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Abstract. For a Banach space X letW(X) denote the class of topological spaces homeomorphic
to bounded closed subsets of (X,weak). We investigate relationships between geometric proper-
ties of a Banach space X, topological properties of its weak unit ball, and properties of the class
W(X). In particular, we prove that two Banach spaces X, Y with Kadec norms and separable
duals have homeomorphic weak unit balls if and only if W(X) = W(Y ). The weak unit ball
of any infinite-dimensional Banach space with Kadec norm and separable dual is topologically
homogeneous. We prove that the weak unit ball B of a Banach space is homeomorphic to the
weak unit ball of c0 if and only if B is a metrizable σZ∞-space. Two counterexamples to some
natural conjectures are presented and many open problems are formulated.

Introduction. The paper is devoted to the problem of topological classification of weak

unit balls of Banach spaces. Under the weak unit ball of a Banach space (X, ‖·‖) we under-

stand the closed unit ball B = {x ∈ X : ‖x‖ ≤ 1} of X endowed with the weak topology.

Compared to topological classification of unit balls equipped with the norm topology,

classification of weak unit balls seems to be much more complex (recall that the unit ball

of any Banach space is homeomorphic to a Hilbert space, see [BP, III, §6] and [To2]).

In this paper we restrict ourselves to considering Banach spaces X whose duals X∗

are separable. In this case the weak unit ball B of X is metrizable, so we can apply

powerful tools, recently elaborated in infinite-dimensional topology. Thus, if the converse

is not stated, under a Banach space we shall understand an infinite-dimensional Banach

space with separable dual (equivalently, an infinite-dimensional separable Asplund space,

see [Bo, 5.4.3] or [EW]).

Our considerations concentrate around the following questions:

(A) What can be said about the topology of the weak unit ball B of a Banach space?

In particular , when is the space B topologically homogeneous? When is B homeomorphic

to a model space of infinite-dimensional topology?
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(B) For which Banach spaces is the topology of their weak unit balls an isomorphic

invariant?

This property will be referred to as the ball invariance property (briefly BIP).

(C) Under what conditions are the weak unit balls of two Banach spaces homeomor-

phic?

It turns out that answers to these questions depend on

(1) the class W(X) of topological spaces homeomorphic to closed bounded subsets of

a Banach space X endowed with the weak topology, and

(2) (for complex W(X)) properties of the norm of X.

Let us remark that W(X) coincides with the class F0(B) of topological spaces hom-

eomorphic to closed subsets of the weak unit ball B of X.

The appearance of the class W(X) raises another question:

(D) What connections are there between geometric properties of a Banach space X,

topological properties of its weak unit ball , and properties of the class W(X)?

As we will show in Proposition 1.12, the classW(X) is not too big: for a Banach space

X with separable dual, W(X) always lies in the Borel classM2 of separable metrizable

absolute Fσδ-spaces, and contains the Borel class M0 of metrizable compacta provided

X is infinite-dimensional. In the intermediate case W(X) ⊂M1 (whereM1 is the Borel

class of all Polish spaces) the questions (A)–(D) have an exhaustive answer. There is an

alternative: either W(X) =M0 and the weak unit ball B of X is homeomorphic to the

Hilbert cube Q = [−1, 1]ω, or W(X) =M1 and B is homeomorphic to s = (−1, 1)ω, the

pseudointerior of the Hilbert cube.

Banach spaces X with W(X) ⊂ M1 were extensively studied in [EW]. There it was

shown that for a Banach space X with separable dual the condition W(X) ⊂ M1 is

equivalent to the point continuity property (briefly PCP) (see the next section for the

definition). On the other hand, the conditionW(X) ⊂M0 is equivalent to the reflexivity

of X. This just answers the question (D) for Banach spaces with PCP. Moreover, for such

spaces the questions (A)–(C) have the following answers:

(a) the weak unit balls of Banach spaces with PCP, being homeomorphic to Q or s,

are topologically homogeneous;

(b) Banach spaces with PCP satisfy BIP, and

(c) two Banach spaces X, Y satisfying PCP have homeomorphic weak unit balls if

and only if W(X) =W(Y ).

The situation changes for Banach spaces failing PCP: the Banach space c0 has two

equivalent norms ‖ · ‖∞ and ‖ · ‖K such that the weak unit balls B(c0, ‖ · ‖∞) and

B(c0, ‖ · ‖K) are not homeomorphic. Here ‖ · ‖∞ is the standard sup-norm and ‖ · ‖K
is any Kadec norm on c0. Thus the topology of a weak unit ball of c0 is not an isomor-

phic invariant and the space c0 fails BIP. Moreover, combining the norms ‖ · ‖∞ and

‖ · ‖K we construct an equivalent norm ‖ · ‖ on c0 such that the weak unit ball B(c0, ‖ · ‖)

is not topologically homogeneous. Nonetheless, the balls B(c0, ‖ · ‖∞) and B(c0, ‖ · ‖K)
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are topologically homogeneous. This is so because B(c0, ‖ · ‖∞) is a σZ∞-space while

B(c0, ‖·‖K) is an∞-Baire space. σZ∞-spaces and∞-Baire spaces are infinite-dimensional

counterparts of first Baire category spaces and Baire spaces, respectively (see the next

section for the definitions). We call a norm ‖ · ‖ of a Banach space X a σZ∞-norm (resp.

an ∞-Baire norm) if the weak unit ball B(X, ‖ · ‖) is a σZ∞-space (resp. an ∞-Baire

space).

While equivalent∞-Baire norms exist on each Banach space (such are Kadec norms),

there are Banach spaces admitting no equivalent σZ∞-norm. In fact, if X is a Banach

space with a σZ∞-norm ‖·‖, then the weak unit ball B of X is homeomorphic to the weak

unit ball B(c0, ‖ · ‖∞). Moreover, B is then topologically homogeneous and W(X) =M2
(we do not know if the condition W(X) = M2 guarantees that X has an equivalent

σZ∞-norm). On the other hand, if X is a Banach space with an∞-Baire norm ‖ · ‖, then

the weak unit ball B of X is topologically homogeneous. Moreover, B is homeomorphic

to B(c0, ‖ · ‖K) if and only if W(X) = M2 and the norm ‖ · ‖ of X is ∞-Baire. This

follows from the Classification Theorem 1.14: for Banach spaces X, Y with separable

duals and ∞-Baire norms the weak unit balls of X, Y are homeomorphic if and only

if W(X) = W(Y ). This theorem answers the question (C) and raises another one: for

which Banach spaces is every equivalent norm ∞-Baire? In Theorem 1.17 we prove that

a Banach space X has this property if and only if X satisfies BIP if and only if every

equivalent weak unit ball of X is topologically homogeneous. It should be mentioned that

every equivalent weak unit ball of a Banach space X is Baire if and only if X satisfies

CPCP (the convex point continuity property), see Theorem 1.21.

The above-mentioned results also raise the following questions: when does a Banach

space X satisfyW(X) =M2? When does X have an equivalent σZ∞-norm? We will give

answers to these questions for Banach spaces containing an isomorphic copy of c0, or,

more generally, for Banach spaces that fail to be strongly regular (see Theorem 1.23). If a

Banach space X does not satisfy CPCP, then X has an equivalent norm such that the cor-

responding weak unit ball of X is a σZn-space for every n ∈ N; moreover, in this case the

class W(X) contains the class M2(s.c.d.c.) consisting of all absolute Fσδ-spaces admit-

ting a strongly countable-dimensional metrizable compactification. In Propositions 1.34

and 1.36 we show that W(Y ) =M2 provided there is a “nice” operator T : X → Y from

a Banach space with W(X) =M2.

In the second section we present two counterexamples. The first—denoted by S∗T∞ in

[GMS1]—is a strongly regular Banach space with W(S∗T∞) =M2. This space contains

no isomorphic copy of c0 but has an equivalent weak unit ball homeomorphic to a weak

unit ball of c0.

The second space—denoted by B∞ in [GMS2]—is a Banach space with CPCP and

W(B∞) 6= Mα for α = 0, 1, 2. This example disproves two long standing natural opti-

mistic conjectures (see [Ba3] and [BDP]) and shows that the situation with topological

classification of weak unit balls (even with respect to Kadec norms) is more complex than

one could imagine.

How many distinct classes W(X), where X is a Banach space with separable dual,

are there? Are there Banach spaces failing PCP whose all equivalent weak balls are
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topologically homogeneous? How far apart are the conditions W(X) = M2 and PCP?

Which Banach spaces do admit equivalent σZ∞-norms? These and many other open

questions are posed in the final third section.

1. Topology of weak unit balls. For a Banach space X we denote by B(X) the weak

unit ball of X; X∗∗ is the double dual to X and B∗∗(X) stands for the closed unit ball of

X∗∗, equipped with the ∗-weak topology. If the Banach space X is clear from the context,

we use the notations B and B∗∗ in place of B(X) and B∗∗(X), respectively. According to

the Goldstine Theorem [HHZ, 64], B is a dense convex subspace in B∗∗, so it is legal to

consider the pair (B∗∗, B). If X is infinite-dimensional and X∗ is separable (we consider

only such Banach spaces), then the ball B∗∗ is an infinite-dimensional metrizable compact

convex set (see [HHZ, 62]), homeomorphic to the Hilbert cube Q = [−1, 1]ω according

to the Keller Theorem [BP, p. 100]. In fact, for every norm dense subset {x∗n}
∞
n=1 of the

dual unit ball of X∗ the metric d(x∗∗, y∗∗) =
∑∞
n=1 2

−n|x∗∗(x∗n)− y
∗∗(x∗n)| generates the

∗-weak topology on B∗∗. Thus B∗∗ can be considered as a convex compact subset of the

locally convex linear metric space (X∗∗, d). This fact allows us to apply the powerful

results of [Ba1] to studying the topology of the pair (B
∗∗, B). Two pairs (X,Y ) and

(X ′, Y ′) of topological spaces are homeomorphic if h(Y ) = Y ′ for some homeomorphism

h : X → X ′.

All undefined notions from functional analysis can be found in the book [HHZ], from

infinite-dimensional topology in the books [BP] or [BRZ].

Let us recall that a Banach space X is reflexive if X∗∗ = X, or equivalently, if the

weak unit ball of X is compact. For such Banach spaces we have

1.1. Theorem. For an infinite-dimensional separable Banach space X the following con-

ditions are equivalent :

(1) X is reflexive;

(2) W(X) ⊂M0;

(3) W(X) =M0;

(4) the weak unit ball B of X is homeomorphic to the Hilbert cube Q.

Proof. We will prove the implications (4)⇒(3)⇒(2)⇒(1)⇒(2)⇒(4).

The conditions (1) and (2) are equivalent according to [HHZ, 65]. The implication

(4)⇒(3) follows from the M0-universality of the Hilbert cube Q (Q contains a closed

topological copy of each metrizable compactum); (3)⇒(2) is trivial. Finally, if W(X) ⊂

M0, then B is compact, and being a dense subset of B∗∗ it must coincide with B∗∗. Since

B∗∗ is homeomorphic to Q, we complete the proof.

Next, we consider the caseW(X) ⊂M1. Let us recall that a Banach space X satisfies

the point continuity property (briefly PCP) if for every bounded weakly closed subset

A ⊂ X the identity map (A,weak) → (A, norm) has a point of continuity. Equivalently,

X has PCP if each bounded subset of X has a relatively weak-open subset of arbitrarily

small (norm) diameter (see [EW, 3.13]). According to [EW], the weak unit ball B of a

Banach space X is complete-metrizable if and only ifX satisfies PCP andX∗ is separable.
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1.2. Theorem. For a Banach space X with separable dual the following conditions are

equivalent :

(1) X satisfies PCP but is not reflexive;

(2) W(X) ⊂M1 but W(X) 6⊂ M0;

(3) W(X) =M1;

(4) the pair (B∗∗, B) is homeomorphic to (Q, s).

Proof. We will prove the implications (4)⇒(3)⇒(2)⇒(1)⇒(4).

The implication (4)⇒(3) follows from the M1-universality of s (this means that s

contains a closed topological copy of each Polish space, see [En1, 4.3.25]); (3)⇒(2) is

trivial. To prove (2)⇒(1) note that W(X) ⊂M1 implies that the weak unit ball B of X

is a Polish space. Then by [EW], X satisfies PCP. If W(X) 6⊂ M0, then by Theorem 1.1,

the space X is not reflexive.

Finally, to prove the implication (1)⇒(4) apply [EW] to deduce that the weak unit

ball B of X is a noncompact Polish space. Since the ball B∗∗ is compact and B is dense

in B∗∗, and B∗∗ 6⊂ aff(B) = X, the pair (B∗∗, B) is homeomorphic to (Q, s) according

to [BRZ, 5.2.8].

Let us remark that among Banach spaces satisfying PCP there are Banach spaces

whose double duals are separable (see [HHZ, 311]), in particular separable quasireflexive

Banach spaces have this property. Also, it should be mentioned that J. Bourgain and

F. Delbaen [BD] have constructed a Banach space (denoted by BD in [EW]) satisfying

PCP and such that the dual BD∗ is isomorphic to l1. Hence there are Banach spaces with

PCP and nonseparable double duals.

Let us recall that we defined a Banach space (X, ‖ · ‖) to satisfy the ball invariance

property (briefly BIP) if for every equivalent norm |||·||| on X the weak unit balls B(X, ‖·‖)

and B(X, ||| · |||) are homeomorphic.

Theorems 1.1 and 1.2 imply

1.3. Corollary. If an infinite-dimensional Banach space X has separable dual and sa-

tisfies PCP , then

(1) X satisfies BIP , and

(2) the weak unit ball B of X, being homeomorphic to Q or to s, is topologically

homogeneous.

Let us recall that a topological space T is topologically homogeneous if for any points

x, y ∈ T there exists a homeomorphism h : T → T such that h(x) = y.

1.4. Remark. The second statement of Corollary 1.3 is not true for Banach spaces with

PCP but nonseparable duals. Indeed, ifX is such a Banach space, then by PCP, the “iden-

tity embedding” B → X has a continuity point x0 ∈ B. Then B has a countable neighbor-

hood base at x0 but fails to have a countable neighborhood base at the origin (this easily

follows from the nonseparability of X∗). Clearly, B is not topologically homogeneous.

1.5. Question. Is there a Banach space satisfying BIP and having nonseparable dual?

Is there a Banach space with nonseparable dual and topologically homogeneous weak unit
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ball? In particular , is the weak unit ball of the Banach space C[0, 1] or L1[0, 1] topologically

homogeneous?

Also, Corollary 1.3 does not hold for Banach spaces failing PCP.

1.6. Example (cf. [HHZ, p. 240]). The Banach space c0 has two equivalent norms ‖ · ‖∞
and ‖ · ‖K such that the weak unit balls of the Banach spaces (c0, ‖ · ‖∞) and (c0, ‖ · ‖K)

are not homeomorphic. Thus c0 does not satisfy BIP.

Proof. The norm ‖ · ‖∞ is the standard sup-norm on c0: ‖x‖∞ = supn∈N |xn|, where

x = (xn)
∞
n=1 ∈ c0. The weak unit ball B(c0, ‖ · ‖∞) is a space of the first Baire category

because it can be written asB(c0, ‖·‖∞) =
⋃∞
n=1Bn, where Bn = {(xi)

∞
i=1 ∈ B(c0, ‖·‖∞) :

|xi| ≤ 1/2 for i > n} are closed nowhere dense subsets in B(c0, ‖ · ‖∞).

The norm ‖·‖K is any Kadec norm on c0 (for example, Day’s locally uniformly rotund

norm on c0, see [DGZ, p. 69]). Let us recall that a norm ‖ ·‖ of a Banach space is called a

Kadec norm if the weak and the norm topologies coincide on the unit sphere. It is known

that every separable Banach space admits an equivalent Kadec norm; see [BP, VI, §3].

For a Kadec norm ‖·‖K on c0, the unit sphere S ⊂ B(c0, ‖·‖K) is a dense absolute Gδ-set

in B(c0, ‖ · ‖K). This implies that the weak unit ball B(c0, ‖ · ‖K) is a Baire space and

hence is not homeomorphic to B(c0, ‖ · ‖∞).

1.7. Example. The Banach space c0 has an equivalent norm ‖ · ‖ such that the weak unit

ball B(c0, ‖ · ‖) is not topologically homogeneous.

Proof. We shall construct this norm not on c0 but on its isomorphic copy c0⊕R. Let ‖·‖K
be any equivalent Kadec norm on c0⊕R such that ‖x‖∞ ≥ ‖x‖K for any x ∈ c0 ⊂ c0⊕R.

We claim that the norm ‖ · ‖ on c0 ⊕ R defined for (x, t) ∈ c0 ⊕ R by

‖(x, t)‖ = max{2‖x‖∞, ‖(x, t)‖K}

is as required. Evidently, the set

B = {(x, t) ∈ c0 ⊕ R : ‖x‖∞ ≤ 1/2, ‖(x, t)‖K ≤ 1}

=
(
1
2B(c0, ‖ · ‖∞)⊕ R

)
∩B(c0 ⊕ R, ‖ · ‖K)

is the closed unit ball with respect to this norm ‖ · ‖. We shall show that the weak unit

ball B = B(c0 ⊕ R, ‖ · ‖) contains two open sets U1, U2 such that U1 is of the first Baire

category, while U2 is a Baire space. Of course, this implies that B is not topologically

homogeneous.

To define the set U1 find any nonzero vector t1 ∈ R ⊂ c0 ⊕ R with ‖t1‖K < 1/2 and

let
U1 = {(x, t) ∈ B : |t| < |t1|}.

Evidently, U1 is (weakly) open in B. We claim that U1 = {(x, t) ∈ c0 ⊕ R : ‖x‖∞
≤ 1/2, |t| < |t1|}. This follows from the inequality ‖(x, t)‖K ≤ ‖x‖K + ‖t‖K < ‖x‖∞ +

‖t1‖K ≤ 1/2 + 1/2 = 1, which holds for every (x, t) ∈ c0 ⊕R with ‖x‖∞ ≤ 1/2, |t| < |t1|.

Thus U1 is homeomorphic to B(c0, ‖·‖∞)×(−t1, t1). Since the weak unit ball B(c0, ‖·‖∞)

is of the first Baire category, we see that U1 is of the first Baire category as well.

To define the set U2 find a vector t2 ∈ R with ‖t2‖K = 1. Since ‖ · ‖K is a Kadec

norm, there is a weakly open neighborhood U2 ⊂ B(c0 ⊕ R, ‖ · ‖K) of the point t2 on
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the unit sphere of (c0 ⊕ R, ‖ · ‖K) such that U2 ⊂ {(x, t) ∈ c0 ⊕ R : ‖x‖∞ < 1/2}.

Since B(c0 ⊕ R, ‖ · ‖K) is a Baire space, so is its open subset U2. Now notice that U2 =

U2 ∩ B(c0 ⊕ R, ‖ · ‖) is an open set in the weak unit ball B(c0 ⊕ R, ‖ · ‖). Thus U2 is an

open Baire subspace in B(c0 ⊕ R, ‖ · ‖).

In light of Example 1.7 the following question appears.

1.8. Question. Is there a Banach space whose weak unit ball has finite homeomorphism

group?

In contrast with the weak ball from Example 1.7, the weak balls B(c0, ‖ · ‖∞) and

B(c0, ‖·‖K) are topologically homogeneous. This is so because B(c0, ‖·‖∞) is a σZ∞-space

while B(c0, ‖ · ‖K) is an ∞-Baire space. Let us recall their definitions.

A subset A of a topological space X is called n-dense in X, where n ≥ 0, if every

continuous map f : In → X of the n-dimensional cube In = [0, 1]n can be uniformly

approximated by continuous maps into A. A subset A of a topological space X is called

a Zn-set if A is closed in X and its complement X \A is n-dense in X. A subset A ⊂ X

is called ∞-dense (resp. a Z∞-set) in X if A is n-dense (resp. a Zn-set) in X for every

n ∈ N.

A topological space X is called a σZn-space, where n ∈ N ∪ {0,∞}, if X can be

expressed as a countable union X =
⋃∞
i=1Ai of Zn-sets in X.

Let us remark that a subset A of a topological space X is dense (resp. closed and

nowhere dense) in X if and only if A is 0-dense (resp. a Z0-set) in X; X is of the first

Baire category if and only if X is a σZ0-space.

A topological space X is called an ∞-Baire space if X contains an ∞-dense absolute

Gδ-subset. Note that each ∞-Baire X space is Baire, that is, the intersection of any

countable collection of open dense subsets of X is dense in X.

A norm ‖ · ‖ of a Banach space X is called a σZ∞-norm (resp. ∞-Baire norm) if the

weak unit ball B(X, ‖ · ‖) is a σZ∞-space (resp. an ∞-Baire space).

Because each complete-metrizable space is∞-Baire, each equivalent norm on a Banach

space with PCP is ∞-Baire. Another important example of ∞-Baire norms are Kadec

norms.

1.9. Proposition. Every Kadec norm on a Banach space is ∞-Baire.

Proof. By the definition of a Kadec norm, the weak and the norm topologies coincide on

the unit sphere S = {x ∈ X : ‖x‖ = 1} of a Banach space X whose norm is Kadec. Since

in the norm topology the sphere S is complete-metrizable, we see that S is an absolute

Gδ-subset in the weak unit ball B of X. It remains to verify that S is ∞-dense in B. Let

f : K → B be a continuous map of a finite-dimensional cube into the weak ball B and

let U be a weakly open convex neighborhood of the origin in X. It suffices to construct

a continuous map f : K → S such that f(x) − f(x) ∈ U for each x ∈ K. First, by the

standard technique (see [CuDM, p. 841] or [Ba2]), approximate f by a map f
′ : K → B

such that span(f ′(K)) is finite-dimensional and ‖f ′(x)‖ < 1, f(x)− f ′(x) ∈ 12U for each

x ∈ K. Next, using the fact that the set 12U is unbounded, find a point y ∈
1
2U with

‖y‖ > 2. Finally, for every x ∈ K let f(x) be the unique point of intersection of the

segment f ′(x) + [0, 1]y with the sphere S. It is easy to verify that the map f : K → S
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is continuous. Moreover, f(x) − f(x) = f(x) − f ′(x) + f ′(x) − f(x) ∈ [0, 1]y + 12U ⊂
1
2U +

1
2U = U for each x ∈ K.

1.10. Theorem. Let X be an infinite-dimensional Banach space with separable dual.

The weak unit ball B of X is topologically homogeneous provided the norm of X is a

σZ∞-norm or an ∞-Baire norm.

Proof. The theorem is a direct consequence of the following general fact proven in

[Ba1]: Let C be an infinite-dimensional symmetric convex set in a locally convex linear

metric space L such that the closure C of C in L is compact and C is closed in its affine

hull. Then C is topologically homogeneous provided C is a σZ∞-space or an ∞-Baire

space.

1.11. Remark. The argument of Remark 1.4 shows that for every Banach space X

with Kadec norm and nonseparable dual, the weak unit ball of X is not topologically

homogeneous. Thus Theorem 1.10 fails beyond the class of infinite-dimensional Banach

spaces with separable dual.

In fact, for σZ∞-norms we may prove much more. But first we need the following

1.12. Proposition. If X is a Banach space with separable dual , then the weak unit ball

B of X is an absolute Fσδ-set (equivalently , W(X) ⊂M2).

Proof. It suffices to show that B is an Fσδ-set in B
∗∗. This follows from the obvious

representation

B =

∞⋂

n=1

∞⋃

m=1

B∗∗ ∩

(
xm +

1

n
B∗∗
)
,

where {xn}∞n=1 is a norm dense countable subset of B.

Below, Σ = {(xi)i∈ω ∈ Q : supi∈ω |xi| < 1} is the radial interior of the Hilbert cube Q.

1.13. Theorem. Let X be a Banach space with separable dual and σZ∞-norm. Then the

weak unit ball B of X is homeomorphic to the weak unit ball B(c0, ‖ · ‖∞); moreover , the

pair (B∗∗, B) is homeomorphic to (Qω, Σω).

Proof. We will use the fact that the weak unit ball B is ∞-convex. The latter means

that for every bounded sequence (xn)
∞
n=1 ⊂ B and every sequence (tn)

∞
n=1 ⊂ [0, 1] with∑∞

n=1 tn = 1 the point x∞ =
∑∞
n=1 tnxn belongs to B. According to Corollary 10 of

[Ba1], an ∞-convex set C in a locally convex linear metric space is homeomorphic to

Σω provided C is closed in its affine hull aff(C), C is an absolute Fσδ-set, and C is a

σZ∞-space. Because the weak unit ball B of a Banach space with σZ∞-norm satisfies

these conditions, it is homeomorphic to Σω. To show that B is homeomorphic to the

weak unit ball B(c0, ‖ · ‖∞) it now suffices to verify that B(c0, ‖ · ‖∞) is homeomorphic

to Σω. This will be done as soon as we verify that B(c0, ‖ · ‖∞) is a σZ∞-space (cf. [GM,

2.5]). For this, observe that the sets Bn from Example 1.6 are Z∞-sets in B(c0, ‖ · ‖∞).

Indeed, each continuous map f : Q → B(c0, ‖ · ‖∞) may be approximated by a map
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fi : Q→ B(c0, ‖ · ‖∞) defined for q ∈ Q by

prj ◦ fi(q) =




prj ◦ f(q) if j < i,
1 if j = i,
0 if j > i,

where prj : c0 → R denotes the projection onto the jth coordinate. Evidently, for i > n

we have fi(Q) ∩Bn = ∅, i.e. Bn is a Z∞-set in B(c0, ‖ · ‖∞).

To prove that the pair (B∗∗, B) is homeomorphic to (Qω, Σω) we shall apply The-

orem 3.1.9 of [BRZ]. This theorem implies that a pair (T , T ) of topological spaces is

homeomorphic to (Qω, Σω) if and only if T is homeomorphic to the Hilbert cube Q, T is

homeomorphic to Σω and T is homotopy dense in T . The latter means that there exists

a homotopy h : T × [0, 1] → T such that h(T × (0, 1]) ⊂ T and h(x, 0) = x for every

x ∈ T . According to [BRZ, §1.2, Ex. 12, 13] every convex subset C of a locally convex

linear metric space is homotopy dense in its closure (see also [Du]). This implies that B

is homotopy dense in its closure B∗∗. Since B∗∗ is homeomorphic to Q and B to Σω, the

pair (B∗∗, B) is homeomorphic to (Qω, Σω).

For ∞-Baire norms the situation is more complex. For a Banach space X denote by

W(X∗∗, X) the class of pairs homeomorphic to a pair (K,K ∩ X), where K is a com-

pact subset of the space X∗∗ endowed with the ∗-weak topology. Evidently, W(X∗∗, X)

coincides with the class F0(B∗∗, B) of topological copies of pairs (K,K ∩B), where K is

a closed subset of B∗∗. Recall that F0(T ) is the class of all topological copies of closed

subspaces of a topological space T .

1.14. Classification Theorem. Let X, Y be two Banach spaces with separable duals

and ∞-Baire norms.

(1) The weak unit balls B(X) and B(Y ) of X and Y are homeomorphic if and only

if W(X) =W(Y ).

(2) The pairs (B∗∗(X), B(X)) and (B∗∗(Y ), B(Y )) are homeomorphic if and only if

W(X∗∗, X) =W(Y ∗∗, Y ).

Proof. This theorem is a direct consequence of the following general fact proven in [Ba1]:

Let C1, C2 be convex symmetric ∞-Baire subspaces in locally convex spaces such that

the closure Ci of Ci is a metrizable compactum and Ci is closed in its affine hull aff(Ci)

for i = 1, 2. Then

(1) C1 and C2 are homeomorphic if and only if F0(C1) = F0(C2);

(2) the pairs (C1, C1) and (C2, C2) are homeomorphic if and only if F0(C1, C1) =

F0(C2, C2).

1.15. Question. Is the Classification Theorem true for Banach spaces with nonseparable

duals?

For classes K, C of topological spaces let (K, C) be the class of pairs (K,C), where

C ∋ C ⊂ K ∈ K.

1.16. Corollary. For a Banach space X the following conditions are equivalent :

(1) W(X) =M2 and the norm of X is ∞-Baire;
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(2) W(X∗∗, X) = (M0,M2) and the norm of X is ∞-Baire;

(3) the weak unit ball B of X is homeomorphic to the weak ball B(c0, ‖ · ‖K), where

‖ · ‖K is any Kadec norm on c0;

(4) the pair (B∗∗, B) is homeomorphic to the pair (B∗∗(c0, ‖ · ‖K), B(c0, ‖ · ‖K)).

Proof. We shall prove the implications (4)⇒(3)⇒(1)⇒(2)⇒(4), the first of which is

trivial. To verify that (3)⇒(1), observe that by Proposition 1.9, the weak unit ball B(c0,

‖ · ‖K) is ∞-Baire and so is its topological copy B. Next, because F0(B(c0, ‖ · ‖K)) =

W(c0) = F0(B(c0, ‖ · ‖∞)) = F0(Σω) (Theorem 1.13) and F0(Σω) =M2 (by [BM, 6.3]),

we get W(X) = F0(B) =M2.

The implication (1)⇒(2) follows from Theorem 3.1.1 of [BRZ], which implies that for

every pair (K,C) with K ∈M0 and F0(C) =M2 we have F0(K,C) = (M0,M2).

The final implication (2)⇒(4) follows from Classification Theorem 1.14 and The-

orem 1.13, according to whichW(c∗∗0 , c0) = F0(B
∗∗(c0, ‖·‖∞), B(c0, ‖·‖∞)) = F0(Q

ω, Σω)

= (M0,M2) (for the last equality, see [BM]).

In light of the last two statements, it would be interesting to detect Banach spaces

whose all equivalent norms are ∞-Baire. It turns out that this property is equivalent to

BIP (the ball invariance property).

1.17. Theorem. For an infinite-dimensional Banach space X with separable dual the

following conditions are equivalent :

(1) X has BIP ;

(2) every equivalent norm ‖ · ‖ on X is ∞-Baire;

(3) every equivalent weak unit ball of X is topologically homogeneous.

Proof. The equivalence (1)⇔(2) is a direct consequence of Classification Theorem 1.14;

the implication (2)⇒(3) follows from Theorem 1.10.

To prove the implication (3)⇒(2) we will exploit the trick used in Example 1.7. But

first we need to establish some elementary properties of ∞-Baire spaces. For the theory

of absolute retracts we refer the reader to [Bor].

1.18. Claim. An absolute Gδ-set G of a separable absolute neighborhood retract T is

∞-dense if and only if G is homotopy dense in T .

Proof. Let us recall that a subset G of a space T is homotopy dense in T if there exists

a homotopy h : T × [0, 1] → T such that h(T × (0, 1]) ⊂ G and h(x, 0) = x for every

x ∈ T . Actually only the “only if” part of 1.18 requires a proof. Let G be an ∞-dense

absolute Gδ-set in an absolute neighborhood retract T . According to [To1] the space T

embeds as an ∞-dense subset into a complete-metrizable absolute neighborhood retract

T̃ . Then G is ∞-dense in T̃ and its complement T̃ \ G is a σZ∞-set in T̃ , i.e. T̃ \ G is

a countable union of Z∞-sets in T̃ . Since each σZ∞-set in a Polish ANR has homotopy

dense complement (see [BRZ, §1.4, Ex. 3]), we see that G is homotopy dense in T̃ , and

consequently in T .

1.19. Claim. A separable absolute neighborhood retract T is ∞-Baire if and only if every

point of T has an ∞-Baire neighborhood.
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Proof. If every point of T has an ∞-Baire neighborhood, then we may construct a

locally finite cover U of T by open ∞-Baire subsets. For every U ∈ U fix an absolute

Gδ-set GU ⊂ U , ∞-dense in U . Since U is locally finite, the union G =
⋃
U∈U GU is an

absolute Gδ-set. By Claim 1.18, the set U ∩ G ⊃ GU is homotopy dense in U . Then by

[BRZ, §1.2, Ex. 3], the set G is homotopy dense in T . By Claim 1.18, G is ∞-dense in T .

Thus T is an ∞-Baire space.

Now we are ready to prove the implication (3)⇒(2) of 1.17. Assume on the contrary

that any equivalent weak ball of X is topologically homogeneous but there exists an

equivalent norm ‖ · ‖ on X which is not ∞-Baire. Since weak balls, being convex subsets

of locally convex spaces, are absolute retracts [BP, II, §3], we may apply Claim 1.19

and conclude that the weak unit ball B(X, ‖ · ‖) contains a point x0 having no ∞-Baire

neighborhood. Let f ∈ X∗ be a functional with ‖f‖ = 1 and f(x0) = 0. Pick a point

e ∈ X such that ‖e‖ ≤ 2 and f(e) = 1. Fix any equivalent Kadec norm ‖ · ‖K on X such

that ‖x‖K ≤
1
2‖x‖ for any x ∈ X. Since the norms ‖ · ‖ and ‖ · ‖K are equivalent, there

exists a δ > 0 such that δ‖x‖ ≤ ‖x‖K for every x ∈ X.

Observe that for every positive constant C the formula TC(x) = (x−f(x)e)+Cf(x)e,

x ∈ X, determines an isomorphism TC : X → X (with inverse T
−1
C (y) = (y − f(y)e) +

1
C f(y)e). Consequently, ‖x‖C = ‖TC(x)‖K is a Kadec norm on X. Let C = ‖e‖/‖e‖K+1

≥ 3 and

|||x||| = max{‖x‖, ‖x‖C} = max{‖x‖, ‖x+ (C − 1)f(x)e‖K} for x ∈ X.

Evidently, ||| · ||| is an equivalent norm on X. We claim that the weak unit ball B(X, ||| · |||) is

not topologically homogeneous. To prove this, observe that for any x ∈ X with |f(x)| <

1/4 we have

‖x‖C = ‖x− (C − 1)f(x)e‖K

=

∥∥∥∥x+
‖e‖

‖e‖K
f(x)e

∥∥∥∥
K

≤ ‖x‖K + f(x)‖e‖ ≤ 1/2‖x‖+ 1/2.

Consequently, for x ∈ f−1(−1/4, 1/4) the inequality |||x||| ≤ 1 is equivalent to ‖x‖ ≤ 1.

This means that f−1(−1/4, 1/4) ∩ B(X, ‖ · ‖) = f−1(−1/4, 1/4) ∩ B(X, ||| · |||) and thus

the point x0 belongs to B(X, ||| · |||) and has no ∞-Baire neighborhood in B(X, ||| · |||).

On the other hand, consider the point y0 = e/(‖e‖+ ‖e‖K) and observe that ‖y0‖C =

‖y0 + (C − 1)f(y0)e‖K = 1 while ‖y0‖ = ‖e‖/(‖e‖ + ‖e‖K) ≤ 1/(1 + δ) < 1. Let ε =

1− 1/(1 + δ) and U = {x ∈ X : |||x− y0||| < ε/2}. Then for every x ∈ U we have

‖x‖ ≤ ‖y0‖+ ‖x− y0‖ ≤
1

1 + δ
+
ε

2
= 1−

ε

2
≤ ‖y0‖C − ‖x− y0‖C ≤ ‖x‖C .

This implies |||x||| = ‖x‖C for x ∈ U and U ∩ B(X, ||| · |||) = U ∩ B(X, ‖ · ‖C). Since ‖ · ‖C
is a Kadec norm, V = U ∩ B(X, ||| · |||) is a (weak) neighborhood of y0 in B(X, ||| · |||) and

V is an ∞-Baire space. If B(X, ||| · |||) were topologically homogeneous, we would find

a homeomorphism h of B(X, ||| · |||) with h(y0) = x0. Then h(V ) would be an ∞-Baire

neighborhood of x0 in B(X, ||| · |||), a contradiction.

1.20. Remark. Theorem 1.17 is specific to Banach spaces with separable duals and is not

valid in the general case. Indeed, equivalent weak balls of nonseparable reflexive Banach
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spaces, being compact, are ∞-Baire spaces. Yet, they are not topologically homogeneous

(see Remark 1.4).

By Corollary 1.3, every Banach space with PCP has BIP. We do not know if the

converse is true. Nonetheless, we are able to show that Banach spaces with BIP satisfy

CPCP, a convex analog of PCP. This follows from Theorem 1.17 and the subsequent

Theorem 1.21.

Let us recall that a Banach space X satisfies the convex point continuity property

(briefly CPCP) if for every convex bounded closed subset A in X the identity map

(A,weak)→ (A, norm) has a point of continuity.

1.21. Theorem. For a separable Banach space X the following conditions are equivalent :

(1) X satisfies CPCP ;

(2) each equivalent weak unit ball of X is a Baire space;

(3) for each equivalent weak unit ball B of X there is n ∈ N such that B is not a

σZn-space.

Proof. The implication (2)⇒(3) is trivial.

(1)⇒(2). If X satisfies CPCP, then by Lemma I.0 of [GGMS] the set C of continuity

points of the identity map B(X) → X is a dense Gδ-set in B(X). Since C is a weak

Gδ-set, C is a norm Gδ-set in X and thus C is an absolute Gδ-space. Then B(X) is a

Baire space as a topological space containing a dense absolute Gδ-set.

(3)⇒(1) Suppose the Banach space X satisfies the condition (3) of 1.21 but fails

CPCP. Then by [Ha, Lemma 7] the space X admits an equivalent norm ‖ · ‖ for which

there exists ε > 0 such that for every point x ∈ X with ‖x‖ < 1 and every closed linear

subspace F of finite codimension in X we have diam‖·‖(x+ F ) ∩ B > ε, where B is the

weak unit ball corresponding to the norm ‖ · ‖. To get a contradiction, we shall prove

that the weak unit ball B is a σZn-space for every n ∈ N. For this we shall need

1.22. Claim. For every n ∈ N there exists a constant δ(n) > 0 such that for every point

a ∈ B and any nonempty relatively weak-open subsets U0, . . . , Un ⊂ B there are points

xi ∈ Ui, 0 ≤ i ≤ n, such that ‖x− a‖ > δ(n) for every x ∈ conv{x0, . . . , xn}.

Proof. Let α0 = 2 and αk+1 = 2(1 +
∑k
i=0 α

2
i /ε) for 0 ≤ k ≤ n. Next, go backwards

and let λn = αn/ε and λk = (αk +
∑n
i=k+1 2λiαi)/ε for n > k ≥ 0. We shall show that

the number δ(n) = (λ0 + . . .+ λn)
−1 satisfies our requirements.

Fix any point a ∈ B and nonempty relatively weak-open subsets U0, . . . , Un ⊂ B. For

every i ∈ {0, . . . , n} pick a point yi ∈ Ui with ‖yi‖ < 1. It follows from the definition of

the weak topology that there exists a closed linear subspace F0 ⊂ X of finite codimension

such that (yi + F0) ∩B ⊂ Ui for every i ∈ {0, . . . , n}.

By finite induction we shall construct points x0, . . . , xn ⊂ B, e0, . . . , en ∈ X, func-

tionals e∗0, . . . , e
∗
n ∈ X

∗ and closed linear subspaces F0 ⊃ F1 ⊃ . . . ⊃ Fn of finite codimen-

sion in X such that for every k ∈ {0, . . . , n} the following conditions are satisfied:

(1) xk ∈ (yk + Fk) ∩B;

(2) xk = a+ ek +
∑k−1
i=0 e

∗
i (yk − a)ei;

(3) e∗k(ek) = 1 and e
∗
k(ei) = 0 for i < k;
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(4) ε/2 < ‖ek‖ < αk and ‖e∗k‖ < αk/ε;

(5) Fk+1 = Fk ∩Ker(e∗k).

Suppose for some k < n points x0, . . . , xk ∈ B, vectors e0, . . . , ek ∈ X, functionals

e∗0, . . . , e
∗
k ∈ X

∗ and closed linear subspaces F0 ⊃ . . . ⊃ Fk+1 satisfying the conditions

(1)–(5) have been constructed. Let

bk+1 = a+
k∑

i=0

e∗i (yk − a)ei.

By the property of the norm of X, the diameter of the set (yk+1 + Fk+1) ∩ B is greater

than ε. Consequently, there is a point xk+1 ∈ (yk+1+Fk+1)∩B with ‖xk+1−bk+1‖ > ε/2.

Let ek+1 = xk+1 − bk+1. Clearly, conditions (1) and (2) hold. Observe that

ε

2
< ‖ek+1‖ ≤ ‖xk+1‖+ ‖a‖+

k∑

i=0

|e∗i (yk − a)| · ‖ei‖

< 2 +
k∑

i=0

2‖e∗i ‖ · ‖ei‖ ≤ 2

(
1 +

k∑

i=0

α2i
ε

)
= αk+1.

Fix an arbitrarym ≤ k. We claim that e∗m(ei) = 0 for all 0 ≤ i ≤ k+1 with i 6= m. Indeed,

if i < m, then this follows from condition (3). If i > m, then xi−yi ∈ Fi ⊂ Fm ⊂ Ker(e∗m)

and thus

e∗m(ei) = e
∗
m(xi − bi) = e

∗
m(yi − a)−

i−1∑

j=0

e∗j (yi − a)e
∗
m(ej) =

i−1∑

j=m+1

e∗j (yi − a)e
∗
m(ej),

which by induction on i > m just yields e∗m(ei) = 0 for all m < i ≤ k + 1.

To construct the functional e∗k+1 consider the linear subspace L of X spanned by the

vectors ei, 0 ≤ i ≤ k + 1. For every x ∈ L write x =
∑k+1
i=0 ti(x)ei for some constants

t0(x), . . . , tk+1(x) ∈ R. Applying the functionals e∗i , 0 ≤ i ≤ k, to this representation, we

get ti(x) = e
∗
i (x) and tk+1(x)ek+1 = x−

∑k
i=0 e

∗
i (x)ei. Consequently,

|tk+1(x)| =
1

‖ek+1‖

∥∥∥x−
k∑

i=0

e∗i (x)ei

∥∥∥

<
2

ε

(
‖x‖+

k∑

i=0

‖e∗i ‖ · ‖ei‖ · ‖x‖
)
≤
2

ε

(
1 +

k∑

i=0

α2i
ε

)
‖x‖ ≤

αk+1
ε
‖x‖.

This yields that the map tk+1 : L → R, tk+1 : x 7→ tk+1(x), is a well defined linear

functional with norm < αk+1/ε. Applying the Hahn–Banach Theorem, extend tk+1 to a

functional e∗k+1 ∈ X
∗ such that ‖e∗k+1‖ = ‖tk+1‖ < αk+1/ε. It is clear that e

∗
k+1(ek+1) = 1

and e∗k+1(ei) = 0 for i < k+1. Finally, put Fk+2 = Fk+1∩Ker(e
∗
k+1). Therefore, the points

xk+1, en+1, the functional e
∗
k+1, and the subspace Fk+2 satisfying conditions (1)–(5) are

constructed and the induction is complete.

By the choice of the subspace F0, we have xi ∈ yi + F0 ⊂ Ui for every i ≤ n. Finally,

let us show that ‖x− a‖ > δ(n) for any x ∈ conv{x0, . . . , xn}. Assume, on the contrary,
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‖x− a‖ ≤ δ(n) for some x =
∑n
i=0 tixi, where t0, . . . , tn ≥ 0 and

∑n
i=0 ti = 1. Then

x− a =
n∑

i=0

ti(xi − a)

=
n∑

i=0

ti

(
ei +

i−1∑

k=0

e∗k(yi − a)ek
)
=
n∑

k=0

tkek +
n∑

i=0

i−1∑

k=0

tie
∗
k(yi − a)ek

=
n∑

k=0

tkek +
n∑

k=0

n∑

i=k+1

tie
∗
k(yi − a)ek =

n∑

k=0

(
tk +

n∑

i=k+1

tie
∗
k(yi − a)

)
ek.

Consequently, for every k ≤ n we have
∣∣∣tk +

n∑

i=k+1

tie
∗
k(yi − a)

∣∣∣ = |e∗k(x− a)| ≤ ‖e∗k‖ · ‖x− a‖ <
αk
ε
δ(n)

and

tk <
αk
ε
δ(n) +

n∑

i=k+1

ti|e
∗
k(yi − a)| <

αk
ε
δ(n) +

n∑

i=k+1

2ti‖e
∗
k‖ <

αk
ε
δ(n) + 2

n∑

i=k+1

ti
αi
ε
.

In particular, for k = n, we get

tn <
αn
ε
δ(n) = λnδ(n),

and for k = n− 1,

tn−1 <
αn−1
ε
δ(n) + 2tn

αn
ε
<
αk−1
ε
δ(n) + 2

αn
ε
λnδ(n) = λn−1δ(n).

Continuing in this way, we get tk < λkδ(n) for every 0 ≤ k ≤ n. Then 1 = t0+ . . .+ tn <

(λ0 + . . .+ λn)δ(n) = 1, a contradiction.

Now we are able to prove that the weak unit ball B is a σZn-space for every n ∈ N.

Fix any countable dense subset A ⊂ B. Clearly, B ⊂
⋃
a∈A(a+ δB) for every δ > 0. To

show that B is a σZn-space, it suffices to prove that the intersection (a + δ(n)B) ∩ B

is a σZn-space in B for every n ∈ N and every a ∈ A (here δ(n) is the constant from

Claim 1.22).

So, fix a ∈ A, n ∈ N, a continuous map f : In → B of the n-dimensional cube

and a weakly open convex neighborhood U ⊂ X of the origin. We have to construct a

continuous map f ′ : In → B such that f ′(In)∩ (a+ δ(n)B) = ∅ and f(t)− f ′(t) ∈ U for

every t ∈ In.

The uniform continuity of f implies the existence of a triangulation N of the cube In

so fine that f(σ) − f(σ) ⊂ 16U for every simplex σ of N . Let N
(0) denote the set of all

vertices of the triangulation N , S = {σ1, . . . , σm} be the set of all maximal simplices of

N and σ(0) denote the set of vertices of a simplex σ ∈ S.

Put U0 =
1
6U and f0 = f |N

(0) : N (0) → B. By finite induction, for every k ∈

{1, . . . ,m} we shall construct a weak-open neighborhood Uk of the origin of X and a

map fk : N (0) → B satisfying the conditions

(1) fk(t) ∈ fi(t) + Ui for every i < k and t ∈ N (0);

(2) (a+ δ(n)B) ∩ conv(fk(σ
(0)
k ) + Uk) = ∅.
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Suppose for some k ≤ m and every i < k the map fi and the neighborhood Ui
satisfying conditions (1), (2) have been constructed.

Since fk−1(t) ∈ fi(t) + Ui for every i < k and t ∈ N
(0), we may find a weak-open

neighborhoodW of the origin of X such that fk−1(t)+W ⊂ fi(t)+Ui for every i < k and

every t ∈ N (0). Consider the maximal simplex σk ∈ S. Because dimσk = dim In = n,

we have |σ
(0)
k | = n + 1. Using Claim 1.22, construct a map f̃k : σ

(0)
k → B such that

(a + δ(n)B) ∩ conv(f̃k(σ
(0)
k )) = ∅ and f̃k(t) ∈ fk−1(t) +W for every t ∈ σ

(0)
k . Letting

fk(t) = fk−1(t) for t ∈ N
(0)\σ

(0)
k and fk(t) = f̃k(t) for t ∈ σ

(0)
k , extend the map f̃k to the

map fk : N (0) → B. By the choice of the neighborhood W , we have fk(t) ∈ fi(t) + Ui
for every i < k and every t ∈ N (0). By the Hahn–Banach Theorem, there exists an

open halfspace H ⊂ X such that conv(fk(σ
(0)
k )) ⊂ H and H ∩ (a + δ(n)B) = ∅. Find

a weak-open neighborhood Uk of the origin in X such that fk(t) + Uk ⊂ H for every

t ∈ σ
(0)
k . Then conv(fk(σ

(0)
k ) +Uk) ⊂ H and thus (a+ δ(n)B)∩ conv(fk(σ

(0)
k ) +Uk) = ∅.

Therefore, the map fk and the neighborhood Uk satisfying conditions (1), (2) have been

constructed.

Consider the map fm : N (0) → B and let f ′ : In → B be the simplicial map of N

extending the map fm. We claim that f
′(In) ∩ (a + δ(n)B) = ∅. Fix any t ∈ In and

find a maximal simplex σi ∈ S containing the point t. Then f ′(t) ∈ conv(fm(σ
(0)
i )).

According to (1), we have fm(σ
(0)
i ) ⊂ fi(σ

(0)
i ) + Ui and hence f

′(t) ∈ conv(fm(σ
(0)
i )) ⊂

conv(fi(σ
(0)
i ) + Ui). By (2), f

′(t) 6∈ a+ δ(n)B.

It remains to show that f(t)− f ′(t) ∈ U for every t ∈ Ik. Fix any t ∈ Ik and pick up

a simplex σ of the triangulation N such that t ∈ σ. Fix any vertex v0 ∈ σ(0). By (1), for

every v ∈ σ(0) we have fm(v) ∈ f0(v) + U0 = f(v) +
1
6U and hence

fm(v)− fm(v0) = (fm(v)− f(v)) + (f(v)− f(v0)) + (f(v0)− fm(v0))

∈ 16U +
1
6U +

1
6U =

1
2U.

Consequently, fm(σ
(0)) ⊂ fm(v0) +

1
2U and thus f

′(t) ∈ conv(fm(σ(0))) ⊂ fm(v0) +
1
2U .

Then

f ′(t)− f(t) = (f ′(t)− fm(v0)) + (fm(v0)− f(v0)) + (f(v0)− f(t))

∈ 12U +
1
6U +

1
6U ⊂ U.

By the preceding theorem, every Banach space X failing CPCP admits an equivalent

norm ‖ · ‖ such that the corresponding weak unit ball B is a σZn-space for every n ∈ N.

Can the norm ‖ · ‖ be chosen so that the weak ball B is a σZ∞-space? We will show

that this can be done for Banach spaces which are not strongly regular. Strongly regular

Banach spaces were introduced and extensively studied in [GGMS]. Below we give a

definition equivalent to that given in [GGMS] (cf. [GGMS, III.6 and II.1]).

A Banach space X is called strongly regular if for every ε > 0 and every nonempty

convex bounded subset C ⊂ X there exist scalars t1, . . . , tn ≥ 0 with
∑n
i=1 ti = 1 and

nonempty relatively weak-open subsets U1, . . . , Un ⊂ C such that the norm diameter of∑n
i=1 tiUi is less than ε.

It is known that every Banach space with CPCP is strongly regular. On the other

hand, if X contains an isomorphic copy of c0, then it is not strongly regular.
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1.23. Theorem. If a separable Banach space X is not strongly regular , then X has an

equivalent σZ∞-norm ‖ · ‖. Moreover , if the dual space X∗ is separable, then the weak

unit ball B with respect to this norm is homeomorphic to the weak unit ball B(c0, ‖ · ‖∞)

of the Banach space c0.

Proof. Suppose a separable Banach space (X, ‖ · ‖) is not strongly regular. Then there

exist ε > 0 and a nonempty convex bounded set C ⊂ X such that for any scalars

t1, . . . , tn ≥ 0 with
∑n
i=1 ti = 1 and any nonempty relatively open subsets U1, . . . , Un

⊂ C we have diam(
∑n
i=1 tiUi) > ε.

Without loss of generality, the origin of X belongs to the set C. Consider the open

set (C − C) + B◦, where B◦ = {x ∈ X : ‖x‖ < 1} is the open unit ball of X. Note that

the set C−C+B◦ is bounded, convex, open, and symmetric. This implies that its gauge

functional |||x||| = inf{t > 0 : x/t ∈ C − C +B◦}, x ∈ X, is an equivalent norm for X.

1.24. Claim. For any scalars t1, . . . , tn ≥ 0 with
∑n
i=1 ti = 1 and any nonempty open

subsets V1, . . . , Vn ⊂ B(X, ||| · |||) we have diam‖·‖
∑n
i=1 tiVi > ε.

Proof. For every Vi fix a point xi ∈ Vi ∩ (C−C+B
◦) and write xi = ci− c

′
i+ bi, where

ci, c
′
i ∈ C and bi ∈ B

◦. By the continuity of the addition, the point ci has a weak-open

neighborhood Ui ⊂ C such that Ui − c′i + bi ⊂ Vi. Then

n∑

i=1

tiVi ⊃
n∑

i=1

tiUi +

n∑

i=1

ti(bi − c
′
i)

and thus diam‖·‖
∑n
i=1 tiVi ≥ diam‖·‖

∑n
i=1 tiUi > ε.

1.25. Claim. For every point a ∈ X and nonempty weak-open subsets U1, . . . , Un ⊂

B(X, ||| · |||) there are points xi ∈ Ui, 1 ≤ i ≤ n, such that ‖a−
∑n
i=1 tixi‖ > ε/6 for any

scalars t1, . . . , tn ≥ 0 with
∑n
i=1 ti = 1.

Proof. Let R > 0 be such that B(X, ||| · |||) ⊂ R ·B(X, ‖·‖). Denote by T = {(t1, . . . , tn) ∈

[0, 1]n :
∑n
i=1 ti = 1} the (n−1)-dimensional simplex. Using its compactness, fix any finite

(ε/(6R))-net T0 ⊂ T with respect to the l1-metric d((ti)n1 , (t
′
i)
n
1 ) =

∑n
i=1 |ti − t

′
i| (this

means that for every t ∈ T there is t0 ∈ T0 with d(t, t0) < ε/(6R)). Let ≤ be any linear

ordering of the finite set T0.

By finite induction for every t = (t1, . . . , tn) ∈ T0 we will construct nonempty weak-

open sets U1(t), . . . , Un(t) in B(X, ||| · |||) such that

(∗t) Ui(t) ⊂ Ui ∩
⋂

τ<t

Ui(τ ), 1 ≤ i ≤ n,

(
a+
ε

3
B(X, ||| · |||)

)
∩
n∑

i=1

tiUi(t) = ∅.

Fix any t = (t1, . . . , tn) ∈ T0 and assume that for every τ ∈ T0 with τ < t nonempty

weak-open sets Ui(τ ) satisfying (∗τ ) have been constructed. Let Vi = Ui ∩
⋂
τ<t Ui(τ ) for

1 ≤ i ≤ n. By Claim 1.24, diam‖·‖
∑n
i=1 tiVi > ε. This implies the existence of points

xi ∈ Vi, 1 ≤ i ≤ n, such that ‖a−
∑n
i=1 tixi‖ > ε/3. Then

∑n
i=1 tixi 6∈ a+(ε/3)B(X, ‖·‖)

and we may find a weak-open neighborhood W of the point
∑n
i=1 tixi in B(X, ||| · |||)

such that W ∩ (a + (ε/3)B(X, ‖ · ‖)) = ∅. By the continuity of linear operations on

B(X, ||| · |||) the points x1, . . . , xn have neighborhoods U1(t), . . . , Un(t) ⊂ B(X, ||| · |||) such
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that xi ∈ Ui(t) ⊂ Vi for 1 ≤ i ≤ n and
∑n
i=1 tiUi(t) ⊂ W . This yields (

∑n
i=1 tiUi(t)) ∩

(a+ (ε/3)B(X, ‖ · ‖)) = ∅. The inductive step is complete.

Finally, for the maximal element τ ∈ T0 pick points xi ∈ Ui(τ ), 1 ≤ i ≤ n. Since

Ui(τ ) ⊂ Ui(t) ∩ Ui for t ≤ τ , 1 ≤ i ≤ n, we get xi ∈ Ui, 1 ≤ i ≤ n, and ‖a −
∑n
i=1 tixi‖

> ε/3 for every t = (t1, . . . , tn) ∈ T0.

Then for every t = (t1, . . . , tn) ∈ T , letting t′ = (t′1, . . . , t
′
n) be any point of T0 with∑n

i=1 |ti − t
′
i| < ε/(6R) we get

∥∥∥a−
n∑

i=1

tixi

∥∥∥ ≥
∥∥∥a−

n∑

i=1

t′ixi

∥∥∥−
∥∥∥
n∑

i=1

(t′i − ti)xi

∥∥∥

>
ε

3
− max
1≤i≤n

‖xi‖ ·
n∑

i=1

|ti − t
′
i| ≥
ε

3
−R

ε

6R
=
ε

6
.

1.26. Claim. For every point a ∈ X the set B(X, ||| · |||)∩ (a+(ε/6)B(X, ‖ ·‖)
)
is a Z∞-set

in B(X, ||| · |||).

Proof. Fix a weak-open convex neighborhood U of the origin of X and a continuous

map f : Ik → B(X, ||| · |||) of a finite-dimensional cube. We have to construct a continuous

map f ′ : Ik → B(X, ||| · |||) such that f ′(Ik)∩(a+(ε/6)B(X, ‖·‖)) = ∅ and f ′(t)−f(t) ∈ U

for every t ∈ Ik. The uniform continuity of f implies the existence of a triangulation N

of the cube Ik so fine that f(σ)− f(σ) ⊂ 16U for every simplex σ of N . Let N
(0) be the

set of vertices of the triangulation N . By Claim 1.25, there exists a map f ′0 : N
(0) →

B(X, ||| · |||) such that (a+ (ε/6)B(X, ‖ · ‖)) ∩ conv(f ′0(N
(0))) and f ′0(v) − f(v) ∈

1
6U for

every v ∈ N (0). Let f ′ : Ik → B(X, ||| · |||) be the simplicial map extending the map f ′0.

Then f ′(Ik) ⊂ conv(f ′0(N
(0))) and hence f ′(Ik) ∩ (a+ (ε/6)B(X, ‖ · ‖)) = ∅.

By analogy with the proof of Theorem 1.21, verify that f(t) − f ′(t) ∈ U for every

t ∈ Ik. Thus B ∩ (a+ (ε/6)B(X, ‖ · ‖)) is a Z∞-set in B(X, ||| · |||).

Now we are able to prove that the weak unit ball B(X, ||| · |||) is a σZ∞-space. Let

(ai)
∞
i=1 be a norm dense countable subset in B(X, ||| · |||). Then Claim 1.26 implies that

B(X, ||| · |||) =
⋃∞
i=1B(X, ||| · |||) ∩ (ai + (ε/6)B(X, ‖ · ‖)) is a σZ∞-space.

If the dual space X∗ is separable, then by Theorem 1.13, the weak unit ball B(X, ||| · |||)

is homeomorphic to B(c0, ‖ · ‖∞).

Now we consider the question of how geometric properties of a Banach space X reflect

in properties of the classes W(X) and W(X∗∗, X). Below, for a nonnegative integer n

and a class C of topological spaces, C[n] denotes the subclass of C consisting of all spaces

C ∈ C with dimC ≤ n; and C(s.c.d.c.) stands for the subclass of C consisting of all spaces

C ∈ C having a strongly countable-dimensional metrizable compactification (recall that

a topological space X is called strongly countable-dimensional if it can be written as a

countable union of its closed finite-dimensional subspaces, see [En2]). One may compare

the following theorem with Theorems 1.1 and 1.2.

1.27. Theorem. Suppose X is a Banach space with separable dual.

(1) X is infinite-dimensional iff W(X) ⊃M0.

(2) X is not reflexive iff W(X) ⊃M1 iff W(X∗∗, X) ⊃ (M0,M1).
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(3) X fails PCP iff W(X) ⊃M2[0] iff W(X∗∗, X) ⊃ (M0[0],M2).

(4) If X fails CPCP , then

W(X) ⊃M2(s.c.d.c.) and W(X
∗∗,X) ⊃ (M0(s.c.d.c.),M2).

(5) If X is not strongly regular , then W(X) =M2 and W(X∗∗, X) = (M0,M2).

Proof. (1) If W(X) ⊃ M0, then X is infinite-dimensional. Conversely, if X is infinite-

dimensional, then X contains an infinite-dimensional convex compact set. By the Keller

Theorem [BP, p. 100], K is homeomorphic to the Hilbert cube Q. Since the weak and

the norm topologies coincide on K, we get W(X) ⊃ F0(K) = F0(Q) = M0 (the last

equality follows from theM0-universality of Q [En1, 2.3.23]).

(2) To prove the second statement it suffices to show that if X is not reflexive, then

W(X∗∗, X) ⊃ (M0,M1). Since X is not reflexive, B 6= B∗∗ and hence we may find

a sequence (xn)
∞
n=1 in B, weakly convergent to a point x0 ∈ B

∗∗ \ B. By the Milman

Theorem [HHZ, 74] and the Choquet Representation Theorem [HHZ, 220], the closed

convex hull K of the compact set S0 = {xn : n ≥ 0} coincides with the set
{ ∞∑

n=0

tnxn : tn ≥ 0,
∞∑

n=0

tn = 1
}

of countable convex combinations of the points xn, n ≥ 0.

Observe that K ∩ B = {
∑∞
n=1 tnxn : tn ≥ 0,

∑∞
n=1 tn = 1} is the set of all countable

convex combinations of the xn’s, n ≥ 1. Then K \ B =
⋃∞
m=1Km, where Km = {tx0 +

(1− t)y : 1/m ≤ t ≤ 1, y ∈ K} is compact for every m. Hence K ∩ B is a dense Gδ-set

in K. Since K is compact and convex, and K 6⊂ aff(K ∩ B), we may apply Theorem

5.2.8 of [BRZ] to conclude that the pair (K,K ∩ B) is homeomorphic to (Q, s). Since

F0(Q, s) = (M0,M1) (this follows from Toruńczyk’s Theorem 4.2 in [BP, IV, §4]), we

get W(X∗∗, X) = F0(B∗∗, B) ⊃ F0(K,K ∩B) = F0(Q, s) = (M0,M1).

(3) In light of Theorems 1.1 and 1.2, to prove the third statement it suffices to show

that for a Banach space failing PCP we have W(X∗∗, X) = F0(B∗∗, B) ⊃ (M0[0],M2).

By the Theorem of Louveau and Saint-Raymond [Ke, 28.19] this will follow as soon as

we show that B is not a Gδσ-set in B
∗∗. By [Ke, 22.4] there exists a pair (K,F ) ∈

(M0[0],M2) such that F is not a Gδσ-set in K. To show that B is not a Gδσ-set in B∗∗

it suffices to construct a continuous map f : K → B∗∗ with f−1(B) = F (see [Ke, 22.1]).

The construction is as follows.

According to [Ku, §30.V] the set K\F , being a Gδσ-set in K, can be written as

a countable union K\F =
⋃∞
n=1Gn of pairwise disjoint Gδ-subsets of K. If X fails

PCP, then by [EW], B 6∈ M1 and by the Wadge Theorem [Ke, 21.14] for every n ∈ N

there exists a continuous map fn : K → B∗∗ with f−1n (B) = K\Gn. Consider the map

f =
∑∞
n=1 2

−nfn : K → B∗∗ and observe that it is well defined and continuous. We

claim that f−1(B) = F . Indeed, if x ∈ F , then x 6∈ Gn for all n and by the choice

of the maps fn, we get fn(x) ∈ B, n ∈ N. Then f(x) =
∑∞
n=1 2

−nfn(x) ∈ B. Now

assume x ∈ K\F . Then there is a unique n0 ∈ N such that x ∈ Gn0 and x 6∈ Gn for

all n 6= n0. By the choice of the maps fn, we get fn0(x) 6∈ X and fn(x) ∈ B if n 6= n0.

Then f(x) = 2−n0fn0(x) +
∑
n6=n0
2−nfn(x) does not belong to B since fn0(x) 6∈ X and∑

n6=n0
2−nfn(x) ∈ B. Thus f−1(B) = F , completing the proof of (3).
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(4) Suppose the space X fails CPCP. Then according to Theorem 1.21, X admits

an equivalent norm ‖ · ‖ such that the corresponding weak unit ball B is a σZn-space

for every n ∈ N. To prove (4) it suffices to show that F0(B∗∗, B) ⊃ (M0(s.c.d.c.),M2).

According to Theorem 3.2.11 of [BRZ] this will follow as soon as we construct for every

pair (K,M) ∈ (M0(s.c.d.c.),M2) a continuous map f : K → B∗∗ such that f−1(B) =M .

Fix a pair (K,M) ∈ (M0(s.c.d.c.),M2) and write K =
⋃∞
n=1Kn where Kn’s are

finite-dimensional compacta. Clearly, for every n ∈ N, the set Kn+1\(Kn ∪M) is a Gδσ-

set in K. According to [Ku, §30.V] this set can be written as the union of a countable

collection Gn of pairwise disjoint Gδ-subsets of K. Then G =
⋃
n∈N Gn is a countable

collection of pairwise disjoint Gδ-sets in K such that
⋃
G = K\M ; moreover, the closure

of each set G ∈ G lies in some Ki and thus is finite-dimensional. Let G = {Gn}∞n=1 be an

enumeration of the collection G.

Fix any n ∈ N and consider the pair (Gn, Gn). Since Gn is a finite-dimensional

compactum and B is an absolute retract σZm-space for every m ∈ N, we may apply

Lemma 10 of [BC] and Theorem 3.1.1 of [BRZ] to find a continuous map fn : Gn → B∗∗

such that f−1n (B) = Gn\Gn. By an extension theorem of [Du], the map fn can be

extended to a continuous map fn : K → B∗∗ such that fn(K\Gn) ⊂ B. Then fn has

the property f−1n (B) = K\Gn. By analogy with the preceding case, it can be shown that

the map f : K → B∗∗ defined by f(x) =
∑∞
n=1 2

−nfn(x) for x ∈ K is as required, i.e., f

is continuous and f−1(B) =M .

(5) If the space X is not strongly regular, then by Theorem 1.23, X admits an equiva-

lent norm ‖·‖ such that the corresponding weak unit ball B is a σZ∞-space. Repeating the

arguments of the preceding two cases and using Lemma 8.10 of [CaDM] (see also Lemma

5.4 of [DMM]) in place of Lemma 10 of [BC], we may prove thatW(X∗∗, X) ⊃ (M0,M2).

Another way to prove this inclusion is to apply Theorems 1.23, 1.13 and the well known

equality F0(Q
ω, Σω) = (M0,M2) (see [BM, 6.3]).

1.28. Corollary. If an infinite-dimensional Banach space X with separable dual is com-

plemented in its double dual X∗∗, then W(X) =Mα for some α = 0, 1, 2.

Proof. The corollary follows from Theorems 1.1, 1.2, 1.27 and Proposition VII.4 of

[GGMS], which states that for separable Banach spaces complemented in their double

duals PCP is equivalent to strong regularity.

The first two statements of Theorem 1.27 can be extended to general Banach spaces.

Let us recall that a Banach space X is weakly sequentially complete (resp. satisfies the

Shur property) if every weakly Cauchy sequence in X weakly converges (resp. converges

in norm). According to the classical Steinhaus Theorem (see [Wo] or [Ed, 4.21.4]) every

Banach subspace of L1[0, 1] is weakly sequentially complete; by the Shur Theorem [HHZ,

99], every Banach subspace of l1 satisfies the Shur property. It should be mentioned that

the Banach space l1 satisfies PCP (see [EW, p. 346]), while L1[0, 1] is not strongly regular

[GGMS, §4]. Note that if a Banach space X with separable dual is weakly sequentially

complete (resp. satisfies the Shur property), then X is reflexive (resp. finite-dimensional).

Below we denote byM the class of all separable metrizable topological spaces; S0 =

{0} ∪ {1/n : n ∈ N} stands for a convergent sequence and S = S0\{0}.
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1.29. Theorem. Suppose X is a Banach space.

(1) X is infinite-dimensional iff W(X) ⊃M0.

(2) X is not reflexive iff W(X) ⊃M1.

(3) If X does not contain an isomorphic copy of l1, then W(X∗∗, X) ⊃ (M0,M1).

(4) If X is weakly sequentially complete, then W(X∗∗, X) 6⊃ (M0,M1); moreover ,

(S0, S) 6∈ W(X∗∗, X).

(5) If X satisfies the Shur property , then W(X) ∩M ⊂M1.

Proof. The first statement can be proven the same way as in Theorem 1.27. IfW(X) ⊃

M1, then clearly X is not reflexive. Suppose, conversely, that X is a nonreflexive Banach

space. Then there are two possibilities.

A) X does not contain an isomorphic copy of l1. Since X is not reflexive, by the

Eberlein–Shmul’yan Theorem [HHZ, 229] the weak unit ball B of X is not sequentially

compact and thus contains a sequence (yk) with no limit point in B. By the Rosenthal

l1 Theorem [Di, p. 201], the sequence (yk) has a weakly Cauchy subsequence (xn). Since

B∗∗ is ∗-weakly compact, the sequence (xn) converges to some point x0 ∈ B
∗∗. Since the

sequence (yk) has no limit point in B, x0 6∈ B. Proceeding further as in Theorem 1.27,

we prove that (M0,M1) ⊂ W(X∗∗, X) andM1 ⊂ W(X).

B) X contains an isomorphic copy of l1. Consider the positive unit sphere P =

{(xi)∞i=1 ∈ l1 : xi ≥ 0 for all i ∈ N and
∑∞
i=1 xi = 1} of l1 and observe that P is a

(weakly) closed convex set in l1. Moreover, the weak and the norm topologies coincide on

P . Since P is complete and non-locally compact, we may apply [DT] (see also [BRZ, 5.2.2])

to deduce that P is homeomorphic to s. Then W(X) ⊃ W(l1) ⊃ F0(P ) = F0(s) =M1.

Thus the first three statements are proven.

The other two statements can be easily derived from the corresponding definitions.

1.30. Question. Is W(L1[0, 1]) ∩M ⊂M1?

Clearly, W(Y ) ⊂ W(X) for every Banach subspace Y of a Banach space X. What

connections are there between the classes W(X), W(Y ), and W(X/Y )?

1.31. Proposition. Suppose Y is a Banach subspace of an infinite-dimensional Banach

space X. If W(Y ),W(X/Y ) ⊂M1, then W(X) =W(Y ⊕ (X/Y )) =W(Y )∪W(X/Y ).

Proof. The inclusion W(Y ) ∪ W(X/Y ) ⊂ M1 implies that both Y and X/Y have

separable duals. Then the dual of X is separable as well (see [HHZ, Proposition 42])

and we may apply Proposition II.2 of [GM1] to conclude that W(X) ⊂M1 and W(Y ⊕

(X/Y )) ⊂ M1. By Theorems 1.1 and 1.2 two cases are possible: either W(X) =M0 or

W(X) =M1. In the first case X is reflexive and thus the spaces Y , X/Y , and Y ⊕(X/Y )

are reflexive. By Theorem 1.1, W(X) =M0 =W(Y ⊕ (X/Y )) =W(Y ) ∪W(X/Y ).

Now consider the second case: W(X) =M1, i.e., X is not reflexive. Since reflexivity

is a three-space property [CG], either Y or X/Y is not reflexive. Applying Theorems 1.1

and 1.2, we get W(X) =M1 =W(Y ⊕ (X/Y )) =W(Y ) ∪W(X/Y ).

1.32. Remark. The equality W(X) = W(Y ⊕ (X/Y )) is false in general. Indeed, by

Proposition 4.9 of [EW], the Banach space c0 is a quotient of a Banach space X with
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W(X) = M1. Let Y ⊂ X be a Banach subspace such that c0 = X/Y . Then W(Y ) ⊂

W(X) =M1 and W(X) =M1 6=W(Y ⊕ (X/Y )) ⊃ W(c0) =M2.

1.33. Question. Is W(X) ⊂ W(Y ⊕ (X/Y )) for every Banach subspace Y of a Banach

space X?

Observe that Proposition 1.31 and Theorem 1.27 imply that if Y is a Banach subspace

of a Banach space X with separable dual, then W(Y ) ⊂M1 and W(X) ⊃M2[0] imply

W(X/Y ) ⊃M2[0].

1.34. Proposition. Suppose Y is a Banach subspace of a Banach space X with separable

dual. If W(Y ) ⊂M1 and W(X) =M2, then W(X/Y ) =M2.

First we recall one definition. Following [BRZ, p. 129] we define a continuous map

f : X → Y between topological spaces to be anM1-map if there exist a space M ∈M1
and a closed embedding e : X → Y ×M such that f = pr ◦ e, where pr : Y ×M → Y

denotes the projection. By [BRZ, §3.2, Ex. 3] (see also [Ba4]), a map f : X → Y between

absolute Borel spaces is an M1-map if and only if f
−1(K) ∈ M1 for every compact

subset K ⊂ Y .

1.35. Lemma. Suppose Y is a Banach subspace of a Banach space X with separable dual.

If W(Y ) ⊂M1, then the quotient map P : B(X)→ B(X/Y ) is anM1-map.

Proof. Since B(X) and B(X/Y ) are absolute Borel spaces (see Proposition 1.12) it

suffices to prove that P−1(K) ∈ M1 for every compact subset K ⊂ B(X/Y ). Fix a

(weakly) compact set K ⊂ B(X/Y ). By the Factorization Theorem [DFJP], there exists

an injective bounded linear operator T : R→ X/Y from a reflexive Banach space R such

that T (B(R)) ⊃ K. Since T : B(R)→ (X/Y,weak) is an embedding, the weak unit ball

B(R) of R is metrizable. Thus R∗ is separable and so is the space R.

In the direct sum X∗∗ ⊕R consider the closed linear subspace

Z̃ = {(x, y) ∈ X∗∗ ⊕R : P ∗∗(x) = T (y)},

where P ∗∗ : X∗∗ → (X/Y )∗∗ is the double dual quotient operator. Let Z = Z̃ ∩ (X ⊕R).

Denote by P1 : Z → X and P2 : Z → R the projections. Clearly, P ◦ P1 = T ◦ P2,

P2(Z) = R and Y = Ker(P2). Hence R = Z/Y . Since both R and Y have separable duals

and satisfy PCP, we may apply Proposition 1.31 to conclude that W(Z) ⊂M1.

Let K− = B∗∗(X)∩ (P ∗∗)−1(K) and consider the map α : K− → (Z̃, ∗-weak) defined

by α(x) = (x, T−1 ◦ P ∗∗(x)). Since the map T : B(R) → (X/Y,weak) is an embedding

with T (B(R)) ⊃ K, the map α is an embedding. Observe that α(K−∩B(X)) = α(K−)∩

Z. Since W(Z) ⊂ M1, we get α(K−) ∩ Z ∈ M1, and thus P−1(K), being a topological

copy of α(K−) ∩ Z, belongs to the classM1.

Proof of 1.34. Proposition 1.34 follows from Lemma 1.35 and Theorem 3.2.12 of [BRZ],

according to which for an M1-map f : X → Y between separable metrizable spaces,

F0(X) ⊃M2 implies F0(Y ) ⊃M2.

Can we state that W(Y ) ⊃M2 provided there is a “nice” operator T : X → Y from

a Banach space X with W(X) =M2?
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Let us recall that a bounded linear operator T : X → Y between Banach spaces is

called a (nice) Gδ-embedding if T is injective and for every closed bounded subset C ⊂ X

its image T (C) is a (weak) Gδ-set in Y ; see [GM1].

We define an injective bounded linear operator f : X → Y to be a weak Gδ-embedding

if for every bounded weakly closed subset C ⊂ X its image T (C) is a weak Gδ-set

in Y . Clearly, each nice Gδ-embedding is simultaneously a Gδ-embedding and a weak

Gδ-embedding. Yet, there are Gδ-embeddings which are not weak Gδ-embeddings; see

Remark 2.2.

1.36. Proposition. If T : X → Y is a weak Gδ-embedding between Banach spaces with

separable duals , then W(X) =M2 implies W(Y ) =M2.

Proof. Without loss of generality, T (B(X)) ⊂ B(Y ). Clearly, T (B(X)) is a (weak)

Gδ-set in B(Y ). It follows from the definition of a weak Gδ-embedding that the inverse

map T−1 : T (B(X)) → B(X) is Borel of class 1. By [BRZ, §3.2, Ex. 4] (see also [Ba4]),

T : B(X) → T (B(X)) is anM1-map. Then by [BRZ, 3.2.12], F0(B(X)) ⊃ M2 implies

F0(T (B(X))) ⊃ M2. Since T (B(X)) is a Gδ-set in B(Y ), we may apply Theorem 3.1.2

of [BRZ] to conclude that W(Y ) = F0(B(Y )) ⊃M2.

1.37. Remark. Repeating the arguments of the preceding proof, we may show that

for every weak Gδ-embedding T : X → Y , W(X) ⊃ M2[0] implies W(Y ) ⊃ M2[0].

Combining this with Theorem 1.27, we find that for any weak Gδ-embedding T : X → Y

between Banach spaces with separable duals, W(Y ) ⊂ M1 implies W(X) ⊂ M1. For

nice Gδ-embeddings this fact was proven in [GM1].

2. Two counterexamples. In this section we present two counterexamples disproving

certain natural optimistic conjectures. One is an example of a Banach space—denoted

by S∗T∞ in [GMS1]—which is strongly regular but satisfies W(S∗T∞) =M2. This space

contains no isomorphic copy of c0 but has an equivalent weak ball, homeomorphic to a

weak ball of c0. Another is an example of a Banach space—denoted by B∞ in [GM1] and

[GMS2]—such that B∞ fails PCP but W(B∞) 6=M2.

Both examples are function spaces on the tree T∞ =
⋃∞
k=0Nk. There is a natural order

on T∞: (n1, . . . , np) ≤ (m1, . . . ,mq) if p ≤ q and ni = mi for i ≤ p. For t = (n1, . . . , np)

∈ T∞ we set |t| = p. A segment of T∞ is a set of the form [a, b] = {t ∈ T∞ : a ≤ t ≤ b},

where a, b ∈ T∞. The origin of T∞ is denoted by θ (that is, N0 = {θ}).

I. The space S∗T∞. We recall its construction following [GMS1].

Let X = (
∑∞
n=0⊕l

2(Nn))c0 , that is,

X =
{
x = (xt)t∈T∞ : ‖x‖

2 = sup
n

∑

|t|=n

|xt|
2 <∞ and lim

n

∑

|t|=n

|xt|
2 = 0

}
.

Let K be the subset of X∗∗ = (
∑∞
n=0⊕l

2(Nn))l∞ consisting of all functions z on T∞
satisfying:

• zθ = 1;

• zt ≥ 0 for all t ∈ T∞;

• z2(n1,...,nk) ≥
∑∞
nk+1=1

z2(n1,...,nk+1) for all (n1, . . . , nk) ∈ T∞.
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Let K0 = K ∩X and W be the symmetric closed convex hull of K0 in X. The space

S∗T∞ is the interpolation space associated with W in X by the method of [DFJP]. That

is,

S∗T∞ =
{
x ∈ X : |||x||| =

( ∞∑

i=1

‖x‖2n

)1/2
<∞
}
,

where ‖ · ‖n is the gauge functional of the set Un = 2
nW + 2−nB(X) for each n ∈ N.

By Theorem VI.1 of [GMS1], the space S∗T∞ fails CPCP and has separable dual; the

double dual ST ∗∞ of S∗T∞ is strongly regular and the quotient ST
∗
∞/S∗T∞ is reflexive.

We add to this list the following property.

2.1. Theorem. W(S∗T∞) =M2 and W(ST
∗
∞, S∗T∞) = (M0,M2).

Proof. Let j : S∗T∞ → X denote the natural “identity” map and let L0 = j−1(K0). As

noted in [GMS1, p. 581], L0 is a closed bounded convex subset of S∗T∞ and j defines

a homeomorphism between L0 and K0 for the respective weak topologies. In light of

Propositions 1.9, 1.12 and Corollary 1.16, to prove that W(ST ∗∞, S∗T∞) = (M0,M2)

and W(S∗T∞) = M2 it suffices to verify that W(S∗T∞) ⊃ M2. To show this we will

apply a recent result on the topology of spaces of probability measures. Let C = {0, 1}N

be the Cantor cube and C00 = {(xi)i∈N ∈ C : xi = 0 for almost all i}. Let P (C) denote

the space of probability measures on C and P̂ (C00) = {µ ∈ P (C) : µ(C00) = 1} (see

[BR]). By [BR, 2.7], P̂ (C00) is a σZ∞-space homeomorphic to Σ
ω.

We now construct a homeomorphism h : P̂ (C00) → K0 as follows. To every point

t = (n1, . . . , nk) ∈ T∞ assign the point v(t) = (v(t)i)
∞
i=1 in C00, where

v(t)i =

{
1 if i ∈ {n1, n1 + n2, . . . , n1 + . . .+ nk},
0 otherwise,

and the open neighborhood V (t) = {(xi)∞i=1 ∈ C : xi = v(t)i for i ≤ n1 + . . . + nk} of

v(t) in C.

Now to each measure µ ∈ P (C) assign the function f(µ) on T∞ defined by f(µ)(t) =√
µ(V (t)) for t ∈ T∞. It can be shown that f(µ) ∈ K and the map f : P (C) → K so

defined is continuous with respect to the ∗-weak topology on K. Moreover, f−1(K0) =

P̂ (C00) and the restriction f |P̂ (C00) : P̂ (C00)→ K0 is a homeomorphism. Hence the space

S∗T∞ contains the closed bounded convex subset L0 such that (L0,weak) is a σZ∞-space

homeomorphic to Σω. This yields W(S∗T∞) ⊃ F0(L0,weak) = F0(Σω) =M2 (the last

equality follows from theM2-universality of the space Σω, see [BM]).

2.2. Remark. By Theorem VI.1 of [GMS1] there exists a Gδ-embedding T : S∗T∞ → l2.

Since W(l2) 6= M2, Theorem 2.1 and Proposition 1.36 imply that T is not a weak

Gδ-embedding.

II. The space B∞. We recall its construction following [GMS2]. Let L be the linear space

of all real functions x on T∞ with finite support supp(x) = {x ∈ T∞ : x(t) 6= 0}. For

every t ∈ T∞ let et : T∞ → R be the characteristic function of the set {t}. Evidently,

the collection {et : t ∈ T∞} forms a Hamel basis for L and each function x ∈ L can be
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written as
∑
t∈T∞
xtet, where xt = x(t). On the space L consider the norm

‖x‖ = sup
( n∑

i=1

(∑

t∈Si

xt

)2)1/2
,

the supremum taken over all families (S1, . . . , Sn) of disjoint segments of T∞. Denote by

JT∞ the completion of the normed space (L, ‖ · ‖).

Now consider the dual space JT ∗∞ to JT∞. It is easily seen that for every t ∈ T∞
the coordinate functional e∗t : x 7→ xt is continuous on L and thus e

∗
t is continuously

extendable over JT∞, i.e. e
∗
t ∈ JT

∗
∞. By [GMS2], B∞, the closed linear span of the set

{e∗t : t ∈ T∞} in JT
∗
∞, is a predual space to JT∞.

According to [GMS2] the space B∞ has separable dual JT∞, B∞ satisfies CPCP,

but fails PCP. We add to this list the following pathological property. Below we denote

by A1[1] the class of all at most one-dimensional σ-compact metrizable spaces; a Peano

continuum is a metrizable connected locally connected compact space; a subset A of a

topological space T is called meager if A is a countable union of nowhere dense subsets

in T .

2.3.Theorem.M2[0] ⊂ W(B∞) but A1[1] 6⊂ W(B∞). Moreover , (K,A) 6∈ W(JT ∗∞, B∞)

for every Peano continuum K and every dense meager subset A ⊂ K.

Proof. First we will show that the complement JT ∗∞ \B∞ can be covered by countably

many ∗-weakly closed subsets each of which admits a “nice” continuous map onto a zero-

dimensional space. Under an infinite branch of T∞ we understand any maximal chain in

(T∞,≤); a finite branch is a segment of the form {x ∈ T∞ : x ≤ t} for some t ∈ T∞.

Denote by Γ the set of all branches of T∞ (both finite and infinite) and consider on Γ

the topology generated by the base consisting of the sets

Γ (t) = {γ ∈ Γ : γ ∋ t}, where t ∈ T∞.

It is easy to see that each Γ (t) is open-and-closed in Γ and Γ is a zero-dimensional

metrizable space.

According to [GMS2] for every functional f ∈ JT ∗∞ and every infinite branch γ of T∞
the limit limt∈γ f(et) exists. Moreover, limt∈γ f(et) 6= 0 for some infinite branch γ of T∞
if and only if f 6∈ B∞.

For a natural number n ∈ N and a point t ∈ T∞ consider the subset A(n, t) ⊂ JT ∗∞
of all functionals f ∈ JT ∗∞ for which there exists a (unique finite or infinite) branch

γ(t) ∈ Γ (t) such that for every τ ∈ Γ (t),

|f(eτ )|

{
≥ 1/n if τ ∈ γ(f),
≤ 1/(2n) if τ 6∈ γ(f).

2.4. Claim. The set A(n, t) is ∗-weakly closed in JT ∗∞.

Proof. Fix a functional f0 ∈ JT ∗∞ with f0 6∈ A(n, t). If |f0(et)| < 1/n, then {f ∈ JT
∗
∞ :

|f(et)| < 1/n} is a ∗-weakly open neighborhood separating f0 from the set A(n, t). In

case |f0(et)| ≥ 1/n let γ(f0) ∈ Γ (t) be a maximal branch such that |f0(eτ )| ≥ 1/n for

each τ ∈ γ(f0). We consider separately two cases.
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1. The branch γ(f0) is finite, i.e. γ(f0) = {τ ∈ T∞ : τ ≤ τ0} for some τ0 ∈ Γ (t). Then

by the maximality of γ(f0) there is a point τ1 > τ0 such that γ(f0)∪{τ1} is a branch and

|f0(eτ1)| < 1/n. Since f0 6∈ A(n, t) there must exist a point τ2 ∈ Γ (t) such that τ2 6∈ γ(f0)

and |f(eτ2)| > 1/(2n). Then the set{
f ∈ JT ∗∞ : |f(eτ )| >

1

2n
for τ ∈ γ(f0), |f(eτ1)| <

1

n
, |f(eτ2)| >

1

2n

}

is a ∗-weakly open neighborhood in JT ∗∞ separating f0 from the set A(n, t).

2. The branch γ(f0) is infinite. Since f0 6∈ A(n, t) there must exist a point τ0 ∈ Γ (t)

such that τ0 6∈ γ(f0) and |f(eτ0)| > 1/(2n). Find a point τ1 ∈ γ(f0) such that τ0 and τ1
are incomparable. Then the set

{
f ∈ JT ∗∞ : |f(eτ0)| >

1

2n
and |f(eτ )| >

1

2n
for t ≤ τ ≤ τ1

}

is a ∗-weakly open neighborhood in JT ∗∞ separating the point f0 from the set A(n, t).

Therefore A(n, t) is ∗-weakly closed in JT ∗∞.

Let Γ∞ denote the subset of Γ consisting of all infinite branches of T∞ and let

A∞(n, t) = {f ∈ A(n, t) : γ(f) ∈ Γ∞}.

2.5. Claim. If a connected subset C ⊂ A(n, t) meets the set A∞(n, t), then C ⊂ A∞(n, t).

Proof. We will first show that the map γ : A(n, t)→ Γ assigning to each f ∈ A(n, t) the

branch γ(f) ∈ Γ described in the definition of A(n, t) is continuous. Indeed, if f0 ∈ A(n, t)

and Γ (τ ), τ ∈ γ(f0), is a neighborhood of γ(f0), then the set U = {f ∈ A(n, t) :

|f(emax(t,τ))| > 1/(2n)} is a ∗-weakly open neighborhood of f0 in A(n, t) such that

γ(f) ∈ Γ (τ ) for every f ∈ U . Hence the map γ : A(n, t)→ Γ is continuous.

Since C ⊂ A(n, t) is connected and Γ is zero-dimensional, the image γ(C) consi-

sts of a unique branch γ0. Then C ⊂ γ−1(γ0). Because C ∩ A∞(n, t) 6= ∅, we get ∅ 6=

γ(C)∩γ(A∞(n, t)) ⊂ {γ0}∩Γ∞, which implies γ0 ∈ Γ∞ and C ⊂ γ−1(Γ∞) = A∞(n, t).

2.6. Claim. JT ∗∞ \B∞ =
⋃
n∈N, t∈T∞

A∞(n, t).

Proof. The inclusion A∞(n, t) ⊂ JT ∗∞ \B∞ follows from the definition of A∞(n, t) and

the fact that limt∈γ f(et) 6= 0 for some infinite branch γ implies f ∈ JT
∗
∞ \B∞.

To prove the inclusion JT ∗∞ \B∞ ⊂
⋃
n,tA∞(n, t), fix any functional f ∈ JT

∗
∞ \B∞.

By [GMS2, 1.1], limt∈γ f(et) 6= 0 for some infinite branch γ ∈ Γ . Hence we may find an

n ∈ N and a t1 ∈ γ such that |f(eτ )| ≥ 1/n for all t ∈ γ, t ≥ t1. We claim that there exists

a t ∈ γ, t ≥ t1, such that |f(eτ )| ≤ 1/(2n) for all τ ≥ t, τ 6∈ γ, i.e. f ∈ A∞(n, t). Assuming

the converse, we would find a sequence (ti)
∞
i=1 of pairwise incomparable points of T∞ such

that |f(eti)| > 1/(2n) for all i ∈ N. Fix a natural number N with
∑N
i=1 1/(i+1) > 2n‖f‖

and define the function x : T∞ → R with finite support by

xt =
{
sign(f(eti)) · 1/(i+ 1) if t = ti for some 1 ≤ i ≤ N ,
0 otherwise.

It follows from the definition of the norm on JT∞ that

‖x‖ =
( N∑

i=1

|xti |
2
)1/2
=

( N∑

i=1

1

(i+ 1)2

)1/2
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≤

( N∑

i=1

1

i(i+ 1)

)1/2
=

( N∑

i=1

(
1

i
−
1

i+ 1

))1/2
≤ 1.

On the other hand,

‖f‖ ≥ ‖f‖ · ‖x‖ ≥ |f(x)| =
∣∣∣
∑

t∈T∞

xtf(et)
∣∣∣ =
∣∣∣
N∑

i=1

xtif(eti)
∣∣∣ > 1
2n

N∑

i=1

1

i+ 1
> ‖f‖,

a contradiction.

Therefore f ∈ A∞(n, t) for some t ∈ T∞ and {A∞(n, t)}n∈N,t∈T∞ is a countable cover

of JT ∗∞ \B∞.

2.7. Claim. Suppose K is a Peano continuum and A is a dense meager subset in K.

Then there is no continuous map α : K → JT ∗∞ into JT
∗
∞ endowed with the ∗-weak

topology such that α−1(B∞) = A.

Proof. Assume on the contrary that such a map α exists. Then the comeager set K \A is

covered by the countable family {α−1(A∞(n, t))}n∈N,t∈T∞ . By the Baire Theorem, there

is a nonempty open subset U ⊂ K such that U\A lies in the closure of α−1(A∞(n, t))

in K for some n ∈ N, t ∈ T∞. By the local connectedness of K, the set U can be

chosen to be connected. Since the set A(n, t) ⊃ A∞(n, t) is ∗-weakly closed in JT ∗∞,

we get α(U) ⊂ Cl(α(U\A)) ⊂ Cl(A∞(n, t)) ⊂ A(n, t). Since α(U) is connected and

α(U) ∩ A∞(n, t) ⊃ α(U\A) is not empty, we may apply Claim 2.5 to conclude that

α(U) ⊂ A∞(n, t) ⊂ JT ∗∞\B∞, contrary to ∅ 6= α(U ∩A) ⊂ B∞.

2.8. Claim.M0[0] ⊂ W(B∞) but A1[1] 6⊂ W(B∞).

Proof. Since B∞ fails PCP and has separable dual, M2[0] ⊂ W(B∞) according to

Theorem 1.27.

Assuming A1[1] ⊂ W(B∞) = F0(B(B∞)) and applying Theorem 3.1.1 of [BRZ] we

would get (M0[1],A1[1]) ⊂ F0(B∗∗(B∞), B(B∞)), where M0[1] is the class of all at

most 1-dimensional metrizable compacta. This implies the existence of an embedding

α : [0, 1]→ B∗∗(B∞) with α−1(B(B∞)) = [0, 1] ∩Q, contrary to Claim 2.7.

Claim 2.8 finishes the proof of Theorem 2.3.

2.9. Remark. As we said, the Banach space J∗T∞ satisfies CPCP. Theorems 2.2 and

1.27 show that this fact has a topological nature.

3. Some open questions and comments. There are two groups of questions connected

with our subject. The first group concentrates around Classification Theorem 1.14. This

theorem reduces the problem of topological classification of weak unit balls B(X) to the

classification of the classes W(X).

Let

W
s
∞ = {W(X) : X is an infinite-dimensional Banach space with separable dual}.

Since each separable Banach space is isomorphic to a subspace of C[0, 1], the set W
s
∞

contains at most continuum many elements. Note that W
s
∞ is partially ordered by the

natural inclusion relation.
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3.1. Problem. Investigate the ordered set W
s
∞. In particular, is it infinite? Is it linearly

ordered?

At the moment, all we know about W
s
∞ is:

(1) the set W
s
∞ contains at least four classes: M0 = W(l2), M1 = W(J) (J stands

for the quasireflexive James space [HHZ, 264]), W(B∞), andM2 =W(c0);

(2)M0 andM2 are the smallest and the greatest elements of Ws∞, respectively;

(3)M1 is a unique successor ofM0.

In fact, the space B∞ is one of the spaces J∗T∞,n, n ≥ 0, constructed in [GM2].

3.2. Question. Is W(J∗T∞,n) 6=W(J∗T∞,m) for n 6= m?

3.3. Question. Is W(X ⊕ Y ) = max{W(X),W(Y )} for infinite-dimensional Banach

spaces X and Y with separable duals?

3.4. Question. Let X be an infinite-dimensional Banach space. Is W(X⊕X) =W(X)?

Is W(X ⊕ R) =W(X)?

We have shown in Theorem 2.3 thatM2[0] ⊂ W(B∞) butM2[1] 6⊂ W(B∞).

3.5. Question. Let n ∈ N. Is there a Banach space X such that M2[n] ⊂ W(X) but

M2[n + 1] 6⊂ W(X)? Is there a Banach space X such that M2(s.c.d.c.) ⊂ W(X) but

M2 6⊂ W(X)?

3.6. Question. Are there Banach spaces X, Y such that W(X) =W(Y ) but W(X∗∗, X)

6=W(Y ∗∗, Y )? (Note that W(X∗∗, X) =W(Y ∗∗, Y ) provided W(X) =W(Y ) =Mα for

some α = 0, 1, 2.)

The second group of problems concern relationships between the introduced properties

(such as BIP, W(X) = M2, or the existence of an equivalent σZ∞-norm) and known

geometric properties: FD (finite-dimensionality), R (reflexivity), PCP, CPCP, and SR

(strong regularity).

All relationships among these properties known at the moment are shown in the

diagram below. X is a Banach space with separable dual. The second line of the diagram

means that every equivalent weak unit ball B of X has the corresponding property; the

third line means that the class W(X) does not contain the corresponding class.

X has: (FD) ⇒ (R) ⇒ (PCP) ⇒ (BIP) ⇒ (CPCP) ⇒ (SR) ⇒ (c0 6⊂ X)
m m m m m ⇑

B is: (f.d.) ⇒ (compact) ⇒ (Polish) ⇒ (∞-Baire) ⇒ (Baire) ⇒ (not a σZ∞-space)
m m m ⇑ ⇑

W(X) 6⊃: M0 ⇒ M1 ⇒ M2[0] ⇒ M2[1] ⇒ M2(s.c.d.c.) ⇒ M2

The following questions connected with this diagram seem to be of interest.

3.7. Question. How far apart are the properties PCP and W(X) 6=M2? In particular ,

is there a Banach space with CPCP and W(X) =M2?

3.8. Question. Is there a Banach space X with W(X) = M2 admitting no equivalent

σZ∞-norm? Does the space S∗T∞ admit an equivalent σZ∞-norm?
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3.9. Question. Is there a Banach space with BIP but without PCP? Does the space B∞
satisfy BIP?

It is known that the Banach space c0 contains no infinite-dimensional conjugate sub-

spaces.

3.10.Question. Suppose X is a Banach space with separable dual , containing no subspace

isomorphic to an infinite-dimensional dual space. Is W(X) =M2?
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The topological and Borel classification of operator images

by

Taras Banakh, Tadeusz Dobrowolski and Anatolĭi Plichko

Abstract. We investigate Borel and topological properties of operator images, i.e., spaces TX,
where T : X → Y is a linear continuous operator between Fréchet spaces. In particular, we show
that if TX belongs to the small Borel class M21, then the Borel type of TX fully determines
the topological type of TX. By providing two nonhomeomorphic operator images of the class
M2\A2 we show that the above result cannot be generalized to higher Borel classes.

Introduction. The paper is devoted to the study of Borel and topological properties of

operator images, i.e., spaces of the form TX, where T : X → Y is a linear continuous

operator between Fréchet spaces (a Fréchet space is a locally convex linear complete

metric space). It was known that for separable X the operator image TX is an absolute

Borel space. In this paper we consider the following natural

Question 1. Is the topological type of an infinite-dimensional operator image TX of a

separable Fréchet space X fully determined by the Borel type of TX?

Due to J. Saint-Raymond [SR] we know that for a separable Fréchet space X there

exist some restrictions on the Borel type of TX. Namely, TX cannot be of class

Mα+1\Mα for a limit ordinal α (hereMα and Aα are respectively multiplicative and ad-

ditive Borel classes corresponding to a countable ordinal α). Moreover, if X is a separable

Banach space, then TX 6∈ Mα+1\
⋃
ξ<αMξ for any limit ordinal α > 0.

We find another restriction on the Borel type of operator images: if an operator image

TX of a separable Fréchet space X belongs to the ambiguous Borel classMα+1 ∩Aα+1
for some α, then TX belongs to the small Borel class M2α, i.e., TX is a difference of

two sets of class Mα. Thus for an operator image TX of a separable Banach space X

we have an alternative: either TX ∈ Mα+2\Aα+2, or TX ∈ Aα+1\Mα+1, or TX ∈

M2α+1\(Mα+1 ∪Aα+1) for some countable ordinal α.

Now Question 1 can be specified as follows.

Question 2. How many topologically distinct operator images of separable Fréchet spaces

are there in each of the classesMα\Aα, Aα\Mα,M2α\(Mα∪Aα), where α is a countable

ordinal?

2000 Mathematics Subject Classification: Primary 57N17, 57N20, 46B20, 46A03; Secondary
46A13, 47A05, 54F65.

[37]
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Answering this question we show the following:

(1) For every countable ordinal α each of the classesM2α+2 \(Mα+2∪Aα+2),Mα+2 \

Aα+2, Aα+1 \Mα+1 contains an operator image of a Banach space with separable dual;

if α is a limit ordinal, then the classMα \Aα contains an operator image of a separable

Fréchet space.

(2) Up to homeomorphism each of the classes M1 \ A1, A1 \M1, M
2
1 \ (M1 ∪ A1)

contains exactly one operator image. More precisely, if TX is an operator image of class

M1 \ A1 (resp. A1 \M1, M21 \ (M1 ∪ A1)), then TX is homeomorphic to l
2 (resp. Σ,

Σ× l2), where Σ is the linear span of the standard Hilbert cube in the separable Hilbert

space l2.

(3) The classM2 \ A2 contains two topologically distinct operator images of Banach

spaces with separable duals (thus the natural temptation to extend the second statement

to higher Borel classes fails).

Observe that the last statement answers Question 1 in the negative (compare this

with a result of [Ca]).

1. Borel type of operator images. Let X be a metrizable space. First we recall the

definition of the multiplicative and additive Borelian classes Mα(X) and Aα(X). Let

M0(X) and A0(X) be the classes of closed and open subsets in X, respectively. As-

suming that for a countable ordinal α the classes Mξ(X), Aξ(X), ξ < α, have been

defined, let Mα(X) (resp. Aα(X)) denote the collection of subsets in X that are coun-

table intersections (resp. countable unions) of subsets from the class
⋃
ξ<αAξ(X) (resp.⋃

ξ<αMξ(X)).

The classes Mα(X) ∩ Aα(X) are called ambiguous Borel classes. For each count-

able ordinal α the ambiguous classMα+1(X) ∩ Aα+1(X) can be represented as a union⋃
1≤β<ω1

Mβα(X), whereM
β
α(X) are the so-called small Borel classes (see [Ku, §37.IV]).

In particular, M1α(X) = Mα(X) and M
2
α(X) is the class of differences A \ B, where

A,B ∈Mα(X).

By Mα (resp. Aα, M2α) we denote the class of separable metrizable spaces X such

that for every metrizable space Y every subspace Z ⊂ Y homeomorphic to X belongs to

the classMα(Y ) (resp. Aα(Y ),M
2
α(Y )).

Let us recall [Ku] that a function f : X → Y between separable metric spaces is Borel

of class α if f−1(F ) ∈ Mα(X) for every closed set F ⊂ Y (of course, this is equivalent

to saying that f−1(U) ∈ Aα(X) for every open set U ⊂ Y ). A function f : X → Y is of

the first Baire class provided it is a pointwise limit of a sequence of maps X → Y . It is

well known that any map of the first Baire class is Borel of class 1.

For a locally convex linear topological space X let X∗ be the dual space to X, i.e.,

the space of continuous linear functionals endowed with the strong dual topology, that is,

the topology of uniform convergence on bounded subsets of X; see [Ed, §8.4] or [Sch, IV,

§5]. Besides the strong dual topology, the dual space X∗ carries the ∗-weak topology. It

is known that for a Fréchet space X its dual X∗ is σ-compact with respect to the ∗-weak

topology [Sch, IV, §6], its second dual X∗∗ is a Fréchet space too [Sch, IV, §6] and the

natural map X → X∗∗ is a topological embedding.
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All Fréchet and Banach spaces considered in this paper are infinite-dimensional.

The term “operator” means a “continuous linear map between Fréchet spaces”. An

operator T : X → Y is called dense (resp. compact) if TX is dense in Y (resp. TU is

totally bounded in Y for some neighborhood U of the origin in X). It is easily seen that

an operator T : X → Y between Fréchet spaces is compact if and only if the operator

image TX is σ-precompact, i.e., is contained in a σ-compact subset of Y . For an operator

T : X → Y we denote by T ∗ : Y ∗ → X∗ and T ∗∗ : X∗∗ → Y ∗∗ the dual and the second

dual operators to T .

For a subset F of the dual space X∗ to a Fréchet space X let F(0) = F and let F(1)
be the sequential closure of F in X∗ with respect to the ∗-weak topology. By transfinite

induction, for an ordinal α let F(α) =
⋃
β<α(F(β))(1).

The following characterization theorem was proved by J. Saint-Raymond (see Pro-

position 19, Theorems 31, 44, 47, 54 and Corollary 45 in [SR], see also [Pl1], [Pl2] and

[Os2]).

1.1. Theorem. For a countable ordinal α and an injective operator T : X → Y between

separable Fréchet spaces the following conditions are equivalent :

(1) TX ∈Mα+1;

(2) T−1 : TX → X is Borel of class α;

(3) there is a neighborhood base B at 0 ∈ X such that TB ∈ Aα(TX) for every B ∈ B;

(4) there is a base of closed convex neighborhoods B at 0 ∈ X such that TB ∈

M0(TX) ∪
⋃
ξ<αMξ(TX) for every B ∈ B;

(5) (T ∗Y ∗)(α) = X
∗.

If α is a limit ordinal then the conditions (1)–(5) are equivalent to

(6) TX ∈Mα(Y ).

Note that the ordinal α = 0 is limit! This proposition implies the following important

result (cf. [SR, Theorem 38]).

1.2. Theorem. Suppose α is a limit ordinal and T : X → Y is an injective operator

between separable Fréchet spaces. Then TX 6∈ Mα+1(Y ) \Mα(Y ). Moreover , if α > 0

and X is a Banach space, then TX 6∈ Mα+1 \
⋃
ξ<αMξ.

Next, we study operator images belonging to additive Borel classes.

1.3. Theorem. Suppose α is a countable ordinal and T : X → Y is an injective operator

between separable Fréchet spaces such that TX ∈ Mα+1. Then the following conditions

are equivalent :

(1) TX ∈ Aα+1(Y );

(2) TX ∈M2α(Y );

(3) there exists a neighborhood B of the origin in X such that TF ∈Mα(Y ) for every

closed subset F ⊂ B.

Proof. If α is a limit ordinal, then by Theorem 1.1, TX ∈ Mα+1(Y ) implies TX ∈

Mα(Y ). Thus the first two condition are satisfied. Next, if F is a closed subset of X,

then TF ∈Mα(TX) by Theorem 1.1. Since TX ∈Mα(Y ), we get TF ∈Mα(Y ).
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Thus it remains to consider the case α = β + 1 for some ordinal β. The implication

(2)⇒(1) is trivial.

Let us verify (3)⇒(2). Using Theorem 1.1 and the condition (3), we may find a

closed neighborhood B of 0 ∈ X such that TB ∈ Mβ(TX) and TB ∈ Mα(Y ). Let

Xn = n · TB ⊂ TX for n ∈ N. Evidently, Xn ∈ Mα(Y ) and Xn ∈ Mβ(TX) for

each n. For each n ∈ N fix a subset X̃n ∈ Mβ(Y ) such that X̃n ∩ TX = Xn. Then⋃∞
n=1 X̃n ∈ Aα(Y ) and Y \

⋃∞
n=1 X̃n ∈Mα(Y ). On the other hand, since Xn ∈Mα(Y ),

we get X̃n\Xn ∈ Aα(Y ). Consequently,
⋃∞
n=1(X̃n\Xn) ∈ Aα(Y ) and Y \

⋃∞
n=1(X̃n\Xn) ∈

Mα(Y ). Since TX = (Y \
⋃∞
n=1(X̃n \Xn)) \ (Y \

⋃∞
n=1 X̃n) we conclude that TX, being

a difference of twoMα(Y )-sets, belongs to the small Borel classM
2
α(Y ).

Finally we verify the implication (1)⇒(3). Fix a base U1 ⊃ U2 ⊃ . . . of closed convex

neighborhoods of the origin in the Fréchet space Y . According to Theorem 1.1, X has a

base B = {Bn}n∈N of closed convex neighborhoods of 0 ∈ X such that TBn ∈ Mβ(TX)

for every n ∈ N. Without loss of generality, TBn ⊂ Un and Bn ⊃ Bn+1 for every n.

Claim A. TBn ∈Mα(Y ) for some n ∈ N.

Proof. Assume on the contrary TBn 6∈ Mα(Y ) for every n ∈ N. To get a contradiction,

we will show that TX 6∈ Aα+1(Y ). For this fix any subset M of the Cantor cube 2ω with

M ∈Mα+1 \Aα+1. According to Theorem 2 and Remarks in [Ku, §30.V], the set 2ω \M

can be written as a countable union 2ω \ M =
⋃∞
n=1Mn of pairwise disjoint subsets

of class Mα(2
ω). Let An = 2

ω \Mn for each n ∈ N. Then M =
⋂∞
n=1An where each

An ∈ Aα(2ω). Notice that if x 6∈M , then there is a unique n ∈ N with x 6∈ An.

Claim B. For every n ∈ N there exists a map fn : 2
ω → Un such that fn(An) ⊂ TBn

and fn(2
ω \An) ⊂ Un \ TX.

Proof. To find such maps fn we will apply the Louveau–Saint-Raymond Separation

Theorem [Ke, 28.19 and 22.13]. According to this theorem, the existence of a map fn
with the required properties will follow as soon as we prove that the sets TBn and Un\TX

cannot be separated by an Mα-set. The latter means that there is no set C ∈ Mα(Y )

with TBn ⊂ C and C ∩ (Un \ TX) = ∅. Suppose on the contrary that such a set C

exists. Since TBn ∈ Mβ(TX), there is a set C̃ ∈ Mβ(Y ) with TBn = C̃ ∩ TX. Since

TBn ⊂ C∩Un and C∩Un ⊂ TX we get TBn = C̃∩TX∩C∩Un = C̃∩C∩Un ∈Mα(Y ),

a contradiction.

Finally, consider the map f =
∑∞
n=1 2

−nfn : 2
ω → Y . Using the facts that fn(2ω) ⊂

Un and U1 ⊃ U2 ⊃ . . . is a base of closed convex neighborhoods of 0 ∈ Y , one may

show that the map f is well defined and continuous. We claim that f−1(TX) = M .

Indeed, if x ∈ M =
⋂
n∈NAn, then fn(x) ∈ TBn for every n ∈ N. Using the fact that

B1 ⊃ B2 ⊃ . . . is a base of closed convex neighborhoods of 0 ∈ X, one can show that the

series
∑∞
n=1 2

−nT−1(fn(x)) converges to some point a ∈ B1. Then f(x) = T (a) ∈ TX

and hence f(M) ⊂ TX. Now suppose x ∈ 2ω \M . By the choice of the sets An there is

a unique n0 ∈ N such that x 6∈ An0 . Then fn0(x) ∈ Un0 \ TX and fn(x) ∈ TBn if n 6=

n0. Repeating the foregoing arguments, we show that the series
∑
n6=n0
2−nT−1(fn(x))

converges to some point a ∈ B1. Then f(x) = T (a) + 2−n0fn0(x) 6∈ TX and hence

f(2ω \M) ⊂ Y \ TX.
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Since M 6∈ Aα+1 and f−1(TX) = M we obtain TX 6∈ Aα+1(Y ), a contradiction

which proves Claim A.

Therefore TBn ∈ Mα(Y ) for some n ∈ N. If F is any closed subset of Bn, then

TF ∈ Mα(TX) (since T−1 is Borel of class α) and hence TF ∈ Mα(TBn). Since

TBn ∈Mα(Y ), we get TF ∈Mα(Y ). Theorem 1.3 is proved.

Operators T with T−1 of the first Baire class appear very often in mathematical

practice (see [VPP]). The following theorem gives a characterization of such operators.

1.4. Theorem. For an injective operator T : X → Y between separable Fréchet spaces ,

the following conditions are equivalent :

(1) TX ∈M2;

(2) the map T−1 : TX → X is of the first Baire class;

(3) the map T−1 : TX → X is Borel of class 1;

(4) there is a neighborhood base B at 0 ∈ X such that TB ∈ A1(TX) for every B ∈ B;

(5) there is a neighborhood base B at 0 ∈ X such that TB is closed in TX for every

B ∈ B;

(6) there is a neighborhood base B at 0 ∈ X such that T (∂B) is a Gδ-set in TX for

every B ∈ B;

(7) (T ∗Y ∗)(1) = X
∗.

Proof. The equivalences (1)⇔(3)⇔(4)⇔(5)⇔(7) follow from 1.1. It is a general fact that,

fo a separable Fréchet space Y , (2) is equivalent to (3) (see [Ku, §31, VIII, Theorem 7]);

obviously, (6) follows from (3).

Now, we verify (6)⇒(5). For this, we will show that for every neighborhood U ⊂ X

of the origin there exists a closed neighborhood V ⊂ U of 0 ∈ X such that TV is closed

in TX. By (6), there is a neighborhood V0 ∋ 0 such that V0 − V0 ⊂ U and T (∂V0)

is a Gδ-set in TX. Notice that Int(V0) and X \ V 0 are disjoint open sets in X whose

union is X \ ∂V0. Since T (∂V0) is a Gδ-set in TX, T (Int(V0)) ⊂ T (X \ ∂V0) =
⋃
n∈NKn,

where Kn’s are closed sets in TX. Applying the Baire category theorem, find a convex

open set W0 ⊂ Int(V0) ∩ T−1(Kn0) for some n0. Then TW0, the closure of TW0 in TX,

is convex; consequently, W = T−1TW0 is also convex. Notice that TW0 ⊂ Kn0 . Since

Kn0 ∩ T (∂V0) = ∅, we obtain W ∩ ∂V0 = ∅. Since W ∩ Int(V0) 6= ∅ and W is connected,

we have W ⊂ Int(V0). Then V =W −x0, where x0 ∈W0 is any point, is a neighborhood

of 0 ∈ X such that V ⊂ V0 − V0 ⊂ U and TV is closed in TX. Thus (5) follows.

1.5. Remark. The above Baire category argument will be implicitly used several times

in this article. Note that if each Kn is completely metrizable (resp. compact, relatively

compact, closed in Y ) then so is TV .

In the case of operator images of separable Banach spaces we provide yet another set

of conditions which are equivalent to any of (1)–(7) of Theorem 1.4. They follow from

the work of [Di] and [VPP]. A subset F ⊂ X∗, where X is a Banach space, is defined to

be norming if the formula |x| = sup{|x∗(x)| : x∗ ∈ F, ‖x∗‖ ≤ 1} defines an equivalent

norm on X (equivalently, there exists a constant C > 0 such that C‖x‖ ≤ sup{|x∗(x)| :

x∗ ∈ F, ‖x∗‖ ≤ 1}).
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1.6. Remark. For an injective operator T : X → Y of a separable Banach space X into

a Fréchet space Y conditions (1)–(7) of 1.4 are equivalent to each of the following:

(1) there exists a constant M > 0 such that if Tx = limTxn for some sequence {xn}

and some x ∈ X with ‖xn‖ ≤ 1, then ‖x‖ ≤M ;

(2) there exists an equivalent norm ‖ · ‖ on X such that, writing B for the closed unit

ball with respect to ‖ · ‖, TB is closed in TX;

(3) T ∗(Y ∗) is norming in X∗; and

(4) if we canonically identify X with a subspace of X∗∗, then X +Ker(T ∗∗) is closed

in X∗∗, and consequently, X +Ker(T ∗∗) = X ⊕Ker(T ∗∗).

1.7.Remark. Beyond the class of Banach spaces the last condition of 1.6 is not equivalent

to (1)–(7) of 1.4: according to [MP], there exists an injective operator T : X → Y from

a reflexive separable Fréchet space into a Banach space such that T−1 fails to be Borel

of class 1; yet, because of the reflexivity of X, the operator T trivially satisfies condition

(4) of 1.6.

Let T : X → Y be an injective operator between Fréchet spaces. Generalizing a

definition of [BR] we define T to be a Gδ-embedding if TB ∈ M1 for every closed

bounded subset B ⊂ X. Next, we define T to be a strong Gδ-embedding if there exists

a closed neighborhood U ⊂ X of the origin such that TB ∈ M1 for every closed subset

B ⊂ U . Clearly, each strong Gδ-embedding is a Gδ-embedding. The converse is not true:

the identity operator C∞[0, 1] → C[0, 1] is a Gδ-embedding (because the Fréchet space

C∞[0, 1] of smooth functions on [0, 1] is a Montel space [Ed, 8.4.7] and thus each closed

bounded subset of C∞[0, 1] is compact) but not a strong Gδ-embedding (this follows

from Theorem 5.1 of [Ba4] and Theorem 1.8 below). However, every Gδ-embedding of a

Banach space is a strong Gδ-embedding.

The following theorem characterizes operator images from the classM21.

1.8. Theorem. For an injective operator T : X → Y between separable Fréchet spaces ,

the following conditions are equivalent :

(1) TX ∈M21;

(2) TX ∈M2 ∩A2;

(3) T is a strong Gδ-embedding.

Proof. Theorem 1.8 will follow from Theorem 1.3 as soon as we prove that TX ∈ M2
for every strong Gδ-embedding T : X → Y , where X is separable. It follows from the

definition of a strong Gδ-embedding that X has a base B of neighborhoods of the origin

such that T (∂B) ∈M1 for every B ∈ B. By Theorem 1.4(6), TX ∈M2.

1.9. Question. Suppose T : X → Y is an injective operator between separable Banach

spaces such that TB ∈Mα+1 for every closed bounded subset B ⊂ X. Is TX ∈Mα+2?

Next, we investigate Borel properties of operator images of Banach spaces with sepa-

rable second duals.

1.10.Theorem. Let X be a Banach space with separable second dual X∗∗ and T : X → Y

be an injective operator into a Fréchet space Y such that TX ∈ Mα+1 \Mα for some
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countable ordinal α ≥ 1. Then

(1) TX ∈M2α \Mα and

(2) there an injective operator T̃ : X̃ → Y from a separable Banach space X̃ ⊃ X

such that T̃ |X = T , T̃ (X̃) ⊂ T ∗∗(X∗∗) and T̃ X̃ ∈ Aα(Y ) \Mα.

Moreover , the space X̃ has separable second dual provided X has separable 4th dual

X∗∗∗∗.

Proof. Theorem 1.2 implies that the ordinal α is not limit. So α = β+1 for some ordinal

β. By Theorem 1.1, TX ∈ Mα+1 implies (T ∗Y ∗)(α) = X
∗. By Theorems 31 and 35 of

[SR] there exist a separable Fréchet space Nβ and two injective operators rβ : X → Nβ
and v0,β : Nβ → Y such that v0,β ◦ rβ = T , rβ(X) is dense in Nβ , v

−1
0,β is Borel of class β

and r∗β(N
∗
β ) = (T

∗Y ∗)(β).

Claim C. The inverse r−1β is Borel of class 1.

Proof. This follows from Theorem 1.4(7) and the equality (r∗βN
∗
β)(1) = ((T

∗Y ∗)(β))(1) =

(T ∗Y ∗)(α) = X
∗.

Let B and B∗∗ denote the closed unit balls of the separable Banach spaces X and

X∗∗, respectively.

Claim D. rβB ∈M1.

Proof. Identifying X with a subspace in X∗∗ we infer from Claim C and 1.6(4) that

X+Ker(r∗∗β ) = L is closed in X
∗∗. Since the space X∗∗ is separable, B∗∗\L is a countable

union of ∗-weakly compact sets. Noticing that r∗∗β (B
∗∗) \ rβ(B) = r∗∗β (B

∗∗ \ L) we see

that r∗∗β (B
∗∗) \ rβ(B) is a countable union of ∗-weakly compact subsets of N∗∗β . Then

rβ(B) is a Gδ-set in the closed set r
∗∗
β (B

∗∗) ⊂ N∗∗β . Thus rβ(B) ∈M1.

According to the terminology of [Ku], v0,β : Nβ → v0,β(Nβ) ⊂ Y is a generalized

homeomorphism of class (0, β). Since rβ(B) ∈ M1, Corollary 3 of [Ku, §35.VII] implies

v0,β(rβ(B)) ∈ Mβ+1 = Mα. Then TX =
⋃∞
n=1 n · v0,β ◦ rβ(B) ∈ Aα+1. Applying

Theorem 1.3, we get TX ∈M2α.

Next we construct the Banach space X̃ ⊃ X and the operator T̃ : X̃ → Y .

Let π : X∗∗ → X∗∗/Ker(r∗∗β ) denote the quotient operator and r : X
∗∗/Ker(r∗∗β ) →

N∗∗β be a unique injective operator with r ◦ π = r
∗∗
β . Let X̃ = r

−1(Nβ) ⊂ X∗∗/Ker(r∗∗β ).

Clearly, π(X) ⊂ X̃. Claim C and Theorem 1.6 yield that X + Ker(r∗∗β ) is closed in X
∗∗

and thus π|X : X → X̃ is an embedding. So we may identify X with the subspace π(X)

of X̃. Clearly, T̃ X̃ ⊂ T ∗∗X∗∗, and the space X̃ has separable second dual provided the

4th dual X∗∗∗∗ of X is separable.

Let T̃ = v0,β ◦ r|X̃ : X̃ → Y . Evidently, T̃ extends the operator T . Since

r(X∗∗/Ker(r∗∗β )) = r
∗∗
β (X

∗∗) is a countable union of ∗-weakly compact subsets, r(X̃)

is an Fσ-set in Nβ . So, we can write r(X̃) =
⋃∞
n=1 Fn, where each Fn is closed and

bounded in Nβ . Now we distinguish two cases.

1. β is a limit ordinal. Then by Theorem 1.1, v0,β(Nβ) ∈ Mβ(Y ). Because v
−1
0,β is

Borel of class β, v0,β(Fn) ∈Mβ(v0,β(Nβ)) for every n ∈ N. Since v0,β(Nβ) ∈Mβ(Y ), we

get v0,β(Fn) ∈Mβ(Y ) for every n. Then T̃ X̃ =
⋃∞
n=1 v0,β(Fn) ∈ Aβ+1(Y ) = Aα(Y ).
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2. β = γ + 1 for some ordinal γ. By Theorem 38 of [SR], Nβ is a Banach space. It

follows from Theorems 1 and 2 of [PP, II, §1] that (T ∗Y ∗)(β) = ((T
∗Y ∗)(γ))(1) is a norm

closed linear subspace in X∗. Since rβ(X) is dense in Nβ , the dual operator r
∗
β : N

∗
β → X

∗

is injective and its image r∗β(N
∗
β ) = (T

∗Y ∗)(β) is closed in X
∗. Thus r∗β : N

∗
β → X

∗ is an

isomorphic embedding andN∗∗β is a quotient ofX
∗∗. SinceX∗∗ is separable, the spaceN∗∗β

is separable as well. Because v0,β : Nβ → Y has inverse of Borel class β, Theorem 1.1

and the first statement of Theorem 1.10 imply v0,β(Nβ) ∈ M2β(Y ). By Theorem 1.3,

v0,β(F ) ∈ Mβ(Y ) for every closed bounded subset of Nβ . Then v0,β(Fn) ∈ Mβ(Y ) for

every n ∈ N and hence T̃ X̃ =
⋃∞
n=1 v0,β(Fn) ∈ Aβ+1(Y ) = Aα(Y ).

It remains to verify that T̃ X̃ 6∈ Mα =Mβ+1. Assuming the converse, according to

Theorem 1.1, T̃−1 would be Borel of class β. Then T̃ (X) = TX would belong to the

classMβ(T̃ X̃). Since T̃ X̃ ∈ Mα, this yields TX ∈ Mα, a contradiction. Theorem 1.10

is proved.

2. Constructing operator images of a given Borel complexity. In this section we

consider the following question: given two Banach spaces X and Y , when is it possible

to construct an injective compact dense operator T : X → Y with TX of a given Borel

class?

We begin with the following simple

2.1. Proposition. Let X, Y be two separable Banach spaces and N ⊂ X∗ be a norming

linear subspace. Then there exists an injective compact dense operator T : X → Y such

that T ∗Y ∗ is norming in X∗ and (T ∗)−1(N) is norming in Y ∗.

Proof. By [LT, p. 44], there is a biorthogonal sequence {xn, x∗n}n∈N such that

span({xn}n∈N) is dense in X and span({x
∗
n}n∈N) ⊂ N is norming in Y

∗. Similarly, for

the space Y there exists a biorthogonal sequence {yn, y
∗
n}n∈N such that span{yn}n∈N is

dense in Y and span{y∗n}n∈N ⊂ Y ∗ is norming.

It is easy to see that the operator T : X → Y defined by

T (x) =

∞∑

n=1

x∗n(x)yn
2n‖x∗n‖ · ‖yn‖

satisfies our requirements.

Next we reduce the problem of constructing an operator image of a given Borel class

in any Banach space to finding such an operator image in some Banach space.

2.2. Proposition. Let T : X → Y be an injective compact operator between Fréchet

spaces. For every separable Banach space Z there exists an injective compact dense ope-

rator S : X → Z such that S(X) is homeomorphic to T (X).

Proof. First, we prove the statement assuming that Y is a Banach space. Without loss

of generality, TX is dense in Y . Since T is compact, the space TX is σ-precompact, that

is, TX lies in a σ-compact set in Y . Applying Proposition 2.1 with N = X∗, we construct

an injective dense operator P : Y → Z. Let S = P ◦ T : X → Z. Then S is injective,

compact, and dense. Using the technique of [BC, §2], one may prove that the spaces TX

and P ◦ T (X) = S(X) are homeomorphic.
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Now consider the general case of a Fréchet space Y . According to the preceding case, it

suffices to construct an injective compact operator S : X → l2 with S(X) homeomorphic

to T (X).

The construction is as follows. Using the compactness of the operator T , find a convex

symmetric neighborhood U of the origin in X such that the closure K of the image TU in

Y is compact. Let (fn)n∈N be a countable set in Y
∗ separating points of the compactumK.

Multiplying each fn by a suitable positive constant, we may assume that |fn(x)| ≤ 2−n for

every x ∈ K, n ∈ N. Consider the linear (possibly discontinuous) map F : span(K)→ l2

defined by F (y) = (fn(y))n∈N. Clearly, the restriction F |K is continuous and thus F (K)

is a compact subset of l2. Then the operator S = F ◦T : X → l2 is injective and compact.

Using the technique of [BC, §2] one may prove that the σ-precompact spaces T (X) and

S(X) are homeomorphic.

2.3. Question. Let T : X → Y be an operator between separable Banach spaces. Is TX

homeomorphic to a pre-Hilbert space (cf. [We, LS9])? It should be mentioned that by [Ma]

there is a normed space homeomorphic to no convex set in l2; by [BRZ, 5.5.8] this space

can be chosen to be of the first Baire category.

Now we remark that there are some restrictions on a Banach space X which forbid

to construct operator images T : X → Y of high Borel complexity.

A Banach space X is called quasireflexive if dim(X∗∗/X) <∞.

2.4. Proposition. Every injective operator T : X → Y from a separable quasireflexive

Banach space is a Gδ-embedding with TX ∈M21.

Proof. Since X has finite codimension in X∗∗, the linear space X +Ker(T ∗∗) is closed

in X∗∗ and thus TX ∈M2 according to 1.6(3) and 1.4(7). By Theorem 1.10, TX ∈M
2
1

and by Theorem 1.8, T is a Gδ-embedding.

2.5. Remark. The operator from Remark 1.7 shows that Proposition 2.4 is not true for

quasireflexive Fréchet spaces.

On the other hand, for nonquasireflexive Banach spaces we have

2.6. Theorem. If X is a separable nonquasireflexive Banach space, then for every count-

able ordinal α and for every Banach space Y there exists a compact injective dense ope-

rator T : X → Y with TX ∈Mα+2 \Mα+1.

Proof. By [Os1], the dual space X
∗ of the nonquasireflexive Banach space X contains a

closed linear subspaceM ⊂ X∗ such thatM(α) 6=M(α+1) = X
∗ and ‖x‖M = sup{|f(x)| :

f ∈ M, ‖f‖ ≤ 1} > 0 for every x ∈ X. Then ‖ · ‖M is a norm on X. Let XM be the

completion of the normed space (X, ‖·‖M) and P : X → XM be the natural “embedding”

operator. It is easy to see that M ⊂ P ∗X∗M and N = (P
∗)−1(M) is a norming space

in X∗M .

By Proposition 2.1, there exists an injective compact dense operatorE : XM → Y such

that the spaces L = (E∗)−1(N) ⊂ Y ∗ and E∗Y ∗ ⊂ X∗M are norming. Then T = E ◦ P :

X → Y is a compact injective dense operator. By the Schauder Theorem [HHZ, 130] the

dual operator T ∗ : Y ∗ → X∗ is compact and thus T ∗Y ∗ 6= X∗. According to Theorem 1.1,

to prove that TX ∈ Mα+2 \Mα+1 it suffices to verify that T ∗Y ∗(α) 6= T
∗Y ∗(α+1) = X

∗.
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Since T ∗Y ∗ = T ∗Y ∗(0) 6= X
∗ and M(α) 6= M(α+1) = X

∗ this will follow as soon as we

prove

Claim A. T ∗Y ∗(1) =M(1).

Proof. We need the following equality:

P ∗X∗M =M(1).

Denote by BM , B
∗
M and B

∗ the closed unit ball of the Banach spaces XM , X
∗
M and X

∗,

respectively. Let

(B∗ ∩M)◦ = {x ∈ X : |x
∗(x)| ≤ 1 for each x∗ ∈ B∗ ∩M},

((B∗ ∩M)◦)
◦ = {x∗ ∈ X∗ : |x∗(x)| ≤ 1 for each x ∈ (B∗ ∩M)◦}.

Observe that (B∗ ∩ M)◦ = P−1(BM ) and ((B∗ ∩ M)◦)◦ = P ∗(B∗M ). By the Bipolar

Theorem [Ed, 8.1.5], ((B∗ ∩M)◦)◦ = B∗ ∩M(1) (see also Theorems 1 and 2 from [PP, II,

§1]). Then P ∗(B∗M ) = B
∗ ∩M(1), which just implies P

∗X∗M =M(1).

Recall that L = (E∗)−1(N) is norming in Y ∗ and thus L(1) = Y
∗ (see 1.6(3) and

1.4(7)). By the definition of the operator T , T ∗(L) ⊂ M . Since the dual operator T ∗ is

compact, it maps ∗-weakly convergent sequences into norm convergent ones. This yields

that T ∗Y ∗ = T ∗(L(1)) lies in the norm closure of M . Since M is norm closed, we get

T ∗Y ∗ ⊂ M and thus (T ∗Y ∗)(1) ⊂ M(1). On the other hand, since E
∗Y ∗ is norming

in X∗M , we get (E
∗Y ∗)(1) = X

∗
M and thus T

∗Y ∗(1) = (P
∗ ◦ E∗(Y ∗))(1) ⊃ P

∗(E∗Y ∗(1)) ⊃

P ∗X∗M = M(1). Consequently, T
∗Y ∗(1) = M(1) and Claim A, hence also Theorem 2.6, is

proved.

2.7. Theorem. For every countable ordinal α and every separable Banach space Y there

exists an injective compact dense operator T̃ : X̃ → Y from a Banach space X̃ with

separable second dual such that T̃ X̃ ∈ Aα+1 \Mα+1.

Proof. First consider the case α = 0. Let X be any separable reflexive Banach space.

By Proposition 2.1, there exists an injective compact dense operator T : X → Y . The

space X, being reflexive, is weakly σ-compact. Then, by the compactness of T , its image

TX is norm σ-compact in Y . Since T is not an embedding, TX ∈ A1 \M1.

Now suppose α > 0. Take any nonquasireflexive Banach space X with separable 4th

dual X∗∗∗∗ (e.g., let X = (
∑∞
n=1⊕J)l2 be the l

2-sum of James quasireflexive spaces

J , see [HHZ, 264]). By Theorem 2.6 there exists an injective compact dense operator

T : X → Y such that TX ∈ Mα+2 \Mα+1. By Theorem 1.10, there is a Banach space

X̃ ⊃ X with separable second dual and an injective operator T̃ : X̃ → Y such that

T̃ |X = T , T̃ X̃ ⊂ T ∗∗X∗∗ ⊂ Y ∗∗ and T̃ X̃ ∈ Aα+1 \Mα+1. Since T is compact, so is T ∗∗.

Then the inclusion T̃ X̃ ⊂ T ∗∗X∗∗ implies that T̃ is compact. Thus T̃ : X̃ → Y is an

injective dense compact operator with T̃ X̃ ∈ Aα+1 \Mα+1.

A topological space X is called C-universal , where C is a class of topological spaces,

if X contains a closed topological copy of each space C ∈ C.

2.8. Theorem. For every countable ordinal α and every separable Banach space Y there

is an injective compact dense operator T : X → Y from a Banach space X with separable

dual such that TX ∈Mα+2 \ Aα+2 and TX is anMα+2-universal space.
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Proof. In Theorem 21 of [SR], J. Saint-Raymond has constructed, for every countable

ordinal α, a locally compact metric countable spaceKα+1 and an injective operator uα+1 :

c0(Kα+1) → c0 from the Banach space of continuous real functions on Kα+1 tending to

0 at infinity such that u−1α+1 is Borel of class α. Then by Theorem 1.1, uα+1(c0(Kα+1)) ∈

Mα+2. By Corollary 24 of [SR], the image uα+1(c0(Kα+1)) isMα+2-universal. It follows

from the construction of uα+1 that the operator uα+1 is compact.

Let X = c0(Kα+1). Clearly, X has separable dual isometric to l
1. By Proposition 2.2,

for every separable Banach space Y there is a compact injective dense operator T : X → Y

with TX homeomorphic to uα+1(X). Clearly, TX ∈ Mα+2 and TX isMα+2-universal.

Since Mα+2 6⊂ Aα+2 (see [Ke, 22.4]), TX 6∈ Aα+2 (otherwise, every space from Mα+2,

being homeomorphic to a closed subspace in TX, would belong to the class Aα+2).

2.9. Corollary. For every countable limit ordinal α > 0 there is an injective operator

T : X → Y between separable Fréchet spaces such that TX ∈ Mα \ Aα and TX is an

Mα-universal space.

Proof. Let {αn}∞n=1 be an increasing sequence of countable ordinals such that αn < α

for each n and sup{αn : n ∈ N} = α. By Theorem 2.8, for every n ∈ N there is an injective

operator Tn : Xn → Yn between separable Banach spaces such that TnXn ∈Mαn+2 is an

Mαn+2-universal space. Consider the Fréchet spaces X =
∏
n∈NXn and Y =

∏
n∈N Yn

and the injective operator T =
∏
n∈N Tn : X → Y . Clearly, TX is homeomorphic to∏

n∈N TnXn. In a standard way [BM, §6], it can be proved that TX ∈ Mα is an Mα-

universal space.

2.10. Proposition. For every countable ordinal α and every separable Banach space Y

there exists an injective compact dense operator T : X → Y from a Banach space X with

separable dual such that TX ∈M2α+2 \ (Mα+2 ∪ Aα+2).

Proof. By Theorems 2.7 and 2.8, there are compact injective dense operators T1 :

X1 → Y1, T2 : X2 → Y2 between Banach spaces with separable duals such that T1X1 ∈

Aα+2 \Mα+2 and T2X2 ∈Mα+2 \Aα+2. Then T1×T2 : X1×X2 → Y1×Y2 is a compact

injective dense operator from the Banach space X = X1 ×X2 with separable dual such

that T1 × T2(X) is homeomorphic to T1X1 × T2X2. Since T1X1 ∈ Aα+2 \ Mα+2 and

T2X2 ∈Mα+2 \ Aα+2, we get T1X1 × T2X2 ∈M
2
α+2 \ (Mα+2 ∪ Aα+2).

By Proposition 2.2, for every separable Banach space Y there exists a compact injec-

tive dense operator T : X → Y such that TX is homeomorphic to T1X1×T2X2. Clearly,

TX ∈M2α+2 \ (Mα+2 ∪ Aα+2).

2.11. Question. Let α be a limit ordinal. Does there exist an operator image TX ∈

M2α+1 \ (Aα+1 ∪Mα+1)? The answer is “yes” for α = 0.

2.12. Question. Does there exist , for every countable ordinal α, an injective operator

T : X → Y between separable Banach spaces such that TX ∈ Aα+1 is an Aα+1-universal

space? The answer is “yes” for α = 0.

3. Topology of operator images. In this section we give a complete topological clas-

sification of the pairs (Y, TX), where T : X → Y is a dense operator between Fréchet

spaces such that TX ∈ M21. It turns out that each of the classes M1 \ A1, A1 \ M1,
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andM21 \ (M1 ∪ A1) contains exactly one (up to homeomorphism) operator image. We

recall that s = (−1, 1)ω is the pseudointerior of the Hilbert cube Q = [−1, 1]ω and

Σ = {(xn) ∈ Q : supn∈ω |xn| < 1} is its radial interior. Let Y ⊂ X, Y
′ ⊂ X ′ be topologi-

cal spaces. The pairs (X,Y ) and (X ′, Y ′) are called homeomorphic if h(Y ) = Y ′ for some

homeomorphism h : X → X ′. Further, the symbol “∼=” will mean “is homeomorphic to”.

3.1. Theorem. Let T : X → Y be a dense operator between infinite-dimensional Fréchet

spaces. If TX ∈ M21 then TX is homeomorphic to one of the spaces : s, Σ or Σ × s.

More precisely , the pair (Y, TX) is homeomorphic to:

(a) (s, s) if TX ∈M1 \ A1;

(b) (s,Σ) if TX ∈ A1;

(c) (s× s,Σ × s) if TX ∈ A1(Y ) \ A1;

(d) (s×Q,Σ × s) if TX 6∈ A1(Y ) and T is compact ;

(e) (s× s×Q, s×Σ × s) if TX 6∈ A1(Y ) and T is not compact.

We will employ the following results, where (a′) is well known, (b′) can be derived

from [BP, VIII, 3.1, p. 275], and (c′)–(e′) can be found in [Ba1, Proposition 6.2].

3.2. Proposition. Let Y be a separable Fréchet space and let C be a closed infinite-

dimensional convex subset of Y . Assume that L ∈ M21 is a dense linear subspace of Y .

Then the pair (Y, L) is homeomorphic to

(a′) (s, s) if L ∈M1;

(b′) (s,Σ) if L ∈ A1 and C is a compact subset of L;

(c′) (s× s,Σ × s) if L ∈ A1(Y ), L 6= Y , and C is a non-locally compact subset of L;

(d′) (s×Q,Σ×s) if L is contained in a σ-compact subset of Y and (C,C∩L) ∼= (Q, s);

(e′) (s× s×Q, s×Σ × s) if L 6= Y and (C,C ∩ L) ∼= (s×Q, s× s).

Let us recall that a subset A of a topological space X is called a Z-set in X if A is

closed in X and every continuous map f : Q→ X of the Hilbert cube can be uniformly

approximated by continuous maps into X \ A. A subset A ⊂ X is called a σZ-set in X

if A can be written as a countable union A =
⋃∞
n=1An, where each An is a Z-set in X.

A topological space X is defined to be a σZ-space if X is a σZ-set in X.

Z-sets can be thought of as infinite-dimensional counterparts of closed nowhere dense

subsets, while σZ-spaces as counterparts of spaces of the first Baire category.

3.3. Lemma. Let Y , C, L be as in 3.2, and let B be a closed infinite-dimensional convex

subset of Y . Assume that C ∩ L ∈M1 is dense in C, and that B ⊂ C \ L. We have:

(d′′) if C is compact , then (C,C ∩ L) ∼= (Q, s);

(e′′) if B is not locally compact , then (C,C ∩ L) ∼= (s×Q, s× s).

Proof. Pick a sequence {cn}∞n=1 ⊂ C ∩ L which is dense in C. For every n ≥ 1, let

Dn =
{
t0b+

n∑

i=1

tici : t0 ≥ 2
−n, ti ≥ 0,

n∑

i=0

ti = 1 and b ∈ B
}
.

Write D =
⋃∞
n=1Dn. We have B ⊂ Dn ⊂ Dn+1 ⊂ C \ L, n ≥ 1. Moreover, since B is

closed and convex, each Dn is also closed and convex. Since C \L ∈ A1(C) and C ∩L is

dense in C, C \ L is a σZ-set in C. It follows that D is also a σZ-set in C.
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If C is compact, then D contains the infinite-dimensional compactum B and, by

[CDM, 4.1], the pair (C,D) is homeomorphic to (Q,Σ). If B is not locally compact, then

neither is C and each Dn. By [DT], C and each Dn are homeomorphic to s. Now, it

follows from [Ba1, 4.1] that (C,D) is homeomorphic to (s×Q, s×Σ). In both cases, from

the Maximality Theorem of Toruńczyk [BP, p. 131], we obtain (C,C \ L) ∼= (Q,Σ) and

(C,C \ L) ∼= (s × Q, s × Σ), respectively. Now, using the fact that (Q,Q \ Σ) ∼= (Q, s),

we easily conclude our proof.

Proof of 3.1. (a) and (b). Use the standard fact that X contains a convex compactum K

with dimK =∞. Let C = TK and apply 3.2(a′) and (b′).

(c) Applying a Baire category argument (see 1.5), we obtain a closed convex neigh-

borhood U of 0 ∈ X such that TU is closed in Y . Since TU spans TX and TX 6∈ A1,

TU is not locally compact. Apply 3.2(c′) with C = TU .

(d) Assume that T is compact. Using the assumption that TX ∈ M21, we can write

TX =
⋃∞
n=1Kn ⊂

⋃∞
n=1 Zn ⊂ Y , where each Zn is compact and Kn ∈ M1 is a closed

subset of TX; we may additionally require that Kn ⊂ Zn, n ≥ 1. Again, applying a

Baire category argument (see 1.5), we can find a closed convex neighborhood U of 0 ∈ X

such that TU is compact and TU ∩ TX ∈ M1. We will apply 3.2(d′) with L = TX and

C = TU .

By 3.3(d′′), we only need to find a set B required therein. As in the proof of (a), we take

a convex compactum K ⊂ U with dimK = ∞. Since L 6∈ A1 (otherwise, L ∈ A1(Y )),

there exists x0 ∈ C \ L. We set B =
1
2x0 +

1
2TK.

(e) Suppose T is not compact. We will find sets C and B required in 3.3(e′′) so that

3.2(e′) is applicable with L = TX. By the continuity of T , there are bases {Un}
∞
n=1 and

{Vn}
∞
n=1, U1 ⊃ U2 ⊃ . . . , V1 ⊃ V2 ⊃ . . . , of closed symmetric convex neighborhoods of

the origins in X and Y respectively, such that TUn ⊂ Vn. As in the proof of (d), find a

closed symmetric convex neighborhood U of 0 ∈ X such that TU ∩TX ∈M1. Replacing

each Un by U ∩Un, we can additionally require that TUn ∩ TX ∈M1. We let C = TU1.

Write Dn = TUn and Ln = span(Dn). We have L1 ⊃ L2 ⊃ . . . ⊃ TX. If Lk 6= L1 for

some k > 1, then we also have D1 \Lk 6= ∅. Letting B =
1
2x0+

1
2Dk, where x0 ∈ D \Lk is

arbitrary, we get B ⊂ C \ Lk ⊂ C \ TX. If C (resp. B) were locally compact, then

L1 (resp Lk) would be σ-compact. This however contradicts the fact that T is not

compact.

Hence, the remaining case occurs if L1 = L2 = . . . (this case arises if, e.g., X is a

Banach space). Let τ be the locally convex metrizable topology on L1 with the basis

generated by the sets {Dk}
∞
k=1 (use the gauge Minkowski functionals of Dk’s to obtain a

sequence of seminorms). Noticing that the operator T : X → TX ⊂ (L1, τ ) is continuous

and open, we find that TX is closed in (L1, τ ). Observe that L1 =
⋃∞
n=1 nD1 ∈ A1(Y ),

and our assumptions yield L1 \ TX 6= ∅; hence, C \ TX 6= ∅. Pick x0 ∈
1
2C \ TX and

use the fact that the sets 1mDk, k,m ≥ 1, form a basis at 0 for τ to select k,m ≥ 2 with(
x0 +

1
mDk
)
∩ TX = ∅. We finally let B = x0 +

1
mDk.

It should be mentioned that Σ ∼= Ω0, Σ× s ∼= Ω1 and Σω ∼= Ω2 are the first elements

in the hierarchy of so-calledMα-absorbing spaces Ωα (see [BM]). The spaces Ωα can be

realized as some special subsets of the Hilbert cube Q. Their definitions are too complex
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to give them here. All we need to know about these spaces is the following result proved

in [BRZ, 5.3.6 and 3.1.3].

3.4. Theorem. Let α be a countable ordinal , L be a locally convex linear metric space

and L denote the completion of L with respect to any invariant metric.

(1) The space L is homeomorphic to Ωα if and only if L ∈ Mα is an Mα-universal

σZ-space.

(2) The pair (L,L) is homeomorphic to (Q× s,Ωα×Σ) if and only if L ∈Mα is an

Mα-universal space contained in a σ-compact subset of L.

We apply this theorem to prove

3.5. Theorem. Let α be a countable ordinal and T : X → Y be a dense operator between

Fréchet spaces.

(1) The operator image TX is homeomorphic to Ωα if and only if TX ∈ Mα is an

Mα-universal space.

(2) The pair (Y, TX) is homeomorphic to (Q× s,Ωα ×Σ) if and only if TX ∈ Mα
is anMα-universal space and the operator T is compact.

In an obvious way this theorem follows from Theorem 3.4 and the subsequent

3.6. Proposition. Every noncomplete operator image is a σZ-space.

Proof. Since TX is not complete the operator T : X → Y is not open. By the Open

Mapping Principle, the image TU of some convex neighborhood U of 0 ∈ X is nowhere

dense in TX. Then TU , the closure of TU in TX, is a closed convex nowhere dense

set in TX. Moreover, TU spans TX (because TX =
⋃
n∈N n · TU). According to [Ba2],

the two properties of TU imply that TU as well as n · TU are Z-sets in TX. Then

TX =
⋃
n∈N n · TU , and it is a σZ-space.

By Theorem 3.5, every M2-universal operator image TX ∈ M2 (including those

supplied by Theorem 2.8) is homeomorphic to Ω2 ∼= Σω. Is every operator image of the

classM2 \ A2 homeomorphic to Σ
ω? Here we have a negative answer.

3.7. Theorem. For every separable Banach space Y there is an injective compact dense

operator T : X → Y from a Banach space with separable dual such that TX ∈ M2 \ A2
but TX is not M2-universal. Thus, every separable Banach space contains two dense

nonhomeomorphic operator images of class M2 \ A2.

Proof. By [Ba3, 2.2] there exists a Banach space X (denoted by B∞ in [Ba3], [GM],

and [GMS]) with separable dual and such that the closed unit ball B of X endowed with

the weak topology satisfies the following conditions: (B,weak) ∈M2 \A2 and (B,weak)

is notM2-universal.

Let F ⊂ B∗ be a countable norm dense subset of the unit ball of the dual space X∗.

Consider the operator E : X∗∗ → RF defined by E(x∗∗) = (x∗∗(x∗))x∗∈F . Since F is

countable, RF is a Fréchet space. Clearly, E and E|X are compact injective operators,

the image E(B) of the closed unit ball B of X is closed in E(X) and is homeomorphic to

(B,weak). Since (B,weak) 6∈ A2 and E(B) is closed in E(X), we get E(X) 6∈ A2. Next,

by Theorem 1.4, E(X) ∈M2. Let us show that the space E(X) is notM2-universal.
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Since the space E(B), being a topological copy of (B,weak), is not M2-universal,

there is a space M ∈ M2 which is homeomorphic to no closed subset of E(B). Embed

M into the Hilbert cube Q = [0, 1]ω and consider the subset

Ω = ((M × {0}) ∪ (Q× (0, 1]))ω

in (Q×[0, 1])ω. Clearly, Ω ∈M2, Ω is a Baire space (because Ω contains a dense absolute

Gδ-subset (Q × (0, 1])ω) and for every nonempty open subset U ⊂ Ω there is a closed

embedding e :M → Ω with e(M) ⊂ U . Assuming that the space E(X) isM2-universal,

we would find a closed embedding i : Ω → E(X). Since E(X) =
⋃
n∈N n · E(B), by the

Baire Theorem, there is n ∈ N such that the set i−1(n · E(B)) has nonempty interior

in Ω. By the property of Ω, there exists a closed embedding e : M → Ω such that

e(M) ⊂ i−1(n ·E(B)). Then 1n · i ◦ e :M → E(B) is a closed embedding, a contradiction.

By Proposition 2.2 for every separable Banach space Y there exists an injective com-

pact dense operator T : X → Y such that TX is homeomorphic to E(X). Clearly,

TX ∈M2 \ A2 and TX is notM2-universal.

3.8.Question. Does the class A2\M2 contain two topologically distinct operator images?
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Operator images homeomorphic to Σω

by

Taras Banakh

Abstract.We investigate the topology of operator images, that is, spaces of the form TX, where
T : X → Y is a continuous linear operator between Fréchet (= locally convex linear complete
metric) spaces. Under some restrictions we confirm Dobrowolski’s conjecture that there are
only four topological types of separable infinite-dimensional operator images that are absolute
Fσδ-sets. In particular, we show that if T : X → Y is an injective weakly compact linear
operator from an infinite-dimensional separable Banach lattice X such that TX is an Fσδ-set in
Y , then the operator image TX is homeomorphic to one of the spaces: s, Σ, Σ × s, Σω, where
s is the pseudo-interior of the Hilbert cube and Σ is its radial interior. Moreover, we consider
operator images of the classical Banach spaces c0, l1, L1, C[0, 1]. Some counterexamples to the
Dobrowolski conjecture are presented as well.

Introduction. In this paper we continue investigations of the topology of operator ima-

ges, started in [BDP]. We recall that an operator image is a space of the form TX,

where T : X → Y is a continuous linear operator between Fréchet (= locally convex

linear complete metric) spaces. While in [BDP] operator images of high Borel comple-

xity were studied, in this paper we restrict ourselves to operator images belonging to the

Borel class M2 of separable absolute Fσδ-spaces. Such operator images are typical; ac-

tually, constructing an operator image TX 6∈ M2 requires considerable effort (see [SR]).

Throughout the paper the term “operator” means “continuous linear operator” between

locally convex (mainly Fréchet) spaces.

In the late 80s T. Dobrowolski made a conjecture that there exist only four topological

types of infinite-dimensional operator images of the Borel classM2. More precisely, every

such operator image is homeomorphic to one of the spaces: s, Σ, Σ × s, or Σω, where

s = (−1, 1)ω is the pseudo-interior of the Hilbert cube Q = [−1, 1]ω, Σ = {(xi) ∈ Q :

supi∈ω |xi| < 1} is the radial interior of Q, and Σ
ω is the countable power of Σ.

Operator images homeomorphic to one of the three spaces s, Σ, Σ×s were characteri-

zed in [BDP, 3.1] as those belonging to the small Borel classM21 consisting of differences

A\B of Polish (= separable complete-metrizable) spaces B ⊂ A. So the problem reduces

to the following one: is TX homeomorphic to Σω provided TX ∈M2 \M21?

2000 Mathematics Subject Classification: Primary 57N17; Secondary 46B22, 46B25, 46B42,
47A05, 54H05.

The research was partially supported by the grant INTAS-96-0753.
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It turns out that the answer depends much on (1) geometric properties of the Fréchet

space X, and (2) in the case of complex X on properties of the operator T . We illustrate

our results by considering operator images of the classical nonreflexive Banach spaces c0,

l1, L1, and C[0, 1] (reflexive Banach spaces admit no operator image of classM2 \M
2
1).

Let T : X → Y be an injective operator between infinite-dimensional separable

Fréchet spaces Y such that TX ∈M2.

(1) If X = c0, then TX is homeomorphic either to s (if T is an isomorphic embedding)

or to Σω.

(2) If X = l1, then TX is homeomorphic to one of the spaces: s, Σ, Σ × s (if T is a

Gδ-embedding) or Σ
ω.

(3) IfX = L1, then TX is homeomorphic either to s (if T is an isomorphic embedding)

or to Σ × s (if T is a nontrivial Gδ-embedding) or to Σ
ω.

(4) If X = C[0, 1] and the operator T is weakly compact, then TX is homeomorphic

to Σω; if T is not weakly compact, then TX can be homeomorphic to any of the spaces

s, Σ × s, Σω as well as to none of these spaces.

(5) If X is a Banach lattice and the operator T is weakly compact, then TX is

homeomorphic to one of the spaces s, Σ, Σ × s, Σω.

(6) IfX is a Banach lattice, the operator T is compact, and TX is dense in Y , then the

pair (Y, TX) is homeomorphic to one of the pairs (s,Σ), (σ×Q,Σ×s), (s×Qω, Σ×Σω).

We recall that two pairs (A,B), (A′, B′) of topological spaces B ⊂ A, B′ ⊂ A′ are

homeomorphic provided there exists a homeomorphism h : A→ A′ such that h(B) = B′.

A pathological non-weakly compact operator T : C[0, 1] → Y disproving Dobrowol-

ski’s conjecture (that is, with T (C[0, 1]) in M2 \ M
2
1 but not homeomorphic to Σ

ω)

will be constructed using another pathological Banach space B∞ known in Banach space

theory as an example of a Banach space with CPCP but without PCP (see [GMS1]).

The Banach space B∞ admits an injective compact operator T : B∞ → l2 such that

T (B∞) ∈M2 \M21 but T (B∞) is not homeomorphic to Σ
ω. This shows that in spite of

the optimistic situation with weakly compact operators from Banach lattices, Dobrowol-

ski’s conjecture is not true even in the realm of compact operators from Banach spaces

with separable duals.

Of course, the above statements are true in a more general setting. We summarize all

principal results of this paper in the following

Main Theorem. Suppose T : X → Y is an injective operator between separable Fréchet

spaces such that TX ∈ M2. The space TX is homeomorphic to Σω in each of the

following cases :

(1) X is not normable and T is bounded ;

(2) T is not strictly regular ;

(3) X is not strongly regular and T is strongly regular ;

(4) X is not strongly regular and T is weakly compact ;

(5) X is nowhere strongly regular and T is not an isomorphic embedding ;

(6) every strongly regular closed bounded convex subset of X is subset-dentable and

T is not a Gδ-embedding ;
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(7) X has RNP and T is not a Gδ-embedding ;

(8) X is a Banach space complemented in its second dual X∗∗ and T is not a Gδ-

embedding ;

(9) X is a Banach lattice containing no isomorphic copy of the Banach space c0 and

T is not a Gδ-embedding ;

(10) X is a Banach lattice, T is weakly compact , and T is not a Gδ-embedding ;

(11) the space (X,weak) isM2-universal and T is compact ;

(12) there exists a Fréchet space Z and two injective operators T1 : X → Z and

T2 : Z → Y such that T = T2 ◦ T1 and the space T1X is M2-universal ;

(13) there exists an Fσ-embedding E : Z → X of a separable Fréchet space Z such

that T ◦ E(Z) is homeomorphic to Σω.

Now we briefly describe the content of the paper and simultaneously explain the items

of the Main Theorem.

In the first section we introduce and study strictly regular operators. These are ope-

rator counterparts of strongly regular Banach spaces introduced and studied in [GGMS].

The principal and technically most difficult result of this section is Theorem 1.5 estab-

lishing ties between strictly regular operators, Gδ-embeddings, and Fréchet spaces with

the Radon–Nikodým Property.

In the second section we develop some topological tools which will be used in the

subsequent sections for detecting operator images homeomorphic to Σω. The main result

of §2 is the characterization and factorization Theorem 2.4 (see also items (12), (13) of

the Main Theorem). The characterization is given in terms of the M2-universality of

operator images. We recall that a topological space X is called C-universal provided X

contains a closed topological copy of each space C ∈ C. It is well known that the space

Σω isM2-universal. Thus every operator image TX homeomorphic to Σω must belong

to the class M2 and be M2-universal. Theorem 2.1 states that these two conditions

characterize operator images homeomorphic to Σω.

In the next three sections we find three quite general situations leading to operator

images homeomorphic to Σω. In particular, in Theorem 3.1 we show that an operator

image TX is homeomorphic to Σω provided TX ∈M2, X is separable, and the operator

T is not strictly regular (item (2) of the Main Theorem). Theorem 4.1 states that TX

is homeomorphic to Σω provided TX ∈ M2, the operator T is compact and the space

(X,weak) is separable andM2-universal (item (11) of the Main Theorem). Theorem 4.1

will be applied in Example 7.7 to show that the strict unregularity of T does not follow

from the topological equivalence of TX and Σω. Finally, Theorem 5.1 asserts that TX

is homeomorphic to Σω provided TX ∈ M2, the Fréchet space X is not normable and

the operator T is bounded. This theorem generalizes a number of results dealing with

some concrete operator images of nonnormable Fréchet spaces (see [CD], [DDMM], [DiM],

[DoM]).

In Main Theorem 7.1 of the final seventh section we summarize all principal results

proven in the preceding sections and then apply them to operator images of separable

Banach lattices, in particular the classical Banach lattices c0, l1, L1, and C[0, 1]. For

the spaces c0, l1, and L1 we give an exhaustive description of the topological structure of
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their operator images of classM2. Some partial results (as well as some counterexamples)

are proven for operator images of the space C[0, 1]. The results of this section should be

compared with results of the sixth section devoted to constructing operator images of a

given topological type.

The notations used in the paper are standard. By A we denote the closure of a subset

A of a topological space X. For a subset A of a locally convex space X, conv(A) and

conv(A) denote the convex hull and the closed convex hull of the set A in X; (A,weak)

denotes A equipped with the weak topology inherited from (X,weak). For a real number

λ and subsets A,B of a linear space L let A + B = {a + b : a ∈ A, b ∈ B} and

λA = {λa : a ∈ A}. Throught the paper the term “operator” means a “continuous linear

operator” between locally convex spaces.

Acknowledgments. The author expresses his sincere thanks to T. Dobrowolski and

A. Plichko for valuable discussions on the subject of the paper.

1. Strictly regular operators. In this section we introduce and investigate strictly

regular operators—the main tool in our subsequent study of the topology of operator

images. Strictly regular operators are operator counterparts of strongly regular Banach

spaces. Strongly regular spaces were introduced and studied in detail in [GGMS].

Definition. A convex subset D of a locally convex space X is defined to be strongly

regular if for every nonempty closed bounded convex subset C ⊂ D there exists a point

c ∈ C such that for every neighborhood W ⊂ C of c there exist nonempty relatively

weak-open subsets U1, . . . , Un ⊂ C such that
1
n (U1 + . . .+ Un) ⊂W .

In case D = X we get the definition of a strongly regular locally convex space.

In fact, our definition slightly differs from that introduced in [GGMS, p. 35] but is

equivalent to it in the realm of Banach spaces (see Proposition 1.1 below).

There are two ways to adapt the above definition to operators. One way, leading to

strongly regular operators, is developed in [GGMS].

Definition. An operator T : X → Y between locally convex spaces is defined to be

strongly regular on a convex subset D ⊂ X if for every nonempty closed bounded convex

subset C ⊂ D there exists a point c ∈ C such that for every neighborhood W ⊂ TC of

the point T (c) there exist nonempty relatively weak-open sets U1, . . . , Un ⊂ C such that
1
n (U1 + . . .+ Un) ⊂ T

−1(W ).

An operator T : X → Y is defined to be strongly regular provided T is strongly regular

on X.

The other way leads to so-called strictly regular operators.

Definition. An operator T : X → Y between locally convex spaces is defined to be

strictly regular on a convex subset D ⊂ X if for every nonempty closed bounded convex

subset C ⊂ D there exists a point c ∈ C such that for every neighborhood W ⊂ C of c

there exist nonempty open sets U1, . . . , Un ⊂ TC such that
1
n (T

−1(U1) + . . .+ T
−1(Un))

⊂W .

An operator T : X → Y is defined to be strictly regular provided T is strictly regular

on X.
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Observe that a convex subset D of a locally convex space X is strongly regular if and

only if the identity operator X → X is strongly regular on D if and only if the “identity”

operator X → (X,weak) is strictly regular on D.

First we verify that our definition of a strongly regular operator is equivalent to the

original one [GGMS, p. 40].

1.1. Proposition. Let T : X → Y be an operator between locally convex spaces. For a

convex subset D of X the following conditions are equivalent :

(1) the operator T is strongly regular on D;

(2) for every closed bounded convex set C ⊂ D there exists a point c ∈ C such that for

every neighborhood W ⊂ TC of T (c) there exist nonempty relatively weak open subsets

U1, . . . , Un ⊂ C and numbers t1, . . . , tn ≥ 0 with
∑n
i=1 ti = 1 such that

∑n
i=1 tiUi ⊂

T−1(W );

(3) for every bounded convex set C ⊂ D and every nonempty open set W ⊂ TC there

exist nonempty relatively weak open subsets U1, . . . , Un ⊂ C and numbers t1, . . . , tn ≥ 0

with
∑n
i=1 ti = 1 such that

∑n
i=1 tiUi ⊂ T

−1(W );

(4) for every bounded convex set C ⊂ D and every neighborhood W ⊂ Y of the

origin there exist nonempty relatively weak open subsets U1, . . . , Un ⊂ C and numbers

t1, . . . , tn ≥ 0 with
∑n
i=1 ti = 1 such that

∑n
i=1 tiUi ⊂ x+ T

−1(W ) for some x ∈ X.

Proof. We shall prove the implications (1)⇒(2)⇒(4)⇒(3)⇒(1). In fact, the first two

implications are trivial.

(4)⇒(3). Fix a bounded convex set C ⊂ D and let C be the closure of C in D.

To prove (3), it suffices to find, for every convex symmetric neighborhood W0 ⊂ Y of

the origin and every c ∈ C, nonempty relatively weak-open subsets U1, . . . , Un ⊂ C

and numbers t1, . . . , tn ≥ 0 with
∑n
i=1 ti = 1 such that

∑n
i=1 tiUi ⊂ c + T

−1(W0).

For this let V0 = T
−1(W0) and consider the set S ⊂ C consisting of all points s ∈ C

for which there exist nonempty relatively weak-open sets U1, . . . , Un ⊂ C and numbers

t1, . . . , tn ≥ 0 with
∑n
i=1 ti = 1 such that

∑n
i=1 tiUi ⊂ s +

1
2V0. It is easy to see that

the set S is convex. It is also dense in C. Indeed, assuming the converse and applying

the Hahn–Banach Separation Theorem, we would find a nonempty relatively weak-open

convex set W ⊂ C such that W ∩S = ∅. By condition (4), there are nonempty relatively

weak-open sets U1, . . . , Un ⊂ W and numbers t1, . . . , tn ≥ 0 with
∑n
i=1 ti = 1 such that∑n

i=1 tiUi ⊂ x+
1
4V0 for some x ∈ X. Pick any s ∈

∑n
i=1 tiUi. Since the set W is convex,

s ∈W ∩
(
x+ 14V0

)
. Then x ∈ s− 14V0 and

∑n
i=1 tiUi ⊂ x+

1
4V0 ⊂ s−

1
4V0+

1
4V0 ⊂ s+

1
2V0.

Because the sets U1, . . . , Un, being weak-open in the weak-open setW in C, are weak-open

in C, we get s ∈ S ∩W , a contradiction which proves the density of S in C. Now for the

point c ∈ C pick up a point s ∈ S with s− c ∈ 12V0. By the definition of the set S, there

are nonempty relatively weak-open sets U1, . . . , Un ⊂ C and numbers t1, . . . , tn ≥ 0 with∑n
i=1 ti = 1 such that

∑n
i=1 tiUi ⊂ s +

1
2V0 ⊂ c +

1
2V0 +

1
2V0 ⊂ c + V0 = c + T

−1(W0).

Hence condition (3) is proven.

(3)⇒(1). Let C be a closed bounded convex set in D, c ∈ C and W ⊂ TC a neigh-

borhood of T (c). Let W0 ⊂ Y be a convex symmetric neighborhood of the origin such

that (T (c) +W0) ∩ TC ⊂ W . By (3), there exist nonempty relatively weak open convex
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sets U1, . . . , Un ⊂ C and numbers t1, . . . , tn ≥ 0 with
∑n
i=1 ti = 1 such that

∑n
i=1 tiUi ⊂

c+ 12T
−1(W0).

Using the boundedness of C, find ε > 0 such that ε(C − C) ⊂ 12T
−1(W0). For every

i ∈ {1, . . . , n} pick a rational number ri > 0 such that |ti − ri| < ε/n and
∑n
i=1 ri = 1.

Write ri = ki/k, where ki ∈ N and k = k1 + . . .+ kn. Then
n∑

i=1

ki
k
Ui ⊂

n∑

i=1

tiUi +

n∑

i=1

(
ti −
ki
k

)
Ui ⊂ c+

1
2T
−1(W0) +

( n∑

i=1

|ti − ri|
)
(C − C)

⊂ c+ 12T
−1(W0) + ε(C − C) ⊂ c+

1
2T
−1(W0) +

1
2T
−1(W0) ⊂ c+ T

−1(W0).

Finally, for every j ∈ {1, . . . , k} let Vj = Ui, where i is chosen from the condition k0 +

. . . + ki−1 < j ≤ k0 + . . . + ki, where k0 = 0. Then V1, . . . , Vk are nonempty relative

weak-open convex sets in C such that

1

k
(V1 + . . .+ Vk) =

n∑

i=1

ki
k
Ui ⊂ c+ T

−1(W0) ⊂ T
−1(W ).

We recall that an operator T : X → Y between Fréchet spaces is called (weakly)

compact provided there exists a neighborhood U ⊂ X of the origin such that the closure

TU of TU in Y is (weakly) compact in Y .

The following proposition establishes some elementary relationships between the con-

cepts introduced.

1.2. Proposition. Suppose T : X → Y , T ′ : Y → Z are operators between Fréchet

spaces.

(1) If T or T ′ is strongly regular , then the composition T ′ ◦ T is strongly regular.

(2) If T is weakly compact , then T is strongly regular.

(3) If T is strictly regular , then T is injective.

(4) If T ′ ◦ T is strictly regular , then T is strictly regular.

(5) If T is an isomorphic embedding , and T ′ is strictly regular , then T ′ ◦T is strictly

regular.

(6) If T is simultaneously strictly regular and strongly regular , then X is strongly

regular.

(7) If T is weakly compact strictly regular , then T ′ ◦ T is strictly regular.

In an obvious way, Proposition 1.2 follows from the subsequent, a bit more general

1.3. Proposition. Suppose T : X → Y , T ′ : Y → Z are operators between Fréchet spaces

and D is a closed convex set in X.

(1) The operator T ′ ◦ T is strongly regular on D provided T is strongly regular on D

or T ′ is strongly regular on TD.

(2) If the closure TD of TD in Y is weakly compact , then the set TD is strongly

regular and T is strongly regular on D.

(3) If T is strictly regular on D, then T is injective on D.

(4) If T ′ ◦ T is strictly regular on D, then T is strictly regular on D.

(5) If T |D : D → TD is a homeomorphism onto a closed subset TD of Y and T ′ is

strictly regular on TD, then T ′ ◦ T is strictly regular.
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(6) If T is simultaneously strictly regular and strongly regular on D, then D is strongly

regular.

(7) If T is strictly regular on D and TD is weakly compact , then T ′ ◦ T is strictly

regular on D.

Proof. The first statement trivially follows from Proposition 1.1.

(2) Suppose TD is weakly compact. First we show that TD is strongly regular. Indeed,

let C ⊂ TD be a closed bounded convex subset. Then C is weakly compact as well. By

the Krein–Milman Theorem [HHZ, 70] the set C has an extreme point c ∈ C. By the

Choquet Lemma [HHZ, 73] the weak topology of C coincides with the original one at c.

Consequently, for every neighborhood W ⊂ C of c there exists a relatively weak-open

neighborhood U1 of c in C such that U1 ⊂ W . This proves that TD is strongly regular.

It follows from Proposition 1.1 that every convex subset of TD (in particular, TD) is

strongly regular. Now observe that T = Id ◦T , where Id : Y → Y is the identity operator.

Since TD is strongly regular, we see that Id is strongly regular on TD. Then (1) implies

that T = Id ◦T is strongly regular on D.

The statements (3)–(5) follow immediately from the corresponding definitions.

(6) Suppose T is simultaneously strongly regular and strictly regular on D. To show

that the set D is strongly regular, fix a closed bounded convex set C ⊂ D. Because

the operator T is strictly regular on D, there exists a point c ∈ C such that for every

neighborhood W ⊂ C of c there exist nonempty open sets U1, . . . , Un ⊂ TC such that

T−1
(
1
n (U1 + . . . + Un)

)
⊂ W . Since T is strongly regular on D, by Proposition 1.1(3),

there exist nonempty relatively weak open subsets Ui,1, . . . , Ui,ni ⊂ C and numbers

ti,1, . . . , ti,ni ≥ 0 with
∑ni
j=1 ti,j = 1 such that

∑ni
j=1 ti,jUi,j ⊂ T

−1(Ui). Then

n∑

i=1

ni∑

j=1

ti,j
n
Ui,j ⊂

n∑

i=1

1

n
T−1(Ui) ⊂W

and
∑n
i=1

∑ni
j=1 ti,j/n = 1. Hence, D is strongly regular according to Proposition 1.1(2).

(7) Suppose T is strictly regular on D and TD is weakly compact. To show that T ′ ◦T

is strictly regular on D, fix a closed bounded convex set C ⊂ D. By the strict regularity

of T , there exists a point c ∈ C such that for every neighborhood W ⊂ C of c there are

nonempty open sets U1, . . . , Un ⊂ TC such that T
−1
(
1
n (U1 + . . .+ Un)

)
⊂W .

LetW ⊂ C be any convex neighborhood of c. By the choice of c, there exist nonempty

convex open sets U1, . . . , Un ∈ TC such that

T−1
(
1

n
(U1 ∩ TC + . . .+ Un ∩ TC)

)
⊂W.

Since the set TC is weakly compact, by the Krein–Milman Theorem [HHZ, 70], for every

i ∈ {1, . . . , n} there are extreme points xi,1, . . . , xi,ni ∈ TC of TC and rational numbers

ti,1, . . . , ti,ni > 0 with
∑ni
j=1 ti,j = 1 such that

∑ni
j=1 ti,jxi,j ∈ Ui. For every i ∈ {1, . . . , n}

and j ∈ {1, . . . , ni} pick up an open convex neighborhood Ui,j ⊂ TC of xi,j such that∑ni
j=1 ti,jUi,j ⊂ Ui. According to the Choquet Lemma [HHZ, 73], we may assume each

Ui,j to be weakly open in TC. Next, since the set TC is weakly compact, the map

T ′ : (TC,weak) → (T ′(TC),weak) is a homeomorphism. Then Vi,j = T ′(Ui,j) ∩ T ′(TC)
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is a (weakly) open nonempty set in TC. Observe that
n∑

i=1

ni∑

j=1

ti,j(T
′ ◦ T )−1(Vi,j) ⊂W.

Continuing by analogy with the proof of Proposition 1.1, we find that the operator T ′ ◦T

is strictly regular on D.

Next, we consider relationships between strictly regular operators andGδ-embeddings.

Generalizing a definition from [BR], we define an injective operator T : X → Y between

Fréchet spaces to be a Gδ-embedding if for every closed bounded subset B ⊂ X the image

TB is a Gδ-set in Y . It is well known that for every Gδ-embedding T : X → Y between

separable Banach spaces the inverse map T−1 : TX → X is of the first Baire class, i.e.

is a pointwise limit of a sequence of continuous maps (see e.g. [BDP, 1.8 and 1.4]). The

following characterization was proven in [SR] (see also [BDP, 1.4]).

1.4. Proposition. For an injective operator T : X → Y between separable Fréchet spaces

the following conditions are equivalent :

(1) TX is an Fσδ-set in Y ;

(2) T−1 is of the first Baire class;

(3) T−1 is Borel of class 1, i.e. the image TU of every open set U ⊂ X is an Fσ-set

in TX;

(4) X has a base B of closed convex neighborhoods of the origin such that TB is closed

in TX for every B ∈ B.

Finally, we recall the definition of a subset-dentable set (see [GGMS, p. 35]). Under

a slice of a subset C of a locally convex space X we understand a nonempty set of the

form S = {x ∈ C : f(x) > α} for some α ∈ R and some linear continuous functional

f : X → R. A bounded subset D of a locally convex space X is called subset-dentable if

for every subset C ⊂ D and every neighborhood W ⊂ X of the origin there is a slice S

of C such that S ⊂W + x for some x ∈ X.

A locally convex space X is said to satisfy the Radon–Nikodým Property (briefly RNP)

if every bounded subset of X is subset-dentable.

1.5. Theorem. Let T : X → Y be an injective operator between separable Fréchet spaces

such that T−1 is Borel of class 1 and let D be a closed convex bounded set in X.

(1) If TD is a Gδ-set in Y , then T is strictly regular on D.

(2) If D is subset-dentable and T is strictly regular on D, then TD is a Gδ-set in Y .

Proof. (1) Suppose TD is a Gδ-set in Y . To prove that the operator T is strictly regular

on D, fix a closed bounded convex set C ⊂ D. Since T−1 is Borel of class 1, the image

TF of any closed set F ⊂ D is a Gδ-set in TD. This implies that TC is a Gδ-set in Y

and T−1 : TC → C is Borel of class 1. Since TC, being a Gδ-set in the Polish space

Y , is Polish, we may apply the classical Baire Theorem [Ke, 24.14] to find a continuity

point c ∈ TC of the map T−1|TC . Then for every neighborhood W ⊂ C of the point

a = T−1(c) there is a neighborhood U1 ⊂ TD of c such that T−1(U1) ⊂ W . This yields

that T is strictly regular on D.
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(2) Suppose D is subset-dentable, T is strictly regular on D, but TD is not a Gδ-set

in Y . Since both D and Y are Polish spaces and TD is not a Gδ-set in Y , we may apply

Theorem I.1 of [GM] to find a closed convex symmetric neighborhood W ⊂ X of the

origin and a countable set S ⊂ D such that the space TS has no isolated point and

x− y 6∈ 6W for any distinct x, y ∈ S. According to Proposition 1.4 we may additionally

assume that TW is closed in TX.

To get a contradiction, we shall construct a subset A ⊂ D having no small slices. Points

of this set will be parametrized by elements of the tree T∞ =
⋃∞
n=0Nn. For a sequence t =

(t1, . . . , tn) ∈ T∞ and an integer i ∈ N, let (t, i) denote the sequence (t1, . . . , tn, i). Using

Proposition 1.4, fix a countable base {Wn}
∞
n=1 of closed convex symmetric neighborhoods

of the origin in X such that TWn is closed in TX for every n ∈ N.

Claim A. There exist two maps a : T∞ → conv(S) and s : T∞ × N → N such that for

every t ∈ T∞ and n ∈ N,

(a) s(t, n+ 1) > s(t, n);

(b)
1

s(t, n+ 1)− s(t, n)

s(t,n+1)∑

i=s(t,n)+1

a(t, i) ∈ a(t) +Wn;

(c) a(t, i)− a(t, j) 6∈ 2W if s(t, n− 1) < j ≤ s(t, n) < i ≤ s(t, n+ 1).

First, using Claim A we complete the proof of Theorem 1.5. We claim that the set D is

not subset-dentable; namely, the set A = a(T∞) ⊂ conv(S) ⊂ D has no slice of “diameter”

less than W . Assuming the converse, we would find a slice S = {a ∈ A : f(a) > α} of A

such that S ⊂ x+W for some x ∈ X, α ∈ R, and a continuous linear functional f on X.

Fix any t ∈ T∞ with a(t) ∈ S. By the property (b), there is n ∈ N such that

1

s(t, n+ 1)− s(t, n)

s(t,n+1)∑

i=s(t,n)+1

a(t, i) ∈ S,
1

s(t, n)− s(t, n− 1)

s(t,n)∑

j=s(t,n−1)+1

a(t, j) ∈ S.

Consequently, there are j and i such that s(t, n − 1) < j ≤ s(t, n) < i ≤ s(t, n + 1)

and f(a(t, j)) > α, f(a(t, i)) > α. Hence, a(t, j), a(t, i) ∈ S. Since S ⊂ x +W , we get

a(t, j)− a(t, i) ∈W −W = 2W , contrary to (c).

For the proof of Claim A we will need the following statement.

Claim B. Suppose S0 ⊂ S is such that the space TS0 has no isolated point. Then there

exist the following objects :

(1) a point a0 ∈ conv(S0);

(2) an increasing sequence s : N→ N;

(3) nonempty open convex sets U(i) ⊂ T (conv(S0)), i ∈ N, such that for every n ∈ N

the following two conditions are satisfied :

(a) T−1
(

1

s(n+ 1)− s(n)

s(n+1)∑

i=s(n)+1

U(i)

)
⊂ a0 +Wn;

(b) x − y 6∈ 3W for every x ∈ T−1(U(i)), y ∈ T−1(U(j)), where s(n − 1) < j ≤

s(n) < i ≤ s(n+ 1).
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Proof of Claim B. Since the operator T is strictly regular, there exists a point a0 ∈

conv(S0) such that for every n ∈ N there exist nonempty open sets V1(n), . . . , Vkn(n) ⊂

T (conv(S0)) such that

T−1
(
1

kn

kn∑

i=1

Vi(n)

)
⊂ a0 +Wn.

Clearly, conv(TS0) is dense in T (conv(S0)). So, for every n ∈ N and i ∈ {1, . . . , k} we

can select a finite set Fi(n) ⊂ TS0 such that

1

|Fi(n)|

∑

b∈Fi(n)

b ∈ Vi(n).

Moreover, since the set TS0 has no isolated point, the sets Fi(n) can be chosen pairwise

disjoint for distinct pairs (i, n). For every b ∈ Fi(n) pick an open convex neighborhood

W (b) ⊂ T (conv(S0)) such that

1

|Fi(n)|

∑

b∈Fi(n)

W (b) ⊂ Vi(n).

Let s(0) = 0 and s(n) = s(n − 1) +
∑kn
i=1 |Fi(n)| for n ∈ N. Next, let b : N →⋃∞

n=1

⋃kn
i=1 Fi(n) be a bijective map such that b({s(n) + 1, . . . , s(n + 1)}) =

⋃kn
i=1 Fi(n)

for every n ∈ N. It is easy to verify that

T−1
(

1

s(n+ 1)− s(n)

s(n+1)∑

i=s(n)+1

W (b(i))

)
⊂ a0 +Wn.

Using the Hahn–Banach Theorem, for every pair (i, j) with s(n − 1) < i ≤ s(n) < j ≤

s(n+ 1) find a continuous linear functional f ji : Y → R such that

(1) f ji (b(j)− b(i)) > 1 ≥ sup{f
j
i (y) : y ∈ 6 · T (W )}

(such an f ji exists because b(j)− b(i) 6∈ 6 · T (W ) and 6 · T (W ) is closed in TX).

Now for every n ∈ N and every s(n) < i ≤ s(n+ 1) let

U(i) =W (b(i)) ∩

( ⋂

s(n−1)<j≤s(n)

{
y ∈ Y : f ij(y) > f

i
j(b(i))−

1

4

})

∩

( ⋂

s(n+1)<j≤s(n+2)

{
y ∈ Y : f ji (y) < f

j
i (b(i)) +

1

4

})
.

Clearly, condition (a) of Claim B is satisfied. Let us verify condition (b). Fix any s(n−1) <

i ≤ s(n) < j ≤ s(n+1) and x ∈ T−1(U(i)), y ∈ T−1(U(j)). Then f ji (Ty) > f
j
i (b(j))−1/4

and f ji (Tx) < f
j
i (b(i)) + 1/4, and thus

f ji (Ty − Tx) > f
j
i (b(j)− b(i))− 1/2 > 1/2.

Because of (1), we get x− y 6∈ 3W . Therefore, Claim B is proven.

Proof of Claim A. Claim A will be proven by induction on the stages of T∞. Denote by

θ the unique element of N0 and for k ≥ 0 let Tk =
⋃
n≤k Nn. Put C(θ) = conv(S) and

U(θ) = T (C(θ)). Applying Claim B, by induction on k, construct for every t ∈ Tk the

following objects:
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(1) a point a(t) ∈ C(t) = ClX(T−1(U(t))),

(2) a sequence {s(t, i)}∞i=1 such that s(t, i+ 1) > s(t, i) for all i ∈ N,

(3) nonempty convex open sets U(t, i) ⊂ T (C(t)), i ∈ N,

so that for every n ∈ N the following two conditions are satisfied:

(a) T−1
(

1

s(t, n+ 1)− s(t, n)

s(t,n+1)∑

i=s(t,n)+1

U(t, i)

)
⊂ a(t) +Wn,

(b) x− y 6∈ 3W for every x ∈ T−1(U(t, i)), y ∈ T−1(U(t, j)), where s(t, n− 1) < j ≤

s(t, n) < i ≤ s(t, n+ 1).

Let us verify that the constructed maps a : T∞ → conv(S) and s : T∞ × N → N

satisfy the conditions (a)–(c) of Claim A. Condition (a) trivially follows from condition

(2) of the inductive construction. To prove (b), observe that for every t ∈ T∞ and n ∈ N

the set

1

s(t, n+ 1)− s(t, n)

s(t,n+1)∑

i=s(t,n)+1

T−1(U(t, i)) ⊂ a(t) +Wn

is dense in

1

s(t, n+ 1)− s(t, n)

s(t,n+1)∑

i=s(t,n)+1

C(t, i).

Because the set a(t) +Wn is closed in X, we get

1

s(t, n+ 1)− s(t, n)

s(t,n+1)∑

i=s(t,n)+1

a(t, i) ∈ a(t) +Wn,

i.e., condition (b) is satisfied.

Finally, to verify (c), observe that the set 2W lies in the interior 3W ◦ of 3W in X.

Then for every s(t, n− 1) < j ≤ s(t, n) < i ≤ s(t, n+ 1) conditions (1) and (b) of Claim

B imply a(t, i) − a(t, j) 6∈ 3W ◦ ⊃ 2W . Thus condition (c) of Claim A is also satisfied,

and so Theorem 1.5 is proven.

1.6. Corollary. Let T : X → Y be an injective operator between separable Fréchet

spaces such that T−1 : TX → X is of the first Baire class.

(1) If T is a Gδ-embedding , then T is strictly regular.

(2) If T is strictly regular and every strongly regular closed bounded convex subset in

X is subset-dentable, then T is a Gδ-embedding.

Proof. The first statement follows immediately from the first statement of Theorem 1.5.

To prove the second statement, suppose that T is strictly regular and each strongly

regular closed bounded convex set in X is subset-dentable, but T is not a Gδ-embedding.

Then there is a closed bounded subset B ⊂ X such that TB is not a Gδ-set in Y . It

follows from Proposition 1.4 that TB is a Gδ-set in TX and an Fσδ-set in Y . Let G be

a Gδ-set in Y such that G ∩ TX = TB. Then the Borel set TB is not a Gδ-set in G

and thus we may apply the classical Hurewicz Theorem [Ke, 21.18] to find a compact

subset K ⊂ G such that K ∩ TB = K ∩ TX is not a Gδ-set in K. By [Sch, II.4.3] the
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closed convex hull conv(K) of K in Y is compact. Consider the closed convex bounded

set D = T−1(conv(K)) ∩ conv(B) in X. Since T is strictly regular on D and the closure

TD of TD in Y is compact, we may apply Proposition 1.2(6,2) to conclude that D is

strongly regular. Then D is subset-dentable and by Theorem 1.5, TD is a Gδ-set in Y .

On the other hand, the set A = T−1(K) ⊂ B is closed and bounded in X and thus

TA = K ∩ TX is a Gδ-set in TD ⊂ TX. Since TD is a Gδ-set in Y , K ∩ TX is a Gδ-set

in Y , contrary to the choice of the compactum K.

In light of Corollary 1.6, it is important to detect Fréchet spaces whose every strongly

regular closed bounded convex subset is subset-dentable. Besides spaces with RNP, every

separable Banach space X complemented in its second dual space X∗∗ has the above

property (see [GGMS, VII.4]). Besides this fact and Corollary 1.6, in the proof of the

subsequent statement we use a result of [Fo] according to which for every Gδ-embedding

T : X → Y of a separable Banach space X into a Fréchet space Y the inverse map T−1

is Borel of class 1 (see also [BR, 1.9] and [BDP, 3.1]).

1.7. Corollary. Suppose X is a Banach subspace of a separable Banach space Z, com-

plemented in its second dual Z∗∗. An operator T : X → Y into a Fréchet space Y is a

Gδ-embedding if and only if T is a strictly regular operator with the inverse T
−1 of the

first Baire class.

It is well known that any Banach lattice X containing no isomorphic copy of the

Banach space c0 (this is denoted by X 6⊃ c0) is complemented in its second dual X∗∗

[LT2, 1.c.4]. In particular, both l1 and L1 are complemented in their second duals.

1.8. Theorem. Suppose T : X → Y is an injective operator from a separable Banach

lattice X into a Fréchet space Y such that the inverse map T−1 : TX → X is Borel of

class 1.

(1) If X 6⊃ c0 and T is not a Gδ-embedding , then T is not strictly regular.

(2) If X ⊃ c0 and T is strongly regular , then T is not strictly regular.

(3) If T is strongly regular and T is not a Gδ-embedding , then T is not strictly regular.

Proof. (1) If X 6⊃ c0, then X is complemented in its second dual X∗∗ [LT2, 1.c.4] and

by Corollary 1.7, T is not strictly regular provided T is not a Gδ-embedding.

(2) If X ⊃ c0, then X is not strongly regular since the space c0 is not strongly regular.

Then Proposition 1.2(6) implies that the operator T is not strictly regular provided T is

a strongly regular operator.

(3) This statement follows from the preceding ones.

A Fréchet space X is defined to be nowhere strongly regular if no infinite-dimensional

closed linear subspace X0 of X is strongly regular. It is well known that the classical Ba-

nach space c0 is not strongly regular. Moreover, since every infinite-dimensional Banach

subspace of c0 contains an isomorphic copy of c0 (see [LT1, 2.a.2]), the space c0 is nowhere

strongly regular. The same arguments yield that the Banach space C(K) of real conti-

nuous functions on a scattered compact Hausdorff space K is nowhere strongly regular

(see [LPP, 11]). We recall that a topological space X is called scattered if every subspace

of X has an isolated point. In particular, every Polish countable space is scattered.
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1.9. Proposition. Suppose T : X → Y is a strictly regular operator between Fréchet

spaces.

(1) If X is not strongly regular , then T is not strongly regular.

(2) If X is nowhere strongly regular , then T is an isomorphic embedding.

Proof. The first statement follows immediately from Proposition 1.2(6), while the second

one follows from Proposition 1.2(2,5,6), the first statement and

1.10. Lemma. Let T : X → Y be an injective operator between Fréchet spaces. If T is

not an isomorphic embedding , then there is an infinite-dimensional closed linear subspace

X0 of X such that T |X0 is compact.

Proof. Fix an F -norm | · | on Y , that is, a function | · | : Y → R satisfying the conditions:

(i) |y| ≥ 0 for every y ∈ Y and |y| = 0 iff y = 0,

(ii) |x+ y| ≤ |x|+ |y|,

(iii) |ty| ≤ |y| for every t ∈ [−1, 1],

(iv) the metric d(x, y) = |x− y| generates the topology of Y .

Use the discontinuity of T to select a sequence {xn}∞n=1 ⊂ X such that xn 6→ 0 and∑∞
n=1 |Txn| <∞. By [KPR, p. 69], there exists a subsequence {ek}

∞
k=1 of {xn}

∞
n=1 which

forms a so-called strongly regular M -basic sequence. The latter means that for each ek
there is a continuous linear functional e∗k defined on E = span{ek : k ∈ N} so that

e∗k(el) = δ
k
l , and the formula ‖x‖ = sup{|e

∗
k(x)| : k ∈ N} defines a continuous norm on E.

The fact that
∑
k |Txk| < ∞ implies that TB is precompact, where B is the unit ball

in (E, ‖ · ‖). (If y ∈ TB then y =
∑
k tkTek for some |tk| ≤ 1; the closure of the set

consisting of such y’s is compact.) Finally, we let X0 be the closure of E. This completes

the proof of Lemma 1.10 and hence of Theorem 1.9.

For the Banach spaces C(K) we have the following result.

1.11. Theorem. Let K be a compact metric space and T : C(K) → Y be a strictly

regular operator into a Fréchet space Y .

(1) If K is countable, then T is an isomorphic embedding.

(2) If K is uncountable, then there exists a Banach subspace X ⊂ C(K) such that X

is isomorphic to C[0, 1] and T |X is an isomorphic embedding.

Proof. Since for a countable K the Banach space C(K) is nowhere strongly regular, the

first statement follows from Proposition 1.9(2).

If K is uncountable, then the Banach space C(K) is isomorphic to C[0, 1] (see [Se]).

So, we may assume that K = [0, 1]. For every n ∈ N let Xn be the subspace in C[0, 1]

consisting of all functions vanishing on the set
[
0, 1n+1

]
∪
[
1
n , 1
]
. Evidently, each Xn is

isomorphic to C[0, 1]. We claim that T |Xn is an isomorphic embedding for some n. As-

suming the converse, for every n ∈ N we would find a function fn ∈ Xn with ‖fn‖ = 1

and d(T (fn), 0) < 1/n, where d is any invariant metric of Y . Evidently, the closed linear

span Z of the set {fn : n ∈ N} is isomorphic to c0 and T |Z : Z → Y is not an isomorphic

embedding. By the preceding case, T |Z : Z → Y is not strictly regular, a contradic-

tion.
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1.12. Remark. Because every Gδ-embedding between Banach spaces is strictly regular,

Theorem 1.11 generalizes Proposition 2.2 of [BR].

In connection with nowhere strongly regular Banach spaces the following question

appears naturally:

1.13. Question. Is there a nowhere strongly regular Banach space containing no isomor-

phic copy of c0?

2. Characterization of operator images homeomorphic to Σω. In this section we

describe the topological apparatus which will be used in our subsequent study of operator

images. The main result here is the characterization and factorization Theorem 2.4.

We recall that a topological space X is defined to be C-universal, where C is a class of

topological spaces, if X contains a closed topological copy of each space C ∈ C. We recall

thatM2 and A2 denote the Borel classes of separable absolute Fσδ-spaces and absolute

Gδσ-spaces; M1 and A1 stand for the Borel classes of Polish spaces and metrizable

σ-compact spaces, respectively.

The following fact is a partial case of Theorem 3.5 of [BDP].

2.1. Theorem. Let T : X → Y be an operator between Fréchet spaces.

(1) The space TX is homeomorphic to Σω if and only if TX ∈ M2 is an M2-uni-

versal space.

(2) The pair (Y, TX) is homeomorphic to (s×Qω, Σ×Σω) if and only if TX is dense

in Y , TX is homeomorphic to Σω, and T is compact.

Thus for compact operators T : X → Y the problem of investigating the topology of

the pair (Y, TX) reduces to studying the topology of TX. The latter reduces in turn to

verifying theM2-universality of TX. Fortunately, for establishing theM2-universality of

a given space there exist very powerful tools elaborated quite recently (see [BRZ, 3.2.12]).

One of them is

2.2. Proposition. A metrizable space X is M2-universal if for every space M ∈ M2
there is anM1-map f :M → X.

We recall that a map f :M → X between topological spaces is called anM1-map if

there exists a Polish space P and a closed embedding e :M → X×P such that f = pr◦e,

where pr : X × P → X is the natural projection. The following proposition supplies us

with examples ofM1-maps (for a proof see [BRZ, §3.2, Ex. 3,4] or [Ba2]).

2.3. Proposition. A continuous map f : X → Y between separable metrizable spaces is

anM1-map in each of the cases :

(1) f is an embedding and f(X) is a Gδ-set in Y ;

(2) f is bijective and f−1 is Borel of class 1;

(3) f is a proper map, i.e., the preimage f−1(K) is compact for every compact set

K ⊂ Y ;

(4) X and Y are absolute Borel spaces and f−1(K) ∈ M1 for every compact set

K ⊂ Y .
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An injective operator T : X → Y between separable Fréchet spaces is called an Fσ-

embedding if TX is an Fσ-set in Y (see [BR, p. 156]). It is known that every Fσ-embedding

between separable Banach spaces is a Gδ-embedding (see [BR, 1.8] or [BDP, 1.8]). For

operator images between separable Fréchet spaces we have a deeper result characterizing

operator images homeomorphic to Σω.

2.4. Theorem. For an injective operator T : X → Y between separable Fréchet spaces

with TX ∈M2 the following conditions are equivalent :

(1) TX is homeomorphic to Σω;

(2) there exists a closed subset B ⊂ X such that the space TB isM2-universal ;

(3) there exists a Fréchet space Z and two injective operators T1 : X → Z and

T2 : Z → Y such that T = T2 ◦ T1 and the operator image T1X isM2-universal ;

(4) there exists a separable Fréchet space Z and an Fσ-embedding E : Z → X such

that the operator image T ◦ E(X) is homeomorphic to Σω.

Proof. The implications (1)⇒(2), (1)⇒(3), and (1)⇒(4) are trivial and follow from the

M2-universality of the space Σω.

(2)⇒(1). By Proposition 1.4, T−1 : TX → X is Borel of class 1. Thus TB is a Gδ-set

in TX. Since TB isM2-universal, TX isM2-universal according to Proposition 2.3(1).

Now Proposition 2.1(1) implies TX is homeomorphic to Σω.

(3)⇒(1). Suppose T1 : X → Z and T2 : Z → Y are injective operators such that

T = T2 ◦ T1 and the space T1X isM2-universal. Since the Fréchet space X is complete-

metrizable, T1X contains a closed topological copy M of the space Σ
ω ∈ M2 such that

the closure K of M in X is compact (see [BRZ, 3.1.1]). Then T2M is homeomorphic

to M and B = T−11 (M) is a closed set in X such that the image TB = T2M , being

homeomorphic to Σω, is M2-universal. By the preceding case, TX is homeomorphic

to Σω.

(4)⇒(1). Standard Baire category arguments (see [BR, 1.6]) yield the existence of a

closed neighborhood U of the origin in Z such that E(U) is closed in X. According to

the implication (2)⇒(1) it remains to verify theM2-universality of the space T ◦ E(U).

Since T ◦ E(Z), being homeomorphic to Σω, belongs to the Borel class M2, Pro-

position 1.4 implies that (T ◦ E)−1 is Borel of class 1 and Z has a base B of closed

neighborhoods of the origin such that T ◦ E(B) is closed in T ◦ E(Z) for every B ∈ B.

Fix any B ∈ B with B ⊂ U . The closedness of T ◦E(B) in T ◦E(Z) =
⋃∞
n=1 n ·T ◦E(B)

and the M2-universality of T ◦ E(Z) imply the M2-universality of T ◦ E(B) (see the

proof of Theorem 3.7 in [BDP] or the proof of Theorem 4.1 below). Since T ◦ E(B) is a

Gδ-set in T ◦ E(U) ((T ◦ E)−1 is Borel of class 1), the space T ◦ E(U) is M2-universal

by Proposition 2.3(1).

2.5. Remark. In Example 7.7 we shall show that the Fσ-embedding in the fourth condi-

tion of Theorem 2.4 cannot be replaced by a Gδ-embedding.

3. Non-strictly regular operators and operator images homeomorphic to Σω.

The main result of this section is
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3.1. Theorem. Suppose T : X → Y is an injective operator between separable Fréchet

spaces such that TX ∈M2. If T is not strictly regular , then the space TX is homeomor-

phic to Σω.

In an obvious way this theorem follows from Theorem 2.4(2) and the subsequent a

bit more general

3.2. Proposition. Suppose T : X → Y is an injective operator between separable Fréchet

spaces such that TX ∈ M2. If T is not strictly regular on a closed convex set D ⊂ X,

then the space TD isM2-universal.

Proof. Since TX ∈ M2, the separable Fréchet space X has a base B of closed convex

neighborhoods of the origin such that TB is closed in TX for every B ∈ B (see Proposition

1.4). Suppose the operator T is not strictly regular on a closed convex set D ⊂ X. Then

there exists a closed bounded convex set C ⊂ D such that for every point c ∈ C there

exists a closed neighborhood B(c) ∈ B of the origin such that 1n (U1 + . . . + Un) 6⊂

T (c + B(c)) for any nonempty open sets U1, . . . , Un ⊂ TC. Clearly, both sets T (B(c))

and T (c+B(c)) are closed in TX.

Claim A. For any nonempty open sets U1, . . . , Un ⊂ TC and rational numbers

t1, . . . , tn ≥ 0 with
∑n
i=1 ti = 1 we have

∑n
i=1 tiUi 6⊂ T (c+B(c)).

Proof. Without loss of generality, ti > 0 for all i. Write ti = ki/k, where ki ∈ N, 1 ≤ i ≤

n and k = k1+ . . .+kn. Let F = {(i, j) ∈ N2 : 1 ≤ i ≤ n, 1 ≤ j ≤ ki}. Evidently, |F | = k.

For every (i, j) ∈ F let V(i,j) = Ui. By our hypothesis,
1
k

∑
(i,j)∈F V(i,j) 6⊂ T (c + B(c))

and thus there are points x(i,j) ∈ V(i,j) such that
1
k

∑
(i,j)∈F x(i,j) 6∈ T (c+B(c)).

Consider the set F of all functions f : {1, . . . , n} → F such that pr1 ◦ f = id, where

pr1 : F → {1, . . . , n} is the projection onto the first coordinate. Evidently, |F| = k1 . . . kn.

We claim that there is a function f ∈ F such that
∑
i=1(ki/k)xf(i) 6∈ T (c + B(c)).

Assuming the converse, we would get
∑n
i=1(ki/k)xf(i) ∈ T (c + B(c)) for every f ∈ F .

Since the set T (c+B(c)) is convex, this implies

1

|F|

∑

f∈F

n∑

i=1

ki
k
xf(i) ∈ T (c+B(c)).

But

1

|F|

∑

f∈F

n∑

i=1

ki
k
xf(i) =

1

k1 . . . kn

n∑

i=1

ki∑

j=1

∑

f∈F
f(i)=j

ki
k
xf(i)

=
1

k

n∑

i=1

ki∑

j=1

x(i,j)

(
ki

k1 . . . kn

∑

f∈F
f(i)=j

1

)
=
1

k

n∑

i=1

ki∑

j=1

x(i,j)

=
1

k

∑

(i,j)∈F

x(i,j) 6∈ T (c+B(c)),

a contradiction which shows that
∑n
i=1 tixf(i) 6∈ T (c + B(c)) for some f ∈ F . Since

xf(i) ∈ Ui for every i, we get
∑n
i=1 tiUi 6⊂ T (c+B(c)).
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Claim B. For any nonempty open sets U1, . . . , Un ⊂ TC there are points xi ∈ Ui, 1 ≤

i ≤ n, such that

conv{x1, . . . , xn} ∩ T
(
c+ 12B(c)

)
= ∅.

Proof. Using the boundedness of the set C in X, find ε > 0 such that ε(C−C) ⊂ 12B(c).

Pick any m ∈ N with n2/m < ε. Denote by ∆ = {(t1, . . . , tn) ∈ [0, 1]n :
∑n
i=1 ti = 1}

the (n − 1)-dimensional simplex and let ∆0 = {(t1, . . . , tn) ∈ ∆ : mti ∈ Z for all i}

⊂ ∆. Evidently, ∆0 is a finite set in ∆ such that for every (t1, . . . , tn) ∈ ∆ there exists

(t′1, . . . , t
′
n) ∈ ∆0 with

∑n
i=1 |ti− t

′
i| < ε. Let ≤ be any linear ordering of the finite set ∆0.

By finite induction, for every t = (t1, . . . , tn) ∈ ∆0 we shall construct nonempty open

sets U1(t), . . . , Un(t) ⊂ TC such that

(∗t) Ui(t) ⊂ Ui ∩
⋂

τ<t

Ui(τ ), 1 ≤ i ≤ n, and T (c+B(c)) ∩
n∑

i=1

tiUi(t) = ∅.

Fix any t = (t1, . . . , tn) ∈ ∆0 and assume that for every τ ∈ ∆0 with τ < t non-

empty open sets Ui(τ ) satisfying the conditions (∗τ ) have been constructed. Let Vi =

Ui ∩
⋂
τ<t Ui(τ ) for 1 ≤ i ≤ n. By Claim A,

∑n
i=1 tiVi 6⊂ T (c + B(c)). Thus there are

points xi ∈ Ui, 1 ≤ i ≤ n, such that
∑n
i=1 tixi 6∈ T (c+B(c)). Since the set T (c+B(c)) is

closed in TX, there exist open sets U1(t), . . . , Un(t) ⊂ TC such that xi ∈ Ui(t), 1 ≤ i ≤ n,

and T (c+B(c)) ∩
∑n
i=1 tiUi(t) = ∅. The inductive step is complete.

Finally, for the maximal element τ ∈ ∆0 pick points xi ∈ Ui(τ ), 1 ≤ i ≤ n. Since

Ui(τ ) ⊂ Ui(t) ⊂ Ui for all t ≤ τ , 1 ≤ i ≤ n, we get xi ∈ Ui, 1 ≤ i ≤ n, and
∑n
i=1 tixi 6∈

T (c+B(c)) for every t = (t1, . . . , tn) ∈ ∆0.

We claim that
∑n
i=1 tixi 6∈ T

(
c+ 12B(c)

)
for every t = (t1, . . . , tn) ∈ ∆. To show this,

take any point t′ = (t′1, . . . , t
′
n) ∈ ∆0 with

∑n
i=1 |ti − t

′
i| < ε. Observe that

n∑

i=1

(t′i − ti)xi ∈
n∑

i=1

(t′i − ti)TC

⊂
( n∑

i=1

|t′i − ti|
)
T (C − C) ⊂ εT (C − C) ⊂ T

(
1

2
B(c)

)
.

Because
∑n
i=1 t

′
ixi 6∈ T (c+B(c)) the above relation implies

∑n
i=1 tixi 6∈ T

(
c+ 12B(c)

)
.

Claim C. TC ∩ T
(
c+ 12B(c)

)
is a Z-set in TC.

Proof. Clearly, the set TC ∩ T
(
c+ 12B(c)

)
is closed in TC. To prove that it is a Z-set

in TC, fix a continuous map f : Ik → TC of a finite-dimensional cube and a convex

symmetric neighborhood U ⊂ Y of the origin. We have to construct a continuous map

f ′ : Ik → TC such that f ′(Ik)∩ T
(
c+ 12B(c)

)
= ∅ and f(t)− f ′(t) ∈ U for every t ∈ Ik.

The uniform continuity of f implies the existence of a triangulation N of the cube

Ik so fine that f(σ) − f(σ) ⊂ 1
6U for every simplex σ of N . Let N

(0) be the set of

vertices of the triangulation N . By Claim B, there exists a map f ′0 : N
(0) → TC such

that conv(f ′0(N
(0))) ∩ T

(
c+ 12B(c)

)
= ∅ and f ′0(v) ∈ f(v) +

1
6U for every v ∈ N

(0). Let

f ′ : Ik → TC be the simplicial map extending f ′0. Then f
′(Ik) ⊂ conv(f ′0(N

(0))) and

hence f ′(Ik) ∩ T (c+ 12B(c)) = ∅.
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It remains to show that f(t)− f ′(t) ∈ U for every t ∈ Ik. Fix any t ∈ Ik and pick up

a simplex σ of the triangulation N such that t ∈ σ. Let σ(0) be the set of vertices of σ.

Fix any vertex v0 ∈ σ(0). Then for every v ∈ σ(0),

f ′(v)− f ′(v0) = (f
′
0(v)− f(v)) + (f(v)− f(v0)) + (f(v0)− f

′
0(v0))

∈ 16U +
1
6U +

1
6U =

1
2U.

Consequently, f ′(σ(0)) ⊂ f ′(v0) +
1
2U and thus f

′(t) ∈ conv(f ′(σ(0))) ⊂ f ′(v0) +
1
2U .

Then

f ′(t)− f(t) = (f ′(t)− f ′(v0)) + (f
′(v0)− f(v0)) + (f(v0)− f(t))

∈ 12U +
1
6U +

1
6U ⊂ U.

Claim D. TC is a σZ-space.

Proof. The space C, being metrizable and separable, is Lindelöf. Hence the cover
{
c+

1
2B(c) : c ∈ C

}
of C admits a countable subcover

{
ci+

1
2B(ci)

}∞
i=1
. Then TC is expressed

as the countable union

TC =
∞⋃

i=1

TC ∩ T

(
ci +
1

2
B(ci)

)

of Z-sets (see Claim C). Thus TC is a σZ-space.

Claim E. For every metrizable compact space K and every σ-compact set A ⊂ K there

exists a continuous map f : K → TC such that f(A) ⊂ TC and f(K \A) ⊂ Y \ TX.

Proof. By Proposition 1.4, T−1 is Borel of class 1. Consequently, TC is a Gδ-set in TX.

Let G be a Gδ-set in TC such that G ∩ TX = TC. Using Claim D and repeating the

proof of Lemma 5.4 from [DMM] (see also Lemma 8.10 of [CDM]), one may construct

a continuous map f : K → G such that f−1(TC) = A. Clearly, f(K) ⊂ G ⊂ TC and

f(K \A) ⊂ G \ TC ⊂ Y \ TX.

Claim F. The space TD isM2-universal.

Proof. According to Propositions 2.2 and 2.3(3) it suffices to construct, for every space

M ∈ M2, a proper map f : M → TD. Embed M into a metrizable compactum K. By

[Ku, §30.V], the Gδσ-set K \M can be written as a countable union K \M =
⋃∞
n=1Gn of

pairwise disjoint Gδ-sets Gn ⊂ K. By Claim E, for every n ∈ N there exists a continuous

map fn : K → TC such that fn(K \Gn) ⊂ TC and fn(Gn) ⊂ Y \ TX. Since the set TC

is bounded in Y , the map f : K → TC defined by

f(x) =

∞∑

n=1

2−nfn(x) for x ∈ K

is well defined and continuous. We claim that f−1(TX) = M . Indeed, if x ∈ M , then

x 6∈ Gn for all n and thus fn(x) ∈ TC for all n. Since the set C is closed, bounded and

convex in the Fréchet space X, the series
∑∞
n=1 2

−nT−1(fn(x)) converges to a point of

C. By the continuity of T , we get T (x) ∈ TC.
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If x 6∈ M , then there is a unique n0 ∈ N such that x ∈ Gn0 and x 6∈ Gn for n 6= n0.

By the choice of the map fn0 , fn0(x) 6∈ TX. Repeating the preceding arguments, we get

∑

n6=n0

2−n

1− 2−n0
fn(x) ∈ TC.

Then

f(x) = 2−n0fn0(x) + (1− 2
−n0)

∑

n6=n0

2−n

1− 2−n0
fn(x) 6∈ TX.

Since K is compact and f−1(TX) = f−1(TC) =M , the restriction f |M :M → TD is a

proper map. This completes the proof of Claim F and hence of Proposition 3.2.

4. Operator images of Fréchet spaces whose weak topology is M2-universal.

By Proposition 1.2(2,6) and Theorem 3.1, if T : X → Y is a weakly compact injective

operator between separable Fréchet spaces, then TX is homeomorphic to Σω provided

X is not strongly regular and TX ∈M2.

It was proven in [Ba1, 1.26] that for every non-strongly regular Banach space X with

separable dual X∗, the space (X,weak) is M2-universal (here (X,weak) is X endowed

with the weak topology). On the other hand, there exists a strongly regular Banach space

X (denoted by S∗T∞ in [GMS2]) such that the dual X
∗ of X is separable but the space

(X,weak) isM2-universal (see [Ba1, 2.1]).

4.1. Theorem. Suppose T : X → Y is an injective compact operator between separable

Fréchet spaces such that TX ∈ M2. If (X,weak) is M2-universal , then the operator

image TX is homeomorphic to Σω.

For the proof of this theorem we will need

4.2. Lemma. Suppose T : X → Y is an injective operator between separable Fréchet

spaces such that TX ∈ M2. If D ⊂ X is a closed subset of X such that (D,weak) is

M2-universal and the closure TD of TD in Y is compact , then TD isM2-universal.

Proof. Without loss of generality, (D,weak) is homeomorphic to Σω and thus is me-

trizable, separable and M2-universal. Notice that T induces a continuous map Tw :

(D,weak) → (TD,weak) such that iTD ◦ T |D = Tw ◦ iD, where iD : D → (D,weak)

and iTD : TD → (TD,weak) are the “identity” maps. Since TD is compact, the weak

topology on TD coincides with the original one. Hence iTD is a homeomorphism and

the map f = i−1TD ◦ Tw : (D,weak) → TD is bijective and continuous. We claim that f

is an M1-map. Indeed, observe that f−1 = iD ◦ T−1|TD. Since T−1 is Borel of class 1

(see Proposition 1.4), so is T−1|TD, and by [Ku, §27.II.1], f−1 = iD ◦ T−1|TD is Borel of

class 1 as well. By Proposition 2.3(2), f is anM1-map. Since (D,weak) isM2-universal,

the space T (D) = f(D) isM2-universal according to Proposition 2.2.

Proof of Theorem 4.1. Suppose the space (X,weak) isM2-universal and the operator

T is compact. Then there exists a closed convex neighborhood D ⊂ X of the origin such

that the closure TD of TD in Y is compact. Theorem 4.1 will follow from Lemma 4.2 and

Theorem 2.4(2) as soon as we show that the space (D,weak) is M2-universal. Fix any
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space M ∈M2. Embed M into a metrizable compactum K and consider the subspace

Ω = (K × (0, 1] ∪M × {0})ω

in (K×[0, 1])ω. It is easy to see that Ω is a Baire space (it contains a dense absolute Gδ-set

(K × (0, 1])ω) and for every nonempty open set U ⊂ Ω there is a closed embedding e :

M → Ω with e(M) ⊂ U . Since Ω ∈M2, there exists a closed embedding Ω ⊂ (X,weak).

Since X =
⋃∞
n=1 n ·D, by the Baire Theorem, there is a nonempty open subset U ⊂ Ω

such that U ⊂ n ·D for some n. By the property of Ω, there is a closed embedding e :

M → Ω such that e(M) ⊂ U ⊂ nD. Thus (nD,weak) contains a closed topological copy

of M . Since (D,weak) is homeomorphic to (nD,weak) we see that the space (D,weak)

isM2-universal.

5. Operator images of nonnormable Fréchet spaces. Recall that a Fréchet space

X is called normable if the topology of X is generated by a norm, or equivalently, if

X contains a bounded neighborhood of the origin. An operator between Fréchet spaces

is called bounded if there exists a neighborhood U of 0 ∈ X such that TU is bounded

in Y (see [Vo]). Evidently, every bounded operator is continuous. The converse is true

provided X or Y is a Banach space (see also [Vo]).

5.1. Theorem. Let T : X → Y be an injective bounded operator between Fréchet spaces.

If X is not normable and TX ∈M2 then TX is homeomorphic to Σω.

Proof. Since T is bounded, there exists an open convex symmetric neighborhood U0 of

0 ∈ X such that TU0 is bounded in Y . Pick a basis {Un}n∈N of open convex symmetric

neighborhoods of 0 ∈ X such that

(1) U0 ⊃ U1 ⊃ U2 ⊃ . . .

For every n ≥ 0, let ‖ · ‖n be the gauge Minkowski functional of Un (that is, ‖x‖n =

inf{t ≥ 0 : x ∈ tUn}, x ∈ X). Because of (1), we have

‖ · ‖0 ≤ ‖ · ‖1 ≤ ‖ · ‖2 ≤ . . .

Since T is injective and TU0 is bounded, ‖·‖0 and, consequently, all ‖·‖n’s are continuous

norms on X. For n ≥ 0 let Xn be the completion of the normed space (X, ‖ · ‖n), and

Tn : Xn → Y be the extension of the bounded (and, consequently, continuous) operator

T : (X, ‖·‖n)→ Y . Form ≥ n ≥ 0, let in : X → Xn and i
m
n : Xm → Xn be the extensions

of the “identity” operators X → (X, ‖ · ‖n) and (X, ‖ · ‖m) → (X, ‖ · ‖n), respectively.

Notice that all those operators have dense images. The space X can be identified with

the limit of the projective sequence

(2) . . . −→ X2
i21−→ X1

i10−→ X0
T0−→ Y.

Let us make two remarks.

(I) Without loss of generality, the operators imn , Tn are injective. Otherwise, in place

of (2), consider the projective sequence

(3) . . . −→ X̃2
ĩ21−→ X̃1

ĩ10−→ X̃0
T̃0−→ Y,
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where form ≥ n ≥ 0, X̃n = Xn/KerTn, πn : Xn → X̃n is the quotient map, T̃n : X̃n → Y

is the (injective) operator determined by the condition Tn = T̃n ◦πn, and ĩmn : X̃m → X̃n
is a (unique) operator such that ĩmn ◦ πm = πn ◦ i

m
n . Since T̃m = T̃n ◦ ĩ

m
n , the injectivity

of T̃m implies the injectivity of ĩ
m
n . Now observe that the quotient operators πn determine

a morphism (πn) of the sequences (2) and (3), and consequently a morphism π : lim←−Xn →

lim←− X̃n of their limits. One can show that the map π is continuous, injective, open, and

has dense image. Since X = lim←−Xn and lim←− X̃n are Fréchet spaces, by the Open Mapping

Principle the operator π is an isomorphism.

(II) Since X is not normable, without loss of generality, the norms ‖ · ‖n are pairwise

inequivalent. This means that for each n ≥ 0 the operator in+1n is not open.

According to 2.1, to show TX ∼= Σω, it is enough to verify that TX isM2-universal.

By 2.2 and 2.3(3),M2-universality of TX will follow if for every C ∈M2 we construct a

proper map p : C → TX. So, fix a C ∈M2, and let K be a compactification of C. Write

C =
⋂
n∈N Cn, where C1 ⊃ C2 ⊃ C3 ⊃ . . . are σ-compact subsets of K.

For n ≥ 0, let Bn be the closed unit ball of the Banach space Xn. Since the dense

operator in+1n : Xn+1 → Xn is not open, in+1n (Xn+1) lies in a σZ-set in Xn (cf. [BDP,

3.6]). Consequently, in+1n (Xn+1)∩Bn is contained in a σZ-set of Bn. Since Bn∩in(X) is a

dense convex set in Bn∩i
n+1
n (Xn+1) ⊂ Bn, by Lemma 8.10 of [CDM], there is a continuous

map fn : K → Bn such that fn(Cn) ⊂ in(X) and fn(K \ Cn) ⊂ Bn \ i
n+1
n (Xn+1).

Now define a map f : K → Y by

f(z) =

∞∑

n=1

1

2n
Tn ◦ fn(z), z ∈ K.

Notice that because of (1) we have imn (Bm) ⊂ Bn for m ≤ n. This implies that for

every m the series

sm(z) =

∞∑

n=m

1

2n
inm ◦ fn(z), z ∈ K,

converges uniformly and its sum sm is a continuous function of K into Bm. In particular,

s1 is a continuous function of K into B1. Since f = T1 ◦s1, we see that f is a well defined

continuous function.

Let us show that f−1(TX) = C. Observe first that for every m we can write

f(z) =

m−1∑

n=1

1

2n
Tn ◦ fn(z) + Tm ◦ sm(z).

If z ∈ C then fn(z) ∈ in(X) and consequently 2−nTn ◦ fn(z) ∈ Tn ◦ in(X) = TX for

every n < m. Since Tm ◦ sm(z) ∈ Tm(Bm), we obtain f(z) ∈ TX +Tm(Bm) ⊂ TmXm for

every m and every z ∈ C, and hence f(C) ⊂
⋂∞
m=1 TmXm = TX.

Now suppose z ∈ K \ C. Let m = min{n : z 6∈ Cn}. Then fm(z) ∈ Bm \ im+1m (Xm+1)

and fn(z) ∈ in(X) for n < m. Applying the operators Tn, we get Tm ◦ fm(z) ∈ TmXm \

Tm+1Xm+1 and Tn ◦ fn(z) ∈ TX for n < m. Write

f(z) =

m−1∑

n=1

1

2n
Tn ◦ fn(z) +

1

2m
Tm ◦ fm(z) + Tm+1 ◦ sm+1(z).
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Since
∑m−1
n=1 2

−nTn ◦ fn(z) ∈ TX ⊂ Tm+1Xm+1, Tm+1 ◦ sm+1(z) ∈ Tm+1Xm+1, and

Tm ◦ fm(z) 6∈ Tm+1Xm+1, we get f(z) 6∈ Tm+1Xm+1, and consequently, f(z) 6∈ TX.

Therefore f(K \C) ⊂ Y \TX. This together with f(C) ⊂ TX just yields f−1(TX) = C.

Letting p = f |C we obtain a proper map of C into TX as required.

6. Constructing operator images of a given topological type. We start from the

following easy observation:

6.1. Proposition. Suppose X, Y are separable Banach spaces and T0 : X0 → Y is an

injective operator from a Banach subspace X0 ⊂ X. Then there is a separable Banach

space Z ⊃ Y and an injective operator T : X → Z such that T |X0 = T0 and TX is

homeomorphic to T0(X0)× (X/X0).

Proof. According to [HHZ, 92], Y can be identified with a Banach subspace of l∞.

The Hahn–Banach Theorem implies that the operator T0 : X0 → Y ⊂ l∞ extends to a

continuous linear operator T1 : X → l∞. Let T1X denote the closure of TX in l∞. Clearly,

T1X is a separable Banach space. Denote by π : X → X/X0 the quotient projection. Let

Z = T1X ⊕X/X0 and T : X → Z be the operator defined by T (x) = T1(x) + π(x) for

x ∈ X. Clearly, T is an injective operator with T |X0 = T0. We claim that the operator

image TX is homeomorphic to T0(X0)× (X/X0).

It follows from the Michael Selection Theorem [BP] that there exists a continuous

map s : X/X0 → X such that π ◦ s = id and s(0) = 0. Observe that x − s ◦ π(x) ∈ X0
for every x ∈ X, so we may define a continuous map h : X → T0(X0)×X/X0 by letting

h(x) = (T0(x − s ◦ π(x)), π(x)). It is easy to verify that the map H = h ◦ T−1 : TX →

T0(X0)×X/X0 is a homeomorphism.

Next, for any of the spaces Σ, Σ × s, Σω we shall construct an injective compact

operator T : l1 → l2 such that T l1 is homeomorphic to the chosen space.

Recall that for a metric compactum K we denote by C(K) the Banach space of real

continuous functions on K. If K is a compact subset of a Banach space Y , then there is

a linear operator R : Y ∗ → C(K) acting as R(f) = f |K . Denote by R∗ : C∗(K) → Y ∗∗

the dual operator. The compactum K will be called functionally independent if the map

R∗ : C∗(K)→ Y ∗∗ is injective.

First, we establish that the Hilbert space l2 contains a functionally independent copy

of each metrizable compactum. Indeed, if K is a metrizable compactum, then the Banach

space C(K) is separable, so we can select a countable dense subset {fn}
∞
n=1 of the unit

ball of C(K). Define an embedding e : K → l2 by letting e(x) = (2−nfn(x))∞n=1. One

can easily verify that this map is continuous and injective, moreover, the operator R∗ :

C∗(K) → (l2)∗∗ = l2 acts by the formula R∗(µ) = (2−nµ(fn))∞n=1, µ ∈ C
∗(K), and is

thus injective. Therefore, e(K) is a functionally independent compactum in l2.

6.2. Proposition. Suppose K is a functionally independent compactum in l2, δ : N→ K

is an injective map, and T : l1 → K is the operator defined by T (t) =
∑∞
n=1 tnδ(n),

where t = (tn)
∞
n=1 ∈ l1. Then

(1) T is well defined , injective, and compact ;

(2) T (l1) is homeomorphic to Σ provided the set δ(N) is compact ;
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(3) T (l1) is homeomorphic to Σ × s provided δ(N) is a noncompact Gδ-set in K;

(4) T (l1) is homeomorphic to Σ
ω provided δ(N) is not a Gδ-set in K.

Proof. Since K is compact, the operator T is well defined and compact. Its injectivity

follows from the functional independence of K.

Observe that T factors through C∗(K). Namely, T = R∗ ◦ E, where the isometric

embedding E : l1 → C
∗(K) is defined by

E(t)(f) =
∞∑

n=1

tnf(δ(n)) for t = (tn)
∞
n=1 ∈ l1 and f ∈ C(K).

Denote byM(K) the closed unit ball B(C∗(K)) of the dual Banach space C∗(K) endowed

with the ∗-weak topology. Since the space M(K) is compact and R∗ : M(K) → l2 is

continuous and injective, the map R∗|M(K) :M(K)→ l2 is an embedding.

Now we can show that the inverse operator T−1 is Borel of class 1. By Proposition 1.4

this will follow as soon as we show that the image T (B(l1)) of the closed unit ball of l1
is closed in T (l1). But this is easily deduced from the compactness of R

∗(M(K)) and the

equality T (B(l1)) = R
∗(M(K) ∩ E(l1)) = R

∗(M(K)) ∩ T (l1).

1. Suppose the set δ(N) ⊂ K is compact. It is well known that elements of C∗(K)

can be identified with countably additive signed measures on the σ-algebra of Borel

subsets of K. For each signed measure µ ∈ C∗(K) define a measure |µ| ∈ C∗(K) (its

variation) by letting |µ|(f) = sup{µ(g) : 0 ≤ g ≤ f} for a nonnegative f ∈ C(K) and

|µ|(f) = |µ|(f+) − |µ|(f−), where f+ = max{f, 0}, f− = max{−f, 0}, for an arbitrary

f ∈ C(K).

We claim that the set T (B(l1)) is compact. Indeed, because R
∗|M(K) :M(K)→ l2 is

an embedding, T (B(l1)) is homeomorphic to the subset

(1) {µ ∈M(K) : |µ|(K \ δ(N)) = 0} ⊂M(K).

By [Va, Theorem II.3], for every closed set F ⊂ K and every α ∈ R, the set {µ ∈M(K) :

|µ|(K \ F ) ≤ α} is closed in M(K). This implies that T (B(l1)), being homeomorphic to

a closed subset of the compactum M(K), is compact. Then T (l1) =
⋃∞
n=1 nT (B(l1)) is

σ-compact and, consequently, homeomorphic to Σ according to Theorem 3.1 of [BDP].

2. Suppose δ(N) is a noncompact Gδ-set in K. We show that T (B(l1)) is a Gδ-set

in l2. As in the preceding case, it suffices to verify that

G = {µ ∈M(K) : |µ|(K \ δ(N)) = 0}

is a Gδ-set in M(K). Write K \ δ(N) =
⋃∞
n=1 Fn, where each set Fn ⊂ Fn+1 is closed in

K. Since

G =
∞⋂

n=1

{
µ ∈M(K) : |µ|(Fn) ≤

1

n

}
,

it suffices to show that each set Gn = {µ ∈M(K) : |µ|(Fn) ≤ 1/n} is a Gδ-set in M(K),

or equivalently, that the complement M(K) \ Gn = {µ ∈ M(K) : |µ|(Fn) > 1/n} is an

Fσ-set in M(K). Observe that for every r ∈ R the set {µ ∈M(K) : ‖µ‖ > r} is open in

M(K). Note also that |µ|(Fn) = |µ|(K)− |µ|(K \ Fn)) = ‖µ‖ − |µ|(K \ Fn). Then
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{µ ∈M(K) : |µ|(Fn) > 1/n}

= {µ ∈M(K) : ‖µ‖ − |µ|(K \ Fn) > 1/n}

=
⋃

r,r′∈Q

r−r′>1/n

{µ ∈M(K) : ‖µ‖ > r} ∩ {µ ∈M(K) : |µ|(K \ Fn) ≤ r
′}.

The sets {µ ∈M(K) : ‖µ‖ > r} are open and {µ ∈M(K) : |µ|(K \ Fn) ≤ r′} are closed

in M(K) (see [Va, Theorem II.3]). Consequently, {µ ∈ M(K) : |µ|(Fn) > 1/n} is an

Fσ-set, which implies that T (B(l1)) is a Gδ-set in T (l1). Then T (l1) =
⋃∞
n=1 nT (B(l1))

is a countable union of completely metrizable closed subsets in T (l1). This means that

T (l1) ∈M21.

Let us verify that T (l1) is not σ-compact. Observe that T (B(l1)) is a noncompact

convex Gδ-set in l2, closed in the linear space T (l1). By [BRZ, 5.2.6] and [DT], the space

T (B(l1)) is homeomorphic to s, the pseudo-interior of the Hilbert cube. Since s is not

σ-compact and T (B(l1)) is closed in T (l1), we see that T (l1) is not σ-compact either.

Therefore T (l1) ∈ M21 \ A1 and by Theorem 3.1 of [BDP], T (l1) is homeomorphic to

Σ × s.

3. Suppose finally that δ(N) is not a Gδ-set in K. Since δ(N) = T (E), where E =

{en : n ∈ N} is the standard basis of l1, the operator T is not a Gδ-embedding. Since

l1 has RNP [Bo, 4.1.3] and the map T
−1 is Borel of class 1, Corollary 1.6 implies that

the operator T is not strictly regular. By Theorem 3.1, the space T (l1) is homeomorphic

to Σω.

6.3. Remark. It follows from the proof of the last statement of Proposition 6.2 that

there exists an injective compact (and thus strongly regular) operator T : l1 → l2 from

the strongly regular space l1 such that T is not strictly regular (compare to Proposi-

tion 1.2(6)).

6.4. Proposition. (1) There exists an injective compact operator T1 : L1 → l2 such that

T (L1) is homeomorphic to Σ
ω.

(2) There exists an injective operator T2 : L1 → C[0, 1] such that T (L1) is homeomor-

phic to Σ × s.

Proof. (1) By Theorem 2.6 of [BDP], there exists a compact injective operator T :

L1 → l2 such that T1(L1) ∈M2. Since the operator T is compact and the space L1 is not

strongly regular [GGMS], Proposition 1.2(6) implies that the operator T is not strictly

regular. Then by Theorem 3.1, the space T (L1) is homeomorphic to Σ
ω.

(2) It is well known that l1 is isometric to a subspace in L1. By Proposition 6.2,

there exists an injective operator T0 : l1 → l2 such that T0(l1) is homeomorphic to Σ.

Considering l1 as a subspace of L1 and applying Proposition 6.1, we get an injective

operator T : L1 → Z into a separable Banach space such that T (L1) is homeomorphic

to T0(l1) × L1/l1. Since T0(l1) is homeomorphic to Σ, and L1/l1 to s (as an infinite-

dimensional separable Banach space), we see that T (L1) is homeomorphic to Σ × s.

Because the Banach space C[0, 1] contains an isomorphic copy of each separable Banach

space (see [HHZ, 97]), we may assume that Z ⊂ C[0, 1], i.e., T is an operator from L1
into C[0, 1].
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Finally we consider the operator images of the Banach space C[0, 1].

6.5. Proposition. (1) For every operator T : X → Y between separable Banach spaces

there is an injective operator T̃ : C[0, 1] → C[0, 1] such that T̃ (C[0, 1]) is homeomorphic

to T (X)× s.

(2) There exists an injective compact operator T1 : C[0, 1] → l2 such that T1(C[0, 1])

is homeomorphic to Σω.

(3) There exists an injective operator T2 : C[0, 1] → C[0, 1] such that T2(C[0, 1]) is

homeomorphic to Σ × s.

(4) There exists an injective operator T3 : C[0, 1] → C[0, 1] such that T3(C[0, 1]) ∈

M2 \ A2 but T3(C[0, 1]) is not homeomorphic to Σω.

Proof. The first statement follows from Proposition 6.1 and the universality of C[0, 1]

(it contains an isomorphic copy of each separable Banach space).

The proofs of the next two statements repeat the proof of the corresponding state-

ments of Proposition 6.4 and use the universality of C[0, 1].

For the proof of the last statement, we will use the following striking example from

[BDP, 3.7].

6.6. Example. There is an injective compact operator T0 : X → l2 from a Banach space X

with separable dual , such that T0(X) ∈M2\A2 and the space T0(X) is notM2-universal.

It follows from the first statement of the proposition that there exists an injective

operator T : C[0, 1]→ C[0, 1] such that T (C[0, 1]) is homeomorphic to T0(X)×s, where T0
is the operator from Example 6.6. Since the space T0(X) is notM2-universal, the product

T0(X)× s is notM2-universal either (see [BRZ, 3.2.12]). Clearly T0(X)× s ∈M2 \ A2.

Thus T (C[0, 1]) ∈ M2 \ A2 is not M2-universal and hence cannot be homeomorphic

to Σω.

7. Main results and operator images of classical Banach spaces. We summarize

the principal results proven in the preceding sections in the following

7.1. Main Theorem. Suppose T : X → Y is an injective operator between separable

Fréchet spaces such that TX ∈ M2. The space TX is homeomorphic to Σω in each of

the following cases :

(1) X is not normable and T is bounded ;

(2) T is not strictly regular ;

(3) X is not strongly regular and T is strongly regular ;

(4) X is not strongly regular and T is weakly compact ;

(5) X is nowhere strongly regular and T is not an isomorphic embedding ;

(6) every strongly regular closed bounded convex subset of X is subset-dentable and

T is not a Gδ-embedding ;

(7) X has RNP and T is not a Gδ-embedding ;

(8) X is a Banach space complemented in its second dual X∗∗ and T is not a Gδ-

embedding ;

(9) the space (X,weak) isM2-universal and T is compact ;



78 T. Banakh

(10) there exists a Fréchet space Z and two injective operators T1 : X → Z and

T2 : Z → Y such that T = T2 ◦ T1 and the space T1X isM2-universal ;

(11) there exists an Fσ-embedding E : Z → X of a separable Fréchet space Z such

that T ◦ E(Z) is homeomorphic to Σω.

For injective strongly regular operators from separable Banach lattices we have the

following classification result.

7.2. Theorem. Let T : X → Y be an injective operator from an infinite-dimensional

separable Banach lattice X into a Fréchet space Y such that TX ∈M2 and TX is dense

in Y .

(1) If T is strongly regular (in particular , weakly compact), then the space TX is

homeomorphic to one of the spaces s, Σ, Σ × s, Σω.

(2) If T is compact , then the pair (Y, TX) is homeomorphic to one of the pairs (s,Σ),

(s×Q,Σ × s), (s×Qω, Σ ×Σω).

Proof. We distinguish two cases:

1◦ The operator T is a Gδ-embedding. Then by Theorem 3.1 of [BDP], the space TX

is homeomorphic to one of the spaces: s, Σ, Σ × s. Moreover, if the Gδ-embedding T is

compact, then the pair (Y, TX) is homeomorphic either to (s,Σ) or to (s×Q,Σ×s) (see

[BDP, 1.8]).

2◦ If T is not a Gδ-embedding and T is strongly regular, then by Theorem 1.8, we

find that T is not strictly regular and by Theorem 3.1, TX is homeomorphic to Σω. If,

additionally, T is compact, then (Y, TX) is homeomorphic to (s×Qω, Σ×Σω) according

to Theorem 2.1.

Now we apply the results obtained to operator images of the classical Banach spaces

c0, l1, L1, and C(K).

7.3. Theorem. Let X = c0 or X = C(K) for some compact countable space K and let

T : X → Y be an injective operator into a Fréchet space Y such that TX ∈M2 and TX

is a proper dense subspace in Y .

(1) TX is homeomorphic to Σω.

(2) If T is compact , then (Y, TX) is homeomorphic to (s×Qω, Σ ×Σω).

Proof. See Theorems 1.11, 3.1, and 2.1 (see also Main Theorem 7.1(5)).

7.4. Theorem. Let T : l1 → Y be an injective operator into a Fréchet space Y such that

T (l1) ∈M2 and T (l1) is a proper dense subspace in Y .

(1) T (l1) is homeomorphic to either Σ, Σ × s, or Σω.

(2) If T is compact , then (Y, T (l1)) is homeomorphic to one of the pairs (s,Σ),

(s×Q,Σ × s), (s×Qω, Σ ×Σω).

Proof. It is well known that the Banach space l1 has RNP. If T is a Gδ-embedding,

then T (l1) ∈M21 (see [BDP, 1.8]) and by Theorem 3.1 of [BDP], T (l1) is homeomorphic

either to Σ or to Σ × s. Moreover, if the operator T is a compact Gδ-embedding, then

the pair (Y, TX) is homeomorphic either to (s,Σ) or to (s × Q,Σ × s) (see [BDP, 3.1]

again).
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If T is not a Gδ-embedding, then the operator T is not strictly regular according

to Theorem 1.8. Applying Theorem 3.1, we deduce that T (l1) is homeomorphic to Σ
ω.

If T is compact, then (Y, TX) is homeomorphic to (s × Qω, Σ × Σω) according to

Theorem 2.1.

7.5. Theorem. Let T : L1 → Y be an injective operator into a Fréchet space Y such that

T (L1) ∈M2 and T (L1) is a proper dense subspace in Y .

(1) T (L1) is homeomorphic either to Σ × s or to Σ
ω.

(2) If T is compact , then (Y, T (L1)) is homeomorphic to (s×Qω, Σ ×Σω).

Proof. It is well known that the space L1 is not strongly regular. If T is compact, then

T is not strictly regular according to Proposition 1.2(2,6). Then by Theorem 3.1, T (L1)

is homeomorphic to Σω and by Theorem 2.1, the pair (Y, T (L1)) is homeomorphic to

(s×Qω, Σ ×Σω).

If T is a noncompactGδ-embedding, then T (L1) is homeomorphic toΣ×s according to

Theorem 3.1 of [BDP]. Finally, if T is not a Gδ-embedding, then T is not strictly regular

(see Theorem 1.8). Applying Theorem 3.1 we conclude that T (L1) is homeomorphic

to Σω.

7.6. Theorem. Let T : C[0, 1]→ Y be an injective operator into a Fréchet space Y such

that T (C[0, 1]) ∈M2 and T (C[0, 1]) is a dense subspace in Y .

(1) If T is compact , then (Y, T (C[0, 1])) is homeomorphic to (s×Qω, Σ ×Σω).

(2) If T factors through a Fréchet space containing no isomorphic copy of the Banach

space C[0, 1], then T (C[0, 1]) is homeomorphic to Σω.

Proof. The first statement follows from C[0, 1] not being strongly regular and can be

proven by analogy with the corresponding statement of Theorem 7.5.

To prove the second statement, suppose Z is a Fréchet space containing no isomorphic

copy of the Banach space C[0, 1], and T1 : C[0, 1] → Z, T2 : Z → Y are two injective

operators such that T = T2 ◦ T1. By Proposition 1.11(2) the operator T1 is not strictly

regular and by Proposition 1.2(4), the operator T = T1 ◦ T2 is not strictly regular either.

Then Theorem 3.1 implies that T (C[0, 1]) is homeomorphic to Σω.

Finally, we present a counterexample disproving certain natural conjectures.

7.7. Example. There exist a strongly regular Banach space X (denoted by S∗T∞ in

[GMS2]) with separable dual and two operators T1 : X → l2 and T2 : l2 → l2 such

that

(1) T1 is a Gδ-embedding ;

(2) T2 is a compact Fσ-embedding ;

(3) T2 ◦ T1 is a strictly regular operator ;

(4) the space (X,weak) isM2-universal ;

(5) the space T2 ◦ T1(X) is homeomorphic to Σω.

This example shows that the Fσ-embedding in Main Theorem 7.1(11) cannot be

replaced by a Gδ-embedding and that the lack of strict regularity of an operator T does
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not follow from the topological equivalence of TX and Σω (this means that Theorem 3.1

cannot be reversed).

Proof of 7.7. By Theorem 2.1 of [Ba1] and Theorem VI.1 of [GMS2], the Banach space

X = S∗T∞ constructed in [GMS1, §VI] has the following properties:

1◦ the dual space to S∗T∞ is separable;

2◦ the space (S∗T∞,weak) isM2-universal;

3◦ there exists a Gδ-embedding T1 : S∗T∞ → l2.

Let T2 : l2 → l2 be any compact injective operator. Since l2 is a reflexive Banach

space, T2 is a compact Fσ-embedding. Since T1 is a weakly compact Gδ-embedding, by

Corollary 1.6 and Proposition 1.2(7), the composition T2◦T1 is a strictly regular operator.

Let us show that T2 ◦ T1(S∗T∞) ∈ M2. By Proposition 1.4 for this it suffices to find

a bounded closed convex neighborhood B of the origin in S∗T∞ such that T2 ◦ T1(B) is

closed in T2 ◦ T1(S∗T∞). Since T1 is a Gδ-embedding, T−1 is Borel of class 1 (see [BDP,

1.8 and 1.4]). Hence there exists a closed bounded convex neighborhood B ⊂ S∗T∞ of

the origin such that T1(B) is closed in T1(S∗T∞). Let D denote the closure of T1(B) in

l2. Then D is weakly compact and thus T2D is closed in l2. Consequently, T2 ◦ T1(B) =

T2(D) ∩ T1(S∗T∞) is closed in T2 ◦ T1(S∗T∞). Since the operator T2 ◦ T1 is compact,

Theorem 4.1 implies that T2 ◦ T1(S∗T∞) is homeomorphic to Σ
ω.
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