Introduction

The main object of this paper is to establish the Yamada—Watanabe theory of uniqueness
and existence of solutions of stochastic evolution equations in Banach spaces. The pio-
neering paper [YW] has initiated a comprehensive study of relations between essentially
different types of uniqueness and existence (e.g. pathwise uniqueness, joint uniqueness in
law, weak and strong existence) arising naturally in the study of SDEs (see e.g. [En], [J])
and the research in this direction is still active—even today, new surprising results are
published (see e.g. [Ch]). Our intention is to give a presentation of these results for evolu-
tion equations in Banach spaces perturbed by a (generally) infinite-dimensional Wiener
process.

Attacking this issue, we encounter two main obstacles which render the solution of
this problem nontrivial. Firstly, unlike the finite-dimensional case, the continuity of tra-
jectories of stochastic evolution equations is an open problem, and secondly, infinite-
dimensional Wiener processes are not processes in a conventional sense: they are not
Fréchet valued unless their covariance is of trace class. Being aware of these difficulties,
no prima facie generalization of known proofs is possible and we must use different con-
structions which stem rather from the infinite-dimensional structure of the spaces we
work in than from probabilistic reasons.

The paper also contains a comprehensive section of preliminary results on stochas-
tic analysis in Banach spaces, namely a stochastic integral is constructed by a method
alternative to the usual ones, Burkholder’s inequality, Fubini’s and Girsanov’s theorems
are proven, and theorems on equality of distributions of Bochner integrals, stochastic
integrals and measurable selectors are given.

Concerning the principal content, we consider a stochastic semilinear equation (0.1)
with an initial probability distribution; in other words, we are given purely determin-
istic quantities (transformations appearing in the equation and a measure on the state
space), and before we can speak of any solution, we must specify what probability fil-
tered space we work on and what Wiener process drives our equation. Then we can seek
a stochastic process with the prescribed initial distribution solving the equation. We pose
the following natural question: If there exists a probability space with a solving process,
what conditions are sufficient to conclude that there exists a solving process on every
probability space?

We will also be interested in the uniqueness point of view. By the Yamada—Watanabe
theorem for SDEs, if an equation is pathwise unique (i.e. different paths of solutions have
different initial values) then any two solutions living on possibly different probability
spaces necessarily have the same probability distribution on the space of trajectories
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(uniqueness in law). Our second question is whether this is also true in the Banach space
setting.

The third problem we treat is also inspired by the stochastic differential equations
theory. Under suitable conditions there exists a deterministic function of two variables:
the first corresponds to an initial value and the second to a path of a Wiener process. The
function’s value is a path of a solution with respect to the initial value and the Wiener
process. We will present sufficient conditions for the existence of such a function in the
case of stochastic evolution equations (Thm. 12.1, Thm. 13.2, Lemma E).

We also give an example of an equation which is jointly unique in law (Def. 1, Thm. 5)
and another equation which is jointly u-unique in law (Def. 1, Thm. 3). The first example
is based on Girsanov’s theorem, therefore it concerns additive noise equations only, while
the second one uses the measurable selectors approach and covers a fairly general class
of multiplicative noise equations, namely all those with one-to-one diffusions.

Theorem 4 is a Banach space version of a remarkable theorem by A. S. Cherny [Ch]
(who proved it for SDEs) which states that uniqueness in law is, in fact, equivalent to
joint uniqueness in law provided we consider deterministic initial conditions.

An essential part of the proof of Theorems 3 and 4 is an alternative explicit form of the
solution (Thm. 13), and therefore we decided to include the complete proof of stochastic
Fubini’s theorem (Prop. 6.1) together with its consequences (Thm. 12, Thm. 13) which
were proven by the same method in a less general form and in the Hilbert space setting
by A. Chojnowska-Michalik [ChM].

Next we prove three so called distribution-preserving theorems: for stochastic Bochner
integrals (Thm. 8.3), for stochastic integrals (Thm. 8.6) and for measurable selectors
(Prop. 8.8). The combination of the first two theorems will result in the fundamental
solution-preserving theorem (Thm. 6) which gives a sufficient condition for a pair of a
process and a Wiener process to be a solution in terms of their joint distribution on the
space of trajectories.

Throughout this paper we work with Banach valued processes. Therefore, in the first
part, we recall the construction of the stochastic integral in a separable 2-smooth Banach
space—firstly because many proofs in this paper rely on it, and secondly because of its
“directness”—the construction of the integral is free of any auxiliary embeddings even in
the case of a cylindrical Wiener process with non-trace class covariance. We emphasize
that, apart from the observation made in Step 1, the construction is more or less classical
and we have just collected the “common knowledge” and sometimes gave shorter proofs
in light of newer methods, many of them surveyed in [ChTV]. Our sources for stochastic
integration and geometry of uniformly smooth Banach spaces were mainly works of A. L.
Neidhardt [N] (construction of the integral), P. Assouad [A] (Burkholder inequality, ge-
ometry of 2-smooth Banach spaces), E. Dettweiler [D] (Burkholder inequality), W. Linde
& A. Pietsch (characterization of integrands), G. Pisier [P] (geometry of 2-smooth Banach
spaces), J. Hoffmann-Jgrgensen (geometry of 2-smooth Banach spaces, characterization
of integrands [ChTV]).

The cylindrical Wiener process is understood in the sense of M. Métivier & J. Pellau-
mail—we refer to their paper on cylindrical stochastic integration [MP] while the devel-
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opments concerning uniqueness trace their origin back to stochastic differential equation
results of T. Yamada and S. Watanabe [YW], H. J. Engelbert [En] and J. Jacod [J].

This work could not have been done without Jan Seidler who initiated and motivated
the author into the direction of stochastic evolution equations and often contributed by
valuable suggestions and discussions on the subject. Another acknowledgement goes to
Marco Dozzi for enabling the author to work on this paper during a stay at the Institut
Elie Cartan in Nancy, France, and for many interesting discussions. Last but not least,
thanks are due to Zdzistaw Brzezniak for our discussions on Burkholder’s inequality for
stochastic integrals in 2-smooth Banach spaces.

NoOTATION. 1. We will consider only complete filtrations, i.e. whenever (F;) is a filtration
on some probability space (£2, F, P) then Fy is supposed to contain all P-negligible sets
in F.

2. X stands for a separable 2-smooth Banach space (Def. 3.1), X* for its topological
dual space, (z*,x) — (x*,z) for the pairing between them and U will be a separable
Hilbert space. If h € H and z € X then we will write h @, x) * = h ® x to denote the
operator U — X : y — (y, h)yz.

3. The strong o-algebra on L(U, X) is the smallest o-algebra which renders the map-
pings L(U,X) — X : B+ Bh, h € U, measurable. A mapping g : (Y,)) — L(U, X) is
said to be strongly measurable provided that it is measurable with respect to the strong
o-algebra on L(U, X), i.e. the mappings Y — X : y — g¢(h) are measurable for every
heU.

4. X, is a separable Banach space such that X is continuously embedded in X1, i.e.
X is a subspace of X; and the identity mapping i : X — X is continuous.

5. Let (£2,F, P) be a probability space, (Y,)) a measurable space and g : 2 - Y a
measurable mapping. Then we define the image of P under g by Larop(g)(B) = P{w :
g(w) € B}, Be ).

6. In view of Definitions 1 and 7 we write briefly

Larwpi (ul, W) = Larwpz(u?, W?), resp. Lawpi(u') = Laro p2 (u?)
instead of
Larwp (u' (t;), W (t;, hy) : 4, §) = Lawp2(u(t;), W2 (L, hy) : 4, ),
resp.
Sarops (ul (1) 1 1) = Lawps (u(t;) : 1)
for every partition 0 =ty < -+ < t, <T and every hy,...,hy, in U.
7. We will say that a process (us : t < T') on (£2,F, P,W) is (ug, W) p-adapted instead

of saying that u is adapted to the P-augmentation of the filtration o(ug, W(s,h) : s <
t,heU)in F.

Main theorems. Consider the following stochastic evolution equation on [0,7] in a
separable 2-smooth Banach space X (Def. 3.1):
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(0.1)  u(t) = Su(0) + [ Si—of(s,u(s)) ds + | Si—sg(s,u(s)) dW,, 0<t<T,
0 0
)

where S : (0,7] — L(X1,X) is a strongly measurable operator-valued function, @ a
covariance operator on U (i.e. a symmetric nonnegative bounded linear operator), f :
[0,7]x X — X; a measurable mapping, g : [0, 7] x X — L(Uy, X1) a strongly measurable
mapping (see Def. 2.1 for the definition of Uy) and p a probability Borel measure on X.

We say that a 6-tuple (£2, F, (Fz), P, W, u) consisting of a filtered probability space, a
Q-(F:)-Wiener process W on U (Def. 1.4) and a measurable X-valued process u on [0, T]
is a solution of (0.1) provided that

02)  P[JUSe o (5 u) i + 1S sg(s, 65D 0x)) ds < 00| =1
0
07

for every ¢t € (0,7, equation (0.1) is satisfied for every t € (0,T] and there exists a
sequence (z} : n) in X* which separates points of X such that the real processes
t — (z,u(t)) have continuous adapted modifications on [0,7] (hence u has a
predictable modification by Corollary 11.2 and the integrals in (0.1) are well defined).
The symbol Ls(Up, X) dentotes the space of radonifying operators (see Definition 2.3).

The last, sort of untypical, condition will be very important in what follows. We
chose this formulation because such a sequence (z} : n) always exists if u is progressively
measurable, X = X, (S;) is a Cp-semigroup and the following integrability condition
holds (see Thm. 13):

T
(0.3) Pl (1G5 u() 1, + llg(s, u() 30, x,)) ds < 0] = 1.

0
We will refer to (0.3) later on even in situations when X will not coincide with X;.

Almost all results in this paper hold under fairly general conditions. Theorem 4 is

exceptional in this sense—we do not know how to avoid additional assumptions. Namely
we cannot take into account the uncountable number of conditions a process must satisfy
to be a solution (as in (0.2) where the condition is to be satisfied for every ¢ € [0,T]).
Therefore we introduce a single (but more restrictive) condition:

T

(0.4) PH(Ml(f(s,u(s))) + Ma(g(s,u(s)))) ds < oo] ~1,

where M; : X1 — [0, 00] is some measurable function with the following property: When-
ever y : [0,7] — X is a measurable function such that

T ¢
S Mi(f(s,ys))ds < oo then S 1St—sf(s,ys)||x ds < oo for every t € [0, T
0 0

and Ms : L(Up, X1) — [0,00] is some strongly measurable function with the property:
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Whenever y : [0,7] — X is a measurable function such that
T t
S Ms(g(s,ys))ds < oo then S [1S¢—s9(s, ys)||%2(UO,X) ds < oo for every t € [0,T].
0 0

For instance, the choice of M7 can be based on the inequality

(a) 165 f (8, ys)llx < [Se—sllnixr.x) 1 (85 9s)l x5

while the choice of M arises typically in the cases when g takes values in Lo(Up, X1),
or when the covariance operator of the Wiener process is nuclear (i.e. Tr@ < oo) and g
takes values in L(U, X1), or if (S;) is p-summing for some 0 < p < oo (see e.g. Chapter
I1.2.2 in [ChTV]). Then

(b1) 1Se-s9(8,ys) | Lawo,x) < I1Se=sllLxy,x)ll9(s5 ys) |l Lo wo,x1)

by Definition 2.3, or

(b2) 1Se—sg (s, ys) | oo, x) < (Tr Q) 2[1Se—sllnixy,x) 1905, ys) L)

by Note 2.6, or

(b3) 1St—s9(s, ys) Lo, x) < epllSt—sllm,x1,x) 905, ys) | Lwo,x1)

for some constant ¢, by Proposition 2.4, where II,(X;, X) is the space of p-summing
operators from X; to X (see e.g. [ChTV]).
Apparently, we can take My = 1 if || f| x, is bounded and ||S||.(x, x) € L'(0,T), or

=l R ISIlLixy,x) € L7(0,T) for some 1 < r < oo by (a).

Analogously, we can consider My = 1if [|g||z,w,,x,)> resP- |9l LW, x1)> resP. |9l Lo, x1)
is bounded and [|S||1(x, x) € L2(0,T), resp. 1SN Lxi,x) € L2(0,T), resp. 151z, (x,,x) €
L?(0,T), or

2 2
My =l ly x, vesp- Mz =] ”L(U Xy vesp Ma =l
if |Sloix,,x) € L*(0,T), resp. ||SllLx,,x) € L*(0,T), resp. ||Sm,(x,,x) € L*2(0,T)

for some 1 < ¢ < o0, by (bl), resp. (b2), resp (b3).

We should mention that all results in this paper remain true if we consider only
adapted solutions with norm continuous paths. Also, the integrability condition (0.2) is
fairly general and can be replaced or complemented by e.g. (0.3) or (0.7), with slight
modifications of the proofs. In these cases we usually cover smaller classes of solutions
with better regularity of paths which, in the end, turns out to be important since the
better regularity stays preserved.

In this paper we consider solutions on a bounded interval [0,7] since this is suffi-
cient for the questions of uniqueness even for solutions on [0, c0). But in Theorem 12.1,
Theorem 13.2 and Lemma E we assert the existence of a functional R which assigns
a trajectory of a solution on [0,7] to the pair of the value of an initial condition and
the trajectory of a Wiener process. This is the only part when the case [0,00) is but
slightly different so we point out the particular (notational) changes one must do in this
situation:
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> Each occurrence of [0,T], resp. T has to be replaced by [0, c0), resp. co.

> The space € = C ([0, 7], RY) has to be replaced by C([0, 00), RY), which, considered
with the topology of locally uniform convergence, is again a Polish space whose
Borel o-algebra is generated by projections (7 : ¢ < 00).

> The function ¢; has to be replaced by ¢; : C([0,0), RY) — C([0,00), RY) : ¢4 (f)(s)
= f(t+s)— f().

With these changes the proofs go along the same lines.
Before we state the theorems we must give a few definitions.

DEFINITION 1. We say that the equation (0.1) with the initial distribution

> is pathwise unique if whenever (2, F, (Fi), P, W,ul), (2, F, (F;), P, W,u?) are solu-
tions such that Plu!(0) = u?(0)] = 1 then Plul(t) = u?(t)] =1 for every t < T.

> is jointly unique in law if whenever (21, F1 (F}), P, Wl ul), (22, F2 (F}), P2,
W2, u?) are solutions then Larop: (ul, W) = Latpz(u?, W?2).

> is jointly u-unique in law for some solution (2, F, (F:), P, W, u) of (0.1) if whenever
(Y FY(FL, PY, W ul) is another solution of (0.1) such that £ato p1 (u') coincides
with Larop(u) then Larwpi (ul, W) = Larwp(u, W).

> is unique in law provided whenever (£2¢, F¢, (F7), PY, W' u'), i = 1,2, are solutions
of (0.1) then Latop:(u') = Larwpz(u?).

> has a strong solution if, for every probability filtered space ({2, F, (Fz), P, W) with
a Q-(F;)-Wiener process W and an Fy-measurable random variable ug, there exists
a process u such that (£2,F,(F),P,W,u) is a solution, Plu(0) = ug] = 1 and
u is (ug, W) p-adapted, i.e. u is adapted to the P-augmentation of the filtration
o(ug, W(s,h):s<t,heU)in F.

Observe that joint uniqueness in law means uniqueness of the joint distribution mea-
sure on the space of functions, and the distribution of the initial condition ug in the
definition of the strong solution is necessarily pu.

Another remark should be made on the notion of the strong solution which, in our
definition, comprises more information, namely the adaptation of the solving process to
the filtration generated by the initial condition and the driving Wiener process.

Now we can state the main results.

In Theorems 1 and 2, we give sufficient conditions for (0.1) to have a strong solution.
Further, we show that pathwise uniqueness implies joint uniqueness in law, and we give
a sufficient and necessary complementing condition for joint uniqueness in law to be
equivalent to pathwise uniqueness.

THEOREM 1. Suppose that there exists a solution (£2,F,(Ft), P, W,u) such that the pro-
cess u is (u(0), W) p-adapted. Then

> FEquation (0.1) has a strong solution.
> If joint uniqueness in law holds for (0.1) then so does pathwise uniqueness.

THEOREM 2. Suppose that there exists a solution (2,F,(Fi), P,W,u) and pathwise
uniqueness holds for (0.1). Then
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> Equation (0.1) has a strong solution.
> Joint uniqueness in law holds for (0.1).

Unlike pathwise uniqueness, the notion of joint uniqueness in law, used in the preced-
ing two theorems as a sufficient or a necessary condition for existence of strong solutions,
has not been well investigated in the literature in connection with stochastic evolution
equations, and so we are interested in examples of equations that have this property. In
Theorem 3 we give a class of equations which are jointly u-unique in law. As a conse-
quence, we find that equations unique in law with one-to-one diffusions are already jointly
unique in law.

THEOREM 3. Let (St) be a Cy-semigroup of bounded linear operators on L(X1) with X
reflexive. Let (2, F, (Ft), P, W,u) be a solution of (0.1) satisfying (0.3). Further suppose
that (1)

dt @ P{(s,w) : g(s,u(s,w)) is not one-to-one in L(Up, X1)} = 0.

Then equation (0.1) is jointly u-unique in law. In particular, if (0.1) is unique in law
and g(s,x) is one-to-one for every x € X and almost every s then (0.1) is jointly unique
n law.

Theorem 4 is an infinite-dimensional extension of a recent result on equivalence of
uniqueness in law and joint uniqueness in law for stochastic differential equations in
finite dimensions. It states that these two concepts of uniqueness coincide for stochastic
equations in Banach spaces provided that the initial condition is deterministic.

THEOREM 4. Let (St) be a Cy-semigroup of bounded linear operators on L(X1) with X,
reflexive, xo € X and suppose that equation (0.1) with the initial condition p = 6y, s
unique in law among the solutions satisfying (0.3) and (0.4). If Sixg € X fort € (0,T]
then equation (0.1) with the initial condition 6y, is jointly unique in law in the class of
solutions satisfying (0.3) and (0.4).

Theorem 5 brings an example of a particular equation which is jointly unique in law.
Here the diffusion depends only on time and so we speak of a subclass of equations with
additive noise. In fact, we can prove the joint uniqueness in law only in a smaller class of
solutions determined by the condition (0.7); nonetheless, Theorems 1 and 2 hold in the
class of solutions satisfying (0.7) as well.

THEOREM 5. Let f : [0,T] x X — Uy be measurable, g : [0,T] — L(Uy, X1) strongly
measurable,

t

VISt—sg ()7 (0, x) ds < o0

0
for every t < T and p a Borel probability measure. Then joint uniqueness in law holds

(1) The set of one-to-one operators from L(Up, X1) is strongly measurable. We remark that
some authors use the word injective instead of one-to-one and we denote by dt the Lebesgue
measure.
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for the equation

(0.6) u(t) = Spu(0) + | Si—og()f (s, u(s)) ds + | Sy—sg(s) AWV,

Law (u(0)) = p,

in the class of processes satisfying
T
(0.7) Pl I£(s,uls)lIE, < 0] = 1.
0
Therefore, if [ is locally bounded and each solution has almost surely bounded (in partic-
ular, continuous) trajectories, then (0.6) is jointly unique in law.

Theorem 6 is our basic tool throughout this work and we find it interesting in itself—
therefore it appears in this section. It states that the property of a pair of a process and
a Wiener process (u, W) defined on a certain stochastic base to be a solution of equation
(0.1) is, in fact, a property of its joint law.

THEOREM 6. Let (2%, F (F}), P', W' u') be a probability filtered space, W' a Q-(F})-
Wiener process and u' a progressively measurable process, i = 1,2. Suppose that
Laropr (ul, W) = Larop2 (u?, W2). If (ur, W) satisfies (0.1), (0.2) for every t < T then
so does (u?, W?).

Results of similar nature. Apart from joint uniqueness in law and pathwise unique-
ness we can also define, according to H. J. Engelbert, finer types of uniqueness so that the
implications in Theorem 1 and 2 turn into equivalences. For instance, we know by The-
orem 2 that pathwise uniqueness implies joint uniqueness in law. In this section we will
produce an additional condition under which joint uniqueness in law becomes equivalent
to pathwise uniqueness.

DEFINITION 7. Let (2,F,(F;), P,W,u) be a solution of equation (0.1). We will say
that (u, W)-pathwise uniqueness holds for (0.1) provided that whenever (2, F', (F{), P’,
W' uy), (82, F, (F), P', W', u}) are solutions of (0.1) such that

> Larop: (Ull, W/) = Law p (u’z, WI) = Sump(u, W),

> P'[uf(0) = up(0)] = 1,
then P'[u)(t) = uh(t)] =1 for every t < T.

We also say that u-pathwise unigueness holds for equation (0.1) provided that when-
ever (2, F',(F)), P W' u}), (2, F,(F)),P',W’, uj) are solutions of (0.1) such that

> Latop: (’U,ll) = Larop: (u'2) = Samp(u),

> P'luy (0) = up(0)] = 1,
then P'[uf(t) = u5h(t)] =1 for every t <T.

The last property we need to define is uniqueness in law which is said to hold for (0.1)
provided that £atop1(ul) coincides with Laro p2(u?) for any two solutions (2%, F1, (F}),
PLWE b, (022, F2 (F?), P2, W2, u?).

The following theorem gives conditions on (0.1) equivalent to pathwise uniqueness.
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THEOREM 8. The following conditions on equation (0.1) are equivalent:

(1) Pathwise uniqueness holds and there exists a solution.

(2) Joint uniqueness in law holds and there exists a solution (£2,F, (F), P,W,u) such
that (u, W)-pathwise uniqueness holds.

(3) Joint uniqueness in law holds and there exists a solution (£2, F, (F), P,W,u) such
that u is (u(0), W) p-adapted.

In Theorem 9 we characterize the notion of (u, W)-pathwise uniqueness used in The-
orem 8.

THEOREM 9. Suppose that (2, F, (F:), P,W,u) is a solution of (0.1). Then the following
conditions are equivalent:

(1) (u, W)-pathwise uniqueness holds.
(2) There exists a solution (£2',F',(F]),P',\ W' u') such that u' is (u'(0),W')p-
adapted and Lavwop: (v, W') = Lawp(u, W).

In the following theorem we return to the notion of joint u-uniqueness in law which
has already appeared in Theorem 3, and we clarify its position among the other types of
pathwise uniqueness that we defined in this section.

THEOREM 10. Let (2, F, (F:), P,W,u) be a solution of (0.1). Then the following condi-
tions on (0.1) are equivalent:

(1) u-pathwise uniqueness holds.

(2) Joint u-uniqueness in law holds, and there exists a solution (£2',F', (F),P’,
W' u') such that Larop(u) = Larwop(u') and (v, W')-pathwise uniqueness holds.

(3) Joint u-uniqueness in law holds, and there exists a solution (2',F', (F]),P’,
W' u') such that Lavop (u') coincides with Larop(u) and v’ is (u'(0), W')p:-
adapted.

We close this section by a straightforward comparison of joint uniqueness in law and
uniqueness in law.

THEOREM 11. The following conditions are equivalent for (0.1):

> Joint uniqueness in law holds.

> Uniqueness in law holds and joint u-uniqueness in law holds for every solution
(97]:’ (ft),P,VV,U).

Equivalent concepts of solutions. This section is devoted to various concepts of so-
lutions to stochastic evolution equations in Banach spaces. Our definition of a solution to
(0.1) is based on the variation-of-constants formula, where (.S;) is usually a Cp-semigroup
of bounded linear operators on X; however, this is not the only definition used in the
literature, and even in this paper, we will need to approach the solutions from different
points of view.

We will be concerned with a more general problem than solution of a stochastic evo-
lution equation. Namely, we will study three possible mathematically correct definitions
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of a formal stochastic differential
du = (Au+ f)dt + gdW.

We assume that u, the drift f and the diffusion g are arbitrary progressively measurable
processes, where no apriori mutual dependence between u, f and g is excluded. Hence
we cover the problem of solutions of SPDE’s.

The following two theorems state that different definitions of the above stochastic
differential are equivalent. The only reason why we cannot compare all of them at once is
that each definition demands different integrability assumptions. We remark that these
results are essentially generalizations of the Chojnowska-Michalik theorem (see [ChM])
and the main tool in the proofs is the stochastic Fubini theorem (Proposition 6.1) that
will also be proved in what follows.

THEOREM 12. Let f be a progressively measurable process in X, g a progressively mea-
surable process in La(Up, X), (St) a strongly continuous semigroup of linear operators on
X generated by A, W a Q-Wiener process and u a progressively measurable X -valued
process. Let also
T
PSS+ 19()13 0,x)) ds < 00| = 1.
0
Then
t t
(a) P [u(t) = Syu(0) + | S f (5) ds + | Si—og(s) dws} —1
0 0
for every t < T if and only if u has a predictable modification with almost all trajectories
in L1(0,T; X) such that
t

P[Su(s) ds € D(A)] =1

0

and

(b) Plu(t) = u(0) + Afu(s)ds + | £(s)ds + | g(s) dws} —1
0 0 0

hold for every t <T.
In that case

(1) The process t — Ryu(t) has a modification which is a norm continuous semi-
martingale for every A from the resolvent set of A.

(2) The process t — (x*,u(t)) has a modification which is a continuous semimartin-
gale for every x* € D(A*). In particular there exists a sequence x € D(A*) which

separates points of X such that t — (xf,u(t)) is continuous for every n € N.

THEOREM 13. Let f be a progressively measurable process in X, g a progressively strongly
measurable process in L(Uy, X), (St) a strongly continuous semigroup of linear operators
on X generated by A, W a Q-Wiener process and u a progressively measurable X -valued
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process. Let also

Pﬁ (S + 19(5) [F . x)) ds < o0 = P[§ 1Se-9() 3, 07 ) ds < o0] =1
for everyo t <T. Then i
(a) P [u(t) = S,u(0) + § Si—sf(s)ds + § Si—s9(s) dWS} —1
holds for every t < T if and only ifZ satisfies 0
(b) P[ﬁwx*(us»u(s»dsdt<oo} =1
20

for every measurable bounded function x* : [0,T] x [0,T] — X* and

(c) P[(a:*, ug) = (™, ug) + X (A*z* ug) ds + S (x*, fs)ds + Sg;‘m* dWs} =1
0 0 0

for every t <T, xz* € D(A*).
Moreover, in that case, the conclusion (2) of Theorem 12 holds and u has a predictable
modification.

Ideas of the proofs. Theorem 1 as well as Theorem 2 are consequences of the following
general phenomenon. In both, and many other cases, there exists a time sequence of
measurable functions (R; : ¢ < T') such that Plu(t) = R(u(0),W)] =1 for every t < T
(Lemma E). This means that the solution v depends only on the initial value and on the
corresponding trajectory of the Wiener process. Moreover this dependence comes through
the measurable transformations (R;). Now it is enough to prove that whenever we take
a filtered probability space (£2, F, (F;), P, W) with a Q-Wiener process W and an initial
p-distributed random variable %y then the process u(t) = R;(up, W) completes the family
(2, F,(F:), P,W,%) to be a strong solution starting from .

If we are in the situation of Theorem 1 then joint uniqueness in law implies pathwise
uniqueness. Indeed, if (2, F, (F;), P, W, %) were another solution starting from %, then,
by joint uniqueness in law, we would have

Plo(t) = Ri(v(0), W)] = Plu(t) = Ri(u(0), W)] =
for every t < T. But P[v(0) = u(0)] = 1 and thus P[o(t) = Ry(u(0), W) = u(t)] = 1 for
every t < T

In the situation of Theorem 2 we must prove the uniqueness of the joint solution
measure on the space of functions. Suppose that (£2¢, F¢, (F}), P*, Wi u%),i = 1,2, are two
solutions. Then, by pathwise uniqueness, we have u'(t) = Ry(u*(0),W?), ¢t < T,i= 1,2,
and we see that to show the equality of the joint solution measures Law p:(u®, W?),
i = 1,2, it suffices to show the equality of Larop:(ui(0), W?), i = 1,2, since (R;) are
measurable transformations. But u*(0) is Fi-measurable and thus P’-independent of W,
hence Laropi (u'(0), W?) = p® Larw p: (W?). But Larwp: (W) = Laropz (W?2) because W1
and W2 have the same covariance Q.
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In the proof of Theorems 3 and 4 we use a sort of “inversion formula” to express the
intervening Wiener process in terms of the solution u whose distributions are supposed
to coincide. We wish to write W = {g7!(s) du for u = {g(s) dW but unfortunately, in
our case we must proceed in steps using approximations given by measurable selectors
(Theorem 8.8).

Theorem 5 is based on the Girsanov theorem (Proposition 7.1) and relies heavily
(as do all results in this paper) on the fact that solutions of (0.1) are completely de-
termined by the joint distribution Lato(u, W) of the solving process u and the Wiener
process W. More precisely, if (21, F, (F}), PL, W1 u!) satisfies (0.1), (0.2) and u! is
(F})-progressively measurable (we do not assume any kind of path continuity of u!) and
(2%, F2 (F?), P2, W2, u?) is a filtered probability space with a QQ-Wiener process W2
and (F7?)-progressively measurable process u? such that

Lato p1 (’U,l(ti), I/Vl(ti7 hj) : Z,j) = L£ar p2 (u2(ti), WQ(ti, hJ> : Z,])

for every partition 0 =ty < --- < t,, < T and every finite number of vectors hy,..., hy,
in U then (22, F2,(F£), P2, W?,u?) satisfies (0.1) and (0.2), which is just a summary of
Theorem 6.

1. Cylindrical Wiener process

A classical stochastic process u in a separable Banach space X is a mapping from [0, 7] x {2
to X such that the restrictions u; : 2 — X are measurable for all t < T. On the other
hand, sometimes it is convenient to generalize this notion to a larger class of objects,
the cylindrical processes. From the probabilistic point of view they are two-parameter
real processes (u(t,z*) : ¢t < T, z* € X*), where the first variable corresponds to time
while the second to the elements of the topological dual space X*. Moreover we want
the linearity in the z* variable. The motivation is the following. Suppose that we are
given a classical process (u(t) : ¢ < T) in X. Then wu(t,z*) = (x*,u(t)) is a cylindrical
process—it represents the decomposition of the classical process into coordinates. One of
the reasons for introducing cylindrical processes is that we can define a Wiener process
of a nonnuclear covariance and a stochastic integral with respect to it.

DEFINITION 1.1. Let (£2,F, P) be a probability space and (M (z*) : z* € X*) a family
of real processes on [0, T] such that P[M;(ax* + y*) = aM:(z*) + M;(y*)] = 1 for every
te[0,T],a eR, z* € X* y* € X*. Then M is called a cylindrical process.

DEFINITION 1.2. We say that a cylindrical process M = (M(z*) : * € X*) on [0,T]
is representable provided there exists a stochastic process u in X defined on [0, 7] such
that P[(z*,ut) = Mi(x*)] = 1 for all ¢ < T and z* € X*. Then we say that u is a
representation of M; obviously, u is unique up to modification.

DEFINITION 1.3. Let (£2,F, P) be a probability space with a filtration (F;) and o > 0.
Then a continuous real (F;)-adapted process W on [0,T] is called a Wiener process with
covariance o provided
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> P[WO = 0] =1.
> o(Wy — W) is P-independent of Fg whenever 0 < s <t < T.
> Larop(Wy — W) = N(0, (t — 5)0?) whenever 0 < s <t <T.

In case 02 = 1 we say W is a standard Wiener process.

DEFINITION 1.4 Let U be a separable Hilbert space. A cylindrical process W = (W (u) :
w € U)on [0,T] on (£2,F,(F:), P) is called a cylindrical Wiener process provided that
(Wi(u) : t <T)is an (F;)-Wiener process with covariance possibly depending on u (Def.
1.3) for every u € U and there exists a positive constant ¢ such that EW2(u) < ¢2||ul|?,
u € U. The covariance operator of W is the unique operator @ € L(U) with @* = @,
Q@ > 0 such that

EWy(x)W(y) = s(Qz, y)u = (W(z), W(y))(s)
forevery 0 <s<t<T,xe€U,yeU, where s — (W(x), W(y))(s) is the cross-variation
process associated to W (z)W (y).

Proof of the existence of Q. The mapping (z,y) — EWr(z)Wr(y) is a real bounded
symmetric positive bilinear form on U x U so there exists a bounded symmetric positive
operator @ on U satisfying EWrp(2)Wr(y) = T(Qz,y)y for all x,y € U:

EW()Ws(y) = EE[Wi(2)/Fs]Ws(y) = EWs(2)Ws(y)

= LBV +y) = W2e —y)) = o= BOVA(@ +y) ~ Wie — y))

= ${Qu,y)u = 1 (W + 1)), — (W = ))s) = (W(2), W(y))s. »

Now we will show that there exists a filtered probability space with a cylindrical
Wiener process with given covariance operator Q:

Cram 1.5. Let Q € L(U) with Q* = Q, Q > 0. Then there exists a probability space
(2, F, P) with a complete filtration (F;) and a cylindrical Wiener process W = (W (u) :
w € U) on [0,T] with covariance operator Q.

Proof. Choose an orthonormal basis (ug : k) in U and a probability space ({2, F, P) with
a complete filtration (F;) in F which carries independent standard real Wiener processes
(8% : k). Then define the real Wiener processes

W(u) = > (Q"*u,ug)yp*
k
for u € U, where the sum converges uniformly in ¢ in L?(£2). The family (W (u) : u € U)
is a cylindrical Wiener process on U with covariance operator (). m

Now we will show the connection between cylindrical Wiener processes and classi-
cal Wiener processes. We know that the covariance operator of a Gaussian measure on
a separable Hilbert space is necessarily nuclear, so every classical Wiener process is of
nuclear covariance. The following theorem says that a cylindrical Wiener process is rep-
resentable (Def. 1.2) if and only if the covariance operator is nuclear, and in that case
the representation is a classical Wiener process.
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THEOREM 1.6. Let W be a cylindrical Wiener process on [0,T| with covariance opera-
tor Q. Then W has a continuous representation on [0,T] if and only if Q is nuclear. In
that case the representation is a U-valued Wiener process with covariance Q.

Proof. Let (uy, : k) be an orthonormal basis in U. Then the sum ), W (us)us converges
in L2(£2,C([0,T],0)) iff 3, |Q'/?uk||> < oo due to the Doob maximal inequality. So we
only have to prove that the representation (when @ is nuclear) is a Wiener process. The
fact that the increments are centered Gaussian follows immediately from the explicit for-
mula ), W (ug)us and the independence of the increments from Lévy’s characterization
theorem applied to the martingale (W (uy) : k < N). m

2. Radonifying mappings and the space U

The reason for the following definition is that we will work with Wiener processes with
arbitrary covariance operators and as we will see later the only important information
(regarding stochastic integration) lies in the reproducing kernel space Uy which is con-
tinuously embedded in U.

DEFINITION 2.1. Since @ € L(U) is a nonnegative operator we may define the square
root Q'/? € L(U) and Q~'/2 : Rng(Q'/?) — U defined as the inverse mapping of
the one-to-one restriction Q'/2|p : D — Rng(Q'/?), where D = (Ker Q'/?)* is the
orthogonal complement of Ker Q'/2 in U. We also define the separable Hilbert space
Up = Rng(Q'/?) C U with the inner product

(91,9200 = (Q7%91,Q Y ?g2)y, g1 € Uy, go € Up.

Now the mapping Q'/2: (D, || - ||[t) — (Uo, || - [lo) is an isometry.

Before we state some useful properties where the space Uy intervenes we shall recall the
definition of a radonifying operator. We know that the class of Hilbert—Schmidt operators
is the state space for processes which are integrated with respect to a Wiener process
in the Hilbertian case. If we want to pass to Banach spaces the class of radonifying
operators appears. The following theorem is a synthesis of results due to Ito, Nisio,
Fernique, Hoffmann-Jgrgensen and Kwapien.

THEOREM 2.2. Let (0, : n € N) be a sequence of real independent identically distributed
centered Gaussian random variables, and (z, : n € N) a sequence in a separable Banach
space Y. Let 0 < p < co and define

k
Sk = Znna}n, k e N.

n=1
Then the following statements are equivalent:

> The sequence (s : k € N) converges in LP.

> The sequence (s : k € N) converges in norm almost surely.
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> There exists a Borel probability measure v on'Y such that Lavo ((x*, s)) — Laro, (z*)
weakly in the space of measures for every x* € Y*.

In the third case, the measure v is the distribution of the limit.
If, moreover, Y does not contain any subspace linearly homeomorphic to ¢y (e.g. a
reflexive space) then the above conditions are also equivalent to:

> The sequence (s : k € N) is bounded in LP.
Proof. See Chapter V in [ChTV]. u

DEFINITION 2.3. Let U be a separable Hilbert space and (£,,) a sequence of independent
standard Gaussian random variables defined on a probability space {2. An operator A €
L(U, X) is called radonifying provided that the series > &, Au, converges in L*(12,X)
for some orthonormal basis (u,) in U. We denote by Lo(U, X) the space of radonifying

operators and set
2

1A 000 = B[] D2 &nAua|

We also write [|Al|z,w,x) = oo for A ¢ Ly(U, X).

It may seem that the definition of Lo(U, X) and ||A[|z,(v,x) depends on the choice of
the orthonormal basis (uy) and (&), but in fact it does not. Once )" &, Au, converges
in L?(§2, X) it converges for all choices of orthonormal bases in U and for all choices of
independent standard Gaussian random variables due to Theorem 2.2 because we already
know that the probability distribution Laro(}’ &, Auy) is the Borel centered Gaussian
measure on X with covariance AA* € L(X*, X), hence independent of (u,,) and (§,), and

A3 ,wx) = | 12l dN7(0, A4%).
X
Another consequence of Theorem 2.2 is that A € Lo (U, X) if and only if A(0, AA*) exists
as a Borel measure on X. For further details see [ChTV].

The following proposition is a handy tool for verification whether a composition of
two operators is a radonifying operator provided either of them is. Indeed, we see that
L5 is an operator ideal. Moreover one can easily show, using Pietsch’s factorization, that
every p-summing operator is already radonifying (e.g. [LP]). Proposition 2.4 is due to W.
Linde & A. Pietsch but our proof is based on Kahane’s contraction principle. We note
that Lo(U, X) is an operator ideal even if X contains ¢y (e.g. [Ba]).

PROPOSITION 2.4. Suppose that X does not contain any subspace linearly homeomorphic
to co and let A € L(U, X). Then the following conditions are equivalent.

(1) Ae Ly(U, X).
(2) There exists K € [0,00) such that if (n, : n € N) is a sequence of real standard

Gaussian random variables then
n

n 2
(+) EH anAth < K? sup{Z(h,hk>2 Al < 1}
k=1 k=1
for every hy, ..., hy inU.

If these conditions hold, then ||A| r,w,x) is the minimal K such that (x) holds.
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Proof. (2) implies (1) by Theorem 2.2. Suppose that (1) holds. Take arbitrary vectors
hi,...,h,in U and an arbitrary orthonormal set eq, ..., e, in U which contains hq, ..., h,
in its linear span. The left hand side of () is now of the form

EH z": zn:%szAez} ’

k=11=1

)

where fr; = (hg,€;) is an n x n-matrix. We can decompose (fx;) into a matrix product
BrsxnDnxnCrxn where B and C are unitary and D is diagonal. If we set & = B*n,
0 =C*¢, y; = >, cule then the left hand side of (x) equals

EH z": dii&iyi ’
i=1

by the contraction principle (e.g. [ChTV, V.4, Proposition 4.1]) because { and 6 are
N(0, I,)-distributed. But

n 2 n 2
< max{d :i < n}B| - ]| = )IPE]| Y el
i=1 =1

n

1) 2 = sup { 3o0h 1) ) < 1},

i=1

If we took h; = 0 for m < i < n we would have

B S meane]| < B 3 oude sup { i i < 1},
k=1 =1 k=1

and consequently, letting n — oo,

m 9 m
B S mAn|” < 1413, s { 30 h)? 10l < 1) m
k=1 k=1

Now we are going to give a series of simple propositions leading to the fact that
(L2(U, X), || [z, w,x)) is a separable Banach space which, in case X is a Hilbert space,
coincides isometrically with the Hilbert—Schmidt operators. Moreover item (5) in the
following proposition is the key to verifying whether an Ly (U, X)-valued mapping is
Borel measurable or not.

PROPOSITION 2.5. Suppose that A € L(U, X) is radonifying. Then

) 140 o) < 14l a5

(2) Lo(U, X) is a linear space and || - || 1, v, x) is a norm.

B)u®z € Ly(U,X) forallu € U, x € X, |lu® x||p,w,x) = lullullz]x and the
finite-dimensional operators are dense in Lo(U, X), so that Lo(U, X) is separable.

(4) |- l,w,x) is complete.

(5) The Borel o-algebra on the separable Banach space Lo(U, X) is generated by the
mappings Lo(U, X) — X : A Au, u e U.

(6) L2(U, X) is a strongly measurable subset of L(U, X).

Proof. (1) The measure

w= Lar (anAun)
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is Gaussian and centered on X and p{z : (z*,2) € B} = N(0, ||A*z*||3)(B) for every
z* € X*, B € B(R). Thus |[A*z* |y < ||Al|L,w,x) for every ||z*|| < 1.

(2) and (3) are obvious.

(4) If (Am) is || ||z, w,x)-Cauchy then it converges to A € L(U,X) in the uniform
operator topology due to (1) and >, &,Au, coincides with the limit of } &, A, uy in
L?(£2,X) due to Theorem 2.2.

(5) The mapping A — Aw is continuous for every u € U by (1), thus Borel measurable.
On the other hand, if we denote by ¢ the o-algebra generated by the mappings A — Au,
u € U, and we fix B € Ly(U, X) then the real mapping

A EH 3 6 (Auy, Buk)Hi
k

is o-measurable. Hence every ball in Lo(U, X) belongs to o, which ends the proof because
Ly (U, X) is separable.
(6) We have

_ ﬁ fj ﬁ {aerw.x): EHZ@A%H <1/k}
b1 21

due to the completeness of L?(£2, X). m

Now we return to Definitions 2.1 and 2.3 and state a few simple observations which
take the space Uy into account.

NoTE 2.6. Let A: Uy — X be a linear mapping and B € L(U, X). Then

(W) Al Lwo,x) = 1AQY?| L x)-

(2) 1Al Lo, x) = 1AQY || Ly, x)-

(3) [|A*z* ||, = I(AQY?)*a*||y for every x* € X* provided A € L(Up, X).

(4) Bly, € La(Uo, X) and || B||1,wo.x) < |Bllnw,x)(Tr Q)2 provided Q € L(U) is

nuclear.

(5) U] =D
Proof. (1)—(3) are direct consequences of the definitions and of the fact that Q'/2 is an
isometric isomorphism between D and Uj.

(4) Since Q'/? is Hilbert-Schmidt the series Y, &Q/?u, converges in L2(2,U).
Hence ), £ BQ'Y?u,, converges in L?(£2, X) and the estimate follows immediately.

(5) Uy = Rug(Q'7) = Rug(@ %) = (KerQY/2)- = D. w

3. Stochastic integral

One of the reasons for including the construction of the stochastic integral was its straight-
forward It6 style—we have dropped the necessity of auxiliary spaces and embeddings (e.g.
[DZ], [B1]-[B3] or [BG]), which, later on, will make all manipulations more transparent.
None the less, we have arrived at the habitual stochastic integral whose properties we
summarize at the end.
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Let us consider a filtered probability space (£2, F, (F:), P, W) with a Q-(F;)-Wiener
process on U and X a 2-smooth Banach space (Def. 3.1).

Step 1. Since W is not necessarily a process in U we cannot define the X-valued random
variable A(W;) for every A € L(U,X) but we can do so for A finite-dimensional (i.e.
Au=3"7_ (u,up)zy for some uy, € U, 2, € X) in the following way:

AWt = Z Wt(Uk)xk;.
k=1

We can easily see that (z*, AW;) = Wy (A*z*), hence the definition of AW, is independent
of the expansion of A, and AW, coincides with the composition A(W;) provided W is a
U-valued process (i.e. when the covariance @ is nuclear).

Step 2 (elementary integral). Now we are going to integrate simple finite-dimensional
valued processes. Let ¢ be a process with values in L(U, X) such that v (t) = Z;n:l Aijlpi
for t; <t < t;11, 1 < n for some partition 0 = t; < -+ < tpy1 =T, (FY : j <m) an
Fi,-decomposition of £2 and A;j, i < n, j < m, finite-dimensional operators in L(U, X).
Then the process

t n o m
t— S¢ AW =" (AijWint.,, — AggWine ) I pi
0 =1 j=1

is a norm continuous L2-martingale in X and

t n m t
<$*, S’(ﬂ dW> = Z ZSIFUI(ML‘JA] dW(A”Z‘*)
0 i=1 j=10

This definition is classical and one can define SZ PwdW, 0 < s <t, in the same spirit as
well.

Before we proceed to Step 3 we recall some properties and examples of 2-smooth
Banach spaces.

DEFINITION 3.1. A Banach space X is called 2-smooth provided there exists an equivalent
norm || | and a constant ¢ > 2 such that ||z + y||? + ||z — y[|* < 2||z|* + c[|y||? for any
z,y € X.

We note that there are other equivalent definitions, for instance in terms of asymp-
toticity of the modulus of smoothness of the norm due to P. Assouad, T. Figiel, J.
Hoffmann-Jgrgensen, G. Pisier (e.g. [P]) or in terms of martingale estimation [A], [P].
We chose the above definition because one can easily show by C2-smoothness of || - |7,
0 > 2, that LP(u) spaces with arbitrary positive, not necessarily o-finite measures p are
2-smooth for every 2 < p < oco. Obviously, by the parallelogram law, every Hilbert space
is 2-smooth and closed subspaces and products of 2-smooth spaces are 2-smooth, hence
the Sobolev spaces W*P are 2-smooth for 2 < p < oo, k > 0. Also, if A generates a
holomorphic semigroup on a 2-smooth Banach space then the domains of the fractional
powers D(—A)* « > 0, with the graph norm are 2-smooth since they are isometric
isomorphs of X. Another observation is that a 2-smooth Banach space X is uniformly
smooth, hence X is necessarily reflexive.
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The following simple observation was made by P. Assouad [A] and it is the key to the
forthcoming construction.

LEMMA 3.2. Let X be a 2-smooth Banach space. Then there exists a constant C' such
that

EIM 2 < €S BIMe— My, 1<n<N,
k=1
for every L%*-martingale (My, Fj, : k=0,...,N), My = 0.

Proof. Let ny € L?, A a sub-o-algebra and define n; = E[n2 | A]. Then
El2m —n2|* + Ellel|* < 2B|m || + cElln2 — m |®
by 2-smoothness and
I ]1* = B2 — 2 | AJlI* < B2 — n2]* | Al

Hence E||n2]|? < E||n1||> + cE||n2 —n1||* and the result follows by induction, applied step
by step, on the martingale M. The constant ¢ may change after returning to the original
norm. m

Step 3 (Burkholder inequality). There exist constants Cp, 0 < p < oo, such that the
following estimate holds for every v of the form we have considered in Step 2:

(3.2) Esup{| §deHp s <t < C’pE(i 19QV212, ) ds)p/g.
0 0

The proof for p different from 2 will be postponed until (5.1). The left hand side of (3.2) is
dominated by 4E|| S(t) ¥ dw||? due to Doob’s inequality and this can be further dominated
by

4C§:EH tX ¢dWH2
i=1 ti_1

by Lemma 3.2. To finish the proof we will refer to the following lemma.

LEMMA 3.3. Let p > 0. Then there exists c, > 0 such that

T (- 92 BIp, | lefP dN (0, 4,QA7)

i=1 X

< ¢yt — s)P/? ZEIFi ||A¢Q1/2Hi2(U,X)
i—1

B YA (W) — AW I
i=1

for every A; € L(U,X), i < n, finite-dimensional, s < t and (F; : i < n) an Fs-
decomposition of (2.
Proof. Since (F' :i < n) is a decomposition of 2 we can interchange the sum and the

norm in the left hand side term. Moreover AW; — AWj is stochastically independent of
Fs so we only have to show that

E||AW, — AW,||P = (t — 5)"/? | ||z dA(0, AQA")
X
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for A € L(U, X) finite-dimensional. But this is obvious since the distribution of AW, —
AW, is Gaussian centered on X with covariance (¢t — s)AQA*. The second inequality
follows from the fact that for any positive p, ¢ there exists a positive constant a such that

(§ et av)"” < § fograv) ™
X X

for every Gaussian centered probability measure v on X, which is a consequence of the
Fernique theorem (e.g. [Ba]). m

Step 4 (stochastic L?-integral). Having the Burkholder inequality for p = 2 we can define
the norm continuous X-valued L?-martingale ¢ +— Sg 1 dW for a progressively measurable
Ly (Uy, X)-valued random process ¢ satisfying

T

B ()13, 0, x) ds < 00

0
as a limit of integrals of simple processes with values in finite-dimensional operators of
L(U, X) in the space L?(§2,C([0,T], X)) as we have done in Step 2. We recall Note 2.6(2)
in view of the right hand side of (3.2), where

QY217 w.x) = 1912w x)

appears. The values of ¢ outside of Uy = Rng Q'/? are not important in this estimation,
thus we consider the more “appropriate” space Lo(Up, X ). The only thing we now have
to show is existence of simple processes 1, of the form considered in Step 2 which satisfy

T
Tim B [[n(s) = ¥(8)1 7, 0,x) ds = 0.
0

To do this we are going to use the following classical lemma from [DZ, p. 16], which we
present in the form adapted to our case:

LEMMA 3.4. Let Y be a separable Banach space and Yy its countable dense subset. Then
there exists a sequence of simple mappings Fy, : Y — Yy such that ||F,(y) — ylly \. 0
for every y € Y. In particular we can take Y = Lo(Uy, X) and Yy some dense countable
subset of finite-dimensional operators in L(U, X).

Proof. Enumerate Yy = {21, 22, ...} and define
tn(y) = min{i <n: [ly — 2zl = min{|ly — 2, : j < n}}

The functions Fy,(y) = 2, (y), ¥y € Y, n € N, clearly have the desired property. Regarding
the particular case, we already know by Proposition 2.5(3) that the finite-dimensional op-
erators of L(Up, X) are dense in Ly (Up, X) so we need only show that every ho ® (v, x) ©,
ho € Uy, x € X, can be approximated by some h @, x)z, h € U, z € X. But

(Qh, hoyu, = (@21, Q7 ?ho)u = (h,Q2Q™?hg)y = (h, ho)u

by definition of Uy and selfadjointness of Q'/2. Hence the restriction of h ® LU,X) T €
L(U,X) to Up is h QLX) CC|U0 =Qh LU, x) T € L(Uo,X) and
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Ih @rw,x) T —ho ®@Lwe,x) %l L. (U, x)
= ||Qh LUy, X) T — ho O L(Uo,X) x||L2(U07X)
= |Qh — hollw, |lzllx = |QY*h — Q™ ?h|lv||z| x,

where we have used Proposition 2.5(3). Now given hy € Uy we can always find h € U such
that ||Q'/2h — Q~/2hy ||y is arbitrarily small because Uy is dense in D and Q~/?hg € D
by Note 2.6(5). m

Our process v is measurable from ([0, T] x 2, Pr) to L2 (Up, X ), where Pr denotes the
o-algebra of progressively measurable sets. Hence, by the particular case of Lemma 3.4,
the F,% are simple progressively measurable processes with values in finite-dimensional
operators of L(U, X) such that

T

E[Fatp(s) = ()| 00, x) ds \ O
0

by the Lebesgue theorem. Since each F, 1) is of the form

m
> Bilg,,
k=1

where (Cy : k < m) is a Pp-decomposition of [0,7] x £2 and By, is finite-dimensional in
L(U, X), we have to show that each I¢, can be approximated by simple real processes in
L2([0,T] x £2); but this is a well known fact (e.g. [KS]).

REMARK 3.5. Take a progressively measurable Ly(Up, X )-valued process 1 such that
T

ES D)2, (7, x) ds < o0
0

In view of Step 2 and ,, considered therein the processes
t

2 1/2\x %12
V1 @n()Q"?) 2" 3 ds

0

N (t) = <m*, § U dW>
0

are real martingales for every n € N and «* € X*. Thus, if

T
. 2
Tim B b (s) = (5) |7 0. x) ds = 0
0

then n,,(t) converges to

¢ ,
(a7 §waw)” = [ I()Q"2) 2" I} ds
0 0

in L1(£2) for every t < T because of Proposition 2.5(1), and consequently the process

t
t > {[lv* (s)a" I3, ds
0
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is the quadratic variation process of t — (z*, Sto 1 dW) due to Note 2.6(3). Analogously
one can show that if Y is another 2-smooth Banach space, and ¢ a progressively measur-
able Ls(Uy, Y )-valued process such that

T

ES P()I7., 00,7 ds < 00,
0

then
t
te § ()2, 67 ()" ds
0

is the cross-variation process associated to the real martingales t — (x*, Sgde> and
t (y*, §y 0 dW) for z* € X*, y* € Y™

Summary of Step 4. We have constructed a continuous X-valued L2-martingale ¢ —
Sé Y dW as a limit in L2(£2,C([0,T], X)) for a progressively measurable process ¢ with
values in Lo (Uy, X) and so the Burkholder inequality (3.2) holds with p = 2. The mapping
¢ — {4 dW is linear by construction.

Step 5 (general case). Now we will finish the construction of the stochastic integral by
extending it to progressively measurable Lo(Up, X )-valued processes ¢ with P-almost all
trajectories in L2([0, T, La(Uy, X)) by the classical “localization” procedure. One defines
the stopping times

t
£ — min {t < T {1013, 0 x) ds = n}
0

with values in [0, 7] and then defines

t t
Vodw =100 dW  on [0,4].
0 0

The process t +— ngde is a continuous local martingale in X. Yet, for the sake of
correctness, we must first show:

LEMMA 3.6. Let 7 be a stopping time and ) a progressively measurable process with values
in La(Uy, X) such that
T

ES ()17 (7,x) ds < o0
0

Then
tAT t
V waw =110, (s)0(s) aw
0 0

for everyt <T.

Proof. Suppose that 1 is a bit more complicated than in Step 2, namely of the type
S n_i fuAr where (fi : k < n) are bounded real progressively measurable processes and
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(Ag : k < n) finite-dimensional operators from L(U, X). Then, by a simple convergence
argument and the second formula in Step 2, we have

t n t
<x*,§1/)dW> =" Vg aw (az2)
0 k=10

for every t < T and z* € X ™. Hence the claim holds for ¥ of this type by the properties of
real stochastic integrals. Now it suffices to take an approximating sequence 1,, of simple
processes from Step 2 such that

T
nllnéoES 1n = VIl . x) ds = 0
0

and the proof is complete by using the Burkholder inequality (5.1) for p =2. =
Summary of Step 5. We have extended the stochastic integral to progressively measurable

processes ¥ with values in Lo (Up, X') which satisfy
T

P|§1()13 0 x) ds < 00| = 1.
0

The continuous X-valued process ¢ +— Sg 1 dW is a local martingale and

(3.6) § wdW =\ Io.n ()0 (s) aW
0 0

for every stopping time 7 and time ¢ < T'. Moreover, if Y is another 2-smooth Banach
space, ¢ a progressively measurable Lo(Up, Y )-valued process such that
T
P 16() 13,y ds < 00] =1
0
then

te § ()2, 6" ()", ds
0

is the cross-variation process associated to the real local martingales ¢t — (x*, Sg Y dW)
and t — (y*, Sg¢dW> for x* € X*, y* e Y*.

EXAMPLE 3.7. Let ¢ be a progressively measurable Ly (Up, X )-valued process with almost
all trajectories in L2([0,T], L2(Ug, X)) and h € U. Then

> ¢(s,w) = h®@pwr) 1 is a constant process in Lo (Up, R).

> The restriction of ¢ to Uy belongs to L(Up, R) = U and thus can be identified with
Qh € Up.

b ¢*(s,w) = Qh € L(R, Up).

> §o 6(s) AW = |, QhdW = W, (h).

>t Sf)(x*,w(s)Qh) ds is the cross-variation process of ¢t — (z*, SZ Y dW) and t —
Wi(h), z* € X*.



28 M. Ondrejat

4. A convergence result

PROPOSITION 4.1. Let v, 1, n € N, be Lo(Up, X)-valued progressively measurable pro-
cesses with P-almost all trajectories in L*([0,T], La(Uy, X)) such that

T

Vllon(s) = (). x) ds

0
converges to 0 in probability. Then

sup{Hiz/JndW—ideH : ng} =0
0 0

in probability as well.

The proof is based on the following simple inequality: Define

At) = sup{H §deH2 15 < t}, B(t) = C2§ W(S)H%Q(Uo,x) ds.
P 0

Then A and B are continuous processes and
(4.1) EA(r) < EB(7)

for every stopping time 7 < T. Now the claim follows from Lenglart’s inequality (e.g.
[KS, 1.4.15 and 1.4.17]).

Proof. Define t} as in Step 5 of the previous section. Then EA(7) = lim FA(T A t}) as
A is continuous and nondecreasing and

TAL),

p 2
EAGAL) < Eswp { || { o dW|| s < T} < GE | 100, 00 ds
0 0

by (5.1) for p = 2, which we may apply because
T

ES HI[O,T/\t;*L]wH%Q(Umx) ds < o0. m
0

REMARK 4.2. Let 1 be progressively measurable Lo(Up, X)-valued processes with P-
almost all trajectories in L?([0,T], L2(Up, X)). Then, by Steps 4 and 5, there exists a
s%quence U, n € N, of simple processes that we have considered in Step 2 such that
§o 19n(s) = ¥ (s)I17, 0y, x) ds converges to 0 in probability.

5. Burkholder inequality

There exist constants Cp, 0 < p < 0o, such that

(5.1) Esup{| iquWHp s<th< CpE(§ [ ds)p/Q
0 0
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for every progressively measurable Lo(Uy, X)-valued process ¢ with trajectories in the
space L*([0,T), La(Uy, X)) for every T > 0.

We have already proven (5.1) in the case p = 2 in Steps 3 and 4 of the previous
section. So, let 0 < p < oo, define processes

- B0) = (Y10 By ds) o M) = sup M (o),

0 s<r

AJ@):H§¢dwj
0

choose 8 > 1,6 >0, A > 0, ¢t > 0 and define stopping times 7, = inf{r : M(r) > SA},
To = inf{r : M(r) > A}, o0 = inf{r : B(r) > 6A} and g,, = inf{r : M(r) > n}. The set

Ay = [M*(tA 0,) > B, B(t) < 6]

is contained in the set
tATLI NG tATING

ap=|| § waw— | waw||=a@-1)]
0 0

since 7 <71 <tAg, <t<o, M(m1) =0 and M(72) = A on A;. Furthermore,
tATIANOCAOn tATOANTAop

t
2
EH S de - S 1/) dWH S C2ESI(t/\‘rz/\o'/\gmt/\n/\a/\gn] HU’”?} dS
0 0 0

t
= CzE{ S Lttarynonon tATI AT AOR] (3)||1/’(5)Hi2(U0,X) ds I[M*(t/\gn)ZA]}
0

tAo

< C2E{ S ()17 205, x) ds I[M*(t/\g”)z)\]} < CoN’*P[M*(t A 0n) > A]
0

by (3.2) applied for p = 2 and (3.6). Hence,

2
P(4) < P(A) < ¢ 502‘51)2 PIM*(t A gn) > A
and so
* 0252 *
PIM*(t A 9,) > BA] < P[B(t) > 6\ + G172 PIM*(t A on) > Al

Integrating both sides with respect to pAP~! d\ over (0, 00) we arrive at

L paraa ey < £ BB@OY+ -2 B0rr @A o)

Bv o= B-12 e

Now M*(t A p,) < n and if we choose 6 < (3 — 1)02_1/26*”/2 and define
(1 e N\
5P —_ =22
%= o)

E(M*(t A on))? < CpE(B(t))P.
Letting n tend to infinity we get E(M*(¢))? < C,E(B(t))". m

then
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6. Fubini’s theorem

Let (£2,F,(F:), P,W) be a probability filtered space with a Q-Wiener process W on U,
set 270 = [0,T] x £2, and define Pr to be the o-algebra of progressively measurable
subsets of 27 and ds ® P the product of the Lebesgue measure and P. We will write
briefly L?(§27) for the space L?((2r,ds ® P), Ly(Uy, X)).

PROPOSITION 6.1. Let (Y, ), 1) be a finite measure space and v : 27 XY — Lo(Up, X)
a Pr ® Y-measurable mapping such that

§ @) 22y die < 0.

Y
Then
(1) the process SY Y(y) du indexed by t € [0,T)] is progressively measurable and belongs
to Lg(QT)
(2) The process So y)dW indexed by y € Y has an Fr ® Y-measurable version
m:2xY — X suchthat
T
P[m(y) = S ¥ (y) dW} =1 for p-almost ally €Y.
0
(3) We have

P[§m(y)du§<§w(y)du) aw| =1.

Proof. (1) follows from the following inequality: Let f be a nonnegative Pp ® Y-measur-
able function on 27 x Y. Then

(6.1) | (S fdu)2d8®P <V IF W)l d
Y

QT Y
because
2
(§r@wan) = § @) f(ay) dudu
Y Y XY

and we get (6.1) by the Schwarz inequality. Now suppose that m in (2) exists. Then by
taking (2 instead of {27 in (6.1) we get

(6.2) \/E(hm( ldn)” < WEnm |2du<¢c72§uw )20 du
Y

by the Burkholder inequality (5.1). Hence SY y) dp is defined P-almost everywhere.
Now take 1, satisfying the assumption of the proposmon such that the sequence of the
integrals SY 1¥n(y) = YY) L2 (2, dpv converges to zero. Then there exists a subsequence
(ng : k € N) such that

( ) gT Yy (y) AW — § () dW in L2(£2, X) for p-almost all y € Y.
S SY Y (y) dp) dW — ST(SY ¥(y) dp) dW in L2(£2, X) for p-almost all y € Y.
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(a) and (b) follow from the Burkholder inequality (5.1) and the estimate (6.1) because
¥n, () = (W)|lL2(02p) — O p-almost everywhere. Let us introduce the set D of all
Pr ® Y-measurable Lo(Uy, X)-valued processes ¥ with

V)220 dn < o
Y

such that there exists an m satisfying (2) and (3). It is easy to see that D is a linear space
and if we found v,, € D such that

16 (0) = ()22 dis — 0
Y

then we would finish the proof. Indeed, take the corresponding functions m,. Then the
sequence (m, : n € N) is Cauchy in L'(£2 x Y, X) due to (6.2) (apply the Jensen
inequality) and ¢ belongs to D due to (a) and (b). Now we will show how to construct
the approximating sequence v,,. First consider mappings F,, on Lo(Uy, X) as in Lemma
3.4. The simple functions F,1 take values in finite-dimensional operators of L(U, X).
Moreover

| Fntb(y) — D)2 (20) \ O
for p-almost all y € Y by the Lebesgue theorem, hence
VIF () = $W)ll2 (o) di N\ 0,

Y
and if Fj,ip € D, n € N, then ¢ € D. Now, to show that F,¢ € D, we will take advantage
of the fact that each F},1 is bounded in Lo(Uy, X) and

{l6nw) = 6@)llz2(20) dpn — 0
Y

if and only if

S [Pn — Bl Lo, x) ds AP dp — 0
QTXY

for ¢, uniformly bounded in Lo (Uy, X). So as Fy,1 is of the form

m
> Ic, By,
k=1

where (Cy : k < m) is a Py ® Y-decomposition of 2r x Y and By, k < m, are finite-
dimensional operators in L(U, X), we conclude that F,¢) € D provided I¢, By € D due
to linearity of D. Another reduction shows that this is true if
IC; xC2 B, eD

for every C} € Pr, C} € Y as I¢, can be approximated by Ico in LY (27 x Y), where
Cy is a disjoint union of sets of the type C} x C?. Finally, as Icy is a progressively
measurable process, it can be approximated by simple uniformly bounded real processes
in L'(027), so we will finish the proof by showing that

I(s,t]xCSXC,ka eD
for s < t, Cs € Fg; but this is obvious. =
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EXAMPLE 6.2. Let ¢ : [0,T] x 2 — Lo(Uy, X) be such that (x,g(hi)) : [0,T] x 2 - R
is progressively measurable for z} € X*, hy € Uy, n € N, k € N, where (z} : n) separates
points in X and (hy : k € N) is dense or orthonormal in Uy. Then g is progressively
measurable by Proposition 2.5(5).

ExAMPLE 6.3. Let (S;) be a continuous semigroup of linear operators on X generated
by A, W a Q-Wiener process and g : [0,T] x £2 — L2(Uy, X) a progressively measurable
process such that

T
P §llg()I, 1 x) ds < 0] = 1.
0
Define
t t
G(t) =\gaw, (1) =|Si.g(s)dW.
0 0
Then
(1) C has an (F;)-predictable modification such that C(w) € L?(0,7; X) P-almost
surely.
(2) We have

t

PHC(T) dr € D(A)} - P[AS C(rydr=C(t)— G(t)] =1  for every t < T.
0 0

Proof. To simplify notation we will extend the operator-valued function S to negative
times by 0 € L(X).
First suppose that
T

E1lg()I} 0, x) ds < oo.
0
Fix t € [0,7] and define
Ye(s,w, ) = Sp_sg(s,w) for s <t,r<t.
Then, by Proposition 6.1, there exists a B([0, t]) ® Fz-measurable function m; : [0,t] x £2
— X such that P[my(r) = C(r)] = 1 for almost all » € [0,t] and m;(w) € L?(0,t; X) for
all w € £2. Next take A from the resolvent set of A and define
Y(s,w,r) = S_sARxg(s,w) fors<t,r<t.
Then ¢ satisfies the assumptions of Proposition 6.1 with ¥ = [0, ¢] and we have
(va) — S ?ﬁdr = Stst/\g(Saw) - R/\g(svw)v
Y
P[m(r) = ARym:(r)] = 1 for almost all r < ¢ because
(%) ARy = ARy — Ix

is bounded, and
t t
AR)\Smt(r) dr = Sm(r) dr = R\C(t) — RAG(1)
0 0
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P-almost everywhere. But Rng Ry = D(A) and, due to (%),
¢

PHmt(T) dr € D(A)] =1
Thus i

P[Ang(r) dr = A(S)mt(r) dr = C(t) — G(t)] = 1.

Moreover the process ¢ — Sg mp(r) dr is continuous and adapted as
t

P{imT(r) dr = Smt(r) dr} =1
0 0

for every t < T so
{ A Sg mp(r)dr, Sf) my(r)dr € D(A),
t— :
0, So myp(r)dr ¢ D(A),
is predictable because D(A) is a Borel set in X and A : D(A) — X is Borel measurable.
Consequently, C' has a predictable modification. The general case follows directly from
(1), (2) by localization of Step 5: Define
¢
£ = inf {t < T : (g2, x) ds > n} Gn(5,0) = 9(5,0) Ij0.12 ()] (5)-
0

Then the processes
t

¢
0 0

satisfy (1), (2). The set of (¢,w) where C), is convergent is predictable and the limit is

predictable as well. But this limit is a modification of C because C, (t) converges P-almost

surely for every t < T as P[t} = T| /' 1 and P[C,(t) = C(¢),t5 = T] = 1 for every

t<T. m

EXAMPLE 6.4. Let (S;) be a continuous semigroup of linear operators on a separable
reflexive Banach space X generated by A, W a Q-Wiener process, g : [0,7] X 2 —
L(Uy, X) a progressively measurable process with respect to the strong c-algebra on
L(Uy, X). Further suppose that

T
P[Jll9(s)113 0y ds < 0] =1
0

and define
t t
Goe (1) = g™ dW,  Con(t) = [ g7 (5)S7_oa™ dW
0 0

for z* € X* t <T. Then

(1) Cp has an (F;)-predictable modification such that C,-(w) € L%(0,T) P-almost
surely for every z* € X*.
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(2) Cy« is a continuous process and
¢
PH Carg=(8)ds = Copn(t) = Gp=(t)| =1 forevery t <T
0
provided z* € D(A*).

Proof. Cy« is a real adapted process which is continuous in probability by Proposition
4.1. Thus (1) is a consequence of [DZ, Proposition 1.3.2]. Next suppose that
T
E 1l9(3)113 (1 x) ds < o0
0
Then (2) follows immediately from Proposition 6.1, and the general case can be obtained
in the same way as in Example 6.3 but this time with

¢
th = inf {t <T: S ||g(s)||%(U07X) ds > n}, gn(s,w) = g(5,w)1[0,x ()] (5). ™
0

Proof of Theorem 12. If we define y;(t) = S;u(0) then
t
Al yi(s) ds = ya () — u(0).
0

The process
t

t) =\ S f(s)ds

is obviously norm continuous, adapted and, by the classical Fubini theorem,

ASyg(s,w) ds = ya(t,w) —Sf(s,w) ds
0 0

for every w satisfying SOT I f(s,w)||ds < oo. Thus, by Example 6.3, the predictable process
t

ys(t) = | Sisg(s) AW

0
satisfies
t t
A S ys(s S g\s
0 0
almost everywhere, (a) implies (b) because u(t) = y1(t) +y=2(t) +ys(t) almost everywhere,
and (1), (2) obviously hold. On the other hand, if (b) holds, define h(t) = y1 (¢) + yo(t) +

y3(t) — u(t). Then

¢
h(t) = A\ h(s) ds
0
almost everywhere for every ¢ < T. Thus, computing S (x*, Sp_h(t)) dt, z* € D(A*), by
the classical Fubini theorem, we get So h(s,w)ds = 0 for every r < T and almost all w.
But ¢t — (z* h(t,w)) is continuous for almost all w for every choice of z* € D(A*), and
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thus h(t,w) = 0 on [0, T] for almost all w because X is reflexive and D(A*) is norm dense
in X*. n

Proof of Theorem 13. (a)=-(b)&(c): In fact, we will prove a little more. (a) implies that

t t
(13.a) (% w) = (@, Syuo) + { (2", Si—s f) ds + | g7 Si_ @™ dW,
0 0

for every x* € X*, and this equality already implies (b) and (c). Thus we need not
suppose that X is 2-smooth—X might be separable reflexive and (13.a) should hold. The
process t — {x*, u(t)) has a predictable modification for every z* € X* by Example 6.4,
hence u has a predictable modification by Corollary 11.2. Now fix * € D(A*) and define

t

vi(t) =\ gzSr Amar dw,.

0
Then, proceeding along the lines of Theorem 12, (¢) follows from Example 6.4. To show
(b) define the predictable processes

¢ ¢
vn(t) =\ St_sgn(s)dW,, neN, o(t) =S, .g(s)dW,
0 0

with g,, from Example 6.4. Then, by Proposition 6.1,

TT

PH {1t 9).va(s)) | ds dt < oo} =1

00

But Plv, (t) I 1) = v(t) 14z —17] = 1 for every ¢t < T and P[t;, =T] / 1, thus (b) holds

as t — Spu(0) + S Si—sf(8) ds is norm continuous.

(b)&(c)=(a): Define

h(t) - u(t) - S{U,(O) - S St—sf(s) - S St_sg(s) dW.
0 0

Then, by the first part of the proof, h can be chosen predictable satisfying (b) and
¢
P[@*, n()) = | (472", n(s)) ds} —1
0
for every t < T, x* € D(A*). Thus, computing Sg(S;‘_tx*, h(t)) dt by Fubini’s theorem,
we conclude that P[h(t) =0] =1 for every t <T. m
7. The Girsanov theorem

PROPOSITION 7.1. Let (2, F,(Ft), P,W) be a filtered probability space with a Q-Wiener
process W on U, ¢ a progressively measurable process with values in Uy satisfying

T
Eexp ({116(s)[13, ds ) < o
0
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and ¥ a progressively measurable process with values in Lo(Uy, X) such that
T

Pl Y 1w()13 00 0 ds] = 1.
0

Then

(1) The process
¢ ¢

1
M= exp (= foaw - {1001, as)
0 0
is a P-martingale on [0, T].
(2) The process
t

Wi(h) = Wi(h) +{(6(s), by ds, t<T, heU,
0
is a P-Q-Wiener process on U with ﬁ(F) = SF My dP.
(3) We have
bt t
Vwaw =y aw + [y (s)o(s) ds
0 0 0
almost everywhere for every t < T.
(4) If (Y,Y) is a measurable space and & : 2 —Y an Fo-measurable random variable
then Samﬁ(g) = Larop(§).

Proof. The proof goes along the lines of the proof of the classical Girsanov and Novikov
theorem (e.g. [RY]). Hence (1) follows from the fact that the quadratic variation process
of t — Sgcz)dW is t — S(t) |¢(s)[|, ds due to Remark 3.5. Here we use the isometric
isomorphism between Lo (Up, R) and Uy. Using the same arguments as in Remark 3.5 we

can show that
t

t— {(o(s), Qh), ds
0
is the cross-variation process associated to t — Sg ¢ dW and t — Wi(h). But (¢(s), Qh)u,
= (¢(s), h)u, which yields (2). If we take 1 = I(s ) Ip,h ® x for some 0 < s <t < T,
Fs € 5, h € U, x € X then (3) obviously holds. Due to linearity, (3) holds for simple 1
that we have considered in Step 2 of the previous section as well. If 1 is general we can
find a sequence (¢, : n € N) of simple processes of Step 2 such that

T
Y ln(s) = ()17 4wy, x) ds = O
0

in probability (]3 as well as P) by Remark 4.2, and the final equality is just the limiting
argument of Proposition 4.1. Claim (4) is a consequence of (1). m

REMARK. The measures ﬁ, P are absolutely continuous with respect to each other
so their null sets coincide, as do P-convergence and P-convergence, and consequently the
integrals in (3) do not depend on P, resp. P due to Proposition 4.1.
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8. Distribution of random integrals and measurable selectors

The goal of this section is to show a sufficient condition on a process v and a @Q-Wiener
process W to be a solution. More precisely we are going to prove that if the distributions
of (u, W) and (v, B) coincide on the space of functions and (v, B) is a solution then so is
(u, W).

In the last part we modify the selection theorem of [KRN] to open set mappings with
the gain of distribution preserving selectors.

Distribution of random Bochner integrals

LEMMA 8.1. Let (Y,Y) be a measurable space, £ a Y -valued random variable and
(fj‘(t) :t < T),j < N, real bounded measurable processes on (2¢,F' P?), i = 1,2,
such that

Lawpr (ff(r),&" 1 j <N, 1<m) = Lawpa(f7(r), &% :j <N, 1 <m)

for every partition 0 = rog < -+ < 1, < T in D* for some D* C [0,T] of Lebesgue
measure T'. Then
tr 123

Lawp: (S FH(s)ds, € - k,j) — Cawpe ( | 2(s)ds, € k,j)
0 0
for every partition 0 =ty < --- <t, <T.

Proof. First let ¢! be real bounded, N = 1 and 0 < ¢t < T fixed. We are going to show that
the Fourier transforms of the R?-valued random vectors (Sg fi(s)ds, &%) do not depend
on 7, thus they must coincide. Define

g'(s) = \/—_1(afi(s)+ %fi), aeR, beR

Then
t . ) fe%e] 1 t t - , -
S exp (ng(s) ds) dP* =1+ Z HSS ( S gz(31)~-~gl(sk)sz) dsy - --dsp,
@2 0 k=1 0 0 i

by Fubini’s theorem.
Now the general case can be proven by repeated application of the previous case: Fix
a partition 0 =tg < --- <t, <T,J <N, K <n and suppose that
ti

Law pi (S i (s)ds, fi(r), & k<K, ji <J,j< N, 1< m)
0
are equal for ¢ = 1,2 for every choice of 0 =rg < --- < rp, < T in D*. Set
tr
= (V) ds fr), € k<K i< <N I<m),  i=1.2,
0

and fix a measurable set A in the state space of . Then

Lawpi (fj, (1), Ippreay - L < M) = Lawpz(f7 (17), Ippea 1 1 < M)



38 M. Ondrejat

for every partition 0 =rj < --- <7}, <T in D* and jo < N. Hence

t t
Laro p1 <S jlg(s) dS7I[’r]1€A]) = L£a p2 <Sfj20(8) dS,I[rﬁeA])
0 0

for every t < T, jo < N and A by the first part of the proof, which is, indeed, the
induction step. =

COROLLARY 8.2. Suppose that (fi(t) : t < T) is a [0, 00]-valued measurable process on
(028, F1, PY), i = 1,2, such that
Larwp (f1(r) : 1 <m) = Lawpa(f2(r) : 1 <m)

for every partition 0 =1y < -+ <1y <T in D*. Then
T T

Pl{gfl(s)ds<oo} :P2{§f2(s)d8<oo].

Proof. The bounded measurable processes t — f (t) = max{ f*(t),n} satisfy the assump-
tion of Lemma 8.1. Thus

T T
PIH fH(s)ds < A} :PQHfg(s)ds < A}
0 0

for every A € R and we have
T T
PIH fr(s)ds < A} = P2Hf2(s) ds < A}
0 0

by Lévy’s theorem. The claim now follows by letting A tend to infinity. m

THEOREM 8.3. Let (Y,Y) be a measurable space, £ a Y -valued random variable and
(f;(t) 1t <T), j <N, X-valued measurable processes on (2, F', PY), i = 1,2, satisfying

T T
P [ If ()l ds < oc] = P2 [Ilf2(s) | ds < 0] =1, j <N,
0 0

and

Lawpi (fj(r).£" :j < N, 1 <m) = Lawpe(f7(r),6% 15 < N, 1 <m)
for every partition 0 = ro < -+ < vy, < T in D* for some D* C [0,T] of Lebesgue
measure T. Then

tr tr
Lawp (S () ds, € : k,j) — Cawpe ( | r2(s)as.¢? k,j)
0 0

for every partition 0 =ty < --- <t, <T.
Proof. First suppose that X = R and define the real functions
hom(r) = sgn(r) max{|r|,m}, meN.

Then, by Lemma 8.1, the measures
tk

Lato ps ( {hon(Fi(s))ds. €k <, j < N)
0

are equal for i = 1,2 for every m € N and the claim follows by letting m tend to infinity
by Lebesgue’s theorem. To prove the general case choose a sequence (z} : Il € N) in X*
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which separates points of X. Then, by an application of the previous case, we get the
equality of the measures
ty
Larop: ( V(o fi(s) ds,€ sk <m 1< L, j< N)
0
for ¢ = 1,2 for every L € N. But this is already equivalent to the conclusion of the
theorem as (z] : [ € N) generates the Borel o-algebra on X. m

REMARK 8.4. Notice that the probabilities appearing in condition (1) are, under the
assumptions of the theorem, always equal by Corollary 8.2. Moreover, by obvious modi-
fication of the proof, the theorem holds true even if some of f™’s were [0, co]-valued.

Distribution of stochastic integrals

LEMMA 8.5. Let (Y,Y) be a measurable space, &' a Y -valued random wvariable, B!
m < M, real (F})-Wiener processes and (gi(t) : t <T), j < N, (F{)-progressively mea-
surable bounded processes on (2°, F', (F}), PY), i = 1,2, such that

Lawpi (g(11), By, (r),§' : 5. 1,m) = Lawpa(gj (1), By, (1), €% : 4. 1,m)
for every partition 0 = rog < -+ < 1 < T in D* for some D* C [0,T] of Lebesgue

measure T'. Then
tr 23

£ar p1 (S g} dB}, &' k,j,m) = Law p2 ( S g2 dB2, €% k,j7m)
0 0
for every partition 0 =ty < --- <t, <T.

Proof. First suppose that all processes g§ are, in addition, continuous and D* = [0, T].
Then

tr ty
Larp ( [ glpdBl. €' k.. m) — Carops ( [ 2 dB2. € ki m)
0 0

for approximations

L
9 () = g5 (ri) I, (1)
=1

with a subdivision 0 = 79 < -+ < 71y, = T of ({x : k < n). The claim now follows by
letting the subdivisions’ norm tend to zero. In the general case consider the continuous
uniformly bounded processes
t t max{t—1/L,0}
gu=L | gas=rL({gsds— | gi(s)ds).
max{t—1/L,0} 0 0
We have

Laro p1 (gjl'L(rl)v B}n(rl)v 51 7 la m) = Lawp: (gsz(Tl)a B?n(rl)v 52 g la m)
for every partition 0 = rg < --+ < rp, < T by Lemma 8.1. In fact, we should consider
partitions in D* but the intervening processes are continuous and D* is dense in [0, T
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Thus, by the previous case,

tr tr
Law p: ( [ glpdBlL.€': k.. m) — Carops ( {2 aB2, ¢ k;,j,m),
0 0

and the general claim follows by letting L tend to 0 as a sequence because g§; — ¢’
dt ® P'-almost everywhere on [0,T] x 2!. m

THEOREM 8.6. Let (Y,Y) be a measurable space, £ a Y -valued random variable, W' a
Q-Wiener process on U and (g5(t) : t <T), j < N, Ly(Up, X)-valued (F})-progressively
measurable processes on (2°, F', (F}), PY), i = 1,2, satisfying

T T
P! § 119 ()1% 0.x) ds < 00] = P2| J g3 (9)]13, 05 0y ds < o0 =1
0 0

for every 7 < N and

Eampl (gjl'(’rl)v WTlL (hk)v 51 : ja lv k) = 'g’aml32 (gjz'(rl)a W'rzl (hk)7 62 : j7 la k)
for every hy, € U, k < K and every partition 0 = ro < -+ < rpy < T in D* for some
D* C[0,T] of Lebesgue measure T. Then

tr t
Satop ( fg; AW, € k,j) — Satops ( Skg]?- AW?, €2 . k,j)
0 0

for every partition 0 =ty < --- <t, <T.

Proof. We start by taking the simple approximation F,, : Ly(Up, X) — L(U,X), n € N,
with values in the space of finite-dimensional operators of L(U, X) as in Lemma 3.4 such
that [|F, A — Al 1, w,,x) \ 0 for every A € Ly(Up, X). Thus each F), is of the form

> Ic, By,
k=1

where (Ck : k < m) is a measurable decomposition of Lo(Uy, X) and By € L(U, X) are

finite-dimensional. If we put g5, = F, g, we will have
T

(%) Tim {1lg3(5) = g5 (9117 i) ds = 0
0

Pi_almost everywhere, i = 1,2. Moreover
Eampl (gjl'n(rl)v WTlL (hk)7 gl : ja l7 k) = SClnjp2 (gjzn(rl)a Wrgl (hk>7 52 : ja l? k)
for every hy € U, k < K and every partition 0 = rg < --+ < rpp, < T in D*. So, if we

show that the measures
123

(#%) Laropi (<xl | g;idei>,gi <L k<n,j gN)
0

are equal for ¢ = 1,2 for every m € N, L € N and some sequence (z; : [ € N) which
separates points of X (hence generates the Borel o-algebra of X) we will prove the claim

of the theorem using (*) and Proposition 4.1 because (**) implies
tk tk

gawps (§ gh, W€ i k) = Lawps (g2, dW2 €2k j), meN.
0 0
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But each g, is of the form

> ligiconBr,
k=1

and recalling the proof of Lemma 3.6, we have
t m t
<x*’ S g;'n dWl> = Z S I[Q}‘ECk] dW*(Bjz").
0 k=10
Thus (xx) follows from Lemma 8.5. m

REMARK 8.7. Notice that the probabilities appearing in the assumptions of Theorem 8.6
are always equal by Corollary 8.2. Moreover, to verify condition (2), one should take
advantage of Proposition 2.5(5).

Distribution of measurable selectors

PROPOSITION 8.8. Let (02¢, F' (F}), PY), i = 1,2, be filtered probability spaces, X a Pol-
ish space, (Y,)) a measurable space, G a nonempty open set in R, D* a nonempty subset
of [0,T] and £ : 2° — Y, i = 1,2, measurable mappings. Let H' : [0,T] x 2! x X — R,
i=1,2, satisfy:
(1) The mapping [0,T] x 28 — R : (t,w) — H'(t,w,y) is (F})-progressively measur-
able for everyy € X, i =1,2.
(2) The mapping X — R : y+— H'(t,w,y) is continuous for every (t,w) € [0,T] x 2,
i=1,2.
(3) Larwpi (H (5, yx), " ¢ 4, k) = Laropz(H2(tj,yx), &% ¢ j, k) for every finite subset
{to,...,tn} of D* and for every y1,...,ym in X.
(4) The set {y: H'(t,w,y) € G} is nonempty for every (t,w) € [0,T] x 2%, i=1,2.
Then there exist (F})-progressively measurable X-valued processes s* such that
Laropi(s'(t;), €' 1 j) = Larpa(s2(¢5), €2 1 5)
for every to, ..., t, in D* and H'(t,w,s'(t,w)) belongs to G.
Proof. Suppose that d < 1 is a complete metric on X and choose a countable dense
subset 71,79, ... of X. Define G¥(t,w) = {y : H(t,w,y) € G} and construct a sequence of
(F)-progressively measurable X-valued processes s’ in such a way that:
(a) d(si_;(t,w), s (t,w)) < 27 for every n > 0 and (t,w) € [0,T] x 2%, i=1,2.
(b) d(st,(t,w), Gi(t,w)) < 27" for every n > 0 and (t,w) € [0,T] x 2¢,i=1,2.
(C) Sampl (Sfll(tj)’ Hl(tja yk), 51 : ja k) = £C“UPQ (Si(t])a H2(tj, yk)a 62 : j, k) for every
to, .. sty in D* y1,...,ypy in X and n > 0.

First set s} (t,w) identically equal to 79 and then, proceeding by induction, assuming that
(a)—(c) hold for some s{,_,i=1,2,n > 1, define

n—1y

Ag» ={(t,w): d(rj,sﬁl_l(t,w)) <27 N {(t,w) : d(rj,Gi(t,w)) <27}

for j >0 and i = 1,2, which are (F})-progressively measurable because

{(t,w) : d(rj, G (t,w)) < 27"} = U{(t,w) cHi(t,w,r) € G, d(rj,r) < 27"}
=1
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Moreover

UAZ 0,T] x 2, i=1,2,

by assumption (b). Thus deﬁnmg
sh=r; onAé-\UAf forj>0and¢=1,2
1<j

we complete the induction step and now it suffices to take s® as the limit of si,. m

9. Proofs of Theorems 3 and 4

Proof of Theorem 3. We will start with the following lemma:

LEMMA 9.1. Under the assumptions of Theorem 3 let (21, F, (F}), P, Wt u') be an-
other solution of (0.1) such that Law p(u) = Larwp: (ul). Further suppose that & : 2 — Y,
£ Y =Y are some random variables, where (Y,)) is some measurable space. Let also
x, resp. x}, i < n, be (F), resp. (FL)-progressively measurable processes in X; such that

T
(1) PH ||g*(s,u(s))xl(s)||%/0 ds <oo| =1 foreveryi<n
0
and
(2) Sarop(uty),i(s;),€ 1 i, ) = Saro pa (ul (t), 7H(s;),€1 i, )
for any finite sequences to, ..., ty, and So,...,Sm in D*, where D* is a subset of [0,T] of
Lebesgue measure T'. Then
tj
Sarop (u(tj),g, [ o (s.uls)ails) aw, -, j)
0

= Lawp: (ul(tj),gl, [ o (s.ut(s))ak(s) awd - m)
0
foreveryO=to < --- <t,, <T.

REMARK. Observe that (2) in Lemma 9.1 is equivalent to

Sawp (u(ty), vi(s;), €+ i,§) = Lawps (u' (t;), 2i(s7), € +,J)
for every tg,...,tm, in [0,T] and sq,..., Sy, in D* by the assumption (0.3). Indeed, (0.3)
implies existence of a continuous modification of ¢ — (z*,u) for every z* € D(A*)
(Theorem 13) and D(A*) separates points in X7, so it generates the Borel o-algebra
in X! Consequently, given 0 = tg < ... < t,,, < T we find some t;? € D* such that t;‘-’ — t;
and extend the equality of the intervening laws to tg,...,t, by the above mentioned
continuity.

Proof of Lemma 9.1. Note that (0.3) holds for u!, as well as

P §llg" (s, ul () (s)], ds < 00| =1
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for every i < n by Corollary 8.2 (assuming (1) and (2) of Lemma 9.1). Hence we can
apply Theorem 13 (together with the remark included in the proof) to obtain

t t
Sg*(sv us)Riy* dWs = <y*, R)\ut> - <y*, R)\u0> - S <y*a AR)\US + ka(sv us)> ds
0 0

for every y* € X7, where Ry = (A — A)~! for some ) in the resolvent set of the generator
A of (S;) in X;. Similarly, we get an analogous equation for u'. Now suppose that all z;,
z}, i < n, are bounded, norm continuous and D* = [0, T]. Fix a partition (¢, : 5) of [0, 7]
and define

L—1 L—1
Titm(t) = Y Fnai(r) (8, @lpm(t) = Y Fual (1) Iy (t)
1=0 1=0
for some subdivision 0 = 79 < --- < r = T of (t; : j) where F,, are the simple

approximations of identity from Lemma 3.4 applied on the separable space X7. Then the
claim of the lemma is true for R}x;r,, and R;:L’%Lm by Theorem 8.3 because

t L—1 t
Sg*(S, ug)R*wipm dWs = Z (Frnwi(r1), Rugnr,,, — Rugar,) —S(;viLm, ARus+Rf(s,us))ds
0 1=0 0
and analogously for ;.. Letting m — oo we get the claim for
L—1 L—1
wip(t) =Y i) () 2l =D @i () Iy (1)
1=0 1=0

by Proposition 4.1. Letting the subdivision’s norm tend to zero as L tends to infinity
we deduce the claim of the lemma for R}z, ijll by another application of Proposition
4.1. In the second step we will suppose that x;, z} are bounded and D* has Lebesgue

measure T'. Consider
t t max{t—1/L,0}

yir,(t) =L S xi(8)ds = L(sz(s) ds — S x;(s) ds)
max{t—1/L,0} 0 0
and analogously y); , where the integral is taken in the Banach space X7. We know that
Samp(u(tj), yiL(tj) : Zv.]) = Law p1 (ul(tj)’ yilL(tj) s .])
for every 0 = tg < -+ < t;, < T by Theorem 8.3. Thus, referring to the first part of the
proof, we conclude that the claim of the lemma holds for R}y;z, resp. Ry}, and so it
holds for R}x;, resp. Rz} by Proposition 4.1 as y;1,, resp. y;; converge in norm to x;, resp.
z} dt®P, resp. dt®P'-almost everywhere (e.g. [DU]). On the other hand, AR{z* — z* for
every * € X} as A — oo because X is reflexive (so A* is the generator of a Cy-semigroup
on X7). Hence the claim holds for z;, x} as well by letting A tend to infinity and by the uni-
form boundedness of z; and z}. Finally, to cover the general case, split the processes into

o 1.1
Tim = Tillje,|<m]y  Tim = Ti L[z} <m)-

1
im

The claim holds for x;,,, =, by the previous part of the proof and

T T

* % * P-a.e.
Vllg™ (s, u(s)as — g7 (s, w(s)wim 1B, ds = § T 5millg” (s, uls))ail|, ds =5 0,
0 0

Since the same reasoning holds in the analogous case the proof is complete. m
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LEMMA 9.2. Under the assumptions of Theorem 3 let (21, F, (F}), P, Wt u') be an-
other solution of (0.1) such that Lawp(u) = Lawpi(ul). Suppose that & : 2 — Y,
£ Y =Y are random variables, where (Y,))) is a measurable space, such that

ﬁamp(u(tj),f : j) = Sampl (Ul(t]’),fl : j)
forevery0 =ty < -+ <ty <T in D*, where D* is a subset of [0, T| of Lebesgue measure

T. Let p(t,z) € L(Uy) denote the orthogonal projection of Uy onto the closed subspace
(Kerg(t,x))*t. Then p: [0,T] x X — L(Up) is strongly measurable and

tj ty
garp (u(ty),€, § p(s,u(s)hidW, 14, 5) = Sawpr (w(t5), 6", § pls,ul ()hs aw? i, 5)
0 0

for every0 =tg < --- <ty <T and hy,...,h, in Up.

Proof. We begin with the strong measurability of p. Fix h € Uy and let ag,az,as,... be
a dense subset in Uy with ag = 0. In this way we can define
0c(t, ) = inf{||h — a;||u, : lg(t, x)as||x, <e,i=0,1,...}
= inf{[|h —allv, : lg(t, v)allx, <&}
for (t,xz) € [0,T] x X and g. (¢, x) = a;, (t,x) € [0,T] x X, where ¢ is the least index in
{0,1,...} such that
1h — aillu, < de(t,x)+1/m
and ||g(t,z)a;||x, < e. Both d.(¢,x) and ¢, ., (¢, x) are obviously measurable. But
192,m — denllFy < 2082 +1/m)? +2(6- + 1/n)* — 447
by the parallelogram law. So ¢. ., converges to some measurable g. in Uy and we have
lh = qe(t, 2)|lu, = 0c(¢t, z) and || g(¢, 2)(g: (¢, z))||x, < € for every (¢,z) € [0,T] x X. Now
let 0 < 1 < e9. Using the parallelogram rule once again, we get
lge, = a=, 17, < 202, + 262, — 402,
But € — d.(t, z) is nonincreasing on (0, 00) and bounded by
6(t, x) = nf{[lh — allu, : lg(t, z)allx, = 0}

for every (¢,2) € [0,7] X X so g. converges to some measurable ¢ : [0,T] x X — Uy as
¢ — 0 zero and we have ||h — ¢(t,z)||v, < d(t,z) and ||g(t, z)(q(t, z))||x, = 0 for every
(t,x) € [0,T] x X, so ||h — q(t,z)||u, = d(t,x). Hence (¢, z) is the orthogonal projection
of h onto Ker g(t, x), therefore (¢,x) — p(t,z)h = h — q(t,x) is measurable.

Now we can proceed to show the second assertion. Note that Rng g* (¢, z) is dense in
(Ker g(t,z))*+ = Rngp(t, x) for every (t,z) € [0,T] x X, so define

H(t,wa :CT, ceey I’;) = E Hg*(tau(t?w))x: 7p(t7u(t7w))hi”U0
=1
on [0,T] x £2 x (X7)™ and

n
Hl(ta W, xia s ,CL‘:;) = Z Hg*(tv ul(tvw))x: - p(t, ul(ta w))hiHUo
i=1
on [0, T] x 21 x (X7)™ for fixed hy, ..., h, in Uy. Now we can apply Proposition 8.8 to get
progressively measurable processes T, .., i <n, in X; such that, for every m € N:

im?
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> Lawp(u(ty), &, Tim(sy) ¢ 4, i) = Larwpi(ul(t;), &zl (sj) : j,i) for every partition
to,...,tn in D* and every sg,...,sy in D*.

> Y gt (¢ ut, w)zim — p(t, u(t,w))hillu, < 1/m everywhere on [0, 7] x 2.

> > lg*(t ut(tw)) g, — p(t, ut (t,w))hillu, < 1/m everywhere on [0,T] x 2.

But now we are exactly in the situation of Lemma 9.1 and the claim of Lemma 9.2 is
proven if we let m tend to infinity, by Proposition 4.1. m

Proof of Theorem 3. First we remark that the set of one-to-one operators from L(Uy, X7)
is strongly measurable. Indeed, both Uy and X; are separable reflexive, hence a linear
bounded operator B € L(Up, X1) is one-to-one if and only if the range of its adjoint
operator B* is norm dense in Uy, i.e. inf{||B*z} —h;|| : K € N} = 0 for every j € N, where
(a3 : k), resp. (h; : j) are norm dense countable subsets of X, resp. Uy. As a consequence,
if (21, FL, (F}), P, W1 ul) is another solution of (0.1) such that £arop(u) = Laropi (ut)
then
dt @ P*{(s,w) : g(s,u*(s,w)) is not one-to-one in L(Uy, X;)} = 0.

From Lemma 9.2 we deduce that, given h € U, p(s, u(s,w))Qh = Qh for dt ® P-almost all
(s,w) € [0, T)x 2 as well as p(s, ul(s,w))Qh = Qh for dt® P*-almost all (s,w) € [0, T]x 2*

and thus
t t

PHp(s,u(s))Qh aw =\ Qraw = wi(n)| =1
0 0
for every t € [0,T] by Example 3.7, and an analogous equality holds for (u!, W1). Hence
Lemma 9.2 yields the assertion of Theorem 3. m

Proof of Theorem 4. We will start with an auxiliary lemma referring once again to
the notation of Section 11:

LEMMA 9.3. Let X3 be reflexive, xg € X, and let (S;) be a Cy-semigroup of bounded linear
operators on L(X1). Suppose that equation (0.1) with u = 6., has the uniqueness in law
property for solutions satisfying (0.3) and (0.4). Let Sixog € X for every t € (0,T]. Then
the o-algebra o(uy : t < T) is independent of Gy for every solution (£2,G, (Gt), P,u, W) of
(0.1), (0.3), (0.4) starting from xzo € X.

Proof. In compliance with the notation of Section 11 (preceding the proof of Theorems 1
and 2) we fix an orthonormal basis (h}, : k € N) in U and write Wye. for the continuous
RY-valued process (W(h;) : k € N). We also fix a sequence (z; € X{ : k € N) in
D(A*) which separates points in X; (hence in X). Denote by e : X — RN the continuous
embedding z — ((z}, ) : k € N) and consider the extended (Borel measurable) inverse
e 1 : RN — X where e 1(y) = 0 for y ¢ Rng(e) (see Lemma 11.1). The remark included
in the proof of Theorem 13 ensures a continuous modification of the RY x RN-valued
process t — (eur, Waec(t)), hence there exists a mapping (kernel) k : 2 xB(€x €) — [0, 1]
such that

(a) 2 —[0,1] : w k(w, V) is Go-measurable for every V € B(€ x €).
(b) B(€ x €) — [0,1] : V — k(w, V) is a probability measure for every w € {2.
(c) SGO k,(V)dP = SGO Iy (eu, Waec) dP for every Gy € Gy and V € B(€ x €).
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To simplify the notation we will write

Tri:Q:XQ:HO([OvT]v]RN):(glng)Hgiv Z:L2
The existence of k is guaranteed e.g. by [Ed, Corollary 3.3] as C([0,T],RY) is a Polish
space. Equality (c) can now be rewritten as
(%) | k(w, [(=',7%) € V]) dP(w) = | Iv(eu, Waec) dP.

GO GO
The space €x € endowed with the filtration (B;®B;);c[o,7) in BOB is a filtered measurable
2 are adapted continuous RN-valued processes. Firstly we will show that

hi, hym(t) on Vi,
Bt(h): {§k< k >U k() OHVE

space and 7!,

helU, t<T,

=
Il
——

(t,91,92) €[0,T] x € x C: Z(h,ﬁ,h)Um%(t,gl,gg) is convergent}
k

- ﬂ U ﬂ {torg) € 0T x € x e | S (i homitgr. 90| < 1/5
k

defines a cylindrical Q-(B; @ B;)-Wiener process on € x € under the probability measure
k., for P-almost allw € 2. Tothisend fix N € N,0< s <t < T, A € B,®B,, B € B(RY)
and set YV = (72,...,7%). Then (x) yields
k(AN = YN € B]) = ko (AN, (t = )[(QV2h,Q*1})]i ;)(B)
for P-almost all w. But since B, ® B, and B(R”") are countably generated, there exists a
set, say G € Go, such that YV is an RV-valued k. -(B; ® B;)-Wiener process for every
N € Nand w € G;. As a consequence, Y, (h}, h)ymi(t) is a sum of sign-invariant random
variables, hence it converges in measure (under k) if and only if it converges k,-almost
surely (for w € Gy). So, given h € U, we get k,[V}] = 1 for every ¢ < T and every w € G;.
Passing to the limit in (*) we get
(o) B, (7, Biha, . By hin) € V) dP(w) = | Iy (eu, Wi, b, ., Wy hn) dP
Q Q
for every t1,...,tm in [0,T], hi,...,hp in U and V € B @ B(R™).
Now fix ¢t € (0,7]. We are going to show that

T
B JULF (e m D), + gy e DI gy xy)) dr < 00] =1,
0
(aa) .

ko JO0 (e ) 4+ Ma(g(r, e b)) dr < oo] = 1,
0

and second that
t

t
(bb)  k, [6_17'(,51 = Sie tnp + S Sy o f(r,e tal)dr + S S _rg(r,etmh) dBT} =

0 0
(cc) kole tmy = 0] = 1
for every w from some G5 € Gy, Go C Gy, P(G2) = 1. The fact that (aa) and (cc) hold
for P-almost all w follows immediately from (*) and Proposition 9.4. To show that (bb)
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holds define
O={(r,y) €[0,] xRN : S, _,g(r,e"'y) € Ly(Uy, X)}
and
¢ [0,8] x RY: (r,y) = Si—rg(r, e y)lo(r,y).
Choosing ¢1(r,y) = Io(r,y) in Proposition 9.4 we get

(dd) k., ﬁfo(r, by dr = t} —1,

(ee) k.7 € Rnge] =1

for P-almost all w € 2 by (x). We can introduce, as in the remark following Lemma 3.4,
simple approximations F), : Lo(Up, X) — L(U, X) such that each F,, takes only finitely
many values, and moreover all of them are finite-dimensional operators in L(U, X), and
| Fn(B) = Bl Lyws,x) \ 0 for every B € Ly(Up, X). Consider an equidistant partition
0 =ty < -+ <ty =t and define measurable mappings from € to Lo(Up, X) as in
Proposition 9.4:

t ot
Zily) { (m/t)§, @y dr it § 1100yl x) 4 < o0,
i\Yy) = ot
0 it § 100, 90 )I12, g ) = 00,
and
Zu(y) = 0 for 0 <t <tq,
W=\ Zily) fort; <t<tig,i=1,....,m—1.
Note that Z (depending on m) is a predictable process with values in Lo (Up, X)), and so
is (Z;(7')). Now the composition process t — F), o Z;(y) is piecewise constant and takes

only finitely many values, all of them finite-dimensional operators in L(U, X). It is easy
to verify that

t t
(3%) | k(w, [(wl,SFnZT(wl) dBT) € VD P =1, (eu,SFnZT(eu) dWT) dP
e 0 Q 0

for every V € B@B(X) because both stochastic integrals are elementary and are defined
exclusively by Borel compositions, and so (3*) holds by (x*) in a straightforward manner.
Indeed, the left hand side integral in (3*) is considered only on G; as we know that
P(G1) =1 (so Gy can be exchanged with 2) and B is a @Q-Wiener process under k,, only
for w € G1. Now, letting n — oo, we obtain

t t
(4%) S (S cp(ﬂ'l, § Z,(mh) dB,«) dk,)dP = S gp(eu, S Z(ew) dW,.) dP
Gy € 0 Q 0
for every bounded continuous function ¢ : € x X — R since
¢ t
SFnZ,.(wl) dB, — S Z,(x") dB,
0 0

in measure (under k,,) for every w € G5 by (aa), where Sg Z,(7') dB, depends on w and

is defined only for w € G1. In the last step we recall the dependence of Z on m and let
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m — o0 to get

R k:(w, le,iu}(r, ng)dBT) c VD P = Iy (eu,iw (r, eur)dWr) dP
Go 0 2 0
y

by the same argument as in the previous step. Now we appl

(
| k:(w, le,SSt_rg(r,eflﬂi)dBT) c VD P =1 ( u,§St rg(r, ur)dW)
0 2 0

Go
which, together with Proposition 9.4, implies (bb).

Now we can find a set Gs C G, G3 € Gy, such that (aa), (bb), (cc) and (ee) hold
for every w € G5 and every t € J, where J is some countable dense subset of [0,7]. We
claim that the process t — e~ 1m} is a solution under k,, of (0.1), (0.3) and (0.4) with the
initial condition xg. To see this, choose w € G5 and define

t t
vy = Sexo + S S of(s,e i) ds + S Si_sg(s,e ) dB,
0 0

under k. As remarked in the proof of Theorem 13, the process t — v; is an X-valued
process predictable in Xy with respect to the k,-augmentation of (B; ®B;) in B&B, hence
predictable in X (all summands belong to X) and ¢ — e(v;) has a continuous modification.
But k,[v; = e~ 1n}] = 1 for every ¢t € J by (aa). This implies that k,[e(v;) = 7}] = 1 for
every t € J by (ee). In consequence, ky[e(v;) = 7] = 1 for every t € [0, 7] by continuity
of both ev and 7!. Therefore k,[v; = e~!7}] = 1 for every t € [0,T] as v takes values
in X, whence the claim. In particular,

Plus, € By, i <n] =kyle tmy, € By, i <n] = ky[m, € e[By], i <n
for every w € G3s, t1,...,t, in [0,T] and By,..., B, in B(X), where the first equality
holds by uniqueness in law. Given G € Gy with G C G3 we get

P(G)Plut, € By, i < n) = \ kylm, € e[By], i <n]dP = P[G N [u, € By, i < n]
a

by (%) so the independence of o(u; : 0 <t < T) on Gy has just been shown. m

PROPOSITION 9.4. Let ¢q : [0,T] x RY — [0, 00] and @3 : [0,T] x RN — Y be measurable
functions, where Y is some separable Banach space. Then, for some 0 < a <b<T, the
mappings

b
¢ — (0,09 sy = [ (r ) dr
a
b . T
C Vi { §,a(ryr)drif §o lloa(ryn)|ly dr < oo,
: . T
0 if §, lle2(r,ye)|ly dr = oo,

are Borel measurable.

Proof of Theorem 4. Consider ¢ : [0,T] x X — L(Up), where ¢(t,z) is the orthogonal
projection in Uy onto the closed subspace Ker g(¢,x). Then ¢ is strongly measurable by
Lemma 9.2. Next consider a solution ({2, F, (F), P,W,u) of (0.1), (0.3), (0.4) starting
from zy and extend the stochastic base (by product extension of probability spaces)
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so that there exist Q-(F:)-Wiener processes B and C such that B, C' and (u, W) are
independent. Further define

¢

(s, us)Qh dW, +Sq(5,us)thBs,

S) 0
p

t
p(s,us)QhdC; + { a(s,us)Qh AWV,
0
for h € U. Then

(w(ha), w(h2))e = (v(h1), v(h2))s

(
t
S 5 y Us th (Saus)Qh2>U0 + <q(8’uS)thaq(s’uS)Qh2>Uo)dS

0
= t{Qh1, Qha2)u, = HQ"?h1, Q' ha)y
by independence of W, B and C. Thus w and v are Q-(F;)-Wiener processes. Moreover
t

(w(hi),v(h2))e = X (p(s,us)Qh1,q(s, us)Qh2)y, ds =0,

0
which, by Lévy’s theorem, implies that

> ay — ag is independent of F,

> a} — al is independent of a? — a2,
for every 0 < s < t < T, where a = (a',a?), a' = (w(h),...,w(hy)) and a* =
(v (hl) ,0(hy)) with hq,.. hm,hl7 ..., h, belonging to U. This means that the o-

algebra a(wt(h) —ws(h)) is independent of
Ge =FoVo(vp(h) —vs(h) i 7> s, helU)=F,Vo(v(h):r>0,hel).

Hence w is a Q-(G;)-Wiener process. Now, if ¢ is an (Fy)-simple process (as we have
assumed in Step 1 of the construction of the stochastic integral) then one verifies that

t
(a) S¢s dwg = 1/)sp(57us) AW, +§1/)sQ(S7us)dBS7

0 S) 0
i

t

t

(b) st dvs =\ sp(s,us)dCs + S Ysq(s,us) dWs,
0 0 0

directly by definition. A density argument implies that the above equalities hold for every
(F:)-progressively measurable process 1 satisfying

t
PH 193117, (179, x) ds < OO} =1
0

by the construction of the stochastic integral and by the ideal property of Lo(Uy, X) as
shown in Proposition 2.4, in particular

[sp(5,us) Lo o, x) < 195l Lo o, ) 1P(s5 us)l wo) < [1¥sllLo o, x)
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and analogously for ¢(s, us). In consequence, taking s = Sy_sg(s, us), we get

t t t
SSt—sg(sa us) dws = S St—sg(sa us)p(sa us) dWs = S St—sg(sa us) dWs
0 0 0

by (a), and since the stochastic integral
¢

S Si—s9(8, us) dws
0
is the same under the filtration (F;) and (G;) we conclude that (£2,F, (G;), P,w,u) is a

solution of (0.1), (0.3) and (0.4) starting from xg, hence w is independent of Gy by Lemma
9.3. In particular, o(u; : 0 < ¢ < T) is independent of o(vi(h) : t > 0,h € U), and this is
the crucial point of the proof. Indeed, consider another solution (2%, F*, (F}), Pt ul, W1)
of (0.1), (0.3) and (0.4) such that £atop(u) = Latop: (ul) on the extended space (as at the
beginning of this proof) so that it supports two Q-(F})-Wiener processes B! and C! such
that B!, C* and (u', W?) are independent. We define u' and v! in the same way as we
defined u and v to infer that o(u} : 0 <t < T') is independent of o(vi(h) : t > 0,h € U).
But this implies that Lawp(u,v) = Lawp: (u',v!), and consequently

tj tj
(c) Larop <utj, S q(s,us)h; dvs : z’,j) = Lawp (u%j, S q(s,ul)h; dv! : i,j)
0 0
forevery 0 =tg < --- <ty <T and hq,...,h, in Uy by Theorem 8.6. But
¢ ¢ t t
Sq(s, us)hdvs = Sq(s, ug)h dW, and Sq(s, ul)hdvl = Sq(s, ul)h dW}
0 0 0 0
by (b), hence, incorporating this fact to (¢) and applying Lemma 9.2 we obtain
t; t;
garwp (u,, | als,u)hi AW, | p(s, us)hidW, : 4, j)
0 0 i i
= Lawp1 (utlj, S q(s,ul)h; AW}, Sp(s,u;)hi dwl: Lj)
0 0
for every 0 =tg < --- <ty <T and hy,...,h, in Uy. This, in particular, means that

Lawp(ur,, Wi, (i) 4, §) = Lawpa (uf,, W (hi) 2 4, )
for every 0 = tg < --- < t,, < T and fNLl,...,En in U because SZ QEdW = Wt(fNL) and
Sf) QhdW?' = W} (h) for every h € U by Example 3.7. =

10. Proofs of Theorems 5 and 6

Before we give the details we recall a version of Lévy’s theorem:

PROPOSITION 10.1. Consider a filtered probability space (2°, Ft, (F}), P?) with a d-dimen-
sional continuous local (F})-martingale M*, M¢ = 0, defined on [0,T], and an (Fy)-
measurable random variable £ with values in a measurable space (Y,)), i = 1,2. Suppose
that the cross-variation (d x d)-matriz

Vii(t) = (Mj, My)e)
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is deterministic, independent of i and Law p1(£') = Lawp2(£2). Then
Larwopi (M (tr), &' j < d, k <n) = Lawpe (M7 (tx),&% : j < d, k <n)
for every partition 0 =tg < --- <t, =1T.

Proof. The classical Lévy characterization theorem implies that o(M} — M?) is Pi-
independent of F! for every 0 < s <t < T, i = 1,2, and Lat p: (M —M?) = N(0, V,—V5).
In particular we have equality of the marginal measures
Lar p1 (MJ1 (tk) 27, k/’) = Lawp2 (]\4]2 (tk) 27, k})
and P'-independence implies
Laropi (M} (tr,), & : j, k) = Lawps (M (tx) : j, k) ® Lawopi(£').

Proof of Theorem 5. Let (02°, F*, (F}), P*, W% u') be a filtered probability space with a
Q-Wiener process W and u?, i = 1,2, a progressively measurable process satisfying (0.6),
(0.7). It will be convenient to extend the operator-valued function S to nonpositive times

by 0 € L(X;, X) to obtain a strongly measurable family of operators in L(X, X) on the

real line. So, if we define the stopping times
t

7 =T A min {t < T (|1 £ (s, 0 (9)) 13, ds > k:} i=1,2,

0
then
t/\‘r,i 1 t/\T]Z
w) e~ | Sl an = 4§ o)l i) =12
0 0

is a P’-martingale by Proposition 7.1. Following Proposition 7.1 we define a new measure
Pi(F) = | Mf.apP’
F
on F! and a family of nonrandom strongly measurable L(Up, X)-valued processes
Y'(s) = Si—sg(s), te€0,T],
such that ¥ (s) € La(Uy, X) for almost all s < T Indeed, Lo(Uy, X) is a strongly measur-
able subset of L(Up, X) by Proposition 2.5(6) so we can define the stochastic integral of

in an unambiguous way as Sqﬁt dW with any Lo(Uy, X)-valued progressively measurable
process ¢! which coincides with ¢ dt ® P-almost everywhere. Then
t
Wi(h) = Wih) + | (F(s,ui(5)), ) Tjgrs)(s) ds, £ < T, heU,
0
is a Q-(F)-Wiener process on U with respect to P, and

(10.1) Vot aw? = (ot aw’ + { ' (s) £ (s, u'(5)) Ijg,r(s) ds

0 0 0
almost everywhere for every » < T and ¢ s T by Proposition 7.1. Now the mutual cross-
variation processes of the real local (F7, P*)-martingales W(h1), W'(ha), (z3, { ¢! dW?)
and (x3, { ¢! dWZ> are nonrandom and independent of ¢ for every choice of h; € U,
hy € U, 7 € X, x5 € X by Summary of Step 5 and Example 3.7. Hence the probability
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measures

tn

Law 5, (<m;‘, S Ptn dwi>,wtinhm,ui(0) g, m, m)

are equal for i = 1,2 by Proposi(;ion 10.1 for every partition 0 = tg < -+ < ty < T,
x7,...,2% in X* and hq,...,hp in U. Consequently, the measures

tn
(10.2) Law 5, ( { i dW?, Wi iy, ui(0) 2, m)

0

coincide for i = 1,2 since u!(0), u?(0) have the same law. The process
. i tot T
Si(t) = {S,;u (0) + §, vt dWi, 0<t<T,
u*(0), t=0,
has a predictable modification
¢

W) = | Suesg() £ 5,0 () [y my(s) s for i = 1,2
0
by (10.1), and due to (10.2), we get
Samﬁl(zl(tn), thnhm in,m) = 2am152(z2(tn), anhm in,m)

for every partition 0 = tg < --- <ty < T and hy,...,hy in U. Consider the auxiliary
process

t
() =\If(s. 2 ()t ds, t<T,i=1,2
Then, by Remark 8.4, 0
Lato s, (21 (tn), WE By € (t,) 2 1,m) = Lar s, (22 (tn), W2 huny €2(t) = 0,m),
Laro s, (21 (tn)y WE B, 7 2 1y m) = Lato s, (22(t0), W2 Byny 72 2 1y m),
since the process z¢ coincides with u dt © Pi-almost everywhere on [0, 7¢] by definition
of z* and thus
[7} < A] = [inf{max{e’(¢q) — k,0} : ¢ € QN [0, A} = 0]

modulo a ﬁi—negligible set for every 0 < A < T', which is already sufficient for the equality
of the measures above.
Now, as already observed,

(1) = f(t. 2" () o) () = f(t, 0" (8) 0,1 (2)

dt @ Pi-almost everywhere on [0, 7] x §2%, so the measures
tn
Law 5, (zi(tn),wtinhm,li(tn), S I'(s)ds : m, m)
0

are equal for ¢+ = 1,2 for every partition 0 =ty < --- <ty <71 and hy,...,hy in U by
Theorem 8.3. Consequently,

Samlgl(zl(tn),thnhm,ll(tn) in,m) = 2am152(z2(tn), Wt%Lhm,ZQ(tn) in,m)
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since
Wih=Wih— <§)ll(s) ds, h>U
for every t < T and h € U by the deﬁnition of W. Finally,
T
Law 5, (zi(tn),wgnhm,gﬁ a1 ()3, ds = n m)
0

are equal for i = 1,2 by Theorems 8.3 and 8.6, and since
T T

) <o~ = 3§l )
0

we conclude that Laro s, (2 (t,,), W hm,MZ( ) : m,m) are equal for ¢ = 1,2. But this
implies
Latop: (Zl(tn>7 thnhm : n,m) = Laro p2 (ZQ(tn)a WtQ,Lhm : n,m)
by the definition of the measure P’. Now, if we observe that z'(t) = zi(t) — u'(t)
Pi-almost everywhere, the claim follows by letting k tend to infinity. m
Proof of Theorem 6. Fix t € (0,T], set So =0 € L(X7,X) and define the processes
ni(s) = Si_sf(s,u'(s)), 05(s) =S sg(s,u'(s)), s<t, i=12.
Then 7} is measurable with values in X and 6% is (F})-progressively measurable with
values in L(Up, X) such that 0§ € Ly(Up, X) ds ® Pi-almost everywhere. Since Lo (Up, X)
is a strongly measurable subset of L(Up, X) by Proposition 2.5(6), we define the (F})-
progressively measurable Lo (Up, X )-valued processes
7% = 931[9;@2(1]07)()]’ i=1,2,
which satisfy
PZ[W%(S) = St,sg(s,ui(s))] =1, 1=12,
for almost all s < T'. Hence the measures
Laro ps (u'(8), u’ (0), 71 (r2), 15 (re), Wy, e = 1, k)
are equal for i = 1,2 for every hq, ..., hy, in U and every partition 0 =rg < --- <rp <T

in some set D* C [0, T| of Lebesgue measure T'. Thus, by Corollary 8.2, (0.2) holds for u?.

Moreover we conclude that
t t

Law p: (ul (1), Syut (0), S ni(s) ds, S s dWl)
0 0

t t
= Law p2 (u2 (t), S;u?(0), S ni(s) ds, S s dWQ)
0 0

by Theorems 8.3 and 8.6, so

1= P! [u (t) = Seut (0) +\ Si_s f(s,u'(s)) ds + St,sg(s,ul(s))dwl}

:P2[ (t) = Seu(0) + \ Si— s f(s,u*(s)) ds + St_sg(s,u2(s))dW2] .

O ey b O ey

-]
-]
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11. Preliminaries to the proofs of Theorems 1 and 2

Before we proceed to the proofs of Theorems 1 and 2 we make a simple but important ob-
servation on a bi-Borel embedding of a separable reflexive Banach space into RN (Lemma
11.1). More precisely, we re-establish the results of Yamada and Watanabe for mild solu-
tions (0.1) in 2-smooth Banach spaces. The proof in the finite-dimensional case relies on
the disintegration of the joint solution measure on the Polish state space of continuous
functions which is associated to the trajectories of the solutions. But, in contrast to the
finite-dimensional case, we do not know in general whether the solutions are norm contin-
uous. So it is not possible to consider C([0,T], X) as the state space for the trajectories
although we need some Polish space for the disintegration theory. On the other hand we
know that, in many cases (e.g. Theorem 13), there exists a sequence (z% : n € N) in
X* which separates points of X such that ¢t — (z},u(t)) is a continuous process. So one
way out is to consider the solutions with the above, rather weak continuity property, and
C([0,T],RY) as the state space for the natural coordinate decomposition of the trajectory.
We are also going to use the following notation:

> ¢ = C([0,7],RY), B =B(C([0, T],RY)).

> C([0, T, RY) - RN : £ f(#),t < T.
> ;2 C([0,T],RY) — C([0, T, RY) : i (f)(5) = f(tAs), t <T.

> (bt : C([O’TLRN) - C([OvT]vRN) : ¢t(f)(8) = f((t + 5) /\T) - f(t)v t<T.

> B, = B(C([0,T],RY)) = o(ms: s <t), t <T.
One can easily verify that the Borel o-algebra B(C([0,T],RY)) coincides with o (s :
s < T) so the mappings ¢; : (€,B;) — (€,B), ¢ : (¢,B) — (€,B) are measurable and
B:(C([0,T],RY)) = o(p;), t < T. Next we define

PF=XXxEXxCXC

>F*=B(X)@BeB®B,

> Ff =B(X)®B; ® B ® By,
and if v is a measure on (£2*, F*) we will write 7/ = F; Vo{N € F* : v(n) = 0} for the
v-augmentation of F; in F*. We fiz an orthonormal basis (hj, : k € N) in U throughout
this section and if W is a (Q-Wiener process on U then we denote by

>t Waee(t) = (Wi(h}) : k € N) the continuous process in RY and
> W = Law (Wyec) its distribution on (€,B) which depends only on Q.
Finally, let p be a probability Borel measure on X. Then we denote by
> G — B(X) @B, Vo{N € B(X)®B : p® W(N) = 0} the augmentation of
B(X)®B; in B(X) ® B with respect to @ W,
and, to shorten the notation, we will write
>a: 2% — X :(a,bc,c?) — a.
>w: 2 — € (a,b,ct,c?) — b
>yl 2 — € (a,bct,c?)—cti=1,2.

A decomposition result is discussed next:
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LEMMA 11.1. Let X be a separable reflexive Banach space (e.g. 2-smooth) and (x7} :n€N)
a sequence in X* which separates points of X. Then the image Rnge of the one-to-one
mapping e : X — RY : 2 — ((z7,z) : n € N) is a Borel subset in RN and the extended
inverse e 1 : RN — X e 1(y) =0 for y € Rnge, is Borel measurable.

Proof. The system S = {B C X : ¢[B] is Borel measurable in RN} contains closed balls
and X as these are weakly o-compact and e is continuous with respect to the weak
topology in X. Hence § is a g-algebra, whence the claim follows. m

COROLLARY 11.2. Let (Y,)) be a measurable space, (£2°, F', (Fi), P, &40, i = 1,2, two
filtered probability spaces, where &' is an (F})-predictable X -valued process, £2 = (€2 :
n € N) a family of real (F?)-predictable processes and n', i = 1,2, some Y -valued random
variables. Suppose that

Laropa (@, € (b)) n'  m,n) = Laropa (€2, (£), 7 < m, m)

for every partition 0 =tg < --- <ty < T, every z3,..., 23, M € N and N € N, where

(xf : n € N) is some sequence in X* which separates points of X. Then there exists a

predictable X -valued process & on (2%, F2, (F£), P?) such that

Lawpi (EX(ty), 0t 1 n) = Lawps (E(tn),n* 1 n)
for every partition 0 = tg < --- < ty < T and t — (z},£(t)) is a modification of
t—&2(t), neN.

Proof. Consider the mapping e associated to (27 : n € N) and define £ = e~ 1(£2). Then
¢ is a predictable process in X because &2 is predictable in RN and e~! is measurable.
Moreover

P2le(&(t)) = €2(t)] = P?[e(e€(1) = €2(1)] = P'le(e™ ¢ (1) = €' (1)) = 1

for every t < T and the equality of the laws follows from the fact that (z : n € N)
generates the Borel g-algebra on X. =

12. Proof of Theorem 2

In fact, we are going to prove a more general statement. Theorem 2 is its immediate
consequence.

THEOREM 12.1. Let p be a Borel probability measure on X, (£2,F, P,W,u) a solution of
(0.1) satisfying (0.2), and let (z} : n € N) be a sequence in X* which separates points
of X such that the processes t — (x,u(t)) have continuous adapted modifications. Then
there exists a probability measure P* on (§2*,F*), a Q-(FF")-Wiener process W* and
(FF")-predictable X -valued processes Z', Z? such that (2%, F*, (FF"), P*,W*, Z?) satis-
fies (0.1), (0.2) and the processes t — {(x%, Z'(t)) have continuous adapted modifications,
. Moreover

P*[ZY(0) = Z%(0)] = 1.
Larwop-(Z1,W*) = Lawp« (22, W*) = Larwp(u, W).

—~ —_
—_
~— ~— N
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(3) If we knew that P*[Z1(t) = Zi(t)] =1 fort from some dense subset of [0,T) then

there would exist a mapping R : X x € — € measurable in the sense
R:(X x¢€,G') = (¢,B), t<T,

such that whenever (2%, F', (F}), PL,W?,u}) is a filtered probability space with
a Q-(F})-Wiener process W' and an F}-measurable random variable ul with
distribution Laropi(ud) = p, if we define the predictable process u'(t) to be
e tmR(ud, Wi.), then the family (2',F (FL), P, W' ul) is a strong solu-
tion of (0.1) satisfying (0.2) with the initial condition ul and Larwpi(ul, W) =
£CWOP(U, W) .

We will start the proof of Theorem 12.1 by recalling one of the versions of the classical
theorem on disintegration of measures. See Corollary 3.3 in [Ed] for the proof.

PROPOSITION 12.2. Let Z be a Polish space, (H,H) a measurable space and q a prob-
ability measure on H @ B(Z). Then there exists a kernel ¢ : H x B(Z) — [0,1] such
that

(1) The mapping H — [0,1] : h+— q(h, F) is H-measurable for every F € B(Z).

(2) The mapping B(Z) — [0,1] : F — g(h, F) is a probability measure.

(3) ¢(BxF) = SB q(h, F)dgi(h) for every B € H, F € B(Z), where q1(B) = q(Bx Z)
for B € H is the marginal measure of q.

Proof of Theorem 12.1. Let e be the mapping associated to (z} : n € N) by Lemma
11.1. Then the modification of the random vector (u(0), Wec, eu — eu(0)) takes values in

X x € x € by the assumption of the theorem. Next consider the measure

Larwp(u(0), Wyee, eu —eu(0)) onB(X)B®B
and denote by ¢! its restriction to B(X) ® B; ® B, ¢t < T. By Proposition 12.2, there
exist the corresponding kernels ¢* : X x € x B — [0, 1], t < T, where we take (H,H) =
(X xC(X)®B;),t<T, and Z = €. The measure P* is then defined by
(12.1) P (B)= | ( ( ®q(7;7w)(B("”’w))) A ® Wz, w), BeF*,

XxC €x¢

where B@®) = {(y',y?) : (x,w,y",y?) € B} is the cut-set in (x,w) € X x €, the solutions
Z* are defined as
(12.2) Z'(t e, w,yt %) = 2+ ey (1)

and the ()-Wiener process as

NE

(12.3) . (h) =

z,w,yt,y?

(h,h,’g}ka, heU,

B
I

1
where the sum is taken in L?((2*, F*P*),C[0,T]) and w = (wy, : k € N) € €.

Proof of the first part of Theorem 12.1 (in a sequence of lemmas)
LEMMA A. Let t <T. Then o(¢p¢(Waec)) is P-independent of F;. In particular

)
(1) 0(0), ¢ (Waee), gelen — eul0)) is P-independent of o(6u(Waee).
(2) B, is W-independent of o(¢y) on (€,B).



Stochastic evolution equations 57

(3) Larwp(u(0), Wee) = p @ W.
(4) p®W is the ¢t -marginal of ¢*, t < T, from Proposition 12.2.

Proof. The process B = (W(h}),...,W(h%)) is an N-dimensional (F;)-Wiener process
with covariance

(QY2h}, QY2h})u)ys
so, by Lévy’s characterization theorem, the o-algebra o(B(r) — B(t) : r € [t,T]) is P-
independent of F; for every N € N, hence so0 is 0(Waec(r) — Waec(t) = 7 € [t,T]). The
claim (1) holds because

U(U(O)a (pt(Wdec)a (Pt(eu - GU(O))) g ft;
(2) because B, = o(¢¢), and (3) and (4) are obvious. m

LEMMA B. Let t <T, A€B, F € FI'" and B = X x ¢; '[A] x € x €. Then P*(BNF) =
P*(B)P*(F).

Proof. First we prove that
(B.1) p@W{(z,w) € X x €: ¢"(z,w, F}) = ¢* (z,w, F})} =1
for every F; € B;. To do so fix G; € BX and define

= {G eB: S ¢ (z,w, Fy)dp @ W(z,w) = ¢7 (G1 x G x Ft)}

G1xG

It is easy to see that D is a Dynkin class and if we show that it contains all sets of the
type @; 1[Ga] N ¢ H[Gs] for all Gy € B, G3 € B we will know that D is all of B. Thus

| ¢ (@, w, Fy) dpp @ Wz, w)

G1x(p; *[G2]Ng; M [Gs))

S(Sfcl @, w, F) du(e) ) Io, (¢ew) - Taa (¢1(w) dW(w)

X o(¢+)-measurable

Bi-measurable

by Fubini’s theorem. But B; is W-independent of o(¢;) by Lemma A(2) so the above
equals

(§  dewR) e W) WerG)
Gixp; '[G2]

= Law p(u(0), Waee, eu — eu(0))(G1 x @5 [Ga] x Fy) Laro p(Waee) (¢7 *[G3])
and since Fy = ¢; *[Vo] for some V, € B, this is
P[(u(0), p:(Waec), pt(eu — eu(0))) € G1 x G2 x Vo] P[p+(Waee) € Gs]
= Larw p(u(0), Waee, eu — eu(0)) (G x (p; H[G2] N ¢; 1 [G3]) x Fy).

Finally we infer that SV z,w, Fy) du@W(z, w) SV (z,w, F}) du®@W(z, w) for every
V € B(X) ® B, proving (B.1).
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Now we turn to the proof of Lemma B: Fix U; € B(X), Uy € By, Us € By, Uy € B,
and define C' = U; x Uy x Uz x Us. Then

PIONB) = | Iu,(@)Iu, (w)Ia(ér(w))g" (@, w, Us)g" (2,0, Us) dps © W(z, w)
Xxe

= | 1o, (@) 1u, () La(6e ()" (2, w, Us)g' (w, w, Us) dp @ Wi, w)
Xxe
by (B.1). In view of Fubini’s theorem this equals

y
§ (00 @) (@ Us)' (w0, Us) da(a) Ty (w) - La(orw) — dW ()
¢ X

o(¢+)-measurable

B;-measurable

= S Iy, (%) Iy, (w)q* (2, w, Us) ¢ (2, w, Us) dp @ dW(z, w) P*(B)
Xxe

P*(C)
due to Lemma A(2). So we have proven that P*(F N B) = P*(F)P*(B) for every F €
B(X) ® B; ® B; ® B; = F;; but the same is obviously true for every F € .EP*. "

LEMMA C. The processes Z', i = 1,2, defined in (12.2) are (FF)-predictable, W* de-
fined in (12.3) is a Q-(FF")-Wiener process, and (1) and (2) of Theorem 12.1 hold. In
particular, (2%, F*, (FF"), P*,W*, Z%) satisfies (0.1), (0.2) for i = 1,2 by Theorem 6.

Proof. First note that, by the definition of the measure P*,

(12.4) Larwp- (z,w,y") = Lawp(u(0), Waee, eu — eu(0)).
So Larop- (Wi,.,ex +y') = Latwp(Waec, eu), i = 1,2, and, by Corollary 11.2,
(12.5) P*[y'(t) € Rnge] =1, t<T,

Z%, i =1,2, are predictable in X and
(12.6) Samp*(Zi(tj), W;(h};) 1j <n,k < K)= Lawp(u(ty), Wy, (hy):j <n,k < K),
i = 1,2, for every partition 0 = tg < --- < t,, < T and every K € N. Denoting by

B = (W(h}),...,W(h%)) the continuous N-dimensional (F;)-adapted process we see
that Larw p«(B; — Bs) is the N-dimensional centered Gaussian measure with covariance

(@R, Q2h})v )i
and, by Lemma B, o(B; — B,) is F/ -independent. Thus we conclude that B is an
N-dimensional (FF . )-Wiener process for every N € N, and consequently, as

n (h, h*)UW*(hk)’ oy <47 Z Z (hy RO o (QY2hE, QY20 Yy (b, b

k=m k=ml=m

(3t
k

Ep-

by the Doob inequality, the series (12.3) is convergent and defines a Q-(FF " )-Wiener
process while (2) in Theorem 12.1 follows from (12.6) by the linearity of W* and by the
fact that the linear span of (h} : k € K) is dense in U. By definition of P*, we also have
P*[y*(0) = 0] = 1, i = 1,2, which yields (1) of Theorem 12.1.
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Proof of the second part of Theorem 12.1 (in a sequence of lemmas). Suppose that we
know that P*[Z1(t) = Z?(t)] = 1 for t from some dense subset of [0,T]. Then, by the
definition (12.2) of Z¢ and by (12.5),

1=Py' =4’ ] =P [X xCx D] = S qa,w) ®q(7;)w)(D) dp @ W(z,w),
Xxe€
where D = {(y',3?) € € x € : y! = y?} is the diagonal of € x €. So the set

M = {(z,0) : ¢y ) © Q) (D) = 1} €B(X) @B
is of p®W-measure 1 and, by Fubini’s theorem, qaw) must be a Dirac measure for every
(z,w) € M. Denoting by k(z,w) € €, (x,w) € M, the corresponding mass point we have
ke Bl =[¢"(B)=1] = [¢"(B) = 1]
modulo a pu ® W-zero set for every F; € B; by (B.1). Hence k, extended by 0 off M, is
(X x ¢, Q{‘@W) — (€, B;) measurable for every ¢ < T. The proof of the second part of
Theorem 12.1 will now follow from Lemmas D and E below.

LEMMA D. Write t — Ry(z,w) = ex + k(z,w) € RN, Then

(D.1)  R: (X x¢€,G') = (¢,By) is measurable for everyt < T,
(D.2) Lawp(eu, Wyee) = Lato,gw (R, w) on B B,

(D.3)  pW{(z,w): moR(z,w) =ex} =1,

where w : (X,€) - C: (z,w) — w.

Proof. (D.1) is obviously true so we will show (D.2) and (D.3):

P*(B) = S Sk () @ () (BE™)) dpp @ Wz, w)
M
=@ W{(z,w) : (z,w, k(z,w), k(z,w)) € B}
by the definition (12.1) of P* for every B € F*. So (D.2) follows from (12.4). For (D.3),
observe that

1 = P[mo(eu — eu(0)) = 0] = P*{(z,w,y',%?) : y*(0) = 0},

so the claim follows from the first part of the proof. m

LEMMA E. Let p be a Borel probability measure on X, (2, F, P,W,u) a solution of (0.1)
satisfying (0.2), and let (x} : n € N) be a sequence in X* which separates points of X
such that the processes t — (x},u(t)) have continuous adapted modifications. Let also
R:Xx¢€ — ¢€bea function satisfying (D.1)—(D.3) of Lemma D. Then, whenever
(YL FL(FH, W ul) is a filtered probability space with a Q-(F})-Wiener process W1
and an Fg-measurable random variable ul with distribution Larop:(ul) = u, the family
(Y, FL(FL, W), where ul(t) = e 'mR(ub, WL.) is a predictable process, is a
strong solution of (0.1) satisfying (0.2) with the initial condition u} and Larw pi(u', W) =
£amp(u, W)

Proof. First of all, note that Lato p1 (ul, Wi ) = u@W by Lemma A, so if we denote by H;
the Pl-augmentation of o(ul, msWi.. : s <t) then H; C F}, the mapping (uf, Wi..) :
(21, Hy) — (X x €,G"M) is clearly measurable and u! is (H;)-predictable. Moreover
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Laro pa (u' (1), Wiee : §) = Laro pa (e e, R(ug, Wikee) Wiee : )
= Eam,@w(e*lﬂ'tjﬁ, W : j) = Lawp(e " m,eu, Waee) = Larwop(u(t;), Waee),
by the assumption (D.2), and consequently
Larop1 (u'(t5), thj(hZ) 1j<nk < K) = Lawp(u(ty), Wi, (hi) :j <n,k < K)
for every partition 0 =tg < --- < t, <T and every K € N. But since (h} : k € N) spans

densely in U we get the above equality with arbitrary h;’s due to linearity of W, W1,
Hence (u!, W) satisfies (0.1), (0.2). We have

Lawp(eu(t)) = Law,gw(mR), t<T,
by (D.2), so using Corollary 11.2, we see that u ® W[mé € Rnge] =1 and
Put(0) = u}] = Pl[e_lﬂ'oé(ué, Wie) = ud] = p@ W{(z,w) : e 'moR(z, w) =z}
= p @ W{(z,w) : moR(z,w) = ex} = 1
by (D.3). m

13. Proof of Theorem 1

The idea is, again, to construct a function R satisfying the assumptions of Lemma E but
firstly we will recall a fairly well known fact on representations of “suitably” measurable
functions. The proof can be found in [DM, 12-1-18].

PROPOSITION 13.1. Let (£2,F,v) be a measure space, (Y,)) a measurable space, A a
sub-o-algebra of F, Z a Polish space, and f : {2 — Y an arbitrary function. Denote by
o(f) the o-algebra generated by f and A” = AV{N € F : v(N) = 0} the v-augmentation
of A in F.
(1) If g: 2 — Z is a o(f)-measurable mapping then there exists a measurable map-
ping h: (Y,Y) — Z such that g = hf.
(2) If g: 2 — Z is A”-measurable then there exists an A-measurable function h such
that g = h v-almost everywhere.
THEOREM 13.2. Let (2, F,(F:), P,W,u) be a strong solution of (0.1), (0.2) such that
xh € X*, n=1,2,..., separate points of X and the processes t — (x%,u(t)), n € N,
have continuous modifications. Then there exists a function R satisfying (D.1)~(D.3) of

Lemma D, and consequently the conclusions of Lemma E hold.

Proof. Denote by H; the P-augmentation of o(u(0), 7sWqec : 8 < t). Then the mapping
eu : (2,H;) — (€,B;) is measurable for every ¢ < T by assumption. Consequently,
there exists a measurable mapping R : (X x €, B(X) ® B) — (€, B) as well as mappings
7 (X x €, B(X)®B;) — RY such that

P[R(u(0), Wyee) = eu] =1
and P[ri(u(0), Waec) = mreu] = 1, ¢ < T, by Proposition 13.1. But then
@ Wlry = mR) = Plry(u(0), Waee) = m R(u(0), Waee)] = 1, ¢ < T,
so R: (X x €,G'"W) - (¢,B,) for every t < T by Lemma A. m
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Proof of Theorem 1. The strong existence follows immediately from Lemma E so suppose
that joint uniqueness in law holds for (0.1) and that we have a solution v of (0.1) on some
filtered probability space (§2', F', (F;), P',W'). Then

P'lo(t) = e 'mR(v(0), Wie)] = Plu(t) = e 'mR(u(0), Waee)] = 1, ¢t < T,
by the joint uniqueness in law and Theorem 13.2. Hence we see that (0.1) is pathwise
unique. m

14. Proofs of Theorems 8, 9 and 10

We use the notation of Section 11.

Proof of Theorem 8. (1) implies (2) and (3) by Theorem 2, while (3) implies (1) by
Theorem 1. Suppose that (2) holds. Then the assumptions of Theorem 12.1 are satisfied
for the original solution (£2,F, (Fy), P,W,u) so if (', F',(F}), P’,W’, ') is a solution
then so is (2, F', (F}), P/, W', v'), where v'(t) = e_lwté(u’(O), Wi..)- Consequently,
P (1) = e 'm R(u'(0), Wieo)] = P/ (8) = e 'mR(v'(0), W)

for every t < T as (v/,W’) and (v',W') have the same law by joint uniqueness in law.
The latter probability is 1 because P’[u’(0) = v’(0)] = 1 and the proof is complete. This
yields pathwise uniqueness for (0.1). m

Proof of Theorem 9. (1) implies (2) by Theorem 12.1. Now suppose that (2) holds.
Then (u, W)-pathwise uniqueness holds if and only if (u’, W')-pathwise uniqueness holds,
so let (21, FY, (F), P, Wl ul) be a solution of (0.1) such that Lawp:(ul, W) =
Latwp: (u',W'). Then (2, F1 (Fl), PL, W v!) is a solution of (0.1) and Latop: (v, W1)
= Larwpi (ul, W) with
v (t) = e mR(u' (0), W)

by Theorem 13.2. Moreover P![u!(0) = v!(0)] =1 and thus

Plul(t) = e 'meR(u! (0), Wieo)] = P[0} () = e ' R(0(0), Wi,o)] = 1
for every t < T, proving (1). =

Proof of Theorem 10. Suppose that (1) holds. Then the assumptions of Theorem 12.1
are satisfied for the original solution (£2, F, (F;), P, W, u), so consider another solution
(2, F,(F),P' W' v') such that Lawp(u) = Lawp/(v'). Then, by Theorem 12.1,
(2, F (F)),P', W' u) is again a solution of (0.1) with Lawp(u, W) = Larop/ (v, W),
where
W' (t) = e 'm R (0), W), t<T,

is (u/(0), W) p-adapted. But P'[v/(t) = v'(t)] = 1, t < T, by u-pathwise uniqueness as
P'[uw/(0) = v’(0)] = 1. This implies joint u-uniqueness in law for (0.1), and (2) and (3)
hold.

If (2) holds then the assumptions of Theorem 12.1 are satisfied for the original solution
(2, F(F), P, W' u) and we will show that it has the desired properties. Indeed,
(2, F (F), P, W' ') is a (u'(0), W) pr-adapted solution, where v/(t) = e~ m,R(u/(0),
W’), t <T. Moreover, by (u', W’)-pathwise uniqueness, P'[u/(t) = v'(t)] for every t < T.
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To show that (3) implies (1) consider a solution (2%, F!, (F}), P, W u') such that
Larp/(u') = Larwop:(ul). Then, by Theorem 13.2, (21, F1 (F}L), P, W1 vl) is also a
solution with Latp/(u') = Latp1 (v!), where

o (t) = e 'm R(u'(0), W), t<T.
But we know that
Pl (t) = e mR(u' (0), Wieo)] = P v' (1) = ¢ 'mR(0" (0), Wio)] = 1
for every t < T by joint u-uniqueness in law and the fact that P![u!(0) = v1(0)] = 1.
This implies u-pathwise uniqueness for (0.1). m

Notation used

B(X) Borel o-algebra of X

X* dual space to X

Lp Lebesgue space of p-integrable functions
E[f/ A conditional expectation

oS o-hull over &

0(fa:a€A) o-hull over (f, : o € A)

Laro,,(f) distribution of f with respect to p

(M), resp. (M, N) variation, resp. cross-variation process [RY, Section IV.1]
Uy Definition 2.1

N(z,Q) Gaussian probability with mean x and covariance @
L(U, X) linear bounded operators from U to X
Ly(U, X) radonifying operators from U to X, Definition 2.3
(0,11, 2) continuous functions from [0,T] to Z
Pr o-algebra of progressively measurable sets
e, et 11.1
¢ Section 11
B, B, Section 11
" Section 11
o Section 11
on Section 11
(2, F* (F})) Section 11
Fy Section 11
Wiec Section 11
w Section 11

nddd Section 11
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