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Abstract

Let Φ be a concave function on (0,∞) of strictly critical lower type index pΦ ∈ (0, 1] and
ω ∈ Aloc

∞ (Rn) (the class of local weights introduced by V. S. Rychkov). We introduce the weighted
local Orlicz–Hardy space hΦ

ω(Rn) via the local grand maximal function. Let ρ(t) ≡ t−1/Φ−1(t−1)
for all t ∈ (0,∞). We also introduce the BMO-type space bmoρ, ω(Rn) and establish the duality
between hΦ

ω(Rn) and bmoρ, ω(Rn). Characterizations of hΦ
ω(Rn), including the atomic character-

ization, the local vertical and the local nontangential maximal function characterizations, are
presented. Using the atomic characterization, we prove the existence of finite atomic decompo-
sitions achieving the norm in some dense subspaces of hΦ

ω(Rn), from which we further deduce
that for a given admissible triplet (ρ, q, s)ω and a β-quasi-Banach space Bβ with β ∈ (0, 1], if T
is a Bβ-sublinear operator, and maps all (ρ, q, s)ω-atoms and (ρ, q)ω-single-atoms with q < ∞
(or all continuous (ρ, q, s)ω-atoms with q =∞) into uniformly bounded elements of Bβ , then T
uniquely extends to a bounded Bβ-sublinear operator from hΦ

ω(Rn) to Bβ . As applications, we
show that the local Riesz transforms are bounded on hΦ

ω(Rn), the local fractional integrals are
bounded from hpωp(Rn) to Lqωq (Rn) when q > 1 and from hpωp(Rn) to hqωq (Rn) when q ≤ 1,
and some pseudo-differential operators are also bounded on both hΦ

ω(Rn). All results for any
general Φ even when ω ≡ 1 are new.
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1. Introduction

It is well known that the theory of the classical local Hardy spaces, originally intro-

duced by Goldberg [18], plays an important role in partial differential equations and

harmonic analysis; see, for example, [18, 6, 43, 51, 52, 53] and their references. In par-

ticular, pseudo-differential operators are bounded on local Hardy spaces hp(Rn) with

p ∈ (0, 1], but they are not bounded on Hardy spaces Hp(Rn) with p ∈ (0, 1]; see [18]

(also [52, 53]). In [6], Bui studied the weighted version hpω(Rn) of the local Hardy space

hp(Rn) with ω ∈ A∞(Rn), where and in what follows, Aq(Rn) for q ∈ [1,∞] denotes the

class of Muckenhoupt’s weights; see, for example, [17] for their definitions and proper-

ties.

Rychkov [43] introduced and studied a class of local weights, denoted by Aloc
∞ (Rn)

(see also Definition 2.1 below), and the weighted Besov–Lipschitz spaces and Triebel–

Lizorkin spaces with weights belonging to Aloc
∞ (Rn), which contains A∞(Rn) weights and

exponential weights introduced by Schott [44] as special cases. In particular, Rychkov [43]

generalized some of the theory of weighted local Hardy spaces developed by Bui [6] to

Aloc
∞ (Rn) weights. In fact, Rychkov established the local vertical and the local nontan-

gential maximal function characterizations of weighted local Hardy spaces with Aloc
∞ (Rn)

weights. Very recently, Tang [49] established the weighted atomic decomposition charac-

terization of the weighted local Hardy space hpω(Rn) with ω ∈ Aloc
∞ (Rn) via the local grand

maximal function. Motivated by [5], Tang also established some criterions for bounded-

ness of Bβ-sublinear operators on hpω(Rn) (see Section 6 for the notion of Bβ-sublinear

operators, which was first introduced in [56]). As applications, Tang [49, 50] proved that

some strongly singular integrals, pseudo-differential operators and their commutators are

bounded on hpω(Rn). It is worth pointing out that in recent years, many papers are fo-

cused on criterions for boundedness of (sub)linear operators on various Hardy spaces with

different underlying spaces (see, for example, [4, 35, 57, 5, 20, 56, 42, 49]), and on entropy

and approximation numbers of embeddings of function spaces with Muckenhoupt weight

(see, for example, [21, 22, 23, 24]).

It is also well known that the classical BMO space (the space of functions with bounded

mean oscillation) originally introduced by John and Nirenberg [29] and the classical

Morrey space originally introduced by Morrey [37] play an important role in the study of

partial differential equations and harmonic analysis; see, for example, [15, 11, 14, 38]. In

particular, Fefferman and Stein [15] proved that BMO(Rn) is the dual space of the Hardy

space H1(Rn). Moveover, Goldberg [18] introduced the space bmo(Rn) and proved that

bmo(Rn) is the dual space of the local Hardy space h1(Rn).

[5]
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On the other hand, as the generalization of Lp(Rn), the Orlicz space was introduced

by Birnbaum–Orlicz in [2] and Orlicz in [39]; since then, the theory of the Orlicz spaces

themselves has been well developed and these spaces have been widely used in probability,

statistics, potential theory, partial differential equations, as well as harmonic analysis and

some other fields of analysis; see, for example, [40, 41, 7, 34, 25]. Moreover, Orlicz–Hardy

spaces are also suitable substitutes of the Orlicz spaces in dealing with many problems of

analysis; see, for example, [26, 55, 47, 27]. Recall that Orlicz–Hardy spaces and their dual

spaces were studied by Janson [26] on Rn and Viviani [55] on spaces of homogeneous type

in the sense of Coifman and Weiss [10]. Recently, Orlicz–Hardy spaces associated with

some differential operators and their dual spaces were introduced and studied in [28, 27].

Let ω ∈ Aloc
∞ (Rn), Φ be a concave function on (0,∞) of strictly critical lower type

index pΦ ∈ (0, 1] (see (2.6) below for the definition) and

ρ(t) ≡ t−1/Φ−1(t−1)

for all t ∈ (0,∞), where Φ−1 is the inverse function of Φ. A typical example of such Orlicz

functions is Φ(t) ≡ tp for all t ∈ (0,∞) and p ∈ (0, 1]. Motivated by [43, 49, 18, 28, 27, 5],

in this paper, we introduce the weighted local Orlicz–Hardy space hΦ
ω (Rn) via the local

grand maximal function. We also introduce the BMO-type space bmoρ, ω(Rn) and estab-

lish the duality between hΦ
ω (Rn) and bmoρ, ω(Rn). Characterizations of hΦ

ω (Rn), including

the atomic characterization, the local vertical and the local nontangential maximal func-

tion characterizations, are presented. Using the atomic characterization, we prove the

existence of finite atomic decompositions achieving the norm in some dense subspaces of

hΦ
ω (Rn), from which we further deduce that for a given admissible triplet (ρ, q, s)ω and

a β-quasi-Banach space Bβ with β ∈ (0, 1], if T is a Bβ-sublinear operator, and maps

all (ρ, q, s)ω-atoms and (ρ, q)ω-single-atoms with q < ∞ (or all continuous (ρ, q, s)ω-

atoms with q =∞) into uniformly bounded elements of Bβ , then T uniquely extends to

a bounded Bβ-sublinear operator from hΦ
ω (Rn) to Bβ . As applications, we show that the

local Riesz transforms are bounded on hΦ
ω (Rn), the local fractional integrals are bounded

from hpωp(Rn) to Lqωq (Rn) when q > 1 and from hpωp(Rn) to hqωq (Rn) when q ≤ 1, and

some pseudo-differential operators are also bounded on both hΦ
ω (Rn) and bmoρ, ω(Rn).

We point out that the Orlicz–Hardy spaces hΦ
ω (Rn) include the classical local Hardy

spaces of Goldberg [18], the weighted local Hardy spaces of Bui [6] and the weighted lo-

cal Hardy spaces of Tang [49] as special cases. Moreover, the method of obtaining atomic

decompositions used in this paper (see the proof of Theorem 5.6 below) is different from

the classical methods in [18, 6]. Indeed, following Bownik [3] (see also [5, 49]), we give

a direct proof for the weighted atomic characterization of hΦ
ω (Rn), without invoking the

atomic characterization of HΦ
ω (Rn). All results of this paper for any general Φ even when

ω ≡ 1 are new.

Precisely, this paper is organized as follows. In Section 2, we first recall some definitions

and notation concerning local weights introduced in [43, 49], then describe some basic

assumptions and present some properties of Orlicz functions considered in this paper.

In Section 3, we first introduce the weighted local Orlicz–Hardy space hΦ
ω,N (Rn) via

the local grand maximal function, and then the weighted atomic local Orlicz–Hardy space

hρ, q, sω (Rn) for any admissible triplet (ρ, q, s)ω (see Definition 3.4 below). We point out
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that when Φ(t) ≡ tp for all t ∈ (0,∞) and p ∈ (0, 1], the weighted local Orlicz–Hardy

space hΦ
ω,N (Rn) is just the weighted local Hardy space hpω,N (Rn) introduced by Tang

in [49]. Next, we establish the local vertical and the local nontangential maximal function

characterizations of hΦ
ω,N (Rn) via a local Calderón reproducing formula and some useful

estimates established by Rychkov [43], which generalizes [43, Theorem 2.24] by taking

Φ(t) ≡ tp for all t ∈ (0,∞) and p ∈ (0, 1]; see Theorems 3.12 and 3.14 and Remark 3.13

below. Finally, we present some properties of these weighted local Orlicz–Hardy spaces

hΦ
ω,N (Rn) and weighted atomic local Orlicz–Hardy spaces hρ, q, sω (Rn).

Throughout the paper, as usual, D(Rn) denotes the set of all C∞(Rn) functions on

Rn with compact support, endowed with the inductive limit topology, and D′(Rn) its

topological dual space, endowed with the weak∗ topology. Let brc for any r ∈ R denote

the maximal integer not more than r. In Section 4, for any given f ∈ D′(Rn), integer

s ≥ bn(qω/pΦ − 1)c

and λ > infx∈Rn GN, R̃(f)(x), where qω, pΦ and GN, R̃(f) are respectively as in (2.4), (2.6)

and (3.2) below, and R̃ = 23(10+n), following [46, 3, 5, 49], via a Whitney decomposition

of Ωλ in (4.1), we obtain the Calderón–Zygmund decomposition f ≡ g+
∑
i bi in D′(Rn)

of degree s and height λ associated with the local grand maximal function GN, R̃(f). The

main task of Section 4 is to establish some subtle estimates for g and {bi}i. Precisely,

Lemmas 4.2 through 4.5 are estimates on {bi}i, the bad part of f , while Lemmas 4.6

and 4.7 on g, the good part of f . As an application of these estimates, we obtain the

density of Lqω(Rn)∩hΦ
ω,N (Rn) in hΦ

ω,N (Rn), where q ∈ (qω,∞) (see Corollary 4.8 below).

With a different proof from [49, Lemma 4.9], via an application of the boundedness of

the local vector-valued Hardy–Littlewood maximal operator obtained by Rychkov [43]

(see also Lemma 3.10 below), our Lemma 4.7 below improves [49, Lemma 4.9] even when

Φ(t) ≡ tp for all t ∈ (0,∞) and p ∈ (0, 1], which is necessary for Corollary 4.8.

In Section 5, we prove that for any given admissible triplet (ρ, q, s)ω,

hρ, q, sω (Rn) = hΦ
ω,N (Rn)

with equivalent norms when positive integer N ≥ NΦ, ω (see (3.25) below for the definition

of NΦ, ω), by using the Calderón–Zygmund decomposition and some subtle estimates

obtained in Section 4, which completely covers [49, Theorem 5.1] by taking Φ(t) ≡ tp for

all p ∈ (0, 1] and t ∈ (0,∞); see Theorem 5.6 and Remark 5.7 below. It is worth pointing

out that we show Theorem 5.6 by a way different from the methods in [18, 6], but close

to those in [3, 5, 49]. For simplicity, in the rest of this introduction, we denote by hΦ
ω (Rn)

the weighted local Orlicz–Hardy space hΦ
ω,N (Rn) with N ≥ NΦ, ω.

Assume that (ρ, q, s)ω is an admissible triplet. Let hρ, q, sω, fin (Rn) be the space of all

finite linear combinations of (ρ, q, s)ω-atoms and (ρ, q)ω-single-atoms (see Definition 6.1

below), and hρ,∞, sω, fin, c(Rn) the space of all f ∈ hρ,∞, sω, fin (Rn) with compact support. In

Section 6, we prove that ‖ · ‖hρ, q, sω, fin (Rn) and ‖ · ‖hΦ
ω(Rn) are equivalent quasi-norms on

hρ, q, sω, fin (Rn) when q < ∞, and ‖ · ‖hρ,∞, sω, fin (Rn) and ‖ · ‖hΦ
ω(Rn) are equivalent quasi-norms

on hρ,∞, sω, fin, c(Rn) ∩ C(Rn) when q = ∞ (see Theorem 6.2 below). As an application, we

prove that for a given admissible triplet (ρ, q, s)ω and a β-quasi-Banach space Bβ with

β ∈ (0, 1], if Φ has an upper type p̃ satisfying 0 < p̃ ≤ β, and T is a Bβ-sublinear operator
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mapping all (ρ, q, s)ω-atoms and (ρ, q)ω-single-atoms with q ∈ (qω,∞) (or all continuous

(ρ, q, s)ω-atoms with q = ∞) into uniformly bounded elements of Bβ , then T uniquely

extends to a bounded Bβ-sublinear operator from hΦ
ω (Rn) to Bβ which coincides with T on

these (ρ, q, s)ω-atoms and (ρ, q)ω-single-atoms; see Theorem 6.4 below. We remark that

this extends both the results of Meda–Sjögren–Vallarino [35] and Yang–Zhou [57] to the

setting of weighted local Orlicz–Hardy spaces. We also point out that Theorems 6.2(i)

and 6.4(i) below completely cover [49, Theorems 6.1 and 6.2], respectively, by taking

Φ(t) ≡ tp for all t ∈ (0,∞) and p ∈ (0, 1]; and Theorems 6.2(ii) and 6.4(ii) are new even

when Φ(t) ≡ tp for all t ∈ (0,∞) and p ∈ (0, 1]; see Remark 6.5 below.

Let (ρ, q, s)ω be an admissible triplet, q′ the dual exponent of q and qω the critical

index of ω. In Section 7, we introduce the BMO-type space bmoq
′

ρ, ω(Rn) and prove that

[hρ, q, sω (Rn)]∗ = bmoq
′

ρ, ω(Rn),

where [hρ, q, sω (Rn)]∗ denotes the dual space of hρ, q, sω (Rn); see Theorem 7.5 below. Denote

bmo1
ρ, ω(Rn) simply by bmoρ, ω(Rn). As applications of Theorems 5.6 and 7.5, we see that

for q ∈ [1, qω
qω−1 ), bmoqρ, ω(Rn) = bmoρ, ω(Rn) with equivalent norms and

[hΦ
ω (Rn)]∗ = bmoρ, ω(Rn);

see Corollaries 7.6 and 7.7 below.

In Section 8, as applications of Theorem 6.2, we obtain the boundedness of some

operators from hΦ
ω (Rn) to some β-quasi-Banach space Bβ with β ∈ (0, 1]. First, we prove

that the local Riesz transforms are bounded on hΦ
ω (Rn) if pΦ = p+

Φ and (2.5) holds for

p+
Φ with t ∈ [1,∞) (see Section 2 below for the definitions of p+

Φ), which completely

covers [49, Lemma 8.3] by taking Φ(t) ≡ t for all t ∈ (0,∞); see Theorem 8.2 and

Remark 8.4 below. Then we introduce the local fractional integral operator I loc
α and

show that I loc
α is bounded from hpωp(Rn) to Lqωq (Rn) when α ∈ (0, n), p ∈

[
n

n+α , 1
]
,

1
q = 1

p −
α
n , and ω

nr
nr−n−rα ∈ Aloc

1 (Rn) for some r ∈ ( n
n−α , ∞) and

∫
Rn [ω(x)]p dx = ∞

(see Theorem 8.10 below); furthermore, when α ∈ (0, 1), p ∈ (0, n
n+α ], 1

q = 1
p −

α
n , and

ω satisfies the same conditions, we prove that I loc
α is bounded from hpωp(Rn) to hqωq (Rn)

(see Theorem 8.11 below). To the best of our knowledge, Theorems 8.10 and 8.11 are

new even when ω ≡ 1. Finally, let ω ∈ A∞(φ), a class introduced by Tang [50] (see

also Definition 8.13 below), and T be an S0
1, 0(Rn) pseudo-differential operator. We prove

that T is bounded on hΦ
ω (Rn) if pΦ = p+

Φ and (2.5) holds for p+
Φ with t ∈ [1,∞); see

Theorem 8.18 below. We point out that A∞(φ) ⊂ Aloc
∞ (Rn) but A∞(φ) ⊃ A∞(Rn). We

also remark that Theorem 8.18 below extends [18, Theorem 4] to the setting of weighted

local Orlicz–Hardy spaces, and completely covers [49, Theorem 7.3] by taking Φ(t) ≡ tp

for all t ∈ (0,∞) and p ∈ (0, 1] and also [32, Theorem 2] by taking Φ(t) ≡ t for all

t ∈ (0,∞) and ω ∈ A1(Rn); see Remark 8.19 below. As an application of Theorems 7.5

and 8.18, we also find that T is bounded on bmoρ, ω(Rn); see Corollary 8.20 below.

The main motivation of this paper is to pave the way for the study of weighted

Orlicz–Hardy spaces associated with divergence operators on strongly Lipschitz domains

of Rn. The corresponding Hardy spaces associated with divergence operators on strongly

Lipschitz domains of Rn were originally studied by Auscher and Russ [1], where the
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atomic characterization of the classical Hardy spaces plays a key role. Earlier works on

Hardy spaces on domains can be found, for example, in [31, 36, 9, 8, 54]. It was shown

in those papers that the theory of Hardy spaces on domains plays an important role in

partial differential equations and harmonic analysis.

Finally we make some conventions on notation. Throughout the paper, we denote

by C a positive constant which is independent of the main parameters, but it may vary

from line to line. We also use C(γ, β, . . .) to denote a positive constant depending on the

indicated parameters γ, β, . . . . The symbol A . B means that A ≤ CB. If A . B and

B . A, then we write A ∼ B. The symbol bsc for s ∈ R denotes the maximal integer not

more than s. For any given normed spaces A and B with the corresponding norms ‖ · ‖A
and ‖ · ‖B, the symbol A ⊂ B means that if f ∈ A, then f ∈ B and ‖f‖B . ‖f‖A. For

any subset G of Rn, we denote by G{ the set Rn \G; for a measurable set E, denote by

χE the characteristic function of E. We also set N ≡ {1, 2, . . .} and Z+ ≡ N ∪ {0}. For

any θ ≡ (θ1, . . . , θn) ∈ Zn+, let |θ| ≡ θ1 + · · · + θn and ∂θx ≡ ∂|θ|/∂xθ11 · · · ∂xθnn . Given a

function g on Rn, if
∫
Rn g(x) dx 6= 0, let Lg ≡ −1; otherwise, let Lg ∈ Z+ be the maximal

integer such that g has vanishing moments up to order Lg, namely,
∫
Rn g(x)xα dx = 0 for

all multi-indices α with |α| ≤ Lg.

2. Preliminaries

In this section, we first recall some notions and notation concerning local weights intro-

duced in [43, 49], then describe some basic assumptions and present some properties of

Orlicz functions considered in this paper.

2.1. Aloc
p (Rn) weights. In this subsection, we recall some notions and properties of local

weights. Let Q be a cube in Rn; we denote its Lebesgue measure by |Q|. Throughout the

paper, all cubes are assumed to be closed and their sides parallel to the coordinate axes.

Definition 2.1. Let p ∈ (1,∞). The weight class Aloc
p (Rn) is defined to be the set of all

nonnegative locally integrable functions ω on Rn such that

Aloc
p (ω) ≡ sup

|Q|≤1

1

|Q|p

∫
Q

ω(x) dx

(∫
Q

[ω(y)]−p
′/p dy

)p/p′
<∞, (2.1)

where the supremum is taken over all cubes Q ⊂ Rn with |Q| ≤ 1 and 1
p + 1

p′ = 1.

When p = 1, the weight class Aloc
1 (Rn) is defined to be the set of all nonnegative

locally integrable functions ω on Rn such that

Aloc
1 (ω) ≡ sup

|Q|≤1

1

|Q|

∫
Q

ω(x) dx
(

ess sup
y∈Q

[ω(y)]−1
)
<∞, (2.2)

where the supremum is taken over all cubes Q ⊂ Rn with |Q| ≤ 1.

When p = ∞, the weight class Aloc
∞ (Rn) is defined to be the set of all nonnegative

locally integrable functions ω on Rn such that for any α ∈ (0, 1),

Aloc
∞ (ω; α) ≡ sup

|Q|≤1

[
sup

F⊂Q, |F |≥α|Q|

ω(Q)

ω(F )

]
<∞, (2.3)



10 D. Yang and S. Yang

where F runs through all measurable sets in Rn with the indicated properties, the supre-

mum is taken over all cubes Q ⊂ Rn with |Q| ≤ 1 and ω(Q) ≡
∫
Q
ω(x) dx.

Remark 2.2. (i) We point out that the weight class Aloc
p (Rn) for p ∈ (1,∞] was intro-

duced by Rychkov [43] and Aloc
1 (Rn) by Tang [49]. By Hölder’s inequality, we see that

Aloc
p1

(Rn) ⊂ Aloc
p2

(Rn) ⊂ Aloc
∞ (Rn), if 1 ≤ p1 < p2 < ∞. Conversely, it was proved in [43,

Lemma 1.3] that if ω ∈ Aloc
∞ (Rn), then ω ∈ Aloc

p (Rn) for some p ∈ (1,∞). Thus, we have

Aloc
∞ (Rn) =

⋃
1≤p<∞Aloc

p (Rn).

(ii) For any constant C̃ ∈ (0,∞), the condition |Q| ≤ 1 can be replaced by |Q| ≤ C̃

in (2.1), (2.2) and (2.3); see [43, Remark 1.5]. In this case, Aloc
p (ω) with p ∈ [1,∞) and

Aloc
∞ (ω, α) depend on C̃.

In what follows, Q(x, t) denotes the closed cube centered at x and of sidelength t.

Similarly, given Q = Q(x, t) and λ ∈ (0,∞), we write λQ for the λ-dilated cube, which is

the cube with the same center x and with sidelength λt. Given a Lebesgue measurable

set E and a weight ω ∈ Aloc
∞ (Rn), let ω(E) ≡

∫
E
ω(x) dx. For any ω ∈ Aloc

∞ (Rn), the space

Lpω(Rn) with p ∈ (0,∞) denotes the set of all measurable functions f such that

‖f‖Lpω(Rn) ≡
{∫

Rn
|f(x)|pω(x) dx

}1/p

<∞,

and L∞ω (Rn) ≡ L∞(Rn). The symbol L1,∞
ω (Rn) denotes the set of all measurable func-

tions f such that

‖f‖L1,∞
ω (Rn) ≡ sup

λ>0
{λω({x ∈ Rn : |f(x)| > λ})} <∞.

For a positive constant C̃, any locally integrable function f and x ∈ Rn, the local Hardy–

Littlewood maximal function M loc
C̃

(f) is defined by

M loc
C̃

(f)(x) ≡ sup
Q3x, |Q|≤C̃

1

|Q|

∫
Q

|f(y)| dy,

where the supremum is taken over all cubes Q ⊂ Rn such that Q 3 x and |Q| ≤ C̃. If

C̃ = 1, we denote M loc
C̃

(f) simply by M loc(f).

Next, we recall some properties of weights in Aloc
∞ (Rn) and Ap(Rn); here and in what

follows, Ap(Rn) for p ∈ [1,∞) denotes the classical Muckenhoupt weights; see [17, 46] for

their definitions.

Lemma 2.3.

(i) Let p ∈ [1,∞), ω ∈ Aloc
p (Rn), and Q be a unit cube, namely, l(Q) = 1. Then there

exist an ω ∈ Ap(Rn) such that ω = ω on Q, and a positive constant C independent

of Q such that Ap(ω) ≤ CAloc
p (ω), where Ap(ω) denotes the weight constant of ω,

which is as in (2.1) and (2.2) after removing the restriction l(Q) ≤ 1.

(ii) If ω ∈ Aloc
p (Rn) with p ∈ (1,∞), then there exist η1, η2 ∈ (0,∞) such that ω ∈

Aloc
p−η1

(Rn) with p− η1 ∈ (1,∞), and ω1+η2 ∈ Aloc
p (Rn).

(iii) If 1 ≤ p1 < p2 <∞, then Aloc
p1

(Rn) ⊂ Aloc
p2

(Rn).
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(iv) For p ∈ (1,∞), ω ∈ Aloc
p (Rn) if and only if ω−1/(p−1) ∈ Aloc

p′ (Rn), where

1/p+ 1/p′ = 1.

(v) For ω ∈ Aloc
∞ (Rn) and Q = Q(x0, l(Q)), there exists a positive constant C such that

ω(2Q) ≤ Cω(Q) when l(Q) < 1, and ω(Q(x0, l(Q) + 1)) ≤ Cω(Q) when l(Q) ≥ 1.

(vi) If p ∈ (1,∞) and ω ∈ Aloc
p (Rn), then the local Hardy–Littlewood maximal operator

M loc is bounded on Lpω(Rn).

(vii) If ω ∈ Aloc
1 (Rn), then M loc is bounded from L1

ω(Rn) to L1,∞
ω (Rn).

(viii) If ω ∈ Ap(Rn) with p ∈ [1,∞), then there exists a positive constant C such that for

all cubes Q1, Q2 ⊂ Rn with Q1 ⊂ Q2,

ω(Q2)

ω(Q1)
≤ C

(
|Q2|
|Q1|

)p
.

Lemma 2.3(i) is just [43, Lemma 1.1]. The statements (ii) through (vii) of Lemma 2.3

are just Lemma 2.1 and Corollary 2.1 in [49], which are deduced from Lemma 2.3(i) and

the properties of Ap(Rn); see the proofs of [49, Lemma 2.1, Corollary 2.1]. Lemma 2.3(viii)

is included, for example, in [16, 17, 46].

Remark 2.4. Let C̃ be a positive constant. It was pointed out in [43, Remark 1.5] and [49]

that (i) through (vii) of Lemma 2.3 are also true if l(Q) = 1, l(Q) ≥ 1, l(Q) < 1,

Q(x0, l(Q) + 1) and M loc are respectively replaced by l(Q) = C̃, l(Q) ≥ C̃, l(Q) < C̃,

Q(x0, l(Q) + C̃) and M loc
C̃

. In this case, the constants appearing in (i), (vi) and (vii) of

Lemma 2.3 depend on C̃.

For any given ω ∈ Aloc
∞ (Rn), define the critical index of ω by

qω ≡ inf{p ∈ [1,∞) : ω ∈ Aloc
p (Rn)}. (2.4)

Remark 2.5. Obviously, qω ∈ [1,∞). If qω ∈ (1,∞), by Lemma 2.2(ii), it is easy to know

that ω 6∈ Aloc
qω (Rn). Moreover, there exists an ω 6∈ Aloc

1 (Rn) such that qω = 1. Indeed,

for t ∈ R \ {0}, let ω(t) ≡ [ln(1/|t|)]−1. Johnson and Neugebauer [30, p. 254, Remark]

showed that ω ∈ (
⋂
p>1Ap(Rn)) \ A1(Rn). By the fact that Ap(Rn) ⊂ Aloc

p (Rn) for all

p ∈ [1,∞), which is obvious by the definitions, we see that ω ∈
⋂
p>1A

loc
p (Rn). We claim

that ω 6∈ Aloc
1 (Rn). In fact, taking x ∈ (0, 1/2), we have

M loc(ω)(x) ≥ 1

2

∫ x+1

x−1

ω(t) dt ≥
∫ 1/2

0

[
ln

(
1

t

)]−1

dt ≡ ∞.

Moreover, it is easy to see that ω(x) → 0 as x → 0. Thus, by (2.2), we know that

ω 6∈ Aloc
1 (Rn).

For D(Rn), D′(Rn) and Lqω(Rn), we have the following conclusions.

Lemma 2.6. Let ω ∈ Aloc
∞ (Rn), qω be as in (2.4) and p ∈ (qω,∞].

(i) If 1/p+ 1/p′ = 1, then D(Rn) ⊂ Lp
′

ω−1/(p−1)(Rn).

(ii) Lpω(Rn) ⊂ D′(Rn) and the inclusion is continuous.

(iii) Let φ ∈ D(Rn) and
∫
Rn φ(x) dx = 1. If q ∈ (qω,∞), then for any f ∈ Lqω(Rn),

f ∗ φt → f in Lqω(Rn) as t→ 0; here and in what follows, φt(x) ≡ (1/tn)φ(x/t) for

all t ∈ (0,∞) and x ∈ Rn.
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We remark that (i) and (ii) of Lemma 2.6, and Lemma 2.6(iii), are, respectively,

Lemma 2.2 and Proposition 2.1 in [49].

2.2. Orlicz functions. Let Φ be a positive function on R+ ≡ (0,∞). The function Φ is

said to be of upper type p (resp. lower type p) for some p ∈ [0,∞) if there exists a positive

constant C such that for all t ∈ [1,∞) (resp. t ∈ (0, 1]) and s ∈ (0,∞),

Φ(st) ≤ CtpΦ(s). (2.5)

Obviously, if Φ is of lower type p for some p ∈ (0,∞), then limt→0+ Φ(t) = 0. So for the

sake of convenience, if necessary we may assume that Φ(0) = 0. If Φ is of both upper

type p1 and lower type p0, then Φ is said to be of type (p0, p1). Let

p+
Φ ≡ inf{p ∈ (0,∞) : there exists C ∈ (0,∞)

such that (2.5) holds for all t ∈ [1,∞) and s ∈ (0,∞)},

and

p−Φ ≡ sup{p ∈ (0,∞) : there exists C ∈ (0,∞)

such that (2.5) holds for all t ∈ (0, 1] and s ∈ (0,∞)}.

The function Φ is said to be of strictly lower type p if for all t ∈ (0, 1) and s ∈ (0,∞),

Φ(st) ≤ tpΦ(s), and we define

pΦ ≡ sup{p ∈ (0,∞) : Φ(st) ≤ tpΦ(s) holds for all t ∈ (0, 1) and s ∈ (0,∞)}. (2.6)

It is easy to see that pΦ ≤ p−Φ ≤ p+
Φ for all Φ. In what follows, pΦ, p

−
Φ and p+

Φ are

respectively called the strictly critical lower type index, the critical lower type index and

the critical upper type index of Φ. We point out that if pΦ is defined as in (2.6), then Φ

is also of strictly critical lower type pΦ; see [27] for the proof.

Throughout the paper, we always assume that Φ satisfies the following assumption.

Assumption (A). Let Φ be a positive function defined on R+, which is of strictly lower

type with strictly critical lower type index pΦ ∈ (0, 1]. Also assume that Φ is continuous,

strictly increasing, subadditive and concave.

Notice that if Φ satisfies Assumption (A), then Φ(0) = 0 and Φ is obviously of

upper type 1. For any concave and positive function Φ̃ of strictly lower type p, if we

set Φ(t) ≡
∫ t

0
(Φ̃(s)/s) ds for t ∈ [0,∞), then by [55, Proposition 3.1], Φ is equivalent

to Φ̃, namely, there exists a positive constant C such that C−1Φ̃(t) ≤ Φ(t) ≤ CΦ̃(t) for

all t ∈ [0,∞); moreover, Φ is strictly increasing, concave, subadditive and continuous

function of strictly lower type p. Notice that all our results are invariant under taking

equivalent functions satisfying Assumption (A). From this, we deduce that all results in

this paper with Φ as in Assumption (A) also hold for all concave and positive functions

Φ̃ of the same strictly critical lower type pΦ as Φ.

Let Φ satisfy Assumption (A) and ω ∈ Aloc
∞ (Rn). A measurable function f on Rn

is said to belong to the space LΦ
ω (Rn) if

∫
Rn Φ(|f(x)|)ω(x) dx < ∞. Moreover, for any
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f ∈ LΦ
ω (Rn), define

‖f‖LΦ
ω(Rn) ≡ inf

{
λ ∈ (0,∞) :

∫
Rn

Φ

(
|f(x)|
λ

)
ω(x) dx ≤ 1

}
.

Since Φ is strictly increasing, we define the function ρ on R+ by setting, for all t ∈ (0,∞),

ρ(t) ≡ t−1

Φ−1(t−1)
, (2.7)

where Φ−1 is the inverse function of Φ. Then the types of Φ and ρ have the following

relation. Let 0 < p0 ≤ p1 ≤ 1 and Φ be an increasing function. Then Φ is of type (p0, p1)

if and only if ρ is of type (p−1
1 − 1, p−1

0 − 1); see [55] for the proof. Moreover, it is easy to

see that for all t ∈ (0,∞),

tΦ

(
1

tρ(t)

)
= 1, (2.8)

which is used in what follows.

3. Weighted local Orlicz–Hardy spaces and their maximal
function characterizations

In this section, we introduce the weighted local Orlicz–Hardy space hΦ
ω,N (Rn) via the

local grand maximal function and establish its local vertical and nontangential maximal

function characterizations via a local Calderón reproducing formula and some useful

estimates obtained by Rychkov [43]. We also introduce the weighted atomic local Orlicz–

Hardy space hρ, q, sω (Rn) and give some basic properties of these spaces.

First, we introduce some local maximal functions. For N ∈ Z+ and R ∈ (0,∞), let

DN,R(Rn) ≡
{
ψ ∈ D(Rn) : supp(ψ) ⊂ B(0, R),

‖ψ‖DN (Rn) ≡ sup
x∈Rn

sup
α∈Zn+, |α|≤N

|∂αψ(x)| ≤ 1
}
.

Definition 3.1. Let N ∈ Z+ and R ∈ (0,∞). For any f ∈ D′(Rn), the local nontangen-

tial grand maximal function G̃N,R(f) of f is defined by setting, for all x ∈ Rn,

G̃N,R(f)(x) ≡ sup{|ψt ∗ f(z)| : |x− z| < t < 1, ψ ∈ DN,R(Rn)}, (3.1)

and the local vertical grand maximal function GN,R(f) of f is defined by setting, for all

x ∈ Rn,
GN,R(f)(x) ≡ sup{|ψt ∗ f(x)| : t ∈ (0, 1), ψ ∈ DN,R(Rn)}. (3.2)

For convenience’s sake, when R = 1, we denote DN,R(Rn), G̃N,R(f) and GN,R(f)

simply by D0
N (Rn), G̃0

N (f) and G0
N (f), respectively; when R = 23(10+n), we denote

DN,R(Rn), G̃N,R(f) and GN,R(f) simply by DN (Rn), G̃N (f) and GN (f), respectively.

For any N ∈ Z+ and x ∈ Rn, obviously,

G0
N (f)(x) ≤ GN (f)(x) ≤ G̃N (f)(x).

For the local grand maximal function G0
N (f), we have the following proposition, which

is just [49, Proposition 2.2].
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Proposition 3.2. Let N ≥ 2.

(i) Then there exists a positive constant C such that for all f ∈ L1
loc(Rn) ∩D′(Rn) and

almost every x ∈ Rn,

|f(x)| ≤ G0
N (f)(x) ≤M loc(f)(x).

(ii) If ω ∈ Aloc
p (Rn) with p ∈ (1,∞), then f ∈ Lpω(Rn) if and only if f ∈ D′(Rn) and

G0
N (f) ∈ Lpω(Rn); moreover,

‖f‖Lpω(Rn) ∼ ‖G0
N (f)‖Lpω(Rn).

(iii) If ω ∈ Aloc
1 (Rn), then G0

N is bounded from L1
ω(Rn) to L1,∞

ω (Rn).

Now we introduce the weighted local Orlicz–Hardy space via the local grand maximal

function as follows.

Definition 3.3. Let Φ satisfy Assumption (A), ω ∈ Aloc
∞ (Rn), qω and pΦ be respectively

as in (2.4) and (2.6), and ÑΦ, ω ≡ bn(qω/pΦ − 1)c+ 2. For each N ∈ N with N ≥ ÑΦ, ω,

the weighted local Orlicz–Hardy space is defined by

hΦ
ω,N (Rn) ≡ {f ∈ D′(Rn) : GN (f) ∈ LΦ

ω (Rn)}.

Moreover, let ‖f‖hΦ
ω,N (Rn) ≡ ‖GN (f)‖LΦ

ω(Rn).

We remark that when Φ(t) ≡ tp for all t ∈ (0,∞) and p ∈ (0, 1], hΦ
ω,N (Rn) above is

the weighted local Hardy space hpω,N (Rn) introduced by Tang [49]. Obviously, for any

integers N1 and N2 with N1 ≥ N2 ≥ ÑΦ, ω,

hΦ
ω, ÑΦ, ω

(Rn) ⊂ hΦ
ω,N2

(Rn) ⊂ hΦ
ω,N1

(Rn),

and the inclusions are continuous. We also point out that Theorem 3.14 below further

implies that

‖G0
N (f)‖LΦ

ω(Rn) ∼ ‖G̃0
N (f)‖LΦ

ω(Rn) ∼ ‖GN (f)‖LΦ
ω(Rn) ∼ ‖G̃N (f)‖LΦ

ω(Rn)

for all N ∈ N with N ≥ NΦ, ω (see (3.25) for the definition of NΦ, ω).

Next, we introduce the weighted local atoms, via which we introduce the weighted

atomic local Orlicz–Hardy space.

Definition 3.4. Let Φ satisfy Assumption (A), ω ∈ Aloc
∞ (Rn) and qω, ρ be respectively

as in (2.4) and (2.7). A triplet (ρ, q, s)ω is called admissible if q ∈ (qω,∞], s ∈ Z+ and

s ≥ bn(qω/pΦ − 1)c. A function a on Rn is called a (ρ, q, s)ω-atom if there exists a cube

Q ⊂ Rn such that

(i) supp(a) ⊂ Q;

(ii) ‖a‖Lqω(Rn) ≤ [ω(Q)]
1
q−1[ρ(ω(Q))]−1;

(iii)
∫
Rn a(x)xα dx = 0 for all α ∈ Zn+ with |α| ≤ s, when l(Q) < 1.

Moreover, a function a on Rn is called a (ρ, q)ω-single-atom with q ∈ (qω,∞] if

‖a‖Lqω(Rn) ≤ [ω(Rn)]1/q−1[ρ(ω(Rn))]−1.
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We point out that when Φ(t) ≡ tp for all t ∈ (0,∞) and p ∈ (0, 1], (ρ, q, s)ω-

atoms and (ρ, q)ω-single-atoms are respectively (p, q, s)ω-atoms and (p, q)ω-single-atoms,

introduced by Tang [49].

Definition 3.5. Let Φ satisfy Assumption (A), ω ∈ Aloc
∞ (Rn), qω and ρ be respectively

as in (2.4) and (2.7), and (ρ, q, s)ω be admissible. The weighted atomic local Orlicz–Hardy

space hρ, q, sω (Rn) is defined to be the set of all f ∈ D′(Rn) satisfying

f =

∞∑
i=0

λiai

in D′(Rn), where {ai}i∈N are (ρ, q, s)ω-atoms with supp(ai) ⊂ Qi, a0 is a (ρ, q)ω-single-

atom, {λi}i∈Z+
⊂ C, and

∞∑
i=1

ω(Qi)Φ

(
|λi|

ω(Qi)ρ(ω(Qi))

)
+ ω(Rn)Φ

(
|λ0|

ω(Rn)ρ(ω(Rn))

)
<∞.

Moreover, letting

Λ({λiai}i) ≡ inf

{
λ ∈ (0,∞) :

∞∑
i=1

ω(Qi)Φ

(
|λi|

λω(Qi)ρ(ω(Qi))

)
+ ω(Rn)Φ

(
|λ0|

λω(Rn)ρ(ω(Rn))

)
≤ 1

}
,

the quasi-norm of f ∈ hρ, q, sω (Rn) is defined by

‖f‖hρ, q, sω (Rn) ≡ inf{Λ({λiai}i∈Z+
)},

where the infimum is taken over all the decompositions of f as above.

Remark 3.6. (i) Notice that the definition of Λ({λiai}i∈Z+
) above is different from that

in [55]. In fact, if p ∈ (0, 1] and Φ(t) ≡ tp for all t ∈ (0,∞), then Λ({λiai}i∈Z+
) coincides

with (
∑
i∈Z+

|λi|p)1/p.

(ii) Let {λki }i, k and {aki }i, k satisfy Λ({λki aki }i∈Z+
) < ∞, where k = 1, 2. Since Φ is

subadditive and of strictly lower type pΦ, we have

[Λ({λ1
i a

1
i , λ

2
i a

2
i }i∈Z+)]pΦ ≤

2∑
k=1

[Λ({λki aki }i∈Z+)]pΦ .

(iii) Since Φ is concave, it is of upper type 1. Thus, for any f ∈ hρ, q, sω (Rn), there exist

{ai}i∈Z+ and {λi}i∈Z+ as in Definition 3.5 such that∑
i∈Z+

|λi| . Λ({λiai}i∈Z+) . ‖f‖hρ, q, sω (Rn).

Next, we introduce some local vertical, tangential and nontangential maximal func-

tions, and then establish the characterizations of the weighted local Orlicz–Hardy space

hΦ
ω,N (Rn) via these local maximal functions.

Definition 3.7. Let

ψ0 ∈ D(Rn) with

∫
Rn
ψ0(x) dx 6= 0. (3.3)
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For j ∈ Z+, A,B ∈ [0,∞) and y ∈ Rn, let mj, A,B(y) ≡ (1+2j |y|)A2B|y|. The local vertical

maximal function ψ+
0 (f) of f associated to ψ0 is defined by setting, for all x ∈ Rn,

ψ+
0 (f)(x) ≡ sup

j∈Z+

|(ψ0)j ∗ f(x)|, (3.4)

the local tangential Peetre-type maximal function ψ∗∗0, A,B(f) of f associated to ψ0 is

defined by setting, for all x ∈ Rn,

ψ∗∗0, A,B(f)(x) ≡ sup
j∈Z+, y∈Rn

|(ψ0)j ∗ f(x− y)|
mj, A,B(y)

(3.5)

and the local nontangential maximal function (ψ0)∗O(f) of f associated to ψ0 is defined

by setting, for all x ∈ Rn,

(ψ0)∗O(f)(x) ≡ sup
|x−y|<t<1

|(ψ0)t ∗ f(y)|; (3.6)

here and in what follows, for all x ∈ Rn, (ψ0)j(x) ≡ 2jnψ0(2jx) for all j ∈ Z+ and

(ψ0)t(x) ≡ (1/tn)ψ0(x/t) for all t ∈ (0,∞).

Obviously, for any x ∈ Rn, we have

ψ+
0 (f)(x) ≤ (ψ0)∗O(f)(x) . ψ∗∗0, A,B(f)(x).

We remark that the local tangential Peetre-type maximal function ψ∗∗0, A,B(f) was intro-

duced by Rychkov [43].

In order to establish the local vertical and the local nontangential maximal function

characterizations of hΦ
ω,N (Rn), we first establish some relations in the norm of LΦ

ω (Rn)

of the local maximal functions ψ∗∗0, A,B(f), ψ+
0 (f) and G̃N,R(f), which further imply the

desired characterizations. We begin with some technical lemmas.

Lemma 3.8. Let ψ0 be as in (3.3) and ψ(x) ≡ ψ0(x) − (1/2n)ψ0(x/2) for all x ∈ Rn.

Then for any given integer L ∈ Z+, there exist η0, η ∈ D(Rn) such that Lη ≥ L and

f = η0 ∗ ψ0 ∗ f +

∞∑
j=1

ηj ∗ ψj ∗ f

in D′(Rn) for all f ∈ D′(Rn).

Lemma 3.8 is just [43, Theorem 1.6].

Remark 3.9. Let ψ0, ψ, η0 and η be as in Lemma 3.8. From the proof of [43, Theorem

1.6], it is easy to deduce that for any j ∈ Z+ and f ∈ D′(Rn),

f = (η0)j ∗ (ψ0)j ∗ f +

∞∑
k=j+1

ηk ∗ ψk ∗ f

in D′(Rn) (see also [43, (2.11)]). We omit the details.

For f ∈ L1
loc(Rn), B ∈ [0,∞) and x ∈ Rn, let

KBf(x) ≡
∫
Rn
|f(y)|2−B|x−y| dy; (3.7)

here and in what follows, L1
loc(Rn) denotes the set of all locally integrable functions

on Rn.
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Lemma 3.10. Let p ∈ (1,∞), q ∈ (1,∞], and ω ∈ Aloc
p (Rn). Then there exists a positive

constant C such that for any sequence {f j}j of measurable functions,

‖{M loc(f j)}j‖Lpω(lq) ≤ C‖{f
j}j‖Lpω(lq); (3.8)

here and in what follows,

‖{f j}j‖Lpω(lq) ≡
∥∥∥{∑

j

|f j |q
}1/q∥∥∥

Lpω(Rn)
.

Also, there exist positive constants C and B0 ≡ B0(ω, n) such that for all B ≥ B0/p,

‖{KB(f j)}j‖Lpω(lq) ≤ C‖{f
j}j‖Lpω(lq). (3.9)

Lemma 3.10 is just [43, Lemma 2.11]. Moreover, from the proof of [43, Lemma 2.11],

it is easy to deduce that (3.8) also holds for M loc
C̃

with any given positive constant C̃. In

this case, the positive constant C in Lemma 3.10 depends on C̃.

Lemma 3.11. Let ψ0 be as in (3.3) and r ∈ (0,∞). Then there exists a positive constant

A0 depending only on the support of ψ0 such that for any A ∈ (max{A0, n/r},∞) and

B ∈ [0,∞), there exists a positive constant C, depending only on n, r, ψ0, A and B, such

that for all f ∈ D′(Rn), x ∈ Rn and j ∈ Z+,

[(ψ0)∗j, A,B(f)(x)]r ≤ C
∞∑
k=j

2(j−k)(Ar−n){M loc(|(ψ0)k ∗ f |r)(x)

+KBr(|(ψ0)k ∗ f |r)(x)},

where

(ψ0)∗j, A,B(f)(x) ≡ sup
y∈Rn

|(ψ0)j ∗ f(x− y)|
mj, A,B(y)

for all x ∈ Rn.

Proof. Lemma 3.11 is a modified version of [43, Lemma 2.10], and was essentially obtained

by Rychkov in the proof of [43, Theorem 2.24]. Let ψ be as in Lemma 3.8. Indeed, Rychkov

[43] showed Lemma 3.11 under the assumption that f ∈ S ′e, namely, there exist a positive

constant Af and a nonnegative integer Nf such that for all γ ∈ D(Rn),

|〈f, γ〉| ≤ Af sup{|∂αγ(x)|eNf |x| : x ∈ Rn, α ∈ Zn+ and |α| ≤ Nf},

which guarantees that for all x ∈ Rn and j ∈ Z+,

MA,B(x, j) ≡ sup
k≥j, y∈Rn

2(j−k)A |ψk ∗ f(x− y)|
mj, A,B(y)

<∞.

By [19, Proposition 2.3.4(a)], for any f ∈ D′(Rn), we have MA,B(x, j) <∞ for all x ∈ Rn
and j ∈ Z+, provided A > A0, where A0 is a positive constant depending only on the

support of ψ0. This finishes the proof.

Theorem 3.12. Let Φ satisfy Assumption (A), ω ∈ Aloc
∞ (Rn), R ∈ (0,∞), ψ0, qω and

pΦ be respectively as in (3.3), (2.4) and (2.6), and ψ+
0 (f), ψ∗∗0, A,B(f), and G̃N,R(f) be

respectively as in (3.4), (3.5) and (3.1). Let

A1 ≡ max{A0, nqω/pΦ},
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B1 ≡ B0/pΦ and N0 ≡ b2A1c + 1, where A0 and B0 are respectively as in Lemmas 3.3

and 3.2. Then for any A ∈ (A1,∞), B ∈ (B1,∞) and integer N ≥ N0, there exists

a positive constant C, depending only on A, B, N, R, ψ0, Φ, ω and n, such that for all

f ∈ D′(Rn),

‖ψ∗∗0, A,B(f)‖LΦ
ω(Rn) ≤ C‖ψ+

0 (f)‖LΦ
ω(Rn), (3.10)

and

‖G̃N,R(f)‖LΦ
ω(Rn) ≤ C‖ψ+

0 (f)‖LΦ
ω(Rn). (3.11)

Proof. Let f ∈ D′(Rn). First, we prove (3.10). Let A ∈ (A1,∞) and B ∈ (B1,∞). By

A1 ≡ max{A0, nqω/pΦ} and B1 ≡ B0/pΦ, we know that there exists r0 ∈ (0, pΦ/qω) such

that A > n/r0 and Br0 > B0/qω, where A0 and B0 are respectively as in Lemmas 3.3

and 3.10. Thus, by Lemma 3.11, for all x ∈ Rn, we have

[(ψ0)∗j, A,B(f)(x)]r0 .
∞∑
k=j

2(j−k)(Ar0−n){M loc(|(ψ0)k ∗ f |r0)(x)

+KBr0(|(ψ0)k ∗ f |r0)(x)}. (3.12)

Let ψ+
0 (f) and ψ∗∗0, A,B(f) be respectively as in (3.4) and (3.5). We notice that for any

x ∈ Rn and k ∈ Z+,

|(ψ0)k ∗ f(x)| ≤ ψ+
0 (f)(x),

which together with (3.12) implies that for all x ∈ Rn,

[ψ∗∗0, A,B(f)(x)]r0 .M loc([ψ+
0 (f)]r0)(x) +KBr0([ψ+

0 (f)]r0)(x). (3.13)

By (3.12) and the subadditivity of Φ, we have∫
Rn

Φ(ψ∗∗0, A,B(f)(x))ω(x) dx

.
∫
Rn

Φ({M loc([ψ+
0 (f)]r0)(x)}1/r0)ω(x) dx

+

∫
Rn

Φ({KBr0([ψ+
0 (f)]r0)(x)}1/r0)ω(x) dx ≡ I1 + I2. (3.14)

First, we estimate I1. As r0 < pΦ/qω, we know that there exists q ∈ (qω,∞) such that

r0q < pΦ and ω ∈ Aloc
q (Rn). For any α ∈ (0,∞) and g ∈ L1

loc(Rn), let

g = gχ{x∈Rn: |g(x)|≤α} + gχ{x∈Rn: |g(x)|>α} ≡ g1 + g2.

It is easy to see that

{x ∈ Rn : M loc(g)(x) > 2α} ⊂ {x ∈ Rn : M loc(g2)(x) > α},

which together with Lemma 2.3(vi) implies that

ω({x ∈ Rn : M loc(g)(x) > 2α})

≤ ω({x ∈ Rn : M loc(g2)(x) > α}) ≤ 1

αq

∫
Rn

[M loc(g2)(x)]qω(x) dx

.
1

αq

∫
Rn
|g2(x)|qω(x) dx ∼ 1

αq

∫
{x∈Rn: |g(x)|>α}

|g(x)|qω(x) dx. (3.15)
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Thus, for any α ∈ (0,∞), by (3.15), we have

ω({x ∈ Rn : [M loc([ψ+
0 (f)]r0)(x)]1/r0 > α})

.
1

αr0q

∫
{x∈Rn: [ψ+

0 (f)(x)]r0>αr0/2}
[ψ+

0 (f)(x)]r0qω(x) dx

∼ σψ+
0 (f)

(
α

21/r0

)
+

1

αr0q

∫ ∞
α/21/r0

r0qs
r0q−1σψ+

0 (f)(s) ds; (3.16)

here and in what follows,

σψ+
0 (f)(s) ≡ ω({x ∈ Rn : ψ+

0 (f)(x) > s}).

From the fact that Φ is concave and of lower type pΦ, we infer that Φ(t) ∼
∫ t

0
(Φ(s)/s) ds

for all t ∈ (0,∞). By this, (3.16) and the lower type pΦ property of Φ, the fact r0q < pΦ

and Fubini’s theorem, we have

I1 ∼
∫
Rn

{∫ {M loc([ψ+
0 (f)]r0 )(x)}1/r0

0

Φ(t)

t
dt

}
ω(x) dx

∼
∫ ∞

0

Φ(t)

t
σ{M loc([ψ+

0 (f)]r0 )}1/r0 (t) dt

.
∫ ∞

0

Φ(t)

t

{
σψ+

0 (f)

(
t

21/r0

)
+

1

tr0q

∫ ∞
t/21/r0

r0qs
r0q−1σψ+

0 (f)(s) ds

}
dt

. Jf +

∫ ∞
0

r0qs
r0q−1σψ+

0 (f)(s)

{∫ 21/r0s

0

Φ(t)

t

1

tr0q
dt

}
ds

∼ Jf +

∫ ∞
0

r0qs
r0q−1σψ+

0 (f)(s)Φ(21/r0s)

{∫ 21/r0s

0

(
t

21/r0s

)pΦ 1

tr0q+1
dt

}
ds

∼ Jf ∼
∫
Rn

Φ(ψ+
0 (f)(x))ω(x) dx, (3.17)

where Jf ≡
∫∞

0
(Φ(t)/t)σψ+

0 (f)(t) dt.

Next, we estimate I2. For any α ∈ (0,∞) and g ∈ L1
loc(Rn), let g1 and g2 be as

above. For H ∈ [B0/q,∞), let
∫
Rn 2−H|x−y| dy ≡ cH . It is easy to see that for all x ∈ Rn,

KH(g1)(x) ≤ cHα, which implies that

{x ∈ Rn : KH(g)(x) > (cH + 1)α} ⊂ {x ∈ Rn : KH(g2)(x) > α},

where KH is as in (3.7). Thus, by Lemma 3.10, we have

ω({x ∈ Rn : KHg(x) > (cH + 1)α}) ≤ ω({x ∈ Rn : KHg2(x) > α})

.
1

αq

∫
{x∈Rn: |g(x)|>α}

|g(x)|qω(x) dx.

Similarly to (3.16), from the above estimate, Br0 > B0/q and Lemma 3.2, we also deduce

that

ω({x ∈ Rn : [KBr0([ψ+
0 (f)]r0)(x)]1/r0 > α})

. σψ+
0 (f)

(
α

(cBr0 + 1)1/r0

)
+

1

αr0q

∫ ∞
α/(cBr0+1)1/r0

r0qs
r0q−1σψ+

0 (f)(s) ds.
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From this, similarly to the estimate of I1, we also have

I2 .
∫
Rn

Φ(ψ+
0 (f)(x))ω(x) dx. (3.18)

Thus, we deduce from (3.14), (3.17) and (3.18) that∫
Rn

Φ(ψ∗∗0, A,B(f)(x))ω(x) dx .
∫
Rn

Φ(ψ+
0 (f)(x))ω(x) dx.

Replacing f by f/λ with λ ∈ (0,∞) in the above inequality, and noticing that

Φ(ψ∗∗0, A,B(f/λ)) = Φ(ψ∗∗0, A,B(f)/λ)

and Φ(ψ+
0 (f/λ)) = Φ(ψ+

0 (f)/λ), we have∫
Rn

Φ(ψ∗∗0, A,B(f)(x)/λ)ω(x) dx .
∫
Rn

Φ(ψ+
0 (f)(x)/λ)ω(x) dx, (3.19)

which together with the arbitrariness of λ ∈ (0,∞) implies (3.10).

Now, we prove (3.11). By N0 ≡ b2A1c + 1, we know that there exists A ∈ (A1,∞)

such that 2A < N0. In the rest of this proof, we fix A ∈ (A1,∞) satisfying 2A < N0 and

B ∈ (B1,∞). Pick an integer N ≥ N0 and R ∈ (0,∞). For any γ ∈ DN,R(Rn), t ∈ (0, 1)

and j ∈ Z+, from Lemma 3.8 and Remark 3.9, it follows that

γt ∗ f = γt ∗ (η0)j ∗ (ψ0)j ∗ f +

∞∑
k=j+1

γt ∗ ηk ∗ ψk ∗ f, (3.20)

where η0, η ∈ D(Rn) with Lη ≥ N and ψ is as in Lemma 3.8.

For any given t ∈ (0, 1) and x ∈ Rn, let 2−j0−1 ≤ t < 2−j0 for some j0 ∈ Z+, and

z ∈ Rn satisfy |z − x| < t. Then, by (3.20), we have

|γt ∗ f(z)| ≤ |γt ∗ (η0)j0 ∗ (ψ0)j0 ∗ f(z)|+
∞∑

k=j0+1

|γt ∗ ηk ∗ ψk ∗ f(z)|

≤
∫
Rn
|γt ∗ (η0)j0(y)| |(ψ0)j0 ∗ f(z − y)| dy

+

∞∑
k=j0+1

∫
Rn
|γt ∗ ηk(y)| |ψk ∗ f(z − y)| dy ≡ I3 + I4. (3.21)

To estimate I3, from

ψ∗∗0, A,B(f)(x) = sup
j∈Z+, y∈Rn

|(ψ0)j ∗ f(x− y)|
mj, A,B(y)

= sup
j∈Z+, y∈Rn

|(ψ0)j ∗ f(x− (y + x− z))|
mj, A,B(y + x− z)

= sup
j∈Z+, y∈Rn

|(ψ0)j ∗ f(z − y)|
mj, A,B(y + x− z)

,

we infer that

|(ψ0)j0 ∗ f(z − y)| ≤ ψ∗∗0, A,B(f)(x)mj0, A,B(y + x− z),

which, together with the facts that

mj0, A,B(y + x− z) ≤ mj0, A,B(x− z)mj0, A,B(y)

and mj0, A,B(x− z) . 2A, implies that

|(ψ0)j0 ∗ f(z − y)| . 2Aψ∗∗0, A,B(f)(x)mj0, A,B(y).
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Thus, we have

I3 . 2A
{∫

Rn
|γt ∗ (η0)j0(y)|mj0, A,B(y) dy

}
ψ∗∗0, A,B(f)(x).

To estimate I4, by the definition of ψ, it is easy to see that for any k ∈ N,

|ψk ∗ f(z − y)| ≤ |(ψ0)k ∗ f(z − y)|+ |(ψ0)k−1 ∗ f(z − y)|.

By the definition of ψ∗∗0, A,B(f) and the facts that

mk,A,B(y + x− z) ≤ mk,A,B(x− z)mk,A,B(y)

for any k ∈ N and mk,A,B(x− z) . 2(k−j0)A, we conclude that

|(ψ0)k ∗ f(z − y)| ≤ ψ∗∗0, A,B(f)(x)mk,A,B(y + x− z)
≤ ψ∗∗0, A,B(f)(x)mk,A,B(x− z)mk,A,B(y)

. 2(k−j0)Amk,A,B(y)ψ∗∗0, A,B(f)(x).

Similarly, we also have

|(ψ0)k−1 ∗ f(z − y)| . 2(k−j0)Amk,A,B(y)ψ∗∗0, A,B(f)(x).

Thus,

I4 .
∞∑

k=j0+1

2(k−j0)A

{∫
Rn
|γt ∗ ηk(y)|mk,A,B(y) dy

}
ψ∗∗0, A,B(f)(x).

From (3.21) and the above estimates of I3 and I4, it follows that

|γt ∗ f(z)| .
{∫

Rn
|γt ∗ (η0)j0(y)|mj0, A,B(y) dy

+

∞∑
k=j0+1

2(k−j0)A

∫
Rn
|γt ∗ ηk(y)|mk,A,B(y) dy

}
ψ∗∗0, A,B(f)(x). (3.22)

Assume that supp(η0) ⊂ B(0, R0). Then supp((η0)j) ⊂ B(0, 2−jR0) for all j ∈ Z+.

Moreover, as supp(γ) ⊂ B(0, R) and 2−j0−1 ≤ t < 2−j0 , we see that

supp(γt) ⊂ B(0, 2−j0R).

From this, we further deduce that supp(γt ∗ (η0)j0) ⊂ B(0, 2−j0(R0 +R)) and

|γt ∗ (η0)j0(y)| .
∫
Rn
|γt(s)| |(ψ0)j0(y − s)| ds . 2j0n

∫
Rn
|γt(s)| ds ∼ 2j0n,

which implies that∫
Rn
|γt ∗(η0)j0(y)|mj0, A,B(y) dy . 2j0n

∫
B(0,2−j0(R0+R))

(1+2j0 |y|)A2B|y| dy . 1. (3.23)

Moreover, since η has vanishing moments up to order N , it was proved in [43, (2.13)]

that

‖γt ∗ ηk‖L∞(Rn) . 2(j0−k)N2j0n

for all k ∈ N with k ≥ j0 + 1, which, together with the facts that N > 2A and

supp(γt ∗ ηk) ⊂ B(0, 2−j0R0 + 2−kR),
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implies that
∞∑

k=j0+1

2(k−j0)A

∫
Rn
|γt ∗ ηk(y)|mk,A,B(y) dy

.
∞∑

k=j0+1

2(k−j0)A2(j0−k)N2j0n(2−j0R0 + 2−kR)n

× [1 + 2k(2−j0R0 + 2−kR)]A2(2−j0R0+2−kR)B

.
∞∑

k=j0+1

2(j0−k)(N−2A) . 1. (3.24)

Thus, from (3.22), (3.23) and (3.24), we deduce that |γt ∗ f(z)| . ψ∗∗0, A,B(f)(x). Then,

by the arbitrariness of t ∈ (0, 1) and z ∈ B(x, t), we know that

G̃N,R(f)(x) . ψ∗∗0, A,B(f)(x),

which together with (3.19) implies that for any λ ∈ (0,∞),∫
Rn

Φ(G̃N,R(f)(x)/λ)ω(x) dx .
∫
Rn

Φ(ψ+
0 (f)(x)/λ)ω(x) dx.

From this, we infer that (3.11) holds, which completes the proof of Theorem 3.12.

Remark 3.13. Let p ∈ (0, 1]. We point out that Theorem 3.12 when R ≡ 1 and Φ(t) ≡ tp
for all t ∈ (0,∞) was obtained by Rychkov [43, Theorem 2.24].

As a corollary of Theorem 3.1, we immediately deduce that the local vertical and the

local nontangential maximal function characterizations of hΦ
ω,N (Rn) with N ≥ NΦ, ω as

follows. Here and in what follows,

NΦ, ω ≡ max{ÑΦ, ω, N0}, (3.25)

where ÑΦ, ω and N0 are respectively as in Definition 3.3 and Theorem 3.12.

Theorem 3.14. Let Φ satisfy Assumption (A), ω ∈ Aloc
∞ (Rn), ψ0 and NΦ, ω be respec-

tively as in (3.3) and (3.25). Then for any integer N ≥ NΦ, ω, the following are equivalent:

(i) f ∈ hΦ
ω,N (Rn);

(ii) f ∈ D′(Rn) and ψ+
0 (f) ∈ LΦ

ω (Rn);

(iii) f ∈ D′(Rn) and (ψ0)∗O(f) ∈ LΦ
ω (Rn);

(iv) f ∈ D′(Rn) and G̃N (f) ∈ LΦ
ω (Rn);

(v) f ∈ D′(Rn) and G̃0
N (f) ∈ LΦ

ω (Rn);

(vi) f ∈ D′(Rn) and G0
N (f) ∈ LΦ

ω (Rn).

Moreover, for all f ∈ hΦ
ω,N (Rn),

‖f‖hΦ
ω,N (Rn) ∼ ‖ψ+

0 (f)‖LΦ
ω(Rn) ∼ ‖(ψ0)∗O(f)‖LΦ

ω(Rn)

∼ ‖G̃N (f)‖LΦ
ω(Rn) ∼ ‖G̃0

N (f)‖LΦ
ω(Rn) ∼ ‖G0

N (f)‖LΦ
ω(Rn), (3.26)

where the implicit constants are independent of f .

Proof. (i)⇒(ii). Pick an integer N ≥ NΦ, ω and f ∈ hΦ
ω,N (Rn). Let ψ̃0 satisfy (3.3) and

ψ̃0 ∈ DN (Rn). Then from the definition of GN (f), we infer that ψ̃+
0 (f) ≤ GN (f) and
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hence ψ̃+
0 (f) ∈ LΦ

ω (Rn). For any ψ0 satisfying (3.3), assume that supp(ψ0) ⊂ B(0, R).

Then, by (3.11) and the above argument, we have

‖G̃N,R(f)‖LΦ
ω(Rn) . ‖ψ̃+

0 (f)‖LΦ
ω(Rn) . ‖f‖hΦ

ω,N (Rn),

which together with ψ+
0 (f) . G̃N,R(f) implies that ψ+

0 (f) ∈ LΦ
ω (Rn) and

‖ψ+
0 (f)‖LΦ

ω(Rn) . ‖f‖hΦ
ω,N (Rn).

(ii)⇒(iii). Let f ∈ D′(Rn) satisfy ψ+
0 (f) ∈ LΦ

ω (Rn), where ψ0 is as in (3.3). Then

from the fact that

ψ+
0 (f) ≤ (ψ0)∗O(f) . ψ∗∗0, A,B(f)

and (3.10), we deduce that (ψ0)∗O(f) ∈ LΦ
ω (Rn) and

‖(ψ0)∗O(f)‖LΦ
ω(Rn) . ‖ψ+

0 (f)‖LΦ
ω(Rn).

(iii)⇒(iv). Let f ∈ D′(Rn) satisfy (ψ0)∗O(f) ∈ LΦ
ω (Rn), where ψ0 is as in (3.3).

By (3.11),

‖G̃N (f)‖LΦ
ω(Rn) . ‖ψ+

0 (f)‖LΦ
ω(Rn),

which together with the fact that

ψ+
0 (f) ≤ (ψ0)∗O(f)

and the assumption that (ψ0)∗O(f) ∈ LΦ
ω (Rn) implies G̃N (f) ∈ LΦ

ω (Rn) and

‖G̃N (f)‖LΦ
ω(Rn) . ‖(ψ0)∗O(f)‖LΦ

ω(Rn).

(iv)⇒(v)⇒(vi). Since G0
N (f) ≤ G̃0

N (f) ≤ G̃N (f) for any f ∈ D′(Rn) and Φ is increas-

ing, we see that all the conclusions hold. Moreover, it is obvious that

‖G0
N (f)‖LΦ

ω(Rn) ≤ ‖G̃0
N (f)‖LΦ

ω(Rn) ≤ ‖G̃N (f)‖LΦ
ω(Rn).

(vi)⇒(i). Let f ∈ D′(Rn) satisfy G0
N (f) ∈ LΦ

ω (Rn). Let ψ1 satisfy (3.3) and ψ1 ∈
D0
N (Rn). Then by (3.10), we have

‖G̃N (f)‖LΦ
ω(Rn) . ‖ψ+

1 (f)‖LΦ
ω(Rn),

which together with the facts that ψ+
1 (f) ≤ G0

N (f) and GN (f) ≤ G̃N (f) implies that

‖GN (f)‖LΦ
ω(Rn) . ‖G0

N (f)‖LΦ
ω(Rn).

Thus, by the definition of hΦ
ω,N (Rn), we know that f ∈ hΦ

ω,N (Rn) and

‖f‖hΦ
ω,N (Rn) . ‖G0

N (f)‖LΦ
ω(Rn),

which completes the proof of Theorem 3.14.

As a corollary of Theorems 3.12 and 3.14, we have the following local tangential

maximal function characterization of hΦ
ω,N (Rn). We omit the details.

Corollary 3.15. Let Φ satisfy Assumption (A), ψ0 be as in (3.3), ω ∈ Aloc
∞ (Rn),

NΦ, ω be as in (3.25), A and B be as in Theorem 3.12. Then for any integer N ≥ NΦ, ω,

f ∈ hΦ
ω,N (Rn)

if and only if f ∈ D′(Rn) and ψ∗∗0, A,B(f) ∈ LΦ
ω (Rn); moreover,

‖f‖hΦ
ω,N (Rn) ∼ ‖ψ∗∗0, A,B(f)‖LΦ

ω(Rn).
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Next, we give some basic properties concerning hΦ
ω,N (Rn) and hρ, q, sω (Rn).

Proposition 3.16. Let Φ satisfy Assumption (A), ω ∈Aloc
∞ (Rn) and NΦ, ω be as in (3.25).

For any integer N ≥ NΦ, ω, the inclusion hΦ
ω,N (Rn) ↪→ D′(Rn) is continuous.

Proof. Let f ∈ hΦ
ω,N (Rn). For any given φ ∈ D(Rn), assume that supp(φ) ⊂ B(0, R)

with R ∈ (0,∞). Then we have

|〈f, φ〉| = |f ∗ φ̃(0)| ≤ ‖φ̃‖DN,R(Rn) inf
x∈B(0,1)

G̃N,R(f)(x), (3.27)

where G̃N,R(f) is as in (3.2) and φ̃(x) ≡ φ(−x) for all x ∈ Rn. Now, to prove Proposi-

tion 3.16, we consider the following two cases for ‖f‖hΦ
ω,N (Rn).

Case (i): ‖f‖hΦ
ω,N (Rn) ≥ 1. In this case, by the upper type 1 property of Φ and Theo-

rems 3.12 and 3.14, we obtain∫
Rn

Φ(G̃N,R(f)(x))ω(x) dx

. ‖f‖hΦ
ω,N (Rn)

∫
Rn

Φ

(
G̃N,R(f)(x)

‖f‖hΦ
ω,N (Rn)

)
ω(x) dx . ‖f‖hΦ

ω,N (Rn). (3.28)

Notice that the upper type 1 property of Φ implies that for t ∈ (0, 1],

Φ(1) = Φ

(
t
1

t

)
.

1

t
Φ(t)

and hence Φ(t) & t. Thus, when infx∈B(0,1) G̃N,R(f)(x) ≤ 1, from (3.27) and (3.28), we

deduce that

|〈f, φ〉| . ‖φ‖DN,R(Rn)Φ
(

inf
x∈B(0,1)

G̃N,R(f)(x)
)

. ‖φ‖DN,R(Rn)
1

ω(B(0, 1))

∫
B(0,1)

Φ(G̃N,R(f)(y))ω(y) dy

. ‖φ‖DN,R(Rn)
1

ω(B(0, 1))
‖f‖hΦ

ω,N (Rn). (3.29)

Let pΦ be as in (2.6). Since Φ is of lower type pΦ, for t ∈ (1,∞), we have

Φ(1) = Φ

(
t
1

t

)
.

1

tpΦ
Φ(t)

and hence t . [Φ(t)]1/pΦ . Thus, when infx∈B(0,1) G̃N,R(f)(x) > 1, by (3.26) and (3.27),

we conclude that

|〈f, φ〉| . ‖φ‖DN,R(Rn)

{
Φ
(

inf
x∈B(0,1)

G̃N,R(f)(x)
)}1/pΦ

. ‖φ‖DN,R(Rn)[ω(B(0, 1))]−1/pΦ

×
{∫

B(0,1)

Φ(G̃N,R(f)(y))ω(y) dy

}1/pΦ

. ‖φ‖DN,R(Rn)[ω(B(0, 1))]−1/pΦ‖f‖1/pΦ

hΦ
ω,N (Rn)

. (3.30)
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Case (ii): ‖f‖hΦ
ω,N (Rn) < 1. In this case, by the lower type pΦ property of Φ and Theo-

rems 3.12 and 3.14, we see that∫
Rn

Φ(G̃N,R(f)(x))ω(x) dx . ‖f‖pΦ

hΦ
ω,N (Rn)

∫
Rn

Φ

(
G̃N,R(f)(x)

‖f‖hΦ
ω,N (Rn)

)
ω(x) dx . ‖f‖pΦ

hΦ
ω,N (Rn)

.

Thus, from this fact and (3.27), similarly to the proof of (3.29) and (3.30), we infer that

if infx∈B(0,1) G̃N,R(f)(x) ≤ 1, then

|〈f, φ〉| . ‖φ‖DN,R(Rn)
1

ω(B(0, 1))
‖f‖pΦ

hΦ
ω,N (Rn)

,

and if infx∈B(0,1) G̃N,R(f)(x) > 1, then

|〈f, φ〉| . ‖φ‖DN,R(Rn)[ω(B(0, 1))]−1/pΦ‖f‖hΦ
ω,N (Rn).

Thus, f ∈ D′(Rn) and the inclusion is continuous, which completes the proof of Propo-

sition 3.16.

Proposition 3.17. Let Φ satisfy Assumption (A), ω ∈Aloc
∞ (Rn) and NΦ, ω be as in (3.25).

For any integer N ≥ NΦ, ω, the space hΦ
ω,N (Rn) is complete.

Proof. For any ψ ∈ DN (Rn) and {fi}i∈N ⊂ D′(Rn) such that {
∑j
i=1 fi}j∈N converges

in D′(Rn) to a distribution f as j → ∞, the series {
∑j
i=1 fi ∗ ψ}j∈N converges to f ∗ ψ

also pointwise as j →∞. By Assumption (A), we know that Φ is strictly increasing and

subadditive, which together with the continuity of Φ implies that for all x ∈ Rn,

Φ(GN (f)(x)) ≤ Φ
( ∞∑
i=1

GN (fi)(x)
)
≤
∞∑
i=1

Φ(GN (fi)(x)).

If
∑∞
i=1 ‖fi‖

pΦ

hΦ
ω,N (Rn)

< ∞ and we let λi = ‖fi‖pΦ

hΦ
ω,N (Rn)

, then by the strictly lower type

pΦ property of Φ and the Levi lemma, we know that∫
Rn

Φ

(
GN (f)(x)

(
∑∞
j=1 λj)

1/pΦ

)
ω(x) dx

≤
∞∑
i=1

∫
Rn

Φ

(
GN (fi)(x)

(
∑∞
j=1 λj)

1/pΦ

)
ω(x) dx

≤
∞∑
i=1

λi∑∞
j=1 λj

∫
Rn

Φ

(
GN (fi)(x)

λ
1/pΦ

i

)
ω(x) dx ≤

∞∑
i=1

λi∑∞
j=1 λj

= 1,

which further implies that

‖f‖pΦ

hΦ
ω,N (Rn)

≤
∞∑
i=1

‖fi‖pΦ

hΦ
ω,N (Rn)

. (3.31)

To prove that hΦ
ω,N (Rn) is complete, it suffices to show that for every sequence {fj}j∈N

with ‖fj‖hΦ
ω,N (Rn) < 2−j for any j ∈ N, the series {fj}j∈N converges in hΦ

ω,N (Rn).

Since {
∑j
i=1 fi}j∈N is a Cauchy sequence in hΦ

ω,N (Rn), by Proposition 3.16 and the

completeness of D′(Rn), {
∑j
i=1 fi}j∈N is also a Cauchy sequence in D′(Rn) and thus
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converges to some f ∈ D′(Rn). Therefore, by (3.31),∥∥∥f − j∑
i=1

fi

∥∥∥pΦ

hΦ
ω,N (Rn)

=
∥∥∥ ∞∑
i=j+1

fi

∥∥∥pΦ

hΦ
ω,N (Rn)

≤
∞∑

i=j+1

2−ipΦ → 0

as j →∞, which completes the proof of Proposition 3.17.

Theorem 3.18. Let Φ satisfy Assumption (A), ω ∈ Aloc
∞ (Rn) and NΦ, ω be as in (3.25).

If (ρ, q, s)ω is admissible (see Definition 3.4), then for any integer N ≥ NΦ, ω,

hρ, q, sω (Rn) ⊂ hΦ
ω,NΦ, ω

(Rn) ⊂ hΦ
ω,N (Rn),

and moreover there exists a positive constant C such that for all f ∈ hρ, q, sω (Rn),

‖f‖hΦ
ω,N (Rn) ≤ ‖f‖hΦ

ω,NΦ, ω
(Rn) ≤ C‖f‖hρ, q, sω (Rn).

Proof. Obviously, by Definition 3.3, we only need to prove that hρ, q, sω (Rn)⊂ hΦ
ω,NΦ, ω

(Rn),

and for all f ∈ hρ, q, sω (Rn),

‖f‖hΦ
ω,NΦ, ω

(Rn) . ‖f‖hρ, q, sω (Rn).

To this end, by Theorem 3.14 and Definition 3.5, it suffices to prove that for any (ρ, q)ω-

single-atom a and λ ∈ C,∫
Rn

Φ(G0
NΦ, ω

(λa)(x))ω(x) dx . ω(Rn)Φ

(
|λ|

ω(Rn)ρ(ω(Rn))

)
, (3.32)

and for any (ρ, q, s)ω-atom a supported in the cube Q and λ ∈ C,∫
Rn

Φ(G0
NΦ, ω

(λa)(x))ω(x) dx . ω(Q)Φ

(
|λ|

ω(Q)ρ(ω(Q))

)
. (3.33)

Indeed, for any f ∈ hρ, q, sω (Rn),

f =

∞∑
i=0

λiai

in D′(Rn), where {λi}∞i=0 ⊂ C, a0 is a (ρ, q)ω-single-atom and for any i ∈ N, ai is a

(ρ, q, s)ω-atom supported in the cube Qi. Then, for any λ ∈ (0,∞), from the facts that

G0
NΦ, ω

(f/λ) = G0
NΦ, ω

(f)/λ and Φ is strictly increasing, subadditive and continuous, and

from (3.32) and (3.33), we have∫
Rn

Φ

(G0
NΦ, ω

(f)(x)

λ

)
ω(x) dx

=

∫
Rn

Φ(G0
NΦ, ω

(
f

λ

)
(x)

)
ω(x) dx ≤

∞∑
i=0

∫
Rn

Φ

(
G0
NΦ, ω

(
λiai
λ

)
(x)

)
ω(x) dx

. ω(Rn)Φ

(
|λ0|

λω(Rn)ρ(ω(Rn))

)
+

∞∑
i=1

ω(Qi)Φ

(
|λi|

λω(Qi)ρ(ω(Qi))

)
,

which together with Theorem 3.14 implies that ‖f‖hΦ
ω,NΦ, ω

(Rn) . ‖f‖hρ, q, sω (Rn).

We now prove (3.32). Since q ∈ (qω,∞], by the definition of qω, we have ω ∈ Aloc
q (Rn).

Let a be a (ρ, q)ω-single-atom and λ ∈ C. When ω(Rn) = ∞, by the definition of the

single atom, we know that a = 0 for almost every x ∈ Rn. In this case, it is easy to

see that (3.32) holds. When ω(Rn) < ∞, since Φ is concave, from Jensen’s inequality,
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Hölder’s inequality and Proposition 3.2(ii), we deduce that∫
Rn

Φ(G0
NΦ, ω

(λa)(x))ω(x) dx

≤ ω(Rn)Φ

(
1

ω(Rn)

∫
Rn
G0
NΦ, ω

(λa)(x)ω(x) dx

)
≤ ω(Rn)Φ

(
1

[ω(Rn)]1/q

{∫
Rn

[G0
NΦ, ω

(λa)(x)]qω(x) dx

}1/q)
. ω(Rn)Φ

(
1

[ω(Rn)]1/q
|λ| ‖a‖Lqω(Rn)

)
. ω(Rn)Φ

(
|λ|

ω(Rn)ρ(ω(Rn))

)
.

That is, (3.32) holds.

Next, we prove (3.33). Let a be a (ρ, q, s)ω-atom supported in the cube Q ≡ Q(x0, r),

and λ ∈ C. We consider the following two cases for Q.

Case 1: |Q| < 1. In this case, letting Q̃ ≡ 2
√
nQ, we have∫

Rn
Φ(G0

NΦ, ω
(λa)(x))ω(x) dx=

∫
Q̃

Φ(G0
NΦ, ω

(λa)(x))ω(x) dx+

∫
Q̃{

· · · ≡ I1 + I2. (3.34)

For I1, by Jensen’s inequality, Hölder’s inequality, Lemma 2.3(v) and Proposi-

tion 3.2(ii), we have

I1 ≤ ω(Q̃)Φ

(
1

ω(Q̃)

∫
Q̃

G0
NΦ, ω

(λa)(x)ω(x) dx

)
≤ ω(Q̃)Φ

(
1

[ω(Q̃)]1/q

{∫
Q̃

[G0
NΦ, ω

(λa)(x)]qω(x) dx

}1/q)
. ω(Q̃)Φ

(
1

[ω(Q̃)]1/q
|λ| ‖a‖Lqω(Rn)

)
. ω(Q̃)Φ

(
|λ|

ω(Q)ρ(ω(Q))

)
. ω(Q)Φ

(
|λ|

ω(Q)ρ(ω(Q))

)
, (3.35)

which is the desired estimate for I1.

To estimate I2, we claim that for all x ∈ Q̃{,

G0
NΦ, ω

(λa)(x) . |λ| |Q|(s0+n+1)/n[ω(Q)ρ(ω(Q))]−1

× |x− x0|−(s0+n+1)χB(x0,2
√
n)(x), (3.36)

where s0 ≡ bn(qω/pΦ − 1)c. Indeed, for any ψ ∈ D0
N (Rn) and t ∈ (0, 1), let P be the

Taylor expansion of ψ about (x− x0)/t with degree s0. By Taylor’s remainder theorem,

for any y ∈ Rn, we have∣∣∣∣ψ(x− yt
)
− P

(
x− y
t

)∣∣∣∣
.

∑
α∈Zn+
|α|=s0+1

∣∣∣∣(∂αψ)

(
θ(x− y) + (1− θ)(x− x0)

t

)∣∣∣∣ ∣∣∣∣x0 − y
t

∣∣∣∣s0+1

,

where θ ∈ (0, 1). By t ∈ (0, 1) and x ∈ Q̃{, we see that supp(a ∗ ψt) ⊂ B(x0, 2
√
n) and
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that a ∗ ψt(x) 6= 0 implies that t > |x− x0|/2. Thus, from the above facts, Definition 3.4

and (2.1), it follows that for all x ∈ Q̃{,

|a ∗ ψt(x)| ≤ 1

tn

{∫
Q

|a(y)||ψ
(
x− y
t

)
− P

(
x− y
t

)∣∣∣∣ dy}χB(x0,2
√
n)(x)

. |x− x0|−(s0+n+1)

{∫
Q

|a(y)| |x0 − y|s0+1 dy

}
χB(x0,2

√
n)(x)

. |Q|(s0+1)/n‖a‖Lqω(Rn)

(∫
Q

[ω(y)]−q
′/q dy

)1/q′

|x− x0|−(s0+n+1)χB(x0,2
√
n)(x)

. |Q|(s0+n+1)/n[ω(Q)ρ(ω(Q))]−1|x− x0|−(s0+n+1)χB(x0,2
√
n)(x),

which together with the arbitrariness of ψ ∈ D0
N (Rn) implies (3.36). Thus, the claim

holds.

Let Qk ≡ 2k
√
nQ for all k ∈ N and k0 ∈ N satisfy 2k0r ≤ 4 < 2k0+1r. As

s0 = bn(qω/pΦ − 1)c,

we know that there exists q0 ∈ (qω,∞) such that pΦ(s0 +n+ 1) > nq0. From Lemma 2.3,

it follows that there exists an ω ∈ Ap0
(Rn) such that ω = ω on Q(x0, 8

√
n). From this

fact, (3.36), the lower type pΦ property of Φ and Lemma 2.3(viii), we conclude that

I2 ≤
∫
√
nr≤|x−x0|<2

√
n

Φ(G0
NΦ, ω

(λa)(x))ω(x) dx

.
∫
√
nr≤|x−x0|<2

√
n

Φ
(
|λ| |Q|(s0+n+1)/n[ω(Q)ρ(ω(Q))]−1|x− x0|−(s0+n+1)

)
ω(x) dx

.
k0∑
k=1

∫
Qk+1\Qk

Φ
(
|λ|2−k(s0+n+1)[ω(Q)ρ(ω(Q))]−1

)
ω(x) dx

.
k0∑
k=1

2−k(s0+n+1)pΦω(Qk+1)Φ

(
|λ|

ω(Q)ρ(ω(Q))

)

.
k0∑
k=1

2−k[(s0+n+1)pΦ−nq0]ω(Q)Φ

(
|λ|

ω(Q)ρ(ω(Q))

)

. ω(Q)Φ

(
|λ|

ω(Q)ρ(ω(Q))

)
,

which together with (3.34) and (3.35) implies (3.33) in Case 1.

Case 2: |Q| ≥ 1. In this case, let Q∗ ≡ Q(x0, r + 2). Thus, from

supp(G0
NΦ, ω

(λa)) ⊂ Q∗,

Jensen’s inequality, Hölder’s inequality, Lemma 2.3(v), and Proposition 3.2(ii), we deduce

that ∫
Rn

Φ(G0
NΦ, ω

(λa)(x))ω(x) dx

=

∫
Q∗

Φ(G0
NΦ, ω

(λa)(x))ω(x) dx ≤ ω(Q∗)Φ

(
1

ω(Q∗)

∫
Q∗
G0
NΦ, ω

(λa)(x)ω(x) dx

)
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≤ ω(Q∗)Φ

(
1

[ω(Q∗)]1/q

{∫
Q∗

[G0
NΦ, ω

(λa)(x)]qω(x) dx

}1/q)
. ω(Q∗)Φ

(
|λ|

[ω(Q∗)]1/q
‖a‖Lqω(Rn)

)
. ω(Q∗)Φ

(
|λ|

ω(Q)ρ(ω(Q))

)
. ω(Q)Φ

(
|λ|

ω(Q)ρ(ω(Q))

)
,

which proves (3.33) in Case 2. This finishes the proof of Theorem 3.18.

4. Calderón–Zygmund decompositions

In this section, we establish some subtle estimates for the Calderón–Zygmund decompo-

sition associated with local grand maximal functions on the weighted Euclidean space Rn
given in [49]. Notice that the construction of the Calderón–Zygmund decomposition in [49]

is similar to those in [46, 3, 5].

Let Φ be a positive function on R+ satisfying Assumption (A), ω ∈ Aloc
∞ (Rn) and qω

be as in (2.4). For an integer N ≥ 2, let GN (f) and G0
N (f) be as in (3.2).

Throughout this section, let f ∈ D′(Rn) be such that for all λ ∈ (0,∞),

ω({x ∈ Rn : GN (f)(x) > λ}) <∞.

For a given λ > infx∈Rn GN (f)(x), we set

Ωλ ≡ {x ∈ Rn : GN (f)(x) > λ}. (4.1)

It is obvious that Ωλ is a proper open subset of Rn. First, we recall the usual Whitney

decomposition of Ωλ given in [49] (see also [46, 3, 5]). We can find closed cubes {Qi}i
such that

Ωλ =
⋃
i

Qi, (4.2)

their interiors are away from Ω{
λ and

diam(Qi) ≤ 2−(6+n) dist(Qi,Ω
{
λ) ≤ 4 diam(Qi).

In what follows, fix a ≡ 1 + 2−(11+n) and denote aQi by Q∗i for all i. Then we have

Qi ⊂ Q∗i . Moveover, Ωλ =
⋃
iQ
∗
i , and {Q∗i }i have the bounded interior property, namely,

every point in Ωλ is contained in at most a fixed number of {Q∗i }i.
Now we take a function ξ ∈ D(Rn) such that 0 ≤ ξ ≤ 1, supp(ξ) ⊂ aQ(0, 1) and

ξ ≡ 1 on Q(0, 1). For x ∈ Rn, set ξi(x) ≡ ξ((x− xk)/li). Here and in what follows, xi is

the center of the cube Qi and li its sidelength. Obviously, by the construction of {Q∗i }i
and {ξi}i, for any x ∈ Rn, we have 1 ≤

∑
i ξi(x) ≤ L, where L is a fixed positive integer

independent of x. Let

ζi ≡
ξi∑
j ξj

. (4.3)

Then {ζi}i form a smooth partition of unity for Ωλ subordinate to the locally finite cover

{Q∗i }i of Ωλ, namely, χΩλ =
∑
i ζi with each ζi ∈ D(Rn) supported in Q∗i .
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Let s ∈ Z+ be some fixed integer and Ps(Rn) denote the linear space of polynomials

in n variables of degrees no more than s. For each i ∈ N and P ∈ Ps(Rn), set

‖P‖i ≡
[

1∫
Rn ζi(y) dy

∫
Rn
|P (x)|2ζi(x) dx

]1/2

. (4.4)

Then it is easy to see that (Ps(Rn), ‖ · ‖i) is a finite-dimensional Hilbert space. Let

f ∈ D′(Rn). Since f induces a linear functional on Ps(Rn) via

P 7→ 1∫
Rn ζi(y) dy

〈f, Pζi〉,

by the Riesz representation theorem, there exists a unique polynomial

Pi ∈ Ps(Rn) (4.5)

for each i such that 〈f, Pζi〉 = 〈Pi, P ζi〉 for all P ∈ Ps(Rn). For each i, define the

distribution

bi ≡ (f − Pi)ζi when li ∈ (0, 1), bi ≡ fζi when li ∈ [1,∞). (4.6)

We show that for suitable choices of s and N , the series
∑
i bi converges in D′(Rn), and

in this case, we let g ≡ f −
∑
i bi in D′(Rn). We point out that the representation

f = g +
∑
i

bi, (4.7)

where g and bi are as above, is called a Calderón–Zygmund decomposition of f of degree

s and height λ associated with GN (f).

The rest of this section consists of a series of lemmas. Lemma 4.1 gives a property

of the smooth partition of unity {ζi}i, Lemmas 4.2 through 4.5 are devoted to some

estimates for the bad parts {bi}i, and Lemmas 4.6 and 4.7 give some controls over the

good part g. Finally, Corollary 4.8 shows the density of Lqω(Rn)∩hΦ
ω,N (Rn) in hΦ

ω,N (Rn),

where q ∈ (qω,∞). Lemmas 4.1 through 4.3, and Lemmas 4.5 and 4.6, are respectively

Lemmas 4.2 through 4.5, and Lemmas 4.7 and 4.8 in [49].

Lemma 4.1. There exists a positive constant C1 such that for all f ∈ D′(Rn), all

λ > inf
x∈Rn

GN (f)(x)

and all li ∈ (0, 1), we have

sup
y∈Rn

|Pi(y)ζi(y)| ≤ C1λ.

Lemma 4.2. There exists a positive constant C2 such that for all i ∈ N and x ∈ Q∗i ,

G0
N (bi)(x) ≤ C2GN (f)(x). (4.8)

Lemma 4.3. Assume that integers s and N satisfy 0 ≤ s < N and N ≥ 2. Then there

exist positive constants C, C3 and C4 such that for all i ∈ N and x ∈ (Q∗i )
{,

G0
N (bi)(x) ≤ C λln+s+1

i

(li + |x− xi|)n+s+1
χB(xi,C3)(x), (4.9)

where xi is the center of the cube Qi. Moreover, if x ∈ (Q∗i )
{ and li ∈ [C4,∞), then

G0
N (bi)(x) = 0.
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Lemma 4.4. Let Φ satisfy Assumption (A), ω ∈ Aloc
∞ (Rn), qω and pΦ be respectively as

in (2.4) and (2.6). If integers s,N satisfy s ≥ bn(qω/pΦ − 1)c, N > s and N ≥ NΦ, ω,

where NΦ, ω is as in (3.25), then there exists a positive constant C5 such that for all

f ∈ hΦ
ω,N (Rn), λ > infx∈Rn GN (f)(x) and i ∈ N,∫

Rn
Φ(G0

N (bi)(x))ω(x) dx ≤ C5

∫
Q∗i

Φ(GN (f)(x))ω(x) dx. (4.10)

Moreover, the series
∑
i bi converges in hΦ

ω,N (Rn) and∫
Rn

Φ
(
G0
N

(∑
i

bi

)
(x)
)
ω(x) dx ≤ C5

∫
Ωλ

Φ(GN (f)(x))ω(x) dx. (4.11)

Proof. By Lemmas 4.2 and 4.3, we have∫
Rn

Φ(G0
N (bi)(x))ω(x) dx .

∫
Q∗i

Φ(GN (f)(x))ω(x) dx

+

∫
(2C3Q0

i )\Q∗i
Φ(G0

N (bi)(x))ω(x) dx, (4.12)

where Q0
i ≡ Q(xi, 1). Notice that s ≥ bn(qω/pΦ − 1)c implies (s + n + 1)pΦ > nqω.

Thus, we take q0 ∈ (qω,∞) such that (s + n + 1)pΦ > nq0 and ω ∈ Aloc
q0 (Rn). By

Lemma 2.3(i), we know that there exists an ω̃ ∈ Aq0(Rn) such that ω̃ = ω on 2C3Q
0
i and

Aq0(ω̃) . Aloc
q0 (ω). Using Lemma 4.3, the lower pΦ property of Φ, Lemma 2.3(viii) and

the fact that GN (f) > λ for all x ∈ Q∗i , we conclude that∫
(2C3Q0

i )\Q∗i
Φ(G0

N (bi)(x))ω(x) dx

≤
k0∑
k=1

∫
2kQ∗i \2k−1Q∗i

Φ(G0
N (bi)(x))ω̃(x) dx .

k0∑
k=1

Φ

(
λ

2k(n+s+1)

)∫
2kQ∗i

ω̃(x) dx

.
k0∑
k=1

Φ(λ)
1

2k(n+s+1)pΦ

∫
2kQ∗i

ω̃(x) dx .
k0∑
k=1

Φ(λ)2−k[(n+s+1)pΦ−nq0]ω̃(Q∗i )

.
∫
Q∗i

Φ(GN (f)(x))ω̃(x) dx ∼
∫
Q∗i

Φ(GN (f)(x))ω(x) dx, (4.13)

where k0 ∈ N satisfies 2k0−2 ≤ C3 < 2k0−1. From (4.12) and (4.13), we deduce that (4.10)

holds. Then, by (4.10), we see that∑
i

∫
Rn

Φ(G0
N (bi)(x))ω(x) dx .

∑
i

∫
Q∗i

Φ(GN (f)(x))ω(x) dx

.
∫

Ωλ

Φ(GN (f)(x))ω(x) dx.

Combining the above inequality with the completeness of hΦ
ω,N (Rn), we infer that

∑
i bi

converges in hΦ
ω,N (Rn). So by Proposition 3.16, the series

∑
i bi converges in D′(Rn) and

hence
G0
N

(∑
i

bi

)
(x) ≤

∑
i

G0
N (bi)(x)

for all x ∈ Rn, which gives (4.11). This finishes the proof of Lemma 4.4.
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Lemma 4.5. Let ω ∈ Aloc
∞ (Rn) and qω be as in (2.4), s ∈ Z+ and integer N ≥ 2. If

q ∈ (qω,∞] and f ∈ Lqω(Rn), then the series
∑
i bi converges in Lqω(Rn) and there exists

a positive constant C6, independent of f , such that∥∥∥∑
i

|bi|
∥∥∥
Lqω(Rn)

≤ C6‖f‖Lqω(Rn).

Lemma 4.6. Let integers s and N satisfy 0 ≤ s < N and N ≥ 2, f ∈ D′(Rn) and λ >

infx∈Rn GN (f)(x). If
∑
i bi converges in D′(Rn), then there exists a positive constant C7,

independent of f and λ, such that for all x ∈ Rn,

G0
N (g)(x) ≤ G0

N (f)(x)χΩ{
λ
(x) + C7λ

∑
i

ln+s+1
i

(li + |x− xi|)n+s+1
χB(xi,C3)(x),

where xi is the center of Qi and C3 is as in Lemma 4.3.

Lemma 4.7. Let Φ satisfy Assumption (A), ω ∈ Aloc
∞ (Rn), qω and pΦ be respectively as

in (2.4) and (2.6), N ≥ NΦ, ω, where NΦ, ω is as in (3.25), and q ∈ (qω,∞).

(i) If integers s and N satisfy N > s ≥ bn(qω/pΦ − 1)c and f ∈ hΦ
ω,N (Rn), then

G0
N (g) ∈ Lqω(Rn) and there exists a positive constant C8, independent of f and λ,

such that∫
Rn

[G0
N (g)(x)]qω(x) dx≤C8

λ
q−1

∫
Rn Φ(GN (f)(x))ω(x) dx, λ∈ (0, 1),

λq−pΦ
∫
Rn Φ(GN (f)(x))ω(x) dx, λ∈ [1,∞).

(4.14)

(ii) If f ∈ Lqω(Rn), then g ∈ L∞ω (Rn) and there exists a positive constant C9, independent

of f and λ, such that ‖g‖L∞ω (Rn) ≤ C9λ.

Proof. We first prove (i). Let f ∈ hΦ
ω,N (Rn). By Lemma 4.4 and Proposition 3.16,

∑
i bi

converges in both hΦ
ω,N (Rn) and D′(Rn). By s ≥ bn(qω/pΦ − 1)c, we know that there

exists q0 ∈ (qω,∞) such that (s+ n+ 1)pΦ > nq0 and ω ∈ Aloc
q0 (Rn). Let

J ≡
∫

Ω{
λ

[GN (f)(x)]qω(x) dx.

From Lemmas 4.6 and 3.10, we infer that∫
Rn

[G0
N (g)(x)]qω(x) dx . λq

∫
Rn

[∑
i

ln+s+1
i

(li + |x− xi|)n+s+1
χB(xi,C3)(x)

]q
ω(x) dx+ J

. λq
∫
Rn

(∑
i

[M loc
2C3

(χQi)(x)](n+s+1)/n
)q
ω(x) dx+ J

. λq
∫
Rn

(∑
i

[χQi(x)](n+s+1)/n
)q
ω(x) dx+ J

. λq
∫

Ωλ

ω(x) dx+ J ∼ λqω(Ωλ) + J.

Now, we consider the following two cases for λ.
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Case 1: λ ≥ 1. In this case, since Φ has lower type pΦ, we have

λqω(Ωλ) ≤ λq−pΦω(Ωλ)
[

inf
x∈Ωλ

GN (f)(x)
]pΦ

≤ λq−pΦω(Ωλ)Φ
(

inf
x∈Ωλ

GN (f)(x)
)

≤ λq−pΦ

∫
Ωλ

Φ(GN (f)(x))ω(x) dx.

Recall that

Ω1 ≡ {x ∈ Rn : GN (f)(x) > 1}.

From the fact that Φ has lower type pΦ and upper type 1, it follows that

J =

∫
Ω{
λ∩Ω1

[GN (f)(x)]qω(x) dx+

∫
Ω{
λ∩Ω{

1

· · ·

.
∫

Ω{
λ

[GN (f)(x)]q−pΦΦ(GN (f)(x))ω(x) dx+

∫
Ω{
λ

[GN (f)(x)]q−1Φ(GN (f)(x))ω(x) dx

. (λq−pΦ + λq−1)

∫
Ω{
λ

Φ(GN (f)(x))ω(x) dx . λq−pΦ

∫
Ω{
λ

Φ(GN (f)(x))ω(x) dx,

which together with the estimate of λqω(Ωλ) implies (4.10) in Case 1.

Case 2: λ ∈ (0, 1). In this case, for any x ∈ Ωλ, if GN (f)(x) ≥ 1 > λ, using the fact that

Φ has lower type pΦ, we conclude that

λq ≤ λq−pΦ [GN (f)(x)]pΦ . λq−pΦΦ(GN (f)(x)) . λq−1Φ(GN (f)(x)).

If GN (f)(x) < 1 and GN (f)(x) > λ, by the fact that Φ has upper type 1, we see that

λq ≤ λq−1GN (f)(x) . λq−1Φ(GN (f)(x)).

From these estimates, we deduce that

λqω(Ωλ) . λq−1

∫
Ωλ

Φ(GN (f)(x))ω(x) dx.

For J, since λ ∈ (0, 1), GN (f)(x) ≤ λ for all x ∈ Ω{
λ and Φ has upper type 1, we know

that

J ≤ λq−1

∫
Ω{
λ

GN (f)(x)ω(x) dx . λq−1

∫
Ω{
λ

Φ(GN (f)(x))ω(x) dx,

which together with the estimate of λqω(Ωλ) implies (4.14) in Case 2. Thus, (i) holds.

Now we prove (ii). If f ∈ Lqω(Rn), then g and {bi}i are functions. By Lemma 4.5, we

know that
∑
i bi converges in Lqω(Rn) and hence in D′(Rn) by Lemma 2.6(ii). Write

g = f −
∑
i

bi = f
(

1−
∑
i

ζi

)
+
∑
i∈F

Piζi = fχΩ{
λ

+
∑
i∈F

Piζi,

where F ≡ {i ∈ N : li ∈ (0, 1)}. By Lemma 4.1, we have |g(x)| . λ for all x ∈ Ωλ, which

combined with Proposition 3.2(i) yields

|g(x)| = |f(x)| ≤ GN (f)(x) ≤ λ

for almost every x ∈ Ω{
λ, Thus, ‖g‖L∞ω (Rn) . λ. This shows (ii) and hence finishes the

proof of Lemma 4.7.
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Corollary 4.8. Let Φ satisfy Assumption (A), ω ∈ Aloc
∞ (Rn), qω be as in (2.4),

q ∈ (qω,∞)

and N ≥ NΦ, ω, where NΦ, ω is as in (3.25). Then hΦ
ω,N (Rn) ∩ Lqω(Rn) is dense in

hΦ
ω,N (Rn).

Proof. Let f ∈ hΦ
ω,N (Rn). For any λ > infx∈Rn GN (f)(x), let

f = gλ +
∑
i

bλi

be the Calderón–Zygmund decomposition of f of degree s with bn(qω/pΦ − 1)c ≤ s < N

and height λ associated to GN (f). By Lemma 4.4,∫
Rn

Φ
(
G0
N

(∑
i

bλi

)
(x)
)
ω(x) dx .

∫
{x∈Rn:GN (f)(x)>λ}

Φ(GN (f)(x))ω(x) dx.

Hence, gλ → f in hΦ
ω,N (Rn) as λ → ∞. Moreover, by Lemma 4.7(i), we have G0

N (gλ) ∈
Lqω(Rn), which together with Proposition 3.2(ii) implies gλ ∈ Lqω(Rn). This finishes the

proof of Corollary 4.8.

5. Weighted atomic decompositions of hΦ
ω,N(Rn)

In this section, we establish the equivalence between hΦ
ω,N (Rn) and hρ, q, sω (Rn) by using

the Calderón–Zygmund decomposition associated to the local grand maximal function

stated in Section 4.

Let Φ satisfy Assumption (A), ω ∈ Aloc
∞ (Rn), qω, pΦ and NΦ, ω be respectively as

in (2.4), (2.6) and (3.25), N ≥ NΦ, ω an integer and s0 ≡ bn(qω/pΦ − 1)c. Throughout

this section, let
f ∈ hΦ

ω,N (Rn).

We take k0 ∈ Z such that 2k0−1 ≤ infx∈Rn GN (f)(x) < 2k0 when

inf
x∈Rn

GN (f)(x) > 0,

and when infx∈Rn GN (f)(x) = 0, let k0 ≡ −∞. Throughout this section, we always assume

that k ≥ k0. For each integer k ≥ k0, consider the Calderón–Zygmund decomposition of f

of degree s and height λ = 2k associated to GN (f). Namely, for any k ≥ k0, by taking

λ ≡ 2k in (4.1), we now write the Calderón–Zygmund decomposition in (4.7) as

f = gk +
∑
i

bki ; (5.1)

here and in what follows in this section, we write {Qi}i in (4.2), {ζi}i in (4.3), {Pi}i in

(4.5) and {bi}i in (4.6), respectively, as {Qki }i, {ζki }i, {P ki }i and {bki }i. Now, the center

and the sidelength of Qki are respectively denoted by xki and lki . Recall that for all i and k,∑
i

ζki = χΩ
2k
, supp(bki ) ⊂ supp(ζki ) ⊂ Qk∗i , (5.2)

{Qk∗i }i has the bounded interior property, and for all P ∈ Ps(Rn),

〈f, Pζki 〉 = 〈P ki , P ζki 〉. (5.3)
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For each integer k ≥ k0 and i, j ∈ N, let P k+1
i, j be the orthogonal projection of (f−P k+1

j )ζki
on Ps(Rn) with respect to the norm

‖P‖2j ≡
1∫

Rn ζ
k+1
j (y) dy

∫
Rn
|P (x)|2ζk+1

j (x) dx,

namely, P k+1
i, j is the unique polynomial of Ps(Rn) such that for any P ∈ Ps(Rn),

〈(f − P k+1
j )ζki , P ζ

k+1
j 〉 =

∫
Rn
P k+1
i, j (x)P (x)ζk+1

j (x) dx. (5.4)

Recall that a ≡ 1 + 2−(11+n). In what follows, let Qk∗i ≡ aQki ,

Ek1 ≡ {i ∈ N : |Qki | ≥ 1/(24n)}, F k1 ≡ {i ∈ N : |Qki | ≥ 1},
Ek2 ≡ {i ∈ N : |Qki | < 1/(24n)}, F k2 ≡ {i ∈ N : |Qki | < 1}.

Observe that

P k+1
i, j 6= 0 if and only if Qk∗i ∩Q

(k+1)∗
j 6= ∅. (5.5)

Indeed, this follows directly from the definition of P k+1
i, j . Lemmas 5.1 through 5.3 below

are just Lemmas 5.1 through 5.3 in [49].

Lemma 5.1. Let Ω2k be as in (4.1) with λ = 2k, and Qk∗i and lki be as above.

(i) If Qk∗i ∩Q
(k+1)∗
j 6= ∅, then lk+1

j ≤ 24
√
nlki and Q

(k+1)∗
j ⊂ 26nQk∗i ⊂ Ω2k .

(ii) There exists a positive integer L such that for each i ∈ N, the cardinality of {j ∈ N :

Qk∗i ∩Q
(k+1)∗
j 6= ∅} is bounded by L.

Lemma 5.2. There exists a positive constant C such that for all i, j ∈ N and integer

k ≥ k0 with lk+1
j ∈ (0, 1),

sup
y∈Rn

|P k+1
i, j (y)ζk+1

j (y)| ≤ C2k+1. (5.6)

Lemma 5.3. For any k ∈ Z with k ≥ k0,∑
i∈N

( ∑
j∈Fk+1

2

P k+1
i, j ζk+1

j

)
= 0,

where the series converges both in D′(Rn) and pointwise.

The following lemma gives the weighted atomic decomposition for a dense subspace

of hΦ
ω,N (Rn).

Lemma 5.4. Let Φ satisfy Assumption (A), ω ∈ Aloc
∞ (Rn), qω, pΦ and NΦ, ω be re-

spectively as in (2.4), (2.6) and (3.25). If q ∈ (qω,∞), N ≥ NΦ, ω is an integer, s ≥
bn(qω/pΦ − 1)c and N > s, then for any f ∈ Lqω(Rn) ∩ hΦ

ω,N (Rn), there exist λ0 ∈ C,

{λki }k≥k0, i ⊂ C, a (ρ,∞)ω-single-atom a0 and (ρ,∞, s)ω-atoms {aki }k≥k0, i such that

f =
∑
k≥k0

∑
i

λki a
k
i + λ0a0, (5.7)

where the series converges both in D′(Rn) and almost everywhere. Moreover, there exists

a positive constant C, independent of f , such that

Λ({λki aki }k≥k0, i ∪ {λ0a0}) ≤ C‖f‖hΦ
ω,N (Rn). (5.8)
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Proof. Let f ∈ (Lqω(Rn)∩hΦ
ω,N (Rn)). We first consider the case k0 = −∞. As above, for

each k ∈ Z, f has a Calderón–Zygmund decomposition of degree s and height λ = 2k

associated to GN (f) as in (5.1), namely,

f = gk +
∑
i

bki .

By Corollary 4.8 and Proposition 3.2, gk → f in both hΦ
ω,N (Rn) and D′(Rn) as k →∞.

By Lemma 4.7(i), ‖gk‖Lqω(Rn) → 0 as k → −∞, and furthermore, by Lemma 2.6(ii),

gk → 0 in D′(Rn) as k → −∞. Therefore,

f =

∞∑
k=−∞

(gk+1 − gk) (5.9)

in D′(Rn). Moreover, since supp(
∑
i b
k
i ) ⊂ Ω2k and ω(Ω2k) → 0 as k → ∞, it follows

that gk → f almost everywhere as k →∞. Thus, (5.9) also holds almost everywhere. By

Lemma 5.3 and (5.2) with Ω2k+1 ⊂ Ω2k ,

gk+1 − gk =
(
f −

∑
j

bk+1
j

)
−
(
f −

∑
i

bki

)
=
∑
i

bki −
∑
j

bk+1
j +

∑
i

( ∑
j∈Fk+1

2

P k+1
i, j ζk+1

j

)
=
∑
i

[
bki −

∑
j

bk+1
j ζki +

∑
j∈Fk+1

2

P k+1
i, j ζk+1

j

]
≡
∑
i

hki , (5.10)

where all the series converge in both D′(Rn) and almost everywhere. Furthermore, from

the definitions of bkj and bk+1
j as in (4.3), we infer that when lki ∈ (0, 1),

hki = fχΩ{
2k+1

ζki − P ki ζki +
∑

j∈Fk+1
2

P k+1
j ζki ζ

k+1
j +

∑
j∈Fk+1

2

P k+1
i, j ζk+1

j , (5.11)

and when lki ∈ [1,∞),

hki = fχΩ{
2k+1

ζki +
∑

j∈Fk+1
2

P k+1
j ζki ζ

k+1
j +

∑
j∈Fk+1

2

P k+1
i, j ζk+1

j . (5.12)

By Proposition 3.2(i), we know that for almost every x ∈ Ω{
2k+1 ,

|f(x)| ≤ GN (f)(x) ≤ 2k+1,

which, together with Lemma 4.1, Lemma 5.1(ii), (5.5), Lemma 5.2, (5.11) and (5.12),

implies that there exists a positive constant C10 such that for all i ∈ N,

‖hki ‖L∞ω (Rn) ≤ C102k. (5.13)

Next, we show that for each i and k, hki is a multiple of a (ρ, ∞, s)ω-atom by considering

the following two cases for i.

Case 1: i ∈ Ek1 . In this case, from the fact that lk+1
j < 1 for j ∈ F k+1

2 , we deduce that

Q
(k+1)∗
j ⊂ Q(xki , a(lki + 2)) for j satisfying Qk∗i ∩Q

(k+1)∗
j 6= ∅. Let γ ≡ 1 + 2−12−n. Thus,
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when lki ≥ 2/(γ − 1), if we let Q̃ki ≡ Q(xki , a(lki + 2)), then

supp(hki ) ⊂ Q̃ki ⊂ γQk∗i ⊂ Ω2k .

When lki < 2/(γ − 1), if we let Q̃ki ≡ 26nQk∗i , then by Lemma 5.1(i), we have

supp(hki ) ⊂ Q̃ki ⊂ Ω2k .

From the definition of Q̃ki , Lemma 2.3(v) and Remark 2.4 with C̃ ≡ 2/(γ − 1), we infer

that there exists a positive constant C11 such that

ω(Q̃ki ) ≤ C11ω(Qk∗i ). (5.14)

Let Ã1 ≡ max{C10, C11},

λki ≡ Ã12kω(Q̃ki )ρ(ω(Q̃ki )) (5.15)

and aki ≡ (λki )−1hki . From (5.13) and supp(hki ) ⊂ Q̃ki with l(Q̃ki ) ≥ 2a > 1, it follows that

aki is a (ρ, ∞, s)ω-atom.

Case 2: i ∈ Ek2 . In this case, if j ∈ F k+1
1 , then lki < lk+1

j /(24n). By Lemma 5.1(i), we

know that Qk∗i ∩Q
(k+1)∗
j = ∅ for j ∈ F k+1

1 . From this, (5.2) and (5.10), we conclude that

hki = (f − P ki )ζki −
∑

j∈Fk+1
1

fζk+1
j ζki −

∑
j∈Fk+1

2

(f − P k+1
j )ζk+1

j ζki

+
∑

j∈Fk+1
2

P k+1
i, j ζk+1

j

= (f − P ki )ζki −
∑

j∈Fk+1
2

{(f − P k+1
j )ζk+1

j ζki − P k+1
i, j ζk+1

j }. (5.16)

Let Q̃ki ≡ 26nQk∗i . Then supp(hki ) ⊂ Q̃ki . From lki < 1/(24n), Lemma 2.3(v) and Re-

mark 2.4 with C̃ ≡ 4a, we know that there exists a positive constant C12 such that

ω(Q̃ki ) ≤ C12ω(Qk∗i ). (5.17)

Moveover, hki satisfies the desired moment conditions, which are deduced from the mo-

ment conditions of (f −P ki )ζki (see (5.3)) and (f −P k+1
j )ζk+1

j ζki −P
k+1
i, j ζk+1

j (see (5.4)).

Let Ã2 ≡ max{C10, C12},

λki ≡ Ã22kω(Q̃ki )ρ(ω(Q̃ki )) (5.18)

and aki ≡ (λki )−1hki . From this, (5.13), supp(hki ) ⊂ Q̃ki and the moment conditions of hki ,

we know that aki is a (ρ, ∞, s)ω-atom.

Thus, from (5.9), (5.10), and Cases 1 and 2, we infer that

f =
∑
k∈Z

∑
i∈N

λki a
k
i

holds in both D′(Rn) and almost everywhere, where for every k and i, λki ∈ C and aki
is a (ρ, ∞, s)ω-atom, which shows (5.7) in the case that k0 = −∞ by letting λ0 = 0.

Furthermore, from the fact that Φ(t) ∼
∫ t

0
Φ(s)
s ds for all t ∈ (0,∞), (5.15), (5.18),

(5.14), (5.17), the upper type 1 property of Φ, Fubini’s theorem and the bounded interior



38 D. Yang and S. Yang

property of {Qk∗i }, we know that for any λ ∈ (0,∞),∑
k, i

ω(Q̃ki )Φ

(
|λki |

λρ(ω(Q̃ki ))ω(Q̃ki )

)

.
∑
k, i

ω(Q̃ki )Φ

(
2k

λ

)
.
∑
k,i

ω(Qk∗i )Φ

(
2k

λ

)

.
∑
k

ω(Ω2k)Φ

(
2k

λ

)
∼
∑
k

∫
Ω

2k

Φ

(
2k

λ

)
ω(x) dx

.
∫
Rn

∑
k<log[GN (f)(x)]

Φ

(
2k

λ

)
ω(x) dx .

∫
Rn

∑
k<log[GN (f)(x)]

∫ 2k+1

2k
Φ

(
t

λ

)
dt

t
ω(x) dx

.
∫
Rn

∫ 2GN (f)(x)/λ

0

Φ(t)
dt

t
ω(x) dx .

∫
Rn

Φ

(
GN (f)(x)

λ

)
ω(x) dx,

which implies (5.8) in the case k0 = −∞.

Finally, we consider the case k0 > −∞. In this case, as f ∈ hΦ
ω,N (Rn), we see that

ω(Rn) <∞. Adapting the previous arguments, we conclude that

f =

∞∑
k=k0

(gk+1 − gk) + gk0 ≡ f̃ + gk0 , (5.19)

and for the function f̃ , we have the same (ρ, ∞, s)ω-atomic decomposition as above,

f̃ =
∑

k≥k0, i

λki a
k
i (5.20)

and

Λ({λki aki }k≥k0, i) . ‖f‖hΦ
ω,N (Rn). (5.21)

From Lemma 4.7(ii), it follows that

‖gk0‖L∞ω (Rn) ≤ C92k0 ≤ 2C9 inf
x∈Rn

GN (f)(x), (5.22)

where C9 is as in Lemma 4.7(ii). Let λ0 ≡ 2C92k0ω(Rn)ρ(ω(Rn)) and

a0 ≡ λ−1
0 gk0 .

Then

‖a0‖L∞ω (Rn) ≤ [ω(Rn)ρ(ω(Rn))]−1.

Thus, a0 is a (ρ, ∞)ω-single-atom and gk0 = λ0a0, which together with (5.19) and (5.20)

implies (5.7) in the case k0 > −∞. Moreover, from (5.22), we deduce that for any

λ ∈ (0,∞),

ω(Rn)Φ

(
|λ0|

λω(Rn)ρ(ω(Rn))

)
= ω(Rn)Φ

(
C92k0

λ

)
.
∫
Rn

Φ

(
GN (f)(x)

λ

)
ω(x) dx,

which together with (5.21) implies (5.8) in the case k0 > −∞. This finishes the proof of

Lemma 5.4.
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Remark 5.5. By its proof, all (ρ, ∞, s)ω-atoms in Lemma 5.4 can be taken to have

supports Q satisfying l(Q) ∈ (0, 2]. Indeed, for any (ρ, ∞, s)ω-atom a supported in a

cube Q0 with l(Q0) > 2, there exist N0 ∈ N, depending on l(Q0) and n, and cubes

{Qi}N0
i=1 satisfying l(Qi) ∈ [1, 2] with i ∈ {1, . . . , N0} such that

⋃N0

i=1Qi = Q0, for any

x ∈ Q0, 1 ≤
∑N0

i=1 χQi(x) ≤ C(n), and

a =
1∑N0

j=1 χQj

N0∑
i=1

aχQi ,

where C(n) is a positive integer, only depending on n. For any given λ0 ∈ C and i ∈
{1, . . . , N0}, let

γi ≡
λ0ω(Qi)ρ(ω(Qi))

ω(Q0)ρ(ω(Q0))
, bi ≡

ω(Q0)ρ(ω(Q0))aχQi

ω(Qi)ρ(ω(Qi))
∑N0

i=1 χQi
.

Then for any i ∈ {1, . . . , N0}, bi is a (ρ, ∞, s)ω-atom supported in the cube Qi and

λ0a =

N0∑
i=1

γibi. (5.23)

From the definitions of γi and bi,
⋃N0

i=1Qi = Q0, and for any x ∈ Q0,

1 ≤
N0∑
i=1

χQi(x) ≤ C(n),

we also conclude that for all λ ∈ (0,∞),

N0∑
i=1

ω(Qi)Φ

(
|γi|

λω(Qi)ρ(ω(Qi))

)
≤ C(n)ω(Q0)Φ

(
|λ0|

λω(Q0)ρ(ω(Q0))

)
. (5.24)

Thus, by the proof of Lemma 5.4, (5.23) and (5.24), we see that the claim holds.

Now we state the weighted atomic decompositions of hΦ
ω,N (Rn).

Theorem 5.6. Let Φ satisfy Assumption (A), ω ∈ Aloc
∞ (Rn), and qω and NΦ, ω be re-

spectively as in (2.4) and (3.25). If q ∈ (qω,∞], and integers s and N satisfy N ≥ NΦ, ω

and N > s ≥ bn(qω/pΦ − 1)c, then

hρ, q, sω (Rn) = hΦ
ω,N (Rn) = hΦ

ω,NΦ, ω
(Rn)

with equivalent norms.

Proof. It is easy to see that

hρ,∞, s1ω (Rn) ⊂ hρ, q, sω (Rn) ⊂ hΦ
ω,NΦ, ω

(Rn) ⊂ hΦ
ω,N (Rn) ⊂ hΦ

ω,N1
(Rn),

where the integers s1 and N1 are respectively no less than s and N , and the inclusions

are continuous. Thus, to prove Theorem 5.6, it suffices to prove that for any integers

N, s satisfying N > s ≥ bn(qω/pΦ − 1)c we have hΦ
ω,N (Rn) ⊂ hρ,∞, sω (Rn), and for all

f ∈ hΦ
ω,N (Rn),

‖f‖hρ,∞, sω (Rn) . ‖f‖hΦ
ω,N (Rn).
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Let f ∈ hΦ
ω,N (Rn). By Corollary 4.8, there exists a sequence {fm}m∈N ⊂ hΦ

ω,N (Rn)∩
Lqω(Rn) such that for all m ∈ N,

‖fm‖hΦ
ω,N (Rn) ≤ 2−m‖f‖hΦ

ω,N (Rn) (5.25)

and f =
∑
m∈N fm in hΦ

ω,N (Rn). By Lemma 5.4, for each m ∈ N, fm has an atomic

decomposition
f =

∑
i∈Z+

λmi a
m
i

in D′(Rn) with

Λ({λmi ami }i) . ‖fm‖hΦ
ω,N (Rn),

where {λmi }i∈Z+
⊂ C, {ami }i∈N are (ρ, ∞, s)ω-atoms and am0 is a (ρ, ∞)ω-single-atom.

Let

λ̃0 ≡ ω(Rn)ρ(ω(Rn))

∞∑
m=1

|λm0 | ‖am0 ‖L∞ω (Rn), ã0 ≡ (λ̃0)−1
∞∑
m=1

λm0 a
m
0 .

Then

λ̃0ã0 =

∞∑
m=1

λm0 a
m
0 .

It is easy to see that

‖ã0‖L∞ω (Rn) ≤ [ω(Rn)ρ(ω(Rn))]−1,

which implies that ã0 is a (ρ,∞)ω-single-atom. Since Φ is increasing, by (5.8), we know

that for any m ∈ N,

ω(Rn)Φ

(
|λm0 |

C‖fm‖hΦ
ω,N (Rn)ω(Rn)ρ(ω(Rn))

)
≤ 1, (5.26)

where C is as in (5.8). Let

γ̃ ≡ C
( ∞∑
i=m

‖fm‖pΦ

hΦ
ω,N (Rn)

)1/pΦ

,

where C is as in (5.8). Then, from the continuity, subadditivity and the strictly lower

type pΦ property of Φ, and (5.26), it follows that

ω(Rn)Φ

(
|λ̃0|

γ̃ω(Rn)ρ(ω(Rn))

)
= ω(Rn)Φ

(∑∞
m=1 |λm0 | ‖am0 ‖L∞ω (Rn)

γ̃

)
≤ ω(Rn)

∞∑
m=1

‖fm‖pΦ

hΦ
ω,N (Rn)

γ̃pΦ
Φ

(
|λm0 |

C‖fm‖hΦ
ω,N (Rn)ω(Rn)ρ(ω(Rn))

)
≤ 1,

which together with (5.25) implies that

Λ({λ̃0ã0}) ≤ γ̃ . ‖f‖hΦ
ω,N (Rn).

Thus, we see that

f =
∑
m∈N

∑
i∈N

λmi a
m
i + λ̃0ã0 ∈ hρ,∞, sω (Rn) and ‖f‖hρ,∞, sω (Rn) . ‖f‖hΦ

ω,N (Rn).

This finishes the proof of Theorem 5.6.
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Remark 5.7. Let p ∈ (0, 1]. Theorem 5.1 when Φ(t) ≡ tp for all t ∈ (0,∞) was obtained

by Tang [49, Theorem 5.1].

For simplicity, from now on, we denote by hΦ
ω (Rn) the weighted local Orlicz–Hardy

space hΦ
ω,N (Rn) when N ≥ NΦ, ω.

6. Finite atomic decompositions

In this section, we prove that for any given finite linear combination of weighted atoms

when q < ∞ (or continuous (ρ, q, s)ω-atoms when q = ∞), its norm in hΦ
ω,N (Rn) can

be achieved via all its finite weighted atomic decompositions. This extends the main

results in [35, 57] to the setting of weighted local Orlicz–Hardy spaces. As applications,

we see that for a given admissible triplet (ρ, q, s)ω and a β-quasi-Banach space Bβ with

β ∈ (0, 1], if T is a Bβ-sublinear operator, and maps all (ρ, q, s)ω-atoms and (ρ, q)ω-

single-atoms with q <∞ (or all continuous (ρ, q, s)ω-atoms with q =∞) into uniformly

bounded elements of Bβ , then T uniquely extends to a bounded Bβ-sublinear operator

from hΦ
ω (Rn) to Bβ .

Definition 6.1. Let Φ satisfy Assumption (A), ω ∈ Aloc
∞ (Rn) and (ρ, q, s)ω be admis-

sible as in Definition 3.4. Then hρ, q, sω, fin (Rn) is defined to be the vector space of all finite

linear combinations of (ρ, q, s)ω-atoms and a (ρ, q)ω-single-atom, and the norm of f in

hρ, q, sω, fin (Rn) is defined by

‖f‖hρ, q, sω, fin (Rn)≡ inf
{

Λ({λiai}i) : f =

k∑
i=0

λiai, k ∈Z+, {λi}ki=0⊂C, {ai}ki=1 are

(ρ, q, s)ω-atoms and a0 is a (ρ, q)ω-single-atom
}
.

Obviously, for any admissible triplet (ρ, q, s)ω, hρ, q, sω, fin (Rn) is dense in hρ, q, sω (Rn) with

respect to the quasi-norm ‖ · ‖hρ, q, sω (Rn).

Theorem 6.2. Let Φ satisfy Assumption (A), ω ∈ Aloc
∞ (Rn), qω be as in (2.4) and

(ρ, q, s)ω be admissible as in Definition 3.4.

(i) If q ∈ (qω,∞), then ‖ · ‖hρ, q, sω, fin (Rn) and ‖ · ‖hΦ
ω(Rn) are equivalent quasi-norms on

hρ, q, sω, fin (Rn).

(ii) Let hρ,∞, sω, fin, c(Rn) denote the set of all f ∈ hρ,∞, sω, fin (Rn) with compact support. Then

‖ · ‖hρ,∞, sω, fin (Rn) and ‖ · ‖hΦ
ω(Rn) are equivalent quasi-norms on hρ,∞, sω, fin, c(Rn) ∩ C(Rn).

Proof. We first show (i). Let q ∈ (qω,∞) and (ρ, q, s)ω be admissible. Obviously, from

Theorem 5.6, we infer that hρ, q, sω, fin (Rn) ⊂ hρ, q, sω (Rn) = hΦ
ω (Rn) and for all f ∈ hρ, q, sω, fin (Rn),

‖f‖hΦ
ω(Rn) . ‖f‖hρ, q, sω, fin (Rn).

Thus, we only need to show that for all f ∈ hρ, q, sω, fin (Rn),

‖f‖hρ, q, sω, fin (Rn) . ‖f‖hΦ
ω(Rn). (6.1)

By homogeneity, without loss of generality, we may assume that f ∈ hρ, q, sω, fin (Rn) with

‖f‖hΦ
ω(Rn) = 1. In the rest of this section, for any f ∈ hρ, q, sω, fin (Rn), let k0 be as in Section 5
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and Ω2k with k ≥ k0 as in (4.1) with λ = 2k. Since f ∈ (hΦ
ω,N (Rn) ∩ Lqω(Rn)), by

Lemma 5.4, there exist λ0 ∈ C, {λki }k≥k0, i ⊂ C, a (ρ, ∞)ω-single-atom a0 and (ρ, ∞, s)ω-

atoms {aki }k≥k0, i such that

f =
∑
k≥k0

∑
i

λki a
k
i + λ0a0 (6.2)

both in D′(Rn) and almost everywhere. First, we claim that (6.2) also holds in Lqω(Rn).

For any x ∈ Rn, from Rn =
⋃
k≥k0

(Ω2k \Ω2k+1), we see that there exists j ∈ Z such that

x ∈ Ω2j \ Ω2j+1 . By the proof of Lemma 5.4, we know that for all k > j, supp(aki ) ⊂
Q̃ki ⊂ Ω2k ⊂ Ω2j+1 ; then from (5.13) and (5.22), we conclude that∣∣∣∑

k≥k0

∑
i

λki a
k
i (x)

∣∣∣+ |λ0a0(x)| .
∑

k0≤k≤j

2k + 2k0 . 2j . GN (f)(x).

Since f ∈ Lqω(Rn), from Proposition 3.2(ii), we infer that GN (f)(x) ∈ Lqω(Rn). This

combined with the Lebesgue dominated convergence theorem implies that∑
k≥k0

∑
i

λki a
k
i + λ0a0

converges to f in Lqω(Rn), which completes the proof of the claim.

Next, we show (6.1) by considering the following two cases for ω.

Case 1: ω(Rn) =∞. In this case, as f ∈ Lqω(Rn), we know that k0 = −∞ and a0(x) = 0

for almost every x ∈ Rn in (6.2). Thus, in this case, (6.2) has the version

f =
∑
k∈Z

∑
i

λki a
k
i .

Since, when ω(Rn) = ∞, all (ρ, q)ω-single-atoms are 0, if f ∈ hρ, q, sω, fin (Rn), then f has

compact support. Assume that supp(f) ⊂ Q0 ≡ Q(x0, r0) and

Q̃0 ≡ Q(x0,
√
nr0 + 23(10+n)+1).

Then for any ψ ∈ DN (Rn), x ∈ Rn \ Q̃0 and t ∈ (0, 1), we have

ψt ∗ f(x) =

∫
Q(x0,r0)

ψt(x− y)f(y) dy =

∫
B(x,23(10+n))∩Q(x0,r0)

ψt(x− y)f(y) dy = 0.

Thus, for any k ∈ Z, Ω2k ⊂ Q̃0, which implies that supp(
∑
k∈Z

∑
i λ

k
i a
k
i ) ⊂ Q̃0. For each

positive integer K, let

FK ≡ {(i, k) : k ∈ Z, k ≥ k0, i ∈ N, |k|+ i ≤ K} and fK ≡
∑

(k,i)∈FK

λki a
k
i .

Then, by the above claim, fK converges to f in Lqω(Rn). Thus, for any given ε ∈ (0, 1),

there exists K0 ∈ N large enough such that

‖(f − fK0
)/ε‖Lqω(Rn) ≤ [ρ(ω(Q̃0))]−1[ω(Q̃0)]1/q−1,

which together with supp(f − fK0
)/ε ⊂ Q̃0 implies that (f − fK0

)/ε is a (ρ, q, s)ω-atom.

Moreover, we equivalently divide Q̃0 into the union of some cubes {Qi}N0
i=1 with disjoint

interior and sidelengths satisfying li ∈ (1, 2], where N0 depends only on r0 and n. It is
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clear that

‖(f − fK0
)χQi/ε‖Lqω(Rn) ≤ [ρ(ω(Q̃0))]−1[ω(Q̃0)]1/q−1 ≤ [ρ(ω(Qi))]

−1[ω(Qi)]
1/q−1,

which together with supp((f−fK0
)χQi/ε) ⊂ Qi implies that (f−fK0

)χQi/ε is a (ρ, q, s)ω-

atom for i = 1, . . . , N0. Thus,

f = fK0
+

N0∑
i=1

(f − fK0
)χQi

almost everywhere is a finite linear weighted atom combination of f . Let

bi ≡ (f − fK0)χQi/ε

and take ε ≡ N−1/pΦ

0 . Then, by (2.8) with t ≡ ω(Qi), Remark 3.6(ii) and the lower type

pΦ property of Φ,

‖f‖hρ, q, sω, fin (Rn) . Λ({λki aki }(i,k)∈FK0
) + Λ({εbi}N0

i=1)

. ‖f‖hρ, q, sω (Rn) +inf

{
λ∈ (0,∞) :

N0∑
i=1

ω(Qi)Φ

(
ε

λω(Qi)ρ(ω(Qi))

)
≤ 1

}
. 1,

which implies (6.1) in Case 1.

Case 2: ω(Rn) <∞. In this case, f may not have compact support. Similarly to Case 1,

for any positive integer K, let

fK ≡
∑

(k,i)∈FK

λki a
k
i + λ0a0

and bK ≡ f − fK , where FK is as in Case 1. From the above claim, fK converges to f in

Lqω(Rn). Thus, there exists a positive integer K1 ∈ N large enough such that

‖bK1
‖Lqω(Rn) ≤ [ρ(ω(Rn))]−1[ω(Rn)]1/q−1.

Thus, bK1 is a (ρ, q)ω-single-atom and f = fK1 + bK1 is a finite linear weighted atom

combination of f . Moreover, by Remark 3.6(ii) and (2.8) with t ≡ ω(Rn),

‖f‖hρ, q, sω, fin (Rn) . Λ({λki aki }(i,k)∈FK1
) + Λ({bK1

})

. ‖f‖hρ, q, sω (Rn) + inf

{
λ ∈ (0,∞) : ω(Rn)Φ

(
1

λω(Rn)ρ(ω(Rn))

)
≤ 1

}
. 1,

which implies (6.1) in Case 2. This finishes the proof of (i).

We now prove (ii). In this case, similarly to the proof of (i), we only need to prove

that for all f ∈ hρ,∞, sω, fin, c(Rn),

‖f‖hρ,∞, sω (Rn) . ‖f‖hΦ
ω(Rn).

Again, by homogeneity, without loss of generality, we may assume that ‖f‖hΦ
ω(Rn) = 1.

Since f has compact support, by the definition of GN (f), it is easy to see that GN (f)

also has compact support. Assume that supp(GN (f)) ⊂ B(0, R0) for some R0 ∈ (0,∞).

As f ∈ L∞ω (Rn), we have GNf ∈ L∞ω (Rn). Thus, there exists k1 ∈ Z such that Ω2k = ∅
for any k ∈ Z with k ≥ k1 + 1. By Lemma 5.4, there exist λ0 ∈ C, {λki }k1≥k≥k0, i ⊂ C, a
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(ρ, ∞)ω-single-atom a0 and (ρ, ∞, s)ω-atoms {aki }k1≥k≥k0, i such that

f =

k1∑
k=k0

∑
i

λki a
k
i + λ0a0

holds both in D′(Rn) and almost everywhere. Since f is uniformly continuous, for any

given ε ∈ (0,∞) there exists a δ ∈ (0,∞) such that if

|x− y| <
√
nδ/2,

then |f(x)− f(y)| < ε. We may assume that δ < 1. Write f = fε1 + fε2 with

fε1 ≡
∑

(i,k)∈G1

λki a
k
i + λ0a0 and fε2 ≡

∑
(i,k)∈G2

λki a
k
i ,

where

G1 ≡ {(i, k) : l(Q̃ki ) ≥ δ, k0 ≤ k ≤ k1}, G2 ≡ {(i, k) : l(Q̃ki ) < δ, k0 ≤ k ≤ k1},

and Q̃ki is the support of aki (see the proof of Lemma 5.4). For any fixed integer k ∈ [k0, k1],

by Lemma 5.1(ii) and Ω2k ⊂ B(0, R0), we see that G1 is a finite set.

For any (i, k) ∈ G2 and x ∈ Q̃ki , |f(x)− f(xki )| < ε. For all x ∈ Rn, let

f̃(x) ≡ [f(x)− f(xki )]χQ̃ki
(x)

and P̃ ki (x) ≡ P ki (x)− f(xki ). By the definition of P ki , for all P ∈ Ps(Rn),∫
Rn

[f̃(x)− P̃ ki (x)]P (x)ζki (x) dx = 0.

Since |f̃(x)| < ε for all x ∈ Rn implies that GN (f̃)(x) . ε for all x ∈ Rn, by Lemma 4.1

we see that

sup
y∈Rn

|P̃ ki (y)ζki (y)| . sup
y∈Rn

|GN (f̃)(y)| . ε. (6.3)

Let P̃ ki, j ∈ Ps(Rn) be such that for any P ∈ Ps(Rn),∫
Rn

[f̃(x)− P̃ ki (x)]ζki (x)P (x)ζk+1
i (x) dx =

∫
Rn
P̃ k+1
i, j (x)P (x)ζk+1

j (x) dx.

Since (f̃ − P̃ ki )ζki = (f − P ki )ζki , from supp(ζki ) ⊂ Q̃ki we have P̃ ki, j = P ki, j . Then from

Lemma 5.2, we deduce that

sup
y∈Rn

|P̃ ki, j(y)ζk+1
i (y)| . sup

y∈Rn
|GN (f̃)(y)| . ε. (6.4)

Thus, from the definition of λki a
k
i ,
∑
j ζ

k+1
j = χΩ

2k+1
and (5.11), we know that

λki a
k
i = fχΩ{

2k+1
ζki − P ki ζki +

∑
j∈Fk+1

2

P k+1
j ζki ζ

k+1
j +

∑
j∈Fk+1

2

P k+1
i, j ζk+1

j

= f̃χΩ{
2k+1

ζki − P̃ ki ζki +
∑

j∈Fk+1
2

P̃ k+1
j ζki ζ

k+1
j +

∑
j∈Fk+1

2

P̃ k+1
i, j ζk+1

j .
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From this together with (6.3), (6.4) and Lemma 5.1(ii), it follows that |λki aki | . ε for all

x ∈ Q̃ki with (i, k) ∈ G2. Moreover, using Lemma 5.1(ii) again, we conclude that

|fε2 | .
k1∑
k=k0

ε . (k1 − k0)ε.

From the arbitrariness of ε, supp(fε2 ) ⊂ B(0, R0) and |fε2 | . (k1−k0)ε, we choose ε small

enough such that fε2 is an arbitrarily small multiple of a (ρ, ∞, s)ω-atom. In particular,

we choose ε0 ∈ (0,∞) such that fε02 = λ̃ã with |λ̃| ≤ 1 and ã is a (ρ, ∞, s)ω-atom.

Then

f =
∑

(i,k)∈G1

λki a
k
i + λ0a0 + λ̃ã

is a finite weighted atomic decomposition of f , and

‖f‖hρ,∞, sω (Rn) . ‖f‖hΦ
ω(Rn) + 1 . 1,

which completes the proof of Theorem 6.2.

Remark 6.3. (i) From the proof of Theorem 6.2, for any f ∈ hρ, q, sω, fin (Rn) with q ∈ (qω,∞),

there exist {λj}kj=0 ⊂ C, a (ρ, q)ω-single-atom a0 and (ρ, q, s)ω-atoms {aj}kj=1 satisfying

supp(aj) ⊂ Qj with l(Qj) ∈ (0, 2] such that f =
∑k
j=0 λjaj in both Lqω(Rn) and D′(Rn).

Moreover, for all f ∈ hρ, q, sω, fin (Rn),

‖f‖hρ, q, sω, fin (Rn) ∼ ‖f‖hΦ
ω(Rn)

∼ inf
{

Λ{λiai}i : f =

k∑
i=0

λiai, k ∈ Z+, {ai}ki=1 are (ρ, q, s)ω-atoms

satisfying supp(aj) ⊂ Qj , l(Qj) ∈ (0, 2]

and a0 is a (ρ, q)ω-single-atom
}
.

(ii) Obviously, when ω(Rn) =∞,

hρ,∞, sω, fin, c(R
n) ∩ C(Rn) = hρ,∞, sω, fin (Rn) ∩ C(Rn).

As an application of Theorem 6.2, we establish the boundedness on hΦ
ω (Rn) of quasi-

Banach-valued sublinear operators.

Recall that a quasi-Banach space B is a vector space endowed with a quasi-norm ‖·‖B
which is nonnegative, nondegenerate (i. e., ‖f‖B = 0 if and only if f = 0), homogeneous,

and obeys the quasi-triangle inequality, i. e., there exists a positive constant K no less

than 1 such that for all f, g ∈ B,

‖f + g‖B ≤ K(‖f‖B + ‖g‖B).

Let β ∈ (0, 1]. As in [56, 57], a quasi-Banach space Bβ with the quasi-norm ‖ · ‖Bβ is

called a β-quasi-Banach space if

‖f + g‖βBβ ≤ ‖f‖
β
Bβ + ‖g‖βBβ

for all f, g ∈ Bβ .

Notice that any Banach space is a 1-quasi-Banach space, and the quasi-Banach spaces

lβ and Lβω(Rn) are typical β-quasi-Banach spaces. Let Φ satisfy Assumption (A). By the

subadditivity of Φ and (2.6), we know that hΦ
ω (Rn) is a pΦ-quasi-Banach space.
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For any given β-quasi-Banach space Bβ with β ∈ (0, 1] and a linear space Y, an

operator T from Y to Bβ is called Bβ-sublinear if for any f, g ∈ Bβ and λ, ν ∈ C,

‖T (λf + νg)‖Bβ ≤ (|λ|β‖T (f)‖βBβ + |ν|β‖T (g)‖βBβ )1/β

and

‖T (f)− T (g)‖Bβ ≤ ‖T (f − g)‖Bβ
(see [56, 57]).

We remark that if T is linear, then it is Bβ-sublinear. Moreover, if Bβ is a space

of functions, and T is nonnegative and sublinear in the classical sense, then T is also

Bβ-sublinear.

Theorem 6.4. Let Φ satisfy Assumption (A), ω ∈ Aloc
∞ (Rn), qω be as in (2.4) and

(ρ, q, s)ω be admissible. Let Bβ be a β-quasi-Banach space with β ∈ (0, 1] and p̃ be an

upper type of Φ satisfying p̃ ∈ (0, β]. Suppose that one of the following holds:

(i) q ∈ (qω,∞) and T : hρ, q, sω, fin (Rn)→ Bβ is a Bβ-sublinear operator such that

S ≡ sup{‖T (a)‖Bβ : a is a (ρ, q, s)ω-atom with supp(a) ⊂ Q and

l(Q) ∈ (0, 2] or (ρ, q)ω-single-atom
}
<∞.

(ii) T is a Bβ-sublinear operator defined on continuous (ρ, ∞, s)ω-atoms such that

S ≡ sup{‖T (a)‖Bβ : a is a continuous (ρ, ∞, s)ω-atom} <∞.

Then there exists a unique bounded Bβ-sublinear operator T̃ from hΦ
ω (Rn) to Bβ which

extends T .

Proof. We first show the conclusion under assumption (i). For any f ∈ hρ, q, sω, fin (Rn),

by Theorem 6.2(i) and Remark 6.3(i), there exist a sequence {λj}lj=0 ⊂ C with some

l ∈ N, a (ρ, q)ω-single-atom a0 and (ρ, q, s)ω-atoms {aj}lj=1 satisfying supp(aj) ⊂ Qj

and l(Qj) ∈ (0, 2] for j ∈ {1, . . . , l} such that f =
∑l
j=0 λjaj pointwise and

Λ({λjaj}lj=0) . ‖f‖hΦ
ω(Rn). (6.5)

Then by the assumptions,

‖T (f)‖Bβ ≤
{ l∑
i=0

|λi|β‖T (a)‖βBβ
}1/β

≤
{ l∑
i=0

|λi|p̃‖T (a)‖p̃Bβ
}1/p̃

.
{ l∑
i=0

|λi|p̃
}1/p̃

. (6.6)

Since Φ is of upper type p̃, for any t ∈ (0, 1] and s ∈ (0,∞) we have Φ(st) & tp̃Φ(s). Let

λ̃0 ≡ {
∑l
i=0 |λi|p̃}1/p̃. Then

l∑
i=0

ω(Qi)Φ

(
|λi|

λ̃0ω(Qi)ρ(ω(Qi))

)
&

l∑
i=0

ω(Qi)

(
|λi|
λ̃0

)p̃
1

ω(Qi)
∼ 1.

From this we deduce that λ̃0 . Λ({λiai}li=0), which together with (6.5) and (6.6) implies

that

‖T (f)‖Bβ . λ̃0 . Λ({λiai}li=0) . ‖f‖hΦ
ω(Rn).

Since hρ, q, sω, fin (Rn) is dense in hΦ
ω (Rn), a density argument gives the desired conclusion in

this case.
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Now we prove the conclusion under assumption (ii) by considering the following two

cases for ω.

Case 1: ω(Rn) =∞. In this case, similarly to the proof of (i), using Theorem 6.2(ii) and

Remark 6.3(ii), we see that for all f ∈ hρ,∞, sω, fin (Rn) ∩ C(Rn),

‖T (f)‖Bβ . ‖f‖hΦ
ω(Rn).

To extend T to the whole hΦ
ω (Rn), we only need to prove that hρ,∞, sω, fin (Rn)∩C(Rn) is dense

in hΦ
ω (Rn). Since hρ,∞, sω, fin (Rn) is dense in hΦ

ω (Rn), it suffices to prove that hρ,∞, sω, fin (Rn) ∩
C(Rn) is dense in hρ,∞, sω, fin (Rn) with respect to the quasi-norm ‖ · ‖hΦ

ω(Rn).

To see this, let f ∈ hρ,∞, sω, fin (Rn). In this case, for any (ρ, ∞)ω-single-atom b, b(x) = 0

for almost every x ∈ Rn. Thus, f is a finite linear combination of (ρ, ∞, s)ω-atoms.

Then there exists a cube Q0 ≡ Q(x0, r0) such that supp(f) ⊂ Q0. Take φ ∈ D(Rn) such

that supp(φ) ⊂ Q(0, 1) and
∫
Rn φ(x) dx = 1. Then it is easy to see that for any k ∈ N,

supp(φk ∗ f) ⊂ Q(x0, r0 + 1) and φk ∗ f ∈ D(Rn). Assume that f =
∑N
i=1 λiai with some

N ∈ N, {λi}Ni=1 ⊂ C and {ai}Ni=1 being (ρ, ∞, s)ω-atoms. Then for any k ∈ N,

φk ∗ f =

N∑
i=1

λiφk ∗ ai.

For any k ∈ N and i ∈ {1, . . . , N}, we now prove that φk ∗ ai is a multiple of some

continuous (ρ, ∞, s)ω-atom, which implies that for any k ∈ N,

φk ∗ f ∈ hρ,∞, sω, fin (Rn) ∩ C(Rn). (6.7)

For i ∈ {1, . . . , N}, assume that supp(ai) ⊂ Qi ≡ Q(xi, ri). Then

supp(φk ∗ ai) ⊂ Q̃i, k ≡ Q(xi, ri + 1/2k).

Moreover,

‖φk ∗ ai‖L∞ω (Rn) ≤ ‖ai‖L∞ω (Rn) ≤
1

ω(Qi)ρ(ω(Qi))
.

Furthermore, for any α ∈ Zn+,
∫
Rn ai(x)xα dx = 0 implies that∫

Rn
φk ∗ ai(x)xα dx = 0.

Thus, ω(Qi)ρ(ω(Qi))

ω(Q̃i, k)ρ(ω(Q̃i, k))
φk ∗ ai is a (ρ, ∞, s)ω-atom.

Likewise, supp(f − φk ∗ f) ⊂ Q(x0, r0 + 1) and f − φk ∗ f has the same vanishing

moments as f . Take q ∈ (qω,∞). By Lemma 2.6(iii),

‖f − φk ∗ f‖Lqω(Rn) → 0 as k →∞. (6.8)

Without loss of generality, we may assume that when k is large enough,

‖f − φk ∗ f‖Lqω(Rn) > 0.

Let

ck ≡ ‖f − φk ∗ f‖Lqω(Rn)[ω(Q(x0, r0 + 1))]1/q−1ρ(ω(Q(x0, r0 + 1)))
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and ak ≡ (f − φk ∗ f)/ck. Then ak is a (ρ, q, s)ω-atom, f − φk ∗ f = ckak, and ck → 0

as k →∞. Thus, from (2.8) with t ≡ ω(Q(x0, r0 + 1)), and Theorem 5.6, we infer that

‖f − φk ∗ f‖hΦ
ω(Rn) . Λ({ckak}) . |ck| → 0 (6.9)

as k →∞, which together with (6.7) shows the desired conclusion in this case.

Case 2: ω(Rn) < ∞. In this case, similarly to the proof of Case 1, by The-

orem 6.2(ii), to finish the proof of (ii), it suffices to prove that hρ,∞, sω, fin, c(Rn) ∩ C(Rn)

is dense in hρ,∞, sω, fin (Rn) in the quasi-norm ‖ · ‖hΦ
ω(Rn).

For any f ∈ hρ,∞, sω, fin (Rn), assume that

f ≡
N1∑
i=1

λiai + λ0a0,

where N1 ∈ N, {λi}N1
i=1 ⊂ C and a0 is a (ρ, ∞)ω-single-atom and {ai}N1

i=1 are (ρ, ∞, s)ω-

atoms. Let {ψk}k∈N ⊂ D(Rn) satisfy 0 ≤ ψk ≤ 1, ψk ≡ 1 on the cube Q(0, 2k) and

supp(ψk) ⊂ Q(0, 2k+1).

We assume that supp(
∑N1

i=1 λiai) ⊂ Q(0, R0) for some R0 ∈ (0,∞) and k0 is the smallest

integer such that 2k0 ≥ R0. For any integer k ≥ k0, let fk ≡ fψk. Then fk ∈ hρ,∞, sω, fin, c(Rn).

Indeed, by the choice of ψk,

fk =

N1∑
i=1

λiai + λ0a0ψk

and supp(fk) ⊂ Q(0, 2k+1). Furthermore, from supp(a0ψk) ⊂ Q(0, 2k+1) and

‖a0ψk‖L∞ω (Rn) ≤ ‖a0‖L∞ω (Rn) ≤
1

ω(Rn)ρ(ω(Rn))
≤ 1

ω(Q(0, 2k+1))ρ(ω(Q(0, 2k+1)))
,

we deduce that a0ψk is a (ρ, ∞, s)ω-atom. Thus, fk ∈ hρ,∞, sω, fin, c(Rn). For any fixed integer

k ≥ k0 and any i ∈ N, let f̃k, i ≡ fk ∗ φi, where φ is as in Case 1. Similarly to the proof

of (6.7), we have f̃k, i ∈ hρ,∞, sω, fin, c(Rn)∩C(Rn). For any q ∈ (qω,∞), from the choice of fk
and ω(Rn) <∞, we conclude that

‖f − fk‖Lqω(Rn) ≤
{∫

Q(0,2k){
|f(x)|qω(x) dx

}1/q

≤ ‖λ0a0‖L∞ω (Rn)

{∫
Q(0,2k){

ω(x) dx

}1/q

→ 0 (6.10)

as k →∞. Furthermore, for any fixed k ∈ Z with k ≥ k0, similarly to the proof of (6.8),

we see that ‖fk − f̃k, i‖Lqω(Rn) → 0 as i→∞, which together with (6.10) implies that

‖f − f̃k, i‖Lqω(Rn) → 0

as k, i → ∞. Without loss of generality, we may assume that when k and i are large

enough, ‖f − f̃k, i‖Lqω(Rn) > 0. Let

ck, i ≡ ‖f − f̃k, i‖Lqω(Rn)[ω(Rn)]1/q−1ρ(ω(Rn))

and ak, i ≡ (f − f̃k, i)/ck, i. Then f − f̃k, i = ck, iak, i, ak, i is a (ρ, q)ω-single-atom and
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ck, i → 0 as k, i → ∞. Then, similarly to the proof of (6.9), ‖f − f̃k, i‖hΦ
ω(Rn) → 0 as

k, i→∞, which completes the proof of Case 2 and hence of Theorem 6.4.

Remark 6.5. Let p ∈ (0, 1]. We point out that Theorems 6.2(i) and 6.4(i) when Φ(t) ≡ tp
for all t ∈ (0,∞) were obtained by Tang [49, Theorems 6.1 and 6.2]. Theorems 6.2(ii) and

6.4(ii) are new even when ω ≡ 1 and Φ(t) ≡ tp for all t ∈ (0,∞).

7. Dual spaces

In this section, we introduce the BMO-type space bmoqρ, ω(Rn) and establish the duality

between hρ, q, sω (Rn) and bmoq
′

ρ, ω(Rn); here and in what follows, 1/q + 1/q′ = 1. From

this and Theorem 5.6, we deduce the duality between hΦ
ω (Rn) and bmoρ, ω(Rn), and

that for q ∈ [1, qω/(qω − 1)), bmoqρ, ω(Rn) = bmoρ, ω(Rn) with equivalent norms, where

bmoρ, ω(Rn) denotes bmo1
ρ, ω(Rn). We begin with some definitions.

For any locally integrable function f on Rn, we denote the minimizing polynomial of

f on the cube Q with degree at most s by P sQf , namely, for all multi-indices θ ∈ Zn+ with

0 ≤ |θ| ≤ s, ∫
Q

[f(x)− P sQf(x)]xθ dx = 0. (7.1)

It is well known that if f is locally integrable, then P sQf uniquely exists; see, for ex-

ample, [48]. Now, we introduce the BMO-type space bmoqρ, ω(Rn).

Definition 7.1. Let Φ satisfy Assumption (A), ω ∈ Aloc
∞ (Rn), and qω, pΦ and ρ be

respectively as in (2.4), (2.6) and (2.7). Let q ∈ [1, qω/(qω − 1)) and s ∈ Z+ with s ≥
bn(qω/pΦ−1)c. When ω(Rn) =∞, a locally integrable function f on Rn is said to belong

to the space bmoqρ, ω(Rn) if

‖f‖bmoqρ, ω(Rn) ≡ sup
Q⊂Rn, |Q|<1

1

ρ(ω(Q))

{
1

ω(Q)

∫
Q

|f(x)− P sQf(x)|q[ω(x)]1−q dx

}1/q

+ sup
Q⊂Rn, |Q|≥1

1

ρ(ω(Q))

{
1

ω(Q)

∫
Q

|f(x)|q[ω(x)]1−q dx

}1/q

<∞,

where the supremum is taken over all cubes Q ⊂ Rn and P sQf is as in (7.1). When

ω(Rn) <∞, a function f on Rn is said to belong to the space bmoqρ, ω(Rn) if

‖f‖bmoqρ, ω(Rn) ≡ sup
Q⊂Rn, |Q|<1

1

ρ(ω(Q))

{
1

ω(Q)

∫
Q

|f(x)− P sQf(x)|q[ω(x)]1−q dx

}1/q

+ sup
Q⊂Rn, |Q|≥1

1

ρ(ω(Q))

{
1

ω(Q)

∫
Q

|f(x)|q[ω(x)]1−q dx

}1/q

+
1

ρ(ω(Rn))

{
1

ω(Rn)

∫
Rn
|f(x)|q[ω(x)]1−q dx

}1/q

<∞,

where the supremum is taken over all cubes Q ⊂ Rn and P sQf is as in (7.1).
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When ω ≡ 1, Φ ≡ t for all t ∈ (0,∞) and q = 1, the space bmoqρ, ω(Rn) is just the

space bmo(Rn) introduced in [18].

Now, we establish the duality between hρ, q, sω (Rn) and bmoq
′

ρ, ω(Rn). We begin with

the notion of the weighted atomic Orlicz–Hardy space Hρ, q, s
ω (Rn).

Definition 7.2. Let Φ satisfy Assumption (A), ω ∈ Aloc
∞ (Rn), ρ be as in (2.7) and

(ρ, q, s)ω be admissible. A function a on Rn is called an Hρ, q, s
ω (Rn)-atom if there exists

a cube Q ⊂ Rn such that

(i) supp(a) ⊂ Q;

(ii) ‖a‖Lqω(Rn) ≤ [ω(Q)]1/q−1[ρ(ω(Q))]−1;

(iii)
∫
Rn a(x)xα dx = 0 for all multi-indices α ∈ Zn+ with |α| ≤ s.

The weighted atomic Orlicz–Hardy space Hρ, q, s
ω (Rn) is defined to be the space of all

f ∈ D′(Rn) such that f =
∑∞
i=1 λiai in D′(Rn), where {ai}i∈N are Hρ, q, s

ω (Rn)-atoms

with supp(ai) ⊂ Qi, and {λi}i∈N ⊂ C, satisfying
∞∑
i=1

ω(Qi)Φ

(
|λi|

ω(Qi)ρ(ω(Qi))

)
<∞.

Moreover, the quasi-norm of f ∈ Hρ, q, s
ω (Rn) is defined by

‖f‖Hρ, q, sω (Rn) ≡ inf{Λ({λiai}∞i=1)},

where the infimum is taken over all the decompositions of f as above and

Λ({λiai}∞i=1) ≡ inf

{
λ ∈ (0,∞) :

∞∑
i=1

ω(Qi)Φ

(
|λi|

λω(Qi)ρ(ω(Qi))

)
≤ 1

}
.

Furthermore, Hρ, q, s
ω, fin (Rn) is defined to be the set of all finite linear combinations of

Hρ, q, s
ω (Rn)-atoms.

Obviously,Hρ, q, s
ω, fin (Rn) is dense in the spaceHρ, q, s

ω (Rn) with respect to the quasi-norm

‖ · ‖Hρ, q, sω (Rn).

Definition 7.3. Let Φ satisfy Assumption (A), ω ∈ Aloc
∞ (Rn), qω, pΦ and ρ be re-

spectively as in (2.4), (2.6) and (2.7). Let q ∈ [1, qω/(qω − 1)) and s ∈ Z+ with s ≥
bn(qω/pΦ − 1)c. A locally integrable function f on Rn is said to belong to the space

BMOq
ρ, ω(Rn) if

‖f‖BMOqρ, ω(Rn) ≡ sup
Q⊂Rn

1

ρ(ω(Q))

{
1

ω(Q)

∫
Q

|f(x)− P sQf(x)|q[ω(x)]1−q dx

}1/q

<∞,

where the supremum is taken over all cubes Q ⊂ Rn and P sQf is as in (7.1).

Now, we establish the duality between Hρ, q, s
ω (Rn) and BMOq′

ρ, ω(Rn).

Lemma 7.4. Let Φ satisfy Assumption (A), ω ∈ Aloc
∞ (Rn), qω and ρ be respectively as

in (2.4) and (2.7), and (ρ, q, s)ω be admissible. Then [Hρ, q, s
ω (Rn)]∗, the dual space of

Hρ, q, s
ω (Rn), coincides with BMOq′

ρ, ω(Rn) in the following sense.

(i) Let g ∈ BMOq′

ρ, ω(Rn). Then the linear functional L, which is initially defined on

Hρ, q, s
ω, fin (Rn) by

L(f) = 〈g, f〉, (7.2)
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has a unique extension to Hρ, q, s
ω (Rn) with

‖L‖[Hρ, q, sω (Rn)]∗ ≤ C‖g‖BMOq
′
ρ, ω(Rn)

,

where C is a positive constant independent of g.

(ii) Conversely, for any L ∈ [Hρ, q, s
ω (Rn)]∗, there exists g ∈ BMOq′

ρ, ω(Rn) such that (7.2)

holds for all f ∈ Hρ, q, s
ω, fin (Rn) and

‖g‖
BMOq

′
ρ, ω(Rn)

≤ C‖L‖[Hρ, q, sω (Rn)]∗ ,

where C is a positive constant independent of L.

Proof. We borrow some ideas from [48] and [33, Theorem 4.1]. Let (ρ, q, s)ω be an

admissible triplet. First, we prove (i). Let a be an Hρ, q, s
ω (Rn)-atom with supp(a) ⊂ Q

and g ∈ BMOq′

ρ, ω(Rn). Then by the vanishing condition of a and Hölder’s inequality, we

have ∣∣∣∣∫
Rn
a(x)g(x) dx

∣∣∣∣ =

∣∣∣∣∫
Rn
a(x)[g(x)− P sQg(x)] dx

∣∣∣∣
≤ ‖a‖Lqω(Rn)

{∫
Q

|g(x)− P sQg(x)|q
′
[ω(x)]1−q

′
dx

}1/q′

≤ ‖g‖
BMOq

′
ρ, ω(Rn)

, (7.3)

where P sQg is as in (7.1). Let

f =

k0∑
i=1

λiai ∈ Hρ, q, s
ω, fin (Rn),

where k0 ∈ N, {λi}k0
i=1 ⊂ C and for i ∈ {1, . . . , k0}, ai is an Hρ, q, s

ω (Rn)-atom with

supp(ai) ⊂ Qi. Since Φ is concave and has upper type 1, by Remark 3.6(iii), we know

that
∑
i |λi| . Λ({λiai}k0

i=1), which together with (7.3) implies that∣∣∣∣∫
Rn
f(x)g(x) dx

∣∣∣∣ ≤ k0∑
i=1

|λi|
∣∣∣∣∫
Qi

ai(x)g(x) dx

∣∣∣∣
≤
{ k0∑
i=1

|λi|
}
‖g‖

BMOq
′
ρ,ω(Rn)

. Λ({λiai}k0
i=1)‖g‖

BMOq
′
ρ,ω(Rn)

.

Thus, by the above estimate and the fact that Hρ, q, s
ω, fin (Rn) is dense in Hρ, q, s

ω (Rn) with

respect to the quasi-norm ‖ · ‖Hρ, q, sω (Rn), we find that (i) holds.

To prove (ii), assume that L ∈ [Hρ, q, s
ω (Rn)]∗. Let Q ⊂ Rn be a closed cube and

Lqω, s(Q) ≡
{
f ∈ Lqω(Q) :

∫
Q

f(x)xα dx = 0, α ∈ Zn+, |α| ≤ s
}
,

where f ∈ Lqω(Q) means that f ∈ Lqω(Rn) and supp(f) ⊂ Q. We first prove that

[Hρ, q, s
ω (Rn)]∗ ⊂ [Lqω, s(Q)]∗. (7.4)

Obviously, for any given f ∈ Lqω, s(Q),

a ≡ [ω(Q)]1/q−1[ρ(ω(Q))]−1‖f‖−1
Lqω(Q)

f
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is an Hρ, q, s
ω (Rn)-atom. Thus, f ∈ Hρ, q, s

ω (Rn) and

‖f‖Hρ, q, sω (Rn) ≤ [ω(Q)]1/q
′
ρ(ω(Q))‖f‖Lqω(Q),

which implies that for all f ∈ Lqω, s(Q),

|Lf | ≤ ‖L‖ ‖f‖Hρ, q, sω (Rn) ≤ [ω(Q)]1/q
′
ρ(ω(Q))‖L‖ ‖f‖Lqω(Q).

That is, L ∈ [Lqω, s(Q)]∗. Thus, (7.4) holds.

From (7.4), the Hahn–Banach theorem and the Riesz representation theorem, it fol-

lows that there exists a g̃ ∈ Lq′ω (Q) such that for all f ∈ Lqω, s(Q),

Lf =

∫
Q

f(x)g̃(x)ω(x) dx, (7.5)

where when q = ∞, we used the fact that L∞ω, s(Q) ⊂ Lγω, s(Q) for any γ ∈ [1,∞) and

Lγ
′

ω, s(Q) ⊂ L1
ω, s(Q). Taking a sequence {Qj}j∈N of cubes such that for any j ∈ N,

Qj ⊂ Qj+1 and limj→∞Qj = Rn. From the above result, it follows that for each Qj ,

there exists a g̃j ∈ Lq
′

ω (Qj) such that for all f ∈ Lqω, s(Qj),

Lf =

∫
Qj

f(x)g̃j(x)ω(x) dx. (7.6)

Now, we construct a function g such that

Lf =

∫
Qj

f(x)g(x) dx

for all f ∈ Lqω, s(Qj) and all j ∈ N. First, assume that f ∈ Lqω, s(Q1). By (7.6), we know

that there exists a g̃1 ∈ Lq
′

ω (Q1) such that

Lf =

∫
Q1

f(x)g̃1(x)ω(x) dx.

Notice that f ∈ Lqω, s(Q1) ⊂ Lqω, s(Q2). By (7.6) again, there exists a g̃2 ∈ Lq
′

ω (Q2) such

that

Lf =

∫
Q1

f(x)g̃1(x)ω(x) dx =

∫
Q2

f(x)g̃2(x)ω(x) dx,

which implies that for all f ∈ Lqω, s(Q1),∫
Q1

f(x)[g̃1(x)− g̃2(x)]ω(x) dx = 0. (7.7)

For any given h ∈ Lqω(Q1), let f1 ≡ h−P sQ1
h. Then by (7.1), we know that f1 ∈ Lqω, s(Q1).

For f1, by (7.7), we have∫
Q1

[h(x)− P sQ1
h(x)][g̃1(x)− g̃2(x)]ω(x) dx = 0,

which combined with the well-known fact that∫
Q1

P sQ1
h(x)[g̃1(x)− g̃2(x)]ω(x) dx =

∫
Q1

h(x)P sQ1
((g̃1 − g̃2)ω)(x) dx

implies that ∫
Q1

h(x){[g̃1(x)− g̃2(x)]ω(x)− P sQ1
((g̃1 − g̃2)ω)(x)} dx = 0. (7.8)
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For j = 1, 2, let gj ≡ g̃jω. By (7.8), we know that for all h ∈ Lqω(Q1),∫
Q1

h(x)

{
[g1(x)− g2(x)]− P sQ1

(g1 − g2)(x)

ω(x)

}
ω(x) dx = 0,

which implies that for almost every x ∈ Q1,

g1(x)− g2(x) = P sQ1
(g1 − g2)(x).

Let

g(x) ≡

{
g1(x) when x ∈ Q1,

g1(x) + P sQ1
(g1 − g2)(x) when x ∈ Q2 \Q1.

It is easy to see that for any f ∈ Lqω, s(Qj) with j ∈ {1, 2},

Lf =

∫
Qj

f(x)g(x) dx. (7.9)

In this way, we obtain a function g on Rn such that (7.9) holds for any j ∈ N.

Finally, we show that g ∈ BMOq′

ρ, ω(Rn) and for all f ∈ Hρ, q, s
ω, fin (Rn),

Lf =

∫
Rn
f(x)g(x) dx. (7.10)

Indeed, for any Hρ, q, s
ω (Rn)-atom a, there exists a j0 ∈ N such that a ∈ Lqω, s(Qj0).

From this and the fact that (7.9) holds for any j ∈ N, we see that (7.10) holds for any

f ∈ Hρ, q, s
ω, fin (Rn). It remains to prove that g ∈ BMOq′

ρ, ω(Rn). Take any cube Q ⊂ Rn as

well as any f ∈ Lqω(Q) satisfying ‖f‖Lqω(Q) ≤ 1 and supp(f) ⊂ Q. Let

a ≡ C̃−1[ω(Q)]1/q
′
[ρ(ω(Q))]−1(f − P sQf)χQ, (7.11)

where C̃ is a positive constant. Obviously, supp(a) ⊂ Q. We choose C̃ such that a becomes

an Hρ, q, s
ω (Rn)-atom. From the equality

La =

∫
Q

a(x)g(x) dx

and L ∈ [Hρ, q, s
ω (Rn)]∗, it follows that

|La| =
∣∣∣∣∫
Q

a(x)[g(x)− P sQg(x)] dx

∣∣∣∣ ≤ ‖L‖[Hρ, q, sω (Rn)]∗ . (7.12)

By (7.11), (7.12) and (7.1), for all f ∈ Lqω(Q) with ‖f‖Lqω(Q) ≤ 1, we see that

[ω(Q)]1/q
′
[ρ(ω(Q))]−1

∣∣∣∣∫
Q

f(x)[g(x)− P sQg(x)] dx

∣∣∣∣ . ‖L‖[Hρ, q, sω (Rn)]∗ ,

which implies that

[ω(Q)]1/q
′
[ρ(ω(Q))]−1

{∫
Q

|g(x)− P sQg(x)|q
′
[ω(x)]1−q

′
dx

}1/q′

. ‖L‖[Hρ, q, sω (Rn)]∗ .

Thus, g ∈ BMOq′

ρ, ω(Rn) and ‖g‖
BMOq

′
ρ, ω(Rn)

. ‖L‖[Hρ, q, sω (Rn)]∗ . This finishes the proof of

Lemma 7.4.

Now, we give the duality between hρ, q, sω (Rn) and bmoq
′

ρ, ω(Rn) by invoking Lemma 7.4.
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Theorem 7.5. Let Φ satisfy Assumption (A), ω ∈ Aloc
∞ (Rn), qω and ρ be respectively

as in (2.4) and (2.7), and (ρ, q, s)ω be admissible. Then [hρ, q, sω (Rn)]∗, the dual space of

hρ, q, sω (Rn), coincides with bmoq
′

ρ, ω(Rn) in the following sense.

(i) Let g ∈ bmoq
′

ρ, ω(Rn). Then the linear functional L, which is initially defined on

hρ, q, sω, fin (Rn) by

L(f) = 〈g, f〉, (7.13)

has a unique extension to hρ, q, sω (Rn) with

‖L‖[hρ, q, sω (Rn)]∗ ≤ C‖g‖bmoq
′
ρ, ω(Rn)

,

where C is a positive constant independent of g.

(ii) Conversely, for any L ∈ [hρ, q, sω (Rn)]∗, there exists g ∈ bmoq
′

ρ, ω(Rn) such that (7.13)

holds for all f ∈ hρ, q, sω, fin (Rn) and

‖g‖
bmoq

′
ρ, ω(Rn)

≤ C‖L‖[hρ, q, sω (Rn)]∗ ,

where C is a positive constant independent of L.

Proof. Let (ρ, q, s)ω be an admissible triplet. Obviously, the proof of (i) is similar to the

proof of Lemma 7.4(i). We omit the details.

Now, we prove (ii) by considering the following two cases for ω.

Case I: ω(Rn) = ∞. In this case, let Q ⊂ Rn be a cube with l(Q) ∈ [1,∞). We first

prove that

[hρ, q, sω (Rn)]∗ ⊂ [Lqω(Q)]∗. (7.14)

Obviously, for any given f ∈ Lqω(Q),

a ≡ [ω(Q)]1/q−1[ρ(ω(Q))]−1‖f‖−1
Lqω(Q)

fχQ

is a (ρ, q, s)ω-atom. Thus, f ∈ hρ, q, sω (Rn) and

‖f‖hρ, q, sω (Rn) ≤ [ω(Q)]1/q
′
ρ(ω(Q))‖f‖Lqω(Q),

which implies that for any L ∈ [hρ, q, sω (Rn)]∗,

|Lf | ≤ ‖L‖[hρ, q, sω (Rn)]∗‖f‖hρ, q, sω (Rn) ≤ [ω(Q)]1/q
′
ρ(ω(Q))‖f‖Lqω(Q)‖L‖[hρ, q, sω (Rn)]∗ .

That is L ∈ [Lqω(Q)]∗. Thus, (7.14) holds.

Now, assume that L ∈ [hρ, q, sω (Rn)]∗. Similarly to the proof of (7.5), we know that

there exists a g̃ ∈ Lq′ω (Q) such that for all f ∈ Lqω(Q),

Lf =

∫
Q

f(x)g̃(x)ω(x) dx.

Take a sequence {Qj}j∈N of cubes such that for any j ∈ N, Qj ⊂ Qj+1, limj→∞Qj = Rn
and l(Q1) ∈ [1,∞). From the above result, it follows that for each Qj , there exists a

g̃j ∈ Lq
′

ω (Qj) such that for all f ∈ Lqω(Qj),

Lf =

∫
Qj

f(x)g̃j(x)ω(x) dx. (7.15)
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Now, we construct a function g on Rn such that

Lf =

∫
Qj

f(x)g(x) dx

for all f ∈ Lqω(Qj) and j ∈ N. First, assume that f ∈ Lqω(Q1). By (7.15), we know that

there exists a g̃1 ∈ Lq
′

ω (Q1) such that

Lf =

∫
Q1

f(x)g̃1(x)ω(x) dx.

Notice that f ∈ Lqω(Q1) ⊂ Lqω(Q2). By (7.15) again, there exists a g̃2 ∈ Lq
′

ω (Q2) such

that

Lf =

∫
Q1

f(x)g̃1(x)ω(x) dx =

∫
Q2

f(x)g̃2(x)ω(x) dx,

which implies that for all f ∈ Lqω(Q1),∫
Q1

f(x)[g̃1(x)− g̃2(x)]ω(x) dx = 0.

Thus, for almost every x ∈ Q1, g̃1(x) = g̃2(x). For j = 1, 2, let gj ≡ g̃jω and

g(x) ≡

{
g1(x) when x ∈ Q1,

g2(x) when x ∈ Q2 \Q1.

It is easy to see that for all f ∈ Lqω(Qj) with j ∈ {1, 2},

Lf =

∫
Qj

f(x)gj(x) dx. (7.16)

Continuing in this way, we obtain a function g on Rn such that (7.16) holds for all j ∈ N.

Finally, we show that g ∈ bmoq
′

ρ, ω(Rn) and for all f ∈ hρ, q, sω, fin (Rn),

Lf =

∫
Rn
f(x)g(x) dx. (7.17)

Indeed, since ω(Rn) = ∞, all (ρ, q)ω-single-atoms are 0, and for any (ρ, q, s)ω-atom a,

there exists a j0 ∈ N such that a ∈ Lqω(Qj0). From this and the fact that (7.16) holds for

all j ∈ N, we see that (7.17) holds.

Now, we prove that g ∈ bmoq
′

ρ, ω(Rn). Take any cube Q ⊂ Rn with l(Q) ∈ [1,∞) as

well as any f ∈ Lqω(Q) with ‖f‖Lqω(Q) ≤ 1. Let

a ≡ [ω(Q)]−1/q′ [ρ(ω(Q))]−1fχQ.

Then a is a (ρ, q, s)ω-atom and supp(a) ⊂ Q. From the equality

La =

∫
Q

a(x)g(x) dx

and L ∈ [hρ, q, sω (Rn)]∗, we deduce that

|La| =
∣∣∣∣∫
Q

a(x)g(x) dx

∣∣∣∣ ≤ ‖L‖[hρ, q, sω (Rn)]∗ .
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Thus, for any f ∈ Lqω(Q) with ‖f‖Lqω(Q) ≤ 1, we have

[ω(Q)]−1/q′ [ρ(ω(Q))]−1

∣∣∣∣∫
Q

f(x)g(x) dx

∣∣∣∣ ≤ ‖L‖[hρ, q, sω (Rn)]∗ ,

which implies that

[ω(Q)]−1/q′ [ρ(ω(Q))]−1

{∫
Q

|g(x)|q
′
[ω(x)]1−q

′
dx

}1/q′

≤ ‖L‖[hρ, q, sω (Rn)]∗ . (7.18)

Furthermore, from hρ, q, sω (Rn) ⊃ Hρ, q, s
ω (Rn) and

‖f‖hρ, q, sω (Rn) ≤ ‖f‖Hρ, q, sω (Rn)

for all f ∈ Hρ, q, s
ω (Rn), we deduce that

[hρ, q, sω (Rn)]∗ ⊂ [Hρ, q, s
ω (Rn)]∗

and L|Hρ, q, sω (Rn) ∈ [Hρ, q, s
ω (Rn)]∗. Since (7.17) holds for all f ∈ Hρ, q, s

ω, fin (Rn), by Lem-

ma 7.4(ii) we know that g ∈ BMOq′

ρ, ω(Rn) and

‖g‖
BMOq

′
ρ, ω(Rn)

. ‖L |Hρ, q, sω (Rn) ‖[Hρ, q, sω (Rn)]∗ . ‖L‖[hρ, q, sω (Rn)]∗ .

Thus, this estimate together with (7.18) implies that g ∈ bmoq
′

ρ, ω(Rn) and

‖g‖
bmoq

′
ρ, ω(Rn)

. ‖L‖[hρ, q, sω (Rn)]∗ ,

which completes the proof of Theorem 7.5(ii) in Case I.

Case II: ω(Rn) <∞. In this case, let

h̃ρ, q, sω (Rn) ≡
{
f =

∞∑
i=1

λiai in D′(Rn) : for i ∈ N, ai is a (ρ, q, s)ω-atom,

supp(ai) ⊂ Qi, λi ∈ C and

∞∑
i=1

ω(Qi)Φ

(
|λi|

ω(Qi)ρ(ω(Qi))

)
<∞

}
and for all f ∈ h̃ρ, q, sω (Rn),

‖f‖
h̃ρ, q, sω (Rn)

≡ inf{Λ({λiai}∞i=1)},

where the infimum is taken over all the decompositions of f as above. For any f ∈
L1

loc(Rn), let

‖f‖ ˜
bmoq

′
ρ, ω(Rn)

≡ sup
Q⊂Rn, |Q|<1

1

ρ(ω(Q))

{
1

ω(Q)

∫
Q

|f(x)− P sQf(x)|q
′
[ω(x)]1−q

′
dx

}1/q′

+ sup
Q⊂Rn, |Q|≥1

1

ρ(ω(Q))

{
1

ω(Q)

∫
Q

|f(x)|q
′
[ω(x)]1−q

′
dx

}1/q′

and

b̃moq
′

ρ, ω(Rn) ≡ {f ∈ L1
loc(Rn) : ‖f‖ ˜

bmoq
′
ρ, ω(Rn)

<∞}.

Similarly to the proofs of (i) and Case I, we conclude that

[h̃ρ, q, sω (Rn)]∗ = b̃moq
′

ρ, ω(Rn). (7.19)
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Now we claim that

[hρ, q, sω (Rn)]∗ ⊂ [Lqω(Rn)]∗. (7.20)

Indeed, for any f ∈ Lqω(Rn), let

a ≡ [ω(Rn)]1/q−1[ρ(ω(Rn))]−1‖f‖−1
Lqω(Rn)

f.

Then a is a (ρ, q)ω-single-atom, which implies that f ∈ hρ, q, sω (Rn) and

‖f‖hρ, q, sω (Rn) ≤ [ω(Rn)]1/q
′
ρ(ω(Rn))‖f‖Lqω(Rn).

Thus, for any given L ∈ [hρ, q, sω (Rn)]∗ and all f ∈ Lqω(Rn), we have

|Lf | ≤ ‖L‖[hρ, q, sω (Rn)]∗‖f‖hρ, q, sω (Rn) ≤ [ω(Rn)]1/q
′
ρ(ω(Rn))‖f‖Lqω(Rn)‖L‖[hρ, q, sω (Rn)]∗ .

That is, L ∈ [Lqω(Rn)]∗. Thus, (7.20) holds.

Now, assume that L ∈ [hρ, q, sω (Rn)]∗. From ω(Rn) <∞, it follows that

L∞ω (Rn) ⊂ Lγω(Rn)

for any γ ∈ [1,∞) and Lγ
′

ω (Rn) ⊂ L1
ω(Rn). From this, (7.20), the Hahn–Banach theorem

and the Riesz representation theorem, we conclude that there exists a g̃ ∈ Lq′ω (Rn) such

that for all f ∈ Lqω(Rn) with q ∈ (qω,∞],

Lf =

∫
Rn
f(x)g̃(x)ω(x) dx.

Let g ≡ g̃ω. Then for all f ∈ Lqω(Rn),

Lf =

∫
Rn
f(x)g(x) dx. (7.21)

Finally, we prove that g ∈ bmoq
′

ρ, ω(Rn) and

‖g‖
bmoq

′
ρ, ω(Rn)

. ‖L‖[hρ, q, sω (Rn)]∗ .

Obviously, (7.21) holds for all f ∈ hρ, q, sω, fin (Rn). For any f ∈ Lqω(Rn) with ‖f‖Lqω(Rn) ≤ 1,

let

a ≡ [ω(Rn)]−1/q′ [ρ(ω(Rn))]−1f.

Then a is a (ρ, q)ω-single-atom. From (7.21) with f ≡ a and L ∈ [hρ, q, sω (Rn)]∗, we deduce

that

|La| =
∣∣∣∣∫

Rn
a(x)g(x) dx

∣∣∣∣ ≤ ‖L‖[hρ, q, sω (Rn)]∗ .

That is,

[ω(Rn)]−1/q′ [ρ(ω(Rn))]−1

∣∣∣∣∫
Rn
f(x)g(x) dx

∣∣∣∣ ≤ ‖L‖[hρ, q, sω (Rn)]∗ ,

which together with ‖f‖Lqω(Rn) ≤ 1 implies that

[ω(Rn)]−1/q′ [ρ(ω(Rn))]−1

{∫
Rn
|g(x)|q

′
[ω(x)]1−q

′
dx

}1/q′

≤ ‖L‖[hρ, q, sω (Rn)]∗ . (7.22)

Moveover, from hρ, q, sω (Rn) ⊃ h̃ρ, q, sω (Rn) and

‖f‖hρ, q, sω (Rn) ≤ ‖f‖h̃ρ, q, sω (Rn)
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for all f ∈ h̃ρ, q, sω (Rn), we conclude that [hρ, q, sω (Rn)]∗ ⊂ [h̃ρ, q, sω (Rn)]∗ and

L |
h̃ρ, q, sω (Rn)

∈ [h̃ρ, q, sω (Rn)]∗.

Thus, by (7.19) and (7.21), we know that g ∈ b̃moq
′

ρ, ω(Rn) and

‖g‖ ˜
bmoq

′
ρ, ω(Rn)

. ‖L |
h̃ρ, q, sω (Rn)

‖
[h̃ρ, q, sω (Rn)]∗

. ‖L‖[hρ, q, sω (Rn)]∗ ,

which together with (7.22) implies that g ∈ bmoq
′

ρ, ω(Rn) and

‖g‖
bmoq

′
ρ, ω(Rn)

. ‖L‖[hρ, q, sω (Rn)]∗ .

This finishes the proof of Theorem 7.5.

When q= 1, we denote bmoqρ, ω(Rn) simply by bmoρ, ω(Rn). By Theorems 5.6 and 7.5,

we have the following conclusions.

Corollary 7.6. Let Φ satisfy Assumption (A), ω ∈ Aloc
∞ (Rn), and qω and ρ be respec-

tively as in (2.4) and (2.7). Then for q ∈ [1, qω/(qω − 1)), bmoqρ, ω(Rn) = bmoρ, ω(Rn)

with equivalent norms.

Corollary 7.7. Let Φ satisfy Assumption (A), ω ∈ Aloc
∞ (Rn) and ρ be as in (2.7). Then

[hΦ
ω (Rn)]∗ = bmoρ, ω(Rn).

8. Some applications

In this section, we first show that local Riesz transforms are bounded on hΦ
ω (Rn). More-

over, we introduce local fractional integrals and show that they are bounded from hpωp(Rn)

to Lqωq (Rn) when q ∈ [1,∞), and from hpωp(Rn) to hqωq (Rn) when q ∈ (0, 1]. Finally, we

prove that some pseudo-differential operators are bounded on hΦ
ω (Rn), where ω ∈ Ap(φ),

a space introduced by Tang [50] (see also Definition 8.13 below) and contained in Aloc
p (Rn)

for p ∈ [1,∞).

Now, we recall the notion of local Riesz transforms introduced by Goldberg [18]. In

what follows, S(Rn) denotes the space of all Schwartz functions on Rn.

Definition 8.1. Let φ0 ∈ D(Rn) be such that φ0 ≡ 1 on Q(0, 1) and supp(φ0) ⊂ Q(0, 2).

For j ∈ {1, . . . , n} and x ∈ Rn, let

kj(x) ≡ xj
|x|n+1

φ0(x).

For f ∈ S(Rn), the local Riesz transform rj(f) of f is defined by rj(f) ≡ kj ∗ f .

We remark that in [18] it was assumed that φ0 ≡ 1 in a neighborhood of the ori-

gin and φ0 ∈ D(Rn). In this paper, for convenience, we assume φ0 ≡ 1 on Q(0, 1)

and supp(φ0) ⊂ Q(0, 2). We prove the boundedness on hΦ
ω (Rn) of local Riesz trans-

forms {rj}j .

Theorem 8.2. Let Φ satisfy Assumption (A), ω ∈ Aloc
∞ (Rn) and pΦ be as in (2.6). For

j ∈ {1, . . . , n}, let rj be the local Riesz operator as in Definition 8.1. If pΦ = p+
Φ and Φ is



Weighted local Orlicz–Hardy spaces 59

of upper type p+
Φ , then there exists a positive constant C0 ≡ C0(Φ, ω, n), depending only

on Φ, qω, the weight constant of ω and n, such that for all f ∈ hΦ
ω (Rn),

‖rj(f)‖hΦ
ω(Rn) ≤ C0‖f‖hΦ

ω(Rn).

To prove Theorem 8.2, we need the following lemma established in [49, Lemma 8.2].

Lemma 8.3. For j ∈ {1, . . . , n}, let rj be the local Riesz operator as in Definition 8.1.

(i) For ω ∈ Aloc
p (Rn) with p ∈ (1, ∞), there exists a positive constant

C1 ≡ C1(p, ω, n),

depending only on p, the weight constant of ω, and n, such that for all f ∈ Lpω(Rn),

‖rj(f)‖Lpω(Rn) ≤ C1‖f‖Lpω(Rn).

(ii) For ω ∈ Aloc
1 (Rn), there exists a positive constant C2 ≡ C2(ω, n), depending only on

the weight constant of ω, and n, such that for all f ∈ L1
ω(Rn),

‖rj(f)‖L1,∞
ω (Rn) ≤ C2‖f‖L1

ω(Rn).

Now, we prove Theorem 8.2 by using Theorem 6.2 and Lemma 8.3.

Proof of Theorem 8.2. Let s ≡ bn(qω/pΦ − 1)c, where qω and pΦ are respectively as

in (2.4) and (2.6). Then (n+ s+ 1)pΦ > nqω, which implies that there exists q ∈ (qω,∞)

such that (n+s+1)pΦ > nq and ω ∈ Aloc
q (Rn). To show Theorem 8.2, by Theorem 6.4(i)

and Theorem 3.2, it suffices to show that for any (ρ, q)ω-single-atom a or (ρ, q, s)ω-atom

a supported in Q(x0, R0) with R0 ∈ (0, 2],

‖G0
N (rj(a))‖LΦ

ω(Rn) . 1. (8.1)

First, we prove (8.1) for any (ρ, q)ω-single-atom a 6= 0. In this case, ω(Rn) <∞. Since

Φ is concave, by Jensen’s inequality, Hölder’s inequality, Proposition 3.2(ii), Lemma 8.3(i)

and (2.8) with t ≡ ω(Rn), we have∫
Rn

Φ(G0
N (rj(a))(x))ω(x) dx

≤ ω(Rn)Φ

(
1

ω(Rn)

∫
Rn
G0
N (rj(a))(x)ω(x) dx

)
≤ ω(Rn)Φ

(
1

[ω(Rn)]1/q

{∫
Rn

[G0
N (rj(a))(x)]qω(x) dx

}1/q)
. ω(Rn)Φ

(
1

[ω(Rn)]1/q
‖rj(a)‖Lqω(Rn)

)
. ω(Rn)Φ

(
1

[ω(Rn)]1/q
‖a‖Lqω(Rn)

)
. ω(Rn)Φ

(
1

ω(Rn)ρ(ω(Rn))

)
∼ 1,

which implies (8.1) in this case.

Now, let a be any (ρ, q, s)ω-atom supported in Q0 ≡ Q(x0, R0) with R0 ∈ (0, 2]. We

prove (8.1) for a by considering the following two cases for R0.

Case 1: R0 ∈ [1, 2]. In this case, by the definitions of rj(a) and G0
N (rj(a)), we see that

supp(G0
N (rj(a))) ⊂ Q∗0 ≡ Q(x0, R0 + 8).
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From this, Jensen’s inequality, Hölder’s inequality, Proposition 3.2(ii), Lemmas 8.3

and 2.3(v), Remark 2.4 with C̃ ≡ 2 and (2.8) with t ≡ ω(Q0), we infer that∫
Rn

Φ(G0
N (rj(a))(x))ω(x) dx

≤ ω(Q∗0)Φ

(
1

ω(Q∗0)

∫
Q∗0

G0
N (rj(a))(x)ω(x) dx

)

≤ ω(Q∗0)Φ

(
1

[ω(Q∗0)]1/q

{∫
Q∗0

[G0
N (rj(a))(x)]qω(x) dx

}1/q)
. ω(Q∗0)Φ

(
1

[ω(Q0)]1/q
‖rj(a)‖Lqω(Rn)

)
. ω(Q0)Φ

(
1

[ω(Q0)]1/q
‖a‖Lqω(Rn)

)
. ω(Q0)Φ

(
1

ω(Q0)ρ(ω(Q0))

)
∼ 1,

which implies (8.1) in Case 1.

Case 2: R0 ∈ (0, 1). In this case, let Q̃0 ≡ 8nQ0. Then∫
Rn

Φ(G0
N (rj(a))(x))ω(x) dx =

∫
Q̃0

Φ(G0
N (rj(a))(x))ω(x) dx+

∫
(Q̃0){

· · ·

≡ I1 + I2. (8.2)

For I1, similarly to the proof of Case 1, we have

I1 ≤ ω(Q̃0)Φ

(
1

[ω(Q̃0)]1/q

{∫
Q̃0

[G0
N (rj(a))(x)]qω(x) dx

}1/q)

. ω(Q̃0)Φ

(
1

[ω(Q0)]1/q
‖rj(a)‖Lqω(Rn)

)
. ω(Q0)Φ

(
1

ω(Q0)ρ(ω(Q0))

)
∼ 1. (8.3)

To estimate I2, let x ∈ (Q̃0){, t ∈ (0, 1), ψ ∈ D0
N (Rn) and P sψ be the Taylor expansion

of ψ about (x− x0)/t with degree s. Then by the vanishing condition on a, we see that

|rj(a) ∗ ψt(x)| = 1

tn

∣∣∣∣∫
Rn
rj(a)(y)ψ

(
x− y
t

)
dy

∣∣∣∣
=

1

tn

∣∣∣∣∫
Rn
rj(a)(y)

{
ψ

(
x− y
t

)
− P sψ

(
x− y
t

)}
dy

∣∣∣∣
≤ 1

tn

∫
2
√
nQ0

|rj(a)(y)|
∣∣∣∣ψ(x− yt

)
− P sψ

(
x− y
t

)∣∣∣∣ dy
+

1

tn

∫
Q(x0,

|x−x0|
2
√
n

)\(2
√
nQ0)

· · ·+ 1

tn

∫
Q(x0,

|x−x0|
2
√
n

){
· · ·

≡ G1 + G2 + G3. (8.4)

To estimate G1, as t ∈ (0, 1) and x ∈ (Q̃0){, we see that G1 6= 0 implies that

t > 3|x− x0|/4. From this, Taylor’s remainder theorem, Hölder’s inequality, Lem-
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ma 8.3(i), (2.1) and Remark 2.2(ii), we deduce that

G1 .
1

tn+s+1
‖rj(a)‖Lqω(Rn)

{ ∑
α∈Zn+, |α|=s+1

∫
2
√
nQ0

∣∣∣∣(∂αψ)(ξt
)∣∣∣∣q′

× |y − x0|(s+1)q′ [ω(y)]−q
′/q dy

}1/q′

.
Rs+1

0

|x− x0|n+s+1
‖a‖Lqω(Rn)

{∫
2
√
nQ0

[ω(y)]−q
′/q dy

}1/q′

.
1

ω(Q0)ρ(ω(Q0))

Rn+s+1
0

|x− x0|n+s+1
, (8.5)

where θ ∈ (0, 1), ξ ≡ θ(x− y) + (1− θ)(x− x0) and 1/q + 1/q′ = 1.

To estimate G2, by the definition of kj with j ∈ {1, . . . , n}, we have∑
α∈Zn+, |α|=s+1

|(∂αkj)(z)| .
1

|z|n+s+1
(8.6)

for all z ∈ Rn \ {0}. For any fixed y ∈ (Q(x0,
|x−x0|
2
√
n

) \ 2
√
nQ0), let Ks

j be the Taylor

expansion of kj(·) at the point y − x0 with degree s. Moreover, it is easy to see that

G2 6= 0 implies that t > |x− x0|/2. From this, Taylor’s remainder theorem, (8.6), Hölder’s

inequality, Lemma 8.3(i) and (2.1), we conclude that

G2 ≤
1

tn

∫
Q(x0,

|x−x0|
2
√
n

)\(2
√
nQ0)

{∫
Q0

|a(z)| |kj(y − z)−Ks
j (y − z)| dz

}
×
∣∣∣∣ψ(x− yt

)
− P sψ

(
x− y
t

)∣∣∣∣ dy
.

1

tn+s+1

∫
Q(x0,

|x−x0|
2
√
n

)\(2
√
nQ0)

{∫
Q0

|a(z)| |z − x0|s+1

|ξ|n+s+1
dz

}
× |y − x0|s+1 dy

.
1

|x− x0|n+s+1

∫
Q(x0,

|x−x0|
2
√
n

)\(2
√
nQ0)

1

|y − x0|n

{∫
Q0

|a(z)| |z − x0|s+1 dz

}
dy

.
Rs+1

0

|x− x0|n+s+1
‖a‖Lqω(Rn)

|Q0|
[ω(Q0)]1/q

∫
Q(x0,

|x−x0|
2
√
n

)\(2
√
nQ0)

1

|y − x0|n
dy

.
1

ω(Q0)ρ(ω(Q0))

Rn+s+1
0

|x− x0|n+s+1

∫ |x−x0|
2
√
n

√
nR0

z−1 dz

.
1

ω(Q0)ρ(ω(Q0))

Rn+s+1−δ
0

|x− x0|n+s+1−δ , (8.7)

where ξ ≡ γ(y − z) + (1 − γ)(y − x0) for some γ ∈ (0, 1), δ is a small positive constant

which is determined later, and in the third inequality we used the fact that for any

y ∈ Q(x0,
|x−x0|
2
√
n

) \ (2
√
nQ0) and z ∈ Q0,

|(y − x0)− γ(z − x0)| ≥ |y − x0| − |y − x0|/2 = |y − x0|/2.
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Finally, we estimate G3. For any y ∈ [Q(x0,
|x−x0|
2
√
n

)]{, by the definition of P sψ and the

support condition on ψ, we have

1

tn

∣∣∣∣P sψ(x− yt
)∣∣∣∣ . |y − x0|s

|x− x0|n+s
. (8.8)

Thus, from the vanishing condition of a, Taylor’s remainder theorem, (8.6), Hölder’s

inequality, (2.1) and (8.8), we deduce that

G3 .
1

tn

∫
Q(x0,

|x−x0|
2
√
n

){

{∫
Q0

|a(z)| |kj(y − z)−Ks
j (y − z)| dz

}
×
{∣∣∣∣ψ(x− yt

)∣∣∣∣+

∣∣∣∣P sψ(x− yt
)∣∣∣∣} dy

.
1

tn

∫
Q(x0,

|x−x0|
2
√
n

){

{∫
Q0

|a(z)| |z − x0|s+1

|ξ|n+s+1
dz

}
×
{∣∣∣∣ψ(x− yt

)∣∣∣∣+

∣∣∣∣P sψ(x− yt
)∣∣∣∣} dy

. ‖a‖Lqω(Rn)

Rs+n+1
0

[ω(Q0)]1/q
1

tn

∫
Q(x0,

|x−x0|
2
√
n

){

1

|y − x0|n+s+1

×
{∣∣∣∣ψ(x− yt

)∣∣∣∣+

∣∣∣∣P sψ(x− yt
)∣∣∣∣} dy

. ‖a‖Lqω(Rn)

Rs+n+1
0

[ω(Q0)]1/q

{
1

|x− x0|n+s+1

1

tn

∫
Q(x0,

|x−x0|
2
√
n

){

∣∣∣∣ψ(x− yt
)∣∣∣∣ dy

+
1

tn

∫
Q(x0,

|x−x0|
2
√
n

){

1

|y − x0|n+s+1

∣∣∣∣P sψ(x− yt
)∣∣∣∣ dy}

.
1

ω(Q0)ρ(ω(Q0))

{
Rn+s+1

0

|x− x0|n+s+1

+
Rn+s+1

0

|x− x0|n+s

∫
Q(x0,

|x−x0|
2
√
n

){

1

|y − x0|n+1
dy

}

.
1

ω(Q0)ρ(ω(Q0))

Rn+s+1
0

|x− x0|n+s+1
, (8.9)

where ξ ≡ γ(y − z) + (1 − γ)(y − x0) for some γ ∈ (0, 1) and in the third inequality we

used the fact that for any y ∈ [Q(x0,
|x−x0|
2
√
n

)]{ and z ∈ Q0,

|(y − x0)− γ(z − x0)| & |y − x0|.

Thus, from (8.4), (8.5), (8.7), (8.9) and |x− x0| ≥ 4nR0, we know that

|rj(a) ∗ ψt(x)| . 1

ω(Q0)ρ(ω(Q0))

{
R

(n+s+1)
0

|x− x0|n+s+1
+

R
(n+s+1−δ)
0

|x− x0|n+s+1−δ

}
.

1

ω(Q0)ρ(ω(Q0))

R
(n+s+1−δ)
0

|x− x0|n+s+1−δ ,
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which together with the arbitrariness of ψ ∈ D0
N (Rn) implies that for all x ∈ (Q̃0){,

G0
N (rj(a))(x) .

1

ω(Q0)ρ(ω(Q0))

R
(n+s+1−δ)
0

|x− x0|n+s+1−δ . (8.10)

Take δ ∈ (0,∞) small enough such that pΦ(n+ s+ 1− δ) > nq. By the fact that

supp(G0
N (rj(a))) ⊂ Q(x0, R0 + 8) ⊂ Q(x0, 9)

and Lemma 2.3(i), we know that there exists an ω̃ ∈ Aq(Rn) such that ω̃ = ω on Q(x0, 9).

Let m0 be the integer such that 2m0−1nR0 ≤ 9 < 2m0nR0. From (8.10), the lower type

pΦ property of Φ, Lemma 2.3(viii) and pΦ(n+ s+ 1− δ) > nq, we conclude that

I2 .
∫
Q(x0,9)\Q̃0

Φ(G0
N (rj(a))(x))ω̃(x) dx

.
m0∑
j=3

∫
2j+1nQ0\2jnQ0

Φ

(
1

ω(Q0)ρ(ω(Q0))

R
(n+s+1−δ)
0

|x− x0|n+s+1−δ

)
ω̃(x) dx

.
1

ω(Q0)

m0∑
j=3

∫
2j+1nQ0\2jnQ0

(
Rn+s+1−δ

0

|x− x0|n+s+1−δ

)pΦ

ω̃(x) dx

.
m0∑
j=3

2k[(n+s+1−δ)pΦ−nq] . 1,

which together with (8.2) and (8.3) implies (8.1) in Case 2. This finishes the proof of

Theorem 8.2.

Remark 8.4. Theorem 8.2 when ω ∈ Aloc
1 (Rn) and Φ(t) ≡ t for all t ∈ (0,∞) was

obtained by Tang [49, Lemma 8.3].

Next, we introduce the local fractional integral and, using Theorem 6.4, prove that

they are boundedness from hpωp(Rn) to Lqωq (Rn) when q ∈ [1,∞), and from hpωp(Rn)

to hqωq (Rn) when q ∈ (0, 1], provided that ω satisfies ω
nr

nr−n−rα ∈ Aloc
1 (Rn) for some

r ∈ (n/(n− α),∞) and
∫
Rn [ω(x)]p dx =∞. We begin with some notions.

Definition 8.5. Let α ∈ [0, n) and φ0 be as in Definition 8.1. For any f ∈ S(Rn) and

all x ∈ Rn, the local fractional integral I loc
α (f) of f is defined by

I loc
α (f)(x) ≡

∫
Rn

φ0(y)

|y|n−α
f(x− y) dy.

Definition 8.6. (i) If there exist r ∈ (1,∞) and a positive constant C such that for all

cubes Q ⊂ Rn with sidelength l(Q) ∈ (0, 1],(
1

|Q|

∫
Q

[ω(x)]r dx

)1/r

≤ C

|Q|

∫
Q

ω(x) dx, (8.11)

then ω is said to satisfy the local reverse Hölder inequality of order r, which is denoted

by ω ∈ RH loc
r (Rn). Furthermore, let RH loc

r (ω) ≡ inf{C}, where the infimum is taken

over all the positive constants C satisfying (8.11).

(ii) Let p, q ∈ (1,∞). A locally integrable nonnegative function ω on Rn is said to

belong to the class Aloc(p, q), if there exists a positive constant C such that for all cubes
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Q ⊂ Rn with sidelength l(Q) ∈ (0, 1],(
1

|Q|

∫
Q

[ω(x)]q dx

)1/q(
1

|Q|

∫
Q

[ω(x)]−p
′
dx

)1/p′

≤ C; (8.12)

here and in what follows, 1/p+ 1/p′ = 1. Furthermore, let Aloc(p, q)(ω) ≡ inf{C}, where

the infimum is taken over all the positive constants C satisfying (8.12).

Remark 8.7. (i) Let r be as in Definition 8.6(i). If (8.11) holds for all cubes Q ⊂ Rn,

then ω is said to satisfy the reverse Hölder inequality of order r, which is denoted by

ω ∈ RHr(Rn) (see, for example, [17]). Let p, q be as in Definition 8.6(ii). If (8.12) holds

for all cubes Q ⊂ Rn, then ω is said to belong to the class A(p, q).

(ii) For any given positive constant A1, let the cube Q satisfy l(Q) = A1. Similarly

to the proof of Lemma 2.3(i), for any ω ∈ RH loc
r (Rn), there exists an ω̃ ∈ RHr(Rn)

such that ω = ω̃ on Q and RHr(ω̃) . RH loc
r (ω), where RHr(ω̃) is defined similarly to

RH loc
r (ω) and the implicit constant depends only on A1 and n.

(iii) Similarly to Remark 2.2(ii), for any given constant A2 ∈ (0,∞), the condition

l(Q) ∈ (0, 1] in (8.11) can be replaced by l(Q) ∈ (0, A2] with the positive constant C

in (8.11) depending on A2.

About the relations of Aloc
∞ (Rn), RH loc

r (Rn) and Aloc(p, q), we have the following

conclusions.

Lemma 8.8.

(i) Let r ∈ (1, ∞). Then ωr ∈ Aloc
∞ (Rn) if and only if ω ∈ RH loc

r (Rn).

(ii) Let α ∈ (0, n), p ∈ (1, n/α) and 1/q = 1/p − α/n. Then ω ∈ Aloc(p, q) if and only

if ω−p
′ ∈ Aloc

1+p′/q(R
n).

Proof. We first prove (i). Let ωr ∈ Aloc
∞ (Rn). Then by Lemma 2.3(i), we know that for

any cube Q ≡ Q(x0, l(Q)) with l(Q) ∈ (0, 1], there exists a function ω̃ on Rn such that

ω̃r ∈ A∞(Rn) and ω̃ = ω on Q(x0, 1). (8.13)

Moreover, by [12, Lemma A], we know that

ω̃r ∈ A∞(Rn) if and only if ω̃ ∈ RHr(Rn). (8.14)

Thus, for any cube Q(x0, l(Q)) with l(Q) ∈ (0, 1], by (8.13) and (8.14), we have(
1

|Q|

∫
Q

[ω(x)]r dx

)1/r

=

(
1

|Q|

∫
Q

[ω̃(x)]r dx

)1/r

.
1

|Q|

∫
Q

ω̃(x) dx ∼ 1

|Q|

∫
Q

ω(x) dx,

which together with the arbitrariness of the cube Q(x0, l(Q)) implies that ω ∈ RH loc
r (Rn).

Conversely, let ω ∈ RH loc
r (Rn). Then by Remark 8.7(ii), we know that for any cube

Q(x0, l(Q)) with l(Q) ∈ (0, 1], there exists a function ω̃ on Rn such that ω̃ ∈ RHr(Rn)

and ω̃ = ω on Q(x0, 1), which together with (8.14) and the arbitrariness of the cube

Q(x0, l(Q)) implies that ω ∈ Aloc
∞ (Rn). This finishes the proof of (i).

By the definitions of Aloc(p, q) and Aloc
1+p′/q(R

n), we see that (ii) holds, which com-

pletes the proof of Lemma 8.8.

To establish the boundedness of local fractional integrals, we need the following tech-

nical lemma.



Weighted local Orlicz–Hardy spaces 65

Lemma 8.9. Let α ∈ (0, n), p ∈ (1, n/α) and 1/q = 1/p− α/n. For some r ∈ (q,∞), if

ω−r
′
∈ Aloc(q′/r′, p′/r′),

then there exists a positive constant C such that for all f ∈ Lpωp(Rn),

‖I loc
α (f)‖Lq

ωq
(Rn) ≤ C‖f‖Lp

ωp
(Rn), (8.15)

where p′, q′ and r′ respectively denote the conjugate indices of p, q and r.

Proof. Let ω−r
′ ∈ Aloc(q′/r′, p′/r′). For any unit cube Q ⊂ Rn, from Lemmas 8.8(ii)

and 2.3(i), and Remark 2.4, we deduce that there exists a function ω̃ on Rn such that

ω̃−r
′ ∈ A(q′/r′, p′/r′) and ω̃ = ω on 5Q. For ω̃−r

′ ∈ A(q′/r′, p′/r′), similarly to the proof

of [13, Theorem 2], we know that for all f ∈ Lpω̃p(Rn),

‖I loc
α (f)‖Lq

ω̃q
(Rn) . ‖f‖Lp

ω̃p
(Rn),

which combined with the definition of I loc
α (f) implies that

‖I loc
α (f)‖Lq

ωq
(Q) = ‖I loc

α (fχ5Q)‖Lq
ω̃q

(Q) . ‖fχ5Q‖Lp
ω̃p

(Rn) ∼ ‖f‖Lp
ωp

(5Q). (8.16)

Take unit cubes {Qi}∞i=1 with disjoint interiors such that
⋃∞
i=1Qi = Rn, and

∞∑
i=1

χ5Qi ≤M,

where M is a positive integer depending only on n. From this and (8.16), we infer that

‖I loc
α (f)‖q

Lq
ωq

(Rn)
=

∞∑
i=1

‖I loc
α (f)‖q

Lq
ωq

(Qi)
.
∞∑
i=1

‖f‖q
Lp
ωp

(5Qi)
. ‖f‖q

Lp
ωp

(Rn)
,

which implies (8.15). This finishes the proof of Lemma 8.9.

Theorem 8.10. Let α ∈ (0, n), p ∈ [n/(n+ α), 1] and 1/q = 1/p − α/n. For some

r ∈ (n/(n− α),∞), if the weight ω satisfies ωnr/(nr−n−rα) ∈ Aloc
1 (Rn) and

∫
Rn [ω(x)]p dx

=∞, then there exists a positive constant C such that for all f ∈ hpωp(Rn),

‖I loc
α (f)‖Lq

ωq
(Rn) ≤ C‖f‖hp

ωp
(Rn).

Proof. Let r and ω be as in the assumption. Then by Lemma 2.3(ii), we know that there

exists an η1 ∈ (0,∞) such that

ω
nr(1+η1)
nr−n−rα ∈ Aloc

1 (Rn). (8.17)

Let
1

p1
≡ 1

r
+
α

n
+

(
1− 1

r
− α

n

)
/(1 + η1) and

1

q1
≡ 1

p1
− α

n
. (8.18)

Then from r ∈ (n/(n− α),∞), we know that

p1 ∈ (1, n/α), r > q1 and ω−r
′
∈ Aloc(q′1/r

′, p′1/r
′). (8.19)

Furthermore, from (8.17), the fact that p1 <
nr(1+η1)
nr−n−rα and Hölder’s inequality, we infer

that

ωp1 ∈ Aloc
1 (Rn), (8.20)

which together with Lemma 2.3(ii) implies that there exists an η2 ∈ (0,∞) such that
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ωp1(1+η2) ∈ Aloc
1 (Rn). Let

q̃ ≡ p1(1 + η2). (8.21)

From nr
nr−n−rα >p and Hölder’s inequality, we see that ωp∈Aloc

1 (Rn). Let s≡bn(1/p−1)c.
To show Theorem 8.10, as hpωp(Rn) and Lqωq (Rn) are respectively a p-quasi-Banach space

and a 1-quasi-Banach space, Theorem 6.4(i) with Φ(t) ≡ tp for all t ∈ (0,∞) implies

that it suffices to show that for any (p, q̃, s)ωp -atom a supported in Q0 ≡ Q(x0, R0) with

R0 ∈ (0, 2],
‖I loc
α (a)‖Lq

ωq
(Rn) . 1. (8.22)

From supp(a) ⊂ Q0 and the definition of I loc
α (a), we see that

supp(I loc
α (a)) ⊂ Q(x0, R0 + 4). (8.23)

Now, we prove (8.22) by considering the following two cases for R0.

Case 1: R0 ∈ [1, 2]. In this case, from (8.23), Hölder’s inequality, (8.19), Lemma 8.3,

R0 ∈ [1, 2] and 1/q − 1/q1 = 1/p− 1/p1, we deduce that{∫
Rn
|I loc
α (a)(x)|q[ω(x)]q dx

}1/q

.

{∫
Q(x0,R0+4)

|I loc
α (a)(x)|q1 [ω(x)]q1 dx

}1/q1

|Q0|1/q−1/q1

. ‖a‖Lp1
ωp1

(Rn)|Q0|1/p−1/p1 . (8.24)

By (8.20) and the definition of Aloc
1 (Rn), we know that ω

p1(q̃−p)

(q̃−p1) ∈ Aloc
1 (Rn). From this

and Lemma 8.2(i), we infer that ωp ∈ RH loc
p1(q̃−p)

p(q̃−p1)

(Rn), which implies that{∫
Q0

[ω(x)]p dx

} 1
q̃−

1
p
{∫

Q0

[ω(x)]
p1(q̃−p)

(q̃−p1) dx

} 1
p1
− 1
q̃

. |Q0|
1
p1
− 1
p . (8.25)

This, combined with (8.24), Hölder’s inequality and the fact that a is a (p, q̃, s)ωp -atom,

yields

‖I loc
α (a)‖Lq

ωq
(Rn) . ‖a‖Lp1

ωp1
(Rn)|Q0|

1
p−

1
p1

.

{∫
Q0

|a(x)|q̃[ω(x)]p dx

}1/q̃{∫
Q0

[ω(x)]
p1(q̃−p)

(q̃−p1) dx

} 1
p1
− 1
q̃

|Q0|
1
p−

1
p1

.

{∫
Q0

[ω(x)]p dx

} 1
q̃−

1
p
{∫

Q0

[ω(x)]
p1(q̃−p)

(q̃−p1) dx

} 1
p1
− 1
q̃

|Q0|
1
p−

1
p1 . 1.

This shows (8.22) in Case 1.

Case 2: R0 ∈ (0, 1). In this case, let Q̃0 ≡ 4nQ0. From (8.23), it follows that

‖I loc
α (a)‖Lq

ωq
(Rn) ≤

{∫
Q̃0

|I loc
α (a)(x)|q[ω(x)]q dx

}1/q

+

{∫
Q(x0,R0+4)\Q̃0

· · ·
}1/q

≡ I1 + I2. (8.26)
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To estimate I1, by Hölder’s inequality, (8.15) and (8.25), we conclude that

I1 ≤
(∫

Q1

|I loc
α (a)(x)|q1 [ω(x)]q1 dx

)1/q1

|Q0|
1
p−

1
p1

. ‖a‖Lp1
ωp1

(Rn)|Q0|
1
p−

1
p1

.

{∫
Q0

[ω(x)]p dx

} 1
q̃−

1
p
{∫

Q0

[ω(x)]
p1(q̃−p)

(q̃−p1) dx

} 1
p1
− 1
q̃

|Q0|
1
p−

1
p1 . 1. (8.27)

To estimate I2, for any fixed x ∈ Q(x0, R0 + 4) \ Q̃0, let Es be the Taylor expansion

of φ0(·)/| · |n−α about x− x0 with degree s. Let m0 be the integer such that

2m0−1nR0 ≤ R0 + 4 < 2m0nR0.

Since ωp ∈ Aloc
1 (Rn) ⊂ Aloc

q̃ (Rn), by (2.1), we have(∫
Q0

[ω(x)]p dx

) 1
q̃−

1
p
(∫

Q0

[ω(x)]−pq̃
′/q̃ dx

)1/q̃′

.

(∫
Q0

[ω(x)]p dx

)1/p

|Q0|.

From this, the vanishing condition of a, Minkowski’s inequality, Taylor’s remainder the-

orem, the fact that ∑
α∈Zn+, |α|=s+1

∣∣∣∣∂α( φ0(·)
| · |n−α

)
(z)

∣∣∣∣ . 1

|z|n+s+1−α

for all z ∈ Rn \ {0}, and Hölder’s inequality, we deduce that

I2 ≤
(m0∑
k=2

∫
2k+1nQ0\2knQ0

{∫
Q0

∣∣∣∣ φ0(x− y)

|x− y|n−α
− Es(x− y)

∣∣∣∣|a(y)| dy
}q

[ω(x)]q dx

)1/q

≤
m0∑
k=2

∫
Q0

|a(y)|
{∫

2k+1nQ0\2knQ0

∣∣∣∣ φ0(x− y)

|x− y|n−α
− Es(x− y)

∣∣∣∣q[ω(x)]q dx

}1/q

dy

.
m0∑
k=2

∫
Q0

|a(y)|
{∫

2k+1nQ0\2knQ0

(
|y − x0|s+1

|θ(x− y)− (1− θ)(x− x0)|n+s+1−α

)q
×[ω(x)]q dx

}1/q

dy

.
m0∑
k=2

∫
Q0

|a(y)|
{∫

2k+1nQ0\2knQ0

(
|y − x0|s+1

|x− x0|n+s+1−α

)q
[ω(x)]q dx

}1/q

dy

.
m0∑
k=2

Rα−n0

2k(n+s+1−α)

{∫
Q0

|a(y)| dy
}{∫

2k+1nQ0

[ω(x)]q dx

}1/q

.
m0∑
k=2

Rα−n0

2k(n+s+1−α)

{∫
Q0

|a(y)|q̃[ω(y)]p dy

}1/q̃

×
{∫

Q0

[ω(y)]−pq̃
′/q̃ dy

}1/q̃ ′{∫
2k+1nQ0

[ω(x)]q dx

}1/q

.
m0∑
k=2

Rα0
2k(n+s+1−α)

{∫
Q0

[ω(x)]p dx

}−1/p{∫
2k+1nQ0

[ω(x)]q dx

}1/q

, (8.28)
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where θ ∈ (0, 1) and in the fourth inequality we used the fact that for any y ∈ Q0 and

x ∈ 2k+1nQ0 \ 2knQ0 with k ∈ {2, . . . ,m0}, |(x− x0)− θ(y − x0)| & |x− x0|.
From nr(1+η1)

nr−n−rα = rq1
r−q1 >

rq
r−q , (8.17) and Hölder’s inequality, it follows that

ω
rq
r−q ∈ Aloc

1 (Rn). (8.29)

By Lemma 2.3(i) and Remark 2.4 with C̃ ≡ 20n, we know that there exists a function ω̃

on Rn such that ω̃rq/(r−q) ∈ A1(Rn) such that ω̃ = ω on Q(x0, 20n), which together with

2m0+1nQ0 ⊂ Q(x0, 20n) and Lemma 2.3(viii) implies that for any k ∈ {1, . . . ,m0},∫
2knQ0

[ω(x)]
rq
r−q dx =

∫
2knQ0

[ω̃(x)]
rq
r−q dx . 2kn

∫
Q0

[ω̃(x)]
rq
r−q dx . 2kn

∫
Q0

[ω(x)]
rq
r−q dx.

By this estimate and Hölder’s inequality, we have{∫
2k+1nQ0

[ω(x)]q dx

}1/q

. R
n/r
0 2kn/q

{∫
Q0

[ω(x)]
rq
r−q dx

} 1
q−

1
r

. (8.30)

Moreover, by (8.29) and Lemma 8.8(i), we know that ωp ∈ RH loc
rq

p(r−q)
(Rn). Thus, we have{∫

Q0

[ω(x)]p dx

}−1/p{∫
Q0

[ω(x)]
rq
r−q dx

} 1
q−

1
r

. R
−nr−α
0 ,

which together with (8.28) and (8.30) implies that

I2 .
m0∑
k=2

2−k(n+s+1−α−n/q).

From 1/q = 1/p − α/n and r > n/(n− α), we deduce that n + s + 1 − α − n/q >

n+s+1−n/p, which together with s = bn(1/p−1)c implies that n+s+1−α−n/q > 0.

Thus,

I2 .
m0∑
k=2

2−k(n+s+1−α−n/q) . 1.

This combined with (8.26) and (8.27) proves (8.22) in Case 2, which completes the proof

of Theorem 8.10.

Theorem 8.11. Let α ∈ (0, 1), p ∈ (0, n/(n+ α)] and 1/q = 1/p − α/n. For some

r ∈ (n/(n− α),∞), if the weight ω satisfies ωnr/(nr−n−rα) ∈ Aloc
1 (Rn) and

∫
Rn [ω(x)]p dx

=∞, then there exists a positive constant C such that for all f ∈ hpωp(Rn),

‖I loc
α (f)‖hq

ωq
(Rn) ≤ C‖f‖hp

ωp
(Rn).

Proof. Let p1, q1 and q̃ be respectively as in (8.18) and (8.21). To show Theorem 8.11,

since hpωp(Rn) and hqωq (Rn) are respectively a p-quasi-Banach space and a q-quasi-Banach

space, Theorem 6.4(i) with Φ(t) ≡ tp for all t ∈ (0,∞) and Theorem 3.14 imply that

it suffices to show that for any (p, q̃, s)ωp -atom a supported in Q0 ≡ Q(x0, R0) with

R0 ∈ (0, 2],

‖G0
N (I loc

α (a))‖LΦ
ωq

(Rn) . 1. (8.31)

From supp(a) ⊂ Q0 and the definitions of I loc
α (a) and G0

N (I loc
α (a)), we know that

supp(G0
N (I loc

α (a))) ⊂ Q(x0, R0 + 8). (8.32)

Now, we prove (8.31) by considering the following two cases for R0.
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Case 1: R0 ∈ [1, 2]. In this case, by (8.17), the fact that nr(1+η1)
nr−n−rα > q1 and Hölder’s

inequality, we know that ωq1 ∈ Aloc
1 (Rn), where η1 is as in (8.17). From this, (8.32),

Hölder’s inequality, Proposition 3.2(ii), Lemma 8.9 and (8.25), it follows that∫
Rn
|G0
N (I loc

α (a))(x)|q[ω(x)]q dx

. |Q0|1−
q
q1

{∫
Q(x0,R0+8)

|G0
N (I loc

α (a))(x)|q1 [ω(x)]q1 dx

}q/q1
. |Q0|1−

q
q1

{∫
Q(x0,R0+8)

|I loc
α (a)(x)|q1 [ω(x)]q1 dx

}q/q1
. |Q0|1−

q
q1

{∫
Q0

|a(x)|p1 [ω(x)]p1 dx

}q/p1

. |Q0|1−
q
q1

{∫
Q0

|a(x)|q̃[ω(x)]p dx

}q/q̃{∫
Q0

[ω(x)]
p1(q̃−p)
q̃−p1 dx

}( 1
p1
− 1
q̃ )q

.

{
|Q0|

1
q−

1
q1

(∫
Q0

[ω(x)]p dx

) 1
q̃−

1
p
(∫

Q0

[ω(x)]
p1(q̃−p)
q̃−p1 dx

) 1
p1
− 1
q̃
}q

. 1,

which proves (8.31) in Case 1.

Case 2: R0 ∈ (0, 1). In this case, let Q̃0 ≡ 8nQ0. Then from (8.32), we conclude that∫
Rn

[G0
N (I loc

α a)(x)]q[ω(x)]q dx =

∫
Q̃0

[G0
N (I loc

α a)(x)]q[ω(x)]q dx

+

∫
Q(x0,R0+8)\Q̃0

· · · ≡ I1 + I2. (8.33)

For I1, similarly to the proof of Case 1, we have

I1 . |Q0|1−
q
q1

{∫
Q̃0

[G0
N (I loc

α (a))(x)]q1 [ω(x)]q1 dx

}q/q1
. |Q0|1−

q
q1

{∫
Rn
|I loc
α (a)(x)|q1 [ω(x)]q1 dx

}q/q1
. |Q0|1−

q
q1

{∫
Q0

|a(x)|p1 [ω(x)]p1 dx

}q/p1

. |Q0|1−
q
q1

{∫
Q0

|a(x)|q̃[ω(x)]p dx

}q/q̃{∫
Q0

[ω(x)]
p1(q̃−p)
q̃−p1 dx

}( 1
p1
− 1
q̃ )q

.

{
|Q0|

1
q−

1
q1

(∫
Q0

[ω(x)]p dx

) 1
q̃−

1
p
(∫

Q0

[ω(x)]
p1(q̃−p)
q̃−p1 dx

) 1
p1
− 1
q̃
}q

. 1. (8.34)

To estimate I2, let x ∈ (Q̃0){, ψ ∈ D0
N (Rn), t ∈ (0, 1) and P sψ be the Taylor expansion of

ψ about (x− x0)/t with degree s, where s ≡ bn(1/p− 1)c. Then we have

|I loc
α (a) ∗ ψt(x)| = 1

tn

∣∣∣∣∫
Rn
I loc
α (a)(y)ψ

(
x− y
t

)
dy

∣∣∣∣
=

1

tn

∣∣∣∣∫
Rn
I loc
α (a)(y)

[
ψ

(
x− y
t

)
− P sψ

(
x− y
t

)]
dy

∣∣∣∣
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≤ 1

tn

∫
2
√
nQ0

|I loc
α (a)(y)|

∣∣∣∣ψ(x− yt
)
− P sψ

(
x− y
t

)∣∣∣∣ dy
+

1

tn

∫
Q(x0,

|x−x0|
2
√
n

)\2
√
nQ0

· · ·+ 1

tn

∫
[Q(x0,

|x−x0|
2
√
n

)]{
· · ·

≡ E1 + E2 + E3. (8.35)

To estimate E1, as x ∈ (Q̃0){ and t ∈ (0, 1), we see that E1 6= 0 implies that t > |x− x0|/2.

From
ω

nr
nr−n−rα ∈ Aloc

1 (Rn)

and the definition of Aloc
1 (Rn), it follows that ω ∈ Aloc

1 (Rn). Let q2 ≡ (2q1 − 1)/q1. Then

since ω ∈ Aloc
1 (Rn) ⊂ Aloc

q2 (Rn), Lemma 2.3(iv) implies that ω−q
′
1 = ω1−q′2 ∈ Aloc

q′2
(Rn).

From these facts, Taylor’s remainder theorem, Hölder’s inequality, Lemmas 8.9 and 2.3(v),

Remark 2.4 with C̃ = 2
√
n, (8.25) and (2.2), we infer that

E1 .
1

tn+s+1
‖I loc
α (a)‖Lq1

ωq1
(Rn)

{ ∑
α∈Zn+, |α|=s+1

∫
2
√
nQ0

∣∣∣∣∂αψ(ξt
)∣∣∣∣q′1

× |y − x0|(s+1)q′1 [ω(y)]−q
′
1 dy

}1/q′1

.
Rs+1

0

|x− x0|n+s+1
‖a‖Lp1

ωp1
(Rn)

{∫
2
√
nQ0

[ω(y)]−q
′
1 dy

}1/q′1

.
Rs+1

0

|x− x0|n+s+1

{∫
Q0

|a(x)|q̃[ω(x)]p dx

}1/q̃

×
{∫

Q0

[ω(x)]
p1(q̃−p)
q̃−p1 dx

} 1
p1
− 1
q̃
{∫

Q0

[ω(y)]−q
′
1 dy

}1/q′1

.
Rs+1

0

|x− x0|n+s+1
|Q0|

1
q1
− 1
q

{∫
Q0

[ω(y)]−q
′
1 dy

}1/q′1

.
Rs+1

0

|x− x0|n+s+1
|Q0|1−

1
q

[
ess inf
z∈Q0

ω(z)
]−1

, (8.36)

where γ ∈ (0, 1) and ξ ≡ γ(x − y) + (1 − γ)(x − x0). Similarly to the estimates of G2

and G3 in the proof of Theorem 8.2, we have

max{E2, E3} .
Rn+s+1

0

|x− x0|n+s+1−α |Q0|−1/p
[
ess inf
z∈Q0

ω(z)
]−1

. (8.37)

Thus, from (8.35), (8.36), (8.37) and the facts that |x−x0| ≥ 4nR0 and 1/q = 1/p−α/n,

we deduce that

|[I loc
α (a)] ∗ ψt(x)| . Rs+1

0

|x− x0|n+s+1
|Q0|1−

1
q

[
ess inf
z∈Q0

ω(z)
]−1

+
Rn+s+1

0

|x− x0|n+s+1−α |Q0|−1/p
[
ess inf
z∈Q0

ω(z)
]−1

.
Rn+s+1

0

|x− x0|n+s+1−α |Q0|−1/p
[
ess inf
z∈Q0

ω(z)
]−1

,
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which together with the arbitrariness of ψ ∈ D0
N (Rn) implies that for any x ∈ (Q̃0){,

G0
N (I loc

α (a))(x) .
Rn+s+1

0

|x− x0|n+s+1−α |Q0|−1/p
[
ess inf
z∈Q0

ω(z)
]−1

. (8.38)

As s = bn(1/p − 1)c and 1/q = 1/p − α/n, we know that (n + s + 1 − α)q − n > 0. Let

m0 be the integer such that 2m0nR0 ≤ R0 + 8 < 2m0+1nR0. From

ω
nr

nr−n−rα ∈ Aloc
1 (Rn)

and the definition of Aloc
1 (Rn), we see that ωq ∈ Aloc

1 (Rn), which together Lemma 2.3(i)

implies that there exists a function ω̃ on Rn such that ω̃ = ω on Q(x0, R0 + 8) and

ω̃q ∈ A1(Rn). From this, 1/q = 1/p − α/n, (8.38), (i) and (viii) of Lemma 2.3, the

definition of Aloc
1 (Rn) and (n+ s+ 1− α)q − n > 0, we infer that

I2 .
∫
Q(x0,R0+8)\Q̃0

{
Rn+s+1

0

|x− x0|n+s+1−α |Q0|−1/p
[
ess inf
z∈Q0

ω(z)
]−1
}q

[ω̃(x)]q dx

.
m0∑
k=3

∫
2k+1nQ0\2knQ0

{
R
n+s+1−n/q−α
0

(2kR0)n+s+1−α

[
ess inf
z∈Q0

ω(z)
]−1
}q

[ω̃(x)]q dx

.
m0∑
k=3

R−n0

2k[(n+s+1−α)q−n]

[
ess inf
z∈Q0

ω(z)
]−q ∫

Q0

[ω(x)]q dx

.
m0∑
k=3

R−n0

2k[(n+s+1−α)q−n]
|Q0|

[
ess inf
z∈Q0

ω(z)
]−q

ess inf
z∈Q0

[ω(z)]q

.
m0∑
k=3

2−k[(n+s+1−α)q−n] . 1,

which together with (8.33) and (8.34) implies (8.31) in Case 2. This finishes the proof of

Theorem 8.11.

Pseudo-differential operators have been extensively studied in the literature, and they

are important in partial differential equations and harmonic analysis; see, for exam-

ple, [46, 51, 45, 50]. Now, we recall the notion of pseudo-differential operators of order

zero.

Definition 8.12. Let δ be a real number. A symbol in S0
1,δ(Rn) is a smooth function

σ(x, ξ) defined on Rn×Rn such that for all multi-indices α and β, the following estimate

holds:
|∂αx ∂

β
ξ σ(x, ξ)| ≤ C(α, β)(1 + |ξ|)−|β|+δ|α|,

where C(α, β) is a positive constant independent of x and ξ. Let f be a Schwartz function

and f̂ denote its Fourier transform. The operator T given by setting, for all x ∈ Rn,

Tf(x) ≡
∫
Rn
σ(x, ξ)e2πixξ f̂(ξ) dξ

is called a pseudo-differential operator with symbol σ(x, ξ) ∈ S0
1,δ(Rn).

In the rest of this section, let

φ(t) ≡ (1 + t)α (8.39)

for all α ∈ (0,∞) and t ∈ (0,∞). Recall that a weight always means a locally inte-
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grable function which is positive almost everywhere. The following weight class Ap(φ)

was introduced by Tang [50].

Definition 8.13. A weight ω is said to belong to the class Ap(φ) for p ∈ (1,∞) if there

exists a positive constant C such that for all cubes Q ≡ Q(x, r),(
1

φ(|Q|)|Q|

∫
Q

ω(y) dy

)(
1

φ(|Q|)|Q|

∫
Q

[ω(y)]−
1
p−1 dy

)p−1

≤ C.

A weight ω is said to belong to the class A1(φ) if there exists a positive constant C such

that for all cubes Q ⊂ Rn and almost every x ∈ Rn, Mφ(ω)(x) ≤ Cω(x), where for all

x ∈ Rn,

Mφ(ω)(x) ≡ sup
Q3x

1

φ(|Q|)|Q|

∫
Q

|f(y)| dy,

and the supremum is taken over all cubes Q ⊂ Rn and Q 3 x.

Remark 8.14. By the definition of Ap(φ), we see that Ap(φ) ⊂ Aloc
p (Rn), and that

φ(t) ≥ 1 for all t ∈ (0,∞) implies that Ap(Rn) ⊂ Ap(φ) for all p ∈ [1,∞). Moreover, if

ω ∈ Ap(φ), then ω(x) dx may not be a doubling measure; see the remark of Section 7

in [49] for the details.

Similarly to the classical Muckenhoupt weights, we recall some properties of weights

ω ∈ A∞(φ) ≡
⋃

1≤p<∞Ap(φ). Lemmas 8.15 and 8.16 below are respectively Lemmas 7.3

and 7.4 in [49].

Lemma 8.15.

(i) If 1 ≤ p1 < p2 <∞, then Ap1
(φ) ⊂ Ap2

(φ).

(ii) For p ∈ (1,∞), ω ∈ Ap(φ) if and only if ω−1/(p−1) ∈ Ap′(φ), where 1/p+ 1/p′ = 1.

(iii) If ω ∈ Ap(φ) for p ∈ [1,∞), then there exists a positive constant C such that for any

cube Q ⊂ Rn and measurable set E ⊂ Q,

|E|
φ(|Q|)|Q|

≤ C
(
ω(E)

ω(Q)

)1/p

.

Lemma 8.16. Let T be an S0
1, 0(Rn) pseudo-differential operator. Then for ω ∈ Ap(φ)

with p ∈ (1,∞), there exists a positive constant C(p, ω) such that for all f ∈ Lpω(Rn),

‖Tf‖Lpω(Rn) ≤ C(p, ω)‖f‖Lpω(Rn).

Lemma 8.17 below is just [18, Lemma 6].

Lemma 8.17. Let T be an S0
1, 0(Rn) pseudo-differential operator. If ψ ∈ D(Rn), then

Ttf = ψt ∗ Tf has a symbol σt which satisfies that

|∂βx∂αξ σ(x, ξ)| ≤ C(α, β)(1 + |ξ|)−|α|,

and a kernel Kt(x, z) which satisfies that

|∂βx∂αzKt(x, z)| ≤ C(α, β)|z|−n−|α|,

where C(α, β) is independent of t when t ∈ (0, 1).

Now, we establish the boundedness on hΦ
ω (Rn) of S0

1, 0(Rn) pseudo-differential opera-

tors as follows.
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Theorem 8.18. Let T be an S0
1, 0(Rn) pseudo-differential operator, Φ satisfy Assump-

tion (A), ω ∈ A∞(φ) and pΦ be as in (2.6). If pΦ = p+
Φ and Φ is of upper type p+

Φ , then

there exists a positive constant C(Φ, ω), depending only on Φ, qω and the weight constant

of A∞(φ), such that for all f ∈ hΦ
ω (Rn),

‖Tf‖hΦ
ω(Rn) ≤ C(Φ, ω)‖f‖hΦ

ω(Rn).

Proof. Since ω ∈ A∞(φ), we have ω ∈ Aq(φ) for some q ∈ (1,∞). To prove Theorem 8.18,

as ω ∈ A∞(φ) ⊂ Aloc
∞ (Rn), Theorems 6.4(i) and 3.14 imply that it suffices to show that

for all (ρ, q)ω-single-atoms and (ρ, q, s)ω-atoms a supported in Q0 ≡ Q(x0, R0) with

R0 ∈ (0, 2],

‖G0
N (Ta)‖LΦ

ω(Rn) . 1. (8.40)

By Theorem 5.6, we may assume that s satisfies (n+s+1)pΦ > nqω(1+α), where pΦ, qω
and α are respectively as in (2.6), (2.4) and (8.39).

First, we prove (8.40) for any (ρ, q)ω-single-atom a 6= 0. In this case, ω(Rn) < ∞.

Since Φ is concave, by Jensen’s inequality, Hölder’s inequality, Proposition 3.2(ii) and

Lemma 8.16 and (2.8) with t ≡ ω(Rn), we have∫
Rn

Φ(G0
N (Ta)(x))ω(x) dx

≤ ω(Rn)Φ

(
1

ω(Rn)

∫
Rn
G0
N (Ta)(x)ω(x) dx

)
≤ ω(Rn)Φ

(
1

[ω(Rn)]1/q

{∫
Rn

[G0
N (Ta)(x)]qω(x) dx

}1/q)
. ω(Rn)Φ

(
1

[ω(Rn)]1/q
‖Ta‖Lqω(Rn)

)
. ω(Rn)Φ

(
1

[ω(Rn)]1/q
‖a‖Lqω(Rn)

)
. ω(Rn)Φ

(
1

ω(Rn)ρ(ω(Rn))

)
∼ 1,

which shows (8.40) in this case.

Now, let a be any (ρ, q, s)ω-atom supported in Q0 ≡ Q(x0, R0) with R0 ∈ (0, 2].

Let Q̃0 ≡ 2Q0. Then from Jensen’s inequality, Hölder’s inequality, Proposition 3.2(ii),

Lemma 8.16, Lemma 8.15(iii) and (2.8) with t ≡ ω(Q̃0), it follows that∫
Q̃0

Φ(G0
N (Ta)(x))ω(x) dx

≤ ω(Q̃0)Φ

(
1

ω(Q̃0)

∫
Q̃0

G0
N (Ta)(x)ω(x) dx

)
≤ ω(Q̃0)Φ

(
1

[ω(Q̃0)]1/q

{∫
Q̃0

[G0
N (Ta)(x)]qω(x) dx

}1/q)
. ω(Q̃0)Φ

(
1

[ω(Q̃0)]1/q
‖Ta‖Lqω(Rn)

)
. ω(Q̃0)Φ

(
1

[ω(Q̃0)]1/q
‖a‖Lqω(Rn)

)
. ω(Q̃0)Φ

(
1

ω(Q̃0)ρ(ω(Q̃0))

)
∼ 1. (8.41)
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For any ψ ∈ D0
N (Rn) and t ∈ (0, 1), letKt(x, x−z) be the kernel of Tta(x) ≡ ψt∗Ta(x).

To estimate
∫
Rn\Q̃0

Φ(G0
N (Ta)(x))ω(x) dx, we consider the following two cases for R0.

Case 1: R0 ∈ (0, 1). In this case, we expand Kt(x, x−z) into a Taylor series about z = x0

such that for any x ∈ (Rn \ Q̃0),

ψt ∗ Ta(x) =

∫
Rn
Kt(x, x− z)a(z) dz =

∫
Q0

∑
α∈Zn+,
|α|=s+1

(∂αzKt)(x, x− ξ)(z − x0)αa(z) dz,

where ξ ≡ θz+ (1− θ)x0 for some θ ∈ (0, 1). As z, x0 ∈ Q0, we know that ξ ∈ Q0. Thus,

for any x ∈ (Rn \ Q̃0), |x − ξ| ∼ |x − x0|. From the above facts and Lemma 8.17, we

deduce that

|ψt ∗ Ta(x)| . |x− ξ|−(n+s+1)Rs+1
0 ‖a‖L1(Rn) . |x− x0|−(n+s+1)|Q0|

s+1
n ‖a‖L1(Rn),

which together with the arbitrariness of ψ ∈ D0
N (Rn) implies that for all x ∈ Rn \ Q̃0,

G0
N (Ta)(x) . |x− x0|−(n+s+1)|Q0|

s+1
n ‖a‖L1(Rn).

This, combined with Hölder’s inequality, Lemma 8.15(iii) and the definition of Ap(φ),

yields∫
Rn\Q̃0

Φ(G0
N (Ta)(x))ω(x) dx

≤ C
∫
Rn\Q̃0

Φ(|x− x0|−(n+s+1)|Q0|
s+1
n ‖a‖L1(Rn))ω(x) dx

≤ C
∫
Rn\Q̃0

Φ(|Q0|
s+1
n |x−x0|−(n+s+1)‖a‖Lqω(Rn)φ(|Q0|)|Q0|[ω(Q0)]−1/q)ω(x) dx

≤ C
∫
Rn\Q̃0

Φ(|Q0|
s+1
n |x− x0|−(n+s+1) φ(|Q0|)|Q0|

ω(Q0)ρ(ω(Q0))

)
ω(x) dx

≤ C
∞∑
k=1

∫
2kQ0

Φ(|Q0|
s+1
n (2kR0)−(n+s+1) φ(|Q0|)|Q0|

ω(Q0)ρ(ω(Q0))

)
ω(x) dx

≤ C
{m0∑
k=1

∫
2kQ0

Φ(|Q0|
s+1
n (2kR0)−(n+s+1) |Q0|

ω(Q0)ρ(ω(Q0))

)
ω(x) dx

+

∞∑
k=m0+1

∫
2kQ0

· · ·
}
≡ C(I1 + I2),

(8.42)

where the integer m0 satisfies 2m0−1 ≤ 1/R0 < 2m0 .

To estimate I1, for any k ∈ {1, . . . ,m0}, by the choice of m0 and R0 ∈ (0, 1), we know

that 2kRn0 ≤ 1, which, together with Jensen’s inequality, the lower type pΦ property of Φ,

Lemma 8.15(iii) and the fact that (n+ s+ 1)pΦ > nq(1 + α), implies that

I1 .
m0∑
k=1

ω(2kQ0)Φ

(
1

ω(2kQ0)

∫
2kQ0

2−k(n+s+1){ω(Q0)ρ(ω(Q0))}−1ω(x) dx

)
.

m0∑
k=1

2−k(n+s+1)pΦ
ω(2kQ0)

ω(Q0)
.

m0∑
k=1

2knq[φ(|2kQ0|)]q2−k(n+s+1)pΦ

.
m0∑
k=1

2−k[(n+s+1)pΦ−nq] . 1. (8.43)
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For I2, similarly to the estimate of I1, we have

I2 .
∞∑

k=m0+1

ω(2kQ0)Φ

(
1

ω(2kQ0)

∫
2kQ0

2−k(n+s+1){ω(Q0)ρ(ω(Q0))}−1ω(x) dx

)

.
∞∑

k=m0+1

2−k(n+s+1)pΦ
ω(2kQ0)

ω(Q0)
.

∞∑
k=m0+1

2knq[φ(|2kQ0|)]q2−k(n+s+1)pΦ

.
∞∑

k=m0+1

2−k[(n+s+1)pΦ−q(α+1)] . 1,

which together with (8.43), (8.42) and (8.41) implies (8.40) in Case 1.

Case 2: R0 ∈ [1, 2]. In this case, for any x ∈ Rn \ Q̃0 and z ∈ Q0, we have

|x− z| ∼ |x− x0|

and |x−x0| > 1. From this and [46, p. 235, (9)], we infer that for any positive integer M ,

there exists a positive constant C(M) such that

|Kt(x, x− z)| ≤ C(M)|x− x0|−M ,

which implies that for any x ∈ Rn \ Q̃0,

|ψt ∗ Ta(x)| ≤
∫
Rn
|Kt(x, x− z)a(z)| dz . |x− x0|−M‖a‖L1(Rn).

This, combined with the arbitrariness of ψ ∈ D0
N (Rn), shows that for any x ∈ Rn \ Q̃0,

G0
N (Ta)(x) . |x− x0|−M‖a‖L1(Rn). (8.44)

Take M > nq(1 + α)/pΦ. By Jensen’s inequality, (8.44), Hölder’s inequality and Lem-

ma 8.15(iii), we have∫
Rn\Q̃0

Φ(G0
N (Ta)(x))ω(x) dx

.
∫
Rn\Q̃0

Φ(|x− x0|−M‖a‖L1(Rn))ω(x) dx

.
∞∑
k=1

∫
2kQ0

Φ

(
(2kR0)−M

φ(|Q0|)|Q0|
ω(Q0)ρ(ω(Q0))

)
ω(x) dx

.
∞∑
k=1

ω(2kQ0)Φ

(
(2kR0)−M

1

ω(Q0)ρ(ω(Q0))

)

.
∞∑
k=1

2−kMpΦR−MpΦ

0

ω(2kQ0)

ω(Q0)
.
∞∑
k=1

2−k(MpΦ−nq)φ(|2kQ0|)R−MpΦ

0

.
∞∑
k=1

2−k[MpΦ−nq(1+α)]R
−(MpΦ−nqα)
0 .

∞∑
k=1

2−k[MpΦ−nq(1+α)] . 1,

which together with (8.41) implies (8.40) in Case 2. This finishes the proof of Theo-

rem 8.18.

Remark 8.19. Let p ∈ (0, 1]. Theorem 8.18 with ω ≡ 1 and Φ(t) ≡ tp for all t ∈ (0,∞)

was obtained by Goldberg [18, Theorem 4]; moreover, Theorem 8.18 with Φ(t) ≡ tp for all
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t ∈ (0,∞) was obtained by Tang [49, Theorem 7.3]. Also, Theorem 8.18 with ω ∈ A1(Rn)

and Φ(t) ≡ t for all t ∈ (0,∞) was obtained by Lee, C.-C. Lin and Y.-C. Lin [32,

Theorem 2].

By Theorems 8.18 and 7.5, [46, p. 233, (4)] and the proposition in [46, p. 259], we have

the following result.

Corollary 8.20. Let T be an S0
1, 0(Rn) pseudo-differential operator, Φ satisfy Assump-

tion (A), ω ∈ A∞(φ) and pΦ be as in (2.6). If pΦ = p+
Φ and Φ is of upper type p+

Φ , then

there exists a positive constant C(Φ, ω) such that for all f ∈ bmoρ, ω(Rn),

‖Tf‖bmoρ, ω(Rn) ≤ C(Φ, ω)‖f‖bmoρ, ω(Rn).
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