Summary

The plan of the paper is as follows. In Chapter 0 we set up notation and terminology.

In Chapter 1 we investigate the properties of consistence, strongness and semimod-
ularity, each of which may be viewed as generalization of modularity. Section 1.1 deals
with some conditions characterizing consistence in lower continuous strongly coatomic
lattices. Here we prove that a finite lattice is the lattice of closed sets of a closure space
with the Steinitz exchange property if and only if it is a consistent lattice. Section 1.2
extends Faigle’s concept of strongness from lattices of finite length to arbitrary lattices.
Any atomistic lattice is strong whereas the converse does not hold in general. It is shown
(Theorem 1.15) that a lower continuous strongly atomic lattice in which each atom has
a complement is strong precisely when it is atomistic. For the class of strongly coatomic
lower continuous lattices we prove that in semimodular lattices, the concepts of strongness
and of consistence are equivalent (Theorem 1.26). Section 1.3 combines semimodularity
with the strongness property. In Section 1.4 we characterize atomistic lattices. These char-
acterizations are given in terms of concepts related to pure elements and neat elements.

Chapter 2 considers join decompositions in lattices. In Section 2.1, some sufficient
conditions are given under which every element of a lattice has a join decomposition
(Proposition 2.2). The goal of Section 2.2 is to characterize modularity of lattices in terms
of the Kurosh-Ore Replacement Properties (Theorem 2.13). Finally, in Section 2.3, we
study lattices with unique irredundant join decompositions.

In Chapter 3 Problem IV.15 of Grétzer [1978] is solved. In Section 3.1 we introduce the
notion of a c-join in lattices, where c is a distributive element of the lattice. Sections 3.2
and 3.3 present some properties of c-joins and c-decomposition functions. An important
role in our investigations is played by the B.-condition defined in Section 3.4. Section 3.5
is devoted to the study of finite c-decompositions of elements in a modular lattice. We
give here a generalization of some results of papers of Moculskii [1955, 1961] and Wal-
endziak [1991b]. We find (Theorem 3.25) a common generalization of the Kurosh—-Ore
Theorem and the Schmidt—Ore Theorem for arbitrary modular lattices, solving a prob-
lem of G. Gratzer. In Sections 3.6 and 3.7 we consider infinite c-decompositions. For
investigations of such representations, property (B.) does not yield anything. Therefore,
we shall use property (B%) defined in Section 3.6. As a main result of Chapter 3 we give
the c-Decomposition Theorem (3.40) which implies (in particular) Crawley’s Theorem for
direct decompositions (Corollary 3.44) and a generalization of the Kurosh—Ore Theorem
to infinite join decompositions (Corollary 3.46).

The decomposition theory of Chapters 2 and 3 enables us to devolop a structure
theory for algebras. In Chapter 4 we consider weak direct representations of a universal
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algebra. The existence of such representations is studied (Theorems 4.6 and 4.17). Here
some applications to algebras whose congruences permute (groups, rings, modules, quasi-
groups, relatively complemented lattices, etc.) and to congruence distributive algebras
(lattices, modular median algebras and trellises) are indicated.

Chapter 5 contains a common generalization of full subdirect products and of weak
direct products. This is an (£, p)-representation of a subalgebra A of a direct product B
of algebras, where £ is an ideal in the power set of the index set of the direct product
and ¢ is a binary relation on B, and A is a subdirect product satisfying certain con-
ditions involving £ and ¢. In Section 5.3 we prepare for further investigations, first by
introducing the notions of y-product and p-isotopy for congruences, and then by proving
a few lemmas about these notions. In Section 5.4, (L, ¢)-representations of algebras are
associated with systems of their congruence relations (Theorem 5.25). Section 5.5 gives
sufficient conditions for an algebra to be isomorphic to an (L, ¢)-product with simple
factors (Theorem 5.34) and with directly indecomposable factors (Theorem 5.41). The
Third Existence Theorem 5.45 concerns restricted full subdirect products. These results
imply some theorems on subdirect, full subdirect and weak direct representations.

Finally Section 5.6 contains uniqueness theorems. The first uniqueness result (Theo-
rem 5.48) concerns restricted full subdirect representations of algebras with distributive
congruence lattices. Here we generalize the results of Draskovicova [1987] for a congruence
distributive algebra A with the property that the set of all decomposition congruences
of A is closed under arbitrary joins. Another uniqueness result in this section is the
Unique Factorization Theorem 5.54. In particular, Theorem 5.54 implies Theorem 3 of
Walendziak [1993c] and has as corollaries uniqueness results for irredundant restricted
subdirect representations (Proposition 5.56) and for restricted full subdirect representa-
tions (Proposition 5.57). We note that Proposition 5.56 yields that any two irredundant
subdirect representations of a congruence distributive algebra with subdirectly irreducible
factors are isomorphic (Corollary 5.59). Our application of Proposition 5.57 to weak di-
rect products is Corollary 5.64. In particular we obtain Birkhoff’s Theorem which asserts
that every congruence permutable algebra with congruence lattice of finite length and a
one-element subalgebra is uniquely factorable. In Chapter 5 we also give other applica-
tions to algebras whose congruences permute and to congruence distributive algebras.

0. Basic notions

Let L be a lattice. Lattice join, meet, inclusion and proper inclusion are denoted respec-
tively by V, A, < and <. If L contains a least or a greatest element, these elements will be
denoted by 0 or 1, respectively. The dual of L is the lattice L? with the same underlying
set, but with a < bin L2 if and only if b < ain L. We say that a and b in L are comparable
if either a < b or b < a, otherwise a and b are incomparable. By [a,b] (a < b; a,b € L) we
denote an interval, that is, the set of all ¢ € L for which a < ¢ < b. Two intervals of the
form [a A b,b] and [a, a V U] are said to be transposed. We say that b covers a if a < b and
[a,b] = {a,b}; in this case we write a < b or b > a and also say that b is an upper cover
of a (or: a is a lower cover of b). Let us write a < b if a < b or a = b.
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An element p € L is called an atom (resp. a coatom) if 0 < p (resp. p < 1). We
denote by A(L) the set of all atoms of L. The lattice L is called atomic if L has a least
element and the interval [0, a] contains an atom for each a > 0; and weakly atomic if for
any a,b € L with a > b, there exist u,v € L such that b < v < u < a. If a lattice L
(perhaps with no least element) has the property that the interval [a, b] contains an atom
whenever b > a in L, we say that L is strongly atomic. Each strongly atomic lattice is
weakly atomic, and each strongly atomic lattice having a least element is atomic.

A lattice is coatomic (resp. strongly coatomic) if its dual is atomic (resp. strongly
atomic). A lattice is called atomistic if every nonzero element is a join of atoms. L is
coatomistic if L9 is atomistic.

An element u of a lattice L is join irreducible if uw = a V b implies ©u = a or u = b.
An element m € L is meet irreducible if m = a A b implies m = a or m = b. By V(L)
(resp. A(L)) we denote the set of all join irreducible (resp. meet irreducible) elements
of L. In a strongly coatomic lattice the unique lower cover of a nonzero join irreducible
element v is denoted by u*.

Let L be a complete lattice. An element u € L is called completely join irreducible if
for all T C L, w = \/ T implies u € L. Completely meet irreducible elements are defined
dually. Let J(L) (resp. M(L)) be the set of all completely join irreducible (resp. completely
meet irreducible) elements of L. Clearly every completely join irreducible element is join
irreducible. For complete strongly coatomic lattices the two concepts coincide.

Let T be a subset of a lattice L. We say T has the weak isomorphism property if for
each t € T and each a € L,

[a,a V] 2 [aAt,a

(that is, the intervals [a,a Vt] and [a At, a] are isomorphic). A lattice L is called modular
if for all a,b,c € L, ¢ < b implies (¢ Va) Ab = cV (a Ab). We know (see e.g. Gritzer
[1978], p. 162) that transposed intervals of a modular lattice are isomorphic. This yields,
in particular, that every subset of a modular lattice satisfies the so-called neighborhood
condition

(N) aANb<b = b<aV,
and the dual neighborhood condition
(N*) b<aVvVb = anb<a.

A lattice is called upper semimodular (briefly: semimodular) if it satisfies the neigh-
borhood condition (N); it is called lower semimodular if it satisfies the dual neighborhood
condition (N*). A lattice L is said to satisfy the upper covering condition iff a < b implies
aVc=bVcforall a,b,c e L. The lower covering condition is the dual. It is well known
that a lattice is semimodular (resp. lower semimodular) iff it satisfies the upper covering
condition (resp. lower covering condition).

A lattice L with least element 0 and greatest element 1 is said to be complemented if
for each a € L there exists a b € L such that a Ab =0 and a Vb = 1. The element b is
said to be a complement of a. If every interval of a lattice L is a complemented lattice,
then L is relatively complemented.
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Let E C L. If each element of L is a join of elements of F, then we call L an E-lattice.
Then L is an A-lattice if L is atomistic. L is a V-lattice (resp. J-lattice) if for every a € L
there is a subset T" of V(L) (resp. J(L)) such that a = \/ T. An AC-lattice is an A-lattice
with the covering property:

(©) (beL, pe A(L)andbAp=0) = b<bVp.

A lattice L with the property that each of its nonempty subsets contains a maximal
element is said to satisfy the ascending chain condition (ACC). If each nonempty subset
of L has a minimal element, then L satisfies the descending chain condition (DCC).
Obviously, if a lattice satisfies DCC, then it is strongly atomic. The ACC also has an
important generalization. An element ¢ of a complete lattice L is called compact if S C L
and ¢ < /S imply ¢ < \/ S’ for some finite subset S’ of S. Let K(L) be the set of all
compact elements of L. L is an algebraic or a compactly generated lattice if L is complete
and each of its elements is a join of compact elements. It is easy to see that if L satisfies
ACC, then L is algebraic (every element of a complete lattice L is compact iff L satisfies
ACC; see Crawley—Dilworth [1973], p. 14).

Let L be a complete lattice. An element ¢ € L is called precompact if S C L and
g =\ S imply ¢ = \/ S’ for some finite subset S’ of S. Let Q(L) denote the set of all
precompact elements of L. If L is a Q-lattice, then L is said to be prealgebraic. It is
obvious that K(L) C Q(L), and each algebraic lattice is prealgebraic.

Compact generation has a useful generalization. Define a lattice L to be upper con-
tinuous if L is complete and, for every a € L and every chain C'in L,

anN\C=V{aAc:ceC}.

The lattice L is lower continuous if its dual lattice is upper continuous, and it is continuous
if it is both upper and lower continuous. It can be shown that every algebraic lattice is
upper continuous and weakly atomic. Crawley—Dilworth [1973] (see Theorem 2.4) show
that if @ is an element of an upper continuous lattice L, S C L, and if F(S) is the set of
all finite subsets of .S, then

(UC) aNVS=\V{an\s :5 eF(9)}.
Every lower continuous lattice L has the dual property to (UC), namely:
(LC) aVA\S=NaVvA\S:5 eF(9)},

for all a € L and S C L. A complete lattice L is called Brouwerian if for each a € L and
each T C L,
aANVT =\{ant:teT}
L is dually Brouwerian if L? is Brouwerian. Clearly, every dually Brouwerian lattice is
lower continuous.
In a complete strongly coatomic lattice L we put

ar =A\{beL:b=<a},

for a € L, a # 0, that is, a is the meet of all lower covers of a. We say that a complete
strongly coatomic lattice L is lower locally modular (resp. lower locally distributive) if
for each a € L, a # 0, the interval [a,a] is a modular (resp. distributive) sublattice.
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In a dual way, we define (upper) locally modular lattices and (upper) locally distributive
lattices. We note that the concepts of local distributivity and local modularity go back
to Dilworth [1940, 1941].

We denote by K the class of all lower continuous strongly coatomic lattices.

1. Consistent, strong, and atomistic lattices

1.1. Consistent lattices. Kung [1985] introduced the notion of a consistent lattice. A
lattice L is said to be consistent iff a € L and u € V(L) imply that a Vu € V([a,a V u]).
Geometric lattices (i.e., complete, semimodular, atomistic lattices in which all atoms are
compact) and modular lattices are consistent (see Kung [1985]). The pentagon lattice is
an example of a consistent lattice which is neither modular nor geometric.

We will need the following

LEMMA 1.1. If a,b are elements of a lattice L € K and b £ a, then there exists u € V(L)
such that u < b and u £ a.

Proof. Since L is strongly coatomic and a A b < b, there exists a p € L such that
aNb<p=<b. Let

T={xzeL:x<bandz £ p}.
Then T is nonempty, since b € T'. Let C' be a chain in T'. The lower continuity yields

pVAC=NAN{pVc:ceC} =0

Thus AC € T, and T contains a minimal element u by the dual of Zorn’s Lemma. Clearly,
weV(L),u<bandu L a. m

PROPOSITION 1.2 (see Walendziak [1994d], Theorem 1). A lattice L € K is consistent iff
L satisfies the dual of property (x) (see Crawley—Dilworth [1973], p. 53), namely:

(+)  For all a,b € L, if the interval [a A b,b] has exactly one coatom, then the interval
[a,a V b] has exactly one coatom.

Proof. Suppose that the lattice L is consistent. Let a,b € L and let p be a unique element
such that a Ab < p < b. By Lemma 1.1 there is a join irreducible element u such that
uwVp=">b Weset t =aVu.ltis obvious that t Ab € [a Ab,b and u <t Ab £ p. Since
L is strongly coatomic, and p is a single coatom in [a A b, b] we conclude that ¢ A b = b.
Then b < ¢, and therefore ¢ = a V b. Consistence implies that a V u € V([a,1]), i.e,, a Vb
(= aVu) is a join irreducible element of the sublattice [a, 1]. Hence the interval [a, a V b]
has exactly one coatom.

Conversely, assume that L satisfies (+). Let v € V(L) and a € L. If a and u are
comparable, then obviously a V u € V([a, 1]). Suppose that a,u are incomparable. Since
u € V(L), the sublattice [a A u,u] has exactly one coatom. By (+), [a,a V u] has exactly
one coatom. Hence a V u € V([a, 1]), and therefore L is consistent. m

By the dual of Lemma 3 of Walendziak [1990b] we have
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LEMMA 1.3. Let L be a lower locally modular lattice of K. If b,p,q € L, and if
P,q<bV(pAq) and pAb=qADb, then p=q.
Now we prove the following

PROPOSITION 1.4. Ewvery lower locally modular lattice belonging to K is lower semimod-
ular and consistent.

Proof. Let L be a lattice satisfying the assumptions of the proposition. From the dual of
Theorem 3.7 of Crawley—Dilworth [1973] it follows that L is lower semimodular
(in the proof of that theorem, just the upper continuity of L was used). We verify that
L is also consistent. It is sufficient to show that L satisfies (+). Suppose on the contrary
that there exist a,b € L such that the interval [a A b,b] has exactly one coatom and
[a,a V b] contains two distinct coatoms p and ¢g. Obviously we have

(1) p,g<aVb=bV(pAgq).
By lower semimodularity, p Ab < b and ¢ Ab = b. Since [a A b, b] has exactly one coatom,
(2) pAb=gAb.

From (1) and (2) we conclude by Lemma 1.3 that p = ¢. This contradiction shows that
L satisfies (+). Then from Proposition 1.2 it follows that L is consistent. m

A finite lattice L is called meet-distributive if a4, a] is a boolean interval of L for all
aclL.
As an immediate consequence of Proposition 1.4 we obtain

COROLLARY 1.5 (cf. Reuter [1989], Lemma 1). A meet-distributive lattice is consistent.

REMARK 1.6. Since every lattice of finite length is lower continuous and strongly coato-
mic, from Proposition 1.4 we have Proposition 20.2 of Stern [1991D].

REMARK 1.7. The converse of Proposition 1.4 is not true. The lattice of Figure 1 is a
consistent lattice which is not lower locally modular.

<

Fig. 1

Combining the dual of the Theorem in Walendziak [1990b] (p. 554) and Proposi-
tion 1.2 we obtain

COROLLARY 1.8. If L is a lower semimodular, lower continuous lattice satisfying the
ascending chain condition, then the following statements are equivalent:

(i) L is lower locally modular.
(ii) L is consistent.

We now describe the relationship between consistent lattices and a class of Steinitz
spaces.
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Let S be a finite set. By P(S) we denote the set all subsets of S. A function
Cl : P(S) — P(S) is called a closure operator on S if it has the properties (for all
A,BCS):

1) ClA) = CI*(A).

2) A C CI(A).

3) If A C B, then Cl(A) C CI(B).

A closure space S is a pair (S, Cl) where S is a finite set and Cl is a closure operator on S.

Cl(A) is more commonly denoted by A. A subset A C S is closed, or a flat, if A = A.
The lattice of closed sets of S is given by

LS)={ACS: A=A}

The analogy with vector spaces leads to the following notions. An element p € S is a
point of the closure space S if p is a nonzero join irreducible element of L(S). We call the
set B C A of points a basis for A if

B=A and B-b#A forallbec B.

We say that a closure space S has the Steinitz exchange property if for all A C S and
bases By, By for A, if by € By, then there is by € Bs such that (By — by) U {by} is a basis
for A. A closure space S with the Steinitz exchange property will be called a Steinitz
space. S is called a matroid if it has the Steinitz—MacLane exchange property:

peAUq—A = qgecAUp (ACS, p,gc9).

Finally, we say that a closure space S is a conver geometry if S has the so-called anti-
exchange property (A C S, p,q € S):

(p,g € AUq—A andp#q) = q¢ AUp.

It is well known that a finite lattice L is isomorphic to the lattice of flats of a matroid
iff L is geometric. A result due to Edelman [1980] (see Theorem 3.3) states that a lattice is
meet-distributive iff it is isomorphic to the lattice of all closed sets of a convex geometry.

We first prove the following

PROPOSITION 1.9. Let S be a closure space. Then S is a Steinitz space iff L(S) is a
consistent lattice.

Proof. Let S be a Steinitz space and set L = L(S). To prove that L is consistent, let
A€ L and U € V(L). Suppose that AVU = BV C, where B,C > A. Let {a1,...,an},
{b1,...,b} and {e1,...,c,} be bases for A, B and C, respectively. Since U is join ir-
reducible in L, we conclude that U = p for some point p. Without loss of general-
ity we can assume that {a1,...,am/,p} and {by,...,bp,c1,...,cp} (M < m, k' <k,
n’ < n) are bases for AV U. Since S has the Steinitz exchange property, for p there is
be{by,...,b,c1,...,cn} such that {aq,...,an/,b} is a basis for AV U. Assume that
b= b1. Then

B<AVU=aV...Vaw Vb <AV B=B,
ie., AVU = B. Thus AV U € V([A, AV U]).
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Suppose L = L(S) is a consistent lattice. We claim that S has the Steinitz exchange

property. Indeed, let {ay,...,an} and {b1,...,b,} be bases for A C S. Then
A=a1V...VGp =01 V...Vb,.
Let € {1,...,m}. Set B=a; V...Va@;_1 Va1 V...V ay. By consistence,
A=(BVb)V...V(BVb,) =BVa; € V(B,A]).

Consequently, A = BV b; for some j € {1,...,n}. Hence {a1,...,a;—1,b;,ait1,...,am}
is a basis for A, and therefore, S is a Steinitz space. m
REMARK 1.10. Since every geometric lattice is consistent, any matroid is a Steinitz space.

Similarly, every meet-distributive lattice is consistent, and hence each convex geometry
is a Steinitz space.

EXAMPLE 1.11. Let Qs be a quaternion group (of order 8). We denote by Sg(A) the
subgroup of Qg generated by A C Qs. It is obvious that (Qs,Sg) is a closure space.
Let L = Sub(Qs) be the lattice of all subgroups of Qs. Then L is the lattice of flats of
the space (Qs,Sg) and it is shown in Figure 2. It is a modular lattice but it is neither
geometric nor meet-distributive. Hence (Qs,Sg) is a Steinitz space but it is neither a
matroid nor a convex geometry.

Fig. 2

Now we prove

THEOREM 1.12 (Walendziak [1997], Theorem). Let L be a finite lattice. Then L is iso-
morphic to the lattice of all closed sets of a Steinitz space iff L is consistent.

Proof. If S is a Steinitz space and L = L(S), then L is a consistent lattice, by Proposi-
tion 1.9.
Conversely, let L be a finite consistent lattice. Define S = V(L) and
A={peS:p<VA}

for A C S. It is easy to see that ~ is a closure operator on S. Then S = (5,7 ) is a closure
space. Observe that A = {p € S : p < a} (a € L) is a closed set of S. Indeed, every
element of L is a join of join irreducible elements, thus a = \/A, showing that A = A.
Set L’ = L(S), and define the map

fiaeL—{peS:p<a}el.
Let A€ L. Then {p € S:p<\A} = A, and therefore, f(\/A) = A. Thus f is onto L'.
Since a = \{p e S:p<a}=\f(a) for each a € L, f is one-to-one. Obviously,

{peS:p<andy={peS:p<a}n{peS:p<b}
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and so f(aAb) = f(a) A f(b). The formula f(aVb) = f(a)U f(b) is equivalent to

(3) {peS:p<avb} =8,

where B={p € S :p<aorp<b}. By the definition of ~,
B={peS:p<VB}.

Since every element of L is a join of join irreducible elements, we have \/B = a V b.
Therefore, (3) holds, and hence f(aVb) = f(a)U f(b). Thus f is an isomorphism between
L and L'. Therefore the lattice L’ is consistent. By Proposition 1.9, S is a Steinitz space.
Consequently, L is isomorphic to the lattice L(S) for some Steinitz space S. =

1.2. Strong lattices. Now we introduce the concept of a strong lattice. For lattices of
finite length the definition of strongness is given by Stern [1989] by the property

(St) (ueV(L)—{0}, ae Landu<aVu*) = u<a.

We extend the notion of strongness from lattices of finite length to arbitrary lattices.
Namely, we introduce the following

DEFINITION 1.13. We say that a lattice L is strong if the following condition is satisfied:
(S) (ueV(L)—{0}, a,be Landb<u<aVb) = u<a.

This concept is also dealt with in Walendziak [1994b]. It is easy to see that in strongly
coatomic lattices (in particular: in lattices of finite length) properties (St) and (S) are
equivalent. We remark that any atomistic lattice (in particular: each geometric lattice)
is strong. (Indeed, each join irreducible element of an atomistic lattice is an atom.)

Now we observe that any modular lattice is strong. Let L be a modular lattice and
let w e V(L), a,b € L with b < u < aVb. By the modular law, u = (a Au) V b. Since u is
join irreducible this implies © = a A u, that is, u < a, which means that L is strong.

Also, it is not difficult to give examples of lattices which are strong but neither modular
nor atomistic (see Section 23 of Stern [1991b]).

THEOREM 1.14. Let L be an atomic V-lattice. If each atom of L has a complement, then
L is strong iff L is atomistic.

Proof. Assume that L is strong. Let a be a nonzero element of L. Since L is a V-lattice,
a=\{u:ueUCV(L)}.

Suppose that a join irreducible element u € U is not an atom. Since L is atomic, there
exists an atom p € L such that p < u. Let p’ be a complement of p. This means that
1=pVp and 0 = pAp'. Then p < u < pVp' and strongness implies u < p’. Thus p < p/,
which contradicts p A p’ = 0. It follows that L is atomistic. The converse is clear. m

Now we prove the following

THEOREM 1.15 (Walendziak [1994e], Theorem 2). A lower continuous strongly atomic
lattice in which each atom has a complement is atomistic iff it is strong.

Proof. Observe that if a lattice L is lower continuous and strongly atomic, then L is a
V-lattice. Indeed, let @ € L and b = \/{u € V(L) : u < a}. Assume that b < a. Since L
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is strongly atomic there exists an element p € L such that b < p < a. Consider the set
T={teL:bVvt=p} Itis nonempty, since p € T. Let C be a chain in T. The lower
continuity yields

bVAC =A{bVc:ceC}=np.

Thus AC € T and by the dual of Zorn’s Lemma T contains a minimal element v. Clearly,
v € V(L) and v < a. Consequently, v < b, and hence p = bV v = b, a contradiction. Thus
a=\{u € V(L) : u < a}, which shows that L is a V-lattice. Now the assertion follows
from Theorem 1.14. m

We recall that a lattice L satisfies the descending chain condition (DCC) if each
nonempty subset of L contains a minimal element. It is obvious that any lattice satisfying
the DCC is lower continuous and strongly atomic. Therefore we obtain the following

COROLLARY 1.16. Suppose that a lattice L satisfies the DCC and each atom of L has a
complement. Then L is atomistic iff it is strong.

REMARK 1.17. Since every lattice of finite length satisfies the DCC, this corollary implies
the theorem of Stern [1989].

We know (see Crawley—Dilworth [1973], Theorem 4.1) that every upper continuous,
semimodular, atomistic lattice is relatively complemented. This together with Corol-
lary 1.16 yields

COROLLARY 1.18. Let L be a semimodular, upper continuous, strong lattice with DCC.
If each atom of L has a complement, then L is relatively complemented.

REMARK 1.19. Corollary 1.18 generalizes the corollary of Stern [1989).
PRrROPOSITION 1.20. A lower semimodular strongly coatomic lattice is strong.

Proof. Let L be a lower semimodular strongly coatomic lattice and assume that L is not
strong. Then there exists a join irreducible element u € V(L) such that

wu<aVu" but uta

for some a € L. Clearly a < a V u*, and since L is strongly coatomic, there is b € L
such that a < b < a V u*. It is easy to see that u ﬁ b, and hence b < bV u < aV u*.
Consequently, bV u = a V u*, and therefore b < bV u. By lower semimodularity it follows
that b A u < u, that is, b A v = u*. This means u* < b and thus

b<bVu=aVu* <b,
contradicting v £ b. =

REMARK 1.21. The preceding proposition generalizes Lemma 2 of Stern [1991a], since
any lattice of finite length is strongly coatomic.
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ExXAMPLE 1.22. Let L be the lattice diagrammed in Figure 3.

Fig. 3
Then L is strong but not lower semimodular. This example implies that the converse of
Proposition 1.20 is not true.

PROPOSITION 1.23 (Walendziak [1999], Proposition 1). A lattice L is strong iff it does
not contain a pentagon isomorphic to the lattice in Figure 4 (where u € V(L)).

avVu=aVb
u
a
b
aANb=aAu
Fig. 4

Proof. Assume that L is not strong. Then there are a,c € L, u € V(L) such that

c<u<aVcand uga. Let b=cV (a Au). Since u is join irreducible, b <u. We have
anb<aAhu<aAl[cV(aAu)=aAlb,

and hence a Ab = a Au. Now we observe that a Ab < b. Namely, aAb = b yields b < a and

thus v < a V b = a contradicting our assumption u £ a. It is easy to see that a A b < a

and a < aVb < aVu. On the other hand, aVu < aVb. Therefore, a Vb = aV u, and thus

L contains a pentagon isomorphic to the lattice of Figure 4. The converse is trivial. m

As a preparation for the next result we need the following
LEMMA 1.24. Let L be a strong lattice and ¢,d € L with ¢ < d. If u€ V(L) and b€ L
are such that b < u <d but u ﬁ ¢, then b <c.
Proof. Suppose that b ﬁ c. Wehave c<bVe<dandc~<d. Thenu<d=5bVcand
strongness implies u < ¢, a contradiction. m
PRrROPOSITION 1.25. Let L be a strongly coatomic lattice. If L is semimodular and strong,

then L is consistent.

Proof. Let L satisfy the above assumptions, and suppose that L is not consistent. This
means that there exist ¢ € L and u € V(L) with a V u € V([a,1]). Thus there are two
distinct elements c¢j,co € [a,a V u] which are covered by a V u. Since u ﬁ c1,Co, by
Lemma 1.24 we get u* < ¢; for i = 1,2. Thus v* < u A (¢1 A ¢2) < u and obviously
U ﬁ c1 A ca. Hence u A (¢1 A ¢3) = u* < u. By semimodularity we conclude that

caANce < (a1 ANe)Vu=aVu.

This is a contradiction since ¢; A co < ¢; < a V u by construction. m
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The main result of the present section is

THEOREM 1.26 (Walendziak [1994b], Theorem 1). A semimodular lattice L € K is con-
sistent iff it is strong.

Proof. Let L be a semimodular lower continuous strongly coatomic lattice. Assume first
that L is consistent but not strong. Let a join irreducible element v € V(L) be such that
u<aVu*and u f a for some a € L. Thus the set

T={reL:u<zVu andu £ x}
is not empty. Let C be a chain in T. Lower continuity implies

uwVAC =A{cvVu :ceC} >u.
Clearly, u £ AC. Therefore AC € T, and T contains a minimal element b, by the dual of
Zorn’s Lemma. Since L is strongly coatomic we may choose p € L with p < b. Observe
that
(4) pVu' <pVu.
Indeed, if pV u* = pV u, then p € T, contradicting the minimality of b. Now we observe
that b < pVu™* is not possible, since b < pVu* would imply bVu* < pVu* < pVu < bVu*,
a contradiction. Since p < b and b £ pV u* we get
bA(pVu*)=p=<b.

Hence, by semimodularity we conclude that

pVu*<bVpVu*=bvu =bVu.
Thus we have

pVu*<pVu<bVu and pVu*<bVu.

Consequently,
(5) pVu=>bVu,

and therefore p V u = (p V u*) V b. Consistence implies that p V u is a join irreducible
element of the sublattice [p, 1]. This together with (4) and (5) yields bV u = pV u = b,
which contradicts the fact that w £ b. It follows that L must be strong.
The converse follows from Proposition 1.25. =

REMARK 1.27. The preceding theorem generalizes Theorem 27.1 of Stern [1991b] (see also
Faigle [1980], p. 33, and Reuter [1989], p. 125). Example 1.22 shows that the assumption
of semimodularity cannot be dropped in Theorem 1.26. Indeed, the lattice of Figure 3 is
an example of a nonsemimodular lattice which is strong but not consistent.

1.3. Strongly semimodular lattices

DEFINITION 1.28 (Faigle [1980]). A lattice is called strongly semimodular if it is both
strong and semimodular.

All geometric lattices are strongly semimodular. Each modular lattice is obviously
strongly semimodular.
As a preparation we need the following
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LEMMA 1.29. Let L € K. If p < q (p,q € L), then there exists a join irreducible element
u € V(L) such that pV u=q and p Au=u*.
Proof. Theset T ={t € L:pVt=q} is nonempty, since ¢ € T. Let C be a chain in T
Lower continuity yields

pVAC=AN{pVc:ceC}=q
Thus AC € T, and T contains a minimal element «, by the dual of Zorn’s Lemma.
Clearly, v € V(L), pV u = ¢ and from u £ p it follows that p A u < u*. Observe that
u* < p. Indeed, if u* £ p, then p V u* = ¢, that is, u* € T and u* < u, contradicting the
minimality of u. Thus we have u* < pAwu. Hence pAu=1u*. m

REMARK 1.30. For lattices of finite length this lemma was proved in Stern [1982]
(see also Stern [1991D], p. 25).

Our main result of this section is
THEOREM 1.31 (Walendziak [1996a,c]). Let L € K. Then:
(i) L is semimodular iff L has the exchange property:

(EP)  For all u,v € V(L) and arbitrary b € L, v < bV u and v £ bV u* imply
u<bVoVu*.

(ii) L is strongly semimodular iff L has the property:
(EP)  For all u,v € V(L) and arbitrary b € L, v < bVu and v £ bVu* imply u < bVv.

Proof. (i) Suppose that L is a semimodular lattice. Let u,v € V(L) and b € L be such
that v < bV w and v £ bV u*. Observe that v £ bV u*. Indeed, if u < bV u*, then
v<bVu=>bVu*, acontradiction. Thus we have

ulN(bVu)=u" < u.
Hence, by semimodularity, we conclude that
bvu* < (bVu*)Vu=>bVu.

From this and from v £ bV u* we get v VbV u* = bV u. Consequently, u < bV vV u*.

Let L satisfy (EP). Let a,b € L be elements for which a A b < a. Without loss of
generality we may assume that a, b are incomparable. By Lemma 1.29, there exists a join
irreducible element u € V(L) such that (a Ab) Vu = a and a AbAw = u*. We shall prove
that b < bV u. To obtain a contradiction, suppose that b < ¢ < bV u for some ¢ € L.
Since L is strongly coatomic, there is p € L with b < p < ¢. By Lemma 1.29 we get the
existence of a join irreducible element v € V(L) with p Vv = ¢. It follows that v < bV u
and v £ b = bVu*. Applying (EP) we obtain v < bVoVu* =bVv. Then bVu < bVv < q.
This contradiction shows that b < bV u. We have

aVb=(aAb)VuVb=>bVu.

Consequently, b < a V b, which shows that L is semimodular.

(ii) Let L be a strongly semimodular lattice, and let u,v € V(L) and b € L be such
that v <bVwand v £ bV u*. Applying (EP) we obtain u < bV vV u*, and strongness
implies 4 < bV v. Hence (EP) holds.
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Now let L satisfy (EP). By (i), L is semimodular. We show that L is also strong.
Suppose, on the contrary, that there exists u € V(L) such that property (St) is not
satisfied. Then the set

T={teL:u<tVu" andu <t}
is not empty. Let C be a chain in L. Lower continuity yields
W VAC=AN{u"Vec:ce O} >u.

It is obvious that u £ AC. Thus AC € T, and T contains a minimal element a, by
the dual of Zorn’s Lemma. Since a # 0 and L is strongly coatomic, we may choose
p € L with p < a. By Lemma 1.29 there exists a join irreducible element v such
that pVov = a and p A v = v*. We shall prove that u £ p V u*. Assume, on the
contrary, that u < p V u*. By the choice of p we have u < p < a, a contradiction.
Then u £ p V u* and hence u £ p V u* V v*, since v* < p. Obviously, v < a V u* =
pV u* V. Therefore, using the exchange property (EP) we get v < p V u. Observe now
that v £ p V u* since otherwise

pVu*=pVoVvu =aVu*>u.

Hence applying (EP) we conclude that u < pV v = a, which contradicts u £ a. It follows
that L must be strong. Thus L is strongly semimodular. m

REMARK 1.32. Since every lattice of finite length is lower continuous and strongly
coatomic, Theorem 1.31 gives the Theorem of Stern [1990b] and Theorem 1 of Faigle—
Richter—Stern [1984] (see also Theorem 26.5 of Stern [1991b]).

We know that in atomistic lattices each join irreducible element is an atom. Then, as
the consequence of Theorem 1.31 we get the following result which is a generalization of
the Corollary of Stern [1990b].

COROLLARY 1.33. For every atomistic lattice L € K the following conditions are equiv-
alent:

(i) L is semimodular.
(ii) L has the Steinitz—MacLane exchange property, that is, for all atoms p,q € L and
for arbitrary b € L, the relations p < bV q and p £ b imply ¢ < bV p.

1.4. Characterizations of atomistic lattices. We characterize atomistic lattices in
terms of concepts related to pure elements and neat elements. We first recall the notion
of pure elements in lattices. This notion was introduced independently by Head [1966]
and Kertész [1968].

An element a of a complete lattice L is pure in L if for each ¢ € K([a, 1]) there exists
be Lsuchthat c=a Vb (ie,c=aVband aAb=0).

We now introduce the notion of a neat element in lattices following Delany [1968]. An
element a € L (L is a lattice with 0) is called neat if a < b (b € L) implies the existence
of c € L such that b=a V c.

Applications of these concepts in group theory can be found in Delany [1968], Head
[1966] and Honda [1956]. For our aims, we sharpen these concepts by introducing weakly
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pure and strongly neat elements. (Note that Stern [1984] uses the term “strongly neat”
in another sense.)

DEFINITION 1.34 (Walendziak [2000b], Definition 1). An element a € L is called weakly
pure if for every v € J(L) there exists b € L such that a Vv =a V b.

LEMMA 1.35. In an upper continuous lattice every pure element is weakly pure.

Proof. Let L be an upper continuous lattice and let a € L. Suppose that a is pure and let
v € J(L). Then v is compact in L (see Crawley [1962], Lemma 3), and therefore ¢ = a Vv
is compact in [a, 1]. Since a is pure, there exists b € L such that ¢ = a V b. This means
that a is weakly pure. m

The converse of Lemma 1.35 is not true. In Figure 5 we give an example of a lattice
having a weakly pure element, a, which is not pure.

Fig. 5 Fig. 6

The following example shows that in Lemma 1.35 the assumption that L is upper
continuous cannot be dropped. Let L be the lattice diagrammed in Figure 6. Observe
that the element a is pure but not weakly pure. It is sufficient to show that the element
v is completely join irreducible but not compact. Obviously, v € J(L) and v < 1 =
V{a; : i =1,2,...}. Since v £ \/{a; : @ € I} for every finite subset I of {1,2,...}, it
follows that v is not compact.

DEFINITION 1.36 (Walendziak [2000b], Definition 2). Let L be a lattice with 0. An ele-
ment ¢ € L is called strongly neat if a < b (b € L) implies the existence of an atom p
such that b = a V p.

By definition, it is clear that in a lattice with 0 a strongly neat element is a fortiori
neat. It is obvious that in every lower semimodular lattice L any element a € L is strongly
neat if and only if it is neat. In Figure 7 we give an example of a lattice having a neat
element, a, which is not strongly neat.

Fig. 7

THEOREM 1.37 (Walendziak [2000b], Theorem 1). Let L be a J-lattice. Then the follow-
ing four conditions are equivalent:
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(i) L is atomastic.

(iii) Every element of L is neat.
(i
Proof. (i)=(ii). Let L be an A-lattice, a € L and let v be a completely join irreducible

element of L. Since L is atomistic, J(L) = A(L), and therefore v is an atom of L. If v < a,
then a =a V0. If v £ a, then a Vv =a V v. Thus a is a weakly pure element of L.

)

(ii) Every element of L is weakly pure.
)
)

v) Every element of L is strongly neat.

(ii)=(iii). Let a € L and let b be an upper cover of a, i.e. a < b. Since L is a J-lattice,
the relation a < b implies the existence of a completely join irreducible element v such
that v £ @ and v < b, and therefore b = a V v. By (ii), the element a is weakly pure and
so by definition there exists ¢ € L with b = a V c¢. Consequently, a is neat.

(ili)=(iv). Let a,b € L with a < b. Let v € J(L) be such that b = a V v. We set

u=V{zeL:xz<v}

(u exists, because L is complete). Since v is completely join irreducible we conclude that
u < v. By (iii) the element u is neat. Hence there exists ¢ € L for which v = u V c.
Then u = 0, because v is join irreducible. From this we deduce that v is an atom of L.
Consequently, a is strongly neat.

(iv)=(i). It is easy to see that every v € J(L) is an atom of L. This means that
J(L) = A(L). Since L is a J-lattice, it is also an atomistic lattice. m

THEOREM 1.38. For a complete weakly atomic lattice L the following are equivalent:

(i) L is atomistic.
(ii) Every element of L is strongly neat.

Proof. If L is an atomistic lattice and a < b (a,b € L), then there exists an atom p such
that p < b and p £ a. Therefore b = a V p. It follows that the arbitrarily chosen element
a € L is strongly neat.

Let (ii) hold, and let a € L — {0}. Since L is weakly atomic, there exist z,y € L such
that 0 < & < y < a. By (ii) the element z is strongly neat and so by definition there
exists an atom p € A(L) with y = z V p. Since p < a, the set P = {r € A(L) : r < a}
is nonvoid. Suppose that b = \/P < a. By weak atomicity of L there exist u,v € L such
that b < u < v < a. Since u is strongly neat, we get the existence of an atom ¢ such that
v=uVgq. Then ¢ € A(L) and ¢ < a, and therefore, ¢ < b. Hence v=uV g <uVb=u,
a contradiction. Thus

a=\{reA(L):r <a},
i.e., every element (# 0) of L is the join of the atoms contained in it. m

Since every algebraic lattice is weakly atomic, Theorem 1.38 yields

COROLLARY 1.39. An algebraic lattice L is atomistic if and only if every element of L
1s strongly neat.

The next proposition is a generalization of Theorem 2 from Kertész—Stern [1974].

PROPOSITION 1.40. Ewvery element of an AC-lattice is pure.
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Proof. Let L be an AC-lattice, a € L and let ¢ be a compact element in [a, 1]. Since L
is atomistic, ¢ = \/{p; : @ € I}, where p; (i € I) are atoms. Hence ¢ = \/{a V p; : i € I},
and we have ¢ = aVp1 V...V p,, because ¢ € K([a, 1]). Without loss of generality we can
assume that

pita and p;LaVpV...Vpi_y fori=2,...,n.
We prove by induction that
(6) aN(p1V...Vpy)=0 foralll1 <k <n.
This is true for k = 1. Let ¢ € {2,...,n}. We set
b=p1V...Vpii,
and suppose that a A b = 0. Since p; % b we see that p; A b= 0. Property (C) yields
(7) b=<bVp;.
As p; £ aV b we have bV p; £ aV b and therefore,
b<(aVb)A(bVp)<bVp,.
From (7) we conclude that
(aVb)A(bVp;)=h.
Hence
aN(OVp)<(aVbADVp)=h.
Consequently, a A (bV p;) < a Ab =0, that is,
aN(Pr1V...Vpi1Vp) =0,
completing the proof of (6). Thus
c=aVpV...Vp, and aA(p1V...Vp,) =0,
which means that a is pure in L. m

THEOREM 1.41 (Walendziak [2000b], Theorem 3). Let L be an upper continuous J-lattice
satisfying (C). Then the following statements are equivalent:

(i) L is atomistic.
(ii) Fvery element of L is pure.

)
(iii) Every element of L is weakly pure.
(iv) Every element of L is neal.

)

(v) Every element of L is strongly neat.

Proof. The implication (i)=(ii) follows from Proposition 1.40. (ii) implies (iii) by Lem-
ma 1.35. The equivalence of conditions (i), (iii), (iv) and (v) follows from Theorem 1.37. m

For lattices of finite length, Theorem 1.41 gives

COROLLARY 1.42. Let L be a lattice of finite length with (C). Then all statements of
Theorem 1.41 are equivalent.
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THEOREM 1.43. Let L be an algebraic lattice satisfying the covering property (C) and the
following condition:
(0) (a<aVbandaVvbeK(L)) = anb=<b.
Then the following four statements are equivalent:
(i) L is atomastic.
(ii) Every element of L is pure.
(iii) Every element of L is neat.
(iv) Every element of L is strongly neat.

Proof. The implication (i)=-(ii) follows from Proposition 1.40. It is clear that (ii) im-
plies (iii).

Now suppose that L satisfies (iii). We show first that L is atomic. Let 0 # b € K(L),
and set

T={teT:t<b}.

Obviously, T' # 0. Let C be a chain in T. Assume that b = \/C. Since b is compact,
there is a finite subset C” of C such that b = \/C’. As C is a chain we have b = ¢ for
some ¢ € C. This contradiction shows that \/C' < b, and therefore \/C' € T. By Zorn’s
Lemma, T contains a maximal element a. It is easy to see that a < b. By condition (iii)
the element a is neat. Hence there exists ¢ € L for which b = a V ¢. Property ([J) gives

O=aANnc=<c<hb.

This means that every interval [0,b] (b € K(L)), b # 0) contains an atom. Since L is
algebraic, we deduce that L is atomic. In atomic lattices every neat element is strongly
neat. Therefore, from (iii) we obtain (iv).

Finally, (iv) implies (i) by Theorem 1.38. m

COROLLARY 1.44. Let L be an algebraic lattice with (C) and (). If one of the conditions
(i)—(iv) of the preceding theorem is satisfied, then L is modular.

Proof. Let L be an algebraic AC-lattice (i.e., a matroid lattice) satisfying (LJ). Let Fin(L)
denote the set of all finite elements of L (i.e., a € Fin(L) iff a is the join of a finite number
of atoms). It is obvious that Fin(L) C K(L). From (1J) we conclude that Fin(L) is a lower
semimodular sublattice of L. It follows from Theorem 9.5 of Maeda—Maeda [1970] that
Fin(L) is a modular lattice. Now Theorem 14.1 from Maeda—Maeda [1970] implies that
L is modular. =

THEOREM 1.45 (Walendziak [2000b], Theorem 5). A lattice L is atomistic if and only if
L is prealgebraic and satisfies the following condition:
(%) If b<q (g€ Q(L)), then there is p € A(L) with ¢ =0V p.

Proof. Let L be a Q-lattice with property (x). To show that L is atomistic, it is suffi-
cient to prove that each precompact element is a join of atoms. To see this consider a
precompact element ¢ € Q(L). Suppose that

(8) a=V{peAlL):p<q}<aq.
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We put
T={zxeL:a<z<gq}
Then T is nonvoid, since a € T. Let C be a chain in T. Then \/C € T', because g € Q(L).
Therefore T' contains a maximal element b by Zorn’s Lemma. The maximality of b shows
that a < b < q. Applying (*) we get the existence of an atom py € A(L) with ¢ = bV py.
Obviously, pg < a < b, and consequently ¢ = b, which is impossible. Hence our assumption
(8) was false, i.e., ¢ is the join of the atoms contained in it. Thus L is an atomistic lattice.
The converse is immediate. m

By Theorem 1.45 we obtain

COROLLARY 1.46. A prealgebraic lattice L is atomistic if and only if L satisfies (x).

2. Join decompositions in lattices

2.1. J-lattices. If an element a € L has a representation a = \/T (resp. a = AT)
with T C J(L) (resp. T C M(L)), then we say that a has a join decomposition (resp.
meet decomposition). A join decomposition a = \/T is irredundant if a > \/(T — {t})
for each t € T. L is a J-lattice if each element of L has a join decomposition. Crawley—
Dilworth [1973] (p. 39) mentioned that if L is a lattice with the ascending chain condition,
then every element of L has an irredundant finite meet decomposition. Therefore, every
element of L has an irredundant finite join decomposition if L satisfies the descending
chain condition.

Most of the investigations in this section will concern lower continuous lattices with
the hereditary property (HJ), defined in Richter [1991] as follows:

(HJ) (a€e Land uwe J(L)) = aVueI(]a,l]).

It is obvious that every modular lattice has this property. We remark that for complete
strongly coatomic lattices the property of being consistent and property (HJ) are equiv-
alent. In arbitrary lattices, this equivalence does not hold. For instance, the lattice of
Figure 8 is consistent but it does not have the hereditary property (HJ).

R
71N
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I

Fig. 8

First, we shall prove the following simple but useful lemma.

LEMMA 2.1. Let L be a lower continuous lattice and let u,v € L. If u is covered by v,
then each minimal element of the set P = {p € L : v = uV p} is completely join
irreducible.
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Proof. P is nonempty, since v € P. Let C be a chain in P. By lower continuity, uV AC =
MAMuVe:ceC} =v Then AC € P and P contains a minimal element ¢ by the dual
of Zorn’s Lemma. Now we prove that ¢ is completely join irreducible in L. Indeed, let
g=VT and t < ¢ for all t € T. From the minimality of ¢ and the fact that v < v we
infer that uVt = u for every t € T. Consequently, ¢ = \/T < u, and hence v =uV g = u.
This contradiction shows that ¢ € J(L). =

The following result is a generalization of the classical existence theorem (cf. Crawley—
Dilworth [1973], Theorem 6.1).

PROPOSITION 2.2 (Walendziak [1993d], Theorem 1). If a lower continuous lattice L is
weakly atomic, then it is a J-lattice.

Proof. Let a be an arbitrary element of L, and set
b=V{zeJL):z<a}.

Suppose now b < a. Since L is weakly atomic, there exist u,v € [a,b] such that u < v.
Let P be the set of all p € L with v = w V p, and let ¢ be a minimal element of P.
From Lemma 2.1 it follows that ¢ € J(L). By the definition of b we have ¢ < b. Hence
v=uVg<uVb=u, a contradiction. Thus a = \/{z € J(L) : z < a} is a join
decomposition of a. m

Proposition 2.2 implies
COROLLARY 2.3 (see Draskovicovd [1974], Theorem 4). Every weakly atomic dually

Brouwerian lattice is a J-lattice.

Crawley [1962] (Lemma 3) showed that in an upper continuous lattice, every com-
pletely join irreducible element is compact. We know that any algebraic lattice is weakly
atomic (Crawley-Dilworth [1973], Theorem 2.2). From the last two facts and Proposi-
tion 2.2 we get

COROLLARY 2.4 (cf. Geissinger—Graves [1972], Corollary 2). For a continuous lattice L,
the following statements are equivalent:

(i) L is weakly atomic.
(ii) L is a J-lattice.
(iii) L s algebraic.
(iv) L is dually algebraic.
(v) Every element of L has a meet decomposition.
Now we prove

PROPOSITION 2.5. A J-lattice with hereditary property (HJ) is weakly atomic.

Proof. Let L be a J-lattice satisfying (HJ). Let a,b € L, b < a and let a = \/T be a join
decomposition. Since b < a there is ¢ty € T such that ¢ ﬁ b. We set

v=toVb and u=\{reL:b<z<v}

(u exists, since b < v and L is complete). From (HJ) it follows that v is completely join
irreducible in [b, v], and hence u < v. Now, by the definition of v we obtain u < v. m
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As a consequence of Propositions 2.2 and 2.5 we get the following

THEOREM 2.6. Let L be a lower continuous lattice satisfying (HJ). Every element of L
has a join decomposition iff L is weakly atomic.

We say that a complete lattice L has irredundant join decompositions if each element
of L has at least one irredundant join decomposition.
We close this section with the following result.

PROPOSITION 2.7 (Richter [1982a], Theorem 10). Ewvery lattice belonging to K has irre-
dundant join decompositions.

2.2. The Kurosh—Ore replacement property. The most important result on join
decompositions of an element of a modular lattice is the Kurosh—Ore Theorem.

THEOREM 2.8 (Kurosh [1935], Ore [1936]). Let L be a modular lattice and let a € L. If
a=x1V...Vx, and a =y V...V yy are irredundant join decompositions of a, then
for every x; there is a y; such that

(1:1'1\/...\/Ii_l\/yj\/l’i+1\/...\/l‘n
and n =m.

The following definition is suggested by the Kurosh—Ore Theorem.

A complete lattice L has the Kurosh—Ore Replacement Property for join decompo-
sitions (\/-KORP, for short) if each element of L has at least one irredundant join de-
composition, and whenever a = \/T = \/R are two irredundant join decompositions, for
each t € T there exists r € R such that a = \/(T — {t}) V r is also an irredundant join
decomposition.

The A-KORP is defined dually. The concept of consistency relates to the \/-KORP.
Indeed, we have the following result.

PROPOSITION 2.9 (Richter [1982a]). A lattice L € K has the \/-KORP iff it is consistent.
Combining Theorem 1.26 and Proposition 2.9 we get

COROLLARY 2.10 (Walendziak [1994Db], Theorem 2). For every semimodular lattice be-
longing to K, the following conditions are equivalent:

(i) L has the \/-KORP.
(ii) L is consistent.
(iii) L is strong.

REMARK 2.11. The preceding result is a generalization of Theorem 4 of Reuter [1989].

PROPOSITION 2.12. Let L be an upper continuous, strongly atomic lattice. If L is locally
modular, then L has the \-KORP.

Proof. By the dual of Proposition 1.4, L is dually consistent. The dual of Proposition 2.9
shows that L has the A-KORP. u

THEOREM 2.13 (Walendziak [1999], Theorem 1). Let L be a lattice such that both L and
its dual L° are algebraic and strongly atomic (i.e., L,L? € K). If L is semimodular or
lower semimodular, then L has both the \-KORP and the \/-KORP iff L is modular.
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Proof. Without loss of generality we can assume that L is semimodular. Let L have both
the A-KORP and the \/-KORP. We know that if an algebraic, strongly atomic lattice
is both semimodular and lower semimodular, then it is modular (see Crawley—Dilworth
[1973], Theorem 3.6). Therefore, we only need to show that L is lower semimodular. Then
we prove that L satisfies (N*).

Assume that z < xVy. We conclude from Proposition 2.9 that L is dually consistent.
By the dual of Proposition 1.2, the interval [z Ay, y] has exactly one atom, say p. We now
prove that p = y. On the contrary, suppose that p < y. Since every element of L has at
least one irredundant join decomposition, we conclude that there is u € J(L) such that
u <y and u £ p. From Corollary 2.10 it follows that L is strong. We have

r<zVu* ' <zVy and xz<zVy.

Observe that = = = V u*. Indeed, if x V u* = x V y, then v < = V u* and strongness
implies u < z, a contradiction. Therefore, u* < z. Hence, u Az Ay = u* < u, and by
semimodularity we deduce that z Ay < uV (x Ay) <y. Then p = u V (x A y), and this
contradicts the fact that u £ p. Thus z Ay < p = y, that is, (N*) holds in L, and, in
consequence, L is modular.

The converse is clear by the Kurosh-Ore Theorem (see Theorem 2.8). m

REMARK 2.14. The preceding theorem generalizes Theorem 6 of Stern [1996], since any
lattice satisfying the descending chain condition is strongly atomic.

THEOREM 2.15 (Walendziak [1999], Theorem 3). If L is a lattice such that L and L?
belong to K, then L is strong and locally modular if and only if L is modular.

Proof. If L is locally modular, then L is also semimodular (by the dual of Proposition 1.4).
From Proposition 2.12 and Corollary 2.10 we conclude that L has both the A-KORP and

the \/-KORP. Therefore, by Theorem 2.13, L is modular.
The converse is obvious. m

Finally we recall that a complete lattice L has the Kurosh—Ore property for join de-
compositions (\/-KOP, for short) if every element of L has an irredundant finite join
decomposition and for each a € L, the number of join irreducible elements in any irre-
dundant finite join decomposition of @ is unique. In a dual way one defines the A-KOP.
It is obvious that the KORP implies the corresponding KOP, whereas the converse does
not hold in general. Consider, for instance, the lattice of Figure 9.

=

Fig. 9 Fig. 10

This lattice is denoted by S; and will be called the hexagon. The lattice S; has the
V-KOP whereas the \/-KORP does not hold. In semimodular algebraic lattices satisfy-
ing the DCC, the A\-KORP is equivalent to the A-KOP (see Crawley—Dilworth [1973],



Decompositions in lattices 27

Theorems 7.6 and 7.7). Hence in Theorem 6 of Stern [1996] we may replace the A-KORP
by the A-KOP, but here it is not possible to replace the \/-KORP by the \/-KOP,
that is, the question of Stern [1996] has a negative answer. Indeed, let L be the lattice
diagrammed in Figure 10. Then L is locally modular, and therefore it has the A-KORP
(and, evidently, the A-KOP). This lattice also has the \/-KOP, whereas the \/-KORP
does not hold.

2.3. Lattices with unique irredundant join decompositions. Throughout this
section L will denote a lower continuous strongly coatomic lattice. For a € L, set

P,={peL:p=<a}.
Then ay = AP,. By Proposition 2.7 we deduce that L has irredundant join decomposi-
tions. If every element of L has exactly one irredundant join decomposition, then we say

L has unique irredundant join decompositions.
We begin with the following four lemmas.

LEMMA 2.16. Suppose that the lattice L has the following property:
(xx)  For every a € L and for every u,w € J(L), if uVa=wVa and uVw % a, then
u=w.

Then L is lower semimodular.

Proof. Let a,b € L be elements for which a < a vV b. Without loss of generality we may
suppose that a, b are incomparable. We show that then a A b < b, which means that L is
lower semimodular. Assume that there exists ¢ € L such that a Ab < ¢ < b. By Lemma
1.1 there are completely join irreducible elements u < b and w < ¢ such that u £ ¢ and

w £ a Ab. Consequently, uVa=wVaand uVw £ a. From (xx) it follows that u = w.
This contradiction shows that a Ab < 0. m

LEMMA 2.17. Let L be a lower locally distributive lattice and let a € L. If p € P, and
u,w € J(L)N[0,a], then
(1) pV(uAw)=(pVu)A(pVuw).
Proof. Assume that the assumptions of Lemma 2.17 hold but

pV(uAw) < (pVu)A(pVw).
Therefore, pV (uAw) =pand pVu=pVw=a. Then uAw < p, u £ p and w £ p. Set
b = uV w; then w < b. By Proposition 1.4, L is lower semimodular. As b £ p this implies
that p Ab < b. Since L is strongly coatomic, there exists ¢ € L such that w < g < b.

It is obvious that s = uV by £ ¢ and s < b. Lower semimodularity now implies that
by < sAq<s<b. By the definition of by it is clear that

by =AN{rAs:by <r=<bands<r}

By lower semimodularity, 7 A s < s whenever s « r < b. Therefore, by is a meet of
lower covers of s. But s = u V by € J([b4,1]), since the lattice L is consistent (see
Proposition 1.4). Consequently,
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Since u £ p and w % p we have s « p Ab and p A b # ¢. This together with the fact that
pAb =< b yields

(pAb)Vs=b and (pAb)Vqg=h.
By the distributivity of [b,b] we infer
(PAD)V (sAhg)=[(pPAb) Vs Al(pAD) Vg =0
On the other hand, by (2),
(PAD)V(SAg) =(pAD)Vby =pAb<Db,
a contradiction. Thus (1) holds. =

LEMMA 2.18. Let L (€ K) be a lattice having the property (xx), and let a € L. Then
pV NP, — {p}) = a for each p € P,.
Proof. Let p € P,. Assume that there is a finite subset R of P, — {p} with minimal
number of elements such that p > AR. Let r € R and set s = A(R — {r}). Obviously,
s £ p. By Lemma 1.1 there are join irreducible elements u and w such that u < r, w < s
and uVp=wVp=a. From () it follows that « = w. Consequently, u < r and u < s.
Hence u < r A s= AR < p, a contradiction. Then for every finite subset X of P, — {p},
AX % p. Therefore, by (LC) we have pV A(P, —{p}) = A{pV AX : X is a finite subset
of P, — {p}}=a. n
LEMMA 2.19. If L satisfies (xx), then for each a € L the sublattice [aL,a] is distributive.
Proof. First we prove that [ay,a] is a coatomistic lattice. Let b (# a) be an arbitrary
element of [a4,a] and let d = A{p € P, : b < p}. Suppose that b < d. Since L is strongly
coatomic, there exists ¢ € L such that b < ¢ < d. By Lemma 2.16, L is lower semimodular.
Therefore, if p € P, and d £ p, then p A d < d. Observe that ¢ # p A d for every p € P,.
Indeed, if ¢ = pg A d for some pg € P,, then pg > pg Ad = ¢ > b and hence pg > d.
Consequently, ¢ = d, contrary to the fact that ¢ < d. Therefore,

c>b>ay > MpAd:pe P} > NPa—{c}),
and hence ¢V \(P;—{c}) = ¢. On the other hand, by Lemma 2.18 we get ¢V A(Py—{c})
= d. This contradiction shows that b = d. Thus every element of [ay,a] is a meet of
lower covers of a. Hence [a4,a] is coatomistic. Since [a4,a] is also lower continuous and
lower semimodular, by Theorem 4.1 of Crawley—Dilworth [1973] we conclude that [a., d]
is complemented. We show that

(3) if a, = AP where P C P,, then P = P,.
Indeed, if P # P,, then there is an element ¢ € P, — P, and we have
a>q=qVAP>qV AP, —{q})=a (by Lemma 2.18),

a contradiction. Now we prove that [ay,a] is a uniquely complemented lattice. Let
x € [a4,a] and suppose that there exist x1,z3 € [a4,a] such that

(4) TANTL =2 ANT2 = a4
and

(5) V=2V Iy=a.



Decompositions in lattices 29

Since the lattice [a4,a] is coatomistic, there are subsets R,S and T of P, such that
x= AR, z1 = A\S, and 23 = AT. By (4), ay = A(RUS) = A(RUT) and from (3) it
follows that RUS = RUT = P,. By (5) we have RN S = RNT = . Consequently,
R = S and hence 21 = x9. Thus [a, a] is uniquely complemented. Then, by Theorem 4.5
of Crawley—Dilworth [1973], [a+, a] is a distributive lattice. m

In this section, the major result is

THEOREM 2.20. If L is a lower continuous strongly coatomic lattice, then the following
statements are equivalent:

(i) L has unique irredundant join decompositions.
(ii) L satisfies (xx).
(iii) L is lower locally distributive.

Proof. (i)=(ii). Assume that L has unique irredundant join decompositions but it does
not satisfy (xx). Then there are a € L and distinct w,v € J(L) such that uVa=wVa
and u V w £ a. By lower continuity there exist ¢,d < a which are minimal with respect
touVe=>band wVd=b, respectively. Let ¢ = \/R and d = \/T be irredundant join
decompositions. Then b = vV \/R = w V \/T are two irredundant join decompositions
of b. They are also distinct, since u # w and w ¢ T. This contradiction proves that L
has the property ().

(ii)=-(iii). By Lemma 2.19.

(iii)=(i). Now suppose that L is lower locally distributive. Let a € L and let a =
VR = VT be two irredundant join decompositions. Pick » € R and set s = \/(R — {r}).
Obviously, s < a. Then, as L is strongly coatomic there exists p € L with s < p < a.
Clearly, there is t € T such that ¢ £ p. Consequently, pV r = pV t = a. By Lemma 2.17,

pV(rAt)=(pVr)A(pVit).
Hence r A t ﬁ p. The lower semimodularity of L implies that p A7 < r and p At < t.
Suppose that r % ¢t. Then either r At < rorr At <r.If r At < r, then there exists
g € [r At,r] such that ¢ < 7. Since r € J(L), r has exactly one lower cover and hence
pAr =gq>r At But this is impossible since A ¢ £ p. Similarly, if » A ¢ < ¢, then

p At >r At. Therefore, p > r At, a contradiction. Thus » = ¢ and we infer that R = T.
Consequently, L has unique irredundant join decompositions. m

REMARK 2.21. Since every dual algebraic lattice is lower continuous, this theorem implies
the dual of Theorem 7.4 of Crawley—Dilworth [1973]. Theorem 2.20 also implies Theorem
6 of Walendziak [1993d] and the dual of the Theorem of Walendziak [1995].

3. c-Decompositions in modular lattices

3.1. Preliminaries. In this chapter L always denotes a complete modular lattice. If
a € L, then we say that a is a direct join of the elements a; (i € I), and we write

a=\V{a;:icl},
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if a =\/{a; : i € I'} and for each i € I, a; A\/{a; : j € I — {i}} = 0. The direct join of
finitely many elements a1, ..., a, is also written a; V ... V a,. An element a € L is called
directly join irreducible (or directly indecomposable) if 0 < a and if @ = b V ¢ implies
b=0orc=0.

The first lattice theoretic theorem on direct decompositions was given by Ore [1936].
Ore’s Theorem may be stated as follows:

THEOREM 3.1. Let L be a modular lattice of finite length and consider two direct decom-
positions
1:a1\/\/am=b1\/\/bn (ai,bjEL)
of the unit element of L into directly join irreducible summands a;,b;. Then m =n and
there is a permutation A of the set I = {1,...,n} such that
1:a1\'/...\'/ai_1 \/b)\(z) \'/ai_‘_l\'/...\'/an
foralliel.

We obtain this theorem as a corollary from Theorem 3.25 in Section 3.5. Many in-
teresting results on direct decompositions in modular lattices can be found in Kurosh
[1943, 1946], Baer [1947, 1948], and Hostinsky [1951]. A number of papers are devoted to
this topic, for example, Graev [1947], Livsic [1951] and Jakubik [1955]. Richter [1982b]
gave a necessary and sufficient condition for an element in an algebraic modular lattice
to be a direct join of completely join irreducible elements. Direct decompositions are also
considered in Crawley [1962], Moculskil [1955, 1961, 1962, 1968], and Walendziak [1979,
1980, 1991b).

In this chapter we give a common generalization to both the Theorem of Kurosh-Ore
(Theorem 2.8) and the Theorem of Ore (Theorem 3.1). Before giving this generalization
we still need a few notions.

Let ¢ be a distributive element of L. Then c satisfies the following condition:

(D) For all z,y € L, ¢V (xAy)=(cVz)A(cVy).
Since L is modular, (D) is equivalent to the following property:
(Sn) xA(eVy)=(xANc)V(rAy) forall z,ye L.

(See e.g. Gratzer [1978], p. 145.) We denote by D(L) the set of all distributive elements
of L.

DEFINITION 3.2. Let T be a subset of L and a € L. If a = \/T and for each ¢t € T,
tAV(T —{t}) <e,

then we say that a is the c-join of T, and we write a = > T. We will write simply

a = YT when no confusion can arise. The c-join of finitely many elements t1, ..., ¢, is

also written ¢1 +. ...+, t, (or briefly, t; +...+¢,). A representation of an element as a
c-join of elements of the lattice L is said to be a c-decomposition of the element.

Observe that joins and direct joins are special cases of c-joins. Indeed,

a=Y\T iff a=VT, and a=Y,T iff a=\T.
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Let a € L. An element b (# a) is called a c-summand of a if a = b+,  for some element
x (# a). We denote by S(c, L) the set of all c-summands of the unit element of L. An
element a € L is called c-irreducible if for any =, y € L, a = x 4+, y implies a = x or
a=y.

It is easy to see that a € L is 1-irreducible iff it is join irreducible, and a is 0-irreducible
iff a is directly join irreducible.

Let a € S(c,L). An element b € L is called a c-complement of a if 1 = a +.b. If an
element a € L has a c-decomposition

(1) a=3) daj:iel}
we define @; 5., = V{a; :i € I—{j,k,...,n}} for each subset {j,k,...,n} of I. Denote
by «a; the function of L defined by the formula
xa; =a; N (xVa;).
The maps «;, i € I, are called the decomposition functions related to (1); any «; is called
the decomposition function with respect to the c-summand a; of the c-decomposition (1).
Let a € S(c, L). Define the set DF(c,a) of maps of L by o € DF (¢, a) iff there exists

a c-complement b of a such that xa = a A (z V ) for every = € L.
Let DF(c, L) denote the smallest set satisfying (i) and (ii):

(i) If & € DF(c, a) for some a € S(¢, L), then o € DF(c, L).
(ii) If ¢, € DF(c, L), then 1) € DF(c, L).

(¢t is the map of L defined by z(pv) = (z¢), x € L.) The elements of the set DF(c, L)
are called the c-decomposition functions of L.

Let a, 3 € DF(¢, L). We say that («, ) is a pair of complementary c-decomposition
functions of L if there exist a,b € L such that 1 = a +. b and «, 3 are decomposition
functions with respect to a and b, respectively.

For an element a € L we denote by F(c, a) the set of all functions ¢ € DF (¢, L) such
that ap = a and from x < a, xp < ¢ it follows that = < c.

In Sections 3.2 and 3.3 we will present some of the most important properties of c-

joins and c-decomposition functions. The material of Chapter 3 is taken from Walendziak
[1986, 1989, 1990a].

3.2. Properties of c-joins and c-decomposition functions. The most important
form of modularity is the following:
(M) Ifaz,y; €L (i=1,...,n)such that z; <y, for all i # ¢/, then
(1 V..V ) AP Ao Ay = (@1 Ay1) VooV (20 A yn).

Let ¢ € D(L). We recall that if a is a c-join of T (T C L), we also write a = . T
instead of a = ) T.
I. Let I be a finite set of indices and K;, j = 1,...,n, be nonempty subsets of I with
WHK;:j=1,....,n} =1 and K;, NK;, =0 for j1 # jo. If a = > {a; : i € I} and
bj = \/{az NS Kj}, then

a=by+...+b,.
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Proof. Obviously, a = b1 V...V b,. Moreover,
bi AV {bm :m #j} =\{a;:ie K;} AV{a;:iel - K}
<W{ai:ie K;} AN{V{am mel—{i}}:ie K;}
=V{a; ANV{am meIl—-{i}}:ieK;}
(observe a; < \/{am :m €I —{i'}} for i #4, and apply (M)).
<ec

Therefore, a =b; + ...+ b,. =

II. Consider an index set I and index sets J; for each i € I. If a =Y {a; i€ I} and
if a; =Y {aij:j€J;} foriel, then

a=Yda:1€l, je J;}.
Proof. Indeed,
aig N (V{am :m # i} V-V{ain :n € Ji = {j}})
= aij Aai A (V{am :m # i}V V{ain :n € Ji = {j}})
a;j A [(a; ANHam :m #i}) V\H{aim :ne J;—{j}}] (by modularity)
<ay A(eVV{am :n€J;—{j}})
(aij Ae) V [ain ANH{ain :n € Ji = {j}}]  (by (Sn))

<c. m

A

IIL. Let a = > {a; : i € I}, and let «; (i € I) be the decomposition functions related to this
c-decomposition of a. Let x € L. If I is a finite subset of I such that x < \/{a; :i € I},
then x < \/{za; : i € I }.

Proof. Compute:
\/{.’1?0&1‘ S Il} = \/{az A (x\/di) 11 E Il}
:V{ai:iejl}/\/\{x\/ﬁiiigfl}

(observe a; < @; for each ¢ # j and apply (M))
>r. m

Let
(2) l=a+b,
and let «, 3 be the decomposition functions with respect to a and b, respectively.
IV. For every x € L, x < za V z3.
Proof. Follows from Property III. m
V.Letxe L. If ra<cand zANb<c, then x < c.
Proof. Indeed, by modularity,
x<zVb=(aVb)A(xVd)=(aA(xzVDh))Vb=zaVb<bVe.

Since ¢ is distributive, we have c = ¢V (x Ab) = (¢Vx) A(cVb) =cVz. Hence, z < c. m
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VI. Let x € L. Then x < a implies t <za<zVc. m
VII. Let ¢ € DF(c¢,L) and let T C L. Then (\\T)p = \/{tp:t € T}.

Proof. In view of the definition of DF (¢, L) it is sufficient to prove that the statement
holds for ¢ = a. Let t € T. By Property IV, t < taV t8. Then \/T < \/{ta:t €T} VD,
and hence (\/T)a < a A (\/{ta:t €T} Vb). Since \/{ta : t € T} < a, by modularity,

aN(V{ta:teT}vd)=\{ta:teT}V(and)=\{ta:teT}.

Therefore, (\/T)a < \/{ta : ¢ € T}. On the other hand, ta < (\/T)a, and hence
V{ta:teT} < (VTa. =

VIIL. If ¢ € DF(c, L), then cp < c.

Proof. We first observe that ca < c¢. Indeed, applying (Sn) we obtain
ca=aA(cVb)=(aAc)V(aNnd) <c

Now, by the definition of DF (¢, L) we get the assertion. m

IX. Let ¢ € DF(c,L). Then for any x € L with x < 1y there exists y € L satisfying
z<yp<axVe

Proof. For ¢ = « the statement follows from Property VI. Now assume the statement to
hold for ¢ and let ¢ = ¥a. Let < (1) and set z = (z V b) A 1¢. By modularity,

[l A(zVD)] =1y VD) A (zVD),
ie,zVb= (1Y Vb) A (xVb). Now compute:
za=aA(zVDd)=(zVD)A(1Y)a=zV(bAlpa).

From this we obtain x < za < x V ¢. We have z < 11, and by the induction hypothesis
there is a y € L such that z < yi» < z V ¢. Applying Properties VII and VIII we get

r<za<ypa<zaVca<zxVe
Then z <yp<zxVe =

Let ¢ € DF(c, L). We denote by k(p) the join of all z € L such that zp < ¢, i.e.,
k(p) =V{r € L:zp <c}.
By Property VII, we have

3) k(p)p <c.
Note that
(4) k(p™) < k(") foralln=1,2,...

Indeed, k(¢™)p" ! = (k(¢™)¢™)¢ < cp < ¢ (by Property VIII), and by the definition
of k(o™ 1) we get (4).
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LEMMA 3.3. Let n be a natural number. If k(p™) = k(p"*1), then 1p™ Ak(¢") < c.
Proof. We prove by induction on i that k(p"") = k(¢™). This is true for i = 1. We
suppose that k(") = k(p"). By (3), we conclude that [k(p" i 1))+ < c. There-
fore, k(") < k(") = k(¢"), and hence k(" Fit1)pn+l < k()" < c. Thus
k(o™i < k(p™t1). Moreover, by (4),

k(™) < k(e

and we deduce that k(") = k(p"™!) = k(™). Thus, by induction, we obtain
k(" t?) = k(o) for all i = 1,2, ... In particular,
(5) k(¢™") = k(™).
We put z = 1o™ A k(¢™). By Property IX it follows that there exists y € L such that
x < yp" <z Ve Applying Properties VII and VIII and inequality (3) we have

Y™ < (z Vo)™ = ap" Vep™ <k(pM)" Vep" <c.

Hence y < k(p?") and using equality (5) we get y < k(™). Therefore, z < yo" <
k(p")e" <c. m
LEMMA 3.4. Let x1,29 € L, x1 > k() and zo > k(). If z19 = x2¢, then x1 = x2.

Proof. We use induction on the length of ¢. Let ¢ = «, and suppose that z1,29 > k()
and zyo = xac. Then [a A (21 V)| Vb= [aA (22 Vb)] VDb, and by modularity, we obtain
(6) 1 Vb=x2 Vb

Since ba = a A b < ¢, we have b < k(). Therefore, 1 > b and x5 > b. Hence in view of
(6) we get ©1 = x9. Thus, for ¢ = «, the proof of Lemma 3.4 is complete.

Now assume the statement holds for ¢ and let ¢ = Ya. Let 1 = z2p (21, 22 > k(p)),
that is, a A (x19 V b) = a A (2290 V b). Consequently, x11¢ V b = x21) V b, and hence

1 A (219 V b) = 19 A (20 V b).
Since z19 < 1¥ and x2y < 14, by modularity, we obtain

(7) 219V (1 Ab) = 221 V (1) AD).
We set x = 19 A'b. Then = < 11, and by Property IX there exists y € L such that
z <y <z V c. Therefore, we have

yo=yba<(zVca<zaVc<baVc=c.
Hence yo < ¢, that is, y < k(). Thus 199 Ab < k(p)® < z11, and similarly, 1 Ab < z99).

Hence in view of (7) we obtain z11¢ = x21. Obviously, we have k() < k(), and therefore
k() < x1, k(¢) < zo. Applying the induction hypothesis we get z1 = z2. »

LEMMA 3.5. For every ¢ € DF(c, L) the following conditions are equivalent:

(i) There exists a natural number n such that 1™ = 1" and k(p") = k(™).

(ii) There exists a natural number n such that ¢ € F(c,1p™).
Proof. (i)=(ii). Since 1™ = 1" "L, we have (1p")p = 1p". Let z < 1™ and zp < c.
Then x¢™ < ¢, and hence x < k(¢™). Consequently, z < 1¢™ Ak(p™), and by Lemma 3.3,
x < ¢. Therefore, ¢ € F(c, 1o™).
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(ii)=-(i). Suppose that ¢ € F(c, 1¢™). This clearly forces
Set x = k(") ™. Then z < 19" and z¢ < c. Since ¢ € F(c, 1¢™), we have x < c. This
means that k(") < k(™). We conclude from (4) that k(™) = k(" 1). m

3.3. Distinguished c-decomposition functions. We say that a c-decomposition func-
tion ¢ of L is distinguished if ¢ = adaca, where a € DF(c, a) for some a € S(¢, L) and
(0,¢) is a pair of complementary c-decomposition functions of L.

Suppose the unit element of the lattice L has two c-decompositions: (2) and

(8) l=d+e.

Let (o, 3) and (4,¢) be the pairs of decomposition functions related to the c¢-decompo-
sitions (2) and (8), respectively. Then, for instance, adaca, 358e8 and eaefe are distin-
guished c-decomposition functions of L.

We first observe that for every x € L,

(9) xdae = xdfe.
Indeed, in view of modularity,
zdae =e A (JaAN(xdVD)|Vd)=eA(xdV][aA (xdVD)]Vd)
=eA([(zdVa)AN(@dVb)]Vd)=eA(xdV[bA(xdVa)]Vd)=axdbe.
Similarly,
(10) rzadf = zaef, xzfea = xBéa, xeBd = TeQd.
LEMMA 3.6. For x € L, radaca = racada.
Proof. Applying (9) and (10) we get
radaea = xadfea = racfea = ragfoa = racada. m
We put n = adaca, 0 = ada, and x = cea.

LEMMA 3.7. If m is a natural number, then

k(™) VE(x™) < k(n™).
Proof. By Lemma 3.6 and Property VIII we have

K(e™)n™ = k(e™) (o)™ = K(0™)a™ "™ < ex™ < ¢,

and hence k(c™) < k(n™). Similarly, k(x™) < k(n™). m
LEMMA 3.8. If = < a and if m is a natural number, then
(11) < \{ze™ i\ ri=1,...,m}.

Proof. We use induction on m. Since x < za and za < zad V xzae (by Property IV), we
get

(12) r < xoVzy,
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that is, (11) holds for m = 1. Assume now the assertion to be true for m — 1. Then (11)
can be deduced as follows:
r<\{ze™ " i =0,1,...,m — 1}
<V{(zoVax)e™ ' Tix i=0,1,...,m—1}
=V{zo™ X 1 i=0,...,m—1}vVV{ze™ T ii=0,...,m—1}
=V{ze™ X" :i=0,1,...,m}. m
LEMMA 3.9. Let m be a natural number. Then
k(™o < (a AK(O™) V (a AK(C™)).
Proof. First we prove the inequality for m = 1. From (12) it follows that
k(n)ar < k(n)o v k(n)x.
Since k(n)o < a and (k(n)o)x = k(n)n < ¢, we obtain
k() < a AK(Y).
Similarly, k(n)x < a Ak(c). Then
k() < (a AK(0)) V (a AK(X)).
Now assume the statement to hold for m — 1. By Lemma 3.8,
(13) k(™)a < VAK(™)o™ iy 16 =0,1,...,m}.

Let i € {1,...,m — 1}. Then k(n™)o™ *x* < k(n™~!), and consequently, applying the
induction hypothesis and (4) we obtain

k(n™)o™ X = k(™)™ X e <k(n™ Ha
< (aAk(@™ )V (aAk(X™ ) < (a Ak(a™)) V (a Ak(x™)).
It is easy to see that k(n™)c™ < a A k(x™) and k(n™)x™ < a A k(c™). Therefore,
from (13) we conclude that

k(n™)a < (aAk(e™)) V (a Ak(X™)). =
LEMMA 3.10. For any natural numbers m and n we have
aNk(e™) ANk(x") <ec.
Proof. We proceed by induction on n. We set
z=aNk(@™) Ak(x).
Using Lemmas 3.8 and 3.6 we get
< \V{zo™ i\ 1i=0,...,m} =20V \{xx'c™ " i=1,...,m}.

From this, applying inequality (3) and Property VIII we deduce that « < ¢. Suppose that
ank(e™) A (x" 1) < cand put y = a Ak(e™) Ak(x"). By Lemma 3.8,

(14) y<yo™Vv\V{ye™ ix i=1,...,m}.
Obviously, k(c™)x < k(o™) and k(x™)x < k(x"~!). Then

yx <aAk(e™) Ak(x"T) <e
From this and (14) it follows that y < c. m
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From Lemmas 3.7, 3.9 and 3.10 we have
LEMMA 3.11. For any natural number m, we have

aAk(n™) = (a Ak(@™)) + (a Ak(X™)).

3.4. B -lattices. In Walendziak [1986] (p. 350) we gave the following

DEFINITION 3.12. Let a € S(c, L). We say that a satisfies the B.-condition in the lattice
L if for every a € DF(c,a) and for every pair (d,¢) of complementary c-decomposition
functions of L, either ada € F(c,a) or aca € F(c,a). If every c-irreducible e-summand of
the unit element of L satisfies the B.-condition, then we call L a B.-lattice.

PROPOSITION 3.13. Let a be a c-irreducible c-summand of 1, o« € DF(c,a) and let {J,€)
be a pair of complementary c-decomposition functions of L. Put n = adaca. If condition
(i) (or equivalently (ii)) of Lemma 3.5 holds for ¢ =n, then a satisfies the B.-condition
(in L).
Proof. Suppose that k(n™) = k(n™*!) and 1p™*! = 1™ for some m € N. By Prop-
erty VII,
(™ v k(™)™ = 1*™ v k(g™ )n™ = 1™

From Lemma 3.4 we obtain 1 = 17 V k(n™). Hence, by modularity,

a=1n"V (a Nk(n™)).
According to Lemma 3.3 we have

a=1n"+ (a ANk(n™)).
From Lemma 3.11 and Property II we conclude that

a=1n"+ (a Ak(n™)) + (a Ak(X™)),

where 0 = ada, and x = aca. We shall consider three cases.

CASE 1: a = 1n™. We deduce from Lemma 3.6 that a = 1x™¢"™, hence a < ac < a,
and finally ac = a. Suppose now that z < a and zo < ¢. By Property VIII, 2n™ < ¢,
and therefore x < k(n™). Then = < 1n™ A k(n™), and hence in view of Lemma 3.3 we
obtain z < ¢. Thus ada = o € F(c, a).

CASE 2: a < k(¢™). By Lemma 3.8, a < ao™ V ay. But ac™ < ¢ since a < k(o™).
Therefore a = ac™ + ax. The element a is c-irreducible, and so a = ac™ or a = ay. If
a = ac™, then o € F(c¢,a) by the proof of Case 1. Assume that a = ax. Let < a and
zx < c. From Lemmas 3.8 and 3.6 it follows that

r<ao™V\V{zxc™ " ii=1,...,m}.
Hence z < o™ V ¢. But xo™ < ac™ < k(6™)o™ < ¢. Then z < ¢. Thus aea = x €
F(c, a).
CASE 3: a < k(x™). In this case, the proof is similar.
Now, we conclude from Definition 3.12 that a satisfies the B.-condition. =

An immediate consequence of Proposition 3.13 is
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THEOREM 3.14. Suppose that every distinguished c-decomposition function ¢ of L sat-
isfies condition (i) (or equivalently (ii)) of Lemma 3.5. Then L is a B.-lattice.

PROPOSITION 3.15. Let a be a c-irreducible c-summand of 1. If for every o € DF(c,a)
and for every pair (J,€) of complementary c-decomposition functions of L the sublattice
[0, ladacql] is of finite length, then a satisfies the B.-condition.

Proof. Let n = adaca. It is obvious that
InAk(n) <InAk(p®) <...<InAk(n') < ... <1y
and
> >...>1n'> ...

m+1

Since [0, 1] is of finite length, there is a natural number m such that 1n™ = 1n and

In Ak(n™) = 1n A k(™). Then
(In™)n = 1n™.
Let z < 1n™ and zn < ¢. We have x < 1n™, and by Property IX we deduce that there
exists y € L such that x < yn™*! < 2V c. Hence yn™*2? < 2nV en < ¢, and therefore,
yn < In Ak(n™™h) = 1n Ak(n™) < k(n™). Consequently,
z <y = (ynn™ < k(™)™ < e
Thus 7 € F(c¢, 1n™). From Proposition 3.13 it follows that a satisfies the B.-condition. m

Proposition 3.15 gives

PROPOSITION 3.16. Let a be a c-irreducible c-summand of 1 such that the sublattice
[0,a] is of finite length. Then a satisfies the B.-condition.

Hence we have

PROPOSITION 3.17. Every modular lattice of finite length is a B.-lattice, where c is a
distributive element of this lattice.

PRrROPOSITION 3.18. Every complete modular lattice is a Bi-lattice.

Proof. Let L be a complete modular lattice. Let o € S(1, L) and suppose that a is join
irreducible. It is sufficient to show that a satisfies the Bi-condition. Let b be an element
of L such that 1 =a Vb, i.e.,

1=a+0.
Let «, 8 be the decomposition functions related to this 1-decomposition of 1, and let (4, )

be a pair of complementary 1-decomposition functions of L. From Property IV we have
a <adVae. Hence (bVad)V (bVae) >bVa=1, that is,

1=(bVad)V(bVae).
By the weak isomorphism property (see Chapter 0) the lattices [b, 1] and [a A b, a] are
isomorphic. But a is join irreducible in L, and therefore in [aAb, a], thus 1 is join irreducible
in [b,1]. Hence 1 =bVad or 1 =bV ae.

If 1 =bVad, then aada = ada = a A (ad V b) = a, and therefore adar € F(1,a).
Similarly, if 1 = bV ae, then aea € F(1,a). Thus a satisfies the B;-condition. m
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Let G be a group. By L(G) we denote the lattice of all normal subgroups of G. We
say that G is of finite length for normal subgroups if the lattice L(G) is of finite length.

If G =A; x...x A, is the direct product (direct sum) of groups Ay, ..., A,, then
G=A4,Vv...VA,in L(G).

LEMMA 3.19. Let G be a group, and let
(15) G=AVB=DVE.
Let {a, 8) and (,¢) be the pairs of decomposition functions related to (15). Then Gadaca
C Z(G), where Z(G) denotes the center of G.
Proof. By Lemma 3.6,
Gadaca = GadPea.

We observe that an arbitrary element of A is permutable with every element of B'e,
where B’ = Gadf. Indeed, let x € A and y € B'’e = ENB’ - D. Clearly, y = b - d,
where V' € B’ and d € D. We know that every element of G can be written uniquely as
a product of an element of D and another element of E. Let z = d; - e, where d; € D,
e € E. We compute:

di-(e-y)=z-V-d=0b -z-d=y-d ' -x-d
=y-dldi-e-d=(dt-dy-d)(y-e).
So, by the uniqueness of the decomposition, we conclude that e -y =y - e. Then
r-y=di-ey=dy-y-e=y-dy-e=y-x.
Now, it is easy to see that an arbitrary element of A is permutable with every element
of Gadpfea. Therefore, if g=a-b (a € A, b€ B) and if h € Aadfea, then
g-h=a-b-h=a-h-b=h-a-b="h-g.
Thus, Gadaca C Z(G). n

PROPOSITION 3.20. Let G be a group. If the center Z(G) of G is of finite length for
normal subgroups, then L(G) is a Bg-lattice (€ is a trivial subgroup of G).

Proof. Follows from Lemma 3.19 and Proposition 3.15. =
We now give an example of a complete modular lattice which is not a Bg-lattice.

EXAMPLE 3.21. Let Z denote the additive group of integers, and let G be the direct
product of two copies of Z. Then L(G) is a complete modular lattice. Set

A={(m,0):meZ}, B={(0,m):mecZ},
D ={(m,2m): meZ}, E={(m,3m):mecZ}.
It is obvious that A, B, D, E € L(G). We see at once that two direct decompositions (15)
hold. Observe that A is directly join irreducible in L(G). Indeed, let
A=AV Ay (A, A2 #{(0,0)}).

Clearly, A; = {(ma1,0) : m € Z} for some a1 € Z—{0} and Ay = {(maz,0) : m € Z} for
some ag € Z—{0}. We have (a1a2,0) € A;NAz = {(0,0)}, a contradiction. Let {c, 3) and
(0,¢) be the pairs of decomposition functions related to the direct decompositions (15)
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of G. We want to verify that A does not satisfy the Bg-condition. It is sufficient to show
that Aada # A and Aaca # A. Compute:

Aada = Ada=(DN(AVE))a= (DN{(m,3n):m,n € Z})a
=AN{(Bm,6m):meZ}VvB)=AN{(Bm,n):m,n € Z}
={(3m,0): m € Z} # A.
Similarly, Aaca = {(2m,0) : m € Z} # A. Therefore L(G) is not a By-lattice.
Let (2) and (8) be two c-decompositions of the unit element of L, and let (a, ()

and (0, ) be the corresponding pairs of decomposition functions. Now, we will prove the
following

LEMMA 3.22. The following conditions are equivalent:
(i) ada € F(c, a).
(i) 1=dA (a+e)+0.
(iii) 1=bA(a+e)+d.
Proof. (i)=(ii). Let ada € F(c,a). Then acda = a. Hence a A (ad V b) = a. Thus

[aA (adVDb)]Vb=1.Since ad Vb > b, by modularity, [a A (ad V)] Vb= (aVb)A (adVb),
and so

1=ad Vb
We will prove that z = ad A b < c. We have = < 1ad. By Property IX, there exists y € L
such that x < yad < x V c. Hence using Properties VII and VIII we obtain
(ya)ada = yada < zaVcea= (aAb)Vea <c.
Hence we infer that ya < ¢. Then z < yad < ¢d < ¢, and therefore
1=ad+0b.
We now prove that a A e < ¢. Applying Properties VII and VIII we have
(aNe)ada < (eVc)da = eda V cda < c.
Then a A e < ¢, by the definition of F(c, a).
(if)=(iii). From (ii) we deduce that
(16) at+e=dA(a+e)+bA(a+e).
This gives (iii).
(iii)=-(i). Let (iii) hold. By modularity, we obtain (16), and hence (ii) is satisfied.
Now, it is easy to see that
aada = a.

Suppose that x < a and zada < c¢. By Property VI, we get © < xa. Consequently,
zda < ¢. Moreover, xd Ab < ad Ab < ¢, and therefore 0 < ¢ by Property V. We have
zAe < c because x Ae < aAe < c. Then using Property V we obtain « < ¢. Thus,
ado € Fc,a). m

LEMMA 3.23. Let (2) and
(17) l=di+...+d,
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be two c-decompositions of 1. Let o, and §;, i = 1,...,n, be the related decomposition
functions. If a satisfies the B.-condition, then there exists i € {1,...,n} such that
ad;a € F(e,a).

Proof. Suppose that b < 1 (if b = 1, then obviously ad;a € F(c,a) foreach i € {1,...,n}).
Let n = 2. Then the assertion follows from Definition 3.12. Assume it holds for n — 1 and
let ad;a € F(c,a). Set d =dy + ...+ d,. Clearly,

(18) 1=d; +d.

We denote by 01,9 the decomposition functions related to (18). Since a satisfies the
B.-condition and ada € F(c,a), it follows that ada € F(c,a). From Lemma 3.22 we
conclude that 1 = b A (a + d1) + d. Therefore

(19) 1=dy+d,
where ' = d1f+ds +...+d,. Let 85,0 be the decomposition functions related to (19).
We shall consider two cases.

CASE 1: adba € F(c,a). Lemma 3.22 now implies 1 = da A (a + d') + b. Since

a+dif=a+bA(a+di)=(a+b)AN(a+d1)=a+d;
we obtain
a+d =a+d +ds+...+d,.

Then 1 =ds A(a+dy +ds+...+dy,)+ b, and, by Lemma 3.22, adsa € F(c, a).

CASE 2: ad’a € F(c,a). Applying Lemma 3.22 to the c-decompositions (2) and (19)
we deduce that 1 =b A (a+ dz) + d'. Thus
(20) l=ds+...+d,+V,

where b = di8 + do8. We denote by ¢, 5, i« = 3,...,n, the decomposition functions
related to (20). Observe that af’a & F(c,a). Indeed, suppose on the contrary that a =
aaf'a. Then a = a A (aaf’ Vb) = a Ab (since aa <b). Hence 1l =aVb=>b<1,a
contradiction. By the induction hypothesis, there exists i, 3 < i < n, such that ad.a €
F(c,a). Let, for example ¢ = n. Applying Lemma 3.22 to (20), we conclude that

l=d,AN(a+b +ds+...+dy_1)+Db.
We have a + d13 = a + dy, and similarly, a + d23 = a + do. Then a +V = a + dy + do,
and hence

1:dnA(a+d1+d2+...+dn,1)+b.
Therefore, by Lemma 3.22, ad,a € F(c,a). =

In the proof of this lemma we applied Properties I and II several times.

3.5. Finite c-decompositions. Let L be a complete modular lattice. Recall that a
subset T of L is called join irredundant if \/T > \/(T — {t}) for each t € T. If an element
a € L is a c-join of T, where T is a join irredundant subset of L, then we write

(21) a=3Y.T
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and we say that (21) is an ¢rredundant c-decomposition of a. A join irredundant subset
T is called c-independent if for each t € T, t A \/(T — {t}) < c. It is obvious that

a= ZCT iff a=\/T and T is c-independent.

For simplicity of notation, we sometimes write ZT instead of ZCT. T ={t1,...,tn},
then we can write (21) in the form a = #; +. ... +.t, (or briefly, a = t; +... + t,).
As a preparation for the next result we need the following

LEmMA 3.24. If
(22) l=a+b=d+e,

where d is c-irreducible, and if «, 3 and §,e are the decomposition functions with respect
to the c-summands a,b and d,e of the c-decompositions (22), then ada € F(c,a) iff
l=d+b=a+e.

Proof. Necessity. From Lemma 3.22 we conclude that 1 = ad +b. Then d = d A (ad V b),
and hence, by modularity, d = ad V (d A b). Moreover, ad A (d Ab) < ad ANb < ¢, and
therefore d = ad + d A b. We have d # d A b, since otherwise 1 = ad Vb < dV b = b,
a contradiction. Since d is c-irreducible, we obtain d = ad. Consequently, 1 = d + b and
hence 1 = d + b. We now show that 1 = a + e. We have

l=d+e=adl+e=dA(aVe)+e=(aVe)A(dVe)=aVe.

Furthermore, by Lemma 3.22, a A e < ¢. Therefore, 1 = a + e.
Sufficiency. Let 1 = d+b = a+e. Hence, 1 = d+b = dA (a+e)+b, and by
Lemma 3.22, we deduce that ada € F(c,a). m

The next theorem is the principal result of this section.

THEOREM 3.25. Let L be a complete modular lattice, and let c be a distributive element
of L. If the unit element of L has two irredundant finite c-decompositions

(23) l=ai+as+...+am
and
(24) 1=0b+by+...4+b,

into c-irreducible elements a;,b; satisfying the B.-condition, then m = n and for every
a; there exists b; such that we have the c-decomposition

(25) 1zal—i—...—i—ai,l—i—bj—i-aiﬂ—i—...—i—an.

Proof. Let oy (i=1,...,m), B; (j =1,...,n) be the decomposition functions related to
(23) and (24), respectively. By Property I,

(26) 1= al + ai.

Applying Lemma 3.23 to (26) and (24), we conclude that there exists j € {1,...,n} such
that o181 € F(c,a1). Let for example j = 1. Then, by Lemma 3.24,

(27) l=b4+a =a +0b.

Observe that the set {b1,as,...,an} is join irredundant. Indeed, if for instance as <
by Va2 (where @12 = azV...Vay), then 1 = by +a; 2. By Lemmas 3.23 and 3.24, there
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exists an ¢ € {1,...,m} such that 1 = a; + @1 2. This means that the set {a1,a2,...,am}
is not join irredundant, contrary to our assumptions. Therefore the set {b1 aq,...,an} is
join irredundant, and with (27) we have

:bl —i—ag—i—...—i—am,

proving the first statement.
Repeating this we eventually obtain 1 = b;, + ...+ b;, , and so {ji,...,Jm} =
{1,...,n}. This shows that m =n. =

DEFINITION 3.26. Let
l=a14c...4cam=">014c...4cbn.
We say that these c-decompositions are exchange isomorphic if m = n and there is a
permutation A of the set I = {1,...,m} such that
L=a14c...Fcaim1 +ebag) Fe @iyt Fe oo Fc am,
forall i € I.

COROLLARY 3.27. Let ¢ € D(L). If L is a B.-lattice, then any two irredundant finite
c-decompositions of 1 with c-irreducible summands are exchange isomorphic.

REMARK 3.28. The case ¢ = 0 yields the Theorem of Ore (cf. Theorem 3.1) since, by
Proposition 3.17, every modular lattice of finite length is a By-lattice. For ¢ = 1 we get
the Kurosh—Ore Theorem. (Indeed, Proposition 3.18 shows that every complete modular
lattice is a Bj-lattice.)

Proposition 3.20 and Corollary 3.27 together yield
COROLLARY 3.29. Let G be a group such that the center Z(G) is of finite length for
subgroups. If

G=Gy X...xGpm=Hy x...x Hy,

where G; and H; (i =1,...,m; j =1,...,n) are directly indecomposable, then m =n
and, after renumbering, G; = H; for 1 <i <n.

Combining Theorem 3.14 with Corollary 3.27 we get
COROLLARY 3.30. If for every distinguished c-decomposition function ¢ of L, condition

(i) (or equivalently (ii)) of Lemma 3.5 is satisfied, then any two irredundant finite c-
decompositions of 1 with c-irreducible summands are exchange isomorphic.

REMARK 3.31. For ¢ = 0, from Corollary 3.30 we obtain Theorem 5 (for direct de-
compositions with directly join irreducible summands) of Walendziak [1991b]. From this
corollary we also get Theorems 11 and 12 of Moc¢ulskif [1955].

By Theorem 3.25 and Proposition 3.16 we have

COROLLARY 3.32. Let two irredundant c-decompositions (23) and (24) of 1 be given. If
each [0, a;] and each [0,b;] is of finite length and a;,b; are c-irreducible, then m = n and
for every a; there is b; such that we have the c-decomposition (25).

Hence we obtain
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COROLLARY 3.33 (Schmidt [1970]; see also Walendziak [1986]). Let L be a modular lat-
tice of finite length. If (23) and (24) are two irredundant c-decompositions of 1 with
c-irreducible summands, then m = n and for every a; there exists b; such that we have
the c-decomposition (25).

3.6. Property (B}). Preliminary lemmas. Recall that K(L) denotes the set of all
compact elements of L.

DEFINITION 3.34 (see Walendziak [1989], Definition 2). Let a € S(¢,L), a € DF(c,a),
and let

(28) 1= {di:iel}

be an arbitrary c-decomposition of 1. We denote by §;, i € I, the decomposition functions
related to (28). If a € K(L) and if there exists ¢ € I such that ad;a € F(c,a), then we
say that a satisfies the B¥-condition (in L).

It is easy to see that if @ € S(c, L) satisfies the B¥-condition, then a also satisfies the
B.-condition.
We first prove

LEMMA 3.35. Let a € K(L) and let a be a c-irreducible c-summand of 1. If [0,a] is of
finite length, then a satisfies the B -condition.

Proof. Let a € DF(c¢,a) and let b be a c-complement of a such that za = a A (z V) for
all x € L. Let (28) be an arbitrary c-decomposition of 1, and denote by d; (i € I) the
related decomposition functions. Since a is compact, there is a finite subset I; C I such
that a < \/{d; : i € I;}. By Property III, a < \/{ad; : i € I;}. We put s = ¢ A d. Set
d = \/{ad; : i € I;}. Then a < d. Observe that s is a distributive element in [0, d]. Let
z,y € [0,d]. Compute:

(cAd)V(zAhy)=[cV(zAny)]And=][cVa)A(cVy)]Ad

=(cVa)ANdA(cVy)Nd=[(cAhd)Vz]A[(cANd)Vy].

Then s € D([0,d]). Obviously
(29) d=73% {ad; :i € 1}
Since 1 = a Vb, we have d = dA (aVb) and hence, by modularity, we obtain d = aV (bAd).
Clearly, a AbAd < ¢ Ad = s. Therefore,

(30) d=a+,(bAd).

Let ¢;, i € I, and o, " be the decomposition functions related to (29) and (30), re-
spectively. It is easily seen that a is s-irreducible in [0, d]. Since [0, a] is of finite length,
from Proposition 3.16 we conclude that a satisfies the Bs-condition in [0,d]. Applying
Lemma 3.23 to the s-decompositions (30) and (29) we deduce that there exists ¢ € I; such
that o/d.a’ € F(s,a). Then aa’da’ = a, and therefore a A [ad] V (b A d)] = a. Tt follows
that a < ad; V (b A d). From this, since ad; < ad;, we have a < ad; V b. Consequently,
1=aVb<adl Vb, and hence 1 = ad; Vb = aad; Vb. Then

(31) a = aad;aq.
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Suppose now that z < @ and xad;a < ¢. Since zadia’ < zad;a, we obtain za/d.a’ < c.
Moreover, za'dia’ < a < d. Thus zd'dja’ < ¢ Ad = s. Therefore, since ¢ < a and
a/dla’ € F(s,a), we get & < s. Hence < ¢. From this and (31) we conclude that
ad;a € F(c,a). m

LEMMA 3.36. Let a be a 1-summand of the unit element of L. If a is join irreducible
and compact, then a satisfies the B} -condition.

Proof. Let o € DF(1,a), and let b be a complement of @ such that xa = a A (z V b) for
every x € L. Let

1=V{diliEI},
and denote by d; (i € I) the related decomposition functions. Since a is compact, there
is a finite subset I; C I such that a < \/{d; : i € I }. By Property III, we have

a< \/{aéz NS Il}
Hence 1 =a Vb <\{ad; Vb:ic I}, that is,
(32) 1=V{ad; Vb:iel}.

By the weak isomorphism property, the lattices [b, 1] and [a A b, b] are isomorphic. But a
is join irreducible in L, and therefore, in [a A b,b]. Thus 1 € J([b, 1]). Then from (32) we
conclude that there exists i € I; such that 1 = ad; V b. Hence

aad;a = ad;oe = a A (ad; Vb) = a,
and consequently, ad;a € F(1,a). Therefore, a satisfies the Bi-condition. =
LEMMA 3.37. Let
(33) l=a+b=d+e.

If the elements b and e are comparable, d is c-irreducible and a satisfies the B.-condition,
then

(34) l=d+b=a+e.

Proof. Let (a,8) and (d,e) be the pairs of decomposition functions related to the
c-decompositions (33). Suppose that b < e. If e < b, then the proof is similar. Observe
that cea € F(c,a). Indeed, suppose on the contrary that a = aaca. Then

a=aA(aaeVb) <aAe (sinceb<e).

Hence a < e, a contradiction. Since a satisfies the B.-condition and aca ¢ F(c,a), we
deduce that ada € F(c,a). Therefore, by Lemma 3.24, we obtain (34). =

LEMMA 3.38. Suppose the unit element of L has two irredundant c-decompo-sitions:
(35) 1=>Ya;:iel}

and

(36) 1=>{b;:jeJ}

with c-irreducible summands. If each b; (j € J) satisfies the B-condition, then for every
finite subset J' = {j1,...,Jx} C J there exists a finite subset I' = {i1,...,ix} C I such



46 A. Walendziak

that
(37) L=a;i, + (b : j # n}

=bj, +bj, ... by, +X{aiiel—{ir,....in}}
forallm=1,... k.
Proof. We argue by induction on the number of elements in J’. We show the statement
for J' = {j1}. We have two c-decompositions of 1: (35) and
(38) 1=bj, +bj,.

Let oy, i € I, and ﬂjl,ﬁjl be the decomposition functions related to (35) and (38),
respectively. By Definition 3.34, there exists i1 € I such that 8, a4, 8;, € F(c,b;,). We
consider two c-decompositions:

1= bjl —i_zjl = Qjy + @i, -
From Lemma 3.24 we obtain
(39) 1=a;, +bj, =bj, +a,.
Now we prove that the set T' = {a;, } U{b; : j € J — {j1}} is join irredundant. Assume
on the contrary that there exists jo € J — {41} such that 1 = a;, +b;, j,. Then
(40) 1 =bj, _i_zjl = Qi _i__bjl7j2'
Since bj, satisfies the B}-condition, it also satisfies the B.-condition. Applying Lem-
ma 3.37 to the c-decompositions (40) we deduce that 1 = b;, + bj, j,
that the set {b; : j € J} is not join irredundant, contrary to our assumptions. Therefore,
the set T is join irredundant, and similarly, the set {b;, } U{a; : i € J — {j1}} is join
irredundant. Then, by Property II, from (39) we obtain

l=as +3{bjj #q1} =bj + 3 {as i #in}.

Thus, Lemma 3.38 is true for J' = {j1}.

Let us assume this statement for every (k — 1)-element subset of J and set J' =
{j1,--,jr}- By the induction hypothesis for the subset {ji,...,jx—1} of J' there exists
{#1,...,ik—1} C I such that (37) holds for each n =1,...,k — 1. In particular,

(41) 1=bj, ,+...4b, +3fa;:iel—{ir,...,ix_1}}.

We consider the c-decompositions (41) and (36). By the first part of the proof, there is
i € I—{i1,...,ix—1} such that (37) holds for n = k. Thus, there exists I’ = {i1,...,ix} C
I such that (37) holds for all n = 1,...,k, and the proof is complete. m

= bj;,. This means

LEMMA 3.39. Suppose the element 1 of L has an irredundant c-decomposition (36)
into c-irreducible summands satisfying the B}-condition. If 1 also has an irredundant
c-decomposition

(42) 1=Yai:iel'}+3{bj:jeJ}

such that J' is a proper subset of J, and a; is c-irreducible and compact for each i € I,
then there are two countable or finite (with an equal number of elements) subsets Iy =
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{i1, . yin,...} ST and Jo = {j1,- -, Jn,-..} S J"=J—=J such that
(43)  L=ai, 32{b; 1 # dn) .
=bj, +...4+b;, +>{bj ey +>{aii el —{ir,... in}}
forallm=1,2,..., and
(44) Vi{a; i eI} <V{bj:j€J U}
Proof. Let j; € J”. By Lemma 3.38, there is an i; € I’ such that
l=a;, +3{bj:jeJ—{h}}

and

(45) L=1b;, +3{b:je T +3Ha; i e I' = {ir}}.

The element a;, is compact and hence there is a finite subset {ja,...,j5k} € J” — {j1}
such that

a;, SV{bJ ZjEJ’UJl}, where le{j17j27"~7jk}'
Applying Lemma 3.38 to the c-decompositions (45) and (36) we conclude that there
exist distinct indices ig,...,ix € I’ — {i1} such that (43) holds for each n = 2,... k. In
particular,

(46) T=bj, +...4b, +3{b;:jeJ}+3{ai-iel —1,},

where I; = {i1,...,9x}. Again a;, V...V a;, is compact, and there exists a finite subset
{Jk+1s-+sJm} €S J” — Jy such that

ah\/...\/aikS\/{bj:jEJ'UJQ},

where Jy = Jy U{jk+1,---,Jm}- Now we apply Lemma 3.38 to the c-decompositions (46)
and (36), and to the elements bj,,,...,b;, . As before, we get the existence of distinct
elements igy1,...,%, € I'— I such that (43) holds for each n = k+1, ..., m. By contin-
uing this process, we obtain two subsets Ip = {i1,...,0n,...} and Jo = {j1,-- -, Jn,-- -}

such that (43) and (44) hold. =

3.7. Infinite c-decompositions. Now, we suppose that a distributive element ¢ of L
has the following property:

(A)  For each a € L and for each S C L, if a A \/S” < ¢ for every finite subset S of S,
then a A /S < c.

The main result of Chapter 3 is the following theorem.

THE ¢-DECOMPOSITION THEOREM 3.40 (see Walendziak [1989], Theorem 1). Let L
be a complete modular lattice and let ¢ be a distributive element of L with property (A).
If the unit element of L has two irredundant c-decompositions (35) and (36) into c-
irreducible elements satisfying the Bl -condition, then there is a bijection A : I — J such
that, for every i € I,

(47) 1=a;+3{bj : j # A@)}.
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Proof. Let W be the set of all ordered triples (M, <M fi;) where M C I, <M is a
well-ordering of M, fj; is a one-to-one mapping of M to J and for each m € M,

(48) L= am +32{b; 5 # fu(m)}
= X{bpu i € (ml} + 3 {ai i € 1= (ml},

where (m] = {i € M :i <M m}, and

(49) \/{ai ZiEM} S\/{be(z) :iEM}.
Then W is nonempty since it contains the triple consisting of the empty set, the empty
relation, and the empty mapping (here, we are considering relations and functions as sets
of ordered pairs). Define a partial order <y, in W by (M, <M fi;) <w (M’, §M/,fM/)
if either M = M’ or M = {i € M’ : i <M" m} for some m € M', <M’ restricted to M
coincides with <M, and the restriction of fa; to M coincides with fa.

Let (Mg, <M frr) (k € K) be a chain in W. Set

M=U{M : keK}, <M=U{<M:keK}, fg=U{fu keK}

It is obvious that (M, <M fi7) € W and that (M, gﬂ,fﬂ) is an upper bound of the
chain (M, <Mx fy) (k € K). Therefore, by Zorn’s Lemma, W contains a maximal
element (N, <V, fy).

We consider the set

S:{be(i) IiEN}U{ai:iEI—N}.
By (49) we have

V{a;:ie N} < \/{be(i) :1 € N}
Hence,

1:\/{012ZEN}\/V{(IZ’LEI—N}SV{Z)J:N(Z)ZEN}\/V{CM’LEI—N}

Thus, 1 =\/S. By (48), all finite subsets of S are c-independent.

Now, we prove that the set S is join irredundant. Suppose on the contrary that
so < V(S — {so}) for some sy € S. But sq is compact and hence so < \/(T — {s0}),
where T is a finite subset of S containing sg. Thus T is join redundant, contrary to the
c-independence of T'.

Let s € S and let S’ be a finite subset of S — {s}. Since S’ U {s} is c-independent, we
get s A\/S’ < c. Then, by property (A), we conclude that s A\/(S —{s}) < c¢. Therefore,
S is c-independent. Thus, 1 = ZS, and hence, if we set I’ = I — N and J' = fy(N),
then we obtain the c-decomposition (42).

Now we prove that N = I. Suppose on the contrary that N # I, that is, I’ # (.
Consequently, J' # J. Applying Lemma 3.39 to the ¢-decompositions (42) and (36) we
get two subsets Iy = {i1,...,%n,...} CI" and Jy = {j1,...,4n,-..} C J — J' such that
(43) and (44) hold.

Set P = N U I. Define the well-ordering <*of P by the following rules: if 7,7’ € N,
then 3 <P 4" iff i <V ¢', and for every i € N,

i<Piy<Pig <P .. <Py, <P
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Define the mapping fp by fp(i) = fn(i) for every i € N, and

frlin) =gn form=1,2...
By (43) and (44), the triple (P, <, fp) belongs to W. It is obvious that (P, <, fp) is
greater than (N, <™, fx). This contradiction forces the equality N = I. Then I’ = () and

from (42) we have J' = J. Therefore A = fy is a one-to-one mapping of I onto J such
that, for each ¢ € I, we have the c-decomposition (47). m

REMARK 3.41. In a modular lattice of finite length every c-irreducible c-summand of 1
is compact and, by Lemma 3.35, it satisfies the B}-condition. Thus from Theorem 3.40
we get Corollary 3.33.

Theorem 3.40 and Lemma 3.35 yield

COROLLARY 3.42. Let L be a complete modular lattice and let ¢ € D(L) have prop-
erty (A). Let

1=3.T=3%.R,
where all c-summands are c-irreducible, T U R C K(L), and for every a € RUT the

interval [0,al is of finite length. Then there is a bijection A : T — R such that, for each
teT,

L=t+.3 {r:r# A1)}

COROLLARY 3.43 (Walendziak [1990a], Theorem 3). Let L be an upper continuous mod-
ular lattice and let ¢ € D(L). Let

1= Ja;:iel}=3{b:jeJ}
be two irredundant c-decompositions of 1 with all summands c-irreducible. If the intervals

[0,a;] and [0,b;] (i € I, j € J) are of finite length, then there exists a one-to-one mapping
X of I onto J such that, for each i € I, the c-decomposition (47) holds.

Proof. We first observe that if L is an upper continuous lattice, then every element ¢ € L
has property (A). Let a € L and S be a subset of L. Suppose that a A \/S" < ¢ for every
finite subset S’ of S. By (UC),

aN\VS=\V{an\s :5 eF(9)}.

Therefore, aA\/S < ¢, because aA\/S’ < ¢ for every S” € F(S). Thus ¢ has property (A).

Crawley [1962] proved that if a is an element of an upper continuous lattice such
that [0, a] is of finite length, then a is compact. Therefore the elements a; (i € I) and b;
(j € J) are compact. Moreover, by Lemma 3.35, they satisfy the B%-condition. Now the
assertion follows from Theorem 3.40. m

From Corollary 3.43, in the case ¢ = 0, we get

COROLLARY 3.44 (Crawley [1962]). Let L be an upper continuous modular lattice and let
a € L. Suppose that

a=\{a;:iel}=\{b;:jeJ}
are two direct decompositions of a, where a; (i € I) and b; (j € J) are directly join
irreducible. If each [0,a;] and each [0,b;] is of finite length, then there exists a bijection
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A: I — J such that, for each i € I,
1=a; V\V{bj:j # i)}
COROLLARY 3.45. Let L be a complete modular lattice and let a € L. Assume that

a=\T=\R,

where T and R are join irredundant sets of join irreducible compact elements of L. Then
there is a bijection X : T — R such that, for each t € T, a =tV \/{r :r # X(t)}.

Proof. It is obvious that the element ¢ = 1 satisfies (A). By Lemma 3.36 each r € RUT
satisfies the Bj-condition. Now from Theorem 3.40 our corollary follows. =

We recall from Section 2.1 that if an element a € L has a representation a = \/T with
T C J(L), then we say that a has a join decomposition. Richter [1982a] (see Theorem 7)
proved that if @ = \/T = \/R are two join decompositions of a in a complete lattice
satisfying the hereditary property (HJ), then any element ¢t € T can be replaced by an
r € R. But if these join decompositions are irredundant there are no statements about
the cardinality of T and R except in the finite case. For upper continuous modular lattice
we are able to generalize the Theorem of Kurosh—Ore to infinite join decompositions and
to make a statement about the cardinality of 7" and R. We remark that for algebraic
strong semimodular J-lattices this is due to Richter [1991] (see Theorem 24). Now we
prove the following

COROLLARY 3.46. If L is an upper continuous modular lattice and if a =\/T = \/R are
two irredundant join decompositions of a, then T and R have the same cardinality, and
any element t of T can be replaced by an r € R.

Proof. In the proof of Lemma 3 of Crawley [1962] it was shown that every completely
join irreducible element of an upper continuous lattice is compact. Therefore T'U R
C K(L). Moreover, every completely join irreducible element of a complete lattice is join
irreducible. Hence Corollary 3.45 implies the assertion. m

4. Weak direct products of algebras

4.1. Definition and preliminaries. The material of this chapter is taken from Wal-
endziak [2000a]. If (A; : ¢ € I) is a system of similar algebras, then [[(4; : ¢ € I), or
I1A;, denotes the direct product of algebras A;, i € I. For x,y € [[ A; we define

W, y) ={iel:2@)#y@)}
DEFINITION 4.1 (cf. Grétzer [1979], p. 139). A subalgebra A of [[A; is called a weak
direct product of A;, i € I, if the following two conditions are satisfied:
(Al) Ifz,y € A, then the set I(z,y) is finite.
(A2) Ifze A ye]]A4; and if I(z,y) is finite, then y € A.
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We write A = [V (4; : i € I), or A = ][V A, to denote that A is a weak direct
product of A;, i € I. If (A4; : i € I) is a system of groups, rings or modules, then

TV (A :iel)=@(A; i),

where @ denotes the direct sum. If the set I is finite, then the concepts of the weak
direct product and direct product coincide.

Let Con(A) denote the set of all congruence relations on an algebra A. Then Con(A)
forms an algebraic lattice with 04 and 14, the smallest and the largest congruence rela-
tions, respectively (occasionally, they are denoted simply by 0 and 1).

The relational product of two congruences o and [ is the relation

aof={(a,b): (a,c) € aand (¢, b) € B for some element c}.

An algebra A is called directly indecomposable if it is nontrivial and is not isomorphic
to a direct product of two nontrivial algebras. A is called subdirectly irreducible if |A| > 1
and 04 is a completely meet irreducible element of Con(A). We say that an algebra A is
simple if it has exactly two congruences, 04 and 14; A has permuting congruences, or is
congruence permutable if for any «, 3 € Con(A), aoff = foa; and A is called congruence
modular (distributive) if Con(A) is modular (distributive).

PROPOSITION 4.2 (Hu [1969], Lemma 11). Let A be a congruence permutable algebra,
and let 0; € Con(A), i € I. Then

A=TI"(A/0; :iel) ifand onlyif 04 =({0;:i€ I} and 1y =\/{0;:i¢€ I},
where 0; = ({0, : j € I — {i}}.

A congruence o € Con(A) is called a decomposition congruence if there is a § €
Con(A) such that a N B = 04 and o 8 = 14. Let DCon(A) denote the set of all
decomposition congruences of A. We call a sublattice of a complete lattice \/-closed
whenever it is closed under arbitrary joins.

LEMMA 4.3. If DCon(A) is a \/-closed modular sublattice of Con(A), then DCon(A) is
atomistic.

Proof. Let a € DCon(A), a # 04 and let o’ be a complement of a. Choose a,b € A such
that (a,b) € o and consider the set

A={BeDCon(A): (a,b) € B and o’ < §}.

Then A is nonempty, since o' € A. Let I be a chain in A. It is easy to see that \/I" € A.
Therefore, A contains a maximal element § by Zorn’s Lemma. Since DCon(A) is com-
plemented and modular, it is relatively complemented. Let 6’ be a relative complement
of § in [@/,14]. Then 6N¢" = o' and § V¢’ = 14. From the maximality of § we infer that
§ < 14. By modularity, o’ < §’ and hence 04 = aNa’ < aNd’ < a. Therefore, DCon(A)
is atomic. Now, by Theorem 4.3 of Crawley—Dilworth [1973], DCon(A) is atomistic. m

LEMMA 4.4. Let A be an algebra such that DCon(A) is a sublattice of Con(A). If 6 is
a coatom of DCon(A), then A/0 is directly indecomposable.
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Proof. Suppose on the contrary that there exist two congruences «, 3 such that 6 < «,
B <1y, a0B =14 and anN B = 0. Let # be a congruence satisfying 04 = 6 N # and
14 =60 086'. Obviously,

(1) an((Bne)=04.
Observe that
(2) ao(BNO)=14.

Indeed, let 2,y € A, and choose z,t € A such that (z,2) € «, (2,y) € 8, (2,t) € 0, and
(t,y) € 0'. Then (z,t) € o and (t,y) € S NO'. Therefore, (z,y) € o (NE'), and hence
(2) holds. From (1) and (2) we conclude that o € DCon(A), contradicting the fact that
0 is a coatom of DCon(A). Consequently, A/ is directly indecomposable. m

LEMMA 4.5. Let A be an algebra and let I' be a \/-closed sublattice of Con(A). If I
is an atomistic semimodular lattice, then there exist coatoms 0; € I' (i € I) such that
0a=(0;:i€I}and 14 =\/{0; i€}

Proof. Let {2 be the set of all atoms of I'. Since the lattice I" is atomistic, 14 = \/§2. Let
{a; 17 € I'} be a maximal subset of {2 such that

;N\ jel—{i}} =04
for all ¢ € I (apply Zorn’s Lemma). From Theorem 6.5 of Crawley—Dilworth [1973] we
deduce that

(3) 1a=V{a; i €T}
Set 0; = \/{e; : j # i} for i € I. By semimodularity, 6; (i € I) is a coatom of I". We put
vy=({b;:i€l}.

Let P be the set of all subsets J C I such that

’yﬂ\/{aj :jGJ}:OA.
P is nonempty since ) € P. Let J; (k € K) be a chain in P. By upper continuity we
conclude that |J{J; : k € K} € P. Therefore, by Zorn’s Lemma, P contains a maximal

element M. Now we prove that M = I. Suppose on the contrary that M # I. Let
ig € I — M. Obviously,

v<0;, and 0=\{a;:i€ M} <86,;.
Since 04 < a;,, by semimodularity we get
0 <, VV{a;:ie M} =V{a; i€ N},
where N = MU{ig}. Then 0;,,N\/{ca; : i € N} = 6. Hence yN\{e; : i € N} =~yNJ = 04.

Consequently, N € P. This contradiction forces M = I. Thus y = yN\/{e; : i € I} = 04,
ie.,

(4) ({b::i€I}=04.

Since 6; > a; for j # i, we obtain 0; = ({0, : j # i} > a;. From (3) we have
la=V{0;:iel},

and by (4), the proof is complete. m
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4.2. Some existence theorems. The first major result is

THEOREM 4.6. Let A be an algebra such that DCon(A) is an atomistic semimodular

\/-closed sublattice of Con(A). Suppose that for every atom « of DCon(A), if B is a

complement of « in DCon(A), then 14 = ao 8. Then there are coatoms 0; (i € I) of

DCon(A) such that A is isomorphic to a weak direct product of the (directly indecompos-

able) algebras A/0;, i € I.

Proof. By the proof of Lemma 4.5 there exist atoms «; (i € I) of DCon(A) such that
la=WV{a;:iel} and a;nNV{e;:jel—{i}} =04

for all ¢ € I. Set §; = \/{e; : j # i}. By semimodularity, 6; (i € I) is a coatom of

DCon(A), and it is a complement of «;. Therefore, by assumption,

(5) 14 =0;0q

for all ¢ € I. Since 6; > oy for j # i, we obtain 0, = ({6, :j#1i} > ;. Then
(6) la=V{0;:iel},

and by (5),

(7) 14=20;00,.

From the proof of Lemma 4.5 it follows that

(8) ({0;:i€I}=0a.

We denote by f the function from A to B =[](A/0; : i € I) defined by
fl@)=(x/0;:i€I) (xe€A).

From (8) we conclude that f is an embedding. Let 2,y € A. We show that R={i € I :

x/0; # y/6;} is finite. By (6), (z,y) € \/{0; : i € I}. So there are iy,...,i, € I such that

(w,y) € 0;, V...V 0; . Observe that

9) RC{i1, ... in}-

Indeed, let x/6; # y/0;, for some i € I, and suppose on the contrary that ¢ & {iy,...,i,}.

Therefore, 6;, V...V 0; < 6;, and hence (z,y) € 0, i.e., x/0; = y/0;, a contradiction.

From (9) we deduce that R is finite. Now we prove that

(10) ifreA,yeBand |[{i €1:2/0;, #y/0;} < No, then y € f(A).

Suppose that the set S = {i € I : 2/0; # y/6;} contains only one element i;. Let t € A

satisfy t/0;, = y(i1). Since 14 = 6;, o 0;, there is z € A such that (t,z) € 6;, and

(z,2) € 0;,. It is easy to see that y = f(z). Consequently, y € f(A). From this we see

by induction that (10) holds. Hence f(A) is a weak direct product of the algebras A/6;,

i € I. That the algebras A/0; are directly indecomposable follows from Lemma 4.4. m

COROLLARY 4.7. Let A be an algebra such that DCon(A) is a \/-closed sublattice of
Con(A) and suppose that for any «, 8 € DCon(A), a and B permute. Then A is isomor-
phic to a weak direct product of directly indecomposable algebras.

Proof. Since aV 8 = ao 3 for all a,8 € DCon(A4), we conclude that DCon(A) is a
modular lattice. By Lemma 4.3, DCon(A) is atomistic. Applying Theorem 4.6 we see
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that there exist coatoms 6; (i € I) of DCon(A) such that A = [TV (A4/6; : i € I). From
Lemma 4.4 we see that the algebras A/6; are directly indecomposable. m

COROLLARY 4.8 (Hashimoto [1957], Theorem 4.5). If an algebra A has permuting con-
gruences and DCon(A) is a \/-closed sublattice of Con(A), then there exists a system
(A; :i € 1) of directly indecomposable algebras such that A =[] (A; :i € I).

COROLLARY 4.9 (Hashimoto [1957], Theorem 5.1). Let A be any algebra whose congru-
ences permute and whose congruence lattice is complemented. Then A is isomorphic to
a weak direct product of simple algebras.

Proof. Note that in Crawley—Dilworth [1973] (see Theorem 4.3) it is shown that every
algebraic complemented modular lattice is atomistic. Therefore, DCon(A) = Con(A) is
atomistic. By Theorem 4.6, there are coatoms 6; (i € I) of Con(A) such that A =
1" (A/6; : i € I). It is obvious that A/6; (i € I) are simple algebras. m

Congruence permutable algebras include groups, rings, modules, quasigroups, Heyting
algebras and relatively complemented lattices. In the case of groups, Corollary 4.9 implies
the following statement.

COROLLARY 4.10 (Hashimoto [1957], p. 104). Let G be an §2-group. If for every normal
2-subgroup H of G there is a normal §2-subgroup K such that G = H @& K, then G is
a direct sum of simple (2-groups.

REMARK 4.11. Corollary 4.9 includes the result of Blair [1953] on the decomposition of
rings into simple rings.

For modular algebraic lattice L the following statements are equivalent:

(i) L is complemented.
(ii) The join of the atoms of L is 1.

(See Lemma 4.83 of McKenzie-McNulty—Taylor [1987].) Therefore, Corollary 4.9 yields
COROLLARY 4.12. A module M which is the sum
M=>{V:V <M and V is a simple module}
s a direct sum of simple submodules.
For vector spaces we obtain the following

COROLLARY 4.13. FEwvery vector space V' is a direct sum of one-dimensional subspaces

of V.
For lattices, we have

COROLLARY 4.14 (Dilworth [1950], Theorem 4.4). A relatively complemented lattice L
satisfying the ascending chain condition is isomorphic to a direct product of finitely many
simple relatively complemented lattices.

Proof. 1t is well known that L is congruence permutable. By Theorem 10.8 of Crawley—
Dilworth [1973], Con(L) is complemented. Hence there exists a system (L; : ¢ € I) of
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simple lattices such that L = HW(Li : 4 € I). According to Proposition 4.2 we may
assume that each L; is L/6;, with

O =({0;:i€l} and 1, =\/{0,:i€l}
where 0; = ({0; : j € I — {i}}. Observe that
gil <§i1 \/57;2 <§7;1\/...\/§in <<1L:\/{§’LZ€I}
fori; € I (j=1,2,...). Indeed, if 0;, < \/{0; : j # io} for some i € I, then 6;, < 0;,,
and hence 0;, = 1z, a contradiction.
But Con(L) satisfies the ascending chain condition (see Theorem 4.3 of Dilworth

[1950]), and therefore, I is finite. Consequently, L is isomorphic to a direct product of
simple lattices L;, which clearly must be relatively complemented. m

PROPOSITION 4.15. Let A be an algebra such that DCon(A) is a modular \/-closed sub-
lattice of Con(A) and suppose that every atom of DCon(A) has a unique complement.
Then A is isomorphic to a weak direct product of directly indecomposable algebras.

Proof. By Lemma 4.3, DCon(A) is an atomistic lattice. Let « be an atom of DCon(A),
and let 8 be a complement of o in DCon(A). Then 1 = «a o 8, because a has a unique
complement. Applying Theorem 4.6 we obtain the assertion. m

As a consequence of Proposition 4.15 we get the following

COROLLARY 4.16 (Hashimoto [1957], p. 106). If A is a congruence distributive algebra
such that DCon(A) is a \/-closed sublattice of Con(A), then A can be decomposed into
a weak direct product of directly indecomposable factors.

THEOREM 4.17. Let A be any algebra such that 14 is a join of join irreducible elements
of Con(A) and suppose that every decomposition congruence on A is neutral (i.e., it is
standard and codistributive) in Con(A). Then A is isomorphic to a weak direct product
of directly indecomposable algebras.

Proof. We first prove that « V 3 = a0 8 for « € DCon(A) and 3 € Con(A). Let o’ be a
congruence satisfying 04 = aNa’ and 14 = aoa’. Assume that (z,y) € aV 3. Obviously,
there is a z € A such that (z,z) € a and (z,y) € o'. Consequently, (z,y) € &/ N (a V 3).
Since « is a neutral element in Con(A), we have

odNavp)=(@na)vanNp)=adng.

Then (z,y) € 5, and hence (z,y) € ao . Thus aV 3 = ao . Therefore, every element of
DCon(A) is permutable with any congruence on A. Now it is easy to see that DCon(A)
is a distributive sublattice of Con(A). It is sufficient to show that DCon(A) is \/-closed.

Let I' = {o; : i € I} C DCon(A), and let o) denote the congruence satisfying
04 =a;Nal and 14 = a; o ). We prove that o = \/I" € DCon(A). Write

¥ ={3 € Con(A): 3£« and 3 is join irreducible}.

and put o/ = \/¥. Let 8 be a join irreducible element of Con(A). By the definition of
a, if 8 £ a, then § < o'. Therefore, < a V . Since 14 is a join of join irreducible
elements of Con(A), we conclude that

la=aVvda.
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We claim that
if 6 €W, then 6Na; =04 for any ¢ € 1.
Indeed, 5 = N (a; V ) and we have

B=(BNa)V(BNaj).

Since 8 £ «; and § is join irreducible, we get 3 = SN aj. Hence 3 < o and consequently,
BNa; <a;Nal=04. Thus fNa; = 04. Now, by (UC),

a; N =a; N\ =\{a; NP : P e F(¥)}.
But a; NV@ =\{a; NG : B € P} =04, since a; is neutral and a; N3 = 04. Therefore,
o;Na’ =04

Compute:
anad =d N\H{a;:i eI}

=\V{NV{a;:jeJ}:Je FI)} (use (UQC))

=V{a'Na; i€} (since a; (i €I) are neutral)

=04.
Thus 14 = aVa' and aNa’ = 04. But o permutes with all congruences «;, i € I,

and hence o permutes with \/I" = « (see Lemma 3.1 of Dilworth [1950]). Consequently,
la=aod and aNa’ =04, ie, a € DCon(A). m

COROLLARY 4.18. If A is an algebra such that Con(A) is a distributive lower continuous
lattice, then A is isomorphic to a weak direct product of directly indecomposable algebras.

Proof. By lower continuity of Con(A), 14 is a join of join irreducible elements of Con(A).
Therefore, the conclusion follows from Theorem 4.17. m

Since every complete Boolean algebra is lower continuous, we deduce from Corol-
lary 4.18 the following

COROLLARY 4.19. Let A be any algebra whose congruence lattice is a Boolean algebra.
Then A can be decomposed into a weak direct product of directly indecomposable factors.

Recall that a complete lattice L is called completely distributive if for arbitrary
sets I, J; (i € I) the identity

ANMVAag e Jiyrie I} =\ {Napu :icl}:pell(Jiziel)}
(or the dual one) holds in L.
It is well known that if Con(A) is completely distributive, then any « € Con(A) is a
join of join irreducible congruences on A. Hence, if Con(A) is a completely distributive
lattice, then the assumptions of Theorem 4.17 are satisfied. Therefore we have

COROLLARY 4.20 (Draskovicovd [1987], Theorem 1.7). If Con(A) is a completely dis-
tributive lattice, then the algebra A is isomorphic to a weak direct product of directly
indecomposable algebras.

COROLLARY 4.21. A relatively complemented lattice L satisfying the descending chain
condition is isomorphic to a direct product of finitely many directly indecomposable rela-
tively complemented lattices.
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Proof. By Theorem 4.3 of Dilworth [1950], Con(L) satisfies the descending chain con-
dition (i.e., each nonempty subset of Con(L) has a minimal element). Hence Con(L) is
lower continuous. From Corollary 4.18 we conclude that L = HW(Li 14 € 1), where L;
(i € I) are directly indecomposable lattices. According to Lemma 4.5 we may assume
that each L; is L/6;, with

Op=({0;:ie€l} and 1, =\{6;:iecl}.
It is easy to see that
1> V{0ici#i} > > V{0ici# i, in} > ...

But Con(L) satisfies the descending chain condition, and therefore, I is finite. Thus, L
is isomorphic to a direct product of lattices L;, which clearly must be relatively comple-
mented. m

Let L be a lattice. We say that L is discrete if all bounded chains in L are finite (see
Jakubik [1971]). L is called weakly discrete if there exists a maximal finite chain between
any comparable elements (Draskovicovd [1987]). Each discrete lattice is weakly discrete.

Observe that, if L is weakly discrete, then 1y, is a join of join irreducible congruences
on L. Obviously

1 = \V{Cg"(a,b) :a,be L, a <b},
where Cg”(a,b) is the congruence relation on L generated by {(a,b)}. Let

a=ay<a1 <...<ap_1<a, =b.
Then

Cg(a,b) = \/{Ce"(as,ai41) :i=0,...,n—1}.

It is clear that CgL(ai7ai+1), 1 =0,...,n — 1, are join irreducible congruences. Con-
sequently, 17 is a join of join irreducible congruences on L. Therefore, Theorem 4.17
yields

COROLLARY 4.22 (Draskovicovd [1987] and Jakubik [1971]). If a lattice L is weakly dis-
crete or if L is discrete, then L is isomorphic to a weak direct product of directly inde-
composable lattices.

5. (L, p)-representations of algebras

5.1. Introduction. Let (A; : ¢ € I) be a system of similar algebras. Recall that
[I(A4; : i € I) or [] A; denotes the direct product of algebras. If A = A; for all ¢ € I, we
write AT and call it a direct power of A. In case I = {1,2}, we write A; x As.

Let A C J] 4; be a subdirect product. Then A is called a full subdirect product of the
A;, i € I, if the condition (A2) of Definition 4.1 is satisfied.

Obviously, any weak direct product of the algebras A; (i € I) is a full subdirect
product of them. If I is finite, then the concepts of the weak direct product, full subdirect
product and direct product coincide.
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Let I be a nonvoid set. Let P = P(I) and F = F(I) denote the sets of all sub-
sets and of all finite subsets of I, respectively. We denote by P(I) the Boolean algebra
(P(I),n,U,",0,I). The notation £ < P(I) means that £ is an ideal of P(I).

Walendziak [1994a] introduced the following concept:

DEFINITION 5.1. Let A; (i € I) be similar algebras and let £ < P(I). We say that a
subalgebra A of the direct product [J(A; : ¢ € I) is an L-restricted full subdirect product
of the algebras A;, i € I, and write

A=T["(Ai:iel)
iff the following two conditions hold:

(B1) A is a full subdirect product of 4;, i € I.
(B2) Forallz,yec A, I(z,y) € L.

This notion is a common generalization of weak direct products (£ = F(I)) and full
subdirect products (£ = P(I)).

Let A C[(A;: i€ I) be asubdirect product and let £ be an ideal of P(I). Then A
is called an L-restricted subdirect product (see Hashimoto [1957], p. 92) if it satisfies (B2).
If, in addition, A has the property that for every € A and every y € [[ A, I(z,y) € £
implies y € A, then we say that A is an L-restricted direct product (see Gratzer [1979],
p. 140 or Walendziak [1991a] , p. 219). These notions are generalized in

DEFINITION 5.2 (Walendziak [1998]). Let A be a subdirect product of algebras A4;, i € I,
and let £, £’ be ideals of P(I). We say that A is an (L, L')-product of A;, and we write

A=TI5(AizieT), or A=T[% A,
if A satisfies (B2) and the following condition:
(B3) (xeA ye]]Ai, and I(z,y) € L) = y € A.

Obviously, A = Hﬁ A; if A is an L-restricted direct product of algebras A;, i € I. In
particular, if £ = £’ = P we obtain the direct product. If £ = {0} in Definition 5.2,
we get the concept of an L-restricted subdirect product. We note that if £ = P, then an
L-restricted subdirect product is a subdirect product. It is easily seen that []. A; is an

L-restricted full subdirect product of the A;, i € I. Finally, a full subdirect product is a
(P, F)-product.

DEFINITION 5.3 (Walendziak [1992], Definition 1). Let A; (i € I) be algebras of the same
type, B = [[(A; : ¢ € I), and let ) C B x B. We say that a subdirect product A of A;
(i € I) is a -product of these algebras if the following condition holds:

(C1)  Forevery (z; :i € I) € AL if (v;,2;) € ¢ for each i, j € I, then (z;(i) : i € I) € A.

We note that the concept of ¥-product could be explained as some form of “convexity”
(see Walendziak [1993b], p. 320). Observe that subdirect and direct products of algebras
are special cases of i-products. Indeed, let A be a subalgebra of the direct product B of
similar algebras A; (¢ € I). It is obvious that A is a subdirect product if and only if A is
a 0p-product of algebras A;, 1 € I.
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Now we claim that
Ais a 1g-product of the 4; (i€ I) & A= B.

Clearly, B is a 1g-product. Conversely, let z € B and z(i) = a; € A; for all i € I. Since
A is a subdirect product, there is a system (z; : i € I) € Al such that x;(i) = a; for all
¢ € I. From Definition 5.3 it follows that (z;(i) : ¢ € I) € A and hence z € A.

y-products are studied in Walendziak [1993a,b]. In this chapter, generalizing restrictd
subdirect, full subdirect, and weak direct products under the name of (£, )-products,
some classical theorems on direct, subdirect, weak direct and full subdirect representa-
tions are deduced from our more general new results.

5.2. (£, )-products of algebras. Now we introduce the following concept:

DEFINITION 5.4 (Walendziak [1993c], Definition 1). Let (A4; : ¢ € I) be a system of similar
algebras, £ be an ideal of P(I), and let ¢ be a binary relation on B = [[(4;:i € I). A
subalgebra A of B is called an (L, 1)-product of the algebras A;, i € I, if it is a subdirect
product (of these algebras) satisfying conditions (B2) and

(C2) Ifieland (z,y) € A2 N4, then w;(z,y) € A,
where the element z = w;(x,y) is defined by z(i) = z(i) and 2(j) = y(j) for j # i.

We write A = Hi(Az ciel),or A= Hi A;, to denote that A is an (£, )-product
of Aj, i € I If ¢ = 1p, we write [T°(4; : i € I) for [[5(A; - i € I). If C = A; for all
i € I we call Hf:/,(Az 21 € 1) an (L, 9)-power of C' with exponent I.

EXAMPLE 5.5. Let I be an index set and let G = Z1, where Z, is the two-element group.

For z € G, we define the support of x, denoted by supp(z), as supp(z)={i € I : 2(4) # 0}.
Let I’ be a subset of I, and set

L={XUY :X is a finite subset of ' and Y C I —I'},

Y= {(2,y) € G*: z(i) = y(i) foralli € I — I'}.
Define

H ={zeG:z(i)=xz(j) foralli,j € I — I'},

Hy; ={x € G : I'"Nsupp(x) is finite},

Hs = {x € G : supp(x) is finite}, and

H, = {x € G : supp(z) is finite or I — supp(z) is finite}.
It is easy to see that H; is a (P, v¥)-power of Zy with exponent I, and Hy is an L-resticted
full subdirect power. Moreover, Hy N Hj is an (L, 1))-power of Zs, and Hs is a weak direct
power (that is, Hs = @(A4; : ¢ € I), where A; = Z5 for all ¢ € I). Finally, Hy is a full
subdirect power of Zs, but it is not a weak direct power.

EXAMPLE 5.6. Let I be a set and (R; : i € I) be a system of rings. For x € [[ R;, let
supp(z) = {¢ € I : 2(i) # 0}. For an infinite cardinal number m, the m-product of the R;,
i € I, is defined to be the subring

[TM(R; :i €)= {x €[][R;: |supp(z)| < m}.
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(See, for example, Dauns [1987].) Let
L={JCI:|J| <m}.

Observe that A = [[™ R; is an L-restricted full subdirect product of the R;. Clearly,
A C [ R; is a full subdirect product. Let 2,y € A. Since

I(z,y) C supp(x) U supp(y),
we conclude that I(z,y) € £, and therefore, A satisfies (B2). Then A = Hﬁ R;.

EXAMPLE 5.7. Let (M; : i € I) be a system of left R-modules, and let D be a dual ideal
of P(I) such that I — {i} € D for all i € I. We define the D-product of the M;’s to be

[[p(M;:iel)={ze]][M,:{icl:xz(i)=0}ecD}
(This notion is due to Loustaunau [1990].) It is easily seen that [, M; is an L-restricted
full subdirect product of modules M;, where £L ={I — J: J € D}.

ExAMPLE 5.8. Let L;, i € I, be lattices with zero, and let £ be an ideal of P(I) containing
all finite subsets of I. We set L = [[(L; : @ € I) and define a binary relation 6 on L as
follows:
20y < I(z,y) € L.

Since 6 is a congrunce relation of L, we can form the lattice L/ called a reduced product of
L;, i € I (see Grétzer [1979], Section 22, or Gratzer [1978], Chapter V). Let f: L — L/6
be the natural epimorphism. The f-inverse image of the zero of L/6 (that is, the set
{zr € L: f(x)=0/60}) is an L-restricted full subdirect product of L;, i € I.

PROPOSITION 5.9. Let A, A; (i € I) be similar algebras, B = [ Ai, and let ¢ be an
equivalence relation over B. If A is a v-product of the algebras A;, i € I, then A is a
(P, v)-product of these algebras.

Proof. Take ig € I. Let z,y € A with (x,y) € ¢, and let z € B be defined as follows:
z(ig) = x(ip) and z(7) = y(i) for all s € I — {ip}. We put x;, = x and x; = y if i # 4. By
(C1), (x4(i) : i € I) € A. But (z;(7) : i € I) = z, and therefore z € A. Then (C2) holds,
and thus A = Hi(Ai ciel). m

REMARK 5.10. The converse of Proposition 5.9 is not true in general: the group Hy (see

Example 5.5) is a (P, 15)-power of Zs, but it is not a direct power.

PROPOSITION 5.11. Let A be a subalgebra of B =[] A; and let L be an ideal of P(I).
Then:

(i) A= Ho (A; i €I)iff Ais a subdirect product of the algebras A;, i € I.

(il) A= Ho (A; i €I)iff Aisan L-restricted subdirect product of the A;, i € 1.
(i) A = H (A; i €) iff Ais an L-restricted full subdirect product of the A;, i € I.
(iv) A= H A; iff A is a full subdirect product of A;.

(v) A=TI" Ai iff Ais a weak direct product.

Proof. The statements (i)—(iv) are obvious. To prove (v), assume first that A is an
(F,1p)-product of the A;, i € I. It is clear that (Al) holds. Observe that (A2) is
also satisfied. Let * € A, y € B and suppose that the set I(x,y) contains only one
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element 4;. Since A is a subdirect product of A; (i € I), there is t € T such that
t(i1) = y(i1). Take z = w;, (¢, z). By Definition 5.4, z € A. Since y = z, we have y € A.
From this we see by induction that (A2) holds. Then A is a weak direct product of
algebras A;, i € I. Conversely, assume that A satisfies conditions (A1) and (A2). It is
easy to see that conditions (C1) and (C2) hold with £ = F and ¢ = 1p. Therefore,
A=JI"(A;:iel). u

5.3. p-product of congruences and ¢-isotopy. Let {0, : i € I} be a set of congru-
ences of an algebra A. For any set M C I we define

O(M) =N\{0;:j eI~ M}

We shall use the notation 6; for 6({i}), i € I. Let ¢ be a binary relation on A, and let £
be an ideal of P(I). For o € Con(A), we write

o= Hi{Hi ciel}, or a= Hi@i,
if the following conditions are satisfied:

(DO) a=(\{0;:i€I}.
(D1) 14=V{6(M): M € L}.
(D2) Foralliel, pC0;00;.

If £ =P(I) we write

(1) a=][[{0:iel}
instead of a = Hi{@i : 1 € I'}, and we say that « is the @-product of the congruences 6;
(¢ € I). In this case, if I = {1,...,n}, we write & = 61 X ... X, 6,,. For abbreviation, we

let HC{F)i 4 € I} stand for HfA {0; : i € I}. If the set {0; : i € I} is meet irredundant,
then we say that (1) is an irredundant p-product decomposition of «.
It is easy to see that if £ = P(I), then the condition (D1) holds. Therefore,

(2) a=][[{b:iel}l & a=6 and ¢ C 0; o 0; for each 1.
Hence,
a =0 X¢92 S a=601N0 andcpg(eloﬁg)ﬂ(egoel).

From (2) we also have
ProroOSITION 5.12. We have:

(1) a=]lg {0i:iel} iff a={0;:i€l}.
(i) a=J[{0;:i€l}iff a=N{0;:i€ I} and 14 = 0;00; for each i.

PROPOSITION 5.13. Let A be a congruence permutable algebra, o € Con(A), and let 0;
(i € I) be congruences of A such that a« = ({0;:i € I}. Then

a=TT"{0;:iel} & 1a=\V{B:icl)
Proof. Let a = eri- Then 14 = 6; 00; for all i, and
(3) 1a=V{0(M): M e F}.
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Observe that
(4) For every ) # M € F, O(M) <\/{0;:i¢c M}.

We apply induction on |M|. The case |M| = 1 is trivial. Assume that the inequality holds
for all M C I with [M| <n.Let M = {1,...,n} C I and 2,y € §(M). Since 14 = 6,,00,,,
there is a 2z € A such that (x, 2) € 6,, and (z,y) € 0,,. Therefore, (v,2) € 0({1,...,n—1}),
and by the induction hypothesis, (z,2) € 01 V...V 8,_1. Then (z,y) € \/{0; :i € M},
and consequently, we obtain (4). From this and (3) we conclude that 14 = \/{6; : i € I}.

For the converse, let 14 = \/{0; : i € I}. Hence we get (3). Let i € I. Obviously,
\/{gj :j #1i} < 6;, and therefore, 14 = 6; VV 6;. Then 14 = 6; o 6;, since the congruences
of A permute. Thus o = Hf 0;. m

DEFINITION 5.14. Let ¢ be a binary relation on an algebra A. An element o € Con(A)
is called -indecomposable if o # 1 and if o = 0, x, 05, then o = 01 or o = 5.

A trivial verification shows that the following proposition holds.
PROPOSITION 5.15. Let o € Con(A) with o # 1. Then:

(i) « is 0-indecomposable iff « is a meet irreducible element of Con(A).

(i) « is 1-indecomposable iff for any 601, 62 € Con(A), if o = 601 X1 02, then 6, =1
or U3 =1 (i.e., a is indecomposable in the sense of McKenzie-McNulty—Taylor [1987],
p. 269).

LEMMA 5.16. Let A be an algebra and o € Con(A). Then A/« is directly indecomposable
iff a is 1-indecomposable.

Proof. By Lemma 2 of McKenzie-McNulty—Taylor [1987] (p. 269) we deduce that A/«
is directly indecomposable iff « is indecomposable. Now using Proposition 5.15(ii) we get
the conclusion. m

DEFINITION 5.17. Let ¢ € Con(A). We say that the congruences of an algebra A
p-permute if for any congruences a and  on A, o N and BN ¢ permute.

It is obvious that for every algebra A the congruences of A 04-permute and that
1 4-permuting is the same thing as permuting.

LEMMA 5.18. Let ¢ be a codistributive element of Con(A). Suppose that the congru-
ences of A @-permute and denote by L the dual lattice of Con(A). Let «,0; (i € I) be
congruences on A. Then
a=[[{bi:iel}l & a=3 {0;:i€l}inL.
Proof. The congruence ¢ is distributive in L. Assume that 3 _{60; : i € I} (see Sec-
tion 3.1). Then
a=\{0;:iel} and 6,N\/{0;:j#i} C¢foreachicl.

In other words, o = (\{6; : i € I} and ¢ < 6; V({0; : j # i} in Con(A) for all
i € I. Therefore, ¢ = ¢ N (6; V 0;), and since ¢ is codistributive in Con(A4) we obtain
0= (pN6;)V (pN8h;). From the fact that the congruences of A p-permute we conclude
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that

p=(pNb:)o(pnb),
and hence ¢ C 6;00; for each i € I. Thus a = 2,10 1@ € I}. The converse is obvious. =

LEMMA 5.19. Let ¢ be a codistributive element of Con(A), and suppose that the congru-

ences of A p-permute. Then for a € Con(A), « is p-indecomposable iff « is p-irreducible
in the dual lattice of Con(A).

Proof. This follows immediately from Lemma 5.18. m

DEFINITION 5.20. Let A be an algebra and let ¢ be a congruence relation on A.

(i) The congruences o and [ on A are said to be ¢-isotopic (in symbols, a =, 3) if
0=oax,7 =0 x,7 for some v € Con(A4) with v # 0.

(i) We call algebras B and C p-isotopic, written B =, C, if there exist ¢-isotopic
congruences a and 8 on A such that B = A/« and C = A/(. To shorten notation, we
let B ~ C stand for B ~; C.

LEMMA 5.21 (see Walendziak [1993c], Lemma 7). Let A be a congruence distributive
algebra, and let o, € Con(A). If a and B are meet irreducible and 04-isotopic, then

a= 0.

LEMMA 5.22. Let A, B and C be algebras and let A have a one-element subalgebra. If
B~ C, then B=C.

Proof. Let o and /3 be 14-isotopic congruences on A such that B~ A/« and C' = A/S.
By the proof of Lemma 6 of Walendziak [1993c] we conclude that A/a = A/3. Therefore,
B2(C. =

5.4. (L, p)-representations of algebras—a characterization theorem

DEFINITION 5.23. Let A; (i € I) and A be similar algebras. Let ¢ be a binary relation on
A, and let £ be an ideal of the Boolean algebra P(I). If f : A — [[ A4; is an embedding
such that f(A4) = ]_[5(14Z : 1 € I) where v = f(¢), then we say that ((A; : i € I), f)
is an (L, p)-representation of A. In this case, we also say that A is isomorphic to an
(L,1)-product of algebras A; (i € I), and write

AgHi(Ai:iGI).

For each index i € I, we denote by f; the ith f-projection function from A onto A;,
that is,

filz) = (f(2))(@)  (z € A).
It is easy to see that if f : A — J[A4; is an embedding, then ((4; : ¢ € I), f) is an
(L, p)-representation of A iff the following two conditions hold:
(Cl') Forallz,y e A, I(f(z), f(y)) € L.
(C2)  Ifieland (z,y) € ¢, then wi(f(z), f(y)) € f(A).
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An (L, p)-representation ((A; : i € I), f) of A is called

(i) subdirect if L="P and ¢ =04,
(ii) L-restricted subdirect if o =04,
(iil) finitely restricted subdirect if L= F and ¢ =04,
(iv) full subdirect if £L =P and ¢ = 14,
(v) L-restricted full subdirect if ¢ = 14,
(vi) weak direct if L =F and ¢ = 14.

For a system (0, : i € I) of congruences on A, we denote by fy the function from A
to [[(A/6; : i € I) defined by
folx) = (z/6;:ieI) (xe€A).
If f is a function from A to B, then the kernel of f, written ker(f), is defined to be
the binary relation {(a,b) € A?: f(a) = f(b)}.
A trivial verification shows that the following holds.

PROPOSITION 5.24. Let ((A; : i € I), f) be an (L,p)-representation of A and let
ker(f;) =0; (i € I). Then {(A/0;:i € 1), fo) is also an (L, p)-representation of A.

The next result is a characterization theorem for (£, ¢)-representations.

THEOREM 5.25 (Walendziak [1993c], Theorem 1). Let A be an algebra, ¢ C A2, and
let (0; : i € I) be a system of congruences on A. Let L be an ideal of P(A). Then
((A)6; :i € 1), fo) is an (L, p)-representation of A iff 04 = Hi{&i ci eI},

Proof. Necessity. Since fy is one-to-one, (D0) holds for « = 04. To prove (D1), let
z,y € A. Clearly,

M={iel:x/0;#y/0:;} ={iel: folx)(i) # fo(y)(i)} € L,
and hence (z,y) € 0(M). Then (z,y) € V{0(M) : M € L}, and therefore, (D1) is
satisfied. Moreover, (D2) follows from (C2'). Indeed, fix an ¢ € I and let (z,y) € ¢. Set
2 = fo(z) and v’ = fo(y). By (C2'), 2/ = w;i(2',y') € A’ = fo(A). Let z = f~1(2). It is
easy to see that (x,z) € §; and (z,y) € 0;. Consequently, ¢ C 6; 0 0;.
Sufficiency. It is obvious that fp is an embedding and that A’ is a subdirect product
of the algebras A; = A/0;,i € I. Let x,y € A. Now we prove that

(5) M={iel:x/0; #y/0;} € L.

By (D1), (x,y) € V{0(M) : M € L}. So there are finitely many sets Mi,..., M, € L
such that (z,y) € 0(M;1) V...V 6(M,). Observe that

(6) MCMU...UM,.

Indeed, let /6; # y/0; for some i € I, and suppose on the contrary that i ¢ MiU...UM,.
Therefore, (M) V ...V 6(M,) < 0;, and hence (z,y) € 0;, that is, z/0; = y/6;, a
contradiction. From (6), by the definition of ideal we deduce that M € L. Thus (5) is
satisfied. Now let i € I, and let z’,y’ € A’ be such that (z/,y’) € ¥ = fo(p). Take
xz,y € A with 2/ = fyp(x) and y' = fy(y). Obviously, (z,y) € ¢ and by (D2) there exists
z € A such that (z,2) € 0; and (2,y) € ;. Hence w;(2',y') = fo(z) € A’. Therefore,
A = Hi(A/Hl 4 € I), which was to be proved. m
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The following well known fact is a consequence of Theorem 5.25 and Proposi-
tion 5.12(i).
COROLLARY 5.26. ((A/0; : i € I), fo) is a subdirect representation of A iff 0 =
({6 :i €I}

Let £ be an ideal of P(I). Using Theorem 5.25 we obtain
COROLLARY 5.27. ((A/6; : i € I), fy) is an L-restricted subdirect representation of A
W o={0;:i€I} and 1 =\/{O0(M): M € L}.

By Theorem 5.25 and Proposition 5.12(ii) we have
COROLLARY 5.28. ((A/0; : i € I), fg) is a full subdirect representation of A iff 0 =
({0;:i€1} and 1=0;00; for all i € I.

Combining Theorem 5.25 and Proposition 5.13 we get
COROLLARY 5.29 (Hu [1969], Lemma 11). Let A be an algebra whose congruences per-

mute. Then ((A/0; :i € I), fo) is a weak direct representation of A iff 0={0; :i € I}
and 1 =\/{0; :i € I}.

It is easy to verify the following
COROLLARY 5.30 (Walendziak [1991a], Corollary 8). If the congruences of an algebra A

permute and I is a finite set, then ((A/0; :i € I), fo) is a direct representation of A iff
0=[0; and 1 =0,V 0; for all i € I.

Now we define the notion of an irredundant (L, ¢)-representation.

DEFINITION 5.31. Let ((A4; : ¢ € I), f) be an (L, )-representation of an algebra A. For
each i € I, define the mapping f; of A to [[(A;:j # i) by

filx)(G) = fi(x) for all j # .
If none of the mappings f; (i € I) is an embedding we say that the (£, ¢)-representation
((A; -4 € ), f) is irredundant.

THEOREM 5.32. An (L, p)-representation ((A; i € I), f) of A is irredundant iff the set
{ker(f;) : i € I} is meet irredundant.

Proof. We put 0; =ker(f;) for i € I, and assume the (L, p)-representation ((4; : i € I), f)
of A to be irredundant. Suppose on the contrary that 0 = ({6, : j # i} for some ¢ € I. For
each © € A, let f;(x) be the restriction of f(x) to I — {i}. Obviously f; is an embedding,
contrary to our assumption.

Conversely, let {6; : i € I'} be meet irredundant. Assume that f; is one-to-one for some
i €1, and let (z,y) € ({0, : j # i}. Then f;(z) = f;(y) for each j # i. Consequently,
fi(z) = fi(y), and hence z = y. Therefore, 0 = ({0, : j # i}, and thus {¢; : i € I} is
meet irredundant, a contradiction. m

It is easy to see that the following proposition holds.

PROPOSITION 5.33. Let ((A; : i € I),f) be an (L,14)-representation of A. If |A;| > 1
for each i € I, then the representation is irredundant.
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5.5. The existence of irredundant (L, p)-representations. First we present the
following result:

THE FIRST EXISTENCE THEOREM 5.34. Let ¢ be a codistributive element of Con(A).
Suppose that the congruences of A @-permute and Con(A) is semimodular and atomistic.
Then there exists a system (A; : i € I) of simple algebras and an embedding f : A — [[ A;
such that ((A; : i € I), f) is an irredundant (L,@)-representation of A, where L is an
ideal of P(I) containing all finite subsets of I.

Proof. By Lemma 4.5, there exist coatoms 6; (i € I) of Con(A) such that 04 =
{6; :i € I} and 14 = \/{0; : i € I}. Let £ be an ideal of P(I) with F C L. We
have

la=V{0;:iel}y=\V{0{i}):ieI} <\{0(M): M e L},
and therefore condition (D1) holds.
Let i € I. Since 5j < @; for all j # i, we conclude that 14 = 6; V 0. Now it is easy to
see that the set {6; : ¢ € I} is meet irredundant. Moreover, since ¢ is codistributive and
the congruences of A @-permute, we get

p=¢N(0: V) =(pN0)V(pNb;) = (pNb)o(pn8).
Hence ¢ C 6; 0 6;, that is, condition (D2) is satisfied. Thus
04 =[5{0; i eI},

By Theorem 5.25, ((A/6; : i € I), fy) is an (L, ¢)-representation of A. This representation
is irredundant, because {6; : i € I'} is meet irredundant. Since 6; is a coatom of Con(A4),
we conclude that A/6; is simple. m

COROLLARY 5.35. Let A be any algebra with Con(A) semimodular and atomistic. Then
A is isomorphic to an irredundant subdirect product of simple algebras.

Let S be a semilattice. By Corollary 2 of Hall [1971] we know that Con(S) is a
semimodular lattice. If each interval of S is a finite chain (i.e., S is a locally finite tree),
then Con(S) is also atomistic (see Auinger [1990]). It is well known that a semilattice S
is simple iff |S| = 2. Thus, we have

COROLLARY 5.36. Fwvery locally finite tree is isomorphic to an irredundant subdirect prod-
uct of two-element semilattices.

Note that in Crawley—Dilworth [1973] (see Theorem 4.2) it is shown that every alge-
braic complemented modular lattice is atomistic. Therefore Theorem 5.34 implies

COROLLARY 5.37 (Hashimoto [1957], Theorem 5.1). If the congruence lattice of an al-
gebra A is complemented and modular, then there is an irredundant finitely restricted
subdirect representation of A with simple factors.

REMARK 5.38. Theorem 5.34 also gives the following result of Tanaka [1952]: If A is
an algebra with a Boolean congruence lattice, then A is a subdirect product of simple
algebras.
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We know (see Crawley—Dilworth [1973], Theorem 10.7) that if a lattice L has the
projectivity property and if L is weakly discrete, then Con(L) is a Boolean algebra.
Thus, from Corollary 5.37 we obtain

COROLLARY 5.39. If a weakly discrete lattice L has the projectivity property, then L is
isomorphic to an irredundant finitely restricted subdirect product of simple lattices.

It is well known that every algebra whose congruences permute has modular congru-
ence lattice. Therefore we get

COROLLARY 5.40. Let A be any algebra whose congruences permute and whose congru-
ence lattice is complemented. Then there exists a full subdirect representation of A with
simple factors.

THE SECOND EXISTENCE THEOREM b5.41. Let ¢ be a codistributive element of
Con(A). Suppose that for all o € DCon(A) and B € Con(A4), a Ny and BN per-
mute. If DCon(A) is a modular \/-closed sublattice of Con(A), then there is a system
(A; i € I) of directly indecomposable algebras and an embedding f : A — [[ A; such
that ((A; : i € 1), f) is an irredundant (L, p)-representation of A, where L is an ideal
of P(I) with the property that F C L.

Proof. By Lemma 4.3, DCon(A) is an atomistic lattice. Applying Lemma 4.5 we deduce
that there are coatoms 6; (i € I) of DCon(A) such that

0a={0::icI} and 14 =\{0;:icl}.
Let £ be an ideal of P(I) containing F. By the proof of Theorem 5.34 we see that
1=\V{0(M): M e L} and p C 0; 00, for all i € I. Therefore,
Lip .-
OZHW{&L S I}
According to Theorem 5.25, we conclude that ((A/6; :i € I), fy) is an (L, p)-representa-
tion of A. This representation is irredundant, because the set {6; : i € I'} is meet irre-

dundant. Since 6; is a coatom of DCon(A), from Lemma 4.4 it follows that every A/6; is
directly indecomposable. m

As a consequence of Theorem 5.41 we get the following

COROLLARY 5.42 (Hashimoto [1957], Theorem 4.2). Let A be an algebra such that
DCon(A) is a modular \/-closed sublattice of Con(A). Then A is isomorphic to an irre-
dundant finitely restricted subdirect product with directly indecomposable factors.

In the case of ¢ = 04, Theorem 5.41 implies

COROLLARY 5.43 (Hashimoto [1957], Theorem 4.5). Let A be any algebra whose con-
gruences permute and whose decomposition congruences form a \/-closed sublattice of
Con(A). Then there is a weak direct representation of A with directly indecomposable
factors.

From Theorem 6.2 of Hashimoto [1957] we have

LEMMA 5.44. Let A be an algebra with Con(A) distributive. Then DCon(A) is a Boolean
sublattice of Con(A) and every element of DCon(A) is permutable with any congruence
on A.
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Now we are able to give our existence theorem for restricted full subdirect represen-
tations.

THE THIRD EXISTENCE THEOREM 5.45 (Walendziak [1994b], Theorem 4). Let A be a
congruence distributive algebra. If DCon(A) is \/-closed in Con(A), then there exists a
family A; (i € I) of directly indecomposable algebras such that A is isomorphic to an
L-restricted full subdirect product of A; (i € I), where L is an ideal of P(I) containing
all finite subsets of 1.

Proof. By Lemma 5.44, every a € DCon(A) is permutable with any 8 € Con(A). Conse-
quently, if ¢ = 04, then the hypotheses of Theorem 5.41 are satisfied. Therefore, Theo-
rem 5.41 clearly forces the assertion. m

For other existence theorems we refer the reader to Walendziak [1996b].

5.6. Uniqueness theorems. For the next result we need the following

LEMMA 5.46. Let I,J be two sets of indices and L1, Lo be ideals of the Boolean algebras

P(I), P(J), respectively. Let A be an algebra with Con(A) distributive. If
0=[T"{:iel}y=11"{3;:j€J}

for congruences «;,3; on A, then there exist congruences v;; (i € I1,j € J) such that,

for all i and j,

a; =[1"{yi;:5€J} and B =T1"{y:icl}.
Proof. For i € I and j € J we put v;; = a; V ;. Fix ¢ € I. First we show that
(7) o =Wy g €J}
By distributivity of Con(A), for any j we have
a; Ny =a; N (VB =N B < B
Hence
aiﬂﬂ{’yij :jGJ}:ﬂ{Eiﬂ%j jGJ}Sﬂ{ﬂj ZjEJ}:O.
Therefore, using distributivity we get
Mvijriedr=Mvjdedtn(Vvay) =anN{v;:j€J}t=a:

Thus (7) is satisfied. For M € Lo we set v(M) = ({vi; : j & M}. Now we prove that
(8) 1=V{y(M): M € Ls}.
Let 2,y € A. Then (z,y) € VV{B(M) : M € L>}. Hence, we can choose a finite number of
sets My, ..., M, € Ly such that (z,y) € B(M1)V...VE(M,). Weset M ={j € J: (z,y)
& 7;j+. Observe that M C M;U. ..UM, Indeed, suppose j € M and j & M,U...UM,.Itis
obvious that (My) < §; foreach k = 1,...,n. Therefore, B(M1)V.. VB(M,) < B; < vij,
which gives us a contradiction. Consequently, M C M; U...U M,, and hence M € L.
Thus (x,y) € y(M), and we conclude that (8) holds.

For each j € J, write 7,;; for ({vix : k € J — {j}}. Clearly, v;; > ; and 7,;; > Bj.
Since 1= 3; o 3; we have

9) 1 =155 0%,
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for all j € J. From (7), (8) and (9) it follows that o; = HLZ {7i; : 7 € J}. The proof that
B; = Hﬁl{%‘j 4 € I} is similar. m

PROPOSITION 5.47. Under the assumptions of Lemma 5.46, if
A" (A :iel) and A=T[*(B;:jeJ),
then there exist algebras Cs; (i € I, j € J) such that, for all i and j,
A =T["(Cij:jeJ) and B;=I[""(Cij:iel).

Proof. Let ((A; : i € I),g) be an L;-restricted full subdirect representation of the al-
gebras A; and ((B; : j € J),h) be an La-restricted full subdirect representation of the
algebras B;. We set o; = ker(g;) and ; = ker(h;) (i € I, j € J), where g; is the ith
g-projection function and h; is the jth h-projection function. From Proposition 5.24 and
Theorem 5.25 we conclude that

0=T1"{eu:iel}=[1"{B;:5€J}
For i € I and j € J we set v;; = a; V ;. From Lemma 5.46 it follows that
a; =[1"{wj:jeJ} and B =[]"{w;:icl}
By the proof of Theorem 5.25 we conclude that
Aoy =T1"(A/yiy 5 € J) and A/ =17 (A/vi; i €1).
Therefore, A; = HQ(Cij :jeJ)and B; = Hﬁl(C’ij ti € 1), where C;; = A/vij. m
Now we prove the following uniqueness theorem for restricted full subdirect represen-
tations of algebras:

THEOREM 5.48 (Walendziak [1994a], Theorem 3). Let A be a congruence distributive
algebra. Let I,J be two sets of indices and Ly, Lo be ideals of P(I), P(J), respectively.
If A has an Lq-restricted full subdirect representation ((A; : i € I),g) and also has an
Lo-restricted full subdirect representation ((B; : j € J),h), where the algebras A;, B;
(i €I, j € J) are directly indecomposable, then there is a bijection X : I — J for which
the following conditions hold:

(i) For each i€ I, there exists an isomorphism t; : A; — By such that t;og; = hy().
(ii) AL(g(x), 9(y))) = J(h(x), h(y)) for all z,y € A.
Proof. Let o; (i € I) and §; (j € J) be the kernels of g; and hj, respectively. For each
i € I and each j € J set
Yij = Q4 \Y ﬂj and C,L'j = A/’}/,L'j.
By Proposition 5.47, A; = HCQ(C“ :j€J)and B; = [1°(Cyj =i € I). Since 4; is
directly indecomposable, there exists a A(i) = j € J such that A; = C;;. We have
A/O[i = A1 = Cij = A/(Oéz \Y 5J)
Then o; = a; V §;, and hence a; > (3;. Since B; is directly indecomposable there is a
o(j) = ¢ € I such that B; = Cy,;. Now we infer similarly that 3; > ;. Consequently,
a; > [B; > a;. Observe that ¢ = ¢/. Indeed, if ¢ # 4’, then @; < ay < a4, and hence
a; = 14, contrary to the fact that A; is directly indecomposable. Therefore, (oo \)(i) = ¢
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for all ¢ € I, and similarly, (Ao o)(j) = j for all j € J. Thus o is a two-sided inverse of
A, and this proves that A is a bijection.

If A(4) = j, then A; = C}; = B; and it is clear that the mapping ¢; defined on A; by
t;(gi(z)) = hj(x) is an isomorphism of A; with B;.

To prove (ii), let z,y € A. We have

i€l(g(z),9(y) & gi(@) #9i(y) & (tiogi)(x)# (tiogi)(y)
& haay () # b (y) < A() € J(h(z), h(y)).

Therefore, (ii) is satisfied. m

We know that any weak direct product of algebras A; is a full subdirect product
of these algebras. Generally, a full subdirect product of A;, i € I, is not a weak direct
product of A;, ¢ € I (e.g., the group Hy of Example 5.5).

Now we get

THEOREM 5.49 (Walendziak [1994a], Theorem 5). Let A be a congruence distributive
algebra such that DCon(A) is a \/-closed sublattice in Con(A). If A is a full subdirect
product of directly indecomposable algebras A;, i € I, then A is a weak direct product of
these algebras.

Proof. Let A = HP (A; :i € 1), where A;, i € I, are directly indecomposable algebras. By
Theorem 5.44 (for £ = F) there exists a system (B; : j € J) of directly indecomposable
algebras and an embedding f : A — [[B; such that ((B; : j € J),h) is a weak direct
representation of A. Theorem 5.48 yields a bijection A : I — J such that A(I(x,y)) =
J(h(z),h(y)) for all 2,y € A. Since the set J(h(x), h(y)) is finite, so is I(z,y). Therefore,
A is a weak direct product of the algebras A;, i € 1. m

The following lemma can be deduced from the proof of Lemma 1.4 of Dragkovicova
[1987].

LEMMA 5.50. If A is an algebra whose congruence lattice is completely distributive, then
DCon(A) is a \/-closed sublattice of Con(A).

REMARK 5.51. By Lemma 5.50, Theorem 5.49 implies Theorem 2.1 of Jakubik [1971].
By Theorems 5.45 and 5.48 we obtain

PROPOSITION 5.52. Let A be an algebra. If A satisfies the hypotheses of Theorem 5.49,
then A can be decomposed uniquely (up to isomorphism) into a weak direct product (a
full subdirect product) of directly indecomposable algebras.

REMARK 5.53. Combining Lemma 5.50 with Proposition 5.52 yields Theorems 1.6 and 1.7
of Dragkovicova [1987].

By the proof of Corollary 3.42, if L is a lower continuous lattice, then every element

¢ € L has the following property:

(V) Foreach a € L and each S C L, if ¢ < aV AS’ for every finite subset S” of S,
then ¢ <aV AS.
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We remark that (57) is the dual of property (A) defined in Section 3.7. Recall from
Section 5.3 that if ¢ € Con(A), then for algebras B and C, B ~,, C if there are ¢-isotopic
congruences 3 and v on A such that B> A/ and C = A/~.

Our principal uniqueness result is

THE UNIQUE FACTORIZATION THEOREM 5.54. Let A be a congruence modular algebra,
and let ¢ be a distributive element of Con(A) having (7). Suppose that the congruences
on A p-permute. Let o; (i € I) and B; (j € J) be p-indecomposable congruences on
A satisfying the B,-condition in the dual lattice of Con(A), and let Ly, Lo be ideals
of the Boolean algebras P(I), P(J), respectively. If ((A; : i € I),g) is an irredundant
(L1, @)-representation of A with ker(g;) = a4, and ((B; : j € J),h) is an irredundant
(Lo, @)-representation of A with ker(h;) = B;, then there is a bijection X : I — J such
that A; =, By for all i € I.

Proof. By Proposition 5.24 and Theorem 5.25,

0=TI5{ai i eI} =T15*{B; :j e J}.
Hence
(10) 0=][,q: =1I,8;

The sets {a; : i € I} and {f; : j € J} are meet irredundant (see Proposition 5.32).
Let L be the dual of Con(A). The congruence ¢ is distributive in L (since Con(A) is
modular) and ¢ has property (A) (in L). From (10) and from the fact that {o; : 7 € I}
and {3; : j € J} are join irredundant subsets of L we see by Lemma 5.18 that

(11) L= f{oiziel}=>_{B:j€J}
and by Lemma 5.19 we know that each «; and j3; is ¢-irreducible. Applying Theorem 3.40

to the two @-decompositions (11) we deduce that there exists a bijection A : I — J such
that, for each i € I,

Hence and from (11) we deduce, by Property I of Chapter 3, that

l=o -H; V{ﬁj R )\(2)} = ﬁA(i) ‘i'go \/{ﬁj 1 F )\(Z>}
and using Lemma 5.18 we have

0=y xy (WBj 17 # M)} =By ¥ ({85 15 # A0}
in Con(A). Therefore, for all ¢ € I,
(12) Qi Ny B
Since A; = A/a; and B; = A/j3;, from (12) it follows that A; =, By(;). =

For the next result we need the following

LEMMA 5.55. Let L be a complete distributive lattice, and let a € S(1,L). If a is com-
pletely join irreducible, then a is compact.
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Proof. Let T C L and a < \/T. Let b € L be such that 1 = a V b. By distributivity of L
we have

t<tVb=(aVb)A({tVD) =(aNt)Vb foreachteT.
Hence, VT < \/{a At :t €T} Vv b. Therefore,

a=alN[V{ant:teT}Vvbd =\V{aAnt:teT}V(aAb).

Because a is completely join irreducible and «a f_ b, there is tg € T such that a = a A tg.
Thus a is compact. =

PROPOSITION 5.56. Assume that A is an algebra whose congruence lattice is distributive.
Let I,J be two sets of indices and Ly, Lo be ideals of the Boolean algebras P(I), P(J),
respectively. If ((A; : i € I),g) is an irredundant Li-restricted subdirect representation
of A and ((B;:j € J),h) is an irredundant Lo-restricted subdirect representation of A,
and if the factors A;, B; are subdirectly irreducible, then there exists a bijection A : I — J
with A; = By for all i € 1.

Proof. It is obvious that ¢ = 0 satisfies (7). We put a; = ker(g;) and 8; = ker(h;).
Since A; = A/a; and B; = A/(; are subdirectly irreducible, the congruences ¢; and 3,
are completely meet irreducible. By Proposition 5.15(i), a; and §; are 0-indecomposable.
From Lemmas 5.55 and 3.36 it follows that each o; and ; satisfies the B}-condition in
the dual lattice of Con(A). By the proof of Theorem 5.54, there is a bijection A : I — J
such that a; and B)(; are O-isotopic for all i € I. From this together with Lemma 5.21
we have a; = 3y(;) for each i. Then

A= Ala; = A/Bri) = Brgy- »

PROPOSITION 5.57. Let A be any algebra whose congruences permute and whose congru-
ence lattice is lower continuous. Let I,J be two sets of indices and L1, Lo be ideals of
P(I), P(J), respectively. If
AT (A;:iel) and A=][™*(B;:jeJ),

where the algebras A;, B; (i € I, j € J) are directly indecomposable and the lattices
Con(A;) and Con(B;) are of finite length, then |I| = |J|. Moreover, if in addition A has
a one-element subalgebra, then there is a bijection X : I — J such that A; = By for
each i € I.

Proof. As every algebra whose congruences permute has a modular congruence lattice,
Con(A) is modular. Obviously, ¢ = 1 is a distributive element of Con(A) with prop-
erty (%), because Con(A) is lower continuous. (See the proof of Corollary 3.43.) Let
g:A—J[A; and h: A — ] B; be embeddings such that

g(A) =TI (A;:iel) and h(A)=[["*(B,:j € J).

Set a; = ker(g;) and §; = ker(h;). The algebras A; = A/a; and B; = A/f; are di-
rectly indecomposable, and therefore, the congruences o; and §; are l-indecomposable,
by Lemma 5.16. From the Correspondence Theorem 4.12 of McKenzie-McNulty—Taylor
[1987] we have

[;,1] = Con(A4;) and [B;,1] = Con(B;).
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Thus, the intervals [o, 1] and [§},1] are of finite length. Let L denote the dual lattice
of Con(A). In L, the intervals [0, ;] and [0, 3;] are of finite length. Crawley [1962] (see
Lemma 3) has shown that if a is an element of an upper continuous lattice such that
[0, a] is of finite length, then a is compact. Consequently, a; and [3; are compact in L. By
Lemma 5.19, they are directly join irreducible (0-irreducible) in L. Lemma 3.35 shows
that they satisfy the B{-condition. Thus, the assumptions of Theorem 5.54 are satisfied.
Therefore, there exists a bijection A : I — J such that A; ~ By for each i € I.
The final assertion follows from Lemma 5.22. m

Since everly dual algebraic lattice is lower continuous, Proposition 5.57 generalizes a
result of Walendziak [1994c] (see Theorem 3).
By Proposition 5.56 we obtain

COROLLARY 5.58. Let A be any algebra and suppose that Con(A) is distributive. If
((A; i € I),g9) and ((Bj : j € J),h) are two irredundant finitely restricted subdi-
rect representations of A with subdirectly irreducible factors, then there is a bijection
A1 — J such that A; = By for each i € I.

We call two subdirect (direct) representations ((4; : i € I),g) and ((B; : j € J),h)
isomorphic if there exists a bijection A : I — J such that A; = B)(;) for each i € I.
Proposition 5.56 also gives the following

COROLLARY 5.59. Let A be an algebra whose congruence lattice is distributive. Then
any two irredundant subdirect representations of A with subdirectly irreducible factors
are isomorphic.

REMARK 5.60. We know that lattices are congruence distributive. Therefore, Corol-
lary 5.59 implies Theorem 11.5 of Crawley—Dilworth [1973].

EXAMPLE 5.61 (Skala [1971]). A weakly associative lattice, or a trellis, is an algebra with
two binary operations, + and -, that satisfies the identities

z-y=y-xz, z-(y+z)==z, (z-2+y-2)+z=2z2
and their duals. Weakly associative lattices are congruence distributive.

EXAMPLE 5.62 (Draskovicova [1987]). We call a set A with one ternary operation (zyz)
a modular median algebra if the following identities are satisfied in A:

(13) (zyy) = v,
(14) ((zy2)tz) = (zz(tzy)).

Any modular median algebra is congruence distributive (see Remark 3.11 of Dragkovi¢ovéd
[1987]).

Corollary 5.59 yields the following

COROLLARY 5.63. Let A be a modular median algebra (lattice, Heyting algebra, trellis).
Then any two irredundant subdirect representations of A with subdirectly irreducible fac-
tors are isomorphic.

Using Proposition 5.57 we obtain
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COROLLARY 5.64. Let A be any algebra whose congruences permute and whose con-
gruence lattice is lower continuous. Suppose that A has a one-element subalgebra. If
((A;:ie€),g) and (Bj : j € J),h) are two weak direct representations (full subdirect
representations) of A such that the factors A;, Bj are directly indecomposable and the
lattices Con(A;) and Con(Bj) are of finite length, then a bijection A : I — J exists for
each i € 1.

Let M be a module over a ring R. Then M is called noetherian (resp. artinian) if
every nonempty set of submodules has a maximal (resp. minimal) element. We say that
M is of finite length if M is noetherian and artinian.

COROLLARY 5.65. Let M be an artinian module, and let
M=M®&.. M, =N1®...0 Ny,

where each M; and each Nj is directly indecomposable and noetherian. Then m = n and,
after renumbering, M; = N; for 1 <i < n.

Proof. Since M is artinian, Con(M) satisfies the descending chain condition, and hence
Con(M) is lower continuous. It is obvious that the lattices Con(M;) and Con(N;) are of
finite length. Now the assertion follows from Corollary 5.64. =

It is obvious that every lattice of finite length is lower continuous. Therefore, from
Corollary 5.64 we get at once

COROLLARY 5.66 (Birkhoff [1967], p. 169). Let A be a congruence permutable algebra
with a one-element subalgebra, and let Con(A) be of finite length. Then any two finite
direct representations of A with directly indecomposable factors are isomorphic.

By Corollary 5.66 we obtain

COROLLARY 5.67 (see Kasch [1982], Corollary 7.3.6). Let M be an R-module of finite
length, and let
M=M®&..dM,=N1&...0 Ny,

If all M; and N; are directly indecomposable, then m = n and, after renumbering,
M; =2 N; for 1 <i<n.

REMARK 5.68. It is easy to see that the Krull-Schmidt Theorem (see e.g. Kurosh [1967],
Section 47), which asserts that every group whose normal subgroup lattice is of finite
length can be decomposed uniquely (up to isomorphism) into a direct product of directly
indecomposable groups, is a consequence of Corollary 5.66. We also note that the assertion
of Corollary 5.66 holds, for example, if A is a quasigroup (or a ring) with congruence
lattice of finite length.
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List of symbols and notations

empty set

element inclusion
inclusion

intersection

union

set-theoretic difference
a shorthand for AU {a}
a shorthand for A — {a}
ordered pair

cardinality of the set X
set of all subsets of I

set of all finite subsets of I
cartesian product of A and B
cartesian product of Ay, ...

Ax A

f is a function from A into B

value of f at a

closure operator

set of natural numbers
set of integers
isomorphism
implication

logical equivalence

if and only if

end of proof

lattice

lattice dual to L

least element

greatest element

join

meet

partial ordering relation
interval

x is a lower cover of y



Algebras
Con(A)
DCon(A)
Cg(X)
04

1a

Ala

ala

aof
I(z,y)
[1(4; :iel)
ker(/)

bi
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x is an upper cover of y

x is an upper cover of y or x equals y
hexagon

meet of all lower covers of a (# 0)

uniquely determined lower cover of v € V(L)
set of all join irreducibles of L

set of all completely join irreducibles of L
set of all atoms of L

set of all meet irreducibles of L

set of all completely meet irreducibles of L
set of all distributive elements of L

set of all compact elements of L

set of all precompact elements of L

class of all lower continuous strongly coatomic lattices
direct join

c-join

irredundant c-join

set of all c-summands of L

set of all c-decomposition functions of L
join of all x € L such that xp < ¢

lattice of all normal subgroups of G

Boolean algebra (P(I),N,U,", 0, I)

L is an ideal of P(I)

covering property

neighborhood condition

dual neighborhood condition

ascending chain condition

descending chain condition

hereditary property

Kurosh—Ore property

Kurosh—Ore replacement property for join decompositions
Kurosh—Ore replacement property for meet decompositions

set of all congruence relations on A

set of all decomposition congruences of A
congruence relation on A generated by X
identity congruence on A

universal congruence on A

factor algebra

congruence class of a modulo «
relational product of o and 8

{i € I a(i) # y(i)}

direct product of algebras A; (i € I)
kernel of f

ith projection function
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[Ip(M;:iel)

[1" R

DG

supp(z)

Z(G)

ax, B

I_LP{Qz 11 € I}
~, B

A~ DB
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ith f-projection function
(L, )-product of algebras A;
L-restricted full subdirect product of A;

(L, L") -product of algebras
D-product of modules M;

m-product of rings R;

direct sum of groups G;

support of x

center of a group G

p-product of congruences o and (3
p-product of congruences 6;
algebras A and B are p-isotopic
algebras A and B are 1 4-isotopic
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AC-lattice, 8 covering property, 8
A-lattice, 8 covering relation, 6
algebraic lattice c-summand, 31

(= compactly generated lattice), 8
anti-exchange property, 11
artinian module, 74
ascending chain condition (ACC), 8
atom, 7
atomic lattice, 7
atomistic lattice, 7

decomposition congruence relation, 51
decomposition function, 31
descending chain condition (DCC), 8
direct join, 29

directly indecomposable algebra, 51
directly join irreducible element, 30
direct power, 57

basis, 11 discrete lattice, 57

Be-condition, 37 distinguished c-decomposition function, 35
Bf-condition, 44 distributive element, 30

Be-lattice, 37 D-product of modules, 60

Brouwerian lattice, 8 dual lattice, 6

dually Brouwerian lattice, 8

c-complement, 31 dual neighborhood condition, 7

c-decomposition, 30 )
c-decomposition function, 31 E-lattice, 8

c-Decomposition Theorem, 47 exchange isomorphic c-decompositions, 43
c-independent (sub)set, 42
c-irreducible element, 31

p-indecomposable congruences, 62
p-isotopic algebras, 63
c-join, 30 (-isotopic congruences, 63

closed subset, 11
closure operator, 11
closure space, 11
coatom, 7

p-permuting congruences, 62
p-product of congruences, 61

finitely restricted subdirect representation, 64

First Existence Theorem, 66

coatomic lattice, 7 flat, 11
coatomistic lattice, 7

compact element, 8

comparable elements, 6

complemented lattice, 7

completely distributive lattice, 56
completely join irreducible element, 7
completely meet irreducible element, 7
congruence distributive algebra, 51
congruence modular algebra, 51 incomparable elements, 6

congruence permutable algebra, 51 interval, 6

consistent lattice, 9 irredundant c-decomposition, 42
continuous lattice, 8 irredundant @-product decomposition, 61
convex geometry, 11 irredundant join (meet) decomposition, 25

f-projection function, 63
full subdirect product, 57
full subdirect representation, 64

geometric lattice, 9
greatest element, 6

hereditary property, 23
hexagon, 26
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irredundant (L, p)-representation, 65

isomorphic direct (subdirect)
representations, 73

join, 6

\/-closed sublattice, 51

join irreducible element, 7

join irredundant (sub)set, 41

join decomposition, 23

J-lattice, 8

kernel of a function, 64

Kurosh—Ore property for join
decompositions, 26

Kurosh—Ore property for meet
decompositions, 26

Kurosh—Ore replacement property for
join decompositions, 25

Kurosh—Ore replacement property for
meet decompositions, 25

Kurosh—Ore Theorem, 25

least element, 6
(L, p)-representation of an algebra, 63
(L, )-product of algebras, 59
(£, L")-product of algebras, 58
locally distributive lattice, 9
locally modular lattice, 9
lower continuous lattice, 8
lower cover, 6
lower covering condition, 7
lower locally distributive lattice, 8
lower locally modular lattice, 8
lower semimodular, 7
L-restricted direct product, 58
L-restricted full subdirect product, 58
L-restricted full subdirect
representation, 64
L-restricted subdirect product, 58
L-restricted subdirect
representation, 64

matroid, 11

meet, 6

meet decomposition, 23
meet distributive lattice, 10
meet irreducible element, 7
modular lattice, 7

modular median algebra, 73
m-product of rings, 59

neat element, 18

neighborhood condition, 7
noetherian module, 74

Ore Theorem, 30

pair of complementary
c-decomposition functions, 31

point, 11

prealgebraic lattice, 8

precompact element, 8

1-product of algebras, 58

pure element, 18

Q-lattice, 8

reduced product of lattices, 60
relational product of two congruences, 51
relatively complemented lattice, 7

Second Existence Theorem, 67
semimodular lattice, 7

simple algebra, 51

Steinitz exchange property, 11
Steinitz—MacLane exchange property, 18
Steinitz space, 11

strong lattice, 13

strongly atomic lattice, 7
strongly coatomic lattice, 7
strongly neat element, 19
strongly semimodular lattice, 16
subdirectly irreducible algebra, 51
subdirect representation, 64
support of an element, 59

Third Existence Theorem, 68
transposed intervals, 6
trellis, 73

Unique Factorization Theorem, 71

unique irredundant join decompositions, 27
upper continuous lattice, 8

upper cover, 6

upper covering condition, 7

upper semimodular (= semimodular) lattice, 7

V-lattice, 8

weak direct product, 50

weak direct representation, 64

weak isomorphism property, 7

weakly associative lattice (= trellis), 73
weakly atomic lattice, 7

weakly discrete lattice, 57

weakly pure element, 19



