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Abstract

The memoir is based on a series of six papers by the author published over the years 1995–2007.
It continues the work of D. Plachky (1970, 1976). It also owes some inspiration, among others,
to papers by J. Łoś and E. Marczewski (1949), D. Bierlein and W. J. A. Stich (1989), D. Bogner
and R. Denk (1994), and A. Ülger (1996). Let M and R be algebras of subsets of a set Ω with
M ⊂ R. Given a quasi-measure µ on M, i.e., µ ∈ ba+(M), we denote by E(µ) the convex
set of all quasi-measure extensions of µ to R. Moreover, we denote by s, w and w∗ the strong,
weak and weak∗ topologies of the dual Banach lattice ba(R), respectively. Our starting point
are the following two properties of E(µ) and extrE(µ), which are easy consequences of known
results:

(a) (E(µ), w∗) is compact;
(b) extrE(µ) is closed in (ba(R), s).

We study the following conditions related to (a) and (b):

(i) (E(µ), s) is compact;
(ii) (E(µ), w) is compact;
(iii) s and w coincide on E(µ);
(iv) s and w coincide on extrE(µ);
(v) s and w∗ coincide on extrE(µ);
(vi) w and w∗ coincide on extrE(µ);
(vii) extrE(µ) is closed in (ba(R), w);
(viii) extrE(µ) is closed in (ba(R), w∗);
(ix) (extrE(µ), s) is compact;
(x) (extrE(µ), w) is compact;
(xi) (extrE(µ), w∗) is compact;
(xii) (extrE(µ), s) is discrete;
(xiii) (extrE(µ), w) is discrete;
(xiv) (extrE(µ), w∗) is discrete;
(xv) extrE(µ) is dense in (E(µ), w);
(xvi) extrE(µ) is dense in (E(µ), w∗).

In most cases, we find various equivalent conditions expressed in topological, affine-topological
and measure-theoretic terms. To this end, we use, in particular, the antimonogenic component
µa of µ. (This is the minimal ν ∈ ba+(M) such that ν ≤ µ and E(µ − ν) is a singleton.)
Here are some sample results: (viii) holds if and only if µa is atomic; both (xiii) and (xiv) are
equivalent to the condition that µa have finite range; (xvi) holds if and only if µa is nonatomic.
One of our main tools is an affine-topological representation of E(µ) for atomic µ as the count-
able Cartesian product of simplex like sets. We also study some other topological properties
of extrE(µ), such as zero-dimensionality and various kinds of connectedness. Some of our re-
sults involve the cardinality m of extrE(µ). In general, there are no restrictions on m except for
m 6= 0. However, if µ is nonatomic, then mℵ0 = m. The case where m ≤ ℵ0 is also thoroughly
investigated.
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Dedicated to my mother Jadwiga
and to the memory of my father Stanisław (1913–1974)

1. Introduction

Thememoir is based on a series of my papers [41], [42], [44]–[47] (1) published over the years
1995–2007. As those papers, it is concerned with the convex set E(µ) of all quasi-measure
extensions of a given quasi-measure µ, i.e., a positive additive function on an algebra M

of subsets of a set Ω, to a larger algebra R of subsets of Ω. Being contained in the dual
Banach lattice ba(R), E(µ) is equipped with the strong, weak and weak∗ topologies.

It is a classical result from the 1930s, a consequence of the Hahn–Banach theorem, that
E(µ) is always nonempty. Some special elements of E(µ) were studied by E. Marczewski
in a series of papers (see, e.g., [55] of 1951) on stochastic and set-theoretic independence,
and in a fundamental paper [53] of 1949, joint with J. Łoś.

A systematic investigation of the set E(µ) was started by D. Plachky in his Habilita-
tionsschrift [59] of 1970 (see also [60]). In particular, he noted that E(µ) is weak∗ compact,
and so has extreme points, due to the Krein–Milman theorem. He also established a nice
and useful characterization of the extreme points of E(µ) in measure-theoretic terms (see
(D) on p. 19 below). Plachky’s work was continued by W. Thomson in his dissertation [66]
of 1975. He was mainly concerned with extending positive functions defined on a family
of sets more general than an algebra and was also inspired by a question of B. de Finetti
[19, p. 79] on uniqueness of extensions.

Some other characterizations of the extreme points of E(µ) were given in my paper [39]
of 1992. They were suggested by a related result of H. Gail on measures, i.e., σ-additive
quasi-measures defined on σ-algebras of sets (see D. Bierlein and W. J. A. Stich [7]).
In the special case where R is generated, as an algebra, by M and a finite partition
of Ω, a description of the elements of E(µ) and a characterization of the extreme ones
among them were given in my paper [40] of 1993. Those results were suggested by re-
lated work concerning measures (see O. Nikodym [57], D. Bierlein [6], D. Bierlein and
W. J. A. Stich [7]).

The material presented in the memoir is divided into 13 consecutive sections followed
by the list of references and 2 indices.

Sections 2–4 explain the notation and terminology used in the text. They are mostly
standard and coincide with those of my previous papers on the subject. Sections 2–4 also
contain many auxiliary results needed in the main body, Sections 5–12. The necessary
references and, in some cases, complete proofs are provided, with the purpose of making
the memoir reasonably self-contained.

(1) Throughout the text the results of [41], [42], [46] and [47] are referred to in an abbreviated
form, according to the following pattern: “Theorem I.1” means [41, Theorem 1]”.

[6]
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Section 5 is concerned with weak compactness of E(µ). It applies a classical criterion
of relative weak compactness in ba(R), which goes back to Dunford and Schwartz [17].
The main results are Theorem 5.1, which deals with the general case, and Theorem 5.5,
where M and R are σ-algebras and µ is a measure. The latter is related to many previous
results in the literature (see [4], [21], [62], [30], [8], [44], [45]). One of the four conditions of
Theorem 5.5 equivalent to the weak compactness of E(µ) reads as follows: each element
of E(µ) is a measure.

In Section 6 a first step is taken towards investigating the affine-topological struc-
ture of the convex set E(µ), equipped with its three natural topologies. Namely, given
pairwise disjoint µj ∈ ba+(M) with µ =

∑∞
j=1 µj , a representation of E(µ) as the Carte-

sian product
∏∞
j=1E(µj) is obtained (see Theorem 6.1). Various specializations of this

representation are formulated explicitly for use in the next sections.
Section 7 establishes, using one of those specializations, some representations of E(µ)

for atomic µ. They are in the form of Cartesian products of certain simplices of quasi-
measures or measures. In the latter case, those simplices are of the type S(Z), the convex
set of Radon probability measures over a compact zero-dimensional space Z, equipped
with its three natural topologies (see Theorem 7.2(b)). This result is then combined with
the material of Section 14 in order to show some topological properties of E(µ) and
extrE(µ) in the general atomic case or under some additional assumptions on µ.

Section 8 is devoted to topological properties of the set extrE(µ) for nonatomic µ.
In particular, it is proved that extrE(µ), equipped with the strong topology, is then
pathwise connected, and is compact only if µ is monogenic, i.e., E(µ) is a singleton (see
Theorem 8.1). Moreover, extrE(µ) is weak∗ dense in E(µ), and extrE(µ) is weakly closed
only if µ is monogenic (see Theorem 8.6). It is worth-while to note that Sections 7 and 8
are mutually independent, as far as the proofs are concerned.

Section 9 is the central one in the memoir. Some results of Sections 7 and 8 are com-
bined there in order to express topological properties of extrE(µ) and affine-topological
properties of E(µ) in terms of µa, the antimonogenic component of µ. In particular, it is
shown that extrE(µ), equipped with any of its three natural topologies, is zero-dimensional
[connected] if and only if µa is atomic [nonatomic] (see Theorems 9.1 and 9.7, respectively).

Section 10 is concerned with strong compactness of E(µ). It turns out that this prop-
erty is equivalent to the conjunction of weak compactness of E(µ) and atomicity of µa.
Another equivalent property is the following one: E(µ), equipped with any of its three
natural topologies, is affinely homeomorphic to a countable Cartesian product of finite-
dimensional simplices (see Theorem 10.2).

In Section 11 it is shown that E(µ) has finitely many extreme points if and only if
it is affinely isomorphic to a finite Cartesian product of finite-dimensional simplices if
and only if it is finite-dimensional (see Theorem 11.2). A countable counterpart of the
equivalence of the first two conditions is also established (see Theorem 11.1). Moreover,
a further equivalent condition expressed in purely measure-theoretic terms is found (see
Theorem 11.6).

Section 12 is devoted to the cardinality m of extrE(µ). In general, there are no
restrictions on m except for m 6= 0. The situation changes when we set some natural
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restrictions on µ alone or on the triplet M, R, µ. For example, if µ is nonatomic, then m

is an ω-power, i.e., m = mℵ0 (see Theorem 12.1). Moreover, if M and R are σ-algebras
and µ is an atomic measure, then m is either finite or equals c or is an ω-power ≥ 2c (see
Theorem 12.8(b)).

Section 13 discusses briefly five open problems on E(µ) and extrE(µ) and calls the
reader’s attention to the problems formulated in other sections.

The final Section 14 gathers together some auxiliary results on the convex set S(Z)

of Radon probability measures over a compact space Z and its extreme points. Some of
those results are more or less known, but I have decided to include the simple proofs
or at least sketches thereof. New seems to be, however, Theorem 14.5, which charac-
terizes the atomic elements of S(Z) in topological terms. What is actually needed is
the following consequence of that characterization: Z is scattered if and only if the
strong and weak topologies coincide on S(Z) (see Corollary 14.6). Up to small details
(some notation and Lemma 3.1), Section 14 can be read independently of the rest of the
memoir.

Some relations between the various properties of µ, E(µ) and extrE(µ), discussed in
the memoir, are summarized in the diagram opposite. The symbols s, w and w∗ denote
the strong, weak and weak∗ topologies of ba(R), respectively. The symbols −→ and ←→
have the usual meaning. The accompanying numbers refer to the corresponding results
in the text.

Some of my sources of inspiration have already been indicated above. I would like to
mention, pars pro toto, two more: the papers [8] by D. Bogner and R. Denk, and [68]
by A. Ülger. Many results of the former paper are generalized below, especially in Sec-
tion 11. The latter paper considers, in a different context, some questions on closedness,
discreteness and coincidence of topologies, which suggest similar questions concerning
E(µ) and extrE(µ), equipped with their three natural topologies. For some answers, in
our context, see, e.g., Theorems 9.1, 9.4 and 9.6, and Corollary 9.2.

The main novelty of the memoir consists in a rearrangement and systematic pre-
sentation of the material of [41], [42] and [44]–[47]. Some results that are implicit in
those papers have now been formulated explicitly (see, e.g., Theorem 8.2). Among the
few new results are Proposition 3.6, due to H. Weber, and Corollary 5.8. The present
approach differs from the original one in two respects. First, the atomic case is treated
below in a less elementary way than before, involving Radon measures. The advantage
is that the representation theorems obtained are now mainly in terms of S(Z), where Z
is a compact zero-dimensional space, a standard object in abstract analysis. Second, the
nonatomic case is treated below in a more elementary way than before, avoiding any use
of measures. This new approach leads to slightly stronger results and, more importantly,
to a better understanding of the nature of things.

Some material of [41], [42], [44] and [47] is not incorporated into the memoir. Omitted
are, first of all, the results of [41] and [42] on Eσ(µ), the convex subset of E(µ) consisting
of measures, which is defined in the case where M and R are σ-algebras and µ is a mea-
sure. The reason is that those results are rather fragmentary and the set Eσ(µ) would
deserve a separate, more thorough investigation. For a similar reason, omitted are also
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(extrE(µ), w) discrete �
8.4- (extrE(µ), s) discrete �

9.4- µa has finite range

extrE(µ) countable

11
.1

-

µa atomic

-

extrE(µ) finite

6

-

(E(µ), s) compact -

11.1

-

s = w on E(µ)

�

9.6

(extrE(µ), w∗) discrete

�

9.2

-

(E(µ), w) compact
?

µ atomic
7.7

6

�4.4(a)- w = w∗ on E(µ)

almost all results of [47, Section 5] on the coincidence of strong and weak∗ topologies
on extrE(µ). Besides, the memoir does not contain any results of my recent paper [48],
even though it has some connections to Section 12 (see Problem 13.3 and the comments
following it).

The significance of the memoir seems to go beyond its results and problems in them-
selves. In fact, the material presented suggests some new directions of research in related
fields. This concerns, first of all, geometric functional analysis, where a parallel study of
some other classes of convex sets in general (dual) Banach spaces and Banach lattices
might be of interest. Among those classes are closed unit balls, their positive parts and
some extreme subsets (= faces) thereof. Sample topics for consideration include affine-
topological structure, cardinality and topological properties of the sets of extreme points,
coincidence of various topologies. This last topic possibly deserves attention of general
topologists as well.

Next, E(µ) can be interpreted as the set of positive-operator extensions of a positive
operator defined on a subspace of an appropriate vector lattice. This point of view was
adopted, among other papers, in [51] and [50] and led to some interesting general results.
One might try a similar approach to some of the present material.
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Finally, E(µ) is the core of the cooperative game (Ω,R, µ∗|R) (see, e.g., [29], [30],
[62]). Thus, one might try to carry over some of the results below to the case of more
general cooperative games.

It is my pleasant duty to mention here at least some of those many who contributed, in
one way or another, to the coming of the memoir into existence. First and foremost, I am
indebted to my teachers at Wrocław University, Professors Edward Marczewski (1907–
1976) and Czesław Ryll-Nardzewski. It was their courses of lectures, seminars and papers
that kindled my interest in measure theory and functional analysis. C. Ryll-Nardzewski
also supervised my master and doctor theses (part of the latter is [36]). Many results of
[41], [42], [44] and [45] were first presented to the seminar on measure theory conducted
by Ryll-Nardzewski. The participants of the seminar are thanked for listening to my talks
and commenting on them. I am also grateful to Detlef Plachky and Wolfgang Thomsen
for collaboration, which resulted, in particular, in the joint papers [50] and [51]. Special
thanks are due to Dieter Bierlein, Jürgen Kindler and Hans Weber for their long-standing
interest in my work and inspiring contact. I also appreciate the collaboration with Viktor
Losert and Jiří Spurný on the recent joint paper [49] whose main result makes it possible
to round off some theorems of the memoir.

The memoir is dedicated to my mother Jadwiga and to the memory of my father
Stanisław. Not only do I owe them my very existence, but also a substantial part of my
personality. Being a chemical engineer, my father was, in fact, mainly interested in math-
ematics, especially in solving elementary problems. From my childhood on he took care
of my mathematical education and eventually encouraged me to study mathematics. He
strongly believed in my abilities and was happy to see the beginnings of my mathematical
career.

Acknowledgments. I am indebted to the referee for some helpful comments and to my
colleagues Gerhard Racher and Marek Wilhelm for their friendly advice and pointing out
some misprints in the original version of the text.

2. Notation and auxiliary results from outside measure theory

The set-theoretical notation we use is mostly standard. In particular, for a set Ω we
denote by 2Ω the family of all subsets of Ω and by |Ω| the cardinality of Ω. We put

[Ω]ℵ0 = {E ∈ 2Ω : |E| = ℵ0}.

In Section 12 we shall tacitly use the well-known simple proposition that

|[Ω]ℵ0 | = |Ω|ℵ0

if Ω is infinite.
Following [15, p. 452], we say that a cardinal m ≥ 1 is an ω-power if m = nℵ0 for

some cardinal n (see [12] for relevant information). The smallest ω-power > 1 is c = 2ℵ0 .
The role of ω-powers in this memoir is limited to Section 12.

Abstract Boolean algebras play some role below even though the quasi-measures we
deal with are mainly defined on an algebra of sets. In particular, we use the Stone space
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of a Boolean algebra A and the notion of superatomicity. The Stone space of A can be
identified with the set ult(A) of {0, 1}-valued quasi-measures on A equipped with an
appropriate topology. Recall that A is said to be superatomic if every subalgebra of
A is atomic (see [31, Proposition 17.5] or [5, Definition 5.3.4]). This notion appears in
Theorems 7.9, 9.6, 11.1 and 11.6.

Our terminology concerning general topology is standard and follows Engelking’s
monograph [18]. In particular, by the density character d(Z) of a topological space Z we
mean the smallest cardinal |D|, where D is a dense subset of Z. This cardinal function
appears in Theorem 8.2 and in the passage introducing Theorem 12.1.

Only Hausdorff topologies appear in this memoir, and the minimality of compact
topologies among them is tacitly used in some proofs (see [18, Corollary 3.1.14] for this
standard result).

We say that a subset of a topological space is discrete if its relative topology is discrete.
This notion appears in Theorem 7.5, Corollary 9.2, Theorem 9.4 and Proposition 14.4.
A topological space Z is called scattered if no nonempty subset of Z is dense-in-itself
(see Theorems 7.9 and 9.6, and Corollary 14.6 for the use of this notion).

Theorems 8.1 and 9.7 deal with pathwise and local pathwise connectedness. It is,
therefore, worth recalling that, for Hausdorff spaces, these properties are equivalent to
the formally stronger properties of arcwise and local arcwise connectedness, respectively
(see [18, Problem 6.3.12] or [69, Corollary 31.6]).

We note that by the product of a family of topological spaces we always mean their
Cartesian product equipped with the Tychonoff topology.

Let Z be a set equipped with two topologies τ1 and τ2 and let Y be a subset of Z.
We write

τ1 = τ2 on Y

if τ1 and τ2 restricted to Y coincide. For y ∈ Y we write

τ1 = τ2 at y on Y

if the identity on Y is a homeomorphism at y with respect to the restrictions of τ1 and τ2
to Y . (In a special case this condition is of some importance in the geometry of Banach
spaces; cf. [9, p. 50].) Clearly, τ1 = τ2 on Y if and only if τ1 = τ2 at each y ∈ Y on Y . For
the use of the last two pieces of notation see Theorems 7.4, 7.7 and 7.9, Corollary 8.7,
Theorems 9.6, 10.1 and 14.5, and Corollary 14.6.

Our terminology and notation concerning general functional analysis mostly follows
the Dunford–Schwartz monograph [17]. We also usually refer the reader to [17] when
applying standard functional-analytic results. We now introduce some additional notation
which will be often used below. We denote by s, w and w∗ the strong, weak and weak∗

topologies in the dual space X∗ of a Banach space X, respectively. The last one is also
called the X topology of X∗ (see [17, Section V.3]). For a subset K of X∗ we shall often
write

(K, s), (K,w) and (K,w∗),

meaning that K is equippped with the corresponding relative topology.
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Functional-analytic tools will be used below in the context of some special Banach
lattices originating from measure theory. They are mainly of the form ba(M), where M

is an algebra of sets (see Section 3 for definition). The relevant standard vector-lattice-
theoretic notation follows [3] and [63]. We also apply some simple results on vector lattices
(= Riesz spaces) and positive operators on them. From among those results we now
present the following two lemmas to be used in the proofs of Theorems 6.1(b) and 11.2,
(ii)⇒(iii). Lemma 2.2 is a finitary version of [44, Proposition 2].

2.1. Lemma (= Lemma II.2). Let X be a vector lattice and xj , yj ∈ X for j ∈ J . If
xj ∧ yk = 0 whenever j 6= k and ∨

j∈J
xj =

∨
j∈J

yj ,

then xj = yj for all j.

Proof. In view of [3, Theorem 1.5], we have

xj = xj ∧
∨
k∈J

xk = xj ∧
∨
k∈J

yk =
∨
k∈J

(xj ∧ yk) = xj ∧ yj .

For the same reason, yj = xj ∧ yj , whence xj = yj .

2.2. Lemma. Let x10, x11, . . . , xn0, xn1 be nonzero pairwise disjoint elements of a vector
lattice X. Then there exist (ηjk) ∈ {0, 1}n, j = 1, . . . , n+ 1, such that the set{ n∨

k=1

xkηjk
: j = 1, . . . , n+ 1

}
is linearly independent.

Proof. The assertion is clear for n = 1. Suppose it holds for some n, and denote the
corresponding elements by y1, . . . , yn+1. Set

zj = yj ∨ xn+1,0, j = 1, . . . , n+ 1.

Since
xn+1,0 /∈ lin{y1, . . . , yn+1},

the elements z1, . . . , zn+1 are also linearly independent and are all disjoint from xn+1,1.
Thus, setting zn+2 = y1 ∨ xn+1,1, we complete the induction argument.

3. Measure-theoretic preliminaries

For standard measure-theoretic results applied below we mainly refer the reader to the
book [5]. In this connection we note that our terminology differs from that of [5] at some
points. In particular, we use the terms algebra [σ-algebra] of sets and quasi-measure, the
corresponding terms in [5] being field [σ-field] of sets and positive finite charge.

Throughout the memoir, Ω stands for a nonempty set. The algebra and σ-algebra
generated by E ⊂ 2Ω are denoted by Eb and Eβ , respectively. Recall that if E is finite,
then there is a (finite) partition of Ω which generates Eb (cf. [5, Theorem 1.1.11]).
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If M is an algebra of subsets of Ω and {E1, . . . , En} is a partition of Ω, then

(M ∪ {E1, . . . , En})b =
{ n⋃
i=1

Mi ∩ Ei : Mi ∈M
}
.

In the case where M is a σ-algebra, so is (M ∪ {E1, . . . , En})b.
If M is a σ-algebra of subsets of Ω and {E1, E2, . . .} is a partition of Ω, then

(M ∪ {E1, E2, . . .})β =
{ ∞⋃
i=1

Mi ∩ Ei : Mi ∈M
}
.

Let now M be an algebra of subsets of Ω, and denote by ba(M) the Banach lattice of
all real-valued bounded additive functions on M (see [5, Section 2.2]). According to [5,
Theorem 2.2.1(9)], ba(M) is Dedekind (= boundedly) complete. As usual, |ϕ| stands for
the modulus of ϕ ∈ ba(M) and ∨ and ∧ for the maximum and minimum operations in
ba(M), respectively. With this notation, we have ‖ϕ‖ = |ϕ|(Ω). Moreover, [0, µ] denotes
the order interval in ba(M) with endpoints 0 and µ ∈ ba+(M). Recall that for µ1, µ2 ∈
ba+(M) we have µ1 ∧ µ2 = 0 if and only if for every ε > 0 there exists M ∈ M with
µ1(M) + µ2(M c) < ε (see [5, Theorem 2.2.1(7)]).

With µ ∈ ba+(M) we associate the quotient Boolean algebra M(µ) of M modulo the
ideal of µ-null sets. We equip M(µ) with the usual Fréchet–Nikodym µ-metric induced
by the pseudometric

(M1,M2) 7→ µ(M1 MM2)

on M.
Let µ ∈ ba+(M). Adapting a general vector-lattice-theoretic terminology (see [3,

p. 36]), we say that ν ∈ ba(M) is a component of µ if

ν ∧ (µ− ν) = 0.

We denote by Uµ the set of all components of µ which take at most two values. As easily
seen (cf. [5, Proposition 5.2.2]), for different ν1, ν2 ∈ Uµ we have ν1 ∧ ν2 = 0. Therefore,
Uµ is countable.

We say that µ is nonatomic provided for every ε > 0 there exists an M-partition
{M1, . . . ,Mn} of Ω with µ(Mi) < ε for all i (see [5, Definition 5.1.4], where the term
strongly continuous is used). We say that µ is (purely) atomic provided µ∧ν = 0 for every
nonatomic ν ∈ ba+(M). According to the Sobczyk–Hammer decomposition theorem [5,
Theorem 5.2.7], µ is atomic if and only if µ =

∑
ν∈Uµ ν, while µ is nonatomic if Uµ = {0}.

Moreover, µ = µ1 + µ2, where µ1, µ2 ∈ ba+(M), µ1 is atomic and µ2 is nonatomic. We
shall use this decomposition in the proofs of Theorems 9.1, 9.6, 9.7 and 12.8.

For µ, ν ∈ ba+(M) we write µ� ν if µ is absolutely continuous with respect to ν, i.e.,
the familiar ε–δ condition holds (see [5, Definition 6.1.1]).

As usual, we associate with µ ∈ ba+(M) the inner and outer quasi-measures µ∗ and
µ∗ defined, for all E ⊂ Ω, by the formulas

µ∗(E) = sup{µ(M) : E ⊃M ∈M},
µ∗(E) = inf{µ(M) : E ⊂M ∈M}.
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In addition to the strong topology, we shall consider ba(M) with its weak and weak∗

topologies (2). The weak∗ topology makes the evaluation mappings ϕ 7→ ϕ(M), where
M ∈M, continuous on ba(M). In the sequel we shall only deal with bounded subsets of
ba(M) and we shall tacitly use the simple assertion that on such sets the weak∗ topology
is the weakest topology for which the evaluation mappings are continuous.

We set

pa(M) = {µ ∈ ba+(M) : µ(Ω) = 1},
ult(M) = {µ ∈ pa(M) : µ is two-valued}.

We note that pa(M) is a nonempty convex set, which is weak∗ compact. The latter
is, in view of Example 4.1, a special case of Proposition 4.4(a).

The following well-known lemma is due to Choquet [11, p. 245]. As noted by Plachky
[60, Remark 1 on Theorem 1], it is an obvious consequence of his extremality criterion [60,
Theorem 1]; see also (D) in the next section. For the reader’s convenience we include
a direct and simple proof below.

3.1. Lemma. We have
extr pa(M) = ult(M).

Proof. The inclusion “⊃” is clear since, for every π ∈ ult(M) and % ∈ ba+(M) with % ≤ π,
we have % = %(Ω)π.

For the converse inclusion, consider µ ∈ pa(M) with 0 < µ(N) < 1 for some N ∈M.
Set

µ1(M) =
µ(M ∩N)

µ(N)
and µ2(M) =

µ(M ∩N c)

µ(N c)
for M ∈M.

We have µ1, µ2 ∈ pa(M) and µ = µ(N)µ1 + µ(N c)µ2, and so µ /∈ extr pa(M).

We proceed with an elementary lemma, which will be used in the proofs of Lemma 11.4
and Theorem 11.6. Its connection with Corollary 6.4 is explained in Remark 6.5.

3.2. Lemma. If µ ∈ ba+(M) has finite range and µ 6= 0, then there exists a partition
{Ω1, . . . ,Ωp} of Ω consisting of µ-atoms. Set µj(M) = µ(M ∩ Ωj), M ∈M. Then µj ∈
ba+(M) is two-valued and

µ =

p∑
j=1

µj .

This is essentially a special case of [5, Lemma 11.1.3].
To establish Proposition 6.9 we shall need the following lemma.

3.3. Lemma (= [44, Lemma 2]). If µ ∈ ba+(M) has infinite range, then there exist
nonzero µj ∈ ba+(M) with µj ∧ µj′ = 0 whenever j 6= j′ and µ =

∑∞
j=1 µj.

Proof. By assumption, for every Ω0 ∈M, at least one of the sets

{µ(M ∩ Ω0) : M ∈M}, {µ(M ∩ Ωc0) : M ∈M}

(2) Recall that the canonical Banach-lattice predual of ba(M) is the Banach lattice of uniform
limits of M-simple functions with the uniform norm and pointwise operations and order (see [5,
Section 4.7] or [17, Section IV.5]).
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is infinite. Therefore, we can choose, by induction, pairwise disjoint sets Ω1,Ω2, . . . in M

with µ(Ωj) > 0 for every j. Set µj(M) = µ(M ∩ Ωj) for every M ∈M and j = 2, 3, . . . ,

and µ1 = µ−
∑∞
j=2 µj .

The next lemma will be used in the proof of Theorem 8.1. Both parts of it have been
known for a long time; see, e.g., [22, Proposition (2.5), i)⇒vi)] for part (a) and Lemma I.3
for part (b). Some more references for the latter assertion are given in [41, p. 353].

3.4. Lemma. Let µ ∈ ba+(M) be nonatomic.

(a) There exists a countable family C ⊂ M linearly ordered by inclusion such that µ(C)

is dense in [0, µ(Ω)].
(b) If µ(Ω) > 1, there exist Mj ∈M, j = 1, 2, . . . , with µ(Mj \Mk) > 1

4 whenever j 6= k.

Proof. (a): We call a finite sequence

∅ = N1 ⊂ · · · ⊂ Nk = Ω

in M an ε-chain, where ε > 0, if µ(Ni+1 \ Ni) < ε for i = 1, . . . , k − 1. Using the
nonatomicity of µ, we can define, by induction, a 1

n -chain Cn, n = 1, 2, . . . , so that
C1 ⊂ C2 ⊂ · · · . It follows that C =

⋃∞
n=1 Cn is as desired.

(b): By induction, we can define Ωη1...ηj ∈M, ηi = 0 or 1; i = 1, . . . , j; j = 1, 2, . . . ,

with the following properties:

Ωη1...ηj0 ∪ Ωη1...ηj1 = Ωη1...ηj ,

Ωη1...ηj0 ∩ Ωη1...ηj1 = ∅ and µ(Ωη1...ηj ) > 2−j .

(By definition, Ω∅ = Ω.) Put

Mj =
⋃

ηi=0,1

Ωη1...ηj−10, j = 1, 2, . . . .

We have

Mj \Mk =


⋃

ηi=0,1

Ωη1...ηk−11ηk+1...ηj−10 if j > k,

⋃
ηi=0,1

Ωη1...ηj−10ηj+1...ηk−11 if j < k,

and the assertion follows.

We proceed with a lemma which will be needed in the proof of Proposition 3.6.

3.5. Lemma. Let µ ∈ ba+(M) be nonatomic and let 0 ≤ t ≤ µ(Ω). Then there exists
a component ν of µ with ν(Ω) = t.

Proof. We assume t > 0. Using the nonatomicity of µ, we can find M1 ⊂M2 ⊂ · · · in M

such that
t− 1

j
< µ(Mj) < t, j = 1, 2, . . . .

Set ν(M) = limj µ(M ∩ Mj) for M ∈M. Clearly, we have ν ∈ ba+(M), ν ≤ µ and
ν(Ω) = t. We also have

ν(Mk) = µ(Mk), k = 1, 2, . . . .
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Hence ν(Ω \Mk) = t− µ(Mk) < 1
k and (µ− ν)(Mk) = 0. Consequently, ν ∧ (µ− ν) = 0,

completing the proof.

The next result is a finitely additive generalization of Lemma I.5 and plays a similar
role below (see the proof of Theorem 8.3). It was first established by Hans Weber in 1994
(unpublished), in answer to a question of the author, who subsequently found a proof of
his own. In what follows an elementary version of Weber’s proof, based only on Lemma 3.5
and the Lebesgue decomposition theorem in ba(M), is given.

3.6. Proposition (H. Weber). Let µ1, . . . , µn ∈ ba+(M) be nonatomic. Then there exist
ν1, . . . , νn ∈ ba+(M) with the following properties:

νi � µi, νi(Ω) = µi(Ω) for i = 1, . . . , n,

νi ∧ νi′ = 0 whenever i 6= i′ and
n∑
i=1

νi =

n∑
i=1

µi.

Proof. We first establish the assertion in the case where n = 2 and µ1 � µ2. (The
property ν2 � µ2 is then a consequence of the other properties of ν1 and ν2.) By the
Lebesgue decomposition theorem (see [5, Theorem 6.2.4]), there exist µ′2, µ′′2 ∈ ba+(M)

with
µ2 = µ′2 + µ′′2 , µ′2 ∧ µ1 = 0 and µ′′2 � µ1.

We then have (µ1 + µ′′2) ∧ µ′2 = 0. In view of Lemma 3.5, there exists a component ν1 of
µ1 + µ′′2 with ν1(Ω) = µ1(Ω). Setting ν2 = µ1 + µ2 − ν1, we are done.

In the general case, we proceed by induction. The assertion is plain for n = 1. Suppose
it holds for some n and let µ1, . . . , µn+1 ∈ ba+(M) be nonatomic. We additionally assume
that µi ∧ µi′ = 0 whenever 1 ≤ i, i′ ≤ n and i 6= i′, which is legitimate, due to the
induction hypothesis. Using the Lebesgue decomposition theorem consecutively n times,
we get λi ∈ ba+(M) such that

λi � µi and λn+1 ∧ µi = 0, i = 1, . . . , n, and
n+1∑
i=1

λi = µn+1.

By what we have proved so far, there exist κi, νi ∈ ba+(M) such that

κi � λi, νi � µi, κi(Ω) = λi(Ω), νi(Ω) = µi(Ω),

κi ∧ νi = 0 and κi + νi = λi + µi,

i = 1, . . . , n. We then have

κi � µn+1 and νi ∧ λn+1 = 0 = νi ∧
n∑
j=1

κj , i = 1, . . . , n.

Moreover,
n∑
i=1

νi =

n∑
i=1

(λi + µi − κi) =

n+1∑
j=1

µj −
n∑
i=1

κi − λn+1 and
n∑
i=1

νi(Ω) =

n∑
i=1

µi(Ω).

Setting

νn+1 =

n∑
i=1

κi + λn+1,

we complete the induction procedure.
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If M is a σ-algebra of subsets of Ω, we set

ca(M) = {ϕ ∈ ba(M) : ϕ is σ-additive}.
The elements of ca+(M) are called measures.

The following lemma is due essentially to Lembcke [33, Lemma 1]; see also [37,
Lemma 4]. It will be used in the proofs of Corollary 5.9 and Theorem 11.7.

3.7. Lemma. Let M and R be σ-algebras of subsets of Ω and let E be a countable partition
of Ω with R = (M ∪ E)β. If % ∈ ba+(R) satisfies the following two conditions:

1◦ %|M is a measure,
2◦ %(Ω) =

∑
E∈E %(E),

then % itself is a measure.

We now introduce some more notation which will be mainly used in Sections 7 and 14.
Most of it follows essentially Semadeni’s monograph [63]. Let Z be a compact space. We
denote by CO(Z) the algebra of open-and-closed subsets of Z and by B(Z) the σ-algebra
of Borel subsets of Z. Let M(Z) stand for the Banach lattice of real-valued Radon
measures on Z (see [63, Section 18]). By the Riesz representation theorem,M(Z) can be
identified with the dual of the Banach lattice C(Z) of real-valued continuous functions
on Z. This identification yields the weak∗ topology ofM(Z).

Put
S(Z) = {ϕ ∈M+(Z) : ϕ(Z) = 1}.

Clearly, S(Z) is convex and weak∗ compact, by Alaoglu’s theorem. In fact, it is a simplex
with the set of extreme points closed (see [63, Section 23]; cf. also Proposition 14.1).

The next proposition is known in various versions (see, in particular, [17, Lemma
IV.9.11(a)], [24, Lemma 4], Proposition IV.1(a)). We shall need it in the discussion of
Example 4.1 and in the proof of Theorem 7.2(b).

3.8. Proposition. Let Z be a compact zero-dimensional space. There exists a surjective
linear mapping T : ba(CO(Z))→M(Z) with the following properties:

1◦ T is an isometry and a lattice homomorphism;
2◦ T is a homeomorphism with respect to the corresponding weak∗ topologies;
3◦ T (pa(CO(Z))) = S(Z).

Without going into the details of proof, we note that the canonical predual of
ba(CO(Z)) coincides with C(Z) whenever Z is compact and zero-dimensional. Moreover,
T is defined so that

T (ϕ)|CO(Z) = ϕ for ϕ ∈ ba(CO(Z))

(see [5, Section 4.7]).

4. Auxiliary results on E(µ) and extrE(µ)

Throughout the rest of the memoir, M and R stand for algebras of subsets of Ω with
M ⊂ R. Occasionally, they are assumed to be σ-algebras, which is then mentioned
explicitly.
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Given µ ∈ ba+(M), we denote by Jµ the family of all R ∈ R such that there exists
M ∈M with

R ⊂M and µ(M) = 0.

Clearly, Jµ is an ideal in R. Moreover, we denote by Mµ the family of all R ∈ R such
that, for every ε > 0, there exist M,N ∈M with

M ⊂ R ⊂ N and µ(N \M) < ε

or, equivalently, µ∗(R) = µ∗(R). As easily seen,Mµ is a subalgebra ofR containingM∪Jµ
(see [36, Proposition 1], where somewhat different notation is used), and Mµ = (Jµ)b for
µ ∈ ult(M). In the case where R = 2Ω it is called the Peano–Jordan completion of M
with respect to µ in [36]. For the use of Mµ below see Lemma 4.7 and Proposition 4.8 as
well as Section 11.

Set
E(µ) = {% ∈ ba+(R) : %|M = µ}.

Occasionally, we shall use the more comprehensive notation E(µ,R) instead of E(µ).
As simple as it is, the following example is basic for our study of the sets E(µ) in the

case where µ is atomic. This is due to Corollary 6.4 and Proposition 7.1.

4.1. Example. Let M = {∅,Ω}, let R be an algebra of subsets of Ω and let µ be the
unique probability quasi-measure on M. We then have E(µ) = pa(R), and so extrE(µ) =

ult(R), by Lemma 3.1. Choosing now Ω to be a compact zero-dimensional space, we find,
for R = CO(Ω), that

1◦ (extrE(µ), w∗) is homeomorphic to Ω;
2◦ (extrE(µ), w) is discrete.

Indeed, 1◦ is essentially part of the Stone representation theorem and is also a consequence
of Propositions 14.1 and 3.8. As for 2◦, see Propositions 14.4(c) and 3.8, or Lemma II.3(a)
whose proof is more direct. It follows from 1◦ that |extrE(µ)| can be an arbitrary cardinal
m ≥ 1. This is clear if m is finite. In the opposite case, we can take for Ω the one-point
compactification of a discrete space of cardinality m (see [31, Example 17.3]).

It is a classical result that E(µ) is nonempty for arbitrary M, R and µ ∈ ba+(M). It
goes back to Łomnicki and Ulam [52, pp. 255–256]; see [5, Chapter 3] for related results
and references. We shall use it tacitly on some occasions. According to another classical
result, due essentially to Tarski [65, lemme 4] and Ulam [67], we have

E(µ) ∩ ult(R) 6= ∅ provided µ ∈ ult(M).

Let µ ∈ ba+(M). Clearly, for % ∈ E(µ) and R ∈ R we have

µ∗(R) ≤ %(R) ≤ µ∗(R).

Moreover, according to Łoś and Marczewski [53, Theorem 1], given R ∈ R, there exist
%1, %2 ∈ E(µ) with

%1(R) = µ∗(R) and %2(R) = µ∗(R).
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If, in addition, R = (M∪{R})b, then %1 and %2 as above are unique (see [53, Section 7]).
This implies that %1 and %2 are then in extrE(µ). It follows, by transfinite induction,
that we always have

(C) extrE(µ) 6= ∅.

This result was first noticed by Plachky [59, p. 25], who deduced it from the weak∗ com-
pactness of E(µ) (see Proposition 4.4(a)) and the Krein–Milman theorem. The argument
above actually yields the following two strengthenings of (C):

(C)∗ min
%∈E(µ)

%(R) = min
π∈extrE(µ)

π(R) = µ∗(R) for R ∈ R;

(C)∗ max
%∈E(µ)

%(R) = max
π∈extrE(µ)

π(R) = µ∗(R) for R ∈ R.

For applications of (C)∗ and (C)∗ see the proofs of Lemma 4.7, Proposition 4.9 and
Theorem 5.1.

The following extremality criterion is also due to Plachky ([59, Satz 1.15] and [60,
Theorem 1]); see [51, Theorem 4] for a generalization with another proof. It will be one
of our main tools in the sequel.

(D) Let % ∈ E(µ). Then % ∈ extrE(µ) if and only if for every R ∈ R and every ε > 0

there exists M ∈M with %(R MM) < ε.

Recall that one of the consequences of (D) is Lemma 3.1 above. In fact, (D) even yields
the following generalization thereof, which will be applied in the proofs of Proposition 6.6,
Lemma 11.4 and Theorem 12.11.

(D)′ For µ ∈ ult(M) we have extrE(µ) = E(µ) ∩ ult(R).

We note that (D)′ can also be deduced from Lemma 3.1, since E(µ) is an extreme subset
of pa(R) whenever µ ∈ ult(M).

The next lemma is, for n = 2, a reformulation of the necessity part of (D). It will be
used, together with Remark 4.3, in the discussion of Example 8.8.

4.2. Lemma (= Lemma I.1). If µ ∈ ba+(M) and π ∈ extrE(µ), then for every R-
partition {R1, . . . , Rn} of Ω and every ε > 0 there exists an M-partition {M1, . . . ,Mn}
of Ω with

n∑
i=1

π(Ri MMi) < ε.

Proof. We may assume that n ≥ 2. Put ε1 = ε/(2(n− 1)2), and choose, by (D), Ni ∈M

with
π(Ri M Ni) < ε1, i = 1, . . . , n− 1.

For i 6= j we have
Ni ∩Nj ⊂ (Ni \Ri) ∪ (Nj \Rj),

whence π(Ni ∩Nj) < 2ε1. Define

M1 = N1 and Mi+1 = Ni+1 \
i⋃

j=1

Nj , i = 1, . . . , n− 2.
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It follows that π(Ri+1 M Mi+1) < (2i + 1)ε1, i = 0, . . . , n − 2. This implies that∑n−1
i=1 π(Ri MMi) < ε/2. Define Mn = (

⋃n−1
i=1 Mi)

c. Since

Rn MMn ⊂
n−1⋃
i=1

(Ri MMi),

we have π(Rn MMn) < ε/2. The assertion follows.

4.3. Remark (= Remark I.1). In the setting of Lemma 4.2 we have
n⋃
i=1

(Ri MMi) ∪
n⋃
i=1

(Ri ∩Mi) = Ω.

The following version of (D), which first appears in [60, Remark 2 on Theorem 1], will
be applied in the proof of Proposition 12.4.

(GD) Let E ⊂ 2Ω be such that (M∪E)b = R and let % ∈ E(µ). Then % ∈ extrE(µ) if and
only if for every E ∈ E and every ε > 0 there exists M ∈M with %(E MM) < ε.

This is a consequence of (D), since the family of all R ∈ R such that for every ε > 0 there
exists M ∈M with %(E MM) < ε is a subalgebra of R.

The next result will be used on many occasions below. It coincides with Proposi-
tion I.1. Part (a) thereof was first noticed by Plachky [59, p. 24–25].

4.4. Proposition. Let µ ∈ ba+(M). Then

(a) (E(µ), w∗) is compact;
(b) extrE(µ) is closed in (ba(R), s).

Proof. (a): In view of Alaoglu’s theorem, it is enough to check that E(µ) is weak∗ closed.
Now, this is seen from the representation of E(µ) in the form⋂

M∈M

{% ∈ ba(R) : %(M) = µ(M)} ∩
⋂
R∈R

{% ∈ ba(R) : %(R) ≥ 0}.

(b): This follows by (D), since the density condition is preserved when we pass from
a sequence of quasi-measures to its strong limit.

The following lemma coincides with Lemma II.4, but the proof of part (d) given below
is more elementary (see also [60, p. 195] for that part). It will be instrumental in the proofs
of Theorems 8.1(a), (b) and 8.2.

4.5. Lemma (= Lemma II.4). Let µ ∈ ba+(M) and N ∈M. Given %1, %2 ∈ E(µ), define

%(R) = %1(R ∩N) + %2(R ∩N c) for R ∈ R.

Then

(a) % ∈ E(µ);
(b) (%− %2)(R) = (%1 − %2)(R ∩N) for R ∈ R;
(c) ‖%− %2‖ ≤ ‖%1 − %2‖;
(d) if %1, %2 ∈ extrE(µ), then % ∈ extrE(µ).
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Proof. Parts (a) and (b) are obvious, and (c) is a consequence of (b). Fix %1, %2 as in (d),
and set

µ′(M) = µ(M ∩N) and µ′′(M) = µ(M ∩N c) for M ∈M,

%′(R) = %(R ∩N) and %′′(R) = %(R ∩N c) for R ∈ R.

Clearly, we have µ′, µ′′ ∈ ba+(M) and %′, %′′ ∈ ba+(R). Moreover,

µ = µ′ + µ′′, % = %′ + %′′, %′ ∈ extrE(µ′) and %′′ ∈ extrE(µ′′).

It follows that % is in extrE(µ).

We continue with a result which will be applied in the proof of Theorem 8.6(c). It is
essentially a rather special case of [38, Theorem 3] (cf. also [27] and [32, Theorem 2]).

4.6. Proposition (= Proposition III.1). There exists a linear mapping

T : ba(M)→ ba(R)

such that for all ϕ ∈ ba(M) we have

1◦ T (ϕ)|M = ϕ;
2◦ given R ∈ R and ε > 0, we can find an M ∈M with |T (ϕ)|(R MM) < ε.

In particular, T is an isometry and a lattice homomorphism, and

T (ϕ) ∈ extrE(ϕ) provided ϕ ≥ 0.

Proof. Theorem 3 of [38] yields an additive mapping T : ba(M)→ ba(R) with 1◦ and 2◦.
Since

|T (ϕ)(R)− T (ϕ)(M)| ≤ |T (ϕ)|(R MM),

it follows from 1◦ and 2◦ that for ϕ ≥ 0 we have

T (ϕ) ≥ 0 and ‖T (ϕ)‖ = ‖ϕ‖.

Consequently, T is homogeneous, and T (ϕ) ∈ extrE(ϕ) provided ϕ ≥ 0, by (D).
In view of 1◦ and [5], Theorem 2.2.1(7), we get that for ϕ1, ϕ2 ∈ ba(M)

ϕ1 ∧ ϕ2 = 0 implies T (ϕ1) ∧ T (ϕ2) = 0.

This shows that T is a lattice homomorphism (see [3, Theorem 7.2]). It then follows that

‖T (ϕ)‖ = ‖ |T (ϕ)| ‖ = ‖T (|ϕ|)‖ = ‖ϕ‖

for ϕ ∈ ba(M), which completes the proof.

The author does not know whether the mapping T of Proposition 4.6 can be, in
addition, continuous with respect to the corresponding weak∗ topologies.

The next simple lemma serves as a preparation for introducing a decomposition of
µ ∈ ba(M) which will be important in our study of E(µ). The equivalence of (i) and (iv)
thereof is well known (see, e.g., [60, Theorem 2]). That (ii) implies (i) is a consequence of
Proposition 4.4(a) and the Krein–Milman theorem, but the proof given below is purely
measure-theoretic.
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4.7. Lemma. For µ ∈ ba+(M) the following four conditions are equivalent:

(i) |E(µ)| = 1;
(ii) |extrE(µ)| = 1;
(iii) for every ν ∈ [0, µ] we have |E(ν)| = 1;
(iv) Mµ = R.

Proof. The implications (iv)⇒(iii)⇒ (i)⇒(ii) are clear. Suppose (iv) fails. It then follows
by (C)∗ and (C)∗ that (ii) fails as well.

We call µ ∈ ba+(M) monogenic (with respect to R) if the equivalent conditions of
Lemma 4.7 hold. (In [59, p. 52] the term eindeutig positiv fortsetzbar is used.) This
notion is closely related to that of a monogenic operator on a vector lattice introduced
in [50]. We call µ ∈ ba+(M) antimonogenic (with respect to R) if, for every monogenic
ν ∈ ba+(M) with ν ≤ µ, we have ν = 0.

The following result is due essentially to Plachky [59, Satz 5.5]; see also [60, Remark 2
on Theorem 2], Lemma II.1 and [44, p. 471, (CA)].

4.8. Proposition. For every µ ∈ ba+(M) there exist unique µm, µa ∈ ba+(M) with the
following properties:

1◦ µ = µm + µa;
2◦ µm is monogenic;
3◦ µa is antimonogenic.

Moreover, Mµa = Mµ.

Proof. Without the final part, the lemma can be derived from [50, Theorem 1] with the
help of the Riesz decomposition property [3, Theorem 3.7]. Alternatively, observe that,
for µ1, µ2 ∈ ba+(M), we have

Mµ1+µ2
= Mµ1

∩Mµ2
.

This shows that µ1 + µ2 is monogenic provided so are µ1 and µ2. In this case, µ1 ∨ µ2 is
also monogenic. Thus, the set

{ν ∈ [0, µ] : ν is monogenic}

is directed upward in the Dedekind complete lattice ba(M). Denote by µm its supremum,
and observe that µm satisfies condition (iv) of Lemma 4.7. Setting µa = µ− µm, we see
that 1◦ and 3◦ also hold. Using 1◦ and arguing as above with µ1 = µm and µ2 = µa, we
get the final part of the assertion.

We call µm and µa the monogenic and antimonogenic components of µ, respectively.
The latter component plays a major role below, starting with Corollary 6.2. We note that
µm can also be defined by a formula involving µ∗|R (see [60, Remark 2 on Theorem 2]).

For µ ∈ ult(M) we have µ = µm or µ = µa, i.e., µ is either monogenic or antimono-
genic. Therefore, the decomposition of Proposition 4.8 is straightforward for atomic µ.

The next proposition will be used in Examples 7.11 and 12.7. A part of it is a version
of [45, Proposition 3]. Another part of it provides natural examples of antimonogenic
quasi-measures in a classical setting.
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4.9. Proposition. Let µ ∈ ba+(M) and let R = (M ∪ {E})b, where E ⊂ Ω.

(a) If M(µ) is metrically complete, then |extrE(µ)| ≤ |M(µ)|.
Suppose, in addition, that µ∗(E) = µ∗(E

c) = 0. Then

(b) µ is antimonogenic;
(c) |extrE(µ)| ≥ |M(µ)|;
(d) if M is a σ-algebra and µ is a measure, then |extrE(µ)| = |M(µ)|.
Proof. We first establish the following equivalence. Given π1, π2 ∈ E(µ) and N1, N2 ∈M

with πi(E M Ni) = 0, i = 1, 2, we have
π1 = π2 if and only if µ(N1 M N2) = 0.

Indeed, if π1 = π2, then
µ(N1 M N2) = π1(E M N2) = π2(E M N2) = 0.

The “if” part follows from the equality

πi((M1 ∩ E) ∪ (M2 ∩ Ec)) = µ((M1 ∩Ni) ∪ (M2 ∩N c
i )),

where M1,M2 ∈M and i = 1, 2.
(a): Given π ∈ extrE(µ), there exists, by assumption and (D), Nπ ∈ M with

π(E M Nπ) = 0. Thus, in view of the equivalence above, the mapping

extrE(µ) 3 π 7→ Nπ ∈M

induces an injection of extrE(µ) into M(µ).
(b): Let ν ∈ [0, µ] be monogenic. Condition (iv) of Lemma 4.7 then shows that

ν∗(E) = ν∗(E) and ν∗(E
c) = ν∗(Ec).

It follows that ν∗(E) = ν∗(Ec) = 0, whence ν = 0.
(c): Given N ∈M, we have µ∗(E M N) = 0. Indeed, ifM ∈M andM ⊂ E M N , then

M ∩N ⊂ Ec and M ∩N c ⊂ E, whence µ(M) = 0. By (C)∗, there exists πN ∈ extrE(µ)

with πN (E M N) = 0. In view of the equivalence established at the beginning of the
proof, the mapping

M 3 N 7→ πN ∈ extrE(µ)

induces an injection of M(µ) into extrE(µ).
(d): In view of a classical result, this is a consequence of (a) and (c).

5. Weak compactness of E(µ)

The material of this section is mainly a development of [47, Section 6]. We start by
recalling that a real-valued function η on M is said to be exhaustive or strongly bounded
if η(Mj)→ 0 for every sequence (Mj) inM withMj∩Mj′ = ∅ whenever j 6= j′. Moreover,
η is said to be order continuous (at ∅) if η(Mj)→ 0 for every decreasing sequence (Mj)

in M with
⋂∞
j=1Mj = ∅.

The equivalence of conditions (i) and (iii) in the following theorem is also the contents
of Theorem IV.5. That (ii) implies (i) is a direct consequence of Proposition 4.4(a) and
Proposition III.2.
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5.1. Theorem. For µ ∈ ba+(M) the following three conditions are equivalent:

(i) (E(µ), w) is compact;
(ii) extrE(µ) is relatively compact in (ba(R), w);
(iii) µ∗|R is exhaustive.

Proof. Observe that E(µ) is weakly closed (cf. the proof of Proposition 4.4(a)). Thus,
the assertion is a consequence of (C)∗ and the following well-known criterion: A subset
K of ba(R) is relatively weakly compact if and only if K is bounded and the function ηK
defined by

ηK(R) = sup{|ϕ(R)| : ϕ ∈ K}, R ∈ R,

is exhaustive (see [10, Theorem], [24, Theorem 2] or [17, Theorem IV.9.12] and [13,
Corollary I.5.4]).

We shall give two simplest possible examples of E(µ) which are not weakly compact.
In the first example µ is two-valued while in the second one µ is nonatomic.

5.2. Example (cf. Example I.1). We take up Example 4.1 and suppose R is infinite.
We can then find a sequence (Rj) in R with Rj ∩ Rj′ = ∅ whenever j 6= j′. We have
µ∗(Rj) = 1 for all j ∈ N. Therefore, E(µ) is not weakly compact, by Theorem 5.1,
(i)⇒(iii). This is also seen from Proposition 14.4(d) combined with Proposition 3.8.

5.3. Example (cf. Example I.2). Let Ω = [0, 1), and set

M = {[a, b) : 0 ≤ a < b < 1 and a, b are rational}b.

Let µ be the Lebesgue measure restricted to M. Let, further, Ej , j ∈ N, be pairwise
disjoint dense subsets of Ω, and define

R = (M ∪ {E1, E2, . . .})b.

We then have µ∗(Ej) = 1 for all j ∈ N, and so E(µ) is not weakly compact, by Theo-
rem 5.1, (i)⇒(iii).

The next result is contained in Theorem I.1(a). In the special case where M is a
σ-algebra (and so R is a σ-algebra and E(µ) ⊂ ca(R), for the latter see Theorem 5.5,
(i)⇒(iv)), it is due to Plachky [59, Satz 3.3].

5.4. Corollary. Let R = (M∪{E1, . . . , En})b, where {E1, . . . , En} is a partition of Ω,
and let µ ∈ ba+(M). Then (E(µ), w) is compact.

Proof. We shall verify condition (iii) of Theorem 5.1. To this end, let (Rk) be a sequence
in R with Rk ∩Rk′ = ∅ whenever k 6= k′. We have

Rk =

n⋃
i=1

Mk
i ∩ Ei, where Mk

i ∈M, i = 1, . . . , n; k = 1, 2, . . . .

Set N1
i = M1

i and Nk
i = Mk

i \
⋃k−1
j=1 M

j
i , i = 1, . . . , n; k = 2, 3, . . . . With this notation,

we have

Rk =

n⋃
i=1

Nk
i ∩ Ei for all k.

Since µ(Nk
i )→ 0 when k →∞, it follows that µ∗(Rk)→ 0, completing the argument.
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The following result coincides, up to condition (ii), which is new, with Theorem IV.6.
Parts of that result were previously known. Namely, the equivalence of (iii) and (iv)
is due, in a more general situation to Schmeidler [62, Theorem 3.2]; see also [30, Ex-
ample 2]. Moreover, (v) implies (iv), by [8, Lemma 1] and Proposition 4.4(a), but the
proof given below is more elementary. We also note that the equivalence of (i) and (iv)
is used in establishing Corollary 10.5. For a special case of the implication (ii)⇒(iv) see
Theorem 7.10(a). Condition (iv) also appears in Theorems 11.7 and 12.11.

5.5. Theorem. Let M and R be σ-algebras of subsets of Ω with M ⊂ R and let
µ ∈ ca+(M). Then the following five conditions are equivalent:

(i) (E(µ), w) is compact;
(ii) extrE(µ) is relatively compact in (ba(R), w);
(iii) µ∗|R is order continuous;
(iv) E(µ) ⊂ ca(R);
(v) extrE(µ) ⊂ ca(R).

Proof. As µ∗ is isotone and σ-subadditive, condition (iii) is equivalent to condition (iii)
of Theorem 5.1, by [61, Lemma 4.1] (see also [16, Theorem 5.3]). The equivalence of
conditions (i)–(iii) is now seen, due to the equivalence of the corresponding conditions of
Theorem 5.1.

Since % ≤ µ∗|R for each % ∈ E(µ), (iii) implies (iv). Clearly, (iv) implies (v).
We shall complete the proof by showing that (v) implies (iii). Fix a decreasing sequence

(Rj) in R with
⋂∞
j=1Rj = ∅, and set

R1 = (M ∪ {R1, R2, . . .})b.

By [37, Theorem 1], there exists a (unique) π1 ∈ E(µ,R1) with π1(Rj) = µ∗(Rj)
for each j. Moreover, in view of [37, Remark 1], we have π1 ∈ extrE(µ,R1). Take
π ∈ extrE(π1,R) (see (C)). Then π is in extrE(µ), and so, by (v), π(Rj) → 0. Hence
µ∗(Rj)→ 0.

5.6. Remark (= Remark IV.4). The implication (iv)⇒(i) of Theorem 5.5 is also a con-
sequence of [4, Satz 2.3] (see also [21, Proposition 2.13], or [70, Theorem 1.1]) and Propo-
sition 4.4(a).

5.7. Remark. In the setting of Theorem 5.5, the equivalent conditions (i)–(v) do not
imply the strong compactness of E(µ). This is seen from Example 12.7.

5.8. Corollary. Let M be a σ-algebra and let R = (M ∪ {E1, E2, . . .})β, where
{E1, E2, . . .} is a partition of Ω. Then for µ ∈ ca+(M) the following two conditions
are equivalent:

(i) (E(µ), w) is compact;
(ii) µ∗ (

⋃∞
i=nEi)→ 0 when n→∞.

Proof. Clearly, (i) implies (ii), by Theorem 5.5, (i)⇒(iii). To establish the converse, we
shall show that (ii) implies condition (iv) of Theorem 5.5. To this end, consider % ∈ E(µ).
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Since % ≤ µ∗|R, we infer from (ii) that

%
( ∞⋃
i=1

Ei

)
=

∞∑
i=1

%(Ei).

An appeal to Lemma 3.7 completes the proof.

For other results involving weak compactness of E(µ) see Theorems 7.7 and 8.6(b),
Corollary 12.2, Theorem IV.4, and [48, Corollary 1 and Remark 5].

6. The main product theorem

The following theorem coincides, up to a minor detail, with Theorem II.1, which has
a predecessor in Lemma I.2. The surjectivity assertion of part (a) is related to [58, Theo-
rem 4 and Corollary 5]. To obtain it, we use an argument from [39, proof of Theorem 3].
The inclusion “⊂” of part (b) is essentially a special case of [34, Lemma 2.1]. Most of the
consequences of Theorem 6.1 established after its proof will play a major role throughout
the rest of the memoir.

6.1. Theorem. Suppose µ,µj ∈ ba+(M) and
∑∞
j=1 µj = µ, and define

T :

∞∏
j=1

E(µj)→ E(µ)

by the formula T ((%j)) =
∑∞
j=1 %j. Then

(a) T is an affine surjective mapping, which is continuous with respect to the correspond-
ing strong [weak ] [weak∗] topologies, and

T−1(extrE(µ)) ⊂
∞∏
j=1

extrE(µj);

(b) T is a homeomorphism with respect to each of these three topologies and

T
( ∞∏
j=1

extrE(µj)
)

= extrE(µ)

provided µj ∧ µj′ = 0 whenever j 6= j′.

Proof. (a): Clearly, T is affine. To prove the surjectivity assertion, fix % in E(µ). We shall
define, by induction, %j ∈ E(µj) with

n∑
j=1

%j ≤ % for n = 1, 2, . . . .

By Kelley’s theorem ([28, Theorem 14]; see also [29, Example 13]), there exists %1 ∈ E(µ1)

with %1 ≤ %. Suppose %1, . . . , %n with the desired properties have already been defined.
Since

µn+1 ≤ µ−
n∑
j=1

µj =
(
%−

n∑
j=1

%j

)∣∣∣M,
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by the same argument, there exists %n+1 ∈ E(µn+1) with %n+1 ≤ %−
∑n
j=1 %j . It follows

that
∑∞
j=1 %j ≤ %. As %j ∈ ba+(R) and

∑∞
j=1 %j(Ω) = %(Ω), we conclude that T ((%j)) = %.

To prove that T is continuous with respect to the corresponding weak∗ topologies, fix
%jα, %j ∈ E(µ), where α runs through a directed set A, with %jα → %j weak∗ for all j.
Given ε > 0 and R ∈ R, we can find j0 with

∑∞
j=j0+1 µj(Ω) < ε/4, and then α0 ∈ A with

|%jα(R)− %j(R)| < ε

2j0
, j = 1, . . . , j0; α ≥ α0.

It follows that∣∣∣ ∞∑
j=1

%jα(R)−
∞∑
j=1

%j(R)
∣∣∣ ≤ j0∑

j=1

|%jα(R)− %j(R)|+
∞∑

j=j0+1

(%jα(R) + %j(R)) < ε

for all α ≥ α0.
The proof of the remaining two continuity assertions is similar. One has only to note

that for %jα and %j as above we have ‖%jα‖ = ‖%j‖ = µj(Ω). The final assertion of (a) is
a consequence of (D).

(b): Since µj ∧ µj′ = 0 implies %j ∧ %j′ = 0 whenever %j ∈ E(µj) and %j′ ∈ E(µj′)

(see [5, Theorem 2.2.1(7)]), the injectivity of T is a consequence of Lemma 2.1.
That T is a homeomorphism with respect to the corresponding weak∗ topologies now

follows by (a). Indeed, in view of Proposition 4.4(a) and Tychonoff’s product theorem,
the domain of T is compact.

We shall now show that T−1 is also continuous with respect to the corresponding
strong [weak] topologies. To this end, denote by Pj the order projection on the band
in ba(R) generated by E(µj) (see [3, Theorem 3.8]). We claim that T−1 = (Pj |E(µ)).
Indeed, fix % ∈ E(µ) and let T−1(%) = (%j). Since Pj(%k) = 0 whenever j 6= k and
Pj(%j) = %j , we have

Pj(%) = Pj

( ∞∑
k=1

%k

)
= %j

for all j. The desired continuity of T−1 follows from the claim, as the Pj are strongly
continuous, and so weakly continuous, by [17, Theorem V.3.15].

To complete the proof, we only need to observe that

extr

∞∏
j=1

E(µj) =

∞∏
j=1

extrE(µj).

The next result is a direct consequence of Theorem 6.1(a) and Proposition 4.8. It shows
that when studying the affine-topological properties of E(µ) we may always assume that
µ is antimonogenic.

6.2. Corollary (= [44, p. 471, (T) and (T′)]). For µ ∈ ba+(M) we have

(a) E(µa) is a translate of E(µ);
(b) extrE(µa) is a translate of extrE(µ).

From Theorem 6.1(b) we get the following two corollaries.
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6.3. Corollary. If µ1 ∈ ba+(M) is atomic and µ2 ∈ ba+(M) is nonatomic, then there
exists an affine isomorphism of E(µ1+µ2) onto E(µ1)×E(µ2), which is a homeomorphism
with respect to the corresponding strong [weak ] [weak∗] topologies.

6.4. Corollary. If µ ∈ ba+(M) is atomic, then there exists an affine isomorphism
of E(µ) onto

∏
ν∈Uµ E(ν), which is a homeomorphism with respect to the corresponding

strong [weak ] [weak∗] topologies.

6.5. Remark (cf. [44, p. 471, (FD)]). We shall often use Corollary 6.4 in the special case
where Uµ is finite. We note that, in that case, it can be established in a much simpler
way than Theorem 6.1. Indeed, it is enough to apply Lemma 3.2 and the property that,
for every S ∈ R, the mapping

ba(R) 3 ϕ 7→ ϕS ∈ ba(R), where ϕS(R) = ϕ(R ∩ S) for R ∈ R,

is continuous with respect to each of the three topologies of ba(R) under consideration.

The following result will be used in the proof of Theorem 11.6.

6.6. Proposition. Let N be a subalgebra of R with R = (M ∪N)b and let µ ∈ ba+(M)

be atomic. Then
|extrE(µ)| ≤ |ult(N)||Uµ|.

Proof. In view of Corollary 6.4, it suffices to show the assertion for µ ∈ ult(M). In this
case,

extrE(µ) ⊂ ult(R),

by (D)′. Fix π1, π2 ∈ extrE(µ) with π1|N = π2|N. We claim that π1 = π2. Indeed, let
R ∈ R, so that

R =

n⋃
i=1

Mi ∩Ni for some n, and Mi ∈M and Ni ∈ N, i = 1, . . . , n.

Suppose π1(R) = 0. This implies that, for each i, either π1(Mi) = 0 or π1(Ni) = 0. Hence
π2(R) = 0, and the claim follows. Thus, the mapping π 7→ π|N of extrE(µ) into ult(N)

is injective, and we are done.

By Proposition 12.4, the inequality of Proposition 6.6 turns into equality provided µ
is in ult(M) and N satisfies an additional condition.

By another application of Theorem 6.1(b), we shall show that the class of convex sets
E(µ), where M and R are arbitrary, and µ is arbitrary [atomic] [nonatomic], equipped
with any of their three standard topologies, is closed under countable Cartesian products.

6.7. Proposition (cf. Proposition IV.2). Let Mj and Rj be algebras of subsets of a set
Ωj with Mj ⊂ Rj and let µj ∈ ba+(Mj), j = 1, 2, . . . . Then there exist algebras M and R

of subsets of a set Ω with M ⊂ R, µ ∈ ba+(M) and an affine isomorphism of E(µ) onto∏∞
j=1E(µj), which is a homeomorphism with respect to the corresponding strong [weak ]

[weak∗] topologies. If µj are all atomic [nonatomic], then µ can also be chosen atomic
[nonatomic].

Proof. We assume, without loss of generality, that Ω1,Ω2, . . . are pairwise disjoint and∑∞
j=1 µj(Ωj) < ∞. Set Ω =

⋃∞
j=1 Ωj , and let M and R stand for algebras of subsets of
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Ω generated by
⋃∞
j=1 Mj and

⋃∞
j=1 Rj , respectively. Define

µ̃j(M) = µj(M ∩ Ωj) for M ∈M and j = 1, 2, . . . .

Clearly, µ̃j ∈ ba+(M) and there exists a canonical affine isomorphism of E(µj) onto
E(µ̃j), which is a homeomorphism with respect to the corresponding strong [weak] [weak*]
topologies. Set µ =

∑∞
j=1 µ̃j . Then µ ∈ ba+(M) and µ is atomic [nonatomic] if (and

only if) µj are all atomic [nonatomic]. The assertion now follows by Theorem 6.1(b).

It is a simple consequence of Proposition 6.7 that the class of convex sets E(µ) which
are strongly compact [weakly compact] [satisfy the condition that s = w on E(µ)] is
closed under countable Cartesian products.

The following result is analogous to Proposition 6.7. We omit its simple proof, which
is an obvious modification of that of Proposition 6.7.

6.8. Proposition. Let Mj and Rj be algebras of subsets of a set Ωj with Mj ⊂ Rj

and let µj ∈ ba+(Mj) have finite range, j = 1, . . . , p. Then there exist algebras M and
R of subsets of a set Ω with M ⊂ R, µ ∈ ba+(M) having finite range and an affine
isomorphism of E(µ) onto

∏p
j=1E(µj), which is a homeomorphism with respect to the

corresponding strong [weak ] [weak∗] topologies.

The next result is an immediate consequence of Lemma 3.3, Theorem 6.1(b) and
Corollary 6.2(b). It will be used in the proof of Theorem 11.1.

6.9. Proposition (= [44, Proposition 1]). If µ ∈ ba+(M) and µa has infinite range,
then |extrE(µ)| ≥ c.

It is also worth-while to note the following direct consequence of Theorem 6.1(b)
and (D) although it will not be used in the sequel.

6.10. Proposition (cf. Theorem I.2(a)). If µ ∈ ba+(M) is atomic, then each element
of extrE(µ) is atomic.

7. E(µ) for atomic µ

The main result of this section, Theorem 7.2, is an affine-topological description of E(µ),
equipped with its three standard topologies, for atomic µ. We start with the special case
where µ ∈ ult(M). The following proposition is essentially a combination of Lemmas III.2
and IV.2. It includes [45, Proposition 1] and is related to [44, Theorem 3(a)].

7.1. Proposition. Let µ ∈ ult(M) and let Z denote the Stone space of R/Jµ. Then
there exists a linear mapping T : ba(CO(Z))→ ba(R) with the following properties:

1◦ T is an isometry and a lattice homomorphism;
2◦ T (pa(CO(Z))) = E(µ);
3◦ T |pa(CO(Z)) is a homeomorphism with respect to the corresponding weak [weak∗]

topologies;
4◦ |extrE(µ)| = |Z|.
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Proof. Set R̃ = CO(Z), and let g stand for a Boolean isomorphism from R/Jµ onto R̃.
Denote by h the canonical mapping from R onto R/Jµ. Set

T (ψ)(R) = ψ(g ◦ h(R)) for ψ ∈ ba(R̃) and R ∈ R.

Clearly, T (ψ) ∈ ba(R), T is linear and ‖T (ψ)‖ = ‖ψ‖ provided ψ ≥ 0. Moreover, we have

T (ψ)|Jµ = 0, whence T (pa(R̃)) ⊂ E(µ).

Conversely, suppose % ∈ E(µ). Then % defines a (positive additive) function %̃ on R/Jµ
with

%̃(h(R)) = %(R) for all R ∈ R.

Set τ(P ) = %̃(g−1(P )) for P ∈ R̃. We have

τ ∈ pa(R̃) and T (τ) = %.

Thus, 2◦ is established.
As easily seen, in view of [5, Theorem 2.2.1(7)], for ψ1, ψ2 ∈ ba(R̃) we have

ψ1 ∧ ψ2 = 0 implies T (ψ1) ∧ T (ψ2) = 0.

This shows that T is a lattice homomorphism (see [3, Theorem 7.2]). It then follows that

‖T (ψ)‖ = ‖ |T (ψ)| ‖ = ‖T (|ψ|)‖ = ‖ψ‖

for ψ ∈ ba(R̃), completing the proof of 1◦.
The first part of 3◦ follows from 1◦ and [17, Theorem V.3.15]. The definition of T

shows that it is continuous with respect to the topologies of pointwise convergence on
ba(R̃) and ba(R). Since pa(R̃) and E(µ) are both weak∗ compact (see Proposition 4.4(a)
and Example 4.1), 2◦ shows that the second part of 3◦ also holds.

Finally, 1◦ and 2◦ imply, by Lemma 3.1, that T is injective and T (ult(R̃)) = extrE(µ).

This yields 4◦.

7.2. Theorem (= Theorem IV.1). Let µ ∈ ba+(M) be atomic and let Zν denote the
Stone space of R/Jν for ν ∈ Uµ.

(a) There exists an affine isomorphism of E(µ) onto∏
ν∈Uµ

pa(CO(Zν)),

which is a homeomorphism with respect to the corresponding strong [weak ] [weak∗]
topologies.

(b) There exists an affine isomorphism of E(µ) onto∏
ν∈Uµ

S(Zν),

which is a homeomorphism with respect to the corresponding strong [weak ] [weak∗]
topologies.
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Proof. Part (a) is a direct consequence of Corollary 6.4 and Proposition 7.1. Part (b)
follows from (a) and Proposition 3.8.

7.3. Remark. Theorem 7.2(a) gives a complete affine-topological description of the sets
E(µ), equipped with each of the three topologies under consideration, for atomic µ.
Indeed, suppose Nj is an algebra of subsets of a set Ωj , j = 1, 2, . . . . Then there exist
algebras M and R of subsets of a set Ω, an atomic µ ∈ ba+(M) and an affine isomorphism
of E(µ) onto

∏∞
j=1 pa(Nj), which is a homeomorphism with respect to the corresponding

strong [weak] [weak∗] topologies. This is seen from Proposition 6.7 and Example 4.1.

In view of Proposition 3.8, Remark 7.3 yields a similar assertion concerning Theo-
rem 7.2(b).

For some converses of the next two results see Theorems 9.1 and 9.4, respectively.

7.4. Theorem (cf. Theorem II.2). Let µ ∈ ba+(M) be atomic. Then

(a) s = w on extrE(µ);
(b) (extrE(µ), w) is homeomorphic to a countable product of discrete spaces;
(c) (extrE(µ), w∗) is compact and zero-dimensional.

This is a consequence of Theorem 7.2(b) combined with Propositions 14.1 and
14.4(a), (c). See the proof of Theorem II.2 for a more direct argument.

7.5. Theorem (cf. Theorem II.3(a)). Let µ ∈ ba+(M) have finite range. Then
(extrE(µ), w) is discrete.

This is a consequence of Theorem 7.2(b) combined with Lemma 3.2 and Proposi-
tion 14.4(c). See the proof of Theorem II.3(a) for a more direct argument.

7.6. Remark. Theorems 7.4(b) and 7.5 give complete information on the topological
space (extrE(µ), w) in the respective cases. For µ with finite range this is seen from
Example 4.1. For atomic µ we use, in addition, Proposition 6.7. Also, Theorem 7.4(c)
gives complete information on (extrE(µ), w∗) for atomic µ, in view of Example 4.1.

The following theorem is a combination of Lemma III.1 and Proposition IV.3. For
related results concerning arbitrary µ ∈ ba+(M) see Section 10, especially Theorem 10.1.
Another situation where s = w∗ on extrE(µ) is described in Theorem IV.4.

7.7. Theorem. Let µ ∈ ba+(M) be atomic. Then the following five conditions are equiv-
alent:

(i) (E(µ), s) is compact;
(ii) (E(µ), w) is compact;
(iii) R/Jν is finite for each ν ∈ Uµ;
(iv) s = w∗ on extrE(µ);
(v) w = w∗ on extrE(µ).

Moreover, under these conditions, (E(µ), s) is affinely homeomorphic to a countable
product of finite-dimensional simplices.

Proof. Clearly, (i) implies (ii). In view of Theorem 7.2(b) and Proposition 14.4(d), (ii)
implies (iii) and the final assertion. By Theorem 7.2(b) again, (iii) implies (i).
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The implications (i)⇒(iv)⇒(v) are obvious. Suppose (v) holds. By Theorem 7.4(c),
(extrE(µ), w) is then compact, and so Theorem 5.1, (ii)⇒(i), yields (ii).

The following result is a direct consequence of Theorems 7.2(b) and 14.7. It will be
applied in the proofs of Theorems 7.9 and 10.2.

7.8. Corollary. Let µ be atomic and let (E(µ), w∗) be affinely homeomorphic to∏∞
j=1(S(Zj), w

∗), where Z1, Z2, . . . are compact spaces. Then there exists an affine iso-
morphism of E(µ) onto

∏∞
j=1 S(Zj), which is a homeomorphism with respect to the cor-

responding strong [weak ] [weak∗] topologies.

The next theorem is a preliminary version of Theorem 9.6. Some of its conditions are
similar to the corresponding conditions of Theorem 7.7.

7.9. Theorem. Let µ ∈ ba+(M) be atomic. Then the following five conditions are equiv-
alent:

(i) each element of E(µ) is atomic;
(ii) R/Jν is superatomic for each ν ∈ Uµ;
(iii) there exist compact scattered spaces Z1, Z2, . . . and an affine isomorphism of E(µ)

onto
∏∞
j=1 S(Zj), which is a homeomorphism with respect to the corresponding strong

[weak ] topologies;
(iv) (E(µ), w∗) is affinely homeomorphic to

∏∞
j=1(S(Zj), w

∗), where Z1, Z2, . . . are com-
pact scattered spaces;

(v) s = w on E(µ).

Proof. We first establish the equivalence of (i) and (ii) for µ ∈ ult(M). In view of [5, The-
orem 5.3.6, (i)⇔(v)], (ii) is equivalent to the condition that the elements of pa(CO(Z)),
where Z is the Stone space of R/Jµ, be all atomic. On the other hand, the elements
of E(µ) can be identified with those of pa(CO(Z)) in a canonical way (see the begin-
ning of the proof of Proposition 7.1). The equivalence of (i) and (ii) for arbitrary atomic
µ ∈ ba+(M) is now seen from Theorem 6.1(a).

Denote by Zν the Stone space of R/Jν for ν ∈ Uµ. In view of [31, Remark 17.2],
Zν is scattered if and only if R/Jν is superatomic. Thus (ii) implies (iii) and (iv), by
Theorem 7.2(b). According to Corollary 14.6, (iii) implies (v). Also, (iv) implies (iii),
by Theorem 7.2(b) and Corollary 7.8. Finally, (v) implies (ii), by Theorem 7.2(b) and
Corollary 14.6.

The next result coincides with [44, Theorem 7], but the present proof is new. In the
two-valued case the result is due to Bogner and Denk [8, Theorem 2, (v)⇔(i)].

7.10. Theorem. Let M and R be σ-algebras of subsets of Ω with M ⊂ R and let
µ ∈ ca+(M). Then

(a) if extrE(µ) is finite, then E(µ) ⊂ ca(R);
(b) if µ has finite range and E(µ) ⊂ ca(R), then extrE(µ) is finite.

Proof. (a) is a special case of Theorem 5.5, (ii)⇒(iv). The assumptions of (b) imply
that E(µ) is strongly compact (see Theorem 5.5, (iv)⇒(i), and Theorem 7.7, (ii)⇒(i)).
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Therefore, extrE(µ) is also strongly compact, by Proposition 4.4(b). It now follows from
Theorem 7.5 that extrE(µ) is finite.

Theorem 7.10(b) fails for general atomic measures. This is seen from the following
example.

7.11. Example (= [44, Example 2]). Let Ω = N and R = 2Ω. Let, further, Mj =

{2j − 1, 2j} for j ∈ N and M = {M1,M2, . . .}β . Consider µ ∈ ca+(M) which is uniquely
determined by the condition µ(Mj) = 2−j for all j. Since

R = (M ∪ {{1, 3, . . .}})β ,

we have E(µ) ⊂ ca(R) (see Lemma 3.7). Nevertheless, extrE(µ) has cardinality c. This is
seen from Proposition 4.9(d) or by an application of Theorem 6.1(b) with µj ∈ ca+(M)

defined by
µj(M) = µ(M ∩Mj) for M ∈M and j ∈ N.

8. Topological properties of extrE(µ) for nonatomic µ

We start with a result which will be applied in the proofs of Theorems 9.1 and 9.7 (see
also Example 12.7). It coincides with Theorem II.4, but the proof of (a) and (b) given
below is more direct. Part (c) has a predecessor in Theorem I.3(a).

8.1. Theorem. Let µ ∈ ba+(M) be nonatomic. Then

(a) (extrE(µ), s) is pathwise connected;
(b) (extrE(µ), s) is locally pathwise connected;
(c) (extrE(µ), s) is locally compact if and only if µ is monogenic.

Proof. Given π0, π1 ∈ extrE(µ) and M ∈M, we set

πM (R) = π1(R ∩M) + π0(R ∩M c) for R ∈ R.

By Lemma 4.5(c), (d), we have πM ∈ extrE(µ) and

‖πM − π0‖ ≤ ‖π1 − π0‖ for M ∈M.

Fix π1, π2 ∈ extrE(µ). We shall define a Lipschitz function f of order 2 on [0, µ(Ω)]

with values in extrE(µ) having the following properties:

f(0) = π0, f(µ(Ω)) = π1, and ‖f(t)− π0‖ ≤ ‖π1 − π0‖ for all t ∈ [0, µ(Ω)].

This yields both (a) and (b). By Lemma 3.4(a), there exists C ⊂M linearly ordered by
inclusion such that µ(C) is dense in [0, µ(Ω)]. We assume that ∅, Ω are in C and µ|C is
injective. Set

g(µ(M)) = πM for M ∈ C.

Given M1,M2 ∈ C, say M1 ⊂M2, we have

πM2(R)− πM1(R) = π1(R ∩ (M2 \M1))− π0(R ∩ (M2 \M1)),

and so
‖πM2

− πM1
‖ ≤ 2µ(M2 \M1) = 2|µ(M2)− µ(M1)|.
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Thus, g is a Lipschitz function of order 2 on µ(C). Since extrE(µ) is metrically complete
(see Proposition 4.4(b)), g extends, by uniform continuity, to a function f on [0, µ(Ω)]

with the desired properties.
To establish the nontrivial implication of (c), assume that µ is not monogenic, and

so extrE(µ) is not a singleton. Fix π0 ∈ extrE(µ) and r > 0. By (a), there exists
π1 ∈ extrE(µ) with 0 < ‖π0 − π1‖ < r. Define ϕ = π0 − π1. Then ϕ ∈ ba(R) and ϕ 6= 0.
Moreover, |ϕ|

∣∣M is nonatomic since |ϕ| ≤ π0 + π1. By Lemma 3.4(b), there exist ε > 0

and Mj ∈M, j = 1, 2, . . . , with |ϕ|(Mj \Mk) > ε whenever j 6= k. For πMj defined as at
the beginning of the proof we have

(πMj − πMk
)(R ∩ (Mj \Mk)) = −ϕ(R ∩ (Mj \Mk)) for R ∈ R.

so that ‖πMj
− πMk

‖ > ε, and we are done. (In fact, we have shown that the ball in
extrE(µ) with centre π and radius r is not totally bounded.)

We continue with another useful property of the topological space (extrE(µ), s). It is
implicit in the proof of [45, Theorem 1], which coincides with Theorem 12.1 below.

8.2. Theorem. If µ ∈ ba+(M) is nonatomic, then, for every nonempty relatively open
subset U of extrE(µ), we have

d(U) = d(extrE(µ)),

where openness and the density character d refer to the strong topology of extrE(µ).

Proof. Throughout the proof, the terms “dense” and “open” mean “strongly dense” and
“strongly open”, respectively.

Suppose extrE(µ) has cardinality ≥ 2. Fix π0 ∈ extrE(µ) and r > 0. Given a dense
subset D of the open ball in extrE(µ) with centre π0 and radius r, we shall define a dense
subset D̃ of extrE(µ) with |D̃| = |D|. This yields the assertion.

In view of Theorem 8.1, D is infinite. Let {M1, . . . ,Mn} be an M-partition of Ω with
µ(Mi) < r/2 for all i. Denote by D̃ the set of all σ of the form

(1) σ(R) =

n∑
i=1

σi(R ∩Mi) for R ∈ R,

where σ1, . . . , σn ∈ D. Clearly, D̃ ⊂ E(µ). Adapting the proof of Lemma 4.5(d), we infer
that D̃ ⊂ extrE(µ). Since |D̃| = |D|, we only need to show that D̃ is dense in extrE(µ).
To this end, fix π ∈ extrE(µ) and ε > 0. Set

πi(R) = π(R ∩Mi) + π0

(
R ∩

⋃
j 6=i

Mj

)
for R ∈ R, i = 1, . . . , n.

As before, we have πi ∈ extrE(µ). Moreover,

‖πi − π0‖ = |π − π0|(Mi) ≤ 2µ(Mi) < r.

It follows that there exist σi ∈ D such that

‖πi − σi‖ < ε/n, i = 1, . . . , n.
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For σ defined by (1), we then have

‖π − σ‖ =

n∑
i=1

|π − σ|(Mi) =

n∑
i=1

|πi − σi|(Mi) ≤
n∑
i=1

‖πi − σi‖ < ε.

Thus, D̃ is dense in extrE(µ), and so the proof is complete.

We note that a description of extrE(µ) as a metric space is given, in a special situation,
in [45, Proposition 3].

The following theorem is a generalization and an improvement of Proposition I.3.
It is the main tool in the proof of the forthcoming Theorem 8.6(a). Another proof of
Theorem 8.3 was given by H. Weber in 1994 (unpublished).

8.3. Theorem. Let R = (M ∪ E)b, where E is a finite family of subsets of Ω, let µ ∈
ba+(M) be nonatomic, and let % ∈ E(µ). Then there exists π ∈ extrE(µ) with π(E) =

%(E) for all E ∈ E and π � %.

Proof. We may assume that E = {E1, . . . , En} is a partition of Ω. Define

%i(M) = %(M ∩ Ei) for M ∈M and i = 1, . . . , n.

Then %i is in ba+(M) and
∑n
i=1 %

i = µ. According to Proposition 3.6, there exist πi ∈
ba+(M) with the following properties:

πi � %i, πi(Ω) = %i(Ω) for i = 1, . . . , n,

πi ∧ πi′ = 0 whenever i 6= i′ and
n∑
i=1

πi = µ.

It follows that, for M ∈M with M ∩ Ei = ∅, we have πi(M) = 0. Set

π
( n⋃
i=1

Mi ∩ Ei
)

=

n∑
i=1

πi(Mi) for M1, . . . ,Mn ∈M.

It is easy to check that π is well defined and is in E(µ). We also have π � %. By [40,
Theorem 3(b)], π is in extrE(µ). (This can also be shown by using (D).) Finally, for
i = 1, . . . , n, we have

π(Ei) = πi(Ω) = %i(Ω) = %(Ei),

which completes the proof.

8.4. Remark. Theorem 8.3, with the final assertion omitted, can be reformulated as
follows. Let E = {E1, . . . , En}, and define

Ψ: E(µ)→ Rn by Ψ(%) = (%(E1), . . . , %(En)) for % ∈ E(µ).

Under the assumptions of Theorem 8.3, we have Ψ(E(µ)) = Ψ(extrE(µ)). This shows
that there is some connection between this theorem and [1], where convexity of ranges of
some mappings is discussed.

8.5. Remark. For E consisting of a single set, say E, Theorem 8.3, with the final asser-
tion omitted, can be derived in a simpler manner. In fact, there exist π0, π1 in extrE(µ)

with
π0(E) = µ∗(E) and π1(E) = µ∗(E)
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(see pp. 18–19). We then have π0(E) ≤ %(E) ≤ π1(E). The mapping

Ψ: (extrE(µ), s)→ R1, Ψ(π) = π(E),

is, clearly, continuous. By Theorem 8.1(a), there exists a continuous mapping

f : [0, 1]→ (extrE(µ), s) with f(0) = π0 and f(1) = π1.

It follows that Ψ ◦ f(t) = %(E) for some t ∈ [0, 1]. Thus, π = f(t) is as desired.

Parts (a) and (d) of our next result are Theorem I.3(c) and Lemma III.3, respectively,
while part (c) is a special case of Theorem I.3(b). The present proofs of (a) and (c) are
new. The result will be used in the proofs of Theorems 9.1 and 9.7.

8.6. Theorem. Let µ ∈ ba+(M) be nonatomic. Then

(a) extrE(µ) is dense in (E(µ), w∗);
(b) extrE(µ) is dense in (E(µ), w) if (E(µ), w) is compact;
(c) extrE(µ) is dense in (E(µ), w) if R = (M ∪ E)b for some finite family E of subsets

of Ω;
(d) extrE(µ) is closed in (E(µ), w) if and only if µ is monogenic.

Proof. To establish (a), fix a finite subfamily R0 of R and % ∈ E(µ). By Theorem 8.3,
there exists

π0 ∈ extrE(µ, (M ∪R0)b) with π0(R) = %(R) for R ∈ R0.

Taking π ∈ extrE(π0,R) (see (C)), we get π ∈ extrE(µ) and π(R) = %(R) for R ∈ R0,
and so (a) holds.

Part (b) is an obvious consequence of (a), while (c) follows from (b) and Corollary 5.4.
To establish the nontrivial implication of (d), assume that µ is not monogenic. This

means that Mµ is properly contained in R. Thus, choosing R0 ∈ R \Mµ and setting
M0 = (M ∪ {R0})b, we see that µ is not monogenic with respect to M0 either. Fix

% ∈ E(µ,M0) \ extrE(µ,M0)

and a net (πα) in extrE(µ,M0) which converges weakly to % (see (c)).
Let T : ba(M0) → ba(R) be given by Proposition 4.6. The net (T (πα)) is then in

extrE(µ). On the other hand, T (%) is not in extrE(µ) (see (D)). Finally, (T (πα)) con-
verges weakly to T (%), by [17, Theorem V.3.15], and we are done.

From Proposition 4.4(b) and Theorem 8.6(d) we get the following corollary.

8.7. Corollary. Let µ ∈ ba+(M) be nonatomic. Then s = w on E(µ) if and only if µ
is monogenic.

For an application of Corollary 8.7 see the proof of Theorem 9.6.
Theorem 8.6(c) fails drastically for countable E. In fact, it may then happen that

even the convex hull of extrE(µ) is not dense in (E(µ), w). Thus, in Theorem 8.6(a) we
cannot replace the weak∗ topology by the weak one. An example follows.
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8.8. Example (= Example I.4; cf. [35, Proposition 1] and [40, Example 3]). Let Ω =

[0, 1)× [0, 1) and

M = {[a, b)× [0, 1) : 0 ≤ a < b < 1 and a, b are rational}b,
E = {[0, 1)× [a, b) : 0 ≤ a < b < 1 and a, b are rational}.

Set R = (M ∪ E)b. Let µ and % be the restrictions of the two-dimensional Lebesgue
measure to M and R, respectively. We claim that %∧π = 0 for all π ∈ extrE(µ). Indeed,
fix π ∈ extrE(µ) and ε > 0. Choose n ∈ N with 2/n < ε. Define

Ri = [0, 1)×
[
i− 1

n
,
i

n

)
, i = 1, . . . , n.

By Lemma 4.2, there exists an M-partition {M1, . . . ,Mn} of Ω with

π
( n⋃
i=1

Ri MMi

)
< ε/2.

We have Mi = Pi × [0, 1), where {P1, . . . , Pn} is a partition of [0, 1). It follows that

%(Ri ∩Mi) =
1

n
λ(Pi),

where λ denotes the one-dimensional Lebesgue measure. Hence

%
( n⋃
i=1

Ri ∩Mi

)
< ε/2,

and so

%
( n⋃
i=1

Ri ∩Mi

)
+ π

( n⋃
i=1

Ri MMi

)
< ε.

Since ε > 0 was arbitrary, this implies the claim (see Remark 4.3). Noting that

{ϕ ∈ ba(R) : % ∧ |ϕ| = 0}

is a norm closed, and so weakly closed, subspace of ba(R), we conclude that % is not in
the weakly closed convex hull of extrE(µ).

9. Topological properties of E(µ) and extrE(µ),
and the antimonogenic component of µ

In Sections 7 and 8 some theorems on topological properties of E(µ) and extrE(µ), and
on affine-topological properties of E(µ) have been established. Those theorems assume
that µ be atomic, have finite range or be nonatomic. In this section we shall show that
they can be reversed with the help of the antimonogenic component µa of µ. We start by
reversing the main part of Theorem 7.4.
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9.1. Theorem (cf. Theorems II.5 and III.3). For µ ∈ ba+(M) the following seven con-
ditions are equivalent:

(i) µa is atomic;
(ii) (extrE(µ), s) is zero-dimensional;
(iii) (extrE(µ), w) is zero-dimensional;
(iv) (extrE(µ), w∗) is zero-dimensional;
(v) extrE(µ) is closed in (E(µ), w);
(vi) extrE(µ) is closed in (E(µ), w∗);
(vii) (extrE(µ), w∗) is compact.

Proof. The implications (vii)⇒(vi)⇒(v) are plain.
In the rest of the proof we assume µ = µa, which we may, due to Corollary 6.2.
By Theorem 7.4, (i) implies (ii), (iii), (iv), and (vii).
Let µ1 and µ2 stand for the atomic and nonatomic components of µ, respectively. Each

of the conditions (ii)–(iv) implies that the only nonempty connected subsets of extrE(µ)

with respect to the corresponding topology are singletons. It follows from Corollary 6.3
that the same is true for extrE(µ2). Combined with Theorem 8.1(a), this yields that
extrE(µ2) is a singleton, and so µ2 = 0. Thus, (i) holds.

Finally, we shall derive (i) from (v). Now, (v) and Corollary 6.3 imply that extrE(µ2)

is closed in (E(µ2), w). Combined with Theorem 8.6(d), this shows that extrE(µ2) is
a singleton, and so µ2 = 0. Thus, (i) holds.

Condition (i) of the following corollary is discussed, in detail, in Section 11. Condi-
tion (ii) thereof is similar to conditions (ii) and (iii) of Theorem 9.4.

9.2. Corollary (=Corollary III.2). For µ ∈ ba+(M) the following two conditions are
equivalent:

(i) extrE(µ) is finite;
(ii) (extrE(µ), w∗) is discrete.

Proof. Suppose that (ii) holds. An application of Theorem 9.1, (iv)⇒(vii), shows that
(extrE(µ), w∗) is compact. This together with (ii) implies (i).

The next result supplements Theorem 9.1. In connection with uniqueness of Z1, Z2, . . .

in condition (iv) below see Theorem 14.7.

9.3. Theorem (cf. Theorem IV.2). For µ ∈ ba+(M) the following four conditions are
equivalent:

(i) µa is atomic;
(ii) (E(µ), s) is affinely homeomorphic to

∏∞
j=1(S(Zj), s), where Z1, Z2, . . . are compact

zero-dimensional spaces;
(iii) (E(µ), w) is affinely homeomorphic to

∏∞
j=1(S(Zj), w), where Z1, Z2, . . . are compact

zero-dimensional spaces;
(iv) (E(µ), w∗) is affinely homeomorphic to

∏∞
j=1(S(Zj), w

∗), where Z1, Z2, . . . are com-
pact zero-dimensional spaces.
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Proof. By Theorem 7.2(b) and Corollary 6.2(a), (i) implies each of the remaining con-
ditions. Conversely, those conditions imply conditions (ii), (iii) and (iv) of Theorem 9.1,
respectively (see Propositions 14.4(b), (c) and 14.1), and so that theorem yields (i).

We shall now reverse Theorem 7.5 as follows.

9.4. Theorem (cf. Theorem III.4). For µ ∈ ba+(M) the following three conditions are
equivalent:

(i) µa has finite range;
(ii) (extrE(µ), s) is discrete;
(iii) (extrE(µ), w) is discrete.

Proof. We assume µ = µa, as we may, due to Corollary 6.2(b). Theorem 7.5 shows that
(i) implies (iii). Clearly, (iii) implies (ii). Suppose (i) fails. Combining Lemma 3.3 and
Theorem 6.1(b), we see that (extrE(µ), s) is homeomorphic to an infinite product of
spaces of cardinality ≥ 2. Hence (ii) also fails.

The following result is, up to condition (iv), a variant of Theorem III.4. It supplements
the preceding one and is a finitary version of Theorem 9.3.

9.5. Theorem. For µ ∈ ba+(M) the following four conditions are equivalent:

(i) µa has finite range;
(ii) (E(µ), s) is affinely homeomorphic to

∏p
j=1(S(Zj), s), where Z1, . . . , Zp are compact

zero-dimensional spaces;
(iii) (E(µ), w) is affinely homeomorphic to

∏p
j=1(S(Zj), w), where Z1, . . . , Zp are com-

pact zero-dimensional spaces;
(iv) (E(µ), w∗) is affinely homeomorphic to

∏p
j=1(S(Zj), w

∗), where Z1, . . . , Zp are com-
pact zero-dimensional spaces.

Proof. It follows from (i) that µa is atomic and Uµa is finite, and hence conditions
(ii)–(iv) hold, by Theorem 7.2(b) and Corollary 6.2(a). Conditions (ii) and (iii) imply
the corresponding conditions of Theorem 9.4, by Proposition 14.4(b), (c), and so that
theorem yields (i). Finally, it follows from (iv) and Theorem 9.3, (iv)⇒(i), that µa is
atomic. Invoking Theorem 7.2(b) again, combined with Theorem 14.7, we find that Uµa

is finite, and so (i) holds.

The next result is a variant of Theorem IV.3 extended by condition (iv). It is essentially
a combination of Theorem 7.9 and Corollary 8.7. It is also closely related to Theorem 10.2.

9.6. Theorem. For µ ∈ ba+(M) the following five conditions are equivalent:

(i) each element of E(µa) is atomic;
(ii) µa is atomic and R/Jν is superatomic for each ν ∈ Uµa ;
(iii) there exist compact scattered spaces Z1, Z2, . . . and an affine isomorphism of E(µ)

onto
∏∞
j=1 S(Zj), which is a homeomorphism with respect to the corresponding strong

[weak ] topologies;
(iv) (E(µ), w∗) is affinely homeomorphic to

∏∞
j=1(S(Zj), w

∗), where Z1, Z2, . . . are com-
pact scattered spaces;

(v) s = w on E(µ).
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Proof. Suppose (i) holds. Then µa is atomic, and so (ii) follows, by the corresponding
implication of Theorem 7.9. Applying Theorem 7.9 again and Corollary 6.2(a), we see
that the implications (ii)⇒(iii)⇒(iv)⇒(v) also hold.

Suppose (v) holds. To derive (i), note that s = w on E(µa), by Corollary 6.2(a).
Denote by µ1 and µ2 the atomic and nonatomic components of µa, respectively. By
Corollary 6.3, we get s = w on E(µi), i = 1, 2. It now follows from Corollary 8.7 that
µ2 = 0. Thus, µa is atomic, and so an application of Theorem 7.9, (v)⇒(i), yields (i).

The following result shows, in particular, that the assumption of nonatomicity of µ
in Theorems 8.1 and 8.6(a), (c) is, in some sense, necessary.

9.7. Theorem (=Theorem II.6). For µ ∈ ba+(M) the following four conditions are
equivalent:

(i) µa is nonatomic;
(ii) (extrE(µ), s) is pathwise connected;
(iii) (extrE(µ), w∗) is connected;
(iv) extrE(µ) is dense in (E(µ), w∗).

Proof. In view of Corollary 6.2, (i) implies (ii) and (iv), by Theorems 8.1(a) and 8.6(a),
respectively. Clearly, (ii) implies (iii).

To establish the implications (iii)⇒(i) and (iv)⇒(i), denote by µ1 and µ2 the atomic
and nonatomic components of µa, respectively. By Corollaries 6.2(a) and 6.3, there exists
an affine mapping of E(µ) onto E(µ1)×E(µ2), which is a homeomorphism with respect
to the corresponding weak∗ topologies. Thus, (iii) and (iv) imply that extrE(µ1) is weak∗

connected and weak∗ dense in E(µ1), respectively. On the other hand, extrE(µ1) is zero-
dimensional and closed in E(µ1) with respect to the weak∗ topology, by Theorem 7.4(c).
In both cases, µ1 is, therefore, monogenic. Hence µa = µ2, and so (i) holds.

10. Strong compactness of E(µ)

The only result on strong compactness of E(µ) we have presented so far is Theorem 7.7,
where µ is assumed to be atomic. We shall now dispense with this assumption and deal
with arbitrary µ. The two theorems of this section establish the equivalence of strong
compactness of E(µ) to eight other conditions. Those of Theorem 10.1 are of purely
topological or affine-topological character. Among those of Theorem 10.2 there are three
of affine-topological and one of purely measure-theoretic character.

10.1. Theorem (=Theorem III.1). For µ ∈ ba+(M) the following four conditions are
equivalent:

(i) (E(µ), s) is compact;
(ii) s = w∗ on E(µ);
(iii) (extrE(µ), s) is compact;
(iv) (extrE(µ), w) is compact.
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Proof. Clearly, (i) implies (ii). The converse implication is seen from Proposition 4.4(a).
By Proposition 4.4 (b), (i) implies (iii). Clearly, (iii) implies (iv). Finally, suppose (iv)

holds. By Theorem 9.1, (v)⇒(i), µa is then atomic. It now follows from Theorem 7.7,
(v)⇒(i), and Corollary 6.2 that (i) holds.

The next result is Theorem III.2 supplemented by condition (vi). The equivalence of
that condition to the remaining conditions below was first established by V. Losert, in
answer to a question of the author (see [46, p. 469, Postscript]).

10.2. Theorem. For µ ∈ ba+(M) the following six conditions are equivalent:

(i) (E(µ), s) is compact;
(ii) (E(µ), w) is compact and µa is atomic;
(iii) µa is atomic and R/Jν is finite for each ν ∈ Uµa ;
(iv) (E(µ), s) is affinely homeomorphic to a countable product of finite-dimensional sim-

plices;
(v) (E(µ), w) is affinely homeomorphic to a countable product of finite-dimensional sim-

plices;
(vi) (E(µ), w∗) is affinely homeomorphic to a countable product of finite-dimensional

simplices.

Proof. The implication (i)⇒(ii) follows from Theorem 9.6, (v)⇒(ii).
In the rest of the proof we assume µ = µa, which we may, due to Corollary 6.2(a). The

implication (ii)⇒(iii) is a consequence of the corresponding implication of Theorem 7.7. In
view of Theorem 7.2(a), (iii) implies (iv). The implications (iv)⇒(v)⇒(vi) and (iv)⇒(i)

are clear. To complete the proof, we shall derive (iv) from (vi). Assuming (vi), we infer
from Theorem 9.3, (iv)⇒(i), that µ is atomic. Therefore, Corollary 7.8 yields (iv).

10.3. Remark. Condition (iv) of Theorem 10.2 gives a complete affine-topological de-
scription of the sets E(µ) in the strongly compact case. Indeed, for every sequence
S1, S2, . . . of finite-dimensional simplices, there exist a set Ω, algebras M and R of sub-
sets of Ω with M ⊂ R and µ ∈ ba+(M) such that (E(µ), s) is affinely homeomorphic to∏∞
j=1 Sj . This is seen from Remark 7.3. In fact, Ω can be chosen countable,M a σ-algebra,

µ a measure and R = 2Ω (see Remark III.1 for details).

10.4. Corollary (=Corollary III.1(a)). If µ ∈ ba+(M) and (E(µ), s) is compact, then
either extrE(µ) is finite or (extrE(µ), s) is homeomorphic to the Cantor set.

Proof. By assumption and Theorem 10.2, (i)⇒(iv), (extrE(µ), s) is homeomorphic to
a countable product of finite spaces. The latter space is metrizable, compact and
zero-dimensional, by standard product theorems, and dense in itself provided it is in-
finite. Thus, the assertion follows from a well-known theorem of Brouwer (see [18, Exer-
cise 6.2.A(c))]).

We note that either of the possibilities described in Corollary 10.4 can occur; see
Remark 10.3. Corollary 10.4 will be applied in the proof of Corollary 12.2.

The following corollary was first established in [46] by a different argument.
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10.5. Corollary (=Corollary III.3). Let M and R be σ-algebras of subsets of Ω with
M ⊂ R and let µ ∈ ca+(M). Then the following two conditions are equivalent:

(i) (E(µ), s) is compact;
(ii) µa is atomic and E(µ) ⊂ ca(R).

This is a direct consequence of Theorem 10.2, (i)⇔(ii), and Theorem 5.5, (i)⇔(iv).
For an application of Corollary 10.5 see the proof of Theorem 12.11.

11. E(µ) with finitely or countably many extreme points

Most of the material of this section is taken from [44, Sections 3 and 4]. We start with
a result which includes a part of [44, Theorem 5] and is closely related to Theorems 9.5,
9.6 and 10.2.

11.1. Theorem. For µ ∈ ba+(M) the following five conditions are equivalent:

(i) extrE(µ) is finite [countable];
(ii) µa has finite range and R/Jν is finite [countable and superatomic] for each ν ∈ Uµa ;
(iii) (E(µ), s) is affinely homeomorphic to

∏p
j=1(S(Zj), s), where Z1, . . . , Zp are finite

[countable] compact spaces;
(iv) (E(µ), w) is affinely homeomorphic to

∏p
j=1(S(Zj), w), where Z1, . . . , Zp are finite

[countable] compact spaces;
(v) (E(µ), w∗) is affinely homeomorphic to

∏p
j=1(S(Zj), w

∗), where Z1, . . . , Zp are finite
[countable] compact spaces.

Proof. We shall use the following well-known result: a Boolean algebra is finite [countable
and superatomic] if and only if its Stone space is finite [countable] (see [31, Theorem 5.31
and Proposition 17.10] and [63, Theorem 8.5.4, (ii)⇒(i)] for the “infinite” part).

We assume µ = µa, which is allowed, due to Corollary 6.2. Suppose (i) holds. By
Proposition 6.9, µ then has finite range. Using Corollary 6.4 and property 4◦ of Proposi-
tion 7.1, we get (ii). Theorem 7.2(b) shows that (ii) implies (iii), (iv) and (v). In view of
Proposition 14.1, each of the last three conditions implies (i).

The next result and Theorem 11.1 partly overlap. Nevertheless, we give an indepen-
dent proof for it.

11.2. Theorem (= [44, Theorem 1]). For µ ∈ ba+(M) the following three conditions are
equivalent:

(i) extrE(µ) is finite;
(ii) E(µ) is finite-dimensional;
(iii) E(µ) is affinely isomorphic to a finite product of finite-dimensional simplices.

Proof. Suppose (i) holds. Then, in view of Proposition 4.4(a), the Krein–Milman theorem
yields

E(µ) = conv extrE(µ),

and (ii) follows. Clearly, (iii) implies (i).
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Suppose (ii) holds. By Proposition 7.1, (iii) then holds in the special case where
µ ∈ ult(M). To derive (iii) in the general case, we assume µ = µa, as we may, due to
Corollary 6.2. By Theorem 10.2, (i)⇒(ii), µ is atomic. It now follows from Theorem 6.1(a)
that, for every finite F ⊂ Uµ, a translate of

∑
ν∈F E(ν) is contained in E(µ). In view

of (ii) and Lemma 2.2, we see that E(ν) is finite-dimensional for each ν ∈ Uµ and Uµ is
finite. Consequently, E(ν) is a finite-dimensional simplex, by the special case established
above. Finally, applying Corollary 6.4, we obtain (iii).

The countable-infinite analogue of Theorem 11.2, (i)⇔(ii), fails (cf. Theorem 11.1). In
fact, according to [43, Theorem 6], a further condition equivalent to those of Theorem 11.2
is the following one:

(ii)′ dimE(µ) < c.

11.3. Remark (cf. [44, Remark 1]). Conditions (iii)–(v) of Theorem 11.1 and condition
(iii) of Theorem 11.2 give a complete geometric description of the sets E(µ) dealt with
in those theorems. This is seen by an obvious modification of the argument given in
Remark 10.3.

For the proof of our next theorem we shall need the following lemma, which is implicit
in the proof of [44, Theorem 2].

11.4. Lemma. Let µ ∈ ba+(M) and let extrE(µ) be infinite. Then there exists % ∈ E(µ)

with infinite range.

Proof. We first consider the special case where µ ∈ ult(M). Fix different elements
π1, π2, . . . of extrE(µ), and set % =

∑∞
k=1 2−kπk. It follows from (D)′ that πk ∧ πk′ = 0

whenever k 6= k′. Therefore, we can find Rk ∈ R with

π1(Rk) = · · · = πk−1(Rk) = 0 and πk(Rk) = 1, k = 2, 3, . . . .

This implies 2−k ≤ %(Rk) ≤ 2−(k−1). Hence %(R) is infinite.
In the general case, we assume, as we may, that µ(M) is finite. By Lemma 3.2, Uµ is

then finite, too. In view of Theorem 6.1(b), we have

extrE(µ) =
∑
ν∈Uµ

extrE(ν).

Consequently, extrE(ν0) is infinite for some ν0 ∈ Uµ. By the special case established
above, we can find %ν0 in E(ν0) with infinite range. Choose %ν in E(ν) arbitrarily for
ν ∈ Uµ and ν 6= ν0, and set % =

∑
ν∈Uµ %ν . We have %ν0(R) ⊂ %(R), which completes the

proof.

In the case where M and R are σ-algebras and µ is a two-valued measure, the next
result is due to Bogner and Denk [8, Theorem 2, (v)⇔(vi)⇔(vii)].

11.5. Theorem (= [44, Theorem 2]). For µ ∈ ba+(M) the following three conditions are
equivalent:

(i) extrE(µ) is finite and µ has finite range;
(ii) each % ∈ E(µ) has finite range;
(iii) there exists n ∈ N such that each % ∈ E(µ) has range of cardinality ≤ n.
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Proof. Clearly, (iii) implies (ii). By Lemma 11.4, (ii) implies (i).
Suppose (i) holds, and denote by q and r the cardinalities of extrE(µ) and µ(M),

respectively. We claim that (iii) holds with n = rq. Indeed, (D) implies π(R) = µ(M) for
each π ∈ extrE(µ). This yields our claim (see the proof of Theorem 11.2, (i)⇒(ii)).

The following theorem, which is contained in [44, Theorem 5], supplements Theo-
rems 11.1 and 11.2. The “finite” part of it generalizes a result of Bogner and Denk [8,
Theorem 2, (v)⇔(iv)]. That result is concerned with the case where M and R are σ-
algebras and µ is a two-valued measure. In the situation where µ has finite range, still
another condition equivalent to those of Theorems 11.1 and 11.6 is condition (iii) of
Theorem 4 in [44].

11.6. Theorem. For µ ∈ ba+(M) the following two conditions are equivalent:

(i) extrE(µ) is finite [countable];
(ii) µa has finite range and there exists a finite [countable and superatomic] subalgebra

N of R such that (Mµ ∪N)b = R.

Proof. Since Mµ = Mµa and extrE(µ) is a translate of extrE(µa) for µ ∈ ba+(M), by
Proposition 4.8 and Corollary 6.2(b), respectively, we may assume that µ = µa.

(ii)⇒(i): Let µ̄ be the unique quasi-measure extension of µ to Mµ. Clearly, we have

E(µ) = E(µ̄,R) and |Uµ| = |Uµ̄|.

Therefore, assuming (ii), we get (i) from Proposition 6.6 and the result formulated at the
beginning of the proof of Theorem 11.1.

(i)⇒(ii): By Theorem 11.1, (i)⇒(ii), we deduce from (i) that µ has finite range and
R/Jν is finite [countable and superatomic] for each ν ∈ Uµ.

We first consider the special case where µ ∈ ult(M). Denote by h the canonical map-
ping from R onto R/Jµ. It follows from a result of von Neumann and Stone ([56, Theorem
17]; see also [23, p. 139, Corollary 2] or [44, Remark 2]) that there exists a Boolean ho-
momorphism g from R/Jµ into R such that

(g ◦ h(R)) M R ∈ Jµ for all R ∈ R.

Clearly, g is injective. Set N = g(R/Jµ). For every R ∈ R there is then an N ∈ N with
N M R ∈ Jµ, and so (ii) holds.

We now consider the general case. Let {Ω1, . . . ,Ωp} be a partition of Ω consisting of
µ-atoms (see Lemma 3.2). Set

Mj = {M ∩ Ωj : M ∈M}, Rj = {R ∩ Ωj : R ∈ R}

and µ̃j = µ|Mj for j = 1, . . . , p. Then Mj and Rj are algebras of subsets of Ωj with
Mj ⊂ Rj , µ̃j ∈ ba+(Mj) is two-valued and

(Mj)µ̃j = {M ∩ Ωj : M ∈Mµ}, j = 1, . . . , p.

It follows from (i) that extrE(µ̃j ,Rj) is finite [countable] for all j. Using the impli-
cation (i)⇒(ii) for p = 1, we get a finite [countable and superatomic] subalgebra Nj of
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Rj such that (Nj ∪ (Mj)µ̃j )b = Rj . Set

N =
{ p⋃
j=1

Nj : Nj ∈ Nj , j = 1, . . . , p
}
.

As easily seen, N satisfies (ii).

Our next result complements [8, Theorem 1] and Theorem 12.11, which give, in all,
seven conditions equivalent to the condition that E(µ) ⊂ ca(R) for atomic µ ∈ ca+(M).
In this connection see also Theorem 5.5, which is concerned with arbitrary µ ∈ ca+(M).
We note that conditions (ii) and (iii) below are of purely measure-theoretic character,
and (ii) is a σ-additive version of condition (ii) of Theorem 11.6.

11.7. Theorem (=Theorem III.5). Let M and R be σ-algebras of subsets of Ω with
M ⊂ R and let µ ∈ ca+(M). Then the implications (i)⇒(ii)⇒(iii) hold for the following
conditions:

(i) (E(µ), s) is compact;
(ii) there exist a partition {R1, R2, . . .} of Ω and 1 = n0 < n1 < n2 < · · · such that

R = (Mµ ∪ {R1, R2, . . .})β and
nj−1⋃
i=nj−1

Ri ∈M for each j ∈ N;

(iii) E(µ) ⊂ ca(R).

If µ is atomic, then conditions (i), (ii) and (iii) are equivalent.

Proof. (i)⇒(ii): By assumption and Theorem 10.2, (i)⇒(ii), µa is atomic. Take an M-
partition {Ω1,Ω2, . . .} of Ω such that

|µa({M ∈M : M ⊂ Ωj})| ≤ 2 for each j ∈ N.

Set µj(M) = µa(M ∩Ωj) for all M ∈M and j ∈ N. In view of Corollaries 6.2(a) and 6.4,
E(µj) is strongly compact. Hence extrE(µj) is finite for each j ∈ N, by Theorem 7.5 and
Proposition 4.4(b). It now follows from [8, Theorem 2], (v)⇒(iv) (cf. also Theorem 11.6,
(i)⇒(ii), for a generalization), that there exist P1, P2, . . . inR and 1 = n0 < n1 < n2 < · · ·
such that, for each j ∈ N, we have

(2) {Pnj−1
, . . . , Pnj−1} is a partition of Ω,

(3) R = (Mµj ∪ {Pnj−1
, . . . , Pnj−1})β .

Set
Ri = Pi ∩ Ωj whenever nj−1 ≤ i ≤ nj − 1.

Clearly, {Rnj−1 , . . . , Rnj−1} is an R-partition of Ωj . Set

R′ = (Mµ ∪ {R1, R2, . . .})β .

We complete this part of the proof by showing that R ⊂ R′. To this end, it is enough to
observe that, given R ∈ R and j ∈ N, we have R ∩Ωj ∈ R′. Now, in view of (2) and (3),
there exist N1, . . . , Nnj−nj−1 in Mµj with

(4) R ∩ Ωj = (N1 ∩ Pnj−1
) ∪ · · · ∪ (Nnj−nj−1

∩ Pnj−1).
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We may assume that Nk ⊂ Ωj for k = 1, . . . , nj − nj−1. It then follows that Nk ∈
Mµa = Mµ (see Proposition 4.8). Moreover, (4) implies that

R ∩ Ωj = (N1 ∩Rnj−1) ∪ · · · ∪ (Nnj−nj−1 ∩Rnj−1),

and so R ∩ Ωj ∈ R′.
(ii)⇒(iii): Let % ∈ E(µ). Since µ is σ-additive, so is %|Mµ. For R1, R2, . . . as in (ii),

the σ-additivity of µ yields
∞∑
i=1

%(Ri) =

∞∑
j=1

%
( nj−1⋃
i=nj−1

Ri

)
=

∞∑
j=1

µ
( nj−1⋃
i=nj−1

Ri

)
= %(Ω).

By Lemma 3.7, it follows that % ∈ ca(R).
The implication (iii)⇒(i) for atomic µ holds, by Corollary 10.5, (ii)⇒(i).

11.8. Remark. The implication (i)⇒(iii) of Theorem 11.7 follows directly from The-
orem 5.5, (i)⇒(iv). For another proof of the converse implication for atomic µ see [46,
p. 472]. The latter implication fails for nonatomic µ, as Example 12.7 shows. The author
does not know whether the implication (iii)⇒(ii) of Theorem 11.7 holds for arbitrary µ.

12. Cardinality of extrE(µ)

Most of the material of this section is taken from [45, Sections 3 and 4]. We start by
recalling that every cardinal ≥ 1 can arise as the cardinality of extrE(µ), where M =

{∅,Ω} and R is suitably chosen (see Example 4.1). This is, however, not so when we set
some natural restrictions on µ alone or on the triplet M, R, µ, as Theorems 12.1 and 12.8,
the main results of this section, show.

In the proof of Theorem 12.1 we shall apply the following proposition from general
topology: If X is a complete metric space such that every nonempty open subset of X has
weight m, then |X| = mℵ0 . This proposition goes back to F. K. Schmidt (1932); see [64,
Lemma 3.1] or [12, p. 184]. In fact, we shall need an equivalent form of it with “weight” re-
placed by “density character”. That those cardinal functions coincide for arbitrary metric
spaces is well known; see, e.g., [18, Theorem 4.1.15].

12.1. Theorem (= [45, Theorem 1]). If µ ∈ ba+(M) is nonatomic, then |extrE(µ)| is
an ω-power.

Proof. By Proposition 4.4(b), extrE(µ) equipped with the metric inherited from ba(R)

is complete. Consequently, the assertion follows from Theorem 8.2 and the proposition
formulated above.

We shall apply Theorem 12.1 in the proofs of the following corollary and Theorem 12.8.

12.2. Corollary (=Corollary III.1(b)). If µ ∈ ba+(M) and (E(µ), w) is compact, then
|extrE(µ)| is either finite or an ω-power.

Proof. Let µ1 and µ2 stand for the atomic and nonatomic components of µ. In view of
Corollary 6.3, (E(µ1), w) is also compact and

|extrE(µ)| = |extrE(µ1)| · |extrE(µ2)|.
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By Theorem 7.7, (ii)⇒(i), (E(µ1), s) is compact as well. The assertion now follows from
Corollary 10.4 and Theorem 12.1.

12.3. Remark (cf. Remark III.2). Corollary 12.2 provides complete information on the
possible cardinality m of the set extrE(µ) in the case where E(µ) is weakly compact.
This is clear for finite m (cf. Example 4.1). For infinite m see Example 12.7.

We shall illustrate Theorem 12.1 by three examples. In all those examples M and
R are σ-algebras and µ is a nonatomic measure. Examples 12.5 and 12.6 are concrete
and concern the cardinals 2c and 22c

, respectively. Example 12.7 is of general character
and shows that Theorem 12.1 can be reversed in the sense that every ω-power is the
cardinality of extrE(µ) for a suitable product measure µ. Example 12.7 is also essential
for Remark 12.3 and is relevant to Theorem 12.8. In Examples 12.5 and 12.6 we shall make
use of the following proposition, which will also be applied in the proof of Theorem 12.11.
We note that the inequality of this proposition can be reversed under some additional
assumptions (see Proposition 6.6).

12.4. Proposition (= [45, Proposition 2]). Let µ ∈ pa(M) and let N be a subalgebra of
R such that M ∩N 6= ∅ for all M ∈M with µ(M) > 0 and nonempty N ∈ N. Then for
each ν ∈ ult(N) there exists π ∈ extrE(µ) with π|N = ν. In particular,

|extrE(µ)| ≥ |ult(N)|.

Proof. Wemay additionally assumeR = (M∪N)b. Indeed, given σ∈extrE(µ, (M ∪N)b),
it suffices to take π ∈ extrE(σ,R) (see (C)), and observe that π ∈ extrE(µ).

With this additional assumption, by a result of Marczewski ([55, Theorem I and
Lemma 3]; see also [26, Proposition 2]), for every ν ∈ ult(N), there exists a (unique)
π ∈ E(µ) with π(M ∩ N) = µ(M)ν(N) whenever M ∈ M and N ∈ N. By (GD),
π ∈ extrE(µ), which completes the proof.

The following well-known result will be used in Example 12.5 and in the proofs of
Theorems 12.8(a) and 12.11.

(U) If A is an infinite Boolean σ-algebra, then |ult(A)| ≥ 2c.

This is standard for A = 2N (see [31, Example 9.21]). In the general case, A contains
a subalgebra isomorphic to 2N, and so the assertion follows by the Tarski–Ulam theorem
mentioned after Example 4.1.

12.5. Example (= [45, Example 1]). Let Ω = [0, 1]× [0, 1], let

M = {B × [0, 1] : B ∈ B([0, 1])} and R = B(Ω),

and let µ be the restriction of the two-dimensional Lebesgue measure to M. Clearly, we
then have |extrE(µ)| ≤ 2c. The converse inequality follows by Proposition 12.4 with

N = {[0, 1]×B : B ∈ B([0, 1])}

and (U).

12.6. Example (= [45, Example 2]). Let Ω = [0, 1] and R = 2Ω. Moreover, let M be the
σ-algebra of Lebesgue measurable subsets of Ω and let µ be the Lebesgue measure on M.
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Clearly, we then have |extrE(µ)| ≤ 22c . For the converse inequality consider a partition
{Bω : ω ∈ Ω} of Ω such that µ∗(Bω) = 1 for each ω ∈ Ω (see [54]). Set

N =
{ ⋃
ω∈E

Bω : E ⊂ Ω
}
.

Since the algebra N is isomorphic to 2Ω, we get |ult(N)| = 22c by a classical theorem (see
[31, Example 9.21]). It now follows from Proposition 12.4 that |extrE(µ)| = 22c .

12.7. Example (= [45, Example 3]). Fix an ω-power m > 1 and a set I with |I| = m.
Let Ω = {0, 1}I , and denote by M the standard product σ-algebra of Ω and by µ the
standard product measure on M. Since

∣∣[I ]ℵ0
∣∣ = m, we have |M| = m. This implies that

|M(µ)| = m. Set

E = {f ∈ Ω : |f−1(0)| ≤ ℵ0} and R = (M ∪ {E})b.
Clearly, µ∗(E) = µ∗(Ec) = 0. The final assertion of Proposition 4.9 now shows that
|extrE(µ)| = m. Note that, in addition, every element of E(µ) is a measure (see Lem-
ma 3.7). Moreover, E(µ) is weakly but not strongly compact, by Corollary 5.4 and The-
orem 8.1(c), respectively.

In the proof of Theorem 12.8(a) we shall use the following special case of a funda-
mental result due to van Douwen ([14, Theorem 7.1]; see also [15, Theorem 11.8]): If A
is a Boolean σ-algebra, then |ult(A)| is either finite or an ω-power.

Theorem 12.8 is an improvement of [44, Theorem 6]. The proof of Theorem 12.8(a)
follows that of [44, Theorem 6(b)].

12.8. Theorem (= [45, Theorem 2]). Let M and R be σ-algebras of subsets of Ω with
M ⊂ R and let µ ∈ ca+(M).

(a) If µ has finite range, then |extrE(µ)| is either finite or an ω-power ≥ 2c.
(b) If µ is atomic, then |extrE(µ)| is either finite or equals c or is an ω-power ≥ 2c.
(c) If µ is arbitrary, then |extrE(µ)| is either finite or an ω-power.

Proof. We first observe that (a) holds for µ ∈ ult(M). Indeed, 4◦ of Proposition 7.1 then
shows that extrE(µ) and ult(R/Jµ) are equipotent. Therefore, it is enough to apply van
Douwen’s result formulated above and (U) to get the assertion. Parts (a) and (b) now
follow, by Corollary 6.4. Using Corollary 6.3, (b) and Theorem 12.1, we get (c).

In connection with Theorem 12.8(b) it is worth mentioning that it is relatively con-
sistent with ZFC that there exists an ω-power m with c < m < 2c. Indeed, by Easton’s
theorem (see [25, Theorem 11.25]), it is relatively consistent with ZFC that c = ℵ1 and
2c = ℵ3. Then m = ℵ2 is as desired, by Hausdorff’s formula (see [25, Theorem 11.27]).

12.9. Remark. Theorem 12.8 provides complete information on the possible cardi-
nalities of the sets extrE(µ) under the respective assumptions. Indeed, according to
Example 4.1, every finite cardinal ≥ 1 can occur in the setting of (a). Moreover, ac-
cording to Example 12.7, every ω-power > 1 can occur in the setting of (c). That the
cardinal c can occur in the setting of (b) is clear from its proof (see also Example 7.11).
The remaining cases are settled by the following simple example already considered by
van Douwen ([14, Example 14.2]) for a similar purpose.
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12.10. Example (= [45, Example 4]). Let m be an ω-power ≥ 2c, let Ω be a set with
|Ω| = m, and let R be the σ-algebra of countable and cocountable subsets of Ω. Denote by
π0 the unique element of ult(R) that vanishes on [Ω]ℵ0 . Then, if π ∈ ult(R) and π 6= π0,
there is an R ∈ [Ω]ℵ0 with π(R) = 1, and so π|2R ∈ ult(2R). It follows that

m ≤ ult(R) ≤ 2c|[Ω]ℵ0 | = 2cm = m.

Let M = {∅,Ω} and let µ be the unique probability measure on M. Then, by the above
and Lemma 3.1, we have |extrE(µ)| = m (cf. Example 4.1).

Our next theorem is closely related to some results of Bogner and Denk [8]. The
implication (ii)⇒(i) strengthens [8, Theorem 2, (v)⇒(i)], while the implication (i)⇒(ii)

is, for µ ∈ ult(M), a special case of [8, Theorem 2, (i)⇒(v)]. Moreover, our theorem
supplements [8, Theorem 1].

12.11. Theorem (= [45, Theorem 3]). Let M and R be σ-algebras of subsets of Ω with
M ⊂ R and let µ ∈ ca+(M) be atomic. Then the following three conditions are equivalent:
(i) E(µ) ⊂ ca(R);
(ii) |extrE(µ)| ≤ c;
(iii) |extrE(µ) \ ca(R)| < 2c.

Proof. The implication (i)⇒(ii) is a direct consequence of Corollary 10.5, (ii)⇒(i). Clearly,
(ii) implies (iii). We shall show that (iii) implies (i) for µ ∈ ult(M). The general case then
follows, by Theorem 6.1.

Suppose (i) fails for some µ ∈ ult(M). Then, by [8, Lemma 1] and Proposition 4.4(a)
(see also Theorem 5.5, (v)⇒(iv)), there exists π0 ∈ extrE(µ) which is not a measure.
Since π0 ∈ ult(R) (see (D)′), it follows that there exists an R-partition {R1, R2, . . .} of
Ω with π0(Ri) = 0 for all i. Set

I = {i ∈ N : Ri ∈ Jµ} and R =
⋃
i∈I

Ri.

We have R ∈ Jµ, and so π0(R) = 0. Therefore, N \ I is infinite, say N \ I = {i1, i2, . . .}.
Set N1 = Ri1 ∪R and Nk = Rik for k ≥ 2. Finally, define

N =
{⋃
i∈J

Ni : J ⊂ N
}

and apply Proposition 12.4 and (U) to conclude that condition (iii) fails for µ.

Clearly, the implications (i)⇒(iii) and (ii)⇒(iii) of Theorem 12.11 hold for arbitrary
µ ∈ ca+(M). On the other hand, Example 12.7 shows that (i) does not imply (ii),
in general. The author does not know whether the remaining implications persist for
nonatomic measures.

13. Open problems

Recall that some open problems have already been mentioned in the previous sections
(see the passage following Proposition 4.6, Remark 11.8, and the end of Section 12). We
now list some more, with a few comments.
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13.1. Problem. Characterize extrE(µ), where µ ∈ ba+(M) is nonatomic, equipped
with each of the three topologies s, w and w∗, as a topological space.

In connection with this problem see Theorems 8.1, 8.2 and 8.6. An analogous problem
for atomic µ or µ with finite range is solved by Theorems 7.4 and 7.5, and Remark 7.6.

The next problem has already been mentioned in the passage introducing Proposi-
tion IV.3.

13.2. Problem. Do we have s = w on extrE(µ) for arbitrary µ ∈ ba+(M)?

According to Theorem 7.4(a), s = w on extrE(µ) if µ is atomic. This is also the case
if (E(µ), w) is compact and R = (M ∪ E)b with E being a family of pairwise disjoint
subsets of Ω (see Theorem IV.4). Some conditions equivalent to the stronger condition
that s = w on E(µ) are given in Theorem 9.6.

13.3. Problem. Does the inequality |E(µ)| ≤ 2ℵ0·|extrE(µ)| hold for arbitrary µ ∈
ba+(M)?

This inequality holds if µ is atomic (see [48, Theorem 3(a)]) as well as under some
extra assumptions on M and R (see [48, Theorems 5(a) and 7]). In view of an example
due to Fremlin and Plebanek [20, Theorem 3A], interpreted according to Example 4.1,
the inequality in question cannot be improved, even for M = {∅,Ω}, at least in ZFC.

13.4. Problem. Let N be a subalgebra of R with R = (M∪N)b. Suppose µ ∈ ba+(M)

and µ∗|N is exhaustive. Is (E(µ), w) then compact?

According to Corollary 5.4, the answer is in the affirmative if N is finite.

13.5. Problem. Let M and N be σ-algebras of subsets of Ω and let R = (M ∪ N)β .
Suppose µ ∈ ca+(M) and µ∗|N is order continuous. Is (E(µ), w) then compact?

As follows from Corollary 5.8, the answer is in the affirmative if N is generated by
a partition.

For another open problem see the passage following Theorem 14.7.

14. Appendix. The simplex of Radon probability measures
over a compact space

Throughout this section Z stands for an arbitrary compact (Hausdorff) space. The sym-
bols B(Z),M(Z) and S(Z) used below are explained in the passage following Lemma 3.7.
In addition, we denote by δz, where z ∈ Z, the Dirac Borel measure concentrated at z.
Our main present purpose is to establish Proposition 14.4 and Corollary 14.6, which have
already been used in the proofs of Theorems 7.4, 7.5, 9.3 and 9.5, and 7.9, respectively.
In fact, we only need them in the case where Z is zero-dimensional, but the general case
is also of some interest.

The following result is standard (cf., e.g., [2, Corollary II.4.2]). For the reader’s con-
venience we sketch a rather elementary proof below.
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14.1. Proposition. The mapping z 7→ δz of Z into (M(Z), w∗) is a homeomorphic
embedding with range extrS(Z).

Sketch of proof. Clearly, this mapping is continuous and injective, and so is a homeomor-
phism. Since S(Z) is an extreme subset of pa(B(Z)), we have

extrS(Z) = S(Z) ∩ ult(B(Z)),

by Lemma 3.1. It follows that

extrS(Z) = {δz : z ∈ Z}.

A direct consequence of Proposition 14.1 is the following corollary.

14.2. Corollary (cf. Lemma IV.3). Let Z1 and Z2 be compact spaces and let (S(Z1), w∗)

and (S(Z2), w∗) be affinely homeomorphic. Then Z1 and Z2 are homeomorphic.

The analogues of Corollary 14.2 with “w∗” replaced by “w” or “s” fail, even in the
case where s = w on S(Zj), j = 1, 2 (see Remark 14.8).

Recall that x0 ∈ K, where K is a closed bounded convex set in a Banach space X, is
called strongly exposed if there exists x∗ ∈ X∗ with the following two properties: x∗(x0) >

x∗(x) for all x ∈ K \ {x0} and the diameter of the set {x ∈ K : x∗(x) > x∗(x0) − ε},
where ε > 0, tends to 0 when ε tends to 0 (see [9, Definition 3.2.1]).

The following proposition is probably known.

14.3. Proposition. The strongly exposed points of S(Z) are of the form δz, z ∈ Z.

Proof. In view of Proposition 14.1, we only need to check that δz is a strongly exposed
point of S(Z) for each z ∈ Z. Set

Fz(ϕ) = ϕ({z}) for ϕ ∈M(Z).

Clearly, Fz is a linear functional onM(Z) with ‖Fz‖ = 1. It follows that, for % ∈ S(Z),
we have

Fz(%) ≤ 1, and Fz(%) = 1 if and only if % = δz.

Finally, we have, for % ∈ S(Z)

‖%− δz‖ = |%− δz|({z}) + |%− δz|(Z \ {z}) = 2(1− %({z}).

Therefore, Fz(%)→ 1 implies ‖%− δz‖ → 0, and so Fz strongly exposes δz.

14.4. Proposition (cf. Lemma II.3). We have

(a) s = w on extrS(Z);
(b) ‖δz1 − δz2‖ = 2 whenever z1, z2 ∈ Z and z1 6= z2;
(c) (extrS(Z), w) is discrete;
(d) (S(Z), w) is compact if and only if Z is finite.

Proof. Part (a) is seen from Propositions 14.1 and 14.3. Part (b) follows from the formula

|δz1 − δz2 |({z1}) + |δz1 − δz2 |({z2}) = 2,

where z1, z2 ∈ Z and z1 6= z2. Part (c) is a direct consequence of (a) and (b).
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Finally, suppose (S(Z), w) is compact. Then w = w∗ on S(Z). Consequently,
(extrS(Z), w) is compact, by Proposition 14.1. This implies, in view of (c), that Z is
finite.

The following theorem is closely related to Lemmas IV.1 and IV.4 and its proof uses
similar ideas. In particular, the main idea of the proof of the implication (i)⇒(ii) below
is an adaptation of a well-known construction due to H. Rademacher.

14.5. Theorem. For % ∈ S(Z) the following two conditions are equivalent:

(i) s = w at % on S(Z);
(ii) % is atomic.

Proof. Suppose first that (ii) holds. To derive (i), fix ε > 0, and then a (nonempty) finite
subset Z0 of Z with %(Z \ Z0) < ε/4. Let σ ∈ S(Z) be such that

|σ({z})− %({z})| < ε

4|Z0|
for each z ∈ Z0.

We claim that ‖σ − %‖ < ε. Indeed, we have |σ(Z0)− %(Z0)| < ε/4. Since

σ(Z \ Z0) = %(Z \ Z0) + %(Z0)− σ(Z0),

it follows that σ(Z \ Z0) < ε/2. Consequently, we have

‖σ − %‖ ≤
∑
z∈Z0

|σ({z})− %({z})|+ σ(Z \ Z0) + %(Z \ Z0) < ε,

so that the claim is established. Hence (i) holds.
We shall now prove the implication ¬(ii) ⇒ ¬(i). To this end, we first assume that

% ∈ S(Z) is nonatomic and define, for each finite subalgebra S of B(Z), some element
%S ∈ ba+(B(Z)) with the following properties:

1◦ %S|S = %|S;
2◦ %S ≤ 2%;
3◦ ‖%− %S‖ ≥ 1.

Fix S as above, and note that

S = {R1, . . . , Rn}b,
where {R1, . . . , Rn} is an S-partition of Ω. In view of the nonatomicity of %, we can find
Ri1 ∈ B(Z) such that

Ri1 ⊂ Ri and %(Ri1) =
1

2
%(Ri), i = 1, . . . , n.

Set
Ri2 = Ri \Ri1 and S′ = {Rij : i = 1, . . . , n; j = 1, 2}b.

Take σ ∈ ba+(S′) with

σ(Ri1) = %(Ri) and σ(Ri2) = 0, i = 1, . . . , n.

We then have σ|S = %|S and σ ≤ 2%|S′.
Using [28, Theorem 14] or the Radon–Nikodym theorem, we can find %S ∈ ba+(B(Z))

satisfying 2◦ and
%S|S′ = σ|S′.
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Thus, %S has also property 1◦. To establish 3◦, it is enough to observe that, for i =

1, . . . , n, we have

|%(Ri1)− σ(Ri1)|+ |%(Ri2)− σ(Ri2)| = %(Ri)− %(Ri1) + %(Ri2) = %(Ri).

Let A denote the family of all finite subalgebras of B(Z) upward ordered by inclusion.
In view of 1◦ and 2◦, we have %S ∈ S(Z) for every S ∈ A. Since

B(Z) =
⋃

S∈A

S,

1◦ shows that %S(R) → %(R) for each R ∈ B(Z). It follows from 2◦ and the weak com-
pactness of the order interval [0, 2%] in ca(B(Z)) (see [3, Theorem 12.9] or the beginning
of the proof of Theorem 5.1) that %S → % weakly in S(Z). In view of 3◦, this shows that
(i) fails.

Assume now that (ii) fails. Let %′ ∈M+(Z) be nonatomic, nonzero and satisfy %′ ≤ %.
By what we have proved so far, there exists a net {%α} in M+(Z) with %α(Z) = %′(Z)

for each α which converges weakly but not strongly to %′. Clearly,

%α + (%− %′) ∈ S(Z)

and the net {%α + (% − %′)} converges weakly but not strongly to %. This completes the
proof.

It is a well-known theorem that a compact space is scattered if and only if every
Radon measure on it is atomic (see [63, Theorem 19.7.6]). That theorem, combined with
Theorem 14.5, yields the following corollary.

14.6. Corollary. A compact space Z is scattered if and only if s = w on S(Z).

The following result has been applied, either directly or via Corollary 7.8, in the proofs
of Theorems 7.9, 9.5 and 10.2. It is also related to Theorem 9.3.

14.7. Theorem. Let Yi, i ∈ I, and Zj, j ∈ J , be compact spaces of cardinality ≥ 2. If∏
i∈I

(S(Yi), w
∗) and

∏
j∈J

(S(Zj), w
∗)

are affinely homeomorphic, then there exists a bijection b : I → J such that Yi and Zb(i)
are homeomorphic for each i ∈ I.

Proof. In view of [49, Theorem 1.1] and Proposition 14.1 or a special case of the for-
mer result due to V. Losert (see [49, p. 176]), there exists a bijection b : I → J such
that (S(Yi), w

∗) and (S(Zb(i), w
∗) are affinely homeomorphic. Thus, an application of

Corollary 14.2 yields the assertion.

As noted after Corollary 14.2, its analogues with “w∗” replaced by “w” or “s” fail.
Therefore, so do the corresponding analogues of Theorem 14.7. However, the author does
not know whether, in Theorem 14.7 with an analogous replacement of topologies, the
factors are uniquely determined up to affine homeomorphism and order.

14.8. Remark (cf. Remark IV.1). The analogues of Corollary 14.2 with “w∗” replaced
by “w” or “s” fail even in the case where the compact spaces Z1 and Z2 are countable
infinite. (Such spaces are zero-dimensional and metrizable, see [63, Theorem 8.5.4] and
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[18, Theorems 3.1.21 and 3.2.5], respectively. Moreover, according to Corollary 14.6, we
have s = w on S(Zj).) Indeed,M(Zj) and l1 can then be identified as Banach lattices.
Thus, S(Z1) and S(Z2) are affinely isometric. On the other hand, Z1 and Z2 need not be
homeomorphic, of course.

Postscript. Order-theoretic properties of the sets E(µ) and extrE(µ) will be studied in
subsequent papers by the author (in preparation).
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order continuous, 23

Peano–Jordan completion, 18

quasi-measure, 4, 6

scattered, 11
strongly exposed, 51
superatomic, 11

(U), 47
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