
Introduction

The main object of this paper is to establish the Yamada–Watanabe theory of uniqueness
and existence of solutions of stochastic evolution equations in Banach spaces. The pio-
neering paper [YW] has initiated a comprehensive study of relations between essentially
different types of uniqueness and existence (e.g. pathwise uniqueness, joint uniqueness in
law, weak and strong existence) arising naturally in the study of SDEs (see e.g. [En], [J])
and the research in this direction is still active—even today, new surprising results are
published (see e.g. [Ch]). Our intention is to give a presentation of these results for evolu-
tion equations in Banach spaces perturbed by a (generally) infinite-dimensional Wiener
process.

Attacking this issue, we encounter two main obstacles which render the solution of
this problem nontrivial. Firstly, unlike the finite-dimensional case, the continuity of tra-
jectories of stochastic evolution equations is an open problem, and secondly, infinite-
dimensional Wiener processes are not processes in a conventional sense: they are not
Fréchet valued unless their covariance is of trace class. Being aware of these difficulties,
no prima facie generalization of known proofs is possible and we must use different con-
structions which stem rather from the infinite-dimensional structure of the spaces we
work in than from probabilistic reasons.

The paper also contains a comprehensive section of preliminary results on stochas-
tic analysis in Banach spaces, namely a stochastic integral is constructed by a method
alternative to the usual ones, Burkholder’s inequality, Fubini’s and Girsanov’s theorems
are proven, and theorems on equality of distributions of Bochner integrals, stochastic
integrals and measurable selectors are given.

Concerning the principal content, we consider a stochastic semilinear equation (0.1)
with an initial probability distribution; in other words, we are given purely determin-
istic quantities (transformations appearing in the equation and a measure on the state
space), and before we can speak of any solution, we must specify what probability fil-
tered space we work on and what Wiener process drives our equation. Then we can seek
a stochastic process with the prescribed initial distribution solving the equation. We pose
the following natural question: If there exists a probability space with a solving process,
what conditions are sufficient to conclude that there exists a solving process on every
probability space?

We will also be interested in the uniqueness point of view. By the Yamada–Watanabe
theorem for SDEs, if an equation is pathwise unique (i.e. different paths of solutions have
different initial values) then any two solutions living on possibly different probability
spaces necessarily have the same probability distribution on the space of trajectories
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(uniqueness in law). Our second question is whether this is also true in the Banach space
setting.

The third problem we treat is also inspired by the stochastic differential equations
theory. Under suitable conditions there exists a deterministic function of two variables:
the first corresponds to an initial value and the second to a path of a Wiener process. The
function’s value is a path of a solution with respect to the initial value and the Wiener
process. We will present sufficient conditions for the existence of such a function in the
case of stochastic evolution equations (Thm. 12.1, Thm. 13.2, Lemma E).

We also give an example of an equation which is jointly unique in law (Def. 1, Thm. 5)
and another equation which is jointly u-unique in law (Def. 1, Thm. 3). The first example
is based on Girsanov’s theorem, therefore it concerns additive noise equations only, while
the second one uses the measurable selectors approach and covers a fairly general class
of multiplicative noise equations, namely all those with one-to-one diffusions.

Theorem 4 is a Banach space version of a remarkable theorem by A. S. Cherny [Ch]
(who proved it for SDEs) which states that uniqueness in law is, in fact, equivalent to
joint uniqueness in law provided we consider deterministic initial conditions.

An essential part of the proof of Theorems 3 and 4 is an alternative explicit form of the
solution (Thm. 13), and therefore we decided to include the complete proof of stochastic
Fubini’s theorem (Prop. 6.1) together with its consequences (Thm. 12, Thm. 13) which
were proven by the same method in a less general form and in the Hilbert space setting
by A. Chojnowska-Michalik [ChM].

Next we prove three so called distribution-preserving theorems: for stochastic Bochner
integrals (Thm. 8.3), for stochastic integrals (Thm. 8.6) and for measurable selectors
(Prop. 8.8). The combination of the first two theorems will result in the fundamental
solution-preserving theorem (Thm. 6) which gives a sufficient condition for a pair of a
process and a Wiener process to be a solution in terms of their joint distribution on the
space of trajectories.

Throughout this paper we work with Banach valued processes. Therefore, in the first
part, we recall the construction of the stochastic integral in a separable 2-smooth Banach
space—firstly because many proofs in this paper rely on it, and secondly because of its
“directness”—the construction of the integral is free of any auxiliary embeddings even in
the case of a cylindrical Wiener process with non-trace class covariance. We emphasize
that, apart from the observation made in Step 1, the construction is more or less classical
and we have just collected the “common knowledge” and sometimes gave shorter proofs
in light of newer methods, many of them surveyed in [ChTV]. Our sources for stochastic
integration and geometry of uniformly smooth Banach spaces were mainly works of A. L.
Neidhardt [N] (construction of the integral), P. Assouad [A] (Burkholder inequality, ge-
ometry of 2-smooth Banach spaces), E. Dettweiler [D] (Burkholder inequality), W. Linde
& A. Pietsch (characterization of integrands), G. Pisier [P] (geometry of 2-smooth Banach
spaces), J. Hoffmann-Jørgensen (geometry of 2-smooth Banach spaces, characterization
of integrands [ChTV]).

The cylindrical Wiener process is understood in the sense of M. Métivier & J. Pellau-
mail—we refer to their paper on cylindrical stochastic integration [MP] while the devel-
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opments concerning uniqueness trace their origin back to stochastic differential equation
results of T. Yamada and S. Watanabe [YW], H. J. Engelbert [En] and J. Jacod [J].

This work could not have been done without Jan Seidler who initiated and motivated
the author into the direction of stochastic evolution equations and often contributed by
valuable suggestions and discussions on the subject. Another acknowledgement goes to
Marco Dozzi for enabling the author to work on this paper during a stay at the Institut
Élie Cartan in Nancy, France, and for many interesting discussions. Last but not least,
thanks are due to Zdzis law Brzeźniak for our discussions on Burkholder’s inequality for
stochastic integrals in 2-smooth Banach spaces.

Notation. 1. We will consider only complete filtrations, i.e. whenever (Ft) is a filtration
on some probability space (Ω,F , P ) then F0 is supposed to contain all P -negligible sets
in F .

2. X stands for a separable 2-smooth Banach space (Def. 3.1), X∗ for its topological
dual space, (x∗, x) 7→ 〈x∗, x〉 for the pairing between them and U will be a separable
Hilbert space. If h ∈ H and x ∈ X then we will write h⊗L(U,X) x = h⊗ x to denote the
operator U → X : y 7→ 〈y, h〉Ux.

3. The strong σ-algebra on L(U,X) is the smallest σ-algebra which renders the map-
pings L(U,X) → X : B 7→ Bh, h ∈ U , measurable. A mapping g : (Y,Y) → L(U,X) is
said to be strongly measurable provided that it is measurable with respect to the strong
σ-algebra on L(U,X), i.e. the mappings Y → X : y 7→ g(h) are measurable for every
h ∈ U .

4. X1 is a separable Banach space such that X is continuously embedded in X1, i.e.
X is a subspace of X1 and the identity mapping i : X → X1 is continuous.

5. Let (Ω,F , P ) be a probability space, (Y,Y) a measurable space and g : Ω → Y a
measurable mapping. Then we define the image of P under g by LawP (g)(B) = P{ω :
g(ω) ∈ B}, B ∈ Y .

6. In view of Definitions 1 and 7 we write briefly

LawP 1(u1,W 1) = LawP 2(u2,W 2), resp. LawP 1(u1) = LawP 2(u2)

instead of

LawP 1(u1(ti),W 1(ti, hj) : i, j) = LawP 2(u2(ti),W 2(ti, hj) : i, j),

resp.

LawP 1(u1(ti) : i) = LawP 2(u2(ti) : i)

for every partition 0 = t0 < · · · < tn ≤ T and every h1, . . . , hm in U .

7. We will say that a process (ut : t ≤ T ) on (Ω,F , P,W ) is (u0,W )P -adapted instead
of saying that u is adapted to the P -augmentation of the filtration σ(u0,W (s, h) : s ≤
t, h ∈ U) in F .

Main theorems. Consider the following stochastic evolution equation on [0, T ] in a
separable 2-smooth Banach space X (Def. 3.1):
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u(t) = Stu(0) +
t�

0

St−sf(s, u(s)) ds+
t�

0

St−sg(s, u(s)) dWs, 0 < t ≤ T,(0.1)

Law(u(0)) = µ,

where S : (0, T ] → L(X1, X) is a strongly measurable operator-valued function, Q a
covariance operator on U (i.e. a symmetric nonnegative bounded linear operator), f :
[0, T ]×X → X1 a measurable mapping, g : [0, T ]×X → L(U0, X1) a strongly measurable
mapping (see Def. 2.1 for the definition of U0) and µ a probability Borel measure on X.

We say that a 6-tuple (Ω,F , (Ft), P,W, u) consisting of a filtered probability space, a
Q-(Ft)-Wiener process W on U (Def. 1.4) and a measurable X-valued process u on [0, T ]
is a solution of (0.1) provided that

(0.2) P
[ t�

0

(‖St−sf(s, u(s))‖X + ‖St−sg(s, u(s))‖2L2(U0,X)) ds <∞
]

= 1

for every t ∈ (0, T ], equation (0.1) is satisfied for every t ∈ (0, T ] and there exists a
sequence (x∗n : n) in X∗ which separates points of X such that the real processes
t 7→ 〈x∗n, u(t)〉 have continuous adapted modifications on [0, T ] (hence u has a
predictable modification by Corollary 11.2 and the integrals in (0.1) are well defined).
The symbol L2(U0, X) dentotes the space of radonifying operators (see Definition 2.3).

The last, sort of untypical, condition will be very important in what follows. We
chose this formulation because such a sequence (x∗n : n) always exists if u is progressively
measurable, X = X1, (St) is a C0-semigroup and the following integrability condition
holds (see Thm. 13):

(0.3) P
[ T�

0

(‖f(s, u(s))‖X1 + ‖g(s, u(s))‖2L(U0,X1)) ds <∞
]

= 1.

We will refer to (0.3) later on even in situations when X will not coincide with X1.

Almost all results in this paper hold under fairly general conditions. Theorem 4 is
exceptional in this sense—we do not know how to avoid additional assumptions. Namely
we cannot take into account the uncountable number of conditions a process must satisfy
to be a solution (as in (0.2) where the condition is to be satisfied for every t ∈ [0, T ]).
Therefore we introduce a single (but more restrictive) condition:

(0.4) P
[ T�

0

(M1(f(s, u(s))) +M2(g(s, u(s)))) ds <∞
]

= 1,

where M1 : X1 → [0,∞] is some measurable function with the following property: When-
ever y : [0, T ]→ X is a measurable function such that

T�

0

M1(f(s, ys)) ds <∞ then
t�

0

‖St−sf(s, ys)‖X ds <∞ for every t ∈ [0, T ]

and M2 : L(U0, X1) → [0,∞] is some strongly measurable function with the property:
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Whenever y : [0, T ]→ X is a measurable function such that
T�

0

M2(g(s, ys)) ds <∞ then
t�

0

‖St−sg(s, ys)‖2L2(U0,X) ds <∞ for every t ∈ [0, T ].

For instance, the choice of M1 can be based on the inequality

(a) ‖St−sf(s, ys)‖X ≤ ‖St−s‖L(X1,X)‖f(s, ys)‖X1 ,

while the choice of M2 arises typically in the cases when g takes values in L2(U0, X1),
or when the covariance operator of the Wiener process is nuclear (i.e. TrQ < ∞) and g

takes values in L(U,X1), or if (St) is p-summing for some 0 < p < ∞ (see e.g. Chapter
II.2.2 in [ChTV]). Then

(b1) ‖St−sg(s, ys)‖L2(U0,X) ≤ ‖St−s‖L(X1,X)‖g(s, ys)‖L2(U0,X1)

by Definition 2.3, or

(b2) ‖St−sg(s, ys)‖L2(U0,X) ≤ (TrQ)1/2‖St−s‖L(X1,X)‖g(s, ys)‖L(U,X1)

by Note 2.6, or

(b3) ‖St−sg(s, ys)‖L2(U0,X) ≤ cp‖St−s‖Πp(X1,X)‖g(s, ys)‖L(U0,X1)

for some constant cp by Proposition 2.4, where Πp(X1, X) is the space of p-summing
operators from X1 to X (see e.g. [ChTV]).

Apparently, we can take M1 = 1 if ‖f‖X1 is bounded and ‖S‖L(X1,X) ∈ L1(0, T ), or

M1 = ‖ · ‖
1

1−1/r

X1
if ‖S‖L(X1,X) ∈ Lr(0, T ) for some 1 < r ≤ ∞ by (a).

Analogously, we can consider M2 = 1 if ‖g‖L2(U0,X1), resp. ‖g‖L(U,X1), resp. ‖g‖L(U0,X1)

is bounded and ‖S‖L(X1,X) ∈ L2(0, T ), resp. ‖S‖L(X1,X) ∈ L2(0, T ), resp. ‖S‖Πp(X1,X) ∈
L2(0, T ), or

M2 = ‖ · ‖
2

1−1/q

L2(U0,X1), resp. M2 = ‖ · ‖
2

1−1/q

L(U,X1), resp. M2 = ‖ · ‖
2

1−1/q

L(U0,X1)

if ‖S‖L(X1,X) ∈ L2q(0, T ), resp. ‖S‖L(X1,X) ∈ L2q(0, T ), resp. ‖S‖Πp(X1,X) ∈ L2q(0, T )
for some 1 < q ≤ ∞, by (b1), resp. (b2), resp. (b3).

We should mention that all results in this paper remain true if we consider only
adapted solutions with norm continuous paths. Also, the integrability condition (0.2) is
fairly general and can be replaced or complemented by e.g. (0.3) or (0.7), with slight
modifications of the proofs. In these cases we usually cover smaller classes of solutions
with better regularity of paths which, in the end, turns out to be important since the
better regularity stays preserved.

In this paper we consider solutions on a bounded interval [0, T ] since this is suffi-
cient for the questions of uniqueness even for solutions on [0,∞). But in Theorem 12.1,
Theorem 13.2 and Lemma E we assert the existence of a functional R which assigns
a trajectory of a solution on [0, T ] to the pair of the value of an initial condition and
the trajectory of a Wiener process. This is the only part when the case [0,∞) is but
slightly different so we point out the particular (notational) changes one must do in this
situation:
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. Each occurrence of [0, T ], resp. T has to be replaced by [0,∞), resp. ∞.

. The space C = C([0, T ],RN) has to be replaced by C([0,∞),RN), which, considered
with the topology of locally uniform convergence, is again a Polish space whose
Borel σ-algebra is generated by projections (πt : t <∞).

. The function φt has to be replaced by φt : C([0,∞),RN)→ C([0,∞),RN) : φt(f)(s)
= f(t+ s)− f(t).

With these changes the proofs go along the same lines.
Before we state the theorems we must give a few definitions.

Definition 1. We say that the equation (0.1) with the initial distribution µ

. is pathwise unique if whenever (Ω,F , (Ft), P,W, u1), (Ω,F , (Ft), P,W, u2) are solu-
tions such that P [u1(0) = u2(0)] = 1 then P [u1(t) = u2(t)] = 1 for every t ≤ T .

. is jointly unique in law if whenever (Ω1,F1, (F1
t ), P 1,W 1, u1), (Ω2,F2, (F2

t ), P 2,

W 2, u2) are solutions then LawP 1(u1,W 1) = LawP 2(u2,W 2).
. is jointly u-unique in law for some solution (Ω,F , (Ft), P,W, u) of (0.1) if whenever

(Ω1,F1, (F1
t ), P 1,W 1, u1) is another solution of (0.1) such that LawP 1(u1) coincides

with LawP (u) then LawP 1(u1,W 1) = LawP (u,W ).
. is unique in law provided whenever (Ωi,F i, (F it ), P i,W i, ui), i = 1, 2, are solutions

of (0.1) then LawP 1(u1) = LawP 2(u2).
. has a strong solution if, for every probability filtered space (Ω,F , (Ft), P,W ) with

a Q-(Ft)-Wiener process W and an F0-measurable random variable u0, there exists
a process u such that (Ω,F , (F), P,W, u) is a solution, P [u(0) = u0] = 1 and
u is (u0,W )P -adapted, i.e. u is adapted to the P -augmentation of the filtration
σ(u0,W (s, h) : s ≤ t, h ∈ U) in F .

Observe that joint uniqueness in law means uniqueness of the joint distribution mea-
sure on the space of functions, and the distribution of the initial condition u0 in the
definition of the strong solution is necessarily µ.

Another remark should be made on the notion of the strong solution which, in our
definition, comprises more information, namely the adaptation of the solving process to
the filtration generated by the initial condition and the driving Wiener process.

Now we can state the main results.
In Theorems 1 and 2, we give sufficient conditions for (0.1) to have a strong solution.

Further, we show that pathwise uniqueness implies joint uniqueness in law, and we give
a sufficient and necessary complementing condition for joint uniqueness in law to be
equivalent to pathwise uniqueness.

Theorem 1. Suppose that there exists a solution (Ω,F , (Ft), P,W, u) such that the pro-
cess u is (u(0),W )P -adapted. Then

. Equation (0.1) has a strong solution.

. If joint uniqueness in law holds for (0.1) then so does pathwise uniqueness.

Theorem 2. Suppose that there exists a solution (Ω,F , (Ft), P,W, u) and pathwise
uniqueness holds for (0.1). Then
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. Equation (0.1) has a strong solution.

. Joint uniqueness in law holds for (0.1).

Unlike pathwise uniqueness, the notion of joint uniqueness in law, used in the preced-
ing two theorems as a sufficient or a necessary condition for existence of strong solutions,
has not been well investigated in the literature in connection with stochastic evolution
equations, and so we are interested in examples of equations that have this property. In
Theorem 3 we give a class of equations which are jointly u-unique in law. As a conse-
quence, we find that equations unique in law with one-to-one diffusions are already jointly
unique in law.

Theorem 3. Let (St) be a C0-semigroup of bounded linear operators on L(X1) with X1

reflexive. Let (Ω,F , (Ft), P,W, u) be a solution of (0.1) satisfying (0.3). Further suppose
that (1)

dt⊗ P{(s, ω) : g(s, u(s, ω)) is not one-to-one in L(U0, X1)} = 0.

Then equation (0.1) is jointly u-unique in law. In particular , if (0.1) is unique in law
and g(s, x) is one-to-one for every x ∈ X and almost every s then (0.1) is jointly unique
in law.

Theorem 4 is an infinite-dimensional extension of a recent result on equivalence of
uniqueness in law and joint uniqueness in law for stochastic differential equations in
finite dimensions. It states that these two concepts of uniqueness coincide for stochastic
equations in Banach spaces provided that the initial condition is deterministic.

Theorem 4. Let (St) be a C0-semigroup of bounded linear operators on L(X1) with X1

reflexive, x0 ∈ X and suppose that equation (0.1) with the initial condition µ = δx0 is
unique in law among the solutions satisfying (0.3) and (0.4). If Stx0 ∈ X for t ∈ (0, T ]
then equation (0.1) with the initial condition δx0 is jointly unique in law in the class of
solutions satisfying (0.3) and (0.4).

Theorem 5 brings an example of a particular equation which is jointly unique in law.
Here the diffusion depends only on time and so we speak of a subclass of equations with
additive noise. In fact, we can prove the joint uniqueness in law only in a smaller class of
solutions determined by the condition (0.7); nonetheless, Theorems 1 and 2 hold in the
class of solutions satisfying (0.7) as well.

Theorem 5. Let f : [0, T ] × X → U0 be measurable, g : [0, T ] → L(U0, X1) strongly
measurable,

t�

0

‖St−sg(s)‖2L2(U0,X) ds <∞

for every t ≤ T and µ a Borel probability measure. Then joint uniqueness in law holds

(1) The set of one-to-one operators from L(U0,X1) is strongly measurable. We remark that
some authors use the word injective instead of one-to-one and we denote by dt the Lebesgue
measure.
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for the equation

u(t) = Stu(0) +
t�

0

St−sg(s)f(s, u(s)) ds+
t�

0

St−sg(s) dWs,(0.6)

Law(u(0)) = µ,

in the class of processes satisfying

(0.7) P
[ T�

0

‖f(s, u(s))‖2U0
<∞

]
= 1.

Therefore, if f is locally bounded and each solution has almost surely bounded (in partic-
ular , continuous) trajectories , then (0.6) is jointly unique in law.

Theorem 6 is our basic tool throughout this work and we find it interesting in itself—
therefore it appears in this section. It states that the property of a pair of a process and
a Wiener process (u,W ) defined on a certain stochastic base to be a solution of equation
(0.1) is, in fact, a property of its joint law.

Theorem 6. Let (Ωi,F i, (F it ), P i,W i, ui) be a probability filtered space, W i a Q-(F it )-
Wiener process and ui a progressively measurable process , i = 1, 2. Suppose that
LawP 1(u1,W 1) = LawP 2(u2,W 2). If (u1,W 1) satisfies (0.1), (0.2) for every t ≤ T then
so does (u2,W 2).

Results of similar nature. Apart from joint uniqueness in law and pathwise unique-
ness we can also define, according to H. J. Engelbert, finer types of uniqueness so that the
implications in Theorem 1 and 2 turn into equivalences. For instance, we know by The-
orem 2 that pathwise uniqueness implies joint uniqueness in law. In this section we will
produce an additional condition under which joint uniqueness in law becomes equivalent
to pathwise uniqueness.

Definition 7. Let (Ω,F , (Ft), P,W, u) be a solution of equation (0.1). We will say
that (u,W )-pathwise uniqueness holds for (0.1) provided that whenever (Ω ′,F ′, (F ′t), P ′,
W ′, u′1), (Ω′,F ′, (F ′t), P ′,W ′, u′2) are solutions of (0.1) such that

. LawP ′(u′1,W
′) = LawP ′(u′2,W

′) = LawP (u,W ),
. P ′[u′1(0) = u′2(0)] = 1,

then P ′[u′1(t) = u′2(t)] = 1 for every t ≤ T .
We also say that u-pathwise uniqueness holds for equation (0.1) provided that when-

ever (Ω′,F ′, (F ′t), P ′,W ′, u′1), (Ω′,F ′, (F ′t), P ′,W ′, u′2) are solutions of (0.1) such that

. LawP ′(u′1) = LawP ′(u′2) = LawP (u),

. P ′[u′1(0) = u′2(0)] = 1,

then P ′[u′1(t) = u′2(t)] = 1 for every t ≤ T .
The last property we need to define is uniqueness in law which is said to hold for (0.1)

provided that LawP 1(u1) coincides with LawP 2(u2) for any two solutions (Ω1,F1, (F1
t ),

P 1,W 1, u1), (Ω2,F2, (F2
t ), P 2,W 2, u2).

The following theorem gives conditions on (0.1) equivalent to pathwise uniqueness.
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Theorem 8. The following conditions on equation (0.1) are equivalent :

(1) Pathwise uniqueness holds and there exists a solution.
(2) Joint uniqueness in law holds and there exists a solution (Ω,F , (Ft), P,W, u) such

that (u,W )-pathwise uniqueness holds.
(3) Joint uniqueness in law holds and there exists a solution (Ω,F , (Ft), P,W, u) such

that u is (u(0),W )P -adapted.

In Theorem 9 we characterize the notion of (u,W )-pathwise uniqueness used in The-
orem 8.

Theorem 9. Suppose that (Ω,F , (Ft), P,W, u) is a solution of (0.1). Then the following
conditions are equivalent :

(1) (u,W )-pathwise uniqueness holds.
(2) There exists a solution (Ω′,F ′, (F ′t), P ′,W ′, u′) such that u′ is (u′(0),W ′)P ′-

adapted and LawP ′(u′,W ′) = LawP (u,W ).

In the following theorem we return to the notion of joint u-uniqueness in law which
has already appeared in Theorem 3, and we clarify its position among the other types of
pathwise uniqueness that we defined in this section.

Theorem 10. Let (Ω,F , (Ft), P,W, u) be a solution of (0.1). Then the following condi-
tions on (0.1) are equivalent :

(1) u-pathwise uniqueness holds.
(2) Joint u-uniqueness in law holds , and there exists a solution (Ω ′,F ′, (F ′t), P ′,

W ′, u′) such that LawP (u) = LawP ′(u′) and (u′,W ′)-pathwise uniqueness holds.
(3) Joint u-uniqueness in law holds , and there exists a solution (Ω ′,F ′, (F ′t), P ′,

W ′, u′) such that LawP ′(u′) coincides with LawP (u) and u′ is (u′(0),W ′)P ′-
adapted.

We close this section by a straightforward comparison of joint uniqueness in law and
uniqueness in law.

Theorem 11. The following conditions are equivalent for (0.1):

. Joint uniqueness in law holds.

. Uniqueness in law holds and joint u-uniqueness in law holds for every solution
(Ω,F , (Ft), P,W, u).

Equivalent concepts of solutions. This section is devoted to various concepts of so-
lutions to stochastic evolution equations in Banach spaces. Our definition of a solution to
(0.1) is based on the variation-of-constants formula, where (St) is usually a C0-semigroup
of bounded linear operators on X; however, this is not the only definition used in the
literature, and even in this paper, we will need to approach the solutions from different
points of view.

We will be concerned with a more general problem than solution of a stochastic evo-
lution equation. Namely, we will study three possible mathematically correct definitions
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of a formal stochastic differential

du = (Au+ f) dt+ g dW.

We assume that u, the drift f and the diffusion g are arbitrary progressively measurable
processes, where no apriori mutual dependence between u, f and g is excluded. Hence
we cover the problem of solutions of SPDE’s.

The following two theorems state that different definitions of the above stochastic
differential are equivalent. The only reason why we cannot compare all of them at once is
that each definition demands different integrability assumptions. We remark that these
results are essentially generalizations of the Chojnowska-Michalik theorem (see [ChM])
and the main tool in the proofs is the stochastic Fubini theorem (Proposition 6.1) that
will also be proved in what follows.

Theorem 12. Let f be a progressively measurable process in X, g a progressively mea-
surable process in L2(U0, X), (St) a strongly continuous semigroup of linear operators on
X generated by A, W a Q-Wiener process and u a progressively measurable X-valued
process. Let also

P
[ T�

0

(‖f(s)‖+ ‖g(s)‖2L2(U0,X)) ds <∞
]

= 1.

Then

(a) P
[
u(t) = Stu(0) +

t�

0

St−sf(s) ds+
t�

0

St−sg(s) dWs

]
= 1

for every t ≤ T if and only if u has a predictable modification with almost all trajectories
in L1(0, T ;X) such that

P
[ t�

0

u(s) ds ∈ D(A)
]

= 1

and

(b) P
[
u(t) = u(0) +A

t�

0

u(s) ds+
t�

0

f(s) ds+
t�

0

g(s) dWs

]
= 1

hold for every t ≤ T .

In that case

(1) The process t 7→ Rλu(t) has a modification which is a norm continuous semi-
martingale for every λ from the resolvent set of A.

(2) The process t 7→ 〈x∗, u(t)〉 has a modification which is a continuous semimartin-
gale for every x∗ ∈ D(A∗). In particular there exists a sequence x∗n ∈ D(A∗) which
separates points of X such that t 7→ 〈x∗n, u(t)〉 is continuous for every n ∈ N.

Theorem 13. Let f be a progressively measurable process in X, g a progressively strongly
measurable process in L(U0, X), (St) a strongly continuous semigroup of linear operators
on X generated by A, W a Q-Wiener process and u a progressively measurable X-valued
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process. Let also

P
[ T�

0

(‖f(s)‖+ ‖g(s)‖2L(U0,X)) ds <∞
]

= P
[ t�

0

‖St−sg(s)‖2L2(U0,X) ds <∞
]

= 1

for every t ≤ T . Then

(a) P
[
u(t) = Stu(0) +

t�

0

St−sf(s) ds+
t�

0

St−sg(s) dWs

]
= 1

holds for every t ≤ T if and only if u satisfies

(b) P
[ T�

0

T�

0

|〈x∗(t, s), u(s)〉| ds dt <∞
]

= 1

for every measurable bounded function x∗ : [0, T ]× [0, T ]→ X∗ and

(c) P
[
〈x∗, ut〉 = 〈x∗, u0〉+

t�

0

〈A∗x∗, us〉 ds+
t�

0

〈x∗, fs〉 ds+
t�

0

g∗sx
∗ dWs

]
= 1

for every t ≤ T , x∗ ∈ D(A∗).
Moreover , in that case, the conclusion (2) of Theorem 12 holds and u has a predictable

modification.

Ideas of the proofs. Theorem 1 as well as Theorem 2 are consequences of the following
general phenomenon. In both, and many other cases, there exists a time sequence of
measurable functions (Rt : t ≤ T ) such that P [u(t) = Rt(u(0),W )] = 1 for every t ≤ T

(Lemma E). This means that the solution u depends only on the initial value and on the
corresponding trajectory of the Wiener process. Moreover this dependence comes through
the measurable transformations (Rt). Now it is enough to prove that whenever we take
a filtered probability space (Ω,F , (F t), P ,W ) with a Q-Wiener process W and an initial
µ-distributed random variable u0 then the process u(t) = Rt(u0,W ) completes the family
(Ω,F , (F t), P ,W, u) to be a strong solution starting from u0.

If we are in the situation of Theorem 1 then joint uniqueness in law implies pathwise
uniqueness. Indeed, if (Ω,F , (F t), P ,W, v) were another solution starting from u0 then,
by joint uniqueness in law, we would have

P [v(t) = Rt(v(0),W )] = P [u(t) = Rt(u(0),W )] = 1

for every t ≤ T . But P [v(0) = u(0)] = 1 and thus P [v(t) = Rt(u(0),W ) = u(t)] = 1 for
every t ≤ T .

In the situation of Theorem 2 we must prove the uniqueness of the joint solution
measure on the space of functions. Suppose that (Ωi,F i, (F it ), P i,W i, ui), i = 1, 2, are two
solutions. Then, by pathwise uniqueness, we have ui(t) = Rt(ui(0),W i), t ≤ T , i = 1, 2,
and we see that to show the equality of the joint solution measures LawP i(ui,W i),
i = 1, 2, it suffices to show the equality of LawP i(ui(0),W i), i = 1, 2, since (Rt) are
measurable transformations. But ui(0) is F i0-measurable and thus P i-independent of W i,
hence LawP i(ui(0),W i) = µ⊗LawP i(W i). But LawP 1(W 1) = LawP 2(W 2) because W 1

and W 2 have the same covariance Q.
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In the proof of Theorems 3 and 4 we use a sort of “inversion formula” to express the
intervening Wiener process in terms of the solution u whose distributions are supposed
to coincide. We wish to write W = � g−1(s) du for u = � g(s) dW but unfortunately, in
our case we must proceed in steps using approximations given by measurable selectors
(Theorem 8.8).

Theorem 5 is based on the Girsanov theorem (Proposition 7.1) and relies heavily
(as do all results in this paper) on the fact that solutions of (0.1) are completely de-
termined by the joint distribution Law(u,W ) of the solving process u and the Wiener
process W . More precisely, if (Ω1,F1, (F1

t ), P 1,W 1, u1) satisfies (0.1), (0.2) and u1 is
(F1

t )-progressively measurable (we do not assume any kind of path continuity of u1) and
(Ω2,F2, (F2

t ), P 2,W 2, u2) is a filtered probability space with a Q-Wiener process W 2

and (F2
t )-progressively measurable process u2 such that

LawP 1(u1(ti),W 1(ti, hj) : i, j) = LawP 2(u2(ti),W 2(ti, hj) : i, j)

for every partition 0 = t0 < · · · < tn ≤ T and every finite number of vectors h1, . . . , hm
in U then (Ω2,F2, (F2

t ), P 2,W 2, u2) satisfies (0.1) and (0.2), which is just a summary of
Theorem 6.

1. Cylindrical Wiener process

A classical stochastic process u in a separable Banach space X is a mapping from [0, T ]×Ω
to X such that the restrictions ut : Ω → X are measurable for all t ≤ T . On the other
hand, sometimes it is convenient to generalize this notion to a larger class of objects,
the cylindrical processes. From the probabilistic point of view they are two-parameter
real processes (u(t, x∗) : t ≤ T, x∗ ∈ X∗), where the first variable corresponds to time
while the second to the elements of the topological dual space X∗. Moreover we want
the linearity in the x∗ variable. The motivation is the following. Suppose that we are
given a classical process (u(t) : t ≤ T ) in X. Then u(t, x∗) = 〈x∗, u(t)〉 is a cylindrical
process—it represents the decomposition of the classical process into coordinates. One of
the reasons for introducing cylindrical processes is that we can define a Wiener process
of a nonnuclear covariance and a stochastic integral with respect to it.

Definition 1.1. Let (Ω,F , P ) be a probability space and (M(x∗) : x∗ ∈ X∗) a family
of real processes on [0, T ] such that P [Mt(ax∗ + y∗) = aMt(x∗) +Mt(y∗)] = 1 for every
t ∈ [0, T ], a ∈ R, x∗ ∈ X∗, y∗ ∈ X∗. Then M is called a cylindrical process.

Definition 1.2. We say that a cylindrical process M = (M(x∗) : x∗ ∈ X∗) on [0, T ]
is representable provided there exists a stochastic process u in X defined on [0, T ] such
that P [〈x∗, ut〉 = Mt(x∗)] = 1 for all t ≤ T and x∗ ∈ X∗. Then we say that u is a
representation of M ; obviously, u is unique up to modification.

Definition 1.3. Let (Ω,F , P ) be a probability space with a filtration (Ft) and σ ≥ 0.
Then a continuous real (Ft)-adapted process W on [0, T ] is called a Wiener process with
covariance σ2 provided
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. P [W0 = 0] = 1.

. σ(Wt −Ws) is P -independent of Fs whenever 0 ≤ s < t ≤ T .

. LawP (Wt −Ws) = N (0, (t− s)σ2) whenever 0 ≤ s < t ≤ T .

In case σ2 = 1 we say W is a standard Wiener process.

Definition 1.4 Let U be a separable Hilbert space. A cylindrical process W = (W (u) :
u ∈ U) on [0, T ] on (Ω,F , (Ft), P ) is called a cylindrical Wiener process provided that
(Wt(u) : t ≤ T ) is an (Ft)-Wiener process with covariance possibly depending on u (Def.
1.3) for every u ∈ U and there exists a positive constant c such that EW 2

T (u) ≤ c2‖u‖2U ,
u ∈ U . The covariance operator of W is the unique operator Q ∈ L(U) with Q∗ = Q,
Q ≥ 0 such that

EWt(x)Ws(y) = s〈Qx, y〉U = 〈W (x),W (y)〉(s)
for every 0 ≤ s < t ≤ T , x ∈ U , y ∈ U , where s 7→ 〈W (x),W (y)〉(s) is the cross-variation
process associated to W (x)W (y).

Proof of the existence of Q. The mapping (x, y) 7→ EWT (x)WT (y) is a real bounded
symmetric positive bilinear form on U ×U so there exists a bounded symmetric positive
operator Q on U satisfying EWT (x)WT (y) = T 〈Qx, y〉U for all x, y ∈ U :

EWt(x)Ws(y) = EE[Wt(x)/Fs]Ws(y) = EWs(x)Ws(y)

=
1
4
E(W 2

s (x+ y)−W 2
s (x− y)) =

s

4T
E(W 2

T (x+ y)−W 2
T (x− y))

= s〈Qx, y〉U =
1
4

(〈W (x+ y)〉s − 〈W (x− y)〉s) = 〈W (x),W (y)〉s.

Now we will show that there exists a filtered probability space with a cylindrical
Wiener process with given covariance operator Q:

Claim 1.5. Let Q ∈ L(U) with Q∗ = Q, Q ≥ 0. Then there exists a probability space
(Ω,F , P ) with a complete filtration (Ft) and a cylindrical Wiener process W = (W (u) :
u ∈ U) on [0, T ] with covariance operator Q.

Proof. Choose an orthonormal basis (uk : k) in U and a probability space (Ω,F , P ) with
a complete filtration (Ft) in F which carries independent standard real Wiener processes
(βk : k). Then define the real Wiener processes

W (u) =
∑

k

〈Q1/2u, uk〉Uβk

for u ∈ U , where the sum converges uniformly in t in L2(Ω). The family (W (u) : u ∈ U)
is a cylindrical Wiener process on U with covariance operator Q.

Now we will show the connection between cylindrical Wiener processes and classi-
cal Wiener processes. We know that the covariance operator of a Gaussian measure on
a separable Hilbert space is necessarily nuclear, so every classical Wiener process is of
nuclear covariance. The following theorem says that a cylindrical Wiener process is rep-
resentable (Def. 1.2) if and only if the covariance operator is nuclear, and in that case
the representation is a classical Wiener process.



18 M. Ondreját

Theorem 1.6. Let W be a cylindrical Wiener process on [0, T ] with covariance opera-
tor Q. Then W has a continuous representation on [0, T ] if and only if Q is nuclear. In
that case the representation is a U -valued Wiener process with covariance Q.

Proof. Let (uk : k) be an orthonormal basis in U . Then the sum
∑
kW (uk)uk converges

in L2(Ω,C([0, T ], U)) iff
∑

k ‖Q1/2uk‖2 <∞ due to the Doob maximal inequality. So we
only have to prove that the representation (when Q is nuclear) is a Wiener process. The
fact that the increments are centered Gaussian follows immediately from the explicit for-
mula

∑
kW (uk)uk and the independence of the increments from Lévy’s characterization

theorem applied to the martingale (W (uk) : k ≤ N).

2. Radonifying mappings and the space U0

The reason for the following definition is that we will work with Wiener processes with
arbitrary covariance operators and as we will see later the only important information
(regarding stochastic integration) lies in the reproducing kernel space U0 which is con-
tinuously embedded in U .

Definition 2.1. Since Q ∈ L(U) is a nonnegative operator we may define the square
root Q1/2 ∈ L(U) and Q−1/2 : Rng(Q1/2) → U defined as the inverse mapping of
the one-to-one restriction Q1/2|D : D → Rng(Q1/2), where D = (KerQ1/2)⊥ is the
orthogonal complement of KerQ1/2 in U . We also define the separable Hilbert space
U0 = Rng(Q1/2) ⊆ U with the inner product

〈g1, g2〉0 = 〈Q−1/2g1, Q
−1/2g2〉U , g1 ∈ U0, g2 ∈ U0.

Now the mapping Q1/2 : (D, ‖ · ‖U )→ (U0, ‖ · ‖0) is an isometry.

Before we state some useful properties where the space U0 intervenes we shall recall the
definition of a radonifying operator. We know that the class of Hilbert–Schmidt operators
is the state space for processes which are integrated with respect to a Wiener process
in the Hilbertian case. If we want to pass to Banach spaces the class of radonifying
operators appears. The following theorem is a synthesis of results due to Itô, Nisio,
Fernique, Hoffmann-Jørgensen and Kwapień.

Theorem 2.2. Let (ηn : n ∈ N) be a sequence of real independent identically distributed
centered Gaussian random variables , and (xn : n ∈ N) a sequence in a separable Banach
space Y . Let 0 < p <∞ and define

sk =
k∑

n=1

ηnxn, k ∈ N.

Then the following statements are equivalent :

. The sequence (sk : k ∈ N) converges in Lp.

. The sequence (sk : k ∈ N) converges in norm almost surely.
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. There exists a Borel probability measure ν on Y such that Law(〈x∗, sk〉)→Lawν(x∗)
weakly in the space of measures for every x∗ ∈ Y ∗.

In the third case, the measure ν is the distribution of the limit.
If , moreover , Y does not contain any subspace linearly homeomorphic to c0 (e.g. a

reflexive space) then the above conditions are also equivalent to:

. The sequence (sk : k ∈ N) is bounded in Lp.

Proof. See Chapter V in [ChTV].

Definition 2.3. Let U be a separable Hilbert space and (ξn) a sequence of independent
standard Gaussian random variables defined on a probability space Ω. An operator A ∈
L(U,X) is called radonifying provided that the series

∑
n ξnAun converges in L2(Ω,X)

for some orthonormal basis (un) in U . We denote by L2(U,X) the space of radonifying
operators and set

‖A‖2L2(U,X) = E
∥∥∥
∑

n

ξnAun

∥∥∥
2

X
.

We also write ‖A‖L2(U,X) =∞ for A 6∈ L2(U,X).

It may seem that the definition of L2(U,X) and ‖A‖L2(U,X) depends on the choice of
the orthonormal basis (un) and (ξn), but in fact it does not. Once

∑
n ξnAun converges

in L2(Ω,X) it converges for all choices of orthonormal bases in U and for all choices of
independent standard Gaussian random variables due to Theorem 2.2 because we already
know that the probability distribution Law(

∑
n ξnAun) is the Borel centered Gaussian

measure on X with covariance AA∗ ∈ L(X∗, X), hence independent of (un) and (ξn), and

‖A‖2L2(U,X) =
�

X

‖x‖2 dN (0, AA∗).

Another consequence of Theorem 2.2 is that A ∈ L2(U,X) if and only if N (0, AA∗) exists
as a Borel measure on X. For further details see [ChTV].

The following proposition is a handy tool for verification whether a composition of
two operators is a radonifying operator provided either of them is. Indeed, we see that
L2 is an operator ideal. Moreover one can easily show, using Pietsch’s factorization, that
every p-summing operator is already radonifying (e.g. [LP]). Proposition 2.4 is due to W.
Linde & A. Pietsch but our proof is based on Kahane’s contraction principle. We note
that L2(U,X) is an operator ideal even if X contains c0 (e.g. [Ba]).

Proposition 2.4. Suppose that X does not contain any subspace linearly homeomorphic
to c0 and let A ∈ L(U,X). Then the following conditions are equivalent.

(1) A ∈ L2(U,X).
(2) There exists K ∈ [0,∞) such that if (ηn : n ∈ N) is a sequence of real standard

Gaussian random variables then

(∗) E
∥∥∥

n∑

k=1

ηkAhk

∥∥∥
2
≤ K2 sup

{ n∑

k=1

〈h, hk〉2 : ‖h‖ ≤ 1
}

for every h1, . . . , hn in U .

If these conditions hold , then ‖A‖L2(U,X) is the minimal K such that (∗) holds.
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Proof. (2) implies (1) by Theorem 2.2. Suppose that (1) holds. Take arbitrary vectors
h1, . . . , hn in U and an arbitrary orthonormal set e1, . . . , en in U which contains h1, . . . , hn
in its linear span. The left hand side of (∗) is now of the form

E
∥∥∥

n∑

k=1

n∑

l=1

ηkfklAel

∥∥∥
2
,

where fkl = 〈hk, el〉 is an n × n-matrix. We can decompose (fkl) into a matrix product
Bn×nDn×nCn×n where B and C are unitary and D is diagonal. If we set ξ = B∗η,
θ = C∗ξ, yi =

∑n
l=1 cilAel then the left hand side of (∗) equals

E
∥∥∥

n∑

i=1

diiξiyi

∥∥∥
2
≤ max{d2

ii : i ≤ n}E
∥∥∥

n∑

i=1

ξiyi

∥∥∥
2

= ‖(fkl)‖2E
∥∥∥

n∑

l=1

θlAel

∥∥∥
2

by the contraction principle (e.g. [ChTV, V.4, Proposition 4.1]) because ξ and θ are
N (0, In)-distributed. But

‖(fkl)‖2 = sup
{ n∑

i=1

〈h, hi〉2 : ‖h‖ ≤ 1
}
.

If we took hi = 0 for m < i ≤ n we would have

E
∥∥∥

m∑

k=1

ηkAhk

∥∥∥
2
≤ E

∥∥∥
n∑

l=1

θlAel

∥∥∥
2

sup
{ m∑

k=1

〈h, hk〉2 : ‖h‖ ≤ 1
}
,

and consequently, letting n→∞,

E
∥∥∥

m∑

k=1

ηkAhk

∥∥∥
2
≤ ‖A‖2L2(U,X) sup

{ m∑

k=1

〈h, hk〉2 : ‖h‖ ≤ 1
}
.

Now we are going to give a series of simple propositions leading to the fact that
(L2(U,X), ‖ ‖L2(U,X)) is a separable Banach space which, in case X is a Hilbert space,
coincides isometrically with the Hilbert–Schmidt operators. Moreover item (5) in the
following proposition is the key to verifying whether an L2(U,X)-valued mapping is
Borel measurable or not.

Proposition 2.5. Suppose that A ∈ L(U,X) is radonifying. Then

(1) ‖A‖L(U,X) ≤ ‖A‖L2(U,X).
(2) L2(U,X) is a linear space and ‖ · ‖L2(U,X) is a norm.
(3) u ⊗ x ∈ L2(U,X) for all u ∈ U , x ∈ X, ‖u ⊗ x‖L2(U,X) = ‖u‖U‖x‖X and the

finite-dimensional operators are dense in L2(U,X), so that L2(U,X) is separable.
(4) ‖ · ‖L2(U,X) is complete.
(5) The Borel σ-algebra on the separable Banach space L2(U,X) is generated by the

mappings L2(U,X)→ X : A 7→ Au, u ∈ U .
(6) L2(U,X) is a strongly measurable subset of L(U,X).

Proof. (1) The measure

µ = Law
(∑

n

ξnAun

)
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is Gaussian and centered on X and µ{x : 〈x∗, x〉 ∈ B} = N (0, ‖A∗x∗‖2U )(B) for every
x∗ ∈ X∗, B ∈ B(R). Thus ‖A∗x∗‖U ≤ ‖A‖L2(U,X) for every ‖x∗‖ ≤ 1.

(2) and (3) are obvious.
(4) If (Am) is ‖ ‖L2(U,X)-Cauchy then it converges to A ∈ L(U,X) in the uniform

operator topology due to (1) and
∑
n ξnAun coincides with the limit of

∑
n ξnAmun in

L2(Ω,X) due to Theorem 2.2.
(5) The mapping A 7→ Au is continuous for every u ∈ U by (1), thus Borel measurable.

On the other hand, if we denote by σ the σ-algebra generated by the mappings A 7→ Au,
u ∈ U , and we fix B ∈ L2(U,X) then the real mapping

A 7→ E
∥∥∥
∑

k

ξk(Auk −Buk)
∥∥∥

2

X

is σ-measurable. Hence every ball in L2(U,X) belongs to σ, which ends the proof because
L2(U,X) is separable.

(6) We have

L2(U,X) =
∞⋂

k=1

∞⋃

n=1

∞⋂

m=n

{
A ∈ L(U,X) : E

∥∥∥
m∑

j=n

ξjAuj

∥∥∥
2
≤ 1/k

}

due to the completeness of L2(Ω,X).

Now we return to Definitions 2.1 and 2.3 and state a few simple observations which
take the space U0 into account.

Note 2.6. Let A : U0 → X be a linear mapping and B ∈ L(U,X). Then

(1) ‖A‖L(U0,X) = ‖AQ1/2‖L(U,X).
(2) ‖A‖L2(U0,X) = ‖AQ1/2‖L2(U,X).
(3) ‖A∗x∗‖U0 = ‖(AQ1/2)∗x∗‖U for every x∗ ∈ X∗ provided A ∈ L(U0, X).
(4) B|U0 ∈ L2(U0, X) and ‖B‖L2(U0,X) ≤ ‖B‖L(U,X)(TrQ)1/2 provided Q ∈ L(U) is

nuclear.
(5) U

U

0 = D.

Proof. (1)–(3) are direct consequences of the definitions and of the fact that Q1/2 is an
isometric isomorphism between D and U0.

(4) Since Q1/2 is Hilbert–Schmidt the series
∑
k ξkQ

1/2un converges in L2(Ω,U).
Hence

∑
k ξkBQ

1/2un converges in L2(Ω,X) and the estimate follows immediately.

(5) U
U

0 = Rng(Q1/2)
U

= Rng(Q1/2)∗
U

= (KerQ1/2)⊥ = D.

3. Stochastic integral

One of the reasons for including the construction of the stochastic integral was its straight-
forward Itô style—we have dropped the necessity of auxiliary spaces and embeddings (e.g.
[DZ], [B1]–[B3] or [BG]), which, later on, will make all manipulations more transparent.
None the less, we have arrived at the habitual stochastic integral whose properties we
summarize at the end.
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Let us consider a filtered probability space (Ω,F , (Ft), P,W ) with a Q-(Ft)-Wiener
process on U and X a 2-smooth Banach space (Def. 3.1).

Step 1. Since W is not necessarily a process in U we cannot define the X-valued random
variable A(Wt) for every A ∈ L(U,X) but we can do so for A finite-dimensional (i.e.
Au =

∑n
k=1〈u, uk〉xk for some uk ∈ U , xk ∈ X) in the following way:

AWt =
n∑

k=1

Wt(uk)xk.

We can easily see that 〈x∗, AWt〉 = Wt(A∗x∗), hence the definition of AWt is independent
of the expansion of A, and AWt coincides with the composition A(Wt) provided W is a
U -valued process (i.e. when the covariance Q is nuclear).

Step 2 (elementary integral). Now we are going to integrate simple finite-dimensional
valued processes. Let ψ be a process with values in L(U,X) such that ψ(t) =

∑m
j=1AijIF ij

for ti < t ≤ ti+1, i ≤ n for some partition 0 = t1 < · · · < tn+1 = T , (F ij : j ≤ m) an
Fti -decomposition of Ω and Aij , i ≤ n, j ≤ m, finite-dimensional operators in L(U,X).
Then the process

t 7→
t�

0

ψ dW =
n∑

i=1

m∑

j=1

(AijWt∧ti+1 −AijWt∧ti)IF ij

is a norm continuous L2-martingale in X and

〈
x∗,

t�

0

ψ dW
〉

=
n∑

i=1

m∑

j=1

t�

0

IF ijI(ti,ti+1] dW (Aijx∗).

This definition is classical and one can define � t
s
ψ dW , 0 ≤ s ≤ t, in the same spirit as

well.
Before we proceed to Step 3 we recall some properties and examples of 2-smooth

Banach spaces.

Definition 3.1. A Banach space X is called 2-smooth provided there exists an equivalent
norm ‖ ‖ and a constant c ≥ 2 such that ‖x + y‖2 + ‖x − y‖2 ≤ 2‖x‖2 + c‖y‖2 for any
x, y ∈ X.

We note that there are other equivalent definitions, for instance in terms of asymp-
toticity of the modulus of smoothness of the norm due to P. Assouad, T. Figiel, J.
Hoffmann-Jørgensen, G. Pisier (e.g. [P]) or in terms of martingale estimation [A], [P].
We chose the above definition because one can easily show by C2-smoothness of ‖ · ‖β ,
β > 2, that Lp(µ) spaces with arbitrary positive, not necessarily σ-finite measures µ are
2-smooth for every 2 ≤ p <∞. Obviously, by the parallelogram law, every Hilbert space
is 2-smooth and closed subspaces and products of 2-smooth spaces are 2-smooth, hence
the Sobolev spaces W k,p are 2-smooth for 2 ≤ p < ∞, k ≥ 0. Also, if A generates a
holomorphic semigroup on a 2-smooth Banach space then the domains of the fractional
powers D(−A)α, α ≥ 0, with the graph norm are 2-smooth since they are isometric
isomorphs of X. Another observation is that a 2-smooth Banach space X is uniformly
smooth, hence X is necessarily reflexive.
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The following simple observation was made by P. Assouad [A] and it is the key to the
forthcoming construction.

Lemma 3.2. Let X be a 2-smooth Banach space. Then there exists a constant C such
that

E‖Mn‖2 ≤ C
n∑

k=1

E‖Mk −Mk−1‖2, 1 ≤ n ≤ N,

for every L2-martingale (Mk,Fk : k = 0, . . . , N), M0 = 0.

Proof. Let η2 ∈ L2, A a sub-σ-algebra and define η1 = E[η2 | A]. Then

E‖2η1 − η2‖2 + E‖η2‖2 ≤ 2E‖η1‖2 + cE‖η2 − η1‖2

by 2-smoothness and

‖η1‖2 = ‖E[2η1 − η2 | A]‖2 ≤ E[‖2η1 − η2‖2 | A].

Hence E‖η2‖2 ≤ E‖η1‖2 + cE‖η2−η1‖2 and the result follows by induction, applied step
by step, on the martingale M . The constant c may change after returning to the original
norm.

Step 3 (Burkholder inequality). There exist constants Cp, 0 < p < ∞, such that the
following estimate holds for every ψ of the form we have considered in Step 2:

(3.2) E sup
{∥∥∥

s�

0

ψ dW
∥∥∥
p

: s ≤ t
}
≤ CpE

( t�

0

‖ψQ1/2‖2L2(U,X) ds
)p/2

.

The proof for p different from 2 will be postponed until (5.1). The left hand side of (3.2) is
dominated by 4E‖ � t0 ψ dw‖2 due to Doob’s inequality and this can be further dominated
by

4C
n∑

i=1

E
∥∥∥

ti�

ti−1

ψ dW
∥∥∥

2

by Lemma 3.2. To finish the proof we will refer to the following lemma.

Lemma 3.3. Let p > 0. Then there exists cp > 0 such that

E
∥∥∥

n∑

i=1

(Ai(Wt)−Ai(Ws))IF i
∥∥∥
p

= (t− s)p/2
n∑

i=1

EIFi

�

X

‖x‖p dN (0, AiQA∗i )

≤ cp(t− s)p/2
n∑

i=1

EIFi‖AiQ1/2‖pL2(U,X)

for every Ai ∈ L(U,X), i ≤ n, finite-dimensional , s < t and (Fi : i ≤ n) an Fs-
decomposition of Ω.

Proof. Since (F i : i ≤ n) is a decomposition of Ω we can interchange the sum and the
norm in the left hand side term. Moreover AWt − AWs is stochastically independent of
Fs so we only have to show that

E‖AWt −AWs‖p = (t− s)p/2
�

X

‖x‖p dN (0, AQA∗)
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for A ∈ L(U,X) finite-dimensional. But this is obvious since the distribution of AWt −
AWs is Gaussian centered on X with covariance (t − s)AQA∗. The second inequality
follows from the fact that for any positive p, q there exists a positive constant a such that

( �

X

‖x‖p dν
)1/p

≤ a
( �

X

‖x‖q dν
)1/q

for every Gaussian centered probability measure ν on X, which is a consequence of the
Fernique theorem (e.g. [Ba]).

Step 4 (stochastic L2-integral). Having the Burkholder inequality for p = 2 we can define
the norm continuous X-valued L2-martingale t 7→ � t0 ψ dW for a progressively measurable
L2(U0, X)-valued random process ψ satisfying

E

T�

0

‖ψ(s)‖2L2(U0,X) ds <∞

as a limit of integrals of simple processes with values in finite-dimensional operators of
L(U,X) in the space L2(Ω,C([0, T ], X)) as we have done in Step 2. We recall Note 2.6(2)
in view of the right hand side of (3.2), where

‖ψQ1/2‖2L2(U,X) = ‖ψ‖2L2(U0,X)

appears. The values of ψ outside of U0 = RngQ1/2 are not important in this estimation,
thus we consider the more “appropriate” space L2(U0, X). The only thing we now have
to show is existence of simple processes ψn of the form considered in Step 2 which satisfy

lim
n→∞

E

T�

0

‖ψn(s)− ψ(s)‖2L2(U0,X) ds = 0.

To do this we are going to use the following classical lemma from [DZ, p. 16], which we
present in the form adapted to our case:

Lemma 3.4. Let Y be a separable Banach space and Y0 its countable dense subset. Then
there exists a sequence of simple mappings Fn : Y → Y0 such that ‖Fn(y) − y‖Y ↘ 0
for every y ∈ Y . In particular we can take Y = L2(U0, X) and Y0 some dense countable
subset of finite-dimensional operators in L(U,X).

Proof. Enumerate Y0 = {z1, z2, . . .} and define

tn(y) = min{i ≤ n : ‖y − zi‖ = min{‖y − zj‖ : j ≤ n}}.
The functions Fn(y) = ztn(y), y ∈ Y , n ∈ N, clearly have the desired property. Regarding
the particular case, we already know by Proposition 2.5(3) that the finite-dimensional op-
erators of L(U0, X) are dense in L2(U0, X) so we need only show that every h0 ⊗L(U0,X) x,
h0 ∈ U0, x ∈ X, can be approximated by some h⊗L(U,X) x, h ∈ U , x ∈ X. But

〈Qh, h0〉U0 = 〈Q1/2h,Q−1/2h0〉U = 〈h,Q1/2Q−1/2h0〉U = 〈h, h0〉U
by definition of U0 and selfadjointness of Q1/2. Hence the restriction of h ⊗L(U,X) x ∈
L(U,X) to U0 is h⊗L(U,X) x|U0 = Qh⊗L(U0,X) x ∈ L(U0, X) and
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‖h⊗L(U,X) x− h0 ⊗L(U0,X) x‖L2(U0,X)

= ‖Qh⊗L(U0,X) x− h0 ⊗L(U0,X) x‖L2(U0,X)

= ‖Qh− h0‖U0‖x‖X = ‖Q1/2h−Q−1/2h0‖U‖x‖X ,
where we have used Proposition 2.5(3). Now given h0 ∈ U0 we can always find h ∈ U such
that ‖Q1/2h−Q−1/2h0‖U is arbitrarily small because U0 is dense in D and Q−1/2h0 ∈ D
by Note 2.6(5).

Our process ψ is measurable from ([0, T ]×Ω,PT ) to L2(U0, X), where PT denotes the
σ-algebra of progressively measurable sets. Hence, by the particular case of Lemma 3.4,
the Fnψ are simple progressively measurable processes with values in finite-dimensional
operators of L(U,X) such that

E

T�

0

‖Fnψ(s)− ψ(s)‖2L2(U0,X) ds↘ 0

by the Lebesgue theorem. Since each Fnψ is of the form
m∑

k=1

BkICk ,

where (Ck : k ≤ m) is a PT -decomposition of [0, T ] × Ω and Bk is finite-dimensional in
L(U,X), we have to show that each ICk can be approximated by simple real processes in
L2([0, T ]×Ω); but this is a well known fact (e.g. [KS]).

Remark 3.5. Take a progressively measurable L2(U0, X)-valued process ψ such that

E

T�

0

‖ψ(s)‖2L2(U0,X) ds <∞.

In view of Step 2 and ψn considered therein the processes

ηn(t) =
〈
x∗,

t�

0

ψn dW
〉2
−
t�

0

‖(ψn(s)Q1/2)∗x∗‖2U ds

are real martingales for every n ∈ N and x∗ ∈ X∗. Thus, if

lim
n→∞

E

T�

0

‖ψn(s)− ψ(s)‖2L2(U0,X) ds = 0

then ηn(t) converges to

〈
x∗,

t�

0

ψ dW
〉2
−
t�

0

‖(ψ(s)Q1/2)∗x∗‖2U ds

in L1(Ω) for every t ≤ T because of Proposition 2.5(1), and consequently the process

t 7→
t�

0

‖ψ∗(s)x∗‖2U0
ds
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is the quadratic variation process of t 7→ 〈x∗, � t
0
ψ dW 〉 due to Note 2.6(3). Analogously

one can show that if Y is another 2-smooth Banach space, and φ a progressively measur-
able L2(U0, Y )-valued process such that

E

T�

0

‖φ(s)‖2L2(U0,Y ) ds <∞,

then

t 7→
t�

0

〈ψ∗(s)x∗, φ∗(s)y∗〉U0 ds

is the cross-variation process associated to the real martingales t 7→ 〈x∗, � t0 ψ dW 〉 and

t 7→ 〈y∗, � t
0
φ dW 〉 for x∗ ∈ X∗, y∗ ∈ Y ∗.

Summary of Step 4. We have constructed a continuous X-valued L2-martingale t 7→
� t
0
ψ dW as a limit in L2(Ω,C([0, T ], X)) for a progressively measurable process ψ with

values in L2(U0, X) and so the Burkholder inequality (3.2) holds with p = 2. The mapping
ψ 7→ � ψ dW is linear by construction.

Step 5 (general case). Now we will finish the construction of the stochastic integral by
extending it to progressively measurable L2(U0, X)-valued processes ψ with P -almost all
trajectories in L2([0, T ], L2(U0, X)) by the classical “localization” procedure. One defines
the stopping times

t∗n = min
{
t ≤ T :

t�

0

‖ψ(s)‖2L2(U0,X) ds ≥ n
}

with values in [0, T ] and then defines
t�

0

ψ dW =
t�

0

I[0,t∗n]ψ dW on [0, t∗n].

The process t 7→ � t0 ψ dW is a continuous local martingale in X. Yet, for the sake of
correctness, we must first show:

Lemma 3.6. Let τ be a stopping time and ψ a progressively measurable process with values
in L2(U0, X) such that

E

T�

0

‖ψ(s)‖2L2(U0,X) ds <∞.

Then
t∧τ�

0

ψ dW =
t�

0

I[0,τ ](s)ψ(s) dW

for every t ≤ T .

Proof. Suppose that ψ is a bit more complicated than in Step 2, namely of the type∑n
k=1 fkAk where (fk : k ≤ n) are bounded real progressively measurable processes and
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(Ak : k ≤ n) finite-dimensional operators from L(U,X). Then, by a simple convergence
argument and the second formula in Step 2, we have

〈
x∗,

t�

0

ψ dW
〉

=
n∑

k=1

t�

0

gk dW (A∗kx
∗)

for every t ≤ T and x∗ ∈ X∗. Hence the claim holds for ψ of this type by the properties of
real stochastic integrals. Now it suffices to take an approximating sequence ψn of simple
processes from Step 2 such that

lim
n→∞

E

T�

0

‖ψn − ψ‖2L2(U0,X) ds = 0

and the proof is complete by using the Burkholder inequality (5.1) for p = 2.

Summary of Step 5. We have extended the stochastic integral to progressively measurable
processes ψ with values in L2(U0, X) which satisfy

P
[ T�

0

‖ψ(s)‖2L2(U0,X) ds <∞
]

= 1.

The continuous X-valued process t 7→ � t0 ψ dW is a local martingale and

(3.6)
t∧τ�

0

ψ dW =
t�

0

I[0,τ ](s)ψ(s) dW

for every stopping time τ and time t ≤ T . Moreover, if Y is another 2-smooth Banach
space, φ a progressively measurable L2(U0, Y )-valued process such that

P
[ T�

0

‖φ(s)‖2L2(U0,Y ) ds <∞
]

= 1

then

t 7→
t�

0

〈ψ∗(s)x∗, φ∗(s)y∗〉U0 ds

is the cross-variation process associated to the real local martingales t 7→ 〈x∗, � t
0
ψ dW 〉

and t 7→ 〈y∗, � t0 φ dW 〉 for x∗ ∈ X∗, y∗ ∈ Y ∗.
Example 3.7. Let ψ be a progressively measurable L2(U0, X)-valued process with almost
all trajectories in L2([0, T ], L2(U0, X)) and h ∈ U . Then

. φ(s, ω) = h⊗L(U,R) 1 is a constant process in L2(U0,R).

. The restriction of φ to U0 belongs to L(U0,R) = U∗0 and thus can be identified with
Qh ∈ U0.

. φ∗(s, ω) = Qh ∈ L(R, U0).

. � t0 φ(s) dW = � t0QhdW = Wt(h).

. t 7→ � t
0
〈x∗, ψ(s)Qh〉 ds is the cross-variation process of t 7→ 〈x∗, � t

0
ψ dW 〉 and t 7→

Wt(h), x∗ ∈ X∗.
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4. A convergence result

Proposition 4.1. Let ψ, ψn, n ∈ N, be L2(U0, X)-valued progressively measurable pro-
cesses with P -almost all trajectories in L2([0, T ], L2(U0, X)) such that

T�

0

‖ψn(s)− ψ(s)‖2L2(U0,X) ds

converges to 0 in probability. Then

sup
{∥∥∥

s�

0

ψn dW −
s�

0

ψ dW
∥∥∥ : s ≤ T

}
→ 0

in probability as well.

The proof is based on the following simple inequality: Define

A(t) = sup
{∥∥∥

s�

0

ψ dW
∥∥∥

2
: s ≤ t

}
, B(t) = C2

t�

0

‖ψ(s)‖2L2(U0,X) ds.

Then A and B are continuous processes and

(4.1) EA(τ) ≤ EB(τ)

for every stopping time τ ≤ T . Now the claim follows from Lenglart’s inequality (e.g.
[KS, 1.4.15 and 1.4.17]).

Proof. Define t∗n as in Step 5 of the previous section. Then EA(τ) = limEA(τ ∧ t∗n) as
A is continuous and nondecreasing and

EA(τ ∧ t∗n) ≤ E sup
{∥∥∥

s�

0

I[0,τ∧t∗n]ψ dW
∥∥∥

2
: s ≤ T

}
≤ C2E

τ∧t∗n�

0

‖ψ(s)‖2L2(U0,X) ds

by (5.1) for p = 2, which we may apply because

E

T�

0

‖I[0,τ∧t∗n]ψ‖2L2(U0,X) ds <∞.

Remark 4.2. Let ψ be progressively measurable L2(U0, X)-valued processes with P -
almost all trajectories in L2([0, T ], L2(U0, X)). Then, by Steps 4 and 5, there exists a
sequence ψn, n ∈ N, of simple processes that we have considered in Step 2 such that

� T
0
‖ψn(s)− ψ(s)‖2L2(U0,X) ds converges to 0 in probability.

5. Burkholder inequality

There exist constants Cp, 0 < p <∞, such that

(5.1) E sup
{∥∥∥

s�

0

ψ dW
∥∥∥
p

: s ≤ t
}
≤ CpE

( t�

0

‖ψ‖2L2(U0,X) ds
)p/2
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for every progressively measurable L2(U0, X)-valued process ψ with trajectories in the
space L2([0, T ], L2(U0, X)) for every T > 0.

We have already proven (5.1) in the case p = 2 in Steps 3 and 4 of the previous
section. So, let 0 < p <∞, define processes

M(r) =
∥∥∥
r�

0

ψ dW
∥∥∥, B(r) =

( t�

0

‖ψ(s)‖2L2(U0,X) ds
)1/2

, M∗(r) = sup
s≤r

M(s),

choose β > 1, δ > 0, λ > 0, t ≥ 0 and define stopping times τ1 = inf{r : M(r) ≥ βλ},
τ2 = inf{r : M(r) ≥ λ}, σ = inf{r : B(r) ≥ δλ} and %n = inf{r : M(r) ≥ n}. The set

A1 = [M∗(t ∧ %n) ≥ βλ, B(t) < δλ]

is contained in the set

A2 =
[∥∥∥

t∧τ1∧σ�

0

ψ dW −
t∧τ1∧σ�

0

ψ dW
∥∥∥ ≥ λ(β − 1)

]

since τ2 ≤ τ1 ≤ t ∧ %n ≤ t ≤ σ, M(τ1) = λβ and M(τ2) = λ on A1. Furthermore,

E
∥∥∥
t∧τ1∧σ∧%n�

0

ψ dW −
t∧τ2∧σ∧%n�

0

ψ dW
∥∥∥

2
≤ C2E

t�

0

I(t∧τ2∧σ∧%n,t∧τ1∧σ∧%n]‖ψ‖2L2 ds

= C2E
{ t�

0

I(t∧τ2∧σ∧%n,t∧τ1∧σ∧%n](s)‖ψ(s)‖2L2(U0,X) ds I[M∗(t∧%n)≥λ]

}

≤ C2E
{ t∧σ�

0

‖ψ(s)‖2L2(U0,X) ds I[M∗(t∧%n)≥λ]

}
≤ C2λ

2δ2P [M∗(t ∧ %n) ≥ λ]

by (3.2) applied for p = 2 and (3.6). Hence,

P (A1) ≤ P (A2) ≤ C2δ
2

(β − 1)2 P [M∗(t ∧ %n) ≥ λ]

and so

P [M∗(t ∧ %n) ≥ βλ] ≤ P [B(t) ≥ δλ] +
C2δ

2

(β − 1)2 P [M∗(t ∧ %n) ≥ λ].

Integrating both sides with respect to pλp−1 dλ over (0,∞) we arrive at

1
βp

E(M∗(t ∧ %n))p ≤ 1
δp
E(B(t))p +

C2δ
2

(β − 1)2 E(M∗(t ∧ %n))p.

Now M∗(t ∧ %n) ≤ n and if we choose δ < (β − 1)C−1/2
2 β−p/2 and define

Cp = δ−p
(

1
βp
− C2δ

2

(β − 1)2

)−1

then

E(M∗(t ∧ %n))p ≤ CpE(B(t))p.

Letting n tend to infinity we get E(M∗(t))p ≤ CpE(B(t))p.
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6. Fubini’s theorem

Let (Ω,F , (Ft), P,W ) be a probability filtered space with a Q-Wiener process W on U ,
set ΩT = [0, T ] × Ω, and define PT to be the σ-algebra of progressively measurable
subsets of ΩT and ds ⊗ P the product of the Lebesgue measure and P . We will write
briefly L2(ΩT ) for the space L2((ΩT , ds⊗ P ), L2(U0, X)).

Proposition 6.1. Let (Y,Y , µ) be a finite measure space and ψ : ΩT × Y → L2(U0, X)
a PT ⊗ Y-measurable mapping such that

�

Y

‖ψ(y)‖L2(ΩT ) dµ <∞.

Then

(1) the process �
Y
ψ(y) dµ indexed by t ∈ [0, T ] is progressively measurable and belongs

to L2(ΩT ).

(2) The process � T0 ψ(y) dW indexed by y ∈ Y has an FT ⊗ Y-measurable version
m : Ω × Y → X such that

P
[
m(y) =

T�

0

ψ(y) dW
]

= 1 for µ-almost all y ∈ Y .

(3) We have

P
[ �

Y

m(y) dµ =
T�

0

( �

Y

ψ(y) dµ
)
dW

]
= 1.

Proof. (1) follows from the following inequality: Let f be a nonnegative PT ⊗Y-measur-
able function on ΩT × Y . Then

(6.1)

√√√√
�

ΩT

( �

Y

f dµ
)2
ds⊗ P ≤

�

Y

‖f(y)‖L2(ΩT ,R) dµ

because ( �

Y

f(a, y) dµ
)2

=
�

Y×Y
f(a, y1)f(a, y2) dµ dµ

and we get (6.1) by the Schwarz inequality. Now suppose that m in (2) exists. Then by
taking Ω instead of ΩT in (6.1) we get

(6.2)

√
E
( �

Y

‖m(y)‖ dµ
)2
≤

�

Y

√
E‖m(y)‖2 dµ ≤

√
C2

�

Y

‖ψ(y)‖L2(ΩT ) dµ

by the Burkholder inequality (5.1). Hence �
Y
m(y) dµ is defined P -almost everywhere.

Now take ψn satisfying the assumption of the proposition such that the sequence of the
integrals �

Y
‖ψn(y)− ψ(y)‖L2(ΩT ) dµ converges to zero. Then there exists a subsequence

(nk : k ∈ N) such that

(a) � T0 ψnk(y) dW → � T0 ψ(y) dW in L2(Ω,X) for µ-almost all y ∈ Y .

(b) � T0 ( �
Y
ψn(y) dµ) dW → � T0 ( �

Y
ψ(y) dµ) dW in L2(Ω,X) for µ-almost all y ∈ Y .
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(a) and (b) follow from the Burkholder inequality (5.1) and the estimate (6.1) because
‖ψnk(y) − ψ(y)‖L2(ΩT ) → 0 µ-almost everywhere. Let us introduce the set D of all
PT ⊗ Y-measurable L2(U0, X)-valued processes ψ with

�

Y

‖ψ(y)‖L2(ΩT ) dµ <∞

such that there exists an m satisfying (2) and (3). It is easy to see that D is a linear space
and if we found ψn ∈ D such that

�

Y

‖ψn(y)− ψ(y)‖L2(ΩT ) dµ→ 0

then we would finish the proof. Indeed, take the corresponding functions mn. Then the
sequence (mn : n ∈ N) is Cauchy in L1(Ω × Y,X) due to (6.2) (apply the Jensen
inequality) and ψ belongs to D due to (a) and (b). Now we will show how to construct
the approximating sequence ψn. First consider mappings Fn on L2(U0, X) as in Lemma
3.4. The simple functions Fnψ take values in finite-dimensional operators of L(U,X).
Moreover

‖Fnψ(y)− ψ(y)‖L2(ΩT ) ↘ 0

for µ-almost all y ∈ Y by the Lebesgue theorem, hence
�

Y

‖Fnψ(y)− ψ(y)‖L2(ΩT ) dµ↘ 0,

and if Fnψ ∈ D, n ∈ N, then ψ ∈ D. Now, to show that Fnψ ∈ D, we will take advantage
of the fact that each Fnψ is bounded in L2(U0, X) and

�

Y

‖φn(y)− φ(y)‖L2(ΩT ) dµ→ 0

if and only if �

ΩT×Y
‖φn − φ‖L2(U0,X) ds dP dµ→ 0

for φn uniformly bounded in L2(U0, X). So as Fnψ is of the form
m∑

k=1

ICkBk,

where (Ck : k ≤ m) is a PT ⊗ Y-decomposition of ΩT × Y and Bk, k ≤ m, are finite-
dimensional operators in L(U,X), we conclude that Fnψ ∈ D provided ICkBk ∈ D due
to linearity of D. Another reduction shows that this is true if

IC1
k×C2

k
Bk ∈ D

for every C1
k ∈ PT , C2

k ∈ Y as ICk can be approximated by IC0
k

in L1(ΩT × Y ), where
C0
k is a disjoint union of sets of the type C1

k × C2
k . Finally, as IC1

k
is a progressively

measurable process, it can be approximated by simple uniformly bounded real processes
in L1(ΩT ), so we will finish the proof by showing that

I(s,t]×Cs×C2
k
Bk ∈ D

for s < t, Cs ∈ Fs; but this is obvious.
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Example 6.2. Let g : [0, T ]×Ω → L2(U0, X) be such that 〈x∗n, g(hk)〉 : [0, T ]×Ω → R
is progressively measurable for x∗n ∈ X∗, hk ∈ U0, n ∈ N, k ∈ N, where (x∗n : n) separates
points in X and (hk : k ∈ N) is dense or orthonormal in U0. Then g is progressively
measurable by Proposition 2.5(5).

Example 6.3. Let (St) be a continuous semigroup of linear operators on X generated
by A, W a Q-Wiener process and g : [0, T ]×Ω → L2(U0, X) a progressively measurable
process such that

P
[ T�

0

‖g(s)‖2L2(U0,X) ds <∞
]

= 1.

Define

G(t) =
t�

0

g dW, C(t) =
t�

0

St−sg(s) dW.

Then

(1) C has an (Ft)-predictable modification such that C(ω) ∈ L2(0, T ;X) P -almost
surely.

(2) We have

P
[ t�

0

C(r) dr ∈ D(A)
]

= P
[
A

t�

0

C(r) dr = C(t)−G(t)
]

= 1 for every t ≤ T .

Proof. To simplify notation we will extend the operator-valued function S to negative
times by 0 ∈ L(X).

First suppose that

E

T�

0

‖g(s)‖2L2(U0,X) ds <∞.

Fix t ∈ [0, T ] and define

ψt(s, ω, r) = Sr−sg(s, ω) for s ≤ t, r ≤ t.
Then, by Proposition 6.1, there exists a B([0, t])⊗Ft-measurable function mt : [0, t]×Ω
→ X such that P [mt(r) = C(r)] = 1 for almost all r ∈ [0, t] and mt(ω) ∈ L2(0, t;X) for
all ω ∈ Ω. Next take λ from the resolvent set of A and define

ψ(s, ω, r) = Sr−sARλg(s, ω) for s ≤ t, r ≤ t.
Then ψ satisfies the assumptions of Proposition 6.1 with Y = [0, t] and we have

(s, ω) 7→
�

Y

ψ dr = St−sRλg(s, ω)−Rλg(s, ω),

P [m(r) = ARλmt(r)] = 1 for almost all r ≤ t because

(∗) ARλ = λRλ − IX
is bounded, and

ARλ

t�

0

mt(r) dr =
t�

0

m(r) dr = RλC(t)−RλG(t)
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P -almost everywhere. But RngRλ = D(A) and, due to (∗),

P
[ t�

0

mt(r) dr ∈ D(A)
]

= 1.

Thus

P
[
A

t�

0

mT (r) dr = A

t�

0

mt(r) dr = C(t)−G(t)
]

= 1.

Moreover the process t 7→ � t
0
mT (r) dr is continuous and adapted as

P
[ t�

0

mT (r) dr =
t�

0

mt(r) dr
]

= 1

for every t ≤ T so

t 7→
{
A � t

0
mT (r) dr, � t

0
mT (r) dr ∈ D(A),

0, � t0mT (r) dr 6∈ D(A),

is predictable because D(A) is a Borel set in X and A : D(A)→ X is Borel measurable.
Consequently, C has a predictable modification. The general case follows directly from
(1), (2) by localization of Step 5: Define

t∗n = inf
{
t ≤ T :

t�

0

‖g(s)‖2L2(U0,X) ds ≥ n
}
, gn(s, ω) = g(s, ω)I[0,t∗n(ω)](s).

Then the processes

Cn(t) =
t�

0

St−sgn(s) dWs, Gn(t) =
t�

0

gn dW

satisfy (1), (2). The set of (t, ω) where Cn is convergent is predictable and the limit is
predictable as well. But this limit is a modification of C because Cn(t) converges P -almost
surely for every t ≤ T as P [t∗n = T ] ↗ 1 and P [Cn(t) = C(t), t∗n = T ] = 1 for every
t ≤ T .

Example 6.4. Let (St) be a continuous semigroup of linear operators on a separable
reflexive Banach space X generated by A, W a Q-Wiener process, g : [0, T ] × Ω →
L(U0, X) a progressively measurable process with respect to the strong σ-algebra on
L(U0, X). Further suppose that

P
[ T�

0

‖g(s)‖2L(U0,X) ds <∞
]

= 1

and define

Gx∗(t) =
t�

0

g∗x∗ dW, Cx∗(t) =
t�

0

g∗(s)S∗t−sx
∗ dW

for x∗ ∈ X∗, t ≤ T . Then

(1) Cx∗ has an (Ft)-predictable modification such that Cx∗(ω) ∈ L2(0, T ) P -almost
surely for every x∗ ∈ X∗.
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(2) Cx∗ is a continuous process and

P
[ t�

0

CA∗x∗(s) ds = Cx∗(t)−Gx∗(t)
]

= 1 for every t ≤ T

provided x∗ ∈ D(A∗).

Proof. Cx∗ is a real adapted process which is continuous in probability by Proposition
4.1. Thus (1) is a consequence of [DZ, Proposition I.3.2]. Next suppose that

E

T�

0

‖g(s)‖2L(U0,X) ds <∞.

Then (2) follows immediately from Proposition 6.1, and the general case can be obtained
in the same way as in Example 6.3 but this time with

t∗n = inf
{
t ≤ T :

t�

0

‖g(s)‖2L(U0,X) ds ≥ n
}
, gn(s, ω) = g(s, ω)I[0,t∗n(ω)](s).

Proof of Theorem 12. If we define y1(t) = Stu(0) then

A

t�

0

y1(s) ds = y1(t)− u(0).

The process

y2(t) =
t�

0

St−sf(s) ds

is obviously norm continuous, adapted and, by the classical Fubini theorem,

A

t�

0

y2(s, ω) ds = y2(t, ω)−
t�

0

f(s, ω) ds

for every ω satisfying � T
0
‖f(s, ω)‖ ds <∞. Thus, by Example 6.3, the predictable process

y3(t) =
t�

0

St−sg(s) dW

satisfies

A

t�

0

y3(s) ds = y3(t)−
t�

0

g(s) dW

almost everywhere, (a) implies (b) because u(t) = y1(t)+y2(t)+y3(t) almost everywhere,
and (1), (2) obviously hold. On the other hand, if (b) holds, define h(t) = y1(t) + y2(t) +
y3(t)− u(t). Then

h(t) = A

t�

0

h(s) ds

almost everywhere for every t ≤ T . Thus, computing � r0〈x∗, Sr−th(t)〉 dt, x∗ ∈ D(A∗), by
the classical Fubini theorem, we get � r

0
h(s, ω) ds = 0 for every r ≤ T and almost all ω.

But t 7→ 〈x∗, h(t, ω)〉 is continuous for almost all ω for every choice of x∗ ∈ D(A∗), and
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thus h(t, ω) = 0 on [0, T ] for almost all ω because X is reflexive and D(A∗) is norm dense
in X∗.

Proof of Theorem 13. (a)⇒(b)&(c): In fact, we will prove a little more. (a) implies that

(13.a) 〈x∗, ut〉 = 〈x∗, Stu0〉+
t�

0

〈x∗, St−sfs〉 ds+
t�

0

g∗sS
∗
t−sx

∗ dWs

for every x∗ ∈ X∗, and this equality already implies (b) and (c). Thus we need not
suppose that X is 2-smooth—X might be separable reflexive and (13.a) should hold. The
process t 7→ 〈x∗, u(t)〉 has a predictable modification for every x∗ ∈ X∗ by Example 6.4,
hence u has a predictable modification by Corollary 11.2. Now fix x∗ ∈ D(A∗) and define

y′3(t) =
t�

0

g∗sS
∗
t−sA

∗x∗ dWs.

Then, proceeding along the lines of Theorem 12, (c) follows from Example 6.4. To show
(b) define the predictable processes

vn(t) =
t�

0

St−sgn(s) dWs, n ∈ N, v(t) =
t�

0

St−sg(s) dWs

with gn from Example 6.4. Then, by Proposition 6.1,

P
[ T�

0

T�

0

|〈x∗(t, s), vn(s)〉| ds dt <∞
]

= 1.

But P [vn(t)I[t∗n=T ] = v(t)I[t∗n=T ]] = 1 for every t ≤ T and P [t∗n = T ]↗ 1, thus (b) holds

as t 7→ Stu(0) + � t
0
St−sf(s) ds is norm continuous.

(b)&(c)⇒(a): Define

h(t) = u(t)− Stu(0)−
t�

0

St−sf(s)−
t�

0

St−sg(s) dWs.

Then, by the first part of the proof, h can be chosen predictable satisfying (b) and

P
[
〈x∗, h(t)〉 =

t�

0

〈A∗x∗, h(s)〉 ds
]

= 1

for every t ≤ T , x∗ ∈ D(A∗). Thus, computing � r0〈S∗r−tx∗, h(t)〉 dt by Fubini’s theorem,
we conclude that P [h(t) = 0] = 1 for every t ≤ T .

7. The Girsanov theorem

Proposition 7.1. Let (Ω,F , (Ft), P,W ) be a filtered probability space with a Q-Wiener
process W on U , φ a progressively measurable process with values in U0 satisfying

E exp
( T�

0

‖φ(s)‖2U0
ds
)
<∞
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and ψ a progressively measurable process with values in L2(U0, X) such that

P
[ T�

0

‖ψ(s)‖2L2(U0,X) ds
]

= 1.

Then

(1) The process

Mt = exp
(
−
t�

0

φ dW − 1
2

t�

0

‖φ(s)‖2U0
ds

)

is a P -martingale on [0, T ].
(2) The process

W̃t(h) = Wt(h) +
t�

0

〈φ(s), h〉U ds, t ≤ T, h ∈ U,

is a P̃ -Q-Wiener process on U with P̃ (F ) = �
F
MT dP.

(3) We have
t�

0

ψ dW̃ =
t�

0

ψ dW +
t�

0

ψ(s)φ(s) ds

almost everywhere for every t ≤ T .
(4) If (Y,Y) is a measurable space and ξ : Ω → Y an F0-measurable random variable

then LawP̃ (ξ) = LawP (ξ).

Proof. The proof goes along the lines of the proof of the classical Girsanov and Novikov
theorem (e.g. [RY]). Hence (1) follows from the fact that the quadratic variation process
of t 7→ � t

0
φ dW is t 7→ � t

0
‖φ(s)‖2U0

ds due to Remark 3.5. Here we use the isometric
isomorphism between L2(U0,R) and U0. Using the same arguments as in Remark 3.5 we
can show that

t 7→
t�

0

〈φ(s), Qh〉U0 ds

is the cross-variation process associated to t 7→ � t0 φ dW and t 7→Wt(h). But 〈φ(s), Qh〉U0

= 〈φ(s), h〉U , which yields (2). If we take ψ = I(s,t])IFsh ⊗ x for some 0 ≤ s < t ≤ T ,
Fs ∈ Fs, h ∈ U , x ∈ X then (3) obviously holds. Due to linearity, (3) holds for simple ψ
that we have considered in Step 2 of the previous section as well. If ψ is general we can
find a sequence (ψn : n ∈ N) of simple processes of Step 2 such that

T�

0

‖ψn(s)− ψ(s)‖2L2(U0,X) ds→ 0

in probability (P̃ as well as P ) by Remark 4.2, and the final equality is just the limiting
argument of Proposition 4.1. Claim (4) is a consequence of (1).

Remark. The measures P̃ , P are absolutely continuous with respect to each other
so their null sets coincide, as do P̃ -convergence and P -convergence, and consequently the
integrals in (3) do not depend on P̃ , resp. P due to Proposition 4.1.
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8. Distribution of random integrals and measurable selectors

The goal of this section is to show a sufficient condition on a process u and a Q-Wiener
process W to be a solution. More precisely we are going to prove that if the distributions
of (u,W ) and (v,B) coincide on the space of functions and (v,B) is a solution then so is
(u,W ).

In the last part we modify the selection theorem of [KRN] to open set mappings with
the gain of distribution preserving selectors.

Distribution of random Bochner integrals

Lemma 8.1. Let (Y,Y) be a measurable space, ξi a Y -valued random variable and
(f ij(t) : t ≤ T ), j ≤ N , real bounded measurable processes on (Ωi,F i, P i), i = 1, 2,
such that

LawP 1(f1
j (rl), ξ1 : j ≤ N, l ≤ m) = LawP 2(f2

j (rl), ξ2 : j ≤ N, l ≤ m)

for every partition 0 = r0 < · · · < rm ≤ T in D∗ for some D∗ ⊆ [0, T ] of Lebesgue
measure T . Then

LawP 1

( tk�

0

f1
j (s) ds, ξ1 : k, j

)
= LawP 2

( tk�

0

f2
j (s) ds, ξ2 : k, j

)

for every partition 0 = t0 < · · · < tn ≤ T .

Proof. First let ξi be real bounded, N = 1 and 0 < t ≤ T fixed. We are going to show that
the Fourier transforms of the R2-valued random vectors ( � t0 f i(s) ds, ξi) do not depend
on i, thus they must coincide. Define

gi(s) =
√
−1
(
af i(s) +

b

t
ξi
)
, a ∈ R, b ∈ R.

Then
�

Ωi

exp
( t�

0

gi(s) ds
)
dP i = 1 +

∞∑

k=1

1
k!

t�

0

· · ·
t�

0

( �

Ωi

gi(s1) · · · gi(sk) dP i
)
ds1 · · · dsk

by Fubini’s theorem.
Now the general case can be proven by repeated application of the previous case: Fix

a partition 0 = t0 < · · · < tn ≤ T , J ≤ N , K ≤ n and suppose that

LawP i

( tk�

0

f ij1(s) ds, f ij(rl), ξ
i : k ≤ K, j1 ≤ J, j ≤ N, l ≤ m

)

are equal for i = 1, 2 for every choice of 0 = r0 < · · · < rm ≤ T in D∗. Set

ηi =
( tk�

0

f ij1(s) ds, f1
j (rl), ξ1 : k ≤ K, j1 ≤ J, j ≤ N, l ≤ m

)
, i = 1, 2,

and fix a measurable set A in the state space of ηi. Then

LawP 1(f1
j0(r∗l ), I[η1∈A] : l ≤M) = LawP 2(f2

j0(r∗l ), I[η2∈A] : l ≤M)
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for every partition 0 = r∗0 < · · · < r∗M ≤ T in D∗ and j0 ≤ N . Hence

LawP 1

( t�

0

f1
j0(s) ds, I[η1∈A]

)
= LawP 2

( t�

0

f2
j0(s) ds, I[η2∈A]

)

for every t ≤ T , j0 ≤ N and A by the first part of the proof, which is, indeed, the
induction step.

Corollary 8.2. Suppose that (f i(t) : t ≤ T ) is a [0,∞]-valued measurable process on
(Ωi,F i, P i), i = 1, 2, such that

LawP 1(f1(rl) : l ≤ m) = LawP 2(f2(rl) : l ≤ m)

for every partition 0 = r0 < · · · < rm ≤ T in D∗. Then

P 1
[ T�

0

f1(s) ds <∞
]

= P 2
[ T�

0

f2(s) ds <∞
]
.

Proof. The bounded measurable processes t 7→ f in(t) = max{f i(t), n} satisfy the assump-
tion of Lemma 8.1. Thus

P 1
[ T�

0

f1
n(s) ds ≤ ∆

]
= P 2

[ T�

0

f2
n(s) ds ≤ ∆

]

for every ∆ ∈ R and we have

P 1
[ T�

0

f1(s) ds ≤ ∆
]

= P 2
[ T�

0

f2(s) ds ≤ ∆
]

by Lévy’s theorem. The claim now follows by letting ∆ tend to infinity.

Theorem 8.3. Let (Y,Y) be a measurable space, ξi a Y -valued random variable and
(f ij(t) : t ≤ T ), j ≤ N, X-valued measurable processes on (Ωi,F i, P i), i = 1, 2, satisfying

P 1
[ T�

0

‖f1
j (s)‖ ds <∞

]
= P 2

[ T�

0

‖f2
j (s)‖ ds <∞

]
= 1, j ≤ N,

and

LawP 1(f1
j (rl), ξ1 : j ≤ N, l ≤ m) = LawP 2(f2

j (rl), ξ2 : j ≤ N, l ≤ m)

for every partition 0 = r0 < · · · < rm ≤ T in D∗ for some D∗ ⊆ [0, T ] of Lebesgue
measure T . Then

LawP 1

( tk�

0

f1
j (s) ds, ξ1 : k, j

)
= LawP 2

( tk�

0

f2
j (s) ds, ξ2 : k, j

)

for every partition 0 = t0 < · · · < tn ≤ T .

Proof. First suppose that X = R and define the real functions

hm(r) = sgn(r) max{|r|,m}, m ∈ N.
Then, by Lemma 8.1, the measures

LawP i

( tk�

0

hm(f ij(s)) ds, ξ
i : k ≤ n, j ≤ N

)

are equal for i = 1, 2 for every m ∈ N and the claim follows by letting m tend to infinity
by Lebesgue’s theorem. To prove the general case choose a sequence (x∗l : l ∈ N) in X∗
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which separates points of X. Then, by an application of the previous case, we get the
equality of the measures

LawP i

( tk�

0

〈x∗l , f ij(s)〉 ds, ξi : k ≤ n, l ≤ L, j ≤ N
)

for i = 1, 2 for every L ∈ N. But this is already equivalent to the conclusion of the
theorem as (x∗l : l ∈ N) generates the Borel σ-algebra on X.

Remark 8.4. Notice that the probabilities appearing in condition (1) are, under the
assumptions of the theorem, always equal by Corollary 8.2. Moreover, by obvious modi-
fication of the proof, the theorem holds true even if some of fn’s were [0,∞]-valued.

Distribution of stochastic integrals

Lemma 8.5. Let (Y,Y) be a measurable space, ξi a Y -valued random variable, Bim,
m ≤M , real (F it )-Wiener processes and (gij(t) : t ≤ T ), j ≤ N , (F it )-progressively mea-
surable bounded processes on (Ωi,F i, (F it ), P i), i = 1, 2, such that

LawP 1(g1
j (rl), B1

m(rl), ξ1 : j, l,m) = LawP 2(g2
j (rl), B2

m(rl), ξ2 : j, l,m)

for every partition 0 = r0 < · · · < rm ≤ T in D∗ for some D∗ ⊆ [0, T ] of Lebesgue
measure T . Then

LawP 1

( tk�

0

g1
j dB

1
m, ξ

1 : k, j,m
)

= LawP 2

( tk�

0

g2
j dB

2
m, ξ

2 : k, j,m
)

for every partition 0 = t0 < · · · < tn ≤ T .

Proof. First suppose that all processes gij are, in addition, continuous and D∗ = [0, T ].
Then

LawP 1

( tk�

0

g1
jL dB

1
m, ξ

1 : k, j,m
)

= LawP 2

( tk�

0

g2
jL dB

2
m, ξ

2 : k, j,m
)

for approximations

gijL(t) =
L∑

l=1

gij(rl−1)I(rl−1,rl](t)

with a subdivision 0 = r0 < · · · < rL = T of (tk : k ≤ n). The claim now follows by
letting the subdivisions’ norm tend to zero. In the general case consider the continuous
uniformly bounded processes

gijL(t) = L

t�

max{t−1/L,0}
gij(s) ds = L

( t�

0

gij(s) ds−
max{t−1/L,0}�

0

gij(s) ds
)
.

We have

LawP 1(g1
jL(rl), B1

m(rl), ξ1 : j, l,m) = LawP 2(g2
jL(rl), B2

m(rl), ξ2 : j, l,m)

for every partition 0 = r0 < · · · < rm ≤ T by Lemma 8.1. In fact, we should consider
partitions in D∗ but the intervening processes are continuous and D∗ is dense in [0, T ].
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Thus, by the previous case,

LawP 1

( tk�

0

g1
jL dB

1
m, ξ

1 : k, j,m
)

= LawP 2

( tk�

0

g2
jL dB

2
m, ξ

2 : k, j,m
)
,

and the general claim follows by letting L tend to 0 as a sequence because gijL → gij
dt⊗ P i-almost everywhere on [0, T ]×Ω1.

Theorem 8.6. Let (Y,Y) be a measurable space, ξi a Y -valued random variable, W i a
Q-Wiener process on U and (gij(t) : t ≤ T ), j ≤ N , L2(U0, X)-valued (F it )-progressively
measurable processes on (Ωi,F i, (F it ), P i), i = 1, 2, satisfying

P 1
[ T�

0

‖g1
j (s)‖2L2(U0,X) ds <∞

]
= P 2

[ T�

0

‖g2
j (s)‖2L2(U0,X) ds <∞

]
= 1

for every j ≤ N and

LawP 1(g1
j (rl),W 1

rl
(hk), ξ1 : j, l, k) = LawP 2(g2

j (rl),W 2
rl

(hk), ξ2 : j, l, k)

for every hk ∈ U , k ≤ K and every partition 0 = r0 < · · · < rm ≤ T in D∗ for some
D∗ ⊆ [0, T ] of Lebesgue measure T . Then

LawP 1

( tk�

0

g1
j dW

1, ξ1 : k, j
)

= LawP 2

( tk�

0

g2
j dW

2, ξ2 : k, j
)

for every partition 0 = t0 < · · · < tn ≤ T .

Proof. We start by taking the simple approximation Fn : L2(U0, X) → L(U,X), n ∈ N,
with values in the space of finite-dimensional operators of L(U,X) as in Lemma 3.4 such
that ‖FnA−A‖L2(U0,X) ↘ 0 for every A ∈ L2(U0, X). Thus each Fn is of the form

m∑

k=1

ICkBk,

where (Ck : k ≤ m) is a measurable decomposition of L2(U0, X) and Bk ∈ L(U,X) are
finite-dimensional. If we put gijn = Fng

i
j , we will have

(∗) lim
n→∞

T�

0

‖gij(s)− gijn(s)‖2L2(U0,X) ds = 0

P i-almost everywhere, i = 1, 2. Moreover

LawP 1(g1
jn(rl),W 1

rl
(hk), ξ1 : j, l, k) = LawP 2(g2

jn(rl),W 2
rl

(hk), ξ2 : j, l, k)

for every hk ∈ U , k ≤ K and every partition 0 = r0 < · · · < rm ≤ T in D∗. So, if we
show that the measures

(∗∗) LawP i

(〈
x∗l ,

tk�

0

gijm dW
i
〉
, ξi : l ≤ L, k ≤ n, j ≤ N

)

are equal for i = 1, 2 for every m ∈ N, L ∈ N and some sequence (x∗l : l ∈ N) which
separates points of X (hence generates the Borel σ-algebra of X) we will prove the claim
of the theorem using (∗) and Proposition 4.1 because (∗∗) implies

LawP 1

( tk�

0

g1
jm dW

1, ξ1 : k, j
)

= LawP 2

( tk�

0

g2
jm dW

2, ξ2 : k, j
)
, m ∈ N.
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But each gijn is of the form
m∑

k=1

I[gij∈Ck]Bk,

and recalling the proof of Lemma 3.6, we have
〈
x∗,

t�

0

gijn dW
i
〉

=
m∑

k=1

t�

0

I[gij∈Ck] dW
i(B∗kx

∗).

Thus (∗∗) follows from Lemma 8.5.

Remark 8.7. Notice that the probabilities appearing in the assumptions of Theorem 8.6
are always equal by Corollary 8.2. Moreover, to verify condition (2), one should take
advantage of Proposition 2.5(5).

Distribution of measurable selectors

Proposition 8.8. Let (Ωi,F i, (F it ), P i), i = 1, 2, be filtered probability spaces , X a Pol-
ish space, (Y,Y) a measurable space, G a nonempty open set in R, D∗ a nonempty subset
of [0, T ] and ξi : Ωi → Y , i = 1, 2, measurable mappings. Let H i : [0, T ] × Ωi × X → R,
i = 1, 2, satisfy :

(1) The mapping [0, T ] × Ωi → R : (t, ω) 7→ Hi(t, ω, y) is (F it )-progressively measur-
able for every y ∈ X, i = 1, 2.

(2) The mapping X→ R : y 7→ H i(t, ω, y) is continuous for every (t, ω) ∈ [0, T ]×Ωi,
i = 1, 2.

(3) LawP 1(H1(tj , yk), ξ1 : j, k) = LawP 2(H2(tj , yk), ξ2 : j, k) for every finite subset
{t0, . . . , tn} of D∗ and for every y1, . . . , ym in X.

(4) The set {y : H i(t, ω, y) ∈ G} is nonempty for every (t, ω) ∈ [0, T ]×Ωi, i = 1, 2.

Then there exist (F it )-progressively measurable X-valued processes si such that

LawP 1(s1(tj), ξ1 : j) = LawP 2(s2(tj), ξ2 : j)

for every t0, . . . , tn in D∗ and Hi(t, ω, si(t, ω)) belongs to G.

Proof. Suppose that d < 1 is a complete metric on X and choose a countable dense
subset r1, r2, . . . of X. Define Gi(t, ω) = {y : Hi(t, ω, y) ∈ G} and construct a sequence of
(F it )-progressively measurable X-valued processes sin in such a way that:

(a) d(sin−1(t, ω), sin(t, ω)) < 2−n+1 for every n > 0 and (t, ω) ∈ [0, T ]×Ωi, i = 1, 2.
(b) d(sin(t, ω), Gi(t, ω)) < 2−n for every n ≥ 0 and (t, ω) ∈ [0, T ]×Ωi, i = 1, 2.
(c) LawP 1(s1

n(tj), H1(tj , yk), ξ1 : j, k) = LawP 2(s2
n(tj), H2(tj , yk), ξ2 : j, k) for every

t0, . . . , tm in D∗, y1, . . . , yM in X and n ≥ 0.

First set si0(t, ω) identically equal to r0 and then, proceeding by induction, assuming that
(a)–(c) hold for some sin−1, i = 1, 2, n ≥ 1, define

Aij = {(t, ω) : d(rj , sin−1(t, ω)) < 2−n+1} ∩ {(t, ω) : d(rj , Gi(t, ω)) < 2−n}
for j ≥ 0 and i = 1, 2, which are (F it )-progressively measurable because

{(t, ω) : d(rj , Gi(t, ω)) < 2−n} =
∞⋃

l=1

{(t, ω) : Hi(t, ω, rl) ∈ G , d(rj , rl) < 2−n}.
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Moreover
∞⋃

j=0

Aij = [0, T ]×Ωi, i = 1, 2,

by assumption (b). Thus defining

sin = rj on Aij \
⋃

l<j

Ail for j ≥ 0 and i = 1, 2

we complete the induction step and now it suffices to take si as the limit of sin.

9. Proofs of Theorems 3 and 4

Proof of Theorem 3. We will start with the following lemma:

Lemma 9.1. Under the assumptions of Theorem 3 let (Ω1,F1, (F1
t ), P 1,W 1, u1) be an-

other solution of (0.1) such that LawP (u) = LawP 1(u1). Further suppose that ξ : Ω → Y ,
ξ1 : Ω1 → Y are some random variables , where (Y,Y) is some measurable space. Let also
xi, resp. x1

i , i ≤ n, be (Ft), resp. (F1
t )-progressively measurable processes in X∗1 such that

(1) P
[ T�

0

‖g∗(s, u(s))xi(s)‖2U0
ds <∞

]
= 1 for every i ≤ n

and

(2) LawP (u(tj), xi(sj), ξ : i, j) = LawP 1(u1(tj), x1
i (sj), ξ

1 : i, j)

for any finite sequences t0, . . . , tm and s0, . . . , sm in D∗, where D∗ is a subset of [0, T ] of
Lebesgue measure T . Then

LawP

(
u(tj), ξ,

tj�

0

g∗(s, u(s))xi(s) dWs : i, j
)

= LawP 1

(
u1(tj), ξ1,

tj�

0

g∗(s, u1(s))x1
i (s) dW

1
s : i, j

)

for every 0 = t0 < · · · < tm ≤ T .

Remark. Observe that (2) in Lemma 9.1 is equivalent to

LawP (u(tj), xi(sj), ξ : i, j) = LawP 1(u1(tj), x1
i (sj), ξ

1 : i, j)

for every t0, . . . , tm in [0, T ] and s0, . . . , sm in D∗ by the assumption (0.3). Indeed, (0.3)
implies existence of a continuous modification of t 7→ 〈x∗, ut〉 for every x∗ ∈ D(A∗)
(Theorem 13) and D(A∗) separates points in X1, so it generates the Borel σ-algebra
in X! Consequently, given 0 = t0 < . . . < tm ≤ T we find some tkj ∈ D∗ such that tkj → tj
and extend the equality of the intervening laws to t0, . . . , tm by the above mentioned
continuity.

Proof of Lemma 9.1. Note that (0.3) holds for u1, as well as

P 1
[ T�

0

‖g∗(s, u1(s))x1
i (s)‖2U0

ds <∞
]

= 1
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for every i ≤ n by Corollary 8.2 (assuming (1) and (2) of Lemma 9.1). Hence we can
apply Theorem 13 (together with the remark included in the proof) to obtain

t�

0

g∗(s, us)R∗λy
∗ dWs = 〈y∗, Rλut〉 − 〈y∗, Rλu0〉 −

t�

0

〈y∗, ARλus +Rλf(s, us)〉 ds

for every y∗ ∈ X∗1 , where Rλ = (λ−A)−1 for some λ in the resolvent set of the generator
A of (St) in X1. Similarly, we get an analogous equation for u1. Now suppose that all xi,
x1
i , i ≤ n, are bounded, norm continuous and D∗ = [0, T ]. Fix a partition (tj : j) of [0, T ]

and define

xiLm(t) =
L−1∑

l=0

Fmxi(rl)I(rl,rl+1](t), x1
iLm(t) =

L−1∑

l=0

Fmx
1
i (rl)I(rl,rl+1](t)

for some subdivision 0 = r0 < · · · < rL = T of (tj : j) where Fm are the simple
approximations of identity from Lemma 3.4 applied on the separable space X∗1 . Then the
claim of the lemma is true for R∗λxiLm and R∗λx

1
iLm by Theorem 8.3 because

t�

0

g∗(s, us)R∗xiLm dWs =
L−1∑

l=0

〈Fmxi(rl), Rut∧rl+1−Rut∧rl〉−
t�

0

〈xiLm, ARus+Rf(s, us)〉 ds

and analogously for x1
iLm. Letting m→∞ we get the claim for

xiL(t) =
L−1∑

l=0

xi(rl)I(rl,rl+1](t), x1
iL(t) =

L−1∑

l=0

x1
i (rl)I(rl,rl+1](t)

by Proposition 4.1. Letting the subdivision’s norm tend to zero as L tends to infinity
we deduce the claim of the lemma for R∗λxi, R

∗
λx

1
i by another application of Proposition

4.1. In the second step we will suppose that xi, x1
i are bounded and D∗ has Lebesgue

measure T . Consider

yiL(t) = L

t�

max{t−1/L,0}
xi(s) ds = L

( t�

0

xi(s) ds−
max{t−1/L,0}�

0

xi(s) ds
)

and analogously y1
iL, where the integral is taken in the Banach space X∗1 . We know that

LawP (u(tj), yiL(tj) : i, j) = LawP 1(u1(tj), y1
iL(tj) : i, j)

for every 0 = t0 < · · · < tm ≤ T by Theorem 8.3. Thus, referring to the first part of the
proof, we conclude that the claim of the lemma holds for R∗λyiL, resp. R∗λy

1
iL, and so it

holds forR∗λxi, resp. R∗λx
1
i by Proposition 4.1 as yiL, resp. y1

iL converge in norm to xi, resp.
x1
i dt⊗P , resp. dt⊗P 1-almost everywhere (e.g. [DU]). On the other hand, λR∗λx

∗ → x∗ for
every x∗ ∈ X∗1 as λ→∞ because X1 is reflexive (so A∗ is the generator of a C0-semigroup
on X∗1 ). Hence the claim holds for xi, x1

i as well by letting λ tend to infinity and by the uni-
form boundedness of xi and x1

i . Finally, to cover the general case, split the processes into

xim = xiI[‖xi‖≤m], x1
im = x1

i I[‖x1
i‖≤m].

The claim holds for xim, x1
im by the previous part of the proof and

T�

0

‖g∗(s, u(s))xi − g∗(s, u(s))xim‖2U0
ds =

T�

0

I[‖xi‖>m]‖g∗(s, u(s))xi‖2U0
ds

P -a.e.−−→ 0.

Since the same reasoning holds in the analogous case the proof is complete.
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Lemma 9.2. Under the assumptions of Theorem 3 let (Ω1,F1, (F1
t ), P 1,W 1, u1) be an-

other solution of (0.1) such that LawP (u) = LawP 1(u1). Suppose that ξ : Ω → Y ,
ξ1 : Ω1 → Y are random variables , where (Y,Y) is a measurable space, such that

LawP (u(tj), ξ : j) = LawP 1(u1(tj), ξ1 : j)

for every 0 = t0 < · · · < tm ≤ T in D∗, where D∗ is a subset of [0, T ] of Lebesgue measure
T . Let p(t, x) ∈ L(U0) denote the orthogonal projection of U0 onto the closed subspace
(Ker g(t, x))⊥. Then p : [0, T ]×X → L(U0) is strongly measurable and

LawP

(
u(tj), ξ,

tj�

0

p(s, u(s))hi dWs : i, j
)

= LawP 1

(
u1(tj), ξ1,

tj�

0

p(s, u1(s))hi dW 1
s : i, j

)

for every 0 = t0 < · · · < tm ≤ T and h1, . . . , hn in U0.

Proof. We begin with the strong measurability of p. Fix h ∈ U0 and let a0, a1, a2, . . . be
a dense subset in U0 with a0 = 0. In this way we can define

δε(t, x) = inf{‖h− ai‖U0 : ‖g(t, x)ai‖X1 < ε, i = 0, 1, . . .}
= inf{‖h− a‖U0 : ‖g(t, x)a‖X1 < ε}

for (t, x) ∈ [0, T ]×X and qε,m(t, x) = ai, (t, x) ∈ [0, T ]×X, where i is the least index in
{0, 1, . . .} such that

‖h− ai‖U0 < δε(t, x) + 1/m

and ‖g(t, x)ai‖X1 < ε. Both δε(t, x) and qε,m(t, x) are obviously measurable. But

‖qε,m − qε,n‖2U0
≤ 2(δε + 1/m)2 + 2(δε + 1/n)2 − 4δ2

ε

by the parallelogram law. So qε,m converges to some measurable qε in U0 and we have
‖h− qε(t, x)‖U0 = δε(t, x) and ‖g(t, x)(qε(t, x))‖X1 ≤ ε for every (t, x) ∈ [0, T ]×X. Now
let 0 < ε1 < ε2. Using the parallelogram rule once again, we get

‖qε1 − qε2‖2U0
≤ 2δ2

ε1 + 2δ2
ε2 − 4δ2

ε2 .

But ε 7→ δε(t, x) is nonincreasing on (0,∞) and bounded by

δ(t, x) = inf{‖h− a‖U0 : ‖g(t, x)a‖X1 = 0}
for every (t, x) ∈ [0, T ] ×X so qε converges to some measurable q : [0, T ] ×X → U0 as
ε → 0 zero and we have ‖h − q(t, x)‖U0 ≤ δ(t, x) and ‖g(t, x)(q(t, x))‖X1 = 0 for every
(t, x) ∈ [0, T ]×X, so ‖h− q(t, x)‖U0 = δ(t, x). Hence q(t, x) is the orthogonal projection
of h onto Ker g(t, x), therefore (t, x) 7→ p(t, x)h = h− q(t, x) is measurable.

Now we can proceed to show the second assertion. Note that Rng g∗(t, x) is dense in
(Ker g(t, x))⊥ = Rng p(t, x) for every (t, x) ∈ [0, T ]×X, so define

H(t, ω, x∗1, . . . , x
∗
n) =

n∑

i=1

‖g∗(t, u(t, ω))x∗i − p(t, u(t, ω))hi‖U0

on [0, T ]×Ω × (X∗1 )n and

H1(t, ω, x∗1, . . . , x
∗
n) =

n∑

i=1

‖g∗(t, u1(t, ω))x∗i − p(t, u1(t, ω))hi‖U0

on [0, T ]×Ω1×(X∗1 )n for fixed h1, . . . , hn in U0. Now we can apply Proposition 8.8 to get
progressively measurable processes xim, x1

im, i ≤ n, in X∗1 such that, for every m ∈ N:
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. LawP (u(tj), ξ, xim(sj) : j, i) = LawP 1(u1(tj), ξ1, x1
im(sj) : j, i) for every partition

t0, . . . , tN in D∗ and every s0, . . . , sN in D∗.
.
∑n
i=1 ‖g∗(t, u(t, ω))xim − p(t, u(t, ω))hi‖U0 ≤ 1/m everywhere on [0, T ]×Ω.

.
∑n
i=1 ‖g∗(t, u1(t, ω))x1

im − p(t, u1(t, ω))hi‖U0 ≤ 1/m everywhere on [0, T ]×Ω1.

But now we are exactly in the situation of Lemma 9.1 and the claim of Lemma 9.2 is
proven if we let m tend to infinity, by Proposition 4.1.

Proof of Theorem 3. First we remark that the set of one-to-one operators from L(U0, X1)
is strongly measurable. Indeed, both U0 and X1 are separable reflexive, hence a linear
bounded operator B ∈ L(U0, X1) is one-to-one if and only if the range of its adjoint
operator B∗ is norm dense in U0, i.e. inf{‖B∗x∗k−hj‖ : k ∈ N} = 0 for every j ∈ N, where
(x∗k : k), resp. (hj : j) are norm dense countable subsets of X∗1 , resp. U0. As a consequence,
if (Ω1,F1, (F1

t ), P 1,W 1, u1) is another solution of (0.1) such that LawP (u) = LawP 1(u1)
then

dt⊗ P 1{(s, ω) : g(s, u1(s, ω)) is not one-to-one in L(U0, X1)} = 0.

From Lemma 9.2 we deduce that, given h ∈ U , p(s, u(s, ω))Qh = Qh for dt⊗P -almost all
(s, ω) ∈ [0, T ]×Ω as well as p(s, u1(s, ω))Qh = Qh for dt⊗P 1-almost all (s, ω) ∈ [0, T ]×Ω1

and thus

P
[ t�

0

p(s, u(s))QhdW =
t�

0

QhdW = Wt(h)
]

= 1

for every t ∈ [0, T ] by Example 3.7, and an analogous equality holds for (u1,W 1). Hence
Lemma 9.2 yields the assertion of Theorem 3.

Proof of Theorem 4. We will start with an auxiliary lemma referring once again to
the notation of Section 11:

Lemma 9.3. Let X1 be reflexive, x0 ∈ X, and let (St) be a C0-semigroup of bounded linear
operators on L(X1). Suppose that equation (0.1) with µ = δx0 has the uniqueness in law
property for solutions satisfying (0.3) and (0.4). Let Stx0 ∈ X for every t ∈ (0, T ]. Then
the σ-algebra σ(ut : t ≤ T ) is independent of G0 for every solution (Ω,G, (Gt), P, u,W ) of
(0.1), (0.3), (0.4) starting from x0 ∈ X.

Proof. In compliance with the notation of Section 11 (preceding the proof of Theorems 1
and 2) we fix an orthonormal basis (h∗k : k ∈ N) in U and write Wdec for the continuous
RN-valued process (W (h∗k) : k ∈ N). We also fix a sequence (x∗k ∈ X∗1 : k ∈ N) in
D(A∗) which separates points in X1 (hence in X). Denote by e : X → RN the continuous
embedding x 7→ (〈x∗k, x〉 : k ∈ N) and consider the extended (Borel measurable) inverse
e−1 : RN → X, where e−1(y) = 0 for y 6∈ Rng(e) (see Lemma 11.1). The remark included
in the proof of Theorem 13 ensures a continuous modification of the RN × RN-valued
process t 7→ (eut,Wdec(t)), hence there exists a mapping (kernel) k : Ω×B(C×C)→ [0, 1]
such that

(a) Ω → [0, 1] : ω 7→ k(ω, V ) is G0-measurable for every V ∈ B(C× C).
(b) B(C× C)→ [0, 1] : V 7→ k(ω, V ) is a probability measure for every ω ∈ Ω.
(c) �

G0
kω(V ) dP = �

G0
IV (eu,Wdec) dP for every G0 ∈ G0 and V ∈ B(C× C).
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To simplify the notation we will write

πi : C× C→ C([0, T ],RN) : (g1, g2) 7→ gi, i = 1, 2.

The existence of k is guaranteed e.g. by [Ed, Corollary 3.3] as C([0, T ],RN) is a Polish
space. Equality (c) can now be rewritten as

(∗)
�

G0

k(ω, [(π1, π2) ∈ V ]) dP (ω) =
�

G0

IV (eu,Wdec) dP.

The space C×C endowed with the filtration (Bt⊗Bt)t∈[0,T ] in B⊗B is a filtered measurable
space and π1, π2 are adapted continuous RN-valued processes. Firstly we will show that

Bt(h) =
{∑

k〈h∗k, h〉Uπ2
k(t) on V th ,

0 off V th ,
h ∈ U, t ≤ T,

where

Vh =
{

(t, g1, g2) ∈ [0, T ]× C× C :
∑

k

〈h∗k, h〉Uπ2
k(t, g1, g2) is convergent

}

=
∞⋂

j=1

∞⋃

m=1

∞⋂

n=m

{
(t, g1, g2) ∈ [0, T ]× C× C :

∣∣∣
∑

k

〈h∗k, h〉Uπ2
k(t, g1, g2)

∣∣∣ ≤ 1/j
}

defines a cylindrical Q-(Bt ⊗Bt)-Wiener process on C× C under the probability measure
kω for P -almost all ω ∈ Ω. To this end fix N ∈ N, 0 ≤ s < t ≤ T , A ∈ Bs⊗Bs, B ∈ B(RN )
and set Y N = (π2

1, . . . , π
2
N ). Then (∗) yields

kω(A ∩ [Y Nt − Y Ns ∈ B]) = kω(A)N (0, (t− s)[〈Q1/2h∗i , Q
1/2h∗j 〉]i,j)(B)

for P -almost all ω. But since Bs⊗Bs and B(RN ) are countably generated, there exists a
set, say G1 ∈ G0, such that Y N is an RN -valued kω-(Bt ⊗ Bt)-Wiener process for every
N ∈ N and ω ∈ G1. As a consequence,

∑
k〈h∗k, h〉Uπ2

k(t) is a sum of sign-invariant random
variables, hence it converges in measure (under kω) if and only if it converges kω-almost
surely (for ω ∈ G1). So, given h ∈ U , we get kω[V th ] = 1 for every t ≤ T and every ω ∈ G1.
Passing to the limit in (∗) we get

(∗∗)
�

Ω

k(ω, [(π1, Bt1h1, . . . , Btmhm) ∈ V ]) dP (ω) =
�

Ω

IV (eu,Wt1h1, . . . ,Wtmhm) dP

for every t1, . . . , tm in [0, T ], h1, . . . , hm in U and V ∈ B⊗ B(Rm).
Now fix t ∈ (0, T ]. We are going to show that

(aa)

kω

[ T�

0

(‖f(r, e−1π1
r)‖X1 + ‖g(r, e−1π1

r)‖2L(U0,X1)) dr <∞
]

= 1,

kω

[ T�

0

(M1(f(r, e−1π1
r)) +M2(g(r, e−1π1

r))) dr <∞
]

= 1,

and second that

kω

[
e−1π1

t = Ste
−1π1

0 +
t�

0

St−rf(r, e−1π1
r) dr +

t�

0

St−rg(r, e−1π1
r) dBr

]
= 1,(bb)

kω[e−1π1
0 = x0] = 1(cc)

for every ω from some G2 ∈ G0, G2 ⊆ G1, P (G2) = 1. The fact that (aa) and (cc) hold
for P -almost all ω follows immediately from (∗) and Proposition 9.4. To show that (bb)
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holds define

O = {(r, y) ∈ [0, t]× RN : St−rg(r, e−1y) ∈ L2(U0, X)}
and

ψ : [0, t]× RN : (r, y) 7→ St−rg(r, e−1y)IO(r, y).

Choosing ϕ1(r, y) = IO(r, y) in Proposition 9.4 we get

kω

[ t�

0

IO(r, π1
r) dr = t

]
= 1,(dd)

kω[π1
t ∈ Rng e] = 1(ee)

for P -almost all ω ∈ Ω by (∗). We can introduce, as in the remark following Lemma 3.4,
simple approximations Fn : L2(U0, X) → L(U,X) such that each Fn takes only finitely
many values, and moreover all of them are finite-dimensional operators in L(U,X), and
‖Fn(B) − B‖L2(U0,X) ↘ 0 for every B ∈ L2(U0, X). Consider an equidistant partition
0 = t0 < · · · < tk = t and define measurable mappings from C to L2(U0, X) as in
Proposition 9.4:

Zi(y) =

{
(m/t) � ti

ti−1
ψ(r, yr) dr if � t0 ‖ψ(r, yr)‖2L2(U0,X) dr <∞,

0 if � t
0
‖ψ(r, yr)‖2L2(U0,X) dr =∞,

and

Zt(y) =
{

0 for 0 ≤ t ≤ t1,
Zi(y) for ti < t ≤ ti+1, i = 1, . . . ,m− 1.

Note that Z (depending on m) is a predictable process with values in L2(U0, X), and so
is (Zt(π1)). Now the composition process t 7→ Fn ◦ Zt(y) is piecewise constant and takes
only finitely many values, all of them finite-dimensional operators in L(U,X). It is easy
to verify that

(3∗)
�

G1

k
(
ω,
[(
π1,

t�

0

FnZr(π1) dBr
)
∈ V

])
dP =

�

Ω

IV

(
eu,

t�

0

FnZr(eu) dWr

)
dP

for every V ∈ B⊗B(X) because both stochastic integrals are elementary and are defined
exclusively by Borel compositions, and so (3∗) holds by (∗∗) in a straightforward manner.
Indeed, the left hand side integral in (3∗) is considered only on G1 as we know that
P (G1) = 1 (so G1 can be exchanged with Ω) and B is a Q-Wiener process under kω only
for ω ∈ G1. Now, letting n→∞, we obtain

(4∗)
�

G2

( �

C

ϕ
(
π1,

t�

0

Zr(π1) dBr
)
dkω) dP =

�

Ω

ϕ
(
eu,

t�

0

Zr(eu) dWr

)
dP

for every bounded continuous function ϕ : C×X → R since
t�

0

FnZr(π1) dBr →
t�

0

Zr(π1) dBr

in measure (under kω) for every ω ∈ G2 by (aa), where � t
0
Zr(π1) dBr depends on ω and

is defined only for ω ∈ G1. In the last step we recall the dependence of Z on m and let
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m→∞ to get

(5∗)
�

G2

k
(
ω,
[(
π1,

t�

0

ψ(r, π1
r) dBr

)
∈ V

])
dP =

�

Ω

IV

(
eu,

t�

0

ψ(r, eur) dWr

)
dP

by the same argument as in the previous step. Now we apply (dd) to get

�

G2

k
(
ω,
[(
π1,

t�

0

St−rg(r, e−1π1
r) dBr

)
∈ V

])
dP =

�

Ω

IV

(
eu,

t�

0

St−rg(r, ur) dWr

)
dP,

which, together with Proposition 9.4, implies (bb).
Now we can find a set G3 ⊆ G1, G3 ∈ G0, such that (aa), (bb), (cc) and (ee) hold

for every ω ∈ G3 and every t ∈ J , where J is some countable dense subset of [0, T ]. We
claim that the process t 7→ e−1π1

t is a solution under kω of (0.1), (0.3) and (0.4) with the
initial condition x0. To see this, choose ω ∈ G3 and define

vt = Stx0 +
t�

0

St−sf(s, e−1π1
s) ds+

t�

0

St−sg(s, e−1π1
s) dBs

under kω. As remarked in the proof of Theorem 13, the process t 7→ vt is an X-valued
process predictable in X1 with respect to the kω-augmentation of (Bt⊗Bt) in B⊗B, hence
predictable inX (all summands belong toX) and t 7→ e(vt) has a continuous modification.
But kω[vt = e−1π1

t ] = 1 for every t ∈ J by (aa). This implies that kω[e(vt) = π1
t ] = 1 for

every t ∈ J by (ee). In consequence, kω[e(vt) = π1
t ] = 1 for every t ∈ [0, T ] by continuity

of both ev and π1. Therefore kω[vt = e−1π1
t ] = 1 for every t ∈ [0, T ] as v takes values

in X, whence the claim. In particular,

P [uti ∈ Bi, i ≤ n] = kω[e−1πti ∈ Bi, i ≤ n] = kω[πti ∈ e[Bi], i ≤ n]

for every ω ∈ G3, t1, . . . , tn in [0, T ] and B1, . . . , Bn in B(X), where the first equality
holds by uniqueness in law. Given G ∈ G0 with G ⊆ G3 we get

P (G)P [uti ∈ Bi, i ≤ n] =
�

G

kω[πti ∈ e[Bi], i ≤ n] dP = P [G ∩ [uti ∈ Bi, i ≤ n]]

by (∗) so the independence of σ(ut : 0 ≤ t ≤ T ) on G0 has just been shown.

Proposition 9.4. Let ϕ1 : [0, T ]×RN → [0,∞] and ϕ2 : [0, T ]×RN → Y be measurable
functions , where Y is some separable Banach space. Then, for some 0 ≤ a < b ≤ T , the
mappings

C→ [0,∞] : y 7→
b�

a

ϕ1(r, yr) dr,

C→ Y : y 7→
{ � b

a
ϕ2(r, yr) dr if � T0 ‖ϕ2(r, yr)‖Y dr <∞,

0 if � T0 ‖ϕ2(r, yr)‖Y dr =∞,

are Borel measurable.

Proof of Theorem 4. Consider q : [0, T ] × X → L(U0), where q(t, x) is the orthogonal
projection in U0 onto the closed subspace Ker g(t, x). Then q is strongly measurable by
Lemma 9.2. Next consider a solution (Ω,F , (Ft), P,W, u) of (0.1), (0.3), (0.4) starting
from x0 and extend the stochastic base (by product extension of probability spaces)
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so that there exist Q-(Ft)-Wiener processes B and C such that B, C and (u,W ) are
independent. Further define

wt(h) =
t�

0

p(s, us)QhdWs +
t�

0

q(s, us)QhdBs,

vt(h) =
t�

0

p(s, us)QhdCs +
t�

0

q(s, us)QhdWs

for h ∈ U . Then

〈w(h1), w(h2)〉t = 〈v(h1), v(h2)〉t

=
t�

0

(〈p(s, us)Qh1, p(s, us)Qh2〉U0 + 〈q(s, us)Qh1, q(s, us)Qh2〉U0) ds

= t〈Qh1, Qh2〉U0 = t〈Q1/2h1, Q
1/2h2〉U

by independence of W , B and C. Thus w and v are Q-(Ft)-Wiener processes. Moreover

〈w(h1), v(h2)〉t =
t�

0

〈p(s, us)Qh1, q(s, us)Qh2〉U0 ds = 0,

which, by Lévy’s theorem, implies that

. at − as is independent of Fs,

. a1
t − a1

s is independent of a2
t − a2

s,

for every 0 ≤ s < t ≤ T , where a = (a1, a2), a1 = (w(h1), . . . , w(hm)) and a2 =
(v(h̃1), . . . , v(h̃n)) with h1, . . . , hm, h̃1, . . . , h̃n belonging to U . This means that the σ-
algebra σ(wt(h)− ws(h)) is independent of

Gs = Fs ∨ σ(vr(h̃)− vs(h̃) : r ≥ s, h̃ ∈ U) = Fs ∨ σ(vr(h̃) : r ≥ 0, h̃ ∈ U).

Hence w is a Q-(Gt)-Wiener process. Now, if ψ is an (Ft)-simple process (as we have
assumed in Step 1 of the construction of the stochastic integral) then one verifies that

t�

0

ψs dws =
t�

0

ψsp(s, us) dWs +
t�

0

ψsq(s, us) dBs,(a)

t�

0

ψs dvs =
t�

0

ψsp(s, us) dCs +
t�

0

ψsq(s, us) dWs,(b)

directly by definition. A density argument implies that the above equalities hold for every
(Ft)-progressively measurable process ψ satisfying

P
[ t�

0

‖ψs‖2L2(U0,X) ds <∞
]

= 1

by the construction of the stochastic integral and by the ideal property of L2(U0, X) as
shown in Proposition 2.4, in particular

‖ψsp(s, us)‖L2(U0,X) ≤ ‖ψs‖L2(U0,X)‖p(s, us)‖L(U0) ≤ ‖ψs‖L2(U0,X)
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and analogously for q(s, us). In consequence, taking ψs = St−sg(s, us), we get
t�

0

St−sg(s, us) dws =
t�

0

St−sg(s, us)p(s, us) dWs =
t�

0

St−sg(s, us) dWs

by (a), and since the stochastic integral
t�

0

St−sg(s, us) dws

is the same under the filtration (Ft) and (Gt) we conclude that (Ω,F , (Gt), P, w, u) is a
solution of (0.1), (0.3) and (0.4) starting from x0, hence u is independent of G0 by Lemma
9.3. In particular, σ(ut : 0 ≤ t ≤ T ) is independent of σ(vt(h) : t ≥ 0, h ∈ U), and this is
the crucial point of the proof. Indeed, consider another solution (Ω1,F1, (F1

t ), P 1, u1,W 1)
of (0.1), (0.3) and (0.4) such that LawP (u) = LawP 1(u1) on the extended space (as at the
beginning of this proof) so that it supports two Q-(F1

t )-Wiener processes B1 and C1 such
that B1, C1 and (u1,W 1) are independent. We define u1 and v1 in the same way as we
defined u and v to infer that σ(u1

t : 0 ≤ t ≤ T ) is independent of σ(v1
t (h) : t ≥ 0, h ∈ U).

But this implies that LawP (u, v) = LawP 1(u1, v1), and consequently

(c) LawP

(
utj ,

tj�

0

q(s, us)hi dvs : i, j
)

= LawP 1

(
u1
tj ,

tj�

0

q(s, u1
s)hi dv

1
s : i, j

)

for every 0 = t0 < · · · < tm ≤ T and h1, . . . , hn in U0 by Theorem 8.6. But
t�

0

q(s, us)h dvs =
t�

0

q(s, us)h dWs and
t�

0

q(s, u1
s)h dv

1
s =

t�

0

q(s, u1
s)h dW

1
s

by (b), hence, incorporating this fact to (c) and applying Lemma 9.2 we obtain

LawP

(
utj ,

tj�

0

q(s, us)hi dWs,

tj�

0

p(s, us)hi dWs : i, j
)

= LawP 1

(
u1
tj ,

tj�

0

q(s, u1
s)hi dW

1
s ,

tj�

0

p(s, u1
s)hi dW

1
s : i, j

)

for every 0 = t0 < · · · < tm ≤ T and h1, . . . , hn in U0. This, in particular, means that

LawP (utj ,Wtj (h̃i) : i, j) = LawP 1(u1
tj ,W

1
tj (h̃i) : i, j)

for every 0 = t0 < · · · < tm ≤ T and h̃1, . . . , h̃n in U because � t0 Qh̃ dW = Wt(h̃) and

� t
0
Qh̃ dW 1 = W 1

t (h̃) for every h̃ ∈ U by Example 3.7.

10. Proofs of Theorems 5 and 6

Before we give the details we recall a version of Lévy’s theorem:

Proposition 10.1. Consider a filtered probability space (Ωi,F i, (F it ), P i) with a d-dimen-
sional continuous local (F it )-martingale M i, M i

0 = 0, defined on [0, T ], and an (F0)-
measurable random variable ξi with values in a measurable space (Y,Y), i = 1, 2. Suppose
that the cross-variation (d× d)-matrix

Vjk(t) = (〈M i
j ,M

i
k〉t)
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is deterministic, independent of i and LawP 1(ξ1) = LawP 2(ξ2). Then

LawP 1(M1
j (tk), ξ1 : j ≤ d, k ≤ n) = LawP 2(M2

j (tk), ξ2 : j ≤ d, k ≤ n)

for every partition 0 = t0 < · · · < tn = T .

Proof. The classical Lévy characterization theorem implies that σ(M i
t − M i

s) is P i-
independent of F is for every 0 ≤ s < t ≤ T , i = 1, 2, and LawP i(M i

t−M i
s) = N (0, Vt−Vs).

In particular we have equality of the marginal measures

LawP 1(M1
j (tk) : j, k) = LawP 2(M2

j (tk) : j, k)

and P i-independence implies

LawP i(M
i
j(tk), ξi : j, k) = LawP i(M

i
j(tk) : j, k)⊗ LawP i(ξ

i).

Proof of Theorem 5. Let (Ωi,F i, (F it ), P i,W i, ui) be a filtered probability space with a
Q-Wiener process W i and ui, i = 1, 2, a progressively measurable process satisfying (0.6),
(0.7). It will be convenient to extend the operator-valued function S to nonpositive times
by 0 ∈ L(X1, X) to obtain a strongly measurable family of operators in L(X1, X) on the
real line. So, if we define the stopping times

τ ik = T ∧min
{
t ≤ T :

t�

0

‖f(s, ui(s))‖2U0
ds ≥ k

}
, i = 1, 2,

then

M i(t) = exp
(
−
t∧τ ik�

0

f(s, ui(s)) dW i − 1
2

t∧τ ik�

0

‖f(s, ui(s))‖2U0
ds

)
, i = 1, 2,

is a P i-martingale by Proposition 7.1. Following Proposition 7.1 we define a new measure

P̃ i(F ) =
�

F

M i
T dP

i

on F i and a family of nonrandom strongly measurable L(U0, X)-valued processes

ψt(s) = St−sg(s), t ∈ [0, T ],

such that ψt(s) ∈ L2(U0, X) for almost all s ≤ T . Indeed, L2(U0, X) is a strongly measur-
able subset of L(U0, X) by Proposition 2.5(6) so we can define the stochastic integral of ψt

in an unambiguous way as � φt dW with any L2(U0, X)-valued progressively measurable
process φt which coincides with ψt dt⊗ P -almost everywhere. Then

W̃ i
t (h) = W i

t (h) +
t�

0

〈f(s, ui(s)), h〉UI[0,τ ik](s) ds, t ≤ T, h ∈ U,

is a Q-(F it )-Wiener process on U with respect to P̃ i, and

(10.1)
r�

0

ψt dW̃ i =
r�

0

ψt dW i +
r�

0

ψt(s)f(s, ui(s))I[0,τ ik](s) ds

almost everywhere for every r ≤ T and t ≤ T by Proposition 7.1. Now the mutual cross-
variation processes of the real local (F it , P̃ i)-martingales W̃ i(h1), W̃ i(h2), 〈x∗1, � ψt dW̃ i〉
and 〈x∗2, � ψt dW̃ i〉 are nonrandom and independent of i for every choice of h1 ∈ U ,
h2 ∈ U , x∗1 ∈ X, x∗2 ∈ X by Summary of Step 5 and Example 3.7. Hence the probability
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measures

LawP̃ i

(〈
x∗j ,

tn�

0

ψtn dW̃ i
〉
, W̃ i

tnhm, u
i(0) : j, n,m

)

are equal for i = 1, 2 by Proposition 10.1 for every partition 0 = t0 < · · · < tN ≤ T ,
x∗1, . . . , x

∗
J in X∗ and h1, . . . , hM in U . Consequently, the measures

(10.2) LawP̃ i

( tn�

0

ψtn dW̃ i, W̃ i
tnhm, u

i(0) : n,m
)

coincide for i = 1, 2 since u1(0), u2(0) have the same law. The process

zi(t) =
{
Stu

i(0) + � t0 ψt dW̃ i, 0 < t ≤ T ,
ui(0), t = 0,

has a predictable modification

ui(t)−
t�

0

St−sg(s)f(s, ui(s))I(τik,T ](s) ds for i = 1, 2

by (10.1), and due to (10.2), we get

LawP̃ 1(z1(tn), W̃ 1
tnhm : n,m) = LawP̃ 2(z2(tn), W̃ 2

tnhm : n,m)

for every partition 0 = t0 < · · · < tN ≤ T and h1, . . . , hM in U . Consider the auxiliary
process

ei(t) =
t�

0

‖f(s, zi(s))‖2U0
ds, t ≤ T, i = 1, 2.

Then, by Remark 8.4,

LawP̃ 1(z1(tn), W̃ 1
tnhm, e

1(tn) : n,m) = LawP̃ 2(z2(tn), W̃ 2
tnhm, e

2(tn) : n,m),

LawP̃ 1(z1(tn), W̃ 1
tnhm, τ

1
k : n,m) = LawP̃ 2(z2(tn), W̃ 2

tnhm, τ
2
k : n,m),

since the process zi coincides with ui dt ⊗ P̃ i-almost everywhere on [0, τ ik] by definition
of zi and thus

[τ ik ≤ ∆] = [inf{max{ei(q)− k, 0} : q ∈ Q ∩ [0, ∆]} = 0]

modulo a P̃ i-negligible set for every 0 ≤ ∆ < T , which is already sufficient for the equality
of the measures above.

Now, as already observed,

li(t) = f(t, zi(t))I[0,τ ik](t) = f(t, ui(t))I[0,τ ik](t)

dt⊗ P̃ i-almost everywhere on [0, T ]×Ωi, so the measures

LawP̃ i

(
zi(tn), W̃ i

tnhm, l
i(tn),

tn�

0

li(s) ds : n,m
)

are equal for i = 1, 2 for every partition 0 = t0 < · · · < tN ≤ T and h1, . . . , hM in U by
Theorem 8.3. Consequently,

LawP̃ 1(z1(tn),W 1
tnhm, l

1(tn) : n,m) = LawP̃ 2(z2(tn),W 2
tnhm, l

2(tn) : n,m)
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since

W i
th = W̃ i

th−
〈 t�

0

li(s) ds, h
〉
U

for every t ≤ T and h ∈ U by the definition of W̃ i. Finally,

LawP̃ i

(
zi(tn),W i

tnhm,

T�

0

li dW i,

T�

0

‖li(s)‖2U0
ds : n,m

)

are equal for i = 1, 2 by Theorems 8.3 and 8.6, and since

M i(T ) = exp
(
−
T�

0

li dW i − 1
2

T�

0

‖li(s)‖2U0
ds

)

we conclude that LawP̃ i(z
i(tn),W i

tnhm,M
i(T ) : n,m) are equal for i = 1, 2. But this

implies

LawP 1(z1(tn),W 1
tnhm : n,m) = LawP 2(z2(tn),W 2

tnhm : n,m)

by the definition of the measure P̃ i. Now, if we observe that zi(t) = zik(t) → ui(t)
P i-almost everywhere, the claim follows by letting k tend to infinity.

Proof of Theorem 6. Fix t ∈ (0, T ], set S0 = 0 ∈ L(X1, X) and define the processes

ηi1(s) = St−sf(s, ui(s)), θi2(s) = St−sg(s, ui(s)), s ≤ t, i = 1, 2.

Then ηi1 is measurable with values in X and θi2 is (F it )-progressively measurable with
values in L(U0, X) such that ηi2 ∈ L2(U0, X) ds⊗P i-almost everywhere. Since L2(U0, X)
is a strongly measurable subset of L(U0, X) by Proposition 2.5(6), we define the (F it )-
progressively measurable L2(U0, X)-valued processes

ηi2 = θi2I[θi2∈L2(U0,X)], i = 1, 2,

which satisfy

P i[ηi2(s) = St−sg(s, ui(s))] = 1, i = 1, 2,

for almost all s ≤ T . Hence the measures

LawP i(u
i(t), ui(0), ηi1(rl), ηi2(rl),W i

rl
hk : l, k)

are equal for i = 1, 2 for every h1, . . . , hm in U and every partition 0 = r0 < · · · < rL ≤ T
in some set D∗ ⊆ [0, T ] of Lebesgue measure T . Thus, by Corollary 8.2, (0.2) holds for u2.
Moreover we conclude that

LawP 1

(
u1(t), Stu1(0),

t�

0

η1
1(s) ds,

t�

0

η1
2 dW

1
)

= LawP 2

(
u2(t), Stu2(0),

t�

0

η2
1(s) ds,

t�

0

η2
2 dW

2
)

by Theorems 8.3 and 8.6, so

1 = P 1
[
u1(t) = Stu

1(0) +
t�

0

St−sf(s, u1(s)) ds+
t�

0

St−sg(s, u1(s)) dW 1
]

= P 2
[
u2(t) = Stu

2(0) +
t�

0

St−sf(s, u2(s)) ds+
t�

0

St−sg(s, u2(s)) dW 2
]
.
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11. Preliminaries to the proofs of Theorems 1 and 2

Before we proceed to the proofs of Theorems 1 and 2 we make a simple but important ob-
servation on a bi-Borel embedding of a separable reflexive Banach space into RN (Lemma
11.1). More precisely, we re-establish the results of Yamada and Watanabe for mild solu-
tions (0.1) in 2-smooth Banach spaces. The proof in the finite-dimensional case relies on
the disintegration of the joint solution measure on the Polish state space of continuous
functions which is associated to the trajectories of the solutions. But, in contrast to the
finite-dimensional case, we do not know in general whether the solutions are norm contin-
uous. So it is not possible to consider C([0, T ], X) as the state space for the trajectories
although we need some Polish space for the disintegration theory. On the other hand we
know that, in many cases (e.g. Theorem 13), there exists a sequence (x∗n : n ∈ N) in
X∗ which separates points of X such that t 7→ 〈x∗n, u(t)〉 is a continuous process. So one
way out is to consider the solutions with the above, rather weak continuity property, and
C([0, T ],RN) as the state space for the natural coordinate decomposition of the trajectory.
We are also going to use the following notation:

. C = C([0, T ],RN), B = B(C([0, T ],RN)).

. πt : C([0, T ],RN)→ RN : f 7→ f(t), t ≤ T .

. ϕt : C([0, T ],RN)→ C([0, T ],RN) : ϕt(f)(s) = f(t ∧ s), t ≤ T .

. φt : C([0, T ],RN)→ C([0, T ],RN) : φt(f)(s) = f((t+ s) ∧ T )− f(t), t ≤ T .

. Bt = B(C([0, T ],RN)) = σ(πs : s ≤ t), t ≤ T .

One can easily verify that the Borel σ-algebra B(C([0, T ],RN)) coincides with σ(πs :
s ≤ T ) so the mappings ϕt : (C,Bt) → (C,B), φt : (C,B) → (C,B) are measurable and
Bt(C([0, T ],RN)) = σ(ϕt), t ≤ T . Next we define

. Ω∗ = X × C× C× C,

. F∗ = B(X)⊗ B⊗ B⊗ B,

. F∗t = B(X)⊗ Bt ⊗ Bt ⊗ Bt,
and if ν is a measure on (Ω∗,F∗) we will write Fνt = F∗t ∨ σ{N ∈ F∗ : ν(n) = 0} for the
ν-augmentation of F∗t in F∗. We fix an orthonormal basis (h∗k : k ∈ N) in U throughout
this section and if W is a Q-Wiener process on U then we denote by

. t 7→Wdec(t) = (Wt(h∗k) : k ∈ N) the continuous process in RN and

. W = Law(Wdec) its distribution on (C,B) which depends only on Q.

Finally, let µ be a probability Borel measure on X. Then we denote by

. Gµ⊗Wt = B(X) ⊗ Bt ∨ σ{N ∈ B(X) ⊗ B : µ ⊗ W(N) = 0} the augmentation of
B(X)⊗ Bt in B(X)⊗ B with respect to µ⊗W ,

and, to shorten the notation, we will write

. x : Ω∗ → X : (a, b, c1, c2) 7→ a.

. w : Ω∗ → C : (a, b, c1, c2) 7→ b.

. yi : Ω∗ → C : (a, b, c1, c2) 7→ ci, i = 1, 2.

A decomposition result is discussed next:
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Lemma 11.1. Let X be a separable reflexive Banach space (e.g. 2-smooth) and (x∗n :n∈N)
a sequence in X∗ which separates points of X. Then the image Rng e of the one-to-one
mapping e : X → RN : x 7→ (〈x∗n, x〉 : n ∈ N) is a Borel subset in RN and the extended
inverse e−1 : RN → X, e−1(y) = 0 for y 6∈ Rng e, is Borel measurable.

Proof. The system S = {B ⊆ X : e[B] is Borel measurable in RN} contains closed balls
and X as these are weakly σ-compact and e is continuous with respect to the weak
topology in X. Hence S is a σ-algebra, whence the claim follows.

Corollary 11.2. Let (Y,Y) be a measurable space, (Ωi,F i, (F it ), P i, ξi, ηi), i = 1, 2, two
filtered probability spaces , where ξ1 is an (F1

t )-predictable X-valued process , ξ2 = (ξ2
n :

n ∈ N) a family of real (F2
t )-predictable processes and ηi, i = 1, 2, some Y -valued random

variables. Suppose that

LawP 1(〈x∗m, ξ1(tn)〉, η1 : m,n) = LawP 2(ξ2
m(tn), η2 : m,n)

for every partition 0 = t0 < · · · < tN ≤ T , every x∗1, . . . , x
∗
M , M ∈ N and N ∈ N, where

(x∗n : n ∈ N) is some sequence in X∗ which separates points of X. Then there exists a
predictable X-valued process ξ on (Ω2,F2, (F2

t ), P 2) such that

LawP 1(ξ1(tn), η1 : n) = LawP 2(ξ(tn), η2 : n)

for every partition 0 = t0 < · · · < tN ≤ T and t 7→ 〈x∗n, ξ(t)〉 is a modification of
t 7→ ξ2

n(t), n ∈ N.

Proof. Consider the mapping e associated to (x∗n : n ∈ N) and define ξ = e−1(ξ2). Then
ξ is a predictable process in X because ξ2 is predictable in RN and e−1 is measurable.
Moreover

P 2[e(ξ(t)) = ξ2(t)] = P 2[e(e−1ξ2(t)) = ξ2(t)] = P 1[e(e−1ξ1(t)) = ξ1(t)] = 1

for every t ≤ T and the equality of the laws follows from the fact that (x∗n : n ∈ N)
generates the Borel σ-algebra on X.

12. Proof of Theorem 2

In fact, we are going to prove a more general statement. Theorem 2 is its immediate
consequence.

Theorem 12.1. Let µ be a Borel probability measure on X, (Ω,F , P,W, u) a solution of
(0.1) satisfying (0.2), and let (x∗n : n ∈ N) be a sequence in X∗ which separates points
of X such that the processes t 7→ 〈x∗n, u(t)〉 have continuous adapted modifications. Then
there exists a probability measure P ∗ on (Ω∗,F∗), a Q-(FP∗t )-Wiener process W ∗ and
(FP∗t )-predictable X-valued processes Z1, Z2 such that (Ω∗,F∗, (FP∗t ), P ∗,W ∗, Zi) satis-
fies (0.1), (0.2) and the processes t 7→ 〈x∗n, Zi(t)〉 have continuous adapted modifications ,
i = 1, 2. Moreover

(1) P ∗[Z1(0) = Z2(0)] = 1.
(2) LawP∗(Z1,W ∗) = LawP∗(Z2,W ∗) = LawP (u,W ).
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(3) If we knew that P ∗[Z1(t) = Z2(t)] = 1 for t from some dense subset of [0, T ] then
there would exist a mapping R̃ : X × C→ C measurable in the sense

R̃ : (X × C,Gµ⊗Wt )→ (C,Bt), t ≤ T,
such that whenever (Ω1,F1, (F1

t ), P 1,W 1, u1
0) is a filtered probability space with

a Q-(F1
t )-Wiener process W 1 and an F1

0 -measurable random variable u1
0 with

distribution LawP 1(u1
0) = µ, if we define the predictable process u1(t) to be

e−1πtR̃(u1
0,W

1
dec), then the family (Ω1,F1, (F1

t ), P 1,W 1, u1) is a strong solu-
tion of (0.1) satisfying (0.2) with the initial condition u1

0 and LawP 1(u1,W 1) =
LawP (u,W ).

We will start the proof of Theorem 12.1 by recalling one of the versions of the classical
theorem on disintegration of measures. See Corollary 3.3 in [Ed] for the proof.

Proposition 12.2. Let Z be a Polish space, (H,H) a measurable space and q a prob-
ability measure on H ⊗ B(Z). Then there exists a kernel q : H × B(Z) → [0, 1] such
that

(1) The mapping H → [0, 1] : h 7→ q(h, F ) is H-measurable for every F ∈ B(Z).
(2) The mapping B(Z)→ [0, 1] : F 7→ g(h, F ) is a probability measure.
(3) q(B×F ) = �

B
q(h, F ) dq1(h) for every B ∈ H, F ∈ B(Z), where q1(B) = q(B×Z)

for B ∈ H is the marginal measure of q.

Proof of Theorem 12.1. Let e be the mapping associated to (x∗n : n ∈ N) by Lemma
11.1. Then the modification of the random vector (u(0),Wdec, eu− eu(0)) takes values in
X × C× C by the assumption of the theorem. Next consider the measure

LawP (u(0),Wdec, eu− eu(0)) on B(X)⊗ B⊗ B
and denote by qt its restriction to B(X) ⊗ Bt ⊗ B, t ≤ T . By Proposition 12.2, there
exist the corresponding kernels qt : X × C × B → [0, 1], t ≤ T , where we take (H,H) =
(X × C, (X)⊗ Bt), t ≤ T , and Z = C. The measure P ∗ is then defined by

(12.1) P ∗(B) =
�

X×C

( �

C×C

qT(x,w) ⊗ qT(x,w)(B
(x,w))

)
dµ⊗W(x,w), B ∈ F∗,

where B(x,w) = {(y1, y2) : (x,w, y1, y2) ∈ B} is the cut-set in (x,w) ∈ X×C, the solutions
Zi are defined as

(12.2) Zi(t, x, w, y1, y2) = x+ e−1yi(t)

and the Q-Wiener process as

(12.3) W ∗x,w,y1,y2(h) =
∞∑

k=1

〈h, h∗k〉Uwk, h ∈ U,

where the sum is taken in L2((Ω∗,F∗P ∗), C[0, T ]) and w = (wk : k ∈ N) ∈ C.

Proof of the first part of Theorem 12.1 (in a sequence of lemmas)

Lemma A. Let t ≤ T . Then σ(φt(Wdec)) is P -independent of Ft. In particular

(1) σ(u(0), ϕt(Wdec), ϕt(eu− eu(0))) is P -independent of σ(φt(Wdec)).
(2) Bt is W-independent of σ(φt) on (C,B).
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(3) LawP (u(0),Wdec) = µ⊗W.

(4) µ⊗W is the qt1-marginal of qt, t ≤ T , from Proposition 12.2.

Proof. The process B = (W (h∗1), . . . ,W (h∗N)) is an N -dimensional (Ft)-Wiener process
with covariance

(〈Q1/2h∗i , Q
1/2h∗j 〉U )ij

so, by Lévy’s characterization theorem, the σ-algebra σ(B(r) − B(t) : r ∈ [t, T ]) is P -
independent of Ft for every N ∈ N, hence so is σ(Wdec(r) −Wdec(t) : r ∈ [t, T ]). The
claim (1) holds because

σ(u(0), ϕt(Wdec), ϕt(eu− eu(0))) ⊆ Ft,
(2) because Bt = σ(ϕt), and (3) and (4) are obvious.

Lemma B. Let t ≤ T , A ∈ B, F ∈ FP∗t and B = X×φ−1
t [A]×C×C. Then P ∗(B∩F ) =

P ∗(B)P ∗(F ).

Proof. First we prove that

(B.1) µ⊗W{(x,w) ∈ X × C : qt(x,w, Ft) = qT (x,w, Ft)} = 1

for every Ft ∈ Bt. To do so fix G1 ∈ BX and define

D =
{
G ∈ B :

�

G1×G
qt(x,w, Ft) dµ⊗W(x,w) = qT (G1 ×G× Ft)

}
.

It is easy to see that D is a Dynkin class and if we show that it contains all sets of the
type ϕ−1

t [G2] ∩ φ−1
t [G3] for all G2 ∈ B, G3 ∈ B we will know that D is all of B. Thus

�

G1×(ϕ−1
t [G2]∩φ−1

t [G3])

qt(x,w, Ft) dµ⊗W(x,w)

=
�

C

( �

X

IG1(x)qt(x,w, Ft) dµ(x)
)
IG2(ϕt(w))

︸ ︷︷ ︸
Bt-measurable

IG3(φt(w))︸ ︷︷ ︸
σ(φt)-measurable

dW(w)

by Fubini’s theorem. But Bt is W-independent of σ(φt) by Lemma A(2) so the above
equals
( �

G1×ϕ−1
t [G2]

qt(x,w, Ft) dµ⊗W(x,w)
)
W(φ−1

t [G3])

= LawP (u(0),Wdec, eu− eu(0))(G1 × ϕ−1
t [G2]× Ft) LawP (Wdec)(φ−1

t [G3])

and since Ft = ϕ−1
t [V0] for some V0 ∈ B, this is

P [(u(0), ϕt(Wdec), ϕt(eu− eu(0))) ∈ G1 ×G2 × V0]P [φt(Wdec) ∈ G3]

= LawP (u(0),Wdec, eu− eu(0))(G1 × (ϕ−1
t [G2] ∩ φ−1

t [G3])× Ft).
Finally we infer that �

V
qt(x,w, Ft) dµ⊗W(x,w) = �

V
qT (x,w, Ft) dµ⊗W(x,w) for every

V ∈ B(X)⊗ B, proving (B.1).
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Now we turn to the proof of Lemma B: Fix U1 ∈ B(X), U2 ∈ Bt, U3 ∈ Bt, U4 ∈ Bt
and define C = U1 × U2 × U3 × U4. Then

P ∗(C ∩B) =
�

X×C

IU1(x)IU2(w)IA(φt(w))qT (x,w, U3)qT (x,w, U4) dµ⊗W(x,w)

=
�

X×C

IU1(x)IU2(w)IA(φt(w))qt(x,w, U3)qt(x,w, U4) dµ⊗W(x,w)

by (B.1). In view of Fubini’s theorem this equals�

C

( �

X

IU1(x)qt(x,w, U3)qt(x,w, U4) dµ(x))IU2(w)

︸ ︷︷ ︸
Bt-measurable

IA(φtw)︸ ︷︷ ︸
σ(φt)-measurable

dW(w)

=
�

X×C

IU1(x)IU2(w)q1(x,w, U3)qt(x,w, U4) dµ⊗ dW(x,w)

︸ ︷︷ ︸
P∗(C)

P ∗(B)

due to Lemma A(2). So we have proven that P ∗(F ∩ B) = P ∗(F )P ∗(B) for every F ∈
B(X)⊗ Bt ⊗ Bt ⊗ Bt = F∗t ; but the same is obviously true for every F ∈ FP∗t .

Lemma C. The processes Zi, i = 1, 2, defined in (12.2) are (FP∗t )-predictable, W ∗ de-
fined in (12.3) is a Q-(FP∗t )-Wiener process , and (1) and (2) of Theorem 12.1 hold. In
particular , (Ω∗,F∗, (FP∗t ), P ∗,W ∗, Zi) satisfies (0.1), (0.2) for i = 1, 2 by Theorem 6.

Proof. First note that, by the definition of the measure P ∗,

(12.4) LawP∗(x,w, yi) = LawP (u(0),Wdec, eu− eu(0)).

So LawP∗(W ∗dec, ex+ yi) = LawP (Wdec, eu), i = 1, 2, and, by Corollary 11.2,

(12.5) P ∗[yi(t) ∈ Rng e] = 1, t ≤ T,
Zi, i = 1, 2, are predictable in X and

(12.6) LawP∗(Zi(tj),W ∗tj (h
∗
k) : j ≤ n, k ≤ K) = LawP (u(tj),Wtj (h

∗
k) : j ≤ n, k ≤ K),

i = 1, 2, for every partition 0 = t0 < · · · < tn ≤ T and every K ∈ N. Denoting by
B = (W (h∗1), . . . ,W (h∗N)) the continuous N -dimensional (F∗t )-adapted process we see
that LawP∗(Bt −Bs) is the N -dimensional centered Gaussian measure with covariance

(〈Q1/2h∗i , Q
1/2h∗j 〉U )ij

and, by Lemma B, σ(Bt − Bs) is FP∗t -independent. Thus we conclude that B is an
N -dimensional (FP∗t )-Wiener process for every N ∈ N, and consequently, as

EP∗
∥∥∥

n∑

k=m

〈h, h∗k〉UW ∗(h∗k)
∥∥∥

2

C([0,T ])
≤ 4T

n∑

k=m

n∑

l=m

〈h, h∗k〉U 〈Q1/2h∗k, Q
1/2h∗l 〉U 〈h, h∗l 〉U

= 4T
∥∥∥Q1/2

( n∑

k=m

〈h, h∗k〉Uh∗k
)∥∥∥

2

U

by the Doob inequality, the series (12.3) is convergent and defines a Q-(FP∗t )-Wiener
process while (2) in Theorem 12.1 follows from (12.6) by the linearity of W ∗ and by the
fact that the linear span of (h∗k : k ∈ K) is dense in U . By definition of P ∗, we also have
P ∗[yi(0) = 0] = 1, i = 1, 2, which yields (1) of Theorem 12.1.
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Proof of the second part of Theorem 12.1 (in a sequence of lemmas). Suppose that we
know that P ∗[Z1(t) = Z2(t)] = 1 for t from some dense subset of [0, T ]. Then, by the
definition (12.2) of Zi and by (12.5),

1 = P ∗[y1 = y2] = P ∗[X × C×D] =
�

X×C

qT(x,w) ⊗ qT(x,w)(D) dµ⊗W(x,w),

where D = {(y1, y2) ∈ C× C : y1 = y2} is the diagonal of C× C. So the set

M = {(x,w) : qT(x,w) ⊗ qT(x,w)(D) = 1} ∈ B(X)⊗ B
is of µ⊗W-measure 1 and, by Fubini’s theorem, qT(x,w) must be a Dirac measure for every
(x,w) ∈M . Denoting by k(x,w) ∈ C, (x,w) ∈M , the corresponding mass point we have

[k ∈ B] = [qT (B) = 1] = [qt(B) = 1]

modulo a µ ⊗W-zero set for every Ft ∈ Bt by (B.1). Hence k, extended by 0 off M , is
(X × C,Gµ⊗Wt ) → (C,Bt) measurable for every t ≤ T . The proof of the second part of
Theorem 12.1 will now follow from Lemmas D and E below.

Lemma D. Write t 7→ R̃t(x,w) = ex+ kt(x,w) ∈ RN. Then

(D.1) R̃ : (X × C,Gµ⊗Wt )→ (C,Bt) is measurable for every t ≤ T ,
(D.2) LawP (eu,Wdec) = Lawµ⊗W(R̃, w̃) on B⊗ B,
(D.3) µ⊗W{(x,w) : π0R̃(x,w) = ex} = 1,

where w̃ : (X,C)→ C : (x,w) 7→ w.

Proof. (D.1) is obviously true so we will show (D.2) and (D.3):

P ∗(B) =
�

M

δk(x,w) ⊗ δk(x,w)(B
(x,w)) dµ⊗W(x,w)

= µ⊗W{(x,w) : (x,w, k(x,w), k(x,w)) ∈ B}
by the definition (12.1) of P ∗ for every B ∈ F∗. So (D.2) follows from (12.4). For (D.3),
observe that

1 = P [π0(eu− eu(0)) = 0] = P ∗{(x,w, y1, y2) : y1(0) = 0},
so the claim follows from the first part of the proof.

Lemma E. Let µ be a Borel probability measure on X, (Ω,F , P,W, u) a solution of (0.1)
satisfying (0.2), and let (x∗n : n ∈ N) be a sequence in X∗ which separates points of X
such that the processes t 7→ 〈x∗n, u(t)〉 have continuous adapted modifications. Let also
R̃ : X × C → C be a function satisfying (D.1)–(D.3) of Lemma D. Then, whenever
(Ω1,F1, (F1

t ),W 1, u1
0) is a filtered probability space with a Q-(F1

t )-Wiener process W 1

and an F1
0 -measurable random variable u1

0 with distribution LawP 1(u1
0) = µ, the family

(Ω1,F1, (F1
t ),W 1, u1), where u1(t) = e−1πtR̃(u1

0,W
1
dec) is a predictable process , is a

strong solution of (0.1) satisfying (0.2) with the initial condition u1
0 and LawP 1(u1,W 1) =

LawP (u,W ).

Proof. First of all, note that LawP 1(u1
0,W

1
dec) = µ⊗W by Lemma A, so if we denote byHt

the P 1-augmentation of σ(u1
0, πsW

1
dec : s ≤ t) then Ht ⊆ F1

t , the mapping (u1
0,W

1
dec) :

(Ω1,Ht)→ (X × C,Gµ⊗Wt ) is clearly measurable and u1 is (Ht)-predictable. Moreover
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LawP 1(u1(tj),W 1
dec : j) = LawP 1(e−1πtj R̃(u1

0,W
1
dec),W 1

dec : j)

= Lawµ⊗W(e−1πtj R̃, w̃ : j) = LawP (e−1πtjeu,Wdec) = LawP (u(tj),Wdec),

by the assumption (D.2), and consequently

LawP 1(u1(tj),W 1
tj (h

∗
k) : j ≤ n, k ≤ K) = LawP (u(tj),Wtj (h

∗
k) : j ≤ n, k ≤ K)

for every partition 0 = t0 < · · · < tn ≤ T and every K ∈ N. But since (h∗k : k ∈ N) spans
densely in U we get the above equality with arbitrary hk’s due to linearity of W , W 1.
Hence (u1,W 1) satisfies (0.1), (0.2). We have

LawP (eu(t)) = Lawµ⊗W(πtR̃), t ≤ T,
by (D.2), so using Corollary 11.2, we see that µ⊗W [πtR̃ ∈ Rng e] = 1 and

P 1[u1(0) = u1
0] = P 1[e−1π0R̃(u1

0,W
1
dec) = u1

0] = µ⊗W{(x,w) : e−1π0R̃(x,w) = x}
= µ⊗W{(x,w) : π0R̃(x,w) = ex} = 1

by (D.3).

13. Proof of Theorem 1

The idea is, again, to construct a function R̃ satisfying the assumptions of Lemma E but
firstly we will recall a fairly well known fact on representations of “suitably” measurable
functions. The proof can be found in [DM, 12-I-18].

Proposition 13.1. Let (Ω,F , ν) be a measure space, (Y,Y) a measurable space, A a
sub-σ-algebra of F , Z a Polish space, and f : Ω → Y an arbitrary function. Denote by
σ(f) the σ-algebra generated by f and Aν = A∨{N ∈ F : ν(N) = 0} the ν-augmentation
of A in F .

(1) If g : Ω → Z is a σ(f)-measurable mapping then there exists a measurable map-
ping h : (Y,Y)→ Z such that g = hf .

(2) If g : Ω → Z is Aν-measurable then there exists an A-measurable function h such
that g = h ν-almost everywhere.

Theorem 13.2. Let (Ω,F , (Ft), P,W, u) be a strong solution of (0.1), (0.2) such that
x∗n ∈ X∗, n = 1, 2, . . . , separate points of X and the processes t 7→ 〈x∗n, u(t)〉, n ∈ N,
have continuous modifications. Then there exists a function R̃ satisfying (D.1)–(D.3) of
Lemma D, and consequently the conclusions of Lemma E hold.

Proof. Denote by Ht the P -augmentation of σ(u(0), πsWdec : s ≤ t). Then the mapping
eu : (Ω,Ht) → (C,Bt) is measurable for every t ≤ T by assumption. Consequently,
there exists a measurable mapping R̃ : (X × C,B(X)⊗ B)→ (C,B) as well as mappings
rt : (X × C,B(X)⊗ Bt)→ RN such that

P [R̃(u(0),Wdec) = eu] = 1

and P [rt(u(0),Wdec) = πteu] = 1, t ≤ T , by Proposition 13.1. But then

µ⊗W [rt = πtR̃] = P [rt(u(0),Wdec) = πtR̃(u(0),Wdec)] = 1, t ≤ T,
so R̃ : (X × C,Gµ⊗Wt )→ (C,Bt) for every t ≤ T by Lemma A.



Stochastic evolution equations 61

Proof of Theorem 1. The strong existence follows immediately from Lemma E so suppose
that joint uniqueness in law holds for (0.1) and that we have a solution v of (0.1) on some
filtered probability space (Ω′,F ′, (F ′t), P ′,W ′). Then

P ′[v(t) = e−1πtR̃(v(0),W ′dec)] = P [u(t) = e−1πtR̃(u(0),Wdec)] = 1, t ≤ T,
by the joint uniqueness in law and Theorem 13.2. Hence we see that (0.1) is pathwise
unique.

14. Proofs of Theorems 8, 9 and 10

We use the notation of Section 11.

Proof of Theorem 8. (1) implies (2) and (3) by Theorem 2, while (3) implies (1) by
Theorem 1. Suppose that (2) holds. Then the assumptions of Theorem 12.1 are satisfied
for the original solution (Ω,F , (Ft), P,W, u) so if (Ω′,F ′, (F ′t), P ′,W ′, u′) is a solution
then so is (Ω′,F ′, (F ′t), P ′,W ′, v′), where v′(t) = e−1πtR̃(u′(0),W ′dec). Consequently,

P ′[u′(t) = e−1πtR̃(u′(0),W ′dec)] = P ′[v′(t) = e−1πtR̃(v′(0),W ′dec)]

for every t ≤ T as (u′,W ′) and (v′,W ′) have the same law by joint uniqueness in law.
The latter probability is 1 because P ′[u′(0) = v′(0)] = 1 and the proof is complete. This
yields pathwise uniqueness for (0.1).

Proof of Theorem 9. (1) implies (2) by Theorem 12.1. Now suppose that (2) holds.
Then (u,W )-pathwise uniqueness holds if and only if (u′,W ′)-pathwise uniqueness holds,
so let (Ω1,F1, (F1

t ), P 1,W 1, u1) be a solution of (0.1) such that LawP 1(u1,W 1) =
LawP ′(u′,W ′). Then (Ω1,F1, (F1

t ), P 1,W 1, v1) is a solution of (0.1) and LawP 1(v1,W 1)
= LawP 1(u1,W 1) with

v1(t) = e−1πtR̃(u1(0),W 1
dec)

by Theorem 13.2. Moreover P 1[u1(0) = v1(0)] = 1 and thus

P 1[u1(t) = e−1πtR̃(u1(0),W 1
dec)] = P 1[v1(t) = e−1πtR̃(v1(0),W 1

dec)] = 1

for every t ≤ T , proving (1).

Proof of Theorem 10. Suppose that (1) holds. Then the assumptions of Theorem 12.1
are satisfied for the original solution (Ω,F , (Ft), P,W, u), so consider another solution
(Ω′,F ′, (F ′t), P ′,W ′, v′) such that LawP (u) = LawP ′(v′). Then, by Theorem 12.1,
(Ω′,F ′, (F ′t), P ′,W ′, u′) is again a solution of (0.1) with LawP (u,W ) = LawP ′(u′,W ′),
where

u′(t) = e−1πtR̃(v′(0),W ′), t ≤ T,
is (u′(0),W ′)P ′-adapted. But P ′[u′(t) = v′(t)] = 1, t ≤ T , by u-pathwise uniqueness as
P ′[u′(0) = v′(0)] = 1. This implies joint u-uniqueness in law for (0.1), and (2) and (3)
hold.

If (2) holds then the assumptions of Theorem 12.1 are satisfied for the original solution
(Ω′,F ′, (F ′t), P ′,W ′, u′) and we will show that it has the desired properties. Indeed,
(Ω′,F ′, (F ′t), P ′,W ′, v′) is a (u′(0),W ′)P ′-adapted solution, where v′(t) = e−1πtR̃(u′(0),
W ′), t ≤ T . Moreover, by (u′,W ′)-pathwise uniqueness, P ′[u′(t) = v′(t)] for every t ≤ T .
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To show that (3) implies (1) consider a solution (Ω1,F1, (F1
t ), P 1,W 1, u1) such that

LawP ′(u′) = LawP 1(u1). Then, by Theorem 13.2, (Ω1,F1, (F1
t ), P 1,W 1, v1) is also a

solution with LawP ′(u′) = LawP 1(v1), where

v1(t) = e−1πtR̃(u1(0),W 1), t ≤ T.
But we know that

P 1[u1(t) = e−1πtR̃(u1(0),W 1
dec)] = P 1[v1(t) = e−1πtR̃(v1(0),W 1

dec)] = 1

for every t ≤ T by joint u-uniqueness in law and the fact that P 1[u1(0) = v1(0)] = 1.
This implies u-pathwise uniqueness for (0.1).

Notation used

B(X) Borel σ-algebra of X
X∗ dual space to X
Lp Lebesgue space of p-integrable functions
E[f/A] conditional expectation
σS σ-hull over S
σ(fα : α ∈ A) σ-hull over (fα : α ∈ A)
Lawµ(f) distribution of f with respect to µ
〈M〉, resp. 〈M,N〉 variation, resp. cross-variation process [RY, Section IV.1]
U0 Definition 2.1
N (x,Q) Gaussian probability with mean x and covariance Q
L(U,X) linear bounded operators from U to X
L2(U,X) radonifying operators from U to X, Definition 2.3
C([0, T ], Z) continuous functions from [0, T ] to Z
PT σ-algebra of progressively measurable sets
e, e−1 11.1
C Section 11
B, Bt Section 11
πt Section 11
ϕt Section 11
φt Section 11
(Ω∗,F∗, (F∗t )) Section 11
Fνt Section 11
Wdec Section 11
W Section 11
Gµ⊗Wt Section 11
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