1. Introduction

From the Author. The first question is: “What is the use of this theorem?” I can only
answer: “Probably no use, at the immediate present”. Indeed (see also the Introduction of
[9]) the basis problem, after its birth in Banach’s book in 1932, was strongly studied till
1973-75, when Enflo gave a negative answer and Ovsepian—Pelczyriski a particular kind
of positive answer. However the more general basis problem, “Does a good kind of basis
exist in every infinite-dimensional separable Banach space?”’ was practically still unsolved.
But after 1975 this problem was forsaken; probably the researchers were tired to study
it, since it continued to appear difficult, while other interesting questions seemed to be
more attractive and able to give gratification. When a rock stops the flux of a river, the
current simply forks the rock and the river continues to flow; however the rock remains
with all the unknown closed doors hidden in the inside.

The second question is: “Is it really worth trying to improve the basis with fixed
blocks and uniformly controlled permutations of [9], by means of a basis with only uni-
formly controlled permutations?” I can answer that the use of blocks is a rather rough
representation of the elements of the space, since only a subsequence of the sequence of
partial sums converges to the given element. If we renounce the facility of the blocks
and we wish to be concerned only with actual series, we pass to a mathematical problem
more sophisticated and of a quite different order of difficulty. Only a small part of the
ideas involved in this work were already present in [9], indeed I have been compelled to
spend a time twice that long; also because, in an unkown field, only the second time the
landscape begins to emerge and it is possible to recognize nice short cuts. Moreover I was
not interested in the proof of the simple existence of this kind of basis, my actual aim was
to give a direct construction in the following sense. Let X be a general separable Banach
space. By definition, it is always possible to get a sequence of elements whose linear span
is dense in X; then my construction directly works on this sequence. Therefore I did not
look for shorter proofs of the mere existence.

On the other hand this basis seems to be the best possible kind of basis for the
general separable Banach space; moreover, regarding the actual applications, this basis
is comfortable enough, since the permutations cannot be quite arbitrary (their use would
then be impractical) but they are uniformly finitely controlled; this basis is also equipped
with a local alternative principle which much simplifies the representation of elements
and practically, inside each block, we can express the norm in terms only of the /,.-norm,
l1-norm and euclidean norm.

Coming back to the first question, apart from an intense irrational attraction, I have
been involved in this problem due to my personal conviction that in the future there
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could be a greater connection between physics and spaces of infinite dimensions. The
current models with finite—mnot all linear—dimensions have difficulty in explaining many
questions which continuosly arise (the unknown black energy cause of recession of galaxies,
absence of anti-matter; in particular inside the nuclei, in the black holes and in the first
instant of the Universe, many physical phenomena go towards the infinite), moreover it
seems impossible to immerse our Universe in a euclidean space; just this fact has been
the reason of looking for a direct construction.

After a hard effort, I wish to dedicate this work to the whole mathematical community
born after the Banach book, in particular to the great researchers of the first fifty years,
the eagles that flew in the infinite, towards new horizons of science and of the future of
humanity.

1.1. Aim of the work. The aim of this work is to determine a system of coordinate axes
which characterizes separable Banach space, just as an orthogonal basis characterizes
a Hilbert space. Section 2 deals with biorthogonal systems, in particular the use of
the Walsh matrix both in [, and in [{, and finite transformability; we also introduce
the “generating form” of a finite biorthogonal system. Section 3 concerns the actual
construction of a basis with permutations in spaces of type 1, starting from any sequence
complete in the space. Section 4 concerns the main properties of this construction.
Section 5 describes the properties of the basis with permutations in spaces of type 1.
Section 6 deals with the special case of spaces of type > 1, since in this case the structure
of the space is much more regular, hence the construction is much simpler. An extension
of this work to the complex case appears in [11] and the only changes are in the generating
form of a biorthogonal system.

1.2. Definitions and recalls. A Banach space Y is said to be finitely represented in
another Banach space X if, for each £ > 0 and for each finite-dimensional subspace Y, of
Y, there exist a subspace X, of X and an isomorphism T : Y, — X, with ||T|||T7}| <
1+ e. Moreover two sequences {y,} and {z,} are said to be (1 + ¢)-equivalent if there
exist two positive numbers H and K with HK < 1+ ¢ such that, for each sequence
{an}™_; of numbers,

1 m m m
n=1 n=1 n=1

We say that X has type 1 if [; is finitely represented in X, otherwise we say that X has type
> 1; analogously we say that X has cotype oo if ¢ is finitely represented in X, otherwise
we say that X has finite cotype. Moreover X is said to have well complemented subspaces
if, for each m, X has an m-dimensional subspace X,, with a projection P : X — X,,
with |P|| < K where K does not depend on m. A well known and important case of a
space with well complemented subspaces is provided by the following theorem of Pisier
([5], see also [3, p. 112]):

THEOREM I*. If |1 is not finitely represented in X, then there exists C' > 0 such that,
for each positive integer m and for each € > 0, there exists another integer N = N(m,¢)
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such that every N-dimensional subspace of X has a sequence {e,}™ ; which is (1 + ¢)-
equivalent to the natural basis of 15 and there exists a projection P : X — span{e,}™ ,

with | P|| < C.

But in general X does not have well complemented subspaces; we only recall an ex-
ample, also due to Pisier [6], of a space X such that, for each m-dimensional subspace
X, of X and for each projection P : X — X,,, we have ||P| > d\/m where § does not
depend on X,,

Let now {z,,z}} be a biorthogonal system of a Banach space X, that is, {z,} C X
and {z}} C X* (the dual space) with z7,(x,,) = dn p for all m and n. We say that {z,}
is uniformly minimal if {x,} and {z} are both bounded; we say that {x,} is a basis
with fized brackets of X if there exists an increasing sequence {p(m)} of integers such
that, for each T € X, setting p(0) = 0, we have

p(m+1)
Z ( 3 fo(T)xn).
m=0 n=p(m)+1
If p(m) = m for each m, then {x,} is called a Schauder basis of X.

All the separable Banach spaces known till 1973 had a Schauder basis, but after the
paper of Enflo [1] the panorama quite changed and the lack of a Schauder basis turned
out to be a very common fact: for instance ¢y and [, for 1 < p (# 2) < oo have subspaces
without a basis with fixed brackets. Therefore we need another kind of basis, with the
best possible properties, such that the existence is guaranteed in every separable Banach
space; hence the most natural way is to weaken the definition of the basis with fixed
brackets, and precisely: either to add permutations, or to renounce fixed brackets. In [9]
and [10] we proved the existence of a basis with fized brackets and quasi fixed permutations:
that is, for a biorthogonal system {x,, 2} } as above, there exist two increasing sequences
{g(m)} and {p(m)} of integers such that, to each T € X, there corresponds another
sequence {g(m)} of integers such that, setting p(0) = ¢(0) = g(0) = 0,

p(m+1)

Z ( Z ;(n) (f)zﬁ(n)),
n=p(m)+
where, for each m, {7(n) q(m+1) is permutation of {n}a(mﬂ) with g(m) < g(m) <
’ ’ n=g(m)+1 p n=g(m)+1 q >4

q(m+1). This kind of basis, joined with the negative answer for the basis with fixed brack-
ets, was an already sufficient approximation of the border between existence and nonex-
istence. The aim of this paper is to get this border into focus, in order to find the kind of
basis which characterizes the general separable Banach space, just as an orthogonal basis
is characteristic of a Hilbert space. With this perspective we have only two possibilities
of further improvements of the basis with fixed brackets and quasi fixed permutations:
either to improve the brackets by passing to a series, or to eliminate the permutations by
passing to individual brackets; we will consider these two ways in the next subsection.

1.3. The basis characteristic of the general separable Banach space. Let
{zn,x} be a biorthogonal system of a Banach space X. We say that {x,} is a ba-
sis with permutations of X if, for for each T € X, there exists a permutation {7(n)} of
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{n} such that

(1) Z % (n) xW(n)

But this simple definition is probably not practical for research in Banach spaces, since
the permutations {7(n)} could be quite arbitrary. Therefore let us look for a more useful
definition: we can associate to every {7(n)} a sequence {p(m)} of positive integers which
measures its degree of permutation with respect to {n}, that is, for each m, {n}"; C
{7(n)}¥ ) Then, proceeding as for the simple convergence and uniform convergence of
a series of functions, we can say that {x,} is a basis with uniform permutations if there
exists an increasing sequence {p(m)} of positive integers, independent of Z, such that the
{7(n)} in (1) can be chosen such that, for each m, {n}™ ; C {ﬁ(n)}z(ﬂ) In particular
we will say that a basis with uniform permutations is a basis with uniformly controlled
permutations if in the previous definition {7(n)} can be chosen so that, for each m,

@ {n}isy € R € {nn.

We point out, for instance, that for a basis with uniform permutations the set of all the
possible permutations {7(n)} in (1) has in general the cardinality 2% (where X, is the
countable cardinal number); while for a basis with uniformly controlled permutations this
cardinality is < Ny. We prove in this work the following

THEOREM 1. FEwery separable Banach space X has a basis with uniformly controlled
permutations.

Moreover we point out that, by the technique of [9], it is possible to prove the following
extension property:

THEOREM 2. Every infinite-dimensional subspace Y of a separable Banach space X has
a basis with uniformly controlled permutations which can be extended to a basis of X with
uniformly controlled permutations.

We point out that in the previous theorems the control sequence {p(m)} is universal
(see the end of Subsection 1.6), that is, independent of the space. We remark that the
proof of Theorem 1 (independent of the constructions of [9] and [10]) is in fact a direct
construction of this kind of basis, starting from an arbitrary sequence whose closed span
fills the space. We also remark that, only concerning the permutations, the definition
of a basis with fixed brackets and quasi fixed permutations is a bit better than (2);
however, proceeding as in the proof of [10], it would be possible by means of a small
modification to turn a basis with uniformly controlled permutations into a basis with fixed
brackets and quasi fixed permutations. On the other hand we do not see further possible

improvements of the permutations because a basis with block permutations (that is, (1)
a(m+1)
n=q(m)+1

for each m and for each T € X) in general does not exist,

with a fixed sequence {g(m)} of increasing positive integers such that {7(n) is
q(m+1)

n=q(m)+1
since it would be a particular basis with fixed brackets.

a permutation of {n}

By a basis with individual brackets we mean that, in the definition of a basis with fixed
brackets, the sequence (p(m)) depends on Z; like a basis with individual permutations,
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this definition does not appear very useful, since these brackets could be quite arbitrary;
hence again we will consider a better definition and we will call {z,}, with {x,,z}
biorthogonal, a basis with quasi fized brackets if there exists an increasing sequence (p(m))
of positive integers such that for each T € X, setting p(0) = 0, we have

p(m+1)

=3 (> @@e.) withp(m)+1<pm) < pim+1)

m=0 " n=p(m-+1)

for each m. Hence, by applying the proof of [8], one can also prove the following

THEOREM II*. If a separable Banach space X has infinite cotype, then there exists a basis
with uniformly controlled permutations which is also a basis with quasi fized brackets, for
the same sequence (p(m)) of positive integers.

For spaces of finite cotype the question of existence of this kind of basis is still open.
But we expect a negative answer in general for these spaces; for instance we expect
a negative answer for the space X of Pisier of Subsection 1.2, even for a basis with
individual brackets. Indeed, if {x,}, with {x,,z}} biorthogonal, is some kind of basis
for X , for instance a basis with permutations, we know that, for each m and for each
projection P : X — span{xz,}™ ,, ||P|| > §\/m; this fact suggests the possible existence
of an increasing sequence {g(m)} of integers and of an element =Y °_, Z,,, with

g(m+1) q(m)
Ty = Z a'rn,nxn; H Z a'm,nxn > 2m7
n=1 n=1
1 m
1Zm || < o for each m, H Z z) (T) Ty || — oo.
n=1

A consequence of this conjecture is that a basis with uniformly controlled permutations
is the kind of basis characteristic of the general separable Banach space.

1.4. Techniques of uniform minimalization. If {z,,2}} is biorthogonal with
span{z,} = X, a well known technique to pass from {z,,z:} to {y,,y:} uniformly
minimal (that is, with {y,} and {y*} both bounded), always with span{y, } = X, is the
construction of [4], modification of a lemma of Olevskii; but in this work we prefer to use
the following very simple method (see also the first part of Subsection 1.5):

PROPOSITION 3. Let {u,,u’}2_, be biorthogonal in a Banach space X, with |ju,| = 1
and |luf|l < B for 1 <n < A. We can extend this finite biorthogonal system to another
biorthogonal system (u,,w’)4_; U ((en,k’€:7k)ifl)£:1 such that:

(3.1) If X has type 1 then, for each n with 1 <n < A, || Zle enill =1 and |}, [ <2
for 1 <k < 2*B with |le, 1| = 2 for 2 < k < 2*B; in this case we set

24B 24B

Tn,0 = Z Cn.fr Tn0 = 538 Z Cnf = 2B
= =1
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moreover, for 1 < k < 2B we set

24B
U 1 uy,
Tak = Cnkt s Tk =k~ Tho = €k~ 315 D Cns + 335
f=1
then ((xnvk,x;,k)ifo)ﬁzl is biorthogonal with ||z k|| < 3 and ||z}, || <5 for 0 <

E<2*B and1 <n<A.

. as type > en, for each n wi <n < A, (enk f; is 1-equivalent to
32) If X has t 1 th h thl<n<A, (enk)i_,
the natural basis of l%w and (ezvk)ifl is K -equivalent to the natural basis of l%w,
where K depends only on X; in this case we set

24B 24B

%
T —Lge ¥ —Lge* _Un
n,0 = 92B n,fo n,0 ™ 92B nf 9B’
f=1 f=1
moreover, for each k with 1 < k < 248 we set
24B
* *
Un * * ZETLO * 1 * Uy,
Tnk = €nk + 98>  Tnk = Cnk T 525 T fnk T 5iB Z enf T 938
f=1

then ((wnyk,xfl?k)ﬁfo)ﬁzl is biorthogonal with ||z, k|| < 2 and ||z}, || < 2K +1 for
0<k<2'and1<n<A.

This proposition follows from Theorem 11 of Subsection 2.3, and from (49.1) and
(49.2) of the proof of Theorem 22 of Section 6.

We point out that a basis with fixed brackets is not in general uniformly minimal;
however every basis with permutations is obviously uniformly minimal (since (1) implies
that 22\ (T)zz(n) — 0).

1.5. Organization of the proof. In order to take flesh of heavy formalism off the ideas,
in our proofs we will proceed with the following method: For instance if [; is finitely
represented in X, when we will use a finite sequence {e,}_; in X which is (1 + ¢)-
equivalent to the natural basis of I7*, we will always suppose € = 0. Analogously, if X, is
a finite-dimensional subspace of X and we need a finite-codimensional subspace W of X
such that X, is (1+¢)-orthogonal to W, then, if {, », }2™, is an e-net of the unit sphere
of X, and if {z7;, }om) € X* with ||z}, .| =1 = |Zmall = 2}, (Tm,n) for 1 <n < pp,
then setting W = X N (', x| we say that ||z + w|| > max{][z]],[|w][\2} for each
z € X,, and w € W, that is, again we suppose ¢ = 0. More precisely, setting ¢ = 0 we
only mean that the effect of € is absorbed in other approximations which already appear
in the proofs.

Since the proof in the real case needs less formalism, we develop the proof in this
case; however the construction and the proofs work also in the complex case, apart from
the generating biorthogonal systems, which are explained for the complex case separately
in [11]. Moreover, owing to Theorem I* of Subsection 1.2 which enormously simplifies
the structure of the space when the space has type > 1, our main effort for the proof
has been in the spaces where [ is finitely represented and only Section 6 is devoted to
space of type > 1; may we suggest reading this second case first, since it could help the
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understanding of the first case. Therefore in the next subsection we will be concerned
only with the spaces where [; is finitely represented and, in order to stress just the ideas,
we will only give a simplified description of the construction.

1.6. Description of the main ideas of the construction. To illustrate the general
idea of the construction let us view this idea like a dodecahedron, and we are now going
to enlighten all its faces; at the end we will briefly explain the fact that the sequence
(g(m))S°_, is universal. The construction of the basis with permutations

m=1
(2n)oy = ()20 ) )y (a(0) = 0),

with (z,, 2} )22, biorthogonal, proceeds by induction through infinite stages where each
q(3(m+1))

n=q(3m)+1"
struction of this block and its action for a general element T € X with ||Z|| = 1.

stage concerns the block (z,,z}) Then it is sufficient to emphasize the con-

FACE 1. Setting for each natural number p,

(m)2CmE ) = (0.0,0 )Y U ((p.0.0") 2P,

suppose, for our fixed m > 1, to have already constructed a permutation (ﬁ(n))q(,ml) of

(n)q(_gm) U ((m,0,n ))Q_(m) such that

n=1
q(m) q
(%) HT — Z w%(n) (T)r7(n)|| < &m and H Z x;(n) (T)x7(n) || < Em—1
n=1 n=q(m—1)+1
for glm — 1)+ 1 < ¢ < g(m). Our aim is to find a subsequence ((m + 1, O,n/))g ({nﬂ) of
( )i(jz;i&rl)ﬂ and a permutation (ﬁ(n))n(”:;J(rﬂll))Jrl of

((m, 0, "N U ((m +1,0,n)) Y

such that (*) is also true for m replaced by m + 1; here (¢,,,) is a nonincreasing sequence
of positive numbers with &, — 0. This is the first natural idea that we will follow in the
construction of a basis with permutations.

FACE 2. The second natural idea is to use, for the construction of each

+1 Qp\oMp | P,
(@, @) 17D = (@) TR,

s )A

two kinds of sequences: (upm, on

(the connection sequence), which has all the infor-

M

(I(p) and (epn,ep )1 U

mation on the connection between (z,,x}),—1 and (z,, z} )2

n=q(p)+1°
(eoyp,n,eojp n)MU” (with ||e ol < 2for 1 < n < M,) where (epn,ep n)n 1 (the support
sequence) is a union of subsequences with a very special task for each of them: one of
these subsequences has just the task to be the “support” for the elements of the con-
Mo,

Jn=1" (

nection sequence, while (eg p n, € o the insulating sequence) is such that if we set

Eop= span(eoﬁp’n)y i, then (€, , + Eo p)i/[”l is 1-equivalent to the natural basis ofl

To make the construction slender and in order to render more visible the tasks of the
q(3m+3)
n=q(3m)+1

(the completeness block),

subsequences of the support sequence, for our fixed m the block (z,,,z})? in
q(3m+1)

its turn is partitioned into three sub-blocks: (z,,z},), " a(Bm)+1
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(.%' m*)Q(3WE+2) )
o n/n=q(3m+1)+1
(we will see better this fact in Faces 10 and 11).

Now we pass to more details. We can see that the connection sequence contains always

the regularization block) and (x,,x Q(_3m+3) the free block
n/n=q(3m+2)+1

the whole insulating sequence of the previous sub-block and also elements of the support

sequence of the previous sub-block (this fact will be very important for Faces 8 and 9);
indeed

3 1 Mam,
(I”)Z(:z;m))Jrl - Span(UBm n)ASm + Spa‘n(e3m n)i\t/[i'l )

(U)o ™" = (€0,3m—1.m )i,
@m0 = (3mouss) 281 a1 U (Cmansst o™ 224 U (ecarnn) 2200
U (Carm,n) 20 11 U ((€sm,pran )it Dt
analogously
(o) 202y © DA (g )AZE T SN a1, )0
(U3m+1 n)yofm (€0,3m n)r]yofma
(U1 n)#mlﬂﬂ%m“ﬂ (arm, n)n(?’;n(’:?;i))+1 U ((e3m,brd,n k)iMim e,

Agmy1—A;

(63m+1 n)vj\z/[?"ln+1 (e3m+1 aux 3)5 Mo, 37,;:’{“1 U ((e3m+1 aux,s t)§21j3m+1 ):‘STH
U (ecarr, n)n(3<71723+7i)-i-1)+1 U ((e3m+1 brd,n k)%MSlerl )71;’;:{“;
analogously
()1 1 C span(uy 5,225 4 span (@am2.0) 2
(u3m+2 n)i\b/[ofmﬂ (€0,3m+1 n)ﬁ%f}mﬂa
(U g2, 8 oty aer = (€3ms1brdin RS,
@2 A28 = (Camezaums) it 45 U (Cams 2wt 1) 225+

q(3m+3)
O o) 0 1

FACE 3. The third natural idea concerns the support sequence. We will make this se-
quence independent of all the previous sequences, that is, we wish that, for each p,

(€p.ns é‘;ﬁn)i\;j”l U(eopn, €5 p’n)i/[:”’f’ (and in particular (€, €, n)M 1) acts like an island as

regards (z,, ) )Q(p) U ( pn,u;’fn)nM:O’lpfl U (u’p’n,u;*n)f Ap—AL 11 Therefore, for p = 3m
(that is, for the completeness block) the following properties hold.
(i) [l + el = max([lz].|le]l/2) for each @ € span((w)iZi” U (uhy, )24 ") and

M m
e € span((esm, n)r]\L/[ " U (e0,3m n)n D13 );

(i1) (€3m.n)Mor is 1- equivalent to the natural basis of [Mam,
(iil) (€3m,n + Eo 3m) 2m is 1-equivalent to the natural basis of lM3m

Then

Iz + € + Eosmll > lle + Eosml|/2  for e € span(€sm,n)p=y
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and
u q(3m)
3 m —
z € span((2)ao)" U (U g™ )+ X0 () i,
n=1
MO,SNL*I J/\Zgnn MO,Srn
N ) wGmms O () Eamanr N () Eosmm L
n=1 n=1 n=1

We emphasize the fact that the subspaces span(€sy, , +Eo 3m) 3’" are well complemented
in the space X/FEj 3,,; hence we are in the same conditions of the spaces of type > 1
where, by Theorem I* of Subsection 1.2, there are well complemented (almost euclidean)
subspaces; the only difference is that we now work in quotient spaces.

Analogously the same properties hold for p = 3m + 2 (that is, for the free block); the

2420'13’"’1 is replaced by

only difference is that now (u3,, ,,)
Mo, 3m+1 Azm2
(u3m+2 n)n 1 U (u3m+2 n)n Agmy2—Ag,, o+

q(3m+1) q(3m+2)

n=q(3m)+1° (€carr,n) e g(3m+1)+1 and

FACE 4. Now we consider the sequences (ecarrn)’
q(3m+3)

(ecarr,n)p q(3m+2)+1

ments is to be the support of the elements of the connection sequences (we will see

which are called carrier sequences because the task of their ele-

clearly this fact in the description of Face 8). Then for the support sequence of the
regularization block we have the same properties of Face 3 for the completeness block,
in particular (i) and (iii) continue to hold, apart from the fact that, like the free block,

Mo,3m—1 / Mo,3m A37n+l
(u3m n)n 1 is now replaced by (u3m+1,n)n:1 U (u3m+1 n)n Agmiy1— A3m+1+1 The

q(3m+2)
n=q(3m+1)+1- Be

Asn
cause, when we need to express some element u of span(uj,, ;,),~; " by means of

main difference concerns (ii) and only for the carrier sequence (ecarrn)’

subsums of ZZ Szgﬁlﬂ) 4125 (T)Tn, we are facing the following situation: each element
Ul 41, appears “pulverized” (that is, in very small quantities) in very many terms
x} (T)xy,, where ecarrn are the carriers, analogously in each z (T) there is e}, ,,(T) and
in a very small quantity uf,, 41,/ (T); therefore we have to pick out a subsum such that
the effect of the presence of the carriers e,y practically disappears while the presence

of the element uj,, ., is emphasized.

Therefore the fourth idea is that also (ii) of Face 3 continues to hold but for another

(3m+2) . (3m+2) . .
Z:ZBm+1)+1’ that is, (eéarr’n)izﬁgmﬂ)ﬂ is 1-equivalent to the

natural basis of li’<3m+2)_q<3m+1), while property (ii) of Face 3, for

carr,n

sequence (e! e )

carr,n’ “carr,n

2Q3m+1\2M3m+1\ P31
€carr,ny Ccarr,n)pn— q(3m+1)+1 (((63m+1 carr,n,k,ls €3m+1 carr,n,k, l)l 1 ) )

k=1 n=1 >
is replaced by the following further properties, for each n with 1 <n < Pgy,41:
(iv) for each k with 1 < k < 2Msm+1,

!
€3m+1,carr,n,k,1 = e3m+1,carr,n,k,17

E—— — e Q3m+1
€3m+1,carr,n,k,l = 63m+1,carr,n,k,l 63m+1,carr,n,k,l—1 for 2 < l < 2 5
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H Ze?)m—&-l,carr,n,k,lH =1 for1<L< 2Q3m+1;
=1

(v) setting 3m + 1, carr,n = s,

2M3m41 9Q3m+1 oM3m41 9Q3m+1
| Y Y @i 1) o
k=1 = k=1
oM3zm41
> max( S le@] 1< 2Q3m+1) 21 Mo /2,
k=1

Then, since [[e%,,, || <2 for ¢(3m + 1) +1 <n < ¢(3m + 2) and since M3, 1 is
much larger than Qs,,41, there is always k with 1 < k < 2Msm+1 o that

2Q@3m+1

. 1
Z |e§m+1,carr,n,z,l(m)‘ < 2Q3m+1 "
=1

Therefore, in order to emphasize the approximation of uz;, ;1 ,,(T)u3,, 1, by means of

a subsum of ZZL(S:?;ZH)H x% (T)xn, setting 3m + 1,carr,n,k = 5 let us schematize
(actually in Face 8 we will be more precise)

* [ * (= U/Sthrl,n(f) uéerl,n Q3 1
ra@rse =@+ g, T J\ st t qquunys ) forbsis2mm,

with [[ub,, 41 .|| =1 and [Juf;, 1, || < 292m+1/4. By the above and by the last relation of
(iv) it just follows that

2@3m+1
1% —\, !
H E z( )51 — U3m+1,n($)u3m+1,n
=1
2@3m+1 1% = /
ub (Z) u
* (= m+1,n 3m—+1,n 1% N\ 7
= -1\ — (o — — U xr)u
E ( s,l( )+ 2Q3m+1/2 )( 5.l + 2Q3m+1/2) 3m+1,n( ) 3m—+1,n
=1
2Q3m+1 ’ . _\ 2@3m+1
_ * = . 3Im+1,n 3m~+1,n 7
— Z eg,l(x) <es,l + 2Q3m+1/2> + 2Q3m+1/2 Z €3,
=1 =1
2@3m41 ” ’ . 2Q3m+1
u AR )| 3 1
— 3Im+1,n 3Im-+1, n
< E ex (T ) 2 : es .
- ( | s’l( ) + 2Q3m+1/2 + 2Qs3m+1/2 st 2Q3m+1 + 2Qsm+1/4
=1

FACE 5. Let us turn to a better description of the properties of the connection se-
quence. Another idea is that the main aim of (u},, +17n)A3m“ is to connect the sub-blocks

n=1
q(3m+1) q(3m+2) / Mo,3m _
(@ns 23,) 2 (3 41 @0d (T, x;kl)n:q(BmH)H not only by the presence of (u5,, 1 ,,)p—1 = =
Mo,3m A3m+1_A/3m+1

(€0,3m.n)n—i ", but also by the presence of (w3, 11 ,)—11, .. +1  in the following sense:
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if X = X,+U+Y where

3 +1 M, Asm
Xo = span(@a)p ™ span((Whyn 1 n)ned” U (s ) n 0 a1y
Mém 1 Mo, 3m+1

Y = Span((e3m+1 n)n 1 U (60 3m+1, n)n 1 )+ Span(xn)an(3m+2)+1

M3m+
n=1

41

and where (€3, 11,) denotes the subsequence of (€341, n)i/[ 37! complementary

A3m+1 A3, +1 A37n+1 A3 141 .
to (€3m+1,aux,s) 51y 511 and hence U = span(us,, 1), Z1r, 5,41+ the following

property holds: |z + y|| > ||z| for each z € Xy and y € Y, that is, U contains all the
connections between the two subspaces Xy and Y. Therefore, if for instance

Aszm A3m+2
Z @+ Y 00T < Em — 0,
n=1

then, if we apply the previous reasoning to the first and third blocks, it follows that

the block ZZ(qu(;ill) +1 75 (T)wy, is practically isolated and it cannot come under any

influence from the set of subsums of

q(3m+1)
n=1 n>q(3m+2)+1
(indeed, setting &,, = 0, for any = € span(xn)ZST+1), y € span(xn)fl(jggnarl)ﬂ and
2 € span(Tn)n>q(3m-+2)+1, it follows that [z +y + 2|l > [z + y[| = [[y]l/2).
Analogously for the connection sequences (uj3,,. n)Aim and (U3, o, n)fm;”

FACE 6. We now illustrate one of the main ideas of this work.

Let us consider the sub-block 22(3;?;111) +1Z5(T)zn (the same procedure will work

3m—+2 3m+3
for the sub-blocks Z( ngll)ﬂ ! (T)x, and fo Z;mLZ)H x}(Z)zy). In general not
only the sequence of the norms of its partial sums will be like a switchback also for each

possible permutation of terms, but when we add the subsequent sub-block there could be
Azm+1

retroactions by the elements of the connection sequence (u3,, 1 ,,),27"" with consequent

q(3m+1)
n=q(3m)+1 x (Z‘)
an actual series for the representation of the element T, not only do we have to put in ad-

collapses of the norms of the partial sums of > Z,,. Hence, in order to have

vance and gradually these retroactions, but also if these retroactions were absent, it could

be necessary to smooth out the summits of the switchback above. On the other hand, also
Asm

et
by means of the method of Face 4, it is necessary that these uj,, 41, are really present in

if we can construct the elements u € span(u3,, 1 ,,) necessary for these operations

the sub-block ZZ(qu(;iLI) +1 T (T)xy,; moreover, these elements may be actually present
q(3m+1)

but not in the quantity that we need to settle the whole sub-block "™ a(3my+1 T *(T) .

Therefore our idea is to organize the elements of (u3;,, 1, (T)u3p, 11, n):?’"f“ in the sub-
block Y7 32%;;?“) +1 2 (T)xy, so as to have the following three characteristics:

(i) if, for some 7' with 1 < 7' +1 < Agpp1, |uf, 1 1 (T)] > 5,41 (for a suitable
sequence (e},
method of Face 4, we can construct (more precisely, we can approximate) all the elements
URS span(ungrl,n)Zl:l that we need;

) of positive numbers with ¢/, — 0), we are sure that, by means of the
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(ii) in order to have the possibility to approximate each u € span(uj,,, +1,n)7:1 that we
need (of course ||ul| < 2 Eq (8m-+1) |z - |z ||) it is necessary not only that the elements
Ul +1,n, are really at our dlsposal by means of the terms z7 (Z)x,, of the second sub-block,

but also with both positive and negative signs;
q(3m+1)
n=q(3m)+1 x

only a very small quantity of terms z (Z)z, of the sub-block

*(Z)xy, we will consume always

q(3m+2) *
n= q(3m+1)+1 (‘T)x”’

that is, in this sub-block all the elements of (u5,, )7 have to be always present in a
very large quantity.

(iii) in this operation of smoothing of )

At this point we are ready to understand the aim of the following definition.
P’IYL . . .
We say that (W n, Wy, ,)n_1 1S an &,,-generating form of a biorthogonal system
P

(umﬁh urn,n)nZI

of a Banach space X if

Pm Pm
span (W, )n=1 = SPan(uy, ,),=; and  span(wmk)p=; = span(umk)i=1

for 1 < n < P,,; moreover for each T € X with ||Z7|]] = 1, if @ is an index with 1 <
n < P — 1 such that |uy, ., (Z)| > &, there exists a sequence (g(n))"t1 of positive
integers with g(ﬁ +1) <P, and n <g(n) <g(n+1)for 1 <n <n such that, for each

em-net (T, ;)17 of the unit ball of span(u,, ,)7_,, there exist sequences ((&,, ; n); i

of positive numbers and ((f(i,n))7_,)im, of integers, with, for each i with 1 < i < I,,,

either f(i,n) =g(n+1) for 1 <n <mor f(i,n) = g(n) for 1 <n <7, such that, setting

Z Em,i nwm G, n)( )wm fn)s
we have
c n
||@m,i - ﬂm,z” < _m, Z Emin < 5m/Im;
n=1

SO

I, I, 7m
Z ||Em,z - ﬂm,z” < Em, Z Z Em,in < Em-
i=1

i=1n=1
The main aim of these generating forms is to approzimate all the elements of the unit
ball of span(uy,, n) 1 by means of finite subsums of the series Yz} (T)x,; in particular
the fact that Z o1 Z 1 Em,in < Em allows us to consume for these approximations only
a relatively small number of terms for each block.

The word “generating” means that this transformation of the biorthogonal system just
q(m+1)
- n=q(m)
mate all the elements of span(u,, ,)n—; that we need.

generates a large quantity of subsums of > 41 25 (T)zy such that we can approxi-

A377L+1

FACE 7. From Faces 4 and 6 it naturally follows that we could pass from (uj,, ;)21

directly to its generating form; but, if we are in the hypothesis of (i) of Face 6, with
(Ui 1.0(T)| < €, for @ 4+ 2 < n < Ay, passing to the generating form, from the
procedure of the second part of Face 6 it would follow that we will be able to approx-
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imate only all the elements of span(uj,, +1,n) that is, we lose the contribution of

1% = I : .
Uspy 1 0 (T)US,,, 1 7 Which could be essential.

n17

Therefore our idea is that, before passing to the generating form,

A377L+1
(u3m+1 no’ u3m+1 n)n 1

has to undergo a preventive operation of uniform minimalization (see (3.1) of Proposi-
tion 3 of Subsection 1.4) by means of the auziliary sequence

22B3m+1\ Agpmi1
((63m+1 aux,s,ts 63m+1 aux,s,t)t 1 )s 1

(which now justifies its name) and we pass to

P 2B A
(U3m+1 n U3m+1 n)n?mi+l = ((u3m+1 s,ts U3m+1 s t)? 03er1 )q_:hln+1

where, for each s and ¢ with 1 < s < A3,17 and 1 <t < 22Bsm+1,

22B3m 41 22B3m+41

* /%
* 63m+1,aux,s,j u3m+1,s
U3m+1,5,0 = Z €3m+1,aux,s,j>  U3m+1,5,0 — Z 92B3m 41 - 92Bsm41 ?
j=1 j=1
/
u3m+1,s *
Usmt1,s,t = C3mtLawx,s,t T 5E =" Usmt1,s,8
22B3m 41 .
— (e B Z €3m+1,aux,s,j i U3m+1,s
3m-+1,aux,s,t 922B3m 11 92Bsm41 *
Jj=1

Therefore the first reason for uniform minimalization is that, when we pass to the asso-
ciated generating form (wsm1,n, W3, 41, n)P3m+1 if we are in the condition of the second
part of Face 6 with m replaced by 3m + 1, for m + 1 = (1 4 22Bsm+1)(5 — 1) + { with
1 <5< A3,41 and 0 <t < 22B3m+1 by means of the procedure of the second part of
Face 6 we will lose the contribution of u3,, , 1 71 (F)usmt17m+1 where, if 1 <% < 22Bam+1
U3, 115 appears in the form w3, 1 =0 (F)us,, ~/2B3m+1 hence this loss does not dlS-
turb the approximations since ||u3,, 1 71|l <5 and Bz 1 is very large, while, if £ = 0,
U3, 415 does not even appear. There is also another more important reason for this
uniform minimalization, which will be explained in the last face.

We proceed analogously for (u3,, ,,,us,, W)sm and (U3 12,05 a2, n)f?’?“ of the
first and third sub-block respectively.

FACE 8. Finally, we turn to our (simplified, that is not exact!) construction of the first
sub-block

3 +1 Q3am Mg, Pvn
(2, 23) 1) = (@3manbets Ty e P Vi) 22

k=1 /n=1»
T3m,n,k,l = €3m,carr,n,k,l T 63m,arm,n,k,l( + €3m,brd,n.k ifl = 2Q3m) + %a
*
w;m,n,k,l = 6;rn,carr,n,k,l + Uzjg?;nn
for 1 <n< P31 <k<2Msm and 1 <1< 2Q3m' analogously
() 0P8 = (@i k)i R R,
w3m+1,n

T3m+1,n,kl = e3m+1,carr,n,k,l( + €3m~+1,brd,n,k ifl = 2Q3m+1) + 9Qsmt1
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w*
* o x 3m+1,n
x3m+1,n,k,l - 6E'ﬂnJrl,carr,n,k,l + 2M3m+1

for 1 <n < Pypyg, 1 <k O2Msmi1 gnd 1 <1 < 2Q3m+1; analogously

(xn)(I(3m+3)

M3m42\ P3,,
n=q(3m+2)+1 ((m3m+2,n,k)i:1 Jni "

n=1 > T3m+2,n,k = €3m+2,carr,n,k + W3m+42,ny

*
* %k w3m+27n
x3m+2,n,k - 63m+2,carr,n,k + 2M3m+2

(actually in Subsection 3.2, €3 carr,n k1 1S Teplaced by

2@3m
egml,carr,n,k:,l - Z egm,carr,n,k,g/2Q3m
g=1
and analogously for €3, 1 cory g 80 €5, 1o care ) «)- This clarifies the role of the carrier
sequences which we already explained in Faces 3 and 4.
But our aim in this face is to draw attention to the fact that, from Face 2 and from
the above, it follows that

(u/ ul* )A31n+1
3m+1,n7 “3m+1,n n=Aszm+t1 _A£3m+1+1

- ( * x\q(3m+1)
= (€arm,ns Carm,n — n)nzq(Bm)-‘rl

* * 2M3m \ Py,
U ((e3m,brd,n,k7 e3m,brd,n,k - x3m7brd,n,k}72Q37n )k}zl )n:l’

, % Azm2
(u3m+2,n ’ u3m+2,n)n:A3m+2 _Aém+2+1

_( * o 2M3m+1)P3m+1
- (e3m+1,brd,n’k’63m+1,brd,n,k $3m+1,brd,n,k,2Q3m+1)k:1 n=1 -

Therefore for instance ((63m,brd,n,k)%z?im)f?§ appears in both the first and the second

sub-block, also if ((€3,,, pra.n, k)%iim )5?’:"{ appears only in the second sub-block; for this
reason these sequences have been called bridge sequences. Our idea has been to use these
bridge sequences in order to achieve the following two results (we consider now only
the bridge sequence of the first sub-block, the same properties hold also for the bridge
sequence of the second sub-block):

(i) if, for some n with 1 < n < Py, |u3,, ,(T)| > €3, (always for a suitable sequence

(em) of positive numbers with ¢, — 0), then the calibration of the construction of

((acgm’n,k,l,x§m7n,k7l)l2jfm)%zslm is such that there always exists k(n), with 1 < k(n) <

2Msm - such that, if by the above n/ is the index with u’3m+1’n, = €3m,brd,n,k(n), then
M3, P. m
A1 — A1 +1 < n' < Agpqr (we remark that ((ezm,brdmk) o™ )2m

Az . _
the end of (u3,,41.,),27 "), With [ugy, 1 0 (T)] > €515

appears at

(ii) there also exists n” with
Pypnyr — (225340 4+ DAY 4+ 1< 0" < Popgr, (U540, (T)] > €3m1;
and in particular all the properties of (i) of Face 6 hold.

FACE 9. The conclusion of the previous face allows us to illustrate another main idea of
this (we point out that, for each p, A}, is much smaller than A,): either
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(1) (the disconnected chain condition)
|u§;n+1n(§)| <éesgmy1 — 0 for 1 <n < Agpyr;

or

(ii) (the operating chain condition) (i) does not hold; in this case there exist n(3m+1)
and n(3m—|—2), with A3m+1 _Aém+1 +1 é n(3m+ ].) S A3m+1 and A3m+2 _Aém+2 +1 S
n(3m+2) < Asmqa, such that |ugy o (@) = emer and |ug o 0000 (@) 2
€3m-+2 (now the reason of the name “free block” for the third sub-block becomes clear:
“free” means that this sub-block does not have the bridge sequence, hence the aim of this
sub-block is to interrupt the chain, because with a global chain it would be difficult to
keep the completeness).

This property is not necessary for a basis with uniformly controlled permutations,
but we equip our basis also with this property because it strongly simplifies both the
construction and its explanation.

FACE 10. In Face 6 there is already the general idea of the passage from the associated
series to the actual series which represents the general element T of the unit sphere of X,
just by means of permutation of the terms of the associated series. Now we will deepen
this idea and we will also explain the reason for the name “regularizing block” for the
second sub-block (z,x} ):i?;;i)_i_l) 41+ We say that a sequence (an)gzl of numbers is

(0, €)-monotone if, for each ¢ with 1 < ¢ < Q,

Z(BZZ;?) +1 2, (T)zy, (by Face 1, to make things simpler, sup-
q(3m+1)
n=q(3m)+1

Then by regularization of )

pose (((m 0, ’;l ))Q m) = (n)n(_?’zgi))_k}) we )mea,n to find a permutation (7(n))
3m-+1 3m-+1
of ( )i:q(?ﬂn) 5

neq(3m)+1 of elements such that

., and a sequence ()

Dq(3m+1)

s (0, &y, )-monotone

(H o) (@) () + Un)

1
s Q=q(3m)+1

with €, — 0. By the definition of (u3,, n)AS"‘“

that it is just (“n)n(gz;i))ﬂ C span(us,, 1, n)ﬁS”f“, now, under the operating chain

q(3m—+1)
n=qg(3m)+1

with 7 321;’;11) +1 @ — tUn|| < &, where the elements %, are all disjoint subsums of

Zq(3m+2
n= q(3m+1 +1 T

subsums is also (0, &,,,)-monotone.
Therefore, if

in Faces 2 and 4, we already know

condition, by Faces 4 and 6-8, it is always possible to construct a sequence (u,,)

*(Z)x,, such that, for each u,, the sequence of the norms of its partial

Q(3m,n)
tn = ) Try (@) ay  for ¢(3m) +1<n < q(Bm+1),
k=Q(3m,n—1)+1
3Im,n 3m—+1 3m.q(3m-+1 ] .
where ((m(k)QCm) | IOmED (1)) Q0mami) g o permutation of a
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q(3m+2)

subsequence of (n)n:q(3m+1)+1a

it follows that the sequence

Q(3m,n)

N—-1
(| X @w@emw+ X @ @ew) + @@

n=q(3m)+1 k=Q(3m,n—1)+1

K (3m,N) q(3m+1)
+ Z T () (T) T (k) H) )
R s S K=Q(3m,N—1)+1/ N=q(3m)+1
q(3m+1)

s (0, 2¢,,)-monotone, that is, > (3m)+1

x} (T)x, has been regularized.

FACE 11. We are now concerned with the first sub-block (xn,x;)i(jzz;i)) 41, that is,

with the completeness block, and we will also explain the reason for this name. By

completeness we mean that, for each T € X with ||Z|| = 1, not only does there exist, for
each p,
q(3p)
up € span(u3p+1 n)A3p1+1’ HE - ( Z zy, (T)zn + ﬂp) H <np — 0,
n=1
but also there exists a subsum %, of ZZ(SZ Z’;)) 41 Tn ()T, With
qa(3p)
[Tp — tp|| < mp, hence Hfﬁ ( Z 2, (T)xn +ap) H < 21p.
n=1

To have simultaneously completeness and the chain effect is already a delicate fact, be-
cause the two things fight each other; but also the capability to regularize of Face 10
and completeness fight each other; hence to simplify the construction our idea has been
to partition in two separate sub-blocks the settlement of completeness and of regulariza-
tion. Therefore the construction of the first sub-block has been calibrated towards the
two goals: of completeness and of preservation of the chain effect, hence the capability to
regularize has been reduced. This means that, owing to the presence of the connection se-
Asm

quence (u3,, ,),27, the completeness block Zi@;n;—,i)) 41 25 (T)zy continues to contribute

igggm 41 ® *(T)xn, but it is always
necessary to have also the help of the sub-block Y7 3T;i)+l) +1Zn(T)Ty. On the other
hand, the construction of the second sub-block has been calibrated towards the two goals:

of regularization and of preservation of the chain effect. Therefore, in the operating chain

to the regularization of the previous sub-block

condition, the regularization of the whole previous block is possible.

FACE 12. This last idea deals with the simpler case of the disconnected chain condition,
q(3m+1)
n=q(3m)+1°
Indeed, in the disconnected chain condition this sequence practically appears only in the
q(3m+1)
n=q(3m)+1

moreover with the armouring sequence (€arm n) which will now justify its name.

completeness block > xk (T)xy, (since, see Face 8,
( )A3m+1 AL g1 +e(3mA1)—q(3m) ( )q(3m+1)
u3m+1 n/n=Agmi1—Af,, +1 = \Carmn)p=q(3m)+1

Azmt1
n=Agmi1—A5,, 1+
over we will prove that it cannot be influenced by other sequences; on the other hand,

and the coefficients of the sequence (u3,,, 1 ,,) , are negligible) and more-
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(€arm, ”)n(?)zgnll))‘*‘l is 1-equivalent to the natural basis of I} and ||z,| < 4 for

each n, hence, for each @ with ¢(3m) +1 < Q < ¢(3m + 1) and for each permutation
(r(m)Ame s of (1t
n=q(3m)+1 n=qg(3m)+1’

(8m+1)—q(3m)

Q Q
£ W@z Y #h @
n=q(3m)+1 n=q(3m)+1
Q Q
2 H Z 7"(")( )earm »m(n) Z |:E7r(n)(_)|
=q(2m—1)+1 n=q(2m—1)+1

and the completeness block is automatically regularized. For the regularization block
there are two possibilities: either the coefficients uj;,, 5 ,,(T) are not all negligible, hence
a partial (but sufficient) regularization is always possible by means of subsums of the
third sub-block, or all these coefficients are negligible and we are in the situation at the
end of Face 5, that is, this sub-block is practically isolated, hence a suitable permutation
of its terms is sufficient. At this point we can partly explain the meaning of “suitable”
and at the same time we can also complete the explanations of the reasons of the idea
of Face 7. We will consider the second sub-block, but the same reasoning holds for the
other two sub-blocks; indeed, it is very important for the regularization in the operating
chain condition.

From Face 8 we have, for 1 < n < Pspq1, 1 <k < oMsmi1 gnd 1 < | < 2Q3m+1,
T3mA1mkl = T3 1kl T Tt nkg With 23000 = W3 41,n/29%m+1 and we also

know that
oM3m41 9Q3m+1

" _ w; +1, (T)
Z Z <$3m+1,n,k,l($) - ;A/I?,—ml> =0.
k=1

Moreover we know that (see the second part of Face 8)
oM3m41 9@3m+1
* g—
x3m+1 n,k, l( )x3m+1 n,k,l — w3m+1,n(x)w3m+1,n7

k=1
P3m+1 P3pta

Z w3m+1 7l U)3m+1 n = Z u3m+1 n u3m+1 )

_ 3m+2 . .
where (|| ZZ:Q(Sm—i—l)—i—l x§m+17n(a:)xgm+17n||)Z(:;?3m)+1)+1 in general is never (0, €)-mono-

tone for € independent of m. Setting, for 1 <n < Py,

Q3m Mam Q3mt1+Msm,
(@amirmmd)izy it = @mting)gmt

2Q3m+1+M3m+1 of (g)2Q31n+1+M31n+1 with

there exists a permutation (7 (n,g));- iy

2Q@3m+41+M3m 41

(‘ Z x§m+1,n,ﬂ'(n,g) (E) DG—I
g=1 B

(0,1/2@3m+1)-monotone, moreover there is a partition ((g)

Q m +1\/I m
(g)f];l T such that, for 1< s < S341,

t(3m+1,n,s) )Saerl of
t(3m+1,n,s—1)4+1/s=1
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t(3m+1,n,s) % -
* —\ . . w3m+1,n(£)w3m+l,n 1
$3m+1,n,7r(n,g) (x)$3m+1,n,7r(n,g) S 2Q3m+1 )
g=t(3m+1,n,5—1)+1 3m+1
t(3m+1,n,s)
> ()7 ti1,0(®) <o
i T —w T)W3m41, —
3m+1,n W(n,g) 3m+1,n,m(n,g) ng+1 3m+1,n m+1,n 9Q3m+1 3

g=1
P3m41
n=1

where Q3,41 is much larger than >
®3m+1- It follows that
Pzmy1 t(3m+1,n,s) P3mg1

§ : E : w3m+1 n,m(n, g)( )m3m+1 n,m(n,g) E u3m+1 n u3m+1 n

| w310l and Szpy1 is much larger than

S
n=1 g=t(3m+1,n,5—1)+1 smA4l 5
P31
2Q3m+41”’
P3m41 t(3m+1,n,s) P3pmt1
* — 12
Z Z x3m+1,n,ﬂ'(n,g)(x)x3m+1,n,ﬂ'(n,g) S Z u3m+1n T)Usm+41,n
n=1 g=1 3m+l ‘o
P3m+1
2Q3m+41
. . q(3m+2) _ t(3m+1,n,s) P31 S3m+1
It is now sufficient to set (m(n))?” dBmi1)t1 = ((( )t(3m+1,n,s—1)+1)n:1 )2+t and
q(3m+2) . . .
(1137 a@ma)+1 T () @0 D) = o(3mr1)41 1S (0,2/2@3m+1)-monotone, in particular
q(3m+2)

(Zizq(3m+1)+1 7T(n)(f) ;ll'(n))q:q(?)m—‘rl)—&-l becomes a progressive enlargement of the

1/S3m+1'minia‘ture Ssi+1 Zfqurl u§m+1,n( )u3m+1 n of ZP3m+l u§m+1,n (f)u3m+1,n-

The sequence (g(m))S°_; is universal for all
spaces of type 1, since its construction is essentially volumetric and it does not depend
on the space. In general this sequence depends on the sequences (A,,)°_1, (Bm)5o_1,
(Qom)5°—1 (T in the spaces of type > 1), (Qm)50_; and (M,,)°_;; in spaces of type
> 1 there is also a number K which depends on the space and influences the previous
sequences; however (see, in Subsection 3.2, the beginning and Step 5 of SC III.1, the
beginning and Step 2 of SC III.2 and the beginning of SC III.3, see moreover Substeps

1 and 5 of the proof of Theorem 24 in Section 6) in our construction these sequences

Universality of the sequence (q(m))s°

m=1-

are defined, in spaces of type 1, with a growth more rapid than in spaces of type > 1
(it is sufficient to check this fact for (A,,)5°_; and (B;,)22_;), hence we could use these
sequences also for spaces of type > 1.

2. Theory of biorthogonal systems

The generating form is, for the basis with permutations of (1), the key which allows
approximating the element Z by finite subsums of the series >~ | % (T)x,,.

2.1. The generating form of a biorthogonal system in the real case. The next
theorem provides a procedure to pass to the generating form in the real case; the complex
case has been described in [11].
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THEOREM 4 (Generating Biorthogonal System Theorem, GBST). Let {umn,u;‘nn}iﬂ;l
be biorthogonal in X with

(4) lumnll =1 and ||u;, || <K forl<n<P,

mn‘

(hence K > 1). Fiz two positive integers M and Q). For each positive number a and for
any positive integers q and m, write

(5)  EXla,1,q=a%9 EX[a,m+1,q] = EX[a,1, EX[a,m,q]] = a@EXlamd
Then let {wm n, w;, n} ™, be biorthogonal with wy, 1 = um,1 and, for 2 <n < P,
Um
(6) Wm,n = ; m7
where Ap, 1 =1 and, for 2 <k <n,
A = EX[2K,22P0 P =0t 4 o — 9) P,.],

in particular

Aoy = EX[2K,22PnPr=D) p 10 A, p = EX[2K,22Pn 4 2(k — 2), Py,

FizT € X with |T|| =1 and 7w with 1 <7 < P,, — 1 such that

N _ 1
(7) |ty 7741 (T)| > NP,
Then for Q sufficiently large (depending also on M) there exists a sequence {g(n)}"11 of
positive integers with g(m + 1) < P, and n < g(n) < g(n + 1) for 1 <n <7 such that,
if we fiz U € span{um, n}7_, with |[u|| = 1, then

(8) u= Zanumm with |a,| < K for each n with 1 <n <7,

in particular with |az| > 1/2MPm and |a,| < 1/2MPn for n+1 < n <, for some 1 with
1 <7 < 7; then, setting {f(n)}?_, = {g(n)}"1} if @ and Wy, oty (T) have the same
sign, otherwise {f(n)}"_, = {g(n)}"_,, there exists a sequence {b,}"_, of numbers with
b, =0 for n+1<n <7 such that

9) 0< — — < o3 for 1 <n <m,

moreover

_ 1 X
||'lU — ’U,” < m where w = Z bnwm7f(n)
n=1
In particular from the proof it easily follows that, if W' € span(u,, , ) _, with (n )n/ 1 C
(n)7_y and ||[@| = 1, if (g(n")I2} is any subsequence of (g(n))'L] such that the se-
quence (W), o )(x))z "+1 has alternate signs, then again there exist as above (f(W'N'_, C

(g(n’ ))Z:Jrll and numbers (b/ )7, such that, for 1<n<7w,

—/
b 1
m,f(n
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Proof. FIRST PART. By (6) we have

*

* — A * * _ w’”‘hpm
wm,P/nL - m;P7n7P7n'um,Pm) um,Pm - A P P ?
m1 msyt m
*
w
* o * m, P,
Wiy pp—1 = Am,Pp—1,P, -1 <um,Pm—1 S 1>,
m7 msdm ™
* *
* o U%Lmel u%LPm
um,Pm—l - A + A
m,P,,—1,P,,—1 m, Py, , Py, —1
and so on (in particular w¥, ; = u*, Zk 2 W, )3 let us prove that, for 1 <n < P,
. PnL w:‘n &
(10.1) W, =Sk
e m,k,n
n
(10.2) [wh, |l < EX[2K, 22PnFPn=ntD) L o(n —2) 41, P,].

Since (10.1) is obvious, we check (10.2).
If n = P, we see by (10.1) and (4)—(6) that
||w:"n,Pm H = HAm,Pnqu'urn,Pm H < K- Am7Pm,7Prn
= K - EX[2K,2*F% 4+ 2(P,, — 2), P,)] < EX[2K,2*Pm + 2(P,, — 2) + 1, P,.].

Fix n with 1 <n < P,, — 1 and suppose the assertion is true for each k£ with n+1 < k
< P,,. By (10.1) and (4)—(6) we have

P,

Prn *
wr .
m,j,n

j=n+1 j=n41 DT

P 2P2 (P, —j+1 o
<Am,n,n<K+ 3 EX[2K,2 2P<2 P]—‘)1+2(j 2)+1,Pm]>
o, EX[2K,22PAPn =it 1 3(n - 2), P,
P,
<Am7n7n(K+ 3 EX[2K,22P3n<Pm*j“)+2(j—2)+1,Pm])
j=n+1
P,
< 2Am,n,n( S EX[2K,22Pn(Prmit) 495 - 2) 41, Pm])
j=n+1

< 2P A n EX[2K, 220 (Pr=m) 1 9(n — 1) 4 1, P,
= 2P, EX[2K, 22Fn(Pn—nt1) 4 9(p — 2) P, |
- EX[2K,22Pn(Pm=m) L 9(n — 1) 4+ 1, P,
< (BEX[2K,22PnPr=ntl) 4 o(p — 9) P,])2
— ((2K)QEX K2 m It 1o 2) 1, P))?
< (2K)QEX[2K,22P%<Pm*n+1>+2(n—2),Pm]
= EX[2K,22PnPn=ntD) | o(n — 2) 4+ 1, P,],

which completes the proof of (10.2).
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Now by (7) and by (10.1) there exists g(7 + 1) such that

|w:<n’g(ﬁ+]_) (j)l 1 .
QUM+1) Py’

(11) n+1<g(m+1) <P, and
Am,g(ﬁ+1),ﬁ+l

indeed, otherwise

P, * —
1 N wy, 1, (T)
— < ’LL* _ )| = E _ MR 7
QM Py, | m,nJrl( )‘ et Am’k1ﬁ+1
P — P
w1 (T))] i 1 P, -7 1
< 0 < o
- k:zﬁ:ﬂ Amkasr k:zml 20D P 2D P ) 2P

Next, let us prove that

W), gy (@]

(12.1) > 22Pm EX[2K, 22Pm (Pm=g(H D+ 4 o(m 4 1) — 2) — 1, P,,],

A g(mt1)m
Py, * —
w. X _
12.2 [0, (@)l < EX[2K,22Pn(Pn—9(+D) 4 9007 + 1) — 1, ).
— g

n=g(m+1)+1
Indeed, by (11) and (6) we have

W gt @ Ay [Wingmen (@)l 1 Anmgmrna
o 9(M+1)Py,

Am,g(ﬁ+1),ﬁ Am,g(ﬁ+1),ﬁ Am,g(ﬁ+1),ﬁ+1 Am,g(ﬁ+1),ﬁ
1 EX[2K,2?Pa(Pr—gHDHD) 4 o(m — 1), P,)]
T 9(M+1)Pp, ‘EX[QK, 22P2 (Pm—g(m+1)+1) 4 27 — 2), Pp)
> 2MPr B X (2K, 22Fm(Pr—9(HD+D) | o — 1) — 1, P,

while by (10.2) and by (6) we have

n=g(m+1)+1 mn,n n=g(mt1)+1 =T
< i EX[2K, 22Pn(Pr %1 4 2(n — 2) + 1, Py
2P2, (P —nt1) -
n=g(R+1)+1 EX[2K,2 +2(7=2), Pn
P"L 2
< Y. EXPK,2PnPnmrtD 4 o(n —2) +1,P,) /P,
n=g(n+1)+1

< EX[2K,22PnPrn=9(40) L 9g(m +1) — 1, P,,],

which completes the proof of (12.2).
Let us prove that there is g(7) with m < g(m) < g(m + 1) — 1 so that

(13.1) Wy, o) (T) and wy, . 1) (T) have opposite signs;
(13.2) ‘w:n,g(ﬂ) @] 1 |w;7g(ﬁ+1)(5)‘ )
Am,g(ﬁ),ﬁ 2M P, Am,g(ﬁ+1),ﬁ ’

|w:n,g(ﬁ)(z)|

> oMPr X (2K, 22Fm(Pr—9M+D) | o7 —2) — 1, P,.;
Am,g(ﬁ),ﬁfl

(13.3)
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P, * =
w x —
(13.4) > M < EX[2K,22Pn(Pr—9() 4 24(m) — 1, P,].
n=g(m)+1 m,n,n—1

Let us prove (13.1) and (13.2): By (10.1) and by (4), S5 70wk, (%) /Amsm = s ()
with [uy, =(Z)| < K. Then by (12.2) and (12.1),

9 e ( Pn Wt (% P wt (T
> A’””jf_) =@ = Y —’””“:_) SR R S m*’“:_)
k=m T k=g(m+1)4+1 = 5T k=g(m+1)+1 ~ 0T

& wy, (@) 2 (P, _g(m _
<K+ Y R <K+ EX[2K,22Pn(Prm(D) 4 9g(7 4 1) — 1, Py
n=g(mrl)41 TR

< 2. EX[2K,2°Pn(Pn=90+10) 4 9g(m 4 1) — 1, P,]
< 2. EX[2K,2%Pn(Prn=9(TH1) | 907 4+ 1) — 1, P,

. (lw:;z,g(n+1)(f)| 1 )

A gasnym  2MPn EX[2K,22P0(Pm—g(m+)+1) 4 2(7 — 1) — 1, P,,]

_ |w;kn,g(ﬁ+1)(f)‘ 1
ooty EXEE, BP0 § 0 — ), Py

EX[2K, 22Pn(Pn—9(@+1)+1) 4 9(y — 2) P,]
’ QM Py, .

2EX[2K,22Pn(Pr—9(+1) 4 24(7 1) — 1, P,
EX[2K,22P5(Pn—g(+1)+1) 4 2(m — 1) — 1, P,,]
: A+ -1 . » _
with (...) < 1. Thus i(:"g ) wy, (@) /Am g and w), oy (T) /A g@+1),n have
opposite signs and

g(m+1)—1 (Z)

W, ke |w;,g(ﬁ+1)(§)|

Am,g(ﬁ+1),ﬁ

: (1 - 1/EX[2K’ 22P31(Pm7g(ﬁ+1)+1) + Q(H - 2)7 PmD;

Am,k,ﬁ

k=n

hence, since g(m + 1) — 7 < P,,, there also exists g(7) with 7 < g(7) < g(m+ 1) — 1 such
that (13.1) and (13.2) are satisfied. On the other hand, the proofs of (13.3) and (13.4),
starting from (13.2), are analogous to the proof of (12.1) and (12.2) starting from (11):
indeed, by (12.1),

W o @ A gmm Wi g (P

Am,g(ﬁ),ﬁfl Am,g(ﬁ),ﬁfl Am,g(ﬁ),ﬁ

Am,g(ﬁ)ﬁ 1 ‘w:n,g(ﬁ+1)(f)|

w1 2MPm

>
Am,g(ﬁ),n

Am,g(ﬁJrl),ﬁ
2EX 2K, 22Pn(Pn=9(@+1) 1 97 — 2), P,]
EX[2K,22P3(Pn—9(M+1) 4 2(m — 3), P,,]
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- EX[2K,22Pn(Pr=o( 0T 4 o(m 1) — 1, P,]
> 22Pm EX[2K, 22Pn (Pr =90+ 4 (7 —9) — 1, ],

P, — P, P
er |U);an($)‘ < i Hw;knn” - ”w:n,g(ﬁ)+1”
nmgyt Al T Sy Amnaet L S5 "

< [wk, yoyar | < EX[2K, 22PnPrn=a() 4 9(g(m) — 1) + 1, Py).

By the same procedure we can determine g(7 — 1) and so on; that is, we get (g(n))”%]
such that n < g(n) < g(n+ 1) for 1 <n <m. Moreover

(14.1) Wy, oy (T) and wy, o, 1)(T) have opposite signs;
(14.2) ‘w:n,g(n)(_” 1 |wm,g(n+1)(5)‘ )
Am,g(n),n 2M P Am,g(n+1),n

‘w,*n,g(n) ()]

(14.3)
Am,g(n),nfl

> oMPu pxX (2K, 22Pn(Pr—a(m)+D) 4 oy — 2) — 1, P,

for 2 < n <7, where we have only to check (14.3), which we already know verified for
n =7+ 1 by (12.1) and for n = 7 by (13.3). Then fix n with 2 < n <7 — 1 and suppose
that (14.3) is verified for each k& with n + 1 < k <m. By (14.2) which is always satisfied
and by (14.3) which we know to hold for n+1 we have

|w;kn,g(n)(f)‘ o Am,g(n)yn _‘w:%g(?”b)(f)| > Am,g(n),n . 1 |w:n’g(n+1)(f)|
Amﬂ(n),n—l Am,y(n),n—l Am,g(n),n Am,g(n),n—l 2P Am,g(n+1),n
Am n),n
> A’# EX[2K,22Pn(Pr=adDFD 4 o((n 41) - 2) — 1, P,
m,g(n),n—1

_ BX[2K,22Pn(Prn—9()H1) 4 9(n — 2), P,

 EX[2K,22PR(Pn—g()+1) 4 9(n — 3), P,]
- EX[2K, 2P (Pn—o(nt)4D) o — 1) — 1, P,
EX[2K,22Pn(Pr—9(m+1) 4 9(np — 2) P, ]
EX[2K,22P5(Pn=g(M)+1) 4 2(n — 3), P,,]

> 2MPr EX (2K, 22Fn(Pr=9(m+1) | 9 —2) — 1 P,

that is, (iii) is verified also for n, which completes the proof of (14.3).
Our aim now, in order to prove (9), is to approximate the terms @,u,,  of @ in (8),
for 1 < n <mn, and we can suppose that

1 n n
(15) n=n, hence |Eﬁ| > m and {g(n/) ni_l _ {g( ) -‘rl

(if am| < 1/2 (M+1)Pm e simply turn to considering, instead of %, the new element
U =" Gyl where [@;| > 1/2MTDPm while [a,| < 1/2M+DPr for 141 <n <7,
hence || —|| < P,,/2M+DPm; then the procedure will be the same for each subsequence
(g(n")E) of (g(n))"1} with alternate signs).

Then we have two possibilities; the first one is:

(16) Wy, o(m+1)(T) and @5 have the same sign.
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In this case we claim that, setting

and moreover

m—1 u g(n+1) w
__ m,k m,k
(17.2) Win,g(mt1) = Wm,g(mtl) — - = S EE—
! ! ; A g(m+1) ,; App g(mt1)
we have
_ 1 by 1
(173) Hbﬁﬁm, nt1) — Om < T 5 0< " n — < .
g(n+1) 9(M+1)Py, wm,g(ﬁﬂ)(x) 9MP,,

Indeed, the first part of (17.3) follows from (4), (5), (6) and (8) (for @ sufficiently large,
we already said that @ depends on M) since (by (17.1) and (17.2))

g(m+1) - - g(m+1)

T o _ UM,k brtm m Bﬁum k
070 gmr1) — TGrtimml = brtim, : = —
nWm,g(m+1) — Anlhm.n Z A g(mt1).k Am,g(ﬁ+1),ﬁ Pl Am gm+1).k
g(n+1) _
- 1 - gm+1)— L _ A g@menm
< |bm| q < lbml 4 a(g(m+1) = 7)== .
k=m+1 m,g(m+1),k m,g(m+1),n+1 m,g(m+1),n+1

< KPp Ay gms1) 7/ Am.grt1) a1

_ qp EXPK, 2P (Pr—g(+D)+1) | 9(m — 2), P, |
T UM EX2K, 2P (Pu—g(HD+1) 1 9(7 — 1), Py,]

< 1/EX[2K, 22P31(Pm—g(ﬁ+l)+1) + 2(% _ 1) —1, Pm] < 1/2(M+1)Pm

for @ enough large (see (5)).
For the second part of (17.3), we start by pointing out that (16) and the definition of

b give the same sign for by and w?, g(m+1)(T); on the other hand by (12.1), and (8), (4),
(6) and (5), we have

b _ |G| A, g(mt1),m |w:n,g(ﬁ+1)(f)|

m — = — —— < K/

wm,g(ﬁ+1)(x) ‘wm,g(ﬂ+1)(1‘)| Am,g(ﬁ+1),ﬁ
K 1

< OMPrn FX 2K, 22P7 (Pm—9(+D+1) L 2(m — 1) — 1, P,] < 9MP,,

(always for @ sufficiently large), which completes the proof of (13).

SECOND PART. Our next step concerns the index m — 1 and we are going to prove that
if we set

) -
| bvea o (g bm ba
(i) 1 m,g(7),7 1(a ! Am,g(ﬁﬂ),ﬁl)
and

g(m)

(ii) Win,g(m) = Wm,g(m) — Z Aumj Z A“mj

m,g(M).j 51 mg(n)J
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then
by - _ 1
@) | (G e P ) et | < g
. |brl Am,g(m),7-1
v b _mgn)n=1
( ) | " 1| 2 Amg(n+1)n 1
> Apmg(m o1 BX[2K, 220 (Pr=a(HD+D 4o —9) — 1, P,,),
b . br
(v) A > EX[2K, 92P7 (Pn—g(M)+1) +2m—-3)—-1,Py)—m—,
Am,g(ﬁ),ﬁ—2 Am,g(ﬁ+l),ﬁ—2
br_1 1
(vi) 0< — — < .
W m () ~ 2MPm

To prove (iii), note that

br - _
——Uma-1 1t ba1Wn gm) | — Gr—1Umm—1

m,g(n+1),7n—1
g(m) +
bﬁ T Um,a—1 bﬁflum,j —_
= A—um,ﬁfl + br_1 1 P — Gp—1Um,a—1
m,g(n+1),7n—-1 m,g(m),n—1 o fim,g(n),j

j=n

(by (ii))

bﬁ _ Eﬁ Um,m—1
= Aium,ﬁfl + A gy a—1 | Gm-1 — 2 2

m,g(m+1),n—1 m,g(m+1),n—1 m,g(m),n—1
Q(W)B_ .y
+Zf—ﬂ>5m%wlﬂwm
j=n m,g(m),J
q(n)
br_1Um j gm)—m+1
< |br1] < forr—a| T2
Z Amg(m).i Z Am 9.5 Amgmn

< Pm|bﬁ_1‘ _ PmAm,g(ﬁ),ﬁ—l —

Am,g(ﬁ),ﬁ Am,g(ﬁ),ﬁ Am,g(ﬁ+1) n—1
Am n),n— Eﬁ
< P, me®). 12’
Am,g(ﬁ),ﬁ Am,g(ﬁ+l),ﬁ—1

since by (17.1), (15), (5) and for @ sufficiently large, by (8),
|Eﬁ| . |Eﬁ| Am,g(ﬁ-‘rl)ﬁ

Apgmta-1 Amgm+1)m Am,gm+1),m-1
Am g@+1)7 1 Am g@+1)7
2(M+1)Pm A

|G
Apg(m+1),7-1 m,g(+1),A—1
1 EX[2K,22Pn(Pe—a(tD+) 4 9 — 9 P, |

= oM+ 1)Pn, EX[2K, 22P2(Pu—g+0+D) | 2(77 — 3), P, ] > 2K > 2|ag_1].

In particular in what follows we will use the fact

) || .1 A gm+1),m

SOTTPL > 2K.

A g(m+1),5-1 m,g(741),A—1
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Now

Am,g(ﬁ),ﬁfl |l_7ﬁ| |w:’b,g(ﬁ+1)(f)|
A

2P, . _
m.gtmm W], g(n+1)( )| Am.g(mt1)7-1

2P Am,gm -1 [Wingmen @ _ 2P0 Amgma [1Wm gl
OMP,, = OMP.,

Am,g(ﬁ),ﬁ Am,g(ﬁ+1),ﬁ—1
(by the last part of (17.3))

= 2P Amyemma EX[2K,22Pn(Pu—9(H D41 4 9(g(m+ 1) — 2) + 1, Py

2MPm A g(m) A g(m1) -1

2P, EX[2K,22Pn(Pn—a+1) 4 9@ — 3), P,)]
T 2MPy  EX[2K, 22PE(Pr— () 1 2(7 — 2), Py

EX[2K,22FPnPu—9@+D+D) 4 9(g(m+1) — 2) + 1, P,

' EX[2K, 2205 (Pn—g@+1)+1) 1 9(7 — 3), P,)] (by (6))

1 1 1
< Q0THOP, FX[2K, 2P P a0 D) 1 2~ 2) — 1, B, ~ 20m0r, (Y ()

Amgmm Amgmena-1

(by (10.2))

By (%), |b—\/Am g(t1),m—1 > 2K > 2|an_1], hence by (i), br—1 has the sign of —by, that
is, by (17.3) bz_1 has the sign of —w?, o(m+1)(T), that is, by (14 1), b1 has the sign of
w g(ﬁ)( T), therefore also the first part of (vi) has been proved.

Turning to (iv), by (i) and (x) we have

|Bﬁ_1| . Am,g(ﬁ),ﬁfl ‘Bﬁ| Am,g(ﬁ),ﬁfl Am,g(ﬁ+1) 7
2 Am,g(ﬁ+1) n—1 2- 2(M+1)P Am ,g(n+1),n—1
A EX[2K, 2200 P —9@H DD 4 97 — 2), P,
= 2.9(M+1)Py, EX[QK’ 92P2 (P —g(R+1)+1) + 2(n _ ) ]

> A gmym1 EX[2K, 22PnPr=g@ED+D 4 o 9) 1 P,].

To prove (v), by (iv) it also follows that

br1]  Amgmm-t |baoil S 1 A g(m) -1 b
A gmyi-2  Amgm) -2 Amgm) a1 2 Amg@) -2 Am,g@m+1)m-1
_ 1 Apgma—1 Amgm+1)a-2 b
) Am,g(n),n—z Am,g(n+1),n—1 Am,g(ﬁ+1),ﬁ—2
1 EX[2K, 22Pn(Prn—a(M+1) 1 o(7 — 3), P,)]
T 2 EX[2K, 22PA(Pr—9(M+D) 4 2(7 — 4), P,,]
EX[2K,22Pn(Pn—9(@+D+Y) 4 9 — 4), P |
EX[2K, 22P2(Pn =g 04D 1 2(1 — 3), Pra]  Apg(r 1) s

_ b
> EX[2K, 22Pn(Pr—9(M+D) | o — 3) — 1, PMA.
Am,g(ﬁ+l),ﬁf2

Finally, for the second part of (vi), by (i), (x), (17.3) and (14.3) for n = 7, we have

O Y B Ut 071 R U i ¥\l

W () (T) |w:n,g(ﬁ) @ Amgma-1 Amgmm-1 Am g1 ma-1" Am,g(m) -1
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‘w:n,g(ﬂﬂ)(f” b |w:n,g(ﬁ) (@)]

= 2 —
Am,g(ﬁJrl),ﬁfl |w:<n’g(ﬁ+l)(x)| Am,g(ﬁ),ﬁfl

*

2 |w;kn7g(ﬁ+1)(§)‘ ‘wm,g(ﬁ) @)|
2MPm A g@rym-1’ Amgmyn-1
2 |w:;7,,g(ﬁ+1)(f)| 1

< : =
2MPm+2Pm Am,g(ﬁ+1),ﬁ—1 EX [2[(7 22P72n(Pm_g(")+1) —+ 2(ﬁ — 2) — 1, Pm]
< 2 ||w,*n,g(ﬁ+1) | 1
~2MEDPn AL sy o1 EX (2K, 22P5(Pr—g(MHD) 4 9(7 — 2) — 1, Py
2 EX[2K,22Pn(Pu—9(+141) 4 9(g(m+ 1) — 2) + 1, Py
< (M +2) Py, : EX[QK, 92P2, (P —g(7+1)+1) + Q(ﬁ _ 3)7 Pm]
1
CEX[2K,22PA(Pm—g(@+1) 4 2(m — 2) — 1, Pyy]
2 1 1

< 2(M+2)Pr, EX[2K7 922P2 (Pm—g(m)+1) + 2(ﬁ _ 3)7Pm} < OMPp, *
Now we can proceed by induction and we will exactly follow the procedure of the last step,
with small modifications; however for completeness we will give all the details. Hence we
fix n with 1 <n <7 — 2 and we suppose to have found numbers {b,}}_,, ., such that,
for each k with n +1 < k <7 — 1 (since we already considered the case of k =7 — 1 in
the preceding formula), we have

_ _ b;
(181) bk = Am,g(k+1),k <ak — Z —j>;

j=k+1 Am7g(j+1),k

k—1 . g(k+1) .
(18.2) Wi g(k+1) = Wi g(k+1) — m,j _ m,j :
g(k+1) g(k+1) ;Amyg(kJrl),j ;C A g(k+1),5
(18.3) H((i;ﬁﬂ )u + by > Tt g || < =
: m,k k s — UpUm k VALY )
5y AmagGi) o9k ) 9T 1) Py,
- b A,
(18.4)  [[5y] > Pral Amotirne
2 Am,g(k+2),k
n—1 ) -
> A grsny g | | EX[2K, 220 (P90 H2H0 495 — 1) — 1, PyyJ;
j=k
b
185) kL
( ) Am,g(k+1),k—1
> EX[2K, 2200 (P =904 04D 4 o 9y — 1, P,] S
j=k+1 Amg(G+1) k-1
b 1
(18.6) 0 < k <

W g(hy(T) 2

We are going to prove (18.1)—(18.6) also if n + 1 is replaced by n, hence we deduce that
(18.1)—(18.6) are true for 1 < k <7 — 1. Then setting
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n

_ _ b
(19.1) bn = A g(nt1).m <an - > 7j>

j=n+1 A ,9(F+1),n
g(n+1)

u u
(192) wm, n+1) = Wm,g(n+1) I e
g(n+1) g(n+1) Z Amg(n+1 Z A, g(n+1)]

by (18.5) for k = n + 1 we know that

b n b,
(20) —Lniil o pxpar, 22PA(Pustr24) oty _ 1y 1, P, ] B L7
Am,g(n+2), j=n+2 Am,g(jJrl),n

which implies, by (19.1), (8) and (18.6) for k = n + 1, that

(21) ‘bn‘ < 2Am g(n+1) | +1| _ 19( +1)7 | +1|‘ 19( +2)( )|

" Am,g(n+2)n |w):n,g(n+2)(f)| A g(n+2)m
2 Am,g(n+1),n ||’LU* ) ||
oM P, Am,g(n+2),n m,g(n+2)

consequently by (19.1), (19.2), (6), (10.2), (21) and again by (10.2), we have

n l_)J . B

Z - um,n+bnwm,g(n+1) — ApUm,n
j=n+1 Am,g(j-{-l),n

- m,n n n - | —UnUmmn
ity Amag(i+1)m Amgmttyn 57 Amgnin),g
n B
o (D R T
4y Amag(+)m

m b, u s N
- an - J T + Bn Tl ) - anum n
( jzzn;l Am,g(j+1),n) A g(nt1)n _z: Am,gn+1).5

<

j=n-+1
g(n+1) g(n+1) T
- U - 1 P, |b,|
bn -/ < |bn| <
j:;rl Am,g(n+1),j j:;'l Am,g(n+1),j Am,g(n+1),n+1
Pm 2 ‘Am7 (n+1),n *
< ! | m,g(n+2) ||

Am,g(n+1),n+1 2M P Am ,9(n+2),n
2P Amgninyn  EX[2K,22PnPn=ad D4 4 9(g(n + 2) = 2) + 1, Py
2MPrm Am,g(n+1),n+1 Am,g(n+2),n
2P,, EX[2K,22PnPn—gntD+1) 4 o(n —2) P, ]
2MPrm BX 2K, 22Pn(Pm—g(n+1)+1) 4 2(n — 1), P,,]
EX[2K,22Pn(Pr—9(nt241) 4 9(g(n 4 2) — 2) + 1, P,]
EX[2K,22P5(Pn—g(n+2)+1) 1 9(n — 2), P,]
2P, 1 1
S 90Pn EX[2K, 22P2(Pu—g0t ) £ 2(n— 1) — 1, P,y 20040 P
hence we have (18.1), (18.2) and (18.3) for k = n.
y (20), @, — Z] n+1b /A, g(j+1),n has the sign of —bng1; heilce, by (18.6) for
E=n+1, bn+1 has the sign of wy, . ., (T); therefore by (19.1), b, has the sign of
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—W}, (ny2)(T); hence by (14.1), b, has the sign of W}, o(ns1)(T); therefore also the first
part of (18.6) is proved for k = n. Turning to (18.4) for k = n, by (19.1), (20), and the

second part of (18.4) for k =n + 1, we have

G| > Amotniin brsil  _ Amgninn Amgmintt  [bas]
2 Angmt2)n 2 Amgnt2)n  Amgnt2)nil
o Amgnrn)n Amgn2).nt
2 Am,g(n+2),n
n—1
. H EX[2K,22PnPrn—9GH+2+D) 95 1) — 1 P,
Jj=n+1
A g1y EX[2K, 22Pn(Pr—g(nt2+1) | 9(n — 1), P, |
B 2 EX2K,22PA(Prn—9(nt2)+1) 4 2(n — 2), Py)]
n—1
[T EX[2K,22Pn(Pr=aGt2HD) 4 o(j — 1) — 1, P,
j=n+1
> A gni1)n EX[2K, 22Pn (P92 o, 1) _ 1, P,
n—1
- ] Ex(2k, 2200 PG40 4 oG — 1) — 1, P,);
Jj=n+1

hence (18.4) is verified also for £ = n. Concerning (18.5) for k = n it is only sufficient,
by (18.6) for n + 1 < k <7 and by (10.2), to point out that

- b N\ b [ g+ (7] < Zn: [ g+ ()]
j=n+1 Am.g(G+1)m-1 j=n+1 ‘w;kn,g(j+1)(f)| Am g(j+1).n-1 j=n+1 2MPmAm,g(j+1),n—1
1 & 1 &

< oMP,, Z ‘w:n,g(ﬁl)(f” < oMPy, Z ”w?*n,g(jJrl)H
j=n+1 j=n+1
1 - 2 p o ,
< 5P, > EX[2K,22PmPm =gl £ 9(g(j + 1) — 2) + 1, Py
j=n-+1
P, 2 —
< nip, EX[2K, 22 m(Pn=9(nt2+1) 4 9(g(n 4-2) —2) + 1, P,,J;
that is,
EX[2K,22Pn(Pr=g(4241) 4 o(g(n 4 2) — 2) 4 1, P
n T n T
2 b1 S 1051

7
Py S AmgGrn-1 5 Amg(i+1)n-1

while by the second part of (18.4) for k = n (already verified), and by (6) and (5), we
have

by _ Amgminn [0 - Amgmtnn
Amgnt)n-1  Amgnt)n-1 Amgnt)n  Amgn+1)n-1
_ EX[2K,22Pn—9(A14D) 4 9(n — 2), P,]

 EX[2K,22(Pn—g(nt1)+1) 4 2(n — 3), P,,]
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> EX[2K,2°Pn(Prn—9(n+)4D) | oy —2) — 1 P, |
- EX[2K, 2P (Prn—g(nt241) | 9(g(n 4 2) — 2) + 1, Py,
that is, by what we just proved above about
EX[2K,22Pn(Pr=g(42+1) | o(g(n 4 2) — 2) 41, P,

also (18.5) for k = n has been verified. To complete the proof of (18.6) for k = n, by the
last part of (21), (10.2) and (14.3) with n replaced by n + 1, we have

w:mg(n_:,_l)(f) |w:,17g(n+1)(_)‘ Am ,g(n+1),n Am,g(n+1),n
N TN
2MEn A gni2)n " Am,g(nt1),n
2  EX[2K, 92P7, (Pm—g(n+2)+1) 4 2(g(n+2) —2) + 1, P
2M P, EX[2K,22P5(Pm—9(n+2)+1) 4 2(n — 2), P,)]
1 1
2MPn EX 2K, 22PA(Pn—9(n+D+1) £ 2(n — 1) — 1, P,)]
2 1 1
< 922M P, EX[QK, 92P2 (Pm—g(n+1)+1) + 2(n — 2)7Pm} < OM Py,
which completes the proof of (18.1)—(18.6).
At this point, setting @ = Y. _; byWy, g(n+1), since by (18.2), Wy, g(2) = Wi g(2)> bY
(8) and (18.3) with & replaced by n and by (17.3), we have

M=

|w — | = (gnwm,g(nJrl) - anum,n)

3
Il
—

Il
1
-
(=l

n(wm,g(n+1) - mm,g(n-‘,—l))) + Z(Enmm,g(n+l) - anum,n)
n=1

by A“#) + Z:l(ﬁ o g(nt 1) — Tnlmn)

= Am.g(nt1).k
n

by LA _
( A7>Um,k + Z(bnwm,g(n—‘ﬂ) - anum,n)

3
||
o

I
M=

|
—

33

[
(]

=k+1 m,g(n+1),k n=1

n BJ _ B
Z - |Umn + bnwm,g(n+1) — GpUm,n
j=n+1 Am,g(j+1),n

(bﬁwm g(m+1) — Al n)

7 _
b s _
(( Z )’Uﬂn,n + bnwm’g(n+1)> — AnUm,n
n=1 j=n+1 Am7g(j+1),n

+ ||5*mm g(m+1) — Tl 73 |

Slﬁ‘

=

3
I
-

n—1

IN

— 1 @ 1
< Z M+1)P T S P, QTP ~ 3MP,
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that is, (9) is verified with f(n) = g(n+ 1) for 1 < n < m; this completes the proof of
Theorem 4 under the hypothesis (16).

If (16) is not satisfied, we have the second possibility: w
opposite signs. Then by (14.1), w?, q( )
repeat the whole procedure of the proof under the hypothesis (16), only we now have to
replace g(n + 1) by g(n) for 1 < n < @, with the conclusion that (9) is again satisfied
with f(n) = g(n) for 1 <n <. This completes the proof of Theorem 4. m

mg(n+1)( ) and a7 have

() and ar have the same sign; therefore we can

REMARK 5 (Modified Generating Biorthogonal System, MGBS). In Theorem 4 we can

replace (Wi, n, W, ,, )P by (Vs UF, n) ™, where, for each n with 1 <n < P,,/2,
W, 2n—1 * wm,?n wm,?nfl /
Um2n—1 = W 2n T D’ s Um,2n—1 = 5 + 5 D
m
* *
. Wm,2n—1 * o wm,Zn wm,2n71 /
Um,2n = Wm 2n — Ta vm72n - 9 - 9 D

where D), is an integer > 9% 2y 1wl Suppose that (7)—(9) of Theorem 4 continue
to hold. Then there exists an integer 7 with @ < n < P, and a strictly increasing
sequence (h(n))"_, of integers and a sequence (b,)"_; of numbers such that again we

have f(m) —1 < h(n) < f(m) and n < h(n) < h(n+1) for 1 <n <n-—1,

2
0< < for1<n<n
U ny (@) 2MEm o=

and

o 53"
|lw — | < NP, where w = anvm,h(n)~

n=1

Proof. Consider an integer n’ with 1 < n’ < 7 and let n” be an integer such that we
can suppose to have already defined {h(n)}7_ nr+1 Dy means of {f(n)}7_. .1 (in the
first step n’ =@, hence {f(n)}" L and {h(n)}"_ ..., do not appear). There are four
possibilities:

(a) There exists n”’ such that f(n' — 1) = 2n” — 1 and f(n') = 2n”” (in this case in
the first step n”’ = f(m)/2). We set h(n” —1) =2n"" —1 (= f(n' —1)) and h(n") = 2n"
(= f(n')) (hence n” =7 if we are in the first step and h(n) = f(7)). Moreover

n=n’+

~ bpr b ~ bp b
bn”—lz 2 + 2 1D;nv bn”: 9 2 1D;”n,

hence

bn”—lvm,h(n”fl) + bn”vm,h(n”) = bn”—lvm,2n”’—l + bn"vm,2n”’

En’ En/fl / ) < W, 2n’”1>
= + _D w 2n" —+ _— =
(2 2 ™ e D!,

bn’ Bn’fl W, 20" —1
— D! . —
2 2 m)(w 2 D!

= bn/flwm,2n”’71 + bn’wm,Qn”/ = bn’flwm,f(n’—l) + bn’wm,f(n’)'

+
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By (14.2) (where we can suppose f(n) = g(n+1) for 1 <n < 7 since if f(n) = g(n) for
1 < n <7 the procedure would be the same, hence we can use (14.2) for n replaced by
n', g(n) replaced by g(n') = f(n’ —1) and g(n+1) replaced by g(n’+1) = f(n’), that is,

‘w:n,g(n/)(f” _ |w:n7f(n/_1)(§)| S 1 |w:n7f(n/)(f)|

- 92P,,

Am,g(n’),n’ Am,f(n’fl),n’ Am,f(n’),n’

we know that

. . . _ wy, £( /)(f)|A f(n'=1),n/
(Wi 20 —1 (Z)| = |wp, p(n—1)(@)] > 77“22;m e

Am,f(n’),n’

W 0 (T)| EX (2K, 22 (Pr=f (' =D41) 1 9(n! —2), P,]

= 922Pm, EX [QK, 92P2 (Pm—f(n')+1) 1 Q(n’ _ 2)’ Pm]

> EX[2K,22Pn(Prn—f(n' =141 4 o(n! _ 9) — 1 P, J|w?, 5 (T)];

m,2n

analogously by (18.4) with k replaced by n’ — 1, hence g(k + 1) replaced by g(n’) =
f(n’ —1) and g(k + 2) replaced by g(n’ + 1) = f(n'), we know that

— 1 Am n'—1).n'—1 ,~ _ ’_ —
Brq| > = /DL S EX(2K, 22PnPn—f (/=D)L o —3) — 1, P (bl
2 Am,f(n’),n’—l

therefore Enu,l has the sign of b,/ 1, that is (by (18.6) for k = n’ — 1), En,_l has the

*

sign of wy, . _1)(T) = Wy, 9,1 (T), hence the sign of v}, 51 (T) = v}, 4 _1)(T),
while b, has the sign of —b,_1, that is (by (18.6) for k = n/ — 1), b~ has the sign of

*

Wy, r(r—1)(T) = =Wy, 5,n_1(T), hence the sign of vy, 5,

w(T) = vy, p () (T); moreover,
since by (14.1) and by (18.6), b,, and b,_; have opposite signs (and analogously for
Wi, 9, (T) and wy, o, (T)), it follows that

B b1

U:cn,h(n”fl) (f) v:jn,Zn”’fl (E)

En/ bn’—l / w;z,Qn’”(f) w:n,,2n”’—1(f) /
(2 T Pm 2 2 D

bt )\ /(L W@
<(en) /(oo

0<

bn’—l bn’—l 2
—2 SR <
W onon 1 (T WE ) (T)  2M P
(by (18.6)). Analogously we have
En// /gn//

0< — = — —
U:mh(n//)(x) Um,2n'“(x)

_ Bn/ _ Bn/71 D;n w;‘nyzn/u (T) . w;’Qn”/,l(E) D;n
2 2 2 2

bnr—1 , )/( w:n.2n’”—1(§) , > 5n'—l 2
<|—-2——D,, ——D, | =2 " — < .
( 2 2 Wyt -1y (T) 2M P,
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(b) There exists n” with 1 < n'’ < n’ such that f(n') = 2n""—1 and f(n’+1) > 20"
(hence in this case we cannot be in the first step, since the procedure of this construction
would imply that we already used f(n’ + 1), therefore it would not be possible to be in
the first step). By (14.2) (for n = n’ + 1, hence with g(n) replaced by g(n’ + 1) = f(n’)
and g(n + 1) replaced by g(n’ +2) = f(n’+1)) and by (12.1) (with 72 replaced by n' + 1,
hence g(7 + 1) replaced by g(n' 4+ 2) = f(n’ 4+ 1)), moreover by (10.2), we have

. B (NN C2) | . s
‘wm,f(n')(x)‘ > 92Pp,

A f(n/+1),07 +1
> A pnymr 41 EX 2K, 22Pn P =f (WD) 4 opr 1 p 1
= EX[2K,22PnPr=f(n)41) Lo’ — 1), P,)]

- EX[2K, 22Pn (Pt (D) 4 opr 1 P

Pr, Pr,
S lwhall< Y BEX[E22PAEeTD 4o(n —2) + 1, Py
n=f(n')+1 n=f(n')+1

< PLEX[2K,22PnPu=I() L o(f(n') — 1) + 1, Pyy]
< EX[2K, 22FaPr=I ()41 4 o(n/ _ 1) P, .

If we read the last sequence of inequalities from top to bottom, since

P,
Z ||w :n,f(n’)-i—l” > |w:<n,f(n/)+l( )| - |wm 2n’/’(x)‘7
n=f(n’)+1
we find that
P,
Wy @ > (D ) EX[2K, 22P5 PS040 o0 1 ]
n=f(n’)+1

> EX[2K, 22Pn(Pn=f (WD) 4 op! 1 Pl [w?, g (T)].
We set h(n” — 1) = 20" — 1 (= f(n’')) and h(n") = 20" (= f(n/) + 1 < f(n’ + 1)), in

particular
w’;kn 2n/!! (E) w;kn 2n'"—1 (E)

U’:;l,h(n”fl) (j) == : 2 + : 2 D;n

Hence v}, ;1) (T) has the sign of wy, 5,1 (%) = w}, 4, (T), while

wm Qn”/(x) w;kn 2n”’71(f)

U () (T) = — B E— Dy,

and —wj, . (T) have the same sign. Then, if b1 = %D;n and b, = —%D;n,

bn”flvm,h(n”fl) + bn”vm,h(n”)
- bn’/flvm,2n”’71 + bn”vm,Zn’”

Bn’ w. 11 5 ’ w. 1"

_ / m,2n’""—1 n m,2n’""—1

— 2 Dm wm72n1// + —/ — 2 m wm72n/// — 7/
m m

= bn’wm,Zn’”fl = bn/wm,f(n’)~
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Moreover b,»_; has the sign of b, and hence of w? ot (n) (T) = Why o1 (T) and hence

of v, 1,(ur—1)(T), While by has the sign of —b, and hence of —w}, o1 (T), hence of
U 2n (T) = U7, 1) (T) by the above. Finally,

[ _ [ _ (5"'D’ >/<w:‘n72nm(f)+w;§%2nm1(§)D,>
U:n,h(n”—l)(f) an,2n”’—l(f) 2 " 2 2 m

Bn/ 1 wm n!! Bn/ Bn/ 2
<< D%)/(—Zil()p')=2* — =2— — < s
2 2 2 Wy, 51 (T) wr f(n’)(x) QM P,

Analogously (we do not know the sign of wy, 5, (T), but |w}, 5,1 (T)| > |w}, 5, (T)|
by the first part of (b))

by _ by _ <_En/ > /(w:nygn,//(f)_w:m,/,1(5)D,>
Uy (T) O o (T) 2" 2 2 "

5n’ 1 w:)’L 2n/""—1 (E) 2571 2
<(Hon) [y e, ) - e
2 2 2 Wy, iy (T) 2M P,

(c) There exists n”” with 1 < n” < n’ such that f(n’) = 2n” while f(n'—1) < 2n/"—1
(hence n” = f(7)/2 if we are in the first step), moreover either wy, 5. (¥) has the
sign of wy, 5, (T) or wy, 5,1 (T) = 0.

Then we set h(n") :~2n’” — 1 (hence h(n") = h(n) = 2@ —1=fm —1if we
are in the first step) and b,,» = b,/; hence (we recall (18.6) for k£ = n’ hence g(k + 1) =
g(n' +1) = f(n'))

7 7 Wm,2n'""—1
bn”vm,h(n”) = bn”vm,Zn’”fl = by <wm,2n’” + T )

m

Hgn”vm,h(n”) - 5n”wrn,f(n’) H = Hgn”vm,h(n”) - 5n”wﬂ%,2n”’ ||

— m.2n/! — I_)n/ |'LU:<n n’ (f)|
_ ol _pfBul oW s

D! D! QM P, 1)/
||wjn f(n' I * M P2
< 2721\/”;7%(1),) < 20wy, i ll/(2M 2 T e ol
1 .
< P,,2MPm’

by has the sign of by, hence of Wy, (n) (T) = Wh, 0,0 (T), hence of

w;kn,2n”’ (f) wjn,2n”’—1(f)

Dy = Vi 2 1) = Uy ) ()

2 2
. bn// = — bn// - Bn,/ <w;kn72n/// (f) i w;lﬂn///_l (f) D:n)
’Um,h(n”)(‘r) ’Um,Qn”’fl(‘rE) 2 2
by by 2
< =2 <

Wy, 0 () /2 w:,%f(n/) (@) ~ 2MPn’

(d) As in (c) as regards n'’, f(n'), f(n’ — 1) and n", but with w}, ,,.»_,(T) and
wy, o5, (T) of opposite sign. We set h(n”) = 2n"" (hence h(n) = f(7) if we are in the
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first step) and by = by hence, by (18.6) as above,

b 7 7 w. 2n/—1
bn//’l)m,h(nll) = bn//vm,2n”/ = bn/ <wm72n/// — %)7
b b b 7 Wm.2n'"" —1
anuvm,h(nu) - bn/’wm,f(n')H = an/Um,Zn/u — bn’wm,2n’”|| = |b |”"1‘D77:”
_olbwl s @ 1, g | 1
Dy, OMPnpr = Z9MPupt = P oMPy

by has the sign of by, hence of w* . f(n) (T) = W, 5, (T) and of

w* () w (@)
m,2;m ) - mxz'ﬂ; : D:w = vm 2n'"’ (LL') - U:jn h(n”)(j);

bn” _ gn// _ 5n//<wm72nm (l’) B wm 21’7,’”—1( )D/ )

V() () U o (T) 2 2

— w* 11 (E) E ! 2
< bn//<L> =9 . n __ < )
2 Wi g (@) 2

We conclude that, by the above (in particular by cases (c) and (d), since in (a) and (b)
we have only equalities), it follows that
Zgnwm,f(n) - Zgnvm,h(n)
n=1

n
1= 8l < | 3 B g — 3] +
n=1 n=1

n
2MP7n + H z_: Wy, ,f(n) — Z nUm ,h(n)

n

3

1 1 2

< 5P, + P P, oMPn — QMPy’

which completes the proof of Remark 5.

2.2. Some properties of the Walsh matrix in /.. One of the main tools in this
work is the Walsh matrix (for the definition see for instance [2, p. 104], or [7, p. 398], or [9,
p. 70]) when applied to the natural basis of I”.. We introduce the following notations:
(22) {on}22 | is the natural basis of E = (2, with {on, 0% }2_, biorthogonal; {0,,, 07 }2~ ,
is the biorthogonal system derived from {o,, 0;}3{11 by means of the Walsh matrix,

hence again |0, || = ||0%]| = 1 for 1 < n < 25,

If {ax}f_, is a sequence of numbers, we will say that {Zszl apyl_, is (H,M,¢)-
monotone (in particular (M, e)-monotone if H = 1) if, for each K and @ with 1 <
K<Q<P,

K Q
}Zak‘ < H‘Zak} + Mmax{|ag|: 1 < k < P} +e.
k=1 k=1

Moreover we recall the following known definitions: we say that a sequence {z,}r_,
(1 < P < +00) in a Banach space is:
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(i) H-monotone if, for each sequence {a,}!_, of numbers, (|| Zf:;l anty|)h_, is
(H,0,0)-monotone;

(ii) H-unconditional if, for each sequence {a,}!_; of numbers and for each partition

{nhizn = {hisy U {ni i

K P
H E Oy Ty, SHH E AnTy
k=1 n=1

(that is, each permutation of {z,,}£_; is H-monotone);
(iii) H-indiscernible (indiscernible if H = 1) if, for the general subset {n;}_, of (ii),
{zn, } | and {z)}/_, are H*-equivalent, that is,

1 K K K
EH Zanxn < Hzakxnk < HH Zanxn
n=1 k=1 n=1

(that is, if {x,,, }2 | and {z}} | are H?-equivalent, hence in particular

K K
H Z a‘kx’ﬂk - H Z Ann
k=1 n=1

if {z,,}F"_, is indiscernible).

We point out some properties of the Walsh matrix (V. Kadets pointed out to us
property (v), which allowed a simplification):
REMARK 6 (Properties of the Walsh matrix). By the definition of the Walsh matrix

(23.1) for each n, 0, = 212«11 esn ok where, for 1 < k < 2% e5,, € {—1,+1}; in
particular 0; = Ziil op and, for 0 <m < S —1,

gm+1 j‘2S—m—1
- _ j+1 .
Ogm 41 = E (1) E Ok;
Jj=1 kz(j,1)25—m—1+1

(23.2) (Ziszl O, Ziszl bpop) = 212«11 anby, for each sequence {ay, bn},%bs:1 of numbers

is a scalar product in span{on}fil, which we call F5 when equipped with the

norm || - ||2 of this scalar product (hence {on}%szl is l-equivalent to the natural
S
basis of I3 );

25
1
(23.3) oy = o ng,n,koz for 1 <n <25
k=1
(23.4) (571/25/2)25:1 is an orthogonal basis of Es;

(23.5) foreach AC{l,...,25 and z=Y"

we have

e An0y and yEspanf{o, :n € {1,...,25}\ A4},

o+ yll = (3 lanl) VA,

neA
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Proof. For (23.3) and (23.4): From (23.2) and (23.1) it follows that

Omaon § €S,m,kES n,k

for 1 <m,n < 25. We claim that

25
(24) ZES,m,kEs,n,k = 25(5m,n for 1 <m,n <25,

k=1
Indeed, it is obvious that (24) holds for 1 < m,n < 2. Then we proceed by induction
and suppose (24) true for 1 < m,n < 27 for some integer p with 1 < p < S —1. To check
(24) for 1 <m,n < 2PT! set

kv2sfp—l
0 = Z 0j for 1 < k < 2rtt
j=(k—1)25-P-141

hence, for 1 < k < 2P,

(2k—1).29-P~1 2k.25P—1 k2577
Ok —1 + 021 = > 0j + ) 0; = > 0;.
j=(2k—2)25-P—141 j=(2k—1)25-P-141 j=(k—1)25-r41

By (23.1), for each fixed m and n with 1 < m < 27 and 2 + 1 < n < 2P*! (hence
1<n—2°<2v),

2P k25" 2P optl
m = E Ep,m,k E 05 = E Ep,m,k(02k—1 + 02k) = E Ep+1,m,kOk
k=1 j=(k—1)25-r41 k=1 k=1

so that, for each k with 1 < k < 2P, e, 1 mok—1 = +€pmk a0 Epyrim 2k = +E€pm. k-
Analogously, by the second part of (23.1) for m = p,

op+1 k.oS—p—1 op+1
~ _ k+1 _ k+1~
1= (1) > 0j = Y _(—1)*5,
k=1 j=(k—1)25-pr=-141 k=1
hence in our case
2P+1
§ Ep+1,n, kokt = E 6p,n k 02k 1= 0279)
that is, ept1,n,0k-1 = +€p1n72p7k and €p11, 02k = —Epn—2»k for each k with 1 < k < 2P,
whence
op+1 2P
(Om70n) = § Ep+1,m,kEp+1nk = E (5p+1,m72k—15p+1,n72k—1 + 5p+1,m72k5p+1,n,2k)
k=1 k=1
2P
= E (€p,m.kEp,mk — Ep,m kEp,m,k) = 0.
k=1

On the other hand, it also follows that {5, }2 5, 1 has the same behaviour as {0,}2_,
(since it is sufficient to replace 021 +02x which appears in the expression of the elements
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of {0, }2"_, by Goj_1 —02x which appears in the expression of the elements of {0, }27 5, 1)
that is, (24) holds also for 2P +1 < m,n < 2P*1 hence also for 1 < m,n < 2P+1; therefore
(24) holds; hence (6,,/25/2,0,,/25/2) = 6, for 1 < m,n < 29; that is, (23.4) has been
verified and also (23.3) follows from (24) and from (22), since, for each fixed m and n
with 1 < m,n <29

1 25 1 2 25
(35 2 esmeei )6 = (55 X esmeci ) (X esmin)
k=1 i=1

25 29 25
= 25 § E €Smk€Sn10k(Oz = § €Smk€Snk—5mn
k=11i=1 k=1

For (23.5): We know that

IR Se N
VQmax{|b,|: 1<n<Q} >, b2 > n\/l_"

n=1

for each sequence {b,}%_, of numbers (from a theorem of John on the Banach-Mazur
distances d(12, 12Q ) and d(l?, l?), but also the direct verification is easy).

Therefore by (23.4), for each A C {1,...,25} and for any z = )
y € span{0, : n € {1,...,251\ A}, it follows that
|+ ylla
7+ ylloo > FEE2 > il = oo | 3 win
(e o
572 an = ’
neA 25/ nEA \/Z

which completes the proof of Remark 6. =

neA GnOn and

The next proposition concerns the property of the most important (for the paper)
subsequence of the {ﬁn}%il of (22) (it is a particular subcase of (23.5)):

PROPOSITION 7 (Special sequences by means of the Walsh matrix). Setting in (22) e;
01, €5 = 0%,em = Ogm-141, €5 = /OE”L,lel for2 <m < S, Ey = span(o,, : 2 < n
25 n ¢ (271 + 1) _,) we have:

IN

(i) {em}S _, is 1-equivalent to the natural basis of I{ and {e},}5 _, is indiscernible;
(i) {em + Eo}3 _, is indiscernible and 1-unconditional.

Proof. (i) The fact that {e,,}~ _; is l-equivalent to the natural basis of I§ is well known,
therefore we turn to considering {eZ, }* _; where, by (23.1) and (23.3),

j_2577n

om
1 .
er ~ * o _ Jj+1 *
e1=01= 53 Zoka €m = O2m-141 = 53 Z(_l) Z Ok
Jj=1

k=(j—1)25-m41

for 2 <m < S. So let {ny}< | (where without loss of generality we can suppose n; = 1)
S
be a subsequence of {m}~ _; and let {a;}%_, be a sequence of numbers. Since {o}}?_,
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is 1-equivalent to the natural basis of l%s we have

2
H Zakez
k=1

1 95 92 j.25-2

g5 (@Yot tad (-0 3 o)
k=1 j=1

k=(j—1)25-241

1 92 i 9S-2
st DICREEET I DI
j=1 k=(j—1)25-2+1
2572 2 _
Bt ST e A EY e
j=1
257712
=95 (2" ay + ag| + 2" ay — ag))
25 e gn2 j.2S—nz

= Z la1 + ( J+1 H Z (a1 + ( J+1a2) Z o

k:(jfl)QS*"QJrl

2
ok) H - Zakem
Analogously, setting A; = E

k=(j— 1)25 n2 41
3
*
oS
k=1

J:

25 2m2
1 N .
25 ( Y ohtasy (1
k=1 j=1

]‘257’”3
k=(j—1)25-"3+1
gn2 j.257712

= 5l Zowazz S D

k=(j—1)25-m2+1

oj for 1 < j <273, we have

on3 J.QS*”S

+as ZH)M >ooa

k=(j—1)25—m341

on2 iona—n2
— 4T Y @) e )
i=1 j=(i—1)2n8—n2 41
e P
=Y Y ) a () )
i=1 j=(i—1)273- 2 +1
25—%3
28
4 2m2t(graTmz= gy — gy 4 agl + 2" "2 gy — ag — ag)))

(2"~ (2" ay + as + ag| + 2" 7" Hag + ag — ag))

1
= §(|a1+a2+a3|+|a1+a2—a3|+|a1—a2+a3|+|a17a2—a3|)

252;n3 Qn2—lons—na—1 — 2%) which does not depend on ny and n3. Then

3 3
* *
H Zakenk = H Zakek
k=1 k=1

(since

and so on, till we get

K K
* *
H Zakek ’ = H Zakenk .
k=1 k=1
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(ii) We can immediately see that {e,, + Fo}5 _; is 1-monotone (indeed, for each
sequence ¢; U (cam-1,1)2 _, of numbers let (cn)fL(
numbers such that

g2m-141)5 _)=2 be another sequence of

s

S
€101 + E 62n171+152m71+1 + EoH = H E Cnon|l;
m=2 n=1

then obviously

2S
H Z CnOn
n=1

2571
E CnOn
n=1

>
S—1
> -~ -~ -~ S
> ||lcior + Com—14103m—141 + span{on}n(ﬂ?n,url)s =2
m=2
S—1
= |lcio1 + E C2m71+1/0\2m—1+1 + Eyl|,
m=2

and so on). Therefore let {a 2 U{a}} | be a sequence of numbers and let {n; }1, U
{n%}szll (where without loss of generality we can suppose n; = 1) be a partition of
{m}5 _,. Setting 0 = Z,If 1 aker, and 0" = ZII<,<=1 apen, we can see that |0 + Ey|| >

0" + Eo||. Indeed, let by U ((b;)2 m—o be a sequence of numbers such that

i=2m— 1+2)

||8+ E()H = |laj01 + Z am/O\Qm—1+1 + E()H
m=2
K
— @131 + 3" @mdam 111 + span(@z U ((ai)fzzm,l+2)5:2)H
m=2

= |la107 + Z AmOgm-141 + ba02 + Z Z bi0i||;

)
m=2j=2m-1492

since it is immediate to see that

K 1 m—1 m—1 n 1 m—1
(@)=, = (03)7=, U (0, )22 2m+12+1 )h—o and (O’L)'L 1 U ((o )3 ;vzk+12+1 )hea

are l-equivalent (for instance by induction), it follows that
K 2nk—lyom—tl
16"+ Eoll < |lardn + Z UL CED DD DY
k=2 j=2nk—141
gm

= Ha101 + Z a0gm—141 + D202 + Z Z b;

m=2 3=9m— 1492

0k = 16+ Eoll.

Therefore we are now going to prove that [|0" + Ey|| > ||0 + Eo|| (hence ||o' + Ey|| =
|6+ Eo||, that is, (e, + Eo)2 _, is indiscernible) and also that

K K’ K
|52 e+t + 1] = [ s + 5
k=1 k=1 k=1

(hence (e,, + Fg)3,_; is 1-unconditional).
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Since by the above (e,, + Fy)3,_, is 1-monotone, we have

K K
o+ Eol| = H Zakek + EOH = H0151 + Z A Ogm—141 + EOH
k=1 m=2

K
~ ~ . ~ S .
= Halol + g A Ogm—111 + Eo + span(0gm-141)m—rc41]]s
m=2

hence, if (e, + Eo, F, )m | is biorthogonal, there exists F' € (span(e,, + Eo)3 _ K41) =
span{F,, }E_ || F = Zmzl bm Fim, such that F(0+ Ey) = |0+ Epl|| (hence |0 + Ep| =
27{2:1 ambp) with ||F|| = 1. On the other hand, (E/Ep)* is linearly isometric to

(Eo)" = span(5; U span(0,-141)m—2)

and {F,,}5_, and o7 U {’0\2*,,",14_1}51:2 are l-equivalent; hence, setting F’ = Zle biF,. s
since by (i), 07 U {03.u—1,1 }5—o = {€},}5,—1 is indiscernible, it follows that

K K
A DY b F| = ||r07 + > b3

= oo + Zbkom vl = || Zbank

At this point we notice that

K K
F'(3 + Ep) = (Zbank) (Y aren, +Bo) =Y sty = o+ Bl
k=1 k=1

with [|[F'|| =1 and F| = span(en;)kzl, hence

= [1#]I

K K’
| 3" awen, + Eol| = 118+ Boll < [/ + > ahen, + Eo|.
k=1 k=1

Therefore we conclude that both
16" + Eol| = sup(F (&' + Eo) : | Fl| = 1) > F'(6' + Eo) = [[6 + Eo|

(which was our aim) and

K K K’
Hb” +E0|| = H Zakenk +EOH S H Zakenk + Za%en; + E()H
k=1 k=1 k=1

(by the above), that is, {e,, + Eo}5,_; is also 1-unconditional. This completes the proof
of (ii) and hence of Proposition 7. m

CONSTRUCTION I. We start from the biorthogonal system {/0\n7/071}%i1 of (22) for S =
M + R. For each

oM+R

0= Z anen € E = 12M+ = span{on}n 1 '—span{on}Q e

n=1

we define the support of o to be the set

supp(o) = {n: 1 <n <2M*E.q, 0},
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FIRST STEP. We can write

N M+R M M — M
(25) {O"’ }2 ! _{OlmvolnL}2 +1U{{0Tm7 rm}2 L R VVlth{Ol’n’uOlm}2 ;) =

(in particular, for r = 2, {02,053, R A {on}:

M+1
{On, 0532, M%ndl we set F o span{o1, m}m !, moreover, for 2 M<+ r < R,
oMtr S s oMt v
{0rm> 0y bz ={0n, 0} };,_ynr4r1,, and we set E, = span{0, ., }2,_; ,hence

2M+R — E; finally we set, for 1 < r < R, E, = E’ E”

2M+1

ZT 1E = Span{on}

where E; = E/ and E2 = EY, while, for 3 < r < R, E. = span{orm}

and E” = span{0, , } MgMLJrl, moreover £ = E' + E" with E' = E E’ and
=YL B

2M+2

Corri11)- By (23.1) and (23.2) we

can set (see also the explanations after the formula)

(26.1) for 1 <r <R,

j‘2R77' j.2R*7‘
00,r; = E o; and 56:7"7]' = g o}
t=(j—1)28-"+1 t=(j—1)2R-741

for 1 < j < 2M*7 (in particular 6p r; = oj for 1 < j < 2M+F
”R ' for 1< j < 2M+1 finally 55,0 s = 52 &
P i (j—1)2R-141 90t 10T L = 7 = , finally 09,75 = >, 00,r7 (j—1)2r" =" +1

for1 <j< oM+r" and 1 </ <o < R); we point out that, for 1 < m < 2M+r=1

and 50717]' =

oM+r

Orm = OgM+r—1_1 4y = E EMA4r,2M+r—14m k00, k}

k=1
(26.2) for 1 <k < OM+1 e set
k-2B-1
01,k = 00,1,k = Z op and 0] =0) 1
t=(k—1)28-14+1
analogously
21 (k71)2R71+j.2R72 21
Gap =) (—1)F > or =Y (=155 (e 1y214;
j=1 t=(k—1)2R-14(j—1)2R-241 j=1
and
21
~% _ JH+1lx .
Ok = Z(*l) 00,2,(k—1)21 45>
=1

M+1
it follows that, for 1 < r < 2,0,; = Zi 1 Ori and in general, for 1 < m <

M41
M+1 5 2
2 + y Orom = Zk 1 5M+1mk0rk7

(26.3) fix now r with 3 < r < R; we know that

2M+r

O’I‘,n(: 02M+T—1+n) = E €M+7‘,2M+T_1+n,j00,7‘,j
i=1
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for 1 <n < 2M+7=1 hence

oM +r oM +1 kor—1
OT’1 = O2ZW+7‘—1+1 = E ( 1)]+ [o)s) R B E E ( 1)j+ [e)s) g
j=1 k=1 j=(k—1)2r—141
oM+1
= § ar,k
k=1
where, for 1 < k < 2M+1
ko1 or—1
= Z it }: +ly
Or.k = ( 1)] 00,r,j = ( 1)] OOr(k 1)27—145
j=(k—1)2r—141 j=1
or—1 (k_l)QR—l_i_jQR—r
= E (-1 *t E o
Jj=1 t=(k—1)2R—14(j—1)2R—"41
Lor—1

(and we set 0 ) = ij(k_l)zr,l_H(—l)jﬂaam-); it follows that
2M+1

Orm = OgM+r—14py = E EM+1,m,kOr k

for 1 < m < 2M+L,
(26.4) for 1 <r < Rand 1<k <2M+1
supp(orx) = {n: (k — 1)2R—1 +1<n<k- 2R—1}.

(26.1) concerns, for each r with 1 < r < R, the representation of the elements of

M+r—1 . . ~ . .
{6,m}2,—1 , where the “bricks” of the construction are the elements 0y, ;, in particular
17 ’ " ’
we use 2M+R/2M+T = oft=r oMAr™ joMArt — 9r" =" and

j.2R—r' 27-”—7‘/ (j_1)2R7T'+l_2R—r”
00,r",j = E 0t = E E Ot
t=(j—1)2R-"" 41 =1 t=(—-1)2B-m"+(-1)2R—""41
2 (G et 2

Z Z Z 0y, r(G=1)2r" = 4 (1=1)+1

=1 =((j—1>2r”fr/+<z—1>>2Rfr”+1

27 gt

= E OO (G — 1)2r”—r’+l.

(26.2) and (26.3) concern the representation of the first 2//*! elements of {0, m 2
we call 0, ;, the “bricks” of this representation. Hence we consider separately the case of
1 <1 <2 (where E! does not appear) and of 3 <r < R. For (26.2) we have

2l (k—1)2F~14 . 2R-2

ook =y (—1)7H > o

Jj=1 t=(k—1)2R-14(j—1)2R-241
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2! ((k—1)2"45)2F 2 2!
— )+1 _ i+1~
= E (=1) E o = E (=1)77700,2,(k—1)21 +(j—1)+1
j=1 t=((k—1)21+(j—-1))28-2+1 Jj=1
21
. _ _
= E (_1)J+ 00,2,(k—1)21+j = 00,2,2k—1 — 00,2,2k-
j=1
On the other hand, by (23.1) and by the definition of the Walsh matrix,
2M+2 2M+2
02,1 = OgM+141 = E EM+2,2M+141 1002,k = E (-1) * 00,2,k
k=1 k=1
2M+1 2JM+1
= E (50,2,%71 —50,2,2k) = E 52,k~
k=1 k=1
Hence, for 1 < m < 2M+1
21\/I+2 2M+1
02.m = OM+1_4p (Z E 5M+2,2M+1+m,k50,2,k) = E 5M+1,m,k52,k-
k=1 k=1

For (26.3), analogously, the fact that &/, oarsr—141 ; = (=1)7F! for 1 < j < 2MF7 comes
from (23.1) and from the definition of the Walsh matrix).

SECOND STEP. We are now going to define another Hamel basis
2M+R 2M+1 21\/14»7‘71 R

(Un)nzl = (v17m)m:1 U ((vﬁm)mzl )r:Z

of E = span(ﬁn)iZTR. We start with » = 1 and we will define (we suggest making a

picture)
2M+1 2M—m+1

(”Ln)nzl = ((”Lm,g)g:l )%:1 U (Ul,M-s-l,g)?;:r
We start with m = 1 and, by (26.2) and by (25), moreover by the definition of the Walsh

matrix, for 1 < g < 2M (taking into account the fact that, for these g, EMA41,2(g—1)+1,k =
e, for 1 <k < 2M) we set

N R gM+1 gM+1
(01,2(9—1)41 +01,29) 1 - ~
V11,9 = o =3 E EM+1,2(g—1)+1,k01,k T+ E EM+1,2¢,k01,k
k=1 k=1
oM+l oM oM
EM+1,2(g—1)+1,k T EM+1,2g,k ~ - ~
= E B 01,k = E EM+1,2(9—1)+1,k01,k = E EM,g,k01,k-
k=1 k=1 k=1

For m = 2 we set analogously for 1 < g < 2M~1,

(01,22(9—1)+1 = O1,22(g—1)+2) + (01,22(g—1) 43 — 01,22)

v15219 = 22

2M+1

. Z (€M+1,22(g71)+1,k - €M+1,22(g71)+2,k) + (5M+1,22(g71)+3,k - €M+1,22g,k)5

= 1,k

22 ’

k=1
21\4+21\4—1 21\4+2M—1

= E EM+1,22(g—1)+1,k01,k = E EM—1,9,k—2MO01 k-

k=2M41 k=2M41
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Continuing we get, for 2 <m < M — 1,1 < g < 2M-m+1
oMy . yoM-—m+l
- oM+1 .
V1m,g (€ span(01,n)p—y ) = E EM—m+1,9,k—(2M 4. 42M—m+2)01 k, U1, M,g
k=2M 4.4 2M-—m+241]
oM ..ot oM+1_o1
= E 511g1k7(2k1+..4+22)01’k = E El’g’k,(gMﬂ,Qz)OLk,
k=2M ... 42241 k=2M+1_924]
2A4+1

oM +1
V1, M+1,g = E €1,9,k—(2M+1 -2 )01 k (€ span{o, n}n 1)
k=2M+1_241

At this point we set, for 1 < m < M, wy,1 = V1,m,1. Since (vlyn)yf " is a Hamel basis

n=1
of span(ﬁlﬁn)ffi;l, there exists (vikn)f;z;l C span(b\{m)ffi;l such that (vq,, v} n)%MII is
biorthogonal. In particular by the above and by (26.2) and (23.3), it is easy to deduce
that

2M

1
vil,g = 6?2(971)“ + 6T,Qg = QM+ R—1 ZfMygykaﬁf,k
(since by (26.4) the cardinality of supp(o, k) is 271 for 1 <r < Rand 1 < k < 2M+1)
for 1 < g < oM Analogously for 2 < m < M, since QM—m+1gR—1 _ gM+R—m f,;
1<g< oM-—m+1 we have

oM 4. yoM—m+1

. 2k=aMyqoM-mt2 1 EM—mtlgk—(2M 4 p2M-mi2)0] g
Uim,g = oM+R—m ,
2M+1
1
* o ~%
YILM+19 = 3R § : €1 gk—(2M+1-2)01, for1<g<2.

k=2M+1_241
In particular by the above, by (23.1) and (23.3) and by the definition of the Walsh matrix,
2]\/1 21\/1 2]\/1

w11 =V1,1,1 = E EM,1,k01k = E 01k, Wy = 2M+R 1 E

and, for 2 <m < M,
2M+'“+2M71n+1

Wm,1 = V1,m,1 = E EM—m+1,1,k—(2M +...4-2M-m+2)01
k:21\/f+”,+2]\/17m+2+1
oM . oM-—m+l oMy . yoM-—m+1

1
_ -~ * _ ~k
= E : OLks Wm,1 = S0+ R—m E : 01,k

k:21v1+‘,,+21v1—m+2+1 k:2zu+,,.+2M—m+2+1
~ ~ M1 M—m+1
We set Ey1 = Ej; = Zm+1 EOlm where EOlm = span{vlmg}2 for 1 <

m < M, while EOJ’MH = span{vLMH’g}g:l. By (25) it follows that B = E1 =
span{wm,1 }m—1 + E{ ;-

For r = 2 the same procedure works: if we replace {01 j, 0] k}k ' by {621, 05, k}leﬂ,
then we get
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21\4 2M
_ _ ~ * 1 ~s
Wi,2 = V2,1,1 = 02,k Wy9 = 9M+R—1 02 k>
k=1 k=1
oM oM
. -~ * _ 1 ~k
V2,1, = €M,g,k02,k, V214 = OMAR—1T E€M,g,k02 k
k=1 k=1

for 2 < g < 2M . Moreover, for 2 < m < M,
oM . yoM—m+1
Wm,2 = V2m,1 = § 52,ka
k=2M4...42M-—m+24]
1 2M+.”+2M77n+1
* — ~k M—m+1
wm,2 - 9M+R—m g 027k for 2 < g <2 s
k=2M ... f2M-m+24]
2M+.”+2M71n+1
V2,m.g = E EM—m+41,g,k—(2M 4-..42M —m+2)02
k=21\/1+,,,+21v1—m+2+1
2M+“_+2M7m,+1

. 2ik=aMp.qoM-mt2 41 EM—m+lgk—(2M 4o 2M-m+2)0) g
U2,m,g - 2M+R7m )
2A4+1
U2,M+1,9 = Z €1,9,k—(2M+1-2)02
E=2M+1_241
2A4+1

1
* ~%
V2Mi1lg = R Y. Ergr-vnogds; forl<g<2
k=2M+1_9241

. fa fa M+1 A = M—m+1
Again we set Fo o = Ej 5 = Zmi_l Eo 2,m where Ey o, = span{va g }322 for1 <m

< M, while Eg 2 41 = span{va ar41,9 Yoy By (25), Ey = B} = span{wy, 2 }M_, + Ef 5.

THIRD STEP. Now we fix r with 3 < r < R. Compared to the previous two constructions,
. . . . o~ M+r—1 ~ M+4r—1
there is a difference, since now the Hamel basis (0, ,)> U of span(o;.,, )2 1" has

n=1 n=1

M+r—1 - 9M+1 elements; again we will define another Hamel basis
2M+r—1 - 2M+r—1—'m, M 27‘—1
(Vr,n)n=1 = ((Ur,m,g)g=1 Jm=1U (UT7M+119)_£]=1

r—1

of Span(ar’n)ffif and we will use the expression of o, , of (26.3), for each n with
1 <n <2M+7=1 We start with m = 1; by (26.3) and (25), and by the definition of the
Walsh matrix, for 1 < g < 2M+7=2 we set

1 .
Url,g = 2_1(0T,2(!]—1)+1 + 0r,2¢)
1 oM+r oM+r
= 2—1( E EM+r2MHr=142(g—1)+1,j 0.5 T E 5M+T,2M+T’1+2g,j00,7’,j)
j=1 j=1
2Z\/I+r
1 _
= 2_1(€M+7‘,2M+T_1+2(g—1)+1,j + EMr,2047-142g,7) 00,1,
j:
2M+'r71 2M+'r71
= EMA4r2M+r=149(g—-1)41,j00,r,j = E EMA4r—1,2M+r=244 700,r
Jj=1 j=1
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(by the construction of the Walsh matrix, always taking into account that, for 1 < g <
2M+r—2 and 1 S ] S 2M+7‘—1’

EMA4r2M+r—1492(g—1)+1,j — EMtr—1,2M+r—24g,5)-
Continuing, we get vy ;mq for 2 <m <M+ 1land 1 < g < gM+r—m—1 (see the fourth
step for the precise expression) and in particular

oMl qor

Ur,M,g = E Er2r—lqg j—(2M+r=—14..4or+1)00,r,j
j:21v1+r—1+,,.+2r+1+1
oM+r_or

~ -1
= E Erar—14gj—(2M+r_grt1y0p,j for 1 < g <2770
j:21\4+7'72"+1+1

Concerning the functionals, again we have the biorthogonal system
oM+r—1 % oM+r—1—m . pr gr—1
(UT,H? U:,n)nZI = ((UTJTM]? UT,m,g)g:l )m:l U (%",M-}-l,ga U:,M—i—l,g)g:l
where, since by (26.1) the cardinality of supp(d ;) is 28" for 1 <r < Rand 1 < j <
2M+r,

21\4+7‘—1
1
* o~ ~k . o~
Ur1,g = Or2(g—1)+1 1 Or2g = oM+R—1 Z EMA4r—1,2M+7=244,500,r ;
Jj=1

for 1 < g< 2M+T—2; analogously for 2 < m < M +1land 1 < g < 2M+T—m_1, we
have v} (see the fourth step). On the other hand, if we consider only the first part

rm.g
~ M+1 ~ Mtr—1 R oM+1 "
(0r.m)2,—1 of (0,m)2,—, , since by the end of (26.3), 0, = w1 EM+1,m,kOr ) for

1 < m < 2M+1 we can repeat the same construction of » = 1,2 and obtain another

. ’ oM+1 . —~ oM+1 .
Hamel basis (v;.,,)5,—1 of span(o,m);,—; with
1w \2MAL ’ 1% gM-—m+l, pp / 1% 2!
(vr,nvr,n)nzl - ((Ur,m,gv vr,m,g)g:l )m:l U (UT,M-i-l,g’ vr,M+1,g)g:1
biorthogonal. Precisely, for 1 < g < 2™,
2M 1 2ZM
! _ ~ 1% _ ~%
Ur,l,g - 5M797k0T7k7UT,1,g - 2M+R—1 Engqkor,k'
k=1 k=1

Continuing, we get, for 2<m < M and 1 < g < 2M—m+1
oM | yoM—m+1

/ ~
Urim,g = E EM—m+1,9,k—(2M +...42M—m+2)Or [,
k=2M f...yoM-m+27]

oM 4. yoM—m+1

I£3 1 ~%
Vrm.g = SMTR-m E EM—m+1,9,k—(2M 4+ 42M—m+2)Op
k.:2M+A,_+2M—m+2+1
oM+1
, ~
Ur,M+1,9 = E , €1,9,k—(2M+1-2)0r k)
k=2M+1_241

21\4+1

1
1% _ ~
UrM+1,9 = 3R > €1,9,k—(2M+1-2)05 ), for 1< g <2.
k=2M+1_241
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At this point, if we compare with the fourth step, it is easy to see that

M—m+41 1
((v;",m,gv U;Tm,g)zzl )r]\rg:l u (v:“,MJrl,g’ ,U:j:MJrl,g)?):l
M—m+1 1
= ((”r,m,ng:,m,g)zﬂ )J\m4=1 U (”r,M+1,ng:,M+1,g)§=1-

Indeed, for2§m§Mandl§g§2M_m+1, and for 1 < g < 2'if m = M + 1, if we
~ M . ~ T . .

use {orym}?n:ll instead of {0y, }f:; in the construction of v, ,, 4, we have exactly the

definition of v;.,,, ..

and 1 <r <R.
We can also replace ((wm,r,w};, .)f;)5_, by the biorthogonal system

o * ok Ik
Now we set Wy, » = Uy 1 and wy, , = vy, 1 =05, for 1 <m <M

R \M
((um,T’7 u:’L r)r:l)m:l’
where, for 1 <r < R,

m oM 4. . 4oM—s+l

m m oM
Um,r = § Ws,r = W1,pr + § Wsr = § Or k + E E Or k
s=1 s=2 k=1

§=2 k=2M 4...42M—s+241
oM ..y oM—m+l

= E 57”, k

k=1
for 1 < m < M. It is easy to check that
! oM .. 4ot
* ok _ ~s
uM,r - wM,T - 271{ E : Or,k’
k=2M4...42241
* ok *
um,r - wm,r - wm-l—l,r
oMy . foM-—m+t1 oMy .. foM—m
1 » 1 o
= 9M+R-m > Ork = OMFR-m—1 > Or,k
k=2M 4. joM—m+2] k=2M 4. 2M—m+141]
for 2 <m < M -1, uj, = wj, —wi,. Itis easy to see that wi, = u;, while

Wyn,r = Um,r — Um—1,r for 2 <m < M.

FourTH STEP. The next formula summarizes the definitions of the main previous se-

quences:
(27) for each r with 1 <7 < R we have
oM gM+r—1
W1,y = E EM1,EOr k = E EM4r—12M+r—241 ;00,7
k=1 j=1
with
oM+r—1 oM
Wi, = Y I ——
1,r — 2M+R—1 €M+T7172M+'r'—2+1,j 0,r,j — 2M+R—1 k>
Jj=1 k=1

moreover, for 2 < g < 2M+r=2 M if p = 1),

gM+r—1

Url,g = E, EM+r—1,2M+7=244 500, j
=1
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oM ~ . oM ~ MY o
(=2 j=16Mg,300,1,5 i r=1,and = >}, enrgr0pk for 2 < g < 2%) with
oM+4r—1 _
t3
. _ D=1 EM4r—12M+r=249i00 1
rlg ™ 9M+R—1

v

oM ~ 1. oM ~ _
(= 23:1 5M,g,j03,1,j/2M+R Vifr = 1, and = Zk:l 5M,g,k0:,k/2M+R L for 2 < g <
2M); while, for 2 < m < M,

oM .. yoM—m+1

Wm,r = E Or k
k:2M+.__+2M—m+2+1
oMA4r—14 | oM+tr—m

= E €M+T7m721w+7‘7m71+11j7(2]&1+7‘71+4,_+2M+T7m,+1)5077«7‘7'
j:21\4+r—1+4,_+2M+7‘—m+1+1
with
oMtr—14 L oMtr—m - ‘ 5
w* . Z M+T7m,21\4+’"’m’1+1,j7(2M+’"71+-~+21\4+’"’m+1) O,’r’,j
m,r 2M+R7m

j:21¥1+7‘—1+,,_+21w+7‘7m+1+1

1 2M+“_+2M7m,+1

abue =D DR
oM+R—m Tk

k=2M f..p2M-mt2 1]

moreover, for 2 < g < 2MAr—m=1 (QM+1-m if ;. — 1)

Ur,m,g
oM+r—1_ oM+tr—m
= E EMpr—m2M+r—m=14g i (2M+r—14. .. oM+r—m+1)00,r,j
j:2M+7‘—1+‘,,+2AI+7‘—m+1+1
- 2M+.”+2M7'm+1 N N
(also =3 ) on | or—mi2 g EM—mt1,g,k—(2M 4 2M-m+2)Op ) for 2< g <2 )
with
*
r,m,g

2M+r71+“.+2M+'r71n e
Zj:2M+7‘—1+...+21W+T7m+1+1 EMA4r—m,2M+r—m=14g j_(QM+r—14..foM+r—m+1)0q . ;

9M+R—m
. 1 2M+“_+2M7m,+1 ~
(_ mzk=2M+~n+2M7m+2+2 €M7m+1,g,k7(2M+'“+2M7’”+2)Or,k; for 2 S g S
2M=m+1). finally
21\4+r
Ur,M+1,9 = E €T72r71+gvj_(2M+7‘_27‘)0077"]'
j=2Mtr_oryq
with
. oM+r
* _ kK
Ur M+1,9 = 2_R Er2r=14g,j—(2M+r—27)00,r,j
j=oM4r_oryq
=1 (g M1 o
for 1 < g <277 (2if r = 1) (also vy ar41,9 = D j—gmt1_o4q €1,9,k—(2M+1-2)0r  fOT

1<g<2).
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FIFTH STEP. The next formula sheds more light on the preceding steps (see (27)):

(28.1)

(28.2)

(28.3)

M+1—m 1
(Wines Wy )Ny U (01,m0g, VF o) ome MU (V1,M+1,0, VT ary1.g)am1 U

Mtr—1-m r—1 .o .
(g, VX m,q)g 9 UMy (UT,MH,ngr,MH,g)E;l )E_, is biorthogonal with

m=1
M+1—m =~ M+r—1—mn
span(wp, 1 U (Ul,m,g)3:2 ")m=1 = E1 and span(wpm, U (vr, m,q)?; 2 me =

Er for2<r <R;

we set By = Y% Ey, = ZM“ EOm,EOT = ZM“ Egrm for 1 <7 < R and,
forl<m<M+1, EOm Zr 1E0Tm where EOlm = span{vlmg}gM;_
1<m< M and E01M+1 = span{vy, M+1g}g 45, while, for 2 < r < R, EOTm =
span{vrmg}2M+T " for1 < m < M and Eo rM+1 = span{vy, M+1,g}g 1 ,hence
for 1 <r <R, E = Eo,, + W, with W, = span{wmr}m 1; moreover E =
Eo+W with W = Y1 Wy, B = En {0, Ny wi, . }; E = E' + B with

for

=W+ Z ( Z span{vnmgt2n, |+ Span{vr,MJrl,g};l:l)

M+1
= Z span{oy , }2,_

and
-~ oM+r—1
E" = Z pan{or m} —oM+147
r=3
R M
gM4r—1—m
= Z ( Z Span{vrm g}g oM+1-m 1 T Span{vr Mﬂyg}g 21+1)
r=3 m=1
then
a IW
o +1 91 ~
Ey = Z ( Z span{v,, M,q} "y span{vT7M+17g}g:1) +E"
(s sy, r)ﬁzl)% 1 is biorthogonal with
m oM . yoM—m+1
Um,T:Zws,r: Z o forl<m<Mand1l<r<R;
s=1 k=1
1 M
Uprr = Wipr = 57 Z 0. for1<r<R,

k=2M ... 42241

2MJr poM—m+1 22:2MJr poM-—m
* _ * * _ 2M+ +21\4 m+2+1 'r‘k 2M+ +2M 7n+1+1 'r‘k
um,r - wm,r - wm-l—l,r - 9M+R-m
and
JoM-1
. s « Zk 1 rk 2Zk oM 41 Opg
Uy p =Wy, — Way = 9M+R—1 ’

w1,r = U1, While Wy, » = Uy — U1, for 2 <m < M;
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2NI+R—1

(28.4) for each fixed r with 1 < r < R, supp(vr1,4) = {t}i=; for 1 < g < 2MAr=2
(1<g<2Mifr=1), while for 2 <m < M,

gM+R—1 4 oM+R—m
SUPP(Vr,m,g) = {t}t:2M+R—1+..4+2M+R—m+1+1

for 1 < g < 2MHAr=l-m (1 < g < 2M+1-m if ; — 1); therefore it follows that,

for any m, m/,m”,r,v’,r” with 1 < m,m’ #m” < M and 1 < r,7" # 1" < R,

supp(wp ) Nsupp(wp, ) = O while supp(wy, ) = supp(wy, ) with cardinality

— 2M+R—m.
For (28.4) we recall that for 2 < m < M, by (26.1) and (27), supp(v,1,4) = {t}t21:\/[1+7‘712R—7»
oM +R—1 .
={t};_; , while, for 2 <m < M,
M+4r—1lgR—1r M+R—1
supp(vr,1,9) = {t}%:l ? = {t}%=1 )

B (@M+r=1y | oM+r—m)gR—r _ gM+R—1, 4 oM+R—m
Supp(vr,m,g) = {t}t:(2lu+r—l+,“+2M+r—m+1)2R—r+1 = (t)t:2M+R—1+‘,,+21M+R—m+1+1'

M

m—1 of numbers we

SIXTH STEP. By the previous formula for each sequence ((a, )% ;)
infer that (see the beginning of the second and third steps)

oM+R—1 oM+R-1

(29) if (001,n);—=1  is the sequence derived from (0,);—; by means of the Walsh ma-
= MR- . MtR-
trix and (007m7n)%:1rR " the sequence derived from (oomm)nzirR " for 2<m<M,
then
M M+s—2 A M+R—1
(01,1,9)321 U ((vsyl,g)gd )5:2 = (00,1,n)%:1
and
M+1—m M+s—m—1 ~ M+R—m
(”Lm,g)gd U ((Us,m,g)gd )?:2 = (OO,MJL)EL:l

for 2 <m < M.

Indeed, it is sufficient to consider only the case of m = 1, since for the other cases the
reasoning is exactly the same. Moreover in what follows we use (26.1) and (26.2) and
(28.4); we start from the expressions of )22, " of (25), of (vl’n)%]:rl of the second step

n=1
and, for 2 <7 < R, of the (Ur,n)%]\i;r_l of the second and third steps, where (Ur,n)2M+T_1 is
a Hamel basis of span(o,.,, )2

n=1
Mfra o oM+4r
71 =span(0,)2_,rrir1 - Therefore now (for m = 1) we
2A4+7‘72)R

Y 7~ and we know that these sequences concern
only the first part (0,)2-,  of (0n)2, . Moreover we denote by (6p1.,)2,  the

sequence derived from (on)il\i; - by means of the Walsh matrix. Then we know by (27)

and (26.1) that, for 1 < g < 2M

consider only (1}1717_(])!2]51 U ((vr1,9)

n=1

2]% 2]% j-2R_1

2M
U1,1,9 = E :EM,g,kol,k = E :EM,g,jOO,l,j = E :EM,g,j E : Ot,
k=1 j=1 j=1

t=(j—1)28-141

2]% 2ZW+1 2]v1+1 j.2R_2

V2,19 = ZEM,g,kOZk = Z EM+1,2M 44,500,2,5 = Z EM+1,2M g5 Z Ot;
k=1 j=1 j=1 t=(j—1)2R—241

hence also
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joR-1

U,1,9 = E :5ng E : 0Ot

t=(j—1)2R-141

2M (2(j—1)+1)27~2 2j.2R—2
=> EM,g,j< > O + > Ot)
j=1 t=((2(j—1)+1)—1)2R-241 t=(2j—1)2R—241
21\/1
= enrgi(G022i-1+ 00.2.2;)
=1
2]\4

while (see the proof of (26.2)) v21,g = > €M,g,j(00,2,2j—1 — 00,2,2;). Hence it is easy
to see that

oM +1 M1
oM +1

M
(U1,1,9)22 U (v21,9)2, = ( Z EM+1,g,j0 02,;) ot = (00,1,n)p=1 -

Now fix r» with 3 < r < R and suppose we have already verified that

M M+4s—2 .. MoAr—2
(Ul,l,gﬁ:l U ((”s,l,g)?;zl )Z:% = (00717n)i 1

By (26.1) for 7/ = 7 — 1 and 7" = r, since 2M+R=-1/oM+r=2 — oR=(r=1) for 1 < g <

2M+7-2 we have
2]VI+7‘—2 2]VI+7‘ 2
00,1,9g = § EM+r—2,9,j00,r—1,5 = E EM+r—2,9,5 E OOT(j 1)21 41
=1
2]VI+7‘—2
Y errtr2,05 @0 (-1)2141 + 0o j21);
j=1

while, by the same procedure, we know (by (27)) that

2JW+7‘—1 2M+7‘—2
Uri1,9 = E EM+4r—12M+r—244 ;00,15 = E 5M+r72,g,j(OO,T,(j—1)21+1 - 00,r,j21)-
j=1 j=1

Hence, proceeding as above we get

M M4s—1 MAr—1
(ULLQ)E}:I U ((Us,l,g)§:1 Voo = (00,1,n)p—1

and so on. This last step completes Construction I.

THEOREM 8 (Special sequences in spaces of infinite cotype). Let ((wp, ., wi, ) )M_

m, r)r 1/m=1>
M

(s usy ) )=y and Ejy be the biorthogonal systems and the subspace (ofE =12 +R)

of Construction I (see in particular (28)). Let ((am )2 1)M_, be a sequence of numbers

and set R = 2% and M = 2M . Then the following properties hold:

(30.1) for each fixzed r with 1 < r < M, we have U, , = Z;nzl ws,y for 1 < m < M,
U*M,r = w&m while u;‘nyr = w;"nm — w:ﬁlm for1<m <M -1, wy, = uy, while
Wm,r = Um,r — Um—1,r fO’f' 2<m< M;

(30.2) flwm,rl| = [[wy, [l = (in particular, for
each fized r with 1 <r < R,|I>" leTH =1 for1l < m < M, |[uyy, =1 and
usp, |l =2 for 1 <m < M —1);
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= max (H E Q- Win e

1<m<M)

(30.3) || ZZamrwmr

m=1r=1

M R
H § § am,rwm,r"_EOH

m=1r=1

R
max (H Zam’rwm7T + EOH :1<m< M)
r=1

R
= max (H Zam’rme + EOva :1<m< M);
=1

(30.4) ((wpm,r + Eo)f}:l)M 1 18 1-unconditional and in particular (W, + Eo) ', 1S in-
discernible for 1 < m < M, moreover

N N R M R
B =20 () () wimne = B0 ) |

r=1m=1

uDi

m’r‘)J_7

(30.5) for eache >0, if R > R(M,¢) = 2log, (221‘7\/ 222;1"'1/6) then for each T € E with
||| =1 there exists an index T with 1 <T < 2R such that Zm 1wy, #(@)] < e.

Proof. (30.1) comes from (28.1) and (28.3).

(30.2) follows from (30.1), (26.4), (28.1) and (28.3) since {o}}2~," is the natural
basis of £ = I%M+R; hence, for 1 < r < R, ||o5, ;|| = 2% for 1 < j < 2™+ and
|07 [l = 271 for 1 < k < 2™+ in particular by (28.3) it also follows that, for 1 <r < R
and1<m< M -1,

2M—m+1 + 22M—m 2R—1 _o

Il = s

(30.3) comes from (27), (28.2) and (28.4).

(30.4) comes from (30.3), from the end of (28 2), and from the fact that, by Proposition
7(ii) and by (29), for 1 < m < M, (W + EO)T L = (W + Eo.m)E | is indiscernible
and 1-unconditional.

We now prove (30.5). By (28.2) and by (23.5) of Remark 6, for each sequence

((br,m )22 +1)$R1 of numbers,

m=1
R 2M+1 oR 22M+1
|75 i+ 8] 2 (5 ) V202575
m= r=1 m=1
Hence in our case, if T € E with ||Z]| = 1 we have
oR 22M+1
1= |7ll > [}z + B")| = HZ > () + B
oR 221‘7+1

> (303 Bra@)])/Vome .
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Thus there is 7 with 1 < 2 so that

2MJrl 9R 22M+1 _
P D V-l vrill |a:,m<x>\_Vz2ﬂf+lz_1z 167 (7))
2R V2 1/2R22M+1 .
Therefore

221CI+1

(31) S 6r,. (@) < V21 VoR,

Hence, since by (30.2), [|w};, || = 1 for 1 <m < 2M and moreover
R M
Eo=E0 (] (] wimne
r=1m=1

by (30.4), moreover by the last relations of (28.2) and (22), finally by (31), we have (we
recall that

M oM {1 NI 1 N oM |y
span(wmi)?nﬂ + span(((vr m g)g 2 )3)1 1 U ( = 2ﬂ+1’g)3=1) = spaH(OF,m)mzl
by the second part of the third step)

o1
> |wp, +@)] < 2M max(|w), #(@)] : 1< m < 2M)
m=1

oM -

2
2MH Z Wy, 7 (T) Wi 7 + Z span(w,, ,n)fn 1 +EOH
r(#7)=1
oM oM 22 +1-m

<2 S @+ X X g @
m=1 m=1 g=2
+ Z U;,2M+1,g(f)v7,2ﬁ+l,g
g=1

M+1—m 1 o~
+ z (Zspan{vrm,qf + span{vp 1,91 ) + B
r(#r)=1 m=1

22M+1

=2 3 & @6
m=

k{+1 m 1 ~
+ Z ( Z span{vy.m g Yoo + span{vr7M+1,g}§:1) + E"
r(#T)=1 m=1

22M+1 22M+1 \/T
—~ . ~ —~ 22M+1
<2 X 5@ + B 27 Y i <2
m=1
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Hence, in order to have (30.5), we can set R > R(N,¢) so that
9M /92741 /\/9R(NE) — ¢ then R(N,e) = 2log,(2M V22V +1 /¢).

This completes the proof of Theorem 8. u

2.3. Finite transformability and the Walsh matrix in [}. The next lemma
concerns the following question. If {e], 22 —; is the natural basis of l1 ,if e = €} and
en = el —el,_; for 2 < n < 29 moreover if w is another element with ||w + el >
max(||wl|, |le||/2) for each e € span{en}n 1, finally if {an}fil is a sequence of numbers,
does there exist a permutation (m(n ))nil of {n}%il such that (|| 327 1 ar(n)(erin) +
w)||)(2121 becomes (1, 0)-monotone?

LEMMA 9 (Particular sequences in [}). Let {e;}ffil be the natural basis of Z%Q and set
ep =¢€) ande, =€, —el, | for2 < n <29, Then for each sequence {an}ffil of numbers
there exists a permutation {m(n)}? ° of {n} —, such that:

(32.1) (|X7_, aﬂ(n)|)§Q1 is (1,0)-monotone;

(32.2) (||>22_ )€ n)H)q 1 is (0,0)-monotone.

Proof. We pomt out that

2@
(33.1) H Z anen
n=1

(hence (|| Y7 _, anenH)gil is (0,0)-monotone). We set

2Q
(33.2) A= Z an and a = max{|a,|:1<n <29}

n=1
We can suppose A > 0 (if A < 0 the procedure does not change). We set 7(1) = 1 and
we proceed by induction, that is, we fix a positive integer m with 1 < m < 29 — 1 and
we suppose that
(34.1) {n} —1 ={s(n)}m,U{r(n) ii]m and {m(n)}™ , is a permutation of {s(n)}™ ;;
(34.2) —a<>P_, ar(ny < afor 1 <p<m;
(34.3) (I>22_ Ar(n)er(n)ll)ger is (0,0)-monotone.

Then we have three possibilities:

291
= Z |an — an1] + ase]
n=1

(M) —a < Y0 an(n) + ar)y < a. In this case we set m(m + 1) = r(1) and hence
(34.2) continues to hold for m replaced by m + 1. Now we verify (34.3). We notice
that 7(1) — 1 =7(m + 1) — 1 € {n(n)}7, (by (34.1) since {r(n)}2
of {n}iil according to the natural order, hence r(1) is the first index according to the
natural order such that 7(1) ¢ {n(n)}—,), that is, there is n’ with 1 < n’ < m such that
m(n’)=r(1)—1=n(m+1)—1. The index m(m + 1) + 1 can belong to {mw(n)}"_; only
if the sign of ar(;m41)+1 is opposite to the sign of ar(;,41) (because, as we will see better
n (IT) and (III), when we need some a,, for example positive, we will pick up the first

™ is a subsequence

free index n” such that a,~» > 0; therefore it is impossible for w(m + 1) + 1 to belong to
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{m(n)}7y if @r(m41)4+1 has the same sign of ar (1) Where 7(m + 1) = r(1) and hence
m(m+1)+1¢ {m(n)}" ;). Therefore we have the following subcases:

(I1) 7(m+ 1)+ 1 ¢ {m(n)}"_,. Hence, since 7(m + 1) — 1 = w(n’), from (33.1) it
follows that

m
| artmentn|| = 1Bu + axoy il = A + laxmsn 1l

n=1
where B, cannot contain any term involving e;(n,), since B, contains e/ (n) only if
m(n')+1=n(m+1) € {m(n)}"_,, because

n=1»

Ar(m+1)€r(m+1) = Qr(n/)+1€x(n')+1 = aﬂ(n’)Jrle;—(n/)Jrl - aﬂ-(n/)+1€;(n/),
which is impossible since w(m + 1) = r(1). Moreover A, = ||B,/|| where A, could
contain also the term [ar(,)—1 — ar(ny| if 7(n') =1 € {m(n)};;_; but this fact does not
influence what follows; finally ar(;,/) = @r(m+1)—1 by the above. Hence

m+1

H D () enln)

n=1

= [|Bn + a’ﬂ'(m+1)71€;r(m+1)—1 + a’ﬂ'(m+1)(e;r(m+1) - e;r(m-l—l)—l)H
= Ap + ‘a/ﬂ'(erl)fl - aﬂ(m+1)| + |a‘7r(m+1)|

b

> Ay + ‘an(m—i-l)—l‘ = H Z QAr(n)Cr(n)
n=1

that is, (32.2) continues to hold.

(I2) #(m + 1)+ 1 € {w(n)}’,. Then there is n” with 1 < n” < m and n(n”) =
m(m + 1) + 1 (then by the above Ar(m+1) @nd Gr(m41)41 have opposite signs, moreover
we can suppose 7(n”) +1 ¢ {r(n)}m,
that follows). Hence from (33.1) we have (in what follows A, ;1) = || B(ys nry|| Where

By nry contains no term involving elements of (e;(n,),e;(n,,)fl, e;(n,,)), indeed 7(n") —

since this fact does not influence the procedure

l=(r(m+1)+1)—1=na(m+1)=rQ1) ¢ {r(n)};)
H Z aﬂ(n)eﬂ-(n) = ||B(n/7n//) + aw(n/)e;(n,) + G/ﬂ-(n//)eﬂ-(n//)n
n=1

= 1B 1) + Gx(n))€r(nry = Gn(n)€nnrry—1 T A () € |
= ||B(n’,n”) + aw(m+1)71€;(m+1)71 - aﬂ(erl)Jrle;r(erl)

+ a‘ﬂ'(m-‘rl)-‘rlefn(m—&-l)—&-l”
= A(n’,n”) + |a7r(m+1)71| + 2|a7r(m+1)+1‘7

m+1
H > Gn(n)nn)
n=1

= H Z Qr(n)Cr(n) T aﬂ(m+1)(e;r(m+1) - e;r(m+1)—1)H
n=1

= HB(n’,n”) + (aﬂ(m+1)—1 - aﬂ(m-&-l))e;(m—i-l)—l
+ (a/ﬁ(m+1) - aw(m+1)+1)€;(m+1) + aw(m+1)+1€;r(m+1)+1||
= A(n’,n”) + |a7r(m+1)—1 - aw(m+1)|

+ ‘afr(erl) - a’ﬂ'(m+1)+1‘ + |a7r(m+1)+1|
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= A(n’,n”) + |a7r(m+1)71 - aﬂ'(m+1)| + |a7r(m+1)| + 2|a7r(m+1)+1|

> A(n’,n”) + |a7r(m+1)71| + 2|aﬁ(m+1)+1‘ = H Z Ar(n)Cr(n)||>
n=1

that is, (32.2) continues to hold and hence we can repeat the whole procedure, starting

from (34) with m replaced by m + 1.

Im >, Ar(n) + ar(1) < —a (hence > arny < 0 and a,(;) < 0). Let " be the
first index with 2 < n’” <29 —m such that a,(, > 0 and set w(m + 1) = r(n”); then
(34.2) continues to hold with m replaced by m + 1. Now we verify (34.3). We have the
following subcases:

(IT;) 7(m + 1) = 1 € {m(n)}"_,. Then the whole procedure of (I) works through
(Iy) and (I2) and hence (32.2) continues to hold and we can repeat the whole procedure,
starting from (34) with m replaced by m + 1.

(IIz) m(m+1) =1 ¢ {m(n)} 7=, (hence ar(m41)—1 < 0 since n"” is the first index with
2 < n/" < 29 — m such that a,(,~) > 0). Suppose that m(m + 1) +1 € {m(n)}m,
that is, there is n” with 1 < n” < m and w(n”) = m(m + 1) + 1 (consequently again
Ar(m+1)+1 < 0 by the same reason of (I) since in this case Ar(m+1) and Gr(m41)41 have
opposite signs). Then from (33.1) it follows that (we can suppose 7(n”)+1 ¢ {7(n)}"_,
since it does not influence the procedure of the proof, moreover we set A,» = ||B,~||
where B, does not contain elements of (¢’

I /
W(m+l)7l7e7r(m+l)’eﬂ'(m-‘rl)-‘rl))
m
H D> Gn(n)n(n)
n=1

= [|Bar = Gr(mt1)+1€n(m+1) T Cn(mt1)+1€0(miny+1ll = Anr + 2lan(ni1)4l-

= ||Bnr + an(ma1)+1€x(m+1)+1l]

Hence, since a(y,41) and ar(m41)+1 have opposite signs,

m—+1
H > Gn(uyn(n)
n=1

= H Z O (n)€n(n) T G’W(m+1)(e;r(m+1) - €;(m+1)71)H
n=1

= 1 Bu = Gr(mi1)€r(ms1)—1 F Gn(mt1)€rme1)
- a‘ﬂ'(m"rl)"rle;r(m-l—l) + a‘ff(m"rl)"rle{/r(m-&-l)-&-l”

= [|Bn = x(m+1)€r(mer)—1 T (@n(m+1) = Gr(m+1)+1)€n(mr1)
+ A1)+ 1€ (mp1) 41

= Apr + ‘a7r(m+1)| + |a7r(m+1) - a7T(m+1)+1‘ + |a7r(m+1)+1|

= A, + 2|aﬂ(m+1)| + 2|a7r(m+1)+1|

)

m
> Apr + 2|a7r(m+1)+1| = H Z G (n)€m(n)
n=1
that is, (32.2) continues to hold and hence we can repeat the whole procedure, starting
from (34) with m replaced by m + 1.
(Il3) 7(m +1) =1 ¢ {n(n)}"; and 7(m + 1) + 1 ¢ {m(n)}™; too (hence again

n=1

Ar(m+1)—1 < 0). From (33.1) it directly follows that

m+1 m
|32 arweecn]| = | 32 artwrercn
n=1 n=1

+ ||a7r(m+1)e7r(m+1) ||
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= H E QAr(n)Cr(n)
n=1
m

= || anrenen
n=1

and hence (32.2) continues to hold and we can repeat the whole procedure, starting from
(34) with m replaced by m + 1.

—+ ||a7r(m+1)e;r(m+1) - aﬂ'(m+1)e;—(m+1)71 H

+ 2‘aTr('m—i-l)|

(III) 3" | Gn(n) + ar1) > a (hence 0" ) ar(n) > 0 and a,) > 0). If there are some
indices n with a,,) < 0 we let "’ be the first index n such that 2 < n"’ < 20 _
and a,(,») < 0 and we set m(m + 1) = r(n"’). Hence (34.2) continues to hold with m
replaced by m + 1, moreover also the whole procedure of (II) (with the opposite signs)
through (II;) ... (II3) continues to work, hence also (33.1) continues to hold and we can
repeat the whole procedure, starting from (34) with m replaced by m + 1. If a,.(,) > 0
for 2 < n < 29 —m, we set m1(m +n) = r(n) for 1 < n < 29 —m. Then obviously
(32.1) holds and we pass to check (32.2). For m(m+1) = r(1) we have only to repeat the
whole procedure of (I), while, for m + 2 < k < 29, again we repeat for (k) = r(k —m)
the whole procedure of (I) except that we start from Zﬁ;i Ur(n)€r(n) instead of from
> Gr(n)€n(n) as in (I). This completes the proof of Lemma 9. m

Even if we do not now use the results of [9] and [10], the theory of finite transforma-
bility of [9, pp. 63-71] is fundamental in this work, only now every time we directly prove
what we need. We recall that a Banach space Y is finitely transformable into another
Banach space X if, for each finite-dimensional subspace Y of Y and for each € > 0, there
exists a subspace Xy of X and an isomorphism 7 : X/ Xy — Yy with ||| T~ < 1+ ¢
then from [9, Prop. 1.1, p. 64] it follows that the finite representability of /; in X and the
finite transformability of X in ¢y are the same thing. We will frequently use this fact in
this work, even if we shall not explicitly mention finite transformability.

The aim of the next lemma and the next theorem is to provide a sequence with
properties analogous to the properties of the sequences of Theorem 8, but in [} instead
of in {7,. In the next lemma we will not follow the simplification of Subsection 1.5 only
in order to show the difference between the two procedures (but in what follows, when
we will use this lemma, we will always suppose ¢ = 0).

LEMMA 10 (Finite transformability into IT). Let X be a Banach space where l; is finitely
represented, fix € > 0 and a positive integer S.

(35.1) There exist {c], e*}2 | U {eo’n,eg’:n}i‘;l biorthogonal in X, with {e/}2-, U

{eon )20, (1+€')-equivalent to the natural basis ofl?s"'SO7 lel|| =1 forl <n<2°
and ||egn|| =1 for 1 <n < Sp; we set

2% So
5 S * *
E =span((e},)nzy U (eon)nli), U=XnN ﬂ e N m €(0,n) L3
n=1 n=1
(35.2) there exist {el,, e;;*}fle U {eon — vo.n, ef)fn}iozl biorthogonal such that if we set

Eo = span{eg.n — vo.n }20,, then {e!, + Eo}fil and {e), + Eo + U}%Szl are (1+¢)-
equivalent to {on}fil of (22);
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(35.3) there exist {€o.n, €5}221 U {eom — Von, €5, — €522y U {eon — Vo, €00 2541
biorthogonal such that {egn + Eo}flszl (basis of E/Ep) and {eon + Eo + U}n:1
(basis of X/(Eg + U)) are (1 + ¢)-equivalent to {an}fle of (22).
Proof. We only have to prove (35.2) and (35 3). Coming back to (22) we can suppose
the integer Sy is such that there exists (vj n) 1 C 12 so that:
(36) (v{)yn)s‘) 1 is €”-dense in the unit ball of 12, withe” =¢//25 and & = VT +e—1,
S
Vo = Zk:l an ko for 1 <n < Sp, with v, =0, for 1 <n < 25.
So
n=1

So)

n=1/*

Moreover, since [y is finitely represented in X, there exists (e}, e;f)n 1 U (eons€0n)

biorthogonal in X with the properties of (i) and we set E = span((e n)n:1 U (eo,n)
We are going to prove that

S S
(37) if we set vy, = Zi:l anre), for 1 < n < Sy (hence vy = 2721:1 akne,, for

1<k<Sy) and e/'* = el¥ — 250:1 ak,negfk for 1 <n <29 and Ey = spanf{eg,, —
von 30, then {e),, " }27 | U{eo.n—v0.m, e{j‘:n}g(’:l is biorthogonal with {e/,+Eo}2_,
(1 + €)-equivalent to {on}%il.
Indeed, by (35.1), {e/, iil u {ef)’jn|E}i°:1 is (1 + &’)-equivalent to the natural basis of
12°+50; moreover by (36), |ani| < 1for 1 < k < 25 and 1 < n < Sp; hence in (37),
lle|g|l < 1+¢ for 1 <n < 29 Moreover, for each sequence {a;}%szl of numbers with
a = max{|a |: 1 <n <25}, hence with 272:;:1 (al,/a')o, in the unit ball of lgj, by (36)
there is n/ with 1 <n'/ < Sy so that

s
2 /

25 o 29 ,
a a
Za—70n Z—k Zangkok :max< a_lj_an/’k (1< ngS) <€,
n=1 = =
Hence by (36) and (37),
2° 25 a,
z_: e Z a_ an | <€"25 =¢.

k=
Then by (36) and by the definition of a’ it follows that

S
a a > a
< <d el +E
1+¢ ~ max{[le/*|g] : 1 <n <25} ; a0

2%,
<<Z 2_762 + E0> — (vo,nr + E0)> + (vo,nr + Eo)
n=1

25
o o
HZanen—l—EOH—a

n=1

2%,
a
= (Z —ren — UO*"’) + Eo|| + a'[lvon + Eo
n=1 a
25 o
<d|[>] a_r;e;l —von || + @ [[(vo,nr + Eo) + (0,0 — vo, + Eo)|
n=1

<de +d|egn + Eol| <ad'e +dllegn| =a(1+¢€);
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that is, {e], + EO}%Szl is (1 + &’)?-equivalent to the natural basis of lgj“, on the other
hand (1 +€’)? =1+ &. This completes the proof of (37) and of the beginning of (35.2).
Now we will prove that

(38.1) if €/ is the Hahn—Banach extension of /| to X for 1 < n < 25, €5, the Hahn—
Banach extension of e, |g to X for 1 <n < Sy, then {e],, e/ 2 1U{eon —von,

n? n

eo7n}n=1 is blorthogonal,

(38.2) {el, + Ep+ U}%S:1 (basis of X/(Ey+U)) is (1+ ¢)-equivalent to the natural basis
of ZQS'

(38.3) {el*}2 1 is (1 + ¢)-equivalent to the natural basis of 12°.

Indeed, for 1 < n < 29, in the proof of (37) we noticed that |e/*|g|| < 1+ €', hence
by the definition of (38.1), ||e//*|| < 1+ ¢&’; consequently, for each sequence (an)2 , of
numbers by the last assertion of (37) we have

2.5'

max(|ag| 1 1 < n < 25)/(1+€) < H S ane, + Eo + UH
n=1
2.5'

< ‘ Zane’n + EOH < (1+¢)max{|a,| : 1 <n < 2%}
n=1

(by the central part of the proof of (37)), which, since (1 + ¢’)? = 1 + ¢, proves (38.2)
and also (38 3) since it is consequence of (38.2). Now, if {e,, n}ns 1 is derived from
{e},, e~ }n 1 by means of the Walsh matrix, by (36) and (37) it follows that v, = €,
for 1 § n < 25, hence also

/e\n + Eg = é\n + (eO,n - 'UO,n) + Eg = gn + (eo,n - gn) + Eg = €o,n t+ Ey.
Therefore the biorthogonal system (e, ’ej’;)%il U (eo,n — Von, ean)g"zl becomes

s s
(eO,n’é\Tz)izl U (eo,n — Vo,n, ezk),n - /e\;kL)’%Lzl U (eO,n — Vo,n, eg,n)50:25+15

hence also (35.3) has been proved. This completes the proof of Lemma 10. m

We point out that in what follows we will always use the simplifications of Subsection
1.5 of the introduction.

THEOREM 11 (Special sequences in spaces of type 1). Let X be a Banach space where Iy
is finitely represented. Let (z,,,x )S 1 be biorthogonal in X and fix two positive integers
N and R. There ezist (e,)%; U (eo.n)No U (e 20 i X and (e3)20" U (e)2 " U
(ean)gil in X* such that

(39.1) (2, 2%)%_, U (n,e5)2 U (€0.ns ean),]:fil is biorthogonal and X = Xo+ E+U

with E = E' + E}j, Xy = span(mn)Q

n=1»

E' = span(en)s_; , Ef = span(eon)ny

N+R
and U = X N ﬂ —1 Ty N ﬂn 1 € N mn 1 €{o,n)L» MOTEOVET (enep)nmr =
((erm, e;’in)iNl)QRl where we suppose R = 4%

(39.2) || + e|| = max(||x]||, |le]|/2) for each x € Xy and e € E;
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(39.3) ((ern + EO) )T 1 s l-equivalent (and ((ern, + E{ + Xo + U)an)rR1 is 2-
equivalent) to ((Wp»+Fo)E | )M_, of Theorem 8 with (m)M_, and (r)E_, replaced
by (n )an and (r )nR 1 respectively; in particular ((e,, + Ej) + Xo + U)n=1)7i1 is
a 2-unconditional basis of X/(E{+ Xo + U);

(39.4) (wn, )%y U (e, el)20)"

’ 2N+R
€ns>Cn)n=1 )

U (60,n7€8,n)nNi1 is biorthogonal and (el)a_y s 1-

equivalent to the natural basis of l2N+R, with ((e;.,, + Eo)n 1) —1 l-equivalent to

((wm.r + Eo)E)M_, of Theorem 8 with (m)_, and (r)E_, replaced by (n)2_ 27
and (r )TR1 respectively; in particular, for 1 <r <28 ¢, = =e,.q1 and e, , = e’nn

€1 for 2 <n < 2N hence |ley || =2 for 2 <m < 2N and > ernl =1
or 1 <m <2V, moreover e}, || <2 for 1 <n < 2¥;
1<m<2V il <2 for 1 <n <2V,

(39.5) for each T € X with |T||=1 there ezists T with 1 <7 < 2% such that 272111 lex . (T)]
< 1/2%;
(39.6) for each e € E', |le + E\ + Xo + U|| > L|le + EY||.

Proof. Following the simplification of Subsection 1.5, there exists a finite-codimensional
subspace V of X such that

(%) |z 4+ v|| > max{||z||,||v||/2} for each x € Xy and v € V

(since ||z + v|| > ||z| implies that ||z +v|| > ||v]|/2 because ||z +v| < ||v||/2 would imply
lz]] > ||vll/2, hence ||z + v| > ||z|| > ||v||/2) and we can suppose V C ﬂg 12} . Hence,

= 2N+E we can take (¢//)22, U (eh.n)nk, in V and (e )22, U (e 0 )ney in X

setting .S
such that the following step holds:

STEP 1. (ell, ez/*)n 1Y (€h s e{)”;"L)ME is biorthogonal, with (en)n 1 U (ep, Mo -equiv-

alent to the natural basis of l% Mo Now we will follow the procedure of the proof of
(35.2) of Lemma 10 (in what follows we always suppose ¢ = 0). This will put us in
the situation of Subsection 2.2, that is, we will work with sequences l-equivalent to
the natural basis of [ for some P, with the difference that we now work in quotient
spaces.

My
n=1

STEP 2. We pass to (e ﬁ/’*)nil U (€., — Yo,ns €0 m)

e, en biorthogonal so that, if we set

Ej = span(ej , vo,n)nM:Ol, E" = span(eg)izl, E=E"+E],

then (¢! + EJ/)2_, is l-equivalent to the natural basis ofl , that is, to (0n)22, of (22),

~117% )25

hence (€] Iw)n=1 s 1- equivalent to the natural basis of l1 ; accordlng to the end of the
nie

there is a condition which will be explained

proof of Lemma 10, in the choice of (vom)anl,

in Step 3.

STEP 3. By (%) we can pass to the blorthogonal system (z,,,27)9_, U (e e U
(€0m — vom'éVO”;L)M"l with (e + B} + Xo)2_, 2-equivalent to the natural basis of 12

(hence (eZTE+XO )%:1 is 2-equivalent to the natural basis of 12 ). At this point, by means
of the Hahn-Banach theorem, we pass from (EZ;TEH )n 1U(e (~’(’6‘n)|E+XO )Mo to (ex*)%il U
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(eg*n)n 1- Set
U= Xﬁﬂxnlﬁﬂe"*ﬂﬂe'@‘n
Then (e” + Bl + Xo + U)2: is 2-equivalent to the natural basis of lgj, that is,

S
QHZG" n

—Emax(|an| 1<n<25)< HZ“" (e + EY) + (X0 +U)

S

= HZaneZJrEé’JrXOJrUH < max(|ap|:1<n<2%) = HZan i
n=1 n=1

S
for each sequence (a,)?_; of numbers; hence, for each ¢’ € E”,

e + B + Xo+ Ul 2 glle” + Byl

Moreover, if (€ n)n 1 comes from (en)n 1 by means of the Walsh matrix, and if (A’n)iN?R =
((@’T’n)ffl) R1 comes from (€7)2 2% _; by the same definition of (28.3) of Construction I

YM_| starting from (on) _, of (22), we specify that the condition
9N+R

which gives ((um )2,
on the choice of (vg,,)2°, (in the previous step) is v, = €, for 1 <n <

STEP 4. Step 3 completes the passage of Step 2; now we specify the passage of Step 3. By

S
: 1 1% SIS\ 2
means of the Walsh matrix we passed from (en, [59 )n 1 to ( €,,€n )n—l’ then we passed

from (€11, €1)2 7 60 (€0, €77) 2510251 U(Ch 0,00 €l0,0) 225> biorthogonal, with, if Ef
is the subspace of Step 2,
N R S N+R S
span(((er n)i 1)% 1Y (60 0, n)721 12 )= Span(éﬁ)%:l,
% N R S N+R % S
span(((er n)i 1)% 1Y (60071)721 12 )= span(é”,i )721:1
25 _oN+R

Set E{’ = span(cf, )i’ and Ef = Ef + Ef’. Then (&, + Eg)21,)%, is 1-
equivalent to ((u,,, + Eo)ft 1)M of (28.3) of Construction I with (m)}_, and (r)%

m=1 m=1

replaced by (n) Nl and (r )T 1

STEP 5. Now we have the biorthogonal system

N R S_oN+R M,
((aﬂn’aﬂ*n)i 1)72" 1 U (eOOn’GOOn)i 12 U (66,71 Yo n’eO n)n O1

with €], = vg,, for 1 <n < 2N+ (by the end of Step 3). Hence by the definition of E},
it also follows, for 1 < n < 2N¥+E that

Nn_‘_E(l):/e\, +(€6n_voan)+E(l):€ln+(e6,n_g’n)—i_Eé:e/O,n—’—E(l)

Set ef, ,, =€), and €7, — € = €, for 1 <n < 2V*E, Then the following facts hold:
. N . .
(1) (xn,z} )g LU (e e )as 1)7~ 1 U (€0,n, €5, )N is biorthogonal where
((e;",'rw e;’*n)%—l)z—l = (6;,“ €n )i—l ’
No 9S_oN+R " N+R
(60 7l760 n)n 1 (eOO'rN 6*0 n)n 1 U (6671 Yo n766*n)31 1

~11x \ Mo
U(eo,n UOnveon)n oN+R 4]
2N \oR

(then E} = span(ep )2, and E = E'+ E}y = E" + El/ where E' = span((¢..,,)2_,)_,);

n?
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(ii) ((e;.,, + EO) D25 s 1 equ1valent to ((um.r + Eo)E 1)M_, of (28.3) of Construc-
tion I, moreover ((e;.,, + E; —|—U+X0) )T 1 (basis of X/(E{+U + Xj)) is 2-equivalent
t0 ((tm,r + Eo)fLy )4y, for {m}}_; replaced by (n)2_, and (r)fL, by (r)2;;

2+R

(iii) (e;l)%]:lR is 1-equivalent to the natural basis of /5

STEP 6. Now we set, for each r with 1 < r < 2%, e, = ¢/, and e,, = €], — €},
for 2 < n < 2V. Hence, by the end of (28.3) of Construction I, (39.4) is satisfied and in
particular the fact that |[e} || <2 for 1 <n < 2" comes from the beginning of (30.2) of
Theorem 8 and from the fact that ((e,,, + Ej+ Xo+ U )3111)%11 is 2-equivalent and not
l-equivalent to ((wm, ,» + Eo)f*)M_, of Theorem 8. Also the end of (39.3) follows from
(30.4) of Theorem 8. Analogously (39.5) follows from the end of (39.1) and from (30.5)

(see also its proof) of Theorem 8; in particular we now have
R(M,¢) = 2log,(22M /22" +1 /¢y,
so M=N,R=R,e=1/2")

1 1
R(N, 2—N> = 2log, <22N\/22N+1/2_N> = log,(2°V V22V +1)2 = 6N + 2V 41 < 4V,

Finally, (39.6) has been proved in Step 3 (since E” + E{j = E’ + E{j). This completes the
proof of Theorem 11. m

We point out that (i) of Proposition 3 of the Introduction follows from (39.4) of
Theorem 11; while (ii) of that proposition will follow from the proof of (49.1) and (49.2)
of Theorem 22 of Section 6.

3. Construction of a basis with permutations

3.1. Construction of connections among blocks. Our aim now is to guarantee
the completeness of our construction, that is, we wish to be sure that our basis can
represent each element of the space and not only the elements of some proper sub-
space.

CoNSTRUCTION II. The next construction concerns each separable Banach space.

Let X be a separable Banach space. We fix a positive integer m and a sequence (Tj)
in X and we suppose to have the following situation:

(40.1) (5, 12) 2P0, 1 Va1 ) 73t biorthogonal in X with ||y, || <6 and [y7|| <13
for 1 S n S Q( ) vaJrl nH =1 and ||vm+1 nH <5 for 1 < n < Qerla

’

(40.2) X = X! + U/ where X! = span((yn)Q( ™y (v;nﬂyn)Q"‘“) and U/ = XN

n=1
ﬂg nf) Yn ﬂﬂ m“ ,T”nJrln)J_?
(40.3) dist(z, X)) < 1/2™ for 1 < k < m, where Span(Zy) = X with ||Zx|| = 1 for
each k.
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Fix 1,11 > 0; we can set 1), 41 = 1/22Q0™)+1 By (40.3) there exist

’

AN RN (RIS i U] RPN it i
U U )ni © X, (Usr )ty O ()i
O W) o™ U W )2 € X
so that
(41.1) (G 4) 2 U (W V) U (Vs o Vg ) s
UICCANPRE OIS i ied i SIUY (MRS GO e

is blOI‘thOgOnal Wlth for I+1 + 1 < n < Qm-i—l’ va-l-l n” =1 and ||Um+1 nH <57
||Um+1nk|| =1 for 1 < k < Qm+1" and HUerlnch = 1lfor 1 < k < Qm—i—l n’
||Um+2 »ll =1and ||Um+2n|| <5for1<n<Qp o

Set moreover

Qfm,+1 Q'/m#»l,n Q:;H»l,n
mo__rmn 1% ~/% 1%
(412) m+1 — Um N m V(im+1,n)L N ﬂ Vim+1,m,k) L n ﬂ Vim+1,n,k) L>
n=Q/, ,,+1 k=1 k=1
X" = X" 4+ Il( / U( )Q;n+1 n U( " )QL:L+1,¢L)Qin+1
m+1 — “*m spa vm-l—l,n m+1 n,k/k=1 Uerl,n,k k=1 ":prrﬁ’l’
Q//
m4-2
—U" AN X = X" . +s an( )Q;:L+2
m+1 - Ym+1 m+2,n)J_7 m+1 — m-+1 1Y m+2 n 1 -
n=1

Then the following properties hold:
(42.1) dist(zTy, X + Span(v;n_i_l,n)gi’g;z“ J<1/2m for 1<k <m+1;
(42.2) for each x € X)), with ||z|| < 78Q(m) + 5Q1, 11,

dist (2, 5D (Vg1 e U (Ui i ™V zahy + Unn)

> ||zl = g1 /2

while
Q.
dist (a, span(vy, 1 )" 5},+1+1)
d t U Q;n{»l n U " Q’/V:L+1,’!L Q:n+1 "
< dist(w, bpan( Um+1,n (v m+1nk)k 1 (Um+1,n,k)k:1 )n:Q;;LHH"‘ m+1)

+ Mm+1/2;
(42.3) for each n with Q, ; +1 <n < @), and for each

Q. Qg
x € X, +span((vy,11,5,) :5;1;L+1+1 U (O, ph) et

Qn -1
U (v ;n+1 f, k)k 1+1 f)?:Q(';L+1+1)
with
m+1 f Q;:H»l,f
=] < 78Q(m) + 5Q, 41 + Z ( Z om0l + Z vam*Jrl,n,kH)a

F=QU +1 k=1
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we have
dist (a, 5pan (0 100) 257 U (W0 ) 2
U (041, fk)ka1+1 f)?inﬁrh) +Up 1)
> |zl = Mtr /2
while

Qrnti,n . Qr,
dist(x, span(v m+1nk)k 1+1 ) < Mm+1/2 + dist(z, span((v m+1fk)k 1+1 !

Q’In Qm,
U (Vi1 )it ) 20+ Upy)s

(42.4) for each x € X with

m+1 m+1 f Q::H—l,f
ol < 78Q(m) + 5@+ > DO I L ).
f=Q, 1+1 = k=1

we have dist(z, U], 1) > ||z|| — 7m+1/2 while

1" 1"

Qm, Qi
dist (2, span(v) 5 ,)er) < dist(@, Span(vh, 5 ) 75 + Ulhyr) + e /2

(42.5) for each n with Q7 ., +1 <n < @, thereis (w), . k)g’"l 41 /2-dense in

the ball of span(v;, ., ,, k)f"’f’l " with radius
m+1 f Q;:Hrl,f
Q) 5+ S ( > Tl 3 o il
f=Qy, ,+1 = k=1

and with w;, ;. = me“" Amt1mk, fUrg1np 20T 1<k < QL ,

(which we will also write

’
Q77L+1,1L

/ o /
Wintin,f = Z Am+1,n,f,kVm+1,n,k for 1 < f < Qm—i—l ns
k=1

we also point out that (w;n_i_lmjk)f;"fl’" of (42.5) defines the integer Q. , which

appears in (41.1)); indeed, we only have to specfy that in (41.1) it is possible to get
il <5 for Qr oy +1 < n <@y and fluk,, || <5forl <n<Qp.,
for instance by Proposition 3(i) of the introduction; moreover, in order to get (42.2)
and (42.3), see the procedure of Subsection 1.5 of the Introduction to get W, starting
from a finite-dimensional subspace X,, of X such that the following properties hold:
X =X, + W+ Wy, X, is (1 4+ €)-orthogonal to W and Wy has finite dimension.

In the next lemma we use the fact that, for each biorthogonal system (x,,z})f_,,
setting ij:l(xnﬂxflﬂ) = T, we never have ||Z|| < 1since (z}/||z%|)(Z) = 1for1 < n < P.

LEMMA 12 (Properties of the connection sequence). In the setting of Construction IT
(for the end of (43.1) we use the notation after formula (42.5))
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" u'* Q:;H»l Q/r:LJrl " P#L+1
(431) (um—i-l ns m+1 n) =1 = ( m+1 ns m+1 n) =1 » (um-i-l,n’ m+1 n)n Q” 1+1
P// Pl
(1,0 / [t ] 1w, mtn)nlir g1 where (Uit nsUnan)nZon
Q; Qy, Q.
= (Vs 1 Utk ) m1+1 U (U g e %L,mk)k:oﬂ’n)n:c;;l;“ﬂ where, for

m+1+1<n<Qm+17

Q//
m+1,n

/
NIm+1Vm+41,n
= Z Ut 1 ke 10 1
2Qm+1 k=1

(then HU%H n OH > 2) and ulr/r;il,n,() = (2Q;n+1/77m+1)v;:+1,n; moreover, for 1 <
k< Qm+1 no %+1 nk xz+1,n,k77m4r1/2 + “’1/n+1,n,k and

111% 2 II* 23 1%

"
um+1,n,k = Nt 1 m+1 n,k + ﬁ”varl,n,k:Humil,n,O
m m
22@/
" m+1 " / .
= vm*+1,n,k +3 2 ” m*—&-l,n,k”vr:-&-l,na
Mm+1 m—+1

setting moreover, for

1"

Qm+1,n
1 < k_ < Ql 'U/* _ ;l‘}“/* _ a u//*
=N =MYm+1l,n Ym+1ink — Ym+1nk m+1,n,fkUm41.n,fr
f=1

the following properties hold:

P Qs 5 4
(432) (yna yn) (m) U ( m+1 no um-i—l n) Irl U (Um+2 n m+2 n) 1+2 18 bzo'rthogonal;

(43.3) for each 2’ € X with ||2'|| = 1, if |v}, 1 (%) > Mint1/(2Q5,41) for some n' with
mi1 1< 0" < Qpiy, while [vg, 4y (2)] < Nmga /(2Q0,41) for n' +1 < n <

Qins1s then (aupyy o (@)uy, g 0y 00 < af < 1)Qm+1 "™ is Nm1-dense in the

Qm+1 n’

ball of span(vy, 1 v 1)t of radius
n 71 nL+1 f Q;:L+1,f
QM) + 5@+ O (2 Wl Y i ll).
F=QU 41 k=1 k=1

Proof. Indeed, let w be in the ball of span(v;, ;. k)f”’fl " of radius as in (43.3), and
let ¥’ be an integer with 1 < k/ < Q',flJrl’n, so that (by (42.5))

(44) 1w = W1 s [l < g1 /2-
Set a = 1/ul%, ., /(2'). By the hypothesis of (43.3),
2 607, +1
[t ()] = Uiy g () + = 0 o e (21)
Tim+1 Nm+1
2 (6Q5,41
> 2 (Bt e (]~ )]
m m
2 [(6Q,.1
> 2 (St e @) o)
m
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2 1
= (S )] - 1)
Tim+1 m+1
2 1% (6Qm+1 Nim+1 )
> —lv ' -1
N1 H m+1,n’ k' || +1 2Qm+1
4||sz*+1,n’,k/ H 2Q(m)+3|, 1% 2Q(m)+3
= N1 =2 HUerl,n’,k’” Z 2 .
m

Then 0 < |a| < 1/22Q0™)+3 and
110 = QU1 (5 = 0 = Q1 @i = 0= 02
< w = why sy e | W1 — U1 e |
= [lw— w;n-‘rl,n’,k’” + Hw’lm—i—l,n’,k’ - (U;:z+1,n’,k’77m+1/2 + w;n-i-l,n’,k')”
= 1w — Wi g I+ V1 g Mmt1 /21 = 1w = Wi 1 s o |+ N1 /2 < Mg

by (44). This completes the proof of Lemma 12. m

3.2. Construction of each block. This subsection is the heart of the whole construc-
tion of a basis with permutations.

CONSTRUCTION III. Our aim now is the construction of each block; that is, we suppose
to have already constructed

M3m—1,0+Ps, QY

3
« m) U (uSm s7u3m s)s 1 J (U3m n’ U3m n) =1

(Tn, )
and we turn to the construction of

(B(M+1)) U ( 1% )M3”L+2,U+Pé/<m+1) Q3<m+1>

(xn,x ) u3(m+1) s7u3(m+1) s/s=1 U (vé(m+1),n7vé?m+1), )n 1

q(3m+1)
n=q(3m)+1

the regularization block) and of (x,,, x} *)a(3(m+1)) the free block).
n=q¢(3m+2)+1

We give separately the construction of (x,,,x})?
q(3m+2)

(x"’ wn)n:q(3m+1)+1

We start with the completeness block.

(the completeness block), of

SUBCONSTRUCTION III.1 (SC III.1, construction of the completeness block). We start
from the biorthogonal system

Q5
3m 3m+1
U (U3m+1 no U3m+1 n)n 1 )
"

3m = Msm_1,0 + P, = Az, Ksm = max([Jus, (|| 11 < s < Aspp),
B3m > A3m23K3mA3ma 3m = ASm(l + 2233771).

Bl (Bm) = (an,.%'* )ZL(BT) U (u?)m s’u?»m S)A

We will also use an integer Ms,,, which will be defined in Step 5. The construction
develops through six steps:

STEP 1. By means of the procedure of Lemma 10 we pass to the biorthogonal system

S +Mim o
n=1

By(3m) = B1(3m) U (€3m.n €5 )

S5t
n=1

. 3 3 QY
% moreover, setting (yam.n) 2y = (@)1 U () 257 U (61 p )it

Sm,O

with the following properties: (€3,.1,)

lsém+Mém 0
1

is l-equivalent to the natural basis of
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we have

Iy +ell = max((lyl, el /2), v € span(yamn) 25", € € span(Eamn)nzy s
moreover we suppose S3,, and Mj,, , are such that there are (51\0737,,7”):‘4’:”;;1\4_&1"’0 in
span(€zm, n)ié " and (€5, n)fﬁ"{ in X* so that, if we set
(€3m,n — V0,3m,ns €3, n)n s;i/[é;n = (€3m,0,n; e3m 0, TL)71\L4371” "’ E:/Sm,o = Span(63m,0,n):\;f:&1ﬂ’07

M, ~ S
1! 3m,0 : / m 3
then (€3m,n, €5, n)n T U (e3m,0.ns €3m 0, n)n—1 " is biorthogonal and (€3, + E3,, o), 27 18

l-equivalent to the natural basis of loom. We now specify that

St = P (2 + 2Mom) 4 2Man ML= Ay 22Bem 4 py (2. 9Mem | 92Mem),

1% P3(242M3my 4y 1%\ Pam (14-2M3m)
(63m ny €3m, n)n 1 (63m,n’ Bm,n)nzl

M.
= ((w3mv”’ w:”tm,n) U (w3m n,k» me n, k)i im )53:7?1

At the end of this step we point out the following useful fact:
With a little change as regards Lemma 10 we can set above

St Mg, Mg, 0,m St
(7]0 3m ")n3 S —sl ‘= ((UO 3m k)k 3M:m o, n71+1)"3:1

~ M3 0o ~
such that, for 1 < n < S5, (Vosmk)pony " 41 C span(€smns ), and we can
1

3m,0,n—

~ ~ M
suppose that (€3m,n + span(Vo sm,k)_1 " -
Sl
3™

1 is l-equivalent to the natural basis of

St
n3"1‘33 (242Msm) 11 and Ej,, o we get, from the proce-

dure of Theorem 11, the biorthogonal system

STEP 2. Starting from (€30, €5, 1)

2B As, M P,
((ef’im,aux,s,t’ e/3>.;n,aux,s,i%)752=13m )sjln U ((e3m n,k’ eg‘;n n, k)i ?im )n3 rll

Mzm \oMam \ Py
U(((e3mnkl7e3mnkl)l2— )i 1 )nsl

)QMSM)2M3W)P3M M3pm .0

U (((€30m.m.%.0.0> €3mm k0.1 i1 Inet U (€3m.0.m5 €3m,0.n) e M}, o410

M3zm.0 / M} /
E3m,0 = span(esm,on)n=1""s  Msmo = Mgy, o + (270m — My,,).
/
For 1 < s < Asm, We set €3m aux,s,1 = €3m aux,s,1 30 €3m.aux,s,t =

/ o
e?;m,aux,s,t €3m,aux,s,t71
for 2 < t < 22Bsm; for 1 < n < Ps,, we set €3m,n,1 = eémm’l and e3mnk = e'ganc -

/ M3 — ! — _
€3m,n,k—1 for2 < k < 2%em, €3m,n,1,2Msm = €3y 1y 1 2Mym, and €3m,n,k,2Msm = C3p 1 k 2Mam

egmnk_l oMgm for 2 < k < 2Msm: moreover for each n and k with 1 < n < Ps,, and
o ' Mz, _ _ ! o

l<k<2 we set €3mn k1 = €3 k1 A0 €3mankl = €3kt T C3mnkio1 fOT
M3zm 1. _ ! ) o

2<i<2 L5 €3m,n,k,01 = €3m,n,k,0,1 and €3,m,n,k,0,1 = €3m,n,k,0,0 — €3m,n,k,0,l—1 for

B3 2B3m .
2 <1< 2Msm_ Then (€4, aux.st)ict s (€3maux,st) e L and Es,, o have properties anal-
2N 2R N

ogous to the properties of ((e] )n D221, ((ern)?Z 1) _, and E{ of (39.3) and (39.4) of

r,n

Theorem 11, with {n}%il and {7’} -1 replaced respectively by (¢)7_ 233m and {1}; and anal-
M3, oMz M3m _ Mzm _
OgOllSly fOI‘ (eém,n,k)i—i a‘nd (e3m n k)k 1 fOI' (€3m n,k, l)l2— ; ! a‘nd (63m1n7k7l)l2:13 1’

M M3, Mz,
for (eém,n,k,o,l)?:lg and (esm,n,k.0 l)zf , for (e €3m,n,k,2M3m )i:i and (e3m,n,k,2M3m)i:i
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Next we pass to the biorthogonal system

M: m m
B2(3m) = Bl (Bm) U (63771,07’/“ esm,O,n)nil ’ U (eg:n,n’ egv/;,n)iilﬂ

Szm = Sém - (2M§m - Mém)v

( " 111% )ng

22B3m \ Ay
e?)m,n’ 3m,n ) T

_ *
n=Pz, (24+2M3m)+1 — ((eSm,aux,s,t; eSm,aux,s,t)t:l s=1

Mg
U ((63m,n,k7 egm,n,k)i:i )’r]ja:ni

M3zm \oM3m \ P.
U (((e3m,nbts E3mmp)ict Jimt Inii

M. M.
U (((€3mm k0.5 €m0 Vims™ V2.

In particular, by Lemma 10 and Theorem 11 and since ||y + ¢|| > max(||y]|, ||le]|/2) at the
beginning of Step 1, we have ||e5;, .|| <2 and |5 .|| <2for 1 <n < S,

3Im,n 3Im,n

STEP 3. We pass, by the procedure of Lemma 10, to the biorthogonal system
* J3m,arm\ P3m
Bé(3m) = B2 (3m) U ((e3m,arm,n,j; e3m,arm,n,j)j3:1 )n3:1

* M3m arm,0
U (eSm,arm,O,na eSm,arm,O,n)n:l

where, setting for 1 < n < Py,

J.: . Ma, M.
(esmarmn,g);21 ™™ = (€3marmmki)ier izt s

M/
/! 3m,a ,0
EBm,arm,O = Span(el’)m’arm»oyn)n:in o ’

M3m arm,0 /
EBm,arm,O = Span(e?)m,arm,o,n)n:l (MSm,arm,O < M3m,arm,0)7

J3m,arm\Pam : : : P3m J3m,arm
((€3m,arm,n,j) ;27 )Pam s 1-equivalent to the natural basis of [} *™”*™*™ and

J3m,arm\ Py,
((e3m,arm,n,j + Eém,arm,O)jil )n3:1

(hence also ((€3m,arm,n,j + Esm,arm,o);-]i?’mm)ii"{) is 1-equivalent to the natural basis of

PsinI3m arm . . .
o™ 2™ ™ while E3y, arm,o 1S so that, setting
Q(3m) S3m
’_ s 115
Wi=Xn ﬂ Yi3m,n)L N m €(Bm,n)L
n=1 n=1
M3m,0 Pgm J3m,arm MénL,arm,O
* * *
N Gmomr N[ [ Gmamnnt ™ [ amarmomn L
n=1 =1 j=1 n=1
MSNL,arm,O
T 72, *
U3m,arm =w'n ﬂ e(Bm,arm,O,n)JJ
n:Mém,arm,0+1
’r_ Q(3m) " Sam M3m.0
X' = Spa‘n((y?fmﬂ)n:l U (e3m,n)n=1 U (6377%0:71)77,:1 )’

we have ||z + ¢|| > |le]|/2 for each z € X’ + Usy arm and

J M1 v
ee€ Span(((el’zm,arm,n,j)ji?ﬁarm)»fja:q U (63m7arm,07n)n:31 ' )0)

(we apply twice successively the procedure to get the subspace W of Subsection 1.5, first

J3m,arm

M/ arm :
to get ((e3m,arm,n,j)j:1 )535 U (e3m,arm,0,n)ney ™™ with[|lz + el| > max{]|z|], [le]|/2}
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M} .
3m,arm, 0) Wlth the

for each € X’ and e € span(((€sm,arm nJ)Jsm ar“‘)Pe'm U (e3m,arm,0,n) et

Jj=1
properties of above; and second to get a finite-codimensional subspace Wy of W’ such that

J m,arm
||z +wol| > max(||z||, ||wol|/2) for wy € Wy and « € X' +span(((e3m,arm,n,j) ;- )P3m U

Jj=1
Mj m,0 Ms 0
(€3m,arm,0,n)noy *™°); then we can find (€3m,arm,0,n5 €3m arm.0.n) e ;\"/[;”“ 41 SO that,
m,arm,
setting
M3m,arm,0 /
Wy = span(egm arm,0 n) W' =Wy + Wh,

b)
n=M3, arm,0t1

we have ||z + e+ wol| > ||z + e|| > |le]|/2 for z € X', wy € Wy, and

M377‘L arm,0 ))

J.
€ c Span(((GSm arm n,])J 3? arm)P?’m U (63m arm,0 n)n 1

Analogously to the end of Step 2 we show that, for 1 < n < Ps, |l€3,, armnjll < 2
for1<j < JSm,arm-
A m Azm :
STEP 4. We pass from (u?)m s uSm s) °7 to (uém,s/”uém,sn ||u3m s||u3m s)s:31 ’ which we

Azm
call (u3,, ¢ Usy, )e2T again; then from

2B3m .\ A
(u3m S’U‘Sm s)s 1 U((@gm aUX,S,taGSm auxst)? 1 ) °r

s=1
we pass to
* P3py 22B3m \ Ag,,
(u3m7n’ U‘Sm,n)n:ni - ((u3m137t’ U’Sm s t)t 0 )s:rln
where, for each s with 1 < s < As,, and 1 <t < 22Bsm_
22B3m 22B3m
1 U’3m,s
U3m,s,0 = €3m,aux,s,j> u3m 5,0 — 2233m eSm aux,s,j 9Bsm
Jj=1 Jj=1
- uém,s
U3m,s,t = €3m,aux,s,t T 9Basm ’
QzBB'm
* % % _ * o 1 * + u3m75 .
U‘Sm,s,t - e3m,aux,s,t u3m,s,0 - e3m,aux,s,t 2233m e3m,aux,s,j 233m ’
j=1
: P3, 7N L : CNEt) / Aszm
that is, (u3m n, U3, )21 is @ “uniform minimalization” of (u3,, 4, Uz, )21 -

At this point we pass to the generating biorthogonal system

P. m 2B3., A m
(w3m7’ﬂ7 wgm,n)nil = ((’U)3m s,ty w3m s, t)? 03 )s 31

and we specify that, setting Qo 3m = max(||w3,, .|| : 1 < n < Ps,,), we choose M3, >
4PsmQo,3m _

In what follows in SC III.1 we will use also a biorthogonal system

M3zm\ Ps,n
((wém,n7w§:n,n) J (egm brd,n,k; e3m brd,n, k)i 1 )n3 1

which will be defined in SC IIIL.2.
Now we fix n with 1 < n < Ps,,,. Then we set, for 1 < k < 2Msm and 1 <1 < 2Msm 1,

oM3m oM3m
_ * _ * wgmfﬂ
W3m,n,0 = €3m,n,f2Msm s Wamn,0 = iz - €3m.n,f,2M3m Gy,
f=1 f=1

" — 1%
eSm,n,kﬂMsm = €3m,n,k,2M3m + W3m,n s €3m7n7k,21\43m
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K
% w3m,n
- eBm}n’k’QJM&m wSm n,0 — eO 3m,n,k, 2M3m + 2M3m ’

oM3m

es = ek - — E ex ;
0,3m,n,k,2M3m = “3m,n,k,2M3m IM3zm 3m,n, f,2M3m

f=1
2Msm _1 oMzm 1 *
o * o eBm,n,k,g wSm,n,k
W3m,n,k,0 = § : €3m,n,k,g> W3m,n,k,0 — E OMzm _ 1 - OMsm _ 1’
g=1 g=1
"
€3m,n,k,l = €3mn.k,l T W3mn ks
*
1% ok wSm,n,k
eSm,n,k,l - eBm,n,k,l Sm n,k,0 — 60 3m,n,k,l + OIMsm _ )
2A437n71 *
* % eBm,n,k,g
60,3777,,71,lc,l - eBm,n,k,l - OMsm _ 1’
g=1
hence
2M3zm oM3zm o2M3zm _1
* _ * _ * _
Z €0,3m,nk = Z €0,3m,n,k,2M3m — Z €0,3m,n,k,l — 0,
k=1 k=1 =1
2M3m _1
§ : 1% o x
el?om,n,k,l - me,n,k‘
=1

In the next steps we will work with the biorthogonal system

3 *
Ba(3m) = (0, 25) 2T U (w305 0310 10) U ((€31m,m005 € k)

M3zm \oM3m \ P,
U(eankheg;Lnkl))lz:l P M

M.
U ((w3m,n,0’ ng,n,o) U (wém n,0’ wg‘;n n O) U (W3m n,k,0, me n,k O)i 31m )'rljani

M’I M. 1
U (((€3mom 0.0 €mn k00)i=1 imt Int

k=1 /n=1
‘]3771. arm P3 M31n 0
U ((63"1 arm n,J’e3m arm n,j)] 1 ) U (e3m0n’63m0n)n 1
M3zm,arm,0 Qmt1
U (63m,arm 0,n5 e3m arm,0, n)n 1 U (v3m+1 ns v3m+1 n)n 1 -
STEP 5. Let us fix n with 1 < n < Ps,,. For each [ and k with 1 < 1,k < 2Msm we set
oM3zm 2M3zm «
o % _ e?;m,n,f wSm,n .
L3m,n,0 = E : €3m,n, f> L3m,n,0 = E 9 Msm, - OMzm
— f=1
T3m,n,k = €3m,n,k T W3m,n,
2Msm
* % ek I + w3’m n * * _ egm,’ﬂ,f .
xSm,n,k - 63m,n,k ZL'37n,n,0 - wO,Sm,n,k 2M3m O 3m,n,k — 63m,n,k 2M3m ’
=1

2M3zm 2M3zm
M.
T3m,n,k,0 = § 63m n,k,g — E €3m,n,k,g + (2 am— 1)w3m,n,k + W3m,ns
2MSm 1%

*
1% * _ w?’mvnvk + e3m,n,k,2M3m * .
eBm,n,k,g - x3m,n,k - Mz, - x3m,n,k’

*
x3m,n,k,0
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I Ms,
L3m,n,k,l = €3m n.k,l + €3m,arm,n,k,l + x3m,n,k/2 3

€3m,n,k W3m,n
= €3m,n,k,l + W3m,n,k + €3m,arm,n,k,l + M3, + WT

and, for 1 <[ < 2Msm _ 1,
* M * ok * * M3
Tmnkl = Cmnkl ~ T3mn k0 = L0 3mmkl T 1 3mnkl T Winn/27,
* o x * * M3,
xO,Bm,n,k,l - eO,Bm,n,k,l - (60’3m,n’k’2M3m - xO,Sm,n,k)/2 )

xiBm,n,k,l = wgm,n,k/(2M3m (2M3m - 1)) - wgm,n/zzMSm;

o "
T3m,n,k,2Msm = €310 0k oMz T T3m,n,k T €3 brd,n,k

= eBm,n,k,2M3m + W3m,n + eSm,arm,n,k,2M3m

€3m,n.k W3m,n
+ 2M3m + 21\/13 +63mbrdnk+w3mn,
* 1%

— _ *
x3m,n,k,2M3m - eSm,n,k,QMISm L3m,n,k,0

= 1 1 _ 3m n,k +z
— “3m,n,k,2Msm OMs,m O Msm 3m n,k

w*
ok * 3m,n
=Tg 3m 0k, 2Mam T 13m0k, 2Mam T Mg
x =e; - +
0,3m,n,k,2M3m — ©0,3m,n,k,2M3m M3, 0,3m,n,k
3 1
* _ *3m,n B _ “3m,n k.
T1,3m,n,k,2Msm = 9QMzm IMszm 2Mszm,
oM3m oMz
_ * _ 1 * o
L3m,n,k,0,0 = €3m,n,k,0,95> L3m,n,k,0,0 = M €3m,n,k,0,9g ~ L3m,n,k,0
g=1 g=1

M3zm
T3m,n,k,0,l = €3m,n,k,0,l T x3m,n,k,0/2 am

* % * .
T3m,n,k,0,l — €3m,n,k,0,l — L3m,n,k,0,0
" —n
6L’zm.,brd,n,k - eSm,brd,n,k’
"
11% s Lk 1% + el Wam,n
€3m,brd,n,k = €3m,brd,n,k ~ L3m,n,k,2M3m = €0,3m,brd,n,k T €1,3m,brd,n,k ~ M,

V2ES 1% *
60 3m,brd,n,k — eO,Bm,brd,n,k - wO,Bm,n,k,2M3m )

* /%
e///* — _w3m,n 1 1 + w3m,n,k + W3m,n
1,3m,brd,n,k O Mz, Mz, QM3 OMspm,

STEP 6. Now we set

M M
(:L'n,x i Sm)i im)r};s”ll = (I3m 9"T3m,g)!§;3'1n7

1% J3m,arm\ P3ym G3
((e?)m arm,n,j’ e3m arm n,])j 1 )n Wi (eSm ,arm,g> e3m arm,g)g 71n

3m+1
)i( q(3m))+1 (((T3mn,k.0 T30 k)=

— * Gsm, .
- (63m7arm79’ €3m,arm,g — ‘TBm,g)g 15

G0,0,0,3m __ M3m,o0
(370003m,97330003m,g)g 1 (e3m07l763m0n)n 1

Goosmu(

Gam.
U (Z’o 0,3m,g> J"O 0 3m,q)g 1

€3m ,arm,g> e3m arm,g)g 1>
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(560 0,3m,g> 370 0 3m,g)§010 o
= (@30, P n.0) U (Wsm.m k.05 W 07 It
U (@3m,.0s @m0 U (@m0, T k0,070 Vit VA
(u3m+1 Py U’3m+1 s)j_ax;j,ﬂ |
= ((W3m.1.0: Warm.n.0) U (€50 brdn.k» €3m brd.m, k)izim )rem
(U3m+1 s U3m+1 s)f?’ﬁjj/ﬂﬁf{” 0 = (e3m,arm,0,ns €3m,arm,0, n)nM3in 0
(20,3m,g> T0 3m,g)§;013m = (T3m,gs T3m g)g T U (20,0,3m,95 zo 0 3m,g)§;010 o
Bs(3m) = (@, @)1 U (0030.9: . )goi”

A3m+1/2+M3m arm,0
U (U3m+1 59 u3m+1 s)s Asgma1/2+1

Azmt1
U (U3m+1 s U3m+1 s)s Agmar—AL,  +1°

Till now we passed from By(3m) of Step 5 to the biorthogonal system

Qm
B5(3m) U (’UBm—Q—l ns ’UBm—H n)n3 1+1'

At this point, by means (if the procedure ~of Construction IT and of Lemma 12, where we
replace (yn,y;)ffi’f) by Bs(3m) (where Bs(3m) is the system Bs(3m) when we remove
all the elements of

Mg | py.
((wém,n’ wg';n,n) U (63m brd,n,k» e3m brd,n, k)i ?im )n3 r1L)

and m + 1 by 3m, we define

Py Qs
1% 3m41 3m+2
(u3m+1 CR u3m+1 s)s 1 U (U3m+2 n’ U3m+2 n)n 1
( h ( 1% )Q3m+1 _ Q3m+1) h )Q3m+2 il
where u3m+1 CRl u3m+1 s/s=1 - (U3m+1 CRl v3m+1 s)s 1 where (U3m+2 n/n=1 wi

q(3m+3)

n=q(3m+2)+1’ finally we set

be used only in the construction of (z,,,z%)?
*\q(3m+1 AL
B6(3m) = (mﬂ7xn)gz(:71n ) U (u3m+1 s’uSerl s)s3l+1

A3m+1/2+M3m arm,0
U (U 41,50 U 1,5) s Agmgr /241

Azm+1 Qi sz,
U (U’3m+1 57 u3m+1 s)s A3m+1 Al37n+1+1 U (U3m+2 n’ U3m+2 n)n 1 ’
AY i Go,0,0,3m 1% P
(u3m+1 s?u3m+1 s)s—l (x0003m 97x0003m g)g 1 U (u3m+1 svu3m+1 s)s—l .

We point out that, by the end of Step 2 and of Step 3 and by Lemma 10, ||z, | < 10 and
lzk || < 7 for g(3m)+1 <n < q(3m+ 1). We also set, for ¢(3m)+1 <n <q(Bm+1),

/ ~ ~ ///
Tn = Ty +x, + Larm,n + Thrd,n, Tp = CL’ + T
" . " 22’33m Aszm,
x,, € span(ey, ; 1 1 <1 < Sy, ey, 5 & span((ezmaux,s,t)im1 st ),

2B
T, € span((€3m,aux,s t)? 13m )?_San) S span(u3m s)?:gﬁnv

J.
xarm,n S Span((el’zm arm,r,j )J BT; arm)fanf)

/ QIWSNL Ps.p
Tbrd,n € Span(w&m,r U (€3m brd,k T')k 1 )r3 1-
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We set, for each T € X with ||Z|| = 1,
T3m = G3m (T) = max(max(|z;(T)| : ¢(3m) + 1 <n < ¢(3m + 1)),
max(|z 3, ,(T)] 1 1 < g < Gozm), max(lez,, (T)] 1 1 < i < Sp)).

3m,t

Finally, we set B1(3m + 1) = Bs(3m) and we are ready for Subconstruction III.2.

SUBCONSTRUCTION IIL.2 (SC IIL.2, construction of the regularization block). We turn

to the construction of (z,, xZ)Z(jZ;ni)ﬂ) 41 and we start from the biorthogonal system

B1(3m + 1) defined in SC II1.1; we will proceed through four steps. We set

A3m+1 = 4q(3m+1)(A3m+1+M3m arm 0+A3m+1)

!
Kamy1 = max(|lugy, 1 .l 11 <5 < A3,
143m+1/2 +1<s< A3m+1/2 + MSm,arm,07A3m+1 - A§m+1 +1<s< A3m+1)7
Bamy1 > Agmp128emerdsmir =P = Agy, g (2288 1),

STEP 1. By the procedure of Lemma 10 we pass from Bj(3m + 1) to the biorthogonal

S3 +1+M3 +1,0 Sé +1+M3 +1,0 =
system B (3m + 1) U (€3m+1,n, e3m+1 ) m where (€3m+1,n)po1 m is

3m+1+M3m+1,0

l-equivalent to the natural basis of [, , moreover with

ly + ell = max(lly[|, [ll|/2)

Q(3m+1 ~ Shma1+ M5,
for y € span(ysm+1, n)nil ), e € span(€smi1n),0 Y and

Q(3m+1) (xn)q(_?);?l+l)

A m
(y3m+1 n)n 1 i

(u3m+1 s)e 1
Azm+41/2+M3m arm,0
U (U 11,6) s Agmar /241

Azm+1 Qo
U (“3m+1 s) e Asmir—Al,, +1 U (U3m+2 i i

. —~ Sk M, .
Then, according to the procedure of Lemma 10, there are (Vo 3m+y1n),2g 1  in
—~3m+1

S% S . .
span(€3m1,n )1’ and (€5,41.,),—1  in X* so that we have the biorthogonal system

S’ +1 Mé7n+1 0
(63m+1 ny e3m—|—1 n)n 1 U (€3m+1 0,m e3m+1 0, n)n 1 )

)M31n+1 0 )Sém+1+M3m+1 0,
(€3m+1,0,m5 €3m41,0,n )t = (E3m+1,n = V0.3m+1,m5 E3mt1,0)n Shpiatl

M},
/ o 3m+1,0,
Eo3my1 = Span(€3m+1,0,n) ot ;

Shmyr = 2M3m+t 4 (Agpgr — (Abpiy + A1 + Msm arm,0)) + Pams1 + Pam;
Mém+1 = A3m+12233m+1 T P3m+12M3m+1 (24Q3m+1 + 1) + P3m2M3m,

’
S3m+1 S3m+1
los

Then (€3m11,n + £ 3m11)mei 18 1-equivalent to the natural basis of and we can

suppose that the method at the end of Step 1 of SC III.1 continues to work.

Now, by the procedures of the proof of Theorem 11 and of Lemma 10, we pass from

S} .
(€3m+1m5 €3 1)1 to the biorthogonal system

M3t M3m+1,0
(€3m+1 no €3m+1 wnat U (€3mt1,0,n, e3m+1 0 n)n M, ot

1% S3m+1

"
U (€3m+1 n’ e3m+1 n)n M3m+1+17
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_ A M} / . _ M, / .
Mzpmi1,0 = Mg, 10+ (273m+0 — Mg, 1); Szma1 = Sapyq — (278m+0 — My, );

M3mi1,0,
E3m+41,0 = Span(€sm+1,0,n ) ney s

M} 2B A:
A% 3m+41 __ 2°73m+1 3m41
(63m+1 n’ e3m+1 n)n 1 ((63m+1 aux,s,t? e3m—|—1 aux,s, t)t 1 )s 1

M3gm41\ P3py,
U ((63m+1 n,k? €3m+1 n k)i 1 Jni ™

4Q3m+41\92M3m+1\ P3,,
U (((e5mt1.m k.05 €omat, n,k,l)lz_ )i It ™

k=1 n=1
/ I 2Msm \ Ps,. .
U ((63m,brd,n,k7 63m,brd,n,k)k:1 )n:ni7
!
" 1% S3m+1 ~ 1% Sgmt1
(e3m+1 n e3m+1 n)n M3m+1+1 (63m+1,n7 63m+1’n)n:2M§m+1 41
Agm41/2

(e3m+1 aux,s» e3m+1 aux S)S_A3m+l+1

Azmi1—AS,, 1
U (63m+1 aux,s» e3m+1 aux s)s Aszm41/24+Msm,arm,0+1

1% P3m41 Ps
U (w3m+1 n’ w3m+1 n)n 1 U (w?’m n’ w3m n)n "i7

so that setting, for 1 < s < Aszpt1,

! o o
€3m+1,aux,s,1 = €3m+1,aux,s,1 and €3m+1,aux,s,t = €3m+41,aux,s,t — €3m+1aux,s,t—1
2B 22B3m 41 22B3m 41
for 2 <t <2 dm, (eSerl auxst)t 1 ’ (€3m+1 auxst)t 1 and E3m+1,0 corre-
2V 2R

spond to ((e].,,)n=1)i=1 ((ern)%Nl)r ; and E} of (39.3) and (39.4) of Theorem 11

with {n}2 —, and {1"}2 1 replaced respectively by (¢ )2233m+1 and {1}. Moreover for
1<n < Py, ifweset for 1 < k < 2Momit eg g0 = eémﬂ k1 A0d €31k =

/ o 4Qzma1 _ 24Q3m+1 1\ 9Mam41
Bt 1mkd — C3matm k1 for 2 <1< 2%sma — 1 then ((€3,,4 1 0 x1)i=1 DR

4Q3m 41 _ Mg, N R N R
((esm+1mmt)iey 31" and Espq1,0 correspond to ((e).,,)221)22,, ((ern)221)22,

. N R
and E}, of (39.3) and (39.4) of Theorem 11 with {n}2_; and {r}2_, replaced respectively
4Q3m41 _1 M :
by (D" and (k)2_7""". Moreover for 1 < n < Ps,,41, if we set €3,,41.n1
— o/
i, A gy g 9iQam 1 = a1 m1,2@sms1 A €3mbrdn,1 = €3, brd g1, WOTE-
over
o ’
€3m+1,n,k = €3m+1,nk — €3m+1,n,k—1>

_ o M3zm41
€3m+1,n7k’24Q3m+1 = 63m+1,n,k,24Q3m+1 e3m+1,n,k:71,24Q3m+1 for 2 < k < 2 s

/ / Mz,
€3m,brd,n,k = e?ﬂn,brd,n,k - 63m,brd,n,k—1 for 2 < k < 278 5

then
(st )iy and (esmirni)ios ™,
(e {3>m+1 n,k,24@3m+1 )zMimH and (63m+1 n,k,24@sm+1 )iMiMHv
(€3m+1 brd,n, k)iMiMH and  (e3m+1,brd,n k)iMiMH

2N 2N

and FEs,;,41,0 correspond to ((e ;n)n D2, ((ern)a_ )22 and E} of (39.3) and (39.4) of
Theorem 11 with {n}%i and {’I“}T 1 replaced respectively by (k)2M3m+1 ((k)2 "™ for the
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last one) and (1). Then we pass to the biorthogonal system

S m M m
Ba(3m +1) = B1(3m + 1) U (37,11 ns €5t 1.0t U (€3m41,0m5 €3mi1.0n)net

( " 1% )Msm+1

22B3m+1\ Agmy1
63m+1 no e3m+1 n )

n=1 *((63m+1 aUX$t7€3m+1 auxst)t 1 s=1

M3gm41\ Pspy,
U ((e3m+1,m,k» €3m+1 n k)i T M

4Q3., M3, Psm
U (((€3m+1 n,k,l363m+1nkl)l2_ ’ +1)2 1 H) o

k=1 n=1
2M3m\ P3,.
U ((e3m brd,n,k» 63’!7’7. brd,n, k)k 1 )n?’zl
In particular, by (30.3) of Theorem 8 and by Theorem 11,
Pypp1 2M3m+1 94Q3m41
H Z Z Z On k1 €3m41,m,k,0 T E3m+1,oH
n=1
2M3m+1
= max (H Z An k,1€3m+1,nk,l + E3m+1,0H 11 <n < Papyg, 1 <1< 280men — 1)
k=1
24Q8m+1_1\90M3m+1\P3m1
for each sequence ((an k,1)i_; Vil )Rt of numbers. Analogously to the end
of Step 2 of Subconstruction III.1, ||eg;,’;+1’n|| <2for1<n< S3mnt1.

STEP 2. Now we use a biorthogonal system

M3pmi1 .\ Py,
((W3m+1,na w§m+17n) U (€3m+1 brd,n,k> 6Bm—k—l brd,n, k)i i o )n3 1+1

which will be defined in SC III.3, then we pass to

* U oM3m 41
(W3m-+1,n,05 w3m+1,n,0) (€3m+1 brd,n,k’ €3m+1 brd,n, k)k=1

where, for 1 < k < 2Msm+1

oM3m 41
W3m4+1,n,0 = E €3m-+1,brd,n,f>
f=1
oM3m41

1
* _ * _ * M31 +1
w3m+1,n,0 - O Msm 1 E ei?om%»l,brd,n,f w3m+1,n/2 T,
f=1

1
€3mm+1,brd,n,k = €3m+1,brd,n,k T W3m+1,n,

VZES % *
63m+1,brd,n,k - 63m+1,brd,n,k - w3m+1,n,0

oM3m 41 %
_ * _ 1 * + w3m+177‘b .
= | €3m+1,brd,n,k I Mmi1 €3m+1,brd,n, f Mot
f=1
d th from (w} ) U )2ramE g
and the same from (w3,, 1 ,,,Warn 1.0 €3mt1,m k,24Q8m 41 5 3m+1 n.k,24@3m41 k=1 0
/ /% 1% 21‘43m+1
(W3mt1,m,00 Wamt1,n,0) U (€] St Lok 29@3m 1 €3 1 24 Qam 1 Vi1 where, for 1 < k <
Msm
2 3 +1,
2M3m 41
i _
“3m+1,n,0 = Z €3m+1,n,f,24Q3m 41>

f=1
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oM3m 41

1

/% _ * _ I£3
w3m+1,n,0 - M1 E e3m+17n,f724Q3m+1 w3m+1,n
=1

Mam+1
2 m—+ ,

12 _ /
€3t 1nk,24Q8mt1 — €341 k,242mt1 T Wam i1,

1% *

e e —wh
3m+1,n,k,24@3m+1 T “3m41,n,k,24@8m+1 3m+1,n,0

oM3m41

— (¢ B 1 Z o W3m+1,n
T \TmA1n ke 298mdt T 9 Mgy, 4 3m+1,n, f,2198m 41 OMsmi1
f=1

Setting

Azm41/2 1% Azm41/2
(€3m-+1,aux,57 €3m+1,aux,5) o= AT = (W 1,60 Ugmt1,5) e Al 1

and

(e o )A3m+1 Al
3m+1l,aux,s) ©3m+1,aux,5/ s= Az, 41/24+Mam,arm,0+1

(U U )A3m+1_A3m+1
3m+1,s> 3m+1 8/ 8=A3m+1/2+Mzm, arm,0+1’

from the expression of By (3m + 1) = Bg(3m) of SC III.1 we get the biorthogonal system

Aszm41 22B3m+1\Azmi1
(u3m+1 s U3m+1 3)3 1 U ((e3m+1 ,aux,s,t e3m+1 aux,s, t)t 1 )q_ from which at first

we pass from (w5, Ushy i1, T to (Wmt1,s/ 11,51l [[W3mg1, s[5 41, e

. A3m+1 . P3m+1 _
which we call (u3,, 1 ¢ Uspi1s)si | again; then we pass to (Uzmi1ms Usyi1n)nl =

2B3m A ,
((Usm+1,5,6: Uy 1.00) im0 et where, for 1 < s < Agpmyq and 1 <t < 22Bamer

22B3m41 22B3m 41

* 1%
o * o e3771—9—1,aux,s,j u3m+1,s
U3m+1,5,0 = €3m-+1,aux,s,j» u3m+17s,0 - 2233m+1 - 233m+1 )
j=1 j=1
I
_ u3m+1,s
U3m+1,s,t = €3m+1,aux,s,t + 233m+1 )
22B3m+41
* o * o 3Im+1,aux,s,j + u3m+1,s
u3m+1 s,t T 63m—!—1 aux,s,t u3m+1,s,0 - e3m—i—1,aux,s,t 22B3m+1 233m+1 ’
Jj=1
Then we pass to the generating biorthogonal system
P31 22B3m+1\ Aspmi1
(W34 1,05 Wam1.0)net T = (W3ma 1,565 Wam41,5.6)i=0 )51

and we specify that, if we set Qo 3m+1 = max(||wi, 1,/ : 1 < n < Papyr), then
Q3m+1 > 42P3m+1Qo0,3m+1 while M3yl > 42Q3m+1+4'24Q3m+1 .
Finally, we pass to the modified generating biorthogonal system

Pspmy1
(U3m+1 ns U3m+1 n)n 1

where, for 1 <n < P3;,41/2,

_ M3zm+1+Q3m
V3m+41,2n—1 = W3m—+1,2n + Wam41,2n—1/2" 2"+ Qam+1,
Mam1+Q3m+1,,,*
2 w3m+1,2n—1)/27
_ M: +
V3m41,2n = W3m+1,2n — Wam+41,2n—1/2" 2"+ Qam+1
_ 2M3m+1+Q3m+1

* _ *
V3mtt.on-1 = (Wipni1on +

E3
. _ W3m41,2n
U3m+1,2n = 5

*
W3m+1,2n—1
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In the next steps we will work with the following biorthogonal system:

Bg(?)m + 1) (xn, X ) (3m+1) ((U3m+1,n, U§m+1 n)

% 24Q3m41 1
U ((€3m+1,n,ka €3m+1,n, k) U (€3m+1 n,k,ls e3m—|-1 n,k, l)l—
(6 //* ))2M3m+1
3m1,n,k,24Q3m 410 €3m 11 0k, 24Q3m+1 ) k=1
2M3m+1
U (€3m+1,brd,n ks €3mt 1, brd,ne Jh=1 )
Pym+1

U (W3m+1,1,05 Wam41,n,0) Y (Wat1,0,00 Wit 1,,0 )t

Mszm+1,0 Q2
U (€3m+1 0,m e?)m-‘rl 0, n)n 1 U (U3m+2 n’ U3m+2 n)n 1 -

STEP 3. Let us fix n with 1 <n < Py, 413 for 1 <k < 2Msm+1 and 1 <[ < 24@smi
we set

2M3m 41
T3m+1,m,0 = § €3m+1,n,f>
oMzmy1
CL'* o 3m+1,n,f i v3m+1,n .
3m+1,n,0 — § : IM3m i1 OMsm41+2Q3m+1
=1

22Q3m+1

T3m+1,m,k = €3m+1,n,k + Usm+1,n5

* * *
x3m+1,n,k - 63m+1,n,k: - x3m+1,n,0
2N1377L+1 *

*
. - Z Gmitng ), Umiln
- 3m—+1,n,k O Mzm 41 IMszm4+1+2Q3m+1

f=1
24Q@3m 41 _1
"

T3m41,n,k,0 = E €3m+1,n.k,g T €3 11 1 g 94Q3m 410

g=1

1 24@3m 41 _1

* _ 2 * 1%
L3m41,nk,0 = 24Q3m+1 ( €3m+1,m,k,g + e3m+1 n,k 24Q3m+1)
g=1

2P3m11Q0,3m+1

s T .

22Q3m+1 3m—+1,n,k>

T3m+1,n,k
2P3m+1Q0,3m+1922Q3m+1

€3m—+1,n,k U3m+1,n
2P31m4+1Q0,3m+192Q3m+1 2P3m+1Q0,3m+1"’
* * *
L3m+1,nk,l = €3m+1,n,kl — T3m+1,n,k,0

24Q3m+41_q

* 1 *
= 63m+1,n,k,l - 24Q3m+1 Z 63m+1,n,k,g

g=1
oMzm41 %

T3m+1,n,k,l = €3m+1,n,k,l +

= e3m+1,n.k,l T

1%
+ (e _ Z 3m+1n,f,2198m 41 + “3mt1n
3m+1,n,k,2493m+1 IM3m41 IM3m41
f=1
M m
2P3m11Q0,3m+1 N T e§m+1 n,f
I _ § _omTLn,J
+ 22Q3m+1 3m+1,n.k IMzmi1
f=1
9P3m11Q0,3m+1

+ M3z 41+4Q3m+1 3m+1 n’

_1,

)
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o + L3m+1,n,k el
x3m+17n7k724Q3m+1 - e3m+1,n,k»24Q3m+1 2P3m+1Q0,3m+192Q3m+1 €3m+1,brd,n,k

€3m+1,n,k
2P3m4+1Q0,3m+192Q3m+1

_ /
= €3t 1,n k24 Rmt1 T Wamg1 g T

v3m+1,n

*
+ 2P3m+1Q0,3m+1 + €3m+1,brdnk T Wam1,n, x3m+1,n,k,24Q3m+1

1%
=€

*
3mt1,m,k,24Q3m+1 — L3m+1,n,k,0

oM3zm+1 % 1%
—((er -y mtln,f2'9mi1 ) | W3mtln
- 3m+1,n,k,24@3m+1 IM3zm41 IM3zmt1

f=1
1 24Q3m+41_1q
24Q3m 11 § : 3m+1,n,k,g
g=1
oM3m+1 e* %
(e _ Y Gmrlnpamn ) | S
3m+1,n,k,24@3m+1 IM3m41 IM3m41
f=1
M
Pm " 23m+1 *
N 9P3m41Qo, o B Z €3m+t1,n, f
22Q3m+1 3m+1n.k QMszmt1
f=1

9P3m11Q0,3m+1

*
+ IMz3m+1+4Q3m 41 Y3m+1,n-

: : " 1% 2M3m41\ P31
After this construction, ((€5,, 1 branks €3mitbrdnk)i=1  Jnoi  of Step 2 becomes
2M3m+1)P3m+1

2 VLS
(€341 brd.n ks €3mt 1brd n k) b=1 nei where, for 1 < n < P3q1 and 1 < k <
2M31n+1,

" o _

€3m+1,brd,n.k — €3m+1,brd,n,k — €3m+1,brd,nk + W3m+1,n>
1% = *

€3m+1,brd,n,k = €3m+1,brd,n,k — x3m+1,n,k,24Q3m+1

y . 9P3m41Q0,3m+1
_ * * *
- 60,3m+1,brd,n,k + 63m+1,brd,n,k + ,U3m+1,n ’

T OMsm41+4Q3m 11
oM3m 41
1% _ * _ 1 *
€0,3m+1,brd,n,k — \ €3m+1,brd,n,k Mgt €3m+1,brd,n, f
f=1
oM3m41 e*
B . Z Bmt1m,f2'%me ) [ 1
3m+1,n,k,24@3m+1 2Mszm 41 24Q3m+1
f=1
M; m
9P3m1+1Q0,3m+1 27 3ml e§m+1 e f
* 31ty
- (e _ E _omrLn,]
+ 22Q3m+1 3m+1n.k 2Mszm 41 ’
f=1
4Q3m 41 _
* /% 2 1
S _ YWmetn  (Wamiam (1 o1 S o«
3m+1,brd,n,k OM3zm41 IMszmt1 24Q3m+1 24Q3m+1 3m+1n.k,g |
g=1

oM3m+1 . .
Then > 11 €0 5mi1brdnk = 0- Moreover, if we fix n with 1 <n < Py, 41, and set

2P3m11Q0,3m+1
* % + ’U*
L3m+1,n,k,l = L0,3m+1,n,k,l M1 +4Qam 1 U3m+1n
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for 1 < k< 2Msmi1 gnd 1 << 24Q3""+1, then, recalling that

oM3m41 oMam41 %

Z ot _ Z 3m+1,n,f,2*93m+1 -0
3m+1,n,k,24F3m+1 QMsmi1 -

k=1 f=1
and
oM3m41 oM3m41
* 1 *
- E -0
€3m+1,n,k O Mami1 €3m+1,n,f s
k=1 f=1
we have
oM3m41 94Q@3m+1
*
E E L0,3m+1,n,k,1
k=1 =1
oMzm41  , 94Q3m41 _1 1 24Q3m+41 1
_ * - *
= E ( E <e3m+1,n,k,l 24Q3m 11 ( E e3m+1,n,k},g
k=1 =1 g=1

oM3zm41 %

1%
i o _ Z Camt1,n,f,24Q3m+1 I W3am+1,n
3m+1,n,k,2493m+1 IM3m41 IM3m41

F=1

oM3m 41

N 9P3m+1Q0,3m+1 ( 1

* *
22Q3m+1 e3m+1,n,k: - 2M3m+1 Z 63m+17n7f>

oM3m41 %

IES
n o _ 3m+1,n, f,24@3m+1 n W3m+1,n
3m+1,n,k,24@8m+1 Z IM3m41 IM3m 41

f=1
24Q3m+1_1q
24Q3m+1 Z 3m+1,n,k,g 3m+1,n,k,2493m+1
g=1

oM3m41 % 1%
_ Z 3m+1,n, f,243m+1 n W3m+1,n
4 OM3om 41 Mgy 41
=1

oMzmy1

P3pm, m
N 9P3m11Q0,3m+1 o B Z €3mt1n.f
22Q3m+1 3m+1n.k 7 9 Mszmm41
=1
oM3zm41 94Q3m+41 _q
_ *
- ( E <e3m+1,n,k,l
k=1 =1
24Q3m+1_q
o 1 6* + (Ué’:n+17n
24Q3m+1 Zl 3m+1,n,k,g OMszpmi1
g=
24Q3m+1 _1q

M. /%
- 2 3m+1 N w3m+1’n
T hitn gy Gy T
3m+1,n 24Q3m 11 3m+1,n,k,g IM3zom 41

g=1
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oM3zmi1  , 94Q3m+41 1

ES
E ( E €3m+1,n,k,l
k=1 =1

4Q3m 41 _ 4Q3m41
24Qamt1 — 1 ? 3 ' ’ L kg
e e _ E _omTL,nkg
24Q3m+1 3m+1,n,k,g 24Q3m+1
g=1 g=1
24Q3m+1 _ 1 , 1

- 24Q3m+1 w3m+1,n + w3m+1,n - 24Q3m+1 w3m+1,n

oMzm41 94Q3m41 _1

. 24Qsm+1 _ | 1
Z ( Z €3m+1,n,k.l (1 T 94Qsm41 94Qsmia ))

e 24Q3m+1 -1 1
T Wamtin ( 24Q3m 11 +1- 24Q3m+1> =0

STEP 4. We pass from Bs(3m + 1) of Step 2 to the biorthogonal system

Q m
B3(3m 4 1) U (V3 19.0 Vsma2m)nat
3 2 M3z,
ByB3m+1) = (20, 25) 27 U (e3ma1.000 €imar.om)ncy

U ((x3m+1,n,03 x§m+1,n,0)

/ 1% *
W3m+1,n,0> C"{‘3771—&-1,n,0) U (w3m+1 n,0s w3m+1,n,0)

U (
M P
U ($3m+1 n,k,05 $3m+1 n,k, O)i ?i"”“rl )nSrri+1
Mzm+41\ P
U ((€3m+1 brd,n,k> e3771-&—1 brd,n, k)i 1m )n?mfrl?
3 2 4Q Mg, Ps,
(@, x, )ff ng)ﬂ)ﬂ (@ 3mt1,m,000 T et RS FA R M e

At this point, always by the procedure of Construction II and of Lemma 12, where we

replace (yn,yn)Q(m by Bs(3m + 1) which comes from Bj(3m + 1) when we remove all
the elements of

* 2Mam+1 P31
((W3m+1,n, w3m+l,n) U (€3m+1 brd,n,k» e3m+1 brd,n, k)k 1 )n:l ’

we define

P// Q
% 377‘L+2 3m+3
(U255 Wama2,s)smt - U (V343,00 Vs a.n )t s
Qmta,

Q'
( 3 )s 31 = (”3m+2 n’v3tn+2 et s

u3m+2 s u3m+2 s

QB m+3

By(3m +1) = By(3m + 1) U (V3,135 Vsrmg3.n)met s
A//

3m+2
Bfl(gm + 1) = (w’ﬂv x:;)gz(zrln ) U (u3m+2 CRI u3m+2 s)s 371n+2
Azm+2

U (U’3m+2 5 u3m+2 s)s A3m+2_A3m+2+17

"

mte = Mami1,0 + Papyo + (24 2Mm40) Py g Ao = (142000 Py,

Al yo M3m+t1,0 1% Pyloyo
(u3m+2 s u3m+2 s)s 1 (63m+1 0,n» 63771-&—1 0, n)n 1 U (u3m+2 s u3m+2 s)s 1

U ((£3m 411,05 T3mt1,1,0) Y (@3im411,00 Dot 1,0,0)

2M3m 41\ Papyi1
U(x3m+1n,k,0ax3m+1n,k,o)k 1 Yot s
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’ I Azmt2 _ *
(u3m+2,svu3m+2,s)S:A3m+27Aém+2+1 = ((w3m+1,n,0,w3m+1,n,0)

" 1% oM3m41\ Py g1
U (e3m+1,brd,n,k’ e3m+1,brd,n,k)k:1 )n:l .

We point out that, by (39.3) and (39.4) of Theorem 11 and by Steps 1 and 3, ||z, || < 5 and

]l < 7 for q(3m+1) + 1< n < g(3m+ 2); moreover [whyar ol = [wsmsinoll =1 =
[23m 4100l and [|23m11nk0ll = 3, while max([lwg, 1m0/l [93mi1.m,0l 123041,0,0
25 1mp0ll) <3 for 1 <n < Pypygand 1<k < 2Momit, We set (xn)q(3m+2) =

n=q(3m+1)+1
(xgmﬂ’n)fi'f“ and, for ¢(3m +1)+1<n <q(3m+2),

/ ~ ~ " ",
Tn :xn‘i‘xn‘f'xbrd,na Tn :xn‘i’xny

1 " . . " Aszm41/2
y, € span(€gn, 1,1 1 <1< Sy, €501, & Span((e3m+1’a“x’5)szzé’m+1+1

Agm1— Az,
U (63m+1,aux,s ) 5§=Azm+1/2+M3zm, arm,0+1

22531n+1 )A37n+1

M Pann,
U ((63m+1,aux,s,t)t:1 27 8mA+1 ) 3m+1 )7

ot T U (Wmt1,n U (€3mt 1 brd k) k=1 )t

" A377L+1/2
x, € Span((€3m+1,aux,s)s:Aé{"L+1+1

Azmt1— Az, 22B3m+1\ Agmy1
U (e3m+1,aux,s)S:ASMH/2+M3m,a,.m,0+1 U ((e3m-+1,aux,5,t)1=1 st )

AY A /24 M. '
" !/ 3m+1 !/ 3m+1 3m,arm,0
x'n, S Span((uf}m—i—l,s)s:l U (u3m+17$)S:A3m+1/2+1

A377L+1

U (uém+1,s)s:Agmﬂ_A'gmH_H)a

2M3m 41\ Pari1
Thrd,n € Span(w3m+1,n U (€3m+1,brd,r,k)k=1 )r:l

We set, for each T € X with ||Z|| =1,

U3m+1 = G3m+1(T) = max(max(|z),(T)] : ¢(B3m + 1)+ 1 <n < g(83m +2)),
max(|efm i1, (T)] 1 1 <1 < Szman), max(wsy, 41.0,0(@)],

‘x§m+l,n70(j)|7 |x§m+1,n,k,0(§)| 01 S n S P3m+17 1 S k S 2M3m+1))'

Finally, we set B1(3m + 2) = B4(3m + 1) and we are ready for the construction of
* (3m+3)
(xnvxn)glzq(3m+2)+l'

STEP 4’. In this sub-block the condition

is not strictly necessary, it is only useful to avoid more formalism, in particular in the
proof of (A) of RL. Indeed, in Step 1 we could also set

1m0l = lwsmrmoll = 1= l[€3m11,n0

Shmpr = 2Mm 01 4 (Agmyr — (Ayr + Ayt + Mam,arm 0 + Mam bra.0)
+ 2P 41 + 3.2Momr1;

M3 = Az 41225940 4 Py, 2Moman (28Qsman=t 4 3y

Again, by means of the procedures of the proof of Theorem 11 and of Lemma 10, we pass
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S .
from (€3m+1,ns€3m+1n)nei  to the same biorthogonal system

M3m+1 Mszm+1,0
(eSerl ny 63m+1 n)n 1 U (€3m+1 0,m5 e3m+1 0 N)n M3m+1 ot1

1% S3m+1

n
U (€3m+1 no €3m+1, n)n My, +1

. M

of Step 1, where now in (€3, 1 ,,; €3 41.n)ne1 = We replace

oM3m41 ’ oM3m41
U ((e )

((e3m+1 n,k> e3m-i—1 n, k)k 1 3m+1 n,k,24Q3m+1> 3m+1 n,k,24@3m+1 k=1

2M3m+1 Py
U (63m+1 brdnk363m+1 brdnk)k 1 )n 1

/ oM3m+1\P3m4143 :
by (((ei,3m+1,n,0,k’ i,3m~+1,n,0, k)k 1 Jnei ' )i=1, which then become

M3m41\ Psyy,
(((€i3m+1,m0.8 € 3ms 1m0k ) hert It ™)3

n=1 =1
. . . . S3m
while we include directly in (€%, 1 ., €5m11.0) 50 A}} 1 also the part
2N1377L+1
((e3mt1,m,k5 €3mt1,n,k) k=1 ((63m+1,n,;€724593m+1a

o* 2M3m41 2M3m41\ Py,
C3mt1,n,k,20Qm+1 Ji=1 U (€3m-+1,brd,n,k» e3m+1 brd,n, Ri=1  Jnei

that is, now

Mg, M. Ms, P
((e3m+1 n k)i i” ™y (e3m+1 n,k,24@3m+1 )% 31MJrl U (e3m+1 brd,n k)i inﬂ )n3:n1L+1

is 1-equivalent to the natural basis of Z3P3’"+12 o

Mgym41\ Papy,
(((ei,3m+1,n,0,k, €i,3m-+1,n,0, k)i i o )n3 1+1

tion, we have to replace

. It follows that in Step 3, through
)?_, and the procedure of uniform minimaliza-

* / 1% *
(T3m+1,n,0, x3m+1,n,0) U (W3m+1,n,0a W3m+1,n,0) U (W3m+1,n,0’w3m+1,n,o)
by

M3z 41
(T3m41,0.00 T3mt1.1.0.5) Y (@3t 10,0 k0 Wt 1.m,0.6) U (WBmt1,m,0,k5 W§m+1,n,0,k))i:0

SUBCONSTRUCTION IIL.3 (construction of the free block). We turn to the construction
of (zp, wfl)i(j;ré;;ilrz) 41 and we start from the biorthogonal system Bi(3m + 2) defined in
the previous subconstruction; we will proceed through two steps. Again we set

A3m+2 = 4q(3m+2)(A/377L+2+A/3/’"L+2)’

Kamiz = max(|lug, o4l 1 1 <8 < AF, o Agmys — Aspp o +1 <5 < Azpya),

KamioAsm _ 2B3m,
Bipyo > Agmy2timt2fsmi2 o Pa o = Agmyo(2°70m2 4+ 1),

STEP 1. By the procedure of Lemma 10 we pass from B;(3m + 2) to the biorthogonal

S3 +2+M3 +2,0 SL”' +2+M3 +2,0 =
system B (3m + 2) U (€3m+2,n, e3m+2 n)n o " where (€3m+2.n) et m is

2t Mmoo

1-equivalent to the natural basis of [} Som+ , moreover with

ly + ell = max([ly[], [lell /2)

for y € span(Ysmi2.n) 25",

Sém+2+M3m+2 0
e € span(€3m42,n)pt , and
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Q(3m+2 3m+2 A
(y3m+2 n)n( 1m )= (.T )n( 7171 ) ( 3m+2 s)@ e

Azm+2 Qs
U (u3m+2 s)s A3m+2_A,3m+2+1 U (v3m+3 n)n 1 .

Then we suppose that, according to the procedure of Lemma 10, there are

(U )SSNL+2+M3m+2 ,0
0,3m+2,n /)y, 537n+2+1

in span(€smyo, n)ia"{“ and (€5, o n)ig"{“ in X* so that we have the biorthogonal system
(€3m+2,ms €2, DS U (egman,om, €3m 12,0, n)ﬁ%iﬂ“ %
(€3m+2,0,ms €3m+2,0, n)vj\z/ISTH * = (E3m+2,n — V0,3m+2,ns €3mt2, n):smsj,:fi;nﬁ %
Ef s = S0A0(€3m 120 Iney % Shma = 200 4 (Agpn o~ (Aot Ap2)) 1,

2B3.m M3m
M}y = Agmyo22Bom+2 4 Py o0Mamiz,

’
S3’VYL+2 ZSSnL+2
o0

Then (€3m12,n + Ef 3m12)nei 18 1-equivalent to the natural basis of and we can
suppose that the method at the end of Step 1 of SC III.1 continues to work. Unlike the

previous two subconstructions now the bridge sequence does not appear. By the proce-

. s4
dures of the proof of Theorem 11 and of Lemma 10, we pass from (€3m 12,1, €342 1) et
to the biorthogonal system

2B3m+42\ A M3zm42 .\ P:
((e3m+2 aux,s,t’ e3m+2 aux,s, t)t2 1 " )5—3m+2 U ((e3m+2 n,k> €3m+2 n, k)i 1 " )nemllJr2

2M37”+1 P377L+1
U (e3m+1 brd,n,k> 63m+1 brd,n, k)k 1 )

n=1
M3m+2,0 " 1% Szm+2
U (63m+2 0,ns 63m+2 0 n)n M}, 5o+l U (€3m+2 n> €3m+2, n)n M3m+2+1’
_ / M / . o M .
Mapi920 = Moo+ (270m+2 — M3, 10); Samya = Spae — (270m+2 — Mg, o)

M3zmi2,0.
E3my2,0 = span(esm+2,0,n)neat i

!
" 1115 S3m42 ~ 1% S3m2
(63m+2 no €3m—+2, n)n M, o+l = (E3m+2,n; €3m+2,n)n:2Mém+2+1

A3m+2_A/3m+2
(63m+2 aux,ss 33m+2 aux, S) =AY L+

P377L+1
U (W3m+1 n7w3m+1 a1

so that if we set, for 1 < s < Ag;,40,

o N /
€3m+2,aux,s,1 = 63m+2,aux,s,1 and €3m+2,aux,s,t = 63m+2,aux st 63m+2,aux,s,t71

2B 22B3m 42 92B3m 42
for 2 < ¢ < 2°%m+2, then (€312 aux,s,¢)i—1 ; (€3m+2,aux,s,t)i=1 and Ezpmy2,0 cor-
2N N \oR

respond to ((e ;n)n 1)%R17 ((ern)a_1)i—q and E} of (39.3) and (39.4) of Theorem 11 with

(t )22 sm+2 ond {1}; analogously, if we set,

{n}2 _, and {’/‘}T 1 replaced respectively by
— N /
for 1 <n < Pymio, €3mi2n1 = €mion1 804 €3mi2nk = €myonk = Cmion k1 OF

Mszm _
2 < k<2782, egmitbrdn,l = C3np 1 brd,n,1 A0

= ¢ ! Msm 41
€3m+1,brd,n,k = €3m41,brd,n,k — €3m+1,brd,n,k—1 for2<k <2 +,

/ oM3zm 42 oM3m42 ’ oM3m41
then (e3m+2,n,k)k:1 s (e3mt2,nk) =1 and Es3yn2,0, moreover (e3m+1,brd,n,k)k:1 )
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m N R N
(€3m+1,brd,n k)k gi ™ and E3m+42,0, correspond to ((e{r,n)%:l)%:h ((e,«n)i l)r 1 and Ej
of (39.3) and (39. 4) of Theorem 11 with {n}%il and {r}%il replaced respectively by
k)25 +2 and {1}, moreover by (k QMS"LH and {1}. Then we pass to the biorthogonal
k=1 g
system

S3m M.
B2(3m + 2) = Bl (3m + 2) U (eg:”nJrZ n? eg::HrQ n)n3 1+2 U (63m+2 0,n> 63m+2 0, n)n 3T+2 0’

M, 2B A
" 111% 3m+42 __ 2473m+2 3m+2
(e3m+2 ny e3m+2 n)n 1 ((€3m+2 aux,s,t e3m+2 aux,s, t)t 1 )s 1

M P.
U ((63m+2 n,k»y e3m+2 n, k)i ’im+2 )n37?+2.

As for the previous subconstructions, [le5,: 5 ,[| <2 for 1 <n < S3,,,2. Setting

Azmt2—A%, 1o Asmy2—Ag o
(63m+2 aux,s 63m+2 aux s)s A3m+2+1 = (u3m+2 S9 u3m+2 s)q_A

3'm+2+1 ’

from the expression of B;(3m + 2) = B4(3m + 1) of SC III.2 we get the biorthogonal
system

Azm+2 22B3m+2\ Agpm 4o
(u3m+2 s u3m+2 s)s 1 ) ((€3m+2 aux,s,t e3m+2 aux,s, t)t 1 )s 1

from which, by the same procedure of Step 2 with 3m + 1 replaced by 3m + 2,we pass to

Psm42 22B3m+2\ Azmt2
(U3m12,n5 Uy ta, it = ((usm+2,s.t5 Udmt2.6t)i=0 )aop*? and then to the generat-
P3m+ 22B3m 42\ Azmi2
ing biorthogonal system (wsm 2,5, w3m+2,n)n:1 = ((Wam+2,5,t> Wimt2,s.t)i=0 )sat'

and we specify that, setting Qo 3m12 = max(|[w3, 2,/ : 1 < n < Pyia), Mapmyo >
42P3m+2Qo3m+2 Then we have the biorthogonal system
3m+2
Bs(3m+2) = (@, a2)120 ) U (Wom 42,0, Wi 2.0)

oM3m+2\ Py qo
U (e3m—+2,n,k> €3m+2 n, Wi=1 )

STEP 2. Let us fix n with 1 < n < Psy,49. For 1 < k < 2Msm+2 we set

Q3m+3
S A U (P VASIPIN M

oM3m 42 oMzmy2 .
o * o €3m+2,n,f w3m+2,n .
T3m42,n,0 = €3m+2.n,f $3m+27n70 - 2M3m+2 - 2M3m+2 )
f=1 f=1
T3m+2,n,k = €3m+2,n,k T W3m+2,n,
oM3m+y2
* % * _ * 63m+2,n,f w3m+2,n
T3m42,n.k = €3m+2,n.k — L3m+2.n,0 = | C3m+2,n.k — O s 12 + M smra
f=1

We pass from Bs3(3m + 2) of Step 1 to the biorthogonal system

Q4
Bé(?)m + 2) U (U3m+3 n’v3m+3 n)n31+3’

* 3 3 M3z,
By(3m +2) = (2, 25) P70 U (e3m42,0ms Chmsn.0m) w2

n=1 n=1
3m+3 M3m+42\ P3,,
(l'n, z )Z( ;n(,3m)+2)+1 (((x3m+2 n,ks x3m+2 n k)i 0 )n3 1+2'

At this point, always by the procedure of Construction II and of Lemma 12, where we
replace (yn, y)2"" by B4(3m + 2), we define

P, Qs
1% 3m+3 3m44
(u3m+3 CRl u3m+3 s)s—l U (03m+4 n’ U3m+4 n)n 1 )
1% Q3m+3 _ Q3m+3
(u3m+3 ER u3m+3 s)s 1 (U3m+3 n’ U3m+3 n)n 1 ’
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_ *\q(3m+3) / 7% Afrmys ’ = Qigmta
B4(3m + 2) - (.’L‘n, xn)n:l ) (u3m+3,s7 U’3m+3,s)s:1 U (U3m+4,n’ 1}3’rn-|-4,n)n:1 ’
A/I M P//
’ 1% 3m43 __ * 3m+2,0 " 17% 3m 43
(“3m+3,sau3m+3,s)s:1 = (e3m+2,0.n 63m+2,0,n)n:1 U (u3m+3,svu3m+3,s)s:1

By (39.3) and (39.4) of Theorem 11 and by the above, ||z,| < 3 and |z}| < 5 for
g(3m+2) +1 <n < q(3m+3) (we recall that || z3m42,n,0] =1 for 1 <n < Ps,10); we

3m+3 Gsm
set (m”)i(:ZEBm)Jﬂ)H = (Zgma2.n)noy ? and, for ¢(3m +2) +1 <n < ¢(3m + 3),
Tp =T, +Tp; Tp=x) 20

/ " . . m . Azmt2
Ly, € Span(e3m+2,i -1 S ¢ S S3m+27 e3m+27i ¢ bpan((83771-"_2’&11)(’8)SZAngrl-"_l

2Bmi2\ A
U ((esmtiamcsit)ict et ™)

2 Azm+2
T € Span((€3m+2,aux,s)s:A'S{"L+1+1

22537n+2 )Agrm+2 ) :

U ((e3m+2,aux,5,t)1=1 51

A//
mn / 3m4-2
Ty € Span(u3m+2,s)s:1

We set, for each T € X with ||Z|| =1,

U3m+2 = G3m+2(T) = max(max(|z) (T)| : ¢(3m +2) +1 <n < ¢(3m + 3)),

max(|esy 15, (T) 1 1 <1 < Sama)).

Finally, we set B1(3m + 3) = B4(3m + 2) and we are ready for the construction of

(zp, m;)i(jg?;zil)rl))ﬂ. This step completes SC II1.3 and hence C IIL

CONSTRUCTION IV (C IV, second version of the construction of each block). In this
* )q(3m+3)

n/n=q(3m)+
blocks, however now the second sub-block in turn is parted in a set of sub-sub-blocks.

Since C IV is an improvement of C III, the real construction of the blocks of the basis

second version the block (z,,x , continues to be partitioned in three sub-

with permutations is C IV, but the advantage of C III is that it gives a better idea of the
properties of the basis, hence all the proofs of the general properties will be given for C III
since the procedures work also for C IV and only in Lemma 18 (RL) it will be necessary
to specify a part of the proof also for C IV; the same for the proofs of the properties
of the basis, where only in the proof of (ii) of Lemma 19 (FRCL) we use directly C IV.
Hence, for what concerns the second sub-block, the proofs of Lemma 13 (RBL) and of
(i) of Lemma 19 (FRCL) work also for SC IV.2.

SUBCONSTRUCTION IV.1 (SC IV.1, construction of the completeness block). The same
construction of SC III.1 works, with the following simplification: In the analogue of Step 6

of SC II1.1 we will not define now the system (v3,, o . v§%+27s)?=3*1”“, hence B1(3m +1)

becomes
B1o(3m +1) = B11(3m + 1) U (b5, ;, b’s%,i)f:é?,
Bii(3m+1) = (xn@:)gl(j;nﬂ) U (U/1,3m+1,sa“,1f3m+1,s)fi’13m“,
(B i B )28 = (W00 W0 U (4 bt s bt ot VA

1"
A 3m1
s=1

. A//
where (] 3., 11 5) is the sequence (u3,, 1 )= of Step 6 of SC IIL.1. Moreover
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we recall that actually we defined only (z,, —xbrd’n)fsz;;)) 41 Since we still have to define
Mg e NLh
((wémynu(eBm,brd,n,k)i=i )fe’zni’ hence also (bém,ﬂ ém,i)i:sl/ where L/3m = (2M3m +1)P3m

SUBCONSTRUCTION IV.2 (SC IV.2, construction of the regularization block). This sub-

block (z,, xfl)i(jz;ill)ﬂ of the block (z, xfl)i(jzgi))ﬂ will now be union of Ls,, sub-

sub-blocks (which in what follows we will call sub-blocks), where the construction of
each sub-block will be a simplification of SC III.2, precisely the bridge sequence will
?ﬁ’f“, together with the sequence ((w3,,, U
(egm,brd’n’k)%i[im )P 3 will be defined only in the last (L3, )th sub-block (that is, also the

n=1»

not appear and the sequence (v3,,,s )

sequences analogous to (v5,, +378)§:3’1"+2 do not appear in the first L3, — 1 sub-blocks).

We will proceed through 4 steps.

STEP 1 (starting point and point of arrival). The starting point is By 1(3m + 1) of (i)
above, while the point of arrival will be

— *1q(3m+2) / 1% Ag?n{»? / /% Qé/7n+3
B, (3m + 2) = ($n7$n)n:1 U (U3m+2,saugm+2,s)5:1 U (Usm+3,s7u3m+3,s)s:1 )

/ Aé/m+2 _ LL3mv3er1,0 " P:s{r/m+2

(u3m+2,s)s:1 - (6L3m,3m+1,0,n)n:1 U (u3m+2,s)s:1 )
3m+2 Go,3m Ga,0,3m+1\Lam
(xn)gl(:zz3m)--1)+1 = (xo,3m+1,g)g:013 = ((9@1,0,3m+1,g)g:dl03 s

where, for 1 < d < Lz, 1 <n < Pygmy1 and 1 < k < 2Masmr)

G . Ie. ‘o Pas,
(2d,03m+1,9) et ™™ = ((Ta,03m+1.m,9) gei )0 Zd ™,
¢ 4 Gd,0,0,3m+1, Ga, 1
(zd10,3m+17n,g)g:d’10,37L+1’O = (xd70,0,3m+1,n,g)g:diO'O ety (xd,3m+1,n,g)g:dfm+l 0,
G g My,
(24,0,0,3m+1.m,0) gt > = Za 3mt1,m0 U (Tasmttnk0)iet s
Ga3m+1, 4Qq, 3y Mg,
(@a 3mr1m.9)gei™ 0 = (@dsmirmr)ics imt
Ga,3m+1,0\Pd,3m+1\L3m __ Ga3m+1\Lam __ Gamai1,
(((Id,3m+1,n,g)g:1 )n:l )d:l - ((md,3m+1,g)g:1 )d:1 = (I3m+1ag)g:1 ;

moreover, for 1 < d < Lz, 1 <n < Pygmy1, 1 <k < 2Masmit and 1 < < 24Qasmi1,

oMg,3m+41
Td,3m+1,n,0 = E €d,3m+1,n,f>
f=1
oMazm+1 «
z* _ ed,3m+1,n,f - vd,3m+1,n
d,3m+1,n,0 — Z 9Ma,3m+1 IMa,3m+1+2Qd,3m+1’
f=1
24Qd,3m+41
*
Td 3m+1,n,k,0 = E €d,3m+1,n,k,g1 Td,3m+1,n,k,0
g=1
24Qd.3m+1 P
B € 3m+1,nk.g 9Pa3m+1Qd,0,3m+1 ) .
= 94Qasmir 92Qa.3mt1 €d,3m+1mk — Ld3mt1,n,0):
g=1
€d,3m+1,n,k Vd,3m+1,n
X =e
d,3m+1,n.k.l d3m+1n.kl 9Pa,3m+1Qd,0,3m+11+2Qd,3m+1 + 2Pa,3m+1Qd,0,3m+1"’
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* % *
L4 3m+1,n,kl — €d3m+1nkl — Ld3m+1,n,k,0

24Qd,37n+1 *
. 6* _ ed,3m+1,n,k,g
- d,3m+1,n,k,l E 24Qd,3m+1
g=1

Md.37n+1
Pasm m 2 y
N 9Pa.3m+1Qd,0,3m+1 o B Z € 3m+1,n,f
22Qad,3m+1 d,3m+1,nk IMa z3m+1
f=1
9Pi,3m+1Qd,0,3m+1
IMa,3m+1+4Qd,3m+1 va Bmtln

STEP 2 (description of the support sequence). First we define some integers and we point
out that some elements which appear in these definitions will be defined in the next steps:

Agpyy > 490 DA s g ) = max([|u) g, 60l 1 1 <8 <AV 5009),

Bami1 > Az 28emnidemi Lo = (92Bsmi 1) LL
moreover for 1 < d < Lg,,, setting
d—1
q(1,0,3m +1) = q(B3m+1), q(d,0,3m+1)=qBm+1)+ > Geosmr1
c=1

for 2 < d < L3,,, we define
Boami1 > 25,
Agsmir > 49(d,0,3m+1)(AY 5,11 +BO,3m+1)’
Kasm+1 = max([ug g1l 0 1< s < Af3,00),
Byami1 > Agamy1258emriddsmin
Pasmys = (22545m41 4 1)(Aggmys — 1) + 22Bosmtt 41,
Qd,0,3m+1 = max(||wg 31,1 1 1 <0 < Pagms),

2P43m m 2Qa, 3m1+4.22@d.3m+1
Qd,3m+1 > 42Fas +1Qd.0,3 + Md,3m+1 >4 Qd,3m+1 .

We start from a biorthogonal system (see Step 1)

q(3m+1) P — Lam+1
(Tns T ) oy U (uy 3m+1, Ty ,3m+1, )s=1 U (€3m+1,n; e3m+1 et

m+1 3m+1

where (63m+1 n)ﬁ 17! is 1-equivalent to the natural basis of I} and [[€3,, 11, <2
for1<n< L3m+1. Our aim is to get a biorthogonal system

Lam+ Lam+1,0
(€3m+1,n; 63m+1 et U (€3ma1,0,n5 63m+1 0, ) et

with the following properties:

@ 1) 2 = (Camar) S5 U (W U (Cmbrant) oy )2
2B L
U ((€3m+1 aux,s,j )3 13er1 )1_371”7
i Lass -
(e3m+1.0.m) ot ™ = ((€d3m+1,0,m) ™0 2T
Ld 3m41,0 L

La.c.am
(€d3m+1,0,n) et = ((ec,d 3m+1,0m) ey ), |
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Lasm
(€d3m+1 n)ndi +

Adzm4+1—1

24Qd,3m+1\9Md,3m+1
— U (e
)k,l ( d,3m~+1,aux S)S =AY 3m+1+1

= (ed,3m+1,m,k U (€d,3m+1,n,k,0)1=1

22Bd,3m+1\Ag 3m+1—1 22B0,3m+1
U ((ed 3m+1,aux,s t)t 1 )s 1 U (ed,3m+1,aux,Ad,3m+1,t)t:l )

. . ~ L .
moreover there is also a connected biorthogonal system (€3, 11 ;€510 )net > With

I . . b
(€3m11.n)nei’ " l-equivalent to the natural basis of I;*"*" and

L/m 4Qd,3m41\9Md,3m+1\ Py 3
(Cmi1,9) g = (((€q3ms1,mp U (€ amet, ok d)im1 )iz1 Jnli"
2Bg,3m+1\ A -1
U ((ed ,3m+1 aux,s,t)? 1 " )s d13m+1
2B 3m+1+ [,
U (ed’3m+17aux Ag, 3n1+11t)%:10 o )diT

M3m \ Pg, 2B3m41\ L},
U ((€3m brd,n, k)i lm )ns 1 U ((e3m+1 aux,i,] )j2 1 " )2—31na

such that the following properties hold:

— _ /
€3m,brd,n,1 = €3m brd,n,1> €3m,brd,n,k = €3m,brd,n,k — €3m,brd,n,k—1
for 2 < k < 2Msm and 1 < n < Py,,; moreover, for 2 < j < 22Bsm+1 and 1 <i < L},

_ ! R / _ ! .
€3m+1,aux,i,1 = €3m41,aux,i,10  E3m+laux,i,j = €3m+1aux,i,j — €3m+1,aux,i,j—13

moreover, for 1 < d < L,

— ! /
€d,3m+1,aux,s,1 = ed,3m+1,aux,5,1’ €d,3m+1,aux,s,t = ed,3m+1,aux,s,t - ed,3m+1,aux,s,t71
for 2 <t < 22Basm+1 gnd 1 < s < Ag3m+1 — 1; analogously, for 2 <t < 2230’3"1*1,

o
€d,3m+1,aux,A4 3m+1,1 = €d,3m+1,aux,44, 3m 11,1
— o ! .
€d,3m+1,aux,Aq 3m+41,t — ed,3m+1,aux,Ad,3m+1,t - ed,3m+1,aux,Ad,3m+1,tfla

moreover, for 1 <n < Py 3,41,

7 7 /
€d,3m+1,n,1 = €4 3m+1n,10  €d3m+1lnk = €4 3m+1,nk — €d,3m+1,nk—1
for 2 < k < 2Masm+1 moreover, for 2 <1 < 24Qdsmi1 and 1 < k < 2Masmi1,

— ! ! / .
€d,3m+1,n,k,1 = €4 3m+1,n,k 1>  €d3m+1lnkl = €4 3m+1n,kl — €d3m+1nk,l—15
moreover, setting for 1 < d < Lz,

3 Zd,3m+1,0 . Z3m+l,0
Eq3m+1,0 = span(eq,3m+1,0,n) et o Esmi1,0 = span(€sm4+1,0n) et

the following properties hold:
M3m \ P. m
b ((63m brdnk)i Si )n3 17((63"1 brdnk)k

2B L 2B3, L
d ((€3m+1 aux,z,])? 13"”Jrl )2—31 ’ ((63m+1 aux,i,j )3 13 " )1—371n and E3m+1a0’

P3,
")t and Espq10,

moreover, for 1 < d < Ls,,,
2B4,3m A 1 2Bg,3m A -1
2°7d,3m+1 d,3m+1— 24Pd,3m+1 d,3m+1
d ((ed 3m+1, aux,s,t)t 1 )s 1 ((ed 3m+1,aux,s t)t 1 )9_1
and Eq 3m+1,0

22B0,3m+1 22B0,3m+1

° (ed 3m+1l,aux,Ag,3m+1,t )t 1 ) (ed73m+1,aux714d 3m+1,0 )t 1 and Ed,3m+1,0,
Mg 3m Py am Mg 3m Pg,3m
* ((eg ,3m+1,n k)i TB H)ndi 1 ((edamatnk)i= ig +1)nd?i ™ and Eygm+1,0,
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4Q Mg, Py 3m
e (((ey 3mA41,n,k, 1)12— * Bmﬂ)i:i Smﬂ) o

and Eg3m+1,0,

4Q X M R ) P .
ne ™ ((eagmetmpa)iy T ) g

have the same properties of ((e;n)%]il)?jl, ((ern)%Nl) ", and E} of (39.3) and (39.4) of
Th. 11, for (n)2~, and (r)2", replaced respectively by
o (((n, kDFZ" )7 and {1},
(G352 Ey and (1),

(s, )22 )2 ™ and {1,
Aq 3m+1;\/1)?2}i0’3m+1 and {1},
(n,B))2Z5 "), and {13,

l

(kDL e and (o k)

[ ]
—

in particular all the previous properties continue to hold also if, for each d with 1 < d <
Lgm, we replace Ed,3m+1,0 by Ed+i,3m+1,0 for 1 < ) < L3m —d or by E3m+1,0; ﬁnally the

following property also holds, for each sequence (a3m+17n)L3_m+1 of numbers:

n=1
Lymt1
H Z A3m+1,n€3m+1,n + E3m+1,0H
n=1
P, 2M3m L}, 22B3m+1
o H Z a3m nw?,m n + Z @3m,brd,n,k€3m,brd,n, k + Z Z A3m+1,aux,i,j €3m+1,aux,i,j
i=1 =1

L3m A4 3my1—

+ § ( § ad,3m+1,aux,s€d,3m+1,aux,s

d=1  s=Ay 5, ,+1

Ad zmi1—122Bd3m41

+ E E Ad,3m+1,aux,s,t€d,3m+1,aux,s,t
s=1 t=1

928B0,3m+1

+ § Ad,3m+1,aux,Aq 3m+1,t€d,3m~+1,aux,Ag 3m41,t
t=1

Pg,3m41 2Md,3m+1

+ E E ad,3m+l,n,ked,3m+1,n,k
n=1

24Qd,3m+1

+ E ad,3m+1,n,k,l6d,3m+1,n,k,z) + E3m+1,oH

= max (maX(Iagm,n\ 11 <n < Pap),max(|agm brang] o 1 <k < 2Mem 1 <n < Py,
max(|agm+1,aux,iy] 0 1< < 22Pmet 1< < LY,
max(|ad,3m+1,aux,s| : :i/,3m+1 +1 S S S Ad,3m+1 - 17 1 S d S LSm)a
max(|ad,3m+17aux,s,t| 1 S S S Ad,3m+1 - ]-a 1 é t S 22Bd’3m+171 S d S L3m)

2Bo,3m
maX(|ad,3m+1,aux,Ad,3m+1,t| 01 <t< 27703 +171 < d < L3m)7
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max(|agsmi1nk] 0 1 <k <2Mbsmer 1 <n < Pyayi,1<d < Lay,),

Qk{d,SnL«Fl

max (H E Qd,3m+1,m,k,1€d,3m+1,n,k,l T E3m+1,OH :
k=1

11219000 1 <0 < Pagin,1 S < Ly ).

STEP 3 (construction of the connection sequences). (i) First we pass from
L, Lam 2Byt LY,
(V5105 Ui i )i27 of SC IV.1 to (b3m,d, b5, 0) a2t = ((D3m.ig, b3, m)z o) 2r where,

for 1 < j <22Bsm+1 and 1 <4 < L},

22B3m+41 92B3m 41

* /%
b R Z e ) b* - Z e3m+1,aux,i,g _ 3Im,e
3m,z,0 . 3m+1,aux,t,9» 3m,1,0 . 2233m+1 233m+1 9
g= 9=
/
3Im,e
b3m.ij = T€3m+1,aux,i,j + 3Bamr’
* % *
bSm,i,j = €3m+1,aux,i,j b3m,z’,0
22B3m 41 o b
Y o 3m+1,aux,i,g + 3m,i
3m+1,aux,i,j § 1: 92Bsm 11 9Bsm41
g:

(ii) Now, for each d with 1 < d < Ls,,, we start from the system

Y Adzm4+1—1
(ug 3m+1,s0 ug ,3mA+1, )i U (€d,3m-+1,aux,s, €4 ,3m+1,aux S)s Al amyart1

22Bd,3m+1\Ag 3m+1—1
U((ed 3m+1, auxst;ed 3m+1, auxst)t 1 )s 1

22B0,3m+1
U (ed 3m~+1,aux,Aq 3m11,ts ed 3m+1,aux,Aq,3m+1,t )t 1

where, for d = 1, (U] 3,116 U7 3m 11, S)flf"’“ is the system of SC IV.1, while for 2 <
d< LBma

/ Ag,sm-u La_s 3m+1,0
(ud,3m+1,s7 d 3m4+1, s)s—l = (€d—1,3m+1,0,ns €41 3m+1,0, n)ne1 )
Ad ,3m—+41 IZ7E3 Pd 3m+1
(ud 3m+1, s’ud 3m+1, s)s A’” +1+1 (ud 3m—+1, s’ud 3m+1, s)s 1

" T " _
(hence dami1 = La—13m+10 and Agy, 0 = Afs, 0 + Pd 3m41)- Then we set (we

recall that Pd,3m+1 = (22Bd>3m+1 + 1)(Ad,3m+1 — 1) + 2230,3m+1 + 1)

lIl

Agzm+1—1

Ad,zm41—1
w (ed 3Im+1,aux,s> ed ,3m-+1,aux s)s—A

(“d 3m+1,s) Ud 3mA+1, s)s Al

d, 3m+1+1 d,37n+1+1’

Py 3m4+1—2 2Bo,3m+1 1 22B3m+1\Ag 3m41—1
(Ud,3m+1,m5 U 3m+1,n) e = ((Ud,3m+1,,t Ud 3m41,5,6)t=0  Jsmi ;

(’LL ’LL* )Pd,3m+1
d,3m+1,ny Ud 3m+1,n =Py 3m41—22503m+1

22B0,3m+41
(U’d 3m+1,Aq 3m+1,t» ud B3mA41,44 3m+41,t )t 0 )

where, for 1 < s < Ag3m41 — 1 and 1 <t < 22Basmir,
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22Bd,3m+1 22Bd3m+1 .
* ed,3m+1,aux,s,g ud,3m+1,s
Ud,3m+1,5,0 = Z €d,3m+1,aux,s,9> Ud,3m+1,5,0 = Z 922Bd,3m+1 B 92Bd,3m+1 ’
g=1 g=1 ' 1
u
d,3m+1,s

)

Ud,3m+1,s,t = €d,3m~+1,aux,s,t + 9Bdsm+1

* o x *
ud,3m+1,s,t - ed,3m+1,aux,s,t - ud,3m+1,s,0

22Bdamt1 1%
2 : 6d,3m+1,aux,s,g> ud,3m+1,s

*
= e —
( d,3m+1,aux,s,t 22Bd,37n+1 2Bd,37n+1 ’

g=1
while, for s = Ag3m+1 and 1 <t < 22Bosm+1

92B0,3m+1
ud,3m+1,Ad,3m+1,O = § ed,3m+1,aux,Ad73m+1,g7
g=1
22B0,3m+1 e* %
ut - z : d,3m+1,aux, A4 3m41,9 3m,d
d73m+17Ad,31n+1 0 2230’3m+1 230,3m+1 ’
g=1
b3m,d

Ud,3m+1,Aq,3m 1.t = Cd,3m+1,aux,Ag zm1,t T 9B0.3mt1
* _ * _ *
Ud,3m41,A4,3m41.t — €d3m+1,aux,Aqsmi1,t  Ud,3m+1,A43m41,0
22B0,3m+1 4 b
B - z : ed,3m+1,aux,Ad13m+1,g + 3m,d
- d13m+1yauxaAd,37n+1 )t 2230’3m+1 230,3m+1 :
g=1
Now, by means of the procedures of GBST and MGBS, we pass to the generating biorthog-

P, P,
* d,3m+1 * d,3m+1
onal system (wd,3m+17n’wd,3m+1,n)n:1m and then to (vd73m+17n’vd,3m+1,n)n:1n )

where

* Pd,37n+1 _ *
(Ud,3m+1,nv Ud,3m+1,n)n:1 = ((Ud,3m+1,2n—1v Ud,3m+1,2n—1)

% Pa,3m+1/2
U (Ud,3m+1,2na Ud,3m+1,2n))n=1 ’
_ Mazm+1+Qa,zm
Vd,3m+1,2n—1 = Wd,3m+1,2n T wd,3m+1,2n71/2 domiitQas A

— M, + y
Vd3m+1,2n = Wd,3m+1,2n — Wd,3m41,2n—1/2" &3+ Qa,3m+1

2Md,3m+1 +Qd,3m+1

* * *
Vismiton—1 = (Wizmi12n + Wi 3mt1.2n-1)/25

* _ * _ 9Ma3m+1+Qd,3m+1,,,* .
Vi 3mt1,2n = (W 3m41,2n — 2 Wi 3mt1,2n-1)/25

finally (see Step 1), for 1 <d < Lg,,, 1 <n < Pygm+1 and 1 < g < Ga.0,3m+1,0

, _
4,0,3m+1,m,9 = L4,0,3m+1,n,g T Ld,0,3m+1,n,95

~ G4,0,3m+1,0 ~ Ga,3m+1,0
(zd1073m+11"79)g:1 = (md,Bm-&-ng)g:l

where, for 1 < g < Ga3m+1,0,

~ o~ ~I1
Td3m+1,m,9 = Td3mi1,n,9 T Td,3m41,n,90

I~ _ Pg3m+1Qd,0,3m+1
zd,Sm—l—l,n,g - vd,3m+1,n/2 )

= —— Pa,3m+1Qd,0,3m+1
xd,3m+1,n,g - vd,3m+1,n/2 " T,
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R/ " ~11 Ga,3m+1,0 ~ Z/d,3m+1
Vd,3m+1,n = vd,3m+1,n + Ud,?)m-‘rl,n? (‘Td 3m+1 n,g)g:l - Span(eda?’m‘f‘lm)n:l ’
Pa,3m41 Ay 3m41
§ : 1% —\, _ 2 : * —
Ud,3m+1,n(x)vd,3m+l,n - U’d 3m—+1, s( )ud,3m+175 + b3m,d(x)b3m:d'
n=1

STEP 4 (construction of the support sequence). Let us fix d with 2 < d < L3, and
suppose we have already defined (see (ii) of Step 3)

Bai(3m+1) = (a,, a%)1Cm+D

n=1
U (@em 1.0 Z0.am 1) gt ™ VEZE U (Wt o0 W 1.) o™
where we recall that we still have to define (Zpyq, ")n(?’ZE;:L)) i (bgm,d) 2275 therefore let
us set
Xa03mi1 = span((@n)2°7" U (2 — 2oran) 0000
U ((Zc,0 3m+1,g)§clo AU (W g1, S)?f{%m“

where, for 1 <c<d-1,

Ge,0,3m M 3 Pe g
(Te0,3m+1,0) gt = (T 3m1,m,0 U (Te3mt1,n,5,0) o R M

4Q M P, -1

U (((mc 3m+1 n,k,l)l2_ o )i c13m+1 )niimﬂ
4Qc 3m41 _ Mc 3m+41

) ((xc 3m+1,P. 3m+1,k, l)lz— o l)izl

oM 3m+1

Ve,3m+1,P; 3m+1 >

U <IC,3m+1’Pc,3m+1,k,24Q”’3’”+1 B 92Pa,3m+1Qd,0,3m+1 o1

N ~ Lsm
Then, setting Es,,4+1 = span(€sm+i,n),e

nom*t ) if Lap4q is sufficiently large there exists
a subspace Egort,3m+1 of E3mi1 such that we can write ||« + e|| > ||z| for each z €
Xd,03m+1 + Ea—1,3m+1,0 and € € Fgort 3m+1- Moreover we can also suppose L3p,11

Lg,3m+1

sufficiently large such that there exists in Ed,ort73m+1 a block sequence (€4.3m+1,n)pe]

of (€341, n)fl gmtt (actually, by means of a standard procedure, we can only get a sequence

of Ed ort,3m+1 Which can approximate a block sequence of (€341, n)L3 , however we
always follow the idea of the first part of Subsection 1.5). At this point we have only
to follow the same procedure of the first sub-block (which is the procedure of Step 1
of SC III.2, precisely a more simplified version since now we do not need the analogue
of the elements w3411, wgmﬂ ns €3m+1,brdn,k Of SC IIL.2), where we have to replace

(€3mt1, n)ng"{“ by (€4.3m+1 n)rLLd jm*t. Then, if 2 < d < Lg, — 1, we can define the

biorthogonal system

La3m+1 Lo,d,3m+1,0
(661 3m+1,n, ed ,3m+1, n)n 1 U (60 d,3m~+1,0,n5 60 d,3m+1,0, n)n 1

where (€4,3m+1,n, €4 3m 11, n)TLLd 1™*! is the biorthogonal system of the first part of Step 2,

moreover

Lo a,3m La,c3m m
(€0,4,3m+1,0m) et * ™0 = ((ediesmt1,0m )™ 0 ) b2

Lg,c,3m+41,0

ned has, for

so that, for each ¢ with d +1 < ¢ < Lam, (€d,¢,3m+1,0,n5 €5 ¢ 3m41.0.n)
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Ld 3m+1

ey, the same properties of

what concerns (€q,3m+1,n, €5 Bmal, n)

Msm
(€3m+1,0,m5 €3ms 1.0 )t

as regards (€3, 1, €51, n)ig"{“ in Step 1 of SC III.2; therefore, if according to the

definition of Step 2,

Taam Lacsm
(€as3mr1.0m)net™ ™ = ((€c,d3m+1,0m )i ™™ )y,

we have the proof of the property of Step 2 that we can replace E43m+1,0 by Eati,3m+1,0

for 1 <4 < Lgy,, —d. We point out that, for d = 1, (€1 3m+1, n)L1 4™+ has to comprise

n=1

also the sequence ((€3/m+1,aux ZJ)?QBlO 3mt1 )Lsm Finally, if d = Ls,,, we will define

LL3,,, 3m+1 LL3,,, 3m+1,0

(€Lam3m+1,m5 €Ly, 3mttn)net U (€Lsp 3m+1,0,m5 €Ly, 3mt1.0.n) el
M.
U ((w3m,n7 wf;;n,n) U (63m brd,n,k» e3m brd,n, k)i im )53:7?

STEP 5 (completion of the construction of the connection sequence). Suppose 1 < d <

L3,, — 1. By means of the procedure of C II and of Lemma 12, where now we replace

(yn)gﬁl) by the sequence (see the first part of Step 4)

Q(3m) q(3m+1) Ge0,3m+1 / A 3
(.’En) ({E ~ Tord n)n q(3m)+1 U ((.’EC 0 3m+1»9)g 1 )c:l U (ud,3m+17s)5:1 )

AGlsm41 La—1,3m41,0

(ud ,3m-+1, s)s 1 = (ed 1,3m+1,0 n)n 1 s

we can define
P A//
1% d,3m+1 _ d,3m+1
(“d 3m+1,s0 Ud,3m+1, st = (ug ,3m+1,s Ud Smt1,s) g Aty a1

and we are ready for the construction of the dth sub-block. For d = L3, suppose have

also defined

GLg,,,0,3m+1

3m+2
(‘TLam,O3m+1,9"rL3m,03m+1,g) =1 = (n, *)q(m )

n/n=q(3m+2)—Grs,,,0,3m+1+1"
If we replace (yn)giT) by

"
Adlsmia Adl3mi1 Ly, .3m+1.0

3m—+2
YLD (g, ) o (W) o™ = (€L 31,0 )y :

(Tn
by means of the procedure of C II and of Lemma 2 we get

Py Py
1% 3m+2 3m4-2
(u3m+2 s u3m+2 s)s*l U (v3m+3 s v3m+3 s)s 1

Ay 3m41 " Pylio .
AT = (U3 10,5)s—1 ", we are ready for the construction

of SC IV.3, where we can see that the sequence (uém‘*‘?vs);4:32:71+2*A’3m,+2+1 of SC III.3

and, setting (u3,, s )

does not appear.

SUBCONSTRUCTION IV.3 (SC IV.3, construction of the free block). Again the same
construction of SC III.3 works, apart from the fact that now the procedure of SC IV.2
will cause that the analogue of the system (u3,,, 9 ¢ U35, 12, 9)?31;:1“7# ,+10f SCIIL3
will not appear.

This completes C IV.
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4. Properties of each block

The next lemmas concern the properties of the block (z,,, x;)i(jggri)) 41

The first lemma allows the construction of the “bricks” (precisely, particular subsums

Zi(‘?';’z;r:l)_kl) +1 75 (T)Ty,) necessary to form the elements able to “regularize” the sum
ZZ(SZZ;:, R *(T)xn, that is, to transform it into another sum where the sequence of the

norms of the partial subsums is (0, €, )-monotone for ¢, — 0.
LEMMA 13 (Regularization Block Lemma, RBL). Let T € X with ||Z|| = 1 and fiz n with
1 <n < Pyt sothat n = 2 — 1 for some W with 1 < 7T < Psy,11/2. Suppose that
\w§m+172ﬁ_1(5)| > 1. Then
1 2P3m+1Q0,3m+1 9P3m1+1Q0,3m+1 92P3m+1Q0,3m+1
(o 1 BT < 9 TG V3ma1,0 (T)] < Q0,3m+123QT§

moreover there exist two integers k and k with 1 < k,E < 2Msmi1 | 5o that
1 2P3m+1Qo,3m+1
) €0 3ms1brant @ < 598 i0ams Gmr1n(@) & Vim0 (@) >0,
1 2P3m+1Qo,3m+1

1%

6073m+17brd,n;(f) STy v Ao P sma1n(T) i V310 (T) <0;

Mgy 11
9P3m11Q0,3m 11 27 3m+

.. _ 1 » _
(11) 22Q3m+1 (ezmﬁ—l,n,%(x) o IM3zmt1 Z e3m+1,n,f (l‘))

1 2P3m+1Q0 3m+1

T 5 9 4G s ¥ 31 (T) i V5000 (T) >0,

M3zm41
9P3m11Q0.3m+1 27 3m+

1
* — _
22Q3m+1 <e3m+1,n,E (l‘) o IM3m41 Z e§m+1a"vf(x))
f=1
1 2P3m+1Qo,3m+1 . -
3 OV i Vst (T) 8 Ui 0 (T) <03

24Q3m+1_1q 24Q3m+41_q 1
* — * _ .
(i) Z |31, 7.0 D+ Z i1y (D) < 24Qamt1
g=1 g=1

111 1 ]'

(iv) in particular |63m+1,brd,n,k( T)| > = 9 93t ;

(v) for each number a with |a| < Qo sm+1, there exists an integer L(a) with 1 <

L(a) < Q0,3m+123Q3m+1 such that
L(a)

1
H Z L ammt1,n kol (T)x Lamii,nk,l  AW3m+1,2m

P
2Q0,3m+12P3m+1’

in particular n = 2 — 1 if a and w3, | o1 (T) have the same signs, while n = 2n if a
and W3, 11 on_1(T) have opposite signs.
Proof. In this proof we refer to the steps of SC III.2.

By Step 2, in particular by the definition of Q3,41 and by the relations among
Q0,3m+1, Qam+1 and Mzp, 11, since (w3, 11 o1 (T)| > 1 and [w3,, 1 on(T)| < |03, 41 07
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< Qo,3m+1 < Q3m1, We have
9P3m1+1Q0,3m+1
2o e (@)
OMzmi14+4Q3mtr | dMFLn
9P3m+1Q0,3m+1 ]

"o = M3zm+1+Q3m—+1
IMsm41+4Q3m+1 9 |w3m+1’2ﬁ($) +2

W3y i1 271 (7))

9P3m11Q0.3m+1 ]

_2M3m+1+Q3m+1 wk - T

- IMszm41+4Q3m+1 4 | 3m+1,2n—1( )l
9P3m11Q0,3m+1 |w§m+1’2ﬁ71(f)| - 1 2P3m+1Qo.3m+1

- 4 23Q3m+1 4 23Qzm41

analogously
9P3m11Q0,3m+1
ol @)
IMgm1+4Qsm 1 | 3m+1n
P3m41Qo,
B 2 3m+1&0,3m+1 1| * (—)+2M37,L+1+Q37,L+1 * (—)|
= M 144031 o W3m41,2n\T W3m+1,2n—1\T
IMzm11+4Q3m+1 9
9P3m11Q0.3m+1 ]

< a5 (W o (T) |+ 2Mem et T Qomit s on (D))
IMszm41+4Q3m+1 2

9P3m41Q0.3m+1 ]
el M3m4+1+Q3m+1
< SMam i1 +4Qsmia 2(Q°v3m+1 +2 Qo,3m+1)

9P3m+1Q0,3m+1 | + OM3m 4 1+Q3m 1

= Qosm+1 IMszm41+4Q3m+1 2
2P3m1+1Q0,3m+1 9P3m41Q0,3m+1
L oMiympaAQamir — £ .
< Q0’3m+1 IM3m+1+4Q3m+1 Q073m+1 23Q3m+1 ?

that is, (o) has been proved.

Now let us prove (ii) (since the proof of (i) is analogous). It is sufficient to consider
only the case of w3, o 1(T) positive hence v3,, ., ,,(T) > 0. By the end of Step 1 we
know that, if we set, for 1 < k < 2Msm+1

9P3m1+1Q0,3m+1 2Mam1 ek (f)
an = e (E) _ Z 3m+1,n,f
k 22Q3m+1 3mA+1,n,k 2Mszm 41 ’
f=1
then
oM3m 41

9P3m+1Q0,3m+1

|ak| < 4226237”1Jrl and Z ar = 0.
k=1

Now suppose we have a sequence (ai)f\él of real numbers with
N
> ai=0, |ai| <c=42Pmn@anii/92Qmin for 1 <i < N,
i=1

and set
1 2P3m+1Q0.3m+1

b= 1 23Q3m+1

Our aim is to estimate the lowest N such that always there exists ('), ¢ (i)X, with
4 iy
a; > —b/2 for 1 <i < N’, with N' > 242 93m+1 1 order to estimate N we consider the
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most unfavourable situation, which happens for instance for a; = ¢ for 1 <i < N’ and
a; = —bj2 for N/ +1 < i < N. Since Y., a; = 0 we have ¢N’ = (N — N’)b/2, hence,

since My 41 > 42Qomi+42 %™ by Gtep 9 it follows that setting N/ = 242" we
have

9P3m11Q0,3m+1 4 . 23@3m41

N = (2¢/b+1)N' = (2 -4 + 1) g4-24Qam1

22Q3m+1 "9 Psm11Q0,3m41

24Q37n+1

= (32.2Qm+1 4 1). 2% < 982 ) < 9Mam

Therefore we conclude that there exists (k)< U (k)K" ¢ (k)%ii’"“ , with min(K’, K')

4Q3m _ )
> 242774 “guch that eg’gmﬂ brdon g (T) < %b for 1 <:< K’, and

M; m
9P3m1+1Q0,3m+1 1 2¥3m+1 1
* — « .
W e3m+1,n,k;' (l‘) N 9 Mszum41 Z €3m+17n,f(1') = 7§b
f=1

for 1 <4 < K”. Then (iii) follows by the last properties of Step 1, by the end of (39.1)
and by (39.5) of Theorem 11; therefore there exists k € (k])/X, so that (i) holds, and
analogously there exists k € (k7 )f;"l so that also (i) holds. By (i) and (iii), and by Step 3,
it also follows that

n —
‘eSanrl,brd,n,E(x)l

Y . 9P3m41Q0,3m+1
* — * — * —
€0 3m+1.brd,n e (2 T €t pran e (@) T |~ O Mamt1+4Qami1 V3m+1,n(T)

1 2P3m+1Q0,3m+1 |U§m+1,n(§)‘
=9 IMszim41+4Q3m+1

S —
- |e3m+1,brd,n,E (.’E) |

24Q3m 41 _q

1 2P3m+1Q0,3m+1 |w§m+1 n(f” 1 . _
1 N S @)

- 8 23Q3m+1 24Q3m4+192Msam+1 24Q3m 41 f e3m+1,n7zag
g:
1 2Psm+1Q0.3m+1 1 2 1 1 2P3m+1Q0.3m+1
> = — + > -,
8  23Qamy1 24Q3m+1 \ 2Mam41 24Q3m+1 9 23Q3m+1

hence also (iv) has been proved.
Finally, let us turn to proving (v): we can suppose that a and w3, o ;(7), hence
a and v3,, . ,(¥), have the same sign (indeed, if the signs were opposite, it would be
sufficient by Step 2 to use n = 27 instead of n = 2 — 1). Then, setting
oMz 1

. . 9P3m41Q0,3m+1 . _ 1 § B
Vami1.a(T) = T 92Qami1 (63m+17n7;(x) T M Z €3m+1,n,f($)>

Psm m * —
9P3m1+1Q0,3 +1v3m+1,n(z)

+ IMzm4+1+4Q3m 11 ’
we find, by (o), (ii), (iii) and by the beginning of this proof, that
1 2Fsm+1Qo0,3m+1 9Psm+1Q0,3m+1
(*) 3 P Vm41.n(T) < 2@0,3m+1W,
1 1 Vam41,n(T) 2Q0,3m+1

(**) 8 23Qam 41 2P3m+1Q0,3m+1 23Q3m+1
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Hence there is an integer L(a) (=1 if a < Vg, |, (%)/2F3m+1Q03m+1) 5o that

% _
V3m+1,n (‘T)
9P31m4+1Q0,3m+1

Va1 (T)
(L(a) - 1)2P3m+1Q0,3m+1 <as L(a)
whence, by the first inequality and by (xx),

L(a) Vam41.0(T) _ Vam41,0(T) 2Q0,3m+1
2P3m+1Q0,3m+1 23Q3m+1
9P3m11Q0,3m+1

‘/'3:;n+1,n (f)
(by the hypothesis on a), that is,
() ‘L(a) Vam+1.0(T) _ ‘ 2Q0,3m+1

23Q3m+1 ’
Hence, by the definition of v3,,+1,n, and by (s%x),

et e

9P31m4+1Q0,3m+1

L(a) <a +1 < a8 -23@m+1 41 < 9Q0,3m+123Q3m+1

2Psm11Qo3m 1 L(a) < 9Qq 3m112°%m+1,

U3m41,n — QW3m+1,2n

. _
‘/E')erl,n (.’IJ)
2P3m+1Q0,3m+1

|2 )

2P3m4+1Q0,3m+1

L(a)

S ’

V3m+1,n — GU3m+1,nH + [|[av3m41,n — QW3m+1,27]|

W3m+1,2n—1

= L(a) OP3m11Q0,3m+1 ap- HU?)erl,nH +a IMsm41+Q3m+1
2Q0,3m+1 2Q0,3m+1 5Q0,3m+1
23Q3m+1 IMzmi+1+Qsm+1 23Q3m+1

Therefore

L(a)

Z :E* = (f)z ~  — auw _
3m+1,n,k,l 3m+1,n,k,l 3m+1,2n

=1

L(a) . =
< Z;c* = (T)z 7 —L(a)i‘émﬂ’n(x) v
= 3m+1,n,k,l 3m+1,n,k,l 2P3m+1Q0,3m+1 3m+1,n
=1

L(a) Vamt1.0(T)

9P3mt1Q05m11 VU3m+1,n — QW3m+1,2n

y

‘/i;n+1,n (E)

(a)

> w (@ w0~ L) s 5 Vsmt1 X0 .smt1
3m—+1,n,k,l 3m~+1,n,k,l 2P3m+1Q0,3m+1 m+1,n

=1

< 23Q3m+1

+

(by Step 3 and by the definition of V3, ., ,, (7))

L(a) 24Q3m+1_1

* — 1 * —
Z (eSerl,n,%,l(m) o 24Q3m+1 ( Z e3m+1,n,%,g(‘r)

=1 g=1

1 oM3m 41
* — * —
+ (<e3m+1,n,E,Q4Q3m+l (@) OMsm 41 Z C3m+1,n,£,24@m+1 (SL’))
f=1
1% — -
w3m+1,n (SL’) + V* (T) e S 63m+1,n,k
OM3m 41 3m+1,n 3m+1,n,k,l 2P3m+1Q0,3m+192Q3m+1

v3m+1,n ) . L(a) VE;;nJrl,n(f)

5Q0,3m+1

+ 23Q3m+1

v3m+1,n

2P3m+1Q0,3m+1 2P3m+1Q0,3m+1




Bases with uniformly controlled permutations 103

L(a)

24Q3m+41_q

1 . _
3m+1 n, k l ) 24Q3m+1 ( Z e3m+1,n,%,g (SL’)
g=1

1 oM3m i1
* — * —
+ ((e3m+17n,E124Q3m+1 (SL’) T 9Msmi1 Z €3m+1,n,f,24Q8m+1 (SL‘))

f=1
L(a)

Ix ==
+ w3m+1,n (.’IJ) - V* (f) e _
IM3p 11 3m+1 n,k,l : : 3m+1,n 3m—+1,n,k,l

3m+1,n.k 5Q0 3m1
2P3m+1Q0,3m+1922Q3m+1 23Q3m+1

e3m+1,n,%,l( )l

IN
A
—_
*

24Q3m+1_1

1 *
trmm( X et @H G0 @

g=1
oM3m 41 ‘

3m+1,n, f,21@8m+1 @) |W§:n+1n(f)| B
+ Z Mz 41 + IM3ym 41 ”xSm—i—l,n,k,lH
L(a)

: : 3m+1nk:l

5Q L(a)

0,3m+1 * _

* 23Q3m+1 < (by Step 4) 5 lz: <e3m+1,n,}5,z(x)|
=1

(a)V;mH,n(f) ||63m+1,n,% |

v
+ 3m+1, n 2P3m+1Q0,3m+122Q3m+1

24@3m+41_1

1 _ _
+ 24Q3m+1 ( Z |e;m+1,n,%,g (SL')| + |€§m+1,n,%,24Q3m+1 (SL')|

g=1
2M3m41

1 i} v [ wsn (@)
+ 2M3m+1 Z |e3m+1,n,f,24Q3m+1 (.’L‘)| + 2M3m+1 +
/=1

24Q3m+41 1 )2Mgm+1 24Q3m41 _ )2M3m+1

(by the definitions of ((e5,, 1 ,4.1)i=1 k=1 and ((€3m+1,n,k,1)7—1 k=1

L(a)
in Step 1, and >, T e 3m+1’n’%’L(a))

T 1 5Q0,3m+1
‘/?;n—i-lm(l') -1+ L( )V3m+1 n( )2P3m+1Qo 3m+192Q3m+1 + 23Qm i1
L(a) 24Q3m 41 _q
5L( ) . B
LG Ae e D DR AL
g=1
5L( ) (1 B
24Q3m+1 (|63m+1,n,E’Q4Q3m+1 (SL')|

2N1377L+1

1 \ SN o R Gl
+ IM3m41 Z |e3m+1,n,f,24Q3m+1 (I)| + IM3m+41

=1
] _ L(a) 5Q0,3m+1
T Véerl’n (.%') (1 + 2P3m+1Q0,3m+1922Q3m+1 ) + 23Q3m+1
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< (by (iil)) gromr+ (by (iii)) ;ci,—(jilme (by the end of Step 1) —p=l®) (2 4

24Q@3m 1
ga— P, m Q oM
2+ 2MS++1)+ (by the upper bound of V3, .4, (Z) of (x)) 2Q073m+1%(1 +
L 5 m
2P3”L+1Q0,37(::)>122Q3m+1 )+ 2?5,;”: < (by the upper bound of L(a) of (xxx))
5 5.9Qo0,3m+12%%m 1 1 5.9Q0 3m 1125931
24Q3m+1 24Q3m+1 24Q3m+1 24Q3m+1
120 9P3m11Q0,3m+1 9Qo3m+123Q3’"+1 5Q0.3m+1
0,3m+1 23Q3m+1 2P3m+1Q0,3m+192Q3m+1 23Q3m+1
R 45Q0,3m+1 | 225Q0,3m+1
T 24Q3m+41 25Q3m+1 2Q3m+1
9P3m+1Q0,3m+1 Qo.3m+1 2 5Q0.3m+1
+2Q0,3m+1 23Q3m+1 T 18( 2Qsm 41 23Q3m+1
(by the relation between Q3,11 and Qo sm+1 of Step 2)
) 45 .
n Qo,3m+1 L 995 Qo,3m+1
24Q3m+1 24Q3m+1 22Q0,3m+1FP3m+1 22Q0,3m+1P3m+1
2
n 2 Qo,3m+1 1 418 Qo,3m+1
2Q3m+1 22Q0,3m+1P3m+1 2Q0,3m+1P3m+1 922Q0,3m+1Pam+1
n 5Q0,3m+1
922Q0,3m+1P3m+192Q3m+1
5 45
_ QO,3m+1 + 9225
24Q3m+1 22Qo0,3m+1P3m+1 \ 24Q3m+1
n 2 1 1 Qo,3m+1 5
2Q3m+1 2Q0,3m+1P3m+1 22Q0,3m+1P3m+1 2Q3m+1
Qo,3m+1 Qo,3m+1 1
< 24Q3m+1 +226 22Q0,3m+1P3m+1 22722Q0,Sm+1p3m+1 2Q0,3m+12P3m+41

This completes the proof of Lemma 13. m

We point out that the most important properties of Lemma 13 are (iv) (which renders
possible the proof of the chain lemma) and (v) (which allows the construction of the

AL .
elements of span(us,,,, ,),—; ' necessary to regularize
s)s=

Psg1—1 2M3m41-1 2Q3m41-1 1

* e .
Z Z E , x3m+171,n,k,l(w)meJrlfl,n,k,l,
n=1 k=1 =1

this fact is the reason for the name regularization block).

LEMMA 14 (Completeness Block Lemma, CBL). Fiz T € X with |Z|| = 1 and n with
1 < n < Pgy. Then, if |w3, ,(T)| > 7, there exists k with 1 < k < 2Msm such that

P 2 1/250.

Proof. By Steps 4 and 5 of SC III.1 we know that, for 1 < k < 2Msm

"
1% 1% o + el _ Wsmn
€3m,brd,n,k — €0,3m,brd,n,k ~ L0,3m,n,k,2Msm T €1,3m,brd,n,k oM,
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* * /%

e///* _ w3m,n B 1 w3m,n,k + w3m,n

1,3m,brd,n,k = IMszm QMszm IMszm M3z, °
with
oMz 6
1% * _ 11%

E (eo,3m,brd,n,k - 9Co,3m,n,k,2Msm) =0, ||61,3m,brd,n,k | < M
k=1

Therefore there exists k with 1 < k < 2Msm such that the sign of egf3m7brd7n7k(f) —

T3 3 k.2Mam (L) 1S OPposite to the sign of w3, (), hence

_ _ Wiy (T) _
eg::,brdm,g(x” > e(/)l,*Sm,brd,n,k(x) - $373m,n,k72MSm (SL’) - 2771\7;[?m - elllgm,brd,n,k(x”
W30 (T)] _
= QWJ\LJ:m - elllgm,brd,n,k(x” > M3, *

which completes the proof of Lemma 14. =

The next lemma, important for our construction, justifies the name bridge sequence

for the sequences (€3m,brd,n,k)i5im and (63m+1,brd7n,k)ifim“. In what follows we will
use the following notations, for each fixed integer m:

;o 1 q B 1

Em = A, 22a(m)Am and. &m = P, 22a(m)Pm

LEMMA 15 (Local Chain Lemma, LCL). Each T € X with |Z|| = 1 has, for each m, the
following property: either

(1) (the disconnected chain condition)

luf, o (T)] < €y, for 1 <n < Agp;

Im,n
or
(ii) (the operating chain condition) (i) does not hold; in this case there exist n'(3m+1)
and n'(3m+2), with Azy,q1—A5, 1 +1 <0/ (3m+1) < Azyyr and Az o —Ag,, 0 +1 <
n/(3m + 2) < Agm2, such that |u§n+17n,(3m+1)(f)| > ey and |u’3*;1+2,n,(3m+2)(f)| >
/
€3m+2-
Proof. Suppose that (i) does not hold. This means that there exists n'(3m) with 1 <
n'(3m) < Asp, such that |uZ} .. (T)] = €5,,; We are going to prove that the properties
of (ii) hold. Indeed, by Step 4 of SC III.1 we know that, for 1 < ¢ < 22Bsm, ug .

* % Bom w3
uO,Sm,n/(Bm),t + u3m,n’(3m)/2 with

"(3m),t

92B3m
* % 1 *
u0,3m,n’(3m),t - eSm,aux,n’(Bm),t - 92B3m Z eSm,aux,n’(Sm),j’
=1
2B, . .
hence 25:1 UG 3 au,n’ (3m),; = U3 therefore, there exists t(n(3m)) with 1 < t(n’(3m))

< 2233m such that u3,3m,"’(
whence, if we set

n(3m) = (n'(3m), t(n'(3m))) = (n'(3m) — 1)(1 + 227 + (' (3m)),

3m),t(n’ (3m)) (Z) either is 0 or has the same sign as u’é’;n,n,(sm) (),

then
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x T * _ (U (3m) (7))
(%3, n(3m) (@) = s 3m) 03y (BN 2 =55, =

€ 1 1 1

= QBsm  2Bem Ay, 220Gm)As, © Py 92a(m) P,

with 2 < n(3m) < Ps,,. By (7) and (12.1) of GBST (= Theorem 4) for M replaced
by 4¢(3m) (hence €3, > 1/2MPsm) this implies that there exists (g(3m, n))z(j{n) with
g(3m,n(3m)) > 2 and |w},, 5. a0y (T)| > 2493 o swhich, by (ii) of CBL, implies

that |€/3/::,brd,g(3m,n(3m)),E(3m) (T)| > 1/2Msm for some 1 < k(3m) < 2M3m . Consequently,

by Step 6 of SC IIL.1, there exists n/(3m + 1) with Agpq1 — A5, +1<n'3m+1) <
Asm1 such that (recall that 2M3m < g(3m + 1) by the definition of ¢(3m + 1) in Step 6
of SC IIL.1)

= €3m,;

W @) > > ! !
3m+1,n’(3m+1) 9O Msm A3m+122(I(3m+1)A3m+1 — “3m+1-

By the same procedure there exist n(3m + 1) with

Pyt = Ay (22575 £ 1)+ 1 <nBm+ 1) < Papp
n(3m+1)

n=1

and (¢(3m + 1,n)) with g(3m + 1,n(3m + 1)) > n(3m + 1) such that

— — 4q(3 1)P3m,
‘u§m+1,n(3m+1) (1‘)‘ > €3m+1 and |w§m+1,g(3m+1,n(3m+1))(x)| > 2 2(3m+1)Ps A

Then (see also Remark 5) by the relation between As,, 1 and A%, at the beginning
of SC III.2 there exists (n’)ASm+1 C (TL)P?””“/2 with (2n' — 1,271’)143m+1 C (g(3m +

n=1 n=1 n=1

1, n))Z(j{n D Hence by the definition of (v3m+17n)53‘:"{+1 and by (iv) of RBL there exist
n(3m+1) and k(3m+1) with A, < 7(3m+1) < Pspy1/2and 1 < k(3m+1) < 2Memsr
such that [w3, 1 o7 31 1)-1(T)] > 24a(3m+1)Psmi1 and hence
11 _ 1 1
€3im11,brd, 27 (3m+1)— 1 k(3m+1) (T)] > 023Qsmit

By Step 4 of SC II1.2, this implies that there exists n’(3m+2) with Agp, 10— A5, o +1 <
n'(3m + 2) < Ao, such that (recall that 23@3m+1 < ¢(3m + 2) by the definition of
q(3m +2) in Step 4 of SC II1.2)

1 1 1
I = o
|u3m+2’"/(3m+2) @) > 9 23Qam+1 9229(3m+2)Azmi2 €3m+-2-

A3m+2
This completes the proof of Lemma 15. m

Notations and partitions. In the next lemmas we will use the following partitions:

q(3m+2) _ 2M3m+1\ Pyt
(@brdin)pg(@mry 11 = (E3matbrdnk T Wsmatn)i=1  Jnzi
_ q(3m+2) q(3m+2) q(3m+2)
= (mbrd,a,n)n:q(3m+1)+1 U (gcbrd,p,n)n:q(gmﬂ)-s-p (xbrd7a,n)n:q(3m+1)+1

_ N3m+1,brd,a
= (z3m+1,brd,a,g)g:1

oM3m+1\n'' (3m+1,brd)—1
= ((e3m+1,brd,n,k + Wam+1,n)k=1  Jnei

k(3m+1,brd)
U (63m+1,brd,n”(3m+1,brd),k + W3m+1,n”(3m+1,brd))k=1

’ n'(3m+2)
C Span(u3m+2,s)s:1 )
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q(3m+2) N3m+1,brd,p

(wbrd,p,n)n:q(3m+1)+1 = (333m+1,brd,p,g)g:1

. oM3m41
= (€3m-+1,brd,n" (3m+1,brd) k + Wam+1,n (3m+1,brd) ) kmk(3m-+1,brd)+1

2M3m+1\ Pyt
U ((eSerl brd,n,k + W3m+1, n)k 1 )n:n”(3m+l,brd)+1

/ Azmt2
C span(Usp, 2.5) son (3m+2)+1

m N3m brd,a
(@bra, n)%ﬁi&ﬂ ((esm.brdnk + Whon n)ims ™ VEE = (T brdarg)pir ™™
N3 br N3m,brd,a
U ($3m,brd,p,g)g:31 obrd:p (fEbrd a n)n(ggz;;i)yrl (-'ESm brd a,g)g 31 s
M ""(3m,brd)—1
= ((e3m,brd,n,k + WSm n)i ?im )n:(l mbrd)
k(3m brd)

U (€3m,brd,n (3m,brd),k + W, ' (3m, brd))

’ n’(3m+1)
C Span(u3m+l s)s—l )

3m+1 N3m, br
(@b pan) a1 = (@3mbrd g )t "

2M3m
= (€3m,brd,n’ (3m,brd) k + Wiy, ' (3m, brd))k k(3m,brd)+1

/ 2M3m \ Py,
U ((€3m,brd,nk + W30 k=1 )n:ZH(sm,brd)H

/ Azm+1
- Spa‘n(u3m+1,s)s:n’(3m+1)+1

(where “a” means “absent” since they disappear in the regularization, while “p” means

“present” since they continue to be also after the regularization; moreover obviously it is
possible that zp,q,, = 0. Moreover we will use the notations (see Step 6 of SC III 1)

Go,3m Go,3m P,
(203mt1,9) g™ = ((T03mr1mg) gt Vi ™
Go.5r Mg,
(2038m+1m.9) gt ™ = (Waimt 1,00 U Z3mr 100 U (T3m41mk.0) =1 )
U (m3m+1 n,g)§3T+1 0 for 1 <n< P3m+1;
G G
(xO 3mg)gii ((1’0 ang)gofmo)fsnia
GOSmO_ G0,0,3m,0 G3m,0
(xO 3m n,g)g 1 (330037—” n,q)g 1 U (x?)m n,g)g 1 >
G0,0,3m,0 M3y,
(x003mn,g)g 1 —w3mn0U(w3mnk0)k 1

2]”!3771 2]»{3771)2]»!3771

U(zi’)mnok)k 0 U((I3mnk0l)l 0 for 1 <n < Psp,.

In the next lemma we will use the notations n/(3m), ¢(n/(3m)), n(3m), €5, and ez,
of the proof of LCL in the operating chain condition where now we can suppose that
U3 7 (3 £ (T)| < €3m for t(n’(3m)) + 1<t < 22Bsm

LEMMA 16 (Completeness Lemma, CL). Let T € X with ||T|| = 1. Then there ezists a
sequence (Ny,) of positive numbers, with 1, — 0, such that, for each m,
(i) there ezists a subsequence (ugmynk),ﬁql of (u§m7s)f:3’f and 0 < a < 1 with
q(3m)

_ N\ 1
Hz - ( § xn + E uSm nk u3m Mg + a’u3m K41 (I)u3m,nK+1) H < Mm
n=1
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(in particular (nk)g/[:s{"_l’o+ng = (k)M3m—1y0+Q§,'m);

k=1
(ii)
q(3m+1) q(3m+2)
max ( E x;(f)l'brd,p,n + E3m,0 5 E SL';; (f)mbrd,p,n + E3m+1,0 )
n=q(3m)+1 n=q¢(3m+1)+1

Go,3m

E :J"O3mq ‘r03mg+x03mg)+E3m0

Go 3m41
E 20 3m+1.6 () (0 3mr1.9 T 20 3mr1,9) T Eama1, oH

G3m+2
Z z3m+2 g (x3m+2 g + ‘T3m+2 g) + E3m+2 0H> < Mm;

(iii) t(n'(3m)) > 253/2 and there always is ), € span(us, n/(3m), t):(_n Gm)=L ith

||:LZ/ u3m n’(Bm)( )u3m n’(3m) H < M-

Proof. First let us point out some facts.
(3m+2 3m+3
FacT 1. dist(z — Zq ) (), span(avn)n(zgz?’m)Jrz)Jrl

Indeed, by Step 4 of SC II1.2, and by (41.1), (42.1) and (43.1) of Construction II, we
know that

) — 0.

q(3m+2) A
. _ * (= 3m2 Azm2
dist (7 — E mn(x)xnaspan((u3m+2 a1 U (u3m+2 o)om Agmio— A3m+2+1)) -0,
n=1
. M3zm41,0+Ps, 1o _ " Pyio P2 _
since (U3,,42.5)_ Mo i1,04 QY ptl = (Wamt2,5) g QYo span (s, o) " QYpyatl

Q3m+2 Q3m+2 n

QY Q5
span((vgm+2 n) =QY 40 t1 U ((Usm+2 n, k)k 1 U (v3m+2 n, k)k STH n)n3Q+2 )’ while
3m+2 Mzmot1, A’
(Sl?n)q( T ) ( U3m+2, s)s 31 oy (u3m+2 s)s SX/IanH o+Pg, o+

Azm+2
U (u3m+2 S)S Asmy2— A3m+2+1

corresponds to (yn)Q( ™) of Construction II; on the other hand, from Step 4 of SC III.2
it follows that

q(3m+3) Agm+2 Azm+2
an(@n) D S pan(us 2,20 5 span(uynsg.0) 2]
Ao

Aszm
D span((Ugy2,6)snt U (Usppas); 3A;i+2 A3m+2+1)

Facrt 2.
max((max(|v3m+z n( )| 1 < n < Q3m+z) :0 S i S 2) - 07

max ((max(|uz, 1i,(T)]: 1 <n < Papyy) 10 <4 <2) — 0.

It is sufficient to prove the second relation for ¢ = 0 and we recall, by Step 5 of SC III.1,
Step 3 of SC II1.2 and Step 2 of SC IIL3, that (ugmﬂ)f?’"i“ € span(xgmﬂ’n)firf“

. . oM3m 2M3zm
for 0 < ¢ < 2 (indeed, for 1 < n < Paypyi, > o o1 Ty = 2Memaws,
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oM3m+1~24@3m+1 P Q 2 3m+2 « %
3m+10Q0,3m+1 —
k=1 k=1 T3milnki=2 " VS 1, and D T3m+2,n,k =W 410)-

IO e (u,, ) F

Tn)n=q(3m)+1
* * 3m+1
X7In = Span(mn)i(:;r(b3m))+1

Therefore span(z The space

is the dual of X/ = span(mn)ig;?;;l))ﬂ hence also X/, = (X/*)*. On the other hand,

by Step 4 of SC IIIL.1, (U§m,n,U3m,n)53:"i is biorthogonal with 1 < ||lu3,, .|| < 5 and
1 <|lugm,nll <3 for 1 <n < Ps,,, that is,

dist (w5 /165l SPAN S )2 ) > /15 for 1< < Py

Therefore there exists (Usm.)227 in X/, with (U3 > Um, )P biorthogonal and 1 <

n=
|dgmn| < 3 for 1 < n < Ps,,. It is now easy (for instance by means of a biorthogo-

nalization procedure) to find (En)z(gggn?) 41 in X7, and (7}, )3(3;{;11)) 41 in X, such that

(T, T )2(3;;11))“ U (U3rm,ns U, ) 25m i biorthogonal, with X/, = span((fn):11(32”(?;711))Jrl
(Usm.n)22m) and X/ = span((T )Z(?’Zgnll))_kl U (u3,,, ,)25m) On the other hand, by Fact 1,
for each m there exists a sequence (an)fl(j;?;rnﬂﬂ) 1 of numbers such that
q(3m+2) q(3m+3)
HE — ( Z zy (T)xy, + Z anxn) ‘ < N, — 0,
n=1 n=q(3m+2)+1
hence
a(3m—1) a(3m)
Nm—1 + Nm > HT— ( Z ) (T)xy, + Z anscn> ’
n=1 n=q(3m—1)+1
q(3m+2) q(3m+3)
+ HE - ( Z ) (T)xy, + Z anxn> ‘
n=1 n=q(3m+2)+1
q(3m—1) q(3m)
(5 s 5 )
n=1 n=q(3m—1)+1
q(3m+2) q(3m+3)
— (E — ( Z xp (), + Z anmn)) H
n=1 n=q(3m+2)+1
q(3m) q(3m+2) q(3m+3)
— H Z () (T)xy — ap)xy + Z ) (T)xy, + Z AnTp
n=q(3m—1)+1 n=q(3m)+1 n=q(3m+2)+1
a(3m) a(3m+1)
| Y @@n-awe.t Y @@
n=q(3m—1)+1 n=q(3m)+1
Py, q(3m+2) q(3m+3)
+ Z U3y (T) Uz, + Z zy (T)xn + Z an Ty
n=q(3m+1)+1 n=q(3m+2)+1
> 4 max([uh, (7)1 < 7 < Pon).

This completes the proof of Fact 2.
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Proof of Lemma 16(i). By the procedure of the proof of Fact 1 we can state Fact 1 with
3m + 2 replaced by 3m (hence now we use the end of SC II1.3 and the beginning of
SC II1.1) in the following more precise form:

a(3m) Mz _1,0+Q%,,
. — ¥ [— Ix — /
dist (.'17 — ( E wn(m)mn + E u3m,s(x)u3m,s)7
n=1 s=1
/ Ay
Span(u3m,s)s:M3m_110+ng+1) —0
A// P

(since (ugn, o) 2hr, QU 41T = (uf,, 3)53722// 4 With

Py, Qbim Qsm,n Q5rmn\Qim
bpan(u&n s)q ° QY +1 — Span((v?ﬂn n)nsQ” +1 U ((v3m n, k)k 31 U( élm,n,k)kil )niQé’m+1)

and (z, )q(Bm) U (u3,y,, S)i\/[;{“_l’o corresponds to (yn)Q(m of CII); hence now we can set
Q(3m) = q(3m) + M3y _1,0 and 13, = 1/22QGm+L,
Suppose that |vg;, ./ (T)| > 173m/2Q%,, for some n' with QF,, +1 <n’ < Q3,,, while,

for n’/ +1<n< Q3m’ |U3m n( )| < 773771/2Qém We set ‘TSm =T - EQ(?’W *(E)l'n,
moreover (see (43.1) of Lemma 12)

M3m—1,0+Qfn, Qm,n Q3m.nyn/—
(uém,nk)kKZI = (uIBm,s)s 31 e iy ((u3m n k)k30 U (USm n, k:)k31 )Z=Q;’3/m+1'

q()

By Fact 1 there exists o 3, € span(zy,),; with ||2" — 2o 3m | < 1%, — 0. We set

q(3m)
1 _ - * (—) "
Lo,3m = L0,3m Lp\T)Tn, Lo 3m = ‘TO 3m u3m nk u3m N
n=1
x3m - E : u3m nk uSm N
QSnL QS?VL

" "
£EO 3m — ‘rO 3m E U3m n v3m n’ T3m = xSm E ,U3m n U3m n*

By (43.1) of Lemma 12,

Q Qf}’m,n Qsm nyn'—1

Span((vém,n) n’ U (( 3m n k)k:o U (UBm n k)k 1 )n 1 )
Q; Q3m n Q3m n )n "1 )

= Spa‘n((v?)m,n)nig” +1 U ((U?)m n, k)k 1 U (v?»m n, k)k 1 n= Q’a’m-i-l
and by (43. 2) there exist a with 0 < |a| < 1 and &’ with 1 < &’ < Q% ., so that, if

_ — o %
U3m MK U3m n’ k' and u3m M1 U3m n' k' then

||$g/3m - a’uSm MK 41 (E)uém,nKJrl || = H‘rg/&m - a’ul3m n’ k’( )u3m n’ k' ||

. Qimm Qbm,n\Qlym
< dlSt(QjO,Bm’ Span((vém,n,k)kily U (U3m n, k)k 31 )Si U?/>Im) + 773771/2 + T13m
(where we used (42.3) of CII and (43.3) of Lemma 12), with

q(3m) Ay

m=XN m scj_ﬂmu(?,ms
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On the other hand, by the construction of z¥,, and of U,

di " 3 / Q3m,n Qélm n ng U//
ISt($0,3m7 bpan((1]37n,n,l€)k::1 U (U3m n, k)k 1 )n =n' 3m)

. Qbm.n Qi Qi
S dlSt(xg;n’ Span((vémm,k)kil U (U3m n, k)k 31 )nsn U?clm) + ng =0 + nil’ylm = 77f°,lm
Hence by the above

||x(/)l/3m —a. U’3m MUK 1 (x)uém,nx+1 H < nil’ylm + 7]3m/2 + 713m,-

Therefore we conclude that
q(3m)

Hii ( Z ‘T"+Zu3m ng UBm Mk +au3m nKJrl( )uf’im,nKJrl)H
n=1
= Hx?ﬂn - au;;kz,nKJrl (j)uin,nKJrl H
Q37n
= H (xg;n + Z ,U3m n UBm n) - a’um MK 41 (f)u;n,nK_H
n=n'
QS?VL
< Hx/i’u/;n - auSm nK+1( )UBm MK 41 | =+ H Z vSm n( )UBm n
n=n’
Q3
< o = AWk @ )+ 1050 = 8l + | D (@
n=n'
Qbm
< ngm + (n3m/2 + 773771) (by above + 773m + Z ‘U3m n
n=n’
7
" 3 1% — R —
= 2773777, + 5773m + |U3m,n’ (.’IJ)| + Z ‘USm n(x)|
n=n’+1
3 Q3 7
_ 3
< 277gm + 5773771 + |’U/3>:n,n’ (x)l + Z QQ/m
n=n’+1 3m

< 203 + 203 + (V5,0 ()]
Now, since by the first part of Fact 2 (for i = 0) [vs}, ,,(%)] < 3m — 0 for 1 <n <Q5,,
for each m, the assertion is proved for 1}, = 214, + 2n3m + Tam.
Suppose now that [vs;, . (T)] < 13m/2Q3,, for QF, +1 <n < Qj,,.
Let 20 3m, N4> T3y and [ 3, be as above with
M3zpm—1,0+Q%,,

/ K Mz _1,0+Q%, "o 1% N\
(u3m,nk)k_1 (U’Sm s)s 1 ", T3m = L3m — E U‘Bm,n (x)USm,nﬂ
n=1
Msm—1,0+Q%,, q(3m)
1z o 1% N\, _ % [
xO,Bm - xO,Sm - E uSm,n(‘r)uSm,n = Z0,3m — E .’L‘n(l')l'n
n=1 n=1

Mszm—1,0+Q%,,

Y @b, € span(e,) i

Msm—1,0+Q%,,
+ Spa‘n(u3m s)s:l .
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Moreover, by the definition of U%, ,

. Qim.n QY Qsm
0= dlSt(x/SImv Spa‘n(vém,n u (’U3m n k)k 31 U (vBm n k)k 31 ) SQ” +1 + Uélm)

‘ Q37n

1
L3m — (l’gm + E ,U3m n UBm n)

hence
lem
~ /) 1% —\ ./
T3m = Lgm — E U3m,n (x)USm,n
n=QY% +1
q(3m) M3m—1,0+Q%,, Q5.
— [y a— 1E3 — ! /% — /
=T - ( § xn(x)x" + § uSm,n(x)u3m,n + E : ’USm,n(x)’U?)m,n)
n=1 n=1 n:Qélerl
Qimon Qi Qh
€ U + Span((USm n k)k 1 U (’U3m n k)k 1 )n 63’n+1'

Hence |20 3,, — Zam| > |70 3 | — 73m/2 by what we said above about z{ 3,,,, hence by

the above
Qim
o = (@t 32 @i )|
n=Q3,,
Qs
> (23 — Fomll = || D Vi @
n=Qy,,+1
Qim
> e~ Fomll = Y N n @] > 280 — Fomll — 13m/2
n=QY%, +1
> |26 gmll = n3m = @51l = (05, + 113m);
that is, by the above,
Qim
0= ’xgm— (x3m+ Z v3mn Uan) ‘
n=QY, +1
Qi
> b = (Fom+ D @) || = o 2 10l = (s + 3m) =
n=QY, . +1

"

Thus ||z5,,|| <%, = 2n%.. + n3m and the assertion holds for 7, = 74/ . This completes
the proof of (i).

N3m brd,p

Proof of Lemma 16(ii). By Steps 1 and 2 of SC IIL1, (e3m brd,ps + E3m,0)sey 7 is
l-equivalent to the natural basis of léVoS"L’b‘d’p . Therefore, by the procedure of the proof
of Fact 2 (see also Steps 5 and 6 of SC III.1) and setting

q(3m) q(3m+3)

A= Z (25 (@) Tn — an)Tn + Z AnTp,
n=q(3m—1)+1 n=q(3m+2)+1
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we have
q(3m+2)
Nm—1+ Mm > H Z IZ(E)In+AH
n=q(3m)+1
q(3m+2)
n=q(3m)+1
Azm+41 Azm41
I N\, % N\,
+ (A - Z u3m+1,s(‘r)u3m+1,s> + Z u3m+1,s(‘r)u3m+1,s
s=n'/(3m+1)+1 s=n’/(3m+1)+1
q(3m+2) Azmi1
* (= 1% —\, !
2 ‘ Z l‘n(fﬂ)fﬂn + (A - Z U‘Sm—i—l,s(x)ufﬁm—&-l,s) H
n=q(3m)+1 s=n'(3m+1)+1
A37n+1
1% —
- Y W@
s=n’(3m+1)+1
q(3m+2) Aszmi1
¥ (= I —\,
.’L‘n(S(J)LL'n + (A - Z u3m+1,s(x)u3m+1,s> H
n=q(3m)+1 s=n’/(3m+1)+1
A3m+1 - n'(3m + 1)
A3m+122q(3m+1)A3m+1
q(3m+1)

Y

1 . Agmy1 —n'(3m+1)
5 ‘ (32) . Ly (:I;):I;brd7p7n + E3m,0H - A3m+122q(3m+1)A3m+1 !
n=q(3m)+

Y

that is,

q(3m+1)

z; (T)Tord,pn + E3m,0H
n=q(3m)+1

A —n'3m+1

< 2<nm_1 T hame — )

1
A3m+122q(3m+1)A3m+1 ) <2 <77m—1 + 1 + 22q(3m+1)Azm+1 >

Hence the assertion is proved if we replace 2(1),, 1 + 17, + 1/229Gm+TDAsmi1) by . The
same procedure works also for the other cases (we have to use also (39.6) of Theorem
11). This completes the proof of (ii).

Proof of Lemma 16(iii). By Steps 2 and 4 of SC IIL.1, || Z:;l €3m,aux,n’ (3m),¢]| = 1 for 1 <
* _ 22331n * . . * _

t/ S 22B3m and 2Bgmu/3m,n’(3m) (.’E) = Zt:l u3m,n’(3m),t(x)‘ Hence, if max(|u3m,n(x)| :

1<n < Psy) =1, — 0 (by the second part of Fact 2), it follows that

£’ (3m)
Bl > | D7 W (D)
t=1 oo
2 2Bsm|ul3*7n,n’(3m) @) - Z ]
t=t(n’ (3m))+1
< 9Bsm 1 _ 22Bsm —t(n’(3m)) > 9Bam/2,

As,,224(3m) A Ps,,,22a(3m) Pam,
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that is, t(n'(3m)) > 2Bsm/2 /y! > 2Bsm/2; therefore, setting

t(n'(3m))—1 1 t(n'(3m))—1
~ - ~ . _
Uy = ; auBm,n/(3m),t; a = t(n’(?)m)) 7_1 ; u3m,n’(3m),j (SL'),

we have |a| < 7, and

t(n'(3m))—1 ug (@m) t(n'(3m))—1
U, = ( Z U3 ! (3m), (@) 2}37 +a Z €3m,n’ (3m),ts
j=1 t=1

”ﬂ/m - ug’)*m,n’(Bm) (E)uf’im,n/(?)m) H
22337n

-~ 1 N _
Uy, — <m 21: u3m,n/(3m),t(x)>Uém,n/(:sm)H

t(n’(3m))—1 22B3m

~ 1 )\
= ||a Z €3m,aux,n’/ (3m),t — (233m Z U’;m,n’(3m),t (.13)) u3m,n’(3m) H
t=1 t=t(n’(3m))
t(n/(3m))—1
S |a| . H Z 63m,aux,n’(3m),t H
t=1
92B3m,

||u'/3)m n’(3m)|| * _ * —
jBT (|u3m,n’(3m),t(n’(3m))(x)| + Z |u3m,n’(3m),t (‘T)|)
t=t(n’(3m))+1

1 v 1
/ !
< nm 1 + L 2B3m (nm + Z P3m22q(3m)P3'm)
t=t(n’(3m))+1
(L 1
<M\ ¥ 5557 | T 2aG@m P

Hence the assertion is proved for 7, = 1/, (1 + 1/258m) 4 1/224Bm™)Fsm  This completes
the proof of Lemma 16. =

Before the regularization lemma, let us state an easy lemma on numerical permuta-
tions.

LEMMA 17 (on numerical permutations, NPL). Suppose we have two sequences of num-
bers (ng)2L, and (my)ML, so that

M M
(%) [nk| <1 and |mi| <1 for1<k<M and an:kazo.
k=1 k=1
Then there ezists a permutation (m(k)) ¥, of (k)M | such that (| 25:1 nre)) e, and
(| 25:1 My |) &=y are both (2,0)-monotone (which in this case is tantamount to (0,2)-
monotone). Analogously, if (pr)M._, is another sequence of numbers with |py| < 1 for
1<k <M and ZQ/[:ﬂ’k = 0, then there exists a permutation (m(k))M, of (k)M
such that (|5 e Ay, (125 ma DAL, and (|0 prgy)iz, are all (3,0)-



Bases with uniformly controlled permutations 115

monotone. Of course the (0,3)-monotonicity continues to hold also if we pass to (nj +
a)M,, (mg+b)M, and (p, + ), for three fived numbers a, b and c.

Proof. Let us consider in R?, for 1 < k < M, the vector v, = \/77116274—7”%6"0’C corre-
sponding to the point P, = (mg,ny). We start with 7(1) = 1, hence v, (1) = vi, and
suppose for instance that v, = V2¢i3™ (that is, Pr1y = (1,1)). Suppose that there
exists m(2) € (k)pL, with m < () < 37. Then
max(|ma() + M2, Inx(1) + Nn(z)]) < 1

and we are done for what concerns the choice of v, (3); then we can repeat the previous
procedure but starting from Zi:l Ur(k) instead of from v.(;). While, if 7(2) does not
exist, since the last part of (k) says that 224:2 U = —Ur(1), there exists (v )M, U
(Uk”)kM;/l - (vk)ﬂdz2 such that %7? <O <mforl<k< M and %TF < Oy < %w for1 <
k < M". Then we set (2) = 1’ and m(3) = 1”; next, if 7 < 0 (2) + 0x(3) < 37, we repeat
the whole previous procedure starting from 22:1 Un(k); While, if %ﬂ' < Or(2) +0r(3) < %W,
we set w(4) = 2" (analogously if %w < Or2)+0x3) < %ﬂ', we set m(4) = 2). Proceeding in
this way we get (k)M C ()M, U (K")M such that 7 < Zi\/fzﬂl, Or(rry < 373 then we
repeat the whole procedure starting from Zzzl Vr(k) + ZQ/[:”{ Ur (k) and so on. Now the
procedure is clear. An analogous 3-dimensional geometrical proof works if we consider
also the third sequence (pi)#L,. This completes the proof of Lemma 17. u

LEMMA 18 (Regularization lemma, RL). Let T € X with |Z|| = 1 and, for a fized m, let
Gm (T) be the number appearing at the end of SC II1.1, I11.2 and 111.3. Then

Go,3m+1 of

(A) There ezists a permutation (T (0.3m+1.9))go1

Gsm Mg, Pa
(T3m41,9) g ™ U (Wamt 10,0 Y Z3m410.0 U (Z3metmk,0)iet - Inet

such that, if (scﬁ(ngrLg))f:?”f“ is the permutation induced on (x3m+1,g)§:3’1"“, then the

permutation

G
* N\
(H § :xﬂ(0,3m+1,g)(x)(xw(0,3m+17g) + xﬂ'(O,Berl,brd,g))
g=1

, Go,3m+1
/ n'(3m+2) ’
+ Span(u3m+2,s)s:A3m+2_Agm+2+l + Esm+1,0 H) _
is (6,0)-monotone; the permutations
¢ N . Gam+1
(H Z Lr(3m+1,9) (x)xﬂ(3m+l,g) + E3m+1,0 H) B
g=1 B
and o
N . Gam+1
(H Z T (3m+1,9) (D) Tr(3m+1,0) H) 01
g=1 B
are (0, gy 1/2%03m+1) -monotone; and
G Go,3m+1
* — ., / n’(3m+2) »3m
(H wa(o,3m+1,g) (x)xw(0,3m+1,g) + Span(u3m+2,s)s:ASmr+2—A’3m+2+1 + E3m+1,0H> _

g=1
is (2,6, @311 /290:3m+1) -monotone.
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(B) There exists a permutation (2(0,3m g))Go’sm of (zo, 3m,g)4G0 ™ such that, if
(T (3m, g)) 21 4s the permutation induced on (Sﬁ'gm’g)? ™, then

(H Z ‘T:r(o,?,m,g) (E)(zﬂ(O,Bm,g) - %TI'(O,?)TTL,{])) + E3m,0
g=1

G
Go,0,0,3m n’(3m+1) 0,3m
+ bpan(u3m+1 S)S Go,0,0,3m—G3am+1 + Span(u3m+1 8)3=A3m+1—A§m+1+1 G=1

s (3,0)-monotone; moreover

G3m G37n
(|25 mr im0 (| S5 @ona o

are (2, Tz /2M3m/2) -monotone; and

G0,0,0,3m

* — ’ ,
(H Z Lr(0,3m,9) (x)z”(073m79) + E3m’0 + Span(u3m+1vs)5:G0,0,0,3m/*G3m+1

n/(3m+1)

+ 5 an(u/ ) GO 3m
P 3m41,8)s=Agmi1—A%,, 11| ) oy

5 (2,3, 3pm /2M3m/2)-monotone.

(C) There exists a permutation (w(3m + 2 g))GB'"“ of (3m—+2 g))G‘q’"”r2 such that

¢ " Gam42
(H Z ‘Tﬂ'(3m+2,g)( ) Lr(3m+2,9) + E3m+2 0 H)
g=1
and
¢ N S Gsm+2
(H Z T (3m+2.9) (T)Tr(3m+2.9) )G_l
g=1 N

are (0, sy 2/2%03m+2)-monotone, and

< * _ G3m+2
(H wa(3m+2,g) (x)xw(3m+2,g) + E3m+2,OH) B
g=1 -
5 (2,1, T34 2/2903m+2) -monotone.
Proof. FIRST PART. Let us consider the block (z7 (Z)x, q§m+2) . We point out that,
n n=q(3m+1)+1

in what follows, we could also use the alternative construction of Step 4’ of SC III.2 and
the procedure of the proof would be the same, only with more formalism. We set

3m+2 G - .
@iy = @anen )25 = (@) S
G3m+1 0= 2M37n+1+4Q3m+1

Gsm 4Q3m Mg,
(@3mt1m,g) 21" = ((@3mt1,m i l)z2 13” H)i inﬂ

for 1 < n < Ps;41. Then by Steps 1 and 4 of SC III.2 we find that, for each sequence
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( )q(3m+2)

) neg(3m41)+1 of numbers,

q(3m+2)

H Z QnTn + E3m+1,OH
n=q(3m+1)+1

q(3m+2)
"
2> max (H Z an(x:l +x, + xbrd,n) + E3m+1,0H/27
=q(3m+1)+1
q(3m+2)
"
Z any, + E3m+1,oH>;
n=q(3m+1)+1
q(3m+2) q(3m+2)
"y _ "
AnTy + E3m41,0|| = AnTy, ||;
n=q(3m+1)+1 n=q(3m+1)+1

q(3m+2)
/ 17
Qn ($n + z, + wbrd,n) + E3m+1,OH
n=q(3m+1)+1

G3m+1,0
_ / " B .
= max a3m+1,n,g (w3m+1,n,g + T3m+1,n,9 + 1’3m+1,brd,n,g) + E3m+1,0]|

=1

1 <0< Pyny);

G3m41,0
E : ’ "
H a3m+1,n,9 (x3m+1,n,g + x3m+1,n,g + $3m+1,brd,n,g) + E3m+1,0 H
g=1
G3m+1,0
’
= max (‘ E a3m+1,m,9%3m11,n,g T E3m41,0
g=1
G3m+1,0 G3m+1,0
" E E
a3m+1,n,gz3m+17n,g+ 3m—+1,0 A3m+1,n,gT3m~+1,n,brd,g T £3m+1,0
g=1 g=1
q(3m+2) _ 3m+1 :
for 1 <n < Pyppq. If (W(n))n:q(3m+1)+1 = (7(3m +1 g)) is a permutation of
q(3m+2) : : G3m+1 0 -
(M) nZg@m1y41 and if, for a fixed n with 1 < n < Pyniq, (7(3m + 1,n,9)) 2 is

the permutation induced on ((3m + 1,n g))G3"‘+1 ®, we denote, for each k and | with
1 <k <2Msmt1i and 1 < [ < 24@sm+1 by (7(3m + 1,n, k g))2M3”“ and (7(3m + 1,
n g,l))2 a1 the permutations induced on ((3m + 1,n,k g))2M3m+1 and ((3m + 1,

n,g,l))jflsmﬁfl respectively. Then (recall that, by Steps 1, 2 and 3 of SC III.2,
< 2Msm+1) we have

L2

Hwézwl,n,o(f)wémﬂ,n,o + Z3m41.0,0(T)T3m41,n.0

oM3am+41 24Q3m+1

+ Z (I3m+1 n,k, 0( )‘T3m+1 n,k,0 T Z :C3m+1 n,k, l( )x3m+1 n,k l) + E3m+1,0”
=1
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oM3zm 1 oM3m 41

1%
Waim+1,n,0(T ( Z €3m+1,n f24Qsm+1) + 23m41,n,0( ( Z €3m+1,n f)

f=1

oM3zm41 24Q3m+1

* — !
+ E <x3m+1,n,k,0(x)< E €3m+1,n,k,g T W3m+1,n)
k=1

g=1

24Q3m+41_q

_ €3m+1,n.k
* 30y
x Z)| e
+ Z 3mt1m k.t )( e Y Yo FYFUY: Yo P
=1

T (f) e + o €3m+1,n,k
3m+1,n,k,24@3m+1 3m+1,n,k,2493m+1 3m+1,n 2P3m+1Q0,3m+192Q3m+1

+ E3m+1,0
oM3m 41 24Q3m 1 « —
. Z o @) + Z x3m+1,n,k,l(x) .
o 3m+1,n,0 2P3m+1Q0,3m+192Q3m+1 3m+1,n.k
k=1 =1

oM3m41  94Q@3m41_q

+ Z ( Z (mgm-l—l,n,k,O(f) + xgm-l-l,n,k:,l (E))e&m—i—l,n,k,l
k=1

=1

+ (w3m+1 n, O( ) + x3m+1 n,k, 0( ) + x§m+17n7k,24Q3m+1 (E)) €3m+17n7]€,24Q3nL+1

oM3m41
* — * — /
+ ( E (x3m+1,n,k,0(x) + x3m+1’n’k’24Q3m+l (w)))w3m+1,n + E3m+1,0
k=1
By Steps 2 and 3 of SC III.2, setting
1 24Q@3m 41 _1
- § * - 115
A= 24Q3m+1 ( €3m+1,nk,g (x) te 3m+1 n,k,24@3m+1 (x)>7
g=1
we have
. . 2P3m+1Q0,3m+1 ) .
T3m+1,mk0(T) = A= B, B=——smm—t5m 11.0.5(T),
24Q3m 41

x§m+1,n,k,l(f)

* _
X X E
3m+1’"70( )+ 2P3m+1Q0,3m+192Q3m 41
=1

= x§m+1,n,O (T)

24Q37n+1 —1 (

=1 i1,k (T) — A+ B) + (e (r) - A+ B)

3m+41,n,k,22@3m+1

2P3m+1Q0,3m+192Q3m+1
92Q3m 1

= ‘Tgm-l—l,n,O(E) + = x§m+1,n,0(f) + xgm-l-l,n,k:(f)

2P3m1+1Q0,3m+1

= e§m+1 n, k(f)7

x3m+1 n,k, 0( ) + x3m+1 n,k, l( ) = egm-}-l,n,k},l (E) for 1 S l S 24Q3m+1 - 17
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x§m+1 n,k, 0( ) + .’173m+1 n,k,24Q3m+1 (E) = eg;+17n,k,24(93m+1 (f)7
Wi 1,0,0(T) + L3011 0 4,0(T) + l"gmH ok 24Q3m 41 (T)

= w3m+1,n,0 (.’1?) + eg;-i-l n,k,24@3m+1 (.’1?) = €§m+l,n,k,24Q3m+1 (5)7

oM3m 41
Z (mgm—i-l,n,k,o (E) + x§m+17n7k724Q31n+1 (j))
k=1
oM3m 41
Z eg;+17n,k,24fésm+1 (f) = wéthrl,n (E)
Therefore
(45) W10 @) W3m 41,00 T L3m41,0,0(T)T3m+1,n,0
2M3m+1 24Q3m 41
+ Z ($3m+1 n,k,o( T)Z3m+1,n,k,0 + Z $3m+1 n,k,l( )$3m+1 n,k,l) + E3m+1,oH
= =1
oM3m41
H Z e3m-i—1 n, k( )e3m+1 n,k
k=1

oM3m41 94@3m 1

/
+ E E : €3m+1 n,k, l( )€3m+1 n,k,l + w3m+1 n( )w3m+1,n + E3m+1,0H
k=1

aX(D1,3m+1,n7 D3 3m+1,n D3.3m+1,n Da3m+41,n);

24@3m+1 % .
@ (7)
_ * —\ % — 3m+1,n,k,l
D1 3m+1,n = max < €3m+1,m,k (T) = T3mi1,0,0(T) + Z 9P3m+1Qo.3m+192Qam i1
=1

1<k< 2M3m+1>;
oM3m 41

D3 3m+1,n = max (H Z (€3mt1,mk0(T) = T3 41 51.0(T)

+ 234 1,0,k (T))€3mt 1m0 + E3me1,0 H 1
1< 1< 2% Qsmir _ 1);
D3 3m+1,n = max(|e; €3mt1,m,k,24Q3m+1 (@) = wg:nJrl n, o(T)

+ x3m+1,n,k,0( ) + x3m+1 n,k, 24Q3m+1( )l 1<k< 2M3m+1)

oM3m41
Digmitn = [inern@® = D @hnernio® + Ty 1 g gi2ame (7))
k=1

On the other hand,

q(3m+2)

— /
H Z 25 (T)Tord,n + Esme1,0 + span(ugy, o o)
n=q(3m+1)+1

n’(3m+2)
s=Agmi2— A}, 1o+l
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P3ppq1 2M3mt1

| Y st @lesmerimin +@miin)
k=1

n=1
!
+ E3m1,0 + span(us,, 1o o)

oM3m4i

n’(3m+2)
s=Azmt2—AsL,, o +1

— * o
- H > gt 1 (3t 1, brc) i 24@8m 41 () (€3m 41, brdn” (3m-+1,brd) k
k=k(3m+1,brd)+1
P31 2M3zm 41

* —
+ w3m+1,n”(3m+1,brd)) + E E x3m+l,n,k:,24Q3m+1 (‘r)
n=n'"(3m+1,brd)+1 k=1

- (€3m+1,brdnk + Wamt1,n)) + E3m+1,0H

oM3m4i
= Z Z‘* 4 (f)e:g b " k
3m+1,n" (3m+1,brd),k,2493m+1 m+1,brd,n” (3m+1,brd),
k=k(3m+1,brd)+1
P3pmt1 oM3m 41
* —
+ Z Z x3m+1,n,k,24@3m+1($)€3m+1,brd,n,k
n=n''(3m+1,brd)+1 k=1
oM3m4i
* _
+ Z L 3im41,n,k,24@8m+1 (x))w3m+1,n”(3m+1,brd)
k=k(3m+1,brd)+1
P3pmg1 oM3zm 1
* —
+ Z ( Z x3m+1,n7k’24Q3m+1 (x))w3m+1,n + E3m+170H

n=n''(3m+1,brd)+1 k=1
= max(Ds 3m+1, De,3m+1),
p— * v .
Ds3mi1 = max(max(‘x3m+17n”(3m+1,brd)7k,24Q3m+1 ()] :
E(3m + 1,brd) 4+ 1 < k < 2Msm+i)
* =\ - M3zmti o0
max(|m3m+1’n’k’24Q3m+l (ZL’)‘ 1<k <27t (3m + 1,brd) +1<n< P3m+1))7
oM3zm4i
D = max T (T)
6,3m+1 3m+1,n" (3m+1,brd),k,2493m+1 ’
k=k(3m+1,brd)+1
oM3m 41

max (’ Z m;m+1,n,]€724Q3m+1 (f) : n//(?’m +1, brd) +1<n< PSM+1)>-
k=1

) . Gam
SECOND PART. We have to consider (also for each permutation (:C,r(gmﬂ,g))qil O of

G
(T3mt1,9) g1 )

D3m+1 = max(max((D1,3m+l,n,D2,3m+1,n,D3,3m+1,n;D4,3m+1,n :
1<n < Pimt1), Ds 3m+15 De 3m+1)

where

D1,3m+1,n = max (

L * —

o @) + Z z3m+1,n,k,l(x)
3m+1,n,0 2P3m+1Q0,3m+1922Q3m 41
=1

1<L< 24Q37n+1, 1<k< 2M3m+1);
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K-1

52,3m+1,n = max (maX (H Z ($§m+1,n,k,o( T) + ‘TSm—l-l n.k, (Z ))63m+1 n,k,l
k=1

+ E3m+1,0H 11 <1< 24Qsmin 1)7

K
max (H Z(mgmﬂ—l,n,k,O(f) + x§m+1,n,k7l(E))e3m+1,n,k,l + E3m+1’OH 1 <1< L) :
k=1

1 S L S 24Q3mr+1 _ 1’1 S K S 2M3m+1>;

D3 B3m+1l,n — max(|e3m+1 n,k,24@3m+1 (j) - w3m+1 n, 0( ) + x3m+1 n,k, 0( )

Msm
+x3m+1nk24Q3m+1( )l 1< k<2 +1)

M=

54,3m+1,n - max (’ (x§m+1,n7k,0(f) Tz 3m+1 n,k,24Q3m+1( )) 1< K< 2M3"’+1)

>
Il

1

Fix n with 1 < n < Ps,,11. For Dj g1,y it is sufficient that, for 1 < k < 2Msm+1,
24Q3m+41_1 .

(1 Zl—l $W(3m+1 n.k z)( =1 is (1,0)-monotone
(hence (|31, 5 pSml(f’g(",;ﬂf;)gé?m = \)%ffm“ becomes (1,0)-monotone, precisely

(0,63m+1/2p3’”+1Q0*3""+122Q3m+1 )—monotone); E3,3m+1’n < 3a3m+1 and D573m+1 <
G3m+1; and Dy ;1,0 < 30341 if

oM3m 41

(‘ Z ezz3m+1,n,k,24QSM+1)(E) (= x;(3m+1,n,k,24‘?3m+1)(@ + T (3m41.m.k,0) (@)’)Kzl
k=1

. — . * Mzgm -
is (3, 0)-monotone, Dg 3m+1 < 3azm1 if (‘ 25:1 7T(3m+1 i 24Q3m+1)( )|)%{ 31 + g (3,0)-

monotone and we recall the second part of (ii) of CL. Turning to D2 3m-+1,n it is necessary
to have together 23, ,, ;. 0(T)Z3m+1,n,k,0 and T3t k, (T) Z3m41,n,k,1, in order to avoid
the following drawback: Suppose that, for n = 1 and 1 < k < 2Msm+1, Tiymi11x0(T) =
(—=1)F for 1 < | < 2%Qsm+1. Then (by Step 1 of SC II1.2 and by Theorem 9 and in
particular by the same tools of the proof of (39.5), in particular by (23.5) of Remark 6)

oM3m41 94Q@3m+41

H Z Z T3m111,6.0(T)e3m41,1,50 + E3mi1 OH

oM3m 41
g Ms,, 2.
= H Z (=1)"esm+1,1,k1 +E3m+1’OH > 9Mam+1/2,
k=1
2o oM3zm 1
k
H Z Z a1,k (F)€3m1, 1.0 = § (—1) w3m+1,1,k,0+E3m+1,0H
k=1 —
2M3"’+1 21 oM3m 41 24Q3m+41
k . ,
B H 2. 2 (Wewar— 3 () ( > €3m+1,1,k,l+w3m+1,1)
k=1 =1 k=1 =1

+ EBm—Q—l,OH
2M37n+1

- H Z (71)kwém+1,1 +E3m+1,0H =0.
k=1



122 P. Terenzi

On the other hand, in the third part of the proof we will use the fact that

G . _ \Gsm+1.0
(| X wemrna@])
g=1

is (6,0)-monotone for 1 < n < Ps,,11; therefore we can settle this fact and avoid the
possibility of the previous drawback, by means of the following property:
Suppose we have a sequence of numbers (bk)QM?’m+l U ((ar1)ie ?MH*I),%M“;M“ with

agy = by for 1 <1 < 24Qsm+1 — 1 and 1 < k < 2Msm+1 moreover set a = max(|by| : 1 <
k < 2Msm+1) and suppose that 22 o br, = 0. Setting (bk)QMsm+1 (b )M U (g )M
with by > 0for 1 < k < M’ and bku <0for 1 <k < M" (we can suppose |b;| > 0 for
1 < k < 2Msm+1) we start with (1) = 1’. There are two possibilities: if by, < |by~|, then
there exists a permutation (aw(g))gzll of (all,l)?jsmﬂfl U (arn )2, (L < 2%Qsmis — 1)
such that (| Zle Ur(g) \)glzl is (1, 0)-monotone; otherwise b1/ > |by~| and then there exist

two positive integers S(1) > 1 and L; < 2*@3m+1 — 1 such that by, > | Zi(zll)_l bi| while

Q m —
by < | Zs(l) by |, hence again there exists a permutation (a 7r(g))f:ll of (01’,1)12;3 -y

4Q3m41_1,5(1)—1 G :
(G )k(zl) U (aS(l)”,l)z:1 such that (|Zg=1 ar(g)l)éLy is (1,0)-monotone.
Since the second case includes also the first one, setting S(1) = 1, we can start again
from this general situation and there are three possibilities:

(i) Tt is not possible to get L; = 2%@sm+1 — 1 (hence by < |Zf§1) bg|). In this
case there exist agam two positive 1ntegers T(2 ) > 2 and L, < 24@3m+1 — 1 such that

2) Yo < |Zk bku\ while Zk ! )b > |Zk bku| hence there exists a permuta-

G
tlon (cz,r(g))g:Gl_~_1 of
4Q3m 41 _ 4Q3m4+1_1\T(2)—1 L
(asay )iep i1 YU ((aw0)iy &ty (ar@y )2,

such that (| Z 1 G )|)g2 1 1s (1,0)- monotone.

(ii) Ly = 24@sm+1 —1 and by, < | Ek bk~| Then we proceed as for () while, if by, =

\Zf(ll) by |, we can repeat the whole procedure starting from (by)2, U (br )y ”5(1)-4-1

instead of from (b )M U (b )M
Now the procedure is clear and we conclude that there exist two permutations
Mzm Mz, M3zm41(24Q3m+1 _ 4Q3m41_1«oMsm
(r(RDRZ of (S ()t 2 of ((ar )i ORI
with both
oM3zm41(94Q3m+41 1 oM3zm
(46.1)" (| Zg 1 @r(g) )= ( ) (] Zk 1 w(k)|) 3 (1, 0)-monotone;

(46.2)" for each G, 1 < G < 2Mam+1(24Qsm+1 _ 1) there are four integers S, T, L(s)

and L(T) with 1 < 8§ < T < 2Msm+1 and 1 < L(S), L(T) < 24@sm+1 — 1 5o that
4Q3m i1 _ L(S (T
(aw<g))§:1 = ((ax ), 1)12 13 o )T(;éls) 1Y (%(S),l)z:(1) U (avr(T),l)z:(1)

(that is, apart from two rows at the most, all the rows present in (7(g))5_, are totally

included). Indeed, this property is sufficient to settle ﬁ273m+1,n since, taking into account
also (39.4) of Theorem 11 and (30.4) of Theorem 8, we see that, for 1 < n < Psp,41,
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4Q m — m . . . . .
((esm+1,n.ke,i + E3m+170)l2:13 i 1)%];[? HMls 2-unconditional and in particular, for 1 <
1 < 24Qsm+1 — 1 (ezmi1nil + E3m+1,0)ﬁ=im+1 is 2-indiscernible.

Now, for a fixed n with 1 < n < Ps,,,;1, by means of NPL (Lemma 17), setting

oM3m41

_ _ 1 _ ,
Ei(z) = e§m+17n,k(1‘) =S¥y Z e§m+1,n7f(x) for 1 < k < 2Msm+1,
=1

let ((k))2-2"*" be a permutation of (k)2-:"*' such that (|35, ﬂ(k)( 7))l

K M.
(| Ek:l z§m+1’n,ﬂ(k),24Q3m+l)(I)DQ o (| Ek; 1 gjn+1,n,ﬂ(k),24Q37”+1 (I)|)%{:31n+1 are a,ll

. Q3m+1_
(3,0)-monotone; moreover, for each k with 1 < k < 2Msm+1 let (m(k, l))l24 T be a
24Q3m 41 _1 24Q@3m41_1

permutation of (1);_, such that (| Zl 1 B () () B ) =1 is (1,0)-
monotone. We recall by Step 3 of SC II1.2 that

9P3m11Q0,3m+1
N € I R ) WEZ(E)
2P3m11Q0,3m+1 .
T M1 T4Qa sy U3mA1n

1Q3m .
for 1 <[ < 2%@3m+1 with 22 o T 1 (k) (kot) (T) = 0. So there exists a permuta-
tion
oM3m41+4Q3m 41 24Q3m+41 _1\2M3m+1
( L (0,3m~+1 n,g))g 1 of (z3m+1 n,m(k),0 U (x?)m-‘rl n,m(k),m(k, l))l 1 )k 1 )

which includes a permutation

2M3m41(24Q8m+1 1) 24@3m+1 _1\2M3m+1
(xﬂ"(Serl,n,g))g:l of ((x3m+1,n,7r(k),7r(k,l))1:1 )k:l )

such that (according to (46.1)" and (46.2)" where by the above we can replace by by
(2P3m+1Q0,3m+1/22Q3m+1) ( )

G * 2M3m+1 (24Q3m+1_1

(46.1) (| S0y %% (3t mg) @) Vi

(46.2) for each G with 1 < G < QMsm1+4Qsmy1 — G3mi1,0 there are (S;)2_,, T,

(L(S:))?_; and L(T) with 1 < §; < S < S3 < T < 2Mem+1 1 < [(S;), L(T) <
24Q@smi1 _ 1 for 1 < i < 3, with

\./

is (3,0)-monotone;

5]

* 4Q3m — _
(@ am1ng)a=1 = @amitn )0V @smitnentn)icn igsor,)=1

U (@3met 1m7(50,0 U (@3mep Ln(Se)m(Se))s )

L(T
U (23m41,n,7(1),0 U (x3m+1,n,7r(T),7r(T,l))l=(1 )

(it is possible to check this fact directly by combining the proof of (46.1)’ and (46.2)" and
the proof of NPL, better in the 2-dimensional case since the procedure is the same but
simpler, in this case we find (S;)7_; instead of (S;)7_;). Therefore setting

/ Go,3m+1,0
(xﬂ'(O,Berl,n,g) + L7(0,3m~+1,brd,n,g) )g:1

/
= w3m+1,n,0 U L3m+1,n,0

/ 24Q3m+41 \2M3m41
U ($3m+1,n,7r(k),0 U ($3m+1’n’ﬂ'(k),ﬂ'(k,l) + $3m+1,brd,n,7r(k),w(k,l))l:l )k:l )



124 P. Terenzi

G3m+l 0
((2] w(3m+1,m,g) T Tr(3m+1brdn.g)) g

24Q3m+41\oM3m41
((x3m+1 n,w(k),m(k,l) + T3m+1,brd,n,n(k),x(k, l))l— )k 1 ’

Go, 3m+1
( 7(0,3m+1,9) T Tm(0,3m+1,brd g))

o / G0,3m+1,0\P3m+1
- ((xﬂ'(() 3m+1,n,g9) + xw(0,3m+1,brd,n,g))g—1 )n—l ’

)G3m+1 0)P3m+1

( w(3m+1,9) + Tr(3m+1, brd,g)) m+l = (( w(3m41,n,9) + Tr(3m+1,brd,n,g) n=1 >

since D < 6, we can state the following

Facrt 1.

* — /
(H Z L7(0,3m+1,9) (x)(xﬂ(o,:amﬂ,g) + xﬂ'(O,Berl,brd,g)) + Esmi1,0
g=1

n/(3m+2) CYv(),3m+1,0

!/
+ Span(u3m+2,s)s=A3m+2—Aém+2+1 H)G:l
Gam
and (| gt a1, @D for 1<n < Py are (6,0)-monotone. w

THIRD PART. We turn to considering
q(3m+2)
Z x;’(n)(x)(x +27) + E3m1,0 H
n=q(3m+1)+1
Pypy1 ,2M3m+1 24R3m+1
U3m+1,
Z ( Z Z T3mi1,nk,0 (T ))M—@:n + E3mt1,0
n=1 k=1
If we fix n with 1 < n < Psy,41, by the end of Step 3 of SC III.2 we know that, for
1 <1< 2%Qsmi1 and 1 < k < 2Mam+1

9P3m1+1Q0,3m+1
* .
T3m41,m.k0 = L0,3m+1,n.k,l T DY TR, P 3m1ne

oM3m41 94Q3m+1
E E xo 3m+1,nk0 = 0s
k=1

oM3zm41 94Q@3m 41

E E * _ 9P3m11Q0,3m41,,*
‘T3m+1,n,k,l =2 U3m+1,n'
k=1 =1

We set T3,y = 2Mem+1+2Q@smir Let (n/(3m + 1 g))GB'"+1 be any permutation of
(83m+2)
(n)i:q(Berl)

For 1 <n < Py, if (7' (3m + 1, n, g))G3m+1 * is the permutation induced on (((3m + 1,

n g))G3er1 °, we use (t(3m + 1,n p))TS’"+1 for a partition of (7'(3m + 1,n g))G?’m+1 °
(Whence t(3m + 1,n,0) = 0 and ¢(3m + 1,1, T3m+1) = Gamy1,0) so that, for 1 < p <
T,

, which satisfies Fact 1, so (| Zg L T 3mt1,g) (T )|)g3"i+1 is (6, 0)-monotone.

t(3m-+1,n,p) 9P3m11Q0.3m+1

U§m+1,n (f)

< G3m+1,

:er’(3m+1,n,g) (E) -

T
g=t(3m+1,n,p—1)+1 3m+1
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t(3m+1,m,p) 2P3m+1Q0,3m+1 ) (j)
* — 3m+1,n _
Z Lrr(3m+1,n,9) (LL') -D T < G3m41-
3m+1
g=1

Since by the above, for 1 < g,G < G310,

9P3m1+1Q0,3m+1

T (3m+1,m.9) (T) = T (3m41,m,9) (T) + mvgmﬂ,n(f%

G« —\(\Csmi1 G . _
(12 2g=1 T4 xr (3mt1,n,9) (@))eZi™" is (6,0)-monotone and hence | > _, wO,w’(3m+1,n,g)(x)|
< 6@3m+1, we can directly write, for 1 < p < T3,,41, t(3m + 1,n,p) = t(3m + 1,p) =
p2%2Q@3m+1 and hence

t(3m+1,p) P, 3 % _
. o 2PmnQuemiiyr L@
Z xﬂ’(3m+l,n,g) (J?) - T < 7a’3m+1a
g=t(3m—+1,p—1)+1 3m+1
t(3m+1,p) Ps.y m * T
* (—) < 253 +1Q0,3m-+1 |’03m+1,n(x)‘ + Ta
xTr’(?)m-‘rl,n,g) L) = a3m+1

T:
g=t(3m+1,p—1)+1 3m+1

9P3m1+1Q0,3m+1 QO 3m+12M3m+1+Q3m+1

< IMszm41+2Q3m+1 + Tlsm+1
B 2P37n+1Q0,37n+1Q0’3m+1 7
- 2Q3m+1 Im+1,
t(3m+1,p) * = _
Z xﬂ’(3m+1,n,g) (J?) Q0,3m+1 7a3m+1
2P3m+1Q0,3m+1 2Q3m+1 2P3m+1Q0,3m+1’
g=t(3m+1,p—1)+1
t(3m+1,p) * = * — _
xﬂ"(Serl,n,g) (.13) v3m+1,n(z) 7a3m+1

- 2P3m+1Q0,3m+1"’

2P3m+1Q0,3m+1 T
g=t(3m+1,p—1)+1 sm+1
t(3m+1,p) % —
'Tﬂ"(3m+1,n,g) ('T) p 1}* (E)
gZ:1 2P3m1+1Q0,3m+1 Tam1 3m+1l,n

< Ta3m41
2P3m+1Q0,3m+1

For 1 <n < Pypyr, 1 <p < Typny1, we set Wapg1p =20 Wamy1,g, Where

P3m41
W3m+1,p = g W3m+1,n,p7
n=1
t(3m+1,p)
. V3m+1,n
= * o
W3m+1,n,P - Z xﬂ"(3m+1’”19) (.%') 2P3m+1Q0,3m+1 "

g=t(3m+1,p—1)+1
Then, by Step 2 of SC IIL.2,

P377L+1
” _
Wami1 = Wam i1 Zys = O Vsmi10(E)08mitn
n=1

P31
u (T)u =Wy .+ Wi
3m+1,n 3m+1,n — 3m+1 3m+1>
n=1



126 P. Terenzi

Azmy1/2
W3m+1 - Z e§m+1,aux,s (f)e3m+1,au)€,s
s:Ag’m+1+1
Azm+1 _Aém«i»l
+ Z 6ngm—k—l,amc,s (E)ei’)m—i-l,aux,s

5=A3m+1/2+M3m+1-1,arm,0+1

Azmy1 22B3m+1

* .
+ z : § : e3m+1,aux,s,t(x)e3m+17auX,S,t7
s=1 t=1
Aé’vn#»l

/// !
Wi = E u3m+ls )u3m+1,s

A3m+1/2+M3m+171,arm,0

1% —\
+ U’3m+1,s(x)u3m+1,s
S:A3m+1/2+1

A37n+1

+ Z ugkm—i-l,s(f)ugm—ﬁ-l,s'

s=Azmi1— A, 11

For 1 < p < T3,,41, we have

P377L+1 ngn+1
W Wamir _ W 1 . _
3m+lp ~ T Bmtlnp = v3m+1,n(x)v3m+17n
3Im—+1 3m—+1 —

P37n+1 *
_ U3m+1 'n,( ’l)3m+1 n
- E W3m+1,n,p -

n=1 T3m+1

P3p, t(3m+1, _
B 3m+1 (3m+1,p) . (_) 1 B U§m+1’n($)
o Z Z Lar (3m+1,m,9) \T 9P3m4+1Q0,3m+1 T3m+l vamtLn)

n=1 =t(3m+1,p—1)+1

Wsamt1
W3m+1,p - T

T3m+1
Pzt t(3m+1,p) N _
<2 ¥ (f) 1 _ v3m+1,n(‘r)
E : E : 7 (3m+1,1,9) \"") 9 Pa 11Q0,3m 41 Tsmit
= g=t(3m+1,p—1)+1
<9p Ta3m+1 A3m+1
3m+1 2P3m+1Q0,3m+1 4P3m+12Q0,3m+1 ’
ey p a3m+1
Wamsip — b Wi || < —T8met
H T Ty T 4P3m+12Q0 gmt1

by the same proof. Moreover by the above also

t(3m—+1,p) ||v ||
— * — 3m+1,n
Wanirnsll =] 3 @hmiing @] gmearms
g=t(3m+1,p—1)+1
<9 Qo,3m+1 Ta3m+1 153,41 A3m+1
2Q3m 1 2P3m+1Q0,3m+1 2P3m+1Q0,3m+1 4P3m+12Q0,3m+1 ’
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At this point, setting

Gml t(3m+1, P31\ T3m
(w(3m+1,9)) 520 = ((«'(Bm + 1,m, g)) 'Sty remey e,

i * G m
it follows that (|| Zg 1 3mt1.0) B @ smitg) T Talamarg) T Esmi1ol)G2s™ and

)G3m+1

G
g1 Zr3mt1.0) @2 (3mg1,0) are (0, @3y, 1/2903m+1)-monotone (smce, for

1<n < Pyypyrand 1 <p < Ty,
G * —
Z 'r‘n"(3m+1,n,g) (‘T)
2P3m+1Q0,3m+1
g=t(3m+1,p—1)+1
hence also (0, 6@z, 1/2#m+1Q0.3m+1)-monotone. Moreover
- - a a
3m-+1 3m-+1
<
H ](;2:1 W3m+1,k,p - Z ||W3m+1,k,p|| < n4P3m+12Q0,37n+1 < 4 . 2Q0,37n+1 ’
therefore (|| Z}Icv=1 Wam1kpl)—y is (0, —2mtl ). monotone, while

’ 4.290,3m+1
P
<H Z W3m+1,p
p=1

s (0,@3m11/4 - P3pmy12903m+1)-monotone since by the above

s (6,0)-monotone,

) t(3m+1,p)

G=t(3m+1,p—1)+1

Tsm+1 T
) = Wil

a3m+1
4 P3m+12Qo 3m+41

A Wamy1
T3m+1

for 1 < p < T3m+1 and (||T3 1 VV?m"HrlH)ngJrl is (070)'m0n0t0ne; ﬁnally (27030)'
monotonicity comes from the inequality
ly + ell = max(lly[|, [ll|/2)
. S/ !
for each y € span(y3m+17n)ggm+1) and e € span(egm+Ln)n?’:"j*ﬁM?”"“’“ of Step 1 of
SC I11.2).

At this point we can state the following

W3m+17p -

FacT 2. Let (2o, 3m+1’g))5°f’"“ be the permutation of

G3m+41 2M3m 41\ Papyi1
(13m+1,g)g ru (W3m+1,n,o UZsmi1n0 U (Camitnko)i=1  Jni
of Fact 1 such that the permutation induced on (xngrLg)?i’l"“ 18 just (xﬂ(3m+179))Gi’f’+l.
Then

* — /
(H Z ITF(O,?)m-i—l,g)(z)(xﬂ(0,3m+17g) + xﬂ(0,3m+1,brd,g))
g=1

' G3m+1
/ n’' (3m+2)
+ Spaﬂ(u3m+2,s)s=,43m+z—AgmHH + E3m+1,0 ot

s (6,0)-monotone and

n (3m+2) Gam+1

*
(H Z.’EW(O,Sm%»l,g ) Lr(0,3m+1,g) + Span(u3m+2 s)s Agmia—Al,, o+ + E3m+1,0H)
=1

5 (2,6, T3y y1/2903m+1)-monotone.
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This follows since all the properties of Fact 1 continue to hold. Now (A) follows from
Fact 1 and from what we stated just above. =

FouRTH PART. We now turn to considering the block (xfl(f)xn)g(qu(;?) 41- We already

know, by Step 1 of SC IIL1, that (e, ,, + E3m 0)5mm s 1—equivalent to the natural
basis of 153™ (2-equivalent if Esp, 0 is replaced by Es,, o + span(ysm, n) ) + Us,,, for
Usmpn = X N ﬂQ(sm YizmmyL N ﬂSM FMam.o €(3m,n)L)- Analogously, if X' and Usim arm

n=1
are the subspaces of Step 3 of SC III.1, then ((e3m,arm,n,j + E3m,arm O)J?’m a‘m)fim

equivalent to the natural basis of lgf’"‘]?”"’”m (2-equivalent if F3;; arm,0 is replaced by

Espmarmo + X’ + Usim.arm). Moreover, if we set £ = E3,,0 + E3m arm,0, then if u €
span(e4’, ) Sim 1 B and v € span((esm.arm n,]);]ST erm)Pim B we have

63mn n=1
[+ vl = max([[u], [[v]|/2)).

is 1-

Owing to the first part of (ii) of CL and in order to decrease the formalism, in what
follows we can first suppose (see the notations before CL) that

3m+1 Nam br
(l‘brd ”)n( Zég_m))+1 ((63m brd,n,k ng n)i im)i‘q’"ll = (1'3m brd a,g)g Sq b "

that is, n/(3m+1) = As,,41; then we will turn to the general case. Now, for 1 < n < Ps,,,
by the procedure of the second part it is possible to check (see Steps 4, 5 and 6 of SC

. . - Gsm G0,0,0,3m _
III.1, in particular the definition of (3, aym 4) 21 = (20,0,0,3m.9) g= Gl o 0.5m—Gam+1 =

G
(U3 41,5)5=Ci oo am—Gam+1) that

Go,3m,0

* — ~
H > T 3mng @) (@03mmg = Fo3mng) + Eamo
Go,0,0,3m Azmt1
+ span(u3m+1 3)‘? Go0,0,0,3m—Gam+1 + span(u3m+1 S)S:Asm+1*Aém+1+1

oM3m

= [wim o @wmano + D7 0@t
k=1

2 M3zm 2 M3zm

+‘T?ﬂnnO( ‘T3mn0+§ E IankOl )xSmnkOZ

G3m.0

+ Zx3mnq $3mng+E3mOH

oM3m 2M3m 2Msm _1
= ’ W§m,n,0 (E) Z €3m,n, f,2M3m + Z wgm,n,k,o(f) Z €3m,n,k,g
f=1 k=1 g=1
2M3zm
+‘r3mn0 (Ze?)mnf)
oMy, oMsym, M3,

+ § <x3m n.k,0,0(T E €3m,n,k,0,g T E T3 k0,1 (T)
k=1
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2M31n

: <63m n,k,0,0 21\/13 Z €3m,n,k,g (]- - 1/2M3m)w3m,n,k + w3m,n/2Msm>>

oM3zm  9M3m _ 1

+ > ( Z T bl (T (€3mom bt + Wamon k + €3mn 1 /2M™)
k=1

+ xgm,n,k:,QMSm (f)(el’)m,n,k,QMSm + Wam,n + eSm,n,k/QMgm)) + E3m70

2 M3zgm 2 13m

Z <x§m,n,0(f) Z me n,k,l ))63m,n,k

k=1

M3 oMz, _ M3z,
2 2 2

+ Z Z (w;;m,n,k,O(f) Z wSm n,k,0 g( ) + msm,n,k:,l (j)) €3m,n,k,l

k=1 =1

oM3m 9M3m

+ Z (‘L’;m,n,o (E) Z 'T?;m n,k O,q( ) + x§m7n7k72M3m (§)> eSm,n,k,2M3m
k=1

oM3m 9Mzm

+ Z Z (T5m,n,%,0,0(F) + T 1 5,0, (T)) €3m,m,k,0,0

k=1 I=1

QIWSNL 2M31n QIWSNL —1
Mszm, §
+ E ( E (1—1/2" )xSmnkol x3mnkl( ))w3m,"»k

oM3zm  9Mam

+ Z ( Z T k00 () /2N 4+l o, (f)))wfim,n + Esm.o

k=1 =1
oM3m oM3m 9Mzm
_H E :e3mnk )€3mnk+ E E e3mnkl )e3m’ﬂkl

k=1 I=1

QIWSNL 2M37n

+ Z Z eSmnkOl( )€3m,n,k,0,1

2]”!3771

+ Z w?)mnk )w3mnk+w3m n( )WSm,n+E3m,0H~

Therefore we have
Go,3m,0

H > T 3 () (@0,3mmg — To3mmg) T Bamo
g=1

Go,0,0,3m Azmt1
+ span(ugmﬂ s)s Go.0.0.3m—Gam+1 + Span(“3m+1 5)5:A3m+17A\,’3m+1+1

= maX(Di,3m,n; 1 S 1 S 7)7

where
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2 M3zm

_ * § X =\ - Msm Y.
D1’3m’” = max (‘x3m7n70( 2M3m me n,k,l ) - eSm,n,k(w) 1<k<2 )a

2M3m

wgm,n,k,O(E)er Z Smnkol( )+x3mnkl( )

D3 3m,n = max (
g=1

= 6§m,n,k,l(f)

:1§k§2M3m,1§l§2M3m1);
oMz,

Di s = max ( RS D DE SR EE SR

= ei”im,n,k,2M3m (f)

. 1 S k S 2M37n);

D4,3m,n = ma'X(|$§m,n,k:,0,O(f) + mgm,n,kr,o,l (E)
= €5 k04 (T) 1 1 <1< 2M3m,1 < k < 2Mem);

2M37n 21M3 m o

D5 3m,n = max (‘ Z 1*1/2M3m)x3mnkoz Z Iankl( )

=1
= wg‘mm(f)} 1<k < 2M3m);
oM3zm  9Mszm
Dsmn = | 32 (D2 @hnni0a @227 + 0 10 (@) = Wi ()|
k=1 = 1=1
At this point we turn to the general case and we need also consider the terms analogous
to Ds 3m+1 and Dg 341 of the first part; a consequence will be that also

oM3m

G
(‘ ]; 'T;;m,n,k,ZMsm (E) DG:l

will have to be monotone for some permutation. In order to construct the permutation
(w(0,3m,n g))G0 7™ of the assertion we have to pay attention only to D; 3., for i €
(5,6). For D5 3, 1, for each | with 1 <1 < 2Msm  we have

2 M3zm

ST - 1/2Mm)a, L en = (Y7 = Db ko
l_
oM3m _q

E * M3, * .
z3m n,k,l — w3m,n,k - (2 - 1)x3m,n,k,07

analogously for Dﬁ’gm’n we have

2M3m

§ : * M3zpm _ % * % Lk
ZESnl,n,k,O,l/Q "= me,n,k,Oﬂ 1’3777,’77,’]{;’2]”3771 - egm’n,k,2M3m xSm,n,k,O
=1

where
2 M3zm

1% . *
C3m,n,k,2M3m — Y3m,n-

k=1
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In the next part we will need that (| Zg 1 Tamon,g () )G3’" ** be (2, 0)-monotone; therefore,
21

Sm

|
if again by NPL, (w(k))i:i is a permutation of (k);_;" such that

]\/f
3m — oM3zm

(ST ESNNES ) S ) O

and (|ZkK 1 C3m o (k) oM (T )|)%( 2" are (3,0)-monotone and if, for 1 < k < 2Msm,

2 Mzgm _ 1 -

(mw(k, Z))2 "™ is a permutation of (Z)2 '™ such that (| Zl TR €] ) e S
(1,0)-monotone, we can state the followmg

FAcT 3. Set w(k,2Mom) = 2Mam for 1 < k < 2Msm and

Go,3m
(xw(o 3m,n g))g O13 0= (w3m,n,0a wSm,n,O)

oM3zm \ 9M3zm
U((W3m,n,m(k),00 T3mn,m(k),0,0) Y (T3m.n,m(k),0.0 T3momom(k),m(kid) )ie1 k=1

Then, for each permutation (Tx(3m.g)) g 0 ™ of (zo, 3m7g)G° > such that, for 1 < n <

g=1
0,3m,0 0,3m,0

Ps,,,, the permutation induced on (mo’gm’n’g)le is just (T(0,3m,n g))f T above,

G
(H Z $;(0,3m,g)(f)($w(0,3m,g) - 5#(0,3%9)) + E3m.0
g=1

Go,0,0,3m Agmi1 G3m,0

+ span(uz,, 1 o) o G oam—Gam+1 T span(uf,, s)szASmeAémHH H)G:l
is (3,0)-monotone (where 3 comes also from Ds 3., r, and Ds 3m ), hence also (0, 3as,, )-
monotone.

FIFTH PART. By the above it follows that, for 1 < n < Pj,,, since

¢ . _\Gsm.o
(‘ 92221 xﬂ'(Bm,n,g)) (.’IJ) D =1

is (2,0)-monotone, it follows that (|| 232:1 T (3min.g) (T)Eﬂ(gm7n7g)\|)g?’£’° is also (2,0)-
monotone, hence (0, 2@s3,, /2% )-monotone. Moreover

G0,0,0,3m

2 : * — ’
(H Lx(0,3m,n,9) (:C)xﬂ'(o’?’mv"’g) + ESm,O + Span(u3m+173)S=Go,o,0,3m—G3m+1
g=1

, G3m.,0
, n/(3m+1) '
+ Span(u3m+17s)s=z‘\3m+l — A5t ) g=1

s (2,3, 2@3, /29 )-monotone (by ||y + e| > max(||y|, |le]|/2) of Step 1 of SC IIL.1). In
order to pass, from the single permutation (7(0,3m,n,g)),27™" for each n with 1 <

O 37n

n < Py, to the global permutation (7(0,3m, g)), 2™, we w1ll use the procedure of the
third part of the proof. Fix n with 1 < n < Ps,,. Reca,ll from Step 5 of SC III.1 that

oM3m oM3zm .
k=1 =1 Tkl = 2M3mw§m n; moreover we set 15, = 2Msm  Then there exists

e o he1)at of (m(3m,n, g))g 2 (with (3m,0) = 0 and

a partition ((7r(3m7n,9))g =t(3m,p—1
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t(3m, p) = p2Msm for 1 < p < T3,,) such that, for 1 < p < Ty,
Ry 2Mor w3, ()
Z xﬂ(Sm,n,g) (f) - T -
g=t(3m,p—1)+1 sm
t(3m,p)
’ Z x;(Bm,n,g) (E) - wgm,n(f) < azm,
g=t(3m,p—1)+1
t(3m,p)

7r(3m n g)( )‘ < |w3m n( )| + a3m < Qo,gm +53m7
g=t(3m,p—1)+1

t(3m,p) * - * — —
1'7r(3m,n,g) (1.) . w?)m,n(‘r) a3m
IMsm QMszm M3,
g=t(3m,p—1)+1
t(3m,p) * = —
Z ww(Bm n g)( ) . prm,n(x) a3m
2M3zm 9Msm IM3zm ’
g=1
PB'm

p
WSm,p = Z W3m,n,p, W3m,p = Z W3m,g’

t(3m,p)
W3m,n
W3m,n,p = § 7r(3m n,g)( ) oM,
g=t(3m,p—1)+1

for 1 < n < Ps,,. Hence, by Step 4 of SC III.1,

PSm P3m

Wam = ngvDSm E w3m n wSm n E u3m n

Then, for 1 < p < T3,,, we have

u3m n-

W 3m t(3m,p) ws
m * — * — m,n
stm,p H Z < Z Tr(3mon,g) (T) — wSm,n(‘T)> Mo
n=1 *g=t(3m,p—1)+1
P,
< Z H Z :(Bm,n,g) (j) - wgm,n (j) H 2M3m
=t(3m,p—1)+1
P3m263m a3m
2M37n 2M3”m/2 ’

17 p 2a3m, a3m
HW3m,p EWP’WLH <P3m 5 3

t(3m,p) ||w3 || 9 t(3m,p)

* — m,n * _
||W3m,7l,p|| = Z xfr(?»m,n,g)(x) Mz, < O Msm Z xfr(?»m,n,g)(x)‘
g=t(3m,p—1)+1 g=t(3m,p—1)+1

2 _ 4Qo3 as
< W(QO,Sm +a3m) < - =

IMszm OMsm /27
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By Fact 3 and by the procedure of the proof of Fact 2, if we set
G3m t(3m, m\T3m
(w(3m. 9)g25 " = (((x(Bm.n, @), L ny

G * G m Gsm
then (1| S0y % g (F)Fn(mg) + Bomol)E21 and (| S8, 02 g1, ) (0)Fn(omgy G2 are
(2, @3y /2M3m/2)-monotone. At this point we can state the following

Fact 4. If (mw(013m’g))§:°’13m is any permutation of (o, 3m,g)G° 2™ of Fact 3 such that the

. . G3
permutation induced on (1’3m1n7g)§:1 i8 (Tr(3m.g))go1  above, then

G0,0,0,3m

* — /
(H Z T7(0,3m.9) (T)Tr(0,3m,9) + Esm.o + Span(u?)erl,s)s:GO,O,O,gmngerl
g=1

’ GU.BWL
/ n'(3m—+1) ’
+ Span(u3m+1,s)5:A3m+l—Aém+l+1 H)G:l
5 (2,3, 3pm /2M3m/2)-monotone.
SIXTH PART. We now turn to considering the block (z (E)xn)fﬁ;rz;ilz) 41+ We already

know, by Step 1 of SC II1.3, that (€5}, 5, + E3m12,0),— 3”’“ is 1-equivalent to the natural
basis of 153m+2 (2-equivalent if E3,,12 ¢ is replaced by

E3y2,0 + span(ysm2, n)Q(smH) + Usm+2

for Usmio = X N mQ(3m+2) y(3m+2 WL n ﬂ 3m+2+M3m+2 0 é?3m+27n)J_' Then, for 1 < n <
P34 2, we have (recall that, by Step 2 of SB III.3, lzgm+2mn0ll =1)

oM3m 42
Hm3m+2n0( )$3m+2n0 + E w3m+2nk( )m3m+2nk +E3m+2 OH
k=1
oM3zm 42 oM3zm 42

= $3m+2 n 0 ( E €3m+2,n f) E $3m+2 n, i (T)esmt2,nk + Esmi2,0 H

oM3m42

=|| X @nrono@ + ik @)esmszns + Bz
k=1

oM3m 42

= Z €3mt2.n.k(T)e3ma2mnk + E3mi2,0 H

= ma'X(|$§m+2,n,O(f) + x§m+2,n,k(f) = €§m+2,n,k(f)‘ 1 S k S 2M3m+2)'
That is, for any permutation
( (3m+2 g))Gngrz of ((3m+2 g))Gngrz7
(l 25:1 17;(3m+27g)( z)z! w(3mt2,9) T E3m2, 0||) $m+2 is (1,0)-monotone. On the other

hand, by the procedure of the proof of Fact 4 there exists a permutation (7(3m +
2 g))GMJr2 of ((3m +2 g))G3m+2 (we can use for instance T, 1o = 2M3m+2/2) such that

G3amy2
(H Zx (3m+2,9) (Z) (a7 Tr(3m42,9) T fw(3m+2 9)) t Esme2, OH)
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and

I ) - " G3zm
(H Z 2o (amt2.9) (D) (Cram2.0) T Tr(ame.g) H) G=1
g=1 )

are (2,1, @3,,42/29%3m+2)-monotone; therefore
Gam+2

G
(H Z Tr(3mt2,9)(T)TrBmt2,9) + E3mt2,0 H)
g=1

is (2,1, @3m42/2903m+2)-monotone.

SEVENTH PART (proof of (A) for C IV). By the beginning and Step 1 of SC IV.2, and by
Step 3 of SC II1.2, it follows, for 1 < d < L3,,, that the definition of

Ga,0,3m+1
(xd 0,3m+1,g» xd 0 3m+1,q)g 1

is simpler than the definition of (x073m+1797x373m+179)§:0f’”+1 in SC III.2, hence also a

more simplified procedure of regularization works, in particular

(a) for what concerns the first part of the proof of RL we have to consider, passing to
SC IV.2, only Dq 3141 and Ds 341, since the bridge sequence does not appear;

(b) for the same reason of (a) it is not necessary to use NPL;

(c) (46.1) and (46.2) hold for (S;)3_, replaced by (S);

(d) Fact 1 continues to hold, only with (3, 0)-monotone instead of (6,0)-monotone.

Now let us fix 1 < d < Lj,,. We will proceed through two steps.

STEP 1 (regularization of the support sequence). By the above it follows that there
exists a permutation (7(d,0,3m+ 1,n g))G‘“’ B of ((d,0,3m + 1,n g))Gd0 BmHhO for
1 <n < Py 3m+1 such that if (7(d, 0, 3m+1, g))Gd D¥m+ is any permutation of ((d, 0, 3m+
1 g))Gd 0,3m+1
induced on ((d,0,3m + 1,n g))G‘“’3m+1 % is just (7(d,0,3m + 1,n g))Gd”’"“ ° above,
then

with the property that, for each n with 1 <n < Py 3,,41, the permutation

" Gd,0,3m+1
(H E :xﬂ'(d,O,Serl,g) () (Tr(d,0,3m+1,9) = Tr(d,0,3m+1,9)) T Ed3m+1 OH)
g=1

s (3,0)-monotone (we recall that Z.(4,0,3m+1,9) = Tr(d,0,3m+1.9) = x;(d,0,3m+1,g) for 1 <
9 < Ga03m+1)-

STEP 2 (regularization of the connection sequences). We turn to considering

G "
(xd 0 ?ﬂn—i—l,g)gd Cl) gt

and we will follow the whole procedure of the third part till Fact 2, but for the whole
sequence (zg, 3m+1’g)go 1™*" and not only for each sequence (xd’0,3m+1,g)gii‘3’"'“ one by
one.

For 1 < n < Pj 3,41 we start from the permutation (7(d,0,3m + 1,n g))GdO S0
of Step 1 and let (7(d,3m+1,n g))Gd ™ +1% be the permutation induced on ((d,3m + 1,

n g))Gd 0 We also set (we follow the notations of the third part, see also the last
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part of Step 3 of SC IV.3) Ty 3m41 = 2Masmi1+2Qasmi1 gnd, for 1 < p < T4.3m+1,

t(d, 3m —+ 1’p) = p22Qd,37n+1,

t(d,3m+1,p)
— * 7\
Wd,3m+1,n,p - E xw(d,3m+l,n,g) (w)xﬂ(d73m+17”vg)’
g=t(d,3m+1,p—1)+1
Pa,3m+1
Wasm+1,p = E Wa3m+1n,ps
n=1
Td,SnL+1
Wasm+1 = E Wi 3m+1,p3
p=1

now we have to put together in a suitable way all these Wy 3,11, for 1 < p < T 3m41
and 1 <d < L3,,.
Then we set, for 1 <p < Tr,, 3m+1,

ULgp 3m+1,p = Wig, 3m+1,p5
moreover we set, for 1 <p <Tr, _13m11,

PTLg,, ,3m+1/TLg,, —1,3m+1
ULsp—13m+1,p = Wiap,—13my1p + > ULy 3m41,p/
p'=(p—1)TLy,,,3m+1/TLy,, —1,3m+1+1
and in general, for each d with 1 < d < L3y, —1 and for 1 <p < Ty 3m41,

PTat1,3m+1/Td,3m+1

Uism+1p = Wasmt1,p + N Udt13m+1,p-
p'=(—1)Tat1,3m+1/Ta,3m+1+1

In particular we get, for 1 < p < T1 3m+1,

P12 3m+1/T1,3m+1
Urgmy1p = Wigmy1p + > Uz 3m+1,p'-
p'=(p—1)T23m+1/T1 3ms+1+1
Finally, we can define the permutation (7 (3m + 1, g))?jf“ of ((3m + 1, g))?jf“ which
we can recognize by the order of the summands in the following sum:

T1,3m+1 G3m+1
— — * =\
Usm+1 = E Uism+1p = § : Lr(3m+1,9) (x)xﬂ(3m+1vg)‘
p=1 g=1

Indeed, we already know, by the last part of the procedure of Fact 2, that, for 1 < p <
TL377L73m+17

ULy 3m+10 = Wigm 3m1/Trgp gm1ll < Tamyr(1/29Fsm08mt),
Then by the above it follows that also, for 1 <p < Ty, _13m+1,

L3m 1

< @3m+1 Z 2Qc,0,3m+1 "
C:Lgmfl

Wrs—13m+1+Wry, 3mt1

HULgm—1,3m+1,p — T, P
3m —1,9m
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In general, for 1 < d < L3, and 1 < p < Tj 3,41, We have

L37n 1
HUd,3m+1,p — < Z W, 3m+1>

T4 3m+1

L3m 1
< G3m+1 Z 92Qc,0,3m+1 "
c=d

Therefore, since by the beginning of Step 2 of SC IV.2 and by the definitions of GBST
we can see that Q4,0,3m+1 > dQ1,0,3m+1 for 1 < d < L, hence

Lsm Lsm d

1 1 2
Z 92Qd,0,3m+1 < Z (2@1,0,3m+1) < 2Q1,0,3m41’
d=1 d=1

we have defined a permutation (7w (3m + 1 g))G3er1 of (Bm+1 g))G3er1 such that, for
each permutation (7(0,3m + 1 g))GO P of ((0,3m +1 g))G0 7! with the property of
Step 1, which induces (7(3m + 1 g))G?’m+1 n((B3m+1 g))G3er1 the sequence

Go,3m+1
(H Zx 0,3m+1,9) (T)Tr(0,3m+1,9) + Ezmt1 oH)

g=1

is (2,3, 263m+1/2Q1’0’3m+1)—monotone' in particular, since by Steps 2 and 4 of SC IV.2 we

L377L+1

find that span(€s,mi1,n + E3m+1,0) e
proof of (ii) of CL it follows that

is 2-complemented in X/FEs,,11,0, by the same

— "
H D T 03mi1.9) @ @x0,3mi1.9) — Tntozmr1g) + E3m“*°H <Tm = 05
=1

this completes the proof of (A) for C IV.
This completes the proof of Lemma 18. m

In Step 1 of the proof of (i) of the next lemma we will give the reason for the relation

A3m+1 = 2‘1(3m+1)(Aém+1+M3m,arm,o-i-AanH)

from the beginning of SC II1.2; moreover (v5,, ,,, Vs, n)Qim is the sequence

1"
( 1% )Qm+2
m+2 n’ Um+2 n 1

of (42.4) of C II, for m + 2 replaced by 3m.

LEMMA 19 (First Completeness Regularization Lemma, FCRL). LetT € X with |Z|| = 1.
Then there ezists a sequence (1,,) of positive numbers, with n,, — 0, such that, for each
m’

. . Mg, M
(1) for each eg m in span(((T3m.nk,i — T3mn.k l)lz 13 l)i im ),153:"‘ with

lleo,m || < 10.7¢(3m + 1),

under the “operating chain condition” there exists ug,, = ZZR 1xr(m) (T)xr(m),, with

(r(m))E o subsequence of (n)Q(3m+2)

n=q(3m+1)+1’ such that |leg,m +uo,ml < [[€o,m + Ezm,oll +
1/(q(3m + 1)22Fsm+1);
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(ii) under the “operating chain condition” there exists a subsequence (@(m)z)?:”i of

(n)z(jggi)) 1 such that

q(3m) Q.

HT - ( > w@en +ﬂm) H <y With T =Y &y, (B)Tg(m),
=1

while under the “disconnected chain condition” we have directly

q(3m)

n=1

=1y + T + + 4@30m,

22Q(3m)A37n

where .., is the number n,, of (i) of CL and 7, — 0 with m;
(iii) under the “operating chain condition”, if (ﬂs)g(?’{" ) ¢ span(u;;mk)zgm =1 with
[us]] < 30g(3m) for 1 < s < q(3m), then there ewists (us)g( {n with

S G(3m,s)
| @ - <mm =t = Y @hamn) @ Tamg) + e
s=1 g=G(3m,s—1)+1
G(3m+1,g)
Us,g = x;kr(Berl,g’)(T)$W(3m+1,g/)’
g'=G(3m+1,9—1)+1
for1 <s,8 <q(3m) and G(3m,s—1)+1 < g < G(3m, s), where (7r(3m,g))gG=(3G"(Léa e 141
and (m(3m—+ 179/))5581(—::37;21 g—1)41 @re permutations of the kinds of (B) and (A) of RL

respectively; moreover also the whole permutations

G(3m,q(3m ~ G(3m+1,G(3m,q(3m
(zTr(Sm,g) 7r(3m,q))g (1 " )) (xﬂ(3m+l,g’) - x‘n’(3m+1,g’))g (—1 ( a@m)

have the same properties of the analogous permutations of (B) and (A) of RL respectively.

Proof of (i). Since the elements of (e3m, brd n) " do not appear in the expression of
3m+1
€o,m, We also have e, = €j,, + €arm,0.m w1th €.m € span(z;, + xx)nLZSm))+l and

Carm,0,m € SPan(Tarm, n)i(?’;'g;)) 1+ Since the operating chain condition holds, by LCL

there exists n'(3m + 1) with Azp,1 — A5, +1 < n/(3m + 1) < Agp,qq1 such that
‘u§%+1,n'(3m+1)(f)‘ > €341 While |ufy, 1, (T)] < €541 for 0/ (3m+1)+1 < n < Az
Hence (see the proof of (ii) of LCL) there exists 7(3m + 1) with Ps,, 1 — A5, (1 +
22Bsmi1) + 1 < m(3m + 1) +1 < Psypqq so that U3t 1m3me1)+1(@)] = €3mi1 while
(W10 ()] < 3msr for W(Bm + 1) +2 < n < Aggia. So, if (g(3m + 1,n))poy 0

P3m41
n=1

through the following six steps:
STEP 1. By Step 6 of SC III.1 and by the beginning of SC II1.2 (in particular by the defini-

tion of A3z;,41), moreover by the definition of @(3m+1)+1 above, (¢(3m+1, n))ZSIﬂH)H
3m+1(1+22531n+1)+1

corresponding to (g(n))"t] of GBST, we will proceed

is the subsequence of (n) o

has a subsequence of the kind (2n’ —1,2n'),,*

STEP 2. Always in the spirit of the approximations of Subsection 1.5, we can suppose
q(3m+1) Al
n=q(3m)+1

such that [le + u|| = [le + Eo3m||. Moreover we know that ((€3,, arm,n.;)

37n+1

that for each e € span(z], + x!') there exists u € Eo 3m C span(us,, )

J3m,arm Pm
331 )n3:1
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G0,0,0,3m A3m+1
(Usma1,5) s Co oo am—Gam-+1- Hence there is o, € span(usn, q1,),27 " so that [legm +
— / 11\q(3m+1)
uO,m” = ||60,m+E3m10||a where €o,m = 607m+60,m,arm with eO,m € Spa‘n(‘rn+xn)n=q(3m)+l

q(3m+1)
and €, m,arm € Span(l’arm,n)n:q(gm)+1'

STEP 3. We recall that, by GBST where we can suppose that M > ¢(3m + 1) for

the (3m + 1)th block, since ||tug m| < 2||€om|| < 140¢(3m + 1), there are sequences
As’m+1(1+22’33m+1> PP

(F(n)n C (g3m -+ 1,m) 27 and @(3m 4 1,m))
numbers such that if we set
Aé/7rl+l(1+22B3m+l)
Uom = > aBm+ 1, n)wsmi, f(n)

n=1

then
[To.m — Tomll < [[Tom|l/2Pom+1 < 140q(3m + 1) /2M Pom+1 < 1/(2q(3m 4 1)22Fsm+1),
0 < a(3m + 1,n) /w31, pn) (T) < |[domll/2% 7 < 1/(2¢(3m + 1)22m+)

2B 37n+1(1+22837n+1)
for 1 <n < A%, (14 2°%em51); recall that (w3, 1 1, (Z))n21 has alter-

nate signs. On the other hand, by the end of the statement of GBST, we can have the same

A3m+1(1+2 3m+1) f( (3m+1 n))n(3m+1)+1

fact also if we use another subsequence (h'(n)),,>7

such that the two sequences

* =\ \ AY 1422B3m+1
( w3m+17h,(n)(x) ) ma( )

|w; )|

s

3m+1,h'(n )( n=1

and

&

( w§m+1,f(n)( )

A g1 (142753m41)
|w§m+1,f(n)( )|)

5]

n=1

1"
A3m+1

n=1

. . . —~ (1+2253m+1)
are equal. The only difference is that we will use another sequence (a’(n))

A (1+2233m+1) —~

of numbers and if we set g, = >, 27" @' (N)Wsm+1,h'(n), then again
! ol < 1 0< a'(n) - 1
Uo,m — U0,m ’ * —
" 29(3m + 1)22Por W1 g (@) 2q(3m + 1)22Pmes

for 1 <n < AYf (14 22Bms1),

STEP 4. Therefore by Step 1 we now have at our disposal

_ _ Al (1422Bsm1) 41
* * 3m+1
(,U3m+1,2n/71 (T)v3ma1,2n/ -1, U3m+1,2n’ (T)v3m+1,2n) 21 )

where, for each n with 1 <n < A4, (1 + 22Bsm+1) 41, since

3m+1(1+22B3m+1)+1

(2n' —1,2n/)/%
is a subsequence of (g(3m + 1,n))z(:3{n+1)+1, by (ii) of (13) and (14) of GBST we have

w3m+1,2n’71
IMsm4+1+Q3m+1’
w3m+1,2n’71
IMsmy1+Qsm+1’

V3m+1,2n/ —1 = W3m+1,2n’ +

V3m+1,2n’ = W3m+1,2n’ —
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* _ * M3m11+Q3mt1,,,*
Vimi12n/—1 = (W31 200 + 277%™ "W 1 o0 —1)/ 2

_ 2M3m+1+Q3m+1

* o * *
U3m+1,2n" = (w3m+1,2n’ w3m+1,2n’—1)/2a

lV3m+1,2n/—1 — Wam+1,2n || = [|[V3m+1,2n — Wam1,2n7 || < 2/2Mam+1+Qamts
W31 41,20—1(F)] > (W3 41 20 (T)]s
hence v3,, 1 2,/ _1(T) has the sign of w3, .5, (%) while v3, 5,/ (T) has the sign of

~W3ms1.2n—1(T). Therefore we can choose h(n') € (2n' — 1,2n’) such that the whole

_ A 1+2253m+1 +1 i
sequence (v, H’h(n,)(sc))ni”f“( "*! has alternate signs.

STEP 5. By the previous steps we conclude that, for the approximation of ug ,, of Step 2,
Agm+1(1+2233m+1)

(w§m+1,f(n) (T) W31, (n) It of Step 3 has the same properties as either
— " 2B3,,
Vimyrhen(T) _ Agng1 (142773mF1)
* = |w3m+1,2n’ (T)|w3m+ 1,20
‘v3m+1,h(n/)(x)‘ n=1

or the same sequence but for 2 < n < A4 (1422B2m+1)+1; we can suppose the former

to be the case. Hence now, by the procedure of the proof of GBST, we can get a sequence

" 2B3, 41
(b(3m + 1, n))ASm“(HQ *™™) of numbers so that if we set

n=1
Al (1427F3m1)
Uy = Z b(3m + 1,n)W3m+1.2n,
n=1
then
i — o] < 1 ) bBmt L) 1
"o 2q(3m + 1)22FPsmar” Wi 100/ (T)  2q(3m 4 1)22Psma

for 1 <n < AY, . ,(1+ 22Bm+1). But we do not have directly at our disposal

< v;;m-l-l,h(n’) (E)

Al (1427F8mt1) 41
| W31 11,207 (f)|w3m+1,2n/>

|’U§m+1,h(n’)(f) n=1

However, let us point out that, by Step 3 of SC IIL2, for 1 < n < A4 (1 4 22Bsm+1)
and 1 < k < 2Msm+1 we could have at our disposal, by means of

24@3m 41

Z (@3t 1,060 T) = 0 3met 10007 51 (T) T 1 () et
=1

(Vg1 h(n/)(f)/QMS”kFl)v3m+1’h(n/) distributed in the 24@sm+1 summands

(@54 1,0(n) k0 (T) —$3,3m+1,h(n/),k,z(5))U3m+1,h(n')/2P3m+1Q°’3’"+1 for 1 <1 < 24Qsmer,

with
24Q3m 41 * _
v (T)
* =) ok 7)) — 9P3m+1Q0,3m+1 3m+1,h(n’)
E ($3m+1,h(n'),k,l($) x0,3m+1,h(n/),k,l(x))_2 " " O Mam 11
=1

and where, setting vz, 11 n(n/) — W3m+1,2n/ = @ and

”§m+1,h(n')(f)/2M3m“ - 2Q3m+1w§m+1,2n'—1(§)/2 =b
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(if h(n') = 2n' — 1, while if h(n') = 2n’ we replace — by +), we have

2 1b] = W3t 1,20 (T)] Qo,3m+1

lafl < IMrm41+Qsm+1 and 2 . 2Mzm41 2. 2Msmy1”

Hence also

U;:m-‘rl,h(n’) (E)

v,
2M3m+1 3m+1,h(n’

1
Qsm
) — 52 ? +1w3m+1 2n/—1(T)W3mt1,20

H ( 2Q3m+1w3m+1 2n—1(Z) + b) (W3m41,2n + @)

1
D) 2Q?’m“w:’,mﬂ 20/ —1(Z)W3mt1,207
L Q3m+1,,,% -
<32 Wit 1,201 (F)| - llall + [0 - [wsmt1,2n || + (6] - [lal]
1 — Qo3m+1
< Yy P — |2Q3m+1w§m+1,2n’—1($)| + 7. 2Mn;m+1 [ wsm+1,2n |
n 2 Qo,3m+1
IMsm4+1+Q3m+1 2 . 2Msm41
< 2931 Qo 3m+1 | Qoamt1 Qo,3m+1 Qo,3m+1
IMszm4+1+Q3m+1 IMszm 41 22M3m+1+Q3m+1 QMszmqa
So
24Q@3m 41

Z (T3t 1,n(nr) et (T) — x3,3m+1,h(n’),k,l(f))xgvanrl,h(n’),k,l
=1

I Qosmi1
IMszm41

9 w3m+1 2n’ — 1( )w3m+1,2n’ <3

where by the above we need only b(3m + 1, n)wsy,+1 2,7 With

[W341,20 (T)] |03 41,207—1(T)]

b(3m + 1 .
bEm L)l < g G )2 P < 2qBm 4 1)2Pen

24R3m41
But again we have at our disposal only ;" Tt 1 h(n) ke, [(@)T3041,h(n7), k1 and not

24Q3m 41

Z (T3mt1,n(n) 00 (T) — x8,3m+1,h(n’),k,l(f))xg;nJrl,h(n/),k,l;
=1

so let us settle this in the next step.
STEP 6. From (v) of RBL and from Step 5 there exist k(n) € (k)iif’m"'l and L(n) with
1 < L(n) < Qosm4123@m+1 for 1 <n < AY, (1 + 22Bm+1) 5o that

L(n)

H Z T3t 1 () e (n) 1 (T)T3m 1 h(n') k(n),t — B(3M + 1, n)Wam 41,20
=1

< 1/2Q0m2P3m+1
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Hence, setting

Al g1 (142°53mt1) 1) R,
Uo,m = E : E : $3m+1 h(n’),k(n), l( )(L‘3m+1 h(n’),k(n),l = E xr(m )(L‘r(m)“
i=1
we have

lleo.m + to.mll < [luom = ug |l + 140,m — tomll + lleo.m + to.ml|
< Agm+1(1 + 2233m,+1)/2Q0m2P3m+1
(by the above in this step, and by Steps 5 and 2)
+1/(2q(8m + 1227744 4 [leg m + Thoml| <1/ (g(8m + 1)227744) 4 [0, m +- o m |
=1/(g(3m + 12257 ) +[|€f 1+ Eo sl -

This completes the proof of (i).

Proof of (ii). By (i) of CL, we know that there exists a subsequence (uj,, nk)kK 1 of
(U3, S)Ag’” and 0 < a < 1, with

— * (— !/ / = /
Hl‘f( § : zn(x)xn+um) H < Nms § :u3m nk UBm Mk +au3m MK 41 (x)USm,nK+1'
n=1

So, under the “disconnected chain condition”, by (i) of LCL, we know that

1

/ — ! .
(Ui 0 (Z)] < €3,y = Ay, 2246m) Az for 1 <n < Asp,.

Therefore from the above it also follows that

q(3m)
[7= > wi@en
n=1
3m) q(3m
=~ ( Z D)+ ) i < 7= Z D)+ )| + Il
K
/ / / /% — / Ix — /
< M + ||um|| = Tm + H Zu?;m,nk (x)u3m,nk + au3m,nx+1 (x)u3m,nx+1
k=1
K+1
K+1 1
/ /% — / /
< My + ; Uy, ()] < 1, + Ay 02aGm) Aar S M+ S2gG@m Asy

Hence, for n,, = 7/, + 1/2243™)4sm  (ij) is directly proved. Therefore suppose that
the “operating chain condition” holds. Then, by (i) and (iii) of CL and by the def-

initions of n'(3zn) and n(3m) in LCL, setting (ng)5' = (np)E, U (npn) ) with
()i C (n)! (?{m) and (ng)E_, C (n )n ni(3m)41> We find that there exist (ﬂnk/)kK:/1 C
span (s, k)k(glm) with @, = ug,, (@)U, ,,, if ()i, C (n)zz(?l’m)_l, while if

there is k with 1 < k < K’ such that ng = ng41 = n'(3m), by (iii) of CL we only have
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[, — atsy, oy (T)Usm np ., || < 1y, for some 75, — 0. Finally,

K// K,/ 1
/
Z U3, | < Ay, 224(3m) Az < 524Gm) Agn ®

therefore, setting u,, u we have ||u), — ul,|| < + 1/22aBm)Asm - At
g k 1 %3m,n; m 77

this point, since u,, € span(ugm k)n(Sm) ' and since obviously ||u, || < 2.3.5¢(3m) and

hence ||@,|| < 30q(3m) + 0, + 1/2243m™)Asm < 31¢(3m), since moreover we can sup-

pose M > q(3m) for the integer M of GBST for the (3m)th block, if (g(3m, n))ﬁ(?’m)—i_l

n=1
is the subsequence of (n)2*7 corresponding to (g(n))"X} of GBST hence in our case
n(3m) = n(3m)—1, then by the statement of GBST there exist sequences (f(n))z(jfn) 'c

(g(3m,n))n(_3m) and (a(3m, n))n(_3m)71 of numbers such that, setting

n=1 n=1
n(3m)—1
Wo,m = E a(3m, n)wSm,f(n)a
n=1
we have
~7
l[wo,m —

< 5 aorm
ml 2q(3m)22Fsm

a(3m,n) /w3, ¢, (T) < 1/(2¢(3m)22Psm)  for 1 <n < n(3m) — 1.

g1 of (2o, 3myq)G° ¥ of Fact 4 of the

fifth part of the proof of RL, where, for each n with 1 < n < Pan, (T73m,n,9)) g 3"’ ° is the

permutation induced on (3m,n g)Gsm ", then the sequence (]| Zg 1 % (3m,m,0) (@Dg?ﬁo s

(1,0)-monotone and hence (0, @3, )-monotone. So we set, for 1 <n < n(3m) — 1,

At this point, if we use the permutation (g, 3m’g))G

G(3m,f(n)) CELL) g (3 f(n) )( 7)
- . o m,J(n),g
Bum ) = D Trgam.pn).e) @ Tn@m,f(n).g) = T g o)
g=1 =
with G(3m, £(n)) < 2¥va(3m, n) < G3m, F(m) + L and @ = S0E i, 0 00,
hence

n(3m)—1

([ Wam — wo,ml| < Z

n=1

( GBm,.f(n)) .

3m,f(n ( )
Z (QM% a(gmvn)>w3m,f(n)
g=1

n(3m)—1 _
as 2(n(3m) —1)_
< 231 21\4—1||w3m,f(n)|| S T oM, @Bmy

PBmEBm 1
2Msm 2q(3m)22Fsm

| Wum — a;n” < [ Wu,m — wo,ml| + [|wo,m — a;n” <

Here we recall that G0 = 22Msm and by the above

W3 £ () (@) Qo.3m 9Msm,
2q(3m)22Psm = 2q(3m)22FPsm = 2¢(3m)22Psm’

la(3m,n)| <

therefore, for 1 < n < n(3m) — 1, we will not use all the elements of (3, n,q)Gsm °. We
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can also write
n(3m)—1 G(3m,f(n))

wo,m = ﬂju,m + @e,m = Z Z (Sm f(n), g)( )$W(3m f(n).g)»

hence
n(3m)—1 G(3m,f(n))
Tem =D, D Traming) B @r@m.fn).g) = Fx@m.f(n).0)-
n=1 g=1
We recall, by Step 6 of SC III 1 and by the notations before CL, that

M3m,0+Go0,0,0,3m __ Go,0,3m / G
(u3m+1 s)s M3 041 (1‘0 0 3m,g)g 1 U ( 3m arm,g)g:anv

G m G m, m
(€0,0.8m,9) gt = ((£0,0,3m,m.0) gt > Ik

G m, M3, « oM. .
(%0,0.3m.m.9) got ™™ = (Wm.n,0 U T3m.m.0 U (@smon k0 U (T3monk0.0)im0 " Jiet Inii-

. M G .
Moreover, settin Esn 0 = Esp.o -+ span(u! Tam 01G0.0.03m 3£ we use any permuta-
3m,0 3m,0 3m+1,5)s=Ma,m 041 ) y P

tion (7(0,3m g))f 1™ of (zo,3m g)fi’f'm of Fact 3 of the fourth part of the proof of RL, we
find that

(H Z T7(0,3m,9) (T)(@r(0,3m.9) — Tr(0,3m.9)) + E3m,0

G
G0,0,0,3m n'(3m+1) o
+ 5pan(u3m+1 S)S Go, 0,0, Sm—GSm"Fl + span(u3m+1 S)s:A3m+17Aém+1+1 G=1
(H Z 7 (0,3m,9) () (E7(0,3m.9) = Tr(0,3m.9)) + E3m.0
, Go,3m
, n’(3m+1)
+ Span(USerLS)s:Astrl—A§m+1 +1 H)

is (3,0)-monotone, hence also (0, 3@3,,)-monotone. On the other hand, if (z (3, g))g B
is the corresponding permutation induced on ($3m’g)§ ™, we also know that, for each Gg
with 1 < Go < G 3m, if (xﬂ(3m7g))§=1 is the permutation induced by (IW(073m7g))§:1 on

(xﬂ(;;m’g) )523,{1 , then

G Go
H Z w:r(Bm,g) (f)x;’@m,g) + EBm,OH < H Z x:r(O,lSm,g) (f)(xﬂ(oﬁmﬂ) - 5W(0,3m,g)) + E3m,0
g=1 g=1

Go,0,0,3m
+ span(u3m+1 S)S Go0,0,0,3m—Gam+1

’
n’(3m+1)
+ Span(u3m+1,s ) s=Azm41— AL, 1 +1

0
= H Z o0,3m.9) (@) Tr0,3m.9) + E3ma0H-

Therefore (|| Z?=1 T} 3m.g) DT 3m,g) T E3m0||) 3 is also (0, 3@s, )-monotone, hence,
by (ii) of CL, also

HZ.’E (3m.g)( 7r(3mg)+E3m0H<nl +3a3, for 1 <G < Gsp,
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for some 7/ — 0 as m — oc. Therefore let us state the following hypothesis, which we
will prove later in C IV, before the proof of (iii).

HyPOTHESIS (*). For each subsum u of ZG3’1" T3, g(T)T3m brd,g there is a subsum ug of

Gsm
2 g @541, (T)T3me1,g such that |lu — ugll < 7m — 0.

If we include 7,, in 1/”/ and g in Egmvo, it follows that
n(3m)—1 G(3m,f(n))

Z Z T @mon.g) (B (Zr(3mon,g) ~ Tn(amon,g)) + Esm,o H

+ 3asm,-

n

< Tm
On the other hand, we actually have at our disposal all the elements of Egmo that

we need; therefore by the procedure of the proof of (i) there exists ug,, as in (i) such

that
n(3m)—1 G(3m,f(n))

”we,m + UO,mH < H Z Z ‘T:’(3m,n,g) (E)‘T;—@m,n,g) + E3m,0H
n=1 g=1

+1/(q(3m + 1)22Fam+1)
<! 4 3@z, + 1/(q(3m + 1)22Psm+1),
It is now sufficient to set

_ ~ - 3 _
Uy, = Wo,m + U0,m, nm:n;—n‘i"ﬂm—Fm—Fllagm,

where 7, = 1.}, + ./, since

2 Pgma,gm 1 3G 1 3
P2aBm Asn T 9Mam | 2g(3m)22Pm O Sy B L 1) 22 et 2248m) Aan
Proof of Hypothesis () for C IV. Fix 1 < n < Py, our aim is to get aw3,, ,,(T)wsm n
for some number a with |a| < 1. We will proceed through six steps.

STEP 1 (the problem). We recall that, by Steps 5 and 6 of SC III.1,

+ 463771 .

GS”L 0 21M3 m 21M3 m
* 7 .
§ : x3mng meng E : E :z3mnkl ISmnkl w3m,n(x)w3m,n’
k=1 I=1

G3m,0

g—1 , also

moreover, since E3m 0 D (Z3m,arm,n,g)
G3m.0

H § -'I;3m n g mSm n,g — L3m,n,g — x?)m,brd,n,g) + ESm,OH

G3m,0

- H Z T3 g (T) T3 g + E3m,oH < 8max(|23,, ,,,(T)| 1 1 < g < Gamo) < 8Tzm;

but we have to point out that, setting

G3m,0 2M3m
A, = . T
n — $3m n g x?)m brd,n,g = x3m,n,k,2M3m (x)x3m,brd,n,k
k=1
QIWSNL

= > T k¥ (B) (€3 brd b + Why ),
k=1
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it follows that
2M3zm
||An + E3m,0H = H Z x§m7n7k},2M3m (f)(e?»m,brd,n,k + wém,n) + ESm,OH
k=1

2 M3zm

= max (3], g (7)] 11 < e < 220, ] S @it (E)D

where | 22 o T3, k.2Msm (T)| can be large and this happens for each n with 1 <n <

Ps,,. However in order to remedy this, it is not necessary to remove the whole A =
P, G _ . - .

> i Apn by means of subsums of Y 7" a5, 14 o (F)20,3m41,n,9, Since it is sufficient

by means of these subsums to get only

P3 2M3m
£3 /
B E b3m 7 b3m T § (w3m n O E e3m brd,n, f
n=1
2M31n

+ 3 it - T a0 () (€mbrdin e + Wi ) )

indeed, it will follow that

P, oM3m,
A+B= Z (w3m" w3mn + § : eSm brdnk( )63m brdnk)
k=1

and we are done since || A + B + E3;, 0|l < 2a3,.
STEP 2 (first approximation). There exists i(m) such that
Vi) @) > 1/ (L, 2758m ), (Vi 3 (@)] < 1/ (L5, 2°55m) o i(m) +1 < i < L5
since || El fim)+1 Uy i (T)05,,, 1 < 1/22L3m we can disregard these last elements; more-
over, in order to decrease the formalism, we can suppose also
e o (T)] > 1/(Lh,,220m) for 1 < i < i(m) — 1.
Now we fix ¢ with 1 < ¢ < i(m) and we pass to the corresponding system

* 22B3m+41 % d(0,i)+2%B3m+141
(b3m7i,j’ bSm,i,j )j:O - (b3m,d7 bSm,d)dzd(o,i)+1

where d(0,i) = (22Bsm+1 + 1)(i — 1); since we know that
|b3m z( )‘ > 1/(L/3m22Lgm)7

d(0,i)+2%Bsm+141 22B3m41
Bam+1 /% —
E : bSmd E : b3mz,_] =2 * b (.13),
d=d(0,i)+2

there exists (see also (iii) of CL) d(m,i) with d(0,4) +2 < d(m,i) < d(0,7) + 22Bsm+1 1
such that

‘b?;m ,d(m, z)( )| 2 1/(L3m22Lsm)7 |b§m,d(j)‘ < 1/(L3m22L3m)
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for d(m,i) +1 < d < d(0,4) + 22Bsm+1 4 1. Let us prove that

d(m,i)—1

* — * — — 1
H Z B30 (T)b3m,a — Uy 5 ()5, 5 + E1,3m+1,OH < 3azmy1 + Lam 2B+ Lan
d=d(0,i)+2
Indeed, from the definitions of (i) of Step 3 of SC IV.2 it follows that
d(m,i)—1 d(m,i)—d(0,7)
Z bgm,d(f)b3m,d - gnl(f) /3m,z' = Z bgm,i,j(f)me,i,j - gnz(f) ém,i
d=d(0,i)+2 =1

d(m,i)—d(0,3) / 22B3mt1 —
_ Z bt @ (e i 3m,i _ Z 3m,i,j(37) b
i—1 st SmALaws ] T 9Byt — 2Bzm+1 3m,i
Jj= Jj=
d(m,i)—d(0,i) 22B3m+1 bE (@)
_ * — 3m,i,j /
= § b3m,z‘,j(x)@3m+1,aux7i,j - < E T 9Bami1 >b3m,i

Jj=1 j=d(m,i)—d(0,i)+1

where, by the definition of @s;,,1,
d(m,i)—d(0,7)

.
H ) b3m,ij (T)€3m+1,aux,ij + E1,3m+170H
i=1

< 2max(|bs,, ; ;(T)| : 1 < j < d(m, i) —d(0,1)) < 2z 1),

22B3m 41 " . 92Bgm 41
Z Bm,i,j(x) Y. <3 Z |b3m,z,j( )|

9B3m+1 3myi|l = 9B3m+41

j=d(m,i)—d(0,i)+1 j=d(m,i)—d(0,3)+1

— 92B3m 41

< 3‘bgm,i,d(m,i)—d(o,i)-i-l(z)| n Z 1

233m+1 233m+1 L3m22L3m
J=d(m.i)—d(0,i)+2
1

< 3asm+1 + 2Bsrii Ly, 2Lom oLom

therefore we can approximate by, ;(7)b3,, ; by Zz(%zo)i)iz b3.a(T)b3m.d-

STEP 3 (second approximatloc) Our next alm is to approximate sufficiently these
d,

b3,,.a(T)b3im,a by subsums of ) pemAno T3 0.3ma1 g( T)Zd,0,3m+1,9, for each d with d(0, 7)

+1<d<d(m,i) — 1. For these d we recall, by the end of Step 3 of SC IV.2, that

G(d,0,3m+1)

(de 0 3m+1,q)q 1 (Ud 0,3m+1, n/ZPd 3m+1Qo,d, 3m+1)Pd 3m41

1

where (v4,0,3m+1 n):d 3™+ comes by means of the procedure of MGBS from

Pa,3m
(Ud 0,3m+1 n)nd :i i

Pa.3m41

comes from
n:Pd,3m+1—230’3””+1

where (uq,0,3m+1,n)

22B0,3m+41 U (b bE .
(ed 3m+1,aux,Ad,3m+1,t) ed ,3m+1,aux,Ag gm1,t )t 1 ( 3m,d» Sm,d)’

in order to decrease the formalism we will suppose also

D3 (@) = 1/(Lgm22em)  forall 1 < d < d(m,i)— 1
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(since it would be unnecessary to get b3, ;(Z)bam.a if [05,, 4(T)| < 1/(L3n22"*m)). Hence
there exists n(d) with Py 3,41 — 2803m+1 < n(d) < Py3m41, so that (we have only to
replace L3, by 22Bosm+1)
1 1
. _
|ud,0,3m+1,n(d) (J?)‘ > 223013"”_‘_122'2230,3m+1 > 2P 3m 41

s (@) < :
d,0,3m+1,n 2230,3m+122,2230,37n+1

for n(d) +1 < n < Py 3m+1; therefore, by the same proof above for the approximation of

/%
3m,i

(T)bs,,.;, We can get
n(d)—1
* — % _
H E ud,0,3m+1,n(x)ud70;3m+17n - b3m,d($)b3m,d + Ed,3m+1,OH
n=Py 3m41—270:3m+1 41
_ 2B0,3m+1
< 3a3m+1 + 1/(2230,3m+1 230,3m+1+2 )

STEP 4 (third approximation). At this point, since 1/(L3;,2253m) > 1/22Fasm+1 ] from
the procedures of MGBS and GBST (where now 7 + 1 of (7) of GBST is replaced by
n(d)) it follows that we can approximate b3, , ;(Z)bsy,a by a subsum of

Ga,0,3m+1
. o~
Z JUd,o,3m+1,g(3’3)3711,0,3m+1,g-
g=1
Therefore, for 1 <4 <i(m) and d(0,7) + 1 < d < d(m, i) — 1, there exists a subsequence

(s(d, g)) d 08mH1) o (g)fzd’f’g’"“ such that, setting

G(d,0,3m+1)

Ug,d,3m+1 = E fﬂd ,0,3m+1,s(d, g)( )ffd 0,3m+1,s(d,g)
g=1

we have

l|%0,d,3m+1 = D34m.a(T)b3m.dall < 2/22Pd,3m+1‘

STEP 5 (panorama of the first three approximations). Hence by the above, setting
D(m) = d(m,i(m)), it follows that (we also use the last but one property of Step 2
of SC IV.2)

—1 G(d,0,3m+1)

H Z ( Z Z T30, 3m+1,5(d,g) (T)Td,0,3m+1,5(d.g) — V3m,i (T) '3,7”)

i=1  d=d(0,i)+2

1
+ Ep(m),3m+1 OH < 3azm41 + 51— 5Lom
since (we point out that Bgs,,+1—hence Py 3,,4+1—is much larger than By 3,,,41)
B3mi1+Lsm 2Pg 3m Bo.3m 9250,3m+41
i=1 Lo 25smarts d=d(0,i)+2 22hesmat  9Bosmit
b, T2 | L 2P0 ]

< L3m233m+1+Lam 22Pq,3m+1 2Bowgm,+1+22B0'3""+1 < 9Lsm *
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STEP 6 (fourth approximation). On the other hand by the above it also follows that, for
i =i(m), since D(m) = d(m,i(m)), [b3,, p(m) (@) = 1/(Lam 22Lsm) hence also

2By 3m
|U*D(m),0,3m+1,n(D(m)) (§)| > 1/<L3m22.2 0,3 +1) > 1/22PD(m),31n+1‘

Therefore for (xD(m)7073m+1,g)§=Df"”’°’3m“ we are in the situation of (i) of FRCL (it is
possible by the definitions of By 3,41 and Bggsm+1 for 1 < d < Lg,,); moreover by the
above there exists

G(d,0,3m+1 m,i)—1 m
((Ue,O,D(m),d,Sm—i—l,s(d,g))gz(l ))d( d(O) 1)+2) ’ C ED( ),3m+1,0

such that
i(m) d(m,i)—1 G(d,0,3m~+1)
‘ Z Z Z ( L4,0,3m+1, s(d,g)( )xd 0,3m+1,s(d,g) + U ,0,D(m),d,3m+1,s(d, g)) H

i=1 d=d(0,i)+2
i(m) d(m,i)—1 G(d,0,3m+1)

= H Z Z Z d03m+1 ,s(d, g)( )9Cd03m+1 s(d,g) + ED(m) 3m+1 0}
i=1 d=d(0,i)+2

therefore by (i) of FRCL and by the above it follows that
i(m)  d(m,i)—1 G(d,0,3m+1)

H Z ( Z Z (x§,0,3m+1,s(d,g) (T)Za,0,3m+1,5(d,9) T Uu,0,D(m),d,3m+1,5(d,g))
i=1  d=d(0,i)+2

1 n 1
2L37n 22PD(nL),3'rn+1 ’

bg’)*m ’L( )bgm,z) + ED(m),3m+1,OH < 353m+1 +

Uy,0,D(m),d,3m41,s(d,g)
G(D(m),0,3m+1,g)
= Z xD(m) 0,3m~+1,s (d,g’ )( )T D (m),0,3m+1,8 (d,g")
g'=G(D(m),0,3m+1,9—1)+1
for 1 < g <G(d,0,3m +1), d(0,4) +2 < d < d(m,i) — 1 and 1 < i < i(m), where

G(D(m),0,3m+1,g) G(d,0,3m+1)\d(m,i)—1 \i(m)
((((xD(m) 0,3m+1,s'(d,g ))g/—g(D(m) 0 3mg+1,g 1)+1)g 1 )d d(o,i)+2)z‘:1

is a suitable subsequence of (2 p(m),0,3m+1,. )GDl(m) 0:3mH1 this completes the proof of (x)

for CIV.
This completes the proof of (ii).

Proof of (iii). It is sufficient to follow the procedure of (i) and (ii). This completes the
proof of Lemma, 19. m

5. Properties of the whole construction

In the proof of Step 2 of the next lemma there is an explanation of the reason of the
construction of the sequence (v3,, 3 n)QJ"LH in Step 2 of SC III.3; the same reason holds
also for (v3,, 41, n)Q3m+1 in Step 6 of SC I1L.1 and for (v3,, o, n)Q3er2 in Step 4 of SC III.2.

LEMMA 20 (Second Completeness-Regularization Lemma, SCRL). Concerning the third
sub-block, we have the following properties:
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(A) There is always a permutation (mw(3m + 2 g))G”)‘”“r2 of ((3m +2 g))G”)'”“r2 and a

sequence (U3m+3g)§3T+2 of the kind of (us)q( m) of (ili) of FCRL with m replaced by
m + 1, such that

G3m42
(HZ w(3m+2.9) (D) Tr(3m+2.9) T Usme+3.9) H)

5 (2,1, T3 42/2903m+2) -monotone, and

G
H Z($;(3m+2,g) (T)T 7 (3m+2,9) + Usm+3,9) ‘ < N3m+2
g=1
for 1 < G < Gamso where N3mi2 — 0 as m — oo.
In particular this fact continues to hold also if, setting
G(3m+3,9)
Usm+3,9 = Z (Tr3m+3,9) @) Tr3mt3,9) T Usmta,g)
g'=G(3m+3,9—1)+1
G(3m+4,g")
U3m+t4,g' = Z x;(3m+4,g”)(f)x7(3m+4,9”)

g""=G(3m+4,9’—1)+1

for 1< g < Gzmiz and GBm+3,9—1)+1 < ¢ < G(B3m+3,g), we consider the whole
sequence

% . CN;37ﬂ+2
G-1 G(3m+3,9)
= ( ($;(3m+2,g) (T)Tr(3m42,9) T+ Z $;(3m+3,g/)(f)xw(3m+3,g’)
g=1 9'=G(3m+3,9—1)+1
G(3m+4,g")
Y Tmren @ eniagn) )
¢’ =G(3m+4,g’'—1)+1
G'-1
+ Z ($;(3m+3,g/)(f)mw(3m+3,g’)
¢'=G(3m+3,G—1)+1
G(3m+4,g")
+ Z 7r(3m+4 g”)( )Tr(3mta, g”))

g""=G(3m+4,9’'—1)+1

ledd

D

g""=G(Bm+4,G'—1)+1

xjr(3m+4,g”) (f)xr(3m+4,g”)))

G =G(3m+4,G'—1 G=1

Gami2 = Gamia + G(3m + 3, Gamao) + GBm +4,G(3m + 3,Gami2));

G(3m+4,G/) )G(?)W-Q—?),G) ) G3m+2
)+1/ G'=G(3m+3,G—1)+1
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3m+2 -

that is, again (|| 25:1 T (o) (x)xw(g)H) is (0, M3m-2)-monotone and

e
H Z x;r(g) (T)3(4) H < M3m42
g=1

for1 < G < é3m+2 where N3m42 — 0 as m — 0.
(B) For each (Usmto, S)S(glnﬂ) C span(uf, 1.4 )y (ferQ) with

Uamt2,s (3m +2)
for1 < s < q(3m + 2) and for each sequence (as)g(j{wrz) of numbers with |as| < 1 for

1 < s <q(3m+2), there exists (TUgm2, g)g(?’{n+2) with, for 1 <s,5 < q(3m + 2) and for
some Nzm+2 — 0,

s
— ~ 1% —\,,/
H E (Uu,3m+2,5 — Usm+2,s) + ASU3 12 n/(3m+2) (x)u3m+2,n’(3m+2) H < M3m+25
s=1
G(3m+2,s)
_ ‘ _ _
Usm+2,s = § : (27 3m+2,9) (B)Tr(3m+2,9) T Usm+3,3m+4,9)
g=G(Bm+2,s—1)+1
= ﬁu,3m-‘,—2,s + ﬂe,3m+2,37
G(3m+2,s)
_ o * —\77
Uy, 3m+2,5 = E xﬂ(3m+2,g)(z)zﬂ(3m+279)’
g=G(Bm+2,s—1)+1
G(3m+3,3m+4,9)
U3m+3,3m+4,g = E (3m+3 3m4, n)( )xw(3m+3 3m+4,n)>

n=G(3m+3,3m+4,g—1)+1

4 2 .
where (T (3m+3,3m+4 n))f(31m+3 SmtdaBmE2) 4o g permutation of a subsequence of

(2,)28m49) | such that, for the elements T (sm 13 8m+4m) — Fr(3m38m1am), the per-

n/n=q(3m-+3)+
mutations induced on (xn)n(jzgﬁ)JFB)Jrl and on (In)i(jz;:z)ﬂm are of the same kind

of the permutations of (B) and (A) of RL respectively, and such that, for 1 < G <
G(3m+2 q(3m +2) and 1 <G <GBm+3,3m+4,G(3m+2,9(3m + 2))),

H Z ( (3m+2, g) )(xw(3m+2,g) - Eﬂ(3m+2,g)) + H3777,+3,37n+4,g) H < N3m+2,

G/
H Z x;kr(3m+3,3m+4,n) (f)mw(3m+3,3m+4,n) < M3m+2-
g=1
(C) For each sequence (ﬂgm+17s)g(3{n+l) C span(us,, 1, o) (fm+1) L with l@gm+1,s]] <
2.10.7¢(3m+1) for 1 < s < q(3m+1), and for each sequence (as)q(?’mﬂ) of numbers with

as| <1 forl < s < q(3m+1), there exists (Usm+1,s Q(3m+1) with, for1 < s,5 < q¢(3m+1
+
and for some n3m41 — 0,
S

— ~ /% — !
H E (Uu3m+1,s — Usm+1,5) + asu3m+l,n’(3m+1)(x)u3m+1,n’(3m+l)H < M3m+1,
s=1
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G(3m+1,s)

_ . _ _
Um+1,s = E (xﬂ(3m+1,g) (33)337r(3m+1,g) + u3m+2,3m+3,3m+4,g)
g=G(Bm+1,s—1)+1

= Eu,3m+1,s + ﬂe,Serl,sa
G(3m+1,s)

Uy, 3m41,s = E (3m+1,g)( )mﬂ(3m+1,g)
g=G(Bm+1,s—1)+1
U3m—+2,3m+3,3m-+4,g
G(3m+2,3m+3,3m+4,g)

- E : ﬂ(3m+2 3m+3,3m—+4, n)( )9C7r(3m+2 3m+3,3m+4,n)»
n=G(3m+2,3m+3,3m+4,9g—1)+1

G(3m+2,3m+3,3m+4,G(3m+1,q(3m+1))) . .
where (xﬂ(3m+2 3m+3,3m+4, n))n 1 is a permutation of a

q(3m+5)

neq(3m-+2)+1 such that, for what concerns the elements

subsequence of (x,,)

Tr(3m+42,3m+3,3m+4,n) — Tx(3m+2,3m+3,3m+4,n)>

q(3m+4)

a(3m+3) and on (Tn), =) 3,1 3)41 and on

n=q(3m+2)+1
(xn)if;?;;L4)+l are of the same kind of the permutations of (C), (B) and (A) of RL
respectively, and such that, for 1 <G < GBm+1,¢(3m+1)) and 1 < G < G(3m + 2,

3m +3,3m+4,G(3m + 1,¢(3m + 1))),

the permutations induced on (x,,)

H Z ( (3m+1 g) )( 7r(3m+1,g) - ETr(?)m-‘,-l,g)) + ﬂ3m+2,3m+3,3m+4,g) H < M3m+1,

led

* _
HE xﬂ(3m+2,3m+3,3m+4,n)(z)zﬂ(3m+2,3m+3,3m+4,n)
g=1

< M3m+1-

Proof. FIRST PART. Proof of (A). Suppose that the operating chain condition holds for

Zi(3;72;7i+3)+1 *(ZT)xy,. We will proceed through 3 steps.

STEP 1. Let (w(3m + 2 g))G”"T’“r2 be the permutation of ((3m + 2 g))G”"T’“r2 of Fact 4 of
the sixth part of the proof of RL and consider

G377L+2
* — "
Z xw(3m+2,g) (‘T) ($W(3m+2,g) - xw(3m+2,g))
g=1
G3m+2
_ * =\ (] "
- Z x‘n’(3m+2,g) (x)(zﬂ(3m+2,g) + zﬂ(3m+2,g))'
g=1

If Esmio0 C span(Usm-sk)pe (3m+3) ! (that is, by Step 2 of SC IIL3, if Msyi2,0 <
n/(3m + 3) — 1) we have, by (111) of FCRL with m replaced by m + 1, the existence of
(Te,3m-+3, 9)53’f+2 and (T, 3m+4’g)§(61 BmA4,G(e,3m+8,Gam+2)) ity (we set G(e,3m+3,0) =
0= G(e,3m +4,0))
G(e,3m+3,9)
Ue,3m+3,9 = Z (‘Trr(3m+3,g’) (f)xﬂ(3m+3,g’) + ae,3m—i—4,g’)a
9'=G(e,3m+3,9—1)+1
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G(e,3m+4,9")

p— _ * —
Ue, 3m+4,9' = xﬂ'(3m+4,g”)(‘r)xﬂ'(3m+4,g”)
g""=G(e,3m+4,9’ —1)+1

for 1 < g < Gapmi2 and G(e,3m + 3,9 — 1) +1 < ¢’ < G(e,3m + 3,g), such that, for
1 <G < Gamya,

< H Zx:(3m+2,g)(f)(x;(3m+2,g) + T (3mt2,9) T E3m+2,0H + M3m+2
g=1

H Z('T;:'(3m+2,g) (@) (@ (3mt2,9) T Trnamt2.g) T Ue3m+3,g)
=1

for some 73,,.2 — 0. Therefore, by the procedure of (iii) of FCRL with m replaced by
m + 1, we deduce that

G3m+2
(H Z 3m+2,g) )( Lr(3m+2,9) + zﬂ(3m+2 g)) + Ue,3m+3,9 H)

s (1,63m+2/2Q013m+2 )-monotone, hence (0, @3,,12(1 + 1/290:3m+2))-monotone, with

H Z($;(3m+2,g) (@) (T 3mt2,9) T Tn(ama2,9) T Ue,3m+3,9) ‘ < N3m+2
g=1
for 1 < G < Gapy2 for some 13,42 — 0.
While, if n/(3m + 3) < Msy42,0, by Step 1 of SC IIL.3 and by the equivalent, for
SC II1.3, of the fact at the end of Step 1 of SC III.1, there exists S with 1 < 5 < S3,,42
such that, for some 7,, — 0,

1% A3m+3
’ H E €3m12,9(T 63m+2 gt span (U, 3 ¢) e

— max(le o, @) 1< 9 < 5= 1) <

Sam+2 N
’ Z eg;:+2 g( )€3m+2 g + Span(u3m+3 s) 3m+3
g:§+1
Sam+2 Asm+3
= Y I @l | <t D @),
g=5+1 s=n'(3m+3)+1
in particular |e;)”*Jr2 §(_)| < @3m+2 and, also by the same proof of (ii) of CL and by
(42.3) of C 1II, 2832121 lesm+a.4(T)| < np, for some n;, — 0; therefore we have the

same conclusion as above for Ms,, 120 < n'(3m + 3) — 1. Moreover the construction of
(e, 3m+3,g)§3’f+2 and (T, 3m+4,g)gG(e1 3m+3,Gsm+2) a5 to be such that the whole sequences

« _ G(e,3m+3,G3m
(mﬂ(3m+3,g’)(‘r)($7\'(3m+3 9') — m7r(3m+3 g ))q (1 e and

* — G(e,3m+4,G(e,3m~+3,G3m+2))
(xTr(3m+4,g”) @) (Tr@mta,97) — Tr(3m+a,g7) )g=1
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have the properties of the permutations of (B) and (A) of RL respectively; analogously,
for each g and ¢’ with 1 < g < G342 and G(e,3m+3,9—1)+1 < ¢’ < G(e,3m+3,9),
the permutations of each

G(e,3m+3,9)
(Tr@mt,en (T )xw(3m+3’g)) '—G(esmisg—1)+1 and

( * ( ) )G(e 3m—+4,9")
L (3m44,g")\T)Tr(3m—+4,9")) g1 =G(e,3m+4,g' —1)+1

have the same constructions and properties of the corresponding permutations of the last
parts of (B) and (A) of RL respectively; that is (recall for (A) of RL, from the end of the
proof of Fact 2 in the third part of the proof of RL,

TG p A3m+1 M +2Qs,
W _ W T — 2 3m—+1 3m—+1
3m+1,p T3m+1 3m—+1 4 P3m+12Q0 3mt1’ 3m—+1
and analogously for (B) of RL) practically
G G(e,3m+3,9)
Z 7r(3m+3 g’ )( )$W(3m+3 g ))G:G(e,3m+3,g—1)+1

9'=G(e,3m+3,9—1)+1
is a progressive enlargement of a 1/2M3m+3_miniature of the whole
G(e,3m+3,9)

N o~
$W(3m+3,g/)(z)xw(3m+3,g')
g9'=G(e,3m+3,9—1)+1

and analogously
G

Z 7r(3m+4 q”)( )xw(3m+4,g ))

g""=G(e,3m+4,9’'—1)+1

G(e,3m+4,9")

G=G(e,3m+4,9’—1)+1

is a progressive enlargement of a 1/2Msm+4+2Qsm+1_miniature of the whole
G(e,3m+4,9")
X o~
:C‘n'(3m+4,g”)(I)xﬂ'(3m+47g")'
g9''=G(e,3m+4,9'—1)+1

STEP 2. Let us now turn to E?ET“ Ty (3mi2.g) (@)T Z’(3m+27g).

SC II1.3 and by the beginning of SC III.1, that
AY

We recall, by Step 2 of

pl

Aszm Mszm
(Uan13,6) 621" = (s, 217 = (3mt2,0m)n2l " U (Ugss ) 2177
Pi;;n+3 Q3m+4

where (U3, 13 )27 " U (Vsyan)net  comes from the procedure of C II and of Lemma

Q377L+3

)QB'"+3 = (V33 n)nat  was already defined in Step 6 of

12 and in particular (u3,, 3
SC III.2.
Therefore suppose that Ms,, 120 + Q%,,,3 < n'(3m + 3) — 1. By (42.4) of C II with

)Q3m+ we see that

m + 2 replaced by 3m + 4, in particular in the definition of (v5,, +3.n
(Yn, yn)Q( ™) is replaced by B} (3m+1) of Step 4 of SC III.2, hence for (yn)Q( ™) replaced

n=1

3m+1 2 A%,
by () u« T U U (Tn — Tird n)n( Zé;rm)ﬂ)ﬂ U (U3 19,5)smt ', there exists

G QY 3 3)—1
(uu 3m+3,g)g 371n+2 C bpan(v&m-i-?) n)n3T+3 - bpan(u?ﬂn-‘r3 s)e (1WLJr -
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such that, for each G with 1 < G < Ggyp49,

" ~
H E : 7 (3m+2,9) ()T (3m42.9) +“u,3m+3,g)H

G q(3m+2) A ga
< dist (Zx;(3m+2 0 @) T(3m42,9) X N m Tp1 N ﬂ ul(ngrZS)l)
g=1 n=1 s=1

+1/22(Q(3m+1)+Agm+2)+2

(this relation is possible because, by the beginning of Step 1 of SC III.3,

"

Gami2 3m42
Spa‘n( 7r(3m+2,g))q 1 Span(u3m+2 s)s 1 >
Azm+2 G3m+2
(u3m+2 s)s A3m+2+1 C Span(m3m+2,g7x3m+2,g)q 1
q(3m+2) Ao
Sam+2
C Span(63m+2 n)n 1 cXn m nJ_ N ﬂ 3m+2 s)
n=1
Qg’m+3

N m 3m+3 s

G3m .
#m+2 is the permutation of

where we recall that, since (x”(3m+2’g))g T

G m
( 7r(3m+2 q) +J3 (3m+2,g)) o

of the sixth part of the proof of RL,

G
« . G3m+2
(*) (me(3m+2,g) (x)xz,(3m+2,g))G:1
g=1

is a progressive enlargement of a 1/2M3m+2/2_miniature of the whole

G3m+2 AYio
z* (j)x/// _ u (E)u’
w(3m+2,g) 7(3m+2,9) — 3m+2,s 3m+2,s"
g=1 s=1

G3m42

g—1 ~ and

Therefore, by the procedure of Step 1, we have the existence of (Ty 3m+3,4)

G(u 3m+3 G31 +2) .
(W, 3m+4,g)q 1 " with

G(ue,3m+3,9)
Uy 3m+3,9 = > (7 (3m13.9) (D) Tr(3m+3,9") + Uudmrag ),
9'=G(u,3m+3,9—1)+1
G(u,3m+4,9")
Uy, 3m+4,9' = T (3metd,g) (T)Tr(3m+a,97)
g"=G(u,3m+4,9’—1)+1
for 1 < g < Gamyz and G(u,3m +3,9—1)+1 < ¢ < G(u,3m + 3,g) (where now
G(u,3m + 3,0) = G(e,3m + 3, G3pmy2) and G(u,3m + 4,0) = G(e,3m + 4, G(e,3m + 3,
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G3m+2))), such that, for 1 < G < Gspyyo,

G
* —N\ I —
|3 (2tomsn @tismz + T |

g=1
* — 1 ~
< H D T amerg) @D smz,g) T Tusmisg H +Tlsmt2
=1

for some 7342 — 0. On the other hand, by (o) above and by the proof of (ii) of CL, we

have
G3m42

* — " ~ /
H E : (xﬂ'(3m+2,g) (x)xw(3m+2,g) + uu,3m+3,g)H < M3mt2
g=1

for some 13,5 — 0. Therefore, by the procedure of the proof of (iii) of FCRL with m
replaced by m + 1, again

G G
% 3m+2
(HD%@M@( )T (3m-+2,9) + Tusmt2,9 H)
g=1

s (0, @3ym12/2%03m+2)-monotone, with

Q

H Z(x:r(Sm-Q—Zg)(E)x;{/(3m+2,g) + Wu,3m+2,9) ‘ < N3m+2
g=1

for 1 < G < Ggpy2 for some 135,42 — 0.
Suppose now that

Mspi00+1<n'(3m+3) < Mspyo0 + Q%ps-

Then, since

M3mt2,0+Q%, 13

> U3, ()] < 1722039 Asmes,
s=n'(3m+3)+1

n'(3m+3)—1—Mszum 42,0

for the effect of span(v3,, 3 ,)p—1 , where
n'(3m+3)—1—Msmi20 _ '(3m+3)—
(”3m+3 n)n 1 (U3m+3 s)s Mam o, 0+17

we can proceed as above, but now we have to consider also the effect of

“3m+3 n’(3m+3)( )“3m+3 n’(3m+3)"
Therefore by a variation of (o) we have also

G3m+2
inf (diSt ( Z m;(3m+2,g)( 7)), (3m+2 o T a“3m+3 n’(3m+3)( )“3m+3 n’(3m+3)"
g=1

3m+3)—1
span(u3m+3 o). (Mn;er)g 0-4-1) :0<al < 1)
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G3m+2 q(3m+2) Al s
< dist ( Z x;(3m+27g)(f)x;;’(3m+2,g)7X N ﬂ zy N ﬂ Ul(gm+2,s)1_>
g=1 n=1 s=1
1 1

+

22(q(3m+2)+A3m+2)+2 + 22q(3m+3)Azm+s

Indeed, by the definition of (2%, 3 9)53’1"+3 in Step 6 of SC III.1 and by the fifth part of

the proof of RL (where we replace (T (3m+3, g)) 2T by (w Z/(3m+3’g))§i'f+3),
G
. . G3m+3
() ( Z Tr(3m+3,9) (x)xgl(sm%,g)) et
g=1

is a progressive enlargement of a 1/2M3m+2_miniature of the whole

G3m+3 Azm+3
%
E : xﬂ(3m+3,g)( ) 3m+3,g) E u3m+33 u3m+3 s
g=1

Gam
that is, uy, 5 (343 can actually act on 3 7 ar . o ()2, 0, only by

means of a portion of ug . 4 n,(3m+3)( )u3m+3n /(3m+3)- Lherefore again there exist

G3m+2 n’(3m+3)—1 — \G3mio .
(Uu3m+3,9) gt C SPAN(Uspy 3 ) gmnry, 15 01 0d @ sequence (dg) 27 of numbers with

|ag| <1 for 1 < g < G3ppqo such that, for 1 < G < Gagmya,

n ~ — /% — !
H E , 2 (3m+2,0) (BT (3ma2,9) T Uudm+3,9) + TG US43 0 (3m+3) (x)u3m+3,n/(3m+3)H

G q(3m+2) At
< dist (Z Tr3m+2,0) ()T (3m42,9)0 X N m nt N ﬂ Umt2.s) )
g=1 n=1

+ 1/22(q(3m+2)+A§m+2)+2 + 1/22(] 3m+3)A3m+3
(since by the above Z?j’;fém%)ﬂ U134 (T)| < 1/224BmF3) Asmea),
At this point, we can use the property (iii) of CL and hence, by the elements of

span(ugm+3, n)n(Bin +3)-1 , we can really approximate

Gs, e
(Wu,3m+3,9) gt U (G300 (3m+3) B Uiy 3.0 (3m43) ) gt

(precisely, for each g with 1 < g < G342, we have to approximate the element

U, 3m+3,g + (Gg — Tg— 1)U3m+3 n’(3m+3)( )“3m+3n(3m+3)

and on the other hand (x) holds, hence actually each number of (ag)fg”f“’ concerns a

progressive enlargement of a 1/ 2M3m+2/ 2_miniature of the whole

G3m42

* — "
E : xw(3m+2,g)($)xﬂ(3m+2,g)’
g=1
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that is, these numbers have the same sign and (|Eg|)?:3’1"+2 is not decreasing with
Gam+2 Gam+2
’ Z (ag 759—1)’ = Z ‘ag 769—1| = ‘EGSm,+2| < 1)7
g=1 g=1

therefore the same procedure for Mz, 120 + Q5,3 < n/(3m + 3) — 1 works, with the
same conclusions.

STEP 3. In order to have the assertion, it is now sufficient to set Usy, 13,9 = Ue,3m+3,9 +
Uy, 3m+3,9 for 1 < g < G3m+2- L

SECOND PART. Suppose now that, for the block ZZSZE;?JR%) 41 25, (T)Zn, the disconnected
chain condition holds; hence 3227+ W 13.4(T)] < 1/224BmF3)Asmis By SC 1111 with
m replaced by m 4 1 and in particular by

~ S+ M
(00) max([lyll, el /2), v € span(ysma) 27", € € span(@ymn)

of Step 1 and by Steps 5 and 6; by the definition of (u3,, 3 ,, ug;n%s)f;?” in Step 2 of
SC II1.3; by Steps 3 and 4 of SC II1.2 and by (42.2) and (42.3) of C II, we know that

q(3m+3)
. _ 3m+4

dist Z ) (T)xy, span(x, — :UZ')Z(:Z(LBM)JFS)H + span(zn)nzq(3m+4)+1)
n=1

q(3m+3) 1

> H Z @ (T)an|| — 92q(3m+3)+2’
n=1
hence

q(3m+3)

. * [— 3 4
dist (> @n(@en, S+ span((@a — ap) 00N L Uspan(@a)nsgamia ) )
n=q(3m+2)+1
q(3m+3)
> H S ak(@en

n=1

_ (1/22q(3m+3)+2 + 1/22q(3m+3)A37n+3),

where
q(3m+4)

S = partial sums of Z T3 () (@) ()
n=q(3m+3)+1
(always by (x) above in Step 2 of the first part of the proof). Therefore it also follows,
by (0o0) above and by the proof of (ii) of CL, that

q(3m+3) q(3m+3)
H S x;(z)(xn—x;;’)‘+H S a@al|[ -0 asm— oo,
n=q(3m+2)+1 n=q(3m-+2)+1
On the other hand, by the sixth part of the proof of RL, since by (x) above in Step 2 of

G * = Gam
the first part of the proof, (3_,"; 27 3., 10 o) (@)} (3,12, 4)) i~ and

G3m+2

G
( Z x;(3m+2,g) (T)wZ(3m+2,g)) G=1
g=1
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are progressive enlargements of the 1/ 2Msm+2/2_miniatures of the whole

Gam+2

E x3m+2 g x3m+2,g

and ZGS"‘“ T340, (T)T5,, o 4 Tespectively. Since by Step 1 of SC II1.3,

q(3m+3) q(3m+3) q(3m+3)
n@@ )= X @l >, =@

n=q(3m+2)+1 n=q(3m+2)+1 n=q(3m+2)+1

since finally by the sixth part of the proof of RL and by Step 1 of SC III.3,

)

q(3m+3) M3 4o
ay, (T)a, || = Hx3m+2 ,0(T)T3m+2,n,0 + Z T3t 2,n,0 (D)5 42,0.k H
n=q(3m+2)+1 k=1
oMz 12 oM3m+t2
= Z |$§m+2,n,0(f) + m§m+2,n,k(T)| = Z ‘e§m+2,n,k(f)|
k=1 k=1

and hence also (|| 2521 T 3m+2,9) (BT (3m2 g)H)G:’"’+2 is (1,0)-monotone, we conclude
that the assertion directly follows by setting Uz, 42,y = 0 for 1 < g < Gapmqa.

Proof of (B) and (C). The procedures and ideas of the proof of (A) work for (B), where

now we point out that the construction of the sequence (ﬂ3m+3,3m+4’g)§(31m+2 q<3m+2))

of the same kind of the construction of the sequence (H3m+37g)§:3r1”+2 in the proof of (A);
analogously for (C) the construction of the sequence

G(3m+2,3m+2,q(3m+2))
(u3m+2 3m+3, 3m+4,g)q 1

is of the same kind of the construction of the sequence (Us;+2, s)fi’l”” in the proof of

(B). Moreover we point out that, in contrast to the proof of (i) of FCRL, we now have
to use MGBS. This completes the proof of Lemma 20. m

THEOREM 21. For every separable Banach space X where 1y is finitely represented,
there exists a biorthogonal system (x,,x})5%, = ((xn,x;’;)i(j:gi)Hl)fn":l (¢(0) = 0)
with ||z,|| < 10 and ||z}|| < 7 for each n, such that, for each T € X with ||T| =

there exist sequences (q(m))_, of increasing positive integers (with g(0) = 0) and
(Mm)22_, mon-increasing with 7,, — 0, and for each m a partition (mn)i(jz;ni)) =

(xn’)i/ii%;i))Jrl U (zn’/)il/:(syé;i))ﬂ and a permutation (x*("))gg)(mfl)ﬂ of
L IR 0 i SRR T (30 L OO
such that
q(m) q
Hx - Z L) @) Tz(n) || < Mo H Z Tx(n) @) Tz(n) || < M
n=g(m—1)+1

forgim—1)+1<q<g(m); hencex =3, a:ﬂ(n)( )7 (n) -
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Indeed, for g(m — 1) +1 < g < g(m),
q q
|7 = 3= w @ase|| < 7= 32w @rm
n=1 n=1

q
X @

n=g(m—1)+1

<77m 1+77m

We point out that, in the regularization procedure, only a little portion of the elements
of each sub-block can be consumed in the regularization of the previous sub-blocks, by
the first relation of (9) of GBST.

Proof. We will proceed by induction, that is, we suppose to have constructed (scﬁ(n))z(:"?

and we are going to comnstruct (x;(n))z(:n%gl)) 41 Inoreover in this construction we can
also suppose to be in the particular case of g(m) = ¢(3m), that is, (xn”)i:(m;i))ﬂ =

(xn)fl(j;?;i)) 41 since the procedure of the construction in the general case is the same.

We will proceed through four steps.

FIRST STEP. Let us consider the first sub-block qum;}g) 41

Step 6 of SC III.1 and LCL)
n'(3m+1) < Go.0,03m — Gam = Mzm.0 + Go,0.3m-

Then, by the definition of (u3,,, ;. S):‘J’Z;’:ft]\f{" »0 and by Step 3 of SC III.1 and in

particular by the relation ||z + e|| > ||e||/2 for each € X' + Us;p arm and
M/

J. m,
e c Span((el’zm arm,n j)] 3? arm)P?’m U (€3m arm,0 n)n 3T o 0)7

x} (T)xy. Suppose that (see

we see that, for each positive integer p,

q(3m+p) q(3m+1) 1
| X w@a>| X e@rmn|| - smmmnm
n=1 n=q(3m)+1
with
q(3m+1) q(3m+1) 1 q(3m+1)
| Y w@ema| = Y m@>g| X @
n=q(3m)+1 n=q(3m)+1 n=qg(3m)+1

Hence the first sub-block is automatically regularized with, by the proof of (ii) of CL,
> a(3m)+1 L *(@)xn| < 9m — 0 for ¢(3m) +1 < ¢ < ¢(3m + 1) and for each permuta-
tion (7(3m, g))GEm of ((3m, g))G?’"‘

Suppose now that Go0,0.3m < n'(3m +1). We turn to Z(Szgnlz)ﬁl *(Z) (T — )
and we recall that
q(3m+1)
g— G m
| X @ — )+ span(ul, )2

n=q(3m)+1

q(3m+1)

G rn_G m
= H Z I;(l‘)(l‘ +l' +1'brd n)+span(u3m+1 s)eoloo3 °
n=q(3m)+1
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(where Go,0,0,3m — Gsm = Msm.,0 + Go,0,3m)- Moreover, by the notations before CL, we
also have

q(3m+1)
| X @+ 2+ vvan) + span(u g )iy O

n=q(3m)+1

’
/ n’(3m+1)
+ span(U3m+1,s)s:A3m+l7Agm+l+1 H

q(3m+1)
= Z 2, (T)(x5, + 25 + Tord,p,n) + Span(“ém-ﬁ-l,s)i\/fim’o—kco’o’gm

n=q(3m)+1

(if Aspy1 — A5, +1 < 0/(3m 4+ 1) < Aspy; otherwise, if n/(3m + 1) < Asgpqq —
Af, 11, we directly have (Z‘brd,p,n)zf;?;:i;ﬂ = (xbrd’n)z(:?’;gngﬂ). Therefore there exists

~ G m .
(Uzm+1,9) 521 with, for 1 < g < Gy,

~ ~ / M3:m,0+Go,0,3m
U3m+1,9g = Ue,3m+1,g (6 Span(u3m+1,s)s:1 )

~ / G0,0,0,3m
+ Uarm 3m+1,9 (€ Span(u3m+1,s)s:M3m,0+G0,0,3m+1)
n'(3m+1)

~ !/
+ Ubrd,3m+1,9 (€ Span(“3m+1,s)s:,43m+l7Agm+1+1)a

such that, for ¢(3m) + 1 < G < ¢(3m + 1) and for some 7, — 0,

q(3m+1)
H Z ((E;(f)(l’n - xlyi/) + 'Earm,3m+1,g + abrd,3m+1,g)
n=q(3m)+1
Go,0,0, "(3m+1)
+ Span(uéerl,s)s:Ulo oo+ Span(uém+1,s)::x4:n+l_Aém+l+1 H
q(3m+1)
_ M3.m,0+Go,0,3m
= H Z (@} (Z)(x), + T + Tordpn) + span(uéerLs)S:sl 0+Go,0,3 H,
n=q(3m)+1
| @@+ o+ woipn) + Besmen)|
n=q(3m)+1
<| X @@+ al wiapa) +span(ud, D20
n=q(3m)+1

On the other hand (see Step 1 of SC IIL.1),

q(3m+1)
*(T ! ” < / M3m,0+Go,0,3m
7, (T) (23, + T + Tord,p.n) +SPAN(U3,, 41 ¢) st H
n=q(3m)+1
GD,an
* - / "
< H Z 0,3m,9 (T)(20,3m,9 + T0,3m.g + T0,3m.brdp,g) + Egm,oH.
g=1

Therefore, always by (ii) of CL, if we use the permutation (7(3m, g))?j{’ of ((3m, g))?ﬁ’f

of Fact 3 of the fifth part of the proof of RL, there exists another sequence of the kind of
(63m+179)§i’f of above, which we call again (ﬂ3m+1,g)§:3’f, such that
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| @m0 @ @) + sy + Ertamna ) + o) <
g=1

for 1 < G < G35, (hence in particular

G
G3m
(H Y (@ 3m.0) @) @ (amag) T Tr(am.g) T Tnmbrapg) + Usmtig H)
g=1

s (0,27, )-monotone).
By the notations before CL we know that (a3m+1’brd’g)§:371n is in

"(3m+1)
SpaH(USm-i-l s)s Agmyi— A3m+1+1a
and Tr(3m,brd,g) = Lx(3m,brd,a,g) + L7 (3m,brd,p,g) with L7 (3m,brd,a,g) in
n'(3m—+1)
(U3m+1 s)s Azmi1— A3m+1+1
. Az
and 2 (3m,brd,p,g) i1 (uém+1,5)s:3n’+(il3m+l)+l for 1 < g < Ga, hence (see Steps 5 and 6
of SC III.1) there is g with 1 < g < Gy, such that 273 brd,ag) = Wanyq (3mt1)s On
the other hand, by the same procedure for the case n'(3m + 3) < Ms,,42,0 in Step 1 of
the first part of the proof SCRL, the contribution of this term is xw(gm g)( T)Zr(3m,brd,a,3)

where |z* (T)| < @sm — 0. Therefore, in view of our aim, we can disregard this

7(3m,g)
term and hence we can suppose in what follows that (ﬂ3m+1,brdyg)§:3’{‘ is in

"(3m+1)—1
span (U, 41 ¢)o_ Asmpr— AL, o+

therefore
Gs, n/(3m+1)—1
(u3m+1,g) n Span(u3m+1 S)S:A3m+1*A§,m+1+1'

At this point we can use (C) of SCRL, in the particular case of absence of the sequence
3m+1)
(a )q(

e of numbers. So we get (ﬁém+17g)5 "

of the sequence (Usy41, S)q(3m+1) of (C) of SCRL, such that, for 1 < G < Gjs,,, and for
some 7/ — 0,

with the same properties of construction

G
~ "
u3m+1 .9 u3m+179) < M-

If Goo,03m —Gam+1<n (3m+ 1) < Goo,, 3m there is again some g with 1 < g < Gs,,
such that for Zg 1 Iﬂ(gm 0 @) (@r@3m.g) — T{(3m ) We are in the case of Go0,03m <

n/(3m + 1) and for Zq 541 Tr(am.g) (@) (Er(3m,g) = Tr(3m, q)) in the case of n/(3m + 1) <
M3y, 0 + Go,0,3m, While, analogously to the above for z* (3m, g)( T)T 7 (3m,brd,a,g), We can
disregard the term 7 5, - (Z)(Tr(3m.g) — T (3m.5)) SINC | (3,,, 5)(T)] < Tzm — 0.

SECOND STEP. Now we turn to considering

Q(3m+1) G37n
E : 2 E : "
me g me ,g°
n:q(3m)+1

Then the procedure of Step 2 of the first part of the proof of SCRL works, hence
also the assertion of (C) of SCRL works, hence there exists (uj,, +1,g)§i’f, again with
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the same properties of construction of the sequence (Usp11, S)q(?’mﬂ) of (C) of SCRL,

such that, setting Usmi1,9 = Wspi1y + Usmi1, for 1 < g < Gz, there exists a

(3m+5,1) q(3m+5) q(3m+2)
Zz—q'(3m+3)+1 of (wn)y,— q(3m+3)+1 f“b=fi(i’m+1>+1 of

and a subsequence (7’ )2(3;?;3112) L of (x")?z(:?);r(bgn?;lrﬂ .1 such that there

subsequence () a subsequence (7))

(83m—+2)
(xn)i:q(3m+l)+l

exist 7,, ; — 0 and a permutation (z W(n))i(z'&)lll of

(3m+1) ~1 \G(3m+2) ~1 \G(3m+3) "(3m+5,1)

@n)nZg(am)+1 Y @n)nZg@men 1Y @n)nZg@mea 1 Y @)ngamsa) 10

with

Gam q(m+1,1)

Z(x;(fim»g) (f)xﬂ(?ﬂmg) + Usmt1,9) = Z I;(n) (f)xﬁ(n)v

g=1 n=gq(m)+1

q
| > wt@ e <Tua forgm)+1<q<gm+1,1).

n=q(m)+1

2
THIRD STEP. Now we turn to considering the subsum of ZZ(ST‘%LD 1T
q(3m+2)
n=q(3m+1)+1 JJ (.’17)

*(Z)x,, comple-

mentary to . Then, since the procedure in the general case is the

same, we consider only the particular case when (Z/ )Z(Sz;i)_s_l) 41 and (77 )Z(SZZ;?H) 41
q(3m+2)

do not appear; that is, we consider the whole sub-block

n=q¢(3m+1)+1 €z
suppose that also the sub-block ZZ(BZZ;?H) +1 (), is still intact. Then the whole

procedure of the proof of (A) of SCRL works. We only point out the following fact, which
is important for the regularization when we do not have at our disposal all the elements
of (ezm1, On)nM3’1"+1 *, that is (see Step 4 of SC IIL.2), when n/(3m + 2) < Mszp,410.

Precisely, in order to decrease the formalism, suppose that n’'(3m + 2) = 0 and consider
q(3m+2)

Zn q(3m+1)+1

was not necessary, just owing to the presence of the armouring sequence). Then, by the

definitions of Steps 1 and 2 of SC III.2, for 1 < n < Py, 11 we have

*(ZT)x, and we

2} (Z)(xn, — Zn) (we did not consider this fact in the first step because it

oM3zm41 94Q@3m+1
H E E x3m+1 n,k,l( T)(T3m41,n,k0 — T3m41, n,k,l)H
k=1

2M3m+1 24Q3m 1

= H Z Z Tttt () (T3 1m0 T T3m1,bed n,k,z)H

k=1
oM3m 41 24Q3m+1,1 .
* — 3m+1,n,k
= X X e
Z < Z 3m+1,n,k,l( )( 3m+1,n.kl + 2P3m+1Q0,3m+192Q3m+1 >
k=1 =1

%
T 21,0 k,24Q8m 1 (= )(e3m+1 n,k,24@3mt1 T+ Wam i1

€3m—+1,n,k
2P3m+1Q0,3m+1922Q3m+1

+ €3m+1,brd,n,k + w3m+1,n>) H

oM3m41 24Q3m 41

* —
E : Z x3m+1,n,k,l($) e
2P3m+1Q013m+1 22Q37n+1 3m+1,n,k

k=1 =1
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oM3m 41 94Q3m41 1
+ Z Z $3m+1nkz( )e3m+1nkl
k=1 =1

oM3m 41

* ga—
+ Z x3m+1,n,k724Q3m+1 (x)63m+17n’k’24Q3m+1
k=1
oM3m 41

* ga—
+ > T gm41m,k,24Q0m 1 (T)€3m1,brd .k
k=1
oM3m 41

* — /
+( Z x3m+1,n,k,24Q3m+1(x))w3m+1,n
k=1

oM3m 41

( Z {E3m+1 n,k,24@3m+1 ( ))w3m+1 n

Now, in order to define a good permutation, we could use a combination of Lemma 9
and of NPL; but, in order to avoid further pages of proof, it is convenient to study the
definition of this permutation in the case of the alternative construction of Step 4’ of
SC IIL.2 (since the same proofs work also for this second alternative, with some more
formalism for the proof of (A) of RL). Indeed, in this case, since

24Q@3m 41 _1

Z T3t 1k, ((T)e3m+1,n,0k0 = T3t 1k, (T )€3m+1 n,k,1
1=1

24@sm+1_1
+ Z T3t ket (B (€3t m bl = €3matonked—1)
24Q3m+l1=_22
= Z (3mt1m40T) = 2310 k001 (T)) €3mt 1 ke
=1

* — /
T 2310k, 21Q8m —l(x)e3m+1,n,k,24Q3m+1 ~1

for 1<k < 2M3m+1, we have

oM3m41 94Q@3m 1

H Z Z x3m+1n,k,l( )($3m+1,n,k,l—53m+1,n,k,z)H
k=1

2M:3m+1 24Q3m+1 % —
. Z Z $3m+1,n,k,l(x)
- 2P3m+1Q0,3m+192Q3m+1
k=1 =1

oMam41  94Q3m41_9

+ 2 (X Whriani® T @125, w7
k= =1

oM3m 41 oM3m 41
2 e @12 Y @00 @)
k=1 k=1

Therefore, by NPL, let (W(k))iii’"“ be a permutation of (k)i:im“ such that the three
sequences
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24@3m+1 oM3pm 41 K 2%Qsmi1_g 2M3m+1
(Z( Z it @) 0 (X0 Smrnm@))
=1 k=1 =1

—\\2M3m+1
and (Zk:1 N (k) 24 @t (7))3.=1"" are all (3,0)-monotone. Moreover, by Lem-
24Q3m+1_1

ma 9, for 1 < k < 2Msm+1 let (7(k, 1)) ! be a permutation of (I)7_, such
that (32.1) and (32. 2) of Lemma 9 are satlsﬁed for the sequence

2 Q3m+1 —

24Q37n+1 —1

(Z $3m+1 n,m(k),m(k, 1)( T)€3m41,n,7 (k) (k, z)) L1
1=1 =
Finally, set

2 Qsm+1,1

(r(3m+1,n g))Gaerl (B 1w (k) m (ks 1))
U@Bm+1,n, 71'(]{), 24Q3m+1))%i’im+1 .

It follows that (| Zg 1T (3m1,n,9) (T )\)g?’”i“ ® is (3,0)-monotone and, for any permu-
tation (7(3m + 1 g))G3"‘+1 of (Bm+1 g))G3"‘+1 such that the permutation induced on
((B3m+1,n g))GmH s just (r(3m+1,n g))G3m+1 O for 1 <n < Pypya,

G G
% . 3m+1
(H E Lr(3m+1,9) (Z)(Zr3m+1,9) — Tr(3m+1,9) H)
g=1

G377L+1
g=1
properties of construction of the sequence (Usm+1, S)q(3m+1) of (C) of SCRL, such that
q'(3m+5,2) q(3m+5)
n=q’(3m+5,1)+1 n=q(3m+3)+1

q' (3m+5,1) . ~1 \q(3m+3)
n=q' (3m4+3)+1> @0d again a subsequence (:vn)n:a(3m+2)+1 of

such that there exist 7,, , — 0 and a permutation (ﬂff(n))z(:n;r,}{i)l 141

s (3,0)-monotone. Therefore again there exists (Ugm42,g) , again with the same

there exists a subsequence (z,)? of the subsequence of ()

which is complementary to (z,,)

q(3m+3)
(?”)n:q(3m+2)+1’
()
(83m+2) ~1 \q(3m+3) "(3m+5,2)
(x")izq(3m+1)+1 U ( iz)gz:a(3m+2)+1 U (3371')iqu(3m+5,1)+17

with
G3m+1 q(m+1,2)

Z Tr(3m+1,9) (T)(Ta@mt1,9) + Usmt2,9) = Z T2 () (T)T7(n) 5
g=1 n=g(m+1,1)+1

q
| > st @enm

n=g(m+1,1)+1

<ﬁm,2 forq(m+1a1)+1éng(m+1a2)'

q(3m+3)

FourTH STEP. Now we turn to the subsum of ) '~ o(3mt2)+1 T

*(T)z,, complementary

q(3m+3) ()7 :
to > d(3m+2)+1 Tn (Z)Z!,. Then again, since the procedure in the general case is the
@(3m+3)

n=g(3m+2)+1

that is, ZZ(BZZ;?*_% 41 2% (Z)xy, which on the other hand has already been considered in

(A) of SCRL. Therefore again there exists (Ugm+3, g)GS"‘“, again with the same prop-
erties of construction of the sequence (Ugy 41, S)Q(?’m—H) of (C) of SCRL, such that there

q' (3m+5,3) q(3m+5)
n=q’'(3m+5,2)+ n=q(3m+3)+

same, we can consider only the particular case when (Z7,) do not appear;

exists a subsequence (z,,) , of the subsequence of (z,,) 1 which is
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complementary to (z,,)? (37?;2?3) 41 such that there exist 7,, 5 — 0 and a permutation
q(m+1,3) q(3m+3) q' (3m+5,3) .
(27(n) ) e a(mi1,2)41 Of (x")n:q(3m+2)+1 U (@), o (3m15,.2)+1> With
G3m+2 g(m+1,3)
Z Tr3m+2.9) (T (Tr(3mr2,9) + Usmt3,g) = Z Tr(n) (T)Ta(n),
g=1 n=q(m+1,2)+1

<Mz forgm+1,2)+1<qg<qg(m+1,3).

q
H Z T(n) (T)T(n)

n=g(m+2,1)+1

Finally, by (ii) of FRCL and by the previous procedures, there exists a subsequence
(z ,)Q’(3m+5) q(3m+5)
"' /n=q'(3m+5,3)+1 n=q(3m+3)+1

(xn)flf;r,'gi%) 41 such that there exist 77,,, , — 0 and a permutation (T ()1

of the subsequence of () which is complementary to

q(m+1)
n=g(m+1,3)+1

"(3m+5) .
of (xn/)fl:qy,n@m%ﬁ)ﬂ with
g(m+1 q
HE_ Z (n)( )xﬂ(n) < M, H Z w(n)( )l'vr(n) <Tm,a
n=1 n=g(m+3,1)+1
4

for g(m +1,2) + 1 < ¢ < g@(m + 1,3). It is now sufficient to set 7, = > ;_;7,,; to
complete the proof of Theorem 21. m

6. The special case of spaces of type > 1

For the proof of the existence of a basis with permutations in these spaces we need only
(i) of CL and a simplification of CSL (Lemma 12 of Subsection 3.1).

THEOREM 22. Let X be a separable Banach space of type p > 1, that is, l1 is not finitely
represented in X. Then there exists a biorthogonal system (zn,x}), with ||z,| < 2 and
lzk || < 2K 41 for each n, and with a fized increasing sequence (¢(m)) of positive integers,
such that for each T € X with ||ZT|| = 1 there exist

(a ) a permutation (T(n)) of {n},
a nonincreasing sequence (7,.) of positive numbers with 7,, —
) of bers with 7, — 0,
c) a sequence (q(m)) of positive integers, so that, for each m:
( ) q (@(m)) of p g hat, f h
(m m h'(m m ' (m
(48.1) (7(n )) 1) is a permutation of (n )Q( )U( n _( ) where (n)fl(:q?ril))+1:(m') m)
' (m m — m m+1
U (mi)n 1", hence ()i < (7)Y € ()i s
(48.2) |7 — 320 _ @k (T)am(ny | < Ty, for each g >q(m);
(48.3) (|| 0, 2 (@) N2 L is (K, 0,1/2P)-monotone.

q=q(m)+1
Proof (Constructwn of a basis with permutations). We proceed by induction and we are
now going to construct, starting from the mth step, the (m + 1)th step through the
following six substeps.

SUBSTEP 1. Our starting point is the biorthogonal system
(@, @3) 0 U (s )2 i ll = 1 o) < T,

mn’ m,n/n=1» | mn|
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for1<n<A,,. Weset X =X, +V, with

q(m)
X, = span((z, )q(m) U (ul, )ﬁi‘l), =XnN ﬂ Ty N ﬂ “(m n)

SUBSTEP 2. We are going to prove that there exists K > 0 independent of m such that
we can pass to the biorthogonal system

Uy s U )y U (€ €y oe

Bm My, Bm\ A,
(em,n)ggl = ((emn k)kﬁ 1” U ((em,n kJ)jG 1 n)k-e):oh Jnl1s

Qm = A (1677 + (1 +1657)16Mm).

(@n, 25) 2 U (1]

Then if E,, = span(emm)g;"l, Up =V N ﬂ 21 €y, and P = (1 + 168m)A,,, we
have X = X,,, + E,, + U,, and

(49.1) (emn)?y and (emn 4 X + Un)2™ = (€mm + X N ﬂg"‘l €)1 )Q’” (basis of
X/(X,, +Uy,)) are respectively 1-equivalent and K-equivalent to the natural basis
of 13"

(49.2) (ef, )%™, is K-equivalent to the natural basis of l;)m

m,n

By Theorem I* of the Introduction for C' = K/+/2 there exists (en,,)>™ in V,, which
is 1- equlva,lent to the natural basis of 12 ™, and there exists a projection R,, : V,,, —
span(em.n) 2™ with HRmH < K/V2. Then (emn + Rt NVin)Pm is K/v/2- equlvalent to
the natural basis of l2 . But D,, is the dimension of span((e, ., + Rm1 NVi,) —i—Xm)n:
while by Substep 1 the dimension of X, is ¢(m) + A,,; hence if D,, is sufficiently larger
than g(m) + A,, there exists a subsequence of 2Q,, elements of (e,, )2, which we can
call (ep.n)2?7, such that (always following Subsection 1.5 of the Introduction) we can
suppose that, for each given sequence (an)QL" of numbers with ZQ”L = 1, there is
x € X,, so that

Qm Qm
Hzanem,n+leme+XmH = Zanem,n+leme+xH
n=1 n=1
2Qm
= Z Un—Q,nemmn +RBmi1 NV, + xH
n=Qm+1
2Qm
= Z an_QmemerRmmeJerH.
n=Qm+1

Hence it follows that

Qm Qm
Em.n — €
e
n=1 n=1

Qm 2Qm
Zanemm—l—RmLﬂVm—i—m) — ( Z an,Qmem,n—i—RmLﬂVm—l—x)H
n=1 n=Qm+1




Bases with uniformly controlled permutations 167

IN

S\

HZaneanrRmmV +x”+ H an_QmemerRmmeerH
n=Qm+1

Il
g

Hzanemn"_RmLmv +XmH < \/_Hzanemn

Qm
=2 Z a2 = /2;
that is,

Qm
1

Therefore, for each sequence {an}ggl of numbers,

Qm Qm Qm Qm
Za%ﬁ Za% Z(an/ Zak>emn+R LNV + X H
n=1 n=1 n=1 k=1

an

E 2.
ay;
n=1

that is, {emn + Rm1 N Vi + Xm};Ql;"'l (basis of X/(Ry1 NV + X)) is K-equivalent
to the natural basis of lQ’". Hence, setting U,, = R,,1 NV,,, there is ((efnyn’k)}ﬂflm U
(€5 )3T VRS Yoty im X 50 that Uy = Ve N2 €f, 4, and (49.1) and (49.2)

m,n,k,j/j=1 n=1
are satisfied.

Qm
( = H Zanem,n +ij_ N Vm +XmH) <
n=1

An Bm \ An Pr
SUBSTEP 3. We pass from (uy, ,,ur% )21 U ((€mn,k-e o k)}f’ L )it 0 (U sty ) e

= ((umn, PRI ,fBOm )n:'1 biorthogonal by means of the procedure of Subconstructions
ITL.1 (Step 4) and I11.2 (Step 2) with some slight difference, with [|u, ,|| < 2 and ||u}, || <

2K + 1 for 1 <n < P,,; precisely we set, for 1 <n < A,,, 1 <k < 165~

165m 165m 1%

U
*
Um,n,0 = § Em,n,fs Um,n,0 = E Cm,n,f

_ 37
Um,n,k = Em,n,k + umb,n/2 e

165m u/*
* m,n

1
% * By, % *
um,n,k - 6m,n,k - um,n,0/4 - 6m,n,k - 16Bm § : em,n,f + 93Bp, ’
f=1

P’VYL

SuBsSTEP 4. We go from (um n, Uy, )= to its generating form

B
(wm,nvw;m,n)521 = ((wm,n,kvw:n,n,k)llciom)égl

by means of the GBST.

SuBsTEP 5. If B,,, M,, and T}, are integers with

P’NL
By, > 2AmJrq(m)JrK+Km7 Ty > 4Pm Z ”w:nn”? M,, > 2Bm+Tm7

n=1

we pass from
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M. B A7
(wm,mw:n n) 1 U (((em,nk,j € mnk,]);61m)k6=0m)n:nl

Mo, B\ A,
= (((wm,n,k; wm n, k) U (em n,k,j> em n k,_]);G 1” )llcﬁ Om )n:l

Mo, Bm
to (((@m,n,k,55T ]w)]wo s, )4 biorthogonal with ||z, . kil <2and |2y, Sl <

2K +1for 0 < j <16Mm, 0 <k <165 and 1 < n < A,,, by means of the following
procedure: we set, for 1 <n < A4,,, 0 <k < 1637", 1<5< 16Mm,

16Mm 16Mm

1 1
Tm,n,k,0 = AM o, €m,n,k,fs xm,n,k,o - AM o, em,n,k,f - mn k/2 ™
f=1 f=1
/ _ ) " o _ 2Mm R "
xm,n,k,j = €m,n,k,j> xm,n,k,j - ZL'm,n,k - wm,n,k/ ’ Tm,n.k,j = wm,n,k,j + wm,n,k,j’
M
* 6 m
z* — 7xmnk07€* 1 + ek mnk
m,n,k,j — “m,n,k,j AMy T Mk T G My, § : Cm,n k. f M,

SUBSTEP 6. We set

+1 M. Bm, A

(@, 7)) = (@nes T )10 R0 Vs
m B A

(u;n—i-l,nv m+1, n) I—l = ((zm,n,k,Oa‘T:n,n,ho);lCi(;n )ngl.

Now, by a simplified version of Construction II (precisely without the construction
of (Vyni1.m>Umit, n)le“ in two distinct stages by means of (v}, .V i1, n)le“ and

(i1l n)gmér:l;H 415 we now use only the second stage, that is, we define directly

)Q’”“) and by Lemma 12, we define (uy, 1 U 1, n)Am*1 (which

(Uerl,n’ m+1,n n=P/ . ,+1

Pm+1

it of (43.1) of Lemma 12), so we are again in the sit-

uation of Substep 1 but with m + 1 instead of m. Hence by the same procedure we can
define (z,, x;)igﬁll)ﬂ U (U g9 U 12, n);?’"l ? and so on. Proceeding in this way we
define {x,, 2%} biorthogonal such that, by (i) of CL (Lemma 16; the proof of Lemma 16

holds also for spaces of type > 1, actually in the situation of this section the proof is

corresponds to (ur, y 1 Uy 1.m)

simpler), we have the following property:

(50) for each 2’ € X with ||2’|| = 1 there exists a nonincreasing sequence {7, } of positive
numbers with 7, — 0 such that, for each m, dist(z/ — (3% 2% (2/)a,, set of all

Zk 1 Uy (B )tz +auy, o (@)1, 4, for 0 < fa| < 1 and for a subsequence

(ni)i 2y of (n)py) < 1l
We point out that, by (49.1) and (49.2) and by our definition of “(H, M, )-monotone”,
it follows that

1) (122, m“+span< Th)ja1 +span(a)an ) |+ span((w,) iU

D ;

(zn)n>q(m+1)+1)||) ~ is (K, 0, 0)-monotone for each m, for each partition

(n)fr]L(n;;(i;:L))-l—l ((m,1 Z))P(l) U ((m, 2,1))11;( ) and for each sequence (al)P(l) of num-

bers. =

Proof (Properties of a basis with permutations). Suppose that T € X with ||Z|| = 1.We
proceed by induction.
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We fix a positive integer m and we suppose to have found (g(k))};", and (ﬁ(n))z(:ml)
such that, for each k with 1 < k < m, (48.1) is satisfied when m is replaced by k, and
such that (48.2) is satisfied in the following form: there exist four nonincreasing sequences
M)y M)y, (ex)i, and (1;,)7, of numbers, with %, — 0, 7,, — 0, &, — 0 and
1, — 0, such that:
(52.1) [T — 00 2% ) (@)Tm(o) | < fim, Where fip, = 1), +1/22407) 4 £,y + Pp2(2K +
1)/2Mm 4 K (15,1 4 1)
(52.2) |7 — X201 ¥y (@) Tm(my | < T for (k) < ¢ < G(m) and for 1 < k < m, with
Ny = (14 K)m-1 + K, +K/2Pm Y

(523) (| 0y 2%y (@) NI2Y | is (K,0,1/2P)-monotone.

g=q(m)+1
At this point suppose that, for a fixed m, (48.1) and (52.1)—(52.3) are satisfied; we are
going to verify them also for m 4+ 1. We have two possibilities. The first one is that

1
(53) |um+1 n( )| < Am+122q(m+1)+1

for 1 <n<A,41.

Again, by (52.1)—(52.3) with =’ and m replaced by T and m + 1 respectively and by (53),
g(m) q(m+1)

e (st + S i) =[S i,
n=1
1

o] /
<Nm+1 = Mpy1 + 22qmi D1

14 (m+1) (m+2)
((m+1)5)n= (n)izq(m+1)+1'

We claim that there exists a permutation (f(n))z(;%zrnll))ﬂ of ((m);;)Z' (lm) (@m+1) =
g(m + 1)) so that

(54) ( S k@t

n=g(m)+1

q(m+1)
) s (1,1/2P)-monotone.

q=q(m)+1

Indeed, suppose, in order to decrease the formality (in the general case the procedure is
the same), that ((m)! )h ) (n)q@“) . By Substeps 5 and 6,

n=1 n q(m)+1
g(m+1) 2B i
m n k,]
> Y (S e
n=q(m)+1 n=1 k=0 j=1
hence, for 1 < n < A,, and 0 < k < 2*Bm there is a permutation (w(m,n, k ]))24Mm of
(j)?wllm such that (] EJ 1\ T monk i) (@ )|)%4Mlm is (1,0)-monotone. Then there is a parti-
tion ((mw(m,n, k ]))]("Z(?nknplzp 1)+1)p:1 of (m(m,n, k ]))24Mm (hence with t(m,n, k,0)=0
and t(m,n, k,T,,) = 2*Mm) such that, for 1 < p < T},
m,n,k, * — AMp _
t( 7 mﬂ(m,n,k,j)(‘r) 1 2 ‘Tfr(m,n,k:,j)(x) 2K +1
2Mm T 2Mm < ot
j=t(m,n,k,p—1)+1 moj=1
m,n,k, * — AMm .
: 3 ? Crmn k)@ p & Trimnk) (@) 2K +1
9., T 9 oM,

j=1 j=1
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because
241\/1m _
‘_ 7r(m n,k j)( ) o ‘w;kn,n,k(x) Hw:n,n,k” ||w* < 1
2 T |7 T 4Py ||wm ol A
Hence, for 1 < p < T,,, since
q(m-‘rl) Am 24Bm 16Mm
= 355 S
n n m,n k,] 2Mrn
n=q(m)+1 n=1 k=0
Am 24Bm

*
= wmnk wmnk Zwmn wm’ﬂ Zumn umnv
n=1 k=

(=)

we have

Ay, 248m (m,n,k,p) P
Z Z Z (T )wmnk B 2l Up,, 2 (T)Um,n
7r(m n,k, )\ T oM, T
n=1 k=0 j=t(m,n,k,p—1)+1 m

m 24Bm t(m,n,k,p) q(m+1)
Wmmnk n=q(m)+1
7r(m n,k ])( ) oM., T

(),

n= =0 j=t(m,n,k,p—1)+1

24}3m 24Mm

t(m,n,k,p) 52 o (@)
Wm,n,k * - j=1 m(m,n,k,j)
ST (TS - 2 T

n=1 k=0 j=t(m,n,k,p—1)+1

m 2 K + 1 (4K +2)P,,
Z in omnsll < 55—
n=1 k=0

and

Ay 24Bm t(m,nk,p)

Z Z x::'(mfmk,_?) ('T) wm nok - TL Z um n
1 k=0

j=1 n=1

(4K +2)Py,

< i

n=

Therefore, since (#- Z:Tl ur, n(f)umyn)ggl is (0, 0)-monotone,
m - K

m 248m t(m,n,k,p)

T
(HZZ Z w(mnk])( )x;:(m,n,k,j)H)P_l

p=1n=1 k=0 j=t(m,n,k,p—1)+1
24Bm t(m n,k,P)

(HZ > re(mon ) () Tr(mnlw)H)

n=1 k=0 j:l

m

is (0, (4K + 2)P,,/2Mm)-monotone. On the other hand, for 1 < p < T,,, 1 < n < A,,

and 0 < k < 2*Bm by construction and by the above we have

t(m,n,k,p) t(m,n,k,p) 9

* — "
H ) zw(m,n,k,j)(I)%(m,n,mH =< ’
j=t(m,n,k,p—1)+1 j=t(m,n,k,p—1)+1

zjf(m7n,k7j) (7) oM,
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t i 7k7 * - 4 M * —
< 2 (m & p) xﬂ'(manvkvj)(z) _ L 22 zﬂ(mﬂl,kyj)(x)
- ) 2M7n Tm - 2M7n
j=t(m,n,k,p—1)+1 j=1
2 i@ | 4K 12 2
2 T (m,n,k,J
+ ; T, 2Mmn M, 4Pm
and

4B,

2 ) . AK +2 2P,
ZEW > ks DT € P + o
n=1 k=0  j=t(mnkp—1)+1

It follows that
m 24Bm t(m,f,g,P—1)
% — "
((((H Z Z Z T, £,0.5) V(. £,0.9)
— r
N-— 124Bm t(m,f,g,P)
* — 12
DD D Tt DT s
f=1 g=0  j=1
K—1t(m,N,g,P)
+ x:f(m,N,g,j)(f)x;:(mN,g,j)
g=0 =1
T t(m,N,K,P) 2Bm A\ T,
* — 1
N Zx“(m’N’K’j)(x)wﬁ(m*N*K*j) H)T:t(m,N,K,P71)+1)K:O )N:l)P:l

-
Il
—

(the second sum appears only if N > 2 and the third sum only if K > 1) is (0,1/25m)-
monotone since

) (m,N,K,p)

Z N, (j)x;{(m N,K.j
j=t(m,N,K,p—1)+1
is (1,0)-monotone and hence (0,4K + 2/2m)-monotone for each N and K with 1 <
N < A, and 0 < K < 2*Bm_and since, by Substep 5,

(4K +2)P,, 4K +2 2P, 4K+2 1

oM, +Fm M T gPm T oM. < 9P

T=t(m,N,K,p—1)+1

This completes the proof of (54) if we set

m4-1 . m,n,k, ABm .\ A, \NTom
@) = (((mym b, ) S E) DR ) pm-

Hence we conclude that, for g(m) +1 < ¢ < g(m+ 1),

g(m+1)
(55.1) Hz =S 2 @) || < s = Mg + 1/220 O,
n=1
1 a(m+1)
55.2 (H N ) is (K,0,1/2"")-monotone;
(55.2) 3 skornon[)) e U60.1/27)
q
(55.3) |3 wh @k < K2+ i) + /25

n=g(m)+1
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<Tgr = (L4 K)oy + K1 + K /257

(55.4) H:v — Z T (n) ()T (n)

Indeed, (55.1) follows from (50) and (53); (55.2) follows from (51) and (54); for (55.3),
by (51) and (55.2), it follows that

q
H Z T () (T )

n=g(m)+1
g(m+1)
<K| 3 at@reol| <8 3 et @l + 1572
—g(m)+1 n=g(m)+1
q(m) q(m+1)
n=1 n=1
q(m) g(m+1)
<K2H.T— Z.T— x’n’(n +K2H.T— Z Tr(n)( ).Tﬂ—(n +K/2Pm
n=1
< K2(77m + 77m+1) + K/2P -
For (55.4), by (55.2) we have
q q
Hf— Z 7(n) (T)Trm) || < Hfﬂ - Z T Tw) || + H T3(n) ()T (n)
n=1 n=g(m)+1
q(m) g(m+1)
< Hf— > Ty @ TR +K‘ D Wy @R ||+ K20
n=1 n—ﬁ(m)ﬂ
a(m)
= Hf = Y Ty @ T || + K‘ (93 - Z T2 (n) (T) 27 n))
n=1
q(m+1)
— (- X wr@ew )|+ K72
n=1
q(m) q(m+1)
<1+ K)Hf — 3 o @ || + KHE 3t @] + K2
n=1 n=1

= (1+ K)m + K1 + K/25.
The second possibility is that (53) is not true, hence there exists 7 so that
n m+1 and |u > m—+1 while
56) 1 <7 < Ay and [ul) ) 5 ()] > 1/A;412200m DT whil
[t 410 (@) < 1/ A yr 2290 HDH
for i4+1<n < Apyyp; weset = (71— 1)(1+24Bm+1) + k with k > 2Bm+1/2 so that
W (@) > /22 (hence [}, gy (7)) > 1/22P0) while [, (7))

< 1/22Pm+t for k+ 2 < k < 24Bm+1

Indeed, we have
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94B - _
1 U, 7,k \
<ty (@) = |2 k=1 _ +17.4(@)]
Am+122q(m+1)+1 ) 9Bm i1
k+1 u* 24Bm+1 ~ ~
< [ 2ok m+1nk( 7)| n Zk %42 ‘uerlnk( )| < (k+1)(2K +1) 24Bm+1 _ L — 1
- 9Bm+1 92Bm+1 9Bm+1 9Bm+192Pm 11
(k+1)(2K +1) 24Bmet (k4 1)(2K +1) 23Bm 1
92Bm+1 9Bm+192Pmi1 9Bm+1 22(1+16Bm+1 VA1
(k+1)(2K + 1) 1
2Bm+1 424B7n+1 :
that is,
F]{VJ 1 1 2Bm+1 1 23m+1/2
- Am+122q(m+1)+1 B 424Bm’+1 2K +1 - '
So, according to (50) with a’, m replaced respectively by Z, m + 1, we have
7n+1 Am,+1
u;n-i-l Z anpU m+1n m+1,n = Z u;z+1,n(u;n+l)u;n+1,n
n=1

A1 168m+1

Z Z um+1nk m+1)um+1nk; Oé ‘an| < ]-7
n=1
U;Z+1,n(uin+1) = ant m+1,n( ), m+1,n,o( m+1) = *anuleH,n(T)/QBm“v
U:n-q-l,n,k(u;n-i-l) = anu;z+1,n(f)/23m+l
for 1 <n <Ay, 1<k<168m+ (since by Substep 3,

P, . B Ay
SPAN (U 41,n) 7 = $PAN(Upy 1 )23+ sPAN((Em 1) E )

hence €, . ,, p(W 1) =0for 0 <k < 1687+ and 1 <n < A,,11), so that

q(m) R’ (m)
(57) HE* (X @3 @z + Z i ()i + 1) H
n=1
q(m+1)
= HE — ( Z ) (T) Ty + u;n_H) H < Mg
n=1
Hence, setting
fi—124Fm+1 k
U1 = Z Z “:mﬂ,n,k(“;nﬂ)umﬂ,n,k + Zu;m-',—l,ﬁ,k(uferl)um-i-l,ﬁ,k
n=1 k=0 k=0
(then Uy, 41 € span(um+1,,)1—;) we have
) ~ 1
(58) 41 = Uil < 5oy -

Indeed, by the above and by Substep 3 it follows that
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2*Bmt1 A1 24Bmt1
/ Iy — * ! ~ * /
U1 — Um+1 = § : U1 71,k (U g 1) U 1,7, + E , E U1 ke (U 1) U1,k
k=Fk+1 n=n+1 k=0
24Bm 41 e
S Y-l VR o =L P
— UYn\Um+t+1n m~+1,7,k+1 ~ an 23Bmt1 m+1,n,k
k=k+2
Amt1
/ / ~
+ a”ﬂuerl n ) m+1,na ||um+1 — Um+1 H
n=n-+1
24Bm+1 A1
23Bm 41 — 22Pm+123Bm+1 — Am+122q(m+1)+1
k=k+2 n=n-+1
2K,y 2Bmn 1 1

23Bm 41 22Pp, 41 + 22q(m+1)+1 < 922q(m+1) "

Hence, by the above and by the Generating Blorthogonal System Theorem, there
exists a sequence (f(n))n_1 of increasing integers with m < f( ) < Pp+1andn < f( ) <
f(n+1) for 1 <n <mn—1, and a sequence (€,);_; of numbers, so that, for a suitable
em > 0, setting f(n,k) = f((7 — 1)(1 + 2*Bm+1) + k) and &5, = Eri—1)(1424Bm+1) 4 fOT
0 <k <k, and f(n,k) = f((n—1)(1+2'5n+1) + k) and Ep 5 = 8, _1)(1494Pme1)54 fOX
1<n<n-1and0<k<2*Bn+1, we have
En

v @

m+1,f(n)

(59) 0< <ém for1<n<na, |Une1 — Umia] < ém

for

U1 = Z é\nw;+17f(n) (E)merl,fA(n)
n=1

fi—124Bm+1 A

=> Z En kW ) T p) ()W m+1,?(n7k)+Zgﬁvkwjn+1,f(ﬁ,k)(T)wﬁﬁlj(ﬁ,k)'
n=1 k=0

At this point, proceeding as for the proof of (54), for 1 <n <71 —1and 0 < k < 24Bm+1

and for 0 < k < k if n = n, there exists a permutation (7(m + 1 f(n k), ))?4?"“ of

24 Mp, J o 24 Mmi1 .
g)?zl " such that (| ijl T 1 T k),j)(x)‘)gzl " is (1,0)-monotone, and a parti-
ion
i A\ t(mA+1,f(n,k),p) Tn41
((r(m + 1, 70, ), 9); s 1 Fonubp-1)+1)27

of (w(m + 1.F(n, k). §));5 ™70, Moy g0 < 220708, Hm +1,F(n, k), 0) = 0 and

(m +1 f(n k) m+1) Mm+1’?(n7k)7 S0 tha‘ta for 1 < p < Tm+1a

t(m+1,f(n,k),p)
‘ M 41 IM 41 ’

xjr(mﬂi(n,k),j)(f) En kW T(n, k)( )‘ - 2K +1

T,
j=t(m+1,F(n,k),p—1)+1 m+l

t(m+1,?(n,k),) * o =
P i1 T )T PR k) (T )‘ _2K+1

2Mm+1 Tm+1 2Mm+1 .

<.
Il
—
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By Substep 5 and by (59), for 1 < P < T,,,41, setting

fi—124Bm+1 t(m+1,f(n,k),p)
— _ * b— "
Tiiip =, D > T m 1 Fk).) TV (ms Fma) )7
n=1 k=0 j:t(erl,?(n,k),pfl)Jrl
we have

Pri12(2K +1)

Hmerl,p - um+1/Tm+1

IM it ’
XP:@ P Poi12(2K +1)
1p — 1 —

—1 e Tt m 2Mm+1

Now, setting W,,11 = Zng ' Wy41,p, it follows that

Pri12(2K +1)

(60) T

Moreover, analogously to the proof of (55.2), there exists a permutation (W(m;;))h”(m) of

n=1
(m")z (1m) such that

(H Z () () Tr(n) + wa(mw Lre(my)

Therefore by the above, settlng

//(m)
) is (K,0,1/2")-monotone.
g=1

_ m+1 h'(m
(@m)Ie) = (i)
t(m+1, k), 4B, n—
U ((((r(m+1,F(n k), ) T 2y
<~ N\ E(m+1, f(7Lk), k T
U (((w(m + 1, £ (7, k)’j))j( t(mfl(,?(?z,zg,p—l)ﬂ)QZO)FIA’
2 n' 1 h' 1
()22 = (m 4+ D) U (m+ 1)) Y,
14 m 1 i . m+1,f(n,k), 4B —
((m + 1)) 7 = (O + 1, F(n, k), ) TR0 R i
F(m 1y )L TR).p) T T
U (((ﬂ—(m + 17 f(n’ k)’j))j:t(m%*l,T(ﬁ,k),p*l)Jrl)k:())p:]‘
(hence g(m + 1) = g(m) + h”"(m) + h'(m + 1)), we have
g(m) R’ (m)
(62) Hf - ( > T @)+ D T omyp) (@ Tx(my)
n=1 n=1
R’ (m+1)
+ Z Trmry, @) m1y, )H
Pni122K + 1)
/ m—+1
<t T Sagtmrny T Em oMt '
since
h''(m) R (m+1)

H (wa(n x”(n)+ Z x(m)” ) T(myy + Z w?erl)iL(T)xl(lmel)%)H

n=1 n=1
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q(m) ' (m)

<o (X st @non + 3 g @ + it )|
n=1 n=1

+ 1 = g | 4 1mgr — G | + ([@ig 1 — U ||
K (m+1)

— * — "
+me+1* Z Trmer1y, (B)ma1y,
n=1

<t (by (57) + 53 (by (58)) + m (by (59)

Pri12(2K +1)
— ot (by (60))

+ 0 (by the definition of w,,+1 and by the above).

Now we claim that
q(m+1)

(63) | > @

n=g(m)+1

< K(n,_y + 1) for each m.

Indeed, by (57), setting E,, = ZZL(:? x} (T)xy + ul, for each m, we have |[T — E,,—1]| <
-1 and || — En || <1y, with

M1+ Mgt 2 1T = Bl + 17 = Empa| 2 |(F = Em—1) = (T — Byl

= ||Em+1 - EmfIH
g(m+1) q(m—1)
=[( X @@t ) - (X @@t
n=1 n=1
1 q(m+1)
e Z 2 (T)zh, |,
n=q(m)+1

by (49.1) and (49.2) and by Substeps 5 and 6 since u,_; € span(zn)fl(:;)(m_l)ﬂ, U, €
q(m+2)

span(xn)n:q(mH)H.

. 7 \h (m+1) a(m+2)
Since ((m +1);,)n27" C ()27 (1) 415 by (49.1) and by Substep 5 we have

B (m+1) D)
H D T, @y || =4[ 2 (@t ()?

n=1 —
q(m+2) a(m+2)
= Y. (@@= H S @l
n=q(m+1)+1 rmq(mad)+1

Hence we conclude that, by (62) and (63),

q(m+1)

l7= > @t @anm

n=1

< ﬁm—i—l

1
= M1 + gy T om + Pra 2K +1)/2M 0 4 K (), + 75,40)-
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Now (|| Y7 _ >y Tw(n) ||)g(";::i)+1 (K,0,1/2F)-monotone since
)h//(m)
q=1

q m q
(H D T @) + D Ty (D))
n=1 n=1

s (K, 0, 1/2Pm)—monotone by (61), while
h//(m)

(H Zzw(n) Tx(n) T Z @ (my; (T "+Zx<m+1>' )2 (m1y,

is (1,0, 1/2Pm+1)—monotone (hence also (K, 0, 1/2Pm)-monotone) by the procedure before
(60) and by a proof analogous to the proof of (54). Moreover, by (51),

)h/(m-‘rl)

q=1

//

h''(m)
(H wa(n) T)Tm(n) + Z Z(my; (T "+Z$<m+1>' )Ty,

s (K, 0, 0)—monot0ne' and

)h (m+1)

=1

Iz~ Z &y @) r ) | < Tsr = (L K )l + K1 + 1/27

for gim)+1 < ¢ § g(m + 1) (see the proof of (55.4)). Hence, by (55.1), (55.2) and
(55.4), we see that both (48.1) and (52) are satisfied, hence also (48.2) and (48.3). This
completes the proof of Theorem 22. m
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