
0. Introduction

The aim of the work presented here is to connect two fields of functional analysis, on

one hand the theory of sequence spaces and on the other hand the nonlinear theory

of algebras of generalized functions, with the emphasis on the description of the latter.

Associative differential algebras of generalized functions, containing the (embedded) delta

distribution, with the ordinary product of continuous functions do not exist, as was proved

by Schwartz [73]. But with the ordinary multiplication of smooth functions, such algebras

do exist. One of the first and today most widely studied and used constructions has been

introduced by Colombeau [8]. Nowadays, the theory of these so-called Colombeau type

algebras is well-established and it is affirmed through many applications especially in

nonlinear problems with strong singularities. Here we refer to the books [5, 8, 9, 59, 60, 63]

and to the numerous papers given in the references, while we apologize for all undue

omissions. We also want to point out the progress made in the direction of PDE and

differential geometry with applications in general relativity done by the DIANA group

[24–27, 33, 34, 37, 38, 43, 45–47].

On the other hand, sequence spaces of various type are a basic notion in investigations

of various branches of functional analysis [48, 49, 50, 51, 52, 53]. In this paper we show

that Colombeau type algebras can be reconsidered as a class of sequence space algebras.

We hope that our investigations in the field of generalized function algebras can serve

as a motivation for those who are more interested in the functional analysis of sequence

spaces.

At the time when we started our work, the results of [24, 25, 26, 27] related to the

topology, and in general to functional analysis in the framework of Colombeau type

generalized function algebras, were not known. Even now (five years later) they are not

known properly. We would like to point out that this work significantly extends the well

known theory relating to sharp topology. We will not give details about this work but

advice the reader to consult the cited papers.

The present paper extends our previous publications [13–15], where we elaborated

separately on the general construction, on the issue of embeddings of distributions, ul-

tradistributions and generalized hyperfunctions, and on functoriality and the different

notions of association which we cast into a unified scheme, with new examples and de-

velopments relating to Maddox’ sequence spaces, and sheaf theory.

Colombeau constructed his well-known algebras by algebraic methods. No topology

appeared in his construction. As we already mentioned, the different topologies and

convergence structures defined on G appeared afterwards. Our first task in this paper

[5]
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is to give a purely topological description of Colombeau type spaces. Let us mention

that these types of sequence spaces appear frequently in describing the structure of (ex-

panded) periodic distributions, ultradistributions and hyperfunctions. Our formulation

of Colombeau-like algebras should convince by its conceptual simplicity: In fact, all these

classes of algebras are simply determined by a (locally convex) space E, and a sequence

of weights r : N → R+ (or sequence of sequences) which serves to construct an ultra-

metric on the sequence space EN. As a first, motivating example, note that r = 1/log

just gives Colombeau’s algebra: Indeed, the ring of Colombeau generalized numbers is

C ≡ {x ∈ CN : lim sup |xn|1/log n < ∞}/{x ∈ CN : lim sup |xn|1/log n = 0} and idem for

the space G(Ω) (see Subsection 1.1.2 for details).

The sequence r = (rn)n is assumed to be decreasing to zero. This implies that

sequence spaces under consideration (⊂ EN) contain as a subspace E ∼ diagEN and that

they induce the discrete topology on E. This is well-known for the sharp topology for

Colombeau type algebras. But our analysis implies that if one has a Colombeau type

algebra containing the Dirac delta distribution δ as an embedded Colombeau generalized

function, then the topology induced on the basic space must be discrete. This result is

analogous to Schwartz’ “impossibility result” concerning the product of distributions (cf.

Remark 43 and Subsection 3.1). It shows, through topology, the importance and the

validity of the Colombeau idea for the construction of Colombeau type algebras.

An important and in a sense a leading motivation for the analysis of the class of

sequence spaces is the fact that distribution, ultradistribution and hyperfunction type

spaces can be embedded in corresponding sequence spaces of this class. An important part

of the paper is devoted to embeddings since this justifies the joint interest for sequence

spaces and for generalized function algebras. The embeddings of Schwartz’ spaces into the

Colombeau algebra G are very well known, but for ultradistribution and hyperfunction

type spaces new results are given. The problem of multiplication of regular enough

functions (smooth, ultradifferentiable or quasianalytic), embedded into corresponding

algebras, is also analysed.

To complete the analysis of the relation between this approach and previous results,

we introduce in Section 4 an important generalization which is to consider sequences of

sequences of weights. This way, we can describe other Colombeau type algebras, not

based on polynomial scales, as for example asymptotic algebras [16] and Egorov type

algebras.

This justifies turning then, in Section 5, to nowadays classical questions like functorial

aspects of Colombeau type algebras [70, 71], in order to apply the following scheme in

standard applications: if a classical differential problem for regular data has a unique

solution such that the map associating the solution to the initial data satisfies convenient

growth conditions (with respect to the chosen scale of weights), then this same problem

can be transferred to corresponding sequence spaces, where it also allows for a unique

solution. That way, differential problems with singular data can be solved ad hoc in such

spaces.

Finally, it occurs frequently that exact solutions are not required, and in spaces of

generalized functions the notion of weak solutions has often been used, in the sense of
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different types of association. These concepts can be nicely described in our sequential

approach, which is done in Section 6. Indeed, we give a generalized and unified scheme of

a large number of tools of this kind, which can be found in various places in the existing

literature.

1. The basic construction

Let us now present the construction in detail for the simplest possible case. The situation

here is included in the more general constructions of the next section, but the underlying

principle and the proofs will be more evident here. This is also the setting pertaining to

the definition of rings of generalized constants.

We follow the convention that 0 ∈ N, R+ = [0,∞) and denote by N∗, R∗(+), C∗ the

respective sets without 0.

1.1. Seminormed algebras and rings of generalized numbers. Consider a se-

quence r ∈ RN
+ decreasing to zero, and a seminormed algebra (E, p) over K = R or C,

such that ∃C > 0, ∀a, b ∈ E : p(ab) ≤ Cp(a)p(b).

1.1.1. Ultranorms and associated ultrametric sequence spaces. Now define (1) for f ∈ EN,

|||f |||p,r := lim sup
n→∞

p(fn)rn .

This is well defined for any f ∈ EN, with values in R+ ≡ R+ ∪ {∞}. In the particular

case (E, p) = (K, | · |), we will sometimes write | · |r for ||| · ||||·|,r .
Lemma 1. For any f, g ∈ EN and λ ∈ K

∗, |||λf |||p,r = |||f |||p,r and

|||f + g|||p,r ≤ max(|||f |||p,r , |||g|||p,r), |||f · g|||p,r ≤ |||f |||p,r |||g|||p,r . (1.1)

If there is M > 0 such that M ≥ p(fn) ≥ 1/M for n large enough, in particular if f is a

constant sequence (of elements with nonzero seminorm), then |||f |||p,r = 1.

We will sometimes summarize these properties by referring to ||| · |||p,r as an ultra(pseu-

do)(semi)norm (which is not a seminorm, by lack of C-homogeneity).

The last statement also implies that if a sequence (fm)m∈N of elements fm ∈ EN

converges (componentwise) to f ∈ EN, then |||fm − f |||p,r does not in general converge

to 0, even if fm → f uniformly in E. For example, if f, fm are elements of E, embedded

as constant sequences in EN, such that p(f − fm) 6= 0, then |||fm − f |||p,r = 1 for all m.

Proof. The property lim rn = 0 entails ∀M > 0: limMrn = 1 and thus the last state-

ment. With p(λfn) ≤ |λ|p(fn), this gives |||λf |||p,r = |||f |||p,r . Together with p(fngn) ≤
Cp(fn)p(gn), we obtain the inequality for the product. Finally, using p(fn + gn) ≤
p(fn) + p(gn) ≤ 2 max{p(fn), p(gn)} this also gives the ultrametric triangular inequal-

ity.

Proposition-Definition 2. With the above definitions , consider the sets

Fp,r = {f ∈ EN | |||f |||p,r <∞} and Kp,r = {f ∈ EN | |||f |||p,r = 0}.

(1) For rn = 0, we use in this formula the (unusual) convention 00 = 0.
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(i) Fp,r is a subalgebra of EN, and Kp,r is an ideal of Fp,r; thus

Gp,r = Fp,r/Kp,r

is an algebra. Instead of Fp,r, Kp,r and Gp,r, we also use the notations Fr(E, p),

Kr(E, p) and especially Gr(E, p).

(ii) The function

dp,r : Fp,r ×Fp,r → R+, (f, g) 7→ |||f − g|||p,r,

is an ultrapseudometric on Fp,r, inducing on Fp,r the structure of a topological

ring such that the intersection of neighborhoods of zero equals Kp,r. Multiplication

by scalars λ ∈ K is not continuous , because |||λf |||p,r = |||f |||p,r does not go to zero

as λ → 0 in K. Thus , Fp,r is not a topological K-algebra, but it is a topological

algebra over the ring F|·|,r ⊂ KN endowed with the topology given by |·|r = |||·||||·|,r .
(iii) Gp,r = Fp,r/Kp,r is a Hausdorff topological ring and topological algebra over the

generalized numbers (2) Cr = G|·|,r, the quotient topology being the same as the

topology induced by the ultrametric

d̃p,r : Gp,r × Gp,r → R+, ([f ], [g]) 7→ dp,r(f, g),

where [f ], [g] ∈ Gp,r are the classes of f, g ∈ Fp,r.

Proof. (i) This is an immediate consequence of the preceding lemma.

(ii) Well-definedness (values <∞), reflexivity and symmetry of dp,r(·, ·) are obvious.

The ultrametric property ∀f, g, h ∈ Fp,r : d(f, g) = max(d(f, h), d(h, g)) follows by ap-

plying the lemma to x = f − h, y = h − g in place of f, g. Continuity of addition and

multiplication is also a consequence of (1.1). Thus, dp,r makes Fp,r a topological ring.

(iii) Let us first show that d̃p,r is well defined, i.e. dp,r(f + j, g) = dp,r(f, g) for

j ∈ Kp,r. This is equivalent to |||x + j||| = |||x||| with x = f − g, which is again an

immediate consequence of (1.1) and the definition of Kp,r. Thus, d̃p,r does not depend

on the choice of representatives.

To show that the quotient topology is the same as the one induced by the ultrametric

d̃p,r, it is sufficient to consider the base of neighborhoods of 0. The assertion follows from

the fact that d̃p,r(0, F ) = 0 ⇔ F ∈ Kp,r. Since d̃p,r(0, F · G) = d̃p,r(0, F )d̃p,r(0, G), Gp,r

is a topological ring, and as a metric space, it is Hausdorff.

Summarizing, such Colombeau type spaces are nothing else than the usual construc-

tion of associated Hausdorff spaces for the topological subspaces of EN on which the

ultrapseudometric dp,r is defined. This will remain true for the more involved construc-

tions given in the following subsections.

It is also immediate to see that in the definition of the space Fp,r (resp. Kp,r), one

could “simplify” lim sup to sup (resp. lim). This is usually done in the theory of sequence

spaces (see Subsection 1.1.5). We prefer, however, to insist on the ultrametric structure,

and therefore express both spaces using always the same ultra-seminorm ||| · |||p,r .

(2) See also the next subsection 1.1.2.
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Remark 3 (on notation). The notations Fp,r, Kp,r, Gp,r introduced in our previous

papers [13–15] are handy in proofs; however, the notation Gr(E, p) reflects better the

functorial character of the construction (see also Section 5).

1.1.2. Colombeau generalized numbers. The setting considered here is used to define

rings of generalized numbers. For this, E is the underlying field R or C, and p = | · | the

absolute value. The resulting factor algebra G|·|,r, with topology given by | · |r = ||| · ||||·|,r ,
will be denoted by Rr or Cr. As already explained in the introduction, for r = 1/log, we

get the ring C of Colombeau numbers. More precisely, let

∀n ∈ N + 2 : rn =
1

log n
.(1.2)

This gives back Colombeau’s algebras of elements with polynomial growth modulo ele-

ments of more than polynomial decrease, because

lim sup
n→∞

|xn|1/log n <∞ ⇔ ∃C ∈ R+ : lim sup
n→∞

|xn|1/log n = C

⇔ ∃B, ∃n0, ∀n > n0 : |xn| ≤ Blog n = nlog B

⇔ ∃γ ∈ R : |xn| = o(nγ).

On the other hand, lim sup = 0 (for the ideal) corresponds to taking C = 0 and thus

∀B > 0 and ∀γ in the last lines.

1.1.3. Generalized Sobolev algebras. Another interesting application of this rather simple

setting can be obtained by considering Sobolev spaces E = W s,p(Ω), s ∈ N, p ∈ [1,∞],

which are Hilbert spaces for the norm ps,p = ‖ · ‖s,p =
∑
|α|≤s ‖∂α · ‖Lp . (Elements of

this space are distributions with all derivatives of order |α| ≤ s in Lp(Ω).)

In order to have an algebra, we can take any s ∈ N and p = ∞. Then we can apply the

construction given previously, with the norm p = ‖ · ‖s,∞ The corresponding Colombeau

type algebra is defined by GW s,∞ ≡ F/K where, according to the general definition,

F = {u ∈ (W s,∞(Ω))N | lim sup
n→∞

‖un‖1/log n
s,∞ <∞},

K = {u ∈ (W s,∞(Ω))N | lim sup
n→∞

‖un‖1/log n
s,∞ = 0}.

Note that also for n ≤ 3, W 2,2(Rn) is an algebra, since we have an inclusion W 2,2(Rn) →֒
L∞(Rn) (which is continuous). Thus, with

F‖·‖2,2,r = {f ∈W 2,2(Rn)N | lim sup
n→∞

‖un‖rn
2,2 <∞}

and

K‖·‖2,2,r = {f ∈W 2,2(Rn)N | lim sup
n→∞

‖un‖rn
2,2 = 0}

we obtain the Colombeau algebra GW 2,2(Rn) (for rn ∼ 1/log n).

By use of the Sobolev lemma, we can construct various Sobolev type algebras [60, 58].

We refer to [79], for example, for an analysis of different domains Ω ⊂ R
n for which

Sobolev type lemmas hold for W s,p(Ω), s ∈ N, p ∈ [1,∞], and that the corresponding

space F‖·‖s,p,r(Ω) can again lead to Sobolev type algebras of generalized functions.

1.1.4. Comparison results for sequences of weights. A question arising naturally at this

point is whether equivalent sequences of weights (in the classical asymptotic sense) will
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give rise to identical factor algebras. The answer is affirmative, and we can state the

result in the following precise form:

Proposition 4 (equivalent scales). Let r = (rn)n, s = (sn)n be two real sequences de-

creasing to zero. Then

lim
n→∞

sn

rn
= C > 0 ⇒ ∀x ∈ EN : |||x|||p,s = (|||x|||p,r)

C .

Whenever this holds , it follows as an immediate consequence that Fp,s = Fp,r, Kp,s = Kp,r

and therefore also Gp,s = Gp,r.

This proposition is a direct consequence of the following

Lemma 5. Assume that r = (rn)n, s = (sn)n ∈ RN
+ decrease to zero and satisfy 0 <

lim infn→∞ sn/rn ≤ lim supn→∞ sn/rn <∞. Then

∀x ∈ EN : |||x|||p,s ∈ [(|||x|||p,r)
lim inf sn/rn , (|||x|||p,r)

lim sup sn/rn ],

where the interval has reversed bounds if |||x|||p,r < 1.

Proof. Let us first prove the inequality |||x|||p,s ≤ (|||x|||p,r)
C for |||x|||p,r ≥ 1, where C =

lim supn→∞ sn/rn. We have

|||x|||p,s = lim sup
n→∞

p(xn)sn = lim sup
n→∞

esn log p(xn) = elim sup sn log p(xn).

Let us now write sn = cnrn, so that lim supn→∞ cn = C > 0. For log p(xn) ≥ 0,

lim sup
n→∞

sn log p(xn) = lim sup
n→∞

cnrn log p(xn) ≤ C lim sup
n→∞

rn log p(xn). (∗)

Thus, for |||x|||p,r ≥ 1,

|||x|||p,s ≤ eC lim sup rn log p(xn) = (|||x|||p,r)
C = (|||x|||p,r)

lim sup sn/rn .

The other bound of the interval in the lemma is obtained by exchanging r and s. Indeed,

this yields

|||x|||p,r ≤ (|||x|||p,s)
lim sup rn/sn (for |||x|||p,s ≥ 1),

and taking this inequality to the power 1/lim sup rn/sn = lim inf sn/rn yields

|||x|||p,s ≥ (|||x|||p,r)
lim inf sn/rn (for |||x|||p,s ≥ 1).

For |||x|||p,r < 1, i.e. log p(xn) < 0, the direction of the inequality (∗) is preserved when

lim sup cn is replaced by lim inf cn. This is most easily checked by first reasoning on

the absolute value, | lim sup(. . . )| = lim inf | . . . |, and then changing the direction of the

inequality, when going to the real negative values. Thus we have instead

|||x|||p,s ≤ (|||x|||p,r)
lim inf sn/rn (for |||x|||p,r < 1).

and the converse for lim sup sn/rn, i.e. the claimed lemma.

Corollary 6. The previous inequality for the semi-ultranorm in the case of finite upper

limit of s/r also implies inclusion relations for the spaces of moderate nets , and the

converse inclusion for the ideals, whenever one of the sequences of weights is dominated

by the other one:

r = O(s) ⇒ Fp,s ⊂ Fp,r & Kp,r ⊂ Kp,s.
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These relations will be used in Section 4, where algebras defined by a whole family of

sequences of weights will be considered.

It is also clear that when lim sup s/r = ∞ or lim inf s/r = 0, we cannot have a

nontrivial relation between ||| · |||p,r and ||| · |||p,s of a quantitative type similar to what

precedes.

1.1.5. Relation to Maddox’ sequence spaces. The spaces F|·|,r and K|·|,r defined above

are identical to Maddox’ sequence spaces ℓ∞(r) and c0(r),

c0(r) =
⋂

k∈N

{x ∈ C
N | lim

n→∞
|xn|k1/rn = 0} (= K|·|,r),

ℓ∞(r) =
⋃

k∈N

{x ∈ C
N | sup

n∈N

|xn|k−1/rn <∞} (= F|·|,r),

introduced by Nakano [57], Simons [74] and studied extensively by Maddox and his

students [48]–[53]. Indeed,

∃k ∈ N : sup
n∈N

|xn|k−1/rn <∞ ⇔ ∃k ∈ N : |xn| = O(k1/rn)

⇔ ∃k : lim sup
n→∞

|xn|rn ≤ k ⇔ |||x|||r <∞,

∀k : lim
n→∞

|xn|k1/rn = 0 ⇔ ∀ε > 0 : |xn| = o(ε1/rn)

⇔ ∀ε > 0, n > n0 : |xn|rn < ε ⇔ |||x|||r = 0.

In particular, these two types of sequence spaces belong to the well-known classes of

echelon and coechelon spaces, for c0(r) and ℓ∞(r) respectively [30].

The same characterization can be used for generalized Sobolev spaces as defined in

Subsection 1.1.3.

In our case, we shall always require lim rn = 0 (see also Remark 43). By [23, p. 111]

and the fact that for any k there is ρ > 0 such that
∑

n∈N
(k/ρ)1/rn < ∞, we see that

both Fp,r and Kp,r constructed in Subsection 1.1.1 are Montel and Schwartz spaces.

On the other hand, this implies that we never have AD spaces, i.e. the subset of finite

sequences will never be dense in Fp,r (but will always be in Kp,r ).

While the cited and other traditional work on sequence spaces is restricted to the case

(C, | · |), our main work applies to factor algebras constructed from more complicated

base spaces (E, p). Nevertheless, all spaces that follow can be described as intersection

or union of such echelon (resp. coechelon) spaces. The additional properties we require

in our construction of Colombeau type algebras will however simplify the situation with

respect to the general abstract theory.

1.2. Locally convex vector spaces and algebras

1.2.1. Definition. Consider now a topological algebra E over C, with locally convex

structure determined by a family P of seminorms. We shall assume that

∀p ∈ P, ∃p̄ ∈ P, ∃C ∈ R+, ∀x, y ∈ E : p(xy) ≤ Cp̄(x)p̄(y),
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which implies continuity of multiplication. Now let

FP,r = {f ∈ EN | ∀p ∈ P : |||f |||p,r <∞},
KP,r = {f ∈ EN | ∀p ∈ P : |||f |||p,r = 0}.

Proposition 7.

(i) FP,r is a (sub-)algebra of EN, and KP,r is an ideal of FP,r, thus

GP,r = FP,r/KP,r

is an algebra. As before, we also use the notation Gr(E,P) instead of GP,r, and

similarly for F and K.

(ii) For every p ∈ P,

dp,r : EN × EN → R+, (f, g) 7→ |||f − g|||p,r ,

is an ultrapseudometric on FP,r, and the family (dp,r)p∈P makes FP,r a topolog-

ical algebra over (F|·|,r, d|·|,r).
(iii) For every p ∈ P,

d̃p,r : GP,r × GP,r → R+, ([f ], [g]) 7→ dp,r(f, g),

is an ultrametric on GP,r, where [f ], [g] are the classes of f, g ∈ FP,r. The family

of ultrametrics {d̃p,r}p∈P defines a topology , identical to the quotient topology ,

for which GP,r = FP,r/KP,r is a topological algebra over Cr = G|·|,r.

Proof. (i) If f, g ∈ F and λ ∈ C, we have ∀p ∈ P : |||λf + g|||p,r ≤ max(|||f |||p,r , |||g|||p,r ),

thus FP,r and KP,r are C-linear (sub)spaces. Using continuity of multiplication in (E,P),

we have ∀p ∈ P, ∃p̄ ∈ P : |||f · g|||p,r ≤ |||f |||p̄,r|||g|||p̄,r (while the constant C disappears in

view of Crn → 1). Thus FP,r is a C-subalgebra of EN, and KP,r is an ideal of FP,r, as

claimed.

(ii) The first part of (ii) is for a fixed seminorm and thus a direct consequence of

Proposition–Definition 2. Continuity of addition and multiplication in FP,r are implied

by the previous two inequalities. Thus, F|·|,r is a topological ring, and FP,r a topological

F|·|,r-algebra, because ∀p ∈ P, ∀λ ∈ F|·|,r : |||λf |||p,r ≤ |||λ||||·|,r |||f |||p,r .

(iii) The first inequality above also implies the independence of the ultrametric from

the representatives of [f ], [g] ∈ GP,r. Finally, by definition, KP,r is here again the in-

tersection of all neighborhoods of zero, so that GP,r is nothing else than the associated

Hausdorff space.

1.2.2. Examples

Example 8 (simplified Colombeau algebra). Take Ω ⊂ Rn, E = C∞(Ω), P = {pν}ν∈N,

with pν = pν
ν , and

pµ
ν (f) := sup

|α|≤ν, x∈Kµ

|f (α)(x)|,

where r = 1/log and (Kµ)µ∈N is an increasing sequence of compact sets exhausting Ω.
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Then GP,r = FP,r/KP,r, where

FP,r = {(fn)n ∈ C∞(Ω)N | ∀ν ∈ N : sup
n>1

pν(fn)1/log n <∞},

KP,r = {(fn)n ∈ C∞(Ω)N | ∀ν ∈ N : lim
n→∞

pν(fn)1/log n = 0},

is just the simplified Colombeau algebra Gs(Ω).

In the framework of echelon and coechelon spaces, we put for k, ν ∈ N∗,

FP,r,ν,k = {f ∈ C∞(Ω)N | sup
n>1

k− log npν(fn) <∞},

which is a coechelon type space, and then

FP,r,ν =
⋃

k∈N

FP,r,ν,k, FP,r =
⋂

ν∈N

FP,r,ν .

On the other hand,

KP,r,ν,k = {f ∈ C∞(Ω)N | lim
n→∞

klog npν(fn) = 0}

is a sequence of echelon type spaces, and we let

KP,r,ν =
⋂

k∈N

KP,r,ν,k, KP,r =
⋂

ν∈N

KP,r,ν .

It is easily seen that these spaces are identical to those above, thus their quotient is again

the classical simplified Colombeau algebra Gs(Ω).

Consider the space

B∞ =
{
φ ∈ S(Rs)

∣∣∣∀α ∈ N :
\
xαφi = δα,0

}
(1.3)

and fix φ ∈ B∞. We realize the embedding of T ∈ D′(Ω) into Gs(Ω) as

iφ : D′(Ω) → Gs(Ω), T 7→ iφ(T ) = [(κnT ) ∗ φn],

where [fn] = (fn)n + KP,r denotes the class of the representative (fn)n in Gs(Ω), and

where (κn)n ∈ D(Ω)N is a sequence of functions such that κn|Kn
= 1, suppκn| ⊂ Kn+1,

where (Kn)n is an increasing sequence of compact sets exhausting Ω.

Example 9 (temperate Colombeau algebra [31, 69]). We can also describe Gτ (Rs) in

this setting. To do so, define

pν,N (ϕ) = sup{(1 + |x|2)−N |ϕ(α)(x)| | x ∈ R
s, |α| ≤ ν}

and
Fr,ν,N = {f ∈ C∞(Rs)N | |||f |||pν,N ,r ≤ eN},
Kr,ν,N = {f ∈ C∞(Rs)N | |||f |||pν,N ,r = 0}.

Now, for

Fτ,r =
⋂

ν∈N

⋃

N∈N

Fr,ν,N , Kτ,r =
⋂

ν∈N

⋃

N∈N

Kr,ν,N

the quotient space Gτ,r = Fτ,r/Kτ,r is once again a topological algebra over Cr, and equal

to the classical space Gτ (Rs) for rn ∼ 1/log n.
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Example 10 (full Colombeau algebra [8, 31]). Let us now introduce the “full” Colom-

beau algebra, based on the same (E,P) as above. Following Colombeau, for all q ∈ N let

Aq =
{
φ ∈ D(Rs)

∣∣∣∀α ∈ N
s : |α| ≤ q ⇒

\
xαφ = δα,0

}
.

Then, for fixed ν,N ∈ N and φ ∈ AN let

Fν,N,φ = {(fϕ)ϕ ∈ EA0 | |||(fφn
)n|||pν ,r ≤ N},

where φn = nsφ(n·). (Here (fφn
)n are “extracted sequences” of the elements (fϕ)ϕ ∈

ED(Rs)).

As in [8], denote by Γ ⊂ RN
+ the set of increasing positive sequences going to infinity.

Now define, for each γ ∈ Γ,

Kν,γ,q = {(fϕ)ϕ ∈ EAq | ∀φ ∈ Aq : |||(fφn
)n|||pν ,r ≤ γ(q)−1},

and

F =
⋂

ν∈N

Fν , Fν =
⋃

N∈N

Fν,N , Fν,N =
⋂

φ∈AN

Fν,N,φ,

K =
⋂

ν∈N

Kν , Kν =
⋃

γ∈Γ

Kν,γ , Kν,γ =
⋂

q∈N

Kν,γ,q.

Then F is an algebra and K an ideal of F , and G = F/K is the original full Colombeau

algebra.

The original construction of Colombeau for the ideal has been slightly modified in

[31], by taking an ideal which can in our notations be written as

K =
⋂

ν,N∈N

Kν , Kν,N =
⋃

q∈N

Kν,N,q, Kν,N,q =
⋂

ϕ∈Aq

Fν,1/N,ϕ.

If one wants to consider the full Colombeau type algebra which is invariant under

the composition with C∞-diffeomorphisms [31], one has to consider instead of the above

definition of Aq the following one:

Aq =
{

(φn)n ∈ C∞(Ω)N | (φn)n is bounded in D(Rn),

∀n ∈ N :
\
φn = 1,

\
xαφn = o(n−q)

}
.

and the corresponding mollifiers φn = nφn(n·).
Example 11. Replacing the spaces Aq with the space B∞ introduced in (1.3), we can

avoid the q index in the definition of K. We take

Fν,N,φ = {(fϕ)ϕ ∈ EB
∞ | |||(fφn

)n|||pν ,r ≤ N},
and

F =
⋂

ν∈N

Fν , Fν =
⋃

N∈N

Fν,N , Fν,N =
⋂

φ∈B∞

Fν,N,φ,

K =
⋂

ν,N∈N

Kν , Kν,N =
⋂

ϕ∈B∞

Fν,1/N,ϕ.

Then F is again an algebra and K an ideal of F . The algebra G = F/K is studied in [69,

71, 72].
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2. Projective and inductive limits

2.1. Projective limit. Let (Eµ
ν , p

µ
ν )µ,ν∈N be a family of seminormed spaces over C such

that

∀µ, ν ∈ N : Eµ
ν+1 →֒ Eµ

ν , Eµ+1
ν →֒ Eµ

ν , (2.1)

where →֒ means continuously embedded. This implies that there exist constants Cµ
ν ,

C̃µ
ν ∈ R+ such that (3)

∀µ, ν ∈ N : pµ
ν ≤ Cµ

ν p
µ
ν+1, pµ

ν ≤ C̃µ
ν p

µ+1
ν . (2.2)

In addition, we assume that the spaces
←
E µ = proj limν→∞E

µ
ν are algebras such that

∀µ, ν ∈ N, ∃ν′ ∈ N, C > 0, ∀f, g ∈ Eµ
ν′ : fg ∈ Eµ

ν and pµ
ν (fg) ≤ Cpµ

ν′(f)pµ
ν′(g). (2.3)

Then let
←
E = proj lim

µ→∞

←
E µ = proj lim

µ→∞
proj lim

ν→∞
Eµ

ν ,

and define
←F p,r = {f ∈ ←

E N | ∀µ, ν ∈ N : |||f |||pµ
ν ,r <∞},

←Kp,r = {f ∈ ←
E N | ∀µ, ν ∈ N : |||f |||pµ

ν ,r = 0}.
(Here p ≡ (pµ

ν )ν,µ stands (on the l.h.s.) for the whole family of seminorms.) Then Propo-

sition 7 holds, with the slight changes of notations introduced above (see Proposition 13

at the end of the next section).

Remark 12. The representation
←
E = proj lim

µ→∞

←
E µ = proj lim

µ→∞
proj lim

ν→∞
Eµ

ν

can of course be diagonalized to be given in the form
←
E = proj limν→∞E

ν
ν . But we prefer

the former construction because of the following simple motivation: Consider
←F µ

p,r = {f ∈ ←
E N | ∃C, ∀ν ∈ N : |||f |||pµ

ν ,r < C}
where Eµ

ν = C∞(Rs), equipped with the seminorm

pµ
ν (f) = sup

|α|≤ν, |x|≤µ

|f (α)(x)|.

Then
←F∞p,r :=

⋂
µ∈N

←F µ
p,r = E∞M (Rs) in the sense of Oberguggenberger [60], and G∞(Rs)

= F∞p,r/Kp,r is the algebra of regular generalized functions, used for the analysis of local

and microlocal properties of Colombeau generalized functions. (This algebra plays for

Colombeau’s simplified algebra the role of C∞ for D′; see Section 2.5 below.)

2.2. Inductive limit. Consider now a family (Eµ
ν , p

µ
ν )µ,ν∈N of seminormed spaces over C

such that

∀µ, ν ∈ N : Eµ
ν →֒ Eµ

ν+1, Eµ+1
ν →֒ Eµ

ν .(2.4)

(3) The following inequalities should be considered to hold on the domain of the right hand
side seminorm, seen as a subset of the domain of the left hand side seminorm, through the given
embeddings.
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This implies that there exist constants Cµ
ν , C̃

µ
ν ∈ R+ such that

∀µ, ν ∈ N : pµ
ν+1 ≤ Cµ

ν p
µ
ν , pµ

ν ≤ C̃µ
ν p

µ+1
ν .

Now let

∀µ ∈ N :
→
E µ = ind lim

ν→∞
Eµ

ν .

Assume that the spaces
→
E µ are algebras such that for every µ, ν ∈ N there exist ν′ ∈ N,

ν′ > ν, and C > 0 such that for all f, g ∈ Eµ
ν′ ,

fg ∈ Eµ
ν and pµ

ν (fg) ≤ Cpµ
ν′(f)pµ

ν′(g).

We assume furthermore that for every µ ∈ N this inductive limit is regular, i.e. a set

A ⊂ →
E µ is bounded iff it is contained in some Eµ

ν and bounded there.

Note that (2.4) implies that ∀µ ∈ N :
→
E µ+1 →֒ →

E µ. Now let
→
E := proj lim

µ→∞

→
E µ = proj lim

µ→∞
ind lim
ν→∞

Eµ
ν ,

and define
→F p,r = {f ∈ →

E N | ∀µ ∈ N, ∃ν ∈ N : f ∈ (Eµ
ν )N ∧ |||f |||pµ

ν ,r <∞},
→Kp,r = {f ∈ →

E N | ∀µ ∈ N, ∃ν ∈ N : f ∈ (Eµ
ν )N ∧ |||f |||pµ

ν ,r = 0}.
Then Proposition 7 holds again with the appropriate change of notations:

Proposition 13.

(i) Writing ↔· for both →· and ←· , we have that
↔F p,r is an algebra and

↔Kp,r is an

ideal thereof , thus
↔G p,r =

↔F p,r/
↔K p,r is an algebra. Instead of

↔G P,r, we also

suggest the notation Gr(
↔
E ), and idem for

↔F and
↔K .

(ii) For every µ, ν ∈ N,

dp,µ,ν : (Eµ
ν )N × (Eµ

ν )N → R+, (f, g) 7→ |||f − g|||pµ
ν ,r,

is an ultrapseudometric on (Eµ
ν )N.

(iii) The above family of ultrapseudometrics makes
←G p,r =

←F p,r/
←K p,r a topological

algebra over Cr, with quotient topology equivalent to the topology defined by the

family of ultrametrics (d̃pµ
ν
)µ,ν , where d̃pµ

ν
([f ], [g]) = dpµ

ν
(f, g), [f ] standing for

the class of f .

(iv) If τµ denotes the inductive limit topology on Fµ
p,r =

⋃
ν∈N

((Eµ
ν )N, dµ,ν), µ ∈ N,

then
→F p,r is a topological algebra for the projective limit topology of the family

(Fµ
p,r, τµ)µ.

Proof. The proof goes again along the same lines, where the above assumption on the

regularity of the inductive limits helps to use the same reasoning as before.

Example 14. For Ω ⊂ Rs, an exhausting sequence of compacts Kµ ⋐ Ω, µ ∈ N, and an

increasing sequence (Mn)n ∈ RN
+, define the seminorms

pM,µ
ν : ϕ 7→ sup

α∈N, x∈Kµ

ν|α||ϕ(α)(x)|
M|α|
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(clearly increasing in µ and ν), and qM,µ
ν = pM,µ

1/ν (decreasing in ν). These seminorms are

used to define Beurling (resp. Roumieu) type ultradifferentiable functions, which will be

studied in some detail in the next chapter.

2.3. Completeness. Without assuming completeness of
↔
E , we have

Proposition 15.

(i)
←F p,r is complete.

(ii) If for all µ ∈ N, a subset of
→F µ

p,r is bounded iff it is a bounded subset of (Eµ
ν )N

for some ν ∈ N, then
→F p,r is sequentially complete.

Remark 16. In the projective limit case, we have a metrisable space, therefore sequential

completeness implies completeness. This is not the case for the inductive limit case.

Proof. If (fm)m∈N is a Cauchy sequence in
←F p,r, there exists a strictly increasing se-

quence (mµ)µ∈N of integers such that

∀µ ∈ N, ∀k, ℓ ≥ mµ : lim sup
n→∞

pµ
µ(fk

n − f ℓ
n)rn <

1

2µ
.

Thus, there exists a strictly increasing sequence (nµ)µ∈N of integers such that

∀µ ∈ N, ∀k, ℓ ∈ [mµ,mµ+1], ∀n ≥ nµ : pµ
µ(fk

n − f ℓ
n)rn <

1

2µ
.

(Restricting k, ℓ to [mµ,mµ+1] allows us to take nµ independent of k, ℓ.) Let µ(n) =

sup{µ | nµ ≤ n}, and consider the diagonalized sequence

f̄ = (fmµ(n)
n )n, i.e. f̄n =





fm0
n if n ∈ [n0, n1),

. . .

fmµ
n if n ∈ [nµ, nµ+1),

. . .

Now let us show that fm → f̄ in
←F p,r as m → ∞. Indeed, for ε and pµ0

ν given, choose

µ > µ0, ν such that 1/2µ < 1
2ε. As pµ

ν is increasing in both indices, we have for m > mµ

(say m ∈ [mµ+s,mµ+s+1])

pµ0
ν (fm

n − f̄n)rn ≤ pµ
µ(fm

n − fmµ(n)
n )rn

≤ pµ
µ(fm

n − fmµ+s+1
n )rn +

µ(n)−1∑

µ′=µ+s+1

pµ′

µ′(f
mµ′

n − fmµ′+1
n )rn

and for n > nµ+s, we have of course n ≥ nµ(n), thus finally

pµ0
ν (fm

n − f̄n)rn <

µ(n)∑

µ′=µ+s

1

2µ′
<

2

2µ
< ε

and therefore fm → f̄ in
←F .

For a Cauchy net (fm)m in
→F p,r, the proof requires some additional considerations.

We know that for every µ there is ν(µ) such that

pµ
ν(µ)(f

m
n − fp

n)rn < εµ,
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where (εµ)µ decreases to zero. For every µ we can choose ν(µ) so that pµ
ν(µ) ≤ pµ+1

ν(µ+1).

Now by the same arguments as above, we prove the completeness in the case of
→F p,r.

2.4. Sheaf theory aspects. Let us now apply concepts of sheaf theory to local and

microlocal analysis in generalized function spaces, through the sequence space presenta-

tion.

We will investigate under what conditions a generalized algebra
↔G p,r is a (pre-)sheaf,

provided that
↔
E is a (pre-)sheaf. Here,

↔
E stands for the functor associating to each open

set Ω the space
↔
E (Ω) constructed according to the preceding sections for a given family

(Eµ
ν (Ω), pµ

ν,Ω). More details will be given below.

Some definitions are necessary to formulate such statements more precisely and to

prove them.

2.4.1. Preliminary considerations. Recall that a presheaf F (of objects in a concrete

category) on a topological space X is given by

– the association of a set F (Ω) to each open set Ω of X, and

– for every inclusion of open sets Ω′ ⊂ Ω, a restriction map ρΩ,Ω′ : F (Ω) → F (Ω′),

f 7→ f |Ω′ , such that

∗ for each open set Ω of X, ρΩ,Ω is the identity map on F (Ω), and

∗ for any three open sets Ω′′ ⊂ Ω′ ⊂ Ω, we have ρΩ′,Ω′′ ◦ ρΩ,Ω′ = ρΩ,Ω′′ .

A presheaf F is a sheaf iff the following conditions hold:

(i) Let (Ωi)i be a family of open sets and (fi)i a compatible family of sections fi ∈
F (Ωi), i.e. such that

∀i, j : fi|Ωi∩Ωj
= fj |Ωi∩Ωj

.

Then there exists a section f ∈ F (
⋃

i Ωi) such that ∀i : f |Ωi
= fi.

(ii) Let Ω =
⋃

i∈I Ωi, f, g ∈ F (Ω) and f |Ωi
= g|Ωi

for all i. Then f = g.

To speak of a sheaf of objects in a given category, one requires that the sets F (Ω)

be objects of this category, and the restrictions be morphisms of the category. We re-

strict ourselves here to (pre-)sheaves of topological algebras over topological rings, on a

paracompact topological space X. Accordingly, the restriction maps must be continuous

algebra morphisms.

(Recall that Colombeau type generalized functions are never topological vector spaces,

because scalar multiplication with elements of R or C is not continuous, as seen in

Proposition–Definition 2; they are only topological modules (and algebras, if
↔
E is so)

over the ring of generalized numbers.)

2.4.2. The presheaf
↔
E . Let X be a paracompact Hausdorff space. Let us assume that

for each (fixed) open set Ω ⊂ X, the space
↔
E (Ω) is constructed as described in the

previous sections from a sequence (Eµ
ν (Ω), pµ

ν,Ω) satisfying the given inclusion relations.

Thus, for every fixed Ω,
←
E (Ω) = proj lim

µ→∞

←
E µ(Ω) = proj lim

µ→∞
proj lim

ν→∞
Eµ

ν (Ω),
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resp.
→
E (Ω) = proj lim

µ→∞

→
E µ(Ω) = proj lim

µ→∞
ind lim
ν→∞

Eµ
ν (Ω).

Moreover, we now assume that the spaces Eµ
ν (Ω) are spaces of (at least continuous)

functions, defined on Ω, for which we have the (pointwise) restrictions of functions in the

usual sense, f ∈ Eµ
ν (Ω) ⊂ C0(Ω) 7→ f |Ω′ ∈ C0(Ω′). (In what follows, we will study more

precisely the question to which Eµ′

ν′ (Ω′) this restricted function will belong, in order to

find that Ω → ↔
E (Ω) are indeed sheaves.)

Proposition 17. Under the above assumptions ,
↔
E : Ω → ↔

E (Ω) (with the pointwise

restriction) is a presheaf of vector spaces , if for any open sets Ω1 ⊂ Ω2 in X, we have

– in the projective limit case:

∀µ, ν ∈ N, ∃µ′, ν′ ∈ N, ∃C > 0, ∀f ∈ Eµ′

ν′ (Ω2) :

f |Ω1
∈ Eµ

ν (Ω1) and pµ
ν,Ω1

(f |Ω1
) ≤ Cpµ′

ν′,Ω2
(f), (2.5)

– in the inductive limit case:

∀µ ∈ N, ∃µ′ ∈ N, ∀ν′ ∈ N, ∃ν ∈ N, ∃C > 0, ∀f ∈ Eµ′

ν′ (Ω2) :

f |Ω1
∈ Eµ

ν (Ω1) and pµ
ν,Ω1

(f |Ω1
) ≤ Cpµ′

ν′,Ω2
(f). (2.6)

Proof. Since the proof for the projective limit case is analogous but much simpler, we

only consider the inductive limit case.

Let f ∈ →
E (Ω2). Fix µ. Determine µ′ according to condition (2.6). We know that

f ∈ Eµ′

ν′ (Ω2) for some ν′. Then, by (2.6), there is ν such that f |Ω1
belongs to Eµ

ν (Ω1),

thus f |Ω1
∈ ↔
E (Ω1). Now, without fixing f from the beginning, one sees that the second

condition implies that the (set categorical) restriction is indeed continuous.

2.4.3. The (pre)sheaf Gr(
↔
E ). Now we will consider, for each Ω, the algebras Fr(

↔
E (Ω)),

Kr(
↔
E (Ω)) (ideal of Fr(

↔
E (Ω))) and Gr(

↔
E (Ω)). We keep the hypotheses of the beginning

of this subsection.

Proposition 18. Assume that we have (2.5) in the projective limit case (resp. (2.6) in

the inductive limit case). Then:

(i) Fr(
↔
E ) : Ω → Fr(

↔
E (Ω)) is a presheaf of topological F|·|,r-algebras ;

(ii) Kr(
↔
E ) : Ω → Kr(

↔
E (Ω)) is a presheaf of ideals of Fr(

↔
E ), i.e., a presheaf of

topological algebras such that for each Ω, Kr(
↔
E )(Ω) is an ideal of Fr(

↔
E )(Ω);

(iii) Gr(
↔
E ) = Fr(

↔
E )/Kr(

↔
E ) : Ω → Fr(

↔
E )(Ω)/Kr(

↔
E )(Ω), is a presheaf of topological

G|·|,r(= Kr)-algebras , for the restriction mapping

Gr(
↔
E )(Ω) ∋ f 7→ f |Ω′ = (f̃n|Ω′)n + Kr(

↔
E )(Ω′) ∈ Gr(

↔
E )(Ω′),

where (f̃n)n is any representative of f .

Proof. Let us start by defining what the restriction mappings are in Fr(
↔
E ). For given

Ω ⊃ Ω1, elements f of Fr(
↔
E )(Ω) are sequences of functions of

↔
E (Ω). They can, by

assumption, be componentwise restricted to Ω1, i.e. we have a function ρ̃Ω,Ω1
which maps

any f = (fn)n ∈ Fr(
↔
E (Ω)) ⊂ ↔

E N(Ω) into the sequence f |Ω1
= (fn|Ω1

)n ∈ ↔
E (Ω1)

N.
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But more precisely, the respective assumptions (2.5) and (2.6) imply that the sequence

f |Ω1
is an element of Fr(

↔
E (Ω1)) for f ∈ Fr(

↔
E (Ω)). We will explain this in the inductive

limit case; a similar and even simpler explanation holds for the projective limit case.

Let (fn)n ∈ Fr(
→
E (Ω)). We know that for every µ′ there exists ν′ such that ∀n ∈ N :

fn ∈ Eµ′

ν′ (Ω). Fix µ and determine µ′ according to (2.6), and ν′ as above. Now, again

by (2.6) and ν from this condition, we have (fn|Ω1
)n ∈ Eµ

ν (Ω1)
N. Again by (2.6), we find

that (fn)n ∈ Fr(
→
E (Ω1)). The same reasoning can be applied to K instead of F .

The condition ρ̃Ω,Ω = id and the one on composition of restrictions are immediately

checked to hold. Finally, conditions (2.6) (resp. (2.5)) also imply continuity of the

restriction mapping.

Thus, Fr(
↔
E ) and Kr(

↔
E ) are presheaves of topological F|·|,r-algebras. Now, again by

(2.6), one can prove that for each Ω, Kr(
↔
E )(Ω) is an ideal of Fr(

↔
E )(Ω), as claimed.

With this, it is immediate to see that the given restriction on Gr(
↔
E ) is well defined

(independent of the chosen representative), and the general theory implies that

Gr(
↔
E ) : Ω → Gr(

↔
E (Ω)) ≡ Fr(

↔
E (Ω))/Kr(

↔
E (Ω))

indeed defines a presheaf.

Example 19. Take S, the presheaf of rapidly decreasing smooth functions on X = Rs.

We define, for any open subset Ω ⊂ Rs,

∀µ, ν ∈ N : qµ
ν,Ω(f) = sup

x∈Ω, t≤µ, |α|≤ν

(1 + |x|)t|f (α)(x)|

and set Sµ
ν (Ω) = {f ∈ C∞(Ω) | qµ

ν,Ω(f) <∞}. Then

S(Ω) = proj lim
µ→∞

proj lim
ν→∞

Sµ
ν (Ω).

As property (2.5) clearly holds for the family (qµ
ν,Ω)ν,µ,Ω, the corresponding functor GS,r =

Gr(S) : Ω → Gr(S(Ω)) defines a presheaf of rapidly decreasing generalized functions.

Proposition 20. Assume that for every open Ω ⊂ X and every locally finite open cover-

ing (Ωλ)λ of Ω, we have a partition of unity (ηi)i ∈
↔
E (Ω)N (that is , there exists a subcover

(Ωi)i∈N of (Ωλ)λ such that supp ηi ⊂ Ωi and
∑

i ηi = 1 on Ω). Moreover , assume:

– in the projective limit case, (2.5) and that for all µ, ν ∈ N∗, there exists a finite

subfamily (Ωij
)j∈{1,...,ℓ} and (µj)j , (νj)j ∈ (N∗)ℓ such that

∀f ∈ Eµ
ν (Ω), ∀j : ηij

f ∈ Eµj
νj

(Ωij
) and pµ

ν,Ω(f) ≤
ℓ∑

j=1

p
µj

νj ,Ωij
(ηij

f), (2.7)

– in the inductive limit case, (2.6) and that for any µ ∈ N∗, there exists a finite

subfamily (Ωij
)j∈{1,...,ℓ} and (µj)j ∈ (N∗)ℓ such that for all (νj)j ∈ (N∗)ℓ there is

ν ∈ N∗ such that

∀f ∈ Eµ
ν (Ω), ∀j : ηij

f ∈ Eµj
νj

(Ωij
) and pµ

ν,Ω(f) ≤
ℓ∑

j=1

p
µj

νj ,Ωij
(ηij

f), (2.8)

where Ω =
⋃

i Ωi.
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Then Fr(
↔
E ) is a fine sheaf , and Kr(

↔
E ) is a fine subsheaf thereof. In addition, for every

open Ω in X,

0 → Kr(
↔
E )(Ω) → Fr(

↔
E )(Ω) → Gr(

↔
E )(Ω) → 0

is an exact sequence, and Gr(
↔
E ) is a fine sheaf.

Proof. Consider the inductive limit case and the presheaf Ω → Fr(
→
E )(Ω) (resp. Ω →

Kr(
→
E )(Ω)). Let Ω =

⋃
i∈I Ωi, (fn)n ∈ Fr(

→
E )(Ω) (resp. Kr(

→
E )(Ω)), and (fn|Ωi

)n = 0.

Then clearly (fn)n = 0 in the respective sequence spaces over Ω. Since we have assumed

that the spaces Eµ
ν (Ω) consist of functions which are at least continuous, their glueing for

the second sheaf property leads to a proof showing that the second condition holds for

Ω → Fr(
→
E )(Ω) and for Ω → Kr(

→
E )(Ω). Both sheaves are fine since we have partitions

of unity, as usual.

Let (fn)n ∈ Fr(
→
E )(Ω), and Ω =

⋃
i∈I Ωi. Assume that (fn|Ωi

)n ∈ Kr(
→
E )(Ωi). Then,

by taking powers 1/rn on both sides of (2.8), we find that (fn)n ∈ Kr(
→
E )(Ω). This

implies that the short sequence is exact and by the well-known result of sheaf theory, it

follows that Ω → Gr(
→
E )(Ω) is a fine sheaf.

Example 21 (generalization of Example 8). Take C∞, the sheaf of smooth functions

on X = Rs, and denote by O the set of all open subsets of Rs. We can find a family

(KΩ
µ )µ∈N, Ω∈O of compact subsets of Rs such that for each Ω ∈ O, the sequence (KΩ

µ )µ∈N

exhausts Ω. We set

∀µ, ν ∈ N, ∀f ∈ Cν(Ω) : pµ
ν,Ω(f) = sup

x∈KΩ
µ , |α|≤ν

|f (α)(x)|.

Then

C∞(Ω) = proj lim
µ→∞

proj lim
ν→∞

Eµ
ν (Ω)

where Eµ
ν (Ω) = Cν(Ω) is equipped with the seminorm pµ

ν,Ω. Moreover, we can choose

the family (KΩ
µ )µ∈N, Ω∈O such that properties (2.5) and (2.7) hold. Thus, Gr(C∞) : Ω →

Gr(C∞(Ω)) defines a fine sheaf. We simply denote it by Gr : Ω → Gr(Ω).

For rn ∼ 1/log n, we recover the well known result for the sheaf of Colombeau sim-

plified algebras.

Example 22 (continuation of Example 19). The functor GS,r : Ω → Gr(S(Ω)) is not a

sheaf. The associated sheaf is Gr : Ω → Gr(Ω), as in distribution theory, the associated

sheaf to S ′ is D′.
Remark 23. By the given theory, it follows that algebras of generalized ultradistribu-

tions for non-quasianalytic sequences (Mp) (in our case for Mp = p!s, s > 1) constitute

fine sheaves. Let us just note that we do not have partitions of unity in spaces of analytic

functions. In this case one can use other techniques (theory of holomorphic functions) in

order to prove the sheaf properties of the space of holomorphic generalized functions [62].

2.5. Introduction to regularity theory. Our aim is to show how the concept of

regular generalized functions introduced in [31, 60] and slightly generalized in [12] fits

into our settings. We restrict ourselves here to the case of projective limits, since we want
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to illustrate the concepts with the example of Gr (see Example 21), which corresponds

to the C∞-analysis in the framework of Schwartz’s distributions.

2.5.1. Subspaces of Gr(
←
E ) and singular supports

Definition 24. We say that a subset R of RN
2

+ = {(Cµ
ν )µ,ν∈N | Cµ

ν ∈ R+} is regular iff

∀C ∈ R, ∀µ, ν ∈ N : Cµ
ν ≤ Cµ+1

ν , Cµ
ν ≤ Cµ

ν+1,(2.9)

∀C ∈ R, ∀κ ∈ R+, ∃D ∈ R, ∀µ, ν ∈ N
2 : κCµ

ν ≤ Dµ
ν ,(2.10)

∀C1, C2 ∈ R, ∃D ∈ R, ∀µ, ν ∈ N
2 : max(Cµ

1,ν , C
µ
2,ν) ≤ Dµ

ν ,(2.11)

∀C1, C2 ∈ R, ∃D ∈ R, ∀µ, ν ∈ N
2 : Cµ

1,νC
µ
2,ν ≤ Dµ

ν .(2.12)

Example 25.

(i) The set B of bounded sequences, increasing in both indices, is a regular subset

of the subset of RN
2

+ of all sequences increasing in both indices, which is itself

regular.

(ii) The set B1 (resp. B2) of increasing sequences depending only on µ (resp. ν) is

regular.

With the notations and the background of the previous subsection, we set, for any

Ω ∈ O and any regular subset R,

FRr (
←
E (Ω)) = {f ∈ ←

E N(Ω) | ∃C ∈ R, ∀µ, ν ∈ N : |||f |||Ωpµ
ν ,r < Cµ

ν }.

Proposition 26. Assume that property (2.5) holds (resp. that
←
E allows for partitions of

unity and that properties (2.5) and (2.7) hold). Then FRr (
←
E ) : Ω → FRr (

←
E (Ω)) defines

a subpresheaf (resp. subsheaf ) of subalgebras of Fr(
←
E ).

The algebraic properties of FRr (
←
E (Ω)) come directly from properties (2.10–2.12) in

Definition 24, whereas the proof of presheaf (resp. sheaf) properties follows the same

lines as in Proposition 18 (resp. Propositions 18 and 20).

Under the assumptions of Proposition 26, the presheaf (resp. sheaf)

GRr (
←
E ) = FRr (

←
E )/Kr(

←
E )

is called the sheaf of (r,R)-type generalized functions.

Example 27. We consider the sheaf Gr based on C∞, introduced in Example 21, and

the regular set B1 of increasing sequences depending only on µ. Then the subsheaf

GB1
r = G∞r is the sheaf of G∞ generalized functions, introduced in [60], and used in local

and microlocal study of generalized functions.

Example 28. We consider the presheaf GS,r based on S, introduced in Example 19,

and the regular set B of bounded sequences, increasing in both indices. The subpresheaf

G∞S,r = GBS,r is used for the characterization of compactly supported G∞ generalized func-

tions: A compactly supported generalized function is G∞ regular iff its Fourier transform

belongs to G∞S,r(R
s). (See below and [12, 33–35] for more details and applications.)

We assume now that
←
E is a sheaf of algebras and that properties (2.5) and (2.7)

hold. Our framework gives the tools for the local study of Colombeau type generalized
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functions. First, as Gr(
←
E ) is a presheaf, the notion of restriction makes sense. Thus, for

any regular set R and f ∈ GRr (
←
E (Ω)) (Ω an open subset of X), we can define

OR(f) = {x ∈ Ω | ∃V ∈ Vx : f |V ∈ GRr (
←
E (V ))}.

From sheaf properties, it follows that f |OR
belongs to GRr (

←
E (OR)) and that OR(f) is the

largest open set of X having this property. We call OR(f) the (open) set of R-regularity

of f and we define

supp sing
R

(f) = X \OR(f).

Example 29. Returning to Example 27, we define, in particular, the G∞ singular support

of a generalized function, by choosing R = B1.

2.5.2. Elements of microlocal analysis. We shall do this study for the case of the sheaf Gr,

introduced in Example 21.

Some embedding results. One can show that, for any open subset Ω of R
s, the space

GC,r(Ω) of compactly supported elements of Gr(Ω) is naturally embedded in GC,r(R
s),

and that GC,r(R
s) is embedded in GB2

S,r(R
s). (Recall that B2 is the set of sequences

(µ, ν) 7→ Cµ
ν = Cν , that is, the set of sequences depending only on ν.)

Indeed, for any f ∈ GC,r(R
s), there exists a representative (fn)n ∈ f such that

each fn is supported in the same compact set, which can be included in one of the Kµ.

(We refer to Example 21 for the notation, with the simplification Kµ = KR
s

µ .) Such

a representative is constructed by multiplying any (gn)n ∈ f by a function θ ∈ D(Rs)

satisfying θ ≡ 1 on a neighborhood of supp(f) and 0 ≤ θ ≤ 1 elsewhere. Furthermore,

for any (gn)n, the class of (θgn)n in GS,r(R
s) does not depend on the choices of (gn)n

and θ. We have, with the notations of Examples 19 and 21,

∀µ, ν ∈ N, ∃Cµ > 0, ∀f ∈ D(Rs) with supp(f) ⊂ Kµ0
:

pµ0
ν (f) ≤ qµ

ν (f) ≤ Cµp
µ0
ν (f). (2.13)

From the previous remarks and these inequalities, it is straightforward that the mapping

ιC,S : GC,r(R
s) → GS,r(R

s), f 7→ [(fn)n]S ,

(where (fn)n ∈ f is such that each fn is supported in the same compact set Kµ0
) is an

injective morphism of algebras.

Furthermore, inequalities (2.13) imply that ιC,S(f) = [(fn)n]S satisfies

|||ιC,S(f)|||qµ
ν ,r ≤ |||f |||pµ0

ν ,r.

Thus, ιC,S(GC,r(R
s)) ⊂ GB2

S,r(R
s) as stated above.

Fourier transform. Since the Fourier transform (4) FT : S(Rs) → S(Rs) is a linear

continuous mapping, there exists a canonical extension (still denoted by FT ) defined by

FT : GS,r(R
s) → GS,r(R

s), f 7→ [(FT (fn))n]S ,

(4) We denote the Fourier transform by FT to avoid confusion with the spaces Fp,r and
related functorial notation.
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where (fn)n is a representative of f . Moreover, FT is a linear isomorphism, continuous

for the topology given by the family of ultranorms (||| · |||qµ
ν ,r)µ,ν . (See Section 5 for a more

general approach to the problem of extension of maps.)

From now on, we call a subset R of R
N

2

+ regular if it satisfies (2.9–2.12) and

∀C ∈ R, ∀µ0, ν0 ∈ N
2, ∃D ∈ R, ∀µ, ν ∈ N

2 : Cµ+µ0

ν+ν0
≤ Dµ

ν . (2.14)

For R ⊂ RN
2

+ , define

Ř = {C ∈ R
N

2

+ | ∃D ∈ R, ∀µ, ν ∈ N
2 : Cµ

ν = Dν
µ}.

One can check that a set R is regular if and only if Ř is regular.

With this, we can formulate the following exchange proposition:

Proposition 30. Let R be a regular set. Then

FT (GRS,r(R
s)) = GŘS,r(R

s). (2.15)

The proof of Proposition 30 is based on properties of regular sets and on the following

classical lemma:

Lemma 31. For all µ, ν in N, there exists Cµ,ν > 0 such that

∀u ∈ S(Rs) : qµ
ν (FT (u)) ≤ qν+s+1

µ (u).

Note that the equality (2.15) also holds for the inverse Fourier transform.

Example 32. Choosing R = B gives, in particular, FT (G∞S,r(R
s)) = G∞S,r(R

s), since

B̌ = B.

The following proposition gives a characterization of regular compactly supported

generalized functions by a regularity property of their Fourier transform. This is an

analogue in the framework of generalized functions of the similar result asserting that a

compactly supported distribution is a smooth function if and only if its Fourier transform

(which is a priori a slowly increasing function) is rapidly decreasing.

Proposition 33. Let R2 be a regular set , formed by sequences depending only on ν. For

f ∈ GC,r(R
s), the following two statements are equivalent :

(i) f belongs to GR2
r (Rs),

(ii) FT (f) belongs to GŘ2

S,r(R
s).

Proof. Let f ∈ GR2
r (Rs). A closer inspection of the previous embedding results shows

that GR2
r (Rs) is embedded in GR2

S,r(R
s). Using Proposition 30, we see that FT (f) belongs

to GŘ2

S,r(R
s). Conversely, if FT (f) ∈ GŘ2

S,r(R
s), then f ∈ GR2

S,r(R
s). Since f is compactly

supported, we can find Kµ0
such that supp(f) ⊂ Kµ0

. From the left inequality of (2.13),

it follows that f ∈ GR2
r (Rs).

Remark 34. Taking sequences depending only on ν in Proposition 33 is not a loss of

generality, since we consider compactly supported generalized functions.

Indeed, take f ∈ GRC,r(R
s) with supp(f) ⊂ Kµ0

and, for all µ, ν ∈ N, |||f |||pµ
ν ,r ≤ Cµ

ν ,

(Cµ
ν )µ,ν ∈ R. Then, for all k ≥ µ0, we have

|||f |||pµ
ν ,r = |||f |||pµ0

ν ,r ≤ Cµ0
ν .
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Thus, GRC,r(R
s) = GR2

C,r(R
s) with R2 = {(Cµ0

ν )µ,ν | µ0 ∈ N, (Cµ
ν )µ,ν ∈ R}. (The inclusion

⊃ comes from the monotonicity in µ of the sequence (Cµ
ν )µ,ν .)

Example 35. Take R2 = B, the set of increasing bounded sequences, defining the sheaf of

algebras G∞r . Then Ř2 = B, thus GŘ2

S,r(R
s) = G∞S,r(R

s). We recover the characterization

of G∞ regular compactly supported mentioned in Example 28.

Microlocalization. Proposition 33 is a basis of local analysis in this approach to Colom-

beau generalized functions and justifies the following notions.

Notations. Let Ω be an open subset of Rs. For (x, ξ) ∈ Ω × Rs \ {0}, we denote by

(i) Vx (resp. VΓ
x ) the set of all open neighborhoods (resp. open convex conic neigh-

borhoods) of x (resp. ξ),

(ii) Dx(Ω) the set of elements of D(Ω) not vanishing at x.

From now on, we fix a regular set R. As we are going to investigate the local behavior of

generalized functions, we may assume that sequences in R only depend on ν, according

to Remark 34. For f ∈ GC,r(Ω), we set

OΓ
R(f) = {ξ ∈ R

s \ {0} | ∃Γ ∈ VΓ
x : FT (f)|Γ ∈ GŘS,r(Γ)}.

Lemma 36. For f ∈ GC,r(R
s) and ϕ ∈ D(Rs), we have OΓ

R(f) ⊂ OΓ
R(ϕf).

The proof follows the same lines as the one of Lemma 27 in [12].

Let R be a regular set and Ω a subset of Rs.

Definition 37. A function f in Gr(Ω) is said to be R-microregular at (x, ξ) ∈ Ω×Rs\{0}
if there exist ϕ ∈ Dx(Ω) and Γ ∈ VΓ

x such that FT (ϕf)|Γ ∈ GŘS,r(Γ).

We set, for f in Gr(Ω),

OΓ
R,x(f) =

⋃

ϕ∈Dx(Ω)

OΓ
R(ϕf) = {ξ ∈ R

s \ {0} | f is R microregular at (x, ξ)},

ΣΓ
R,x(f) =

⋂

ϕ∈Dx(Ω)

OΓ
R(ϕf) = (Rs \ {0}) \ OΓ

R,x(f).

Definition 38. For f in Gr(Ω), the set

WFR(f) = {(x, ξ) ∈ Ω × (Rs \ {0}) | ξ ∈ ΣΓ
R,x(f)}

is called the R wavefront of f .

The following proposition establishes the link between the R wavefront and the R
singular support of f .

Proposition 39. For f in Gr(Ω), the projection on the first component of WFR(f) is

equal to supp singR(f).

The proof follows the same lines as the one of Lemma 8.1.1 in [32] which concerns the

same result for the C∞ wavefront of a distribution. The key point is given by Lemma 36

or its analogue for the distributional case.

Example 40. Taking R = B, the set of bounded sequences, we recover the G∞ wavefront

of a Colombeau generalized function.
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3. Embeddings

We already showed through examples that various definitions of Colombeau algebras

C̄ and G can be realized through sequence spaces corresponding to the sequence rn =

1/log n. The embedding of Schwartz distributions and of smooth functions into G is

well-known (see Example 8 and [31, 59]). It is also well-known that the multiplication of

smooth functions embedded into G is the usual multiplication, i.e. it commutes with the

(canonical “constant”) embedding.

In this section we deal with some classes of ultradistributions and periodic hyper-

functions. We will apply the general construction given in Section 2, and now study

embeddings and the multiplication of regular elements embedded into the corresponding

sequence space.

3.1. General remarks on embeddings of duals. Under mild assumptions on
↔
E , we

show that our algebras of classes of sequences contain embedded elements of strong dual

spaces
↔
E ′. First, we consider the embedding of the delta distribution. We show that

general assumptions on test spaces and on a delta sequence lead to the unboundedness

of this sequence in
↔
E .

We assume that
↔
E is dense and continuously embedded in one of the following spaces:

F = C0(Rs), the space of continuous functions with the projective topology given by sup

norms on the balls B(0, n), n ∈ N
∗, or F = K(Rs) = ind limn→∞(Kn, ‖ · ‖∞), where

Kn = {ψ ∈ C(Rs) | suppψ ⊂ B(0, n)}.
(Recall that K′(Rs) is the space of Radon measures.)

In both cases we have δ ∈ F ′ and therefore also δ ∈ ↔
E ′.

Proposition 41. Consider a sequence (δn)n ∈ ↔
E N, converging weakly to δ in

↔
E ′, i.e.

for all ψ ∈ ↔
E the integral

T
Rs δn(x)ψ(x) dx is defined and tends to ψ(0) as n→ ∞. Then

(δn)n cannot be bounded in
↔
E in any of the following cases :

(i) F = C0(Rs) and ∀n ∈ N : δn ∈ F ′ and

∃M > 0, ∀n ∈ N : sup
|x|>M

|δn(x)| < M.

(ii) F = K(Rs) and there exists a compact set K such that ∀n ∈ N∗ : supp δn ⊂ K.

(iii)
↔
E is sequentially weakly dense in

↔
E ′ and

1. every φ ∈ ↔
E defines an element of F ′ by ψ 7→

T
Rs φ(x)ψ(x) dx,

2. if (φn)n is a bounded sequence in
↔
E , then supn∈N, x∈Rs |φn(x)| <∞.

Proof. We will give the proof for (i) and (iii).

(i) Let us show that (δn)n is not bounded in
↔
E . First, consider

←
E . Boundedness of

(δn)n in
←
E would imply: ∀µ ∈ N, ∀ν ∈ N, ∃C1 > 0, ∀n ∈ N : pµ

ν (δn) < C1. Continuity of
←
E →֒ C0(Rs) gives

∀k ∈ N, ∃µ ∈ N, ∃ν ∈ N, ∃C2 > 0, ∀ψ ∈ ←
E : sup

|x|<k

|ψ(x)| ≤ C2p
µ
ν (ψ).

It follows that ∃C > 0, ∀n ∈ N : supx∈Rs |δn(x)| < C, which is impossible. To show this,

take ψ ∈ C0(Rs) positive and such that ψ(0) = C + 1 and
T
ψ < 1. The assumption
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δn ∈ F ′ implies that it acts on C0(Rs) by ψ 7→
T
δn(x)ψ(x) dx. This gives C+1 = ψ(0) =

limn→∞ |
T
δnψ dx| ≤ C.

For
→
E , simply exchange ∀ν ↔ ∃ν in the above.

(iii) Assumption 2 and boundedness of (δn)n in
↔
E would imply that ∃C > 0, ∀n ∈ N :

supx∈Rs |δn(x)| < C. Then, by assumption 1 we conclude the proof as in (i).

Remark 42. One can take for
↔
E one of Schwartz test function spaces or the Beurling or

Roumieau test function space of ultradifferentiable functions. Since the delta distribution

lives on all functions which are continuous at zero, one can also consider F and
↔
E to

consist of holomorphic functions with appropriate topologies. This was the reason for

considering C0, although there are many classes of test spaces which would imply the

necessary accommodation of conditions of the previous assertion.

Thus, the appropriate choice of a sequence r decreasing to 0 appears to be important

to have at least δ embedded into the corresponding algebra. It can be chosen such that

for all µ ∈ N and all ν ∈ N (resp. some ν ∈ N in the
→
E case), lim supn→∞ pµ

ν (δn)rn = Aµ
ν

and ∃µ0, ν0 : Aµ0
ν0

6= 0.

So the embedding of duals into corresponding algebras is realized on the basis of two

demands:

(i)
↔
E is weakly sequentially dense in

↔
E ′.

(ii) There exists a sequence (rn)n decreasing to zero such that for all f ∈ ↔
E ′ and

corresponding sequence (fn)n in
↔
E , with fn → f weakly in

↔
E ′, we have for all µ

and all ν (resp. some ν), lim supn→∞ pµ
ν (fn)rn <∞.

Remark 43. In the definition of our sequence spaces
→F p,r (resp.

←F p,r), we assumed

rn ց 0 as n→ ∞. (Later, we will have families of sequences decreasing to 0.)

In principle, one could consider more general sequences of weights. For example, if

rn ∈ (α, β), 0 < α < β, then
↔
E can be embedded, in the set-theoretical sense, via the

canonical map f 7→ (f)n (fn = f). If rn → ∞,
↔
E is no more included in

↔F p,r.

In the case we are considering (rn → 0), the induced topology on
↔
E is obviously a

discrete topology. But this is necessarily so, since we want to have “divergent” sequences

in
↔F p,r. Thus, in order to have an appropiate topological algebra containing “δ”, it is

unavoidable that our generalized topological algebra induces a discrete topology on the

original algebra
↔
E .

In some sense, in our construction this is the price to pay, in analogy to Schwartz’

impossibility statement for multiplication of distributions [73].

3.2. Colombeau ultradistributions of Gevrey class. In [67], we constructed Co-

lombeau type algebras of ultradistributions with general sequences Mp, p ∈ N, satisfy-

ing assumptions (M.1), (M.2) and (M.3)′ ([40], [65]). Here, we will consider the case

Mp = p!m, where m > 1. In some sense, we will simplify the situation considered in [67],

but at the same time improve significantly the assertions of [67]. To do so, we cast the

whole theory into the sequence space framework of this paper.

In the next example, we give the realisation of the ring of ultracomplex numbers

through the quotient of corresponding sequence spaces.
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Example 44. Consider the sequence ∀n ∈ N∗ : rn = 1/n1/m with some fixed m > 0.

With this sequence and E = C, p = | · | (absolute value), one obtains the ultracomplex

numbers F|·|,r /K|·|,r = C
p!m

; cf. [67] (m > 1), [77] (m ≤ 1). We will use the notation

F|·|,r = Ep!m

0 , K|·|,r = N p!m

0 .

Now we will apply our constructions of Section 2. For the function space E = C∞(Rs),

we define the following sequences of seminorms, for all µ, ν ∈ R+ and m > 1:

pm,µ
ν (f) = sup

|x|≤µ, α∈Ns

ν|α|

α!m
|f (α)(x)|, qm,µ

ν = pm,µ
1/ν ,

and let, for µ, ν ∈ N, Eµ
ν = Epm,µ

ν
(resp. Eµ

ν = Eqm,µ
ν

) be the subset of E on which the

given seminorm is finite.

For the first case, we clearly have Eµ+1
ν →֒ Eµ

ν , Eµ
ν+1 →֒ Eµ

ν for any µ, ν ∈ N, and for

the second case, we have Eµ+1
ν →֒ Eµ

ν , Eµ
ν →֒ Eµ

ν+1 for any µ, ν ∈ N.

Denote by Dpm,µ
ν

(resp. Dqm,µ
ν

) the subspace of Epm,µ
ν

(resp. Eqm,µ
ν

) consisting of

smooth functions supported by the ball {|x| ≤ ν}.
Recall (cf. [41]) that

E(m) = proj lim
µ→∞

E(m,µ) = proj lim
µ→∞

proj lim
ν→∞

Epm,µ
ν

,

D(m) = ind lim
µ→∞

D(m,µ) = ind lim
µ→∞

proj lim
ν→∞

Dpm,µ
ν

,

resp.

E{m} = proj lim
µ→∞

E{m,µ} = proj lim
µ→∞

ind lim
ν→∞

Eqm,µ
ν

,

D{m} = ind lim
µ→∞

D{m,µ} = ind lim
µ→∞

∗ ind lim
ν→∞

Dqm,µ
ν

.

These are spaces of ultradifferentiable functions of Beurling, respectively Roumieu

type; their duals are spaces of compactly supported Beurling ultradistributions and (gen-

eral) Beurling ultradistributions, respectively of compactly supported Roumieu ultradis-

tributions and (general) Roumieu ultradistributions.

Take m > 1, m′ > 0, rn = n−1/m′

, and let f = (fn)n be a sequence of smooth

functions on Rs. Let

|||f |||pm,µ
ν ,m′ = lim sup

n→∞
[pm,µ

ν (fn)]n
−1/m′

,

|||f |||qm,µ
ν ,m′ = lim sup

n→∞
[qm,µ

ν (fn)]n
−1/m′

.

Definition 45. The sets of exponential growth order ultradistribution nets and null nets

of Beurling type are defined, respectively, by

←F p,r = E(p!m,p!m
′

)
exp = {f = (fn)n | ∀µ, ∀ν : |||f |||pm,µ

ν ,m′ <∞},
←Kp,r = N (p!m,p!m

′

) = {f = (fn)n | ∀µ, ∀ν : |||f |||pm,µ
ν ,m′ = 0}.

The sets of exponential growth order ultradistribution nets and null nets of Roumieu
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type are defined, respectively, by
→F q,r = E{p!m,p!m

′

}
exp = {f = (fn)n | ∀µ, ∃ν : |||f |||qm,µ

ν ,m′ <∞},
→K q,r = N {p!m,p!m

′

} = {f = (fn)n | ∀µ, ∃ν : |||f |||qm,µ
ν ,m′ = 0}.

Recall [41] that an operator of the form P (D) =
∑

k∈N
akD

k is called an ultradiffer-

ential operator of class (m) (resp. of class {m}) if there exist h > 0, B > 0 (resp. for

every h > 0 there exists B > 0) such that

∀k ∈ N : |ak| ≤ Bh|k|/k!m. (3.1)

Proposition 46.

(i) E(p!m,p!m
′

)
exp and E{p!m,p!m

′

}
exp are algebras under pointwise multiplication, and

N (p!m,p!m
′

) (resp. N {p!m,p!m
′

}) are ideals of these algebras.

(ii) The pseudodistances induced by ||| · |||pm,µ
ν ,m′ (resp. ||| · |||qm,µ

ν ,m′) are ultrapseudo-

metrics on the respective domains.

(iii) E(p!m,p!m
′

)
exp (resp. E{p!m,p!m

′

}
exp ) are closed under the action of any ultradifferential

operator of class (m) (resp. of class {m}).
The Colombeau ultradistribution algebras G(p!m,p!m

′

) and G{p!m,p!m
′

} are defined by
←G p,r = G(p!m,p!m

′

) = E(p!m,p!m
′

)
exp /N (p!m,p!m

′

),

→G p,r = G{p!m,p!m
′

} = E{p!m,p!m
′

}
exp /N {p!m,p!m

′

}.

These topological algebras are also invariant under the actions of ultradifferential opera-

tors of respective classes (m) and {m} [41].

Proposition 47. Let m′ ≥ m′′ > 0. Then

E{p!m,p!m
′

)
exp ⊂ E{p!m,p!m

′′

)
exp , N {p!m,p!m

′′

) ⊂ N {p!m,p!m
′

)

where we introduced the notation {...) for either {... } or (...). Moreover , the injection

E{p!m,p!m
′

)
exp →֒ E{p!m,p!m

′′

)
exp is continuous. However , we do not have injections of the factor

spaces , i.e. G{p!m,p!m
′

) 6 →֒ G{p!m,p!m
′′

), but we do have natural embeddings of quotient

vector spaces,

G{p!m,p!m
′′

)
exp = E{p!m,p!m

′

)
exp /N {p!m,p!m

′

) →֒ E{p!m,p!m
′′

)
exp /N {p!m,p!m

′

)

and algebras

E{p!m,p!m
′

)
exp /N {p!m,p!m

′′

) →֒ E{p!m,p!m
′′

)
exp /N {p!m,p!m

′′

) = G{p!m,p!m
′′

)
exp

The left hand side of the last display is thus a subalgebra of G{p!m,p!m
′′

)
exp , with the property

that association with respect to the subspace N {p!m,p!m
′

) (see Section 6) is compatible with

multiplication.

Proof. The inclusion relation is easy to see. The given injection is continuous, since the

topology of the space on the left is stronger than the one on the right. We do not have

injections of the factor spaces, since the ideals satisfy the converse inclusion relations:

Necessarily, if the space of moderate sequences on the right hand side is bigger (such
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that it can contain sequences from the l.h.s.), then the ideal on the r.h.s. is smaller than

the ideal on the l.h.s.. Thus, the image of the ideal on the left, under the canonical

injection, is not included in the ideal on the r.h.s., which means that the injection map

cannot be well-defined on the quotient algebras. The algebra embedding is possible since

N {p!m,p!m
′′

) is also an ideal of the smaller E{p!m,p!m
′

)
exp .

Remark 48. Clearly, one can define spaces of Colombeau ultradistributions on an open

subset Ω of Rn. As in the case of conventional Colombeau generalized functions, one can

prove that Ω → G{·,·)(Ω) constitutes a sheaf which is fine but not flabby (cf. [21, 41] for

the definitions and proofs of these properties in ultradistribution spaces).

Example 49. We just mention the interesting approach of [3] to ultradistribution gen-

eralized functions. Consider the seminorms pν : ϕ 7→ sup|α|≤ν, |x|≤ν |ϕ(α)(x)| and let, for

s > 1, r
(s)
n = 1/n1/s and

Fp,r(s)(Ω) = {f ∈ (C∞(Ω))N | ∀ν ∈ N : |||f |||pν ,r(s) <∞},
Kp,r(s)(Ω) = {f ∈ (C∞(Ω))N | ∀ν ∈ N : |||f |||pν ,r(s) = 0}.

With this construction and mollifiers from S{s}, embeddings of D{2s−1} and E{2s−1} into

the corresponding algebra Gp,r(2s−1)(Ω) are considered in [3].

3.2.1. Mollifiers. The problem of embeddings of various generalized function spaces into

corresponding Colombeau type algebras is closely related to the choice of sequences of

mollifiers, sequences of appropriately smooth functions converging to the delta distribu-

tion. For the embedding of Schwartz distributions and C∞, the problem is trivial, while

for ultradistributions and ultradifferentiable functions it is essential. The same holds for

periodic hyperfunctions of the next subsection.

In the theorems to follow, mollifiers will be constructed by elements of spaces Σder

and Σpow.

Definition 50. Σpow consists of the smooth functions ϕ on R such that for some b > 0,

σb(ϕ) = sup
β∈N, x∈R

|xβϕ(x)|
bββ!

<∞.

Σder consists of the smooth functions ϕ on R such that for some b > 0,

σb(ϕ) = sup
α∈N, x∈R

|ϕ(α)(x)|
bαα!

<∞.

Both spaces are endowed with the respective inductive topologies.

Let m > 1. Let φn, n ∈ N, be a bounded net in Σpow (resp. in Σder) such that

∀n ∈ N :
\
R

φn(t) dt = 1,
\
R

tjφn(t) dt = 0, j = 1, . . . , [n1/m] + 1.

Then (φn)n is called a net of {m, pow}-mollifiers (resp. {m, der}-mollifiers), where

∀n ∈ N
∗ : φn = nφn(n·).

The essential novelty compared to the construction of ultradistribution algebras of

generalized functions in [67] is contained in the previous definition and the next lemma:
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Lemma 51.

(i) Let ∀n ∈ N∗, x ∈ R : hn(x) = exp (n2 − n
√
n2n + x2n). Then, ∀n ∈ N∗ : hn(0)

= 1, ∀α ∈ {1, . . . , 2n− 1} : h
(α)
n (0) = 0, and

∃r > 0, ∃C > 0 : sup
α,n∈N

|h(α)
n (x)|
rαα!

< C. (3.2)

Moreover , for a given m > 1, there exists a function g : N∗ → N∗ so that (5)

φn =
1

2π
FT (hg(n)), n ∈ N

∗

defines a net of {m, pow}-mollifiers.

(ii) Let

∀n ∈ N
∗, x ∈ R : kn(x) = exp(−x2n).

Then

∀n ∈ N
∗ : kn(0) = 1, ∀α ∈ {1, . . . , 2n− 1} : k(α)

n (0) = 0,

and there exist r > 0 and C > 0 such that

sup
β∈N, n∈N∗

|xβkn(x)|
rββ!

< C. (3.3)

Moreover , for a given m > 1 there exists a function g : N∗ → N∗ so that

φn =
1

2π
FT (kg(n)), n ∈ N

∗,

defines a net of {m, der}-mollifiers.

Proof. (i) Clearly, ĥn = FT (hn) satisfies
T̂
hn = 1 and

T
xmĥn = 0 whenever 1 ≤ m ≤

2n− 1, for all n ∈ N
∗.

The function C ∋ z 7→ n
√
n2n + z2n has singularities at z = neiπ(2k+1)/(2n). The

nearest one to the real axis x has the imaginary part n sin π
2n , greater than 1 for all

n > 1. So for every x ∈ R, the circle z = x + eiθ, θ ∈ [0, 2π), lies in the domain of

analyticity of hn (n > 1). Applying Cauchy’s integral formula, we have

∀x ∈ R, ∀n > n0 : |h(α)
n (x)| =

∣∣∣∣
α!

2πi

\
|ζ−x|=1/2

hn(ζ) dζ

(ζ − x)α+1

∣∣∣∣

≤ 2αα! max
θ∈[0,2π]

|hn(x+ eiθ/2)|.

We will prove that there exists a constant C > 0 such that

∀n ∈ N
∗, x ∈ R : Re

(
n2 − n2 n

√

1 +

(
x+ eiθ/2

n

)2n)
< C, (3.4)

such that |hn(. . . )| ≤ eC .

Case 1:
∣∣x+eiθ/2

n

∣∣ ≥ 3
4 . Let x+ eiθ/2 = ρ(cosφ+ i sinφ). For n large enough, since

|x| > (3n− 2)/4, we have sinφ ≤ 2/(3n), and 2n sinφ ≤ 4/3, so that for some n0 and

n > n0 we obtain 2nφ ≤ 4/3 + ε ≤ π/2. This implies Re
(
1 +

(x+eiθ/2
n

)2n)
> 1 and (3.4).

(5) We recall that FT denotes the Fourier transform.
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Case 2:
∣∣x+eiθ/2

n

∣∣ ≤ 3
4 . We use

Re
n

√

1 +

(
x+ eiθ/2

n

)2n

≥ n

√

1 −
(

3

4

)2n

≥ 1 − (3/4)2n

n
− o(n−2)

(for n large enough). Again, this implies (3.4) and we have proved that

∀x ∈ R, n ∈ N
∗ : max

θ∈[0,2π]
|hn(x+ eiθ/2)| ≤ 1.

This proves (3.2). If g(n) = 1
2 [n1/(m−1)] + 1 (n > n0), then one can easily prove that

φn = 1
2πFT (hg(n)), n > n0, defines a net of {m, pow}-mollifiers.

(ii) Again, we have
T̂
kn = 1,

T
xmk̂n = 0 ∀m ≤ 2n − 1, n ∈ N∗. Estimating xβkn(x)

separately for |x| ≤ 2 and |x| > 2 one can easily prove (3.3). Taking the same function g

as in (i), we finish the proof of (ii).

3.2.2. Embeddings of ultradifferentiable functions and ultradistributions

Proposition 52. Assume m > 1.

(i) Let ρ > 0 be such that m− ρ > 1. Let ψ ∈ D(m) (resp. ψ ∈ D{m−ρ}). Let (φn)n

be a net of {m, pow}-mollifiers. Then

(ψ ∗ φn − ψ)n ∈ N (p!m,p!m) (φn = nφn(n·)),
(resp. (ψ ∗ φn − ψ)n ∈ N {p!m,p!m}).

(ii) Let f ∈ E ′(m) (resp. f ∈ E ′{m}) and (φn)n a net of {m, der}-mollifiers. Then

(f ∗ φn) ∈ E(p!m,p!m−1)
exp (resp. (f ∗ φn) ∈ E{p!m,p!m−1}

exp ).

(iii) If (φn)n and (φ′n)n are nets of {m, pow}-mollifiers, then

∀ψ ∈ D(m) : (〈f ∗ φn − f ∗ φ′n, ψ〉)n ∈ N p!m

0 ,

(resp. ∀ψ ∈ D{m−ρ} : (〈f ∗ φn − f ∗ φ′n, ψ〉)n ∈ N p!m

0 ).

Remark 53. If ψ ∈ D(m), m > 1, then (ψ)n ∈ E(p!m,p!m
′

) for every m′ > 0. Fix a net

(φn)n of {m, pow}-mollifiers. The embedding D(m) →֒ E(p!m,p!m
′

) can be realized through

ψ 7→ (ψ ∗ φn)n as well as through ψ 7→ (ψ)n. This is a consequence of assertion (i).

A similar conclusion follows for D{m−ρ}.

Assertion (ii) characterizes the embedding of elements in E ′(m) (resp. E ′{m}) into the

corresponding algebra by regularizations by {m, der}-mollifiers.

The present situation shows again the complexity of the problem of finding suitable

mollifiers for a given algebra of generalized functions.

Proof of Proposition 52. (i) Assume suppψ ⊂ [−µ, µ]. Since ψ ∗ φn − ψ = 0 for |x| > µ,

n > n0, we assume in this proof x ∈ [−µ, µ], n > n0.

First, we prove the assertion for the Beurling case; the Roumieu case is treated in a

similar way. Let s ∈ N. We have

(ψ ∗ φn − ψ)(s)(x) =
\
R

(ψ(s)(x+ t/n) − ψ(s)(x))φn(t) dt

=
\
R

(N−1∑

p=0

tp

npp!
ψ(p+s)(x) +

tN

nNN !
ψ(N+s)(ξ) − ψ(s)(x)

)
φn(t) dt,
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where x ≤ ξ ≤ x + t/n. Let N = [n1/m] + 1 as in the definition of {m, pow}-mollifiers.

We have

(ψ ∗ φn − ψ)(s)(x) =
\
R

tN

nNN !
ψ(N+s)(ξ)φn(t) dt.

Let d > 1 be such that σd(φn) <∞. Then
∣∣∣∣
νs

s!m
(ψ ∗ φn − ψ)(s)(x)

∣∣∣∣ ≤
\
R

1

(N + s)!m
|ψ(N+s)(ξ)| ν

s(N + s)!m

nNs!mN !
tN |φn(t)| dt.

We will use N !m ≤ (NN )m, (N + s)! ≤ eN+sN !s! and 1/nN ≤ 2N/NNm. This gives
∣∣∣∣
νs

s!m
(ψ ∗ φn − ψ)(s)(x)

∣∣∣∣ ≤
\
R

(2e(ν + d)))N+s

(N + s)!m
|ψ(N+s)(ξ)| N !m

NmN

|t|N
dNN !

|φn(t)| dt.

Let l > 1. Inserting e−lNelN , with ν0 = 2le(ν + d), we have
∣∣∣∣
rs

s!m
(ψ ∗ φn − ψ)(s)(x)

∣∣∣∣ ≤ 2−lNpm,µ
ν0

(ψ)σd(φn).

Now we use e−lN ∼ e−ln1/m

as n → ∞. This implies that for every ν > 0 and l > 0,

there exists C > 0 such that∣∣∣∣
νs

s!m
(ψ ∗ φn − ψ)(s)(x)

∣∣∣∣ ≤ Ce−ln1/m

.

Taking the supremum over all s and x, we obtain

|||ψ ∗ φn − ψ|||pm,µ
ν ,m = 0.

Now, we prove the assertion for the Roumieu case.

Let d > 1 be such that σd(φn) < ∞ and h > 0 such that pm−ρ,µ
em−ρh(ψ) < ∞. We have,

as above,
∣∣∣∣
νs

s!m
(ψ ∗ φn − ψ)(s)(x)

∣∣∣∣

≤
\
R

|ψ(N+s)(ξ)|
(N + s)!m−ρ

νs(N + s)!m−ρ

nNs!mN !
tN |φn(t)| dt

≤
\
R

(hem−ρ)N+s|ψ(N+s)(ξ)|
(N + s)!m−ρ

N !m

NNm

(hν)ss!m−ρ(dh)N

s!mN !ρ
|t|N
dNN !

|φn(t)| dt.

Let l > 1. Note that

sup

{
(hν)ss!m−ρ

s!m

∣∣∣∣ s ∈ N

}
<∞, sup

{
(dhel)N

N !ρ

∣∣∣∣N ∈ N

}
<∞.

As above we have, with suitable C > 0 (inserting e−lNelN ),
∣∣∣∣
νs

s!m
(ψ ∗ φn − ψ)(s)(x)

∣∣∣∣ ≤ Ce−lNpm−ρ,µ
em−ρh(ψ)σd(φn).

Again as above we finish the proof.

(ii) We will give the proof in the Beurling case. The proof in the Roumieu case is

similar.
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Recall [40] that if f ∈ E ′(m), then there exists an ultradifferential operator of class (m),

P (D) =
∑∞

k=0 akD
k, µ0 > 0 and continuous functions Fk, suppFk ⊂ [−µ0, µ0], k ∈ N,

with the property supk∈N, x∈R |Fk(x)| ≤M such that f =
∑∞

k=0 akD
kFk.

This implies

∀x ∈ R : f ∗ φn(x) =

∞∑

k=0

(−1)kakn
k
\
R

Fk(x+ t/n)Dkφn(t) dt,

where (φn)n is a net of {m, der}-mollifiers such that σb(φ
n) < ∞ and ak, k ∈ N, sat-

isfy (3.1). For the same reason as in part (i), we take x ∈ [−µ, µ], µ > µ0 and n > n0.

Let ν > 1 be given and s ∈ N. We have

νp

p!m
|f (p) ∗ φn(x)| =

∣∣∣∣
∞∑

k=0

(−1)kakn
k+p νp

p!m

\
R

Fk(x+ t/n)Dk+pφn(t) dt

∣∣∣∣

≤
∞∑

k=0

B
νphknk+p

k!mp!m

\
R

|Fk(x+ t/n)| |Dk+pφn(t)| dt

≤
∞∑

k=0

B
(νh)p+knk+p

(k + p)!m

\
R

|Fk(x+ t/n)| |Dk+pφn(t)| dt

≤
∞∑

k=0

1

2k
B

(2ebνh)p+knk+p

(k + p)!m−1

\
R

|F (x+ t/n)|
bk+p(k + p)!

|Dk+pφn(t)| dt

≤ Ce(2ebνhn)1/(m−1)

σb(φ
n).

This proves that f ∗ φn ∈ E(p!m,p!m−1)
exp .

Let us prove (for the Beurling case) that

〈f, (φ̌n − φ̌′n) ∗ ψ〉 ∈ N p!m

0 ,

where φ̌(t) = φ(−t). By continuity, we know that there exist µ ∈ N, ν > 0 and C > 0

such that

|〈f, (φ̌n − φ̌′n) ∗ ψ〉| ≤ Cpµ,m
ν ((φ̌n − φ̌′n) ∗ ψ)

≤ C[pµ,m
ν (φ̌n ∗ ψ − ψ) + pµ,m

ν (φ̌′n ∗ ψ − ψ)]. (3.5)

By the first part of the proposition, we have

ψ ∗ φn − ψ, ψ ∗ φ′n − ψ ∈ N (p!m,p!m).

This implies that for every k > 0, there exists C > 0 such that for every n ∈ N, both

summands in (3.5) are less than or equal to Ce−kn1/m

.

3.3. Generalized hyperfunctions on the circle. In this subsection, we will analyze

the sequence space realization of the algebra of Colombeau generalized periodic hyper-

functions [77]. As in the previous subsection, we use the construction from Section 2

(through a “proj ind” type space). Here, Fourier expansions will be the main tool for the

analysis.

3.3.1. Basic spaces of functions on the circle. First, we recall and specify the relevant

material related to hyperfunctions on the unit circle T = {z ∈ C | |z| = 1}. More details

can be found in [4], [39] and mainly in [56]. Let Ωλ = {z ∈ C | 1/λ < |z| < λ} where
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λ > 1. We denote by Oλ the Banach space of bounded holomorphic functions in Ωλ with

the sup norm on Ωλ. The space of analytic functions on T is A(T) = ind limλ→1 Oλ.

The space E ′(T) of Schwartz distributions on T is the strong dual of the space E(T)

of smooth functions on T. To each function f ∈ E(T) is associated in a canonical way a

function f̃ defined on R by f̃(t) = f(eit). We set ‖f̃‖∞ = supt∈R |f̃(t)|.
For f ∈ A(T), the coefficient T̂ (k) of zk in the Laurent expansion of f is its kth

Fourier coefficient. Complex numbers (ck)k∈Z are the Fourier coefficients of some analytic

function if and only if |||c|||±(·)−1 < 1, with

|||(ck)k|||±(·)−ν ≡ lim sup
k→∞

(max(|ck|, |c−k|))k−ν

,

equal to the maximum of |||(ck)k∈N
|||r and |||(c−k)k∈N

|||r with r = (rk) = (k−1).

Let m ∈ [0, 1) and ν > 0. We set

Am,ν(T) =

{
f ∈ A(T)

∣∣∣∣ q
m,∞
ν (f) := sup

t∈R, α∈N

|f̃ (α)(t)|
ναα!m

<∞
}
.

If ν′ > ν then qm,∞
ν′ (f) ≤ qm,∞

ν (f). Hence we define

Am(T) = ind lim
ν→∞

Am,ν(T) and A1(T) = ind lim
m→1

Am(T).

When m 6= 0, in contrast to Am,ν(T), Am(T) is a subalgebra of A(T). Clearly, A1(T) is

also a subalgebra of A(T).

For k ∈ Z we set ek(z) = zk. It is immediate to see that ek belongs to any space

Am,ν(T). The kth Fourier coefficient of T ∈ E ′(T) is given by T̂ (k) = T (ek) and T =∑
k∈Z

T̂ (k)zk in the topology of E ′(T). For a sequence (Ak)k of complex numbers to be

the sequence of Fourier coefficients of a distribution, it is necessary and sufficient that

|||A|||±1/log <∞. Moreover, T acts on f ∈ E(T) by T (f) =
∑

k∈Z
T̂ (k) f̂(k).

The space B(T) of hyperfunctions on the circle is the topological dual A′(T) of A(T).

For k ∈ Z and H ∈ B(T), the kth Fourier coefficient of H is Ĥ(k) = H(ek), and

H =
∑

k∈Z
Ĥ(k)zk holds in the topology of B(T). A sequence (Bk)k of complex numbers

is the sequence of Fourier coefficients of some hyperfunction if and only if |||B|||±(·)−1 ≤ 1.

If f ∈ A(T), then H(f) =
∑

k∈Z
Ĥ(k) ĝ(k).

The convolution S ∗ T of two hyperfunctions S and T is given by

(S ∗ T )(z) =
∑

k∈Z

Ŝ(k)T̂ (k)zk,

for z belonging to some neighborhood of T. It is seen that S ∗ f ∈ A(T) if S ∈ B(T) and

f ∈ A(T). In the same way S ∗ f ∈ E(T) if S ∈ E ′(T) and f ∈ E(T).

3.3.2. Fourier expansion in Am,ν(T). The following lemma will be useful.

Lemma 54. Let m ∈ (0, 1) and ρ > e/2. The function

ϕ : t 7→ ρ−ttm(t+1/2)e−mt, t ∈ (0,∞),

reaches its minimum at a unique point tρ such that 1/2 < tρ < ρ1/m − 1/2, and we have
√
ρ e−m(1/2+ρ1/m) < ϕ(tρ) < ϕ(ρ1/m − 1/2) ≤ √

ρ e−mρ1/m

.

Moreover , ϕ(ρ1/m + 1/2) <
√
eρ e−mρ1/m

.
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Proof. The derivative of ψ = lnϕ is given by ψ′(t) = − ln ρ+m(ln t + 1
2t ), and satisfies

ψ′(t) = 0 ⇔ te1/2t = ρ1/m. Since te1/2t ≥ e/2, it follows that there exists a unique point

tρ ∈ (1/2,∞) such that tρe
1/2tρ = ρ1/m , because ρ > e/2. This yields ρ1/m − tρ =

tρ(e
1/2tρ − 1), and, using x < ex − 1 < xex for x 6= 0, the claimed inequalities on tρ.

Writing ln(ρ1/m + 1/2) = (1/m) ln ρ+ ln(1 + 1/2ρ1/m) gives

ψ

(
ρ1/m +

1

2

)
=

1

2
ln ρ+m(ρ1/m + 1) ln

(
1 +

1

2ρ1/m

)
−m

(
ρ1/m +

1

2

)
.

We find

ϕ(tρ) =
√
ρ e−m(tρ+1/2+1/4tρ) and tρ +

1

2
+

1

4tρ
< ρ1/m +

1

2
,

showing that
√
ρ e−m(1/2+ρ1/m) < ϕ(tρ). Since ln(1+1/2ρ1/m) ≤ 1/2ρ1/m, it follows that

ψ

(
ρ1/m +

1

2

)
≤ 1

2
ln ρ+m

(
1

2ρ1/m
− ρ1/m

)
.

Using ρ > e/2 and m ∈ (0, 1), we find m/2ρ1/m < 1/2 and thus ϕ(ρ1/m + 1/2) ≤√
eρe−mρ1/m

.

We show in the same way that ϕ(ρ1/m − 1/2) ≤ √
ρ e−mρ1/m

.

We give growth conditions on the Fourier coefficients of elements of Am,ν(T) for

m ∈ [0, 1).

Proposition 55. Let f ∈ A(T) and m ∈ (0, 1).

(i) If f ∈ Am,ν(T) then

|||(f̂(k))k|||±(·)−1/m ≤ e−m/ν1/m

.

Conversely , if the above condition holds , then f ∈ Am,ν′(T) for all ν′ > ν.

(ii) f ∈ Am(T) if and only if

|||(f̂(k))k|||±(·)−1/m < 1.

(iii) f ∈ A0,ν(T) if and only if f̂(k) = 0 for |k| > ν.

(iv) f ∈ A0(T) if and only if (f̂(k))k∈Z has finite support.

(v) For all f ∈ A1(T) there exists g ∈ O(C∗) such that g|T = f .

Proof. Let f ∈ Am,ν(T) with 0 < m < 1. For all α ∈ N, f̃ (α)(t) =
∑

p∈Z
(ip)αf̂(p)eipt.

It follows that
Tπ
−π

f̃ (α)(t)−iktdt = 2π(ik)αf̂(k), thus there is a positive constant C1 such

that |k|α|f̂(k)| ≤ C1ν
αα!m.

Using Stirling’s formula, α! = αα+1/2e−α
√

2π(1 + εα), εα ց 0, we find a positive

constant C2 such that

∀α ∈ N
∗, ∀k ∈ Z : |k|α|f̂(k)| ≤ C2ν

ααm(α+1/2)e−mα.

It follows that

∀α ∈ N
∗, ∀k ∈ Z

∗ : |f̂(k)| ≤ C2(ν/|k|)ααm(α+1/2)e−mα.

Using the notations of Lemma 54 and taking ρ = |k|/ν with |k| > eν/2 yields |f̂(k)| ≤
C2ϕ(t) for all t ∈ N∗ and we have ϕ(ρ1/m + 1/2) ≤ √

ρe e−mρ1/m

. Since ϕ increases

on [ρ1/m − 1/2, ρ1/m + 1/2] which contains a positive integer αρ, we obtain |f̂(k)| ≤
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C2ϕ(αρ) ≤ C2
√
ρe e−mρ1/m

for |k| > eν/2. Hence, there exists a positive constant C

such that ∀k ∈ Z∗ : |f̂(k)| ≤ C
√
|k|e−γ|k|1/m

. As |||
√
k||| = 1, we have the inequality of

(i).

Conversely, assume that f satisfies the condition of (i). For all α ∈ N, we have

f̃ (α)(t) =
∑

k∈Z
(ik)αf̂(k)eikt. Let ν′ > ν. Choose ν′ such that ν′ > ν′′ > ν and set

β′ = m/(ν′)1/m, β′′ = m/(ν′′)1/m. It follows that for α 6= 0,

∀k ∈ Z
∗ : |f̂(k)| ≤ C

√
|k|e−β′|k|1/m

.

This last inequality gives

‖f̃ (α)‖∞ ≤ C
( ∑

k∈Z

e−(β′′−β′)|k|1/m
)

sup
k∈Z

|k|α+1/2e−β′|k|1/m

.

Let φ(t) = tα+1/2e−βt1/m

, t ≥ 0. A simple study of φ shows that

sup
t≥0

φ(t) = φ(ν′(α+ 1/2)m) = (ν′(α+ 1/2))m(α+1/2)e−m(α+1/2).

Since
(α+1/2

α

)m(α+1/2)
is bounded, using Stirling’s formula, we get a positive constant

C1 such that for all α ∈ N, ‖f̃ (α)‖∞ ≤ C1(ν
′)αα!m, showing that f ∈ Am,ν′(T) and

proving (i).

Let f ∈ Am(T). Then f ∈ Am,ν(T) for some ν > 0 and the inequality follows from (i)

and e−m/ν1/m

< 1. Conversely, if |||(f̂(k))k|||±(·)−1/m < 1, then there exists ν > 0 such that

|||(f̂(k))k|||±(·)−1/m ≤ e−m/ν1/m

. From (i), it follows that f ∈ Am,ν′(T) for ν′ > ν. Hence

f ∈ Am(T), proving (ii).

Let f ∈ A0,ν(T). The above shows that there exists C1 > 0 such that |k|α|f̂(k)| ≤
C1ν

α. Keeping the same notations, we find |f̂(k)| ≤ C1(1/ρ)ν
αα!m for all k ∈ Z∗ and all

α ∈ N. If |k| > ν, then 1/ρ < 1, and letting α→ ∞ yields f̂(k) = 0.

Conversely, assume that f̂(k) = 0 for |k| > ν. Then f(z) =
∑
|k|≤ν f̂(k)zk for all

z ∈ C∗. It follows that for all α ∈ N, ‖f̃ (α)‖∞ ≤ (
∑
|k|≤ν |f̂(k)|)να, that is, f ∈ A0,ν(T),

proving (iii).

Claim (iv) follows from (iii) straightforwardly.

Claims (ii) and (iv) show that for f ∈ A1(T) the series
∑

k∈Z
f̂(k)zk converges abso-

lutely for any z ∈ C∗, proving (v).

3.3.3. Duality and embeddings. This section is devoted to the study of the algebras

Am(T) and A1(T) together with the associated dual spaces A′m(T) and A′1(T) for

m ∈ (0, 1).

Let f ∈ Am(T). There exists ν > 0 such that f ∈ Am,ν(T). By Proposition 55, there

exists C1 > 0 such that for all k ∈ Z
∗, |f̂(k)| ≤ C1

√
|k|e−γ|k|1/m

with γ = 1/ν1/m.

Proposition 56. For m ∈ (0, 1), A0(T) is a dense subset of Am(T).

Proof. Let f ∈ Am(T). There exists ν > 0 such that f ∈ Am,ν(T). From the proof of

Proposition 55, there exists C1 > 0 such that for all k ∈ Z∗, |f̂(k)| ≤ C1

√
|k|e−γ|k|1/m

with γ = 1/ν1/m. For n ∈ N, let fn(z) =
∑
|k|≤n f̂(k)zk. Clearly, for each n, fn ∈ A0(T).

We prove that limn→∞ fn = f in Am(T). Let ν′ > ν and set ρ = |k|/ν, γ′ = m/(ν′)1/m
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< γ and e−(γ−γ′)/2 = ε. It follows that f, f − fn ∈ Am,ν(T) ⊂ Am,ν′(T), and

qm,∞
ν′ (f − fn) = sup

t∈R, α∈N

|∑|k|>n(ik)αf̂(k)eikt|
(ν′)αα!m

.

By the growth condition on |f̂(k)| we get

qm,∞
ν′ (f − fn) ≤ C1 sup

α∈N

∑
|k|>n |k|α+1/2e−γ|k|1/m

(ν′)αα!m
.

Writing e−γ|k|1/m

= ε2|k|
1/m

e−γ′|k|1/m

yields

qm,∞
ν′ (f − fn) ≤ C1ε

n1/m

sup
α∈N

∑
|k|>n ε

|k|1/m |k|α+1/2e−γ′|k|1/m

(ν′)αα!m
.

Let ρ′ = |k|/ν′. From Stirling’s formula, we find a positive constant C2 such that

qm,∞
ν′ (f − fn) ≤ C2ε

n1/m ∑

|k|>n

ε|k|
1/m√

|k| sup
α∈N

(ρ′αα−m(α+1/2)emα)e−γ′|k|1/m

.

Substituting ρ′ for ρ in Lemma 54 leads to

sup
α∈N

ρ′αα−m(α+1/2)emα = sup
α∈N

1

ϕ(α)
≤ 1

ϕ(tρ′)
≤ (ρ′)−1/2e−m/2emtρ′ .

Since tρ′ < (ρ′)1/m and m(ρ′)1/m = γ′|k|1/m, it follows that

sup
α∈N

(ρ′)αα−m(α+1/2)emα ≤ (ρ′)−1/2e−m/2eγ′|k|1/m

.

Hence, there exists a positive constant C3 such that qm,∞
ν′ (f − fn) ≤ C3ε

n1/m

, showing

that limn→∞ qm,∞
ν′ (f − fn) = 0, whence limn→∞ fn = f in Am(T).

For T ∈ A′m(T) and k ∈ Z, we define the kth Fourier coefficient of T by T̂ (k) = T (ek).

Obviously, any sequence (ak)k of complex numbers is the sequence of Fourier coefficients

of T ∈ A′0(T) such that T (f) =
∑

k∈Z
T̂ (k) f̂(k) for f ∈ A0(T). We have the following

Proposition 57. Let T ∈ A′0(T) and m ∈ (0, 1).

(i) T ∈ A′m(T) if and only if

|||(T̂ (k))k|||±(·)−1/m ≤ 1. (3.6)

Moreover , for all f ∈ Am(T), T (f) =
∑

k∈Z
T̂ (k)f̂(k).

(ii) T ∈ A′1(T) if and only if

∀ν > 1 : |||(T̂ (k))k|||±(·)−ν ≤ 1. (3.7)

(iii) Let T̂ ∗(Z) = {k ∈ Z | T̂ (k) 6= 0}. Then T ∈ A′m(T) \ A0(T) if and only if

lim sup
k∈T̂∗(Z), |k|→∞

ln[ln(1 + |T̂ (k)|)]
ln |k| ≤ 1. (3.8)

Proof. Let T ∈ A′m(T). Then T ∈ A′m,ν(T) for all ν > 0. It follows that there is C1 > 0

such that for all k ∈ Z, |T̂ (k)| ≤ C1q
m,∞
ν (ek). Since qm,∞

ν (ek) = supα∈N |k|α/ναα!m, by
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use of Stirling’s formula there is C2 > 0 such that

|T̂ (k)| ≤ C2 sup
α∈N

(|k|/ν)αα−m(α+1/2)emα.

From the end of the proof of Proposition 56, there exists C > 0 such that

|T̂ (k)| ≤ Cem|k|1/m/ν1/m

.

It follows that

|||(T̂ (k))k|||±(·)−1/m ≤ em/ν1/m

,

and letting ν → ∞ yields |||(T̂ (k))k|||±(·)−1/m ≤ 1.

Let f ∈ Am(T). With the notations of the proof of Proposition 56, fn → f in Am(T)

as n → ∞. Therefore the continuity of T gives T (f) = limn→∞

∑
|k|≤n T̂ (k) f̂(k). The

growth conditions on f̂(k) and T̂ (k) show that the series with general term T̂ (k)f̂(k)

converges absolutely; hence T (f) =
∑

k∈Z
T̂ (k) f̂(k).

Conversely, assume that T ∈ A′0(T) satisfies the given inequality and let µ > 0. Since

|||(T̂ (k))k|||±(·)−1/m < eµ, it follows that there is D > 0 such that for all k ∈ Z, |T̂ (k)| <
Deµ|k|1/m

. This last growth condition enables us to define T (f) =
∑

k∈Z
T̂ (k) f̂(k) for

f ∈ Am(T). Clearly, T is a linear form on Am(T). We show the continuity of T on each

Am,ν(T).

Let f ∈ Am,ν(T). For all α ∈ N, we have |k|α|f̂(k)| ≤ ‖f̃ (α)‖∞ for all k ∈ Z. From

the definition of qm,∞
ν it follows that ‖f̃ (α)‖∞ ≤ ναα!mqm,∞

ν (f), whence

∀k ∈ Z
∗ : |f̂(k)| ≤ inf

α∈N

ναα!m

|k|α qm,∞
ν (f).

From Lemma 54, there exists a positive constant C1 such that

inf
α∈N

ναα!m

|k|α ≤ C1|k|1/2e−γ|k|1/m

, γ = 1/ν1/m, k ∈ Z
∗.

Let D > 0 be such that |T̂ (k)| ≤ Deγ|k|1/m/2 for all k ∈ Z. We then have, for some

constant C > 0,

|T (f)| ≤
(
C

∑

k∈Z

|k|1/2e−γ|k|1/m/2
)
qm,∞
ν (f),

proving the continuity of T on Am,ν(T) for all ν > 0. Hence, T ∈ A′m(T).

From (i), T ∈ A′1(T) if and only if |||(T̂ (k))k|||±(·)−1/m ≤ 1 for all m ∈ (0, 1); writing

1/m = ν gives (ii).

Let T ∈ A′1(T) \ A0(T) and ν > 1. From (ii), there exists n0 ∈ N such that |T̂ (k)| <
e|k|

ν/2 for |k| > n0. It follows that 1 + |T̂ (k)| < e|k|
ν

for |k| > n0. If k ∈ T̂ ∗(Z) and

|k| > n0, then

ln[ln(1 + |T̂ (k)|)]
ln |k| < ν.

This being true for all ν > 1, it follows that the inequality of (iii) is true. Conversely,

assume that (3.8) holds. Then T̂ ∗(Z) is not finite and consequently T 6= A0(T). Let

ν > 1. From (3.8), we have ln(ln(1 + |T̂ (k)|)) < ν ln |k| for k ∈ T̂ ∗(Z) and |k| large



40 A. Delcroix et al.

enough. This means that |T̂ |1/|k|ν < 1 for |k| large enough and k ∈ T̂ ∗(Z). It follows

that T satisfies (3.7), proving (iii).

Proposition 58. For all m ∈ [0, 1), Am(T) →֒ A(T). Consequently , A1(T) →֒ A(T) →֒
E(T) and E ′(T) →֒ B(T) →֒ A′1(T).

Proof. We claim that for all m ∈ [0, 1) and ν > 0, there exists λ > 1 such that Am,ν(T)

→֒ Oλ. Let f ∈ Am,ν(T), α ∈ N and k ∈ Z. We have |k|α|f̂(k)| ≤ ναα!mpm,ν(f). It

follows that
1

α!

( |k|
ν

)α

|f̂(k)| ≤ α!m−1qm,∞
ν (f).

Due to m− 1 < 0, summing over α ∈ N yields

e|k|/ν |f̂(k)| ≤
( ∞∑

α=0

α!m−1
)
qm,∞
ν (f).

Hence |f̂(k)| ≤ C1µ
−|k|qm,∞

ν (f) with C1 =
∑

α∈N
α!m−1 and µ = e1/ν > 1. Consequently,

if 1 < λ < µ, then f ∈ Oλ and

‖f‖L∞(Cλ) ≤
∑

k∈Z

|f̂(k)|λ|k| ≤
(
C1

∑

k∈Z

(λµ−1)|k|
)
qm,∞
ν (f),

proving our claim.

Let V denote a convex neighborhood of zero in A(T). Then for all λ > 1, V ∩ Oλ is

a neighborhood of zero in Oλ. Let ν > 0 and choose λ such that 1 < λ < e1/ν . From

Am,ν(T) →֒ Oλ, it follows that there exists a neighborhood U of zero in Am,h(T) such

that U ⊂ V ∩ Oλ ⊂ Oλ, showing that Am(T) →֒ A(T) and then A1(T) →֒ A(T).

Since A1(T) →֒ A(T) →֒ E(T), these embeddings being with dense image, it follows

straightforwardly that E ′(T) →֒ B(T) →֒ A′1(T).

3.3.4. The algebra GH,r(T) of generalized hyperfunctions. Throughout the rest of this

subsection, let r = (rn)n be an arbitrary sequence of positive numbers such that rn ց 0.

For n ∈ N, we set ϕ1/rn
(z) =

∑
|k|≤1/rn

zk. We have ϕ1/rn
∗ ϕ1/rn

= ϕ1/rn
and

limn→∞ ϕ1/rn
= δ in E ′(T). If H ∈ B(T), then H ∗ ϕ1/rn

=
∑
|k|≤1/rn

Ĥ(k)zk and

consequently limn→∞H ∗ ϕ1/rn
= H in B(T).

It is easily seen that limn→∞ ‖ϕ1/rn
‖L∞(T) = ∞. More generally, in analogy to

Proposition 41, we have:

Proposition 59. Let (ψn)n denote a sequence of elements of A(T) such that limn→∞ ψn

= δ in B(T). Then (ψn)n cannot be bounded in A(T).

Proof. Assume that, contrary to the assertion, (ψn)n is bounded in A(T). Consequently,

∃C > 0, ∀n ∈ N : ‖ψn‖L∞(T) ≤ C. Since limn→∞ ψn = δ in B(T), for all ϕ ∈ A(T) we

have

lim
n→∞

1

2π

2π\
0

ψn(eit)ϕ(eit) dt = ϕ(1).
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By Cauchy–Schwarz’s inequality,
∣∣∣∣

1

2π

2π\
0

ψn(eit)ϕ(eit) dt

∣∣∣∣ ≤ ‖ψn‖L∞(T)‖ϕ‖L2(T).

It follows that ∀ϕ ∈ A(T) : |ϕ(1)| ≤ C‖ϕ‖L2(T). Let m and s denote respectively an

integer such that m > (C2 − 1)/2 and a positive constant. Define ϕ ∈ A(T) by ϕ̂(k) = 0

for |k| > m, and ϕ̂(k) = s if |k| ≤ m. Then we have

ϕ(1) =
∑

|k|≤m

ϕ̂(k) =
√

2m+ 1
( ∑

|k|≤m

ϕ̂(k)2
)1/2

.

This means that

ϕ(1) =
√

2m+ 1 ‖ϕ‖L2(T) > C‖ϕ‖L2(T),

which is a contradiction.

Let X (T) = A1(T)N be the set of sequences of functions (fn)n with fn ∈ A1(T). Let

λ > 1. For f ∈ A1(T), we set

qλ(f) = ‖f‖L∞(Ωλ).

If f = (fn)n ∈ X (T), we define

|||f |||qλ,r := lim sup
n→∞

qλ(f)rn .

We define the subsets Xr(T) and Nr(T) of X (T) as follows:
→F q,r = Xr(T) = {f = (fn)n ∈ X (T) | ∃λ > 1 : |||f |||qλ,r <∞},
→K q,r = Nr(T) = {f = (fn)n ∈ X (T) | ∃λ > 1 : |||f |||qλ,r = 0}.

As shown in the general case, Xr(T) is an algebra for usual termwise operations and

Nr(T) is an ideal of Xr(T). For f ∈ A1(T) and λ > 1 we set

q̂λ(f) = sup
k∈Z

λ|k||f̂(k)|.

The above two spaces have the following Fourier characterization:

Proposition 60. Let f = (fn)n ∈ X (T). Then:

(i) f ∈ Xr(T) if and only if

∃λ > 1 : |||f |||q̂λ,r <∞.

(ii) f ∈ Ne(T) if and only if

∃λ > 1 : |||f |||q̂λ,r = 0.

Proof. Let f = (fn)n ∈ Xr(T). Take λ > 1 such that |||f |||qλ,r < ∞. By the hypothesis,

there exist a > 0 and η ∈ N such that qλ(fn)rn < a for n > η. From Cauchy’s inequalities

in Ωλ we obtain |f̂n(k)| ≤ qλ(fn)λ−|k|, whence |f̂n(k)|rn ≤ aλ−|k|rn for all k ∈ Z and

n > η. It follows that |||f |||q̂λ,r <∞.

Conversely, let f = (fn)n ∈ X (T) and suppose that for some λ > 1, |||f |||q̂λ,r < ∞. It

follows that there exists a > 0 such that q̂λ(fn)rn < a for n large enough. Then we have

|f̂n(k)| < a1/rnλ−|k| for all k ∈ Z and n > η0 for some η0. Consequently, if s =
√
r, we
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may find C(s) > 0 such that qs(fn) ≤ C(s)a1/rn for n > η0, showing that |||f |||qλ,r < ∞
and proving (i).

Part (ii) can be proved in a similar way.

We now give a version of the algebra of generalized hyperfunctions on the circle which

is an improvement of the ones given in [76, 77, 78].

Definition 61. The algebra of generalized hyperfunctions on T, associated to the se-

quence r, is the factor algebra
→G q,r = GH,r(T) = Xr(T)/Nr(T).

If f ∈ A(T), then f(z) =
∑

k∈Z
f̂(k)zk in some Ωλ. We define

(∂θf)(z) =
∑

k∈Z

(ik)f̂(k)zk.

We also consider the usual derivative of a holomorphic function defined by

df

dz
(z) = f ′(z) =

∑

k∈Z

(k + 1)f̂(k + 1)zk.

It is seen that d/dz and ∂θ are connected by (∂θf)(z) = izf ′(z).

These two differential operators being defined componentwise on (fn)n ∈ Xr(T), by

the above proposition it is seen that Xr(T) and Nr(T) are invariant under these operators.

Consequently, this enables us to equip GH,r(T) with two differential structures in an

obvious way.

3.3.5. Embedding of B(T) and A(T) in GH,r(T). The space B(T) can be embedded in

GH,r(T) in such a way that the usual multiplication of A1(T) is preserved:

Proposition 62. Let

ī : B(T) → H(T), H 7→ [H ∗ ϕ1/rn
], ī0 : A1(T) → H(T), f 7→ [f ].

Then ī is a linear embedding and ī0 is an injective morphism of differential algebras such

that

ī|A1(T) = ī0.

Moreover , for any H ∈ B(T),

ī

(
dH

dz

)
=

d

dz
(̄i(H)) and ī(∂θH) = ∂θ (̄i(H)).

Proof. The claims on ī0 and the last part of the proposition are easy to prove. Let us

focus on the properties of the first part relating to ī. The linearity of ī is quite obvious.

Let H ∈ B(T) and set h = (hn)n with hn = H ∗ϕ1/rn
. From Proposition 55(iv), we have

hn ∈ A0(T), and so h ∈ X (T).

Now take λ > 1. From the property of the Fourier coefficients of H, there exists C > 0

such that |Ĥ(k)| ≤ Cλ|k| for all k ∈ Z. It follows that λ|k||ĥn(k)| ≤ Cλ2/rn , showing

that |||h|||q̂λ,r ≤ λ2. By Proposition 60, h ∈ Xr(T). It is sufficient to consider restrictions

to the spaces Am(T) with 0 < m < 1. Let f ∈ Am(T) with 0 < m < 1. There is λ > 1

such that f(z) =
∑

k∈Z
f̂(k)zk for 1/λ ≤ |z| ≤ λ. Then we have ī0(f)− ī(f) = [fn] where

fn = f − f ∗ ϕ1/rn
, that is, fn(z) =

∑
|k|>1/rn

f̂(k)zk. Thus (fn)n ∈ Oλ.



Sequence spaces and Colombeau algebras 43

We claim that (fn)n ∈ Nr(T). From Proposition 55, there is C > 0 such that for all

k ∈ Z∗, |f̂(k)| ≤ C
√
|k|e−γ|k|1/m

where γ = m/h1/m. For |k| > 1/rn, writing

e−γ|k|1/m ≤ e−
γ
2 |k|

1/m

e−
γ
2 ( 1

rn
)1/m

,

it follows that

λ|k||f̂n(k)| ≤ (Cλ|k|
√
|k|e− γ

2 |k|
1/m

)e−
γ
2 ( 1

rn
)1/m

for |k| > 1/rn.

Since C
√
|k|e− γ

2 |k|
1/m

is bounded with respect to k, we obtain

|||f |||q̂λ,r = lim
n→∞

e−
γ
2 ( 1

rn
)1/m−1

= 0,

proving our claim.

An element of ī(B(T)) is called a GH,r(T) hyperfunction.

4. Sequences of scales and asymptotic algebras

4.1. Sequences of scales

Definition 63. Consider a sequence r = (rm)m of positive sequences (rm
n )n decreasing

to zero, i.e. such that

∀m,n ∈ N : rm
n+1 ≤ rm

n , lim
n→∞

rm
n = 0,

which satisfy in addition one of the following conditions:

∀m,n ∈ N : rm+1
n ≥ rm

n(4.1)

or

∀m,n ∈ N : rm+1
n ≤ rm

n .(4.2)

Then let

in case (4.1),
↔F p,r =

⋂

m∈N

↔F p,rm ,
↔Kp,r =

⋃

m∈N

↔K p,rm ,

in case (4.2),
↔F p,r =

⋃

m∈N

↔F p,rm ,
↔Kp,r =

⋂

m∈N

↔K p,rm ,

where p = (pµ
ν )ν,µ.

Proposition 64. In both cases of the above definition,
↔F p,r is an algebra and

↔Kp,r an

ideal of
↔F p,r. Thus ,

↔G p,r =
↔F p,r/

↔K p,r is an algebra.

Proof. Let us start with (4.1). For rm+1 ≥ rm, we have |||f |||rm+1 ≤ |||f |||rm if p(fn) ≤ 1,

hence Kp,rm+1 ⊃ Kp,rm . Conversely, Fp,rm+1 ⊂ Fp,rm . Thus, intersection for F and

union for K make sense, and Fp,r is obviously a subalgebra. To see that Kp,r is an ideal,

take (k, f) ∈ Kp,r × Fp,r . Then for some m we have k ∈ Kp,rm , but also f ∈ Fp,rm , in

which Kp,rm is an ideal. Thus, k · f ∈ Kp,rm ⊂ Kp,r .

Now we turn to (4.2). The same reasoning gives now Kp,rm+1 ⊂ Kp,rm and Fp,rm+1 ⊃
Fp,rm , justifying the definitions of Fp,r and Kp,r . Moreover, because of this inclusion

property, Fp,r is indeed a subalgebra. To prove that Kp,r is an ideal, take (k, f) ∈
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Kp,r × Fp,r , i.e. k ∈ Kp,rm′′ for all m′′, and f ∈ Fp,rm′ for some m′ . We have to show

that k · f ∈ Kp,rm for all m. So let m be given.

If m < m′, then Kp,rm′ ⊂ Kp,rm , thus k · f ∈ Kp,rm′ · Fp,rm′ ⊂ Kp,rm′ ⊂ Kp,rm .

If m′ < m, we use Fp,rm′ ⊂ Fp,rm to get k · f ∈ Kp,rm · Fp,rm′ ⊂ Kp,rm · Fp,rm ⊂
Kp,rm .

Example 65.

rm
n =

{
1 if n ≤ m

0 if n > m

(with the convention that 00 = 0) gives Egorov-type algebras, where the “subalgebra”

contains everything and the ideal contains only stationary null sequences.

Example 66. rm
n = 1/|log am(n)|, where (am : N → R+)m∈Z is an asymptotic scale,

i.e. ∀m ∈ N : am+1 = o(am), a−m = 1/am, ∃M : aM = o(a2
m). This gives back the

asymptotic algebras of [16], cf. Section 4.3.

4.2. (C, E ,P)-algebras. Let us now show how a quite large class of (C, E ,P)-algebras

[55] fits well into the above setting. First, let us recall that (C, E ,P)-algebras are based

on a vector space E with a filtering family P of seminorms, and a ring C = A/I of

generalized numbers. Here, I is an ideal of A, which is a subring of KΛ, where K = R

or C, and Λ is some indexing set. Both A and I must be solid as rings, i.e. ∀s ∈ KΛ :

(∃r ∈ A, ∀λ ∈ Λ : |sλ| ≤ |rλ|) ⇒ s ∈ A, and idem for I. Then the (C, E ,P)-algebra is

defined as GC,E,P = EA/EI , with

EX = {f ∈ EΛ | ∀p ∈ P : p ◦ f ∈ X}
(where p ◦ f ≡ (λ 7→ p(fλ)) = (p(fλ))λ ∈ (R+)Λ ⊂ KΛ). In other words, the function

spaces EA and EI are determined by C = A/I, by selecting the functions with the same

respective growth properties as the “constants”.

It is clear that this is too general to be written in the above setting of sequence

spaces, mainly because there is no relation between A and I: one could in principle take

I = A, and thus EI = EA independent of (E ,P), but this is impossible in the present

construction.

4.3. Asymptotic algebras. However, in many known applications one can restrict

oneself to some subclass of these algebras. As the first example and most important case,

let us consider asymptotic algebras [16]. Here, A and I are defined by an asymptotic

scale (6) a = (am : Λ → R+)m∈Z:

Aa = {s ∈ K
Λ | ∃m ∈ Z : s = o(am)},

Ia = {s ∈ K
Λ | ∀m ∈ Z : s = o(am)}.

Recall that a must satisfy: ∀m ∈ Z : am+1 = o(am), a−m = 1/am, ∃M ∈ Z : aM = o(a2
m).

Some examples that have proved to be useful are:

(6) The set Λ is supposed to have a base of filters B, which the o(·) notation refers to. In
Section 4.2, ∀λ ∈ Λ could also be replaced by ∃Λ0 ∈ B, ∀λ ∈ Λ0.
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(i) Λ = N and am(λ) = 1/λm: This leads to Colombeau’s generalized numbers and

algebras.

(ii) Λ = N and am(λ) = 1/expm(λ) for m ∈ N∗, where expm is the m-fold iterated

exp function: This gives the so-called exponential algebras [16].

(iii) rm
n = 1/nm/(m−1): This is related to ultradistribution spaces, and will be dis-

cussed in detail in a separate publication.

Proposition 67. Suppose that the family P of seminorms can be chosen in the form

P = (pµ
ν )µ,ν∈N fitting into our scheme of inductive or projective limit (Section 2.1 or 2.2).

Then asymptotic algebras can be described in our formulation by choosing the sequence

of weights rm = 1/|log am| (i.e. rm
λ = 1/|log am(λ)|).

Proof. We will show that EI = KP,r and EA = FP,r for rm = 1/|log am|. In view of the

definitions, this amounts to showing the equivalences

∀p, ∀
(∃)

am : p ◦ f = o(am) ⇔ ∀p, ∀
(∃)

rm : |||f |||p,rm = 0
(<∞)

.

EA ⊂ FP,r: Let f ∈ EA. Thus, ∀p ∈ P, ∃m : p ◦ f = o(am). We can assume am > 1 is

such that rm = 1/ log am ⇔ am = e1/rm

. Thus p◦f = o(e1/rm

). But p◦f < e1/rm ⇒
(p ◦ f)rm

< e, thus lim sup (p ◦ f)rm

<∞ and f ∈ FP,r.

FP,r ⊂ EA: If f ∈ FP,r, then ∀p ∈ P, ∃m̄ : lim sup (p ◦ f)1/|log am̄| <∞. With

(p ◦ f)1/|log am| ≤ C ⇔ p ◦ f ≤ (am)log C (am, C > 1)

we have: ∃C > 0, ∃Λ0, ∀λ ∈ Λ0 : p(fλ) ≤ (am̄(λ))|log C|. Thus, using the third

property of scales, ∃m : p ◦ f = o(am).

EI ⊂ KP,r: For f ∈ EI , we have p ◦ f = o(am̄) for all m̄. Take m ∈ N. Now, for any

q ∈ N, ∃m̂ : am̂ = o(aq
m) and p ◦ f = o(am̂). Using am = e−1/rm

, am̂ = o(am
q) =

o((e−1/rm)q) = o((e−q)1/rm

), i.e., (p ◦ f)rm ≤ e−q on some Λ0. As q was arbitrary,

we have (p ◦ f)rm → 0 and thus f ∈ KP,r.

KP,r ⊂ EI : For f ∈ KP,r, we have, for all m̄, lim sup p(fλ)1/|log am̄| = 0, i.e.,

∀C > 0, ∃Λ0, ∀λ ∈ Λ0 : p(fλ)1/|log am̄| < C.

With am, C < 1, this gives p(fλ) ≤ C |log am̄| = am̄
|log C|. Now, to show that f ∈ EI ,

take any m. Let m̄ = m+ 1 and C = 1/e. Then ∃Λ0, ∀λ ∈ Λ0 : p(fλ) < am̄(λ). But

am̄ = am+1 = o(am), thus p ◦ f = o(am).

Remark 68. We presented our construction only for the case where Λ = N. But the

same can be done for an arbitrary set Λ of indices equipped with a base of filters, which

is all we need to define the ultranorms and associated spaces. In applications, it may

be more convenient to take Λ = (0, 1] or more complicated indices, with two or more

parameters which can be numbers but also functions (mollifiers) or similar.

4.4. Algebras with infra-exponential growth. A second interesting subclass is the

(C, E ,P)-algebras of the form
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A = {s ∈ K
Λ | ∀σ < 0 : s = o(aσ)},

I = {s ∈ K
Λ | ∃σ > 0 : s = o(aσ)},

where a = (aσ)σ∈R is again a scale (i.e. ∀σ > ρ : aσ = o(aρ), etc.), but indexed by a real

number. (Note that here A is given as intersection and I as union of sets: that is why

this case is not covered by the previous one.)

For example (again with Λ = N),

aσ := λ 7→ 1/exp(σλ)

gives the so-called algebras with infra-exponential growth [17], pertaining to the embed-

ding of periodic hyperfunctions in (C, E ,P)-algebras.

These algebras can be obtained by taking F = {f | |||f |||r ≤ 1} and K = {f | |||f |||r < 1},
with rn = 1/n. (As the norm is compared to 1, all scales rσ = 1/|log aσ| (i.e. rσ(λ) =

1/|σλ|) are equivalent. More details on this “dual” construction where (<∞, = 0) is

replaced by (≤ 1, < 1) are left to a separate publication.)

5. Functorial properties

In this section, we want to investigate conditions sufficient to extend mappings on the

topological factor algebras constructed as before. Consider for example ϕ : E → F where

(E,P ) and (F,Q) are spaces equipped with families P and Q of seminorms. In this

section we shall denote by FΠ,r(·), KΠ,r(·) and GΠ,r(·) the spaces defined as above, where

· stands for E or F and Π stands for P or Q.

Suppose that ϕ satisfies the following hypotheses:

(F1) : f ∈ FP,r(E) ⇒ ϕ(f) ∈ FQ,r(F ),

(F2) : f ∈ FP,r(E), h ∈ KP,r(E) ⇒ ϕ(f + h) − ϕ(f) ∈ KQ,r(F ),

where we write ϕ(f) := (ϕ(fn))n. Then we can consider the following

Definition 69. Under the above hypothesis, we define the r-extension of ϕ by

Φ := Gr(ϕ) :=

(GP,r(E) → GQ,r(F )

[f ] 7→ ϕ(f) + KQ,r(F )

)
,

where f is any representative of [f ] = f + KP,r(E).

The above are of course very general conditions for a map to be well defined on a

factor space. In fact, they do not depend on how the spaces FP,r(E) and KP,r(E) are

defined. In particular, here r can also be a family of sequences (rm)m, and E can be of

proj-proj or ind-proj type.

Example 70. Consider a linear mapping u ∈ L(E,F ), continuous for (P,Q). Fix q ∈ Q.

As u is continuous, there exists p = p(q) such that

∃c, ∀x ∈ E : q(u(x)) ≤ cp(q)(x).
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Thus, for all f, h ∈ EN,

lim sup (p(q)(fn))rn <∞ ⇒ lim sup (q(u(fn)))rn <∞,

lim sup (p(q)(hn))rn = 0 ⇒ lim sup(q(u(hn)))rn = 0.

This example shows how we can define moderate or compatible maps with respect to

the “scale” r. In fact, the concrete definitions will depend on the monotonicity properties

of the family (rm) of sequences of weights, according to which Fp,r =
⋃Fp,rm and Kp,r =⋂Kp,rm (for rm+1 ≤ rm), or Fp,r =

⋂Fp,rm and Kp,r =
⋃Kp,rm (for rm+1 ≥ rm).

For example, recall that asymptotic algebras correspond to the first case: the property

am+1 = o(am) gives log am+1 < log am, or equivalently |log am+1| > |log am|, i.e. rm+1 <

rm for rm = 1/|log am|.
The analysis of continuity (in the sense of ||| · |||p,r) shows that the following definitions

are convenient:

Definition 71. The map g : R+ → R+ is said to be r-moderate iff it is increasing and




∀m ∈ N, ∃M ∈ N, ∀x ∈ R+ : sup
n∈N

(g(x1/rm
n ))rM

n <∞ (rm+1 ≤ rm),

∀M ∈ N, ∃m ∈ N, ∀x ∈ R+ : sup
n∈N

(g(x1/rm
n ))rM

n <∞ (rm+1 ≥ rm).

The map h : R+ → R+ is said to be r-compatible iff it is increasing and




∀M ∈ N, ∃m ∈ N : (h(x1/rm
n ))rM

n −→
x→0

0 uniformly in n (rm+1 ≤ rm),

∀m ∈ N, ∃M ∈ N : (h(x1/rm
n ))rM

n −→
x→0

0 uniformly in n (rm+1 ≥ rm).

Proposition 72. The above definition of an r-moderate map g is equivalent to

g increasing , and

{
∀m, ∃M : g(F+

rm) ⊂ F+
rM (rm+1 ≤ rm),

∀M, ∃m : g(F+
rm) ⊂ F+

rM (rm+1 ≥ rm),

where F+
rm = R

N
+ ∩ F|·|,rm are “moderate” sequences of nonnegative numbers.

The definition of an r-compatible map h can be written as

h increasing and

{∀M, ∃m : |||h(C)|||M → 0 as |||C|||m → 0 (rm+1 ≤ rm),

∀m, ∃M : |||h(C)|||M → 0 as |||C|||m → 0 (rm+1 ≥ rm),

or equivalently ,

h continuous at 0, increasing , and

{
∀M, ∃m : h(K+

rm) ⊂ K+
rM (rm+1 ≤ rm),

∀m, ∃M : h(K+
rm) ⊂ K+

rM (rm+1 ≥ rm).

Proof. We have

g(F+
rm) ⊂ F+

rM ⇔ ∀C ∈ R
N

+ : (|||C|||m <∞ ⇒ |||g(C)|||M <∞)

⇔ ∀C ∈ R
N

+ : [(∃x > 0, ∀n : Cn ≤ x1/rm
n ) ⇒ sup

n
g(Cn)rM

n <∞].

As g is increasing, one can replace Cn by x1/rm
n , and since the sequence Cn was

arbitrary, we finally have

g(F+
rm) ⊂ F+

rM ⇔ ∀x ∈ R+ : sup
n
g(x1/rm

n )rM
n <∞.
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For h, again take Cn = x1/rm
n such that x → 0 ⇔ |||C|||m → 0. Clearly, the first form

implies that h is continuous at 0, so both instances of ||| . . . ||| → 0 can equivalently be

replaced by ||| . . . ||| = 0. Thus we have ∀M , ∃m (resp. ∀m, ∃M) : C ∈ Km ⇒ h(C) ∈ KM ,

which means h(Km) ⊂ KM .

Lemma 73. If g is r-moderate, then g(F+
r ) ⊂ F+

r ; if h is r-compatible, then h(K+
r )

⊂ K+
r .

Proof. Consider first the case rm+1 ≤ rm, where F+
r =

⋃F+
rm and K+

r =
⋂K+

rm . We

have ∀m, ∃M : g(F+
rm) ⊂ F+

rM , thus ∀m : g(F+
rm) ⊂ ⋃

M F+
rM = F+

r , which is equivalent

to
⋃

m g(F+
rm) = g(F+

r ) ⊂ F+
r . Similarly, ∀M , ∃m : h(K+

rm) ⊂ K+
rM implies ∀M :⋂

m h(Km) = h(K+
r ) ⊂ K+

rM , whence h(K+
r ) ⊂ ⋂

M K+
rM = K+

r .

In the second case, rm+1 ≥ rm, where F+
r =

⋂F+
rm and K =

⋃K+
rm , the proofs for

g(F+
r ), h(K+

r ) are identical to the proofs for h(K+
r ), g(F+

r ) in the first case.

Now we give the definition, valid for both the above cases, characterizing maps that

extend canonically to Gr:

Definition 74. The map ϕ : (E,P ) → (F,Q) is said to be continuously r-temperate iff

(α) ∃r-moderate g, ∀q ∈ Q, ∃p ∈ P, ∀f ∈ E : q(ϕ(f)) ≤ g(p(f)),

(β) ∃r-moderate g, ∃r-compatible h, ∀q ∈ Q, ∃p ∈ P, ∀f ∈ E, ∀k ∈ E :

q(ϕ(f + k) − ϕ(f)) ≤ g(p(f))h(p(k)).

Proposition 75. Any continuously r-temperate map ϕ extends canonically to

Φ = Gr(ϕ) : GP,r(E) → GQ,r(F ).

Furthermore, this extension is continuous for the topologies (GP,r(E), (||| · |||p,r)p∈P ) and

(GQ,r(F ), (||| · |||q,r)q∈Q).

Proof. The proof has two parts: first, the well-definedness of the extension; secondly,

the continuity of Φ. As a preliminary remark, observe that FP,rm = {f | ∀p ∈ P :

p(f) ∈ F+
rm}, and idem for K. This, and the fact that Krm is an ideal in Frm (and

F+
rm · K+

rm ⊂ K+
rm), help us to write the proof using the preceding two characterizations

of moderate and compatible maps.

First part of the proof : We will show that (α) implies (F1), and (β) gives (F2). Using

the respective definitions of moderateness and compatibility, the proof will be different

for the two cases rm+1 ≤ rm and rm+1 ≥ rm.

Let us start with the case rm+1 ≤ rm, where FP,r =
⋃FP,rm and KP,r =

⋂KP,rm .

Concerning (F1), we have f ∈ FP,r(E) ⇔ ∃m, ∀p : p(f) ∈ F+
rm . By (α), there is g

such that ∃M : g(F+
rm) ⊂ F+

rM , and ∀q : q(ϕ(f)) ≤ g(p(f)) ∈ g(F+
rm), thus ∃M, ∀q :

q(ϕ(f)) ∈ F+
rM , that is, ϕ(f) ∈ FQ,r(F ).

Concerning (F2), take f ∈ F and k ∈ K, i.e. ∃m, ∀p : p(f) ∈ F+
rm and ∀m′, ∀p :

p(k) ∈ K+
rm′ . Now fix M and q. With (β), there exists g such that ∀m, ∃M ′ : g(F+

rm) ⊂
F+

rM′ , and there is h such that ∀M ′′, ∃m′ : h(K+
rm′ ) ⊂ K+

rM′′ . We use this for M ′′ =

max(M,M ′), such that K+
rM′′ ⊂ K+

rM′ and K+
rM′′ ⊂ K+

rM . Finally, there exists p such that

q(ϕ(f + k) − ϕ(f)) ≤ g(p(f))h(p(k)) ∈ g(F+
rm)h(K+

rm′ ) ⊂ F+
rM′ · K+

rM′′ .
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If M ′ ≤M , this is in F+
rM′ ·K+

rM ⊂ F+
rM ·K+

rM ⊂ K+
rM . If M < M ′, this is in F+

rM′ ·K+
rM′ ⊂

K+
rM′ ⊂ K+

rM , because the K+
rm form a decreasing sequence. Thus, ϕ(f + k) − ϕ(f) ∈

KQ,r(F ).

Now we turn to the case rm+1 ≥ rm, where F =
⋂Fm et K =

⋃Km. Let us

show (F1). We have f ∈ FP,r(E) ⇔ ∀m, ∀p : p(f) ∈ F+
rm . By (α), there exists g

such that ∀M, ∃m : g(F+
rm) ⊂ F+

rM , and ∀q, ∃p : q(ϕ(f)) ≤ g(p(f)) ∈ g(F+
rm), thus

∀M, ∀q : q(ϕ(f)) ∈ F+
rM , i.e. ϕ(f) ∈ FQ,r(F ).

Finally, (F2): Take f ∈ F and k ∈ K, i.e. ∀m, ∀p : p(f) ∈ F+
rm and ∃m′, ∀p : p(k) ∈

K+
rm′ . Now fix q. With (β), there exists h such that ∀m′, ∃M : h(K+

rm′ ) ⊂ K+
rM ; there is

g such that ∀M, ∃m : g(F+
rm) ⊂ F+

rM , and there exists p such that

q(ϕ(f + k) − ϕ(f)) ≤ g(p(f))h(p(k)) ∈ g(F+
rm)h(K+

rm′ ) ⊂ F+
rM · K+

rM ⊂ K+
rM ,

thus ϕ(f + k) − ϕ(f) ∈ KQ,r(F ).

Second part of the proof: continuity of Φ. We must show that

∀q ∈ Q : |||ϕ(f + k) − ϕ(f)|||q,rM → 0 when ∀p ∈ P : |||k|||p,rm → 0

and this for all M (resp. for some M), in respective cases. The proof is analogous to

the above proof of (F2), up to replacing p(f) ∈ F+
rm by |||f |||p,m ≤ K, p(k) ∈ K+

rm by

|||k|||p,m ≤ ε, and consequent changes.

6. Association in G
We will introduce different types of association, according to what has already been

considered in the literature on generalized function spaces. Generally speaking, we will

adopt the following terminology: strong association is expressed directly on the level of

the factor algebra, while weak association will be defined in terms of a duality product,

and thus with respect to a certain test function space.

Association in Colombeau type generalized numbers. To start with, recall that Colombeau

generalized numbers [x] and [y] are said to be associated, [x] ≈ [y], iff

xn − yn −→
n→∞

0 (in C).

This can also be expressed by considering the subset of null sequences, N = {x ∈ CN |
limxn = 0}, and by defining [x] ≈ [y] ⇔ x− y ∈ N .

As any element j of the ideal satisfies jn → 0, this is clearly independent of the

representative. In other words, it is well defined because I ⊂ N .

6.1. The general concept of J , X-association. The following general concept of

association allows us to recover all known notions of association, and encompass some

new constructions we shall consider below. The definitions of this subsection can be

formulated in a general way for any kind of quotient space of type G = F/K, where

K is an ideal of any subalgebra F of any sequence space of
↔
E type, for example. The

independence from the specific choice under consideration justifies dropping the indices

of G, F and K. When it becomes necessary to distinguish between spaces of numbers and

spaces of functions, we append the indices specifying the seminorm, e.g. Kr,p denotes
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the ideal in the space of functions (p being the net of seminorms defining the topology

on the base space), whereas Kr,|·| is the ideal in the space of numbers.

Definition 76 (J , X-association). Let J be an additive subgroup of F containing the

ideal K of F , and X a set of generalized numbers. Then two elements F,G ∈ G = F/K
are called J , X-associated ,

F ≈
J,X

G iff ∀x ∈ X : x · (F −G) ∈ J /K.

For X = {1}, we simply write

F ≈
J
G ⇔ F −G ∈ J /K.

Remark 77. As J is not an ideal, association is not compatible with multiplication in

F (not even by generalized numbers, only by elements of E). However, in the case of

differential algebras, J is usually chosen such that ≈
J ,X

is stable under differentiation.

Example 78. Usual association of generalized numbers, as recalled above, is obtained

for J = N , the set of null sequences:

[x] ≈ [y] ⇔ [x] ≈
N

[y].

As already mentioned, all elements of the ideal K tend to zero, i.e. K ⊂ N , as needed for

well-definedness at the level of the factor algebra.

6.2. Strong association. As mentioned, strong association is defined directly in terms

of the ultranorm (or ultrametric) of elements of the factor space.

Definition 79. For s ∈ R+, strong s-association is defined by

F
s≃ G ⇔ F ≈

J
(s)
P,r

G

with

J (s)
P,r = {f ∈ F | ∀p ∈ P : |||f |||p,r < e−s}, (6.1)

which is equivalent to

F
s≃ G ⇔ ∀p ∈ P : d̃p,r(F,G) < e−s.

For s = 0, we write F ≃ G and simply call them strongly associated.

Remark 80. If one has F
s≃ G for all s ≥ 0, then F = G. Indeed, this means that F −G

is in the intersection of all balls of positive radius, which is equal to K = 0G .

6.3. Weak association in
↔G p,r. In contrast to the above, weak association is defined

by comparing sequences of numbers (not functions), obtained by means of a duality

product

〈·, ·〉 :
↔
E × D → C,

where D is a test function space such that E →֒ D
′ (for example D = D for E = C∞).

The subset J defining the association will then be of the form

J = JM := {f ∈ ↔
E

N | ∀ψ ∈ D : (〈fn, ψ〉)n ∈M}, (6.2)

where M is some C-linear subspace of CN, like e.g. M = N , the sequences of zero limit.
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Example 81. For the choices given above, D = D, E = C∞ and M = N , in the case of

Colombeau’s algebra, we get the usual, so-called weak association [f ] ≈ [g] ⇔ fn−gn → 0

in D′.
Again, this is independent of the representatives, because J ⊃ Kr,p. To see this,

consider j ∈ Kr,p. Then for any ε > 0 there is n0 such that for n > n0,

|〈jn, ψ〉| ≤ ε1/rn

\
|φ| −→

n→∞
0.

Thus, 〈fn, ψ〉 −→
n→∞

0 ⇔ 〈fn + jn, ψ〉 −→
n→∞

0.

This example is a special case of the definition given below.

Example 82. Taking M = 0Cr
= K|·|,r, we obtain the weak equality in G(Ω) considered

for example in [59]:

∀f, g ∈ G(Ω) : f =
(w)

g ⇔ ∀ψ ∈ D(Ω) :
\
(f(x) − g(x))ψ(x) dx = 0 ∈ Cr.

As already mentioned, all elements of the ideal K tend to zero, i.e. K ⊂ N , as needed for

well-definedness at the level of the factor algebra.

Definition 83. s-D′-association is defined by

F
s≈
D

G ⇔ F ≈
JN ,Xs

G

with Xs = {[(es/rn)n]} for s ∈ R.

Note that this generalized number is always of the same form, but depends in each

case on the sequence (rn)n defining the topology.

Example 84. In Colombeau’s case, r = 1/log, we have Xs = {[(ns)n]}. For s = 0

(X0 = {1}), we get the already mentioned weak association.

For s 6= 0, [f ]
s≈
D

[g] ⇔ ns(fn − gn) → 0 in D′. This also has already been considered

(with D = D), for example in [55] (where it was denoted by ≈
s
). This association is

of course stronger than the simple weak association (again because association is not

compatible with multiplication even only by generalized numbers).

As an extension of this example, consider J as above, and X = {[(ns)n]}s∈N. This

means that

[f ] ≈ [g] ⇔ ∀s ∈ N : limns(fn − gn) = 0 in D′.
While for generalized numbers , this equation amounts to strict equality, this is not the

case for generalized functions. Indeed, consider φ1, φ2 ∈ S(R) such that ∀α ∈ N :T
xαφi = δα,0 (the space of such functions is also denoted B∞), but φ1(0) 6= φ2(0).

Let fi,n = nφi(n·). Then f1 = [(f1,n)] 6= f2 = [(f2,n)], but f1 ≈ f2. Indeed, for any

ψ ∈ D(R),
T
(f1,n − f2,n)ψ =

T
(φ1 − φ2)ψ(·/n), and expanding ψ in a Maclaurin series

gives the expected result.

The same constructions can be applied to generalized Sobolev space (Subsection 1.1.3)

and to the full Colombeau algebra (Example 10).

In the case of ultradistributions, we take D = D(m) and es/rn = exp[sn1/m′

] for the

Beurling case, and analogously in the Roumieu case.

For periodic hyperfunctions (with D = A(T)) this is also a new construction.
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Definition 85. Weak s-association is defined for any s ∈ R by

F
(s)≃ G ⇔ F ≈

J(s)

G

where

J(s) = {f ∈ EN | ∀ψ ∈ D : lim sup
n→∞

|〈fn, ψ〉|rn < e−s}.

It is obtained from the general setting (6.2) by observing that J(s) = JM with

M = J (s)
|·|,r = {c ∈ C

N | |||c||||·|,r < e−s}.

For s = 0, we write F
sw≈ G and call F and G strong-weak associated.

Remark 86. Let us consider some details concerning the structure of strong-weak asso-

ciation. In the following we will write | · |r = ||| · ||||·|,r , i.e.

|c|r = lim sup
n→∞

|cn|rn .

First, let us remark that I|·|,r = {c ∈ CN | |c|r < 1} is an ideal in the subalgebra

H|·|,r = {c ∈ CN | |c|r ≤ 1} of CN.

Let us now consider the topology on CN induced by the | · |r-norm. We have

|c|r ≤ a ⇔ ∀b > a, ∃n0, ∀n > n0 : |cn| ≤ b1/rn .

For b > 1, b = 1 and b < 1, the limit of the r.h.s. is respectively ∞, 1 and 0. This means

that:

(i) If |c|r < 1, then lim cn = 0. Thus, all elements of the open unit ball are associated

to zero. This is very similar to classical results relating to ultrametric spaces and

weak topology.

(ii) If lim cn = 0, then ∀b > 1, ∃n0, ∀n ≥ n0 : |cn| ≤ b1/rn → ∞, and thus |c|r ≤ 1:

All elements associated to zero are in the closed unit ball. (Recall in this context

that in ultrametric spaces, open balls and closed balls are open-and-closed sets.)

(iii) When |c|r = 1, the sequence (cn) can have any limit in R+ ∪ {∞}, or none at all.

Indeed, for any null sequence (rn), the sequences cn = rn (resp. cn = 1/rn) have

limits 0 (resp. ∞), while |c|r = 1, since

|cn|rn = exp(±rn log rn) −→
n→∞

1 (because x log x −→
x→0

0).

Proposition 87. Weak s-association implies s-D′-association, but conversely s-D′-as-

sociation only implies weak s′-association for all s′ < s.

Proof. This follows from |c|r < 1 ⇒ lim cn = 0 ⇒ |c|r ≤ 1, with cn = 〈fn, ψ〉es/rn . As

discussed in point (iii) of the above remark, for |c|r = 1, nothing can be concluded about

the limit of (cn).
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[36] G. Hörmann and M. Kunzinger, Microlocal properties of basic operations in Colombeau

algebras, J. Math. Anal. Appl. 261 (2001), 254–270.
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