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1. Introduction

Stability and sensitivity of optimization problems are understood here, respectively, as

local Lipschitz continuity and differentiability of solutions of such problems with respect

to parameters. Due to the presence of inequality type constraints, optimization problems

are nonsmooth even for arbitrarily smooth data. That is the reason why there are funda-

mental difficulties in application of the classical implicit function theorem in sensitivity

analysis.

The systematic studies of stability and sensitivity of solutions to optimization prob-

lems were initiated in mid-seventies with two important papers by S. M. Robinson [43] and

A. V. Fiacco [18], which concerned parametric mathematical programs in finite dimen-

sions. A fundamental break-through was made in the paper “Strongly regular generalized

equations” by S. M. Robinson [44], in which the author developed an implicit function

theorem for generalized equations (inclusions). The theorem is formulated and proved in

Banach spaces and it provides an adequate mathematical tool for studying stability for

a broad class of parametric optimization problems. In mid-nineties an important gen-

eralization of Robinson’s theorem was developed by A. L. Dontchev [10], who extended

the original result to nonlinear topological spaces. The original application of Robinson

himself, as well as of some other authors, concerned mathematical programs in finite

dimensions. However, cone-constrained optimization problems in abstract Banach spaces

(see, e.g., [6, 8, 33, 34, 49]), as well as semi-infinite programs [5, 28, 29] and optimal

control problems [1, 2, 13, 15, 33, 34, 35] were also investigated. For more references cf.

the bibliography in [7, 8].

The approach based on Robinson’s implicit function theorem does not provide any

information on differentiability of solutions with respect to parameters. In sensitivity

analysis, the first investigations concerned again finite-dimensional mathematical pro-

grams. In [43] and [18], the classical implicit function theorem was used, which required,

among other things, the assumption of strict complementarity. Later, this last assumption

was dropped and conditions of directional [25, 26] and Bouligand [44, 48] differentiability

were obtained.

In infinite-dimensional optimization problems, the concept of polyhedric sets was in-

troduced and applied to get directional differentiability of solutions to problems with

linear constraints [21, 41]. For applications to optimal control cf. [34, 50, 51].

Robinson further developed his implicit function theorem in [46], where the concept of

strong approximation was introduced and exploited. In particular, the theorem allows in-

vestigating Bouligand differentiability of solutions to constrained optimization problems.
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Important extensions of this theorem are due to A. L. Dontchev [9], who, among other

things, proved that various types of differentiability of solutions to nonlinear optimiza-

tion problems are equivalent to the same type of differentiability of solutions to linear-

quadratic accessory problems. Actually, the theorems due to Robinson and Dontchev

allow reducing stability and sensitivity analysis for nonlinear parametric problems to the

same analysis for linear-quadratic accessory problems subject to additive perturbations.

These last problems are usually much easier to investigate than the original ones.

In parametric optimal control Robinson’s theorem was first applied by Ito and Kunisch

[25]. Further development can be found in [33, 13, 35, 15, 14]. In [15] the most refined

sufficient conditions of Lipschitz stability for control constrained optimal control problems

were derived.

The above approach allows one to obtain sufficient conditions of stability and sensi-

tivity, but it does not provide any information on how close these conditions are to being

necessary. Recent results show that for mathematical programs [17, 12] and control con-

strained optimal control problems [16], sufficient optimality conditions are also necessary,

provided that the dependence of data on the parameter is sufficiently strong. Thus, we

get a full characterization of stability and sensitivity properties.

The purpose of this paper is to present systematically the stability and sensitivity

analysis for nonlinear optimal control problems subject to mixed control-state constraints.

For this class of problems the analysis is more or less complete. The presented sufficient

conditions of Lipschitz stability are mostly based on material known in the literature.

The main elements of novelty concern differentiability of the solutions and necessary

conditions of stability and sensitivity.

The organization of the paper is the following. In Sections 2 and 3 the problem is

stated and the basic assumptions are introduced. The abstract theorems which are the

main mathematical tools of the further analysis are recalled in Section 4. Sections 5 and 6

are devoted to stability and sensitivity analysis for the accessory linear-quadratic problem.

The basic stability and sensitivity results for the original nonlinear problem are derived

in Sections 7 and 8. In Section 9 the necessity of the assumptions applied is discussed.

The principal result is stated in Section 10, where also some concluding remarks and

open questions are formulated. The main sections end with short bibliographical notes.

We use the following notations: Capital letters X,Y, Z, . . . , sometimes with super-

scripts, denote Banach or Hilbert spaces. The norms are denoted by ‖ · ‖ with a subscript
referring to the space.

BX̺ (x0) := {x ∈ X | ‖x− x0‖X ≤ ̺}
is the closed ball in X of radius ̺, centered at x0. Asterisks denote dual spaces, as well

as dual operators. (y, x), with x ∈ X and y ∈ X∗, is the duality pairing between X and
X∗. The inner product in a Hilbert space X is denoted by (·, ·)X .
For f : X × Y → Z let Dxf(x, y), Dyf(x, y), D

2
xyf(x, y), . . . denote the respective

Fréchet derivatives in the corresponding arguments.

R
n is the n-dimensional Euclidean space with inner product 〈x, y〉 and norm |x| =

〈x, x〉1/2. A superscript i denotes the ith component of a vector or the ith row of a matrix,
while a superscript ij refers to the appropriate element of a matrix. Transposition is
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denoted by ∗.
For a given subset I ⊂ R, Ls(I;Rn) is the Banach space of measurable functions

f : I → R
n, supplied with the norm

‖f‖s =
{
[
T
I
|f(t)|s dt]1/s for s ∈ [1,∞),

ess supt∈I |f(t)| for s =∞.
W 1,s(I;Rn) denotes the Sobolev space of functions f absolutely continuous on I with

the norm

‖f‖1,s =
{
[|f(0)|s + ‖ḟ‖ss]1/s for s ∈ [1,∞),
max{|f(0)|, ‖ḟ‖∞} for s =∞.

c, k and l denote generic constants, not necessarily the same in different places.

2. Problem formulation and constraint qualifications

Let us introduce the space H = R
r×L∞(0, 1;Rr) of parameters. Let G ⊂ R

r be an open

bounded set of feasible values of parameters and let

G = {h ∈ H | h(0) ∈ G and h(t) ∈ G for a.a. t ∈ [0, 1]}
denote the open set of feasible parameters. Consider the family of the following optimal

control problems depending on h ∈ G:
(O)h Find (xh, uh) ∈ X∞ such that

(2.1) F (xh, uh, h) = min
{
F (x, u, h) :=

1\
0

ϕ(x(t), u(t), h(t)) dt+ ψ(x(0), x(1), h(0))
}

subject to

ẋ(t)− f(x(t), u(t), h(t)) = 0 for a.a. t ∈ [0, 1],(2.2)

ξ(x(0), x(1), h(0)) = 0,(2.3)

θ(x(t), u(t), h(t)) ≤ 0 for a.a. t ∈ [0, 1],(2.4)

where Xs =W 1,s(0, 1;Rn)× Ls(0, 1;Rm), s ∈ [1,∞],
ϕ : Rn × R

m × R
r → R, ψ : Rn × R

n × R
r → R,

f : Rn × R
m × R

r → R
n, ξ : Rn × R

n × R
r → R

n,

θ : Rn × R
m × R

r → R
l.

The following standing assumptions are supposed to be satisfied throughout the paper.

(I) There exist open sets Rn ⊂ R
n and Rm ⊂ R

m such that the functions ϕ(·, ·, ·),
f(·, ·, ·), θ(·, ·, ·) and ψ(·, ·, ·), ξ(·, ·, ·), are twice Fréchet differentiable in (x, u) on
Rn × Rm × G and on Rn × Rn × G, respectively. All these functions, together
with their first derivatives in (x, u), are Fréchet differentiable in h. All first and

second order derivatives are uniformly Lipschitz continuous in (x, u, h).

(II) For a given reference value h0 ∈ G of the parameter there exists a reference solution
(x0, u0) := (xh0 , uh0) of (O)h0 and (x0(t), u0(t)) ∈ Rn ×Rm for a.a. t ∈ [0, 1].
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To simplify notation, we will denote by subscript “0” the functions evaluated at the

reference point, e.g., ϕ0 := ϕ(x0, u0, h0), ψ0 := ψ(x0(0), x0(1), h0(0)). Moreover, we

define

(2.5)

A(t) = Dxf(x0(t), u0(t), h0(t)), B(t) = Duf(x0(t), u0(t), h0(t)),

Ξ0 = Dx(0)ξ(x0(0), x0(1), h0(0)), Ξ1 = Dx(1)ξ(x0(0), x0(1), h0(0)),

Υ (t) = Dxθ(x0(t), u0(t), h0(t)), Θ(t) = Duθ(x0(t), u0(t), h0(t)).

Our last standing assumption is:

(III) rank[Ξ0 +Ξ1φ(1)] = n,

where Φ is the fundamental matrix solution of ẏ −Ay = 0:
(2.6) Φ̇(t)−A(t)Φ(t) = 0, Φ(0) = I.

We will need some constraint qualifications. To this end, let us denote by I = {1, . . . , l}
the set of the indices of inequality constraints and for α ≥ 0 and t ∈ [0, 1], introduce the
subsets of α-active constraints:

(2.7) Iα(t) = {i ∈ I | θi0(t) ≥ −α}, ıα(t) = card Iα(t).

Define the functions

(2.8) θiα(t) = min{θi0(t) + α, 0},
as well as the l × l and l × (m+ l)-matrices
(2.9) Tα(t) = diag θ

i
α(t), Vα(t) = [Θ(t), Tα(t)].

We assume

(A1) (Linear Independence) There exist constants α, β > 0 such that

|Vα(t)Vα(t)∗η| ≥ β|η| for all η ∈ R
l and a.a. t ∈ [0, 1].(2.10)

(A2) (Controllability) There exists α > 0 such that, for each e ∈ R
n, there exist

v ∈ L∞(0, 1;Rm), ϑ ∈ L∞(0, 1;Rl) and y ∈ W 1,∞(0, 1;Rn) which satisfy the

following equations:

ẏ −Ay −Bv = 0,(2.11)

Ξ0y(0) +Ξ1y(1) = e,(2.12)

Υy +Θv + Tαϑ = 0.(2.13)

Clearly, if (2.10) is satisfied for an α > 0, then it is also satisfied for any α ∈ [0, α].
Define

(2.14)
Θ̂α(t) = [Duθ

i
0(t)]i∈Iα(t), Υ̂α(t) = [Dxθ

i
0(t)]i∈Iα(t),

T̂α(t) = [diag θ
i
α(t)]i∈Iα(t), µ̂(t) = [µi(t)]i∈Iα(t).

The following lemma relates condition (A1) to the usual constraint qualification in the

form of linear independence of gradients of active constraints.

Lemma 2.1. Condition (A1) holds if and only if there exist constants α̂, β̂ > 0 such that

(2.15) |Θ̂α̂(t)∗µ̂| ≥ β̂|µ̂| for all µ̂ ∈ R
ıα̂(t) and a.a. t ∈ [0, 1],
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i.e., pointwise, the gradients of α̂-active constraints are linearly independent , uniformly

on [0, 1].

Proof. Suppose that (2.15) holds. Since by (2.8),

(2.16) |θi0(t)|
{
≤ α̂ for i ∈ Iα̂(t),
> α̂ for i 6∈ Iα̂(t),

in view of (2.9), we have

|[Θ(t), Tα̂(t)]∗µ| ≥ min{β̂, α̂}|µ| for all µ ∈ R
n,

i.e., (2.10) is satisfied with β = (min{β̂, α̂})2.
Suppose now that (2.10) holds. Choose α̂ =

√
β/2 and put µi = 0 for i 6∈ Iα̂(t). In

view of (2.16) we obtain

|Θ̂α̂(t)∗µ̂| ≥ |[Θ̂α̂(t), T̂α̂(t)]∗µ̂| − |T̂α̂(t)∗µ̂| ≥
√
β|µ̂| −

√
β

2
|µ̂| =

√
β

2
|µ̂|,

i.e., (2.15) holds with β̂ =
√
β/2.

It will be convenient to express the controllability condition (A2) in an equivalent

form.

Lemma 2.2. If (A1) holds , then (A2) is equivalent to the condition that for any e ∈ R
n

there exists a solution (y, ζ) ∈W 1,∞(0, 1;Rn)× L∞(0, 1;Rm+l) of the equation
(2.17) ẏ −Aαy − Bαζ = 0, Ξ0y(0) +Ξ1y(1) = e,

where

(2.18) Aα = A− [B, 0]V ∗α (VαV ∗α )−1Υ, Bα = [B, 0](I − V ∗α (VαV ∗α )−1Vα).

Proof. In view of (A1) any solution (v, ϑ) of (2.13) can be expressed in the form

(2.19)

[
v
ϑ

]
= −V ∗α (VαV ∗α )−1Υy + (I − V ∗α (VαV ∗α )−1Vα)ζ,

where ζ ∈ R
m+l is arbitrary. Substituting (2.19) into (2.11) we obtain (2.17).

Define the spaces

Zs =W 1,s(0, 1;Rn)× Ls(0, 1;Rm)× Ls(0, 1;Rl),
Y s = Ls(0, 1;Rn)× R

n × Ls(0, 1;Rl),
Y 1,s =W 1,s(0, 1;Rn)× R

n × Ls(0, 1;Rl),




s ∈ [1,∞],

and the mapping Cα : Zs → Y s given by the left-hand side of (2.11)–(2.13):

(2.20) Cα



y
v
ϑ


 =




ẏ −Ay −Bv
Ξ0y(0) +Ξ1y(1)
Υy +Θv + Tαϑ


 .

Lemma 2.3. Assumptions (A1) and (A2) imply that Cα : Zs → Y s is surjective for any

s ∈ [1,∞]. If Cα : Zs → Y s is surjective for any s ∈ [1,∞) then (A1) and (A2) hold.
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Proof. First, let us prove that (A1) and (A2) imply surjectivity of Cα. We have to show
that for any (p, q, r) ∈ Y s the equation

(2.21)

ẏ −Ay −Bv = p,
Ξ0y(0) +Ξ1y(1) = q,

Υy +Θv + Tαϑ = r,

has a solution (y, u, ϑ) ∈ Zs. As in (2.19), from the last equation in (2.21) we obtain

(2.22)

[
v
ϑ

]
= V ∗α (VαV

∗
α )
−1(r − Υy) + (I − V ∗α (VαV ∗α )−1Vα)ζ,

and (2.21) yields

(2.23) ẏ −Aαy − Bαζ = p̃, Ξ0y(0) +Ξ1y(1) = q,

where Aα and Bα are given in (2.18) and
(2.24) p̃ = p+ [B, 0]V ∗[V V ∗]−1r.

Let Φα(t) denote the solution of the homogeneous equation for symmetric matrix func-

tions

Φ̇α(t)−Aα(t)Φα(t) = 0, Φα(0) = I.

Then the solution of the equation

ẋ−Aαx− p̃ = 0, x(0) = 0,

is given by

(2.25) x(t) =

t\
0

Φα(t)
−1Φα(τ )p̃(τ ) dτ.

Let us introduce the new variable

(2.26) z(t) = y(t)− x(t).
Then from (2.23) we obtain

(2.27) ż −Aαz − Bαζ = 0, Ξ0z(0) +Ξ1z(1) = q̃,

where, in view of (2.24) and (2.25),

q̃ = q − Ξ1
1\
0

Φα(1)
−1Φα(τ ){p(τ ) + [B(τ ), 0]V (τ )∗[V (τ )V (τ )∗]−1r(τ )} dτ.

By (A1), (A2) and Lemma 2.2, equation (2.27) has a solution (z, ζ) ∈ W 1,∞(0, 1;Rn)×
L∞(0, 1;Rm+l), which, by (2.25), (2.26) and (2.22), corresponds to a solution (y, u, ϑ) ∈
Zs of (2.21). This completes the proof of surjectivity of Cα.
Let us now show the opposite implication. Assume that, for some s ∈ [1,∞), equation

(2.21) has a solution for any (p, q, r) ∈ Y s. Setting p = 0 and r = 0, we obtain (A2).
To show (A1), assume that (2.10) is violated, i.e., there exists a subset M ⊂ [0, 1] with
measM > 0 such that rangeVα(t) < l for all t ∈ M. Let N ⊂ M with measN > 0 be

any subset. Set p = 0, q = 0 and

(2.28) r(t)

{
∈ {r ∈ kerVα(t) | |r| = 1} for t ∈ N,
= 0 for t 6∈ N,
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where r(t) is chosen in such a way that r is a measurable function. We have

ẏ −Ay −Bv = 0,(2.29)

Ξ0y(0) +Ξ1y(1) = 0,(2.30)

Υy +Θv + Tαϑ = r.(2.31)

By surjectivity, there exists a constant ks > 0 and a solution (y, v, ϑ) of (2.29)–(2.31)

such that

‖(y, v, ϑ)‖Zs ≤ ks‖r‖s.
Hence, in view of (2.28),

(2.32) ‖v‖s ≤ ks(measN)1/s.
On the other hand, in view of (2.28), equation (2.31) yields |Υ (t)y(t)| = 1 for t ∈ N, i.e.,
there exists c > 0 such that

(2.33) |y(t)| ≥ c for t ∈ N.
Note that, for any v ∈ Ls(0, 1;Rm), there is a unique solution to (2.29)–(2.30). Indeed,
using the definition (2.6), we obtain from (2.29)

(2.34) y(t) = Φ(t)y(0) +

t\
0

Φ(t)Φ(τ )−1B(τ )v(τ ) dτ.

By (2.30) and (2.34), we get

[Ξ0 +Ξ1Φ(1)] y(0) = −Ξ1
1\
0

Φ(t)Φ(τ )−1B(τ )v(τ ) dτ,

i.e., in view of (III), we have

(2.35) y(0) = − [Ξ0 +Ξ1Φ(1)]−1Ξ1
1\
0

Φ(t)Φ(τ )−1B(τ )v(τ ) dτ.

Substituting (2.35) into (2.34) we obtain

y(t) = − Φ(t)[Ξ0 +Ξ1Φ(1)]−1Ξ1
1\
0

Φ(t)Φ(τ )−1B(τ )v(τ ) dτ(2.36)

+

t\
0

Φ(t)Φ(τ )−1B(τ )v(τ ) dτ.

Hence, there exists cs <∞ such that
(2.37) ‖y‖∞ ≤ ‖y‖1,s ≤ cs‖v‖s.
Therefore, in view of (2.32), we have ‖y‖∞ ≤ csks(measN)1/s. Choosing N such that

measN ≤
(

c

2csks

)s

we contradict (2.33) and complete the proof of the lemma.

For a given α ≥ 0 introduce the sets
(2.38) M iα = {t ∈ [0, 1] | i ∈ Iα(t)} for i ∈ I
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and the spaces

(2.39) Ls(M iα;R), L̂sα =
∏

i∈I

Ls(M iα;R), Ŷ sα = L
s(0, 1;Rn)× R

n × L̂sα.

Define the mapping

(2.40) Ĉα : Xs → Ŷ sα , Ĉα
(
y
v

)
=




ẏ −Ay −Bv
Ξ0y(0) +Ξ1y(1)

Υ̂αy + Θ̂αv


 .

Using Lemma 2.1 and the same argument as in the proof of Lemma 2.3 we obtain:

Corollary 2.4. Assumptions (A1) and (A2) imply that Ĉα : Zs → Ŷ sα is surjective for

any s ∈ [1,∞]. If Ĉα : Zs → Ŷ sα is surjective for any s ∈ [1,∞) then (A1) and (A2) hold.

Bibliographical note. Constraint qualifications of the form (A1) with α = 0 can be found

in [22]. In stability analysis, they were used in [1, 2]. For α > 0 these conditions were

introduced in [34]. Conditions of the form (2.15) were used by W. W. Hager [19] in

regularity analysis of solutions to optimal control problems subject to control and state

constraints. For mixed constraints, they were exploited by V. Zeidan [54]. Controllability

condition (A2) and its characterization by (2.17) were given in [34] and [39]. A very

similar characterization is also given in [54]. Lemma 2.3 is based on a similar result in

[39]. Lemma 2.1 was first proved by U. Felgenhauer (unpublished).

3. Optimality condition and coercivity

Let us introduce the following Lagrangian and Hamiltonian associated with (O)h:

L : X∞ × (Y∞)∗ × G → R, H : Rn × R
m × R

n × R
l ×G,

L(x, u, p, ̺, ν, h) = F (x, u, h)− (p, ẋ− f(x, u, h))(3.1)

+ 〈̺, ξ(x(0), x(1), h(0)〉+ (ν, θ(x, u, h)),
H(x, u, p, ν, h) = ϕ(x, u, h) + 〈p, f(x, u, h)〉+ 〈ν, θ(x, u, h)〉.(3.2)

Lemma 3.1. If conditions (A1) and (A2) are satisfied , then there exists a unique La-

grange multiplier (p0, ̺0, ν0) ∈ Y 1,∞ such that the following first order optimality condi-
tions in the Karush–Kuhn–Tucker (KKT ) form are satisfied :

(3.3)





DxL(x0, u0, p0, ̺0, ν0, h0) = 0,
DuL(x0, u0, p0, ̺0, ν0, h0) = 0,
(ν0, θ(x0, u0, h0)) = 0, ν0 ∈ K+,

where K+ ⊂ (L∞(0, 1;Rl))∗ denotes the cone of linear functionals nonnegative on K =
{y ∈ L∞(0, 1;Rl) | y(t) ≥ 0 for a.a. t ∈ [0, 1]}.

Proof. First we show that there is a normal Lagrange multiplier in (Y∞)∗; then we

will prove that it is more regular. The known constraint regularity condition (see, e.g.,

Theorem 1, Section 9.4 in [31]) implies that a normal Lagrange multiplier exists if there
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is a positive constant a > 0 and a pair (y, v) ∈ X∞ such that

(3.4)





ẏ(t)−A(t)y(t)−B(t)v(t) = 0 for a.a. t ∈ [0, 1],
Ξ0y(0) +Ξ1y(1) = 0,

θi0(t) + 〈Υ i(t), y(t)〉+ 〈Θi(t), v(t)〉 ≤ −a for all i ∈ I and for a.a. t ∈ [0, 1].
Note that, by the Banach open mapping theorem (see, e.g., [47]), surjectivity of the

mapping Cα : Z∞ → Y∞ implies that there exists a constant k > 0 such that for any

(p, q, r) ∈ Y∞ there exists a solution (y, v, ϑ) of (2.21) such that

(3.5) ‖(y, v, ϑ)‖Z∞ ≤ k‖(p, q, r)‖Y∞ .

Choose p = 0, q = 0, r(t) = −r1, where r = 12α|k‖θ0‖∞ − 1|−1 and 1 = (1, . . . , 1)∗ ∈ R
l.

Let (y, v, ϑ) be a solution of (2.21) such that (3.5) holds. Since θ0(t) ≤ 0, in view of (2.9),
we find from the last line in (2.21) that

θi0(t) + 〈Υ i(t), y(t)〉+ 〈Θi(t), v(t)〉 ≤ −r for i ∈ Iα(t).

On the other hand, if i 6∈ Iα(t), then θ0(t) ≤ −α. Hence, if we choose r = 12α[k(‖Υ‖∞ +
‖Θ‖∞)]−1, we get

θi0(t) + 〈Υ i(t), y(t)〉+ 〈Θi(t), v(t)〉 ≤ −12α for i 6∈ Iα(t).

Thus (3.4) is satisfied with a = 12αmin{1, [k(‖Υ‖∞ + ‖Θ‖∞)]−1} and a Lagrange multi-
plier (p0, q0, ν0) ∈ (Y∞)∗ exists.
Let us rewrite the first two equations in (3.3) in an explicit form:

(3.6) Dxϕ(x0, u0, h0) + ṗ0 +A
∗p0 +DxΘ

∗(x0, u0, h0)ν0

= ṗ0 +DxH(x0, u0, p0, ν0, h0) = 0,

(3.7)

{
p0(0) +Ξ

∗
0̺0 +Dx(0)ψ(x0(0), x0(1), h0(0)) = 0,

−p0(1) +Ξ∗1̺0 +Dx(1)ψ(x0(0), x0(1), h0(0)) = 0,
(3.8) Duϕ(x0, u0, h0) +B

∗p0 +DuΘ
∗(x0, u0, h0)ν0 = DuH(x0, u0, p0, ν0, h0) = 0.

In view of definition (2.9), the last equation in (3.3) implies

(3.9) T ∗αν0 = 0.

Using definition (2.20), we can rewrite (3.6)–(3.9) in the following compact form:

(3.10) C∗α



p0
̺0
ν0


 = κ0,

where C∗α : (Y s)∗ → (Zs)∗, s ∈ [2,∞], is the operator adjoint to Cα, and

(3.11) κ0 =




−Dxϕ0
−p0(0)−Dx(0)ψ0
p0(1)−Dx(1)ψ0
−Duϕ0
0


 .

Clearly, by (I), κ0 ∈ (Z2)∗. Since Z2 is a Hilbert space, there exists a canonical isomor-
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phism J : (Z2)∗ → Z2, and from (3.10) we get

(3.12) J C∗α



p0
̺0
ν0


 = J κ0,

where J κ0 ∈ Z2. In view of Lemma 2.3, J C∗α : (Y 2)∗ = Y 2 → Z2 is injective and

CαJ C∗α : Y 2 → Y 2 is invertible. So, (3.12) yields

(3.13)



p0
̺0
ν0


 = (CαJ C∗α)−1 CαJ κ0,

which shows that (p0, ̺0, ν0) is unique and belongs to Y
2. In particular ν0 ∈ L2(0, 1;Rn).

We show that actually (p0, ̺0, ν0) ∈ Y 1,∞. To this end, note that, since ν0 is a function,
(3.9) implies

Tα(t)
∗ν0(t) = 0 for a.a. t ∈ [0, 1].

Combining this equation with (3.8) and using definition (2.9), we obtain

Vα(t)
∗ν0(t) =

[
−(Duϕ0(t) +B∗(t)p0(t))

0

]
,

and, by (A1),

|ν0(t)| ≤ β−1
∣∣∣∣Vα(t)

[
(Duϕ0(t) +B

∗(t)p0(t))
0

]∣∣∣∣ .

Hence, in view of (I), ν0 ∈ L∞(0, 1;Rl) and by (3.6), p0 ∈W 1,∞(0, 1;Rn).
Note that since ν0 ∈ L∞(0, 1;Rl), the last condition in (3.3) yields the following

pointwise complementarity:

(3.14) 〈ν0(t), θ(x0(t), u0(t), h0(t))〉 = 0, ν0(t) ≥ 0 for a.a. t ∈ [0, 1].
We still need a coercivity condition. To this end, for α ≥ 0 we introduce the sets

(3.15) Jα(t) = {i ∈ I0(t) | νi0(t) > α},
and, as in (2.38), (2.39), define

(3.16)

{
N iα = {t ∈ [0, 1] | i ∈ Jα(t)} for i ∈ I,
Ls(N iα;R), Lsα =

∏
i∈I L

s(N iα;R), Y sα = L
s(0, 1;Rn)× R

n × Lsα.
We assume

(A3) (Coercivity) There exist constants α, γ > 0 such that

((y, v), D2L0(y, v)) :=
1\
0

[
y(t)
v(t)

]∗ [
Q11(t) Q12(t)
Q21(t) Q22(t)

] [
y(t)
v(t)

]
dt(3.17)

+

[
y(0)
y(1)

]∗ [R00 R01
R10 R11

] [
y(0)
y(1)

]

≥ γ‖v‖22
for all (y, v) ∈ X2 such that

(3.18) (y, v) ∈ ker Cα,
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where




Q11 = D
2
xxH0, Q12 = D

2
xuH0, Q21 = D

2
uxH0, Q22 = D

2
uuH0,

Rij = D2x(i)x(j)(ξ(x0(0), x0(1), h0(0))∗̺0 + ψ(x0(0), x0(1), h0(0))),
i, j = 0, 1,

(3.19)

Cα
[
y
v

]
=




ẏ −Ay −Bv
Ξ0y(0) +Ξ1y(1)
Υαy +Θαv


 ,(3.20)

Θα(t) = [Duθ
i
0(t)]i∈Jα(t), Υα(t) = [Dxθ

i
0(t)]i∈Jα(t).(3.21)

Note that, since (y, v) is a solution to (2.29) and (2.30), the estimate (2.37) holds and

(3.17) implies

(3.22) ((y, v), D2L0(y, v)) ≥ γ′(‖y‖21,2 + ‖v‖22) for all (y, v) ∈ ker Cα.
where γ′ = γ(1 + c22)

−1.

Define the following continuous mappings:

(3.23)

S : Ls(0, 1;Rn)→W 1,s(0, 1;Rn)× R
n × R

n,

S0 : Ls(0, 1;Rn)→W 1,s(0, 1;Rn),

Sk = (y, y(0), y(1)), S0k = y,
where s ∈ [1,∞] and y is the solution to

ẏ(t)−A(t)y(t)− k(t) = 0, Ξ0y(0) +Ξ1y(1) = 0,

i.e., as in (2.36), we have

y(t) = −Φ(t)[Ξ0 +Ξ1Φ(1)]−1Ξ1
1\
0

Φ(t)Φ(τ )−1k(τ ) dτ +

t\
0

Φ(t)Φ(τ )−1k(τ ) dτ.

Using the mappings (3.23), we can eliminate y from (3.17) and express Coercivity (A3)

as

(3.24) (u, (M+Q22)u) ≥ γ‖u‖22 for all u ∈ U2α,
where

(3.25) M = B∗S∗


Q11 0 0
0 R00 R01
0 R10 R11


SB + B∗S∗0Q12 +Q21S0B,

and

(3.26) Usα = {v ∈ Ls(0, 1;Rm) | Υα(t)(S0v)(t) +Θα(t)v(t) = 0}
is a closed subspace of Ls(0, 1;Rm). If we denote by

(3.27) Γα : L
2(0, 1;Rm)→ U2α the orthogonal projection onto U2α,

then (A3) can be expressed in the form

(3.28)

{
(v,Qαv) ≥ γ‖Γαv‖22 for all v ∈ L2(0, 1;Rm) or
(v,Qαv) ≥ γ‖v‖22 for all v ∈ U2α,

where

(3.29) Qα = Γα(M+Q22)Γα.
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Remark 3.2. The coercivity condition (3.17) holds in the weaker norm of the space X2,

rather than in X∞, in which problem (O)h is well defined and the Lagrangian is twice dif-

ferentiable. InX2 this differentiability property is not satisfied. This phenomenon is called

two-norm discrepancy and it is typical of nonlinear optimal control problems [23, 39].

Lemma 3.3. If (A1) and (A2) hold , then (A3) implies the following Legendre–Clebsch

condition:

(3.30) 〈v,Q22(t)v〉 ≥ γ|u|2

for all v ∈ {Rm | 〈Θi(t), v〉 = 0 for all i ∈ Jα(t)} and for a.a. t ∈ [0, 1].
Proof. Suppose that (3.30) is violated, i.e., there exist a setM ⊂ [0, 1] with measM > 0,

a constant ε > 0 and a vector v̌(t) ∈ R
m, |v̌(t)| = 1, satisfying the conditions 〈Θi(t), v̌(t)〉

= 0 for i ∈ Jα(t), such that
(3.31) 〈v̌(t), Q22(t)v̌(t)〉 ≤ γ − ε for all t ∈M.

We can choose v̌(t) in such a way that the function v̌(·) is measurable on M . For an
arbitrary subset N ⊂M define the function

(3.32) v̂(t) =

{
v̌(t) for t ∈ N,
0 for t 6∈ N.

Let ŷ be the corresponding solution to (2.29), (2.30). By (2.36) and (3.32) there exists a

constant c such that

(3.33) ‖ŷ‖∞ ≤ cmeasN.
Let us put r = Υ ŷ in (2.31). By Lemma 2.3 and by the Banach open mapping theorem,

there exists a solution (y, v, ϑ) of (2.29)–(2.31) and a constant k > 0 such that

‖(y, v, ϑ)‖Z∞ ≤ k‖(0, 0, r)‖Y∞ .
Hence, in view of (3.33), there exists c1 > 0 such that

(3.34) ‖(y, v, ϑ)‖Z∞ ≤ c1measN.
Clearly, (ỹ, ṽ) := (ŷ − y, v̂ − v) satisfies (2.29)–(2.30). Note that, for i ∈ Jα(t) ⊂ I0(t) we
have T iα(t) = 0. Hence, it follows from the construction that

〈Υ i(t), ỹ(t)〉+ 〈Θi(t), ṽ(t)〉 = 0 for i ∈ Jα(t),
i.e., (ỹ, ṽ) satisfies (3.18). We are going to show that (3.17) is violated by (ỹ, ṽ), provided

that measN is sufficiently small. This will contradict (3.31) and complete the proof of

the lemma. Indeed, by (3.32) and (3.34) we have

(3.35) ‖ṽ‖22 = ‖v̂ − v‖22 ≥ measN(1− c1measN)2 ≥ measN − 2c1(meas N)2.
On the other hand, (3.31)–(3.34) imply that

(3.36) ((ỹ, ṽ), D2L0(ỹ, ṽ)) ≤ (γ − ε)measN + c2(meas N)2,
where c2 > 0 is independent of the choice of N ⊂ M . It follows from (3.35) and (3.36)

that, if we choose N such that

measN ≤ ε

2
[c2 + 2c1(γ − ε/2)]−1
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then

((ỹ, ṽ), D2L0(ỹ, ṽ)) ≤ (γ − ε/2)‖ṽ‖22 ≤ (γ − ε/2)(‖ỹ‖21,2 + (‖ṽ‖22),
which violates (3.17) and completes the proof of the lemma.

Bibliographical note. Necessary and sufficient optimality conditions for problems with

mixed control-state constraints were derived and thoroughly discussed in [54]. Sufficient

optimality conditions for such problems were also obtained in [41]. Coercivity condition

(A3) with α > 0 was used in [15], where also Lemma 3.3 was proved. The important

phenomenon of two-norm discrepancy in optimal control was first described in [23] and

[40].

4. Application of abstract theorems

Combining (2.2)–(2.4) with (3.6)–(3.8) and (3.14), evaluated at h rather than at h0, we

obtain the following optimality system for (O)h:



ẋ(t)− f(x(t), u(t), h(t)) = 0,
ξ(x(0), x(1), h(0)) = 0,

ṗ(t) +DxH(x(t), u(t), p(t), ν(t), h(t)) = 0,
p(0) +Dx(0)[ξ(x(0), x(1), h(0))

∗̺+ ψ(x(0), x(1), h(0))] = 0,

−p(1) +Dx(1)[ξ(x(0), x(1), h(0))∗̺+ ψ(x(0), x(1), h(0))] = 0,
DuH(x(t), u(t), p(t), ν(t), h(t)) = 0,

(4.1)

{ 〈ν(t), θ(x(t), u(t), h(t))〉 = 0,
θ(x(t), u(t), h(t)) ≤ 0, ν(t) ≥ 0.

(4.2)

It will be convenient to express (4.2) in the form of an inclusion. To this end, we define

the normal cone to the positive orthant R
l
+ ⊂ R

l by

(4.3) N
R
l
+
(ν) =

{
{y ∈ R

l | 〈y, µ− ν〉 ≤ 0 ∀µ ∈ R
l
+} if ν ∈ R

l
+,

∅ if ν 6∈ R
l
+.

In terms of (4.3), we can express (4.2) in the following equivalent form:

(4.4) θ(x(t), u(t), h(t)) ∈ N
R
l
+
(ν(t)) for a.a. t ∈ [0, 1].

Using the definitions (2.39) and (3.16), we introduce the spaces

W s = Xs × Y 1,s,
Us = Ls(0, 1;Rn)× R

n × Ls(0, 1;Rl)× Ls(0, 1;Rn)× R
n × R

n × Ls(0, 1;Rm),
Ûsα = L

s(0, 1;Rn)× R
n × L̂sα × Ls(0, 1;Rn)× R

n × R
n × Ls(0, 1;Rm),

Usα = L
s(0, 1;Rn)× R

n × Lsα × Ls(0, 1;Rn)× R
n × R

n × Ls(0, 1;Rm),
for s ∈ [1,∞]. The optimality system (4.1), (4.4) can be rewritten in the form of the
following generalized equation:

(4.5) 0 ∈ F(ζ, h) + T (ζ),
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where ζ = (x, u, p, ̺, ν) ∈W∞, F :W∞ × G → U∞ is the function

(4.6) F(ζ, h) =




ẋ− f(x, u, h)
ξ(x(0), x(1), h(0))

θ(x, u, h)
ṗ+DxH(x, u, p, ν, h)

p(0) +Dx(0)[ξ(x(0), x(1), h(0))
∗̺+ ψ(x(0), x(1), h(0))]

−p(1) +Dx(1)[ξ(x(0), x(1), h(0))∗̺+ ψ(x(0), x(1), h(0))]
DuH(x, u, p, ν, h)




,

and T :W∞ → 2U∞ is the multivalued mapping with closed graph given by

(4.7) T (ζ) =




0
0

−N (ν)
0
0
0
0




,

with (N (ν))(t) := N
R
l
+
(ν(t)).

We are going to investigate conditions under which there are neighborhoods G0 ⊂ G
and B0 ⊂ W∞ of h0 and ζ0, respectively, such that for each h ∈ G0 there exists a
unique solution to (4.1), (4.2) (or equivalently to (4.1), (4.4)) in B0 and it is a Lipschitz
continuous and differentiable (in some sense) function of h. To this end, we will recall

some results concerning abstract generalized equations. Along with (4.5), let us introduce

the following generalized equation obtained by linearization and perturbation of (4.5) at

the reference point ζ0:

(4.8) δ ∈ F(ζ0, h0) +DζF(ζ0, h0)(η − ζ0) + T (η),
where δ ∈ U∞ is a perturbation. Clearly, for δ = 0,
(4.9) η0 = ζ0

is a solution to (4.8).

In the analysis of Lipschitz stability of solutions to (4.5), a crucial role is played by

Robinson’s implicit function theorem for generalized equations (see Theorem 2.1 and

Corollary 2.2 in [44]), which for our purpose can be formulated as follows.

Theorem 4.1. Suppose that F(·, ·) is Fréchet differentiable in a neighborhood of (ζ0, h0)
and DζF(·, ·) is Lipschitz continuous in both variables. If there exists a constant l̂ such
that

(i) for any ε > 0 there exist ς1, ς2 > 0 such that for each δ ∈ BU
∞

ς1 (0) there is a unique

solution ηδ in BW
∞

ς2 (ζ0) to the linearized general equation (4.8), and it is Lipschitz

continuous in δ with modulus l̂ + ε,

then

(ii) for any ε > 0 there exist σ1, σ2 > 0 such that for each h ∈ BHσ1(h0) there is a
unique solution ζh in BW

∞

σ2 (ζ0) to the nonlinear generalized equation (4.5), and it

is Lipschitz continuous in h with modulus l̂ + ε.
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Note that in Robinson’s theorem condition (i) plays the role analogous to regularity

of the Jacobian in the classical implicit function theorem.

In sensitivity analysis we will use several notions of differentiability. Let us recall some

of them.

Definition 4.2. Let H and X be Banach spaces. A function φ : H → X is called

directionally differentiable at h0 if for every g ∈ H there exists Dhφ(h0; g) ∈ X with the
property that for every ε > 0 there exists τ > 0 such that

(4.10) ‖φ(h0 + tg)− φ(h0)− tDhφ(h0; g)‖X ≤ tε for every t ∈ (0, τ ].
If (4.10) holds for every t ∈ [−τ, τ ], then φ is called Gateaux differentiable at h0.
If there exists a positively homogeneous mapping Dhφ(h0) : H → X with the property

that for every ε > 0 there exists δ > 0 such that

(4.11) ‖φ(h)− φ(h0)− (Dhφ(h0), h− h0)‖X ≤ ε‖h− h0‖H for ‖h− h0‖H < δ,

then φ is called Bouligand differentiable (or B-differentiable) at h0 and Dhφ(h0) is called

the B-derivative. If Dhφ(h0) : H → X is linear and bounded, the function φ is Fréchet

differentiable. A Fréchet differentiable function is strictly Fréchet differentiable at h0 if

for every ε there exists δ > 0 such that

(4.12) ‖φ(h1)−φ(h2)−(Dhφ(h0), h1−h2)‖H ≤ ε‖h1−h2‖H whenever h1, h2 ∈ BHδ (h0).
We will need the Lyusternik–Graves theorem, which is formulated below as in [11]

and [24].

Theorem 4.3. Let H and X be Banach spaces and let φ : H → X be a function strictly

Fréchet differentiable at h0 and φ(h0) = x0. Let the derivative Dhφ(h0) : H → X be

surjective. Then there exist constants σ, κ > 0 such that for every x ∈ BXσ (x0), the
equation φ(h) = x has a solution h ∈ BHκσ(h0). Moreover , there exist ̺, k > 0 such that ,
for any h ∈ BH̺ (h0), there is h̃ ∈ H with the property that

φ(h̃) = φ(h0) and ‖h− h̃||H ≤ k‖φ(h)− φ(h0)‖X .
In our sensitivity analysis for solutions to (4.5), we will use the differentiability part of

Dontchev’s implicit function theorem (see Theorem 2.4, Remark 2.6 and Corollary 2.10

in [9]), which can be formulated as follows.

Theorem 4.4. Suppose that the assumptions of Theorem 4.1 hold. In addition, assume

that the solution ηδ to the linearized equation (4.8) is a directionally (respectively , Gat-

eaux , Bouligand , Fréchet) differentiable function of δ in a neighborhood of 0, with the

differential at 0 in a direction δ ∈ U∞ denoted by (Dδη0; δ). Then the solution ζh to (4.5)
is a directionally (respectively , Gateaux , Bouligand , Fréchet) differentiable function of h

in a neighborhood of h0 and the differential at h0 is given by

(4.13) (Dhζ0; g) = (Dδη0;−DhF(ζ0, h0)g) for all g ∈ H.
Remark 4.5. In Theorem 4.1, Lipschitz continuity of η and ζ is understood in the sense

of the same norm of the space W∞ in which F(·, h) is differentiable. On the other hand,
Theorem 4.4 remains true if the differentiability is satisfied in a norm in the image space
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weaker than that in which Lipschitz continuity in Theorem 4.1 holds (see Remark 2.11

in [9]); e.g., in W s (s <∞), rather than in W∞. This property will be used in Section 6.

Theorems 4.1 and 4.4 allow one to deduce existence, local uniqueness, Lipschitz con-

tinuity and differentiability of solutions to (4.5) from the same properties of the solutions

to the linearized generalized equation (4.8). Usually this last equation is much easier to

analyze than the original one.

In order to apply these theorems to our problem (O)h, we have to find the form of

the linearized equation (4.8) for F and T given by (4.6) and (4.7), respectively. Let us
set η = (y, v, q, ̺, µ) ∈ W∞, δ = (d1, d2, d3, e1, e2, e3, e4) ∈ U∞. By a direct computation
we obtain

{
ẏ −Ay −Bv + a1 − d1 = 0,
Ξ0y(0) +Ξ1y(1) + a

2 − d2 = 0,(4.14)

Υy +Θv + a3 − d3 ∈ N (µ),(4.15)




q̇ +A∗q +Q11y +Q12v + Υ
∗µ+ b1 − e1 = 0,

q(0) +R00y(0) +R01y(1) + Ξ∗0̺+ b2 − e2 = 0,
−q(1) +R10y(0) +R11y(1) +Ξ∗1̺+ b3 − e3 = 0,

(4.16)

Q12y +Q22v +B
∗q +Θ∗µ+ b4 − e4 = 0,(4.17)

where

(4.18)





a1 = −(ẋ0 −Ax0 −Bu0),
a2 = −(Ξ0x0(0) +Ξ1x0(1)),
a3 = θ0 − (Υx0 +Θu0),
b1 = −(ṗ0 + A∗p0 +Q11x0 +Q12u0 + Υ ∗ν0),
b2 = −(p0(0) +R00x0(0) +R01x0(1) +Ξ∗0̺0),
b3 = −(−p0(1) +R10x0(0) +R11x0(1) +Ξ∗1̺0),
b4 = −(Q12x0 +Q22u0 +B∗p0 +Θ∗ν0).

Clearly, as in (4.9),

(4.19) η0 := (y0, v0, q0, ̺0, µ0) = (x0, u0, p0, ̺0, ν0)

is a solution of (4.14)–(4.17) for δ = 0.

An inspection shows that (4.14)–(4.17) can be interpreted as the stationarity condition

(optimality system) for the following linear-quadratic accessory problem depending on

the parameter δ:

(LO)δ Find (yδ, vδ) ∈ X∞ such that

I(yδ, vδ, δ) = min I(y, v, δ)

subject to

ẏ(t)−A(t)y(t))−B(t)v(t) + a1(t)− d1(t) = 0,(4.20)

Ξ0y(0) +Ξ1y(1) + a
2 − d2 = 0,(4.21)

Υ (t)y(t) +Θ(t)v(t) + a3(t)− d3(t) ≤ 0,(4.22)
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where

I(y, v, δ) = 12 ((y, v), D2L0(y, v))(4.23)

+

1\
0

[〈b1(t)− e1(t), y(t)〉+ 〈b4(t)− e4(t), v(t)〉] dt

+ 〈b2 − e2, y(0)〉+ 〈b3 − e3, y(1)〉.
In view of Theorems 4.1 and 4.4, stability and sensitivity of the stationary points of the

accessory problem (LO)δ, with respect to perturbations δ, are crucial to get the same

properties for the original problem (O)h. In the next two sections, we will concentrate on

the analysis of the accessory problem.

Bibliographical note. Robinson’s Theorem 4.1 was proved in [44]. Another implicit func-

tion theorem of Robinson, based on the concept of strong approximation, is given in [46].

An important generalization of this theorem due to A. L. Dontchev can be found in [9].

The concept of Bouligand differentiability, sometimes called directional Fréchet differen-

tiability, was first used in sensitivity analysis by A. Shapiro [48] and S. M. Robinson [45].

Theorem 4.4 is due to A. L. Dontchev [9]. The abstract Theorem 4.1 was used for the

first time in the stability analysis of optimal control problems in [25]. Numerous further

applications can be found e.g., in [1, 2, 8, 13, 15, 14, 32, 33, 34, 35].

5. Stability analysis for the accessory problem

In this section we show that, for δ sufficiently small, (LO)δ has a locally unique stationary

point, which is a Lipschitz continuous function of δ. It will be convenient to introduce

slack variables π ∈ L2(0, 1;Rl) and to define the following problem (L̃O)δ, which is a

modification of (LO)δ:

(L̃O)δ Find (ỹδ, ṽδ, π̃δ) ∈ Z2 such that
(5.1) Ĩ(ỹδ, ṽδ, π̃δ, δ) = min

{
Ĩ(y, v, π, δ) := I(y, v, δ) + 12 (π, π)

}

subject to

ẏ(t)−A(t)y(t))−B(t)v(t) + a1(t)− d1(t) = 0,(5.2)

Ξ0y(0) +Ξ1y(1) + a
2 − d2 = 0,(5.3)

〈Υ i(t), y(t)〉+ 〈Θi(t), v(t)〉+ 〈T iα(t), π(t)〉+ (a3)i(t)− (d3)i(t)(5.4) 


= 0 if i ∈ Jα(t),
≤ 0 if i ∈ Iα(t) \ Jα(t),
free if i 6∈ Iα(t).

Note that problem (L̃Oδ) is defined on the Hilbert space Z
2, rather than on Z∞. The con-

straints are modified in such a way that their linear part is given by Cα, so by Lemma 2.3
it is a surjective mapping from Z2 into Z2. Finally by (A3), the modified cost functional

Ĩ is coercive on the linear hull of the feasible set. Thanks to the above properties, the
stability analysis for (L̃Oδ) becomes simple. Later on, we will show that, for δ sufficiently
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small, the solutions (ỹδ, ṽδ) to (L̃Oδ) coincide with the solutions (yδ, vδ) of (LOδ) and

thus we will obtain the required properties of the latter.

The optimality system for (L̃Oδ) is given by the following modification of (4.14)–

(4.17):

(5.5)
ẏ(t)−A(t)y(t)−B(t)v(t) + a1(t)− d1(t) = 0,
Ξ0y(0) +Ξ1y(1) + a

2 − d2 = 0,
(5.6) 〈Υ i(t), y(t)〉+ 〈Θi(t), v(t)〉+ 〈T iα(t), π(t)〉+ (a3)i(t)− (d3)i(t)



= 0 if i ∈ Jα(t),
≤ 0 if i ∈ Iα(t) \ Jα(t),
free if i 6∈ Iα(t),

(5.7)

〈µ(t), Υ (t)y(t) +Θ(t)v(t) + Tα(t)π(t) + a3(t)− d3(t)〉 = 0,

µi(t)

{
≥ 0 if i ∈ Iα(t) \ Jα(t),
= 0 if i 6∈ Iα(t),

(5.8)

q̇(t) +A∗(t)q +Q11(t)y(t) +Q12(t)v(t) + Υ
∗(t)µ(t) + b1(t)− e1(t) = 0,

q(0) +R00y(0) +R01y(1) +Ξ∗0̺+ b2 − e2 = 0,
− q(1) +R10y(0) +R11y(1) +Ξ∗1̺+ b3 − e3 = 0,

(5.9) Q21(t)y(t) +Q22(t)v(t) +B
∗(t)q(t) +Θ∗(t)µ(t) + b4(t)− e4(t) = 0,

(5.10) π(t) + T ∗α(t)µ(t) = 0.

Set χ = (y, v, π), λ = (q, ̺, µ) and

(5.11) P : Z2 → (Z2)∗, P = 1
2

(
D2L0 0
0 I

)
,

where I is the identity in L2(0, 1;Rl). Using definitions (2.20), (3.1) and (5.11) we can

write the stationarity conditions (5.8)–(5.10) in the form

(5.12) Pχ̃δ + (b− e) + C∗αλ̃δ = 0.
Lemma 5.1. If (A1)–(A3) hold , then for any δ ∈ U∞ there exists a unique solution

χ̃δ = (ỹδ, ṽδ, π̃δ) ∈ Z∞ of (L̃O)δ and a unique associated Lagrange multiplier λ̃δ =

(q̃δ, ˜̺δ, µ̃δ) ∈ Y∞. The pair (χ̃δ, λ̃δ) is the only stationary point of (L̃O)δ.
Proof. Note that in view of (2.10), (3.17) and (5.11) the following coercivity condition

holds:

(5.13) (χ,Pχ) ≥ γ̃‖χ‖2Z2 , where γ̃ = min{γ, 1},
for all χ = (y, v, π) such that (y, v) satisfies (3.18).

Hence the existence of a unique solution follows in a standard way. If we use (A1),

(A2) and (5.13), then regularity of the solution, as well as existence, uniqueness and

regularity of Lagrange multipliers can be easily deduced from the results of Hager and

Mitter (see [20, 19]), where a more general problem including pure state constraints is

considered. So we confine ourselves to proving uniqueness of the stationary points. To
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this end, it is enough to show that each stationary point corresponds to the minimum.

Using definitions (5.1) and (5.11) we obtain

(5.14) Ĩ(χ, δ)− Ĩ(χ̃δ, δ) = (Pχ̃δ + (b− e), χ− χ̃δ) + 12 (χ− χ̃δ,P(χ− χ̃δ)).

Note that, if χ = (y, v, π) is feasible for (L̃O)δ, then

(5.15) (C∗αλ̃δ, χ− χ̃δ) = (λ̃δ, Cα(χ− χ̃δ)) ≤ 0,
and moreover, the pair (y − ỹδ, v − ṽδ) satisfies (3.18). Hence using (5.12)–(5.15), we
obtain

Ĩ(χ, δ)− Ĩ(χ̃δ, δ) = (Pχ̃δ + (b− e), χ− χ̃δ) + 12 (χ− χδ,P(χ− χ̃δ))
≥ (Pχ̃δ + (b− e) + C∗αλ̃δ, χ− χ̃δ) + 12 (χ− χ̃δ,P(χ− χ̃δ))
≥ 12 γ̃(‖χ− χ̃δ‖Z2)

for any feasible χ, which shows that χ̃δ is a unique minimizer of (L̃O)δ and completes

the proof of the lemma.

Lemma 5.2. If (A1)–(A3) hold , then there exists a constant l > 0 such that

(5.16) ‖χ̃δ1 − χ̃δ2‖Zs , ‖λ̃δ1 − λ̃δ2‖Y s ≤ l‖δ1 − δ2‖Us
for all δ1, δ2 ∈ U∞ and all s ∈ [2,∞].

Proof. First we show that (5.16) holds for s = 2. In view of Lemma 2.3, we can introduce

the following new variable in (L̃O)δ:

(5.17) φ = χ+ J C∗α(CαJ C∗α)−1(a− d),
where J : (Z2)∗ → Z2 is the canonical isomorphism, and in view of Lemma 2.3,

(CαJ C∗α)−1 : Y 2 → Y 2 exists, as in (3.13). Note that, as functions of the new variables,

the constraints (5.2)–(5.4) become independent of δ, and for any feasible φ conditions

(3.18) are satisfied. In terms of φ the cost functional Ĩ takes the form
(5.18) 1

2 (φ,Pφ) + (Lδ, φ) +M,

where M is a constant independent of φ and Lδ ∈ (Z2)∗ is a linear bounded function
of δ. Let φδi be the solution of (L̃O)δi , i = 1, 2, for δi ∈ U∞. In view of (5.18), a well
known optimality condition for convex optimization problems yields

(Pφδi + Lδi, φ− φδi) ≥ 0 for all feasible φ.
Since the feasible set is independent of δ, we can substitute φ = φ2 and φ = φ1, for i = 1

and i = 2, respectively. So, we get

(Pφδ1 + Lδ1, φδ2 − φδ1) ≥ 0, (Pφδ2 + Lδ2, φδ1 − φδ2) ≥ 0.
Adding these inequalities and using (5.13) we obtain

γ̃‖φδ2 − φδ1‖2Z2 ≤ (φδ2 − φδ1 ,P(φδ2 − φδ1))
≤ (L(δ1 − δ2), φδ2 − φδ1) ≤ c‖δ1 − δ2‖U2‖φδ2 − φδ1‖Z2 ,

i.e.,

‖φδ2 − φδ1‖Z2 ≤ c‖δ1 − δ2‖U2 for all δ1, δ2 ∈ U∞.
This estimate together with (5.17) yields

(5.19) ‖χ̃δ2 − χ̃δ1‖Z2 ≤ c‖δ1 − δ2‖U2 for all δ1, δ2 ∈ U∞.
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Finally, from (5.12) we get

λ̃δ2 − λ̃δ1 = −(CαC∗α)−1Cα {P(χ̃δ2 − χ̃δ1)− (e2 − e1)} ,
which, in view of (5.19), yields

(5.20) ‖λ̃δ2 − λ̃δ1‖Z2 ≤ c‖δ1 − δ2‖U2 for all δ1, δ2 ∈ U∞,
and completes the proof of (5.16) for s = 2.

Note that (5.19) and (5.20) mean, in particular, that

‖ỹδ2 − ỹδ1‖1,2, ‖q̃δ2 − q̃δ1‖1,2 ≤ c‖δ1 − δ2‖U2 for all δ1, δ2 ∈ U∞,
which implies

(5.21) ‖ỹδ2 − ỹδ1‖∞, ‖q̃δ2 − q̃δ1‖∞ ≤ c‖δ1 − δ2‖U2 for all δ1, δ2 ∈ U∞.
To show (5.16) for s ∈ (2,∞], notice that, pointwise for almost all t ∈ [0, 1], equations

(5.9) and (5.10), together with (5.6) and (5.7), can be viewed as the optimality system

for the following parametric quadratic program:

(QP)̟(t) Minimize

1

2
[v∗, π∗]Q(t)

[
v
π

]
+ 〈Q21(t)y(t) +B(t)∗q(t) + b4(t)− e4(t), v〉

subject to

〈Θi(t), v〉+ 〈T iα(t), π〉+ 〈Υ i(t), y(t)〉+ (a3)i(t)− (d3)i(t)




= 0 if i ∈ Jα(t),
≤ 0 if i ∈ Iα(t) \ Jα(t),
free if i 6∈ Iα(t),

where

Q(t) =

[
Q22(t) 0
0 I

]
.

Here (v, π) ∈ R
m+l is the argument and ̟(t) = (y(t), q(t), e4(t), d3(t)) ∈ R

2n+m+l is

treated as the parameter, while (b4(t), a3(t)) ∈ R
m+l is a fixed element. The vector

µ(t) ∈ R
l, given in (5.7), is the associated Lagrange multiplier. Hence (ṽδ(t), π̃δ(t)) and

µ̃δ(t) can be treated, respectively, as the solution and Lagrange multiplier of (QP)̟(t)
for ̟δ(t) = (ỹδ(t), q̃δ(t), e

4(t), d3(t)), where e4 and d3 are the appropriate components

of δ. Note that, in view of (3.30), we have

(5.22) [v∗, π∗]Q(t)

[
v
π

]
≥ min{γ, 1}(|v|2 + |π|2)

for all v ∈ {Rm | 〈Θi(t), v〉 = 0 ∀i ∈ Jα(t)} and all π ∈ R
l. The Lipschitz stability

property of parametric quadratic programs was analyzed in [19]. By linear independence

condition (2.10) and by (5.22), the assumptions of Theorem 3.1 in [19] are satisfied, and

by that theorem, there exists a constant k > 0, depending only on β and γ, such that

(5.23) |ṽδ2(t)− ṽδ1(t)|, |µ̃δ2(t)− µ̃δ1(t)|
≤ k(|ỹδ2(t)− ỹδ1(t)|+ |q̃δ2(t)− q̃δ1(t)|+ |e42(t)− e41(t)|+ |d32(t)− d31(t)|)

for all δ1, δ2 ∈ U∞. Note that ‖ · ‖U2 ≤ ‖ · ‖Us for s ∈ (2,∞]. Hence, from (5.21) and
(5.23) we obtain

|ṽδ2(t)− ṽδ1(t)|, |µ̃δ2(t)− µ̃δ1(t)| ≤ k(‖δ2(t)− δ1(t)‖Us + |e42(t)− e41(t)|+ |d32(t)− d31(t)|),
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and simple calculations show

(5.24) ‖ṽδ2 − ṽδ1‖s, ‖µ̃δ2 − µ̃δ1‖s ≤ k‖δ2(t)− δ1(t)‖Us for s ∈ (2,∞].
Estimates (5.24), together with the state and adjoint equations (5.5) and (5.8), show that

(5.16) holds.

The following lemma establishes the relation between the stationary points of (L̃O)δ
and those of (LO)δ.

Lemma 5.3. If (A1)–(A3) hold , then there exist constants ς1, ς2 > 0 such that for each

δ ∈ BU∞ς1 (0) we have
(5.25) (ỹδ, ṽδ, π̃δ) = (yδ, vδ, 0), (q̃δ, ˜̺δ, µ̃δ) = (qδ, ̺δ, µδ),
where (yδ, vδ, qδ, ̺δ, µδ) is the unique stationary point in BW

∞

ς2 (η0) of (LO)δ.

Proof. Denote by (LO)δ another modification of (LO)δ, where inequality constraints

(4.22) are changed as follows:

(5.26) 〈Υ i(t), y(t)〉+ 〈Θi(t), v(t)〉+ (a3)i(t)− (d3)i(t)
{
= 0 if i ∈ Jα(t),
≤ 0 if i 6∈ Jα(t).

Clearly, by (4.19), for δ = 0 we have

(5.27) (ỹ0, ṽ0, π̃0, q̃0, ˜̺0, µ̃0) = (x0, u0, 0, p0, ̺0, ν0).
By Lemma 5.2 we can choose ς1 > 0 so small that

(5.28) 〈Υ i(t), ỹδ(t)− ỹ0〉+ 〈Θi(t), ṽδ(t)− ṽ0〉 − (d3)i(t) ≤ α
for all δ ∈ BU∞ς1 (0), where α > 0 is given in (A1). In view of (2.7), (4.18) and (5.27),

inequality (5.28) implies that

(5.29) 〈Υ i(t), ỹδ(t)〉+ 〈Θi(t), ṽδ(t)〉+ (a3)i(t)− (d3)i(t) ≤ 0,
for all i 6∈ Iα(t) and for a.a. t ∈ [0, 1].

On the other hand, by definition (2.9), Tα(t) = 0 for t ∈ Iα(t). So (5.4) together with
(5.29) shows that (ỹδ, ṽδ) is feasible for (LO)δ. We now prove that (ỹδ, ṽδ) is the minimizer

of (LO)δ. Suppose the contrary, i.e., that there exists a pair (yδ, vδ) feasible for (LO)δ
such that I(yδ, uδ, δ) < I(ỹδ, ũδ, δ). Then we would have

Ĩ(yδ, uδ, 0, δ) = I(yδ, uδ, δ) < I(ỹδ, ũδ, δ) ≤ Ĩ(ỹδ, ũδ, π̃δ, δ).
Since (yδ, uδ, 0) is feasible for (L̃O)δ, the above inequality contradicts optimality of

(ỹδ, ũδ, π̃δ) and shows that (ỹδ, ũδ) is the minimizer of (LO)δ. Clearly, (q̃δ, ˜̺δ, µ̃δ) is the
associated Lagrange multiplier. In view of (3.15) and (5.16), we can shrink ς > 0 so that

µ̃iδ > 0 for i ∈ Jα(t), i.e., (ỹδ, ṽδ, q̃δ, ˜̺δ, µ̃δ) is a stationary point of (LO)δ.
To show local uniqueness of the stationary points of (LO)δ, choose ς1, ς2 > 0 so small

that

(5.30) 〈Υ i(t), y〉+ 〈Θi(t), v〉+ (a3)i(t)− (d3)i < 0
for all i 6∈ Iα(t), |(d3)i| ≤ ς1, |y| ≤ ς2, |v| ≤ ς2 and for a.a. t ∈ [0, 1].

Let δ ∈ BU∞ς1 (0) and let ηδ := (yδ, vδ, qδ, ̺δ, µδ) ∈ BW
∞

ς2 (η0) be a stationary point of

(LO)δ. In view of (5.30), the complementarity condition implies µ
i
δ(t) = 0 for i 6∈ Iα(t).
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Hence it is easy to see that (yδ, vδ, 0, qδ, ̺δ, µδ) satisfies (5.5)–(5.10), i.e., it is a stationary

point of (L̃O)δ, which is unique. This implies uniqueness of ηδ and completes the proof

of the lemma.

Lemmas 5.1–5.3 yield

Proposition 5.4. If (A1)–(A3) hold , then there exist constants ς1, ς2, l > 0 such that

for each δ ∈ BU∞ς1 (0) there is a unique stationary point (yδ, vδ, qδ, ̺δ, µδ) ∈ BW
∞

ς2 (η0) of

(LO)δ and

(5.31) ‖yδ2 − yδ1‖1,s, ‖vδ2 − vδ1‖s, ‖qδ2 − qδ1‖1,s, |̺δ2 − ̺δ1 |, ‖µδ2 − µδ1‖s
≤ l‖δ2 − δ1‖Us for all δ1, δ2 ∈ BU

∞

ς1
(0) and all s ∈ [2,∞].

Bibliographical note. A proof of the stability result based on the analysis of the modified

problem (L̃O)δ was first given in [35]. Proposition 5.4, for s = 2, was proved in [34] and

for s =∞ in [13].

6. Differentiability of solutions to accessory problems

We are now going to investigate differentiability properties of the solutions to (O)h. Since

we will use Theorem 4.3, in this section we concentrate on differentiability of solutions

of the linearized generalized equation (4.14)–(4.17), i.e., of the stationary points of the

accessory problem (LO)δ. We show that the stationary points of (LO)δ are Bouligand

differentiable functions of δ. The proof is in two steps. First we show directional differen-

tiability and characterize the directional differentials. Then we prove that the differential

is uniform with respect to the direction, so it is the B-differential.

Lemma 6.1. Let (A1)–(A3) hold and let ς1, ς2 > 0 be as in Proposition 5.4. Then the

mapping

ηδ := (yδ, vδ, qδ, ̺δ, µδ) : BU
∞

ς1 (0)→ X2 × Y 2

given by the stationary points in BW∞ς2 (η0) of (LO)δ is directionally differentiable. The
directional differential at δ = 0 in a direction π = (π1, π2, π3, π4, π5, π6, π7) ∈ U∞ is

given by the stationary point of the following linear-quadratic optimal control problem:

(LQ)π Find (zπ, wπ) ∈ X∞ such that
J (zπ, wπ, π) = min

{
J (z, w, π) = 12 ((z, w),L0(z, w))

+

1\
0

[〈π4(t), z(t)〉+ 〈π7(t), w(t)〉] dt+ 〈π5, y(0)〉+ 〈π6, y(1)〉
}
,

subject to

ż(t)−A(t)z(t))−B(t)w(t)− π1(t) = 0,
Ξ0z(0) +Ξ1z(1)− π2 = 0,

〈Υ i(t), z(t)〉+ 〈Θi(t), w(t)〉 − π3(t)




= 0 if i ∈ J0(t),
≤ 0 if i ∈ I0(t) \ J0(t),
free if i 6∈ I0(t).
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Proof. Choose π ∈ U∞ and let {τk} ↓ 0 be an arbitrary sequence of positive numbers
tending to zero. Define δk = τkπ and let ηk = (yk, vk, qk, ̺k, µk) be the stationary point

of (LO)δk . By Proposition 5.4 we have

‖yk − y0‖1,∞, ‖qk − q0‖1,∞ ≤ l‖τkπ‖U∞ ,(6.1)

‖vk − v0‖∞, |̺k − ̺0|, ‖µk − µ0‖∞ ≤ l‖τkπ‖U∞ .(6.2)

By (6.1), ∥∥∥∥
yk − y0
τk

∥∥∥∥
1,2

,

∥∥∥∥
qk − q0
τk

∥∥∥∥
1,2

≤ l‖π‖U∞ ,

whereas, by (6.2), ∣∣∣∣
̺k − ̺0
τk

∣∣∣∣ ≤ l‖π‖U∞ .

Hence, there exists a subsequence, still denoted by {τk}, and elements z, r ∈W 1,2(0, 1;Rn)
as well as ̟ ∈ R

n such that

(6.3)

yk − y0
τk

⇀ z,
qk − q0
τk

⇀ r weakly in W 1,2(0, 1;Rn)

̺k − ̺0
τk

→ ̟




as τk → 0.

It is well known that the embedding W 1,2(0, 1;Rn) ⊂ L2(0, 1;Rn) is compact. So (6.3)

implies
yk − y0
τk

→ z,
qk − q0
τk

→ r strongly in L2(0, 1;Rn).

Hence, in particular,

(6.4)
yk(t)− y0(t)

τk
→ z(t),

qk(t)− q0(t)
τk

→ r(t) for a.a. t ∈ [0, 1].

For δk = τkπ, equations (4.17) and (4.15) can be rewritten in the form

(6.5)





Q22(t)vk(t) +Q21(t)yk(t) +B(t)
∗(t)qk(t) +Θ(t)

∗µk(t) + b
4(t)− τkπ7(t) = 0,

(〈Θi(t), vk(t)〉+ 〈Υ i(t), yk(t)〉+ (a3)i(t)− (τkπ3)i(t))µik(t) = 0,
〈Θi(t), vk(t)〉+ 〈Υ i(t), yk(t)〉+ (a3)i(t)− (τkπ3)i(t) ≤ 0,
µik(t) ≥ 0,

for all i ∈ I and a.a. t ∈ [0, 1], where the inclusion (4.15) is substituted by the equivalent
pointwise (KKT)-conditions.

Note that by (6.2) we have
∣∣∣∣
vk(t)− v0(t)

τk

∣∣∣∣,
∣∣∣∣
µk(t)− µ0(t)

τk

∣∣∣∣ ≤ l‖π‖U∞ .

So, for a subsequence

(6.6)
vk(t)− v0(t)

τk
→ w(t),

µk(t)− µ0(t)
τk

→ κ(t) as τk → 0.

Let us take the difference of (6.5) evaluated at τkπ and at 0, and divide by τk. Passing

to the limit as τk → 0 and using (6.4) and (6.6) as well as definitions (2.7) and (3.15),
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we get the following system:

(6.7)





Q22(t)w(t) +Q21(t)z(t) +B(t)
∗(t)r(t) +Θ(t)∗κ(t)− π7(t) = 0,

(〈Θi(t), w(t)〉+ 〈Υ i(t), z(t)〉 − (π3)i(t))κi(t) = 0,

〈Θi(t), w(t)〉+ 〈Υ i(t), z(t)〉 − (π3)i(t)
{
= 0 for i ∈ J0(t),
≤ 0 for i ∈ I0(t) \ J0(t),

κi(t)

{
≥ 0 for i ∈ I0(t) \ J0(t),
= 0 for i 6∈ I0(t).

An inspection of (6.7) shows that the pair (w(t), κ(t)) ∈ R
n+l can be treated as a station-

ary point of the following quadratic program (M)φ(t) depending on the vector parameter

φ(t) = (z(t), r(t), π3(t), π7(t)) ∈ R
2n+l+m:

(M)φ(t) Minimize
1
2 〈w,Q22(t)w〉+ 〈Q21(t)z(t) +B(t)∗r(t)− π7(t), w〉 subject to

〈Θi(t), w〉+ 〈Υ i(t), z(t)〉 − (π3)i(t)




= 0 for i ∈ J0(t),
≤ 0 for i ∈ I0(t) \ J0(t),
free for i 6∈ I0(t).

In view of (2.15) and (3.30), problem (M)φ(t) has a unique stationary point (w(t), κ(t)),

where w(t) is the solution and κ(t) the associated Lagrange multiplier. This shows that

convergence in (6.6) takes place for the whole sequence.

By the Lebesgue dominated convergence theorem, the pointwise convergence (6.6),

together with the estimate (6.2), implies

(6.8)
vk − v0
τk

→ w,
µk − µ0
τk

→ κ

strongly in L2(0, 1;Rm) and L2(0, 1;Rl), respectively.

Using (6.3) and (6.8) in the state and adjoint equations (4.14) and (4.16), we find

that
{
ż −Az −Bw − π1 = 0,
Ξ0z(0) +Ξ1z(1)− π2 = 0,

(6.9)





ṙ +A∗r +Q11z +Q12w + Υ
∗κ− π4 = 0,

r(0) +R00z(0) +R01z(1) +Ξ0̟ − π5 = 0,
−r(1) +R10z(0) +R11z(1) +Ξ1̟ − π6 = 0.

(6.10)

Equations (6.9) and (6.10) together with (6.7) constitute an optimality system for (LQ)π.

Note that, as in the case of (L̃O)δ, conditions (A1)–(A3) ensure that, for any π ∈ U∞,
(LQ)π has a unique stationary point, which corresponds to the solution and Lagrange

multiplier. Hence the element (z, w, r,̟, κ) is defined uniquely, i.e., the convergence in

(6.3) and (6.6) holds for the whole sequence {τk}.

Note that, using the same argument as in the proof of Lemma 5.2, we find that there

exists a constant l > 0 such that

‖(zπ1 − zπ2 , wπ1 − wπ2)‖Xs ≤ l‖π1 − π2‖Us ,
‖(rπ1 − rπ2 , ̟π1 −̟π2 , κπ1 − κπ2)‖Y s ≤ l‖π1 − π2‖Us
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for all π1, π2 ∈ U∞ and all s ∈ [2,∞]. Since (z0, w0, q0, ̟0, κ0) = (0, 0, 0, 0, 0), we have in
particular

(6.11) ‖(zπ, wπ)‖Xs , ‖(rπ, ̟π, κπ)‖Xs ≤ l‖π‖Us for all π ∈ U∞.

Proposition 6.2. Let (A1)–(A3) be satisfied and let ς1, ς2 > 0 be as in Proposition 5.3.

Then the mapping

ηδ := (yδ, vδ, qδ, ̺δ, µδ) : BU
∞

ς1 → Xs × Y s

given by the stationary point in BW∞ς2 (η0) of (LO)δ is Bouligand differentiable for any
s ∈ [2,∞). The B-differential at δ = 0 in a direction π = (π1, π2, π3, π4, π5, π6, π7) ∈ U∞
is given by the stationary point of the linear-quadratic optimal control problem (LQ)π.

Clearly, the stationary point (zπ, wπ, rπ, ̟π, κπ), characterized by (6.9), (6.10) and

(6.7), is a positively homogeneous function of the perturbation π. Hence, in view of

Definition 4.2, to prove the proposition, it is enough to show that, for any s ∈ [2,∞) and
any ε > 0 there exists ς > 0 such that

(6.12)

{ ‖(yπ, vπ)− (y0, v0)− (zπ, wπ)‖Xs ≤ ε‖π‖U∞ ,
‖(qπ, ̺π, µπ)− (q0, ̺0, µ0)− (rπ, ̟π, κπ)‖Y s ≤ ε‖π‖U∞ ,

for any π ∈ BU∞ς (0). Let us subtract (4.14), (4.16), (4.17) evaluated at δ = π and at

δ = 0. We obtain{
(ẏπ − ẏ0)−A(yπ − y0)−B(vπ − v0)− π1 = 0,
Ξ0(yπ(0)− y0(0)) +Ξ1(yπ(1)− y0(1))− π2 = 0,

(6.13)





(q̇π − q̇0) +A∗(qπ − q0) +Q11(yπ − y0) +Q12(vπ − v0)
+ Υ ∗(µπ − µ0)− π4 = 0,

(qπ(0)− q0(0)) +R00(yπ(0)− y0(0)) +R01(yπ(0)− y0(0))
+Ξ0(̺π − ̺0)− π5 = 0,

−(qπ(1)− q0(1)) +R10(yπ(1)− y0(0)) +R11(yπ(0)− y0(0))
+Ξ1(̺π − ̺0)− π6 = 0,

(6.14)

Q21(yπ − y0) +Q22(vπ − v0) +B∗(qπ − q0) +Θ∗(µπ − µ0)− π7 = 0.(6.15)

To analyze (4.15), for a fixed β > 0 define the sets

(6.16)





Miβ = {t ∈ [0, 1] | θi(x0(t), u0(t), h0(t))
= 〈Υ i(t), y0(t)〉+ 〈Θi(t), v0(t)〉+ (a3)i(t) ∈ (0, β)},

N iβ = {t ∈ [0, 1] | νi0(t) = µi0(t) ∈ (0, β)},
Mβ =

⋃
i∈I

(
Miβ ∪ N iβ

)
.

It follows from (5.30) and (6.16) that, for any β > 0, there exists ς(β) > 0 such that, for

any π ∈ BU∞ς(β)(0) and for almost all t ∈ [0, 1] \Mβ we have

µiπ(t) > 0 ⇒ 〈Υ i(t), yπ(t)〉+ 〈Θi(t), vπ(t)〉+ (a3)i(t)− (π3)i(t)=0 for i ∈ J0(t),
(〈Υ i(t), yπ(t)〉+ 〈Θi(t), vπ(t)〉+ (a3)i(t)− (π3)i(t))µiπ(t) = 0 and
〈Υ i(t), yπ(t)〉+ 〈Θi(t), vπ(t)〉+ (a3)i(t)− (π3)i(t) ≤ 0, µiπ(t) ≥ 0

}
for i ∈ I0(t) \ J0(t),

〈Υ i(t), yπ(t)〉+ 〈Θi(t), vπ(t)〉+ (a3)i(t)− (π3)i(t) < 0 ⇒ µiπ(t)=0 for i 6∈ I0(t).
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Hence, in view of (2.7) and (3.15), for t ∈ [0, 1] \Mβ , we obtain

(6.17)





〈Υ i(t), yπ(t)− y0(t)〉+ 〈Θi(t), vπ(t)− v0(t)〉
− (π3)i(t) = 0 for i ∈ J0(t),

(〈Υ i(t), yπ(t)− y0(t)〉+ 〈Θi(t), vπ(t)− v0(t)〉
− (π3)i(t))(µiπ(t)− µi0(t)) = 0, and

〈Υ i(t), yπ(t)− y0(t)〉+ 〈Θi(t), vπ(t)− v0(t)〉
− (π3)i(t) ≤ 0

µiπ(t)− µ0(t) ≥ 0,





for i ∈ I0(t) \ J0(t),

µiπ(t)− µ0(t) = 0 for i 6∈ I0(t).
For t ∈Mβ we introduce the following new variables:

(6.18)
(π4)′(t) = π4(t) + (∆π4)′(t), where (∆π4)′(t) = −Υ (t)∗(µπ(t)− µ0(t)),
(π7)′(t) = π7(t) + (∆π7)′(t), where (∆π7)′(t) = −Θ(t)∗(µπ(t)− µ0(t)).

Then the adjoint equation in (6.14) and equation (6.15) become

(6.19)

(q̇π − q̇0) +A∗(qπ − q0) +Q11(yπ − y0)
+Q12(vπ − v0)− (π4)′ = 0,

Q21(t)(yπ(t)− y0(t)) +Q22(t)(vπ(t)− v0(t))
+B(t)∗(qπ(t)− q0(t))− (π7)′(t) = 0




for t ∈Mβ .

Let us introduce the following modification (LQ)βπ of (LQ)π, where the control constraints

are void on the setMβ :

(LQ)βπ Minimize J (z, w, π) subject to

ż(t)−A(t)z(t)−B(t)w(t) = π1(t),
Ξ0z(0) +Ξ1z(1) = π

2,

〈Υ i(t), z(t)〉+ 〈Θi(t), v(t)〉 − (π3)i(t)




= 0 if i ∈ J0(t),
≤ 0 if i ∈ I0(t) \ J0(t),
free if i 6∈ I0(t),



 for t ∈ [0, 1] \Mβ ,

free for t ∈Mβ .
An inspection of (6.13)–(6.15), (6.17) and (6.19) shows that (yπ − y0, vπ − v0, qπ − q0,
̺π − ̺0, µπ − µ0) is a stationary point of (LQ)βπ′ , where

(6.20)

π′ = π +∆π′ with ∆π′ = (0, 0, 0, (∆π4)′, 0, 0, (∆π7)′) and

(∆π4)′(t) =

{
0 for t ∈ [0, 1] \Mβ ,
−Υ (t)∗(µπ(t)− µ0(t)) for t ∈Mβ ,

(∆π7)′(t) =

{
0 for t ∈ [0, 1] \Mβ ,
−Θ(t)∗(µπ(t)− µ0(t)) for t ∈Mβ .

Similarly, in view of (6.7), (6.9) and (6.10), (zπ, wπ, rπ, ̟π, κπ) can be interpreted as a

stationary point of (LQ)βπ′′ , where
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(6.21)

π′′ = π +∆π′′ with ∆π′′ = (0, 0, 0, (∆π4)′′, 0, 0, (∆π7)′′) and

(∆π4)′′(t) =

{
0 for t ∈ [0, 1] \Mβ ,
−Υ (t)∗κπ(t) for t ∈Mβ .

(∆π7)′′(t) =

{
0 for t ∈ [0, 1] \Mβ ,
−Θ(t)∗κπ(t) for t ∈Mβ .

Note that, if β ≤ α, where α is given in (A3), then (A3) implies that the quadratic

term of the cost functional in (LQ)βπ is coercive on the feasible set. Hence, as in (L̃Q)δ,

there exists a unique stationary point (zπ, wπ, rπ, ̟π, κπ) of (LQ)
β
π and a constant l > 0,

independent of π and β, such that

(6.22)
‖(zπ1 , wπ1)− (zπ2 , wπ2)‖Xs ≤ l‖π1 − π2‖Us ,
‖(rπ1 , ̟π1 , κπ1)− (rπ2 , ̟π2 , κπ2)‖Xs ≤ l‖π1 − π2‖Us ,

for all π1, π2 ∈ U∞ and for all s ∈ [2,∞]. Putting π1 = π′, π2 = π′′ and using (6.22)

together with (6.20) and (6.21) as well as (5.30) and (6.11), we obtain

(6.23) ‖(yπ − y0 − zπ, vπ − v0 −wπ)‖Xs = ‖(yπ′ − yπ′′ , wπ′ −wπ′′)‖Xs ≤ l‖π′ − π′′‖Us

≤ l
[ \
Mβ

(|Θ(t)∗(µπ(t)− µ0(t)− κπ(t))|s + |Υ (t)∗(µπ(t)− µ0(t)− κπ(t))|s) dt
]1/s

≤ l(‖µπ − µ0‖∞ + ‖κπ‖∞)
[ \
Mβ

(|Θ(t)|s + |Υ (t)|s) dt
]1/s

≤ 2l‖π‖U∞
[ \
Mβ

(|Θ(t)|s + |Υ (t)|s) dt
]1/s

.

Similarly

(6.24) ‖(qπ − q0 − rπ, ̺π − ̺0 −̟π, µπ − µ0 − κπ)‖Y s

≤ c‖π‖U∞
[ \
Mβ

(|Θ(t)|s + |Υ (t)|s) dt
]1/s

.

Choose any ε > 0; since measMβ → 0 as β → 0, for any s ∈ [2,∞), we can find β(ε, s)
> 0 and the corresponding ς := ς(β(ε, s)) such that (6.12) holds for any π ∈ BU∞ς (0).
Bibliographical note. The proofs of Lemma 6.1 and of Proposition 6.2 can be found in

[32] and in [37], respectively.

7. Lipschitz stability of solutions to nonlinear problems

Now we return to our nonlinear optimal control problem (O)h. In this section the main

stability result for this problem will be derived. In view of (5.30), for s =∞, the abstract
Theorem 4.1 implies:

Proposition 7.1. If (A1)–(A3) hold , then there exist constants σ1, σ2 > 0 and l > 0

such that for each h ∈ BHσ1(h0) there is a unique stationary point ζh = (xh, uh, ph, ̺h, νh)
in BZ∞σ2 (ζ0) of (O)h and
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(7.1) ‖xh2 − xh1‖1,∞, ‖uh2 − uh1‖∞, ‖ph2 − ph1‖1,∞, |̺h2 − ̺h1 |, ‖νh2 − νh1‖∞
≤ l‖h2 − h1‖H for all h1, h2 ∈ BHσ1(h0).

We will show that, for σ1 > 0 sufficiently small, (xh, uh) is a solution of (O)h and

(ph, ̺h, νh) the associated Lagrange multiplier.

Let (xh, uh, ph, ̺h, νh) be the stationary point of (O)h, which exists for h ∈ BHσ1(h0)
by Proposition 7.1. In the same way as in (2.20), introduce the mapping Chα : Zs → Y s

defined by

(7.2) Chα



y
v
ϑ


 =




ẏ −Ahy −Bhv
Ξh0 y(0) +Ξ

h
1 y(1)

Υhy +Θhv + Thαϑ


 ,

where the superscript “h” denotes that the respective elements are evaluated at (xh, uh, h),

rather than at (x0, u0, h0). Moreover, set

(7.3) Lh := L(xh, uh, ph, ̺h, νh, h).
We will need the following auxiliary result.

Lemma 7.2. If the assumptions of Proposition 7.1 hold , then for σ1 > 0 sufficiently

small , the mapping

(7.4) Chα : Zs → Y s, s ∈ [1,∞], is surjective for all h ∈ BHσ1(h0).
Proof. In view of (7.1), it follows from (2.20) and (7.2) that

(7.5) ‖Chα − Cα‖Zs→Y s → 0 as σ1 → 0.
Since Cα : Zs → Y s is surjective by Lemma 2.3, surjectivity of Chα follows from (7.5) and
from the Banach open mapping theorem, as in the proof of Lemma 9.3 below.

Lemma 7.3. If the assumptions of Proposition 7.1 hold , then for σ1 > 0 sufficiently small

we have

(7.6) ((y, v), D2Lh(y, v)) ≥
γ′

2
(‖y‖21,2 + ‖v‖22)

for all h ∈ BHσ1(h0) and all (y, v) ∈ X2 such that

(7.7) (y, v) ∈ ker Chα,
where

(7.8) Chα
(
y
v

)
=




ẏ − Ahy −Bhv
Ξh0 y(0) +Ξ

h
1 y(1)

Υhαy +Θ
h
αv


 .

Proof. In the same way as in (3.29) define

(7.9) Qhα = Γhα (Mh +Qh22)Γhα ,
where the mappingsMh and Γhα as well as the subspace (Uhα)s are defined as in (3.25)–
(3.27), but evaluated at (ζh, h), rather than at the reference point (ζ0, h0). By the same

construction as in (3.22) and (3.28) we find that (7.6) is equivalent to

(7.10) (v,Qhαv) ≥
γ

2
‖Γhαv‖22 for all v ∈ L2(0, 1;Rm).
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By (7.1) we have

‖Qhα −Qα‖L2→L2 → 0, ‖Γhα − Γα‖L2→L2 → 0 as ‖h− h0‖H → 0.
Hence, in view of (3.28), we can find σ1 > 0 such that (7.10) holds for all h ∈ BHσ1(h0).
The following lemma shows that conditions (7.4) and (7.6) imply that (xh, uh) is an

isolated local minimizer of order two for (O)h.

Lemma 7.4. Let (A1)–(A3) hold. Then there exist σ1, σ2 > 0 such that for each h ∈
BHσ1(h0) and for each (x, u) ∈ BX

∞

σ2 (xh, uh),

(7.11) F (x, u, h)− F (xh, uh, h) ≥ c(‖x− xh‖21,2 + ‖u− uh‖22),
where c > 0 is independent of h.

Note that (7.11) holds for all feasible (x, u) in aX∞-neighborhood of (xh, uh), whereas

the quadratic term on the right-hand side of (7.11) is the square of the X2-norm. These

different norms reflect the phenomenon of two-norm discrepancy.

Proof of Lemma 7.4. Choose σ1 ≤ α/(2l) such that the conclusions of Lemmas 7.2 and
7.3 hold. In view of (3.15) and (7.1), we have

(7.12) νih > α/2 for i ∈ Jα(t),
Let (x, u) ∈ X∞ be feasible for (O)h. By equality constraints and complementary slack-
ness we have

(7.13)

{
L(xh, uh, ph, ̺h, νh, h) = F (xh, uh, h),
L(x, u, ph, ̺h, νh, h) = F (x, u, h) + (νh, θ(x, u, h)).

Expanding L(·, ·, ph, ̺h, νh, h) into Taylor series at (xh, uh) and using (7.13), as well as
the stationarity condition (3.3) we obtain

F (x, u, h)− F (xh, uh, h) = − (νh, θ(x, u, h))(7.14)

+ ((x, u)− (xh, uh), D2Lh((x, u)− (xh, uh)))
+ r1((x, u), h)

where

r1((x, u), h) =
(
(x, u)− (xh, uh),

1\
0

[D2Ls −D2Lh] ds ((x, u)− (xh, uh))
)

and

D2Ls = D2L(xh + s(x− xh), uh + s(u− uh), ph, ̺h, νh, h), s ∈ [0, 1].
In view of (I) we have

(7.15)
|r1((x, u), h)|

‖(x, u)− (xh, uh)‖X2
→ 0 as ‖(x, u)− (xh, uh)‖X∞ → 0,

uniformly with respect to h ∈ BHσ1(h0).
The first order expansion of the constraint functions (2.2)–(2.4) at (xh, uh) yields

(7.16)




(ẋ− ẋh)−Ah(x− xh)−Bh(u− uh) = r12((x, u), h),
Ξh0 (x(0)− xh(0)) +Ξh1 (x(1)− xh(1)) = r22((x, u), h),
Υh(x− xh) +Θh(u− uh) = θ(x, u, h)− θ(xh, uh, h) + r32((x, u), h),
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where r2((x, u), h) = (r
1
2((x, u), h), r

2
2((x, u), h), r

3
2((x, u), h)) ∈ Y∞ satisfies

(7.17)
‖r2((x, u), h)‖Y 2
‖(x, u)− (xh, uh)‖X2

→ 0 as ‖(x, u)− (xh, uh)‖X∞ → 0.

Define the function θ(x(t), u(t), h) as follows:

(7.18) θi(x(t), u(t), h(t)) =

{
θi(x(t), u(t), h(t)) if i ∈ Jα(t),
0 if i 6∈ Jα(t).

Since θi(x(t), u(t), h) ≤ 0 and νih(t) ≥ 0, (7.12) implies

(7.19) −(νh, θ(x, u, h)) ≥ −(νh, θ(x, u, h)) ≥
α

2
‖θ(x, u, h)‖1.

Consider the following equation:

(7.20) Chα



y
v
ϑ


 =



r12((x, u), h)
r22((x, u), h)
r32((x, u), h)


+




0
0

θ(x, u, h)


 .

By Lemma 7.2 there exists a solution (y, v, ϑ) ∈ Z2 of (7.20) such that
(7.21) ‖(y, v, ϑ)‖Z2 ≤ k(‖r2(x, u, h)‖Y 2 + ‖θ(x, u, h)‖2),
where k > 0 is independent of h ∈ BHσ (h0). Note that, since in view of (7.12),
(7.22) θi(xh(t), uh(t), h(t)) = 0 for i ∈ Jα(t),
equations (7.16) and (7.20) imply that the pair

(7.23) (z, w) := (x− xh, u− uh)− (y, v)
satisfies condition (7.7). By (7.19) and (7.23), we obtain from (7.14)

F (x, u, h)− F (xh, uh, h) ≥
α

2
‖θ(x, u, h)‖1 + ((z, w), D2Lh(z, w))

+ 2((z, w), D2Lh(y, v)) + ((y, v), D2Lh(y, v)) + r1((x, u), h).
Using Young’s inequality as well as (7.6) and (7.21) we get

F (x, u, h)− F (xh, uh, h) ≥
α

2
‖θ(x, u, h)‖1 +

γ′

2
‖(z, w)‖2X2 −

γ′

4
‖(z, w)‖2X2

− 4
γ′
‖D2Lh‖2X2→X2‖(y, v)‖2X2

− ‖D2Lh‖X2→X2‖(y, v)‖2X2 + r1((x, u), h)

≥ α

2
‖θ(x, u, h)‖1 +

γ′

4
‖(z, w)‖2X2 − c‖θ(x, u, h)‖22

− c‖r2((x, u), h)‖2Y 2 + r1((x, u), h).
We have

‖θ(x, u, h)‖22 ≤ ‖θ(x, u, h)‖1‖θ(x, u, h)‖∞,
while, in view of (7.18) and (7.22), ‖θ(x, u, h)‖∞ → 0 as ‖(x, u)− (xh, uh)‖∞ → 0. Hence
we can choose σ2 > 0 so small that

F (x, u, h)−F (xh, uh, h)≥
α

4
‖θ(x, u, h)‖1+

γ′

4
‖(z, w)‖2X2−c‖r2((x, u), h)‖2Y 2+r1((x, u), h).
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Using again (7.21) as well as (7.15) and (7.17), we find that, for σ2 > 0 sufficiently small,

F (x, u, h)− F (xh, uh, h) ≥ c(‖(y, v)‖2X2 + ‖(z, w)‖2X2),
where c > 0 is independent of h, i.e., in view of (7.23), (7.11) holds.

Proposition 7.1 together with Lemma 7.4 yields the following principal stability result

for solutions to (O)h.

Theorem 7.5. If conditions (I)–(III) and (A1)–(A3) hold , then there exist constants

σ1, σ2, l > 0 such that for each h ∈ BHσ1(h0) there is a unique solution (xh, uh) in
BX∞σ2 (x0, u0) of (O)h and a unique associated Lagrange multiplier (ph, ̺h, νh). Moreover ,
‖xh2 − xh1‖1,∞, ‖uh2 − uh1‖∞, ‖ph2 − ph1‖1,∞, |̺h2 − ̺h1 |, ‖νh2 − νh1‖∞

≤ l‖h2 − h1‖H for all h1, h2 ∈ BHσ1(h0).
Bibliographical note. The proof of Lemma 7.4 is based on that in [13].

8. Differentiability of solutions to nonlinear problems

By Theorem 4.4, Proposition 6.2 and Theorem 7.5 we obtain the following basic sensitivity

result for (O)h.

Theorem 8.1. If (I)–(III) and (A1)–(A3) hold , then there exist σ1, σ2 > 0 such that the

mappings

(8.1) (xh, uh) : BHσ1(h0)→ Xs, (ph, ̺h, νh) : BHσ1(h0)→ Y s, s ∈ [2,∞),

given by the solutions in BX∞σ2 ((x0, u0)) and Lagrange multipliers of (O)h, are Bouligand
differentiable functions of h and the B-differentials , in a given direction g ∈ H, evaluated
at h0, are given by the solution and Lagrange multiplier of the following linear-quadratic

optimal control problem:

(L)h0,g Find (yh0,g, vh0,g) such that

K(yh0,g, vh0,g, g) = min
{
K(y, v, g) := 12 ((y, v), D2L0(y, v)) + (y,D2xhL0g) + (v,D2uhL0g)

}

subject to

ẏ(t)−Dxf0(t)y(t)−Duf0(t)v(t)−Dhf0(t)g(t) = 0,
Dx(0)ξ0y(0) +Dx(1)ξ0y(1) +Dhξ0g(0) = 0,

〈Dxθi0(t), y(t)〉+ 〈Duθi0(t), v(t)〉+ 〈Dhθi0(t), g(t)〉
{
= 0 for i ∈ J0(t),
≤ 0 for i ∈ I0(t) \ J0(t).

As noticed in Section 4, a Bouligand differential becomes Fréchet if it is linear and

continuous. Hence, from the form of (L)h0,g, we obtain immediately

Corollary 8.2. If , in addition to the assumptions of Theorem 8.1, I0(t) = J0(t) for

almost all t ∈ [0, 1], i.e., if the pointwise strict complementarity holds, then the mappings
(8.1) are Fréchet differentiable.
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The following simple example shows that, in general, the solutions to parametric

optimal control problems are not differentiable in X∞, so the result of Theorem 8.1

cannot be strengthened in this direction.

Let H = R. In a neighborhood of the reference value h0 = 0, consider the following

parametric problem:

(E)h Find (xh, uh) ∈ X∞ :=W 1,∞(0, 1;R)× L∞(0, 1;R) such that

1

2

1\
0

(xh(t)− uh(t))2 dt = min
1

2

1\
0

(x(t)− u(t))2 dt

subject to

ẋ(t)− (2− h) = 0, x(0) = 0, u(t)− 1 ≤ 0.
It is easy to see that the solution to (E)h is given by

xh(t) = (2− h)t, uh(t) =

{
(2− h)t for t ∈ (0, 1/(2− h)),
1 for t ∈ (1/(2− h), 1).

So we have
du0(t)

dh
=

{
−t for t ∈ (0, 1/2),
0 for t ∈ (1/2, 1),

and a simple calculation yields

ess sup
t∈[0,1]

∣∣∣∣uh(t)− u0(t)− h
du0(t)

dh

∣∣∣∣ =
1

2
|h|,

( 1\
0

∣∣∣∣uh(t)− u0(t)− h
du0(t)

dh

∣∣∣∣
s

dt

)1/s
=
1

2
(2− h)−1/s(s+ 1)−1/s|h|1+1/s.

Thus, uh is Fréchet differentiable at h0 in X
s for any s ∈ [2,∞), but not in X∞.

In sensitivity analysis of optimization problems an important role is played by the

so-called optimal value function, which on BHσ1(h0) is defined as follows:

(8.2) F 0(h) := F (xh, uh, h),

i.e., to each h ∈ BHσ1(h0), F 0 assigns the (local) optimal value of the cost functional. It
has been known (see, e.g., [33]) that directional differentiability of the solutions implies

the second order directional expansion of the value function. The following corollary of

Theorem 8.1 shows that Bouligand differentiability of the solutions implies the second

order expansion of F 0, uniform on a neighborhood of h0.

Corollary 8.3. If the assumptions of Theorem 8.1 hold , then for each h = h0 + g ∈
BHσ1(h0),

F 0(h) = F 0(h0) + (DhL0, g)(8.3)

+
1

2


(yh0,g, vh0,g, g),



D2xxL0 D2xuL0 D2xhL0
D2uxL0 D2uuL0 D2uhL0
D2hxL0 D2huL0 D2hhL0


 (yh0,g, vh0,g, g)




+ o(‖g‖2H),
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where (yh0,g, vh0,g) is the B-differential of (xh, uh) at h0 in direction g, i.e., it is given

by the solution to (L)h0,g.

Proof. In view of (7.13) and (8.2), we have

F 0(h) = L(xh, uh, ph, ̺h, νh, h).
Using this equality and Theorem 8.1, for h ∈ BHσ1(h0), we get the following form of the
B-differential of F 0:

DhF
0(h)g = DxLhyh,g +DuLhvh,g +DpLhqh,g +D̺Lh̺h,g +DνLhµh,g +DhLhg,

where (yh,g, vh,g, qh,g, ̺h,g, µh,g) are given by the solution and Lagrange multipliers of

(L)h,g. By optimality conditions we have DxLh = 0, DuLh = 0. The partial derivatives
of Lh with respect to the Lagrange multipliers give the corresponding constraints. So,
for equality constraints we have DpLh = 0, D̺Lh = 0. For inequality constraints, µh,g
is the corresponding multiplier in (L)h,g, so µh,g(t) = 0 if θh(t) < 0, i.e., DνLhµh,g =
(θh, µh,g) = 0. Thus finally, we obtain

(8.4) DhF
0(h) = DhLh.

Certainly, we have

(8.5) F 0(h) = F 0(h0) +

1\
0

DhF
0(hα)g dα,

where hα = h0 + α∆h. Using (8.4) and Theorem 8.1 we obtain

DhF
0(hα) = DhL0 + α(D2hxL0yh0,g +D2huL0vh0,g +D2hpL0qh0,g(8.6)

+D2h̺L0̺h0,g +D2hνL0µh0,g +D2hhL0g) + o(α‖g‖H).
Substituting (8.6) to (8.5) and integrating, we get

F 0(h) = F 0(h0) +DhL0g + 12 (D2hxL0yh0,g +D2huL0vh0,g(8.7)

+D2hpL0qh0,g +D2h̺L0̺h0,g +D2hνL0µh0,g +D2hhL0g, g) + o(‖g‖2H).
Stationarity conditions for (L)h0,g have the form

(8.8)





D2xxL0yh0,g +D2xuL0vh0,g +D2xpL0qh0,g +D2x̺L0̺h0,g
+D2xνL0µh0,g +D2xhL0g = 0,

D2uxL0yh0,g +D2uuL0vh0,g +D2upL0qh0,g +D2uνL0µh0,g +D2uhL0g = 0.

Moreover, equality constraints and complementarity condition for (L)h0,g yield

(8.9)





D2pxL0yh0,g +D2puL0vh0,g +D2phL0g = 0,
D2̺xL0yh0,g +D2̺hL0g = 0,
(µh0,g, D

2
νxL0yh0,g +D2νuL0vh0,g +D2νhL0g) = 0.

A combination of (8.7)–(8.9) gives (8.3).

Bibliographical note. This section is based on [37]. Fréchet differentiability of solutions to

(O)h was investigated in [39] using the so-called shooting method. Since this method is
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based on the classical implicit function theorem, it requires strong regularity assumptions

on the reference solution, which are not needed in Corollary 8.2.

9. Necessary conditions of stability and sensitivity

In this section we show that if the standing assumptions (I)–(III) hold, and if in addition

the dependence of the data of problem (O)h on the parameter h is strong in some sense,

then (A1)–(A3) are necessary conditions of local Lipschitz continuity and directional

differentiability of the solutions and Lagrange multipliers. Thus, in this case, we get a

full characterization of stability and sensitivity properties of (O)h.

Let us formulate the needed condition of strong dependence of data on the parameter

for the abstract generalized equation.

Definition 9.1. We say that the parametric generalized equation (4.5) depends strongly

on the parameter h at the reference point (h0, ζ0) if the linear mapping

(9.1) DhF(ζ0, h0) : H → U∞

is surjective.

Remark 9.2. The strong dependence condition is clearly satisfied in the special situation

where

(9.2)




H = H ′ ×H ′′, with H ′′ = U∞, H ′ an arbitrary Banach space,
h = (h′, h′′), with h′ ∈ H ′, h′′ ∈ H ′′,
F(ζ, h) = F ′(ζ, h′) + h′′,

where F ′ satisfies the same assumptions as F in Theorem 4.1. This special situation was
considered in [16].

In the case where F is given by (4.6), we have

(9.3) DhF(ζ0, h0) =




−Dhf(x0, u0, h0)
Dhξ(x0(0), x0(1), h0(0))

Dhθ(x0, u0, h0)
D2xhH(x0, u0, p0, ν0, h0)

D2x(0)h[ξ(x0(0), x0(1), h0(0))
∗̺0 + ψ(x0(0), x0(1), h0(0)]

D2x(1)h[ξ(x0(0), x0(1), h0(0))
∗̺0 + ψ(x0(0), x0(1), h0(0)]

D2uhH(x0, u0, p0, ν0, h0)




.

We assume

(A4) The mapping DhF(ζ0, h0) : H → U∞ given in (9.3) is surjective, i.e., by the

Banach open mapping theorem, there exists a constant k > 0 such that for each

δ ∈ U∞ there is g ∈ H such that
(9.4) DhF(ζ0, h0)g = δ and ‖g‖H ≤ k‖δ‖U∞ .
Note that the special case (9.2), where (A4) holds automatically, corresponds to the

situation where H = H ′ ×H ′′ with
H ′′ = L∞(0, 1;Rn)× R

n × L∞(0, 1;Rl)× L∞(0, 1;Rn)× R
n × R

n × L∞(0, 1;Rm),
h = (h′, h′′) with h′′ = (h′′1 , h

′′
2 , h
′′
3 , h
′′
4 , h
′′
5 , h
′′
6 , h
′′
7) ∈ H ′′.
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In this case problem (O)h takes the form: Minimize

F (x, u, h) =

1\
0

[ϕ(x, u, h′) + 〈h′′4 , x〉+ 〈h′′7 , u〉] dt

+ ψ(x(0), x(1), h′(0)) + 〈h′′5 , x(0)〉+ 〈h′′6 , x(1)〉
subject to

ẋ− f(x, u, h′) + h′′1 = 0,
ξ(x(0), x(1), h′(0)) + h′′2 = 0,

θ(x, u, h′) + h′′3 ≤ 0.
In what follows we assume that

(H) Conditions (I)–(III), (A4) hold and there exist constants σ1, σ2, l > 0 such that

for any h ∈ BHσ1(h0) there is a unique solution ζh in BW
∞

σ2 (ζ0) to (4.5) which

corresponds to a solution and Lagrange multiplier of (O)h. Moreover, ζh is a

Lipschitz continuous (with modulus l) and B-differentiable function of h.

We will show that if (H) is satisfied then (A1)–(A3) hold with some α > 0. To this end,

we introduce some variations of the reference value h0 of the parameter. Namely, we

consider the equation

(9.5) F(ζ0, h) = F(ζ0, h0) + δ,
where h, ζ0 and δ are treated as the unknown, parameter and perturbation, respectively.

Certainly, for δ = 0, h0 satisfies (9.5). Hence, in view of (A4), the Lyusternik–Graves

theorem 4.3 implies that, for any δ sufficiently small, there exists a solution hδ of (9.5)

such that

(9.6) ‖hδ − h0‖H ≤ k‖δ‖U∞ ,
where k > 0 is given in (9.4). Therefore, for ‖δ‖U∞ < k−1σ1, we have hδ ∈ BHσ1(h0) and,
by (H), there exists a locally unique solution ζhδ of the generalized equation

(9.7) 0 ∈ F(ζ, hδ) + T (ζ).
In the proof of constraint qualifications, we choose a small perturbation δ̂ and a cor-

responding parameter ĥ := hδ̂ in such a way that, in a small neighborhood of (ĥ, ζĥ),

the inclusion (4.5) reduces to an equation. Analyzing this equation, we prove that con-

straint qualifications (A1) and (A2) hold at (ĥ, ζĥ). Making ĥ sufficiently close to h0,

we show that these constraint qualifications are satisfied also at the reference solution.

Using a similar approach, with a different choice of the perturbation, we prove coercivity

condition (A3).

We will need the following well known stability result for surjectivity. A proof is given

for the sake of completeness.

Lemma 9.3. If (H) holds , then there exist σ1, σ2 > 0 such that for any h ∈ BHσ1(h0),
ζ ∈ BW∞σ2 (ζ0) and any δ ∈ U∞ there is g ∈ H such that
(9.8) DhF(ζ, h)g = δ and ‖g‖H ≤ 2k‖δ‖U∞ ,
where k is given in (9.4).
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Proof. Choose σ1, σ2 > 0 so small that

(9.9) ‖DhF(ζ, h)−DhF(ζ0, h0)‖ ≤ (2k)−1 for all h ∈ BHσ1(h0) and ζ ∈ BW
∞

σ2 (ζ0).

Using (9.4), for any δ ∈ U∞, we can construct successively a sequence {∑js=0 gs}, where

(9.10)





DhF(ζ0, h0)g0 = δ, ‖g0‖H ≤ k‖δ‖U∞ ,
DhF(ζ0, h0)gj+1 = [DhF(ζ0, h0)−DhF(ζ, h)]gj ,
‖gj+1‖H ≤ k‖[DhF(ζ0, h0)−DhF(ζ, h)]gj‖U∞ .

From (9.10) and (9.9) we get

‖gj+1‖H ≤ k‖DhF(ζ0, h0)−DhF(ζ, h)‖ · ‖gj‖H ≤ 12‖gj‖H .
So

(9.11) ‖gj‖H → 0 as j →∞
and {∑js=0 gs} is a Cauchy sequence. Hence there exists g ∈ H such that

(9.12)

j∑

s=0

gs → g as j →∞ and ‖g‖H ≤ 2k‖δ‖U∞ .

On the other hand, it follows by induction that

DhF(ζ, h)
( j∑

s=0

gs

)
− δ = −DhF(ζ0, h0)gj+1.

In view of (9.11) and (9.12), this shows that g satisfies (9.8).

Let us now analyze constraint qualifications. To this end, we choose small constants

α, ε > 0 and introduce the following variation ν̂ of ν0:

(9.13) ν̂i(t) =

{
νi0(t) + ε if t ∈M iα,
νi0(t) = 0 if t 6∈M iα,

where M iα is defined in (2.38). Set ζ̂ = (x0, u0, p0, ̺0, ν̂). Moreover, define the following

vector δ̂ ∈ U∞:

(9.14)





δ̂ = (0, 0, δ̂3, δ̂4, 0, 0, δ̂7), where

(δ̂3)i(t) =

{
−θi0(t) if i ∈ Iα(t),
0 if i 6∈ Iα(t),

(δ̂4)i(t) = −ε∑j∈Iα(t) Υ ji(t),
(δ̂7)i(t) = −ε∑j∈Iα(t)Θji(t).

It follows from the construction that

(9.15) 0 ∈ F(ζ̂, h0) + δ̂ + T (ζ̂)
and (see Fig. 1)

(9.16)

{
θi(x0(t), u0(t), h0(t)) + (δ̂

3)i(t) = 0 and ν̂i(t) ≥ ε for t ∈M iα,
θi(x0(t), u0(t), h0(t)) + (δ̂

3)i(t) < −α and ν̂i(t) = 0 for t 6∈M iα.
Clearly, by (9.13) and (9.14), we have

(9.17) ‖ζ̂ − ζ0‖W∞ ≤ ε, ‖δ̂3‖∞ ≤ α, ‖δ̂4‖∞ ≤ ε‖Υ‖∞, ‖δ̂7‖∞ ≤ ε‖Θ‖∞.
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Fig. 1

So, in view of Lemma 9.3 and Theorem 4.3, for α > 0 and ε > 0 sufficiently small the

equation

(9.18) F(ζ̂ , h) = F(ζ̂, h0) + δ̂
has a solution ĥ such that

(9.19) ‖ĥ− h0‖ ≤ 2k‖δ̂‖U∞ ,
where k > 0 is independent of α and ε. By (9.15) and (9.18) we get

(9.20) 0 ∈ F(ζ̂, ĥ) + T (ζ̂).
Therefore, by (H), ζ̂ = ζĥ is a unique solution in BZ

∞

σ2 (ζ0) of (9.20). By (9.16) and (9.18)

we have

(9.21)

{
θi(x0(t), u0(t), ĥ(t)) = 0 and ν̂i(t) ≥ ε for t ∈M iα,
θi(x0(t), u0(t), ĥ(t)) < −α and ν̂i(t) = 0 for t 6∈M iα.

Conditions (9.21), together with the assumption of Lipschitz continuity of ζh, imply

that there exists a small constant σ̂ > 0 such that, for all h ∈ BHσ̂ (ĥ) ⊂ BHσ1(h0) and all
ζ ∈ BZ∞σ2 (ζ0), the generalized equation (4.5) can be treated as the following equation:

(9.22) F̂(ζ, h) = 0,
where F̂ : Xs → Ûsα is defined as in (4.6) except for the third term:

(9.23) F̂(ζ, h) =




ẋ− f(x, u, h)
ξ(x(0), x(1), h(0))

θi(x(t), u(t), h(t)) for t ∈M iα, i ∈ I
ṗ+DxH(x, u, p, ν(t), h)

p(0) +Dx(0)[ξ(x(0), x(1), h(0))
∗̺+ ψ(x(0), x(1), h(0))]

−p(1) +Dx(1)[ξ(x(0), x(1), h(0))∗̺+ ψ(x(0), x(1), h(0))]
DuH(x, u, p, ν, h)




.

By (H), the solution ζh of (9.22) is B-differentiable on BHσ̂ (ĥ). Let g ∈ H be any

direction in the space of parameters. Differentiating (9.22) at h = ĥ along the direction

g we obtain

(9.24) DζF̂(ζĥ, ĥ)(Dhζĥ, g) = −DhF̂(ζĥ, ĥ)g.
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For any g ∈ H this equation must have a unique solution (Dhζĥ, g), and, by Lipschitz
continuity,

(9.25) ‖(Dhζĥ, g)‖W∞ ≤ l‖g‖H .
By Lemma 9.3, for α > 0 and ε > 0 sufficiently small, DhF(ζĥ, ĥ) : H → U∞ is surjective

and condition (9.8) is satisfied. Hence, it follows from definition (9.23) that the mapping

DhF̂(ζĥ, ĥ) : H → Û∞α is surjective. Therefore, the range of the right-hand side of (9.24)

is the whole space Û∞α . This implies that DζF̂(ζĥ, ĥ) : Z∞ → Û∞α is invertible and

(9.26) (Dhζĥ, g) = −[DζF̂(ζĥ, ĥ)]−1DhF̂(ζĥ, ĥ)g.
For any ε > 0, we can choose an element δε ∈ Û∞α , ‖δε‖Û∞α = 1, such that

(9.27) ‖[DζF̂(ζĥ, ĥ)]−1δε‖W∞ ≥ ‖[DζF̂(ζĥ, ĥ)]−1‖Û∞α →W∞‖δε‖Û∞α − ε.
In view of (9.8), there exists gε ∈ H such that
(9.28) DhF̂(ζĥ, ĥ)gε = δε and ‖gε‖H ≤ 2k‖δε‖Û∞α .
By (9.26)–(9.28),

‖(Dhζĥ, gε)‖W∞ = ‖[DζF̂(ζĥ, ĥ)]−1DhF̂(ζĥ, ĥ)gε‖W∞(9.29)

≥ 1
2k
‖[DζF̂(ζĥ, ĥ)]−1‖Û∞α →W∞‖gε‖H − ε.

Since ε > 0 can be arbitrarily small, (9.29) together with (9.25) implies

(9.30) ‖[DζF̂(ζĥ, ĥ)]−1‖Û∞α →W∞ ≤ 2kl.
In view of (H), (9.17) and (9.19), for α > 0 and ε > 0 sufficiently small, we obtain

(9.31) ‖[DζF̂(ζh0 , h0)]−1‖Û∞α →W∞ ≤ 4kl.
Proposition 9.4. If (H) is satisfied , then there exists α > 0 such that (A1) and (A2)

hold.

Proof. By (9.23), the equation DζF̂(ζ0, h0)η = χ has the form

(9.32)





ẏ(t)−A(t)y(t)−B(t)v(t) = χ1(t),
Ξ0y(0) + Ξ1y(1) = χ

2,

Υ̂α(t)y(t) + Θ̂α(t)v(t) = χ
3(t),

q̇(t) +A(t)∗q(t) +Q11(t)y(t) +Q12(t)v(t) + Υ̂α(t)
∗µ(t) = χ4(t),

q(0) +R00y(0) +R01y(1) +Ξ∗0̺ = χ5,
−q(1) +R10y(0) +R11y(1) +Ξ∗1̺ = χ6,
Q21(t)y(t) +Q22(t)v(t) +B(t)

∗q(t) + Θ̂α(t)
∗µ(t) = χ7(t),

where Θ̂α(t) and Υ̂α(t) are defined in (2.14).

By (9.31), equation (9.32) has a unique solution for any χ ∈ Û∞α . Choosing χ =

(0, χ2, 0, 0, 0, 0, 0) we immediately obtain (A2). We are going to show that

(9.33) |Θ̂α(t)∗µ| ≥ (4kl)−1|µ| for all µ ∈ R
ıα(t) and a.a. t ∈ [0, 1].

In view of Lemma 2.1, (9.33) is equivalent to (A1). Suppose that (9.33) is violated, i.e.,

there exist a set M ⊂ [0, 1] with measM > 0, a constant ε > 0 and µ̌(t), |µ̌(t)| = 1, such
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that

(9.34) |Θ̂α(t)∗µ̌(t)| ≤ (4kl)−1 − ε for all t ∈M.

Let N ⊂M with measN > 0 be any subset. We set

(9.35) µ̃(t) =

{
µ̌(t) for t ∈ N,
0 for t 6∈ N.

We can assume that µ̃ is a measurable function. Choose

η̃ = (ỹ, ũ, q̃, ˜̺, µ̃), χ̃ = (0, 0, 0, 0, χ̃5, 0, χ̃7),

where ỹ = 0, ũ = 0, ˜̺= 0, q̃ is the solution of the equation
(9.36) ˙̃q(t) +A(t)∗q̃(t) + Υ̂α(t)

∗µ̃(t) = 0, q̃(1) = 0,

and

(9.37) χ̃5 = q̃(0), χ̃7(t) = B(t)∗q̃(t) + Θ̂α(t)
∗µ̃(t).

By construction, η̃ is the solution to (9.32) corresponding to χ̃. By (9.35) and (9.36)

we have ‖q̃‖∞ → 0 as measN → 0. Hence, in view of (9.34) and (9.37), for measN
sufficiently small, we get

‖χ̃‖Û∞α = ‖χ̂
7‖∞ ≤ ‖Θ̂α(t)∗µ̃(t)‖∞ + ‖B(t)∗q̃(t)‖∞

≤ (4kl)−1 − ε/2 = [(4kl)−1 − ε/2]‖µ̃‖∞ = [(4kl)−1 − ε/2]‖η̃‖W∞ .
This contradicts (9.31) and completes the proof of (9.33).

In proving (A3), we will use the same idea as above. Namely, we introduce a variation

of h0 such that, for the corresponding problem, locally, the constraints can be treated as

equalities. As in (9.13) we introduce the following variation ν of ν0:

νi(t) =

{
νi0(t) if t ∈ N iα,
0 if t 6∈ N iα,

where N iα is defined in (3.16), and set ζ = (x0, u0, p0, ̺0, ν). Moreover, as in (9.14), for

given α, ε > 0, we define

(9.38)





δ = (0, 0, δ
3
, δ
4
, 0, 0, δ

7
), where

(δ
3
)i(t) =

{
0 if i ∈ Jα(t),
−ε if i 6∈ Jα(t),

(δ
4
)i(t) =

∑
j∈Jα(t)

νj0(t)Υ
ji(t),

(δ
7
)i(t) =

∑
j∈Jα(t)

νj0(t)Θ
ji(t).

By the same argument as in (9.15)–(9.20), we find that for α > 0 and ε > 0 sufficiently

small there exists h ∈ BHσ1(h0) such that ζ = ζh is a locally unique solution to the

generalized equation

(9.39) 0 ∈ F(ζ, h) + T (ζ).
Moreover (see Fig. 2), there exists σ such that, for all h ∈ BHσ (h) and all ζ ∈ BZ

∞

σ2 (ζ0),

(4.5) can be treated as the equation

(9.40) F(ζ, h) = 0,
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Fig. 2

where F : Xs → Usα is defined as in (9.23), withM
i
α replaced by N

i
α. In exactly the same

way as in (9.30), we find that

(9.41) ‖[DζF(ζh, h)]−1‖U∞α →W∞ ≤ 2kl.
Hence, in particular, for each η ∈ U∞α , the equation
(9.42) DζF(ζh, h)ζ = η
has a unique solution and

(9.43) ‖ζ‖W∞ ≤ 2kl‖η‖U∞α .
Note that (9.42) has the form

(9.44)





ẏ(t)−Ah(t)y(t)−Bh(t)v(t) = χ1(t),
Ξh0 y(0) +Ξ

h
1 y(1) = χ

2,

Υhα(t)y(t) +Θ
h
α(t)v(t) = χ

3(t),

q̇(t) +Ah(t)∗q(t) +Qh11(t)y(t) +Q
h
12(t)v(t) + Υ

h
α(t)

∗µ(t) = χ4(t),

q(0) +Rh00y(0) +Rh01y(1) + (Ξh0 )∗̺ = χ5,
−q(1) +Rh10y(0) +Rh11y(1) + (Ξh1 )∗̺ = χ6,
Qh21(t)y(t) +Q

h
22(t)v(t) +B

h(t)∗q(t) +Θhα(t)
∗µ(t) = χ7(t),

where all functions are defined as in (2.5), (3.19) and (3.21), but evaluated at (ζh, h)

rather than at (ζ0, h0).

We are going to show that

(9.45) (v,Qhαv) ≥ (2kl)−1‖v‖22 for all v ∈ (Uhα)2,
where Qhα is defined in (7.9). To this end, note that Qhα is a self-adjoint operator in (Uhα)2.
By a well known property of the spectrum of self-adjoint operators in a Hilbert space

(see e.g. Theorem 2, p. 320 in [53]) we have

(9.46) min{λ ∈ R | λ ∈ σ} = inf {(v,Qhαv) | v ∈ (Uhα)2, ‖v‖2 = 1},
where σ is the spectrum of Qhα. Hence, to prove (9.45), it is enough to show that
(9.47) σ ⊂ [(2kl)−1,∞].
Let us start with the following result:
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Lemma 9.5. If (H) is satisfied then there is α > 0 such that

(9.48) (v,Qhα)v) ≥ 0 for all v ∈ (Uhα)2.

Proof. Locally, (O)h can be treated as the following optimal control problem with equality

type constraints:

Minimize F (x, u, h) subject to c(x, u, h) = 0,

where

c(x, u, h) =




ẋ− f(x, u, h)
ξ(x(0), x(1), h(0))

θi(x(t), u(t), h(t)) for t ∈ N iα, i ∈ I


 .

Choose an arbitrary (y, v) ∈ X∞ ∩ ker Chα, where Chα is defined in (7.8). Set (xτ , uτ ) =
(x0, u0) + τ (y, v), where τ > 0. Expanding c(·, ·, h) into Taylor series at (x0, u0) we get

(9.49) c(xτ , uτ , h) = c(x0, u0, h) + τChα
[
y
v

]
+ o(τ ) = o(τ ).

In view of Corollary 2.4, the mapping Ĉα is surjective for any sufficiently small α > 0.

Therefore, it follows from the construction of Chα and from the same argument as in the
proof of Lemma 9.3 that Chα is surjective for α > 0 and ε > 0 sufficiently small. Hence,
by the Lyusternik–Graves theorem, (9.49) implies that there exists (x̃τ , ũτ ) feasible for

(O)h such that

‖(x̃τ , ũτ )− (xτ , uτ )‖X∞ = ‖(x̃τ − x0 − τy, ũτ − u0 − τv)‖X∞ = o(τ ).
For any feasible (x, u) we have F (x, u, h) = L(x, u, ph, ̺h, νh, h). Since (xh, uh) is a local
minimizer of (O)h, expanding F (·, ·, h) into Taylor series at (xh, uh) and performing
calculations analogous to those in the proof of Lemma 7.4, we obtain

0 ≤ F (x̃τ , ũτ , h)− F (xh, uh, h) = 12τ2((y, v), D2Lh(y, v)) + o(τ2).
Letting τ → 0 and using density of the embedding X∞ ⊂ X2, we get
(9.50) ((y, v), D2Lh(y, v)) ≥ 0 for all (y, v) ∈ ker Chα.
In the same way as in (3.28), we can rewrite (9.50) in the form (9.48).

We will need the following auxiliary lemma:

Lemma 9.6. If (H) is satisfied then

(9.51)

∣∣∣∣
[
Θhα(t) 0

Qh22(t) Θhα(t)
∗

] [
v
µ

]∣∣∣∣ ≥ (2kl)−1
∣∣∣∣
v
µ

∣∣∣∣

for all (v, µ) of the appropriate dimension and a.a. t ∈ [0, 1].

Proof. The idea of the proof is very similar to that of (9.33). Suppose that (9.51) is

violated, i.e., there exist a set M ⊂ [0, 1] with meas M > 0, a constant ε > 0 and vectors

(v̌(t), µ̌(t)), |(v̌(t), µ̌(t))| = 1, such that

(9.52)

∣∣∣∣
[
Θhα(t) 0

Qh22(t) Θhα(t)
∗

] [
v̌
µ̌

]∣∣∣∣ ≤ [(2kl)−1 − ε]
∣∣∣∣
v̌
µ̌

∣∣∣∣ for all t ∈M.
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Choose any N ⊂M with meas N > 0 and set

(9.53) (ṽ(t), µ̃(t)) =

{
(v̌(t), µ̌(t)) for t ∈ N,
(0, 0) for t 6∈ N.

We can assume that (ṽ, µ̃) is a measurable function. Define

η̃ = (ỹ, ṽ, q̃, ˜̺, µ̃), χ̃ = (0, χ̃2, χ̃3, 0, χ̃5, χ̃6, χ̃7),

where

(9.54)





˙̃y −Ahỹ −Bhṽ = 0, ỹ(0) = 0,
˙̃q + (Ah)∗q̃ +Qh11ỹ +Q

h
12ṽ + (Υ

h)∗µ̃ = 0, q̃(1) = 0,

˜̺= 0,
χ̃2 = Ξh1 ỹ(1), χ̃3 = Υhαỹ,+Θ

h
αṽ, χ̃5 = q̃(0) +Rh01ỹ(1),

χ̃6 = Rh11ỹ(1), χ̃7 = Qh21ỹ +Q
h
22ṽ + (B

h)∗q̃ + (Θhα)
∗µ̃.

It is easy to see that η̃ is the solution of (9.44) corresponding to χ̃. It follows from (9.53)

and (9.54) that

‖ỹ‖∞, ‖q̃‖∞ → 0 as measN → 0.
Hence, in view of (9.52) and (9.54), for measN sufficiently small, we obtain

‖χ̃‖U∞α =
∥∥∥∥
[
χ̃3

χ̃7

]∥∥∥∥
∞

≤
∥∥∥∥
[
Θhα 0

Qh22 (Θ
h
α)
∗

] [
ṽ
µ̃

]∥∥∥∥
∞

+

∥∥∥∥
Υhαỹ

Qh12ỹ + (B
h)∗q̃

∥∥∥∥
∞

≤ [(2kl)−1 − ε]
∥∥∥∥
ṽ
µ̃

∥∥∥∥
∞

+ ε/2 ≤ (2kl)−1 − ε/2 = [(2kl)−1 − ε/2]‖η̃‖W∞ .

This contradicts (9.43) and completes the proof of the lemma.

Lemma 9.7. If (H) is satisfied , then there exists α > 0 such that

(9.55) ‖Qhαv‖2 ≥ (2kl)−1‖v‖2 for all v ∈ (Uhα)2.
Proof. Set χ = (0, 0, χ3, 0, 0, 0, χ7). Using definitions (3.23) and (3.25) we obtain from

(9.44),

Θhαv + Υ
hSh0Bhv = χ3,

Qh21Sh0Bhv + (Bh)∗(Sh)∗


Qh11 0 0

0 Rh00 Rh01
0 Rh10 Rh11


ShBhv + (Bh)∗(Sh0 )∗Qh12v

+Qh22v + (B
h)∗(Sh0 )∗(Υhα)∗µ+ (Θhα)∗µ

= Qh22v + (Θ
h
α)
∗µ+Mhv + (Bh)∗(Sh0 )∗(Υhα)∗µ = χ7,

or

(9.56)

[
Θhα 0

Qh22 (Θ
h
α)
∗

] [
v
µ

]
+

[
ΥhαSh0Bh 0

Mh (Bh)∗(Sh0 )∗(Υhα)∗
] [

v
µ

]
=

[
χ3

χ7

]
.

Introduce the space V sα = L
s
α×Ls(0, 1;Rm), where Lsα is defined in (3.16). By (9.43), for

any (χ3, χ7) ∈ V∞α , equation (9.56) has a unique solution and

(9.57)

∥∥∥∥
v
µ

∥∥∥∥
∞

≤ 2kl
∥∥∥∥
χ3

χ7

∥∥∥∥
∞

.
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We are going to show that the analogous estimate holds in V 2α . Define the operator

(9.58) D : V sα → V sα , D = D1 +D2,
where

D1 =
[
Θhα 0

Qh22 (Θ
h
α)
∗

]
, D2 =

[
ΥhSh0Bh 0

Mh (Bh)∗(Sh0 )∗(Υh)∗
]
.

Let I denote the identity in V sα . In view of (9.57), for any λ ∈ (−(2kl)−1, (2kl)−1), the
operator

(9.59) D − λI : V sα → V sα

is invertible for s =∞. We are going to prove that (9.59) is also invertible for s = 2. To
this end, notice that by (9.51), for any λ ∈ (−(2kl)−1, (2kl)−1), the matrix

[
Θhα(t) 0

Qh22(t) Θhα(t)
∗

]
− λI

is invertible, uniformly for almost all t ∈ [0, 1]. Therefore, the operatorD1−λI is invertible
in V sα for any s ∈ [1,∞]. Define the operator

Eλ : V sα → V sα , Eλ = (D1 − λI)−1D2.
Observe that D−λI is invertible in V sα if and only if Eλ+I is also invertible. In particular,
Eλ + I is invertible in V∞α for λ ∈ (−(2kl)−1, (2kl)−1). Note that, in view of (3.23)
and (3.25), the mappings Sh0 : L2(0, 1;Rm) → L2(0, 1;Rn) and Mh : L2(0, 1;Rm) →
L2(0, 1;Rm) are compact. Hence D2 and Eλ are compact in V 2α . Moreover,
(9.60) EλV 2α ⊂ V∞α .

Consider the homogeneous equation

(9.61) (Eλ + I)
(
v
µ

)
= 0,

(
v
µ

)
∈ V 2α .

By (9.60) we have (
v
µ

)
= −Eλ

(
v
µ

)
∈ V∞α .

Hence, by invertibility of Eλ + I in V∞α ,
(
v

µ

)
= 0 is the only solution of (9.61). By a

known property of compact operators (see e.g. Theorem 2, Chap. XIII, Sec. 1 in [28]), the

uniqueness of the solution to the homogeneous equation (9.61) implies that the operator

Eλ + I is invertible in V 2α . In turn, this implies that the operator (9.59) is invertible in
V 2α for any λ ∈ (−(2kl)−1, (2kl)−1). Hence equation (9.56) has a unique solution for any
(χ3, χ7) ∈ V 2α and

(9.62)

∥∥∥∥
v
µ

∥∥∥∥
2

≤ 2kl
∥∥∥∥
χ3

χ7

∥∥∥∥
2

.

Choose now χ3 = 0. Using definition (3.29), from (9.56) we obtain

Qhαv = χ7.
In view of (9.62), we obtain (9.55).

Proposition 9.8. If (H) holds , then there exist α, γ > 0 such that (A3) is satisfied.
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Proof. By (9.55) we find that (−(2kl)−1, (2kl)−1) 6⊂ σ, where σ is the spectrum of Qhα.
On the other hand, by (9.48), σ ⊂ [0,∞]. Hence (9.47) is satisfied. This implies (9.45),
which is equivalent to

(9.63) (v,Qhαv) ≥ (2kl)−1‖Γhαv‖22 for all v ∈ L2(0, 1;Rm).
Since

‖Γhα − Γα‖L2→L2 → 0 and ‖Qhα −Qα‖L2→L2 → 0 as α→ 0,
(9.63) implies that there exists α > 0 such that

(v,Qαv) ≥ (4kl)−1‖Γαv‖2 for all v ∈ L2(0, 1;Rm),
i.e., (3.28) holds with γ = (4kl)−1.

Bibliographical note. The idea of the proof of necessity of the conditions of Lipschitz

stability, based on local equivalence to problems with equality constraints, was introduced

in [16]. In that paper the special form (9.2) of the space of parameters was considered.

Sensitivity of solutions was not discussed there. Instead, an abstract theorem due to

Dontchev [10] was used in the proof of necessity.

10. Conclusion

Combining Theorems 7.5 and 8.1 with Propositions 9.4 and 9.8, we obtain the following

theorem, which is the principal result of this paper.

Theorem 10.1. Suppose that (I)–(III) hold. If

(i) (A1)–(A3) are satisfied

then

(ii) there exist constants σ1, σ2, l > 0 such that for each h ∈ BHσ1(h0) there is a unique
solution (xh, uh) in BX

∞

σ2 ((x0, u0)) of (O)h and a unique associated Lagrange multiplier

(ph, ̺h, νh) ∈ Y∞. Moreover
‖xh2 − xh1‖1,∞, ‖uh2 − uh1‖∞, ‖ph2 − ph1‖1,∞, |̺h2 − ̺h1 |, ‖νh2 − νh1‖∞

≤ l‖h2 − h1‖H for all h1, h2 ∈ BHσ1(h0).
The mappings

(xh, uh) : BHσ1(h0)→ Xs, (ph, ̺h, νh) : BHσ1(h0)→ Y s

are Bouligand differentiable functions for any s ∈ [2,∞). The B-differentials at h0 in a
given direction g ∈ H are given by the solution and Lagrange multiplier of the linear-
quadratic problem (L)h0,g.

If in addition the strong dependence condition (A4) holds , then (ii) implies (i).

Theorem 10.1 provides a full characterization of Lipschitz stability and Bouligand

differentiability results for (O)h, in the sense formulated in Section 4. Example (E)h
shows that we cannot expect differentiability of the solutions in X∞. On the other hand,

some weakening of the assumptions could be possible, if strong dependence condition (A4)
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is not satisfied, or if we are interested in differentiability properties of the solutions (or

ε-solutions) only in a given direction, as in [50]. Also, it seems that some weakening of the

constraint qualifications can be expected, if we are interested in stability and sensitivity

of the solutions, but not of Lagrange multipliers.

On the basis of the methodology presented here, convergence analysis for approxi-

mations to optimal control problems, subject to mixed control-state constraints, can be

performed. For Euler approximation, such an analysis is presented in [38]. Also the same

methodology can be used to obtain a local convergence rate for Lagrange–Newton type

optimization algorithms (see, e.g., [4]), including the mesh-independence principle for

discretized problems [3].

Thus, the stability and sensitivity analysis for smooth nonlinear optimal control prob-

lems with mixed control-state constraints is fairly complete. Such an analysis is much less

developed for optimal control problems if pure state constraints are present. In this case,

the difficulties connected with the two-norm discrepancy are much harder to overcome.

Moreover, pointwise variations of all constraints are no longer possible. For problems

with first-order state constraints, sufficient conditions of Lipschitz continuity in X2 as

well as of directional differentiability have been obtained (see [35, 14]), but it is not

known if these conditions are also necessary. Similarly, the problem of B-differentiability

still remains open.

Acknowledgments. The author would like to express his gratitude to Mäıtine Bergou-

nioux and Helmut Maurer for careful reading of the manuscript, detecting numerous

mistakes and suggesting some improvements.
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