
1. Introduction

We consider the following system of equations:

∂2t u− divS = f,(1.1)

∂tε = Tr(S
∗ · ∂t∇u) + div q +Q,(1.2)

where u = u(t, x) = (u1(t, x), u2(t, x), u3(t, x))
∗ is the displacement vector of the medium,

θ=θ(t, x) is the temperature of the medium, both depending on t∈R
+
0 and x∈Ω, Ω ⊂ R3

being a bounded domain with sufficiently smooth boundary, ∂t = ∂/∂t, ∂
2
t = ∂

2/∂t2,

∂j = ∂/∂xj , div stands for the divergence operator with respect to x, f = f(t, x) =

(f1(t, x), f2(t, x), f3(t, x))
∗ is the body force vector, Q = Q(t, x) is the intensity of the

heat source, Tr is the trace operator, ε is the internal energy per unit mass, ∗ stands for
transposition, S =

(
Sij
)
means that S is a 3 × 3 matrix whose (i, j) component is Sij .

If W = (w1, . . . , wn) where wj = (wij)n×n then W = (wij)n×n and divW = ∂jwj ; q is
the heat flux and q = (qi) means that q is a row n-vector whose ith component is qi and

div q = ∂jqj .

It is known (cf. [3], [67]) that the classical thermoelasticity theory (i.e. in which the

constitutive relations are independent of the derivative ∂tθ of the temperature) leads to

a parabolic differential equation for the temperature distribution in rigid heat conductors.

This implies that thermal perturbations are felt instantaneously in every part of the body

(cf. [3], [67]). Although, at first sight, this outcome of the theory seems to contradict

physical intuition, it can be justified by resorting to the fact that molecular motion,

which plays a crucial part in transport phenomena, is very rapid except at extremely low

temperatures. Hence a finite velocity of propagation for thermal perturbations is usually

not observable unless experiments are performed in some neighbourhood of absolute zero

such as in the case of liquid helium. In fact, thermal waves commonly known as second

sound are detected in some metals cooled down approximately to 20 K (cf. the work [1]

of Ackerman and Guyer (1968) and the works [79] of Taylor et al. (1969) and [47] of

Jackson and Walker (1971).

Below, we consider the theory of thermoelasticity in which we removed an infinite ve-

locity of propagation for thermal disturbance in rigid conductors described by a parabolic

equation. This means that we would like to obtain hyperbolic thermoelasticity theory.

One approach to remedy this apparent flaw (an infinite velocity of propagation for

thermal disturbances in rigid conductors described by a parabolic equation) is to include

the temperature rate among the constitutive variables, which results in the presence of

the second-order time derivative of the temperature field in the energy balance. How-

ever, the Clausius–Duhem inequality, in the form employed up to now, eliminates the

[5]
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temperature-rate-dependence from all the constitutive functions except for the constitu-

tive function of the heat flux. Hence, in order to obtain a well posed theory for temper-

ature-rate-dependent thermoelastic solids we have to resort to an entropy principle in

its full generality presented in [78]. Such a theory of thermoelasticity was proposed by

Müller in [66] where the entropy flux is postulated to be a constitutive function.

A similar idea was presented by Green and Lindsay (cf. [40]), who advocated rather

special constitutive relations for the entropy supply in rigid conductors, which are simple

generalizations of the conventional forms. Suhubi [78] extended these results to thermoe-

lasticity theory and obtained a hyperbolic system of equations describing temperature-

-rate-dependent thermoelastic solids. Using Suhubi’s approach, we now define the ther-

moelastic solids as a class of simple thermomechanical materials in which the response

functions depend only on ∇u, θ, ∂tθ, ∇θ, where ∇u = (∂1u, ∂2u, ∂3u)∗, ∂tθ = ∂θ/∂t,
∇θ = (∂1θ, ∂2θ, ∂3θ)∗. So, we assume the following constitutive relations for the internal
energy ε, the stress tensor S and the heat flux q:

ε = ε̂(∇u, θ, ∂tθ,∇θ),(1.3)

S = Ŝ(∇u, θ, ∂tθ),(1.4)

q = q̂(∇u, ∂tθ,∇θ).(1.5)

Taking into account the relations (1.3)–(1.5), we can rewrite the system (1.1)–(1.2)

as follows:

(1.6) ∂2t ui − ciαjβ(∇u, θ, ∂tθ)
∂2uj
∂xα∂xβ

+miα(∇u, θ, ∂tθ)
∂θ

∂xα

+Miα(∇u, θ, ∂tθ)
∂2θ

∂t∂xα
= f,

(1.7) ∂2t θ + a(θ, ∂tθ,∇θ,∇u)∂tθ − kαβ(θ, ∂tθ,∇θ,∇u)
∂2θ

∂xα∂xβ

− bijα(∇u, θ, ∂tθ,∇θ)
∂2uj
∂xα∂xi

+ ciα(θ, ∂tθ,∇θ,∇u)
∂2uj
∂xβ∂t

+ di(θ, ∂tθ,∇θ,∇u)
∂2θ

∂t∂xi
= g/

∂ε̂

∂(∂tθ)

where

ciαjβ =
∂Siα

∂(∂βuj)
,(1.8)

miα =
∂Siα

∂θ
, Miα =

∂Siα

∂(∂tθ)
=
∂Siα

∂(∂tθ)
,(1.9)

a(θ, ∂tθ,∇θ,∇u) =
∂ε

∂θ

/ ∂ε

∂(∂tθ)
,(1.10)

kαβ(θ, ∂tθ,∇θ,∇u) =
aαβ(∇u, ∂tθ,∇θ)
∂ε̂/∂(∂tθ)

,(1.11)

bijα(∇u, θ, ∂tθ,∇θ) =
bijα(∇u, ∂tθ,∇θ)
∂ε̂/∂(∂tθ)

,(1.12)
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ciα(∇u, θ, ∂tθ,∇θ) =
Siα(∇u, ∂tθ,∇θ)− ∂ε̂/∂(∂αui)

∂ε̂/∂(∂tθ)
,(1.13)

di(∇u, θ, ∂tθ,∇θ) =
di(∇u, ∂tθ,∇θ)− ∂ε̂/∂(∂iθ)

∂ε̂/∂(∂tθ)
,(1.14)

bijα =
∂qi

∂β(∂uj∂xα)
, di =

∂qi
∂tθ
, aαβ =

∂qi
∂(∂θ/∂xβ)

.(1.15)

Remark 1.1. Since ∂ε/∂(∂tθ) > 0 (cf. [78]), (1.7) is a hyperbolic equation in θ which

predicts a finite velocity of propagation for thermal perturbations. So, the system (1.6)–

(1.7) is the nonlinear hyperbolic system of thermoelasticity theory.

We will pose the initial conditions

(1.16)
u(0, x) = u0(x), (∂tu)(0, x) = u

1(x),

θ(0, x) = θ0(x), (∂tθ)(0, x) = θ
1(x),

with given data u0, θ0 and u1, θ1, and Dirichlet type boundary conditions (physically—

rigidly clamped, constant temperature)

(1.17) u(t, ·)|∂Ω = 0, θ(t, ·)|∂Ω = 0.

The linear hyperbolic system (1.6)–(1.7) with constant coefficients was investigated

in [74] using the Cagniard–de Hoop method.

In the paper [14] the theorem about existence, uniqueness and regularity of the weak

solution to the first initial-boundary value problem for the linear hyperbolic system was

proved by applying the Faedo–Galerkin method in Sobolev spaces.

In [20] the global (in time) existence theorem was proved for the solution of the initial

value problem for the nonlinear system (1.1)–(1.2) using the Lp-Lq time decay estimate

for the solution of the associated linearized problem, an energy estimate, and methods of

Sobolev spaces. The aim of this paper is to prove a local existence theorem for the solution

of the initial-boundary value problem (1.6)–(1.7) in the class of smooth functions with

respect to time and taking values in suitable Sobolev spaces with respect to the spatial

variables.

The corresponding existence theorem is proved by using the semigroup theory for the

linearized problem associated with the nonlinear one. Using the energy method we prove

an energy estimate for the solution of the initial-boundary value problem to the linearized

system (1.6)–(1.7). Applying the Banach fixed point theorem, we prove that the solution

of the nonlinear initial-boundary value problem (1.6)–(1.7) exists and is unique.

The paper is organized as follows. In Section 2 some notations and formulae are pre-

sented. Section 3 presents the existence theorem for the solution to the initial-boundary

value problem. In Section 4 we prove an energy estimate for the linearized system of

hyperbolic thermoelasticity. In Section 5 the proof of the main theorem is presented.

Sections 6–8 are devoted to some applications of the above method to nonlinear microe-

lasticity theory.

Sections 9–11 present the application of this method to nonlinear thermodiffusion in

a solid body. In Section 12 some general remarks are given.



8 J. A. Gawinecki

2. Basic notation and formulae

We first introduce some function spaces. Let G be an open bounded set in the Euclidean

space Er with regular boundary ∂G. Lp (G) is the space of (equivalence classes of) mea-

surable functions u such that

‖u‖Lp(G) =
( \
G

|u(x)|p dx
)1/p
<∞, 1 ≤ p <∞,(2.1)

‖u‖L∞(G) = ess sup
x∈G

|u(x)|, p =∞.(2.2)

Taken with the norm (2.1) or (2.2), Lp(G) is a Banach space; if p = 2, then L2(G) is

a Hilbert space, with scalar product

(2.3) (u, v)L2(G) =
\
G

u(x)v(x) dx.

The Sobolev space Wmp (G), 1 ≤ p ≤ ∞, consists of functions u belonging to Lp(G)
with weak derivatives ∂αu, |α| ≤ m, belonging to Lp(G):
(2.4) Wmp (G) = {u ∈ Lp(G) : ∂αu ∈ Lp(G) for |α| ≤ m}.
With the norm

(2.5) ‖u‖Wmp (G) =
( ∑

|α|≤m
‖∂αu‖pLp(G)

)1/p
,

it is a Banach space.

The case p = 2 is fundamental. To simplify the writing, we put

Wm2 (G) = H
m(G);

with the scalar product

(2.6) (u, v)Hm(G) =
∑

|α|≤m
(∂αu, ∂αv)L2(G),

this is a Hilbert space. The norm in this space is given by

(2.7) ‖u‖m =
( ∑

|α|≤m
(∂αu, ∂αv)L2(G)

)1/2
.

Let C∞0 (G) denote the space of compactly supported infinitely differentiable real-
valued functions defined on G. By Hm0 (G) we denote the Hilbert space obtained as the

completion of C∞0 (G) in the norm (2.7). H
m
0 (G) is a subspace of H

m(G).

Theorem 2.1 (Sobolev imbedding theorem). If G is a bounded domain with smooth

boundary ∂G and u ∈ Hm(G) where m > n/2 and k ≥ 0 is an integer such that m >
n/2 + k, then u ∈ Ck(G) and
(2.8) sup

x∈G
|Dαu| ≤ ‖u‖m, |α| ≤ k.

Theorem 2.2 (The Poincaré inequality). If u ∈ Hm0 (G), then
(2.9) ‖u‖2m ≤ C

∑

|α|≤m

\
G

|∂αu|2 dx ∀u ∈ Hm0 (G),

where C = C(G,m).
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Theorem 2.3 (Gronwall’s inequality). Let u, v ∈ C([a, b]), u ≥ 0. If

(2.10) v(t) ≤ C +
t\
a

v(s)u(s) ds, a ≤ t ≤ b, C ≥ 0,

then

(2.11) v(t) ≤ C exp
t\
a

u(s) ds, a ≤ t ≤ b.

Theorem 2.4 (G̊arding’s inequality). Let A be a strongly elliptic operator of order 2m.

Then there exist constants α0 > 0, λ0 > 0 such that

(2.12) (−1)mRe(Au, u) ≥ α0‖u‖2m − λ0‖u‖22 for u ∈ C∞0 (G).
In particular, we shall use the notations

∂j =
∂

∂xj
(j = 1, 2, 3),(2.13)

∂αx = ∂
α1
1 ∂

α2
2 ∂

α3
3 (|α| = α1 + α2 + α3).(2.14)

For any integer N ≥ 0, we write

(2.15)
DNu = (∂jt ∂

α
x u; j + |α| = N), DNu = (∂jt ∂αx u; j + |α| ≤ N),

DNx u = (∂
α
x u; |α| = N), DNx u = (∂

α
x u; |α| ≤ N).

If f = (f1, . . . , fn) then f ∈ X for a space with norm ‖ · ‖X means that each component
f1, . . . , fn of f is in X and

(2.16) ‖f‖X = ‖f1‖X + . . .+ ‖fn‖X .
For any 0 ≤ m <∞ and T > 0, we also use the notation
(2.17) |u|m,T = sup

0≤t≤T
‖u(t)‖m

where ‖ · ‖0 denotes ‖ · ‖L2(G).
Below, we will present the existence theorems for an Abstract Linear Evolution System

basing on semigroup theory.

Results concerning abstract linear evolution systems will be used in the proof of our

theorems (cf. Sections 3–11). So, we shall discuss a slightly modified theory of Kato [54]

concerning the following abstract linear evolution system:

(2.18) ∂tU +A(t)U = F (t), 0 < t ≤ T,
with the initial value

(2.19) U(0) = U0

where T > 0 is a fixed constant.

We begin with a simple existence theorem for (2.18), (2.19). Let X0, Y1 be a pair

of real Banach spaces with the norms (without confusion with notations given above)

denoted by ‖ · ‖0 and ‖ · ‖1, respectively. A triple (A;X0, Y1), consisting of a family A =
(A(t); t ∈ [0, T ]), is called a CD-system (following Kato [54]) if the following conditions
are satisfied:
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(i) A = (A(t); t ∈ [0, T ]) is a stable family of (negative) generators of C0-semigroups
on X0, with stability constants M,β.

(ii) The domain D(A(t)) = Y1 of A(t) is independent of t.

(iii) A(t) ∈ Lip([0, t], L(Y1;X0)) or equivalently ∂tA ∈ L∞([0, t], L(Y1;X0)).
We have the following two lemmas, which follow from Theorems 1.2 and 4.1 of [54].

Lemma 2.1. Let (A;X0, Y1) be a CD-system. Let U
0 ∈ Y1 and F ∈ Lip([0, T ], X0). Then

there is a unique solution U of (2.18), (2.19) satisfying

(2.20) U ∈ C0([0, T ], Y1) ∩ C1([0, T ], X0), U(0) = U0.

Lemma 2.2. For the solution U given by Lemma 2.1 we have

(2.21) sup
0≤t≤T

(‖U‖1 + ‖∂tU‖0)(t) ≤ K
(
‖U0‖1 + ‖F (0)‖0 +

T\
0

‖∂tF (τ )‖0 dτ
)

where K > 0 is a constant independent of U0 and F .

We now give an existence theorem slightly different from Lemma 2.1.

Theorem 2.5. Suppose that X0, Y1 are real , separable Hilbert spaces. Let (A;X0, Y1) be

a CD-system. Let U0 ∈ Y1, F ∈ C0([0, T ], X0) and Ft ∈ L1([0, T ], X0). Then problem
(2.18), (2.19) has a unique solution U with

(2.22) U ∈ C0([0, T ], Y1) ∩ C1([0, T ], X0), U(0) = U0.

Proof. We choose a sequence δn → 0 and define

(2.23) Fn(t) =

T\
0

φδn(t− τ )F (τ ) dτ

where φδn is the Friedrichs mollifier (cf. [20]). Consider the following approximate problem

for (2.18), (2.19):

(2.24)

{
∂tUn +A(t)Un = Fn(t),

Un(0) = U
0.

Note that Fn ∈ Lip([0, T ], X0) for each n > 0. By Lemma 2.1, (2.24) admits a unique
solution Un satisfying

(2.25) Un ∈ C0([0, T ], Y1) ∩ C1([0, T ], X0), Un(0) = U
0.

By (2.21) the following estimate is valid:

(2.26) sup
0≤t≤T

(‖Un(t)‖1 + ‖∂tUn‖0) ≤ const (independent of n)

provided that n is sufficiently large. Hence we can take a subsequence of {Un}, still
denoted by {Un}, such that

(2.27)

{
Un → U ∈ L∞([0, T ], Y1) in the weak∗ topology of L∞([0, T ], X1),
∂tUn → ∂tU ∈ L∞([0, T ], Y0) in the weak∗ topology of L∞([0, T ], X0).

By passing to the limit in (2.24) and by (2.27) we see that U is a solution of (2.18)–(2.19).

To show that U also satisfies (2.22) we use (2.24) and (2.21) to get
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(2.28) sup
0≤t≤T

(‖Un − Um‖1 + ‖∂t(Un − Um)‖0)(t)

≤ K
(
‖Fn − Fm(0)‖0 +

T\
0

‖∂t(Fn − Fm)(τ )‖0 dτ
)
→ 0 as n,m→∞.

Therefore {Un} is a Cauchy sequence in C0([0, T ], Y1) and C1([0, T ], X0). In view of (2.27)
we conclude that U satisfies (2.22). The uniqueness follows from the a priori estimate

(2.21). This completes the proof.

In what follows we shall investigate the higher order differentiability of the solution

given by Theorem 2.5. We introduce a double scale of real Banach spaces Xj , Yj of the

following structure:

(2.29)

{
X0 ⊃ X1 ⊃ . . . ⊃ Xs−1,
Y0 = Y0 ⊃ Y1 ⊃ . . . ⊃ Ys−1 ⊃ Ys, s ≥ 1.

Here it is assumed that Y1 is a closed subspace of X1 and Yj = Y1 ∩Xj for 1 ≤ j ≤ s− 1,
s ≥ 2. We denote by ‖ · ‖j the norm in Xj (and also in Yj). We consider the family
A = (A(t)) together with a double scale of the form (2.29), and introduce the following

assumptions:

(L1) (Stability) (A;X0, Y1) is a CD-system with stability constants M,β.

(L2) (Smoothness)

∂rtA ∈ Lip([0, T ], L(Yj+r+1;Xj)), 0 ≤ j ≤ s− r − 1,
up to r = s− 1. This implies that
(2.30) ∂r+1t A ∈ Lip([0, T ], L(Yj+r+1;Xj))
for the same range of r, j, s.

(L3) (Ellipticity) For a.e. t ∈ [0, T ] and 0 ≤ j ≤ s−1, φ ∈ Y1 and A(t)φ ∈ Xj together
imply φ ∈ Yj+1, with
(2.31) ‖φ‖j+1 ≤ K(‖A(t)φ‖j + ‖φ‖0)
where K > 0 is a constant.

We list some consequences (Propositions 2.1–2.4 below) of these assumptions, which

are given in [54].

Proposition 2.1. Let λ > β. Then A(t) + λ is an isomorphism of Yj−1 onto Xj for
all t ∈ [0, T ], 1 ≤ j ≤ s. The resolvent R(t) = (A(t) + λ)−1 is an isomorphism of Xj−1
onto Yj , and

(2.32) ∂rtR ∈ Lip([0, T ], L(Xj+r+1;Yj)) for 0 ≤ j ≤ s− r, 0 ≤ j ≤ s− 1.
Proposition 2.2. If s > 2, set C(t) = (∂tA)(t)R(t, λ). Then

C ∈ L∞([0, T ], L(Xj ;Xj)) for 0 ≤ j ≤ s− 1,(2.33)

∂rtC ∈ Lip([0, T ], L(Xj+r+1;Xj)) for 0 ≤ j + r ≤ s− 2.(2.34)

Proposition 2.3. Let s ≥ 2 and set A1(t) = A(t)− C(t). Then the family A1 satisfies
(L1) to (L3) for the subscale of height s− 1, possibly with modified constants M,β,K.
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For the inhomogeneous term F (t) in (2.18) we shall assume

(L4) ∂kt F ∈ C0([0, T ], Xs−1−k), k = 0, 1, . . . , s− 1, ∂stF ∈ L1([0, T ], X0).
Remark 2.1. The condition (L4) on the inhomogeneous term is weaker than that re-

quired in [54]. From now on, we assume the conditions (L1)–(L4). Theorem 2.5 shows

that (2.18)–(2.19) has a unique solution U ∈ C0([0, T ], Y1) ∩ C1([0, Y ], X0) with U(0) =
U0 ∈ Y1. In order to obtain the desired regularity we have to assume that U0 and F sat-
isfy certain natural compatibility conditions of higher order. To formulate them precisely,

we first give the following proposition, which may be obtained by the same argument as

for Proposition 3.1 of [54] and so its proof will be omitted here.

Proposition 2.4. Let U ∈ C0([0, T ], Ys) be a solution of (2.18), (2.19). Then ∂kt U ∈
C0([0, T ], Ys−k), 0 ≤ k ≤ s− 1, and

(2.35) ∂rtU(t) = ∂
r−1
t F (t)−

r−1∑

k=0

(
r − 1
k

)
(∂r−1−kt A)(t)∂kt U(t), r = 0, 1, . . . , s.

Proposition 2.4 implies, in particular, that if we compute U1, U2, . . . , Us successively

from

(2.36) Ur = ∂r−1t F (t)−
r−1∑

k=0

(
r − 1
k

)
(∂kt A)(0)U

r−1−k, 1 ≤ r ≤ s,

then we have the compatibility condition

(2.37) Ur ∈ Ys−r, r = 0, 1, . . . , s.

We call (2.37) the compatibility condition of order s − 1 with respect to A and F . We
are now able to state the basic regularity theorem of this section.

Theorem 2.6. Let X0 and Y1 be real , separable Hilbert spaces. Assume the conditions

(L1)–(L4). If U
0 ∈ Ys, then the solution given by Theorem 2.5 belongs to C0([0, T ], Ys)

(hence ∂kt U ∈ C0([0, T ], Ys−k), k = 0, 1, . . . , s − 1, by Proposition 2.4) if and only if U0
and F satisfy the compatibility condition (2.37) with respect to the family A and F . In

this case the initial data satisfy

(2.38) Ur = ∂kt U(0), r = 0, 1, . . . , s.

Proof. Since the compatibility condition is necessary for the theorem to hold by Propo-

sition 2.4, it suffices to prove its sufficiency. We employ an idea due to Kato [54] to prove

the sufficiency by induction on s. Since the case of s = 1 has been established by Theo-

rem 2.5, we assume that s ≥ 2 and that the sufficiency has been proved with s replaced
by s− 1, and proceed to the proof for the given s.
To this end we first solve the new equation

(2.39) Vt +A1V = λF − Ft + CF =: F1, 0 < t < T,

with the initial value

(2.40) V (0) = (A+ λ)U0 − F (0) ≡ V 0,
where A1 = A − C, c = (∂tλ)(t)R(t) and R(t) ≡ R(t, λ) = (A+ λ)−1 (λ > β). It has
been shown in Propositions 2.1–2.3 that A1 satisfies the conditions (L1)–(L3), with s
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replaced by s− 1. By Proposition 2.2 we find after a calculation that the right hand side
of (2.39) also satisfies condition (L4) with s replaced by s−1. Regarding the compatibility
condition, we have

Proposition 2.5. U0 satisfies the compatibility condition of order s− 1 with respect to
A and F if and only if V 0 satisfies the condition of order s−2 with respect to A1 and F1.

Proof. The sequence V r (0 ≤ r ≤ s− 1) can be computed recursively from (2.35), in
which F = F1, and A and U

0 are replaced by A1 and V
0, respectively. Furthermore, we

have

V r = λUr − Ur+1, 0 ≤ r ≤ s− 1,
which may be shown by induction on r; the computation is somewhat tedious but straight-

forward and will be omitted here. Hence V 0 satisfies the compatibility condition of order

s − 2 with respect to A1 and F1 if and only if U0 satisfies the condition of order s − 1
with respect to A and F .

We are now able to complete the proof of Theorem 2.6. If the compatibility condition

for U0 holds for the family A and F , Proposition 2.5 implies that the same is true for

V 0, A1 and F1. It follows from the induction hypothesis that (2.39)–(2.40) has a unique

solution

(2.41) ∂kt V ∈ C0([0, T ], Xs−1−k), k = 0, 1, . . . , s− 1.
Now set

(2.42) U = R(t, λ)(V + F ).

It follows from Proposition 2.1, condition (L4) and (2.41) that U ∈ C0([0, T ], Ys). With
the help of (2.39) and ∂tR = −RC one obtains

Ut = R[Vt + Ft − C(V + F )] = R(λF −AV )
= R[λ(V + F )− (A+ λ)V ] = λU − V = −AU + F,

which shows that U is a solution of (2.18), (2.19). Obviously, U(0) = R(0)(V 0 + F (0))

= U0, so U also satisfies the initial condition. Therefore U is identical with the solution

guaranteed by Theorem 2.5 since U ∈ C0([0, T ], Ys) as shown above; this completes the
induction by Proposition 2.4 and proves Theorem 2.6.

Now , we consider the regularity for the elliptic system.

We shall investigate the regularity of the elliptic system (2.43), (2.44) below. The

notations appearing here are the same as above:

Lu := Ciαjβ(x)
∂2uj
∂xα∂xβ

= fi(x), x ∈ Ω,(2.43)

ui|∂Ω = 0, i = 1, 2, 3,(2.44)

where u = (u1, u2, u3)
∗. Assume that

Ciαjβ ∈ C0(Ω) ∩ L∞(Ω), D1xCiαjβ ∈ Hs−1(Ω),(2.45)

Ciαjβ(x) = Ciβjα(x) for x ∈ Ω,(2.46)
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where s ≥ [3/2] + 2 = 3 is an arbitrary but fixed integer, and there is a positive constant
ν > 0 such that

(2.47) Ciαjβ(x)ξiξjηαηβ ≥ ν|ξ|2|η|2 ∀ξ, η ∈ R
3.

We have

Theorem 2.7. Let (2.45)–(2.47) hold. Then for all k = 0, 1, . . . , s, if f = (f1, f2, f3)
∗ ∈

Hk(Ω), then the solution u = (u1, u2, u3)
∗ of (2.43), (2.44) is in Hk+2(Ω) and satisfies

(2.48) ‖u‖k+2 ≤ Cs(‖Lu‖k + ‖u‖)
where Cs is a positive constant which depends continuously on ‖Ciαjβ‖L∞ and
‖D1xCiαjβ‖s−1.
Proof. If Ω is bounded, Theorem 2.7 was proved in [65]. (The symmetry of aij from

[65] can be assumed.) For unbounded Ω if the coefficients of L have continuous bounded

derivatives up to order s, then the theorem is also valid (cf. [73]). With the help of this

result for unbounded Ω, following a procedure similar to that in Theorem 4 of [65] we

get the assertion.

Remark 2.2. Theorem 2.7 was also obtained by Kawashima and Matsumura in [56].

If (2.44) is replaced by the Neumann boundary condition, then a similar result holds

(see [72]).

Remark 2.3. It can be easily shown that under the conditions of Theorem 2.7 the fol-

lowing holds:

(2.49) ‖u‖21 ≤ Cs
{(
Ciαjβ

∂uj
∂xβ
,
∂ui
∂xa

)
+ ‖u‖2

}
for u ∈ H10 (Ω).

For the elliptic equation

(2.50)




Lv := aαβ(x)

∂2v

∂xα∂xβ
= g, x ∈ Ω,

v|∂Ω = 0
we have a similar result. Suppose

(2.51)

{
aαβ ∈ C0(Ω) ∩ L∞(Ω), D1xaαβ ∈ Hs−1(Ω), aαβ = aβα,

aαβ(x)ξαξβ ≥ ν|ξ|2

for some positive constant ν and all ξ ∈ R
3. Here s ≥ 3 is an arbitrary but fixed integer.

We have (the proof is simpler and will be omitted here)

Theorem 2.8. Let (2.51) hold. Then for k = 0, 1, . . . , s, if g ∈ Hk(Ω), then the solution
v of (2.50) is in Hk+2(Ω) and satisfies

‖v‖k+2 ≤ Cs(‖Lv‖k + ‖v‖).
Here the positive constant Cs depends continuously on ‖aαβ‖L∞ and ‖D1xaαβ‖s−1.
We prove the following two theorems, which are used in Section 3 and Sections 4–11

respectively. Define

(η)δ(t, x) =

T\
0

φδ(t− τ)η(τ, x) dτ, t ∈ [0, T ], x ∈ Ω.
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Here φδ is the Friedrichs mollifier. We have

Theorem 2.9. Let a ∈ C0([0, T ], L2(Ω)), ∂ta ∈ L∞([0, T ], L∞(Ω)) and v ∈ C0([0, T ],
L2(Ω)). Set v(t, x) = (∂/∂t)[(av)δ − a(v)δ](t, x). Then

T−ε\
ε

‖φδ(τ, ·)‖2 dτ → 0 as δ → 0

for all small ε > 0.

Proof. Clearly,

φδ(t, x) =
∂

∂t

T\
0

φδ(t− τ)(a(τ, x)− a(t, x))v(τ, x) dτ

= −
T\
0

∂

∂τ
{φδ(t− τ )(a(τ, x)− a(t, x))}v(τ, x) dτ

+

T\
0

φδ(t− τ )[a′(τ, x)− a′(τ, x)]v(τ, x) dτ.

Let 0 < δ < ε; keeping in mind that φδ(t, x) = φδ(T − t, x) for t ∈ [ε, T − ε], we infer
that

φδ(t, x) =

T\
0

∂

∂t
{φδ(t− τ )(a(τ, x)− a(t, x))}(v(τ, x)− v(t, x)) dτ

+

T\
0

φδ(t− τ )[a′(τ, x)− a′(τ, x)]v(τ, x) dτ, t ∈ [ε, T − ε].

Hence by the Schwarz inequality,

T−ε\
ε

‖φδ(τ )‖2 dτ

≤ C
{
sup

t,τ∈[0,T ]
|t−τ |≤δ

‖v(t)− v(τ )‖2 +
\\

t,τ∈[0,T ]
|t−τ |≤δ

‖a′(τ )− a′(t)‖2L∞ dt dτ
T\
0

‖v(τ )‖2 dτ
}
→ 0

as δ → 0. This proves the theorem.
The following lemma can be shown by an argument similar to the one used in Lemma 3

of Appendix in [73] and we omit its proof here.

Lemma 2.3. Let aj , j=1, . . . ,m, be nonnegative integers and βj , j =1, . . . ,m, be dimen-

sional multi-indices. Put r=
∑m
j=1 |βj |aj ≥ [3/2]+1=2. If Druj(t, ·)∈L∞([0, T ], L2(Ω)),

j = 1, . . . ,m, then

‖{(Da1u1)β1 . . . (Damum)βm}(t)‖ ≤ C
m∏

j=1

‖uj(t)‖|βj |r for t ∈ [0, T ]

where C = C(m, r,Ω).

With the help of the Leibniz formula and Lemma 2.3 we can show (the proof is

omitted)
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Theorem 2.10. Assume Druj ∈ L∞([0, T ], L2(Ω)) (for some r ≥ 1) and uj ∈ L∞([0, T ],
L2(Ω)) for j = 1, . . . ,m, f(u1, . . . , um) has continuous derivatives up to order r. Then

‖Drf(u1, . . . , um)‖ ≤ C
r∑

i=1

‖Dru(t)‖i for t ∈ [0, T ]

where u = (u1, . . . , um), C = sup0≤t≤T C1(‖u(t)‖L∞) is a positive constant and C1 :
[0,∞)→ (0,∞) is a continuous function.

3. The main theorem

In this section we formulate the theorem about existence and uniqueness (local in time)

of the solution to the initial-boundary value problem for the nonlinear system (3.1)–(3.2)

with initial and boundary conditions (3.3)–(3.4):

(3.1) ∂2t ui − ciαjβ(∇u, θ, ∂tθ)
∂2uj
∂xα∂xβ

+miα(∇u, θ, ∂tθ)
∂θ

∂xα

+Miα(∇u, θ, ∂tθ)
∂2θ

∂t∂xβ
= fi,

(3.2) ∂2t θ + a(θ, ∂tθ,∇θ,∇u)∂tθ − kαβ(θ, ∂tθ,∇θ,∇u)
∂2θ

∂xα∂xβ

− bijα(∇u, θ, ∂tθ,∇θ)
∂2uj
∂xα∂xβ

+ ciβ(θ, ∂tθ,∇θ,∇u)
∂2uj
∂t∂xβ

+ dα(θ, ∂tθ,∇θ,∇u)
∂2θ

∂t∂xα
= Q

with initial conditions

(3.3)
u(0, x) = u0(x), (∂tu)(0, x) = u

1(x),

θ(0, x) = θ0(x), (∂tθ)(0, x) = θ
1(x),

and boundary conditions

(3.4) u(t, ·)|∂Ω = 0, θ(t, ·)|∂Ω = 0.

Theorem 3.1 (Local-in-time existence). Let the following assumptions be satisfied :

1◦ s ≥ ⌊3/2⌋+ 4 = 5 is an arbitrary but fixed integer.
2◦ ∂kt fi, ∂

k
t Q ∈ C0([0, T ], Hs−2−k(Ω)), k = 1, . . . , s − 2, ∂s−1t fi, ∂s−1t Q ∈ L0([0, T ],

L2(Ω)).

3◦ There is a constant κ0 > 0 such that

(3.5) (Pαβζ|ζ)ξαζβ ≥ κ0|ξ|2|ζ|
for ξ = (ξ1, ξ2, ξ3) ∈ R3, ζ = (ζ1, ζ2, ζ3, ζ4) ∈ R4 where

Pαβ = [piαjβ]i,j=1,...,4,

piαjβ = (1− δi4)(1− δj4)ciαjβ + δi4δj4kαβ + δi4(1− δj4)bβjα,
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piαjβ = piβjα, ciαjβ ∈ Cs−1(R9 × R× R),

Miα,miα ∈ Cs−1(R9 × R× R), kαβ ∈ Cs−1(R× R× R
3 × R

9),(3.6)

bβjα, bjβ , dα ∈ Cs−1(R9 × R× R× R
3), a ∈ Cs−1(R× R× R

3 × R
3).

4◦ The initial data u0, θ0, u1, θ1 satisfy

u0, θ0 ∈ Hs(Ω) ∩H10 (Ω),(3.7)

u1, θ1 ∈ Hs−1(Ω) ∩H10 (Ω),(3.8)

and the compatibility conditions

uk, θk ∈ Hs−k(Ω) ∩H10 (Ω) (2 ≤ k ≤ s− 1),(3.9)

us, θs ∈ L2(Ω),(3.10)

where uk = ∂ku(0)/∂tk and θk = ∂kθ(0)/∂tk are calculated formally (and recursively)

in terms of u0, θ0, u1, θ1 using system (1.1)–(1.4), i.e.

uki =

(
∂k−2t f

∗
i +

k−2∑

m=0

(
k − 2
m

)
∂mt ciαjβ∂α∂βu

k−2−m
j(3.11)

+

k−2∑

m=0

(
k − 2
m

)
∂mt Miα∂αθ

k−1−m
)
(x),

θk =

(
∂k−2t Q

∗ +
k−2∑

m=0

(
k − 2
m

)
∂mt kαβ∂α∂βθ

k−2−m

+
k−2∑

m=0

(
k − 2
m

)
∂mt kβjα∂α∂βu

k−2−m
j

+
k−2∑

m=0

(
k − 2
m

)
∂mt dα∂αθ

k−2−m +
k−2∑

m=0

(
k − 2
m

)
∂mt bjβ∂βu

k−1−m
j

)
(x)

where f∗i = fi −miα∂αθ.
Then for sufficiently small T > 0 there exists a unique solution (u, θ) to the initial-

boundary value problem (3.1)–(3.4) with the following properties :

u ∈
s−1⋂

k=0

Ck([0, T ], Hs−k(Ω) ∩H10 (Ω)), ∂st u ∈ C0([0, T ], L2(Ω)),(3.12)

θ ∈
s−1⋂

k=0

Ck([0, T ], Hs−k(Ω) ∩H10 (Ω)), ∂st θ ∈ C0([0, T ], L2(Ω)).(3.13)

The proof of Theorem 3.1 is divided into three steps.

1. Proof for the linear hyperbolic system obtained by linearization of (3.1)–(3.4).

2. Proof of an energy estimate for the linear system.

3. Proof of existence and uniqueness of solution of the initial-boundary value problem

for the nonlinear system (3.1)–(3.4) by applying a fixed point theorem.
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4. Energy estimate

4.1. Linearized system of hyperbolic thermoelasticity. In this section, we inves-

tigate the initial-boundary value problem for a linear hyperbolic system which arises

by linearization of (1.1)–(1.3). So, we shall investigate the solvability of the following

problem:

∂2t ui − ciαjβ(x, t)∂α∂βuj +M iα(x, t)∂α∂tθ = f i(x, t),(4.1)

∂2t θ − kαβ(x, t)∂α∂βθ − bβjα(x, t)∂t∂βuj(4.2)

+ bjβ(x, t)∂t∂βuj + di(x, t)∂t∂iθ = Q(t, x),

(t, x) ∈ [0, T ]×Ω, i = 1, 2, 3,

with initial conditions

(4.3)
ui(0, x) = u

0
i (x), (∂tui)(0, x) = u

1
i (x),

θ(0, x) = θ0(x), (∂tθ)(0, x) = θ
1(x),

and boundary conditions

(4.4) ui(t, x)|∂Ω = 0, θ(t, x)|∂Ω = 0.

4.2. Energy estimate for the linear hyperbolic system. We start with a result

on the existence of solution for (4.1)–(4.3). The Faedo–Galerkin method may be used to

prove an existence-uniqueness theorem. We also apply the methods of semigroup theory

(cf. [54]).

Theorem 4.1 (Existence, uniqueness and regularity for (4.1)–(4.3)). Let the following

assumptions be satisfied :

1◦ s ≥ ⌊3/2⌋+ 4 = 5 is an arbitrary but fixed integer.
ciαjβ ∈ C0([0, T ]×Ω) ∩ L∞([0, T ], L∞(Ω)),2◦

Dxciαjβ ∈ L∞([0, T ], Hs−2(Ω)),
∂kt ciαjβ ∈ L∞([0, T ], Hs−1−k(Ω)) for k = 1, . . . , s− 1,
kαβ ∈ C0([0, T ] ∩Ω) ∩ L∞([0, T ], L∞(Ω)),
Dxkαβ ∈ L∞([0, T ], Hs−2(Ω)),
∂kt kαβ ∈ L∞([0, T ], Hs−1−k(Ω)) for k = 1, . . . , s− 1,
bjβ ∈ C0([0, T ]×Ω), Dxbjβ ∈ L∞([0, T ], Hs−2(Ω)),
∂kt bjβ ∈ L∞([0, T ], Hs−1−k(Ω)),
M iα ∈ C0([0, T ]×Ω), DxM iα ∈ L∞([0, T ], Hs−2(Ω)),
∂ktM iα ∈ L∞([0, T ], Hs−1−k(Ω)), k ≤ s− 2,
∂s−1t M iα, ∂

s−1
t bjβ ∈ L∞([0, T ], L∞(Ω)),

|M iα|s−1,T , |dα|s−1,T , |bjβ |s−1,T ≤ c,
where c is a small constant.

3◦ ciαjβ = cjβiα.
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4◦ kαβ = kβα and there exists a constant γ0 > 0 such that

‖W‖21 ≤ γ0(ciαjβ∂βWj , ∂αWi) + ‖W‖20
for all W ∈ H10 (Ω), t ∈ [0, T ], where

W = (u1, u2, u3, θ)
∗, cαβ = [ciαjβ ]i,j=1,2,3,

ciαjβ = (1− δi4)(1− δj4)ciαjβ + δi4δj4kαβ + δi4(1− δj4)bβjα,
δij being the Kronecker delta.

5◦ For almost every t ∈ [0, T ] the condition cαβ∂α∂βW ∈ Hk(Ω) together with W ∈
H10 (Ω) implies

W ∈ Hk+2(Ω)
and

‖W‖2k+2 ≤ γ1(‖ciαjβ∂α∂βWj‖2k + ‖W‖20),
where γ1 > 0 is a constant.

∂kt f, ∂
k
t Q ∈ C0([0, T ], Hs−2−k(Ω)), k = 0, 1, . . . , s− 2,6◦

∂s−1t f, ∂
s−1
t Q ∈ L2([0, T ], L2(Ω)).

7◦ uk ≡ ∂tku|t=0, θk ≡ ∂tkθt=0 ∈ Hs−k(Ω) ∩H10 (Ω), 0 ≤ k ≤ s− 1,
us ∈ L2(Ω), θs ∈ L2(Ω) ∈ Hs−k(Ω) ∩H10 (Ω).

Then there is a unique solution (u, θ) of problem (4.1)–(4.4) with the properties :

(4.5)
∂kt u, ∂

k
t θ ∈ C0([0, T ], Hs−k(Ω) ∩H10 (Ω)), 0 ≤ k ≤ s− 1,

∂st θ, ∂
s
t u ∈ C0([0, T ], L2(Ω)).

Proof. We apply Kato’s approach (cf. [54], [23], [74]). We can convert problem (4.1)–(4.4)

to an equivalent (evolution) problem of the form

∂tV +AV = F,(4.6)

V (0, x) = V 0(x),(4.7)

where

V = (u1, u2, u3, θ, ∂tu1, ∂tu2, ∂tu3, ∂tθ)
∗,(4.8)

V 0 = (u01, u
0
2, u
0
3, θ
0, u11, u

1
2, u
1
3, θ
1)∗,(4.9)

F = (0, 0, 0, 0, f1, f2, f3, θ)
∗,(4.10)

A =

[
−I4×4 −I4×4

[−c̃iαjβ∂α∂β ]i,j=1,2,3,4 [giαj∂α]i,j=1,2,3,4

]

8×8
,(4.11)

c̃αβ = [c̃iαjβ ]i,j=1,...,4,
(4.12)

c̃iαjβ = (1− δi4)(1− δj4)ciαjβ + δj4δi4kαβ + δi4(1− δj4)bβjα,
g̃α = [g̃iαj ]i,j=1,...,4,

(4.13)
g̃iαj = (1− δi4)δj4Mα + (1− δj4)δj4bjβ + δj4δi4dα.
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The operator

(4.14) A : D(A)→ X0
defined by (4.11) has domain

(4.15) D(A) = H2(Ω) ∩H10 (Ω)×H10 (Ω).
In the space

(4.16) X = H10 (Ω)× L2(Ω)
we introduce the time-dependent inner product

(4.17) 〈U, V 〉 = (c̃iαjβ∂βwj , ∂αw∗i )0 + (w,w∗)0 + (v, v∗)0
where

(c̃iαjβ∂βwj , ∂αw
∗
i )0 = (c̃αβ∂βw, ∂αw

∗)0,(4.18)

V = (w, v)∗, V ∗ = (w∗, v∗)∗ ∈ X,(4.19)

w = (u1, u2, u3, θ)
∗, v = (∂tu1, ∂tu2, ∂tu3, ∂tθ)

∗.(4.20)

Note that the norm |||·||| corresponding to 〈·, ·〉 is equivalent to the usual norm inH10 (Ω)×
L2(Ω). We show that the triple (A;X,D(X)) forms a CD-system. First, we notice that

(4.21) AV = (−v, c̃αβ∂α∂βw + gα∂αv)∗.
So, we have

(4.22) 〈AV, V 〉 = (−c̃αβ∂βv, ∂αw)0 + (−v, w)0 + (−cαβ∂α∂βw, v)0 + (gα∂αw, v).
After some calculation, we get

(4.23) 〈AV, V 〉 = (∂β c̃αβ∂αw, v)0 + (−v, w)0 − 12 (∂αg̃αw, v).
Taking into account the assumption of Theorem 4.1, we obtain

(4.24) 〈AV, V 〉 ≥ −c1|||V |||2, c1 > 0.

Hence

|||(λI +A)V |||2 = 〈(λI +A)V, (λI +A)V 〉(4.25)

= λ2|||V |||2 + |||A|||2 + 2λ〈AV, V 〉
≥ λ2|||V |||2 + 2λ〈AV, V 〉 ≥ (λ2 − 2λc1)|||V |||2.

From (4.24) and (4.25) we get

(4.26) |||(λI +A)V |||2 ≥ (λ− 2c1)2|||V |||2 for λ > 2c1 > 0.

It follows that the operator (λI +A)−1 exists. Now, we have

〈(λI +A)V, V 〉 = λ〈V, V 〉+ 〈AV, V 〉 ≥ λ|||V |||2 − c1|||V |||2 = (λ− c1)|||V |||2 ≥ 0.
So, in view of the Lax theorem the operator λI +A is invertible on X0. Now, we have

(4.27) |||(λI +A)−1||| = sup
‖V ∗‖=1

|||(λI +A)−1V ∗|||.

Putting V ∗ = (λI +A)V , we get

(4.28) |||(λI +A)−1||| = sup
‖V ∗‖=1

|||V ||| ≤ 1

λ− 2c1
.
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From (4.25) we get

(4.29) |||V ||| ≤ |||(λI +A)V |||
λ− 2c1

.

Since the operator A is closed, and in view of (4.29) and the considerations in Section 2

and the Hille–Yosida theorem, it follows that the first condition of CD is satisfied.

Because D(A) is independent of t, taking into account the assumption of Theorem 4.1

we have

∂tA ∈ L∞(I, L(D(A);X)).
Moreover (A;X,D(A)) is a CD-system in the sense of Kato (cf. [54]). Let

X0 = Y0 = H
1
0 (Ω)× L2(Ω),(4.30)

Xj = H
j+1(Ω) ∩H10 (Ω)×Hj(Ω) for j ≥ 1,(4.31)

Yj = H
j+1(Ω) ∩H10 (Ω)×Hj(Ω) ∩H10 (Ω),(4.32)

|||V |||j = ‖w‖j+1 + ‖v‖j for V ∈ Xj .(4.33)

For the spaces defined by (4.30)–(4.32) the following conditions are satisfied:

• the triple (A;X,D(A)) is a CD-system,
• ∂r+1t A ∈ L∞(I, L(Yj+r+1;Xj)), 0 ≤ j ≤ s − 1 (this follows from the conditions

r ≤ s− 1 of Theorem 4.1),
• |||V |||j+1 ≤ c(|||A|||j+|||V |||0), j = 1, . . . , s−1 (under the assumption that |g̃iαj |s−1,T

≤ c for c sufficiently small),
• ∂kt F ∈ C0(I,Xs−1−k), k = 0, 1, . . . , s− 2, ∂s−1t F ∈ L1(I,X0) (this follows from the

assumption of Theorem 4.1).

Taking this into account and basing on Theorems 2.11 and 2.12 we get the existence,

uniqueness and regularity of the solution to problem (4.1)–(4.4). This ends the proof of

Theorem 4.1.

In the second step, we formulate an energy estimate for (4.1)–(4.4).

Theorem 4.2 (Energy estimate for (4.1)–(4.4)). If the assumptions of Theorem 4.1 are

satisfied then the solution of (4.1)–(4.3) guaranteed by Theorem 4.1 satisfies the inequality

(4.34) |Ds(u, θ)∗|20,T ≤ K0K1eK2
√
T (1+1/

√
T+T )

with positive constants K0,K1,K2 where

K0 =

s∑

k=0

‖(uk, θk)∗‖2s−k(4.35)

+ (1 + T )|Ds−2(f, θ)∗|2s−k,T +
T\
0

‖∂s−1t (f, θ)∗‖20 dt,

K1 = K1(B1, γ0, γ1) > 0,(4.36)

K2 = K2(B2, γ0, γ1) > 0,(4.37)

B1 = ‖ciαjβ(0)‖0 + ‖kαβ(0)‖0 + ‖bαjβ(0)‖0,(4.38)
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B2 = |∂βbjβ |s−2,T + |∂αciαjβ|s−2,T + |∂αkαβ |s−2,T + |∂αbαjβ |s−2,T(4.39)

+

s−1∑

k=0

(|∂kt ciαjβ|s−k−1,T + |∂kt kαβ |s−k−1,T

+ |∂kt bjβ|s−k−1,T + |∂kt bαjβ |s−k−1,T + |∂ktM iα|s−k−1,T )
(the constants γ0, γ1 are given in the assumption of Theorem 4.1).

Proof. Using the notations (4.12), (4.13) and (4.20) we can write the system (4.1)–(4.2)

as follows:

(4.40) ∂2twi − c̃iαjβ∂α∂βwj + g̃iαj∂α∂βwj = f i,
where i, j = 1, 2, 3, 4 and

(4.41) f=(f1, f2, f3, Q)
∗.

Differentiating (4.40) with respect to time n− 1 times (1 ≤ n ≤ s− 1) we get
(4.42) ∂n+1t wi − ciαjβ∂n−1t ∂α∂βwj = h

n−1
i

where

(4.43) hn−1i = ∂n−1t f i − ∂n−1t (giαj∂α∂twj) +

n−1∑

k=0

(
n− 1
k

)
∂kt ciαjβ∂

n−1−k
t ∂α∂βwj .

Multiplying (4.42) by ∂nt Wi and integrating with respect to (t, x) ∈ (0, T )× R we get

‖∂nt w‖20 + ‖∂n−1t w‖21 ≤ C(β1, γ0)(‖wn‖20 + ‖wn−1‖21 + ‖∂n−1t w‖20)(4.44)

+ C(β1, γ0)

t\
0

(‖∂nτ w(τ )‖20 + ‖∂n−1τ w(τ )‖21) dτ

+ C(γ0)

t\
0

‖hn−1(τ )‖20 dτ

where

(4.45) w = (u, θ)∗, wn = (un, θn)∗.

Taking into account that

(4.46)

t\
0

‖hn−1(τ )‖20 dτ ≤ (1 + T )|∂n−1t f |20,T + C(B2)
t\
0

‖Ds−1W (τ )‖20 dτ

we get (for n ≤ s− 1)
‖∂nt w‖20 + ‖∂n−1t w‖21 ≤ C(β1, γ0)(‖wn‖20 + ‖wn−1‖21 + ‖∂n−1t w‖20)(4.47)

+ (1 + T )|∂n−1t f |20,T + C(β1, γ0)
t\
0

‖Ds−1w(τ )‖20 dτ.

Summing the inequalities (4.47) for n = 1, . . . , s− 1, we get

(4.48)

s−2∑

n=0

‖∂nt w‖1 + ‖∂s−1t w‖0 ≤ C(β1, γ0)K0 + C(β2, γ0)
t\
0

‖Ds−1w(τ )‖20 dτ.

In order to estimate ∂stw we use the Friedrichs mollifier (cf. [22]). Applying the mollifier

Jδ (cf. [22]) to both sides of (4.42) under the assumption that n = s− 1, 0 < δ < ε < T ,
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for t ∈ [ε, T − ε], we get
(4.49) (∂n+1t wi)δ − (ciαjβ∂s−2t ∂α∂βwj)δ = (hs−2i )δ + (Ri)δ
where

(4.50) (Ri)δ = (ciαjβ∂
s−2
t ∂α∂βwj)δ − ciαjβ(∂s−2t ∂α∂βwj).

Differentiating (4.49) with respect to t, integrating over (ε, t)×Ω, ε ≤ t ≤ T−ε, using the
properties of the Friedrichs mollifier (∂stw)δ|∂Ω = 0 and (∂tw)δ = ∂t(w)δ, after integrating
by parts we have

‖(∂stw)δ(t)‖20 + ‖(∂n−1t w)δ(t)‖21 ≤ C(B1, γ0)(‖(Dsw)δ(t)‖20 + ‖(∂s−1t w)δ(t)‖2)(4.51)

+ C(B1, γ0)

(
1 +

1√
T

) T\
ε

‖(Dsw)δ(τ )‖ dτ

+
√
T

T\
ε

‖∂t(hs−2)δ(τ )‖20 dτ +
T\
ε

‖∂τRδ(τ )‖2 dτ.

Letting ε→ 0 we get δ → 0.
So, using the assumption of Theorem 4.1 we have

(4.52)

t\
ε

‖∂ths−2(τ )‖20 dτ ≤
t\
ε

‖∂s−1t f(τ )‖20 dτ + C(B2, γ0)
t\
ε

‖Dsw(τ )‖20 dτ.

So, we get

‖∂stw‖20 + ‖∂s−1t w‖21 ≤ C(B1, γ0)K0(4.53)

+ C(B2, γ0)

(√
T +

1√
T
+
1

T

) T\
ε

‖Dsw(τ )‖20 dτ,

‖∂s−2t w‖22 ≤ γ0(‖∂stw(t)‖20 + ‖hs−2(t)‖20 + ‖∂s−2t w(t)‖20),(4.54)

‖hs−2(t)‖20 ≤ C(B1, γ0)K0 + C(B2)
√
T

t\
0

‖Dsw(τ )‖20 dτ.(4.55)

So, we have

(4.56) ‖∂s−2t w‖22 ≤ C(B1, γ0, γ1)K0+C(B2, γ0, γ1)
(
1

T
+
√
T +

1√
T

) t\
0

‖Dsw(τ )‖20 dτ.

Putting n = s−2 in (4.42), using the assumption of Theorem 4.1 and acting as above we
get an estimate for ‖∂s−3t w(t)‖23. Acting in the same way for k = 2, . . . , s we can notice
that ‖∂kt w‖2s−k (4 ≤ k ≤ s) are bounded by the right hand side of (4.56). Finally, we have

|Dsw|20,T ≤ C(B1, γ0, γ1)K0(4.57)

+ C(B2, γ0, γ1)

(
1

T
+
√
T +

1√
T

) T\
0

‖Dsw(τ )‖20 dτ.

Applying the Gronwall inequality to (4.57), we get

|Dsw|20,T ≤ K1K0e(1+1/
√
T+T )

√
T .

This completes the proof of Theorem 4.2.
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5. Proof of Theorem 3.1

The proof of Theorem 3.1 is based on the Banach fixed point theorem. We denote by

Z(N,T ) the set of functions (u, θ) which satisfy

(5.1) ∂kt ui, ∂
k
t θ ∈ L∞([0, T ], Hs−k(Ω)), 0 ≤ k ≤ s

(s ≥ ⌊3/2⌋ + 4 = 5 being an arbitrary but fixed integer), with boundary and initial
conditions of the form

ui|∂Ω = 0, θ|∂Ω = 0,(5.2)

(∂kt ui)(0, x) = u
k
i , (∂

k
t θ)(0, x) = θ

k, 0 ≤ k ≤ s− 2, i = 1, 2, 3,(5.3)

and the inequality

(5.4) |Dsu|20,T + |Dsθ|20,T ≤ N2

for N large enough.

Proof of Theorem 3.1. Let

(5.5) (u, θ) ∈ Z(N,T ).
We consider system (4.1)–(4.2) with

ciαjβ = ciαjβ(∇u, θ, ∂tθ),(5.6)

M iα =Miα(∇u, θ, ∂tθ),(5.7)

kαβ = kαβ(∇u,∇θ, θ, ∂tθ),(5.8)

bjβ = bjβ(∇u,∇θ, θ, ∂tθ),(5.9)

f i = fi(t, x)−miα(∇u, θ, ∂tθ)∂αθ,(5.10)

Qi = Qi(t, x)− a(∇u,∇θ, θ, ∂tθ)∂tθ.(5.11)

We rewrite this system in the form

(5.12) ∂2t ui − ciαjβ(∇u, θ, ∂tθ)∂α∂βuj +Miα(∇u, , θ, ∂tθ)∂α∂tθ
= fi(t, x)−miα(∇u, θ, ∂tθ)∂αθ,

(5.13) ∂2t θ − kαβ(∇u,∇θ, θ, ∂tθ)∂α∂βθ + bjβ(∇u,∇θ, θ, ∂tθ)∂β∂tuj
+ bjβ(∇u,∇θ, θ, ∂tθ)∂α∂tuj + dα(∇u,∇θ, θ, ∂tθ)∂α∂βuj

= Q(t, x)− a(∇u,∇θ, θ, ∂tθ)∂αθ
with boundary and initial conditions (4.3)–(4.4).

The functions u and θ appearing in (5.12) and (5.13) are the solution of system (5.12)–

(5.13) with conditions (4.3)–(4.4). Taking into account the class of functions (4.3)–(4.4)

we can apply Theorems 4.1 and 4.2. It follows that for every (u, θ) ∈ Z(N,T ) there
exists a unique solution (u, θ) to problem (5.12)–(5.13) with initial-boundary conditions

(1.16)–(1.17). This means there exists a mapping

(5.14) σ : Z(N,T ) ∋ (u, θ) 7→ σ(u, θ) = (u, θ).

Statement I. σ maps the set Z(N,T ) into itself for N large and T small enough.
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First, we introduce the notation

E0 =
s∑

k=0

(‖uk‖2s−k + ‖θk‖2s−k)(5.15)

+

s−2∑

k=0

|∂kt (f,Q)|2s−2−k,T +
T\
0

‖∂s−1t (f,Q)‖2s−2−k dt.

Using the properties of the elements of the set Z(N,T ) and Theorem 2.10 and applying

the Sobolev inequality, we get the following estimate for the function f given by (5.10):

T\
0

‖∂s−1t f i‖20 dt =
T\
0

‖∂s−1t (fi −miα(∇u, θ, ∂tθ)∂αθ)‖20 dt(5.16)

≤
T\
0

[( s∑

k=0

‖Ds(∇u, θ, ∂tθ)‖k0
)2
+ ‖∂s−1t fi‖20

]
dt

≤ C(N)(1 + T ) + C(E),
s−2∑

k=0

|∂kt f |20,T ≤
s−2∑

k=0

|∂kt fi − ∂ktmiα(∇u, θ, ∂tθ)∂αθ|2s−2−k,T(5.17)

≤ (T + T 2)C(N) + C(E0),
and similarly

T\
0

‖∂s−1t Q‖20 dt =
T\
0

‖∂s−1t Q− ∂s−1t (a(∇u, θ, ∂tθ)∂αθ)‖20 dt(5.18)

≤ C(E0) + C(N) + (1 + T ),
s−2∑

k=0

|∂kt Q|0,T ≤
s−2∑

k=0

|∂kt Qi − a(∇u, θ, ∂tθ)∂αθ|2s−2−k,T(5.19)

≤ (T + T 2)C(N) + C(E0).
Putting (5.16)–(5.19) into the energy estimate (4.34) of Theorem 4.2, we get

(5.20) |Ds(u, θ)|20,T ≤ C(E0, γ0, γ1)(1 + C(N)(T 1/2+T +T 2))e
√
T (1+1/

√
T+T )C(N).

Let N be large enough that

(5.21) 2C(E0, γ0, γ1) < N
2.

Since η(T ) is a continuous function and η(0) = 1, there exists T > 0 such that

(5.22) η(T ) := (1 + C(N)(T 1/2 + T + T 2))e
√
T (1+1/

√
T+T )C(N) ≤ 2.

So, in view of this fact, we get from (5.20) the inequality

(5.23) |Ds(u, θ)|20,T ≤ N2.
From (5.23) it follows that

(5.24) (u, θ) ∈ Z(N,T ).
Statement II. The mapping σ : Z(N,T ) → Z(N,T ) is a contraction for T small
enough.
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Let W denote the complete metric space given by

(5.25) W = {(u, θ) : D1(u, θ) ∈ L∞([0, T ], L2(Ω))}
with metric

(5.26) ̺((u, θ), (u, θ)) = |D1(u− u)|20,T + |D1(θ − θ)|20,T .
It is easy to see that Z(N,T ) is a closed subset of W . Let (u, θ), (u∗, θ∗) ∈ Z(N,T ). Then
(5.27) σ(u, θ) = (u, θ) ∈ Z(N,T ), σ(u∗, θ∗) = (u∗, θ∗) ∈ Z(N,T ),
where (u, θ), (u∗, θ∗) are the solutions of problem (4.1)–(4.4) where the coefficients (5.6)–
(5.9) and the right hand sides of (5.10)–(5.11) depend on (u, θ) and (u∗, θ∗) respectively,
i.e.

(5.28) ∂2t ui − ciαjβ(θ,∇u, ∂tθ)∂α∂βuj +Miα(θ,∇u, ∂tθ)∂α∂tθ
= fi(t, x)−miα(θ,∇u, ∂tθ)∂αθ,

(5.29) ∂2t θ − kαβ(θ, ∂tθ,∇θ,∇u)∂α∂βθ + bjβ(θ, ∂tθ,∇θ,∇u)∂β∂tuj
− bαjβ(θ, ∂tθ,∇u)∂α∂βuj + dα(θ, ∂tθ,∇θ,∇u)∂t∂αθ

= Q(t, x)− a(θ, ∂tθ,∇θ,∇u)∂αθ,
(5.30) ∂2t u

∗
i − ciαjβ(θ∗,∇u∗, ∂tθ∗)∂α∂βu∗j +Miα(θ∗,∇u∗, ∂tθ∗)∂α∂tθ∗

= fi(t, x)−miα(θ∗,∇u∗, ∂tθ∗)∂αθ∗,
(5.31) ∂2t θ

∗ − kαβ(θ∗, ∂tθ∗,∇θ∗,∇u∗)∂α∂βθ∗ + bjβ(θ∗, ∂tθ∗,∇θ∗,∇u∗)∂β∂tu∗j
− bβjα(θ∗, ∂tθ∗,∇θ∗,∇u∗)∂α∂βu∗j + dα(θ∗, ∂tθ∗,∇θ∗,∇u∗)∂t∂αθ∗

= Q(t, x)− a(θ∗, ∂tθ∗,∇θ∗,∇u∗)∂αθ∗.
Subtracting (5.28), (5.30) and (5.29), (5.31) respectively, we get

(5.32) ∂2t (ui − u∗i )− ciαjβ(θ,∇u, ∂tθ)∂α∂β(uj − u∗j )
+ (Miα(θ,∇u, ∂tθ)∂α∂t(θ − θ∗) +miα(θ,∇u, ∂tθ))∂α(θ − θ∗)

= (ciαjβ(θ,∇u, ∂tθ)− ciαjβ(θ∗,∇u∗, ∂tθ∗))∂α∂βu∗j
+ (Miα(θ,∇u, ∂tθ)−Miα(θ∗,∇u∗, ∂tθ∗))∂α∂tθ∗

−miα(θ∗,∇u∗, ∂tθ∗)∂αθ∗,
(5.33) ∂2t (θ − θ∗)− kαβ(θ,∇θ,∇u, ∂tθ)∂α∂β(θ − θ∗)

+ bjβ(θ,∇θ,∇u, ∂tθ)∂β∂t(u− u∗j )− bβjα(θ,∇θ,∇u, ∂tθ)∂α∂β(u− u∗j )

+ dα(θ,∇θ,∇u, ∂tθ)∂t∂α(θ − θ∗) + a(θ,∇θ,∇u, ∂tθ)∂α(θ − θ∗)

= (kαβ(θ,∇θ,∇u, ∂tθ)− kαβ(θ∗,∇θ∗,∇u∗, ∂tθ∗))∂α∂βθ∗

+ (bjβ(θ,∇θ,∇u, ∂tθ)− bjβ(θ∗,∇θ∗,∇u∗, ∂tθ∗))∂β∂tu∗j
+ (bβjα(θ,∇u, ∂tθ)− bβjα(θ∗,∇u∗, ∂tθ∗))∂α∂βu∗j
+ (dα(θ,∇θ,∇u, ∂tθ)− dα(θ∗,∇θ∗,∇u∗, ∂tθ∗))∂t∂αu∗j
+ (a(θ,∇θ,∇u, ∂tθ)− a(θ∗,∇θ∗,∇u∗, ∂tθ∗))∂tθ∗.
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Multiplying (5.32), (5.33) by ∂t(u− u∗) and ∂t(θ − θ∗) respectively, and integrating by
parts over [0, T ]×Ω, performing partial integration with respect to x, taking into account
that

(5.34)
(ui − u∗i )|∂Ω = 0, ∂kt (ui − u∗i )(0, x) = 0, k = 0, 1,
(θi − θ∗i )|∂Ω = 0, ∂kt (θi − θ∗i )(0, x) = 0, k = 0, 1,

and using the fact that

(5.35) |D2(u, θ, u∗, θ∗, u, θ, u∗, θ∗)|0,T < C(N)
and the mean value theorem, we get

(5.36) ‖D1(u− u∗)‖20 + ‖D1(θ − θ∗)‖20

≤ C(N)
(
1 +

1√
T

) T\
0

(‖D1(u− u∗)‖20 + ‖D1(θ − θ∗)‖20) dt

+ T (1 + T )2C(N)(|D1(u− u∗)|20 + |D1(θ − θ∗)|20).
Applying Gronwall’s inequality to (5.36) we get

(5.37) |D1(u− u∗)|20,T + |D1(θ − θ∗)|20,T
≤ C(N)T (1 + T )2(|D1(u− u∗)|20,T + |D1(θ − θ∗)|20,T )e(1+1/

√
T )C(N)T .

Introducing the notation

(5.38) λ = C(N)T (1 + T )2e(1+1/
√
T )C(N)T

we get

(5.39) |D1(u− u∗)|20,T + |D1(θ − θ∗)|20,T ≤ λ(|D1(u− u∗)|20,T + |D1(θ − θ∗)|20,T ).
From (5.38) it follows that choosing T small enough, we get λ < 1. Therefore the mapping

σ is a contraction. So, in view of the Banach fixed point theorem, σ has a unique fixed

point (u, θ) ∈ Z(N,T ).
This implies that problem (1.1)–(1.4) has a unique solution on 0 ≤ t ≤ T .

6. Applications to nonlinear microelasticity theory.
Formulation of the main theorem

Below, we show how the approach presented in Sections 2–5 works in nonlinear microe-

lasticity theory. So, we consider the nonlinear hyperbolic system of six partial differential

equations of second order describing a microelastic medium in the three-dimensional

space (cf. [28]):

(6.1) ∂2t ui − ciαjβ(∇u,∇ϕ)∂α∂βuj + αij(∇u,∇ϕ)εjlk∂lϕk = fi,
(6.2) ∂2t ϕi − diαjβ(∇u,∇ϕ)∂α∂βϕj + αij(∇u,∇ϕ)ϕj

− αij(∇u,∇ϕ)εjlk∂luk = Yi, i = 1, 2, 3,

where u = u(t, x) = (u1(t, x), u2(t, x), u3(t, x))
∗ is the displacement vector of the medium,

ϕ = ϕ(t, x) = (ϕ1(t, x), ϕ2(t, x), ϕ3(t, x))
∗ is the microrotation vector, depending on
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t ∈ R
+
0 and x ∈ Ω, Ω ⊂ R3 being a bounded domain with ∂Ω smooth enough;

∇u = (∂1u, ∂2u, ∂3u), ∇ϕ = (∂1ϕ, ∂2ϕ, ∂3ϕ) are the spatial gradients of the functions
u, ϕ respectively; ciαjβ(·), diαjβ(·), αij(·), αij(·) are the nonlinear coefficients depending
on the gradients of the unknown functions; f = f(t, x) = (f1(t, x), f2(t, x), f3(t, x))

∗ is the
body force vector, Y = Y (t, x) = (Y1(t, x), Y2(t, x), Y3(t, x))

∗ is the body couple vector;
the symbol εijk is defined as follows:

εijk =

{
+1 when the permutation (i, j, k) is even,

−1 when the permutation (i, j, k) is odd, i, j, k = 1, 2, 3,

with the following initial conditions:

(6.3)

(6.4)

u(0, x) = u0(x) , (∂tu)(0, x) = u
1(x),

ϕ(0, x) = ϕ0(x), (∂tϕ)(0, x) = ϕ
1(x),

where u0, ϕ0, u1, ϕ1 are given data, and with the boundary conditions:

(6.5) u(t, ·)|∂Ω = 0, ϕ(t, ·)|∂Ω = 0.
Remark 6.1. Putting into (6.1)–(6.2)

ciαjβ = µδαβ(λ+ µ)δij , αij(·) = 2α, αij(·) = 4α,
diαjβ = (γ + ε)δαβ + (δ + γ + ε)δij ,

where δαβ denotes the Kronecker symbol (α, β = 1, 2, 3), we obtain from (6.1)–(6.2) the

linear hyperbolic system with constant coefficients describing the microelastic medium.

The initial-boundary value problem for the linear system of microelasticity theorem

was investigated by W. Nowacki [68] using integral transformations.

Now, we formulate the main theorem about local (in time) existence of the solution

of the initial-boundary value problem for the nonlinear system (6.1)–(6.2).

Theorem 6.1 (Local-in-time existence). Let the following conditions be satisfied :

1◦ s ≥ ⌊3/2⌋+ 4 = 5 is an arbitrary but fixed integer.
2◦ ∂kt fi, ∂

k
t Yi ∈ C0([0, T ], Hs−2−k(Ω)), k = 1, . . . , s − 2, ∂s−1t fi, ∂s−1t Yi ∈ L2([0, T ],

L2(Ω)).

3◦ There are two constants γ1, γ2 such that

(cαβξαξβη, η) ≥ γ1|ξ|2|η|2, (dαβξαξβη, η) ≥ γ2|ξ|2|η|2

for ξ = (ξ1, ξ2, ξ3), η = (η1, η2, η3) ∈ R3 where

cαβ = [ciαjβ ], dαβ = [diαjβ ],

αij , αij ∈ Cs−1(R18) (i, j = 1, 2, 3),

ciαjβ = cjβiα, diαjβ = djβiα.

4◦ The initial data u0, ϕ0, u1, ϕ1 satisfy

u0, ϕ0 ∈ Hs(Ω) ∩H10 (Ω), u1, ϕ1 ∈ Hs−1(Ω) ∩H10 (Ω)
and the compatibility conditions

uk ∈ Hs−k(Ω) ∩H10 (Ω) (2 ≤ k ≤ s− 1), us ∈ L2(Ω),
ϕk ∈ Hs−k(Ω) ∩H10 (Ω) (2 ≤ k ≤ s− 1), ϕs ∈ L2(Ω),
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where uk = ∂ku(0, x)/∂tk, ϕk = ∂kϕ(0, x)/∂tk are calculated formally (and recursively)

in terms of u0, u1, ϕ0, ϕ1 using system (6.1)–(6.2).

Then for sufficiently small T > 0 there exists a unique solution (u, ϕ) to the initial-

boundary value problem (6.1)–(6.4) with the following properties :

u ∈
s−1⋂

k=0

Ck([0, T ], Hs−k(Ω) ∩H10 (Ω)), ϕ ∈
s−1⋂

k=0

Ck([0, T ], Hs−k(Ω) ∩H10 (Ω)),

∂st u ∈ C0([0, T ], L2(Ω)), ∂stϕ ∈ C0([0, T ], L2(Ω)).
The proof of Theorem 6.1 is divided into three steps:

1◦ Proof for the linear system obtained by linearization of (6.1)–(6.4) in the case of
two linear hyperbolic systems.

2◦ Proof of an energy estimate for the linear system.

3◦ Proof of existence and uniqueness of solution of the initial-boundary value problem
for the nonlinear system (6.1)–(6.4) by applying a fixed point theorem.

7. Energy estimate for the linearized microelasticity system

7.1. Linearized system of microelasticity theory. In this subsection, we investigate

two initial-boundary value problems for two linear hyperbolic systems. These systems

arise from the linearized system (6.1)–(6.4).

So, we shall investigate the solvability of the following problems.

1◦ The initial-boundary value problem for the linear hyperbolic system

(7.1) ∂2t ui − ciαjβ(x, t)
∂2uj
∂xα∂xβ

= hi(x, t) ((t, x) ∈ [0, T ]×Ω, i = 1, 2, 3)

with initial conditions

(7.2) ui(0, x) = u
0
i (x), (∂tui)(0, x) = u

1
i (x)

and boundary conditions

(7.3) ui(t, ·)|∂Ω = 0 (t ∈ [0, T ]).
2◦ The initial-boundary value problem for the linear system

(7.4) ∂2t ϕi − diαjβ(x, t)
∂2ϕj
∂xα∂xβ

= ki(x, t) ((t, x) ∈ [0, T ]×Ω, i = 1, 2, 3)

with initial conditions

(7.5) ϕi(0, x) = ϕ
0
i (x), (∂tϕi)(0, x) = ϕ

1
i (x)

and boundary conditions

(7.6) ϕi(t, ·)|∂Ω = 0 (t ∈ [0, T ]).

7.2. Energy estimate for the linear system of microelasticity theory. We start

with the existence of solution to the initial-boundary value problem (7.1)–(7.4).
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Theorem 7.1 (Existence and regularity for (7.1)–(7.3)). Let the following assumptions

be satisfied :

1◦ s ≥ ⌊3/2⌋+ 4 = 5 is an arbitrary but fixed integer.
ciαjβ ∈ C0([0, T ]×Ω) ∩ L∞([0, T ], L∞(Ω)),2◦

Dxciαjβ ∈ L∞([0, T ], Hs−2(Ω)),
∂kt ciαjβ ∈ L∞([0, T ], Hs−1−k(Ω)) (k = 1, . . . , s− 1).

3◦ ciαjβ = cjβiα for t ∈ [0, T ]×Ω and if u ∈ H10 (Ω), then

‖u‖21 ≤ γ0
{(
ciαjβ(t)

∂uj
∂xβ
,
∂ui
∂xα

)
+ ‖u‖20

}

for t ∈ [0, T ], where γ0 > 0 is some constant.

4◦ ciαjβ
∂2uj
∂xα∂xβ

∈ Hk(Ω)

for t ∈ [0, T ], and if u ∈ H10 (Ω), then u ∈ Hk+2(Ω) and

‖u‖k+2 ≤ γ1
(∥∥∥∥ciαjβ(t)

∂2uj
∂xα∂xβ

∥∥∥∥
2

k

+ ‖u‖20
)

(0 ≤ k ≤ s− 2) for t ∈ [0, T ], where γ1 > 0 is some constant.
5◦ ∂kt h ∈ C0([0, T ], Hs−2−k(Ω)) (0 ≤ k ≤ s− 2), ∂s−1t h ∈ L2([0, T ], L2(Ω)).
Then there exists a unique solution u = (u1, u2, u3)

∗ of problem (7.1)–(7.4) with the
properties

(7.11)
∂st u ∈ C0([0, T ], L2(Ω)),
∂kt u ∈ C0([0, T ], Hs−k(Ω) ∩H10 (Ω)) (0 ≤ k ≤ s− 1).

Sketch of proof. The assertion follows from semigroup theory (cf. Section 2) and the proof

of Theorem 4.1.

We can convert problem (4.1)–(4.4) into an equivalent (evolution) problem of the form

∂tV +AV = F,(7.12)

V (0, x) = V (x),(7.13)

where

V = (u1, u2, u3, ∂tu1, ∂tu2, ∂tu3)
∗,(7.14)

V (0) = V 0 = (u01, u
0
2, u
0
3, u
1
1, u
1
2, u
1
3)
∗,(7.15)

F = (0, h),(7.16)

A(t) =




0 −I
−ciαjβ

∂2

∂xαx∂β
0


 ,(7.17)

the operator

(7.18) A : D(A)→ X0
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being defined by (7.17) with

(7.19) D(A) = H2(Ω) ∩H10 (Ω)×H10 (Ω), X0 = H
2
0 (Ω)× L2(Ω).

Using the same considerations as in the proof of Theorem 4.1, we show that (A,X0, D(A))

is a CD-system and that A(t) satisfies also the other conditions which allow one to prove

the required regularity (cf. (4.30)–(4.33)). Now, we formulate an energy estimate for

problem (7.1)–(7.3).

Theorem 7.2 (Energy estimate for (7.1)–(7.3)). If the assumptions of Theorem 7.1 are

satisfied , then the solution of problem (7.1)–(7.3) guaranteed by Theorem 7.1 satisfies the

inequality

(7.20) |Dsu|20,T ≤ K0K1eK2ζ(T )

with positive constants K0,K1,K2, where

K0 =

s∑

k=0

‖uk‖2s−k + (1 + T )|Ds−2h|20,T + T 1/2
T\
0

|∂s−1t h(t)|2 dt,

and K1 = K1(L0, γ0, γ1) and K2 = K2(L, γ0, γ1) depend continuously on their argu-

ments , where

(7.21)

L0 = ‖ciαjβ(0)‖L∞ + ‖Dxciαjβ(0)‖s−3,

L = sup
0≤t≤T

‖ciαjβ(t)‖∞ + |Dxciαjβ(0)|s−2,T +
s−1∑

k=0

|∂kt ciαjβ|s−k−1,T ,

ζ(T ) = T 1/2(1 + T 1/2 + T + T 3/2).

Sketch of proof. Differentiating (4.1) n− 1 times (1 ≤ n ≤ s− 1) formally with respect
to t, multiplying by ∂nt ui and then integrating over (0, t) × Ω, using integration by
parts with respect to x, the Schwarz inequality, Friedrich’s mollifier (in order to estimate

∂st u(t, x)); cf. the proof of Theorem 4.2), and the assumption of the theorem, we get

(7.22) ‖Dsu(t)‖22 = C(L, γ0, γ1)K0+C(L, γ0, γ1)(1 + T 1/2 + T + T 3/2)
t\
0

‖Dsu(τ )‖22 dτ.

Applying Gronwall’s inequality to (7.22), we immediately get the energy estimate (7.20).

As the second step, we start with the existence theorem for the initial-boundary value

problem (7.4)–(7.6).

Theorem 7.3 (Existence, uniqueness and regularity for (7.4)–(7.6)). Let the following

assumptions be satisfied :

1◦ s ≥ ⌊3/2⌋+ 4 = 5 is an arbitrary but fixed integer.

diαjβ ∈ C0([0, T ]×Ω) ∩ L∞([0, T ], L∞(Ω)),2◦

Dxdiαjβ ∈ L∞([0, T ], Hs−2(Ω)) (k = 1, . . . , s− 1),
∂kt diαjβ ∈ L∞([0, T ], Hs−1−k(Ω)).
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3◦ diαjβ = djβiα for (t, x) ∈ [0, T ]×Ω and if ϕ ∈ H10 (Ω), then

‖ϕ‖21 ≤ γ′0
{(
diαjβ(t)

∂ϕj
∂xβ
,
∂ϕi
∂xα

)
+ ‖ϕ‖20

}

for t ∈ [0, T ], where γ′0 > 0 is some constant.

4◦ diαjβ
∂2ϕj
∂xα∂xβ

∈ Hk(Ω)

for t ∈ [0, T ], and if ϕ ∈ H10 (Ω), then ϕ ∈ Hk+2(Ω) and

‖ϕ‖k+2 ≤ γ′1
(∥∥∥∥diαjβ(t)

∂2ϕ

∂xα∂xβ

∥∥∥∥
2

k

+ ‖ϕ‖20
)

(0 ≤ k ≤ s− 2) for t ∈ [0, T ], where γ′1 > 0 is some constant.

∂s−1t k ∈ L2([0, T ], L2(Ω)) (s > 5),5◦

∂kt k ∈ C0([0, T ], Hs−2−k(Ω)) (0 ≤ k ≤ s− 2).

Then there exists a unique solution ϕ = (ϕ1, ϕ2, ϕ3)
∗ of problem (7.4)–(7.6) with the

properties

(7.23)
∂stϕ ∈ C0([0, T ], L2(Ω)),
∂kt ϕ ∈ C0([0, T ], H2(Ω) ∩H10 (Ω)) (0 ≤ k ≤ s− 1).

Sketch of proof. Introducing the vector V = (ϕ1, ϕ2, ϕ3, ∂tϕ1, ∂tϕ2, ∂tϕ3)
∗ we can convert

problem (7.4)–(7.6) into an equivalent (evolution) problem of the form

∂tV +AV = G,(7.24)

V (0, x) = V 0(x),(7.25)

where

V (0) = V 0 = (ϕ01, ϕ
0
2, ϕ
0
3, ϕ
1
1, ϕ
1
2, ϕ
1
3)
∗, G = (0, k)∗,

A(t) =

(
0 −I

−diαjβ ∂α∂β 0

)
.

Using similar considerations to those in the proofs of Theorems 7.1 and 4.1 we obtain

the assertion of Theorem 7.3. Using the same approach as in the proof of Theorem 7.2,

we can also obtain the following energy estimate for the solution of problem (7.4)–(7.6).

Theorem 7.4 (Energy estimate for (7.4)–(7.6)). If the assumptions of Theorem 7.3 are

satisfied , then the solution of problem (7.4)–(7.6) guaranteed by Theorem 7.3 satisfies the

inequality

(7.26) |Dsϕ|20,T ≤M0M1eM2η(T )

with positive constants M0,M1,M2, where

M0 =

s∑

k=0

‖ϕk‖2s−k + (1 + T )|Ds−2h|20,T + T 1/2
T\
0

|∂s−1t h(t)|2 dt
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and M1 = M1(P0, γ
′
0, γ
′
1) and M2 = M2(P, γ

′
0, γ
′
1) depend continuously on their argu-

ments ; here

P0 = ‖diαjβ(0)‖L∞ + ‖Dxdiαjβ(0)‖s−3,

P = sup
0≤t≤T

‖diαjβ(t)‖L∞ + |Dxdiαjβ(0)|s−2,T +
s−1∑

k=1

|∂kt diαjβ |s−k−1,T

and

(7.27) η(T ) = T 1/2(1 + T 1/2 + T + T 3/2).

Proof. It runs in the same way as that of Theorem 7.1.

8. Proof of Theorem 6.1

Let W(N,T ) be the set of functions (u, ϕ) satisfying

(8.1) ∂kt ϕi, ∂
k
t uj ∈ L∞([0, T ], Hs−k(Ω)), 0 ≤ k ≤ s, j = 1, 2, 3,

s ≥ ⌊3/2⌋ + 4 = 5 being an arbitrary but fixed integer, with boundary and initial
conditions of the form

uj |∂Ω = 0, ϕj |∂Ω = 0,(8.2)

∂kt uj(0, x) = u
k
j (x), 0 ≤ k ≤ s− 1,(8.3)

∂kt ϕj(0, x) = ϕ
k
j (x), 0 ≤ k ≤ s− 1,(8.4)

and the inequality

(8.5) |Dsu|20,T + |Dsϕ|20,T ≤ N2

for N large enough.

A mapping σ1: W(N,T )→W(N,T ) is defined as follows:
(8.6) σ1 :W(N,T ) ∋ (u, ϕ) 7→ σ1(u, ϕ) = (u, ϕ)
where u is the solution of (7.1)–(7.3) according to Theorem 7.1 with

ciαjβ = ciαjβ(∇u,∇ϕ),(8.7)

hi = αij(∇u,∇ϕ)εjlk
∂ϕk
∂xl
+ fi,(8.8)

u0 = u0, u1 = u1,(8.9)

and ϕ is the solution of (7.4)–(7.6) according to Theorem 7.3 with

diαjβ = diαjβ(∇u,∇ϕ),(8.10)

ki = −αij(∇u,∇ϕ) + αij(∇u,∇ϕ)εjlk
∂uk
∂xl
+ ϕi,(8.11)

ϕ0 = ϕ0, ϕ1 = ϕ1.(8.12)

Then σ1 maps W(N,T ) into itself provided N is sufficiently large and T is sufficiently

small. To prove this, we use the energy estimates (7.22)–(7.26) and the same arguments

as in the proof of Theorem 3.1.
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For this, we introduce the notation

ε0 =

s∑

k=0

‖uk‖2s−k +
s∑

k=0

‖ϕk‖2s−k +
s−2∑

k=0

|∂kt (h, k)|2s−2−k,T(8.13)

+

T\
0

‖∂s−1t (h, k)(τ )‖20 dτ.

Taking into account the properties of elements of W(N,T ), applying the Sobolev in-

equality and the mean value theorem, we get, for the function h defined by (8.8),

‖∂s−1t h‖20 ≤ 2
(
C

s−2∑

i=1

‖Ds−1(∇u,∇ϕ)‖i0
)2
+ 2C‖∂s−1t h‖20(8.14)

≤ C(N) + C‖∂s−1t h‖20
and

(8.15)

T\
0

‖∂s−1t h‖ dt ≤ C(N)(1 + T ) + CE0.

Acting similarly and using the fact that

γ(t) = γ(0) +

t\
0

∂tγ(τ ) dτ

we get

(8.16)

s−2∑

k=0

{
|∂kt h|2s−2−k,T +

∣∣∣∣∂
k
t αij(∇u,∇ϕ)εjkh

∂uk
∂xi

∣∣∣∣
2

s−2−k,T

}

≤ C(E0) + C(N)T (1 + T ).
Using the same estimate, we get

(8.17)

T\
0

‖∂s−1t k‖ dt ≤ C(N)(1 + T ) + C(E0)

and

(8.18)
s−2∑

k=0

{
|∂kt k|2s−2−k,T + |∂kt αij(∇u,∇ϕ)ϕj |2s−2−k,T

+

∣∣∣∣∂
k
t αij(∇u,∇ϕ)εjhk

∂uh
∂xi

∣∣∣∣
2

s−2−k,T

}

≤ C(E0) + C(N)T (1 + T ).
Putting (8.13) and (8.14) into the energy estimate (7.20), putting (7.17) into the energy

estimate (7.26) and adding the resulting inequalities, we get

|Dsu|20,T + |Dsϕ|20,T ≤ C ′(E0, γ0, γ1, γ′0, γ′1)(8.19)

·
(
1 + C(N)T 1/2

6∑

i=0

T i/2
)

· eC(N)T 1/2
∑
5

i=0 T
i/2

.
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Let N be so large that

(8.20) 2C ′(E0, γ0, γ1, γ
′
0, γ
′
1) < N

2.

There exists T > 0 small enough that

(8.21) η(T ) =
(
1 + C(N)T 1/2

6∑

i=0

T i/2
)
eC(N)T

1/2∑5
i=0 T

i/2

< 2

(since η(0) = 1 and η(T ) is a continuous function). So, we get

(8.22) |Dsu|20,T + |Dsϕ|20,T ≤ N2.
This means that (u, ϕ) ∈W(N,T ). Finally, we notice thatW(N,T ) is a closed subspace
of the complete metric space defined by

(8.23) Y = {(u, ϕ) : D1u,D1ϕ ∈ L∞([0, T ], L2(Ω))}
with metric δ given by

(8.24) δ((u, ϕ), (u, ϕ)) = |D1(u− u)|20,T + |D1(ϕ− ϕ)|20,T .
Below, we prove that the mapping σ1 is a contraction for T small enough, with respect

to the metric δ given by (8.24). Using (8.7)–(8.12) we can see that u− u∗, ϕ− ϕ∗ satisfy
the system

(8.25) ∂t(ui − u∗i )− ciαjβ(∇u,∇ϕ)
∂2(uj − u∗j )
∂xα∂xβ

= (ciαjβ(∇u∗,∇ϕ∗)− ciαjβ(∇u,∇ϕ))
∂2u∗j
∂xα∂xβ

+

(
αij(∇u,∇ϕ)− αij(∇u∗,∇ϕ∗)εihk

∂ϕk
∂xi
+ αij(∇u∗,∇ϕ∗)εihk

)(
∂ϕk
∂xi
− ∂ϕ

∗
k

∂xi

)
,

(8.26) ∂2t (ϕi − ϕ∗i )− diαjβ(∇u,∇ϕ)
∂2(ϕj − ϕ∗j )
∂xα∂xβ

= (diαjβ(∇u∗,∇ϕ∗)− diαjβ(∇u,∇ϕ))
∂2ϕ∗j
∂xα∂xβ

+ (αij(∇u,∇ϕ)− αij(∇u∗,∇ϕ∗))ϕj + αij(∇u∗,∇ϕ∗)(ϕi − ϕ∗i )

+ (αij(∇u,∇ϕ)− αij(∇u∗,∇ϕ∗))εjlk
∂ϕk
∂xi

+ αij(∇u∗,∇ϕ∗)εjlk
(
∂ϕk
∂xi
− ∂ϕ

∗
k

∂xi

)
.

Multiplying (8.15), (8.16) by ∂t(u− u∗), ∂t(ϕ− ϕ∗) respectively, and integrating over
[0, T ]×Ω, performing partial integration with respect to x, taking into account that

(8.27)
(ui − u∗i )|∂Ω = 0, ∂kt (ui − u∗i )(0, x) = 0, k = 0, 1,
(ϕi − ϕ∗i )|∂Ω = 0, ∂kt (ϕi − ϕ∗i )(0, x) = 0, k = 0, 1,

and using a similar approach to that in the proof of Theorem 3.1, we get
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(8.28) ‖D1(u− u∗)‖20 + ‖D1(ϕ− ϕ∗)‖20

≤ C(N)
(
1 +

1√
T

) T\
0

[‖D1(u− u∗)‖20 + ‖D1(ϕ− ϕ∗)‖20] dt

+ T 1/2(1 + T )2C(N)[‖D1(u− u∗)‖20,T + ‖D1(ϕ− ϕ∗)‖20,T ].
Applying Gronwall’s inequality to (8.28) we get

(8.29) |D1(u− u∗)|20,T + |D1(ϕ− ϕ∗)|20,T ≤ ε(|D1(u− u∗)|20,T + |D1(ϕ− ϕ∗)|20,T )
where

(8.30) ε = C(N)T 1/2(1 + T )2eC(N)(T+T
1/2).

From (8.30) it follows that choosing T small enough, we get ε < 1. Therefore the mapping

σ1 is a contraction. So, in view of the Banach fixed point theorem, σ has a unique fixed

point (u, ϕ) ∈W(N,T ). This implies that problem (6.1)–(6.2) with conditions (6.3)–(6.4)
has a unique solution on 0 ≤ t ≤ T . This completes the proof of Theorem 6.1.

9. Application to nonlinear thermodifusion in a solid body

In this section we extend our approach to the nonlinear hyperbolic-parabolic system of

equations describing the behaviour of a thermodiffusion medium in continuum mechanics.

More precisely we consider the initial-boundary value problem for the nonlinear

hyperbolic-parabolic system of equations describing the process of thermodiffusion in

a solid body (cf. [29], [51]):

∂2t ui − Ciαjβ(∇u, θ1, θ2)
∂2uj
∂xα∂xβ

+ c1iα(∇u, θ1, θ2)
∂θ1
∂xα
+ c2iα(∇u, θ1, θ2)

∂θ2
∂xα
= fi,

c(∇u, θ1, θ2)∂tθ1 − a1αβ(∇u, θ1, θ2,∇θ1,∇θ2)
∂2θ1
∂xα∂xβ

(9.1)

+ c1iα(∇u, θ1, θ2)
∂2ui
∂xα∂t

+ d(∇u, θ1, θ2,∇θ1,∇θ2)
∂θ2
∂t
= Q1,

n(∇u, θ1, θ2)∂tθ2 − a2αβ(∇u, θ1, θ2,∇θ1,∇θ2)
∂2θ2
∂xα∂xβ

+ c2iα(∇u, θ1, θ2)
∂2ui
∂xα∂t

+ d(∇u, θ1, θ2,∇θ1,∇θ2)
∂θ1
∂t
= Q2,

where u = u(t, x) = (u1(t, x), u2(t, x), u3(t, x))
∗ is the displacement vector of the medium,

θ1 = θ1(t, x) denotes the temperature of the medium, θ2 = θ2(t, x) denotes the chemical

potential depending on t ∈ R
+
0 and x ∈ Ω, Ω ⊂ R3 being a bounded domain with

∂Ω smooth; ∇u = (∂1u, ∂2u, ∂3u), ∇θ1 = (∂1θ1, ∂2θ1, ∂3θ1), ∇θ2 = (∂1θ2, ∂2θ2, ∂3θ2);
Ciαjβ(·), c1iα(·), c2iα(·), c(·), a1αβ(·), d1(·), n(·), a2αβ(·) are nonlinear coefficients depending
on the unknown functions and their gradients, smooth enough; f = f(t, x) = (f1(t, x),

f2(t, x), f3(t, x))
∗ denotes the body force vector; Q1 = Q2(t, x), Q2 = Q2(t, x) are the
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intensity of the heat source and the intensity of the source of diffusing mass; ∗ denotes
transposition; the initial conditions are

(9.2)
u(0, x) = u0(x), (∂tu)(0, x) = u

1(x),

θ1(0, x) = θ
0
1(x), θ2(0, x) = θ

0
2(x),

with given data u0, u1, θ01, θ
0
2, and boundary conditions (of Dirichlet type) are

(9.3) u(t, ·)|∂Ω = 0, θ1(t, ·)|∂Ω = 0, θ2(t, ·)|∂Ω = 0,
Putting in the system (9.1)

(9.4)
ciαjβ(·) = µδαβ + (λ+ µ)δij , c1iα = γ1δiα, c2iα = γ2δiα,

c(·) = c, a1αβ = δαβ , a2αβ = Dδαβ , d1(·) = d, n(·) = n,
we obtain the linear hyperbolic-parabolic system describing thermodiffusion in a solid

body. The linear hyperbolic-parabolic system of thermodiffusion in a solid body was

investigated in [38, 39, 40, 69] using the method of integral transformations. In [37] some

theorems about existence and uniqueness of solution for initial-boundary value problems

were proved using the Faedo–Galerkin method in suitable Sobolev spaces. The aim of

this section is to prove a local existence theorem for the nonlinear problem (9.1)–(9.7)

in the class of smooth functions under the assumptions given below. Before starting the

main theorem we rewrite system (9.1) in the form (under the assumption cn− d2 > 0)

∂2t ui − Ciαjβ(∇u, θ1, θ2)
∂2uj
∂xα∂xβ

+ c1iα(∇u, θ1, θ2)
∂θ1
∂xα
+ c2iα(∇u, θ1, θ2)

∂θ2
∂xα
= fi(t, x),

∂tθ1 − ã11αβ(∇u, θ1, θ2,∇θ1,∇θ2)
∂2θ1
∂xα∂xβ

− ã12αβ(∇u, θ1, θ2,∇θ1,∇θ2)
∂2θ2
∂xα∂xβ(9.5)

= C
1
iα(∇u, θ1, θ2∇θ1,∇θ2)

∂2ui
∂xα∂t

+ g1(∇u, θ1, θ2,∇θ1,∇θ2, t, x),

∂tθ2 − a21αβ(∇u, θ1, θ2,∇θ1,∇θ2)
∂2θ1
∂xα∂xβ

− a22αβ(∇u, θ1, θ2,∇θ1,∇θ2)
∂2θ2
∂xα∂xβ

= C
2
iα(∇u, θ1, θ2,∇θ1,∇θ2)

∂2ui
∂xα∂t

+ g2(∇u, θ1, θ2,∇θ1,∇θ2, t, x),
where

(9.6)

a11αβ =
n

δ
a1αβ, a12αβ = −

d

δ
a1αβ ,

a21αβ = −
d

δ
a2αβ, a22αβ =

c

cn− d2 a
2
αβ, δ = cn− d2,

C
1
iα(∇u, θ1, θ2,∇θ1,∇θ2) =

dC2iα − nc1iα
δ

,

C
2
iα(∇u, θ1, θ2,∇θ1,∇θ2) =

dC1iα − cC2iα
δ

,

g1(∇u, θ1, θ2,∇θ1,∇θ2, t, x) =
Q1n− dQ2
δ

,

g2(∇u, θ1, θ2,∇θ1,∇θ2, t, x) =
dQ2 − dQ1
δ

.
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Now, we formulate the main theorem:

Theorem 9.1 (Local-in-time existence). Let the following conditions be satisfied :

1◦ s ≥ ⌊3/2⌋+ 4 = 5 is an arbitrary but fixed integer.
2◦ ∂kt fi, ∂

k
t Q1, ∂

k
t Q2 ∈ C0([0, T ], Hs−2−k(Ω)), k = 0, 1, . . . , s− 2, ∂s−1t Q1, ∂s−1k Q2 ∈

L2([0, T ], L2(Ω)).

3◦ There are two constants γ1, γ2 such that

(cαβξαξβη, η) > γ1|ξ|2|η|2, (aαβξαξβη, η) ≥ γ2|ξ|2|η|2

for η = (η1, η2) ∈ R
2, ξ = (ξ1, ξ2, ξ3), η = (η1, η2, η3) ∈ R

3, where

cαβ = [ciαjβ], i = 1, 2, 3, j = 1, 2, 3,

aαβ = [a
ij
αβ], i = 1, 2, j = 1, 2,

aijαβ , d ∈ Cs−1(R17),
ciαjβ , c, n, c̃

1
iα, c̃

2
iα ∈ Cs−1(R11),

ciαjβ = cjβiα, aijαβ = a
ji
βα.

4◦ The initial data satisfy : θ01, θ
0
2, u
0 ∈ H0(Ω) ∩H10 (Ω), u1 ∈ Hs−1(Ω) ∩H10 (Ω) for

x ∈ Ω and the compatibility conditions
uk ∈ Hs−k(Ω) ∩H10 (Ω), 2 ≤ k ≤ s− 1, us ∈ L2(Ω),
θk1 ∈ Hs−k(Ω) ∩H10 (Ω), 1 ≤ k ≤ s− 2, θs−11 ∈ L2(Ω),
θk2 ∈ Hs−k(Ω) ∩H10 (Ω), 1 ≤ k ≤ s− 2, θs−12 ∈ L2(Ω),

where uk = ∂ku(0, ·)/∂tk, θk1 = ∂kθ1(0, ·)/∂tk, θk2 = ∂kθ2(0, ·)/∂tk and they are calculated
formally (and recursively) in terms of u0, u1, θ10, θ

2
0 using (9.8).

Then for sufficiently small T > 0 there exists a unique solution (u, θ1, θ2) of the initial

value problem (9.1)–(9.2) with the following properties :

u ∈
s−1⋂

k=1

Ck([0, T ], Hs−k(Ω) ∩H10 (Ω)),

∂st u ∈ C0([0, T ], L2(Ω)),

θ1 ∈
s−2⋂

k=1

Ck([0, T ], Hs−k(Ω) ∩H10 (Ω)),(9.8)

∂s−1t θ1 ∈ C0([0, T ], L2(Ω)), ∂s−1t ∇θ1 ∈ L2([0, T ], L2(Ω)),

θ2 ∈
s−2⋂

k=1

Ck([0, T ], Hs−k(Ω) ∩H10 (Ω)),

∂s−1t θ2 ∈ C0([0, T ], L2(Ω)), ∂s−1t ∇θ2 ∈ L2([0, T ], L2(Ω)).
The proof of Theorem 9.1 is divided into three steps:

1◦ Proof for the linear system of equations obtained by linearization of system (9.1)–
(9.3) in the cases of

(a) one linear hyperbolic system,

(b) one linear parabolic system.
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2◦ Proof of an energy estimate for these systems.

3◦ Proof of existence and uniqueness of solution of the initial-boundary value problem
to the nonlinear system (9.1)–(9.2) by applying a fixed point theorem.

10. Energy estimate for the
linearized system of thermodiffusion in a solid body

10.1. Linearized system of thermodiffusion in a solid body. In this subsection we

shall investigate two initial-boundary value problems for one linear hyperbolic system and

one linear parabolic system. These systems arise from the linearized system (9.1)–(9.2).

So we shall investigate the solvability of the following problem:

1◦ The initial-boundary value problem for the linear hyperbolic system

(10.1) ∂2t ui − ciαjβ(t, x)
∂2uj
∂xα∂xβ

= f i(t, x), (t, x) ∈ [0, T ]×Ω, i = 1, 2, 3,

with initial conditions

(10.2) ui(0, x) = u
0
i (x), (∂tui)(0, x) = u

1
i (x),

and boundary conditions

(10.3) ui(t, ·)|∂Ω = 0, t ∈ [0, T ],

2◦ The initial-boundary value problem for the linear parabolic system

∂tθ1 − a11αβ(t, x)
∂2θ1
∂xα∂xβ

− a12αβ(t, x)
∂2θ2
∂xα∂xβ

= g1(t, x),(10.4)

∂tθ2 − a21αβ(t, x)
∂2θ1
∂xα∂xβ

− a22αβ(t, x)
∂2θ2
∂xα∂xβ

= g2(t, x)(10.5)

with initial conditions

(10.6) θ1(0, x) = θ
0
1(x), θ2(0, x) = θ

0
2(x),

and boundary conditions

(10.7) θ1(t, ·)|∂Ω = 0, θ2(t, ·)|∂Ω = 0, t ∈ [0, T ].

10.2. Energy estimate for the linear system of thermodiffusion in a solid body

10.2.1. Energy estimate for the linear hyperbolic system. We start with results on the

existence of solution for problem (10.1)–(10.3).

Theorem 10.1 (Existence, uniqueness and regularity for problem (10.1)–(10.3)). Let the

following assumptions be satisfied :

1◦ s > ⌊3/2⌋+ 4 = 5 is an arbitrary but fixed integer.
2◦ ciαjβ ∈ C0([0, T ]×Ω) ∩ L∞([0, T ], L∞(Ω)), Dxciαjβ ∈ L∞([0, T ], Hs−2(Ω)),

∂kt ciαjβ ∈ L∞([0, T ], Hs−1−k(Ω)) for k = 1, . . . , s− 1.
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3◦ ciαjβ = cjβiα and there exists a constant γ0 > 0 such that

‖u‖21 ≤ γ0
(
ciαjβ(t)

∂uj
∂xβ
,
∂ui
∂xα

)
+ ‖u‖20

for all u ∈ H10 (Ω), t ∈ [0, T ].
4◦ For almost all t ∈ [0, T ], the condition

ciαjβ
∂2uj
∂xα∂xβ

∈ Hk(Ω)

together with u ∈ H10 (Ω) implies

u ∈ Hk+2(Ω) and ‖u‖2k+2 ≤ γ1
(∥∥∥∥ciαjβ(t)

∂2uj
∂xα∂xβ

∥∥∥∥
2

k

+ ‖u‖20
)
,

where γ1 > 0 is some constant.

Then there exists a unique solution u = (u1, u2, u3)
∗ of problem (10.1)–(10.3) with the

properties

∂kt u ∈ C0([0, T ], Hs−k(Ω) ∩H10 (Ω)), 0 ≤ k ≤ s− 1,
and

(10.8) ∂st u ∈ C0([0, T ], L2(Ω)).
The proof runs in the same way as that of Theorem 4.1.

Now, we formulate an energy estimate for problem (10.1)–(10.4).

Theorem 10.2 (Energy estimate for problem (10.1)–(10.4)). If the assumptions of The-

orem 10.1 are satisfied , then the solution of problem (10.1)–(10.3) guaranteed by Theo-

rem 10.1 satisfies the inequality

(10.9) |Dsu|20,T ≤ K1K0eK2ξ(T )

with positive constants K1,K0,K2, where

K0 =

s∑

k=0

‖uk‖2s−k + (1 + T )|Ds−2f |20,T + T 1/2
T\
0

‖∂s−1t f(t)‖2 dt,

K1 = K1(L0, γ0, γ1) > 0, K2 = K2(L, γ0, γ1) > 0

depend continuously on their arguments , where

(10.10)

L0 = ‖ciαjβ(0)‖L∞ + ‖Dxciαjβ(0)‖s−3,

L = sup
0≤t≤T

‖ciαjβ(t)‖L∞ + |Dxciαjβ|s−2,T +
s−1∑

k=1

|∂kt ciαjβ |s−1−k,T ,

and

(10.11) ξ(T ) = T 1/2(1 + T 1/2 + T + T 3/2),

The proof runs in the same way as that of Theorem 7.2.

10.2.2. Energy estimate for the linear parabolic system. In the second step we consider

solvability of the initial-boundary value problem for the linear parabolic system (10.4)–

(10.5) with conditions (10.6)–(10.7).



Nonlinear hyperbolic thermoelasticity 41

First we introduce the vector V = (θ1, θ2)
∗ and convert the initial-boundary value

problem (10.1)–(10.7) to the form

(10.12) ∂tV − aαβ(t, x)
∂2V

∂xα∂xβ
= G(t, x),

with

(10.13) V (0, x) = V 0(x), V (t, ·)|∂Ω = 0,
where

(10.14) aαβ(t, x) =

(
a11αβ(t, x) a

12
αβ(t, x)

a21αβ(t, x) a
22
αβ(t, x)

)
, G(t, x) = (g1(t, x), g2(t, x))

∗.

In order to formulate an energy estimate for problem (10.10)–(10.11) we present two

theorems, whose proofs can be found in [30].

Theorem 10.3. Let the following conditions be satisfied :

D1aijαβ(t, x) ∈ C0([0, T ]×Ω) ∩ L∞([0, T ], L∞(Ω)),
∂t∇aijαβ(t, x) ∈ L∞([0, T ], L∞(Ω)), G ∈ C0([0, T ], L2(Ω)),
∂tG ∈ L2([0, T ], H−1(Ω)), V 0 ∈ H10 (Ω),

V 1 := aαβ(0)
∂2V 0

∂xα∂xβ
+G(0) ∈ L2(Ω),

and

aijαβ(t, x) = a
ji
βα(t, x) for (t, x) ∈ [0, T ]×Ω,(10.15)

(aαβξαξβη, η) ≥ γ3|ξ|2|η|2 for ξ ∈ R
3, η ∈ R

2,(10.16)

and for some constant γ3 > 0. Then there exists a unique solution V = (θ1, θ2)
∗ to

problem (10.10)–(10.11) with the properties

(10.17)

θ1 ∈ C0([0, T ], H2(Ω) ∩H10 (Ω)),
∂tθ1 ∈ C0([0, T ], L2(Ω)),
∂t∇θ1 ∈ L2([0, T ], L2(Ω)),
θ2 ∈ C0([0, T ], H2(Ω) ∩H10 (Ω)),
∂tθ2 ∈ C0([0, T ], L2(Ω)),
∂t∇θ2 ∈ L2([0, T ], L2(Ω)).

Now, we formulate a regularity theorem for solutions of problem (10.10)–(10.11).

Theorem 10.4. Let the following conditions be satisfied :

1◦ s ≥ ⌊3/2⌋+ 4 = 5 is an arbitrary but fixed integer.
aijαβ ∈ C0([0, T ]×Ω) ∩ L∞([0, T ], L∞(Ω)),2◦

Dxa
ij
αβ ∈ L∞([0, T ], Hs−2(Ω)),

∂kt a
ij
αβ ∈ L∞([0, T ], Hs−1−k(Ω)), 1 ≤ k ≤ s− 2,

∂s−1t a
ij
αβ ∈ L2([0, T ], L2(Ω)).
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3◦ For all θ1, θ2 ∈ H10 (Ω) and t ∈ [0, T ], the inequality

‖θ1‖21 + ‖θ2‖21 ≤ γ4
{(
aijαβ
∂θi
∂xβ
,
∂θj
∂xα

)
+ ‖θ1‖2 + ‖θ2‖2

}

is satisfied for some constant γ4 > 0.

4◦ For t ∈ [0, T ],

aijαβ(t)
∂2θi
∂xα∂xβ

∈ Hk(Ω) with θ1, θ2 ∈ H10 (Ω),

implies that θ1, θ2 ∈ Hk+2(Ω), and

‖V ‖k+2 ≤ γ3
(∥∥∥∥aαβ(t)

∂2V

∂xα∂xβ

∥∥∥∥
k

+ ‖V ‖0
)
,

where V = (θ1, θ2)
∗, 0 ≤ k ≤ s− 2 and γ3 is some constant.

∂kt g1 ∈ C0([0, T ], Hs−2−k(Ω)), 0 ≤ k ≤ s− 2,5◦

∂s−1t g1 ∈ L2([0, T ], H−1(Ω)),
∂kt g2 ∈ C0([0, T ], Hs−2−k(Ω)), 0 < k ≤ s− 2,
∂s−1t g2 ∈ L2([0, T ], H−1(Ω)),

Then there exists a unique solution V = (θ1, θ2)
∗ of problem (10.10)–(10.11) with the

properties

(10.18)

∂kt θ1 ∈ C0([0, T ], Hs−2−k(Ω) ∩H10 (Ω)), 0 ≤ k ≤ s− 2,
∂s−1t θ1 ∈ C0([0, T ], L2(Ω)), ∂s−1t ∇θ1 ∈ L2([0, T ], L2(Ω)),
∂kt θ2 ∈ C0([0, T ], Hs−2−k(Ω) ∩H10 (Ω)), 0 ≤ k ≤ s− 2,
∂s−1t θ2 ∈ C0([0, T ], L2(Ω)), ∂s−1t ∇θ2 ∈ L2([0, T ], L2(Ω)).

Next we present an energy estimate for the solution of problem (10.10)–(10.11).

Theorem 10.5 (Energy estimate for the parabolic system (10.10)–(10.11)). Let the con-

ditions of Theorem 10.4 be satisfied. Then the solution to problem (10.10)–(10.11) satisfies

the inequality

(10.19)
s−2∑

k=0

|∂kt θ1|2s−k,T +
s−2∑

k=0

|∂kt θ2|2s−k,T + |∂s−1t θ1|20,T + |∂s−1t θ2|20,T

+

T\
0

[‖∂s−1τ ∇θ1(τ )‖2 + ‖∂s−1τ ∇θ2(τ )‖2] dτ ≤ K3M0eK4η(T ),

where

(10.20) M0 = (1 + T )
{ s−2∑

k=0

(‖θk1‖2s−k) + ‖θk2‖2s−k + ‖θs−11 ‖2 + ‖θs−12 ‖2 + |Ds−2g1|20,T

+|Ds−2g2|20,T +
T\
0

[‖∂s−1t g1(τ )‖2H−1 + ‖∂s−1t g2(τ )‖2H−1 ] dτ
}
,
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K3 = K3(P0, γ2, γ3) > 0, K4 = K4(P, γ2, γ3) > 0, γ2, γ3 are given in the assumption of

Theorem 10.9,

(10.21)

P = sup
0≤t≤T

2∑

i,j=1

‖aijαβ(t)‖L∞ +
2∑

i,j=1

‖Dαaijαβ‖s−2,T

+
s−2∑

k=1

2∑

i,j=1

|∂kt aijαβ |s−1−k,T +
T\
0

2∑

i,j=1

‖∂s−1t aijαβ(τ )‖2 dτ,

P0 =

2∑

i,j=1

‖aijαβ(0)‖L∞ +
2∑

i,j=1

‖Dxaijαβ(0)‖s−3,

and η(T ) = T (1 + T ).

Proof. This theorem can be found in [29].

11. Proof of Theorem 9.1

The proof of Theorem 9.1 is based on the Banach fixed point theorem. For this reason

we denote by V(N,T ) the set of functions u satisfying the conditions

(11.1)

∂kt u ∈ L∞([0, T ], Hs−k(Ω)), 0 ≤ k ≤ s,
∂kt θ1 ∈ L∞([0, T ], Hs−k(Ω)), 0 ≤ k ≤ s− 2,
∂s−1t θ1 ∈ L∞([0, T ], L2(Ω)), ∂s−1t ∇θ1 ∈ L2([0, T ], L2(Ω)),
∂kt θ2 ∈ L∞([0, T ], Hs−k(Ω)), 0 ≤ k ≤ s− 2,
∂s−1t θ2 ∈ L∞([0, T ], L2(Ω)), ∂s−1t ∇θ2 ∈ L2([0, T ], L2(Ω)),

with boundary and initial conditions of the form

ui|∂Ω = 0, θ1|∂Ω = 0, θ2|∂Ω = 0,
∂kt u(0, x) = u

k(x), 0 ≤ k ≤ s− 1, ∂kt θ1(0, x) = θ
k
1 (x), 0 ≤ k ≤ s− 2,(11.2)

∂kt θ2(0, x) = θ
k
2 (x), 0 ≤ k ≤ s− 2,

and the inequality

(11.3) |Dsu|20,T +
s−2∑

k=0

|∂kt θ1|2s−k,T + |∂s−1t θ1|20,T +
s−2∑

k=0

|∂kt θ2|2s−k,T + |∂s−1t θ2|20,T

+

T\
0

‖∂s−1τ ∇θ1(τ )‖2 dτ +
T\
0

‖∂s−1τ ∇θ2(τ )‖2 dτ ≤ N2

for N large enough.

Proof of Theorem 9.1. Let

(u, θ1, θ2) ∈ V(N,T ).
We consider

1◦ the system

∂2t ui − ciαjβ
∂2uj
∂xα∂xβ

= f i for i = 1, 2, 3
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with

(11.4)
ciαjβ := ciαjβ(∇u, θ1, θ2),

f i := c̃
1
iα(∇u, θ1, θ2)

∂θ1
∂xα
+ c̃2iα(∇u, θ1, θ2)

∂θ2
∂xα
+ fi(t, x),

2◦ the system

∂tθ1 − a11αβ
∂2θ1
∂xα∂xβ

− a12αβ
∂2θ2
∂xα∂xβ

= g1, ∂tθ2 − a21αβ
∂2θ1
∂xα∂xβ

− a22αβ
∂2θ2
∂xα∂xβ

= g2

with

(11.5)

a11αβ := a
11
αβ(∇u, θ1, θ2,∇θ1,∇θ2), a12αβ := a

12
αβ(∇u, θ1, θ2,∇θ1,∇θ2),

a21αβ := a
21
αβ(∇u, θ1, θ2,∇θ1,∇θ2), a22αβ := a

22
αβ(∇u, θ1, θ2,∇θ1,∇θ2),

g1 = C
1
iα(∇u, θ1, θ2,∇θ1,∇θ2)

∂2ui
∂xα∂t

+ g1(∇u, θ1, θ2,∇θ1,∇θ2, t, x),

g1 =
Q1n− dQ2
δ

, g2 =
cQ2 − dQ1
δ

,

g2 = C
2
iα(∇u, θ1, θ2,∇θ1,∇θ2)

∂2ui
∂xα∂t

+ g2(∇u, θ1, θ2,∇θ1,∇θ2, t, x),

where u is the solution of (10.1), (10.3), (11.4).

By σ2 we denote the mapping which maps (u, θ1, θ2) to the solution (u, θ1, θ2) of

problem (10.1)–(10.3), (5.4), (10.4)–(10.8), (11.5), i.e.

(11.6) σ2 : V(N,T ) ∋ (u, θ1, θ2) 7→ σ2(u, θ1, θ2) = (u, θ1, θ2).

The following statements are true.

Statement I. σ2 maps V(N,T ) into itself for N large and T small enough.

In the proof of this statement we use the energy estimate for the linearized hyperbolic

system of equations (cf. Theorems 10.1, 10.2) and the energy estimate for the linearized

parabolic system of equations (cf. Theorem 10.4, 10.5).

Statement II. The mapping σ2 : V(N,T ) → V(N,T ) is a contraction for T small
enough.

For this let W1 denote the complete metric space given by

(11.7) W1 := {(u, θ1, θ2) : D1u, θ1, θ2 ∈ L∞([0, T ], L2(Ω)),
∇θ1 ∈ L2([0, T ], L2(Ω)), ∇θ2 ∈ L2([0, T ], L2(Ω))},

with metric given by

(11.8) ϕ2((u, θ1, θ2), (u, θ1, θ2)) := |D1(u− u)|20,T + |θ1 − θ1|20,T + |θ2 − θ2|20,T

+

T\
0

‖∇(θ1 − θ1)(τ )‖20 dτ +
T\
0

‖∇(θ2 − θ2)(τ )‖20 dτ.

Then V(N,T ) is a closed subset of W1.
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Let (u, θ1, θ2) and (u
∗, θ∗1, θ

∗
2) ∈ V(N,T ). Then

σ2(u, θ1, θ2) = (u, θ1, θ2) ∈ V(N,T ), σ2(u
∗, θ∗1, θ

∗
2) = (u

∗, θ∗1 , θ
∗
2) ∈ V(N,T ),

where (u, θ1, θ2), (u
∗, θ∗1 , θ

∗
2) are the solutions of problems (10.1)–(10.3), (11.4) and (10.4)–

(10.7), (11.5) respectively, where the coefficients and the right hand side depend on

(u, θ1, θ2) and (u
∗, θ∗1, θ

∗
2). Subtracting the resulting systems of equations and using some

calculations, we get

∂2t (ui − u∗i )− ciαjβ(∇u, θ1, θ2)
∂2(uj − u∗j )
∂xα∂xβ

= (ciαjβ(∇u∗, θ∗1, θ∗2)− ciαjβ(∇u, θ1, θ2))
∂2u∗j
∂xα∂xβ

+ (c̃1iα(∇u, θ1, θ2)− c̃1iα(∇u∗, θ∗1, θ∗2))
∂θ1
∂xα
+ c̃1iα(∇u∗, θ∗1, θ∗2)

(
∂θ1
∂xα
− ∂θ

∗
1

∂xα

)

+ (c̃2iα(∇u, θ1, θ2)− c̃2iα(∇u∗, θ∗1, θ∗2))
∂θ2
∂xα
+ c̃2iα(∇u∗, θ∗1, θ∗2)

(
∂θ2
∂xα
− ∂θ

∗
2

∂xα

)

and

(11.9) ∂t(θi − θ∗i )− aijαβ(∇u, θ1, θ2,∇θ1,∇θ2)
∂2(θj − θ∗j )
∂xα∂xβ

= (aijαβ(∇u∗, θ
∗
1, θ
∗
2,∇θ

∗
1,∇θ

∗
2)− aijαβ(∇u, θ1, θ2,∇θ1,∇θ2))

∂2θ∗j
∂xα∂xβ

+ C
i
jα(∇u, θ1, θ2,∇θ1,∇θ2)

∂2(uj − u∗j )
∂xα∂t

+ (Cijα(∇u, θ1, θ2,∇θ1,∇θ2)− C
i
jα(∇u∗, θ∗1, θ∗2,∇θ∗1,∇θ∗2))

∂2u∗j
∂xα∂t

+ (gi(∇u, θ1, θ2,∇θ1,∇θ2, x, t)− gi(∇u∗, θ∗1, θ∗2,∇θ∗1,∇θ∗2, x, t)), i = 1, 2.

Using the fact that

sup
0≤t≤T

‖D2(u, θ1, θ2, u∗, θ∗1, θ∗2, u, θ1, θ2, u∗, θ∗1 , θ∗2‖ ≤ CN,

and (ui − u∗i )|∂Ω = 0, ∂kt (ui − u∗)(0, x) = 0, k = 0, 1, and the mean value theorem
C(∇u, θ)− C(∇u∗, θ∗) = C(∇u∗ + (∇u−∇u∗), θ∗ + (θ − θ∗))− C(∇u∗, θ∗)

= ∇ξC(ξ, ζ)(∇u−∇u∗) +∇ζC(ξ, ζ)•(θ − θ∗),
and the Schwarz inequality, after some calculations, we get

‖D1(u− u∗)‖20 ≤ C(N)
{(
1 +

1

T 1/2

) T\
0

‖D1(u− u∗)‖20 dτ(11.10)

+ T 1/2(1 + T )
[
|D1(u− u∗)|20,T + |θ1 − θ∗1|20,T + |θ2 − θ∗2|20,T

+

T\
0

‖∇(θ1 − θ∗1)‖20 dτ +
T\
0

‖∇(θ2 − θ∗2)‖20 dτ
]}
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and

(11.11) ‖θ1 − θ∗1‖20 +
t\
0

‖∇(θ1 − θ∗1)‖20 dτ + ‖θ2 − θ∗2‖20 +
t\
0

‖∇(θ2 − θ∗2)‖20 dτ

≤ C(N)
{(
1 +

1

T 1/2

) t\
0

[‖θ1 − θ∗1‖20 + ‖θ2 − θ∗2‖20 + ‖D1(u− u∗)‖20] dτ

+ T 1/2(1 + T )
[
|D1(u− u∗)|20,T + |θ1 − θ∗1|20,T + |θ2 − θ∗2|20,T

+

t\
0

[‖∇(θ1 − θ∗1)‖20 + ‖∇(θ2 − θ∗2)‖20] dτ
]}

we deduce from (11.10)–(11.11) that

(11.12) |D1(u− u∗)|20,T + |θ1 − θ∗1 |20,T + |θ2 − θ∗2 |20,T

+

T\
0

‖∇(θ1 − θ∗1)‖20 dτ +
T\
0

‖∇(θ2 − θ∗2)‖20 dτ

≤ C(N)
{(
1 +

1

T 1/2

) T\
0

[‖D1(u− u∗)‖20 + ‖θ1 − θ∗1‖20 + ‖θ2 − θ∗2‖20] dτ

+ T 1/2(1 + T )
[
|D1(u− u∗)|20,T + |θ1 − θ∗1|20,T + |θ2 − θ∗2|20,T

+

T\
0

‖∇(θ1 − θ∗1)‖20 dτ +
T\
0

‖∇(θ2 − θ∗2)‖20 dτ
]

+

(
1 +

1

T 1/2

) T\
0

T\
0

(‖∇(θ1 − θ∗1)‖20 + ‖∇(θ2 − θ∗2)‖20) dτ ds
}
.

Applying to (11.12) the Gronwall inequality (cf. (2.11)) we get

(11.13) |D1(u− u∗)|20,T + |θ1 − θ∗1 |20,T + |θ2 − θ∗2 |20,T

+

T\
0

‖∇(θ1 − θ∗1)‖20 dτ +
T\
0

‖∇(θ2 − θ∗2)‖20 dτ

≤ δ
(
|D1(u− u∗)|20,T + |θ1 − θ∗1|20,T + |θ2 − θ∗2|20,T

+

T\
0

‖∇(θ1 − θ∗1)‖20 dτ +
T\
0

‖∇(θ2 − θ∗2)‖20 dτ
)
.

Choosing T small enough, we get δ < 1. Therefore the mapping σ2 is a contraction.

So, in view of the Banach fixed theorem the contraction mapping σ2 has a unique fixed

point (u, θ1, θ2) ∈ V(N,T ). This implies that problem (9.1) with conditions (9.2)–(9.3)
has a unique solution on 0 ≤ t ≤ T . This completes the proof of Theorem 9.1.



Nonlinear hyperbolic thermoelasticity 47

12. General remarks

Many physical phenomena arising in mathematical physics are described not only by

quasilinear or linear hyperbolic systems (as in the case of nonlinear hyperbolic thermoe-

lasticity theory and nonlinear microelasticity theory), but by quasilinear or nonlinear

coupled hyperbolic-parabolic systems of composite type or by parabolic nonlinear coupled

systems as well. Such is the case of:

1. classical thermoelasticity theory, which is described by a nonlinear hyperbolic-pa-

rabolic coupled system consisting of four nonlinear partial differential equations;

2. nonlinear thermodiffusion, which is described by a nonlinear hyperbolic-parabolic

coupled system (cf. [51], [29]):

• consisting of five nonlinear partial differential equations describing thermodiffu-
sion in a solid body (cf. Section 9 and [51], [29]),

• consisting of eight coupled nonlinear partial differential equations describing ther-
modiffusion in a micropolar medium (cf. [23]);

3. nonlinear diffusion, which is described by a nonlinear coupled parabolic system of

equations (cf. [30]).

We can extend the method presented above to prove (local-in-time) existence of solu-

tion of the initial-boundary value problem for the nonlinear hyperbolic system of equa-

tions and the nonlinear hyperbolic-parabolic system describing the medium in contin-

uum mechanics. Such is the case of a hyperbolic system of partial differential equations

describing the so-called nonsimple thermoelastic materials (cf. [32]) and the case of ther-

modiffusion in a micropolar medium (cf. [23]).

The strategy of the proof is to consider linear hyperbolic and linear parabolic systems

associated with the nonlinear ones, and to apply a fixed point principle. The three major

steps are the following:

I. Investigate the linear hyperbolic system using the approach of Kato via semi-

group theory.

II. Investigate the linear parabolic system using the Faedo–Galerkin method (cf.

[18]) or apply Kato’s approach.

III. Show that the solution of the initial-boundary problem can be obtained as the

unique fixed point of a contraction mapping in a suitable function space (cf.

Sections 5, 8, 11).

References

[1] C. C. Ackerman and R. A. Guyer, Temperature pulses in dielectric solids, Ann. Phys. 50
(1968), 128–185.

[2] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.

[3] D. E. Carlson, Linear thermoelasticity, Handbuch der Physik, VI a/2 (1972), 297–346.



48 J. A. Gawinecki

[4] C. M. Dafermos, On the existence and the asymptotic stability of solutions to the equations
of linear thermoelasticity, Arch. Rational Mech. Anal. 29 (1968), 241–271.

[5] C. M. Dafermos and W. J. Hrusa, Energy methods for quasilinear hyperbolic initial bound-
ary-value problems. Applications to elastodynamics, ibid. 87 (1985), 267–292.

[6] C. M. Dafermos and L. Hsiao, Development of singularities in solutions of the equations
of nonlinear thermoelasticity, Quart. Appl. Math. 44 (1986), 463–474.

[7] G. Dassios and M. Grillakis, Dissipation rates and partition of energy in thermoelasticity,
Arch. Rational. Mech. Anal. 87 (1984), 49–91.

[8] Yu. V. Egorov, Linear Differential Equations of Principal Type, Nauka, Moscow, 1984 (in
Russian).

[9] A. C. Eringen, Continuum Physics, Academic Press, New York, 1975.

[10] —, Microcontinuum Field Theories, Springer, Berlin, 1999.
[11] A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, New York, 1969.
[12] K. O. Friedrichs, Symmetric hyperbolic linear differential equations, Comm. Pure Appl.

Math. 7 (1954), 345–392.
[13] J. Gawinecki, Existence, uniqueness and regularity of the first boundary-initial value prob-

lem for the hyperbolic equations system of the thermal stresses theory for temperature-rate-

dependent solids, Bull. Polish Acad. Sci. Tech. Sci. 35 (1987), 411–419.

[14] —, The Cauchy problem for the linear hyperbolic equations system of the theory of ther-
moelasticity of the temperature-rate-dependent solids, ibid. 35 (1987), 421–433.

[15] —, Matrix of fundamental solutions for the system of equations of hyperbolic thermoe-
lasticity with two relaxation times and solution of the Cauchy problem, ibid. 36 (1998),
449–466.

[16] —, Existence, uniqueness and regularity of the first boundary-initial value problem for
thermal stresses equations of classical and generalized thermomechanics, J. Tech. Phys. 24
(1983), 467–479.

[17] —, Existence, uniqueness and regularity of the solution of the first boundary-initial value
problem for the equations of linear thermo-microelasticity, Bull. Polish Acad. Sci. Tech.
Sci. 34 (1986), 447–460.

[18] —, The Faedo–Galerkin method in thermal stresses theory, Comment. Math. Prace Mat.
27 (1987), 83–107.

[19] —, Lp-Lq-Time decay estimate for solution of the Cauchy problem for hyperbolic partial
differential equations of linear thermoelasticity, Ann. Polon. Math. 54 (1991), 135–145.

[20] —, Global solution to the Cauchy problem in non-linear hyperbolic thermoelasticity, Math.
Methods Appl. Sci. 15 (1992), 223–237.

[21] —, On the potential in thermodiffusion in solid body, in: Proc. ICPT ’91 (Amersfoort,
1991), Kluwer, Dordrecht, 1994, 221–234.

[22] —, Global solutions to initial value problems in nonlinear hyperbolic thermoelasticity, Dis-
sertationes Math. 344 (1995).

[23] —, Local existence of the solution to the initial-boundary value problem in nonlinear ther-
modiffusion in micropolar medium, Z. Anal. Anwendungen 19 (2000), 429–451.

[24] J. Gawinecki and D. D. Hung, Matrix of fundamental solutions for the system of dynamic
equations of classical three-dimensional thermoelasticity theory, Demonstratio Math. 23
(1990), 633–647.

[25] J. Gawinecki and P. Kacprzyk, Existence, uniqueness and regularity of the solution to the
first boundary-initial value problem of linear thermodiffusion in micropolar medium, Bull.
Polish Acad. Sci. Tech. Sci. 42 (1994), 341–359.

[26] —, —, The initial boundary value problem for linearized system of equations of microelas-
ticity theory, Biul. WAT, XLIX, 1 (569) (2000), 5–18.

[27] —, —, Blow-up in nonlinear hyperelasticity, Z. Angew. Math. Mech. 80 (2000), Supplement
3, 773–774.



Nonlinear hyperbolic thermoelasticity 49

[28] J. Gawinecki and P. Kacprzyk, The initial-boundary value problem in nonlinear system of
equations of microelasticity theory, Z. Angew. Math. Mech. in print.

[29] —, —, Initial-boundary value problem in nonlinear thermodiffusion in solid body, ibid. 5
(1996), 163–183.

[30] J. Gawinecki, P. Kacprzyk and P. Bar-Yoseph, Initial-boundary value problem for some
coupled nonlinear parabolic system of partial differential equations apprearing in thermod-

iffusion in solid body, Z. Anal. Anwendungen 19 (2000), 121–130.

[31] J. Gawinecki, P. Kacprzyk and J. Jędrzejewski, An energy estimate for some coupled
parabolic system of partial differential equations, Biul. WAT, XLV, 12 (532) (1996), 7–13.

[32] J. Gawinecki and L. Kowalski, Mathematical aspects of the boundary initial value prob-
lems for thermoelasticity theory of non-simple materials with control for temperature, in:
Lecture Notes in Econom. and Math. Systems 458, Springer, Berlin, 1998, 370–381.

[33] J. Gawinecki, T. Kowalski and K. Litewska, Existence and uniqueness of the solution of
the mixed boundary-initial value problem in linear thermoelasticity, Bull. Acad. Polon. Sci.
Sér. Sci. Tech. 30 (1982), 551–556.

[34] J. Gawinecki, N. Ortner and P. Wagner, On the fundamental solution of the operator of
dynamic linear thermodiffusion, Z. Anal. Anwendungen 15 (1996), 149–158.

[35] J. Gawinecki and A. Piskorek, On the initial-value problem in geometrically nonlinear
elasticity, Bull. Polish Acad. Sci. Tech. Sci. 39 (1991), 7–15.

[36] J. Gawinecki, A. Piskorek and D. D. Hung, The initial-value problem in nonlinear hyper-
elasticity, ibid., 17–26.

[37] J. Gawinecki and K. Sierpiński, The initial-boundary value problem of thermodiffusion in
solid body with mixed boundary condition for displacement and stresses, Comment. Math.
Prace Mat. 26 (1986), 17–26.

[38] J. Gawinecki and P. Wagner, On the fundamental matrix of the system describing linear
thermodiffusion in the theory of thermal stresses, Bull. Polish Acad. Sci. Tech. Sci. 39
(1991), 609–618.

[39] J. Gawinecki, P. Wagner and B. Sikorska, On the fundamental matrix of the system of the
quasi-static equations of thermodiffusion in a solid body, Demonstratio Math. 26 (1993),
623–632.

[40] A. E. Green and K. E. Lindsay, Thermoelasticity, J. Elasticity 2 (1972), 1–7.

[41] M. E. Gurtin, The linear theory of elasticity, Handbuch der Physik, VI a/2 (1972), 1–295.
[42] W. J. Hrusa and M. A. Tarabek, On smooth solutions of the Cauchy problem in one-

dimensional nonlinear thermoelasticity, Quart. Appl. Math. 47 (1989), 631–644.
[43] J. R. Hughes, T. Kato and J. E. Marsden, Well-posed quasi-linear second order hyper-

bolic systems with applications to nonlinear elastodynamics and general relativity, Arch.
Rational Mech. Anal. 63 (1976), 273–294.

[44] D. D. Hung and J. Gawinecki, Global existence of solution to the initial value problem for
nonlinear hyperbolic heat equation, Bull. Polish Acad. Sci. Math. 39 (1991), 21–29.

[45] J. Ignaczak, Thermoelasticity with Finite Wave Speeds, Ossolineum PAN, Wrocław, 1989
(in Polish).

[46] —, Generalized thermoelasticity, Appl. Mech. Rev. 44 (1991), 1–8.
[47] H. E. Jackson and C. T. Walker, Thermal conductivity, second sound and phonon inter-

actions in NaF , Phys. Rev. B 3 (1971), 1428–1439.

[48] M. Jakubowska, One-dimensional initial-boundary value problem for a semispace in ther-
moelasticity with two relaxation times, Bull. Polish Acad. Sci. Tech. Sci. 33 (1985), 205–
216.

[49] S. Jiang and R. Racke, On some quasilinear hyperbolic-parabolic initial-boundary value
problems, Math. Methods Appl. Sci. 12 (1990), 315–339.

[50] F. John and S. Klainerman, Almost global existence to nonlinear wave equations in three
space dimensions, Comm. Pure Appl. Math. 37 (1984), 443–455.



50 J. A. Gawinecki

[51] P. Kacprzyk, Initial-boundary value problem for nonlinear partial differential equations of
thermodiffusion in a solid body, thesis, Technical University of Warsaw, 1996 (in Polish).

[52] S. Kaliski, Wave equations of thermoelasticity, Bull. Acad. Polon. Sci. Sér. Sci. Tech. 13
(1965), 253–260.

[53] S. Kaliski and W. Nowacki, Integral theorems for the wave-type heat conductivity equation,
ibid. 17 (1969), 509–518.

[54] T. Kato, Abstract differential equations and nonlinear mixed problems, Center for Pure and
Appl. Math. Report, Univ. of California, Berkeley; published in Fermi Lectures, Scuola
Norm. Sup., Pisa, 1985.

[55] S. Kawashima, Systems of hyperbolic-parabolic composite type, with applications to the
equations of magnetohydrodynamics, thesis, Kyoto Univ., 1983.

[56] S. Kawashima and A. Matsumura, Mixed problems for symmetric hyperbolic-parabolic sys-
tems, manuscript.

[57] S. Kawashima, T. Yanagisawa and Y. Shizuta, Mixed problems for quasi-linear symmetric
hyperbolic systems, Proc. Japan Acad. Ser. A Math. Sci. 63 (1987), 243–246.

[58] S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large
parameters and the incompressible limit of compressible fluids, Comm. Pure Appl. Math.
34 (1981), 481–524.

[59] V. D. Kupradze, Three-Dimensional Problems of Mathematical Theory of Elasticity and
Thermoelasticity, Nauka, Moscow, 1976 (in Russian).

[60] P. D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of
Shock Waves, CBMS Regional Conf. Ser. in Appl. Math. 11, SIAM, Philadelphia, 1973.

[61] R. Leis, Initial-Boundary Value Problems in Mathematical Physics, Teubner, Stuttgart,
and Wiley, Chichester, 1986.

[62] D. Li, The nonlinear initial-boundary value problem and the existence of multidimensional
shock wave for quasilinear hyperbolic-parabolic coupled systems, Chinese Ann. Math. Ser.
B 8 (1987), 252–280.

[63] H. W. Lord and Y. Shulman, Generalized dynamical theory of thermoelasticity, J. Mech.
Phys. Solids 15 (1968), 299–309.

[64] A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space
Variables, Appl. Math. Sci. 53, Springer, New York, 1984.

[65] A. J. Milani, A regularity result for strongly elliptic systems, Boll. Un. Mat. Ital. B (6) 2
(1983), 643–651.

[66] I. Müller, The coldness, a universal function in thermoelastic bodies, Arch. Rational Mech.
Anal. 41 (1971), 319–332.

[67] W. Nowacki, Dynamical Problems of Thermoelasticity, PWN, Warszawa, 1966 (in Polish).
[68] —, Theory of Asymmetric Elasticity, PWN, Warszawa, 1986 (in Polish).

[69] —, Dynamical problems of thermoelasticity in solids I , II , III , Bull. Acad. Polon. Sci. Sér.
Sci. Tech. 22 (1974), 55–64, 205–211, 257–266.

[70] Ya. S. Podstrigach and Yu. M. Kolyano, Generalized Thermomechanics, Naukova Dumka,
Kiev, 1976 (in Russian).

[71] R. Racke, Lectures on Nonlinear Evolution Equations. Initial Value Problems, Aspects of
Mathematics E19, Vieweg & Sohn, Braunschweig, 1992.

[72] Y. Shibata, On the Neumann problem for some linear hyperbolic systems of 2nd order
with coefficients in Sobolev spaces, manuscript.

[73] Y. Shibata and Y. Tsutsumi, On a global existence theorem of Neumann problem for some
quasilinear hyperbolic equations, in: Recent Topics in Nonlinear PDE II, K. Masuda and
M. Mimura (eds.), North-Holland Math. Stud. 128, North-Holland, Amsterdam, 1985,
175–228.

[74] B. Sikorska, Initial boundary value problems in linear and nonlinear hyperbolic thermoe-
lasticity theory, thesis, Technical University of Warsaw, 1998 (in Polish).



Nonlinear hyperbolic thermoelasticity 51

[75] M. Slemrod, Global existence, uniqueness and asymptotic stability of classical smooth so-
lutions in one-dimensional non-linear thermoelasticity, Arch. Rational Mech. Anal. 76
(1981), 97–133.
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