1. Introduction

We consider the following system of equations:
(1.1) Ofu —div S = f,
(1.2) Oe = Tr(S™ - 9, Vu) +divg + Q,

where u = u(t,z) = (u1 (¢, x), ua(t, ), us(t, z))* is the displacement vector of the medium,
0=0(t,z) is the temperature of the medium, both depending on t €R{ and x € 2, 2 C R?
being a bounded domain with sufficiently smooth boundary, 9, = 9/9t, 8? = 9?/0t?,
0; = 0/0x;, div stands for the divergence operator with respect to z, f = f(t,z) =
(fi(t,x), fa(t,x), f3(t,x))* is the body force vector, @ = Q(t,x) is the intensity of the
heat source, Tr is the trace operator, € is the internal energy per unit mass, * stands for
transposition, S = (5%) means that S is a 3 x 3 matrix whose (i,7) component is S%.
IfW = (w',...,w") where w/ = (W), x, then W = (w"),«,, and divW = d;w’; q is
the heat flux and ¢ = (¢;) means that ¢ is a row n-vector whose ith component is ¢; and

It is known (cf. [3], [67]) that the classical thermoelasticity theory (i.e. in which the
constitutive relations are independent of the derivative 90 of the temperature) leads to
a parabolic differential equation for the temperature distribution in rigid heat conductors.
This implies that thermal perturbations are felt instantaneously in every part of the body
(cf. [3], [67]). Although, at first sight, this outcome of the theory seems to contradict
physical intuition, it can be justified by resorting to the fact that molecular motion,
which plays a crucial part in transport phenomena, is very rapid except at extremely low
temperatures. Hence a finite velocity of propagation for thermal perturbations is usually
not observable unless experiments are performed in some neighbourhood of absolute zero
such as in the case of liquid helium. In fact, thermal waves commonly known as second
sound are detected in some metals cooled down approximately to 20 K (cf. the work [1]
of Ackerman and Guyer (1968) and the works [79] of Taylor et al. (1969) and [47] of
Jackson and Walker (1971).

Below, we consider the theory of thermoelasticity in which we removed an infinite ve-
locity of propagation for thermal disturbance in rigid conductors described by a parabolic
equation. This means that we would like to obtain hyperbolic thermoelasticity theory.

One approach to remedy this apparent flaw (an infinite velocity of propagation for
thermal disturbances in rigid conductors described by a parabolic equation) is to include
the temperature rate among the constitutive variables, which results in the presence of
the second-order time derivative of the temperature field in the energy balance. How-
ever, the Clausius—Duhem inequality, in the form employed up to now, eliminates the
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temperature-rate-dependence from all the constitutive functions except for the constitu-
tive function of the heat flux. Hence, in order to obtain a well posed theory for temper-
ature-rate-dependent thermoelastic solids we have to resort to an entropy principle in
its full generality presented in [78]. Such a theory of thermoelasticity was proposed by
Miiller in [66] where the entropy flux is postulated to be a constitutive function.

A similar idea was presented by Green and Lindsay (cf. [40]), who advocated rather
special constitutive relations for the entropy supply in rigid conductors, which are simple
generalizations of the conventional forms. Suhubi [78] extended these results to thermoe-
lasticity theory and obtained a hyperbolic system of equations describing temperature-
-rate-dependent thermoelastic solids. Using Suhubi’s approach, we now define the ther-
moelastic solids as a class of simple thermomechanical materials in which the response
functions depend only on Vu, 6, 9,6, VO, where Vu = (01u, dau, d3u)*, ;0 = 060/0t,
VO = (016,020, 050)*. So, we assume the following constitutive relations for the internal
energy ¢, the stress tensor S and the heat flux ¢:

(1.3) e = &(Vu,0,0,0,V0),
(1.4) S = S(Vu,0,0:6),
(1.5) q=q(Vu,0,6,V0).

Taking into account the relations (1.3)—(1.5), we can rewrite the system (1.1)—(1.2)
as follows:

8%u; o0
(1.6)  O;ui — cinjp(Vu,0,0.8) radir; + mia(Vu, 0, 0:0) v
%6
+ Mia(Vu, 0, Bto)m = f,
9 %6
(1.7) 070+ a(0,0:0,V0,Vu)o0 — kos(0,0,0,V0, Vu) ————
8maax5
- 821,Lj _ 821,Lj
— bija(Vu, 9, 8t9, VO) axaaxi + Cia (9, 3t9, VO, Vu) 8x,38t
_ 020 _, 0f
+d;(0,0:0,V0,Vu) D10z, g/é)(&tﬂ)
where
aSia
1.8 Ciaif = =,
( ) 3B a(aﬁuj)
851’04 asia 851’04
1. = —— My = ——— =
(1.9) Mia = a5~ Mia =555 = 5(5,0)
Oe Oe
(110) a(@,@tﬂ,VH,Vu) = % 3(6t9),
an3(Vu,0,0,V0)
1.11 =
( ) kop(0,0,0,V0,Vu) 92/0(0,0) ,
(1.12) Bise (T, 0,0,0,v0) — eV 0:0.V0)

02/0(0,0)
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S (Vu, 40, V) — 98/ 0(Daus)

1.1 : =
(1.13) Cia(Vu,0,0:0,V0) 95/0(0:0) ,
(1.14) 4 (Vu,0,0,0,V6) = 575(5:0) ,

0q; dq; dq;
(1.15) bijo =

95(0u;014) 4=g9 o= 9(00/0z5)

REMARK 1.1. Since 0e/0(0:0) > 0 (cf. [78]), (1.7) is a hyperbolic equation in # which
predicts a finite velocity of propagation for thermal perturbations. So, the system (1.6)—
(1.7) is the nonlinear hyperbolic system of thermoelasticity theory.

We will pose the initial conditions
U/(O,Jf) = uo(x)a (6tu)(071') = ul('r)7

(1.16) 0(0,2) = 0°(x),  (240)(0,2) = 0 (x),

with given data u°,6° and u!,#', and Dirichlet type boundary conditions (physically—
rigidly clamped, constant temperature)

(1.17) u(t,-)|oe =0, 0(t,-)]on = 0.

The linear hyperbolic system (1.6)—(1.7) with constant coefficients was investigated
in [74] using the Cagniard—de Hoop method.

In the paper [14] the theorem about existence, uniqueness and regularity of the weak
solution to the first initial-boundary value problem for the linear hyperbolic system was
proved by applying the Faedo—Galerkin method in Sobolev spaces.

In [20] the global (in time) existence theorem was proved for the solution of the initial
value problem for the nonlinear system (1.1)—(1.2) using the LP-L? time decay estimate
for the solution of the associated linearized problem, an energy estimate, and methods of
Sobolev spaces. The aim of this paper is to prove a local existence theorem for the solution
of the initial-boundary value problem (1.6)—(1.7) in the class of smooth functions with
respect to time and taking values in suitable Sobolev spaces with respect to the spatial
variables.

The corresponding existence theorem is proved by using the semigroup theory for the
linearized problem associated with the nonlinear one. Using the energy method we prove
an energy estimate for the solution of the initial-boundary value problem to the linearized
system (1.6)—(1.7). Applying the Banach fixed point theorem, we prove that the solution
of the nonlinear initial-boundary value problem (1.6)—(1.7) exists and is unique.

The paper is organized as follows. In Section 2 some notations and formulae are pre-
sented. Section 3 presents the existence theorem for the solution to the initial-boundary
value problem. In Section 4 we prove an energy estimate for the linearized system of
hyperbolic thermoelasticity. In Section 5 the proof of the main theorem is presented.
Sections 6-8 are devoted to some applications of the above method to nonlinear microe-
lasticity theory.

Sections 9-11 present the application of this method to nonlinear thermodiffusion in
a solid body. In Section 12 some general remarks are given.
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2. Basic notation and formulae

We first introduce some function spaces. Let G be an open bounded set in the Euclidean
space E" with regular boundary 0G. LP (@) is the space of (equivalence classes of) mea-
surable functions u such that

1/p
(2.1) lullzoie) = (§ lu(@)Pde) " <00, 1<p<oo,
G
(2:2) lullim@) = esssuplu(a)l,  p=oo.
€

Taken with the norm (2.1) or (2.2), L?(G) is a Banach space; if p = 2, then L?(G) is
a Hilbert space, with scalar product
(2.3) (u,v) 2@y = ‘ u(z)v(z) de.
G
The Sobolev space W,(G), 1 < p < oo, consists of functions u belonging to LP(G)
with weak derivatives 0%u, |a| < m, belonging to L?(G):

(2.4) W™(G) = {u € LP(G) : 8°u € LP(G) for |a| < m}.
With the norm
o 1/p
(2.5) lullwgy = (2 10%ulfnie)
la|<m

it is a Banach space.
The case p = 2 is fundamental. To simplify the writing, we put

W3'(G) = H™(G);
with the scalar product

(2.6) (u, V) m(ay = Z (0%u, 0v) L2(c),

laf<m

this is a Hilbert space. The norm in this space is given by

1/2
(27) = (32 0w 0"0)100)
lo] <m
Let C§°(G) denote the space of compactly supported infinitely differentiable real-
valued functions defined on G. By H{*(G) we denote the Hilbert space obtained as the
completion of C§°(G) in the norm (2.7). Hi*(G) is a subspace of H™(G).

THEOREM 2.1 (Sobolev imbedding theorem). If G is a bounded domain with smooth
boundary 0G and w € H™(G) where m > n/2 and k > 0 is an integer such that m >
n/2 +k, then u € C*(G) and

(2.8) sup |[D%| < ||uf|m, |of < k.
zeG
THEOREM 2.2 (The Poincaré inequality). If u € HJ*(G), then
(2.9) ul|?, < C Z S |0“u|*dz Yu € HI(G),
la]<m G

where C' = C(G, m).
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THEOREM 2.3 (Gronwall’s inequality). Let u,v € C([a,b]), v > 0. If
t

(2.10) v(t) < C+\v(s)u(s)ds, a<t<b C>0,
then

t
(2.11) v(t) < OeXpSu(s) ds, a<t<b.

THEOREM 2.4 (Garding’s inequality). Let A be a strongly elliptic operator of order 2m.
Then there exist constants ag > 0, Ag > 0 such that

(2.12) (=1)™ Re(Au,u) > a0||u\|72n — )\0Hu||§ for u € C3°(G).

In particular, we shall use the notations

0]
2.13 0j = — i =1,2,3),
(213) =g G=123
(2.14) 0y =07105%205%  (la] = a1 + az + ag).
For any integer N > 0, we write

DNu = (9]0gu; j+ |a| = N),  DNu=(9]05u; j + |a] < N),

2.15 —
D DYu—@pu el =N, DYu= @ jel < V)
If f=(f1,...,fn) then f € X for a space with norm || - || x means that each component
fi,-.o, fnof fisin X and
(2.16) Ifllx = lfullx + -+ [ fallx.
For any 0 < m < oo and T > 0, we also use the notation
(2.17) ulm,r = sup_Ju(t)]lm
0<t<T
where [ - [|o denotes || - ||z2(q)-

Below, we will present the existence theorems for an Abstract Linear Evolution System
basing on semigroup theory.

Results concerning abstract linear evolution systems will be used in the proof of our
theorems (cf. Sections 3—-11). So, we shall discuss a slightly modified theory of Kato [54]
concerning the following abstract linear evolution system:

(2.18) U+ AU =F(t), 0<t<T,
with the initial value
(2.19) U) =0°

where T' > 0 is a fixed constant.

We begin with a simple existence theorem for (2.18), (2.19). Let Xy, Y7 be a pair
of real Banach spaces with the norms (without confusion with notations given above)
denoted by || - [|o and || - ||1, respectively. A triple (A4; Xo, Y1), consisting of a family A =
(A(t); t €10,T)), is called a CD-system (following Kato [54]) if the following conditions
are satisfied:
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(i) A= (A(t); t € [0,T)) is a stable family of (negative) generators of Cp-semigroups
on Xy, with stability constants M, 3.
(ii) The domain D(A(t)) = Y7 of A(t) is independent of ¢.
(iii) A(t) € Lip([0,¢t], L(Y1; Xo)) or equivalently 0; A € L*([0,t], L(Y1; Xo)).

We have the following two lemmas, which follow from Theorems 1.2 and 4.1 of [54].

LEMMA 2.1. Let (A; Xo,Y1) be a CD-system. Let U € Y1 and F € Lip([0,T), Xo). Then
there is a unique solution U of (2.18), (2.19) satisfying

(2.20) U e C0,T),Y1)nC([0,T], Xo), U(0)=U".

LEMMA 2.2. For the solution U given by Lemma 2.1 we have
20 sw (10 + (0000 < K (10" + PO + § |0:F()o dr)

where K > 0 is a constant independent of UY and F.
We now give an existence theorem slightly different from Lemma 2.1.

THEOREM 2.5. Suppose that Xo,Y1 are real, separable Hilbert spaces. Let (A; Xo,Y1) be
a CD-system. Let U° € Y1, F € C°([0,T), Xo) and F; € L'([0,T), Xo). Then problem
(2.18), (2.19) has a unique solution U with

(2.22) U eC®o0,T),Y1)nC([0,T], Xo), U(0)=U".

Proof. We choose a sequence §,, — 0 and define
(2.23) S (t —7)F(7)dr
0

where ¢, is the Friedrichs mollifier (cf. [20]). Consider the following approximate problem

for (2.18), (2.19):
U, + A(t)U,, = F,(t),

2.24

(224) { U,(0) = UP.

Note that F,, € Lip([0,7], Xo) for each n > 0. By Lemma 2.1, (2.24) admits a unique

solution U, satisfying

(2.25) Uy € C°[0,T],Y1) N C([0,T], Xo), Un(0) =U".

By (2.21) the following estimate is valid:

(2.26) sup ([Un ()]l + |0:Unllo) < const  (independent of n)
0<t<T

provided that n is sufficiently large. Hence we can take a subsequence of {U,}, still
denoted by {U,}, such that

(2.27) U, — U € L>*([0,T],Y1) in the weak* topology of L>°(]0,T], X1),
' 0U,, — 0,U € L>(]0,T],Yp) in the weak* topology of L>([0,T], Xo).

By passing to the limit in (2.24) and by (2.27) we see that U is a solution of (2.18)—(2.19).
To show that U also satisfies (2.22) we use (2.24) and (2.21) to get
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(2.28)  sup ([|[Un = Unlli + [10:(Usn — Up)ll0)(¢)
0<t<T .

< K(IF0 = FuO)llo + § 10:(Fu = Fu)(D)llodr) =0 asn,m — .
0

Therefore {U,, } is a Cauchy sequence in C°([0, 7], Y1) and C1([0,T], Xo). In view of (2.27)
we conclude that U satisfies (2.22). The uniqueness follows from the a priori estimate
(2.21). This completes the proof.

In what follows we shall investigate the higher order differentiability of the solution
given by Theorem 2.5. We introduce a double scale of real Banach spaces X;,Y; of the
following structure:
(2.20) {Xo 2DX1D...D X1,

Yo=Y9DOYV1D...0Y,_1DY,, s>1.
Here it is assumed that Y7 is a closed subspace of X; and V; =Y NX; for1 <j <s—-1,
s > 2. We denote by || - ||; the norm in X, (and also in Y;). We consider the family
A = (A(t)) together with a double scale of the form (2.29), and introduce the following
assumptions:

(L1) (Stability) (A; Xo, Y1) is a CD-system with stability constants M, (.
(L2) (Smoothness)

BIAGLip([ovT}vL(Yj+7’+1;Xj))7 OS]‘SS_T_L
up to r = s — 1. This implies that
(2.30) O A € Lip([0,T), L(Y 4711 X))

for the same range of r, j, s.
(Ls) (Ellipticity) For a.e. t € [0,T] and 0 < j < s—1, ¢ € Y7 and A(t)¢ € X together
imply ¢ € Y;41, with

(2.31) ¢l j+1 < KAl + [16llo)
where K > 0 is a constant.

We list some consequences (Propositions 2.1-2.4 below) of these assumptions, which
are given in [54].

PROPOSITION 2.1. Let A > 3. Then A(t) + A is an isomorphism of Y;_1 onto X; for
all t € [0,T], 1 < j < s. The resolvent R(t) = (A(t) + X\)~* is an isomorphism of X;_1
onto Y;, and

(2.32) O/R e Lip([0,T), L(X4r41;Y;)) for0<j<s—r 0<j<s—1.
PROPOSITION 2.2. If s> 2, set C(t) = (0,A)(t)R(t, \). Then

(2.33) C e L*™([0,T], L(X;; X;)) for 0<j<s—1,

(2.34) 0;C € Lip([0,T], L(Xj4r41;X;))  for 0<j+r<s—2.

PROPOSITION 2.3. Let s > 2 and set Ai(t) = A(t) — C(t). Then the family Ay satisfies
(L1) to (L3) for the subscale of height s — 1, possibly with modified constants M, 3, K.
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For the inhomogeneous term F'(¢) in (2.18) we shall assume
(Ly) OFF € C°([0,T), Xs_1-%), k=0,1,...,5—1, 0F € L*([0,T], Xo).

REMARK 2.1. The condition (L4) on the inhomogeneous term is weaker than that re-
quired in [54]. From now on, we assume the conditions (L;)—(L4). Theorem 2.5 shows
that (2.18)—(2.19) has a unique solution U € C°([0,7T7],Y1) N C*([0,Y], Xo) with U(0) =
U° € Y;. In order to obtain the desired regularity we have to assume that U° and F sat-
isfy certain natural compatibility conditions of higher order. To formulate them precisely,
we first give the following proposition, which may be obtained by the same argument as
for Proposition 3.1 of [54] and so its proof will be omitted here.

PROPOSITION 2.4. Let U € C°([0,T)],Ys) be a solution of (2.18), (2.19). Then 0FU €
CO([OﬂT]a}/s—k)a 0 < k <s-— ]-7 and

(2.35)  OU(t) =a; ' F(t) — i <T - 1) @1k A HOrU (), r=0,1,...,s.

k=0 k
Proposition 2.4 implies, in particular, that if we compute U',U?, ..., U® successively

from

r—1

-1

(2.36) Ur=8"'F(t) -y (r . )(afA)(O)UT—l—k, 1<r<s,

k=0
then we have the compatibility condition
(2.37) UreY,,, r=01,...,s.

We call (2.37) the compatibility condition of order s — 1 with respect to A and F'. We
are now able to state the basic regularity theorem of this section.

THEOREM 2.6. Let X and Y1 be real, separable Hilbert spaces. Assume the conditions
(L1)—~(Ly4). If U® € Y, then the solution given by Theorem 2.5 belongs to C°([0,T],Ys)
(hence OFU € C°([0,T),Ys_1), k =0,1,...,s — 1, by Proposition 2.4) if and only if U°
and F satisfy the compatibility condition (2.37) with respect to the family A and F. In
this case the initial data satisfy

(2.38) U =0ru0), r=0,1,...,s.

Proof. Since the compatibility condition is necessary for the theorem to hold by Propo-
sition 2.4, it suffices to prove its sufficiency. We employ an idea due to Kato [54] to prove
the sufficiency by induction on s. Since the case of s = 1 has been established by Theo-
rem 2.5, we assume that s > 2 and that the sufficiency has been proved with s replaced
by s — 1, and proceed to the proof for the given s.

To this end we first solve the new equation

(239) ‘/;5+A1V:)\F7Ft+CF:ZF1, 0<t<T,
with the initial value
(2.40) V(0)=(A+\NU° - F(0) =V,

where A1 = A —C, ¢ = (:\)(t)R(t) and R(t) = R(t,\) = (A+ )"t (A > 3). It has
been shown in Propositions 2.1-2.3 that Ay satisfies the conditions (L1)—(Ls), with s
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replaced by s — 1. By Proposition 2.2 we find after a calculation that the right hand side
of (2.39) also satisfies condition (L4) with s replaced by s—1. Regarding the compatibility
condition, we have

PROPOSITION 2.5. U° satisfies the compatibility condition of order s — 1 with respect to
A and F if and only if VO satisfies the condition of order s —2 with respect to A1 and F.

Proof. The sequence V" (0 <r <s—1) can be computed recursively from (2.35), in
which F' = F}, and A and U° are replaced by A; and V°, respectively. Furthermore, we
have

Vi=AUT U, 0<r<s—1,
which may be shown by induction on r; the computation is somewhat tedious but straight-
forward and will be omitted here. Hence V' satisfies the compatibility condition of order

s — 2 with respect to A; and F} if and only if U 0 gsatisfies the condition of order s — 1
with respect to A and F.

We are now able to complete the proof of Theorem 2.6. If the compatibility condition
for U holds for the family A and F, Proposition 2.5 implies that the same is true for
VO, A; and Fy. It follows from the induction hypothesis that (2.39)—(2.40) has a unique
solution

(2.41) kv e C°([0,T), Xs-1-1), k=0,1,...,5—1.
Now set
(2.42) U=RtN(V +F).

It follows from Proposition 2.1, condition (L4) and (2.41) that U € C°([0,T],Ys). With
the help of (2.39) and 9; R = —RC one obtains

Ui =R|V;+ F,—C(V+F)]=R\F — AV)
=RMNV+F)—(A+\NV]=XU-V =—-AU+F,
which shows that U is a solution of (2.18), (2.19). Obviously, U(0) = R(0)(V° + F(0))
= U"Y, so U also satisfies the initial condition. Therefore U is identical with the solution

guaranteed by Theorem 2.5 since U € C°([0,7T],Y;) as shown above; this completes the
induction by Proposition 2.4 and proves Theorem 2.6.

Now, we consider the reqularity for the elliptic system.

We shall investigate the regularity of the elliptic system (2.43), (2.44) below. The
notations appearing here are the same as above:

82uj
(2.43) Lu = Ciqjp(x) Bradas = fi(z), ze€,
(2.44) Uiloo =0, i=1,2,3,

where u = (ug, ug, u3)*. Assume that
(2.45) Ciajs € CO(2)NL®(2), DLCinjs € H (),
(2.46) Ciajp(x) = Cigja(x) for x € 12,
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where s > [3/2] +2 = 3 is an arbitrary but fixed integer, and there is a positive constant
v > 0 such that

(2.47) Ciajp(®)6i&jnans > vIEP N V& n € R,
We have

THEOREM 2.7. Let (2.45)—(2.47) hold. Then for all k =0,1,...,s,if f = (f1,f2, f3)* €
H*(£2), then the solution u = (u1,us,uz)* of (2.43), (2.44) is in H**2(£2) and satisfies

(2.48) [ullkre < Cs([| Lullk + llul))

where Cs is a positive constant which depends continuously on ||Ciajgllre and
1Dz Ciajplls-1-

Proof. If 2 is bounded, Theorem 2.7 was proved in [65]. (The symmetry of a;; from
[65] can be assumed.) For unbounded 2 if the coefficients of L have continuous bounded
derivatives up to order s, then the theorem is also valid (cf. [73]). With the help of this
result for unbounded 2, following a procedure similar to that in Theorem 4 of [65] we
get the assertion.

REMARK 2.2. Theorem 2.7 was also obtained by Kawashima and Matsumura in [56].
If (2.44) is replaced by the Neumann boundary condition, then a similar result holds
(see [72]).

REMARK 2.3. It can be easily shown that under the conditions of Theorem 2.7 the fol-
lowing holds:

ou; Ou;
(2.49) l|lu||? < C’s{ (ijg%, a—xa> + |u||2} for u € Hy(£2).
For the elliptic equation
9%v
Lv:= —_— = 04
(2.50) Y ““5(:”)8%69:5 §r TE
U|6_Q = 0

we have a similar result. Suppose
{aaﬁ € CO(Q) n LOO(Q)7 Daljaa,g € HS_I(Q>, AaB = QB

aap(2)éals > VIE?
for some positive constant v and all ¢ € R3. Here s > 3 is an arbitrary but fixed integer.
We have (the proof is simpler and will be omitted here)
THEOREM 2.8. Let (2.51) hold. Then for k =0,1,...,s, if g € H*(£2), then the solution
v of (2.50) is in H**2(02) and satisfies

[ollk+2 < Co(l|Lollx + [[])-

(2.51)

Here the positive constant Cs depends continuously on ||aas|/L~ and ||[Diang|s—1-

We prove the following two theorems, which are used in Section 3 and Sections 4-11
respectively. Define

(77)6(72 1‘)

T
S ¢s(t —T)n(r,x)dr, t€0,T], € (2.
0
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Here ¢s is the Friedrichs mollifier. We have

THEOREM 2.9. Let a € C°([0,T), L3(R2)), da € L>([0,T], L>®(£2)) and v € C°([0,T],
L?(92)). Set v(t,x) = (8/8t) (av)(; —a(v)s](t,z). Then

S llps(,)||2dr —0 asd —0

g

for all small € > 0.
Proof. Clearly,

#s(

j‘“
8
~—
I

os(t — 7)(a(r,x) — a(t, z))v(r, x) dr

gl

\
Cem O=H c—m~
N

{95(t = 7)(a(r,z) —alt, x))}o(r, ) dr

+

st — 1) (1,2) — d' (1, 2)|v(T, 7) dT.

Let 0 < § < ¢; keeping in mind that ¢5(t,z) = ¢s(T —t,x) for t € [e,T — €], we infer
that

¢s(t,x) = | o {ds(t = 7)(a(r, 2) — alt, 2))}(v(r,x) = v(t, z)) dr

O e N
SIS

O e

+ (;5,; (t—71)[d(r,2) — d(r,2)|v(r,2)dr, te€[e,T— ¢l

Hence by the Schwarz mequahty,

T—¢
V llgs(r)? dr
c T
<of sw O-v@lP+ ] @) - @R dedr | o) ar} -0
t‘;fT[?;(;] t,7€[0,T] 0

[t—7|<s
as & — 0. This proves the theorem.

The following lemma can be shown by an argument similar to the one used in Lemma 3
of Appendix in [73] and we omit its proof here.

LEMMA 2.3. Let aj, j=1,...,m, be nonnegative integers and B3;,5 =1,...,m, be dimen-
sional multi-indices. Put r=3""", |B;la; > [3/2]+1=2. If D"u,(t, e L>=([0,T], L*(£2)),
j=1,...,m, then

I{(D™w)? ... (D" uy,) H<CHHug O for t € [0,T]

where C = C(m,r,S2).

With the help of the Leibniz formula and Lemma 2.3 we can show (the proof is
omitted)
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THEOREM 2.10. Assume D"u; € L>([0,T), L*(£2)) (for some r > 1) and u; € L>=([0,T],
L2(2)) for j=1,...,m, f(ui,...,un) has continuous derivatives up to order r. Then

-
1D" f(urs - sum) || < C Y |Du®)|* for t € [0,T]
i=1
where u = (u1,...,Un), C = supgc;<r C1([|[u(t)||L=) is a positive constant and Cy :
[0,00) — (0,00) is a continuous function.
3. The main theorem
In this section we formulate the theorem about existence and uniqueness (local in time)

of the solution to the initial-boundary value problem for the nonlinear system (3.1)—(3.2)
with initial and boundary conditions (3.3)—(3.4):

0%u; o0
1 20l — Cos J ) -
(3.1)  O7ui — cinjp(Vu,0,0.0) Bradirs + mio(Vu, 0, 0:0) e
%6
M. gy
+ M;o(Vu, 0, 8t9)ata$ﬁ fi,
9 0%0
(3.2) 070+ a(0,0:0,V0,Vu)00 — kos(0,0,0,V0, Vu) ————
8%8:5[3
- 82uj _ 82uj
— bija(Vu,ﬁ,a,ﬁ,VQ) Dzadry + cw(ﬂ,atﬁ,ve,Vu) Dtds
_ 2260
+dn(6,0:0,V0,Vu) Dtor. Q

with initial conditions
(3.3)

and boundary conditions
(3.4) u(t,-)|loe =0, 0(t,")]an = 0.
THEOREM 3.1 (Local-in-time existence). Let the following assumptions be satisfied:

1° s> |3/2| +4 =5 is an arbitrary but fized integer.

2° OF f;,0FQ € CO[0,T), H* > %(02)), k = 1,...,5s — 2, ;' f;,9;7'Q € L°([0, T,
L2(92)).

3° There is a constant kg > 0 such that

(3.5) (PapCl0)€as > rolé|[¢]
f0T€ - (51)52753) S Rsa C = (ClaC?aC?nCéL) S R4 where

Pog = [Piajslij=1,...4,
Diajp = (1 — 0ia)(1 — 0;4)Ciajp + 0ia0jakas + 0ia(1 — dj1)bgjas



Nonlinear hyperbolic thermoelasticity 17

DiajB = Difjas  CiajB € C* 1R x R x R),
(3.6)  Min,min €CHRY xR xR), kop € CHR xR x R? x RY),
bgjarbjg,do € C°HRY xR xR xR?), a€C™Y(RxRxR?xR?).

4° The initial data u®,6°,u', 0" satisfy

(3.7) u’,6° € H*(2)N HY(2),

(3.8) ut,0' € H1(2) N H(02),

and the compatibility conditions

(3.9) uf 08 € HF(Q)NHL(N) (2<k<s—1),
(3.10) u®, 0 € L*(0),

where u* = 0ku(0)/0tk and 6% = 0%0(0)/0t* are calculated formally (and recursively)
in terms of u®,0° u', 0% using system (1.1)—(1.4), i.e

(3.11)  wuk = (ak 2fr 4 Z( )a Ciaj0aOpul 7™
+ Z ( )8’”Mm8 . m) (x),
= (k-2
= (352Q*+ﬂ;< N )ag”kaﬁaaaﬂemm

k—2 m k—2—m
+ ( m >3t k/@jaﬁaaﬁ'uj

—2

k—2
k—2 m k—2—m k—2 m k—1—m
+ 0( N )at RGN +mz_0< o )at bjp0put (z)
where f¥ = fi — m;in040.

Then for sufficiently small T > 0 there exists a unique solution (u,0) to the initial-
boundary value problem (3.1)—(3.4) with the following properties:
s—1
(3.12) we () CH0,T), H ¥ ()N Hi(£2)),  d7u e C°([0,T], L*(2)),
k=0
s—1
(3813) 6 () CHO, T H5(@) N HA(Q)), 80 € CO0,T], (%)),
k=0

The proof of Theorem 3.1 is divided into three steps.
1. Proof for the linear hyperbolic system obtained by linearization of (3.1)—(3.4).

2. Proof of an energy estimate for the linear system.

3. Proof of existence and uniqueness of solution of the initial-boundary value problem
for the nonlinear system (3.1)—(3.4) by applying a fixed point theorem.
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4. Energy estimate

4.1. Linearized system of hyperbolic thermoelasticity. In this section, we inves-
tigate the initial-boundary value problem for a linear hyperbolic system which arises
by linearization of (1.1)—(1.3). So, we shall investigate the solvability of the following
problem:

(4.1) OFu; — Cinjp(2,1)000pu; + Mio(2,1)000,0 = fi(w,t),
(4.2) 020 — kop(2,1)00050 — bgju(z,1)0105u;
+ bjp(w, 1) 0pu; + di(z,1)9:0,0 = Q(t, ),
(t,z) €[0,T] x 2, =123

with initial conditions
(4.3)

and boundary conditions

(4.4) ui(t,z)lo =0, 0(t,x)|sn = 0.

4.2. Energy estimate for the linear hyperbolic system. We start with a result
on the existence of solution for (4.1)—(4.3). The Faedo—Galerkin method may be used to

prove an existence-uniqueness theorem. We also apply the methods of semigroup theory
(cf. [54]).
THEOREM 4.1 (Existence, uniqueness and regularity for (4.1)-(4.3)). Let the following
assumptions be satisfied:
1° s > 3/2] +4 =5 is an arbitrary but fized integer.
2° Ciajp € C°([0,T] x 2) N L>([0,T], L>(£2)),
Dyiajs € L([0,T], H*2(£2)),
OFCinjp € L®([0, T, H*27F(Q))  fork=1,...,5—1,
kas € C°([0,T) N 2) N L>=([0,T], L*(2)),
Dykas € L=([0,T), H2(02)),
OFkap € L=(0,T], H1F(2))  fork=1,...,5 1,
By € CO0,T] x ), Dibys € L2(0,T], H* (@),
kb5 € L=(0,T), H™7H(@)),
Mo € C°([0,T] x 2), DM, € L=([0,T], H"%(£2)),
OF M, € L>=([0,T], H 71 7F()), k<s-—2,
O M, 0By € L(0,T), L(92)),
\Mia|s—1,7: |dals—1,7: [bjsls—1.,7 < ¢,
where ¢ is a small constant.

o
3° Ciajp = CjBia-
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4° Eag = Eﬁa and there exists a constant vo > 0 such that
W} < Y0(Ciajsds Wy, 0aWi) + W3
for all W € H}(R2), t € [0,T], where
W = (u1,u2,u3,0)",  Cap = [Ciajplij=1,2,3,
Ciajs = (1= 8;4)(1 = 8ja)Ciajp + diadjakap + 6ia(1 — 8j4)bsja,
di; being the Kronecker delta.

5° For almost every t € [0,T)] the condition CapdaOsW € HF(£2) together with W €
HL($2) implies

W e H"2(0)
and
W 13+2 < 7 (ICiais0a0s Wik + WI5)
where v1 > 0 is a constant.
6° OFf,0/Q € C([0,T), H*>7%(12)), k=0,1,...,5 -2,
;7' f,0;71Q € L*([0, T, L*(12)).
7° uf = Ouli—o,0" = 0100 € HF(Q)NHL(D), 0<k<s—1,
u € (), 6°cL*(R)c HFNQ)N H(2)
Then there is a unique solution (u,8) of problem (4.1)—(4.4) with the properties:
OFu, 080 € C°([0,T], H *(2) N HY(R)), 0<k<s—1,
050, 05u € C°([0,T), L*(02)).

Proof. We apply Kato’s approach (cf. [54], [23], [74]). We can convert problem (4.1)—(4.4)
to an equivalent (evolution) problem of the form

(4.5)

(4.6) &V + AV = F,

(4.7) V(0,z) = V9 (x),

where

(4.8) V = (u1,u2,us, 0, 0pu1, Opug, Opus, 040)",

(4.9) (ul,uz,ug,ﬁ Ula“%a“:lsaal)*a

(4.10) F =(0,0,0,0, f1, f2, f3,0)*,

(4.11) A= [—Emjﬁaa%ﬁx]ij=1,2,3,4 [Eiajaa}llf;jl,Q,SA Sxg

(4.12) Cap = [Ciajplij=1,..4) i .
Ciajp = (1 = 0ia)(1 = §j4)Ciajp + djadiakap + dia(1 = 554)bsjar

(4.13) Jo = [Giajli,j=1,..4;

Giaj = (1 — 8i4)8jaM o + (1 — 8;4)8;abjg + §j40i4da.
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The operator

(4.14) A:D(A) — X,

defined by (4.11) has domain

(4.15) D(A) = H*(2) N HY(2) x HL (D).

In the space

(4.16) X = H}(2) x L*($2)

we introduce the time-dependent inner product

(4.17) (U, V) = (Ciajp0sw;, Oaw; )o + (w, w* ) + (v,v")o

where

(4.18) (Ciajp0swj, Oqw; )o = (Capdpw, Daw™)o,

(4.19) V=(wv)", V"=w",v")" e€X,

(4.20) w = (u1,us,u3,0)", v= (0w, 0Ousz, dyus, 0t)".

Note that the norm ||| -||| corresponding to (-, -) is equivalent to the usual norm in H}(£2) x
L?(£2). We show that the triple (A4; X, D(X)) forms a CD-system. First, we notice that
(4.21) AV = (—v,¢a30.08w + G,040)".

So, we have

(422) <AV, V> = (7’5&585”0, 8aw)0 + (*”U, ’w)o + (*Eagaaagw, 'U)o + (Eaaaw, v).

After some calculation, we get

(4.23) (AV,V) = (05CapOaw,v)o + (—v,w)o — 5(0agaw,v).
Taking into account the assumption of Theorem 4.1, we obtain

(4.24) (AV,V) > —c1||IVIII?, e > 0.

Hence

(4.25) IO+ AV[|2 = (M + AV, (M + A)V

)
= NIV + NIAIP + 20(AV, V)
> N[VII[Z +20MAV, V) > (A = 2xe1) [V ][>
From (4.24) and (4.25) we get
(4.26) I + V|2 > (A —2c)?||[V]I|?  for A > 2¢; > 0.
It follows that the operator (A + A)~! exists. Now, we have
(M + AV, V) = XV, V) + (AV, V) 2 A[VII[Z = al[VIIIP = (A = e)[IVIII* > 0.

So, in view of the Lax theorem the operator A\I 4+ A is invertible on Xy. Now, we have

(4.27) IO+ A) 71 = il AL+ A) 7 V.
Putting V* = (Al 4+ A)V, we get

1
4.28 M4+ A)7Y = sup ||V <
(4.28) I )~ o Vil = s =5
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From (4.25) we get
1AL + AVl
A — 261 '
Since the operator A is closed, and in view of (4.29) and the considerations in Section 2
and the Hille-Yosida theorem, it follows that the first condition of CD is satisfied.

Because D(A) is independent of ¢, taking into account the assumption of Theorem 4.1
we have

(4.29) VI <

0tA € L*°(I,L(D(A); X)).
Moreover (A; X, D(A)) is a CD-system in the sense of Kato (cf. [54]). Let

(4.30) Xo =Yy = Hy(2) x L*(2),

(4.31) X; = HTY Q)N Hy(2) x HI () for j > 1,
(4.32) Y; = HITH Q)N Hy (2) x HY (2) N Hg(£2),
(4.33) IVIll; = llwllj41 + lloll; ~ for V€ X;.

For the spaces defined by (4.30)—(4.32) the following conditions are satisfied:

e the triple (4; X, D(A)) is a CD-system,

e OJTA € L®°(I,L(Yj1r11:X;)), 0 < j < s — 1 (this follows from the conditions
r < s—1 of Theorem 4.1),

e Vll551 < QAN +IVIIo)s 5 =1, ., 5—1 (under the assumption that [Giagls1,7
< ¢ for ¢ sufficiently small),

e FF c C%I, X 1 ), k=0,1,...,8 =2, 0" 'F € L*(I, Xy) (this follows from the
assumption of Theorem 4.1).

Taking this into account and basing on Theorems 2.11 and 2.12 we get the existence,

uniqueness and regularity of the solution to problem (4.1)—(4.4). This ends the proof of
Theorem 4.1.

In the second step, we formulate an energy estimate for (4.1)—(4.4).

THEOREM 4.2 (Energy estimate for (4.1)—(4.4)). If the assumptions of Theorem 4.1 are
satisfied then the solution of (4.1)—(4.3) guaranteed by Theorem 4.1 satisfies the inequality

(4.34) D% (u, 0)*|2 1 < KoK, eKeVTAH/VT+T)

with positive constants Kg, K1, Ko where

(4.35) Ko=) |l(u*,6")[2_,
k=0
T
+ (L+ D) D (F,0) 2 + {10517, 0) |3 dt,
0
(4.36) Ky = Ki(B1,7%,m) >0,
(437) KZ - KZ(BQafYO,’Yl) > 0’

(4.38) B =|Ciaja(0)llo + [Eap(0)llo + [1bajs(0)llo,
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(439) B2 = ‘aﬁ_bjﬁ|572,T + ‘aaziajﬁ|572,T + |8aEaﬁ|sf2,T + |aabajﬁ|sf2,T
s—1

+ Z(|afaiajﬂ|s—k—l,T + |8§Ea5|s_k_1,T
k=0

+10Fbls— k1.7 + |0Fbajpls— k1.7 + |0F Mia|s—k—17)
(the constants vp,v1 are given in the assumption of Theorem 4.1).

Proof. Using the notations (4.12), (4.13) and (4.20) we can write the system (4.1)—(4.2)
as follows:

(4.40) O} wi — Ciajp0a0pW; + GiajOudpw; = fi,

where i,5 =1,2,3,4 and

(4.41) F=(f1, fa2, f3,Q)"

Differentiating (4.40) with respect to time n — 1 times (1 <n < s —1) we get
(4.42) O w; — Cinjp0l 000wy = A1

where

n—1
— n—17F n—1/— n—1 = n—1—
(443) B =00 i = 07 N (GinjO0aOwy) + Z ( i )8fciajﬁat "0, 0pw;.
k=0

Multiplying (4.42) by 97W; and integrating with respect to (¢,z) € (0,T) x R we get

(444) 107 wllg + 107 w]|F < C(Br,70) (T 13 + "I + 1107 wllf)
t

+C(B1,70) § (107 w()|§ + 107~ w () IIF) dr
0

Clyo) IR ()13 dr

0
where
(4.45) w=(u,0)*, w"=(u",0")".
Taking into account that
t t
(4.46) VIR ()l dr < (L+ 1|07 f [0 + C(Ba) §I|D* W (1) dr
0 0

we get (forn <s—1)

(447) (107 wl§ + 1107~ wllf < C (B o) (w1 + lw™ [T + 107~ wl[5)
t

+(L+ D)0 I3+ C(Br,70) § 1D () [ dr.

0
Summing the inequalities (4.47) forn =1,...,s — 1, we get
s—2 t
(4.48) Z 107 wll1 + 1105 wllo < C(B1,70) Ko + C(B2,70) S 1D°~ w(r)||f dr.
n=0 0
In order to estimate Ofw we use the Friedrichs mollifier (cf. [22]). Applying the mollifier

Js (cf. [22]) to both sides of (4.42) under the assumption that n =s—-1,0<d<e < T,
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for t € [, T — €], we get

(4.49) (07 wi)s — (Ciajp0; 2 0a0pw;)s = (hi™%)s + (Ri)s
where
(4.50) (Ri)s = (Ciajp0; *0a05w))s — Ciajp(0; 2 Dadpw;).

Differentiating (4.49) with respect to ¢, integrating over (g,t) x §2, ¢ <t < T —¢, using the
properties of the Friedrichs mollifier (9 w)s|on = 0 and (Gyw)s = 9 (w)s, after integrating
by parts we have

(451)  [1OFw)s(@)IF + (07 w)s ()T < C(Br,70) (D w)s ()17 + 119~ w)s(B)]?)

- C(Bryo) (1 n i) [ 1D w)s(r) | dr

vT
+ VT § 18:(h*~2)s(r) 1§ dr + | 10- Rs(7)|* dr.

Letting € — 0 we get § — 0.
So, using the assumption of Theorem 4.1 we have

t t t
(4.52) VIoene=2(m) 1§ dr < {1107 F(D)I§ dr + C(Bay0) § |1 D*w(r) 1§ dr.
€ g g
So, we get
(4.53)  [opwl§ + 107 wlli < C(Bi,70) Ko
1 1\
+ C(Bs, \/T—l——k) Dsw(7)||? dr,
B2 (VI 5 ) LDl
(4.54) 16; wll3 < o (Io7w (O3 + B2 (@)15 + 197 " *w(t)[13),
t
(4.55) RS2t |12 < C(B1,v0) Ko + C(Bg)ﬁx | D*w(T)|| dr.
0
So, we have
t
_ 1 1 —
(456) ||8ts 2w||§ < C(Bh’}/o,’yl)Ko-FC(BQ,’}/o,’Yl) (T + \/T—f' ﬁ) S ||Dsw(7)||gd7
0
Putting n = s — 2 in (4.42), using the assumption of Theorem 4.1 and acting as above we
get an estimate for || 3w(t)||3. Acting in the same way for k = 2,...,s we can notice

that ||0Fwl|?_, (4 < k < s) are bounded by the right hand side of (4.56). Finally, we have
(4.57) |Esw|(2),T < C(B1,7,7)Ko

T
1 1 -
+C(Ba0.m) (74 VT + = ) LID"w(r) .
0

Applying the Gronwall inequality to (4.57), we get
|l_)5w|(2J T S K1K0€(1+1/ﬁ+T)ﬁ.

This completes the proof of Theorem 4.2.
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5. Proof of Theorem 3.1

The proof of Theorem 3.1 is based on the Banach fixed point theorem. We denote by
Z(N,T) the set of functions (u, 6) which satisfy

(5.1) OFu;, 080 € L°([0,T), H*"*(2)), 0<k<s

(s > |3/2] +4 = 5 being an arbitrary but fixed integer), with boundary and initial
conditions of the form

(5.2) uilon =0, Olag =0,

(5.3) (0Fu;)(0,2) = uf, (0f0)(0,2) =0%, 0<k<s—2, i=123,
and the inequality

(5.4) \Dul? 7 + |D*0J2 7 < N?

for N large enough.

Proof of Theorem 3.1. Let

(5.5) (w,0) € Z(N,T).

We consider system (4.1)—(4.2) with

(5.6) Ciajf = Ciajs(VT, 0,0,0),

(5.7) Mo = M;(V7,0,0,0),

(5.8) kap = kap(V, V0,0,0,0),

(5.9) big =b;is(Va,Vo,0,0,0),

(5.10) fi= fi(t,x) — mia(VT,0,0:0)0,0,
(5.11) Q,; = Qi(t,x) — a(Vw, V0, 0,0,0)0:0.

We rewrite this system in the form
(512) 3t2ul — Cia]ﬂ(VU, ?, 3t§)8a35u]‘ + Mm(Vﬂ, ,5, 8t5)6a8t0
= fz (t, LU) — mm(VH, g, Btg)f)oﬁ,
(5.13) 070 — kap(Vu, V0,0,010)0,050 + bis(Va, V0,0, 0,0)050,u;
+b;5(VU, V0,0, 0,0)0,0,u; + do(V, V0,0, 0,0)0,05u;
= Q(t,x) — a(Vu, V0,0,0,0)0,0
with boundary and initial conditions (4.3)—(4.4).

The functions v and 6 appearing in (5.12) and (5.13) are the solution of system (5.12)—
(5.13) with conditions (4.3)—(4.4). Taking into account the class of functions (4.3)—(4.4)
we can apply Theorems 4.1 and 4.2. It follows that for every (@,0) € Z(N,T) there
exists a unique solution (u, @) to problem (5.12)—(5.13) with initial-boundary conditions
(1.16)—(1.17). This means there exists a mapping
(5.14) o:Z(N,T) > (u,0) — o(u,0) = (u,).

STATEMENT 1. ¢ maps the set Z(N,T) into itself for N large and T small enough.
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First, we introduce the notation

S

(5.15) Eo =Y (Il s +1I6"13_5)

k=0
T

+ Z‘ak L Qsawr+ S 10; 7 (f, Q)3 - dt.
0

Using the properties of the elements of the set Z(N,T) and Theorem 2.10 and applying
the Sobolev inequality, we get the following estimate for the function f given by (5.10):

T
(5.16) Vllop=" Fillg dt = guaé Y(fi — mia(VT, 8,0,0)0,0)||2 dt
0 0
T s
< [(S1orvma.00)5) + o £l3] dr
0 k=0
C( YA +T) + C(E),
5—2 —
(5.17) S orflor < Z |0F fi = 0Fmia (V,0,0:0)0a013_5_y.1
(T+ T?)C(N) + C(Ey),
and similarly
T — —
(5.18) S 10,7 QI dt = [ 110771 Q — 95~ (a(Va, 0, 0,0)9a0) |3 dt
0
C(Eo> +C(N) + (1 + 1),
s—2
(5.19) > 10 Qlor < Z 10F Qi — a(V,0,0:0)0.01%_5_; 1

k=0 k=0
< (T +T*C(N)+ C(Ep).
Putting (5.16)—(5.19) into the energy estimate (4.34) of Theorem 4.2, we get
(5.20)  [D*(,0)[3 1 < C(Eo,v0,71)(1 + C(N)(TV2+T+T2))eVTEHNVTHIO(N),
Let N be large enough that

(5.21) 2C(Eg,v0,71) < N2

Since n(T) is a continuous function and 7(0) = 1, there exists T' > 0 such that
(5.22) N(T) := (1 + C(N)(TY? + T + T?))eYTUH/VTHTICWN) < o

So, in view of this fact, we get from (5.20) the inequality

(5.23) |D*(u,0)[§ 7 < N°.

From (5.23) it follows that

(5.24) (u,0) € Z(N,T).

STATEMENT II. The mapping o : Z(N,T) — Z(N,T) is a contraction for T small
enough.
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Let W denote the complete metric space given by
(5.25) W = {(w,0): D" (u,0) € L=([0,T], L*(£2))}
with metric
(5.26) o(@,0), (u,0)) = |D' (@~ w)|§ v + |D'(0 = 0)[§ -
It is easy to see that Z(N,T) is a closed subset of W. Let (%, 0), (u*,0*) € Z(N,T). Then
(5.27) o(w,0) = (u,0) € Z(N,T), o(a*,0%) = (u*,0") € Z(N,T),
where (@, 0), (T*,0*) are the solutions of problem (4.1)—(4.4) where the coefficients (5.6)-
(5.9) and the right hand sides of (5.10)—(5.11) depend on (%, #) and (u*, §*) respectively,
ie.
(5.28)  9Fu; — ciajp(0, VU, 0:0)0a0pu; + Mo (0, VU, 8,0)0,0,6
= fi(t,2) — min(0, VT, 0:0)040,
(5.29) 070 — kap(0,0:0,V0,V1)00050 + bjz(0, 0,0, V0, V1) ds0u;
—bajp(0,0:0, V) 0a0suj + do (0, 0.0, V0, V1) 00,0
= Q(t,x) — a(0,0:0, V0, Vu)9,0,
(5.30)  O%u; — cinjp(0*, VT, 0,0%)0a0pu} + Mo (6, VU*, 0,0%)0,0,0"
= fi(t,z) — mua (6%, VT", 0,6%)0,0",
(5.31) 020" — kap(0%,0,0%, V0", VU*)00 050" + bj3(0*,0,0%, VO, Vu*)0p0pu;
—bgja (07,0007, V0", VU )000puj + do (0%, 0,07, VO*, V") 0, 000"
_ Q(t.) — a8, 0,8°, VO, Va*)0,5".
Subtracting (5.28), (5.30) and (5.29), (5.31) respectively, we get
(5.32)  0F(u; — uf) — Ciajp(0, VU, 0;0) 0005 (u; — uy)
+ (M;0 (0, VT, 0:0)0,0:(0 — 6%) + m;o (0, VT, 0:0))0, (6 — 67)
= (Ciajp(0, VT, 0,0) — ciajp(0*, VT*, 0,0%))000pu}
+ (Mo (0, VU, 010) — Mo (0%, VT, 0,0%)) 00 0;0*
— mia (0%, VU*, 0,0%)0,0",
(5.33)  02(0 — 0%) — kap(0,V0, Vi, 0:0)0,05(0 — 0%)
+b5(0,V0,VU,0:0)050;(u — u}) — bgja(0, VO, VU, 010)060p(u — uj)
+ do(0,V0, V7, 0,010,040 — 0%) 4+ a(0, V0, V1, 8;0)0,(0 — %)
= (kag(0,V0,VU, 0,0) — kag(6,V0*, V", 0,0%))06056"
+ (b;(0, V0, Vu,0,0) — bjs(0*, V", Vu*, 0,6"))dp0pu;
+ (bgja(0, VT, 0,0) — bgja (0%, VT*, 0,0%))0a0pu
+ (da (0, V0, VT, 0,0) — do (0%, V0", VU*,0,0")) 0,001}
+ (a(0,V0,Va, 0;0) — a(6*,VO*, Vu*, 0;,0%))0,0".
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Multiplying (5.32), (5.33) by O¢(u — uv*) and 0;(6 — 6*) respectively, and integrating by
parts over [0, T| x {2, performing partial integration with respect to x, taking into account
that

(u; —u)|oa =0, OF(u; —ul)(0,2) =0, k=0,1,
(0 —0)loo =0,  OFf(6i—6;)(0,2)=0, k=01,
and using the fact that

(5.35) |D?(@, 0, 3", 0%, u,0,u*,0")|o.r < C(N)

and the mean value theorem, we get

(5.36)  [ID"(u—w)§ + 1D (0 — 0)]I3

(5.34)

gcuv)( )S (D" @ — )2 + | D@ — 6°)3) de
)

+T(1+T)*C(N
Applying Gronwall’s inequality to (5.36) we get
(5.37)  [D'(u— ") + DO 0757
< C(N)T(+ T (D' (@ — @[3 r + |D' (0 — 67)[3 p)e H/ VDT,
Introducing the notation

(5.38) A=C(N)T(1+ T)2e(1+1/ﬁ)C(N)T

(1D (@ — )5+ |[D'(0 - 87)[3)-

we get
(5.39)  [D'(u—u")[§+[DO =075 < N|ID'(@—a")5 1 + DO~ )3 1)

From (5.38) it follows that choosing T" small enough, we get A < 1. Therefore the mapping
o is a contraction. So, in view of the Banach fixed point theorem, ¢ has a unique fixed
point (u,0) € Z(N,T).

This implies that problem (1.1)—(1.4) has a unique solution on 0 <t < T.

6. Applications to nonlinear microelasticity theory.
Formulation of the main theorem

Below, we show how the approach presented in Sections 2—5 works in nonlinear microe-
lasticity theory. So, we consider the nonlinear hyperbolic system of six partial differential
equations of second order describing a microelastic medium in the three-dimensional
space (cf. [28]):
(6.1) é)fuz — Ciajg(vu, th)aaaguj‘ + o (V’U,7 V(p){:‘jlkalg&k = fi,
(6.2)  9Fpi — diajp(Vu, Vo) 0appj + cij(Vu, Vi) g,

- Oéij(V'Uq v@)gjlkal’l,bk = }/:ia 1= 1) 27 37
where u = u(t, z) = (u1(¢, z), ua(t, ), us(t, x))* is the displacement vector of the medium,
v = pt,z) = (p1(t, ), p2(t, ), p3(t,x))* is the microrotation vector, depending on
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t € Rf and € 2, 2 C R? being a bounded domain with £ smooth enough;
Vu = (O1u,Osu, d3u), Vo = (01,02, 03p) are the spatial gradients of the functions
u, ¢ respectively; ciajg(-), dia;js(), 2ij(+), @;(-) are the nonlinear coefficients depending
on the gradients of the unknown functions; f = f(¢t,z) = (f1(¢, z), fa(t, z), f3(t,z))* is the
body force vector, Y = Y (t,z) = (Y1(¢t,z), Ya(t, x), Y3(t,2))* is the body couple vector;
the symbol €, is defined as follows:

+1 when the permutation (i, j, k) is even, o
Eijk: . .. . Za]ak:172737
—1 when the permutation (4, j, k) is odd,
with the following initial conditions:
(6.3) u(0,0) = (@) . (Bu)(0,2) = ul (@),
(6.4) p(0,2) = °(x),  (9p)(0,2) = ¢ (2),
where u°, 0°, ul, o' are given data, and with the boundary conditions:

(6.5) u(t, oo =0, @t -)oe =0.
REMARK 6.1. Putting into (6.1)—(6.2)
Ciajp = Map(A+1)0ij, () = 20, @;(-) = 4da,
diajp = (Y +€)dap + (0 + 7 +€)diy,
where d,3 denotes the Kronecker symbol (a, 8 = 1,2, 3), we obtain from (6.1)—(6.2) the
linear hyperbolic system with constant coefficients describing the microelastic medium.
The initial-boundary value problem for the linear system of microelasticity theorem
was investigated by W. Nowacki [68] using integral transformations.
Now, we formulate the main theorem about local (in time) existence of the solution
of the initial-boundary value problem for the nonlinear system (6.1)—(6.2).

THEOREM 6.1 (Local-in-time existence). Let the following conditions be satisfied:
1° s > |3/2| +4 =5 is an arbitrary but fized integer.
2° OF f;,0FY; € CO[0,T), H*"27*(2)), k = 1,...,8 — 2, 0y "' £:,0;7'Y; € L*([0,T],
L?(2)).
3° There are two constants 1,72 such that
(capbalomn) = nIEP M (dap€alomsn) = 72lEl* >
for & = (€1a£2,£3)a77 = (771’7727773) € R? where
cap = [Ciajpl,  dap = [diajsl;
Oéij,aij S Csil(Rw) (Z,j = 1,2,3),
CiajB = CjBias  diajp = djgia.
4° The initial data u®, °, u', o' satisfy
u’, ¢’ € H(2)NHy(2),  u',ot € H7H(2) N Hy(2)
and the compatibility conditions
e BTHQNHNQ) @<k<s—1), u'el(Q),
P e HTRNHI () 2<k<s—1), ¢ cL?0),
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where uF = 0%u(0,2)/0tk, o = 0% p(0,2)/0t* are calculated formally (and recursively)
in terms of u®,ul, 0, o' using system (6.1)—(6.2).

Then for sufficiently small T > 0 there exists a unique solution (u,p) to the initial-
boundary value problem (6.1)—(6.4) with the following properties:

u€ h CH([0,T), H M) N H(R2)), € h C*([0,T), H*M(02) N Hy (12)),
k=0 k=0

du e C°([0,T), L*(2)),  8;¢ € C°([0,T), L*(£2)).
The proof of Theorem 6.1 is divided into three steps:

1° Proof for the linear system obtained by linearization of (6.1)—(6.4) in the case of
two linear hyperbolic systems.

2° Proof of an energy estimate for the linear system.

3° Proof of existence and uniqueness of solution of the initial-boundary value problem
for the nonlinear system (6.1)—(6.4) by applying a fixed point theorem.

7. Energy estimate for the linearized microelasticity system

7.1. Linearized system of microelasticity theory. In this subsection, we investigate
two initial-boundary value problems for two linear hyperbolic systems. These systems
arise from the linearized system (6.1)—(6.4).

So, we shall investigate the solvability of the following problems.

1° The initial-boundary value problem for the linear hyperbolic system

(7.1)  Ou; — Cinjp(z,t) af:g;ﬁ =hi(z,t)  ((t,z) €[0,T) x 2, i =1,2,3)
with initial conditions
(7.2) ui(0,2) = u}(2),  (Opui)(0,2) = u; (x)
and boundary conditions
(7.3) ui(t,-)|oo =0 (¢t €0,T]).
2° The initial-boundary value problem for the linear system
(74) 9 pi = diajp(z,1) 8322?% =ki(z,t) ((t,x) €[0,T] x 2, i=1,2,3)
with initial conditions
(7.5) i(0,2) = }(x),  (Oepi)(0,2) = pi(x)
and boundary conditions
(7.6) i(t,)on =0 (t€][0,T]).

7.2. Energy estimate for the linear system of microelasticity theory. We start
with the existence of solution to the initial-boundary value problem (7.1)—(7.4).
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THEOREM 7.1 (Existence and regularity for (7.1)—(7.3)). Let the following assumptions
be satisfied:

1° s> |3/2| +4 =5 is an arbitrary but fized integer.

2° Ciajp € C°([0,T] x £2) N L=([0,T], L>=(£2)),

D,Tiajp € L([0,T], H**(02)),
([0, T), H*" 170 (2)  (k=1,...,5—1).
3° Ciajp = Cigia for t € [0,T] x 2 and if u € H}(£2), then

_ ou; Ou,
Jull < 20f (B 5 5o ) + 1l

fort € [0,T], where o > 0 is some constant.

6 Czajg e L™

0?u;
4° Ciaj 7J H* (02
fort € [0,T), and if u € H}(£2), then u € H’HQ(Q) and
_ 2u; |°
il < |easol 5gs | + )

(0<k<s—2) fortel0,T], where v, > 0 is some constant.
5° 0fh e CO(0,T), H*77(2)) (0<k<s—2), 0 "heL*([0,T],L*(1).
Then there exists a unique solution u = (u1,ug,us)* of problem (7.1)—(7.4) with the
properties
dju € CO([0,T], L*(12)),
OFu € CO[0,T), H F ()N H}(2)) (0<k<s—1).

Sketch of proof. The assertion follows from semigroup theory (cf. Section 2) and the proof
of Theorem 4.1.

(7.11)

We can convert problem (4.1)—(4.4) into an equivalent (evolution) problem of the form

(7.12) &,V + AV =F,
(7.13) V(0,2) =V (x),
where
(7.14) V = (u1,u2, us, Opu1, Orug, Orug)™,
(7'15> V( ) V0= (ulaug’ugvulvuévu?)) ,
(7.16) F=(0,h),
0 -1

(7.17) At) = e o2 ;

iaj 6xax8g

the operator

(7.18) A:D(A) = X,
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being defined by (7.17) with
(7.19) D(A) = H*(2)NHy (2) x HY(2), Xo= HZ(2) x L*(£2).

Using the same considerations as in the proof of Theorem 4.1, we show that (A, Xo, D(4))
is a CD-system and that A(t) satisfies also the other conditions which allow one to prove
the required regularity (cf. (4.30)—(4.33)). Now, we formulate an energy estimate for
problem (7.1)—(7.3).

THEOREM 7.2 (Energy estimate for (7.1)—(7.3)). If the assumptions of Theorem 7.1 are
satisfied, then the solution of problem (7.1)—(7.3) guaranteed by Theorem 7.1 satisfies the
inequality

(7.20) ID*ulf p < KoK

with positive constants Kg, K1, Ko, where
s T
Ko=) [[u*l3_ + (L +T)D* 2hfg o + T {05~ (1) dt,
k=0 0

and K1 = Ki1(Lo,v0,71) and Ko = Ko(L,v0,71) depend continuously on their argu-
ments, where

Lo = |[Ciajp(0)||L + [ DaCiajs(0)||s—3,

s—1
(7.21) L= sup |[Ciajs(t)lloc + [DaCiajp(0)|s—2,1 + Z |0 Cinjpls—k—1.T,
0<t<T Pt

CT)=TY2(1 +TY? +T +1%?).

Sketch of proof. Differentiating (4.1) n — 1 times (1 < n < s — 1) formally with respect
to t, multiplying by O7u; and then integrating over (0,t) x {2, using integration by
parts with respect to z, the Schwarz inequality, Friedrich’s mollifier (in order to estimate
Ofu(t,x)); cf. the proof of Theorem 4.2), and the assumption of the theorem, we get

t
(7.22) [ID*u(t)[3 = C(L,70,71) Ko+C(Ly 70, 1) (L + T2 + T+ T3/2) [ | D*u(7) |3 dr.
0

Applying Gronwall’s inequality to (7.22), we immediately get the energy estimate (7.20).

As the second step, we start with the existence theorem for the initial-boundary value
problem (7.4)—(7.6).

THEOREM 7.3 (Existence, uniqueness and regularity for (7.4)—(7.6)). Let the following
assumptions be satisfied:
1° s > |3/2| +4 =5 is an arbitrary but fized integer.
2° diajs € CO([0,T] x 2) N L>([0,T], L>=(£2)),
D,dinjs € L®([0,T],H*"%(2)) (k=1,...,s—1),
OFdinjp € L([0,T), H17F(02)).
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3° dinjp = djpia for (t,x) € [0,T] x 2 and if ¢ € H}(2), then
_ dp: D
2 <~ dia' t ) 1 2
ol < 6d (Fasa 522, 525 ) + el

fort € [0,T], where v, > 0 is some constant.

o 3 82(10.7 k
4 dia]ﬂaxaaxﬁ € H (_Q)
fort € [0,T), and if ¢ € HX($2), then p € H**2(2) and
_ 2o |?
< A L 2
ol < ([aniott) | -+ 1613

(0<k<s—2) forte|0,T], where v; > 0 is some constant.

5° 0; 'k € L*([0, 7], L*(2)) (s >5),
Ok e C0,T), H27%(2)) (0<k<s—2).
Then there exists a unique solution ¢ = (¢1, P2, p3)* of problem (7.4)—(7.6) with the
properties
95 € C°([0,T), L*(92)),

(7.23) O e CO0,T)], H*(2)NHL(N)) (0<k<s—1).

Sketch of proof. Introducing the vector V' = (p1, w2, ¢3, 011, Oppa, Orps)™ we can convert
problem (7.4)—(7.6) into an equivalent (evolution) problem of the form

(7.24) oV + AV =G,
(7.25) V(0,2) = VO (z),
where

V(0) = V0= (o7, 03, % 01,03, 03)", G =(0,k),

0 -1
Alt) = — .
0 <—dmj,6 0a03 0 >

Using similar considerations to those in the proofs of Theorems 7.1 and 4.1 we obtain
the assertion of Theorem 7.3. Using the same approach as in the proof of Theorem 7.2,
we can also obtain the following energy estimate for the solution of problem (7.4)—(7.6).

THEOREM 7.4 (Energy estimate for (7.4)—(7.6)). If the assumptions of Theorem 7.3 are
satisfied, then the solution of problem (7.4)—(7.6) guaranteed by Theorem 7.3 satisfies the
inequality

(7.26) |D*¢|3 7 < MoM;eM=nT)

with positive constants My, My, My, where

s T
Mo =Y _[l¥*13- + L+ DD 2hl5 7 + T2 {107 h(t)| dt
k=0 0
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and My = M1(Po,~),v1) and My = My(P,~},v,) depend continuously on their argu-
ments; here

Py = ||diajs(0)|[ Lo + [ Dadiajp(0)]ls—3,
s—1

P= S [ diajs(t)|lLoe + | Dadiajp(0)]s—2.0 + Y |0F diajsls—r-1.7
k=1
and
(7.27) n(T) =TY?2(1+TY2 + T +T13/?).

Proof. It runs in the same way as that of Theorem 7.1.

8. Proof of Theorem 6.1

Let W(N,T) be the set of functions (u, ) satisfying
(8.1) Of i, OFuy € L°([0,T), H™F(2)), 0<k<s, j=1,23,

s > [3/2] +4 = 5 being an arbitrary but fixed integer, with boundary and initial
conditions of the form

(8.2) ujlog =0,  ¢jlan =0,
(8.3) OFu;(0,7) = u?(x), 0<k<s-—1,
(84) Op;(0,2) = ¢f(z), 0<k<s—1,

and the inequality
(8.5) |55“‘8,T + |ES<P|3,T < N?

for N large enough.
A mapping o1: W(N,T) — W(N,T) is defined as follows:

(8.6) o1: W(N,T) 3 (u, %) — 01(u,9) = (u,¢)
where u is the solution of (7.1)—(7.3) according to Theorem 7.1 with
(8.7) Ciajp = Ciajs (VT VP),

(8.8) hi = a;;(V7, Vap)sjlké; + fi,

(8.9) 7’ =40, w =t

and ¢ is the solution of (7.4)—(7.6) according to Theorem 7.3 with
(8.10) diajp = diajp(VU, VP),

(8.11) ki = —;;(VU, V) + a;;(Va, Vgo)ejlkg + s,
(8.12) =9’ P =0

Then o1 maps W(N,T) into itself provided N is sufficiently large and T is sufficiently
small. To prove this, we use the energy estimates (7.22)—(7.26) and the same arguments
as in the proof of Theorem 3.1.
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For this, we introduce the notation

S

(8.13) o= [ ;ﬁZH@ I5- k+2|0k (P F)ls ok

k=0

+ §||a‘s Y0, &) ()3 dr.
0

Taking into account the properties of elements of W(N,T), applying the Sobolev in-
equality and the mean value theorem, we get, for the function & defined by (8.8),

s—2 2
(8.14) 18 A3 < 2<CZ 1D~} (v, V@)IIB) +2C|0; 7R3
i=1
< C(N) +C0;"hll3
and
T
(8.15) V05— Rl dt < C(N)1+T) + CE.
0

Acting similarly and using the fact that
¢

Y(t) = 7(0) + | Oy(r) dr

0
we get
s—2 8H 2
S k
816 Y {108 s o+ b (VE VR Gt
=0 Lils—2—k,T
<C(Ey) +C(INT(1+T).
Using the same estimate, we get
T
(8.17) Vo7~ k|l dt < C(N)(1+T) + C(Eo)
0
and
s—2
818) Y {10FRE s+ 0oy (VE TR s
k=0
k o ouy, 2
+ |07 i (V, ch)sjhka—
Tils—2—k,T

< C(Eo) +C(N)T(1+T).
Putting (8.13) and (8.14) into the energy estimate (7.20), putting (7.17) into the energy
estimate (7.26) and adding the resulting inequalities, we get

(8.19) |D*ulg 7+ [D*¢l5 7 < C'(Eo, 0,71, 70, 11)

: (1 +O(N)TV? ZG: TW)
1=0

) eC(N)Tl/Z Z?:D T'i/2 .
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Let N be so large that
(820) 20/(E0570a71776’71> < NQ'

There exists T' > 0 small enough that
6
(8:21) n(T) = (1 +C(N)TY/? ZT”/2)@C<N>T“"’ ST o g
i=0

(since n(0) =1 and n(T) is a continuous function). So, we get
(8.22) |D*ulg + + |D°¢lg < N*.

This means that (u, ) € W(N,T). Finally, we notice that W(N,T) is a closed subspace
of the complete metric space defined by

(8.23) Y = {(a,%): D'u, D'g € L>([0,T], L*())}
with metric § given by
(8.24) 5((w, %), (u, ) = |D*(@ - w)[5 1+ + |D' (7 - ¢)

Below, we prove that the mapping o7 is a contraction for 7' small enough, with respect
to the metric § given by (8.24). Using (8.7)—(8.12) we can see that u — u*, p — p* satisfy
the system

2
0,T"

0% (uj — u?)

j
0xq0x3

2, %
8uj

(825) Bt(ul - ’U,:) - cmjlg(VE, V@)

= (Ciajp(VT", V") = Ciajp(VT, VP))

0x,023
— — — — a¢ —% —% (‘3@ aa*
+ <aij(Vu,V<P) - (Vu", Vi )gihkﬁ—mf o (VI Vo )Eihk)<ax’: - 83‘: 7
0% (pj — %)
Y v L e
(8.26)  0; (pi — ;) — diajp(Vu, V) 070015
(g (VT V5") — dias (VT V) 0
—( zajﬁ( u, vy )_ wﬂﬂ( u, (‘0>)8:ca8:£g
+ (@ (V8 VP) — @y (VA" VPO)P; + a4 (VT VE") (pi = 7)
— — il 7* a_
+ (i3 (VE, Vo) — ai; (Va*, Vip ))Eﬂ’“%
o o, O
+ o (VT , V& )ejuk (8—;: — 8xf)

Multiplying (8.15), (8.16) by O¢(u — u*), O¢(¢v — ¢*) respectively, and integrating over
[0,T] x {2, performing partial integration with respect to z, taking into account that

(u; —ul)|on =0, 8f(uifu2‘)(0,m):0, k=01,
(‘pi_@;‘k)laﬂzoa 8f(¢i_90;‘k)(0a$)207 k=0,1,

and using a similar approach to that in the proof of Theorem 3.1, we get

(8.27)
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(8:28)  [|ID'(u—u)[3 + 1D (e — ")l
T
1 — _
<o) (14 =) YD = w4 15 — )R] d
VvT)
+TY2(1+T)*C(N)[||D* (@ —a)||2
Applying Gronwall’s inequality to (8.28) we get
(829)  |D'u—u")gr + D e —¢ )5y <e(D' @)+ D@ -7 )or)
where
(8.30) e = C(N)TY2(1 + T)2eCMNT+T?),

From (8.30) it follows that choosing 7" small enough, we get ¢ < 1. Therefore the mapping
01 is a contraction. So, in view of the Banach fixed point theorem, ¢ has a unique fixed
point (u, ¢) € W(N,T). This implies that problem (6.1)—(6.2) with conditions (6.3)—(6.4)
has a unique solution on 0 < ¢ < T'. This completes the proof of Theorem 6.1.

D'(® —%)II5.1)-

9. Application to nonlinear thermodifusion in a solid body

In this section we extend our approach to the nonlinear hyperbolic-parabolic system of
equations describing the behaviour of a thermodiffusion medium in continuum mechanics.

More precisely we consider the initial-boundary value problem for the nonlinear
hyperbolic-parabolic system of equations describing the process of thermodiffusion in
a solid body (cf. [29], [51]):

2 82’11,]
é)t U — ijg(Vu, 91, 92)81‘,181’5
00, 005
+Ezla(vu791502)a +Cza(vu 01792)8xa fiv
8291
(V’U, 91, 92)8t91 - a (V’U, 917 92, V@l, V@Q)
c%caé):cﬂ
(9.1)
0%u; 892
(VU 91792)8 a (VU 917927V917v92) Ql?
n(Vu, 01,0230, — a2 5(Vu, 01,02, V0 ve)%
1,V2)0tU2 1,Y2, 1 2 8$aax5
P 9%, a
+Cia(vu791792) +d(Vu 91,92,V91,V92) = Q27

0z, 0t
where u = u(t,z) = (u1 (¢, x), ua(t, ), us(t, z))* is the displacement vector of the medium,
01 = 01(t, z) denotes the temperature of the medium, 05 = 05(t, z) denotes the chemical
potential depending on t &€ Rar and z € £, 2 C R3 being a bounded domain with
of? smooth' Vu = (81u ('92u 83u) V91 = (819178291,8391), Veg = (619278292,8392);
Ciajp("), el (), To (), c(+),a abg(-),d'(-),n(),aZs(-) are nonlinear coefficients depending

on the unknown functions and their gradients, smooth enough; f = f(¢,z) = (f1(¢, z),
fa(t,x), f3(t,z))* denotes the body force vector; Q1 = Q2(t,x), Q2 = Q2(t,x) are the
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intensity of the heat source and the intensity of the source of diffusing mass; * denotes
transposition; the initial conditions are

u(0,2) = u’(z), (9wu)(0,2) = u'(x),

9.2

(9:2) 61(0,2) = 6%(x), (0, 2) = 69(x),

with given data u°, u!, 69, 69, and boundary conditions (of Dirichlet type) are
(93) U(t, ')|8.Q = 07 el(ta )‘BQ = 07 92(t7 )|8Q = 07

Putting in the system (9.1)

Ciajp(") = 1oap + (A4 1)dij, Ty =70iar  Ciy = V20ia;

C() =¢ azxﬁ = 5aﬁ7 ai,@’ = Déaﬁﬂ dl(') =d, n() =n,

we obtain the linear hyperbolic-parabolic system describing thermodiffusion in a solid
body. The linear hyperbolic-parabolic system of thermodiffusion in a solid body was
investigated in [38, 39, 40, 69] using the method of integral transformations. In [37] some
theorems about existence and uniqueness of solution for initial-boundary value problems
were proved using the Faedo-Galerkin method in suitable Sobolev spaces. The aim of
this section is to prove a local existence theorem for the nonlinear problem (9.1)-(9.7)
in the class of smooth functions under the assumptions given below. Before starting the
main theorem we rewrite system (9.1) in the form (under the assumption cn — d? > 0)

(9.4)

0%u
815211,7, — ijﬁ(Vu, 6‘1, 92)6 aa;‘g
+E§a(Vu, 01, 92)39 + cm(Vu 01, 02)30 = fz(t 1‘)
2 o 2
@01 — 'délﬁ(Vu, 01, 92, VGl, Vag)ﬂ ~12 (Vu 01, 92, Vﬂl, VGQ) 8 92
9.5) 0xq0x3 0z,0x3
’ 24,
= (C%Q(Vu, 91, 92V91, VGg)aa 87’; —+ gl(Vu 91, 02, Vé)l, V@Q, t $)
0%6 %0
0,05 — @25(Vu, 01,05, V6,1, V) T (;W —@2%(Vu, 01,02, V61, V0s) . 815
82
= (sza(vua 917 92; veh ve2)a 815 + gz(Vu (91, 927 V@l, VHQ, t J,‘)
where
gl — ﬁ 1 712 d 4
a,B - 5 aﬁ? aﬁ 6aa57
T P
2 el
CL(Vu, 0y, 62, V6y, Voy) — Tia M
§
(96) dC}, — cC?
C?Q(Vu, 91, 92, V@l, VGQ) = %,
—d
gl(Vu, 91, 92, VGl, VHQ, t, 33‘) = w,
dQz — dQy

92(VU791a927ve17v‘927ta$> = 5
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Now, we formulate the main theorem:
THEOREM 9.1 (Local-in-time existence). Let the following conditions be satisfied:
1° s> |3/2| +4 =5 is an arbitrary but fized integer.
2° OF f;,0F Q1,08 Q2 € CO([0,T], H*=27F(2)), k =0,1,...,5 =2, 9,7 'Q1, 0} 'Qs €
L2([0,T], L*(12)).
3° There are two constants 1,72 such that
(Capbalpmn) > 1l (@apbals, M) = 121¢7 M1
fO?”ﬁ = (ﬁlﬂﬁ?) € RQ? 5 = (51»52753)7 n= (77177727"73) € Rsv where
Cap = [Czajﬁ]a 1= 1) 2737 .7 = 17273a
Tap = [ags), =12, j=12,
aly,d e CTHRY),
Cinjp = Cipiar  Oag = g
4° The initial data satisfy: 69,09,u° € HO(2) N HY(2), u* € HY(2) N HL(2) for
x € 2 and the compatibility conditions
ub e HSR(Q)N HY(2), 2<k<s-—1, u® € L*(12),
0f e H*H( )N HYQ), 1<k<s—2, 6'ecl*),
0y e H"F ()N H)(2), 1<k<s—2,  05"'eL*N),
where uF = 0Fu(0,-)/0tk, 0F = 0%0,(0,-)/0t*, 05 = 0%05(0,-)/0t* and they are calculated
formally (and recursively) in terms of u°,ut, 63,602 using (9.8).

Then for sufficiently small T > 0 there exists a unique solution (u,601,02) of the initial
value problem (9.1)—(9.2) with the following properties:

ue ﬁl CH([0, T, H*~H(2) N Hy (2)),
Ofu € giz[O,T},LQ(Q)),
(9.8) 6, € ﬁC’“([O,T},HS*’“(Q) N Hy(£2)),
05710, € giz[O,T},LQ(Q)), 9571V, € L2([0,T], L*(R2)),
02 € ﬁck([O,T],HS*’C(Q) N H(2)),
k=1

0570, € CO([0,T), LA(2)), 0: 7'V, € L2([0,T], L*(12)).
The proof of Theorem 9.1 is divided into three steps:

1° Proof for the linear system of equations obtained by linearization of system (9.1)—
(9.3) in the cases of
(a) one linear hyperbolic system,
(b) one linear parabolic system.
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2° Proof of an energy estimate for these systems.
3° Proof of existence and uniqueness of solution of the initial-boundary value problem
to the nonlinear system (9.1)—(9.2) by applying a fixed point theorem.

10. Energy estimate for the
linearized system of thermodiffusion in a solid body

10.1. Linearized system of thermodiffusion in a solid body. In this subsection we
shall investigate two initial-boundary value problems for one linear hyperbolic system and
one linear parabolic system. These systems arise from the linearized system (9.1)—(9.2).
So we shall investigate the solvability of the following problem:

1° The initial-boundary value problem for the linear hyperbolic system

(10.1) O2u; —cmjﬁ(t,x)afzg;ﬂ = fi(t,x), (t,z)€[0,T]x £, i=1,2,3,
with initial conditions

(10.2) ui(0,2) = ud(x),  (Opu;)(0,2) = ul(x),

and boundary conditions

(10.3) wlt, Yoo =0, te0,7),

2° The initial-boundary value problem for the linear parabolic system
8201 12 8202

(10.4) 0:01 — a(lllﬁ(t,m) Gradis ag(t, x)axaaxﬁ =7g,(t, ),
(10.5) 00y — ai};(t,x)afj—g;ﬁ - a?fﬂ(t, )%giﬁ =go(t, )
with initial conditions

(10.6) 01(0,2) = 01(z),  62(0,2) = 03(x),

and boundary conditions

(10.7) 01(t,)oe =0, 62(t,)|oe =0, te€][0,T].

10.2. Energy estimate for the linear system of thermodiffusion in a solid body

10.2.1. Energy estimate for the linear hyperbolic system. We start with results on the
existence of solution for problem (10.1)—(10.3).

THEOREM 10.1 (Existence, uniqueness and regularity for problem (10.1)—(10.3)). Let the
following assumptions be satisfied:

1° s> |3/2| +4 =5 is an arbitrary but fized integer.
2° Tiajp € C°([0,T] x 2) N L>®([0,T),L>(£2)),  DyCinjs € L=([0,T), H*"2(£2)),
OCinjp € L([0,T), H*"17F(2)) for k=1,...,5 — 1.
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3° Ciajp = Cjpia and there exists a constant vo > 0 such that
_ au 8ul
Jull < 20 (aso 052 g ) +
for all w e H (), t €[0,T).

4° For almost all t € [0,T], the condition

0%u;
Ciajf a7 —
ox 8$ﬁ

€ H* (1)

together with w € H}(82) implies
_ 0?u;
Ciaso(t) 5y ajxﬁ

2
we H2(0) mm|mmHSv( +w%)

where v1 > 0 is some constant.
Then there exists a unique solution u = (u1,usz,uz)* of problem (10.1)—(10.3) with the
properties
OFu e CO0,T), H* ()N H} (), 0<k<s—1,
and
(10.8) diu € C°([0,T], L*(12)).
The proof runs in the same way as that of Theorem 4.1.

Now, we formulate an energy estimate for problem (10.1)—(10.4).

THEOREM 10.2 (Energy estimate for problem (10.1)—(10.4)). If the assumptions of The-
orem 10.1 are satisfied, then the solution of problem (10.1)—(10.3) guaranteed by Theo-
rem 10.1 satisfies the inequality

(10.9) 1D*ul? 7 < K1 KoeK2®)

with positive constants K1, K, K2, where

ZIIU’“HS p+ (L+T)D 2f\0T+T1/2§||35 F)IP dt,
0

K, = Kl(Loﬁoﬁl) >0, Ky=Ks(L,v,7)>0
depend continuously on their arguments, where

Lo = [[Ciajp(0)[| Lo + [ DaCiajs(0)]]s—3,

(10.10) S
L= S [Ciass(OllL= + |Datiajsls—2, + > 10 Ciajals—1-k.1,
k=1
and
(10.11) §T)=TY*(1+TY2 + T +T%?),

The proof runs in the same way as that of Theorem 7.2.

10.2.2. Energy estimate for the linear parabolic system. In the second step we consider
solvability of the initial-boundary value problem for the linear parabolic system (10.4)—
(10.5) with conditions (10.6)—(10.7).
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First we introduce the vector V' = (61,62)* and convert the initial-boundary value

problem (10.1)—(10.7) to the form

(10.12) OV — anp(t, x)% =G(t,x),
with o

(10.13) V(0,2) =V ), V(t)|on =0,
where

abs(t,z) al(t @)
aﬁ(tvx) aﬁ(t,l')

(10.14) aap(t, x) = ( ) , G(t,2) = (9.(t, @), 95(t, )"

In order to formulate an energy estimate for problem (10.10)—(10.11) we present two

theorems, whose proofs can be found in [30].

THEOREM 10.3. Let the following conditions be satisfied:
D'aZy(t,x) € C°([0,T] x 2) N L>([0,T], L*(£2)),
iVt ) € L=(0,T], L=(2)), e C([0,T], L2(2)),
8:G e L*([0,T), H (), V°e Hy(),

1 82‘/0 ral 2
V=430 )axaaxﬁ +G(0) € L*(12),
and
(10.15) aly(t,x) = aly,(t,x)  for (t,x) €[0,T] x £2,
(10.16) (aap€alsmn) > val€l*|nf*  for £ eR®, neR?,

and for some constant v3 > 0. Then there exists a unique solution V. = (61,62)* to

problem (10.10)—(10.11) with the properties
0, € C°([0,T7,
010, € C°([0, T7,
2:V6, € L*([0,T), L*(12)),
02 € CO((0,T], H2(2) N H(2)),
d10y € C°([0,T], L*(£2)),
iV, € L*([0,T), L*(12)).

(10.17) [
[0

)

Now, we formulate a regularity theorem for solutions of problem (10.10)—(10.11).

THEOREM 10.4. Let the following conditions be satisfied:
1° s > |3/2| +4 =5 is an arbitrary but fized integer.
2° aly € C([0,T) x £2) N L>¥([0,T], L®(£2)),
D, a” € L>=([0,T), H (),
Ofal, € L=([0,T],H'7F()), 1<k<s-2
07 taly € L*([0,T], L*(12)).
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3° For all 01,0, € H} () and t € [0,T), the inequality

i 00; 06,
a1 + 16212 < 2 (a5 ) 16012 + ol |

1s satisfied for some constant y4 > 0.
4° For t € (0,11,

- 520,
1] 2
aaﬁ (t) 8%8:%

implies that 61,09 € H*2(0), and

€ H*(0)  with 61,0, € H} (1),

Wiz < aast0 525 ]| +1710)
where V = (61,02)*, 0 < k < s —2 and 73 is some constant.
5° org, € C°([0,T), H*"* (), 0<k<s-2,
0;~'g, € L*([0, T, H (9 );
oFg, € CO([0,T), H* %)), 0<k<s—2
0; 79, € L*([0,T], H™(12)),

Then there exists a unique solution V' = (61,02)* of problem (10.10)—(10.11) with the
properties

o0, € CO[0,T), H* > ()N H} (), 0<k<s—2,
9; 101 € C°([0,T], L*(2)),  9;7'V61 € L*([0,T], L*(%2)),
(1018) aka 0 s—2—k 1
;02 € C7([0,T], H (2)NHy(2), 0<k<s-—2
25710, € CO([0,T), L2 (R2)),  0:7 'V, € L2([0,T], L*(12)).

Next we present an energy estimate for the solution of problem (10.10)—(10.11).

THEOREM 10.5 (Energy estimate for the parabolic system (10.10)—(10.11)). Let the con-
ditions of Theorem 10.4 be satisfied. Then the solution to problem (10.10)—(10.11) satisfies
the inequality

(10.19) Z |07 01 ik,T + Z |0F 02 ik,T + |at57191|(2J,T + |at57192|(2J,T

T
+ {10571 VOL(n) |17 + (10571 VOa(r) %] dr < KMo+ ™),
0

where
s—2

(10.20) MOZ(1+T>{Z(”911€H§7k>+||9]2€||§7k+||9f71”2+‘|9§71”2 ID*%g,[5
k=0

T

+HD 2 Gal5 + 1107 G0 ()2 + 107 o (1) I17-1] dT},
0
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K3 = K5(Py,v2,73) > 0, K4 = K4(P,72,73) > 0, 72, 3 are given in the assumption of
Theorem 10.9,

P= s Z el + 3" IDaaly e

i,j=1

-2 2 T 2
(10.21) + Z Z Fagdsls ko + 1 D 105 ady(r)|? dr,
k=1 i,j5=1 0

1,j=1
2

Rom 3 IOl + 3 IDeat (0l

ij=1 ij=1
and n(T)=T(1+1T).
Proof. This theorem can be found in [29].

11. Proof of Theorem 9.1

The proof of Theorem 9.1 is based on the Banach fixed point theorem. For this reason
we denote by V(N,T) the set of functions u satisfying the conditions

OFu e L°°([0,T], H*7F()), 0<k<s,
k0, € L>=([0,T), H*(2)), 0<k<s-2,
(11.1) i, € L>=([0,T], L (Q)), 0:7tVe, € L*([0,T), L*(R2)),
k0, € L=([0,T], H*(2)), 0<k<s—2,
05710, € L>=([0,T], L3(R2)), 0 'Vh, € L*([0,T), L*(£2)),
with boundary and initial conditions of the form
uilog =0, Oilop =0, 62lon =0,
(11.2)  OFu(0,z) =uf(z), 0<k<s—1, 0F0,(0,x)=0(z), 0<k<s—2,
0;02(0,2) = 05(), 0< k <5 -2,
and the inequality

s—2 s—2
(11.3) \ESUIS,T + Z |0 01 ik,T + |61657191|(2),T + Z |0F 0 ik,T + |61657192|(2),T
k=0 k=0
T T
+ 10z 1voy (r) |2 dr + | 10271 Vs (7) | dr < N?
0 0

for N large enough.
Proof of Theorem 9.1. Let
(w,01,02) € V(N,T).
We consider
1° the system

02U — Cinjp=——r— = f; fori=1,2,3
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with

Ciajp = Ciajp(VT, 01,02),
(11.4) 50
+E?a(VEa91302)Q

00
fi =2 (Vu,0y,05)— -

(%ca + fi(tax)a

2° the system

90, 4, 0%, R0 00

0 11 5 0, — 21 =
061 = aap 02,023 ~ dap 0z,023 g1, b2 = dqp Ora0z 58xa0xg — 92
with
HB = aaﬁ(Vu 91792, VGL V92) 5 = aaﬁ(Vu 91, 927 V91, VHQ)
215 = ai%(Vﬂ, 51752, V?l, V?g), 5 = ai%(VU, 517527 V?l, V@g),
_ _ _ _ 82
(115) g1 :C%Q(Vﬂ,Hl,GQ,VHhV@Q)a ot —|—g1(Vu 01,02,V01,V92,t x)
~ Qin—dQ _cQ —dQy
gl - 5 l) 92 - 6 9
_ _ _ _ aZUi _ _ _
g, = C2,(V,01,0,,V0,,V05) + 92(V,01,09,V0,,V0s,t, 7),

0x,0t
where u is the solution of (10.1), (10.3), (11.4).

By o2 we denote the mapping which maps (u,0;,02) to the solution (u,6,602) of
problem (10.1)-(10.3), (5.4), (10.4)-(10.8), (11.5), i.e

(116) 09 @ V(N, T) = (ﬂ, 51752) — O’g(ﬂ,gl,gg) = (u,91,92).
The following statements are true.
STATEMENT 1. o9 maps V(N,T) into itself for N large and T small enough.

In the proof of this statement we use the energy estimate for the linearized hyperbolic
system of equations (cf. Theorems 10.1, 10.2) and the energy estimate for the linearized
parabolic system of equations (cf. Theorem 10.4, 10.5).

STATEMENT II. The mapping oo : V(N,T) — V(N,T) is a contraction for T small
enough.

For this let W7 denote the complete metric space given by
(11.7) Wy == {(,01,0,) : D'u,6,,0, € L>([0,T], L*(12)),
Vo, € L([0,T], LX(©2)), Vb, € LX([0,T], L*(©2))},
with metric given by

(118) @2((aa a1752)7 (U’a 91) 02)) = u_jl (U - u’)%,T + ‘gl - 91|3,T + |§2 - 92|8,T

T _ T _
+ V(01 = 00) ()G dr + | V(02 — 02)(7)[5 dr-
0 0

Then V(N,T) is a closed subset of 7.
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Let (@,01,02) and (a*,03,05) € VIN,T). Then
0‘2(@,?1,?2) = (u,91,92) € ‘/(N, T), Ug(ﬂ*,§>{7§§) = (u*,@T,HS) € V(N, T),
where (u, 01, 63), (u*, 07, 0%) are the solutions of problems (10.1)—(10.3), (11.4) and (10.4)—
(10.7), (11.5) respectively, where the coefficients and the right hand side depend on
(@, 01,05) and (u*, 0%, 05). Subtracting the resulting systems of equations and using some
calculations, we get

2 *
02 (wi — ul) — Ciays(VE, 51,52)88(;27%;”)
I o
= (Ciajp(VT",07,03) — ciajp(VT, b1, 92))8%6305
+ @ (v, 01,05) —Ega(w*,?m;))% +5§a(w*,§;,§;)<gz2 - gﬁ;)
(V05 Be) — (V0 BT 5+ (v 515 (- )
and
(119) 846 — 67) — @ (V. B, B, By, Vo) s — 1)
L aft m T TS D 0ra0z
_ij o=t 7 7F ©B* ©3*\ =i (o= 3. G h. D 9°0;
= (@ (V" 00,05, V05, V) — 355V, 00,02, V0, V) gl
Do e 0 (uy —ud)
+ €V, 81,82, V81, Vo) — 52—
e
+ (C5al(V,81.0, V81, V) = Cho (V7,55 V57, VB3)) 5 —

+ (9:(VT, 01,05,V0,,V0,x,t) — g;(VT*, 03,05, V0T, VO, x, 1), i=1,2.
Using the fact that

sup ||E2(ﬂ,§1;523ﬂ*a5>{a§;,u791;927U*aQTaQSH S CN?
0<t<T

and (u; — u})|on =0, OF (u; — u*)(0,7) =0, k = 0, 1, and the mean value theorem
C(Va,0) — C(Vu*,0%) = C(Vu* + (Vu — Va*),0* + (0 — 0*)) — C(Vu*,8*)
= VeC(& Q) (Vu — V') + VeC(§¢)s(0 - 67),
and the Schwarz inequality, after some calculations, we get
T
_ 1 _
(110) D= )l < C0d (14 7 ) § 1Dt = )i

T1/2
0

+ T2+ 1) |[[Dr@ )R r + 101~ i o+ 02— Bsl3 7
T T

+ IV @ -3 dr + [ IV(@: - 9;>|3dr}}
0 0
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and
t t

(11.11) (162 — 0513 + IV (02 — 07) 13 dr + (102 — 03113 + {11V (02 — 03)[13 dr
0 0

t
1 * * N *
< O (14 73 ) 10— 6515 + 162 — 6513 + 1D (u = u) R ar
0

+ T2+ 1) |[[DM@— @) + 18 - B3z + 02— B33

+ U@ - BB + V@ - BIR) ar]
0

we deduce from (11.10)—(11.11) that

(11.12) D' (u— w5+ 161 — 0537 + 102 — 033 1
T T
+ VIIV(Or = 0§ dr + {1V (02 — 03)][5 dr
0 0
T

1 — N * *
< o (1+ 773 ) VD (w—wE + 161 — 0513 + 162 — 65131 v
0

+ 21+ 1) |[DM@— @) + B~ B3z + 02— 33
T T

+ IV @ =) dr + § IV (@2 — 5) 3 dr]
0 0

T T
1 *
n (1+ W) VY UIv @0 =015+ 11V(02 — 03) |0)d7d5}
00

Applying to (11.12) the Gronwall inequality (cf. (2.11)) we get

(11.13) | D*(w—u)[E 5+ 161 — 0537 + 102 — 033 1
T T
+ VIV (01 = 09§ dr + | [V (62 — 03)I5 dr
0 0

<6(ID"@— ) r + [0y~ B3z + 02— B33

T T
+ IV @ =) dr + [ IV (@2 - 8)3dr).
0 0

Choosing T' small enough, we get 6 < 1. Therefore the mapping o is a contraction.
So, in view of the Banach fixed theorem the contraction mapping oy has a unique fixed
point (u,01,602) € VIN,T). This implies that problem (9.1) with conditions (9.2)—(9.3)
has a unique solution on 0 < ¢ < T'. This completes the proof of Theorem 9.1.
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12. General remarks

Many physical phenomena arising in mathematical physics are described not only by
quasilinear or linear hyperbolic systems (as in the case of nonlinear hyperbolic thermoe-
lasticity theory and nonlinear microelasticity theory), but by quasilinear or nonlinear
coupled hyperbolic-parabolic systems of composite type or by parabolic nonlinear coupled
systems as well. Such is the case of:

1. classical thermoelasticity theory, which is described by a nonlinear hyperbolic-pa-
rabolic coupled system consisting of four nonlinear partial differential equations;

2. nonlinear thermodiffusion, which is described by a nonlinear hyperbolic-parabolic
coupled system (cf. [51], [29]):

e consisting of five nonlinear partial differential equations describing thermodiffu-
sion in a solid body (cf. Section 9 and [51], [29]),

e consisting of eight coupled nonlinear partial differential equations describing ther-
modiffusion in a micropolar medium (cf. [23]);

3. nonlinear diffusion, which is described by a nonlinear coupled parabolic system of
equations (cf. [30]).

We can extend the method presented above to prove (local-in-time) existence of solu-
tion of the initial-boundary value problem for the nonlinear hyperbolic system of equa-
tions and the nonlinear hyperbolic-parabolic system describing the medium in contin-
uum mechanics. Such is the case of a hyperbolic system of partial differential equations
describing the so-called nonsimple thermoelastic materials (cf. [32]) and the case of ther-
modiffusion in a micropolar medium (cf. [23]).

The strategy of the proof is to consider linear hyperbolic and linear parabolic systems
associated with the nonlinear ones, and to apply a fixed point principle. The three major
steps are the following:

I. Investigate the linear hyperbolic system using the approach of Kato via semi-
group theory.
II. Investigate the linear parabolic system using the Faedo—Galerkin method (cf.
[18]) or apply Kato’s approach.
III. Show that the solution of the initial-boundary problem can be obtained as the
unique fixed point of a contraction mapping in a suitable function space (cf.
Sections 5, 8, 11).
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