
1. Introduction

The theory of elliptic variational inequalities started in the middle 60’s and today is a well
developed area of mathematics. It is closely connected with the convexity of the energy
functional involved and with the notion of subdifferential in the sense of convex analysis.
The existence theory of variational inequalities is based on monotonicity arguments. So,
for example, only monotone (possibly multivalued) boundary conditions and stress-strain
laws can be studied.

In the case of lack of monotonicity of the underlying law, or equivalently if the
corresponding energy functional is nonconvex, the variational expression is no longer
a variational inequality. Another type of inequality expression arises in the variational
formulation of the problem. These new variational expressions are known in the liter-
ature as “hemivariational inequalities” and are based on the generalized subdifferential
in the sense of Clarke of locally Lipschitz functionals. Roughly speaking, mechanical
problems involving nonmonotone boundary conditions or stress-strain laws derived by
nonconvex superpotentials lead to hemivariational inequalities. For concrete applications
to problems of continuum mechanics and engineering, we refer to the books of Naniewicz–
Panagiotopoulos [56] and Panagiotopoulos [57]. The mathematical theory of hemivaria-
tional inequalities can be found in the book of Motreanu–Panagiotopoulos [50].

A typical feature of nonconvex problems is that, while in the convex case the sta-
tionary variational inequalities give rise to minimization problems for the energy, in
the nonconvex case the problem of the stationarity of the potential emerges and so
we look for local critical points (e.g. minima or maxima) of nonsmooth energy func-
tionals. It is therefore reasonable to expect that critical point theory (its nonsmooth
variant) can play a prominent role in the analysis of hemivariational inequalities. In-
deed, thus far the study of hemivariational inequalities has focused on problems of
variational nature and consequently the tools employed came from nonsmooth criti-
cal point theory as developed by Chang [16] (for extensions we refer to Kourogenis–
Papageorgiou [39] and Kyritsi–Papageorgiou [41]). We refer to the works of Bocea [9],
Goeleven–Motreanu–Panagiotopulos [31]–[33], Marzocchi [46], Motreanu–Naniewicz [48],
Motreanu–Panagiotopoulos [49], Panagiotopoulos–Radulescu [58] who treat semilinear
problems and to the papers of Gasiński–Papageorgiou [24]–[28] who deal with quasilinear
problems involving the p-Laplacian operator. Naniewicz [51]–[54] approached hemivaria-
tional inequalities using tools from nonlinear analysis such as fixed point theory, Ekeland’s
variational principle, Galerkin’s approximations and nonlinear operators of monotone
type (see also Naniewicz [55]).

[5]
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In this paper we consider larger classes of hemivariational inequalities, not necessarily
of variational nature. Using a variety of analytical tools, such as the theory of nonlinear
operators of monotone type, multivalued analysis, degree theory, the method of upper
and lower solutions, comparison theorems, nonlinear maximum principles and of course
nonsmooth critical point theory, we prove existence theorems, multiplicity theorems and
obtain positive bounded solutions for a variety of nonlinear hemivariational inequality
problems.

In order to make the paper self-contained, in the next section we present the basic
mathematical tools that we shall use in the study of our problems.

2. Mathematical background

In our methods of proof, among other things, prominent are the theory of nonlinear
operators of monotone type and the techniques of multivalued analysis. So we start the
presentation of the relevant mathematical background with a presentation of some basic
definitions and facts from these areas of nonlinear analysis. Our main sources are the
books of Hu–Papageorgiou [35], [36], Showalter [59] and Zeidler [64].

Let (Ω,Σ) be a measurable space and X a separable Banach space. Throughout this
paper we shall use the following notation:

Pf(c)(X) = {A ⊆ X : nonempty, closed (and convex)},
P(w)k(c) = {A ⊆ X : nonempty, (weakly) compact (and convex)}.

Also given A ⊆ X we set d(x,A) = inf[‖x− α‖ : α ∈ A], the distance of x ∈ X from A,
and for every x∗ ∈ X∗, σ(x∗, A) = sup[(x∗, α) : α ∈ A], the support function of A. The
function x 7→ d(x,A) is Lipschitz continuous with constant 1 (i.e. is nonexpansive) and it
is convex if A ⊆ X is a convex subset. The support function σ(·, A) : X∗ → R = R∪{∞}
is sublinear and w∗-lower semicontinuous. Moreover, if A ∈ Pwk(X), then σ(·, A) is
continuous for the Mackey topology m(X,X∗) on X∗.

A multifunction F : Ω → 2X \ {∅} is said to be graph measurable if GrF = {(ω, x) ∈
Ω × X : x ∈ F (ω)} (the graph of F ) belongs to the product σ-field Σ × B(X), where
B(X) is the Borel σ-field of X. A multifunction F : Ω → Pf (X) is said to be measurable
if for all x ∈ X the distance function ω 7→ d(x, F (ω)) = inf[‖x − u‖ : u ∈ F (ω)] is
measurable. For Pf (X)-valued multifunctions measurability implies graph measurability
and moreover, if there is a σ-finite measure µ on (Ω,Σ) with respect to which Σ is
complete, then the two notions are equivalent.

Let (Ω,Σ, µ) be a σ-finite measure space and F : Ω → 2X \{∅}. For 1 ≤ p ≤ ∞ let SpF
be the set of all Lp(Ω,X)-selectors of F , i.e. SpF = {f ∈ Lp(Ω,X) : f(ω) ∈ F (ω) µ-a.e.
on Ω}. This set may be empty. For a graph measurable multifunction F the set SpF is
nonempty if and only if inf{‖u‖ : u ∈ F (ω)} ≤ h(ω) µ-a.e. on Ω with h ∈ Lp(Ω)+.
We can show that SpF is closed (resp. convex) in Lp(Ω,X) if and only if for µ-almost
all ω ∈ Ω, F (ω) is closed (resp. convex) in X (for the convexity we also need µ to be
nonatomic).
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Given a multifunction F : Ω → 2X \ {∅}, by a measurable selection of F we mean a
measurable function f : Ω → X such that f(ω) ∈ F (ω) µ-a.e. on Ω. One of the main
results on the existence of measurable selections is the so-called “Yankov–von Neumann–
Aumann selection theorem” (see Hu–Papageorgiou [35, p. 158]).

Theorem 1. If (Ω,Σ, µ) is a σ-finite measure space, X is a separable Banach space
and F : Ω → 2X \ {∅} is a graph measurable multifunction, then F admits a measurable
selection f .

Remark. If Σ is µ-complete we can say that f(ω) ∈ F (ω) for all ω ∈ Ω.

If (Y, d) is a metric space and {Cn}n≥1 is a sequence of nonempty subsets of X, we
define

lim inf
n→∞

Cn = {y ∈ Y : y = lim yn, yn ∈ Cn, n ≥ 1} = {y ∈ Y : lim d(y, Cn) = 0},

lim sup
n→∞

Cn = {y ∈ Y : y = lim ynk , ynk ∈ Cnk , n1 < . . . < nk < . . .}

= {y ∈ Y : lim inf d(y, Cn) = 0}.
Evidently, lim infn→∞ Cn ⊆ lim supn→∞ Cn and both sets are closed (possibly empty).
If lim infn→∞ Cn = lim supn→∞ Cn = C, then we say that the Cn’s converge to C in the

Kuratowski sense and write Cn
K→ C as n → ∞. If Y is actually a Banach space, then

we can also define

w- lim sup
n→∞

Cn = {y ∈ Y : y = w- lim
k
ynk , ynk ∈ Cnk , n1 < . . . < nk < . . .}.

Here w stands for the weak topology on Y . In general a weakly convergent sequence in the
Lebesgue–Bochner space Lp(Ω,X) (1 ≤ p < ∞) is not pointwise convergent. However,
we have the following result which will be useful in what follows:

Proposition 2. If (Ω,Σ, µ) is a σ-finite measure space, X is a Banach space, F (ω) ∈
Pwk(X) for all ω ∈ Ω, {fn}n≥1 ⊆ Lp(Ω,X) (1 ≤ p < ∞), fn(ω) ∈ F (ω) µ-a.e. on Ω,
n ≥ 1 and fn

w→ f in Lp(Ω,X), then f(ω) ∈ conv(w− lim supn→∞{fn(ω)}) for µ-almost
all ω ∈ Ω.

Let V, Z be two Hausdorff topological spaces. A multifunction F : V → 2Z \ {∅} is
said to be lower semicontinuous (lsc for short) (resp. upper semicontinuous , usc for short)
if for every C ⊆ Z closed, the set F+(C) = {v ∈ V : F (v) ⊆ C} (resp. F−(C) = {v ∈ V :
F (v)∩C 6= ∅}) is closed in V . If Z is regular, then a Pf (Z)-valued, usc multifunction F
has a closed graph. In fact, if F is Pk(Z)-valued, then we can drop the requirement that
Z is regular. The converse is not in general true. However, if F : V → Pf (Z) has closed
graph and it is locally compact (i.e. for every v ∈ V , there exists a neighborhood U of v
such that F (U) ∈ Pk(Z)), then F is usc. If Z is a metric space and F : V → 2Z \ {∅} ,
then F is lsc if and only if for all z ∈ Z, v 7→ ϕz(v) = d(z, F (v)) is upper semicontinuous
on V (here d denotes the metric in Z). A multifunction which is both usc and lsc, is said
to be continuous (or Vietoris continuous).

If Z is a metric space and A,C ⊆ Z are two nonempty sets, we define

h∗(A,C) = sup[d(α,C) : α ∈ A] (the excess of A over C),

h(A,C) = max{h∗(A,C), h∗(C,A)} (the Hausdorff distance between A and C).
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We know that h is a generalized metric on Pf (Z), called the Hausdorff metric, and
if Z is a complete metric space, then so is (Pf (Z), h). A multifunction F : V → 2Z \ {∅}
is said to be h-lower semicontinuous (h-lsc for short) (resp. h-upper semicontinuous,
h-usc for short) if for all v ∈ V , the function u 7→ h∗(F (v), F (u)) is continuous at v
(resp. the function u 7→ h∗(F (u), F (v)) is continuous at v). In general, h-lsc ⇒ lsc and
usc ⇒ h-usc and the converse implications hold if F is Pk(Z)-valued. A multifunction
F which is both h-lsc and h-usc is said to be h-continuous . Evidently for Pk(Z)-valued
multifunctions continuity and h-continuity are equivalent notions.

Now let X be a reflexive Banach space and X∗ its topological dual. A map A :
D ⊆ X → 2X

∗
is said to be monotone if for all x, y ∈ D and all x∗ ∈ A(x), y∗ ∈ A(y)

we have (x∗ − y∗, x − y) ≥ 0 (here by (·, ·) we denote the duality brackets for the pair
(X,X∗)). If in addition (x∗ − y∗, x− y) = 0 implies x = y, then we say that A is strictly
monotone. We say that A is maximal monotone if the fact that (x∗ − y∗, x− y) ≥ 0 for
all x ∈ D and all x∗ ∈ A(x) implies that y ∈ D and y∗ ∈ A(y). Stating this in a different
way, A is maximal monotone if and only if its graph is maximal with respect to inclusion
among the graphs of all monotone maps. It is easy to see that if A : D ⊆ X → 2X

∗

is maximal monotone, then GrA is sequentially closed in X × X∗w and in Xw × X∗

(here by Xw and X∗w we denote the spaces X and X∗ furnished with their respective
weak topologies). In the next proposition we provide conditions which make a monotone
operator maximal monotone (see Hu–Papageorgiou [35, p. 309]).

Proposition 3. If X is a reflexive Banach space, A : D ⊆ X → 2X
∗

is a monotone
map with nonempty , closed and convex values , and for every x, h ∈ X the multifunction
t 7→ A(x+ th) is usc from [0, 1] into X∗w, then A is maximal monotone.

An operator A : X → X∗ which is single-valued and everywhere defined on X (i.e.
D = X) is said to be demicontinuous if xn → x in X implies that A(xn) w→ A(x) in X∗.
A monotone, demicontinuous map is maximal monotone.

A map A : D ⊆ X → 2X
∗

is said to be coercive if D is bounded or D is unbounded
and inf{‖x∗‖ : x∗ ∈ A(x)} → ∞ as ‖x‖ → ∞, x ∈ D. A maximal monotone, coercive
operator is surjective (see Hu–Papageorgiou [35, p. 322]).

An operator A : X → 2X
∗

is said to be pseudomonotone if the following conditions
are satisfied:

(a) for all x ∈ X, we have A(x) ∈ Pwkc(X∗);
(b) for every finite-dimensional subspace V of X, A|V is usc from V into X∗w;
(c) if xn

w→ x in X, x∗n ∈ A(xn) for all n ≥ 1 and lim supn→∞(x∗n, xn−x) ≤ 0, then for
every y ∈ X, there exists x∗(y) ∈ A(x) such that (x∗(y), x−y) ≤ lim infn→∞(x∗n, xn−y).

If A is bounded (namely it maps bounded sets to bounded sets) and satisfies condi-
tion (c), then it satisfies condition (b) as well. An operator A : D ⊆ X → 2X

∗
is said to be

generalized pseudomonotone if xn
w→ x in X, x∗n

w→ x∗ in X∗, x∗n ∈ A(xn) for n ≥ 1 and
lim sup(x∗n, xn−x) ≤ 0 imply x∗ ∈ A(x) and (x∗n, xn)→ (x∗, x). Every maximal monotone
operator is generalized pseudomonotone. Also a pseudomonotone operator is generalized
pseudomonotone, while the converse is true if the operator has values in Pwkc(X∗) and
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it is bounded (see Hu–Papageorgiou [35, p. 366]). A pseudomonotone coercive operator
is surjective.

As we already mentioned in Section 1, hemivariational inequalities are based on the
Clarke subdifferential (see Clarke [18]) and the corresponding nonsmooth critical point
theory uses the Clarke subdifferential calculus. So let us recall the basic definitions and
facts of Clarke’s theory. For further details we refer to Clarke [18]. Let Y be a Banach
space and ϕ : Y → R. We say that ϕ is locally Lipschitz if for every bounded open subset
U ⊆ Y , there exists a constant k > 0 depending on U such that |ϕ(y)−ϕ(u)| ≤ k‖y− u‖
for all y, u ∈ U . It is a well known fact of convex analysis that a proper convex and lower
semicontinous function ψ : Y → R = R ∪ {∞} is locally Lipschitz in the interior of its
effective domain domψ = {x ∈ Y : ψ(x) < ∞}. In analogy to the directional derivative
of a convex function, for a locally Lipschitz function ϕ : Y → R, we define the generalized
directional derivative at y ∈ Y in the direction h ∈ Y by

ϕ0(y;h) = lim sup
y′→y, λ↓0

ϕ(y′ + λh)− ϕ(y′)
λ

.

It is easy to check that the function h 7→ ϕ0(y;h) is sublinear continuous and so by the
Hahn–Banach theorem it is the support function of a nonempty, convex and w∗-compact
set

∂ϕ(y) = {y∗ ∈ Y ∗ : (y∗, h) ≤ ϕ0(y;h) for all h ∈ Y }.

The set ∂ϕ(y) is called the generalized (Clarke) subdifferential of ϕ at y ∈ Y . If ϕ, ψ :
Y → R are two locally Lipschitz functions, then for all y ∈ Y and all λ ∈ R we have
∂(ϕ + ψ)(y) ⊆ ∂ϕ(y) + ∂ψ(y) and ∂(λϕ)(y) = λ∂ϕ(y). Moreover, if ϕ : Y → R is also
convex, as we already mentioned, it is locally Lipschitz and the generalized subdifferential
coincides with the subdifferential in the sense of convex analysis which is defined by
∂ϕ(y) = {y∗ ∈ Y ∗ : (y∗, z − y) ≤ ϕ(z) − ϕ(y) for all z ∈ Y }. Also if ϕ is strictly
differentiable (in particular if ϕ is continuously Gateaux differentiable) at y ∈ Y , then
∂ϕ(y) = {ϕ′(y)}.

Given a locally Lipschitz function ϕ : Y → R, a point y ∈ Y is said to be a critical point
of ϕ if 0 ∈ ∂ϕ(y). If ϕ ∈ C1(Y ), then as we just said ∂ϕ(y) = {ϕ′(y)} and so this definition
of critical point coincides with the classical (smooth) one. It is easy to see that if y ∈ Y is
a local extremum of ϕ (i.e. a local minimum or a local maximum), then 0 ∈ ∂ϕ(y). From
the smooth critical point theory, we know that crucial is a compactness condition, known
as the Palais–Smale condition (PS-condition for short). In the present nonsmooth setting
this condition takes the following form (see Chang [16]): A locally Lipschitz function
ϕ : Y → R satisfies the nonsmooth PS-condition if every sequence {yn}n≥1 ⊆ Y such
that {ϕ(yn)}n≥1 is bounded and m(yn) = inf{‖y∗n‖ : y∗n ∈ ∂ϕ(yn)} → 0 has a strongly
convergent subsequence. Kourogenis–Papageorgiou [39], following the lead in the smooth
case of Cerami [15] and Bartolo–Benci–Fortunato [7], proved that a weaker form of the PS-
condition suffices to have a deformation lemma and through it derive minimax principles
locating critical points. This weaker compactness condition is known as the (nonsmooth)
C-condition and has the form: Every sequence {yn}n≥1 ⊆ Y such that {ϕ(yn)}n≥1 is
bounded and (1 + ‖yn‖)m(yn) → 0 has a strongly convergent subsequence. Using this
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condition, Kourogenis–Papageorgiou [39] obtained a deformation lemma, which was then
used to obtain the following basic minimax principle. First a definition:

Definition. Let Z be a Hausdorff space and C1 ⊆ C and D subsets of Z. We say that
C1 and D link in Z if

(a) C1 ∩D = ∅,
(b) for every ϑ ∈ C(C,Z) with ϑ|C1 = identity, we have ϑ(C) ∩D 6= ∅.
Kourogenis–Papageorgiou [39] proved the following minimax principle:

Theorem 4. If X is a reflexive Banach space, C1 ⊆ C and D are nonempty subsets of
X with D closed , C1 and D link in X, Γ0 = {ϑ ∈ C(C,X) : ϑ|C1 = identity}, ϕ : X → R
is locally Lipschitz and satisfies the nonsmooth C-condition, c = infϑ∈Γ0 supc∈C ϕ(ϑ(c))
and supC1

ϕ ≤ infD ϕ, then c ≥ infD ϕ and c is a critical value of ϕ (i.e. there exists a
critical point x ∈ X of ϕ such that ϕ(x) = c). Moreover , if c = infD ϕ then there exists
x ∈ D such that x ∈ Kc = {x ∈ X : 0 ∈ ∂ϕ(x), ϕ(x) = c}.

As usual, with appropriate choices of C1, C and D, Kourogenis–Papageorgiou [39]
proved nonsmooth versions of the Mountain Pass Theorem, Generalized Mountain Pass
Theorem and Saddle Point Theorem (actually with relaxed boundary conditions).

In our study of problems involving the p-Laplacian operator, we shall need to use the
known facts about the spectrum of (−∆p,W

1,p
0 (Z)). More precisely, let Z ⊆ RN be a

bounded open domain with a locally Lipschitz boundary Γ and consider the following
nonlinear eigenvalue problem:

{
− div(‖Dx(z)‖p−2Dx(z)) = λ|x(z)|p−2x(z) a.e. on Z,

x|Γ = 0.
(1)

The least λ ∈ R for which (1) has a notrivial solution is called the first eigenvalue λ1

of (−∆p,W
1,p
0 (Z)). The first eigenvalue λ1 is positive, isolated and simple (i.e. the associ-

ated eigenfunctions are constant multiples of each other). Moreover, λ1 has a variational
characterization via the Rayleigh quotient, namely

λ1 = inf
[‖Dx‖pp
‖x‖pp

: x ∈W 1,p
0 (Z), x 6≡ 0

]
.(2)

For details see Anane [3] (where Γ is a C2-manifold) and Lindqvist [45] (the general
case). The infimum in (2) is realized at the normalized eigenfunction u1. Note that if u1

minimizes the Rayleigh quotient, so does |u1| and so it follows that u1 does not change
sign on Z. In fact, if Γ is a C1,α-manifold (0 < α < 1), from the nonlinear regularity
theorem of Lieberman [44] we have u1 ∈ C1,β(Z), 0 < β < 1, and u1(z) 6= 0 for all z ∈ Z.

So we may always assume that u1(z) > 0 for all z ∈ Z. The Lyusternik–Schnirelmann
theory gives, in addition to λ1, a whole strictly increasing sequence {λk}k≥1 ⊆ R+ for
which problem (1) has a nontrivial solution. These numbers are defined as follows. We
introduce the set S = {x ∈ W 1,p

0 (Z) : ‖Dx‖p = 1} and the function ψ : S → R− defined
by ψ(x) = −‖x‖p. Also let An = {K ⊆ S : K is symmetric, closed and γ(K) ≥ n} where
γ denotes the Krasnosel’skĭı Z2-genus (see Struwe [60, p. 86]). We set

cn = inf
K∈An

sup
x∈K

ψ(x).(3)
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The sequence {λn = −1/cn}n≥1 is strictly increasing and tends to ∞. These numbers
are called the Lyusternik–Schnirelmann (or variational) eigenvalues of (−∆p,W

1,p
0 (Z)).

When p = 2 (linear case), from the spectral analysis of compact self-adjoint opera-
tors, we know that the variational eigenvalues are all the eigenvalues of (−∆,H1

0 (Z)).
However, when p 6= 2 we do not know if this is the case. Recently Anane–Tsouli [4]
proved that if λ∗2 = inf[λ > λ1 : λ is an eigenvalue of (−∆p,W

1,p
0 (Z))], then λ∗2 = λ2, i.e.

the second eigenvalue and the second variational eigenvalue coincide. So the spectrum
of (−∆p,W

1,p
0 (Z)) starts with two Lyusternik–Schnirelmann (variational) eigenvalues.

Define

Vk = {x ∈W 1,p
0 (Z) : − div(‖Dx(z)‖p−2Dx(z)) = λk|x(z)|p−2x(z) a.e. on Z} k ≥ 1.

These are symmetric, closed cones, but in general are not subspaces of W 1,p
0 (Z), unless

λk is simple. Also if Wn =
⋃n
k=1 Vk and Ŵn =

⋃
k>n Vn, then in contrast to the linear

case (p = 2), in general we do not have the inequalities

‖Dx‖pp ≤ λn‖x‖pp for x ∈Wn and ‖Dx‖pp ≥ λn+1‖x‖pp for x ∈ Ŵn.

This fact is the source of difficulties in constructing linkings in the quasilinear case.
Finally let V,W be Banach spaces and K : V →W . We say that K is

(a) completely continuous if vn
w→ v in V implies K(vn)→ K(v) in W ;

(b) compact if it is continuous and maps bounded sets to relatively compact sets.

In general these two notions are distinct. However, if V is reflexive, then complete
continuity implies compactness. Moreover, if V is reflexive and K is linear, the two notions
are equivalent. Also a multivalued map G : V → 2W \{∅} is said to be compact if it is usc
and maps bounded sets in V to relatively compact subsets of W . In this work, we shall
need the following multivalued generalization of the classical Leray–Schauder alternative
principle, which is due to Bader [6]. So let G : V → Pwkc(W ) be an usc multifunction from
V into Ww (= the Banach space W furnished with the weak topology), let K : W → V

be a completely continuous map and set Φ = K ◦G.

Theorem 5. If V , W , Φ are as above and Φ is compact , then one of the following
alternatives holds :

(a) S = {v ∈ V : v ∈ βΦ(v) for some β ∈ (0, 1)} is unbounded , or
(b) Φ has a fixed point v ∈ V (i.e. v ∈ Φ(v)).

3. Strongly nonlinear hemivariational inequalities

In this section we study a very general nonlinear hemivariational inequality, where the
differential operator is multivalued and depends on both x and Dx, and the right hand
side nonlinearity is also dependent on both x and Dx. More specifically, let Z ⊆ RN
be a bounded open domain with a C1 boundary Γ . In this section the problem under
consideration is the following:{− divα(z, x(z), Dx(z))− ∂j(z, x(z)) 3 f(z, x(z), Dx(z)) a.e. on Z,

x|Γ = 0.
(4)
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Here α : Z × R × RN → 2R
N \ {∅} and for every x ∈ W 1,p

0 (Z), by divα(z, x(z), Dx(z))
we understand the set

{div v(z) : v ∈ Lq(Z,RN ), v(z) ∈ α(z, x(z), Dx(z)) a.e. on Z}
with 1/p + 1/q = 1 (hence v ∈ Sqα(·,x(·),Dx(·))). By a solution of (4) we mean a function

x ∈W 1,p
0 (Z) for which there exist v ∈ Sqα(·,x(·),Dx(·)) and u∗ ∈ Sq∂j(·,x(·)) such that

− div v(z)− u∗(z) = f(z, x(z), Dx(z)) a.e. on Z.

Our hypotheses on the data of (4) are the following:

H(α)1 α : Z × R× RN → Pkc(RN ) is a multifunction such that

(i) (z, x, ξ) 7→ α(z, x, ξ) is graph measurable;
(ii) for almost all z ∈ Z and all x ∈ R, ξ 7→ α(z, x, ξ) is strictly monotone;
(iii) for almost all z ∈ Z, (x, ξ) 7→ α(z, x, ξ) has closed graph, while for almost

all z ∈ Z and all ξ ∈ RN , x 7→ α(z, x, ξ) is lsc;
(iv) for almost all z ∈ Z, all x ∈ R, all ξ ∈ RN and all v ∈ α(z, x, ξ) we have

‖v‖ ≤ b1(z) + c1(|x|p−1 + ‖ξ‖p−1) with b1 ∈ Lq(Z)+, c1 > 0, p ≥ 2;

(v) for almost all z ∈ Z, all x ∈ R, all ξ ∈ RN and all v ∈ α(z, x, ξ) we have

(v, ξ)RN ≥ η1‖ξ‖p − η2 with η1, η2 > 0.

Remark. A possibility for the multifunction α(z, x, ξ) is when α(z, x, ξ)=ϑ(z, x)∂ψ(z, ξ)
where ϑ(z, x) is a Carathéodory function (i.e. measurable in z ∈ Z, continuous in x ∈ R),
ϑ ≥ 0 and ψ is also a Carathéodory function, strictly convex and not necessarily differen-
tiable in ξ ∈ RN . Here ∂ψ(z, ξ) denotes the subdifferential in the sense of convex analysis
with respect to the ξ-variable. Suppose that ξ 7→ ∂ψ(z, ξ) has (p − 1)-growth and it is
coercive. Then this α(z, x, ξ) satisfies the hypotheses H(α)1.

H(j)1 j : Z × R→ R is a function such that

(i) for all x ∈ R, z 7→ j(z, x) is measurable;
(ii) for almost all z ∈ Z, x 7→ j(z, x) is locally Lipschitz;

(iii) for almost all z ∈ Z, all x ∈ R and all u∗ ∈ ∂j(z, x) we have

|u∗| ≤ b2(z) + c2|x|r−1 with b2 ∈ Lr
′
(Z), 1/r + 1/r′ = 1, c2 > 0

and

1 ≤ r < p∗ =

{
Np

N − p if p < N ,

∞ otherwise;

(iv) there exists ϑ ∈ L∞(Z)+ such that

lim sup
|x|→∞

u∗

|x|p−2x
≤ ϑ(z)

uniformly for almost all z ∈ Z and all u∗ ∈ ∂j(z, x), and ϑ(z) ≤ λ1η1 a.e.
on Z, with strict inequality on a set of positive Lebesgue measure (here λ1 is
the first eigenvalue of (−∆p,W

1,p
0 (Z)) and η1 is as in hypothesis H(α)1(v)).
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H(f)1 f : Z × R× RN → R is a function such that

(i) for all (x, ξ) ∈ R× RN , z 7→ f(z, x, ξ) is measurable;
(ii) for almost all z ∈ Z, (x, ξ) 7→ f(z, x, ξ) is continuous;

(iii) for almost all z ∈ Z, all x ∈ R and all ξ ∈ RN we have

|f(z, x, ξ)| ≤ b3(z) + c3(|x|θ−1 + ‖ξ‖θ−1)

with b3 ∈ Lq(Z), c3 > 0, 1 ≤ θ < p.

We consider the multivalued operator V : W 1,p
0 (Z)→ Pwkc(W−1,q(Z)) defined by

V (x) = {− div v : v ∈ Sqα(·,x(·),Dx(·))}.

Also for fixed x ∈ W 1,p
0 (Z) consider the auxiliary operator Kx : W 1,p

0 (Z) → 2W
−1,q(Z)

defined by
Kx(y) = {− div u : u ∈ Sqα(·,x(·),Dy(·))}.

Lemma 6. If hypotheses H(α)1 hold , then for every x ∈W 1,p
0 (Z), y 7→ Kx(y) is maximal

monotone.

Proof. By hypothesis H(α)1(i), for any x, y ∈ W 1,p
0 (Z), the multifunction z 7→

α(z, x(z), Dy(z)) is measurable and so Theorem 1 and hypothesis H(α)1(iv) guarantee
that Sqα(·,x(·),Dy(·)) is nonempty and also it is bounded, closed and convex. Therefore the
multivalued operator Kx has nonempty, weakly compact and convex values. Moreover,
Kx is monotone (hypothesis H(α)1(ii)), so Proposition 3 asserts that in order to show the
desired maximality of Kx(·), it suffices to show that for every y, h ∈W 1,p

0 (Z), the multi-
function t 7→ Kx(y+ th) is usc from [0, 1] into W−1,q(Z)w. To this end, if C ⊆W−1,q(Z)
is a nonempty, weakly closed set and My,h(t) = Kx(y + th), we have to show that

M−y,h(C) = {t ∈ [0, 1] : My,h(t) ∩ C 6= ∅}
is closed in [0, 1]. So let tn ∈M−y,h(C), n ≥ 1, and suppose tn → t. Let v∗n ∈My,h(tn)∩C,
n ≥ 1. From the definition of Kx we have v∗n = − div un with un ∈ Sqα(·,x(·),D(y+tnh)(·)).

From hypothesis H(α)1(iv) we deduce that {un}n≥1 ⊆ Lq(Z,RN ) is bounded. This fact
enables us to assume that un

w→ u in Lq(Z,RN ). Now Proposition 2 combined with the
closedness of Grα(z, x(z), ·) for almost all z ∈ Z (see hypothesis H(α)1(iii)) implies

u(z) ∈ conv lim sup
n→∞

α(z, x(z), D(y + tnh)(z)) ⊆ α(z, x(z), D(y + th)(z)) a.e. on Z.

Note that − div un
w→ − div u in W−1,q(Z) and so v∗n

w→ v∗ = − div u ∈ My,h(t).
Hence we have − div u ∈ Kx(y + th) ∩ C, i.e. t ∈ M−y,h(C). So the set M−y,h(C) is closed
and this proves the maximality of the monotone operator Kx.

Using this lemma, we can prove the following result about V .

Proposition 7. If hypotheses H(α)1 hold , then V is a multivalued operator of type (S)+.

Proof. Let {xn} ⊆W 1,p
0 (Z) and v∗n ∈ V (xn), n ≥ 1, be two sequences such that

xn
w→ x in W 1,p

0 (Z) and lim sup
n→∞

〈v∗n, xn − x〉 ≤ 0.
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Here by 〈·, ·〉 we denote the duality brackets for the pair (W 1,p
0 (Z),W−1,q(Z)). We have

v∗n = − div vn with vn ∈ Sqα(·,xn(·),Dxn(·)), n ≥ 1.

By hypothesis H(α)1(iv), we see that {vn}n≥1 ⊆ Lq(Z,RN ) is bounded and so by passing
to a subsequence if necessary, we may assume that vn

w→ v in Lq(Z,RN ). Hence v∗n =
− div vn

w→ − div v in W−1,q(Z) as n→∞.
Let y ∈W 1,p

0 (Z) and consider the multifunction K : Z → Pkc(RN ) defined by K(z) =
α(z, x(z), Dy(z)). Because of hypothesis H(α)1(i), K is measurable and so by Theorem
1 it admits measurable selectors which belong to Lq(Z,RN ) (hypothesis H(α)1(iv)). Let
w ∈ Lq(Z,RN ) be such a selector (i.e. w ∈ Sqα(·,x(·),Dy(·))). For each n ≥ 1, we introduce

the multifunction Ln : Z → 2R
N

defined by

Ln(z) = {ξ ∈ α(z, xn(z), Dy(z)) : ‖w(z)− ξ‖ = d(w(z), α(z, xn(z), Dy(z)))}.
Clearly, for almost all z ∈ Z, Ln(z) 6= ∅ and by redefining Ln on a Lebesgue-null set,

we may assume without any loss of generality that Ln(z) 6= ∅ for all z ∈ Z. Then we have

GrLn = Grα(·, xn(·), Dy(·)) ∩ {(z, ξ) ∈ Z × RN : ηn(z, ξ) = 0},
where ηn(z, ξ) = ‖w(z)− ξ‖ − d(w(z), α(z, xn(z), Dy(z))).

Note that Grα(·, xn(·), Dy(·)) ∈ L×B(RN ) with L being the Lebesgue σ-field of Z and
B(RN ) the Borel σ-field of RN (hypothesis H(α)1(i)). Also ηn is a Carathéodory function
(i.e. ηn is measurable in z ∈ Z and continuous in ξ ∈ RN ), hence it is jointly measurable
(see Hu–Papageorgiou [35, p. 142]). Therefore we infer that GrLn ∈ L × B(RN ). Using
Theorem 1 we obtain wn ∈ Sqα(·,xn(·),Dy(·)) (hypothesis H(α)1(iv)), n ≥ 1, such that
wn(z) ∈ Ln(z) a.e. on Z. So

‖w(z)− wn(z)‖ = d(w(z), α(z, xn(z), Dy(z))) a.e. on Z,

hence

‖w(z)− wn(z)‖ ≤ h∗(α(z, x(z), Dy(z)), α(z, xn(z), Dy(z))) a.e. on Z.(5)

From the compact embedding of W 1,p
0 (Z) in Lp(Z) (Sobolev embedding theorem) and

by passing to a subsequence if necesesary, we have xn → x in Lp(Z) and xn(z) → x(z)
a.e. on Z.

Since by hypothesis H(α)1(iii), α(z, ·, Dy(z)) is lsc and it has compact values in RN ,
it is h-lsc and so h∗(α(z, x(z), Dy(z)), α(z, xn(z), Dy(z))) → 0 on Z. Hence from (5) it
follows that wn(z)→ w(z) a.e. on Z. From the extended dominated convergence theorem
(see for example Hu–Papageorgiou [35, p. 907]) we have wn → w in Lq(Z,RN ). Exploiting
the monotonicity of α(z, xn(z), ·) (hypothesis H(α)1(iii)), we have

0 ≤
�

Z

(vn(z)− wn(z), Dxn(z)−Dy(z))RN dz

=
�

Z

(vn(z), Dxn(z)−Dx(z))RN dz +
�

Z

(vn(z), Dx(z)−Dy(z))RN dz

+
�

Z

(wn(z), Dy(z)−Dxn(z))RN dz

= 〈v∗n, xn − x〉+
�

Z

(vn(z), Dx(z)−Dy(z))RN dz +
�

Z

(wn(z), Dy(z)−Dxn(z))RN dz.
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By hypothesis, lim supn→∞〈v∗n, xn − x〉 ≤ 0. Also recall that vn
w→ v and wn → w in

Lq(Z,RN ). So in the limit as n→∞ we obtain

0 ≤
�

Z

(v(z), Dx(z)−Dy(z))RN dz +
�

Z

(w(z), Dy(z)−Dx(z))RN dz

and hence
0 ≤ 〈− div v − (− divw), x− y〉.

But (y,− divw) ∈ GrKx was arbitrary. Since by Lemma 6, Kx is maximal monotone, it
follows that − div v ∈ Kx(x) and hence v ∈ Sqα(·,x(·),Dx(·)).

As above by a measurable selection argument involving Theorem 1, we obtain un ∈
Sqα(·,xn(·),Dx(·)), n ≥ 1, such that un → v in Lq(Z,RN ) as n → ∞. Let u∗n = − div un,

v∗ = − div v. From the choice of the sequences {xn}n≥1 ⊆ W 1,p
0 (Z) and {v∗n}n≥1 ⊆

W−1,q(Z), we have
lim sup
n→∞

〈v∗n − v∗, xn − x〉 ≤ 0,

hence
lim sup
n→∞

[〈v∗n − u∗n, xn − x〉+ 〈u∗n − v∗, xn − x〉] ≤ 0

and so
lim sup
n→∞

〈v∗n − u∗n, xn − x〉+ lim inf
n→∞

〈u∗n − v∗, xn − x〉 ≤ 0.

Because un → v in Lq(Z,RN ), we have u∗n = − div un → − div v = v∗ in W−1,q(Z)
and so limn→∞〈u∗n − v∗, xn − x〉 = 0. Thus we obtain

lim sup
n→∞

〈v∗n − u∗n, xn − x〉 ≤ 0.(6)

From the monotonicity of α(z, xn(z), ·) (hypothesis H(α)1(ii)), we have

〈v∗n − u∗n, xn − x〉 =
�

Z

(vn(z)− un(z), Dxn(z)−Dx(z))RN dz ≥ 0,

which implies

lim inf
n→∞

〈v∗n − u∗n, xn − x〉 ≥ 0.(7)

From (6) and (7) it follows that 〈v∗n − u∗n, xn − x〉 → 0. Since

〈v∗n − u∗n, xn − x〉 =
�

Z

(vn(z)− un(z), Dxn(z)−Dx(z))RN dz → 0 as n→∞

and the integrand is nonnegative (by the monotonicity of α(z, xn(z), ·)), by passing to a
subsequence if necessary, we may assume that

βn(z) = (vn(z)− un(z), Dxn(z)−Dx(z))RN → 0 a.e. on Z as n→∞
and

|βn(z)| ≤ k1(z) a.e. on Z for all n ≥ 1 with k1 ∈ L1(Z).

Because of hypotheses H(α)1(iv) and (v), we may choose a measurable set N ⊆ Z with
|N | = 0 (here |·| denotes the Lebesgue measure on RN ) such that for all z ∈ Z\N , we have

k1(z) ≥ (vn(z)− un(z), Dxn(z)−Dx(z))RN(8)

≥ η1[‖Dxn(z)‖p + ‖Dx(z)‖p]− 2η2

− ‖Dxn(z)‖(b1(z) + c1|xn(z)|p−1 + c1‖Dx(z)‖p−1)

− ‖Dx(z)‖(b1(z) + c1|xn(z)|p−1 + c1‖Dxn(z)‖p−1).
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By passing to a subsequence if necessary, we may assume that |xn(z)| ≤ k2(z)
a.e. on Z, n ≥ 1, with k2 ∈ Lp(Z). So from (8) it follows that for all z ∈ Z \N ,
{Dxn(z)}n≥1 ⊆ RN is bounded. Hence by passing to a subsequence if necessary (the
subsequence in general will depend on z ∈ Z \N), we may assume that Dxn(z)→ ξ̂(z).
Fix z ∈ Z \N . We can find gn(z) ∈ α(z, x(z), ξ̂(z)) such that

‖vn(z)− gn(z)‖ = d(vn(z), α(z, x(z), ξ̂(z)))(9)

≤ h∗(α(z, xn(z), Dxn(z)), α(z, x(z), ξ̂(z))).

From the definition of h∗ (see Section 2), we can find sn(z) ∈ α(z, xn(z), Dxn(z)), n ≥ 1,
such that d(sn(z), α(z, x(z), ξ̂(z))) = h∗(α(z, xn(z), Dxn(z)), α(z, x(z), ξ̂(z))).

Note that {sn(z)}n≥1 ⊆ RN is bounded and so we may assume that sn(z)→ s(z)
in RN as n → ∞. Because (xn(z), Dxn(z), sn(z)) ∈ Grα(z, ·, ·), n ≥ 1, in the limit
as n → ∞ we obtain (x(z), ξ̂(z), s(z)) ∈ Grα(z, ·, ·) (hypothesis H(α)1(iii)). Thus
h∗(α(z, xn(z), Dxn(z)), α(z, x(z), ξ̂(z))) → 0 as n → ∞ and so from (9) we have
‖vn(z) − gn(z)‖ → 0. Note that {gn(z)}n≥1 ⊆ α(z, x(z), ξ̂(z)) ∈ Pkc(RN ) and so we
may assume that gn(z) → ĝ(z) ∈ α(z, x(z), ξ̂(z)). Therefore finally we have vn(z) →
ĝ(z) ∈ α(z, x(z), ξ̂(z)) for all z ∈ Z \N .

Recall that for all z ∈ Z \ N , we have (vn(z) − un(z), Dxn(z) − Dx(z))RN → 0 as
n → ∞. So in the limit as n → ∞ we obtain (ĝ(z) − v(z), ξ̂(z) − Dx(z))RN = 0 with
ĝ(z) ∈ α(z, x(z), ξ̂(z)) and v(z) ∈ α(z, x(z), Dx(z)). Exploiting the strict monotonicity of
α(z, x(z), ·) we obtain ξ̂(z) = Dx(z) for all z ∈ Z \N . Therefore for the original sequence
{Dxn(z)}n≥1 we have Dxn(z) → Dx(z) for all z ∈ Z \ N . Recall that Dxn

w→ Dx in
Lp(Z,RN ). Also from (8) we have

η1‖Dxn(z)‖p ≤ k1(z) + η1‖Dx(z)‖p + 2η2

+ ‖Dxn(z)‖(b1(z) + c1|xn(z)|p−1 + c1‖Dx(z)‖p−1)

+ ‖Dx(z)‖(b1(z) + c1|xn(z)|p−1 + c1‖Dxn(z)‖p−1), z ∈ Z \N.

Using Young’s inequality with ε > 0 small enough, we obtain

η3(ε)‖Dxn(z)‖p ≤ k1(z) + η1‖Dx(z)‖p + 2η2

+ η4(ε)(b1(z)q + cq1|xn(z)|p + cq1‖Dx(z)‖p)
+ b1(z)‖Dx(z)‖p + c1|xn(z)|p−1‖Dx(z)‖p + η5(ε)‖Dx(z)‖p

and hence {‖Dxn(·)‖p}n≥1 is uniformly integrable. Invoking the extended dominated
convergence theorem, we obtain Dxn → Dx in Lp(Z,RN ) and so xn → x in W 1,p

0 (Z).
Therefore V is of type (S)+.

Let G : W 1,p
0 (Z) → Pwkc(Lr

′
(Z)) be defined by G(x) = Sr

′
∂j(·,x(·)) and let Nf :

W 1,p
0 (Z) → Lq(Z) be the Nemytskĭı operator corresponding to the function f , i.e.

Nf (x)(·) = f(·, x(·), Dx(·)). We introduce the multivalued operator R : W 1,p
0 (Z) →

Pwkc(W−1,q(Z)) defined by R(x) = V (x)−G(x)−Nf (x).

Proposition 8. If hypotheses H(α)1, H(j)1 and H(f)1 hold , then R is pseudomonotone.
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Proof. Since R is defined on all of W 1,p
0 (Z) and clearly it is bounded with closed con-

vex values, it suffices to show that R is generalized pseudomonotone (see Section 2).
So suppose xn

w→ x in W 1,p
0 (Z), x∗n

w→ x∗ in W−1,q(Z), x∗n ∈ R(xn), n ≥ 1 and
lim supn→∞〈x∗n, xn − x〉 ≤ 0. We have to show that x∗ ∈ R(x) and 〈x∗n, xn〉 → 〈x∗, x〉.

From the definition of R we have

x∗n = v∗n − gn −Nf (xn) with v∗n ∈ V (xn), gn ∈ G(xn), n ≥ 1.

Because of hypothesis H(j)1(iii), {gn}n≥1 ⊆ Lr
′
(Z) is bounded and so we may assume

that gn
w→ g in Lr

′
(Z). Also from the compact embedding of W 1,p

0 (Z) into Lp(Z) we
have xn → x in Lp(Z) and by passing to a subsequence if necessary, we may assume
that xn(z) → x(z) a.e. on Z. Exploiting the fact that Gr ∂j(z, ·) is closed and using
Proposition 2, we obtain

g(z) ∈ conv lim sup
n→∞

∂j(z, xn(z)) ⊆ ∂j(z, x(z)) a.e. on Z,

which implies
g ∈ Sr′∂j(·,x(·)) = G(x).

Moreover, since 1 ≤ r < p∗, we see that W 1,p
0 (Z) is embedded compactly in Lr(Z)

and so xn → x in Lr(Z). Hence we have 〈gn, xn − x〉 = �
Z
gn(z)(xn − x)(z) dz → 0 as

n→∞. Also because of hypothesis H(f)1(iii), {Nf (xn)}n≥1 ⊆ Lq(Z) is bounded and so
〈Nf (xn), xn − x〉 = �

Z
f(z, xn(z), Dxn(z))(xn − x)(z) dz → 0 as n→∞. Thus finally we

obtain

lim sup
n→∞

〈v∗n, xn − x〉 ≤ lim sup
n→∞

〈x∗n, xn − x〉 ≤ 0.(10)

But from Proposition 7 we know that V is a multivalued operator of type (S)+. So
from (10) it follows that xn → x in W 1,p

0 (Z). Then from hypotheses H(f)1 and the
dominated convergence theorem we have Nf (xn)→ Nf (x) in Lq(Z) (and so in W−1,q(Z)
as well). Since gn

w→ g in Lr
′
(Z) and Lr

′
(Z) is embedded continuously in W−1,q(Z)

(recall that 1 ≤ r < p∗), we have gn
w→ g in W−1,q(Z). Also v∗n = − div vn with vn ∈

Sqα(·,xn(·),Dxn(·)), n ≥ 1. As before vn
w→ v in Lq(Z,RN ) and so v∗n = div vn

w→ − div v = v∗

in W−1,q(Z) as n→∞. Since xn → x in W 1,p
0 (Z), via Proposition 2 and the closedness

of Grα(z, ·, ·) for almost all z ∈ Z (hypothesis H(α)1(iii)), we have

v(z) ∈ conv lim supα(z, xn(z), Dxn(z)) ⊆ α(z, x(z), Dx(z)) a.e. on Z,

hence v∗ ∈ V (x). Therefore in the limit as n→∞, we obtain

x∗ = v∗ − g −Nf (x) with v∗ ∈ V (x), g ∈ G(x), hence x∗ ∈ R(x).

Also since xn → x in W 1,p
0 (Z), we have 〈x∗n, xn〉 → 〈x∗, x〉 and so we conclude that the

operator R is pseudomonotone.

Proposition 9. If hypotheses H(α)1, H(j)1 and H(f)1 hold , then R is coercive.

Proof. We begin the proof by establishing the following claim:

Claim. There exists β > 0 such that for all x ∈W 1,p
0 (Z), x 6≡ 0, we have

ψ(x) = η1‖Dx‖p −
�

Z

ϑ(z)|x(z)|p dz ≥ β‖Dx‖pp.(11)
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Remark that by virtue of the variational expression for λ1 > 0 (see (2)) and the
hypothesis on ϑ (hypothesis H(f)1(iii)), we have ψ ≥ 0. Suppose that the claim were
not true. Then we could find {xn}n≥1 ⊆W 1,p

0 (Z) with ‖Dxn‖p = 1 such that ψ(xn) ↓ 0.
By Poincaré’s inequality, {xn}n≥1 ⊆ W 1,p

0 (Z) is bounded and so we may assume that
xn

w→ x in W 1,p
0 (Z). Hence xn → x in Lp(Z). Then from the weak lower semicontinuity

of the norm in a Banach space, we obtain
0 ≥ η1‖Dx‖pp −

�

Z

ϑ(z)|x(z)|p dz

and so

λ1η1‖x‖pp ≥
�

Z

ϑ(z)|x(z)|p dz ≥ η1‖Dx‖pp (hypothesis H(j)1(iv)).(12)

Using (2) (the variational characterization of λ1 > 0), we have

λ1‖x‖pp = ‖Dx‖pp, hence x = ±u1 or x = 0.

Recall that u1 is the normalized principal eigenfunction of (−∆p,W
1,p
0 (Z)). Since

ψ(xn) = η1−�
Z
ϑ(z)|xn(z)|p dz, n ≥ 1, in the limit as n→∞ we have η1 = �

Z
ϑ(z)|x(z)|p dz

and hence x 6≡ 0. So x = ±u1. Recalling that u1(z) > 0 for all z ∈ Z and taking into
account hypothesis H(j)1(iv), we derive from (12) that

λ1η1‖u1‖pp >
�

Z

ϑ(z)|u1(z)|p dz ≥ η1‖Du1‖pp,

which contradicts (2). Therefore the claim is true and (11) holds.

Next by hypothesis H(j)1(iv) we can find M1 > 0 such that for almost all z ∈ Z and
all u∗ ∈ ∂j(z, x) we have

u∗ ≤ (ϑ(z) + λ1β/2)|x|p−2x if x ≥M1

and
u∗ ≥ (ϑ(z) + λ1β/2)|x|p−2x if x ≤ −M1.

On the other hand, by hypothesis H(j)1(iii), for almost all z ∈ Z, all |x| ≤ M1 and
all u∗ ∈ ∂j(z, x) we have

|u∗| ≤ γ1(z) with γ1 ∈ Lr
′
(Z).

So finally we can write that for almost all z ∈ Z and all u∗ ∈ ∂j(z, x) we have

u∗ ≤ (ϑ(z) + λ1β/2)|x|p−2x+ γ1(z) if x ≥ 0

and

u∗ ≥ (ϑ(z) + λ1β/2)|x|p−2x− γ1(z) if x ≤ 0.

Then for x∗ ∈ R(x) we have x∗ = v∗ − u∗ −Nf (x) with v∗ ∈ V (x) and u∗ ∈ G(x). So

〈x∗, x〉 = 〈v∗, x〉 −
�

Z

u∗x dz −
�

Z

f(z, x,Dx)x dz.

We have v∗ = − div v with v ∈ Sqα(·,x(·),Dx(·)) and so

〈v∗, x〉 = 〈− div v, x〉 =
�

Z

(v(z), Dx(z))RN dz

≥ η1‖Dx‖pp − η2|Z| (hypothesis H(α)1(v)).
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Also we have
�

Z

u∗x dz =
�

{x>0}
u∗x dz +

�

{x<0}
u∗x dz ≤

�

Z

(
ϑ(z) +

λ1β

2

)
|x|p dz + ‖γ1‖r′‖x‖r

and �

Z

f(z, x,Dx)x dz ≤ ‖b3‖q‖x‖p + c4‖x‖θp + c5‖Dx‖θp for some c4, c5 > 0.

Thus finally we obtain

〈x∗, x〉 ≥ η1‖Dx‖pp −
�

Z

ϑ(z)|x(z)|p dz − λ1β

2
‖x‖pp − ‖γ1‖r′‖x‖r

− ‖b3‖q‖x‖p − c4‖x‖θp − c5‖Dx‖θp

≥ β

2
‖Dx‖pp − c6‖Dx‖p − c7‖Dx‖θp for some c6, c7 > 0.

In the last inequality we have used (11), the variational expression for λ1 (see (2)) and
the Sobolev embedding theorem. Since θ < p, it follows that R is coercive.

Now we are ready for the existence theorem for the problem (4).

Theorem 10. If hypotheses H(α)1, H(j)1 and H(f)1 hold , then problem (4) has a so-
lution.

Proof. From Propositions 8 and 9 we know that R is pseudomonotone and coercive, thus
it is surjective (see Section 2). So we can find x ∈ W 1,p

0 (Z) such that 0 ∈ R(x). Hence
there exist v ∈ Sqα(·,x(·),Dx(·)) and u∗ ∈ G(x) such that − div v = u∗ + Nf (x) ∈ Ls(Z),
s = min{r′, q}. Therefore − div v(z) = u∗(z) + f(z, x(z), Dx(z)) a.e. on Z and so x is a
solution of (4).

4. Method of upper-lower solutions

We continue our investigation of problem (4). However now we drop the growth hy-
pothesis H(f)1(iii) and replace it by the assumption that there exists an ordered pair
of upper and lower solutions for problem (4). Therefore our approach is based on the
method of upper-lower solutions coupled with suitable truncation and penalization tech-
niques. For previous works on nonlinear second order elliptic equations using the method
of upper-lower solutions, we refer to the papers of Deuel–Hess [21], Mawhin–Schmitt [47],
Carl–Dietrich [12], Delgado–Suarez [20] and the references therein. However, for the gen-
eral nonlinear hemivariational problems like (4), to our knowledge, nothing was done be-
fore. Only the paper of Carl–Dietrich [12] considers problems with discontinuities. More
precisely, the map α is single-valued and independent of x (it depends only on z ∈ Z

and the gradient Dx), j(z, x) = � x
0
g(z, r) dr, with g : Z × R→ R a measurable function

which is locally bounded in x ∈ R and f ≡ 0. In general problems with discontinuities are
a special case of hemivariational inequalities in which the generalized potential j is the
indefinite integral of a locally bounded function. So our work here is the first application
of the method of upper-lower solutions to strongly nonlinear hemivariational inequalities.
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We start with the definition of upper and lower solutions.

Definition. (a) A function ϕ ∈ W 1,p(Z), ϕ|Γ ≥ 0 is an upper solution for problem (4)
if there exists u∗+ ∈ Sq∂j(·,ϕ(·)) such that

〈v∗, y〉 −
�

Z

f(z, ϕ(z), Dϕ(z))y(z) dz ≥
�

Z

u∗+(z)y(z) dz(13)

for all v∗ ∈ V (ϕ) and all y ∈W 1,p
0 (Z)+.

(b) A function ψ ∈ W 1,p(Z), ψ|Γ ≤ 0 is a lower solution for problem (4) if there
exists u∗− ∈ Sq∂j(·,ψ(·)) such that

〈v∗, y〉 −
�

Z

f(z, ψ(z), Dψ(z))y(z) dz ≤
�

Z

u∗−(z)y(z) dz(14)

for all v∗ ∈ V (ψ) and all y ∈W 1,p
0 (Z)+.

We assume the existence of an ordered pair (ϕ, ψ). Namely:

H0 There exist an upper solution ϕ and a lower solution ψ for problem (4) such that
ψ(z) ≤ ϕ(z) a.e. on Z.

Also our hypotheses on the generalized potential j(z, x) and the nonlinearity f are
modified as follows:

H(j)2 j : Z × R→ R is a function such that

(i) for all x ∈ R, z 7→ j(z, x) is measurable;
(ii) for almost all z ∈ Z, x 7→ j(z, x) is locally Lipschitz;

(iii) for almost all z ∈ Z, and all x ∈ [ψ(z), ϕ(z)] and all u∗ ∈ ∂j(z, x) we have

|u∗| ≤ b2(z) with b2 ∈ Lr
′
(Z), 1 ≤ r < p∗, 1/r + 1/r′ = 1.

H(f)2 f : Z × R× RN → R is a function such that

(i) for all (x, ξ) ∈ R× RN , z 7→ f(z, x, ξ) is measurable;
(ii) for almost all z ∈ Z, (x, ξ) 7→ f(z, x, ξ) is continuous;

(iii) for almost all z ∈ Z, all x ∈ [ψ(z), ϕ(z)] and all ξ ∈ RN we have

|f(z, x, ξ)| ≤ b3(z) + c3‖ξ‖p−1 with b3 ∈ Lq(Z), c3 > 0, 1 ≤ r < p∗.

We introduce the truncation function τ : W 1,p(Z)→W 1,p(Z) defined by

τ(x)(z) =





ϕ(z) if ϕ(z) ≤ x(z),
x(z) if ψ(z) ≤ x(z) ≤ ϕ(z),
ψ(z) if x(z) ≤ ψ(z).

It is easy to check that τ is continuous. Also we introduce the penalty function β :
Z × R→ R defined by

β(z, x) =




|x|p−2x− |ϕ(z)|p−2ϕ(z) if ϕ(z) < x,
0 if ψ(z) ≤ x ≤ ϕ(z),
|x|p−2x− |ψ(z)|p−2ψ(z) if x < ψ(z).
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Clearly this is a Carathéodory function, for almost all z ∈ Z and all x ∈ R we have
|β(z, x)| ≤ b4(z) + c4|x|p−1 with b4 ∈ Lq(Z), c4 > 0 and we can easily verify that

�

Z

β(z, x(z))x(z) dz ≥ c4‖x‖pp − c5 for some c4, c5 > 0.

We consider the following auxiliary nonlinear elliptic problem:

(15)
{− divα(z, τ(x), Dx)−∂j(z, τ(x)(z))3 f(z, τ(x), Dτ(x))−%β(z, x) a.e. on Z,

x|Γ = 0, % > 0.

Proposition 11. If hypotheses H(α)1, H(j)2 and H0 hold , then for large % > 0 prob-
lem (15) has a solution x ∈W 1,p

0 (Z).

Proof. As in Section 3 our method is based on the theory of nonlinear operators of
monotone type. To this end, let V1 : W 1,p

0 (Z) → Pwkc(W−1,q(Z)) be the multivalued
operator defined by

V1(x) = {− div v : v ∈ Sqα(·,τ(x)(·),Dx(·))}.
Arguing as in the proof of Proposition 7 we can check that V1 is of type (S)+.

Also letN1
f : W 1,p

0 (Z)→ Lr
′
(Z) and B : W 1,p

0 (Z)→ Lq(Z) be the nonlinear operators
defined by

N1
f (x)(·) = f(·, τ(x)(·), Dτ(x)(·)) and B(x)(·) = β(·, x(·)).

By virtue of hypotheses H(f)2 and the properties of the penalty function β, we see that
N1
f and B are both continuous.

Finally, let Q : Z × R→ Pfc(R) be the multifunction defined by

Q(z, x) =





(−∞, u∗+(z)], ϕ(z) < x,
R, ψ(z) ≤ x ≤ ϕ(z),
[u∗−(z),∞), x < ψ(z),

where u∗+ ∈ Sq∂j(·,ϕ(·)), u
∗
− ∈ Sq∂j(·,ψ(·)) satisfy (13), (14) respectively. As before let G(x) =

Sq∂j(·,x(·)) and let G1 : W 1,p
0 (Z)→ Pwkc(Lq(Z)) be defined by

G1(x) = G(τ(x)) ∩ SqQ(·,x(·)).

Claim 1. GrG1 is sequentially closed in W 1,p
0 (Z)× Lr′(Z)w.

Indeed, let (xn, un) ∈ GrG1, n ≥ 1, with (xn, un) → (x, u) in W 1,p
0 (Z) × Lr′(Z)w.

Then τ(xn)→ τ(x) in W 1,p(Z). By passing to a subsequence if necessary we may assume
that xn(z)→ x(z) and τ(xn)(z)→ τ(x)(z) a.e. on Z. It follows from Proposition 2 that

u(z) ∈ conv lim sup
n→∞

[∂j(z, τ(xn)(z)) ∩Q(z, xn(z))]

⊆ conv[lim sup
n→∞

∂j(z, τ(xn)(z)) ∩ lim sup
n→∞

Q(z, xn(z))] a.e. on Z.

But both the multifunctions ∂j(z, ·), Q(z, ·) are closed convex valued with closed graph,
so

lim sup
n→∞

∂j(z, τ(xn)(z)) ⊆ ∂j(z, τ(x)(z)) lim sup
n→∞

Q(z, xn(z)) ⊆ Q(z, x(z)) a.e. on Z

and finally, u(z) ∈ ∂j(z, τ(x)(z))∩Q(z, x(z)) a.e. on Z. Hence, u ∈ G1(x) and this proves
Claim 1.
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Let R1 : W 1,p
0 (Z)→ Pwkc(W−1,q(Z)) be defined by

R1(x) = V1(x) + %B(x)−G1(x)−N1
f (x).

Claim 2. R1 is pseudomonotone. Moreover , for large % > 0, it is coercive.

The pseudomonotonicity of R1 follows just as the pseudomonotonicity of R in Propo-
sition 8 by using the fact that GrG1 is sequentially closed in W 1,p

0 (Z) × Lr′(Z)w (see
Claim 1). So let us prove the coercivity of R1. To this end let x ∈W 1,p

0 (Z) and x∗ ∈ R1(x).
Then

x∗ = v∗ + %B(x)− u∗ −N1
f (x) with v∗ ∈ V1(x) and u∗ ∈ G1(x),

which implies

〈x∗, x〉 = 〈v∗, x〉+ %
�

Z

β(z, x(z))x(z) dz −
�

Z

u∗x dz −
�

Z

f(z, τ(x), Dτ(x))x(z) dz.

From hypothesis H(α)1(v) we have

〈v∗, x〉 =
�

Z

(v(z), Dx(z))RN dz ≥ η1‖Dx‖pp − η2 with v ∈ Sqα(·,τ(x)(·),Dx(·)).

Also from hypothesis H(f)2(iii) and since

Dτ(x)(z) =





Dϕ(z) if ϕ(z) < x(z),
Dx(z) if ψ(z) ≤ x(z) ≤ ϕ(z),
Dψ(z) if x(z) < ψ(z),

(see Evans–Gariepy [23, p. 130]), we get

〈N1
f (x), x〉 =

�

Z

f(z, τ(x), Dτ(x))x(z) dz ≤ c7‖x‖p−1
1,p ‖x‖p + c8‖x‖p + c9

with c7, c8, c9 > 0.
Applying Young’s inequality with ε > 0, we obtain

‖x‖p−1
1,p ‖x‖p ≤

1
εpp
‖x‖pp +

εq

q
‖x‖p1,p (recall that p− 1 = p/q),

which implies that

〈N1
f (x), x〉 ≤ c7

1
εpp
‖x‖pp + c7

εq

q
‖x‖p1,p + c8‖x‖p + c9.

Recall that from the properties of the penalty function β we have

%
�

Z

β(z, x(z))x(z) dz ≥ %c10‖x‖pp − %c11 with c10, c11 > 0.

Moreover, from hypothesis H(j)2(iii) and the compact embedding of W 1,p
0 (Z) in Lr(Z)

we have �

Z

u∗x dz ≤ c12‖x‖1,p with c12 > 0.

So finally via Poincaré’s inequality, we obtain

〈x∗, x〉 ≥ (c13 − c7εq/q)‖x‖p1,p + (%c10 − c7/(εpp))‖x‖pp − c12‖x‖1,p − c14(%).
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First choose ε > 0 so that c13 > c7ε
q/q and then based on this choice of ε, choose

% > 0 large so that %c10 > c7/(εpp). With these choices, the last inequality asserts that
the operator R1 is coercive, as claimed.

Now R1 being pseudomonotone and coercive, it is surjective and so we can find x ∈
W 1,p

0 (Z) such that 0 ∈ R1(x). This is the desired solution of (15).

Using Proposition 11, we can produce a solution for problem (4).

Theorem 12. If hypotheses H(α)1, H(j)2, H(f)2 and H0 hold , then problem (4) has a
solution x ∈W 1,p

0 (Z) such that ψ ≤ x ≤ ϕ.

Proof. Let x ∈ W 1,p
0 (Z) be a solution of (15) (Proposition 11). We shall show that x

belongs to the order interval [ψ, ϕ]. We have

(16) v∗ + %B(x) = u∗ +N1
f (x) with v∗ = − div v, v ∈ Sqα(·,τ(x)(·),Dx(·)), u

∗ ∈ G1(x).

Meanwhile, ψ ∈ W 1,p(Z) is a lower solution to the original problem (4) and u∗− ∈
Sq∂j(·,ψ(·)) has been chosen so that (14) is satisfied for all v∗1 ∈ V (ψ). Moreover, the

fact that ψ|Γ ≤ 0 guarantees that (ψ − x)+ ∈W 1,p
0 (Z)+.

Now fix v∗1 ∈ V (ψ), i.e.
v∗1 = − div v1, v1 ∈ Sqα(·,ψ(·),Dψ(·))

and use (ψ − x)+ as testing function in both (14), (16) to obtain

(17)
�

Z

(v(z), D(ψ − x)+(z))RN dz −
�

Z

f(z, τ(x), Dτ(x))(ψ − x)+ dz

+%
�

Z

β(z, x)(ψ − x)+ dz =
�

Z

u∗(ψ − x)+ dz

and �

Z

(v1(z), D(ψ − x)+(z))RN dz −
�

Z

f(z, ψ,Dψ)(ψ − x)+ dz ≤
�

Z

u∗−(ψ − x)+ dz.(18)

By using the definition of τ(x) and of Dτ(x) (see the proof of Proposition 11), it is easy
to check that �

Z

f(z, τ(x), Dτ(x))(ψ − x)+ dz =
�

Z

f(z, ψ,Dψ)(ψ − x)+ dz,

so subtracting (17) from (18) we have
�

Z

(v1(z)− v(z), D(ψ − x)+(z))RN dz − %
�

Z

β(z, x)(ψ − x)+ dz ≤
�

Z

(u∗− − u∗)(ψ − x)+ dz.

Set
Z+ = {z ∈ Z : x(z) < ψ(z)}.

From the definition of the multivalued map G1 we see that u∗(z) ≥ u∗−(z) a.e. on Z+, so
that �

Z

(u∗− − u∗)(ψ − x)+ dz ≤ 0.

Moreover, for almost all z ∈ Z+, we have

v1(z) ∈ α(z, ψ(z), Dψ(z)), v(z) ∈ α(z, τ(x)(z), Dx(z)) = α(z, ψ(z), Dx(z)),

which implies
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�

Z

(v1(z)− v(z), D(ψ − x)+(z))RN dz =
�

Z+

(v1(z)− v(z), Dψ(z)−Dx(z))RN dz ≥ 0

(recall that the mapping ξ 7→ α(z, x, ξ) is monotone). Consequently,

0 ≤
�

Z

β(z, x)(ψ − x)+ dz =
�

Z

(|x|p−2x− |ψ|p−2ψ)(ψ − x)+ dz(19)

≤ −c15

�

Z

|(ψ − x)+|p dz for some c15 > 0.

Here we used the elementary inequality which says that for all a, c ∈ R,

(|a|p−2a− |c|p−2c)(a− c) ≥ 22−p|a− c|p.
This is another way to say that a 7→ |a|p/p is a strongly convex function.

From (19) we obtain

(ψ − x)+(z) = 0 a.e. on Z, hence ψ ≤ x.
In a similar fashion we show that x ≤ ϕ. Therefore finally x ∈ [ψ, ϕ] and so τ(x) = x,
Dτ(x) = Dx, β(z, x) = 0, G1(x) = G(x) and these imply that x is a solution of (4).

Now that we have established the existence of at least one solution in the order interval
[ψ, ϕ], we ask the question of whether among all these solutions there is a maximum and
a minimum solution for the pointwise ordering on W 1,p

0 (Z). Such solutions (if they exist)
are known as extremal solutions of (4) in the order interval. For semilinear equations and
classical solutions, this problem was investigated by Amann [2] and Stuart [61] (problems
with discontinuities), and for certain quasilinear equations and weak solutions by Carl–
Heikkila–Laksmikantham [13] (problems with discontinuities). In [13] the second order
quasilinear differential operator is of the form −∑N

i,j=1 Di(αij(z, x)Djx), i.e. the operator
is mildly nonlinear, since the gradient of x enters linearly.

Here we extend the aforementioned works by establishing the existence of extremal
solutions in the order interval [ψ, ϕ] for a particular case of problem (1) with suitable
monotone structure (variational inequality). So the problem under consideration is the
following: {− divα(z, x(z), Dx(z)) ∈ ∂j(z, x(z)) + f(z, x(z)) a.e. on Z,

x|Γ = 0.
(20)

Our hypotheses on the data of (20) are the following:

H(α)2 α : Z × R× RN → RN is a function such that

(i) for every x ∈ R and ξ ∈ RN , z 7→ α(z, x, ξ) is measurable;
(ii) for almost all z ∈ Z, (x, ξ) 7→ α(z, x, ξ) is continuous;

(iii) for almost all z ∈ Z and all x ∈ R, ξ 7→ α(z, x, ξ) is monotone;
(iv) for almost all z ∈ Z, all x, x′ ∈ R and all ξ ∈ RN we have

‖α(z, x, ξ)‖ ≤ b1(z) + c1(|x|p−1 + ‖ξ‖p−1) with b1 ∈ Lq(Z), c1 > 0

and

‖α(z, x, ξ)− α(z, x′, ξ)‖ ≤ [c2(|x|+ |x′|+ ‖ξ‖)p−1 + k1(z)]|x− x′|,
with c2 > 0, k1 ∈ Lq(Z);
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(v) for almost all z ∈ Z, all x ∈ R and all ξ ∈ RN we have

(α(z, x, ξ), ξ)RN ≥ η1‖ξ‖p − k2(z) with η1 > 0, k2 ∈ L1(Z).

H(j)3 j : Z × R→ R is a function such that

(i) for all x ∈ R, z 7→ j(z, x) is measurable;
(ii) for almost all z ∈ Z, x 7→ j(z, x) is also concave (hence it is also locally

Lipschitz);
(iii) for almost all z ∈ Z, all x ∈ R and all u∗ ∈ ∂j(z, x) we have

|u∗| ≤ b2(z) + c3|x|p−1 with b2 ∈ Lq(Z), c3 > 0.

H(f)3 f : Z × R→ R is a function such that f(·, ψ(·)), f(·, ϕ(·)) ∈ Lq(Z) and

(i) f is N -measurable, i.e. for all x : Z → Rmeasurable functions z 7→ f(z, x(z))
is measurable;

(ii) for almost all z ∈ Z, x 7→ f(z, x) is decreasing and continuous.

Remark. If f is jointly measurable, then clearly it is N -measurable. More general con-
ditions implying N -measurability involve the so-called Shragin functions.

We start our analysis of problem (20) with the following auxiliary result.

Proposition 13. If hypotheses H(α)2, H(j)3, H(f)3 hold and x, y ∈ W 1,p
0 (Z) are so-

lutions of (20), then v = min{x, y} ∈ W 1,p
0 (Z) and w = max{x, y} ∈ W 1,p

0 (Z) are both
solutions of (20).

Proof. By definition there exist u∗1, u
∗
2 ∈ Lq(Z) such that

(21) − divα(z, x(z), Dx(z)) = u∗1(z) + f(z, x(z)), u∗1(z) ∈ ∂j(z, x(z)) a.e. on Z

and

(22) − divα(z, y(z), Dy(z)) = u∗2(z) + f(z, y(z)), u∗2(z) ∈ ∂j(z, y(z)) a.e. on Z.

First we show that for every ϑ ∈ C1
0 (Z) we have

(23)
�

{y<x}
(α(z, x,Dx), Dϑ)RN dz −

�

{y<x}
u∗1ϑ dz −

�

{y<x}
f(z, x)ϑ dz

=
�

{y<x}
(α(z, y,Dy), Dϑ)RN dz −

�

{y<x}
u∗2ϑ dz −

�

{y<x}
f(z, y)ϑ dz.

To show this equality, for every ε > 0 we introduce the truncation function ηε : R → R
defined by

ηε(t) =




ε if ε ≤ t,
t if |t| ≤ ε,
−ε if t ≤ −ε.

Note that ηε(x − y)+ϑ ∈ W 1,p
0 (Z), where ηε(x − y)+(z) = ηε((x − y)+(z)) (see Evans–

Gariepy [23, p. 130]). Using this as our test function we obtain
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0 =
�

Z

(α(z, x,Dx)− α(z, y,Dy), D(ηε(x− y)+ϑ))RN dz

−
�

Z

(u∗1 − u∗2)ηε(x− y)+ϑ dz −
�

Z

(f(z, x)− f(z, y))ηε(x− y)+ϑ dz.

Recall that

D(ηε(x− y)+ϑ) = ϑD(ηε(x− y)+) + ηε(x− y)+Dϑ

=





D(x− y)ϑ+ (x− y)Dϑ on {0 < x− y < ε},
εDϑ on {ε ≤ x− y},
0 on {x− y < 0}.

Thus we obtain

0 =
�

{0<x−y<ε}
(α(z, x,Dx)− α(z, y,Dy), D(x− y))RNϑ dz

+
�

Z

(α(z, x,Dx)− α(z, y,Dy), Dϑ)RN ηε(x− y)+ dz

−
�

Z

(u∗1 − u∗2)ηε(x− y)+ϑ dz −
�

Z

(f(z, x)− f(z, y))ηε(x− y)+ϑ dz.

We divide by ε > 0. Thus we have

(24)
1
ε

�

{0<x−y<ε}
(α(z, x,Dx)− α(z, y,Dy), D(x− y))RNϑ dz

=
�

Z

(α(z, y,Dy)− α(z, x,Dx), Dϑ)RN
ηε(x− y)+

ε
dz

+
�

Z

(u∗1 − u∗2)
ηε(x− y)+

ε
ϑ dz +

�

Z

(f(z, x)− f(z, y))
ηε(x− y)+

ε
ϑ dz.

We estimate the left hand side of (24). Indeed, acting on (21) and (22) with the test
function ηε(x− y)+ ∈W 1,p

0 (Z) and then subtracting we obtain
�

Z

(α(z, x,Dx)− α(z, y,Dy), Dηε(x− y)+)RN dz

=
�

{0<x−y<ε}
(α(z, x,Dx)− α(z, y,Dy), D(x− y))RN dz

=
�

Z

(u∗1 − u∗2)ηε(x− y)+ dz +
�

Z

(f(z, x)− f(z, y))ηε(x− y)+ dz.

Due to the monotonicity of −∂j(z, ·) (hypothesis H(j)3(ii)), we have
�

Z

(u∗1 − u∗2)ηε(x− y)+ dz ≤ 0.

Similarly by hypothesis H(f)3(ii) we have
�

Z

(f(z, x)− f(z, y))ηε(x− y)+ dz ≤ 0.
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Thus we obtain �

{0<x−y<ε}
(α(z, x,Dx)− α(z, y,Dy), D(x− y))RN dz ≤ 0,

hence

(25)
�

{0<x−y<ε}
(α(z, x,Dx)− α(z, x,Dy), D(x− y))RN dz

≤
�

{0<x−y<ε}
(α(z, y,Dy)− α(z, x,Dy), D(x− y))RN dz.

Using hypothesis H(α)2(iv) we have

(26)
∣∣∣

�

{0<x−y<ε}
(α(z, y,Dy)− α(z, x,Dy), D(x− y))RN dz

∣∣∣

≤
�

{0<x−y<ε}
[c2(|x|+ |y|+ ‖Dy‖)p−1 + k1(z)] · |x− y| · ‖D(x− y)‖ dz

≤ ε
�

{0<x−y<ε}
µ1(z)‖D(x− y)‖ dz

where
µ1(·) = c2(|x(·)|+ |y(·)|+ ‖Dy(·)‖)p−1 + k1(·) ∈ Lq(Z).

Using this inequality in (25), observing that the left hand side of that inequality is
nonnegative (hypothesis H(α)2(iii)) and then dividing by ε, we obtain

0 ≤ 1
ε

�

{0<x−y<ε}
(α(z, x,Dx)− α(z, x,Dy), D(x− y))RN dz(27)

≤
�

{0<x−y<ε}
µ1(z)‖D(x− y)‖ dz → 0 as ε ↓ 0

(remark that {0 < x− y < ε} → {x = y} as ε ↓ 0). Therefore we have

(28)
∣∣∣∣
1
ε

�

{0<x−y<ε}
(α(z, x,Dx)− α(z, y,Dy), D(x− y))RNϑ dz

∣∣∣∣

≤
∣∣∣∣
1
ε

�

{0<x−y<ε}
(α(z, x,Dx)− α(z, x,Dy), D(x− y))RNϑ dz

∣∣∣∣

+
∣∣∣∣
1
ε

�

{0<x−y<ε}
(α(z, x,Dy)− α(z, y,Dy), D(x− y))RNϑ dz

∣∣∣∣

≤ ‖ϑ‖∞
ε

�

{0<x−y<ε}
(α(z, x,Dx)− α(z, x,Dy), D(x− y))RN dz

+ ‖ϑ‖∞
�

{0<x−y<ε}
µ1(z)‖D(x− y)‖ dz → 0 as ε ↓ 0

(see (26) and (27)).
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Note that
ηε(x− y)+

ε
(z)→ X{y<x}(z) a.e. on Z as ε ↓ 0

and for all ε > 0, 0 ≤ ηε(x− y)+/ε ≤ 1 a.e. on Z. So from the Lebesgue dominated
convergence theorem as ε ↓ 0 we have

(29)
�

Z

(α(z, y,Dy)− α(z, x,Dx), Dϑ)RN
ηε(x− y)+

ε
dz

→
�

{y<x}
(α(z, y,Dy)− α(z, x,Dx), Dϑ)RN dz,

(30)
�

Z

(u∗1 − u∗2)
ηε(x− y)+

ε
ϑ dz →

�

{y<x}
(u∗1 − u∗2)ϑ dz,

(31)
�

Z

(f(z, x)− f(z, y))
ηε(x− y)+

ε
ϑ dz →

�

{y<x}
(f(z, x)− f(z, y))ϑ dz.

Returning to (24), by passing to the limit as ε ↓ 0 and using (28)–(31) we obtain

0 =
�

{y<x}
(α(z, y,Dy)− α(z, x,Dx), Dϑ)RN dz

+
�

{y<x}
(u∗1 − u∗2)ϑ dz +

�

{y<x}
(f(z, x)− f(z, y))ϑ dz.

From this equality we get (23). In fact since C1
0 (Z) is dense in W 1,p

0 (Z), we deduce that
(23) is true for all ϑ ∈W 1,p

0 (Z).
Let v = min{x, y} ∈W 1,p

0 (Z) and set û∗ = X{x≤y}u∗1 + X{y<x}u∗2 ∈ Sq∂j(·,v(·)). For all

ϑ ∈W 1,p
0 (Z) we have

�

Z

(α(z, v,Dv), Dϑ)RN dz −
�

Z

û∗ϑ dz −
�

Z

f(z, v)ϑ dz

=
�

{x≤y}
(α(z, x,Dx), Dϑ)RN dz +

�

{y<x}
(α(z, y,Dy), Dϑ)RN dz

−
�

{x≤y}
u∗1ϑ dz −

�

{y<x}
u∗2ϑ dz −

�

{x≤y}
f(z, x)ϑ dz −

�

{y<x}
f(z, y)ϑ dz

=
�

{x≤y}
(α(z, x,Dx), Dϑ)RN dz +

�

{y<x}
(α(z, x,Dx), Dϑ)RN dz

−
�

{x≤y}
u∗1ϑ dz −

�

{y<x}
u∗1ϑ dz −

�

{x≤y}
f(z, x)ϑ dz −

�

{y<x}
f(z, x)ϑ dz

=
�

Z

(α(z, x,Dx), Dϑ)RN dz −
�

Z

u∗1ϑ dz −
�

Z

f(z, x)ϑ dz = 0,

hence
�

Z

(α(z, v,Dv), Dϑ)RN dz −
�

Z

û∗ϑ dz −
�

Z

f(z, v)ϑ dz = 0 for all ϑ ∈W 1,p
0 (Z)
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and so{− divα(z, v(z), Dv(z)) = û∗(z) + f(z, v(z)) ∈ ∂j(z, v(z)) + f(z, v(z)) a.e. on Z,

v|Γ = 0.

Therefore v = min{x, y} ∈ W 1,p
0 (Z) is a solution of (20). Similarly we show that w =

max{x, y} ∈W 1,p
0 (Z) is a solution of (20).

Using this proposition, we can now establish the existence of extremal solutions in
the order interval [ψ, ϕ].

Theorem 14. If hypotheses H(α)2, H(j)3, H(f)3 and H0 hold , then problem (20) has
extremal solutions in the order interval [ψ, ϕ].

Proof. Let S = {x ∈ [ψ, ϕ] : x ∈ W 1,p
0 (Z) is a solution of (20)}. From Theorem 12

we know that S 6= ∅. Let C be a chain in S (i.e. a linearly (totally) ordered subset
of S; on W 1,p

0 (Z) we consider the usual pointwise ordering induced by Lp(Z)+, i.e. if
x, y ∈ W 1,p

0 (Z), then x ≤ y if and only if x(z) ≤ y(z) a.e. on Z). Note that S ⊆ Lp(Z)
is order bounded and so we can define w = sup C. Since the order on W 1,p

0 (Z) is the
pointwise order inherited from the Banach lattice Lp(Z), from Corollary 7 on p. 336
of Dunford–Schwartz [22], we can find a sequence {xn}n≥1 ⊆ C such that xn

w→ w in
W 1,p

0 (Z) (because of hypothesis H(α)2(v)) and xn → w in Lp(Z) as n → ∞ (recall
that W 1,p

0 (Z) is compactly embedded in Lp(Z) by the Sobolev embedding theorem).
Exploiting the lattice structure of S we can assume that xn(z) ↑ w(z) a.e. on Z. For
every n ≥ 1 we have

A(xn) = u∗n +Nf (xn)

where u∗n ∈ Sq∂j(·,xn(·)), A : W 1,p
0 (Z)→W−1,q(Z) is the nonlinear operator defined by

〈A(x), y〉 =
�

Z

(α(z, x,Dx), Dy)RN dz

and Nf (xn)(·) = f(·, xn·). Using a simplified version of the proof of Proposition 7,
we can show that A is bounded, pseudomonotone. By virtue of hypothesis H(f)3(ii)
and since xn(z) ↑ w(z) a.e. on Z, we have f(z, xn(z)) ↓ f(z, w(z)) a.e. on Z. Be-
cause Nf (ψ), Nf (ϕ) ∈ Lq(Z), we have Nf (w) ∈ Lq(Z) and from the monotone con-
vergence theorem we have Nf (xn) → Nf (w) in Lq(Z). Also from hypothesis H(j)3(iii),
{u∗n}n≥1 ⊆ Lq(Z) is bounded and so we may assume that u∗n

w→ u∗ in Lq(Z). Using
Proposition 2 and the closedness of the graph of ∂j(z, ·) we have u∗ ∈ Sq∂j(·,w(·)). Fi-

nally, because A is bounded we may assume that A(xn) w→ v∗ in W−1,q(Z). But A being
pseudomonotone, it is generalized pseudomonotone (see Section 2) and so v∗ = A(x).
Therefore in the limit as n→∞, we have

A(w) = u∗ +Nf (w) with u∗ ∈ Sq∂j(·,w(·)), hence w ∈ S.
Invoking Zorn’s lemma, we infer that S has a maximal element xM ∈ S. Proposi-

tion 13 implies that xM is the greatest element of S. Similarly we produce xm ∈ S which
is the smallest element of S. Evidently {xm, xM} are the desired extremal solutions
of (20).
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5. Bounded solutions of definite sign

In this section we consider a hemivariational inequality driven by the p-Laplacian opera-
tor. Using some auxiliary problems, the nonlinear maximum principle and the method of
upper-lower solutions, we shall establish the existence of bounded positive and negative
solutions for the problem.

The problem under consideration in this section is the following:
{
− div(‖Dx(z)‖p−2Dx(z)) ∈ ∂j(z, x(z)) + f(z, x(z)) a.e. on Z,

x|Γ = 0, 2 ≤ p <∞.(32)

Our hypotheses on the data of (32) are the following:

H(j)4 j : Z × R→ R is a function such that

(i) for all x ∈ R, z 7→ j(z, x) is measurable;
(ii) for almost all z ∈ Z, x 7→ j(z, x) is locally Lipschitz;

(iii) for almost all z ∈ Z, all x ∈ R and all u∗ ∈ ∂j(z, x) we have

|u∗| ≤ a1(z) + c1|x|r−1

with a ∈ Lr′(Z), 1/r + 1/r′ = 1, 1 ≤ r < p∗, c1 > 0;

(iv) there exists ϑ ∈ L∞(Z) such that ϑ(z) ≤ 0 on Z with strict inequality on a
set of positive Lebesgue measure and lim supx→∞ u∗/xp−1 ≤ ϑ(z) uniformly
for almost all z ∈ Z and all u∗ ∈ ∂j(z, x);

(v) lim infx→0+ u∗/xp−1 > 0 uniformly for almost all z ∈ Z and all u∗ ∈
∂j(z, x).

H(f)4 f : Z × R→ R is a function such that f(z, 0) = 0 a.e. on Z and

(i) for all x ∈ R, z 7→ f(z, x) is measurable;
(ii) for almost all z ∈ Z, x 7→ f(z, x) is continuous;

(iii) for almost all z ∈ Z and all x ≥ 0 we have

0 ≤ f(z, x) ≤ a2(z) + |x|r−1

with a2 ∈ Lr
′
(Z), 1/r + 1/r′ = 1, 1 ≤ r < p∗, c2 > 0;

(iv) lim supx→+∞ f(z, x)/xp−1 < λ1 and lim infx→0+ f(z, x)/xp−1 > λ1 uni-
formly for almost all z ∈ Z.

It appears that our results in this section are the first results on the existence of
positive and negative solutions for nonlinear hemivariational inequalities.

By hypothesis H(j)4(iv), given ε > 0 we can find M1 > 0 such that for almost all
z ∈ Z, all x ≥M1 > 0 and all u∗ ∈ ∂(z, x) we have

u∗ ≤ (ϑ(z) + ε)xp−1.(33)

On the other hand from hypothesis H(j)4(iii) for almost all z ∈ Z, all 0 ≤ x < M1 and
all u∗ ∈ ∂(z, x) we have

|u∗| ≤ γ1(z) with γ1 ∈ Lq(Z).(34)
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Combining (33), (34) we see that for almost all z ∈ Z, all x ≥ 0 and all u∗ ∈ ∂(z, x) we
have

u∗ ≤ (ϑ(z) + ε)xp−1 + γ2(z) with γ2 ∈ Lq(Z).(35)

Let g : Z × R→ R be the Carathéodory function defined by

g(z, x) =
{
f(z, x) if x ≥ 0,
0 if x ≤ 0.

We consider the following auxiliary boundary value problem:

(36)




− div(‖Dx(z)‖p−2Dx(z))− g(z, x(z)) = (ϑ(z) + ε)|x(z)|p−2x(z) + γ2(z)

a.e. on Z,

x|Γ = 0.

We start by solving (36).

Proposition 15. If hypotheses H(j)4 and H(f)4 hold , then for all ε > 0 small , prob-
lem (36) has a solution ϕ ∈ C1(Z) such that ϕ(z) > 0 for all z ∈ Z and ∂ϕ

∂n (z′) < 0 for
all z′ ∈ Γ (here by n we denote the outward normal on the boundary Γ of Z).

Proof. Let A : W 1,p
0 (Z)→W−1,q(Z) be the nonlinear operator defined by

〈A(x), y〉 =
�

Z

‖Dx(z)‖p−2(Dx(z), Dy(z))RN dz for all x, y ∈W 1,p
0 (Z).

It is easy to check that A is monotone demicontinuous, hence maximal monotone (see
Section 2). Also let Ng : Lr(Z) → Lr

′
(Z) be the Nemytskĭı operator corresponding to

the function g, i.e. Ng(x)(·) = g(·, x(·)). By Krasnosel’skĭı’s theorem Ng is bounded,
continuous. Also exploiting the compact embedding of W 1,p

0 (Z) into Lr(Z) (hence of
Lr
′
(Z) into W−1,q(Z) as well) it follows that Ng : W 1,p

0 (Z)→W−1,q(Z) is a completely
continuous (hence compact as well) operator. Similarly we define Jϑ,ε : Lp(Z) → Lq(Z)
by Jϑ,ε(x)(·) = (ϑ(·) + ε)|x(·)|p−2x(·). In the same way we deduce that Jϑ,ε viewed as a
map from W 1,p

0 (Z) into W−1,q(Z) is completely continuous (hence compact as well). Since
maximal monotone maps defined everywhere and completely continuous are pseudomono-
tone and the sum of pseudomonotone maps is still pseudomonotone (see Hu–Papageorgiou
[35, p. 368]), it follows that x 7→ V (x) = A(x)−Ng(x)− Jϑ,ε(x) is pseudomonotone and
bounded.

As in the proof of Proposition 9 (see inequality (11)), we can show that there exists
β > 0 such that

‖Dx‖pp −
�

Z

(λ1 + ϑ(z))|x(z)|p dz ≥ β‖Dx‖pp for all x ∈W 1,p
0 (Z).(37)

Then for all x ∈W 1,p
0 (Z), we have

〈V (x), x〉 = 〈A(x), x〉 −
�

Z

g(z, x(z))x(z) dz −
�

Z

(ϑ(z) + ε)|x(z)|p dz(38)

= ‖Dx‖pp −
�

Z

g(z, x(z))x(z) dz −
�

Z

ϑ(z)|x(z)|p dz − ε‖x‖pp.

By hypotheses H(f)4(iii) and (iv), for almost all z ∈ Z and all x ≥ 0, we have

g(z, x) = f(z, x) ≤ λ1|x|p−2x+ γ3(z) with γ3 ∈ Lr
′
(Z)+.
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So we can write that

−
�

Z

g(z, x(z))x(z) dz ≥ −λ1‖x‖pp − ‖γ3‖1.

Using this in (38) we obtain

〈V (x), x〉 = ‖Dx‖pp −
�

Z

(λ1 + ϑ(z))|x(z)|p dz − ε‖x‖pp − ‖γ3‖1

≥ (β − ε/λ1)‖Dx‖pp − ‖γ3‖1 (see (37) and (2)).

So if we choose 0 < ε < βλ1, we see that the pseudomonotone operator V is coercive,
thus it is surjective. Therefore we can find ϕ ∈W 1,p

0 (Z) such that V (ϕ) = γ2. As before
we can verify that ϕ solves problem (36).

Next let ϕ− = max{−ϕ, 0} ∈W 1,p
0 (Z)+ be our test function. Also recall that

Dϕ−(z) =
{−Dϕ(z) a.e. on {ϕ > 0},

0 a.e. on {ϕ ≤ 0}
(see Evans–Gariepy [23, p. 130]). We have

〈V (ϕ), ϕ−〉 = −‖Dϕ‖pp −
�

Z

g(z, ϕ(z))ϕ−(z) dz +
�

Z

(ϑ(z) + ε)|ϕ−(z)|p dz

=
�

Z

γ2(z)ϕ−(z) dz ≥ 0,

because γ2 ≥ 0. Note that �
Z
g(z, ϕ(z))ϕ−(z) dz = � {ϕ<0} g(z, ϕ(z))ϕ−(z) dz = 0 (recall

the definition of g). So we have

0 ≤ 〈V (ϕ), ϕ−〉 = −‖Dϕ−‖pp +
�

Z

(ϑ(z) + ε)|ϕ−(z)|p dz,

hence

λ1‖ϕ−‖pp ≤ ‖Dϕ−‖pp ≤
�

Z

(ϑ(z) + ε)|ϕ−(z)|p dz ≤ ε‖ϕ−‖pp

(recall that ϑ(z) ≤ 0 a.e. on Z) and so

0 ≤ (ε− λ1)‖ϕ−‖pp.
If ε < min{λ1, λ1β}, from this last inequality we have ϕ− = 0 hence ϕ ≥ 0.

From Theorem 7.1, p. 286, of Ladyzhenskaya–Uraltseva [42], we have ϕ ∈ L∞(Z) and
from the nonlinear regularity theorem of Lieberman [44], we have ϕ ∈ C1,ε(Z) for some
0 < ε < 1. Since γ2 ≥ 0 we have (here ∆pϕ = div(‖Dϕ‖p−2Dϕ) is the p-Laplacian)

−∆pϕ(z)− g(z, ϕ(z))− (ϑ(z) + ε)|ϕ(z)|p−2ϕ(z) ≥ 0 a.e. on Z,

which implies
∆pϕ(z) ≤ ‖ϑ+ ε‖∞ϕ(z)p−1 a.e. on Z

(recall that g(z, ϕ(z)) ≥ 0 a.e. on Z, from the definition of g and hypothesis H(f)4(iii)).
Invoking Theorem 5 of Vazquez [63], we infer that ϕ(z) > 0 for all z ∈ Z and

∂ϕ
∂n (z′) < 0 for all z′ ∈ Γ . This completes the proof of the proposition.
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From hypotheses H(j)4(iv) and H(f)4(iv), we know that there exist δ > 0 and ξ > λ1

such that for almost all z ∈ Z, all 0 < x ≤ δ and all u∗ ∈ ∂j(z, x) we have

0 < u∗ and ξxp−1 ≤ f(z, x).(39)

Let u1 ∈ C1(Z), u1 > 0, be the normalized principal eigenfunction of (−∆p,W
1,p
0 (Z)).

Evidently we can find 0 < ξ1 < 1 such that 0 < ξ1u1 ≤ δ for all z ∈ Z. Also let ϕ ∈ C1(Z)
be the solution of the auxiliary problem (36) obtained in Proposition 15. Because of the
properties of ϕ established in that proposition, we know that there exists ξ2 > 1 such
that

ξ1u1(z) < ξ2ϕ(z) for all z ∈ Z,
hence that

v(z) =
ξ1
ξ2
u1(z) < ϕ(z) for all z ∈ Z (note that ξ1/ξ2 < 1).

We have v ∈ C1,ε(Z), v(z) > 0 for all z ∈ Z. For any y ∈ W 1,p
0 (Z), y ≥ 0 and any

u∗ ∈ Sr′∂j(·,v(·)) we have

〈−∆pv, y〉 −
�

Z

g(z, v(z))y(z) dz −
�

Z

u∗(z)y(z) dz

=
�

Z

‖Dv(z)‖p−2(Dv(z), Dy(z))RN dz −
�

Z

f(z, v(z))y(z) dz −
�

Z

u∗(z)y(z) dz.

Since

v(z) =
ξ1
ξ2
u1(z) ∈ (0, δ] for all z ∈ Z,

from (39) we have u∗(z) > 0 a.e. on Z and so �
Z
u∗(z)y(z) dz ≥ 0. Also again from (39)

we have ξv(z)p−1 ≤ f(z, v(z)) a.e. on Z. So finally we can write that
�

Z

‖Dv(z)‖p−2(Dv(z), Dy(z))RN dz −
�

Z

f(z, v(z))y(z) dz −
�

Z

u∗(z)y(z) dz

≤
�

Z

‖Dv(z)‖p−2(Dv(z), Dy(z))RN dz − ξ
�

Z

v(z)p−1y(z) dz

=
(
ξ1
ξ2

)p−1 �

Z

(λ1 − ξ)(u1(z))p−1y(z) dz < 0

(recall the definition of v and that ξ > λ1). Therefore we infer that v ∈ C1,ε(Z) is a lower
solution of (32).

On the other hand since ϕ is a solution of the auxiliary problem (36), for all y ∈
W 1,p

0 (Z), y ≥ 0 and all u∗ ∈ Sr′∂j(·,ϕ(·)) we have
�

Z

‖Dϕ(z)‖p−2(Dϕ(z), Dy(z))RN dz −
�

Z

g(z, ϕ(z))y(z) dz

=
�

Z

(ϑ(z) + ε)|ϕ(z)|p−2ϕ(z)y(z) dz +
�

Z

γ2(z)y(z) dz,
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which implies that
�

Z

‖Dϕ(z)‖p−2(Dϕ(z), Dy(z))RN dz −
�

Z

f(z, ϕ(z))y(z) dz

=
�

Z

(ϑ(z) + ε)|ϕ(z)|p−2ϕ(z)y(z) dz +
�

Z

γ2(z)y(z) dz ≥
�

Z

u∗(z)y(z) dz (see (35)).

Therefore we infer that ϕ ∈ C1(Z) is an upper solution of (32). Also we have v(z) < ϕ(z)
for all z ∈ Z. Now working with the upper-lower solution pair (ϕ, v) as in Theorem 12,
through truncation and penalization techniques, we can have the following existence
theorem.

Theorem 16. If hypotheses H(j)4 and H(f)4 hold , then problem (32) has a solution
x ∈W 1,p

0 (Z) ∩ L∞(Z) such that x(z) > 0 a.e. on Z.

In fact if on the functions j(z, ·) and f(z, ·) we impose a behaviour at 0− and −∞,
similar to that assumed at 0+ and ∞, we can have a multiplicity result for problem (32).
More precisely we can show that problem (32) has at least two nontrivial solutions, one
strictly positive and the other strictly negative. The new hypotheses on j and f are the
following:

H(j)5 j : Z × R→ R is a function which satisfies hypotheses H(j)4(i)–(iii) and

(iv) there exists ϑ ∈ L∞(Z) such that ϑ(z) ≤ 0 a.e. on Z with strict inequality
on a set of positive Lebesgue measure and lim sup|x|→∞ u∗/(|x|p−2x) ≤ ϑ(z)
uniformly for almost all z ∈ Z and all u∗ ∈ ∂j(z, x);

(v) lim infx→0 u
∗/(|x|p−2x) > 0 uniformly for almost all z ∈ Z and all u∗ ∈

∂j(z, x).

H(f)5 f : Z × R→ R is a function which satisfies hypotheses H(f)4(i)–(iii) and

(iv) lim sup|x|→∞ f(z, x)/(|x|p−2x) < λ1 and lim infx→0 f(z, x)/(|x|p−2x) > λ1

uniformly for almost all z ∈ Z.

Repeating the previous analysis, this time on the negative semiaxis R−, we obtain a
bounded strictly negative solution. Combining this result with Theorem 16, we obtain
the following multiplicity result.

Theorem 17. If hypotheses H(j)5 and H(f)5 hold , then problem (32) has at least two
solutions x, y ∈W 1,p

0 (Z) ∩ L∞(Z) such that y(z) < 0 < x(z) a.e. on Z.

6. Hemivariational inequalities at resonance

In this section we study nonlinear hemivariational inequalities at resonance using hy-
potheses of Landesman–Lazer type. We have two existence theorems. The first uses a
more standard Landesman–Lazer type condition and our approach is based on Theo-
rem 5 (i.e. it is degree-theoretic). The second theorem is about problems driven by the
p-Laplacian differential operator and uses a generalized Landesman–Lazer type condition,
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first suggested by Tang [62] in the context of second order semilinear ordinary differential
equations.

The first problem that we shall examine in this section is the following:
{
− divα(z,Dx(z))− λ∗|x(z)|p−2x(z) ∈ ∂j(z, x(z)) a.e. on Z,

x|Γ = 0, λ∗ = λ1c1, c1 > 0, 2 ≤ p <∞.(40)

Our hypotheses on the functions α(z, ξ) and j(z, x) of problem (40) are the following:

H(α)3 α : Z × RN → RN is a function such that α(z, 0) = 0 a.e. on Z and

(i) for every ξ ∈ RN , z 7→ α(z, ξ) is measurable;
(ii) for almost all z ∈ Z, ξ 7→ α(z, ξ) is continuous and strictly monotone;

(iii) for almost all z ∈ Z and all ξ ∈ RN we have

‖α(z, ξ)‖ ≤ b(z) + c‖ξ‖p−1,

where b ∈ Lq(Z)+ and c > 0;
(iv) for almost all z ∈ Z and all ξ ∈ RN we have (α(z, ξ), ξ)RN ≥ c1‖ξ‖p.

H(j)6 j : Z × R→ R is a function such that

(i) for all x ∈ R, z 7→ j(z, x) is measurable;
(ii) for almost all z ∈ Z, x 7→ j(z, x) is locally Lipschitz;
(iii) for almost z ∈ Z, all x ∈ R and all u∗ ∈ ∂j(z, x), we have |u∗| ≤ β(z) with

β ∈ Lq(Z) (1/p+ 1/q = 1);
(iv) if g1(z, x) = inf[u∗ : u∗ ∈ ∂j(z, x)] and g2(z, x) = sup[u∗ : u∗ ∈ ∂j(z, x)],

there exist g−, g+ ∈ L1(Z) such that lim infx→−∞ g1(z, x) = g−(z),
lim supx→∞ g2(z, x) = g+(z) for almost all z ∈ Z and �

Z
g+(z)u1(z) dz <

0 < �
Z
g−(z)u1(z) dz.

Remark. By redefining j on a Lebesgue-null set, we may assume that j is Borel mea-
surable and for all z ∈ Z, j(z, ·) is locally Lipschitz. Recall from Section 2 that

j0(z, x;h) = lim sup
x′→x, λ↓0

j(z, x′ + λh)− j(z, x′)
λ

= inf
ε>0

sup
|x′−x|<ε
0<λ<ε

j(z, x′ + λh)− j(z, x′)
λ

= inf
n≥1

sup
|x′−x|<1/n
0<λ<1/n
x′,λ∈Q

j(z, x′ + λh)− j(z, x′)
λ

.

From this it follows that the function (z, x, h) 7→ j0(z, x;h) is Borel measurable (note
that because of hypotheses H(j)6(i) and (ii), the function j(z, x) being Carathéodory, it
is jointly measurable). Since ∂j(z, x) = {u∗ ∈ R : u∗ h ≤ j0(z, x;h) for all h ∈ R}, we have
Gr ∂j = {(z, x, u∗) ∈ Z ×R×R : u∗ ∈ ∂j(z, x)} ∈ B(Z×R×R) = B(Z)×B(R)×B(R),
with B(Z) (resp. B(R)) being the Borel σ-field of Z (resp. of R). For every µ ∈ R we
have

{(z, x) ∈ Z × R : g1(z, x) < µ} = projZ×R(Gr ∂j ∩ (Z × R× (−∞, µ))).
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Since the subdifferential multifunction ∂j is compact-valued, from Theorem II.1.22,
p. 146, of Hu–Papageorgiou [35], we deduce that

projZ×R(Gr ∂j ∩ (Z × R× (−∞, µ))) ∈ B(Z × R) = B(Z)×B(R)

and hence that g1 is Borel measurable. Similarly we can show that g2 is Borel measurable.
Therefore hypothesis H(j)6(iv) is a reasonable requirement on the generalized potential
j(z, x).

For problem (40) we have the following existence theorem.

Theorem 18. If hypotheses H(α)3 and H(f)6 hold , then problem (40) has a solution
x ∈W 1,p

0 (Z).

Proof. Let A : W 1,p
0 (Z)→W−1,q(Z) be the nonlinear operator defined by

〈A(x), y〉 =
�

Z

(α(z,Dx), Dy)RN dz.

We can easily verify that A is strictly monotone, demicontinuous, hence maximal mono-
tone as well. Let Â be the restriction of A on Lq(Z), i.e. Â : D ⊆ Lp(Z) → Lq(Z)
defined by Â(x) = A(x) for all x ∈ D = {x ∈ W 1,p

0 (Z) : A(x) ∈ Lq(Z)} (recall
Lq(Z) ⊆ W−1,q(Z)). To this end let J : Lp(Z) → Lq(Z) be the nonlinear operator de-
fined by J(x)(·) = |x(·)|p−2x(·). Evidently J is continuous and strictly monotone (hence
maximal monotone). We claim that in order to obtain the maximality of the monotone
operator Â it suffices to show that R(Â + J) = Lq(Z), i.e. Â + J is surjective. Indeed
suppose for the moment that Â + J is surjective and let y ∈ Lp(Z), v ∈ Lq(Z) be such
that for all x ∈ D, we have

(Â(x)− v, x− y)pq ≥ 0.(41)

Here by (·, ·)pq we denote the duality brackets for the pair (Lp(Z), Lq(Z)) i.e. (x, y)pq =
�
Z
x(z)y(z) dz. Since we have assumed that Â+ J is surjective, we can find x1 ∈ D such

that Â(x1) + J(x1) = v + J(y). So if in (41) we set x = x1 ∈ D, we obtain

(v + J(y)− J(x1)− v, x1 − y)pq ≥ 0,

hence
(J(y)− J(x1), x1 − y)pq ≥ 0.

Because J is strictly monotone, from the above inequality it follows that y = x1 ∈ D

and v = Â(x1), which proves the maximality of Â (see Section 2). Therefore it remains
to show that R(Â + J) = Lq(Z). Note that the operator A + J : W 1,p

0 (Z) → W−1,q(Z)
is maximal monotone (see Hu–Papageorgiou [35, p. 319]), coercive, hence it is surjective.
So given any h ∈ Lq(Z), we can find x ∈ W 1,p

0 (Z) such that A(x) + J(x) = h. Hence
A(x) = h− J(x) ∈ Lq(Z) and from the definition of Â we have x ∈ D and A(x) = Â(x).
Since h ∈ Lq(Z) was arbitrary we conclude that Â + J is surjective. Therefore Â is
maximal monotone and strictly monotone.

Next let V = Â+ J : D ⊆ Lp(Z)→ Lq(Z). This map is maximal monotone, strictly
monotone and coercive. So V −1 : Lq(Z)→ D ⊆W 1,p

0 (Z) is a well defined operator.

Claim 1. V −1 is completely continuous.
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Let vn
w→ v in Lq(Z) and set xn = V −1(vn), n ≥ 1. We have

V (xn) = vn,

hence
Â(xn) + J(xn) = vn,

therefore
(Â(xn), xn)pq + (J(xn), xn)pq = (vn, xn)pq

and so
c1‖Dxn‖pp + ‖xn‖pp ≤ ‖vn‖q‖xn‖p (hypothesis H(α)3(iii)),

which implies that {xn}n≥1 ⊆W 1,p
0 (Z) is bounded.

By passing to a subsequence if necessary, we may assume that xn
w→ x in W 1,p

0 (Z)
and xn → x in Lp(Z). Note that for all n ≥ 1, (xn, vn) ∈ GrV and because V is maximal
monotone, its graph is sequentially closed in Lp(Z)×Lq(Z)w. Thus in the limit as n→∞
we have (x, v) ∈ GrV hence x = V −1(v). Also for all n ≥ 1 we have

(Â(xn), xn − x)pq + (J(xn), xn − x)pq = (vn, xn − x)pq

so that
〈A(xn), xn − x〉+ (J(xn), xn − x)pq = (vn, xn − x)pq.

Because {J(xn)}n≥1, {vn}n≥1 ⊆ Lq(Z) are bounded and xn → x, we have

(J(xn), xn − x)pq, (vn, xn − x)pq → 0 as n→∞,
hence

lim〈A(xn), xn − x〉 = 0.

But from Proposition 7 we know that A is of type (S)+. So it follows that xn → x in
W 1,p

0 (Z) as n→∞. This proves the complete continuity of V .
Now let G : Lp(Z)→ Pwkc(Lq(Z)) be the multifunction defined by G(x) = Sq∂j(·,x(·)).

Claim 2. G is usc from Lp(Z) into Lq(Z)w.

Since G is bounded, it is locally compact (recall that on Lq(Z) we consider the weak
topology). So in order to prove the claim it suffices to show that GrG is sequentially
closed in Lp(Z)×Lq(Z)w (see Section 2). So let (xn, u∗n) ∈ GrG, n ≥ 1, and assume that
xn → x in Lp(Z) and u∗n

w→ u∗ in Lq(Z) as n→∞. By passing to further subsequences if
necessary, we may assume that xn(z)→ x(z) a.e. on Z and so by Proposition 2 we have

u∗(z) ∈ conv lim sup
n→∞

{u∗n(z)} ⊆ ∂j(z, x(z)) a.e. on Z,

the last inclusion following from the closedness of the graph of x 7→ ∂j(z, x). So (x, u∗) ∈
GrG and this proves the desired upper semicontinuity of G from Lp(Z) into Lq(Z)w.

Let G1 = G + (λ∗ + 1)J |W 1,p
0 (Z). Exploiting the continuous (in fact compact) em-

bedding of W 1,p
0 (Z) into Lp(Z), we see that G1 is usc from W 1,p

0 (Z) into Lq(Z)w (see
Claim 2). Consider the inclusion

x ∈ V −1G1(x).(42)
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Because of Claims 1 and 2, to solve (42) we can use Theorem 5, provided we show that

S = {x ∈W 1,p
0 (Z) : x ∈ tV −1G1(x) for some 0 < t < 1}

is bounded uniformly in t. Suppose that this is not the case. Then we can find xn ∈ D
and tn ∈ (0, 1), n ≥ 1, such that ‖xn‖ → ∞, tn → t as n → ∞ and for all n → ∞ we
have

V

(
1
tn
xn

)
= wn, wn ∈ G1(xn), wn = u∗n + (λ∗ + 1)J(xn) with u∗ ∈ G(xn),

hence

A

(
1
tn
xn

)
+ J

(
1
tn
xn

)
= u∗n + (λ∗ + 1)J(xn).(43)

Because of hypothesis H(j)6(iii), {u∗n} ⊆ Lq(Z) is bounded and so we may assume
that u∗n

w→ u∗ in Lq(Z) as n → ∞. Let yn = xn/‖xn‖, n ≥ 1. Since ‖yn‖ = 1, n ≥ 1,
we may assume that yn

w→ y in W 1,p
0 (Z) and yn → y in Lp(Z) as n → ∞. We take the

duality brackets in (W 1,p
0 (Z),W−1,q(Z)) of (43) with yn/‖xn‖p−1, n ≥ 1. We have

〈
1

‖xn‖p−1 A

(
1
tn
xn

)
, yn

〉
+
〈

1
‖xn‖p−1 J

(
1
tn
xn

)
, yn

〉

=
〈

u∗n
‖xn‖p−1 , yn

〉
+ (λ∗ + 1)

〈
1

‖xn‖p−1 J(xn), yn

〉
,

hence〈
1

‖xn‖p−1 A

(
1
tn
xn

)
, yn

〉
+

1

tp−1
n

(J(yn), yn)pq =
(

u∗n
‖xn‖p−1 , yn

)

pq

+(λ∗+1)(J(yn), yn)pq,

therefore

c1‖Dyn‖pp + ‖yn‖pp ≤ tp−1
n

(
u∗n

‖xn‖p−1 , yn

)

pq

+ tp−1
n (λ∗ + 1)‖yn‖pp

and so

c1‖Dyn‖pp ≤ tp−1
n

(
u∗n

‖xn‖p−1 , yn

)

pq

+ tp−1
n λ∗‖yn‖pp(44)

(since 0 < tn < 1).
Note that u∗n/‖xn‖p−1 → 0 in Lq(Z). So we have

c1 lim sup
n→∞

‖Dyn‖pp ≤ tp−1λ∗‖y‖pp ≤ c1‖Dy‖pp,

since 0 ≤ t ≤ 1 and λ∗ = λ1c1 (see (2)).
On the other hand, since Dyn

w→ Dy in Lp(Z,RN ) as n → ∞, from the weak lower
semicontinuity of the norm in a Banach space we have ‖Dy‖p ≤ lim infn→∞ ‖Dyn‖p.
Therefore it follows that ‖Dyn‖p → ‖Dy‖p as n→∞. Combining this with the fact that
Dyn

w→ Dy in Lp(Z,RN ) and since the space Lp(Z,RN ) has the Kadec–Klee property
(being uniformly convex) we deduce that Dyn → Dy in Lp(Z,RN ) (see Hu–Papageorgiou
[35, p. 28]) and so yn → y in W 1,p

0 (Z) as n → ∞. From (44), by passing to the limit as
n→∞, we obtain

‖Dy‖pp ≤ tp−1λ1‖y‖pp,
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hence

t = 1 and ‖Dy‖pp = λ1‖y‖pp (see (2) and recall that λ∗ = λ1c1).(45)

Remark that since ‖yn‖ = 1 and yn → y in W 1,p
0 (Z), we have ‖y‖ = 1 and so y 6= 0.

Therefore from (45) it follows that y = ±u1. Assume without loss of generality that
y = u1. We have

c1‖Dyn‖pp + (1− tp−1
n (λ∗ + 1))‖yn‖pp ≤

tp−1
n

‖xn‖p−1 (u∗n, yn)pq.

Because tn → 1− and λ∗ = λ1c1, using (2) we see that

c1‖Dyn‖pp + (1− tp−1
n (λ∗ + 1))‖yn‖pp > 0 for all n ≥ 1

therefore
tp−1
n

‖xn‖p−1 (u∗n, yn)pq > 0 for all n ≥ 1

and so

(u∗n, yn)pq =
�

Z

u∗n(z)yn(z) dz > 0 for all n ≥ 1.(46)

Since y = u1, yn(z) → u1(z) a.e. on Z and u1(z) > 0 for all z ∈ Z, we have xn(z) → ∞
a.e. on Z as n→∞. Since u∗n ∈ Sq∂j(·,xn(·)), from the definition of the function g2 we have

u∗n(z) ≤ g2(z, xn(z)) a.e. on Z

and thus

u∗(z) ≤ g+(z) a.e. on Z (see Proposition 2).(47)

Passing to the limit in (46), we obtain

0 ≤
�

Z

u∗(z)u1(z) dz ≤
�

Z

g+(z)u1(z) dz,

which contradicts hypothesis H(j)6(iv). The argument is similar if we assume that y =
−u1. Therefore it follows that S is bounded and so we can apply Theorem 5 and obtain
x ∈W 1,p

0 (Z) which solves the fixed point problem (42). Thus we have

V (x) ∈ G1(x),

hence
A(x) + J(x) ∈ G(x) + (λ∗ + 1)J(x),

therefore
A(x)− λ∗J(x) ∈ G(x)

and so {
− divα(z,Dx(z))− λ∗|x(z)|p−2x(z) ∈ ∂j(z, x(z)) a.e. on Z,

x|Γ = 0.

Hence x ∈W 1,p
0 (Z) is a solution of problem (32).

Remark. In Goeleven–Motreanu–Panagiotopoulos [33] the authors study semilinear
hemivariational inequalities at resonance (i.e. α(z, ξ) = ξ, see Theorem 5.1. in [33]) using
Landesman–Lazer conditions. However, they impose rather restrictive hypotheses on the
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nonsmooth potential j(z, x). Namely they assume that there exists a continuous map
W : L2(Z) → L2(Z) which satisfies W (x)(z) ∈ ∂j(z, x(z)) a.e. on Z. This hypothesis
is very close to assuming that the Clarke subdifferential of the locally Lipschitz integral
functional Ij(x) = �

Z
j(z, x(z)) dz admits a continuous selector (in fact, if for almost all

z ∈ Z, j(z, ·) is regular, i.e. j ′(z, x;h) = j0(z, x;h) for all x, h ∈ L2(Z) with j′(z, x; ·)
being the usual directional derivative at x, then the two hypotheses are equivalent). Re-
calling that for a locally Lipschitz functional the generalized subdifferential is usc from the
Banach space X into its dual X∗ equipped with the weak∗ topology, we realize that the
hypothesis about the existence of W is very strong. In [33] (Proposition 5.3), the authors
give a sufficient condition for the existence of such a map W . However, that condition is
still problematic since it requires that the multifunction x 7→ ∂Ij(x) is continuous from
L2(Z) into itself. In contrast our result does not require this restrictive hypothesis and it
concerns nonlinear problems not necessarily of variational form.

For problems of variational form, driven by the p-Laplacian, we can employ a more
general form of the Landesman–Lazer condition, introduced recently by Tang [62] for
semilinear (i.e. p = 2) ordinary differential equations with a smooth nonlinearity. Our
result extends also the recent ones for C1 energy functionals by Arcoya–Orsina [5]
and Bouchala–Drábek [10] and for hemivariational inequalities by Gasiński–Papageor-
giou [24], [25].

So we consider the following problem:
{
− divα(z,Dx(z))− λ1|x(z)|p−2x(z) ∈ ∂j(z, x(z)) a.e. on Z,

x|Γ = 0, 2 ≤ p <∞.(48)

As before we introduce the functions g1(z, x) = min[u∗ : u∗ ∈ ∂j(z, x)] and g2(z, x) =
max[u∗ : u∗ ∈ ∂j(z, x)]. We have already seen that g1, g2 are both measurable functions.
Then we introduce the functions

G1(z, x) =

{
pj(z, x)

x
− g1(z, x) if x 6= 0,

0 if x = 0,

G2(z, x) =

{
pj(z, x)

x
− g2(z, x) if x 6= 0,

0 if x = 0.
The generalized Landesman–Lazer conditions will be formulated in terms of these func-
tions. Our hypotheses on the nonsmooth nonlinearity j(z, x) are the following:

H(j)7 j : Z × R→ R is a function such that j(z, 0) = 0, a.e. on Z and

(i) for all x ∈ R, z 7→ j(z, x) is measurable;
(ii) for almost all z ∈ Z, x 7→ j(z, x) is locally Lipschitz;
(iii) for each M > 0 there exists aM ∈ Lq(Z) such that for almost all z ∈ Z, all
|x| ≤M and all u∗ ∈ ∂j(z, x) we have |u∗| ≤ aM (z);

(iv) lim|x|→∞ u∗/|x|p−1 = 0 uniformly for almost all z ∈ Z and all u∗ ∈ ∂j(z, x);
(v) there exist functions G−1 , G

+
2 ∈ Lq(Z) such that uniformly for almost all

z ∈ Z we have

G−1 (z) = lim sup
x→−∞

G1(z, x) and G+
2 (z) = lim inf

x→∞
G2(z, x)
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and �

Z

G−1 (z)u1(z) dz < 0 <
�

Z

G+
2 (z)u1(z) dz.

We introduce the locally Lipschitz energy functional ϕ : W 1,p
0 (Z)→ R defined by

ϕ(x) =
1
p
‖Dx‖pp −

λ1

p
‖x‖pp −

�

Z

j(z, x(z)) dz.

Proposition 19. If hypotheses H(j)7 hold , then ϕ satisfies the nonsmooth PS-condition.

Proof. Let {xn}n≥1 ⊆W 1,p
0 (Z) be a sequence such that

|ϕ(xn)| ≤M1 for all n ≥ 1 with M1 > 0 and m(xn)→ 0 as n→∞.

Recall (see Section 2) that m(xn) = inf{‖u∗‖ : u∗ ∈ ∂ϕ(xn)}, n ≥ 1. Since ∂ϕ(xn)
is weakly compact and the norm in a Banach space is weakly lower semicontinuous,
we can find x∗n ∈ ∂ϕ(xn) such that m(xn) = ‖x∗n‖, n ≥ 1. We have x∗n = A(xn) −
u∗n, with A : W 1,p

0 (Z) → W−1,q(Z) the nonlinear operator defined by 〈A(x), y〉 =
�
Z
‖Dx(z)‖p−2(Dx(z), Dy(z))RN dz and u∗n ∈ Lq(Z), u∗n(z) ∈ ∂j(z, xn(z)) a.e. on Z,

n ≥ 1. Recall that A is monotone demicontinuous, hence maximal monotone.

We claim that {xn}n≥1 ⊆ W 1,p
0 (Z) is bounded. Suppose that this is not the case.

Then by passing to a subsequence if necessary, we may assume that ‖xn‖ → ∞. Let
yn = xn/‖xn‖, n ≥ 1. Evidently ‖yn‖ = 1 for all n ≥ 1 and so by passing to a further
subsequence if necessary we may assume that

yn
w→ y in W 1,p

0 (Z), yn → y in Lp(Z), yn(z)→ y(z) a.e. on Z

and

|yn(z)| ≤ k(z) a.e. on Z, for all n ≥ 1, with k ∈ Lq(Z)

(see for example Kufner–John–Fuč́ık [40, p. 74]). By hypothesis H(j)7(iv), given ε > 0
we can find M2 = M2(ε) > 0 such that for almost all z ∈ Z, all |x| ≥ M2 and all
u∗ ∈ ∂j(z, x) we have

|u∗| ≤ ε|x|p−1.

On the other hand from hypothesis H(j)7(iii) for almost all z ∈ Z, all |x| ≤ M2 and
all u∗ ∈ ∂j(z, x) we have

|u∗| ≤ aε(z) = aM2(ε) with aε ∈ Lq(Z).

So for almost all z ∈ Z, all x ∈ R and all u∗ ∈ ∂j(z, x) we have

|u∗| ≤ aε(z) + ε|x|p−1.(49)

Using Lebourg’s mean value theorem (see Lebourg [43] or Clarke [18, p. 41]), for almost
all z ∈ Z and all x ∈ R we have

|j(z, x)| ≤ |j(z, 0)|+ aε(z)|x|+ ε|x|p ≤ βε(z) + 2ε|x|p with βε ∈ L1(Z)+.
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Then we have∣∣∣∣
�

Z

j(z, xn(z))
‖xn‖p

dz

∣∣∣∣ ≤
1

‖xn‖p
�

Z

βε(z) dz + 2ε‖yn‖pp

≤ 1
‖xn‖p

�

Z

βε(z) dz + 2ε→ 2ε as n→∞,

hence

lim sup
n→∞

∣∣∣∣
�

Z

j(z, xn(z))
‖xn‖p

dz

∣∣∣∣ ≤ 2ε.

Letting ε ↓ 0 we conclude that
�

Z

j(z, xn(z))
‖xn‖p

dz → 0 as n→∞.

From the choice of the sequence {xn}n≥1 ⊆W 1,p
0 (Z) we have

1
p
‖Dyn‖pp −

λ1

p
‖yn‖pp −

�

Z

j(z, xn(z))
‖xn‖p

dz =
ϕ(xn)
‖xn‖p

≤ M1

‖xn‖p
.(50)

Passing to the limit as n→∞ we obtain

‖Dy‖pp ≤ λ1‖y‖pp
and so

y = ±u1 or y = 0 (see (2)).

But from (50) and (2) we have

lim sup ‖Dyn‖pp ≤ λ1‖y‖pp ≤ ‖Dy‖pp ≤ lim inf ‖Dyn‖pp,
which implies that

‖Dyn‖p → ‖Dy‖p.
Since Dyn

w→ Dy in Lp(Z,RN ), as before via the Kadec–Klee property we have yn → y

in W 1,p
0 (Z) and so y 6= 0. Therefore y = ±u1 and without any loss of generality, we may

assume that y = u1 (the analysis is similar if we assume that y = −u1). From the choice
of the sequence {xn}n≥1 ⊆W 1,p

0 (Z), we have

〈x∗n, yn〉 −
pϕ(xn)
‖xn‖

≤ εn +
pM1

‖xn‖
with εn ↓ 0,

hence �

Z

pj(z, xn(z))
‖xn‖

dz −
�

Z

u∗n(z)yn(z) dz ≤ εn +
pM1

‖xn‖
.

Set

hn(z) =




j(z, xn(z))
xn(z)

if xn(z) 6= 0,

0 if xn(z) = 0.

Also since u∗n(z) ∈ ∂j(z, xn(z)) a.e. on Z we have g1(z, xn(z)) ≤ u∗n(z) ≤ g2(z, xn(z)) a.e.
on Z. Thus we can write that
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εn +
pM1

‖xn‖
≥

�

Z

pj(z, xn(z))
‖xn‖

dz −
�

Z

u∗n(z)yn(z) dz(51)

≥
�

Z

phn(z)yn(z) dz −
�

{yn<0}
g1(z, xn(z))yn(z) dz

−
�

{yn>0}
g2(z, xn(z))yn(z) dz

=
�

{yn<0}
G1(z, xn(z))yn(z) dz +

�

{yn>0}
G2(z, xn(z))yn(z) dz

(we have also used the hypothesis j(z, 0) = 0, a.e. on Z).
Recall that y = u1 and u1(z) > 0 for all z ∈ Z. So xn(z) → ∞ a.e. on Z. Therefore

if we denote by | · | the Lebesgue measure on RN , we have |{yn > 0}| → |Z| and
|{yn < 0}| → 0 as n→∞. Also note from the definition of G−1 and G+

2 that given ε > 0
we can find M3 = M3(ε) > 0 such that for almost all z ∈ Z we have

G1(z, x) ≤ G−1 (z) + ε for all x < −M3, G2(z, x) ≥ G+
2 (z)− ε for all x > M3

and
|G1(z, x)|, |G2(z, x)| ≤ aM3(z) for all x ∈ [−M3,M3]

(in order to get the last inequality we also employed Lebourg’s mean value theorem).
Therefore, by passing to the limit in (51), we obtain

�

Z

G+
2 (z)u1(z) dz ≤ 0,

which contradicts hypothesis H(j)7(v).This contradiction implies that {xn}n≥1 ⊆
W 1,p

0 (Z) is bounded and so we may assume that xn
w→ x in W 1,p

0 (Z) and xn → x in
Lp(Z) as n→∞. We have

〈A(xn), xn−x〉−λ1

�

Z

|xn|p−2xn(xn−x) dz−
�

Z

u∗n(xn−x) dz = 〈x∗n, xn−x〉 ≤ εn‖xn−x‖.

Note that λ1 �
Z
|xn|p−2xn(xn − x) dz, �

Z
u∗n(xn − x) dz → 0 as n → ∞ (see hypothesis

H(j)7(iii)). Therefore we get

lim sup
n→∞

〈A(xn), xn − x〉 ≤ 0.

But A being maximal monotone, it is generalized pseudomonotone (see Section 2) and
so we have 〈A(xn), xn〉 → 〈A(x), x〉, hence ‖Dxn‖p → ‖Dx‖p. As before, via the Kadec–
Klee property, we conclude that xn → x in W 1,p

0 (Z), which finishes the proof of the
proposition.

Now we consider the following direct sum decomposition of W 1,p
0 (Z):

W 1,p
0 (Z) = Ru1 ⊕ V

with V being a topological complement of Ru1 (for example we can have V = {v ∈
W 1,p

0 (Z) : �
Z
|u1|p−2u1v dz = 0}. Recall that for all v ∈ V we have λ∗‖v‖pp ≤ ‖Dv‖pp for

some λ∗ > λ1 (see for example Anane–Tsouli [4]).
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Proposition 20. If hypotheses H(j)7 hold , then ϕ(tu1)→ −∞ as |t| → ∞.

Proof. Using (2) we have

ϕ(tu1) = −
�

Z

j(z, tu1(z)) dz.

Recall that given ε > 0 we can find M3 = M3(ε) > 0 such that for all z ∈ Z \N , |N | = 0
and for all x > M3 we have

k+
ε (z) = G+

2 (z)− ε ≤ G2(z, x),

hence
G2(z, x)
xp

≥ k+
ε (z)
xp

=
d

dx

(
− 1
p− 1

· k
+
ε (z)
xp−1

)
.(52)

For all z ∈ Z \N , all x > M3 and all u∗ ∈ ∂j(z, x) we have

G2(z, x)
xp

=
pj(z, x)
xp+1 − g2(z, x)

xp
≤ pj(z, x)

xp+1 − u∗

xp
.

From Clarke [18, p. 48] we know that for z ∈ Z \ N and for x > M3, the function
x 7→ j(z, x)/xp is locally Lipschitz and

∂

(
j(z, x)
xp

)
⊆ ∂j(z, x)xp − pj(z, x)xp−1

x2p =
∂j(z, x)
xp

− pj(z, x)
xp+1 .

Therefore for all z ∈ Z \N , |N | = 0, all x > M3 and all v∗ ∈ ∂(j(z, x)/xp) we have

v∗ ≤ g2(z, x)
xp

− pj(z, x)
xp+1 = − 1

xp
G2(z, x),

hence

v∗ ≤ d

dx

(
1

p− 1
· k

+
ε (z)
xp−1

)
(see (52)).

Since as we already remarked for z ∈ Z \N , |N | = 0, the function x 7→ j(z, x)/xp is
locally Lipschitz on (M3,∞), it is differentiable at every x ∈ (M3,∞) \D(z), |D(z)| = 0
(in this case | · | stands for the Lebesgue measure on R). We set

v∗0(z, x) =

{
d

dx

(
j(z, x)
xp

)
if x ∈ (M3,∞) \D(z),

0 otherwise.
Therefore for fixed z ∈ Z \N and x ∈ (M3,∞) \D(z), we have v∗0(z, x) ∈ ∂(j(z, x)/xp)
and so

v∗0(z, x) =
d

dx

(
j(z, x)
xp

)
≤ d

dx

(
1

p− 1
· k

+
ε (z)
xp−1

)
.(53)

Let y < v with y, v ∈ (M3,∞). We integrate (53) over the interval [y, x]. We obtain

j(z, v)
vp

− j(z, y)
yp

≤ k+
ε (z)
p− 1

(
1

vp−1 −
1

yp−1

)
.(54)

Now by using hypotheses H(j)7(iii), (iv) in conjunction with Lebourg’s mean value the-
orem we can easily verify that for all z ∈ Z \N , |N | = 0,

lim
v→+∞

j(z, v)
vp

= 0.
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So if in (54) we let v →∞, we obtain

j(z, y)
yp

≥ k+
ε (z)
p− 1

· 1
yp−1 , y > M3,

hence
j(z, y)
y

≥ k+
ε (z)
p− 1

, y > M3,

and thus

lim inf
y→+∞

j(z, y)
y

≥ k+
ε (z)
p− 1

.(55)

In a similar fashion if k−ε (z) = G−1 (z) + ε, we can show that

lim sup
y→−∞

j(z, y)
y

≤ k−ε (z)
p− 1

.(56)

Now suppose that the proposition were not true. Then we could find {tn}n≥1 ⊆ R
and M4 > 0 such that |tn| → ∞ and ϕ(tnu1) ≥ −M4 for all n ≥ 1. Assume that tn →∞.
Then

−
�

Z

j(z, tnu1(z)) dz = ϕ(tnu1) ≥ −M4, n ≥ 1,

hence

−
�

Z

j(z, tnu1(z))
tnu1(z)

u1(z) dz ≥ −M4

tn
, n ≥ 1.

For arbitrary ε > 0, (55) via Fatou’s lemma gives

1
p− 1

�

Z

(G+
2 (z)− ε)u1(z) dz ≤ 0,

which implies �

Z

G+
2 (z)u1(z) dz ≤ 0 (letting ε ↓ 0),

a contradiction to hypothesis H(j)7(v). If tn → −∞, the reasoning is similar using this
time (56). From these contradictions it follows that the proposition is true.

In the next proposition we show that the locally Lipschitz functional ϕ is coercive on
the topological complement V .

Proposition 21. If hypotheses H(j)7 hold , then ϕ|V is coercive, i.e. ϕ(v) → ∞ as
‖v‖ → ∞, v ∈ V .

Proof. Recall that for almost all z ∈ Z and all x ∈ R, we have

|j(z, x)| ≤ βε(z) + 2ε|x|p with βε ∈ L1(Z).

Hence for every v ∈ V , we have

ϕ(v) =
1
p
‖Dv‖pp −

λ1

p
‖v‖pp −

�

Z

j(z, v(z)) dz.
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Recall that ‖Dv‖pp ≥ λ∗‖v‖pp with λ1 < λ∗. So we obtain

ϕ(v) ≥ 1
p

(
1− λ1

λ∗

)
‖Dv‖pp − ‖βε‖1 −

2ε
λ∗
‖Dv‖pp.(57)

Choose ε > 0 so that λ1 + 2ε < λ∗. From (57) and Poincaré’s inequality, we conclude
that ϕ|V is coercive.

Propositions 19–21 lead to the following existence theorem for problem (48).

Theorem 22. If hypotheses H(j)7 hold , then problem (48) has a solution x ∈W 1,p
0 (Z).

Proof. By Proposition 21 we can find M5 > 0 such that ϕ(v) ≥ −M5 for all v ∈ V .
Also, because of Proposition 20, there exists t ∈ R \ {0} such that ϕ(±tu1) < −M5. Let
C1 = {±tu1}, C = [−tu1, tu1] (i.e. C1 = ∂C) and D = V . Then it is easy to see that C1

and D link in W 1,p
0 (Z) (see Kourogenis–Papageorgiou [39, Theorem 7] and Struwe [60,

pp. 116–117]). So we apply Theorem 4 and obtain x ∈W 1,p
0 (Z) such that 0 ∈ ∂ϕ(x). We

have
A(x)− λ|x|p−2x = u∗ with u∗ ∈ Sq∂j(·,x(·)).

As before we can verify that x is a solution of (48).

Remark. The following function j(x) (for simplicity we have dropped the z-dependence)
satisfies the generalized Landesman–Lazer conditionH(j)7, but not the standard one used
by Arcoya–Orsina [5] (smooth problems). We have

j(x) =





4x+ sin x− ln(1 + x2) if x > 0,
0 if x = 0,
ex − x− 1 if x < 0,

hence

∂j(x) =





4 + cosx− 2x
1 + x2 if x > 0,

[0, 5] if x = 0,
ex − 1 if x < 0.

A simple calculation reveals that G+
2 = 4p− 3 > 0 > G−1 = −(p− 1).

7. Problems which cross λ1

In this section we continue the study of nonlinear hemivariational inequalities driven by
the p-Laplacian. Again the problem is in variational form and so we can use the arsenal
of critical point theory. Existence theorems based on critical point theory (smooth or
nonsmooth) involve asymptotic conditions for the potential function at ±∞, which are
controlled by the principal eigenvalue λ1. When we have crossing of λ1, then the geometry
of the “Mountain Pass Theorem” (see Theorem 6 of Kourogenis–Papageorgiou [39], a
consequence of Theorem 4 if we choose C1, C and D appropriately) fails and we need to
look for critical points of linking type. However, in this nonlinear situation, for the reasons
explained in Section 2, the construction of linkings presents serious technical difficulties
and requires special techniques.
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Here we prove a theorem for a nonlinear hemivariational inequality in which the
generalized potential j(z, x) near the origin is in some sense below the first eigenvalue
λ1, while asymptotically at ±∞, it is in the same sense in the interval [λ1, λ2), λ2 being
the second eigenvalue of (−∆p,W

1,p
0 (Z)) (see Section 2).

The problem under consideration is now the following:
{
− div(‖Dx(z)‖p−2Dx(z)) ∈ ∂j(z, x(z)) a.e. on Z,

x|Γ = 0, 2 ≤ p <∞.(58)

Our hypotheses on the nonsmooth potential j(z, x) are the following:

H(j)8 j : Z × R→ R is a function such that

(i) for all x ∈ R, z 7→ j(z, x) is measurable;
(ii) for almost all z ∈ Z, x 7→ j(z, x) is locally Lipschitz;

(iii) for almost all z ∈ Z, all x ∈ R and all u∗ ∈ ∂j(z, x) we have

|u∗| ≤ a1(z) + c1|x|r−1 with a1 ∈ Lr
′
(Z), 1/r + 1/r′ = 1, c1 > 0;

(iv) there exist a > 0 and 0 < µ < p∗ such that lim sup|x|→∞ u∗x− pj(z, x)/|x|µ
≤ −a uniformly for almost all z ∈ Z and all u∗ ∈ ∂j(z, x);

(v) there exists β ∈ L∞(Z)+ such that β(z) ≤ λ1 a.e. with strict inequality on
a set of positive Lebesgue measure such that lim supx→0 pj(z, x)/|x|p = β(z)
uniformly for almost all z ∈ Z;

(vi) λ1 ≤ lim inf |x|→∞ pj(z, x)/|x|p ≤ lim sup|x|→∞ pj(z, x)/|x|p < λ2 uniformly
for almost all z ∈ Z.

Remark. Hypotheses H(j)8(v) and (vi) imply that the quotient pj(z, x)/|x|p “crosses”
the principal eigenvalue λ1 as x moves from 0 to ±∞. Hypothesis H(j)8(iv) was first
employed in the context of smooth problems by Costa–Magalhaes [19] and essentially
is a variation of the classical Ambrosetti–Rabinowitz condition for semilinear smooth
problems (see for example Struwe [60, p. 102]). In [19], in addition to having a smooth
potential (i.e. j(z, x) ∈ C1), it was also assumed that either lim inf |x|→∞ pj(z, x)/|x|p
> λ1 uniformly for almost all z ∈ Z (see Theorem 1 in [19]) or lim|x|→∞ pj(z, x)/|x|p = λ1

uniformly for almost all z ∈ Z (see Theorem 2 in [19]). So our work generalizes in different
ways that of Costa–Magalhaes [19].

Let ϕ : W 1,p
0 (Z)→ R be the locally Lipschitz functional defined by

ϕ(x) =
1
p
‖Dx‖pp −

�

Z

j(z, x(z)) dz.

Proposition 23. If hypotheses H(j)8 hold , then ϕ satisfies the nonsmooth C-condition.

Proof. Let {xn}n≥1 ⊆W 1,p
0 (Z) be a sequence such that

|ϕ(xn)| ≤M1 for all n ≥ 1 and (1 + ‖xn‖)m(xn)→ 0 as n→∞.
As before we can find x∗n ∈ ∂ϕ(xn) such that ‖x∗n‖ = m(xn), n → ∞. Also let
A : W 1,p

0 (Z) → W−1,q(Z) be the maximal monotone operator corresponding to the
p-Laplacian, i.e. 〈A(x), y〉 = �

Z
‖Dx‖p−2 (Dx, Dy)RN dz for all x, y ∈W 1,p

0 (Z). We have
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x∗n = A(xn) − u∗n with u∗n ∈ Lr
′
(Z), u∗n(z) ∈ ∂j(z, xn(z)) a.e. on Z, n ≥ 1. From the

choice of the sequence {xn}n≥1 ⊆W 1,p
0 (Z) we have

−‖Dxn‖pp +
�

Z

pj(z, xn(z)) dz ≤ pM1

and

〈A(xn), xn〉 −
�

Z

u∗nxn dz ≤ εn with εn ↓ 0.

Adding the two inequalities, and because 〈A(xn), xn〉 = ‖Dxn‖pp, we have

(59) −
�

Z

(u∗n xn − pj(z, xn)) dz ≤ pM1 + εn ≤M2 for some M2 > 0 and all n ≥ 1.

Hypothesis H(j)8 (iv) implies that there exists M3 > 0 such that for almost all z ∈ Z,
all |x| ≥M3 and all u∗ ∈ ∂j(z, x) we have

− a

2
|x|µ ≥ u∗x− pj(z, x).(60)

On the other hand, as before, from hypothesis H(j)8(iii) and Lebourg’s mean value
theorem, for almost all z ∈ Z, all |x| ≤M3 and all u∗ ∈ ∂j(z, x) we have

u∗x− pj(z, x) ≤ a3(z).(61)

From (60) and (61) it follows that for almost all z ∈ Z and all x ∈ R we have
a

2
|x|µ − a4(z) ≤ −(u∗x− pj(z, x)) with a4 ∈ L1(Z)+.

Using this estimate in (59) we obtain

‖xn‖µµ ≤M4 for some M4 > 0 and all n ≥ 1

and so

{xn}n≥1 ⊆ Lµ(Z) is bounded.

Let η = min[p∗, p(max(N, p) + µ)/max(N, p)]. If N ≤ p, then p∗ =∞ and so we have
η = p + µ. Hence max{p, µ} < η. If N > p, then p∗ = p(N + p∗)/N > p(N + µ)/N
and so it follows that η = p(N + µ)/N and because by hypothesis µ < p∗ we check that
µ < p(N + µ)/N . Therefore we always have

max{p, µ} < η = p
max(N, p) + µ

max(N, p)
.

Let s > 0 be such that max{p, µ} < s ≤ η ≤ p∗. Then by hypotheses H(j)8(iii)
and (vi) we can find a5 ∈ L1(Z)+ and a6 > 0 such that for almost all z ∈ Z and all x ∈ R
we have

j(z, x) ≤ a5(z) + a6|x|s.(62)

Let

ϑ =




p∗(s− µ)
s(p∗ − µ)

if N > p,

1− µ/s if N ≤ p.
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We have 0 < ϑ < 1 and 1/s = (1− ϑ)/µ + ϑ/p∗. From the interpolation inequality (see
for example Showalter [59, p. 45]) we have

‖xn‖s ≤ ‖xn‖1−ϑµ ‖xn‖ϑp∗ ≤M5‖xn‖ϑp∗ ≤M6‖Dxn‖ϑp(63)

for some M5,M6 > 0 and all n ≥ 1.
Here we have used the continuous embedding of W 1,p

0 (Z) in Lp
∗
(Z) (Sobolev embed-

ding theorem) and the Poincaré inequality.
From hypothesis H(j)8(v), given ε > 0 we can find 0 < δ ≤ 1 such that for almost all

z ∈ Z and all |x| ≤ δ, we have

pj(z, x) ≤ (β(z) + ε) |x|p.
This fact combined with hypotheses H(j)8(iii) and (vi), and because s > p, implies that
for almost all z ∈ Z and all x ∈ R we have

pj(z, x) ≤ (β(z) + ε)|x|p + a7|x|s + a8 for some a7, a8 > 0.(64)

Recall that for all n ≥ 1, we have

‖Dxn‖pp −
�

Z

pj(z, xn(z)) dz ≤ pM1,

which implies

‖Dxn‖pp ≤ pM1 +
�

Z

(β(z) + ε)|xn(z)|p dz + a7‖xn‖ss + a9, a9 > 0 (see (64))

and hence

‖Dxn‖pp −
�

Z

β(z)|xn(z)|p dz − ε‖xn‖pp ≤ pM1 + a7‖xn‖ss + a9.

From the proof of Proposition 9 (see (11)) we know that

‖Dxn‖pp −
�

Z

β(z)|xn(z)|p dz ≥ ξ‖Dxn‖pp for some ξ > 0 and all n ≥ 1.

So we have

(ξ − ε/λ1)‖Dxn‖pp ≤ a10 + a7‖xn‖ss for some a10 > 0 and all n ≥ 1.

Choose ε < ξλ1 and use (63) and the continuous embedding of W 1,p
0 (Z) into Ls(Z) (recall

that s < p∗) to obtain

‖Dxn‖pp ≤ a11‖Dxn‖ϑsp + a10 for some a11 > 0 and all n ≥ 1.

Elementary algebra shows that ϑs < p and so from the above inequality and Poincaré’s
inequality we conclude that {xn} ⊆W 1,p

0 (Z) is bounded. So we may assume that xn
w→ x

in W 1,p
0 (Z), xn → x in Lp(Z). We have

〈A(xn), xn − x〉 −
�

Z

u∗n(xn − x) dz ≤ εn‖xn − x‖

and therefore
lim sup〈A(xn), xn − x〉 ≤ 0.

Then as before via the generalized pseudomonotonicity of A and the Kadec–Klee property,
we have xn → x in W 1,p

0 (Z).

In the next proposition we show that ϕ is anti-coercive on Ru1.
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Proposition 24. If hypotheses H(j)8 hold , then ϕ(tu1)→ −∞ as |t| → ∞.

Proof. Let σ(z, x) = j(z, x)− λ1|x|p/p. Clearly for all x ∈ R, z 7→ σ(z, x) is measurable,
while for almost all z ∈ Z, x 7→ σ(z, x) is locally Lipschitz. Also for almost all z ∈ Z and
all x > 0 the function x 7→ σ(z, x)/xp is locally Lipschitz and

∂

(
σ(z, x)
xp

)
=
x∂j(z, x)− pj(z, x)

xp+1 (see the proof of Proposition 20).

From hypothesis H(j)8(iv) we know that sup[u∗x − pj(z, x) : u∗ ∈ ∂j(z, x)] → −∞ as
x→∞ uniformly for almost all z ∈ Z. So given γ1 > 0 we can find M7 > 0 such that for
almost all z ∈ Z, all x > M7 and all u∗ ∈ ∂j(z, x), we have

u∗x− pj(z, x) < −γ1 hence ∂(σ(z, x)/xp) < −γ1/x
p+1.

Arguing as in the proof of Proposition 20, we obtain for all v, y ∈ (M7,∞), y < v,

σ(z, v)
vp

− σ(z, y)
yp

≤ γ1

p

(
1
vp
− 1
yp

)
.

Let v →∞ and use hypothesis H(j)8(vi) to obtain

σ(z, y)
yp

≥ γ1

p

1
yp

and thus
σ(z, y) ≥ γ1/p for all y ∈ (M7,∞).

So if t > 0 is large enough, we have

ϕ(tu1) =
tp

p
‖Du1‖pp −

�

Z

j(z, tu1(z)) dz ≤ tp

p
‖Du1‖pp −

λ1t
p

p
‖u1‖pp −

γ1

p
|Z|.

Since γ1 > 0 was arbitrary, we conclude that ϕ(tu1) → −∞ as t → ∞. In a similar
fashion we can show that ϕ(tu1)→ −∞ as t→ −∞.

Let V = {x ∈ W 1,p
0 (Z) : ‖Dx‖pp = λ2‖x‖pp}. In general this is not a subspace of

W 1,p
0 (Z) but only a closed cone.

Proposition 25. If hypotheses H(j)8 hold , then ϕ(v)→∞ as ‖v‖ → ∞, v ∈ V .

Proof. By hypothesis H(j)8(vi), we can find a13 < λ2 and M8 > 0 such that for almost
all z ∈ Z and all |x| > M8 we have pj(z, x) ≤ a13|x|p. So if v ∈ V , we have

ϕ(v) =
1
p
‖Dv‖pp −

�

Z

j(z, v(z)) dz

=
1
p
‖Dv‖pp −

�

{|v|>M8}
j(z, v(z)) dz −

�

{|v|≤M8}
j(z, v(z)) dz

≥ 1
p
‖Dv‖pp −

a13

p
‖v‖pp − a14 for some a14 > 0

=
1
p

(
1− a13

λ2

)
‖Dv‖pp − a14.

Because a13 < λ2, from the last inequality we conclude that ϕ|V is coercive.

Now we are ready for the existence theorem for problem (58).
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Theorem 26. If hypotheses H(j)8 hold , then problem (58) has a solution x ∈W 1,p
0 (Z).

Proof. From Proposition 25 we know that

−∞ < ξ = inf[ϕ(v) : v ∈ V ] = min[ϕ(v) : v ∈ V ].

On the other hand Proposition 24 implies that for t∗ > 0 large enough and y = t∗ u1 we
have

ϕ(±y) < ξ.

Recall from Section 2 that S = {x ∈W 1,p
0 (Z) : ‖Dx‖p = 1}, ψ(x) = −‖x‖pp for x ∈ S

and c2 = infK∈A2 supx∈K ψ(x). Set U = {x ∈ S : −ψ(x) > −c2}. Clearly U ⊆ S is open
and because

‖±u1‖pp =
1
λ1
‖Du1‖pp =

1
λ1

= −c1 > −c2,

we deduce that ±u1 ∈ U . We claim that ±u1 belong to different path-connected compo-
nents. Suppose that this is not the case. So we can find ϑ : [0, 1]→ U continuous map such
that ϑ(0) = u1 and ϑ(1) = −u1. Let L = ϑ([0, 1]) ∪ (−ϑ([0, 1])). Evidently L ⊆ U and L

is compact, symmetric and so γ(L) > 1, i.e. L ∈ A2 (γ is the Krasnosel’skĭı Z2-genus).
From the definition of U and since L ⊆ U we have sup[ψ(x) = −‖x‖pp : x ∈ L] < c2,
which contradicts the definition of c2 (see Section 2). So indeed u1 and −u1 belong to
different path-connected components of U . Let E be the path-connected component of
U containing u1, i.e. u1 ∈ E. Then −E is the path-connected component of U contain-
ing −u1. We set W = t∗E and Σ = W ∪ (−W ). Since λ2 = −1/c2 (Section 2) we have
‖Dw‖pp < λ2‖w‖pp for all w ∈ Σ and ‖Dw‖pp = λ2‖w‖pp for w ∈ ∂Σ. Therefore ∂Σ ⊆ V .
Let C = [−y, y] = {g ∈ W 1,p

0 (Z) : g = κ(−y) + (1 − κ)y, κ ∈ [0, 1]}, C1 = {−y, y} and
D = V .

Claim. The sets C1 and V link in W 1,p
0 (Z).

Recall that ϕ(±y) < ξ = infV ϕ. So E1 ∩ V = ∅. Also let ϑ1 ∈ C (C,W 1,p
0 (Z)) be

such that ϑ1|C1 = identity. Then ϑ1(C) ∩ V ⊇ ϑ1(C) ∩ ∂Σ 6= ∅ (since ±y ∈ ∂Σ). This
proves the claim.

Therefore because of the claim and Proposition 23, we can apply Theorem 4 and obtain
x ∈W 1,p

0 (Z) such that ξ ≤ ϕ(x) and 0 ∈ ∂ϕ(x). So A(x) = u∗ with u∗ ∈ Lr′(Z), u(z) ∈
∂j(z, x(z)) a.e. on Z. As before we can check that x is a solution of (58).

Remark. It is easy to check that the function

j(z, x) =
{
β(z)|x|p/p− x ln |x| if |x| ≤ 1,
ξ|x|p/p− a|x|+ β(z)/p if |x| > 1

with λ1 ≤ ξ < λ2, a > 0 and β ∈ L∞(Z)+ as in hypothesis H(j)8(v) satisfies conditions
H(j)8. In this case r = p and µ = 1.

8. The nonhomogeneous Neumann problem

In this final section of the paper we consider a nonhomogeneous Neumann problem for
a hemivariational inequality driven by the p-Laplacian. Compared to the Dirichlet prob-
lem, the study of nonlinear Neumann problems is lagging behind. We refer to the works



52 N. S. Papageorgiou and G. Smyrlis

of Huang [37], Binding–Drábek–Huang [8], Hu–Kourogenis–Papageorgiou [34] and the
references therein.

Here we study a nonlinear elliptic hemivariational inequality with nonhomogeneous
Neumann boundary condition (in contrast to the aforementioned references where the
boundary condition is the homogeneous Neumann condition). So the problem under con-
sideration is the following:




− div(‖Dx(z)‖p−2Dx(z)) ∈ ∂j(z, x(z)) a.e. on Z,
∂x

∂np
(z) ∈ ∂k(z, x(z)) a.e. on Γ, 2 ≤ p <∞.(65)

In (65),
∂x

∂np
(z) = ‖Dx(z)‖p−2(Dx(z), n(z))RN , z ∈ Γ,

with n(z) being the outer normal vector at z ∈ Γ . For the generalized potential j(z, x)
we assume Landesman–Lazer type conditions (see Arcoya–Orsina [5] and Section 6).

The precise conditions on the function j(z, x) are the following:

H(j)9 j : Z × R→ R is a function such that j(·, 0) ∈ L1(Z) and

(i) for all x ∈ R, z 7→ j(z, x) is measurable;
(ii) for almost all z ∈ Z, x 7→ j(z, x) is locally Lipschitz;
(iii) there exists a ∈ Lq(Z) such that for almost all z ∈ Z, all x ∈ R and all

u∗ ∈ ∂j(z, x) we have
|u∗| ≤ a(z);

(iv) there exist functions f+, f− ∈ Lq(Z) such that g1(z, x), g2(z, x) → f+(z)
a.e. on Z as x → ∞ and g1(z, x), g2(z, x) → f−(z) a.e. on Z as x → −∞.
Here as before g1(z, x) = min{u∗ : u∗ ∈ ∂j(z, x)} and g2(z, x) = max{u∗ :
u∗ ∈ ∂j(z, x)}. Also �

Z
f−(z) dz < 0 < �

Z
f+(z) dz.

Our conditions on the boundary nonlinearity k(z, x) are the following:

H(k) k : Γ × R→ R+ is a function such that k(·, 0) ∈ L1(Γ ) and

(i) for all x ∈ R, z 7→ k(z, x) is measurable;
(ii) for almost all z ∈ Γ , x 7→ k(z, x) is locally Lipschitz (on Γ we consider the

(N − 1)-dimensional Hausdorff (surface) measure);
(iii) for almost all z ∈ Γ , all x ∈ R and all v∗ ∈ ∂k(z, x) we have

|v∗| ≤ a1(z) + c1|x|r−1, a1 ∈ Lr
′
(Z), c1 > 0, 1 ≤ r < p, 1/r + 1/r′ = 1;

(iv) there exists M > 0 such that for almost all z ∈ Γ , all |x| ≥ M and all
v∗ ∈ ∂k(z, x) we have

pk(z, x)− v∗x ≥ 0.

Let γ : W 1,p(Z) → Lp(Γ ) be the trace operator. We consider the following locally
Lipschitz functional:

ϕ(x) =
1
p
‖Dx‖pp −

�

Z

j(z, x(z)) dz −
�

Γ

k(z, γ(x)(z)) dσ for x ∈W 1,p(Z).
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Proposition 27. If hypotheses H(j)9 and H(k) hold , then ϕ satisfies the nonsmooth
PS-condition.

Proof. Let {xn}n≥1 ⊆W 1,p
0 (Z) be a sequence such that

|ϕ(xn)| ≤M1 for all n ≥ 1 and m(xn)→ 0 as n→∞.

As before we take x∗n ∈ ∂ϕ(xn) such that ‖x∗n‖ = m(xn) for all n ≥ 1. If Îk : Lp(Γ )→ R
is defined by Îk(h) = �

Γ
k(z, h(z)) dσ, h ∈ Lp(Γ ), this is a locally Lipschitz integral

functional (see Clarke [18, p. 83] or Hu–Papageorgiou [36, p. 313]). Set Ik = Îk ◦ γ :
W 1,p(Z)→ R. Then Ik is locally Lipschitz as well and from the chain rule of the general-
ized subdifferential calculus (see Clarke [18, pp. 45–46]) we have ∂Ik(x) ⊆ γ∗ ∂Îk(γ(x))
for all x ∈W 1,p(Z). So finally we have

x∗n = A(xn)− u∗n − γ∗(v∗n)

with u∗n ∈ Lq(Z), u∗n(z) ∈ ∂j(z, xn(z)) a.e. on Z and v∗n ∈ Lq(Γ ), v∗n(z) ∈ ∂k(z, γ(xn)(z))
a.e. on Γ .

We shall prove that {xn}n≥1 ⊆W 1,p(Z) is bounded. Suppose that this is not the case.
We may assume that ‖xn‖ → ∞. Set yn = xn/‖xn‖, n ≥ 1. Then we may assume that
yn

w→ y in W 1,p(Z) and yn → y in Lp(Z). From this choice of the sequence {xn}n≥1 ⊆
W 1,p

0 (Z) we have

1
p
‖Dxn‖pp −

�

Z

j(z, xn(z)) dz −
�

Γ

k(z, γ(xn)(z)) dσ ≤M1.

Divide by ‖xn‖p. We obtain

1
p
‖Dyn‖pp −

�

Z

j(z, xn(z))
‖xn‖p

dz −
�

Γ

k(z, γ(xn)(z))
‖xn‖p

dσ ≤ M1

‖xn‖p
.(66)

From hypothesis H(j)9(iii) and Lebourg’s mean value theorem we deduce that for
almost all z ∈ Z and all x ∈ R we have |j(z, x)| ≤ a2(z) + c2|x| with a2 ∈ L1(Z), c2 > 0.
Similarly from hypothesis H(k)(iii) and Lebourg’s mean value theorem we see that, for
almost all z ∈ Γ and all x ∈ R, we have |k(z, x)| ≤ a3(z)+c3|x|r with a3 ∈ L1(Z), c3 > 0.
Since r < p and p ≥ 2, we see that

�

Z

j(z, xn(z))
‖xn‖p

dz,
�

Γ

k(z, γ(xn)(z))
‖xn‖p

dσ → 0 as n→∞.

So by passing to the limit as n→∞, we obtain

‖Dy‖p = 0, hence y = ξ ∈ R.

Note that Dyn → 0 in Lp(Z,RN ) and so yn → ξ in W 1,p(Z). Since ‖yn‖ = 1 for all
n ≥ 1, we deduce that ξ 6= 0. Assume without any loss of generality that ξ > 0 (the
analysis is similar if we assume that ξ < 0).

From the choice of the sequence {xn}n≥1 ⊆W 1,p(Z) we have

|pϕ(xn)| ≤ pM1 and |〈x∗n, xn〉| ≤ εn‖xn‖, n ≥ 1, with εn ↓ 0.
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So we have

− ‖Dxn‖pp +
�

Z

pj(z, xn(z)) dz +
�

Γ

pk(z, γ(xn)(z)) dσ ≤ pM1(67)

and

‖Dxn‖pp −
�

Z

u∗n(z)xn(z) dz −
�

Γ

v∗n(z)γ(xn)(z) dσ ≤ εn‖xn‖.(68)

Adding (67) and (68), we obtain

(69)
�

Z

(pj(z, xn(z))− u∗n(z)xn(z)) dz +
�

Γ

(pk(z, γ(xn)(z))− v∗n(z)γ(xn)(z)) dσ

≤ pM1 + εn‖xn‖.

Consider the first integral on the left hand side of (69). Divide by ‖xn‖. We get
�

Z

(
pj(z, xn(z))
‖xn‖

− u∗n(z)yn(z)
)
dz.

Since ξ > 0 we have xn(z) → ∞ a.e. on Z. For given 0 < ε < 1, from Lebourg’s mean
value theorem, we have for all z ∈ Z \N , |N | = 0,

j(z, xn(z)) = j(z, εxn(z)) + w∗n(z) (1− ε) xn(z)

where

w∗n(z) ∈ ∂j(z, wn(z)) and wn(z) = (1− tn)xn(z) + tnεxn(z) for 0 < tn < 1, n ≥ 1.

We may assume that xn(z) > 0 (recall xn(z) → ∞ for all z ∈ Z \ N , |N | = 0). So
wn(z) = xn(z) − tn, (1− ε)xn(z) ≥ xn(z)− (1− ε)xn(z) = εxn(z), from which we infer
that wn(z) → ∞ as n → ∞ and so by hypothesis H(j)9(iv) we have w∗n(z) → f+(z)
as n → ∞. Let n0 = n0(ε, z) ≥ 1 be such that if n ≥ n0, we have xn(z) > 0 and
|w∗n(z)− f+(z)| < ε. So for n ≥ n0 we have

pj(z, xn(z))
xn(z)

=
pj(z, εxn(z))

xn(z)
+
pw∗n(z)(1− ε)xn(z)

xn(z)
.

Using the growth of j(z, ·) established earlier, we have

−pa2(z)− pc2εxn(z)
xn(z)

+
p(−ε+ f+(z))(1− ε)xn(z)

xn(z)

≤ pj(z, xn(z))
xn(z)

≤ pa2(z) + pc2εxn(z)
xn(z)

+
p(ε+ f+(z))(1− ε)xn(z)

xn(z)
.

Because xn(z)→∞ as n→∞ and ε > 0 was arbitrary, we infer that

pj(z, xn(z))
xn(z)

→ pf+(z) a.e. on Z.

Therefore finally we have

1
‖xn‖

�

Z

(pj(z, xn(z))− u∗n(z)xn(z)) dz → (p− 1)ξ
�

Z

f+(z) dz.(70)
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Now we examine the second integral on the left hand side of (69). Using hypotheses
H(k)(iii) and (iv), we have

�

Γ

(pk(z, γ(xn)(z))− v∗n(z)γ(xn)(z)) dσ

=
�

{|γ(xn)|≥M}
(pk(z, γ(xn)(z))− v∗n(z)γ(xn)(z)) dσ

+
�

{|γ(xn)|<M}
(pk(z, γ(xn)(z))− v∗n(z)γ(xn)(z)) dσ

≥
�

{|γ(xn)|<M}
(pk(z, γ(xn)(z))− v∗n(z)γ(xn)(z)) dσ = β ∈ R

and hence
1
‖xn‖

�

Γ

(pk(z, γ(xn)(z))− v∗n(z)γ(xn)(z)) dσ ≥ β

‖xn‖
→ 0 as n→∞.(71)

Returning to (69), dividing by ‖xn‖, passing to the limit as n → ∞ and using (70)
and (71) we obtain

(p− 1)ξ
�

Z

f+(z) dz ≤ 0,

a contradiction to hypothesis H(j)9(iv). The argument is similar if we assume that ξ < 0
and we reach the inequality (p−1) ξ �

Z
f−(z) dz ≤ 0, again a contradiction to hypothesis

H(j)9(iv).
Therefore it follows that {xn}n≥1 ⊆W 1,p(Z) is bounded and so we may assume that

xn
w→ x in W 1,p(Z) and xn → x in Lp(Z). As in previous proofs, exploiting the fact

that A is generalized pseudomonotone (being maximal monotone) and the Kadec–Klee
property of Lp(Z,RN ) (which is uniformly convex), we obtain xn → x in W 1,p

0 (Z) as
n→∞. So ϕ satisfies the nonsmooth PS-condition.

We consider the direct sum decomposition

W 1,p(Z) = R⊕ V
with V = {v ∈ W 1,p(Z) : �

Z
v(z) dz = 0}. We examine the behavior of ϕ on each

component of the direct sum.

Proposition 28. If hypotheses H(j)9 and H(k) hold , then ϕ|V is coercive.

Proof. For every v ∈ V we have

ϕ(v) =
1
p
‖Dv‖pp −

�

Z

j(z, v(z)) dz −
�

Γ

k(z, γ(x)(z)) dσ

≥ 1
p
‖Dv‖pp − ‖a2‖1 − c2‖v‖p − ‖a3‖1 − c4‖x‖rp for some c4 > 0 (since r < p).

Using the Poincaré–Wirtinger inequality (see for example Hu–Papageorgiou [36, p. 866])
we have

ϕ(v) ≥ 1
p
‖Dv‖pp − c5‖Dx‖rp − c6 for some c5, c6 > 0.(72)
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Because r < p, and recalling that the Poincaré–Wirtinger inequality implies that ‖Dv‖p
is an equivalent norm on V , from (72) we infer that ϕ|V is coercive.

Proposition 29. If hypotheses H(j)9 and H(k) hold , then ϕ(ξ) → −∞ as |ξ| → ∞,
ξ ∈ R.

Proof. Since k ≥ 0 (hypothesis H(k)) for all ξ ∈ R we have

ϕ(ξ) = −
�

Z

j(z, ξ) dz −
�

Γ

k(z, ξ) dσ ≤ −
�

Z

j(z, ξ) dz,

hence

ϕ(ξ) ≤ −ξ
�

Z

j(z, ξ)
ξ

dz for ξ 6= 0.(73)

From the proof of Proposition 27 we know that for almost all z ∈ Z we have
j(z, ξ)
ξ
→ f±(z) as ξ → ±∞.

Thus from (73), the dominated convergence theorem and hypothesis H(j)9(iv) we con-
clude that ϕ(ξ)→ −∞ as |ξ| → ∞, ξ ∈ R.

Now we are ready for the existence theorem concerning problem (65).

Theorem 30. If hypotheses H(j)9 and H(k) hold , then problem (65) has a solution in
W 1,p(Z).

Proof. Propositions 27–29 permit the application of the nonsmooth Saddle Point Theo-
rem (see Theorem 7 in Kourogenis–Papageorgiou [39] or the proof of Theorem 22), which
gives x ∈W 1,p(Z) such that 0 ∈ ∂ϕ(x) (critical point of ϕ). We have

A(x)− u∗ = γ∗(v∗)(74)

with u∗ ∈ Lq(Z), u∗(z) ∈ ∂j(z, x(z)) a.e. on Z and v∗ ∈ Lq(Γ ), v∗(z) ∈ ∂k(z, γ(x)(z))
a.e. on Z. Then for every ϑ ∈ C∞0 (Z) we have

〈A(x), ϑ〉 −
�

Z

u∗ϑ dz =
�

Γ

v∗γ(ϑ) dσ = 0 (since γ(ϑ) = 0).

From the representation theorem for the elements of W−1,q(Z) = (W 1,p
0 (Z))∗ (see for ex-

ample Adams [1, p. 50] or Hu–Papageorgiou [36, p. 866]), we see that − div(‖Dx‖p−2Dx)
∈W−1,q(Z). We have

〈A(x), ϑ〉 =
�

Z

‖Dx‖p−2(Dx,Dϑ)RN dz = −〈div(‖Dx‖p−2Dx), ϑ〉.

Hence
〈− div(‖Dx‖p−2Dx), ϑ〉 = 〈u∗, ϑ〉.

Since C∞0 (Z) is dense in W 1, p
0 (Z), the predual of W−1, q(Z), we obtain

− div(‖Dx(z)‖p−2Dx(z)) = u∗(z) ∈ ∂j(z, x(z)) a.e. on Z.(75)

From the nonlinear Green’s formula of Kenmochi [38] and Casas–Fernandez [14] we
have

∂x

∂np
∈W−1/q,q(Γ ) = (W 1/q,p(Γ ))∗
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and for all y ∈W 1,p(Z),
�

Z

‖Dx‖p−2(Dx,Dy)RN dz +
�

Z

div(‖Dx‖p−2Dx)y dz =
〈
∂x

∂np
, γ(y)

〉

Γ

(76)

where by 〈·, ·〉Γ we denote the duality brackets for the pair (W 1/q,p(Γ ),W−1/q,q(Γ )).
From (74) we have

�

Z

‖Dx‖p−2(Dx,Dy)RN dz =
�

Z

u∗y dz + 〈v∗, γ(y)〉Γ

(recall that R(γ) = W 1/q,p(Γ ), see Kufner–John–Fuc̆́ık [40, p. 338]). Using this in (76)
and taking into account (72) we obtain

〈v∗, γ(y)〉Γ =
〈
∂x

∂np
, γ(y)

〉

Γ

.

As we already said γ(W 1, p(Z)) = W 1/q, p(Γ ). Therefore

∂x

∂np
= v∗(z) ∈ ∂k(z, γ(x)(z)) a.e. on Γ.

So x ∈W 1, p(Z) solves problem (65).

Remark. It will be very interesting to know if we can replace the Landesman–Lazer
condition of this theorem by the more general one used in Theorem 22. Much more
work remains to be done for the nonlinear Neumann problem (for both the smooth (C1)
and the nonsmooth (locally Lipschitz) cases). For hemivariational inequalities further
research should include systems of semilinear or quasilinear hemivariational inequalities,
multiplicity results using possibly a nonsmooth version of the Saddle Point Reduction
Technique and of the local Linking Theorem (see Chang [17] and Brezis–Nirenberg [11]),
obstacle problems and other problems with unilateral constraints (in this direction some
progress was made recently by Kyritsi–Papageorgiou [41]) and second order nonlinear
periodic systems with nonsmooth potential (see Gasiński–Papageorgiou [30]).
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[10] J. Bouchala and P. Drábek, Strong resonance for some quasilinear elliptic equations,
J. Math. Anal. Appl. 245 (2000), 7–19.

[11] H. Brezis and L. Nirenberg, Remarks on finding critical points, Comm. Pure Appl. Math.
44 (1991), 939–963.

[12] S. Carl and H. Dietrich, The weak upper and lower solution method for quasilinear elliptic
equations with generalized subdifferentiable perturbations, Appl. Anal. 56 (1995), 263–278.

[13] S. Carl, S. Heikkila and V. Lakshmikantham, Nonlinear elliptic differential inclusions
governed by state-dependent subdifferentials, Nonlinear Anal. 25 (1995), 729–745.

[14] E. Casas and L. A. Fernandez, A Green’s formula for quasilinear elliptic operators,
J. Math. Anal. Appl. 142 (1989), 62–73.

[15] G. Cerami, Un criterio di esistenza per i punti critici su varietà illimitate, Istit. Lombardo
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