Introduction

This dissertation is devoted to a thorough investigation of the nonlinear wave equation
in canonical form
0%u
dwdy

with a smooth nonlinear function F on the right hand side.

(.23, y) = F(x, y?“(xvy))

We investigate solutions with distributions or other generalized functions as initial
data; thus we must search for solutions in algebras containing the space of distributions
which are invariant under nonlinear functions. We use the recent theories of generalized
functions (J.-F. Colombeau [1985], Yu. V. Egorov [1990], M. Oberguggenberger [1992])
and particularly the (C, £, P)-algebras (J.-A. Marti [1998]-[2004], J.-A. Marti, S. P. Nuiro
and V. S. Valmorin [1998b]). This study permits one to see the usefulness of algebras of
generalized functions in cases where distribution theory turns out to be insufficient.

We search for a generalized solution u, in the sense to be defined later, to the following
Cauchy problem (P) and Goursat problem (P’):

62’& 2
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Here ¢ and v are one-variable generalized functions. The notation F(-, -, u) extends, with
a meaning to be defined later, the expression (x,y) — F(x,y,u(x,y)) in the case where
u is a generalized function of two variables x and y.

For the Cauchy problem the data are given along the monotonic curve v of equation
y = f(x). We also study the case where the data are carried on a characteristic curve
v = (Ox).

For the Goursat problem the initial values are given along a characteristic curve
C = (Oz), and along a monotonic curve « of equation = = g(y).

Sections 1 and 2 are devoted to the construction of global smooth solutions to both the
Cauchy problem and the Goursat problem when the data are smooth. This is achieved by
rewriting the differential equation as an integral equation and making a thorough inves-
tigation of the method of successive approximations (P. R. Garabedian [1964]). Several
improvements to classical methods and results are needed to obtain precise estimates
used in the later sections. Namely, the growth in the parameter € of the families of so-
lutions has to be known to choose the good algebraic structure to solve the regularized
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6 V. Dévoué

problems. So the results of those sections form an essential basis for the construction of
generalized solutions.

Section 3 is devoted to the definition of the algebras of generalized functions and
to the setup of an algebra of generalized functions, A(R?), adapted to the generalized
Cauchy problem. The concept of (C,&,P)-algebras introduced by J.-A. Marti [1998]—
[2004] is an improvement and generalization of the algebras of J.-F. Colombeau [1985].
The theory of (C,&,P)-algebras is built on three completely independent algebraic (C
is any subring of generalized numbers and £ any algebra) and topological (P is any
compatible topology on &) parameters and its philosophy is to adjust them to the given
problem. These algebras are constructed as factor algebras of infinite products of locally
convex topological spaces. In such algebras, we have good tools to deal with many
nonlinear differential problems with irregular data (J.-A. Marti and S. P. Nuiro [1999],
J.-A. Marti, S. P. Nuiro and V. S. Valmorin [1998a]).

The Colombeau algebra is invariant under superposition with polynomially bounded
smooth maps. To cover the case of more general nonlinearities, other variants of (C, &, P)-
algebras are needed.

We introduce the notion of an algebra stable under F (F € C*(R3 R)). For any
generalized function u, we define the D’-parametric singular spectrum of u (J.-A. Marti
[1995], [1998], J.-A. Marti, S. P. Nuiro and V. S. Valmorin [1998b]). These tools allow us
to tackle the generalized problems in Sections 4 and 5.

We take up again the formulation of the Cauchy problem but now ¢ and v are
generalized functions. We search for a solution u, in A(R?), to this generalized Cauchy
problem (Pg). After specifying the meaning of (Pg), we show that, if A(R?) is stable
under F, if A(R) and A(R?) are built on the same ring C = A/I of generalized con-
stants, and if the data of problem (Pg) satisfy the conditions ¢ € A(R), v € A(R),
f € C>*(R), then problem (Pg) has a unique solution u in A(R?). To prove existence, a
representative can be constructed invoking the existence of smooth solutions from Section
1 and proving that it satisfies the required asymptotic estimates. To prove uniqueness,
one has to show that the difference of two solutions is asymptotically negligible when
this is true of the difference of the data. This again involves estimates as derived in
Section 1.

The (C, &, P)-algebras give an efficient algebraic framework which permits a precise
study of solutions. We make a qualitative study of the solutions. We describe their local
and microlocal behavior and we study the propagation of their singularities. We show
that the parametric singular support of the solution with bounded nonlinear function F
is the same as the one of the homogeneous equation (F' = 0). Then various special cases
with distributions as data are studied, notably for F' =0 and f(z) = az.

We can study a generalized Goursat problem in the same way. We extend the case of
the degenerate Goursat problem solved by V. S. Valmorin [1995a], [1995b] to the general
case in which the data are given along the z-axis and along another possibly characteristic
curve.

We can then deal with the characteristic problems in Section 6. In that case, the
formal calculus of partial derivatives on the manifold carrying the data meets a geo-
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metric obstruction which is difficult to get around. For characteristic linear problems,
some results on existence, but not uniqueness, are proved in distributional framework
(Yu. V. Egorov and M. A. Shubin [1993], L. Hérmander [1983]). Other results are
proved (Garding, Kotake, Leray, Wagschal, Hamada, Dunau) in the complex frame-
work where the solutions may be holomorphic and may have ramifications around char-
acteristic curves issuing from characteristics. However, we do not know any general
answer in real analytical or C* cases and for nonlinear problems (as in the present
paper). For these cases, and even for linear cases, the characteristic problems are
those where we “fall into the holes” of the canonical stratification as defined in the
Shih Weishu theory (W. Shih [1986]). Furthermore, Shi Wei Hui [1992] shows that the
Cauchy problem is not well posed for the Navier-Stokes equations, on the hyperplane
{t=0}.

We extend some results of J.-A. Marti [2004] to general cases, by approaching some
characteristic problems by some families of noncharacteristic problems and by interpret-
ing the results algebraically.

We study the case where the data are given along the characteristic curve v = (Ox).
This characteristic irregular Cauchy problem has no smooth solution (not even C?) even
if the data ¢ and ¢ are smooth. We replace it by the family of noncharacteristic problems
(P:): by moving the initial data to the curve 7. of equation y = ex as data. We also try
to give a meaning to the family of solutions by interpreting it as generalized functions
belonging to an appropriately defined algebra.

In the case of regular data, if u. is a solution to problem (P.), the family (u.). is
a representative of a generalized function which belongs to the algebra A(R?). Then
u = [ug] is a generalized function that we consider as a generalized solution to the
characteristic Cauchy problem (P¢).

We also give a meaning to the characteristic Cauchy problem (P¢) in the case where
¢ and ¢ are themselves irregular data (for example some generalized functions), by
replacing it by the family of noncharacteristic problems (P ;))(,,) in an appropriate
algebra:

0*ue,n)
Tay(“’) = F(x,y,u@en(2,9)),

Ple § ten (@, e3) = ¢y(2),

where (¢,), and (1), are representatives of ¢ and .

The parameter ¢ transforms the given problem into a noncharacteristic one and the
parameter 7 regularizes the data. We build a two-parametric algebra in which the irreg-
ular characteristic problem is solved. If u( ,) is a solution to problem P ), the family
(U(e,m))(e,n) is a representative of a generalized function u = [u(. ] that we consider as a
generalized solution to the characteristic Cauchy problem (Pc¢).

For F' = 0, we rediscover some results of J.-A. Marti [2004] from a general study with
distributions as data.
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1. Global smooth solutions to the Cauchy problem

Solution of the Cauchy problem for the semilinear wave equation whose nonlinearity
satisfies a global Lipschitz condition, by means of successive approximation techniques,
is well known (P. R. Garabedian [1964]). However, for the following study of general-
ized situation, we will need precise estimates for the case of smooth data, which is not
sufficiently detailed in the available literature.

1.1. Formulation of the problem. We search for a solution w to the following Cauchy

problem:
0%u

3aty = P
(P) u|’Y = 903

ou

a_y")/ - wv

where f,p,1 : R — R are some smooth one-variable functions, v is the curve of equation
y = f(x) and F' is smooth in its arguments. In all cases the following hypothesis will be
satisfied:
F € C*(R3,R),
() VK € RZ?, SUD (3.4) € K2R |0, F(z,y,2)] < o0,
f is defined and strictly increasing on R with image R,
Vz € R, f'(z) £ 0,

where the notation K € R? means that K is a compact subset of R2. We denote by (Px,)
the problem which consists in searching for a function v € C?(IR?) satisfying

(1.1) S (5) = Fapu(z. ),
(1.2) ulz, £(z)) = o),
(1.3) %uju»:wm

We denote by (P;) the problem which consists in searching for a function u € C°(R?)
satisfying

(1.4) u(z,y) = uo(w,y) — |\ F(&n,u(& n)d¢dn,
D(z.y,f)

where
uo(z,y) = x(y) — x(f(z)) + ¢(x)

and x denotes a primitive of ¥ o f~1, with

C({Em) N y) <€<ay<n< fO)} ify < fla),

D(‘Tay7f) - -1 .
{&m:z<&< W) f(O) <n<y} ify=[fla)

THEOREM 1. Let u € C°(R?). The function u is a solution to (Ps) if and only if u is a
solution to (P;).
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Proof. The existence of f~1 is ensured by (H). Hypothesis (H) also ensures that the
domain D(z,y, f) is bounded. We consider the points M (x,y), P(f~1(v),v), Q(z, f(z)),
and the domain D(z,y, f) is the “curvilinear triangle” M PQ. If u is solution to (Ps),
suppose that y > f(z). We have

5 y ) 52u
W gogy©mdedn="| ( | aea,©n g)
D(z,y,f) f(=) z

Then
o%u H ou ou
W (g @mde)dn="§ == m.mydn— § 5= (e.n)dn
D@ f) (8 % ) fimy fimy
= x(y) — x(f(z)) — u(z,y) + »(2),

where y denotes a primitive of 1 o f~1. Then

e, y) =uoe,y) — || F(&n,u(&n))dédn,

D(z,y,f)

where ug(z,y) = x(y) —x(f(z))+¢(x). We obtain the same result if we suppose y < f(x).
Thus u satisfies (FP;). If u satisfies (F;), suppose that y > f(z); we can write

7y
u(,y) = uo(w,y) — | ( | F(£,n7u(£,n))dn) dg.
1G]

As u € C°(R?) we have

ou Oug

a_x(x7y) = a—x($>y) + S F(%??,U(xﬂ?))dn

and consequently

u 2
8ay<gx>( YY) = 28 (z,y) + F(z,y,u(z,y)) = F(z,y,u(z,y)).

Let us calculate again u(x,y) in the following way:

y )
w(ey) =uwo(ey)— § (§ Fenul&n)de)dy
f(z) z

As u € C°(R?) we have

gy @) = 5, @) = | FEyulgy)ds.

Then
w 2
2 (58) ) = St )+ Bl (o) = Flo o).
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Finally, the partial derivatives can be exchanged and we have
0%u
0xdy

(z,y) = F(z,y,u(z,y)).
Furthermore,
u(m, f(.%‘)) = uo(m, f(.%‘)) = (p(:E),
Ou ou -1 B
a—y(ﬂ%f(w)) = a—yo(x,f(x)) =vo f(f(z)) =9(x).

These results are unchanged if we suppose y < f(z), so u satisfies (Py). If u is of class
C! then (z,y) — F(z,y,u(z,y)) is of class C1. Then

')y
W@y ooy~ § (O P& ulgm)dn) de
© f (€

has a partial derivative with respect to x of class C', and

y )
Weey) —uoley) — § (] Fenulgm)ds)dn
f(x) f”

has a partial derivative with respect to y of class C!. As
o (oW g (oW
2 <8—y> (z,y) = F(z,y,u(z,y)) = oy (@) (z,y)

is of class C! it follows that v = W is of class C2. We remark moreover that, if u is of
class C", then (z,y) — F(x,y,u(z,y)) is of class C", therefore

')y
W (z,y) — uo(z,y) — S ( S F(f777au(§a77))d77) dg
z (&)

has a partial derivative with respect to x of class C™, and

y )
W@y —uo@y) = § (O § P ulem)de) dy
f(z) z

has a partial derivative with respect to y of class C™. As

a% (%—Z) (z,y) = F(z,y,u(r,y)) = a% (%) (z,y)

is of class C" we conclude that u = W is of class C"*!. By induction, u is therefore of
class C*. m

We have, of course, the following corollary.

COROLLARY 2. If u is a solution to (P;) (or to (Px)), then u belongs to C°°(R?).
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REMARK 3 (Second order partial derivatives of u; these results will be used in Subsection
4.2). If u is solution to (P;) we have

Y

ou ou
o (@0) = 5 @) + f(s )F(x, . u(z,n)) dn.
It follows that
9?2 9?
5o (@y) = 52 (@) = [@)F (. f(2), u(z, f(2)))
Yy
ol (G Gt + 5 o) o)) iy
As
8’&0 ’ ,
T (@:9) = = (@)i(@) + ¢/ (2) and u(z, f(2)) = (),
we find that
0%
5oz (@ y) = — (@) — [ (@) (@) + ¢ (@) = ' (@) F(x, f (), o))
1) 9 o
“ (G (ot + 5 o) G o)) iy
Let us calculate again u(z,y) in the following way:
y )
u(y) =uow,y) ~ § (§ Flemulem)de)dn.
f(z) z
Starting from
ou g )
7, (00 =5, (B0 - S F(&,y,u(, y)) de,
we obtain
Pu Loy (1 -1 -1
R (z,y) = 52 (z,y) <f,(f1(y)))F(f )y, 0(f ()

)
_ §; (a_j(g,y,u(g,y)H8—f(€7y,u(§,y))a—y(£,y))d&-

As %_TZ)(LZ/) =(f1(y)), we have

82’&0 o ]. / 1
st = (g )P U0

1.2. Existence and uniqueness of solutions

THEOREM 4. From hypothesis (H) it follows that problem (Py,) has a unique solution in
C>(R?).
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Proof. According to Theorem 1, solving problem (P,,) amounts to solving problem (P;),
that is, searching for u € C°(R?) satisfying (1.4). For every compact subset of R?,
we can find A > 0, large enough, so that this compact subset is contained in K, =
[—A, A] X [f(=A), f(A)]. Let us assume always that y > f(z) and let us make the change
of variables X = + A\, Y =y — f(—\). The relation (1.4) can be written as

w(X =AY 4+ f(=X) =up(X =AY + f(=A))
- | F(§ =M+ F(=N),ul§ = An+ F(=N))) d¢ dn,
D(X=X\Y+f(=\),f)
whose form is
(1.5) UX,Y)=Up(X, V)~ || & nU&n) dedn,
D(X,Y,q9)

with g(X) = f(X=X)—f(—=X); K, turns into the compact subset @, = [0,2X] x[0, g(2))].
The equation of () can then be written as Y = g(X) and g(0) = 0. So we now have
X >0and Y > g(X). According to hypothesis (H), we can put

my = sup
(&m)€Qx; 2€R

0%
%(ﬁvna Z)’

Let us consider the sequence (U, )nen of functions defined on R? by

VneN,  Up(X,Y)=Uo(X,Y) = || (& n Una(&m)dedn.
D(X,Y,q9)

For every compact subset H € R?, let us put

[Uolloc,r = sup  |Uo(,y)l-
(z,y)eH

According to the mean value theorem in integral form, we can write
1
o5
(L6) 8 nt) =3 nr) =t -] (Enr+ot—r)do,
0

hence for all (¢,1) € D(X,Y,g),

1
8(57 7, U0(§7 77)) - 8(67 7, O) = U0(§7 77) S gg(fa 7, O'UO(ﬁv 77)) do.
0

So
1§ m, Uo(§;m)| < [8(€,m,0) + mallUoloo,qs -

Let us put

Px = [I8( - 0)lloo.@x + mal[Uolloc,@s
VHEN*, ‘/n:UnfUn—la
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which implies
‘/I(X7Y):U1(X7Y)_UO(X7Y):_ SS 3(5;7I7Uo(§777))dfd777
D(X,Y,q9)

i) < (1 8 U n)|dedn < 2 AX,Y),
D(X,Y,q9)

where A(X,Y) d€ dn indicates the area of the domain ®(X,Y, g). We have

SS@(X Y,9)
“/Q(vaﬂ = |U2(X7Y) - Ul(X7Y)|
< V18 n Uo(em) = §&m Ui (g m))| d dn.

D(X,Y,9)

Then using the relation (1.6), we obtain

0

62’& § m, U1(§777) + U(U1(§777) - U0(£777))) do

1
< |Uo(g.m) - U1£77|H
0

and consequently

8, m, Uo(&:m)) — S(&n, Ur(§,m)| < Vi€ m)|ma.
From this it may be deduced that

VX, V)l <ma V) i€ mldedn <maen | A ) dedn.
D(X,Y,q9) D(X,Y,q9)

We can notice that A(X,Y) < (2XA — X)Y < (2A)Y and then

2\
( | 20 dg) dy < ma®x(20)2Y 2271,
0

|V2(X, Y)| S m>\45>\

O e

Consequently,
V(€ n) €D(X,Y.g),  [Valm)| < mada(20)* 027"

By induction, we obtain
1 Yn
Vo(X,Y)| <mi ™ @y (20)" )

Hence
P [(2A)mag(2A)]"
myn!

[Valloo,@x <

)

which ensures the uniform convergence of the series -, V,, on @ and consequently on
every compact subset of R?. From the equality > ;_, Vi = U, — Uy we deduce that the
sequence (U, )nen converges uniformly on @y to a function U. As every U, is continuous,
the uniform limit U is continuous on every compact subset @y, so on R2. Let us put
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en(X,Y) = U(X,Y) — Upy(X,Y). Then

UX,Y)=Uo(X,V)+ | §(&n U mn)dedn

D(X,Y,q9)
= U(X,Y) = Un(XY) + (Un(X,7) = Do(X V) + (] §(En U, m) dedn)
D(X,Y,q9)
—en(X,V)+ | BEnUEn) = §(&n,Un 1)) dE dn.
D(X,Y,9)

As for all (§,n) € D(X,Y,g),
|S(§vna U(ﬁﬂ?)) - 3(5777, Un(fan))l < |U(£a77) - Un—l(ﬁvn”mka

the second member above is bounded by

sup  |en(X,Y)|[+my sup AX,)Y) sup |UX,Y)-U,_1(X,Y)|,
(X,Y)€EQA (X,Y)€Qx (X,Y)eQax

that is, by

sup  |en (X, V)| +ma2Ag(2)\)  sup  |e,—1(X,Y)]
(X,Y)eQx (X,Y)eQx

whose limit is 0 when n tends to +o0. It follows that
D(X,Y,q9)
for (X,Y) € Qxn{(X,Y):Y > g(X)} = Q.
Let us show the uniqueness of the solution. Let W be another solution to (1.5).
Putting A = W — U, we obtain
AxY) = | (8@ wEn) +3&n,UE ) dedn.
D(X,Y,q9)

Let (X,Y) € Qx. As D(X,Y,g) C Q», we have

A V)< N} mawEm —UEn)ldedn <my || 1AE )] dedn.

D(X,Y,q9) D(X,Y,q9)
AsY > g(X),
g HY) v Y
Ax Y <ma || 1A <sn|dnd§<m§(§ sup |A(&, )] de ) dn.
X £€[0,2)]
g(X) 0 0

For every Y € [0, g(2))], let us put

E(Y) = sup |ALY)].
£€[0,2)]

Then

|A(X, Y)|<mA2>\‘ { 20 dn;
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it follows that

Y
VY €[0,9(2))], E(Y)< m,\2/\’ 200 dn‘.
0

In this way, by applying Gronwall’s lemma, we get £ = 0, hence A = 0, which proves
the uniqueness of U on Q. Then putting vy(z,y) = U(z+ A,y — f(—=X)), it follows that
vy is the unique solution to (1.4) on Ky N {(x,y) 1y > f(z)} = K.

Now consider the case y < f(z). Let us make the change of variables X = —z + A,
Y=—y+ f(N). Weput D' = D(—=X + A, =Y + f(A), f); then

u(=X+XN=Y+ f(A) =u (X + X\, =Y+ f(N)

VP42 =0+ FO), u(=€+ 0, —n + F(N)) de dn,
D/
whose form is
WX,Y)=Wo(X, V)~ || 8&nw(gn)dd
D(X,Y,q9)

and g(X) = f(A) — f(A— X); K, turns into the compact subset @y = [0,2A] X[0, g(2))].
Asy < f(z), we have f(A) —y > f(A) — f(z). Then Y > f(\) — f(A— X), that is to say,
Y > g(X). So everything boils down to the case X >0, Y > ¢g(X), with which we can
deal as previously. It follows that

wa(z,y) = W(—z+ X -y + f(N)
is a solution to (1.4) on
Kxn{(z,y) 1y < f(2)} = K.
From the continuity of U on Q;r and of W on @, we have the continuity of vy on K)J\r and

of wy on K . Moreover, vy and wy agree on y because vy (z, f(x)) = wx(z, f(x)) = p(x).
Finally, if we put

U)\(SC y) _ U)\(:C,y) for (I,y) € K;\‘rv
’ wx(z,y) for (z,y) € K,

then wu) is the unique continuous solution to (P;) on K.

It remains to prove that the method actually gives a continuous global solution u to
(1.4) on R?, that is, which satisfies (P;). If Ay > A\; then Ky, C K),, so, we must prove
that ux,|r,, = uy,. But for all (z,y) € Kj,,

U‘)\z(x,y) :uo(x,y) - SS F(f,ﬁau)\g(gaﬂ))dédﬂ
D(z,y,f)

and we have this equality, all the more so, for (z,y) € K,,. So we have

wnsliex, (@,9) = wo(w, ) = || F(&n un iy, (€m)) dEdn.
D(z.y,f)

In other words, uy,|k,, satisfies (1.4) on Ky, and so coincides on it with its unique
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solution uy,. For every (z,y) € R? we can thus put
(1.7) u(w,y) =ur(w,y) = uo(w,y) — || F(&n,uln))dgdn,
D(z,y,f)
where uy satisfies (1.4) on K and (z,y) € K.
The definition of w in (1.7), being independent of the compact subset Ky, finally gives
the unique global solution to (P;) or (P). =

In Section 4, we will need the estimates specified by the following result.

PROPOSITION 5. With the previous notations, for every compact subset K € R?, there
exists a compact subset Ky € R? containing K such that

oF
(1.8) my= sup Ao (@ y )l Pa=[F( 5 0)lso ki +malluollo, xys
(z,y)EK;tER z
D)\
(1.9) ulloo,x < [ulloc,kx < [[uolloc,k\ + . exp[2Ama(f(A) — f(=A))].
Proof. We have clearly
oF oF
m= s [Fenn|= s T
(emeQriter | 02 (@,y)eKxiteR | 07

Px = [8(+ 0)lloo.@x + mal[Uolloc,@x = I1F (-, 0)lloo, 5 + malluolfoo k-
Keeping the previous notations, we have
un(2,y) = uo(z,y) — V| F(&nuna(&m)dedn, n>1,
D(=,y,f)
Un,)\(xa y) for (.’,E, y) S K;\'r’

un (%) = {

wpa(z,y) for (z,y) € K . '

As
Un(X>Y) = UO(XaY) - SS 8(57777Un71(£777))d£d77;
D(X,Y,g)
Py = [IF(,+, 0)[loo, @5 + mr[[Uolo,@1»

Vn = Un —Un-1,
where K is mapped by g into the compact subset Qx = [0,2)] x[0,g(2X)]. According
to the proof of Theorem 4, we have
Pa[ma(2A)g(2A)]"

Vi EN, [Valleoqy < =0

?

and consequently,

oo N
1Uls0.@5 < 1Wollsc,@r + D IIValloo,@n < 1U0llc.an + oy, P9

n=1

Furthermore, g(2)\) = f()\) — f(=\). From the relations

{IUAIIOO,K;ZIUIIoo,QM {IIUoIIOO,K;ZIIUolloo,QM . {w on K,
\ =

[orllo i = Wlloo.ans | N1w0lloe, x5 = Wolloo.@ wy on Ky,
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it may be deduced that
Dy
lulloo, i < luolloo it + = eXp[mx(%)(f(/\) — F(=N)],
and, in the same way,

[y < ol ey + 2 exPACN () = V)L
So
ety < ey + 2 explma(GN)(F) = SN

As JJu)loo,x < ||tt]|oo, K, the previous inequality implies the conclusion (1.9). m

2. Global smooth solutions to the Goursat problem

2.1. Formulation of the problem. We search for a solution u to the following
Goursat problem:

0%u
=F 5 Uu),
(P Ox0y ( )
ul(0z) = @5
u|’Y = 7;[})

where g, p,1 : R — R are some smooth one-variable functions with ¥(0) = ¢(g(0)), v
is the curve of equation z = g(y) and F' is smooth in its arguments. In all cases the
following hypothesis will be satisfied:

F € C*(R3,R),
(H") VK € RQ,sup(%y)eK;zeR |0, F(x,y, 2)| < oo,
g is increasing on R.

We denote by (P.) the problem which consists in searching for a function v € C?(R)
satisfying

(2.1) () = Fi,y.ul.0),
(2.2) u(z,0) = p(z),
(23) u(g(y),y) = ¥(y).

We denote by (P/) the problem which consists in searching for a function u € C°(R)
satisfying

(2.4) u,y) =uow,y)+ || F(&n, ul&n))dgdn,
D(=,y,9)

where

uo(z,y) = P(y) + () — ¢(9(y)),
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with
{(&,n):9(y) <E<2,0<n<y} ifgly) <z and 0 <y,
D(z,y,9) = {(&n):2<E<g(y),0<n<y} ifgly)>zand 0<y,
{&n) e <&<g(y),y<n<0} ifg(y) > andy<0,
{(&n)gly) <E<zy<n<0} ifg(y)gmandy<0
(/

solution to (P}).

Proof. Hypothesis (H') ensures that the domain D(z,y, g) is bounded. We consider the
points M (z,y), N(z,0), P(9(y),y), Q(g(y),0). Let us suppose first 0 < y and g(y) < z
Then D(z,y, g) is the rectangle PQN M. We have

z oy
) ;;gy(f,n)dﬁdnz | (Saaja (6,)dn) de.
D(@.y.9) 9(y)

Then

0%y ou ¢ Ou
W gegy&mdean=" Go&uds— | 5060
D(z,y,9) 9(v) 9(v)

[u(€, y)]’,f(y> - [@(5)]5(9)
=u(z,y) — ¥(y) — () + v(g(y))-

‘We deduce that
u(z,y) =uo(w,y)+ || F(&nun)ddn,

D(z,y.9)

where

uo(7,y) = P(y) + (@) — ¢(g(y)).
So we have ug(z,0) = 1(0) + ¢(z) — ¢(g(0)) and
uo(9(y),y) = () +(9(y) — (g(v)) = P (y).

It follows that u(z,0) = ¢(x) and u(g(y),y) = ¥(y). So w is a solution to (P/). To
calculate

9%u
W guay€mdcdn
D(I7yag)

we must consider four cases:
Case (1): (0 <y and g(y) <z), Case (2): (0<yand 2z <g(y)),
Case (3): (y<O0and z <g(y)), Case(4): (y<0andg(y) <ux).
Let us briefly consider the other cases.
Case (2): f 0 < y and « < g(y), then

W) v y

0%u ! 0%u 0%u
1) gy &mdcn="1 (S m(s,n)dn) de =~ | (§ 5

D(z,y,9) z 0 9(y)
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Case (3): If < g(y) and y <0, then

9(y)

z Ly
I e dedn = § (S T enan)ds= § (- (enan) de
D(z,y,9) z g(y) "0

Case (4): If y <0 and g(y) < z, then
T 0

. ( 0%u
D(Séz 9) Way(f”’) e g(Sy) <S dzdy Cmd ) “= _g(sy) (S dxdy (&m) d > .

If u satisfies (P/), assume that g(y) < x and 0 <y. We can write

u(e,y) = uo(a.y) + § (V& u(Em)dn)de,

O e @

9(v)
SO Y
ou - 8u0
5 (10) = 22 (.y) +§F(I,H,U(fvm)) dn

and consequently,

u 2u
9 <8> (z,y) = 07ug (z,y) + F(z,y,u(z,y)) = F(z,y,u(x,y)).

oy \ Ox 0yor
Let us calculate again u(z,y) in the following way:
Y T
ue,y) = uo(a.y) + § (§ (&, u(€ ) de) dn
0 g(y)
We have
ou Oug K , ¢
gy @) = 5, @)+ § Py ) =g () §Flo(y)nulg(y).m) dn.
a(y) 0
hence

" 2
%<g_y>(;c’y) g a (l‘ y)+F(I Y, U ( ,y)) = F(Lyvu(%y))-

Finally, the partial derivatives can be exchanged and we have
9 29 (z,y) = F( (2,9))
T F(z,y,u(x .
=0y Y Y, Y

Furthermore u(g(y),y) = uo(9(v),y) = ¥(y) and u(z,0) = uo(x,0) = @(z). These results
are unchanged if we suppose = < g(y) and 0 < y, so u actually satisfies (P, ). If u is of
class C, the function (z,y) — F(x,y,u(z,y)) is of class C!, so

W (@) = uolay) + § (§FE . u(E ) dn) d
g(y) O

has a partial derivative with respect to x of class C', and
Yy T

W s (0,y) = o)+ § (] P& mu(em) de) dn,

0 g(y)
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has a partial derivative with respect to y of class C!. As

o (oW o (oW
(2 o - (T
2 (55 )@ = Flaaeutoi) = oo ( 5T )@
it follows that w = W is of class C?. We remark moreover that, if u is of class C™, the
function (z,y) — F(z,y,u(z,y)) is of class C",

W (2,y) = uo(z,y) + | (SF(&n,u(&n))dn) dg
g(y) 0

has a partial derivative with respect to x of class C™, and

W:(w,y)HuO(w,yHS( | F(f,n,U(&n))CE) dn
0 g(v)

has a partial derivative with respect to y of class C™. As

o (oW g (oW
(2 - F - 2 (7
2 (G5 ) = Fauten) = (G0 @)
is of class C" it follows that u = W is of class C"*!. By induction u is therefore of
class C*. m

We have, of course, the following corollary.
COROLLARY 7. If u is a solution to (P}) (or to (P..)), then u belongs to C°°(R?).

REMARK 8. (Second order partial derivatives of u; these results will be used in Subsection
5.2). Let us assume that u is a solution to (P;), g(y) < z and 0 < y. Let us remember

that
Y

ou _ Oug

As %2;20 (z,y) = ¢"(x), we find that

Y

2U u
o o) =) + | (G ot + G e, m) G o) ) .
0

dx?
We calculate again u(x,y) in the following way:

u(e,y) = wolw,y) + | (§ F(&n,u( ) de) dn.
0

9(y)

Starting from

g—Z(%y) = %—?(%yH | P&y uy)de— o' (v) | Flaw), m ug(y),m)) dn

9(y) 0
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we obtain

82U o 82u0 9 ’ F
a—yg(fc,y)—a—gﬂ(fc,y)* g W F(9(y),y,ulg(y),v))

9(y)

Since

hence
2u
T @) = 0 ) 15" (00) + (9% (90

2.2. Existence and uniqueness of solutions
THEOREM 9. Under hypothesis (H'), problem (P.,) has a unique solution u in C*°(R?).

Proof. Let us assume that 0 < y, g(y) < x. According to Theorem 6, solving problem
(P!,) amounts to solving problem (P/), that is, searching for u € C°(R?) satisfying (2.4).
For every compact subset of R2, we can find ), large enough, so that this compact subset
is contained in Ky = [g(—A),g(A)] X [=A, A]. Let us put, in accordance with hypothesis
(1),

e

my = sup
(&mEKN;zER

Let us consider the sequence (uy,)nen of functions defined on R? by

Ve N, un(z,g) =uolz,y)+ || F(&m,un (€ m)dedn.
D(z,y.9)

For every compact subset H € R2, let us put
[uolloo,r = sup [uo(z, y)l-
(z,y)eH

According to the mean value theorem in integral form, we can write

(25 F(&m6) = F(&1,1) = (6= )| S (€ mor + (e — 1) do
0

hence, for every (£,n) € D(z,y, g), we have

1
0
F (& uo(€,m)) — F(Em,0) = uolE ) | (&, m, oun(€, n)) do
0

and so
1

(B (&m0, m)] < [F(6,m,0)] + o (€, m)| | ma do < [F(6,m,0)] + maluo .
0
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Let us put

Dy = ”F('v'?O)”OO,K)\ +m)\HUOHoo,K>\7

Vne N, V,=1u,— Un_1.
With these notations we have

Vi(z,y) = wi(,y) —uo(z,y) = || F(&mnuo(&n) dedn
D(I7yag)
and so
Vi)l < |\ 1F (€ uo(&, )| dedn < DrA(,y),
D(z’yn‘])

where A(z,y) = {

we also have

Va(z, )| = [uz(.y) —wi(z,9)| <\ [FEn,ua(6,m) — F(€n,uo€.n))| € dn.
D(z,y.9)

D(9:0) d¢ dn indicates the area of the domain D(z,y,g). Similarly,

Then using the relation (2.5), we obtain

|F(§7T]a ul(fan)) - F(§7Ua“0(faﬁ))|

1
[ o F(€m, 1 (6,0) + (s (6.1) — o (6, ) do
0

< Jur(€,m) = uo(&;m)

We deduce that
Va(w,y)l <ma \| Vi m)ldedn <maen (| A(g ) dedn.
D(z,y.9) D(z,y.9)
Putting 2\ = g(A) — g(—A), we have A(z,y) < 2\'y and then

Yy 2X
Va(z,y)| < may | ( {23 dg) dy < madx((2V)2y2271).
0 0

Consequently, for all (£,7) € D(x,y,g),

2
[V2(§m)| < ma®@ <(2>\')2 772>

It follows by induction that

Vil < m o (20" ).

Hence ,
@)\[(QA )mA)\]"
WValloouiy, < AT
myn:
which ensures the uniform convergence of the series > ., V;, on K}, and, consequently,
on every compact subset of R?. We have Y }'_, Vi, = u,, — up, so the sequence (uy,)nen

converges uniformly on K to a function u. As every wu, is continuous, the uniform
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limit u is continuous on every compact subset Ky, so on R%. Let us put e,(v,y) =
u(.’IJ,y) - Un(l', y)7 then

uw,y) —uo(z,y) = || F(&m,u(&m)dedn

D(z,y,9)
= u(e,y) —un(2.y) + (wnley) —uo(e,y) = [§ F(&n.u(€ ) ddn)
D(z,y.9)
=en(z,y)— || (FE&nuEn) = FEn un1(¢m)) ddn.
D(z,y.9)

As for every (&,1n) € D(x,y,9),
|F(§7777 U(fﬂ?)) - F(§7777 Un(fﬂ?)ﬂ < |u(£777) - un—l(ga n)‘m)\;

the second member of the above equality is bounded by

sup |en(z,y)| +ma sup  A(z,y)[ sup |u(z,y) — un—1(z,y)]
(I,y)EK)\ (xry)EK% (I,y)EK)\

that is, by

sup |En(1:,y)| +m)\2/\//\ sup ‘€n_1($,y)|,
(z,y) €K (w,y) €K

whose limit is 0 as n tends to +o00. So, it follows that

uw,y) =uolw,y)+ || F(&n,ul&n)dgdn
D(z,y,9)

for (z,y) € Kxn{(z,y): 0 <y, g(y) <z} = K| ,.
To prove uniqueness, let W be another solution to (2.4). Putting A = W — u, we
obtain

Awy)= (| (FEnwEn) - F&nuEn)dedn,
D(z,y.9)

Let (z,y) € Kx. As D(x,y,g) C K\, we have

Ayl < ] maW(En) —ul& mldedn <mn || [AE )] dsdn.
D(z,y,9) D(z,y,9)
As g(y) <z,

y g\

r Yy

Ayl <ma | flagnldyds <ma§ (0§ sup (A )] dg) an.
a(y) 0 0 gt tE02A

For every y € [0, A], put

E(y)= sup |A(&y)l.
£€[0,2)]

Then

|A(z,y)] < ma2N

£ i
0
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it follows that

e 0. fW],  Bly) < ma2X || EG) dn.
0

In this way, by applying Gronwall’s lemma, we get E = 0, hence A = 0, which proves
the uniqueness of v on K ,. We write vy for this solution. Let us assume that 0 <y,
x < g(y). We have

9(y) ,y 2

0%u 0%u z y 52u
D(§,§,, Bzay &M dn = §C (éa ay(f’”)d”> dg =~ (éamay(&n)dn> d¢.

9(y)
We can solve this case in the same way.

In the case y < 0, we make the change of variables X = —z, Y = —y. Then
Y > 0 and h(Y) = —g(-Y). The compact subset K turns into the compact subset
Qx = [h(=A),h(N)] x [-A, A\] and h(N\) = —g(—A\). So we now have
{g@)éz@deMXXQMZKMIXX,Ym)mﬁdeMNQP%
9(y) > v & Y < h(X);D(X,Y,h) = D(~X, Y, g) = rectangle(MPQN).
If < g(y), then

gy) ,0 z
SS %(&n)dﬁdn= S (S 862 (& n)dn> dé = S (S (,)82 (&, n)dn) de.
D(z,y,9) B y g(y) "0

If g(y) < z, then

2

T 0 y
) %(E,n)dédn= | (Saigy(f,n)dn>d£=— | ((S)aajgy(é,n)dn>d§.

D(z,y,9) gly) ¥ 9(y)

The change of variables gives then

u(w,y) = u(=X,=Y) =uo(-X,-Y)+ || F(=¢&-n,u(=¢ —n)) d¢dn,

D(—X,-Y,9)
whose form is
UX,Y)=U(X,V)+ || &&nul&n)ddn.
D(X,Y,h)

We can deal with this case as previously with
g (2)\'m,\)\)”

HVnHoo,Kx < my n

) u(x,y) = U(—l’,—y).

For existence of a global solution, we have four cases:

(0 <y and g(y) < x),

0 <yandz <g(y)),
)

(
(y<0andz < g(y
(y <0and g(y) < ).

)
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Finally, if we put
Ky =Kxn{(z,y):0<y,g(y) <z}, K\ =Kn{(z,y):0<y, z<g(y)}
Ky =Kxn{(z,y):y <0, 2 <g(y)}, Ky, =FEKn{(z,y):y<0,9(y) <a}
and if we let

e vy be the solution on Kf,/\,
. v;r be the solution on KffA,
e w, be the solution on Ki/\,
. wj\r be the solution on K;A,

then we can put

vy (z,y) for (z,y) € K,
+ +
wy (z,y)  for (z,y) € Ky,
(2.6) ur(z,y) =94+ N
,U)\ (l',y) fOI‘ (xvy)eKl A2
w;(x,y) for (I,y) € K2_7)\
Now,
o vy and vy agree on 7y because vy (9(y,y)) = v} (9(y,4)) = ¥(y),
o wyand w agree on 7 because wy (9(y,y)) = wy (9(y.y)) = ¥ (v),
e w, and v, agree on (y = 0) because w, (,0) = v, (z,0) = p(z),
e wiand vy agree on (y = 0) because wy (z,0) = vy (z,0) = ¢(z),

which ensures the existence and uniqueness of the solution uy on Ky = K, , U K; NS,
Kff » U K, . It remains to prove that the method actually gives a continuous global
solution u on R?, that is, one which satisfies (P/). If Ay > A1 then Ky, C Kj,; so, we

1
must prove that uy, |k, = uy,. But

V(z,y) € Ky, uny(2,y) =uo(z,y) + |\ F(&m,us, (&) dgdn
D(z,y,9)
and we have this equality, all the more so, for (z,y) € K,. So we have
wnslien, (@y) =wo(w,9)+ || FEnunx,, (6m) dedn.
D(z,y.9)

In other words, uy,|k,, satisfies (2.4) on Ky, and so coincides on it with its unique
solution wuy,. For every (z,y) € R%, we can then put

(2.7) uw,y) = ur(z,y) = uo(w,y) + V| FEnun)dsdy
D(z,y,9)

where uy satisfies (2.4) on Ky and (z,y) € K. The definition of w by (2.7), being
independent of the compact subset K, finally gives the unique global solution to (P})
or (P.). m

In Section 5, we will need the estimates specified by the following result.
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PROPOSITION 10. With the previous notations, for every compact subset K € R2, there
exists a compact subset Ky € R? containing K such that

oF
(2.8) mx = sup @,y t); Pa=[F(0)|loo,xy +matolloo ks
(z,y)EK\;tER 0z
D, ,
(2.9) [ulloo, i < [[tlloo, iy < luolloo,xy + . exp(2A'maA).

Proof. We have
un(@,y) = uo(z,y) + V| P& mun(&m)dedn, n>1,
D(z,y,9)
and (2.6) holds. As

@)\ - ||F(7 '70)Hoo,K>\ + m}\HuO,EHOO,KA) Vn = Up — Un-—1,

according the proof of Theorem 9, we have

. wo (2NN By (2N maA)"
VnEN'  (Vallo iy, SmRT a5 = my  nl

and consequently,

o0
Dy
ulloo, iy, < Muolloo iy, + ZHVnHOO,K;A < lwolloo i, + m—AeXp(2)\’mA>\).

n=1
‘We deduce that

Dy
||“Hoo,K1jA < HUOHOO,K;A + p exp(2\'maN)
and similarly

D
Hu||oo7K2+,A < ||UO||OO’K;:)\ + . exp(2A'maN),
D ,
HUHOOJ(iA < HUOHOOvar,A + m—)\ exp(2A'myA),

Dy
[l < ool + 2 exp(2Xma),
So

Dy
s < ol + 22 exp(2Xm ),

hence

Dy
ulloo, i < [[tlloo, iy < [Juolloo, iy + m—AGXP(Q)\'mM) .

3. Algebras of generalized functions

Algebras of generalized functions are the most effective tool to solve many nonlinear
differential problems with irregular data or characteristic data. To choose an appropri-
ate structure for the Cauchy problem considered, we use the results and notations of
J.-A. Marti [1998]-[2004], J.-A. Marti and S. P. Nuiro [1999].
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3.1. The sheaves of (C, &, P)-algebras. Suppose that

e / is a set of indices;

e A is a subring of the ring K* (K =R or C);

o A ={(r\)r€A:ry >0}

e A has the following stability property: whenever (|sx])x < (ra)a (i-e. for each A,
|sx] < 7y) for any pair ((sx)a, (ra)x) € K4 x Ay, it follows that (sy)\ € 4;
I, is an ideal of A with the same property;

e & is a sheaf of K-topological algebras on a topological space X such that for each
open set 2 in X, the algebra £({2) is endowed with a family P(£2) = (pi)icr(n) of
seminorms satisfying

Vi€ I1(£2),3(4,k,C) € I(£2) x I[(£2) x R,V f,g € E(2) : pi(fg) < Cp;(f)pr(9);

e For any two open subsets §21, {25 of X such that £2; C {25, we have I({21) C I({23)
and if o? is the restriction operator £(§22) — £(£21), then, for each p; € P(£21), the
seminorm p; = p; o 07 extends p; to P({22);

e For any family 7 = (£24)nen of open subsets of X if 2 = (J,cy 2, then, for
each p; € P(£2), i € I(£2), there exists a finite subfamily £21,..., 42,0 of F and
corresponding seminorms py € P(§21),...,Pn) € P(f2,3)) such that, for each
ue &),

pi(u) < pi(ujg,) + - +pn(i)(u\9n<i>)'

Set
Hiae,p)(92) = {(un)x € [E(Q)]" : Vi € I(R2), (pi(ur))x € AL},
Ti1aep)(2) = {(un)x € [EW)* 2 Vi € 1(92), (pi(un))r € T}},
C=A/l4.

ProrosiTioN 11. If
Al = {(raDx € RY = (m)x € A} and |La] = {(Iral)x € R : (m)x € La}
are respectively subsets of A and I then |A| = A4 and |14] = I}.

PROPOSITION 12 (J.-A. Marti, S. P. Nuiro and V. S. Valmorin [1998a], [1998b]). H (4 ¢ p)
is a sheaf of subalgebras of the sheaf £/ J(1a.6,p) 15 a sheaf of ideals of Hia g p); the
constant sheaf Hax |.))/J(14.x,.) 15 evactly the sheaf C = A/l 4.

DEFINITION 13. A (C, &, P)-algebra is every factor algebra A = Ha e py/T(14.6,p). We
denote by [uy] the class defined by the representative (uy)xea-

REMARK 14. In the context of (C, &, P)-algebras, it is proved that, if A = A, then
Heaxn/Tuax ) = A/la=C.

But the first term is, in principle, a (C, K, |.|)-algebra and the second a ring of generalized
constants, which is therefore an algebra. In fact, the following proposition will prove it.

PROPOSITION 15. If A is a subring of KA(K = R or C) with the stability property such
that |A| = Ay, then A is a K-subalgebra of KA.
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Overgenerated rings. In practice, the ring A and the ideal I 4 are overgenerated by finite
families of elements according to the following definition:
Let By, = {(rn2)x € (R)? :n=1,...,p} and B be the subset of (R* )* consisting of
all products, quotients and linear combinations with coefficients in R* of elements in B,,.
Define
A= {(a)\))\ € KA 3([&),\ € B, |a,\| < b)\}

It is easy to see that A is a subring of K/ with the stability property and moreover
A, = |A|. Then we make the following definition:

DEFINITION 16. In the above situation, we say that A is overgenerated by Bp. If I
is some ideal of A with the same stability property, we can also say that C = A/I4 is
overgenerated by By.

EXAMPLE 17. As a “canonical” ideal of A, we can take
Ian={(ax)x € KA :VY(by)x € B, lax| < ba}

The association process. We suppose that A is left-filtering for the given partial order
relation <. Let us denote by {2 an open subset of X, E a given sheaf of topological
K-vector spaces containing £ as a subsheaf, & a given map from A to K such that
(D(A))x = (D) is an element of A. We also suppose that

Tra,e,7)(82) C{(urn)x € Hiaepy(£2) E%lg)l/l uy = 0}.

Then, for u = [uy] and v = [vy] € £(12), we define the $-E association.

DEFINITION 18. We denote by
@

u ~ v
E(Q)
the @-F association between u and v defined by
lim @ — =0.
5 (IQH)l’A Alux —vy)
That is to say, for each neighborhood V' of 0 for the E-topology, there exists \g € A such
that

A=< = @)\(UA—UA)EV.

REMARK 19. To ensure the independence of the definition from the representatives of u
and v, we must verify that if limpgoy 4 @a(wx) = 0 for some (wx)x € Ha,ep)(£2), then,
for any (ix)x € J(14.6,7)(£2), limp(2) 4 Pa(wx +ix) = 0.

To prove the last condition, it is sufficient to show that (®xix)x € J(1,.e,p)(§2). But
for each i € I(£2), we have p;(Px(ix)) = |Px|pi(ix). And, considering the definitions and
the stability properties given above, we have |®y|y € Ay and (p;(ix))x € I§. Then we
also have (|@x|p;(ix))a € I}, which proves the required condition.

REMARK 20. We can also define an association process between u = [uy] € E({2) and
T € E(£2) by writing simply

u~T <& lim uy="1T.
E(02),4
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Then taking E = D', £ = C*, A =]0,1], we find again the association process defined
in the literature (J.-F. Colombeau [1985], Yu. V. Egorov [1990]).

REMARK 21 (Relationship between ring and injection). It is shown by J.-A. Marti [2003]
that a necessary and sufficient condition for the existence of a canonical sheaf morphism of
algebras from &€ into A is that A is a ring. If, in addition, T4 C {(ax)x € 4 : limy a) = 0}
and, for each 2, the P(£2) topology of £({2) is separated, then this morphism is an
injective mapping.

3.2. An algebra adapted to the generalized Cauchy problem. The first step
is to link the problem and its data to algebraic and topological parameters that make it
possible to build an appropriate (C,£,P)-algebra.

DEFINITION 22. We choose £ = C*, X = R? for d = 1,2, E = D’ and A =]0,1]. For
every open set £2, in R%, £(2) is endowed with the P(£2) topology of uniform convergence
of all derivatives on compact subsets of {2. This topology may be defined by the family
of the seminorms

P i(ue) = sup sup | D% ()]
la|<lzeK

with K € 2 and
Har++aq

- 02" -+ 0297
We verify that it is compatible with the algebraic structure of £({2) since
VK € 2,Va € N',3C > 0,Yf,g € C*(2), Pri(fg) < Pri(f)Px,(9).

We put Pk o(ue) = supyex [Duc ()|, so Pk (us) = SUD|a|<i Pk o(us). Let A be a
subring of the ring R4 of family of reals with the usual laws. We consider an ideal I4 of

D~ for z = (z1,...,24) € 2,1 €N, a = (ay,...,04) € NL

A with the stability property. To simplify, we write
X =Huacepry, N=IJi,cep), A=X/N.
We put
X(2) = {(ue): € [C(Q))": VK € 2, VI € N, (P (ue))e € Ay},
N(2) = {(ue)e € [C¥(Q))" VK € 2, VI €N, (Pr (ue))- € I}

The ring of generalized constants associated with the factor algebra is exactly the factor
ring C = A/I4. Finally, the generalized derivation D% : u (= [u.]) — D% = [D%u,]
provides A(f2) with a differential algebraic structure.

ExXAMPLE 23. If we consider
A=RY ={(m.). eR*: I e Ry, 3C € R, Fu€0,1], Ve € 0,4, |me| < Ce?}
and the ideal
Iy ={(m:). eRY: Vg e R}, 3D € R, € ]0,1], Ve €10, 4], |me| < De?},
then A(R?) = G(R?) is the algebra of Colombeau generalized functions.

If u is a generalized function of the variable x € R? and F € C®(R3 R), we extend
the notation F(-,-,u) in the following way:
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DEFINITION 24. Let £2 be an open subset of R? and F € C*®(£2 x R,R). We say that
the algebra A({2) is stable under F' if the following two conditions are satisfied:

e For cach K € R%, 1 € N and (u.). € C(0)1%1 there is a positive finite sequence
Cq,...,C; such that

l
Pr (F Z i Pic 1 (ue).

e For each K € R?, 1 € N, (v.)., (u:). € X(£2), there is a positive finite sequence
Dy, ..., D; such that

Pry(F (- ve) = () < DiPl (v — ue).
J

PROPOSITION 25. If A(S2) is stable under F then:
e For cach K € R%, 1 € N and (u.). € C®(2)1%1, we have
(Pra(ue))e € Ay = (Pra(F(-5,ue)))e € Ay
e For each K @ R% 1 € N, (ve)e, (ue)e € X(£2), we have
(Pri(ve —ue))e € Iy = (Pra(F(-v:) = F(, - ue)))e € If.

PROPOSITION 26. If A(S2) is stable under F then, for all (uz): € X(£2) and (ic)e €
N(£2), we have

(F(" ) US))E € X('Q)v (F(’ 5 Ue + 7;5) - F('7 '7u€))€ € N(Q)
We shall use the following lemma.

LEMMA 27 (Francesco Faa di Bruno’s formula). The nth order derivative of fowu can be

fou Z Z til,.i.,irf(r) ou- ﬁu(ik)
k=1

r=1 i1>>i,
i1+ t+ir=n

written

where the coefficients t;, .. ;. are integers.

PROPOSITION 28. Let F' € C*(R2,R) be defined by F(x,y, z) = z/(1 + 2?). Then A(R?)
is stable under F.
Proof. We put

ue(x,y)

(3.1) f(2) =+ and @(w,y) = F(z,y,u:(,y)) = T+u2(zy)

1+z

For each real z we have

P A 1
UC U _2<1—|—iz_ 1—z’z>'

We put
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By induction, for n > 1 we obtain

(), (=1D)"(n})
@ (Z) (1 + az)n+1
We have
n 1 n n
F™E) =5 6" (2) - g% ().
and, for &« =i or @ = —1,
—1)™nla™ |a|™
) (5] < | L | <l
196" (2)] < ‘(1 Faz) | = A g 2y =1
SO

If™M ) < <|gz ')+ 19" (2)]) < nl.

All the successive derivatives of f are therefore bounded on R, and for each integer n,

sup [ £ (2)] < nl.
z€R

Let us show that for each n, there is C..,, > 0, 1 <7 < n, such that

PK,n(F('7 '7u€)) S Zcr,npfr(’n(ue)-

r=1
In terms of @ (z,y) = F(x,y,u-(z,y)), z and y have similar roles, therefore the study of
O™ /0z*Oyn~F &, is similar to that of 9" /9z" *y* ®.. Thus we can prove the assertion
only for 9" /0x™ $. We have

0b. . Oue
T @) = (el ) S (w,0),

hence
VK €R?, Py ,0)(F(ue)) < P (ue).

Consequently,
VK@RQa PK,l(F('a'aus)) SPKJ(UE)'

For each K € R?, we have

2 2
o 220 = £ ) G 00) G2 o) + £ i) 5o (),

hence

Pgy(F(-ue)) < 2P12<’1(u5) + P o(ue) < 2P12(’2(u6) + Pk o(ue).
We have

2 2 2
o ) = 10t (5 ) (o) + £ ) G 0,

Thus

Pr (2,0 (F (-, ue)) < 2P[2(71(u5) + Pra(uc) < 2P[2(72(u5) + Pre2(ue).
Consequently,
VK €R?  Pia(F(-,- ue) < 2Pk o(uc) + Pra(ue).
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Therefore we have, for « =n and 8 = 0,

6 @ o Ou,
x,y Z Z til ..... irf(r)(us(x,y)) axik (x,y),
r=1 41>, k=1
i1t Fie=n

For all K € R?, i, €N, i <nand r € N,

sup | f") (us(z, )| < ! <l

(z,y)EK
therefore
(ix) |
max  sup |1 (ue(z, y))| < nl.
1<ix<n (=, y)€K| ( )|
We have
TR
Sup ‘ Oxik ( y)‘ < Pk iy (ue) < Prep(ue)
(zy)eK | 0T
and
ST .
sup 5 z‘,j (x,y)} < Pg o (ue),
(z,y)EK k=1 x
therefore
(r) 8“‘ -
sup. [6..5 ) [T G| < b P ),
(z,y)eK pie]
Consequently,

n

o"P,
sup ‘ = (z, y)' ( t; 7_4.717‘)n!PIT(7 (ue).
it tieen

Let us show that, for all K € R?, [ € N, and (v.)e, (uec)e € X(£2), there is a positive
number D; such that
PK,l(F('a 'aUE) - F(-, '7u8)) < DlPK,l('UE - ua)-
First let us show this relation for [ = 0. For all K € R? and (x,y) € K, we have
1 1

Lt+av(e,y) 1+ au(,y)
_ Oz(us(x,y) _ Us(l',y))

(1 + OéUE(.T, y))(l + OJUE(Z‘, y))

9o (ve(2,9)) = ga(ue (2, y)) =

)

SO
|u€($7 y) - Us(x, y)‘
_ < < _

|9a(ve(z,y)) ga(us(x,y))lg,|14_Ug(x’y)|uf+_ug(m,y)|A,IUE(w,y) ue (7, y)|,

because @« =7 or « = —i¢. As
z )
f@%—1+22—2(m@) g-i(2)),

we have

fue(z,y) — fluc(z,y) = % [9:(ve(z,y)) — gi(uc(z,y) — (9-i(ve(, ) — g—i(uc(w,y)))]
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and

|f(’l}€($,y)) - f(us(xay))‘
< % [19i(ve(z,y)) — gi(ue (@, y))| + g-i(ve (2, y)) — g—i(ue (2, y))]]

IN

|'U6(373 y) - US(SL‘, y)|,
and consequently
PK,O(F('a ',UE) - F(a ‘7u8)) é PK,O(,UE - UE).
It is sufficient to prove the relation for g,. For each K € R? and (z,y) € K, we have
Ve(z,y) = ga(ve(2,y)) = ga(ue(z,y))
B —a
T (U +av (@) +au(o,y

)) (Ug(l',y) - UE(LL',y))

and
Ve (@, Y)| < [ga(ve(x,y)) — ga(us(z, )| < |ve(2,y) — ue(w, )|,
SO
sup |W5(:L',y)‘ < PK,O(UE - Us)'
(z,y)EK
We put
-

he(w,y) = —ga(ve(7,Y))ga (ue (T, y)).

(1 + ave(z,9) (1 + aus(z,y))
As g, and all the successive derivatives are bounded, for each integer n, (0™/dz™)h. is
bounded on K by a polynomial of
v, Oou, 0",
K, ‘ oo,K’ H oxn
with positive coefficients, which we can write d,, (K, ue,v:). According to Leibniz’s rule

or

0",

ox™

[velloo, 7 [l12e oo, x5

- sy s
Oz ) oo, K oo, K

we have
8”&0 8”*1'(1)5 — Ug)
amn QZ n 6 7 5 amn_i (1‘7y)
Consequently,
su an%(x )| < Zn:Cid-(K Ue, Ve ) P, (Ve — ug)
(a:,y)EK oz Y 7i . nt s Ugy Ue J 'K n—i\Ve 5

(ZCZ (K, 1L5,115))PK77L(1)E — Uug).

From this, it may be deduced that
PKJL(F(" ',’UE) - F('y '7“5)) < DnPK,n(Us - us)- L

3.3. Parametric singular spectrum. We suppose that

Ny (92) = {(us) € X(2) : lim u. = 0 in D'(2)} > N(£2).
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Then we put
Dy (2) = {[uc] € A(2) : IT € D'(N2), lim ue = 7" in D'(02)}.

D', (£2) is clearly well defined because the limit is independent of the chosen representa-
tive; indeed,

lim (ue +4.) = lim uw.+ lim i = lim w., since lim i =0.

e—0 e—0 e—0 e—0 e—0

D'(R) D'(R) D'(R) D'(R) D'(R)
D4 (£2) is an R-vector subspace of A(£2). Therefore we can consider the set Op,, of all
having a neighborhood V' on which u is associated to a distribution:

Opy, (u) ={z € 2:3V e V(z), uly € Dy(V)},
V(x) being the set of all neighborhoods of x.
DEFINITION 29. We define the D’-singular support of u € A(S2), denoted sing suppp, (u)

= é;\ (u)v as
S’é’A (u) = 2\ Op, (w).

Elements of parametric microlocal analysis. Let u € A(RY) and x € R?. Tt may hap-
pen that u = [uc] is not associated with any distribution in a neighborhood of z, that
is, there is no open neighborhood V, of x for which lim._,u.|y, belongs to D'(V,)
(J.-A. Marti [1998], J.-A. Marti, S. P. Nuiro and V. S. Valmorin [1998b]). But in this
case, it may happen that some real number r and some neighborhood V, of x exist
such that lim._oe"u.|y, belongs to D'(V,), that is, ["u.| belongs to D’ (V,), the vec-
tor subspace of A(V,) whose elements u are associated with some distribution of D’(V},)
(J.-A. Marti, S. P. Nuiro and V. S. Valmorin [1998b]).

We refer to J.-A. Marti [1995], J.-A. Marti, S. P. Nuiro and V. S. Valmorin [1998b].

Let {2 be an open subset of R%. For z € 2 and u = [u.] € A({2), we put

Npi o (u) = {r € Ry : 3V, € V(x), lir%e’"ughfw eD'(Vy)}.
E—

We can show that Nps ,(u) does not depend on the chosen representative of u and that
if Nps ,(u) contains some 7o € Ry, it must contain every r > 7. Then one defines the
D'-fiber over x as
ED/’I(’LL) = RJr \ ND/@('LL).

This is either a bounded interval of R of the form [0, r[ or [0, 7], Ry itself, or the empty
set.

Then we can give the following definition of the parametric singular spectrum of a
generalized function:

DEFINITION 30. We define the D’-parametric singular spectrum of u € A(f2) as the
following subset of 2 x R :
SESé;‘u ={(z,r) € 2 xRy : 7€ Xps,(u)}.
REMARK 31. We have Yp/ ,(u) = () if, and only if, there exists a neighborhood V,, of z
such that
1ir% uely, € D'(Vy),
£—
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that is, if, and only if, z does not belong to the D’-singular support of wu, SA,A (u). It
follows that the projection on {2 of SSSS;tu is exactly Sé;tu.

THEOREM 32. Let u,v € A(S2). Then

S:Sty, (u+v) C S:Spy, (u) U S-Sy, (v).
Proof. Let r € Nps 4(u) N Nps 4 (v). Then there exist V,,, W, € V(z) such that

iii% e"ucly, € D'(V,) and 8hﬂ% e"ve|lw, € D'(Wy).

From this it may be deduced that

lim e"(ue + ve)|v,aw, € D' (Ve N W),
so r € Np/ »(u + v) and consequently

Npi o (u) N Npr 1 (v) C Npr g (u 4 v).

We obtain the result by taking complements in R ;. m

COROLLARY 33. For any u, ug, uy in A(§2) with

(3.2) u=1ug + uq,
(3.3) S:Spy (ug) =0,
we have

S:Spy (u) = S.Spy, (u).
Proof. The previous theorem and condition (3.3) give
A A

But, as (3.2) implies ug = u — u1, we obtain of course the converse inclusion, and thus
the result. m

THEOREM 34. Let u € A(f2). Then ,5’55”5‘;l (D*u) C SES%,A (u) for all a € N
Proof. Let r € Nps (u). There exists V,, € V(z) such that
gig%fruam =T eD'(V,).
The continuity of D¢ implies
lim "Dy, = lim D"u.|y, = D*T € D' (V).
Thus Nps (u) C Npr o (D%u); we obtain the result by taking complements in R;. m
THEOREM 35. Let f € C®(£2) and u € A(£2). Then 5555‘;\ (fu) C S’ESA;\ (u).

Proof. Let r € Npr ,(u). There exists V, € V() such that lim._,¢e"uc|y, =T € D'(V,),
that is, for each ¢ € D(V,),

lin686TuE (x)p(x) de = (T, ¢).

E—
Thus, we have

lim {7 (fue) (@) () do = lim {e™ue (2) fo(a) do = (T, fo) = (fT. ).
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It follows that
lin%srfus|vx = fT € D'(V,)
E—
and therefore r € Nps ,(fu). From Np/ ;(u) C Npr (fu), we can deduce the result. m

COROLLARY 36. Let P(D) = Z\a|§m Co D be a differential polynomial with coefficients
in C°(£2). Then SESA,A (P(D)u) C SSSA;‘ (u) for any u € A(£2).

Proof. Write P(D)u = Z\a\<m CoD*u and apply the previous theorems. m

4. Generalized Cauchy problem

4.1. Formulation of the problem. We take up again the formulation of the Cauchy
problem posed in Subsection 1.1 in the form

0%u
axay - F(',',U),
(Pg) lgv =%
u
ay y - w?

but now we search for u in the algebra of generalized functions A(R?) defined in the
previous section. ¢ = [pe], ¥ = [te], e, ®e: R — R are some smooth one-variable
functions, the hypotheses on F and f are kept, A(R) and A(R?) are built on the same
ring of generalized constants, A(R?) is stable under F. We suppose that, for every ¢, the
problem
2
i (020) = Fla el ),
POO(‘)OEaQ/JE) ue(xvf(x))cha(x)v

Oou,
T (@) = ()

has a solution u. € C*°(R?).

Giving a meaning to (Pg) is first giving a meaning to

0%u

(4.1) Saay = Flu:
(4.2) uly = ¢ € AR),
(4.3) g—;‘ =1 € AR),

when u € A(R?) and v is the smooth submanifold of R? defined by y = f(x). Giving a
meaning to (4.1), under the hypothesis that A(R?) is stable under F', amounts to saying
that, for a representative (u.). of u, we must have for all (i.)., (j-). € N(R?),

(%@Zis) — F(-, -, ue +j5)) € N(R?).

€
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As
02 (ue + i) B 0%u,
0x 0y 0xdy

we must verify that

) < N(RQ) and (F(> o Ue +j6) - F('> ~,u€))6 € N(RZ)a

02, 9
<8x5‘y - F(~,~,ua))E € N(R?).

Giving a meaning to (4.2) and (4.3) amounts to defining u|, and (9/0y)uly. As v is a
smooth submanifold of R? that can be represented by a single map (y = f(z)), we can
identify A(vy) and A(R) and so ul|, to the element of A(R) with representative (z —
ue(z, f(x)))e and we can identify (9/0y)ul, to the element of A(R) with representative
(z — 2= (z, f(z)))e. So (4.2) is equivalent to

dy
(@ = ((ue +ie)(z, f(2)) = (e + ac)(2)))e € N(R).
(4.3) is equivalent to

(o (25D o - e+ 800 ) ) €N R

g

for all (i.). € N(R?), (ae)e, (B:)- € N(R). Considering

(x = ((ue +ie)(z, f(2) — uc(z, f(2)))): € N(R),
(@ = ((pe + a:)(z) — ve(2))): € N(R),

(o= (M52 )1t - Gt @) ) ewvew

(@ = ((¢e + ) (@) — () € N(R),
(@ = (je(2) —ic(, f(2))))e € N(R),

this boils down to

(¢ (e, £(2)) — o)) € N(R),
(0 (GEw s - v@)) entm.

€

To sum up, (Pg) has a meaning if, and only if,

0%u, 9
(axay — F(-,-,ug))S € N(R?),

(& (e, £(2)) - pe(2)))e € N(R),
(o (G son - w)))s e N(R).

So, if for every &, u. is a solution to P (¢e, 1) and if (u.). € X(R?) then the relations
above are all the more true and [u,] is a solution to (Pg).

4.2. Existence and uniqueness of solutions

THEOREM 37. Suppose that A(R?) is stable under F and A(R), A(R?) are built on the
same ring C = A/I of generalized constants. Suppose that the data of problem (Pg) satisfy



38 V. Dévoué

the conditions ¢, € AR), f € C®(R). Then problem (Pg) has a unique solution in
A(R?).

Proof. Let u. be the solution to P (pe,%e). According to the previous result, it is
enough to prove (u.). € X(R?); then u = [u.] will be a solution to (Pg). We will prove
that

VK e R%VIEN, (Pg,(u.)): € Ay
Proceeding by induction, we first show that
VK € B, (Pgo0y(ue)e = (luclloc.i)e € Aq,
that is, the Oth order estimate is satisfied. Put
e (2, y) = Xe(y) = x=(f(2)) + ¢e(2)

where . indicates a primitive of ¥, o f~'. According to Proposition 5, for each K € R?
there exists K € R? with K C K such that

P
[teloo, & < [t oo, kn < |10, lloo, 5 + ﬂ;f exp(2Ama(f(A) = f(=A)))-

We have (||ugelloo.icy )e € A because [p.] and [1),] are elements of A(R). The constant

OF
E(Lmya t)’

my = sup
(z,y)€EKx;teER

depends only on F', Ky, and the constant
1

c(Ky) = . exp(2Ama(f(A) — f(=A)))
depends only on F, f, K. We have

QS)\,E = HF(7 '7O)||OO,KA + m>\||u0,8‘|007K>\
SO

. é)\,s
c(K\)Pae = e exp[2Am(f(A) = f(=A))]

= c(KX)[IF (55, 0)lloo,rcn + exp(2Ama(f(A) = f(=A)) luo,e oo, k-
Moreover, the constant
c1(Ky) = c(KN)IF (5 0)]oo, i,

depends only on F, K and c2(K)) = exp(2Am(f(A) — f(=)))) depends entirely on K}y,
F, f. Consequently,

[telloo, ik < fluclloo, ey < (14 ca(Bn))[[uoelloo, iy + €1 (EN).
Since (||uo.e |0,k )e € A, we have
(1 + c2(K) o elloo i )e € A
(if (re)e € A then (cre)e € A) and as ¢;(Ky) is a constant ((1). € A), we deduce that
(14 ca(Kx))l[uoelloo, iy + c1(En))e € A
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A being stable, we have (||uc ook, )e € A+ and so (||te|lco,ix)e € Ay, that is, (Pk o(ue))e
€ A,. Let us show that (Px 1(uc))e € A+. We have

Ou, ~ Ouge ¢
By ) = —5 (@) + \ F(a.n,uc(w,n)dn,
f(z)
hence
Oug ¢
Prcaane) < sup| % .|+ (£) = 1) sup |F o e )
K xz K

A(R?) being stable under F, there exists C' > 0 such that
PKX,(O,O)(F(U 'au€)) < PKA,O(F(W '7u€)) <C.
We have
(1(0/0z)uo.elloc, k) € Ax
because [p.] and [1)] are elements of A(R). So
Pre1,0)(ue) < [[(0/02)uoelloo,x + C(f(A) = f(=A))-
A being stable, we get (Pg (1,0)(ue))e € AT. We have

. .. '
By @) = sy = | Py &) de,

xT

SO

ou
Pk 0,1)(ue) < sup‘ 80’5 (wyy)’ + 2Asup | F(z,n, ue(z,m))|.
K Y Ky

‘We have
([1(0/0y)uo.elloo, i )e € At

because [¢.] is element of A(R); hence
Pre (0,1)(ue) < [[(0/0y)uo.elloo, i + C2A
and so, as previously,
(1(0/0y)uclloo, ke )e € A
Now we proceed by induction. Suppose that (Pk ;(uc)). € Ay for every I < n, and let
us show that this implies (Pg n+41(ue))e € Ar. We have Py p41 = max(Pk pn, Pi o, P,
Ps,, P, ) with

Pl,n = PK,(n—i—l,O)v P2,n = PK,(O,n-‘rl)a

P3n= sup  Pgat+1,8, Pan= sup Pk (agt+1)-
a+pB=n;5>1 at+pB=n;a>1

First let us show that (Pin(ue))e, (Pon(ue)): € Ay for every n € N. We have by
successive derivations, for n > 1,

an-‘,—luE an-‘,—luo,5
Ot 1 (z,y) = W(fﬂ,y)

n—1 . y
, , By an

— j f(n—j) o
]E:O Cf (z) O F(z, f(2), pe(2)) + f(s | RIT F(x,n,uc(z,n)) dn.
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As K C Ky, we can write

anJrl
[

8”+1u0 8

< || === su ci|fn=a) —F(x

| T B xe[EAJZO 10 @))| 2 B, £ @), 0e()
FUO =N s |2 F o)

(z,y)eK x
We have

n

—F(x,y,ua(x,y»\ = Preny(F(m112)) < Prcn(F( ),

(miSIE)K A
and
|5 ) )| < P (P 02)
< Pr (n,0)(F (5 ue)) < Pren(F (5,05 ue)),
moreover

(12" /0™ yup el o, )e € A

According to the stability hypothesis, a simple calculation shows that, for every K € R?,
(P (n41,0)(ue))e € Ay

Let us show that (P, (u:)). € A4 for every n € N. We have by successive derivations,
forn >1,

)

13

7F(£7 Y, us(ga y)) dé_

8n+1u€ 8n+1u0’€
8yn+1 (l',y) = 8yn+1 (xay) -

_an DO ) 5B 00 W)

As K C Ky, we can write

X anJrluE( )
up |57 LY
(@yyek | Oyt
an-i—luos ’ n
<||— +2X sup |=—F(z,y,u-(x,y ’
} 8yn+1 00, K (z,y)eK y" ( E( ))
j (n 7) aj -1 -1
ZC W55 P @) ee (£ @)
yE[f( >\) FN)] )
‘We have
sup ‘ {E yvus(x,y))‘ = PK,(O,n)(F('a 'aue)) < PK,n(F('a 'aue))

(z,y)eK
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and

sup —
yelf(=A),F (V] |90y

FU el )| < s | (eete)
(z,y)eK Yy

< PK,i(F('7 '7“5)) < PK,n(F('7 '7“5))'

According to the stability hypothesis, a simple calculation shows that, for every K € R?
and n € N, (P 0,n+1)(te))e € Ay. For a4+ =n and 8 > 1, we now have

Pras1,p)(us) = sup [DOF Dy (z,y) = sup |D*FHVDEDy, (2,y)|

(z,y)eEK (z,y)eK
= sup ‘D(a’ﬁil)F(Ivy’ué(xvy)” = PK,(a,B—l)(F('7 '7“6))
(z,y)eEK

S PK,nfl(F(U '>u6)) S PK,n(F(7 '7u6))-

So we finally have

P3n(uc) =  sup  Pg at1,8) (ue) < Prn(F (- ue))
a+pB=n;5>1

and the stability hypothesis ensures that (P ,,(uc))e € A4+. In the same way, for a+3 =n
and a > 1, we have

P apiny(us) = sup [D@PF Dy (z,y)= sup |D@HHDEDy, (2,y)|

(z,y)EK (z,y)eEK
= sup ‘D(a_lﬁ)F(xvyvus(wvy)” = PK,(a—l,ﬂ) (F(, ‘,us))
(z,y)eK

S PK,n—l(F('v '7u8)) S PK,n(F(7 '7u8))'
So we have

Pin(uc) = sup Py (ap+1)(ue) < Prn(F(-, - ue))
a+pB=n;a>1

and the stability hypothesis ensures that (Py,(u:))e € A4. Finally, we clearly have
(Prnv1(ue))e € Ay
Let us show that u is the unique solution to (Pg). Let v = [v.] be another solution
to (Pg). There are (i.). € N(R?) and (a.)e, (8:): € N(R), such that
82U8 .
8m—8y(x’ y) = F(z,y,v-(2,9)) +i-(z, ),

zg(m,f(x)) = pe(z) + ac(z),
a—yg(l‘, f(2)) = ve(z) + B: ().

The uniqueness of the solution to (Pg) will be a consequence of (ve — uc). € N(R?). It
is easy to see that

(@y) = § ilemddn) enE?).
D(z,y,f)
So there is (j.). € N(R?) such that

ve(@,y) =voe(w,y) — || F(&n, (& m) dgdn + je(x,y),
D(=,y,f)
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with UO,S(‘T7y) = UO,E(x7y) + 9€(x7y)7 where 96($>y) = Bs(y) - Be(f(x)) + CYE(JJ) and B
is a primitive of B. o f~1. So (6.). belongs to N'(R?). Hence there is (0.). € N(R?) such
that

ve(z,9) = uwoe(@,y) +ou(z,y) — || F(&n,0-(¢m)) dg dn.
D(=,y,f)

Let us put w. = v. — u. and show that (w.). € N(R?). We have to prove that
VK eR*VneN, (Pgn(w.)).€l].

We proceed by induction showing first that (Pk 1(w:)). € I4. We have

wo(wy) = || (=F(&nve(&m) + F(&n,uc(€m)) dE dn + oo (w,),
D(z,y,f)

but

F(ﬁ,ﬂvvs(ﬁ,ﬂ)) - F(@%“e(ﬁﬂ?))

= () = 6o (§ G (6o el€o) + 006.) = el ) 9.
0
1
we(w,y) =~ || wa(&n)Ga—j(&mua(f,n)+9(wa(€m)))d9>d€d77+05(w7y)-
D(z,y,f) 0

Let (z,y) € K. Since D(z,y, f) C Ky, if y > f(x), we have

') oy
we(@ )l <ma || we(& ) dedn + oo,k
T (8
+A oy

<my || w6 mldgdn + |oc ook,
=X f(2)
Put e.(y) = SUPge[—A,A] |we (&, y)|- Then
Yy
|w5(x7y)| < ma2A S 65(77) dn + IlUEHOO,kJ)\'
F(=X)
We deduce that
Yy
e [FNFN) iy > f@), ealy) Sma2X | ecln)dn+ ozl
fF(=2)
Thus, according to Gronwall’s lemma,
Yy
Ve [f=N SN iy > f@) ) exp (| mazadn) oo,
fF(=2)
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We obtain the same result for y < f(z). Hence, for every y € [f(=X), f(N)], we get

e<(y) < exp(ma2X(y — f(=N)))lloclloo,xx
< exp(ma(2A)(f(A) = F(=M))lloclloo. k5

and consequently

[welloo. £, < exp(mMA2A(F(A) = f(=A)))llocl oo ks -

Since (0:)c € N(R?) we have (||oc| oo, iy )e € La. Moreover exp(mx2A(f(A) — f(—=N))) is
a constant, so

(||w5||OO,K,\)5 S IA

This implies the Oth order estimate.

We now proceed by induction. Suppose that (P (w.)). € I for every I < n and let
us show that (Pg pt1(we))e € I;{. First we show hat (Py ,(w:))e € IX for every n € N.
We have

Ot lw, o tlo,
(o) = e ) + .00
Y 3
+ § g (Pl ve(e,n) = Fla,n,us(e.n)) dn.
f(z)
with
n—1
= (X arm@)ae), (6. e N®).
i=0
Hence
Pr (ny1,0)(we) < Pg (nt1,0)(0c) + sup |6 ()]
FISED Y|
+ (N = f(=A) sup o2 (F(z,y,ve(2,9) = Fz,y, ue(2, )|
(zy)ek | 0"
We have

n

sup F) n( (1'777’ Us(fﬂﬂ?)) - F(%ﬁ»“s(%n)))’ = PK,(n,O)(F('v '705) - F('v 'vus))
(z,y)eK €z

S PK,n(F(7 '7UE) - F(7 '7“5))'
According to the stability hypothesis, (Pg,(n+1,0)(we))e € I, for every K @ R2. Let us
show that (Ps,(we))e € IX for every n € N. We have

an-ﬁ-lwe an+1
Jyn (z,y) = W(iﬂ Y) + pe(y)

1) an on
B §E (ay F&yve(6v) - aynF<€vy7ua(€,y))) d,
with

(ZCJ D))l @), (o) €N(R).
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Hence

Pr 0.n+1)(we) < Pg (0,n+41)(0c) + sup e ()]
YELf(=A),fF(N)]

o o
+2X sup ‘—Fx,y,v x,y)) — —F(z,y,u(x,y))|.
| P veleny) = gy, o)
We have
U3 a'ﬂ
(zi};EK @F(fbayavs(x,y)) - TynF(m’y’ Us(l',y))‘ = PK,(O,n)(F('v’vvs) —F(',',’LLE))

< PK,(O,TL)(F('7 '7UE) - F(a ',UE)).
According to the stability hypothesis, (P o,nt1)(we))e € I4 for every K € R% For
a+ G =nand 8> 1, we have
P (a+1,8)(We) = Pr (a,p-1) (F (s v) = F (-5 ue))
S PK,n—l(F('a % ’UE) - F(7 '7u8))'

Finally, we have

P3,n(w5) = sup PK,(aJrl,,@) (’LUE) S PK,n—l(F('v '7UE) - F(7 '7u8))
at+p=n;82>1

and the stability hypothesis ensures that (Ps ,(w.)). € If. In the same way, for a+3 =n
and a > 1, we have

Pk (a,5+1)(We) = Prc (a—1,8)(F (-, ve) = F (-, ue))
S PK,n—l(F('a ',’Ug) - F(7 '7U5)).

So we finally have

Pyn(w:) = sup  Pg (ap+1)(we) < P 1(F (-, ve) — F(y - ue))
a+pB=n;a>1
and the stability hypothesis ensures that (Py,(w.))e € I5. So (Pk(w.))e € I} for every
[ <n+ 1. Thus (w). € N(R?), and consequently u is the unique solution to (Pg). m

4.3. Parametric singular spectrum of the solution. We study the relationship
between the D’-parametric singular spectrum of the solution u and the D’-parametric
singular spectrum of wy.

THEOREM 38. Put ug = [uge] with upe(z,y) = Xe(y) — xe(f(x)) + pe(z) where x.
indicates a primitive of . o =1, and suppose that
(4.4) VK €R?, Mp(K)= sup |F(z,y,2)| < occ.

(z,y)€K;z€R
Then the restriction of the D'-parametric singular spectrum of the solution u to the
Cauchy problem (Pg), to the parametric singular support of ug is included in the re-
striction of the D'-parametric singular spectrum of ug to the parametric singular support
of ug. In other words, over the singular support of ug, there is no increase in the distri-
butional singularities of w in comparison with those of ug.
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Proof. Let (zo,y0) = X € Sg‘;\uo and r € Np/ x(up). From the definitions, it follows
that Xp/ x (ug) # 0, so that Nps x (ug) C |0, co[, which implies » > 0. Next let us show
that r € Np x(u). From the definition of Np/ x (ug), there exists a neighborhood Vx of
X such that

1iH%)€TU,E|VX S Dl(Vx).
E—
Let g € D(Vx). So, there exists some distribution T € D’(Vx) such that
tim § <" uo.c (2, 9)g o, y) dardy = T(g).
Vx
Let us show that
Vel (@, y) = worc (@ y)g(@,y)dedy — 0 ase— 0.
Vx

Suppose moreover that y > f(z). As

ue(@,y) —uoe(w,y) =— |\ P& mu(gm)dsdn
D(=,y,f)

and since (with the above notations)

HS ( SS F(&,n,u(&,m)) dfdn)g(:c,y) dmdy‘

Vx  D(z.y,f)

SMF(SUPPQ)‘ | ( [\ dﬁdn)g(ﬂc,y)dmdy‘

suppg  D(z,y,f)

§MF(SUPPQ)‘ | (A(w,y))g(x,y)dxdy‘

supp g

<2\Mp(suppg) || [yl lg(z,y)|dzdy < oo,
supp g

we have

lim Sélp SS e"ue(z, y) — uoe(z,y)]9(z, y) de dy‘
E—
Vx

<tmsupe’| {§ [ ] P& mue(e ) dedn]g(r.y) dudy
Vx  D(zy.f)

< limsup <" |2X(Mp(suppg) §§ lollo(. )| dedy) = 0,
£—
supp g

because r # 0. Hence

lim SS e"ue(z,y)g(z,y) de dy = ilir(l) “ "ug e (,y)g(z,y) dedy = T(g).

e—0

VX VX
It follows that

giir%)s’"ua|vx = iii%e’“uoﬁbx e D'(Vx).
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So r € Np/ x(u), which proves the inclusion Np/ x(ug) C Np/ x(u), and consequently
Yo x(u) C Xpr x(ug). Therefore

A A
SESD:AU|Sg:4uo C SESD_/AuO|Sg:4u0' "

EXAMPLE 39. Let
g€ D(R), g>0, Sg(z) dr=1 and f(z)=az, a>0.
R
Let us consider the following cases:

o x=(y) = g(ye™") and pc(z) = e~ lg(xe™!), s0
Xe(f(2)) = e g(f(2)e™") = e glaze™).
Then
Npr x (ug) = [1,00] and SES“;:AU CR? x [0,1[.
o x.(v) =ctg(zet) and p.(x) = e 2g(ze™!) = e e tg(xe™!)]. Then

ND/7X(u0) = [2,00[ and SES£:4U, C R? x [0,2[
o Xe(&) = glae=") and . (z) = glae=) = (e~ g(ae=")). Then
ND/ﬁx(uO) = [0,00[
As S’ES’g;‘u C R? x Ry, we have

SeSpy u C R? x 0.

4.4. Qualitative study of the solution. Case ' = 0. We search for a generalized
solution u to the Cauchy problem (Pg) where F' = 0, considering as data the curve ~y of
equation y = f(x). With the above notations, considering P (¢¢, ¥ ), we have
ue(x,y) = x=(y) — Xe(f(@)) + @< ().
EXAMPLE 40. f(z)=az (a>0),o~ S, ¢ =¥ and¥ ~T; S € D'(R), T € D'(R). Let
g € D(R) be an even function satisfying {_ g(¢)d¢ = 1. Put g.(z) = e *g(ze~'). Then
(9c)e — 9 in the distributional sense. So g = [g.] is associated to §. Choosing
@ =[ge *S] and ¥ = [g. * T

we have the associations ¢ ~ S, & ~ T, since

liH(l) (ge xS)e =S and liH(l) (ge xT)e =T.

e— .

D'(R) D'(R)

The solution to Py, (e, 1) is defined by
ue(x,y) = X=(y) — xe(f(@)) + ¢ (2)

with
Xe() =\ (F ) dn = \etma™ydn=a | o(t)dt = a(P(ya™) — 2.(0)
0 0 0

where ¥, is a primitive of ¥.. So
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ue(T,y) = aWE(ya_l) —a¥.(x) + @6(.%).
We have here
uc(2,y) = a(ge * T)(ya™") — a(ge * T)(2) + (g * S) ().

Let us estimate the function y — (g * T')(ya~!) on the test function h € D(R). By
putting H(z) = h(az), we can write

§ (9e * T)(ya " )h(y) dy = af (9= * T)(2)H(z) dz.
Then define 7' € D'(R) by
(T, h) = (aT\ [z — h(az)]) = (aT, H).

Hence
lim § (g- + T)(ya~")h(y)dy = lim af (g: = T) (=) H(2)dz = (aT, H) = (T’ h).
E— E—
Thus
lim [y = (g = T)(ya™")] =T
D'(R)
Then we can write [u.] = [we 1] + [we 2] + [we 3], With
[wen] ~a(le ®T,),  [weo] ~ —a(Te ® 1), [wes]~S:.®1,
and so

u~a(l,®T,) —a(T, ®1,) + S, @ 1,,.
REMARK 41. We can remark that
(0,h) = (ad, [z — h(az)]) = ah(0) = a(5, h),
so that 6 = aé.
EXAMPLE 42. f(x) =az (a>0), o~ 6, ) =¥ with ¥ ~ 4. As 5= ad, we have
[ue] = [we 1] + [we 2] + [we 3]
with
[wen] ~ @ (L, ®0y),  [wep] ~ —a(6: ®1y),  [wes] ~d: @1y,
hence
u~a?(l, ®6,) —a(d, ®1,) + 6, @1,
EXAMPLE 43. f(z) = ax (a > 0), ¢ ~ §, 9 ~ 6. We can choose ¥, such that ¥, (0) = 271
in such a way that
lim . =Y, lim (y—%(ya ")) =Y.
D'(R) D’(R)
Then
[ue] = [we ] + [we 2] + [we 3]
with
[we] ~a(le ®@Yy),  [wea] ~—a(Ya®1y), [wes]~0, @1,
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5. Generalized Goursat problem

5.1. Formulation of the problem. We search for a solution u to the Goursat problem

8%u

= F(-. -
, axay (7 7u)a
u|’)’ = IZ’:

in the algebra of generalized functions A(R?) defined in Section 3. The hypotheses on F
and g are kept. We suppose that

e A(R) and A(R?) are built on the same ring of generalized constants;
o A(R?) is stable under F;
e For every ¢, the problem

0%u,
axay($>y) - F(CE»%Ue(%y)),

P (¢e, ¥e) ue(2,0)) = (),
ug(g(il/)>y) = %(ZJ%

has a solution u. € C*(R?).

Giving a meaning to (Pf) is first giving a meaning to

(5.1) aigy = F(-, ),
(5.2) uloz) = ¢ € AR),
(5.3) ul, = € A(R),

when u € A(R?) and v is the smooth submanifold of R? defined by x = g(y). Giving
a meaning to (5.1), under the hypothesis that A(R?) is stable by F, amounts to saying
that for a representative (u.). of u we must have, for every (ic)e, (jo) € N(R?),

(5)2%‘;7%/%) —F(yu) +ja) € N(B?).

g

As

0xdy B 0x0y

we must verify that

(32(% +i.)  0%u. ) ENR?), (F(,-ue)+je — F(-, - us))e € N(R?),

0?u, 9
<8x8y - F(~,~,u5))5 € N(R?).

Giving a meaning to (5.2) and (5.3) amounts to defining u[(oz) and ul,. As v is a smooth
submanifold of R? that can be represented by a single map (v : * = g(y)), we can identify
A(v) and A(R), and so u|, and u|(o,), with the elements of A(R) with representatives
(y — ue(9(y),y))e and (2 +— uc(x,0)).. So (5.2) is equivalent to

(@ = ((ue +1ic)(,0) = (pe + o) (x)))e € N(R).
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(5.3) is equivalent to

(y = ((ue +i2)(9(y), y) — (Ve + B:)(y)))e € N(R),
for all (i.). € N(R?) and (a.)., (B:): € N(R). Considering
ue + i )(,0) — (ue(,0))))e € N(R),
) = ¢e(x)))e € N(R),
—uc(9(y),9)))s € N(R),
— ¥e(x))): € N(R),
9(v),y)))e € N(R)
this boils down to
(2 (ue(2,0) — g2(2)))- € N(R),
(y = (ue(9(y),y) — ve(y)))e € N(R).
To sum up, (P}) has a meaning if, and only if,

0%u,

900y F(, - u:) € N(R?),
(= (ue(z,0) = pc(2)))e € N(R),
(y = (ue(g(y),y) — Ye(y)))e € N(R).

So, if for every €, u. is a solution to P’ (¢e, ) and (u.). € X(R?) then the relations
above are all the more true and [u.] is a solution to (Pf).

5.2. Existence and uniqueness of solutions

THEOREM 44. Suppose that A(R?) is stable under F and A(R), A(R?) are built on the
same ring C = A/I of generalized constants. Suppose that the data of problem (Pf)

satisfy the conditions ¢, € A(R), g € C®(R), ¢ = [pc], ¥ = [Ye], ¥(0) = ve(g(0)).
Then problem (Pf) has a unique solution in A(R?).

Proof. Suppose g(y) < z. Let u. be the solution to P/ (p.,1:). According to the
previous result, it is enough to prove (u.). € X(R?); then u = [u.] will be a solution to
(Pf). We will prove that

VK e R%VIEN, (Pg,(u.)): € Ay,
Proceeding by induction we first show
VK € R?, (Pro(ue))e = ([Jucllo, )= € A,

that is, the Oth order estimate is satisfied. According to Proposition 10, for every K € R?
there exists K € R? with K C K such that

(2N ma(20)).

Huenoo,K < ||u€||OO;KA < HUO,SHOOJQ

Hence (||©0,¢llc0, i, )e € A because [¢.] and [).] are elements of A(R). The constant

my = sup
(z,y)EKx;tER

oF
%(xvya t)’
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depends only on F', K, and the constant
1
c(Ky) = — exp(4\'my\)
my
depends only on F, g, K. We have

Dy = [1F (s 0)[|oo, iy + Mmoo,y
SO

by .
2 oxp(ANmAN) = (K )Py
my

= c(KNNF (- 0)lloo, ks + exp(ANmad)[|uo e [loo, -
Moreover, the constant

c1(Kx) = c(ENF(, - 0)lloo, 1y
depends only on F', K, and

c2(K)y) = exp(4XNmy))
depends only on K, F, g. Consequently,
l[telloo, i < [luelloc,n < lluo.clloc. x4 cL(Kx) + c2(Kx)[|uo.eloo k5
S)
[telloo, i < e loo, e < (14 c2(BN))[[uo.clloc. x5 + €1 (KN).

We have (J|ugelloo, iy )e € 4, s0O

(14 c2(Kx)l[uo elloo.x5)e € A
(if (re)e € A, then (cre). € A), and as ¢1(K) is a constant (1 € A) we deduce that

((1+ ca(B)) o elloo,rer + c1(KN))e € A

A being stable we have (||uelloo iy )e € A and so (||uel|oo,x)e € A. Let us show that
(Pr(ue))e € Ar. We have

Ou, _ Oug e {
%(%y)— o (wvy)+§F(x,77,ua(w,n))dn,
hence
8u0

P (1,0)(ue) < sup [——=(z,y)| + y|sup | F(z,n, u(z,n))]
K 8%‘ K

ou
< sup ‘ 80’5 (x,y)' + Asup [F(z,n, uc(2,1))].
K T Ky

As A(R?) is stable under F there exists C' such that

Pr, 0,0)(F(;,ue)) < CPg, (0,0 (ue)-
‘We have
([1(8/02)uo cl|0o, 1 )= = (pr(x))e € A
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because [p¢] is an element of A(R). So

805

+ CAPxk, (0,0)(ue).

Pre (1,0)(ue) H
oo, K

As A is stable (Pg (1,0)(uc))e € A. We have

o) = ) + | P66 5= | ot 50,0 b,

Oug e
P Ue) < su :
K,(0,1)( a) > Kp‘ By

(wvy)’ + (z —g(y) + lylg' (v)) sup |F(x,n,uc(x,n))|

Oug ¢
< sup | %5 .| + 00  9(-X)+ 39/ ) s [Pz )
K Yy K>
A(R?) being stable under F, there exists C such that
PKA,(O,O)(F(W '7u€)) < CPK)\V(O7O) (us)

We have
(I(8/0y) )e € Ay,
because [¢).] and [p.] are elements of A(R). Hence
Oug ¢
Prionfue) < ||+ Clo0) = a0 + 350D Prc 00 ()
oo, K

and so, as previously,

Now we proceed by induction. Suppose that (Px(u.)). € Ay for every | < n and let
us show that (Pk y1(ue))e € A4. We use the notations from Theorem 37. Let us show
first that

(Pl,n(ue))57 (PQ,n(Ug))g S A+

for every n € N. We have by successive derivations, for n > 1,

Y an

anJrlu6 anJrluo78
Gt (@ Y) = g (@) + (S) Hpn L (@, ue(@,m)) dny

with
an-l—l

Uo,e n
et (@, y) = 9" ().

As we have taken K C K, we can write

anJrl ’ 6”+1u075

sup —ax"""l

(z,y)eK
We have

W(I Y)

sup ‘ (@, y,us(z,9))]|-
oo,K (r y)GK

sSup ‘8 " (x y,us(w,y))‘ = PK,(n,O)(F(‘,‘,Us)) < PK,TL(F(""U@))?
(z,y)eK | OF

moreover
(”(6n+1/8‘rn+1)u076||oo,K)5 S A+~
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According to the stability hypothesis, a simple calculation shows that (P ,(F (-, ue)))e
€ A, for every K @ R?. Let us show that (P2, (u.)). € A4 for every n € N. We have
by successive derivations, for n > 1,

8n+1u€ 8n+1U0’5
dynt1 (z,y) = W(%y)

J 9(v) .,
Z Cg™ ) Fla0)ve) — § 5 F(Evuc(eo) de

xT

*ZCJ“ D) o Fg(0)0- )

Y

— 9" V() § Fg(y),mue(g(y), m)) dn.
0

As we have taken K C K, we can write

anJrl anJrl

UQ,e

sup ,y — +(g(\) —g(\)) sup ‘ F(z,y,uc(z,y ‘
(z,y)EK ayn+1 ( )‘ ayn+1 00, K ( ( ) (ac y)GK E( ))
el >|\8J Flo(y) w<>>\
Sup a. 5 qg\y),y, Yy
P\ et n+1ld Oy’ }
+/\9”“)(y) sup  |F(z,y, uc(z,y))].
(z,y)eEK

‘We have

sup | 8Pt )| = Pego (P 10) € Prea(F i),

(z,y)eK | OY

and, as ¥ (y) = uc(9(y), ),

Y
9W),y, Ye(y ‘< sup
oy F(g(y) (v)) Sup

< PK,i(F('v '7u8)) < PK,n(F(7 '7u8))7

sup ‘F(Iaya ’U,E(SC,y)” < PKJ(F(" 'aus))'
(z,y)eEK

sup
WY

al
‘ay F(x,y,us(x,y))

According to the stability hypothesis, a simple calculation shows that, for every K € R?
and n € N, (Pg (0,n41)(t))e € Ay, For a+ 3 =mn and § > 1, we now have

Py as1,9)(us) = sup [DOT (e y)| = sup |DOID DO (2, y)

(z.y)eK (zy)eK
= Sup ‘D(a’ﬁil)F(J%yauE(a%y)” = PK,(Q,,@*l)(F('v'vua))
(z,y)EK

S PK,nfl(F(‘, ',Us)) S PK,n(F(, ',Us)).
So we finally have

P3,n(us) = sup PK,(a-{-l,ﬁ) (ue) < PK,n(F('7 '7u6))
at+pB=n;82>1
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and the stability hypothesis ensures that (P ,,(uc))e € A4+. In the same way, for a+3 =n
and a > 1, we have

P (ag41)(ue) = sup [DP Dy (z,y)] = sup [D@H)DEDy, (2, y)]
(zy)eK (z,y)EK

= Sup ‘D(a_l’ﬂ)F(J?,y,uE(ﬂf,y)” = PK,(afl,ﬁ)(F('v'vua))
(z,y)EK
S PK,nfl(F(‘, ',UE)) S PK,n(F(, ',UE)).
So we finally have
P4,n(u€) = sup PK,(a,B—&-l)(“E) < PK,n(F('7 5 Ue))
a+pB=n;a>1
and the stability hypothesis ensures that (Ps,(uc))e € A4. Finally, we clearly have
(Pr nt1(ue))e € Ax. So u = [ug] is a solution to (Pf). Let us show that u is the unique
solution to (P}). Let v = [v:] be another solution to (Pf). There are (i-). € N (R?) and
(ae)e, (B:)e € N(R) such that
0%,
0xdy
Ve(2,0) = pe(2) + ae(z),

S (6(0)e0) = o) + 51 (0)

(sc,y) = F(fﬂay»ve(ﬂf,y)) + ie(x7y)>

The uniqueness of the solution to (Pf) will be a consequence of (ve — uc). € N(R?). It
is easy to see that

(3] icemacan) en).
D(z,y.9)
So there is (j.). € N(R?) such that
ve(@,y) = voc(@y)+ (| F&n,v(6m) dedn + je(z,y),
D(z,y.9)
with
UO,E(:L‘? y) = uO,s(xa y) + 95(-7;’ y)a
where
0=(z,y) = Be(y) + a=(z) — ac(g(y))-
So (.)c belongs to N'(R?). Thus there is (0.). € N(R?) such that
ve(,y) = woe(,y) +o-(z,y) + || F(&m,0(6,m) dg dn.
D(I7yag)
Let us put w. = v — u. and show that (w.). € N(R?). We have to prove that
VK eR*VneN, (Pgn(w.)).€lf.
First we show that (P 1(w.))e € I4. We have

wewy) = || (F& 06 m) = P& nue(&,n)) dE dn + o<(z,y)
D(z,y,9)
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but
F(é-a 7771)5(5; 77)) - F(ﬁvnaue(ga 77))

1
oF
= () — et n) (§ S (€ () + 0 (e.0) — we(€m) o).
0
SO
¢ OF
we(wy)= || w&n) (S 55 (€ mus(€,m) + 6(we(€m) de) dg dy + o2 (x, y).
D(=,y,9) 0
Let (z,y) € K. Since D(z,y,g) C Ky, if g(y) < z, we have
r Yy
jwe (@, ) <ma | e (&) dedn + o]l ke,
g(y) 0
+9(N)y
<my | Vo€ m)ldgdn + o) oo,
—-g(\) 0
Put eg(y) = supge[g(_/\),g(/\)] |w8(§,y)| Then

Y
Jwe (2, )] < mm's (1) dn + el oo ks -

We deduce that, for every y € [0, A, if g(y)
y
) < ma2\ S ec(n) dn + [|o ]| co, 1y -

Thus according to Gronwall’s lemma, for every y € [0, A, if g(y) <=z

y
es(y) < exp (Sm)\2)\' dn) [EA
0

For every y € [0, \], if g(y) <=
e(y) < exp(ma2Xy)[|oeloc iy < exp(ma2X'A)oe|oo i, -
We obtain the same result in the other cases, hence
Vy € [-AAL ee(y) < [loelloo, i, exp(ma2X'N),
and consequently,
[weloo, i, < [|0elloo, 16, €XP(MA2A'N),

Since (0.): € N(R?) we have (||oc|lco i, )e € Ia. Moreover exp(m2XN\)||o: || .k, is a
constant, consequently (||wel|co,kcy )e € T4. This implies the Oth order estimate. Suppose
that (P (w)). € I for every I < n, and let us show that (P ,+1(w.))e € I;. First,
let us show that (Py ,(w.)). € I} for every n € N. We have

Yy
anJr 1 w anJr 1 Oe o

ot (@) = oy (@) + | 5 (F(asn,ve(e,m) = Fe,n,ue(2,m))) d
0
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SO
Pr (n41,0)(we) < Pg (ny1,0)(0¢)
+A sup 7(F(x,y,v5(z,y))fF(x,y,uE(x,y))) .
(zp)eK | 0"
Then
877,
Sup p) (F('ray7va(x7y))_F(xay7u8(x7y)))‘ :PK,(n,O)(F('a'aUE) _F('7'7u8))
(zy)eK | 0T

< PK,n(F('v '7’06) - F(a -,'Ll,g)).

According to the stability hypothesis, (Px,(n41,0)(we))e € I; for every K @ R2. Let us
show that (Ps,(we))e € IX for every n € N. We have

anJrl . 8n+1 g(y) n an
Ty ) = Gt | (e (€ on(en) = Pl ) de

Y

9" ) § (Fg(y),m,v-(9(y).m) = Flg(y).m,uc(g(y),m))) dn+ e (y)
with i
(ZCH CD)B(y), (ko) € N(R).
Hence

Pr 0,n+1)(we) < Pg (o nt1)(0e) + sup  |ue(y)]

yE[—A,A]
an
+ (g(A) - sup 1. Y, ’Ue(xay)) - WF(-'IJ,?],UE(-'IJ,Q))
7y)EK Y
+ g (y) sup IF(w,y,va(wvy)) — F(z,y,uc(z,y))|.
(z,y)eK

We have

3 3

sSup a_nF($7ya UE(‘T?y)) - WF($7:U’ Us(%y))‘ = PK,(O,n)(F('v '7U€) - F(7 '7u€))
(z,y)eK | OY Y
< PK,(O,n)(F('v '7’06) - F(a ',’U,E)).
According to the stability hypothesis, (P o,nt1)(we))e € I4 for every K € R% For
a+ G =mnand 8> 1, we have
Pk (a+1,8) (We) = Pr (a,5-1)(F (s ve) = F (- ue))
S PK,n—l(F('a Yy UE) - F(7 Yy u&‘))

So we finally have

P3,n(w6) = sup PK,(OH—L,B) (we) < PK,n—l(F('y '7UE) - F(7 '7u6))
a+p=n,3>1

and the stability hypothesis ensures that (Ps ,(w)): € IX. Fora+ B =nand a>1, we
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now have
PK,(a,B-‘rl) (wE) = PK,(oc—l,ﬁ) (F(a % vE) - F(7 '7“8))
S PK n—l(F('; '71}8) - F() '7u8))'
So we finally have

P4,n(w5) = sup PK,(a,B-{-l)(we) < PK,n—l(F('a * vs) - F(': '7“6))
a+pB=n,a>1
and the hypothesis of stability ensures that (P ,(we)): € IZ. So for every [ < n+1, we
have (Pg (w.))e € I}. Thus (w.). € N(R?), and consequently u is the unique solution
to (P). m

5.3. A degenerate Goursat problem in (C,&,P)-algebras. We search for a gen-
eralized solution u to the following Goursat problem with irregular data:

0%u
= F(-.-
, 0xdy (5 w),
(PG) u|(0z) =,
u|(Oy) = Z/}a
where ¢ and 1 are one-variable generalized functions. The notation F( ., . ,u) extends,

with the above meaning, the expression (z,y) — F(z,y,u(x,y)) to the case where u is a
generalized function of two variables z and y. (We take g = 0.) Suppose that hypothesis
(H') is satisfied, A(R?) is stable under F. If the data of problem (P}) satisfy o, 1 € A(R),
g(y) = 0, the problem has a unique solution [u.] € A(R?) where

(e, y) =wos(z,y)+  \| F(&m,uc(&m)dedy
D(x,y,0)
and
uo.e(7,y) = Ye(y) + e (x) — ¢e(0).
THEOREM 45. The generalized solution u to the Goursat problem (Pf), where ¢ and ¢

are one-variable generalized functions, is u = [u.| such that

x

e = im uep and uen(w,y) = uoc(z,y) + | (
n—oo

F(&,1, e (€m)) dn) d

O e @

with
uoe(2,y) = ¢e() + Pe(y) — #e(0).
COROLLARY 46. With the previous notation, we have

T

Ue(x,y) = uge(z,y) "‘S (
0

F(,m,ue(€,m)) dn) d.

O e @

5.4. Parametric singular spectrum of the solution. We study the relationship
between the D’-parametric singular spectrum of the solution v and the D’-parametric
singular spectrum of wyg.
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THEOREM 47. Put ug = [ug,] with uoe(z,y) = ¥ (y) + ve(x) — ¢ (9(y)) and suppose
that

(5.4) VK e R* Mp(K)= sup |F(x,y,z2)| < oc.
(z,y)EK;zER

Then the restriction of the D’ -parametric singular spectrum of the solution u to the Gour-
sat problem (P(,), to the parametric singular support of ug is included in the restriction
of the D’-parametric singular spectrum of ug to the parametric singular support of ug.
In other words, over the singular support of ug, there is no increase in the distributional
singularities of u in comparison with those of ug.

Proof. Let (xg,y0) = X € S“S;luo and 7 € Np/ x(up). From the definitions it follows
that Xp/ x (ug) # 0, so that Np_x (ug) C ]0, co[, which implies r > 0. Next let us show
that r € Np/ x (u). From the definition of Np/ x (ug), there exists a neighborhood Vx of
X such that

1iH%)€TU,E|VX S Dl(Vx).

E—

Let f € D(Vx). So, there exists some distribution T' € D’(Vx) such that
i {§ e uo.c (2,9)f (2, 9) daedy = T(f).

Vx
Let us show that
V) " lue(e,9) — w0, y) f(w,y) dudy — 0 as e —0.
Vx
Suppose that g(y) < z. As
ue(z,y) —uoc(z,y) = || F(&nul&n)dsdn
D(z,y,9)

and since (with the above notations)

“S( ) F(&n,ue(f,n))dédn)f(z,y)dxdy‘

Vx  D(z,y,9)

SMF(SUpr)‘ i ( 1 didn)f(%y)dwdy‘
supp f D(=,y,9)

SMF(Supr)’ i (A(x,y))f(w,y)dxdy’
supp f

< 2XMu(supp f) || [yl |f(z, )| dedy < oo,
supp f

we have "

lim Sélp SS " [uc (2, y) — uoe(w,y)f(z,y) dx dy’
E— VX

<timsupe | §§ ( §§ P& n ualem) dedn) f(a,y) dudy

e—0

Vx  D(zy.9)
< limsupe” |2 (M (supp £)) {{ |y/|f (2. )| dwdy| =0

e—0
supp f
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with 2)" = g(\) — g(—=)), because r # 0. Hence
lim SS e'ue(z,y) f(z,y) de dy = lim SS e uge(x,y) f(x,y)dedy = T(f).
Vx Vx

It follows that

lim ETUE‘VX = lim ETU0,5|VX S D,(Vx).

e—0 e—0
So r € Np/ x(u), which proves the inclusion Nps x(ug) C Np/ x(u), and consequently
ZD’,X (u) C ED/,X(U()). Therefore

CS SD’ ’U,0|SA n

A
SESD:AU|S";:4’LLO o, ug
EXAMPLE 48. Let

feDR), f=>0, Sf(:r)dx =1 and g(y) =ya ' a>0.
R
Let us consider the following cases:

o Y (y) = e’lf(ye’l) and . (z) = e 1 f(xe~1); then
ee(9(y) =" flog(y)e™") =7 fy(ae)™") = a(ae) ™" f(y(as) ™),
o, (7,y) = Ve (y) + (@) —@e(g(y)) = flye ") + e fae™") — alae) ' f(y(ae) ™).
Thus
Nopr x(uo) = [1,+00[ and S.Sp, u C R® x [0, 1].
o .(y) =c 1f(ye™!) and p.(x) = 5_2f(x5_1) = e et f(ze™1)]; then
ve(9(y) =2 f((9(y)e™") = e 2 f(y(ae) ") = alae) * f(y(ac) ™).
Thus
ND/7X(UO) [ +OO[ and S, SD’ uC R? x [0,2[
o Pe(y) = flye™") and pe(z) = flze™') = (™" f(ze™)); then
0=(9(y) = (e f((9(y)e™) = ele™ f(y(ae) ™)) = ae((ag) ™" fy(as) ™).
Thus
ND/7)((UO) = [0, +OO[.
As S’ES’g;‘u C R? x Ry, we have
S:Spy,u C R? x 0.

5.5. Qualitative study of the solution. Case F' = 0. We search for a generalized
solution u to problem (Pf) where F' = 0, considering as data the curve v of equation
x =g(y), ¢ = [¢e], ¥ = [tbc]. With the above notations, considering P’ (., 1.), we have

ue(@,y) = Pe(y) + ¢ (@) = e(9(y))-
REMARK 49. We have ¥(0) = ¢(g(0)); if g(y) = ya=! (a > 0) then g(0) = 0 and
consequently, ¥ (0) = ¢(0).
EXAMPLE 50. g(y) =ya~! (a>0),p~S, ¢ ~T;S €D (R), T €D (R). Let f € D(R)
satisfy { f(€)dé = 1. Put f.(x) =e~!f(ze™"). Choosing
o= [fe*S] and ¥ =[f. =T,
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we have the associations ¢ ~ S, 1) ~ T, since
lim (f.%S). =S and lim (f+T). =T,
D'(R) D'(R)
We have
ue(,y) = @e(x) + ve(y) — ee(9(y))
= (fex S)(@) + (fe x T)(y) — (fe* S)(ya™).
Let S € D'(R) be such that
(S, 1) = (aS, [z — h(az)]) = (aS, H).
Hence

lim [y — (fo+ S)(ya )] = S.

D'(R)
Then we can write
[ue] = [we 1] + [we 2] + [we 3]
with
[wea] ~ e @1y, [wes] ~ 1 @Ty,  [wes] ~ —(1a® 5y)
and so

U~ S, @1, +1, 0T, — (1, ®8,).
EXAMPLE 51. g(y) =ya™! (a >0), o ~6,9 ~6. As 5= ad, for S = §, we have
[ue] = [we ] + [we 2] + [we 3]
with
[We1] ~ 0, @1y,  [weo] ~1; @6y, [wes]~—a(ly ®d,).
EXAMPLE 52. ¢(y) =0, ¢ ~§, ®p ~ 4. Then
[ue] = [we 1] + [we 2] — [ (0)]
with
[Wei] ~ 0, @1y,  [wea] ~1; @ 0y.

59

We observe that [¢(0)] can be associated with a distribution only if [p.(0)] = 0; then, in
the general case, u is not associated with a distribution (V. S. Valmorin [1995a], [1995b]).

6. A characteristic Cauchy problem in (C, &, P)-algebras

The characteristic Cauchy problem

&%u

8.1?8:(/ - F('v'vu)a
(Pc) u|(03:) =¥,

ou

a. = 1/)7
% | (om)
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has no smooth solution (not even C?) even for smooth data. We can approach the given
characteristic problem by a family of noncharacteristic problems (P:).

0%u,

8.1?8:(/ - F('v'vu)a
(P:) Uely. = ¢,

Ou,

ay . - ¢7

by considering the line v, of equation y = ex. The family of solutions is a representative
of a generalized function which belongs to an appropriate parametric algebra.

6.1. Case of regular data. Rewriting the solution to P, we replace f(z) by ex and
K)\ by

K. =[-as" ' ac 7]

X [—a,al.
Here we have
ue(w,y) = woc(w,y)— || F(&mu (g m)dedn
D (z,y)
where
o (2, y) = p(x) — eW(x) +e¥(ye ),

¥ is a primitive of ¢, and

De(z,y) = {

{(&m):x<E<yeteg<n<y} ify>en,

{&mn):ye ' <¢<zy<n<et} ify<en.
Put

oF
0z

me = sup
(&mEK;tER

(f’ 777 t) )

b, = S}(lp ‘F($7y’ 0)' + m€||u0,6||00,K5'

We make the following hypotheses:

(H1)
VK € R27VZ € Na Elm(K7 l)7 maXaENSJa\Sl(Sup(x,y)GK;zeR ‘DQF(‘Ta Y, Z)D < ’ITL(K7 l)7
I(M.). € R 30(1) € R, m(K.,1) < C() M.,

(H2) { 3(r.). € R VK, € R,Va, € N,3D, € R%,Ip €N,
max[supy, [D*¢(y/e)l, supg, [DW(y/e)|] < Da/(re)",
(H3) {C = A/I4 is overgenerated by the following elements of R
(€)es (re)e; (€7/%)es (M),

A(R?) = X(R?)/N(R?) is built on C with
(H4) (€,P) = (C*(R?), (Px.1) K ere,leN)
and A(R?) is stable under F relatively to C.

THEOREM 53. With the previous notations and hypotheses, if u. is the solution to prob-
lem (P-), the family (u:)c is a representative of a generalized function u which belongs to
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the algebra A(R?). Thus we can consider u as the generalized solution to the characteristic
Cauchy problem (Pc).

Proof. For K = K; x Ky = [—a,a] X [—a,a] and a = (a1,a3) € N?| there exist C7 > 0
and Cy > 0 such that

sup | D™ o(x)| < Ci1(K1,a1);  esup | DM (z)] < eCy(Ky,al).
Kl Kl
As G(y) = Vo f-Hy) = ¥(ye~!) we have

D,
a2
5s}1{1£|D Gy)l < gaz—1(p_)p(az,K2)’

50 (Pr,a(ugc))e € Ay. We have to show that (P o(u:))e € Ay. Put

ue(my) = || P& nu (& n)dedn.
De(z,y)

According to the above results

sup| ] Fenun(€m)dedn] < > expl2ma (7(3) ~ F(-N)

De(2,y)
with
fx)=ex, A=ac', my=me..
So
(fO) = f(=N) =2a and 2 my(f(A) — f(=)\) = da®c 'me,
hence o
sup [up ¢ ()| < =t /me
Ke Mme
with
3D,
2. = sup F 0, 0) 4 el o . < COML -+ 252
Ke (re)P
where pl = p([—a,a],0). So (Pko(u1,))e € Ay, hence (P o(ue)): € Ay. We have
3u5 - 6u075 !
o (@) = 55 @y) + | Flanue(e.n)dy
f(z)
and
ou e 0
6—5(;(‘T, y) = S F(J%?’], UE(J?, 77)) d777
f@)
so, according to hypothesis (H1),
y
sup VP @, n,ue(@,n)|dy < 2a(m(K.,0)),
© f@)
0 (P (1,0)(u1,e))e € Ay, hence (Pg (1,0)(uc))e € Ay. We have
—1
% - Duo.. 7 ()

ay (x7y) - ay (x7y) - S F(gayfue(fvy)) d§

x
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In the same way, we get

Ou . )
sG] <sw (] IPEun(e )

T

sup
Ke

2 2
< ?“ m(K.,0) < ?" C(0) M.,

0 (Pk01)(u1e))e € Ay, (P 0,1)(ue))e € Ay, Consequently,

(Pr.1(ue))e € Ag.

Now we proceed by induction. Suppose that (P ;(u:)). € Ay for every I < n, and let
us show that (Pg n+41(ue))e € A4. We use the notations from Theorem 37. First let us
show that

(Prn(ue))e € Ay, (Pon(ue))e € Ay

for every n € N. We have by successive derivations, for n > 1,

g+l o1 Y on
aTT{E(%y) = —ne WF(%E%@(%)) + S ﬁF(wm,uE(%n))dn-
Thus
(5
up |51\
(@ ek, | Ozt Y
< su ne an—_lF(x ex,p(x))|+2a su a—nF(x ue(z,y))
>~ xe[,ag}la,agfl] 83)"_1 ) , P (g;,y)gKi oz s Y, Ue (T, Y .

Next, from the stability property, we get

sup ‘WF(x,yvus(wvy))‘ = Pst(an) (F(’ ° UE)) S PKEJL(F(" N 'LLE))
(17y)€K5 T
n .
< Z CiPIl(E,n(us)
=0
and
8"_1
sup ne —IF(%EJ?,S@(?E))‘ < ne(m(K.,n —1)) < neC(n — 1)M.,
we[—as_l,as—l] 3x”

0 (Pk (n+1,0)(u1,c))e € Ay, hence

(P (n+1,0)(ue))e € Ay

Let us show that (Pa,(ue))e € Ay for every n € N. We have by successive derivations,
forn>1,

/e
an-‘,—lul,5 1 an—l y y Yy o
8y"+1 (.’Ii,y) - _ng ayan(any‘P< )) - § aynF(£7ya u€(§7y))d§

g
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Thus
an+1u1,s( )’
sup |y (2,
(ew)ek. | Oyt
< L0 et g -1>>]+2A " Py us(e,))
S sup n— |\m—4(ye LYy, plye sup a0\, Y, U \T,Y))|.
yel-aa € |0yt (zy)ek. | OY™ ‘

Next, from the stability property,
7

sup ﬁF(Iaya UE(SC,Z/))‘ = PKE,(O,TL)(F('7'7UE))

(z,y)EK. ay
< PKE,n(F('a -,ug)) < ZCiPIi(E,n(UE)
=0
and
su n1 an_—lF( et (ye™1)) <nl(m(K n—l))<n1C(n—1)M
S n gt Py ey <n- - <n- .

50, (P, (0,n+1)(u1,e))e € Ay for every K € R? and n € N, hence
(Pr,0,n+1)(ue))e € Ay
For a+ 3 =mn and 8 > 1, we have
Pk (ai19)(ue) = sup [DOPu(zy)| = sup [DF"D DOV (z,y)]

(z,y)EK (z,y)eEK
= Sup ‘D(a’ﬁil)F(zvyvus(wvy)” = PK,(a,ﬂ—l)(F(‘,‘,us))
(z,y)eK

S PK,nfl(F(U '>u6)) S PK,n(F(7 '>u6))7
thus

P3,n(ue) = sup PK,(a+1,ﬁ) (ue) < PK,n(F('a -,’LLE)).
a+p=n;B>1

Then the stability hypothesis ensures that (Ps,(uc)). € Ay. In the same way, for
a4+ =nand a> 1, we have

Prapiny(us) = sup [D@PHDy (z,y)= sup |D@ B DEDy, (2,y)|

(z,y)EK (z,y)eK
= Ssup ‘D(ailﬁ)F(Ivy’uE(xvy)” = PK,(a—l,ﬁ)(F('7 '7“6))
(z,y)EK

S PK,nfl(F(U '7’“/6)) S PK,n(F(7 '7u6))-
So we finally have

Pin(uc) = sup Py (ap+1)(ue) < Prn(F(-, - ue))
a+pB=n;a>1

and the stability hypothesis ensures that (P, (uc))e € A4. In conclusion, we have
(PK,n—‘rl(ue))g € A+. | |

REMARK 54. How does this generalized function depend on the approximation of {y = 0}
by {y = ex}? The question remains open.
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6.2. Case of irregular data. We can also give a meaning to the characteristic Cauchy
problem (P¢) in the case where ¢ and 1 are themselves irregular data (for example some
generalized functions) by beginning to solve

T @)
axay as,y)— (xvyau(e,n) x,Y)),

Ple) § Uem (T 67) = op(z),
e (4 ewr) = iy (),

where (¢,), and (1), are representatives of ¢ and v in an appropriate algebra. The
parameter € permits replacing the given problem by a noncharacteristic one, whereas the
parameter 17 makes it regular. ¥ being a primitive of v, we have

Uo,(gm)(x,y) = py(r) — e¥y(z) + 5@7(9571)’

Uy (2,9) = o ey (@ 9) = || P&, 0,u()(€,0)) dg db.
D, (z,y)

Keeping hypothesis (H1) from the previous theorem, we suppose moreover that

(H5) { I(ren) e € RPN VK, € R, Vay € N, 3D, € RY,3p €N,
max([supg, |D ¢y (y/e)|, supg, |D2¥,(y/e)|] < D2/(re )",
C = A/I4 is overgenerated by the following elements of R]*O’I]X]O’l] :
(H6) /
(6)(5,77); (n)(s,n); (Ts,n)(s,n); (ems 6)(6,7]); (ME)(e,n)v

A(R?) = X(R?)/N(R?) is built on C
(HT) with (€,P) = (C®(R?), (Pk.1) k er2;ien)
and A(RR?) is stable under F relative to C.

THEOREM 55. With the previous notations and hypotheses, if u(. ) is the solution to
problem P ), the family (u(. ;) (e i a representative of a generalized function u which
belongs to the algebra A(R?). Thus we can consider u = [u(. )] as the generalized solution
to the characteristic Cauchy problem Pc.

Proof. For K = K| x Ky = [—a,a] X [—a,a] and a = (a1, az) € N2, there exist C; > 0
and C5 > 0 such that

sup |[D ¢y (z)| < C1(Ky,a1), esup |[D,(z)] < eCo(Ky,al).
K1 K,

As Gy(y) =¥y o [ (y) = ¥y(y/e), we have

D,

s

ES};? |D Gn(y)| g 6052*1(7'6177)17(012:[(2)7
S0 (PK,Q(UO,(s,n)))(E,n) € A+-

We have to show that (P n(u(,y))) € A, for every integer n. Put

(e,m)

uneay(@y) = || P& 0, ue, (€ 0)) dedo.
De(z,y)
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According to the above results, we have

sup| ] P(60.uc(€0)) de dt] < X explzam (7(3) — S(-V)

De(z,y)

with f(z) = ez, A = ae™t, myx = m.. So (f(A) — f(=A)) = 2a and
%mﬂﬂﬂ—f@%»:2g%m8:£§m9

‘We have

D,
< € 72
S;?'“l,(s,n)(xay” <. —e

with

3D
@=%MW%W+WWWMM&SQW%HMG—L)
1=

(Ts,n)pl

where pl = p([—a,al,0). So (P o(u1,c,n))) € Ay, hence (P o(ue,y)))

(e,m)
Moreover
Ou(e ) Auo,(e,n) (
P (wyy) = s (wy) + | (0 ug (2.0)) dO
(@)
‘We have
8 Yy
T @) = | @0, (.6)) db,
X
f(@)

so, according to hypothesis (H1)

(H1),
y
sup ( S F(x,0,u(c ) (z,0)) d9) < 2am(K.,0),
Ko fw
then (Pk (1,0)(U1,(e,)))(e.n) € A4, consequently,

(PK,(l,O) (u(e,n)))(e,n) € A+~
‘We have

Duce.r) o, (e ()
&,m _ (€57
o @y = =5 @y = | Py uen &) de

x

In the same way, we get

o, )
P )| <o P e (€ )

e

sup
K.

x
< (K. 0) < 2 CO)M,
SO
(P 0.0) (U, e))em) € Aty (Pr0,1)(U(em)) em) € A
Consequently,
(Prea(tem))(em € At

(g,m)

65

€A,
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We now proceed by induction. Suppose that (Pk ;(w(,q))) e,y € Ay for every I <n, and
let us show that

(PK,n+1(u(s,n)))(s,n) € AJr'

‘We use the notations from Theorem 37. First we show that

(Prauem)em € Avs (Ponluem))en € A+
for every n € N. We have by successive derivations, for n > 1,

an+1 ¥ n

UL e an—l
7(77)(33,y) = —ne ——F(z,ex, op(x)) + S Fye

a1 o1 F(x,0,ue ) (z,0))do.

EXT

We have

8n71
8xn71

.

8n+1u1
Ly D

x€[—ae~1,ae~1]

Flo, e, mx»\
(z,y)EK.

+ 2a sup
(z,y)€K.

Next, according to the stability property, we get

sup

Lo ‘8;1:" x y7u(5,n)(may))‘ = P (n,0)(F (-, te)) < Pron(F (55 t(em)))
x,Y

< Z CiPIi(E,n(u(s,n))v

i=0
and
8n—1

sup 3 W

z€[—ae~1,ae~?!

F(m,ex,gog(x))‘ <ne(m(Kg,n—1)) <neC(n—1)M,,

50 (PK,(n+1,O) (ul,(a,n)))(e,n) € A-‘ra hence
(PK,(nJrl,O) (u(s,n)))(s,n) € A+-

Let us show that (Po,(uey)))en € Ay for every n € N. We have by successive
derivations, for n > 1,

/e
anJrlul R 1 an—l B B v o
W’g’n)(%y)**ng By 1F(y€ 1’11,%(3/5 1))* S 8y (fayyu(a,n)(S y)) d€.

Thus
anﬂul(sn)

sup | ———52 (2, y

@yek. | Oyt )
< s 1 | T Rty (e >>]+2A s |2 ey, ugem (.0)
_ye[—aa ayn ! ’ K (z,y)EK. ay et .

Next, according to the stability property, we get
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a—ynF(xayyu(s,n)(xay))‘ = PKE,(O,n)(F('v'vu(E,n)))

sup
(z,y)EK-

< PKEJL(F('a K U(E,n))) < ZCiPIi(E,n(u(s,n))
=0

and
8”7 1
ayn—l

1
sup n-—
yel-a,a] &

1 1
F(y{—:l,y,@n(y{—:l))‘ <n - m(Ke,n—1)<n - C(n—1)M..

So, for every K € R? and n € N, (Prk,(0,n+1)(U1,(e,m))) (e,n) € A, hence
(PK,(O,n+1)(u(e,n)))(E,r]) € A-‘r'
For a4+ 8 =mn and 8 > 1, we have

PK,(a+1,,@)(u(s,n)): sup ‘D(a—i_lﬁ)u(s,n)(l’ay)': sup |D(a’ﬁ_1)D(171)u(s,n)($7y)‘
(z,y)eK (z,y)eK

= Sup ‘D(aﬁil)F(a%yau(e,n)(xvy)” = PK,(a,Bfl)(F('v'7u(6,n)))
(z,y)EK

< PK,nfl(F(‘, ',u(a,n))) < PK,”(F(’ "“(Em)))'

So we finally have

Pyn(uem) = sup P (a+1,8)(Uen) < Pren(F (0 Uen))
a+p=n;5>1

and the stability hypothesis ensures that
(P30 (e m))(em) € As-
In the same way, for a + 6 =n and « > 1, we have

Prcap41)(ten) = sup [DFDuc (@ y)| = sup [DOHIDIDu (2, y)]

(z,y)eK (z,y)EK
= sup ‘D(ailﬁ)F(Iv Y, Ue,m) (1‘, y))| = PK,(a—l,ﬁ)(F('7 *y u(&,n)))
(z,y)EK

< PK,nfl(F(U '7“’(8,77))) < PK,n(F(7 '7’“/(5,77)))'
Thus

Pyn(ueyy) = sup Pk (aps1)(Uen) < Pro(F(, 5 uen))
a+f=n;a>1

and the stability hypothesis ensures that (Py ,(tu(e,n)))(n) € A4. In conclusion, we have
(P ns1(u(e,m))em € As- m

6.3. Qualitative study of the solution. Case F = 0. We consider A(R) and A(R?)
built on the same ring of generalized constants as before. We suppose that A(R?) is
stable under F. For g € D'(R), with

suppg = [-1,1], 0<g<1, g¢(0)=1

and g (0) = 0 for every k € N*, we consider g,(z) = n~'g(an~') for z € R. Then
(gn)n — Oz in the distributional sense. For S € D'(R), T' € D’(R), choosing

©=IlgyxS], W=Igy*T],
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we have the associations ¢ ~ S, ¥ ~ T, since

lir% (gn*S), =S8 and lir% (gnp*xT)y=T.

g/(R) Dn’(]R)
EXAMPLE 56. ¢ ~ S, ¥ ~ T, S € D'(R), T € D'(R). We search for a generalized
solution u to the following characteristic irregular Cauchy problem:

0%u

dzoy
(Pc){ ulox) =5,

gul o,

% l(0x)

By considering the curve 7. of equation y = ex and by putting the data regularized by
mollifiers g, on the curve 7. = {y = ez}, we can solve the noncharacteristic problem

azu(&n)
8.138:(/ (1‘7y) - 07
(Ple,m)) § e (@, ex) = (g5 * 5)(@),
Ou(e )

oy (&%) = (gn < T)(x).
Let us determine the solution u to (P ;). We have

Uem) (T, y) = €Wy (ye ™) — ey () + oy (@)
= e(gy * T)(ye™") — elgy * T)(2) + (gy * S)(2).
Hence
[wie,m] = [euiem,i] + et ,m 2] + [te,m 3]
with
U(E,n),l(mvy) = (gn * T)(yg_l), [u(s,n),ﬂ ~-T,® Ly, [u(s,n),B} ~ S ® 1y.
EXAMPLE 57. (9 ~ 0,0 ~ 8 F=0)so (p~S~§, ¥ ~Y ~T; F=0). Let G a
primitive of g. We have

lim G, =Y and lim — G,(ye™H)) =Y.
Jim Gy, gy W Galye)
D'(R) D’ (R)

From the above results, we obtain
[wem] = [Ewem .l + [euiem 2] + [uem sl
with
[U(a,n),l] ~1,® Yya [u(e,n),Q] ~ =Y, ® 1ya [u(e,n),3] ~ 5:c & 1y~
EXAMPLE 58. (¢ ~ 0, ~30; F=0)so o ~0,¥ ~Y ~ T; F =0. From the above
results, we obtain
ey (2,9) = e(gy * T)(ye™ ") — e(gy * T)().
Hence

[ugem] = [Et(e ] + [Eue ) 2]
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with
[u(s,n),l] ~1,® Yy, [U(E’n)yg} ~ =Y, ® 1y-
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