Introduction

The title of this dissertation contains two terms: stability analysis and vector optimization.
Stability analysis is the study of how the output of a model varies as a function of input
data and the model parameters. It is a prerequisite for the correct model building in a
general setting (cf. e.g. Babugka, Hlavadek and Chleboun [13], Eslami [58], Frank [62],
Wierzbicki [152]). Stability analysis is investigated for phenomena modelled by ordinary
or partial differential equations (cf. e.g. Malanowski [107], Sokotowski and Zolesio [142],
Sokotowski and Zochowski [141]). Stability analysis is extensively studied in scalar opti-
mization (cf. e.g. Bonnans and Shapiro [39], Dontchev and Zolezzi [57], Pallaschke and
Rolewicz [118]). For the classical problems of linear algebra, e.g. stability of solutions to
systems of linear equations and the eigenvalue problem was investigated e.g. by Lewis
[102] and Roussellet and Chenais [138].

From the mathematical viewpoint, stability analysis relies on investigation of conti-
nuity or/and Lipschitz (Holder) continuity properties of solutions. Traditionally, inves-
tigation of differentiability properties of solutions is called sensitivity analysis (cf. e.g.
Fiacco [61]). In optimization, sensitivity analysis constitutes a natural source of non-
smooth mappings such as optimal value functions and optimal solution mappings which
are of interest in nonsmooth analysis (cf. e.g. Kiwiel [89]).

Vector optimization or multiple objective optimization is gaining momentum in de-
velopment of its theory and applications. It has its origin primarily in economics, in
equilibrium and welfare theories. The most common and natural necessity to optimize
multiple objectives arises in social setting when individuals are trying to maximize their
benefit, which often leads to competition. Nowadays, vector optimization is exploited also
in solving engineering problems.

The underlying concept in vector optimization is the concept of efficient (or nondom-
inated) point. Let Y be a topological vector space with a closed convex pointed cone
K CY.Let C CY be asubset of Y. An element y € C is efficient, written y € E(C)
(also Ex(C)), if (y — K)NnC = {y}.

Let X be a topological space. Let f: X — Y be a mapping and A be a subset of X.
The vector optimization problem

P) ming f(z)

subject to x € A

consists in finding the set E(f, A) = E(f(A)) called the efficient (or nondominated) point
set of (P) and the solution set S(f,A) ={x € A: f(x) € E(f,A)}. In the following we
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often refer to problem (P) as the original problem or the unperturbed problem. The space
X is called the decision space and Y is called the outcome space.
Let U be a topological space. We embed problem (P) into a family (P,) of vector
optimization problems parametrized by a parameter u € U,
(P) ming f(u, x)
subject to z € A(u)
where f : U x X — Y is the parametrized objective function and A(u) C X is the
parametrized feasible subset of X. The sets A(u) give rise to the feasible set-valued
mapping A : U = X, A(u) = A(u), A(up) = A. Problem (P) corresponds to a given
parameter value ug € U.

The performance set-valued mapping P : U = Y is defined as P(u) = E(f(u, ), A(u)),
P(ug) = E(f,A), and the solution set-valued mapping & : U = X is defined as
S(u) = S(f(u,-), A(w)) and S(ug) = S(/, A).

Our aim is to perform a systematic study of stability properties of the performance
mapping P and the solution mapping S&. We focus on conditions ensuring Hausdorff,
Lipschitz and Hélder behaviour of P and S with respect to the parameter u. To enlarge
the applicability of the results we do not assume any particular form of the feasible set
and we tend to avoid as much as possible compactness assumptions which are frequently
over-used (see e.g. [148]).

Convergence and rates of convergence of solutions to perturbed optimization problems
are one of crucial topics of stability analysis in optimization both from the theoretical
and numerical viewpoints. For scalar optimization these topics were investigated by many
authors (see e.g., [2, 56, 86, 103, 112, 113, 118, 132, 153, 154] and many others). An
exhaustive survey of the current state of research is given in the books by Bonnans
and Shapiro [39], Dontchev and Zolezzi [57], Pallaschke and Rolewicz [118]. In vector
optimization the results on Lipschitz continuity of solutions are scarse and refer only to
some classes of problems (cf. e.g. [47], [48], [49] for the linear case and [37], [50] for the
convex case).

A characteristic feature of vector optimization problems is that the outcome spaces
are equipped with partial orderings which are not linear in general. These partial or-
ders are generated by cones whose properties play an important role in existence results
and optimality conditions. To derive stability results we make use of two new concepts
pertaining to sets and cones in the outcome space, namely the containment property,
introduced in [21], and the strict efficiency, introduced in [17].

The containment property (CP) is used to study upper semicontinuities (in the sense
of Hausdorff, Lipschitz, or Holder) of efficient points (cf. [16, 21]) under perturbation of
a set. This property can be viewed as a variant of the domination property (DP) appearing
frequently in the context of stability of solutions to finite-dimensional parametric vector
optimization problems. To study upper Holder continuity of efficient points and solutions
to (P) we introduce the containment rate of a set with respect to a cone, which is a real-
valued function of a scalar argument and characterizes the containment property (CP).

Strict efficiency is introduced in [31, 18] to study lower (Hausdorff, Hélder) semicon-
tinuities of efficient points. In normed spaces, strict efficiency is implied by the super
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efficiency in the sense of Borwein and Zhuang [42]. To study lower Holder continuity of
efficient points and solutions to (P) we define the modulus of strict efficiency ([18]). In
vector optimization the concept of strict efficiency leads to the notion of sharp and weak
sharp solutions (local and global) ([27]). Both sharp and weak sharp solutions can be
viewed as vector counterparts of sharp (and weak sharp) minimality and growth condi-
tions appearing in scalar optimization (cf. [39], [38], [43]).

The organization of the book is as follows. In Chapter 2 we investigate the strict
efficiency and the modulus of strict efficiency. Special attention is paid to strict efficiency
in the finite-dimensional case.

In Chapter 3 we derive sufficient conditions for lower Hausdorff semicontinuity of
the efficient point set-valued mapping &, £(u) = E(C(u)), where C : U 3 Y is a given
set-valued mapping.

In Chapter 4 we formulate conditions for lower Hélder continuity and lower-pseudo-
Holder continuity of £.

In Chapter 5, the containment property (CP) and the containment rate are inves-
tigated. Special attention is paid to the finite-dimensional linear and convex cases. In
Chapter 6, by using the containment property we prove sufficient conditions for upper
Hausdorff continuity of efficient points and in Chapter 7 the containment rate is used to
investigate upper Holder continuity and upper pseudo-Hélder behaviour of £. We apply
the results obtained to formulate sufficient conditions for the Hdlder continuity of the
performance set-valued mapping P for parametric problems (P,).

In Chapter 8 we define ¢-sharp and weak ¢-sharp solutions to (P). When applied to
scalar optimization problems the notions of ¢-sharp and weak ¢-sharp solutions reduce
to the notions of sharp and weak sharp minima, respectively, introduced by Studniarski
and Ward [147], Burke and Ferris [44]. Sharp and weak sharp minima were used e.g. by
Attouch and Wets [7], Bonnans and Shapiro [39] to derive stability results for parametric
problems.

In Chapter 9, basing on properties of e-solutions to vector optimization problems we
define well-posedness of (P). We investigate relationships between well-posedness of (P)
and sharpness or weak sharpness of solutions. In classes of well-posed problems we in-
vestigate upper Hausdorff semicontinuity and upper Lipschitz (Holder) continuity of the
solution mapping S, S(u) = S(f, A(u)). By exploiting the notions of local sharp and local
weak sharp solutions we prove Hélder calmness of S.
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1. PRELIMINARIES

The general framework of our developments are Hausdorff topological vector spaces
(t.v.s.) over the field R of real numbers. A linear space Y is a topological vector space if
Y is equipped with a topology compatible with the linear space structure, that is, both
linear space operations (y1,y2) — ¥1 + Y2, ¥1,y2 € Y, and (r,y) —» ry, r e R, y € Y, are
continuous on their domains, ¥ X Y and R x Y, respectively. It is a consequence of the
continuity of the linear space operations that the topological structure of Y is determined
by a base of neighbourhoods of the origin.
If V is a base of neighbourhoods of the origin, then for each V € V|

(i) V is absorbing, i.e., for any y € Y there is some A > 0 such that Ay € V for any
0<A<A,
(ii) there exists a balanced neighbourhood V C V, ie., for all v € V, \v € V
whenever || < 1,
(iii) there exists W € V such that W+ W C V.

A topological space is Hausdorff (or separated) if any two distinct points have disjoint
neighbourhoods. If V is a base of neighbourhoods in a topological vector space Y, then
Y is a Hausdorff space if and only if [, V' = {0}. We use the standard notations cl(-),
int(-), and 9(-) for closure, interior, and boundary, respectively.

Let C be a subset of Y. We say that C' is convez if Az + (1 — A)y € C for all z,y € C
and 0 < A < 1. The (linear) segment [a, b] with end-points a € Y and b € Y is given as

[a,b] ={z€Y :z=Xz+(1—- Ny, 0 <A <1}
For any nonempty subsets C' and D of Y the algebraic sum of C' and D is defined as
C+D={c+d:ceC,de D}
and the algebraic difference of C' and D is defined as
C—-D={c—d:ceC,de D}.

Moreover, the algebraic sum and difference are empty if any of the sets C and D is empty.
For any subset C' of Y and X € R,

AC ={\y:yeC}.

By a locally conver space we mean a topological vector space with a base of convex
neighbourhoods of the origin. A locally convex space Y has a base V of neighbourhoods
of the origin with the following properties:

9
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(i) if V€V and A # 0, then AV € V),

(ii) each V € V is absolutely convex (i.e., balanced and convex).

Let Y* be the topological dual of Y, i.e., the space of all continuous functionals defined
on Y. If Y is a Hausdorff locally convex space, then Y* separates points, i.e., for any
two different points yi,y2 € Y there exists f € Y* such that f(y1) # f(y2) (see e.g.
Holmes [78, Cor. 11.E]).

1.1. Cones in topological vector spaces

In this section we collect basic facts about cones. A subset K of a vector space Y is a
cone if
yeKand A>0 = Ay e K.

By definition, each nonempty cone contains the origin and {0} is the trivial cone. A convex
cone is a cone which is a convex subset of Y. A cone K is pointed if K N (—K) = {0}.

DEFINITION 1.1.1. Let {0} # K C Y be a convex cone. A nonempty convex subset © of
K is a base of K if 0 & c1© and K = J{)\O : A > 0}.

A based cone is necessarily pointed and convex. The example below shows that Def-
inition 1.1.1 does not ensure the uniqueness of the representation of elements of K via
elements of a base.

EXAMPLE 1.1.1. Let Y = R?, K = R?%. The set
O=Kn{(y1,y2) : —y1 +2<y2 < —y1 +4}

is a base of K. Each 0 # k € K can be represented as (ki, k2) = A(y1,y2), where A > 0
and (y1,y2) € O. It is enough to take any A satisfying (k1 + k2)/4 < XA < (k1 + k2)/2.

Conditions ensuring uniqueness of representation are given in the following proposi-
tion.

PROPOSITION 1.1.1 (Peressini [122], Jahn [82]). Let Y be a wvector space. Let K be a
convezx cone in'Y and let © be a nonempty convex subset of K. The following conditions
are equivalent:

(i) each nonzero element y € K has a unique representation of the form y = A6,
where A\ >0, 6 € O,

(il) K =U{AO : A > 0} and the smallest linear manifold in Y containing © does not
contain Q.

Proof. 1f (i) holds, then K = [J{\O : A > 0}. The smallest linear manifold containing ©
isL={ud+(1—p) :0,0 €O, ueR}If0 e L, there would be pp > 1 and g, 6} € ©
such that pgby = (1o — 1)8(, contrary to (i).

To show uniqueness in (i), suppose on the contrary that A0 = A6’ for 6,6’ € ©, and
positive reals A, ', A # \. Then .

'n!
0= = (M-X0}eL

contrary to (ii). m
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In some textbooks the base of a cone is defined as a nonempty convex subset of the
cone satisfying condition (i) of Proposition 1.1.1 (see e.g. [82, 83, 85, 122]). If O satisfies
that condition, then 0 € 6.

In locally convex spaces, any based convex cone has a base satisfying condition (i) of
Proposition 1.1.1.

PROPOSITION 1.1.2. Let Y be a locally convex Hausdorff topological vector space and let
K be a convex cone in Y with a base @. There exists another base ©1 of K such that
01 = fY1)NK, where f is a continuous linear functional on'Y satisfying condition (i)
of Proposition 1.1.1.

Proof. Since 0 ¢ cl©, there exists a convex 0-neighbourhood V' in Y such that V N
cl©® = (. By separation arguments (see e.g. Holmes |78, Th. 11.E, 12.F|), there exists a
continuous linear functional f on Y such that f(#) > 0 for § € ©. Hence, ©; = f~1(1)NK
is a base of K which satisfies condition (i) of Proposition 1.1.1. m

We say that a subset C' of Y is KC-closed if C'+ I is closed, and C' is K-convez if C'+KC
is convex.
For any cone KL C Y, its dual K* C Y* of Y* is defined as

Kr={feY": f(y) >0 for all y € C}.

The dual cone * is nonempty and weak* closed. To see the latter suppose that f,, is a
net of functionals from K* converging weak™ to f. Then f,(y) converges to f(y) for all
y € Y, in particular, f, (k) converges to f(k) for any k € K. This entails f(k) > 0 for all
k € K since f,(k) > 0 for all w and all k € K.

For any subset C' of a topological vector space Y the polar C° C Y* of C is defined
as

Co={feY": fly)<lforallyeC}.

The polar is nonempty since 0 € C°, and weak™ closed. We have K* = —K°. In the same
way, for any subset C' C Y*, we define the polar C° C Y as

C°={yeY: fly)<lforall feC}.
The bipolar C°° C Y of a subset C C Y is
C°={yeY: fly)<lforall feC°}.
If C is a subset of a locally convex space Y, then
C°° =cl((conv{OU C}),

where conv stands for convex hull (cf. Holmes [78, Th. 12.C]). Hence, the bidual cone
K**,
K™ ={yeY: f(y)>0for f € K*},

is convex and weakly closed, and in locally convex spaces K = K** if and only if K is
convex and weakly closed (in normed spaces cf. Kurcyusz [98, Lemma 8.6]).

A topological linear space Y is said to be a Mackey space (cf. e.g. [85]) if B C Y is
a 0-neighbourhood in Y whenever B C Y* is a convex and weak* compact subset of Y.
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THEOREM 1.1.1 (Jameson [85, Th. 3.8.6]). Let KC be a convex cone in a locally convex
topological space Y. Then

(i) if K has an interior point, then K* has a weak™ compact base,
(ii) if Y is a Mackey space, K is closed and K* has a weak® compact base, then K
has an interior point.

Proof. (i) Let e € int K and let © = {f € £*: f(e) = 1}. Then O is a base of £*. Now
K — e is a 0-neighbourhood in Y and hence (I —e)* is weak™ compact. The result follows
since © is a weak® closed subset of (I —e)*.

(ii) Suppose that O is a weak® compact base of X*. There is an element yg of Y such
that f(yg) > 1 for f € ©. Since Y is a Mackey space, ©° is a 0-neighbourhood in Y. For
yeO®®and f€O, flyp+vy) >0,80 yo+y € K =K. Hence, o+ O° C K. m

Below we give an example of a cone with empty interior such that * has a bounded
and closed base in the norm topology.

EXAMPLE 1.1.2 (Jameson [85, p. 123]). Let Y = ¢ be the space of real sequences con-
verging to zero with the usual cone car of nonnegative elements. Then car has no interior
points, and (car)* is the usual nonnegative cone Ef in £;. The set of sequences {£,,} C (car)*
such that > ¢, = 1 is a base for (cf)* that is bounded and closed in the norm topology.

The set ]
K*={feK":f(y)>0forally e L\ {0}}

is called the quasi-interior of K*. Note that K** may be empty. The set
Ki={yecY: fly)>0forall feck*\{0}}

is called the quasi-interior of KC (cf. e.g. [140, 122]). In locally convex spaces, K¢ C K\ {0},
and if int IC # (), then int K = K*. Moreover, by Lemma 5.5 of [46],

K={yecY: f(y)>0forall f e}

Indeed, suppose that y ¢ K. Since Y is locally convex, there exists f € K* such that
f(y) < 0. Let g € K**. By choosing a > 0 such that f(y) + ag(y) < 0 we get h =
f+a-geK* and h(y) < 0.

ExXAMPLE 1.1.3 (Peressini [122, Ex. 3.7b, p. 27]). Let Y = Bla,b] be the set of all
bounded, real-valued functions on the interval (a, b) and
K={f€Bla,b]: fly) >0 forall y € [a,b]}.
The quasi-interior * of K is empty.
Necessary and sufficient conditions for X*? to be nonempty were given by Dauer and
Gallagher in [46].

PROPOSITION 1.1.3 (Dauer and Gallagher [46]). Let Y be a topological vector space and
let K be a conver cone in'Y . Then K** is nonempty if and only if there exists an open
conver subset QQ in'Y satisfying

() 0¢Q,
(ii) K C cone(Q) =UJ{AQ : A > 0}.
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Proof. If K** # (), then the set Q = {y € Y : f(y) > 0}, f € K**, satisfies (i) and (ii).

Let @ be a subset of Y satisfying (i) and (ii). Since 0 € @, by separation arguments
(see [139, p. 58]), there exists f € Y* such that f(0) < f(q) for ¢ € Q. Thus, f(q) >0
for all ¢ € Q. From (ii) it follows that f € K*'. =

By Proposition 1.1.3, for any convex cone /C in a locally convex space Y, K** is
nonempty if and only if I is based. If Y is separable and K is closed convex and pointed,
then K* is nonempty (see [94, Thm. 2.1]).

Let C be a subset of a linear space Y. The set

coreC={z€C:VYyeY IA>0with z+ )y € C for 0 <A< \}

is called the algebraic interior or the core of C. For any cone K in a linear vector space Y,
the fact that core K # () implies that K is reproducing, i.e., K — K =Y (see Lemma 1.13
of [82] and [83]).

THEOREM 1.1.2 (Jahn [82, Lemmas 1.25, 1.26]). Let K be a closed convex cone in a
topological vector space Y with K* # {0}. Then

(i) core K C Kt,

(i) if Y* separates points of Y and K** # (), then core C* C K**.

Proof. (i) Let k € coreK. Thus, k € K and for any y € Y there exists A\ > 0 with
k+ Ay € K for 0 < X\ < . Hence, for any f € K*\ {0}, f(k+)y) >0 forany 0 < A <\
Since f € K* \ {0}, there exists yo € Y with f(yo) < 0 and we get f(k) > —\f(yo) > 0.
Hence, f(k) > 0.

(ii) Let f € core*. Thus, f € K* and for any g € Y* there exists A\ > 0 with
f4+Ag e K* for 0 < X< A\ Hence, (f +\g)y >0 for any y € K and any 0 < A < \. By
taking any go € Y* with go(y) < 0 we get f(y) > —Ago(y) > 0. Hence, f(y) > 0. m

When K£* = {0} Theorem 1.1.2 is not true; to see this it is enough to take =Y. As
shown in [82, Lemma 1.27], in any linear vector space Y, the cone K* is pointed whenever
core K # (. Then, by Theorem 1.1.2, K* is based. Moreover, if core C* # (), then K is
based (see [78, Theorem 1.5C]).

PROPOSITION 1.1.4. Let Y be a locally convex topological vector space and let I be a
closed convex cone in Y. If K' # (), and K* is nontrivial, then K* has a base.

Proof. Let yo € K. Then the set
(1.1) O ={0"c K" :0%(yo) =1}

is a base of IC*. It is convex, weak™ closed, 0 & w*-cl @*, where w*-cl stands for the weak*
closure. Moreover, for any 0 # f € K*, we have f(yo) = Af #0, and f/Af € O*. =

In the following we refer to any base of the form (1.1) as a standard base. By Theorem
1.1.2, core X C K, and by Proposition 1.1.4, if core X # () and K* # {0}, then K* is
based. By similar arguments, C** is always based.
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1.2. Basic concepts of efficiency

Let Y be a topological vector space and let K be a closed convex cone in Y. The ordering
relation < (we write also <x) in Y associated with /C is defined as

Y1k Y2 & y1—y2 €L

The relation < is reflexive and transitive, and it is antisymmetric if and only if I is
pointed, i.e., KN (—=K) = {0}. Let C be a subset of Y. An element y € C' is efficient (or
nondominated) for C' with respect to I, written y € E(C) (ory € Ex(C)),if CN(y—K) C
K. When K is pointed, an element y € C is efficient if CN(y—K) = {y}. When int K # @ we
say that an element y € C is weakly efficient, and we write y € WE(C) (ory € W E(C)),
if CN(y—intK)=0. Clearly, E(C) C WE(C).

An element y € C is locally efficient (or locally nondominated) in C with respect to
K, and we write y € LE(C) (or y € LE(C)), if there exists a 0-neighbourhood V in Y
such that y € Ex(CN(y+V)). If C CY is a convex subset of Y, then
(1.2) E;C(C) = LEK(C).

To see this, suppose that yo € Ex(C). There exists y; € C such that y; — yo € —K.
By convexity, Ayo + (1 = XN)ys C CN(yo—K), 0 <A <1, and Ayg+ (1 — Nyy € V for
0 <A< A< Hence, yo € Ex(CNV).

A well-known fact is that the compactness of C' implies that F(C) # (. Numerous
attempts have been made to weaken the compactness requirement (see e.g. [145], [40],
[36], [149]).

We will use the following fundamental existence theorem.

THEOREM 1.2.1 (|83, Th.6.5]). Let C' be a nonempty subset of a real locally convex
space Y. If C is weakly compact, then for every closed conver cone K in Y the set C'
has at least one efficient point with respect to the partial ordering induced by K.

1.3. Vector optimization problems

Let X and Y be Hausdorff topological vector spaces. Let K be a closed convex cone in
Y. We consider the vector optimization problem

ming f(z)

(P) :

subject to x € A,

where f: X — Y is a mapping and A is a subset of X.
The set E(f, A) of (global) efficient points to (P) (we write also Ex(f, A)) is defined

as E(f,A) :== E(f(A)). The set

S(f,A):={z € A: f(x) € E(f, A)}
(we write also Sic(f, A)) is the set of (global) solutions to (P) (see Jahn [82, 83|, Luc
[105]). Clearly, S(f, A) = AN f~YE(f, A)).
An element z € A is a local solution to (P), x € LS(f,A) (we write also = €
LSk (f, A)), if there exists a 0-neighbourhood @ in X such that z € ANf~Y(E(f(ANQ))).



1.3. Vector optimization problems 15

An element y € f(A) is a locally efficient point for (P), y € LE(f,A) (we write also
y € LEx(f,A)), if there exists a 0-neighbourhood W such that y € Ex(f(4) N W). In
general, LS(f, A) differs from AN f~Y(LE(f, A)).

ProproSITION 1.3.1. Let X and Y be Hausdorff topological vector spaces and let IC be a
closed convex cone in'Y. Let A be a subset of X and f : X — Y be continuous on A.
Then

AN fTY(LEx(f, A)) C LSk(f. A).

Proof. Let g € AN f~Y(LEx(f, A)). Then f(zq) € LEx(f(A)) and there exists a 0-
neighbourhood W in Y such that (f(A) N (f(zo) + W) — f(zo)) N (—=K) C K. By the
continuity of f, there exists a 0-neighbourhood @ in X such that f(zo+ Q) C f(zo)+W.
Hence, f((zo + Q) N A) C f(zo + Q) N f(A) C (f(wo) + W) N f(A), and

(f((z0) + Q)N A) = f(z0)) N (=K) C K,
which means that o € LSk (f, A). =

The opposite inclusion to that of Proposition 1.3.1 does not hold in general.
If Y =R™ and A C R” is given as the solution set to a finite system of equations
and/or inequalities and the mapping f : R™ — R™ is given as

f: (fla"'afm)7
where f; : R® — R, 1 < i < m, are (scalar) criteria (objectives), problem (P) takes the
form of a multicriteria optimization problem

min/C (fla' afm)
(MOP)  subject to

reA={zeR":gi(x) <b,i€l, hj(x)=dj, jeJ}
where I and J are finite systems of indices, g; : R® — Rand b; € Rfori € I, h; : R" — R
and d; € R for j € J.

In the literature there exist a number of definitions of properly efficient points (and
solutions) for (P) and (MOP). Properly efficient points are efficient points which sat-
isfy additional conditions in order to eliminate some undesirable behaviour (e.g. the un-
bounded growth of trade-off coefficients). The definitions of properly efficient points were
originally proposed by Geoffrion [65] and Kuhn and Tucker [96]. In the finite-dimensional
setting properly efficient points were also investigated by Benson [34], Hartley [71] and
Henig [73]. The definition of proper efficiency proposed by Henig in [73]| can be naturally
generalized to the infinite-dimensional setting. The definitions of proper efficiency in in-
finite dimensions were also proposed by Borwein [40, 41] and Borwein and Zhuang [42].
The relationships between different notions of proper efficiency were elucidated in [70].

Dual problems to (P) and (MOP) were proposed by many authors. For a survey
of the existing approaches and generalizations we refer to Song [143] and the references
therein.

Parametric problems related to (P) were investigated on different levels of generality.
Convergence of sequences of efficient point sets E(C,,) was investigated by Mighlierina
and Molho [110, 111]. The construction of polarities was exploited in proving different
type of convergence of efficient point sets by Dolecki [53, 54|, Dolecki and Malivert [55],
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Malivert [108]. K-semicontinuities of efficient sets were investigated by Sterna-Karwat
[144] and Sterna-Karwat and Penot [120, 121].

Bibliographical note. Classic textbooks on topological vector spaces are e.g. Alexie-
wicz [1], Schaefer [140], Robertson and Robertson [127]. The books by Peressini [122] and
Jameson [85] are devoted to ordered topological vector spaces. Presentations of different
aspects of the theory of set-valued mappings can be found e.g. in books by Berge [35],
Aubin and Frankowska [11], Kuratowski [97]. The theory of vector optimization in topo-
logical vector spaces with numerous extensions is presented in the books by Jahn [82, 83],
Luc [105], Hyers, Isac and Rassias [79], Gopfert, Riahi, Tammer and Zalinescu [68].



2. STRICT EFFICIENCY

In this chapter we introduce the concept of strict efficiency and the modulus of strict
efficiency. These concepts constitute main ingredients of sufficient conditions for the lower
semicontinuity and lower Holder (and lower pseudo-Hélder) continuity of efficient points
formulated in Chapters 3 and 4. Strict efficiency can be viewed as a kind of proper
efficiency (cf. e.g. [42, 73]). We show that strict efficiency is weaker than the proper
efficiency in the sense of Henig [73] and weaker than the super efficiency as defined by
Borwein and Zhuang [42]. The question of density of proper efficient points in the set of
all efficient points was addressed by many authors (cf. e.g. [3, 32, 42, 46, 63, 67]). Based
on those results we get density results for strictly efficient points.

In Section 2.1 we define strong proper efficiency which is stronger than Henig proper
efficiency. In Section 2.2 we introduce the notion of strict efficiency; we investigate prop-
erties of strictly efficient points and we provide a characterization of strict efficiency in
terms of nets. In Section 2.3 we investigate strict efficiency for convex sets. In Section 2.4
we define the modulus of strict efficiency and we prove characterizations of strict efficiency
in terms of properties of the modulus of strict efficiency.

2.1. Strong proper efficiency

Let Y be a Hausdorff topological vector space and let K be a closed convex pointed cone
in Y. Let C be a subset of Y.

DEFINITION 2.1.1. A point yg € C is strongly properly efficient (see [16]), yo € SPE(C),
if there exists a closed convex cone Ky, Ko # Y, int Ko # 0, K\ {0} C int Ko, such that
for each 0-neighbourhood W there exists a 0-neighbourhood O such that

(2.1) (K\W)+ 0 C Ky,
and yo € Ex,(C).

Recall that a cone K has a base © if © is convex, 0 € cl @, where cl stands for closure,
and K = cone(©). For any 0-neighbourhood V' we put

Ka(V) = cone(@ + V).

PROPOSITION 2.1.1. Let K C Y be a closed conver cone with a base © and let Ky be a
closed convez cone, Ko £2Y, int Ko # 0, K\ {0} C int Ko. If Ko satisfies (2.1), then

(2.2) Ka(V) C Ko
for some 0-neighbourhood V.

(17]
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Proof. Since 0 ¢ cl O, there exists a 0-neighbourhood W such that © N W = (). By (2.1),
there exists a 0-neighbourhood O such that ©+0 C Ky, or K4(O) = cone(©+0) C Ky. m

PRrOPOSITION 2.1.2. Let K be a closed convex cone in'Y with a topologically bounded
base ©. For any 0-neighbourhood V, the cone Kq4(V') satisfies condition (2.1), i.e., for
each 0-neighbourhood W there exists a 0-neighbourhood O such that

(2.3) (K\W)+0 C Ka(V).

Proof. Let W be a 0-neighbourhood. Since O is topologically bounded, there exists X\ > 0
such that A\@ C W for 0 < A < X and for x € K\ W we have x = \,0,, where A\, > \.
Moreover, there exists a 0-neighbourhood O such that O C A\V. Hence

- A
r+ 0 C )\mOI—i—)\V:)\I(Hm—i—/\V) Ccone(@+V). m
In Proposition 2.1.2, the boundedness of @ is important as shown by the example

below.

EXAMPLE 2.1.1. Let Y = ¢, and K = (. The functional f(z) = > ", 2,/2" has the
property that f(xz) > 0 for z € K\ {0}. Hence, the set
O={zeck: f(z)=1}
is a base of K. It is unbounded since the sequence (zx) C O,
= (0,... 2" e
Tk (07 ) 07 \ , 0) )a
kth position

is unbounded and the condition (2.3) is not satisfied. To see this take a sequence (yx) C
K\W, W ={z € £~ : sup,, |zn| <1} and (qx), where

——1 d =1(0 0 —1 0
an e |
Yk kxkv qk ) i) k I

—~—
kth position

Now, yr + qr & cone(© + V) for any 0-neighbourhood V contained in V = {z € ¢ :
sup,, |z, | < 1}, since

1 1
e =yYetae= Lot o= [z + i),
where p, = (0,...,0, 1 ,0,...). The main feature here is that y; has the represen-
kth position

tation yr = Arbx with (\g) tending to zero.

COROLLARY 2.1.1. Let K be a closed conver cone with a topologically bounded base ©
in a locally convex space Y and let C' be a subset of Y. The following conditions are
equivalent:

(i) y € SPE(C),

(i) y € Eax,v)(C), where V' is a convex 0-neighbourhood.
Proof. (ii)=(i). If y € Eax,v)(C), by Proposition 2.1.2, clKy(V') satisfies condition
(2.1), and hence y € SPE(C).



2.2. Strict efficiency 19

(i)=(i). Let y € SPE(C). Then y € Ex,(C), where Ky satisfies (2.1). By Propo-
sition 2.1.1, there exists a 0O-neighbourhood V such that (2.2) holds, and hence y €
Eax,vy(C). m

Let us note that in any locally convex space, for all sufficiently small neighbourhoods
V, Kq(V') is pointed, which may not be the case for cl Kq(V).

2.2. Strict efficiency

Let IC be a closed convex pointed cone in a Hausdorff topological vector space Y. Let C
be a subset of Y.

DEFINITION 2.2.1 ([17, 18]). A point yo € C is strictly efficient, yo € StE(C) (we write
also StEx(C)), if for any O-neighbourhood W there exists a 0-neighbourhood O such
that

(2.4) (C\(yo+W))+0)N(yo — K) = 0.
Equivalently
(2.5) (C—yo)N(O—K)CW.

Each strictly efficient point is efficient,
StE(C) C E(C).
Indeed, if yo & E(C), there exists y € C, y # yo, such that y € (C — yo) N (—K). On the
other hand, there exists a 0-neighbourhood W such that y & 3o+ W . Hence yo & StE(C).
If K1 C K for a closed convex cone Ky, then StEx(C) C StEx, (C).

The following proposition establishes the relationship between strongly properly effi-
cient points and strictly efficient points.

PROPOSITION 2.2.1. For any subset C' of Y we have
SPE(C) C StE(C).

Proof. Let yg € SPE(C) and let W be a 0-neighbourhood. By (2.1), there exists a 0-
neighbourhood O such that (K \ W)+ O C Ky. Let Wi be a 0-neighbourhood such that
W1 + Wy € W. By O; we denote a 0-neighbourhood such that (\ W7) + O C K.

We claim that (C' —yo) N (01 N W — K) C W. Indeed, take any z € (C' —yo) N (O1 N
W1 — K). Hence,

z=y—yo=q—k, where yeC,qeO1NWy, kek.

If z ¢ W, we would have k € K\ Wj and by (2.1), —k — ¢ = y — yo € —Ko, which would
contradict the strong proper efficiency of yo. This proves that yo € StE(C). m

Strict efficiency can be characterized via upper Hausdorff semicontinuity (for the
definition see the beginning of Chapter 3) of the section mapping Secc : ¥ = Y,
Secc(y) =Cy =CnN(y—K) (cf. also Th. 2 and Corollaries 1 and 2 of [31]).
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PROPOSITION 2.2.2. Let IKC be a closed convex pointed cone in a Hausdorff topological
vector space Y. Let C be a subset of Y. An element yo € E(C) is strictly efficient if and
only if Secc is upper Hausdorff semicontinuous at .

Proof. 1t is enough to note that Sec.(yo) = {yo}. Then the strict efficiency of yo can be
equivalently rewritten as

Secc(y) C Seco(yo) + W for any y € yo + O,
which amounts to the upper Hausdorff semicontinuity of Secc at yo. »

Recall that a cone K is normal in a topological vector space Y if there exists a basis

V of neighbourhoods of ¥ such that (O + K)N (O — K) = O for any O € V.
PROPOSITION 2.2.3. If K is normal, then 0 € StE(K).

Proof. Since K is normal, for each 0-neighbourhood W, there exists a O-neighbourhood
O such that (O+K)N (O —K) C W and hence KN (O —-K) C W. n

The following proposition gives a characterization of strict efficiency in terms of nets.

PROPOSITION 2.2.4. Let C be a subset of the space Y and yo € E(C). The following are
equivalent:

(i) yo € StE(C),

(i) for any nets (x4), (Ya) such that (x) C C, Yo € To + K and yo, — Yo, we have

ZTa — Yo-

Proof. Suppose on the contrary that there exist two nets (z,), (yo) such that (z,) C C,
Ya — Y0, T SK Ya, and z, does not tend to yo. This means that there exists a 0-
neighbourhood W such that for a certain subnet (z3) C (7,) we have x5 — yo € W. On
the other hand, yg = zg + cg for some cg € K, or

g =Y =Yg — Yo — Cp-

Since (yg) tends to yo, for each 0-neighbourhood V we have yg —yo € V for g > £3,.
Hence, (2,) forms a subnet of (x5) and 25, —yo € (C —yo) N (V —K), but x5, —yo € W,
which contradicts the strict efficiency of yg.

Suppose now that yo ¢ StE(C). There exists a 0-neighbourhood W such that for each
0-neighbourhood V one can find z, € C, q, € V, ¢, € K such that

Ty — Yo = Qv — Co,

where ¢, tends to zero and z, — yo &€ W. Moreover, x, + ¢, = q, + %o, i.€., Ty, <K Yo =
qv + Yo, and {y, } tends to yo but {z,} does not. This contradicts (ii). m

By Propositions 2.2.3, 2.2.4 and Proposition 1.3 of [122] we get the following corollary.
COROLLARY 2.2.1. K is normal if and only if 0 € StE(K).

Below we determine StE(C) for C in some finite-dimensional and infinite-dimensional
spaces.

EXAMPLE 2.2.1. 1. Let Y = R? and K = R2. Let
C={(y1,92) :y2 > e }U{(y1,92) : y2 > y1 }.
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Clearly, E(C) = {(y1,¥2) : Y2 > y1, y1 > 0} and StE(C) = E(C). For

C={(y1,12) y2 > " }URY

we get E(C) = {0} and StE(C) = 0.

2. Let Y = ¢>°, and K = /3 be the natural ordering cone, K = {z = (z,) € £ :
Xy >0, n > 1}, Let

C={zel™: |z <1}

We have yo = (—1,-1...,—1,...) € E(C) and yg € StE(C). To see the latter we need
to show that for every € > 0 there exists 6 > 0 such that for all y € (C' — yo) N (Q — K),
where Q = {q € £*° : ||g||oc < 0}, we have ||y|lco < €. Indeed, let y — yo = ¢ — k, where

yeC,qge @, keKk. Since |lyo+q — kllo < 1 we have k™ < ¢" for all n > 1 and
consequently

" — k" < ¢" + K" <2q7,
which means that it is enough to take § = &/2.
3. As previously, let Y = £°° and K = £5°. Let
C={xel>: f(z)=0}

where f is the continuous linear functional f(z) = > 7, ,,/2". The set C is a subspace,
E(C) = C and StE(C) = (. First we show that 0 ¢ StFE(C). Consider the sequence
(yx) C C defined as

ye = (1/k,0,...0, =2""1/k,0,...).
———
kth position
We have y, = g — ¢k, where
a = (1/k,0,...), ¢ =1(0,...,0, 2871/k |0,...) €K,
——
kth position
and [|gx|loo = 1/, ||Yx|lco = 2871 /k > 1. According to Proposition 2.2.4, 0 ¢ StE(C). To

see that y € StE(C) for any y € C, consider the sequence (zx) C C, zx = yr + y. It is
enough to observe that zp — y = qx — ¢ and to apply Proposition 2.2.4.

The following theorem provides conditions for the inclusion E(C) C StE(C) to hold.

THEOREM 2.2.1. Let Y be a locally convex space and let K be a closed convex pointed
cone in'Y. If C is a weakly compact subset in Y, then

E(C) C StE(C).
Proof. Let yo & StE(C). There exists a 0-neighbourhood W such that for any 0-neighbour-
hood @ one can find 2, € C, 2, — yo ¢ W such that
2g — Yo =¢q— kg, where qe€Q, k,€K.

Since C' is weakly compact, (z,) contains a weakly convergent subnet with limit point
zo € C, 29 # yo. Since K is weakly closed, the corresponding subnet of (k;) converges to
a nonzero kg € K and zg — yo = —kg, which proves that yo € E(C). m
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When Y = (Y| - ||) is a normed space with open unit ball By, the strict efficiency
can be rewritten as follows: g € C' is strictly efficient if for any € > 0 there exists § > 0
such that

(C — yo) n (5By — ]C) C eBy.

(C\ B(y,€)) + 6By

=

Fig. 2.1 Strict efficiency of y € C

Now we establish the relationship between strict efficiency and proper Henig efficiency.
We say that yo € C is proper Henig efficient, [72], yo € HE(C), if there exists a closed
convex cone 2 CY, 2#Y, K\ {0} C int {2 such that yy € En(C).

THEOREM 2.2.2. Let Y = (Y,|| - ||) be a normed space and let KC be a closed conver and
pointed cone in'Y . For any subset C of Y,
HE(C) C StE(C).

Proof. Suppose that yo € StE(C). There exists g > 0 and sequences (y,,) C C, (k,) C K,
(bn) C By such that for alln > 1,
1
Yn — Yo = Ebn_kna ||yn_yOH > €0.

Hence, d(y, — yo, —K) — 0. Consequently, yo & E(C) for any cone 2 C Y with £\ {0}
C int {2, which proves that yo ¢ HE(C). =

In general, the inclusion StE(C) C HE(C) does not hold as shown by the following
example.

EXAMPLE 2.2.2. Let Y =R? and K = Ri. For the set C = cl By we have

E(C) ={(y1,y2) : =1 <y <1, 42 = —/1 — 9},
E(C) = StE(C) and HE(C) = E(C)\ {(~1,0), (0, —1)}.

We say that yg € C is super efficient [42], yo € SE(C), if there exists a number M > 0
such that

cl cone(C — yo) N (By —K) C MBy.
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THEOREM 2.2.3. For any subset C' of a normed space (Y, | - ||),
SE(C) C StE(C).
Proof. Suppose that yo & StE(C). There exists £g > 0 such that for each n > 1,

((C = y0) \ 20By) 1 (% By - IC) 40,

and one can choose y,, € C such that

1
Yn — Yo = E(bn*kn)a lyn — yoll > €o,

where b, € By, k, € K. Consequently,
n(Yn —Yo) =bp — kyn and  [|n(yn — yo)|| — oo,
which proves that yo € SE(C). =

THEOREM 2.2.4. Let (Y,|| -||) be a normed space and let K be a closed convex pointed
cone in Y with a bounded base ©. For any subset C' of Y,

SPE(C) = SE(C).
Proof. 1If yo € SPE(C), by Proposition 2.1.1, there exists € > 0 such that

(€ =wo) N (=Ka(e)) = {0},
where, as previously, K4(e) = cone(6© +eBy ). Thus, cone(C —yo) N (eBy —O) = (). Now,
by the same arguments as those used in the proof of Proposition 3.4 of [42], we conclude
that yo € StE(C).
Suppose now that yo € SPE(C). By Proposition 2.1.1, for any € > 0,

(C' = yo) N[ cone(© +eBy)] # 0.

Equivalently, cone(C' — yg) N (=6 + eBy ) # 0. By the same arguments as those used in
the proof of Theorem 4.1 of [70], yo &€ StE(C), which completes the proof. =

Now we introduce local strict efficiency. Let C C Y be a subset of a Hausdorff topo-
logical vector space Y.

DEFINITION 2.2.2. An element yg € C'is a local strictly efficient point, yo € LStE(C), if
there exists a 0-neighbourhood V in Y such that yo € StE(C N (yo + V)), i.e., for each
0-neighbourhood W there exists a 0-neighbourhood O such that

(€N (yo+V)\ (o + W) N ((yo +0) —K) = 0.

Equivalently,
(C—=y)NVNO-K)CW.
For instance, if
C={(y1,92) 1 y2 > e }URY

as in Example 2.2.1, then E(C) = {0} and 0 is a local strictly efficient point.
Clearly,
StE(C) C LStE(C) C LE(C).
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For the set C C R%,
C={(y1,92): 0<y1 <1, 0<y <1} U{(0, 1)},
and K = R%, we have LE(C) = E(C) = {(0,1)}, LStE(C) = StE(C) = 0.

2.3. Strict efficiency for convex sets

Example 2.2.1 shows that StE(C) may differ from E(C'). In some instances we can prove
the equality E(C) = StE(C) for convex sets C.

THEOREM 2.3.1. Let (Y, ||-]]) be a normed space and let K C'Y be a closed convex pointed
cone with a weakly compact base ©. Let C be a closed convexr subset of Y. Then

E(C) C StE(C).
Proof. Suppose that yo € StE(C). There exist g > 0 and a sequence (y,,) C C such that

1
(2.6) Yn = Yo + Ebn—ané‘n, lyn — voll > €0 forn >1,
where b, € By, 6, € ©, and «,, > 0. Since O is bounded we have
10]] < eo/2 for any 0 € O.

Moreover, a,, > 1 for all n sufficiently large since
o _ €o

1
€0 < |lyn — ol < - bl + an 5 < 5 (1+ay)

for all n sufficiently large.
In view of the convexity of C, for 0 < A\, = 1/, < 1 we get

Zn:)\nyn+(1_)\n)yo =90 + An 1/nbn_9n e C.

Without loosing generality we can assume that (6,,) weakly converges to 0 # 6y € © and
consequently, (z,) weakly converges to zp = yo — 6y € C, which contradicts the efficiency
of yg. m

In the infinite-dimensional case, weak compactness of the base @ is a restrictive as-
sumption. We can relax this assumption by imposing more restrictions on C.

We say that a closed convex subset C of a normed space Y is uniformly rotund (cf.
e.g. Holmes [78, p. 162]) if there exists a nondecreasing function ¢ : Ry — Ry, ¢(0) =0,
@(t) > 0 for t > 0 such that for any y;,y2 € C we have

1
3 (y1 +y2) + o(|lyr — y21))By C C.

Then we can prove the following theorem.

THEOREM 2.3.2 (cf. [110]). Let K be a closed convezx pointed cone in a normed space Y.
Let C' be a uniformly rotund subset of Y. Then

E(C) C StE(C).
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Proof. By contradiction, suppose that there exists yo € E(C) \ StE(C). There exist
go > 0 and a sequence (y,) C C such that for n > 1,

Yn = Yo + Gn — En,
where (¢,) CY, qn — 0, (kn) CK, ||gn — kn|| > €. Then

d(% (Yn — Y0), —’C> —0

and

(5 n - b ¥\ C) —o0

since yo € E(C), which contradicts the uniform rotundity of C. m
As a consequence of Theorem 2.3.2, in the spaces L?, p € (1,00), we have
E(clBrr) = StE(cl Bry).
COROLLARY 2.3.1. Let C be a closed convex subset of R™ and let K be a closed convex

pointed cone in R™. Then E(C) = StE(C).

Proof. Follows from Proposition 2.3.1 since in finite-dimensional spaces any closed convex
pointed cone has a compact base. m

It is known that E(C) is closed for closed convex subsets C' of R? and K = R?. This
is no longer true in R3. Hence, by Corollary 2.3.1, we deduce that StE(C) may not be
closed even when C is a closed and convex subset of R3.

EXAMPLE 2.3.1 ([3]). Let Y =R*, K =R3 and let D C R?,
D={(zy,1): (=17 +@-1)*=10<zy <1}
Let C' = conv(D U{(1,0,0)}). The point (1,0,1) is not efficient but (1,0,1) € cl E(C).
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0.2

0.0
0.0

0.1 0.0
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07 0.6 05
0.8 : X

1.0
10 0.9

Fig. 2.2 The set C from Example 2.3.1
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We close this section by showing that for convex sets C, the equality LStE(C) =
StE(C) holds.

PROPOSITION 2.3.1. Let Y = (Y, | - ||) be a normed space with a closed convex pointed
cone K. If C' is a convex subset of Y, then
LStE(C) = StE(C).

Proof. We need to show that LStE(C) C StE(C). Take any yo ¢ StE(C). By definition,
there exist an g9 > 0 and (y,) C C such that

1
Yn — Yo € EBY_’Cy lyn — yol| > €0 forn > 1.
Since C is convex, z, = Yo + A(yn — yo) € C for any 0 < X\ < 1.
For any 0 < A <1,
/\60
[

Moreover, for any 0-neighbourhood V' we get z, — yo = AMyn — yo0) € (C —yo) NV for
A > 0 small enough, which proves that yo € LStE(C). =

)\60

Zn — Yo = (yn—yo)GTBy—K-

2.4. Modulus of strict efficiency

In this section Y = (Y, || - ||) is a normed space with open unit ball By and K is a closed
convex pointed cone in Y.

Let C be a subset of Y. Recall that yo € StE(C) if for each £ > 0 there exists § > 0
such that

(C\ (yo +eBy)) N ((yo +0By) — K) = 0.
For any y € Y put
lyll- = d(y, =K),
where for any y € Y and any subset D of Y, d(y, D) = inf{||y — d|| : d € D}. For any
r >0,
lyll- =r < (y+rBy)Nn(=K)=0.

DEFINITION 2.4.1. Let C be a subset of Y and yg € C. The function v : Ry — Ry
defined as

v(e) = inf{||z —yoll- : 2 € C\ (yo +By)}.

is called the modulus of strict efficiency of yo with respect to C' and K.
A function ¢ : Ry — Ry is admissible if ¢ is nondecreasing, ¢(t) > 0 for ¢ > 0 and

4(0) = 0.
PROPOSITION 2.4.1 (cf. also [155]). Let K be a closed convex pointed cone in a normed

space Y = (Y, || - ||). Let C be a subset of Y and let yo € C be a nonisolated point of C.
Then yo € StE(C) if and only if

v(lly = woll) < ly —woll-  foryeC,
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where v : Ry — Ry is an admissible function of the form
v(e) = inf{||z —yoll- : 2 € C\ (yo +By)}.
Proof. Clearly, v is nondecreasing and v(0) = 0. Take any y € C, y # yo. Hence,

y € C\ (yo + eBy) for some € > 0. By the strict efficiency of yo, there exists § > 0 such
that y — yo & 6By — K. Hence,

0<d<wv(e)<vly—woll) < lly — woll-
On the other hand, take any e > 0 and y € C'\ (yo + €By ). Hence,

0<d:=v(e) <y —woll) < lly —woll-
which proves that yg € StE(C). =

In what follows we shall consider strictly efficient points with some specific forms of v.
To stress the role of v we say that yo € C is v-strictly efficient and we write yo € StEY(C).
Hence, equivalently, yo € StE”(C) if

(=) N ((ly—wol)By —K) =0 foryeC, y#uyo.
In particular, an element yo € C'is strictly efficient of order ¢ > 0, yo € StEI(C), if there
exists a constant 3 > 0 such that v(-) = §(-)%.
In Definition 2.2.2 we defined local strictly efficient points yo € LStE(C). Equiva-
lently, yo is a local v-strictly efficient point of C, yo € LStEY(C), if and only if there
exists a constant t5 > 0 such that

v(lly —yol) < lly —yoll-  fory € CN(yo+tsBy).
Or
y—y0 Zv(ly —wl)By —K forye Cn(yo+tsBy),y # yo-

Similarly, yo € C is a local strictly efficient point of order q, yo € LStEY(C), if
yo € LStEY(C) with v(-) = §(-)7 for some G > 0.

A yg € C is a local proper Henig efficient point, yo € LHE(C'), if there exists a closed
convex cone {2, K\ {0} C int £2, such that yg € LE(C).

Below we show that under some assumptions, local proper Henig efficient points co-
incide with local strictly efficient points of order 1.

Recall that a vector d € Y is tangent to the set C at yg € cl C' if there exist a sequence
(dn) C Y, d, — d, and a sequence (t,) C R, t, | 0, such that yo + t,,d,, € C. The cone
Tc(yo) of all tangent vectors to C' at yq is called the Bouligand tangent cone.

We start with the following characterization of local proper Henig efficient points.

PROPOSITION 2.4.2. Let Y be a normed space and let K be a closed convex pointed cone
in'Y with a compact base ©. Let C be a subset of Y and yo € C. Then yo € LHE(C) if
and only if

Tc(yo) N (=K) = {0}
Proof. Suppose that there exists a nonzero vector d € Te(yo) N (—K). There exist se-
quences (d,) C Y, d, — d, and (t,) C Ry, t, | 0, such that

Yo +tndy, = Yn € C.
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Hence, for any 0-neighbourhood V in Y and any closed convex cone 2 C Y with £\ {0} C
int 2, we get t,d, € §2 for all n sufficiently large and

Yn € (yo — 2)N(CN(yo+V)) for all n sufficiently large.

Conversely, suppose that yo ¢ LHE(C). For the closed convex cone 2" = clcone(© +
%By), n > 1, there exists y, € C such that y,, —yg € %By and y, € yo — 2". Hence,

1
Yn = Yo — A\n <9n + - bn), where 0,, € 0,,, b, € By, A, > 0.

Since y,, — Yo, we must have \,, — 0 and
1 1
n — = _en - - bn
\, (y Yo) n
Without loss of generality we can assume that 6, — 6 € @, § # 0. Consequently,
1 1
— (Yn — =—0,——b, — —0
X\, (y Yo) n -

and —6 € Te(yo) N (—K), which is a contradiction. m
Now we are in a position to prove the following theorem:.

THEOREM 2.4.1. Let K be a closed conver pointed cone in a mormed space Y with a
compact base @. For any subset C C'Y we have

LHE(C) = LStE'(C).

Proof. By Proposition 2.4.2, it is enough to show that yo € LStE'(C) if and only if
Te(yo) N (=K) = {0}
By contradiction, suppose that there exists d € To(yo) N (—K), ||d|| = 1. There exists
a sequence (y,) C C, y, — Yo, such that
Yn — Yo —d
9 = yoll
and hence, for any ¢ > 0,
Yn — Yo .
———~— €d+ cBy for all n sufficiently large.
Hyn - yO“

In other words,
Yn — 40 € [lyn —volld + cllyn — wol By, ~ where d € =K,

i.e. ||lyn — voll— < cllyn — yoll, which means that yo ¢ LStE*(C).
Suppose now that yo ¢ LStE'(C). For each n > 1 there exists y, € C' N (yo + %By),
Yn 7 Yo, such that

1
Yn — Yo = ﬁ”y" —yo||lbp, — dn, where b, € By, d,, € K.

Moreover, for any n > 1 we have d,, = \,0,, with A\,, > 0 and 6,, € @. Clearly, A\, — 0.
The sequence (An/||yn — yol|) is bounded since

Yn — Yo 1 N )\n
n n
9 — ol

Y0 = ol ~ n



2.4. Modulus of strict efficiency 29

and without loosing generality we can assume that (

Qn) —d €K, d# 0. Hence,

An
lyn—yoll
Yn — Yo
[y — yoll
As a corollary from Theorem 2.4.1 we obtain the following characterization of local

— —d € To(yo) N (—K). =

strict efficiency of order 1.

COROLLARY 2.4.1. LetY be a normed space and let IKC be a closed convex pointed cone
in'Y with a compact base ©. Let C be a subset of Y and yo € C. Then yo € LStE*(C)
if and only if
Tc(yo) N (=K) = {0}.
In finite-dimensional spaces, Corollary 2.4.1 takes the following form.

COROLLARY 2.4.2. Let K be a closed convex pointed cone in R™. Let C' be a subset of
R™ and yo € C. Then yo € LStEY(C) if and only if

Te(yo) N (=K) = {0}
In the example below we calculate moduli of strict efficiency for efficient points for
the closed unit ball in R2.
EXAMPLE 2.4.1. Let Y = R? with the Euclidean norm, K = Rﬁ_ and C = clBy. By
Theorem 2.3.1, E(C) = StE(C). For n = (—1,0) € E(C) and any y = (y1,42) € C,
Yy # Yo we have

y—mnl forys >0,
ity =) =l =l = {7 e

Hence, yo = (—1,0) € LStE?(C) since for y € yo + By,

1 1 1
Ly =5 (2420) = 5 (L+1)* +43) = 5 ly = (=1,0)[1%,

and
. 1 1
ity ==K 2 min Iy = vl 5 Iy = wlP1L} = 5 Iy =l

Analogously, (0, —1) € LStE?(C). For other n = (n1,m2) € E(C),n # (—=1,0),n # (0,—1)
by Theorem 2.4.1, n € LStE!(C). Indeed, put f(z) := —v/1 — 2 for 0 < x < 1. For any
z=(z1,2) €C,

1
d(z_nv_K:)Z —”2—77” for 21 2 M, 22 <1
V14 (f'(m))?
and .
d(z —n,—K) > for z; < ny, 22 > .

izamre” M
Thus, d(z — n,—-K) > |z — n|| for n # (-1,0), n # (0,-1) with 8 =
1/3/1 +max{(f'(m))% (f'(n2))?}.




3. LOWER CONTINUITY OF EFFICIENT POINTS UNDER
PERTURBATIONS OF A SET

The questions of lower semicontinuity of efficient points arise in many problems, for
instance, in investigation of the solvability of vector variational inequalities and in duality
theory. The results obtained in this chapter can be directly applied to stability of vector
optimization problems.

In infinite-dimensional spaces, lower semicontinuity of efficient points was investigated
by several authors, e.g., by Attouch and Riahi [5], Penot and Sterna-Karwat [121], the
present author [18], and in finite-dimensional spaces by Gorokhovik and Rachkovski [69],
Tanino, Nakayama and Sawaragi [148].

In finite-dimensional spaces, the key requirement which allows us to prove lower semi-
continuity of efficient points under perturbations is the density of properly efficient points
in the set of efficient points (see e.g. [69]). Under some additional assumptions, e.g. under
convexity of the original set C, the density of properly (strictly) efficient points in the set
of all efficient points is not needed for the lower semicontinuity of efficient points under
perturbations (see the results below and e.g. [109]).

In Section 3.1 we prove our main results (Theorems 3.1.1 and 3.1.2) providing suffi-
cient conditions for lower semicontinuity of efficient points under perturbations. The key
requirement is the density of strictly efficient points defined in Chapter 2 in the set E(C).
In Theorem 3.1.4 we get rid of the above density requirement by assuming that 0 is a
strictly efficient point of K. In Section 3.2 we prove several variants of our main results
for set-valued mappings taking values in normed spaces (Theorems 3.2.3, 3.2.2, 3.2.6).

There exist many ways of dealing with perturbations whenever they appear. We ex-
press perturbations by set-valued mapping C : U = Y defined on a space of perturbations
U. For any set-valued mapping we define its domain and graph as follows:

domC={ueU:C(u)#0}, graphC={(u,y) €U XY :ye€C(u)}.
A set-valued mapping C : U =2 Y is:

e upper Hausdorff semicontinuous at ug if for every 0-neighbourhood W in Y there
exists a neighbourhood Uy of ug such that C(u) C C(ug) + W for u € Uy,

o lower semicontinuous at (ug,yp) € graphC if for any O-neighbourhood W there
exists a neighbourhood Uy of ug such that (yo + W) NC(u) # O for all u € Uy,

o lower uniformly semicontinuous on a subset Xo C C(ug) if for any 0-neighbourhood
W there exists a neighbourhood Uy of ug such that for every xg € Xy we have
(1’0 + W) QC('LL) #* (0 for all u € Uy,

[30]
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o lower semicontinuous at ug if for any 0-neighbourhood W and any yo € C(ugp) there
exists a neighbourhood Uy of ug such that (yo + W) NC(u) # 0 for all u € Uy,

o lower Hausdorff semicontinuous at g if it is uniformly lower continuous on C(uyg),
i.e., for any 0-neighbourhood W there exists a neighbourhood Uy of uy such that
C(u) C C(ug) + W for all u € Uy,

e Hausdorff continuous at ug if it is lower and upper Hausdorff continuous at wug.

Following Nikodem [117] we define K-Hausdorff semicontinuities. Let Cx : U = Y be a
set-valued mapping defined as

We say that C: U 2 Y is:

o [C-upper Hausdorff semicontinuous at ug if Cx is upper Hausdorff semicontinuous
at ug, i.e., for every 0-neighbourhood W there exists a neighbourhood Uy of ug such
that C(u) C C(ug) + W + K for u € U,

o K-lower Hausdorff semicontinuous at ug if Cx is lower Hausdorff semicontinuous at
ug, i.e., for every 0-neighbourhood W there exists a neighbourhood Uy of ug such
that C(ug) C C(u) + W + K for u € Uy,

o K-lower semicontinuous at ug (cf. [120]) if Cx is lower semicontinuous at ug, i.e.,
for every yo € C(ug) and every O-neighbourhood W there exists a neighbourhood
Up of ug such that C(u) N (yo + W — K) # 0 for u € U.

Here we adopt the standard definitions of lower and upper semicontinuities as defined
by Kuratowski [97]. In the context of vector optimization K-semicontinuities of efficient
points (C') under perturbation of C' were investigated in [144], [120], [121].

Let X be a topological space. A function f : X — Y is K-lower continuous at xg if
for each O-neighbourhood W in Y there exists a neighbourhood O of zy in X such that
f(z) € f(xog) + W+ K for all z € O. Analogously, f : X — Y is K-upper continuous at
xq if for each 0-neighbourhood W in Y there exists a neighbourhood O of zy in X such
that f(z) € f(xo) + W — K for all x € O (see also [72], [106]).

3.1. Sufficient conditions for lower semicontinuity
of efficient points

In this section we give sufficient conditions for the lower semicontinuity of the efficient
point set E(C) when C is subjected to perturbations. We study properties of the efficient
point set-valued mapping £ : U = Y defined as

E(u) = Ex(C(u)),

where perturbations of C' are defined by a set-valued mapping C : U = Y, C(u) = C(u),
C(up) = C. For parametric vector optimization problems

ming f(u, x)

(P) subject to x € A(u),
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the performance set-valued mapping P defined in Introduction is the efficient point set-
valued mapping £ with C(u) = f(u, A(u)). Recall that the domination property (DP)
holds for C (cf. [105]) if

CCEC)+K.
In Chapter 5 we will discuss the domination property and its variants in a more detailed
way.

THEOREM 3.1.1. Let'Y be a Hausdorff topological vector space and let K C'Y be a closed
convezx pointed cone in'Y . Let ug € domC and let yo € E(C). If

(i)
(3.1) yo € cl StE(C),
(i1) (DP) holds for all C(u) in a certain neighbourhood Uy of uy,

(iii) C is K-lower semicontinuous and upper Hausdorff semicontinuous at ug € domC,
then & is lower semicontinuous at (ug,yo) € graph €.

Proof. Note first that ug € int dom £. Indeed, since C' # () and C is K-lower semicontin-
uous at ug € domC we must have C(u) # @) for u in some neighbourhood U; of vy and
hence by (DP), E(C(u)) # 0 for u € Uy N Uy.

Let W be a 0-neighbourhood, and let Wy, W5 be 0-neighbourhoods such that W7 +
Wy C W and Wy + Wy € Wi, By (3.1), there exists y € StE(C), y € yo + Wa. By strict
efficiency of y, there exists a 0-neighbourhood O such that ((C\(y+W2))+O0)N(y—K) = 0.
Therefore,

(3:2) (C\(y+W2))+01)N(y+ 01 —K) =10

for any 0-neighbourhood O; such that Oy + O; C O.
Let u € UpNU;. By the K-lower semicontinuity of C, for each u € U; there is z € C(u)
satisfying
z€ Y+ 01 NWy —K)NClu).

Consequently, 2 — K C y + O1 N Wy — K and in view of (3.2),
(z=K)N{(C\ (y+W2)) +01) =0.
By the upper Hausdorff semicontinuity of C,
Clu)CC+01NWy C ((C\ (y+ W)+ 01 N W)U (y+ Wy).

Consequently,
(z=K)nCu) Cy+ Wi Cyo+ W.

By (DP), there exists n € E(C(u)) such that
ne(z—K)nC(u) Cyo+W,
which completes the proof. m

Note that in the proof we use K-lower semicontinuity of C only in the vicinity of yg.
Moreover, (ii) can be replaced by a slightly weaker condition

(i) C(u) C A E(C(u)) + K  for all u € Up.
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THEOREM 3.1.2. Let KC be a closed convex pointed cone in'Y and ug € domC. Assume
that

(3.3) E(C) C cStE(C),
and (DP) holds for all C(u) in a certain neighbourhood Uy of ug. If C is K-lower semicon-

tinuous at ug and upper Hausdorff semicontinuous at ug, then £ is lower semicontinuous
at ug € dom €.

In view of Proposition 2.2.1, by Theorem 3.1.2, we obtain the following result which
generalizes Theorem 3.1 of [16].

THEOREM 3.1.3. Let K be a closed convex pointed cone in'Y and ug € domC. If
(3.4) E(C) CccSPE(C),

C is upper Hausdorff semicontinuous at uy and K-lower semicontinuous at ug and (DP)
holds for all C(u) in some neighbourhood of ug, then £ is lower semicontinuous at ug €

dom¢é€.

Sufficient conditions for lower semicontinuity of efficient points can also be given by
assuming that 0 is a strictly efficient point of I, which, by Corollary 2.2.1, amounts to
saying that IC is normal. We have the following result.

THEOREM 3.1.4. Let K C Y be a closed convexr normal cone in Y. Assume that C is
closed, cl E(C) is compact, and (DP) holds for all C(u) in a certain neighbourhood Uy of
ug € domC. If C is K-lower semicontinuous and upper Hausdorff semicontinuous at ug,
then £ 1s lower semicontinuous at ug € dom E.

Proof. Let yo € E(C). We start by showing that, under our assumptions, for any 0-
neighbourhood W there exists a 0-neighbourhood V' such that

(3.5) (BE@)+K)\ (yo+ W)+ V)N (yo — K) = 0.

To see this, suppose on the contrary that there exists a 0-neighbourhood W such that
for any 0-neighbourhood V' there exists v € V' such that

yO_kv :nv+k11;+Qv = Zy + Qu,
where k,, kL € K, n, € E(C), 2, =0, + kL & yo + W, and the net (g,) tends to 0. Since

cl E(C) is compact, the net (7,) contains a convergent subnet. Without loss of generality
we may assume that the net itself converges to a certain 1 € C'(u). Consequently,

(3.6) yo — 1 =lim(ky + k),

and, since K is closed, yo —n € K, which implies that yo = 7. By (3.6), lim, (k, + k.) = 0,
and, since K is normal, by Proposition 1.3, p. 62 of [122], (k,) and (k) both tend to
zero. By taking any 0-neighbourhood W; such that W7 + W; C W, one can find a 0-
neighbourhood Vg such that for all V. C V, we have n, + ki C n+ Wy + Wy Cyo + W,
which contradicts the assumption that 1, + k! & yo + W. This proves (3.5).

Let Wi be a O-neighbourhood such that W7 + W; C W. By (3.5), there exists a
0-neighbourhood V; such that for any 0-neighbourhood Vs, V5 + Vo C V7, we have

((B(C)+ LK)\ (o + W1)) + Vo) N ((yo + V2) — K) = 0.
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On the other hand, since (DP) holds for C,
C+VanWiC ((E(C)+K)\ (yo+ W)+ VanWi)U (yo +W).
There exists a neighbourhood U; of ug such that
(3.7) C(u) € ((B(C)+K)\ (yo + W) + V2N W1) U (yo + W)
for u € U;. Moreover, there exists a neighbourhood Us of ug such that
(yo + Vo N Wy — K)NC(u) # 0,
for u € Us. Hence, for u € Us there exists y, € C(u) N (yo + Vo N W7 — K) and
Yu— K Cyo+VonW; =K.

Since y,, € Vo NW; C Va, by (3.5),

(5 — ) O [((B(C) + )\ (o + W1)) + Va N WA] = 0.
By (3.7) and by (DP), for u € Uy N Uy N Us there exists 1, € E(C(u)) such that
(3.8) M € (Yu —K) N C(u) C (yo + W).
This completes the proof. m

In view of Theorems 1.2.1 and 2.2.1 we obtain the following variant of Theorem 3.1.2.

THEOREM 3.1.5. Let Y be a locally convex space and let K be a closed convex pointed
cone in Y. Assume that there exists a neighbourhood Uy of ug such that all C(u) are
nonempty and weakly compact for u € Uy. If C is upper Hausdorff semicontinuous and
K-lower semicontinuous at ug € domC, then £ is lower semicontinuous at ug € dom€&.

Proof. 1t is enough to note that by Theorem 1.2.1, (DP) holds for all C(u), u € Uy. m

3.2. Lower semicontinuity of efficient points in normed spaces

Let Y = (Y, | - ||) be a real normed linear space with open unit ball By-.

DEFINITION 3.2.1 (]92], [93]). We say that a cone K C Y allows plastering Ko, where K
is another closed convex pointed cone, if there exists a constant § > 0 such that for each
kek,

k + 6||k|| By C K.

PropPOSITION 3.2.1. Let K be a closed convex pointed cone in Y. The following are
equivalent:

(1) there exists a closed convex pointed cone Ko satisfying condition (2.1),
(i) K allows plastering Ko,
(iii) K has a bounded base.

Proof. (1)< (ii). If K allows plastering Ky, then int Ko # 0, K \ {0} C int Ky. For any
e > 0and any k € KC with ||k|| > € we have k+0deBy C Ky and Ky satisfies condition (2.1).
Suppose now that Ky satisfies condition (2.1). There exists § > 0 such that for k € K,
Ik > 1, we have
k+ 6By C K.
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Hence, for any k € K, k/||k|| + dBy C Ko and consequently, k + b||k||By C Ko, which
means that IC allows plastering /Cy.

(i1)=-(iii). Suppose that K allows plastering Ky. This means that there exists a con-
tinuous linear functional f € K& which is strictly uniformly positive on K, i.e. there exists
0 > 0 such that

f(@) = d|z|| for xz e K.

The set © = {x € K : f(x) = 1} is clearly bounded, closed and convex, 0 ¢ O, and
K = cone(O).
(iii)=-(ii). For the proof of this part see Krasnosel’skil [92]. =

Let I, be a Bishop—Phelps cone, i.e.,
Ka={y €Y : f(y) = alyllllfII},

where f is a continuous linear functional on ¥ and 0 < o < 1. This is a closed convex
pointed cone. If it is nontrivial, then IC,, has a bounded base

O={ze€K: f(z) =1}.
The following holds true.

PRrROPOSITION 3.2.2. Let Y be a normed space, C a nonempty subset of Y and yg €
Ex, (C). If there exists 3 < o such that yo € Ex,(C), then yo € SPEx, (C).

Proof. By Proposition 3.2.1, the cone Kz satisfies condition (2.1). Moreover, for z €
Ka, ||2]] > €, and any y € Y we have

fz+y) = f(2) + fly) = all £l - Izl + f(y)

> aflz+yll - I = all A lyll = 11 - lyl
1
2 11+ vl o - 5
To have a — (o + 1)||y||/(e — |ly]|) > B we choose
Iyl < ;=2

By Proposition 3.2.2, K, allows plastering Kg, 8 < o, b = (o — 8)/(2a+ 1 = ).
For Bishop—Phelps cones, the following well known result [125] gives sufficient condi-
tions for the domination property to hold.

THEOREM 3.2.1. LetY be a Banach space and C' a nonempty closed subset of Y. If there
exists a functional f on'Y such that inf f(C) > —oo, then for any y € C there ewists
yo € C such that yo € y — Ko and yo € E(C).

By Theorem 3.2.1 and Proposition 3.2.2 we obtain the following stability result.

THEOREM 3.2.2. Let Y be a Banach space and C # (). Assume that there exists a neigh-
bourhood Uy of ug such that all the sets C(u) are closed and infycc(y f(y) > —oo. If

(3.9) Ex.(C) C cl( U E,CB(C)),

B<a
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and C is Kq-lower semicontinuous and upper Hausdorff semicontinuous at ug € domC,
then &£ is lower semicontinuous at ug € dom €.

Proof. Follows from Theorem 3.2.1, Proposition 3.2.2, and Theorem 3.1.3. =

Theorem 3.2.2 can be viewed as a variant of the stability result proved in [5].
In normed spaces we have the following variant of Theorem 3.1.3.

THEOREM 3.2.3. Let Y be a normed space and K a closed convex pointed cone in Y. Let
ug € domC and yo € E(C). Suppose that

(3.10) yo € cl SE(C),

and (DP) holds for all C(u) in a certain neighbourhood Uy of wg. If C is K-lower semi-
continuous at (ug,yo) € graphC and upper Hausdorff semicontinuous at ug, then £ is
lower semicontinuous at (ug,yo) € graph&.

Proof. By Theorem 2.2.3, each super efficient point is strictly efficient, and by Theorem
3.1.1, the assertion follows. m

Conditions (3.1) of Theorem 3.1.1, (3.4) of Theorem 3.1.3 and (3.10) of Theorem 3.2.3
are density type requirements. The density property has been investigated on different
levels of generality and for different notions of proper minimality (e.g., [42], [46], [123],
[82]). Here we make use of the result of Borwein and Zhuang [42].

We say that a subset C of Y is K-lower bounded if there is a constant M > 0 such
that
A subset C C Y is K-lower bounded if either it is topologically bounded, i.e., C C M By

for some positive constant M > 0, or there exists an element zy € Y such that y —z5 € K
for all y € C.

THEOREM 3.2.4 (Borwein and Zhuang [42]). Let Y be a Banach space, K CY a closed
convez pointed cone and C' C Y a nonempty subset. Assume that IC has a closed and
bounded base ©. If either of the following conditions is satisfied, then SE(C) is norm-
dense in the nonempty set E(C):

(i) C is weakly compact,
(i1) C is weakly closed and K-lower bounded while © is weakly compact.

For convex sets condition (ii) follows from the condition
(ii)’ C is convex and closed and K-lower bounded while © is weakly compact.
By Theorems 3.2.4 and 3.1.2 we obtain the following result.

THEOREM 3.2.5. LetY be a Banach space and let IC be a closed convez pointed cone in'Y.
Assume that IC has a closed and bounded base ©. Let C be upper Hausdorff semicontinuous
and K-lower semicontinuous at ug € domC and suppose (DP) holds for all C(u) in a
certain neighbourhood of ug. If either of the following conditions is satisfied, then &£ is
lower semicontinuous at ug € domE:

(i) C is weakly compact,
(i1) C 1s weakly closed and K-lower bounded while © is weakly compact.
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In view of Theorems 2.3.1 and 2.3.2, we obtain the following results.

THEOREM 3.2.6. Let K be a closed convex cone with a weakly compact base in a normed
space Y. Let C be upper Hausdorff semicontinuous and K-lower semicontinuous at ug €
domC. If C is closed and convex and (DP) holds for all C(u) in a certain neighbourhood
of ug, then & is lower semicontinuous at ug € domE.

THEOREM 3.2.7. Let K be a closed convex pointed cone in a normed space Y. Let C
be upper Hausdorff semicontinuous and K-lower semicontinuous at ug € domC. If C' is
uniformly rotund and (DP) holds for all C(u) in a certain neighbourhood of ug, then &
18 lower semicontinuous at ug € dom &.

We close this section with sufficient conditions for lower Hausdorff semicontinuity
of the efficient point set-valued mapping in which we exploit the (global) modulus of
minimality.

DEFINITION 3.2.2. The function mod : Ry — R, defined as
mod(e) = inf{w,(e) : n € E(C)}
is called the modulus of strict efficiency of C.
We have
mod(e) = inf{||z — |- : 2 € C\ B(E(C),¢), n € E(C)}.

THEOREM 3.2.8. LetY be a normed space and let IC be a closed convex pointed cone in
Y. Assume that C : U =2 Y is a set-valued mapping defined on a normed space U and
ug € domC. If

(1) mode(e) > 0,
(ii) (DP) holds for all C(u) in some neighbourhood Uy of uy,
(iii) C is Hausdorff continuous at ug € domC,

then & is lower Hausdorff semicontinuous at uyg.

Proof. Fix any € > 0, and y € E(C). By Proposition 2.4.1, y € StE(C), and
((C\ (y+ 1eBy)) + mod(3e) By) 1 (y — K) = 0.

Let r(¢) = min{mod(e), 3¢ }. Hence,

(B11)  (C\(y+ LeBy) + br(2e)By) 0 (y + 3r(2e)By — K) = 0.
By the upper Hausdorff semicontinuity of C, for u € Uy,
(3.12) C(u) C C + 3r(3¢)By

C ((C\ (y + 3eBy)) + 57(36)By) U (y + (57(3¢) + 3¢)By)),
and by the lower Hausdorff semicontinuity of C, for u € U, there exists y; € C(u) such
that
y1 €Y+ %r(%e)By, yp—KCy+ %r(%s)By - K.
By (3.11),
(1 = K)N((C(u) \ (y + %6 -By)) + %T(%&t) -By) = 0.
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Now, by (3.12), for u € Us,
(y1 —K)NC(u) Cy+ (3r(3¢) + 3¢)By.
Since (DP) holds for C(u), for u € U; there exists n; € E(u), u € Uy N Uy, such that
m C (y1 —K)NC(u) Cy+ (37(3¢) + 3) By,
and since r(%e) < %5,
m €y+ 2eBy Cy+eBy.
This means that E(C) C £(u) + eBy for u € U; N Uy, which completes the proof. m



4. LOWER HOLDER CONTINUITY OF EFFICIENT POINTS
UNDER PERTURBATIONS OF A SET

In this chapter we formulate sufficient conditions for lower Hélder continuity and lower
pseudo-Holder continuity of £ at ug € dom € and at (ug, yo) € graph &, respectively. Based
on an auxiliary proposition we also derive criteria for Hélder continuity and pseudo-Hélder
continuity of £.

Recall that C : U = Y is a set-valued mapping, C(ug) = C and C(u) = C(u) and
€ :U Y is the efficient point set-valued mapping, £(ug) = E(C) and E(u) = E(C(u)).

Let U = (U, - ||) and Y = (Y,]| - ||) be normed spaces with open unit balls By; and
By, respectively. We say that a set-valued mapping C: U =2 Y is:

o upper Hélder continuous of order ¢ > 0 at uy € domC with constants L > 0 and
t >0 if
C(u) C C(ug) + Llju — up||By  for u € ug + tBy,
o lower Hélder continuous of order q¢ > 0 at ug € domC with constants L > 0 and
t>0if
C(ug) C C(u) + Llju — up||By  for u € ug + tBy,
e Hilder continuous of order ¢ > 0 at ug € domC if it is upper and lower Holder
continuous of order g at uyg,
e Holder continuous of order ¢ > 0 around uy € domC with constants L > 0 and
t >0 if
C(u") c C(u) + L||u' — u||?By  for v',u € up + tBy,
o upper pseudo-Hélder (or Hélder calm) of order ¢ > 0 at (ug,y0) € graphC with
0-neighbourhood V;; and positive constants L > 0, ¢t > 0 if

Clu)NVy C C(ug) + L||u — up||?By  for u € ug + tBy,
o lower pseudo-Hoélder of order ¢ > 0 at (ug,yo) € graph C with O-neighbourhood Vj
and positive constants L > 0, t > 0 if
C(up) N Vo C C(u) + L|ju — wo||?By  for u € up + tBy,

o pseudo-Holder of order ¢ > 0 at (ug,y0) € graphC with 0-neighbourhood V{ and
positive constants L > 0, ¢ > 0 if it is upper and lower pseudo-Hdélder (ug,yo) €
graph C with O-neighbourhood Vj and positive constants L > 0, ¢t > 0,

o pseudo-Holder of order ¢ > 0 around (up,yo) € graphC with 0-neighbourhood Vj
and positive constants L > 0, t > 0 if

C(uYNVy CC(u) + Ll —ul|?By  for u',u € ug + tBy.

[39]
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We say that any of the above properties holds for C in the sense of Lipschitz if it
holds in the sense of Holder with ¢ = 1. Pseudo-Lipschitzness around (ug, y9) € graphC
was introduced in [11]. Upper Lipschizness was introduced in [128, 130, 131]. Clearly, if
C is Holder continuous around ug € domC, then C is upper and lower Hélder continuous
at ug. If C is pseudo-Hélder continuous around ug € domC, then C is upper and lower
pseudo-Hélder continuous at ug. For ¢ = 1 the upper pseudo-Hdélder continuity reduces
to calmness (see [75], [91]). Criteria for calmness of set-valued mappings can be found,
e.g., in [74]. For instance, if S(y) = [~s(y), s(y)], where s(y) = 1 + /|y|, y € R, then S
is not calm at (0,1) (see [91]), but it is Holder calm at (0,1) with order 1/2.

The following proposition will be often used in what follows.

PROPOSITION 4.0.3. Let U = (U,|| - ||) and Y = (Y, - ||) be normed spaces. For any
set-valued mapping C : U =2 Y the following equivalences hold true:

(i) C is Holder around ug € domC if and only if it is uniformly upper Holder on
some neighbourhood Uy of uy,

(ii) C is Holder around uy € domC if and only if it is uniformly lower Holder on
some neighbourhood Uy of uy,

(iii) C is pseudo-Hélder around (ug,yo) € graphC if and only if it is uniformly upper
pseudo-Holder at (ug,yo) € graphC on a neighbourhood Uy of ug,

(iv) C is pseudo-Hélder around (ug,yo) € graphC if and only if it is uniformly lower
pseudo-Hoélder at (ug,yo) € graphC on some neighbourhood Uy of ug.

Proof. Tt is enough to note that for any set-valued mapping C : U == Y, C is uniformly
upper (resp. lower) Hélder on a subset Uy C U if there exist L. > 0 and t. > 0 such that
for any uw € Uy,

C(u) Cc C(w) + Lc||u — u||By  for u € w+ t.By,

(resp.
C(u) Cc C(u) + Lc||u —u||By for u € u+t.By.)

Let us prove (ii). Assume that there exists ¢ > 0 such that for u € ' + tBy we have
C(u') C C(u) + Le|lu —||By  foru € u' +tBy.
Hence, by taking u,u’ € ug + (t/2)By we get u — u’ € tBy and the conclusion follows.
Moreover, C is uniformly upper (lower) pseudo-Hoélder at (ug,yo) € domC on a subset

Uy C U if there exist a O-neighbourhood V' and constants L. > 0, t. > 0 such that for
any u € Uy,

Clu)yN(yo+V)CCm)+ Lc||u —u||By forueu+t.By,
(resp.

C@n(y+V)cC(u)+ Le|lu—u||By foru€eu+t.By.)
Let us prove (iv). Let yo € C(up). Assume that C is uniformly lower pseudo-Holder
continuous at (ug,yo) € graph C. There exist a 0-neighbourhood V in ¥ and ¢ > 0 such
that for u € u’ + tBy we have

Clu YN (yo+V)CCu)+ LeJJu —u'||By  foru € v +tBy.

Hence, by taking u,u’ € ug+ (t/2)By we get u —u' € tBy and the conclusion follows. m
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4.1. Lower Holder continuity of efficient points

The main result of this section provides sufficient conditions for lower Holder continuity
of the efficient point set-valued mapping £.

THEOREM 4.1.1. Let K be a closed convex pointed cone in a normed space Y and let C
be a subset in' Y. Assume that

(i) there exist 3 >0 and g > 1 such that
ly =¥ll- = Blly =yll*  for ally € E(C), y € C,

(ii) C is Holder continuous of order p > 1 at ug € domC with constants L. > 0 and
0<t. <1,
(iii) (DP) holds for all C(u), u € ug + t.By.

Then £ is lower Holder continuous of order p/q at ug € domE. Precisely,
E(C) C B(C()) + (Le + (2Le/B)") |Ju = uo " By
for u € ug + t.By.
Proof. Take any u € ug + t.By and yo € E(C). By (ii), there exists z € C(u) such that
z =1%o € Le||u — uo||P By .

If z € E(C(u)), the conclusion follows. If z ¢ E(C(u)), by (iii), there exists zg € E(C(u))
such that zg € z— K. Again by (ii), there exists y € C such that zp —y € L.||u —uo||? By .
Therefore,

y—yo=(y—20)+ (20— 2) + (2 = 9o) € 2L¢|[u — uo|"By — K.

On the other hand, by (i),
y—yo & Blly — vol "By — K,
which entails that 8|y — yo||? < 2L.||lu — ug||P and therefore
ly = woll < (2Le/B)"?lu — uo [P/

Finally,

llyo = zoll < lly = woll + lly = 2o/l < (Le + (2Le/B) ) |u = uo| P/,
which completes the proof. m

In view of Proposition 4.0.3, Theorem 4.1.1 leads to the following conditions for Holder
continuity of £ around wuyg.

THEOREM 4.1.2. Let K be a closed convex pointed cone in a normed space Y and let C
be a subset in'Y . Assume that

(i) there exist 0 <t <1, >0 and g > 1 such that
lz =zl > 8llz—2z||? forall z€ E(C(u)), z € C(u), u € up + tBy,

(ii) C is Hélder continuous of order p > 1 around ug € dom C with constants L. > 0
and t,
(iii) (DP) holds for all C(u), u € ug + tBy.
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Then £ is Holder continuous of order p/q around ug € domE. Precisely,

E(C(u) C E(C(u)) + (Le + (2Le/B)")|Ju — '[P/ By
for u,u' € ug + (t/4)By.
Proof. By Theorem 4.1.1, for any v’ € ug + (¢/2) By,

E(C(u) C E(C(u)) + (Le + (2Le /) ) |Ju — '[P/ By
for u € u' + (¢t/2)By. This means that £ is uniformly lower Holder continuous on
B(ug,t/2). Hence, by taking any u,u’ € ug + (t/4)By we get u — u' € (¢/2)By and
the conclusion follows. =

The following corollary is an immediate consequence of Theorem 1.2.1.

COROLLARY 4.1.1. Let K be a closed convexr pointed cone in a normed space Y and let
C(u) be nonempty weakly compact subsets of Y for all u in some neighbourhood of ug. If

(i) there exist 3 >0 and g > 1 such that
ly =7ll- = Blly —yll*  for ally € E(C), y € C,

(ii) C is Hoélder continuous of order p > 1 at ug € domC with constants L. > 0 and
0<t. <1,

then & is lower Holder continuous of order p/q at ug € dom€E.
Now we apply Theorem 4.1.1 to parametric vector optimization problems

ming f(ua ‘T)
(P) subject to z € A(u).

For u = uy we obtain problem (P),
P ming flx)
subject to x € A.

We formulate sufficient conditions for lower Hoélder continuity of the performance set-
valued mapping P: U 2 Y,

at ug € domP.

To this end we need a technical lemma. Let f: X — Y be a mapping from a normed
space X into a normed space Y. We say that f is Lipschitz on a subset D C X with
constant Ly > 0 if

(4.1) If(2") = f(@)Il < Lglle = a'||  for z,a" € D.

In particular, f is Lipschitz around x if f satisfies (4.1) for D = xo+t;Bx, where t; > 0.
We say that f: U x X — Y is Lipschitz around {ug} x D with constants Ly > 0 and

ty > 0if

(4.2) I1f(u',2") = flu, )| < Ly(lu = ull + |2 = )

for all 2/, € D and u',u € ug + tyBy. In particular, f is Lipschitz around (uo,zo) if f

satisfies (4.2) around {ug} x D, where D is a neighbourhood of z.
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Let A: U =2 Y be a set-valued mapping, A(u) = A(u), A(ug) = A. The image of A
under a mapping f : X — Yisdefinedas A : U 2 Y, As(u) = f(A(w)), As(uo) = f(A).
Clearly, dom Ay = dom A.

PROPOSITION 4.1.1. Let X and Y be normed spaces. Let f : X — Y be Lipschitz on X
with constant Ly > 0.

(i) If A is lower Holder continuous at ug € dom A of order p > 0 with constants
Ly >0 and t, > 0, then Ay is lower Hélder continuous at ug € dom A of order
p > 0 with constants L¢Lg > 0 and t, > 0.
(i1) If A is upper Hélder continuous at ug € dom A of order p > 0 with constants
Lo >0 and t, >0, then Ay is upper Holder continuous at ug € dom A of order
p > 0 with constants LyLq > 0 and t, > 0.
(iii) If A is Hélder continuous at ug € dom A of order p > 0 with constants L, > 0
and tg > 0, then Ay is Holder continuous at ug € dom A of order p > 0 with
constants LyLq > 0 and t, > 0.

In view of Proposition 4.1.1 and Theorem 4.1.1 we obtain the following result.

THEOREM 4.1.3. Let X and Y be normed spaces and let K be a closed convex pointed
cone in Y. Assume that

(i) there exists 3 >0 and q > 1 such that
1f (@) = F@)- = Bllf(x) = fF@)*  for allT € S(f, A), x € A,

(i) f is Lipschitz on X with constant Ly > 0, A is Hélder continuous of order p > 1
at ug € dom A with constants L, >0 and 0 <t <1,
(iii) (DP) holds for all f(A(u)), v € ug + tBy.

Then P is lower Hélder continuous of order p/q at ug € dom P. Precisely,
E(f,A) C E(f,A(w)) + (LyLy + (2L La/B)" ) ||u — uo|P/9By  for u € B(uo,t).

4.2. Lower pseudo-Holder continuity of efficient points

In the present section we give sufficient conditions for lower pseudo-Hélder continuity of
& at (ug,yo) € graph €.

THEOREM 4.2.1. Let K be a closed convex pointed cone in a normed space Y and let C
be a subset in'Y. Let yo € E(C). Assume that

(i) there exist 3 > 0 and ¢ > 1 and a 0-neighbourhood V' such that
ly=9l- = Blly=gl? forallge E(C)N (yo+V),y€C,

(ii) C is lower pseudo-Hélder continuous of order p > 1 at (ug,yo) € graphC with 0-
neighbourhood V- and constants L. > 0, 0 < t. < 1 and upper Hélder continuous
of order p > 1 at ug € domC with constants L, >0, 0 < t, <1,

(iii) (DP) holds for all C(u), u € ug + t.By.
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Then &£ is lower pseudo-Hélder continuous of order p/q at (ug,yo) € graph . Precisely,
E(C)N (yo + V) C E(C(w) + (Le + (2Le/B)Y ) [u — uo|[”/* By
for u € ug + t.By.
Proof. Take any u € ug + t.By and § € E(C)N (yo + V). By (ii), there exists z € C(u)
such that
2 —7Y € Le|lu — uo||’ By
If z € E(C(u)), the conclusion follows. Otherwise, by (iii), there exists z € E(C(u)) such
that Z € z — K. Again by (ii), there exists y € C such that Z —y € L.|Ju — ug||? By .
Therefore,
y—9=—2)+(Z—-2)+(2-79) €2L:By — K.

On the other hand, by (i),

y—9¢Blly—79l*'By — K,
which gives that 3|y — 7||? < 2L.|lu — ug||P and therefore

ly =9Il < (2Le/B)"lu — uo|[P/9.
Finally,
15— 21 < lly =l + ly = 2| < (L + (2Le/B)M D) lu = uo| P4,

which completes the proof. m

By condition (i) of Theorem 4.2.1, allg € E(C)N(yo+V) are globally strictly efficient
of order ¢ with the same constant (3.

Since lower pseudo-Hélder continuity is of local character the question arises whether
we can prove lower pseudo-Hélder continuity of £ at (ug,yo) by assuming condition (i)

for local strictly efficient points. To this end we need the following definition.
Let C C Y be a subset of Y.

DEFINITION 4.2.1. The local domination property (LDP) holds for C at yo € YV if there
exists a O0-neighbourhood V such that for any y € C' N (yo + V') there exists n € E(C) N
(yo + V) such that
ney—K.

(DP) is equivalent to (LDP) with V' =Y. Note that whenever (DP) holds for C, any
y € CN(yo+ V) is dominated by some n € E(C) but in general n ¢ E(C) N (yo + V).

By using (LDP) we formulate the following theorem.
THEOREM 4.2.2. Let K be a closed convex pointed cone in a normed space (Y, || -]). Let
C be a subset in'Y and let yo € E(C). Assume that

(i) there exist constants 3 >0, ¢ > 1, ts > 0 and a 0-neighbourhood V' such that
ly =7l- = Blly—7l* forally e E(C)N(yo+V),y € CN(Y+tsBy),

(ii) C is pseudo-Hdlder continuous of order p > 1 at (ug,yo) € graphC with 0-
neighbourhood V' and constants L. > 0, 0 < t. < 1,

(iii) (LDP) holds for all C(u), u € uy + t.By at yo with a neighbourhood V. C
V N 3tBy.
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Then & is lower pseudo-Hélder continuous of order p/q at (ug,yo) € graph &. Precisely,
there exists a 0-neighbourhood V' C V such that
E(C) N (yo + V) C E(C(u) + (Le + (2Le/B) ) |lu — uo||P/* By
for u € ug +t.By.

Proof. Take any u € ug+t.By. Let V be any 0-neighbourhood satisfying V+ L.t.CV.
Let gy € E(C)N (yo + V). By (ii), there exists z € C'(u) such that

z—7 € L¢|Ju — ug||’ By

Clearly, z — yo C V 4 L.t.By C V. By (iii), there exists z € E(C(u)) N (yo + V) such
that Z € z — K. Since Z —yo € V C V, by (ii), there exists y € C such that

zZ—y € L.||ju —u||’ By

andy—yo = (y—2)+(Z—1o) € Lct.By +V. If y =7, the conclusion follows. So, assume
that y # 5. We have

y-7=y-2+(E-2+(-7) c2LBy - K
and y — 7 = (y—yo) + (Yo —Y) € LtcBy +V + VcV+Vc tsBy. Hence, by (i),
y—y ¢ Bly—7l"By - K,
which yields the inequality 8|y — 7||? < 2L||u — ug||? and therefore
ly =9Il < (2Le/B)"lu — uo|[P/9.
Finally,
17 =21 < lly =7+ ly = 2l < (Le + (2Le/B) ) |u — uo|P/7,

which completes the proof. m

4.3. Pseudo-Hdlder continuity of efficient points

In this section we formulate sufficient conditions for pseudo-Hélder continuity of efficient
points under perturbations of sets.

THEOREM 4.3.1. Let IC be a closed convex pointed cone in a normed space Y. Let C be
a nonempty subset in' Y and yo € E(C). Assume that
(i) there exist a 0-neighbourhood V' and constants 0 <t <1, >0,q>1,1t5s>0
such that
lo—zl->Bllz—z7  for 2€ BC@)N(yotV), 2 Cu)(Z+1.By), uCuo+iBy,

(ii) C is Hélder continuous of order p > 1 around ug € domC with constants L. > 0
and t,
(iii) (LDP) holds for all C(u) for u € ug + tBy with a 0-neighbourhood V C %tsBy.

Then & is pseudo-Hélder continuous of order p/q at (uo,yo) € graph . Precisely, there
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ezists a 0-neighbourhood V such that
E(C()) N (yo+ V) C E(C(w) + (Le+ (2Le/B) /) |u/ = ul|”/By

for u,u' € ug +t/4By.

Proof. Tt is enough to note that under the assumptions, for any v’ € ug + t/2By,
E(C(u)) N (yo + V) C E(C(w)) + (Le + (2Le/B8)/9) |u — o/|P/* By

for u € v/ 4+ t/2By. This means that £ is uniformly lower pseudo-Holder at (ug,yo) €
graph €. The conclusion follows by Proposition 4.0.3. =

In particular, Theorem 4.3.1 gives rise to the following conditions for upper pseudo-
Holder continuity of £ at (ug,yo) € graph €.

THEOREM 4.3.2. Let IC be a closed convex pointed cone in a normed space Y. Let C be
a subset in'Y and yo € E(C). Assume that

(i) there exist a 0-neighbourhood V' and constants 0 <t <1, >0,q>1,ts>0
such that

o2l 2 Blz— 20 Jor = e B(Cw)N (o + V), 2 € Cl) A (2 + t.By),
u € ug + tBy,

(ii) C is Hélder continuous of order p > 1 at ug € domC with constants L. > 0
and t,
(iii) (LDP) holds for C with a 0-neighbourhood V C it By.

Then & is upper pseudo-Hélder continuous of order p/q at (ug,yo) € graph&. Precisely,
there exists a 0-neighbourhood V' such that

E(C(u) N (yo + V) C E(C) + (Le + (2Le/B)"")|[u = uo|[P/* By
for u € ug +tBy.



5. CONTAINMENT PROPERTY

Let C be a subset of a Hausdorff topological vector space Y equipped with a closed
convex pointed cone K. The domination property (DP) holds for C' if C C E(C) + K.
Conditions ensuring the domination property can be found in [72, 106, 124, 149]. For a
vector optimization problem
ming f(z)
(P) subject to x € A

the domination property (DP) holds if f(A) C E(f, A) + K. It says that for each x € A
there exists xg € S(f, A) such that f(x) — f(z¢) € K. Let us note that if f : X — R,
the set Eg (f, A) consists of at most a single element and the domination property
holds whenever the solution set is nonempty. This one-dimensional fact was generalized
to finite-dimensional spaces Y = R by Henig [72| who proved that for K-convex and
K-closed sets C' the domination property (DP) is equivalent to E(C) # .

5.1. Containment property

Let Y be a Hausdorff topological vector space and let K be a closed convex pointed cone
in Y. Let C be a subset of Y. For any 0-neighbourhood W in Y, define

C(W) = C\ (B(C) +W).

DEFINITION 5.1.1 ([16]). We say that the containment property (CP) holds for C' if for
every 0-neighbourhood W there exists a 0-neighbourhood O such that

(5.1) CW)+0O C E(C)+K.
Clearly, if C # () and (CP) holds for C, then E(C) # () and
(5.2) C CcEC)+K,

where cl(-) stands for the closure of a set. Indeed, if y € C \ cl E(C) there exists a 0-
neighbourhood W such that y ¢ E(C)+W and hence, by (CP), y € E(C)+K. In Section
5.1.2 we give examples of sets for which (CP) does not hold.

PROPOSITION 5.1.1. Let int K # () and let C be a subset of Y. If (CP) holds for C, then
WE(C) C clE(C).

Proof. On the contrary, suppose that there is y € WE(C) \ cl E(C). Hence, (y —int )N
C =0 and

(%) (y—int )N (E(C)+K) =0.

[47]
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Since y € cl E(C) and Y is Hausdorff, by (CP), there exists a 0-neighbourhood O in Y
such that y + O C E(C) + K and consequently (y — int £) N (E(C) + K) # 0, which

contradicts (x). m

If C is closed, WE(C) is closed (Theorem 1.1 of [105], p. 136), and hence cl E(C) C
WE(C). Hence, by Proposition 5.1.1 we obtain the following corollary.

COROLLARY 5.1.1. Let C be a closed subset of Y. Assume that int K # 0. If (CP) holds
for C, then WE(C) = clE(C). If (CP) holds for C and E(C) = WE(C), then (DP)
holds for C.
PROPOSITION 5.1.2. Let int K # () and let C be a nonempty compact subset of Y. The
following conditions are equivalent:

(i) (CP) holds for C,

(i) 1 E(C) = WE(C).
Proof. (ii)=(i). In view of compactness of C, by Theorem 1 of [40], (DP) holds for C.
Let W be a 0-neighbourhood. Take any y € C(W). Since y & WE(C), by (DP), there
exist k; € int K, k € K, and n € E(C) such that y =+ k, k = k; + k € int K. Hence,
for any y € C(W) there exists a 0-neighbourhood O,, such that y +k + O, C E(C) + K.
The family {Oy},ccw) forms a covering of C'(W). Since C(W) is compact, this covering
contains a finite subcovering Oy, ..., O, and by putting O = (;_, O, (i) follows.

(i)=(ii). Follows from Corollary 5.1.1. m

The following proposition gives a characterization of (CP) whenever int K # ().

PROPOSITION 5.1.3. Let K be a closed convex pointed cone in'Y with int IC # 0, and let
C be a subset of Y. The following statements are equivalent:

(i) (CP) holds for C,

(ii) for each 0-neighbourhood W there ezists a 0-neighbourhood O such that:

(C) for any y € C(W) there is n € E(C) satisfying
(5.3) (y—n)+0CK.
Proof. (i)=(ii). For any 0-neighbourhood O define
Ko={keK:k+0 CK}.

Clearly, int K = (Jpepn Ko. We show that for any O-neighbourhood @ there exists a
0-neighbourhood O such that

(5.4) (E(C)+ K)o € E(C) + Ko,

where (E(C)+K)g ={ye€Y :y+Q C E(C)+K}. Indeed, let c € (E(C) + K)q. This
means that ¢+ Q C E(C)+ K. Since 0 € cl(—K), for any 0-neighbourhood @ there exists
a 0-neighbourhood O such that @ N (—Ko) # 0. Thus there exists ¢ € QN (—Kp) such
that ¢+ ¢ € E(C)+ K, i.e., ¢ € E(C) + Ko By (i), for each 0-neighbourhood W there
exists a 0-neighbourhood @ such that for any y € C(W), y € (E(C)+K)g, and by (5.4),
for some 0-neighbourhood O, y € E(C) + Ko.

(ii)=-(i). Obvious. m
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Although in Definition 5.1.1 we do not assume explicitly that int  # 0, this as-
sumption is essential for the characterization of (CP) given in Proposition 5.1.3. In turn,
Proposition 5.1.3 is exploited in stability theorems of next sections. However, in some
important spaces, the cones of nonnegative elements may have empty interiors. This is
the case, for example, in the space of integrable functions LP(£2), 1 < p < oo, for the
cone Kp» () of nonnegative elements

Krray ={f € LP(£2) : f > 0 almost everywhere in (2},
as well as in the space £P, 1 < p < 0o, of summable sequences s = (s;) for the cone
Koy ={s €t :5 >0}
(see [82]).
5.1.1. Containment property in normed spaces. Let Y = (Y| - ||) be a normed

space with open unit ball By. For any subset C of Y, set d(y,C) = inf{|jy — || :
ceC}, B(Cie)={y €Y :d(y,C) <e}. For £ > 0 put

C(e) :=C\ B(E(C),¢).
Then (CP) holds for C if for any € > 0 there is § > 0 such that

C(e)+ 6By C E(C)+ K.
Let (Y,|| - ||) be a Banach space and let f € Y*, || f|| = 1. For any 0 < a < 1 the cone

Ka={yeY: f(y) = alyl}

is the Bishop—Phelps cone (cf. Section 3.2 and Definition 2.9 of [124]). It is a closed convex
pointed cone with nonempty interior int K, = {y € Y : f(y) > «al|y||}. Moreover, K, has
a bounded base ©® = {k € K, : f(k) = 1}. Bishop—Phelps cones were investigated e.g.
in [123], where it is shown that in normed spaces for any convex cone {2 with a closed

bounded base there exist an equivalent norm and a functional f such that {2 can be
represented as a Bishop Phelps cone.

THEOREM 5.1.1. Let C be a convez subset of Y. The following statements are equivalent:

(i) (CP) holds for C with respect to K,
(i) for each & > 0 there exists 1 > 8 > « such that C(e) C Ex_(C) + Kg.

Proof. (i)=-(ii). Let € > 0. By (CP), there exists § > 0 such that
C(e)+ 6By C Ex_(C)+ K.
Since C' is convex, for any y € C(e) and n € Ex_(C),

19
z=n+——W—n) €C, z—nl =e.
PEC Iz =l

By Proposition 5.1.3, there exists n € Ex_ (C) such that z—n+w C K, for any ||w| < 0.
Consequently, f(z —n+w) > | f|| ||z — n £ w|| and

f(z=n) = |f(w)] = ae|| f[| — ad| f]|.
Hence

f(z=mn) = el f| = ad| fl| +6 sup
wEJ By

[ (w/3)],
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and
f(z=n) = azl| f| = ad|| fIl + 6|l fI| = ell fll (e — ad /e + 6 /¢).
By taking 8 = a+ (6/¢)(1 — a) we obtain (ii).
(ii)=-(i). Let e > 0. By (ii), there exists § > « such that C(¢) C Ex_(C)+Kg. Hence,
for any y € C(e) there exists n € FEx_(C) such that
Fy=mn) = BIfIHly = nll
For any w € Y, we have f(y —n, —w) = f(y —ny) — f(w) = Bl f[[ly — myll — f(w), and

consequently

fly—n—w) = Blflly —n—w+wl| =[] w]

>nfMy—n—wM5_é&g;¢ﬂ]
ly —n —w|
znfmynwﬂgémgimﬂ}
e — [l
By taking
e —a)
ol < 53—
we obtain
|UH@ang£M@iMﬂ]SB
el

and consequently f(y — 5 — w) > af|f| |y —n — wl), which implies (CP). u

5.1.2. Containment property in finite-dimensional spaces. Let Y = (R™,|-||) be
the m-dimensional space. Let I be a closed convex cone in Y. If I is pointed it admits
a compact base (see [123]).

Fig. 5.1. Containment property for the set C' with respect to the nonnegative cone R%
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Let C C R™. Note that E(C) need not be closed even if C' is convex and closed
(cf. [3]). Hence, even for closed convex sets of a finite-dimensional space, (CP) does not
imply (DP). We start by investigating relationships between the two properties.

THEOREM 5.1.2. Let K be a closed conver pointed cone in R™ with int K # 0. Let C be
a closed convex subset of R™ such that cl E(C) is compact. If cl E(C) = WE(C) and
(DP) holds for C, then (CP) holds for C.

Proof. The set cl E(C) + K is closed and convex, since ¢l E(C) is compact and C + K =
clE(C)+ K.

Suppose on the contrary that (CP) does not hold for C. There exist g > 0 and
sequences (z,), (yn) such that z, € C(eg), yn € B(zn,1/n), and y, & cl E(C) + K. By
(DP), z,, = 0y + kp, where 0, € E(C), k, € K, ||kn] > €o-

Let © be a compact base of K. We have My < ||f|| < M for any § € © and some
My, M > 0. Moreover, k, = \,0,, with A\, > 0 and 0,, € O. Since g9 < ||z, — 7|| =
AnllOn]l < AnM, the sequence (f,,), B, = 1/A,, is bounded. We can assume that 0 <
Bn < 1. By convexity of C,

Mn + On = Bnzn + (1 - ﬂn)nn €A

Since cl E(C) is compact, (1,) contains a convergent subsequence with limit point 1 €
cl E(C). We can assume that (n,,) converges to n € C and (6,,) converges to § € ©. The
sequence (ry,), Iy = N + O, tends to r =n+ 6 € C. Clearly, r & cl E(C).

We must have r € WE(C'). Indeed, if (r —int K)NC # (), then r = y+k, where y € C
and k € int K. Hence, k + By C K for some £ > 0 and

zZn =T+ (rn—71)+ A =Dl =y +k+(rn—7)+ (A —1)0n =y + kn,

where k, € k+ (€/2)By C K for all n sufficiently large. Consequently, ¥, = 2, + (yn —
Zn) = Y+ Pny Pn € k+ (€/3)By C K for all n sufficiently large, which contradicts the
choice of y,,. Hence, r € WE(C) \ cl E(C), which is impossible. m

One can easily give examples showing that in the above proposition the equality
clE(C) = WE(C) cannot be dropped.
EXAMPLE 5.1.1. Let K = R% = {(y1,92) : y1,y2 > 0} and
C={(y1,92) : 0<y1 <1,0<y, <1}
Here E(C) ={(0,0)}, WE(C) = {(y1,y2) € C :y1 =0 or y2 = 0}, (DP) holds for C and
(CP) does not.

Note that convexity and closedness of C' cannot be weakened respectively to K-
convexity and /C-closedness. The following theorem provides a further refinement of the
above theorem.

THEOREM 5.1.3 ([34, 72], see also [105]). Let K be a closed convex cone in R™. Let C be
a IC-convex and K-closed subset of R™. The following statements are equivalent:

(i) (DP) holds for C,

(ii) E(C) # 0.

As a consequence of this result we obtain the following corollary.
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COROLLARY 5.1.2. Let K be a closed convex pointed cone in R™ with int K # (. Let
C be a closed conver subset of R™ with cl E(C) compact. The following conditions are
equivalent:

(i) E(C) #0, 1 E(C) = WE(C),

(ii) (CP) holds for C.

Proof. This follows from Theorem 5.1.2 and Corollary 3 of [72]. =

Consider now the case where C' C R™ is polyhedral, i.e., C' is the solution set to a
system of a finite number of linear inequalities,

(5.5) C={yeR": (b,y) <c¢,icl}

In this case we prove an analogue of Theorem 5.1.2 without assuming compactness of
E(C). The recession cone Rec(C') of C' is given by the system of homogeneous inequalities,

Rec(C)={y e R™ : (b;,y) <0,i € I},
and E(C) # 0 if and only if Rec(C) N (—K) = {0} (Th. 3.18 of Ch. 1 of [105]).
To make the presentation self-contained we prove closedness of E(C') and of E(C)+K
whenever C'is a polyhedral set. Usually, the closedness of F(C') is proved as a consequence
of the scalarization of linear multiple objective optimization problems with polyhedral

cones. Here we prove the closedness of F(C') directly for any closed convex cone K. Recall

that the lineality space £(K) of K is defined as ¢(K) = KN (—K).

PROPOSITION 5.1.4. If C is a polyhedral subset of R™ given by (5.5) and L C R™ is a
closed convex cone, then E(C) is closed.

Proof. Suppose on the contrary that E(C) is not closed. There exists a sequence of
efficient points (1) C E(C) which converges to n € C and n € E(C). Hence, there is an
71 € C such that n — 77 € K\ £(K).

Passing to a subsequence if necessary, one can find a subset I; C I such that

(biymn) = ¢y, 1€, and (b,nn) <c¢, i€TI\I.

Hence, (b;,n) = ¢; and (b;,n) > (b;,7) for i € I;. Moreover, (b;,7) > (b;,n) for some
i € I'\ I since otherwise 0 # —k =7 — ) € Rec(C). Thus, there are two index subsets
Iy, I3 C I with I3 7é () such that

<bl,ﬁ—7]>§0, iGIQDfl, and <bl,ﬁ—n> > 0, i€I3.
For each n > 1 put
A = min Cy — <bi777n>
"dery (b, —n)
and consider w,, = 0, + v, (7 — n). We have w,, € C and w,, —n, € (=K) \ £(K). This
contradicts the efficiency of 7,,. m

>0,

PROPOSITION 5.1.5. For any polyhedral set C' C R™ given by (5.5) and any closed convex
pointed cone KC in R™ the set E(C) + K is closed.

Proof. 1f E(C) = (), the set E(C)+ K is empty, hence closed. Assume that E(C) # () and
let © C K be a base of K.
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Consider any convergent sequence (z,) C E(C) + K, lim, z, = z. We have z, =
Zn + Apbp, where z,, € E(C), 0, € © and A\, > 0. In view of the compactness of O,
without loss of generality, we may assume that the sequence (6,,) converges to 6 € ©.

We start by showing that under our assumptions, (\,) contains a bounded subse-
quence. Indeed, if \,, — 400, then

1 1
and lim,, )\Lmn = —0 since 6, — 0 # 0. On the other hand,

<bi,%$n>§/\—1nci, iel,
and, by passing to the limit, (b;,—0) < 0, i.e., =0 € Rec(C) N (—K), which contradicts
the assumption that E(C') # () (see the remark above).
Consequently, (\,) contains a convergent subsequence (A, ), An, — A > 0. Moreover,
AnyOn, — k € K and z,, — = € E(C) since E(C) is closed by Proposition 5.1.4. Finally,
z=z+ke€EC)+K. n

If E(C) = WE(C) and (DP) holds for C, then
(5.6) C CWE(C)+int KU{0}.

THEOREM 5.1.4. Let K be a closed convex pointed cone in R™. Let C C R™ be a polyhe-
dral set of the form (5.5). The following statements are equivalent:

(i) (DP) holds for C and E(C)=WE(C),
(i1) (CP) holds for C.

Proof. The implication (ii)=-(i) is immediate. To prove that (i)=-(ii) suppose on the
contrary that (CP) does not hold for C'. There exist g9 > 0 and a sequence (y,) C C(go)
such that B(y,,1/n) N (C + K)¢ # 0. Consequently, one can choose a sequence (z,) C
I(E(C) + K), where O(-) stands for the boundary, with lim, (y, — z,) = 0. If z,, € C
for at least one n > 1, then z, € WE(C) \ E(C), a contradiction. Hence, z, ¢ C for all
n > 1 and

(5.7) (zn — K) N (E(C) + K) € O(E(C) + K).

By Proposition 5.1.5, E(C) + K is closed, and hence, z, = 1, + A0y, where n,, € E(C),
0, € © and A, > 0. Moreover, since there exists M > 0 such that ||| < M, we have

MM 2> X |00 = 120 — 1l > €0

and A, > e9/M. We can assume that A\, > 1.
Since z,, € C, there is a subset I; of the index set I such that

(biyzn) >¢; foriel; and (b, z,) <¢ foriel\I.

We claim that there exist an infinite subset Ny C N and an index i € I; such that
(biynn) = ¢; for n € Ny. Indeed, if (b;,n,) < ¢; for all n > 1 and ¢ € I, then

1 i — (biy
6n——min70 {bi, )

© 24den (b, 0,) > 0.
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Clearly, A\, > (¢; — (bi,nn))/(bi, 0n) > By, for all i € I; and n > 1. There is a subset
I, C I such that (b;,0,) > 0 for i € I, and (b;,0,,) < 0 for i € I\ I, where I; C Is.
Hence,
(bis ) + Br(bis 0) < (i) + S5l (b, 0,) = ¢, i € I,
(bi, 2n = (An = Bn)0n) = § (bi, 1) + Bn(bis On) < (bis M) + An(bi,0n) < iy i€ I\ I,
(biyin) < ciy i€I\ o
This means that w, = z, — (A, — Bn)0n € CN (2, — K), and by (5.6),
wy, € BE(C)+ it K C int(E(C) + K),
contrary to (5.7). This proves that (b;,n,) = ¢; for some i € I and n € N; C N.
By letting H; = {y € R™ : (b;,y) = ¢;} we get
biazn — G )\n biaen
lom = 2l d(en, By = 222 2alho D)
Vv (b:)? (b:)?

which implies that A,, — 0. This is a contradiction. =

THEOREM 5.1.5. Let K be a closed convex pointed cone in R™. Let C C R™ be a polyhe-
dral set of the form (5.5). The following statements are equivalent:

(i) Rec(C)N (=K) = {0} and E(C) = WE(C),

(ii) (CP) holds for C.
Proof. See [31]. m

5.2. Dual containment property

In this section we define the dual containment property (DCP) which in some instances
provides a dual characterization of (CP).

Let I be a closed convex pointed cone in a locally convex space Y and let I* be its
dual with base ©*. Let C be a subset of Y.

DEFINITION 5.2.1. The dual containment property (DCP) holds for C' with respect to
©* if for every 0-neighbourhood W there exists § > 0 for which the following condition

holds:
(C1) for each y € C(W) there exists n, € E(C) satisfying
0*(y —mny) >¢6 for each 8" € O,

Note that if 0*(y —n,) > & for some positive § > 0 and all §* € O*, then y —n, € K,
where KC? is defined in Section 1.1. In the spaces (P, LP({2), p > 1, the quasi-interior K
of the positive cone K,

Ki ={keKy: f(k)>O0for feK:\{0}}

coincides with the set of weak order units (see [122, p. 184]), i.e., for any yo € le_ and any
y € K4,y # 0, there exists z € K4, z # 0, such that z < yy and z < y. Characterizations
of quasi-interiors of cones of nonnegative elements are given by Peressini (see [122, Ex. 4.4,
p. 186]).
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ExampPLE 5.2.1. 1. Let Y =R™, K C Y be a closed convex pointed cone. For any convex
set C' in Y, core(C) coincides with int C. Hence, for K = {(y1,42) : y1 > 0, y1 = y2} we
get K* = {(fl,fg) : f2 Z _fl} and ' = [Z)

2. For any p € [1,00) consider the sequence space ¢P of sequences s = (s;) with real

terms,
oo

P = {s = (s;): Z|si|p < oo}7

i=1
with the natural ordering cone
0 ={s=(s;) €V :5;>0}.

The ordering cone Kﬁ_ has empty topological interior and empty algebraic interior, core(fﬁ_)
= 0. But (1) ={s = (s;) € {7 : 5; > 0}.

3. For any p € [1,00), consider the space of all Lebesgue p-integrable functions f :
{2 — R with the natural ordering cone

LY ={f e LP: f(x) > 0 almost everywhere on £2}.

The topological interior int(L%) and core(LP) are both empty but (L )? # §. To see
this recall that

(L) = {feL”: { rgdu >0 for augeLi\{O}},
(9]

1/p+1/q¢ =1, and
(Lf_)i ={f € LP: f(x) > 0 almost everywhere on 2}.

We say that the dual containment property (DCP) holds for C' if there exists a base
O* of K* such that (DCP) holds for C' with respect to ©*. If int £ # ) and e € int K,
then ©* = {f € K* : f(e) = 1} (see Theorem 1.1.1 of Section 1.1) is a base of K*. Let
Yo € K°. Recall that the standard base of IC* related to yo has the form

(5.8) 6" (yo) = {07 € K : 6 (yo) = 1}.
We have the following proposition.

PROPOSITION 5.2.1. Let Y be a Hausdorff topological vector space with a closed convex
cone K C Y. Assume that (DCP) holds for C with respect to a standard base O*(yo)
of K*, yo € K'. Then
(i) (DCP) holds for C' with respect to any standard base O*(y) of K*, y € K, where
?JOGQ?+K; Q>07
(i) if ©@*(yo) is bounded, (DCP) holds for C' with respect to any standard base O*(7),
7 €K, of K*.
Proof. (i) For each 6* € ©*(y) there is 5 € ©*(yo) such that
(5.9) 0% (k) = 0" (yo)05(k) for all k € K.

Since yg = 0-T+ko, ko € K, we get 0*(yo) = 0+6*(ko) > 0. Hence, 6*(k) = 0*(yo)05(k) >
065 (k) and the conclusion follows.
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(ii) By (5.9), 1 = 6§(7)0*(yo). Since O*(yp) is bounded, there exists mg > 0 such
that 65(y) < mg and 6*(yo) = 1/65(y) > 1/myg for some mg > 0 and, as previously, the
conclusion follows. m

In locally convex spaces, if (DCP) holds for C, then
(5.10) C CcEC)+K.

Indeed, if y € C \ cl E(C) there exists e > 0 such that y ¢ B(E(C),e). By (DCP),
there exist n € E(C) and § > 0 such that 6*(y — ) > § for each 6* € ©* and hence
y—neK cKk.

When Y is an order complete vector lattice of efficient type (see [140, Ch. V, p. 213]),
any point k € KC? is proved to be a quasi-interior point of K, where k € K is said to be
a quasi-interior point of IC if the order interval [0, k] is a total subset of ¥ in the sense
that its linear hull is dense in Y (see Schaefer [140, Ch. V. 8, Th. 7.7], and Peressini [122,
Ch. 4.4]). Moreover, each k € K is a weak order unit (see [122]), i.e., for each y € K there
exists z € K with z <g y and z < k.

EXAMPLE 5.2.2. Let Y = (R% | - ||) and let K = {(y1,92) : y1 > 0}. Let C = {(yl,yg) :

[yl + ly2| < 1} We have K* = {(f1,/f2) : /i 2 0, fo = 0} and E(C) = {(-1,0)}.
Consider ©* = {(f1, f2) € K* : f1 = 1}. Take € > 0. For any (y1,y2) € C(e) we have

y1 > —1+ 4/¢/2 and hence, for any 6* € ©*, we have 0*(y1+1,y2) =y1+1 > \/e/2 =0
and (DCP) holds.

EXAMPLE 5.2.3. Let Y, KC, and ©* be as in the previous example. Let C' = {(y1,y2) :

max{[y1], [y} < 1} \{(y1,92) - 11 = 1, =1 < ya < 1}. We have E(C) = {(-1,-1)},
(DCP) does not hold for ©* since for y, = (—1+1/n,1) € C we have §*(y,, —(—1,—1)) =

1/n— 0.

EXAMPLE 5.2.4. Let Y = ¢; and K = /. We have (¢7)" = {y = (y;) € ¢1 : y1 > 0}.
Take yo = (1/i%) € (¢1)". Let ©* C ({{)* be a base of (¢])* of the form

0" ={0e K*:0"(yo) =1}.
Let y1 = 2yo + (0,1,0,...), y2 = 3yo. Taking C = conv(yo, y1, y2), where conv stands for

convex hull, we have E(C) = {yo} and for any y € C, y = Aoyo + A1y1 + Aaye, \; > 0,
1=0,1,2, \g + A1 + A2 = 1. For any ¢ > 0,

Cle)={yecC:|ly—yol >e}={yeC: \n?/64+ A\ +2X7%/6 > &}.
For any 6* = (0;) € ©* and y € C(e) we have
0% (y — o) = 0" (Myo +A1(0,1,0,...) +2Xa0) = Ay + 02X + 22 > Ay + Ao > 3¢/72 =4,
which proves that (DCP) holds for C.

Let yo € K' and let ©*(yo) be the standard base of the dual cone K*. If (DCP) holds
for the base ©*(y), condition (C1) can be rewritten as

(C2) for each y € C(W) there exists n, € E(C) satisfying
y —1n, — dyo € K.
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PROPOSITION 5.2.2. Let Y be a locally convex space and let K C Y be a closed convex
cone with int K # (). For any subset C of Y, (CP) is equivalent to (DCP).

Proof. Let W be a 0-neighbourhood. By (CP), there exists a 0-neighbourhood O such
that for each y € C(W),

y—ny+0 CK for some n, € E(C).

Take any g9 € K = int K. Since O can be assumed to be radial, —dyy € O for some § > 0
and y — 1, — 0yo € K, which means that (DCP) holds for C.

To see the converse implication, note that by Theorem 1.1.1, £* has a weak* compact,
hence bounded base ©*. By Proposition 5.2.1, (DCP) holds for ©*. u

PROPOSITION 5.2.3. Let Y be a locally convex space and let K be a closed convex cone
inY. Let K* have a bounded base ©*. If (DCP) holds for C, then int K # (.

Proof. Let W be a 0-neighbourhood. By (DCP), there exists § > 0 such that for each
y € C(W) there is n, € E(C) such that 0*(y —n,) > ¢ for 6* € ©*. Since ©* is bounded
there exists a 0-neighbourhood @ such that for any 8* € ©* we have —§/2 < 6*(q) < 6/2
for ¢ € Q. Consequently, 6*(y — n, + q) > ¢/2 for any 6* € O, which proves that
y—ny+QeEK. u

5.3. Containment rate

Numerous concepts in functional analysis can be characterized by constants and functions
of a single real variable. For instance, by using the modulus of convexity dx(¢) due to
Clarkson [45],

ox(e) =mf{l—|3(z+y)ll: 2.y € Bx, |z -yl > ¢}

one can characterize strict convexity and uniform rotundity of the unit ball Bx in the
space X. In the present section we define the containment rate (cf. [19, 20]) which is
a nondecreasing function of a single variable. The containment rate is used to charac-
terize the containment property. The properties of the containment rate are used in the
next chapters to investigate Lipschitz and/or Holder behaviour of efficient points under
perturbations. Similar approaches have been applied in many other domains (see e.g.
[12, 51, 80, 81, 119, 113)).

Let Y = (Y,|| - ||) be a normed space and let K be a closed convex pointed cone
in Y. Recall that for any subset C' of Y and any € > 0, the ball of radius ¢ around C
is B(Cye) ={y €Y :d(y,C) < e}, and C(e) = C\ B(E(C),¢), and the containment
property (CP) holds for C' if for every £ > 0 there exists 6 > 0 such that

(5.11) C(e) + 6By C E(C) + K.

Recall that ¢ : Ry — R, is an admissible function, i.e. ¢ is nondecreasing, ¢(t) > 0
for ¢ > 0 and ¢(0) = 0.

The following immediate observation is the starting point for our considerations in
this section: if there exists an admissible function ¢ such that for each y € C there exists
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n € E(C) satisfying
(5.12) y—n+¢(dly, E(C)))By C K,
then (CP) holds for C. Indeed, if we take any ¢ > 0 and y € C(e), then by taking
0:=¢(e) < ¢(d(y, E(C))) we immediately get (5.11).

Below we give a construction of an admissible function ¢ which provides a character-
ization of (CP).

We start with the definition of the containment function for a closed convex pointed
cone £ inY.

DEFINITION 5.3.1 ([19]). The function cont : K — R defined as
cont(k) =sup{r >0:k+rBy C K}
is called the primal cone containment function.

The supremum in the above definition is attained since K is closed. The function cont
is positively homogeneous and superlinear and

dom cont = {k € K : cont(k) > —o0} = K.

Clearly, cont(k) < ||k|| for any k € K and cont = 0 whenever int L = . For k € K we
have cont(k) = —Ax(k), where Ax(y) = d(y,K) —d(y,Y \ K), y € Y. The function Ax
was introduced in [76, 77| to derive optimality conditions in nonsmooth optimization. It
was also used in [155] as a scalarizing function for vector optimization problems.

Let C be a subset of Y and let y € Y. Recall that the set

C,=Cr(y-K)
is the section of C' with respect to K and y (cf. Section 2.2).
DEFINITION 5.3.2 ([19, 20]). The function g : Y — R defined as
(5.13) 1(y) = sup{cont(y —n) : n € E(C)y}
is the containment rate of y with respect to C' and .

For any y € Y put

lyll+ = d(y, Y \ K).

For any r > 0,
lyll+ >r < y+rBy CK.

Hence, for k € K we have cont(k) = ||k||+ and

pu(y) = supflly —nlly 1y € E(C),}-
We have
domp={yeY :puly) > -} =EC)+K.
Clearly, u(y) = 0 for y € E(C). If int K # 0 and y € E(C) + K we have p(y) > 0 and
moreover, u(y) = 0 if and only if y € WE(C) (see Proposition 5.3.6 below).

The value (y) gives the maximal radius r such that k+rBy C K for allk € y—E(C),.
In this sense p(y) measures the deviation from efficiency for y.
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DEFINITION 5.3.3 ([19, 20]). The function § : Ry — R U {400, —co} defined as
() = inf{u(y) : y € Ce)}
is the containment rate of C' with respect to K.
The domain of ¢ is
domé ={e e Ry :0(e) < oo} ={e € Ry : C(e) # 0}.

Below we prove that ¢ is an admissible function if and only if (CP) holds for C. We
start with conditions ensuring that the supremum in the definition of the function y is
attained.

PROPOSITION 5.3.1. Let Y = (Y,| - ||) be a normed space. Let K be a closed convex
pointed cone in'Y and let C' be a subset of Y. Let y € E(C) + K. If E(C), is weakly
compact, then there ezists n, € E(C') such that y —n, + pu(y)By C K.

Proof. Let y € E(C)+ K. For each n > 1, we have y = n,, + k,,, where 7, € E(C), and
kn + cont(k,)By C K satisfy

cont(k,) < u(y) and cont(k,) > u(y) —1/n.

Since E(C), is weakly compact, there exists a weakly convergent subsequence (1,,,) with
limit point iy € E(C),. Consequently, k,,, = y — 1,,, converges weakly to some ko € K
and y = ny + ko.

To complete the proof we show that ko + u(y)By C K. On the contrary, if kg + p1(y)b
¢ K for some b € By, then by separation arguments

flko+p(y)d) <0< f(k) fork ek,

for some f € K*. Since k,,, — ko and (cont(ky,, ) — u(y))b — 0, we would have

f(kn,, +cont(kn,, )b) = f(ko + n(y)b) + f(kn,, — ko) + f((cont(kn,, ) — u(y))b) <0,
which contradicts the fact that &, + cont(k,, )By CK. =

The assertion of Proposition 5.3.1 can also be obtained as a consequence of the Weier-
strass theorem on existence of infimum over compact sets. To this end it is enough to
note that ||y — ||+ is a weakly lower semicontinuous function.

Following [42] we say that R,(C) is the generalized recession cone of a set C C Y if

R,(C) ={v €Y : there exist A\, > 0 with A,, — 0 and ¢,, € C such that
Ancp, tends weakly to v}.

A set C CY is K-lower bounded if there is a constant M > 0 such that
C c MBy + K.
If C CY is K-lower bounded, then R, (C) C K (see [42]).
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PROPOSITION 5.3.2. Under any of the conditions:

(i) E(C) is weakly compact,
(ii) E(C) is K-lower bounded and weakly closed and K has a weakly compact base,

the sections E(C), are weakly compact for y € E(C) + K.

Proof. Let y € E(C) + K. For each n > 1 there is a representation y = 7, + k, with
M € E(C), ky, + cont(k,)By C K satisfying

cont(k,) < u(y) and cont(k,) > u(y) —1/n.

We start by proving that under any of the conditions (i) or (ii) the sequences (7, ) and
(k) contain convergent subsequences with limit points 7y and ko, respectively, and

(5.14) y =10 + ho.

If (i) holds, then (n,) contains a weakly convergent subsequence. We can assume that
(nn) weakly converges to some 1y € E(C). Since K is closed and convex, the sequence
(kn), kn =y — 1, converges weakly to kg € K and y = ng + ko.

Suppose now that (ii) holds and O is a weakly compact base of K. Then k, = A\,0,,
where A, > 0 and (6,,) C © contains a weakly convergent subsequence. We can assume
that (6,,) converges to 6§y € O. If A\,, — oo, then

N ("771 _y) E) _00

and —6y € R,(E(C)) N (—=K), which contradicts the KC-lower boundedness of E(C).
Hence, (A,,) is bounded and (k,,) weakly converges to some kg = \pfy € K. Consequently,
Nn =y — ky, converges weakly to some ng € E(C) and we get (5.14). m

Now we are in a position to prove the main propositions of this section.

PROPOSITION 5.3.3. Let Y be a normed space and let K be a closed convex pointed cone
with int KC #£ (). Let C be a nonempty subset of Y. The following are equivalent:

(i) (CP) holds for C,

(ii) 0 : domdé — Ry is an admissible function.

Proof. (i)=-(ii). Clearly, ¢ is nondecreasing and 6(0) = 0. By Proposition 5.1.3, for any
¢ € dom ¢ there exists v > 0 such that for y € C(g) # () one can find n € E(C) satisfying
(y —n) +vBy C K. Consequently, u(y) > v and d(¢) > v > 0.

(ii)=(i). Let e€domd, e>0. Hence, 6(¢)=~>0 and p(y) >~ for any y € C(e), which
means there exists n€ F(C) such that (y—n)+(y/2)By CK. Thus, (CP) holds for C. =
PROPOSITION 5.3.4. Let K be a closed convexr pointed cone in a mormed space Y with
int C # 0. Let C be a nonempty subset of Y and assume (CP) holds for C. If all the
sections E(C), fory € E(C)+ K are weakly compact then for any ¢ > 0,

(i) C(e)+6(e)By C E(C)+ K,
(ii) for all e > 0 and for each y € C(e) there exists n € E(C) such that y —n +
(S(E)BY c K.

Proof. (ii) follows directly from Proposition 5.3.1. (i) follows from (ii). m



5.3. Containment rate 61

In the example below we calculate u(y) for y from the closed unit ball.

EXAMPLE 5.3.1. Let Y =R? K =R3 and C = cl By. Clearly, (DP) and (CP) hold for
C and

E(C)={(m,m) € C:n2=—/1—nf, -1 <m < 0}.
For any representation of (0,0) in the form (0,0) = 7 + k,,, where n € E(C), k,, € K, we
have 1 = (n1,12) € E(C)0,0) = E(C) and

V1—ni for —1 < < —1/V/2,

—m for —1/v2 <m <0,
and £((0,0)) = sup;_; <, <o} cont(k,) = 1/4/2. For y € C with y, > 0 we have

E(C)(ys o) = {(m,m2) 12 = —/1 =17, =1 <1 < min{0, 41 }}

cont(ky,) = min{—n1,y/1 —ni} = {

and

= max cont(k,) = max min{y; —n1,y2 + /1 — .

M) = en 2 0 ) = 1 B gy M 02 m}

For y € C with y3 < 0 we have

B(C) gy = {mome) i = —\ /1= 12, —/1— 33 <y < min{0,51})
and

wly) = max cont(ky,)
{—+/1— y§<n1<m1n{0 y1}}
max min{y; —n,y2 + /1 —n3}.

{ V1-y3<n: <min{0,y1}}

We close this section with characterizations of (DP) and weak efficiency in terms od
6 and pu, respectively.

PROPOSITION 5.3.5. LetY be a normed space and let IC be a closed convex pointed cone.
Let C be a nonempty subset of Y with E(C) nonempty and closed. The following state-
ments are equivalent:

(i) (DP) holds for C,
(ii) 6(g) > 0 for all ¢ € dom .

Proof. (ii)=(i). Suppose that (DP) does not hold for C'. There exists y € C which cannot
be represented in the form y = 5+ k, where n € F(C) and k € K. Hence, u(y) = —oc.
By closedness of E(C), y € C(g) for some € > 0. Consequently, d(¢) = —oo, which
contradicts (ii).

(i)=(ii). By (DP), for each y € C we have y = n+ k where n € E(C) and k € K.
Hence, p(y) > 0 and (ii) follows. m
PROPOSITION 5.3.6. Let Y be a normed space and let KC be a closed convex cone in'Y

with int K # (). Let C' be a nonempty subset of Y and assume (DP) holds for C. The
following are equivalent:

(i) u(y) =0,
(ii) y € WE(C).
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Proof. (i)=-(ii). By (i), any representation of y in the form y = n + k, where n € E(C)
and k € K, satisfies k € 9K, which means that C' N (y —int K) =0, i.e., y € WE(C).

(il)=(1). If u(y) > a > 0, then y = n+ k with n € E(C) k + aBy C K which implies
that y ¢ WE(C). m

5.4. Dual containment rate

Let K be a closed convex pointed cone in a normed space (Y, || - ||) with the dual £* C Y™*.
Let ©* be a base of *.

DEFINITION 5.4.1 ([20]). The function dcontg« : K — Ry defined as
dconte- (k) = inf{6* (k) : 6" € ©*}
is called the @*-dual cone containment function.

If it is clear from the context which base ©* is used, we omit the index @* in the no-
tation. The terminology “primal cone containment function” and “dual cone containment
function” is motivated by the fact that in some instances these functions yield a pair of
dual linear programming problems.

Let C be a subset of Y and y € Y. Recall that E(C), = E(C) N (y — K).
DEFINITION 5.4.2 ([20]). The function v : Y — R U {to0} defined as

v(y) = sup{dconte-(y —n) : n € E(C)y}
is the dual containment rate of y with respect to C' and K.

It follows directly from the definition that {y € Y : v(y) > —o0} = E(C) + K and
v(y) >0 for y € B(C) + K.

DEFINITION 5.4.3 ([20]). The function d : Ry — R defined as
d(e) = nf{v(y) : y € C(e)}

is the dual containment rate of C with respect to K.
PROPOSITION 5.4.1. Let (Y, - ||) be a normed space with a closed convex pointed cone
K and let K* C Y* be its dual cone with base ©*. Let C be a subset of Y with E(C),

weakly compact for y € E(C)+ K. For any y € E(C)+ K there exists n, € E(C) such
that

v(y) = dconte- (y — n,) = inf{6*(y —n,) : 0 € O}
Proof. Let y € E(C)+ K. Clearly, dconte-(y —n) < v(y) for any n € E(C), and for each
0 > 0 there exists 77, € E(C), such that for any §* € O%,
0" (y — n,) > deonte~(y —n,) > v(y) — o

The net (77,) contains a weakly convergent subnet; we can assume that (7,) itself converges
weakly to 7, € E(C),. Since K is weakly closed, the net (k,), k, = y — 1,, tends to some
ky € K and y =1, + k,. Thus, dconte«(y — 1) > v(y), which completes the proof. m
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PROPOSITION 5.4.2. Let (Y, || -||) be a normed space and let C be a subset of Y. Let K
be a closed convex pointed cone in'Y and let IC* be its dual with a base ©*. The following
conditions are equivalent:

(i) (DCP) holds for C,
(i) d(e) > 0 for each € > 0.

Proof. (i)=(ii). Take any ¢ > 0 and y € C(e). By (DCP), there exist § > 0 and
ny € E(C) such that dconte-(y — n,) > 0. Hence,
v(y) = sup{dconte-(y —n) : n € E(C)y} >,
and d(e) = inf{r(y) :y € C(e)} > § > 0.
(i1)=-(1). Let d(¢) = o > 0. For each y € C(e),
v(y) = sup{dconte-(y —n) : n € E(C)y} > a,
and consequently, dconte« (y — ny) > /2 for some 7, € E(C),, i.e., (DCP) holds. =

PROPOSITION 5.4.3. Let K be a closed convex pointed cone in a topological vector space
Y with K # 0. If O and ©} are any two bases of the form (5.8) with y1,y2 € K' such
that yo € ry1 + IC, where r > 0, then there exists v > 0 with

dconte; (k) > v dconte; (k).
Proof. Let
O1 ={01 € K" : 01(y1) =1}, 65 ={0; € K : 05(y2) = 1},
where y1,1, € Ki. For any k € K and 6} € O, there exists 6, € O} such that 07 (k) =

91‘(92)9;(/6) with 65 (y2) > 0. Hence,

01(k) > 0 () inf By(k) > 03(a) inf_O5(h).
0,cO3 05€03

and

(5.15) 9flggf 01 (k) = 9flggf 01 (y2) 9;125; 05 (k),

Since yo € ry1 + K, by putting 7 := infg:co: 07 (y2) > 0 we get the assertion. m
EXAMPLE 5.4.1. Let Y = (R™, || - [[), K = R7". According to Definition 5.3.1,
(LP) cont(k) = max r
subject to
]{ii—’I“ZO, Z'=1,...,m.
In view of Definition 5.4.1,

(DP) dcont(k) = min c1ky + -+ + cmkm

subject to
cg+-Fem=1
CiZO, i=1,...,m.

By linear programming duality, dcont(k) > cont(k) for k € K.
Let Y be a Banach space and K # (). Consider a standard base of *,
O* ={0* ¢ K*: 0*(yo) = 1}, where yo € K'.
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For any k € K, the problem of finding
(5.16) deont(k) = inf{6" (k) : 0" (yo) = 1, 8" € K*}
can be viewed as an infinite-dimensional linear programming problem. By applying the

duality theory (see e.g. Barbu and Precupanu [15, Ch. 3, par. 3, p. 233]) the dual takes
the form

(5.17) sup{r e R: k —ryo € K},

(compare also [15, Ch. 3, Th. 3.4, p. 235]). Thus, (5.17) and (5.16) form a pair of dual
problems and by Proposition 2.1, Ch. 3, p. 197 of [15], we have

0<sup{reR:k—ryp € K} <inf{0*(k): 0" (yo) =1, 0" € K"} =T.

The function
q(k) =sup{r > 0: 7'k € yo + K}

has also been considered in other context (see Namioka [115]). It is superlinear and its

hypograph
ypogtap hgraph(q) = {(k,r) : q(k) = r}

isaconein Y x R.
Below we give an example of an problem with 7 = 0.
EXAMPLE 5.4.2. Let p> 1, Y =/, K = éﬁ_. As observed before,
(Zﬁ)i ={(s;) € 7 : s; > 0 for each i > 1}.

By taking yo = (1/i?) and ko = (1/i®) we see that for any r > 0 there exists an index i
such that 1/i% —r/i? < 0 for i > ip and hence 7 = 0.

5.5. Containment rate for convex sets

In this section we investigate the containment rate §(-) for convex sets. Define
CEQ(e)={yeC:d(y,E(C)) =¢}.

LEMMA 5.5.1. Let K be closed convex cone in'Y with int KC # (). Let C' be a convex subset
of Y with weakly compact sections E(C'), fory e E(C)+ K. Then
(5.18) 0(e) =inf{pu(y) : y € CEQ(e)}.
Proof. Clearly §(e) < inf{u(y) : y € CEQ(e)}. If §(¢) < inf{u(y) : y € CEQ(e)} = e,
then u(y) < eforacertainy € C, d(y, E(C)) > e. In view of Proposition 5.3.1, 5 = n,+k,,
ky + u(y)By C K.

Since [ny,y] C C, one can find z € CEQ(¢), z = An, + (1 — X)y. Hence, z =1, + (1 —
Nky = ny+k.. k. = (1=N)ky, k. +(1-A)u(y) By C Kand u(y) > (1-Nu(@) = p(z) > e,
contrary to the choice of . m

LEMMA 5.5.2. Let K be closed convex cone in'Y with int K # (. Let C' be a convex subset
of Y with weakly compact sections E(C), fory € E(C)+ K. Then for any 0 < 8 <1,

#(y(B)) = Bu(y),
where y = ny + ky, ny € E(C), ky, + pn(y)By € K and y(8) =ny + 3 - ky.
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nd k
(y )

Proof. Let y € E(C). By Proposition 5.3.1, y = n, + k,, where n, € E(C) a

w(y)By C K. Since Bk, + Bu(y)By C K for any § > 0, we have p(y(3)) > 0

w(y(B)) > Bu(y), then y(B) = n + k, where k + u(y(8))By C K. Then for 0 <
k=y—n=y—-y@B) +yB)—n=0-Pk,+kek

and cont(k) > (1 — 3) 4+ u(y(B)) > pu(y), contrary to the definition of u(y). =

w(y
<1

Applying Lemmas 5.5.1 and 5.5.2 we prove the concavity of the containment rate p
and the quasi-convexity of §.

PROPOSITION 5.5.1. Let K be closed convex cone in'Y with int K # 0. Let C be a convex
subset of Y and let (DP) hold for C. If E(C), are weakly compact for y € E(C) + K,

the containment rate u is concave on E(C) + K.
Proof. Let y1,y2 € E(C)+ K and 0 < A < 1. By Proposition 5.3.1, there exist 1,72 €
E(C) such that

yr = +pu(y1)By €K and gy —nmy + p(y2) By C K.

Since K is convex,

y(A) = n(A) + QAulyr) + (1 = Mp(y2)) By C K,
where y(A) = Ay1 + (1= X)yz, n(A) = An1+ (1= A)ne. Since C'is convex and (DP) holds for
C, E(C)+ K is convex and n(A) = n+ k, where n € E(C) and k € K, and consequently,
y(A) =0+ Qulyr) + (1 = Np(y2)) By C K,
which proves the concavity of u. m

COROLLARY 5.5.1. Under the assumptions of Proposition 5.5.1 the function p is locally
Lipschitz and weakly upper semicontinuous on E(C) + int K.

Proof. See Theorem 10 of [66]. m
Now we are in a position to prove the quasi-convexity of §.

THEOREM 5.5.1. Let K be a closed convex pointed cone in a normed space (Y, || - ||) with
int C # 0. Let C be a convex subset of Y and let (DP) hold for C. If E(C), are weakly
compact fory € E(C) + K, then ¢ is quasiconver on dom §.
Proof. By Lemma 5.5.1, §(¢) = inf{u(y) : y € CEQ(e)}. Let €1,e2 € domd, 3 < £1. For
any a > 0 there is y, € CEQ(e1) such that u(y,) < d(e1) + @. In view of Proposition
5.3.1, there is n, € E(C) with yo — 70 + 1(ya) € K.

Let 0 < A < 1. Since the distance function d(-, E(C)) is continuous, there exists
0 < X < 1 such that dAye + (1 — MN1a, E(C)) = Xey + (1 — Neg. By Lemma 5.5.2,
w(AYa + (L = XN)ne) = Au(yo). Hence,

S\ + (1 - \)ea) = inf{u(y) : y € CEQ(Aer + (1 — X))}
< (o + (1= N)a) = Mi(ya) < d(e1) + o

Since @ > 0 is arbitrary and ¢ is nondecreasing we get d(Aer + (1 — N)eg) <
max{d(e1),d(e2)}. =



6. UPPER HAUSDORFF SEMICONTINUITY OF EFFICIENT POINTS

In this chapter we derive criteria for upper Hausdorff semicontinuity of the efficient point
set Ex(C) of a given subset C' of a space Y with respect to a closed convex pointed cone
K CY when C is subjected to perturbations.

Perturbations u belong to a topological space U and are handled by a set-valued
mapping C : U = Y taking values in a topological Hausdorff vector space Y, C(u) = C(u),
C(up) = C. Recall that by £ : U =3 Y, we denote the efficient point set-valued mapping
defined as

E(u) = E(C(u)).

Upper Hausdorff semicontinuity of P enters into stability results of the solution mapping
S. This aspect will be discussed in detail in Chapter 9.

In Section 6.1 we derive sufficient conditions for upper Hausdorff semicontinuity of
efficient points (Theorems 6.1.1, 6.1.3) for a cone K with nonempty interior with the help
of the containment property introduced in Section 5.1. In Section 6.2, by applying the
results from Section 6.1 to the mapping C(u) = f(u, A(u)) we derive sufficient condi-
tions for upper Hausdorff continuity of the performance mapping P to parametric vector
optimization problems of the form (P,).

6.1. Sufficient conditions for upper Hausdorff semicontinuity of
efficient points

Let U be a topological space (space of parameters) and let Y be a Hausdorff topological
vector space. Let IC be a closed convex pointed cone in Y.
Let C: U = Y be a set-valued mapping, C(u) = C(u), C(ug) = C.
According to the notation introduced in Section 5.1, for any 0-neighbourhood W,
C(W)=(C\EC))+W.

We start with the main result of this section.

THEOREM 6.1.1 ([21]). Let U be a topological space and let Y be a Hausdorff topological
vector space. Let K be a closed convex pointed cone in'Y with int K # (). Assume that
(i) C is upper Hausdorff semicontinuous at ug € domC and K-lower semicontinuous
at ug, uniformly on E(C),
(ii) (CP) holds for C.

Then & is upper Hausdorff semicontinuous at ug € domC.

[66]
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Proof. Let Wy, W be 0-neighbourhoods such that W; + W; C W. By Proposition 5.1.3,
there exists a 0-neighbourhood O such that for any y € C(W;) there exists n € E(C)
satisfying

(6.1) (y—m+OCKk.

Let O1 be a 0-neighbourhood such that O;+0; C O. By (i), there exists a neighbourhood
Uy of ug such that

(6.2) Clu)cC+WiN01, N+01—-K)NnCu)#0 for u € Uy.
Take any u € Uy. If £(u) = 0, the conclusion follows. Hence, suppose that £(u) # @ and
z € £(u). By (6.2) there is y € C such that z —y € W1 N Os.

If y ¢ E(C) 4+ W1, then y € C(W7) and by (6.1) there exists n € E(C) such that

y—n+0 CK.
Moreover, by (6.2), there exists z € C'(u) such that z —n € O; — K and so z = Z since
otherwise
Z—z=0FZ-y)+y-mN+0-2eWinOi1+y—-n+0+KC(y—n)+0CKk,

which is impossible since z € E(C(u)).

If y € E(C) 4+ W1, then zZ € E(C) + W, which finishes the proof. m

Below we give an example showing that the uniform /C-lower semicontinuity assump-
tion is essential in Theorem 6.1.1.

EXAMPLE 6.1.1. Let U = cl{1/n :n = 1,...} with natural topology and ug = 0 and let
C : U = R? be defined as follows:

oo

C(0) = C:={(y1,92) 1 y2 = —y1 } U [ J (k, =k + 1),
k=1
C(1/n) = C(1/n) :=={(y1,42) : 4o = —y1 + 1/n, =n < yn < n}u |k, —k + 1),
k=1
Now E(C) ={(y1,y2) : y2 = —y1} and
E(C(1/n) ={(y1,92) i o =~ +1/n, -n<ypn<n}u |J (k,—k+1).
k=n-+1

THEOREM 6.1.2. Let U be a topological space and let Y be a Hausdor{f topological vector
space. Let K be a closed convexr pointed cone in Y with int K # 0. If C is Hausdorff
continuous at ug € domC and (CP) holds for C, then £ is upper Hausdorff semicontinuous
at ug € domC.

By Proposition 5.1.2, we obtain the following corollary.

COROLLARY 6.1.1. Let U be a topological space and let Y be a Hausdorff topological vector
space. Let K be a closed convex pointed cone in'Y with int K # (). Let C be a compact
subset of Y and cl E(C) = WE(C). If C is Hausdorff continuous at ug € domC, then &
is upper Hausdorff semicontinuous at ug € domé&.
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In the proof of Theorem 6.1.1 we make use of Proposition 5.1.3 which holds true when
int KC # 0. There are numerous examples of cones satisfying this condition. For instance,
the cone R of nonnegative elements in R™ as well the cones of nonnegative elements in
the spaces below have nonempty interiors.

EXAMPLE 6.1.2. 1. In the space £>° of sequences s = (s;) with real terms,
02 ={s=(s;) :sup|s;| < oo}
€N

the cone
152 ={s=(s;) €L :5, >0}

has nonempty interior.
2. In the space L*({2) of essentially bounded functions f : 2 C R" — R with
ess sup,cq | f(x)| < oo the natural ordering cone

L) ={f € L>™(2) : f(z) > 0 almost everywhere on 2}
has nonempty interior.

A subset F of Y* is equicontinuous ([78, 12.D]) if for any £ > 0 there exists a 0-
neighbourhood W such that |f(W)| < € for any f € F. Equivalently, there exists a
balanced 0-neighbourhood W such that f(W) < 1 for each f € F. According to the
definition of the polar set A° of a given set A, F is equicontinuous if and only if ' C W*°
for a balanced 0-neighbourhood W. By the Banach Alaoglu theorem, W° is relatively
weak® compact. When Y is a normed linear space, F' C Y* is equicontinuous if and only
if it is bounded in the norm topology of Y*.

Now we formulate a variant of Theorem 6.1.1 with the help of the dual containment
property (DCP), which can be applied to cones K which are not pointed.

THEOREM 6.1.3. Let U be a topological space and let Y be a Hausdorff locally convex
topological vector space. Let I C Y be a closed convex cone in' Y and let K* have an
equicontinuous base ©*. If

(i) C is upper Hausdorff semicontinuous at ug € domC and K-lower semicontinuous
at ug, uniformly on E(C),
(i1) (DCP) holds for C,

then the set-valued mapping & is upper Hausdorff semicontinuous at ug € dom€&.
Proof. Follows from Theorem 6.1.1 and Proposition 5.2.2. m

The following example shows that Theorem 6.1.3 cannot be applied to some cones in
finite-dimensional spaces.

ExAMPLE 6.1.3. Let K be a convex closed cone in R™ with empty interior. Then IC* has
no base since the set KT = {y € K* : y -2 = 0 for each € K} is a nontrivial linear
subspace contained in K*.

The assumption of equicontinuity of the base ©* is restrictive. The cone of nonnegative
elements in LP((2), 1 < p < oo, does not have an equicontinuous base since it does not
have a bounded base (see [46]).
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6.2. Upper Hausdorff semicontinuity of the performance
mapping for parametric vector optimization problems

In this section we apply Theorems 6.1.1 and 6.1.2 to prove the upper Hausdorff semi-
continuity of the performance set-valued mapping P for parametric vector optimization
problems
ming f(x
(Pu) ) (@)
subject to z € A(u).
We start with two technical propositions.

PROPOSITION 6.2.1. Let U be a topological space and let X andY be Hausdorff topological
vector spaces. If a set-valued mapping A : U =Y is upper Hausdorff semicontinuous at
up € domA, and f : X — Y is uniformly continuous on A(ug), then Ay : U 2'Y,
Ar(u) = f(A(w)), is upper Hausdorff semicontinuous at ug € dom Ay.

Proof. Let W be a 0-neighbourhood in Y. There exists a 0-neighbourhood @ in X such
that f(z + Q) C f(z) + W for € A(up). Thus, f(A(ug) + Q) C f(A(ug) + W. By the
upper Hausdorff semicontinuity of A, there exists a neighbourhood Uy of ug such that
A(u) C A(ug) + Q for u € Uy. Consequently, f(A(u)) C f(A(ug)) + W for u e Uy. m

PROPOSITION 6.2.2. Let U be a topological space and let X andY be Hausdorff topological
vector spaces. If f : X — 'Y is a (uniformly) upper semicontinuous function, and a set-
valued mapping A: U 'Y is lower (Hausdorff) semicontinuous at ug, then Ay is lower
(Hausdorff) semicontinuous at ug € dom Ay.

Proof. Let W be a 0-neighbourhood in Y. There exists a 0-neighbourhood @ in X such
that f(x+ Q) C f(x)+ W for € A(ug). In view of the lower semicontinuity of A, there
exists a neighbourhood Uy of ug such that (z + Q) N A(u) # 0 for u € Uy. By putting
Ty € (x+ Q)N A(u) for u € Uy, we get f(xy,) € C(u) N (f(x) + W) for u € Uy. m

By Theorem 6.1.2, we get the following stability result for problems (P,) with (P,,)
being (P). Let A: U = Y be a set-valued mapping, A(u) = A(u), A(ug) = A.

THEOREM 6.2.1. Let U be a topological space and let Y be a Hausdor{f topological vector
space. Let KC be a closed convex pointed cone in'Y with int)C # (. Let f : X — Y be a
uniformly continuous function on A and A be Hausdorff continuous at ug € dom A. If
(CP) holds for f(A), then P is upper Hausdorff semicontinuous at ug € domP.

Sufficient conditions for upper Hausdorff semicontinuity of the set-valued mapping
A: U= X,
Alw)={z e X : G(z)N (u— 2) # 0},

where G : X =2 Y and {2 C Y is a closed convex and pointed cone in U, were investigated
by many authors. In particular, when G is a single-valued mapping,

Aluw) ={z € X : G(z) X u}.

Continuity properties of this mapping depend heavily on the properties of the cone {2. In
the case where int {2 # (), C-lower semicontinuity was investigated by Ferro [59, 60]. For
cones with possibly empty interiors, continuity of .4 was investigated by Muselli [114].
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6.2.1. Multiobjective optimization problems. In this section we consider multiob-
jective optimization problems

ming f()
(MOP) subject to x € A,

where f = (f1,...,fm) : R" - R™, A C R" and K C R™ is a closed convex pointed

cone.

THEOREM 6.2.2. Assume that f;, i =1,...,m, are linear functions and
A={zeR": (bj,z) <c¢,iel}.

IfE(f,A) # 0 and E(f,A) = WE(f, A), then (CP) holds for f(A).

Proof. 1t is enough to observe that f(A) is a polyhedral set and apply Theorem 5.1.4
and Corollary 3 of [72]. m

THEOREM 6.2.3. Suppose that f;, i = 1,...,m, are linear, A C R" is convex, and
E(f,A) #0. If E(f,A) is compact, then (CP) holds for f(A).

Proof. Note that f(A) is convex and apply Corollary 5.1.2. m

Consider parametric multiobjective problems

ming f(x)
(MOF.) subject to z € A(u),

where f : R®™ — R™ is continuous. Let U be a topological space and A : U = R" be a
set-valued mapping, A(u) = A(u), A(ug) = A.

We apply Theorem 6.1.1 to the above parametric problem. We start with the following
stability results.

THEOREM 6.2.4. Let f = (f1,..., fm) : R®* — R™ be a linear mapping and let A: U =
R™ be a set-valued mapping given by

Auw) ={z e R" : gj(u,z) <0, j € J},
where, for each j € J, the function g;(ug,-) : R™ — R is convez. If

o A; U= R™, As(u) = f(u, A(u)), is Hausdorff continuous at up € dom A,
o E(f(A)) is nonempty and compact, E(f(A)) = WE(f(A)),

then & is upper Hausdorff semicontinuous at ug € domE.

Proof. Since f is linear with respect to x and g;(uo, -), j € J, are convex, the set A;(ug) =
f(A) is convex. By Theorems 5.1.2 and 6.2.3, (CP) holds for f(A). By Theorem 6.1.1,
the conclusion follows. =

To close this section let us note that set-valued mappings A : U = R" given by
(6.3) A(u) = {z e R" : gj(u,z) <0, j e J},

where, for each j € J, g; : U x R" — R is a linear function with respect to z, g;(u,z) =
(bj(u),z) —cj(u), g€ J, bj : U—=R", ¢; : U— R, were investigated e.g. in [14].
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THEOREM 6.2.5. Let f = (f1,..., fm) : U X R™ — R™ be a linear function of v € R"
and let A: U = R" be a feasible set mapping given by

Auw) ={z e R" : g;(u,z) <0, j € J},
where, for each j € J, g; : U x R™ — R is a linear function with respect to x, g;(u,x) =
(bj(u),z) —cj(u), j€J, b; :U—-R", ¢;: U—R.If
e A:U =2 R" is upper and lower Hausdorff semicontinuous at ug € dom A,
e E(f(A)) is nonempty, and E(f(A)) = WE(f(4)),
then & is upper Hausdorff semicontinuous at ug € dom&.

Proof. Follows from Theorem 6.1.2 and Propositions 6.2.1, 6.2.2. m



7. UPPER HOLDER CONTINUITY OF EFFICIENT POINTS
WITH RESPECT TO PERTURBATIONS OF A SET

In this chapter we derive criteria for upper Hélder continuity and calmness of the efficient
point sets E(C(u)). These properties appear in many contexts of optimization theory and
sensitivity analysis (see e.g. [100, 101, 56, 64, 91]). Criteria for calmness of some set-valued
mappings are given in |74, 75]. Upper Holder continuity of order ¢ and Holder calmness
of the set-valued mapping £ at ug provide an estimate of the distance of any efficient
point of the perturbed problem (P,) to the efficient point set of (P,,) via the distance of
the perturbations, ||u — up||?. Hence, the upper Holder property is of interest whenever
it is impossible or too difficult to deal with the original problem and one wants to know
the magnitude of the error made by accepting a solution of a perturbed problem as a
solution of the original problem. For instance, numerical representation of problems leads
to perturbations due to finite precision. As a particular case we obtain conditions for
the upper Lipschitz continuity of efficient points. The upper Lipschitz property (upper
Hélder property with ¢ = 1) has already appeared in investigation of stability of various
problems (see e.g. [128, 130, 131]).

In Sections 4.1 and 4.2 we investigate upper Holder continuity and Holder calmness of
E(C(u)) at a given point ug. The main requirement we impose is that for small arguments
the containment rate ¢ is a sufficiently fast growing function.

In Section 4.3 we apply the results obtained in Sections 4.1 and 4.2 to investigate Lip-
schitzness and Holder properties of the performance set-valued mapping P for parametric
vector optimization problems.

7.1. Upper Hoélder continuity of efficient points

Let U = (U, | -||) and Y = (Y, ]| - ||) be normed spaces and let C : U = Y be a set-valued
mapping, C(u) = C(u), C(up) = C.

In this section we prove sufficient conditions for upper Hélder continuity of the efficient
point set-valued mapping £ : U 3 Y,

E(u) = E(C(u)).

At the beginning of this chapter we indicated some situations where upper Hoélder con-
tinuity has a natural significance. One more example comes from parametric vector op-
timization. Theorem 6.4 of [16] and Theorem 6.2 of [17] reveal the importance of upper

[72]
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type continuities of the performance set-valued mapping P in ensuring the continuity of
solutions to parametric vector optimization problems.

We start with sufficient conditions for upper Hoélder continuity of the efficient point
set-valued mapping &.

THEOREM 7.1.1. LetY = (Y,|-||) and U = (U,||-||) be normed spaces. Let K be a closed
convex pointed cone in'Y with int K # (. If

(i) C : U = Y 1is Holder continuous of order p > 1 at ug € domC with constants
L.>0and0<t. <1,
(ii) the sections E(C'), are weakly compact for y € E(C)+ K,
(iii) the containment rate § of the set C satisfies the following condition: for any
€ € domd,

5(e) > ag?  for some a >0 and q > 1,

E(C(u)) C E(C) + (L + (2L /)" ) |Ju — uo|”/ By
for all u € ug + t.By.
Proof. Take any § € E(C(u)), u € ug + t.By. By (i), there exists z € C such that
17— 2l < Lellu — uo|”.
If z € E(C), the conclusion follows. If
d(z, B(C)) > eg = (2Le/c) "/ ||u — g [/1,
then by (ii) and Proposition 5.3.4, there is n € F(C) such that
z—n+d(eg)By CK
and by (iif), §(c0) > 2Le|lu — uol|”. By (i), there is y € C(u) such that
ly =l < Leflu — uoll”.
and so y = ¥ since otherwise
Y-y=U—-2)+E-—n+0-y) € (z-n+2Lfu—-ul|’By CK,
which contradicts the fact that 7 € E(C(u)). If
d(z, E(C)) < (2Le/a)/||u — uo||P/1,
then for u € ug + t.By we get
d(y, E(C)) < [[§ = 2|l + d(z, E(C)) < (Le + (2Le/a) /) u — uo P/,
which completes the proof. m

By applying Proposition 4.0.3 we obtain the following conditions for Hlder continuity
of £.

THEOREM 7.1.2. LetY = (Y,|-||) and U = (U,||-||) be normed spaces. Let K be a closed
convex pointed cone in'Y with int IC # 0. If
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(i) C: U =Y is Holder continuous of order p > 1 around ug € domC with constants
L.>0and0<t<1,
(ii) for all u € ug + tBy the sections E(C(u)), are weakly compact for z € E(C(u))
+K,
(iii) all the containment rates § of the sets C(u) with u € ug + tBy satisfy the
condition: for any ¢ € dom 4,
0(e) > ae?  for some a >0 and q > 1,
then & is Hélder continuous of order p/q around ug € domE. Precisely,
E(C(u)) C E(C(W)) + (Le + (2Le/a)M ) |lu — u'||P/* By
for all u,u’ € ug + (t/4)By.
Proof. 1t is enough to note that under the above assumptions, for every v’ € ug+(t/2) By,
E(C(u)) C B(C(u)) + (Le + (2Le/) ) Ju — u'||P/* By
for u € u' + (¢/2) By. This means that & is uniformly upper Hoélder continuous at v’ €
ug + (t/2) By and by Proposition 4.0.3, the conclusion follows. m

COROLLARY 7.1.1. Let Y = (Y, | - |) and U = (U, || - ||) be normed spaces. Let KC be a
closed convex pointed cone in' Y with int K # (. Let C be Hélder continuous of order
p > 1 at ug € domC with constants L. > 0 and t. > 0. Suppose that one of the following
conditions hold:

(i) E(C) is weakly compact,
(ii) E(C) is K-lower bounded and weakly closed and K has a weakly compact base.

If the containment rate § of C satisfies the condition: for any € > 0,
0(e) > ae?  for some g>1 and o > 0,
then the efficient point set-valued mapping & is upper Héolder continuous of order p/q at
ug € dom & with constant L. + (2L./a)'/9 and order p/q.
Proof. This follows from Theorem 7.1.1 and Proposition 5.3.2. =

COROLLARY 7.1.2. LetY = (Y, |- ||), U = (U, || - ||) be normed spaces. Let K be a closed
convex pointed cone in a normed space Y with int K # (). Let C be Lipschitz continuous
at ug € domC with constants L. > 0 and t. > 0. Suppose that one of the following
conditions holds:

(i) E(C) is weakly compact,
(i1) E(C) is K-lower bounded and weakly closed and K has a weakly compact base.

If the containment rate § of C satisfies the condition: for any e > 0,
0(e) > ae  for some a >0,

the efficient point set-valued mapping £ is upper Lipschitz continuous at ug € dom & with
constant L. + 2L./a.

Proof. This follows from Theorem 7.1.1 and Proposition 5.3.2. =
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7.2. Holder calmness of efficient points

The results of the previous section are of global character in the sense that they refer to
the behaviour of the whole set E(C) as a function of the parameter w.

In the present section we formulate sufficient conditions for upper pseudo-Holder
continuity (Holder calmness) of the set-valued mapping €.

Let yo € E(C) and ¢, > 0.

DEFINITION 7.2.1. The function d;, : Ry — Ry,
ot,(e) = inf{u(y) : y € CN (yo + t,By) \ E(C) + By}
is called the local containment rate of C' at yo € E(C) with respect to K.
Note that the only difference between the local containment rate d; and the global

containment rate § is that now the infimum is taken over all y € C'N (yo + ¢, By ). Hence,
for any € € domé;,,

0, (g) > 6(e).

THEOREM 7.2.1. Let Y = (Y,||-||) and U = (U, ||-||) be normed spaces. Let K be a closed
convez pointed cone in'Y with int K # 0 and yo € E(C). If

(i) C is upper pseudo-Holder continuous of order p > 1 with 0-neighbourhood V' at
(ug,yo) € graphC and constants L. > 0, t. > 0 and C is lower Hélder continuous
of order p > 1 at ug € domC with constants L. > 0, t.,
(ii) there exists a constantt, > 0 such that the sections E(C), fory € CN(yo+t,By)
are weakly compact,
(iii) for any € > 0 the local containment rate 0y, satisfies the condition

0, (e) > ag?  for some a >0, ¢ > 1,

then the set-valued mapping & is upper pseudo-Hélder (Hélder calm) of order p/q at
(up,yo) € graph &. Precisely, there exists t, > 0 such that

E(C(u) N (yo + tvBy) C E(C) + (Le + (2Le/ )Y ) ||u — ug ||/ 9By
for all u € ug + t.By.

Proof. The proof follows the lines of the proof of Theorem 7.1.1. Let t, > 0 be any
number satisfying (L.t. + t,)By C V C t,.By. Take any 5 € E(C(u)) N (yo + t,By),
u € ug + teBy. By (i), there is z € C such that |7 — z|| < Lc|lu — ugp||P. Moreover,
z—yo=(z—y)+ (y—vo) € (Lctc+t,)By Ct,By.If z€ E(C), the conclusion follows.
If

d(z,E(C)) > (2Le/a)4lu — uo P4,
there is n € E(C) such that z —n + p(z)By C K. By (iii),
pl(z) 2 0¢, ((2Le /) ||u — uo|[P/?) = 2Le||u — uo|”.
By (i), there is y € C(u) such that ||n — y|| < Lc|lu — uo||? and so y =7 since otherwise

y-y=@U—2)+(Ez-—n+0n-y) K,
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which is impossible since 7 € E(C(u)). If
d(z, E(C)) < (2Le/c)*u = uo|P/1,
then
d(y, B(C)) < |[§ — 2| + d(=, E(C)) < (L + (2Le /) ) |Ju — uo |71,

which completes the proof. m

7.3. Upper Hoélder continuity of efficient points to vector
optimization problems

In the present section we apply Theorems 7.1.1 and 7.2.1 to parametric vector optimiza-
tion problems (P,),
(P) ming f(u, )
subject to z € A(u).

For u = uy we obtain problem (P),
ming f(z)
(P) subject to x € A.

We formulate sufficient conditions for upper Hélder and upper pseudo-Hélder continuity
of the performance set-valued mapping P: U 3 Y,

at ug € domP.
Based on Proposition 4.1.1 and Theorem 7.1.1 we obtain the following result.

THEOREM 7.3.1. LetY = (Y,|-||) and U = (U,||-||) be normed spaces. Let K be a closed
conver pointed cone in'Y with int K # 0. Let f : X — Y safisfy the Lipschitz condition
(4.1) on X with constant Ly > 0. If

(i) A:U = X is Holder continuous of order p > 1 at up € dom A with constants
L,>0and0<t, <1,
(ii) for y € f(A) the sections E(f, A), are weakly compact,
(iii) for € € dom§ the containment rate § of the set f(A) satisfies the condition

d(e) > ag?  for certain a > 0 and ¢ > 1,
then P is upper Hélder continuous of order p/q at ug € domP. Precisely,
E(f, A(u) C B(f, A) + (Ly Lo + (215 Lo/a) /) |[u — ugl[?/4By
for all uw € up + t,By.

Below we define ¢-strong domination property ¢-(SDP) which allows us to prove
sufficient conditions for the upper Hélder continuity of P without the assumption that
all sections E(f, A)y, y € f(A) are weakly compact.

Let C C Y be a subset of a normed space Y.
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DEFINITION 7.3.1. We say that the ¢-strong domination property ¢-(SDP) holds for C
if for each y € C there exists n € E(C) such that

yzen+o(ly—nl)By, ie, y—n+o(ly—nl)By CK,
where ¢ : Ry — R, is an admissible function. In particular, we say that the strong

domination property of order ¢ > 0 holds for C if ¢-(SCP) holds for C with ¢(-) = a(-)?,
where o > 0.

Accordingly, we say that ¢-strong domination property ¢-(SDP) holds for (P) if the
¢-strong domination property ¢-(SDP) holds for f(A), i.e. for each © € A there exists
T € S(f, A) such that

f@) =x @)+ o(If(2) = f(@I)By, ie, flz)-f(@) +o(f(z)- f@))By CK,
where ¢ : Ry — R, is an admissible function. In particular, we say that the strong
domination property of order ¢ > 0 holds for (P) if ¢-(SCP) holds for (P) with ¢(-) =
a(+)9, where a > 0.

In other words,
1f (@) = f(@)l+ = allf(z) = F@),
where || - ||+ = d(-, K°), and D¢ denote the complement of D. If f(A) is uniformly rotund
with an admissible function ¢ (see Section 2.3) and the sections f(A),, y € f(A), are
compact, then ¢-(SDP) holds for (P).

PROPOSITION 7.3.1. Let X = (X,||-||) and Y = (Y, - ||) be normed spaces. Let K be
a closed convex pointed cone in'Y with int K # 0. If ¢-(SDP) holds for (P), then (CP)
holds for f(A) and () > ¢(g) for any e € dom .

Proof. Take 0 < ¢ € domd and = € A such that d(f(z), E(f,A)) > e. Since ¢ is
nondecreasing, by ¢-(SDP), there exists T € S(f, A) such that

f@) = f(@) + ¢(e)By C f(x) — f(@) + o(||f () — f(@)])By CK,
which, by Proposition 5.1.3, amounts to saying that (CP) holds for f(A). Moreover,

1f(x) = f@l+ = (I f(z) — F@)]))-

Conseauently, u(f(2)) > 8(I/(@) — F@)) > d(e) and 5(c) > o(c). m
THEOREM 7.3.2. Let X = (X,||- ), Y =, |- ), U= (U,| -||) be normed spaces. Let
K be a closed convex pointed cone in'Y with int K # (0. Let f : X — Y be a Lipschitz
mapping with constant Ly > 0. If

(i) A is Hélder continuous at ug € dom A of order p > 1 with constants L, > 0 and

te >0,
(i1) (SDP) of order ¢ > 1 with constant o > 0 holds for (P),

then the performance set-valued mapping P is upper Holder continuous at ug € dom P of
order p/q with constants Ly L, + (2L La/a)P/ and t, > 0.

Proof. Take any §j = f(Z) € E(f, A(u)), u € up + t,By. By (i), there exists z € A such
that
17 = 2|| < Lallu = uoll,
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and by the Lipschitzness of f, ||f(Z) — f(2)|] < LyLg|lu — wo|”. If z € S(f, A), the
conclusion follows. Otherwise, by (ii), there exists Z € S(f, A) such that

f(2) = f(Z) +allf(z) = fFR)"By C K.
If off(z) — f(2)||? > 2LsL,||lu — uol||?, then by (i), there exists x € A(u) such that
| f(z) — f(Z)|| < LyLgllu — upl|? and so f(x) = f(F) since otherwise

f@) = f(x) = (f(@) = F(2)) + (f(2) = [(2) + (f(2) = f(2))
€ (f(2) = f(2) + 2Lallu = uo|[" By C K,
contradicting the fact that y € E(f, A(u)). If
all f(z) = FEI* < 2Ly Lellu — uoll”,
then for u € ug + t, By we get
A, E(f, A) <7 - f@I <7 f)I +11f(z) = fR)
< (LLa + (2L¢La/0)" ) u — uo [/

which completes the proof. m



8. SHARP AND FIRM SOLUTIONS
TO VECTOR OPTIMIZATION PROBLEMS

In this chapter we introduce ¢-sharp and weak ¢-sharp solutions (local and global) to
problem (P). When applied to scalar optimization problems, the concept of weak ¢-
sharp solutions reduces to the concept of weak sharp minima due to Polyak [126]. In
scalar optimization weak sharp minima were also investigated via growth conditions, e.g.
by Burke and Deng [43], Burke and Ferris [44], Henrion, Jourani and Outrata [74], Ng and
Zheng [116], Studniarski and Ward [147], Ward [150, 151]. Weak sharp minima play an
important role in deriving conditions for Holder calmness of solutions in scalar parametric
optimization (see e.g. [39, 100, 101]). In the next chapter we will investigate stability for
¢-sharp and weak ¢-sharp solutions.

8.1. Sharp solutions

Let X = (X,] - ||) and Y = (Y, - ||) be normed spaces with open unit balls Bx and
By, respectively, and let K C Y be a closed convex pointed cone. Consider a vector
optimization problem
ming f(z)
P
(P) subject to z € A.

Let ¢, v : Ry — R, be admissible functions. Recall that yo = f(xg) € f(A) is a v-strictly
efficient point to (P) if
f(@) = f(wo) vl f(2) = f(zo))By =K forz e A, f(z) # f(zo).
For any n € f(A) put
Sy ={x€A: f(z) =n}

DEFINITION 8.1.1. We say that zg € A, f(zo) = 0, is a ¢-sharp solution, xo € Sh?(f, A),
if
(8.1) f(@) = fwo) & ol — xol) By =K for z € A\ Sy,
Moreover, xg € A is sharp of order ¢ > 0, o € Shi(f, A), if x¢ is ¢-sharp with ¢(-) =
7| - ||4, where 7 > 0.

For any y € Y put

lyll- = d(y, =K).

In Proposition 2.4.1 we have shown that yo € StE(f(A)) iff there exists an admissible
function v : Ry — R, such that

[79]
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v(ly —voll) < lly —woll-  for ally € f(A),
and v can be chosen in the form
v(e) = inf{|[z —yoll- : 2 € f(A)\ (yo +eBy)}.
Equivalently, yo € StE”(f(A)) iff
(8.2) (y—y0) N (v(ly —wol)By —=K) =0 fory e f(A)\ {yo}.

As defined in Section 2.4, yo € f(A) is a locally v-strictly efficient point, yo €
LStE”(f(A)), if there exists a neighbourhood V of zero in Y such that

(¥ —yo) N (v(lly —yol)By —K) =0 forye f(A)N (yo+V)\{vo}

In particular, yo € f(A) is a locally strictly efficient point of order ¢ > 0, yo € LStE1(f(A)),
if there exists a constant 3 > 0 such that yo € LStE?(f(A)) with ¢(-) = (1), i.e.,

Blly = yoll* < lly = yoll- for y € f(A) N (yo + V).

Or, in other words, yo € f(A) is a local sharp minimum of order ¢ > 0 (cf. [147]) of the
function || - —yo||— over the set f(A). We put StE”(f, A) := StEY(f(A)).

Let us note that if f(A) is uniformly rotund (see Section 2.3) with an admissible
function v, then E(f, A) = StE¥(f,A). Indeed, suppose there exists zo € E(f,A),
f(xo) = n, such that zo ¢ StEV(f, A). There exists v € A\ S, satisfying f(z) — f(xo) €
v(||f(z) — f(zo)]|)By — K. Hence, there exist 0 # b € By and 0 # k € K such that
$(f(@) + f(z0)) = flzo) — v(|| f(x) = f(z0)[|)b — k. In view of the uniform rotundity
of f(A), this entails that there exists Z € A\ S, such that f(Z) € f(xz¢) — K, which
contradicts the fact that zo € E(f, A).

Equivalently, the relation (8.1) can be rephrased as

(8.3) 1f(x) = f(@o)ll- = ¢([lz — o)~ for z € A\ S,

Each sharp solution is a solution. Indeed, if yo = f(x¢), 2o € A, is a sharp solution, then

by (8.1),
y (81) flz) = flzg) € =K forz € A, f(z) # f(xo).

The relationship between sharp solutions and strictly efficient points is clarified in the
next proposition.

PRrROPOSITION 8.1.1. Let K be a closed convex pointed cone in a normed space Y. Let
f: X =Y be a Lipschitz mapping on A with constant Ly > 0. If zg € She(f,A), then
fwo) € StE” (£, A) with v(-) = 6(2& .

Proof. Let zg € Sh®(f, A) and f(xq) = n. Hence,
f(@) = f(xo) & ¢([lx — ol )By =K for € A\ S,

Since [|f(x) — f(wo)ll < Lyllz — o]l and ¢ is nondecreasing, ¢(z[f(z) — f(zo)ll) <
¢(llz — xol[) and

F(@)— F(z0) & ¢(Lif (@) - f(wo)|>BY K forzeA\S,

which proves that n = f(z¢) is v-strictly efficient with v() = gb(Lif ). m
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In view of Proposition 8.1.1,

1
Sh®(f,A) Cc An f~Y(StEY(f,A)) with v(.)= ¢<L— >
f
In particular, it follows from Proposition 8.1.1 that if f is Lipschitz on A with constant
Ly > 0 and zo € Shi(f, A) with constant 7, then f(x¢) € StE(f, A) with constant

ﬁ:T/L?.

DEFINITION 8.1.2. We say that xo € A with f(xg) =7 is a local ¢-sharp solution to (P),
xo € LSh?(f, A), if there exists r > 0 such that

f(x) = f(zo) € &(||lx — 20| )By —K forx € AN (z9+rBx), z €S,

Any local ¢-sharp solution xg € LSh?(f, A), where ¢(t) = 7t? for t € R, with 7 > 0 and
q > 0 is called a local sharp solution of order q (cf. Jiménez [87, 88] for S, = {xo}).

Clearly, each global sharp solution is a local sharp solution. We prove the converse
for IC-convex functions.
Recall that f: X — Y is K-convez on X if for any A € [0,1] and z,2’ € X,

FOz+ (1 —=XN)z') e Af(z)+ (1 =N f(2')— K forany X € [0,1], z,2" € X.

Note that if A is convex and f is K-convex on A, then the sets S, with n € E(f, A) are
convex. Indeed, for any z,2’ € S,

fOz+(1-XNz)en—K
and so f(Ax + (1 — A\)z’) = n since n € E(f, A).

PROPOSITION 8.1.2. Let A be convexr and let f be K-convex. Let xy € Sy. If 9 €
LSh(f, A) with constant T > 0, then xq € Sh(f, A) with constant T.

Proof. Suppose on the contrary that xg is not a global sharp solution of order 1 with
constant 7. There exists z € A\ S, such that

f(z) = f(xo) € 7]z — zo||By — K.

Let A € [0,1]. Set 2(A) := Az + (1 — A)xo. For any r > 0 there is A € [0, 1] such that
x(A) € B(zg,r) and by the convexity assumptions

f(x(X) = fzo) € A(f(x) — f(20)) = K CTA|z — 20| By — K = 7[|x(A) — 20| By — K,
which proves that xq is not a local sharp solution of order 1 with constant 7. m
Below we give an example of problem (P) with sharp solutions.
EXAMPLE 8.1.1. Let X =R?, Y =R? and K = Ri. Let f:R? — R? be given as
flar,x0) = (2] + 23, exp(@1) + 22)

and A = {(z1,22) € R? : 0 < 21 <1, 0 < 29 < 1}. Then (0,1) € E(f,A) and
(0,0) € S(f, A) and (0,0) € Sh?(f, A) with constant 7 = 0.5, i.e.

I () = £(0,0)[|l- = 0.5]lz — (0,0)]*.
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Fig. 8.1 The set f(A) from Example 8.1.1
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Fig. 8.2 The level sets of the function || f(z) — f(0,0)|— in Example 8.1.1

We define directional differentiability of f at x in the direction u via the contingent
derivative

t —
Fzoiu) = lim fxo +tv) — f(=o)
(t,v)— (0% ,u) t
and we say that f is directionally differentiable at x( if f is directionally differentiable
at xg in any direction v € X.



8.1. Sharp solutions 83

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 }
X

Fig. 8.3 The graph of the function | f(z) — f(0,0)||- — 0.5]|z — (0,0)|* in Example 8.1.1

The following proposition provides sufficient conditions for sharp solutions in terms
of contingent directional derivatives.

PROPOSITION 8.1.3. Let X be a finite-dimensional space. Let f be directionally differen-
tiable at xo € A, f(zo) = n. If, for any tangent direction 0 # v € T\s, (20),

f'(zo;v) € Tcl By — K,

then xg is a local sharp solution of order 1 to (P) with constant T > 0.
Conversely, if xg € A is a local sharp solution of order 1 with constant T > 0, then
for any tangent direction v € T\ s, (20), v # 0,

f'(zo;v) € TBy — K.
Proof. Suppose that xg, f(z¢) = 7, is not a local sharp solution with constant 7 > 0. For

each n > 1 there exists x, € AN B(zo,1/n), z, &€ Sy, ©,, — xo, such that

f(xn) = f(x0) € Tl — ol By — K.
Putting v, = (z,, — x0)/||zn — z0| We get v, — v € Ta\s, (70), v # 0, and

M €TBy — K, ie f'(wo;v) € TclBy — K.

[[2n — ol
To prove the second assertion suppose that there exists v € Ty\g, (z9), v # 0, such that
f(zo;v) € 7By — K. Clearly, we may suppose that ||v|]| = 1. There exists a sequence
(n) C A\ Sa, T, — xo such that by putting v, := (z, — zo)/||Tn — x0|| and ¢, :=
|z — 20| we get v, — v € Ty, (x0). Moreover, f(zg + t,v,) — f(zo) € Tt,By — K for
all n sufficiently large, which contradicts the sharp efficiency of zg. =
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COROLLARY 8.1.1. Let X be a finite-dimensional space and let f be directionally differ-
entiable at xo € A with f(xo) =n. Then xq is a local sharp solution of order 1 to (P) if
and only if for any v € Tx\s,, v # 0,

f(zosv) & —K.

Proof. The proof of the “if” part is the same as the proof of the “if” part of Proposi-
tion 8.1.3 with 7 = 1/n.
To complete the proof, assume that there exists v € TA\§ , v # 0, such that

[ (zo;v) = ko € =K.
The remaining part of the proof follows the lines of the second part of the proof of

Theorem 4.1 of [88]. =

Now we discuss the relationships between local sharp solutions and local Henig proper
solutions.
Recall that n € E(f, A) is a local Henig proper efficient point for (P) if there exist a
closed convex cone 2 C Y, int 2 # 0, K\ {0} C int £2 and ¢ > 0 such that
(f(x) =m)n(=02)={0} for z € AN B(xg,0).
Moreover, g € S(f, A), f(xo) =7, is a local Henig proper solution to (P) if 7 is a local
Henig proper efficient point for (P).

PROPOSITION 8.1.4. Let K be a closed convexr cone with a compact base ©.

(i) n € E(f,A) is a local Henig proper efficient point for (P) if and only if n is a
local strictly efficient point of order 1.

(ii) Let f be locally Lipschitz around xog € A. If xq is a local sharp solution of order
1 to (P), then x¢ is a local Henig proper solution.

Proof. (i) Suppose that 7 is not a local strictly efficient point of order 1 to (P). For each
n > 1 there exists z, € A\ S, £, — 2o such that

Flen) = $(20) € 1 () = f(z0) 1By — K,

i.e., there exist A, > 0 and 6,, € © such that

(84)  Flwn) ~ f@o) = [ (ra) = Fo)llbn — Aub  for some by € By
Hence,
f(@n) — f(20) :lb . An 0.
1f(zn) = flxo)l " [[f(2n) = flao)| "
Since O is bounded, ||6,|| < M for some M > 0 and
+ A—"
1f (zn) = f(zo)
and consequently, for all n sufficiently large,
An 1
1f () = Flao)l] = 2M

1
1< — M
n

v
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This proves | f(za) — f(z)[[/An < 2 and £, = [|f(2a) — f(z0)]}/(nA) — 0. Finally
f(@n) — f(z0) = —An(en(—bn) + 65)

which proves that 7 is not a local Henig proper efficient point.
Suppose now that 7 is not a local Henig proper efficient point. For each n > 1 there
exists x,, € A, f(z,) # f(z0), n — x0, such that

f(zn) — f(wo) € cone(%By +@),

i.e., there exist A, > 0 and 6,, € © such that

(8.5) f(zn) — f(zo) = 2 by, — A\nbn, where b, € By.
n

Hence,

flan) = flzo) _ 1
D Ebn — O,

and since @ is compact, we can assume that 0, — 0y € 6, 0y # 0 and

_ f@n) — fa0)

This proves that there exists M > 0 such that || f(x,,) — f(x0)||/A\n > M and consequently
An 1

<
1f(zn) = flzo)l = M
- An
Hence, ¢, := AT Tl — 0 and by (8.5),
flan) = f(xo) = enl|f(2n) — f(@0)[|bn — Kn,  where ky, € K.
This proves that 7 is not a local strictly efficient point.

(ii) If xg € A, f(zg) = n, is a local sharp solution of order 1 to (P), then by Proposition
8.1.1, i is a local strictly efficient point of order 1, and by part (i), n is a local Henig

—0p.

proper solution to (P). m

8.2. Weak sharp solutions

In the present section we discuss weak sharp solutions to (P) and growth conditions
for vector-valued functions. Let us note that one can easily generalize the definitions
given below to ¢-weak sharp solutions and ¢-growth conditions, where ¢ is an admissible
function. In view of further applications we limit our attention to functions ¢ of the form
¢(-) = 7(-)?, where 7 > 0 and ¢ > 0 are given constants.

Recall that S, = {zx € A: f(z) =n}.

DEFINITION 8.2.1. We say that g € A with f(xg) = 7 is a (global) weak sharp solution
of order ¢ > 0 to (P), xg € Whi(f, A), if there exists 7 > 0 such that

(8.6) f(x) = f(xo) € 7(d(z,Sy))'By —K forxze A\ S,.
Relation (8.6) can be rewritten as

(8.7) 1f(2) = f(zo)ll- = 7(d(z,5,))"  for z € A\ S,
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Each weak sharp solution to (P) is a solution to (P). If g € Shi(f,A), then zy €
Whi(f,A). If o € Whi(f, A), then S, = {x € A: f(z) = f(xo) = n} C Whi(f,A).
Moreover, if zo € Wh(f, A), then

(8.8) f(@) = f(zo) & 7(d(x, S(f,A))*By =K for z € A\ S(f, A).

In the case where fy : X — R is a real-valued function, with the notation mg =
inf{fo(z) : x € Ao}, o € S(fo,A0) = {x € Ay : fo(xz) = mp}, relation (8.6) takes the

form

fo(z) > mo + 7(d(x, S(fo, Ao)))? for z € Ay,

which means that S(fo, Ao) is the set (global) weak sharp minima of order ¢ of fy over
Ag as defined e.g. in [43, 116, 147].

DEFINITION 8.2.2. We say that the global growth condition of order ¢ > 0 holds for
problem (P) on S C S(f,A) if there exists 7 > 0 such that for any Z € S and = €
A\ S(f, A) we have

(8.9) (f(z) = f(z)) N (7(d(z, S(f, A)))'By — K) = 0.

Note first that if the global growth condition of order ¢ holds for S C S(f, A), then
for any T € S,

Sy={reA: f(r) = f@=n} C 5.
Moreover, the global growth condition holds for (P) on S(f, A) iff for any Z € S(f, 4),
(8.10) f(@) = f(@) & 7(d(x,5(f,A))"By =K for z € A\ S(f, A).

The following proposition establishes the relationship between global weak sharp so-
lutions and the global growth condition.

PROPOSITION 8.2.1. Let X and Y be normed spaces and let K be a closed convex pointed
cone in Y. If there exists a subset S C S(f, A) such that all T € S are global weak sharp
solutions to (P) of order q with constant T > 0, then the global growth condition of order
q holds for (P) on S with constant T.

Proof. This follows immediately from the observation that for any Z € S,
Sp={zeA:f(z)=f(@)=nCS
and hence
f(x) — f(@) & 7(d(x,S(f, A)))By — K forz e A\ S,
which proves the assertion. m

Local versions of the above notions can be obtained in several ways. The definitions
given below are shaped so as to be versatile for applications presented in the next sections.

DEFINITION 8.2.3. We say that xg € A, f(x¢) = 7, is a local weak sharp solution of order
q > 0 to (P), xzg € LWhI(f, A), if there exist a 0-neighbourhood V in X and constant
7 > 0 such that for x € AN (zg+ V), 2 €Sy,

(f (&) = f(w0)) N (r(d(z, 5y))* By = K) = 0.
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Clearly, each local sharp solution of order ¢ to (P) is a local weak sharp solution of
order ¢ to (P) and each local weak sharp solution of order ¢ to (P) is a local solution
to (P). Or, equivalently, zyp € A is a local weak sharp solution to (P) iff z( is a local
weak sharp minimum ([43, 116, 147]) of the function || f(-) — f(zo)||— over A.

DEFINITION 8.2.4. The (local) growth condition of order ¢ > 0 holds for (P) on S C
S(f, A) if there exist a 0-neighbourhood V in X and 7 > 0 such that for any # € S and
r€AN(T+V), v ¢S, we have

(f(x) = f(@)) N (7(d(z, S(f, A)))'By = K) = 0.

Moreover, we say that the local growth condition of order q holds for (P) around
xg € S(f, A) if there exists a 0-neighbourhood V in X and a constant 7 > 0 such that
forany 7€ S = S(f,A)N(zo+ V) and any x € AN (T + V) we have

T(d(z, S(f, A)" <[ f(x) = F@)] -
Or equivalently, forx € AN (Z+ V), 2 ¢ S,

f(x) = f(@) & 7(d(z,5(f, A)))*By — K.
This means that each T € S(f, A) N (zo + V) is a local weak sharp minimum of order ¢
(cf. [43, 116, 147]) of the function ||f(-) — f(T)||- over A with the same constant 7 > 0.
Consider now the scalar case with fo : X — R, K3 = Ry, and mg = fo(zg) =
inf{fo(x) : © € Ag}. Then, by definition, the growth condition of order ¢ > 0 holds for fj
on a subset S C S(fo, Ao), fo(S) = my, if there is a neighbourhood V of zero in X and
a constant 7 > 0 such that

(8.11) folx) > mo + 7d(x, S(fo, Ag))? forz € AN(S+V)

which means that each Z € S is a local weak sharp minimum of order ¢ of fy over Aj.

Recall ([39, Ch. 3.1, Def. 3.1]) that the growth condition of order ¢ > 0 holds for a real-
valued function fy on S C S(fo, Ao) if there exist a constant 7 > 0 and a neighbourhood
V of zero in X such that

(8.12) fo(z) > mo+ ad(z,S)? forx e AN(S+V).

Thus, if S = S(f, A) conditions (8.11) and (8.12) coincide.
The question of relationships between well-posedness and weak sharp solutions will
be addressed in the next chapter.

PROPOSITION 8.2.2. Let f: X — Y be a Lipschitz mapping on X with constant Ly > 0.
If xo € A is a weak sharp solution of order q with constant T > 0, then f(xg) is a strictly
efficient point of order q with constant § = T/L;lc.

Proof. By definition, if xg € S(f, A), f(x¢) =7, is a weak sharp solution of order ¢ with
constant 7, then (f(x) — f(zo) N7(d(x,S,))"By —K) =0 for any z € A\ S, Since f is
Lipschitz on X, || f(z) — f(zo)|| < Lyf|lz — zol|. Consequently, || f(z) —n| < Lgd(z,S,),
and

-
F)~ng T IF@) - nlBy ~K forac A f(x) £,
which proves that n € StE?(f, A) with constant 7/L7. m



88 8. Sharp and firm solutions to vector optimization problems

In the theorem below we prove lower Hélder continuity of the performance set-valued
mapping P at a given uy € dom P for a family of parametric problems of the form

ming f(z)
(P) subject to z € A(u).

Let A: U = X be a set-valued mapping defined on a normed space U, A(u) = A(u),
A(’Lbo) = A.
THEOREM 8.2.1. LetY = (Y, ||-]|) be a normed space and let KC be a closed convex pointed
cone in Y. If

(i) allT € S(f, A) are weak sharp solutions of order ¢ > 1 with constant T > 0,
(i) there exists 0 < t < 1 such that (DP) holds for all f(A(u)), u € ug + tBy,
(iii) A is Hélder continuous of order p > 1 with constants L, > 0 and t at ug € dom A
and f is Lipschitz on X with constant Ly > 0,

then P is lower Hélder continuous of order p/q at ug € dom P, i.e.
E(f,A) C E(f, A(w)) + (LgLq + (2L$La/7)")|Ju = uo|[/* By
for u € ug + tBy.

Proof. Note first that under our assumptions the set-valued mapping Ay is lower and
upper Holder continuous of order p at ug € dom.A. Now, it is enough to observe that by
Proposition 8.2.2, if all the solutions S(f, A) are weak sharp of order ¢ > 1, with constant
7 > 0, then all n € E(f, A) are strictly efficient of order ¢ with constant 7. The conclusion
follows from Theorem 4.1.1. =

Note that we can specify the above result for parametric vector optimization problems
in the same way as in Theorem 4.1.3.

THEOREM 8.2.2. Let X and Y be normed spaces and let IC be a closed convex pointed
cone in'Y. Assume that

(i) there exist T > 0 and q > 1 such that for any T € S(f, A),
f(x) = f(Z) € 7(d(2,5,))'By =K forze A\ Sy,

(i) f is Lipschitz on X with constant Ly > 0, A is Holder continuous of order p > 1
at ug € dom A with constants L, >0 and 0 <t <1,
(iii) (DP) holds for all f(A(u)) and u € B(ug,t).

Then P is lower Hélder continuous of order p/q at ug € dom P and
E(f,A) C E(f, A(u)) + Lg(La + (La/7)"%)|lu = uo|[”/* By
for u € B(ug,t).

In Theorem 7.3.2 we derived conditions for the upper Holder continuity of P with
the help of the (SDP) property. In deriving the stability conditions for different type of
continuities we can relax the (SDP) (or (CP)) property by imposing stronger assumptions
on solutions (sharpness, weak sharpness).
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Below we prove the upper Hélder continuity of P by assuming that all the solutions
to all (P,) in some neighbourhood of u( are weak sharp with the same constant. Note
that in the result below we do not assume that int C # 0.

THEOREM 8.2.3. Let X = (X,||- ), Y =, |- ), U= (U,| -||) be normed spaces. Let
K be a closed convexr pointed cone in' Y with int K # 0. Let f : X — Y be a Lipschitz
mapping with constant Ly > 0. If

(1) A is Holder continuous at ug € dom A of order p > 1 with constants L, > 0 and
t>0,
(ii) (DP) holds for (P),
(iii) all Z € S(f, A(w)) for u € B(ug,t) are weak sharp of order ¢ > 1 with the same
constant T, i.e.

f(z) = f(2) € 7(d(z,Sfz)(u))By — K for z € A(u), 2 & Sgz)(u),
where Syz (u) = {z € S(f,A(u)) : f(2) = f(Z)},
then the performance set-valued mapping P is upper Holder continuous at ug € dom P of
order p/q with constants Ly(L, + (2LoLys /7)Y %) and t > 0.

Proof. Take any § = f(z) € E(f, A(u)), u € ug + t,By. By (i), there exists € A such
that
27— 2| < Lallu — uol”

and by the Lipschitz property | f(Z) — f(z)|| < LyLallu — wo|?. If € S(f, A). the
conclusion follows. Otherwise, by (ii), there exists T € S(f, A), f(T) # f(x), such that
f(@) € f(z) — K. By (i), there exists z € A(u) such that |T — z|| < Lg|ju — uo||” and
| f(Z) — f(2)|| < LyLgyllu — uol|P. If f(2) = f(Z), the conclusion follows. Otherwise,

f(2) = f(Z) € 2L¢Lalu — uo||” — K

and since by Proposition 8.2.2, f(Z) is a strictly efficient point of order ¢ for (P,) with
constant 7/L%, we obtain

()= 1() & 77 I11(:) = JE)"By ~ K.
f
Hence,

1F(2) = FE)I < Lg(2La Ly /)" 9|1 — uolP/¢

and consequently

f(Z) = f(@) = (f(2) = f(2)) + (f(2) = f(@)) € Ly(La + (2L Ly /7)) = uo|P/7. m

8.3. Firm solutions

In a series of publications Attouch and Wets [6]-[8] developed an approach to investigating
quantitative stability of variational systems as defined by Rockafellar and Wets [133]. In
[6] Lipschitz and Hélder continuities are investigated for ¢-local minimizers to parametric
scalar minimization problems. Given a function fy : X — R an element zy € X is called
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a ¢-local minimizer of fo if fo(z) > fo(xo) + ¢(||x — xo]|) for all z in some ball around
xo and ¢ : Ry — Ry is an admissible function, i.e. ¢ is nondecreasing, ¢(0) = 0 and
¢(t) > 0 for t > 0.

In this section we generalize the above idea to vector-valued functions by defining
¢-firm solutions to vector optimization problems. We exploit this notion to investigate
Hélder behaviour of the performance set-valued mapping P.

Let f: X — Y be a mapping and A be a subset of X. Consider a vector optimization
problem

ming f(z)
(P) subject to x € A.

In Definition 7.3.1 we defined ¢-strong containment property. Now we define its analog
for problem (P). Let ¢ : R, — R, be an admissible function.

DEFINITION 8.3.1. We say that the efficient point set E(f, A) to (P) is ¢-dominated if
¢-(SDP) holds for f(A), i.e., if for each x € A there exists T € S(f, A) such that

f(@) =x @)+ ol f(x) — f@)I)By, ie., f(z)—f(@)+o(lf(z) - f@))By C K.
Moreover, E(f, A) is dominated of order ¢ > 0 if E(f, A) is ¢-dominated with ¢(-) = a(-)?

with some o > 0.

DEFINITION 8.3.2. The solution set S(f, A) to (P) is called ¢-firm or ¢-dominated if for
each x € A there exists T € S(f, A) such that
f(@) =x @) + ¢(lx = Z|) By, ie., f(z)—f(@)+¢(lz—7|)By C K.
In particular, S(f, A) is firm of order q if S(f, A) is ¢-firm with ¢(-) = o(-)? with some
0> 0, i.e., for each z € A there exists T € S(f, A) such that
f(x) = f(Z) + ollz —Z||"By C K.

PROPOSITION 8.3.1. Let X = (X,[|-||) and Y = (Y,| - ||) be normed spaces. Let K
be a closed convex pointed cone in'Y with int KK # (. Let f : X — Y be a Lipschitz
mapping with constant Ly > 0. If S(f, A) is ¢-firm, then E(f, A) is p-dominated with
n) = o2 ).

Proof. By assumption, for each © € A there exists T € S(f, A) such that

f(@) = f(@) + ¢(|lz — z[|) By C K.
Since || f(z)~ f(@)|| < L¢|la—7|| and ¢ is nondecreasing, ¢(z- [ f(z)— f@)) < o([|z—Z]))
and
flz) = f(@) + ¢(Lif 1f(z) = f(f)||>BY C f(z) = f@) + o(|z — Z|) By C K,
which proves the assertion. m

In particular, if f is Lipschitz on A with constant L; > 0 and the solution set S(f, A)
is firm of order ¢ with constant ¢ > 0, then E(f, A) is dominated of order ¢ with constant

o/L5.
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Let C be a subset of Y. Recall that the domination property (DP) holds for C if
C C E(C)+ K, and the domination property (DP) holds for (P) if (DP) holds for f(A),
i.e., for each z € A there is T € S(f, A) such that f(z) — f(Z) C K.

Let int K # (). We say that the (global) strong domination property (SDP) of order
q > 0 holds for C if there exists ¢ > 0 such that for each y € C there exists n € E(C)
such that

(8.13) y—n—olly—nl*By C K.

We say that the (local) strong domination property (LSDP) of order ¢ > 0 holds for C
around gy € C' if there exist a neighbourhood W of zero in Y and p¢ > 0 such that for
each y € C'N (yo + W) there exists n € E(C) N (yo + W) such that (8.13) holds.

To cast the notions of ¢-firm (or firm of order ¢) solutions (see Definitions 8.3.2)
into the framework of variants of the domination property we say that the (global) firm
domination property (FDP) of order ¢ > 0 holds for (P) if the solution set S(f, A) is firm
of order ¢, i.e., there exists a constant ¢ > 0 such that for each € A\ S(f, A) there
exists T € S(f, A) with

(8.14) f(x) = f(T) = ollz — z||"By C K.

Equivalently, (FDP) of order ¢ holds for (P) iff there exists ¢ > 0 such that for each
x € A\ S(f,A) there exists T € S(f, A) such that

olle =zl < [[f(x) = F@)+,
where || -]+ = d(-, £¢) and D¢ denotes the complement of a subset D. If f is Lipschitz on

X with constant Ly > 0 and (FDP) of order ¢ with constant ¢ > 0 holds for (P), then
(SDP) of order g with constant o/L¢ holds for (P) (cf. Definition 7.3.1 and (8.13)).

DEFINITION 8.3.3 ([19]). Let int K # (. We say that the (local) firm domination property
(LFDP) of order g > 0 holds for (P) around xy € A if there exist a 0-neighbourhood V'
in X and ¢ > 0 such that for each z € AN (zg + V) there exists T € S(f, A) N (xo + V)
with

f(x) = f(@) + ollz — Z[*By C K.

Equivalently, (LF DP) of order ¢ holds for (P) around zg € A iff there exist a neigh-
bourhood V' of zero in X and ¢ > 0 such that for each z € AN (xg 4+ V), there is
z e S(f,A) N (xo+ V) with
(8.15) olle = || < ||If (x) — f(@)[]+-

If fo: X - R, Ky =Ry, and mg = fo(xo) = inf{fo(x) : © € Ap}, then, by definition,
(LFDP) of order ¢ holds around x5 € A if there are a 0-neighbourhood V in X and
0 > 0 such that for any € Ay N (xg + V), there is T € S(fo, Ao) N (xg + V') satistying
(8.16) fo(z) = mo + ol|z — Z[|* = mo + od(x, S(fo, Ao))?

which means that z( is a local weak sharp minimum of order g of fo over Ag (cf. [43,
116]). Note that (8.16) coincides with (8.11) for S = {x¢}, which means that for scalar-
valued functions the growth condition of order ¢ around x( coincides with the local firm
domination property of order ¢ around xg.
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It is worth noticing that, in general, if (LFDP) holds around 2y € A with a neigh-
bourhood V, then it may not hold around xy with a smaller neighbourhood V; C V.

EXAMPLE 8.3.1. Let Y =R? K =R2, f =id and A C R? is the union of three segments
of the form

A=1(-10,1/2), (-1, D] U [(-1,1),(0,0)] U [(0,0), (20,1)].

We have (0,0) € S(id, A). (LFDP) holds around (0,0) with V' = 11By, but not with
V = 5By, since (—1,1) € 5By and there is no s € S(id, A) N5By such that (8.15) holds.

EXAMPLE 8.3.2. Let Y = {*°, f =1id, and let K = £5°. Consider
A={yel*:0< fy) <1},

where f is the continuous linear functional given by f(y) = Y .o y,/2". We have
E(id, A) = {y € A: f(y) = 0} and the strong domination property of order one holds for
A. Tt has been shown in [20] that StE(A) = 0.



9. STABILITY OF SOLUTIONS

In this chapter we investigate Hausdorff, Hélder and pseudo-Hélder continuities of solu-
tions to parametric vector optimization problems. To this end we propose several defini-
tions of well-posedness for vector optimization problems. These definitions are based on
properties of e-solutions to vector optimization problems (cf. [50, 52, 99, 104]).

The notion of well-posedness and its various generalizations appear to be very fruitful
in scalar optimization, especially in stability analysis. Well-posedness plays an important
rule in establishing convergence of algorithms for solving scalar optimization problems.

In vector optimization there is no commonly accepted definition of well-posed problem.
Some attempts in this direction have been already made by Miglierina and Molho [110]
and the present author [21-23].

In Section 9.1, on the basis of continuity properties of e-solution mappings we de-
fine well-posed vector optimization problems. We establish relationships between well-
posedness, sharp and weak sharp solutions. In Section 9.2 we give sufficient conditions
for the solution set-valued mapping S to be upper Hausdorff semicontinuous (Theorem
9.2.1). In Section 9.3 we prove lower Lipschitz continuity (Theorems 9.3.1, 9.3.3) of S. In
Section 9.4 we formulate sufficient conditions for upper Lipschitz continuity of S (Theo-
rems 9.4.1-9.4.3). In Section 9.5 lower Hélder and lower pseudo-Holder continuities of S
are investigated. In Section 9.6 upper Hoélder and upper pseudo-Hdlder continuities of &
are investigated (Theorem 9.C.1) as well as Holder calmness (Theorem 9.6.2).

Let Y be a Hausdorff topological vector space ordered by a partial ordering relation
<k generated by a closed convex pointed cone K (see Section 1.2). Let X and U be
topological spaces. Let f : X — Y and A C X. We consider vector optimization problems

ming f()
(P) -

subject tox € A
and the family (P,) of parametric vector optimization problems parametrized by a pa-
rameter u € U,

P ming f(x)
subject to z € A(u)
with A(ug) = A. It is worth noticing that the results of the present chapter can be easily
generalized to parametric problems (P,) with parametrized mapping f.
In relation to Propositions 6.2.1 and 6.2.2 we have the following technical result.

THEOREM 9.0.1. Let X, U be topological spaces and let Y be a Hausdorff topological
vector space. Let f : X — Y be a K-upper continuous (respectively, K-lower continuous)

[93]
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mapping and let A : U = X be lower semicontinuous at ug € dom A. Then the set-
valued mapping (Ay : U) = (V), Ap(u) = f(A(uw)) for u € U, is sup-lower continuous
(respectively, inf-lower continuous) at ug € dom A.

Proof. Let yo € Ajs(up). Choose any open 0-neighbourhoood @ in Y. There exists an
2o € A(ug) such that f(zo) = yo and, by the upper continuity of f (respectively, lower
continuity of f), there exists an open neighbourhood W of z such that f(W) C yo+Q—K
(respectively, f(W) C yo + Q + K). Since A is lower semicontinuous at ug, there exists
a neighbourhood U of ug such that W N A(u) # @ for v € U. Now, by taking any
z € Au), v € W, u € U, we obtain f(z) € FA(u), f(z) € yo + Q — K (respectively,
f(z) € yo+Q+K) and hence (yo+Q—K)NAg(u) # 0 (respectively, (yo+Q+K)NFA(u) #
) forueU. m

9.1. Well-posed vector optimization problems

Let X and Y be Hausdorff topological vector spaces and let I be a closed convex pointed
cone in Y with int I # (. Basing ourselves on the continuity properties of e-solutions to
a vector optimization problem
ming f(z)
P
(P) subject tox € A

we introduce several concepts of well-posedness for (P). To this end we exploit e-solutions
to (P) as defined e.g. in [99] and [104].
DEFINITION 9.1.1. Let € € K. A point z € A is an e-Pareto solution to (P) if there is no
x € A such that f(z) —e— f(z) € £\ {0}.

We denote by S:(f, A) the set of all e-solutions to (P) and by E<(f, A) the set of all
e-points for (P) (i.e. the image of S¢(f, A) under f). Thus, S¢(f, A) = ANf=Y(E=(f, A)).

Let Ko = int KU {0} and n € E(f, A). Let II" : Ky = X be the set-valued mapping
defined as

Ie) ={x e A:n+e— f(x) € K}.
The set-valued mapping I1" is called the n-e-solution mapping. We have
o) =Anftn+e—K).

Moreover, 11"(0) = {z € S(f, A) : f(z) = n} =5, and U, cp(s,4) ["(0) = S(f, A). The
sets IT"(e) were used in [4] to investigate some stability properties of sequences of vector

optimization problems.
Let IT : Ky = X be the set-valued mapping defined as

He)= |J H'e)={zcA:f(z)eE(fA)+e—K}.
n€E(f,A)
It is called the e-solution mapping. We have
H(e)=Anf Y E(f,A) +e—K).
Moreover, II(e) C S°(f, A) and II(0) = S(f, A).
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We start with the following definition of well-posedness of (P) in normed spaces X and Y.
DEFINITION 9.1.2. Problem (P) is Hausdorff well-posed if

(i) E(f,A)#0,
(ii) the e-solution mapping IT is upper Hausdorff semicontinuous at 0 € dom I7, i.e.
for any M > 0 there exists ¢t > 0 such that

I(e) Cc S(f,A)+ MBx foree€ KyNtBy.

DEFINITION 9.1.3. Let n € E(f, A). Problem (P) is n-Hausdorff well-posed if the n-e-
solution mapping II"7 is upper Hausdorff semicontinuous at 0 € dom I1", i.e. for any
M > 0 there exists t > 0 such that

H(s)CSn+MBX for e € KogNtBy.
DEFINITION 9.1.4. Let (x,) C A be a sequence of feasible elements. It is a minimizing
sequence for (P) if for each n > 1 there exist y,, € K, lim,, y, = 0, and 7,, € E(f, A) such
that f(xn) =k M + Yn-

The following proposition gives a characterization of Hausdorff well-posedness in terms
of minimizing sequences.

PROPOSITION 9.1.1. Let X and Y be normed spaces and let K be a closed convex pointed
cone in Y. The following conditions are equivalent:

(i) (P) is Hausdorff well-posed,
(ii) E(f, A) # 0, and for any minimizing sequence (x,) C A and every 0-neighbour-
hood W in X,
xn € S(fyA)+W  for all n sufficiently large.

Proof. Follows directly from the definitions. m

The following proposition establishes the relationships between well-posedness, ¢-
sharp, and weak ¢-sharp solutions.

PROPOSITION 9.1.2. Let X and Y be normed spaces and let K be a closed convex pointed
cone in'Y with int KC # 0. Let n € E(f, A).

(i) If S, N Sh®(f, A) # 0, then (P) is n-Hausdorff well-posed. Moreover, if S, =
{x0}, then (P) is n-Hausdorff well-posed if and only if xo € Sh?(f, A).
(ii) If S(f, A) = Sh?(f, A) (i.e. all solutions are ¢-sharp with the same function ¢),
then (P) is Hausdorff well-posed.
(iii) (P) is Hausdorff well-posed if and only if the global ¢-growth condition holds for
(P), i.e. for any T € S(f, A),

f(z) = f(x) & ¢(d(z,S(f, A))By =K  forz € A\ S(f,A).
Proof. (i) Suppose that I1" is not upper Hausdorff semicontinuous at 0 € dom II". There
exists My > 0 such that for all n > 1 one can find ¢, € Ko N (1/n)By and z, € II"(s,)
such that z,, € IT"(e,) and d(zy,S,) > My. Thus, for any T € S,

1
f(zn) = f(@) €en =K C — By — K.
This proves that no Z € \S,; is ¢-sharp since ¢(||z, — Z||) > ¢(Moy) > 1/n.
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(ii) Suppose that (P) is not Hausdorff well-posed. There exists My > 0 such that for
all n > 1 there are ¢, € Ky € (1/n)By and z, € II(e,) such that d(z,, S(f, 4)) > M.
Thus, there exists x,, € S(f, A) such that

1
f(zn) — f(zp) €en—K C EBY - K.
This proves that x,, is not ¢-sharp since ¢(||z,, — znl|) > d(My) > 1/n.
(iii) The proof is similar to (ii). m
With the definitions introduced below we can characterize global sharp and weak
sharp solutions of order ¢ to (P).
DEFINITION 9.1.5. Problem (P) is Hdlder well-posed of order ¢ > 0 if

(i) E(f,A)#0,
(i) the e-solution mapping IT is upper Holder of order ¢ > 0 at 0 € dom I1, i.e. there
exist constants L > 0 and ¢ > 0 such that

ANFTHE(f, A) + e~ K) € S(f. A) + Le||"Bx.
We say that (P) is Lipschitz well-posed if (P) is Holder well-posed with ¢ = 1.
DEFINITION 9.1.6. Let np € E(f, A). Problem (P) is n-Hélder well-posed of order g > 0
if the n-e-solution mapping I1" is upper Hélder of order ¢ > 0 at 0 € dom I1", i.e. there
exist constants L > 0 and ¢ > 0 such that
Anftn+e-K)cCS,+L|e||"Bx.
We say that (P) is n-Lipschitz well-posed if (P) is n-Holder well-posed with ¢ = 1.

The following proposition establishes the relationships between sharp solutions and
well-posedness introduced in Definitions 9.1.5 and 9.1.6. Recall that S, = AN f~1(n).

PROPOSITION 9.1.3. Let X and Y be normed spaces and let K be a closed convex pointed
cone in'Y with int KC # 0. Let n € E(f, A).

(i) If S, N Shi(f, A) # 0, then (P) is n-Holder well-posed of order 1/q. Moreover,
if Sy = {xo}, then (P) is n-Hélder well-posed if and only if xo € Shi(f, A).

(ii) If all T € S(f, A) are sharp of order q with constant 7 > 0, then (P) is Holder
well-posed of order 1/q.

Proof. By definition, I1"7 is upper Holder of order 1/q at 0 € dom I1" if there are constants
L >0 and t > 0 such that

Aﬂfﬁl(n‘l-é‘—IC)CSn-f—LHSHl/qBX fore € KoNtBx.
(i) Suppose now that IT" is not upper Holder of order 1/¢ at 0 € domIT". For

each n > 1 there exist ¢, € Ko N (1/n)By and =, € AN f~(n+ e, — K) such that
d(y, S,) > nllen||*/?. Hence, ||z, — 209 > ni|le,|| for any z¢ € S, and

En

1 1
_ - _ q _ = _ 9B, _
fzn) — f(zo) € — |z — xol] K cC — |xn — xo||!By — K,

nallen — o7

which proves that S, N Sh?(f, A) = 0.
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To see the second part of (1) suppose on the contrary that xg is not sharp of order q.
For each n > 1 there exists x,, € A\ S;, such that

f(xn) — f(xo) € % |z — zo||?By — K.

By taking any ¢ € int I, ||e|| = 1, and A > 0 such that By C Ae — K we get

A
f(an) = fxo) € " [[#n — zol|?e — K,
which means that z,, € H”(%Hxn — Zpl||%). On the other hand,
1z — @oll = d(n, Sy) £ (A/n)" ]l — ol

(ii) Suppose on the contrary that IT is not upper Holder of order 1/¢q at 0 € dom I1.
For each n > 1 there exist £, € KoN (1/n)By and 2, € AN f~Y(E(f, A) + &, — K) such
that d(zp,S) > n|le,||*/?. Thus, there exists x,, € S(f, A) such that

f(zn) — f(zn) € — K.

On the other hand, ||z, — z,|| > d(z,, S(f, A)) and
e — g |le
Sllzn = 2all? > el

Hence, b, := ——>—— € By and

3
n% ”Zn_$an

F(n) = f(@n) € ollon = all?By =K, f(zn) # (),

which contradicts the assumption that all T € S(f, A) are sharp of order ¢ with the same
constant. m

Analogously, the following proposition establishes the relationships between well-
posedness of (P) and weakly sharp solutions to (P).

PROPOSITION 9.1.4. Let X and Y be normed spaces and let K be a closed convex pointed
cone in'Y with int KC # 0. Let n € E(f, A).

(i) S, NWhI(f, A) # 0 if and only if (P) is n-Holder well-posed of order 1/q.

(i1) (P) is Holder well-posed of order 1/q if and only if the global growth condition
holds for (P) on S(f,A), i.e. there exists a constant T > 0 such that for all
TeS(f,A),

f(x) = f(@) & 7(d(z,5(f,A)*By =K forz e A\S(f,A).

Proof. (i) The proof of this part is analogous to the proof of Proposition 9.1.3.

(ii) Suppose that IT is not upper Holder of order 1/q at 0 € domII. For each
n > 1 there exist ¢, € Ko N (1/n)By and 2, € AN f~Y(E(f, A) + &, — K) such that
d(zn, S(f, A)) > n|le,||'/?. Hence, 2, € S(f, A) and there exists z,, € S(f, A) such that
f(zn) = f(xn) € n — K and

f(zn) = f(zn) € % d(zn, S(f, A))!By — K,

which contradicts the assumption.
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To see the converse, suppose on the contrary that for each n > 1 one can find z,, €

S(f, A) such that there exists z, € A\ S(f, A) such that

Flon) = f(an) € %d(zn, S(f, A))By — K.

Since there exist g9 € int K, ||eg]| = 1, and A > 0 such that By C Aeg — K, we get

A
f(zn) - f(l'n) € E d(zna S(fv A))qEO - K.
Hence, 2, € IT(2d(zn, S(f, A))0). But d(za, S(f, A)) £ (A/n)/1d(z,, S(f, A)) and (P)
is not Holder well-posed of order 1/q. m
Now we consider local well-posedness of (P).

DEFINITION 9.1.7. Problem (P) is Hélder calm well-posed of order ¢ > 0 at zg € S(f, A)
if the e-solution mapping I7 is Holder calm of order ¢ > 0 at (0, () € graph II, i.e. there
exist 7 > 0, L > 0 and ¢ > 0 such that

H(e)N (xg+rBx) C II(0) + L|e||"Bx
for ¢ € Ko NtBy. We say that (P) is calm well-posed at xzo € S(f, A) if (P) is Holder

calm well-posed at g with ¢ = 1.

DEFINITION 9.1.8. Problem (P) is n-Hoélder calm well-posed of order ¢ > 0 at zy € S,
if the n-e-solution mapping 1" is Holder calm of order ¢ > 0 at (0,z9) € graph IT", i.e.
there exist » > 0, L > 0 and ¢ > 0 such that

II"(e) N (zo +rBx) C II"(0) + L|e||?Bx
for e € Ko NtBy. We say that (P) is n-calm well-posed at zq € S, if (P) is n-Holder

calm well-posed of order ¢ = 1 at zq.

Now we address the question of relationships between local well-posedness, local sharp
and local weak sharp solutions. Recall that xq € A is a local sharp solution of order ¢ > 0
to (P), xg € LShi(f, A), if one can find a 0-neighbourhood V in X and constant 7 > 0
such that

(f(x) = f(@0)) N (7]|z —2o[|?By —K) =0 forallz € AN (20 + V), f(z) # f(20).
Equivalently, zo € LShI(f, A) iff there is a 0-neighbourhood V in X such that
Tl — 2o]|? < ||f(x) — f(mo)]|- forallze AN (xg+ V), f(x) # f(zo).

Or, xy € LShi(f, A) iff 2 is a local sharp minimum of order ¢ of the function ||f(-) —
f(xo)]| - over A (cf. [147]).

Moreover, xg € LWhi(f, A), f(xg) = n, if there exist a 0-neighbourhood V in X and
7 > 0 such that

f(x) = f(zo) € 7(d(z,Sy))'By —K forze AN(zo+ V), &S,.
PROPOSITION 9.1.5. Let K be a closed convexr pointed cone in a normed space (Y, | - )
with int K # 0. Let n € E(f, A).

(1) (P) is n-Hélder calm of order 1/q at (0,z0) € graph II (Definition 9.1.8) if and
only if xg € LWhi(f, A).



9.1. Well-posed vector optimization problems 99

(ii) (P) is Holder calm of order 1/q at (0,z9) € graphIT (Definition 9.1.7) if and
only if there exists a 0-neighbourhood V' such that the local growth condition of
order q holds for (P) on S = S(f, A)N (2o + V) (cf. Definition 8.2.4).

Proof. (i) By definition, II" is Holder calm of order 1/q at (0,x¢) € graph IT" if there
are a 0-neighbourhood V in X and constants L > 0 and ¢ > 0 such that

ANfin+e—-K)N(zo+V)CS,+L|e|9Bx fore e KyNtBy.
Suppose on the contrary that o ¢ LWhI(f, A), i.e., for each n > 1 there are z, €
AN (xo+ %BX), f(zn) # f(zo), such that

1
F(zn) = (o) € — (d(z0, 5,))"By — K.

Since there exist gy € int K, ||eg]| = 1, and A > 0 such that By C Aeg — K we get

F(an) € (o) + 2 (dlzn, Sy)ep — K.

Hence, z, € II"(2(d(z, Sy))%0), but d(z,, Sy) £ L(A/n)Y/9d(zy,, S;), which means that
IT" is not Holder calm of order 1/q at (0,xz¢) € graph IT".

(ii) By definition, IT is Holder calm of order 1/q at (0,x¢) € graph IT if there are a
0-neighbourhood V' in X and constants L > 0 and ¢ > 0 such that

ANfYE(f,A)+e—-K)N(zg+ V) C S(f,A) + L|¢|/9Bx  for e € Ky NtBy-.

Now, suppose on the contrary that the local growth condition of order ¢ does not hold
for (P) around zg € S(f, A), i.e. for each n > 1 one can find z,, € S(f, A) N (zo + + Bx)
and z, € AN (2, + 2Bx), f(2n) # f(n), such that

F(on) = F(ra) € - (d(zn, S(f, A)*By — K.

By taking € € int K, |leg]| = 1, and X > O such that By C Aeg — K we get
Flen) = F(ra) + 2 (dlzn, S(F, A)))e ~ K.

Hence, 2, € II(2(d(2y, S(f,A)))%0) N (20 + 2By) but

e 58 2 2(2) e 07,0,

which means that IT is not Holder calm of order 1/q at (0,2) € graph IT.
For the converse suppose that (P) is not Holder calm of order 1/¢q. For each n > 1
there exist ¢, € Kg N %By and z, € II(e,) N (x0 + %BX) such that

d(zn, S(f, A)) = a7,
Hence, there exists ,, € S(f, A) such that f(z,) € f(zn) + &, — K and thus
1
f(zn) - f(xn) € E ( (Zn, (fv ))qBY - ICv
which proves that the local growth condition does not hold for (P) around zo. =

Analogously we can prove the local counterpart of Proposition 9.1.3.
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PROPOSITION 9.1.6. Let K be a closed convex pointed cone in a normed space (Y, | - )
with int K # 0. Let n € E(f, A).
(i) If xo € SyNLSh(f, A), then (P) is n-Holder calm well-posed at xo of order 1/q.
Moreover, if S, = {xo}, then (P) is n-Hoélder well-posed of order 1/q at x¢ if and
only if xo € LShI(f, A).
(i) If there exists a 0-neighbourhood V' such that all T € S(f, A)N(xq+ V) are local
sharp of order q with the same constant, then (P) is Hélder calm well-posed at
xo of order 1/q.

Proof. (i) The proof is similar to the proof of Proposition 9.1.3(i).
(ii) Since each local sharp solution is a local weak sharp solution, the conclusion
follows from Proposition 9.1.5(ii). =

9.1.1. Conditions for well-posedness in the outcome space. In this section we
investigate relationships between well-posedness of (P), strictly efficient points and local
strictly efficient points to (P).

As previously, K = int K U {0} and e € K. Recall that yo € C is e-efficient [99],

. if
o € E(C), 3 (yo—e—K)nC =0.

Let C be a subset of a Hausdorff topological vector space Y. According to Defini-
tion 2.2.1, an element yo € C is a strictly efficient point, yo € StE(C), if for every
0-neighbourhood W in Y there exists a 0-neighbourhood O in Y such that

CN(y+O0—K)Cyo+W.
Let ) € E(C). Let II" : Ko = Y be defined as
(9.1) me):={yeC:n+e—yek}
Thus, II" is the n-e-solution mapping 117 for f =id and A = C and
o) =CN(n+e—K).
Let I : K = Y be defined as
(9.2) () :={yeC:E(C)+e—yek}

In other words, N
IHe)=Cn(E(C)+e—-K)

and IT is the e-solution mapping I for f =id and A = C.
The following proposition establishes the relationship between upper Hausdorff semi-
continuity of IT or II" and strictly efficient points.

PROPOSITION 9.1.7. Let X and Y be Hausdorff topological vector spaces and let IC be a
closed conver pointed cone in' Y with int K # (). Let C' be a subset of Y and let n € E(C).

(1) II" is upper Hausdorff semicontinuous at € = 0 if and only if n € StE(C).
(ii) If all n € E(C) are uniformly strictly efficient in the sense that for any O-
neighbourhood W' there exists a 0-neighbourhood O such that for any n € E(C)

CNnin+0-K)Cn+W,

then IT is upper Hausdorff semicontinuous at € = 0.



9.1. Well-posed vector optimization problems 101

Proof. (i) Let n € StE(C) and let W be a 0-neighbourhood in Y. There exists a 0-
neighbourhood O in Y such that
CNin+0—-K)Cn+W.

Hence, CN(n+e—K) Cn+ W for any € € O N Ky, which proves that IT" is upper

Hausdorff semicontinuous at ¢ = 0. In particular, for ¢ = 0 we have C' N (n — K) = {n}.
Suppose now that " is upper Hausdorff semicontinuous at ¢ = 0 and take any

0-neighbourhood W in Y. There exists a 0-neighbourhood O such that

Ie)=Cn(n+e—K)cn+W foreeONK,.
Take any 0 # ¢ € O N K. There exists a 0-neighbourhood O in Y such that O C ¢ — K
and hence C'N (n+ O — K) C n+ W, which completes the proof of the first assertion.
(ii) Let W be a 0-neighbourhood in Y. By the uniform strict efficiency of all n € E(C),

there exists a 0-neighbourhood O in Y such that

CNnin+O0—-K)cn+W forany ne EC).
Hence, for any € € O N K,

CNn(n+e—-K)ycn+W forany ne E(C)
and consequently for any € € O N Ky,

CN(E(C)+e-K)= ) Cn(n+e—-K)CEC)+W,
neE(C)

which proves that I is upper Hausdorff semicontinuous at € = 0. In particular, for e =0
we have CN (E(C) — K)=E(C). n
PROPOSITION 9.1.8. Let X and Y be normed spaces and let K be a closed convex pointed
cone in'Y with int C # 0. Let C C Y and n € E(C).

(1) I s upper Hélder of order 1/q, ¢ > 0, at e =0 if and only if n € StE(C).
(ii) If all n € E(C) are strictly efficient of order ¢ > 0 with the same constant [3,
then II is upper Holder of order 1/q at e = 0.

Proof. (i) Suppose that n ¢ StEY(f, A). For each n > 1 there are y, € C, b, € By,
k, € K such that 1
Yn —N = E ”yn - 'r]qun —kn-

Since int KC # (), there is g € int K such that By C g — K. Hence,
1
Yn — 1 = EHyn —n||%0 — £,, where £, € K.

This means that y,, € ﬁ"(%”yn —1||%0). On the other hand, ||y, — || £ #Hyn =7,
which proves that II" is not upper Holder of order 1/q.
(ii) The proof is similar. m

PROPOSITION 9.1.9. Let K be a closed convex pointed cone in a normed space (Y, || -|)
and int K # 0. Let n € E(C). If II" is Hélder calm of order 1/q at (0,n) € graph IT",
then n € LStE(C) .
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Proof. By definition, II" is Holder calm of order 1/q at (0,7n) € graph II7 if there are a
neighbourhood V of zero in Y and constants ¢ > 0, L > 0 such that
CN(n+e—K)Nn+V)Cn+Lle|9By foree KoNtBy.

Suppose that n € LStE(C). For each n > 1 one can find y, € CN(n+ %By) such that
Ly = nl|? > |lyn — nl|—. This means that

1
Yn =M E lyn —n[lBy — K,

ie, y, —n = %Hyn — |9, — ky, with b, € By, k, € K. Take any € € int K, |lg]] = 1.
Since b, € \e — I, for all n > 1 and a certain A > 0, we get

A
Yn =1+ . lyn —nll% — L., £, € K.

Hence, y,, € ﬁ”(%”yn — /%), and y, —n & 2L||y,, — n|| By, which means that II" is not
Holder calm of order 1/q at (0,7) € graph II". =

PROPOSITION 9.1.10. Let C be a subset of a Hausdorff topological space Y. If (DP) holds
for C| then II is K-upper Hausdorff semicontinuous at € = Q.

Proof. Tt is enough to observe that II(s) C I1(0) + K. =

9.2. Hausdorff continuity of solutions

In the following sections we provide sufficient conditions for Hausdorff, Lipschitz and
Holder continuities of the solution mapping S. To formulate these conditions we appeal
to the notions of sharpness and weak sharpness of solutions to (P) and/or (P,). In view
of the results of the previous sections analogous conditions can be formulated with the
help of well-posedness.

In this section we investigate upper and lower Hausdorff continuities of S at ug. The
main assumptions are the containment property and the well-posedness in the sense
defined in previous sections.

THEOREM 9.2.1. Let X and U be topological spaces and let Y be a Hausdorff topological
vector space. Let K be a closed convex pointed cone in'Y with int K # 0. If

(i) f: X =Y is uniformly continuous on X,
(ii) A: U =3 X is Hausdorff continuous at ug € dom A,
(iii) (P) is Hausdorff well-posed,
(iv) (CP) holds for f(A),
then S is upper Hausdorff semicontinuous at ug € dom S.

Proof. Let V be 0-neighbourhood in X. Let V; be a 0-neighbourhood in Y such that
V1 + Vi C V. By the well-posedness of (P), there exists a 0-neighbourhood W such that

() c (0)+V; foreeWnNK,.
Since IT(0) = S(f, A), the above inclusion can be rephrased as
(9.3) AR B, A)+ W0 Ky — K) € S(f, A) + Va.
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Let W7 be a 0-neighbourhood in Y such that Wy + W; € W and let W5 be a 0-
neighbourhood in Y such that Wy, ¢ W N Ky — K. By (CP), Proposition 5.1.3, there
exists a O-neighbourhood O in Y such that for any x € A with f(z) € E(f, A) + W5 there
exists T € S(f, A) such that

flz)— f(Z)+0 C K.
Let O; be a 0-neighbourhood in Y such that Oy + O; C O. By the uniform continuity of
f on X, there exists a 0-neighbourhood O3 in X such that

flx+02) C f(z)+ 0Oy forallze X.

Moreover, by the Hausdorff continuity of A, there exists a neighbourhood Uy of ug such
that
ACA(U)-FVlﬂOQ, A(u)CA+V1ﬂ02.

Take any z € S(f, A(u)) for u € Uy. There exists x € A such that z € z + V; N Os.
Consequently, f(z) € f(z) + Os.
If f(z) € E(f,A) + Wy — K, then f(z) € E(f,A) + W5 and by (CP), there exists
T € S(f, A) such that
fl@)— f(Z)+ 0O CK.

By the Hausdorff continuity of A, there exists z € A(u) such that z € Z+V; NOs. Hence,
f(z) € f(T)+ O1 and so f(z) = f(Z) since otherwise

f(2) = f(Z) € (f(2) = (@) + (f (@) = f(2)) + (f(z) = f(2)) C f(T) = f(x) + O C =K,
which is impossible because z € S(f, A(w)). If f(x) € E(f,A) + W — K, by (9.3),
x € S(f,A)+V; and

zex+ViNOy CS(f,LA)+Vi+ViN0Os CS(f,A)+V,
which completes the proof. m

The following examples show that well-posedness does not imply the containment
property of the set f(A).

EXAMPLE 9.2.1. Let us consider problem (P) (see Figure 9.2) with £ = RZ, and [ :
R — R?,
(x,el7®) ifx>1,
flx) = o
(x,z*) if0<x<1,
under the constraint z > 0.
In Example 9.2.1 problem (P) is Hausdorff well-posed but the set f(A) does not have

the containment property (CP). In a simple modification presented below the set f(A)
has the containment property.

EXAMPLE 9.2.2. Let us consider the vector optimization problem (see Figure 9.2) with
K:Rﬁ_ and f: R — R? of the form

flz) = (z, 5+ 5e'7%) ifz>1,
(x,2?) ifo<xz <1,

under the constraints > 0.
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THEOREM 9.2.2. Let X and U be topological spaces and let Y be a Hausdorff topological
vector space. Let KC be a closed convex pointed cone in'Y with int IC # 0. If

(i)
(i)

(iii)

f X — Y is uniformly continuous on X, and A : U = X is Hausdorff
continuous at ug € dom A,

there exists a neighbourhood Uy of ug such that all (P,) for u € Uy are uniformly
Hausdorff well-posed in the sense that for any 0-neighbourhood V in X there
ezists a 0-neighbourhood W in'Y such that

Aw) N fFHE(f, A(u) + WN Ky —K) CS(f,A(u))+V  for all u € Uy,

(CP) holds uniformly for f(A(u)), u € Uy in the sense that for any 0-neighbour-
hood W in 'Y there exists a 0-neighbourhood O in'Y such that for any u € Uy
and z € A(u) f(z) € E(f,A(u)) + W there exists Z € S(f, A(u)) such that

flz)=fZ)+0CKk,

then S is lower Hausdorff semicontinuous at ug € dom A.
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Proof. Let V be a 0-neighbourhood in X. Let V; be a 0-neighbourhood in Y such that
Vi1 + Vi C V. By the (uniform) well-posedness of (P,), there exists a 0-neighbourhood W
such that

(9.4) Alu) 0 fHE(f, Aw) + W N Ko = K) © S(f, A(u) + Vi
for u € Uy.

Let W7 be a 0-neighbourhood in Y such that W; + W; C W and let W5 be a 0-
neighbourhood in Y such that Wy € W N Ky — K. By (CP) and Proposition 5.1.3, there

exists a 0-neighbourhood O in Y such that for any z € A(u) with f(z) & E(f, A(u)) +Wa
there exists z € S(f, A(u)) such that

fe)—fE+0CK.

Let O; be a 0-neighbourhood in Y such that Oy + O; C O. By the uniform continuity of
f on X, there exists a 0-neighbourhood O3 in X such that

flx+03) C f(z)+ 0Oy foralzelX.

Moreover, by the Hausdorff continuity of A, there exists a neighbourhood U of ug such
that
ACA(U)—F‘GQOQ, A(U)CA—FVlﬂOQ

for u € Uy NU;. Take any T € S(f, A) and u € Uy N U;. There exists z € A(u) such that
z € T+ V1 N Oy. Consequently, f(z) € f(T)+ O1.
If f(2) € E(f,A(u)) + Wa — K, then f(z) € E(f, A(u)) + Wa. By (CP), there exists
z € S(f, A(u)) such that
f)—fE+0cCK
and by the Hausdorff continuity of A, there exists x € A such that x € z 4+ V; N Os.
Consequently, f(z) € f(Z) + Oy and

f(@) = f(@) e (f(z) = [(2) + (F(2) = [(2)) + (f(2) = f(Z) C f(Z) = f(2) + O C =K,
which contradicts the fact that Z € S(f, A).
Hence, f(z) € E(f, A(u)) + Wo — K. Then by (9.4), z € S(f, A(u)) + V1. This implies
that
Tez+VinO2 CS(f,Aw)+Vi+VinOs C S(f,A(u))+V,

which completes the proof. m

9.3. Lower Lipschitzness of solutions

In this section we derive sufficient conditions for lower Lipschitz continuity of S(u) =
S(f,A(u)) at (ugp,zg) € graphS and at ug € dom S. By assuming that xg is sharp of
order 1 we prove lower Lipschitzness of S at (ug,z9) € graphS. Correspondingly, to
obtain lower Lipschitzness of S ug € dom S we assume that all 2y € S(f, A) are sharp of
order 1 with the same constant 7.

Recall that for any n € E(f, A),

Sy = f{a € S(f,4): f() =}



106 9. Stability of solutions

Correspondingly, for any u € U and n € E(f, A(w)),
Su(u) = {2 € S/, A(w)) - f(z) = ).
THEOREM 9.3.1. Let f: X — Y be Lipschitz with constant Ly > 0. Assume that
(i) A: U = X is Lipschitz at ug € dom A with constants L, > 0, t > 0,
(i1) (DP) holds for all (P,), u € B(uo,t),
(iii) all xg € S(f,A) are global sharp solutions to (P) of order 1 with the same
constant T > 0, i.e. for anyn € E(f, A) and zo € S(f, A),
F@) — Fao) €7l — 20| By — K forze A\ S,
Then P is lower Lipschitz at ug € domP, i.e.,
E(f,A) € E(f,A(u)) + (LLa + 2L Lo/7)|lu — uo||By  for u € B(uo, t).
Moreover, if instead of (iii) we assume that
(iv) all z € S(f, A(u)) for u € B(ug,t) are global sharp solutions to (P,) of order 1
with the same constant T > 0, i.e. for any n € E(f, A(u)),
)~ £ g rlle— 2By —K  for z € A(u) \ Sy(u).
then S is lower Lipschitz at uy € dom S. Precisely,
S(f,A) C S(f,A(u)) + (2LfLo/T + Lao)|lu — uo||By  for u € B(ug,t).

Proof. We start by proving lower Lipschitz continuity of S at ug € dom S. Note first that
by (ii), S(f, A(w)) # 0 for u € B(ug,t), i.e. ug € intdomS. Take any z¢ € S(f, A) and
u € B(ug,t). By (i), there is z € A(u) such that

lzo = 2]l < Lallu = uol-

If z € S(f, A(u)), the conclusion follows. Otherwise, by (DP), there exists Z € S(f, A(u))
such that f(2) € f(z) — K and f(z) £ f(2). If ||z — z|| < 22224 ||u — ug|, then

T

[0 = Z|| < (Lo +2La Ly /7)1 = uol|

and the conclusion follows. So, assume that
_ 2L,L
(9.5) Iz =2l > =2 — wol]-
By (iv), z € S(f, A(u)) is a global sharp solution to (P,). Since f(z) # f(Z) we have
f(2) = f(z) & 7lz - Zl|By — K.
By (i), there exists € A such that ||z — z|| < Ly|lu — up|| and
1F(Z) = f(@)]| < LyLallu —uoll and [[f(2) = f(zo)|| < LyLallu— uoll
Hence, in view of (9.5),

1f(z0) = F@ = 1£(2) = R = £ () = FE = [[(2) = F (o)l

> 7|z — Z|| — 2L Ly|lu — ugl| > 0,
which proves that f(z) # f(z0). Hence, since zg is a global sharp solution to (P),
(9-6) f(@) = f(zo) & Tl|lz — x0[| By — K.
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On the other hand,
(9.7) f(x) = fzo) = (f(z) = £(2) + (f(2) — f(2)) + (f(2) — f(20))
S 2LfLaH’U, - UOHBY - K.

By (9.6) and (9.7),
9L L,

T

[l — ol < [l = woll.
Consequently,

xo = 2|l < [lzo — @[l + [lz — 2| < (La + 2Ly La/7)|lu — uoll,
which proves the assertion.

To prove that P is lower Lipschitz at up € domP take any n € E(f, A) and u €
B(ug,t). There exists T € S(f, A) such that f(Z) = 7. By (i), there exists z € A(u) such
that

17— z[| < Lallu — ol and [|f(Z) — f(2)]| < LyLallu— uoll

If z € S(f, A(u)), then f(z) € E(f, A(u) and the conclusion follows. Otherwise, there
exists z € S(f, A(u)) such that f(Z) € f(z) — K and f(Z) # f(2).
By (i), there exists € A such that

Jo = 2 < Lalu—uoll and [[f(z) = F(Z)]| < LLallu— uol).
If f(z) = f(T), the conclusion follows. If f(z) # f(T), by (iii) and by Proposition 8.1.1,
(@)~ [(z) ¢ L—f If (@) — £(@)| By — K.
On the other hand, as before,
f@) = f(@) = (f(x) = F(2) + (f(2) = f(2) + (f(2) = f(T))
S 2LfLaH’U, — UOHBY — K

This proves that
2

o 2Ly
1F (@) = F@N < —— llu ~ wol|

and consequently
1£@) = fEI < 1f @~ f@)l +1f(2) = fFEI < (LyLa +2LFLa/7)llu — uol,
which proves the assertion. m

REMARK 9.3.1. 1. The first assertion of Theorem 9.3.1 can be deduced from Theorem
4.1.3 and hence assumption (iii) of Theorem 9.3.1 can be weakened by assuming that all
n € E(f,A) are strictly efficient points of order 1 with the same constant 5. Then the
conclusion is that P is lower Lipschitz continuous at ug € dom P, i.e.
E(f,A) C E(f,A(u)) + (LyLq +2LsLo/0)||lu — uol|By  for u € B(ug,t).

2. Moreover, if a given 1 € E(f, A) is strictly efficient of order 1 with constant 5 > 0,

then P is lower Lipschitz continuous at (ug,n) € graph P, i.e.
ne E(f,A(uw)) + (LfLq +2LsLo/0)||lu — uol|By  for u € B(uo,t).

Clearly, the constants § appearing in the above estimates may be different.
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We say that o € S(f, A) is strongly sharp of order q > 0 if there exists a constant
7 > 0 such that

(9.8) f(@) = f(xo) € Tl|x — xo||By — K for x € A, x # xo.

This condition implies that f(z) # f(xo) for x # xo. Hence, each strongly sharp solution
is sharp and S;,, = {zo}, where f(x¢) = n. With this notion we can prove the following
variant of Theorem 9.3.1.

THEOREM 9.3.2. Let f: X — Y be Lipschitz with constant Ly > 0. Assume that

(i) A:U = X is Lipschitz at ug € dom A with constants L, > 0, t > 0,
(i1) (DP) holds for all (P,), u € B(uop,t),
(iii) each xg € S(f,A) is a global strongly sharp solution of order 1 to (P) with
constant T > 0.

Then P is lower Lipschitz at ug € domP,i.e.,
E(f,A) e E(f,A(w)) + (QL?La/T + L¢L,)|ju —ug||By  for any u € B(ug,t)
and S is lower Lipschitz at ug € dom S, i.e.,
S(f,A) C S(f,A(u)) + (2LfLo/T + L) |lu — wo||Bx  for any u € B(ug,t).

Proof. In view of Theorem 9.3.1 we only need to prove the lower Lipschitz continuity of
S. Take any xg € S(f, A) and u € B(ug,t). By (i), there is z € A(u) such that

lzo = 2]l < Lallu = uol-

If z € S(f, A(u)), the conclusion follows. Otherwise, by (DP), there exists z € S(f, A(u))
such that f(z) € f(z) — K and f(z) # f(Z). By (i), there exists € A such that

[z — 2|l < Lallu — uoll,
and
1f(Z) = f(@)| < LyLallu—uol and |[[f(2) — f(zo)|| < LyLallu— uol-

If x = z¢, the conclusion follows. Hence, assume that x # xq. Since zg is a global strongly
sharp solution to (P),

(9.9) 1(@) — f(wo0) & Tllw - 20| By — K.

On the other hand,

(9.10) f(@) = fzo) = (F(z) = £(2) + (f(2) — f(2)) + (f(2) — f(z0))
S 2LfLa||’LL — UOHBY - K

By (9.9) and (9.10),

[l = ol| < [l = uol|

2L¢L,
T
Consequently,
2o = 2| < [lwo — 2/l + llz = 2| < (La + 2Ly La/7)llu — uol,
which proves the assertion. m

By assuming weak sharpness of solutions to (P) we get the following result.
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THEOREM 9.3.3. Let f: X — Y be Lipschitz with constant Ly > 0. Assume that

(i) A is Lipschitz at ug € dom A with constants L, > 0 and t > 0,
(ii) (DP) holds for (P,), u € B(ug,t),
(iii) all z € S(f, A(u)) for u € B(uq,t) are weak sharp solutions to (P,) of order 1
with constant T > 0.

Then § is lower Lipschitz at ug € domS. Precisely,
S(f,A) C S(f,A(w))+ (Lo +2L¢Los+2LoLs/T)||lu —uol|Bx  for u € B(uo,t).

Proof. Let T € S(f,A) and u € B(ug,t). By Theorem 8.2.2, there exists z € S(f, A(u))
such that

1f(@) = f(D) < (LyLa+2L3La/T)lu — uol.-
By (i), there exists z € A(u) such that
17 = 2| < Lallu —uoll and [[f(Z) = f(2)]| < LyLallu — uol|

If z € S(f, A(u)), the conclusion follows. Suppose that z ¢ S(f, A(u)). We have

f(2) = f(2) = (f(2) = f@) + (f(@) = f(2)) € (2LyLa + 2L} La/7) ||t — uo|| By
On the other hand, since zZ € S(f, A(u)) is weakly sharp, f(Z) =n and f(z) # f(2),

f(2) = [(Z) & 7d(2, 5y (u)) By = K,

where S, (u) = {z € S(f, A(w)) : f(z) =n}. Consequently,
d(Z,S(f, A(u)) < d(Z, Sy(u)) < d(T, 2)+d(z, Sy(u)) < (La+2LgLa+2La L} /7)|u—uol|. w

9.4. Upper Lipschitzness of solutions

In this section making use of sharp and weak sharp solutions we prove upper Lipschitzness

of S.
THEOREM 9.4.1. Let f: X — Y be Lipschitz with constant Ly > 0. Assume that

(i) A is Lipschitz at ug € dom A with constants L, > 0 and t > 0,
(i1) (DP) holds for (P),
(iii) all z € S(f, A(w)) for uw € B(ug,t) are sharp solutions to (P,) of order 1 with
constant T > 0.
Then
e S is upper Lipschitz at ug € dom S, i.e.,
S(f,A(uw)) C S(f,A)+ (Lg +2LoLy/7)|lu —uo||Bx  for u € B(ug,t),
e P is upper Lipschitz at ug € dom P, i.e.,
E(f,A(u)) C E(f,A)+ (LyLa 4 2LoL}/7)|Ju — ug||By  for u € B(ug, t).

Proof. Let z € S(f,A(u)), u € B(ug,t). By the upper Lipschitzness of A, there exists
x € A such that
[l = 2| < Lallu = uol|.
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If x € S(f, A), the conclusion follows. Otherwise, by (DP), there exists T € S(f, A) such
that f(Z) € f(x) — K and f(x) # f(Z).

If |la—Z| < %Hu—uoﬂ, the conclusion follows. Otherwise, ||z—Z]|| >
By the lower Lipschitzness of A, there exists z € A(u) such that

2L¢ 1L,
T

[[u—wol|

[ = 2|l < Lallu — uo]|-
Since f is Lipschitz,
(9.11) f(2) = f(Z) = (f(z) = (@) + (f(@) - f(2)) + (f(2) = (2))
S 2LfLaH’U, — UO”BY - K.
Moreover,
(9.12) 1£(z) = RN = (@) = @I = [[f(2) = fFEI = 1F (@) = F(2)]l
> 7l — Z|| — 2L Ly |lu — ugl| > 0,
which proves that f(z) # f(2), and since z € S(f, A(u)) is a sharp solution to (P,) we
get
(9.13) f(z) = f(2) g7z - 2By — K.
By (9.11) and (9.13), [z — 2|| < 222 |u — u || and finally
2= 2l < 1z — 2l + |2 — 2l < (Lo +2L; Lo/ lu — woll
To see the second assertion, take any 1 € E(f, A(u)). There exists Z € S(f, A(u))
such that n = f(Z). By (i), there exists x € A such that ||z — z|| < Lg|lu — ug|. If
x € S(f,A), the conclusion follows. If x ¢ S(f, A), by (ii), there exists T € S(f, A)
such that f(Z) € f(z) — K and f(z) # f(Z). By (i), there exists z € A(u) such that
Iz = Z|| < La|lu — uo||- If f(Z) = f(2), the conclusion follows. Otherwise,
f(2) = f(2) = (f(2) = (@) + (f(Z) = f(2)) + (f(z) = f(2)) € 2Ly Lallu — uo[| By — K
and since zZ € S(f, A(u)) is a sharp solution to (P,),

f(2) - f(2) ¢ L—f 1£(2) — f(2)| By — k-

2
Consequently, || f(z) — f(2)|| < @Hu — up|| and

[(@) = f(2) = (f(@) = f(2)) + (f(2) = f(2))
€ (LyLa +2L3Lo/7)|lu— ug||By. =

Recall that (SDP) of order 1 with constant a > 0 holds for (P) if for any « € A there
exists T € S(f, A) such that

f(@) = f(@) + allf(z) - f(@)||By C K.

By using the strong domination property (SDP) of order 1 we can prove the following
variant of Theorem 9.4.1 for closed convex pointed cones with nonempty interior.

THEOREM 9.4.2. Let K be a closed convex pointed cone with int K # 0. Let f : X — Y
be Lipschitz with constant Ly > 0. Assume that
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(i) A is Lipschitz at ug € dom A with constants L, >0 and t > 0,
(i1) (SDP) of order 1 with constant « > 0 holds for (P).

Then P is upper Lipschitz at ug € dom P, i.e.,
B(f, A()) € B(f, A) + (LyLa + 2LoLyja)|u — uo| By  for u € Blup, ).
If moreover,
(iii) all T € S(f, A) are sharp of order 1 with constant T > 0,
then S 1s upper Lipschitz at ug € dom S, i.e.,
S(f,A(u)) C S(f, A) + (Lo + 2LaLfc/a7')||u —ug||Bx  foru € Bl(ug,t).

Proof. To see the first assertion, take any n € E(f, A(u)), v € B(uo,t). There exists
z € S(f, A(u)) such that n = f(2). By (i), there exists € A such that

2 = 2| < Lallu — uoll.
Ifx € S(f,A), then || f(Z) — f(2)|| < LyLy||u—uol|| and the conclusion follows. Otherwise,
by (SDP), there exists T € S(f, A) with f(x) # f(T) such that
F(@) - 1)+ allf(@) - ()| By C K.

By (i), there exists z € A(u) such that ||z — T|| < Lg|lu — wol|. If 2 € S(f, A(u)), the
conclusion follows. If z & S(f, A(u)), then

(@) - @) < 22ile

«

[l = uo|

since otherwise

€ (f(@) — f(z)) +2La Ly By
C (f(@) = f(2) + ol f(z) - f(@)| By
Cc K,

which contradicts the fact that Z € S(f, A(u)). Finally,
f@) = @) =(f(Z) - f(@) + (f(z) = f(Z) € (LyLa + 2LsLa/a)|lu — uol| By,

which proves the first assertion.
To prove the second assertion take any z € S(f, A(u)), u € B(ug,t). By (i), there
exists z € A such that

[ = 2[| < Lalu — uol|.

If z € S(f, A), the conclusion follows. Otherwise, by (SDP), there exists T € S(f, A) with
f(x) # f(Z) such that

f(x) = f(@) +allf(z) - f@)|By C K.
In the same way as above we argue that

£(&) — $@) € 2L u — o] By.
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Since T is a global sharp solution of order 1 to (P) and f(z) # f(T),
T
fl@) = f(@) & 7~ llz = Zl|By — K
f

2L§La

and consequently ||z — Z|| < —L

lu — ugl|. Hence,
12 =) < |2 — =l + |z — Z|| < (La + 2L La/ar)|lu — uol|.
Making use of weakly sharp solutions we obtain the following result.
THEOREM 9.4.3. Let f: X — Y be Lipschitz with constant Ly > 0. Assume that

(i) A is Lipschitz at ug € dom A with constants L, >0 and t > 0,
(ii) (DP) holds for (P,) and u € B(uo,t),
(iii) all x € S(f, A) are weakly sharp solutions to (P) of order 1 with constant T > 0.

Then S is upper Lipschitz at ug € dom S, i.e. for any u € B(uo,t),
S(f, A(u)) € S(f, A) + (La + 2Ly Lo +2L2 L /7)||u — uo|| Bx .
Proof. Let z € S(f, A(u)), u € Uy. By Theorem 8.2.3, there exists T € S(f, A) such that
f(Z) = f(@) € (LaLy + 2L L3 /7)|lu — uo||By-.
By the upper Lipschitzness of A, there exists x € A such that
17— ol < Lalu—uoll and [[£(2) — f(@)]| < LyLallu— wol).
If x € S(f, A), the conclusion follows. Otherwise,
F@) = £@) = (F@) — FE) + () - 1)
€ (2LsLq + 2L L7 /7)|lu — ugl| By
On the other hand, since T € S(f, A) is a global weakly sharp solution of order 1 with
f(@) =nand f(z) # f(T),
f(z) — f(T) & 7d(x, S,)By — K.
Consequently, d(x, S,) < (2LyL, + 2LaLfc/7')||u — ug|| and
d(z,5(f,A)) <d(z,8,) <dZz,x)+d(z,Sy)
< (La+2LsLa +2La L7 /7)|lu — ug)|. m

9.5. Lower Holder and lower pseudo-Hdélder continuity of
solutions

In this section we investigate lower Holder continuity of the solution mapping S at ug €
dom S and lower pseudo-Holder continuity of S at (ug,2zp) € graphS. The spaces X,
Y and U are assumed to be normed spaces with open unit balls Bx, By and By,
respectively.

Recall that for a set-valued mapping A : U = X, A(u) = A(u), A(ug) = A, and
f:X — Y the set-valued mapping Ay : U =3 Y is given by

(9.14) Ag(u) = f(A(w)),  Aj(uo) = f(A).
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THEOREM 9.5.1. Let K be a closed convex pointed cone in'Y. Assume that

(1) there exists 0 < t < 1 such that all Z € S(f, A(u)) for u € B(ug,t) are sharp
solutions to (P,) of order ¢ > 1 with constant T > 0, i.e.,

[ = @) ¢rlz=2|"By =K for z € Au), f(2) # f(2),
(i) f: X —Y is Lipschitz on X with constant Ly > 0 and A is Hélder continuous
of order p > 1 at ug € dom A with constants L, >0 and 0 <t <1,
(iii) (DP) holds for all f(A(u)) and u € B(ug,t).

Then S is lower Hélder continuous of order % at ug € domS. Precisely,
S(f,4) € S(f, A(w) + (La + (2LaLy /7)) u — uo||P/* Bx
for u € B(ug,ts).
Proof. Take u € B(ug,t) and T € S(f, A). By (i), there exists z € A(u) such that
17— 2|l < Lallu —uol|” and [[f(Z) = f(2)| < LyLallu — uoll”.

If z € S(f, A(u)), the assertion follows. If z & S(f, A(u)), then by (iii), there exists
z € S(f,A(u)) such that f(2) € f(2) — K. If ||z — Z|| < (2LfLa/7)"||u — uo[?/?, the

conclusion follows. Hence, assume that
Tllz = Z||7 > 2Ly Lg|ju — uo||®.
By (ii), there exists € A such that
lz = 2| < Lallu — uol|” and ||f(x) = f(Z)|| < LyLallu — uoll”.
Since z € ShY(f, A(u)) and f(z) # f(Z) we have
f(2) = @) ¢7llz—2|"By —K
and
1f (@) = f@I = £ (2) = FEI = [/ (@) = FE = 1£(2) = f(@)]
> 7|z — Z||? = 2Ly Lo |ju — uo||” > 0.
This proves that f(z) # f(Z) and in view of the fact that T € Shi(f, A) we get
(9.15) f(x) = f(Z) & 7lle —z("By — K.
On the other hand,
f@) = f(@) = (f(z) = f(2)) + (f(2) = f(2)) + (f(2) = f(Z)) € 2Ly Lallu — uo||” — K,
which together with (9.15) leads to the inequality
lz — || < 2Ly Lo /7)V".
Finally,
17 = 2| < [l = 2| + |z = Z|| < (La + (2LgLa /7)) lu = uo||P/7,
which proves the assertion. m

Now we prove sufficient conditions for lower pseudo-Holder continuity of S at (ug, xq)
€ graph S.
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THEOREM 9.5.2. Let K be a closed convexr pointed cone in Y. Let xg € S(f,A) and
f(zo) = n. Assume that

(1) there exists 0 < t, < 1 such that all Z € S(f, A(u) N (o + V) for u € B(ug,tq)
are local sharp solutions to (P,) of order ¢ > 1 with constants T > 0 and t; > 0,
i.€.,

f(2)=f(@) ¢7lz—21'By =K for z € A(u) N (Z+t:Bx), f(2) # (%),

(ii) f: X — Y is Lipschitz around xo with constant Ly > 0 and A is pseudo-Holder

continuous of order p > 1 at (ug,z¢) € graph A with 0-neighbourhood V and

constants L, and t,,

(iii) (LDP) holds for all f(A(u)) and u € B(ug,ts).
Then S is lower pseudo-Holder continuous of order p/q at (ug,xo) € graphS. Precisely,
S(f,A) N (w0 + V) C S(f, A(w)) + (Lo + (Lo Ly /7)) |lu = uo|[/* Bx
for u € B(ug,t) with t = min{t,,ts}.

Proof. Take u € B(ug,t) and T € S(f,A) N (zo + V). By (ii), in view of the lower
pseudo-Holder continuity of A, there exists z € A(u) such that

17 — 2| < Lallu —uol|” and [[f(Z) = f(2)Il < LyLallu— uol/”.

If 2z € S(f,A(u)), the assertion follows. If z & S(f, A(u)), then by (iii), there exists
z € S(f,A(u)) such that f(2) € f(2) — K. If ||z — Z|| < (2LsLa/7)"||u — uol[?/?, the
conclusion follows. Hence, assume that

7|z = 2[|* > 2L Lalu = uoll”-
By the upper Holder continuity of A, there exists € A such that
[ = 2|l < Lallu —uol/” and |[f(x) = f(Z)| < LyLallu — uol”.
Since z € ShY(f, A(u)) and f(z) # f(Z) we have
f(2) = f(Z) ¢7lz—2'By =K

and
1 (@) = f@I = £ (2) = FEI = [/ (@) = FE = 1£(2) = f(@)l
> 7|lz — Z||? = 2L Lo |ju — uo||” > 0.
This proves that f(x) # f(T) and in view of the fact that T € She(f, A) we get
(9.16) J@) — 1@ ¢ e — 7By — K.
On the other hand,
f(x) = f(@) = (f(2) = F(2) + (f(2) = F(2)) + (f(2) = f(T)) € 2L Lallu — uo||” — K,
which together with (9.16) leads to the inequality

lz = Z|| < (2LsLa/7)V/".
Finally,

Iz — 2| < lle =2l + llz — 2|l < (Lo + (2LsLa /7)) Ju — [P/,

which proves the assertion. m
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9.6. Upper Holder continuity and Holder calmness of solutions to
parametric problems

In this section we investigate Holder calmness of S at (ug,zg) € graph S. The spaces X
Y and U are assumed to be normed spaces with open unit balls Bx, By and By, respec-
tively. Analogous results for scalar optimization problems were obtained by Bonnans and
Shapiro ([39, Sec. 4.4.2]) and Bonnans and Ioffe [38].

Recall that for a set-valued mapping A : U = X, A(u) = A(u), A(ug) = A, and a
mapping f : X — Y the set-valued mapping A; : U =2 Y is given by

(9.17) Ap(u) = f(A(u)), Ayf(uo) = f(A).
We start with the result on Holder calmness of P.

THEOREM 9.6.1. Let K be a closed convex pointed cone in Y with int IC # 0. Let zg €
S(f,A). Assume that

(i) Ay given by (9.17) is pseudo-Lipschitz of order p > 1 at (uog, f(x0)) € graph A
with a neighbourhood W of zero in Y, W C tyBx, and constants L, > 0 and
t>0,

(ii) the local strong domination property (LSDP) of order ¢ > 1 holds for f(A)
around f(zo) with the neighbourhood W and constant o > 0.

Then P is Hélder calm at (ug, f(x0)) € graph P. Precisely, there is a neighbourhood W
of zero in'Y such that

E(f, A(w) N (f(wo) + W) C E(f, A)) + Lg(La + 2Ly La /) 4) u = uo|”/¢
for u € ug + tBy.

Proof. Let W be a neighbourhood of zero in Y such that W + L,tBy C W. Take any
f(z) € E(f, A(u)) N (f(zo) + W), u € ug + tBy. By the pseudo-Lipschitzness of A at
(uo, f(zo)) € graph A, there exists z € A such that

1f(x) = F(2)|| < Lallu — uol[”.
Clearly, f(z) € f(xo) + W. By (LSDP) of order ¢ > 1 around f(x¢), there exists z €
S(f,A) such that

allf(z) = fEI < [If(z) = fFE+
By the lower pseudo-Lipschitzness of A at (ug, f(x¢)) € graph A, there exists T € A(u)
such that

1£(Z) = f@)| < Lallu — uo”,
We have f(Z) — f(z) = [f(Z) — f(2)] + w, where
w=[f(@) = fEI+[f(2) = f(z)] and |w| < 2Lallu—uol/”.
Hence ||w|| > ||f(2) — f(Z)||+ since otherwise
fl@) = @) =[f(2) - FE] +w ek,
contrary to the efficiency of f(x) over f(A(u)). Consequently,
al[f(2) = FEI? < llwll < 2Lal[u — uol”,
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and
(9.18) 17 () = F) < (2La/a) ! |u — uol|P/.
Hence,
1£(@) = FE < 1F (@) = F +11£(z) = FEI < (La + (2La/a) ™) [lu = P/,
which proves the assertion. m

THEOREM 9.6.2. Let K be a closed convex pointed cone in'Y with int K # 0. Let zg €
S(f,A) and let f : X — Y be locally Lipschitz at xo with constants Ly > 0 and t > 0.
Assume that

(i) A is pseudo-Lipschitz at (ug,zo) € graph A with neighbourhood V' of zero in X,
V C tBx, and constants L, > 0 and t,
(i1) (LFDP) holds around xo with the neighbourhood %V and constant o > 0,
(iii) the growth condition of order ¢ > 1 holds around xy with the neighbourhood V/
and constant T > 0.

Then S is calm of order 1/q at (ug,xo) € graph S. Precisely,
S(f, A(u) N (zo + AV) C S(f, A)) + (La + (2L La /1)) lu — ||/ Bx
for u € B(ug,t) and a certain 0 < X\ < 1/2.

Proof. By taking t small enough, we can choose 0 < A\ < % such that AV +tL,Bx C %V.
Take any = € S(f, A(u)) N (o + AV), u € ug + tBy. By (i), there exists z € A such that

[l = 2[| < Lalu — uol|.
We have z — xg = (2 — ) + (z — @p) € tLoBx + AV C 3V. By Lipschitzness of f,
(9-19) 1f(2) = f(2) < LyLallu = uol| -
Since (LFDP) holds around z, there exists z € S(f, A) N (zo + 3V) such that
allz =zl < |1f(2) = FE)l+
By (i), there exists T € A(u) such that
17 =2l < Lallu — uol,

(%—xo) €t.LaBx+1V C V.Wehave f(z)—f(z) = [f(2)—f(2)]+w,

[wll < 2L Lalu — uol|-
Since x € S(u), we have |w| > ||f(z) — f(Z)||+ and thus,
allf(z) = f(2) < aLyllz — 2| < Lyllwl| < 2LF Lallu — uo|-

Hence,

2
2L2L,

1f(z) = f@I <

HU—U()”,

or equivalently, )

212,
f(z) = f(Z) € o [l — uo|| By -
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On the other hand, z — Z = (z — @) + (zo — 2) € 3V + 1V C V., and since the growth
condition of order ¢ > 1 holds for f around xy we have

F(2) — f(2) & 7d(z, S(f, A)) By — K.

Thus,
ZL?LC
2w~ o By ¢ (=, S(f, A))By K.
and consequently
QL?LQ
o ||’LL—’LLO||BY gZTd(ZvS(faA))qBY’

which means that )

d(z,S(f, A q<2LfL“
(z,8(f,A)* < o [[w — ol

or d(z,S(f, A)) < (2L3La/at)Y||lu — ug||/9. Finally,
d(z,S(f, A)) < |l& = 2|l + d(z,5(f, A)) < (La + (2LFLa/ar) V@) [lu — uo[| /7. =

THEOREM 9.6.3. Let K be a closed conver pointed cone in 'Y with int K # 0. Let z9 €
S(f,A) and let f: X — Y be locally Lipschitz on x¢ +tyBx with constants Ly. Assume
that

(i) A: U = X is pseudo-Lipschitz at (ug,xo) € graph A with neighbourhood V of
zero in X, V CtyBx,
(i) the local firm strong domination property holds around x¢ with the neighbourhood
v,
(iii) (P) is Holder calm well-posed at xg of order 1/m, m > 1.
Then S 1is Hélder calm of order 1/m at (ug,zo) € graph S.
Proof. Follows directly from Proposition 9.1.4 and Theorem 9.6.2. m
With V = X we obtain

COROLLARY 9.6.1. Let K be a closed conver pointed cone in Y with int K # (). Let
f: X =Y be locally Lipschitz. Assume that

(i) A is Lipschitz around ug € dom A,
(ii) the (global) firm domination property holds for (P),
(iii) (P) is upper Holder well-posed of order 1/m, m > 1.

Then S is upper Hélder of order 1/m at ug.

9.7. Holder continuity of the solution mapping S

In this section we formulate conditions for Hélder continuity of S provided that prob-
lems (P,) satisfy the growth condition of order ¢ > 1. For scalar optimization problems
similar results were obtained by Bonnans and Shapiro ([39, Sec. 4.4.2]) and Bonnans and
Toffe [38].
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THEOREM 9.7.1. Let KC be a closed convez pointed cone in'Y . Let f : X — Y be Lipschitz
with constant Ly > 0. Assume that

(i) A:U = X is Hélder of order p > 0 around ug € dom A with constants L, > 0
and 0 <t <1,
(i1) (DP) holds for (P,) with u € B(uo,t),
(iii) the global growth condition of order ¢ > 1 holds for all (P,) on S(f, A(u)) with
constant T > 0.
Then S is Hélder of order p/q at ug € domS. Precisely,
S(f, A(w) C S(f, A(W)) + (Lo + (LY L /7)) |u — o/ |[P/1Bx
for u,u' € ug + (t/4)By.
Proof. The proof follows from Proposition 4.0.3, by observing that under the assumptions
S is uniformly lower Holder of order p/q at any v’ € ug + (¢/2)By. =

THEOREM 9.7.2. Let K be a closed convex pointed cone in Y with intIC # 0. Let zg €

S(f,A) and let f: X — Y be locally Lipschitz on x¢ + tyBx with constants Ly. Assume
that

(i) A is pseudo-Lipschitz at (ug,zo) € graph A with neighbourhood V of zero in X,
V C t;Bx,

(ii) the local firm domination property holds for (P) around xo with a neighbourhood

QeR+QCY,

(i) (P) is Holder calm well-posed at xg of order 1/m, m > 1.
Then S is Hélder calm of order 1/m at (ug,zo) € graphS.
Proof. Follows directly from Proposition 9.1.4 and Theorem 9.6.2. m



Final remarks

Our aim was to provide sufficient conditions for semi- and pseudo-continuitites in the
sense of Lipschitz and/or Hélder for the set-valued mappings P and S. We focused on
formulating sufficient conditions which are as weak as possible in order to make them
applicable to a wide class of problems. As a result we have not assumed any particular
form of description of the feasible set A. In the literature there exist numerous results
which provide conditions guaranteeing Lipschitz and/or Holder behaviour of the feasible
set depending on parameters. This is the reason why we did not tackle this problem here.

An important aspect of the results presented here is that in many cases we are able
to determine Lipschitz constants when investigating Lipschitz (or Holder) behaviour of
P and S. This fact is of importance in investigating conditioning of vector optimization
problems. From the material of Chapter 8 we can deduce that strict efficiency and sharp
as well as weakly sharp solutions are essential for stability of solutions. Moreover, the
greater the constant [ related to strict efficiency and the constant 7 related to sharp (or
weakly sharp) solutions, the greater the corresponding Lipschitz constants for P and S.

It is an open problem to provide sufficient and necessary conditions for sharp solutions
(and strictly efficient points) of higher orders as well as to analyse these notions from the
point of view of general extremality scheme as proposed by Kruger [95].

Postscriptum:

Si les circonstances arrivent a étre surmontées, étre vaincues, la nature transporte la lutte
du dehors au dedans et fait peu a peu changer assez motre ceeur pour qu’il désire autre

chose. . .

Marcel Proust, A 'ombre des jeunes filles
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