
Introduction

This dissertation is devoted to a thorough investigation of the nonlinear wave equation

in canonical form
∂2u

∂x∂y
(x, y) = F (x, y, u(x, y))

with a smooth nonlinear function F on the right hand side.

We investigate solutions with distributions or other generalized functions as initial

data; thus we must search for solutions in algebras containing the space of distributions

which are invariant under nonlinear functions. We use the recent theories of generalized

functions (J.-F. Colombeau [1985], Yu. V. Egorov [1990], M. Oberguggenberger [1992])

and particularly the (C, E ,P)-algebras (J.-A. Marti [1998]–[2004], J.-A. Marti, S. P. Nuiro

and V. S. Valmorin [1998b]). This study permits one to see the usefulness of algebras of

generalized functions in cases where distribution theory turns out to be insufficient.

We search for a generalized solution u, in the sense to be defined later, to the following

Cauchy problem (P ) and Goursat problem (P ′):

(P )





∂2u

∂x∂y
= F (·, .·, u),

u|γ = ϕ,

∂u

∂y

∣∣∣∣
γ

= ψ,

(P ′)





∂2u

∂x∂y
= F (·, ·, u),

u|(Ox) = ϕ,

u|γ = ψ.

Here ϕ and ψ are one-variable generalized functions. The notation F (·, ·, u) extends, with

a meaning to be defined later, the expression (x, y) 7→ F (x, y, u(x, y)) in the case where

u is a generalized function of two variables x and y.

For the Cauchy problem the data are given along the monotonic curve γ of equation

y = f(x). We also study the case where the data are carried on a characteristic curve

γ = (Ox).

For the Goursat problem the initial values are given along a characteristic curve

C = (Ox), and along a monotonic curve γ of equation x = g(y).

Sections 1 and 2 are devoted to the construction of global smooth solutions to both the

Cauchy problem and the Goursat problem when the data are smooth. This is achieved by

rewriting the differential equation as an integral equation and making a thorough inves-

tigation of the method of successive approximations (P. R. Garabedian [1964]). Several

improvements to classical methods and results are needed to obtain precise estimates

used in the later sections. Namely, the growth in the parameter ε of the families of so-

lutions has to be known to choose the good algebraic structure to solve the regularized

[5]
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problems. So the results of those sections form an essential basis for the construction of

generalized solutions.

Section 3 is devoted to the definition of the algebras of generalized functions and

to the setup of an algebra of generalized functions, A(R2), adapted to the generalized

Cauchy problem. The concept of (C, E ,P)-algebras introduced by J.-A. Marti [1998]–

[2004] is an improvement and generalization of the algebras of J.-F. Colombeau [1985].

The theory of (C, E ,P)-algebras is built on three completely independent algebraic (C
is any subring of generalized numbers and E any algebra) and topological (P is any

compatible topology on E) parameters and its philosophy is to adjust them to the given

problem. These algebras are constructed as factor algebras of infinite products of locally

convex topological spaces. In such algebras, we have good tools to deal with many

nonlinear differential problems with irregular data (J.-A. Marti and S. P. Nuiro [1999],

J.-A. Marti, S. P. Nuiro and V. S. Valmorin [1998a]).

The Colombeau algebra is invariant under superposition with polynomially bounded

smooth maps. To cover the case of more general nonlinearities, other variants of (C, E ,P)-

algebras are needed.

We introduce the notion of an algebra stable under F (F ∈ C∞(R3,R)). For any

generalized function u, we define the D′-parametric singular spectrum of u (J.-A. Marti

[1995], [1998], J.-A. Marti, S. P. Nuiro and V. S. Valmorin [1998b]). These tools allow us

to tackle the generalized problems in Sections 4 and 5.

We take up again the formulation of the Cauchy problem but now ϕ and ψ are

generalized functions. We search for a solution u, in A(R2), to this generalized Cauchy

problem (PG). After specifying the meaning of (PG), we show that, if A(R2) is stable

under F , if A(R) and A(R2) are built on the same ring C = A/I of generalized con-

stants, and if the data of problem (PG) satisfy the conditions ϕ ∈ A(R), ψ ∈ A(R),

f ∈ C∞(R), then problem (PG) has a unique solution u in A(R2). To prove existence, a

representative can be constructed invoking the existence of smooth solutions from Section

1 and proving that it satisfies the required asymptotic estimates. To prove uniqueness,

one has to show that the difference of two solutions is asymptotically negligible when

this is true of the difference of the data. This again involves estimates as derived in

Section 1.

The (C, E ,P)-algebras give an efficient algebraic framework which permits a precise

study of solutions. We make a qualitative study of the solutions. We describe their local

and microlocal behavior and we study the propagation of their singularities. We show

that the parametric singular support of the solution with bounded nonlinear function F

is the same as the one of the homogeneous equation (F = 0). Then various special cases

with distributions as data are studied, notably for F = 0 and f(x) = ax.

We can study a generalized Goursat problem in the same way. We extend the case of

the degenerate Goursat problem solved by V. S. Valmorin [1995a], [1995b] to the general

case in which the data are given along the x-axis and along another possibly characteristic

curve.

We can then deal with the characteristic problems in Section 6. In that case, the

formal calculus of partial derivatives on the manifold carrying the data meets a geo-
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metric obstruction which is difficult to get around. For characteristic linear problems,

some results on existence, but not uniqueness, are proved in distributional framework

(Yu. V. Egorov and M. A. Shubin [1993], L. Hörmander [1983]). Other results are

proved (G̊arding, Kotake, Leray, Wagschal, Hamada, Dunau) in the complex frame-

work where the solutions may be holomorphic and may have ramifications around char-

acteristic curves issuing from characteristics. However, we do not know any general

answer in real analytical or C∞ cases and for nonlinear problems (as in the present

paper). For these cases, and even for linear cases, the characteristic problems are

those where we “fall into the holes” of the canonical stratification as defined in the

Shih Weishu theory (W. Shih [1986]). Furthermore, Shi Wei Hui [1992] shows that the

Cauchy problem is not well posed for the Navier–Stokes equations, on the hyperplane

{t=0}.
We extend some results of J.-A. Marti [2004] to general cases, by approaching some

characteristic problems by some families of noncharacteristic problems and by interpret-

ing the results algebraically.

We study the case where the data are given along the characteristic curve γ = (Ox).

This characteristic irregular Cauchy problem has no smooth solution (not even C2) even

if the data ϕ and ψ are smooth. We replace it by the family of noncharacteristic problems

(Pε)ε by moving the initial data to the curve γε of equation y = εx as data. We also try

to give a meaning to the family of solutions by interpreting it as generalized functions

belonging to an appropriately defined algebra.

In the case of regular data, if uε is a solution to problem (Pε), the family (uε)ε is

a representative of a generalized function which belongs to the algebra A(R2). Then

u = [uε] is a generalized function that we consider as a generalized solution to the

characteristic Cauchy problem (PC).

We also give a meaning to the characteristic Cauchy problem (PC) in the case where

ϕ and ψ are themselves irregular data (for example some generalized functions), by

replacing it by the family of noncharacteristic problems (P(ε,η))(ε,η) in an appropriate

algebra:

P(ε,η)





∂2u(ε,η)

∂x∂y
(x, y) = F (x, y, u(ε,η)(x, y)),

u(ε,η)(x, εx) = ϕη(x),

∂u(ε,η)

∂y
(x, εx) = ψη(x),

where (ϕη)η and (ψη)η are representatives of ϕ and ψ.

The parameter ε transforms the given problem into a noncharacteristic one and the

parameter η regularizes the data. We build a two-parametric algebra in which the irreg-

ular characteristic problem is solved. If u(ε,η) is a solution to problem P(ε,η), the family

(u(ε,η))(ε,η) is a representative of a generalized function u = [u(ε,η)] that we consider as a

generalized solution to the characteristic Cauchy problem (PC).

For F = 0, we rediscover some results of J.-A. Marti [2004] from a general study with

distributions as data.
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1. Global smooth solutions to the Cauchy problem

Solution of the Cauchy problem for the semilinear wave equation whose nonlinearity

satisfies a global Lipschitz condition, by means of successive approximation techniques,

is well known (P. R. Garabedian [1964]). However, for the following study of general-

ized situation, we will need precise estimates for the case of smooth data, which is not

sufficiently detailed in the available literature.

1.1. Formulation of the problem. We search for a solution u to the following Cauchy

problem:

(P )





∂2u

∂x∂y
= F (·, ·, u),

u|γ = ϕ,

∂u

∂y
|γ = ψ,

where f, ϕ, ψ : R→ R are some smooth one-variable functions, γ is the curve of equation

y = f(x) and F is smooth in its arguments. In all cases the following hypothesis will be

satisfied:

(H)





F ∈ C∞(R3,R),

∀K b R2, sup(x,y)∈K;z∈R |∂zF (x, y, z)| <∞,
f is defined and strictly increasing on R with image R,
∀x ∈ R, f ′(x) 6= 0,

where the notation K b R2 means that K is a compact subset of R2. We denote by (P∞)

the problem which consists in searching for a function u ∈ C2(R2) satisfying

∂2u

∂x∂y
(x, y) = F (x, y, u(x, y)),(1.1)

u(x, f(x)) = ϕ(x),(1.2)

∂u

∂y
(x, f(x)) = ψ(x).(1.3)

We denote by (Pi) the problem which consists in searching for a function u ∈ C0(R2)

satisfying

(1.4) u(x, y) = u0(x, y)−
���

D(x,y,f)

F (ξ, η, u(ξ, η)) dξ dη,

where

u0(x, y) = χ(y)− χ(f(x)) + ϕ(x)

and χ denotes a primitive of ψ ◦ f−1, with

D(x, y, f) =

{ {(ξ, η) : f−1(y) ≤ ξ ≤ x, y ≤ η ≤ f(ξ)} if y ≤ f(x),

{(ξ, η) : x ≤ ξ ≤ f−1(y), f(ξ) ≤ η ≤ y} if y ≥ f(x).

Theorem 1. Let u ∈ C0(R2). The function u is a solution to (P∞) if and only if u is a

solution to (Pi).
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Proof. The existence of f−1 is ensured by (H). Hypothesis (H) also ensures that the

domain D(x, y, f) is bounded. We consider the points M(x, y), P (f−1(y), y), Q(x, f(x)),

and the domain D(x, y, f) is the “curvilinear triangle” MPQ. If u is solution to (P∞),

suppose that y ≥ f(x). We have

���

D(x,y,f)

∂2u

∂x∂y
(ξ, η) dξ dη =

y�

f(x)

( f−1(η)�

x

∂2u

∂x∂y
(ξ, η) dξ

)
dη.

Then

���

D(x,y,f)

(
∂2u

∂x∂y
(ξ, η) dξ

)
dη =

y�

f(x)

∂u

∂y
(f−1(η), η) dη −

y�

f(x)

∂u

∂y
(x, η) dη

= χ(y)− χ(f(x))− u(x, y) + ϕ(x),

where χ denotes a primitive of ψ ◦ f−1. Then

u(x, y) = u0(x, y)−
���

D(x,y,f)

F (ξ, η, u(ξ, η)) dξ dη,

where u0(x, y) = χ(y)−χ(f(x))+ϕ(x). We obtain the same result if we suppose y ≤ f(x).

Thus u satisfies (Pi). If u satisfies (Pi), suppose that y ≥ f(x); we can write

u(x, y) = u0(x, y)−
f−1(y)�

x

( y�

f(ξ)

F (ξ, η, u(ξ, η)) dη
)
dξ.

As u ∈ C0(R2) we have

∂u

∂x
(x, y) =

∂u0

∂x
(x, y) +

y�

f(x)

F (x, η, u(x, η)) dη

and consequently

∂

∂y

(
∂u

∂x

)
(x, y) =

∂2u0

∂y∂x
(x, y) + F (x, y, u(x, y)) = F (x, y, u(x, y)).

Let us calculate again u(x, y) in the following way:

u(x, y) = u0(x, y)−
y�

f(x)

( f−1(η)�

x

F (ξ, η, u(ξ, η)) dξ
)
dη.

As u ∈ C0(R2) we have

∂u

∂y
(x, y) =

∂u0

∂y
(x, y)−

f−1(y)�

x

F (ξ, y, u(ξ, y)) dξ.

Then
∂

∂x

(
∂u

∂y

)
(x, y) =

∂2u0

∂x∂y
(x, y) + F (x, y, u(x, y)) = F (x, y, u(x, y)).
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Finally, the partial derivatives can be exchanged and we have

∂2u

∂x∂y
(x, y) = F (x, y, u(x, y)).

Furthermore,

u(x, f(x)) = u0(x, f(x)) = ϕ(x),

∂u

∂y
(x, f(x)) =

∂u0

∂y
(x, f(x)) = ψ ◦ f−1(f(x)) = ψ(x).

These results are unchanged if we suppose y ≤ f(x), so u satisfies (P∞). If u is of class

C1 then (x, y) 7→ F (x, y, u(x, y)) is of class C1. Then

W : (x, y) 7→ u0(x, y)−
f−1(y)�

x

( y�

f(ξ)

F (ξ, η, u(ξ, η)) dη
)
dξ

has a partial derivative with respect to x of class C1, and

W : (x, y) 7→ u0(x, y)−
y�

f(x)

( f−1(η)�

x

F (ξ, η, u(ξ, η)) dξ
)
dη

has a partial derivative with respect to y of class C1. As

∂

∂x

(
∂W

∂y

)
(x, y) = F (x, y, u(x, y)) =

∂

∂y

(
∂W

∂x

)
(x, y)

is of class C1 it follows that u = W is of class C2. We remark moreover that, if u is of

class Cn, then (x, y) 7→ F (x, y, u(x, y)) is of class Cn, therefore

W : (x, y) 7→ u0(x, y)−
f−1(y)�

x

( y�

f(ξ)

F (ξ, η, u(ξ, η)) dη
)
dξ

has a partial derivative with respect to x of class Cn, and

W : (x, y) 7→ u0(x, y)−
y�

f(x)

( f−1(η)�

x

F (ξ, η, u(ξ, η)) dξ
)
dη

has a partial derivative with respect to y of class Cn. As

∂

∂x

(
∂W

∂y

)
(x, y) = F (x, y, u(x, y)) =

∂

∂y

(
∂W

∂x

)
(x, y)

is of class Cn we conclude that u = W is of class Cn+1. By induction, u is therefore of

class C∞.

We have, of course, the following corollary.

Corollary 2. If u is a solution to (Pi) (or to (P∞)), then u belongs to C∞(R2).



Generalized solutions to the wave equation 11

Remark 3 (Second order partial derivatives of u; these results will be used in Subsection

4.2). If u is solution to (Pi) we have

∂u

∂x
(x, y) =

∂u0

∂x
(x, y) +

y�

f(x)

F (x, η, u(x, η)) dη.

It follows that

∂2u

∂x2
(x, y) =

∂2u0

∂x2
(x, y)− f ′(x)F (x, f(x), u(x, f(x)))

+

y�

f(x)

(
∂F

∂x
(x, η, u(x, η)) +

∂F

∂z
(x, η, u(x, η))

∂u

∂x
(x, η)

)
dη.

As
∂u0

∂x
(x, y) = −f ′(x)ψ(x) + ϕ′(x) and u(x, f(x)) = ϕ(x),

we find that

∂2u

∂x2
(x, y) = − f ′′(x)ψ(x)− f ′(x)ψ′(x) + ϕ”(x)− f ′(x)F (x, f(x), ϕ(x))

+

y�

f(x)

(
∂F

∂x
(x, η, u(x, η)) +

∂F

∂z
(x, η, u(x, η))

∂u

∂x
(x, η)

)
dη.

Let us calculate again u(x, y) in the following way:

u(x, y) = u0(x, y)−
y�

f(x)

( f−1(η)�

x

F (ξ, η, u(ξ, η)) dξ
)
dη.

Starting from

∂u

∂y
(x, y) =

∂u0

∂y
(x, y)−

f−1(y)�

x

F (ξ, y, u(ξ, y)) dξ,

we obtain

∂2u

∂y2
(x, y) =

∂2u0

∂y2
(x, y)−

(
1

f ′(f−1(y))

)
F (f−1(y), y, ϕ(f−1(y)))

−
f−1(y)�

x

(
∂F

∂y
(ξ, y, u(ξ, y)) +

∂F

∂z
(ξ, y, u(ξ, y))

∂u

∂y
(ξ, y)

)
dξ.

As ∂u0

∂y (x, y) = ψ(f−1(y)), we have

∂2u0

∂y2
(x, y) =

(
1

f ′(f−1(y))

)
ψ′(f−1(y)).

1.2. Existence and uniqueness of solutions

Theorem 4. From hypothesis (H) it follows that problem (P∞) has a unique solution in

C∞(R2).
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Proof. According to Theorem 1, solving problem (P∞) amounts to solving problem (Pi),

that is, searching for u ∈ C0(R2) satisfying (1.4). For every compact subset of R2,

we can find λ > 0, large enough, so that this compact subset is contained in Kλ =

[−λ, λ]× [f(−λ), f(λ)]. Let us assume always that y ≥ f(x) and let us make the change

of variables X = x+ λ, Y = y − f(−λ). The relation (1.4) can be written as

u(X − λ, Y + f(−λ)) = u0(X − λ, Y + f(−λ))

−
���

D(X−λ,Y+f(−λ),f)

F (ξ − λ, η + f(−λ), u(ξ − λ, η + f(−λ))) dξ dη,

whose form is

(1.5) U(X,Y ) = U0(X,Y )−
� �

D(X,Y,g)

F(ξ, η, U(ξ, η)) dξ dη,

with g(X) = f(X−λ)−f(−λ); Kλ turns into the compact subset Qλ = [0, 2λ] ×[0, g(2λ)].

The equation of (γ) can then be written as Y = g(X) and g(0) = 0. So we now have

X ≥ 0 and Y ≥ g(X). According to hypothesis (H), we can put

mλ = sup
(ξ,η)∈Qλ; z∈R

∣∣∣∣
∂F

∂z
(ξ, η, z)

∣∣∣∣.

Let us consider the sequence (Un)n∈N of functions defined on R2 by

∀n ∈ N∗, Un(X,Y ) = U0(X,Y )−
� �

D(X,Y,g)

F(ξ, η, Un−1(ξ, η)) dξ dη.

For every compact subset H b R2, let us put

‖U0‖∞,H = sup
(x,y)∈H

|U0(x, y)|.

According to the mean value theorem in integral form, we can write

(1.6) F(ξ, η, t)− F(ξ, η, r) = (t− r)
1�

0

∂F

∂z
(ξ, η, r + σ(t− r)) dσ,

hence for all (ξ, η) ∈ D(X,Y, g),

F(ξ, η, U0(ξ, η))− F(ξ, η, 0) = U0(ξ, η)

1�

0

∂F

∂z
(ξ, η, σU0(ξ, η)) dσ.

So

|F(ξ, η, U0(ξ, η))| ≤ |F(ξ, η, 0)|+mλ‖U0‖∞,Qλ .

Let us put

Φλ = ‖F(·, ·, 0)‖∞,Qλ +mλ‖U0‖∞,Qλ ,
∀n ∈ N∗, Vn = Un − Un−1,
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which implies

V1(X,Y ) = U1(X,Y )− U0(X,Y ) = −
� �

D(X,Y,g)

F(ξ, η, U0(ξ, η)) dξ dη,

|V1(X,Y )| ≤
���

D(X,Y,g)

|F(ξ, η, U0(ξ, η))| dξ dη ≤ ΦλA(X,Y ),

where A(X,Y ) =
���

D(X,Y,g)
dξ dη indicates the area of the domain D(X,Y, g). We have

|V2(X,Y )| = |U2(X,Y )− U1(X,Y )|
≤

���

D(X,Y,g)

|F(ξ, η, U0(ξ, η))− F(ξ, η, U1(ξ, η))| dξ dη.

Then using the relation (1.6), we obtain

|F(ξ, η, U0(ξ, η))− F(ξ, η, U1(ξ, η))|

≤ |U0(ξ, η)− U1(ξ, η)|
∣∣∣

1�

0

∂

∂z
F(ξ, η, U1(ξ, η) + σ(U1(ξ, η)− U0(ξ, η))) dσ

∣∣∣,

and consequently

|F(ξ, η, U0(ξ, η))− F(ξ, η, U1(ξ, η))| ≤ |V1(ξ, η)|mλ.

From this it may be deduced that

|V2(X,Y )| ≤ mλ

� �

D(X,Y,g)

|V1(ξ, η)| dξ dη ≤ mλΦλ
���

D(X,Y,g)

A(ξ, η) dξ dη.

We can notice that A(X,Y ) ≤ (2λ−X)Y ≤ (2λ)Y and then

|V2(X,Y )| ≤ mλΦλ

Y�

0

( 2λ�

0

2λη dξ
)
dη ≤ mλΦλ(2λ)2Y 22−1.

Consequently,

∀(ξ, η) ∈ D(X,Y, g), |V2(ξ, η)| ≤ mλΦλ(2λ)2η22−1.

By induction, we obtain

|Vn(X,Y )| ≤ mn−1
λ Φλ

(
(2λ)n

Y n

n!

)
.

Hence

‖Vn‖∞,Qλ ≤
Φλ[(2λ)mλg(2λ)]n

mλn!
,

which ensures the uniform convergence of the series
∑

n≥1 Vn on Qλ and consequently on

every compact subset of R2. From the equality
∑n
k=1 Vk = Un − U0 we deduce that the

sequence (Un)n∈N converges uniformly on Qλ to a function U . As every Un is continuous,

the uniform limit U is continuous on every compact subset Qλ, so on R2. Let us put
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εn(X,Y ) = U(X,Y )− Un(X,Y ). Then

U(X,Y )− U0(X,Y ) +
���

D(X,Y,g)

F(ξ, η, U(ξ, η)) dξ dη

= U(X,Y )− Un(X,Y ) +
(
Un(X,Y )− U0(X,Y ) +

� �

D(X,Y,g)

F(ξ, η, U(ξ, η)) dξ dη
)

= εn(X,Y ) +
� �

D(X,Y,g)

(F(ξ, η, U(ξ, η))− F(ξ, η, Un−1(ξ, η))) dξ dη.

As for all (ξ, η) ∈ D(X,Y, g),

|F(ξ, η, U(ξ, η))− F(ξ, η, Un(ξ, η))| ≤ |U(ξ, η)− Un−1(ξ, η)|mλ,

the second member above is bounded by

sup
(X,Y )∈Qλ

|εn(X,Y )|+mλ sup
(X,Y )∈Qλ

A(X,Y ) sup
(X,Y )∈Qλ

|U(X,Y )− Un−1(X,Y )|,

that is, by

sup
(X,Y )∈Qλ

|εn(X,Y )|+mλ2λg(2λ) sup
(X,Y )∈Qλ

|εn−1(X,Y )|

whose limit is 0 when n tends to +∞. It follows that

U(X,Y ) = U0(X,Y )−
� �

D(X,Y,g)

F(ξ, η, U(ξ, η)) dξ dη

for (X,Y ) ∈ Qλ ∩ {(X,Y ) : Y ≥ g(X)} = Q+
λ .

Let us show the uniqueness of the solution. Let W be another solution to (1.5).

Putting ∆ = W − U , we obtain

∆(X,Y ) =
� �

D(X,Y,g)

(−F(ξ, η,W (ξ, η)) + F(ξ, η, U(ξ, η))) dξ dη.

Let (X,Y ) ∈ Qλ. As D(X,Y, g) ⊂ Qλ, we have

|∆(X,Y )| ≤
���

D(X,Y,g)

mλ|W (ξ, η)− U(ξ, η)| dξ dη ≤ mλ

� �

D(X,Y,g)

|∆(ξ, η)| dξ dη.

As Y ≥ g(X),

|∆(X,Y )| ≤ mλ

g−1(Y )�

X

Y�

g(X)

|∆(ξ, η)| dη dξ ≤ mλ

Y�

0

( 2λ�

0

sup
ξ∈[0,2λ]

|∆(ξ, η)| dξ
)
dη.

For every Y ∈ [0, g(2λ)], let us put

E(Y ) = sup
ξ∈[0,2λ]

|∆(ξ, Y )|.

Then

|∆(X,Y )| ≤ mλ2λ
∣∣∣
Y�

0

E(η) dη
∣∣∣;
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it follows that

∀Y ∈ [0, g(2λ)], E(Y ) ≤ mλ2λ
∣∣∣
Y�

0

E(η) dη
∣∣∣.

In this way, by applying Gronwall’s lemma, we get E = 0, hence ∆ = 0, which proves

the uniqueness of U on Q+
λ . Then putting vλ(x, y) = U(x+λ, y− f(−λ)), it follows that

vλ is the unique solution to (1.4) on Kλ ∩ {(x, y) : y ≥ f(x)} = K+
λ .

Now consider the case y ≤ f(x). Let us make the change of variables X = −x + λ,

Y = −y + f(λ). We put D′ = D(−X + λ,−Y + f(λ), f); then

u(−X + λ,−Y + f(λ)) = u0(−X + λ,−Y + f(λ))

−
���

D′

F (−ξ + λ,−η + f(λ), u(−ξ + λ,−η + f(λ))) dξ dη,

whose form is

W (X,Y ) = W0(X,Y )−
� �

D(X,Y,g)

F(ξ, η,W (ξ, η)) dξ dη

and g(X) = f(λ)− f(λ−X); Kλ turns into the compact subset Qλ = [0, 2λ] ×[0, g(2λ)].

As y ≤ f(x), we have f(λ)− y ≥ f(λ)− f(x). Then Y ≥ f(λ)− f(λ−X), that is to say,

Y ≥ g(X). So everything boils down to the case X ≥ 0, Y ≥ g(X), with which we can

deal as previously. It follows that

wλ(x, y) = W (−x+ λ,−y + f(λ))

is a solution to (1.4) on

Kλ ∩ {(x, y) : y ≤ f(x)} = K−λ .

From the continuity of U on Q+
λ and of W on Q−λ we have the continuity of vλ on K+

λ and

of wλ on K−λ . Moreover, vλ and wλ agree on γ because vλ(x, f(x)) = wλ(x, f(x)) = ϕ(x).

Finally, if we put

uλ(x, y) =

{
vλ(x, y) for (x, y) ∈ K+

λ ,

wλ(x, y) for (x, y) ∈ K−λ ,
then uλ is the unique continuous solution to (Pi) on Kλ.

It remains to prove that the method actually gives a continuous global solution u to

(1.4) on R2, that is, which satisfies (Pi). If λ2 > λ1 then Kλ1
⊂ Kλ2

, so, we must prove

that uλ2
|Kλ1

= uλ1
. But for all (x, y) ∈ Kλ2

,

uλ2
(x, y) = u0(x, y)−

���

D(x,y,f)

F (ξ, η, uλ2
(ξ, η)) dξ dη

and we have this equality, all the more so, for (x, y) ∈ Kλ1
. So we have

uλ2
|Kλ1

(x, y) = u0(x, y)−
� �

D(x,y,f)

F (ξ, η, uλ2|Kλ1
(ξ, η)) dξ dη.

In other words, uλ2
|Kλ1

satisfies (1.4) on Kλ1
and so coincides on it with its unique
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solution uλ1
. For every (x, y) ∈ R2 we can thus put

(1.7) u(x, y) = uλ(x, y) = u0(x, y)−
���

D(x,y,f)

F (ξ, η, u(ξ, η)) dξ dη,

where uλ satisfies (1.4) on Kλ and (x, y) ∈ Kλ.

The definition of u in (1.7), being independent of the compact subset Kλ, finally gives

the unique global solution to (Pi) or (P∞).

In Section 4, we will need the estimates specified by the following result.

Proposition 5. With the previous notations , for every compact subset K b R2, there

exists a compact subset Kλ b R2 containing K such that

(1.8) mλ = sup
(x,y)∈Kλ;t∈R

∣∣∣∣
∂F

∂z
(x, y, t)

∣∣∣∣; Φλ = ‖F (·, ·, 0)‖∞,Kλ +mλ‖u0‖∞,Kλ ;

(1.9) ‖u‖∞,K ≤ ‖u‖∞,Kλ ≤ ‖u0‖∞,Kλ +
Φλ
mλ

exp[2λmλ(f(λ)− f(−λ))].

Proof. We have clearly

mλ = sup
(ξ,η)∈Qλ;t∈R

∣∣∣∣
∂F

∂z
(ξ, η, t)

∣∣∣∣ = sup
(x,y)∈Kλ;t∈R

∣∣∣∣
∂F

∂z
(x, y, t)

∣∣∣∣;

Φλ = ‖F(·, ·, 0)‖∞,Qλ +mλ‖U0‖∞,Qλ = ‖F (·, ·, 0)‖∞,Kλ +mλ‖u0‖∞,Kλ .
Keeping the previous notations, we have

un(x, y) = u0(x, y)−
���

D(x,y,f)

F (ξ, η, un−1(ξ, η)) dξ dη, n ≥ 1,

un,λ(x, y) =

{
vn,λ(x, y) for (x, y) ∈ K+

λ ,

wn,λ(x, y) for (x, y) ∈ K−λ .
.

As

Un(X,Y ) = U0(X,Y )−
� �

D(X,Y,g)

F(ξ, η, Un−1(ξ, η)) dξ dη,

Φλ = ‖F(·, ·, 0)‖∞,Qλ +mλ‖U0‖∞,Qλ ,
Vn = Un − Un−1,

where Kλ is mapped by g into the compact subset Qλ = [0, 2λ] ×[0, g(2λ)]. According

to the proof of Theorem 4, we have

∀n ∈ N∗, ‖Vn‖∞,Qλ ≤
Φλ[mλ(2λ)g(2λ)]n

mλn!
,

and consequently,

‖U‖∞,Qλ ≤ ‖U0‖∞,Qλ +

∞∑

n=1

‖Vn‖∞,Qλ ≤ ‖U0‖∞,Qλ +
Φλ
mλ

exp[mλ(2λ)g(2λ)].

Furthermore, g(2λ) = f(λ)− f(−λ). From the relations
{ ‖vλ‖∞,K+

λ
= ‖U‖∞,Qλ ,

‖wλ‖∞,K−λ = ‖W‖∞,Qλ ,

{ ‖u0‖∞,K+
λ

= ‖U0‖∞,Qλ ,
‖u0‖∞,K−λ = ‖W0‖∞,Qλ ,

uλ =

{
vλ on K+

λ ,

wλ on K−λ ,
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it may be deduced that

‖u‖∞,K+
λ
≤ ‖u0‖∞,K+

λ
+
Φλ
mλ

exp[mλ(2λ)(f(λ)− f(−λ))],

and, in the same way,

‖u‖∞,K−λ ≤ ‖u0‖∞,K−λ +
Φλ
mλ

exp[mλ(2λ)(f(λ)− f(−λ))].

So

‖u‖∞,Kλ ≤ ‖u0‖∞,Kλ +
Φλ
mλ

exp[mλ(2λ)(f(λ)− f(−λ))].

As ‖u‖∞,K ≤ ‖u‖∞,Kλ , the previous inequality implies the conclusion (1.9).

2. Global smooth solutions to the Goursat problem

2.1. Formulation of the problem. We search for a solution u to the following

Goursat problem:

(P ′)





∂2u

∂x∂y
= F (·, ·, u),

u|(Ox) = ϕ,

u|γ = ψ,

where g, ϕ, ψ : R→ R are some smooth one-variable functions with ψ(0) = ϕ(g(0)), γ

is the curve of equation x = g(y) and F is smooth in its arguments. In all cases the

following hypothesis will be satisfied:

(H ′)





F ∈ C∞(R3,R),

∀K b R2, sup(x,y)∈K;z∈R |∂zF (x, y, z)| <∞,
g is increasing on R.

We denote by (P ′∞) the problem which consists in searching for a function u ∈ C2(R)

satisfying

∂2u

∂x∂y
(x, y) = F (x, y, u(x, y)),(2.1)

u(x, 0) = ϕ(x),(2.2)

u(g(y), y) = ψ(y).(2.3)

We denote by (P ′i ) the problem which consists in searching for a function u ∈ C0(R)

satisfying

(2.4) u(x, y) = u0(x, y) +
���

D(x,y,g)

F (ξ, η, u(ξ, η)) dξ dη,

where

u0(x, y) = ψ(y) + ϕ(x)− ϕ(g(y)),
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with

D(x, y, g) =





{(ξ, η) : g(y) ≤ ξ ≤ x, 0 ≤ η ≤ y} if g(y) ≤ x and 0 ≤ y,
{(ξ, η) : x ≤ ξ ≤ g(y), 0 ≤ η ≤ y} if g(y) ≥ x and 0 ≤ y,
{(ξ, η) : x ≤ ξ ≤ g(y), y ≤ η ≤ 0} if g(y) ≥ x and y ≤ 0,

{(ξ, η) : g(y) ≤ ξ ≤ x, y ≤ η ≤ 0} if g(y) ≤ x and y ≤ 0.

Theorem 6. Let u ∈ C0(R2). The function u is a solution to (P ′∞) if and only if u is a

solution to (P ′i ).

Proof. Hypothesis (H ′) ensures that the domain D(x, y, g) is bounded. We consider the

points M(x, y), N(x, 0), P (g(y), y), Q(g(y), 0). Let us suppose first 0 ≤ y and g(y) ≤ x.

Then D(x, y, g) is the rectangle PQNM . We have

���

D(x,y,g)

∂2u

∂x∂y
(ξ, η) dξ dη =

x�

g(y)

( y�

0

∂2u

∂x∂y
(ξ, η) dη

)
dξ.

Then

���

D(x,y,g)

∂2u

∂x∂y
(ξ, η) dξ dη =

x�

g(y)

∂u

∂x
(ξ, y) dξ −

x�

g(y)

∂u

∂x
(ξ, 0)) dξ

= [u(ξ, y)]xg(y) − [ϕ(ξ)]xg(y)

= u(x, y)− ψ(y)− ϕ(x) + ϕ(g(y)).

We deduce that

u(x, y) = u0(x, y) +
���

D(x,y,g)

F (ξ, η, u(ξ, η)) dξ dη,

where

u0(x, y) = ψ(y) + ϕ(x)− ϕ(g(y)).

So we have u0(x, 0) = ψ(0) + ϕ(x)− ϕ(g(0)) and

u0(g(y), y) = ψ(y) + ϕ(g(y))− ϕ(g(y)) = ψ(y).

It follows that u(x, 0) = ϕ(x) and u(g(y), y) = ψ(y). So u is a solution to (P ′i ). To

calculate ���

D(x,y,g)

∂2u

∂x∂y
(ξ, η) dξ dη

we must consider four cases:

Case (1): (0 ≤ y and g(y) ≤ x), Case (2): (0 ≤ y and x ≤ g(y)),

Case (3): (y ≤ 0 and x ≤ g(y)), Case (4): (y ≤ 0 and g(y) ≤ x).

Let us briefly consider the other cases.

Case (2): If 0 ≤ y and x ≤ g(y), then

� �

D(x,y,g)

∂2u

∂x∂y
(ξ, η) dξ dη =

g(y)�

x

( y�

0

∂2u

∂x∂y
(ξ, η) dη

)
dξ = −

x�

g(y)

( y�

0

∂2u

∂x∂y
(ξ, η) dη

)
dξ.
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Case (3): If x ≤ g(y) and y ≤ 0, then

���

D(x,y,g)

∂2u

∂x∂y
(ξ, η) dξ dη =

g(y)�

x

( 0�

y

∂2u

∂x∂y
(ξ, η) dη

)
dξ =

x�

g(y)

( y�

0

∂2u

∂x∂y
(ξ, η) dη

)
dξ.

Case (4): If y ≤ 0 and g(y) ≤ x, then

���

D(x,y,g)

∂2u

∂x∂y
(ξ, η) dξ dη =

x�

g(y)

( 0�

y

∂2u

∂x∂y
(ξ, η) dη

)
dξ = −

x�

g(y)

( y�

0

∂2u

∂x∂y
(ξ, η) dη

)
dξ.

If u satisfies (P ′i ), assume that g(y) ≤ x and 0 ≤ y. We can write

u(x, y) = u0(x, y) +

x�

g(y)

( y�

0

F (ξ, η, u(ξ, η)) dη
)
dξ,

so
∂u

∂x
(x, y) =

∂u0

∂x
(x, y) +

y�

0

F (x, η, u(x, η)) dη

and consequently,

∂

∂y

(
∂u

∂x

)
(x, y) =

∂2u0

∂y∂x
(x, y) + F (x, y, u(x, y)) = F (x, y, u(x, y)).

Let us calculate again u(x, y) in the following way:

u(x, y) = u0(x, y) +

y�

0

( x�

g(y)

F (ξ, η, u(ξ, η)) dξ
)
dη.

We have

∂u

∂y
(x, y) =

∂u0

∂y
(x, y) +

x�

g(y)

F (ξ, y, u(ξ, y)) dξ − g′(y)

y�

0

F (g(y), η, u(g(y), η)) dη,

hence
∂

∂x

(
∂u

∂y

)
(x, y) =

∂2u0

∂x∂y
(x, y) + F (x, y, u(x, y)) = F (x, y, u(x, y)).

Finally, the partial derivatives can be exchanged and we have

∂2u

∂x∂y
(x, y) = F (x, y, u(x, y)).

Furthermore u(g(y), y) = u0(g(y), y) = ψ(y) and u(x, 0) = u0(x, 0) = ϕ(x). These results

are unchanged if we suppose x ≤ g(y) and 0 ≤ y, so u actually satisfies (P ′∞). If u is of

class C1, the function (x, y) 7→ F (x, y, u(x, y)) is of class C1, so

W : (x, y) 7→ u0(x, y) +

x�

g(y)

( y�

0

F (ξ, η, u(ξ, η)) dη
)
dξ

has a partial derivative with respect to x of class C1, and

W : (x, y) 7→ u0(x, y) +

y�

0

( x�

g(y)

F (ξ, η, u(ξ, η)) dξ
)
dη,
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has a partial derivative with respect to y of class C1. As

∂

∂x

(
∂W

∂y

)
(x, y) = F (x, y, u(x, y)) =

∂

∂y

(
∂W

∂x

)
(x, y),

it follows that u = W is of class C2. We remark moreover that, if u is of class Cn, the

function (x, y) 7→ F (x, y, u(x, y)) is of class Cn,

W : (x, y) 7→ u0(x, y) +

x�

g(y)

( y�

0

F (ξ, η, u(ξ, η)) dη
)
dξ

has a partial derivative with respect to x of class Cn, and

W : (x, y) 7→ u0(x, y) +

y�

0

( x�

g(y)

F (ξ, η, u(ξ, η)) dξ
)
dη

has a partial derivative with respect to y of class Cn. As

∂

∂x

(
∂W

∂y

)
(x, y) = F (x, y, u(x, y)) =

∂

∂y

(
∂W

∂x

)
(x, y)

is of class Cn it follows that u = W is of class Cn+1. By induction u is therefore of

class C∞.

We have, of course, the following corollary.

Corollary 7. If u is a solution to (P ′i ) (or to (P ′∞)), then u belongs to C∞(R2).

Remark 8. (Second order partial derivatives of u; these results will be used in Subsection

5.2). Let us assume that u is a solution to (Pi), g(y) ≤ x and 0 ≤ y. Let us remember

that

∂u

∂x
(x, y) =

∂u0

∂x
(x, y) +

y�

0

F (x, η, u(x, η)) dη.

As ∂2u0

∂x2 (x, y) = ϕ′′(x), we find that

∂2u

∂x2
(x, y) = ϕ′′(x) +

y�

0

(
∂F

∂x
(x, η, u(x, η)) +

∂F

∂z
(x, η, u(x, η))

∂u

∂x
(x, η)

)
dη.

We calculate again u(x, y) in the following way:

u(x, y) = u0(x, y) +

y�

0

( x�

g(y)

F (ξ, η, u(ξ, η)) dξ
)
dη.

Starting from

∂u

∂y
(x, y) =

∂u0

∂y
(x, y) +

x�

g(y)

F (ξ, y, u(ξ, y)) dξ − g′(y)

y�

0

F (g(y), η, u(g(y), η)) dη
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we obtain

∂2u

∂y2
(x, y) =

∂2u0

∂y2
(x, y)− 2g′(y)F (g(y), y, u(g(y), y))

−
g(y)�

x

(
∂F

∂y
(ξ, y, u(ξ, y)) +

∂F

∂z
(ξ, y, u(ξ, y))

∂u

∂y
(ξ, y)

)
dξ.

Since
∂u0

∂y
(x, y) = ψ′(y)− [g′(y)]ϕ′(g(y)),

hence
∂2u0

∂y2
(x, y) = ψ′′(y)− [g′′(y)ϕ′(g(y)) + (g′(y))2ϕ′′(g(y))].

2.2. Existence and uniqueness of solutions

Theorem 9. Under hypothesis (H ′), problem (P ′∞) has a unique solution u in C∞(R2).

Proof. Let us assume that 0 ≤ y, g(y) ≤ x. According to Theorem 6, solving problem

(P ′∞) amounts to solving problem (P ′i ), that is, searching for u ∈ C0(R2) satisfying (2.4).

For every compact subset of R2, we can find λ, large enough, so that this compact subset

is contained in Kλ = [g(−λ), g(λ)]× [−λ, λ]. Let us put, in accordance with hypothesis

(H ′),

mλ = sup
(ξ,η)∈Kλ;z∈R

∣∣∣∣
∂F

∂z
(ξ, η, z)

∣∣∣∣.

Let us consider the sequence (un)n∈N of functions defined on R2 by

∀n ∈ N∗, un(x, y) = u0(x, y) +
���

D(x,y,g)

F (ξ, η, un−1(ξ, η)) dξ dη.

For every compact subset H b R2, let us put

‖u0‖∞,H = sup
(x,y)∈H

|u0(x, y)|.

According to the mean value theorem in integral form, we can write

(2.5) F (ξ, η, t)− F (ξ, η, r) = (t− r)
1�

0

∂F

∂z
(ξ, η, r + σ(t− r)) dσ,

hence, for every (ξ, η) ∈ D(x, y, g), we have

F (ξ, η, u0(ξ, η))− F (ξ, η, 0) = u0(ξ, η)

1�

0

∂F

∂z
(ξ, η, σu0(ξ, η)) dσ

and so

|F (ξ, η, u0(ξ, η))| ≤ |F (ξ, η, 0)|+ |u0(ξ, η)|
1�

0

mλ dσ ≤ |F (ξ, η, 0)|+mλ‖u0‖∞,Kλ .
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Let us put

Φλ = ‖F (·, ·, 0)‖∞,Kλ +mλ‖u0‖∞,Kλ ,
∀n ∈ N∗, Vn = un − un−1.

With these notations we have

V1(x, y) = u1(x, y)− u0(x, y) =
���

D(x,y,g)

F (ξ, η, u0(ξ, η)) dξ dη

and so

|V1(x, y)| ≤
� �

D(x,y,g)

|F (ξ, η, u0(ξ, η))| dξ dη ≤ ΦλA(x, y),

where A(x, y) =
���
D(x,y,g)

dξ dη indicates the area of the domain D(x, y, g). Similarly,

we also have

|V2(x, y)| = |u2(x, y)− u1(x, y)| ≤
� �

D(x,y,g)

|F (ξ, η, u1(ξ, η))− F (ξ, η, u0(ξ, η))| dξ dη.

Then using the relation (2.5), we obtain

|F (ξ, η, u1(ξ, η))− F (ξ, η, u0(ξ, η))|

≤ |u1(ξ, η)− u0(ξ, η)|
∣∣∣∣

1�

0

∂

∂z
F (ξ, η, u1(ξ, η) + σ(u1(ξ, η)− u0(ξ, η))) dσ

∣∣∣∣

≤ |V1(ξ, η)|mλ.

We deduce that

|V2(x, y)| ≤ mλ

���

D(x,y,g)

|V1(ξ, η)| dξ dη ≤ mλΦλ
���

D(x,y,g)

A(ξ, η) dξ dη.

Putting 2λ′ = g(λ)− g(−λ), we have A(x, y) ≤ 2λ′y and then

|V2(x, y)| ≤ mλΦλ

y�

0

( 2λ�

0

2λ′η dξ
)
dη ≤ mλΦλ((2λ′)2y22−1).

Consequently, for all (ξ, η) ∈ D(x, y, g),

|V2(ξ, η)| ≤ mλΦλ

(
(2λ′)2 η

2

2

)
.

It follows by induction that

|Vn(x, y)| ≤ mn−1
λ Φλ

(
(2λ′)n

yn

n!

)
.

Hence

‖Vn‖∞,Kλ ≤
Φλ[(2λ′)mλλ]n

mλn!

which ensures the uniform convergence of the series
∑

n≥1 Vn on Kλ, and, consequently,

on every compact subset of R2. We have
∑n

k=1 Vk = un − u0, so the sequence (un)n∈N
converges uniformly on Kλ to a function u. As every un is continuous, the uniform



Generalized solutions to the wave equation 23

limit u is continuous on every compact subset Kλ, so on R2. Let us put εn(x, y) =

u(x, y)− un(x, y); then

u(x, y)− u0(x, y)−
���

D(x,y,g)

F (ξ, η, u(ξ, η)) dξ dη

= u(x, y)− un(x, y) +
(
un(x, y)− u0(x, y)−

���

D(x,y,g)

F (ξ, η, u(ξ, η)) dξ dη
)

= εn(x, y)−
� �

D(x,y,g)

(F (ξ, η, u(ξ, η))− F (ξ, η, un−1(ξ, η))) dξ dη.

As for every (ξ, η) ∈ D(x, y, g),

|F (ξ, η, u(ξ, η))− F (ξ, η, un(ξ, η))| ≤ |u(ξ, η)− un−1(ξ, η)|mλ,

the second member of the above equality is bounded by

sup
(x,y)∈Kλ

|εn(x, y)|+mλ sup
(x,y)∈Kλ

A(x, y)[ sup
(x,y)∈Kλ

|u(x, y)− un−1(x, y)|],

that is, by

sup
(x,y)∈Kλ

|εn(x, y)|+mλ2λ′λ sup
(x,y)∈Kλ

|εn−1(x, y)|,

whose limit is 0 as n tends to +∞. So, it follows that

u(x, y) = u0(x, y) +
���

D(x,y,g)

F (ξ, η, u(ξ, η)) dξ dη

for (x, y) ∈ Kλ ∩ {(x, y) : 0 ≤ y, g(y) ≤ x} = K−1,λ.

To prove uniqueness, let W be another solution to (2.4). Putting ∆ = W − u, we

obtain

∆(x, y) =
���

D(x,y,g)

(F (ξ, η,W (ξ, η))− F (ξ, η, u(ξ, η))) dξ dη.

Let (x, y) ∈ Kλ. As D(x, y, g) ⊂ Kλ, we have

|∆(x, y)| ≤
���

D(x,y,g)

mλ|W (ξ, η)− u(ξ, η)|dξdη ≤ mλ

� �

D(x,y,g)

|∆(ξ, η)| dξ dη.

As g(y) ≤ x,

|∆(x, y)| ≤ mλ

x�

g(y)

y�

0

|∆(ξ, η)| dη dξ ≤ mλ

y�

0

( g(λ)�

g(−λ)

sup
ξ∈[0,2λ]

|∆(ξ, η)| dξ
)
dη.

For every y ∈ [0, λ], put

E(y) = sup
ξ∈[0,2λ]

|∆(ξ, y)|.

Then

|∆(x, y)| ≤ mλ2λ′
∣∣∣
y�

0

E(η) dη
∣∣∣;
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it follows that

∀y ∈ [0, f(λ)], E(y) ≤ mλ2λ′
∣∣∣
y�

0

E(η) dη
∣∣∣.

In this way, by applying Gronwall’s lemma, we get E = 0, hence ∆ = 0, which proves

the uniqueness of u on K−1,λ. We write v−λ for this solution. Let us assume that 0 ≤ y,

x ≤ g(y). We have

���

D(x,y,g)

∂2u

∂x∂y
(ξ, η) dξ dη =

g(y)�

x

( y�

0

∂2u

∂x∂y
(ξ, η) dη

)
dξ = −

x�

g(y)

( y�

0

∂2u

∂x∂y
(ξ, η) dη

)
dξ.

We can solve this case in the same way.

In the case y ≤ 0, we make the change of variables X = −x, Y = −y. Then

Y ≥ 0 and h(Y ) = −g(−Y ). The compact subset Kλ turns into the compact subset

Qλ = [h(−λ), h(λ)]× [−λ, λ] and h(λ) = −g(−λ). So we now have
{
g(y) ≤ x⇔ Y ≥ h(X); D(X,Y, h) = D(−X,−Y, g) = rectangle(MNQP );

g(y) ≥ x⇔ Y ≤ h(X); D(X,Y, h) = D(−X,−Y, g) = rectangle(MPQN).

If x ≤ g(y), then

���

D(x,y,g)

∂2u

∂x∂y
(ξ, η) dξ dη =

g(y)�

x

( 0�

y

∂2u

∂x∂y
(ξ, η) dη

)
dξ =

x�

g(y)

( y�

0

∂2u

∂x∂y
(ξ, η) dη

)
dξ.

If g(y) ≤ x, then

���

D(x,y,g)

∂2u

∂x∂y
(ξ, η) dξ dη =

x�

g(y)

( 0�

y

∂2u

∂x∂y
(ξ, η) dη

)
dξ = −

x�

g(y)

( y�

0

∂2u

∂x∂y
(ξ, η) dη

)
dξ.

The change of variables gives then

u(x, y) = u(−X,−Y ) = u0(−X,−Y ) +
���

D(−X,−Y,g)

F (−ξ,−η, u(−ξ,−η)) dξ dη,

whose form is

U(X,Y ) = U0(X,Y ) +
� �

D(X,Y,h)

F(ξ, η, u(ξ, η)) dξ dη.

We can deal with this case as previously with

‖Vn‖∞,Kλ ≤
Φλ
mλ

(2λ′mλλ)n

n!
, u(x, y) = U(−x,−y).

For existence of a global solution, we have four cases:

• (0 ≤ y and g(y) ≤ x),

• (0 ≤ y and x ≤ g(y)),

• (y ≤ 0 and x ≤ g(y)),

• (y ≤ 0 and g(y) ≤ x).
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Finally, if we put

K−1,λ = Kλ ∩ {(x, y) : 0 ≤ y, g(y) ≤ x}, K+
1,λ = Kλ ∩ {(x, y) : 0 ≤ y, x ≤ g(y)},

K+
2,λ = Kλ ∩ {(x, y) : y ≤ 0, x ≤ g(y)}, K−2,λ = Kλ ∩ {(x, y) : y ≤ 0, g(y) ≤ x}

and if we let

• v−λ be the solution on K−1,λ,
• v+

λ be the solution on K+
1,λ,

• w−λ be the solution on K−2,λ,

• w+
λ be the solution on K+

2,λ,

then we can put

(2.6) uλ(x, y) =





v−λ (x, y) for (x, y) ∈ K−1,λ,
w+
λ (x, y) for (x, y) ∈ K+

2,λ,

v+
λ (x, y) for (x, y) ∈ K+

1,λ,

w−λ (x, y) for (x, y) ∈ K−2,λ.
Now,

• v−λ and v+
λ agree on γ because v−λ (g(y, y)) = v+

λ (g(y, y)) = ψ(y),

• w−λ and w+
λ agree on γ because w−λ (g(y, y)) = w+

λ (g(y, y)) = ψ(y),

• w−λ and v−λ agree on (y = 0) because w−λ (x, 0) = v−λ (x, 0) = ϕ(x),

• w+
λ and v+

λ agree on (y = 0) because w+
λ (x, 0) = v+

λ (x, 0) = ϕ(x),

which ensures the existence and uniqueness of the solution uλ on Kλ = K−1,λ ∪ K+
2,λ ∪

K+
1,λ ∪ K−2,λ. It remains to prove that the method actually gives a continuous global

solution u on R2, that is, one which satisfies (P ′i ). If λ2 > λ1 then Kλ1
⊂ Kλ2

; so, we

must prove that uλ2
|Kλ1

= uλ1
. But

∀(x, y) ∈ Kλ2
, uλ2

(x, y) = u0(x, y) +
���

D(x,y,g)

F (ξ, η, uλ2
(ξ, η)) dξ dη

and we have this equality, all the more so, for (x, y) ∈ Kλ1
. So we have

uλ2
|Kλ1

(x, y) = u0(x, y) +
� �

D(x,y,g)

F (ξ, η, uλ2|Kλ1
(ξ, η)) dξ dη.

In other words, uλ2
|Kλ1

satisfies (2.4) on Kλ1
and so coincides on it with its unique

solution uλ1
. For every (x, y) ∈ R2, we can then put

(2.7) u(x, y) = uλ(x, y) = u0(x, y) +
� �

D(x,y,g)

F (ξ, η, u(ξ, η)) dξ dη

where uλ satisfies (2.4) on Kλ and (x, y) ∈ Kλ. The definition of u by (2.7), being

independent of the compact subset Kλ, finally gives the unique global solution to (P ′i )
or (P ′∞).

In Section 5, we will need the estimates specified by the following result.
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Proposition 10. With the previous notations , for every compact subset K b R2, there

exists a compact subset Kλ b R2 containing K such that

(2.8) mλ = sup
(x,y)∈Kλ;t∈R

∣∣∣∣
∂F

∂z
(x, y, t)

∣∣∣∣; Φλ = ‖F (·, ·, 0)‖∞,Kλ +mλ‖u0‖∞,Kλ ;

(2.9) ‖u‖∞,K ≤ ‖u‖∞,Kλ ≤ ‖u0‖∞,Kλ +
Φλ
mλ

exp(2λ′mλλ).

Proof. We have

un(x, y) = u0(x, y) +
� �

D(x,y,g)

F (ξ, η, un−1(ξ, η)) dξ dη, n ≥ 1,

and (2.6) holds. As

Φλ = ‖F (·, ·, 0)‖∞,Kλ +mλ‖u0,ε‖∞,Kλ , Vn = un − un−1,

according the proof of Theorem 9, we have

∀n ∈ N∗, ‖Vn‖∞,K−1,λ ≤ m
n−1
λ Φλ

(2λ′λ)n

n!
=
Φλ
mλ

(2λ′mλλ)n

n!

and consequently,

‖u‖∞,K−1,λ ≤ ‖u0‖∞,K−1,λ +
∞∑

n=1

‖Vn‖∞,K−1,λ ≤ ‖u0‖∞,K−1,λ +
Φλ
mλ

exp(2λ′mλλ).

We deduce that

‖u‖∞,K−1,λ ≤ ‖u0‖∞,K−1,λ +
Φλ
mλ

exp(2λ′mλλ)

and similarly

‖u‖∞,K+
2,λ
≤ ‖u0‖∞,K+

2,λ
+
Φλ
mλ

exp(2λ′mλλ),

‖u‖∞,K+
1,λ
≤ ‖u0‖∞,K+

1,λ
+
Φλ
mλ

exp(2λ′mλλ),

‖u‖∞,K−2,λ ≤ ‖u0‖∞,K−2,λ +
Φλ
mλ

exp(2λ′mλλ).

So

‖u‖∞,Kλ ≤ ‖u0‖∞,Kλ +
Φλ
mλ

exp(2λ′mλλ),

hence

‖u‖∞,K ≤ ‖u‖∞,Kλ ≤ ‖u0‖∞,Kλ +
Φλ
mλ

exp(2λ′mλλ).

3. Algebras of generalized functions

Algebras of generalized functions are the most effective tool to solve many nonlinear

differential problems with irregular data or characteristic data. To choose an appropri-

ate structure for the Cauchy problem considered, we use the results and notations of

J.-A. Marti [1998]–[2004], J.-A. Marti and S. P. Nuiro [1999].
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3.1. The sheaves of (C, E ,P)-algebras. Suppose that

• Λ is a set of indices;

• A is a subring of the ring KΛ (K = R or C);

• A+ = {(rλ)λ ∈ A : rλ ≥ 0};
• A has the following stability property: whenever (|sλ|)λ ≤ (rλ)λ (i.e. for each λ,

|sλ| ≤ rλ) for any pair ((sλ)λ, (rλ)λ) ∈ KΛ ×A+, it follows that (sλ)λ ∈ A;

• IA is an ideal of A with the same property;

• E is a sheaf of K-topological algebras on a topological space X such that for each

open set Ω in X, the algebra E(Ω) is endowed with a family P(Ω) = (pi)i∈I(Ω) of

seminorms satisfying

∀i ∈ I(Ω), ∃(j, k, C) ∈ I(Ω)× I(Ω)× R∗+, ∀f, g ∈ E(Ω) : pi(fg) ≤ Cpj(f)pk(g);

• For any two open subsets Ω1, Ω2 of X such that Ω1 ⊂ Ω2, we have I(Ω1) ⊂ I(Ω2)

and if %2
1 is the restriction operator E(Ω2)→ E(Ω1), then, for each pi ∈ P(Ω1), the

seminorm p̃i = pi ◦ %2
1 extends pi to P(Ω2);

• For any family F = (Ωh)h∈H of open subsets of X if Ω =
⋃
h∈H Ωh, then, for

each pi ∈ P(Ω), i ∈ I(Ω), there exists a finite subfamily Ω1, . . . , Ωn(i) of F and

corresponding seminorms p1 ∈ P(Ω1), . . . , pn(i) ∈ P(Ωn(i)) such that, for each

u ∈ E(Ω),

pi(u) ≤ p1(u|Ω1
) + · · ·+ pn(i)(u|Ωn(i)

).

Set

H(A,E,P)(Ω) = {(uλ)λ ∈ [E(Ω)]Λ : ∀i ∈ I(Ω), (pi(uλ))λ ∈ A+},
J(IA,E,P)(Ω) = {(uλ)λ ∈ [E(Ω)]Λ : ∀i ∈ I(Ω), (pi(uλ))λ ∈ I+

A},
C = A/IA.

Proposition 11. If

|A| = {(|rλ|)λ ∈ RΛ+ : (rλ)λ ∈ A} and |IA| = {(|rλ|)λ ∈ RΛ+ : (rλ)λ ∈ IA}
are respectively subsets of A and IA then |A| = A+ and |IA| = I+

A .

Proposition 12 (J.-A. Marti, S. P. Nuiro and V. S. Valmorin [1998a], [1998b]). H(A,E,P)

is a sheaf of subalgebras of the sheaf εΛ; J(IA,E,P) is a sheaf of ideals of H(A,E,P); the

constant sheaf H(A,K,|·|)/J(IA,K,|·|) is exactly the sheaf C = A/IA.

Definition 13. A (C, E ,P)-algebra is every factor algebra A = H(A,E,P)/J(IA,E,P). We

denote by [uλ] the class defined by the representative (uλ)λ∈Λ.

Remark 14. In the context of (C, E ,P)-algebras, it is proved that, if A = A+, then

H(A,K,|·|)/J(IA,K,|·|) = A/IA = C.
But the first term is, in principle, a (C,K, |.|)-algebra and the second a ring of generalized

constants, which is therefore an algebra. In fact, the following proposition will prove it.

Proposition 15. If A is a subring of KΛ(K = R or C) with the stability property such

that |A| = A+, then A is a K-subalgebra of KΛ.
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Overgenerated rings. In practice, the ring A and the ideal IA are overgenerated by finite

families of elements according to the following definition:

Let Bp = {(rn,λ)λ ∈ (R∗+)Λ : n = 1, . . . , p} and B be the subset of (R∗+)Λ consisting of

all products, quotients and linear combinations with coefficients in R∗+ of elements in Bp.

Define

A = {(aλ)λ ∈ KΛ : ∃(bλ)λ ∈ B, |aλ| ≤ bλ}.
It is easy to see that A is a subring of KΛ with the stability property and moreover

A+ = |A|. Then we make the following definition:

Definition 16. In the above situation, we say that A is overgenerated by Bp. If IA
is some ideal of A with the same stability property, we can also say that C = A/IA is

overgenerated by Bp.

Example 17. As a “canonical” ideal of A, we can take

IA = {(aλ)λ ∈ KΛ : ∀(bλ)λ ∈ B, |aλ| ≤ bλ}.
The association process. We suppose that Λ is left-filtering for the given partial order

relation ≺. Let us denote by Ω an open subset of X, E a given sheaf of topological

K-vector spaces containing E as a subsheaf, Φ a given map from Λ to K such that

(Φ(λ))λ = (Φλ)λ is an element of A. We also suppose that

J(IA,E,P)(Ω) ⊂ {(uλ)λ ∈ H(A,E,P)(Ω) : lim
E(Ω),Λ

uλ = 0}.

Then, for u = [uλ] and v = [vλ] ∈ E(Ω), we define the Φ-E association.

Definition 18. We denote by

u
Φ≈

E(Ω)
v

the Φ-E association between u and v defined by

lim
E(Ω),Λ

Φλ(uλ − vλ) = 0.

That is to say, for each neighborhood V of 0 for the E-topology, there exists λ0 ∈ Λ such

that

λ ≺ λ0 ⇒ Φλ(uλ − vλ) ∈ V.
Remark 19. To ensure the independence of the definition from the representatives of u

and v, we must verify that if limE(Ω),Λ Φλ(wλ) = 0 for some (wλ)λ ∈ H(A,E,P)(Ω), then,

for any (iλ)λ ∈ J(IA,E,P)(Ω), limE(Ω),Λ Φλ(wλ + iλ) = 0.

To prove the last condition, it is sufficient to show that (Φλiλ)λ ∈ J(IA,E,P)(Ω). But

for each i ∈ I(Ω), we have pi(Φλ(iλ)) = |Φλ|pi(iλ). And, considering the definitions and

the stability properties given above, we have |Φλ|λ ∈ A+ and (pi(iλ))λ ∈ I+
A . Then we

also have (|Φλ|pi(iλ))λ ∈ I+
A , which proves the required condition.

Remark 20. We can also define an association process between u = [uλ] ∈ E(Ω) and

T ∈ E(Ω) by writing simply

u ∼ T ⇔ lim
E(Ω),Λ

uλ = T.
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Then taking E = D′, E = C∞, Λ = ]0, 1], we find again the association process defined

in the literature (J.-F. Colombeau [1985], Yu. V. Egorov [1990]).

Remark 21 (Relationship between ring and injection). It is shown by J.-A. Marti [2003]

that a necessary and sufficient condition for the existence of a canonical sheaf morphism of

algebras from E into A is that A is a ring. If, in addition, IA ⊂ {(aλ)λ ∈ A : limΛ aλ = 0}
and, for each Ω, the P(Ω) topology of E(Ω) is separated, then this morphism is an

injective mapping.

3.2. An algebra adapted to the generalized Cauchy problem. The first step

is to link the problem and its data to algebraic and topological parameters that make it

possible to build an appropriate (C,E ,P)-algebra.

Definition 22. We choose E = C∞, X = Rd for d = 1, 2, E = D′ and Λ =]0, 1]. For

every open set Ω, in Rd, E(Ω) is endowed with the P(Ω) topology of uniform convergence

of all derivatives on compact subsets of Ω. This topology may be defined by the family

of the seminorms

PK,l(uε) = sup
|α|≤l

sup
x∈K
|Dαuε(x)|

with K b Ω and

Dα =
∂α1+···+αd

∂zα1
1 · · · ∂zαdd

for z = (z1, . . . , zd) ∈ Ω, l ∈ N, α = (α1, . . . , αd) ∈ Nd.

We verify that it is compatible with the algebraic structure of E(Ω) since

∀K b Ω, ∀α ∈ Nd, ∃C > 0, ∀f, g ∈ C∞(Ω), PK,l(fg) ≤ PK,l(f)PK,l(g).

We put PK,α(uε) = supx∈K |Dαuε(x)|, so PK,l(uε) = sup|α|≤l PK,α(uε). Let A be a

subring of the ring RΛ of family of reals with the usual laws. We consider an ideal IA of

A with the stability property. To simplify, we write

X = H(A,C∞,P), N = J(IA,C∞,P), A = X/N .
We put

X (Ω) = {(uε)ε ∈ [C∞(Ω)]Λ : ∀K b Ω, ∀l ∈ N, (PK,l (uε))ε ∈ A+},
N (Ω) = {(uε)ε ∈ [C∞(Ω)]Λ : ∀K b Ω, ∀l ∈ N, (PK,l (uε))ε ∈ I+

A}.
The ring of generalized constants associated with the factor algebra is exactly the factor

ring C = A/IA. Finally, the generalized derivation Dα : u (= [uε]) 7→ Dαu = [Dαuε]

provides A(Ω) with a differential algebraic structure.

Example 23. If we consider

A = RΛM = {(mε)ε ∈ RΛ : ∃p ∈ R∗+, ∃C ∈ R∗+, ∃µ ∈ ]0, 1], ∀ε ∈ ]0, µ], |mε| ≤ Cε−p}
and the ideal

IA = {(mε)ε ∈ RΛ : ∀q ∈ R∗+, ∃D ∈ R∗+, ∃µ ∈ ]0, 1], ∀ε ∈ ]0, µ], |mε| ≤ Dεq},
then A(Rd) = G(Rd) is the algebra of Colombeau generalized functions.

If u is a generalized function of the variable x ∈ R2 and F ∈ C∞(R3,R), we extend

the notation F (·, ·, u) in the following way:
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Definition 24. Let Ω be an open subset of R2 and F ∈ C∞(Ω × R,R). We say that

the algebra A(Ω) is stable under F if the following two conditions are satisfied:

• For each K b R2, l ∈ N and (uε)ε ∈ C∞(Ω)]0,1], there is a positive finite sequence

C1, . . . , Cl such that

PK,l(F (·, ·, uε)) ≤
l∑

i=0

CiP
i
K,l(uε).

• For each K b R2, l ∈ N, (vε)ε, (uε)ε ∈ X (Ω), there is a positive finite sequence

D1, . . . , Dl such that

PK,l(F (·, ·, vε)− F (·, ·, uε)) ≤
l∑

j=0

DjP
j
K,l(vε − uε).

Proposition 25. If A(Ω) is stable under F then:

• For each K b R2, l ∈ N and (uε)ε ∈ C∞(Ω)]0,1], we have

(PK,l(uε))ε ∈ A+ ⇒ (PK,l(F (·, ·, , uε)))ε ∈ A+.

• For each K b R2, l ∈ N, (vε)ε, (uε)ε ∈ X (Ω), we have

(PK,l(vε − uε))ε ∈ I+
A ⇒ (PK,l(F (·, ·, vε)− F (·, ·, uε)))ε ∈ I+

A .

Proposition 26. If A(Ω) is stable under F then, for all (uε)ε ∈ X (Ω) and (iε)ε ∈
N (Ω), we have

(F (·, ·, uε))ε ∈ X (Ω); (F (·, ·, uε + iε)− F (·, ·, uε))ε ∈ N (Ω).

We shall use the following lemma.

Lemma 27 (Francesco Faà di Bruno’s formula). The nth order derivative of f ◦ u can be

written

(f ◦ u)(n) =
n∑

r=1

∑

i1≥···≥ir
i1+···+ir=n

ti1,...,irf
(r) ◦ u ·

r∏

k=1

u(ik)

where the coefficients ti1,...,ir are integers.

Proposition 28. Let F ∈ C∞(R2,R) be defined by F (x, y, z) = z/(1 + z2). Then A(R2)

is stable under F .

Proof. We put

(3.1) f(z) =
z

1 + z2
and Φε(x, y) = F (x, y, uε(x, y)) =

uε(x, y)

1 + u2
ε(x, y)

.

For each real z we have

f(z) =
z

1 + z2
=
i

2

(
1

1 + iz
− 1

1− iz

)
.

We put

gα(z) =
1

1 + αz
, α = i or α = −i.
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By induction, for n ≥ 1 we obtain

g(n)
α (z) =

(−1)n(n!)αn

(1 + αz)n+1
.

We have

f (n)(z) =
i

2
(g

(n)
i (z)− g(n)

−i (z)),

and, for α = i or α = −i,

|g(n)
α (z)| ≤

∣∣∣∣
(−1)nn!αn

(1 + αz)n+1

∣∣∣∣ ≤ n!
|i|n

(1 + z2)n+1
≤ n!,

so

|f (n)(z)| ≤ 1

2
(|g(n)

i (z)|+ |g(n)
−i (z)|) ≤ n!.

All the successive derivatives of f are therefore bounded on R, and for each integer n,

sup
z∈R
|f (n)(z)| ≤ n!.

Let us show that for each n, there is Cr,n > 0, 1 ≤ r ≤ n, such that

PK,n(F (·, ·, uε)) ≤
n∑

r=1

Cr,nP
r
K,n(uε).

In terms of Φε(x, y) = F (x, y, uε(x, y)), x and y have similar roles, therefore the study of

∂n/∂xk∂yn−k Φε is similar to that of ∂n/∂xn−k∂yk Φε. Thus we can prove the assertion

only for ∂n/∂xn Φε We have

∂Φε
∂x

(x, y) = f ′(uε(x, y))
∂uε
∂x

(x, y),

hence

∀K b R2, PK,(1,0)(F (·, ·, uε)) ≤ PK,(1,0)(uε).

Consequently,

∀K b R2, PK,1(F (·, ·, uε)) ≤ PK,1(uε).

For each K b R2, we have

∂2Φε
∂x∂y

(x, y) = f (2)(uε(x, y))
∂uε
∂y

(x, y)
∂uε
∂x

(x, y) + f ′(uε(x, y))
∂2uε
∂x∂y

(x, y),

hence

PK,(1,1)(F (·, ·, uε)) ≤ 2P 2
K,1(uε) + PK,2(uε) ≤ 2P 2

K,2(uε) + PK,2(uε).

We have

∂2Φε
∂x2

(x, y) = f (2)(uε(x, y))

(
∂uε
∂x

)2

(x, y) + f ′(uε(x, y))
∂2uε
∂x2

(x, y).

Thus

PK,(2,0)(F (·, ·, uε)) ≤ 2P 2
K,1(uε) + PK,2(uε) ≤ 2P 2

K,2(uε) + PK,2(uε).

Consequently,

∀K b R2, PK,2(F (·, ·, uε) ≤ 2P 2
K,2(uε) + PK,2(uε).
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Therefore we have, for α = n and β = 0,

∂nΦε
∂xn

(x, y) =

n∑

r=1

∑

i1≥···≥ir
i1+···+ir=n

ti1,...,irf
(r)(uε(x, y))

r∏

k=1

∂ikuε
∂xik

(x, y),

For all K b R2, ik ∈ N, ik ≤ n and r ∈ N,

sup
(x,y)∈K

|f (r)(uε(x, y))| ≤ r! ≤ n!,

therefore

max
1≤ik≤n

sup
(x,y)∈K

|f (ik)(uε(x, y))| ≤ n!.

We have

sup
(x,y)∈K

∣∣∣∣
∂ikuε
∂xik

(x, y)

∣∣∣∣ ≤ PK,ik(uε) ≤ PK,n(uε)

and

sup
(x,y)∈K

∣∣∣∣
r∏

k=1

∂ikuε
∂xik

(x, y)

∣∣∣∣ ≤ P rK,n(uε),

therefore

sup
(x,y)∈K

∣∣∣∣ti1,...,irf (r)(uε(x, y))

r∏

k=1

∂ikuε
∂xik

(x, y)

∣∣∣∣ ≤ ti1,...,irn!P rK,n(uε).

Consequently,

sup
(x,y)∈K

∣∣∣∣
∂nΦε
∂xn

(x, y)

∣∣∣∣ ≤
n∑

r=1

( ∑

i1≥···≥ir
i1+···+ir=n

ti1,...,ir

)
n!P rK,n(uε).

Let us show that, for all K b R2, l ∈ N, and (vε)ε, (uε)ε ∈ X (Ω), there is a positive

number Dl such that

PK,l(F (·, ·, vε)− F (·, ·, uε)) ≤ DlPK,l(vε − uε).
First let us show this relation for l = 0. For all K b R2 and (x, y) ∈ K, we have

gα(vε(x, y))− gα(uε(x, y)) =
1

1 + αvε(x, y)
− 1

1 + αuε(x, y)

=
α(uε(x, y)− vε(x, y))

(1 + αvε(x, y))(1 + αuε(x, y))
,

so

|gα(vε(x, y))− gα(uε(x, y))| ≤ |uε(x, y)− vε(x, y)|
|1 + v2

ε(x, y)| |1 + u2
ε(x, y)| ≤ |vε(x, y)− uε(x, y)|,

because α = i or α = −i. As

f(z) =
z

1 + z2
=
i

2
(gi(z)− g−i(z)),

we have

f(vε(x, y))− f(uε(x, y)) =
i

2
[gi(vε(x, y))− gi(uε(x, y))− (g−i(vε(x, y))− g−i(uε(x, y)))]



Generalized solutions to the wave equation 33

and

|f(vε(x, y))− f(uε(x, y))|

≤ 1

2
[|gi(vε(x, y))− gi(uε(x, y))|+ |g−i(vε(x, y))− g−i(uε(x, y))|]

≤ |vε(x, y)− uε(x, y)|,
and consequently

PK,0(F (·, ·, vε)− F (·, ·, uε)) ≤ PK,0(vε − uε).
It is sufficient to prove the relation for gα. For each K b R2 and (x, y) ∈ K, we have

Ψε(x, y) = gα(vε(x, y))− gα(uε(x, y))

=
−α

(1 + αvε(x, y))(1 + αuε(x, y))
(vε(x, y)− uε(x, y))

and

|Ψε(x, y)| ≤ |gα(vε(x, y))− gα(uε(x, y))| ≤ |vε(x, y)− uε(x, y)|,
so

sup
(x,y)∈K

|Ψε(x, y)| ≤ PK,0(vε − uε).

We put

hε(x, y) =
−α

(1 + αvε(x, y))(1 + αuε(x, y))
= −αgα(vε(x, y))gα(uε(x, y)).

As gα and all the successive derivatives are bounded, for each integer n, (∂n/∂xn)hε is

bounded on K by a polynomial of

‖vε‖∞,K , ‖uε‖∞,K ,
∥∥∥∥
∂vε
∂x

∥∥∥∥
∞,K

,

∥∥∥∥
∂uε
∂x

∥∥∥∥
∞,K

, . . . ,

∥∥∥∥
∂nvε
∂xn

∥∥∥∥
∞,K

,

∥∥∥∥
∂nuε
∂xn

∥∥∥∥
∞,K

,

with positive coefficients, which we can write dn(K,uε, vε). According to Leibniz’s rule

we have
∂nΨε
∂xn

(x, y) = −α
n∑

i=0

Cin
∂ihε
∂xi

(x, y)
∂n−i(vε − uε)

∂xn−i
(x, y).

Consequently,

sup
(x,y)∈K

∣∣∣∣
∂nΨε
∂xn

(x, y)

∣∣∣∣ ≤
n∑

i=0

Cindi(K,uε, vε)PK,n−i(vε − uε)

≤
( n∑

i=0

Cindi(K,uε, vε)
)
PK,n(vε − uε).

From this, it may be deduced that

PK,n(F (·, ·, vε)− F (·, ·, uε)) ≤ DnPK,n(vε − uε).

3.3. Parametric singular spectrum. We suppose that

NAD′(Ω) = {(uε) ∈ X (Ω) : lim
ε→0

uε = 0 in D′(Ω)} ⊃ N (Ω).
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Then we put

D′A(Ω) = {[uε] ∈ A(Ω) : ∃T ∈ D′(Ω), lim
ε→0

uε = T in D′(Ω)}.

D′A(Ω) is clearly well defined because the limit is independent of the chosen representa-

tive; indeed,

lim
ε→0
D′(R)

(uε + iε) = lim
ε→0
D′(R)

uε + lim
ε→0
D′(R)

iε = lim
ε→0
D′(R)

uε, since lim
ε→0
D′(R)

iε = 0.

D′A(Ω) is an R-vector subspace of A(Ω). Therefore we can consider the set OD′A of all x

having a neighborhood V on which u is associated to a distribution:

OD′A(u) = {x ∈ Ω : ∃V ∈ V(x), u|V ∈ D′A(V )},
V(x) being the set of all neighborhoods of x.

Definition 29. We define the D′-singular support of u ∈ A(Ω), denoted sing suppD′(u)

= SAD′A
(u), as

SAD′A(u) = Ω \ OD′A(u).

Elements of parametric microlocal analysis. Let u ∈ A(Rd) and x ∈ Rd. It may hap-

pen that u = [uε] is not associated with any distribution in a neighborhood of x, that

is, there is no open neighborhood Vx of x for which limε→0 uε|Vx belongs to D′(Vx)

(J.-A. Marti [1998], J.-A. Marti, S. P. Nuiro and V. S. Valmorin [1998b]). But in this

case, it may happen that some real number r and some neighborhood Vx of x exist

such that limε→0 ε
ruε|Vx belongs to D′(Vx), that is, [εruε] belongs to D′A(Vx), the vec-

tor subspace of A(Vx) whose elements u are associated with some distribution of D′(Vx)

(J.-A. Marti, S. P. Nuiro and V. S. Valmorin [1998b]).

We refer to J.-A. Marti [1995], J.-A. Marti, S. P. Nuiro and V. S. Valmorin [1998b].

Let Ω be an open subset of Rd. For x ∈ Ω and u = [uε] ∈ A(Ω), we put

ND′,x(u) = {r ∈ R+ : ∃Vx ∈ V(x), lim
ε→0

εruε|Vx ∈ D′(Vx)}.

We can show that ND′,x(u) does not depend on the chosen representative of u and that

if ND′,x(u) contains some r0 ∈ R+, it must contain every r ≥ r0. Then one defines the

D′-fiber over x as

ΣD′,x(u) = R+ \ND′,x(u).

This is either a bounded interval of R+ of the form [0, r[ or [0, r], R+ itself, or the empty

set.

Then we can give the following definition of the parametric singular spectrum of a

generalized function:

Definition 30. We define the D′-parametric singular spectrum of u ∈ A(Ω) as the

following subset of Ω × R+:

SεS
A
D′Au = {(x, r) ∈ Ω × R+ : r ∈ ΣD′,x(u)}.

Remark 31. We have ΣD′,x(u) = ∅ if, and only if, there exists a neighborhood Vx of x

such that

lim
ε→0

uε|Vx ∈ D′(Vx),
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that is, if, and only if, x does not belong to the D′-singular support of u, SAD′A(u). It

follows that the projection on Ω of SεS
A
D′A
u is exactly SAD′A

u.

Theorem 32. Let u, v ∈ A(Ω). Then

SεS
A
D′A(u+ v) ⊂ SεSAD′A(u) ∪ SεSAD′A(v).

Proof. Let r ∈ ND′,x(u) ∩ND′,x(v). Then there exist Vx,Wx ∈ V(x) such that

lim
ε→0

εruε|Vx ∈ D′(Vx) and lim
ε→0

εrvε|Wx
∈ D′(Wx).

From this it may be deduced that

lim
ε→0

εr(uε + vε)|Vx∩Wx
∈ D′(Vx ∩Wε),

so r ∈ ND′,x(u+ v) and consequently

ND′,x(u) ∩ND′,x(v) ⊂ ND′,x(u+ v).

We obtain the result by taking complements in R+.

Corollary 33. For any u, u0, u1 in A(Ω) with

(3.2) u = u0 + u1,

(3.3) SεS
A
D′A(u0) = ∅,

we have

SεS
A
D′A(u) = SεS

A
D′A(u1).

Proof. The previous theorem and condition (3.3) give

SεS
A
D′A(u) ⊂ SεSAD′A(u1).

But, as (3.2) implies u0 = u − u1, we obtain of course the converse inclusion, and thus

the result.

Theorem 34. Let u ∈ A(Ω). Then SεS
A
D′A

(Dαu) ⊂ SεSAD′A(u) for all α ∈ Nd.

Proof. Let r ∈ ND′,x(u). There exists Vx ∈ V(x) such that

lim
ε→0

εruε|Vx = T ∈ D′(Vx).

The continuity of Dα implies

lim
ε→0

εrDαuε|Vx = lim
ε→0

Dαεruε|Vx = DαT ∈ D′(Vx).

Thus ND′,x(u) ⊂ ND′,x(Dαu); we obtain the result by taking complements in R+.

Theorem 35. Let f ∈ C∞(Ω) and u ∈ A(Ω). Then SεS
A
D′A

(fu) ⊂ SεSAD′A(u).

Proof. Let r ∈ ND′,x(u). There exists Vx ∈ V(x) such that limε→0 ε
ruε|Vx = T ∈ D′(Vx),

that is, for each ϕ ∈ D(Vx),

lim
ε→0

�
εruε(x)ϕ(x) dx = 〈T, ϕ〉.

Thus, we have

lim
ε→0

�
εr(fuε)(x)ϕ(x) dx = lim

ε→0

�
εruε(x)fϕ(x) dx = 〈T, fϕ〉 = 〈fT, ϕ〉.
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It follows that

lim
ε→0

εrfuε|Vx = fT ∈ D′(Vx)

and therefore r ∈ ND′,x(fu). From ND′,x(u) ⊂ ND′,x(fu), we can deduce the result.

Corollary 36. Let P (D) =
∑
|α|≤m CαD

α be a differential polynomial with coefficients

in C∞(Ω). Then SεS
A
D′A

(P (D)u) ⊂ SεSAD′A(u) for any u ∈ A(Ω).

Proof. Write P (D)u =
∑
|α|≤m CαD

αu and apply the previous theorems.

4. Generalized Cauchy problem

4.1. Formulation of the problem. We take up again the formulation of the Cauchy

problem posed in Subsection 1.1 in the form

(PG)





∂2u

∂x∂y
= F (·, ·, u),

u|γ = ϕ,
∂u

∂y

∣∣∣∣
γ

= ψ,

but now we search for u in the algebra of generalized functions A(R2) defined in the

previous section. ϕ = [ϕε], ψ = [ψε], ϕε, ψε: R→ R are some smooth one-variable

functions, the hypotheses on F and f are kept, A(R) and A(R2) are built on the same

ring of generalized constants, A(R2) is stable under F . We suppose that, for every ε, the

problem

P∞(ϕε, ψε)





∂2uε
∂x∂y

(x, y) = F (x, y, uε(x, y)),

uε(x, f(x)) = ϕε(x),
∂uε
∂y

(x, f(x)) = ψε(x),

has a solution uε ∈ C∞(R2).

Giving a meaning to (PG) is first giving a meaning to

∂2u

∂x∂y
= F (·, ·, u),(4.1)

u|γ = ϕ ∈ A(R),(4.2)

∂u

∂y

∣∣∣∣
γ

= ψ ∈ A(R),(4.3)

when u ∈ A(R2) and γ is the smooth submanifold of R2 defined by y = f(x). Giving a

meaning to (4.1), under the hypothesis that A(R2) is stable under F , amounts to saying

that, for a representative (uε)ε of u, we must have for all (iε)ε, (jε)ε ∈ N (R2),
(
∂2(uε + iε)

∂x∂y
− F (·, ·, uε + jε)

)

ε

∈ N (R2).
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As (
∂2(uε + iε)

∂x∂y
− ∂2uε
∂x∂y

)

ε

∈ N (R2) and (F (·, ·, , uε + jε)− F (·, ·, uε))ε ∈ N (R2),

we must verify that (
∂2uε
∂x∂y

− F (·, ·, uε)
)

ε

∈ N (R2).

Giving a meaning to (4.2) and (4.3) amounts to defining u|γ and (∂/∂y)u|γ . As γ is a

smooth submanifold of R2 that can be represented by a single map (γ = f(x)), we can

identify A(γ) and A(R) and so u|γ to the element of A(R) with representative (x 7→
uε(x, f(x)))ε and we can identify (∂/∂y)u|γ to the element of A(R) with representative

(x 7→ ∂uε
∂y (x, f(x)))ε. So (4.2) is equivalent to

(x 7→ ((uε + iε)(x, f(x))− (ϕε + αε)(x)))ε ∈ N (R).

(4.3) is equivalent to
(
x 7→

((
∂(uε + iε)

∂y

)
(x, f(x))− (ψε + βε)(x)

))

ε

∈ N (R),

for all (iε)ε ∈ N (R2), (αε)ε, (βε)ε ∈ N (R). Considering

(x 7→ ((uε + iε)(x, f(x))− uε(x, f(x))))ε ∈ N (R),

(x 7→ ((ϕε + αε)(x)− ϕε(x)))ε ∈ N (R),
(
x 7→

((
∂(uε + iε)

∂y

)
(x, f(x))− ∂uε

∂y
(x, f(x))

))

ε

∈ N (R),

(x 7→ ((ψε + βε)(x)− ψε(x)))ε ∈ N (R),

(x 7→ (jε(x)− iε(x, f(x))))ε ∈ N (R),

this boils down to

(x 7→ (uε(x, f(x))− ϕε(x)))ε ∈ N (R),
(
x 7→

(
∂uε
∂y

(x, f(x))− ψε(x)

))

ε

∈ N (R).

To sum up, (PG) has a meaning if, and only if,




(
∂2uε
∂x∂y

− F (·, ·, uε)
)

ε

∈ N (R2),

(x 7→ (uε(x, f(x))− ϕε(x)))ε ∈ N (R),(
x 7→

(
∂uε
∂y

(x, f(x))− ψε(x)

))

ε

∈ N (R).

So, if for every ε, uε is a solution to P∞(ϕε, ψε) and if (uε)ε ∈ X (R2) then the relations

above are all the more true and [uε] is a solution to (PG).

4.2. Existence and uniqueness of solutions

Theorem 37. Suppose that A(R2) is stable under F and A(R), A(R2) are built on the

same ring C = A/I of generalized constants. Suppose that the data of problem (PG) satisfy
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the conditions ϕ, ψ ∈ A(R), f ∈ C∞(R). Then problem (PG) has a unique solution in

A(R2).

Proof. Let uε be the solution to P∞(ϕε, ψε). According to the previous result, it is

enough to prove (uε)ε ∈ X (R2); then u = [uε] will be a solution to (PG). We will prove

that

∀K b R2, ∀l ∈ N, (PK,l(uε))ε ∈ A+.

Proceeding by induction, we first show that

∀K b R2, (PK,(0,0)(uε))ε = (‖uε‖∞,K)ε ∈ A+,

that is, the 0th order estimate is satisfied. Put

u0,ε(x, y) = χε(y)− χε(f(x)) + ϕε(x)

where χε indicates a primitive of ψε ◦ f−1. According to Proposition 5, for each K b R2

there exists Kλ b R2 with K ⊂ Kλ such that

‖uε‖∞,K ≤ ‖uε‖∞,Kλ ≤ ‖u0,ε‖∞,Kλ +
Φλ,ε
mλ

exp(2λmλ(f(λ)− f(−λ))).

We have (‖u0,ε‖∞,Kλ)ε ∈ A because [ϕε] and [ψε] are elements of A(R). The constant

mλ = sup
(x,y)∈Kλ;t∈R

∣∣∣∣
∂F

∂z
(x, y, t)

∣∣∣∣

depends only on F , Kλ, and the constant

c(Kλ) =
1

mλ
exp(2λmλ(f(λ)− f(−λ)))

depends only on F , f , Kλ. We have

Φλ,ε = ‖F (·, ·, 0)‖∞,Kλ +mλ‖u0,ε‖∞,Kλ
so

c(Kλ)Φλ,ε =
Φλ,ε
mλ

exp[2λmλ(f(λ)− f(−λ))]

= c(Kλ)‖F (·, ·, 0)‖∞,Kλ + exp(2λmλ(f(λ)− f(−λ)))‖u0,ε‖∞,Kλ .
Moreover, the constant

c1(Kλ) = c(Kλ)‖F (·, ·, 0)‖∞,Kλ
depends only on F , Kλ and c2(Kλ) = exp(2λmλ(f(λ)−f(−λ))) depends entirely on Kλ,

F , f . Consequently,

‖uε‖∞,K ≤ ‖uε‖∞,Kλ ≤ (1 + c2(Kλ))‖u0,ε‖∞,Kλ + c1(Kλ).

Since (‖u0,ε‖∞,Kλ)ε ∈ A, we have

((1 + c2(Kλ))‖u0,ε‖∞,Kλ)ε ∈ A
(if (rε)ε ∈ A then (crε)ε ∈ A) and as c1(Kλ) is a constant ((1)ε ∈ A), we deduce that

((1 + c2(Kλ))‖u0,ε‖∞,Kλ + c1(Kλ))ε ∈ A.
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A being stable, we have (‖uε‖∞,Kλ)ε ∈ A+ and so (‖uε‖∞,K)ε ∈ A+, that is, (PK,0(uε))ε
∈ A+. Let us show that (PK,1(uε))ε ∈ A+. We have

∂uε
∂x

(x, y) =
∂u0,ε

∂x
(x, y) +

y�

f(x)

F (x, η, uε(x, η)) dη,

hence

PK,(1,0)(uε) ≤ sup
K

∣∣∣∣
∂u0,ε

∂x
(x, y)

∣∣∣∣+ (f(λ)− f(−λ)) sup
Kλ

|F (x, η, uε(x, η))|.

A(R2) being stable under F , there exists C > 0 such that

PKλ,(0,0)(F (·, ·, uε)) ≤ PKλ,0(F (·, ·, uε)) ≤ C.
We have

(‖(∂/∂x)u0,ε‖∞,K)ε ∈ A+

because [ϕε] and [ψε] are elements of A(R). So

PK,(1,0)(uε) ≤ ‖(∂/∂x)u0,ε‖∞,K + C(f(λ)− f(−λ)).

A being stable, we get (PK,(1,0)(uε))ε ∈ A+. We have

∂uε
∂y

(x, y) =
∂u0,ε

∂y
(x, y)−

f−1(y)�

x

F (ξ, y, uε(ξ, y)) dξ,

so

PK,(0,1)(uε) ≤ sup
K

∣∣∣∣
∂u0,ε

∂y
(x, y)

∣∣∣∣+ 2λ sup
Kλ

|F (x, η, uε(x, η))|.

We have

(‖(∂/∂y)u0,ε‖∞,K)ε ∈ A+

because [ψε] is element of A(R); hence

PK,(0,1)(uε) ≤ ‖(∂/∂y)u0,ε‖∞,K + C2λ

and so, as previously,

(‖(∂/∂y)uε‖∞,Kε)ε ∈ A+.

Now we proceed by induction. Suppose that (PK,l(uε))ε ∈ A+ for every l ≤ n, and let

us show that this implies (PK,n+1(uε))ε ∈ A+. We have PK,n+1 = max(PK,n, P1,n, P2,n,

P3,n, P4,n) with

P1,n = PK,(n+1,0), P2,n = PK,(0,n+1),

P3,n = sup
α+β=n;β≥1

PK,(α+1,β), P4,n = sup
α+β=n;α≥1

PK,(α,β+1).

First let us show that (P1,n(uε))ε, (P2,n(uε))ε ∈ A+ for every n ∈ N. We have by

successive derivations, for n ≥ 1,

∂n+1uε
∂xn+1

(x, y) =
∂n+1u0,ε

∂xn+1
(x, y)

−
n−1∑

j=0

Cjnf
(n−j)(x)

∂j

∂xj
F (x, f(x), ϕε(x)) +

y�

f(x)

∂n

∂xn
F (x, η, uε(x, η)) dη.
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As K ⊂ Kλ, we can write

sup
(x,y)∈K

∣∣∣∣
∂n+1uε
∂xn+1

(x, y)

∣∣∣∣

≤
∥∥∥∥
∂n+1u0,ε

∂xn+1

∥∥∥∥
∞,K

+ sup
x∈[−λ,λ]

n−1∑

j=0

Cjn|f (n−j)(x)|
∣∣∣∣
∂j

∂xj
F (x, f(x), ϕε(x))

∣∣∣∣

+ (f(λ)− f(−λ)) sup
(x,y)∈K

∣∣∣∣
∂n

∂xn
F (x, y, uε(x, y))

∣∣∣∣.

We have

sup
(x,y)∈K

∣∣∣∣
∂n

∂xn
F (x, y, uε(x, y))

∣∣∣∣ = PK,(n,0)(F (·, ·, uε)) ≤ PK,n(F (·, ·, uε)),

and

sup
x∈[−λ,λ]

∣∣∣∣
∂j

∂xj
F (x, f(x), ϕε(x))

∣∣∣∣ ≤ PK,(j,0)(F (·, ·, uε))

≤ PK,(n,0)(F (·, ·, uε)) ≤ PK,n(F (·, ·, uε)),

moreover

(‖(∂n+1/∂xn+1)u0,ε‖∞,K)ε ∈ A+.

According to the stability hypothesis, a simple calculation shows that, for every K b R2,

(PK,(n+1,0)(uε))ε ∈ A+.

Let us show that (P2,n(uε))ε ∈ A+ for every n ∈ N. We have by successive derivations,

for n ≥ 1,

∂n+1uε
∂yn+1

(x, y) =
∂n+1u0,ε

∂yn+1
(x, y)−

f−1(y)�

x

∂n

∂yn
F (ξ, y, uε(ξ, y)) dξ

−
n−1∑

j=0

Cjn(f−1)(n−j)(y)
∂j

∂yj
F (f−1(y), y, ϕε(f

−1(y))).

As K ⊂ Kλ, we can write

sup
(x,y)∈K

∣∣∣∣
∂n+1uε
∂yn+1

(x, y)

∣∣∣∣

≤
∥∥∥∥
∂n+1u0,ε

∂yn+1

∥∥∥∥
∞,K

+ 2λ sup
(x,y)∈K

∣∣∣∣
∂n

∂yn
F (x, y, uε(x, y))

∣∣∣∣

+ sup
y∈[f(−λ),f(λ)]

n−1∑

j=0

Cjn|(f−1)(n−j)(y)|
∣∣∣∣
∂j

∂yj
F (f−1(y), y, ϕε(f

−1(y)))

∣∣∣∣.

We have

sup
(x,y)∈K

∣∣∣∣
∂n

∂yn
F (x, y, uε(x, y))

∣∣∣∣ = PK,(0,n)(F (·, ·, uε)) ≤ PK,n(F (·, ·, uε))
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and

sup
y∈[f(−λ),f(λ)]

∣∣∣∣
∂j

∂yj
F (f−1(y), y, ϕε(f

−1(y)))

∣∣∣∣ ≤ sup
(x,y)∈K

∣∣∣∣
∂i

∂yi
F (x, y, uε(x, y))

∣∣∣∣

≤ PK,i(F (·, ·, uε)) ≤ PK,n(F (·, ·, uε)).
According to the stability hypothesis, a simple calculation shows that, for every K b R2

and n ∈ N, (PK,(0,n+1)(uε))ε ∈ A+. For α+ β = n and β ≥ 1, we now have

PK,(α+1,β)(uε) = sup
(x,y)∈K

|D(α+1,β)uε(x, y)| = sup
(x,y)∈K

|D(α,β−1)D(1,1)uε(x, y)|

= sup
(x,y)∈K

|D(α,β−1)F (x, y, uε(x, y))| = PK,(α,β−1)(F (·, ·, uε))

≤ PK,n−1(F (·, ·, uε)) ≤ PK,n(F (·, ·, uε)).
So we finally have

P3,n(uε) = sup
α+β=n;β≥1

PK,(α+1,β)(uε) ≤ PK,n(F (·, ·, uε))

and the stability hypothesis ensures that (P3,n(uε))ε ∈ A+. In the same way, for α+β = n

and α ≥ 1, we have

PK,(α,β+1)(uε) = sup
(x,y)∈K

|D(α,β+1)uε(x, y)| = sup
(x,y)∈K

|D(α−1,β)D(1,1)uε(x, y)|

= sup
(x,y)∈K

|D(α−1,β)F (x, y, uε(x, y))| = PK,(α−1,β)(F (·, ·, uε))

≤ PK,n−1(F (·, ·, uε)) ≤ PK,n(F (·, ·, uε)).
So we have

P4,n(uε) = sup
α+β=n;α≥1

PK,(α,β+1)(uε) ≤ PK,n(F (·, ·, uε))

and the stability hypothesis ensures that (P4,n(uε))ε ∈ A+. Finally, we clearly have

(PK,n+1(uε))ε ∈ A+.

Let us show that u is the unique solution to (PG). Let v = [vε] be another solution

to (PG). There are (iε)ε ∈ N (R2) and (αε)ε, (βε)ε ∈ N (R), such that




∂2vε
∂x∂y

(x, y) = F (x, y, vε(x, y)) + iε(x, y),

vε(x, f(x)) = ϕε(x) + αε(x),
∂vε
∂y

(x, f(x)) = ψε(x) + βε(x).

The uniqueness of the solution to (PG) will be a consequence of (vε − uε)ε ∈ N (R2). It

is easy to see that (
(x, y) 7→

� �

D(x,y,f)

iε(ξ, η) dξ dη
)
ε
∈ N (R2).

So there is (jε)ε ∈ N (R2) such that

vε(x, y) = v0,ε(x, y)−
���

D(x,y,f)

F (ξ, η, vε(ξ, η)) dξ dη + jε(x, y),
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with v0,ε(x, y) = u0,ε(x, y) + θε(x, y), where θε(x, y) = Bε(y)−Bε(f(x)) + αε(x) and Bε
is a primitive of βε ◦ f−1. So (θε)ε belongs to N (R2). Hence there is (σε)ε ∈ N (R2) such

that

vε(x, y) = u0,ε(x, y) + σε(x, y)−
���

D(x,y,f)

F (ξ, η, vε(ξ, η)) dξ dη.

Let us put wε = vε − uε and show that (wε)ε ∈ N (R2). We have to prove that

∀K b R2, ∀n ∈ N, (PK,n(wε))ε ∈ I+
A .

We proceed by induction showing first that (PK,1(wε))ε ∈ IA. We have

wε(x, y) =
���

D(x,y,f)

(−F (ξ, η, vε(ξ, η)) + F (ξ, η, uε(ξ, η))) dξ dη + σε(x, y),

but

F (ξ, η, vε(ξ, η))− F (ξ, η, uε(ξ, η))

= (vε(ξ, η)− uε(ξ, η))

( 1�

0

∂F

∂z
(ξ, η, uε(ξ, η) + θ(vε(ξ, η)− uε(ξ, η))) dθ

)
,

so

wε(x, y) = −
� �

D(x,y,f)

wε(ξ, η)

( 1�

0

∂F

∂z
(ξ, η, uε(ξ, η) + θ(wε(ξ, η))) dθ

)
dξ dη + σε(x, y).

Let (x, y) ∈ Kλ. Since D(x, y, f) ⊂ Kλ, if y ≥ f(x), we have

|wε(x, y)| ≤ mλ

f−1(y)�

x

y�

f(ξ)

|wε(ξ, η)| dξ dη + ‖σε‖∞,Kλ

≤ mλ

+λ�

−λ

y�

f(x)

|wε(ξ, η)| dξ dη + ‖σε‖∞,Kλ .

Put eε(y) = supξ∈[−λ,λ] |wε(ξ, y)|. Then

|wε(x, y)| ≤ mλ2λ

y�

f(−λ)

eε(η) dη + ‖σε‖∞,kλ .

We deduce that

∀y ∈ [f(−λ), f(λ)], if y ≥ f(x), eε(y) ≤ mλ2λ

y�

f(−λ)

eε(η) dη + ‖σε‖∞,Kλ .

Thus, according to Gronwall’s lemma,

∀y ∈ [f(−λ), f(λ)], if y ≥ f(x), eε(y) ≤ exp
( y�

f(−λ)

mλ2λ dη
)
‖σε‖∞,Kλ .
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We obtain the same result for y ≤ f(x). Hence, for every y ∈ [f(−λ), f(λ)], we get

eε(y) ≤ exp(mλ2λ(y − f(−λ)))‖σε‖∞,Kλ
≤ exp(mλ(2λ)(f(λ)− f(−λ)))‖σε‖∞,Kλ ,

and consequently

‖wε‖∞,Kλ ≤ exp(mλ2λ(f(λ)− f(−λ)))‖σε‖∞,Kλ .
Since (σε)ε ∈ N (R2) we have (‖σε‖∞,Kλ)ε ∈ IA. Moreover exp(mλ2λ(f(λ)− f(−λ))) is

a constant, so

(‖wε‖∞,Kλ)ε ∈ IA.
This implies the 0th order estimate.

We now proceed by induction. Suppose that (PK,l(wε))ε ∈ I+
A for every l ≤ n and let

us show that (PK,n+1(wε))ε ∈ I+
A . First we show hat (P1,n(wε))ε ∈ I+

A for every n ∈ N.

We have

∂n+1wε
∂xn+1

(x, y) =
∂n+1σε
∂xn+1

(x, y) + δε(x)

+

y�

f(x)

∂n

∂xn
(F (x, η, vε(x, η))− F (x, η, uε(x, η))) dη,

with

δε(x) =
( n−1∑

j=0

Cjnf
(n−j)(x)

)
αε(x), (δε)ε ∈ N (R).

Hence

PK,(n+1,0)(wε) ≤ PK,(n+1,0)(σε) + sup
x∈[−λ,λ]

|δε(x)|

+ (f(λ)− f(−λ)) sup
(x,y)∈K

∣∣∣∣
∂n

∂xn
(F (x, y, vε(x, y))− F (x, y, uε(x, y)))

∣∣∣∣.

We have

sup
(x,y)∈K

∣∣∣∣
∂n

∂xn
(F (x, η, vε(x, η))− F (x, η, uε(x, η)))

∣∣∣∣ = PK,(n,0)(F (·, ·, vε)− F (·, ·, uε))

≤ PK,n(F (·, ·, vε)− F (·, ·, uε)).
According to the stability hypothesis, (PK,(n+1,0)(wε))ε ∈ I+

A for every K b R2. Let us

show that (P2,n(wε))ε ∈ I+
A for every n ∈ N. We have

∂n+1wε
∂yn+1

(x, y) =
∂n+1σε
∂yn+1

(x, y) + µε(y)

−
f−1(y)�

x

(
∂n

∂yn
F (ξ, y, vε(ξ, y))− ∂n

∂yn
F (ξ, y, uε(ξ, y))

)
dξ,

with

µε(y) =
(n−1∑

j=0

Cjn(f−1)(n−j)(y)
)
αε(f

−1(y)), (µε)ε ∈ N (R).
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Hence

PK,(0,n+1)(wε) ≤ PK,(0,n+1)(σε) + sup
y∈[f(−λ),f(λ)]

|µε(y)|

+ 2λ sup
(x,y)∈K

∣∣∣∣
∂n

∂yn
F (x, y, vε(x, y))− ∂n

∂yn
F (x, y, uε(x, y))

∣∣∣∣.

We have

sup
(x,y)∈K

∣∣∣∣
∂n

∂yn
F (x, y, vε(x, y))− ∂n

∂yn
F (x, y, uε(x, y))

∣∣∣∣ = PK,(0,n)(F (·, ·, vε)− F (·, ·, uε))

≤ PK,(0,n)(F (·, ·, vε)− F (·, ·, uε)).
According to the stability hypothesis, (PK,(0,n+1)(wε))ε ∈ IA for every K b R2. For

α+ β = n and β ≥ 1, we have

PK,(α+1,β)(wε) = PK,(α,β−1)(F (·, ·, vε)− F (·, ·, uε))
≤ PK,n−1(F (·, ·, vε)− F (·, ·, uε)).

Finally, we have

P3,n(wε) = sup
α+β=n;β≥1

PK,(α+1,β)(wε) ≤ PK,n−1(F (·, ·, vε)− F (·, ·, uε))

and the stability hypothesis ensures that (P3,n(wε))ε ∈ I+
A . In the same way, for α+β = n

and α ≥ 1, we have

PK,(α,β+1)(wε) = PK,(α−1,β)(F (·, ·, vε)− F (·, ·, uε))
≤ PK,n−1(F (·, ·, vε)− F (·, ·, uε)).

So we finally have

P4,n(wε) = sup
α+β=n;α≥1

PK,(α,β+1)(wε) ≤ PK,n−1(F (·, ·, vε)− F (·, ·, uε))

and the stability hypothesis ensures that (P4,n(wε))ε ∈ I+
A . So (PK,l(wε))ε ∈ I+

A for every

l ≤ n+ 1. Thus (wε)ε ∈ N (R2), and consequently u is the unique solution to (PG).

4.3. Parametric singular spectrum of the solution. We study the relationship

between the D′-parametric singular spectrum of the solution u and the D′-parametric

singular spectrum of u0.

Theorem 38. Put u0 = [u0,ε] with u0,ε(x, y) = χε(y) − χε(f(x)) + ϕε(x) where χε
indicates a primitive of ψε ◦ f−1, and suppose that

(4.4) ∀K b R2, MF (K) = sup
(x,y)∈K;z∈R

|F (x, y, z)| <∞.

Then the restriction of the D′-parametric singular spectrum of the solution u to the

Cauchy problem (PG), to the parametric singular support of u0 is included in the re-

striction of the D′-parametric singular spectrum of u0 to the parametric singular support

of u0. In other words , over the singular support of u0, there is no increase in the distri-

butional singularities of u in comparison with those of u0.
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Proof. Let (x0, y0) = X ∈ SAD′Au0 and r ∈ ND′,X(u0). From the definitions, it follows

that ΣD′,X(u0) 6= ∅, so that ND′,X(u0) ⊂ ]0,∞[, which implies r > 0. Next let us show

that r ∈ ND′,X(u). From the definition of ND′,X(u0), there exists a neighborhood VX of

X such that

lim
ε→0

εruε|VX ∈ D′(VX).

Let g ∈ D(VX). So, there exists some distribution T ∈ D′(VX) such that

lim
ε→0

���

VX

εru0,ε(x, y)g(x, y) dx dy = T (g).

Let us show that
���

VX

εr[uε(x, y)− u0,ε(x, y)]g(x, y) dx dy → 0 as ε→ 0.

Suppose moreover that y ≥ f(x). As

uε(x, y)− u0,ε(x, y) = −
� �

D(x,y,f)

F (ξ, η, uε(ξ, η)) dξ dη

and since (with the above notations)
∣∣∣
���

VX

( ���

D(x,y,f)

F (ξ, η, uε(ξ, η)) dξ dη
)
g(x, y) dx dy

∣∣∣

≤MF (supp g)
∣∣∣

���

supp g

( ���

D(x,y,f)

dξ dη
)
g(x, y) dx dy

∣∣∣

≤MF (supp g)
∣∣∣

���

supp g

(A(x, y))g(x, y) dx dy
∣∣∣

≤ 2λMF (supp g)
� �

supp g

|y| |g(x, y)| dx dy <∞,

we have

lim sup
ε→0

∣∣∣
���

VX

εr[uε(x, y)− u0,ε(x, y)]g(x, y) dx dy
∣∣∣

≤ lim sup
ε→0

εr
∣∣∣
���

VX

[ ���

D(x,y,f)

F (ξ, η, uε(ξ, η)) dξ dη
]
g(x, y) dx dy

∣∣∣

≤ lim sup
ε→0

εr
[
2λ(MF (supp g))

� �

supp g

|y| |g(x, y)| dx dy
]

= 0,

because r 6= 0. Hence

lim
ε→0

���

VX

εruε(x, y)g(x, y) dx dy = lim
ε→0

���

VX

εru0,ε(x, y)g(x, y) dx dy = T (g).

It follows that

lim
ε→0

εruε|VX = lim
ε→0

εru0,ε|VX ∈ D
′(VX).
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So r ∈ ND′,X(u), which proves the inclusion ND′,X(u0) ⊂ ND′,X(u), and consequently

ΣD′,X(u) ⊂ ΣD′,X(u0). Therefore

SεS
A
D′Au|SAD′Au0

⊂ SεSAD′Au0|SAD′Au0
.

Example 39. Let

g ∈ D(R), g ≥ 0,
�

R
g(x) dx = 1 and f(x) = ax, a > 0.

Let us consider the following cases:

• χε(y) = ε−1g(yε−1) and ϕε(x) = ε−1g(xε−1), so

χε(f(x)) = ε−1g(f(x)ε−1) = ε−1g(axε−1).

Then

ND′,X(u0) = [1,∞[ and SεS
A
D′Au ⊂ R

2 × [0, 1[.

• χε(x) = ε−1g(xε−1) and ϕε(x) = ε−2g(xε−1) = ε−1[ε−1g(xε−1)]. Then

ND′,X(u0) = [2,∞[ and SεS
A
D′Au ⊂ R

2 × [0, 2[.

• χε(x) = g(xε−1) and ϕε(x) = g(xε−1) = ε(ε−1g(xε−1)). Then

ND′,X(u0) = [0,∞[.

As SεS
A
D′A
u ⊂ R2 × R+, we have

SεS
A
D′Au ⊂ R

2 × ∅.

4.4. Qualitative study of the solution. Case F = 0. We search for a generalized

solution u to the Cauchy problem (PG) where F = 0, considering as data the curve γ of

equation y = f(x). With the above notations, considering P∞(ϕε, ψε), we have

uε(x, y) = χε(y)− χε(f(x)) + ϕε(x).

Example 40. f(x) = ax (a > 0), ϕ ∼ S, ψ = Ψ ′ and Ψ ∼ T ; S ∈ D′(R), T ∈ D′(R). Let

g ∈ D(R) be an even function satisfying
�
R g(ξ) dξ = 1. Put gε(x) = ε−1g(xε−1). Then

(gε)ε → δ in the distributional sense. So g = [gε] is associated to δ. Choosing

ϕ = [gε ∗ S] and Ψ = [gε ∗ T ]

we have the associations ϕ ∼ S, Ψ ∼ T , since

lim
ε→0
D′(R)

(gε ∗ S)ε = S and lim
ε→0
D′(R)

(gε ∗ T )ε = T.

The solution to P∞(ϕε, ψε) is defined by

uε(x, y) = χε(y)− χε(f(x)) + ϕε(x)

with

χε(y) =

y�

0

ψε(f
−1(η)) dη =

y�

0

ψε(ηa
−1) dη = a

ya−1�

0

ψε(t) dt = a(Ψε(ya
−1)− Ψε(0))

where Ψε is a primitive of ψε. So
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uε(x, y) = aΨε(ya
−1)− aΨε(x) + ϕε(x).

We have here

uε(x, y) = a(gε ∗ T )(ya−1)− a(gε ∗ T )(x) + (gε ∗ S)(x).

Let us estimate the function y 7→ (gε ∗ T )(ya−1) on the test function h ∈ D(R). By

putting H(z) = h(az), we can write
�
(gε ∗ T )(ya−1)h(y) dy = a

�
(gε ∗ T )(z)H(z) dz.

Then define T̃ ∈ D′(R) by

〈T̃ , h〉 = 〈aT, [z 7→ h(az)]〉 = 〈aT,H〉.
Hence

lim
ε→0

�
(gε ∗ T )(ya−1)h(y)dy = lim

ε→0
a
�
(gε ∗ T )(z)H(z)dz = 〈aT,H〉 = 〈T̃ , h〉.

Thus

lim
ε→0
D′(R)

[y 7→ (gε ∗ T )(ya−1)] = T̃.

Then we can write [uε] = [wε,1] + [wε,2] + [wε,3], with

[wε,1] ∼ a(1x ⊗ T̃y), [wε,2] ∼ −a(Tx ⊗ 1y), [wε,3] ∼ Sx ⊗ 1y

and so

u ∼ a(1x ⊗ T̃y)− a(Tx ⊗ 1y) + Sx ⊗ 1y.

Remark 41. We can remark that

〈δ̃, h〉 = 〈aδ, [z 7→ h(az)]〉 = ah(0) = a〈δ, h〉,
so that δ̃ = aδ.

Example 42. f(x) = ax (a > 0), ϕ ∼ δ, ψ = Ψ ′, with Ψ ∼ δ. As δ̃ = aδ, we have

[uε] = [wε,1] + [wε,2] + [wε,3]

with

[wε,1] ∼ a2(1x ⊗ δy), [wε,2] ∼ −a(δx ⊗ 1y), [wε,3] ∼ δx ⊗ 1y,

hence

u ∼ a2(1x ⊗ δy)− a(δx ⊗ 1y) + δx ⊗ 1y.

Example 43. f(x) = ax (a > 0), ϕ ∼ δ, ψ ∼ δ. We can choose Ψε such that Ψε(0) = 2−1

in such a way that

lim
ε→0
D′(R)

Ψε = Y, lim
ε→0
D′(R)

(y 7→ Ψε(ya
−1)) = Y.

Then

[uε] = [wε,1] + [wε,2] + [wε,3]

with

[wε,1] ∼ a(1x ⊗ Yy), [wε,2] ∼ −a(Yx ⊗ 1y), [wε,3] ∼ δx ⊗ 1y.
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5. Generalized Goursat problem

5.1. Formulation of the problem. We search for a solution u to the Goursat problem

(P ′G)





∂2u

∂x∂y
= F (·, ·, u),

u|(Ox) = ϕ,

u|γ = ψ,

in the algebra of generalized functions A(R2) defined in Section 3. The hypotheses on F

and g are kept. We suppose that

• A(R) and A(R2) are built on the same ring of generalized constants;

• A(R2) is stable under F ;

• For every ε, the problem

P ′∞(ϕε, ψε)





∂2uε
∂x∂y

(x, y) = F (x, y, uε(x, y)),

uε(x, 0)) = ϕε(x),

uε(g(y), y) = ψε(y),

has a solution uε ∈ C∞(R2).

Giving a meaning to (P ′G) is first giving a meaning to

∂2u

∂x∂y
= F (·, ·, u),(5.1)

u|(Ox) = ϕ ∈ A(R),(5.2)

u|γ = ψ ∈ A(R),(5.3)

when u ∈ A(R2) and γ is the smooth submanifold of R2 defined by x = g(y). Giving

a meaning to (5.1), under the hypothesis that A(R2) is stable by F , amounts to saying

that for a representative (uε)ε of u we must have, for every (iε)ε, (jε)ε ∈ N (R2),
(
∂2(uε + iε)

∂x∂y
− F (·, ·, uε) + jε

)

ε

∈ N (R2).

As (
∂2(uε + iε)

∂x∂y
− ∂2uε
∂x∂y

)

ε

∈ N (R2), (F (·, ·, uε) + jε − F (·, ·, uε))ε ∈ N (R2),

we must verify that (
∂2uε
∂x∂y

− F (·, ·, uε)
)

ε

∈ N (R2).

Giving a meaning to (5.2) and (5.3) amounts to defining u|(Ox) and u|γ . As γ is a smooth

submanifold of R2 that can be represented by a single map (γ : x = g(y)), we can identify

A(γ) and A(R), and so u|γ and u|(Ox), with the elements of A(R) with representatives

(y 7→ uε(g(y), y))ε and (x 7→ uε(x, 0))ε. So (5.2) is equivalent to

(x 7→ ((uε + iε)(x, 0)− (ϕε + αε)(x)))ε ∈ N (R).
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(5.3) is equivalent to

(y 7→ ((uε + iε)(g(y), y)− (ψε + βε)(y)))ε ∈ N (R),

for all (iε)ε ∈ N (R2) and (αε)ε, (βε)ε ∈ N (R). Considering

(x 7→ ((uε + iε)(x, 0)− (uε(x, 0))))ε ∈ N (R),

(x 7→ ((ϕε + αε)(x)− ϕε(x)))ε ∈ N (R),

(y 7→ ((uε + iε)(g(y), y)− uε(g(y), y)))ε ∈ N (R),

(x 7→ ((ψε + βε)(x)− ψε(x)))ε ∈ N (R),

(y 7→ (jε(y)− iε(g(y), y)))ε ∈ N (R)

this boils down to

(x 7→ (uε(x, 0)− ϕε(x)))ε ∈ N (R),

(y 7→ (uε(g(y), y)− ψε(y)))ε ∈ N (R).

To sum up, (P ′G) has a meaning if, and only if,




∂2uε
∂x∂y

− F (·, ·, uε) ∈ N (R2),

(x 7→ (uε(x, 0)− ϕε(x)))ε ∈ N (R),

(y 7→ (uε(g(y), y)− ψε(y)))ε ∈ N (R).

So, if for every ε, uε is a solution to P ′∞(ϕε, ψε) and (uε)ε ∈ X (R2) then the relations

above are all the more true and [uε] is a solution to (P ′G).

5.2. Existence and uniqueness of solutions

Theorem 44. Suppose that A(R2) is stable under F and A(R), A(R2) are built on the

same ring C = A/I of generalized constants. Suppose that the data of problem (P ′G)

satisfy the conditions ϕ, ψ ∈ A(R), g ∈ C∞(R), ϕ = [ϕε], ψ = [ψε], ψε(0) = ϕε(g(0)).

Then problem (P ′G) has a unique solution in A(R2).

Proof. Suppose g(y) ≤ x. Let uε be the solution to P ′∞(ϕε, ψε). According to the

previous result, it is enough to prove (uε)ε ∈ X (R2); then u = [uε] will be a solution to

(P ′G). We will prove that

∀K b R2, ∀l ∈ N, (PK,l(uε))ε ∈ A+,

Proceeding by induction we first show

∀K b R2, (PK,0(uε))ε = (‖uε‖∞,K)ε ∈ A+,

that is, the 0th order estimate is satisfied. According to Proposition 10, for every K b R2

there exists Kλ b R2 with K ⊂ Kλ such that

‖uε‖∞,K ≤ ‖uε‖∞,Kλ ≤ ‖u0,ε‖∞,Kλ +
Φλ,ε
mλ

exp(2λ′mλ(2λ)).

Hence (‖u0,ε‖∞,Kλ)ε ∈ A because [ϕε] and [ψε] are elements of A(R). The constant

mλ = sup
(x,y)∈Kλ;t∈R

∣∣∣∣
∂F

∂z
(x, y, t)

∣∣∣∣
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depends only on F , Kλ, and the constant

c(Kλ) =
1

mλ
exp(4λ′mλλ)

depends only on F , g, Kλ. We have

Φλ,ε = ‖F (·, ·, 0)‖∞,Kλ +mλ‖u0,ε‖∞,Kλ
so

Φλ,ε
mλ

exp(4λ′mλλ) = c(Kλ)Φλ,ε

= c(Kλ)‖F (·, ·, 0)‖∞,Kλ + exp(4λ′mλλ)‖u0,ε‖∞,Kλ .
Moreover, the constant

c1(Kλ) = c(Kλ)‖F (·, ·, 0)‖∞,Kλ
depends only on F , Kλ, and

c2(Kλ) = exp(4λ′mλλ)

depends only on Kλ, F , g. Consequently,

‖uε‖∞,K ≤ ‖uε‖∞,Kλ ≤ ‖u0,ε‖∞,Kλ + c1(Kλ) + c2(Kλ)‖u0,ε‖∞,Kλ ,
so

‖uε‖∞,K ≤ ‖uε‖∞,Kλ ≤ (1 + c2(Kλ))‖u0,ε‖∞,Kλ + c1(Kλ).

We have (‖u0,ε‖∞,Kλ)ε ∈ A, so

((1 + c2(Kλ))‖u0,ε‖∞,Kλ)ε ∈ A
(if (rε)ε ∈ A, then (crε)ε ∈ A), and as c1(Kλ) is a constant (1 ∈ A) we deduce that

((1 + c2(Kλ))‖u0,ε‖∞,Kλ + c1(Kλ))ε ∈ A.
A being stable we have (‖uε‖∞,Kλ)ε ∈ A and so (‖uε‖∞,K)ε ∈ A. Let us show that

(PK,1(uε))ε ∈ A+. We have

∂uε
∂x

(x, y) =
∂u0,ε

∂x
(x, y) +

y�

0

F (x, η, uε(x, η)) dη,

hence

PK,(1,0)(uε) ≤ sup
K

∣∣∣∣
∂u0,ε

∂x
(x, y)

∣∣∣∣+ |y| sup
Kλ

|F (x, η, uε(x, η))|

≤ sup
K

∣∣∣∣
∂u0,ε

∂x
(x, y)

∣∣∣∣+ λ sup
Kλ

|F (x, η, uε(x, η))|.

As A(R2) is stable under F there exists C such that

PKλ,(0,0)(F (·, ·, uε)) ≤ CPKλ,(0,0)(uε).

We have

(‖(∂/∂x)u0,ε‖∞,K)ε = (ϕ′ε(x))ε ∈ A
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because [ϕε] is an element of A(R). So

PK,(1,0)(uε) ≤
∥∥∥∥
∂u0,ε

∂x

∥∥∥∥
∞,K

+ CλPKλ,(0,0)(uε).

As A is stable (PK,(1,0)(uε))ε ∈ A. We have

∂uε
∂y

(x, y) =
∂u0,ε

∂y
(x, y) +

x�

g(y)

F (ξ, y, uε(ξ, y)) dξ − g′(y)

y�

0

F (g(y), η, u(g(y), η)) dη,

PK,(0,1)(uε) ≤ sup
K

∣∣∣∣
∂u0,ε

∂y
(x, y)

∣∣∣∣+ (x− g(y) + |y|g′(y)) sup
Kλ

|F (x, η, uε(x, η))|

≤ sup
K

∣∣∣∣
∂u0,ε

∂y
(x, y)

∣∣∣∣+ (g(λ)− g(−λ) + λg′(y)) sup
Kλ

|F (x, η, uε(x, η))|.

A(R2) being stable under F , there exists C such that

PKλ,(0,0)(F (·, ·, uε)) ≤ CPKλ,(0,0)(uε).

We have

(‖(∂/∂y)u0,ε‖∞,K)ε ∈ A+,

because [ψε] and [ϕε] are elements of A(R). Hence

PK,(0,1)(uε) ≤
∥∥∥∥
∂u0,ε

∂y

∥∥∥∥
∞,K

+ C(g(λ)− g(−λ) + λg′(y))PKλ,(0,0)(uε)

and so, as previously,

(‖(∂/∂y)uε‖∞,K)ε ∈ A+.

Now we proceed by induction. Suppose that (PK,l(uε))ε ∈ A+ for every l < n and let

us show that (PK,l+1(uε))ε ∈ A+. We use the notations from Theorem 37. Let us show

first that

(P1,n(uε))ε, (P2,n(uε))ε ∈ A+

for every n ∈ N. We have by successive derivations, for n ≥ 1,

∂n+1uε
∂xn+1

(x, y) =
∂n+1u0,ε

∂xn+1
(x, y) +

y�

0

∂n

∂xn
F (x, η, uε(x, η)) dη

with
∂n+1u0,ε

∂xn+1
(x, y) = ϕ(n+1)(x).

As we have taken K ⊂ Kλ, we can write

sup
(x,y)∈K

∣∣∣∣
∂n+1uε
∂xn+1

(x, y)

∣∣∣∣ ≤
∥∥∥∥
∂n+1u0,ε

∂xn+1

∥∥∥∥
∞,K

+ λ sup
(x,y)∈K

∣∣∣∣
∂n

∂xn
F (x, y, uε(x, y))

∣∣∣∣.

We have

sup
(x,y)∈K

∣∣∣∣
∂n

∂xn
F (x, y, uε(x, y))

∣∣∣∣ = PK,(n,0)(F (·, ·, uε)) ≤ PK,n(F (·, ·, uε)),

moreover

(‖(∂n+1/∂xn+1)u0,ε‖∞,K)ε ∈ A+.
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According to the stability hypothesis, a simple calculation shows that (PK,n(F (·, ·, uε)))ε
∈ A+ for every K b R2. Let us show that (P2,n(uε))ε ∈ A+ for every n ∈ N. We have

by successive derivations, for n ≥ 1,

∂n+1uε
∂yn+1

(x, y) =
∂n+1u0,ε

∂yn+1
(x, y)

−
n−1∑

j=0

Cjng
(n−j)(y)

∂j

∂yj
F (g(y), y, ψε(y))−

g(y)�

x

∂n

∂yn
F (ξ, y, uε(ξ, y)) dξ

−
n−1∑

j=0

Cj+1
n g(n−j)(y)

∂j

∂yj
F (g(y), y, ψε(y))

− g(n+1)(y)

y�

0

F (g(y), η, uε(g(y), η)) dη.

As we have taken K ⊂ Kλ, we can write

sup
(x,y)∈K

∣∣∣∣
∂n+1uε
∂yn+1

(x, y)

∣∣∣∣ ≤
∥∥∥∥
∂n+1u0,ε

∂yn+1

∥∥∥∥
∞,K

+ (g(λ)− g(λ)) sup
(x,y)∈K

∣∣∣∣
∂n

∂yn
F (x, y, uε(x, y))

∣∣∣∣

+ sup
y∈[−λ,λ]

n−1∑

j=0

Cj+1
n+1|g(n−j)(y)|

∣∣∣∣
∂j

∂yj
F (g(y), y, ψε(y))

∣∣∣∣

+ λg(n+1)(y) sup
(x,y)∈K

|F (x, y, uε(x, y))|.

We have

sup
(x,y)∈K

∣∣∣∣
∂n

∂yn
F (x, y, uε(x, y))

∣∣∣∣ = PK,(0,n)(F (·, ·, uε)) ≤ PK,n(F (·, ·, uε)),

and, as ψε(y) = uε(g(y), y),

sup
y∈[−λ,λ]

∣∣∣∣
∂j

∂yj
F (g(y), y, ψε(y))

∣∣∣∣ ≤ sup
(x,y)∈K

∣∣∣∣
∂i

∂yi
F (x, y, uε(x, y))

∣∣∣∣

≤ PK,i(F (·, ·, uε)) ≤ PK,n(F (·, ·, uε)),

sup
(x,y)∈K

|F (x, y, uε(x, y))| ≤ PK,1(F (·, ·, uε)).

According to the stability hypothesis, a simple calculation shows that, for every K b R2

and n ∈ N, (PK,(0,n+1)(uε))ε ∈ A+. For α+ β = n and β ≥ 1, we now have

PK,(α+1,β)(uε) = sup
(x,y)∈K

|D(α+1,β)uε(x, y)| = sup
(x,y)∈K

|D(α,β−1)D(1,1)uε(x, y)|

= sup
(x,y)∈K

|D(α,β−1)F (x, y, uε(x, y))| = PK,(α,β−1)(F (·, ·, uε))

≤ PK,n−1(F (·, ·, uε)) ≤ PK,n(F (·, ·, uε)).
So we finally have

P3,n(uε) = sup
α+β=n;β≥1

PK,(α+1,β)(uε) ≤ PK,n(F (·, ·, uε))
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and the stability hypothesis ensures that (P3,n(uε))ε ∈ A+. In the same way, for α+β = n

and α ≥ 1, we have

PK,(α,β+1)(uε) = sup
(x,y)∈K

|D(α,β+1)uε(x, y)| = sup
(x,y)∈K

|D(α−1,β)D(1,1)uε(x, y)|

= sup
(x,y)∈K

|D(α−1,β)F (x, y, uε(x, y))| = PK,(α−1,β)(F (·, ·, uε))

≤ PK,n−1(F (·, ·, uε)) ≤ PK,n(F (·, ·, uε)).
So we finally have

P4,n(uε) = sup
α+β=n;α≥1

PK,(α,β+1)(uε) ≤ PK,n(F (·, ·, uε))

and the stability hypothesis ensures that (P4,n(uε))ε ∈ A+. Finally, we clearly have

(PK,n+1(uε))ε ∈ A+. So u = [uε] is a solution to (P ′G). Let us show that u is the unique

solution to (P ′G). Let v = [vε] be another solution to (P ′G). There are (iε)ε ∈ N (R2) and

(αε)ε, (βε)ε ∈ N (R) such that




∂2vε
∂x∂y

(x, y) = F (x, y, vε(x, y)) + iε(x, y),

vε(x, 0) = ϕε(x) + αε(x),
∂vε
∂y

(g(y), y) = ψε(y) + βε(y).

The uniqueness of the solution to (P ′G) will be a consequence of (vε − uε)ε ∈ N (R2). It

is easy to see that ( ���

D(x,y,g)

iε(ξ, η) dξ dη
)
ε
∈ N (R2).

So there is (jε)ε ∈ N (R2) such that

vε(x, y) = v0,ε(x, y) +
���

D(x,y,g)

F (ξ, η, vε(ξ, η)) dξ dη + jε(x, y),

with

v0,ε(x, y) = u0,ε(x, y) + θε(x, y),

where

θε(x, y) = βε(y) + αε(x)− αε(g(y)).

So (θε)ε belongs to N (R2). Thus there is (σε)ε ∈ N (R2) such that

vε(x, y) = u0,ε(x, y) + σε(x, y) +
���

D(x,y,g)

F (ξ, η, vε(ξ, η)) dξ dη.

Let us put wε = vε − uε and show that (wε)ε ∈ N (R2). We have to prove that

∀K b R2, ∀n ∈ N, (PK,n(wε))ε ∈ I+
A .

First we show that (PK,1(wε))ε ∈ IA. We have

wε(x, y) =
���

D(x,y,g)

(F (ξ, η, vε(ξ, η))− F (ξ, η, uε(ξ, η))) dξ dη + σε(x, y);
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but

F (ξ, η, vε(ξ, η))− F (ξ, η, uε(ξ, η))

= (vε(ξ, η)− uε(ξ, η))

( 1�

0

∂F

∂z
(ξ, η, uε(ξ, η) + θ(vε(ξ, η)− uε(ξ, η))) dθ

)
,

so

wε(x, y) =
���

D(x,y,g)

wε(ξ, η)

( 1�

0

∂F

∂z
(ξ, η, uε(ξ, η) + θ(wε(ξ, η))) dθ

)
dξ dη + σε(x, y).

Let (x, y) ∈ Kλ. Since D(x, y, g) ⊂ Kλ, if g(y) ≤ x, we have

|wε(x, y)| ≤ mλ

x�

g(y)

y�

0

|wε(ξ, η)| dξ dη + ‖σε‖∞,Kλ

≤ mλ

+g(λ)�

−g(λ)

y�

0

|wε(ξ, η)| dξ dη + ‖σε‖∞,Kλ .

Put eε(y) = supξ∈[g(−λ),g(λ)] |wε(ξ, y)|. Then

|wε(x, y)| ≤ mλ2λ′
y�

0

eε(η) dη + ‖σε‖∞,kλ .

We deduce that, for every y ∈ [0, λ], if g(y) ≤ x,

eε(y) ≤ mλ2λ′
y�

0

eε(η) dη + ‖σε‖∞,Kλ .

Thus according to Gronwall’s lemma, for every y ∈ [0, λ], if g(y) ≤ x,

eε(y) ≤ exp
( y�

0

mλ2λ′ dη
)
‖σε‖∞,Kλ .

For every y ∈ [0, λ], if g(y) ≤ x,

eε(y) ≤ exp(mλ2λ′y)‖σε‖∞,Kλ ≤ exp(mλ2λ′λ)‖σε‖∞,Kλ .
We obtain the same result in the other cases, hence

∀y ∈ [−λ, λ], eε(y) ≤ ‖σε‖∞,Kλ exp(mλ2λ′λ),

and consequently,

‖wε‖∞,Kλ ≤ ‖σε‖∞,Kλ exp(mλ2λ′λ),

Since (σε)ε ∈ N (R2) we have (‖σε‖∞,Kλ)ε ∈ IA. Moreover exp(mλ2λ′λ)‖σε‖∞,Kλ is a

constant, consequently (‖wε‖∞,Kλ)ε ∈ IA. This implies the 0th order estimate. Suppose

that (PK,l(wε))ε ∈ I+
A for every l ≤ n, and let us show that (PK,n+1(wε))ε ∈ I+

A . First,

let us show that (P1,n(wε))ε ∈ I+
A for every n ∈ N. We have

∂n+1wε
∂xn+1

(x, y) =
∂n+1σε
∂xn+1

(x, y) +

y�

0

∂n

∂xn
(F (x, η, vε(x, η))− F (x, η, uε(x, η))) dη



Generalized solutions to the wave equation 55

so

PK,(n+1,0)(wε) ≤ PK,(n+1,0)(σε)

+ λ sup
(x,y)∈K

∣∣∣∣
∂n

∂xn
(F (x, y, vε(x, y))− F (x, y, uε(x, y)))

∣∣∣∣.

Then

sup
(x,y)∈K

∣∣∣∣
∂n

∂xn
(F (x, y, vε(x, y))− F (x, y, uε(x, y)))

∣∣∣∣ = PK,(n,0)(F (·, ·, vε)− F (·, ·, uε))

≤ PK,n(F (·, ·, vε)− F (·, ·, uε)).
According to the stability hypothesis, (PK,(n+1,0)(wε))ε ∈ I+

A for every K b R2. Let us

show that (P2,n(wε))ε ∈ I+
A for every n ∈ N. We have

∂n+1wε
∂yn+1

(x, y) =
∂n+1σε
∂yn+1

(x, y)−
g(y)�

x

(
∂n

∂yn
F (ξ, y, vε(ξ, y))− ∂n

∂yn
F (ξ, y, uε(ξ, y))

)
dξ

− g(n+1)(y)

y�

0

(F (g(y), η, vε(g(y), η))− F (g(y), η, uε(g(y), η))) dη+ µε(y)

with

µε(y) =
(n−1∑

j=0

Cj+1
n+1g

(n−j)(y)
)
βε(y), (µε)ε ∈ N (R).

Hence

PK,(0,n+1)(wε) ≤ PK,(0,n+1)(σε) + sup
y∈[−λ,λ]

|µε(y)|

+ (g(λ)− g(−λ)) sup
(x,y)∈K

∣∣∣∣
∂n

∂yn
F (x, y, vε(x, y))− ∂n

∂yn
F (x, y, uε(x, y))

∣∣∣∣

+ λg(n+1)(y) sup
(x,y)∈K

|F (x, y, vε(x, y))− F (x, y, uε(x, y))|.

We have

sup
(x,y)∈K

∣∣∣∣
∂n

∂yn
F (x, y, vε(x, y))− ∂n

∂yn
F (x, y, uε(x, y))

∣∣∣∣ = PK,(0,n)(F (·, ·, vε)− F (·, ·, uε))

≤ PK,(0,n)(F (·, ·, vε)− F (·, ·, uε)).
According to the stability hypothesis, (PK,(0,n+1)(wε))ε ∈ IA for every K b R2. For

α+ β = n and β ≥ 1, we have

PK,(α+1,β)(wε) = PK,(α,β−1)(F (·, ·, vε)− F (·, ·, uε))
≤ PK,n−1(F (·, ·, vε)− F (·, ·, uε)).

So we finally have

P3,n(wε) = sup
α+β=n,β≥1

PK,(α+1,β)(wε) ≤ PK,n−1(F (·, ·, vε)− F (·, ·, uε))

and the stability hypothesis ensures that (P3,n(wε))ε ∈ I+
A . For α+β = n and α ≥ 1, we
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now have

PK,(α,β+1)(wε) = PK,(α−1,β)(F (·, ·, vε)− F (·, ·, uε))
≤ PK,n−1(F (·, ·, vε)− F (·, ·, uε)).

So we finally have

P4,n(wε) = sup
α+β=n,α≥1

PK,(α,β+1)(wε) ≤ PK,n−1(F (·, ·, vε)− F (·, ·, uε))

and the hypothesis of stability ensures that (P4,n(wε))ε ∈ I+
A . So for every l ≤ n+ 1, we

have (PK,l(wε))ε ∈ I+
A . Thus (wε)ε ∈ N (R2), and consequently u is the unique solution

to (P ′G).

5.3. A degenerate Goursat problem in (C, E ,P)-algebras. We search for a gen-

eralized solution u to the following Goursat problem with irregular data:

(P ′G)





∂2u

∂x∂y
= F (·, ·, u),

u|(Ox) = ϕ,

u|(Oy) = ψ,

where ϕ and ψ are one-variable generalized functions. The notation F ( . , . , u) extends,

with the above meaning, the expression (x, y) 7→ F (x, y, u(x, y)) to the case where u is a

generalized function of two variables x and y. (We take g = 0.) Suppose that hypothesis

(H ′) is satisfied, A(R2) is stable under F. If the data of problem (P ′G) satisfy ϕ, ψ ∈ A(R),

g(y) = 0, the problem has a unique solution [uε] ∈ A(R2) where

uε(x, y) = u0,ε(x, y) +
� �

D(x,y,0)

F (ξ, η, uε(ξ, η)) dξ dη

and

u0,ε(x, y) = ψε(y) + ϕε(x)− ϕε(0).

Theorem 45. The generalized solution u to the Goursat problem (P ′G), where ϕ and ψ

are one-variable generalized functions , is u = [uε] such that

uε = lim
n→∞

uε,n and uε,n(x, y) = u0,ε(x, y) +

x�

0

( y�

0

F (ξ, η, uε,n−1(ξ, η)) dη
)
dξ

with

u0,ε(x, y) = ϕε(x) + ψε(y)− ϕε(0).

Corollary 46. With the previous notation, we have

uε(x, y) = u0,ε(x, y) +

x�

0

( y�

0

F (ξ, η, uε(ξ, η)) dη
)
dξ.

5.4. Parametric singular spectrum of the solution. We study the relationship

between the D′-parametric singular spectrum of the solution u and the D′-parametric

singular spectrum of u0.
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Theorem 47. Put u0 = [u0,ε] with u0,ε(x, y) = ψε(y) + ϕε(x) − ϕε(g(y)) and suppose

that

(5.4) ∀K b R2, MF (K) = sup
(x,y)∈K;z∈R

|F (x, y, z)| <∞.

Then the restriction of the D′-parametric singular spectrum of the solution u to the Gour-

sat problem (P ′G), to the parametric singular support of u0 is included in the restriction

of the D′-parametric singular spectrum of u0 to the parametric singular support of u0.

In other words , over the singular support of u0, there is no increase in the distributional

singularities of u in comparison with those of u0.

Proof. Let (x0, y0) = X ∈ SAD′A
u0 and r ∈ ND′,X(u0). From the definitions it follows

that ΣD′,X(u0) 6= ∅, so that ND′,X(u0) ⊂ ]0,∞[, which implies r > 0. Next let us show

that r ∈ ND′,X(u). From the definition of ND′,X(u0), there exists a neighborhood VX of

X such that

lim
ε→0

εruε|VX ∈ D′(VX).

Let f ∈ D(VX). So, there exists some distribution T ∈ D′(VX) such that

lim
ε→0

���

VX

εru0,ε(x, y)f(x, y) dx dy = T (f).

Let us show that� �

VX

εr[uε(x, y)− u0,ε(x, y)]f(x, y) dx dy → 0 as ε→ 0.

Suppose that g(y) ≤ x. As

uε(x, y)− u0,ε(x, y) =
� �

D(x,y,g)

F (ξ, η, uε(ξ, η)) dξ dη

and since (with the above notations)∣∣∣
���

VX

( ���

D(x,y,g)

F (ξ, η, uε(ξ, η)) dξ dη
)
f(x, y) dx dy

∣∣∣

≤MF (supp f)
∣∣∣

���

supp f

( ���

D(x,y,g)

dξ dη
)
f(x, y) dx dy

∣∣∣

≤MF (supp f)
∣∣∣

���

supp f

(A(x, y))f(x, y) dx dy
∣∣∣

≤ 2λ′MF (supp f)
���

supp f

|y| |f(x, y)| dx dy <∞,

we have

lim sup
ε→0

∣∣∣
���

VX

εr[uε(x, y)− u0,ε(x, y)]f(x, y) dx dy
∣∣∣

≤ lim sup
ε→0

εr
∣∣∣
���

VX

( � �

D(x,y,g)

F (ξ, η, uε(ξ, η)) dξ dη
)
f(x, y) dx dy

∣∣∣

≤ lim sup
ε→0

εr
[
2λ′(MF (supp f))

���

supp f

|y| |f(x, y)| dx dy
]

= 0
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with 2λ′ = g(λ)− g(−λ), because r 6= 0. Hence

lim
ε→0

� �

VX

εruε(x, y)f(x, y) dx dy = lim
ε→0

���

VX

εru0,ε(x, y)f(x, y) dx dy = T (f).

It follows that

lim
ε→0

εruε|VX = lim
ε→0

εru0,ε|VX ∈ D′(VX).

So r ∈ ND′,X(u), which proves the inclusion ND′,X(u0) ⊂ ND′,X(u), and consequently

ΣD′,X(u) ⊂ ΣD′,X(u0). Therefore

SεS
A
D′Au|SAD′Au0

⊂ SεSAD′Au0|SAD′Au0
.

Example 48. Let

f ∈ D(R), f ≥ 0,
�

R
f(x) dx = 1 and g(y) = ya−1, a > 0.

Let us consider the following cases:

• ψε(y) = ε−1f(yε−1) and ϕε(x) = ε−1f(xε−1); then

ϕε(g(y)) = ε−1f(g(y)ε−1) = ε−1f(y(aε)−1) = a(aε)−1f(y(aε)−1),

u0,ε(x, y) = ψε(y) + ϕε(x)− ϕε(g(y)) = ε−1f(yε−1) + ε−1f(xε−1)− a(aε)−1f(y(aε)−1).

Thus

ND′,X(u0) = [1,+∞[ and SεS
A
D′Au ⊂ R

2 × [0, 1[.

• ψε(y) = ε−1f(yε−1) and ϕε(x) = ε−2f(xε−1) = ε−1[ε−1f(xε−1)]; then

ϕε(g(y)) = ε−2f((g(y)ε−1) = ε−2f(y(aε)−1) = a(aε)−2f(y(aε)−1).

Thus

ND′,X(u0) = [2,+∞[ and SεS
A
D′Au ⊂ R

2 × [0, 2[.

• ψε(y) = f(yε−1) and ϕε(x) = f(xε−1) = ε(ε−1f(xε−1)); then

ϕε(g(y)) = ε(ε−1f((g(y)ε−1)) = ε(ε−1f(y(aε)−1)) = aε((aε)−1f(y(aε)−1)).

Thus

ND′,X(u0) = [0,+∞[.

As SεS
A
D′A
u ⊂ R2 × R+, we have

SεS
A
D′Au ⊂ R

2 × ∅.

5.5. Qualitative study of the solution. Case F = 0. We search for a generalized

solution u to problem (P ′G) where F = 0, considering as data the curve γ of equation

x = g(y), ϕ = [ϕε], ψ = [ψε]. With the above notations, considering P ′∞(ϕε, ψε), we have

uε(x, y) = ψε(y) + ϕε(x)− ϕε(g(y)).

Remark 49. We have ψ(0) = ϕ(g(0)); if g(y) = ya−1 (a > 0) then g(0) = 0 and

consequently, ψ(0) = ϕ(0).

Example 50. g(y) = ya−1 (a > 0), ϕ ∼ S, ψ ∼ T ; S ∈ D′(R), T ∈ D′(R). Let f ∈ D(R)

satisfy
�
R f(ξ) dξ = 1. Put fε(x) = ε−1f(xε−1). Choosing

ϕ = [fε ∗ S] and Ψ = [fε ∗ T ],
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we have the associations ϕ ∼ S, ψ ∼ T , since

lim
ε→0
D′(R)

(fε ∗ S)ε = S and lim
ε→0
D′(R)

(fε ∗ T )ε = T.

We have

uε(x, y) = ϕε(x) + ψε(y)− ϕε(g(y))

= (fε ∗ S)(x) + (fε ∗ T )(y)− (fε ∗ S)(ya−1).

Let S̃ ∈ D′(R) be such that

〈S̃, h〉 = 〈aS, [z 7→ h(az)]〉 = 〈aS,H〉.
Hence

lim
ε→0
D′(R)

[y 7→ (fε ∗ S)(ya−1)] = S̃.

Then we can write

[uε] = [wε,1] + [wε,2] + [wε,3]

with

[wε,1] ∼ Sx ⊗ 1y, [wε,2] ∼ 1x ⊗ Ty, [wε,3] ∼ −(1x ⊗ S̃y)

and so

u ∼ Sx ⊗ 1y + 1x ⊗ Ty − (1x ⊗ S̃y).

Example 51. g(y) = ya−1 (a > 0), ϕ ∼ δ, ψ ∼ δ. As δ̃ = aδ, for S = δ, we have

[uε] = [wε,1] + [wε,2] + [wε,3]

with

[wε,1] ∼ δx ⊗ 1y, [wε,2] ∼ 1x ⊗ δy, [wε,3] ∼ −a(1x ⊗ δy).

Example 52. g(y) = 0, ϕ ∼ δ, ψ ∼ δ. Then

[uε] = [wε,1] + [wε,2]− [ϕε(0)]

with

[wε,1] ∼ δx ⊗ 1y, [wε,2] ∼ 1x ⊗ δy.
We observe that [ϕε(0)] can be associated with a distribution only if [ϕε(0)] = 0; then, in

the general case, u is not associated with a distribution (V. S. Valmorin [1995a], [1995b]).

6. A characteristic Cauchy problem in (C, E ,P)-algebras

The characteristic Cauchy problem

(PC)





∂2u

∂x∂y
= F (·, ·, u),

u|(Ox) = ϕ,

∂u

∂y

∣∣∣∣
(Ox)

= ψ,
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has no smooth solution (not even C2) even for smooth data. We can approach the given

characteristic problem by a family of noncharacteristic problems (Pε)ε

(Pε)





∂2uε
∂x∂y

= F (·, ·, u),

uε|γε = ϕ,

∂uε
∂y

∣∣∣∣
γε

= ψ,

by considering the line γε of equation y = εx. The family of solutions is a representative

of a generalized function which belongs to an appropriate parametric algebra.

6.1. Case of regular data. Rewriting the solution to Pε, we replace f(x) by εx and

Kλ by
Kε = [−aε−1, aε−1]× [−a, a].

Here we have

uε(x, y) = u0,ε(x, y)−
� �

Dε(x,y)

F (ξ, η, uε(ξ, η)) dξ dη

where

u0,ε(x, y) = ϕ(x)− εΨ(x) + εΨ(yε−1),

Ψ is a primitive of ψ, and

Dε(x, y) =

{ {(ξ, η) : x ≤ ξ ≤ yε−1, εξ ≤ η ≤ y} if y ≥ εx,
{(ξ, η) : yε−1 ≤ ξ ≤ x, y ≤ η ≤ εξ} if y ≤ εx.

Put

mε = sup
(ξ,η)∈Kε;t∈R

∣∣∣∣
∂F

∂z
(ξ, η, t)

∣∣∣∣,

Φε = sup
Kε

|F (x, y, 0)|+mε‖u0,ε‖∞,Kε .

We make the following hypotheses:

(H1){
∀K b R2, ∀l ∈ N, ∃m(K, l),maxα∈N3,|α|≤l(sup(x,y)∈K;z∈R |DαF (x, y, z)|) ≤ m(K, l),

∃(Mε)ε ∈ R]0,1]
∗ , ∃C(l) ∈ R∗+,m(Kε, l) ≤ C(l)Mε,

(H2)

{
∃(rε)ε ∈ R]0,1]

∗ , ∀K2 b R, ∀α2 ∈ N, ∃D2 ∈ R∗+, ∃p ∈ N,
max[supK2

|Dα2ϕ(y/ε)|, supK2
|Dα2Ψ(y/ε)|] ≤ D2/(rε)

p,

(H3)

{
C = A/IA is overgenerated by the following elements of R]0,1]

∗ :

(ε)ε; (rε)ε; (emε/ε)ε; (Mε)ε,

(H4)





A(R2) = X (R2)/N (R2) is built on C with

(E ,P) = (C∞(R2), (PK,l)KbR2,l∈N)

and A(R2) is stable under F relatively to C.
Theorem 53. With the previous notations and hypotheses , if uε is the solution to prob-

lem (Pε), the family (uε)ε is a representative of a generalized function u which belongs to
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the algebra A(R2). Thus we can consider u as the generalized solution to the characteristic

Cauchy problem (PC).

Proof. For K = K1 ×K2 = [−a, a]× [−a, a] and α = (α1, α2) ∈ N2, there exist C1 > 0

and C2 > 0 such that

sup
K1

|Dα1ϕ(x)| ≤ C1(K1, α1); ε sup
K1

|Dα1Ψ(x)| ≤ εC2(K1, α1).

As G(y) = Ψ ◦ f−1
ε (y) = Ψ(yε−1) we have

ε sup
K2

|Dα2G(y)| ≤ D2

εα2−1(rε)p(α2,K2)
,

so (PK,α(u0,ε))ε ∈ A+. We have to show that (PK,α(uε))ε ∈ A+. Put

u1,ε(x, y) =
� �

Dε(x,y)

F (ξ, η, uε(ξ, η)) dξ dη.

According to the above results

sup
K

∣∣∣
���

Dε(x,y)

F (ξ, η, uε(ξ, η)) dξ dη
∣∣∣ ≤ Φλ

mλ
exp[2λmλ(f(λ)− f(−λ))]

with

f(x) = εx, λ = aε−1, mλ = mε.

So

(f(λ)− f(−λ)) = 2a and 2λmλ(f(λ)− f(−λ)) = 4a2ε−1mε,

hence

sup
Kε
|u1,ε(x, y)| ≤ Φε

mε
e(4a2/ε)mε

with

Φε = sup
Kε
|F (x, y, 0)|+mε‖u0,ε‖∞,Kε ≤ C(0)Mε +mε

(
3D2

(rε)p1

)

where p1 = p([−a, a], 0). So (PK,0(u1,ε))ε ∈ A+, hence (PK,0(uε))ε ∈ A+. We have

∂uε
∂x

(x, y) =
∂u0,ε

∂x
(x, y) +

y�

f(x)

F (x, η, uε(x, η)) dη

and
∂u1,ε

∂x
(x, y) =

y�

f(x)

F (x, η, uε(x, η)) dη,

so, according to hypothesis (H1),

sup
Kε

y�

f(x)

|F (x, η, uε(x, η))| dη ≤ 2a(m(Kε, 0)),

so (PK,(1,0)(u1,ε))ε ∈ A+, hence (PK,(1,0)(uε))ε ∈ A+. We have

∂uε
∂y

(x, y) =
∂u0,ε

∂y
(x, y)−

f−1(y)�

x

F (ξ, y, uε(ξ, y)) dξ.
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In the same way, we get

sup
Kε

∣∣∣∣
∂u1,ε

∂y
(x, y)

∣∣∣∣ ≤ sup
Kε

( f−1(y)�

x

|F (ξ, y, uε(ξ, y))| dξ
)

≤ 2a

ε
m(Kε, 0) ≤ 2a

ε
C(0)Mε,

so (PK,(0,1)(u1,ε))ε ∈ A+, (PK,(0,1)(uε))ε ∈ A+. Consequently,

(PK,1(uε))ε ∈ A+.

Now we proceed by induction. Suppose that (PK,l(uε))ε ∈ A+ for every l ≤ n, and let

us show that (PK,n+1(uε))ε ∈ A+. We use the notations from Theorem 37. First let us

show that

(P1,n(uε))ε ∈ A+, (P2,n(uε))ε ∈ A+.

for every n ∈ N. We have by successive derivations, for n ≥ 1,

∂n+1u1,ε

∂xn+1
(x, y) = −nε ∂n−1

∂xn−1
F (x, εx, ϕ(x)) +

y�

εx

∂n

∂xn
F (x, η, uε(x, η)) dη.

Thus

sup
(x,y)∈Kε

∣∣∣∣
∂n+1uε
∂xn+1

(x, y)

∣∣∣∣

≤ sup
x∈[−aε−1,aε−1]

nε

∣∣∣∣
∂n−1

∂xn−1
F (x, εx, ϕ(x))

∣∣∣∣+ 2a sup
(x,y)∈Kε

∣∣∣∣
∂n

∂xn
F (x, y, uε(x, y))

∣∣∣∣.

Next, from the stability property, we get

sup
(x,y)∈Kε

∣∣∣∣
∂n

∂xn
F (x, y, uε(x, y))

∣∣∣∣ = PKε,(n,0)(F (·, ·, uε)) ≤ PKε,n(F (·, ·, uε))

≤
n∑

i=0

CiP
i
Kε,n

(uε)

and

sup
x∈[−aε−1,aε−1]

nε

∣∣∣∣
∂n−1

∂xn−1
F (x, εx, ϕ(x))

∣∣∣∣ ≤ nε(m(Kε, n− 1)) ≤ nεC(n− 1)Mε,

so (PK,(n+1,0)(u1,ε))ε ∈ A+, hence

(PK,(n+1,0)(uε))ε ∈ A+.

Let us show that (P2,n(uε))ε ∈ A+ for every n ∈ N. We have by successive derivations,

for n ≥ 1,

∂n+1u1,ε

∂yn+1
(x, y) = −n1

ε

∂n−1

∂yn−1
F

(
y

ε
, y, ϕ

(
y

ε

))
−
y/ε�

x

∂n

∂yn
F (ξ, y, uε(ξ, y)) dξ.
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Thus

sup
(x,y)∈Kε

∣∣∣∣
∂n+1u1,ε

∂yn+1
(x, y)

∣∣∣∣

≤ sup
y∈[−a,a]

n
1

ε

∣∣∣∣
∂n−1

∂yn−1
F (yε−1, y, ϕ(yε−1))

∣∣∣∣+ 2λ sup
(x,y)∈Kε

∣∣∣∣
∂n

∂yn
F (x, y, uε(x, y))

∣∣∣∣.

Next, from the stability property,

sup
(x,y)∈Kε

∣∣∣∣
∂n

∂yn
F (x, y, uε(x, y))

∣∣∣∣ = PKε,(0,n)(F (·, ·, uε))

≤ PKε,n(F (·, ·, uε)) ≤
n∑

i=0

CiP
i
Kε,n(uε)

and

sup
y∈[−a,a]

n
1

ε

∣∣∣∣
∂n−1

∂yn−1
F (yε−1, y, ϕ(yε−1))

∣∣∣∣ ≤ n
1

ε
(m(Kε, n− 1)) ≤ n 1

ε
C(n− 1)Mε,

so, (PK,(0,n+1)(u1,ε))ε ∈ A+ for every K b R2 and n ∈ N, hence

(PK,(0,n+1)(uε))ε ∈ A+.

For α+ β = n and β ≥ 1, we have

PK,(α+1,β)(uε) = sup
(x,y)∈K

|D(α+1,β)uε(x, y)| = sup
(x,y)∈K

|D(α,β−1)D(1,1)uε(x, y)|

= sup
(x,y)∈K

|D(α,β−1)F (x, y, uε(x, y))| = PK,(α,β−1)(F (·, ·, uε))

≤ PK,n−1(F (·, ·, uε)) ≤ PK,n(F (·, ·, uε)),
thus

P3,n(uε) = sup
α+β=n;β≥1

PK,(α+1,β)(uε) ≤ PK,n(F (·, ·, uε)).

Then the stability hypothesis ensures that (P3,n(uε))ε ∈ A+. In the same way, for

α+ β = n and α ≥ 1, we have

PK,(α,β+1)(uε) = sup
(x,y)∈K

|D(α,β+1)uε(x, y)| = sup
(x,y)∈K

|D(α−1,β)D(1,1)uε(x, y)|

= sup
(x,y)∈K

|D(α−1,β)F (x, y, uε(x, y))| = PK,(α−1,β)(F (·, ·, uε))

≤ PK,n−1(F (·, ·, uε)) ≤ PK,n(F (·, ·, uε)).
So we finally have

P4,n(uε) = sup
α+β=n;α≥1

PK,(α,β+1)(uε) ≤ PK,n(F (·, ·, uε))

and the stability hypothesis ensures that (P4,n(uε))ε ∈ A+. In conclusion, we have

(PK,n+1(uε))ε ∈ A+.

Remark 54. How does this generalized function depend on the approximation of {y = 0}
by {y = εx}? The question remains open.



64 V. Dévoué

6.2. Case of irregular data. We can also give a meaning to the characteristic Cauchy

problem (PC) in the case where ϕ and ψ are themselves irregular data (for example some

generalized functions) by beginning to solve

P(ε,η)





∂2u(ε,η)

∂x∂y
(x, y) = F (x, y, u(ε,η)(x, y)),

u(ε,η)(x, εx) = ϕη(x),

∂u(ε,η)

∂y
(x, εx) = ψη(x),

where (ϕη)η and (ψη)η are representatives of ϕ and ψ in an appropriate algebra. The

parameter ε permits replacing the given problem by a noncharacteristic one, whereas the

parameter η makes it regular. Ψ being a primitive of ψ, we have

u0,(ε,η)(x, y) = ϕη(x)− εΨη(x) + εΨη(yε−1),

u(ε,η)(x, y) = u0,(ε,η)(x, y)−
� �

Dε(x,y)

F (ξ, θ, u(ε,η)(ξ, θ)) dξ dθ.

Keeping hypothesis (H1) from the previous theorem, we suppose moreover that
{
∃(rε,η)(ε,η) ∈ R]0,1]×]0,1]

∗ , ∀K2 b R, ∀α2 ∈ N, ∃D2 ∈ R∗+, ∃p ∈ N,
max[supK2

|Dα2ϕη(y/ε)|, supK2
|Dα2Ψη(y/ε)|] ≤ D2/(rε,η)p,

(H5)

{
C = A/IA is overgenerated by the following elements of R]0,1]×]0,1]

∗ :

(ε)(ε,η); (η)(ε,η); (rε,η)(ε,η); (emε/ε)(ε,η); (Mε)(ε,η),
(H6)

(H7)





A(R2) = X (R2)/N (R2) is built on C
with (E ,P) = (C∞(R2), (PK,l)KbR2;l∈N)

and A(R2) is stable under F relative to C.
Theorem 55. With the previous notations and hypotheses , if u(ε,η) is the solution to

problem P(ε,η), the family (u(ε,η))(ε,η) is a representative of a generalized function u which

belongs to the algebra A(R2). Thus we can consider u = [u(ε,η)] as the generalized solution

to the characteristic Cauchy problem PC .

Proof. For K = K1 ×K2 = [−a, a]× [−a, a] and α = (α1, α2) ∈ N2, there exist C1 > 0

and C2 > 0 such that

sup
K1

|Dα1ϕη(x)| ≤ C1(K1, α1), ε sup
K1

|Dα1Ψη(x)| ≤ εC2(K1, α1).

As Gη(y) = Ψη ◦ f−1
ε (y) = Ψη(y/ε), we have

ε sup
K2

|Dα2Gη(y)| ≤ D2

εα2−1(rε,η)p(α2,K2)
,

so (PK,α(u0,(ε,η)))(ε,η) ∈ A+.

We have to show that (PK,n(u(ε,η)))(ε,η)
∈ A+ for every integer n. Put

u1,(ε,η)(x, y) =
� �

Dε(x,y)

F (ξ, θ, u(ε,η)(ξ, θ)) dξ dθ.
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According to the above results, we have

sup
K

∣∣∣
� �

Dε(x,y)

F (ξ, θ, u(ε,η)(ξ, θ)) dξ dθ
∣∣∣ ≤ Φλ

mλ
exp[2λmλ(f(λ)− f(−λ))]

with f(x) = εx, λ = aε−1, mλ = mε. So (f(λ)− f(−λ)) = 2a and

2λmλ(f(λ)− f(−λ)) = 2
a

ε
2amε = 4

a2

ε
mε.

We have

sup
Kε
|u1,(ε,η)(x, y)| ≤ Φε

mε
e

4a2

ε mε

with

Φε = sup
Kε
|F (x, y, 0)|+mε‖u0,(ε,η)‖∞,Kε ≤ C(0)Mε +mε

(
3D2

(rε,η)p1

)
,

where p1 = p([−a, a], 0). So (PK,0(u1,(ε,η)))(ε,η)
∈ A+, hence (PK,0(u(ε,η)))(ε,η)

∈ A+.

Moreover

∂u(ε,η)

∂x
(x, y) =

∂u0,(ε,η)

∂x
(x, y) +

y�

f(x)

F (x, θ, u(ε,η)(x, θ)) dθ.

We have

∂u1,(ε,η)

∂x
(x, y) =

y�

f(x)

F (x, θ, u(ε,η)(x, θ)) dθ,

so, according to hypothesis (H1),

sup
Kε

( y�

f(x)

F (x, θ, u(ε,η)(x, θ)) dθ
)
≤ 2am(Kε, 0),

then (PK,(1,0)(u1,(ε,η)))(ε,η) ∈ A+, consequently,

(PK,(1,0)(u(ε,η)))(ε,η) ∈ A+.

We have

∂u(ε,η)

∂y
(x, y) =

∂u0,(ε,η)

∂y
(x, y)−

f−1(y)�

x

F (ξ, y, u(ε,η)(ξ, y)) dξ.

In the same way, we get

sup
Kε

∣∣∣∣
∂u1,(ε,η)

∂y
(x, y)

∣∣∣∣ ≤ sup
Kε

f−1(y)�

x

|F (ξ, y, u(ε,η)(ξ, y)|) dξ

≤ 2a

ε
m(Kε, 0) ≤ 2a

ε
C(0)Mε,

so

(PK,(0,1)(u1,(ε,η)))(ε,η) ∈ A+, (PK,(0,1)(u(ε,η)))(ε,η) ∈ A+.

Consequently,

(PK,1(u(ε,η)))(ε,η) ∈ A+.
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We now proceed by induction. Suppose that (PK,l(u(ε,η)))(ε,η) ∈ A+ for every l ≤ n, and

let us show that

(PK,n+1(u(ε,η)))(ε,η) ∈ A+.

We use the notations from Theorem 37. First we show that

(P1,n(u(ε,η)))(ε,η) ∈ A+, (P2,n(u(ε,η)))(ε,η) ∈ A+

for every n ∈ N. We have by successive derivations, for n ≥ 1,

∂n+1u1,(ε,η)

∂xn+1
(x, y) = −nε ∂n−1

∂xn−1
F (x, εx, ϕη(x)) +

y�

εx

∂n

∂xn
F (x, θ, u(ε,η)(x, θ)) dθ.

We have

sup
(x,y)∈Kε

∣∣∣∣
∂n+1u1,(ε,η)

∂xn+1
(x, y)

∣∣∣∣ ≤ sup
x∈[−aε−1,aε−1]

nε

∣∣∣∣
∂n−1

∂xn−1
F (x, εx, ϕη(x))

∣∣∣∣

+ 2a sup
(x,y)∈Kε

∣∣∣∣
∂n

∂xn
F (x, y, u(ε,η)(x, y))

∣∣∣∣.

Next, according to the stability property, we get

sup
(x,y)∈Kε

∣∣∣∣
∂n

∂xn
F (x, y, u(ε,η)(x, y))

∣∣∣∣ = PKε,(n,0)(F (·, ·, u(ε,η))) ≤ PKε,n(F (·, ·, u(ε,η)))

≤
n∑

i=0

CiP
i
Kε,n

(u(ε,η)),

and

sup
x∈[−aε−1,aε−1]

nε

∣∣∣∣
∂n−1

∂xn−1
F (x, εx, ϕε(x))

∣∣∣∣ ≤ nε(m(Kε, n− 1)) ≤ nεC(n− 1)Mε,

so (PK,(n+1,0)(u1,(ε,η)))(ε,η) ∈ A+, hence

(PK,(n+1,0)(u(ε,η)))(ε,η) ∈ A+.

Let us show that (P2,n(u(ε,η)))(ε,η) ∈ A+ for every n ∈ N. We have by successive

derivations, for n ≥ 1,

∂n+1u1,(ε,η)

∂yn+1
(x, y) = −n 1

ε

∂n−1

∂yn−1
F (yε−1, y, ϕη(yε−1))−

y/ε�

x

∂n

∂yn
F (ξ, y, u(ε,η)(ξ, y)) dξ.

Thus

sup
(x,y)∈Kε

∣∣∣∣
∂n+1u1,(ε,η)

∂yn+1
(x, y)

∣∣∣∣

≤ sup
y∈[−a,a]

n
1

ε

∣∣∣∣
∂n−1

∂yn−1
F (yε−1, y, ϕη(yε−1))

∣∣∣∣+ 2λ sup
(x,y)∈Kε

∣∣∣∣
∂n

∂yn
F (x, y, u(ε,η)(x, y))

∣∣∣∣.

Next, according to the stability property, we get
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sup
(x,y)∈Kε

∣∣∣∣
∂n

∂yn
F (x, y, u(ε,η)(x, y))

∣∣∣∣ = PKε,(0,n)(F (·, ·, u(ε,η)))

≤ PKε,n(F (·, ·, u(ε,η))) ≤
n∑

i=0

CiP
i
Kε,n(u(ε,η))

and

sup
y∈[−a,a]

n
1

ε

∣∣∣∣
∂n−1

∂yn−1
F (yε−1, y, ϕη(yε−1))

∣∣∣∣ ≤ n
1

ε
m(Kε, n− 1) ≤ n 1

ε
C(n− 1)Mε.

So, for every K b R2 and n ∈ N, (PK,(0,n+1)(u1,(ε,η)))(ε,η) ∈ A+, hence

(PK,(0,n+1)(u(ε,η)))(ε,η) ∈ A+.

For α+ β = n and β ≥ 1, we have

PK,(α+1,β)(u(ε,η)) = sup
(x,y)∈K

|D(α+1,β)u(ε,η)(x, y)| = sup
(x,y)∈K

|D(α,β−1)D(1,1)u(ε,η)(x, y)|

= sup
(x,y)∈K

|D(α,β−1)F (x, y, u(ε,η)(x, y))| = PK,(α,β−1)(F (·, ·, u(ε,η)))

≤ PK,n−1(F (·, ·, u(ε,η))) ≤ PK,n(F (·, ·, u(ε,η))).

So we finally have

P3,n(u(ε,η)) = sup
α+β=n;β≥1

PK,(α+1,β)(u(ε,η)) ≤ PK,n(F (·, ·, u(ε,η)))

and the stability hypothesis ensures that

(P3,n(u(ε,η)))(ε,η) ∈ A+.

In the same way, for α+ β = n and α ≥ 1, we have

PK,(α,β+1)(u(ε,η)) = sup
(x,y)∈K

|D(α,β+1)u(ε,η)(x, y)| = sup
(x,y)∈K

|D(α−1,β)D(1,1)u(ε,η)(x, y)|

= sup
(x,y)∈K

|D(α−1,β)F (x, y, u(ε,η)(x, y))| = PK,(α−1,β)(F (·, ·, u(ε,η)))

≤ PK,n−1(F (·, ·, u(ε,η))) ≤ PK,n(F (·, ·, u(ε,η))).

Thus

P4,n(u(ε,η)) = sup
α+β=n;α≥1

PK,(α,β+1)(u(ε,η)) ≤ PK,n(F (·, ·, u(ε,η)))

and the stability hypothesis ensures that (P4,n(u(ε,η)))(ε,η) ∈ A+. In conclusion, we have

(PK,n+1(u(ε,η)))(ε,η) ∈ A+.

6.3. Qualitative study of the solution. Case F = 0. We consider A(R) and A(R2)

built on the same ring of generalized constants as before. We suppose that A(R2) is

stable under F . For g ∈ D′(R), with

supp g = [−1, 1], 0 ≤ g ≤ 1, g(0) = 1

and g(k)(0) = 0 for every k ∈ N∗, we consider gη(x) = η−1g(xη−1) for x ∈ R. Then

(gη)η → δx in the distributional sense. For S ∈ D′(R), T ∈ D′(R), choosing

ϕ = [gη ∗ S], Ψ = [gη ∗ T ],
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we have the associations ϕ ∼ S, Ψ ∼ T , since

lim
η→0
D′(R)

(gη ∗ S)η = S and lim
η→0
D′(R)

(gη ∗ T )η = T.

Example 56. ϕ ∼ S, Ψ ∼ T, S ∈ D′(R), T ∈ D′(R). We search for a generalized

solution u to the following characteristic irregular Cauchy problem:

(PC)





∂2u

∂x∂y
= 0,

u|(Ox) = S,

∂u

∂y

∣∣∣∣
(Ox)

= T ′.

By considering the curve γε of equation y = εx and by putting the data regularized by

mollifiers gη on the curve γε = {y = εx}, we can solve the noncharacteristic problem

(P(ε,η))





∂2u(ε,η)

∂x∂y
(x, y) = 0,

u(ε,η)(x, εx) = (gη ∗ S)(x),

∂u(ε,η)

∂y
(x, εx) = (gη ∗ T ′)(x).

Let us determine the solution u to (P(ε,η)). We have

u(ε,η)(x, y) = εΨη(yε−1)− εΨη(x) + ϕη(x)

= ε(gη ∗ T )(yε−1)− ε(gη ∗ T )(x) + (gη ∗ S)(x).

Hence

[u(ε,η)] = [εu(ε,η),1] + [εu(ε,η),2] + [u(ε,η),3]

with

u(ε,η),1(x, y) = (gη ∗ T )(yε−1), [u(ε,η),2] ∼ −Tx ⊗ 1y, [u(ε,η),3] ∼ Sx ⊗ 1y.

Example 57. (ϕ ∼ δ, ψ ∼ δ; F = 0) so (ϕ ∼ S ∼ δ, Ψ ∼ Y ∼ T ; F = 0). Let G a

primitive of g. We have

lim
η→0
D′(R)

Gη = Y and lim
(ε,η)→(0,0)
D′(R)

(y 7→ Gη(yε−1)) = Y.

From the above results, we obtain

[u(ε,η)] = [εu(ε,η),1] + [εu(ε,η),2] + [u(ε,η),3]

with

[u(ε,η),1] ∼ 1x ⊗ Yy, [u(ε,η),2] ∼ −Yx ⊗ 1y, [u(ε,η),3] ∼ δx ⊗ 1y.

Example 58. (ϕ ∼ 0, ψ ∼ δ; F = 0) so ϕ ∼ 0, Ψ ∼ Y ∼ T ; F = 0. From the above

results, we obtain

u(ε,η)(x, y) = ε(gη ∗ T )(yε−1)− ε(gη ∗ T )(x).

Hence

[u(ε,η)] = [εu(ε,η),1] + [εu(ε,η),2]
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with

[u(ε,η),1] ∼ 1x ⊗ Yy , [u(ε,η),2] ∼ −Yx ⊗ 1y.
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