
Summary

The plan of the paper is as follows. In Chapter 0 we set up notation and terminology.

In Chapter 1 we investigate the properties of consistence, strongness and semimod-

ularity, each of which may be viewed as generalization of modularity. Section 1.1 deals

with some conditions characterizing consistence in lower continuous strongly coatomic

lattices. Here we prove that a finite lattice is the lattice of closed sets of a closure space

with the Steinitz exchange property if and only if it is a consistent lattice. Section 1.2

extends Faigle’s concept of strongness from lattices of finite length to arbitrary lattices.

Any atomistic lattice is strong whereas the converse does not hold in general. It is shown

(Theorem 1.15) that a lower continuous strongly atomic lattice in which each atom has

a complement is strong precisely when it is atomistic. For the class of strongly coatomic

lower continuous lattices we prove that in semimodular lattices, the concepts of strongness

and of consistence are equivalent (Theorem 1.26). Section 1.3 combines semimodularity

with the strongness property. In Section 1.4 we characterize atomistic lattices. These char-

acterizations are given in terms of concepts related to pure elements and neat elements.

Chapter 2 considers join decompositions in lattices. In Section 2.1, some sufficient

conditions are given under which every element of a lattice has a join decomposition

(Proposition 2.2). The goal of Section 2.2 is to characterize modularity of lattices in terms

of the Kurosh–Ore Replacement Properties (Theorem 2.13). Finally, in Section 2.3, we

study lattices with unique irredundant join decompositions.

In Chapter 3 Problem IV.15 of Grätzer [1978] is solved. In Section 3.1 we introduce the

notion of a c-join in lattices, where c is a distributive element of the lattice. Sections 3.2

and 3.3 present some properties of c-joins and c-decomposition functions. An important

role in our investigations is played by the Bc-condition defined in Section 3.4. Section 3.5

is devoted to the study of finite c-decompositions of elements in a modular lattice. We

give here a generalization of some results of papers of Močulskĭı [1955, 1961] and Wal-

endziak [1991b]. We find (Theorem 3.25) a common generalization of the Kurosh–Ore

Theorem and the Schmidt–Ore Theorem for arbitrary modular lattices, solving a prob-

lem of G. Grätzer. In Sections 3.6 and 3.7 we consider infinite c-decompositions. For

investigations of such representations, property (Bc) does not yield anything. Therefore,

we shall use property (B∗c) defined in Section 3.6. As a main result of Chapter 3 we give

the c-Decomposition Theorem (3.40) which implies (in particular) Crawley’s Theorem for

direct decompositions (Corollary 3.44) and a generalization of the Kurosh–Ore Theorem

to infinite join decompositions (Corollary 3.46).

The decomposition theory of Chapters 2 and 3 enables us to devolop a structure

theory for algebras. In Chapter 4 we consider weak direct representations of a universal
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algebra. The existence of such representations is studied (Theorems 4.6 and 4.17). Here

some applications to algebras whose congruences permute (groups, rings, modules, quasi-

groups, relatively complemented lattices, etc.) and to congruence distributive algebras

(lattices, modular median algebras and trellises) are indicated.

Chapter 5 contains a common generalization of full subdirect products and of weak

direct products. This is an 〈L, ϕ〉-representation of a subalgebra A of a direct product B

of algebras, where L is an ideal in the power set of the index set of the direct product

and ϕ is a binary relation on B, and A is a subdirect product satisfying certain con-

ditions involving L and ϕ. In Section 5.3 we prepare for further investigations, first by

introducing the notions of ϕ-product and ϕ-isotopy for congruences, and then by proving

a few lemmas about these notions. In Section 5.4, 〈L, ϕ〉-representations of algebras are

associated with systems of their congruence relations (Theorem 5.25). Section 5.5 gives

sufficient conditions for an algebra to be isomorphic to an 〈L, ϕ〉-product with simple

factors (Theorem 5.34) and with directly indecomposable factors (Theorem 5.41). The

Third Existence Theorem 5.45 concerns restricted full subdirect products. These results

imply some theorems on subdirect, full subdirect and weak direct representations.

Finally Section 5.6 contains uniqueness theorems. The first uniqueness result (Theo-

rem 5.48) concerns restricted full subdirect representations of algebras with distributive

congruence lattices. Here we generalize the results of Draškovičová [1987] for a congruence

distributive algebra A with the property that the set of all decomposition congruences

of A is closed under arbitrary joins. Another uniqueness result in this section is the

Unique Factorization Theorem 5.54. In particular, Theorem 5.54 implies Theorem 3 of

Walendziak [1993c] and has as corollaries uniqueness results for irredundant restricted

subdirect representations (Proposition 5.56) and for restricted full subdirect representa-

tions (Proposition 5.57). We note that Proposition 5.56 yields that any two irredundant

subdirect representations of a congruence distributive algebra with subdirectly irreducible

factors are isomorphic (Corollary 5.59). Our application of Proposition 5.57 to weak di-

rect products is Corollary 5.64. In particular we obtain Birkhoff’s Theorem which asserts

that every congruence permutable algebra with congruence lattice of finite length and a

one-element subalgebra is uniquely factorable. In Chapter 5 we also give other applica-

tions to algebras whose congruences permute and to congruence distributive algebras.

0. Basic notions

Let L be a lattice. Lattice join, meet, inclusion and proper inclusion are denoted respec-

tively by ∨, ∧, ≤ and <. If L contains a least or a greatest element, these elements will be

denoted by 0 or 1, respectively. The dual of L is the lattice L∂ with the same underlying

set, but with a ≤ b in L∂ if and only if b ≤ a in L. We say that a and b in L are comparable

if either a ≤ b or b ≤ a, otherwise a and b are incomparable. By [a, b] (a ≤ b; a, b ∈ L) we

denote an interval , that is, the set of all c ∈ L for which a ≤ c ≤ b. Two intervals of the

form [a∧ b, b] and [a, a∨ b] are said to be transposed . We say that b covers a if a < b and

[a, b] = {a, b}; in this case we write a ≺ b or b ≻ a and also say that b is an upper cover

of a (or: a is a lower cover of b). Let us write a � b if a ≺ b or a = b.
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An element p ∈ L is called an atom (resp. a coatom) if 0 ≺ p (resp. p ≺ 1). We

denote by A(L) the set of all atoms of L. The lattice L is called atomic if L has a least

element and the interval [0, a] contains an atom for each a > 0; and weakly atomic if for

any a, b ∈ L with a > b, there exist u, v ∈ L such that b ≤ v ≺ u ≤ a. If a lattice L

(perhaps with no least element) has the property that the interval [a, b] contains an atom

whenever b > a in L, we say that L is strongly atomic. Each strongly atomic lattice is

weakly atomic, and each strongly atomic lattice having a least element is atomic.

A lattice is coatomic (resp. strongly coatomic) if its dual is atomic (resp. strongly

atomic). A lattice is called atomistic if every nonzero element is a join of atoms. L is

coatomistic if L∂ is atomistic.

An element u of a lattice L is join irreducible if u = a ∨ b implies u = a or u = b.

An element m ∈ L is meet irreducible if m = a ∧ b implies m = a or m = b. By V(L)

(resp. Λ(L)) we denote the set of all join irreducible (resp. meet irreducible) elements

of L. In a strongly coatomic lattice the unique lower cover of a nonzero join irreducible

element u is denoted by u∗.

Let L be a complete lattice. An element u ∈ L is called completely join irreducible if

for all T ⊆ L, u =
∨
T implies u ∈ L. Completely meet irreducible elements are defined

dually. Let J(L) (resp. M(L)) be the set of all completely join irreducible (resp. completely

meet irreducible) elements of L. Clearly every completely join irreducible element is join

irreducible. For complete strongly coatomic lattices the two concepts coincide.

Let T be a subset of a lattice L. We say T has the weak isomorphism property if for

each t ∈ T and each a ∈ L,

[a, a ∨ t] ∼= [a ∧ t, a]

(that is, the intervals [a, a∨ t] and [a∧ t, a] are isomorphic). A lattice L is called modular

if for all a, b, c ∈ L, c ≤ b implies (c ∨ a) ∧ b = c ∨ (a ∧ b). We know (see e.g. Grätzer

[1978], p. 162) that transposed intervals of a modular lattice are isomorphic. This yields,

in particular, that every subset of a modular lattice satisfies the so-called neighborhood

condition

(N) a ∧ b ≺ b ⇒ b ≺ a ∨ b,

and the dual neighborhood condition

(N∗) b ≺ a ∨ b ⇒ a ∧ b ≺ a.

A lattice is called upper semimodular (briefly: semimodular) if it satisfies the neigh-

borhood condition (N); it is called lower semimodular if it satisfies the dual neighborhood

condition (N*). A lattice L is said to satisfy the upper covering condition iff a � b implies

a ∨ c � b ∨ c for all a, b, c ∈ L. The lower covering condition is the dual. It is well known

that a lattice is semimodular (resp. lower semimodular) iff it satisfies the upper covering

condition (resp. lower covering condition).

A lattice L with least element 0 and greatest element 1 is said to be complemented if

for each a ∈ L there exists a b ∈ L such that a ∧ b = 0 and a ∨ b = 1. The element b is

said to be a complement of a. If every interval of a lattice L is a complemented lattice,

then L is relatively complemented .
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Let E ⊆ L. If each element of L is a join of elements of E, then we call L an E-lattice.

Then L is an A-lattice if L is atomistic. L is a V-lattice (resp. J-lattice) if for every a ∈ L

there is a subset T of V(L) (resp. J(L)) such that a =
∨
T . An AC-lattice is an A-lattice

with the covering property:

(C) (b ∈ L, p ∈ A(L) and b ∧ p = 0) ⇒ b ≺ b ∨ p.

A lattice L with the property that each of its nonempty subsets contains a maximal

element is said to satisfy the ascending chain condition (ACC). If each nonempty subset

of L has a minimal element, then L satisfies the descending chain condition (DCC).

Obviously, if a lattice satisfies DCC, then it is strongly atomic. The ACC also has an

important generalization. An element c of a complete lattice L is called compact if S ⊆ L

and c ≤
∨
S imply c ≤

∨
S′ for some finite subset S′ of S. Let K(L) be the set of all

compact elements of L. L is an algebraic or a compactly generated lattice if L is complete

and each of its elements is a join of compact elements. It is easy to see that if L satisfies

ACC, then L is algebraic (every element of a complete lattice L is compact iff L satisfies

ACC; see Crawley–Dilworth [1973], p. 14).

Let L be a complete lattice. An element q ∈ L is called precompact if S ⊆ L and

q =
∨
S imply q =

∨
S′ for some finite subset S′ of S. Let Q(L) denote the set of all

precompact elements of L. If L is a Q-lattice, then L is said to be prealgebraic. It is

obvious that K(L) ⊆ Q(L), and each algebraic lattice is prealgebraic.

Compact generation has a useful generalization. Define a lattice L to be upper con-

tinuous if L is complete and, for every a ∈ L and every chain C in L,

a ∧
∨
C =
∨
{a ∧ c : c ∈ C}.

The lattice L is lower continuous if its dual lattice is upper continuous, and it is continuous

if it is both upper and lower continuous. It can be shown that every algebraic lattice is

upper continuous and weakly atomic. Crawley–Dilworth [1973] (see Theorem 2.4) show

that if a is an element of an upper continuous lattice L, S ⊆ L, and if F(S) is the set of

all finite subsets of S, then

(UC) a ∧
∨
S =
∨
{a ∧
∨
S′ : S′ ∈ F(S)}.

Every lower continuous lattice L has the dual property to (UC), namely:

(LC) a ∨
∧
S =
∧
{a ∨
∧
S′ : S′ ∈ F(S)},

for all a ∈ L and S ⊆ L. A complete lattice L is called Brouwerian if for each a ∈ L and

each T ⊆ L,

a ∧
∨
T =
∨
{a ∧ t : t ∈ T}.

L is dually Brouwerian if L∂ is Brouwerian. Clearly, every dually Brouwerian lattice is

lower continuous.

In a complete strongly coatomic lattice L we put

a+ =
∧
{b ∈ L : b ≺ a},

for a ∈ L, a 6= 0, that is, a+ is the meet of all lower covers of a. We say that a complete

strongly coatomic lattice L is lower locally modular (resp. lower locally distributive) if

for each a ∈ L, a 6= 0, the interval [a+, a] is a modular (resp. distributive) sublattice.
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In a dual way, we define (upper) locally modular lattices and (upper) locally distributive

lattices. We note that the concepts of local distributivity and local modularity go back

to Dilworth [1940, 1941].

We denote by K the class of all lower continuous strongly coatomic lattices.

1. Consistent, strong, and atomistic lattices

1.1. Consistent lattices. Kung [1985] introduced the notion of a consistent lattice. A

lattice L is said to be consistent iff a ∈ L and u ∈ V(L) imply that a ∨ u ∈ V([a, a∨ u]).

Geometric lattices (i.e., complete, semimodular, atomistic lattices in which all atoms are

compact) and modular lattices are consistent (see Kung [1985]). The pentagon lattice is

an example of a consistent lattice which is neither modular nor geometric.

We will need the following

Lemma 1.1. If a, b are elements of a lattice L ∈ K and b � a, then there exists u ∈ V(L)

such that u ≤ b and u � a.

Proof. Since L is strongly coatomic and a ∧ b < b, there exists a p ∈ L such that

a ∧ b ≤ p ≺ b. Let

T = {x ∈ L : x ≤ b and x � p}.

Then T is nonempty, since b ∈ T . Let C be a chain in T . The lower continuity yields

p ∨
∧
C =
∧
{p ∨ c : c ∈ C} = b.

Thus
∧
C ∈ T , and T contains a minimal element u by the dual of Zorn’s Lemma. Clearly,

u ∈ V(L), u ≤ b and u � a.

Proposition 1.2 (see Walendziak [1994d], Theorem 1). A lattice L ∈ K is consistent iff

L satisfies the dual of property (∗) (see Crawley–Dilworth [1973], p. 53), namely :

(+) For all a, b ∈ L, if the interval [a ∧ b, b] has exactly one coatom, then the interval

[a, a ∨ b] has exactly one coatom.

Proof. Suppose that the lattice L is consistent. Let a, b ∈ L and let p be a unique element

such that a ∧ b ≤ p ≺ b. By Lemma 1.1 there is a join irreducible element u such that

u ∨ p = b. We set t = a ∨ u. It is obvious that t ∧ b ∈ [a ∧ b, b] and u ≤ t ∧ b � p. Since

L is strongly coatomic, and p is a single coatom in [a ∧ b, b] we conclude that t ∧ b = b.

Then b ≤ t, and therefore t = a ∨ b. Consistence implies that a ∨ u ∈ V([a, 1]), i.e., a ∨ b

(= a∨ u) is a join irreducible element of the sublattice [a, 1]. Hence the interval [a, a∨ b]

has exactly one coatom.

Conversely, assume that L satisfies (+). Let u ∈ V(L) and a ∈ L. If a and u are

comparable, then obviously a ∨ u ∈ V([a, 1]). Suppose that a, u are incomparable. Since

u ∈ V(L), the sublattice [a ∧ u, u] has exactly one coatom. By (+), [a, a ∨ u] has exactly

one coatom. Hence a ∨ u ∈ V([a, 1]), and therefore L is consistent.

By the dual of Lemma 3 of Walendziak [1990b] we have
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Lemma 1.3. Let L be a lower locally modular lattice of K. If b, p, q ∈ L, and if

p, q ≺ b ∨ (p ∧ q) and p ∧ b = q ∧ b, then p = q.

Now we prove the following

Proposition 1.4. Every lower locally modular lattice belonging to K is lower semimod-

ular and consistent.

Proof. Let L be a lattice satisfying the assumptions of the proposition. From the dual of

Theorem 3.7 of Crawley–Dilworth [1973] it follows that L is lower semimodular

(in the proof of that theorem, just the upper continuity of L was used). We verify that

L is also consistent. It is sufficient to show that L satisfies (+). Suppose on the contrary

that there exist a, b ∈ L such that the interval [a ∧ b, b] has exactly one coatom and

[a, a ∨ b] contains two distinct coatoms p and q. Obviously we have

(1) p, q ≺ a ∨ b = b ∨ (p ∧ q).

By lower semimodularity, p∧ b � b and q ∧ b � b. Since [a∧ b, b] has exactly one coatom,

(2) p ∧ b = q ∧ b.

From (1) and (2) we conclude by Lemma 1.3 that p = q. This contradiction shows that

L satisfies (+). Then from Proposition 1.2 it follows that L is consistent.

A finite lattice L is called meet-distributive if [a+, a] is a boolean interval of L for all

a ∈ L.

As an immediate consequence of Proposition 1.4 we obtain

Corollary 1.5 (cf. Reuter [1989], Lemma 1). A meet-distributive lattice is consistent.

Remark 1.6. Since every lattice of finite length is lower continuous and strongly coato-

mic, from Proposition 1.4 we have Proposition 20.2 of Stern [1991b].

Remark 1.7. The converse of Proposition 1.4 is not true. The lattice of Figure 1 is a

consistent lattice which is not lower locally modular.

Fig. 1

Combining the dual of the Theorem in Walendziak [1990b] (p. 554) and Proposi-

tion 1.2 we obtain

Corollary 1.8. If L is a lower semimodular , lower continuous lattice satisfying the

ascending chain condition, then the following statements are equivalent :

(i) L is lower locally modular.

(ii) L is consistent.

We now describe the relationship between consistent lattices and a class of Steinitz

spaces.
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Let S be a finite set. By P(S) we denote the set all subsets of S. A function

Cl : P(S) → P(S) is called a closure operator on S if it has the properties (for all

A,B ⊆ S):

1) ClA) = Cl2(A).

2) A ⊆ Cl(A).

3) If A ⊆ B, then Cl(A) ⊆ Cl(B).

A closure space S is a pair (S,Cl) where S is a finite set and Cl is a closure operator on S.
Cl(A) is more commonly denoted by A. A subset A ⊆ S is closed , or a flat , if A = A.

The lattice of closed sets of S is given by

L(S) = {A ⊆ S : A = A }.

The analogy with vector spaces leads to the following notions. An element p ∈ S is a

point of the closure space S if p is a nonzero join irreducible element of L(S). We call the
set B ⊆ A of points a basis for A if

B = A and B − b 6= A for all b ∈ B.

We say that a closure space S has the Steinitz exchange property if for all A ⊆ S and

bases B1, B2 for A, if b1 ∈ B1, then there is b2 ∈ B2 such that (B1 − b1)∪ {b2} is a basis

for A. A closure space S with the Steinitz exchange property will be called a Steinitz
space. S is called a matroid if it has the Steinitz–MacLane exchange property:

p ∈ A ∪ q −A ⇒ q ∈ A ∪ p (A ⊆ S, p, q ∈ S).

Finally, we say that a closure space S is a convex geometry if S has the so-called anti-
exchange property (A ⊆ S, p, q ∈ S):

(p, q ∈ A ∪ q −A and p 6= q) ⇒ q 6∈ A ∪ p.

It is well known that a finite lattice L is isomorphic to the lattice of flats of a matroid

iff L is geometric. A result due to Edelman [1980] (see Theorem 3.3) states that a lattice is

meet-distributive iff it is isomorphic to the lattice of all closed sets of a convex geometry.

We first prove the following

Proposition 1.9. Let S be a closure space. Then S is a Steinitz space iff L(S) is a
consistent lattice.

Proof. Let S be a Steinitz space and set L = L(S). To prove that L is consistent, let
A ∈ L and U ∈ V(L). Suppose that A ∨ U = B ∨ C, where B,C ≥ A. Let {a1, . . . , am},

{b1, . . . , bk} and {c1, . . . , cn} be bases for A,B and C, respectively. Since U is join ir-

reducible in L, we conclude that U = p for some point p. Without loss of general-

ity we can assume that {a1, . . . , am′ , p} and {b1, . . . , bk′ , c1, . . . , cn′} (m
′ ≤ m, k′ ≤ k,

n′ ≤ n) are bases for A ∨ U . Since S has the Steinitz exchange property, for p there is
b ∈ {b1, . . . , bk′ , c1, . . . , cn′} such that {a1, . . . , am′ , b} is a basis for A ∨ U . Assume that

b = b1. Then

B ≤ A ∨ U = a1 ∨ . . . ∨ am′ ∨ b1 ≤ A ∨B = B,

i.e., A ∨ U = B. Thus A ∨ U ∈ V([A,A ∨ U ]).
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Suppose L = L(S) is a consistent lattice. We claim that S has the Steinitz exchange
property. Indeed, let {a1, . . . , am} and {b1, . . . , bn} be bases for A ⊆ S. Then

A = a1 ∨ . . . ∨ am = b1 ∨ . . . ∨ bn.

Let i ∈ {1, . . . ,m}. Set B = a1 ∨ . . . ∨ ai−1 ∨ ai+1 ∨ . . . ∨ am. By consistence,

A = (B ∨ b1) ∨ . . . ∨ (B ∨ bn) = B ∨ ai ∈ V([B,A ]).

Consequently, A = B ∨ bj for some j ∈ {1, . . . , n}. Hence {a1, . . . , ai−1, bj , ai+1, . . . , am}

is a basis for A, and therefore, S is a Steinitz space.

Remark 1.10. Since every geometric lattice is consistent, any matroid is a Steinitz space.

Similarly, every meet-distributive lattice is consistent, and hence each convex geometry

is a Steinitz space.

Example 1.11. Let Q8 be a quaternion group (of order 8). We denote by Sg(A) the

subgroup of Q8 generated by A ⊆ Q8. It is obvious that (Q8, Sg) is a closure space.

Let L = Sub(Q8) be the lattice of all subgroups of Q8. Then L is the lattice of flats of

the space (Q8, Sg) and it is shown in Figure 2. It is a modular lattice but it is neither

geometric nor meet-distributive. Hence (Q8, Sg) is a Steinitz space but it is neither a

matroid nor a convex geometry.

Fig. 2

Now we prove

Theorem 1.12 (Walendziak [1997], Theorem). Let L be a finite lattice. Then L is iso-

morphic to the lattice of all closed sets of a Steinitz space iff L is consistent.

Proof. If S is a Steinitz space and L = L(S), then L is a consistent lattice, by Proposi-
tion 1.9.

Conversely, let L be a finite consistent lattice. Define S = V(L) and

A = {p ∈ S : p ≤
∨
A}

for A ⊆ S. It is easy to see that − is a closure operator on S. Then S = (S,− ) is a closure
space. Observe that A = {p ∈ S : p ≤ a} (a ∈ L) is a closed set of S. Indeed, every
element of L is a join of join irreducible elements, thus a =

∨
A, showing that A = A.

Set L′ = L(S), and define the map

f : a ∈ L 7→ {p ∈ S : p ≤ a} ∈ L′.

Let A ∈ L′. Then {p ∈ S : p ≤
∨
A} = A, and therefore, f(

∨
A) = A. Thus f is onto L′.

Since a =
∨
{p ∈ S : p ≤ a} =

∨
f(a) for each a ∈ L, f is one-to-one. Obviously,

{p ∈ S : p ≤ a ∧ b} = {p ∈ S : p ≤ a} ∩ {p ∈ S : p ≤ b},
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and so f(a ∧ b) = f(a) ∧ f(b). The formula f(a ∨ b) = f(a) ∪ f(b) is equivalent to

(3) {p ∈ S : p ≤ a ∨ b} = B,

where B = {p ∈ S : p ≤ a or p ≤ b}. By the definition of −,

B = {p ∈ S : p ≤
∨
B}.

Since every element of L is a join of join irreducible elements, we have
∨
B = a ∨ b.

Therefore, (3) holds, and hence f(a∨b) = f(a)∪f(b). Thus f is an isomorphism between

L and L′. Therefore the lattice L′ is consistent. By Proposition 1.9, S is a Steinitz space.
Consequently, L is isomorphic to the lattice L(S) for some Steinitz space S.

1.2. Strong lattices. Now we introduce the concept of a strong lattice. For lattices of

finite length the definition of strongness is given by Stern [1989] by the property

(St) (u ∈ V(L)− {0}, a ∈ L and u ≤ a ∨ u∗) ⇒ u ≤ a.

We extend the notion of strongness from lattices of finite length to arbitrary lattices.

Namely, we introduce the following

Definition 1.13. We say that a lattice L is strong if the following condition is satisfied:

(S) (u ∈ V(L)− {0}, a, b ∈ L and b < u ≤ a ∨ b) ⇒ u ≤ a.

This concept is also dealt with in Walendziak [1994b]. It is easy to see that in strongly

coatomic lattices (in particular: in lattices of finite length) properties (St) and (S) are

equivalent. We remark that any atomistic lattice (in particular: each geometric lattice)

is strong. (Indeed, each join irreducible element of an atomistic lattice is an atom.)

Now we observe that any modular lattice is strong. Let L be a modular lattice and

let u ∈ V(L), a, b ∈ L with b < u ≤ a∨ b. By the modular law, u = (a∧ u)∨ b. Since u is

join irreducible this implies u = a ∧ u, that is, u ≤ a, which means that L is strong.

Also, it is not difficult to give examples of lattices which are strong but neither modular

nor atomistic (see Section 23 of Stern [1991b]).

Theorem 1.14. Let L be an atomic V-lattice. If each atom of L has a complement , then

L is strong iff L is atomistic.

Proof. Assume that L is strong. Let a be a nonzero element of L. Since L is a V-lattice,

a =
∨
{u : u ∈ U ⊆ V(L)}.

Suppose that a join irreducible element u ∈ U is not an atom. Since L is atomic, there

exists an atom p ∈ L such that p < u. Let p′ be a complement of p. This means that

1 = p∨p′ and 0 = p∧p′. Then p < u ≤ p∨p′ and strongness implies u ≤ p′. Thus p < p′,

which contradicts p ∧ p′ = 0. It follows that L is atomistic. The converse is clear.

Now we prove the following

Theorem 1.15 (Walendziak [1994e], Theorem 2). A lower continuous strongly atomic

lattice in which each atom has a complement is atomistic iff it is strong.

Proof. Observe that if a lattice L is lower continuous and strongly atomic, then L is a

V-lattice. Indeed, let a ∈ L and b =
∨
{u ∈ V(L) : u ≤ a}. Assume that b < a. Since L
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is strongly atomic there exists an element p ∈ L such that b ≺ p ≤ a. Consider the set

T = {t ∈ L : b ∨ t = p}. It is nonempty, since p ∈ T . Let C be a chain in T . The lower

continuity yields

b ∨
∧
C =
∧
{b ∨ c : c ∈ C} = p.

Thus
∧
C ∈ T and by the dual of Zorn’s Lemma T contains a minimal element v. Clearly,

v ∈ V(L) and v ≤ a. Consequently, v ≤ b, and hence p = b∨ v = b, a contradiction. Thus

a =
∨
{u ∈ V(L) : u ≤ a}, which shows that L is a V-lattice. Now the assertion follows

from Theorem 1.14.

We recall that a lattice L satisfies the descending chain condition (DCC) if each

nonempty subset of L contains a minimal element. It is obvious that any lattice satisfying

the DCC is lower continuous and strongly atomic. Therefore we obtain the following

Corollary 1.16. Suppose that a lattice L satisfies the DCC and each atom of L has a

complement. Then L is atomistic iff it is strong.

Remark 1.17. Since every lattice of finite length satisfies the DCC, this corollary implies

the theorem of Stern [1989].

We know (see Crawley–Dilworth [1973], Theorem 4.1) that every upper continuous,

semimodular, atomistic lattice is relatively complemented. This together with Corol-

lary 1.16 yields

Corollary 1.18. Let L be a semimodular , upper continuous , strong lattice with DCC.

If each atom of L has a complement , then L is relatively complemented.

Remark 1.19. Corollary 1.18 generalizes the corollary of Stern [1989].

Proposition 1.20. A lower semimodular strongly coatomic lattice is strong.

Proof. Let L be a lower semimodular strongly coatomic lattice and assume that L is not

strong. Then there exists a join irreducible element u ∈ V(L) such that

u ≤ a ∨ u∗ but u � a

for some a ∈ L. Clearly a < a ∨ u∗, and since L is strongly coatomic, there is b ∈ L

such that a ≤ b ≺ a ∨ u∗. It is easy to see that u � b, and hence b < b ∨ u ≤ a ∨ u∗.

Consequently, b∨ u = a∨ u∗, and therefore b ≺ b∨ u. By lower semimodularity it follows

that b ∧ u ≺ u, that is, b ∧ u = u∗. This means u∗ ≤ b and thus

b ≤ b ∨ u = a ∨ u∗ ≤ b,

contradicting u � b.

Remark 1.21. The preceding proposition generalizes Lemma 2 of Stern [1991a], since

any lattice of finite length is strongly coatomic.
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Example 1.22. Let L be the lattice diagrammed in Figure 3.

Fig. 3

Then L is strong but not lower semimodular. This example implies that the converse of

Proposition 1.20 is not true.

Proposition 1.23 (Walendziak [1999], Proposition 1). A lattice L is strong iff it does

not contain a pentagon isomorphic to the lattice in Figure 4 (where u ∈ V(L)).

Fig. 4

Proof. Assume that L is not strong. Then there are a, c ∈ L, u ∈ V(L) such that

c< u≤ a ∨ c and u� a. Let b= c ∨ (a ∧ u). Since u is join irreducible, b<u. We have

a ∧ b ≤ a ∧ u ≤ a ∧ [c ∨ (a ∧ u)] = a ∧ b,

and hence a∧b = a∧u. Now we observe that a∧b < b. Namely, a∧b = b yields b ≤ a and

thus u ≤ a ∨ b = a contradicting our assumption u � a. It is easy to see that a ∧ b < a

and a < a∨ b ≤ a∨u. On the other hand, a∨u ≤ a∨ b. Therefore, a∨ b = a∨u, and thus

L contains a pentagon isomorphic to the lattice of Figure 4. The converse is trivial.

As a preparation for the next result we need the following

Lemma 1.24. Let L be a strong lattice and c, d ∈ L with c ≺ d. If u ∈ V(L) and b ∈ L

are such that b < u ≤ d but u � c, then b ≤ c.

Proof. Suppose that b � c. We have c ≤ b ∨ c ≤ d and c ≺ d. Then u ≤ d = b ∨ c and

strongness implies u ≤ c, a contradiction.

Proposition 1.25. Let L be a strongly coatomic lattice. If L is semimodular and strong ,

then L is consistent.

Proof. Let L satisfy the above assumptions, and suppose that L is not consistent. This

means that there exist a ∈ L and u ∈ V(L) with a ∨ u 6∈ V([a, 1]). Thus there are two

distinct elements c1, c2 ∈ [a, a ∨ u] which are covered by a ∨ u. Since u � c1, c2, by

Lemma 1.24 we get u∗ ≤ ci for i = 1, 2. Thus u
∗ ≤ u ∧ (c1 ∧ c2) ≤ u and obviously

u � c1 ∧ c2. Hence u ∧ (c1 ∧ c2) = u
∗ ≺ u. By semimodularity we conclude that

c1 ∧ c2 ≺ (c1 ∧ c2) ∨ u = a ∨ u.

This is a contradiction since c1 ∧ c2 < c1 ≺ a ∨ u by construction.
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The main result of the present section is

Theorem 1.26 (Walendziak [1994b], Theorem 1). A semimodular lattice L ∈ K is con-

sistent iff it is strong.

Proof. Let L be a semimodular lower continuous strongly coatomic lattice. Assume first

that L is consistent but not strong. Let a join irreducible element u ∈ V(L) be such that

u ≤ a ∨ u∗ and u � a for some a ∈ L. Thus the set

T = {x ∈ L : u ≤ x ∨ u∗ and u � x}

is not empty. Let C be a chain in T . Lower continuity implies

u∗ ∨
∧
C =
∧
{c ∨ u∗ : c ∈ C} ≥ u.

Clearly, u �
∧
C. Therefore

∧
C ∈ T , and T contains a minimal element b, by the dual of

Zorn’s Lemma. Since L is strongly coatomic we may choose p ∈ L with p ≺ b. Observe

that

(4) p ∨ u∗ < p ∨ u.

Indeed, if p ∨ u∗ = p ∨ u, then p ∈ T , contradicting the minimality of b. Now we observe

that b ≤ p∨u∗ is not possible, since b ≤ p∨u∗ would imply b∨u∗ ≤ p∨u∗ < p∨u ≤ b∨u∗,

a contradiction. Since p ≺ b and b � p ∨ u∗ we get

b ∧ (p ∨ u∗) = p ≺ b.

Hence, by semimodularity we conclude that

p ∨ u∗ ≺ b ∨ p ∨ u∗ = b ∨ u∗ = b ∨ u.

Thus we have

p ∨ u∗ < p ∨ u ≤ b ∨ u and p ∨ u∗ < b ∨ u.

Consequently,

(5) p ∨ u = b ∨ u,

and therefore p ∨ u = (p ∨ u∗) ∨ b. Consistence implies that p ∨ u is a join irreducible

element of the sublattice [p, 1]. This together with (4) and (5) yields b ∨ u = p ∨ u = b,

which contradicts the fact that u � b. It follows that L must be strong.

The converse follows from Proposition 1.25.

Remark 1.27. The preceding theorem generalizes Theorem 27.1 of Stern [1991b] (see also

Faigle [1980], p. 33, and Reuter [1989], p. 125). Example 1.22 shows that the assumption

of semimodularity cannot be dropped in Theorem 1.26. Indeed, the lattice of Figure 3 is

an example of a nonsemimodular lattice which is strong but not consistent.

1.3. Strongly semimodular lattices

Definition 1.28 (Faigle [1980]). A lattice is called strongly semimodular if it is both

strong and semimodular.

All geometric lattices are strongly semimodular. Each modular lattice is obviously

strongly semimodular.

As a preparation we need the following
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Lemma 1.29. Let L ∈ K. If p ≺ q (p, q ∈ L), then there exists a join irreducible element

u ∈ V(L) such that p ∨ u = q and p ∧ u = u∗.

Proof. The set T = {t ∈ L : p ∨ t = q} is nonempty, since q ∈ T . Let C be a chain in T .

Lower continuity yields

p ∨
∧
C =
∧
{p ∨ c : c ∈ C} = q.

Thus
∧
C ∈ T , and T contains a minimal element u, by the dual of Zorn’s Lemma.

Clearly, u ∈ V(L), p ∨ u = q and from u � p it follows that p ∧ u ≤ u∗. Observe that

u∗ ≤ p. Indeed, if u∗ � p, then p ∨ u∗ = q, that is, u∗ ∈ T and u∗ < u, contradicting the

minimality of u. Thus we have u∗ ≤ p ∧ u. Hence p ∧ u = u∗.

Remark 1.30. For lattices of finite length this lemma was proved in Stern [1982]

(see also Stern [1991b], p. 25).

Our main result of this section is

Theorem 1.31 (Walendziak [1996a,c]). Let L ∈ K. Then:

(i) L is semimodular iff L has the exchange property :

(EP) For all u, v ∈ V(L) and arbitrary b ∈ L, v ≤ b ∨ u and v � b ∨ u∗ imply

u ≤ b ∨ v ∨ u∗.

(ii) L is strongly semimodular iff L has the property :

(EP) For all u, v ∈ V(L) and arbitrary b ∈ L, v ≤ b∨u and v � b∨u∗ imply u ≤ b∨v.

Proof. (i) Suppose that L is a semimodular lattice. Let u, v ∈ V(L) and b ∈ L be such

that v ≤ b ∨ u and v � b ∨ u∗. Observe that u � b ∨ u∗. Indeed, if u ≤ b ∨ u∗, then

v ≤ b ∨ u = b ∨ u∗, a contradiction. Thus we have

u ∧ (b ∨ u∗) = u∗ ≺ u.

Hence, by semimodularity, we conclude that

b ∨ u∗ ≺ (b ∨ u∗) ∨ u = b ∨ u.

From this and from v � b ∨ u∗ we get v ∨ b ∨ u∗ = b ∨ u. Consequently, u ≤ b ∨ v ∨ u∗.

Let L satisfy (EP). Let a, b ∈ L be elements for which a ∧ b ≺ a. Without loss of

generality we may assume that a, b are incomparable. By Lemma 1.29, there exists a join

irreducible element u ∈ V(L) such that (a∧ b)∨u = a and a∧ b∧u = u∗. We shall prove

that b ≺ b ∨ u. To obtain a contradiction, suppose that b < q < b ∨ u for some q ∈ L.

Since L is strongly coatomic, there is p ∈ L with b ≤ p ≺ q. By Lemma 1.29 we get the

existence of a join irreducible element v ∈ V(L) with p ∨ v = q. It follows that v ≤ b ∨ u

and v � b = b∨u∗. Applying (EP) we obtain u ≤ b∨v∨u∗ = b∨v. Then b∨u ≤ b∨v ≤ q.

This contradiction shows that b ≺ b ∨ u. We have

a ∨ b = (a ∧ b) ∨ u ∨ b = b ∨ u.

Consequently, b ≺ a ∨ b, which shows that L is semimodular.

(ii) Let L be a strongly semimodular lattice, and let u, v ∈ V(L) and b ∈ L be such

that v ≤ b ∨ u and v � b ∨ u∗. Applying (EP) we obtain u ≤ b ∨ v ∨ u∗, and strongness

implies u ≤ b ∨ v. Hence (EP) holds.
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Now let L satisfy (EP). By (i), L is semimodular. We show that L is also strong.

Suppose, on the contrary, that there exists u ∈ V(L) such that property (St) is not

satisfied. Then the set

T = {t ∈ L : u ≤ t ∨ u∗ and u � t}

is not empty. Let C be a chain in L. Lower continuity yields

u∗ ∨
∧
C =
∧
{u∗ ∨ c : c ∈ C} ≥ u.

It is obvious that u �
∧
C. Thus

∧
C ∈ T , and T contains a minimal element a, by

the dual of Zorn’s Lemma. Since a 6= 0 and L is strongly coatomic, we may choose

p ∈ L with p ≺ a. By Lemma 1.29 there exists a join irreducible element v such

that p ∨ v = a and p ∧ v = v∗. We shall prove that u � p ∨ u∗. Assume, on the

contrary, that u ≤ p ∨ u∗. By the choice of p we have u ≤ p ≤ a, a contradiction.

Then u � p ∨ u∗ and hence u � p ∨ u∗ ∨ v∗, since v∗ ≤ p. Obviously, u ≤ a ∨ u∗ =

p ∨ u∗ ∨ v. Therefore, using the exchange property (EP) we get v ≤ p ∨ u. Observe now

that v � p ∨ u∗ since otherwise

p ∨ u∗ = p ∨ v ∨ u∗ = a ∨ u∗ ≥ u.

Hence applying (EP) we conclude that u ≤ p∨ v = a, which contradicts u � a. It follows

that L must be strong. Thus L is strongly semimodular.

Remark 1.32. Since every lattice of finite length is lower continuous and strongly

coatomic, Theorem 1.31 gives the Theorem of Stern [1990b] and Theorem 1 of Faigle–

Richter–Stern [1984] (see also Theorem 26.5 of Stern [1991b]).

We know that in atomistic lattices each join irreducible element is an atom. Then, as

the consequence of Theorem 1.31 we get the following result which is a generalization of

the Corollary of Stern [1990b].

Corollary 1.33. For every atomistic lattice L ∈ K the following conditions are equiv-

alent :

(i) L is semimodular.

(ii) L has the Steinitz–MacLane exchange property , that is , for all atoms p, q ∈ L and

for arbitrary b ∈ L, the relations p ≤ b ∨ q and p � b imply q ≤ b ∨ p.

1.4. Characterizations of atomistic lattices. We characterize atomistic lattices in

terms of concepts related to pure elements and neat elements. We first recall the notion

of pure elements in lattices. This notion was introduced independently by Head [1966]

and Kertész [1968].

An element a of a complete lattice L is pure in L if for each c ∈ K([a, 1]) there exists

b ∈ L such that c = a ∨̇ b (i.e., c = a ∨ b and a ∧ b = 0).

We now introduce the notion of a neat element in lattices following Delany [1968]. An

element a ∈ L (L is a lattice with 0) is called neat if a ≺ b (b ∈ L) implies the existence

of c ∈ L such that b = a ∨̇ c.

Applications of these concepts in group theory can be found in Delany [1968], Head

[1966] and Honda [1956]. For our aims, we sharpen these concepts by introducing weakly
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pure and strongly neat elements. (Note that Stern [1984] uses the term “strongly neat”

in another sense.)

Definition 1.34 (Walendziak [2000b], Definition 1). An element a ∈ L is called weakly

pure if for every v ∈ J(L) there exists b ∈ L such that a ∨ v = a ∨̇ b.

Lemma 1.35. In an upper continuous lattice every pure element is weakly pure.

Proof. Let L be an upper continuous lattice and let a ∈ L. Suppose that a is pure and let

v ∈ J(L). Then v is compact in L (see Crawley [1962], Lemma 3), and therefore c = a∨ v

is compact in [a, 1]. Since a is pure, there exists b ∈ L such that c = a ∨̇ b. This means

that a is weakly pure.

The converse of Lemma 1.35 is not true. In Figure 5 we give an example of a lattice

having a weakly pure element, a, which is not pure.

Fig. 5 Fig. 6

The following example shows that in Lemma 1.35 the assumption that L is upper

continuous cannot be dropped. Let L be the lattice diagrammed in Figure 6. Observe

that the element a is pure but not weakly pure. It is sufficient to show that the element

v is completely join irreducible but not compact. Obviously, v ∈ J(L) and v ≤ 1 =
∨
{ai : i = 1, 2, . . .}. Since v �

∨
{ai : i ∈ I} for every finite subset I of {1, 2, . . .}, it

follows that v is not compact.

Definition 1.36 (Walendziak [2000b], Definition 2). Let L be a lattice with 0. An ele-

ment a ∈ L is called strongly neat if a ≺ b (b ∈ L) implies the existence of an atom p

such that b = a ∨ p.

By definition, it is clear that in a lattice with 0 a strongly neat element is a fortiori

neat. It is obvious that in every lower semimodular lattice L any element a ∈ L is strongly

neat if and only if it is neat. In Figure 7 we give an example of a lattice having a neat

element, a, which is not strongly neat.

Fig. 7

Theorem 1.37 (Walendziak [2000b], Theorem 1). Let L be a J-lattice. Then the follow-

ing four conditions are equivalent :
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(i) L is atomistic.

(ii) Every element of L is weakly pure.

(iii) Every element of L is neat.

(iv) Every element of L is strongly neat.

Proof. (i)⇒(ii). Let L be an A-lattice, a ∈ L and let v be a completely join irreducible

element of L. Since L is atomistic, J(L) = A(L), and therefore v is an atom of L. If v ≤ a,

then a = a ∨̇ 0. If v � a, then a ∨ v = a ∨̇ v. Thus a is a weakly pure element of L.

(ii)⇒(iii). Let a ∈ L and let b be an upper cover of a, i.e. a ≺ b. Since L is a J-lattice,

the relation a ≺ b implies the existence of a completely join irreducible element v such

that v � a and v ≤ b, and therefore b = a ∨ v. By (ii), the element a is weakly pure and

so by definition there exists c ∈ L with b = a ∨̇ c. Consequently, a is neat.

(iii)⇒(iv). Let a, b ∈ L with a ≺ b. Let v ∈ J(L) be such that b = a ∨ v. We set

u =
∨
{x ∈ L : x < v}

(u exists, because L is complete). Since v is completely join irreducible we conclude that

u ≺ v. By (iii) the element u is neat. Hence there exists c ∈ L for which v = u ∨̇ c.

Then u = 0, because v is join irreducible. From this we deduce that v is an atom of L.

Consequently, a is strongly neat.

(iv)⇒(i). It is easy to see that every v ∈ J(L) is an atom of L. This means that

J(L) = A(L). Since L is a J-lattice, it is also an atomistic lattice.

Theorem 1.38. For a complete weakly atomic lattice L the following are equivalent :

(i) L is atomistic.

(ii) Every element of L is strongly neat.

Proof. If L is an atomistic lattice and a ≺ b (a, b ∈ L), then there exists an atom p such

that p ≤ b and p � a. Therefore b = a ∨ p. It follows that the arbitrarily chosen element

a ∈ L is strongly neat.

Let (ii) hold, and let a ∈ L− {0}. Since L is weakly atomic, there exist x, y ∈ L such

that 0 ≤ x ≺ y ≤ a. By (ii) the element x is strongly neat and so by definition there

exists an atom p ∈ A(L) with y = x ∨ p. Since p ≤ a, the set P = {r ∈ A(L) : r ≤ a}

is nonvoid. Suppose that b =
∨
P < a. By weak atomicity of L there exist u, v ∈ L such

that b ≤ u ≺ v ≤ a. Since u is strongly neat, we get the existence of an atom q such that

v = u ∨ q. Then q ∈ A(L) and q ≤ a, and therefore, q ≤ b. Hence v = u ∨ q ≤ u ∨ b = u,

a contradiction. Thus

a =
∨
{r ∈ A(L) : r ≤ a},

i.e., every element ( 6= 0) of L is the join of the atoms contained in it.

Since every algebraic lattice is weakly atomic, Theorem 1.38 yields

Corollary 1.39. An algebraic lattice L is atomistic if and only if every element of L

is strongly neat.

The next proposition is a generalization of Theorem 2 from Kertész–Stern [1974].

Proposition 1.40. Every element of an AC-lattice is pure.
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Proof. Let L be an AC-lattice, a ∈ L and let c be a compact element in [a, 1]. Since L

is atomistic, c =
∨
{pi : i ∈ I}, where pi (i ∈ I) are atoms. Hence c =

∨
{a ∨ pi : i ∈ I},

and we have c = a∨ p1∨ . . .∨ pn, because c ∈ K([a, 1]). Without loss of generality we can

assume that

pi � a and pi � a ∨ p1 ∨ . . . ∨ pi−1 for i = 2, . . . , n.

We prove by induction that

(6) a ∧ (p1 ∨ . . . ∨ pk) = 0 for all 1 ≤ k ≤ n.

This is true for k = 1. Let i ∈ {2, . . . , n}. We set

b = p1 ∨ . . . ∨ pi−1,

and suppose that a ∧ b = 0. Since pi � b we see that pi ∧ b = 0. Property (C) yields

(7) b ≺ b ∨ pi.

As pi � a ∨ b we have b ∨ pi � a ∨ b and therefore,

b ≤ (a ∨ b) ∧ (b ∨ pi) < b ∨ pi.

From (7) we conclude that

(a ∨ b) ∧ (b ∨ pi) = b.

Hence

a ∧ (b ∨ pi) ≤ (a ∨ b) ∧ (b ∨ pi) = b.

Consequently, a ∧ (b ∨ pi) ≤ a ∧ b = 0, that is,

a ∧ (p1 ∨ . . . ∨ pi−1 ∨ pi) = 0,

completing the proof of (6). Thus

c = a ∨ p1 ∨ . . . ∨ pn and a ∧ (p1 ∨ . . . ∨ pn) = 0,

which means that a is pure in L.

Theorem 1.41 (Walendziak [2000b], Theorem 3). Let L be an upper continuous J-lattice

satisfying (C). Then the following statements are equivalent :

(i) L is atomistic.

(ii) Every element of L is pure.

(iii) Every element of L is weakly pure.

(iv) Every element of L is neat.

(v) Every element of L is strongly neat.

Proof. The implication (i)⇒(ii) follows from Proposition 1.40. (ii) implies (iii) by Lem-

ma 1.35. The equivalence of conditions (i), (iii), (iv) and (v) follows from Theorem 1.37.

For lattices of finite length, Theorem 1.41 gives

Corollary 1.42. Let L be a lattice of finite length with (C). Then all statements of

Theorem 1.41 are equivalent.
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Theorem 1.43. Let L be an algebraic lattice satisfying the covering property (C) and the

following condition:

(�) (a ≺ a ∨ b and a ∨ b ∈ K(L)) ⇒ a ∧ b ≺ b.

Then the following four statements are equivalent :

(i) L is atomistic.

(ii) Every element of L is pure.

(iii) Every element of L is neat.

(iv) Every element of L is strongly neat.

Proof. The implication (i)⇒(ii) follows from Proposition 1.40. It is clear that (ii) im-

plies (iii).

Now suppose that L satisfies (iii). We show first that L is atomic. Let 0 6= b ∈ K(L),

and set

T = {t ∈ T : t < b}.

Obviously, T 6= ∅. Let C be a chain in T . Assume that b =
∨
C. Since b is compact,

there is a finite subset C ′ of C such that b =
∨
C ′. As C is a chain we have b = c0 for

some c0 ∈ C. This contradiction shows that
∨
C < b, and therefore

∨
C ∈ T . By Zorn’s

Lemma, T contains a maximal element a. It is easy to see that a ≺ b. By condition (iii)

the element a is neat. Hence there exists c ∈ L for which b = a ∨̇ c. Property (�) gives

0 = a ∧ c ≺ c ≤ b.

This means that every interval [0, b] (b ∈ K(L)), b 6= 0) contains an atom. Since L is

algebraic, we deduce that L is atomic. In atomic lattices every neat element is strongly

neat. Therefore, from (iii) we obtain (iv).

Finally, (iv) implies (i) by Theorem 1.38.

Corollary 1.44. Let L be an algebraic lattice with (C) and (�). If one of the conditions

(i)–(iv) of the preceding theorem is satisfied , then L is modular.

Proof. Let L be an algebraic AC-lattice (i.e., a matroid lattice) satisfying (�). Let Fin(L)

denote the set of all finite elements of L (i.e., a ∈ Fin(L) iff a is the join of a finite number

of atoms). It is obvious that Fin(L) ⊆ K(L). From (�) we conclude that Fin(L) is a lower

semimodular sublattice of L. It follows from Theorem 9.5 of Maeda–Maeda [1970] that

Fin(L) is a modular lattice. Now Theorem 14.1 from Maeda–Maeda [1970] implies that

L is modular.

Theorem 1.45 (Walendziak [2000b], Theorem 5). A lattice L is atomistic if and only if

L is prealgebraic and satisfies the following condition:

(∗) If b ≺ q (q ∈ Q(L)), then there is p ∈ A(L) with q = b ∨ p.

Proof. Let L be a Q-lattice with property (∗). To show that L is atomistic, it is suffi-

cient to prove that each precompact element is a join of atoms. To see this consider a

precompact element q ∈ Q(L). Suppose that

(8) a =
∨
{p ∈ A(L) : p ≤ q} < q.
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We put

T = {x ∈ L : a ≤ x < q}.

Then T is nonvoid, since a ∈ T . Let C be a chain in T . Then
∨
C ∈ T , because q ∈ Q(L).

Therefore T contains a maximal element b by Zorn’s Lemma. The maximality of b shows

that a ≤ b ≺ q. Applying (∗) we get the existence of an atom p0 ∈ A(L) with q = b ∨ p0.

Obviously, p0 ≤ a ≤ b, and consequently q = b, which is impossible. Hence our assumption

(8) was false, i.e., q is the join of the atoms contained in it. Thus L is an atomistic lattice.

The converse is immediate.

By Theorem 1.45 we obtain

Corollary 1.46. A prealgebraic lattice L is atomistic if and only if L satisfies (∗).

2. Join decompositions in lattices

2.1. J-lattices. If an element a ∈ L has a representation a =
∨
T (resp. a =

∧
T )

with T ⊆ J(L) (resp. T ⊆ M(L)), then we say that a has a join decomposition (resp.

meet decomposition). A join decomposition a =
∨
T is irredundant if a >

∨
(T − {t})

for each t ∈ T . L is a J-lattice if each element of L has a join decomposition. Crawley–

Dilworth [1973] (p. 39) mentioned that if L is a lattice with the ascending chain condition,

then every element of L has an irredundant finite meet decomposition. Therefore, every

element of L has an irredundant finite join decomposition if L satisfies the descending

chain condition.

Most of the investigations in this section will concern lower continuous lattices with

the hereditary property (HJ), defined in Richter [1991] as follows:

(HJ) (a ∈ L and u ∈ J(L)) ⇒ a ∨ u ∈ J([a, 1]).

It is obvious that every modular lattice has this property. We remark that for complete

strongly coatomic lattices the property of being consistent and property (HJ) are equiv-

alent. In arbitrary lattices, this equivalence does not hold. For instance, the lattice of

Figure 8 is consistent but it does not have the hereditary property (HJ).

Fig. 8

First, we shall prove the following simple but useful lemma.

Lemma 2.1. Let L be a lower continuous lattice and let u, v ∈ L. If u is covered by v,

then each minimal element of the set P = {p ∈ L : v = u ∨ p} is completely join

irreducible.
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Proof. P is nonempty, since v ∈ P . Let C be a chain in P . By lower continuity, u∨
∧
C =

∧
{u ∨ c : c ∈ C} = v. Then

∧
C ∈ P and P contains a minimal element q by the dual

of Zorn’s Lemma. Now we prove that q is completely join irreducible in L. Indeed, let

q =
∨
T and t < q for all t ∈ T . From the minimality of q and the fact that u ≺ v we

infer that u∨ t = u for every t ∈ T . Consequently, q =
∨
T ≤ u, and hence v = u∨ q = u.

This contradiction shows that q ∈ J(L).

The following result is a generalization of the classical existence theorem (cf. Crawley–

Dilworth [1973], Theorem 6.1).

Proposition 2.2 (Walendziak [1993d], Theorem 1). If a lower continuous lattice L is

weakly atomic, then it is a J-lattice.

Proof. Let a be an arbitrary element of L, and set

b =
∨
{x ∈ J(L) : x ≤ a}.

Suppose now b < a. Since L is weakly atomic, there exist u, v ∈ [a, b] such that u ≺ v.

Let P be the set of all p ∈ L with v = u ∨ p, and let q be a minimal element of P .

From Lemma 2.1 it follows that q ∈ J(L). By the definition of b we have q ≤ b. Hence

v = u ∨ q ≤ u ∨ b = u, a contradiction. Thus a =
∨
{x ∈ J(L) : x ≤ a} is a join

decomposition of a.

Proposition 2.2 implies

Corollary 2.3 (see Draškovičová [1974], Theorem 4). Every weakly atomic dually

Brouwerian lattice is a J-lattice.

Crawley [1962] (Lemma 3) showed that in an upper continuous lattice, every com-

pletely join irreducible element is compact. We know that any algebraic lattice is weakly

atomic (Crawley–Dilworth [1973], Theorem 2.2). From the last two facts and Proposi-

tion 2.2 we get

Corollary 2.4 (cf. Geissinger–Graves [1972], Corollary 2). For a continuous lattice L,

the following statements are equivalent :

(i) L is weakly atomic.

(ii) L is a J-lattice.

(iii) L is algebraic.

(iv) L is dually algebraic.

(v) Every element of L has a meet decomposition.

Now we prove

Proposition 2.5. A J-lattice with hereditary property (HJ) is weakly atomic.

Proof. Let L be a J-lattice satisfying (HJ). Let a, b ∈ L, b < a and let a =
∨
T be a join

decomposition. Since b < a there is t0 ∈ T such that t0 � b. We set

v = t0 ∨ b and u =
∨
{x ∈ L : b ≤ x < v}

(u exists, since b < v and L is complete). From (HJ) it follows that v is completely join

irreducible in [b, v], and hence u < v. Now, by the definition of u we obtain u ≺ v.
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As a consequence of Propositions 2.2 and 2.5 we get the following

Theorem 2.6. Let L be a lower continuous lattice satisfying (HJ). Every element of L

has a join decomposition iff L is weakly atomic.

We say that a complete lattice L has irredundant join decompositions if each element

of L has at least one irredundant join decomposition.

We close this section with the following result.

Proposition 2.7 (Richter [1982a], Theorem 10). Every lattice belonging to K has irre-

dundant join decompositions.

2.2. The Kurosh–Ore replacement property. The most important result on join

decompositions of an element of a modular lattice is the Kurosh–Ore Theorem.

Theorem 2.8 (Kurosh [1935], Ore [1936]). Let L be a modular lattice and let a ∈ L. If

a = x1 ∨ . . . ∨ xn and a = y1 ∨ . . . ∨ ym are irredundant join decompositions of a, then

for every xi there is a yj such that

a = x1 ∨ . . . ∨ xi−1 ∨ yj ∨ xi+1 ∨ . . . ∨ xn

and n = m.

The following definition is suggested by the Kurosh–Ore Theorem.

A complete lattice L has the Kurosh–Ore Replacement Property for join decompo-

sitions (
∨
-KORP, for short) if each element of L has at least one irredundant join de-

composition, and whenever a =
∨
T =
∨
R are two irredundant join decompositions, for

each t ∈ T there exists r ∈ R such that a =
∨
(T − {t}) ∨ r is also an irredundant join

decomposition.

The
∧
-KORP is defined dually. The concept of consistency relates to the

∨
-KORP.

Indeed, we have the following result.

Proposition 2.9 (Richter [1982a]). A lattice L ∈ K has the
∨
-KORP iff it is consistent.

Combining Theorem 1.26 and Proposition 2.9 we get

Corollary 2.10 (Walendziak [1994b], Theorem 2). For every semimodular lattice be-

longing to K, the following conditions are equivalent :

(i) L has the
∨
-KORP.

(ii) L is consistent.

(iii) L is strong.

Remark 2.11. The preceding result is a generalization of Theorem 4 of Reuter [1989].

Proposition 2.12. Let L be an upper continuous , strongly atomic lattice. If L is locally

modular , then L has the
∧
-KORP.

Proof. By the dual of Proposition 1.4, L is dually consistent. The dual of Proposition 2.9

shows that L has the
∧
-KORP.

Theorem 2.13 (Walendziak [1999], Theorem 1). Let L be a lattice such that both L and

its dual L∂ are algebraic and strongly atomic (i.e., L,L∂ ∈ K). If L is semimodular or

lower semimodular , then L has both the
∧
-KORP and the

∨
-KORP iff L is modular.
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Proof. Without loss of generality we can assume that L is semimodular. Let L have both

the
∧
-KORP and the

∨
-KORP. We know that if an algebraic, strongly atomic lattice

is both semimodular and lower semimodular, then it is modular (see Crawley–Dilworth

[1973], Theorem 3.6). Therefore, we only need to show that L is lower semimodular. Then

we prove that L satisfies (N*).

Assume that x ≺ x∨ y. We conclude from Proposition 2.9 that L is dually consistent.

By the dual of Proposition 1.2, the interval [x∧y, y] has exactly one atom, say p. We now

prove that p = y. On the contrary, suppose that p < y. Since every element of L has at

least one irredundant join decomposition, we conclude that there is u ∈ J(L) such that

u ≤ y and u � p. From Corollary 2.10 it follows that L is strong. We have

x ≤ x ∨ u∗ ≤ x ∨ y and x ≺ x ∨ y.

Observe that x = x ∨ u∗. Indeed, if x ∨ u∗ = x ∨ y, then u ≤ x ∨ u∗ and strongness

implies u ≤ x, a contradiction. Therefore, u∗ ≤ x. Hence, u ∧ x ∧ y = u∗ ≺ u, and by

semimodularity we deduce that x ∧ y ≺ u ∨ (x ∧ y) ≤ y. Then p = u ∨ (x ∧ y), and this

contradicts the fact that u � p. Thus x ∧ y ≺ p = y, that is, (N*) holds in L, and, in

consequence, L is modular.

The converse is clear by the Kurosh–Ore Theorem (see Theorem 2.8).

Remark 2.14. The preceding theorem generalizes Theorem 6 of Stern [1996], since any

lattice satisfying the descending chain condition is strongly atomic.

Theorem 2.15 (Walendziak [1999], Theorem 3). If L is a lattice such that L and L∂

belong to K, then L is strong and locally modular if and only if L is modular.

Proof. If L is locally modular, then L is also semimodular (by the dual of Proposition 1.4).

From Proposition 2.12 and Corollary 2.10 we conclude that L has both the
∧
-KORP and

the
∨
-KORP. Therefore, by Theorem 2.13, L is modular.

The converse is obvious.

Finally we recall that a complete lattice L has the Kurosh–Ore property for join de-

compositions (
∨
-KOP, for short) if every element of L has an irredundant finite join

decomposition and for each a ∈ L, the number of join irreducible elements in any irre-

dundant finite join decomposition of a is unique. In a dual way one defines the
∧
-KOP.

It is obvious that the KORP implies the corresponding KOP, whereas the converse does

not hold in general. Consider, for instance, the lattice of Figure 9.

Fig. 9 Fig. 10

This lattice is denoted by S7 and will be called the hexagon. The lattice S7 has the∨
-KOP whereas the

∨
-KORP does not hold. In semimodular algebraic lattices satisfy-

ing the DCC, the
∧
-KORP is equivalent to the

∧
-KOP (see Crawley–Dilworth [1973],
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Theorems 7.6 and 7.7). Hence in Theorem 6 of Stern [1996] we may replace the
∧
-KORP

by the
∧
-KOP, but here it is not possible to replace the

∨
-KORP by the

∨
-KOP,

that is, the question of Stern [1996] has a negative answer. Indeed, let L be the lattice

diagrammed in Figure 10. Then L is locally modular, and therefore it has the
∧
-KORP

(and, evidently, the
∧
-KOP). This lattice also has the

∨
-KOP, whereas the

∨
-KORP

does not hold.

2.3. Lattices with unique irredundant join decompositions. Throughout this

section L will denote a lower continuous strongly coatomic lattice. For a ∈ L, set

Pa = {p ∈ L : p ≺ a}.

Then a+ =
∧
Pa. By Proposition 2.7 we deduce that L has irredundant join decomposi-

tions. If every element of L has exactly one irredundant join decomposition, then we say

L has unique irredundant join decompositions.

We begin with the following four lemmas.

Lemma 2.16. Suppose that the lattice L has the following property :

(∗∗) For every a ∈ L and for every u,w ∈ J(L), if u∨ a = w ∨ a and u∨w � a, then

u = w.

Then L is lower semimodular.

Proof. Let a, b ∈ L be elements for which a ≺ a ∨ b. Without loss of generality we may

suppose that a, b are incomparable. We show that then a ∧ b ≺ b, which means that L is

lower semimodular. Assume that there exists c ∈ L such that a ∧ b < c < b. By Lemma

1.1 there are completely join irreducible elements u ≤ b and w ≤ c such that u � c and

w � a ∧ b. Consequently, u ∨ a = w ∨ a and u ∨ w � a. From (∗∗) it follows that u = w.

This contradiction shows that a ∧ b ≺ b.

Lemma 2.17. Let L be a lower locally distributive lattice and let a ∈ L. If p ∈ Pa and

u,w ∈ J(L) ∩ [0, a], then

(1) p ∨ (u ∧ w) = (p ∨ u) ∧ (p ∨ w).

Proof. Assume that the assumptions of Lemma 2.17 hold but

p ∨ (u ∧ w) < (p ∨ u) ∧ (p ∨ w).

Therefore, p ∨ (u∧w) = p and p∨ u = p∨w = a. Then u∧w ≤ p, u � p and w � p. Set

b = u∨w; then w < b. By Proposition 1.4, L is lower semimodular. As b � p this implies

that p ∧ b ≺ b. Since L is strongly coatomic, there exists q ∈ L such that w ≤ q ≺ b.

It is obvious that s = u ∨ b+ � q and s ≤ b. Lower semimodularity now implies that

b+ ≤ s ∧ q ≺ s ≤ b. By the definition of b+ it is clear that

b+ =
∧
{r ∧ s : b+ ≤ r ≺ b and s � r}.

By lower semimodularity, r ∧ s ≺ s whenever s � r ≺ b. Therefore, b+ is a meet of

lower covers of s. But s = u ∨ b+ ∈ J([b+, 1]), since the lattice L is consistent (see

Proposition 1.4). Consequently,

(2) s ∧ q = b+.
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Since u � p and w � p we have s � p ∧ b and p ∧ b 6= q. This together with the fact that

p ∧ b ≺ b yields

(p ∧ b) ∨ s = b and (p ∧ b) ∨ q = b.

By the distributivity of [b+, b] we infer

(p ∧ b) ∨ (s ∧ q) = [(p ∧ b) ∨ s] ∧ [(p ∧ b) ∨ q] = b.

On the other hand, by (2),

(p ∧ b) ∨ (s ∧ q) = (p ∧ b) ∨ b+ = p ∧ b < b,

a contradiction. Thus (1) holds.

Lemma 2.18. Let L (∈ K) be a lattice having the property (∗∗), and let a ∈ L. Then

p ∨
∧
(Pa − {p}) = a for each p ∈ Pa.

Proof. Let p ∈ Pa. Assume that there is a finite subset R of Pa − {p} with minimal

number of elements such that p ≥
∧
R. Let r ∈ R and set s =

∧
(R − {r}). Obviously,

s � p. By Lemma 1.1 there are join irreducible elements u and w such that u ≤ r, w ≤ s

and u ∨ p = w ∨ p = a. From (∗∗) it follows that u = w. Consequently, u ≤ r and u ≤ s.

Hence u ≤ r ∧ s =
∧
R ≤ p, a contradiction. Then for every finite subset X of Pa − {p},∧

X � p. Therefore, by (LC) we have p∨
∧
(Pa−{p}) =

∧
{p∨
∧
X : X is a finite subset

of Pa − {p}} = a.

Lemma 2.19. If L satisfies (∗∗), then for each a ∈ L the sublattice [a+, a] is distributive.

Proof. First we prove that [a+, a] is a coatomistic lattice. Let b ( 6= a) be an arbitrary

element of [a+, a] and let d =
∧
{p ∈ Pa : b ≤ p}. Suppose that b < d. Since L is strongly

coatomic, there exists c ∈ L such that b ≤ c ≺ d. By Lemma 2.16, L is lower semimodular.

Therefore, if p ∈ Pa and d � p, then p ∧ d ≺ d. Observe that c 6= p ∧ d for every p ∈ Pa.

Indeed, if c = p0 ∧ d for some p0 ∈ Pa, then p0 ≥ p0 ∧ d = c ≥ b and hence p0 ≥ d.

Consequently, c = d, contrary to the fact that c ≺ d. Therefore,

c ≥ b ≥ a+ ≥
∧
{p ∧ d : p ∈ Pa} ≥

∧
(Pd − {c}),

and hence c∨
∧
(Pd−{c}) = c. On the other hand, by Lemma 2.18 we get c∨

∧
(Pd−{c})

= d. This contradiction shows that b = d. Thus every element of [a+, a] is a meet of

lower covers of a. Hence [a+, a] is coatomistic. Since [a+, a] is also lower continuous and

lower semimodular, by Theorem 4.1 of Crawley–Dilworth [1973] we conclude that [a+, a]

is complemented. We show that

(3) if a+ =
∧
P where P ⊆ Pa, then P = Pa.

Indeed, if P 6= Pa, then there is an element q ∈ Pa − P , and we have

a > q = q ∨
∧
P ≥ q ∨

∧
(Pa − {q}) = a (by Lemma 2.18),

a contradiction. Now we prove that [a+, a] is a uniquely complemented lattice. Let

x ∈ [a+, a] and suppose that there exist x1, x2 ∈ [a+, a] such that

(4) x ∧ x1 = x ∧ x2 = a+

and

(5) x ∨ x1 = x ∨ x2 = a.
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Since the lattice [a+, a] is coatomistic, there are subsets R,S and T of Pa such that

x =
∧
R, x1 =

∧
S, and x2 =

∧
T . By (4), a+ =

∧
(R ∪ S) =

∧
(R ∪ T ) and from (3) it

follows that R ∪ S = R ∪ T = Pa. By (5) we have R ∩ S = R ∩ T = ∅. Consequently,

R = S and hence x1 = x2. Thus [a+, a] is uniquely complemented. Then, by Theorem 4.5

of Crawley–Dilworth [1973], [a+, a] is a distributive lattice.

In this section, the major result is

Theorem 2.20. If L is a lower continuous strongly coatomic lattice, then the following

statements are equivalent :

(i) L has unique irredundant join decompositions.

(ii) L satisfies (∗∗).

(iii) L is lower locally distributive.

Proof. (i)⇒(ii). Assume that L has unique irredundant join decompositions but it does

not satisfy (∗∗). Then there are a ∈ L and distinct u, v ∈ J(L) such that u ∨ a = w ∨ a

and u ∨ w � a. By lower continuity there exist c, d ≤ a which are minimal with respect

to u ∨ c = b and w ∨ d = b, respectively. Let c =
∨
R and d =

∨
T be irredundant join

decompositions. Then b = u ∨
∨
R = w ∨

∨
T are two irredundant join decompositions

of b. They are also distinct, since u 6= w and u 6∈ T . This contradiction proves that L

has the property (∗∗).

(ii)⇒(iii). By Lemma 2.19.

(iii)⇒(i). Now suppose that L is lower locally distributive. Let a ∈ L and let a =
∨
R =
∨
T be two irredundant join decompositions. Pick r ∈ R and set s =

∨
(R− {r}).

Obviously, s < a. Then, as L is strongly coatomic there exists p ∈ L with s ≤ p ≺ a.

Clearly, there is t ∈ T such that t � p. Consequently, p ∨ r = p ∨ t = a. By Lemma 2.17,

p ∨ (r ∧ t) = (p ∨ r) ∧ (p ∨ t).

Hence r ∧ t � p. The lower semimodularity of L implies that p ∧ r ≺ r and p ∧ t ≺ t.

Suppose that r 6= t. Then either r ∧ t < r or r ∧ t < r. If r ∧ t < r, then there exists

q ∈ [r ∧ t, r] such that q ≺ r. Since r ∈ J(L), r has exactly one lower cover and hence

p ∧ r = q ≥ r ∧ t. But this is impossible since r ∧ t � p. Similarly, if r ∧ t < t, then

p ∧ t ≥ r ∧ t. Therefore, p ≥ r ∧ t, a contradiction. Thus r = t and we infer that R = T .

Consequently, L has unique irredundant join decompositions.

Remark 2.21. Since every dual algebraic lattice is lower continuous, this theorem implies

the dual of Theorem 7.4 of Crawley–Dilworth [1973]. Theorem 2.20 also implies Theorem

6 of Walendziak [1993d] and the dual of the Theorem of Walendziak [1995].

3. c-Decompositions in modular lattices

3.1. Preliminaries. In this chapter L always denotes a complete modular lattice. If

a ∈ L, then we say that a is a direct join of the elements ai (i ∈ I), and we write

a =
∨̇
{ai : i ∈ I},
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if a =
∨
{ai : i ∈ I} and for each i ∈ I, ai ∧

∨
{aj : j ∈ I − {i}} = 0. The direct join of

finitely many elements a1, . . . , an is also written a1 ∨̇ . . . ∨̇ an. An element a ∈ L is called

directly join irreducible (or directly indecomposable) if 0 < a and if a = b ∨̇ c implies

b = 0 or c = 0.

The first lattice theoretic theorem on direct decompositions was given by Ore [1936].

Ore’s Theorem may be stated as follows:

Theorem 3.1. Let L be a modular lattice of finite length and consider two direct decom-

positions

1 = a1 ∨̇ . . . ∨̇ am = b1 ∨̇ . . . ∨̇ bn (ai, bj ∈ L)

of the unit element of L into directly join irreducible summands ai, bj. Then m = n and

there is a permutation λ of the set I = {1, . . . , n} such that

1 = a1 ∨̇ . . . ∨̇ ai−1 ∨̇ bλ(i) ∨̇ ai+1 ∨̇ . . . ∨̇ an

for all i ∈ I.

We obtain this theorem as a corollary from Theorem 3.25 in Section 3.5. Many in-

teresting results on direct decompositions in modular lattices can be found in Kurosh

[1943, 1946], Baer [1947, 1948], and Hostinsky [1951]. A number of papers are devoted to

this topic, for example, Graev [1947], Livšic [1951] and Jakub́ık [1955]. Richter [1982b]

gave a necessary and sufficient condition for an element in an algebraic modular lattice

to be a direct join of completely join irreducible elements. Direct decompositions are also

considered in Crawley [1962], Močulskĭı [1955, 1961, 1962, 1968], and Walendziak [1979,

1980, 1991b].

In this chapter we give a common generalization to both the Theorem of Kurosh–Ore

(Theorem 2.8) and the Theorem of Ore (Theorem 3.1). Before giving this generalization

we still need a few notions.

Let c be a distributive element of L. Then c satisfies the following condition:

(D) For all x, y ∈ L, c ∨ (x ∧ y) = (c ∨ x) ∧ (c ∨ y).

Since L is modular, (D) is equivalent to the following property:

(Sn) x ∧ (c ∨ y) = (x ∧ c) ∨ (x ∧ y) for all x, y ∈ L.

(See e.g. Grätzer [1978], p. 145.) We denote by D(L) the set of all distributive elements

of L.

Definition 3.2. Let T be a subset of L and a ∈ L. If a =
∨
T and for each t ∈ T ,

t ∧
∨
(T − {t}) ≤ c,

then we say that a is the c-join of T , and we write a =
∑
c T . We will write simply

a =
∑
T when no confusion can arise. The c-join of finitely many elements t1, . . . , tn is

also written t1 +c . . .+c tn (or briefly, t1 + . . .+ tn). A representation of an element as a

c-join of elements of the lattice L is said to be a c-decomposition of the element.

Observe that joins and direct joins are special cases of c-joins. Indeed,

a =
∑
1T iff a =

∨
T, and a =

∑
0T iff a =

∨̇
T.
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Let a ∈ L. An element b ( 6= a) is called a c-summand of a if a = b+c x for some element

x ( 6= a). We denote by S(c, L) the set of all c-summands of the unit element of L. An

element a ∈ L is called c-irreducible if for any x, y ∈ L, a = x +c y implies a = x or

a = y.

It is easy to see that a ∈ L is 1-irreducible iff it is join irreducible, and a is 0-irreducible

iff a is directly join irreducible.

Let a ∈ S(c, L). An element b ∈ L is called a c-complement of a if 1 = a +c b. If an

element a ∈ L has a c-decomposition

(1) a =
∑

c{ai : i ∈ I}

we define aj,k,...,n =
∨
{ai : i ∈ I−{j, k, . . . , n}} for each subset {j, k, . . . , n} of I. Denote

by αi the function of L defined by the formula

xαi = ai ∧ (x ∨ ai).

The maps αi, i ∈ I, are called the decomposition functions related to (1); any αi is called

the decomposition function with respect to the c-summand ai of the c-decomposition (1).

Let a ∈ S(c, L). Define the set DF(c, a) of maps of L by α ∈ DF(c, a) iff there exists

a c-complement b of a such that xα = a ∧ (x ∨ b) for every x ∈ L.

Let DF(c, L) denote the smallest set satisfying (i) and (ii):

(i) If α ∈ DF(c, a) for some a ∈ S(c, L), then α ∈ DF(c, L).

(ii) If ϕ, ψ ∈ DF(c, L), then ϕψ ∈ DF(c, L).

(ϕψ is the map of L defined by x(ϕψ) = (xϕ)ψ, x ∈ L.) The elements of the set DF(c, L)

are called the c-decomposition functions of L.

Let α, β ∈ DF(c, L). We say that 〈α, β〉 is a pair of complementary c-decomposition

functions of L if there exist a, b ∈ L such that 1 = a +c b and α, β are decomposition

functions with respect to a and b, respectively.

For an element a ∈ L we denote by F(c, a) the set of all functions ϕ ∈ DF(c, L) such

that aϕ = a and from x ≤ a, xϕ ≤ c it follows that x ≤ c.

In Sections 3.2 and 3.3 we will present some of the most important properties of c-

joins and c-decomposition functions. The material of Chapter 3 is taken from Walendziak

[1986, 1989, 1990a].

3.2. Properties of c-joins and c-decomposition functions. The most important

form of modularity is the following:

(M) If xi, yi ∈ L (i = 1, . . . , n) such that xi ≤ yi′ for all i 6= i
′, then

(x1 ∨ . . . ∨ xn) ∧ y1 ∧ . . . ∧ yn = (x1 ∧ y1) ∨ . . . ∨ (xn ∧ yn).

Let c ∈ D(L). We recall that if a is a c-join of T (T ⊆ L), we also write a =
∑
T

instead of a =
∑
c T .

I. Let I be a finite set of indices and Kj , j = 1, . . . , n, be nonempty subsets of I with⋃
{Kj : j = 1, . . . , n} = I and Kj1 ∩ Kj2 = ∅ for j1 6= j2. If a =

∑
{ai : i ∈ I} and

bj =
∨
{ai : i ∈ Kj}, then

a = b1 + . . .+ bn.
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Proof. Obviously, a = b1 ∨ . . . ∨ bn. Moreover,

bj ∧
∨
{bm : m 6= j} =

∨
{ai : i ∈ Kj} ∧

∨
{ai : i ∈ I −Kj}

≤
∨
{ai : i ∈ Kj} ∧

∧
{
∨
{am : m ∈ I − {i}} : i ∈ Kj}

=
∨
{ai ∧

∨
{am : m ∈ I − {i}} : i ∈ Kj}

(observe ai ≤
∨
{am : m ∈ I − {i

′}} for i 6= i′, and apply (M)).

≤ c.

Therefore, a = b1 + . . .+ bn.

II. Consider an index set I and index sets Ji for each i ∈ I. If a =
∑
{ai : i ∈ I} and

if ai =
∑
{aij : j ∈ Ji} for i ∈ I, then

a =
∑
{aij : i ∈ I, j ∈ Ji}.

Proof. Indeed,

aij ∧ (
∨
{am : m 6= i} ∨

∨
{ain : n ∈ Ji − {j}})

= aij ∧ ai ∧ (
∨
{am : m 6= i} ∨

∨
{ain : n ∈ Ji − {j}})

= aij ∧ [(ai ∧
∨
{am : m 6= i}) ∨

∨
{ain : n ∈ Ji − {j}}] (by modularity)

≤ aij ∧ (c ∨
∨
{ain : n ∈ Ji − {j}})

= (aij ∧ c) ∨ [ain ∧
∨
{ain : n ∈ Ji − {j}}] (by (Sn))

≤ c.

III. Let a =
∑
{ai : i ∈ I}, and let αi (i ∈ I) be the decomposition functions related to this

c-decomposition of a. Let x ∈ L. If I1 is a finite subset of I such that x ≤
∨
{ai : i ∈ I1},

then x ≤
∨
{xαi : i ∈ I1}.

Proof. Compute:
∨
{xαi : i ∈ I1} =

∨
{ai ∧ (x ∨ ai) : i ∈ I1}

=
∨
{ai : i ∈ I1} ∧

∧
{x ∨ ai : i ∈ I1}

(observe ai ≤ ai for each i 6= j and apply (M))

≥ x.

Let

(2) 1 = a+ b,

and let α, β be the decomposition functions with respect to a and b, respectively.

IV. For every x ∈ L, x ≤ xα ∨ xβ.

Proof. Follows from Property III.

V. Let x ∈ L. If xα ≤ c and x ∧ b ≤ c, then x ≤ c.

Proof. Indeed, by modularity,

x ≤ x ∨ b = (a ∨ b) ∧ (x ∨ b) = (a ∧ (x ∨ b)) ∨ b = xα ∨ b ≤ b ∨ c.

Since c is distributive, we have c = c∨ (x∧ b) = (c∨ x) ∧ (c∨ b) = c∨ x. Hence, x ≤ c.
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VI. Let x ∈ L. Then x ≤ a implies x ≤ xα ≤ x ∨ c.

VII. Let ϕ ∈ DF(c, L) and let T ⊆ L. Then (
∨
T )ϕ =

∨
{tϕ : t ∈ T}.

Proof. In view of the definition of DF(c, L) it is sufficient to prove that the statement

holds for ϕ = α. Let t ∈ T . By Property IV, t ≤ tα ∨ tβ. Then
∨
T ≤
∨
{tα : t ∈ T} ∨ b,

and hence (
∨
T )α ≤ a ∧ (

∨
{tα : t ∈ T} ∨ b). Since

∨
{tα : t ∈ T} ≤ a, by modularity,

a ∧ (
∨
{tα : t ∈ T} ∨ b) =

∨
{tα : t ∈ T} ∨ (a ∧ b) =

∨
{tα : t ∈ T}.

Therefore, (
∨
T )α ≤

∨
{tα : t ∈ T}. On the other hand, tα ≤ (

∨
T )α, and hence

∨
{tα : t ∈ T} ≤ (

∨
T )α.

VIII. If ϕ ∈ DF(c, L), then cϕ ≤ c.

Proof. We first observe that cα ≤ c. Indeed, applying (Sn) we obtain

cα = a ∧ (c ∨ b) = (a ∧ c) ∨ (a ∧ b) ≤ c.

Now, by the definition of DF(c, L) we get the assertion.

IX. Let ϕ ∈ DF(c, L). Then for any x ∈ L with x ≤ 1ϕ there exists y ∈ L satisfying

x ≤ yϕ ≤ x ∨ c.

Proof. For ϕ = α the statement follows from Property VI. Now assume the statement to

hold for ψ and let ϕ = ψα. Let x ≤ (1ψ)α and set z = (x ∨ b) ∧ 1ψ. By modularity,

[1ψ ∧ (x ∨ b)] = (1ψ ∨ b) ∧ (x ∨ b),

i.e., z ∨ b = (1ψ ∨ b) ∧ (x ∨ b). Now compute:

zα = a ∧ (z ∨ b) = (x ∨ b) ∧ (1ψ)α = x ∨ (b ∧ 1ψα).

From this we obtain x ≤ zα ≤ x ∨ c. We have z ≤ 1ψ, and by the induction hypothesis

there is a y ∈ L such that z ≤ yψ ≤ z ∨ c. Applying Properties VII and VIII we get

x ≤ zα ≤ yψα ≤ zα ∨ cα ≤ x ∨ c.

Then x ≤ yϕ ≤ x ∨ c.

Let ϕ ∈ DF(c, L). We denote by k(ϕ) the join of all x ∈ L such that xϕ ≤ c, i.e.,

k(ϕ) =
∨
{x ∈ L : xϕ ≤ c}.

By Property VII, we have

(3) k(ϕ)ϕ ≤ c.

Note that

(4) k(ϕn) ≤ k(ϕn+1) for all n = 1, 2, . . .

Indeed, k(ϕn)ϕn+1 = (k(ϕn)ϕn)ϕ ≤ cϕ ≤ c (by Property VIII), and by the definition

of k(ϕn+1) we get (4).
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Lemma 3.3. Let n be a natural number. If k(ϕn) = k(ϕn+1), then 1ϕn ∧ k(ϕn) ≤ c.

Proof. We prove by induction on i that k(ϕn+i) = k(ϕn). This is true for i = 1. We

suppose that k(ϕn+i) = k(ϕn). By (3), we conclude that [k(ϕn+i+1)ϕ]ϕn+i ≤ c. There-

fore, k(ϕn+i+1)ϕ ≤ k(ϕn+i) = k(ϕn), and hence k(ϕn+i+1)ϕn+1 ≤ k(ϕn)ϕn ≤ c. Thus

k(ϕn+i+1)ϕ ≤ k(ϕn+1). Moreover, by (4),

k(ϕn+1) ≤ k(ϕn+i+1),

and we deduce that k(ϕn+i+1) = k(ϕn+1) = k(ϕn). Thus, by induction, we obtain

k(ϕn+i) = k(ϕn) for all i = 1, 2, . . . In particular,

(5) k(ϕ2n) = k(ϕn).

We put x = 1ϕn ∧ k(ϕn). By Property IX it follows that there exists y ∈ L such that

x ≤ yϕn ≤ x ∨ c. Applying Properties VII and VIII and inequality (3) we have

yϕ2n ≤ (x ∨ c)ϕn = xϕn ∨ cϕn ≤ k(ϕn)ϕn ∨ cϕn ≤ c.

Hence y ≤ k(ϕ2n) and using equality (5) we get y ≤ k(ϕn). Therefore, x ≤ yϕn ≤

k(ϕn)ϕn ≤ c.

Lemma 3.4. Let x1, x2 ∈ L, x1 ≥ k(ϕ) and x2 ≥ k(ϕ). If x1ϕ = x2ϕ, then x1 = x2.

Proof. We use induction on the length of ϕ. Let ϕ = α, and suppose that x1, x2 ≥ k(α)

and x1α = x2α. Then [a∧ (x1 ∨ b)]∨ b = [a∧ (x2 ∨ b)]∨ b, and by modularity, we obtain

(6) x1 ∨ b = x2 ∨ b.

Since bα = a ∧ b ≤ c, we have b ≤ k(α). Therefore, x1 ≥ b and x2 ≥ b. Hence in view of

(6) we get x1 = x2. Thus, for ϕ = α, the proof of Lemma 3.4 is complete.

Now assume the statement holds for ψ and let ϕ = ψα. Let x1ϕ = x2ϕ (x1, x2 ≥ k(ϕ)),

that is, a ∧ (x1ψ ∨ b) = a ∧ (x2ψ ∨ b). Consequently, x1ψ ∨ b = x2ψ ∨ b, and hence

1ψ ∧ (x1ψ ∨ b) = 1ψ ∧ (x2ψ ∨ b).

Since x1ψ ≤ 1ψ and x2ψ ≤ 1ψ, by modularity, we obtain

(7) x1ψ ∨ (1ψ ∧ b) = x2ψ ∨ (1ψ ∧ b).

We set x = 1ψ ∧ b. Then x ≤ 1ψ, and by Property IX there exists y ∈ L such that

x ≤ yψ ≤ x ∨ c. Therefore, we have

yϕ = yψα ≤ (x ∨ c)α ≤ xα ∨ c ≤ bα ∨ c = c.

Hence yϕ ≤ c, that is, y ≤ k(ϕ). Thus 1ψ∧b ≤ k(ϕ)ψ ≤ x1ψ, and similarly, 1ψ∧b ≤ x2ψ.

Hence in view of (7) we obtain x1ψ = x2ψ. Obviously, we have k(ψ) ≤ k(ϕ), and therefore

k(ψ) ≤ x1, k(ψ) ≤ x2. Applying the induction hypothesis we get x1 = x2.

Lemma 3.5. For every ϕ ∈ DF(c, L) the following conditions are equivalent :

(i) There exists a natural number n such that 1ϕn = 1ϕn+1 and k(ϕn) = k(ϕn+1).

(ii) There exists a natural number n such that ϕ ∈ F(c, 1ϕn).

Proof. (i)⇒(ii). Since 1ϕn = 1ϕn+1, we have (1ϕn)ϕ = 1ϕn. Let x ≤ 1ϕn and xϕ ≤ c.

Then xϕn ≤ c, and hence x ≤ k(ϕn). Consequently, x ≤ 1ϕn∧k(ϕn), and by Lemma 3.3,

x ≤ c. Therefore, ϕ ∈ F(c, 1ϕn).
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(ii)⇒(i). Suppose that ϕ ∈ F(c, 1ϕn). This clearly forces

1ϕn = 1ϕn+1.

Set x = k(ϕn+1)ϕn. Then x ≤ 1ϕn and xϕ ≤ c. Since ϕ ∈ F(c, 1ϕn), we have x ≤ c. This

means that k(ϕn+1) ≤ k(ϕn). We conclude from (4) that k(ϕn) = k(ϕn+1).

3.3. Distinguished c-decomposition functions. We say that a c-decomposition func-

tion ϕ of L is distinguished if ϕ = αδαεα, where α ∈ DF(c, a) for some a ∈ S(c, L) and

〈δ, ε〉 is a pair of complementary c-decomposition functions of L.

Suppose the unit element of the lattice L has two c-decompositions: (2) and

(8) 1 = d+ e.

Let 〈α, β〉 and 〈δ, ε〉 be the pairs of decomposition functions related to the c-decompo-

sitions (2) and (8), respectively. Then, for instance, αδαεα, βδβεβ and εαεβε are distin-

guished c-decomposition functions of L.

We first observe that for every x ∈ L,

(9) xδαε = xδβε.

Indeed, in view of modularity,

xδαε = e ∧ ([a ∧ (xδ ∨ b)] ∨ d) = e ∧ (xδ ∨ [a ∧ (xδ ∨ b)] ∨ d)

= e ∧ ([(xδ ∨ a) ∧ (xδ ∨ b)] ∨ d) = e ∧ (xδ ∨ [b ∧ (xδ ∨ a)] ∨ d) = xδβε.

Similarly,

(10) xαδβ = xαεβ, xβεα = xβδα, xεβδ = xεαδ.

Lemma 3.6. For x ∈ L, xαδαεα = xαεαδα.

Proof. Applying (9) and (10) we get

xαδαεα = xαδβεα = xαεβεα = xαεβδα = xαεαδα.

We put η = αδαεα, σ = αδα, and χ = αεα.

Lemma 3.7. If m is a natural number , then

k(σm) ∨ k(χm) ≤ k(ηm).

Proof. By Lemma 3.6 and Property VIII we have

k(σm)ηm = k(σm)(σχ)m = k(σm)σmχm ≤ cχm ≤ c,

and hence k(σm) ≤ k(ηm). Similarly, k(χm) ≤ k(ηm).

Lemma 3.8. If x ≤ a and if m is a natural number , then

(11) x ≤
∨
{xσm−iχi : i = 1, . . . ,m}.

Proof. We use induction on m. Since x ≤ xα and xα ≤ xαδ ∨ xαε (by Property IV), we

get

(12) x ≤ xσ ∨ xχ,
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that is, (11) holds for m = 1. Assume now the assertion to be true for m− 1. Then (11)

can be deduced as follows:

x ≤
∨
{xσm−1−iχi : i = 0, 1, . . . ,m− 1}

≤
∨
{(xσ ∨ xχ)σm−1−iχi : i = 0, 1, . . . ,m− 1}

=
∨
{xσm−iχi : i = 0, . . . ,m− 1} ∨

∨
{xσm−1−iχi+1 : i = 0, . . . ,m− 1}

=
∨
{xσm−iχi : i = 0, 1, . . . ,m}.

Lemma 3.9. Let m be a natural number. Then

k(ηm)α ≤ (a ∧ k(σm)) ∨ (a ∧ k(χm)).

Proof. First we prove the inequality for m = 1. From (12) it follows that

k(η)α ≤ k(η)σ ∨ k(η)χ.

Since k(η)σ ≤ a and (k(η)σ)χ = k(η)η ≤ c, we obtain

k(η)σ ≤ a ∧ k(χ).

Similarly, k(η)χ ≤ a ∧ k(σ). Then

k(η)α ≤ (a ∧ k(σ)) ∨ (a ∧ k(χ)).

Now assume the statement to hold for m− 1. By Lemma 3.8,

(13) k(ηm)α ≤
∨
{k(ηm)σm−iχi : i = 0, 1, . . . ,m}.

Let i ∈ {1, . . . ,m − 1}. Then k(ηm)σm−iχi ≤ k(ηm−1), and consequently, applying the

induction hypothesis and (4) we obtain

k(ηm)σm−iχi = k(ηm)σm−iχiα ≤ k(ηm−1)α

≤ (a ∧ k(σm−1)) ∨ (a ∧ k(χm−1)) ≤ (a ∧ k(σm)) ∨ (a ∧ k(χm)).

It is easy to see that k(ηm)σm ≤ a ∧ k(χm) and k(ηm)χm ≤ a ∧ k(σm). Therefore,

from (13) we conclude that

k(ηm)α ≤ (a ∧ k(σm)) ∨ (a ∧ k(χm)).

Lemma 3.10. For any natural numbers m and n we have

a ∧ k(σm) ∧ k(χn) ≤ c.

Proof. We proceed by induction on n. We set

x = a ∧ k(σm) ∧ k(χ).

Using Lemmas 3.8 and 3.6 we get

x ≤
∨
{xσm−iχi : i = 0, . . . ,m} = xσm ∨

∨
{xχiσm−i : i = 1, . . . ,m}.

From this, applying inequality (3) and Property VIII we deduce that x ≤ c. Suppose that

a ∧ k(σm) ∧ (χn−1) ≤ c and put y = a ∧ k(σm) ∧ k(χn). By Lemma 3.8,

(14) y ≤ yσm ∨
∨
{yσm−iχi : i = 1, . . . ,m}.

Obviously, k(σm)χ ≤ k(σm) and k(χn)χ ≤ k(χn−1). Then

yχ ≤ a ∧ k(σm) ∧ k(χn−1) ≤ c.

From this and (14) it follows that y ≤ c.
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From Lemmas 3.7, 3.9 and 3.10 we have

Lemma 3.11. For any natural number m, we have

a ∧ k(ηm) = (a ∧ k(σm)) + (a ∧ k(χm)).

3.4. Bc-lattices. In Walendziak [1986] (p. 350) we gave the following

Definition 3.12. Let a ∈ S(c, L). We say that a satisfies the Bc-condition in the lattice

L if for every α ∈ DF(c, a) and for every pair 〈δ, ε〉 of complementary c-decomposition

functions of L, either αδα ∈ F(c, a) or αεα ∈ F(c, a). If every c-irreducible c-summand of

the unit element of L satisfies the Bc-condition, then we call L a Bc-lattice.

Proposition 3.13. Let a be a c-irreducible c-summand of 1, α ∈ DF(c, a) and let 〈δ, ε〉

be a pair of complementary c-decomposition functions of L. Put η = αδαεα. If condition

(i) (or equivalently (ii)) of Lemma 3.5 holds for ϕ = η, then a satisfies the Bc-condition

(in L).

Proof. Suppose that k(ηm) = k(ηm+1) and 1ηm+1 = 1ηm for some m ∈ N. By Prop-
erty VII,

(1ηm ∨ k(ηm))ηm = 1η2m ∨ k(ηm)ηm = 1ηm.

From Lemma 3.4 we obtain 1 = 1ηm ∨ k(ηm). Hence, by modularity,

a = 1ηm ∨ (a ∧ k(ηm)).

According to Lemma 3.3 we have

a = 1ηm + (a ∧ k(ηm)).

From Lemma 3.11 and Property II we conclude that

a = 1ηm + (a ∧ k(ηm)) + (a ∧ k(χm)),

where σ = αδα, and χ = αεα. We shall consider three cases.

Case 1: a = 1ηm. We deduce from Lemma 3.6 that a = 1χmσm, hence a ≤ aσ ≤ a,

and finally aσ = a. Suppose now that x ≤ a and xσ ≤ c. By Property VIII, xηm ≤ c,

and therefore x ≤ k(ηm). Then x ≤ 1ηm ∧ k(ηm), and hence in view of Lemma 3.3 we

obtain x ≤ c. Thus αδα = σ ∈ F(c, a).

Case 2: a ≤ k(σm). By Lemma 3.8, a ≤ aσm ∨ aχ. But aσm ≤ c since a ≤ k(σm).

Therefore a = aσm + aχ. The element a is c-irreducible, and so a = aσm or a = aχ. If

a = aσm, then σ ∈ F(c, a) by the proof of Case 1. Assume that a = aχ. Let x ≤ a and

xχ ≤ c. From Lemmas 3.8 and 3.6 it follows that

x ≤ xσm ∨
∨
{xχiσm−i : i = 1, . . . ,m}.

Hence x ≤ xσm ∨ c. But xσm ≤ aσm ≤ k(σm)σm ≤ c. Then x ≤ c. Thus αεα = χ ∈

F(c, a).

Case 3: a ≤ k(χm). In this case, the proof is similar.

Now, we conclude from Definition 3.12 that a satisfies the Bc-condition.

An immediate consequence of Proposition 3.13 is
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Theorem 3.14. Suppose that every distinguished c-decomposition function ϕ of L sat-

isfies condition (i) (or equivalently (ii)) of Lemma 3.5. Then L is a Bc-lattice.

Proposition 3.15. Let a be a c-irreducible c-summand of 1. If for every α ∈ DF(c, a)

and for every pair 〈δ, ε〉 of complementary c-decomposition functions of L the sublattice

[0, 1αδαεα] is of finite length, then a satisfies the Bc-condition.

Proof. Let η = αδαεα. It is obvious that

1η ∧ k(η) ≤ 1η ∧ k(η2) ≤ . . . ≤ 1η ∧ k(ηi) ≤ . . . ≤ 1η

and

1η ≥ 1η2 ≥ . . . ≥ 1ηi ≥ . . .

Since [0, 1η] is of finite length, there is a natural number m such that 1ηm = 1ηm+1 and

1η ∧ k(ηm) = 1η ∧ k(ηm+1). Then

(1ηm)η = 1ηm.

Let x ≤ 1ηm and xη ≤ c. We have x ≤ 1ηm, and by Property IX we deduce that there

exists y ∈ L such that x ≤ yηm+1 ≤ x ∨ c. Hence yηm+2 ≤ xη ∨ cη ≤ c, and therefore,

yη ≤ 1η ∧ k(ηm+1) = 1η ∧ k(ηm) ≤ k(ηm). Consequently,

x ≤ yηm+1 = (yη)ηm ≤ k(ηm)ηm ≤ c.

Thus η ∈ F(c, 1ηm). From Proposition 3.13 it follows that a satisfies the Bc-condition.

Proposition 3.15 gives

Proposition 3.16. Let a be a c-irreducible c-summand of 1 such that the sublattice

[0, a] is of finite length. Then a satisfies the Bc-condition.

Hence we have

Proposition 3.17. Every modular lattice of finite length is a Bc-lattice, where c is a

distributive element of this lattice.

Proposition 3.18. Every complete modular lattice is a B1-lattice.

Proof. Let L be a complete modular lattice. Let α ∈ S(1, L) and suppose that a is join

irreducible. It is sufficient to show that a satisfies the B1-condition. Let b be an element

of L such that 1 = a ∨ b, i.e.,

1 = a+1 b.

Let α, β be the decomposition functions related to this 1-decomposition of 1, and let 〈δ, ε〉

be a pair of complementary 1-decomposition functions of L. From Property IV we have

a ≤ aδ ∨ aε. Hence (b ∨ aδ) ∨ (b ∨ aε) ≥ b ∨ a = 1, that is,

1 = (b ∨ aδ) ∨ (b ∨ aε).

By the weak isomorphism property (see Chapter 0) the lattices [b, 1] and [a ∧ b, a] are

isomorphic. But a is join irreducible in L, and therefore in [a∧b, a], thus 1 is join irreducible

in [b, 1]. Hence 1 = b ∨ aδ or 1 = b ∨ aε.

If 1 = b ∨ aδ, then aαδα = aδα = a ∧ (aδ ∨ b) = a, and therefore αδα ∈ F(1, a).

Similarly, if 1 = b ∨ aε, then αεα ∈ F(1, a). Thus a satisfies the B1-condition.
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Let G be a group. By L(G) we denote the lattice of all normal subgroups of G. We

say that G is of finite length for normal subgroups if the lattice L(G) is of finite length.

If G = A1 × . . . × An is the direct product (direct sum) of groups A1, . . . , An, then

G = A1 ∨̇ . . . ∨̇ An in L(G).

Lemma 3.19. Let G be a group, and let

(15) G = A ∨̇ B = D ∨̇ E.

Let 〈α, β〉 and 〈δ, ε〉 be the pairs of decomposition functions related to (15). Then Gαδαεα

⊆ Z(G), where Z(G) denotes the center of G.

Proof. By Lemma 3.6,

Gαδαεα = Gαδβεα.

We observe that an arbitrary element of A is permutable with every element of B′ε,

where B′ = Gαδβ. Indeed, let x ∈ A and y ∈ B′ε = E ∩ B′ · D. Clearly, y = b′ · d,

where b′ ∈ B′ and d ∈ D. We know that every element of G can be written uniquely as

a product of an element of D and another element of E. Let x = d1 · e, where d1 ∈ D,

e ∈ E. We compute:

d1 · (e · y) = x · b
′ · d = b′ · x · d = y · d−1 · x · d

= y · d−1 · d1 · e · d = (d
−1 · d1 · d) · (y · e).

So, by the uniqueness of the decomposition, we conclude that e · y = y · e. Then

x · y = d1 · e · y = d1 · y · e = y · d1 · e = y · x.

Now, it is easy to see that an arbitrary element of A is permutable with every element

of Gαδβεα. Therefore, if g = a · b (a ∈ A, b ∈ B) and if h ∈ Aαδβεα, then

g · h = a · b · h = a · h · b = h · a · b = h · g.

Thus, Gαδαεα ⊆ Z(G).

Proposition 3.20. Let G be a group. If the center Z(G) of G is of finite length for

normal subgroups, then L(G) is a BE-lattice (E is a trivial subgroup of G).

Proof. Follows from Lemma 3.19 and Proposition 3.15.

We now give an example of a complete modular lattice which is not a B0-lattice.

Example 3.21. Let Z denote the additive group of integers, and let G be the direct
product of two copies of Z. Then L(G) is a complete modular lattice. Set

A = {(m, 0) : m ∈ Z}, B = {(0,m) : m ∈ Z},

D = {(m, 2m) : m ∈ Z}, E = {(m, 3m) : m ∈ Z}.

It is obvious that A,B,D,E ∈ L(G). We see at once that two direct decompositions (15)

hold. Observe that A is directly join irreducible in L(G). Indeed, let

A = A1 ∨̇ A2 (A1, A2 6= {(0, 0)}).

Clearly, A1 = {(ma1, 0) : m ∈ Z} for some a1 ∈ Z−{0} and A2 = {(ma2, 0) : m ∈ Z} for
some a2 ∈ Z−{0}. We have (a1a2, 0) ∈ A1∩A2 = {(0, 0)}, a contradiction. Let 〈α, β〉 and
〈δ, ε〉 be the pairs of decomposition functions related to the direct decompositions (15)
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of G. We want to verify that A does not satisfy the B0-condition. It is sufficient to show

that Aαδα 6= A and Aαεα 6= A. Compute:

Aαδα = Aδα = (D ∩ (A ∨E))α = (D ∩ {(m, 3n) : m,n ∈ Z})α

= A ∩ ({(3m, 6m) : m ∈ Z}∨B) = A ∩ {(3m,n) : m,n ∈ Z}

= {(3m, 0) : m ∈ Z} 6= A.

Similarly, Aαεα = {(2m, 0) : m ∈ Z} 6= A. Therefore L(G) is not a B0-lattice.

Let (2) and (8) be two c-decompositions of the unit element of L, and let 〈α, β〉

and 〈δ, ε〉 be the corresponding pairs of decomposition functions. Now, we will prove the

following

Lemma 3.22. The following conditions are equivalent :

(i) αδα ∈ F(c, a).

(ii) 1 = d ∧ (a+ e) + b.

(iii) 1 = b ∧ (a+ e) + d.

Proof. (i)⇒(ii). Let αδα ∈ F(c, a). Then aαδα = a. Hence a ∧ (aδ ∨ b) = a. Thus

[a∧ (aδ∨ b)]∨ b = 1. Since aδ ∨ b ≥ b, by modularity, [a∧ (aδ∨ b)]∨ b = (a∨ b)∧ (aδ ∨ b),

and so

1 = aδ ∨ b.

We will prove that x = aδ ∧ b ≤ c. We have x ≤ 1αδ. By Property IX, there exists y ∈ L

such that x ≤ yαδ ≤ x ∨ c. Hence using Properties VII and VIII we obtain

(yα)αδα = yαδα ≤ xα ∨ cα = (a ∧ b) ∨ cα ≤ c.

Hence we infer that yα ≤ c. Then x ≤ yαδ ≤ cδ ≤ c, and therefore

1 = aδ + b.

We now prove that a ∧ e ≤ c. Applying Properties VII and VIII we have

(a ∧ e)αδα ≤ (e ∨ c)δα = eδα ∨ cδα ≤ c.

Then a ∧ e ≤ c, by the definition of F(c, a).

(ii)⇒(iii). From (ii) we deduce that

(16) a+ e = d ∧ (a+ e) + b ∧ (a+ e).

This gives (iii).

(iii)⇒(i). Let (iii) hold. By modularity, we obtain (16), and hence (ii) is satisfied.

Now, it is easy to see that

aαδα = a.

Suppose that x ≤ a and xαδα ≤ c. By Property VI, we get x ≤ xα. Consequently,

xδα ≤ c. Moreover, xδ ∧ b ≤ aδ ∧ b ≤ c, and therefore xδ ≤ c by Property V. We have

x ∧ e ≤ c, because x ∧ e ≤ a ∧ e ≤ c. Then using Property V we obtain x ≤ c. Thus,

αδα ∈ F(c, a).

Lemma 3.23. Let (2) and

(17) 1 = d1 + . . .+ dn
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be two c-decompositions of 1. Let α, β and δi, i = 1, . . . , n, be the related decomposition

functions. If a satisfies the Bc-condition, then there exists i ∈ {1, . . . , n} such that

αδiα ∈ F(c, a).

Proof. Suppose that b < 1 (if b = 1, then obviously αδiα ∈ F(c, a) for each i ∈ {1, . . . , n}).

Let n = 2. Then the assertion follows from Definition 3.12. Assume it holds for n−1 and

let αδiα 6∈ F(c, a). Set d = d2 + . . .+ dn. Clearly,

(18) 1 = d1 + d.

We denote by δ1, δ the decomposition functions related to (18). Since a satisfies the

Bc-condition and αδ1α 6∈ F(c, a), it follows that αδα ∈ F(c, a). From Lemma 3.22 we

conclude that 1 = b ∧ (a+ d1) + d. Therefore

(19) 1 = d2 + d
′,

where d′ = d1β + d3 + . . .+ dn. Let δ
′
2, δ
′ be the decomposition functions related to (19).

We shall consider two cases.

Case 1: αδ′2α ∈ F(c, a). Lemma 3.22 now implies 1 = d2 ∧ (a+ d
′) + b. Since

a+ d1β = a+ b ∧ (a+ d1) = (a+ b) ∧ (a+ d1) = a+ d1

we obtain

a+ d′ = a+ d1 + d3 + . . .+ dn.

Then 1 = d2 ∧ (a+ d1 + d3 + . . .+ dn) + b, and, by Lemma 3.22, αδ2α ∈ F(c, a).

Case 2: αδ′α ∈ F(c, a). Applying Lemma 3.22 to the c-decompositions (2) and (19)

we deduce that 1 = b ∧ (a+ d2) + d
′. Thus

(20) 1 = d3 + . . .+ dn + b
′,

where b′ = d1β + d2β. We denote by δ
′
i, β
′, i = 3, . . . , n, the decomposition functions

related to (20). Observe that αβ′α 6∈ F(c, a). Indeed, suppose on the contrary that a =

aαβ′α. Then a = a ∧ (aαβ′ ∨ b) = a ∧ b (since aαβ′ ≤ b). Hence 1 = a ∨ b = b < 1, a

contradiction. By the induction hypothesis, there exists i, 3 ≤ i ≤ n, such that αδ′iα ∈

F(c, a). Let, for example i = n. Applying Lemma 3.22 to (20), we conclude that

1 = dn ∧ (a+ b
′ + d3 + . . .+ dn−1) + b.

We have a + d1β = a + d1, and similarly, a + d2β = a + d2. Then a + b
′ = a + d1 + d2,

and hence

1 = dn ∧ (a+ d1 + d2 + . . .+ dn−1) + b.

Therefore, by Lemma 3.22, αδnα ∈ F(c, a).

In the proof of this lemma we applied Properties I and II several times.

3.5. Finite c-decompositions. Let L be a complete modular lattice. Recall that a

subset T of L is called join irredundant if
∨
T >
∨
(T −{t}) for each t ∈ T . If an element

a ∈ L is a c-join of T , where T is a join irredundant subset of L, then we write

(21) a =
∑̇
cT
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and we say that (21) is an irredundant c-decomposition of a. A join irredundant subset

T is called c-independent if for each t ∈ T , t ∧
∨
(T − {t}) ≤ c. It is obvious that

a =
∑̇
cT iff a =

∨
T and T is c-independent.

For simplicity of notation, we sometimes write
∑̇
T instead of

∑̇
cT . If T = {t1, . . . , tn},

then we can write (21) in the form a = t1 +̇c . . . +̇c tn (or briefly, a = t1 + . . .+ tn).

As a preparation for the next result we need the following

Lemma 3.24. If

(22) 1 = a +̇ b = d +̇ e,

where d is c-irreducible, and if α, β and δ, ε are the decomposition functions with respect

to the c-summands a, b and d, e of the c-decompositions (22), then αδα ∈ F(c, a) iff

1 = d +̇ b = a +̇ e.

Proof. Necessity. From Lemma 3.22 we conclude that 1 = aδ+ b. Then d = d∧ (aδ ∨ b),

and hence, by modularity, d = aδ ∨ (d ∧ b). Moreover, aδ ∧ (d ∧ b) ≤ aδ ∧ b ≤ c, and

therefore d = aδ + d ∧ b. We have d 6= d ∧ b, since otherwise 1 = aδ ∨ b ≤ d ∨ b = b,

a contradiction. Since d is c-irreducible, we obtain d = aδ. Consequently, 1 = d + b and

hence 1 = d +̇ b. We now show that 1 = a +̇ e. We have

1 = d+ e = aδ + e = d ∧ (a ∨ e) + e = (a ∨ e) ∧ (d ∨ e) = a ∨ e.

Furthermore, by Lemma 3.22, a ∧ e ≤ c. Therefore, 1 = a +̇ e.

Sufficiency. Let 1 = d +̇ b = a +̇ e. Hence, 1 = d + b = d ∧ (a + e) + b, and by

Lemma 3.22, we deduce that αδα ∈ F(c, a).

The next theorem is the principal result of this section.

Theorem 3.25. Let L be a complete modular lattice, and let c be a distributive element

of L. If the unit element of L has two irredundant finite c-decompositions

(23) 1 = a1 +̇ a2 +̇ . . . +̇ am

and

(24) 1 = b1 +̇ b2 +̇ . . . +̇ bn

into c-irreducible elements ai, bj satisfying the Bc-condition, then m = n and for every

ai there exists bj such that we have the c-decomposition

(25) 1 = a1 +̇ . . . +̇ ai−1 +̇ bj +̇ ai+1 +̇ . . . +̇ an.

Proof. Let αi (i = 1, . . . ,m), βj (j = 1, . . . , n) be the decomposition functions related to

(23) and (24), respectively. By Property I,

(26) 1 = a1 +̇ a1.

Applying Lemma 3.23 to (26) and (24), we conclude that there exists j ∈ {1, . . . , n} such

that α1βjα1 ∈ F(c, a1). Let for example j = 1. Then, by Lemma 3.24,

(27) 1 = b1 +̇ a1 = a1 +̇ b1.

Observe that the set {b1, a2, . . . , am} is join irredundant. Indeed, if for instance a2 ≤

b1 ∨a1,2 (where a1,2 = a3∨ . . .∨am), then 1 = b1+a1,2. By Lemmas 3.23 and 3.24, there
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exists an i ∈ {1, . . . ,m} such that 1 = ai + a1,2. This means that the set {a1,a2, . . . , am}

is not join irredundant, contrary to our assumptions. Therefore the set {b1,a2, . . . , am} is

join irredundant, and with (27) we have

1 = b1 +̇ a2 +̇ . . . +̇ am,

proving the first statement.

Repeating this we eventually obtain 1 = bj1 +̇ . . . +̇ bjm , and so {j1, . . . , jm} =

{1, . . . , n}. This shows that m = n.

Definition 3.26. Let

1 = a1 +̇c . . . +̇c am = b1 +̇c . . . +̇c bn.

We say that these c-decompositions are exchange isomorphic if m = n and there is a

permutation λ of the set I = {1, . . . ,m} such that

1 = a1 +̇c . . . +̇c ai−1 +̇c bλ(i) +̇c ai+1 +̇c . . . +̇c am,

for all i ∈ I.

Corollary 3.27. Let c ∈ D(L). If L is a Bc-lattice, then any two irredundant finite

c-decompositions of 1 with c-irreducible summands are exchange isomorphic.

Remark 3.28. The case c = 0 yields the Theorem of Ore (cf. Theorem 3.1) since, by

Proposition 3.17, every modular lattice of finite length is a B0-lattice. For c = 1 we get

the Kurosh–Ore Theorem. (Indeed, Proposition 3.18 shows that every complete modular

lattice is a B1-lattice.)

Proposition 3.20 and Corollary 3.27 together yield

Corollary 3.29. Let G be a group such that the center Z(G) is of finite length for

subgroups. If

G = G1 × . . .×Gm = H1 × . . .×Hn,

where Gi and Hj (i = 1, . . . ,m; j = 1, . . . , n) are directly indecomposable, then m = n

and , after renumbering , Gi ∼= Hi for 1 ≤ i ≤ n.

Combining Theorem 3.14 with Corollary 3.27 we get

Corollary 3.30. If for every distinguished c-decomposition function ϕ of L, condition

(i) (or equivalently (ii)) of Lemma 3.5 is satisfied , then any two irredundant finite c-

decompositions of 1 with c-irreducible summands are exchange isomorphic.

Remark 3.31. For c = 0, from Corollary 3.30 we obtain Theorem 5 (for direct de-

compositions with directly join irreducible summands) of Walendziak [1991b]. From this

corollary we also get Theorems 11 and 12 of Močulskĭı [1955].

By Theorem 3.25 and Proposition 3.16 we have

Corollary 3.32. Let two irredundant c-decompositions (23) and (24) of 1 be given. If

each [0, ai] and each [0, bj ] is of finite length and ai, bj are c-irreducible, then m = n and

for every ai there is bj such that we have the c-decomposition (25).

Hence we obtain
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Corollary 3.33 (Schmidt [1970]; see also Walendziak [1986]). Let L be a modular lat-

tice of finite length. If (23) and (24) are two irredundant c-decompositions of 1 with

c-irreducible summands, then m = n and for every ai there exists bj such that we have

the c-decomposition (25).

3.6. Property (B∗c). Preliminary lemmas. Recall that K(L) denotes the set of all

compact elements of L.

Definition 3.34 (see Walendziak [1989], Definition 2). Let a ∈ S(c, L), α ∈ DF(c, a),

and let

(28) 1 =
∑
c{di : i ∈ I}

be an arbitrary c-decomposition of 1. We denote by δi, i ∈ I, the decomposition functions

related to (28). If a ∈ K(L) and if there exists i ∈ I such that αδiα ∈ F(c, a), then we

say that a satisfies the B∗c -condition (in L).

It is easy to see that if a ∈ S(c, L) satisfies the B∗c -condition, then a also satisfies the

Bc-condition.

We first prove

Lemma 3.35. Let a ∈ K(L) and let a be a c-irreducible c-summand of 1. If [0, a] is of

finite length, then a satisfies the B∗c-condition.

Proof. Let α ∈ DF(c, a) and let b be a c-complement of a such that xα = a ∧ (x ∨ b) for

all x ∈ L. Let (28) be an arbitrary c-decomposition of 1, and denote by δi (i ∈ I) the

related decomposition functions. Since a is compact, there is a finite subset I1 ⊆ I such

that a ≤
∨
{di : i ∈ I1}. By Property III, a ≤

∨
{aδi : i ∈ I1}. We put s = c ∧ d. Set

d =
∨
{aδi : i ∈ I1}. Then a ≤ d. Observe that s is a distributive element in [0, d]. Let

x, y ∈ [0, d]. Compute:

(c ∧ d) ∨ (x ∧ y) = [c ∨ (x ∧ y)] ∧ d = [(c ∨ x) ∧ (c ∨ y)] ∧ d

= (c ∨ x) ∧ d ∧ (c ∨ y) ∧ d = [(c ∧ d) ∨ x] ∧ [(c ∧ d) ∨ y].

Then s ∈ D([0, d]). Obviously

(29) d =
∑

s{aδi : i ∈ I1}.

Since 1 = a∨b, we have d = d∧(a∨b) and hence, by modularity, we obtain d = a∨(b∧d).

Clearly, a ∧ b ∧ d ≤ c ∧ d = s. Therefore,

(30) d = a+s (b ∧ d).

Let δ′i, i ∈ I, and α′, β′ be the decomposition functions related to (29) and (30), re-

spectively. It is easily seen that a is s-irreducible in [0, d]. Since [0, a] is of finite length,

from Proposition 3.16 we conclude that a satisfies the Bs-condition in [0, d]. Applying

Lemma 3.23 to the s-decompositions (30) and (29) we deduce that there exists i ∈ I1 such

that α′δ′iα
′ ∈ F(s, a). Then aα′δ′iα

′ = a, and therefore a ∧ [aδ′i ∨ (b ∧ d)] = a. It follows

that a ≤ aδ′i ∨ (b ∧ d). From this, since aδ
′
i ≤ aδi, we have a ≤ aδi ∨ b. Consequently,

1 = a ∨ b ≤ aδ′i ∨ b, and hence 1 = aδi ∨ b = aαδi ∨ b. Then

(31) a = aαδiα.
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Suppose now that x ≤ a and xαδiα ≤ c. Since xαδ
′
iα
′ ≤ xαδiα, we obtain xα

′δ′iα
′ ≤ c.

Moreover, xα′δ′iα
′ ≤ a ≤ d. Thus xα′δ′iα

′ ≤ c ∧ d = s. Therefore, since x ≤ a and

α′δ′iα
′ ∈ F(s, a), we get x ≤ s. Hence x ≤ c. From this and (31) we conclude that

αδiα ∈ F(c, a).

Lemma 3.36. Let a be a 1-summand of the unit element of L. If a is join irreducible

and compact , then a satisfies the B∗1-condition.

Proof. Let α ∈ DF(1, a), and let b be a complement of a such that xα = a ∧ (x ∨ b) for

every x ∈ L. Let

1 =
∨
{di : i ∈ I},

and denote by δi (i ∈ I) the related decomposition functions. Since a is compact, there

is a finite subset I1 ⊆ I such that a ≤
∨
{di : i ∈ I1}. By Property III, we have

a ≤
∨
{aδi : i ∈ I1}.

Hence 1 = a ∨ b ≤
∨
{aδi ∨ b : i ∈ I1}, that is,

(32) 1 =
∨
{aδi ∨ b : i ∈ I1}.

By the weak isomorphism property, the lattices [b, 1] and [a ∧ b, b] are isomorphic. But a

is join irreducible in L, and therefore, in [a ∧ b, b]. Thus 1 ∈ J([b, 1]). Then from (32) we

conclude that there exists i ∈ I1 such that 1 = aδi ∨ b. Hence

aαδiα = aδiα = a ∧ (aδi ∨ b) = a,

and consequently, αδiα ∈ F(1, a). Therefore, a satisfies the B
∗
1-condition.

Lemma 3.37. Let

(33) 1 = a +̇ b = d +̇ e.

If the elements b and e are comparable, d is c-irreducible and a satisfies the Bc-condition,

then

(34) 1 = d +̇ b = a +̇ e.

Proof. Let 〈α, β〉 and 〈δ, ε〉 be the pairs of decomposition functions related to the

c-decompositions (33). Suppose that b ≤ e. If e ≤ b, then the proof is similar. Observe

that αεα 6∈ F(c, a). Indeed, suppose on the contrary that a = aαεα. Then

a = a ∧ (aαε ∨ b) ≤ a ∧ e (since b ≤ e).

Hence a ≤ e, a contradiction. Since a satisfies the Bc-condition and αεα 6∈ F(c, a), we

deduce that αδα ∈ F(c, a). Therefore, by Lemma 3.24, we obtain (34).

Lemma 3.38. Suppose the unit element of L has two irredundant c-decompo-sitions :

(35) 1 =
∑̇
{ai : i ∈ I}

and

(36) 1 =
∑̇
{bj : j ∈ J}

with c-irreducible summands. If each bj (j ∈ J) satisfies the B
∗
c-condition, then for every

finite subset J ′ = {j1, . . . , jk} ⊆ J there exists a finite subset I
′ = {i1, . . . , ik} ⊆ I such
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that

1 = ain +̇
∑̇
{bj : j 6= jn}(37)

= bjn +̇ bjn−1 +̇ . . . +̇ bj1 +̇
∑̇
{ai : i ∈ I − {i1, . . . , in}}

for all n = 1, . . . , k.

Proof. We argue by induction on the number of elements in J ′. We show the statement

for J ′ = {j1}. We have two c-decompositions of 1: (35) and

(38) 1 = bj1 +̇ bj1 .

Let αi, i ∈ I, and βj1 , βj1 be the decomposition functions related to (35) and (38),

respectively. By Definition 3.34, there exists i1 ∈ I such that βj1αi1βj1 ∈ F(c, bj1). We

consider two c-decompositions:

1 = bj1 +̇ bj1 = ai1 +̇ ai1 .

From Lemma 3.24 we obtain

(39) 1 = ai1 +̇ bj1 = bj1 +̇ ai1 .

Now we prove that the set T = {ai1} ∪ {bj : j ∈ J − {j1}} is join irredundant. Assume

on the contrary that there exists j2 ∈ J − {j1} such that 1 = ai1 +̇ bj1,j2 . Then

(40) 1 = bj1 +̇ bj1 = ai1 +̇ bj1,j2 .

Since bj1 satisfies the B
∗
c -condition, it also satisfies the Bc-condition. Applying Lem-

ma 3.37 to the c-decompositions (40) we deduce that 1 = bj1 +̇ bj1,j2 = bj2 . This means

that the set {bj : j ∈ J} is not join irredundant, contrary to our assumptions. Therefore,

the set T is join irredundant, and similarly, the set {bj1} ∪ {ai : i ∈ J − {j1}} is join

irredundant. Then, by Property II, from (39) we obtain

1 = ai1 +̇
∑̇
{bj : j 6= j1} = bj1 +̇

∑̇
{ai : i 6= i1}.

Thus, Lemma 3.38 is true for J ′ = {j1}.

Let us assume this statement for every (k − 1)-element subset of J and set J ′ =

{j1, . . . , jk}. By the induction hypothesis for the subset {j1, . . . , jk−1} of J
′ there exists

{i1, . . . , ik−1} ⊆ I such that (37) holds for each n = 1, . . . , k − 1. In particular,

(41) 1 = bjk−1 +̇ . . . +̇ bj1 +̇
∑̇
{ai : i ∈ I − {i1, . . . , ik−1}}.

We consider the c-decompositions (41) and (36). By the first part of the proof, there is

ik ∈ I−{i1, . . . , ik−1} such that (37) holds for n = k. Thus, there exists I
′ = {i1, . . . , ik} ⊆

I such that (37) holds for all n = 1, . . . , k, and the proof is complete.

Lemma 3.39. Suppose the element 1 of L has an irredundant c-decomposition (36)

into c-irreducible summands satisfying the B∗c-condition. If 1 also has an irredundant

c-decomposition

(42) 1 =
∑̇
{ai : i ∈ I

′} +̇
∑̇
{bj : j ∈ J

′}

such that J ′ is a proper subset of J , and ai is c-irreducible and compact for each i ∈ I
′,

then there are two countable or finite (with an equal number of elements) subsets I0 =
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{i1, . . . , in, . . .} ⊆ I
′ and J0 = {j1, . . . , jn, . . .} ⊆ J

′′ = J − J ′ such that

1 = ain +̇
∑̇
{bj : j 6= jn}(43)

= bjn +̇ . . . +̇ bj1 +̇
∑̇
{bj : j ∈ J

′} +̇
∑̇
{ai : i ∈ I

′ − {i1, . . . , in}}

for all n = 1, 2, . . . , and

(44)
∨
{ai : i ∈ I0} ≤

∨
{bj : j ∈ J

′ ∪ J0}.

Proof. Let j1 ∈ J
′′. By Lemma 3.38, there is an i1 ∈ I

′ such that

1 = ai1 +̇
∑̇
{bj : j ∈ J − {j1}}

and

(45) 1 = bj1 +̇
∑̇
{bj : j ∈ J

′} +̇
∑̇
{ai : i ∈ I

′ − {i1}}.

The element ai1 is compact and hence there is a finite subset {j2, . . . , jk} ⊆ J ′′ − {j1}

such that

ai1 ≤
∨
{bj : j ∈ J

′ ∪ J1}, where J1 = {j1, j2, . . . , jk}.

Applying Lemma 3.38 to the c-decompositions (45) and (36) we conclude that there

exist distinct indices i2, . . . , ik ∈ I
′ − {i1} such that (43) holds for each n = 2, . . . , k. In

particular,

(46) 1 = bjk +̇ . . . +̇ bj1 +̇
∑̇
{bj : j ∈ J

′} +̇
∑̇
{ai : i ∈ I

′ − I1},

where I1 = {i1, . . . , ik}. Again ai2 ∨ . . . ∨ aik is compact, and there exists a finite subset

{jk+1, . . . , jm} ⊆ J
′′ − J1 such that

ai2 ∨ . . . ∨ aik ≤
∨
{bj : j ∈ J

′ ∪ J2},

where J2 = J1 ∪{jk+1, . . . , jm}. Now we apply Lemma 3.38 to the c-decompositions (46)

and (36), and to the elements bjk+1 , . . . , bjm . As before, we get the existence of distinct

elements ik+1, . . . , im ∈ I
′− I1 such that (43) holds for each n = k+1, . . . ,m. By contin-

uing this process, we obtain two subsets I0 = {i1, . . . , in, . . .} and J0 = {j1, . . . , jn, . . .}

such that (43) and (44) hold.

3.7. Infinite c-decompositions. Now, we suppose that a distributive element c of L

has the following property:

(△) For each a ∈ L and for each S ⊆ L, if a ∧
∨
S′ ≤ c for every finite subset S′ of S,

then a ∧
∨
S ≤ c.

The main result of Chapter 3 is the following theorem.

The c-Decomposition Theorem 3.40 (see Walendziak [1989], Theorem 1). Let L

be a complete modular lattice and let c be a distributive element of L with property (△).

If the unit element of L has two irredundant c-decompositions (35) and (36) into c-

irreducible elements satisfying the B∗c-condition, then there is a bijection λ : I → J such

that , for every i ∈ I,

(47) 1 = ai +̇
∑̇
{bj : j 6= λ(i)}.
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Proof. Let W be the set of all ordered triples (M,≤M , fM ) where M ⊆ I, ≤M is a

well-ordering of M , fM is a one-to-one mapping of M to J and for each m ∈M ,

1 = am +̇
∑̇
{bj : j 6= fM (m)}(48)

=
∑̇
{bfM (i) : i ∈ (m]} +̇

∑̇
{ai : i ∈ I − (m]},

where (m] = {i ∈M : i ≤M m}, and

(49)
∨
{ai : i ∈M} ≤

∨
{bfM (i) : i ∈M}.

Then W is nonempty since it contains the triple consisting of the empty set, the empty

relation, and the empty mapping (here, we are considering relations and functions as sets

of ordered pairs). Define a partial order ≤W in W by (M,≤M , fM ) ≤W (M
′,≤M

′

, fM ′)

if either M = M ′ or M = {i ∈ M ′ : i ≤M
′

m} for some m ∈ M ′, ≤M
′

restricted to M

coincides with ≤M , and the restriction of fM ′ to M coincides with fM .

Let (Mk,≤
Mk , fMk) (k ∈ K) be a chain in W . Set

M =
⋃
{Mk : k ∈ K}, ≤

M=
⋃
{≤Mk : k ∈ K}, fM =

⋃
{fMk : k ∈ K}.

It is obvious that (M,≤M , fM ) ∈ W and that (M,≤M , fM ) is an upper bound of the

chain (Mk,≤
Mk , fMk) (k ∈ K). Therefore, by Zorn’s Lemma, W contains a maximal

element (N,≤N , fN ).

We consider the set

S = {bfN (i) : i ∈ N} ∪ {ai : i ∈ I −N}.

By (49) we have
∨
{ai : i ∈ N} ≤

∨
{bfN (i) : i ∈ N}.

Hence,

1 =
∨
{ai : i ∈ N} ∨

∨
{ai : i ∈ I −N} ≤

∨
{bfN (i) : i ∈ N} ∨

∨
{ai : i ∈ I −N}.

Thus, 1 =
∨
S. By (48), all finite subsets of S are c-independent.

Now, we prove that the set S is join irredundant. Suppose on the contrary that

s0 ≤
∨
(S − {s0}) for some s0 ∈ S. But s0 is compact and hence s0 ≤

∨
(T − {s0}),

where T is a finite subset of S containing s0. Thus T is join redundant, contrary to the

c-independence of T .

Let s ∈ S and let S′ be a finite subset of S −{s}. Since S′ ∪ {s} is c-independent, we

get s∧
∨
S′ ≤ c. Then, by property (△), we conclude that s∧

∨
(S−{s}) ≤ c. Therefore,

S is c-independent. Thus, 1 =
∑̇
S, and hence, if we set I ′ = I − N and J ′ = fN (N),

then we obtain the c-decomposition (42).

Now we prove that N = I. Suppose on the contrary that N 6= I, that is, I ′ 6= ∅.

Consequently, J ′ 6= J . Applying Lemma 3.39 to the c-decompositions (42) and (36) we

get two subsets I0 = {i1, . . . , in, . . .} ⊆ I ′ and J0 = {j1, . . . , jn, . . .} ⊆ J − J ′ such that

(43) and (44) hold.

Set P = N ∪ I0. Define the well-ordering ≤
P of P by the following rules: if i, i′ ∈ N ,

then i ≤P i′ iff i ≤N i′, and for every i ∈ N ,

i <P i1 <
P i2 <

P . . . <P in <
P . . .
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Define the mapping fP by fP (i) = fN (i) for every i ∈ N , and

fP (in) = jn for n = 1, 2, . . .

By (43) and (44), the triple (P,≤P , fP ) belongs to W . It is obvious that (P,≤
P , fP ) is

greater than (N,≤N , fN ). This contradiction forces the equality N = I. Then I
′ = ∅ and

from (42) we have J ′ = J . Therefore λ = fN is a one-to-one mapping of I onto J such

that, for each i ∈ I, we have the c-decomposition (47).

Remark 3.41. In a modular lattice of finite length every c-irreducible c-summand of 1

is compact and, by Lemma 3.35, it satisfies the B∗c -condition. Thus from Theorem 3.40

we get Corollary 3.33.

Theorem 3.40 and Lemma 3.35 yield

Corollary 3.42. Let L be a complete modular lattice and let c ∈ D(L) have prop-

erty (△). Let

1 =
∑̇
cT =

∑̇
cR,

where all c-summands are c-irreducible, T ∪ R ⊆ K(L), and for every a ∈ R ∪ T the

interval [0, a] is of finite length. Then there is a bijection λ : T → R such that , for each

t ∈ T ,

1 = t +̇c
∑̇
c{r : r 6= λ(t)}.

Corollary 3.43 (Walendziak [1990a], Theorem 3). Let L be an upper continuous mod-

ular lattice and let c ∈ D(L). Let

1 =
∑̇
c{ai : i ∈ I} =

∑̇
c{bj : j ∈ J}

be two irredundant c-decompositions of 1 with all summands c-irreducible. If the intervals

[0, ai] and [0, bj ] (i ∈ I, j ∈ J) are of finite length, then there exists a one-to-one mapping

λ of I onto J such that , for each i ∈ I, the c-decomposition (47) holds.

Proof. We first observe that if L is an upper continuous lattice, then every element c ∈ L

has property (△). Let a ∈ L and S be a subset of L. Suppose that a∧
∨
S′ ≤ c for every

finite subset S′ of S. By (UC),

a ∧
∨
S =
∨
{a ∧
∨
S′ : S′ ∈ F(S)}.

Therefore, a∧
∨
S ≤ c, because a∧

∨
S′ ≤ c for every S′ ∈ F(S). Thus c has property (△).

Crawley [1962] proved that if a is an element of an upper continuous lattice such

that [0, a] is of finite length, then a is compact. Therefore the elements ai (i ∈ I) and bj
(j ∈ J) are compact. Moreover, by Lemma 3.35, they satisfy the B∗c -condition. Now the

assertion follows from Theorem 3.40.

From Corollary 3.43, in the case c = 0, we get

Corollary 3.44 (Crawley [1962]). Let L be an upper continuous modular lattice and let

a ∈ L. Suppose that

a =
∨̇
{ai : i ∈ I} =

∨̇
{bj : j ∈ J}

are two direct decompositions of a, where ai (i ∈ I) and bj (j ∈ J) are directly join

irreducible. If each [0, ai] and each [0, bj ] is of finite length, then there exists a bijection
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λ : I → J such that , for each i ∈ I,

1 = ai ∨̇
∨̇
{bj : j 6= λ(i)}.

Corollary 3.45. Let L be a complete modular lattice and let a ∈ L. Assume that

a =
∨
T =
∨
R,

where T and R are join irredundant sets of join irreducible compact elements of L. Then

there is a bijection λ : T → R such that , for each t ∈ T , a = t ∨
∨
{r : r 6= λ(t)}.

Proof. It is obvious that the element c = 1 satisfies (△). By Lemma 3.36 each r ∈ R∪ T

satisfies the B∗1-condition. Now from Theorem 3.40 our corollary follows.

We recall from Section 2.1 that if an element a ∈ L has a representation a =
∨
T with

T ⊆ J(L), then we say that a has a join decomposition. Richter [1982a] (see Theorem 7)

proved that if a =
∨
T =

∨
R are two join decompositions of a in a complete lattice

satisfying the hereditary property (HJ), then any element t ∈ T can be replaced by an

r ∈ R. But if these join decompositions are irredundant there are no statements about

the cardinality of T and R except in the finite case. For upper continuous modular lattice

we are able to generalize the Theorem of Kurosh–Ore to infinite join decompositions and

to make a statement about the cardinality of T and R. We remark that for algebraic

strong semimodular J-lattices this is due to Richter [1991] (see Theorem 24). Now we

prove the following

Corollary 3.46. If L is an upper continuous modular lattice and if a =
∨
T =
∨
R are

two irredundant join decompositions of a, then T and R have the same cardinality , and

any element t of T can be replaced by an r ∈ R.

Proof. In the proof of Lemma 3 of Crawley [1962] it was shown that every completely

join irreducible element of an upper continuous lattice is compact. Therefore T ∪ R

⊆ K(L). Moreover, every completely join irreducible element of a complete lattice is join

irreducible. Hence Corollary 3.45 implies the assertion.

4. Weak direct products of algebras

4.1. Definition and preliminaries. The material of this chapter is taken from Wal-

endziak [2000a]. If (Ai : i ∈ I) is a system of similar algebras, then
∏
(Ai : i ∈ I), or∏

Ai, denotes the direct product of algebras Ai, i ∈ I. For x, y ∈
∏
Ai we define

I(x, y) = {i ∈ I : x(i) 6= y(i)}.

Definition 4.1 (cf. Grätzer [1979], p. 139). A subalgebra A of
∏
Ai is called a weak

direct product of Ai, i ∈ I, if the following two conditions are satisfied:

(A1) If x, y ∈ A, then the set I(x, y) is finite.

(A2) If x ∈ A, y ∈
∏
Ai and if I(x, y) is finite, then y ∈ A.
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We write A =
∏W (Ai : i ∈ I), or A =

∏W Ai, to denote that A is a weak direct

product of Ai, i ∈ I. If (Ai : i ∈ I) is a system of groups, rings or modules, then
∏W (Ai : i ∈ I) =

⊕
(Ai : i ∈ I),

where
⊕
denotes the direct sum. If the set I is finite, then the concepts of the weak

direct product and direct product coincide.

Let Con(A) denote the set of all congruence relations on an algebra A. Then Con(A)

forms an algebraic lattice with 0A and 1A, the smallest and the largest congruence rela-

tions, respectively (occasionally, they are denoted simply by 0 and 1).

The relational product of two congruences α and β is the relation

α ◦ β = {(a, b) : (a, c) ∈ α and (c, b) ∈ β for some element c}.

An algebra A is called directly indecomposable if it is nontrivial and is not isomorphic

to a direct product of two nontrivial algebras. A is called subdirectly irreducible if |A| > 1

and 0A is a completely meet irreducible element of Con(A). We say that an algebra A is

simple if it has exactly two congruences, 0A and 1A; A has permuting congruences , or is

congruence permutable if for any α, β ∈ Con(A), α◦β = β ◦α; and A is called congruence

modular (distributive) if Con(A) is modular (distributive).

Proposition 4.2 (Hu [1969], Lemma 11). Let A be a congruence permutable algebra,

and let θi ∈ Con(A), i ∈ I. Then

A ∼=
∏W (A/θi : i ∈ I) if and only if 0A =

⋂
{θi : i ∈ I} and 1A =

∨
{θi : i ∈ I},

where θi =
⋂
{θj : j ∈ I − {i}}.

A congruence α ∈ Con(A) is called a decomposition congruence if there is a β ∈

Con(A) such that α ∩ β = 0A and α ◦ β = 1A. Let DCon(A) denote the set of all

decomposition congruences of A. We call a sublattice of a complete lattice
∨
-closed

whenever it is closed under arbitrary joins.

Lemma 4.3. If DCon(A) is a
∨
-closed modular sublattice of Con(A), then DCon(A) is

atomistic.

Proof. Let α ∈ DCon(A), α 6= 0A and let α
′ be a complement of α. Choose a, b ∈ A such

that (a, b) 6∈ α′ and consider the set

∆ = {β ∈ DCon(A) : (a, b) 6∈ β and α′ ≤ β}.

Then ∆ is nonempty, since α′ ∈ ∆. Let Γ be a chain in ∆. It is easy to see that
∨
Γ ∈ ∆.

Therefore, ∆ contains a maximal element δ by Zorn’s Lemma. Since DCon(A) is com-

plemented and modular, it is relatively complemented. Let δ′ be a relative complement

of δ in [α′, 1A]. Then δ ∩ δ
′ = α′ and δ ∨ δ′ = 1A. From the maximality of δ we infer that

δ ≺ 1A. By modularity, α
′ ≺ δ′ and hence 0A = α∩α

′ ≺ α∩ δ′ ≤ α. Therefore, DCon(A)

is atomic. Now, by Theorem 4.3 of Crawley–Dilworth [1973], DCon(A) is atomistic.

Lemma 4.4. Let A be an algebra such that DCon(A) is a sublattice of Con(A). If θ is

a coatom of DCon(A), then A/θ is directly indecomposable.
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Proof. Suppose on the contrary that there exist two congruences α, β such that θ < α,

β < 1A, α ◦ β = 1A and α ∩ β = θ. Let θ′ be a congruence satisfying 0A = θ ∩ θ′ and

1A = θ ◦ θ
′. Obviously,

(1) α ∩ (β ∩ θ′) = 0A.

Observe that

(2) α ◦ (β ∩ θ′) = 1A.

Indeed, let x, y ∈ A, and choose z, t ∈ A such that (x, z) ∈ α, (z, y) ∈ β, (z, t) ∈ θ, and

(t, y) ∈ θ′. Then (x, t) ∈ α and (t, y) ∈ β ∩ θ′. Therefore, (x, y) ∈ α ◦ (β ∩ θ′), and hence

(2) holds. From (1) and (2) we conclude that α ∈ DCon(A), contradicting the fact that

θ is a coatom of DCon(A). Consequently, A/θ is directly indecomposable.

Lemma 4.5. Let A be an algebra and let Γ be a
∨
-closed sublattice of Con(A). If Γ

is an atomistic semimodular lattice, then there exist coatoms θi ∈ Γ (i ∈ I) such that

0A =
⋂
{θi : i ∈ I} and 1A =

∨
{θi : i ∈ I}.

Proof. Let Ω be the set of all atoms of Γ . Since the lattice Γ is atomistic, 1A =
∨
Ω. Let

{αi : i ∈ I} be a maximal subset of Ω such that

αi ∩
∨
{αj : j ∈ I − {i}} = 0A

for all i ∈ I (apply Zorn’s Lemma). From Theorem 6.5 of Crawley–Dilworth [1973] we

deduce that

(3) 1A =
∨
{αi : i ∈ I}.

Set θi =
∨
{αj : j 6= i} for i ∈ I. By semimodularity, θi (i ∈ I) is a coatom of Γ . We put

γ =
⋂
{θi : i ∈ I}.

Let P be the set of all subsets J ⊆ I such that

γ ∩
∨
{αj : j ∈ J} = 0A.

P is nonempty since ∅ ∈ P . Let Jk (k ∈ K) be a chain in P . By upper continuity we

conclude that
⋃
{Jk : k ∈ K} ∈ P . Therefore, by Zorn’s Lemma, P contains a maximal

element M . Now we prove that M = I. Suppose on the contrary that M 6= I. Let

i0 ∈ I −M . Obviously,

γ ≤ θi0 and δ =
∨
{αi : i ∈M} ≤ θi0 .

Since 0A ≺ αi0 , by semimodularity we get

δ ≺ αi0 ∨
∨
{αi : i ∈M} =

∨
{αi : i ∈ N},

where N =M∪{i0}. Then θi0∩
∨
{αi : i ∈ N} = δ. Hence γ∩

∨
{αi : i ∈ N} = γ∩δ = 0A.

Consequently, N ∈ P . This contradiction forcesM = I. Thus γ = γ∩
∨
{αi : i ∈ I} = 0A,

i.e.,

(4)
⋂
{θi : i ∈ I} = 0A.

Since θj ≥ αi for j 6= i, we obtain θi =
⋂
{θj : j 6= i} ≥ αi. From (3) we have

1A =
∨
{θi : i ∈ I},

and by (4), the proof is complete.
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4.2. Some existence theorems. The first major result is

Theorem 4.6. Let A be an algebra such that DCon(A) is an atomistic semimodular
∨
-closed sublattice of Con(A). Suppose that for every atom α of DCon(A), if β is a

complement of α in DCon(A), then 1A = α ◦ β. Then there are coatoms θi (i ∈ I) of

DCon(A) such that A is isomorphic to a weak direct product of the (directly indecompos-

able) algebras A/θi, i ∈ I.

Proof. By the proof of Lemma 4.5 there exist atoms αi (i ∈ I) of DCon(A) such that

1A =
∨
{αi : i ∈ I} and αi ∩

∨
{αj : j ∈ I − {i}} = 0A

for all i ∈ I. Set θi =
∨
{αj : j 6= i}. By semimodularity, θi (i ∈ I) is a coatom of

DCon(A), and it is a complement of αi. Therefore, by assumption,

(5) 1A = θi ◦ αi

for all i ∈ I. Since θj ≥ αi for j 6= i, we obtain θi =
⋂
{θj : j 6= i} ≥ αi. Then

(6) 1A =
∨
{θi : i ∈ I},

and by (5),

(7) 1A = θi ◦ θi.

From the proof of Lemma 4.5 it follows that

(8)
⋂
{θi : i ∈ I} = 0A.

We denote by f the function from A to B =
∏
(A/θi : i ∈ I) defined by

f(x) = (x/θi : i ∈ I) (x ∈ A).

From (8) we conclude that f is an embedding. Let x, y ∈ A. We show that R = {i ∈ I :

x/θi 6= y/θi} is finite. By (6), (x, y) ∈
∨
{θi : i ∈ I}. So there are i1, . . . , in ∈ I such that

(x, y) ∈ θi1 ∨ . . . ∨ θin . Observe that

(9) R ⊆ {i1, . . . , in}.

Indeed, let x/θi 6= y/θi, for some i ∈ I, and suppose on the contrary that i 6∈ {i1, . . . , in}.

Therefore, θi1 ∨ . . . ∨ θin ≤ θi, and hence (x, y) ∈ θi, i.e., x/θi = y/θi, a contradiction.

From (9) we deduce that R is finite. Now we prove that

(10) if x ∈ A, y ∈ B and |{i ∈ I : x/θi 6= y/θi}| < ℵ0, then y ∈ f(A).

Suppose that the set S = {i ∈ I : x/θi 6= y/θi} contains only one element i1. Let t ∈ A

satisfy t/θi1 = y(i1). Since 1A = θi1 ◦ θi1 there is z ∈ A such that (t, z) ∈ θi1 and

(z, x) ∈ θi1 . It is easy to see that y = f(z). Consequently, y ∈ f(A). From this we see

by induction that (10) holds. Hence f(A) is a weak direct product of the algebras A/θi,

i ∈ I. That the algebras A/θi are directly indecomposable follows from Lemma 4.4.

Corollary 4.7. Let A be an algebra such that DCon(A) is a
∨
-closed sublattice of

Con(A) and suppose that for any α, β ∈ DCon(A), α and β permute. Then A is isomor-

phic to a weak direct product of directly indecomposable algebras.

Proof. Since α ∨ β = α ◦ β for all α, β ∈ DCon(A), we conclude that DCon(A) is a

modular lattice. By Lemma 4.3, DCon(A) is atomistic. Applying Theorem 4.6 we see
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that there exist coatoms θi (i ∈ I) of DCon(A) such that A ∼=
∏W (A/θi : i ∈ I). From

Lemma 4.4 we see that the algebras A/θi are directly indecomposable.

Corollary 4.8 (Hashimoto [1957], Theorem 4.5). If an algebra A has permuting con-

gruences and DCon(A) is a
∨
-closed sublattice of Con(A), then there exists a system

(Ai : i ∈ I) of directly indecomposable algebras such that A ∼=
∏W
(Ai : i ∈ I).

Corollary 4.9 (Hashimoto [1957], Theorem 5.1). Let A be any algebra whose congru-

ences permute and whose congruence lattice is complemented. Then A is isomorphic to

a weak direct product of simple algebras.

Proof. Note that in Crawley–Dilworth [1973] (see Theorem 4.3) it is shown that every

algebraic complemented modular lattice is atomistic. Therefore, DCon(A) = Con(A) is

atomistic. By Theorem 4.6, there are coatoms θi (i ∈ I) of Con(A) such that A ∼=∏W
(A/θi : i ∈ I). It is obvious that A/θi (i ∈ I) are simple algebras.

Congruence permutable algebras include groups, rings, modules, quasigroups, Heyting

algebras and relatively complemented lattices. In the case of groups, Corollary 4.9 implies

the following statement.

Corollary 4.10 (Hashimoto [1957], p. 104). Let G be an Ω-group. If for every normal

Ω-subgroup H of G there is a normal Ω-subgroup K such that G = H ⊕K, then G is

a direct sum of simple Ω-groups.

Remark 4.11. Corollary 4.9 includes the result of Blair [1953] on the decomposition of

rings into simple rings.

For modular algebraic lattice L the following statements are equivalent:

(i) L is complemented.

(ii) The join of the atoms of L is 1.

(See Lemma 4.83 of McKenzie–McNulty–Taylor [1987].) Therefore, Corollary 4.9 yields

Corollary 4.12. A module M which is the sum

M =
∑
{V : V ≤M and V is a simple module}

is a direct sum of simple submodules.

For vector spaces we obtain the following

Corollary 4.13. Every vector space V is a direct sum of one-dimensional subspaces

of V .

For lattices, we have

Corollary 4.14 (Dilworth [1950], Theorem 4.4). A relatively complemented lattice L

satisfying the ascending chain condition is isomorphic to a direct product of finitely many

simple relatively complemented lattices.

Proof. It is well known that L is congruence permutable. By Theorem 10.8 of Crawley–

Dilworth [1973], Con(L) is complemented. Hence there exists a system (Li : i ∈ I) of
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simple lattices such that L ∼=
∏W (Li : i ∈ I). According to Proposition 4.2 we may

assume that each Li is L/θi, with

0L =
⋂
{θi : i ∈ I} and 1L =

∨
{θi : i ∈ I}

where θi =
⋂
{θj : j ∈ I − {i}}. Observe that

θi1 < θi1 ∨ θi2 < θi1 ∨ . . . ∨ θin < . . . < 1L =
∨
{θi : i ∈ I}

for ij ∈ I (j = 1, 2, . . .). Indeed, if θi0 ≤
∨
{θj : j 6= i0} for some i0 ∈ I, then θi0 ≤ θi0 ,

and hence θi0 = 1L, a contradiction.

But Con(L) satisfies the ascending chain condition (see Theorem 4.3 of Dilworth

[1950]), and therefore, I is finite. Consequently, L is isomorphic to a direct product of

simple lattices Li, which clearly must be relatively complemented.

Proposition 4.15. Let A be an algebra such that DCon(A) is a modular
∨
-closed sub-

lattice of Con(A) and suppose that every atom of DCon(A) has a unique complement.

Then A is isomorphic to a weak direct product of directly indecomposable algebras.

Proof. By Lemma 4.3, DCon(A) is an atomistic lattice. Let α be an atom of DCon(A),

and let β be a complement of α in DCon(A). Then 1 = α ◦ β, because α has a unique

complement. Applying Theorem 4.6 we obtain the assertion.

As a consequence of Proposition 4.15 we get the following

Corollary 4.16 (Hashimoto [1957], p. 106). If A is a congruence distributive algebra

such that DCon(A) is a
∨
-closed sublattice of Con(A), then A can be decomposed into

a weak direct product of directly indecomposable factors.

Theorem 4.17. Let A be any algebra such that 1A is a join of join irreducible elements

of Con(A) and suppose that every decomposition congruence on A is neutral (i.e., it is

standard and codistributive) in Con(A). Then A is isomorphic to a weak direct product

of directly indecomposable algebras.

Proof. We first prove that α ∨ β = α ◦ β for α ∈ DCon(A) and β ∈ Con(A). Let α′ be a

congruence satisfying 0A = α∩α
′ and 1A = α◦α

′. Assume that (x, y) ∈ α∨β. Obviously,

there is a z ∈ A such that (x, z) ∈ α and (z, y) ∈ α′. Consequently, (z, y) ∈ α′ ∩ (α ∨ β).

Since α is a neutral element in Con(A), we have

α′ ∩ (α ∨ β) = (α′ ∩ α) ∨ (α′ ∩ β) = α′ ∩ β.

Then (z, y) ∈ β, and hence (x, y) ∈ α◦β. Thus α∨β = α◦β. Therefore, every element of

DCon(A) is permutable with any congruence on A. Now it is easy to see that DCon(A)

is a distributive sublattice of Con(A). It is sufficient to show that DCon(A) is
∨
-closed.

Let Γ = {αi : i ∈ I} ⊆ DCon(A), and let α′i denote the congruence satisfying

0A = αi ∩ α
′
i and 1A = αi ◦ α

′
i. We prove that α =

∨
Γ ∈ DCon(A). Write

Ψ = {β ∈ Con(A) : β � α and β is join irreducible}.

and put α′ =
∨
Ψ . Let β be a join irreducible element of Con(A). By the definition of

α, if β � α, then β ≤ α′. Therefore, β ≤ α ∨ α′. Since 1A is a join of join irreducible

elements of Con(A), we conclude that

1A = α ∨ α
′.
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We claim that

if β ∈ Ψ , then β ∩ αi = 0A for any i ∈ I.

Indeed, β = β ∩ (αi ∨ α
′
i) and we have

β = (β ∩ αi) ∨ (β ∩ α
′

i).

Since β � αi and β is join irreducible, we get β = β∩α
′
i. Hence β ≤ α

′
i and consequently,

β ∩ αi ≤ αi ∩ α
′
i = 0A. Thus β ∩ αi = 0A. Now, by (UC),

αi ∩ α
′ = αi ∩

∨
Ψ =
∨
{αi ∩

∨
Φ : Φ ∈ F(Ψ)}.

But αi ∩
∨
Φ =
∨
{αi ∩ β : β ∈ Φ} = 0A, since αi is neutral and αi ∩ β = 0A. Therefore,

αi ∩ α
′ = 0A.

Compute:

α ∩ α′ = α′ ∩
∨
{αi : i ∈ I}

=
∨
{α′ ∩

∨
{αj : j ∈ J} : J ∈ F(I)} (use (UC))

=
∨
{α′ ∩ αi : i ∈ I} (since αi (i ∈ I) are neutral)

= 0A.

Thus 1A = α ∨ α′ and α ∩ α′ = 0A. But α
′ permutes with all congruences αi, i ∈ I,

and hence α′ permutes with
∨
Γ = α (see Lemma 3.1 of Dilworth [1950]). Consequently,

1A = α ◦ α
′ and α ∩ α′ = 0A, i.e., α ∈ DCon(A).

Corollary 4.18. If A is an algebra such that Con(A) is a distributive lower continuous

lattice, then A is isomorphic to a weak direct product of directly indecomposable algebras.

Proof. By lower continuity of Con(A), 1A is a join of join irreducible elements of Con(A).

Therefore, the conclusion follows from Theorem 4.17.

Since every complete Boolean algebra is lower continuous, we deduce from Corol-

lary 4.18 the following

Corollary 4.19. Let A be any algebra whose congruence lattice is a Boolean algebra.

Then A can be decomposed into a weak direct product of directly indecomposable factors.

Recall that a complete lattice L is called completely distributive if for arbitrary

sets I, Ji (i ∈ I) the identity
∧
{
∨
{aij : j ∈ Ji} : i ∈ I} =

∨
{
∧
{aip(i) : i ∈ I} : p ∈

∏
(Ji : i ∈ I)}

(or the dual one) holds in L.

It is well known that if Con(A) is completely distributive, then any α ∈ Con(A) is a

join of join irreducible congruences on A. Hence, if Con(A) is a completely distributive

lattice, then the assumptions of Theorem 4.17 are satisfied. Therefore we have

Corollary 4.20 (Draškovičová [1987], Theorem 1.7). If Con(A) is a completely dis-

tributive lattice, then the algebra A is isomorphic to a weak direct product of directly

indecomposable algebras.

Corollary 4.21. A relatively complemented lattice L satisfying the descending chain

condition is isomorphic to a direct product of finitely many directly indecomposable rela-

tively complemented lattices.
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Proof. By Theorem 4.3 of Dilworth [1950], Con(L) satisfies the descending chain con-

dition (i.e., each nonempty subset of Con(L) has a minimal element). Hence Con(L) is

lower continuous. From Corollary 4.18 we conclude that L ∼=
∏W
(Li : i ∈ I), where Li

(i ∈ I) are directly indecomposable lattices. According to Lemma 4.5 we may assume

that each Li is L/θi, with

0L =
⋂
{θi : i ∈ I} and 1L =

∨
{θi : i ∈ I}.

It is easy to see that

1L >
∨
{θi : i 6= i1} > . . . >

∨
{θi : i 6= i1, . . . , in} > . . .

But Con(L) satisfies the descending chain condition, and therefore, I is finite. Thus, L

is isomorphic to a direct product of lattices Li, which clearly must be relatively comple-

mented.

Let L be a lattice. We say that L is discrete if all bounded chains in L are finite (see

Jakub́ık [1971]). L is called weakly discrete if there exists a maximal finite chain between

any comparable elements (Draškovičová [1987]). Each discrete lattice is weakly discrete.

Observe that, if L is weakly discrete, then 1L is a join of join irreducible congruences

on L. Obviously

1L =
∨
{CgL(a, b) : a, b ∈ L, a < b},

where CgL(a, b) is the congruence relation on L generated by {(a, b)}. Let

a = a0 ≺ a1 ≺ . . . ≺ an−1 ≺ an = b.

Then

CgL(a, b) =
∨
{CgL(ai, ai+1) : i = 0, . . . , n− 1}.

It is clear that CgL(ai, ai+1), i = 0, . . . , n − 1, are join irreducible congruences. Con-

sequently, 1L is a join of join irreducible congruences on L. Therefore, Theorem 4.17

yields

Corollary 4.22 (Draškovičová [1987] and Jakub́ık [1971]). If a lattice L is weakly dis-

crete or if L is discrete, then L is isomorphic to a weak direct product of directly inde-

composable lattices.

5. 〈L, ϕ〉-representations of algebras

5.1. Introduction. Let (Ai : i ∈ I) be a system of similar algebras. Recall that
∏
(Ai : i ∈ I) or

∏
Ai denotes the direct product of algebras. If A = Ai for all i ∈ I, we

write AI and call it a direct power of A. In case I = {1, 2}, we write A1 ×A2.

Let A ⊆
∏
Ai be a subdirect product. Then A is called a full subdirect product of the

Ai, i ∈ I, if the condition (A2) of Definition 4.1 is satisfied.

Obviously, any weak direct product of the algebras Ai (i ∈ I) is a full subdirect

product of them. If I is finite, then the concepts of the weak direct product, full subdirect

product and direct product coincide.
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Let I be a nonvoid set. Let P = P(I) and F = F(I) denote the sets of all sub-

sets and of all finite subsets of I, respectively. We denote by P(I) the Boolean algebra

〈P(I),∩,∪,′ , ∅, I〉. The notation L E P(I) means that L is an ideal of P(I).

Walendziak [1994a] introduced the following concept:

Definition 5.1. Let Ai (i ∈ I) be similar algebras and let L E P(I). We say that a

subalgebra A of the direct product
∏
(Ai : i ∈ I) is an L-restricted full subdirect product

of the algebras Ai, i ∈ I, and write

A =
∏L(Ai : i ∈ I)

iff the following two conditions hold:

(B1) A is a full subdirect product of Ai, i ∈ I.

(B2) For all x, y ∈ A, I(x, y) ∈ L.

This notion is a common generalization of weak direct products (L = F(I)) and full

subdirect products (L = P(I)).

Let A ⊆
∏
(Ai : i ∈ I) be a subdirect product and let L be an ideal of P(I). Then A

is called an L-restricted subdirect product (see Hashimoto [1957], p. 92) if it satisfies (B2).

If, in addition, A has the property that for every x ∈ A and every y ∈
∏
Ai, I(x, y) ∈ L

implies y ∈ A, then we say that A is an L-restricted direct product (see Grätzer [1979],

p. 140 or Walendziak [1991a] , p. 219). These notions are generalized in

Definition 5.2 (Walendziak [1998]). Let A be a subdirect product of algebras Ai, i ∈ I,

and let L, L′ be ideals of P(I). We say that A is an 〈L,L′〉-product of Ai, and we write

A =
∏L′
L
(Ai : i ∈ I), or A =

∏L′
L
Ai,

if A satisfies (B2) and the following condition:

(B3) (x ∈ A, y ∈
∏
Ai, and I(x, y) ∈ L

′) ⇒ y ∈ A.

Obviously, A =
∏L
L
Ai if A is an L-restricted direct product of algebras Ai, i ∈ I. In

particular, if L = L′ = P we obtain the direct product. If L′ = {∅} in Definition 5.2,

we get the concept of an L-restricted subdirect product. We note that if L = P, then an

L-restricted subdirect product is a subdirect product. It is easily seen that
∏
L
Ai is an

L-restricted full subdirect product of the Ai, i ∈ I. Finally, a full subdirect product is a

〈P,F〉-product.

Definition 5.3 (Walendziak [1992], Definition 1). Let Ai (i ∈ I) be algebras of the same

type, B =
∏
(Ai : i ∈ I), and let ψ ⊆ B × B. We say that a subdirect product A of Ai

(i ∈ I) is a ψ-product of these algebras if the following condition holds:

(C1) For every (xi : i ∈ I) ∈ A
I , if (xi, xj) ∈ ψ for each i, j ∈ I, then (xi(i) : i ∈ I) ∈ A.

We note that the concept of ψ-product could be explained as some form of “convexity”

(see Walendziak [1993b], p. 320). Observe that subdirect and direct products of algebras

are special cases of ψ-products. Indeed, let A be a subalgebra of the direct product B of

similar algebras Ai (i ∈ I). It is obvious that A is a subdirect product if and only if A is

a 0B-product of algebras Ai, i ∈ I.
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Now we claim that

A is a 1B-product of the Ai (i ∈ I) ⇔ A = B.

Clearly, B is a 1B-product. Conversely, let x ∈ B and x(i) = ai ∈ Ai for all i ∈ I. Since

A is a subdirect product, there is a system (xi : i ∈ I) ∈ A
I such that xi(i) = ai for all

i ∈ I. From Definition 5.3 it follows that (xi(i) : i ∈ I) ∈ A and hence x ∈ A.

ψ-products are studied in Walendziak [1993a,b]. In this chapter, generalizing restrictd

subdirect, full subdirect, and weak direct products under the name of 〈L, ψ〉-products,

some classical theorems on direct, subdirect, weak direct and full subdirect representa-

tions are deduced from our more general new results.

5.2. 〈L, ψ〉-products of algebras. Now we introduce the following concept:

Definition 5.4 (Walendziak [1993c], Definition 1). Let (Ai : i ∈ I) be a system of similar

algebras, L be an ideal of P(I), and let ψ be a binary relation on B =
∏
(Ai : i ∈ I). A

subalgebra A of B is called an 〈L, ψ〉-product of the algebras Ai, i ∈ I, if it is a subdirect

product (of these algebras) satisfying conditions (B2) and

(C2) If i ∈ I and (x, y) ∈ A2 ∩ ψ, then wi(x, y) ∈ A,

where the element z = wi(x, y) is defined by z(i) = x(i) and z(j) = y(j) for j 6= i.

We write A =
∏L
ψ(Ai : i ∈ I), or A =

∏L
ψ Ai, to denote that A is an 〈L, ψ〉-product

of Ai, i ∈ I. If ψ = 1B, we write
∏L
(Ai : i ∈ I) for

∏L
ψ(Ai : i ∈ I). If C = Ai for all

i ∈ I we call
∏L
ψ(Ai : i ∈ I) an 〈L, ψ〉-power of C with exponent I.

Example 5.5. Let I be an index set and let G = ZI2 , where Z2 is the two-element group.

For x∈G, we define the support of x, denoted by supp(x), as supp(x)={i ∈ I : x(i) 6= 0}.

Let I ′ be a subset of I, and set

L = {X ∪ Y : X is a finite subset of I ′ and Y ⊆ I − I ′},

ψ = {(x, y) ∈ G2 : x(i) = y(i) for all i ∈ I − I ′}.

Define

H1 = {x ∈ G : x(i) = x(j) for all i, j ∈ I − I
′},

H2 = {x ∈ G : I
′ ∩ supp(x) is finite},

H3 = {x ∈ G : supp(x) is finite}, and

H4 = {x ∈ G : supp(x) is finite or I − supp(x) is finite}.

It is easy to see that H1 is a 〈P, ψ〉-power of Z2 with exponent I, and H2 is an L-resticted

full subdirect power. Moreover, H1∩H2 is an 〈L, ψ〉-power of Z2, and H3 is a weak direct

power (that is, H3 =
⊕
(Ai : i ∈ I), where Ai = Z2 for all i ∈ I). Finally, H4 is a full

subdirect power of Z2, but it is not a weak direct power.

Example 5.6. Let I be a set and (Ri : i ∈ I) be a system of rings. For x ∈
∏
Ri, let

supp(x) = {i ∈ I : x(i) 6= 0}. For an infinite cardinal number m, the m-product of the Ri,

i ∈ I, is defined to be the subring
∏

m

(Ri : i ∈ I) = {x ∈
∏
Ri : |supp(x)| < m}.
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(See, for example, Dauns [1987].) Let

L = {J ⊆ I : |J | < m}.

Observe that A =
∏

m

Ri is an L-restricted full subdirect product of the Ri. Clearly,

A ⊆
∏
Ri is a full subdirect product. Let x, y ∈ A. Since

I(x, y) ⊆ supp(x) ∪ supp(y),

we conclude that I(x, y) ∈ L, and therefore, A satisfies (B2). Then A =
∏L

Ri.

Example 5.7. Let (Mi : i ∈ I) be a system of left R-modules, and let D be a dual ideal

of P(I) such that I − {i} ∈ D for all i ∈ I. We define the D-product of the Mi’s to be
∏
D
(Mi : i ∈ I) = {x ∈

∏
Mi : {i ∈ I : x(i) = 0} ∈ D}.

(This notion is due to Loustaunau [1990].) It is easily seen that
∏
D
Mi is an L-restricted

full subdirect product of modules Mi, where L = {I − J : J ∈ D}.

Example 5.8. Let Li, i ∈ I, be lattices with zero, and let L be an ideal ofP(I) containing

all finite subsets of I. We set L =
∏
(Li : i ∈ I) and define a binary relation θ on L as

follows:

xθy ⇔ I(x, y) ∈ L.

Since θ is a congrunce relation of L, we can form the lattice L/θ called a reduced product of

Li, i ∈ I (see Grätzer [1979], Section 22, or Grätzer [1978], Chapter V). Let f : L→ L/θ

be the natural epimorphism. The f -inverse image of the zero of L/θ (that is, the set

{x ∈ L : f(x) = 0/θ}) is an L-restricted full subdirect product of Li, i ∈ I.

Proposition 5.9. Let A,Ai (i ∈ I) be similar algebras, B =
∏
Ai, and let ψ be an

equivalence relation over B. If A is a ψ-product of the algebras Ai, i ∈ I, then A is a

〈P, ψ〉-product of these algebras.

Proof. Take i0 ∈ I. Let x, y ∈ A with (x, y) ∈ ψ, and let z ∈ B be defined as follows:

z(i0) = x(i0) and z(i) = y(i) for all i ∈ I − {i0}. We put xi0 = x and xi = y if i 6= i0. By

(C1), (xi(i) : i ∈ I) ∈ A. But (xi(i) : i ∈ I) = z, and therefore z ∈ A. Then (C2) holds,

and thus A =
∏P
ψ (Ai : i ∈ I).

Remark 5.10. The converse of Proposition 5.9 is not true in general: the group H4 (see

Example 5.5) is a 〈P, 1B〉-power of Z2, but it is not a direct power.

Proposition 5.11. Let A be a subalgebra of B =
∏
Ai and let L be an ideal of P(I).

Then:

(i) A =
∏P
0B
(Ai : i ∈ I) iff A is a subdirect product of the algebras Ai, i ∈ I.

(ii) A =
∏L
0B
(Ai : i ∈ I) iff A is an L-restricted subdirect product of the Ai, i ∈ I.

(iii) A =
∏L
(Ai : i ∈ I) iff A is an L-restricted full subdirect product of the Ai, i ∈ I.

(iv) A =
∏P

Ai iff A is a full subdirect product of Ai.

(v) A =
∏F

Ai iff A is a weak direct product.

Proof. The statements (i)–(iv) are obvious. To prove (v), assume first that A is an

〈F , 1B〉-product of the Ai, i ∈ I. It is clear that (A1) holds. Observe that (A2) is

also satisfied. Let x ∈ A, y ∈ B and suppose that the set I(x, y) contains only one
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element i1. Since A is a subdirect product of Ai (i ∈ I), there is t ∈ T such that

t(i1) = y(i1). Take z = wi1(t, x). By Definition 5.4, z ∈ A. Since y = z, we have y ∈ A.

From this we see by induction that (A2) holds. Then A is a weak direct product of

algebras Ai, i ∈ I. Conversely, assume that A satisfies conditions (A1) and (A2). It is

easy to see that conditions (C1) and (C2) hold with L = F and ψ = 1B. Therefore,

A =
∏F (Ai : i ∈ I).

5.3. ϕ-product of congruences and ϕ-isotopy. Let {θi : i ∈ I} be a set of congru-

ences of an algebra A. For any set M ⊆ I we define

θ(M) =
⋂
{θj : j ∈ I −M}.

We shall use the notation θi for θ({i}), i ∈ I. Let ϕ be a binary relation on A, and let L

be an ideal of P(I). For α ∈ Con(A), we write

α =
∏L
ϕ{θi : i ∈ I}, or α =

∏L
ϕ θi,

if the following conditions are satisfied:

(D0) α =
⋂
{θi : i ∈ I}.

(D1) 1A =
∨
{θ(M) :M ∈ L}.

(D2) For all i ∈ I, ϕ ⊆ θi ◦ θi.

If L = P(I) we write

(1) α =
∏
ϕ{θi : i ∈ I}

instead of α =
∏L
ϕ{θi : i ∈ I}, and we say that α is the ϕ-product of the congruences θi

(i ∈ I). In this case, if I = {1, . . . , n}, we write α = θ1×ϕ . . .×ϕ θn. For abbreviation, we

let
∏L{θi : i ∈ I} stand for

∏L
1A
{θi : i ∈ I}. If the set {θi : i ∈ I} is meet irredundant,

then we say that (1) is an irredundant ϕ-product decomposition of α.

It is easy to see that if L = P(I), then the condition (D1) holds. Therefore,

(2) α =
∏
ϕ{θi : i ∈ I} ⇔ α =

⋂
θi and ϕ ⊆ θi ◦ θi for each i.

Hence,

α = θ1 ×ϕ θ2 ⇔ α = θ1 ∩ θ2 and ϕ ⊆ (θ1 ◦ θ2) ∩ (θ2 ◦ θ1).

From (2) we also have

Proposition 5.12. We have:

(i) α =
∏
0A
{θi : i ∈ I} iff α =

⋂
{θi : i ∈ I}.

(ii) α =
∏
{θi : i ∈ I} iff α =

⋂
{θi : i ∈ I} and 1A = θi ◦ θi for each i.

Proposition 5.13. Let A be a congruence permutable algebra, α ∈ Con(A), and let θi
(i ∈ I) be congruences of A such that α =

⋂
{θi : i ∈ I}. Then

α =
∏F{θi : i ∈ I} ⇔ 1A =

∨
{θi : i ∈ I}.

Proof. Let α =
∏F

θi. Then 1A = θi ◦ θi for all i, and

(3) 1A =
∨
{θ(M) :M ∈ F}.
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Observe that

(4) For every ∅ 6=M ∈ F , θ(M) ≤
∨
{θi : i ∈M}.

We apply induction on |M |. The case |M | = 1 is trivial. Assume that the inequality holds

for allM ⊆ I with |M | < n. LetM = {1, . . . , n} ⊆ I and x, y ∈ θ(M). Since 1A = θn◦θn,

there is a z ∈ A such that (x, z) ∈ θn and (z, y) ∈ θn. Therefore, (x, z) ∈ θ({1, . . . , n−1}),

and by the induction hypothesis, (x, z) ∈ θ1 ∨ . . . ∨ θn−1. Then (x, y) ∈
∨
{θi : i ∈ M},

and consequently, we obtain (4). From this and (3) we conclude that 1A =
∨
{θi : i ∈ I}.

For the converse, let 1A =
∨
{θi : i ∈ I}. Hence we get (3). Let i ∈ I. Obviously,∨

{θj : j 6= i} ≤ θi, and therefore, 1A = θi ∨ θi. Then 1A = θi ◦ θi, since the congruences

of A permute. Thus α =
∏F

θi.

Definition 5.14. Let ϕ be a binary relation on an algebra A. An element α ∈ Con(A)

is called ϕ-indecomposable if α 6= 1 and if α = θ1 ×ϕ θ2, then α = θ1 or α = θ2.

A trivial verification shows that the following proposition holds.

Proposition 5.15. Let α ∈ Con(A) with α 6= 1. Then:

(i) α is 0-indecomposable iff α is a meet irreducible element of Con(A).

(ii) α is 1-indecomposable iff for any θ1, θ2 ∈ Con(A), if α = θ1 ×1 θ2, then θ1 = 1

or θ2 = 1 (i.e., α is indecomposable in the sense of McKenzie–McNulty–Taylor [1987],

p. 269).

Lemma 5.16. Let A be an algebra and α ∈ Con(A). Then A/α is directly indecomposable

iff α is 1-indecomposable.

Proof. By Lemma 2 of McKenzie–McNulty–Taylor [1987] (p. 269) we deduce that A/α

is directly indecomposable iff α is indecomposable. Now using Proposition 5.15(ii) we get

the conclusion.

Definition 5.17. Let ϕ ∈ Con(A). We say that the congruences of an algebra A

ϕ-permute if for any congruences α and β on A, α ∩ ϕ and β ∩ ϕ permute.

It is obvious that for every algebra A the congruences of A 0A-permute and that

1A-permuting is the same thing as permuting.

Lemma 5.18. Let ϕ be a codistributive element of Con(A). Suppose that the congru-

ences of A ϕ-permute and denote by L the dual lattice of Con(A). Let α, θi (i ∈ I) be

congruences on A. Then

α =
∏
ϕ{θi : i ∈ I} ⇔ α =

∑
ϕ{θi : i ∈ I} in L.

Proof. The congruence ϕ is distributive in L. Assume that
∑
ϕ{θi : i ∈ I} (see Sec-

tion 3.1). Then

α =
∨
{θi : i ∈ I} and θi ∩

∨
{θj : j 6= i} ⊆ ϕ for each i ∈ I.

In other words, α =
⋂
{θi : i ∈ I} and ϕ ≤ θi ∨

⋂
{θj : j 6= i} in Con(A) for all

i ∈ I. Therefore, ϕ = ϕ ∩ (θi ∨ θi), and since ϕ is codistributive in Con(A) we obtain

ϕ = (ϕ ∩ θi) ∨ (ϕ ∩ θi). From the fact that the congruences of A ϕ-permute we conclude
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that

ϕ = (ϕ ∩ θi) ◦ (ϕ ∩ θi),

and hence ϕ ⊆ θi ◦ θi for each i ∈ I. Thus α =
∑

ϕ{θi : i ∈ I}. The converse is obvious.

Lemma 5.19. Let ϕ be a codistributive element of Con(A), and suppose that the congru-

ences of A ϕ-permute. Then for α ∈ Con(A), α is ϕ-indecomposable iff α is ϕ-irreducible

in the dual lattice of Con(A).

Proof. This follows immediately from Lemma 5.18.

Definition 5.20. Let A be an algebra and let ϕ be a congruence relation on A.

(i) The congruences α and β on A are said to be ϕ-isotopic (in symbols, α ≈ϕ β) if

0 = α×ϕ γ = β ×ϕ γ for some γ ∈ Con(A) with γ 6= 0.

(ii) We call algebras B and C ϕ-isotopic, written B ≈ϕ C, if there exist ϕ-isotopic

congruences α and β on A such that B ∼= A/α and C ∼= A/β. To shorten notation, we

let B ≈ C stand for B ≈1 C.

Lemma 5.21 (see Walendziak [1993c], Lemma 7). Let A be a congruence distributive

algebra, and let α, β ∈ Con(A). If α and β are meet irreducible and 0A-isotopic, then

α = β.

Lemma 5.22. Let A, B and C be algebras and let A have a one-element subalgebra. If

B ≈ C, then B ∼= C.

Proof. Let α and β be 1A-isotopic congruences on A such that B ∼= A/α and C ∼= A/β.

By the proof of Lemma 6 of Walendziak [1993c] we conclude that A/α ∼= A/β. Therefore,

B ∼= C.

5.4. 〈L, ϕ〉-representations of algebras—a characterization theorem

Definition 5.23. Let Ai (i ∈ I) and A be similar algebras. Let ϕ be a binary relation on

A, and let L be an ideal of the Boolean algebra P(I). If f : A →
∏
Ai is an embedding

such that f(A) =
∏L
ψ(Ai : i ∈ I) where ψ = f(ϕ), then we say that 〈(Ai : i ∈ I), f〉

is an 〈L, ϕ〉-representation of A. In this case, we also say that A is isomorphic to an

〈L, ψ〉-product of algebras Ai (i ∈ I), and write

A ∼=
∏L
ψ(Ai : i ∈ I).

For each index i ∈ I, we denote by fi the ith f -projection function from A onto Ai,

that is,

fi(x) = (f(x))(i) (x ∈ A).

It is easy to see that if f : A →
∏
Ai is an embedding, then 〈(Ai : i ∈ I), f〉 is an

〈L, ϕ〉-representation of A iff the following two conditions hold:

(C1′) For all x, y ∈ A, I(f(x), f(y)) ∈ L.

(C2′) If i ∈ I and (x, y) ∈ ϕ, then wi(f(x), f(y)) ∈ f(A).
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An 〈L, ϕ〉-representation 〈(Ai : i ∈ I), f〉 of A is called

(i) subdirect if L = P and ϕ = 0A,

(ii) L-restricted subdirect if ϕ = 0A,

(iii) finitely restricted subdirect if L = F and ϕ = 0A,

(iv) full subdirect if L = P and ϕ = 1A,

(v) L-restricted full subdirect if ϕ = 1A,

(vi) weak direct if L = F and ϕ = 1A.

For a system (θi : i ∈ I) of congruences on A, we denote by fθ the function from A

to
∏
(A/θi : i ∈ I) defined by

fθ(x) = (x/θi : i ∈ I) (x ∈ A).

If f is a function from A to B, then the kernel of f , written ker(f), is defined to be

the binary relation {(a, b) ∈ A2 : f(a) = f(b)}.

A trivial verification shows that the following holds.

Proposition 5.24. Let 〈(Ai : i ∈ I), f〉 be an 〈L, ϕ〉-representation of A and let

ker(fi) = θi (i ∈ I). Then 〈(A/θi : i ∈ I), fθ〉 is also an 〈L, ϕ〉-representation of A.

The next result is a characterization theorem for 〈L, ϕ〉-representations.

Theorem 5.25 (Walendziak [1993c], Theorem 1). Let A be an algebra, ϕ ⊆ A2, and

let (θi : i ∈ I) be a system of congruences on A. Let L be an ideal of P(A). Then

〈(A/θi : i ∈ I), fθ〉 is an 〈L, ϕ〉-representation of A iff 0A =
∏L
ϕ{θi : i ∈ I}.

Proof. Necessity. Since fθ is one-to-one, (D0) holds for α = 0A. To prove (D1), let

x, y ∈ A. Clearly,

M = {i ∈ I : x/θi 6= y/θi} = {i ∈ I : fθ(x)(i) 6= fθ(y)(i)} ∈ L,

and hence (x, y) ∈ θ(M). Then (x, y) ∈
∨
{θ(M) : M ∈ L}, and therefore, (D1) is

satisfied. Moreover, (D2) follows from (C2′). Indeed, fix an i ∈ I and let (x, y) ∈ ϕ. Set

x′ = fθ(x) and y
′ = fθ(y). By (C2

′), z′ = wi(x
′, y′) ∈ A′ = fθ(A). Let z = f

−1(z′). It is

easy to see that (x, z) ∈ θi and (z, y) ∈ θi. Consequently, ϕ ⊆ θi ◦ θi.

Sufficiency. It is obvious that fθ is an embedding and that A
′ is a subdirect product

of the algebras Ai = A/θi, i ∈ I. Let x, y ∈ A. Now we prove that

(5) M = {i ∈ I : x/θi 6= y/θi} ∈ L.

By (D1), (x, y) ∈
∨
{θ(M) : M ∈ L}. So there are finitely many sets M1, . . . ,Mn ∈ L

such that (x, y) ∈ θ(M1) ∨ . . . ∨ θ(Mn). Observe that

(6) M ⊆M1 ∪ . . . ∪Mn.

Indeed, let x/θi 6= y/θi for some i ∈ I, and suppose on the contrary that i 6∈M1∪. . .∪Mn.

Therefore, θ(M1) ∨ . . . ∨ θ(Mn) ≤ θi, and hence (x, y) ∈ θi, that is, x/θi = y/θi, a

contradiction. From (6), by the definition of ideal we deduce that M ∈ L. Thus (5) is

satisfied. Now let i ∈ I, and let x′, y′ ∈ A′ be such that (x′, y′) ∈ ψ = fθ(ϕ). Take

x, y ∈ A with x′ = fθ(x) and y
′ = fθ(y). Obviously, (x, y) ∈ ϕ and by (D2) there exists

z ∈ A such that (x, z) ∈ θi and (z, y) ∈ θi. Hence wi(x
′, y′) = fθ(z) ∈ A

′. Therefore,

A′ =
∏L
ψ(A/θi : i ∈ I), which was to be proved.
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The following well known fact is a consequence of Theorem 5.25 and Proposi-

tion 5.12(i).

Corollary 5.26. 〈(A/θi : i ∈ I), fθ〉 is a subdirect representation of A iff 0 =⋂
{θi : i ∈ I}.

Let L be an ideal of P(I). Using Theorem 5.25 we obtain

Corollary 5.27. 〈(A/θi : i ∈ I), fθ〉 is an L-restricted subdirect representation of A

iff 0 =
⋂
{θi : i ∈ I} and 1 =

∨
{θ(M) :M ∈ L}.

By Theorem 5.25 and Proposition 5.12(ii) we have

Corollary 5.28. 〈(A/θi : i ∈ I), fθ〉 is a full subdirect representation of A iff 0 =⋂
{θi : i ∈ I} and 1 = θi ◦ θi for all i ∈ I.

Combining Theorem 5.25 and Proposition 5.13 we get

Corollary 5.29 (Hu [1969], Lemma 11). Let A be an algebra whose congruences per-

mute. Then 〈(A/θi : i ∈ I), fθ〉 is a weak direct representation of A iff 0 =
⋂
{θi : i ∈ I}

and 1 =
∨
{θi : i ∈ I}.

It is easy to verify the following

Corollary 5.30 (Walendziak [1991a], Corollary 8). If the congruences of an algebra A

permute and I is a finite set , then 〈(A/θi : i ∈ I), fθ〉 is a direct representation of A iff

0 =
⋂
θi and 1 = θi ∨ θi for all i ∈ I.

Now we define the notion of an irredundant 〈L, ϕ〉-representation.

Definition 5.31. Let 〈(Ai : i ∈ I), f〉 be an 〈L, ϕ〉-representation of an algebra A. For

each i ∈ I, define the mapping f i of A to
∏
(Aj : j 6= i) by

f i(x)(j) = fj(x) for all j 6= i.

If none of the mappings f i (i ∈ I) is an embedding we say that the 〈L, ϕ〉-representation

〈(Ai : i ∈ I), f〉 is irredundant .

Theorem 5.32. An 〈L, ϕ〉-representation 〈(Ai : i ∈ I), f〉 of A is irredundant iff the set

{ker(fi) : i ∈ I} is meet irredundant.

Proof. We put θi=ker(fi) for i ∈ I, and assume the 〈L, ϕ〉-representation 〈(Ai : i ∈ I), f〉

of A to be irredundant. Suppose on the contrary that 0 =
⋂
{θj : j 6= i} for some i ∈ I. For

each x ∈ A, let f i(x) be the restriction of f(x) to I −{i}. Obviously f i is an embedding,

contrary to our assumption.

Conversely, let {θi : i ∈ I} be meet irredundant. Assume that f i is one-to-one for some

i ∈ I, and let (x, y) ∈
⋂
{θj : j 6= i}. Then fj(x) = fj(y) for each j 6= i. Consequently,

f i(x) = f i(y), and hence x = y. Therefore, 0 =
⋂
{θj : j 6= i}, and thus {θi : i ∈ I} is

meet irredundant, a contradiction.

It is easy to see that the following proposition holds.

Proposition 5.33. Let 〈(Ai : i ∈ I), f〉 be an 〈L, 1A〉-representation of A. If |Ai| > 1

for each i ∈ I, then the representation is irredundant.
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5.5. The existence of irredundant 〈L, ϕ〉-representations. First we present the

following result:

The First Existence Theorem 5.34. Let ϕ be a codistributive element of Con(A).

Suppose that the congruences of A ϕ-permute and Con(A) is semimodular and atomistic.

Then there exists a system (Ai : i ∈ I) of simple algebras and an embedding f : A→
∏
Ai

such that 〈(Ai : i ∈ I), f〉 is an irredundant 〈L, ϕ〉-representation of A, where L is an

ideal of P(I) containing all finite subsets of I.

Proof. By Lemma 4.5, there exist coatoms θi (i ∈ I) of Con(A) such that 0A =⋂
{θi : i ∈ I} and 1A =

∨
{θi : i ∈ I}. Let L be an ideal of P(I) with F ⊆ L. We

have

1A =
∨
{θi : i ∈ I} =

∨
{θ({i}) : i ∈ I} ≤

∨
{θ(M) :M ∈ L},

and therefore condition (D1) holds.

Let i ∈ I. Since θj ≤ θi for all j 6= i, we conclude that 1A = θi ∨ θi. Now it is easy to

see that the set {θi : i ∈ I} is meet irredundant. Moreover, since ϕ is codistributive and

the congruences of A ϕ-permute, we get

ϕ = ϕ ∩ (θi ∨ θi) = (ϕ ∩ θi) ∨ (ϕ ∩ θi) = (ϕ ∩ θi) ◦ (ϕ ∩ θi).

Hence ϕ ⊆ θi ◦ θi, that is, condition (D2) is satisfied. Thus

0A =
∏L
ϕ{θi : i ∈ I}.

By Theorem 5.25, 〈(A/θi : i ∈ I), fθ〉 is an 〈L, ϕ〉-representation of A. This representation

is irredundant, because {θi : i ∈ I} is meet irredundant. Since θi is a coatom of Con(A),

we conclude that A/θi is simple.

Corollary 5.35. Let A be any algebra with Con(A) semimodular and atomistic. Then

A is isomorphic to an irredundant subdirect product of simple algebras.

Let S be a semilattice. By Corollary 2 of Hall [1971] we know that Con(S) is a

semimodular lattice. If each interval of S is a finite chain (i.e., S is a locally finite tree),

then Con(S) is also atomistic (see Auinger [1990]). It is well known that a semilattice S

is simple iff |S| = 2. Thus, we have

Corollary 5.36. Every locally finite tree is isomorphic to an irredundant subdirect prod-

uct of two-element semilattices.

Note that in Crawley–Dilworth [1973] (see Theorem 4.2) it is shown that every alge-

braic complemented modular lattice is atomistic. Therefore Theorem 5.34 implies

Corollary 5.37 (Hashimoto [1957], Theorem 5.1). If the congruence lattice of an al-

gebra A is complemented and modular , then there is an irredundant finitely restricted

subdirect representation of A with simple factors.

Remark 5.38. Theorem 5.34 also gives the following result of Tanaka [1952]: If A is

an algebra with a Boolean congruence lattice, then A is a subdirect product of simple

algebras.
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We know (see Crawley–Dilworth [1973], Theorem 10.7) that if a lattice L has the

projectivity property and if L is weakly discrete, then Con(L) is a Boolean algebra.

Thus, from Corollary 5.37 we obtain

Corollary 5.39. If a weakly discrete lattice L has the projectivity property , then L is

isomorphic to an irredundant finitely restricted subdirect product of simple lattices.

It is well known that every algebra whose congruences permute has modular congru-

ence lattice. Therefore we get

Corollary 5.40. Let A be any algebra whose congruences permute and whose congru-

ence lattice is complemented. Then there exists a full subdirect representation of A with

simple factors.

The Second Existence Theorem 5.41. Let ϕ be a codistributive element of

Con(A). Suppose that for all α ∈ DCon(A) and β ∈ Con(A), α ∩ ϕ and β ∩ ϕ per-

mute. If DCon(A) is a modular
∨
-closed sublattice of Con(A), then there is a system

(Ai : i ∈ I) of directly indecomposable algebras and an embedding f : A →
∏
Ai such

that 〈(Ai : i ∈ I), f〉 is an irredundant 〈L, ϕ〉-representation of A, where L is an ideal

of P(I) with the property that F ⊆ L.

Proof. By Lemma 4.3, DCon(A) is an atomistic lattice. Applying Lemma 4.5 we deduce

that there are coatoms θi (i ∈ I) of DCon(A) such that

0A =
⋂
{θi : i ∈ I} and 1A =

∨
{θi : i ∈ I}.

Let L be an ideal of P(I) containing F . By the proof of Theorem 5.34 we see that

1 =
∨
{θ(M) :M ∈ L} and ϕ ⊆ θi ◦ θi for all i ∈ I. Therefore,

0 =
∏L
ϕ{θi : i ∈ I}.

According to Theorem 5.25, we conclude that 〈(A/θi : i ∈ I), fθ〉 is an 〈L, ϕ〉-representa-

tion of A. This representation is irredundant, because the set {θi : i ∈ I} is meet irre-

dundant. Since θi is a coatom of DCon(A), from Lemma 4.4 it follows that every A/θi is

directly indecomposable.

As a consequence of Theorem 5.41 we get the following

Corollary 5.42 (Hashimoto [1957], Theorem 4.2). Let A be an algebra such that

DCon(A) is a modular
∨
-closed sublattice of Con(A). Then A is isomorphic to an irre-

dundant finitely restricted subdirect product with directly indecomposable factors.

In the case of ϕ = 0A, Theorem 5.41 implies

Corollary 5.43 (Hashimoto [1957], Theorem 4.5). Let A be any algebra whose con-

gruences permute and whose decomposition congruences form a
∨
-closed sublattice of

Con(A). Then there is a weak direct representation of A with directly indecomposable

factors.

From Theorem 6.2 of Hashimoto [1957] we have

Lemma 5.44. Let A be an algebra with Con(A) distributive. Then DCon(A) is a Boolean

sublattice of Con(A) and every element of DCon(A) is permutable with any congruence

on A.
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Now we are able to give our existence theorem for restricted full subdirect represen-

tations.

The Third Existence Theorem 5.45 (Walendziak [1994b], Theorem 4). Let A be a

congruence distributive algebra. If DCon(A) is
∨
-closed in Con(A), then there exists a

family Ai (i ∈ I) of directly indecomposable algebras such that A is isomorphic to an

L-restricted full subdirect product of Ai (i ∈ I), where L is an ideal of P(I) containing

all finite subsets of I.

Proof. By Lemma 5.44, every α ∈ DCon(A) is permutable with any β ∈ Con(A). Conse-

quently, if ϕ = 0A, then the hypotheses of Theorem 5.41 are satisfied. Therefore, Theo-

rem 5.41 clearly forces the assertion.

For other existence theorems we refer the reader to Walendziak [1996b].

5.6. Uniqueness theorems. For the next result we need the following

Lemma 5.46. Let I, J be two sets of indices and L1,L2 be ideals of the Boolean algebras

P(I), P(J), respectively. Let A be an algebra with Con(A) distributive. If

0 =
∏L1{αi : i ∈ I} =

∏L2{βj : j ∈ J}

for congruences αi, βj on A, then there exist congruences γij (i ∈ I, j ∈ J) such that ,

for all i and j,

αi =
∏L2{γij : j ∈ J} and βj =

∏L1{γij : i ∈ I}.

Proof. For i ∈ I and j ∈ J we put γij = αi ∨ βj . Fix i ∈ I. First we show that

(7) αi =
⋂
{γij : j ∈ J}.

By distributivity of Con(A), for any j we have

αi ∩ γij = αi ∩ (αi ∨ βj) = αi ∩ βj ≤ βj .

Hence

αi ∩
⋂
{γij : j ∈ J} =

⋂
{αi ∩ γij : j ∈ J} ≤

⋂
{βj : j ∈ J} = 0.

Therefore, using distributivity we get
⋂
{γij : j ∈ J} =

⋂
{γij : j ∈ J} ∩ (αi ∨ αi) = αi ∩

⋂
{γij : j ∈ J} = αi.

Thus (7) is satisfied. For M ∈ L2 we set γ(M) =
⋂
{γij : j 6∈M}. Now we prove that

(8) 1 =
∨
{γ(M) :M ∈ L2}.

Let x, y ∈ A. Then (x, y) ∈
∨
{β(M) :M ∈ L2}. Hence, we can choose a finite number of

setsM1, . . . ,Mn ∈ L2 such that (x, y) ∈ β(M1)∨ . . .∨β(Mn). We set M = {j ∈ J : (x, y)

6∈ γij}. Observe thatM ⊆M1∪. . .∪Mn. Indeed, suppose j ∈M and j 6∈M1∪. . .∪Mn. It is

obvious that β(Mk) ≤ βj for each k = 1, . . . , n. Therefore, β(M1)∨. . .∨β(Mn) ≤ βj ≤ γij ,

which gives us a contradiction. Consequently, M ⊆ M1 ∪ . . . ∪Mn, and hence M ∈ L2.

Thus (x, y) ∈ γ(M), and we conclude that (8) holds.

For each j ∈ J , write γij for
⋂
{γik : k ∈ J − {j}}. Clearly, γij ≥ βj and γij ≥ βj .

Since 1 = βj ◦ βj we have

(9) 1 = γij ◦ γij
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for all j ∈ J . From (7), (8) and (9) it follows that αi =
∏L2{γij : j ∈ J}. The proof that

βj =
∏L1{γij : i ∈ I} is similar.

Proposition 5.47. Under the assumptions of Lemma 5.46, if

A ∼=
∏L1(Ai : i ∈ I) and A ∼=

∏L2(Bj : j ∈ J),

then there exist algebras Cij (i ∈ I, j ∈ J) such that , for all i and j,

Ai =
∏L2(Cij : j ∈ J) and Bj =

∏L1(Cij : i ∈ I).

Proof. Let 〈(Ai : i ∈ I), g〉 be an L1-restricted full subdirect representation of the al-

gebras Ai and 〈(Bj : j ∈ J), h〉 be an L2-restricted full subdirect representation of the

algebras Bj . We set αi = ker(gi) and βj = ker(hj) (i ∈ I, j ∈ J), where gi is the ith

g-projection function and hj is the jth h-projection function. From Proposition 5.24 and

Theorem 5.25 we conclude that

0 =
∏L1{αi : i ∈ I} =

∏L2{βj : j ∈ J}.

For i ∈ I and j ∈ J we set γij = αi ∨ βj . From Lemma 5.46 it follows that

αi =
∏L2{γij : j ∈ J} and βj =

∏L1{γij : i ∈ I}.

By the proof of Theorem 5.25 we conclude that

A/αi =
∏L2(A/γij : j ∈ J) and A/βj =

∏L1(A/γij : i ∈ I).

Therefore, Ai =
∏L2(Cij : j ∈ J) and Bj =

∏L1(Cij : i ∈ I), where Cij = A/γij .

Now we prove the following uniqueness theorem for restricted full subdirect represen-

tations of algebras:

Theorem 5.48 (Walendziak [1994a], Theorem 3). Let A be a congruence distributive

algebra. Let I, J be two sets of indices and L1, L2 be ideals of P(I), P(J), respectively.

If A has an L1-restricted full subdirect representation 〈(Ai : i ∈ I), g〉 and also has an

L2-restricted full subdirect representation 〈(Bj : j ∈ J), h〉, where the algebras Ai, Bj
(i ∈ I, j ∈ J) are directly indecomposable, then there is a bijection λ : I → J for which

the following conditions hold :

(i) For each i∈ I, there exists an isomorphism ti : Ai→Bλ(i) such that ti◦gi= hλ(i).

(ii) λ(I(g(x), g(y))) = J(h(x), h(y)) for all x, y ∈ A.

Proof. Let αi (i ∈ I) and βj (j ∈ J) be the kernels of gi and hj , respectively. For each

i ∈ I and each j ∈ J set

γij = αi ∨ βj and Cij = A/γij .

By Proposition 5.47, Ai =
∏L2(Cij : j ∈ J) and Bj =

∏L1(Cij : i ∈ I). Since Ai is

directly indecomposable, there exists a λ(i) = j ∈ J such that Ai ∼= Cij . We have

A/αi ∼= Ai ∼= Cij = A/(αi ∨ βj).

Then αi = αi ∨ βj , and hence αi ≥ βj . Since Bj is directly indecomposable there is a

σ(j) = i′ ∈ I such that Bj ∼= Ci′j . Now we infer similarly that βj ≥ αi′ . Consequently,

αi ≥ βj ≥ αi′ . Observe that i = i′. Indeed, if i 6= i′, then αi ≤ αi′ ≤ αi, and hence

αi = 1A, contrary to the fact that Ai is directly indecomposable. Therefore, (σ ◦λ)(i) = i
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for all i ∈ I, and similarly, (λ ◦ σ)(j) = j for all j ∈ J . Thus σ is a two-sided inverse of

λ, and this proves that λ is a bijection.

If λ(i) = j, then Ai ∼= Cij ∼= Bj and it is clear that the mapping ti defined on Ai by

ti(gi(x)) = hj(x) is an isomorphism of Ai with Bj .

To prove (ii), let x, y ∈ A. We have

i ∈ I(g(x), g(y)) ⇔ gi(x) 6= gi(y) ⇔ (ti ◦ gi)(x) 6= (ti ◦ gi)(y)

⇔ hλ(i)(x) 6= hλ(i)(y) ⇔ λ(i) ∈ J(h(x), h(y)).

Therefore, (ii) is satisfied.

We know that any weak direct product of algebras Ai is a full subdirect product

of these algebras. Generally, a full subdirect product of Ai, i ∈ I, is not a weak direct

product of Ai, i ∈ I (e.g., the group H4 of Example 5.5).

Now we get

Theorem 5.49 (Walendziak [1994a], Theorem 5). Let A be a congruence distributive

algebra such that DCon(A) is a
∨
-closed sublattice in Con(A). If A is a full subdirect

product of directly indecomposable algebras Ai, i ∈ I, then A is a weak direct product of

these algebras.

Proof. Let A =
∏P(Ai : i ∈ I), where Ai, i ∈ I, are directly indecomposable algebras. By

Theorem 5.44 (for L = F) there exists a system (Bj : j ∈ J) of directly indecomposable

algebras and an embedding f : A →
∏
Bj such that 〈(Bj : j ∈ J), h〉 is a weak direct

representation of A. Theorem 5.48 yields a bijection λ : I → J such that λ(I(x, y)) =

J(h(x), h(y)) for all x, y ∈ A. Since the set J(h(x), h(y)) is finite, so is I(x, y). Therefore,

A is a weak direct product of the algebras Ai, i ∈ I.

The following lemma can be deduced from the proof of Lemma 1.4 of Draškovičová

[1987].

Lemma 5.50. If A is an algebra whose congruence lattice is completely distributive, then

DCon(A) is a
∨
-closed sublattice of Con(A).

Remark 5.51. By Lemma 5.50, Theorem 5.49 implies Theorem 2.1 of Jakub́ık [1971].

By Theorems 5.45 and 5.48 we obtain

Proposition 5.52. Let A be an algebra. If A satisfies the hypotheses of Theorem 5.49,

then A can be decomposed uniquely (up to isomorphism) into a weak direct product (a

full subdirect product) of directly indecomposable algebras.

Remark 5.53. Combining Lemma 5.50 with Proposition 5.52 yields Theorems 1.6 and 1.7

of Draškovičová [1987].

By the proof of Corollary 3.42, if L is a lower continuous lattice, then every element

c ∈ L has the following property:

(▽) For each a ∈ L and each S ⊆ L, if c ≤ a ∨
∧
S′ for every finite subset S′ of S,

then c ≤ a ∨
∧
S.
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We remark that (▽) is the dual of property (△) defined in Section 3.7. Recall from

Section 5.3 that if ϕ ∈ Con(A), then for algebras B and C, B ≈ϕ C if there are ϕ-isotopic

congruences β and γ on A such that B ∼= A/β and C ∼= A/γ.

Our principal uniqueness result is

The Unique Factorization Theorem 5.54. Let A be a congruence modular algebra,

and let ϕ be a distributive element of Con(A) having (▽). Suppose that the congruences

on A ϕ-permute. Let αi (i ∈ I) and βj (j ∈ J) be ϕ-indecomposable congruences on

A satisfying the B∗ϕ-condition in the dual lattice of Con(A), and let L1, L2 be ideals

of the Boolean algebras P(I), P(J), respectively. If 〈(Ai : i ∈ I), g〉 is an irredundant

〈L1, ϕ〉-representation of A with ker(gi) = αi, and 〈(Bj : j ∈ J), h〉 is an irredundant

〈L2, ϕ〉-representation of A with ker(hj) = βj , then there is a bijection λ : I → J such

that Ai ≈ϕ Bλ(i) for all i ∈ I.

Proof. By Proposition 5.24 and Theorem 5.25,

0 =
∏L1
ϕ {αi : i ∈ I} =

∏L2
ϕ {βj : j ∈ J}.

Hence

(10) 0 =
∏
ϕ αi =

∏
ϕ βj .

The sets {αi : i ∈ I} and {βj : j ∈ J} are meet irredundant (see Proposition 5.32).

Let L be the dual of Con(A). The congruence ϕ is distributive in L (since Con(A) is

modular) and ϕ has property (△) (in L). From (10) and from the fact that {αi : i ∈ I}

and {βj : j ∈ J} are join irredundant subsets of L we see by Lemma 5.18 that

(11) 1 =
∑̇
ϕ{αi : i ∈ I} =

∑̇
ϕ{βj : j ∈ J}

and by Lemma 5.19 we know that each αi and βj is ϕ-irreducible. Applying Theorem 3.40

to the two ϕ-decompositions (11) we deduce that there exists a bijection λ : I → J such

that, for each i ∈ I,

1 = αi +̇ϕ
∑̇

ϕ{βj : j 6= λ(i)}.

Hence and from (11) we deduce, by Property I of Chapter 3, that

1 = αi +̇ϕ
∨
{βj : j 6= λ(i)} = βλ(i) +̇ϕ

∨
{βj : j 6= λ(i)}

and using Lemma 5.18 we have

0 = αi ×ϕ
⋂
{βj : j 6= λ(i)} = βλ(i) ×ϕ

⋂
{βj : j 6= λ(i)}

in Con(A). Therefore, for all i ∈ I,

(12) αi ≈ϕ βλ(i).

Since Ai ∼= A/αi and Bj ∼= A/βj , from (12) it follows that Ai ≈ϕ Bλ(i).

For the next result we need the following

Lemma 5.55. Let L be a complete distributive lattice, and let a ∈ S(1, L). If a is com-

pletely join irreducible, then a is compact.
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Proof. Let T ⊆ L and a ≤
∨
T . Let b ∈ L be such that 1 = a ∨ b. By distributivity of L

we have

t ≤ t ∨ b = (a ∨ b) ∧ (t ∨ b) = (a ∧ t) ∨ b for each t ∈ T.

Hence,
∨
T ≤
∨
{a ∧ t : t ∈ T} ∨ b. Therefore,

a = a ∧ [
∨
{a ∧ t : t ∈ T} ∨ b] =

∨
{a ∧ t : t ∈ T} ∨ (a ∧ b).

Because a is completely join irreducible and a � b, there is t0 ∈ T such that a = a ∧ t0.

Thus a is compact.

Proposition 5.56. Assume that A is an algebra whose congruence lattice is distributive.

Let I, J be two sets of indices and L1, L2 be ideals of the Boolean algebras P(I), P(J),

respectively. If 〈(Ai : i ∈ I), g〉 is an irredundant L1-restricted subdirect representation

of A and 〈(Bj : j ∈ J), h〉 is an irredundant L2-restricted subdirect representation of A,

and if the factors Ai, Bj are subdirectly irreducible, then there exists a bijection λ : I → J

with Ai ∼= Bλ(i) for all i ∈ I.

Proof. It is obvious that ϕ = 0 satisfies (▽). We put αi = ker(gi) and βj = ker(hj).

Since Ai ∼= A/αi and Bj ∼= A/βj are subdirectly irreducible, the congruences αi and βj
are completely meet irreducible. By Proposition 5.15(i), αi and βj are 0-indecomposable.

From Lemmas 5.55 and 3.36 it follows that each αi and βj satisfies the B
∗
1-condition in

the dual lattice of Con(A). By the proof of Theorem 5.54, there is a bijection λ : I → J

such that αi and βλ(i) are 0-isotopic for all i ∈ I. From this together with Lemma 5.21

we have αi = βλ(i) for each i. Then

Ai ∼= A/αi = A/βλ(i) ∼= Bλ(i).

Proposition 5.57. Let A be any algebra whose congruences permute and whose congru-

ence lattice is lower continuous. Let I, J be two sets of indices and L1, L2 be ideals of

P(I), P(J), respectively. If

A ∼=
∏L1(Ai : i ∈ I) and A ∼=

∏L2(Bj : j ∈ J),

where the algebras Ai, Bj (i ∈ I, j ∈ J) are directly indecomposable and the lattices

Con(Ai) and Con(Bj) are of finite length, then |I| = |J |. Moreover , if in addition A has

a one-element subalgebra, then there is a bijection λ : I → J such that Ai ∼= Bλ(i) for

each i ∈ I.

Proof. As every algebra whose congruences permute has a modular congruence lattice,

Con(A) is modular. Obviously, ϕ = 1 is a distributive element of Con(A) with prop-

erty (▽), because Con(A) is lower continuous. (See the proof of Corollary 3.43.) Let

g : A→
∏
Ai and h : A→

∏
Bj be embeddings such that

g(A) =
∏L1(Ai : i ∈ I) and h(A) =

∏L2(Bj : j ∈ J).

Set αi = ker(gi) and βj = ker(hj). The algebras Ai ∼= A/αi and Bj ∼= A/βj are di-

rectly indecomposable, and therefore, the congruences αi and βj are 1-indecomposable,

by Lemma 5.16. From the Correspondence Theorem 4.12 of McKenzie–McNulty–Taylor

[1987] we have

[αi, 1] ∼= Con(Ai) and [βj , 1] ∼= Con(Bj).
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Thus, the intervals [αi, 1] and [βj , 1] are of finite length. Let L denote the dual lattice

of Con(A). In L, the intervals [0, αi] and [0, βj ] are of finite length. Crawley [1962] (see

Lemma 3) has shown that if a is an element of an upper continuous lattice such that

[0, a] is of finite length, then a is compact. Consequently, αi and βj are compact in L. By

Lemma 5.19, they are directly join irreducible (0-irreducible) in L. Lemma 3.35 shows

that they satisfy the B∗0-condition. Thus, the assumptions of Theorem 5.54 are satisfied.

Therefore, there exists a bijection λ : I → J such that Ai ≈ Bλ(i) for each i ∈ I.

The final assertion follows from Lemma 5.22.

Since everly dual algebraic lattice is lower continuous, Proposition 5.57 generalizes a

result of Walendziak [1994c] (see Theorem 3).

By Proposition 5.56 we obtain

Corollary 5.58. Let A be any algebra and suppose that Con(A) is distributive. If

〈(Ai : i ∈ I), g〉 and 〈(Bj : j ∈ J), h〉 are two irredundant finitely restricted subdi-

rect representations of A with subdirectly irreducible factors, then there is a bijection

λ : I → J such that Ai ≈ Bλ(i) for each i ∈ I.

We call two subdirect (direct) representations 〈(Ai : i ∈ I), g〉 and 〈(Bj : j ∈ J), h〉

isomorphic if there exists a bijection λ : I → J such that Ai ≈ Bλ(i) for each i ∈ I.

Proposition 5.56 also gives the following

Corollary 5.59. Let A be an algebra whose congruence lattice is distributive. Then

any two irredundant subdirect representations of A with subdirectly irreducible factors

are isomorphic.

Remark 5.60. We know that lattices are congruence distributive. Therefore, Corol-

lary 5.59 implies Theorem 11.5 of Crawley–Dilworth [1973].

Example 5.61 (Skala [1971]). A weakly associative lattice, or a trellis , is an algebra with

two binary operations, + and ·, that satisfies the identities

x · y = y · x, x · (y + x) = x, (x · z + y · z) + z = z

and their duals. Weakly associative lattices are congruence distributive.

Example 5.62 (Draškovičová [1987]). We call a set A with one ternary operation (xyz)

a modular median algebra if the following identities are satisfied in A:

(xyy) = y,(13)

((xyz)tz) = (xz(tzy)).(14)

Any modular median algebra is congruence distributive (see Remark 3.11 of Draškovičová

[1987]).

Corollary 5.59 yields the following

Corollary 5.63. Let A be a modular median algebra (lattice, Heyting algebra, trellis).

Then any two irredundant subdirect representations of A with subdirectly irreducible fac-

tors are isomorphic.

Using Proposition 5.57 we obtain
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Corollary 5.64. Let A be any algebra whose congruences permute and whose con-

gruence lattice is lower continuous. Suppose that A has a one-element subalgebra. If

〈(Ai : i ∈ I), g〉 and 〈(Bj : j ∈ J), h〉 are two weak direct representations (full subdirect

representations) of A such that the factors Ai, Bj are directly indecomposable and the

lattices Con(Ai) and Con(Bj) are of finite length, then a bijection λ : I → J exists for

each i ∈ I.

Let M be a module over a ring R. Then M is called noetherian (resp. artinian) if

every nonempty set of submodules has a maximal (resp. minimal) element. We say that

M is of finite length if M is noetherian and artinian.

Corollary 5.65. Let M be an artinian module, and let

M =M1 ⊕ . . .⊕Mn = N1 ⊕ . . .⊕Nm,

where each Mi and each Nj is directly indecomposable and noetherian. Then m = n and ,

after renumbering , Mi
∼= Ni for 1 ≤ i ≤ n.

Proof. Since M is artinian, Con(M) satisfies the descending chain condition, and hence

Con(M) is lower continuous. It is obvious that the lattices Con(Mi) and Con(Nj) are of

finite length. Now the assertion follows from Corollary 5.64.

It is obvious that every lattice of finite length is lower continuous. Therefore, from

Corollary 5.64 we get at once

Corollary 5.66 (Birkhoff [1967], p. 169). Let A be a congruence permutable algebra

with a one-element subalgebra, and let Con(A) be of finite length. Then any two finite

direct representations of A with directly indecomposable factors are isomorphic.

By Corollary 5.66 we obtain

Corollary 5.67 (see Kasch [1982], Corollary 7.3.6). Let M be an R-module of finite

length, and let

M =M1 ⊕ . . .⊕Mn = N1 ⊕ . . .⊕Nm.

If all Mi and Nj are directly indecomposable, then m = n and , after renumbering ,

Mi
∼= Ni for 1 ≤ i ≤ n.

Remark 5.68. It is easy to see that the Krull–Schmidt Theorem (see e.g. Kurosh [1967],

Section 47), which asserts that every group whose normal subgroup lattice is of finite

length can be decomposed uniquely (up to isomorphism) into a direct product of directly

indecomposable groups, is a consequence of Corollary 5.66. We also note that the assertion

of Corollary 5.66 holds, for example, if A is a quasigroup (or a ring) with congruence

lattice of finite length.
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List of symbols and notations

Sets

∅ empty set
∈ element inclusion
⊆ inclusion
∩,
⋂

intersection
∪,
⋃

union
A−B set-theoretic difference
A ∪ a a shorthand for A ∪ {a}
A− a a shorthand for A− {a}
(a, b) ordered pair
|X| cardinality of the set X
P(I), P set of all subsets of I
F(I), F set of all finite subsets of I
A×B cartesian product of A and B
A1 × . . .×An cartesian product of A1, . . . , An
A2 A×A
f : A→ B f is a function from A into B
f(a), af value of f at a
Cl closure operator
N set of natural numbers
Z set of integers
∼= isomorphism
⇒ implication
⇔ logical equivalence
iff if and only if

end of proof

Lattices

L lattice
L∂ lattice dual to L
0 least element
1 greatest element
∨,
∨

join
∧,
∧

meet
≤ partial ordering relation
[x, y] interval
x ≺ y x is a lower cover of y
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y ≺ x x is an upper cover of y
y � x x is an upper cover of y or x equals y
S7 hexagon
a+ meet of all lower covers of a ( 6= 0)
u∗ uniquely determined lower cover of u ∈ V(L)
V(L) set of all join irreducibles of L
J(L) set of all completely join irreducibles of L
A(L) set of all atoms of L
Λ(L) set of all meet irreducibles of L
M(L) set of all completely meet irreducibles of L
D(L) set of all distributive elements of L
K(L) set of all compact elements of L
Q(L) set of all precompact elements of L
K class of all lower continuous strongly coatomic lattices

∨̇,
∨̇

direct join
+c,
∑
c c-join

+̇c,
∑̇
c irredundant c-join

S(c, L) set of all c-summands of L
DF(c, L) set of all c-decomposition functions of L
k(ϕ) join of all x ∈ L such that xϕ ≤ c
L(G) lattice of all normal subgroups of G
P(I) Boolean algebra 〈P(I),∩,∪,′ , ∅, I〉
L E P(I) L is an ideal of P(I)
(C) covering property
(N) neighborhood condition
(N∗) dual neighborhood condition
(ACC) ascending chain condition
(DCC) descending chain condition
(HJ) hereditary property
KOP Kurosh–Ore property∨
-KORP Kurosh–Ore replacement property for join decompositions∧
-KORP Kurosh–Ore replacement property for meet decompositions

Algebras

Con(A) set of all congruence relations on A
DCon(A) set of all decomposition congruences of A

CgA(X) congruence relation on A generated by X
0A identity congruence on A
1A universal congruence on A
A/α factor algebra
a/α congruence class of a modulo α
α ◦ β relational product of α and β
I(x, y) {i ∈ I : x(i) 6= y(i)}∏
(Ai : i ∈ I) direct product of algebras Ai (i ∈ I)
ker(f) kernel of f
pi ith projection function
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fi ith f -projection function
∏L
ψ(Ai : i ∈ I) 〈L, ψ〉-product of algebras Ai
∏L
(Ai : i ∈ I) L-restricted full subdirect product of Ai

∏L′
L
(Ai : i ∈ I) 〈L,L′〉-product of algebras∏

D
(Mi : i ∈ I) D-product of modules Mi

∏
m

Ri m-product of rings Ri⊕
Gi direct sum of groups Gi

supp(x) support of x
Z(G) center of a group G
α×ϕ β ϕ-product of congruences α and β∏
ϕ{θi : i ∈ I} ϕ-product of congruences θi

A ≈ϕ B algebras A and B are ϕ-isotopic
A ≈ B algebras A and B are 1A-isotopic



Index of terms

AC-lattice, 8
A-lattice, 8
algebraic lattice
(= compactly generated lattice), 8

anti-exchange property, 11
artinian module, 74
ascending chain condition (ACC), 8
atom, 7
atomic lattice, 7
atomistic lattice, 7

basis, 11
Bc-condition, 37
B∗c -condition, 44
Bc-lattice, 37
Brouwerian lattice, 8

c-complement, 31
c-decomposition, 30
c-decomposition function, 31
c-Decomposition Theorem, 47
c-independent (sub)set, 42
c-irreducible element, 31
c-join, 30
closed subset, 11
closure operator, 11
closure space, 11
coatom, 7
coatomic lattice, 7
coatomistic lattice, 7
compact element, 8
comparable elements, 6
complemented lattice, 7
completely distributive lattice, 56
completely join irreducible element, 7
completely meet irreducible element, 7
congruence distributive algebra, 51
congruence modular algebra, 51
congruence permutable algebra, 51
consistent lattice, 9
continuous lattice, 8
convex geometry, 11

covering property, 8
covering relation, 6
c-summand, 31

decomposition congruence relation, 51
decomposition function, 31
descending chain condition (DCC), 8
direct join, 29
directly indecomposable algebra, 51
directly join irreducible element, 30
direct power, 57
discrete lattice, 57
distinguished c-decomposition function, 35
distributive element, 30
D-product of modules, 60
dual lattice, 6
dually Brouwerian lattice, 8
dual neighborhood condition, 7

E-lattice, 8
exchange isomorphic c-decompositions, 43

ϕ-indecomposable congruences, 62
ϕ-isotopic algebras, 63
ϕ-isotopic congruences, 63
ϕ-permuting congruences, 62
ϕ-product of congruences, 61
finitely restricted subdirect representation, 64
First Existence Theorem, 66
flat, 11
f -projection function, 63
full subdirect product, 57
full subdirect representation, 64

geometric lattice, 9
greatest element, 6

hereditary property, 23
hexagon, 26

incomparable elements, 6
interval, 6
irredundant c-decomposition, 42
irredundant ϕ-product decomposition, 61
irredundant join (meet) decomposition, 25
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irredundant 〈L, ϕ〉-representation, 65
isomorphic direct (subdirect)
representations, 73

join, 6∨
-closed sublattice, 51
join irreducible element, 7
join irredundant (sub)set, 41
join decomposition, 23
J-lattice, 8

kernel of a function, 64
Kurosh–Ore property for join
decompositions, 26

Kurosh–Ore property for meet
decompositions, 26

Kurosh–Ore replacement property for
join decompositions, 25

Kurosh–Ore replacement property for
meet decompositions, 25

Kurosh–Ore Theorem, 25

least element, 6
〈L, ϕ〉-representation of an algebra, 63
〈L, ψ〉-product of algebras, 59
〈L,L′〉-product of algebras, 58
locally distributive lattice, 9
locally modular lattice, 9
lower continuous lattice, 8
lower cover, 6
lower covering condition, 7
lower locally distributive lattice, 8
lower locally modular lattice, 8
lower semimodular, 7
L-restricted direct product, 58
L-restricted full subdirect product, 58
L-restricted full subdirect
representation, 64

L-restricted subdirect product, 58
L-restricted subdirect
representation, 64

matroid, 11
meet, 6
meet decomposition, 23
meet distributive lattice, 10
meet irreducible element, 7
modular lattice, 7
modular median algebra, 73
m-product of rings, 59

neat element, 18

neighborhood condition, 7
noetherian module, 74

Ore Theorem, 30

pair of complementary
c-decomposition functions, 31

point, 11
prealgebraic lattice, 8
precompact element, 8
ψ-product of algebras, 58
pure element, 18

Q-lattice, 8

reduced product of lattices, 60
relational product of two congruences, 51
relatively complemented lattice, 7

Second Existence Theorem, 67
semimodular lattice, 7
simple algebra, 51
Steinitz exchange property, 11
Steinitz–MacLane exchange property, 18
Steinitz space, 11
strong lattice, 13
strongly atomic lattice, 7
strongly coatomic lattice, 7
strongly neat element, 19
strongly semimodular lattice, 16
subdirectly irreducible algebra, 51
subdirect representation, 64
support of an element, 59

Third Existence Theorem, 68
transposed intervals, 6
trellis, 73

Unique Factorization Theorem, 71
unique irredundant join decompositions, 27
upper continuous lattice, 8
upper cover, 6
upper covering condition, 7
upper semimodular (= semimodular) lattice, 7

V-lattice, 8

weak direct product, 50
weak direct representation, 64
weak isomorphism property, 7
weakly associative lattice (= trellis), 73
weakly atomic lattice, 7
weakly discrete lattice, 57
weakly pure element, 19


