
1. Introduction

We are concerned with the global existence and uniqueness of solutions to a three-dimen-

sional (3-D) system of equations describing thermomechanical evolution of shape memory

alloys (SMA).

This system, derived on thermodynamical grounds in [39], is a generalization of the

one-dimensional Falk model [18] of displacive phase transitions in SMA. It corresponds

to the conservations laws of linear momentum and energy with constitutive relations for

stress tensor, internal energy and energy flux accounting for interaction effects on phase

interfaces and viscosity. These relations comply with the entropy principle, assuring that

the model is thermodynamically consistent.

The governing equations to be considered are given by

utt − νQut +
κ

4
QQu =∇ · F/�(ǫ, θ) + b,(1.1)

c(ǫ, θ)θt − k∆θ = θF/θ�(ǫ, θ) : ǫt + ν(Aǫt) : ǫt + g(1.2)

in QT = (0, T )×Ω, where
c(ǫ, θ) = cv − θF/θθ(ǫ, θ),(1.3)

with appropriate initial and boundary conditions. Here Ω ⊂ R
n, n = 2 or 3, is a bounded

domain with a smooth boundary ∂Ω, u denotes the displacement vector, ǫ = (ǫij) with

ǫij(u) =
1
2 (ui/j + uj/i) is the linearized strain tensor, ǫt = ǫ(ut) is the strain rate tensor,

and θ > 0 is the absolute temperature. We use the notation f/i = ∂f/∂xi, ft = ∂f/∂t.

The elastic energy density F (ǫ, θ) has a multiple-well form as a function of the strain

tensor ǫ (order parameter), with the shape changing qualitatively with the temperature θ.

These changes correspond to the fact that the austenitic phase is the global minimizer

above a critical temperature, both the austenitic phase and the martensitic variants have

equal energy density at the critical temperature, and the martensitic variants are global

minimizers below the critical temperature.

As a representative model of F (ǫ, θ) we use the Falk–Konopka elastic energy (see [20])

in the form of sixth order polynomial in ǫij , expressed in terms of crystallographical

invariants, which generalizes the well-known 1-D expression [18], [19]

F (ǫ, θ) = α1(θ − θc)ǫ2 − α2ǫ4 + α3ǫ6,(1.4)

where αi > 0 are constant parameters and θc > 0 is a critical temperature.

In our notation A is the fourth order tensor representing linear isotropic Hooke’s law

and Q stands for the second order differential operator of linearized elasticity admitting

[5]
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the representation

Qu = µ∆u+ (λ+ µ)∇(∇ · u),(1.5)

where λ, µ are the Lamé constants with ranges specified in Section 4.

The coefficient c(ǫ, θ) represents the specific heat, and the constant positive coeffi-

cients cv, k correspond to the caloric specific heat and the heat conductivity, respectively.

The terms b and g represent external body forces and heat sources.

The term νQut in the elasticity equation corresponds to the mechanical viscosity

governed by Hooke’s law

σv = νAǫt,(1.6)

where σv is the viscous stress and the constant ν > 0 is the viscosity coefficient. The

term ν(Aǫt) : ǫt in the temperature equation represents heat production due to viscous

dissipation.

The fourth order term QQu with constant coefficient κ > 0 corresponds to inter-

action effects on phase interfaces which are expressed by the particular strain gradient

contribution |Qu|2 to the free energy density
f(ǫ(u),∇ǫ(u), θ) = −cvθ log θ + F (ǫ(u), θ) +

κ

8
|Qu|2.(1.7)

As is well known (see e.g. [21]), the parameter κ > 0 acts as an additional length scale in

the problem related to the regularization of the system by means of the strain gradient

term.

We prove that the system is well posed for (u, θ) in the spaceW4,2p (QT )×W 2,1p (QT )
with p ≥ n+ 2. In that case the strain tensor ǫ, its gradient ∇ǫ and the temperature θ
are continuous functions in the space-time cylinder QT .

The approach used in this paper relies on the parabolic decomposition of the elastic

part (1.1) and the subsequent application of the Leray–Schauder fixed point theorem to

the decomposed system coupled with the temperature equation. The method has been

devised in [54] for the treatment of one- and special two-dimensional SMA models.

The decomposition of (1.1) into two parabolic systems is possible due to the particular

structure of (1.1) involving the differential operators Q and QQ which correspond to the

viscous and interfacial terms respectively. The condition 0 <
√
κ ≤ ν connecting the

viscosity and gradient energy coefficients assures that the decomposed system is real and

parabolic.

The proof of existence depends in an essential way on the regularity theory of linear

elasticity systems due to Nečas [35], and on the general theory of parabolic systems due

to Solonnikov [49], [48], [16]. Moreover, an important part of the existence proof is the

demonstration that the temperature is nonnegative. The proof of this fact is based on a

slight modification of the classical stability result of [32] for parabolic equations. All these

results rely on the at least C2-regularity requirement concerning the boundary ∂Ω. Since

the regularity result of Nečas [35] refers to the case of displacement boundary conditions

u = 0 on ST = (0, T )× ∂Ω,(1.8)

we restrict our analysis to this case. It is possible to consider slightly more general bound-

ary conditions, namely both displacement and traction ones, but imposed on disjoint parts

of the boundary (see [7]).
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Since the problem is fourth order in u, an additional boundary condition is needed.

We assume that

Qu = 0 on ST ,(1.9)

which results in a compatibility condition for parabolic decomposition.

For the temperature the homogeneous Neumann boundary condition corresponding

to thermal isolation

∇θ · n = 0 on ST ,(1.10)

is assumed, where n denotes the unit outward normal to ∂Ω. This condition is imposed

here for technical reasons connected with the arguments used in energy estimates. It can

be modified to include heat exchange boundary conditions.

With (1.1), (1.2) we associate the initial conditions

(1.11) u(0,x) = u0(x), ut(0,x) = u1(x),

(1.12) θ(0,x) = θ0(x) in Ω.

We shall refer to system (1.1), (1.2) with boundary conditions (1.8), (1.9), (1.10) and

initial conditions (1.11), (1.12) as problem (P).

The proof of uniqueness is based on energy estimates for the difference of solutions and

application of Gronwall’s inequality. This requires an additional regularity of solutions,

namely the continuity of∇ut and∇θ in the space-time cylinder. This holds for solutions

(u, θ) in the spaceW4,2p (QT )×W2,1p (QT ) with p > n+ 2.

We now comment on the related known results. In three dimensions there exist differ-

ent continuum models describing thermomechanical evolution of SMA. The well-known

Frémond model [23] is based on the strain tensor, the volumetric proportions of austenite

and martensite, and the absolute temperature as state variables. The interfacial structure

is there accounted for by the gradient of the strain tensor trace. The well-posedness of

such a model has been studied by Colli et al. [8]–[11], Hoffmann et al. [29]; see also [6].

A different model has been derived by Fried and Gurtin [24] in an isothermal case within

a thermodynamical theory of configurational forces. It is based on the strain tensor, a

multicomponent order parameter and its gradient.

Concerning three-dimensional free energy models based on the strain tensor, the most

known are due to Falk–Konopka [20], Ericksen–James [17], Barsch–Krumhansl [5]; see also

Klouček and Luskin [31].

For a recent survey of continuum models of microstructure evolution in SMA we refer

to Roubiček [43].

We mention also that in the isothermal case a phase transition model in the form of

a multidimensional viscoelasticity system

utt − ν∆ut =∇ · σ(∇u),(1.13)

where σ(C) = F/C(C) and F is a multiple-well potential, has been studied by many

authors, e.g. Ball et al. [4], Rybka [44]–[46], Swart and Holmes [51], Friesecke and Dolz-

mann [26]. We note that a hidden parabolic structure of (1.13) has been used in the

analysis of this problem in [41], [44]–[46], [51]. The transformation of variables due to
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Rybka [44], which is a generalization of the one-dimensional transformation of Pego [41],

allows one to reformulate the problem (1.13) as a semilinear degenerate parabolic system.

A viscoelasticity system with capillarity

utt − ν∆ut + κ∆2u =∇ · σ(∇u)(1.14)

has been justified as a relevant phase transition model by several authors (see e.g. [1], [53]),

and studied e.g. in [47] in a quasi-steady approximation.

In the special 2-D case the system (1.14) coupled with the energy equation (1.2) has

been considered in [54].

For related evolution problems in 3-D thermoelasticity we refer to Racke [42] and

Nečas et al. [37], [36].

Our contribution consists in proving global-in-time existence and uniqueness results

for system (1.1) containing both the viscosity and interfacial terms, expressed by means

of the operator Q, coupled with the temperature equation (1.2).

Acknowledgements. The authors would like to thank Professor Wojciech Zającz-

kowski for detailed discussions and pointing out the shortcomings of the earlier version

of the paper.

2. Notation and preliminaries

Let I = (0, T ), Qt = (0, t)× Ω, Ωt = {t} × Ω, St = (0, t)× ∂Ω, and let n stand for the
unit outward normal to ∂Ω. We use the Sobolev space notation of [32] and bold letters

for vector- and tensor-valued mappings, similarly to [7]. The summation convention over

repeated indices is used, and for vectors a = (ai), b = (bi) and tensors B = (Bij),

B̃ = (B̃ij), C = (Cijk), C̃ = (C̃ijk), A = (Aijkl) we write:

a · b = aibi, B : B̃ = BijB̃ij , C : C̃ = CijkC̃ijk,

aB = (aiBij), Ba = (Bijaj), aC = (aiCijk),

Ca = (Cijkak), aA = (aiAijkl), Aa = (Aijklal),

BC = (BijCijk), CB = (CijkBjk), BA = (BijAijkl), AB = (AijklBkl),

|b| = (bibi)1/2, |B| = (BijBij)1/2, |C| = (CijkCijk)1/2.

Moreover, for the gradient of a tensor we use the convention of the last position of

the differentiation index, e.g., for a tensor B = (Bij),

∇B = (Bij/k).

The linear map

ǫ(u) 7→ Aǫ(u) = λ trace ǫ(u)I+ 2µǫ(u),(2.1)

where λ, µ are the Lamé constants, I = (δij) is the unit matrix, represents Hooke’s law

for a homogeneous isotropic material. Here A = (Aijkl) with

Aijkl = λδijδkl + µ(δikδjl + δilδjk)
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is the fourth order elasticity tensor satisfying the following symmetry conditions:

Aijkl = Ajikl, Aijkl = Aijlk, Aijkl = Aklij .(2.2)

We note here the following properties: symmetry

ǫ(ϕ) : (Aǫ(u)) = ǫij(ϕ)Aijklǫkl(u) = ǫkl(u)Aklijǫij(ϕ) = ǫ(u) : (Aǫ(ϕ)),(2.3)

as well as coercivity and boundedness,

a⋆|ǫ|2 ≤ (Aǫ) : ǫ ≤ a⋆|ǫ|2,(2.4)

where

a⋆ = min[nλ+ 2µ, 2µ], a⋆ = max[nλ+ 2µ, 2µ].

By Q we shall denote the operator of linearized elasticity [7] which is defined by

u 7→ Qu =∇ · (Aǫ(u)),(2.5)

where ∇· denotes the divergence operator. We use the convention of contraction over the
last index, i.e.,

∇ · (Aǫ(u)) = ∂j(Aijklǫkl(u) ) = Aijklǫkl/j(u).

Hence, by (2.2),

Qu = ǫkl/j(u)Aklji =∇ǫ(u)A.(2.6)

We note that by (2.1), Q admits a representation (1.5).

For further use we collect some identities involving the operator Q. The formula of

integration by parts\
Ω

(Qu) · (Qv) dx =
\
Ω

v · (QQu) dx(2.7)

−
\
∂Ω

v · ((Aǫ(Qu))n) dS +
\
∂Ω

(Qu) · ((Aǫ(v))n) dS

is a consequence of the symmetry property (2.3) and a two-fold application of Green’s

formula (for ϕ, σ sufficiently regular)\
Ω

ϕ · (∇ · σ) dx = −
\
Ω

∇ϕ : σ dx+
\
∂Ω

ϕ · (σn) dS.(2.8)

The first variation δ|Qu|2/δu of the operator u 7→ |Qu|2 is given by\
Ω

ζ · δ
δu
|Qu|2 dx = d

dα

\
Ω

|Q(u+ αζ)|2 dx
∣∣∣∣
α=0

(2.9)

= 2
\
Ω

ζ · (QQu) dx for ζ ∈ C∞0 (Ω).

It is obtained from Green’s formula (2.8) and the symmetry property (2.3), since
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d

dα

\
Ω

|∇ · (Aǫ(u+ αζ))|2 dx
∣∣∣∣
α=0

= 2
\
Ω

(∇ ·Aǫ(u)) · (∇ ·Aǫ(ζ)) dx

= −2
\
Ω

ǫ(Qu) : (Aǫ(ζ)) dx = −2
\
Ω

ǫ(ζ) : (Aǫ(Qu)) dx

= 2
\
Ω

ζ · (∇ · (Aǫ(Qu))) dx = 2
\
Ω

ζ · (QQu) dx.

The above calculation also shows that the first variation of the operator

ǫ(u) 7→ |∇ · (Aǫ(Qu))|2

is given by

(2.10)
\
Ω

ǫ(ζ) :
δ

δǫ(u)
|∇ ·(Aǫ(Qu))|2 dx = −2

\
Ω

ǫ(ζ) : (Aǫ(Qu)) dx for ζ ∈ C∞0 (Ω).

For further purposes we note that for the strain-gradient energy of the form (1.7) we

have

f/D� = κ

4
A(∇ǫ(u)A) =

κ

4
AQu,(2.11)

since by (2.6),

f/ǫpq/r =
κ

4
ǫkl/jAkljiApqri.

Moreover, in view of (2.11),

f/D�n = κ

4
(AQu)n.(2.12)

Hence, in particular, the boundary condition (1.9) implies that

f/D�n = 0 on ST .(2.13)

3. Thermodynamical framework

Problem (P) expresses conservation laws for linear momentum and energy (assuming

constant mass density) with appropriate constitutive equations. The corresponding free

energy density is assumed to be a function of the strain tensor, its first gradient and the

absolute temperature,

f = f̂(ǫ,Dǫ, θ),

in the particular Ginzburg–Landau form (1.7) with the terms representing thermal energy,

elastic energy and interfacial energy.

As a prototype example of the elastic energy for 3-D SMA we consider the Falk–

Konopka model [20]:

F (ǫ, θ) =

3∑

i=1

F 2i (θ)J
2
i (ǫ) +

5∑

i=1

F 4i (θ)J
4
i (ǫ) +

2∑

i=1

F 6i (θ)J
6
i (ǫ)(3.1)

with

F 2i (θ) = α
2
i (θ − θc), F 4i (θ) = α

4
i (θ − θc), F 6i (θ) = α

6
i .
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Here αki , θc are constants and J
k
i (ǫ), i = 1, . . . , i

k, denote kth order invariants defined as

the following combinations of the strain components ǫij :

J21 = ǫ
2
1̄, J22 = 3ǫ

2
2̄ + ǫ

2
3̄, J23 = ǫ

2
4̄ + ǫ

2
5̄ + ǫ

2
6̄,

J41 = (J
2
2 )
2, J42 = ǫ

4
4̄ + ǫ

4
5̄ + ǫ

4
6̄, J43 = (J

2
3 )
2, J44 = J

2
2J
2
3 ,

J45 = ǫ
2
4̄(ǫ2̄ − ǫ3̄)2 + ǫ25̄(ǫ2̄ + ǫ3̄)2 + 4ǫ26̄ǫ22̄, J61 = (J

2
2 )
3, J62 = ǫ

2
2̄(ǫ
2
2̄ − ǫ23̄)2,

with
ǫ1̄ = trace ǫ/3, ǫ2̄ = (2ǫ33 − ǫ11 − ǫ22)/6,
ǫ3̄ = (ǫ11 − ǫ22)/2, ǫ4̄ = ǫ23, ǫ5̄ = ǫ13, ǫ6̄ = ǫ12.

The free energy (3.1) is invariant with respect to the cubic symmetry of the high

temperature austenitic phase, that is, it satisfies the isotropy condition

F (ǫ, θ) = F (GǫGT , θ)(3.2)

for each of the 48 matrices G representing corresponding symmetry operations in R
3.

Equation (1.1) corresponds to the linear momentum balance (for mass density ̺ = 1)

utt −∇ · σ = b,(3.3)

where the symmetric stress tensor σ is given through the constitutive equation

σ =
δf

δǫ
+ σv.(3.4)

Here σv is the viscous stress tensor given by linear Hooke’s law (1.6), and the expression

δf/δǫ is the first variation of f with respect to ǫ,

δf

δǫ
= f/� −∇ · f/D�.(3.5)

In case of free energy (1.7), by (2.11),

δf

δǫ
= F/� − κ

4
Aǫ(Qu),(3.6)

which follows from (2.10). In view of (1.6), (3.6) the constitutive equation for the stress

tensor takes on the form

σ = F/� − κ

4
Aǫ(Qu) + νAǫt,(3.7)

with three contributions corresponding to the elastic stress, interfacial stress (hyperstress)

and viscous stress.

Relation (3.7) augments the conventional constitutive law for an elastic material in

such a way that the stress tensor depends not only on the strain tensor ǫ, but also on the

strain rate tensor ǫt and second spatial gradients D
2ǫ. The characteristic feature of (3.7)

is the nonlinear dependence of the stress tensor on ǫ, while ǫt and D
2ǫ enter linearly via

Hooke’s law. This constitutive equation generalizes to three dimensions the well-known

one-dimensional laws (see e.g. [1], [53]).

We also point out that the particular form (3.7) is necessary for parabolic decompo-

sition of the elasticity system.

From now on, we denote for simplicity by σh the third order tensor

σh = f/D� where σhijk = f/ǫij/k .
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Equation (1.2) corresponds to the energy balance

et +∇ · q− σ : ǫt = g.(3.8)

Here e = ê(ǫ,Dǫ, θ) is the internal energy density which obeys the Gibbs relations

e = f + θs, s = −f/θ,(3.9)

where s is the entropy. The energy flux q consists of the stationary and nonstationary

parts

q = q0 − ǫtσh.(3.10)

The stationary part

q0 = −k∇θ(3.11)

is the heat flux governed by Fourier’s law with the heat conductivity coefficient k > 0.

The unconventional nonstationary part

ǫtσ
h = (ǫtijσ

h
ijk)(3.12)

is associated with evolving diffuse interfaces (see [2]). A similar flux, called interstitial

work flux corresponding to working of phase interfaces, appears in Dunn–Serrin’s [14]

thermodynamical theory of higher grade thermoelastic materials.

In view of the Gibbs relations and the identity

∇ · (ǫtσh) = ∂k(ǫtijσhijk) = ǫtij∂kσhijk + ∂kǫtijσhijk = ǫt : (∇ · σh) + σh :∇ǫt,
we have

(3.13) et −∇ · (ǫtf/D�)− σ : ǫt
= (θst + f� : ǫt + f/D� :∇ǫt)− ((∇ · f/D�) : ǫt + f/D� :∇ǫt)
− (f/� −∇ · f/D� + σv) : ǫt

= θst − σv : ǫt.
Therefore the energy equation (3.8) takes on the form

θst +∇ · q0 = σv : ǫt + g.(3.14)

After introducing the specific heat coefficient

c(ǫ,Dǫ, θ) = −θf/θθ(ǫ,Dǫ, θ),(3.15)

equation (3.14) becomes

c(ǫ,Dǫ, θ)θt +∇ · q0 = θf/θ�(ǫ,Dǫ, θ) : ǫt(3.16)

+ θf/θD�(ǫ,Dǫ, θ) :∇ǫt + σv : ǫt + g.
For the free energy given by (1.7) this yields equation (1.2).

The constitutive equations for σ, e and q presented above are a special case of more

general relations. It has been shown in [39] that the stress relation admits the form

σ =
δf

δǫ
+ θ(h− σh)∇

(
1

θ

)
+ σv,(3.17)
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where h is an arbitrary third order tensor. The constitutive relation for the energy flux

is then

q = q0 − ǫth.(3.18)

For thermodynamical consistency the heat flux q0 and the viscous stress tensor σ
v have

to satisfy the dissipation inequality

ǫt :

(
σv

θ

)
+∇

(
1

θ

)
· q0 ≥ 0 for all fields (u, θ).(3.19)

Clearly, condition (3.19) is satisfied by Fourier’s and Hooke’s laws.

For the model with general constitutive equations (3.17), (3.18) the following entropy

inequality holds [39] for all (u, θ):

(3.20) st+∇ ·ψ−λu · (utt−∇ ·σ−b)−λθ
((

e+
|ut|2
2

)

t

+∇ · (−utσ+q)−b ·ut
)

= ǫt :

(
σv

θ

)
+∇

(
1

θ

)
· q0 ≥ 0,

where the entropy flux ψ is given by

ψ =
1

θ
(q0 + ǫt(σ

h − h)),(3.21)

and the multipliers λu and λθ, conjugated respectively with linear momentum and total

energy balances, are

λu = −λθut, λθ = 1/θ.(3.22)

We note that problem (P) corresponds to the particular case h = f/D�. If the gradient
term in free energy does not depend on θ, which is the case for (1.7), then f/θD� = 0,
and such a choice of h gives σ independent of ∇θ.

By using (3.20) we see that for solutions of problem (P) the standard Clausius–Duhem

inequality

st +∇ ·
(
q0

θ

)
= ǫt :

(
σv

θ

)
+∇

(
1

θ

)
· q0 +

g

θ
≥ g

θ
(3.23)

is satisfied for all (u, θ).

Finally we add a comment on Hooke’s constitutive law (1.6). As is known (see Fosdick

and Serrin [22]), the linear stress response function is incompatible with the principle of

frame-indifference, therefore an exact linear constitutive theory for elastic solids is im-

possible. On the other hand, Hooke’s law is commonly used in the theory of linearized

elasticity based on the small strain assumption, as an approximation to a more compli-

cated realistic description (see [7]). We point out that Hooke’s law satisfies the invariance

condition of an isotropic function (see e.g. [28], p. 235). In particular, for the viscosity

given by (1.6) the following condition holds:

Rσv(ǫt)R
T = σv(RǫtR

T )

for any proper orthogonal tensor R of the second order.
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4. Assumptions and main results

Below we list our assumptions grouped into several categories.

(D) Domain Ω ⊂ R
n, n = 2, 3, with boundary ∂Ω of class C3.

The additional C3-regularity is needed in Lemma 7.3, which concerns the inheritance

of the right-hand side differentiability properties by the solutions of parabolic systems.

(LP) Linear part: the coefficients of the operator Q satisfy

µ > 0, nλ+ 2µ > 0.

This is needed for ensuring the coercivity of the algebraic operator A in (2.4). These

conditions also imply the strong ellipticity of the operator Q (see Section 7.2) and the

parabolicity of the evolution system with the operatorQ (see Section 7.1). Both properties

require λ+ 2µ > 0.

The next assumptions concern the elastic energy:

(FE-1) Structure: F (ǫ, θ) is of class C3 on S2 × [0,∞), where S2 denotes the set of
symmetric tensors of second order in R

n. We assume the splitting into entropic

and energetic parts

F (ǫ, θ) = F1(ǫ, θ) + F2(ǫ),

where F1(ǫ, θ) is a concave function with respect to θ,

F1/θθ(ǫ, θ) ≤ 0 for (ǫ, θ) ∈ S2 × [0,∞),

such that F1(ǫ, θ) is linear in θ over a certain interval [0, θ1), θ1 = const, and

has the polynomial growth θr for θ ≥ θ1.

(FE-2) Growth conditions: There exists a positive constant Λ such that for θ ≥ θ1 and
large values of ǫij the following conditions are satisfied:

|F1/��(ǫ, θ)| ≤ Λθr|ǫ|q−1, |F2/��(ǫ)| ≤ Λ|ǫ|q−1,
|F1/�θ(ǫ, θ)| ≤ Λθr−1|ǫ|q, |F1/θθ(ǫ, θ)| ≤ Λθr−2|ǫ|q+1,
|F1/�(ǫ, θ)| ≤ Λθr|ǫ|q, |F2/�(ǫ)| ≤ Λ|ǫ|q ,

with

0 < r <
1

2
, 1 < q ≤ qnpn

4n
, 0 < q ≤ (q + 1)

(
1

2
− r
)
,

where pn = n+ 2, and qn is the Sobolev exponent for which the imbedding of

W 12 (Ω) into Lqn(Ω) is continuous, that is, qn = 2n/(n− 2) for n ≥ 3 and qn is
any finite number for n = 2. We note that

0 < q ≤ qnpn
2n

(
1

2
− r
)
.

The above conditions imply the following growth of F (ǫ, θ):

|F1(ǫ, θ)| ≤ Λ+ Λθr|ǫ|q+1, |F2(ǫ)| ≤ Λ+ Λ|ǫ|q+1.
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We add some comments on the above conditions. The restrictions concern the θ-growth

exponent of F1, the ǫ-growth exponent of F2 and the condition relating the ǫ-growth of

F1 with its θ-growth and with the ǫ-growth of F2.

The most restrictive is the condition r < 1/2, and q ≤ 5/2 in 3-D. In 2-D, since qn is
any finite number, arbitrary polynomial growth is admissible.

In particular, in 3-D the above conditions are satisfied for

q =
5

2
, q = 1, r =

3

14
.

Moreover, we assume the structural lower bound for the energetic part F2(ǫ) of the

free energy.

(FE-3) There exist positive constants c, Λ such that

c|ǫ|q+1 − Λ ≤ F2(ǫ).

This is satisfied by the model example (3.1) with the growth restriction (FE-2).

The next assumption concerns the structural simplification of the energy equation by

neglecting the nonlinear elastic contribution −θF1/θθ(ǫ, θ) in the specific heat coefficient.
This allows us to apply the classical parabolic theory in the existence proof.

We point out that because of the technique applied we were unable either to allow

F1(ǫ, θ) linear in θ or, assuming the θ-growth condition, to incorporate the arising non-

linearity in the specific heat coefficient.

(SH) The elastic energy contribution −θF1/θθ(ǫ, θ) to the specific heat coefficient due
to the nonlinearity of F1 in θ is neglected, that is, we set

c(ǫ, θ) = cv = const > 0.

We are looking for the solution in the anisotropic Sobolev space

V (p) = {(u, θ) ∈W4,2p (QT )×W 2,1p (QT )},

with p relating to Lp-integrability. The assumptions on the initial data and the source

terms correspond to this space.

(BV-p) The initial conditions satisfy for 1 < p <∞ the inclusions

u0 ∈W4−2/pp (Ω), u1 ∈W2−2/pp (Ω),

0 ≤ θ0 ∈W 2−2/pp (Ω),

and the compatibility relations. The source terms satisfy

b ∈ Lp(QT ), g ∈ Lp(QT ), g ≥ 0 a.e. in QT .

The first main result concerns the existence of solutions to problem (P).

Theorem 4.1 (Existence). Under assumptions (D), (LP), (FE-1)–(FE-3), (SH), (BV-p)

and the condition

0 <
√
κ ≤ ν,
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there exists for pn ≤ p < ∞ a solution (u, θ) ∈ V (p) to problem (P) for any T > 0.

Moreover , θ ≥ 0 in QT , and the following a priori estimates hold:
‖u‖

W
4,2
p (QT )

≤ Λ, ‖θ‖W 2,1p (QT ) ≤ Λ(4.1)

with a constant Λ depending on the data of the problem, Ω and time T .

We note some properties of the solution which follow directly from the classical imbed-

dings (see Section 7.5).

Corollary 4.1. For a solution to problem (P) the following holds: u, ∇u, ∇2u, ut, θ

are Hölder continuous in QT , ∇
3u,∇ut,∇θ ∈ Lp(QT ), pn ≤ p <∞, and

(4.2) |u|, |∇u|, |∇2u|, |ut| ≤ Λ, 0 ≤ θ ≤ Λ in QT ,

(4.3) ‖∇3u‖Lp(QT ), ‖∇ut‖Lp(QT ), ‖∇θ‖Lp(QT ) ≤ Λ.

In order to prove the uniqueness of the solution, the continuity property of ∇ut in

QT is needed. This holds provided p > pn.

Theorem 4.2 (Uniqueness). Let the assumptions of Theorem 4.1 be satisfied for pn <

p <∞. Then the solution to problem (P) is unique for any T > 0.

We now collect a priori bounds which follow from the imbeddings.

Corollary 4.2. The solution to problem (P) has in case pn < p < ∞ the following
properties: ∇3u, ∇ut, ∇θ are Hölder continuous in QT and satisfy the bounds

|∇3u|, |∇ut|, |∇θ| ≤ Λ in QT .(4.4)

5. Existence proof

As mentioned in the introduction, in the proof we shall use a parabolic decomposition

of the elasticity system (1.1) and the Leray–Schauder fixed point theorem, following the

strategy outlined in [54] for some special cases.

From now on Λ denotes a generic constant, different in various instances. In general,

Λ can depend on the data of the problem, domain Ω and time T . The proof consists of

several steps which are described below.

Step 1 : Parabolic decomposition of (1.1). Choosing numbers α, β so that

α+ β = ν, αβ = κ/4,(5.1)

the system (1.1) with initial conditions (1.11) and boundary conditions (1.8), (1.9) de-

composes into the following systems of BVP’s for a vector field w:

wt − βQw =∇ · F/�(ǫ, θ) + b in QT ,

w(0,x) = u1(x)− αQu0(x) in Ω,(5.2)

w = 0 on ST ,

and the displacement u:
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ut − αQu = w in QT ,

u(0,x) = u0(x) in Ω,(5.3)

u = 0 on ST .

The condition 0 <
√
κ ≤ ν assures that α, β > 0.

System (5.2), (5.3) for w,u is coupled to the BVP for θ:

cvθt − k∆θ = θF/θ�(ǫ, θ) : ǫt + ν(Aǫt) : ǫt + g in QT ,

θ(0,x) = θ0(x) in Ω,(5.4)

∇θ · n = 0 on ST .

We note that a solution (u, θ) ∈ V (p) to system (5.2)–(5.4) satisfies, thanks to (5.1)
and continuity of u, ∇u, ∇2u, ut in QT , the following BVP for u:

utt − νQut +
κ

4
QQu =∇ · F/�(ǫ, θ) + b in QT ,

u(0,x) = u0(x), ut(0,x) = u1(x) in Ω,(5.5)

u = 0, Qu = 0 on ST ,

and BVP (5.4) for θ. Therefore it is a solution to problem (P) in V (p).

Step 2. To this system we apply the Leray–Schauder fixed point theorem, recalled here

in one of its equivalent formulations for the reader’s convenience.

Theorem 5.1 (see [12]). Let B be a Banach space. Assume that T : [0, 1]× B → B is a
map with the following properties:

(i) For any fixed τ ∈ [0, 1] the map T (τ, ·) : B → B is completely continuous.
(ii) For every bounded subset C of B, the family of maps T (·, χ) : [0, 1]→ B, χ ∈ C,

is uniformly equicontinuous.

(iii) There is a bounded subset C of B such that any fixed point in B of T (τ, ·),
0 ≤ τ ≤ 1, is contained in C.
(iv) T (0, ·) has precisely one fixed point in B.

Then T (1, ·) has at least one fixed point in B.
We now define the map Tτ from V (p) into V (p),

Tτ : (u, θ ) 7→ (u, θ), τ ∈ [0, 1],
by means of the following three problems: BVP for w:

wt − βQw = τ [∇ · F/�(ǫ, θ ) + b] in QT ,
w(0,x) = τ [u1(x)− αQu0(x)] in Ω,(5.6)

w = 0 on ST ,

BVP for u:

ut − αQu = w in QT ,

u(0,x) = τu0(x) in Ω,(5.7)

u = 0 on ST ,
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and BVP for θ:

cvθt − k∆θ = τ [θF/θ�(ǫ, θ ) : ǫt + ν(Aǫt) : ǫt + g] in QT ,
θ(0,x) = τθ0(x) in Ω,(5.8)

∇θ · n = 0 on ST ,

where ǫ = ǫ(u).

Clearly, a fixed point of T1 in V (p) is equivalent to a solution (u, θ) in V (p) of system

(5.2)–(5.4), and thus is a solution to problem (P) in V (p).

In further steps of the proof we shall verify the assumptions of Theorem 5.1.

Step 3. First we show that Tτ is well defined in V (p), i.e. the image Tτ (V (p)) belongs

to V (p). To establish the existence of solutions to system (5.6)–(5.8) in V (p) we make

use of the fundamental fact (see Lemma 7.1) that the system

ut −Qu = f in QT ,

u(0,x) = u0(x) in Ω,(5.9)

u = 0 on ST

is parabolic in the general (Solonnikov) sense. This allows us to apply the Solonnikov

theory of parabolic systems (see Remark 7.1). By this theory (see Corollary 7.1) the

solution of system (5.9) satisfies for 1 < p <∞ the inequality

‖u‖
W
2,1
p (QT )

≤ Λ{‖f‖Lp(QT ) + ‖u0‖W2−2/p
p (Ω)

}.(5.10)

By imbedding it follows that ǫ, ∇ǫ, θ are continuous in QT , ∇θ is in Lp(QT ) for pn ≤
p < ∞, and their corresponding norms are bounded by the V (p)-norm of (u, θ ). This
fact together with the equality

∇ · F/�(ǫ, θ ) = F/ǫijǫkl(ǫ, θ )ǫkl/j + F/ǫijθ(ǫ, θ )θ/j(5.11)

implies that the right-hand side of (5.6) can be majorized in Lp(QT )-norm by (u, θ ) in

V (p)-norm. In consequence, the application of estimate (5.10) to BVP (5.6) implies that

w ∈W2,1p (QT ) and the corresponding bound holds. Applying subsequently this estimate
to (5.7) we obtain the boundedness of u inW4,2p (QT ).

As concerns the thermal part, we note that since by imbedding, ǫt ∈ Lp(QT ) for
pn ≤ p < ∞, the right-hand side of (5.8) in Lp(QT )-norm can be estimated by (u, θ )
in V (p)-norm. Then the classical parabolic theory (see [32, Thm. 9.1], [48]) implies that

θ ∈W 2,1p (QT ) and the corresponding bound holds. Therefore Tτ (u, θ ) ∈ V (p).

Step 4. We verify equicontinuity of Tτ with respect to τ . Let (u, θ ) be in a bounded

set in V (p), and (wi,ui, θi), i = 1, 2, be two solutions of (5.6)–(5.8) corresponding to

τ i ∈ [0, 1]. By virtue of (5.10) we have

‖w1 −w2‖
W
2,1
p (QT )

, ‖u1 − u2‖
W
4,2
p (QT )

≤ Λ|τ1 − τ2|.(5.12)

The difference η = θ1 − θ2 satisfies the BVP
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cvηt − k∆η = (τ1 − τ2)P 1 + τ2(P 1 − P 2) in QT ,

η(0,x) = (τ1 − τ2)θ0(x) in Ω,(5.13)

∇η · n = 0 on ST ,

where

P i = θF/θ�(ǫi, θ ) : ǫit + ν(Aǫit) : ǫit + g.
By using estimate (5.12) we may bound from above the difference

P 1 − P 2 = θ(F/θ�(ǫ1, θ )− F/θ�(ǫ2, θ )) : ǫ1t + θF/θ�(ǫ2, θ ) : (ǫ1t − ǫ2t )
+ ν(A(ǫ1t − ǫ2t )) : ǫ1t + ν(Aǫ2t ) : (ǫ1t − ǫ2t )

in Lp(QT )-norm by Λ|τ1 − τ2|. In consequence, by the classical parabolic theory,
‖θ1 − θ2‖

W
2,1
p (QT )

≤ Λ|τ1 − τ2|.(5.14)

Thus assumption (ii) of the Leray–Schauder theorem is satisfied.

Step 5. We now show the uniqueness of the fixed point of Tτ for τ = 0. By the regularity

of the problem for τ = 0 system (5.6)–(5.8) has the unique solution (w,u, θ) = (0, 0, 0).

Therefore V (p) ∋ (u, θ) = (0, 0) is the unique fixed point of T0(·).
Step 6. The essential part of the proof is the verification of assumption (iii) in the Leray–

Schauder theorem, that is, finding an a priori bound for a fixed point of Tτ . Without loss

of generality we may set τ = 1. Let then (u, θ) ∈ V (p), pn ≤ p < ∞, be a fixed point
of T1.

First we shall prove that the temperature is nonnegative, i.e., θ ≥ 0 in QT .
Lemma 5.1. If (u, θ) is a fixed point of T1 in V (p), pn ≤ p <∞, then θ ≥ 0 in QT .
Proof. We consider the parabolic problem for η:

cvηt − k∆η − aη = f in QT ,

η(0,x) = θ0(x) in Ω,(5.15)

∇η · n = 0 on ST ,

where

a = F/θ�(ǫ, θ) : ǫt, f = ν(Aǫt) : ǫt + g ≥ 0.
First we check that (5.15) satisfies the assumptions of the classical stability theory [32]

(see Thm. 7.4). Take q = 7/4, q1 = 2, r1 = 1 while r = 7/3 for n = 2 and r = 7 for n = 3.

Then

‖a‖rq,r,QT =
T\
0

(\
Ω

|a|7/4 dx
)r/q

dt ≤ Λ
T\
0

(|Ω|9/16‖ǫt‖7/4L4(Ω))
r/q dt ≤ Λ,

‖f‖r1q1,r1,QT ≤ Λ(‖g‖q1,r1,QT + ‖(Aǫt) : ǫt‖q1,r1,QT )
≤ Λ(T 1/2‖g‖L2(QT ) + T 1/2‖ǫt‖2L4(QT )) ≤ Λ,

where we have used the fact that by imbedding, θ, ǫ are continuous in QT and ǫt ∈ Lp(Ω),
pn ≤ p <∞, for any t ∈ I.
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Thus problem (5.15) has according to [32] (see Thm. 7.2) a unique solution in the

space V
1,1/2
2 (QT ). Now we take smooth functions a

m, fm, θm0 converging to a, f , θ0
in appropriate norms. The classical solution ηm to (5.15) with coefficients replaced by

their regular counterparts is nonnegative. This follows from the maximum principle (see

Corollary 7.2) and the fact that θm0 ≥ 0, fm ≥ 0. In addition, by the stability result (see
Thm. 7.4), the following convergence in V 1,02 (QT ) holds:

lim
m→∞

|ηm − η|QT = 0.

Let φ be any nonnegative smooth function on Ω. Then

0 ≤
\
Ωt

φηm dx =
\
Ωt

φ(ηm − η) dx+
\
Ωt

φη dx.

But \
Ωt

φ|ηm − η| dx ≤ Λ|ηm − η|QT → 0.

Hence \
Ωt

φη dx ≥ 0

for any t ∈ I and smooth φ ≥ 0. Therefore η ≥ 0 a.e. in QT . It is now enough to observe
that η coincides with θ, since (5.15) is equivalent to (5.4).

The proof that (u, θ) is a priori bounded in V (p) requires a sequence of estimates

which will be iteratively improved. The first are, as usual, the energy estimates.

Lemma 5.2. A fixed point of T1 satisfies for any t ∈ I the bound\
Ωt

(
cvθ +

γ

2
|ut|2 +

γκ

8
|Qu|2 + γc|ǫ|q+1

)
dx+

1

2
a⋆ν(γ − 1)

\
Qt

|ǫt|2dx dt′ ≤ Λ(5.16)

with some positive constants c, γ > 1, and Λ depending on the initial data, the sources

b, g and time horizon T .

Proof. Integrating the temperature equation in (5.4) over Qt and using the boundary

conditions gives

cv

\
Qt

d

dt
θ dx dt′ =

\
Qt

θF1/θ�(ǫ, θ) : ǫt dx dt′ + ν \
Qt

(Aǫt) : ǫt dx dt
′ +
\
Qt

g dx dt′.(5.17)

Multiplying the elasticity equation (5.5) by γut, γ = const > 1, and integrating over Qt
gives

(5.18)
γ

2

\
Qt

d

dt
|ut|2 dx dt′ − γν

\
Qt

(Qut) · ut dx dt′ +
γκ

4

\
Qt

(QQu) · ut dx dt′

− γ
\
Qt

(∇ · F/�(ǫ, θ)) · ut dx dt′ = γ \
Qt

b · ut dx dt′.

The second integral on the left-hand side of (5.18), after integration by parts and using

the boundary condition for u, is
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− γν
\
Qt

(Qut) · ut dx dt′ = γν
\
Qt

(Aǫt) : ǫt dx dt
′.(5.19)

The third integral, after applying the integration by parts (2.7) and the boundary con-

dition for Qu, becomes

γκ

4

\
Qt

(QQu) · ut dx dt′ =
γκ

4

\
Qt

(Qu) · (Qut) dx dt′ =
γκ

8

\
Qt

d

dt
|Qu|2 dx dt′.(5.20)

Finally, if we integrate by parts and use the boundary condition for u, the fourth integral

gives

(5.21) − γ
\
Qt

(∇ · F/�(ǫ, θ)) · ut dx dt′ = γ \
Qt

F/�(ǫ, θ) : ǫt dx dt′
= γ
\
Qt

d

dt
F2(ǫ) dx dt

′ + γ
\
Qt

F1/�(ǫ, θ) : ǫt dx dt′.
Using (5.19)–(5.21) in (5.18) and combining with (5.17) gives the identity

(5.22)
\
Qt

d

dt

(
cvθ +

γ

2
|ut|2 +

γκ

8
|Qu|2 + γF2(ǫ)

)
dx dt′ + ν(γ − 1)

\
Qt

(Aǫt) : ǫt dx dt
′

=
\
Qt

(θF1/θ�(ǫ, θ)− γF1/�(ǫ, θ)) : ǫt dx dt′ + \
Qt

(g + γb · ut) dx dt′.

Hence, using assumption (FE-3) and the bound (2.4) we obtain

(5.23)
\
Ωt

(
cvθ +

γ

2
|ut|2 +

γκ

8
|Qu|2 + γc|ǫ|q+1

)
dx+ a⋆ν(γ − 1)

\
Qt

|ǫt|2 dx dt′

≤ Λ+
\
Ω

(
cvθ0 +

γ

2
|u1|2 +

γκ

8
|Qu0|2 + γF2(ǫ0)

)
dx

+
\
Qt

(
g +

γ

2
|b|2
)
dx dt′ +

\
Qt

γ

2
|ut|2 dx dt′ +

\
Qt

(θF1/θ�(ǫ, θ)− γF1/�(ǫ, θ)) : ǫt dx dt′,
where ǫ0 = ǫ(u0).

By Young’s inequality the last integral on the right-hand side of (5.23) is estimated

by

(5.24)
\
Qt

(θF1/θ�(ǫ, θ)− γF1/�(ǫ, θ)) : ǫt dx dt′
≤ δ

2

\
Qt

|ǫt|2 dx dt′ +
1

2δ

\
Qt

|θF1/θ�(ǫ, θ)− γF1/�(ǫ, θ)|2 dx dt′,
where, with the appropriate choice of δ, the δ-integral is absorbed by the left-hand side

of (5.23).

Applying assumptions (FE-1), (FE-2) to the second integral on the right-hand side

of (5.24) gives
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(5.25)
\
Qt

|θF1/θ�(ǫ, θ)− γF1/�(ǫ, θ)|2 dx dt′ ≤ Λ+ Λ \
Qt

θ2r|ǫ|2q dx dt′

≤ Λ+ Λ

p1

\
Qt

θ2rp1 dx dt′ +
Λ

p2

\
Qt

|ǫ|2qp2 dx dt′

≤ Λ+ Λ

p1

\
Qt

θ dx dt′ +
Λ

p2

\
Qt

|ǫ|2q/(1−2r) dx dt′,

where we have used Young’s inequality with p1 = 1/(2r), p2 = 1/(1−2r). By the condition
on q the last integral in (5.25) is estimated by\

Qt

|ǫ|2q/(1−2r) dx dt′ ≤
\
Qt

|ǫ|q+1 dx dt′.(5.26)

Consequently, combining (5.23) and (5.24)–(5.26) gives

(5.27)
\
Ωt

(
cvθ +

γ

2
|ut|2 +

γκ

8
|Qu|2 + γc|ǫ|q+1

)
dx+

1

2
a⋆ν(γ − 1)

\
Qt

|ǫt|2 dx dt′

≤ Λ+ Λ
\
Qt

(θ + |ut|2 + |ǫ|q+1) dx dt′.

Since, by Lemma 5.1, θ ≥ 0, applying Gronwall’s inequality in (5.27) yields the asser-
tion.

The energy estimates allow us to obtain more refined bounds for the fixed point. By

the strong ellipticity property of the operator Q and the result of Nečas (see Lemma 7.4)

it follows from (5.16) that

‖u‖L∞(I;W2

2
(Ω)) ≤ Λ.(5.28)

Consequently,

‖ǫ‖L∞(I;W1

2
(Ω)) ≤ Λ,(5.29)

and by imbedding,

‖ǫ‖L∞(I;Lqn (Ω)) ≤ Λ,(5.30)

where qn is the Sobolev exponent. Moreover, (5.16) gives

u ∈W2,12,∞(QT ) and ‖u‖W2,1
2,∞(QT )

≤ Λ.(5.31)

Hence,

ǫ ∈W1,1/22,∞ (QT ) and ‖ǫ‖W1,1/2
2,∞ (QT )

≤ Λ,(5.32)

so, by imbedding,

ǫ ∈ Lp(QT ) and ‖ǫ‖Lp(QT ) ≤ Λ for p =
2pn
n− 2 =

qnpn
n

.(5.33)

Our strategy now is to improve the estimates for ǫ. For this purpose we use the regu-

larity property of parabolic systems (see Lemma 7.2). Applied to solutions of BVP (5.2),

it gives the representation

w −w(0) = w0 +
n∑

i=1

∂wi

∂xi
,(5.34)
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where w(0) = u1 − αQu0, and wi, i = 0, 1, . . . , n, are the solutions of the problems
wit − βQwi = hi in QT ,

wi(0,x) = 0 in Ω, 0 ≤ i ≤ n,
wi = 0 on ST for 0 ≤ i ≤ n− 1,
∂wn

∂n
= 0 on ST for i = n,

(5.35)

with h0 = b+ βQw(0), hi = (F/ǫki(ǫ, θ))k=1,...,n, and the estimate

‖w−w(0)‖
W
1,1/2
p (Qt)

≤Λ(‖b‖Lp(Qt)+‖βQw(0)‖Lp(Ω)+‖F/�(ǫ, θ)‖Lp(Qt))(5.36)

with the constant Λ depending on p, T,Ω.

We start utilizing (5.36) for p = 4. For this purpose we first estimate ‖F/�(ǫ, θ)‖L4(Qt)
in terms of the norm ‖θ‖L2(Qt) which will be bounded later on in Lemma 5.4.

Lemma 5.3. The following inequality holds:

‖F/�(ǫ, θ)‖L4(Qt) ≤ Λ+ Λ‖θ‖1/2L2(Qt).(5.37)

Proof. We have

‖F/�(ǫ, θ)‖4L4(Qt) ≤ Λ(‖F1/�(ǫ, θ)‖4L4(Qt) + ‖F2/�(ǫ)‖4L4(Qt)).(5.38)

Applying the growth condition (FE-2) and estimate (5.33) gives

‖F1/�(ǫ, θ)‖4L4(Qt) ≤ Λ+ Λ \
Qt

θ4r|ǫ|4q dx dt′(5.39)

≤ Λ+ Λ

p1

\
Qt

θ4rp1 dx dt′ +
Λ

p2

\
Qt

|ǫ|4qp2 dx dt′

≤ Λ+ Λ

p1

\
Qt

θ2 dx dt′ +
Λ

p2

\
Qt

|ǫ|4q/(1−2r) dx dt′

for p1 = 1/(2r), p2 = 1/(1− 2r) <∞. Since, by the assumption on q,
4q

1− 2r ≤
qnpn
n

,(5.40)

the last integral in (5.39) is, due to (5.33), bounded by a constant Λ. Similarly, recalling

the assumption on q, we get

‖F2/�(ǫ)‖4L4(Qt) ≤ Λ+ Λ \
Qt

|ǫ|4q dx dt′ ≤ Λ+ Λ
\
Qt

|ǫ|qnpn/n dx dt′ ≤ Λ.(5.41)

Combining (5.38), (5.39) and (5.41) gives estimate (5.37).

By (5.37) and assumption (BV-p) it follows from (5.36) that

‖w‖
W
1,1/2
4

(Qt)
≤ Λ+ Λ‖θ‖1/2L2(Qt).(5.42)

From this, using the regularity property of parabolic systems in Lemma 7.3, we get

‖∇u‖
W
2,1
4
(Qt)
≤ Λ+ Λ‖θ‖1/2L2(Qt),(5.43)
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so

‖ǫ‖
W
2,1
4
(Qt)
≤ Λ+ Λ‖θ‖1/2L2(Qt).(5.44)

With this estimate we are ready to prove the temperature bounds.

Lemma 5.4. If (5.44) holds then there exists a constant Λ depending on the data such

that the solution of BVP (5.4) satisfies for any t ∈ I the following estimate:\
Ωt

θ2 dx+
\
Qt

|∇θ|2 dx dt′ ≤ Λ.(5.45)

Proof. We multiply the temperature equation (5.4) by θ and integrate over Qt using the

boundary conditions to get

cv
2

\
Qt

d

dt
θ2 dx dt′ + k

\
Qt

|∇θ|2 dx dt′ =
\
Qt

θ2F1/θ�(ǫ, θ) : ǫt dx dt′(5.46)

+ ν
\
Qt

θ(Aǫt) : ǫt dx dt
′ +
\
Qt

θg dx dt′.

By Young’s inequality the first integral on the right-hand side of (5.46) is estimated by\
Qt

θ2F1/θ�(ǫ, θ) : ǫt dx dt′ ≤ 1
4

\
Qt

|ǫt|4 dx dt′ +
3

4

\
Qt

|θ2F1/θ�(ǫ, θ)|4/3 dx dt′,(5.47)

where, by (5.44), the ǫt-integral is bounded by

Λ+ Λ
\
Qt

θ2 dx dt′,(5.48)

and for the second integral, using the growth condition, we have\
Qt

|θ2F1/θ�(ǫ, θ)|4/3 dx dt′ ≤ Λ+ \
Qt

θ4(r+1)/3|ǫ|4q/3 dx dt′(5.49)

≤ Λ+ Λ

p1

\
Qt

θ4(r+1)p1/3 dx dt′ +
Λ

p2

\
Qt

|ǫ|4qp2/3 dx dt′

≤ Λ+ Λ

p1

\
Qt

θ2 dx dt′ +
Λ

p2

\
Qt

|ǫ|4q/(1−2r) dx dt′

for p1 = 3/(2r+2), p2 = 3/(1−2r). In view of (5.40) and estimate (5.33), the right-hand
side of (5.49) is bounded by the expression (5.48).

Now, by (5.44), the second integral on the right-hand side of (5.46) is estimated as

follows: \
Qt

θ(Aǫt) : ǫt dx dt
′ ≤ Λ

\
Qt

|ǫt|4 dx dt′ + Λ
\
Qt

θ2 dx dt′ ≤ Λ+ Λ
\
Qt

θ2 dx dt′.(5.50)

Clearly, the last term in (5.46) is also majorized by (5.48). Returning to (5.46) and

incorporating the above gives
cv
2

\
Ωt

θ2 dx+ k
\
Qt

|∇θ|2 dx dt′ ≤ cv
2

\
Ω

θ20 dx+ Λ+ Λ
\
Qt

θ2 dx dt′.(5.51)

Now the application of Gronwall’s inequality yields the assertion.
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Utilizing temperature estimates (5.45) in (5.44) gives the bound

‖ǫ‖
W
2,1
4
(Qt)
≤ Λ.(5.52)

Hence, by imbedding, ǫ is Hölder continuous in QT , and

|ǫ| ≤ Λ in QT .(5.53)

Moreover, by the imbedding of the space L∞(I;L2(Ω)) ∩ L2(I;W 12 (Ω)) in Lp(Qt) for
p > 2 (see [13]), from (5.45) we have

‖θ‖L2pn/n(Qt) ≤ Λ.(5.54)

Thanks to (5.53) and (5.54), in the 3-D case we can further improve the estimates. Now

we have

‖F/�(ǫ, θ)‖Lpn (Qt) ≤ Λ,(5.55)

which results from the estimates\
Qt

|F1/�(ǫ, θ)|pn dx dt′ ≤ Λ+ Λ

p1

\
Qt

θrpnp1 dx dt′+
Λ

p2

\
Qt

|ǫ|qpnp2 dx dt′(5.56)

≤ Λ+ Λ

p1

\
Qt

θ2pn/n dx dt′ +
Λ

p2

\
Qt

|ǫ|2qpn/(2−nr) dx dt′ ≤ Λ

for p1 = 2/(nr), p2 = 2/(2− nr), and\
Qt

|F2/�(ǫ)|pn dx dt′ ≤ Λ+ Λ \
Qt

|ǫ|qpn dx dt′ ≤ Λ.(5.57)

So, returning to (5.36) gives

‖w‖
W
1,1/2
pn (Qt)

≤ Λ,(5.58)

and subsequently,

‖ǫ‖
W
2,1
pn (QT )

≤ Λ.(5.59)

By imbedding, we conclude from (5.59) that

∇ǫ ∈ Lp(Qt) and ‖∇ǫ‖Lp(Qt) ≤ Λ for pn ≤ p <∞.(5.60)

Our further procedure consists in applying to BVP (5.4) the classical parabolic theory

([32, Thm. IV.9.1]). We have

Lemma 5.5. The following bound holds for the right-hand side of the temperature equa-

tion (5.4):

‖θF1/θ�(ǫ, θ) : ǫt + ν(Aǫt) : ǫt + g‖Lpn/2(Qt) ≤ Λ.(5.61)

Proof. We have\
Qt

|θF1/θ�(ǫ, θ) : ǫt|pn/2 dx dt′ ≤ 1
2

\
Qt

|ǫt|pn dx dt′ +
1

2

\
Qt

|θF1/θ�(ǫ, θ)|pn dx dt′,



26 I. Pawłow and A. Żochowski

where the first term on the right-hand side is, by (5.59), bounded by Λ. For the second

one we have\
Qt

|θF1/θ�(ǫ, θ)|pn dx dt′ ≤ Λ+ Λ \
Qt

θrpn |ǫ|qpn dx dt′

≤ Λ+ Λ

p1

\
Qt

θrpnp1 dx dt′ +
Λ

p2

\
Qt

|ǫ|qpnp2 dx dt′

≤ Λ+ Λ

p1

\
Qt

θ2pn/n dx dt′ +
Λ

p2

\
Qt

|ǫ|2qpn/(2−nr) dx dt′ ≤ Λ

for p1 = 2/(nr), p2 = 2/(2− nr), where we have used the bounds (5.54) and (5.53).
Similarly, utilizing (5.59), we have\

Qt

|(Aǫt) : ǫt|pn/2 dx dt′ ≤
1

2

\
Qt

|Aǫt|pn dx dt′ +
1

2

\
Qt

|ǫt|pn dx dt′ ≤ Λ.

This shows the assertion.

Hence, the parabolic theory implies that

θ ∈W 2,1pn/2(Qt) and ‖θ‖W 2,1pn/2(Qt) ≤ Λ,(5.62)

so, by imbedding,

∇θ ∈ Lpn(Qt), θ ∈ Lp(Qt),
and

‖∇θ‖Lpn (Qt) ≤ Λ, ‖θ‖Lp(Qt) ≤ Λ for pn/2 ≤ p <∞.(5.63)

Now we are ready to improve iteratively a priori bounds. For this purpose we return to

the decomposed system and estimate the right-hand side of the w-equation (5.2).

Lemma 5.6. The following bound holds for the right-hand side of (5.2):

‖∇ · F/�(ǫ, θ)‖Lpn (Qt) ≤ Λ.(5.64)

Proof. Applying the bound

‖∇ · F/�(ǫ, θ)‖Lpn (Qt) ≤ ‖∇ · F1/�(ǫ, θ)‖Lpn (Qt) + ‖∇ · F2/�(ǫ)‖Lpn (Qt),(5.65)

and using equality (5.11), we get\
Qt

|∇ · F1/�(ǫ, θ)|pn dx dt′ ≤ Λ \
Qt

|F1/ǫijǫkl(ǫ, θ)∂jǫkl|pn dx dt′(5.66)

+ Λ
\
Qt

|F1/ǫijθ(ǫ, θ)∂jθ|pn dx dt′ ≡ I1 + I2.

In view of the growth conditions, the term I1 is estimated by

I1 ≤ Λ
\
Qt

(1 + θrpn |ǫ|(q−1)pn)|∇ǫ|pn dx dt′(5.67)

≤ Λ+ Λ
\
Qt

θ2rpn |ǫ|2(q−1)pn dx dt′ +
\
Qt

|∇ǫ|2pn dx dt′ ≤ Λ,

where in the last inequality we have used the bounds (5.53), (5.63) and (5.60).
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Finally, recalling (FE-1), (FE-2), we get

I2 ≤ Λ
\

Qt∩{θ<θ1}

(1 + |ǫ|qpn)|∇θ|pn dx dt′(5.68)

+ Λ
\

Qt∩{θ≥θ1}

θ(r−1)pn |ǫ|qpn |∇θ|pn dx dt′ ≤ Λ,

where we have used the continuity of θ and estimates (5.53), (5.63). Combining the above

estimates yields the assertion.

Estimate (5.64) allows us to apply the Solonnikov theory of parabolic systems to BVP

(5.2) and to conclude that

w ∈W2,1pn (Qt) and ‖w‖W2,1
pn (Qt)

≤ Λ.(5.69)

Now, an application of this theory to BVP (5.3) provides

u ∈W4,2pn (Qt) and ‖u‖W4,2
pn (Qt)

≤ Λ.(5.70)

Hence, by imbedding,

ǫt ∈ Lp(Qt) and ‖ǫt‖Lp(Qt) ≤ Λ for pn ≤ p <∞.(5.71)

With this estimate we return to the temperature equation and estimate its right-hand

side in Lp(Qt)-norm. We obtain, for any p ≥ pn,\
Qt

|θF1/θ�(ǫ, θ) : ǫt|p dx dt′ ≤ 1
2

\
Qt

|θF1/θ�(ǫ, θ)|2p dx dt′ + 1
2

\
Qt

|ǫt|2p dx dt′(5.72)

≤ Λ+ Λ
\
Qt

θ2rp|ǫ|2qp dx dt′ + Λ
\
Qt

|ǫt|2p dx dt′ ≤ Λ,

where we have used the pointwise estimates (5.53) on ǫ and the Lp-estimates (5.63),

(5.71) on θ and ǫt. Hence, by assumption (BV-p), the classical parabolic theory assures

that

θ ∈W 2,1p (Qt) and ‖θ‖W 2,1p (Qt) ≤ Λ for pn ≤ p <∞.(5.73)

Again, by imbedding it follows that θ is continuous in Qt and

θ ≤ Λ in Qt,(5.74)

as well as

∇θ ∈ Lp(Qt) and ‖∇θ‖Lp(Qt) ≤ Λ for pn ≤ p <∞.(5.75)

In the last step, using the same arguments as in Lemma 5.6 and taking advantage of

(5.74), (5.75) we estimate

‖∇ · F/�(ǫ, θ)‖Lp(Qt) ≤ Λ for pn ≤ p <∞.(5.76)

Therefore, returning to system (5.2)–(5.4) together with the Solonnikov theory gives the

final estimates

‖w‖
W
2,1
p (Qt)

≤ Λ and ‖u‖
W
4,2
p (Qt)

≤ Λ for pn ≤ p <∞.(5.77)

This completes the derivation of an a priori bound for a fixed point of the transforma-

tion T1, meaning that assumption (iii) of the Leray–Schauder Theorem 5.1 is satisfied.
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In the last part of the proof we demonstrate assumption (i) by showing that for fixed

τ ∈ [0, 1], Tτ maps bounded subsets into precompact subsets in V (p).

Step 7 : Complete continuity of Tτ . Let (u
n, θn) be a bounded sequence in V (p) such

that

(un, θn)⇀ (u, θ ) weakly in V (p) as n→∞.

We shall show that for the images of Tτ ,

(un, θn) = Tτ (u
n, θn),(5.78)

we have

un → u strongly inW4,2p (QT ),(5.79)

θn → θ strongly in W 2,1p (QT )(5.80)

as n→∞, where

(u, θ) = Tτ (u, θ ).(5.81)

Due to the Aubin compactness theorem (see Thm. 7.6),

un → u in Lp(I,W3p(Ω)), θn → θ in Lp(I,W
1
p (Ω)),(5.82)

with both convergences being strong. By (5.11) it follows, in view of (5.82) and the

regularity assumptions on F (ǫ, θ), that

∇ · F/�(ǫn, θn)→∇ · F/�(ǫ, θ ) strongly in Lp(QT ),(5.83)

where

ǫn = ǫ(un), ǫ = ǫ(u).

According to Solonnikov theory, the convergence (5.83) of the right-hand side of the

equation for w in the definition of Tτ implies the convergence of the corresponding solu-

tions wn:

wn → w strongly inW2,1p (QT ).

Consequently, for solutions un of (5.7) the convergence (5.79) holds.

Let us now consider the convergence of θn. By the same arguments as in (5.72) we

have, for any pn ≤ p <∞,

‖θnF/θ�(ǫn, θn) : ǫnt + ν(Aǫnt ) : ǫnt ‖Lp(QT ) ≤ Λ.
Hence, by the classical parabolic theory,

θn ∈W 2,1p (QT ) and ‖θn‖W 2,1p (QT ) ≤ Λ.(5.84)

For brevity, set

Pn(ǫn, θn, τ ) = τ [θnF/θ�(ǫn, θn) : ǫnt + ν(Aǫnt ) : ǫnt + g],
P (ǫ, θ, τ ) = τ [θF/θ�(ǫ, θ ) : ǫt + ν(Aǫt) : ǫt + g],

where
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ǫn = ǫ(un), ǫ = ǫ(u).

Then the difference ηn = θn − θ satisfies the BVP

cvη
n
t − k∆ηn = Pn(ǫn, θn, τ )− P (ǫ, θ, τ ) in QT ,

ηn(0,x) = 0 in Ω,(5.85)

∇ηn · n = 0 on ST .

In order to prove that ηn → 0 strongly in W 2,1p (QT ), by the classical theory, it is enough
to show that the right-hand side of (5.85) converges to 0 in Lp(QT )-norm. We have\
Qt

|Pn(ǫn, θn, τ )− P (ǫ, θ, τ )|p dx dt′

≤
\
Qt

|θn − θ|p|F/θ�(ǫn, θn) : ǫnt |p dx dt′
+
\
Qt

θp|(F/θ�(ǫn, θn)− F/θ�(ǫ, θ )) : ǫnt |p dx dt′
+
\
Qt

θp|F/θ�(ǫ, θ ) : (ǫnt − ǫt)|p dx dt′
+
\
Qt

(|(Aǫnt −Aǫt) : ǫnt |p + |(Aǫt) : (ǫnt − ǫt)|p) dx dt′ → 0

as n→∞ , due to (5.79), (5.82), the continuity of F/θ�(ǫ, θ) and (5.71). This shows (5.80),
and thereby the complete continuity of Tτ . The proof of existence is thus finished.

6. Uniqueness proof

The proof consists in the direct comparison of two solutions by means of energy estimates

and the application of Gronwall’s inequality. Let (u1, θ1), (u2, θ2) ∈ V (p) be two solutions
corresponding to the same data. To simplify notation we set, for i = 1, 2,

v=u2−u1, η= θ2− θ1, ǫi= ǫ(ui), ǫit= ǫ(uit), F i/�=F/�(ǫi, θi), F i/θ�=F/θ�(ǫi, θi).
The difference (v, η) ∈ V (p) satisfies the BVP

vtt − νQvt +
κ

4
QQv =∇ · (F 2/� − F 1/�),(6.1)

cvηt − k∆η = (θ2F 2/θ� : ǫ2t − θ1F 1/θ� : ǫ1t ) + (ν(Aǫ2t ) : ǫ2t − ν(Aǫ1t ) : ǫ1t )(6.2)

≡ R1 +R2 in QT ,

v(0, x) = 0, vt(0, x) = 0, η(0, x) = 0 in Ω,(6.3)

v = Qv = 0, ∇η · n = 0 on ST .(6.4)

In the first step we obtain energy estimates for the mechanical part in terms of the

L2-norm of η. To this end we multiply (6.1) by vt and integrate over Qt to get
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(6.5)
1

2

\
Qt

d

dt
|vt|2 dx dt′ − ν

\
Qt

(Qvt) · vt dx dt′ +
κ

4

\
Qt

(QQv) · vt dx dt′

−
\
Qt

(∇ · (F 2/� − F 1/�)) · vt dx dt′ = 0.
Integration by parts (as in the proof of Lemma 5.2) and the use of initial conditions (6.3)

yield

(6.6)
\
Ωt

(
1

2
|vt|2 +

κ

8
|Qv|2

)
dx+ ν

\
Qt

(Aǫ(vt)) : ǫ(vt) dx dt
′

= −
\
Qt

(F 2/� − F 1/�) : ǫ(vt) dx dt′.
Moreover, thanks to (6.3), we have

1

2

\
Ωt

|ǫ(v)|2 dx = 1
2

\
Qt

d

dt
|ǫ(v)|2 dx dt′ =

\
Qt

ǫ(v) : ǫ(vt) dx dt
′.(6.7)

Combining (6.6), (6.7), and using the estimate

|F 2/� − F 1/�| ≤ Λ(|ǫ(v)|+ |η|),(6.8)

which follows from the regularity assumption on F (ǫ, θ) and the uniform bounds on ǫi, θi

in QT , by Young’s inequality we arrive at

(6.9)
\
Ωt

(
1

2
|vt|2 + |ǫ(v)|2 +

κ

8
|Qv|2

)
dx+ a⋆ν

\
Qt

|ǫ(vt)|2 dx dt′

≤ (δ1 + δ2)
\
Qt

|ǫ(vt)|2 dx dt′ + Λ(δ−11 + δ−12 )
\
Qt

(|ǫ(v)|2 + |η|2) dx dt′.

With an appropriate choice of δi the ǫ(vt)-term is absorbed by the left-hand side. Next,

the application of Gronwall’s inequality implies that

(6.10) ‖vt‖L∞(0,T ;L2(Ω))+‖ǫ(v)‖L∞(0,T ;L2(Ω))+‖Qv‖L∞(0,T ;L2(Ω))+‖ǫ(vt)‖L2(QT )
≤ Λ‖η‖L2(QT ).

Hence, from the ellipticity property of the operator Q, it follows that

‖v‖L∞(0,T ;W2

2
(Ω)) ≤ Λ‖η‖L2(QT ).(6.11)

The energy estimates for the thermal part follow by multiplying equation (6.2) by η and

integrating over Qt:

cv
2

\
Qt

d

dt
η2 dx dt′ + k

\
Qt

|∇η|2 dx dt′ =
\
Qt

(R1 +R2)η dx dt
′.(6.12)

Because of the uniform bounds on ǫi, θi, ǫit and C
3-regularity of F1(ǫ, θ) we have

|R1|, |R2| ≤ Λ(|η|+ |ǫ(v)|+ |ǫ(vt)|).(6.13)

Hence, thanks to (6.10), the right-hand side of (6.12) is estimated by\
Qt

(R1 +R2)η dx dt
′ ≤ Λ

\
Qt

η2 dx dt′.(6.14)
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Since η(0,x) = 0 in Ω, the application of Gronwall’s inequality to (6.12) implies that

η = 0 in Qt. Simultaneously, by inequality (6.11), v = 0 in QT . This completes the proof

of uniqueness.

7. Auxiliary results

The results obtained in the previous sections are based on several properties of solutions

to parabolic systems. Most of them are contained in [32], [49], [48], [27] and only the ones

which are frequently used are recalled here. However, many of these facts were formulated

for other boundary conditions or in slightly different situations. Their adaptation often

required modifications of proofs. In order to make the presentation complete, we show

explicitly these changes and the modified parts of the proofs.

7.1. Parabolicity of systems with elasticity operator. We consider the system of

equations

ut −Qu = f in QT(7.1)

for the two- and three-dimensional cases. Its explicit forms are as follows: for n = 2,

u1/t − [γu1/11 + µu1/22 + (λ+ µ)u2/12] = f1,
u2/t − [µu2/11 + γu2/22 + (λ+ µ)u1/12] = f2,

(7.2)

for n = 3,

u1/t − [γu1/11 + µu1/22 + µu1/33 + (λ+ µ)(u2/12 + u3/13)] = f1,
u2/t − [µu2/11 + γu2/22 + µu2/33 + (λ+ µ)(u1/12 + u3/23)] = f2,(7.3)

u3/t − [µu3/11 + µu3/22 + γu3/33 + (λ+ µ)(u1/13 + u2/23)] = f3.
Here γ = λ+ 2µ > 0 and µ > 0.

We show the following fact:

Lemma 7.1. Let n = 2 and the domain be of the form

Ω = {x = (x1, x2) | x2 > 0}, QT = (0, T )×Ω, ST = (0, T )× ∂Ω.
System (7.1) with boundary conditions

(BU): u(0,x) = u0(x) in Ω, u(t,x) = g on ST ,

or

(BN): u(0,x) = u0(x) in Ω, ∇u · n = 0 on ST ,
is parabolic in the general (Solonnikov) sense.

Proof. We use the results of [49] and [16]. We must check that the differential operator

in (7.2) is parabolic in the sense of Solonnikov, and the initial and boundary conditions

satisfy the complementarity requirements.

Parabolicity. Rewrite the system in the form

L0(p, ξ)u = f in QT ,

C(p, ξ)u = u0 in Ω,(7.4)

Bu(p, ξ)u = g or Bn(p, ξ)u = 0 on ST .
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Here p denotes ∂/∂t, and ξ = (ξ1, ξ2) corresponds to Dx = (∂/∂x1, ∂/∂x2). It is obvious

that

C =

[
1 0
0 1

]
, Bu =

[
1 0
0 1

]
, Bn =

[
ξ2 0
0 ξ2

]
,

L0 =
[
p− γξ21 − µξ22 −(λ+ µ)ξ1ξ2
−(λ+ µ)ξ1ξ2 p− µξ21 − γξ22

]
.

The condition of parabolicity states that all the roots of the equation

L0(p, iξ) = det[L0(p, iξ)] = 0(7.5)

must satisfy uniformly in QT the inequality

ℜpi < −δ|ξ|2, i = 1, 2,(7.6)

for some constant δ > 0. Equation (7.5) takes on the form

p2 + p(γ + µ)|ξ|2 + γµ|ξ|4 = 0,
which has roots

p1 = −µ|ξ|2, p2 = −γ|ξ|2,
and therefore condition (7.6) is satisfied for any δ ∈ (0,min[µ, γ]).
Initial condition. Let L̂0 be the matrix associated with L0, that is,

L̂0(p, iξ) = L0(p, iξ) · L−10 (p, iξ).
The rows of the matrix

P(p) = C(p, 0) · L̂0(p, 0)
should be linearly independent modulo the polynomial L0(p, 0) = p

2. But

P(p) =
[
1 0
0 1

]
·
[
p 0
0 p

]
=

[
p 0
0 p

]

and thus the complementarity condition is obviously satisfied.

Boundary conditions. We assume that the pair (η, p) satisfies the inequalities

ℜp ≥ −δ|η|2, |p|+ |η|2 > 0, δ ∈ (0,min[µ, γ]).(7.7)

Here we denote by η = (ξ1, 0) a vector tangent to ∂Ω. Let in addition ν be the unit

inward normal vector to ∂Ω, ν = (0, 1). We consider the equation in terms of τ :

L0(p, i(η + τν)) = 0

which has 2 roots with positive imaginary parts, τ+1 , τ
+
2 . We put

L+0 (τ ) = (τ − τ+1 )(τ − τ+2 ) = τ2 − a1τ + a0,
where a1 = τ+1 + τ

+
2 , a0 = τ+1 τ

+
2 . The condition which must be satisfied is that the

columns of the matrix

R(p, ξ1, τ ) = B(p, i(η + τν)) · L̂0(p, i(η + τν))
considered as τ -polynomials should be linearly independent modulo the polynomial L+0 (τ )

for any (η, p) satisfying (7.7). Here B denotes Bu or Bn.
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Let us analyze B = Bu first. Then

R(p, ξ1, τ ) =
[
p+ µξ21 + γτ

2 −(λ+ µ)ξ1τ
−(λ+ µ)ξ1τ p+ γξ21 + µτ

2

]
.

Next we construct a matrix of remainders resulting from division by L+0 (τ ):

Rm =
[
a1γτ − γa0 + (p+ µξ21) −(λ+ µ)ξ1τ

−(λ+ µ)ξ1τ a1µτ − µa0 + (p+ γξ21)

]
.

Finally, we form the matrix of 4 columns containing the coefficients of τ and of the

constant terms:

R′m =
[

a1γ −(λ+ µ)ξ1 −a0γ + (p+ µξ21) 0
−(λ+ µ)ξ1 a1µ 0 −a0µ+ (p+ γξ21)

]
.

This matrix should have rank 2. Considering the columns {1,3} and {2,4} we see that,
for ξ1 6= 0 and λ+ µ 6= 0, if the corresponding minors vanished simultaneously, then the
following equalities would hold:

−a0γ + (p+ µξ21) = 0,
−a0µ+ (p+ γξ21) = 0.

Hence,

p = −(γ + µ)ξ21 ,
and condition (7.7) is violated. For ξ1 = 0 or λ+µ = 0 it is enough to consider the minor

{1,2}, since a1 cannot be 0 as a sum of terms with positive imaginary part. Therefore at
least one of these minors must be nonzero.

The matrix Bn(i(η + τν)) is proportional to Bu, Bn(i(η + τν)) = iτBu. The matrix

Rm takes on the form

Rm =
[
[γ(a1 − a0) + (p+ µξ21)]τ + γa1a0 −a1(λ+ µ)ξ1τ + a0(λ+ µ)ξ1
−a1(λ+ µ)ξ1τ + a0(λ+ µ)ξ1 [µ(a1 − a0) + (p+ γξ21)]τ + µa1a0

]
.

As in the former case, the matrix of coefficients of τ and constant terms is

R′m =
[
γ(a1 − a0) + p+ µξ21 −a1(λ+ µ)ξ1 γa1a0 a0(λ+ µ)ξ1
−a1(λ+ µ)ξ1 µ(a1 − a0) + p+ γξ21 a0(λ+ µ)ξ1 µa1a0

]
.

For ξ1 = 0 or λ + µ = 0 we consider the minor {3, 4} and obviously γµ(a1a0)2 6= 0. If
ξ1 6= 0 and λ+ µ 6= 0 the minors {2, 3} and {1, 4} lead to simultaneous equations

γp+ γ2ξ21 + γµ(a1 − a0) + (γ − µ)2ξ21 = 0,
µp+ µ2ξ21 + γµ(a1 − a0) + (γ − µ)2ξ21 = 0,

and consequently to

(γ − µ)p+ (γ2 − µ2)ξ21 = 0,
or p = −(γ + µ)ξ21 , which contradicts (7.7).

The assertion of this lemma is generalized, using a partition of unity and standard

arguments, to the case of domains with C2-boundaries. This also allows us to obtain two

important corollaries. The first one concerns the regularity of solutions.
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Corollary 7.1. The solution of system (7.2), for a domain with C2-boundary , satisfies

the following inequalities: for the case BU:

‖u‖
W
2,1
p (QT )

≤ Λ{‖f‖Lp(QT ) + ‖u0‖W2−2/p
p (Ω)

+ ‖g‖
W
2−1/p,1−1/2p
p (ST )

},

and for the case BN:

‖u‖
W
2,1
p (QT )

≤ Λ{‖f‖Lp(QT ) + ‖u0‖W2−2/p
p (Ω)

},

where p > 1 and Λ is a constant depending on Ω and T .

The proof follows from Lemma 7.1 and the results of [48, Thm. 5.4, with tj = 2, sk = 0,

̺α = −2, l = 1, σq = −2, j, k, q, α = 1, 2] (see also [27, Thm. 4.3 and Corollary 4.5]).
We remark that Corollary 7.1 follows from the properties of the general Green func-

tions for appropriate systems of equations. Let us mention their particular exact form for

the case n = 2 according to [55], which clearly shows the role of the coefficients µ and γ.

If we set (r2 = x21 + x
2
2)

a(t,x) =
1

2γtr2

[
γx22 exp

(
− r2

4µt

)
+ µx21 exp

(
− r2

4γt

)]
,

b(t,x) =
1

2γtr2

[
γx21 exp

(
− r2

4µt

)
+ µx22 exp

(
− r2

4γt

)]
,

c(t,x) = µ
x22 − x21
r4

[
exp

(
− r2

4µt

)
− exp

(
− r2

4γt

)]
,

d(t,x) =
x1x2
2γtr2

[
µ exp

(
− r2

4γt

)
− γ exp

(
− r2

4µt

)]
,

e(t,x) = 2µ
x1x2
r4

[
exp

(
− r2

4γt

)
− exp

(
− r2

4µt

)]
,

then the matrix potential function may be written as

G(x, t) =
1

2πµ

[
a+ c d+ e
d+ e b− c

]
.(7.8)

Finally, let us comment on the three-dimensional case.

Remark 7.1. System (7.1) for n = 3 with initial and boundary conditions as in Lem-

ma 7.1 is parabolic in the general (Solonnikov) sense.

Proof. The polynomial (7.5) deciding about parabolicity may be written as

p3 + p2(γ + 2µ)|ξ|2 + pµ(2γ + µ)|ξ|4 + µ2γ|ξ|6 = 0.

It is easy to see that it has roots

p1 = p2 = −µ|ξ|2, p3 = −γ|ξ|2,

which satisfy inequality (7.6). We may check the complementarity requirements for the

initial and boundary conditions as in Lemma 7.1.

In consequence, the three-dimensional equivalent of Corollary 7.1 holds.
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7.2. Additional regularity of solutions. In this section we shall describe situations

when the solutions to parabolic and elliptic systems are more regular, provided the right-

hand sides have some additional properties.

The first result is a generalization of the Friedman–Nečas result (see Lemma 2.1

in [25]) to the case of parabolic systems.

Lemma 7.2. Let u be a solution for n = 2 or n = 3 of the system

ut −Qu = f +∇ · σ in QT ,

u(0,x) = 0 in Ω,(7.9)

u = 0 on ST ,

where f = (fi) and σ = (σij). If f ∈ Lp(QT ), σ ∈ Lp(QT ) for 1 < p < ∞, then, for
every 0 < t < T ,

‖u‖
W
1,1/2
p (Qt)

≤ Λp{‖f‖Lp(Qt) + ‖σ‖Lp(Qt)},(7.10)

where the constant Λp depends on Ω, γ, µ, T and p. In addition we have the representation

u = u0 +

n∑

i=1

∂ui

∂xi
,(7.11)

where ui, i = 0, 1, . . . , n, satisfy the BVP’s

uit −Qui = hi in QT ,

ui(0,x) = 0 in Ω, 0 ≤ i ≤ n,
ui = 0 on ST for 0 ≤ i ≤ n− 1,
∂un

∂n
= 0 on ST for i = n,

(7.12)

with h0 = f , and hi = (σki)k=1,...,n for i = 1, . . . , n.

Proof. We follow the arguments of [25] where the single equation is considered.

First assume that Ω = {xn > 0}. Let ui, i = 0, 1, . . . , n, be the solutions of the
following auxiliary BVP’s:

uit −Qui = hi in QT ,

ui(0,x) = 0 in Ω, 0 ≤ i ≤ n,
ui = 0 on (0, T )× {xn = 0} for 0 ≤ i ≤ n− 1,
∂un

∂xn
= 0 on (0, T )× {xn = 0} for i = n.

(7.13)

Then the solution of (7.9) is given by (7.11). Thanks to the regularity result in Corol-

lary 7.1 we have

‖ui‖
W
2,1
p (QT )

≤ Λ‖hi‖Lp(QT ), 0 ≤ i ≤ n,
so, by imbedding,

∥∥∥∥
∂ui

∂xi

∥∥∥∥
W
1,1/2
p (QT )

≤ Λ‖hi‖Lp(QT ), 0 ≤ i ≤ n.
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Hence, if we recall (7.11), estimate (7.10) follows. By standard arguments using a partition

of unity, (7.10) and (7.13) are extended to general domains Ω.

The next lemma concerns the situation when the functions represented in the form

(7.11) become in turn the right-hand sides of equations or systems.

We consider two BVP’s:

ut −∆u = f in QT ,

u(0,x) = u0 in Ω,(7.14)

u = 0 on ST ,

and

ut −Qu = f in QT ,

u(0,x) = u0 in Ω,(7.15)

u = 0 on ST .

In addition we assume that u0 ∈ W 4−2/pp (Ω), u0 ∈ W4−2/pp (Ω), 1 < p < ∞, and the
data f , f , u0, u0 satisfy the compatibility requirements corresponding to the solvability

of (7.14) and (7.15) in W 4,2p (QT ) orW
4,2
p (QT ). Then we have the following.

Lemma 7.3. Assume that f = DxiF , f = DxiF for some i ∈ {1, . . . , n}, and
‖F‖W 2,1p (QT ) ≤ K1, ‖F‖

W
2,1
p (QT )

≤ K2.
Then, for any j ∈ {1, . . . , n},
‖Dxiu‖W 2,1p (QT )≤Λ(K1+‖u0‖W 4−2/pp (Ω)

), ‖Dxiu‖W2,1
p (QT )

≤Λ(K2+‖u0‖W4−2/p
p (Ω)

).

Proof. Let again Ω = {x ∈ R
n | xn > 0}, QT = (0, T ) × Ω and ST = (0, T ) × ∂Ω. For

simplicity we shall prove the statement in case n = 2, since the method for n = 3 is

exactly the same. The claim is obvious for w = Dx1u because it satisfies the BVP

wt −∆w = Dx1f in QT ,

w(0,x) = Dx1u0 in Ω,(7.16)

w = 0 on ST ,

and the regularity result of Corollary 7.1 applies, since Dx1f = Dx1xiF ∈ Lp(QT ). The
same concerns w = Dx1u. It remains to consider v = Dx2u and v = Dx2u. We claim

that v satisfies another BVP,

vt −∆v = Dx2f in QT ,

v(0,x) = Dx2u0 in Ω,

∂v

∂n
= f on ST .

(7.17)

Informally this follows by observing that ut = 0, u/11 = 0 on ST , hence from the equation

itself we may get

−u/22 = −v/2 =
∂v

∂n
= f.
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This can be made rigorous by considering smooth F̃ approximating F in W 2,1p (QT ),

analyzing the classical solution and a density argument.

But f on ST is the trace of DxiF with F ∈W 2,1p (QT ), hence it satisfies the regularity
requirements for application of the classical regularity theory.

Now consider v = Dx2u. By the same reasoning it satisfies

vt −Qv = Dx2f in QT ,

v(0,x) = Dx2u0 in Ω,(7.18)

B(ξ)v = −f on ST ,

where ξ = (ξ1, ξ2) and ξ1 = Dx1 , ξ2 = Dx2 . The boundary operator has the form

B(ξ) =

[
µξ2 (λ+ µ)ξ1

(λ+ µ)ξ1 γξ2

]
.

As in Lemma 7.1 it may be checked that system (7.18) is parabolic, so Corollary 7.1

applies. Finally, by bounding theW 2,1p - orW
2,1
p (QT )-norms of solutions to (7.16), (7.17),

(7.18) in terms of data we get the required estimates. This result extends to general

domains in the same way as Lemma 7.2 does.

The last lemma concerning the properties of strongly elliptic operators is due to Nečas

(see [35, p. 260], also [7, p. 296]).

We say that the differential operator L acting on u = (u1, u2, u3) defined by

Lu =
∂

∂xi
Arsij

∂us
∂xj

is strongly elliptic if there exists a constant δ > 0 such that

Arsijξiξjηrηs ≥ δ|ξ|2|η|2 or Arsijξiξjηrηs ≤ −δ |ξ|2|η|2

for any ξ,η ∈ R
n \ {0}. Now in order to make the presentation selfcontained we shall

show the known result (see e.g. [28, Sect. 29, Ex. 3]) that for µ > 0 and γ = λ+ 2µ > 0

the operator Q has this property. Indeed, from (7.3) it can be easily deduced that

A1111 = A2222 = A3333 = γ,

A1122 = A1133 = A2211 = A2233 = A3311 = A3322 = µ,

A1212 = A1313 = A2121 = A2323 = A3131 = A3232 = λ+ µ.

Define a symmetric matrix B(ξ) = [brs] by

brs = Arsijξiξj .

With this notation

Arsijξiξjηrηs = η
TB(ξ)η.

Assume for the moment that the eigenvalues of B(ξ) are all negative, say −λ1(ξ), −λ2(ξ),
−λ3(ξ). Then

ηTB(ξ)η ≤ −min[λ1, λ2, λ3] |η|2.(7.19)

But, as is easily seen, B(ξ) = −L0(0, ξ) (see (7.4)), and the eigenvalue problem for it is
the same as (7.5), namely

det[L0(p, iξ)] = 0,
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with roots p1 = p2 = −µ|ξ|2, p3 = −γ|ξ|2. Hence
min[λ1, λ2, λ3] = min[µ, γ]|ξ|2.

Substituting this equality into (7.19) gives the required result,

ηTB(ξ)η ≤ −min[µ, γ]|ξ|2|η|2.
Therefore the operator Q is strongly elliptic and the result of Nečas applies.

Lemma 7.4. Assume ∂Ω ∈ C2 and µ > 0, λ+2µ > 0. Then for solutions of the problem
Qu = f in Ω,

u = 0 on ∂Ω,

where f ∈ L2(Ω), we have the bound
‖u‖W2

2
(Ω) ≤ Λ‖f‖L2(Ω).

7.3. The maximum principle for regular data. This section contains some con-

clusions which may be drawn from the results of [32]. For a domain Ω with C2-boundary

we consider the equation

ut − aiju/ij + au = f in QT ,(7.20)

with initial condition

u(0,x) = ψ0(x) in Ω,(7.21)

and boundary conditions

biu/i + bu = ψ on ST .(7.22)

The assumptions concerning the data are as follows:

A1: the coefficients aij , a of (7.20) are bounded,

A2: aijξiξj ≥ 0 for any ξ = (ξ1, . . . , ξn),
A3: the functions f, bi, b are bounded,

A4: b · n ≥ δ > 0 uniformly on ST , where b = (b1, . . . , bn),
A5: b > 0 on ST .

Then we have ([32, Theorem I.2.2])

Theorem 7.1. For any t1 ∈ [0, T ] the classical solution to problem (7.20)–(7.22) satisfies
the inequality

u(t1,x) ≥ sup
λ>a0

min

{
0; min
St1

ψeλ(t1−t)

b
; eλt1 min

Ω
ψ0;

1

λ− a0
min
Qt1

feλ(t1−t)
}
,

where

a0 = max
Qt1

(−a(t,x)).

From this theorem we immediately obtain two corollaries.

Corollary 7.2. If ψ0 ≥ 0, ψ ≥ 0, f ≥ 0, then u(t1,x) ≥ 0.
Corollary 7.3. The assertion of Corollary 7.2 holds also for b = 0.
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Proof. We imitate here [32]. For a domain with C2-boundary there exists a function φ(x),

twice differentiable, satisfying for k > 0,

∇φ · n = −k, φ = 1 on ∂Ω, 1 ≤ φ ≤ 2 in Ω.
We introduce the function w = uφ, which satisfies the same type of equation as u, and

biu/i =
1

φ
biw/i −

1

φ2
biwφ/i on ST .

From the definition of φ, ∇φ = −kn on ST . Hence, due to A4, −biφ/i = b̃ ≥ kδ > 0, and
the boundary condition (7.22) takes on the form

biw/i + b̃w = ψ on ST .

Hence w ≥ 0 and u ≥ 0.

7.4. The stability of solutions. At the beginning we define, following [32], some

function spaces on the given space-time cylinder QT .

• Lq,r(QT ) — the space of functions for which the following norm is finite:

‖u‖q,r,QT =
( T\
0

(\
Ω

|u|q dx
)r/q

dt
)1/r

.

• V2(QT ) — the space with the norm
|u|QT = ess sup

0≤t≤T
‖u(t,x)‖L2(Ω) + ‖∇u‖L2(QT ).

• V 1,02 (QT ) — the subspace of V2(QT ) containing functions continuous from [0, T ]
into L2(Ω) with the norm

|u|QT = max
0≤t≤T

‖u(t,x)‖L2(Ω) + ‖∇u‖L2(QT ).

• W 1,02 (QT ) — the Hilbert space with the scalar product

(u, v)W 1,0
2
(QT )
=
\
QT

(uv +∇u ·∇v) dx dt.

• W 1,12 (QT ) — the Hilbert space with the scalar product

(u, v)W 1,1
2
(QT )
=
\
QT

(uv +∇u ·∇v + utvt) dx dt.

• V 1,1/22 (QT ) — the subspace of V
1,0
2 (QT ) containing functions for which

lim
h→0

T−h\
0

\
Ω

h−1[u(t+ h,x)− u(t,x)]2 dx dt = 0.

In addition we recall that V 1,02 (QT ) is the closure of W
1,1
2 (QT ) in the norm of V2(QT ).

We shall consider the parabolic equation with Neumann-type boundary conditions,

namely

Lu = −f, (aiju/i)nj = 0 on ST , u(0,x) = ψ0(x),(7.23)
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where

Lu = ut − (aiju/i)/j + au,
and

ν0|ξ|2 ≤ aijξiξj ≤ µ0|ξ|2 for all ξ = (ξi)i=1,...,n

for constants 0 < ν0 < µ0.

We shall also make some assumptions concerning the data.

S1: The following norm of the coefficient a is bounded:

‖a‖q,r,QT ≤ µ1,
where, for n ≥ 2,

q ∈
(
n

2
,∞
]
, r ∈ [1,∞), 1

r
+

n

2q
= 1.

S2: The right-hand side satisfies

‖f‖q1,r1,QT ≤ µ2,
where, for n = 2,

q1 ∈ (1, 2], r1 ∈ [1, 2),
and for n ≥ 3,

q1 ∈
[
2n

n+ 2
, 2

]
, r1 ∈ [1, 2].

We shall call a function u a generalized solution of problem (7.23) in V2(QT ) (or V
1,0
2 (QT ),

or V
1,1/2
2 (QT )) if it satisfies the integral identity

−
\
QT

uηt dx dt+

T\
0

[L1(u, η) + L2(f, η)] dt =
\
Ω

ψ0η(0,x) dx,(7.24)

where

L1(u, η) =
\
Ω

[aiju/iη/j + auη] dx, L2(u, η) =
\
Ω

fη dx,

and η is any function from W 1,12 (QT ) with zero final value, η(T,x) = 0.

Using this definition, we recall the following existence result ([32, Theorem III.5.1]).

Theorem 7.2. If the domain Ω has a piecewise C2-boundary , and assumptions S1 and

S2 are satisfied , then there exists a unique generalized solution to problem (7.23) in the

space V
1,1/2
2 (QT ). Any solution in V2(QT ) belongs to V

1,1/2
2 (QT ).

In addition, the following useful inequalities have been proved in [32].

Lemma 7.5. Let the numbers r, q satisfy

r ∈ [2,∞), q ∈
[
2,
2n

n− 2

]
for n > 2,

r ∈ (2,∞], q ∈ [2,∞) for n = 2,
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and Ω be as in Theorem 7.2. The following inequalities hold for functions in V2(QT ): if

u vanishes on the boundary , then

‖u‖q,r,QT ≤ β1(n, q)|u|QT ,(7.25)

and without this condition,

‖u‖q,r,QT ≤ β1(n, q, T, |Ω|)|u|QT .(7.26)

On this basis, we may formulate a modification of Lemma 2.1, Chapter III, in [32].

Lemma 7.6. Let the domain Ω have piecewise C2-boundary and let u ∈ V2(QT ) satisfy
for any t1, t2 ∈ [0, T ] the inequality

1

2

\
Ω

u2 dx
∣∣∣
t2

t1
+

t2\
t1

[L1(u, u) + L2(f, u)] dt ≤ 0.

In addition, let the coefficient a and the right-hand side f satisfy assumptions S1, S2.

Then

|u|QT ≤ C(‖u(0,x)‖L2(Ω) + ‖f‖q1,r1,QT ),(7.27)

with the constant C of the form C = C(n, ν0, µ0, µ1, q, T, |Ω|).
Proof. The proof is exactly the same as in [32] for Lemma 2.1, Chapter III, where it

concerns functions vanishing on the boundary. The only difference is that we use inequal-

ity (7.26) instead of (7.25), and therefore the constant depends on T, |Ω|.
Now we may formulate a result which is a slight modification of Theorem III.2.1

of [32], where it concerns solutions of problems with Dirichlet type homogeneous boundary

conditions.

Theorem 7.3. For domains with piecewise C2-boundary and under assumptions S1, S2,

any function u ∈ V 1,02 (QT ) satisfying problem (7.23) fulfils the inequality
|u|QT ≤ C(‖ψ0‖L2(Ω) + ‖f‖q1,r1,QT ),

with C as in Lemma 7.6.

Proof. Let u ∈ V 1,02 (QT ) be a generalized solution of (7.23). By definition, it satisfies the
integral identity

−
\
QT

uηt dx dt+
\
QT

[(aiju/i)η/j + (au+ f)η] dx dt =
\
Ω

ψ0η(0,x) dx,

for any η ∈W 1,12 (QT ), η(T,x) = 0. We substitute

η := η̂h =
1

h

t\
t−h

η̂(τ,x) dτ,

where η̂ ∈W 1,12 (Q−h,T ), Q−h,T = (−h, T )×Ω, and η̂ = 0 for t ≤ 0, t ≥ T − h. Then we
define

uh =
1

h

t+h\
t

u(τ,x) dτ.
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As a result the integral identity transforms, as in [32, Remark 2.1, Chapter III], to the

form \
QT−h

[uh/tη̂ + (aiju/i)hη̂/j + (au+ f)hη̂] dx dt = 0.

In fact, this identity holds for more general functions η̂ defined as

η̂(t,x) =

{
η(t,x) for t ∈ [0, t1],
0 for t > t1,

where t1 ≤ T − h, and η(t,x) is any function in V 1,02 (Qt1). The derivation is identical as
in [32], but concerns functions which do not vanish on the boundary ST . The crucial point

is the density of W 1,12 (Q−h,T ) in V
1,0
2 (Q−h,T ) and an additional construction, allowing

one to find a sequence η̂m,k ∈W 1,12 (Q−h,T ), which, as m, k →∞, converges in the norm
of V2(Q−h,T ) to the function η̂ defined above. Hence\

Qt1

[uh/tη + (aiju/i)hη/j + (au+ f)hη] dx dt = 0

for any η ∈ V 1,02 (Qt1). Taking η = uh and letting h→ 0, we get
1

2

\
Ω

u2 dx
∣∣∣
t1

0
+

t1\
0

[L1(u, u) + L2(f, u)] dt = 0

for any t1 ≤ T . Thus the assumptions of Lemma 7.6 are fulfilled, and the assertion

follows.

These preparatory results allow us to formulate the main stability property. It is a

modification of Theorem III.4.5 of [32], with the difference that the equation has the

Neumann-type boundary conditions, and the main part of the differential operator is not

perturbed.

Theorem 7.4. Consider the parabolic problem (7.23) and its perturbed counterpart ,

Lmum = −fm, (aiju
m
/i)nj = 0 on ST , um(0,x) = ψm0 (x),

where

Lmum = umt − (aijum/i)/j + amum.
Assume that

am → a in Lq,r(QT ), fm → f in Lq1,r1(QT ), ψm0 → ψ0 in L2(Ω),

where q, r, q1, r1 are specified by assumptions S1, S2. Then the sequence u
m converges

strongly to u in V 1,02 (QT ).

Proof. According to Theorem 7.2 both the original and the perturbed problems have

solutions satisfying the integral identities\
QT

[−uηt + aiju/iη/j + (au+ f)η ] dx dt =
\
Ω

ψ0η(0,x) dx,\
QT

[−umηt + aijum/iη/j + (amum + fm)η ] dx dt =
\
Ω

ψm0 η(0,x) dx.

Therefore for the difference vm = um − u we may write
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QT

[−vmηt + aijvm/iη/j + (amvm + Fm)η ] dx dt =
\
Ω

Ψmη(0,x) dx,

where

Fm = (am − a)u+ fm − f, Ψm = ψm0 − ψ0.
We see that vm is a solution of the same type of parabolic problem, and the coefficients

are close (by assumption) to their unperturbed counterparts in appropriate norms. Hence

Theorem 7.3 is applicable, and

|vm|QT ≤ C(‖Ψm‖L2(Ω) + ‖Fm‖q1,r1,QT ).
It may be proved, similarly to [32], that ‖Fm‖q1,r1,QT → 0, which completes the proof.

7.5. Imbeddings and compactness. In this section we recall, for completeness of

presentation, some classical results. The first one concerns imbeddings [32, Lemma II.3.3].

Theorem 7.5. Let u ∈W 2l,lq (QT ), l an integer. Then

‖DrtDsxu‖Lp(QT ) ≤ C1δα〈〈u〉〉
(2l)
q,QT
+ C2δ

(α−2l)‖u‖Lq(QT ),
provided

p ≥ q, α ≡ 2l − 2r − s−
(
1

q
− 1
p

)
(n+ 2) ≥ 0.

Moreover , if

β ≡ 2l − 2r − s− n+ 2

q
> 0

then for 0 ≤ λ < β,

〈DrtDsxu〉
(λ)
QT
≤ C3δ(β−λ)〈〈u〉〉(2l)q,QT + C4δ

(β−λ−2l)‖u‖Lq(QT ).
In case β is not an integer , the above inequality is satisfied also for λ = β.

Here δ ∈ (0,min(
√
T , d)], d is the altitude of the cone in the statement of the cone

condition satisfied by Ω,

〈〈u〉〉(j)q,QT =
∑

2r+s=j

‖DrtDsxu‖Lq(QT ),

and

〈u〉(λ)QT = sup
(x,t),(x′,t)∈QT , |x−x′|≤̺0

|u(x, t)− u(x′, t)|
|x− x′|λ

+ sup
(x,t),(x,t′)∈QT , |t−t′|≤̺0

|u(x, t)− u(x, t′)|
|t− t′|λ/2 .

We also recall the compactness theorem (see [3], [52]) used in the proof of existence.

Theorem 7.6. Let X0, X,X1 be Banach spaces , X0 and X1 reflexive, for which the

following imbeddings hold:

X0
compact
−−−−−→ X

continuous
−−−−−−−→ X1.

Assuming p0, p1 > 1, define the space

Y = {u | u ∈ Lp0(I,X0), ut ∈ Lp1(I,X1)}
with an appropriate norm. Then the imbedding Y → Lp0(I,X) is compact.
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