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Abstract

The paper contains a consistent presentation of the approach developed by the authors to anal-
ysis of nonlinear control systems, which exploits ideas and techniques of formal power series
of independent noncommuting variables and the corresponding free algebras. The main part
of the paper was conceived with a view of comparing our results with the results obtained by
use of the differential-geometric approach. We consider control-linear systems with m controls.
In a free associative algebra with m generators (which can be thought of as a free algebra of
iterated integrals), a control system uniquely defines two special objects: the core Lie subal-
gebra and the graded left ideal. It turns out that each of these two objects completely defines
a homogeneous approximation of the system. Our approach allows us to propose an algebraic
(coordinate-independent) definition of the homogeneous approximation. This definition provides
the uniqueness of the homogeneous approximation (up to a change of coordinates) and gives a
way to find it directly, without preliminary finding privileged coordinates. The presented tech-
nique yields an effective description of all privileged coordinates and an explicit way of construct-
ing an approximating system. In addition, we discuss the connection between the homogeneous
approximation and an approximation in the sense of time optimality.
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1. Introduction

In this paper we give an analysis of small-time approximation for control-linear systems by

use of the approach based on formal power series of independent noncommuting variables

and the corresponding free algebras. In particular, we propose an algebraic interpretation

of concepts related to homogeneous approximation that are traditionally treated within

differential-geometric methods. The free algebras approach to these problems described

here was developed by the authors of the present paper during the last fifteen years.

More specifically, we consider the Cauchy problem for control-linear systems of the

form

ẋ =

m∑
i=1

uiXi(x), x(0) = 0, (1.1)

where X1(x), . . . , Xm(x) are real analytic vector fields. Our goal is to analyze, from an al-

gebraic viewpoint, the concept of homogeneous approximation that was one of the points

of interest in control theory during several decades [12, 23, 24, 6, 3, 8, 4]. The traditional

approach is based on differential-geometric methods; a fundamental presentation can be

found in [6].

Our interest in this field is connected with the study of time-optimal control problems.

However, for time optimality it is more natural to consider control-affine systems instead

of control-linear ones, and the end condition x(θ) = 0 instead of the initial condition

x(0) = 0. In essence, our main results concerning the application of formal power series

and free algebras [49]–[55] are obtained just for such systems. In Subsection 1.1 we give

a brief description of the main ideas. This subsection is independent of the rest of the

paper; however, in the rest of the paper we mainly develop the approach described there.

A sketch of the main results of the paper can be found in Subsection 1.2.

1.1. Series of nonlinear power moments and a nonlinear Markov moment

problem. In [49] we proposed to apply the series method to a time-optimal control

problem for nonlinear control-affine systems. As a first step, we suggested considering

the time-optimal control problem as a nonlinear Markov moment problem.

This idea is well known in linear time optimality [37]–[39]. Consider a linear time-

optimal control problem of the form

ẋ = Ax+ bu, x(0) = x0, x(θ) = 0, |u(t)| ≤ 1, θ → min, (1.2)

where x ∈ Rn, u ∈ R, and A and b are a matrix and a vector of appropriate dimensions.

Forget for a moment about the control constraints and optimal requirements, and consider

[5]



6 G. M. Sklyar and S. Yu. Ignatovich

the steering problem

ẋ = Ax+ bu, x(0) = x0, x(θ) = 0, (1.3)

i.e., the problem of finding a control u(t), t ∈ [0, θ], that steers the given point x0 to the

origin in the given time θ. Due to the Cauchy formula, all such controls are described by

the (vector) equality

x0 = −
∫ θ

0

e−tAbu(t) dt.

Denoting g(t) = −e−tAb, we see that the steering problem (1.3) is equivalent to the Markov

moment problem [43, 5, 39]

x0i =

∫ θ

0

gi(t)u(t) dt, i = 1, . . . , n. (1.4)

Since g(t) = −e−tAb =
∑∞
k=0

(−1)k+1

k! tkAkb, equalities (1.4) can be rewritten as

x0 =

∞∑
k=0

vk

∫ θ

0

tku(t) dt. (1.5)

Thus, the right hand side of (1.5) is a series of power moments

ξk(θ, u) =

∫ θ

0

tku(t) dt (1.6)

of the function u(t) with constant vector coefficients vk ∈ Rn. These coefficients can be

found by the formula vk = (−1)k+1

k! Akb, k ≥ 0.

The steering problem (1.3) defines a (linear) operator S(θ, ·) that takes a control u(t)

to the corresponding initial point x0, i.e., S(θ, u) = x0. Therefore, the right hand side of

(1.5) gives a series expansion for this operator,

S(θ, u) =

∞∑
k=0

vkξk(θ, u). (1.7)

Let us apply a linear change of variables y = Qx in the initial system. Obviously, it

leads to the linear transformation of the corresponding series of power moments; namely,

the series with coefficients vk is mapped to the series with coefficients v̂k = Qvk. Hence,

the new coefficients can be found directly from the old ones, without finding the form of

the system in the new variables.

Now suppose θ is sufficiently small. The power moments have the following homo-

geneity property:

ξk(θ, u) = θk+1ξk(1, ũ), where ũ(t) = u(θt), t ∈ [0, 1].

This means that locally, for a small time θ, the order of smallness of the power moment

ξk equals k+ 1. In particular, this order allows comparing terms of the series on the right

hand side of (1.7).

This observation suggests the following idea: a small-time approximation of the control

system can be described in terms of the series representation (1.7), as is common in

calculus, when using Taylor series to approximate finite-dimensional mappings. Suppose

the initial system is controllable. Then the vectors v0, . . . , vn−1 are linearly independent.
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Denote Q = (v0, . . . , vn−1)−1. Then the change of variables y = Qx reduces the series

in (1.7) to the form Ŝ(θ, u) = QS(θ, u) whose componentwise representation is

(Ŝ(θ, u))i = ξi−1(θ, u) + ρi(θ, u), i = 1, . . . , n,

where ρi(θ, u) =
∑∞
k=i(Qvk)iξk(θ, u) contains terms of order greater than the order

of ξi−1. (The order of terms of ρi(θ, u) can be made greater than the order of ξn−1,

however this is not of importance further.) Thus, one may take the “series”

SAi = ξi−1(θ, u), i = 1, . . . , n,

as a small-time approximation of the initial series S. Notice that SA corresponds to the

chained system

ẋ1 = u, ẋi = xi−1, i = 2, . . . , n.

Hence, all controllable linear autonomous systems with a one-dimensional control are

approximated by the chained system (up to a change of variables) in the sense mentioned

above.

Now let us return to time optimality and, along with (1.2), consider the time-optimal

control problem

ẋ1 = u, ẋi = xi−1, i = 2, . . . , n, x(0) = x0, x(θ) = 0, |u(t)| ≤ 1, θ → min. (1.8)

It can be shown [38, 48] that solutions of these problems are equivalent in the following

sense:

θx0/θAQx0 → 1,
1

θ

∫ θ

0

|ux0(t)− uAQx0(t)| dt→ 0 as x0 → 0, (1.9)

where (θx0 , ux0(t)) is a solution of (1.2), (θAx0 , uAx0(t)) is a solution of (1.8), and θ =

min{θx0 , θAQx0}.
The class of nonautonomous linear control systems gives a variety of possible approx-

imations. Namely, consider a steering problem of the form

ẋ = A(t)x+ b(t)u, x(0) = x0, x(θ) = 0, (1.10)

where A(t) and b(t) are a matrix and a vector of appropriate dimensions with real analytic

entries. This problem can also be rewritten in the form (1.7), where constant vector

coefficients can be found from the formula vk = 1
k! (−A(t) + d/dt)kb(t)|t=0, k ≥ 0.

Conversely, any set of vector coefficients vk satisfying a natural convergence require-

ment ‖vk‖ ≤ k!C1C
k
2 , C1, C2 > 0, defines the series (1.7) corresponding to a system of

the form (1.10). However, the system is not defined uniquely; for example, one can choose

A(t) = 0 and b(t) =
∑∞
k=0 vkt

k.

Suppose the system is controllable. Then rank {vk}∞k=0 = n. Let vm1
, . . . , vmn

be the

first n linearly independent vectors from the sequence {vk}∞k=0, and Q=(vm1
, . . . , vmn

)−1.

Then the change of variables y = Qx reduces the series for (1.10) to the form Ŝ(θ, u) =

QS(θ, u),

(Ŝ(θ, u))i = ξmi
(θ, u) + ρi(θ, u), i = 1, . . . , n,

where ρi(θ, u) =
∑∞
k=mi+1(Qvk)iξk(θ, u) contains terms of order (of smallness) greater

than the order of ξmi
. Notice that the order of terms of ρi(θ, u), in general, may not be



8 G. M. Sklyar and S. Yu. Ignatovich

greater than the order of ξmn . As an example, consider the system

ẋ1 = u+ tu, ẋ2 = t2u.

Then m1 = 0, m2 = 2, and

(Ŝ(θ, u))1 = ξ0(θ, u) + ρ1(θ, u), (Ŝ(θ, u))2 = ξ2(θ, u),

where ρ1(θ, u) = ξ1(θ, u). Here the order of ρ1(θ, u) is greater than the order of ξ0(θ, u),

but less than the order of ξ2(θ, u).

Hence, the series

(SA(θ, u))i = ξmi
(θ, u), i = 1, . . . , n,

can be considered as an approximation of the initial series S. A system corresponding to

SA is not defined uniquely; for example, it can be taken in the form

ẋi = −tmiu, i = 1, . . . , n. (1.11)

This means that all controllable linear (real analytic) systems with a one-dimensional

control are approximated by systems of the form (1.11). As above, this approximation

implies the approximation in the sense of time-optimality [38, 48], i.e., (1.9) holds with

(θAx0 , uAx0(t)) a solution of the time-optimal control problem

ẋi = −tmiu, i = 1, . . . , n, x(0) = x0, x(θ) = 0, |u(t)| ≤ 1, θ → min .

Thus, the main idea of the previous analysis is as follows: replace a control system by

a series of power moments, and approximate this series, taking into account the order of

smallness of power moments.

Let us now go over to a nonlinear case. Consider the class of control-affine systems of

the form

ẋ = a(t, x) + b(t, x)u, (1.12)

where a(t, x) and b(t, x) are real analytic vector functions in a neighborhood of the origin.

Suppose the origin is an equilibrium, which means a(t, 0) ≡ 0. As before, consider the

steering problem to the origin, i.e.,

ẋ = a(t, x) + b(t, x)u, a(t, 0) ≡ 0, x(0) = x0, x(θ) = 0. (1.13)

The first step is to find an appropriate series representation for this problem. As

before, consider the operator S(θ, ·) that takes a control u(t) to the corresponding initial

point x0, i.e., S(θ, u) = x0. More specifically, let us fix θ > 0 and u = u(t), t ∈ [0, θ].

Substitute the control u = u(t) into system (1.12) and invert the time τ = θ− t. Consider

the Cauchy problem

dx̃

dτ
= −a(θ − τ, x̃)− b(θ − τ, x̃)u(θ − τ), x̃(0) = 0,

and set S(θ, u) = x̃(θ). Obviously, if x0 = S(θ, u) = x̃(θ) then x(t) = x(θ − τ) = x̃(τ)

satisfies (1.13) with u = u(t). This means that x0 is taken to the origin in time θ by the

control u(t) with respect to system (1.12).
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The operator S(θ, ·) admits the series expansion [49, 51]

S(θ, u) =

∞∑
k=1

∑
m1,...,mk≥0

vm1...mk
ξm1...mk

(θ, u), (1.14)

where ξm1...mk
(θ, u) are nonlinear power moments of the form

ξm1...mk
(θ, u) =

∫ θ

0

∫ τ1

0

· · ·
∫ τk−1

0

τm1
1 τm2

2 · · · τmk

k u(τ1)u(τ2) · · ·u(τk) dτk · · · dτ2 dτ1,

(1.15)

and vm1...mk
∈ Rn are constant vectors that can be found from a(t, x) and b(t, x) by

certain formulas. (A similar expansion was used in [8] for the approximation along a

trajectory.)

We are going to consider the series of nonlinear power moments (1.14) instead of the

initial control system. Suppose a (real analytic) change of variables y = Q(x) is applied

in the system, where Q(0) = 0. Let us find the series representation of the system in the

new coordinates.

As for the linear case, we do not use the form of the system in the new coordinates;

instead, we consider the transformation of the series itself. For brevity, let us write the

Taylor series expansion for Q(x) as Q(x) =
∑∞
q=1

1
q!Q

(q)(0)xq. Then

Ŝ(θ, u) = Q(S(θ, u)) =

∞∑
q=1

1

q!
Q(q)(0)(S(θ, u))q. (1.16)

Therefore, we encounter the problem of finding powers of the series, i.e., products of

nonlinear power moments.

Returning to the change of variables in the system, let us consider a product of two

power moments (1.15). For example,

ξm1
(θ, u)ξm2

(θ, u) =

∫ θ

0

τm1
1 u(τ1) dτ1

∫ θ

0

τm2
2 u(τ2) dτ2

=

∫ θ

0

∫ τ1

0

τm1
1 τm2

2 u(τ1)u(τ2) dτ2 dτ1

+

∫ θ

0

∫ τ2

0

τm1
1 τm2

2 u(τ1)u(τ2) dτ1 dτ2

= ξm1m2
(θ, u) + ξm2m1

(θ, u);

ξm1
(θ, u)ξm2m3

(θ, u) =

∫ θ

0

τm1
1 u(τ1) dτ1

∫ θ

0

∫ τ2

0

τm2
2 τm3

3 u(τ2)u(τ3) dτ2 dτ3

= ξm1m2m3(θ, u) + ξm2m1m3(θ, u) + ξm2m3m1(θ, u),

and so on.

These relations can be described in the following terms. Instead of the linear space of

linear power moments (1.6), in the nonlinear case we introduce the algebra of nonlinear

power moments (1.15). Namely, consider the moments ξm1...mk
(θ, u) as words generated

by the letters ξi(θ, u), i.e., assume that the word ξm1...mk
(θ, u) is a concatenation of

the letters ξm1
(θ, u), . . . , ξmk

(θ, u). Then the linear space of nonlinear power moments



10 G. M. Sklyar and S. Yu. Ignatovich

becomes an associative noncommutative algebra. It can be shown that nonlinear moments

are linearly independent as functionals on u, therefore the above-mentioned algebra is

free. Hence, this algebra is isomorphic to a (free) algebra of formal polynomials (with

coefficients in R) of noncommuting independent abstract variables {ξi, i ≥ 0}. That is,

monomials are of the form ξm1...mk
= ξm1 · · · ξmk

. We denote this algebra by A and call

it “the algebra of nonlinear power moments”.

The series on the right hand side of (1.14) can therefore be described by the linear

map v : A → Rn defined by v(ξm1...mk
) = vm1...mk

. Moreover, this series has its formal

analogue, namely the formal power series of ξi with coefficients in Rn, i.e.,

S =

∞∑
k=1

∑
m1,...,mk≥0

vm1...mk
ξm1...mk

.

Then the above-mentioned “usual” product of nonlinear power moments corresponds

to the shuffle product operation in A [14, 46, 10, 2]; it is defined recurrently as

ξm1
xxyξq1 = ξm1q1 + ξq1m1

,

ξm1
xxyξq1...qr = ξq1...qr xxyξm1

= ξm1q1...qr + ξq1(ξm1
xxyξq2...qr ), r ≥ 2,

ξm1...mk
xxyξq1...qr = ξm1(ξm2...mk

xxyξq1...qr ) + ξq1(ξm1...mk
xxyξq2...qr ), k, r ≥ 2.

As a result, the nonlinear power moments series for (1.16) can actually be found directly

from the series (1.14). Recall that this allows us to find the series representation of the

system after a change of variables directly via the initial series, without finding the form

of the system in the new variables. Therefore, manipulations over the system can be

reduced to purely algebraic procedures.

A number of questions concerning control-affine systems can be analyzed within the

well developed “combinatorics on words” [42, 47, 32, 33]. As an example, let us mention

a realizability problem. Namely, in contrast to the linear case, a set of vector coefficients

vm1...mk
defining a series of a system of the form (1.13) cannot be arbitrary. Let us give

an algebraic description of realizability conditions.

Consider the Lie algebra L freely generated by the same elements {ξi, i ≥ 0}, with

the Lie bracket

[`1, `2] = `1`2 − `2`1.

In these terms, the realizability theorem takes the following form [50]. Suppose a linear

map v : A → Rn satisfies the condition

v(L) = Rn. (1.17)

Recall that this is an accessibility condition, i.e., it guarantees that the set of those x0

for which the steering problem (1.13) is solvable has a nonempty interior, and the origin

belongs to the closure of this interior. Then the series (1.14) corresponds to a system of

the form (1.13) if and only if

‖vm1...mk
‖ ≤ k!C1C

m1+···+mk+k
2 , C1, C2 > 0,

and the following condition holds

if v(`) = 0 for ` ∈ L then v(`z) = 0 for any z ∈ A. (1.18)
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In other words, (1.18) means that the right ideal generated by Ker(v) ∩ L is contained

in Ker(v).

Now let us pass to the approximation problem. Due to the homogeneity property

ξm1...mk
(θ, u) = θm1+···+mk+kξm1...mk

(1, ũ), where ũ(t) = u(θt), t ∈ [0, 1],

it is natural to introduce the definition of the order of smallness as

ord(ξm1...mk
) = m1 + · · ·+mk + k.

This order generates the natural grading in A, defined as

A =

∞⊕
m=1

Am, where Am = Lin{ξm1...mk
: m1 + · · ·+mk + k = m}.

Consider a system of the form (1.13), and its series (1.14) (or, what is the same, the map

v : A → Rn); suppose (1.17) holds. Set Lm = L ∩ Am, and denote

Pm = {` ∈ Lm : v(`) ∈ v(L1 ⊕ · · · ⊕ Lm−1)}, m ≥ 1.

For convenience, denote Ae = A⊕R, assuming 1 ·a = a · 1 = a for any a ∈ Ae. Introduce

the right ideal generated by the sets Pm, i.e.,

J = Lin
{
`z : ` ∈

∞⊕
m=1

Pm, z ∈ Ae
}
.

Due to (1.17), the set
⊕∞

m=1 Pm is of codimension n in L. Choose any `1, . . . , `n ∈ L
such that

L = Lin{`1, . . . , `n}+

∞⊕
m=1

Pm;

without loss of generality suppose `i ∈ Lwi , i = 1, . . . , n, and w1 ≤ · · · ≤ wn. Finally,

introduce the inner product in A assuming that {ξm1...mk
} form an orthonormal basis.

The main “approximation theorem” can be formulated as follows [51]. There exists

a (real analytic) change of variables y = Q(x) such that in the new variables the series

of the system Ŝ(θ, u) = Q(S(θ, u)) is of the form

(Ŝ(θ, u))i = ˜̀
i(θ, u) + ρi(θ, u), i = 1, . . . , n,

where ˜̀i denotes the orthogonal projection of `i on the subspace J⊥, and ρi contains

terms of order greater than the order of `i, i.e., ρi ∈
⊕∞

m=wi+1Am. Hence, the series

SA of the form

(SA(θ, u))i = ˜̀
i(θ, u), i = 1, . . . , n,

can be considered as an approximation of the initial series S. Moreover, the series SA

is realizable, i.e., it corresponds to some system of the form (1.13); this system can be

considered as an approximation of the initial control system.

It can be shown that the linear subspace
⊕∞

m=1 Pm is a Lie subalgebra of L and,

moreover, can be an arbitrary Lie subalgebra of codimension n. Hence, the cited result

gives a complete description of all possible approximations of systems (1.13).

Notice also that, under some additional conditions, this approximation implies the

approximation in the sense of time optimality [51].
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1.2. Sketch of the main results. With reference to our approach and results men-

tioned in the previous subsection, the question arose about a connection of our appro-

ximation and the concept of a homogeneous approximation [12, 23, 24, 6, 3, 8, 4]. This

list of references is far from complete; during the last three decades several different

approaches to the above-mentioned problem were proposed and developed. The present

paper is conceived as an attempt to give an algebraic interpretation of the problem of

homogeneous approximation, and to clarify the relationship between the algebraic and

differential-geometric approaches. When comparing two approaches, it is natural to ap-

ply them to the same object. So, here we consider the Cauchy problem for control-linear

systems of the form (1.1), as it was done in [6]. In this case we also deal with a free

Lie algebra and a free associative algebra; however, unlike the algebras considered in

Subsection 1.1, they are generated by a finite number of generating elements.

Namely, along with a control-linear system of the form (1.1), we consider its endpoint

map, i.e., the operator EX1,...,Xm
(θ, ·) taking a control u = u(t) to the end point of the

trajectory of (1.1), so that EX1,...,Xm
(θ, u) = x(θ) (Subsection 2.1). By a homogeneous

approximation of system (1.1) we mean a system of the same form whose endpoint map

is homogeneous and approximates the endpoint map of the initial system as θ → 0; for

the precise definition see Subsection 3.1 (Definition 3.1). A substantial part of the results

of the present paper is connected with the algebraic description of this concept.

In Subsection 2.2 we discuss the series representation of the endpoint map. Series of

iterated integrals first proposed in [10] were adopted to the control theory context in

[17, 19, 20]. We start with the following representation of the map EX1,...,Xm
(θ, u), which

can be considered as a partial case of the result of M. Fliess [19],

EX1,...,Xm
(θ, u) =

∞∑
k=1

∑
1≤i1,...,ik≤m

ci1...ikηi1...ik(θ, u),

where

ηi1...ik(θ, u) =

∫ θ

0

∫ τ1

0

· · ·
∫ τk−1

0

ui1(τ1)ui2(τ2) · · ·uik(τk) dτk · · · dτ2 dτ1

are “iterated integrals” and ci1...ik are constant vector coefficients. In Subsection 2.3

we study iterated integrals and, in particular, show that for any θ > 0 the linear

span of iterated integrals forms a free algebra of functionals defined on the unit ball

of L∞([0, θ];Rm). This observation motivates introducing an abstract free associative

graded algebra F (over R) generated by m elements (letters) η1, . . . , ηm as the algebra of

words ηi1...ik = ηi1 · · · ηik with the natural gradation F =
⊕∞

k=1 Fk, where

Fk = Lin{ηi1...ik : 1 ≤ i1, . . . , ik ≤ m}, k ≥ 1.

By attaching the unity element 1 (the empty word), we get the algebra Fe = F+R. Then

the series for EX1,...,Xm
(θ, u) has its formal analogue, namely, the formal power series of

independent noncommutating variables η1, . . . , ηm with coefficients in Rn.

We also introduce the graded Lie algebra L =
⊕∞

k=1 Lk generated by the same m

elements η1, . . . , ηm with Lie bracket [`1, `2] = `1`2− `2`1. Since we are going to consider

series instead of systems, we describe transformations over series that correspond to
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changes of variables. In particular, this justifies the consideration of the shuffle product

operation xxy in Fe (Subsection 2.4), defined as 1xxya = axxy1 = a for any a ∈ Fe, and

recursively,

ηi1...ik xxyηj1...jr = (ηi1...ik−1
xxyηj1...jr )ηik + (ηi1...ik xxyηj1...jr−1

)ηjr , k, r ≥ 1.

This operation corresponds to the “usual product” of iterated integrals as functionals.

Discussions on properties of iterated integrals, the shuffle product, and their usage for

control systems can be found, for example, in [19], [2], [32], [21].

A concrete system of the form (1.1) is characterized by the linear map c : F → Rn
defined as c(ηi1...ik) = ci1...ik ; it, in turn, defines the core Lie subalgebra LX1,...,Xm ⊂ L
(Subsection 2.6) in the following way:

LX1,...,Xm
=

∞⊕
k=1

Pk,

where Pk = {` ∈ Lk : c(`) ∈ c(L1 ⊕ · · · ⊕ Lk−1)}, k ≥ 1.

The main achievements of the paper are based on the following observation: The core

Lie subalgebra LX1,...,Xm
(or, equivalently, the left ideal JX1,...,Xm

= Lin{FeLX1,...,Xm
},

see Subsection 4.1) contains all the information about a homogeneous approximation of

the system. For some additional discussion on core Lie subalgebras, see [25], [26].

In Section 3 we turn to studying homogeneous approximation. We restrict ourselves

to considering bracket generating systems, i.e., satisfying the Rashevsky–Chow condition

c(L) = Rn. First, we discuss differential-geometric concepts of [6], such as nonholonomic

derivatives, the order of a function, privileged coordinates, etc., interpreting them in terms

of the properties of the linear map c. In particular, the definition of privileged coordinates

requires using properties of the shuffle product. Here the central role is played by R. Ree’s

theorem [46] on a connection between the Lie algebra and the shuffle product. Namely,

we introduce the inner product in F so that {ηi1...ik} forms an orthonormal basis. Then

R. Ree’s Theorem says that

L = (F xxyF)⊥,

where ⊥ denotes orthogonal complement. This theorem allows us to clarify the algebraic

sense of privileged coordinates and to propose a way for constructing them (Subsec-

tion 3.4).

In Section 4 we give an algebraic interpretation for the concepts mentioned in Sec-

tion 3. First, generalizing R. Ree’s theorem, we study the properties of the left ideal

JX1,...,Xm
= Lin{FeLX1,...,Xm

} [51, 55, 54]. It is shown that this ideal gives a description

of a principal part of the series representation. Namely, we obtain the “approximation

theorem” (Theorems 4.21 and 4.22), which can be briefly formulated as follows: The

endpoint map of a system of the form (1.1) can be reduced (by a polynomial change of

coordinates) to the form (
EX̂1,...,X̂m

)
i

= ˜̀
i + ρ̂i, i = 1, . . . , n,

where elements `i ∈ Lwi are such that

L = Lin{`1, . . . , `n}+ LX1,...,Xm
,
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˜̀
i denotes the orthogonal projection of `i onto the subspace J⊥X1,...,Xm

, ρ̂i ∈
⊕∞

j=wi+1 F j .
(Here X̂1, . . . , X̂m denote vector fields on the right hand side of the system in the new

coordinates.) Another way of constructing the principal part is to use the basis which is

dual to the Poincaré–Birkhoff–Witt basis of F (Subsection 4.4). We also give a description

of all privileged coordinates [53], i.e., the coordinates in which such a representation holds

(Subsection 4.7).

The “series” E with coordinates Ei = ˜̀
i can be considered as a principal part of the

endpoint map EX̂1,...,X̂m
. If this series is realized as a control-linear system then such a

system can be considered as an approximation of the initial system. In Section 5 we con-

sider the realizability problem [18, 28, 29, 30] and show that the above-mentioned series

can be realized as a control-linear system. Therefore, the core Lie subalgebra LX1,...,Xm

(or, what is the same, the left ideal JX1,...,Xm) really defines a homogeneous approxima-

tion of the system. We propose an algebraic definition for a homogeneous approximation

(Subsection 5.2, Definition 5.9, and Remark 5.10). Namely, the “approximation” property

means that two systems have the same core Lie subalgebra whereas the “homogeneous”

property means that c(LX1,...,Xm) = 0. In particular, this implies that the homogeneous

approximation is unique, up to a (polynomial homogeneous) change of variables. More-

over, we show that a core Lie subalgebra can be an arbitrary graded Lie subalgebra of

codimension n, which gives a complete algebraic classification of possible homogeneous

approximations (Remark 5.11).

Section 6 is devoted to the important particular cases, namely, regular systems and

homogeneous systems. Recall that v = (v1, . . . , vp) is called the growth vector of the

system (at the origin) if vk = dim c(L1 ⊕ · · · ⊕ Lk), k = 1, . . . , p, and vp = n. We

consider the growth vectors at all points of a certain neighborhood U(0) of the origin.

A system is called regular if its growth vector is constant in U(0). We show that the

core Lie subalgebra LX1,...,Xm
of a regular system is a Lie ideal (Lemma 6.4) or, what

is the same, its left ideal JX1,...,Xm
is two-sided (Lemma 6.6). The converse is true for

homogeneous systems: if a system is homogeneous and its core Lie subalgebra is a Lie

ideal then this system is regular (Theorem 6.13). As is shown in Subsection 6.3, for a

homogeneous system one can find its series representation at any point using only the

information on its core Lie subalgebra LX1,...,Xm
(Lemma 6.11).

Finally, in Section 7 we study the connection between the homogeneous approxima-

tion, the sub-Riemannian metrics [6, 41, 7, 31], and the time optimality. Namely, we

consider the time-optimal control problem for a control-linear system of the form

ẋ =

m∑
i=1

ui(t)Xi(x), x(0) = 0, x(θ) = s,

m∑
i=1

u2i (t) ≤ 1, θ → min .

First, we prove that time-optimal controls u∗(t) satisfy the equality
∑m
i=1 u

∗ 2
i (t) = 1

a.e. (see Theorem 7.1). (This property is commonly accepted, but we could not find a

complete and rigorous proof in the literature.) This theorem allows us to give a partial

answer to the question analogous to the open problem proposed in [52] (see Remark 7.19).

Since the time-optimal control also minimizes the length functional (Corollary 7.2), the

optimal time coincides with the sub-Riemannian distance from the origin to the point s.
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In Subsection 7.3 we introduce the concept of approximation in the sense of time op-

timality (Definition 7.16); one of the requirements of this definition, in essence, implies

approximation in the sense of sub-Riemannian metrics. The main result of Section 7 is

Theorem 7.17 describing conditions under which the homogeneous approximation of a

control-linear system approximates it in the sense of time optimality.

Finally, we mention that the results of Sections 2, 4, and 5 that belong to the authors

of the present paper are based on the original approach proposed in [49] and [51] for the

case of control-affine systems; they can be found in [50], [53], [54], [25]. The results of

Sections 6 and 7 (except Subsection 7.1) are mainly new.

2. Series method in a local analysis of control-linear systems

2.1. Endpoint map. In this paper we consider the class of control-linear systems of the

form

ẋ =

m∑
i=1

uiXi(x), x ∈ U(0) ⊂ Rn, u1, . . . , um ∈ R, (2.1)

where X1(x), . . . , Xm(x) are real analytic vector fields in a neighborhood of the origin

U(0) ⊂ Rn. Below we are mainly interested in the behavior of trajectories of system (2.1)

starting at the origin,

x(0) = 0. (2.2)

For any θ > 0, by L∞([0, θ];Rm) we denote the space of measurable and almost

everywhere bounded vector functions u(t) = (u1(t), . . . , um(t)), t ∈ [0, θ], with the norm

‖u‖ = ess sup
t∈[0,θ]

√√√√ m∑
i=1

u2i (t).

By Bθ we denote the unit ball of the space L∞([0, θ];Rm),

Bθ =
{
u(t) = (u1(t), . . . , um(t)) ∈ L∞([0, θ];Rm) :

m∑
i=1

u2i (t) ≤ 1 a.e., t ∈ [0, θ]
}
.

Throughout the paper we consider systems of the form (2.1) with controls u ∈ Bθ, θ > 0.

If the vector fields X1(x), . . . , Xm(x) are fixed then there exists T0 > 0 such that for any

θ ∈ (0, T0) trajectories of (2.1)–(2.2) corresponding to such controls are well defined.

Now we introduce one of the central concepts of this section.

Definition 2.1. For any θ ∈ (0, T0) and u ∈ Bθ, denote by x(t;u) the solution of the

Cauchy problem (2.1)–(2.2). Suppose the mapping EX1,...,Xm
takes a pair (θ, u) to the

end point of the trajectory, i.e.,

EX1,...,Xm(θ, u) = x(θ;u).

We call EX1,...,Xm the endpoint map (at the origin) of system (2.1).

In the present paper we study local (for small θ) properties of this map.
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2.2. Series representation. We begin with a representation of EX1,...,Xm(θ, u) depend-

ing on θ and u, and not including a trajectory x(t;u). Such representations, which gen-

eralize the well-known Cauchy formula for linear differential equations, were proposed

by V. Volterra and developed by N. Wiener who used series of multidimensional inte-

grals to describe the response of nonlinear systems. Discussion of different approaches

can be found in [9, 22, 40, 1, 56, 27, 13, 57, 35, 21]. For control-affine systems, M. Fliess

[17, 19, 20] proposed to apply the Chen series [10]. This leads to the following theorem

which is a partial case of the result of M. Fliess [19].

Theorem 2.2 (M. Fliess [19]). Consider a system of the form (2.1) and suppose that

the vector fields X1, . . . , Xm are real analytic in a neighborhood of the origin. Then there

exists T ∈ (0, T0] such that the endpoint map is represented in the form of a series

EX1,...,Xm
(θ, u) =

∞∑
k=1

∑
1≤i1,...,ik≤m

ci1...ikηi1...ik(θ, u), (2.3)

which is absolutely convergent for any θ ∈ (0, T ) and any u ∈ Bθ, where

ηi1...ik(θ, u) =

∫ θ

0

∫ τ1

0

· · ·
∫ τk−1

0

ui1(τ1)ui2(τ2) · · ·uik(τk) dτk · · · dτ2 dτ1 (2.4)

are “iterated integrals” and ci1...ik are constant vector coefficients that can be found by

ci1...ik = Xik · · ·Xi1E(0), (2.5)

where E(x) = x is the identity map.

Remark 2.3. On the right hand side of (2.5), we regard the vector fields Xi as the

differential operators of the first order defined as Xiψ = ψ′xXi. Then a composition of k

such operators Xik · · ·Xi1 is the differential operator of order k. Throughout this paper

we consider such operators as acting on vector functions, assuming that this action is

componentwise. We defer the detailed discussion to Subsection 2.5.

Remark 2.4. Equality (2.4) says that iterated integrals depend on θ and u. To be more

precise, below we consider them as functionals of u for any fixed θ. We discuss the exact

sense of the iterated integrals in Subsection 2.3.

Remark 2.5. Let us clarify the convergence of the series more specifically. Since the

vector fields X1, . . . , Xm are real analytic, there exist positive constants C1 and C2 such

that the estimates ‖ci1...ik‖ ≤ C1C
k
2 k! hold. Since |ηi1...ik(θ, u)| ≤ 1

k!θ
k for any u ∈ Bθ,

for any k ≥ 1 we get∥∥∥ ∑
1≤i1,...,ik≤m

ci1...ikηi1...ik(θ, u)
∥∥∥ ≤ C1(mC2θ)

k. (2.6)

Hence, the series in (2.3) is absolutely convergent if mC2θ < 1. This gives the condition

for T , namely, T < 1
mC2

. Below, without loss of generality, we assume T = T0.

For the sake of completeness, we give a sketch of the proof of Theorem 2.2. The main

goal here is to show that the proof does not require any special methods and additional

concepts. For brevity, we write Xik · · ·Xi1(x) instead of Xik · · ·Xi1E(x).
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Suppose θ > 0 is sufficiently small, a control u(t) is fixed, and x(t) = x(t;u) is the

solution of the Cauchy problem (2.1)–(2.2). Integrating (2.1) with respect to t from 0 to

θ and taking into account (2.2), we get

x(θ) =

m∑
i=1

∫ θ

0

Xi(x(t))ui(t) dt. (2.7)

Note that

d

dt
Xi(x(t)) = (Xi(x(t)))′xẋ(t) =

m∑
j=1

(Xi(x(t)))′xXj(x(t))uj(t) =
m∑
j=1

XjXi(x(t))uj(t)

and

ui(t) = − d

dt

∫ θ

t

ui(τ) dτ.

Then, integrating by parts the right hand side of (2.7), we get

x(θ) =

m∑
i=1

(
−Xi(x(t))

∫ θ

t

ui(τ) dτ
∣∣∣θ
0
+

∫ θ

0

m∑
j=1

XjXi(x(τ1))uj(τ1)

∫ θ

τ1

ui(τ2) dτ2 dτ1

)
=

m∑
i=1

ciηi(θ, u) +
∑

1≤i1,i2≤m

∫ θ

0

Xi2Xi1(x(τ1))ui2(τ1)

∫ θ

τ1

ui1(τ2) dτ2 dτ1.

We can repeat the described procedure, integrating by parts the second term on the right

hand side of the last equality, and so on. After q such steps we obtain

x(θ) =

q∑
k=1

∑
1≤i1,...,ik≤m

ci1...ikηi1...ik(θ, u) +Rq(θ, u),

where

Rq(θ, u)

=
∑

1≤i1,...,iq+1≤m

∫ θ

0

∫ θ

τ1

· · ·
∫ θ

τq

Xiq+1 · · ·Xi1(x(τ1))uiq+1(τ1) · · ·ui1(τq+1) dτq+1 · · · dτ2 dτ1.

By use of the analyticity of the vector fields X1, . . . , Xm, it is not hard to prove that

Rq(θ, u)→ 0 as q →∞ for any sufficiently small θ > 0 and any u ∈ Bθ. This completes

the proof of Theorem 2.2.

Let us briefly discuss representation (2.3). The right hand side of (2.3) includes “ob-

jects” of two kinds. The objects of the first kind are the constant coefficients—vectors

in Rn—of the form (2.5). They are determined by the vector fields X1, . . . , Xm (more

precisely, by the values of these vector fields and their derivatives at the origin) and,

moreover, they depend on local coordinates. The objects of the second kind are the it-

erated integrals (2.4). They are “completely independent” in the sense that they are the

same for all systems of the form (2.1). It turns out that the set of iterated integrals can

be regarded as a free associative algebra; we introduce it in the next subsection.

2.3. Iterated integrals and free associative algebras. Let us now introduce the

exact definition of iterated integrals.
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Definition 2.6. For θ > 0, k ≥ 1, and 1 ≤ i1, . . . , ik ≤ m, consider the functional

ηi1...ik(θ, ·) : Bθ → R that takes each control u ∈ Bθ to the number ηi1...ik(θ, u) defined

by (2.4). This functional is called an iterated integral [19].

Note that the linear span (over R) of all iterated integrals equipped with the concate-

nation product operation

ηi1...ik(θ, ·) ∨ ηj1...js(θ, ·) = ηi1...ikj1...js(θ, ·)

forms an associative algebra. Moreover, one-dimensional integrals ηi(θ, ·), i = 1, . . . ,m,

can be considered as the generators of this algebra, so one can write

ηi1...ik(θ, ·) = ηi1(θ, ·) ∨ · · · ∨ ηik(θ, ·).

Here we use ∨ to avoid confusing concatenation with multiplication of integrals as real

numbers (when u ∈ Bθ is substituted).

In this subsection we give the exact definition of this algebra and discuss some of its

properties.

Below we often deal with controls defined on different intervals. For the sake of con-

venience, let us adopt the following notation.

Notation 2.7. By definition, for any α > 0 and any u(t), t ∈ [0, β], set uα(t) = u(αt),

t ∈ [0, β/α].

In particular, for any θ > 0 one has u(t) = uθ(t/θ). Taking this into account, let us

rewrite an iterated integral of the form (2.4) in the following way:

ηi1...ik(θ, u) =

∫ θ

0

∫ τ1

0

· · ·
∫ τk−1

0

ui1(τ1)ui2(τ2) · · ·uik(τk) dτk · · · dτ2 dτ1

=

∫ θ

0

∫ τ1

0

· · ·
∫ τk−1

0

uθi1

(
τ1
θ

)
uθi2

(
τ2
θ

)
· · ·uθik

(
τk
θ

)
dτk · · · dτ2 dτ1

= θk
∫ 1

0

∫ τ1

0

· · ·
∫ τk−1

0

uθi1(τ1)uθi2(τ2) · · ·uθik(τk) dτk · · · dτ2 dτ1

= θkηi1...ik(1, uθ).

This equality holds for any u ∈ Bθ or, what is the same, for any uθ ∈ B1. In other words,

for any θ > 0 and any u ∈ B1 we have

ηi1...ik(θ, u1/θ) = θkηi1...ik(1, u).

Hence, k equals the asymptotic order of the iterated integral ηi1...ik(θ, u1/θ) with respect

to θ as θ → 0 for any fixed control u ∈ B1 such that ηi1...ik(1, u) 6= 0. This justifies the

following

Definition 2.8. We say that k is the order of the iterated integral ηi1...ik(θ, ·).

Notice that this notion of order corresponds to the order in which the terms of the

series (2.3) are added.

Definition 2.9. Suppose θ > 0 is fixed. Consider the associative algebra Fθ of function-

als (over R)

Fθ = Lin{ηi1...ik(θ, ·) : k ≥ 1, 1 ≤ i1, . . . , ik ≤ m},
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with the product operation

ηi1...ik(θ, ·) ∨ ηj1...js(θ, ·) = ηi1...ikj1...js(θ, ·).

We call Fθ the Fliess algebra or the algebra of iterated integrals. One-dimensional integrals

ηi(θ, ·), i = 1, . . . ,m, are the generators of Fθ. The natural filtration is given by the

sequence of subspaces
∑q
k=1 Fkθ , q ≥ 1, where

Fkθ = Lin{ηi1...ik(θ, ·) : 1 ≤ i1, . . . , ik ≤ m}, k ≥ 1.

The main observation here is that this associative algebra is free [19]. Before proving

this claim, let us give some preliminary remarks. Suppose the control u1(t), t ∈ [0, θ1],

steers the origin to the point z, and the control u2(t), t ∈ [0, θ2], steers the point z to the

point x. More precisely, the solution x1(t) of the Cauchy problem

ẋ =

m∑
i=1

u1i (t)Xi(x), x(0) = 0,

satisfies the condition x1(θ1) = z, and the solution x2(t) of the Cauchy problem

ẋ =

m∑
i=1

u2i (t)Xi(x), x(0) = z,

satisfies x2(θ2) = x. Let us denote by u1 ◦ u2 the concatenation of controls u1(t) and

u2(t) defined by

(u1 ◦ u2)(t) =

{
u1(t) for t ∈ [0, θ1],

u2(t− θ1) for t ∈ (θ1, θ1 + θ2].
(2.8)

Then, obviously, the control u1 ◦u2 steers the origin to the point x, i.e., the solution x3(t)

of the Cauchy problem

ẋ =

m∑
i=1

(u1 ◦ u2)i(t)Xi(x), x(0) = 0,

satisfies the condition x3(θ1 + θ2) = x.

Lemma 2.10. For any controls u1 ∈ Bθ
1

and u2 ∈ Bθ
2

, and any iterated integral, the

following identity holds:

ηi1...ik(θ1 + θ2, u1 ◦ u2) =

k∑
j=0

ηi1...ij (θ2, u2) ηij+1...ik(θ1, u1),

where for any θ and u it is assumed that ηis...iq (θ, u) = 1 if s > q.

Proof. Denote u = u1 ◦ u2. Consider the integration domain for ηi1...ik(θ1 + θ2, u); it is a

simplex in Rk. Note that it can be represented as the union of k + 1 polyhedrons

{(τ1, . . . , τk) : 0 ≤ τk ≤ · · · ≤ τ1 ≤ θ1 + θ2}

=

k⋃
j=0

{(τ1, . . . , τk) : 0 ≤ τk ≤ · · · ≤ τj+1 ≤ θ1 ≤ τj ≤ · · · ≤ τ1 ≤ θ1 + θ2}
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with pairwise nonintersecting interiors. Moreover, each polyhedron equals the Cartesian

product of two simplices. Hence, ηi1...ik(θ1 + θ2, u) equals the sum (over j = 0, . . . , k)

of the integrals∫ θ1+θ2

θ1
· · ·
∫ τj−1

θ1

∫ θ1

0

· · ·
∫ τk−1

0

ui1(τ1) · · ·uik(τk) dτk · · · dτ1

=

(∫ θ1+θ2

θ1
· · ·
∫ τj−1

θ1
ui1(τ1) · · ·uij (τj) dτj · · · dτ1

)
×
(∫ θ1

0

· · ·
∫ τk−1

0

uij+1(τj+1) · · ·uik(τk) dτk · · · dτj+1

)
.

Taking into account (2.8), we rewrite this expression as ηi1...ij (θ2, u2)ηij+1...ik(θ1, u1).

Now we are ready to prove the following result.

Lemma 2.11 ([19]). Let θ > 0 be fixed. Suppose∑
k≥1, 1≤i1,...,ik≤m

αi1...ikηi1...ik(θ, u) = 0 (2.9)

for all u ∈ Bθ, where αi1...ik ∈ R and only a finite number of terms on the left hand side

are nonzero. Then all coefficients αi1...ik on the left hand side vanish.

As a consequence, for any θ > 0 the algebra Fθ is free, and the representation Fθ =∑∞
k=1 Fkθ defines a graded structure.

Proof. Below we use the equality ηi1...ik(T, u) = T kηi1...ik(1, uT ), which holds for any

T > 0. Notice that here u ranges over the set BT iff uT ranges over B1.

First, for any τ ∈ [0, θ] consider an arbitrary control u ∈ Bθ such that u(t) = 0

for t ∈ [τ, θ]. Then ηi1...ik(θ, u) = ηi1...ik(τ, u) = τkηi1...ik(1, uτ ) for arbitrary uτ ∈ B1.

Hence, (2.9) implies∑
k≥1

τk
∑

1≤i1,...,ik≤m

αi1...ikηi1...ik(1, u) = 0, u ∈ B1.

For any fixed u ∈ B1, the left hand side is a polynomial in τ ∈ [0, θ], hence for any k ≥ 1,∑
1≤i1,...,ik≤m

αi1...ikηi1...ik(1, u) = 0, u ∈ B1. (2.10)

Thus, the statement of the lemma is reduced to the following claim: if (2.10) holds

for all u ∈ B1 then αi1...ik = 0 for all 1 ≤ i1, . . . , ik ≤ m.

We prove this claim by induction on k. For k = 1, the proof is clear. For any k ≥ 2,

suppose that the equality∑
1≤i1,...,ik−1≤m

α̃i1...ik−1
ηi1...ik−1

(1, u) = 0, u ∈ B1,

yields α̃i1...ik−1
= 0 for all 1 ≤ i1, . . . , ik−1 ≤ m. Take an arbitrary t > 0 and two controls

u1 ∈ B1 and u2 ∈ Bt. It follows from (2.10) that∑
1≤i1,...,ik≤m

αi1...ikηi1...ik(T, u) = 0, u ∈ BT ,
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for any T > 0. Hence, setting T = 1 + t and u = u1 ◦ u2, and applying Lemma 2.10,

we get ∑
1≤i1,...,ik≤m

αi1...ikηi1...ik(1 + t, u1 ◦ u2)

=
∑

1≤i1,...,ik≤m

αi1...ik

k∑
j=0

ηi1...ij (t, u2)ηij+1...ik(1, u1)

=
∑

1≤i1,...,ik≤m

αi1...ik

k∑
j=0

tjηi1...ij (1, (u2)t)ηij+1...ik(1, u1) = 0.

Denote u3 = (u2)t ∈ B1. Then the last equality can be rewritten as
k∑
j=0

tj
∑

1≤i1,...,ik≤m

αi1...ikηi1...ij (1, u3) ηij+1...ik(1, u1) = 0, u1, u3 ∈ B1.

For any fixed u1, u3 ∈ B1 the left hand side is a polynomial in t, hence, in particular,∑
1≤i1,...,ik≤m

αi1...ikηi1...ik−1
(1, u3) ηik(1, u1) = 0, u1, u3 ∈ B1.

For any fixed u1 ∈ B1 we can rewrite this equality as∑
1≤i1,...,ik−1≤m

( ∑
1≤ik≤m

αi1...ikηik(1, u1)
)
ηi1...ik−1

(1, u3)

=
∑

1≤i1,...,ik−1≤m

α̃i1...ik−1
ηi1...ik−1

(1, u3) = 0.

Hence, by the induction assumption,

α̃i1...ik−1
=

∑
1≤ik≤m

αi1...ikηik(1, u1) = 0, u1 ∈ B1,

and therefore αi1...ik = 0.

Corollary 2.12. Let θ > 0 be fixed. Suppose
∞∑
k=1

∑
1≤i1,...,ik≤m

αi1...ikηi1...ik(θ, u) = 0 (2.11)

for all u ∈ Bθ, where αi1...ik ∈ R satisfy the estimate |αi1...ik | ≤ C1C
k
2 k!, C1, C2 > 0,

mC2θ < 1. Then all coefficients αi1...ik on the left hand side vanish.

As a consequence, the representation of the endpoint map EX1,...,Xm
(θ, u) in the form

of a series of iterated integrals is unique.

Proof. As in the proof of the previous lemma, for any τ ∈ [0, θ] consider arbitrary controls

u ∈ Bθ such that u(t) = 0 for t ∈ [τ, θ]. Then (2.11) implies that for any fixed u ∈ B1,
∞∑
k=1

τk
∑

1≤i1,...,ik≤m

αi1...ikηi1...ik(1, u) = 0,

i.e., the convergent power series in τ vanishes. Hence, for any k ≥ 1,∑
1≤i1,...,ik≤m

αi1...ikηi1...ik(1, u) = 0, u ∈ B1,

where the sum on the left hand side is finite. Now the statement follows from Lem-

ma 2.11.
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Thus, due to Lemma 2.11, the algebra of functionals Fθ is free (for any θ > 0).

This motivates introducing an abstract free associative graded algebra generated by m

elements. Namely, let us consider the set of m abstract free elements called letters ; we

denote them by η1, . . . , ηm. Strings of letters are called words; we denote them by ηi1...ik =

ηi1 · · · ηik . In the set of words, the natural concatenation operation is introduced:

ηi1...ik · ηj1...js = ηi1...ikj1...js .

Below we usually omit the sign of this operation.

All finite linear combinations of words (over R) form a free associative algebra with

the natural gradation F =
⊕∞

k=1 Fk, where the homogeneous subspace Fk is defined as

the linear span of products of k generators,

Fk = Lin{ηi1...ik = ηi1 · · · ηik : 1 ≤ i1, . . . , ik ≤ m}, k ≥ 1. (2.12)

Then F is naturally isomorphic to Fθ for any θ > 0.

Notation 2.13. By F we denote a free associative algebra (over R) with m (abstract)

generators η1, . . . , ηm and the natural gradation F =
⊕∞

k=1 Fk, where the homogeneous

subspaces Fk are given by (2.12).

In other words, F is the associative R-algebra of formal noncommuting polynomi-

als of m independent variables. Lemma 2.11 implies that the algebras Fθ and F are

isomorphic.

Sometimes it is convenient to supplement the algebra F with the unity element 1

(which can be thought of as the empty word) and consider the algebra

Fe = F + R

assuming 1 · a = a · 1 = a for any a ∈ Fe. Throughout the paper we assume ηip...iq = 1 if

p > q.

Taking into account the graded structure, we introduce the following convenient def-

inition.

Definition 2.14. We say that an element a ∈ F is of order k and write ord(a) = k iff

a ∈ Fk. If an element is of some order, we say that it is homogeneous.

We also introduce the free Lie algebra L which is generated by the same set of gen-

erators η1, . . . , ηm with bracket [`1, `2] = `1`2 − `2`1. (Notice that F is the universal

enveloping for L.) It inherits the gradation L =
⊕∞

k=1 Lk, where Lk = L ∩ Fk, k ≥ 1.

The Lie algebra L will play an important role in our further constructions.

Remark 2.15. Below we systematically consider formal power series of elements of F
over R or Rn. Namely, if the sum in a =

∑
αi1...ikηi1...ik (where the coefficients αi1...ik

are from R or Rn) is taken over an infinite set of indices, we mean that a is a formal

power series.

Thus, along with the endpoint map and its series representation (2.3), we can consider

its “abstract analog”, the formal power series (with coefficients in Rn) of elements of F



Free algebras and noncommutative power series in nonlinear control problems 23

of the form

EX1,...,Xm =

∞∑
k=1

∑
1≤i1,...,ik≤m

ci1...ikηi1...ik . (2.13)

Remark 2.16. Corollary 2.12 implies that there exists a unique formal power series

(2.13) corresponding to the endpoint map EX1,...,Xm
(θ, u), i.e., to the Cauchy problem

(2.1)–(2.2). A description of all such formal power series is given in Section 5.

2.4. Changes of variables and shuffles. Notice that a change of variables in sys-

tem (2.1) leads to some transformation of the series representation of the endpoint map.

Namely, suppose we know the series representation

EX1,...,Xm
(θ, u) =

∞∑
k=1

∑
1≤i1,...,ik≤m

ci1...ikηi1...ik(θ, u),

where ci1...ik are constant vector coefficients. Clearly, this representation (due to Corol-

lary 2.12) coincides with (2.3), however, here we “forget” that the coefficients ci1...ik can

be found via the vector fields X1, . . . , Xm by formula (2.5).

Suppose y = Q(x) is a real analytic change of variables defined in a neighborhood of

the origin and such that Q(0) = 0. Then in the new coordinates the initial system takes

the form

ẏ =

m∑
i=1

uiX̂i(y), y ∈ Û(0) ⊂ Rn, (2.14)

where X̂i(y) = Q′(x)Xi(x)|x=Q−1(y), i = 1, . . . ,m. For any sufficiently small θ > 0 and

any u ∈ Bθ, we get

EX̂1,...,X̂m
(θ, u) = Q(EX1,...,Xm(θ, u)).

Let us find the series representation for the endpoint map EX̂1,...,X̂m
(θ, u) of the system in

the new variables (2.14). We are going to do this without using the explicit form of the vec-

tor fields X̂i(y). Instead, let us expand Q into a Taylor series, Q(x) =
∑∞
q=1

1
q!Q

(q)(0)xq,

where, for brevity, we use the notation

Q(q)(0)xq =
∑

j1+···+jn=q

q!

j1! · · · jn!

∂j1+···+jnQ(0)

∂xj11 · · · ∂x
jn
n

xj11 · · ·xjnn .

Then we get the representation

EX̂1,...,X̂m
(θ, u) = Q(EX1,...,Xm(θ, u)) =

∞∑
q=1

1

q!
Q(q)(0)(EX1,...,Xm(θ, u))q

=
∑

αj1...jn
i11...i

1
k1
...in1 ...i

n
kn

(ηi11...i1k1
(θ, u))j1 · · · (ηin1 ...inkn

(θ, u))jn , (2.15)

where

αj1...jn
i11...i

1
k1
...in1 ...i

n
kn

=
1

j1! · · · jn!

∂j1+···+jnQ(0)

∂xj11 · · · ∂x
jn
n

(ci11...i1k1
)j11 · · · (cin1 ...inkn

)jnn ,

(v)i denotes the ith component of the vector v ∈ Rn, and the last sum in (2.15) is taken

over all j1, . . . , jn ≥ 0, all k1, . . . , kn ≥ 1, and all 1 ≤ i11, . . . , i
n
kn
≤ m. (Here we do not

care about convergence, because we are only interested in formal transformations; the
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convergence of the resulting series is guaranteed by the analyticity of the vector fields

X1, . . . , Xm and the map Q.)

Now we are going to represent EX̂1,...,X̂m
(θ, u) as a series of iterated integrals with

constant vector coefficients. To this end, we need to express products of iterated integrals

as linear combinations of such integrals.

Let us calculate the product of two iterated integrals. Notice that

ηp1...pq (θ, u) =

∫
0≤τq≤···≤τ1≤θ

q∏
j=1

upj (τj) dτ1 · · · dτq.

So, we have

ηi1...ik(θ, u)ηik+1...ik+r
(θ, u)

=

∫
0≤τk≤···≤τ1≤θ

k∏
j=1

uij (τj) dτ1 · · · dτk
∫
0≤τk+r≤···≤τk+1≤θ

r∏
j=k+1

uij (τj) dτk+1 · · · dτk+r.

(2.16)

In order to multiply two integrals over the domains 0 ≤ τk ≤ · · · ≤ τ1 ≤ θ and 0 ≤ τk+r ≤
· · · ≤ τk+1 ≤ θ, we should “shuffle” two sets of variables {τ1, . . . , τk} and {τk+1, . . . , τk+r}
in all possible ways, preserving the “interior order” in each set. The following definition

is useful.

Definition 2.17. The sequence (j1, . . . , jk+r) is called a shuffle permutation of the se-

quences (1, . . . , k) and (k+1, . . . , k+r) if it is a permutation of the sequence (1, . . . , k+r)

and possesses the following property:

if 1 ≤ jp < jq ≤ k or k + 1 ≤ jp < jq ≤ k + r, then p < q.

We denote by Sk,r the set of all such shuffle permutations.

Taking into account this definition, we obtain∫
0≤τk≤···≤τ1≤θ

k∏
j=1

uij (τj) dτ1 · · · dτk
∫
0≤τk+r≤···≤τk+1≤θ

r∏
j=k+1

uij (τj) dτk+1 · · · dτk+r

=
∑

(j1,...,jk+r)∈Sk,r

∫
0≤τjk+r

≤···≤τj1≤θ

k+r∏
q=1

uijq (τjq ) dτjk+r
· · · dτj1 .

Hence, (2.16) gives

ηi1...ik(θ, u)ηik+1...ik+r
(θ, u) =

∑
(j1,...,jk+r)∈Sk,r

ηij1 ...ijk+r
(θ, u). (2.17)

In an associative algebra, the corresponding operation is called the shuffle product [14,

46, 10, 2].

Definition 2.18. The shuffle product xxy in F is defined by the rule

ηi1...ik xxyηik+1...ik+r
=

∑
(j1,...,jk+r)∈Sk,r

ηij1 ...ijk+r
.

This operation is commutative and associative.
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Note that commutativity and associativity follow immediately from (2.17).

Thus, the “usual product” of iterated integrals as functionals corresponds to the shuffle

product in the abstract algebra. One can express this statement as follows:

ηi1...ik(θ, u)ηs1...sr (θ, u) = (ηi1...ik xxyηs1...sr )(θ, u),

where on the right hand side we mean that first, one finds the shuffle product of abstract

elements ηi1...ik and ηs1...sr in F , and then replaces the resulting element of F by the

corresponding element of Fθ.
From the practical point of view, it is more convenient to use another way of finding the

shuffle product. It is convenient to extend the shuffle product to the algebra Fe assuming

1xxya = axxy1 = a for any a ∈ Fe. Then it can be easily proved that Definition 2.18 is

equivalent to the following

Definition 2.19. The shuffle product in F is defined by the recurrent formula

ηi1...ik xxyηj1...jr = (ηi1...ik−1
xxyηj1...jr )ηik + (ηi1...ik xxyηj1...jr−1

)ηjr , k, r ≥ 1, (2.18)

or, which gives the same,

ηi1...ik xxyηj1...jr = ηi1(ηi2...ik xxyηj1...jr ) + ηj1(ηi1...ik xxyηj2...jr ), k, r ≥ 1. (2.19)

These formulas admit the following generalization, which can also be easily obtained

from Definition 2.18.

Lemma 2.20. For any 0 ≤ s ≤ k + r,

ηi1...ik xxyηj1...jr =
∑

0≤q≤k, 0≤t≤r
q+t=s

(ηi1...iq xxyηj1...jt)(ηiq+1...ik xxyηjt+1...jr ). (2.20)

With this concept in hand, let us return to transformations of the endpoint map.

Recall that the representation of the endpoint map in the form of a series of iterated

integrals is unique due to Corollary 2.12. Hence, Remark 2.16 and (2.15) give the following

description of the formal power series EX̂1,...,X̂m
:

EX̂1,...,X̂m
= Q(EX1,...,Xm

) =

∞∑
q=1

1

q!
Q(q)(0)(EX1,...,Xm

)xxyq

=

∞∑
q=1

∑
j1+···+jn=q

1

j1! · · · jn!

∂j1+···+jnQ(0)

∂xj11 · · · ∂x
jn
n

(EX1,...,Xm)xxyj1
1 xxy · · · xxy (EX1,...,Xm)xxyjn

n , (2.21)

where the shuffle product of series is calculated termwise and axxyq denotes the shuffle

q-power of a, that is, axxyq = axxy · · · xxya (q times) for q ≥ 1, axxy0 = 1. We will return to

this representation later.

Here and further, when applying a real analytic transformation to a series of elements

of F , we mean that all polynomials are regarded as shuffle polynomials.

Example 2.21. Consider the system with two controls

ẋ1 = u1,

ẋ2 = x1u2,

ẋ3 = 1
6x

3
1u2.

(2.22)
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First, let us find the series representation (2.3) for the endpoint map EX1,X2 . Since the

system is feedforward (i.e., the kth component of Xi depends only on x1, . . . , xk−1), we

can find this representation immediately, by integrating all these equations one by one.

Taking into account that x(0) = 0, we get

x1(t) =

∫ t

0

u1(τ) dτ,

x2(t) =

∫ t

0

x1(τ1)u2(τ1) dτ1 =

∫ t

0

∫ τ1

0

u1(τ2)u2(τ1) dτ2 dτ1,

x3(t) =
1

6

∫ t

0

x31(τ1)u2(τ1) dτ1 =
1

6

∫ t

0

(∫ τ1

0

u1(τ2) dτ2

)3
u2(τ1) dτ1

=

∫ t

0

∫ τ1

0

∫ τ2

0

∫ τ3

0

u1(τ2)u1(τ3)u1(τ4)u2(τ1) dτ4 dτ3 dτ2 dτ1.

Taking into account the definition (2.4) of iterated integrals, we get

EX1,X2 =

 η1
η21
η2111

.
Equivalently, it can be easily checked that all vectors (2.5) vanish except c1 = e1, c21 = e2,

and c2111 = e3.

Now, let us demonstrate how the series representation transforms under a change of

variables. For example, consider

y = Q(x) =

 x1
x2 − x22
x3

.
Then the series representation of the system in the new variables can be found directly,

without finding the vector fields X̂1 and X̂2,

EX̂1,X̂2
= Q(EX1,X2

) =

 η1
η21 − η21 xxyη21

η2111

 =

 η1
η21 − 2η2121 − 4η2211

η2111

.
Let us write the system in the new variables. Obviously, x1 = y1 and x3 = y3. Let us

find x2 from the equation y2 = x2−x22. Since the change of variables maps a neighborhood

of the origin to a neighborhood of the origin, we get x2 = 1
2 (1−

√
1− 4y2). Hence,

ẏ1 = u1,

ẏ2 = y1u2 − 2y1u2
(
1
2 (1−

√
1− 4y2)

)
= y1
√

1− 4y2 u2,

ẏ3 = 1
6y

3
1u2,

that is,

X̂1(y) =

 1

0

0

, X̂2(y) =

 0

y1
√

1− 4y2
1
6y

3
1

.
Then the form of EX̂1,X̂2

can be found by use of the vector fields X̂1(y) and X̂2(y);

however, this way is much more complicated even for such a simple example.
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Let us consider another change of variables:

y = Q(x) =

 3x51 − 25x31 + 60x1
x1 + x2
x1x2 − x3

.
Since the equation y1 = 3x51 − 25x31 + 60x1 is not solvable by radicals, X̂1(y) and X̂2(y)

cannot be expressed explicitly (by radicals). Hence, we encounter some difficulties finding

the series representation of EX̂1,X̂2
via X̂1 and X̂2. However, using the direct formula

EX̂1,X̂2
= Q(EX1,X2

) we easily find that

EX̂1,X̂2
= Q(EX1,X2

) =

 3ηxxy5
1 − 25ηxxy3

1 + 60η1
η1 + η21

η1 xxyη21 − η2111

 =

 360η11111 − 150η111 + 60η1
η1 + η21

η121 + 2η211 − η2111

.
2.5. An associative algebra of differential operators and a Lie algebra of vec-

tor fields. It is well known that any fixed set of m vector fields X1, . . . , Xm gener-

ates a (filtered) associative algebra of differential operators F =
∑∞
k=1 F

k, where F k

is the linear span (over R) of differential operators of order k of the form Xik · · ·Xi1 ,

1 ≤ i1, . . . , ik ≤ m, with composition being the algebraic product operation. Usually,

such differential operators are supposed to act on (smooth or, in our case, real analytic)

functions, that is, mappings from U(0) ⊂ Rn to R. However, we prefer to define them as

acting componentwise on vector functions, that is, mappings from U(0) ⊂ Rn to Rn. In

particular, the series coefficient (2.5) equals the value (at the origin) of the image of the

identity map E(x) = x under the corresponding differential operator from F .

Let us also consider the (filtered) Lie algebra of vector fields generated by the set

X1, . . . , Xm. It can be introduced as L =
∑∞
k=1 L

k, where

L1 = Lin{X1, . . . , Xm}

(the linear span is taken over R) and Lk are defined recurrently by

Lk+1 = [L1, Lk], k ≥ 1,

where [·, ·] denotes the Lie bracket of vector fields, [Xi, Xj ] = XiXj −XjXi.

Let us now discuss the connections between the algebras F and L and the free algebras

F and L. Denote by ϕ the natural anti-homomorphism ϕ : F → F defined by the rule

ϕ(ηi1...ik) = Xik · · ·Xi1 , k ≥ 1, 1 ≤ i1, . . . , ik ≤ m.

Then

ϕ(a1a2) = ϕ(a2)ϕ(a1) for any a1, a2 ∈ F .

Obviously, ϕ maps the free Lie algebra L to the Lie algebra L, and satisfies

ϕ([`1, `2]) = [ϕ(`2), ϕ(`1)] for any `1, `2 ∈ L.

Hence, the restriction of ϕ to L is an anti-homomorphism ϕ : L → L.
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Let us also consider the linear map c : F → Rn defined as

c(a) = ϕ(a)E(0), a ∈ F .

In other words, c is defined on basis elements by the formula

c(ηi1...ik) = Xik · · ·Xi1E(0) = ci1...ik ,

where ci1...ik are the vector coefficients of ηi1...ik in (2.13), and is extended to the whole

algebra F by linearity. Then (2.13) can be rewritten in the form

EX1,...,Xm =

∞∑
k=1

∑
1≤i1,...,ik≤m

c(ηi1...ik)ηi1...ik . (2.23)

The subspace
∑∞
k=1 c(Lk) ⊂ Rn determines the dimension of the orbit of the system

through the origin. In particular, the orbit is of full dimension iff the Rashevsky–Chow

condition [45, 11]
∞∑
k=1

c(Lk) = Rn (2.24)

holds. For control-linear systems like (2.1) this condition also implies local controllability;

this means that any point from a certain neighborhood of the origin can be reached from

any other point of this neighborhood.

Definition 2.22. A system of the form (2.1) that satisfies the Rashevsky–Chow condi-

tion (2.24) is called bracket generating (or completely nonholonomic).

Throughout the paper, we consider only bracket generating systems.

Definition 2.23. The minimal number p that guarantees the equality
∑p
k=1 c(Lk) = Rn

is called the degree of nonholonomy. Set

vk = dim c(L1 ⊕ · · · ⊕ Lk), k = 1, . . . , p (vp = n). (2.25)

The sequence v = (v1, . . . , vp) is called the (small) growth vector of the system.

Both concepts, the degree of nonholonomy and the growth vector, are invariant under

changes of variables and nonsingular feedbacks, and, in some way, describe the behavior

of the system in a neighborhood of the origin. However, the precise description of the

local behavior of the system is a more delicate question. Below we develop a technique

which allows us to carry out such local analysis.

The anti-homomorphism ϕ (more specifically, the linear map c) induces special struc-

tures in the free Lie algebra L. The simplest property is given by the following lemma.

Lemma 2.24. Ker(c) ∩ L is a Lie subalgebra in L.

Proof. The proof is clear: Consider `1, `2 ∈ Ker(c) ∩ L, and denote Yi = ϕ(`i), i = 1, 2.

Then c(`i) = Yi(0) = 0, i = 1, 2. This implies that

c([`1, `2]) = [ϕ(`2), ϕ(`1)]E(0) = Y2Y1E(0)− Y1Y2E(0)

= Y ′1(x)Y2(x)|x=0 − Y ′2(x)Y1(x)|x=0 = 0.
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Lemma 2.25. If ` ∈ Ker(c) ∩ L then (a`) ∈ Ker(c) for any a ∈ F .

Proof. It is sufficient to prove the statement for any element a of the form a = ηi1...ik ,

where k ≥ 1, 1 ≤ i1, . . . , ik ≤ m. Denote Y = ϕ(`). Then Y (0) = 0, and therefore

c(ηi1...ik`) = Y Xik · · ·Xi1E(0) = (Xik · · ·Xi1E(x))′xY (x)|x=0 = 0.

Lemma 2.25 means that Ker(c) contains the left ideal generated by Ker(c) ∩ L, i.e.,

Lin
(
Fe(Ker(c) ∩ L)

)
⊂ Ker(c).

Below we obtain more precise properties using the filtered structures in L and L. Our

main concept is introduced in the next subsection.

2.6. Core Lie subalgebra. Consider subspaces of L of the form

Pk = {` ∈ Lk : c(`) ∈ c(L1 ⊕ · · · ⊕ Lk−1)}, k ≥ 1, (2.26)

where for k = 1, P1 = {` ∈ L1 : c(`) = 0}, and set

LX1,...,Xm =

∞⊕
k=1

Pk. (2.27)

Lemma 2.26. LX1,...,Xm
is a (graded) Lie subalgebra of L.

Proof. Let us show that LX1,...,Xm is a Lie subalgebra. Obviously, it is sufficient to show

that the Lie bracket of two homogeneous elements from LX1,...,Xm
belongs to LX1,...,Xm

.

Suppose `i ∈ Pki , i = 1, 2. Then c(`i) ∈ c(L1 ⊕ · · · ⊕ Lki−1). This means that there

exist two elements `′i ∈ L1⊕· · ·⊕Lki−1, i = 1, 2, such that c(`i) = c(`′i), i.e., c(`i−`′i) = 0.

Due to Lemma 2.24, c([`1 − `′1, `2 − `′2]) = 0. Hence,

c([`1, `2]) = c([`1 − `′1, `2 − `′2]) + c
(
[`′1, `2] + [`1, `

′
2]− [`′1, `

′
2]
)

= c
(
[`′1, `2] + [`1, `

′
2]− [`′1, `

′
2]
)
∈ c(L1 ⊕ · · · ⊕ Lk1+k2−1),

i.e., [`1, `2] ∈ Pk1+k2 . This implies that LX1,...,Xm is a Lie subalgebra. It remains to note

that LX1,...,Xm
is graded by definition.

So, to each control-linear system of the form (2.1) we assign the Lie subalgebra

LX1,...,Xm
.

Lemma 2.27. The Lie subalgebra LX1,...,Xm is invariant with respect to nonsingular

changes of variables in system (2.1).

Proof. Suppose that a change of variables y = Q(x) is applied so that Q(0) = 0 and

detQ′(0) 6= 0. Then the vector fields X1, . . . , Xm in the new variables take the form

X̂i(y) = Q′(x)Xi(x)|x=Q−1(y), i = 1, . . . ,m. Let us denote by ĉ : L → Rn the linear map

defined by ĉ(ηi1...ik) = X̂ik · · · X̂i1E(0). Then, as is well known, for any ` ∈ L one has

ĉ(`) = Q′(0)c(`).

Due to the definition of Pk = LX1,...,Xm
∩ Lk,

` ∈ LX1,...,Xm
∩ Lk iff there exists `′ ∈ L1 ⊕ · · · ⊕ Lk−1 such that c(`− `′) = 0.
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Since ĉ(`−`′) = Q′(0)c(`−`′) and detQ′(0) 6= 0, we get ĉ(`−`′) = 0 iff c(`−`′) = 0. Hence,

` ∈ LX1,...,Xm
∩ Lk iff ` ∈ LX̂1,...,X̂m

∩ Lk, k ≥ 1. This implies LX1,...,Xm
= LX̂1,...,X̂m

.

Now we introduce one of the main concepts of the present paper.

Definition 2.28. We call the Lie subalgebra LX1,...,Xm defined by (2.26)–(2.27) the core

Lie subalgebra corresponding to system (2.1).

The core Lie subalgebra LX1,...,Xm is intrinsic coordinate-independent object. Below

we show that just this subalgebra is responsible for the homogeneous approximation of

the system.

Let us explain the term “core Lie subalgebra”. First, notice that the map c : L → Rn
induces the filtration in Rn defined by Rn =

⋃p
i=1 c(L1 ⊕ · · · ⊕ Li). Let us introduce the

associated graded linear space. Namely, consider the factor subspaces [c(L1)] = c(L1)

and [c(Li)] = c(Li)/c(L1 ⊕ · · · ⊕ Li−1), i = 2, . . . , p. Then the direct sum V n = [c(L1)]⊕
· · · ⊕ [c(Lp)] is a graded linear space isomorphic to the initial filtered space Rn. Now

consider the induced graded linear map g : L → V n defined for ` ∈ Li by g(`) = [c(`)]

if i = 1, . . . , p, and by g(`) = 0 if i ≥ p + 1. Then LX1,...,Xm
equals the core of g,

i.e., LX1,...,Xm = Ker(g). This implies that Im(g) = V n is isomorphic to L/Ker(g). In

particular, this yields the following lemma.

Lemma 2.29. The subspace LX1,...,Xm
is of codimension n in the space L.

Proof. We give a proof that is independent of the discussion above.

For any k ≥ 1, let us decompose Lk into a direct sum as Lk = Pk ⊕Mk, where Mk

is a complement subspace for Pk. Notice thatMk = {0} for all k ≥ p+ 1, where p is the

degree of nonholonomy of the system. Hence,

L = LX1,...,Xm
⊕ (M1 ⊕ · · · ⊕Mp).

Recall that by definition c(Pk) ⊂ c(L1⊕· · ·⊕Lk−1). It is easy to prove by induction that

c(L1 ⊕ · · · ⊕ Lk) = c(M1 ⊕ · · · ⊕Mk), k ≥ 1.

Hence, c(M1 ⊕ · · · ⊕Mp) = c(L) = Rn. It follows from the definition of Mk that

c(M1 ⊕ · · · ⊕Mk) = c(M1)⊕ · · · ⊕ c(Mk), k ≥ 2,

and
dim c(Mk) = dimMk, k ≥ 1.

Hence,
dim c(M1 ⊕ · · · ⊕Mk) = dim(M1 ⊕ · · · ⊕Mk), k ≥ 1.

Therefore,

codimLX1,...,Xm
= dim(M1 ⊕ · · · ⊕Mp) = dim c(M1 ⊕ · · · ⊕Mp) = n.

Corollary 2.30. If homogeneous elements `1, . . . , `n ∈ L are such that

L = Lin{`1, . . . , `n}+ LX1,...,Xm

then the vectors c(`1), . . . , c(`n) are linearly independent.

Proof. Due to Lemma 2.29, codimLX1,...,Xm = n. Hence, the assumption of the lemma

implies L = Lin{`1, . . . , `n} ⊕ LX1,...,Xm
and dim Lin{`1, . . . , `n} = n. For any k ≥ 1,
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set Mk = Lin{`1, . . . , `n} ∩ Lk. Since `1, . . . , `n are homogeneous, Lin{`1, . . . , `n} =⊕∞
k=1Mk, therefore Lk = Pk ⊕Mk for any k ≥ 1. Moreover, there exists p such that

Mk = {0} for all k ≥ p + 1. Hence, Lin{`1, . . . , `n} =M1 ⊕ · · · ⊕Mp. Similarly to the

proof of Lemma 2.29, we have

dim Lin{c(`1), . . . , c(`n)} = dim c(Lin{`1, . . . , `n}) = dim c(M1 ⊕ · · · ⊕Mp)

= dim(M1 ⊕ · · · ⊕Mp) = dim Lin{`1, . . . , `n} = n.

Example 2.31. Let us return to system (2.22) from Example 2.21. We have

c(η1) = c1 = e1 6= 0, c(η2) = c2 = 0, c([η2, η1]) = c21 − c12 = e2 6∈ Lin{e1},
c([[η2, η1], η1]) = c211 − 2c121 + c112 = 0, c([[η2, η1], η2]) = 2c212 − c122 − c221 = 0,

c([[[η2, η1], η1], η1]) = c2111 − 3η1211 + 3c1121 − c1112 = e3 6∈ Lin{e1, e2},

and all other brackets vanish. Hence, the degree of nonholonomy equals p = 4, and the

growth vector equals v = (1, 2, 2, 3).

Now, let us find the core Lie subalgebra LX1,X2 . Since

P1 = Lin{η2}, P2 = {0}, P3 = Lin
{

[[η2, η1], η1], [[η2, η1], η2]
}

= L3,

P4 = Lin
{

[[[η2, η1], η1], η2], [[[η2, η1], η2], η2]
}
,

(2.28)

and Pk = Lk for k ≥ 5, we have LX1,X2
=
∑∞
k=1 Pk. Obviously, LX1,X2

is a subalgebra

and codimLX1,X2 = 3. Let us find three homogeneous elements that define a complement

of LX1,X2
. For example, we may choose

`1 = η1, `2 = −2[η2, η1], `3 = 3[[[η2, η1], η1], η1]− [[[η2, η1], η2], η2]. (2.29)

Then L = Lin{`1, `2, `3}+LX1,X2
. Notice that the vectors c(`1) = e1, c(`2) = −2e2, and

c(`3) = 3e3 are linearly independent.

3. Homogeneous approximation, nonholonomic derivatives,
weights, and privileged coordinates from the algebraic viewpoint

3.1. Definition of a homogeneous approximation. The concept of homogeneous

approximation plays an important role in nonlinear control theory [12, 23, 24, 6, 3, 8, 4].

Though it can be introduced in a coordinate-free manner, the most clear definitions

include some special “privileged” coordinates, in which the two systems—the initial and

approximating ones—can be effectively compared.

Let us introduce homogeneous approximations in terms of the endpoint map.

Definition 3.1. Consider a bracket generating control-linear system of the form (2.1).

A bracket generating control-linear system

ż =

m∑
i=1

uiZi(z), z ∈ U(0) ⊂ Rn, u1, . . . , um ∈ R, (3.1)

with real analytic vector fields Z1(z), . . . , Zm(z) is called a homogeneous approximation

for the initial system if
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(i) its endpoint map EZ1,...,Zm is homogeneous,

EZ1,...,Zm(θ, u1/θ) = Hθ(EZ1,...,Zm(1, u)) for any θ > 0, u ∈ B1,

where Hθ is a dilation defined by Hθ(z) = (θw1z1, . . . , θ
wnzn), and 1 ≤ w1 ≤ · · · ≤ wn

are some integers;

(ii) there is a real analytic change of variables y = Q(x) in the initial system (Q(0) = 0,

detQ′(0) 6= 0) such that EZ1,...,Zm approximates the endpoint map of the initial

system in the new coordinates; namely, for any u ∈ B1,

H−1θ
(
Q(EX1,...,Xm

(θ, u1/θ))− EZ1,...,Zm
(θ, u1/θ)

)
→ 0 as θ → 0.

In this section we examine some concepts that are encountered when studying ho-

mogeneous approximations [6]. Our analysis is based on the series approach and the free

algebras introduced above.

3.2. Nonholonomic derivatives and the order of functions. Suppose a bracket

generating control-linear system of the form (2.1) is fixed. Following [6], let us say that

the differential operators of the first order X1, . . . , Xm are nonholonomic derivatives of

the first order. Then any operator Xik · · ·Xi1 is naturally considered as a nonholonomic

derivative of the kth order, 1 ≤ i1, . . . , ik ≤ m, k ≥ 1. Nonholonomic derivatives are used

in the following definition.

Suppose a real analytic function f = f(x) : U(0)→ R is given. The number s is called

the order of the function f = f(x) at the point x = 0 if

(i) Xik · · ·Xi1f(0) = 0 for all k ≤ s− 1 and all 1 ≤ i1, . . . , ik ≤ m;

(ii) Xjs · · ·Xj1f(0) 6= 0 for a certain set 1 ≤ j1, . . . , js ≤ m.

In the case of the coordinate functions fi(x) = xi, i = 1, . . . , n, this definition can

be reformulated by use of the set of the vectors (2.5). Namely, the order of the function

fi(x) = xi coincides with the minimal k such that (cj1...jk)i 6= 0 for a certain set 1 ≤
j1, . . . , jk ≤ m.

This can also be expressed in terms of the series representation of EX1,...,Xm . Namely,

the order of the coordinate function fi(x) = xi coincides with the minimal order of an

iterated integral (2.4) entering the ith component of the right hand side of (2.3) with a

nonzero coefficient.

3.3. Weight of coordinates. Recall that we consider the bracket generating system.

Let v be its growth vector (2.25); for convenience, set v0 = 0.

Suppose the coordinates are chosen so that c(L1 ⊕ · · · ⊕ Li) = Lin{e1, . . . , evi},
i = 1, . . . , p. This can be achieved by a certain linear nonsingular change of variables

in the initial system; such coordinates are called linearly adapted [6].

Let us recall the following definition, which is suitable for linearly adapted coordinates.

The minimal number wi such that ei ∈ c(L1 ⊕ · · · ⊕ Lwi) is called the weight of the

coordinate xi, i = 1, . . . , n. In other words, the weight of xi coincides with the minimal

order wi of a homogeneous Lie element ` ∈ Lwi such that (c(`))i 6= 0, i = 1, . . . , n.
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It is worth noting that the sequence of the weights {w1, . . . , wn} is the same for all

linearly adapted coordinates.

3.4. Privileged coordinates and R. Ree’s theorem. Following [6], we say that lin-

early adapted coordinates x1, . . . , xn are privileged if the order of any coordinate function

fi(x) = xi, i = 1, . . . , n, coincides with the weight of this coordinate. It is proved in [6]

that one can construct privileged coordinates by a certain polynomial change of variables.

Moreover, in such coordinates a homogeneous approximation of the initial system can be

easily constructed.

Our next goal is to express the definition of privileged coordinates in terms of the

map c. To this end, we use the result of the remarkable paper of R. Ree [46], namely the

theorem on a connection of the Lie algebra and the shuffle product.

Definition 3.2. Define the inner product operation 〈·, ·〉 in F , assuming the basis

{ηi1...ik : k ≥ 1, 1 ≤ i1, . . . , ik ≤ m}

is orthonormal, i.e.,

〈ηi1...ik , ηj1...js〉 =

{
1 if k = s, iq = jq, q = 1, . . . , k,

0 otherwise.

Notice that the subspaces Fk are orthogonal to each other, hence the sums of sub-

spaces like (2.27) are orthogonal. Below we also use the symbol ⊕⊥, which denotes the

orthogonal sum. However, to avoid cumbersome notation, for direct sums of homogeneous

subspaces we keep the symbol ⊕.

Theorem 3.3 (R. Ree [46]). An element of F belongs to the Lie algebra L if and only if

it is orthogonal to the shuffle product of any two elements of F ,

` ∈ L iff 〈`, a1 xxya2〉 = 0 for any a1, a2 ∈ F .

In other words, Ree’s theorem says that

L = (F xxyF)⊥,

where the symbol ⊥ denotes the orthogonal complement. Hence,

F = L ⊕⊥ Lin{F xxyF},

where the symbol ⊕⊥ denotes the orthogonal sum. Since the subspaces Fk are orthogonal

to each other, for any homogeneous subspace we get the decomposition

Fk = Lk ⊕⊥ Lin{F i xxyFk−i : i = 1, . . . , k − 1}, k ≥ 1.

It is easy to prove by induction that

Fk = Lk ⊕⊥ Lin{Li1 xxy · · · xxyLiq : q ≥ 2, i1 + · · ·+ iq = k, i1, . . . , iq ≥ 1}, k ≥ 1.

It is convenient to write this decomposition in the form

Fk = Lk ⊕⊥ (Lsh ∩ Fk), k ≥ 1, (3.2)

where

Lsh = Lin{z1 xxy · · · xxyzq : q ≥ 2, z1, . . . , zq ∈ L},
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or briefly,

F = L ⊕⊥ Lsh. (3.3)

Now, for any k ≥ 1 consider an orthonormal basis Bk of the subspace Lk,

Bk = {bk,j : j = 1, . . . , dk}, dk = dimLk,

and an orthonormal basis B̂k of Lsh ∩ Fk,

B̂k = {b̂k,j : j = 1, . . . , d̂k}, d̂k = dim(Lsh ∩ Fk) = dim(Fk)− dim(Lk) = mk − dk.

Then the set
⋃
k≥1(Bk ∪ B̂k) is an orthonormal basis of F . Hence, the series on the right

hand side of (2.23) can be re-expanded in this orthonormal basis, which gives

EX1,...,Xm
=

∞∑
k=1

( dk∑
j=1

c(bk,j)bk,j +

d̂k∑
j=1

c(̂bk,j )̂bk,j

)
. (3.4)

This representation leads to the following reformulation of the definitions of the order

and weight of coordinates.

The order of the coordinate function fi(x) = xi equals the minimal order ki of a basis

element bki,j or b̂ki,j entering the ith component of the right hand side of (3.4) with a

nonzero coefficient, i.e., such that (c(bki,j))i 6= 0 or (c(̂bki,j))i 6= 0.

Suppose the coordinates are linearly adapted. The weight of the coordinate xi equals

the minimal order wi of a basis element bwi,j entering the ith component of the right

hand side of (3.4) with a nonzero coefficient, i.e., such that (c(bwi,j))i 6= 0.

In particular, it is clear that the order of a coordinate function is less than or equal

to the weight of this coordinate. Moreover, the order of fi(x) = xi is strictly less than

the weight of xi if and only if there exists a basis element b̂ki,j such that (c(̂bki,j))i 6= 0

and ki < wi. Thus, linearly adapted coordinates are privileged if for any i = 1, . . . , n,

(c(̂bk,j))i = 0 for all k < wi and j = 1, . . . , d̂k.

Therefore, one can try to construct privileged coordinates excluding all b̂k,j such that

1 ≤ k < wi, j = 1, . . . , d̂k, from the ith component of (3.4). However, the bases Bk
and B̂k are inconvenient for the practical implementation of this idea, since they do not

involve any information about the concrete system of the form (2.1). In the next section

we give another basis which is suitable in this situation.

4. The left ideal and dual basis in the associative algebra

4.1. The left ideal generated by a system. In this subsection we introduce the con-

cept that, along with the core Lie subalgebra, plays the central role in our constructions.

Definition 4.1. We call the subspace

JX1,...,Xm
= Lin{FeLX1,...,Xm

} = Lin{a` : a ∈ Fe, ` ∈ LX1,...,Xm
}

the left ideal corresponding to system (2.1).
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Notice that, due to its definition, the left ideal JX1,...,Xm is graded, i.e.,

JX1,...,Xm =

∞⊕
k=1

(JX1,...,Xm ∩ Fk). (4.1)

Moreover, it is invariant with respect to nonsingular changes of variables in the system,

which follows directly from Lemma 2.27.

Lemma 4.2. If a ∈ JX1,...,Xm
∩ Fk then c(a) ∈ c(F1 ⊕ · · · ⊕ Fk−1).

Proof. Without loss of generality assume a = ηj1...jq`, where ` ∈ Ps, q + s = k, q ≥ 0,

and s ≥ 1 (if q = 0 then a = `). Since ` ∈ Ps, there exists `′ ∈ L1 ⊕ · · · ⊕ Ls−1
such that c(` − `′) = 0. Hence, due to Lemma 2.25, c(ηj1...jq (` − `′)) = 0, which implies

c(a) = c(ηj1...jq`) = c(ηj1...jq`
′) ∈ c(F1 ⊕ · · · ⊕ Fk−1).

Notice that for a ∈ JX1,...,Xm ∩ F1 the lemma means c(a) = 0.

Due to Lemma 2.29, the core Lie subalgebra LX1,...,Xm is of codimension n in L. Let

us fix an arbitrary set {`1, . . . , `n} of homogeneous elements of L such that

L = Lin{`1, . . . , `n}+ LX1,...,Xm
. (4.2)

Due to Lemma 2.29, this sum is direct. Without loss of generality assume

ord(`i) ≤ ord(`j) if 1 ≤ i < j ≤ n. (4.3)

It is worth noting that the orders of elements `1, . . . , `n satisfying (4.3) are defined

uniquely, since the number of such elements of order k ≥ 1 equals dim(Lk)− dim(Pk).

Denote by {`j}∞j=n+1 a homogeneous basis of LX1,...,Xm
. Then {`j}∞j=1 is a (homoge-

neous) basis of L.

Now we are going to use the well-known Poincaré–Birkhoff–Witt theorem [47], which

says that the set

{`j1 · · · `jr : 1 ≤ j1 ≤ · · · ≤ jr, r ≥ 1} (4.4)

forms a basis of F .

Lemma 4.3. The set

{`j1 · · · `jr : n+ 1 ≤ j1 ≤ · · · ≤ jr, r ≥ 1} (4.5)

forms a basis of the subalgebra

M = Lin{`i1 · · · `ik : i1, . . . , ik ≥ n+ 1, k ≥ 1}. (4.6)

Proof. Let us prove that any element of the form

x = `q1 · · · `qs , q1, . . . , qs ≥ n+ 1,

equals a linear combination of elements (4.5).

For s = 1, there is nothing to prove. Suppose s ≥ 2 and introduce the following

definition. We say that `qp1 and `qp2 form an inversion in x if p1 < p2 and qp1 > qp2 . Let

d be the number of inversions in the element x. Then d ≤ s(s− 1)/2. We say that the

pair (s, d) is the disorder of the element x.
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If the disorder of x equals (s, 0) then x belongs to the set (4.5). Suppose the disorder

of x equals (s, d) with d > 0. Then for a certain 1 ≤ i ≤ s− 1 one has qi > qi+1. Thus,

`qi`qi+1
= [`qi , `qi+1

] + `qi+1
`qi .

By definition, qi ≥ n + 1 and qi+1 ≥ n + 1. Hence, the elements `qi and `qi+1 belong to

the Lie subalgebra LX1,...,Xm
, which gives [`qi , `qi+1

] ∈ LX1,...,Xm
. Therefore, [`qi , `qi+1

]

can be represented as a linear combination of elements `j with j ≥ n+ 1, i.e.,

`qi`qi+1 =
∑

j≥n+1

βj`j + `qi+1`qi , βj ∈ R.

Denoting

yj = `q1 · · · `qi−1
`j `qi+2

· · · `qs , z = `q1 · · · `qi−1
`qi+1

`qi`qi+2
· · · `qs ,

we get

x =
∑

j≥n+1

βjyj + z,

where yj and z belong to (4.6), and moreover yj are of disorder (s − 1, dj) and z is of

disorder (s, d′) with d′ < d. Thus, x is represented as a sum of terms from (4.6) each

of which has the disorder smaller (in the lexicographic sense) than the disorder of x.

Obviously, after a finite number of such steps the element x is reduced to a sum of

elements from (4.6) whose disorders equal (ki, 0), ki ≥ 1. It was noticed above that all

such terms are of the form (4.5). Hence, x equals a linear combination of elements (4.5).

Thus, any element from (4.6) is a linear combination of elements (4.5). On the other

hand, elements (4.5) are linearly independent, since they belong to the Poincaré–Birkhoff–

Witt basis (4.4). Therefore, they form a basis of M .

Corollary 4.4. The set

{`j1 · · · `jr : 1 ≤ j1 ≤ · · · ≤ jr, r ≥ 1, jr ≥ n+ 1} (4.7)

forms a basis of the left ideal JX1,...,Xm
.

Proof. Obviously, it is sufficient to prove that any element of the form a`i, where a ∈ F
and i ≥ n + 1, can be represented uniquely as a linear combination of elements (4.7).

Since a can be expressed via the Poincaré–Birkhoff–Witt basis (4.4), it is sufficient to

prove this fact for any element of the form

z = (`j1 · · · `jh)(`jh+1
· · · `js)`i,

where j1 ≤ · · · ≤ jh ≤ n < jh+1 ≤ · · · ≤ js, i ≥ n+ 1.

For s = h, there is nothing to prove. Consider the case s ≥ h+ 1. Due to Lemma 4.3,

the element (`jh+1
· · · `js)`i is a linear combination of elements (4.5). Hence, z is a linear

combination of elements of the form

(`j1 · · · `jh)(`i1 · · · `ik),

where j1 ≤ · · · ≤ jh ≤ n, n+ 1 ≤ i1 ≤ · · · ≤ ik, and k ≥ 1.

Thus, any element of JX1,...,Xm
is a linear combination of elements (4.7). On the

other hand, elements (4.7) are linearly independent, since they belong to the Poincaré–

Birkhoff–Witt basis (4.4). Therefore, they form a basis of the left ideal JX1,...,Xm .
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Corollary 4.5. For any k ≥ 1,

JX1,...,Xm
∩ Lk = Pk,

and therefore

JX1,...,Xm
∩ L = LX1,...,Xm

.

Proof. The inclusion Pk ⊂ JX1,...,Xm
∩ Lk follows from the definition. Let us show that

JX1,...,Xm ∩ Lk ⊂ Pk.

Due to Corollary 4.4, any element a ∈ JX1,...,Xm
can be expressed as a linear com-

bination of elements of (4.7). On the other hand, a basis of L is given by the elements

{`j}∞j=1 that belong to the Poincaré–Birkhoff–Witt basis (4.4).

If a ∈ JX1,...,Xm
∩ L then it is a linear combination of elements from the intersection

of the sets (4.7) and {`j}∞j=1, which equals {`j}∞j=n+1. Obviously, a ∈ JX1,...,Xm ∩ Lk is

a linear combination of elements {`j}∞j=n+1 ∩ Lk ⊂ Pk.

As a consequence, two structures induced by the control system, namely LX1,...,Xm

and JX1,...,Xm
, define each other uniquely.

4.2. Orthogonal complement to the left ideal and a generalization of R. Ree’s

theorem. It turns out that, in the homogeneous approximation problem, an important

role is played by the orthogonal complement of the left ideal JX1,...,Xm
, i.e.,

J⊥X1,...,Xm
= {x ∈ F : 〈x, a〉 = 0 for any a ∈ JX1,...,Xm

}.

Note that (4.1) implies

J⊥X1,...,Xm
=

∞⊕
k=1

(J⊥X1,...,Xm
∩ Fk). (4.8)

In this subsection we study properties of J⊥X1,...,Xm
.

Lemma 4.6. Suppose x =
∑
i1,...,ik

γi1...ikηi1...ik , where γi1...ik ∈ R. Then x ∈ J⊥X1,...,Xm

iff
∑
is+1...ik

γi1...ikηis+1...ik ⊥ Pk−s for any s = 0, . . . , k − 1 and any fixed set of indices

i1, . . . , is.

Proof. The proof follows immediately from the definitions. In fact, x ∈ J⊥X1,...,Xm
iff x is

orthogonal to any element of the form ηi01...i0s `, where 0 ≤ s ≤ k − 1 and ` ∈ Pk−s, i.e.,

〈x, ηi01...i0s`〉 =
〈 ∑
i1,...,ik

γi1...ikηi1...isηis+1...ik , ηi01...i0s`
〉

=
〈 ∑
is+1,...,ik

γi01...i0sis+1...ikηis+1...ik , `
〉

= 0,

which proves the lemma.

Lemma 4.7. Suppose a, b ∈ J⊥X1,...,Xm
. Then axxy b ∈ J⊥X1,...,Xm

.

Proof. Due to (4.8), it is sufficient to prove the lemma for a ∈ Fk and b ∈ Fr for arbitrary

k, r ≥ 1. Let a =
∑
i1,...,ik

αi1...ikηi1...ik and b =
∑
j1,...,jr

βj1...jrηj1...jr .



38 G. M. Sklyar and S. Yu. Ignatovich

It is sufficient to prove that axxy b is orthogonal to any element of the form x`, where

x ∈ Fs and ` ∈ Pk+r−s, 0 ≤ s ≤ k + r − 1. Using Lemma 2.20, we get

axxy b =
∑

i1,...,ik
j1,...,jr

αi1...ikβj1...jrηi1...ik xxyηj1...jr

=
∑

i1,...,ik
j1,...,jr

∑
0≤q≤k, 0≤t≤r

q+t=s

αi1...ikβj1...jr (ηi1...iq xxyηj1...jt)(ηiq+1...ik xxyηjt+1...jr )

=
∑

0≤q≤k, 0≤t≤r
q+t=s

∑
i1,...,iq
j1,...,jt

(ηi1...iq xxyηj1...jt)
∑

iq+1,...,ik
jt+1,...,jr

αi1...ikβj1...jr (ηiq+1...ik xxyηjt+1...jr ).

Hence,

〈x`, axxy b〉

=
∑

0≤q≤k, 0≤t≤r
q+t=s

∑
i1,...,iq
j1,...,jt

〈
x `, (ηi1...iq xxyηj1...jt)

∑
iq+1,...,ik
jt+1,...,jr

αi1...ikβj1...jr (ηiq+1...ik xxyηjt+1...jr )
〉

=
∑

0≤q≤k, 0≤t≤r
q+t=s

∑
i1,...,iq
j1,...,jt

〈x, ηiq+1...ik xxyηjt+1...jr 〉
〈
`,
∑

iq+1,...,ik
jt+1,...,jr

αi1...ikβj1...jr (ηiq+1...ik xxyηjt+1...jr )
〉
.

(4.9)

Consider each term of (4.9).

If q < k and t < r, then ηiq+1...ik ∈ F and ηjt+1...jr ∈ F . Hence, due to R. Ree’s

theorem, 〈`, ηiq+1...ik xxyηjt+1...jr 〉 = 0.

If t = r then ηjt+1...jr = 1. Since q + t = s, we get q = s − r ≤ k − 1. Hence in this

case,〈
`,

∑
iq+1,...,ik
jt+1,...,jr

αi1...ikβj1...jr (ηiq+1...ik xxyηjt+1...jr )
〉

= βj1...jr

〈
`,

∑
is−r+1,...,ik

αi1...ikηis−r+1...ik

〉
= 0

due to Lemma 4.6, since a ∈ J⊥X1,...,Xm
.

Analogously, if q = k then ηiq+1...ik = 1 and t = s− k ≤ r − 1. Hence,〈
`,

∑
iq+1,...,ik
jt+1,...,jr

αi1...ikβj1...jr (ηiq+1...ik xxyηjt+1...jr )
〉

= αi1...ik

〈
`,

∑
js−k+1,...,jr

βj1...jrηjs−k+1...jr

〉
= 0

due to Lemma 4.6, since b ∈ J⊥X1,...,Xm
.

Thus, all terms of (4.9) vanish, i.e., 〈x `, axxy b〉 = 0, which proves the lemma.

The following notation will be used below.

Notation 4.8. For any a ∈ F , denote by ã the orthoprojection of a on the subspace

J⊥X1,...,Xm
. Analogously, for any subspace M ⊂ F , denote by M̃ the orthoprojection of M

on J⊥X1,...,Xm
.
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Lemma 4.9. Let homogeneous elements `1, . . . , `n ∈ L be such that (4.2) holds. Denote

by {`j}∞j=n+1 a homogeneous basis of the core Lie subalgebra LX1,...,Xm
. Then the set

{˜̀i1 xxy · · · xxy ˜̀is xxy `j1 xxy · · · xxy `jt : s+ t ≥ 1, 1 ≤ i1 ≤ · · · ≤ is ≤ n < j1 ≤ · · · ≤ jt} (4.10)

forms a basis of F .

Proof. Without loss of generality assume that (4.3) holds. Set p = ord(`n) and vk =

dim(L1 ⊕ · · · ⊕ Lk)− dim(P1 ⊕ · · · ⊕ Pk), k = 1, . . . , p (then v is a growth vector of the

corresponding system (2.1) and p is its degree of nonholonomy). Then ord(`i) = k iff

vk−1 + 1 ≤ i ≤ vk, k = 1, . . . , p.

Taking into account decomposition (3.3), it is sufficient to prove that any homogeneous

element ` ∈ L can be uniquely represented as a linear combination of elements of (4.10).

Notice that for any element ` ∈ LX1,...,Xm
this is obvious.

We argue by induction on the order. For the elements `1, . . . , `v1 of order 1 we obvi-

ously have ˜̀i = `i, i = 1, . . . , v1. Hence, L1 is contained in the linear span of (4.10).

Suppose L1 ⊕ · · · ⊕ Lk−1 is contained in the linear span of (4.10). Consider the sub-

space Lk. It was mentioned above that LX1,...,Xm
∩ Lk is contained in the linear span

of (4.10). Consider any element `i with vk−1 + 1 ≤ i ≤ vk. Then ord(`i) = k. We get

`i = ˜̀
i + xi, where xi ∈ JX1,...,Xm

∩ Fk. (4.11)

Due to (3.2),

xi = `∗i + yi, where `∗i ∈ Lk, yi ∈ Lsh ∩ Fk. (4.12)

Thus,

`i − `∗i = ˜̀
i + yi. (4.13)

The condition yi ∈ Lsh means that yi equals a linear combination of elements of the

form `i1 xxy · · · xxy `is , where `i1 , . . . , `is ∈ L, s ≥ 2. Hence, `i1 , . . . , `is ∈ L1⊕ · · · ⊕Lk−1.

Therefore, due to the induction supposition, the right hand side of (4.13) can be repre-

sented as a linear combination of elements of the form (4.10).

On the other hand, for any i = vk−1 + 1, . . . , vk, the element `i − `∗i ∈ Lk is uniquely

defined by formulas (4.11) and (4.12). Notice that ˜̀i ∈ J⊥X1,...,Xm
⊂ L⊥X1,...,Xm

and

yi ∈ Lsh = L⊥ ⊂ L⊥X1,...,Xm
. Hence, (4.13) implies `i − `∗i ∈ L⊥X1,...,Xm

.

Denote {`j1 , . . . , `jq} = {`j}∞j=n+1 ∩ Lk, and consider the set

{`j1 , . . . , `jq} ∪ {`i − `∗i : vk−1 + 1 ≤ i ≤ vk} ⊂ Lk. (4.14)

Let us prove that its elements are linearly independent. Taking into account that `i−`∗i ∈
L⊥X1,...,Xm

and `j1 , . . . , `jq ∈ LX1,...,Xm , it is sufficient to prove that the elements `i − `∗i ,
i = vk−1 + 1, . . . , vk, are linearly independent. Assume the converse. Then

vk∑
i=vk−1+1

µi(`i − `∗i ) = 0

for some numbers µi such that
∑vk
i=vk−1+1 µ

2
i > 0. Due to (4.13), this implies

vk∑
i=vk−1+1

µi ˜̀i = −
vk∑

i=vk−1+1

µiyi ∈ Lsh = L⊥.
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In particular,
∑vk
i=vk−1+1 µi

˜̀
i is orthogonal to

∑vk
i=vk−1+1 µi`i. Since by definition ˜̀i is

the orthoprojection of `i on the subspace J⊥X1,...,Xm
, we see that

vk∑
i=vk−1+1

µi`i ∈ JX1,...,Xm ∩ L = LX1,...,Xm , where

vk∑
i=vk−1+1

µ2
i > 0,

which contradicts the definition of the elements `i, i = vk−1 + 1, . . . , vk.

Thus, the elements of the set (4.14) are linearly independent. Note that the number

of these elements equals dimLk. Hence, the set (4.14) is a basis of Lk, and any element of

this basis can be represented as a linear combination of elements of (4.10), due to (4.13)

and the induction supposition.

The induction arguments show that any homogeneous element ` ∈ L can be rep-

resented as a linear combination of elements of (4.10). As was mentioned above, the

decomposition (3.3) implies that this is true for any element from F , that is, the linear

span of (4.10) coincides with F .

However, for any k ≥ 1, the number of elements of (4.10) of order k equals dim(Fk),

since it is the same as the number of elements of the Poincaré–Birkhoff–Witt basis of

order k. This means that elements of (4.10) are linearly independent, which completes

the proof.

Theorem 4.10 (generalization of R. Ree’s theorem). Let elements `1, . . . , `n ∈ L be

homogeneous and satisfy (4.2). Then the set

{˜̀i1 xxy · · · xxy ˜̀is : s ≥ 1, 1 ≤ i1 ≤ · · · ≤ is ≤ n} (4.15)

is a basis of J⊥X1,...,Xm
.

Notice that L̃ = Lin{˜̀1, . . . , ˜̀n}, where L̃ is the orthoprojection of L on J⊥X1,...,Xm
.

Hence, Theorem 4.10 says that

J⊥X1,...,Xm
= L̃ ⊕⊥ (L̃)sh,

and therefore

F = JX1,...,Xm
⊕⊥ L̃ ⊕⊥ (L̃)sh,

which generalizes R. Ree’s decomposition (3.3).

Proof. Let {`j}∞j=n+1 be a homogeneous basis of the core Lie subalgebra LX1,...,Xm
. For

any k ≥ 1, consider the set

{˜̀i1 xxy · · · xxy ˜̀is xxy `j1 xxy · · · xxy `jt ∈ Fk : s+ t ≥ 1, 1 ≤ i1 ≤ · · · ≤ is ≤ n < j1 ≤ · · · ≤ jt}.
(4.16)

Due to the Poincaré–Birkhoff–Witt theorem, the number of elements in the set (4.16)

equals dimFk. Corollary 4.4 implies that the number of elements in (4.16) with t ≥ 1

equals dim(JX1,...,Xm ∩ Fk). Hence, the number of elements in (4.16) with t = 0 equals

dim(J⊥X1,...,Xm
∩ Fk). The latter elements are of the form

{˜̀i1 xxy · · · xxy ˜̀is ∈ Fk : s ≥ 1, 1 ≤ i1 ≤ · · · ≤ is ≤ n}. (4.17)

Due to Lemma 4.9, these elements are linearly independent, and due to Lemma 4.7 they

belong to J⊥X1,...,Xm
. Hence, the set (4.17) forms a basis of J⊥X1,...,Xm

∩ Fk.
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Thus, the set

{˜̀i1 xxy · · · xxy ˜̀is : s ≥ 1, 1 ≤ i1 ≤ · · · ≤ is ≤ n}

is a basis of J⊥X1,...,Xm
, which implies the direct sum decomposition

J⊥X1,...,Xm
= L̃ ⊕ (L̃)sh.

It remains to prove that L̃ is orthogonal to (L̃)sh. For any 1 ≤ i ≤ n we have `i =˜̀
i + xi, where xi ∈ JX1,...,Xm . Since ˜̀i1 xxy · · · xxy ˜̀is ∈ J⊥X1,...,Xm

for any 1 ≤ i1, . . . , is ≤ n
due to Lemma 4.7, we see that if s ≥ 2 then

〈˜̀i, ˜̀i1 xxy · · · xxy ˜̀is〉 = 〈`i, ˜̀i1 xxy · · · xxy ˜̀is〉 = 0,

due to R. Ree’s theorem. Hence, L̃ is orthogonal to (L̃)sh, which completes the proof.

Notice that (4.15) can be rewritten as

{˜̀xxyq11 xxy · · · xxy ˜̀xxyqnn : q1, . . . , qn ≥ 0, q1 + · · ·+ qn ≥ 1}.

Remark 4.11. Theorem 4.10 implies that the subspace J⊥X1,...,Xm
equipped with the

shuffle product operation is isomorphic to the algebra of polynomials of n variables with-

out constant term (with coefficients from R).

4.3. Construction of privileged coordinates. Let us explain how Theorem 4.10 can

be used to construct privileged coordinates.

For any k ≥ 1, consider an orthonormal basis B0
k of the subspace JX1,...,Xm

∩ Fk,

B0
k = {b0k,j : j = 1, . . . , r0k}, r0k = dim(JX1,...,Xm

∩ Fk),

an orthonormal basis B1
k of the subspace L̃ ∩ Fk,

B1
k = {b1k,j : j = 1, . . . , r1k}, r1k = dim(L̃ ∩ Fk),

and an orthonormal basis B2
k of the subspace (L̃)sh ∩ Fk,

B2
k = {b2k,j : j = 1, . . . , r2k}, r2k = dim((L̃)sh ∩ Fk).

Then the set
⋃
k≥1(B0

k ∪B1
k ∪B2

k) is an orthonormal basis of F . Hence, the series on the

right hand side of (2.23) can be re-expanded in this basis, which gives

EX1,...,Xm
=

∞∑
k=1

( r0k∑
j=1

c(b0k,j)b
0
k,j +

r1k∑
j=1

c(b1k,j)b
1
k,j +

r2k∑
j=1

c(b2k,j)b
2
k,j

)
. (4.18)

Notice that the definition of B1
k gives

⋃
k≥1B

1
k = {˜̀1, . . . , ˜̀n}. Without loss of gen-

erality we may assume c(`i) = ei, i = 1, . . . , n; then, due to (4.3), the coordinates are

linearly adapted and B1
k = {˜̀vk−1+1, . . . , ˜̀vk}, k = 1, . . . , p, where v is the growth vector

of the system. Moreover, wi = ord(`i) equals the weight of the coordinate xi, i = 1, . . . , n.

Let us show the way of constructing privileged coordinates. Obviously, w1 = 1. We

have c(b0k,j) = 0 for k = 1, and ord(b2k,j) ≥ 2 for any k, j. Moreover, ˜̀1 = `1. Hence,

c(˜̀1) = c(`1) = e1. Therefore,

(EX1,...,Xm
)1 = ˜̀

1 +

∞∑
k=w1+1

α1
i1...ik

ηi1...ik .
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Suppose that after some change of variables for some q ≥ 1 we have(
E
X

(q)
1 ,...,X

(q)
m

)
i

= ˜̀
i +

∞∑
k=wi+1

αii1...ikηi1...ik , i = 1, . . . , q,

where X
(q)
1 , . . . , X

(q)
m are the initial vector fields expressed in the new variables (for q = 1

they coincide with the initial vector fields). Let us consider the (q + 1)th coordinate,(
E
X

(q)
1 ,...,X

(q)
m

)
q+1

=

∞∑
k=1

( d0k∑
j=1

(c(q)(b0k,j))q+1b
0
k,j +

d1k∑
j=1

(c(q)(b1k,j))q+1b
1
k,j +

d2k∑
j=1

(c(q)(b2k,j))q+1b
2
k,j

)
,

where the map c(q) corresponds to the system in the new coordinates.

Notice that the elements b1k,j with k<wq+1 are linear combinations of ˜̀i with i<wq+1.

Hence, they can be killed by a linear change of variables.

Since the elements b2k,j are shuffles of elements of the form b1q,t with q < k, one kills

all elements b2k,j with k ≤ wq+1 by a polynomial change of variables.

Suppose that this has been done. Then we get

(
E
X

(q+1)
1 ,...,X

(q+1)
m

)
q+1

=

∞∑
k=1

d0k∑
j=1

(c(q+1)(b0k,j))q+1b
0
k,j

+
∑

wi≥wq+1

(c(q+1)(˜̀i))q+1
˜̀
i +

∞∑
k=wq+1+1

d2k∑
j=1

(c(q+1)(b2k,j))q+1b
2
k,j ,

where the map c(q+1) corresponds to the system in the new coordinates. Since the left

ideal is invariant with respect to changes of variables, we get (c(q+1)(b0k,j))q+1 = 0 for

k ≤ wq+1, and (c(q+1)(˜̀i))q+1 = (c(q+1)(`i))q+1 = δi,q+1 for i such that wi = wq+1. Thus,(
E
X

(q+1)
1 ,...,X

(q+1)
m

)
q+1

= ˜̀
q+1 +

∞∑
k=wq+1+1

αq+1
i1...ik

ηi1...ik .

Notice that the described polynomial change of variables is of the form yq+1 = xq+1 +

pq+1(x1, . . . , xq) and yi = xi, i 6= q + 1. Hence, it is nonsingular.

By induction, there exists a polynomial nonsingular change of variables that reduces

the endpoint map to the form EX̂1,...,X̂m
such that(

EX̂1,...,X̂m

)
i

= ˜̀
i +

∞∑
k=wi+1

αii1...ikηi1...ik , i = 1, . . . , n.

This means that these new coordinates are privileged. As will be shown below, the ele-

ments ˜̀1, . . . , ˜̀n describe a homogeneous approximation of the system.

In the next subsection we obtain this result in another way that allows us to describe

explicitly all privileged coordinates.

4.4. Dual basis. Now we are going to give another way for re-expansion of the series

from (2.23), which is more convenient than the representation (4.18).
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Suppose {`i}∞i=1 is an arbitrary homogeneous basis of L. For our further purposes, it

is convenient to rewrite the Poincaré–Birkhoff–Witt basis (4.4) in the form

{`p1j1 · · · `
ps
js

: s ≥ 1, 1 ≤ j1 < · · · < js, p1, . . . , ps ≥ 1}, (4.19)

where `p = ` · · · ` (p times), p ≥ 1. Since all elements `i, i ≥ 1, are homogeneous, all basis

elements are homogeneous as well, and for any k ≥ 1 the set

{`p1j1 · · · `
ps
js
∈ Fk : s ≥ 1, 1 ≤ j1 < · · · < js, p1, . . . , ps ≥ 1}

is a basis of Fk. Since dimFk <∞, there exists a dual basis in Fk. Taking into account

that the subspaces Fk with different k are orthogonal to each other, we see that there

exists a dual basis of F . Denote this basis by

{dq1...qri1...ir
: r ≥ 1, 1 ≤ i1 < · · · < ir, q1, . . . , qr ≥ 1}, (4.20)

where

〈`p1j1 · · · `
ps
js
, dq1...qri1...ir

〉 =

{
1 if s = r and jt = it, t = 1, . . . , s,

0 otherwise.
(4.21)

Now we are going to use the following description of the dual basis.

Theorem 4.12 (G. Melançon and C. Reutenauer [44]). Elements of the dual basis (4.20)

can be found by

dq1...qri1...ir
=

1

q1! · · · qr!
dxxyq1
i1

xxy · · · xxydxxyqr
ir

,

where for brevity we set dq = d1q, q ≥ 1.

Below and throughout the paper we choose a basis {`i}∞i=1 so that (4.2) and (4.3)

hold, and {`j}∞j=n+1 is a homogeneous basis of LX1,...,Xm . Then the dual basis (4.20) can

be used to describe a basis of the subspace J⊥X1,...,Xm
.

Lemma 4.13. Elements dxxyq1
1 xxy · · · xxydxxyqn

n (where q1 + · · · + qn ≥ 1) are orthogonal to

JX1,...,Xm .

Proof. By Corollary 4.4, any element of JX1,...,Xm equals a linear combination of elements

of the form `p1j1 · · · `
ps
js

, where j1 < · · · < js and js ≥ n+ 1. Hence, it is orthogonal to any

element dxxyq1
1 xxy · · · xxydxxyqn

n , by definition and due to the Melançon–Reutenauer theorem.

Lemma 4.14. The set

{dxxyq1
1 xxy · · · xxydxxyqn

n : q1, . . . , qn ≥ 0, q1 + · · ·+ qn ≥ 1}

forms a basis of J⊥X1,...,Xm
.

Proof. For any k ≥ 1, let us consider the set

{dxxyq1
1 xxy · · · xxydxxyqn

n ∈ Fk : q1, . . . , qn ≥ 0, q1 + · · ·+ qn ≥ 1}. (4.22)

This set is contained in J⊥X1,...,Xm
, due to Lemma 4.13. Moreover, all elements of (4.22)

belong to the dual basis (4.20) (up to multipliers), hence they are linearly independent.

The number of elements coincides with dim(J⊥X1,...,Xm
∩ Fk), since it coincides with the

number of elements in the set (4.17). Hence, (4.22) is a basis of J⊥X1,...,Xm
∩ Fk. Finally,

the union of sets (4.22) for all k ≥ 1 forms a basis of J⊥X1,...,Xm
.
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Corollary 4.15. For any i = 1, . . . , n, the element ˜̀i equals a homogeneous shuf-

fle polynomial of d1, . . . , dn. Conversely, for any i = 1, . . . , n, the element di equals a

homogeneous shuffle polynomial of ˜̀1, . . . , ˜̀n. Moreover, ord(di) = ord(˜̀i) = ord(`i),

i = 1, . . . , n.

Example 4.16. Let us again consider system (2.22) from Example 2.21. In Example 2.31

we have found LX1,X2 and chosen three complement elements `1, `2, `3. Let us find the

left ideal JX1,X2
and the orthoprojections of the complement elements.

We use (2.28). Obviously, JX1,X2
∩F1 = LX1,X2

∩F1 = Lin{η2}. Hence, all elements

of the form ηi1...ik2 also belong to JX1,X2 , which gives JX1,X2 ∩ F2 = Lin{η12, η22}.
Since [[η2, η1], η1] = η211 − 2η121 + η112, [[η2, η1], η2] = −η221 + 2η212 − η122, and

η122, η212, η112 ∈ JX1,X2
, we get

JX1,X2
∩ F3 = Lin{η112, η122, η212, η222, η211 − 2η121, η221}

and

JX1,X2
∩ F4 = Lin

{
η1112, η1122, η1212, η1222, η1211 − 2η1121, η1221,

η2112, η2122, η2212, η2222, η2211 − 2η2121, η2221
}
. (4.23)

Now let us find the orthoprojections of the elements (2.29) on the subspace J⊥X1,X2
.

Since η2 ∈ JX1,X2 , we get ˜̀1 = η1. Analogously, since η12 ∈ JX1,X2 , we get ˜̀2 = −2η21.

Notice that the elements ˜̀xxy41 = 24η1111, ˜̀xxy21 xxy ˜̀2 = −12η2111 − 8η1211 − 4η1121, and˜̀xxy2
2 = 8η2121 + 16η2211 are orthogonal to all elements from (4.23).

Finally, notice that [[[η2, η1], η2], η2] ∈ JX1,X2 and

[[[η2, η1], η1], η1] = η2111 − 3η1211 + 3η1121 − η1112,

where η1112 ∈ JX1,X2
. Obviously, the element η2111 − 3η1211 + 3η1121 is orthogonal to all

elements from (4.23) except η1211 − 2η1121. Hence, its orthoprojection on J⊥X1,X2
equals

η2111 − 3η1211 + 3η1121 + α(η1211 − 2η1121) where α is such that〈
η2111 − 3η1211 + 3η1121 + α(η1211 − 2η1121), η1211 − 2η1121

〉
= 0,

which gives α = 9
5 . Finally, we get ˜̀3 = 3η2111 − 18

5 η1211 −
9
5η1121.

Now let us find the elements of the dual basis. For definiteness, choose `4 = η2. Then

d1 is found from the equalities 〈d1, `1〉 = 1 and 〈d1, `4〉 = 0, which gives d1 = η1 = ˜̀
1.

Analogously, d2 is found from the equalities 〈d2, `2〉 = 1 and 〈d2, `1`1〉 = 〈d2, `1`4〉 =

〈d2, `4`4〉 = 0, which gives d2 = − 1
2η21 = 1

4
˜̀
2.

Also, choose `5 = [[η2, η1], η1], `6 = [[η2, η1], η2], `7 = [[[η2, η1], η1], η2], and `8 =

[[[η2, η1], η2], η2]. The element d3 satisfies the equality 〈d3, `3〉 = 1 and is orthogonal to

`1`1`1`1, `1`1`1`4, `1`1`4`4, `1`4`4`4, `4`4`4`4,

`1`1`2, `1`2`4, `2`2, `2`4`4, `1`5, `1`6, `4`5, `4`6, `7, `8.

These conditions give d3 = 1
3η2111. Notice that η1 xxyη1 xxyη21 = 6η2111 + 4η1211 + 2η1121,

hence

d3 = 5
126
˜̀
3 − 1

56
˜̀xxy2
1 xxy ˜̀2.
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4.5. Expansion of the endpoint map in the dual basis. Let us apply properties of

a dual basis to the series representation of the endpoint map.

First, for any k ≥ 1 consider any element a ∈ Fk. Definition 3.2 of the inner product

implies that

a =
∑

1≤i1,...,ik≤m

〈a, ηi1...ik〉ηi1...ik . (4.24)

Re-expanding this element with respect to the dual basis (4.20) and taking into account

Theorem 4.12 we get the representation

a =
∑′ 1

q1! · · · qr!
〈a, `q1i1 · · · `

qr
ir
〉 dxxyq1

i1
xxy · · · xxydxxyqr

ir
, (4.25)

where the sum
∑′

is taken over all indices 1 ≤ i1 < · · · < ir and q1, . . . , qr ≥ 1 such that

`q1i1 · · · `
qr
ir
∈ Fk.

Now let us turn to the series EX1,...,Xm
and consider such a representation for its

components (EX1,...,Xm
)j , j = 1, . . . , n. More specifically, let us fix k ≥ 1 and consider

any basis element `q1i1 · · · `
qr
ir
∈ Fk. Set a =

∑′′
(c(ηi1...ik))jηi1...ik , where the sum

∑′′
is

taken over all indices 1 ≤ i1, . . . , ik ≤ m. Since c is a linear map, using (4.24) we get

〈a, `q1i1 · · · `
qr
ir
〉 =

∑′′
(c(ηi1...ik))j〈ηi1...ik , `

q1
i1
· · · `qrir 〉 =

∑′′(
c(〈ηi1...ik , `

q1
i1
· · · `qrir 〉ηi1...ik)

)
j

=
(
c
(∑′′

〈ηi1...ik , `
q1
i1
· · · `qrir 〉ηi1...ik

))
j

= (c(`q1i1 · · · `
qr
ir

))j .

Hence, (4.25) implies

a =
∑′ 1

q1! · · · qr!
(c(`q1i1 · · · `

qr
ir

))j d
xxyq1
i1

xxy · · · xxydxxyqr
ir

.

Applying these arguments for all k ≥ 1 and all j = 1, . . . , n, we get the following

result.

Theorem 4.17. Suppose {`1, . . . , `n} is a set of homogeneous elements of L such that

(4.2) holds, and {`j}∞j=n+1 is a homogeneous basis of LX1,...,Xm
. Then the series on the

right hand side of (2.23) can be represented in the form

EX1,...,Xm
=

∑
1≤i1<···<ir
q1,...,qr≥1

1

q1! · · · qr!
c(`q1i1 · · · `

qr
ir

) dxxyq1
i1

xxy · · · xxydxxyqr
ir

, (4.26)

where dj = d1j are elements of the dual basis (4.20).

Now we separate terms containing only `1, . . . , `n. So, we get

EX1,...,Xm
= S + T , (4.27)

where

S =
∑

q1,...,qn≥0
q1+···+qn≥1

1

q1! · · · qn!
c(`q11 · · · `qnn ) dxxyq1

1 xxy · · · xxydxxyqn
n , (4.28)

T =
∑

1≤i1<···<ir, ir≥n+1
q1,...,qr≥1

1

q1! · · · qr!
c(`q1i1 · · · `

qr
ir

) dxxyq1
i1

xxy · · · xxydxxyqr
ir

, (4.29)
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where we set `0 = 1. If ir ≥ n + 1 then `q1i1 · · · `
qr
ir
∈ JX1,...,Xm , which means that all

coefficients in the series T belong to c(JX1,...,Xm
). This implies the following lemma.

Lemma 4.18. Suppose i = 1, . . . , n is fixed and (S)i contains only terms of order no less

than k. Then (T )i contains only terms of order greater than k.

Proof. It is sufficient to prove that (c(JX1,...,Xm
∩ F j))i = 0 for any j = 1, . . . , k.

The proof is by induction on j. For j = 1, there is nothing to prove, since c(JX1,...,Xm∩
F1) = 0 due to Lemma 4.2.

Suppose that for some 1 ≤ j < k one has (c(JX1,...,Xm
∩ (F1 ⊕ · · · ⊕ F j)))i = 0.

Consider any a ∈ JX1,...,Xm ∩F j+1. Due to Lemma 4.2, c(a) ∈ c(F1⊕· · ·⊕F j). We have

c(F1 ⊕ · · · ⊕ Fj) = c(M j) + c(N j),

where we denote temporarily

M j = Lin{`q1i1 · · · `
qr
ir

: i1 ≤ · · · ≤ ir ≤ n} ∩ (F1 ⊕ · · · ⊕ Fj),
N j = Lin{`q1i1 · · · `

qr
ir

: i1 ≤ · · · ≤ ir, ir ≥ n+ 1} ∩ (F1 ⊕ · · · ⊕ Fj).

However, (c(M j))i = 0 since, due to the condition of the lemma, (S)i contains only

terms of order no less than k (recall that j < k), and (c(N j))i = 0 due to the induction

supposition. Thus, (c(F1 ⊕ · · · ⊕ Fj))i = 0, which gives (c(a))i = 0. The induction

arguments complete the proof.

4.6. Weight, order, and privileged coordinates again. Now let us return to the

concepts of the weight, the order, and privileged coordinates, and reformulate them taking

into account the representation (4.27)–(4.29).

As before, suppose that (4.2) and (4.3) hold. Due to Corollary 2.30, the vectors

c(`1), . . . , c(`n) are linearly independent. Without loss of generality assume c(`i) = ei,

i = 1, . . . , n. Then the coordinates are linearly adapted.

The weight of the coordinate xi equals wi = ord(`i), i = 1, . . . , n.

The order of the coordinate function fi(x) = xi equals the minimal order of an element

that enters (S)i or (T )i with a nonzero coefficient.

Lemma 4.18 says that if (S)i contains terms of order wi or more, then (T )i contains

terms of order greater than wi. Hence, we are led to the following reformulation.

The order of the coordinate function fi(x) = xi equals the minimal order of an element

that enters (S)i with a nonzero coefficient.

Therefore, we get a new “definition” of privileged coordinates.

Privileged coordinates are those for which

if ord(`q11 · · · `qnn ) < ord(`i) then (c(`q11 · · · `qnn ))i = 0, i = 1, . . . , n.

Hence, to construct privileged coordinates, we should reduce S to a “triangular form”,

i.e., to the form

(S)i = di + “elements of order ≥ ord(`i)”, i = 1, . . . , n. (4.30)

In other words, we should exclude the elements

{dxxyq1
1 xxy · · · xxydxxyqn

n : ord(dxxyq1
1 xxy · · · xxydxxyqn

n ) < ord(`i)}
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from the ith component of S. Suppose a change of variables y = Q(x) in the system is

applied. Then the endpoint map EX̂1,...,X̂m
= Q(EX1,...,Xm

) takes the form (2.21). Taking

into account (4.27)–(4.29), we get

EX̂1,...,X̂m
= Q(EX1,...,Xm

)

=

∞∑
q=1

∑
j1+···+jn=q

1

j1! . . . jn!

∂j1+···+jnQ(0)

∂xj11 · · · ∂x
jn
n

(S + T )xxyj1
1 xxy · · · xxy (S + T )xxyjn

n

= Q(S) + T ′, (4.31)

where

T ′ =

∞∑
q=1

∑
j1+···+jn=q

∑
0≤ki≤ji

k1+···+kn≥1

αk1...knj1...jn
Sxxy(j1−k1)
1 xxyT xxyk1

1 xxy · · · xxySxxy(jn−kn)
n xxyT xxykn

n

and

αk1...knj1...jn
=
∂j1+···+jnQ(0)

∂xj11 · · · ∂x
jn
n

1

(j1 − k1)!k1! · · · (jn − kn)!kn!
.

In particular, each term of the series T ′ necessarily includes a multiplier Tj for some

j = 1, . . . , n.

On the other hand, a representation of the form (4.26) gives

EX̂1,...,X̂m
=

∑
1≤i1<···<ir
q1,...,qr≥1

1

q1! · · · qr!
ĉ(`q1i1 · · · `

qr
ir

) dxxyq1
i1

xxy · · · xxydxxyqr
ir

= Ŝ + T̂ , (4.32)

where ĉ denotes the linear operator ĉ : F → Rn defined as ĉ(ηi1...ik) = X̂ik · · · X̂i1E(0)

and

Ŝ =
∑

q1,...,qn≥0

1

q1! · · · qn!
ĉ(`q11 · · · `qnn ) dxxyq1

1 xxy · · · xxydxxyqn
n ,

T̂ =
∑

1≤i1<···<ir, ir≥n+1
q1,...,qr≥1

1

q1! · · · qr!
ĉ(`q1i1 · · · `

qr
ir

) dxxyq1
i1

xxy · · · xxydxxyqr
ir

.

Let us compare the expressions (4.31) and (4.32). We see that all terms of the form

dxxyq1
1 xxy · · · xxydxxyqn

n are included in Q(S), while all terms of the form dxxyq1
i1

xxy · · · xxydxxyqr
ir

with

i1 < · · · < ir and ir ≥ n+ 1 are included in T ′. Hence,

Ŝ = Q(S) and T̂ = T ′.

Thus, the conclusion is: The change of variables y = Q(x) that gives privileged co-

ordinates is such that the series Q(S) is of triangular form. Hence, in practice, when

constructing privileged coordinates, we operate only with the series S.

4.7. Description of all privileged coordinates. Along with S, let us consider the

vector function Φ : Rn → Rn of the form

Φ(z) =
∑

q1,...,qn≥0
q1+···+qn≥1

1

q1! · · · qn!
c(`q11 · · · `qnn ) zq11 · · · zqnn , z ∈ Rn.
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Notice that Φ(0) = 0. Since the vector fields X1, . . . , Xm are real analytic in a neighbor-

hood of the origin, Φ(z) is also real analytic in a neighborhood of the origin. Moreover,
∂Φ(0)
∂zi

= c(`i) = ei, i = 1, . . . , n. Hence, Φ(z) is locally invertible in a neighborhood of the

origin.

Recall that wi = ord(`i), i = 1, . . . , n (weights of coordinates), and w1 ≤ · · · ≤ wn.

Theorem 4.19. A nonsingular real analytic change of variables y = Q(x) gives privileged

coordinates if and only if it reduces the vector function Φ(z) to a triangular form, i.e.,

(Q(Φ(z)))i =
∑

w1r1+···+wnrn≥wi

αr1...rni zr11 · · · zrnn , i = 1, . . . , n,

where αr1...rni ∈ R.

Proof. The proof is clear: Since the map Q acts on Φ(z) and on S similarly, we get

(Q(S))i =
∑

w1r1+···+wnrn≥wi

αr1...rni dxxyr1
1 xxy · · · xxydxxyrn

n , i = 1, . . . , n,

which coincides with (4.30) up to a linear map.

In particular, the map Q(z) = Φ−1(z) defines privileged coordinates; the correspond-

ing approximation was described in [24]. However, it is not easy to find the explicit form

of this transformation. On the other hand, in order to reduce Φ(z) to a triangular form, we

need to transform only terms of order no greater than wn. Hence, any map that reduces

Φ(z) to a triangular form, also reduces the polynomial vector function

Φ̂(z) =
∑

w1q1+···+wnqn≤wn

1

q1! · · · qn!
c(`q11 · · · `qnn )zq11 · · · zqnn , z ∈ Rn, (4.33)

to a triangular form, and vice versa. As a consequence, we obtain the following “finite”

description of all privileged coordinates.

Theorem 4.20. A nonsingular real analytic change of variables y = Q(x) gives privileged

coordinates if and only if it reduces the polynomial vector function (4.33) to a triangular

form.

Thus, Q(x) can be chosen in a polynomial form; in essence, such a way is described

in [6]. Notice that in Subsection 4.3 we describe a close polynomial transformation. For

practical purposes, it is convenient to construct a change of variables componentwise, so

that at the ith step we transform the ith component excluding all terms of order less

than wi.

4.8. Representation theorem and a principal part of the series. Let us summarize

the obtained results. In this section we have proved that, for any bracket generating

system of the form (2.1), there exists a nonsingular polynomial change of variables that

reduces the endpoint map to the form

(EX̂1,...,X̂m
)i = ai + “elements of order > wi”,

where wi = ord(ai) is the weight of the coordinate xi, i = 1, . . . , n. In this sense the set

of elements (a1, . . . , an) is the principal part of the series for the endpoint map EX̂1,...,X̂m
.
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As we have proved, ai can be chosen as elements of the dual basis described above,

ai = di, i = 1, . . . , n.

Theorem 4.21. For any bracket generating (real analytic) system of the form (2.1), there

exists a nonsingular polynomial change of variables y = Q(x) such that the endpoint map

of the system in the new coordinates is represented as a series of the form

(EX̂1,...,X̂m
)i = di + ρi, i = 1, . . . , n, (4.34)

where ρi ∈
⊕∞

j=wi+1 F j, wi = ord(di), i = 1, . . . , n. Here d1, . . . , dn are elements of

the basis (4.20) dual to the Poincaré–Birkhoff–Witt basis (4.4), where the homogeneous

elements `1, . . . , `n ∈ L are such that (4.2) and (4.3) hold, and {`j}∞j=n+1is a homogeneous

basis of LX1,...,Xm
.

However, the principal part of the series (and therefore privileged coordinates) is

not uniquely defined; for example, it can be chosen also as ai = di + Pi(d1, . . . , di−1),

where Pi(d1, . . . , di−1) ∈ Fwi are homogeneous polynomials without linear terms. Using

Corollary 4.15, we get another convenient form for the principal part.

Theorem 4.22. For any bracket generating (real analytic) system of the form (2.1), there

exists a nonsingular polynomial change of variables y = Ψ(x) such that the endpoint map

of the system in the new coordinates is represented as a series of the form

(EX̂1,...,X̂m
)i = ˜̀

i + ρ̂i, i = 1, . . . , n, (4.35)

where ρ̂i ∈
⊕∞

j=wi+1 F j, wi = ord(`i), i = 1, . . . , n. Here the homogeneous elements

`i ∈ L are such that (4.2) and (4.3) hold, and ˜̀i denotes the orthogonal projection of `i
on the subspace J⊥X1,...,Xm

.

Proof. Suppose a change of variables y = Q(x) reduces the series for the endpoint map

EX1,...,Xm
to the form (4.34). Due to Corollary 4.15, any ˜̀i, i = 1, . . . , n, can be expressed

as a shuffle polynomial of d1, . . . , dn, and vice versa. More specifically,˜̀
i = Pi(d1, . . . , dn) =

∑
wj=wi

αijdj+
∑

q1+···+qn≥2
q1w1+···+qnwn=wi

αiq1...qnd
xxyq1
1 xxy · · · xxydxxyqn

n , i = 1, . . . , n,

where the matrix {αij} is nonsingular. Since Pi(d1 + ρ1, . . . , dn + ρn) = ˜̀
i + ρ̂i, where ρ̂i

contains terms of order greater than wi, i = 1, . . . , n, the nonsingular change of variables

y = Ψ(x) = P (Q(x)) reduces the series to the form (4.35). Obviously, the coordinates y

are privileged.

Thus, the principal part of the series for the endpoint map can be constructed in a

purely algebraic way, by the “standard” procedure of finding the orthogonal projection

of elements `1, . . . , `n satisfying (4.2) and (4.3) on the subspace J⊥X1,...,Xm
.

Example 4.23. Consider the system

ẋ1 = u1,

ẋ2 = u2 + x1u2,

ẋ3 = x2u1 + x1u2 + x21u2 + 1
6x

3
1u2.

(4.36)
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Analogously to Example 2.21, we find the series representation of the endpoint map

EX1,X2
=

 η1
η2 + η21

η12 + η21 + η121 + 2η211 + η2111

.
Therefore,

c(η1) = c1 = e1, c(η2) = c2 = e2, c([η2, η1]) = c21 − c12 = e2 ∈ Lin{e1, e2},
c([[η2, η1], η1]) = c211 − 2c121 + c112 = 0, c([[η2, η1], η2]) = 2c212 − c122 − c221 = 0,

c
(
[[[η2, η1], η1], η1]

)
= c2111 − 3c1211 + 3c1121 − c1112 = e3 6∈ Lin{e1, e2},

and all other brackets vanish. Hence,

P1 = {0}, P2 = {[η2, η1]} = L2, P3 = Lin
{

[[η2, η1], η1], [[η2, η1], η2]
}

= L3,

P4 = Lin
{

[[[η2, η1], η1], η2], [[[η2, η1], η2], η2]
}
,

and Pk = Lk for k ≥ 5. Then LX1,X2
=
∑∞
k=1 Pk. We may choose

`1 = η1, `2 = η2, `3 = [[[η2, η1], η1], η1].

Then L = Lin{`1, `2, `3}+ LX1,X2 . Thus, for any choice of a basis of LX1,X2 ,

d1 = η1, d2 = η2, d3 = η2111.

For definiteness, set `4 = [η2, η1]. Then d4 = η21. Rewriting EX1,X2
in the form (4.26),

we get

EX1,X2 =

 d1
d2 + d4

d1 xxyd2 + d1 xxyd4 + d3

.
Since c(`i) = ei, i = 1, 2, 3, the initial coordinates are linearly adapted. It is explained

in Subsection 4.6 that for the first and second coordinates, the order equals the weight

(ord(d1) = ord(d2) = 1). However, the weight of the third coordinate equals ord(d3) = 4

while its order equals ord(d1 xxyd2) = 2. Hence, these coordinates are not privileged.

Let us find privileged coordinates, following the way proposed in Subsection 4.7. Let

us rewrite EX1,X2
in the form (4.27)–(4.29). We get EX1,X2

= S + T , where

S =

 d1
d2

d1 xxyd2 + d3

 , T =

 0

d4
d1 xxyd4

 .

Though ord(d1 xxyd4) < ord(d3), we ignore the term containing d4 in the third line of

EX1,X2 and find privileged coordinates only by use of the form of S, which includes only

d1, d2, and d3. Namely, any change of variables that reduces the vector function

Φ(z) =

 z1
z2

z1z2 + z3


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to a triangular form gives privileged coordinates. For example, we may choose

y = Q(x) =

 x1
x2

x3 − x1x2

.
Then

EX̂1,X̂2
= Q(EX1,X2

) =

 d1
d2 + d4
d3

.
In this case the principal part is defined by the elements d1, d2, d3.

The map

y = Q(x) =

 x1 + x3
x2 + x22

x3 − x1x2 + x41


also reduces the vector function Φ to a triangular form. It also defines privileged coordi-

nates; in this case we get

EX̂1,X̂2
= Q(EX1,X2

) =

 d1 + d1 xxyd2 + d1 xxyd4 + d3
d2 + d4 + (d2 + d4)xxy2

d3 + dxxy4
1

,
and the principal part is defined by the elements d1, d2, d3 + dxxy4

1 .

5. Realization problem and algebraic definition of homogeneous
approximation

5.1. Approximating system and realizability conditions. In the previous section

we obtained the descriptions (4.34) and (4.35) of a principal part of the series repre-

senting the endpoint map EX1,...,Xm . Let us consider the “series” E containing only the

principal part, i.e., (E)i = di (or (E)i = ˜̀
i), i = 1, . . . , n. The question is whether there

exists a system (3.1) such that E = EZ1,...,Zm , that is, E is realizable as the endpoint map

of some control-linear system. If so, then such a system can be considered as a homo-

geneous approximation of the initial system (2.1) (see Definition 3.1). More specifically,

we are interested in the following version of the realization problem: Given a linear map

c : F → Rn, determine whether there exists a system of the form (2.1) such that the

equalities
c(ηi1...ik) = Xik · · ·Xi1E(0) (5.1)

hold for any k ≥ 1 and any 1 ≤ i1, . . . , ik ≤ m. If this is the case, the series

E =

∞∑
k=1

∑
1≤i1,...,ik≤m

c(ηi1...ik)ηi1...ik

is realized as the endpoint map of this system.

The realization problem in a more general formulation was carefully studied [18, 28, 29,

30], and realizability conditions are well known. Following [50] we formulate a particular

case suitable for our purpose.
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Theorem 5.1. Suppose a linear map c : F → Rn is such that dim c(L) = Rn. The

realization problem is solvable (i.e., there exists a system of the form (2.1) such that

equalities (5.1) are satisfied) if and only if

(a) there exist positive constants C1 and C2 such that

‖c(ηi1...ik)‖ ≤ k!C1C
k
2

for any k ≥ 1 and any 1 ≤ i1, . . . , ik ≤ m;

(b) for any ` ∈ L such that c(`) = 0, one has c(a`) = 0 for all a ∈ F .

Moreover, in this case such a system is unique.

Let us return to our realization problem and consider the series E such that (E)i = di,

i = 1, . . . , n.

Lemma 5.2. Suppose LX1,...,Xm
⊂ L is a Lie subalgebra corresponding to system (2.1).

Then the series E such that (E)i = di, i = 1, . . . , n, is realizable, i.e., there exists a system

(3.1) such that E = EZ1,...,Zm
. Here d1, . . . , dn are the elements of the basis (4.20) dual to

the Poincaré–Birkhoff–Witt basis (4.4), where the homogeneous elements `1, . . . , `n ∈ L
are such that (4.2) and (4.3) hold, and {`j}∞j=n+1is a homogeneous basis of LX1,...,Xm

.

Proof. Taking into account the representation (4.26), we see that the series E defines a

map c : F → Rn by

c(`i) = ei, i = 1, . . . , n,

c(`j) = 0, j ≥ n+ 1,

c(`j1 · · · `jr ) = 0, j1 ≤ · · · ≤ jr, r ≥ 2.

(5.2)

Condition (a) of Theorem 5.1 is obviously satisfied. Let us prove that condition (b) also

holds.

Suppose ` ∈ L is such that c(`) = 0. Taking into account (5.2), we conclude that

` =
∑q
k=1 αk`pk , where p1, . . . , pq ≥ n+ 1. Now let us choose any a ∈ F ; since (4.4) is a

basis of F , it is sufficient to consider a = `i1 · · · `is , where i1 ≤ · · · ≤ is.
Thus, consider the element a`pk = (`i1 · · · `is) `pk with pk ≥ n + 1. Obviously, a`pk

is in JX1,...,Xm . Due to Corollary 4.4, it equals a linear combination of elements (4.7),

i.e., elements `j1 · · · `jr with r ≥ 2 and elements `j1 with j1 ≥ n + 1. Then (5.2) implies

c(a`pk) = 0, therefore c(a`) = 0.

Hence, the map (5.2) is realizable, which means that the series (E)i = di, i = 1, . . . , n,

is realizable as an endpoint map for a certain system.

Lemmas 4.14 and 5.2 imply the following corollary.

Corollary 5.3. Suppose LX1,...,Xm
∈ L is a Lie subalgebra corresponding to system

(2.1). Then the series E such that (E)i = ˜̀
i, i = 1, . . . , n, is realizable, i.e., there exists

a system (3.1) such that E = EZ1,...,Zm
. Here the homogeneous elements `1, . . . , `n ∈ L

are such that (4.2) and (4.3) hold, and ˜̀i denotes the orthogonal projection of `i on the

subspace J⊥X1,...,Xm
.

Now we are ready to describe homogeneous approximations in the sense of Defini-

tion 3.1.
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Lemma 5.4. Let system (3.1) be such that (EZ1,...,Zm)i = ˜̀
i, i = 1, . . . , n. This system is

a homogeneous approximation for (2.1) in the sense of Definition 3.1.

Proof. Let us check properties (i) and (ii) of Definition 3.1.

(i) The property (4.1) implies Fk = (JX1,...,Xm ∩ Fk) ⊕⊥ (J⊥X1,...,Xm
∩ Fk) for any

k ≥ 1. Set wi = ord(`i), i = 1, . . . , n. Then `i ∈ Fwi gives ˜̀i ∈ Fwi , i = 1, . . . , n. Thus,

the elements ˜̀1, . . . , ˜̀n are homogeneous. Hence, the endpoint map (EZ1,...,Zm
(θ, u))i =˜̀

i(θ, u), i = 1, . . . , n, satisfies property (i).

(ii) Suppose y = Q(x) defines privileged coordinates such that (4.35) holds. Then,

due to (4.35),

(Q(EX1,...,Xm
)− EZ1,...,Zm

)i = ρ̂i, i = 1, . . . , n,

where ρ̂i ∈
⊕∞

j=wi+1 F j , wi = ord(`i), i = 1, . . . , n. Hence,

ρ̂i(θ, u
1/θ) =

∞∑
k=wi+1

∑
1≤i1,...,ik≤m

(ĉi1...ik)iηi1...ik(θ, u1/θ), i = 1, . . . , n,

where ĉi1...ik = X̂ik · · · X̂i1E(0) and X̂1, . . . , X̂m are vector fields in the new coordinates.

Taking into account analyticity of X̂i(y) and the requirement u ∈ B1, analogously to

(2.6) we get the estimates

|ρ̂i(θ, u1/θ)| ≤ Ĉ1Ĉ
wi+1
2 θwi+1, i = 1, . . . , n,

for some positive Ĉ1, Ĉ2 and sufficiently small θ, which implies condition (ii).

Corollary 5.5. System (3.1) is a homogeneous approximation for system (2.1) in the

sense of Definition 3.1 if and only if its series is of the form (EZ1,...,Zm)i = Pi(˜̀1, . . . , ˜̀n),

i = 1, . . . , n, where P is a polynomial vector function with nonsingular linear part and

Pi(˜̀1, . . . , ˜̀n) ∈ Fwi (where wi = ord(`i)).

Proof. Suppose (EZ1,...,Zm
)i = Pi(˜̀1, . . . , ˜̀n), i = 1, . . . , n, where P has nonsingular linear

part and Pi(˜̀1, . . . , ˜̀n) ∈ Fwi . As follows from Lemma 5.4, there exists a nonsingular

change of variables Q(x) such that (Q(EX1,...,Xm
))i − ˜̀i = ρi, where ρi ∈

⊕∞
j=wi+1 F j .

Then

Pi(Q(EX1,...,Xm
)) = Pi(˜̀1 + ρ1, . . . , ˜̀n + ρn) = Pi(˜̀1, . . . , ˜̀n) + ρ̂i = (EZ1,...,Zm

)i + ρ̂i,

where ρ̂i ∈
⊕∞

j=wi+1 F j , which proves that system (3.1) is a homogeneous approximation

for (2.1).

Let now a system ż =
∑m
i=1 uiẐi(z) with the series Ê = EẐ1,...,Ẑm

be another homo-

geneous approximation of (2.1). Then condition (i) of Definition 3.1 implies that (Ê)i are

homogeneous; set ŵi = ord((Ê)i), i = 1, . . . , n, ŵ1 ≤ · · · ≤ ŵn.

Now consider condition (ii). It implies that there exists a nonsingular change of vari-

ables Q̂(x) such that (Q̂(EX1,...,Xm
))i = (Ê)i+ ρ̂i, where ρ̂i contains terms of order greater

than ŵi. On the other hand, Lemma 5.4 implies that there exists a nonsingular change

of variables Q(x) such that (Q(EX1,...,Xm
))i − ˜̀i = ρi, where ρi ∈

⊕∞
j=wi+1 F j .

Denote Φ(z) = Q̂(Q−1(z)). Then Φ(z) is a nonsingular change of variables and

Φi(˜̀1 + ρ1, . . . , ˜̀n + ρn) = Êi + ρ̂i, i = 1, . . . , n.
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Thus,

∞∑
r=1

∑
j1+···+jn=r

1

j1! · · · jn!

∂j1+···+jnΦi(0)

∂xj11 · · · ∂x
jn
n

(˜̀1 + ρ1)xxyj1 xxy · · · xxy (˜̀n + ρn)xxyjn = Êi + ρ̂i.

Hence, the smallest order of elements on both sides of this equality equals ŵi. Separating

elements of this order, we get∑
w1j1+···+wnjn=ŵi

1

j1! · · · jn!

∂j1+···+jnΦi(0)

∂xj11 · · · ∂x
jn
n

˜̀xxyj1
1 xxy · · · xxy ˜̀xxyjnn = Êi, i = 1, . . . , n.

Thus, Êi is a shuffle polynomial of ˜̀1, . . . , ˜̀n of order ŵi. However, Φ(z) is nonsingular,

i.e., the matrix ∂Φi(0)
∂xj

is nonsingular. Hence, the sets of orders of Êi and ˜̀i coincide.

Taking into account that w1 ≤ · · · ≤ wn and ŵ1 ≤ · · · ≤ ŵn, we see that wi = ŵi,

i = 1, . . . , n, which completes the proof.

Corollary 5.6. System (3.1) is a homogeneous approximation for (2.1) in the sense

of Definition 3.1 if and only if its series is of the form (EZ1,...,Zm
)i = Pi(d1, . . . , dn),

i = 1, . . . , n, where P is a polynomial vector function with nonsingular linear part and Pi
are such that Pi(d1, . . . , dn) ∈ Fwi (where wi = ord(di)).

Remark 5.7. Corollaries 5.5–5.6 directly imply that if (3.1) is a homogeneous approxi-

mation for (2.1) in the sense of Definition 3.1, then LX1,...,Xm = LZ1,...,Zm .

Thus, the series of a system which is a homogeneous approximation is defined, in

essence, uniquely, up to a homogeneous polynomial change of variables. Since the series

satisfies conditions (a) and (b) of Theorem 5.1, the approximating system is also defined

uniquely. We get the following corollary.

Corollary 5.8. For a system of the form (2.1), the homogeneous approximation exists

and is unique, up to a polynomial homogeneous change of variables.

Finally, let us discuss a connection between two definitions of homogeneous approxi-

mation, namely Definition 3.1 and the definition from [6]. Recall that in [6] the concept

of homogeneous approximation is introduced in the following way. Suppose system (2.1)

is written in privileged coordinates. Then Xi(x) = X
(−1)
i (x) + Yi(x), i = 1, . . . ,m, where

the vector fields X
(−1)
i (x) are of order −1, and Yi consist of terms of order greater than

−1. It turns out that in privileged coordinates this is the same as

(X
(−1)
i (x))j =

∑
k1w1+···+kj−1wj−1=wj−1

µj,ik1...kj−1
xk11 · · ·x

kj−1

j−1 , j = 1, . . . , n,

(Yi(x))j =
∑

k1w1+···+knwn≥wj

νj,ik1...knx
k1
1 · · ·xknn , j = 1, . . . , n.

Then the system ż =
∑m
i=1 uiX

(−1)
i (z) is called a homogeneous approximation of (2.1).

It can be shown that this system satisfies Definition 3.1. Let us consider E = EX1,...,Xm

and Ê = E
X

(−1)
1 ,...,X

(−1)
m

. Since
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(Ê(θ, u))j = zj(θ) =

m∑
i=1

∫ θ

0

ui(τ)(X
(−1)
i (z(τ)))j dτ,

(E(θ, u))j = xj(θ) =

m∑
i=1

∫ θ

0

ui(τ)
(
(X

(−1)
i (x(τ)))j + (Yi(x(τ)))j

)
dτ,

we have

(Ê)j =

m∑
i=1

ηi

( ∑
k1w1+···+kj−1wj−1=wj−1

µj,ik1...kj−1
(Ê)xxyk1

1 xxy · · · xxy (Ê)
xxykj−1

j−1

)
,

(E)j =

m∑
i=1

ηi

( ∑
k1w1+···+kj−1wj−1=wj−1

µj,ik1...kj−1
(E)xxyk1

1 xxy · · · xxy (E)
xxykj−1

j−1

+
∑

k1w1+···+knwn≥wj

νj,ik1...kn(E)xxyk1
1 xxy · · · xxy (E)xxykn

n

)
.

Using induction on j, it is easy to show that (Ê)j is homogeneous and contains elements

of order wj only while (E)j contains elements of order no less than wj , and, moreover,

elements of order wj in (Ê)j and (E)j coincide. This implies Definition 3.1. As follows

from Corollary 5.8, a homogeneous approximation in the sense of Definition 3.1 is unique

(up to a polynomial homogeneous change of variables). Hence, Definition 3.1 and the

definition of homogeneous approximation in [6] define the same concept.

5.2. Algebraic definition of homogeneous approximation. The definition of ho-

mogeneous approximation used above (see Definition 3.1) is coordinate dependent. Now

we are ready to reformulate it in a coordinate-free manner.

As was noticed in Remark 5.7, if system (3.1) is a homogeneous approximation for

(2.1) then LX1,...,Xm
= LZ1,...,Zm

. In turn, this property provides condition (ii) of Defi-

nition 3.1. In fact, suppose LX1,...,Xm
= LZ1,...,Zm

and elements ˜̀1, . . . , ˜̀n are chosen as

in Lemma 5.4. Arguing as in the proof of Lemma 5.4, for both systems we see that there

exist Q1 and Q2 (privileged coordinates for these systems) such that

(Q1(EX1,...,Xm)−Q2(EZ1,...,Zm))i = ρi, i = 1, . . . , n,

where ρi ∈
⊕∞

j=wi+1 F j , wi = ord(`i), and moreover ρi satisfies the estimate |ρi(θ, u1/θ)|
≤ C1C

wi+1
2 θwi+1, i = 1, . . . , n. Hence,(

Q−12 (Q1(EX1,...,Xm
))− EZ1,...,Zm

)
i

= ρi,

where ρi ∈
⊕∞

j=wi+1 F j also satisfies the estimate |ρi(θ, u1/θ)| ≤ C1C
wi+1

2 θwi+1, i =

1, . . . , n. This obviously gives condition (ii) of Definition 3.1.

Now let us turn to condition (i) of Definition 3.1. It can be interpreted in the follow-

ing way. Denote by cZ1,...,Zm
: F → Rn the linear map defined as cZ1,...,Zm

(ηi1...ik) =

Zik · · ·Zi1E(0). Suppose EZ1,...,Zm
= S + T is a decomposition considered in Subsec-

tion 4.5. If T is nontrivial then EZ1,...,Zm is not homogeneous due to Lemma 4.18. On

the other hand, T is trivial if and only if cZ1,...,Zm
(JZ1,...,Zm

) = 0 or, what is the same,

cZ1,...,Zm(LZ1,...,Zm) = 0. If this is the case, then EZ1,...,Zm = S, and therefore EZ1,...,Zm

can be reduced to the form (Q(EZ1,...,Zm
))i = di, i = 1, . . . , n, which satisfies condition (i).



56 G. M. Sklyar and S. Yu. Ignatovich

Hence, cZ1,...,Zm(LZ1,...,Zm) = 0 if and only if after some change of variables system (3.1)

satisfies condition (i) of Definition 3.1.

Thus, we get the following coordinate-free definition, which is equivalent to Defini-

tion 3.1.

Definition 5.9. Consider a bracket generating control-linear system of the form (2.1).

Let (3.1) be a (bracket generating) system; denote by cZ1,...,Zm
: F → Rn the linear

map defined as cZ1,...,Zm(ηi1...ik) = Zik · · ·Zi1E(0). System (3.1) is called a homogeneous

approximation for (2.1) if

(i) cZ1,...,Zm(LZ1,...,Zm) = 0;

(ii) LX1,...,Xm
= LZ1,...,Zm

.

Remark 5.10. Conditions (i) and (ii) of Definition 5.9 can be replaced by the equivalent

conditions

(i′) cZ1,...,Zm(JZ1,...,Zm) = 0;

(ii′) JX1,...,Xm
= JZ1,...,Zm

.

5.3. Construction of approximating systems. In this subsection we give a conve-

nient method for constructing an approximating system. For example, let us construct

system (3.1) so that (EZ1,...,Zm
)i = ˜̀

i, i = 1, . . . , n.

We act by induction on i = 1, . . . , n. For i = 1, consider the element ˜̀1 =
∑m
j=1 α

1
jηj .

Define the first component of the vector fields Z1, . . . , Zm as follows:

(Zj)1(z) = α1
j , j = 1, . . . ,m.

Then the function

z1(t) = ˜̀
1(t, u) =

m∑
j=1

α1
jηj(t, u) =

m∑
j=1

α1
j

∫ t

0

uj(τ) dτ

satisfies

ż1(t) =

m∑
j=1

α1
juj(t) =

m∑
j=1

uj(t)(Zj)1.

Suppose 2 ≤ i ≤ n. Then after i−1 steps all components (Zj)1, . . . , (Zj)i−1 are chosen

so that the functions

zq(t) = ˜̀
q(t, u), q = 1, . . . , i− 1,

satisfy the differential equalities

żq(t) =

m∑
j=1

uj(t)(Zj)q
(
z1(t), . . . , zq−1(t)

)
, q = 1, . . . , i− 1.

At the ith step we consider the element ˜̀i. Since `i ∈ Fwi , we get˜̀
i =

∑
1≤i1,...,ik≤m

αii1...ikηi1...ik , αii1...ik ∈ R, k = wi.

If k = 1 then ˜̀i =
∑m
j=1 α

i
jηj . Then we define the ith component of the vector fields

Z1, . . . , Zm as follows:

(Zj)i(z) = αij , j = 1, . . . ,m.
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Thus the function

zi(t) = ˜̀
i(t, u) =

m∑
j=1

αijηj(t, u) =

m∑
j=1

αij

∫ t

0

uj(τ) dτ

satisfies

żi(t) =

m∑
j=1

αijuj(t) =

m∑
j=1

uj(t)(Zj)i.

Suppose k ≥ 2. Then rewrite ˜̀i as

˜̀
i =

∑
1≤i1,...,ik≤m

αii1...ikηi1...ik =
∑

1≤i1,...,ik≤m

αii1...ikηi1ηi2...ik =

m∑
j=1

ηjaj ,

where

aj =
∑

1≤i2,...,ik≤m

αiji2...ikηi2...ik ∈ F
k−1.

Let us show that aj ∈ J⊥X1,...,Xm
. In fact, if 〈aj , a〉 6= 0 for some a ∈ JX1,...,Xm

then

〈aj , a〉 = 〈ηjaj , ηja〉 = 〈˜̀i, ηja〉 6= 0,

where ηja ∈ JX1,...,Xm , while ˜̀i ∈ J⊥X1,...,Xm
. Hence, aj ∈ J⊥X1,...,Xm

.

Notice that ord(aj) < ord(˜̀i). Then taking into account Theorem 4.10, we express aj
as a (homogeneous) shuffle polynomial of ˜̀1, . . . , ˜̀i−1,

aj = Pj(˜̀1, . . . , ˜̀i−1) =
∑

w1q1+···+wi−1qi−1=k−1

γ
q1...qi−1

j
˜̀xxyq1
1 xxy · · · xxy ˜̀xxyqi−1

i−1 .

Then we define the ith component of the vector fields Z1, . . . , Zm as follows:

(Zj)i(z) = Pj(z1, . . . , zi−1) =
∑

w1q1+···+wi−1qi−1=k−1

γ
q1...qi−1

j zq11 · · · z
qi−1

i−1 , j = 1, . . . ,m.

Therefore, we get

zi(t) = ˜̀
i(t, u) =

m∑
j=1

(
ηjPj(˜̀1, . . . , ˜̀i−1)

)
(t, u) =

m∑
j=1

∫ t

0

uj(τ)Pj(˜̀1, . . . , ˜̀i−1)(τ, u) dτ.

Recall that, due to the definition of shuffle product,

Pj(˜̀1, . . . , ˜̀i−1)(τ, u) = Pj
(˜̀

1(τ, u), . . . , ˜̀i−1(τ, u)
)
,

where on the left hand side we consider Pj as a shuffle polynomial, while on the right

hand side we consider Pj as a usual polynomial of i− 1 variables. Hence,

zi(t) = ˜̀
i(t, u) =

m∑
j=1

∫ t

0

uj(τ)Pj
(˜̀

1(τ, u), . . . , ˜̀i−1(τ, u)
)
dτ.
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Therefore, due to the induction supposition,

żi(t) =

m∑
j=1

uj(t)Pj
(˜̀

1(t, u), . . . , ˜̀i−1(t, u)
)

=

m∑
j=1

uj(t)Pj
(
z1(t), . . . , zi−1(t)

)
=

m∑
j=1

uj(t)Zj
(
z1(t), . . . , zi−1(t)

)
.

By induction, after n steps we construct the polynomial vector fields Z1, . . . , Zm such

that the trajectory z(t) satisfying the Cauchy problem ż =
∑m
j=1 uj(t)Zj(z), z(0) = 0

(for arbitrary fixed controls u1(t), . . . , um(t)), is such that zi(t) = ˜̀
i(t, u), i = 1, . . . , n.

Recall that we denote z(t) = EZ1,...,Zm
(t, u). Thus, the vector fields Z1, . . . , Zm are such

that EZ1,...,Zm = ˜̀
i, i = 1, . . . , n.

Analogously, the polynomial vector fields can be found such that EZ1,...,Zm
= di,

i = 1, . . . , n.

Remark 5.11. Suppose L′ ⊂ L is an arbitrary graded Lie subalgebra of codimen-

sion n. Set J ′ = Lin{FeL′}, choose any homogeneous elements `1, . . . , `n such that

L = Lin{`1, . . . , `n}+L′, and denote by ˜̀i the orthoprojection of `i on the subspace J ′⊥.

Then all the results of Subsections 4.1 and 4.2 (naturally, except Lemma 4.2) can be

repeated for L′ and J ′; in particular, the analog of Theorem 4.10 holds. Hence, following

the arguments of the present subsection, we can construct a (homogeneous) system of

the form (2.1) such that LX1,...,Xm
= L′. This means that a core Lie subalgebra can be

an arbitrary graded Lie subalgebra of codimension n. Along with Lemma 2.29, this gives

a complete algebraic classification of possible homogeneous approximations.

Example 5.12. Suppose L is a free Lie algebra generated by the elements η1 and η2. Set

L′ =
∑∞
k=1 Pk, where

P1 = Lin{η2}, P2 = {0}, P3 = Lin{[[η2, η1], η2]},
P4 = Lin{[[[η2, η1], η2], η2]},

and Pk = Lk for k ≥ 5. Then L′ is a Lie subalgebra of codimension n = 5. Choose

`1 = η1, `2 = [η2, η1], `3 = [[η2, η1], η1],

`4 = −[[[η2, η1], η1], η2], `5 = [[[η2, η1], η1], η1].

Then L = Lin{`1, . . . , `5} + L′. Now, set J ′ = Lin{FeL′}, and find ˜̀i, i = 1, . . . , 5.

Obviously, ˜̀1 = η1. Since

J ′ ∩ F2 = Lin{η12, η22},

we get ˜̀2 = η21. The subspace J ′ ∩ F3 is defined by all elements of the form ηi1i22 and

[[η2, η1], η2], hence

J ′ ∩ F3 = Lin{η112, η122, η212, η222, η221};

this implies ˜̀3 = η211 − 2η121. Finally,

J ′ ∩ F4 = Lin{η1112, η1122, η1212, η1222, η1221, η2112, η2122, η2212, η2222, η2221},

which gives ˜̀4 = η2211 − 2η2121 and ˜̀5 = η2111 − 3η1211 + 3η1121.
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Now let us construct a system

ż = u1Z1(z) + u2Z2(z)

such that (EZ1,Z2
)i = ˜̀

i, i = 1, . . . , 5, i.e.,

EZ1,Z2 =


η1
η21

η211 − 2η121
η2211 − 2η2121

η2111 − 3η1211 + 3η1121

, (5.3)

as is explained in Subsection 5.3.

Since ˜̀1 = η1, we set (Z1)1 = 1 and (Z2)1 = 0.

Rewrite ˜̀2 as ˜̀2 = η21 = η2η1 = η2 ˜̀1. Hence, (Z1)2 = 0 and (Z2)2 = z1.

Rewrite ˜̀3 as ˜̀3 = η211 − 2η121 = η2η11 − 2η1η21. Since η11 = 1
2η

xxy2
1 = 1

2
˜̀xxy2
1 and

η21 = ˜̀
2, we set (Z1)3 = −2z2 and (Z2)3 = 1

2z
2
1 .

Analogously, ˜̀4 = η2211 − 2η2121 = η2(η211 − 2η121) = η2 ˜̀3. Hence, (Z1)4 = 0 and

(Z2)4 = z3.

Finally, ˜̀5 = η2111−3η1211+3η1121 = η2η111−3η1(η211−η121). Notice η111 = 1
6
˜̀xxy3
1 and

η211−η121 = 1
5 (η21 xxyη1)+ 3

5 (η211−2η121) = 1
5
˜̀
1 xxy ˜̀2 + 3

5
˜̀
3. Hence, (Z1)5 = − 3

5z1z2−
9
5z3

and (Z2)5 = 1
6z

3
1 .

Thus, we get

Z1(z) =


1

0

−2z2
0

− 3
5z1z2 −

9
5z3

, Z2(z) =


0

z1
1
2z

2
1

z3
1
6z

3
1

,
i.e., the system is of the form

ż1 = u1,

ż2 = z1u2,

ż3 = −2z2u1 + 1
2z

2
1u2,

ż4 = z3u2,

ż5 = − 3
5z1z2u1 −

9
5z3u1 + 1

6z
3
1u2.

This system seems to be rather complicated. Let us try to find a simplifying change

of variables. Again, consider the endpoint map (5.3). By the change of variables

y = Q(z) =


z1
z2

1
5 (z3 + 2z1z2)
1
5 (z4 + z22)

1
19

(
z5 + 21

10z
2
1z2 + 18

10z1z3
)


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the series representation is reduced to the form

Q(EZ1,Z2
) =


η1
η21
η211
η2211
η2111

.
The system corresponding to this endpoint map can be easily found by use of the described

procedure; it is of the form

ẏ1 = u1,

ẏ2 = y1u2,

ẏ3 = 1
2y

2
1u2,

ẏ4 = y3u2,

ẏ5 = 1
6y

3
1u2.

6. Homogeneous approximation in a neighborhood

6.1. Coproduct operation and concatenation of trajectories. In this section we

deal with the algebra Fe = F+R. As before, assume 1·a = a·1 = a and 1xxya = axxy1 = a,

for any a ∈ Fe. Let us extend the inner product to Fe assuming 〈1, 1〉 = 1 and 〈1, a〉 = 0,

for any a ∈ F .

Introduce the tensor product Fe ⊗Fe with the basis

{ηi1...ik ⊗ ηj1...js : k, s ≥ 0, 1 ≤ i1, . . . , ik, j1, . . . , js ≤ m}

(as before, we assume ηq1...qr = 1 if r = 0). Introduce the inner product in Fe ⊗ Fe
assuming this basis is orthonormal. Hence, if {b′q}∞q=1 and {b′′q}∞q=1 are dual bases in Fe
then {b′i ⊗ b′j}∞i,j=1 and {b′′i ⊗ b′′j }∞i,j=1 are dual bases in Fe ⊗ Fe. Therefore, for any

a ∈ Fe ⊗Fe one has

a =

∞∑
i,j=1

〈a, b′i ⊗ b′j〉b′′i ⊗ b′′j . (6.1)

Moreover, this identity can be extended to any formal power series a of elements of

Fe ⊗Fe with vector coefficients.

Now let us introduce the following helpful definition.

Definition 6.1. We say that the linear map ∆ : Fe → Fe ⊗ Fe defined on the basis

elements by the rule

∆(ηi1...ik) =

k∑
j=0

ηi1...ij ⊗ ηij+1...ik (6.2)

is the coproduct in Fe.

In fact, ∆ can be interpreted as a coproduct in the Hopf algebra (see [34], where this

operation is denoted by ∆′). By linearity, ∆ is naturally extended to formal power series

of elements of Fe.
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One can easily get the following property of ∆: for any a, a1, a2 ∈ Fe,

〈∆(a), a1 ⊗ a2〉 = 〈a, a1a2〉. (6.3)

Consequently, if {b′q}∞q=1 and {b′′q}∞q=1 are dual bases in Fe, then for any a ∈ Fe,

∆(a) =

∞∑
i,j=1

〈a, b′ib′j〉b′′i ⊗ b′′j , (6.4)

and this property can be extended to any formal power series a of elements of Fe.
In the following lemma we use the notation of concatenation of controls (2.8).

Lemma 6.2. Suppose {b′q}∞q=1 and {b′′q}∞q=1 are dual bases in Fe. Then for any pair of

controls u1 ∈ Bθ1 , u2 ∈ Bθ2 and any a ∈ Fe one has

a(θ1 + θ2, u1 ◦ u2) =

∞∑
i,j=1

〈a, b′ib′j〉b′′i (θ2, u2) b′′j (θ1, u1), (6.5)

and this property can be extended to any formal power series a of elements of Fe.

Proof. Let us consider any pair of controls u1 ∈ Bθ
1

, u2 ∈ Bθ
2

; below for the sake of

brevity we denote it as P . For a pair P , let us introduce the linear map mP : Fe⊗Fe → R
defined on basis elements ηi1...ik ⊗ ηj1...js by

mP (ηi1...ik ⊗ ηj1...js) = ηi1...ik(θ2, u2)ηj1...js(θ1, u1).

Due to Lemma 2.10, for any ηi1...ik ∈ F the following identity holds

ηi1...ik(θ1 + θ2, u1 ◦ u2) =

k∑
j=0

ηi1...ij (θ2, u2)ηij+1...ik(θ1, u1), (6.6)

where we assume ηip...iq (θ, u) = 1 for any θ and u if p > q. The definitions of ∆ and mP

allow us to rewrite (6.6) as

ηi1...ik(θ1 + θ2, u1 ◦ u2) = mP (∆(ηi1...ik)),

which, by linearity, implies

a(θ1 + θ2, u1 ◦ u2) = mP (∆(a))

for any a ∈ Fe. Then (6.4) gives

a(θ1 + θ2, u1 ◦ u2) =

∞∑
i,j=1

〈a, b′ib′j〉mP (b′′i ⊗ b′′j ) =

∞∑
i,j=1

〈a, b′ib′j〉b′′i (θ2, u2)b′′j (θ1, u1),

which proves the lemma.

Let us outline the next step of analysis. Consider a system of the form (2.1). As above,

let ϕ be the natural anti-homomorphism ϕ : F → F defined by

ϕ(ηi1...ik) = Xik · · ·Xi1 , k ≥ 1, 1 ≤ i1, . . . , ik ≤ m.

For any z ∈ U(0), introduce a linear map cz : F → Rn defined as

cz(a) = ϕ(a)E(z), a ∈ F ;
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in particular, cz(ηi1...ik) = Xik · · ·Xi1E(z). Analogously to Theorem 2.2, the end point

x(θ) of the solution of the Cauchy problem

ẋ =

m∑
i=1

ui(t)Xi(x), x(0) = z,

can be written as

x(θ) = z + EzX1,...,Xm
(θ, u),

where the endpoint map from z is expressed as a series of the form

EzX1,...,Xm
(θ, u) =

∞∑
k=1

∑
1≤i1,...,ik≤m

cz(ηi1...ik)ηi1...ik(θ, u).

Below we mainly deal with the corresponding formal power series

EzX1,...,Xm
=

∞∑
k=1

∑
1≤i1,...,ik≤m

cz(ηi1...ik)ηi1...ik .

Suppose the Rashevsky–Chow condition (2.24) holds at the origin. Then without loss of

generality it holds at any z ∈ U(0). This means that
∞∑
k=1

cz(Lk) = Rn, z ∈ U(0). (6.7)

Let us find a connection between coefficients of the series EzX1,...,Xm
and EX1,...,Xm .

Consider an arbitrary point x ∈ U(0) and a trajectory of system (2.1) going from the

origin to x through z. Namely, suppose u1 ∈ Bθ
1

steers the origin to z and u2 ∈ Bθ
2

steers z to x. Then u1 ◦ u2 steers the origin to x (at the time θ1 + θ2). This means that

x = EX1,...,Xm
(θ1 + θ2, u1 ◦ u2) = z + EzX1,...,Xm

(θ2, u2), (6.8)

where

z = EX1,...,Xm
(θ1, u1). (6.9)

Below we assume z is fixed whereas x is arbitrary.

The question arises whether coefficients of EzX1,...,Xm
(i.e., czi1...ik) can be expressed

directly via coefficients of EX1,...,Xm
(i.e., ci1...ik). The answer is “yes” for a class of

systems described in Subsection 6.3 below.

In the rest of this section we study core Lie subalgebras and left ideals for z ∈ U(0).

Namely, consider the subspaces

Pk(z) = {` ∈ Lk : cz(`) ∈ cz(L1 ⊕ · · · ⊕ Lk−1)}, k ≥ 1,

and set

LzX1,...,Xm
=

∞⊕
k=1

Pk(z).

Set also

J zX1,...,Xm
= Lin{FeLzX1,...,Xm

}.

For z = 0 we, as a rule, omit the reference to the point, i.e., write LX1,...,Xm instead of

L0
X1,...,Xm

, JX1,...,Xm
instead of J 0

X1,...,Xm
, etc.
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6.2. Regular systems. The simplest approximate characteristic of a system in a neigh-

borhood is the behavior of its growth vector. Namely, let pz be the degree of nonholonomy

of the system at the point z. Set

vzk = dim cz(L1 ⊕ · · · ⊕ Lk), k = 1, . . . , pz.

Then the sequence vz = (vz1 , . . . , v
z
pz ) is the growth vector of the system at z. Denote by

p and v = (v1, . . . , vp) the degree of nonholonomy and the growth vector at the origin.

Obviously, there exists a neighborhood U(0) such that for any z ∈ U(0),

pz ≤ p and vzk ≥ vk, k = 1, . . . , pz.

Definition 6.3. System (2.1) is called regular at the origin if its growth vector is con-

stant in a certain neighborhood U(0), i.e., pz = p and vzk = vk, k = 1, . . . , p, for any

z ∈ U(0). In the opposite case the system is called nonregular at the origin.

Lemma 6.4. Suppose system (2.1) is regular at the origin. Then its core Lie subalgebra

LX1,...,Xm
is a Lie ideal in L, i.e., for any a ∈ L and any ` ∈ LX1,...,Xm

one has

[a, `] ∈ LX1,...,Xm
.

Proof. Suppose elements `1, . . . , `n are such that

L = Lin{`1, . . . , `n}+ LX1,...,Xm , (6.10)

and without loss of generality assume `1, . . . , `n are homogeneous and

ord(`i) ≤ ord(`j) for i < j. (6.11)

As follows from Corollary 2.30, the vectors c(`1), . . . , c(`n) are linearly independent, there-

fore vectors cx(`1), . . . , cx(`n) are linearly independent for any x from a certain neighbor-

hood U(0). Without loss of generality assume that the growth vector is constant in U(0),

i.e., px = p and vxk = vk, k = 1, . . . , p. Then for any x ∈ U(0),

cx(L1 ⊕ · · · ⊕ Lk) = Lin{cx(`1), . . . , cx(`vk)}, 1 ≤ k ≤ p.

Let us consider any k = 1, . . . , p and any ` ∈ LX1,...,Xm
∩Lk. The vector cx(`) depends

linearly on cx(`1), . . . , cx(`vk), i.e., there exist scalar functions αi(x), i = 1, . . . , vk, such

that

cx(`) =

vk∑
i=1

αi(x)cx(`i).

However, ` ∈ LX1,...,Xm ∩ Lk, which implies c(`) ∈ Lin{c(`1), . . . , c(`vk−1
)}. Therefore,

αi(0) = 0, i = vk−1 + 1, . . . , vk. (6.12)

Since the vectors cx(`1), . . . , cx(`vk) are linearly independent, the functions αi(x), i =

1, . . . , vk, are smooth.
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Now let us consider an arbitrary a ∈ Lq, q ≥ 1. We have

cx([a, `]) = (cx(`))′xc
x(a)− (cx(a))′xc

x(`)

=

vk∑
i=1

(
αi(x)cx(`i)

)′
x
cx(a)−

vk∑
i=1

(cx(a))′xαi(x)cx(`i)

=

vk∑
i=1

(
α′i(x)cx(a)

)
cx(`i) +

vk∑
i=1

αi(x)
(
(cx(`i))

′
xc
x(a)− (cx(a))′xc

x(`i)
)

=

vk∑
i=1

α̃i(x)cx(`i) +

vk∑
i=1

αi(x)cx([a, `i]),

where α̃i(x) = α′i(x)cx(a), i = 1, . . . , vk. Taking into account (6.12), at x = 0 we get

c([a, `]) =

vk∑
i=1

α̃i(0)c(`i) +

vk−1∑
i=1

αi(0)c([a, `i]).

However, `i ∈ L1 ⊕ · · · ⊕ Lk for i = 1, . . . , vk, and [a, `i] ∈ L1 ⊕ · · · ⊕ Lk+q−1 for

i = 1, . . . , vk−1. Hence, c([a, `]) ∈ c(L1 ⊕ · · · ⊕ Lk+q−1) whereas [a, `] ∈ Lk+q. Therefore,

[a, `] ∈ Pk+q ⊂ LX1,...,Xm .

If a system is regular at the origin, then it is obviously regular at any point from a

certain neighborhood of the origin. Hence, we get the following corollary.

Corollary 6.5. Suppose system (2.1) is regular at the origin. Then there exists a neigh-

borhood U(0) such that for any z ∈ U(0) the core Lie subalgebra LzX1,...,Xm
is a Lie ideal

in L.

The condition on LX1,...,Xm to be a Lie ideal can be expressed in terms of the left

ideal JX1,...,Xm
.

Lemma 6.6. The core Lie subalgebra LX1,...,Xm
of system (2.1) is a Lie ideal in L if and

only if the left ideal JX1,...,Xm
is two-sided, i.e., for any a ∈ F and any b ∈ JX1,...,Xm

one has ba ∈ JX1,...,Xm
.

Proof. Suppose JX1,...,Xm is two-sided. Choose any ` ∈ LX1,...,Xm ⊂ JX1,...,Xm and any

a ∈ L. Then a` ∈ JX1,...,Xm
and `a ∈ JX1,...,Xm

. Hence, using Corollary 4.5, we get

[a, `] = a`− `a ∈ JX1,...,Xm
∩ L = LX1,...,Xm

. Therefore, LX1,...,Xm
is a Lie ideal.

Now, let LX1,...,Xm
be a Lie ideal. Let us prove that the left ideal JX1,...,Xm

is two-

sided. Obviously, it is sufficient to prove that `a ∈ JX1,...,Xm for any ` ∈ LX1,...,Xm and

any a ∈ F . Moreover, denote

Mk = {``i1 · · · `ik : ` ∈ LX1,...,Xm
, `i1 , . . . , `ik ∈ L}, k ≥ 1.

Due to the Poincaré–Birkhoff–Witt theorem, it is sufficient to prove that Mk ⊂ JX1,...,Xm

for all k ≥ 1.

We argue by induction on k. For k = 1 one has ``i1 = [`, `i1 ]+`i1`. Since LX1,...,Xm
is a

Lie ideal, [`, `i1 ] ∈ LX1,...,Xm ⊂ JX1,...,Xm ; since JX1,...,Xm is a left ideal, `i1` ∈ JX1,...,Xm .

Hence, ``i1 ∈ JX1,...,Xm
, and therefore M1 ⊂ JX1,...,Xm

.

Suppose Mk ⊂ JX1,...,Xm for some k ≥ 1. Choose any element a ∈ Mk+1. Then

a = b `ik+1
, where `ik+1

∈ L and b ∈ Mk. Hence, b ∈ JX1,...,Xm
, and therefore it can be
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written as b =
∑
bq`jq , where bq ∈ Fe and `jq ∈ LX1,...,Xm . Then, analogously to the

case k = 1, we get

a = b `ik+1
=
∑

bq`jq`ik+1
=
∑

bq[`jq , `ik+1
] +
∑

(bq`ik+1
)`jq ∈ JX1,...,Xm

.

Hence, Mk+1 ⊂ JX1,...,Xm .

Corollary 6.7. Suppose system (2.1) is regular at the origin. Then there exists a neigh-

borhood U(0) such that for any z ∈ U(0) the left ideal J zX1,...,Xm
is two-sided, i.e., for

any a ∈ F and any b ∈ J zX1,...,Xm
one has ba ∈ J zX1,...,Xm

.

The following example shows that the Lie ideal LzX1,...,Xm
of a regular system can

depend on the point z.

Example 6.8. Consider the system in a neighborhood of the origin

ẋ1 = u1,

ẋ2 = u2 + x21u2,

ẋ3 = x1u2,

ẋ4 = x21u2 + x1x2u2.

We have

X1(x) =


1

0

0

0

, X2(x) =


0

1 + x21
x1

x21 + x1x2

, [X1, X2](x) =


0

2x1
1

2x1 + x2

,

[X1, [X1, X2]](x) =


0

2

0

2

, [X2, [X1, X2]](x) =


0

0

0

1− x21

.
Hence, the growth vector equals vx = (2, 3, 4) in a neighborhood of the origin, i.e., the

system is regular. It is easy to check that

[X2, [X1, X2]](x)− (1− x21)2

2
[X1, [X1, X2]](x) = −(1− x21)

(
X2(x)− x1[X1, X2](x)

)
.

Thus,

P1(x) = P2(x) = {0}, P3(x) = Lin
{

[[η2, η1], η2]− α(x)[[η2, η1], η1]
}

(where α(x) = (1− x21)2/2 depends on the point x), and Pk(x) = Lk, k ≥ 4. Hence, the

system is regular (and obviously LxX1,X2
is a Lie ideal) but LxX1,X2

depends on x.

Thus, a core Lie subalgebra of a regular system is not necessarily constant in a neigh-

borhood of the origin.

In the next example we consider a nonregular system whose core Lie subalgebra is a

Lie ideal.
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Example 6.9. Consider the system in a neighborhood of the origin

ẋ1 = u1,

ẋ2 = u2,

ẋ3 = x1u2,

ẋ4 = x21u2,

ẋ5 = x31u2 + x3x
2
1u2.

We have

X1(x) =


1

0

0

0

0

, X2(x) =


0

1

x1
x21

x31 + x3x
2
1

, [X1, X2](x) =


0

0

1

2x1
3x21 + 2x1x3

,

[X1, [X1, X2]](x) =


0

0

0

2

6x1 + 2x3

, [X2, [X1, X2]](x) =


0

0

0

0

x21

,

[X1, [X1, [X1, X2]]](x) =


0

0

0

0

6

, [X1, [X2, [X1, X2]]](x) =


0

0

0

0

2x1

,
and [X2, [X2, [X1, X2]]](x) = 0. At x = 0, we have

X1(0) = e1, X1(0) = e2, [X1, X2](0) = e3, [X1, [X1, X2]](0) = 2e4,

[X2, [X1, X2]](0) = 0, [X1, [X1, [X1, X2]]](0) = e5.

Hence, the growth vector at the origin equals v0 = (2, 3, 4, 5). However, [X2, [X1, X2]](x)

= x21e5. Hence, for x1 6= 0 the growth vector equals vx = (2, 3, 5). Thus, the system is

not regular at the origin.

Let us find its core Lie subalgebra LxX1,X2
. Since the system is not regular, LxX1,X2

cannot be constant.

If x1 = 0 (including x = 0) then P1(x) = P2(x) = {0}, P3(x) = Lin{[[η2, η1], η2]},
P4(x) = Lin{[[[η2, η1], η2], η1], [[[η2, η1], η2], η2]}, and Pk(x) = Lk, k ≥ 5. Obviously,

LxX1,X2
is a Lie ideal.

If x1 6= 0 then P1(x) = P2(x) = P3(x) = {0} and Pk(x) = Lk, k ≥ 4. Hence, LxX1,X2

is also a Lie ideal.

Hence, LxX1,X2
is a Lie ideal at any point from a neighborhood of the origin. Thus, even

if a core Lie subalgebra is a Lie ideal in a neighborhood, the system can be nonregular.

In the next subsection we show that for homogeneous systems the property of the

core Lie subalgebra LX1,...,Xm
to be a Lie ideal is sufficient for regularity, and moreover
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implies that the core Lie subalgebra is the same for all points from a neighborhood of

the origin.

6.3. Re-expanding the series and regular homogeneous systems. In this subsec-

tion we consider homogeneous systems from the point of view of properties of their core

Lie subalgebras and series EX1,...,Xm
.

Following Definition 5.9, we adopt the following definition of a homogeneous system.

Definition 6.10. A (bracket generating) system of the form (2.1) is called homogeneous

at the origin if c(LX1,...,Xm) = 0.

As follows from the discussion in Subsection 5.2, a system is homogeneous at the origin

in the sense of Definition 6.10 iff there exists a nonsingular mapping Q(x) (Q(0) = 0) such

that (Q(EX1,...,Xm
))k is homogeneous for any k = 1, . . . , n, i.e., (Q(EX1,...,Xm

))k ∈ Fwk ,

k = 1, . . . , n. Suppose the change of variables y = Q(x) is already applied. It follows from

Theorem 4.21 that for a homogeneous system without loss of generality we may assume

(EX1,...,Xm)k = dk, k = 1, . . . , n, (6.13)

where dk are elements of the dual basis (4.20). Below we have in mind that a homogeneous

system can be considered in the whole Rn rather than in a neighborhood of the origin.

Lemma 6.11. Let system (2.1) be homogeneous at the origin. Then EzX1,...,Xm
can be

found directly, without evaluating nonholonomic derivatives Xik · · ·Xi1E(z).

Proof. For brevity, let us denote E = EX1,...,Xm
and Ez = EzX1,...,Xm

. Suppose {`i}∞i=1 is a

homogeneous basis of L satisfying (6.10) and (6.11). Let dk be elements of the dual basis

(4.20). Then (4.21) holds. Moreover,

〈dk, `j1 · · · `jr 〉 = 0 if r ≥ 2 and jr ≥ k. (6.14)

In fact, if jr ≥ n+ 1 then `j1 · · · `jr ∈ JX1,...,Xm
. Hence, (6.14) holds due to Lemma 4.13.

If k ≤ jr ≤ n then (6.11) implies ord(`jr ) ≥ ord(`k) = ord(dk). Since r ≥ 2, we get

ord(`j1 · · · `jr ) > ord(dk), which gives (6.14).

Now let us apply Lemma 6.2. Without loss of generality assume (6.13) holds. Taking

into account (4.21), (6.5), (6.8), (6.9), and (6.14), we get

Ezk (θ2, u2) = E(θ1 + θ2, u1 ◦ u2)− E(θ1, u1) = dk(θ1 + θ2, u1 ◦ u2)− dk(θ1, u1)

= dk(θ2, u2) +
∑〈

dk, (`
q1
i1
· · · `qjij )(`r11 · · · `

rk−1

k−1 )
〉 j∏
s=1

dqsis (θ2, u2)
k−1∏
s=1

drss (θ1, u1)

q1! · · · qj !r1! · · · rk−1!
,

where the sum is taken over all j ≥ 1, i1 < · · · < ij , q1, . . . , qj ≥ 1, r1 + · · · + rk−1 ≥ 1

such that
j∑
s=1

ord(`is)qs +

k−1∑
s=1

ord(`s)rs = ord(`k).
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Due to (6.9), di(θ
1, u1) = Ei(θ1, u1) = zi, i = 1, . . . , n, hence

Ezk (θ2, u2) = dk(θ2, u2) +
∑

j≥1, i1<···<ij
q1,...,qj≥1

P
q1...qji1...ij
k (z)

j∏
s=1

dqsis (θ2, u2), (6.15)

where P
q1...qji1...ij
k (z) are polynomials of the form

P
q1...qji1...ij
k (z) =

∑〈
dk, (`

q1
i1
· · · `qjij )(`r11 · · · `

rk−1

k−1 )
〉

q1! · · · qj !r1! · · · rk−1!

k−1∏
s=1

zrss , (6.16)

and the sum is taken over all r1, . . . , rk−1 ≥ 0 such that

r1 + · · ·+ rk−1 ≥ 1 and

k−1∑
s=1

ord(`s)rs = ord(`k)−
j∑
s=1

ord(`is)qs. (6.17)

In particular, if ord(`k)−
∑j
s=1 ord(`is)qs ≤ 0 then P

q1...qji1...ij
k (z) ≡ 0. The polynomials

(6.16) can be explicitly found in the following way. Let us consider any element of the

form

a = (`q1i1 · · · `
qj
ij

)(`r11 · · · `
rk−1

k−1 )

such that (6.17) holds, and expand it with respect to the Poincaré–Birkhoff–Witt basis.

Then 〈dk, a〉 equals the coefficient of `k in this expansion.

Finally, notice that (6.15) holds for all u2 ∈ Bθ2 , which gives the explicit representa-

tion of the formal power series Ez,

Ezk = dk +
∑

j≥1, i1<···<ij
q1,...,qj≥1

P
q1...qji1...ij
k (z) dxxyq1

i1
xxy · · · xxydxxyqj

ij
, k = 1, . . . , n, (6.18)

where P
q1...qji1...ij
k (z) are defined by (6.16)–(6.17).

Below we describe the case when the right hand side of (6.18) includes only the

elements d1, . . . , dk for any k = 1, . . . , n.

Lemma 6.12. Let system (2.1) be homogeneous at the origin and LX1,...,Xm be a Lie ideal.

Then the right hand side of (6.18) includes only shuffle polynomials of d1, . . . , dk (with

coefficients depending on z).

Proof. As before, without loss of generality assume Ek = dk, k = 1, . . . , n. Due to

Lemma 6.6, the ideal JX1,...,Xm is two-sided, hence

〈dk, a`ib〉 = 0 for any a, b ∈ Fe if i ≥ n+ 1.

In particular, 〈
dk, (`

q1
i1
· · · `qjij )(`r11 · · · `

rk−1

k−1 )
〉

= 0 if ij ≥ n+ 1.

Moreover, (6.11) implies〈
dk, (`

q1
i1
· · · `qjij )(`r11 · · · `

rk−1

k−1 )
〉

= 0 if r1 + · · ·+ rk−1 ≥ 1 and k ≤ ij ≤ n.

Hence,

P
q1...qji1...ij
k (z) = 0 if ij ≥ k.
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Taking into account (6.16) and (6.17), we rewrite (6.18) in the form

Ezk = dk +
∑

q1+···+qk−1≥1

P̂
q1...qk−1

k (z) dxxyq1
1 xxy · · · xxydxxyqk−1

k−1 , k = 1, . . . , n, (6.19)

where

P̂
q1...qk−1

k (z) =
∑〈

dk, (`
q1
1 · · · `

qk−1

k−1 )(`r11 · · · `
rk−1

k−1 )
〉

q1! · · · qk−1!r1! · · · rk−1!

k−1∏
s=1

zrss , (6.20)

and the sum is taken over all r1, . . . , rk−1 ≥ 0 such that

r1 + · · ·+ rk−1 ≥ 1 and

k−1∑
s=1

ord(`s)rs = ord(`k)−
k−1∑
s=1

ord(`s)qs. (6.21)

Hence, Ezk equals a shuffle polynomial of d1, . . . , dk.

The following result was suggested by Igor Zelenko.

Theorem 6.13. Let system (2.1) be homogeneous at the origin. This system is regular

if and only if LX1,...,Xm
is a Lie ideal. Moreover, in this case the core Lie subalgebra of

the system is constant, that is, LzX1,...,Xm
= LX1,...,Xm for any z ∈ Rn (hence, the system

has the same homogeneous approximation at any point). Moreover, for any z ∈ Rn there

exists a polynomial change of variables (depending on z) that transforms the system to a

homogeneous form at z.

Proof. Due to Lemma 6.4, if a system is regular then its core Lie subalgebra is a Lie

ideal. Let us prove the converse statement for a homogeneous system.

Consider a homogeneous system of the form (2.1) and suppose LX1,...,Xm is a Lie

ideal. Then, due to Lemma 6.12, we get the representation (6.19)–(6.21). Introduce the

polynomial mapping Φ : Rn → Rn (depending on the parameter z) of the form Φ =

(Φ1, . . . , Φn), where

Φk(x1, . . . , xn) = xk +
∑

q1+···+qk−1≥1

P̂
q1...qk−1

k (z)

k−1∏
s=1

xqss .

Obviously, it is of triangular form, namely Φk = xk + Φ̃k(x1, . . . , xk−1). Therefore, Φ−1

is also a nontrivial polynomial mapping. Therefore, the change of variables x = Φ−1(y)

(depending on z) satisfies (Φ−1(Ez))k = dk for k = 1, . . . , n. This means that the system

in the new variables is homogeneous at z and LzX1,...,Xm
= LX1,...,Xm

, i.e., cz(LzX1,...,Xm
) =

cz(LX1,...,Xm) = 0.

Remark 6.14. Regular homogeneous systems can be thought of as homogeneous ap-

proximations of regular systems. Notice that the representation (6.19) is, in essence,

constructed in [6]. It is used there to obtain distance estimates in a neighborhood of a

regular point for the original system and for a homogeneous approximation of the system

[6, Section 7]. We emphasize, however, that algebraic methods allow us to obtain the

precise formula (6.20) for the polynomial coefficients P̂
q1...qk−1

k (z).

Recall (see Subsection 2.5) that L =
∑∞
k=1 L

k denotes a (filtered) Lie algebra of

vector fields generated by the set X1, . . . , Xm. As a consequence of Theorem 6.13, we get
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the well-known property of the Lie algebra L for the case of a regular and homogeneous

system.

Corollary 6.15. Let system (2.1) be regular and homogeneous at the origin. Then the

Lie algebra of vector fields L generated by the set X1, . . . , Xm is n-dimensional.

Proof. Suppose elements `1, . . . , `n satisfy (6.10) and (6.11). Then, in particular,

c(L1 ⊕ · · · ⊕ Lk) = Lin{c(`1), . . . , c(`vk)}, k = 1, . . . , p,

where p is the degree of nonholonomy and v = (v1, . . . , vp) is the growth vector; by the

supposition, they are the same for all z. Introduce the vector fields Yi = ϕ(`i), i = 1, . . . , n.

Let us show that Y1, . . . , Yn form a basis for L.

It is sufficient to prove that any vector field Y = ϕ(`), where ` ∈ Lk, k ≥ 1, equals a

linear combination of Y1, . . . , Yn with constant coefficients.

First, suppose k ≤ p. Since Y (0) = c(`) ∈ c(Lk), we get

Y (0) =

vk∑
i=1

αiYi(0),

where αi are constants. Denote

̂̀= `−
vk∑

i=vk−1+1

αi`i ∈ Lk and Ŷ = ϕ(̂̀) = Y −
vk∑

i=vk−1+1

αiYi.

Then

c(̂̀) = Ŷ (0) =

vk−1∑
i=1

αiYi(0) =

vk−1∑
i=1

αic(`i) ∈ c(L1 ⊕ · · · ⊕ Lk−1),

that is, ̂̀ ∈ Pk ⊂ LX1,...,Xm
. Since the system is regular and homogeneous at the

origin, Theorem 6.13 implies LX1,...,Xm
= LzX1,...,Xm

and, moreover, cz(LzX1,...,Xm
) =

cz(LX1,...,Xm) = 0, for any z ∈ Rn. Hence, cz(̂̀) = Ŷ (z) = 0 for any z ∈ Rn, i.e.,

Ŷ (z) = Y (z)−
vk∑

i=vk−1+1

αiYi(z) = 0.

This means that

Y (z) =

vk∑
i=vk−1+1

αiYi(z), z ∈ Rn.

If k ≥ p + 1 then automatically ` ∈ LzX1,...,Xm
, and hence cz(`) = Y (z) = 0, for any

z ∈ Rn.

Since L = ϕ(
⊕∞

k=1 Lk), an arbitrary vector field Y (z) ∈ L equals a linear combination

of vector fields Y1(z), . . . Yn(z) with constant coefficients. In other words, Y1, . . . , Yn is a

basis for the Lie algebra of vector fields L (over R). Thus, L is n-dimensional.

7. Time optimality

7.1. Time-optimal controls. In this section we return to general control-linear systems

of the form (2.1), where the vector fields X1, . . . , Xm are real analytic in a neighborhood of
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the origin. Moreover, we assume they satisfy the Rashevsky–Chow condition (2.24). Then

there exists a neighborhood U(0) of the origin such that any point from this neighborhood

can be reached from any other point from this neighborhood.

In this subsection we consider the time-optimal control problem for system (2.1) of

the form

ẋ =

m∑
i=1

ui(t)Xi(x), x(0) = s1, x(θ) = s2,

m∑
i=1

u2i (t) ≤ 1 a.e., t ∈ [0, θ], θ → min,

(7.1)

where we assume s1, s2 ∈ U(0) and s1 6= s2.

Our first observation concerns the character of the optimal control.

Theorem 7.1. Suppose θ∗ is the optimal time and u∗(t) ∈ Bθ∗ is an optimal control in

the problem (7.1). Then

m∑
i=1

u∗ 2i (t) = 1 a.e., t ∈ [0, θ∗]. (7.2)

Proof. Notice that the existence of the time-optimal control follows from the Filippov

theorem [15, 16]; however, it is not necessarily unique. Denote by x∗(t) the optimal

trajectory corresponding to the control u∗(t).

For any ε > 0, consider a reparameterization of the curve x∗(t) of the form

τ = ψ(t) =

∫ t

0

√√√√ m∑
i=1

u∗2i (σ) dσ + εt, t ∈ [0, θ∗].

In other words, τ = ψ(t) is a change of time in (7.1); it is well defined since ψ̇(t) > 0.

With respect to this new time, the optimal trajectory x̂(τ) = x∗(ψ−1(τ)) satisfies the

differential equality

dx̂(τ)

dτ
=
dx∗(t)

dt

∣∣∣∣
t=ψ−1(τ)

· dψ
−1(τ)

dτ
=

m∑
i=1

ûi(τ)Xi(x̂(τ)), τ ∈ [0, ψ(θ∗)],

where

ûi(τ) =
u∗i (t)

ψ̇(t)

∣∣∣∣
t=ψ−1(τ)

=
u∗i (t)√∑m

i=1 u
∗2
i (t) + ε

∣∣∣∣
t=ψ−1(τ)

, i = 1, . . . ,m,

and the conditions

x̂(0) = x∗(0) = s1, x̂(ψ(θ∗)) = x∗(θ∗) = s2.

Moreover,

m∑
i=1

û2i (τ) =

∑m
i=1 u

∗2
i (t)(√∑m

i=1 u
∗2
i (t) + ε

)2 ∣∣∣∣
t=ψ−1(τ)

≤ 1, τ ∈ [0, ψ(θ∗)].

Thus, the control û(τ) ∈ Bψ(θ∗) steers the origin to the point s in time ψ(θ∗) via system

(7.1). Hence, the time of movement ψ(θ∗) is greater than or equal to the optimal time θ∗,

that is,
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ψ(θ∗) =

∫ θ∗

0

√√√√ m∑
i=1

u∗2i (t) dt+ εθ∗ ≥ θ∗.

Since this inequality holds for any ε > 0, we get∫ θ∗

0

√√√√ m∑
i=1

u∗2i (t) dt ≥ θ∗.

Taking into account the constraint u∗ ∈ Bθ∗ , we obtain (7.2).

Corollary 7.2. Suppose θ∗ is the optimal time and u∗(t) ∈ Bθ∗ is an optimal control

in the problem (7.1). Denote û(t) = θ∗u∗(tθ∗), t ∈ [0, 1]. Then

(i) the control û(t) minimizes the “length functional”, i.e., solves the optimal control

problem

ẋ =

m∑
i=1

uiXi(x), x(0) = s1, x(1) = s2, `(u) =

∫ 1

0

√√√√ m∑
i=1

u2i (t) dt→ min, (7.3)

and min `(u) = `(û) = θ∗;

(ii) the control û(t) minimizes the “energy functional”, i.e., solves the optimal control

problem

ẋ =

m∑
i=1

uiXi(x), x(0) = s1, x(1) = s2, J(u) =

∫ 1

0

m∑
i=1

u2i (t) dt→ min, (7.4)

and min J(u) = J(û) = θ∗2.

Proof. (i) Let us consider an arbitrary control u(t), t ∈ [0, 1], steering s1 to s2, and use

the arguments analogous to those applied in the proof of Theorem 7.1. Considering the

reparameterization

τ = ψ(t) =

∫ t

0

√√√√ m∑
i=1

u2i (σ) dσ + εt, t ∈ [0, 1],

we see that the control

ũi(τ) =
ui(t)√∑m

i=1 u
2
i (t) + ε

∣∣∣∣
t=ψ−1(τ)

, i = 1, . . . ,m,

steers s1 to s2 in time θ̃ = ψ(1) via system (7.1) and satisfies the constraints. Hence,

θ̃ = ψ(1) =

∫ 1

0

√√√√ m∑
i=1

u2i (t) dt+ ε = `(u) + ε ≥ θ∗.

Since ε > 0 is arbitrary, we have `(u) ≥ θ∗.
On the other hand, due to condition (7.2) we get

m∑
i=1

û2i (t) = θ∗2
m∑
i=1

u∗2i (tθ∗) ≡ θ∗2, (7.5)
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and hence

`(û) =

∫ 1

0

√√√√ m∑
i=1

û2i (t) dt = θ∗.

This means that û(t) minimizes the length functional and, moreover, min `(u) = θ∗.

(ii) The Cauchy–Bunyakovsky inequality gives `(u) ≤
√
J(u). Hence, taking into

account (i), we see that if u steers s1 to s2 then θ∗ = `(û) ≤ `(u) ≤
√
J(u).

On the other hand, due to (7.5), we have
√
J(û) = θ∗. This means that û(t) minimizes

the energy functional and min J(u) = θ∗2.

Recall that the length functional is closely connected with a concept of sub-Rieman-

nian metrics [6]. Namely, the sub-Riemannian metric is defined as

ρ(s1, s2) = inf `(u), where `(u) =

∫ 1

0

√√√√ m∑
i=1

u2i (t) dt,

and infimum is taken over all ui(t) ∈ L2[0, 1] satisfying

ẋ =

m∑
i=1

ui(t)Xi(x), x(0) = s1, x(1) = s2.

Thus, the solution û(t) of (7.3), which exists due to Corollary 7.2, gives ρ(s1, s2) = `(û).

For the sake of completeness, we prove the analogous property for the energy mini-

mization problem.

Proposition 7.3. Suppose a control û(t) minimizes the energy functional, i.e., solves

(7.4). Then
m∑
i=1

û2i (t) ≡ const,

where the constant obviously coincides with min J(u) = J(û). As a consequence,

(i) û(t) minimizes the length functional, i.e., solves (7.3), and min `(u) = `(û) =
√
J(û);

(ii) θ∗ =
√
J(û) is the optimal time and u∗(t) = (1/θ∗)û(t/θ∗) is an optimal control for

the time-optimal control problem (7.1).

Proof. Let x̂(t) be the optimal trajectory corresponding to the control û(t). Consider

any invertible smooth reparameterization τ = ψ(t) such that ψ(0) = 0, ψ(1) = 1. Then,

analogously to the proof of Theorem 7.1, the curve x̃(τ) = x̂(ψ−1(τ)) is a trajectory of

the system from s1 to s2 corresponding to the control

ũi(τ) =
ûi(t)

ψ̇(t)

∣∣∣∣
t=ψ−1(τ)

, i = 1, . . . ,m.

Then

J(ũ) =

∫ 1

0

m∑
i=1

ũ2i (τ) dτ =

∫ 1

0

m∑
i=1

û2i (t)

ψ̇(t)
dt.
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By supposition, û(t) minimizes the energy functional. Hence, ψ(t) = t is a solution of

the variational problem

F (ψ) =

∫ 1

0

m∑
i=1

û2i (t)

ψ̇(t)
dt→ min, ψ(0) = 0, ψ(1) = 1.

Thus, ψ(t) = t satisfies the Euler equation, i.e.,

m∑
i=1

û2i (t)

ψ̇2(t)
= const.

Substituting ψ(t) = t, we get
∑m
i=1 û

2
i (t) ≡ const. More specifically, we obviously get∑m

i=1 û
2
i (t) ≡ J(û).

(i) Let us prove that û minimizes the length functional. Assume the converse. Then

there exists a control ū(t) such that `(ū) < `(û).

Denote ¯̀= `(ū) > 0 and consider a reparameterization of the form

τ = ψ(t) =

(∫ t

0

√√√√ m∑
i=1

ū2i (σ) dσ + εt

)
1

¯̀+ ε
,

where ε > 0. Then ψ̇(t) > 0, ψ(0) = 0, and ψ(1) = 1. Set

˜̄ui(τ) =
ūi(t)

ψ̇(t)

∣∣∣∣
t=ψ−1(τ)

, i = 1, . . . ,m.

Then

J(˜̄u) =

∫ 1

0

m∑
i=1

˜̄u2i (τ) dτ =

∫ 1

0

m∑
i=1

ū2i (t)

ψ̇(t)
dt =

∫ 1

0

m∑
i=1

ū2i (t)√∑m
i=1 ū

2
i (t) + ε

(¯̀+ ε) dt

≤
∫ 1

0

√√√√ m∑
i=1

ū2i (t) dt (¯̀+ ε) = ¯̀2 + ¯̀ε.

By supposition, û minimizes the functional J . Also recall that due to the Cauchy–

Bunyakovsky inequality, `(û) ≤
√
J(û). Hence,

¯̀= `(ū) < `(û) ≤
√
J(û) ≤

√
J(˜̄u) ≤

√
¯̀2 + ¯̀ε.

Passing to the limit as ε → 0, we obtain a contradiction. This proves that û minimizes

the length functional, and min `(u) =
√
J(û).

(ii) Set

θ∗ = `(û) and u∗(t) =
1

θ∗
û

(
t

θ∗

)
.

Since
∑m
i=1 û

2
i (t) ≡ `2(û) = θ∗2, we get

m∑
i=1

u∗2i (t) =
1

θ∗2

m∑
i=1

û2i

(
t

θ∗

)
≡ 1,

i.e., u∗ ∈ Bθ∗ . Moreover, u∗ steers s1 to s2 in time θ∗. Denote by θ0 the optimal time

for (7.1). Then θ0 ≤ θ∗. However, as proved in Corollary 7.2, θ0 = min `(u). Hence,
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min `(u) = θ0 ≤ θ∗ = `(û) = min `(u), which implies that θ∗ is the optimal time for (7.1).

Therefore, u∗ is an optimal control.

Theorem 7.1 and Proposition 7.3 mean that the optimal control problems (7.1) and

(7.4) are equivalent. Namely, θ∗ is the optimal time and u∗(t) is an optimal control

for (7.1) iff θ∗u∗(tθ∗) is an optimal control for (7.4). It is commonly accepted that the

problem (7.3) is equivalent to both of them [41], but we could not find a complete and

rigorous proof in the literature. We emphasize that Corollary 7.2 and Proposition 7.3

give only a one-way implication.

7.2. Weak continuity property of iterated integrals and weak convergence of

optimal controls. Let T0 > 0 be such that the series (2.3) converges absolutely for

any 0 ≤ θ ≤ T0 and any u ∈ Bθ. Since the origin is an equilibrium of (2.1), we have

EX1,...,Xm(θ,Bθ) ⊂ EX1,...,Xm(T0, B
T0) if 0 ≤ θ ≤ T0. Notice that the accessibility set

EX1,...,Xm
(T0, B

T0) is a neighborhood of the origin, due to (2.24).

From now on, we consider the time-optimal control problem for system (2.1) of the

form

ẋ =

m∑
i=1

ui(t)Xi(x), x(0) = 0, x(θ) = s,

m∑
i=1

u2i (t) ≤ 1 a.e., t ∈ [0, θ], θ → min. (7.6)

Definition 7.4. Let s ∈ EX1,...,Xm
(T0, B

T0). We say that a pair (θ∗s , u
∗
s) is a solution of

(7.6) if θ∗s is the optimal time and u∗s(t), t ∈ [0, θ∗s ], is an optimal control for problem

(7.6). The set of all optimal controls is denoted by U∗s .

Remark 7.5. It follows from [36] that θ∗s is continuous with respect to s.

In this subsection we consider controls as elements of the Hilbert space L2([0, 1],Rm).

Below we say that a sequence u(q) weakly converges to u (in L2([0, 1],Rm)), written

u(q)
w→ u as q →∞,

if for any f ∈ L2([0, 1],Rm),∫ 1

0

m∑
i=1

fi(t)u(q)i(t) dt→
∫ 1

0

m∑
i=1

fi(t)ui(t) dt.

This is the same as saying that u(q)i
w→ ui in L2[0, 1] for any i = 1, . . . ,m.

Also, we denote by ‖ · ‖L2
the norm in L2[0, 1], i.e., ‖v‖L2

=
√∫ 1

0
v2(t) dt.

Remark 7.6. Suppose z(t) ∈ L2[0, 1] satisfies the condition |z(t)| ≤ C a.e. Then, as is

well known, (A(v))(t) =
∫ t
0
z(τ)v(τ) dτ : L2[0, 1]→ L2[0, 1] is a compact linear operator.

This implies the following property: If a sequence v(q) ∈ L2[0, 1] is weakly convergent,

v(q)
w→ v, then the sequence A(v(q)) strongly converges to A(v) in L2[0, 1], i.e.,

‖A(v(q))−A(v)‖2L2
=

∫ 1

0

∣∣∣∣∫ t

0

z(τ)
(
v(q)(τ)− v(τ)

)
dτ

∣∣∣∣2 dt→ 0 as q →∞.
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Lemma 7.7. Let u(q)
w→ u. Then ηi1...ik(·, u(q)) → ηi1...ik(·, u) in L2[0, 1] for all k ≥ 1

and all 1 ≤ i1, . . . , ik ≤ m, i.e.,

‖ηi1...ik(·, u(q))− ηi1...ik(·, u)‖2L2
=

∫ 1

0

∣∣ηi1...ik(t, u(q))− ηi1...ik(t, u)
∣∣2 dt→ 0 as q →∞.

Proof. We argue by induction on k. For k = 1, the proof follows from Remark 7.6. Suppose

j ≥ 1 and the statement of the lemma holds for all k ≤ j. Fix any 1 ≤ i1, . . . , ij+1 ≤ m

and denote

z(q)(t) = ηi2...ij+1(t, u(q)), z(t) = ηi2...ij+1(t, u).

Then the induction supposition implies that z(q) → z, i.e.,

‖z(q) − z‖2L2
=

∫ 1

0

|z(q)(t)− z(t)|2 dt→ 0 as q →∞.

Notice that |z(t)| ≤ C a.e. In fact,

|z(t)| ≤
∫ t

0

∫ τ2

0

· · ·
∫ τj

0

|ui2(τ2)| |ui3(τ3)| · · · |uij+1(τj+1)| dτj+1 · · · dτ3 dτ2

≤
j+1∏
r=2

(∫ 1

0

|uir (τ)| dτ
)
≤

j+1∏
r=2

‖uir‖L2 = C.

Hence,

ηi1...ij+1
(t, u(q))− ηi1...ij+1

(t, u) =

∫ t

0

u(q)i1(τ1)z(q)(τ1) dτ1 −
∫ t

0

ui1(τ1)z(τ1) dτ1

=

∫ t

0

u(q)i1(τ1)
(
z(q)(τ1)− z(τ1)

)
dτ1 +

∫ t

0

(
u(q)i1(τ1)− ui1(τ1)

)
z(τ1) dτ1. (7.7)

Then Remark 7.6 implies that the second term (strongly) converges to zero. Let us

estimate the first term:∫ 1

0

∣∣∣∣∫ t

0

u(q)i1(τ1)
(
z(q)(τ1)− z(τ1)

)
dτ1

∣∣∣∣2 dt
≤
∫ 1

0

∫ 1

0

|u(q)i1(τ1)|2 dτ1
∫ 1

0

|z(q)(τ2)− z(τ2)|2 dτ2 dt

= ‖u(q)i1‖
2
L2
‖z(q) − z‖2L2

≤ C‖z(q) − z‖2L2
→ 0,

due to the induction supposition and the fact that the weakly convergent sequence u(q)i1
is bounded. Thus, ηi1...ij+1

(·, u(q))− ηi1...ij+1
(·, u) strongly converges to zero.

Corollary 7.8. Any functional ηi1...ik(1, u) : L2([0, 1],Rm)→ R1 is weakly continuous,

i.e., if u(q)
w→ u then ηi1...ik(1, u(q))→ ηi1...ik(1, u) as q →∞.

Proof. For k = 1 the statement is clear. Suppose k ≥ 2. Analogously to (7.7), we get

ηi1...ik(1, u(q))− ηi1...ik(1, u) =

∫ 1

0

u(q)i1(τ1)z(q)(τ1) dτ1 −
∫ 1

0

ui1(τ1)z(τ1) dτ1

=

∫ 1

0

u(q)i1(τ1)
(
z(q)(τ1)− z(τ1)

)
dτ1 +

∫ 1

0

(
u(q)i1(τ1)− ui1(τ1)

)
z(τ1) dτ1,
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where z(q)(t) = ηi2...ik(t, u(q)) and z(t) = ηi2...ik(t, u). The second term tends to zero

since u(q)i1
w→ ui1 , and the first term tends to zero since u(q)i1 is bounded and z(q) − z

strongly converges to zero due to Lemma 7.7.

Below we use Notation 2.7. In particular, for any θ > 0 and any u(t) ∈ Bθ we

denote uθ(t) = u(tθ) ∈ B1, as well as for any θ > 0 and any u(t) ∈ B1 we denote

u1/θ(t) = u(t/θ) ∈ Bθ.

Corollary 7.9. For system (2.1), set

Ek(θ, u) =
∑

1≤i1,...,ik≤m

ci1...ikηi1...ik(θ, u), k ≥ 1. (7.8)

Suppose θq → θ0, where θ0 ≤ T0, θq ≤ T0, and u(q) ∈ Bθq , u0 ∈ Bθ0 are such that

u
θq
(q)(t)

w→ uθ00 (t) as q →∞. Then for any N ≥ 0,

∞∑
k=N+1

Ek(θq, u(q))→
∞∑

k=N+1

Ek(θ0, u0) as q →∞.

Proof. Recall that ‖ci1...ik‖ ≤ k!C1C
k
2 for some C1, C2 > 0 such that mC2T0 < 1 (see

Remark 2.5). Hence, if u ∈ Bθ then ‖Ek(θ, u)‖ ≤ C1(mC2θ)
k ≤ C1(mC2T0)k.

Now, for any ε > 0 let us find r ≥ N such that C1

1−mC2T0
(mC2T0)r+1 < 1

4ε. Then

∞∑
k=r+1

‖Ek(θ, u)‖ < 1

4
ε for any 0 ≤ θ ≤ T0, u ∈ Bθ.

Using the supposition of this corollary and Corollary 7.8, for any k = N + 1, . . . , r we get

Ek(θq, u(q))− Ek(θ0, u0) = θkqEk(1, u
θq
(q))− θ

k
0Ek(1, uθ00 )

= θkq
(
Ek(1, u

θq
(q))− E

k(1, uθ00 )
)

+ (θkq − θk0 )Ek(1, uθ00 )→ 0 as q →∞.

Hence, there exists q0 such that

r∑
k=N+1

‖Ek(θq, u(q))− Ek(θ0, u0)‖ < 1

2
ε for all q > q0.

As a result,∥∥∥ ∞∑
k=N+1

Ek(θq, u(q))−
∞∑

k=N+1

Ek(θ0, u0)
∥∥∥

≤
r∑

k=N+1

‖Ek(θq, u(q))− Ek(θ0, u0)‖+

∞∑
k=r+1

‖Ek(θq, u(q))‖+

∞∑
k=r+1

‖Ek(θ0, u0)‖ < ε

for all q > q0, which completes the proof.

Lemma 7.10. Suppose u(q)
w→ u as q →∞, and u(q) ∈ B1. Then u ∈ B1.

Proof. The lemma states that the unit ball of L∞[0, 1] is a weakly closed subset of L2[0, 1].

For the sake of completeness, we prove this fact.
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Suppose this is not true. Then there exists E ⊂ [0, 1] such that µ(E) > 0 and∑m
i=1 u

2
i (t) > 1, t ∈ E. Set v(t) = u(t) if t ∈ E and v(t) = 0 otherwise. Then∫

E

m∑
i=1

ui(t)u(q)i(t) dt =

∫ 1

0

m∑
i=1

vi(t)u(q)i(t) dt→
∫ 1

0

m∑
i=1

vi(t)ui(t) dt =

∫
E

m∑
i=1

u2i (t) dt.

On the other hand,∣∣∣ m∑
i=1

ui(t)u(q)i(t)
∣∣∣ ≤

√√√√ m∑
i=1

u2i (t)

√√√√ m∑
i=1

u2(q)i(t) ≤

√√√√ m∑
i=1

u2i (t),

and hence ∫
E

m∑
i=1

u2i (t) dt ≤
∫
E

√√√√ m∑
i=1

u2i (t) dt.

However, by supposition,
∑m
i=1 u

2
i (t) > 1, hence

∑m
i=1 u

2
i (t) >

√∑m
i=1 u

2
i (t), t ∈ E. Since

µ(E) > 0, we get ∫
E

m∑
i=1

u2i (t) dt >

∫
E

√√√√ m∑
i=1

u2i (t) dt.

This contradiction proves the lemma.

Lemma 7.11. Let s(q) ∈ EX1,...,Xm(θs(q) , B
θs(q) ) be such that s(q) → s as q → ∞, where

0 < θs(q) ≤ T0 and θs(q) → θ0. Then s ∈ EX1,...,Xm
(θ0, B

θ0), i.e., s can be achieved from

the origin in time θ0 by a control from Bθ0 .

Moreover, assume s(q) = EX1,...,Xm
(θs(q) , us(q)). Then s = EX1,...,Xm

(θ0, u
1/θ0
0 ), where

u0(t) is an arbitrary weak partial limit of the sequence us(q)(tθs(q)).

Proof. Denote vq(t) = us(q)(tθs(q)), t ∈ [0, 1]. Then vq ∈ B1, and hence vq are elements

of the unit ball of the space L2([0, 1];Rm). Since the unit ball of L2([0, 1];Rm) is weakly

compact, the set of partial weak limits of the sequence vq is nonempty. Let v0 be an

arbitrary partial weak limit of vq, i.e., vqr
w→ v0 as r →∞. Due to Lemma 7.10, v0 ∈ B1.

By assumption, s(q) = EX1,...,Xm
(θs(q) , us(q)) and θs(q) → θ0 as q →∞. Hence, due to

Corollary 7.9,

EX1,...,Xm
(θs(qr)

, us(qr)
)→ EX1,...,Xm

(θ0, v
1/θ0
0 ) as r →∞. (7.9)

By assumption, s(qr) → s. Hence,

s(qr) = EX1,...,Xm
(θs(qr)

, us(qr)
)→ EX1,...,Xm

(θ0, v
1/θ0
0 ) = s,

that is, the control v
1/θ0
0 (t) ∈ Bθ0 steers the origin to s in time θ0.

Corollary 7.12. The set EX1,...,Xm
(T0, B

T0) is closed.

Proof. Apply Lemma 7.11 with θs(q) = T0.

Now, let us return to the time-optimal control problem (7.6). Recall that we denote

by (θ∗s , u
∗
s) a solution of problem (7.6), i.e., θ∗s is the optimal time and u∗s ∈ Bθ

∗
s is an

optimal control steering the origin to s.
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Corollary 7.13. Suppose s(q) = EX1,...,Xm(θs(q) , us(q)), where 0 < θs(q) ≤ T0 and us(q)
is in B

θs(q) . Assume s(q) → s 6= 0 and θs(q) → θ∗s as q →∞ (where θ∗s is the optimal time

for (7.6)). Let v(t) be a partial weak limit of the sequence us(q)(tθs(q)), t ∈ [0, 1]. Then

v1/θ
∗
s ∈ U∗s , i.e., v1/θ

∗
s (t) = v(t/θ∗s), t ∈ [0, θ∗s ], is an optimal control for (7.6).

Proof. Applying Lemma 7.11 with θ0 = θ∗s , we get s = EX1,...,Xm(θ∗s , v
1/θ∗s
0 ), i.e., the

control v
1/θ∗s
0 (t) ∈ Bθ

∗
s steers the origin to s in time θ∗s . Since θ∗s is the optimal time,

v
1/θ∗s
0 (t) is an optimal control.

Corollary 7.14. Assume that, in addition to the suppositions of Corollary 7.13, problem

(7.6) has a unique solution (θ∗s , u
∗
s). Then

us(q)(tθs(q))
w→ u∗s(tθ

∗
s). (7.10)

Finally, we apply Theorem 7.1.

Corollary 7.15. Assume that, in addition to the suppositions of Corollary 7.13, problem

(7.6) has a unique solution (θ∗s , u
∗
s). Then componentwise∫ 1

0

|us(q)i(tθs(q))− u
∗
s i(tθ

∗
s)| dt→ 0, i = 1, . . . ,m, as q →∞. (7.11)

Proof. Since the optimal control u∗s satisfies (7.2), u∗s(tθ
∗
s) belongs to the unit sphere of

the Hilbert space L2([0, 1];Rm), while the sequence us(q)(tθs(q)) belongs to the unit ball of

L2([0, 1];Rm). Hence, the weak convergence of this sequence implies strong convergence.

This means that

us(q)(tθs(q))→ u∗s(tθ
∗
s) in L2([0, 1];Rm),

i.e., ∫ 1

0

m∑
i=1

|us(q)i(tθs(q))− u
∗
s i(tθ

∗
s)|2 dt→ 0 as q →∞,

which implies (7.11).

7.3. Approximation in the sense of time optimality. In nonlinear approximation

theory, different approximation concepts may be adopted. One possible approach leads to

the homogeneous approximation discussed above, which is connected with the properties

of the endpoint map EX1,...,Xm (see Definition 3.1). In this section we introduce the

concept of approximation in the sense of time optimality, following the ideas of [49, 51].

Definition 7.16. Consider the time-optimal control problems:

ẋ =

m∑
i=1

ui(t)X̂i(x), x(0) = 0, x(θ) = s,

m∑
i=1

u2i (t) ≤ 1, θ → min, (7.12)

ẋ =

m∑
i=1

ui(t)Xi(x), x(0) = 0, x(θ) = s,

m∑
i=1

u2i (t) ≤ 1, θ → min, (7.13)

where the vector fields X̂1(x), . . . , X̂m(x) and X1(x), . . . , Xm(x) are real analytic in

a neighborhood of the origin. Suppose there exists an open domain Ω ⊂ Rn \ {0},
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0 ∈ Ω, such that problem (7.12) has a unique solution (θ̂∗s , û
∗
s) for any s ∈ Ω. Denote by

{(θ∗s , u∗s) : u∗s ∈ U∗s } the set of solutions of (7.13).

We say that the time-optimal control problem (7.12) approximates the time-optimal

control problem (7.13) (in the domain Ω) if there exists a nonsingular transformation Φ

of a neighborhood of the origin of Rn, Φ(0) = 0, such that

θ∗Φ(s)/θ̂
∗
s → 1 as s→ 0, (7.14)

and
1

θ

∫ θ

0

|u∗Φ(s)i(t)− û
∗
si(t)| dt→ 0, i = 1, . . . ,m, as s→ 0, (7.15)

for s ∈ Ω and any u∗Φ(s) ∈ U
∗
Φ(s), where θ = min{θ̂∗s , θ∗Φ(s)}.

In other words, after a certain change of variables in system (7.13), the optimal times

and optimal controls of problems (7.12) and (7.13) become asymptotically equivalent as

functions of the end point.

Our nearest goal is to prove that if system (3.1) is a homogeneous approximation

of (2.1) then the time-optimal control problem for (3.1) approximates the time-optimal

control problem for (2.1).

The main result of this section is the following approximation theorem; its proof

complements [38], [48], [49] and [51]. (The above-mentioned papers deal with the steering

problem for affine control systems with one-dimensional control, so the results obtained

there are slightly different. In particular, for affine systems the analogue of Theorem 7.1

does not hold.)

Theorem 7.17. Let a system

ż =

m∑
i=1

uiZi(z), z ∈ Rn, u1, . . . , um ∈ R, (7.16)

be a homogeneous approximation for (2.1). Suppose that there exists an open domain

Ω ⊂ Rn \ {0} such that Ω ⊂ EX1,...,Xm
(T0, B

T0), 0 ∈ Ω, and for any s ∈ Ω the solution

(θ̂∗s , û
∗
s) of the time-optimal control problem

ż =

m∑
i=1

ui(t)Zi(z), z(0) = 0, z(θ) = s,

m∑
i=1

u2i (t) ≤ 1 a.e., θ → min, (7.17)

is unique. Then there exists a set of embedded domains Ω(δ), δ > 0, such that Ω(δ1) ⊂
Ω(δ2) if δ1 > δ2 > 0 and Ω =

⋃
δ>0Ω(δ), in each of which the time-optimal control

problem (7.17) approximates the time-optimal control problem (7.6).

Proof. Denote by (θ̂∗s , û
∗
s) the solution of (7.17), and by {(θ∗s , u∗s) : u∗s ∈ U∗s } the set of

solutions of (7.6).

Suppose system (7.16) is written in privileged coordinates and w1 ≤ · · · ≤ wn are

weights of the coordinates. Let Hε denote the dilation Hε(y) = (εw1y1, . . . , ε
wnyn). Then,

due to homogeneity,

θ̂∗Hε(y)
= εθ̂∗y, û∗Hε(y)

(tε) = û∗y(t), t ∈ [0, θ̂∗y]. (7.18)
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Hence, if some properties concerning the optimal time and control for problem (7.17)

(such as existence, uniqueness, etc.) are satisfied in some domain Ω, then they are also

true in any domain Hε(Ω), ε > 0. Thus, without loss of generality we assume that the

domain Ω satisfies the condition

if y ∈ Ω then Hε(y) ∈ Ω for any 0 < ε ≤ 1.

Introduce the pseudonorm |||y||| = max1≤j≤n{|yj |1/wj} in Rn and denote

V α = {y ∈ Rn : |||y||| ≤ α}, α > 0.

Notice that

Hε(V
α) = V εα, ε, α > 0. (7.19)

Set

ω(δ) = {y ∈ ∂V 1 : y + V δ ⊂ Ω}, Ω(δ) =
⋃

0<ε≤1

Hε(ω(δ)), for any 0 < δ ≤ 1/2,

and set Ω(δ) = Ω(1/2) for δ > 1/2. Then Ω(δ1) ⊂ Ω(δ2) if δ1 > δ2 > 0 and Ω ∩ V 1 =⋃
δ>0Ω(δ).

Suppose system (2.1) is also written in privileged coordinates. Fix any 0 < δ ≤ 1/2

and prove that (7.17) approximates (7.6) in Ω(δ). Without loss of generality, we assume

(EX1,...,Xm)j = Pj + ρj , (EZ1,...,Zm)j = Pj , j = 1, . . . , n,

where Pj = Pj(θ, u) contains terms of order wj , and ρj contains terms of order greater

than wj . Moreover, for any 0 ≤ θ ≤ T0 and any u ∈ Bθ,

|ρj(θ, u)| ≤ C1C
wj+1
2 θwj+1, j = 1, . . . , n, (7.20)

for some C1, C2 > 0.

Set

C = 2 sup{θ̂∗y : y ∈ V 1 ∩Ω} > 0.

Below, choose 0 < ε ≤ min{1, T0/C}. Then, due to (7.18)–(7.19), we have

sup{θ̂∗y : y ∈ V ε ∩Ω} ≤ Cε/2 ≤ T0. (7.21)

Fix any s ∈ Ω(δ) ∩ ∂V ε. Hence,

H−1ε (s) ∈ ω(δ), i.e., H−1ε (s) ∈ V 1 and H−1ε (s) + V δ ⊂ Ω. (7.22)

Following [51], consider the operator Gs(y) : Ω(δ)→ Rn defined as

Gs(y) = s− ρ(θ̂∗y, û
∗
y).

Let us prove that, for sufficiently small ε, this operator has a fixed point in the set

M = s+ V δε.

First, we prove that Gs(y) maps M to itself.

Choose any y ∈ M . Then y = s+ ŷ, where ŷ ∈ V δε. Hence, |ŷj | ≤ (δε)wj ≤ εwj , and

therefore |yj | ≤ |sj |+ εwj ≤ 2εwj ≤ (2ε)wj , i.e., y ∈ V 2ε.

Since H−1ε (ŷ) ∈ V δ, we have H−1ε (y) = H−1ε (s) + H−1ε (ŷ) ∈ H−1ε (s) + V δ. Hence,

(7.22) implies H−1ε (y) ∈ Ω, and therefore y ∈ Ω.
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Thus,

M = s+ V δε ⊂ V 2ε ∩Ω.

Then there exists a unique solution (θ̂∗y, û
∗
y) of problem (7.17). Hence, the operator Gs is

defined at any y ∈M .

Analogously to (7.21), we have θ̂∗y ≤ Cε ≤ T0. Hence, (7.20) implies

|||ρ(θ̂∗y, û
∗
y)||| = max

1≤j≤n
{|ρj(θ̂∗y, û∗y)|1/wj} ≤ C2Cε max

1≤j≤n
{(C1C2Cε)

1/wj} ≤ δε (7.23)

if ε is sufficiently small, namely if

0 < ε ≤ 1

C1C2C
min

1≤j≤n

{(
δ

C2C

)wj
}
.

In this case,
Gs(y) = s− ρ(θ̂∗y, û

∗
y) ∈ s+ V δε = M.

Thus, if

0 < ε ≤ ε0 = min

{
1,
T0
C
,

1

C1C2C
min

1≤j≤n

{(
δ

C2C

)wj
}}

then for any fixed point s ∈ Ω(δ)∩ ∂V ε the operator Gs maps the set M to itself. Notice

that M is convex and closed (and 0 6∈M).

Now, we prove that Gs is continuous in M . Suppose a sequence {y(q)}∞q=1 ⊂ M is

convergent, y(q) → y as q → ∞ (then y ∈ M and y 6= 0). Due to Remark 7.5, we

have θ̂∗y(q) → θ̂∗y. Hence, Corollary 7.14 implies û∗y(q)
w→ û∗y. Thus, Corollary 7.9 yields

ρ(θ̂∗y(q) , û
∗
y(q)

)→ ρ(θ̂∗y, û
∗
y), which means that Gs is continuous.

As a result, the continuous operator Gs maps the convex and closed set M ⊂ Rn to

itself. Hence, due to the Fixed Point Theorem, Gs has a fixed point in M . Let us denote

it by s1, i.e., Gs(s
1) = s1. Since s ∈ ∂V ε, we get ε = |||s||| and M ⊂ V 2ε. Hence, if s→ 0

then ε→ 0, and therefore s1 → 0.

For the point s1, we have s1 = Gs(s
1) = s− ρ(θ̂∗s1 , û

∗
s1). Hence,

s = s1 + ρ(θ̂∗s1 , û
∗
s1).

However, s1 = P (θ̂∗s1 , û
∗
s1). Thus,

s = P (θ̂∗s1 , û
∗
s1) + ρ(θ̂∗s1 , û

∗
s1).

This means that the control û∗s1 ∈ B
θ̂∗
s1 steers the origin to the point s in time θ̂∗s1 with

respect to system (2.1). Hence, θ̂∗s1 is greater than or equal to the optimal time, i.e.,

θ∗s ≤ θ̂∗s1 . Since s1 ∈M ⊂ V 2ε, we get the estimate

θ∗s ≤ θ̂∗s1 ≤ Cε. (7.24)

Moreover, consider the point s0 = s− ρ(θ∗s , u
∗
s). Then

s = s0 + ρ(θ∗s , u
∗
s) = P (θ∗s , u

∗
s) + ρ(θ∗s , u

∗
s),

what implies s0 = P (θ∗s , u
∗
s). Hence, the control u∗s ∈ Bθ

∗
s steers the origin to the point s0

in time θ∗s with respect to system (7.16), which gives the estimate θ̂∗s0 ≤ θ∗s . In addition,

using (7.20), (7.23), and (7.21), we get |||ρ(θ∗s , u
∗
s)||| ≤ δε. Hence, s0 ∈ s + V δε = M .

Therefore, if s→ 0 then s0 → 0.
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Thus, for any sufficiently small ε > 0 and any s ∈ Ω(δ)∩ ∂V ε we get the inequalities

θ̂∗s0 ≤ θ∗s ≤ θ̂∗s1 , (7.25)

where s0, s1 → 0 as s→ 0.

Now consider any sequence {s(q)}∞q=1 ⊂ Ω(δ) such that s(q) → 0. Set εq = |||s(q)|||
→ 0. For each point s(q), find the points s0(q) and s1(q) as it is explained above. Then

s(q) = s1(q) + ρ(θ̂∗s1
(q)
, û∗s1

(q)
), s(q) = s0(q) + ρ(θ∗s(q) , u

∗
s(q)

).

Consider the sequences

s̃(q) = H−1εq (s(q)) ∈ ∂V 1, s̃ 1
(q) = H−1εq (s1(q)), s̃ 0

(q) = H−1εq (s0(q)).

Due to (7.20), we get

|(s1(q) − s(q))j | ≤ C1(C2Cεq)
wj+1, |(s0(q) − s(q))j | ≤ C1(C2Cεq)

wj+1,

and therefore there exists C ′ > 0 such that

|(s̃ 1
(q) − s̃(q))j | ≤ C

′εq, |(s̃ 0
(q) − s̃(q))j | ≤ C

′εq. (7.26)

Since ∂V 1 is a compact set, there exists a subsequence s̃(qr) such that s̃(qr) → s̃ ∈ ∂V 1

as r →∞. Then (7.26) implies s̃ 1
(qr)
→ s̃ and s̃ 0

(qr)
→ s̃. Due to Remark 7.5, this yields

θ̂∗s̃(qr)
= θ̂∗s(qr)

/εqr → θ̂∗s̃ , θ̂∗s̃ 1
(qr)

= θ̂∗s1
(qr)

/εqr → θ̂∗s̃ , θ̂∗s̃ 0
(qr)

= θ̂∗s0
(qr)

/εqr → θ̂∗s̃ .

Hence,

θ̂∗s1
(qr)

/θ̂∗s(qr)
→ 1, θ̂∗s0

(qr)
/θ̂∗s(qr)

→ 1.

Then (7.25) yields

θ∗s(qr)
/θ̂∗s(qr)

→ 1.

Since any subsequence of s(q) has a subsequence satisfying this relation, we finally get

θ∗s(q)/θ̂
∗
s(q)
→ 1 as s(q) → 0, s(q) ∈ Ω(δ), (7.27)

which coincides with (7.14) (for Φ(s) = s).

Now let us prove (7.15). Recall that, due to homogeneity,

s̃ 0
(qr)

= P (θ∗s̃(qr)
, u∗s̃(qr)

), θ∗s̃(qr)
= θ∗s(qr)

/εqr , u∗s̃(qr)
(t) = u∗s(qr)

(tεqr ),

s̃(qr) = P (θ̂∗s̃(qr)
, û∗s̃(qr)

), θ̂∗s̃(qr)
= θ̂∗s(qr)

/εqr , û∗s̃(qr)
(t) = û∗s(qr)

(tεqr ),

for t ∈ [0, θ̂∗s̃(qr)
]. Recall that s̃ 0

(qr)
→ s̃, θ∗s̃(qr)

→ θ̂∗s̃ and s̃(qr) → s̃, θ̂∗s̃(qr)
→ θ̂∗s̃ . Hence,

Corollary 7.15 implies that∫ 1

0

∣∣u∗s̃(qr)i
(tθ∗s̃(qr)

)− û∗s̃ i(tθ̂∗s̃)
∣∣ dt→ 0,

∫ 1

0

∣∣û∗s̃(qr)i
(tθ̂∗s̃(qr)

)− û∗s̃ i(tθ̂∗s̃)
∣∣ dt→ 0. (7.28)

Therefore,∫ 1

0

∣∣u∗s̃(qr)i
(tθ∗s̃(qr)

)− û∗s̃(qr)i
(tθ̂∗s̃(qr)

)
∣∣ dt =

∫ 1

0

∣∣u∗s(qr)i
(tθ∗s(qr)

)− û∗s(qr)i
(tθ̂∗s(qr)

)
∣∣ dt→ 0.

Since any subsequence of s(q) has a subsequence satisfying this relation, we get∫ 1

0

∣∣u∗s(q)i(tθ∗s(q))− û∗s(q)i(tθ̂∗s(q))∣∣ dt→ 0, i = 1, . . . ,m, as q →∞,
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which can be rewritten as

1

θ∗s(q)

∫ θ∗s(q)

0

∣∣u∗s(q)i(t)− û∗s(q)i(tµq)∣∣ dt→ 0, i = 1, . . . ,m, as q →∞, (7.29)

where µq = θ̂∗s(q)/θ
∗
s(q)
→ 1.

It remains to prove that

1

θq

∫ θq

0

∣∣û∗s(q)i(tµq)− û∗s(q)i(t)∣∣ dt→ 0, where θq = min{θ∗s(q) , θ̂
∗
s(q)
}.

Write θ̃q = θq/εq. Then µq θ̃q ≤ θ̂∗s(q)/εq = θ̂∗s̃(q) . Introduce the sequences

s̃ ′(q) = P (θ̃q, û
∗
s̃(q)

), s̃ ′′(q) = P (µq θ̃q, û
∗
s̃(q)

).

Then

|(s̃ ′(q) − s̃(q))j | ≤ C
′
1

∣∣(θ̃q)wj − (θ̂∗s̃(q))
wj
∣∣, |(s̃ ′′(q) − s̃(q))j | ≤ C

′′
1

∣∣(µq θ̃q)wj − (θ̂∗s̃(q))
wj
∣∣.

Due to (7.27), θ̃qr → θ̂∗s̃ and µqr θ̃qr → θ̂∗s̃ . Since s̃(qr) → s̃ and θ̂∗s̃(qr)
→ θ̂∗s̃ , we have

s̃ ′(qr) → s̃, s̃ ′′(qr) → s̃, as r →∞.

Hence, Corollary 7.15 implies∫ 1

0

∣∣û∗s̃(qr)i
(tθ̃qr )− û∗s̃ i(tθ̂∗s̃)

∣∣ dt→ 0,

∫ 1

0

∣∣û∗s̃(qr)i
(tµqr θ̃qr )− û∗s̃ i(tθ̂∗s̃)

∣∣ dt→ 0,

which gives∫ 1

0

∣∣û∗s̃(qr)i
(tθ̃qr )− û∗s̃(qr)i

(tµqr θ̃qr )
∣∣ dt =

∫ 1

0

∣∣û∗s(qr)i
(tθqr )− û∗s(qr)i

(tµqrθqr )
∣∣ dt→ 0.

Since any subsequence of s(q) has a subsequence satisfying this relation, we get∫ 1

0

∣∣û∗s(q)i(tµqθq)− û∗s(q)i(tθq)∣∣ dt→ 0, i = 1, . . . ,m, as q →∞.

Rewriting, we obtain

1

θq

∫ θq

0

∣∣û∗s(q)i(tµq)− û∗s(q)i(t)∣∣ dt→ 0, i = 1, . . . ,m, as q →∞. (7.30)

Combining (7.29) and (7.30), we finally get

1

θq

∫ θq

0

∣∣u∗s(q)i(t)− û∗s(q)i(t)∣∣ dt→ 0, i = 1, . . . ,m, as s(q) → 0, s(q) ∈ Ω(δ),

which coincides with (7.15) (for Φ(s) = s).

Remark 7.18. The asymptotic relation (7.14) for a system and its homogeneous approx-

imation was obtained in [6]; this relation means that the sub-Riemannian distances to

the origin defined by a system and by its homogeneous approximation are asymptotically

equivalent. However, our definition of the approximation in the sense of time optimality

also includes the asymptotic relation concerning optimal controls (7.15), which was not

considered in [6].
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Remark 7.19. Also notice that Theorem 7.1 allows us to give a partial answer to the

question analogous to the open problem of [52]. Namely, in the case of the time-optimal

control problem for a control-affine system of the form (1.2), the following condition

is important for the approximation theorem analogous to Theorem 7.17: For the set

K = {û∗s(tθ̂∗s) : s ∈ Ω, t ∈ [0, 1]} considered as a set in L2[0, 1], the weak convergence

of a sequence of elements from K implies the strong convergence. The open question is

whether this condition follows from the other conditions of the theorem [52]. For the

case of control-linear systems, Theorem 7.1 implies that the set K is contained in the

unit sphere of the Hilbert space L2([0, 1];Rm), therefore it satisfies the above-mentioned

condition.

8. Conclusion

In this paper we give a self-contained survey of the main ideas and techniques of the

approach that is based on applying free algebras to the study of nonlinear control systems.

Namely, a class of control-linear systems with m controls satisfying the Rashevsky–Chow

condition is considered. The appropriate algebraic object is an m-generated free Lie

algebra L with a natural grading and the corresponding m-generated free associative

algebra F . A control system can be replaced by a formal power series of elements of F
with constant coefficients from Rn, which corresponds to a series representation of the

endpoint map EX1,...,Xm for the initial system.

In this way the analysis of properties of a control system is reduced to the study

of corresponding properties of some structures in the free algebra. More specifically,

the coefficients of the series define the so-called core Lie subalgebra LX1,...,Xm
, which

is responsible for the homogeneous approximation of the system; an equivalent role is

played by the left ideal JX1,...,Xm
.

This leads to an algebraic definition of a homogeneous approximation; in particular,

this shows that the homogeneous approximation is unique (up to a polynomial change of

coordinates). Moreover, any graded Lie subalgebra of L of codimension n is a core Lie

subalgebra for some system, which gives a complete classification of all possible homoge-

neous approximations.

The algebraic technique allows us to find the homogeneous approximation and an

approximating system explicitly, by use of an “elementary” operation of orthogonal pro-

jection in F , without finding any special (privileged) coordinates; on the other hand, all

privileged coordinates are effectively described.

We also give an algebraic characteristic of systems that are regular and homogeneous

at the origin. For such systems, we give an explicit formula that expresses a series represen-

tation of the endpoint map EzX1,...,Xm
from an arbitrary point z via a series representation

of the endpoint map EX1,...,Xm
from the origin.

Finally, we show that the homogeneous approximation of a system of a given class is

closely related to the approximation in the sense of time optimality.
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