Contents

2.2, Orlicz TUnCHIONS] . ..ottt 12
3. Weighted local Orlicz—Hardy spaces and their maximal function characterizations|....... 13
4. Calderdn—Zyegmund deCOMPOSITIONS] . . . . ..o\ e v etet et e e et ettt e e et ees 29
5. Weighted atomic decompositions of kg n(R™)[...........o 34
6. Finite atomic decomposItiOnS| . .........o.uuiu i 41
........................................................................... 49

(3]



Abstract

Let ® be a concave function on (0,00) of strictly critical lower type index ps € (0,1] and
w € ALS(R™) (the class of local weights introduced by V. S. Rychkov). We introduce the weighted
local Orlicz—Hardy space h& (R™) via the local grand maximal function. Let p(t) = t~1/® =1 (t71)
for all ¢ € (0, 00). We also introduce the BMO-type space bmo,, ., (R™) and establish the duality
between h®(R™) and bmo,, ., (R™). Characterizations of h2 (R™), including the atomic character-
ization, the local vertical and the local nontangential maximal function characterizations, are
presented. Using the atomic characterization, we prove the existence of finite atomic decompo-
sitions achieving the norm in some dense subspaces of hZ(R™), from which we further deduce
that for a given admissible triplet (p, ¢, s). and a -quasi-Banach space Bg with 8 € (0,1], if T
is a Bg-sublinear operator, and maps all (p, ¢, s).,-atoms and (p, q).-single-atoms with ¢ < co
(or all continuous (p, ¢, s)w-atoms with ¢ = co) into uniformly bounded elements of Bg, then T’
uniquely extends to a bounded Bg-sublinear operator from h&(R™) to Bs. As applications, we
show that the local Riesz transforms are bounded on hX(R™), the local fractional integrals are
bounded from h%,(R™) to L1, (R™) when ¢ > 1 and from h%,(R") to hl,(R™) when ¢ < 1,
and some pseudo-differential operators are also bounded on both A% (R™). All results for any
general ® even when w =1 are new.
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1. Introduction

It is well known that the theory of the classical local Hardy spaces, originally intro-
duced by Goldberg [18], plays an important role in partial differential equations and
harmonic analysis; see, for example, [I8, 6 43] 5T, 52, 53] and their references. In par-
ticular, pseudo-differential operators are bounded on local Hardy spaces h?(R™) with
p € (0,1], but they are not bounded on Hardy spaces HP(R™) with p € (0, 1]; see [1§]
(also [52] [53]). In [6], Bui studied the weighted version h?,(R™) of the local Hardy space
hP(R™) with w € Ao (R™), where and in what follows, A,(R™) for ¢ € [1, oo] denotes the
class of Muckenhoupt’s weights; see, for example, [I7] for their definitions and proper-
ties.

Rychkov [43] introduced and studied a class of local weights, denoted by A2¢(R™)
(see also Definition below), and the weighted Besov—Lipschitz spaces and Triebel-
Lizorkin spaces with weights belonging to A'%¢(R"), which contains A, (R™) weights and
exponential weights introduced by Schott [44] as special cases. In particular, Rychkov [43]
generalized some of the theory of weighted local Hardy spaces developed by Bui [6] to
Aloc(R™) weights. In fact, Rychkov established the local vertical and the local nontan-
gential maximal function characterizations of weighted local Hardy spaces with A2¢(R™)
weights. Very recently, Tang [49] established the weighted atomic decomposition charac-
terization of the weighted local Hardy space h?,(R™) with w € A%¢(R") via the local grand
maximal function. Motivated by [5], Tang also established some criterions for bounded-
ness of Bg-sublinear operators on h?,(R™) (see Section |§| for the notion of Bg-sublinear
operators, which was first introduced in [56]). As applications, Tang [49, [50] proved that
some strongly singular integrals, pseudo-differential operators and their commutators are
bounded on AP (R™). It is worth pointing out that in recent years, many papers are fo-
cused on criterions for boundedness of (sub)linear operators on various Hardy spaces with
different underlying spaces (see, for example, [4l, 35 57 5] 201 56] [42] 49]), and on entropy
and approximation numbers of embeddings of function spaces with Muckenhoupt weight
(see, for example, [21], 22] 23] 24]).

It is also well known that the classical BMO space (the space of functions with bounded
mean oscillation) originally introduced by John and Nirenberg [29] and the classical
Morrey space originally introduced by Morrey [37] play an important role in the study of
partial differential equations and harmonic analysis; see, for example, [I5] 1T}, T4, [38]. In
particular, Fefferman and Stein [I5] proved that BMO(R™) is the dual space of the Hardy
space H!(R™). Moveover, Goldberg [18] introduced the space bmo(R™) and proved that
bmo(RR™) is the dual space of the local Hardy space h!(R™).

5]



6 D. Yang and S. Yang

On the other hand, as the generalization of L?(R™), the Orlicz space was introduced
by Birnbaum-Orlicz in [2] and Orlicz in [39]; since then, the theory of the Orlicz spaces
themselves has been well developed and these spaces have been widely used in probability,
statistics, potential theory, partial differential equations, as well as harmonic analysis and
some other fields of analysis; see, for example, [40} [41], [7, [34], [25]. Moreover, Orlicz—Hardy
spaces are also suitable substitutes of the Orlicz spaces in dealing with many problems of
analysis; see, for example, [26] [55] 47, 27]. Recall that Orlicz-Hardy spaces and their dual
spaces were studied by Janson [26] on R™ and Viviani [55] on spaces of homogeneous type
in the sense of Coifman and Weiss [I0]. Recently, Orlicz—Hardy spaces associated with
some differential operators and their dual spaces were introduced and studied in [28] 27].

Let w € Al%(R™), ® be a concave function on (0,00) of strictly critical lower type
index pe € (0,1] (see below for the definition) and

plt) =71/ (1Y)

for all t € (0,00), where @1 is the inverse function of ®. A typical example of such Orlicz
functions is ®(t) = t? for all t € (0, 00) and p € (0, 1]. Motivated by [43] 49} [18], 28 27, [5],
in this paper, we introduce the weighted local Orlicz-Hardy space h®(R™) via the local
grand maximal function. We also introduce the BMO-type space bmo, .,(R™) and estab-
lish the duality between h2(R™) and bmo, ,(R™). Characterizations of A® (R™), including
the atomic characterization, the local vertical and the local nontangential maximal func-
tion characterizations, are presented. Using the atomic characterization, we prove the
existence of finite atomic decompositions achieving the norm in some dense subspaces of
hE(R™), from which we further deduce that for a given admissible triplet (p, ¢, s),, and
a (-quasi-Banach space Bg with 8 € (0,1], if T is a Bg-sublinear operator, and maps
all (p, g, s)w-atoms and (p, ¢),-single-atoms with ¢ < co (or all continuous (p, ¢, $).-
atoms with ¢ = 0o) into uniformly bounded elements of Bg, then T uniquely extends to
a bounded Bg-sublinear operator from h2(R™) to Bz. As applications, we show that the
local Riesz transforms are bounded on A2 (R™), the local fractional integrals are bounded
from A, (R™) to LI,(R™) when ¢ > 1 and from h?,(R™) to hl,(R™) when ¢ < 1, and
some pseudo-differential operators are also bounded on both AZ(R"™) and bmo,, ,(R™).
We point out that the Orlicz-Hardy spaces h(R™) include the classical local Hardy
spaces of Goldberg [I8], the weighted local Hardy spaces of Bui [6] and the weighted lo-
cal Hardy spaces of Tang [49] as special cases. Moreover, the method of obtaining atomic
decompositions used in this paper (see the proof of Theorem below) is different from
the classical methods in [I8] [6]. Indeed, following Bownik [3] (see also [5] [49]), we give
a direct proof for the weighted atomic characterization of A (R™), without invoking the
atomic characterization of HZ(R™). All results of this paper for any general ® even when
w =1 are new.

Precisely, this paper is organized as follows. In Section 2] we first recall some definitions
and notation concerning local weights introduced in [43] [49], then describe some basic
assumptions and present some properties of Orlicz functions considered in this paper.

In Section |3} we first introduce the weighted local Orlicz-Hardy space bl y(R™) via
the local grand maximal function, and then the weighted atomic local Orlicz—Hardy space
h#:95(R™) for any admissible triplet (p, ¢, s)., (see Definition below). We point out



Weighted local Orlicz—Hardy spaces 7

that when ®(¢) = t* for all ¢t € (0,00) and p € (0, 1], the weighted local Orlicz-Hardy
space hy n(R™) is just the weighted local Hardy space hf, n(R™) introduced by Tang
in [49]. Next, we establish the local vertical and the local nontangential maximal function
characterizations of hf’ ~(R™) via a local Calderén reproducing formula and some useful
estimates established by Rychkov [43], which generalizes [43] Theorem 2.24] by taking
®(t) = tP for all t € (0,00) and p € (0, 1]; see Theorems and and Remark
below. Finally, we present some properties of these weighted local Orlicz—Hardy spaces
h$ n(R™) and weighted atomic local Orlicz-Hardy spaces hf; ¢ *(R™).

Throughout the paper, as usual, D(R™) denotes the set of all C°(R™) functions on
R™ with compact support, endowed with the inductive limit topology, and D'(R™) its
topological dual space, endowed with the weak* topology. Let |r] for any r € R denote
the mazimal integer not more than r. In Section |4} for any given f € D'(R"), integer

s 2 [n(qw/ps —1)]

and A > inf,crn QN’ 5(f)(x), where q,,, ps and QN,R(f) are respectively as in ,
and below, and R = 231047 following [46] 3, 5, 49], via a Whitney decomposition
of Qy in , we obtain the Calderén-Zygmund decomposition f = g+, b; in D'(R"™)
of degree s and height \ associated with the local grand maximal function G N, 5(f). The
main task of Section [ is to establish some subtle estimates for g and {b;},. Precisely,
Lemmas through are estimates on {b;};, the bad part of f, while Lemmas
and on g, the good part of f. As an application of these estimates, we obtain the
density of LE(R")NhS y(R™) in hfj, ~(R™), where g € (qu,00) (see Corollary below).
With a different proof from [49] Lemma4.9], via an application of the boundedness of
the local vector-valued Hardy-Littlewood maximal operator obtained by Rychkov [43]
(see also Lemma below), our Lemma below improves [49, Lemma4.9] even when
O(t) =P for all ¢ € (0,00) and p € (0, 1], which is necessary for Corollary
In Section 5] we prove that for any given admissible triplet (p, ¢, $)w,

@ (R") = h y(R")

with equivalent norms when positive integer N > Ng , (see below for the definition
of Ng ), by using the Calderén-Zygmund decomposition and some subtle estimates
obtained in Section 4] which completely covers [49, Theorem 5.1] by taking ®(t) = t* for
all p € (0,1] and ¢ € (0, 00); see Theorem and Remark below. It is worth pointing
out that we show Theorem by a way different from the methods in [I8] 6], but close
to those in [3, [5, [49]. For simplicity, in the rest of this introduction, we denote by A% (R™)
the weighted local Orlicz—Hardy space hf; N[R™) with N > Ng .

Assume that (p, g, s),, is an admissible triplet. Let h; %7 (R") be the space of all
finite linear combinations of (p, q, s).-atoms and (p, q).-single-atoms (see Definition [6.1]
below), and A[;T-° (R™) the space of all f € hf; 5 °(R") with compact support. In

Section (6, we prove that || - [|pe 4 sgny and || - [|pe(rn) are equivalent quasi-norms on
h & (R™) when ¢ < oo, and || - l[n; 522 (rny and || - [[p2 gn) are equivalent quasi-norms
on h,Th° (R™) N C(R™) when ¢ = oo (see Theorem below). As an application, we

prove that for a given admissible triplet (p, g, s),, and a S-quasi-Banach space Bg with
B € (0,1], if @ has an upper type p satisfying 0 < p < 3, and T is a Bg-sublinear operator
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mapping all (p, ¢, s),-atoms and (p, q),-single-atoms with ¢ € (q,,, 00) (or all continuous
(p, ¢, s)w-atoms with ¢ = co) into uniformly bounded elements of Bg, then T' uniquely
extends to a bounded Bg-sublinear operator from hE (R™) to Bz which coincides with 7' on
these (p, ¢, s),-atoms and (p, q),-single-atoms; see Theorembelow. We remark that
this extends both the results of Meda—Sjogren—Vallarino [35] and Yang—Zhou [57] to the
setting of weighted local Orlicz—Hardy spaces. We also point out that Theorems i)
and [6.4(i) below completely cover [49, Theorems 6.1 and 6.2], respectively, by taking
®(t) =¥ for all t € (0,00) and p € (0, 1]; and Theorems [6.2(ii) and [6.4(ii) are new even
when ®(t) = ¥ for all ¢ € (0,00) and p € (0, 1]; see Remark [6.5] below.

Let (p, ¢, $)w be an admissible triplet, ¢’ the dual exponent of ¢ and ¢, the critical
index of w. In Section |7, we introduce the BMO-type space bmogiw(Rn) and prove that

[16: %5 (R™)]* = bmo? ,(R"),

where [h2; 7 *(R™)]* denotes the dual space of h?; *(R™); see Theorem [7.5|below. Denote
bmofl)y »(R™) simply by bmo,, ,(R™). As applications of Theorems|5.6{and we see that

for ¢ € [1, 2247), bmoj ,(R") = bmo,,,(R") with equivalent norms and

[h(R™)]" = bmoy, ., (R™);

see Corollaries [Z.6] and [Z.7] below.

In Section [8] as applications of Theorem [6.2] we obtain the boundedness of some
operators from h2(R") to some B-quasi-Banach space B with 3 € (0, 1]. First, we prove
that the local Riesz transforms are bounded on h%(R") if ps = pg and holds for
ps with ¢ € [1,00) (see Section [2| below for the definitions of pj), which completely
covers [49, Lemma8.3] by taking ®(t) = ¢ for all t € (0,00); see Theorem and
Remark below. Then we introduce the local fractional integral operator I!°¢ and
show that I'°¢ is bounded from hP,(R") to L1,(R") when a € (0,n), p € [n-s%wl]’

% = % — &, and wrr=n=ra € Al¢(R™) for some r € (2=, 00) and [p, [w(x)]P dz = oo

(see Theorem below); furthermore, when a € (0,1), p € (0, ;5] % = % — o and
w satisfies the same conditions, we prove that I'°® is bounded from h%,(R") to hZ,(R")
(see Theorem below). To the best of our knowledge, Theorems and are
new even when w = 1. Finally, let w € A (¢), a class introduced by Tang [50] (see
also Deﬁnition below), and T be an S? ((R") pseudo-differential operator. We prove
that 7 is bounded on hE(R") if ps = pj and holds for pj with ¢ € [1,00); see
Theorem below. We point out that A, (¢) C AS(R") but As(¢) D A (R™). We
also remark that Theorem below extends [I8, Theorem 4] to the setting of weighted
local Orlicz—Hardy spaces, and completely covers [49, Theorem 7.3] by taking ®(t) = P
for all t € (0,00) and p € (0,1] and also [32], Theorem 2] by taking ®(¢) = ¢ for all
t € (0,00) and w € A1(R"); see Remark below. As an application of Theorems
and we also find that T is bounded on bmo, ., (R™); see Corollary below.

The main motivation of this paper is to pave the way for the study of weighted
Orlicz—Hardy spaces associated with divergence operators on strongly Lipschitz domains
of R™. The corresponding Hardy spaces associated with divergence operators on strongly
Lipschitz domains of R™ were originally studied by Auscher and Russ [I], where the
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atomic characterization of the classical Hardy spaces plays a key role. Earlier works on
Hardy spaces on domains can be found, for example, in [31], (36, @] 8, [54]. It was shown
in those papers that the theory of Hardy spaces on domains plays an important role in
partial differential equations and harmonic analysis.

Finally we make some conventions on notation. Throughout the paper, we denote
by C a positive constant which is independent of the main parameters, but it may vary
from line to line. We also use C(vy, 8, ...) to denote a positive constant depending on the
indicated parameters v, 3, .... The symbol A < B means that A < CB. If A < B and
B < A, then we write A ~ B. The symbol |s| for s € R denotes the maximal integer not
more than s. For any given normed spaces A and B with the corresponding norms || - || 4
and || - ||, the symbol A C B means that if f € A, then f € B and || f|lz < ||f|la. For
any subset G of R", we denote by GP the set R™ \ G; for a measurable set E, denote by
XE the characteristic function of E. We also set N = {1,2,...} and Z; = N U {0}. For
any 0 = (01,...,6,) € Z"%, let |§] = 61 +--- 4+ 0, and 09 = 9191 19z .. 9xfr . Given a
function g on R", if [o, g(x)dx # 0, let Ly = —1; otherwise, let L, € Z, be the maximal
integer such that g has vanishing moments up to order L4, namely, fRn g(x)x* dx = 0 for
all multi-indices o with |a| < L.

2. Preliminaries

In this section, we first recall some notions and notation concerning local weights intro-
duced in [43] [49], then describe some basic assumptions and present some properties of
Orlicz functions considered in this paper.

2.1. A;,OC(]R") weights. In this subsection, we recall some notions and properties of local
weights. Let @ be a cube in R™; we denote its Lebesgue measure by |@|. Throughout the
paper, all cubes are assumed to be closed and their sides parallel to the coordinate azes.

DEFINITION 2.1. Let p € (1,00). The weight class A;OC(R") is defined to be the set of all
nonnegative locally integrable functions w on R™ such that

a5t = swp o | wteyds( [ o) W) <o

lQI<1
where the supremum is taken over all cubes @ C R™ with |@Q| < 1 and % + ﬁ =1.

When p = 1, the weight class AP¢(R™) is defined to be the set of all nonnegative
locally integrable functions w on R™ such that

Al (w) = |221|1<p1 ] / dx esybebgp[ (y)]71> < 00, (2.2)

where the supremum is taken over all cubes @ C R™ with |Q] < 1.
When p = oo, the weight class A2¢(R™) is defined to be the set of all nonnegative
locally integrable functions w on R™ such that for any « € (0, 1),

Alo(éc w; @) = sup [ sup M(Q)} < 00, 9.3
( : IQIL1LFCQ,|F|>a|Q| w(F) (2.3)
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where F' runs through all measurable sets in R™ with the indicated properties, the supre-
mum is taken over all cubes @ C R™ with |Q] <1 and w(Q) = wi(x) dx.

REMARK 2.2. (i) We point out that the weight class A°°(R™) for p € (1,00] was intro-
duced by Rychkov [43] and A°¢(R") by Tang [49]. By Holder’s inequality, we see that
APRC(R™) € ARe(R™) € AC(R™), if 1 < py < py < co. Conversely, it was proved in [43]
Lemma 1.3] that if w € A2¢(R™), then w € A)°°(R™) for some p € (1,00). Thus, we have
AL (R™) = Ui <peoo A (R™).

(i) For any constant C' € (0,00), the condition |Q| < 1 can be replaced by |Q| < C
in (2.1), and (2.3)); see [43, Remark 1.5]. In this case, A)°°(w) with p € [1,00) and
Al°¢(w, o) depend on C.

In what follows, Q(x,t) denotes the closed cube centered at x and of sidelength t.
Similarly, given @ = Q(x,t) and A € (0, 00), we write AQ for the A-dilated cube, which is
the cube with the same center z and with sidelength At. Given a Lebesgue measurable
set E and a weight w € A¢(R"), let w(E) = [, w(x) dz. For any w € A'%¢(R™), the space
LP (R™) with p € (0,00) denotes the set of all measurable functions f such that

1/p
I flle mny = {/Rn |f(z)Pw(x) d:c} < 00,

and LX°(R™) = L*°(R™). The symbol L} *°(R™) denotes the set of all measurable func-
tions f such that

17152,y = sup (sl € B¢ (@) > AD)} < oo,

For a positive constant C , any locally integrable function f and x € R", the local Hardy—
Littlewood maximal function Mg’c( f) is defined by

1
MR = s [l
sa. <6 @l Jo

where the supremum is taken over all cubes @ C R™ such that @ 3 x and |Q| < C. If
C =1, we denote Mgc(f) simply by M ¢(f).

Next, we recall some properties of weights in A2¢(R") and A,(R"); here and in what
follows, A, (R™) for p € [1,00) denotes the classical Muckenhoupt weights; see [17), [46] for
their definitions.

LEMMA 2.3.

(i) Letp € [1,00), w € A;OC(R"), and @ be a unit cube, namely, 1(Q) = 1. Then there
exist an w € Ap(R™) such that W = w on Q, and a positive constant C independent
of Q such that A,(@) < CAL®(w), where Ap(w) denotes the weight constant of @,
which is as in and after removing the restriction 1(Q) < 1.

. loc /Ty s .

(ii) ZI;LC) E(Iglp) Euﬂfth)pw_ztzlpee(1(2030)&53311?:]:7’2 Zﬁii]g% N2 € (0,00) such that w €

P 109), P ‘
(iii) If 1 < p1 < pa < oo, then AlSS(R™) C Aloc(R™).
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(iv) Forp € (1,00), w € A¢(R") if and only if w=/#=1 € AS(R™), where

1/p+1/p' =1
(v) Forw € A(R™) and Q = Q(w0,1(Q)), there exists a positive constant C such that
w(2Q) < Cw(Q) when 1(Q) < 1, and w(Q(z,1(Q) + 1)) < Cw(Q) when I(Q) > 1.
(vi) Ifp € (1,00) and w € A°(R™), then the local Hardy-Littlewood mazimal operator
M'°¢ is bounded on LP(R™).
(vii) If w € APPS(R™), then M is bounded from LL(R") to L% *°(R").
(vill) Ifw € A,(R™) with p € [1,00), then there exists a positive constant C' such that for
all cubes Q1,Qo C R™ with Q1 C Qa,
w(@2) _ C<Q2>p.
w(@1) —  \[@|
Lemma i) is just [43, Lemma 1.1]. The statements (i) through (vii) of Lemma [2.3]
are just Lemma 2.1 and Corollary 2.1 in [49], which are deduced from Lemma [2.3(i) and
the properties of A, (R™); see the proofs of [49, Lemma 2.1, Corollary 2.1]. Lemma viii)
is included, for example, in [16, 17, [46].

REMARK 2.4. Let C be a positive constant. It was pointed out in [43, Remark 1.5] and [4¢ ]
that (i) through (vii) of Lemma are also true if I(Q) = 1 (Q) > 1, Q) < 1,
Q(zo, 1(Q) 4+ 1) and M™¢ are respectively replaced by ((Q) = C, 1(Q) > C, ( ) <

Q(zo, 1(Q) + C) and MIOC In this case, the constants appearing in (i), (vi) and (vi )

Lemma E 3| depend on C .
For any given w € A%¢(R"), define the critical index of w by
qo =inf{pe[lyo0): we ALOC(R”)}. (2.4)
REMARK 2.5. Obviously, q,, € [1,00). If ¢, € (1,00), by Lemma ii), it is easy to know
that w ¢ A;‘l"(R"). Moreover, there exists an w ¢ A°°(R™) such that g, = 1. Indeed,
for t € R\ {0}, let w(¢) = [In(1/[¢])]~*. Johnson and Neugebauer [30, p.254, Remark]
showed that w € ((,~; Ap(R™)) \ A1(R"). By the fact that A,(R") C AR(R™) for all

p € [1,00), which is obvious by the definitions, we see that w € . Al*°(R™). We claim
that w ¢ AP¢(R™). In fact, taking = € (0,1/2), we have

Mloc(w)(x) > ;/::1 w(t)dt > /01/2 [IHC)] - dt = oo

Moreover, it is easy to see that w(x) — 0 as x — 0. Thus, by (2.2), we know that
w g APC(R™).

For D(R"), D'(R") and L% (R™), we have the following conclusions.
LEMMA 2.6. Let w € AS(R"), q., be as in (2.4) and p € (qu, o).

() If1/p+1/p' =1, then DR™) C L, ,,_,, (R™).
(ii) LP(R™) C D'(R™) and the inclusion is continuous.
(iii) Let ¢ € D(R™) and fR" z)de = 1. If ¢ € (qu,0), then for any f € LI(R™),
fxdr — fin LL(R™) ast —> 0; here and in what follows, ¢i(x) = (1/t™)p(x/t) for
allt € (0,00) and v € R™.

p>1
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We remark that (i) and (ii) of Lemma and Lemma ili), are, respectively,
Lemma 2.2 and Proposition 2.1 in [49].

2.2. Orlicz functions. Let ® be a positive function on Ry = (0, 00). The function ® is
said to be of upper type p (resp. lower type p) for some p € [0, 00) if there exists a positive
constant C' such that for all ¢ € [1,00) (resp. t € (0,1]) and s € (0, 0),

D(st) < CtPP(s). (2.5)

Obviously, if @ is of lower type p for some p € (0,00), then lim,_,o, ®(t) = 0. So for the
sake of convenience, if necessary we may assume that ®(0) = 0. If ® is of both upper
type p1 and lower type pg, then ® is said to be of type (po, p1). Let

ps = inf{p € (0,00) : there exists C' € (0,00)
such that (2.5)) holds for all ¢ € [1,00) and s € (0,00)},

and

pgp = sup{p € (0,00) : there exists C' € (0, o)
such that (2.5]) holds for all ¢ € (0,1] and s € (0,00)}.

The function ® is said to be of strictly lower type p if for all t € (0,1) and s € (0, c0),
D(st) < tPP(s), and we define

pe = sup{p € (0,00) : ®(st) < tPP(s)holds for all t € (0,1)and s € (0,00)}.  (2.6)

It is easy to see that ps < pg < p:}f for all ®. In what follows, ps, pg and p:}f are
respectively called the strictly critical lower type index, the critical lower type index and
the critical upper type index of ®. We point out that if pg is defined as in , then ¢
is also of strictly critical lower type ps; see [27] for the proof.

Throughout the paper, we always assume that ® satisfies the following assumption.

AssuMPTION (A). Let ® be a positive function defined on R4, which is of strictly lower
type with strictly critical lower type index pg € (0, 1]. Also assume that ® is continuous,
strictly increasing, subadditive and concave.

Notice that if ® satisfies Assumption (A), then ®(0) = 0 and ® is obviously of
upper type 1. For any concave and positive function ® of strictly lower type p, if we
set ®(t) = fg(&J(s)/s) ds for t € [0,00), then by [55 Proposition 3.1], ® is equivalent
to ®, namely, there exists a positive constant C' such that C~1®(t) < ®(t) < CD(t) for
all t € [0,00); moreover, ® is strictly increasing, concave, subadditive and continuous
function of strictly lower type p. Notice that all our results are invariant under taking
equivalent functions satisfying Assumption (A). From this, we deduce that all results in
this paper with ® as in Assumption (A) also hold for all concave and positive functions
® of the same strictly critical lower type pgs as ®.

Let ® satisfy Assumption (A) and w € A%¢(R"). A measurable function f on R"
is said to belong to the space LY (R™) if [;, ®(|f(z)|)w(z) dz < oo. Moreover, for any
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f € LE(R™), define
I fllze@ny = inf{)\ € (0,00) : / @(W)w(x) dz < 1}.

Since @ is strictly increasing, we define the function p on Ry by setting, for all ¢ € (0, c0),

t71

pt) = Ty (2.7)

where ®~! is the inverse function of ®. Then the types of ® and p have the following
relation. Let 0 < pg < p; < 1 and ® be an increasing function. Then ® is of type (po, p1)
if and only if p is of type (p; ' —1,py " — 1); see [55] for the proof. Moreover, it is easy to

see that for all ¢ € (0, 00),
1
o — ) =1, 2.8
(ver) 29

which is used in what follows.

3. Weighted local Orlicz—Hardy spaces and their maximal
function characterizations

In this section, we introduce the weighted local Orlicz—Hardy space hi ~(R™) via the
local grand maximal function and establish its local vertical and nontangential maximal
function characterizations via a local Calderén reproducing formula and some useful
estimates obtained by Rychkov [43]. We also introduce the weighted atomic local Orlicz—
Hardy space h? ¢ %(R™) and give some basic properties of these spaces.

First, we introduce some local maximal functions. For N € Z, and R € (0, 00), let

Dy, n(R") = { € DR") : supp(v) © B(0, R),

9]l Dy )y = sup sup [0%Y(z)] < 1}.
zER™ aEZi, la| <N

DEFINITION 3.1. Let N € Z; and R € (0,00). For any f € D/(R™), the local nontangen-
tial grand mazimal function Gy, r(f) of f is defined by setting, for all z € R,

Gn, r(f)(@) = supf{|¢y * f(2)] : |o — 2| <t <1, ¢ € Dy, r(R")}, (3.1)
and the local vertical grand mazimal function Gy, r(f) of f is defined by setting, for all
xz e R”,

Gn, r(f)(z) =sup{|Yy * f(x)| : t € (0,1), ¥ € Dn r(R™)}. (3.2)

For convenience’s sake, when R = 1, we denote Dy, r(R"), GVN’R(f) and Gy, r(f)

simply by Dj\,(R"), G (f) and G%(f), respectively; when R = 23(10+7)  we denote

Dy, r(R™), Gy, r(f) and Gy, r(f) simply by Dy(R"™), Gy (f) and Gy (f), respectively.
For any N € Z; and x € R", obviously,

U (f)(x) < Gn(f)(x) < Gn(f)(2).

For the local grand maximal function G (f), we have the following proposition, which
is just [49L Proposition 2.2].



14 D. Yang and S. Yang

PRrROPOSITION 3.2. Let N > 2.

(i) Then there exists a positive constant C' such that for all f € LL (R™)ND'(R™) and
almost every x € R™,

()] < G (f) (@) < MOC(f) ().
(ii) If w € APS(R™) with p € (1,00), then f € L% (R™) if and only if f € D'(R™) and
G (f) € L2 (R™); moreover,
11 @ny ~ 1GR ()] o ey -
(iii) If w € APe(R™), then G, is bounded from L} (R™) to LL>°(R™).

Now we introduce the weighted local Orlicz—Hardy space via the local grand maximal
function as follows.

DEFINITION 3.3. Let @ satisfy Assumption (A), w € Alec(R™), g, and ps be respectively
as in (2.4) and (2.6)), and No o, = |n(gw/ps —1)| + 2. For each N € N with N > Ng _,,,
the weighted local Orlicz—Hardy space is defined by

hg n(R") = {f € D'(R") : Gn(f) € L{(R™)}.
Moreover, let ||f\|h3N(Rn) = G8(Hllze@ny-
We remark that when ®(t) = t? for all ¢ € (0,00) and p € (0,1], hS 5 (R™) above is

the weighted local Hardy space hf)’ ~(R™) introduced by Tang [49]. Obviously, for any
integers Ny and Ny with Ny > Ny > Ng, o,

hy g, L (RY) Ch n, (R™) C ATy, (R),

w, No, o

and the inclusions are continuous. We also point out that Theorem below further
implies that

IGY (Dl za @y ~ 198 (DllLg@ny ~ 198 (Nl ey ~ 198 (F)llLz @)

for all N € N with N > Ng_,, (see (3.25) for the definition of Ng_ ).
Next, we introduce the weighted local atoms, via which we introduce the weighted
atomic local Orlicz—Hardy space.

DEFINITION 3.4. Let ® satisfy Assumption (A), w € A¢(R™) and g, p be respectively
as in and . A triplet (p, q, $)w is called admissible if g € (q,,, 0], s € Z4 and
s > |n(qw/ps — 1)]. A function a on R is called a (p, g, $),-atom if there exists a cube
@ C R™ such that

(i) supp(a) C @; )
(ii) flallLg@n < W@ [p(w(@)] 7
(iil) [pn a(x)z®dz =0 for all a € Z'} with |a| < s, when [(Q) < 1.

Moreover, a function a on R™ is called a (p, q),-single-atom with ¢ € (q,,, o] if

lall g @y < [w@®™)]YH p(w(®™)]
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We point out that when ®(t) = t* for all ¢ € (0,00) and p € (0,1], (p, ¢, $)w-
atoms and (p, ¢).-single-atoms are respectively (p, g, $),-atoms and (p, q),-single-atoms,
introduced by Tang [49].

DEFINITION 3.5. Let ® satisfy Assumption (A), w € A¢(R™), ¢, and p be respectively
asin (2.4) and (2.7), and (p, g, s),, be admissible. The weighted atomic local Orlicz—Hardy
space h?; ¢ 5(R™) is defined to be the set of all f € D'(R™) satisfying

f= i Aia;
i=0

in D'(R™), where {a;}icn are (p, q, $),-atoms with supp(a;) C Q;, ag is a (p, q),-single-
atom, {Ai}iez, C C, and

o0

(O Al w(R" Aol ~
2 @2 (amo@n) 0 (Emmy) <

Moreover, letting

A({Aiai}i) = inf {A € (0,00) : ;W(Qi)q)()w(CL')p(LJ(CL))>

+o® (o) <

the quasi-norm of f € h? % *(R™) is defined by
Hf”hg*W(Rn) = inf{A({/\iai}ieZJr)}a

where the infimum is taken over all the decompositions of f as above.
REMARK 3.6. (i) Notice that the definition of A({\;a;}icz, ) above is different from that
in [55]. In fact, if p € (0,1] and ®(t) = t* for all t € (0, 00), then A({\;a;}icz, ) coincides
with (Y7, [XilP)V/?.

(ii) Let {AF}; x and {a¥}; i satisfy A({\Fal};cz,) < oo, where k = 1, 2. Since @ is
subadditive and of strictly lower type ps, we have

2
IA({Mal, Malliez )IP* <Y [A{MaF}iez, )P
k=1

(iil) Since ® is concave, it is of upper type 1. Thus, for any f € h? ?*(R"™), there exist
{ai}icz, and {Ai}iez, as in Definition such that
>INl S Aaitiez,) S Il oo gn)-
1€EL4
Next, we introduce some local vertical, tangential and nontangential maximal func-

tions, and then establish the characterizations of the weighted local Orlicz-Hardy space
hfj, ~(R™) via these local maximal functions.

DEFINITION 3.7. Let

1o € D(R™) with - o(x)dx # 0. (3.3)



16 D. Yang and S. Yang

Forj € Z4, A, B € [0,00) andy € R™, let m; 4, p(y) = (1+27|y|)A28¥. The local vertical
mazimal function g (f) of f associated to 1y is defined by setting, for all z € R,
Yo (f)(@) = sup |(vo); * f(), (34)
JELy
the local tangential Peetre-type mazimal function wf)k,*A,B(f) of f associated to g is
defined by setting, for all x € R™,
|(th0); * [z —y)l

o a,5(f)(x)= sup 3.5
O’A’B( ( JELy, yER™ mj, A, B(Y) (3:5)

and the local nontangential mazimal function (1o)%(f) of f associated to 1o is defined
by setting, for all z € R™,

(Wo)y (@)= sup [(o)e * f(y)l; (3.6)

|z—y|<t<l
here and in what follows, for all z € R", (¢p);(z) = 2/"o(2x) for all j € Z; and
(1ho)i(x) = (1/t™)po(x/t) for all t € (0, 00).

Obviously, for any x € R™, we have

U (@) < (Wo)7 (N (@) S ¢57a, 5(F)(@).
We remark that the local tangential Peetre-type maximal function 15", p(f) was intro-
duced by Rychkov [43].
In order to establish the local vertical and the local nontangential maximal function
characterizations of h? y(R™), we first establish some relations in the norm of L3 (R™)

of the local maximal functions 5*4 g(f), Yg (f) and G. ~, r(f), which further imply the
desired characterizations. We begin with some technical lemmas.

LEMMA 3.8. Let 1 be as in (3.3) and ¥(x) = o(x) — (1/2™)1po(x/2) for all x € R™.
Then for any given integer L € Z, there exist no,n € D(R™) such that L, > L and

F=moxtoxf+ > mxih*f
j=1
in D'(R™) for all f € D'(R™).
Lemma is just [43] Theorem 1.6].

REMARK 3.9. Let vy, ¢, ng and n be as in Lemma From the proof of [43] Theorem
1.6], it is easy to deduce that for any j € Z and f € D'(R"),

F=00)*@o)*xf+ Y mextnxf

k=j+1
in D'(R™) (see also [43], (2.11)]). We omit the details.
For f € LL (R"), B € [0,00) and x € R", let

loc
Kof(z) = / F)2 Pl dy, (3.7)

n

1

here and in what follows, L .

on R™.

(R™) denotes the set of all locally integrable functions
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LEMMA 3.10. Let p € (1,00), ¢ € (1,¢], and w € AL‘)C(R”). Then there exists a positive
constant C' such that for any sequence {f’}; of measurable functions,
M ()Yl a0y < CIF Yz ) (3.8)

here and in what follows,

s = (S}
J

Also, there exist positive constants C and By = Bo(w,n) such that for all B > By/p,

HEB(f)}lleay < CIHF Yilleay- (3.9)

Lemma [3.10] is just [43, Lemma2.11]. Moreover, from the proof of [43, Lemma 2.11],

it is easy to deduce that also holds for M with any given positive constant C. In
this case, the positive constant C in Lemma depends on C.

LEMMA 3.11. Let 1y be as in and r € (0,00). Then there exists a positive constant
Ag depending only on the support of 1o such that for any A € (max{Ag,n/r},oc0) and
B € [0,00), there exists a positive constant C, depending only on n, r, ¥y, A and B, such
that for all f € D'(R™), z € R"™ and j € Zy,

LE (R™)

[(0);, 4, 5(N)(@)]" < C Y 207 HATLMC(| (o), % f]7) ()

py
+ Kpr([(¥0)r * f[")(2)},

where

(wo);,A,B(f)(a?) = sup |(¢)O)] * f(x _ y)‘

yER mj a,B(Y)
for all z € R™.

Proof. Lemma/[3.11]is a modified version of [43, Lemma 2.10], and was essentially obtained
by Rychkov in the proof of [43], Theorem 2.24]. Let ¢ be as in Lemma Indeed, Rychkov
[43] showed Lemma[3.11] under the assumption that f € S., namely, there exist a positive
constant Ay and a nonnegative integer Ny such that for all v € D(R"),

[(f,7)] < Apsup{|0°y(x)|eV 1"l : 2 € R", a € Z7 and |a| < Ny},
which guarantees that for all z € R™ and j € Z.,

My g(z, j) = sup Q(jfk)Aw

< oQ.
k>j, yeRn mj, 4, B(Y)

By [19, Proposition 2.3.4(a)], for any f € D'(R"), we have M4, g(x, j) < oo forallz € R”
and j € Zy, provided A > Ay, where Ag is a positive constant depending only on the
support of ¢g. This finishes the proof. m

THEOREM 3.12. Let ® satisfy Assumption (A), w € AS(R"), R € (0,00), o, q., and
pa be respectively as in (3.3), (2.4) and [2.6), and ¥g (f), o a, B(f), and Gy r(f) be
respectively as in (3.4), (3.5) and (3.1). Let

Ay = max{Ay, nq,/ps},
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By = Bo/ps and Ny = |2A1] + 1, where Ay and By are respectively as in Lemmas
and . Then for any A € (A1,00), B € (B1,00) and integer N > Ny, there exists
a positive constant C, depending only on A, B, N, R, 19, ®, w and n, such that for all
feD'(R"),

19674, 5(DllLz@ny < Cllvg (FllLz @y, (3.10)
and

1GN, R(F) L2 @y < Cllog (HllLe @) (3.11)

Proof. Let f € D'(R"). First, we prove (3.10). Let A € (4;,00) and B € (By,00). By
A1 = max{ Ay, nq./pe} and By = By/pe, we know that there exists rg € (0,ps/q.) such
that A > n/rg and Brg > By/q., where Ay and By are respectively as in Lemmas
and Thus, by Lemma for all z € R, we have

(o), 4, 5(N) (@) D 207 DA (o) 5 f]7) (2)

k=j
+ Kpro ([(Yo)r * ) () }- (3.12)

Let g (f) and Y574, (f) be respectively as in (3.4) and (3.5). We notice that for any
reR*and k € Z4,

(o) * f(2)] < ¥g (f)(@),
which together with (3.12)) implies that for all z € R"™,

057 (D@ S MU (D)) + K (68 (D)), (3.13)
By and the subadditivity of ®, we have
[ owia st do
S [ SO (@) (e) da

+ / O K ([0 (D)@ @) de =T+ T (314)

First, we estimate Iy. As ro < pa/q., we know that there exists ¢ € (q,,, 00) such that
roq < pe and w € A};’C(R”) For any « € (0,00) and g € L] (R™), let
9 = gX{zeRn: |g(z)|<a} T IX{zeR": |g(z)|>a} = 91 T g2
It is easy to see that
{z e R": M"°(g)(z) > 2a} C {z € R": M"(go)(z) > a},
which together with Lemma vi) implies that
w({z € R" : M™(g)(z) > 2a})

<w({zeR"; M1°C<g2><x> sap < o [ () @) (e) de
Rn

S */ lg2(2)|%w(x) de ~ — lg(2)|%w(x) d. (3.15)
{zeR™: |g(z)|>a}
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Thus, for any a € (0,00), by (3.15)), we have
w({z € R™ : [M([yg (N))) (@)™ > a})
S
Al Jwern: [ (£)(@)r0>a70/2}

o 1 e _
~ Oy (21/> e /a/zmo r0gs™ 0y sy (s) dsy - (3.16)

[¥g () (@) w (@) do

here and in what follows,
Tyt (py(8) =w({z €R" : ¥g (f)(z) > s}).

From the fact that ® is concave and of lower type pe, we infer that ®(¢ fo (s)/s)ds
for all ¢ € (0,00). By this, (3 and the lower type pe property of <I> the fact roq < pe
and Fubini’s theorem, we have

(M8 ([ (NN (@)} g
I N/ {/ Et)dt}w(a:) dz
» LJo

0
~ /0 T3 Ty (piroyy/ (8) 4

 D(t) t 1 ° _
< i — Toq—1 ds p dt
N/O r {Ufﬁar(f)(Ql/m) + o /t/gl/ro Togqs O-dlfTU)(S) S}
oo 2l/70g
o(t) 1
§Jf+/() rogs™ 0w+(f)( ){/0 — oa dt}ds

o 21/70. ¢ pe q
~ q— 1/r v _ -
Jy +/0 roqs”® Uw*(f)( $)®(2 Os){/o (21/T03) proes] dt} ds

~Jp~ /n (¢ x))w(x) d, (3.17)

where J; = [[7(®(t)/t)o Oyt (p)(t)dt.

Next, we estimate Iy. For any a € (0,00) and g € Ll _(R"), let g; and go be as
above. For H € [By/q,00), let [5, 27 H12=vldy = cyy. Tt is easy to see that for all z € R",
Kg(g1)(x) < ega, which implies that

{z eR": Kp(g)(z) > (cg +1)a} C {x e R": Ku(g2)(z) > a},
where Ky is as in (3.7). Thus, by Lemma we have
w{z eR": Kgg(x) > (cg +1a}) w({z e R": Kpga(x) > a})
1
S l9(z)["w(x) da.
{z€R™: |g(z)|>a}

Similarly to (3.16]), from the above estimate, Bro > By/q and Lemma[3.2] we also deduce
that

w({z €R™ ¢ [Kpro ([9g (N]) @)™ > a})

« 1 >
< rog—1
= Tyg(f) ((CBro + 1)1/%) + r0d /a/(cB,,OH)l/ro r0gs’° awsr(f)(S) ds.
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From this, similarly to the estimate of I;, we also have
L5 [ S (D)) d (318)
]Rn
Thus, we deduce from (3.14), (3.17) and (3.18) that

| o @)@ s [ 06 (1)@l da.
Replacing f by f/A with A € (0,00) in the above inequality, and noticing that

(o4, 5(f/N) = @(¥g 4, 5(F)/A)
and ®(vg (f/X)) = (g (f)/A), we have

/ (¢o,a, 5(N)(@)/Nw(z) dr /Rn O(yg (f)(@)/Nw(z) dz, (3.19)

which together with the arbitrariness of A € (0, 00) implies (3.10]).

Now, we prove . By Ny = |24:] + 1, we know that there exists A € (A1, 0)
such that 24 < Ny. In the rest of this proof, we fix A € (47, 00) satisfying 24 < Ny and
B € (B, 0). Pick an integer N > Ny and R € (0,00). For any v € Dy, g(R"™), t € (0,1)
and j € Z, from Lemma 3.8 and Remark [3.9] it follows that

Yex f=ex (no); * (o) * f+ Z Ve kN k Y * (3.20)

k=j+1
where 19,7 € D(R™) with L,, > N and ¢ is as in Lemma
For any given ¢t € (0,1) and z € R", let 2770~1 < ¢t < 279 for some jo € Z,, and
z € R™ satisfy |z — x| < t. Then, by (3.20)), we have

o0

e * (&) < e (m0)jo * (Wo)go * F(2)+ D by x e x i % f(2)]

k=jo+1

< [ s i) o)y, £ = )] dy

S | el G-l =T+ @2

k=jo+1

To estimate I3, from

- _ [(%0); * f(z —y)|
0.4, 8(f)(@)= S AW
— s [(o)j * flx = (y+a—2)| _ sup [(Y0); * f(z —y)| 7
JELy, yeRn mj A, B(Y+T—2) jezy,yekn My A, B(Y + T — 2)

we infer that

[(%0)jo * f(z =9 <57 a, (f)(@)mye, 4, B(y + 2 — 2),
which, together with the facts that

Mo, A, B(Y + & = 2) <My, A, B(T = 2)Mjo, 4, B(Y)
and mj, 4 g(r — 2) < 24, implies that

|(W0)jo * £z = )| £ 2574, 5(f) (@)mjo, 4, B(y).
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Thus, we have

o524 { [ s, a,m00) d i ()
To estimate 14, by the definition of 1, it is easy to see that for any k € N,
Ve * f(z =) < [(Wo)r = f(z = y)| + [(Yo)e-1* f(z — y)|.
By the definition of ¢§*, 5(f) and the facts that

mg, 4, By +x —2) <my A BT — 2)my, 4, B(Y)

for any k € Nand my 4 g(z —2) S 2(k—=30)A e conclude that

|(Wo)k * f(z = y)| S 57 a, g(F)(@)mn, 4,5y +7 - 2)
<o a, 5(F)@)mi, 4, B(x — 2)my, 4, B(Y)
< 2lk- ]O)Amk,A,B(y)wa,*A,B(f)(x)-

Similarly, we also have

[(Yo)e—1 * f(z — )| S 257904y 4 ()07 4. 5(f) ().
Thus,

oo

s 3 20 ol s, n()ds 6 5(7) (o)

k=jo+1
From (3.21)) and the above estimates of I3 and 14, it follows that

e SN { [ T s 0ms, a0 d

Y 2 [ sl m) s [0 (). (322

k=jo+1
Assume that supp(ng) C B(0, Ro). Then supp((no);) C B(0,277Ry) for all j € Z,.
Moreover, as supp(y) C B(0, R) and 277071 <t < 2770 we see that
supp(y:) € B(0,27°R).
From this, we further deduce that supp(v; * (10)j,) C B(0,277°(Ry + R)) and

s )o@ S [ e W)l = 9l ds 207 [ o) ds 207

which implies that
/ e (10) o () |2, 4, B (y) dy < 2j°”/ (127 |y)) 2" dy S 1. (3.23)
Rn B(0,2790(Ro+R))
Moreover, since 1 has vanishing moments up to order N, it was proved in [43] (2.13)]

that
1ve * Mel| Loo mmy S 2Uo—k)Ngjon
for all k € N with k& > jo + 1, which, together with the facts that N > 2A and

supp(y: * M) C B(0,279° Ry + 27" R),
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implies that

oo

> Q(kij)A/ v * 1k (y) M, 4, 5(y) dy
k=jo+1 n
o0
< Z Q(k*jo)AQ(jo*k)Ngjon(277'0RO o kR

k=jo+1

X [1 428270 Ry 4 2 R R) A2 o2 I
Z 2(.70*]‘7)(]\{72‘4) < 1 (324)

k=jo+1

Thus, from (3.22), (3.23) and (3.24), we deduce that |y * f(2)| < 9574, p(f)(z). Then,
by the arbitrariness of ¢ € (0,1) and z € B(x,t), we know that

gN,R(f)( ) S Yo a,B(f)(®),
which together with (3.19)) implies that for any A € (0, c0),

/ (G, n(f) () /New(a) dr < / (4 (F)(@)/Nw(z) de
R’Vl Rn
From this, we infer that (3.11)) holds, which completes the proof of Theorem n

REMARK 3.13. Let p € (0, 1]. We point out that Theorem when R =1 and ®(¢t) = P
for all ¢ € (0,00) was obtained by Rychkov [43, Theorem 2.24].

As a corollary of Theorem we immediately deduce that the local vertical and the
local nontangential maximal function characterizations of hg’ ~(R™) with N > Ng ,, as
follows. Here and in what follows,

Ng. o, = max{Ng ., No}, (3.25)
where Kf@’w and Ny are respectively as in Definition and Theorem
THEOREM 3.14. Let ® satisfy Assumption (A), w € A(R™), ¢y and Ng, ., be respec-
tively as in (3.3)) and (3.25). Then for any integer N > Ng ,, the following are equivalent:
(i) f € hg n(R™);
(ii) f € D'(R™) and g (f) € LE(R™);
ii) (R™) and (vo)3(f) € LS(R™);
(iv) f € D'(R™) and QN(f) € L2(R");
(v) 1 € D/(R") and G}(/) € LE(E"):
) %(f) € LG (R™).
Moreover, for all f € hw’N(R”),
1£llne @y ~ g (Dl @y ~ 1@0)5 (Hllze@n)

~ G (Dllzz @ ~ 1% (Dllza@n ~ 19 (Hllzz@n,  (3:26)
where the implicit constants are independent of f.
Proof. (i)=(ii). Pick an integer N > Ng ,, and f € hiN(R"). Let ¢ satisfy and
Yo € Dy (R™). Then from the definition of Gy (f), we infer that z%r(f) < Gn(f) and
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hence Jar(f) € L2(R™). For any 1)y satisfying (3.3)), assume that supp(vo) C B(0, R).
Then, by (3.11) and the above argument, we have

IGx, (Nl eg@ny SIS (Nlza@n) S Ifllz @)
which together with 1 (f) < Q~N’R(f) implies that ¢d (f) € L2(R™) and
198 (Dllzg@ny S 1f 1l @n)-

(ii)=(iii). Let f € D'(R") satisfy ¢ (f) € LE(R™), where v is as in (3.3). Then
from the fact that

by (f) < (o) (f) S v5'a, 5(f)
and (3.10), we deduce that (¢9)%(f) € LE(R") and
1(%0)5 (Nlle@ny < I1vo (HllLe@n)-
(iii)=>(iv). Let f € D'(R") satisfy (¢0)5(f) € LE(R™), where ¢ is as in (3.3).
By (B.11),

IGN (Dl za @y S 195 (g @n)s
which together with the fact that
o (f) < (%o)5(f)
and the assumption that ()% (f) € L2(R™) implies Gy (f) € L2(R") and
||§N(f)||Lg(Rn) S @o)3 (Hllze@ny-
(iv)=(v)=(vi). Since G (f) < QNJOV(f) < Gn(f) for any f € D'(R™) and ® is increas-

ing, we see that all the conclusions hold. Moreover, it is obvious that

16 ()l e @y < NG ()llLe@ny < 9N ()] Lo @n)-

(vi)=(i). Let f € D'(R") satisfy G%(f) € LZ(R™). Let ¢, satisfy (3.3) and ¢ €
DY (R™). Then by (3.10)), we have

1G5 (Hlze@ny S 197 (Nllze @,
which together with the facts that ¥} (f) < G%(f) and Gn(f) < G (f) implies that
IGn (Pl 2@y S NGR ()l L2 Rn)-
Thus, by the definition of hfi ~(R™), we know that f € h3 ~(R™) and
I£llne @ny S NGR () Le @),
which completes the proof of Theorem [3.14] =

As a corollary of Theorems [3.12] and [3.14] we have the following local tangential
maximal function characterization of hfj’ ~(R™). We omit the details.

COROLLARY 3.15. Let ® satisfy Assumption (A), 1o be as in (3.3), w € AL(R"),
No, o be as in (3.25)), A and B be as in Theorem|3.12| Then for any integer N > Ng ,,

S th(R")
if and only if f € D'(R") and ¢5*4 p(f) € LE(R™); moreover,

[fllne @y ~ 19074, B()llLe @)
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Next, we give some basic properties concerning hJ n(R™) and hf; ¢ *(R™).

PROPOSITION 3.16. Let ® satisfy Assumption (A), w € A¢(R™) and Ng. ,, be as in (3.25).
For any integer N > Ng_,, the inclusion hfj,N(R") — D'(R"™) is continuous.

Proof. Let f € hY y(R™). For any given ¢ € D(R"), assume that supp(¢) C B(0, R)
with R € (0,00). Then we have

(£ 8)| =11 % 6O < [Flloy, wzry_int G, (1)), (3:27)

€B(0,1)

where QNN r(f) is as in and ¢(z) = ¢(—=z) for all z € R™. Now, to prove Proposi-
tion we consider the followmg two cases for || f ||hq> (R")-

Case (z) ||thq> (& = 1. In this case, by the upper type 1 property of ® and Theo-
rems [3.12) and [3.14] we obtain

[ #Gnr) @)t ds

gN,R(f)('T)>
< |l n — S e o me .
Sl ”h%N(R )/ncb(” ||h3N( " w(z)dr S || Hh R7)- (3.28)

Notice that the upper type 1 property of ® implies that for ¢ € (0, 1],

1 1

®(1) = @(t) < —9(1)

t t

and hence ®(t) 2 t. Thus, when inf,cp(o 1) Gn. r(f)(z) <1, from and (3:28), we
deduce that

(£.0)] £ 10llpy, niany@(_inf | G, n(f)(x)

! / (G, 1 () (1)) (y) dy
(0,1)

Slielloy. wen ZEo 1y /,

1
S H¢||DN,R(R“)WHf||h3N(Rn)~ (3.29)

Let pe be as in (2.6]). Since ® is of lower type pg, for t € (1,00), we have

B(1) = @(ti) th@q)( )

and hence t < [®(t)]'/P*. Thus, when infoep(0,1) §N,R(f)(x) > 1, by (3.26) and (3.27),
we conclude that

01,601 5 Vol e {0(_int G ntre))} ™
S @llpy, r@mylw(B(0, 1))]*1/17@
g 1/pa
«{ /B<0 | 2l 6)e) dy}

S 6lp nem [w(B(0,1))]~ ””IIfII”’“’ (3.30)
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Case (zz) Hf||h<1> (&) < 1. In this case, by the lower type ps property of ® and Theo-
rems [3.12] and [3.14] we see that

; , G nl) () ,
[ Gt e <1 o [ 2([FED el de SIS ey

Thus, from this fact and (3.27)), similarly to the proof of (3.29) and (3.30)), we infer that
if infa;eB(O,l) Gn, r(f)(z) <1, then

[ O S Nllow, rem £33, @y

1
w(B(0,1))
and if inf e p(o,1) gNyR(f)(x) > 1, then

(£ O S NSlpn, wem) WBO, P21 f e @

Thus, f € D'(R™) and the inclusion is continuous, which completes the proof of Propo-
sition |3.160l =

PROPOSITION 3.17. Let ® satisfy Assumption (A), w € A(R") and Ng, ,, be as in (3.25).
For any integer N > Ng o, the space hl y(R™) is complete.

Proof. For any ¢ € Dy(R™) and {f;}ien € D'(R™) such that {Zgzl fi}jen converges
in D'(R™) to a distribution f as j — oo, the series {Zgzl fi x ¢} jen converges to f
also pointwise as j — oco. By Assumption (A), we know that ® is strictly increasing and
subadditive, which together with the continuity of ® implies that for all x € R™,

®(Gn (f)(@)) < @(ZQN f@)) < zcb On(f) (@

Iy 2 [Ifillhe Ly < and we let A\; = || fil|73 B (R then by the strictly lower type

po property of ® and the Levi lemma, we know that
[ @<(Z€5§<Q<)>/)w(> da
<ZZ] vy @(gl\;(ﬁ)): ) )dz <ZZj > 1,
which further implies that
I£17% ey < Z IFill}%  gn)- (3.31)

To prove that h‘I> ~ (R™) is complete, it suffices to show that for every sequence {f;};en
with Hfj||h1> (R™) < 277 for any j € N, the series {f;}jen converges in h‘I> N(R™).

Since {Zizl fi}jen is a Cauchy sequence in hwyN(R"), by Proposition and the
completeness of D'(R™), {Zle fi}jen is also a Cauchy sequence in D’ (R") and thus
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converges to some f € D'(R™). Therefore, by (3.31)),

J o] [e%¢)
pe pe .
-S> = : < 27 e 4 ()
Hf Zfl h® N(Rn) HZ fl h® N(Rn) - Z
=1 bl i=j7+1 “s i=j5+1

as j — oo, which completes the proof of Proposition [3.17 =

THEOREM 3.18. Let ® satisfy Assumption (A), w € A(R™) and Ng,,, be as in (3.25).
If (p, q, $). 1s admissible (see Definition |3.4] @, then for any integer N > Ng_ .,

hG; @5 (R™) C hg y, (R") C hg n(R),
and moreover there exists a positive constant C such that for all f € h?; T *(R™),
1fllne @ny < ||th‘I> J@®m) S Cllfllng a2 mny-

Proof. Obviously, by Deﬁmtlon we only need to prove that h?; ¢ %(R™) C hw N
and for all f € b2 % (R™),

oo (R"),
Hf”hi RCORS S I fllney oo mny-

To this end, by Theorem and Deﬁnltlon it suffices to prove that for any (p, q).-
single-atom a and A\ € C,

/n (G, ., (ANa)(@)w(x) do < mww(M), (3.32)
and for any (p, ¢, s),-atom a supported in the cube @ and A € C,
/ CB(GR, () (@)w(x) dr S w(Q)® (w(Q)lpA(wa))) (3.33)

Indeed, for any f € h2; 7 5(R"), -
=" Xia;
i=0

in D'(R™), where {\;}2, C C, ao is a (p, ¢)w-single-atom and for any i € N, a; is a
(p, ¢, 8),-atom supported in the cube Q;. Then, for any A € (0,00), from the facts that
Gw (/X)) =GR, _(f)/A and @ is strictly increasing, subadditive and continuous, and

from (3.32)) and ( -) we have

/n @(W)w(x) da
_ / (g%, <§)(x))w(x) dz < f:/ @(g?vq,,w (Afi>(w)>w(w> dzx

“(Rn)@<Aw(R”|>AO| >+Z @ (Q|)A(|<Q)))

which together with Theorem implies that [ f|s ng. o (B) S llngy @ = e

We now prove (3.32). Since g € (q.,, o0], by the deﬁmtlon of ., we have w € A¢(R™).
Let a be a (p, q)w—single—atom and A € C. When w(R™) = oo, by the definition of the
single atom, we know that a = 0 for almost every x € R™. In this case, it is easy to
see that (3.32) holds. When w(R"™) < oo, since ® is concave, from Jensen’s inequality,
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Hélder’s inequality and Proposition ii), we deduce that

/ (b(g](i/'q)'w(Aa)(l‘))w(x) dx

< w(R™ < / &%, (ha)(z)w (:c)dx)
pESL (w{ [ gk, owwpae ) )

1 A
S W<R”>‘I’<WRW'A' ol e ) 5 R0 sy )

That is, (3.32)) holds.

Next, we prove (3.33)). Let a be a (p, ¢, s),-atom supported in the cube Q = Q(xq, ),
and A € C. We consider the following two cases for Q.

Case 1: Q| < 1. In this case, letting C~2 = 2,/nQ, we have
/ @(QJOVQW (Aa)(x))w(z) dx = /~ <I>((]]0V¢)w (Ma)(x))w(zx) d:z:—i—/~ =L+ 1. (3.34)
n Q QG

For I, by Jensen’s inequality, Hoélder’s inequality, Lemma v) and Proposi-

tion ii), we have
I, <w(Q)® ( Q/QNIW)‘G (ac)dx)

@2 a Wil o)
_ A ) A
Sw(Q)‘I’(w<Q>p<w<Q»> < @’q’(w(cz)p(w(cz)))’ (3.35)

which is the desired estimate for I.
To estimate I, we claim that for all = € QC,

Ga (M) (@) S IAQICT I/ [w(Q)p(w(Q))]
X |& — 2| Ty g0 0 m (@), (3.36)

where sg = |n(qu/pe — 1)]. Indeed, for any ¢ € DY (R™) and ¢t € (0,1), let P be the
Taylor expansion of ¢ about (z — )/t with degree sg. By Taylor’s remainder theorem,
for any y € R™, we have

o) -+ ()

< ¥ \@aw(e(“y”(1[9)(”“9”0)) mot—w“,
a€Zl
|a|=s0+1

where 0 € (0,1). By ¢t € (0,1) and z € QF, we see that supp(a * 1) C B(zo,2y/n) and
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that a* ¢ (z) # 0 implies that ¢ > |z — zo[/2. Thus, from the above facts, Definition [3.4]
and (12.1] ., it follows that for all = € Q ,

@) < 5o { [ oo (Z52) = (5L o v zvmle)

<o - xo|—<50+”+”{ /Q la(y)] |20 — ylo+! dy}xmzogﬁ) ()

1/q
< 1QIC /™ a1 ( /Q w(y)] /s dy) & — o GOy ()

S QIS @)p(w(@))] = wol =X gy 5 m) (),
which together with the arbitrariness of ¢ € DY (R") implies (3.36). Thus, the claim
holds.
Let Qi = 2F\/nQ for all k € N and kg € N satisfy 2~or < 4 < 2kotly Ag

s0 = [n(qw/pe —1)],

we know that there exists gy € (qu, o0) such that pe(sg+n-+1) > ngy. From Lemma
it follows that there exists an w € A, (R"™) such that w = @ on Q(zo,8y/n). From this
fact, (3.36)), the lower type pg property of ® and Lemma Viii), we conclude that

I < / B(GY, (Aa)(@))w(z) de
Vvnr<|z—zo|<2y/n

S / S (A 1QI T VP w(@Q)p(w (@] |z — wo| =0V )w() da
vnr<|z—zo|<2y/n

< Z/k+1\Qk \)\|2 k(so+n+1)[ (Q)P(W(Q))]_l)w(x) de
—k(so+n+1)pa; L
: g 2 @i

ko
Al
< 3" g Hlso bt Dpenaol () ¢)( | )
2 @ L@@
Al )
coian(oll )
@ @nw@)
which together with (3.34]) and (3.35]) implies (3.33]) in Case 1.
Case 2:|Q| > 1. In this case, let Q* = Q(xg, 7 + 2). Thus, from
supp(g?\,q)yw()\a)) cQr,

Jensen’s inequality, Holder’s inequality, Lemma v), and Proposition ii), we deduce
that

[ #(0R, O0)@)w() do

= [ 20k, 00l ds <w@)e (o

w(Q*)

G, (Ma) (z)w(z) dm)
o
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1/q
@( S 9k e i) )

(5 'A' Comalelizin ) sw@)e( Sl

o)

which proves in Case 2. ThlS finishes the proof of Theorem "

4. Calderon—Zygmund decompositions

In this section, we establish some subtle estimates for the Calderén—Zygmund decompo-
sition associated with local grand maximal functions on the weighted Euclidean space R™
given in [49]. Notice that the construction of the Calderén—Zygmund decomposition in [49)
is similar to those in [46], [3] B].

Let ® be a positive function on R, satisfying Assumption (A), w € A¢(R") and q,

be as in (2.4). For an integer N > 2, let Gy (f) and G%(f) be as in (3.2).
Throughout this section, let f € D’'(R™) be such that for all A € (0, c0),

w{z € R™: GN(f)(x) > A}) < 0.
For a given A > inf,crn Gn (f)(2), we set
M ={zeR": Gn(f)(x) > A} (4.1)
It is obvious that 2 is a proper open subset of R™. First, we recall the usual Whitney

decomposition of 2y given in [49] (see also [46, Bl [5]). We can find closed cubes {Q;};
such that

Q) = UQZ-, (4.2)

their interiors are away from QE and
diam(Q;) < 2~ 0+ dist(Q;, 08) < 4diam(Q;).

In what follows, fix a = 1 4+ 2-(11+") and denote aQ; by Q; for all i. Then we have
Qi C QF. Moveover, Qy = |J; QF, and {Q;}; have the bounded interior property, namely,
every point in {2y is contained in at most a fixed number of {Q}};.

Now we take a function & € D(R™) such that 0 < £ < 1, supp(§) C aQ(0,1) and
€=1on Q(0,1). For x € R™, set &(x) = £((x — xx)/1;). Here and in what follows, x; is
the center of the cube @; and I; its sidelength. Obviously, by the construction of {Q}};
and {&};, for any x € R", we have 1 <), &(x) < L, where L is a fixed positive integer
independent of x. Let

&
Zj fj .
Then {(;}; form a smooth partition of unity for 2 subordinate to the locally finite cover
{Q7}i of Qy, namely, xo, = ), ¢; with each ¢; € D(R™) supported in Q7.

G = (4.3)
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Let s € Z4 be some fixed integer and Ps(R™) denote the linear space of polynomials
in n variables of degrees no more than s. For each i € N and P € P,(R"™), set

1 1/2
Pl; = / P(z)*¢i(x) da . 4.4
IPh= | ey L PR (1.4
Then it is easy to see that (Ps(R™), | - |l;) is a finite-dimensional Hilbert space. Let
f € D'(R™). Since f induces a linear functional on P,(R™) via

1
P way T

by the Riesz representation theorem, there exists a unique polynomial
P, € Py(R™) (4.5)
for each i such that (f, P(;) = (P;, P¢;) for all P € Ps(R™). For each i, define the
distribution
b= (f—P)¢; whenl; € (0,1), b, =f¢ whenl; €[1,00). (4.6)

We show that for suitable choices of s and N, the series ), b; converges in D'(R™), and
in this case, we let g = f — >, b; in D'(R™). We point out that the representation

f=g+sz-, (4.7)

where g and b; are as above, is called a Calderon—Zygmund decomposition of f of degree
s and height A\ associated with Gy (f).

The rest of this section consists of a series of lemmas. Lemma |4.1| gives a property
of the smooth partition of unity {(;};, Lemmas through are devoted to some
estimates for the bad parts {b;};, and Lemmas and give some controls over the
good part g. Finally, Corollary {4.8|shows the density of L (R™)N hfj ~(R™) in hfj ~(R™),
where ¢ € (q,00). Lemmas hrough and Lemmas and are respectively
Lemmas 4.2 through 4.5, and Lemmas 4.7 and 4.8 in [49].

LEMMA 4.1. There exists a positive constant Cy such that for all f € D'(R™), all
A> inf Gy (f)()

and all I; € (0,1), we have

sup |P;(y)Gi(y)| < Ci.
yERN

LEMMA 4.2. There ezists a positive constant Co such that for allt € N and z € QF,

G (b)(z) < C2Gn (f)(2). (4.8)

LEMMA 4.3. Assume that integers s and N satisfy 0 < s < N and N > 2. Then there
exist positive constants C', C3 and Cy such that for alli € N and x € (Q;‘)G,

ALttt

(I + |z l_ |t XB(:qus)(x)a (4.9)

where x; is the center of the cube Q;. Moreover, if x € (Q;“)G and l; € [Cy,00), then
6% (b)) = 0.

G (bi)(z) < C
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LEMMA 4.4. Let ® satisfy Assumption (A), w € A(R"™), q, and ps be respectively as

in (2.4) and (2.6). If integers s, N satisfy s > [n(qw/ps —1)|, N > s and N > Ng_,,,
where No, ., is as in (3.25), then there exists a positive constant Cs such that for all

feRE (R™), X > infyern Gn(f)(2) and i €N,

[ #@R o)) iz < s [ a@u(h@)(o) de (410)

*
i

; ; P n
Moreover, the series ), b; converges in hy (R™) and

/n (gN(Zb) ) )dx < 05/Q OGN (f)(x))w(z) da. (4.11)

Proof. By Lemmas [4.2] and [£.3] we have
[ 2@ e @@ dr s [ @ (f)()ulz)da
Rn Q:

+ / B(G%(b) (2)w(z) dr,  (4.12)
(2C3QH\ Q7

where QY = Q(x;,1). Notice that s > |[n(q./pe — 1)] implies (s +n + 1)ps > nq,.
Thus, we take gy € (qu,00) such that (s +n + 1)ps > ngo and w € A°(R"). By
Lemma i), we know that there exists an @ € Ay, (R™) such that @ = w on 2C3QY and
Agy (@) S AP¢(w). Using Lemma the lower pg property of ®, Lemma viii) and
the fact that Gy (f) > A for all z € QF, we conclude that

/ B(GY (bs) () )w()
(2C3Q\Q;

<Z/ (G (bi) (2 ))&(x)dxﬁi@@k(,ﬁsm) /2er &(z) da

2kQr\2k-1QF Pt
S Z (A 2k(N+s+1)p<1> /QkQ* z)de S Z ®(A Kot pe = an]W<Q:)
S / PGB e [ RGN0l (4.13)

where kg € N satlsﬁes ko2 < (05 < 2k° 1. From (4.12)) and (4.13)), we deduce that (4.10} -
holds. Then, by (4.10] , we see that

Z/ (G (bi) () w(w) do < Z/ (Gn(f)(2))w(z) do
S /QA D(Gn(f)(x))w(z) dz.

Combining the above inequality with the completeness of h3 ~(R™), we infer that ), b;
converges in hY \ (R™). So by Proposition the series ), b; converges in D'(R™) and

hence g?\] (Z bi) (z) < Z g]({,(b

for all 2 € R™, which gives (4.11). This finishes the proof of Lemma n
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LEMMA 4.5. Let w € AY¢(R") and q, be as in 2.4), s € Zy and integer N > 2. If
q € (qu,00] and f € LL(R™), then the series Y, b; converges in LL(R™) and there exists
a positive constant Cg, independent of f, such that

Dt

LEMMA 4.6. Let integers s and N satisfy 0 < s < N and N > 2, f € D'(R") and A >
infrern G (f) (). If 3=, b; converges in D'(R™), then there exists a positive constant Ct,
independent of f and X\, such that for all x € R",

< C a (mn).
L@ S 6llfllLe (mm)

ln—&-s—i—l
%

Gh(9)(x) < G () e)xog (1) + A Y

T — .’L‘i|)"+5+1 XB(I'th) (I),

where x; is the center of Q; and Cs is as in Lemma [£.3]

LEMMA 4.7. Let ® satisfy Assumption (A), w € A(R"), q, and ps be respectively as
in (2.4) and ([2.6), N > Ng ., where No, ., is as in (3.25), and ¢ € (qu, 00).

(i) If integers s and N satisfy N > s > |n(qu/ps — 1)] and f € h37N(R”), then
GQ(g) € L4 (R™) and there exists a positive constant Cs, independent of f and A,
such that

AL B(G z))w(z)dx, Ae(0,1),
/ 6% (9)(z)]%w(z) dz < Cs . Jarn @GN (f)(2))w(z) €(0,1) (4.14)
" AP [ (G (f)(2))w(z) de, Ae[l,00).

(ii) If f € LL(R™), then g € L2 (R™) and there exists a positive constant Cy, independent
of [ and X, such that ||g||Lee mn) < Co.

Proof. We first prove (i). Let f € h y(R™). By Lemma and Proposition > bi
converges in both h® y(R™) and D'(R"). By s > |n(q./ps — 1)], we know that there

exists go € (¢w,00) such that (s +n + 1)pe > nge and w € A°(R™). Let
1= [ on () @)ls) da.
oY
From Lemmas [4.6] and we infer that

[ oot 5 [

Rn

”H-S—i-l q
[Z (l; + |$z_ 2] )t XB(%,Cs)(m)] w(z)dr +J

3 [ (M (o ) @)™ (e da 4 3

e /n (Z[XQ (x)]("+s+1)/”)qw(x) dr+J

N

A

5)\‘1/ w(z)dr +J ~ Nw(Qy) + J.
Qx

Now, we consider the following two cases for .
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Case 1: A > 1. In this case, since ® has lower type pe, we have

Nw(0) < AT () inf Gn(N(@)] < AT w00 (inf Gy ()

< NP /Q (Gx (f) (x))wl) do.

Recall that
O ={zeR": Gn(f)(x) > 1}

From the fact that ® has lower type pe and upper type 1, it follows that

- [ (o [N ) /|

c c
8Nt

5/G[QN(f)(af)]q”’q’@(QN(f)(x))W(x) dx+/ [Gn () (@) (Gn (f) (@) w(z) da
ot Q

C
Y

5 (/\q*m +>\qfl)/

Q

L 2N (f)(@))w(z)de S X’*m’/ O(Gn (f)(2))w(x) da,

2 of
which together with the estimate of A%w(§2y) implies in Case 1.
Case 2: A € (0,1). In this case, for any z € Qy, if Gy (f)(z) > 1 > A, using the fact that
® has lower type ps, we conclude that
XS NTPRGN (f) (@) S NP (G (f)(2) S ARG (f) (@)
If Gn(f)(x) < 1 and Gy (f)(z) > A, by the fact that ® has upper type 1, we see that
X< ATEGN(f)(2) S X (G (f)(2)).-
From these estimates, we deduce that
Nw(©@) X [ B(Gn(f)(a)(o) do
N

For J, since A € (0,1), Gn(f)(x) < A for all z € QE and ® has upper type 1, we know
that

J< it / () @)w(a) dr £ 207 / B(G () (@) () d,

Q)\
which together with the estimate of Aw(£2,) implies (4.14) in Case 2. Thus, (i) holds.

Now we prove (ii). If f € LI (R™), then g and {b;}; are functions. By Lemma we
know that ), b; converges in LZ(R") and hence in D'(R™) by Lemma [2.6(ii). Write

g=F=>bi=(1=3G) + 3 PG = fxag + > P,
i i i€F i€k
where F = {i € N: [; € (0,1)}. By Lemma[4.1] we have |g(z)| < A for all z € Q, which
combined with Proposition [3.2{i) yields
lg(z)] = |f(z)] < Gn(f)(z) <A

for almost every z € Qg, Thus, [|gllzeen) S A This shows (ii) and hence finishes the
proof of Lemma[4.7] =
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COROLLARY 4.8. Let ® satisfy Assumption (A), w € AS(R™), q, be as in (2.4),

qc€ (Qwa OO)
and N > Ng, ., where Ny, is as in [3.25). Then h® (R™) N LL(R™) is dense in
hi, n(R™).
Proof. Let f € hf)N(R"). For any A > inf,ern Gn (f) (), let

f=g*+> b

be the Calderén—Zygmund decomposition of f of degree s with |n(q./pe —1)] < s < N
and height X\ associated to Gy (f). By Lemma

Lo@Ew)was [ @@ i

Hence, g* — f in hY y(R™) as A — co. Moreover, by Lemma i), we have G (¢*) €
L3 (R™), which together with Proposition ii) implies g* € L9 (R™). This finishes the
proof of Corollary n

5. Weighted atomic decompositions of A y(R")

In this section, we establish the equivalence between h® \ (R™) and hf; % *(R™) by using
the Calderén—Zygmund decomposition associated to the local grand maximal function
stated in Section [l

Let ® satisfy Assumption (A), w € ARS(R"), q,, ps and Ng ., be respectively as

in (2.4), (2.6) and (3.25), N > Ng,, an integer and sy = |n(qw/ps — 1)]. Throughout
this section, let

fe hf)N(R”).
We take ko € Z such that 280~1 <inf,cgn Gy (f)(x) < 2% when
it Gy (/)(#) >0,
and when inf,cgn Gy (f)(x) = 0, let kg = —oo. Throughout this section, we always assume
that k > kq. For each integer k > kg, consider the Calderén—Zygmund decomposition of f

of degree s and height A\ = 2* associated to Gx(f). Namely, for any k > ko, by taking
A = 2% in ([4.1)), we now write the Calderén-Zygmund decomposition in (4.7) as

f=g"+> 0l (5.1)
i
here and in what follows in this section, we write {Q;}; in (4.2), {¢;}: in (4.3), {P;}; in

(@5) and {b;}; in ([4.6), respectively, as {Q¥};, {¢F}i, {PF}; and {b¥};. Now, the center
and the sidelength of Q¥ are respectively denoted by z¥ and [¥. Recall that for all i and k,

> ¢F =xa,,  supp(bf) Csupp(¢f) C QFF, (5-2)

{Q%*}; has the bounded interior property, and for all P € Py(R"),
(f, PCF) = (PP, ). (5.3)
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For each integer k > kg and 7, j € N, let Pfj-l be the orthogonal projection of (f_P;‘”l)gzk
on Py(R™) with respect to the norm
1

Jan ¢ () dy
namely, Pijl is the unique polynomial of Ps(R™) such that for any P € Ps(R"™),

(= PEOC PG = [ PR @) PG @) o (54)
Recall that a = 1+ 2~(1+7) In what follows, let Q¥* = aQ¥,
BEf ={ieN: |Qf|>1/(2'n)}, Ff ={ieN:[Q]|>1},
ESY={ieN: |QF<1/(2'n)}, FF={ieN: |QF <1}.
Observe that

1Pl = [ 1P@Pe @) da.

k41 . . kox (k4+1)*
P77 #0 ifand only if Q7" NQ; # 0. (5.5)
Indeed, this follows directly from the definition of Pfjl Lemmas through below
are just Lemmas 5.1 through 5.3 in [49).
LEMMA 5.1. Let Qqr be as in (A1) with A = 2%, and Q¥* and I be as above.

) IF QN QYT £0, then 15+ < 24 /mik and QYY" € 20nQk € Q.

(ii) There exists a positive integer L such that for each i € N, the cardinality of {j € N :
QF N Q;kﬂ)* # 0} is bounded by L.

LEMMA 5.2. There exists a positive constant C' such that for all i,j € N and integer

k> ko with 157 € (0,1),

sup |PE () (y)] < c2MFL (5.6)
y n

LEMMA 5.3. For any k € Z with k > ko,
Rl kA1) _
Z( > BT ) =0,
i€N j€F2k+1
where the series converges both in D' (R™) and pointwise.

The following lemma gives the weighted atomic decomposition for a dense subspace
of h® \(R™).

LEMMA 5.4. Let ® satisfy Assumption (A), w € A(R"™), q,, ps and Ng, ., be re-

spectively as in , and . If ¢ € (qu,0), N > Ng , is an integer, s >

[7(¢w/pe — 1)) and N > s, then for any f € LL(R™) N hE \(R™), there exist Ao € C,

MY ks ko.i € C, a (p,00),-single-atom ag and (p, o0, 8),-atoms {a¥} x>k, i such that
F=Y_> Xaf + Xoao, (5.7)

k>ko i
where the series converges both in D'(R™) and almost everywhere. Moreover, there exists
a positive constant C, independent of f, such that

ATl Yz ko, i U {A0a0}) < Cllfllne | n)- (5.8)
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Proof. Let f € (LL(R™)NhS 5 (R™)). We first consider the case kg = —oco. As above, for
each k € Z, f has a Calderén-Zygmund decomposition of degree s and height \ = 2*
associated to Gy (f) as in (5.1]), namely,

fzgk—I—be.

By Corollary |4.8 and Proposmon E g¥ — f in both hq’ ~(R™) and D'(R") as k — occ.
By Lemma 1), | g* lza@ny — 0 as k — —oo, and furthermore, by Lemma [2.6(ii),
g* — 0in D/(R") as k — —oo. Therefore,

oo

f=> (""" =g" (5.9)

k=—o0

in D'(R™). Moreover, since supp(}_,; b¥) C Qpr and w(Qgr) — 0 as k — oo, it follows
that g¥ — f almost everywhere as k — oo. Thus, (5.9) also holds almost everywhere. By

Lemma and with Qort1 C Qo
g =gt = (=) - (1 - be)
r ,
= Zbk Zbk+1 +Z< Z k+1<]k+1)

i jEFIH'1
DI SUARCGETD S e Rl =) ST (5.10)
1 7 jEFZk+1 7

where all the series converge in both D’'(R™) and almost everywhere. Furthermore, from
the definitions of b¥ and b¥™" as in (£3), we infer that when I¥ € (0, 1),

hi=fxas,, G =PI+ D PITIGGT 3 PG ()
jeryT jerytt
and when [¥ € [1, 00),
=l G D BREGTE X AT G
serp erp
By Proposition i), we know that for almost every x € QEHI,
|£(2)] < Gn(f)(@) < 2",

which, together with Lemma Lemma ii)7 7 Lemma (5.11)) and (5.12]),

implies that there exists a positive constant C7g such that for all i € N,

||hf||Lg°(Rn) < Chp2". (5.13)
Next, we show that for each i and k, h¥ is a multiple of a (p, 0o, s),-atom by considering
the following two cases for .
Case 1:i € E¥. In this case, from the fact that l;-“'l < 1forje FQk‘H7 we deduce that
QUCH)* C Q(xF,a(I¥ 4 2)) for j satisfying QF* N Q§k+l)* #0. Let v =1+ 271277 Thus,
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when I¥ > 2/(y — 1), if we let QF = Q(zF, a(l¥ + 2)), then
supp(h¥) € QF C 1QF* C Qe

When I¥ < 2/(y — 1), if we let @f = 25nQ%*, then by Lemma i), we have

supp(h¥) @I? C Q.
From the definition of Q¥, Lemma ( ) and Remark [2.4| with C' = 2/(y — 1), we infer
that there exists a positive constant Cll such that

w(@QF) < Criw(QF). (5.14)
Let A; = max{Cho, C11},

A= A2k (@) p(w(@F)) (5.15)

and a¥ = (\F)~1h¥. From (5.13) and supp(h¥) C @f with l(@f) > 2a > 1, it follows that
ks a (p, 0o, 5),-atom.

a;

Case 2: i € E}. In this case, if j € FF then I¥ < l;-“+1/(24n). By Lemma i), we
know that Qf* N Q(-’H_l)* = forje Flk'H. From this, (5.2) and (5.10]), we conclude that

=(F=POG = Y fGTE = Y (BTG

jeFkt JEFk+!
k+1 k41
+ 2 PTG
JEFk+
(f Pk Ck Z { Pk+1 k+1<k ‘le?jlcjk%»l} (516)
jeFk+

Let QF = 26nQ*¥*. Then supp(h¥) C éf‘ From I¥ < 1/(2*n), Lemma v) and Re-
mark with C' = 4a, we know that there exists a positive constant C15 such that

w(QF) < Crow(QF). (5.17)
Moveover, hf satisfies the desired moment conditions, which are deduced from the mo-
ment conditions of (f — PF)¢F (see (5.3))) and (f — P;”l)(]l-”l(k P’“HC’Hl (see (5.4)).
Let AVQ = max{C’lo, 012},

AF *A22’“ (QH)p(w(@F)) (5.18)

and af = (A¥)~7'hF. From this, (5.13)), supp(h¥) C Qk and the moment conditions of h¥,
we know that af is a (p, co, s)w atom.
Thus, from (5.9), (5.10)), and Cases 1 and 2, we infer that

f=) > M}

keZ ieN

holds in both D’(R") and almost everywhere, where for every k and i, AF € C and a¥
is a (p, 00, §)w-atom, which shows (5.7) in the case that kg = —oo by letting Ao = 0.
Furthermore, from the fact that ®(t) ~ t *6) gs for all t € (0, 00), -, -7

S

(5.14), (5.17)), the upper type 1 property of ‘I> Fubini’s theorem and the bounded interior




38 D. Yang and S. Yang

property of {Q¥*}, we know that for any A € (0, o0),

~ I\F|
w(OFd — —
2(QV) <Ap(w(Q’?))w(Q§“))

k,i

2
o ()\)w(x) dz < /
k<loglGn (f)(x)] R k<loglon (f)(x)]

§/n/jgN(f)(x)/A@(t)(fw(x)de/WV@<W>w(ﬂc)dw,

which implies (5.8]) in the case kg = —oc.
Finally, we consider the case ko > —oco. In this case, as f € h® y(R"), we see that
w(R™) < co. Adapting the previous arguments, we conclude that

o0

F=> (" —g") +go =f+g%, (5.19)
k=ko

and for the function f, we have the same (p, 0o, s),-atomic decomposition as above,

f= Mgk (5.20)
k>ko, i
and
AN af ez, 1) S Ifllne @n)- (5.21)
From Lemma ii), it follows that
g% || oo (mn) < Co2% < 2Cq wgﬁ{fn Gn(f)(x), (5.22)

where Cy is as in Lemma [4.7(ii). Let A\g = 2C92%w(R™)p(w(R™)) and
ag = /\glgko.
Then
laoll e rny < [w(R™)p(w(R™)] ™.

Thus, ag is a (p, 00),-single-atom and g*® = \gag, which together with (5.19) and (5.20))
implies (5.7) in the case ky > —oo. Moreover, from (5.22)), we deduce that for any
A € (0,00),

o () :“‘Rn)é(cgfku> < [ (T et

which together with (5.21]) implies (5.8)) in the case kg > —oo. This finishes the proof of
Lemma[.d m
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REMARK 5.5. By its proof, all (p, 0o, $),-atoms in Lemma can be taken to have
supports @ satisfying 1(Q) € (0,2]. Indeed, for any (p, oo, s),-atom a supported in a
cube Qo with 1(Qp) > 2, there exist Ny € N, depending on I(Qp) and n, and cubes
{Qi}Mo, satlsfylng 1(Qs) € [1,2] with i € {1,..., No} such that X, Q; = Qo, for any
z € Qo, 1 < Zi:l XQi( ) < C(n)v and

¢ Y oxa
Z Qg i=1

where C(n) is a positive integer, only dependmg on n. For any given A\g € C and i €
{1, e ,No}, let

_ Aow(Qi)p(w(@i)) _ _ w(Qo)p(w(@o))axq,
w(Qu)p(w(Qv)) w(Q1)p(w(Q:) L1 xa

Then for any i € {1,..., No}, b; is a (p, 00, s),-atom supported in the cube Q; and

No
i=1
From the definitions of ~; and b;, vaz‘)l Qi = Qo, and for any = € Qo,

1< xa.(@) < Cn),

i=1
we also conclude that for all A € (0, 00),

No

ol il nw | Aol
Z“(Ql)‘l’(m(@im(w@i))) < Oln) (QO)‘I’<Aw<Qo>p<w<Qo>>>' (5:24)

=1

Thus, by the proof of Lemma (5.23)) and ([5.24)), we see that the claim holds.

Now we state the weighted atomic decompositions of kg r(R™).

THEOREM 5.6. Let ® satisfy Assumption (A), w € Al%(R™), and q, and Ng. ,, be re-
spectively as in ) and | - If g € (qu, 0], and integers s and N satisfy N > Ng
and N > s> |n (qw/p@ —1)], then
,q, S ny _ 1, ® n n
hE T (R™) = b3 Ny(R™) = b3, (R)
with equivalent norms.

Proof. Tt is easy to see that
h; > 1 (R™) C W ©°(R™) C by, (R") C A n(R™) C ATy, (R™),

where the integers s; and Nj are respectively no less than s and N, and the inclusions
are continuous. Thus, to prove Theorem it suffices to prove that for any integers
N, s satisfying N > s > |n(qu/pe — 1)] we have h? (R™) C hf > *(R™), and for all
f€hg y®RY),

1fllng == @ny S fllnz ey
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Let f € hY y(R™). By Corollary there exists a sequence {fym }men C ho (R™)N
L3 (R™) such that for all m € N,

[ fmllnz @ny <271 fllne  &n) (5.25)
and f = 3 fm in hny(R”). By Lemma for each m € N, f,,, has an atomic
decomposition

=Y Aray
1€ZL4
in D'(R") with
AN S Wl o
where {\["}icz, C C, {a]" }ien are (p, 00, s),,-atoms and ag* is a (p, 00),-single-atom.
Let

Ro = w®)p(w®) S N sy Fo= (o)t 3 Al
m=1 m=1

Then oo
Xodo = Y Aj'ag".
m=1
It is easy to see that
@0l pee (mny < [WR™)p(w(R™))] 7Y,

which implies that ag is a (p, 00),,-single-atom. Since ® is increasing, by (5.8)), we know
that for any m € N,

w(R™ A6
(R )@<Cl|f7’”hf,N(R")W(Rn)p(w(R"))> <1 (526)

where C is as in (5.8]). Let
> 1/pe
= } : P
Y= C(_ ||meh§’N(Rn)> ’

where C is as in (5.8]). Then, from the continuity, subadditivity and the strictly lower
type ps property of ®, and (5.26), it follows that

n ‘X0|
(R ”’(wmn)p(w(ﬂw))

007 pYL mi
— W(Rn)CD(Zm_l | 0 |Ja0 ||LW (R ))
Y

o Hfm”i)lg ? m
(R™) |)\ ‘ )
S w R" ,\,w’N q)( 0 S 17
®) D — CllFnllng o amy @B )p(@(RY))

which together with (5.25)) implies that

A{Aodo}) <7 S (I llne  (n)-
Thus, we see that
I= Z Z)\Qna;n + Xotig € B2 (R™) and || flpg e (mn) S [fllne  @n)-
meN ieN ’
This finishes the proof of Theorem [5.6] m
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REMARK 5.7. Let p € (0,1]. Theorem [5.1] when ®(t) = ¢ for all ¢ € (0, 00) was obtained
by Tang [49, Theorem 5.1].

For simplicity, from now on, we denote by hZ(R") the weighted local Orlicz—Hardy
space haN(R") when N > Ng .

6. Finite atomic decompositions

In this section, we prove that for any given finite linear combination of weighted atoms
when ¢ < oo (or continuous (p, ¢, $),-atoms when ¢ = o0), its norm in h$7N(R") can
be achieved via all its finite weighted atomic decompositions. This extends the main
results in [35], [57] to the setting of weighted local Orlicz-Hardy spaces. As applications,
we see that for a given admissible triplet (p, g, s)., and a 8-quasi-Banach space Bg with
B € (0,1}, if T is a Bg-sublinear operator, and maps all (p, ¢, s).-atoms and (p, q).-
single-atoms with ¢ < oo (or all continuous (p, ¢, $),-atoms with ¢ = c0) into uniformly
bounded elements of Bg, then 7" uniquely extends to a bounded Bg-sublinear operator
from h2(R") to Bgs.

DEFINITION 6.1. Let ® satisfy Assumption (A), w € A2¢(R"™) and (p, ¢, s). be admis-
sible as in Definition Then h? % *(R™) is defined to be the vector space of all finite

w, fin
linear combinations of (p, g, s),-atoms and a (p, ¢),-single-atom, and the norm of f in

Ry G (R™) is defined by

k
||f||h&%{:(R,L) = inf{A({/\iai}i) s f= Z Niai, k€ Zy, {\}_o CC, {a;}r_, are
i=0

(p, q, 8)u,-atoms and ag is a (p, q)w—single—atom}.
Obviously, for any admissible triplet (p, g, s)w, h, %, (R") is dense in Af; ©*(R™) with
respect to the quasi-norm || - ||, - (gn)-

THEOREM 6.2. Let ® satisfy Assumption (A), w € A(R"™), q., be as in [2.4) and
(p, q, ) be admissible as in Definition .

() If ¢ € (qu,00), then || - ||pe o s@ny and || - [[he®n) are equivalent quasi-norms on
W% R

(ii) Let b} 5" (R™) denote the set of all f € R} %" (R™) with compact support. Then

w, fin, ¢

Il ||h£*_";°r; S,(Rn) and || - |[ne ®n) are equivalent quasi-norms on hf; 5" (R™) N C(R™).

Proof. We first show (i). Let ¢ € (quw,o0) and (p, ¢, s)., be admissible. Obviously, from
Theorem 5.6, we infer that A, %" (R™) C h;%*(R") = h3(R™) and for all f € hf) % (R™),

w, fin

1 fllne @ny S N1 llne s @ny-

w, fin

Thus, we only need to show that for all f € h” % *(R™),

w, fin

1 £llnesas@ny S N Fllng @ny- (6.1)

w, fin
By homogeneity, without loss of generality, we may assume that f € hf, % (R") with
| fllne @) = 1. In the rest of this section, for any f € b % (R"), let ko be as in Scction

w, fin
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and Qo with k > ko as in (£I) with A\ = 2%, Since f € (hS y(R™) N LE(R™)), by
Lemma there exist \g € C, {\F}>,.: C C, a (p, 00),-single-atom ag and (p, 00, 8),-
atoms {a¥} x>k, i such that
f= Z Z)\faf + Aoao (6.2)
k>ko i

both in D'(R™) and almost everywhere. First, we claim that (6.2) also holds in LZ(R™).
For any z € R", from R" = Ukao(ng \ Qyk+1), we see that there exists j € Z such that
x € Qg; \ Qoit+1. By the proof of Lemma we know that for all k& > j, supp(a¥) C

@f C Qo C Qgj+1; then from ((5.13) and (5.22)), we conclude that
3 Y M@+ hoao@)| S D 2420 S S Gn()().
k>ko i ko<k<j
Since f € L%(R™), from Proposition [3.2(ii), we infer that Gy (f)(z) € L& (R™). This
combined with the Lebesgue dominated convergence theorem implies that
Z Z )\faf + /\0(10
k>ko i

converges to f in L9 (R™), which completes the proof of the claim.
Next, we show (6.1)) by considering the following two cases for w.

Case 1: w(R™) = oco. In this case, as f € LL(R™), we know that kg = —oo and ag(z) =0
for almost every z € R™ in (6.2). Thus, in this case, (6.2]) has the version
P XYtk
kez i

Since, when w(R") = oo, all (p, g).-single-atoms are 0, if f € A, %7 (R"™), then f has
compact support. Assume that supp(f) C Qo = Q(zo,r9) and

Qo = Q(zo, V/nrg + 2°10TMHL),
Then for any ¢ € Dy(R™), 2z € R" \ Qp and ¢ € (0,1), we have

o x f(z) = /Q )y = bole — ) f(y) dy = 0.

L(w,23(10+ﬂ'))ﬂQ($g,ro)
Thus, for any k € Z, Qqx C Qo, which implies that supp(Y ez Do AFal) C Qo. For each

i
positive integer K, let
Fx={(i,k): k€Z, k>ko,i €N, [k|+i< K} and fx= > Aal.
(ki) EFK

Then, by the above claim, fx converges to f in L% (R™). Thus, for any given e € (0,1),
there exists Ky € N large enough such that

1CF = Frco) el gy < [p(@(@o))]~ w(@o)] /4,
which together with supp(f — fx,)/e C @0 implies that (f — fk,)/€eis a (p, ¢, s),-atom.

interior and sidelengths satisfying I; € (1,2], where Ny depends only on rg and n. It is

Moreover, we equivalently divide Q into the union of some cubes {Q;}Y° with disjoint
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clear that
I = fro)xa. /ell Lz @ny < [p(w(Q0)] ™ w(Qo)] 7™ < [p(w(@:)]  w(Qa]Y7 7Y,

which together with supp((f—fx,)xq,/€) C Q. implies that (f—fx,)xq,/€isa (p, ¢, §)w-
atom for i =1, ..., Ny. Thus,

No
f = fKo +Z(f - fKO)XQi

i=1
almost everywhere is a finite linear weighted atom combination of f. Let
bi = (f - fKO)XQi/e
_ A 1/pe . _ ..
and take e = N, . Then, by (2.8) with ¢ = w(Q;), Remark 11) and the lower type
pg property of @,

£ llne 2o ny S AQMEaF} i myeri, ) + A{ebi )

| Ae(0,00): iw@i)@(W) <i}st

i=1

S Ik @ s mny +inf

—N

which implies (6.1 in Case 1.

Case 2: w(R™) < co. In this case, f may not have compact support. Similarly to Case 1,
for any positive integer K, let

fK = Z )\f(lf + )\0(1()
(ki)EFK

and bx = f — fx, where F is as in Case 1. From the above claim, fx converges to f in
L2 (R™). Thus, there exists a positive integer K7 € N large enough such that

||bK1||Lg(Rn) < [p(w(}R”))]—l[w(Rn)]l/q—l'

Thus, bk, is a (p, q),-single-atom and f = fx, + bk, is a finite linear weighted atom
combination of f. Moreover, by Remark (ii) and (2.8) with ¢t = w(R"™),

I fllne s @y S A({)\faf}(z’,k)eml) + A({bx, })

w, fin
. B 1
SNk @ @) —|—1nf{)\ € (0,00) : w(R )@(Aw(R")p(w(R”))> < 1} <1,

which implies (6.1)) in Case 2. This finishes the proof of (i).

We now prove (ii). In this case, similarly to the proof of (i), we only need to prove
that for all f € h? %% (R™),

w, fin, ¢
[ £llney o= s @ny S 1 flIng @ny-
Again, by homogeneity, without loss of generality, we may assume that [|f|pe®n) = 1.
Since f has compact support, by the definition of Gy (f), it is easy to see that Gy (f)
also has compact support. Assume that supp(Gn(f)) C B(0, Ry) for some Ry € (0, 00).
As f € LZ(R"), we have Gy f € L2°(R™). Thus, there exists k; € Z such that Qo = 0
for any k € Z with k > k; + 1. By Lcmma there exist A\g € C, {\} i, 545101 CC, a
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(p, 00).-single-atom ag and (p, 0o, s),-atoms {a¥}x,>k>k,.: such that

k1
f: Z Z)\fa?-i-)\oao

k=ko i

holds both in D’'(R™) and almost everywhere. Since f is uniformly continuous, for any
given ¢ € (0, 00) there exists a § € (0,00) such that if

then |f(x) — f(y)| < e. We may assume that § < 1. Write f = ff + f5 with
> Maf+Xag and f5= > Maf,

(i,k)eG1 (i,k)EG2
where
Gy ={(i,k): UQ¥) > 6, ko <k <k}, Go={(i,k): l(QF) < b, ko<k<k},

and @f is the support of a¥ (see the proof of Lemma. For any fixed integer k € [ko, k1],
by Lemma ii) and Qyx C B(0, Rp), we see that G is a finite set.
For any (i,k) € Gy and x € Q¥, |f(x) — f(2F)| < e. For all z € R", let

fl@) = [f(@) = f@)]xg (2)
and P¥(z) = P¥(z) — f(z*). By the definition of P¥, for all P € P,(R"),

[ 1) = PP ) e =0,

Since |f(z)| < € for all z € R” implies that Gy (f)(z) < € for all z € R™, by Lemma
we see that

sup |Pf (y)¢F(y)] S sup G ()] S e (6.3)

yER™ yER™

Let ﬁf] € Ps(R™) be such that for any P € Ps(R"),
[ [F@) = Pra)let (@) Pla)et (o) do = / B () P(a) (1 () dir

Since (f — PF)CF = (f — PF)¢F, from supp(¢F) © QF we have Pil’fj = P}';. Then from
Lemma [5.2] we deduce that

sup [PF ()¢ (9)] S sup [Gn ()] S = (6.4)
ye R yGR"L
Thus, from the definition of A\Fa¥, > CJ’?“ = XQ,i,, and (0.11), we know that
k k k41 ok
faf = fxqo, CF—PECE+ D0 PTG Y BEGH
JeFyT! jeFyt!

rs k  pkrk Dk+1 ~k ~k+1 Dk+1 k+1
:fXng+1Ci7PiCi+ Z Pj+Ci<j+ + Z Pij <j+'

jeFyT! jeFFT!
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From this together with (6.3]), (6.4) and Lemma ii)7 it follows that [A\fa¥| < e for all

T € @f with (i, k) € Ga. Moreover, using Lemma |5.1{(ii) again, we conclude that

k1
515D e S (k= koe.
k=ko
From the arbitrariness of e, supp(f5) C B(0, Ry) and |f5| < (k1 — ko)e, we choose & small
enough such that f§ is an arbitrarily small multiple of a (p, 0o, s),-atom. In particular,
we choose g9 € (0,00) such that f5° = Xa with [A| < 1 and @ is a (p, 00, §),-atom.
Then
f= Y Xaf+Xao+Xa
(i,k)EGy

is a finite weighted atomic decomposition of f, and

[ fllng s @ny S Nfllne@ny +1 51,
which completes the proof of Theorem .
REMARK 6.3. (i) From the proof of Theorem for any f € h” % *(R™) with ¢ € (qu, o),

w, fin
there exist {)‘j}?zo C C, a (p, q),-single-atom ag and (p, ¢, s),-atoms {aj};?:l satisfying
supp(a;) C Q; with I(Q;) € (0,2] such that f = Z?:o Ajaj in both LE(R™) and D’ (R™).
Moreover, for all f € ;% *(R"),

[ £llnesa s @ny ~ || Fllng @n)

w, fin k
~ inf{A{)\iai}i D f= Z/\iai’ keZy, {a;}t_, are (p, q, 5),-atoms
=0 satisfying supp(a;) C Q;, 1(Q;) € (0,2]
and ag is a (p, q)w—single—atom}.
(ii) Obviously, when w(R™) = oo,
R (R N C(R™) = bl 5 (R™) N C(R™).

As an application of Theorem we establish the boundedness on A2 (R") of quasi-
Banach-valued sublinear operators.

Recall that a quasi-Banach space B is a vector space endowed with a quasi-norm || ||z
which is nonnegative, nondegenerate (i.e., || f||g = 0 if and only if f = 0), homogeneous,
and obeys the quasi-triangle inequality, i.e., there exists a positive constant K no less
than 1 such that for all f, g € B,

1f +glls < K(Ifll5 + llglls)-
Let B8 € (0,1]. As in [56, 57], a quasi-Banach space Bg with the quasi-norm || - ||, is
called a B-quasi-Banach space if
If + 918, < 1715, + llgli3,
for all f,g € Bg.
Notice that any Banach space is a 1-quasi-Banach space, and the quasi-Banach spaces

1% and LP(R™) are typical S-quasi-Banach spaces. Let ® satisfy Assumption (A). By the
subadditivity of ® and (2.6]), we know that hZ(R") is a ps-quasi-Banach space.
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For any given [-quasi-Banach space Bg with 5 € (0,1] and a linear space ), an
operator T' from Y to Bg is called Bg-sublinear if for any f,g € B and A, v € C,
1T +vg)llss < (MNPITIIE, + WP (9)5,)"
and
1T(f) =T, < IT(f = 9)lss
(see [66, 57)).
We remark that if 7" is linear, then it is Bg-sublinear. Moreover, if Bg is a space

of functions, and T is nonnegative and sublinear in the classical sense, then T is also
Bs-sublinear.

THEOREM 6.4. Let ® satisfy Assumption (A), w € AR(R"™), q, be as in (2.4) and
(p, 4, 8)w be admissible. Let Bz be a [3-quasi-Banach space with 3 € (0,1] and p be an
upper type of ® satisfying p € (0, B]. Suppose that one of the following holds:

(i) q € (qu,00) and T : K> % *(R™) — Bg is a Bg-sublinear operator such that

w, fin

S =sup{|[T(a)|s, : ais a(p, q, s)w-atom with supp(a) C Q and
1(Q) € (0,2] or (p, q)w-single-atom} < co.
(ii) T is a Bg-sublinear operator defined on continuous (p, 00, $),-atoms such that
S =sup{||T(a)||, : ais a continuous (p, 00, s),-atom} < oo.
Then there exists a unique bounded Bg-sublinear operator T from h®(R™) to B which
extends T
Proof. We first show the conclusion under assumption (i). For any f € A% (R™)
by Theorem i) and Remark i)7 there exist a sequence {/\j}é-:o C C with some
l €N, a (p, q),-single-atom ag and (p, ¢, $),-atoms {aj}é-zl satisfying supp(a;) C @,
and [(Q;) € (0,2] for j € {1,...,1} such that f = Z;:o Aja; pointwise and

A({)\jaj}é‘:o) S e @n)- (6.5)
Then by the assumptions,
1

T (F)ls, < {3 I IT@ng, ) <{i|x @iz}’ {ZIA e
21

=0
Since @ is of upper type p, for any ¢ € (0,1] and s € (0,00) we have ®(st)
Ao = {Zizo |>\i|§}1/5. Then

Pd(s). Let

l l

2 w(@)? (AOM(QJ)A! (Ql))) 2 (Ql)@o) w(gi)wl'

1=0 1=0

From this we deduce that Ao < A({\iai}_,), which together with (6.5) and implies
that

IT()llss S Ho S AfAaiti—o) S £ lIngen)-

Since hf) % 7(R") is dense in hZ(R™), a density argument gives the desired conclusion in

this case.
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Now we prove the conclusion under assumption (ii) by considering the following two
cases for w.

Case 1: w(R™) = oco. In this case, similarly to the proof of (i), using Theorem [6.2](ii) and
Remark [6.3(ii), we see that for all f € A; T (R™) N C(R™),

IT()Bs < 1 llng ny-
To extend T to the whole A2 (R™), we only need to prove that h”> 2 °(R®)NC(R") is dense

w, fin
in h2(R™). Since A} 3 *(R") is dense in h$(R™), it suffices to prove that hf) & *(R™) N
C(R™) is dense in h; 3 °(R™) with respect to the quasi-norm || - |52 @n)-
To see this, let f € h; 3 °(R™). In this case, for any (p, 00),-single-atom b, b(z) = 0

for almost every x € R™. Thus, f is a finite linear combination of (p, oo, s),-atoms.
Then there exists a cube Qo = Q(xg, 7o) such that supp(f) C Qq. Take ¢ € D(R™) such
that supp(¢) C Q(0,1) and [,, ¢(x)dx = 1. Then it is easy to see that for any k € N,
supp(dx * f) C Q(zo, 70+ 1) and ¢y * f € D(R™). Assume that f = Zfil Aia; with some
N e N, {\}Y, c Cand {a;}}; being (p, 0o, s),-atoms. Then for any k € N,

N
Gk f = it *a;.

i=1
For any k € N and i € {1,...,N}, we now prove that ¢; * a; is a multiple of some
continuous (p, 00, s),-atom, which implies that for any k € N,
o x f € hZ’,?AS(R") NC(R™). (6.7)

For i € {1,..., N}, assume that supp(a;) C Q; = Q(x;,7;). Then

supp(¢r * a;) C Qi1 = Q(z4,7; + 1/2F).
Moreover,
o * @il < lailloge ey < s
k¥ Qi||peo®n) < ||@if|Los (@) £ — =
S FED = 0(Q)p(w(@)
Furthermore, for any a € Z7}, [, a;(x)z* dz = 0 implies that
or * a;i(z)x® dx = 0.
Rﬂ.

Thus M@g xa; is a (p, 00, s),-atom.

" w(Qi,k)P(w(Qi, k)
Likewise, supp(f — ¢k * f) C Q(zo,70 + 1) and f — ¢y * f has the same vanishing

moments as f. Take ¢ € (q,,00). By Lemma iii),
||f — ¢k * f||Lg}(]Rn) —0 as k — oo. (68)
Without loss of generality, we may assume that when k is large enough,
If = én * fllLa @n) > 0.
Let
ek = If — b1 * fllpo @y [w(Q(z0, 70 + 1)V p(w(Q(m0, 70 + 1))
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and ar, = (f — ¢r * f)/ck. Then ay, is a (p, q, s),-atom, f — ¢ * f = cxax, and ¢ — 0
as k — oo. Thus, from (2.8)) with ¢t = w(Q(xg, 70 + 1)), and Theorem we infer that

1f = &n * fllne®n) S A({ckar}) < lex| =0 (6.9)
as k — oo, which together with (6.7) shows the desired conclusion in this case.

Case 2: w(R™) < oo. In this case, similarly to the proof of Case 1, by The-
orem W(ii)7 to finish the proof of (ii), it suffices to prove that h[; % ° (R") N C(R™)
is dense in Af, G °(R") in the quasi-norm || - [[42 &n)-

For any f € h? 2 °(R"™), assume that

w, fin

N;
f=Y " Xiai + Moao,
i=1
where Ny € N, {\;}, € C and ay is a (p, 00),-single-atom and {a;}2!; are (p, 00, §)..-
atoms. Let {¢ }ren C D(R™) satisfy 0 < 1, < 1, 9, = 1 on the cube Q(0,2%) and

supp(¥r) C Q(0,2"+1).
We assume that supp(Zf\Q1 Aia;) C Q(0, Ry) for some Ry € (0,00) and kg is the smallest
integer such that 250 > Ry. For any integer k > ko, let f, = fi. Then f, € R G o (R™).
Indeed, by the choice of vy,

N1
k= Z)\iai + Aoaor
=1
and supp(fx) C Q(0,2%+1). Furthermore, from supp(agx) C Q(0,25*1) and
1 1
oo () < oo () < <
ol e = ool ) = gm) pa@n)) = (@00, 270l @00,257)))°

hl% 0, s
w, fin, ¢

we deduce that agy is a (p, 00, §),-atom. Thus, fi € (R™). For any fixed integer

k > ko and any i € N, let fk,i = fr * ¢;, where ¢ is as in Case 1. Similarly to the proof
of (6.7), we have fj, ; € h” %% (R™) N C(R™). For any ¢ € (qu, o), from the choice of fj

w, fin, ¢
and w(R™) < oo, we conclude that

1/q
I = Rlre < { [ @t e

1/q
< ||A0a0Lgo(Rn){/ () dx} -0 (6.10)
Q(0,2%)0

as k — oo. Furthermore, for any fixed k € Z with k > ko, similarly to the proof of ,
we see that || fx — fx,illLg®n) — 0 as i — oo, which together with (6.10) implies that

If = fr,illLa @ny — 0
as k,i — oco. Without loss of generality, we may assume that when k and ¢ are large
enough, ||f — fx illLe @ny > 0. Let

cki = ||f — ﬁc,z‘HLg(R")[W(R")]l/q_IP(W(Rn))

and ag,; = (f — ka)/ck,i. Then f — fv;m- = Ck, ik, i, Ok, 1S & (p, ¢)w-single-atom and
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ck,i = 0 as k,i — oo. Then, similarly to the proof of (6.9), ||f — ﬁg,iHhS(Rn) — 0 as
k,i — oo, which completes the proof of Case 2 and hence of Theorem [

REMARK 6.5. Let p € (0,1]. We point out that Theorems[6.2)(i) and [6.4(i) when ®(t) = t?
for all ¢ € (0, 00) were obtained by Tang [49, Theorems 6.1 and 6.2]. Theorems [6.2](ii) and
[6.4(ii) are new even when w =1 and ®(t) = t? for all t € (0,00).

7. Dual spaces

In this section, we introduce the BMO-type space bmoz’ »(R™) and establish the duality
between h2?*(R™) and bmogjw(R"); here and in what follows, 1/¢ + 1/¢’ = 1. From
this and Theorem we deduce the duality between hZ(R™) and bmo, ,(R"), and
that for ¢ € [1,4¢w/(qw — 1)), bmoj ,(R™) = bmo, ,,(R") with equivalent norms, where
bmo, ., (R™) denotes bmo},,w(R"). We begin with some definitions.

For any locally integrable function f on R™, we denote the minimizing polynomial of
f on the cube @ with degree at most s by Py, f, namely, for all multi-indices § € Z7 with
0<16] <,

Am@—%ﬂmﬁm:u (7.1)

It is well known that if f is locally integrable, then P f uniquely exists; see, for ex-
ample, [48]. Now, we introduce the BMO-type space bmoj, ,(R™).

DEFINITION 7.1. Let @ satisfy Assumption (A), w € A%¢(R"), and ¢, ps and p be

respectively as in (2.4), (2.6) and (2.7). Let ¢ € [1,¢,/(q. — 1)) and s € Z, with s >
[7(qw/pe—1)|. When w(R™) = o0, a locally integrable function f on R™ is said to belong
to the space bmo ,(R™) if

1/q
Hf”bmog,w(n@n) = { / |f(x pr )|q[w(m)}1—q dx}

QCR",|Q|<1 P(

1/q
+ { /|f N qu} < 00,
QCRn |Q|>1 p(w(Q))

where the supremum is taken over all cubes @ C R" and P f is as in (7.1). When
w(R™) < oo, a function f on R™ is said to belong to the space bmo ,(R™) if

) 1/q
q ny = q —q
o xey = _sp s { s [ 1) = B )t~}
1/q
1 a4
+QCR§1H?Q|>1P(WQ { /'f x}

1 1 9w (a 1—g N 1/q .
+p(W(R")){w(Rn) /]Rn |f (@) [w(2)]"~1d } < 00,

where the supremum is taken over all cubes @ C R™ and P§ f is as in (7.1).
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When w =1, ® = ¢ for all t € (0,00) and ¢ = 1, the space bmo? ,(R") is just the
space bmo(R"™) introduced in [I§].

Now, we establish the duality between h#; 9 °(R™) and bmoz:w(R"). We begin with
the notion of the weighted atomic Orlicz-Hardy space HS 7 *(R™).

DEFINITION 7.2. Let ® satisfy Assumption (A), w € AX¢(R"), p be as in (2.7) and
(p, q, $)o, be admissible. A function a on R™ is called an HE % #(R™)-atom if there exists
a cube Q C R"™ such that

(i) supp(a) C @;

(i) llallzs @y < (@]9 p(w(@)] ™
(iil) [pn a(x)z®dx = 0 for all multi-indices a € Z77 with |a| < s.
The weighted atomic Orlicz—Hardy space HP % *(R™) is defined to be the space of all
f € D'(R™) such that f = Y2, \ia; in D'(R™), where {a;}ien are HS % 5(R™)-atoms
with supp(a;) C Q;, and {\; }ien C C, satisfying

, Al ~
Z“"(QJ‘I’(w<c2i>p<w<czi>>>< |

=1

oo

Moreover, the quasi-norm of f € H? % 5(R") is defined by
[f1lmg 2= ey = mE{A({Aiai }721) },

where the infimum is taken over all the decompositions of f as above and

Afha}ey) Einf{/\ € (0,00) : iw(Qim(Mm) < 1}.

Furthermore, H” 1 °(R™) is defined to be the set of all finite linear combinations of

Hp 95 (R™)-atoms.

Obviously, H/ %7 (R") is dense in the space H/ % *(R™) with respect to the quasi-norm
I g ooy
DEFINITION 7.3. Let ® satisfy Assumption (A), w € A¢(R"), q., ps and p be re-
spectively as in (2.4), (2.6) and (2.7). Let ¢ € [1,¢w/(qw — 1)) and s € Z; with s >
[n(qn/ps — 1)]. A locally integrable function f on R™ is said to belong to the space
BMOY , (R™) if

171 L T

f q nEsup{/fx—Psfx w(x _dw} < 00,

BMOp, (&™) qcrr p(w(Q)) lw(Q) Jg @

where the supremum is taken over all cubes @ C R™ and P§f is as in (7.1).

Now, we establish the duality between Hf % *(R™) and BMOZ:w(R").

LEMMA 7.4. Let ® satisfy Assumption (A), w € AS(R™), q, and p be respectively as
in (2.4) and (2.7), and (p, q, $)w be admissible. Then [HE T *(R™)]*, the dual space of
HE % *(R™), coincides with BMO? ,(R™) in the following sense.

(i) Let g € BMO;{M(R"). Then the linear functional L, which is initially defined on
HE &y (R™) by

L(f) = (9, ), (7.2)
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has a unique extension to HE % *(R™) with

1Lz o= @y < Cllgllgaion iy

where C' is a positive constant independent of g.
(ii) Conversely, for any L € [Hf ¢ *(R™)]*, there exists g € BMO? (R") such that (7.2)
holds for all f € H” T °(R™) and

w, fin

HgHBMOg:w(R") < C”L”[Hﬁ' D E(R™)]*

where C' is a positive constant independent of L.

Proof. We borrow some ideas from [48] and [33, Theorem 4.1]. Let (p, ¢, $). be an
admissible triplet. First, we prove (i). Let a be an Hf % *(R™)-atom with supp(a) C @
and g € BMOY ,(R"). Then by the vanishing condition of a and Holder’s inequality, we
have

[ awg@rds| = | [ a(wlgfe) - Pglo))ds

1/d
< lallsseo{ | 1960) = Pogte)l? (o) o}
< l9llgmon , ny: (7.3)

where Pjg is as in (7.1). Let
ko
F= " Xa; € HE2(R™),
where ko € N, {\}, ¢ C and for i € {1,...,ko}, a; is an H? % *(R™)-atom with
supp(a;) C Q;. Since ® is concave and has upper type 1, by Remark (iii), we know

that 3, [\ S A({\iai 1o, ) which together with (7.3]) implies that

f )g(x) dx

< {Z |Az-|}uguBMog;w(Rn) S AN D9 pyior . eny:
=1

Thus, by the above estimate and the fact that H? & *(R™) is dense in HS % *(R™) with
respect to the quasi-norm || - || g, a5 (gn), We find that (i) holds.
To prove (ii), assume that L € [HS ¢ *(R™)]*. Let Q@ C R™ be a closed cube and

L (Q) = {f e Li(Q): /Qf(x)ac" dr=0,a€Z, |a| < s},

where f € LL(Q) means that f € LI (R™) and supp(f) C Q. We first prove that
[HE " *(R™)]" C [LE, (Q)]". (74)
Obviously, for any given f € L% (Q),
@ = W@V @I o/
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is an H 7 *(R™)-atom. Thus, f € H. % *(R™) and

11l zzg o=y < (@Y p(w(@)f Il L8,
which implies that for all f € LZ, (Q),

LF) < ML f o= ey < (@Y7 p(w(@DIENIF]l L3 ()
That is, L € [LE (Q)]*. Thus, holds.
From , the Hahn—-Banach theorem and the Riesz representation theorem, it fol-
lows that there exists a § € LZ (Q) such that for all f € Lg (Q),

Lf= /Q F(@)d(@)w(z) dx, (7.5)

where when ¢ = oo, we used the fact that L3 (Q) C L} ((Q) for any v € [1,00) and
LZ)/’S(Q) C L} ,(Q). Taking a sequence {Q;}jen of cubes such that for any j € N,
Q; C Qj41 and lim;_, o @; = R™. From the above result, it follows that for each @,
there exists a §; € LY (Q;) such that for all f € LI, (Q;),

Lf= /Q F(@)F; (2)w(z) da. (7.6)
i
Now, we construct a function g such that
Lf = ; f(x)g(z) dx

for all f € LY, ((Q;) and all j € N. First, assume that f € L (Q1). By (7.6), we know
that there exists a g; € ng (Q1) such that

Lf= . f(@)g1(x)w(x) d.
Notice that f € L (Q1) C LY, ((Q2). By (7.6) again, there exists a go € L (Q) such
that

Lf = ; f@)g1(v)w(z) do = ; f(@)g2(w)w(x) dr,
1 2

which implies that for all f € Lg (Q1),

0 f(@)[g1(x) = g2(2)]w(z) dz = 0. (7.7)

For any given h € L{(Q1), let fi = h—Pg h. Then by (7.1), we know that fi € Lg (Q1).
For f1, by (7.7)), we have

[ h6a) = Pg, b)) (@) ~ Ba(wstx) dr =0,

1
which combined with the well-known fact that
; P§,h(2)[g1(x) — g2(r)|w(z) dz = / h(z)P§, (91 — g2)w)(x) dx
implies that

0 h(@){[g1 () = ga(2)|w () — g, (91 — g2)w)(x)} d = 0. (7.8)
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For j =1, 2, let g; = gjw. By (7.8), we know that for all h € LL(Q1),
_ _ ps _
/ h(m){ [91(z) — g2(2)] = P, (1 gz)(x)}w(x) dz—0,

w(x)

which implies that for almost every = € @1,

91(x) = g2(2) = P, (91 — g2)(2).

Let
() g1 () when z € @1,
g(x) =
g1(z) + Py, (91 — g2)(x) when z € Q2 \ Q1.
It is easy to see that for any f € L ((Q;) with j € {1,2},
Lf= | fwta) (7.9)

In this way, we obtain a function g on R™ such that | . ) holds for any j € N.
Finally, we show that g € BMO »(R") and for all f € H] & °(R"),

Lf= . f(z)g(x)dx. (7.10)

Indeed, for any Hf % °(R™)-atom a, there exists a jo € N such that a € LI (Qj,)-
From this and the fact that (| . ) holds for any j € N we see that (| - ) holds for any
fe H % (RY). It remains to prove that g € BMO? ,(R™). Take any cube @ C R™ as
well as any [ € LL(Q) satisfying || f|l1s ) < 1 and 5upp(f) C Q. Let

a=Cw(@)V [p(w(Q))]’l(f ~ P5f)xaos (7.11)

where C is a positive constant. Obviously, supp(a) C Q. We choose C such that a becomes
an Hf ?5(R™)-atom. From the equality

La:/Qa(:E)g(x)dx

and L € [HZ 7 *(R™)]*, it follows that

Ll = | [ atoite) - Piotelds| < Mol oo (7.12)
By (7.11), (7.12) and (7.1)), for all f € LE(Q) with I fllLa (@) < 1, we see that
(@)Y [p — Pog(@)] da| S IL (me o= oy

which implies that

, 1/q'
w(@]7 [p {/ l9(x) — Pog(x)| [w(x)]' ™1 dfﬂ} S Ll g o= gy

Thus, g € BMOWU(R") and ||g||
Lemma[74 =

Now, we give the duality between h?; ¢ *(R™) and bmolq): »(R™) by invoking Lemma

BMOY , (B") S Ll (g @ ¢ mny)+ - This finishes the proof of
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THEOREM 7.5. Let ® satisfy Assumption (A), w € A(R™), q, and p be respectively
as . ) and (| ., and (p, q, s $)w be admissible. Then [h2; T *(R™)]*, the dual space of
h; @ (R™), coincides with bmo}, ,(R™) in the following sense.

(i) Let g € bmog:w(R”). Then the linear functional L, which is initially defined on
h2 %5 (R™) by

w, fin
L(f) = {9: ), (7.13)

has a unique extension to h;?*(R™) with
”L”[hp D2 (R™)]* < CHgHme W (R

where C' is a positive constant independent of g.
(ii) Conversely, for any L € [hf; % *(R™)]*, there exists g € bmo] ,(R™) such that (7.13)
holds for all f € A% *(R™) and

w, fin
19 pumot ey < ClNEM g o= ny-

where C' is a positive constant independent of L.

Proof. Let (p, q, s). be an admissible triplet. Obviously, the proof of (i) is similar to the
proof of Lemma [7.4]i). We omit the details.
Now, we prove (ii) by considering the following two cases for w.

Case I: w(R™) = co. In this case, let Q C R™ be a cube with I(Q) € [1,00). We first
prove that

[T (RM)]" < [LE(Q)) (7.14)
Obviously, for any given f € LI(Q),
a = W@V pw@)] 11z o) f xe
is a (p, ¢, $),-atom. Thus, f € h2?*(R"™) and
1 llnge =gy < (@Y7 ple( @Dz @)
which implies that for any L € [h2 % *(R™)]*,
ILAI < 1Ll ngy = b(]R" &) < WYY p@(@) 11l (@) 1 Pl ngy o -

That is L € [LZ(Q)]*. Thus, (7.14) holds.
Now, assume that L e [hﬂqu(R")]*. Similarly to the proof of (7.5)), we know that
there exists a § € LY (Q) such that for all f € L(Q),

Lf= /Q F(@)F(@)w(z) da

Take a sequence {Q;}jen of cubes such that for any j € N, Q; C Qj41, limj_,o Q; =R"”
and [(Q1) € [1,00). From the above result, it follows that for each @Q;, there exists a
g; € L% (Q;) such that for all f € L%(Q;),

Lf= /Q @) ()e(e) da. (7.15)
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Now, we construct a function g on R™ such that
Lf= | [f(z)g(x)dx
Qj

for all f € LI(Q;) and j € N. First, assume that f € LL(Q1). By (7.15), we know that
there exists a §; € LZ (Qy) such that

Lf = [ [@)g(z)w(z)de.
Q1

Notice that f € L%(Q;) C L%(Q,). By (7.15) again, there exists a g, € L% (Q3) such
that

Lf= f@)q (v)w(z)de = f(@)g2(z)w(x) dz,
Q1 Q2

which implies that for all f € LI(Q1),

f( )[g1(z) — g2(2)]w(x) dz = 0.
Thus, for almost every = € Ql, g1(x) = ga(z). For j =1, 2, let g; = g;w and

gi(r) when z € Q1,

g2(z) when z € Q2 \ Q1.
q
w

It is easy to see that for all f € LZ(Q;) with j € {1,2},
Lf= /Q £(@)g;(a) da. (7.16)

Continuing in this way, we obtain a function g on R™ such that ([7.16)) holds for all j € N.
Finally, we show that g € bmogiw(R”) and for all f € b % °(R™),

w, fin

Lf= . f(@)g(x) dx. (7.17)

Indeed, since w(R™) = oo, all (p, q),-single-atoms are 0, and for any (p, ¢, s),-atom a,
there exists a jo € N such that a € LL(Q),). From this and the fact that holds for
all j € N, we see that holds.

Now, we prove that g € bmog:w(R"). Take any cube @ C R™ with I(Q) € [1,00) as
well as any f € LZ(Q) with || f|lLs ) < 1. Let

a = [w(@)] V7 [pw(@)] " fxq-
Then a is a (p, ¢, s),-atom and supp(a) C Q. From the equality
La = d
a /Qa(:t)g(x) x

and L € [h2 % 5(R™)]*, we deduce that

|La| = ’/ x)dx

< Ll ey o = )= -
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Thus, for any f € LL(Q) with || f| L5 ) < 1, we have

w(@] o x) dx

<Ll gy @ = ey

which implies that

U
W@I { / 9@ (@) daz} " Dl (119)
Furthermore, from A% % *(R™) > Hf % *(R™) and
[1fllngy o= @ny < W fllmge o = reny
for all f € H? 7 *(R™), we deduce that
[R5 ©°(R™)]" C [HE (R
and L|gp e o@ny € [HE T *(R")]*. Since holds for all f € HJ % °(R"), by Lem-
ma ﬂ(ii) we know that g € BMOgiw(R”) and
I9llpa00 ,@ny S IE [HE @2 @) g @2 @ey)e S 1Ll ng o ey
Thus, this estimate together with implies that g € bmogiw(R") and
||9||bmogjw(Rn) S HLH[hZ’q’S(R")}*a
which completes the proof of Theorem (ii) in Case L.
Case II: w(R™) < co. In this case, let

—_ e
RGP (R™) = {f = Z/\iai in D'(R") : fori €N, a;is a (p, q, 8),-atom,

i=1

supp(a;) € @i, Ai € C and D@»@(M) < °°}

and for all f € fjf,_’\a’/S(R”),
1717 gy = MEEA (N1},

where the infimum is taken over all the decompositions of f as above. For any f €
LL (R™), let

loc

£l

, L 1/q'
— q -4 g
meZfW(R") QC]R",|Q|<1 P( Q) { /|f PQf >| [W(I)] x}

su # L AN o) d 1/q’
+QCR",I\)Q\21 p(w(Q)){w(Q)/Q|f( )N lw(@)]1 d }

—_~—

bmof , (R") = {f € Lige(®") : Il —> <o}

and

Similarly to the proofs of (i) and Case I, we conclude that

—_~—

[T (R™)]* = bmo? , (R™). (7.19)
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Now we claim that
[hG®(R™)]" C [LER™)]". (7.20)
Indeed, for any f € LI (R™), let
a = [wR")]Y I @R DIl e S-
Then a is a (p, q),-single-atom, which implies that f € h?; % 5(R™) and
£ llng; a2 @y < RNV p(w@)IS N 12 gny-
Thus, for any given L € [h2 ¢ 5(R™)]* and all f € LI (R™), we have
L] < WLl pg @ = @oype L lng oo ny < RV p(w(@®™)I|FI| g o)

That is, L € [LL(R™)]*. Thus, (7.20]) holds.
Now, assume that L € [h2; 7 *(R")]*. From w(R") < oo, it follows that

L (R") C L (R™)

for any y € [1,00) and L (R") C LL(R™). From this, (7.20), the Hahn-Banach theorem
and the Riesz representation theorem, we conclude that there exists a g € Lg,l (R™) such
that for all f € LL(R™) with g € (qu, o0,

Lf= [ f@)gewe) dr.
R’VL
Let g = gw. Then for all f € LL(R"),

Lf= - f(z)g(x) dx. (7.21)

| Ll gy o= ey

Finally, we prove that g € bmogiw(R”) and
||g||bmogi w(R™) 5 HLH [RE D 2 (R™)]* -

Obviously, (7.21) holds for all f € A, %47 (R™). For any f € LL(R™) with || f||Lg @) <1,
let

a =RV pw®R")] 7.
Then a is a (p, q),-single-atom. From (7.21]) with f = a and L € [h% % *(R™)]*, we deduce
that

|La| = < Ll g @ = gy

/n a(z)g(x) dx

That is,

w®] Y [pw®)] [ fa)g(e) da

R

< Ll gy @ s )=

which together with || f|| ¢ gny < 1 implies that
1/q' 1 ! 1—¢' e
@ )] [ @l @ o) < Il (22

Moveover, from h; % 5(R™) D hf;?*(R™) and

n

1oy < 11 e
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for all f € h;?*(R™), we conclude that [h% % 5(R™)]* C [T *(R™)]* and

—_~—

L | gy € 6 ™ (R

RE TS (R7)

Thus, by (7.19) and (7.21), we know that g € bmoz:w(}R”) and

loll gy S 1]

— — < P55 S Mn\]*
o (R?) i@ lpgm @y S 1Elme o @)

which together with (7.22)) implies that g € bmogl,w(R") and

”g”bmog:w(R") S HLH[hZ’q’S(R”)}*-

This finishes the proof of Theorem L]

When ¢ =1, we denote bmo? ,(R™) simply by bmo,, ,(R™). By Theorems 5.6{and
we have the following conclusions.

COROLLARY 7.6. Let ® satisfy Assumption (A), w € A(R™), and q., and p be respec-
tively as in (2.4) and (2.7). Then for q € [1,4u/(qw — 1)), bmo} ,(R") = bmo,, ,,(R")
with equivalent norms.

COROLLARY 7.7. Let ® satisfy Assumption (A), w € A(R™) and p be as in (2.7). Then
[hE(R™)]* = bmo,, o, (R™).

8. Some applications

In this section, we first show that local Riesz transforms are bounded on h®(R™). More-
over, we introduce local fractional integrals and show that they are bounded from h”, (R™)
to LI, (R™) when ¢ € [1,00), and from AL, (R") to hl,(R") when ¢ € (0,1]. Finally, we
prove that some pseudo-differential operators are bounded on h®(R"), where w € A,(¢),
a space introduced by Tang [50] (see also Deﬁnitionbelow) and contained in Ap¢(R™)
for p € [1,00).

Now, we recall the notion of local Riesz transforms introduced by Goldberg [I§]. In
what follows, S(R™) denotes the space of all Schwartz functions on R™.

DEFINITION 8.1. Let ¢g € D(R™) be such that ¢g = 1 on Q(0, 1) and supp(¢o) C Q(0,2).
For j € {1,...,n} and z € R", let

For f € S(R™), the local Riesz transform r;(f) of f is defined by r;(f) = k; * f.

We remark that in [I8] it was assumed that ¢9 = 1 in a neighborhood of the ori-
gin and ¢ € D(R™). In this paper, for convenience, we assume ¢o = 1 on Q(0,1)
and supp(dg) C Q(0,2). We prove the boundedness on hZ(R") of local Riesz trans-
forms {r;};.

THEOREM 8.2. Let ® satisfy Assumption (A), w € A¢(R™) and pg be as in (2.6). For
jeA{1,...,n}, let r; be the local Riesz operator as in Definition . If pg = pg and P is
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of upper type p;f, then there exists a positive constant Co = Co (P, w, n), depending only
on ®, q., the weight constant of w and n, such that for all f € h2(R™),

75 (F)lne @ny < Coll fllne mny-

To prove Theorem we need the following lemma established in [49, Lemma 8.2].
LEMMA 8.3. For j € {1,...,n}, let r; be the local Riesz operator as in Definition .
(i) Forw e APc(R™) with p € (1, 00), there exists a positive constant

Cl = Cl(pv W, TL),
depending only on p, the weight constant of w, and n, such that for all f € LP(R™),
75 ()l Lz @ny < Cull £l 2p (mn)-
(i) For w € APS(R™), there exists a positive constant Cy = Cy(w, n), depending only on
the weight constant of w, and n, such that for all f € LL(R™),
75 (Dl Lo ey < Callflly -

Now, we prove Theorem [8.2] by using Theorem [6.2] and Lemma [8:3]

Proof of Theorem [8.3 Let s = |[n(qu/pe — 1)), where g, and pg are respectively as
in (2.4) and (2.6). Then (n+ s+ 1)ps > ng,, which implies that there exists ¢ € (gy,, 00)
such that (n+s+1)ps > ng and w € Agoc (R™). To show Theorem by Theorem (1)
and Theorem it suffices to show that for any (p, ¢).-single-atom a or (p, ¢, s).-atom
a supported in Q(zo, Ro) with Ry € (0, 2],

IGR (rj (@) | Lz rny S 1. (8.1)

First, we prove for any (p, q),-single-atom a # 0. In this case, w(R™) < co. Since

d is concave, by Jensen s inequality, Holder’s inequality, Proposition|3. ( i), Lemma ( )
and (2.8) with ¢ = w(R™), we have

[ #@ @@

< w(R™)® gN(T] (a))(x)w(x) dx)

(U Rn

s
q)< (") 1/q{ (G (@) (@) (2) dﬂ?}l/q)
< w(w)@<m> 1,

which implies (8.1)) in this case.
Now, let a be any (p, g, s).-atom supported in Qy = Q(zo, Ry) with Ry € (0,2]. We
prove (8.1)) for a by considering the following two cases for Ry.

Case 1: Ry € [1,2]. In this case, by the definitions of r;(a) and G (r;(a)), we see that
supp(Gy (r5(a))) € Q5 = Q(wo, Ro +8).
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From this, Jensen’s inequality, Holder’s inequality, Proposition ii), Lemmas
and (V), Remark with C' = 2 and (2.8)) with ¢t = w(Qp), we infer that

[ 2@ @@

0)@

(w |, @) dx)
q)( QO i/ { [9%(73(@))(96)]%(@ dm}l/q)
(g

1

0)® 1/q |TJ )”LZ,(R")) 5“(@0)‘1)([0)(@0

i)

~1

)

<@ <w<Q0>p<w<Qo>>>
which implies in Case 1.

Case 2: Ry € (0,1). In this case, let éo = 8nQy. Then

d(G9° ri(a))(z))w(z) dr = ®(G9° ri(a))(z))w(r) dz
[ @@= [ @ me@pe@as [

For I;, similarly to the proof of Case 1, we have

I < W@o)‘b<[@i)]1/q{ [ @)@t dx}l/q)

- 1 1
“(QO)‘D<[w<Qo>]1/q '”(“)”WR”) < “<Q0)¢’<w<Qo>p<w<Qo>>> ~1L @3

To estimate Iy, let z € (Qo)%, t € (0,1), ¢ € DY (R™) and P; be the Taylor expansion
of 1 about (z — z¢)/t with degree s. Then by the vanishing condition on a, we see that

1 _
i) <) = | [ st (7Y ) ay
1 - e
= /Rnrj(a)(y){i/)(x ; y) —P¢(x n y)}dy’
1
<o [ el (5) - r ()
1 +i N
tn Q(xo,ﬂ)\@fczo) t" JQ(ao ﬂ)“
=G1 4+ Ga +Gs. (8.4)

To estimate G, as t € (0,1) and = € (Qo)f, we see that Gy # 0 implies that
t > 3|z —xo|/4. From this, Taylor’s remainder theorem, Holder’s inequality, Lem-
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Lol ) (5)

ma [8.3(i), (2.1) and Remark 2.2(ii), we deduce that

/

q

1
G S WHW(G)MZ(R"){
a€ZY, |a|=s+1

’ ’ 1/ql
<= ol 7 )]y}

Rs+1 y 1/4’
S ] [ Gl ay
|z — ao[Pts Tl L& (R™) 2R 00

1 Ryttt
w(Qo)p(w(Qo)) |z — wo[r+st1’
where 0 € (0,1),{=60(x —y)+ (1 —0)(x —x0) and 1/g+ 1/¢' = 1.
To estimate Gg, by the definition of k; with j € {1,...,n}, we have

> 0R)E) S (3.6)

aEZ1,|a\:s+1

(8.5)

for all z € R™\ {0}. For any fixed y € (Q(xo, |$2\/{°‘) \ 2¢/nQo), let K? be the Taylor

expansion of k;(-) at the point y — zo with degree s. Moreover, it is easy to see that
G2 # 0 implies that t > |z — xg|/2. From this, Taylor’s remainder theorem, , Holder’s
inequality, Lemma (1) and ([2.1)), we conclude that

1
s [ k- 2 - K- 2
Q(zo, 522\ (2vnQo) L/ Qo

R
S ot la()| =g 42
T Qae 22200\ (2v/mQ0) Lo [nrett

x |y — zo[*T dy

1 1 .
N . A [ @l =l b ay
|z — o Q0. 2201\ (2mQ0) 1Y — Tol™ L/ g,

2/n
RS+1 QO 1
S %HGHLZ(R")%/ ———_l
|z — 0] [w(Qo)] Q(mo,%)\@ﬁc&)) ly — o
|z—zg|
1 n+s+1 N
Ry n+s+1/ ’ 2 ldz
w(Qo)p(w(Qo)) |z — ol N
1 R6L+s+1—6

w(Qo)p(w(Qo)) |z — mo|ntHs+1-9’ (8.7)

where £ = v(y — z) + (1 — ¥)(y — @) for some v € (0,1), J is a small positive constant
which is determined later, and in the third inequality we used the fact that for any

y € Q(xo, '9;;0‘) \ (2¢/nQo) and z € Qo,
I(y — x0) = (2 — z0)| > ly — wo| — |y — x0l/2 = |y — x0l/2.
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Finally, we estimate Gs. For any y € [Q(zo, ‘127%0' )], by the definition of P; and the
support condition on 1), we have

1 T—y ly — xo|®
P7 < . 8.8
()| &8

tn
Thus, from the vanishing condition of a, Taylor’s remainder theorem, , Holder’s
inequality, (2.1]) and (8.8]), we deduce that

1
Gy < — kily —2) — K3(y — 2)|d
3~tn/Q( wl)c{/%|a<z>||]<y - K- 2 ds)
xr — xr —
) ()l o
1 / |z — zo|5H!
T la(z)| =z 42
& Q(Io,m{\/’%‘”)”{ 0 j€[rtett
) () o
t t
R8+n+1 1 1
||a|L?u(an)[w(Q0)]1/qtn/Q(x Lozl o Ty = zo[rrrt

A ) el () o

A

A

< oy T { — (y>‘d
~ Nelig e n+s n 1 Yy
QI U= a1 Joqa, e\
1 1 z—y
tm /Q(ﬁfo M)G ‘y _ x0|n+s+1 111( t ) y}
1 R6L+s+1
w(Qo)p(w(Qo)) { |z — ao|+stl
Rn+s+1 1
+ 07/ —dy
|l‘—.’130|"+3 Qs 07\1 10\ ‘y_x0|n+1

n+s+1
1 R!

w(Qo)p(w(Qo)) [ — wo[" s+
where £ = y(y — 2) + (1 — ¥)(y — xo) for some v € (0,1) and in the third inequality we
used the fact that for any y € [Q(zo, ‘g\/@l )]C and z € Q,

|(y —x0) —v(z — x0)| 2 |y — 2ol

Thus, from (8.4)), (8.5)), (8.7), and |z — zg| > 4nRy, we know that

(8.9)

1 R(nJrerl) R(n+s+176)
ri(a) * Y (x)] S 0 ¢ }
) ) S GG L P

1 pnts+1-0)

0

S S Qo)p(@(Q0)) o — [t T=s
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which together with the arbitrariness of ¢ € DY (R™) implies that for all z € (Qo)°,
1 R(n+s+1—5)
G (ri(a)(z) < 0 .
) S @01 (@u)) e — aororis
Take § € (0,00) small enough such that ps(n+ s+ 1 — &) > ng. By the fact that
supp(G (r(a))) € Q(wo, Ro +8) C Q(w0,9)

and Lemma[2.3(i), we know that there exists an @ € A4(R™) such that & = w on Q(zo,9).
Let mg be the integer such that 2m°~InRy < 9 < 2™nRy. From (8.10), the lower type
pe property of &, Lemma viii) and pe(n+ s+ 1—9) > ng, we conclude that

I < / D8 (r(a)) ()3 (x) d
Q(0,9)\Qo

(8.10)

mo 1 R(n+s+1—6)
S o 0 >c~u x)dx
~ ]z:;) /2j+1nQ0\2an0 <W(QO)P(W(Q0)) |x — x0|n+s+1—5 (z)

1 mo / < R’I’L+S+17§ )pq,N

S L00 —9 ) &(x)dzx

w(QO) ];) 21+1nQo\21nQo ‘1; — x0|n+s+1—§ ( )

mo
SJ Z 2k[(n+s+176)p¢7nq] 5 17

j=3

which together with (8.2) and (8.3)) implies (8.1) in Case 2. This finishes the proof of
Theorem B2l =

REMARK 8.4. Theorem when w € APS(R") and ®(t) = ¢ for all t € (0,00) was
obtained by Tang [49, Lemma 8.3].

Next, we introduce the local fractional integral and, using Theorem prove that
they are boundedness from h®,(R"™) to LI,(R™) when ¢ € [1,00), and from h?,(R™)
to hl,(R™) when ¢ € (0,1], provided that w satisfies wm=n-ra € Al°(R") for some
re (n/(n—a),00) and [p, [w(x)P dz = co. We begin with some notions.

DEFINITION 8.5. Let o € [0,n) and ¢ be as in Definition 8.1} For any f € S(R™) and
all z € R", the local fractional integral I'°°(f) of f is defined by

loc _ ¢0(y) T —
@ = [ 2w =) dy

DEFINITION 8.6. (i) If there exist r € (1,00) and a positive constant C' such that for all
cubes Q C R™ with sidelength I(Q) € (0,1],

(51 ). prar) < © [ wto)as (s.11)

then w is said to satisfy the local reverse Hélder inequality of order r, which is denoted
by w € RH¢(R"). Furthermore, let RH!(w) = inf{C}, where the infimum is taken
over all the positive constants C satisfying (8.11)).

(ii) Let p,q € (1,00). A locally integrable nonnegative function w on R™ is said to
belong to the class A°¢(p, q), if there exists a positive constant C' such that for all cubes
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Q C R™ with sidelength 1(Q) € (0,1],

(161, wr ) (& [t dm)w <c (8.12)

here and in what follows, 1/p+1/p’ = 1. Furthermore, let A°°(p, q)(w) = inf{C}, where
the infimum is taken over all the positive constants C' satisfying (8.12).

REMARK 8.7. (i) Let r be as in Definition [8.6](i). If holds for all cubes @ C R",
then w is said to satisfy the reverse Holder inequality of order r, which is denoted by
w € RH,(R™) (see, for example, [I7]). Let p, ¢ be as in Definition [8.6{ii). If holds
for all cubes @ C R™, then w is said to belong to the class A(p, q).

(ii) For any given positive constant Aj, let the cube @ satisfy I(Q) = A;. Similarly
to the proof of Lemma i), for any w € RH!°(R"), there exists an @ € RH,(R")
such that w = @ on Q and RH, (@) < RH!*(w), where RH,.(©) is defined similarly to
RH*¢(w) and the implicit constant depends only on A; and n.

(iii) Similarly to Remark [2.2[ii), for any given constant A € (0,00), the condition
1(Q) € (0,1] in can be replaced by I(Q) € (0, As] with the positive constant C
in depending on As.

About the relations of A¢(R™), RH!°¢(R™) and A°°(p, q), we have the following
conclusions.

LEMMA 8.8.

(i) Letr € (1, 00). Then w™ € A¢(R™) if and only if w € RH(R™).

(i) Let a € (0, n), p € (1,n/a) and 1/q = 1/p — a/n. Then w € A°%(p, q) if and only
ifw™ e e, (RM).

Proof. We first prove (i). Let w” € A%¢(R™). Then by Lemma i), we know that for

any cube @ = Q(xo,1(Q)) with I(Q) € (0, 1], there exists a function @ on R™ such that

W€ A(R") and @ =w on Q(zg,1). (8.13)
Moreover, by [12, Lemma A], we know that
W' € Axo(R™) if and only if @ € RHT(R"). (8.14)
Thus, for any cube Q(zo,(Q)) with [(Q) € (0,1], by (8.13) and -, we have

(éz/cg[”@)rd”“’)l/r (11 f o ‘”)w QI/ o~ iy | s

which together with the arbitrariness of the cube Q(z¢,(Q)) implies that w € RH¢(R").
Conversely, let w € RH°¢(R™). Then by Remark (ii), we know that for any cube
Q(x0,1(Q)) with 1(Q) € (0,1], there exists a function @ on R™ such that & € RH,(R™)
and @ = w on Q(zp,1), which together with and the arbitrariness of the cube
Q(z0,1(Q)) implies that w € A°¢(R™). This finishes the proof of (i).
By the definitions of A'°¢(p, q) and Allfp /q(R™), we see that (ii) holds, which com-
pletes the proof of Lemma [8.8] m

To establish the boundedness of local fractional integrals, we need the following tech-
nical lemma.
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LEMMA 8.9. Let a € (0,n), p € (1,n/a) and 1/q =1/p — a/n. For some r € (g,00), if
e Ale(q' /', ! 1),
then there exists a positive constant C' such that for all f € LF,(R"),
HI(lxoc(f)Hqu(Rn) < Clfllzr, @), (8.15)
where p', ¢' and v’ respectively denote the conjugate indices of p, q and r.

Proof. Let w™"" € Al°¢(¢//#', p//r"). For any unit cube Q C R”, from Lemmas ii)
and (i), and Remark we deduce that there exists a function w on R™ such that
o e A(d /', p')r") and @ = w on 5Q. For " € A(¢'/r', p'/r'), similarly to the proof
of [13, Theorem 2], we know that for all f € L2, (R"),

||Iioc(f)||qu(Rn) S I llez, @nys

which combined with the definition of I'°°(f) implies that

11X (N)Le, @) = I (Fxs@)liLe, @ S Ifxsellee, @y ~ £z, g (8:16)
Take unit cubes {Q;}:2, with disjoint interiors such that J;~; Q; = R", and

oo
ZX5Q1 S Ma

i=1
where M is a positive integer depending only on n. From this and (8.16)), we infer that

loc loc
V()% gy an I, (Q>NZ\|f||Lp 00 SIFI% gy

which implies (8 . This finishes the proof of Lemma. m

THEOREM 8.10. Let a € (0,n), p € [n/(n+ «a),1] and 1/¢ = 1/p — a/n. For some
r € (n/(n — a),00), if the weight w satisfies W™/ (PT—n=re) ¢ Aloc(R™) gnd Jan[w(2)]P da
= 00, then there exists a positive constant C such that for all f € hY,(R"),

11 (F)llze, @ny < CllFllne, @ey-

Proof. Let r and w be as in the assumption. Then by Lemma (ii)7 we know that there
exists an 1, € (0,00) such that

nr(14np)

wir—n=—ra € APC(R™). (8.17)
Let
pllziJerr(l—i—Z)/(Hm) and qilzpil_%. (8.18)
Then from r € (n/(n — ), 00), we know that
pre(l,n/a), r>q and w " e A°(g/r, pi/r). (8.19)

Furthermore, from (8.17)), the fact that p; < % and Hoélder’s inequality, we infer
that
WP € APC(R™), (8.20)

which together with Lemma ii) implies that there exists an 1y € (0,00) such that
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wPr(+m2) ¢ Aloc(R™). Let
g=pi(1+mn2). (8:21)
From —""— > p and Hélder’s inequality, we see that w? € A°¢(R™). Let s=|n(1/p—1)].

nr—m-—ro

To show Theorem as hY, (R™) and L%, (R™) are respectively a p-quasi-Banach space
and a 1l-quasi-Banach space, Theorem [6.4(i) with ®(¢) = P for all ¢ € (0,00) implies
that it suffices to show that for any (p, g, s)wr-atom a supported in Qo = Q(zo, Rp) with

RO € (072}7
11 (@) 1, oy S 1. (8.22)

From supp(a) C Qo and the definition of I'°°(a), we see that
supp(1y°(a)) C Q(zo, Ry +4). (8.23)
Now, we prove (8.22)) by considering the following two cases for Ry.

Case 1: Ry € [1,2]. In this case, from (8.23]), Holder’s inequality, (8.19), Lemma
Rye[l,2] and 1/g —1/q1 = 1/p — 1/p1, we deduce that

{/n |1%°¢ (@) ()| w ()7 d:]j}l/q

1/Q1
,S {/ |IL°C(G)(x)|q1 [w(x)]ql dw} \Qo\l/q_l/‘h
Q(zo,Ro+4)
< llallgry, gy |QolP7H7. o)

r1(@—p)
By (8.20) and the definition of A¢(R"), we know that w @71 € AP¢(R"). From this
and Lemma i), we infer that w? € RH'%._  (R™), which implies that

p1(@—p)
r(d—p1)

{/ O[oJ(mﬂpdw}“{ | bt 5 dx}“ -,

This, combined with (8.24]), Holder’s inequality and the fact that a is a (p, G, s)yr-atom,
yields

1_ 1
||I};C(a>||qu(R") S llall ey, wny|Qol 771

1

$3 [ la@)w(@)P de " w(@) T eV Qo
U, A }

g{/ O[w(x)]pdx} { / e dw}pa

This shows (8.22) in Case 1.
Case 2: Ry € (0,1). In this case, let Qo = 4nQo. From (8.23), it follows that

1/q
_ZIOC a q n llOC a)lx g wl(T qdl’
H (e ( )Hqu(]R ) < {/VO [eY ( )( )| [ ( )] }

1/q
+ {/ ®) N .}
Q(z0,R0+4)\Qo

QY=

Q=
Q=

Qo7 7 S 1.
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To estimate 17, by Holder’s inequality, (8.15]) and (8.25)), we conclude that
1/q1
W ([ @@ @ ) il A
Q1

1i_ 1
S llallgey, eyl Qof 7™ 21

<{/ O[w(w)}pdas}

To estimate Io, for any fixed z € Q(zo, Ro +4) \ Qo, let E* be the Taylor expansion
of ¢o(-)/| - |"~* about = — z¢ with degree s. Let mg be the integer such that

2m°71nR0 < Rp+4<2™nRy.
Since w? € AP¢(R") C A%"C(R"), by (2.1)), we have

( / O[w(w)}pdw)% ;( / 0[w<x)]—pa/q~dx)w < ( / D[w(x)]pdx>1/pQ0,

From this, the vanishing condition of a, Minkowski’s inequality, Taylor’s remainder the-

orem, the fact that
af ¢0() 1
Z a <| . |n—o¢ (Z) S’ |Z|n+s+1—oz

aEZi, |a]=s+1

for all z € R™\ {0}, and Hélder’s inequality, we deduce that

“(Z/ {/ D) pr(a—y)
k=2 2k 1nQo\2nQo LI/ Qo |z — 1yl
. po(z —y)
= oy {/ T B —y)
kZ_Q/QO latw! 24+ nQo\ 2+ nQo | [ — y[" T
o _ s+1 q
<> [ awi{ [ ( ESTLN
k=2 Qo 2+ 1nQo\2¢nQo \|0(Z — y) — (1 = 0)(z — z0)|
1/q
<l ds) dy
— /a
ly — zo|*+ q 1
SJ aly {/ < w l‘) 9 dr dy
kZ_Q/QO| ( )‘ 2k+1nQo\ 25 nQo ‘x _x0|n+s+17a [ ( ]
= Rgin 1/q
S PN PN Y q
~ Z ok(ntstl—a) {/Qo la(y)l dl/}{/QanQo [w(z)] dm}

k=2

mo Rg_n _ 1/q
>3 2k<++>{ /Q 0 a(y)Wy)]pdy}

k=2

A U[w<y>rﬁ’/‘7dy}l/q~/{ Lo [w(w)}wx}l/q

S :Zﬂfﬁ{ [ wwpad [ et 529

1
P

Q=

r1(@d—p) ﬁ_% 1 1
{/ [w(z)] @D dz} |Qol? 71 <1 (8.27)
0

ol do} (o "

q

[w(xnwx}l/q dy
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where 6 € (0,1) and in the fourth inequality we used the fact that for any y € Qo and
x € 28 nQo \ 2FnQq with k € {2,...,mq}, |(z — x0) — O(y — z0)| 2 |x — 0]
From 2ridm) — rar - ra @T7) and Holder’s inequality, it follows that

nr—n—ro r—q1 r—q’
w1 € AlY(R™). (8.29)
By Lemma i) and Remark with C = 20n, we know that there exists a function w
on R™ such that @™/ (=9 € A;(R") such that @ = w on Q(z¢,20n), which together with
2motinQy C Q(x0,20n) and Lemma [2.3(viii) implies that for any & € {1,...,mo},

T

/Qk"Qo [w(x)] 7 dy = /2an0 [Q(m)]fqu dz < Qk”/o[@(m”& da < 2kn/ [w(x)]%q .

0

By this estimate and Holder’s inequality, we have

1/q
{ / ()] dx} < RS/TQk"/q{ / (2)] 5 dx} . (8.30)
2k+1’nQ0 Qo
Moreover, by (8.29) and Lemma i), we know that w? € RH'%, (R"). Thus, we have

p(r—q)

~1/p o VT e
{[waral [ weral st
Qo 0
which together with (8.28)) and (8.30) implies that
mo
I, < 227k(n+s+17a7n/q).
k=2

1
I3

Q=

From 1/¢ = 1/p — a/n and r > n/(n —«a), we deduce that n + s+ 1 —a —n/q >
n+s+1—n/p, which together with s = |n(1/p—1)] implies that n+s+1—a—n/q > 0.
Thus,

mo
I < 22—k(n+s+1—a—n/q) <1,
k=2

This combined with (8.26)) and (8.27)) proves (8.22)) in Case 2, which completes the proof
of Theorem B.10] =

THEOREM 8.11. Let o € (0,1), p € (0,n/(n+ )] and 1/q¢ = 1/p — a/n. For some

r € (n/(n— a),00), if the weight w satisfies w™/("="=r%) € AlP¢(R™) and [, [w(z)]? dx

= 00, then there exists a positive constant C' such that for all f € hY,(R™),
||Iéoc(f)||hgq(w) < Cllfllne, gny-

Proof. Let p1, ¢1 and ¢ be respectively as in (8.18) and (8.21). To show Theorem

since hf, (R™) and hZ,(R™) are respectively a p-quasi-Banach space and a g-quasi-Banach
space, Theorem i) with ®(t) = t? for all ¢t € (0,00) and Theorem imply that
it suffices to show that for any (p, g, s)wr-atom a supported in Qo = Q(zo, Rg) with
RO € (07 2}7

IGR (I (@)l 22, ny S 1- (8.31)
From supp(a) C Qo and the definitions of I!°¢(a) and G (1'°¢(a)), we know that
supp(GX (I°°(a))) C Q(z0, Ro + 8). (8.32)

Now, we prove (8.31]) by considering the following two cases for Ry.
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Case 1: Ry

€ [1,2]. In this case, by (8.17), the fact that % > ¢ and Holder s

inequality, we know that w? € AP¢(R™), where 7 is as in . From this, ,
Hélder’s inequality, Proposition i), Lemma [8.9) and (8.25), it follows that
[ g% @) @it do

S 1@l “q{/mﬁm) G (112 (a)) (@) ()] dx}q/‘”
{ /Q(mmg) 112 (a) (@) | o ()] dx}q/ "
< 1Qo { /Q )P dx}q/”l
S {|Qo|3‘% ( / O[oJ(x)]pdx)“ (f s dx)“}q <1

which proves (8.31]) in Case 1.

1— 2
< |Q0 a

Case 2: Ry € (0,1). In this case, let @0 = 8nQ)p. Then from , we conclude that
[ g8 @) @)t de = [ (G (1a)@)"lu(w)" do

0

+/ =L 4L (8.33)
Q(x0,R0+8)\Qo
For 1;, similarly to the proof of Case 1, we have

sl [ @)@ ) dw}m
<lol = { [ e )
st { [ jatato dx}q/pl
sl [ |a<x>|q~[w<x>1pdx}q/a{ | et da:}(“)q
< i ( / O[w<x>]pdx)é_’l’ ( | bt dx)pll_%}q <1 (834)

To estimate I, let o € (Qo)°

, b € DY(R™), t € (0,1) and P3 be the Taylor expansion of
¥ about (z — x¢)/t with degree s, where s = [n(1/p — 1)|. Then we have

@) )l = | [ 1@ (25 ) an

o
/Rn 1(a)(y) [w(xt_y) - P} (x - y)} dy’

1

tn




70 D. Yang and S. Yang

1 T —y
<n [ @l (5 - e (2 ay
" Jay/mQo v t
1 1
Q(w(,"l Lo\)\QfQO t [Q(=o, \«v ”0\)]0
=E; + E; + Es. (8.35)

To estimate By, as z € (Q)® and ¢ € (0,1), we see that By # 0 implies that t > |& — x| /2.
From

wﬁ e Alloc(Rn)
and the definition of A°¢(R"™), it follows that w € AY°(R"). Let g2 = (2¢1 — 1)/q1. Then
since w € AP(R") C A°°(R"), Lemma (iv) implies that w9 = w!~% AIOC(R”)
From these facts, Taylor S remalnder theorem Hélder’s inequality, Lemmas|8.9) -and v),

Remark [2.4] with C' = 24/, and (2.2)), we infer that

1 é— qi
Er S et 1%%(a) oy n{ [ oru($)

~ 4n+s+1 (&4 wd (R )

¢ ' a€zn, |al=s+17 2VR0

, 1/‘11
<y 20l O )]y
R9+1 , 1/4}

S ool o [ )y}

|z — ao|ntstt T ELp (R 2R

RS+1 _ 1/‘7

v q p

5m_mwﬂﬂ{/me[wm1M}
. =% 1/q;
p1(a—p) P11 g ’
A [ ¥} [ e a)
0 Qo
Ret! 11 o la
S Mﬁm\@o\“ ? {/ [w(y)] ™ dy}
0
R8+1 1—1 . -1

< W\QO\ a {ejgggf W(Z)} ) (8.36)

where v € (0,1) and £ = y(z — y) + (1 — v)(z — zp). Similarly to the estimates of G
and G5 in the proof of Theorem [8:2] we have

Rn—‘r‘}—‘rl -1
max{Es, E3} < W'Qd 1/ [ezsgé)nof w(z)} . (8.37)

Thus, from (8.35)), (8.36)), (8.37) and the facts that |z — x| > 4nRp and 1/¢ = 1/p—a/n,
we deduce that

Iloc RS+1 inf -1
2 (@] u()| S 1 Py 1ol [essint ()]
Rn+s+1

-1
oy -1/ .
|z — @[ sti-a Qo ™77 [ezsggéf W(Z)}

Rn+s+l

—1
o -1/ .
~a = go|rteti-a Qo™ /7 {ezsgbnof w(z)] ,
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which together with the arbitrariness of ¢ € DY (R™) implies that for any = € (Qo)°,
0 (7l RSHH 1/ -1
oc - s
Gn(I3(a)(@) S W'Qd p[ezsgégnof W(Z)} . (8.38)
Ass=|n(l/p—1)| and 1/q¢ = 1/p — a/n, we know that (n +s+1—a)g—n > 0. Let
mo be the integer such that 2°nRy < Ry + 8 < 2™ T1nRy. From
wi,”.f,tf,,,.a c Alloc(Rn)

and the definition of A¢(R™), we see that w? € AP¢(R™), which together Lemma (1)
implies that there exists a function @ on R™ such that w = w on Q(zo, Ry + 8) and

w? € A;(R™). From this, 1/¢g = 1/p — a/n, (8.38), (i) and (viii) of Lemma the
definition of A°(R™) and (n+ s+ 1 —a)g —n > 0, we infer that

L < Ryt Qo|~1/? |ess inf e a4
—_— ess1nr wlz wlT i
2 /Q(Io,RoJrg)\@o{ ‘.Z‘ - x0|n+s+1_a | Ol |: 2EQo ( )] } [ ( )]

mo R6L+s+1 n/q—a Y
= ——————— |essinf w(z () dx
~ kZ3Lk+1nQO\2ano{ (QkRO)nJrerlfoz |: ~eQo ( )} } [ ( )]

—q
1 q
~ E Qk[(n p 1 a—n] [ezsglnof w(z)} /U[W(JJ)] dz

Nsz[ sty 9ol [ssipt ()] essint ()

S 227k[(n+s+17a)q7n] g 1,
k=3

which together with (8.33) and (8.34) implies (8.31) in Case 2. This finishes the proof of
Theorem L]

Pseudo-differential operators have been extensively studied in the literature, and they
are important in partial differential equations and harmonic analysis; see, for exam-
ple, [46, 51], [45] [50]. Now, we recall the notion of pseudo-differential operators of order
Z€ro.

DEFINITION 8.12. Let 6 be a real number. A symbol in S%(R”) is a smooth function
o(z,§) defined on R™ x R™ such that for all multi-indices « and 3, the following estimate

holds:
0200 0(2,€)] < Cla, B)(1+ [¢])~ 17100,

where C'(a, () is a positive constant independent of z and £. Let f be a Schwartz function
and f denote its Fourier transform. The operator T' given by setting, for all x € R"™,

Tf(a) = [ (e de
is called a pseudo-differential operator with symbol o(z,§) € S?,é(R").

In the rest of this section, let
o(t) = (1+¢)” (8.39)

for all @ € (0,00) and ¢ € (0,00). Recall that a weight always means a locally inte-
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grable function which is positive almost everywhere. The following weight class A,(¢)
was introduced by Tang [50].

DEFINITION 8.13. A weight w is said to belong to the class A,(¢) for p € (1,00) if there
exists a positive constant C' such that for all cubes Q = Q(z, ),

(M/Q“’(y) dy) (m /Q ()] 7 dy)p_l <c.

A weight w is said to belong to the class A1(¢) if there exists a positive constant C' such
that for all cubes Q C R™ and almost every x € R, My(w)(z) < Cw(x), where for all
reR™,

. 1
My (w)(w) = sp oo /Q £ dy,

and the supremum is taken over all cubes Q C R™ and @ > .

REMARK 8.14. By the definition of A,(¢), we see that A,(¢) € AP°(R™), and that
@(t) > 1 for all t € (0,00) implies that A,(R™) C A,(¢) for all p € [1,00). Moreover, if
w € Ap(¢), then w(x)dxr may not be a doubling measure; see the remark of Section 7
in [49] for the details.

Similarly to the classical Muckenhoupt weights, we recall some properties of weights

w € A (®) = U1 <peno Ap(¢). Lemmas and below are respectively Lemmas 7.3
and 7.4 in [@9].

LEMMA 8.15.

(i) If 1 <p1 <p2 < oo, then Ap, (¢) C Ap,(9).
(ii) Forp € (1,00), w € A,(¢) if and only if v~/ P~V € A, (¢), where 1/p+1/p’ = 1.
(iii) Ifw € Ap(¢) forp € [1,00), then there exists a positive constant C' such that for any
cube @ C R™ and measurable set E C @,

1/p
CEPTEAS
o(1QDIQ w(Q)

LEMMA 8.16. Let T be an SY o(R™) pseudo-differential operator. Then for w € Ap(¢)
with p € (1,00), there exists a positive constant C(p, w) such that for all f € LP(R™),

1T £l ey < C(p, W) fll Lo, @ry-
Lemma below is just [I8, Lemma 6].

LEMMA 8.17. Let T be an SY o(R™) pseudo-differential operator. If » € D(R™), then
Tif = xTf has a symbol oy which satisfies that

0708 0(x,€)] < Cla, B)(1+ (€))7,
and a kernel Ki(x, z) which satisfies that

0702 Ki(x,2)| < Cla, B)]z| "1,
where C(a, B) is independent of t when t € (0,1).

Now, we establish the boundedness on hJ(R™) of S 4(R™) pseudo-differential opera-
tors as follows.
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THEOREM 8.18. Let T be an S?’O(R”) pseudo-differential operator, ® satisfy Assump-

tion (A), w € Ax(@) and pe be as in (2.6). If pe = pg and ® is of upper type pg, then
there exists a positive constant C(®, w), depending only on ®, q,, and the weight constant

of Aso(9), such that for all f € h®(R™),
1T fllne@ny < C(@, W) fllne@n)-

Proof. Since w € Ax(¢), we have w € A,4(¢) for some ¢ € (1, 00). To prove Theorem
as w € Ay (¢) € AS(R™), Theorems [6.4(i) and imply that it suffices to show that
for all (p, ¢)w-single-atoms and (p, q, s)w—atoms a supported in Qo = Q(zo, Ro) with
Ry € (0, 2},

1GR (Ta)|| o @y S 1. (8.40)
By Theorem [5.6) we may assume that s satisfies (n+ s+ 1)pe > nq,(1+«), where ps, g,

and « are respectively as in (2.6]), (2.4) and (8.39).

First, we prove (8.40) for any (p, ¢).-single-atom a # 0. In this case, w(R") < oo.
Since ® is concave, by Jensen’s inequality, Holder’s inequality, Proposition i) and

Lemma and (2.8) with ¢ = w(R™), we have

[ v@@aw)
<w@®™)®

S L, Tt i)

(
w0 { [ growreeal )
q>( 1/q||TaHLq (®R") ) S W(Rn)q)<w71w]a||Lﬁ(R")>

W(R")D ~1

)

(W(R")P(M(R")))
which shows (8.40) in this case.

Now, let a be any (p, q, 8)u-atom supported in Qy = Q(xg, Ry) with Ry € (0,2].
Let Qo = 2Qo. Then from Jensen’s inequality, Holder’s inequality, Proposition [3.2((ii),

Lemma Lemma i) and (2.8) with ¢t = w(Qy), it follows that
/ DG (Ta) (2)(w) dx
Qo

0)®

[ ghraete) dx)

{ 6% (Ta) ()] () dx}l/q)

~ 1
q n < - = q n
a”L (R )) NW(QO)@<[W(QO)]1/(]|a||Lw(R ))

" ))) ~1. (8.41)

w

0)®

0)®

W (oG
q’( @

(g

W (G
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For any ¢ € DY(R™) and t € (0, 1), let K;(z, z—2) be the kernel of Tya(z) = ¢*Ta(x).
To estimate fR”\@o ® (G (Ta)(z))w(z) dx, we consider the following two cases for Ry.

Case 1: Ro € (0,1). In this case, we expand K(z,z—2) into a Taylor series about 2z = z
such that for any x € (R™\ Qo),

Yy x Ta(x) = Ki(x,z — 2)a(z)dz = / Z (OFKy)(z, 2 — &)(2 — x0)%a(2) dz,
R Qo A
|aj=s+1
where £ = 0z + (1 — 6)x for some 6 € (0,1). As 2z, xg € Qo, we know that £ € Qq. Thus,
for any z € (R™\ Qo), |z — &| ~ |z — xo|. From the above facts and Lemma m we
deduce that

(e * Ta(@)| S |z — €7D RIla]| prany S o — o]~ Qo]
which together with the arbitrariness of ¢ € D} (R") implies that for all z € R™ \ QO,
GX (Ta)(x) < |w — o~ F*7D|Qy

This, combined with Hdélder’s inequality, Lemma (111) and the definition of A,(¢),
yields

/  B(GY(Ta)(@))w(x) dx
R™\Qo

(R™)

.s+l
" lall ey

<C | oz -zl "FHQo T [|a] 1 @y )w (@) da
R™\ Qo
<C o ®(|Qo| ™ & — 0|~V |a| Lo @y $(| Qo)) | Qol[w(Q0)] ™ Nw(x) dux
sj;l _ —(n+s+1) ¢(|Q0|)|Q0| )
= e, MO Qa1
+ “n+s+1)_ 9(|Qo])|Qol )
<O3 o, 00 200 G Yot

= ok (n+s+1) |Q0| wlz) dz
< {Z/m (1Qol ™ (2Ro) =+ (@o>p<w<czo>>> (e)d

N Z /mo } =C(I + 1), (8.42)

k=mo+1
where the integer mg satisfies 201 < 1/Ry < 2™,
To estimate Iy, for any k € {1,...,mg}, by the choice of my and Ry € (0,1), we know
that 28 R < 1, which, together with Jensen’s inequality, the lower type ps property of @,
Lemma [8.15[(iii) and the fact that (n+ s+ 1)ps > ng(1 + «), implies that

mo w k # —k(n+s+1) w w 71w o) de
I 5]; (2 QO)(D(W(2kQ0) /QkQOQ { (QO)P( (QO))} ( )d )

mo
© St B0 < S g9 oy
k=1 k=1

mo
< Z2fk[(n+s+1)p<1>*mﬂ <1 (8.43)
k=1
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For Iy, similarly to the estimate of I, we have

) w(2k ; —k(n+s+1) w w ~1 () da
Iy gk:mzo-‘rl (2 Qo)<1><w(2kQ0) /QkQOQ { (QO)[J( (QO))} ( )d )

2
Z 9—k(n+s+1)p QO < Z 2knq |2 Qo |)]q2 k(n+s+1)ps

k=mqo+1 k=mqo+1

o0
Z 9—kl(n+s+pe—qlatl)] < 1

k=mo+1

which together with (8.43), (8.42) and (8.41)) implies (8.40) in Case 1.

Case 2: Ry € [1,2]. In this case, for any © € R™\ @0 and z € @)y, we have
| — 2| ~ |z — x|

and |z — x| > 1. From this and [406] p. 235, (9)], we infer that for any positive integer M,
there exists a positive constant C(M) such that

|Ki(z,2 = 2)] < O(M)|z —ao| ™,
which implies that for any z € R™ \ Qo,

s * Ta(w)] < / Ky, 2 — 2)a(z)|dz < | — a0] ™ all 1 n)-
Rn

This, combined with the arbitrariness of ¥ € D?V (R™), shows that for any 2 € R™ \ @0,

G (Ta)(x) < o — x| lall L) (8.44)
Take M > nq(l + a)/ps. By Jensen’s inequality, (8.44]), Holder’s inequality and Lem-
ma iii), we have

/ (G (Ta)(@))w(x) da
R™\Qo

< / B (2 — o] M lal] 1 e () d
R

"\ Qo
= oy SQDIQ Y
S22 e, (” Fo) w(Qo>p<w<Qo>>> (z)d

< VA
< Zw(Q Qo)q)((Q Ro) w(Qo)p(W(Qo))>

€ 3 ahrey e ST € 5 kst g o g

P w(Qo) ™
g Z 92— k[Mp<p—nq(1+a)]Rg(MZhb—ané) S Z 2—/4:[Mpq>—nq(l+o¢)] 5 1,
k=1 k=1

which together with (8.41]) implies in Case 2. This finishes the proof of Theo-
rem [8. 18

REMARK 8.19. Let p € (0, 1]. Theorem with w =1 and ®(¢) = ¢? for all ¢ € (0, 00)
was obtained by Goldberg [18, Theorem 4]; moreover, Theorem with ®(t) = t? for all
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t € (0,00) was obtained by Tang [49, Theorem 7.3]. Also, Theorem with w € 4;(R")
and ®(t) = ¢ for all t € (0,00) was obtained by Lee, C.-C. Lin and Y.-C. Lin [32
Theorem 2].

By Theorems and [46] p. 233, (4)] and the proposition in [46], p. 259], we have

the following result.

COROLLARY 8.20. Let T be an S?,O(R”) pseudo-differential operator, ® satisfy Assump-

tion (A), w € Ax(¢) and ps be as in [2:6). If ps = ps and @ is of upper type pg, then
there exists a positive constant C(®, w) such that for all f € bmo, ,,(R"™),

HTbemop,w(R") < C(CI), w)”fllbmop,u(R”)'
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