn − xn‖ ≥ d(zn, S(f, A)) and
1

nq
‖zn − xn‖q > ‖εn‖.Hen
e, bn := εn

1
nq ‖zn−xn‖q ∈ BY and
f(zn) − f(xn) ∈ 1

nq
‖zn − xn‖qBY −K, f(zn) 6= f(xn),whi
h 
ontradi
ts the assumption that all x ∈ S(f, A) are sharp of order q with the same
onstant.Analogously, the following proposition establishes the relationships between well-posedness of (P ) and weakly sharp solutions to (P ).Proposition 9.1.4. Let X and Y be normed spa
es and let K be a 
losed 
onvex pointed
one in Y with intK 6= ∅. Let η ∈ E(f, A).(i) Sη ∩ Whq(f, A) 6= ∅ if and only if (P ) is η-Hölder well-posed of order 1/q.(ii) (P ) is Hölder well-posed of order 1/q if and only if the global growth 
onditionholds for (P ) on S(f, A), i.e. there exists a 
onstant τ > 0 su
h that for all

x ∈ S(f, A),
f(x) − f(x) 6∈ τ (d(x, S(f, A))qBY −K for x ∈ A \ S(f, A).Proof. (i) The proof of this part is analogous to the proof of Proposition 9.1.3.(ii) Suppose that Π is not upper Hölder of order 1/q at 0 ∈ domΠ. For ea
h

n ≥ 1 there exist εn ∈ K0 ∩ (1/n)BY and zn ∈ A ∩ f−1(E(f, A) + εn − K) su
h that
d(zn, S(f, A)) > n‖εn‖1/q. Hen
e, zn 6∈ S(f, A) and there exists xn ∈ S(f, A) su
h that
f(zn) − f(xn) ∈ εn −K and

f(zn) − f(xn) ∈ 1

nq
d(zn, S(f, A))qBY −K,whi
h 
ontradi
ts the assumption.



98 9. Stability of solutionsTo see the 
onverse, suppose on the 
ontrary that for ea
h n ≥ 1 one 
an �nd xn ∈
S(f, A) su
h that there exists zn ∈ A \ S(f, A) su
h that

f(zn) − f(xn) ∈ 1

n
d(zn, S(f, A))qBY −K.Sin
e there exist ε0 ∈ intK, ‖ε0‖ = 1, and λ > 0 su
h that BY ⊂ λε0 −K, we get

f(zn) − f(xn) ∈ λ

n
d(zn, S(f, A))qε0 −K.Hen
e, zn ∈ Π(λ

nd(zn, S(f, A))qε0). But d(zn, S(f, A)) 6≤ (λ/n)1/qd(zn, S(f, A)) and (P )is not Hölder well-posed of order 1/q.Now we 
onsider lo
al well-posedness of (P ).Definition 9.1.7. Problem (P ) is Hölder 
alm well-posed of order q > 0 at x0 ∈ S(f, A)if the ε-solution mapping Π is Hölder 
alm of order q > 0 at (0, x0) ∈ graphΠ, i.e. thereexist r > 0, L > 0 and t > 0 su
h that
Π(ε) ∩ (x0 + rBX) ⊂ Π(0) + L‖ε‖qBXfor ε ∈ K0 ∩ tBY . We say that (P ) is 
alm well-posed at x0 ∈ S(f, A) if (P ) is Hölder
alm well-posed at x0 with q = 1.Definition 9.1.8. Problem (P ) is η-Hölder 
alm well-posed of order q > 0 at x0 ∈ Sηif the η-ε-solution mapping Πη is Hölder 
alm of order q > 0 at (0, x0) ∈ graphΠη, i.e.there exist r > 0, L > 0 and t > 0 su
h that

Πη(ε) ∩ (x0 + rBX) ⊂ Πη(0) + L‖ε‖qBXfor ε ∈ K0 ∩ tBY . We say that (P ) is η-
alm well-posed at x0 ∈ Sη if (P ) is η-Hölder
alm well-posed of order q = 1 at x0.Now we address the question of relationships between lo
al well-posedness, lo
al sharpand lo
al weak sharp solutions. Re
all that x0 ∈ A is a lo
al sharp solution of order q > 0to (P ), x0 ∈ LShq(f, A), if one 
an �nd a 0-neighbourhood V in X and 
onstant τ > 0su
h that
(f(x) − f(x0)) ∩ (τ‖x − x0‖qBY −K) = ∅ for all x ∈ A ∩ (x0 + V ), f(x) 6= f(x0).Equivalently, x0 ∈ LShq(f, A) i� there is a 0-neighbourhood V in X su
h that

τ‖x − x0‖q ≤ ‖f(x) − f(x0)‖− for all x ∈ A ∩ (x0 + V ), f(x) 6= f(x0).Or, x0 ∈ LShq(f, A) i� x0 is a lo
al sharp minimum of order q of the fun
tion ‖f(·) −
f(x0)‖− over A (
f. [147℄).Moreover, x0 ∈ LWhq(f, A), f(x0) = η, if there exist a 0-neighbourhood V in X and
τ > 0 su
h that

f(x) − f(x0) 6∈ τ (d(x, Sη))qBY −K for x ∈ A ∩ (x0 + V ), x 6∈ Sη.Proposition 9.1.5. Let K be a 
losed 
onvex pointed 
one in a normed spa
e (Y, ‖ · ‖)with intK 6= ∅. Let η ∈ E(f, A).(i) (P ) is η-Hölder 
alm of order 1/q at (0, x0) ∈ graphΠ (De�nition 9.1.8) if andonly if x0 ∈ LWhq(f, A).



9.1. Well-posed ve
tor optimization problems 99(ii) (P ) is Hölder 
alm of order 1/q at (0, x0) ∈ graphΠ (De�nition 9.1.7) if andonly if there exists a 0-neighbourhood V su
h that the lo
al growth 
ondition oforder q holds for (P ) on S = S(f, A) ∩ (x0 + V ) (
f. De�nition 8.2.4).Proof. (i) By de�nition, Πη is Hölder 
alm of order 1/q at (0, x0) ∈ graph Πη if thereare a 0-neighbourhood V in X and 
onstants L > 0 and t > 0 su
h that
A ∩ f−1(η + ε −K) ∩ (x0 + V ) ⊂ Sη + L‖ε‖1/qBX for ε ∈ K0 ∩ tBY .Suppose on the 
ontrary that x0 6∈ LWhq(f, A), i.e., for ea
h n ≥ 1 there are zn ∈

A ∩ (x0 + 1
nBX), f(zn) 6= f(x0), su
h that

f(zn) − f(x0) ∈
1

n
(d(zn, Sη))qBY −K.Sin
e there exist ε0 ∈ intK, ‖ε0‖ = 1, and λ > 0 su
h that BY ⊂ λε0 −K we get

f(zn) ∈ f(x0) +
λ

n
(d(zn, Sη))qε0 −K.Hen
e, zn ∈ Πη(λ

n (d(zn, Sη))qε0), but d(zn, Sη) 6≤ L(λ/n)1/qd(zn, Sη), whi
h means that
Πη is not Hölder 
alm of order 1/q at (0, x0) ∈ graph Πη.(ii) By de�nition, Π is Hölder 
alm of order 1/q at (0, x0) ∈ graphΠ if there are a
0-neighbourhood V in X and 
onstants L > 0 and t > 0 su
h that

A ∩ f−1(E(f, A) + ε −K) ∩ (x0 + V ) ⊂ S(f, A) + L‖ε‖1/qBX for ε ∈ K0 ∩ tBY .Now, suppose on the 
ontrary that the lo
al growth 
ondition of order q does not holdfor (P ) around x0 ∈ S(f, A), i.e. for ea
h n ≥ 1 one 
an �nd xn ∈ S(f, A) ∩ (x0 + 1
nBX)and zn ∈ A ∩ (xn + 1

nBX), f(zn) 6= f(xn), su
h that
f(zn) − f(xn) ∈ 1

n
(d(zn, S(f, A)))qBY −K.By taking ε0 ∈ intK, ‖ε0‖ = 1, and λ > 0 su
h that BY ⊂ λε0 −K we get

f(zn) = f(xn) +
λ

n
(d(zn, S(f, A)))qε −K.Hen
e, zn ∈ Π(λ

n (d(zn, S(f, A)))qε0) ∩ (x0 + 2
nBY ) but

d(zn, S(f, A)) 6≤ L

(
λ

n

)1/q

d(zn, S(f, A)),whi
h means that Π is not Hölder 
alm of order 1/q at (0, x0) ∈ graphΠ.For the 
onverse suppose that (P ) is not Hölder 
alm of order 1/q. For ea
h n ≥ 1there exist εn ∈ K0 ∩ 1
nBY and zn ∈ Π(εn) ∩ (x0 + 1

nBX) su
h that
d(zn, S(f, A)) ≥ n‖εn‖1/q.Hen
e, there exists xn ∈ S(f, A) su
h that f(zn) ∈ f(xn) + εn −K and thus

f(zn) − f(xn) ∈ 1

nq
(d(zn, S(f, A))qBY −K,whi
h proves that the lo
al growth 
ondition does not hold for (P ) around x0.Analogously we 
an prove the lo
al 
ounterpart of Proposition 9.1.3.



100 9. Stability of solutionsProposition 9.1.6. Let K be a 
losed 
onvex pointed 
one in a normed spa
e (Y, ‖ · ‖)with intK 6= ∅. Let η ∈ E(f, A).(i) If x0 ∈ Sη ∩LShq(f, A), then (P ) is η-Hölder 
alm well-posed at x0 of order 1/q.Moreover, if Sη = {x0}, then (P ) is η-Hölder well-posed of order 1/q at x0 if andonly if x0 ∈ LShq(f, A).(ii) If there exists a 0-neighbourhood V su
h that all x ∈ S(f, A)∩ (x0 + V ) are lo
alsharp of order q with the same 
onstant, then (P ) is Hölder 
alm well-posed at
x0 of order 1/q.Proof. (i) The proof is similar to the proof of Proposition 9.1.3(i).(ii) Sin
e ea
h lo
al sharp solution is a lo
al weak sharp solution, the 
on
lusionfollows from Proposition 9.1.5(ii).9.1.1. Conditions for well-posedness in the out
ome spa
e. In this se
tion weinvestigate relationships between well-posedness of (P ), stri
tly e�
ient points and lo
alstri
tly e�
ient points to (P ).As previously, K0 = intK ∪ {0} and ε ∈ K0. Re
all that y0 ∈ C is ε-e�
ient [99℄,

y0 ∈ ε-E(C), if
(y0 − ε −K) ∩ C = ∅.Let C be a subset of a Hausdor� topologi
al ve
tor spa
e Y. A

ording to De�ni-tion 2.2.1, an element y0 ∈ C is a stri
tly e�
ient point, y0 ∈ StE(C), if for every

0-neighbourhood W in Y there exists a 0-neighbourhood O in Y su
h that
C ∩ (y0 + O −K) ⊂ y0 + W.Let η ∈ E(C). Let Π̃η : K0
→→ Y be de�ned as(9.1) Π̃η(ε) := {y ∈ C : η + ε − y ∈ K}.Thus, Π̃η is the η-ε-solution mapping Πη for f = id and A = C and
Π̃η(ε) = C ∩ (η + ε −K).Let Π̃ : K →→ Y be de�ned as(9.2) Π̃(ε) := {y ∈ C : E(C) + ε − y ∈ K}.In other words,

Π̃(ε) = C ∩ (E(C) + ε −K)and Π̃ is the ε-solution mapping Π for f = id and A = C.The following proposition establishes the relationship between upper Hausdor� semi-
ontinuity of Π̃ or Π̃η and stri
tly e�
ient points.Proposition 9.1.7. Let X and Y be Hausdor� topologi
al ve
tor spa
es and let K be a
losed 
onvex pointed 
one in Y with intK 6= ∅. Let C be a subset of Y and let η ∈ E(C).(i) Π̃η is upper Hausdor� semi
ontinuous at ε = 0 if and only if η ∈ StE(C).(ii) If all η ∈ E(C) are uniformly stri
tly e�
ient in the sense that for any 0-neighbourhood W there exists a 0-neighbourhood O su
h that for any η ∈ E(C)

C ∩ (η + O −K) ⊂ η + W,then Π̃ is upper Hausdor� semi
ontinuous at ε = 0.



9.1. Well-posed ve
tor optimization problems 101Proof. (i) Let η ∈ StE(C) and let W be a 0-neighbourhood in Y . There exists a 0-neighbourhood O in Y su
h that
C ∩ (η + O −K) ⊂ η + W.Hen
e, C ∩ (η + ε − K) ⊂ η + W for any ε ∈ O ∩ K0, whi
h proves that Πη is upperHausdor� semi
ontinuous at ε = 0. In parti
ular, for ε = 0 we have C ∩ (η −K) = {η}.Suppose now that Π̃η is upper Hausdor� semi
ontinuous at ε = 0 and take any

0-neighbourhood W in Y . There exists a 0-neighbourhood O su
h that
Π̃η(ε) = C ∩ (η + ε −K) ⊂ η + W for ε ∈ O ∩ K0.Take any 0 6= ε ∈ O ∩ K0. There exists a 0-neighbourhood Ō in Y su
h that Ō ⊂ ε −Kand hen
e C ∩ (η + Ō −K) ⊂ η + W , whi
h 
ompletes the proof of the �rst assertion.(ii) Let W be a 0-neighbourhood in Y . By the uniform stri
t e�
ien
y of all η ∈ E(C),there exists a 0-neighbourhood O in Y su
h that

C ∩ (η + O −K) ⊂ η + W for any η ∈ E(C).Hen
e, for any ε ∈ O ∩ K0,
C ∩ (η + ε −K) ⊂ η + W for any η ∈ E(C)and 
onsequently for any ε ∈ O ∩ K0,

C ∩ (E(C) + ε −K) =
⋃

η∈E(C)

C ∩ (η + ε −K) ⊂ E(C) + W,

whi
h proves that Π̃ is upper Hausdor� semi
ontinuous at ε = 0. In parti
ular, for ε = 0we have C ∩ (E(C)−K) = E(C).Proposition 9.1.8. Let X and Y be normed spa
es and let K be a 
losed 
onvex pointed
one in Y with intK 6= ∅. Let C ⊂ Y and η ∈ E(C).(i) Π̃η is upper Hölder of order 1/q, q > 0, at ε = 0 if and only if η ∈ StEq(C).(ii) If all η ∈ E(C) are stri
tly e�
ient of order q > 0 with the same 
onstant β,then Π̃ is upper Hölder of order 1/q at ε = 0.Proof. (i) Suppose that η 6∈ StEq(f, A). For ea
h n ≥ 1 there are yn ∈ C, bn ∈ BY ,
kn ∈ K su
h that

yn − η =
1

n
‖yn − η‖qbn − kn.Sin
e intK 6= ∅, there is ε0 ∈ intK su
h that BY ⊂ ε0 −K. Hen
e,

yn − η =
1

n
‖yn − η‖qε0 − ℓn, where ℓn ∈ K.This means that yn ∈ Π̃η( 1

n‖yn − η‖qε0). On the other hand, ‖yn − η‖ 6≤ 1
n1/q ‖yn − η‖,whi
h proves that Π̃η is not upper Hölder of order 1/q.(ii) The proof is similar.Proposition 9.1.9. Let K be a 
losed 
onvex pointed 
one in a normed spa
e (Y, ‖ · ‖)and intK 6= ∅. Let η ∈ E(C). If Π̃η is Hölder 
alm of order 1/q at (0, η) ∈ graph Π̃η,then η ∈ LStEq(C) .



102 9. Stability of solutionsProof. By de�nition, Π̃η is Hölder 
alm of order 1/q at (0, η) ∈ graph Π̃η if there are aneighbourhood V of zero in Y and 
onstants t > 0, L > 0 su
h that
C ∩ (η + ε −K) ∩ (η + V ) ⊂ η + L‖ε‖1/qBY for ε ∈ K0 ∩ tBY .Suppose that η 6∈ LStEq(C). For ea
h n ≥ 1 one 
an �nd yn ∈ C ∩ (η + 1

nBY ) su
h that
1
n‖yn − η‖q > ‖yn − η‖−. This means that

yn − η ∈ 1

n
‖yn − η‖qBY −K,i.e., yn − η = 1

n‖yn − η‖qbn − kn with bn ∈ BY , kn ∈ K. Take any ε ∈ intK, ‖ε‖ = 1.Sin
e bn ∈ λε −K, for all n ≥ 1 and a 
ertain λ > 0, we get
yn = η +

λ

n
‖yn − η‖qε − ℓn, ℓn ∈ K.Hen
e, yn ∈ Π̃η(λ

n‖yn − η‖qε), and yn − η 6∈ λL
n ‖yn − η‖BY , whi
h means that Π̃η is notHölder 
alm of order 1/q at (0, η) ∈ graph Π̃η.Proposition 9.1.10. Let C be a subset of a Hausdor� topologi
al spa
e Y. If (DP) holdsfor C, then Π̃ is K-upper Hausdor� semi
ontinuous at ε = 0.Proof. It is enough to observe that Π̃(ε) ⊂ Π̃(0) + K.

9.2. Hausdor� 
ontinuity of solutionsIn the following se
tions we provide su�
ient 
onditions for Hausdor�, Lips
hitz andHölder 
ontinuities of the solution mapping S. To formulate these 
onditions we appealto the notions of sharpness and weak sharpness of solutions to (P ) and/or (Pu). In viewof the results of the previous se
tions analogous 
onditions 
an be formulated with thehelp of well-posedness.In this se
tion we investigate upper and lower Hausdor� 
ontinuities of S at u0. Themain assumptions are the 
ontainment property and the well-posedness in the sensede�ned in previous se
tions.Theorem 9.2.1. Let X and U be topologi
al spa
es and let Y be a Hausdor� topologi
alve
tor spa
e. Let K be a 
losed 
onvex pointed 
one in Y with intK 6= ∅. If(i) f : X → Y is uniformly 
ontinuous on X,(ii) A : U →→ X is Hausdor� 
ontinuous at u0 ∈ domA,(iii) (P ) is Hausdor� well-posed,(iv) (CP) holds for f(A),then S is upper Hausdor� semi
ontinuous at u0 ∈ domS.Proof. Let V be 0-neighbourhood in X. Let V1 be a 0-neighbourhood in Y su
h that
V1 + V1 ⊂ V. By the well-posedness of (P ), there exists a 0-neighbourhood W su
h that

Π(ε) ⊂ Π(0) + V1 for ε ∈ W ∩ K0.Sin
e Π(0) = S(f, A), the above in
lusion 
an be rephrased as(9.3) A ∩ f−1(E(f, A) + W ∩ K0 −K) ⊂ S(f, A) + V1.



9.2. Hausdor� 
ontinuity of solutions 103Let W1 be a 0-neighbourhood in Y su
h that W1 + W1 ⊂ W and let W2 be a 0-neighbourhood in Y su
h that W2 ⊂ W ∩ K0 − K. By (CP), Proposition 5.1.3, thereexists a 0-neighbourhood O in Y su
h that for any x ∈ A with f(x) 6∈ E(f, A)+W2 thereexists x ∈ S(f, A) su
h that
f(x) − f(x) + O ⊂ K.Let O1 be a 0-neighbourhood in Y su
h that O1 + O1 ⊂ O. By the uniform 
ontinuity of

f on X, there exists a 0-neighbourhood O2 in X su
h that
f(x + O2) ⊂ f(x) + O1 for all x ∈ X.Moreover, by the Hausdor� 
ontinuity of A, there exists a neighbourhood U0 of u0 su
hthat

A ⊂ A(u) + V1 ∩ O2, A(u) ⊂ A + V1 ∩ O2.Take any z ∈ S(f, A(u)) for u ∈ U0. There exists x ∈ A su
h that x ∈ z + V1 ∩ O2.Consequently, f(x) ∈ f(z) + O1.If f(x) 6∈ E(f, A) + W2 − K, then f(x) 6∈ E(f, A) + W2 and by (CP), there exists
x ∈ S(f, A) su
h that

f(x) − f(x) + O ⊂ K.By the Hausdor� 
ontinuity of A, there exists z ∈ A(u) su
h that z ∈ x+V1∩O2. Hen
e,
f(z) ∈ f(x) + O1 and so f(z) = f(z) sin
e otherwise
f(z) − f(z) ∈ (f(z) − f(x)) + (f(x) − f(x)) + (f(x) − f(z)) ⊂ f(x) − f(x) + O ⊂ −K,whi
h is impossible be
ause z ∈ S(f, A(u)). If f(x) ∈ E(f, A) + W2 − K, by (9.3),

x ∈ S(f, A) + V1 and
z ∈ x + V1 ∩ O2 ⊂ S(f, A) + V1 + V1 ∩ O2 ⊂ S(f, A) + V,whi
h 
ompletes the proof.The following examples show that well-posedness does not imply the 
ontainmentproperty of the set f(A).Example 9.2.1. Let us 
onsider problem (P ) (see Figure 9.2) with K = R

2
+, and f :

R → R
2,

f(x) =

{
(x, e1−x) if x ≥ 1,
(x, x2) if 0 ≤ x ≤ 1,under the 
onstraint x ≥ 0.In Example 9.2.1 problem (P ) is Hausdor� well-posed but the set f(A) does not havethe 
ontainment property (CP). In a simple modi�
ation presented below the set f(A)has the 
ontainment property.Example 9.2.2. Let us 
onsider the ve
tor optimization problem (see Figure 9.2) with

K = R
2
+ and f : R → R

2 of the form
f(x) =

{
(x, 1

2 + 1
2e1−x) if x ≥ 1,

(x, x2) if 0 ≤ x ≤ 1,under the 
onstraints ≥ 0.
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Fig. 9.2
Theorem 9.2.2. Let X and U be topologi
al spa
es and let Y be a Hausdor� topologi
alve
tor spa
e. Let K be a 
losed 
onvex pointed 
one in Y with intK 6= ∅. If(i) f : X → Y is uniformly 
ontinuous on X, and A : U →→ X is Hausdor�
ontinuous at u0 ∈ domA,(ii) there exists a neighbourhood U0 of u0 su
h that all (Pu) for u ∈ U0 are uniformlyHausdor� well-posed in the sense that for any 0-neighbourhood V in X thereexists a 0-neighbourhood W in Y su
h that

A(u) ∩ f−1(E(f, A(u)) + W ∩ K0 −K) ⊂ S(f, A(u)) + V for all u ∈ U0,(iii) (CP) holds uniformly for f(A(u)), u ∈ U0 in the sense that for any 0-neighbour-hood W in Y there exists a 0-neighbourhood O in Y su
h that for any u ∈ U0and z ∈ A(u) f(z) 6∈ E(f, A(u)) + W there exists z ∈ S(f, A(u)) su
h that
f(z) − f(z) + O ⊂ K,then S is lower Hausdor� semi
ontinuous at u0 ∈ domA.



9.3. Lower Lips
hitzness of solutions 105Proof. Let V be a 0-neighbourhood in X. Let V1 be a 0-neighbourhood in Y su
h that
V1 + V1 ⊂ V. By the (uniform) well-posedness of (Pu), there exists a 0-neighbourhood Wsu
h that(9.4) A(u) ∩ f−1(E(f, A(u)) + W ∩ K0 −K) ⊂ S(f, A(u)) + V1for u ∈ U0.Let W1 be a 0-neighbourhood in Y su
h that W1 + W1 ⊂ W and let W2 be a 0-neighbourhood in Y su
h that W2 ⊂ W ∩K0 −K. By (CP) and Proposition 5.1.3, thereexists a 0-neighbourhood O in Y su
h that for any z ∈ A(u) with f(z) 6∈ E(f, A(u))+W2there exists z ∈ S(f, A(u)) su
h that

f(z) − f(z) + O ⊂ K.Let O1 be a 0-neighbourhood in Y su
h that O1 + O1 ⊂ O. By the uniform 
ontinuity of
f on X, there exists a 0-neighbourhood O2 in X su
h that

f(x + O2) ⊂ f(x) + O1 for all x ∈ X.Moreover, by the Hausdor� 
ontinuity of A, there exists a neighbourhood U1 of u0 su
hthat
A ⊂ A(u) + V1 ∩ O2, A(u) ⊂ A + V1 ∩ O2for u ∈ U0 ∩ U1. Take any x ∈ S(f, A) and u ∈ U0 ∩ U1. There exists z ∈ A(u) su
h that

z ∈ x + V1 ∩ O2. Consequently, f(z) ∈ f(x) + O1.If f(z) 6∈ E(f, A(u)) + W2 − K, then f(z) 6∈ E(f, A(u)) + W2. By (CP), there exists
z ∈ S(f, A(u)) su
h that

f(z) − f(z) + O ⊂ Kand by the Hausdor� 
ontinuity of A, there exists x ∈ A su
h that x ∈ z + V1 ∩ O2.Consequently, f(x) ∈ f(z) + O1 and
f(x) − f(x) ∈ (f(x) − f(z)) + (f(z) − f(z)) + (f(z) − f(x) ⊂ f(z) − f(z) + O ⊂ −K,whi
h 
ontradi
ts the fa
t that x ∈ S(f, A).Hen
e, f(z) ∈ E(f, A(u))+ W2 −K. Then by (9.4), z ∈ S(f, A(u))+ V1. This impliesthat

x ∈ z + V1 ∩ O2 ⊂ S(f, A(u)) + V1 + V1 ∩ O2 ⊂ S(f, A(u)) + V,whi
h 
ompletes the proof.
9.3. Lower Lips
hitzness of solutionsIn this se
tion we derive su�
ient 
onditions for lower Lips
hitz 
ontinuity of S(u) =

S(f, A(u)) at (u0, x0) ∈ graphS and at u0 ∈ domS. By assuming that x0 is sharp oforder 1 we prove lower Lips
hitzness of S at (u0, x0) ∈ graphS. Correspondingly, toobtain lower Lips
hitzness of S u0 ∈ domS we assume that all x0 ∈ S(f, A) are sharp oforder 1 with the same 
onstant τ .Re
all that for any η ∈ E(f, A),
Sη := {x ∈ S(f, A) : f(x) = η}.



106 9. Stability of solutionsCorrespondingly, for any u ∈ U and η ∈ E(f, A(u)),
Sη(u) = {z ∈ S(f, A(u)) : f(x) = η}.Theorem 9.3.1. Let f : X → Y be Lips
hitz with 
onstant Lf > 0. Assume that(i) A : U →→ X is Lips
hitz at u0 ∈ domA with 
onstants La > 0, t > 0,(ii) (DP) holds for all (Pu), u ∈ B(u0, t),(iii) all x0 ∈ S(f, A) are global sharp solutions to (P ) of order 1 with the same
onstant τ > 0, i.e. for any η ∈ E(f, A) and x0 ∈ S(f, A),

f(x) − f(x0) 6∈ τ‖x − x0‖BY −K for x ∈ A \ Sη.Then P is lower Lips
hitz at u0 ∈ domP, i.e.,
E(f, A) ∈ E(f, A(u)) + (LfLa + 2L2

fLa/τ)‖u − u0‖BY for u ∈ B(u0, t).Moreover, if instead of (iii) we assume that(iv) all z ∈ S(f, A(u)) for u ∈ B(u0, t) are global sharp solutions to (Pu) of order 1with the same 
onstant τ > 0, i.e. for any η ∈ E(f, A(u)),
f(z) − f(z) 6∈ τ‖z − z‖BY −K for z ∈ A(u) \ Sη(u).then S is lower Lips
hitz at u0 ∈ domS. Pre
isely,

S(f, A) ⊂ S(f, A(u)) + (2LfLa/τ + La)‖u − u0‖BY for u ∈ B(u0, t).Proof. We start by proving lower Lips
hitz 
ontinuity of S at u0 ∈ domS. Note �rst thatby (ii), S(f, A(u)) 6= ∅ for u ∈ B(u0, t), i.e. u0 ∈ int domS. Take any x0 ∈ S(f, A) and
u ∈ B(u0, t). By (i), there is z ∈ A(u) su
h that

‖x0 − z‖ ≤ La‖u − u0‖.If z ∈ S(f, A(u)), the 
on
lusion follows. Otherwise, by (DP), there exists z ∈ S(f, A(u))su
h that f(z) ∈ f(z) −K and f(z) 6= f(z). If ‖z − z‖ ≤ 2LaLf

τ ‖u − u0‖, then
‖x0 − z‖ ≤ (La + 2LaLf/τ)‖u − u0‖and the 
on
lusion follows. So, assume that(9.5) ‖z − z‖ >

2LaLf

τ
‖u − u0‖.By (iv), z ∈ S(f, A(u)) is a global sharp solution to (Pu). Sin
e f(z) 6= f(z) we have

f(z) − f(z) 6∈ τ‖z − z‖BY −K.By (i), there exists x ∈ A su
h that ‖z − x‖ ≤ La‖u − u0‖ and
‖f(z) − f(x)‖ ≤ LfLa‖u − u0‖ and ‖f(z) − f(x0)‖ ≤ LfLa‖u − u0‖.Hen
e, in view of (9.5),

‖f(x0) − f(x)‖≥ ‖f(z) − f(z)‖ − ‖f(x) − f(z)‖ − ‖f(z) − f(x0)‖
≥ τ‖z − z‖ − 2LaLf‖u − u0‖ > 0,whi
h proves that f(x) 6= f(x0). Hen
e, sin
e x0 is a global sharp solution to (P ),(9.6) f(x) − f(x0) 6∈ τ‖x − x0‖BY −K.



9.3. Lower Lips
hitzness of solutions 107On the other hand,
f(x) − f(x0) = (f(x) − f(z)) + (f(z) − f(z)) + (f(z) − f(x0))(9.7)

∈ 2LfLa‖u − u0‖BY −K.By (9.6) and (9.7),
‖x − x0‖ ≤ 2LfLa

τ
‖u − u0‖.Consequently,

‖x0 − z‖ ≤ ‖x0 − x‖ + ‖x − z‖ ≤ (La + 2LfLa/τ)‖u − u0‖,whi
h proves the assertion.To prove that P is lower Lips
hitz at u0 ∈ domP take any η ∈ E(f, A) and u ∈
B(u0, t). There exists x ∈ S(f, A) su
h that f(x) = η. By (i), there exists z ∈ A(u) su
hthat

‖x − z‖ ≤ La‖u − u0‖ and ‖f(x) − f(z)‖ ≤ LfLa‖u − u0‖.If z ∈ S(f, A(u)), then f(z) ∈ E(f, A(u) and the 
on
lusion follows. Otherwise, thereexists z ∈ S(f, A(u)) su
h that f(z) ∈ f(z) −K and f(z) 6= f(z).By (i), there exists x ∈ A su
h that
‖x − z‖ ≤ La‖u − u0‖ and ‖f(x) − f(z)‖ ≤ LfLa‖u − u0‖.If f(x) = f(x), the 
on
lusion follows. If f(x) 6= f(x), by (iii) and by Proposition 8.1.1,

f(x) − f(x) 6∈ τ

Lf
‖f(x) − f(x)‖BY −K.On the other hand, as before,

f(x) − f(x) = (f(x) − f(z)) + (f(z) − f(z)) + (f(z) − f(x))

∈ 2LfLa‖u − u0‖BY −K.This proves that
‖f(x) − f(x)‖ ≤

2LaL2
f

τ
‖u − u0‖and 
onsequently

‖f(x) − f(z)‖ ≤ ‖f(x − f(x)‖ + ‖f(x) − f(z)‖ ≤ (LfLa + 2L2
fLa/τ)‖u − u0‖,whi
h proves the assertion.Remark 9.3.1. 1. The �rst assertion of Theorem 9.3.1 
an be dedu
ed from Theorem4.1.3 and hen
e assumption (iii) of Theorem 9.3.1 
an be weakened by assuming that all

η ∈ E(f, A) are stri
tly e�
ient points of order 1 with the same 
onstant β. Then the
on
lusion is that P is lower Lips
hitz 
ontinuous at u0 ∈ domP, i.e.
E(f, A) ⊂ E(f, A(u)) + (LfLa + 2LfLa/β)‖u − u0‖BY for u ∈ B(u0, t).2. Moreover, if a given η ∈ E(f, A) is stri
tly e�
ient of order 1 with 
onstant β > 0,then P is lower Lips
hitz 
ontinuous at (u0, η) ∈ graphP, i.e.

η ∈ E(f, A(u)) + (LfLa + 2LfLa/β)‖u − u0‖BY for u ∈ B(u0, t).Clearly, the 
onstants β appearing in the above estimates may be di�erent.



108 9. Stability of solutionsWe say that x0 ∈ S(f, A) is strongly sharp of order q > 0 if there exists a 
onstant
τ > 0 su
h that(9.8) f(x) − f(x0) 6∈ τ‖x − x0‖BY −K for x ∈ A, x 6= x0.This 
ondition implies that f(x) 6= f(x0) for x 6= x0. Hen
e, ea
h strongly sharp solutionis sharp and Sη = {x0}, where f(x0) = η. With this notion we 
an prove the followingvariant of Theorem 9.3.1.Theorem 9.3.2. Let f : X → Y be Lips
hitz with 
onstant Lf > 0. Assume that(i) A : U →→ X is Lips
hitz at u0 ∈ domA with 
onstants La > 0, t > 0,(ii) (DP) holds for all (Pu), u ∈ B(u0, t),(iii) ea
h x0 ∈ S(f, A) is a global strongly sharp solution of order 1 to (P ) with
onstant τ > 0.Then P is lower Lips
hitz at u0 ∈ domP,i.e.,

E(f, A) ∈ E(f, A(u)) + (2L2
fLa/τ + LfLa)‖u − u0‖BY for any u ∈ B(u0, t)and S is lower Lips
hitz at u0 ∈ domS, i.e.,

S(f, A) ⊂ S(f, A(u)) + (2LfLa/τ + La)‖u − u0‖BX for any u ∈ B(u0, t).Proof. In view of Theorem 9.3.1 we only need to prove the lower Lips
hitz 
ontinuity of
S. Take any x0 ∈ S(f, A) and u ∈ B(u0, t). By (i), there is z ∈ A(u) su
h that

‖x0 − z‖ ≤ La‖u − u0‖.If z ∈ S(f, A(u)), the 
on
lusion follows. Otherwise, by (DP), there exists z ∈ S(f, A(u))su
h that f(z) ∈ f(z) −K and f(z) 6= f(z). By (i), there exists x ∈ A su
h that
‖z − x‖ ≤ La‖u − u0‖,and

‖f(z) − f(x)‖ ≤ LfLa‖u − u0‖ and ‖f(z) − f(x0)‖ ≤ LfLa‖u − u0‖.If x = x0, the 
on
lusion follows. Hen
e, assume that x 6= x0. Sin
e x0 is a global stronglysharp solution to (P ),(9.9) f(x) − f(x0) 6∈ τ‖x − x0‖BY −K.On the other hand,
f(x) − f(x0) = (f(x) − f(z)) + (f(z) − f(z)) + (f(z) − f(x0))(9.10)

∈ 2LfLa‖u − u0‖BY −KBy (9.9) and (9.10),
‖x − x0‖ ≤ 2LfLa

τ
‖u − u0‖.Consequently,

‖x0 − z‖ ≤ ‖x0 − x‖ + ‖x − z‖ ≤ (La + 2LfLa/τ)‖u − u0‖,whi
h proves the assertion.By assuming weak sharpness of solutions to (P ) we get the following result.



9.4. Upper Lips
hitzness of solutions 109Theorem 9.3.3. Let f : X → Y be Lips
hitz with 
onstant Lf > 0. Assume that(i) A is Lips
hitz at u0 ∈ domA with 
onstants La > 0 and t > 0,(ii) (DP) holds for (Pu), u ∈ B(u0, t),(iii) all z ∈ S(f, A(u)) for u ∈ B(u0, t) are weak sharp solutions to (Pu) of order 1with 
onstant τ > 0.Then S is lower Lips
hitz at u0 ∈ domS. Pre
isely,
S(f, A) ⊂ S(f, A(u)) + (La + 2LfLa + 2LaLf/τ )‖u − u0‖BX for u ∈ B(u0, t).Proof. Let x ∈ S(f, A) and u ∈ B(u0, t). By Theorem 8.2.2, there exists z ∈ S(f, A(u))su
h that

‖f(x) − f(z)‖ ≤ (LfLa + 2L2
fLa/τ )‖u − u0‖.By (i), there exists z ∈ A(u) su
h that

‖x − z‖ ≤ La‖u − u0‖ and ‖f(x) − f(z)‖ ≤ LfLa‖u − u0‖.If z ∈ S(f, A(u)), the 
on
lusion follows. Suppose that z 6∈ S(f, A(u)). We have
f(z) − f(z) = (f(z) − f(x)) + (f(x) − f(z)) ∈ (2LfLa + 2L2

fLa/τ )‖u − u0‖BY .On the other hand, sin
e z ∈ S(f, A(u)) is weakly sharp, f(z) = η and f(z) 6= f(z),
f(z) − f(z) 6∈ τd(z, Sη(u))BY −K,where Sη(u) = {z ∈ S(f, A(u)) : f(z) = η}. Consequently,

d(x, S(f, A(u)) ≤ d(x, Sη(u)) ≤ d(x, z)+d(z, Sη(u)) ≤ (La+2LfLa+2LaL2
f/τ)‖u−u0‖.

9.4. Upper Lips
hitzness of solutionsIn this se
tion making use of sharp and weak sharp solutions we prove upper Lips
hitznessof S.Theorem 9.4.1. Let f : X → Y be Lips
hitz with 
onstant Lf > 0. Assume that(i) A is Lips
hitz at u0 ∈ domA with 
onstants La > 0 and t > 0,(ii) (DP) holds for (P ),(iii) all z ∈ S(f, A(u)) for u ∈ B(u0, t) are sharp solutions to (Pu) of order 1 with
onstant τ > 0.Then
• S is upper Lips
hitz at u0 ∈ domS, i.e.,

S(f, A(u)) ⊂ S(f, A) + (La + 2LaLf/τ)‖u − u0‖BX for u ∈ B(u0, t),

• P is upper Lips
hitz at u0 ∈ domP, i.e.,
E(f, A(u)) ⊂ E(f, A) + (LfLa + 2LaL2

f/τ)‖u − u0‖BY for u ∈ B(u0, t).Proof. Let z ∈ S(f, A(u)), u ∈ B(u0, t). By the upper Lips
hitzness of A, there exists
x ∈ A su
h that

‖x − z‖ ≤ La‖u − u0‖.



110 9. Stability of solutionsIf x ∈ S(f, A), the 
on
lusion follows. Otherwise, by (DP), there exists x ∈ S(f, A) su
hthat f(x) ∈ f(x) −K and f(x) 6= f(x).If ‖x−x‖ ≤ 2Lf La

τ ‖u−u0‖, the 
on
lusion follows. Otherwise, ‖x−x‖ >
2Lf La

τ ‖u−u0‖.By the lower Lips
hitzness of A, there exists z ∈ A(u) su
h that
‖x − z‖ ≤ La‖u − u0‖.Sin
e f is Lips
hitz,

f(z) − f(z) = (f(z) − f(x)) + (f(x) − f(x)) + (f(x) − f(z))(9.11)
∈ 2LfLa‖u − u0‖BY −K.Moreover,

‖f(z) − f(z)‖ ≥ ‖f(x) − f(x)‖ − ‖f(x) − f(z)‖ − ‖f(x) − f(z)‖(9.12)
≥ τ‖x − x‖ − 2LfLa‖u − u0‖ > 0,whi
h proves that f(z) 6= f(z), and sin
e z ∈ S(f, A(u)) is a sharp solution to (Pu) weget(9.13) f(z) − f(z) 6∈ τ‖z − z‖BY −K.By (9.11) and (9.13), ‖z − z‖ ≤ 2Lf La

τ ‖u − u0‖ and �nally
‖z − x‖ ≤ ‖z − x‖ + ‖z − z‖ ≤ (La + 2LfLa/τ )‖u − u0‖.To see the se
ond assertion, take any η ∈ E(f, A(u)). There exists z ∈ S(f, A(u))su
h that η = f(z). By (i), there exists x ∈ A su
h that ‖z − x‖ ≤ La‖u − u0‖. If

x ∈ S(f, A), the 
on
lusion follows. If x 6∈ S(f, A), by (ii), there exists x ∈ S(f, A)su
h that f(x) ∈ f(x) − K and f(x) 6= f(x). By (i), there exists z ∈ A(u) su
h that
‖z − x‖ ≤ La‖u − u0‖. If f(z) = f(z), the 
on
lusion follows. Otherwise,
f(z) − f(z) = (f(z) − f(x)) + (f(x) − f(x)) + (f(x) − f(z)) ∈ 2LfLa‖u − u0‖BY −Kand sin
e z ∈ S(f, A(u)) is a sharp solution to (Pu),

f(z) − f(z) 6∈ τ

Lf
‖f(z) − f(z)‖BY −K.Consequently, ‖f(z) − f(z)‖ ≤ 2L2

f La

τ ‖u − u0‖ and
f(x) − f(z) = (f(x) − f(z)) + (f(z) − f(z))

∈ (LfLa + 2L2
fLa/τ )‖u − u0‖BY .Re
all that (SDP) of order 1 with 
onstant α > 0 holds for (P ) if for any x ∈ A thereexists x ∈ S(f, A) su
h that

f(x) − f(x) + α‖f(x) − f(x)‖BY ⊂ K.By using the strong domination property (SDP) of order 1 we 
an prove the followingvariant of Theorem 9.4.1 for 
losed 
onvex pointed 
ones with nonempty interior.Theorem 9.4.2. Let K be a 
losed 
onvex pointed 
one with intK 6= ∅. Let f : X → Ybe Lips
hitz with 
onstant Lf > 0. Assume that



9.4. Upper Lips
hitzness of solutions 111(i) A is Lips
hitz at u0 ∈ domA with 
onstants La > 0 and t > 0,(ii) (SDP) of order 1 with 
onstant α > 0 holds for (P ).Then P is upper Lips
hitz at u0 ∈ domP, i.e.,
E(f, A(u)) ⊂ E(f, A) + (LfLa + 2LaLf/α)‖u − u0‖BY for u ∈ B(u0, t).If moreover,(iii) all x ∈ S(f, A) are sharp of order 1 with 
onstant τ > 0,then S is upper Lips
hitz at u0 ∈ domS, i.e.,
S(f, A(u)) ⊂ S(f, A) + (La + 2LaL2

f/ατ)‖u − u0‖BX for u ∈ B(u0, t).Proof. To see the �rst assertion, take any η ∈ E(f, A(u)), u ∈ B(u0, t). There exists
z ∈ S(f, A(u)) su
h that η = f(z). By (i), there exists x ∈ A su
h that

‖x − z‖ ≤ La‖u − u0‖.If x ∈ S(f, A), then ‖f(z)−f(x)‖ ≤ LfLa‖u−u0‖ and the 
on
lusion follows. Otherwise,by (SDP), there exists x ∈ S(f, A) with f(x) 6= f(x) su
h that
f(x) − f(x) + α‖f(x) − f(x)‖BY ⊂ K.By (i), there exists z ∈ A(u) su
h that ‖z − x‖ ≤ La‖u − u0‖. If z ∈ S(f, A(u)), the
on
lusion follows. If z 6∈ S(f, A(u)), then

‖f(x) − f(x)‖ ≤ 2LfLa

α
‖u − u0‖sin
e otherwise

f(z) − f(z) = f(z) − f(x) + (f(x) − f(x)) + (f(x) − f(z))

∈ (f(x) − f(x)) + 2LaLfBY

⊂ (f(x) − f(x)) + α‖f(x) − f(x)‖BY

⊂ −K,whi
h 
ontradi
ts the fa
t that z ∈ S(f, A(u)). Finally,
f(z) − f(x) = (f(z) − f(x)) + (f(x) − f(x) ∈ (LfLa + 2LfLa/α)‖u − u0‖BY ,whi
h proves the �rst assertion.To prove the se
ond assertion take any z ∈ S(f, A(u)), u ∈ B(u0, t). By (i), thereexists x ∈ A su
h that

‖x − z‖ ≤ La‖u − u0‖.If x ∈ S(f, A), the 
on
lusion follows. Otherwise, by (SDP), there exists x ∈ S(f, A) with
f(x) 6= f(x) su
h that

f(x) − f(x) + α‖f(x) − f(x)‖BY ⊂ K.In the same way as above we argue that
f(x) − f(x) ∈ 2LfLa

α
‖u − u0‖BY .



112 9. Stability of solutionsSin
e x is a global sharp solution of order 1 to (P ) and f(x) 6= f(x),
f(x) − f(x) 6∈ τ

Lf
‖x − x‖BY −Kand 
onsequently ‖x − x‖ ≤ 2L2

f La

ατ ‖u − u0‖. Hen
e,
‖z − x‖ ≤ ‖z − x‖ + ‖x − x‖ ≤ (La + 2L2

fLa/ατ )‖u − u0‖.Making use of weakly sharp solutions we obtain the following result.Theorem 9.4.3. Let f : X → Y be Lips
hitz with 
onstant Lf > 0. Assume that(i) A is Lips
hitz at u0 ∈ domA with 
onstants La > 0 and t > 0,(ii) (DP) holds for (Pu) and u ∈ B(u0, t),(iii) all x ∈ S(f, A) are weakly sharp solutions to (P ) of order 1 with 
onstant τ > 0.Then S is upper Lips
hitz at u0 ∈ domS, i.e. for any u ∈ B(u0, t),
S(f, A(u)) ⊂ S(f, A) + (La + 2LfLa + 2L2

aLf/τ)‖u − u0‖BX .Proof. Let z ∈ S(f, A(u)), u ∈ U0. By Theorem 8.2.3, there exists x ∈ S(f, A) su
h that
f(z) − f(x) ∈ (LaLf + 2LaL2

f/τ)‖u − u0‖BY .By the upper Lips
hitzness of A, there exists x ∈ A su
h that
‖z − x‖ ≤ La‖u − u0‖ and ‖f(z) − f(x)‖ ≤ LfLa‖u − u0‖.If x ∈ S(f, A), the 
on
lusion follows. Otherwise,

f(x) − f(x) = (f(x) − f(z)) + (f(z) − f(z)

∈ (2LfLa + 2LaL2
f/τ)‖u − u0‖BY .On the other hand, sin
e x ∈ S(f, A) is a global weakly sharp solution of order 1 with

f(x) = η and f(x) 6= f(x),
f(x) − f(x) 6∈ τd(x, Sη)BY −K.Consequently, d(x, Sη) ≤ (2LfLa + 2LaL2

f/τ )‖u − u0‖ and
d(z, S(f, A)) ≤ d(z, Sη) ≤ d(z, x) + d(x, Sη)

≤ (La + 2LfLa + 2LaL2
f/τ)‖u − u0‖.

9.5. Lower Hölder and lower pseudo-Hölder 
ontinuity ofsolutionsIn this se
tion we investigate lower Hölder 
ontinuity of the solution mapping S at u0 ∈
domS and lower pseudo-Hölder 
ontinuity of S at (u0, x0) ∈ graphS. The spa
es X,

Y and U are assumed to be normed spa
es with open unit balls BX , BY and BU ,respe
tively.Re
all that for a set-valued mapping A : U →→ X, A(u) = A(u), A(u0) = A, and
f : X → Y the set-valued mapping Af : U →→ Y is given by(9.14) Af (u) = f(A(u)), Af (u0) = f(A).



9.5. Lower Hölder and lower pseudo-Hölder 
ontinuity of solutions 113Theorem 9.5.1. Let K be a 
losed 
onvex pointed 
one in Y . Assume that(i) there exists 0 < t < 1 su
h that all z ∈ S(f, A(u)) for u ∈ B(u0, t) are sharpsolutions to (Pu) of order q ≥ 1 with 
onstant τ > 0, i.e.,
f(z) − f(z) 6∈ τ‖z − z‖qBY −K for z ∈ A(u), f(z) 6= f(z),(ii) f : X → Y is Lips
hitz on X with 
onstant Lf > 0 and A is Hölder 
ontinuousof order p ≥ 1 at u0 ∈ domA with 
onstants La > 0 and 0 < t < 1,(iii) (DP) holds for all f(A(u)) and u ∈ B(u0, t).Then S is lower Hölder 
ontinuous of order p

q at u0 ∈ domS. Pre
isely,
S(f, A) ⊂ S(f, A(u)) + (La + (2LaLf/τ)1/q)‖u − u0‖p/qBXfor u ∈ B(u0, ta).Proof. Take u ∈ B(u0, t) and x ∈ S(f, A). By (ii), there exists z ∈ A(u) su
h that

‖x − z‖ ≤ La‖u − u0‖p and ‖f(x) − f(z)‖ ≤ LfLa‖u − u0‖p.If z ∈ S(f, A(u)), the assertion follows. If z 6∈ S(f, A(u)), then by (iii), there exists
z ∈ S(f, A(u)) su
h that f(z) ∈ f(z) − K. If ‖z − z‖ ≤ (2LfLa/τ)1/q‖u − u0‖p/q, the
on
lusion follows. Hen
e, assume that

τ‖z − z‖q > 2LfLa‖u − u0‖p.By (ii), there exists x ∈ A su
h that
‖x − z‖ ≤ La‖u − u0‖p and ‖f(x) − f(z)‖ ≤ LfLa‖u − u0‖p.Sin
e z ∈ Shq(f, A(u)) and f(z) 6= f(z) we have

f(z) − f(z) 6∈ τ‖z − z‖qBY −Kand
‖f(x) − f(x)‖ ≥ ‖f(z) − f(z)‖ − ‖f(x) − f(z)‖ − ‖f(z) − f(x)‖

≥ τ‖z − z‖q − 2LfLa‖u − u0‖p > 0.This proves that f(x) 6= f(x) and in view of the fa
t that x ∈ Shq(f, A) we get(9.15) f(x) − f(x) 6∈ τ‖x − x‖qBY −K.On the other hand,
f(x) − f(x) = (f(x) − f(z)) + (f(z) − f(z)) + (f(z) − f(x)) ∈ 2LfLa‖u − u0‖p −K,whi
h together with (9.15) leads to the inequality

‖x − x‖ ≤ (2LfLa/τ)1/q.Finally,
‖x − z‖ ≤ ‖x − z‖ + ‖x − x‖ ≤ (La + (2LfLa/τ)1/q)‖u − u0‖p/q,whi
h proves the assertion.Now we prove su�
ient 
onditions for lower pseudo-Hölder 
ontinuity of S at (u0, x0)

∈ graphS.



114 9. Stability of solutionsTheorem 9.5.2. Let K be a 
losed 
onvex pointed 
one in Y . Let x0 ∈ S(f, A) and
f(x0) = η. Assume that(i) there exists 0 < ta < 1 su
h that all z ∈ S(f, A(u) ∩ (x0 + V ) for u ∈ B(u0, ta)are lo
al sharp solutions to (Pu) of order q ≥ 1 with 
onstants τ > 0 and ts > 0,i.e.,

f(z) − f(z) 6∈ τ‖z − z‖qBY −K for z ∈ A(u) ∩ (z + tsBX), f(z) 6= f(z),(ii) f : X → Y is Lips
hitz around x0 with 
onstant Lf > 0 and A is pseudo-Hölder
ontinuous of order p ≥ 1 at (u0, x0) ∈ graphA with 0-neighbourhood V and
onstants La and ta,(iii) (LDP) holds for all f(A(u)) and u ∈ B(u0, ta).Then S is lower pseudo-Hölder 
ontinuous of order p/q at (u0, x0) ∈ graphS. Pre
isely,
S(f, A) ∩ (x0 + V ) ⊂ S(f, A(u)) + (La + (2LaLf/τ)1/q)‖u − u0‖p/qBXfor u ∈ B(u0, t) with t = min{ta, ts}.Proof. Take u ∈ B(u0, t) and x ∈ S(f, A) ∩ (x0 + V ). By (ii), in view of the lowerpseudo-Hölder 
ontinuity of A, there exists z ∈ A(u) su
h that

‖x − z‖ ≤ La‖u − u0‖p and ‖f(x) − f(z)‖ ≤ LfLa‖u − u0‖p.If z ∈ S(f, A(u)), the assertion follows. If z 6∈ S(f, A(u)), then by (iii), there exists
z ∈ S(f, A(u)) su
h that f(z) ∈ f(z) − K. If ‖z − z‖ ≤ (2LfLa/τ)1/q‖u − u0‖p/q, the
on
lusion follows. Hen
e, assume that

τ‖z − z‖q > 2LfLa‖u − u0‖p.By the upper Hölder 
ontinuity of A, there exists x ∈ A su
h that
‖x − z‖ ≤ La‖u − u0‖p and ‖f(x) − f(z)‖ ≤ LfLa‖u − u0‖p.Sin
e z ∈ Shq(f, A(u)) and f(z) 6= f(z) we have

f(z) − f(z) 6∈ τ‖z − z‖qBY −Kand
‖f(x) − f(x)‖ ≥ ‖f(z) − f(z)‖ − ‖f(x) − f(z)‖ − ‖f(z) − f(x)‖

≥ τ‖z − z‖q − 2LfLa‖u − u0‖p > 0.This proves that f(x) 6= f(x) and in view of the fa
t that x ∈ Shq(f, A) we get(9.16) f(x) − f(x) 6∈ τ‖x − x‖qBY −K.On the other hand,
f(x) − f(x) = (f(x) − f(z)) + (f(z) − f(z)) + (f(z) − f(x)) ∈ 2LfLa‖u − u0‖p −K,whi
h together with (9.16) leads to the inequality

‖x − x‖ ≤ (2LfLa/τ)1/q.Finally,
‖x − z‖ ≤ ‖x − z‖ + ‖x − x‖ ≤ (La + (2LfLa/τ)1/q)‖u − u0‖p/q,whi
h proves the assertion.



9.6. Upper Hölder 
ontinuity and Hölder 
almness of solutions to parametri
 problems 1159.6. Upper Hölder 
ontinuity and Hölder 
almness of solutions toparametri
 problemsIn this se
tion we investigate Hölder 
almness of S at (u0, x0) ∈ graphS. The spa
es X,

Y and U are assumed to be normed spa
es with open unit balls BX , BY and BU , respe
-tively. Analogous results for s
alar optimization problems were obtained by Bonnans andShapiro ([39, Se
. 4.4.2℄) and Bonnans and Io�e [38℄.Re
all that for a set-valued mapping A : U →→ X, A(u) = A(u), A(u0) = A, and amapping f : X → Y the set-valued mapping Af : U →→ Y is given by(9.17) Af (u) = f(A(u)), Af (u0) = f(A).We start with the result on Hölder 
almness of P.Theorem 9.6.1. Let K be a 
losed 
onvex pointed 
one in Y with intK 6= ∅. Let x0 ∈
S(f, A). Assume that(i) Af given by (9.17) is pseudo-Lips
hitz of order p ≥ 1 at (u0, f(x0)) ∈ graphAwith a neighbourhood W of zero in Y, W ⊂ tfBX , and 
onstants La > 0 and

t > 0,(ii) the lo
al strong domination property (LSDP ) of order q ≥ 1 holds for f(A)around f(x0) with the neighbourhood 1
2W and 
onstant α > 0.Then P is Hölder 
alm at (u0, f(x0)) ∈ graphP. Pre
isely, there is a neighbourhood Wof zero in Y su
h that

E(f, A(u)) ∩ (f(x0) + W ) ⊂ E(f, A)) + Lf (La + (2LfLa/α)1/q)‖u − u0‖p/qfor u ∈ u0 + tBU .Proof. Let W be a neighbourhood of zero in Y su
h that W + LatBY ⊂ W. Take any
f(x) ∈ E(f, A(u)) ∩ (f(x0) + W ), u ∈ u0 + tBU . By the pseudo-Lips
hitzness of A at
(u0, f(x0)) ∈ graphA, there exists z ∈ A su
h that

‖f(x) − f(z)‖ ≤ La‖u − u0‖p.Clearly, f(z) ∈ f(x0) + W. By (LSDP ) of order q ≥ 1 around f(x0), there exists z ∈
S(f, A) su
h that

α‖f(z) − f(z)‖q ≤ ‖f(z) − f(z)‖+.By the lower pseudo-Lips
hitzness of A at (u0, f(x0)) ∈ graphA, there exists x ∈ A(u)su
h that
‖f(x) − f(z)‖ ≤ La‖u − u0‖p,We have f(x) − f(x) = [f(z) − f(z)] + w, where

w = [f(x) − f(z)] + [f(z) − f(x)] and ‖w‖ ≤ 2La‖u − u0‖p.Hen
e ‖w‖ > ‖f(z) − f(z)‖+ sin
e otherwise
f(x) − f(x) = [f(z) − f(z)] + w ∈ K,
ontrary to the e�
ien
y of f(x) over f(A(u)). Consequently,

α‖f(z) − f(z)‖q ≤ ‖w‖ ≤ 2La‖u − u0‖p,



116 9. Stability of solutionsand(9.18) ‖f(z) − f(z)‖ ≤ (2La/α)1/q‖u − u0‖p/q.Hen
e,
‖f(x) − f(z)‖ ≤ ‖f(x) − f(z)‖ + ‖f(z) − f(z)‖ ≤ (La + (2La/α)1/m)‖u − u0‖p/m,whi
h proves the assertion.Theorem 9.6.2. Let K be a 
losed 
onvex pointed 
one in Y with intK 6= ∅. Let x0 ∈

S(f, A) and let f : X → Y be lo
ally Lips
hitz at x0 with 
onstants Lf > 0 and t > 0.Assume that(i) A is pseudo-Lips
hitz at (u0, x0) ∈ graphA with neighbourhood V of zero in X,

V ⊂ tBX , and 
onstants La > 0 and t,(ii) (LFDP ) holds around x0 with the neighbourhood 1
2V and 
onstant α > 0,(iii) the growth 
ondition of order q > 1 holds around x0 with the neighbourhood Vand 
onstant τ > 0.Then S is 
alm of order 1/q at (u0, x0) ∈ graphS. Pre
isely,

S(f, A(u)) ∩ (x0 + λV ) ⊂ S(f, A)) + (La + (2L2
fLa/ατ)1/q)‖u − u0‖1/qBXfor u ∈ B(u0, t) and a 
ertain 0 < λ < 1/2.Proof. By taking t small enough, we 
an 
hoose 0 < λ < 1

2 su
h that λV + tLaBX ⊂ 1
2V.Take any x ∈ S(f, A(u))∩ (x0 + λV ), u ∈ u0 + tBU . By (i), there exists z ∈ A su
h that

‖x − z‖ ≤ La‖u − u0‖.We have z − x0 = (z − x) + (x − x0) ∈ tLaBX + λV ⊂ 1
2V. By Lips
hitzness of f,(9.19) ‖f(x) − f(z)‖ ≤ LfLa‖u − u0‖ .Sin
e (LFDP ) holds around x0, there exists z ∈ S(f, A) ∩ (x0 + 1

2V ) su
h that
α‖z − z‖ ≤ ‖f(z) − f(z)‖+.By (i), there exists x ∈ A(u) su
h that

‖x − z‖ ≤ LA‖u − u0‖,and x−x0 = (x−z)+(z−x0) ∈ tcLABX+ 1
2V ⊂ V. We have f(x)−f(x) = [f(z)−f(z)]+w,where w = [f(x) − f(z)] + [f(z) − f(x)]. By Lips
hitzness of f,

‖w‖ ≤ 2LfLa‖u − u0‖.Sin
e x ∈ S(u), we have ‖w‖ > ‖f(z) − f(z)‖+ and thus,
α‖f(z) − f(z)‖ ≤ αLf‖z − z‖ ≤ Lf‖w‖ ≤ 2L2

fLa‖u − u0‖.Hen
e,
‖f(z) − f(z)‖ ≤

2L2
fLa

α
‖u − u0‖,or equivalently,

f(z) − f(z) ∈
2L2

fLa

α
‖u − u0‖BY .



9.7. Hölder 
ontinuity of the solution mapping S 117On the other hand, z − z = (z − x0) + (x0 − z) ∈ 1
2V + 1

2V ⊂ V , and sin
e the growth
ondition of order q ≥ 1 holds for f around x0 we have
f(z) − f(z) 6∈ τd(z, S(f, A))qBY −K .Thus,

2L2
fLc

τ
‖u − u0‖BY 6⊂ τd(z, S(f, A))qBY −K,and 
onsequently

2L2
fLa

α
‖u − u0‖BY 6⊂ τd(z, S(f, A))qBY ,whi
h means that

d(z, S(f, A))q ≤
2L2

fLa

ατ
‖u − u0‖or d(z, S(f, A)) ≤ (2L2

fLa/ατ )1/q‖u − u0‖1/q. Finally,
d(x, S(f, A)) ≤ ‖x − z‖ + d(z, S(f, A)) ≤ (La + (2L2

fLa/ατ)1/q)‖u − u0‖1/q.Theorem 9.6.3. Let K be a 
losed 
onvex pointed 
one in Y with intK 6= ∅. Let x0 ∈
S(f, A) and let f : X → Y be lo
ally Lips
hitz on x0 + tfBX with 
onstants Lf . Assumethat (i) A : U →→ X is pseudo-Lips
hitz at (u0, x0) ∈ graphA with neighbourhood V ofzero in X, V ⊂ tfBX ,(ii) the lo
al �rm strong domination property holds around x0 with the neighbourhood

1
2V,(iii) (P ) is Hölder 
alm well-posed at x0 of order 1/m, m > 1.Then S is Hölder 
alm of order 1/m at (u0, x0) ∈ graphS.Proof. Follows dire
tly from Proposition 9.1.4 and Theorem 9.6.2.With V = X we obtainCorollary 9.6.1. Let K be a 
losed 
onvex pointed 
one in Y with intK 6= ∅. Let

f : X → Y be lo
ally Lips
hitz. Assume that(i) A is Lips
hitz around u0 ∈ domA,(ii) the (global) �rm domination property holds for (P ),(iii) (P ) is upper Hölder well-posed of order 1/m, m > 1.Then S is upper Hölder of order 1/m at u0.

9.7. Hölder 
ontinuity of the solution mapping SIn this se
tion we formulate 
onditions for Hölder 
ontinuity of S provided that prob-lems (Pu) satisfy the growth 
ondition of order q ≥ 1. For s
alar optimization problemssimilar results were obtained by Bonnans and Shapiro ([39, Se
. 4.4.2℄) and Bonnans andIo�e [38℄.



118 9. Stability of solutionsTheorem 9.7.1. Let K be a 
losed 
onvex pointed 
one in Y . Let f : X → Y be Lips
hitzwith 
onstant Lf > 0. Assume that(i) A : U →→ X is Hölder of order p > 0 around u0 ∈ domA with 
onstants La > 0and 0 < t < 1,(ii) (DP) holds for (Pu) with u ∈ B(u0, t),(iii) the global growth 
ondition of order q ≥ 1 holds for all (Pu) on S(f, A(u)) with
onstant τ > 0.Then S is Hölder of order p/q at u0 ∈ domS. Pre
isely,
S(f, A(u)) ⊂ S(f, A(u′)) + (La + (2Lq+1

f La/τ )1/q)‖u − u′‖p/qBXfor u, u′ ∈ u0 + (t/4)BU .Proof. The proof follows from Proposition 4.0.3, by observing that under the assumptions
S is uniformly lower Hölder of order p/q at any u′ ∈ u0 + (t/2)BY .Theorem 9.7.2. Let K be a 
losed 
onvex pointed 
one in Y with intK 6= ∅. Let x0 ∈
S(f, A) and let f : X → Y be lo
ally Lips
hitz on x0 + tfBX with 
onstants Lf . Assumethat (i) A is pseudo-Lips
hitz at (u0, x0) ∈ graphA with neighbourhood V of zero in X,

V ⊂ tfBX ,(ii) the lo
al �rm domination property holds for (P ) around x0 with a neighbourhood
Q, Q + Q ⊂ V,(iii) (P ) is Hölder 
alm well-posed at x0 of order 1/m, m ≥ 1.Then S is Hölder 
alm of order 1/m at (u0, x0) ∈ graphS.Proof. Follows dire
tly from Proposition 9.1.4 and Theorem 9.6.2.



Final remarksOur aim was to provide su�
ient 
onditions for semi- and pseudo-
ontinuitites in thesense of Lips
hitz and/or Hölder for the set-valued mappings P and S. We fo
used onformulating su�
ient 
onditions whi
h are as weak as possible in order to make themappli
able to a wide 
lass of problems. As a result we have not assumed any parti
ularform of des
ription of the feasible set A. In the literature there exist numerous resultswhi
h provide 
onditions guaranteeing Lips
hitz and/or Hölder behaviour of the feasibleset depending on parameters. This is the reason why we did not ta
kle this problem here.An important aspe
t of the results presented here is that in many 
ases we are ableto determine Lips
hitz 
onstants when investigating Lips
hitz (or Hölder) behaviour of
P and S. This fa
t is of importan
e in investigating 
onditioning of ve
tor optimizationproblems. From the material of Chapter 8 we 
an dedu
e that stri
t e�
ien
y and sharpas well as weakly sharp solutions are essential for stability of solutions. Moreover, thegreater the 
onstant β related to stri
t e�
ien
y and the 
onstant τ related to sharp (orweakly sharp) solutions, the greater the 
orresponding Lips
hitz 
onstants for P and S.It is an open problem to provide su�
ient and ne
essary 
onditions for sharp solutions(and stri
tly e�
ient points) of higher orders as well as to analyse these notions from thepoint of view of general extremality s
heme as proposed by Kruger [95℄.
Posts
riptum:Si les 
ir
onstan
es arrivent à être surmontées, être vain
ues, la nature transporte la luttedu dehors au dedans et fait peu à peu 
hanger assez notre 
÷ur pour qu'il désire autre
hose. . . Mar
el Proust, A l'ombre des jeunes �lles

[119℄
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