1. Introduction

Let 2 be a domain in RN, N > 2, and let F' = (f*,..., ") : 2 — RY be a Schwartz
distribution on 2 with values in RY. The divergence operator
div: D'(2,RY) = D'(1,R)
and its formal adjoint
curl : D' (2,RY) = D' (2, RV*N)
are defined, respectively, by
oft afN

divF = -—+...
v 8.1'1+ +8$N7

aft of }

Oxj  Ow; i5=1,....N

A div-curl couple on 2 is a pair of distributions ¢ = [B, E| satisfying the conditions
divB=0, curlE=0.

For each couple @ = [B, E] € LP(2,RN) x LY(2,RN), 1 < p,q < co and pq = p + ¢, it is
possible to consider its norm

urlF[

(1.1) [®(2)] = (| B(a)]P + | E(z)|")"/?

and its Jacobian

(1.2) J(z,P) = (B(x), E(x)).

A fundamental example is given by considering a mapping f = (f!,..., V) : 2 = RN

in the Sobolev space WV (2, RY): the vector fields B = Vf2x ... x VfN and E = V!
are respectively in LY/ V=D (0 RN) and LY (2,R"), and [B, E] is a div-curl couple. In
this case, the inner product (B, E) is exactly the Jacobian determinant of f.

A div-curl couple @ € LP(£2,RY) x L(£2,RY) is called a K-quasiharmonic field if
there exists a distortion function 1 < K = K(z) < oo such that

|®(x)|? < [K(x) + K~ Y (2)]J(z,®), ae.
Obviously, if f = (f1,..., V) € WLV (2, RY) is a mapping of finite distortion, that is
IDf(@)|N < K(x)J(x, f)  ae.

for some 1 < K(z) < oo, then the couple [B(x), E(x)] € LV/WN=-1D(2,RY) x LN(2,RY)
of the previous example yields a K-quasiharmonic field.

To every solution of an elliptic PDE there corresponds a quasiharmonic field. Consider,
for example, the linear equation

div A(z)Vu =0
[5]
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where A(z) is a measurable function on {2 with values in the space of symmetric matrices
in RV*N gsatisfying the ellipticity condition

(1.3) m(z)[¢]* < (A(2)€,€) < M(x)|¢]?
where 0 < m(xz) < M(z) < oo. It is possible to express condition by using just one
inequality
(1.4) €2 + [A(2)E* < K(A(2)E, )
for almost every = € £2 and all £ € RV, where K = K(z) > 1 depends on the ellipticity
bounds m(z) and M (x).

Inequality can be used to formulate the ellipticity condition for the nonlinear

equation
div A(z, Vu) =0,

namely
€] + A, €)|* < K(A(x,€),€).
Since w is a solution of one of the equations above, the couple & = [A(x, Vu), Vu] is a
K-quasiharmonic field in L?(2, RV*N).
The relevance of quasiharmonic fields to the theory of elliptic partial differential equa-
tions is therefore evident.
More generally, we look at an elliptic complex of first order differential operators

(1.5) D'RYN,U) B DR, V) S DRV, W)
where U, V and W are finite-dimensional inner product spaces and the symbols P = P(&)
and Q = Q(¢) are linear functions in & = (&1,...,&x) € RY such that

imP(§) =ker Q(§) forall £ #0.
Such complexes, called elliptic, can be viewed in many ways as generalizations of the
complex
D'(RY,R) % D'(RY,RY) &8 D/(RY,RY x RY).
An elliptic couple associated to the complex is a pair
F = [Pa, Q"B
where a € W,'P(2,U), 8 € WP(£2, W), and Q* is the formal adjoint operator of Q.

loc loc
Notice that if P = V and Q = curl, then the elliptic couple F = [Pa, Q*] is none
other than a div-curl couple. Therefore, in analogy with the definitions (|1.1)) and (1.2)),
we introduce the norm
Fl = (IPaf® +1Q"B1*)"*
and the Jacobian

J(, F) = (Pa, Q°B).

Moreover, an elliptic couple F = [Pa, Q*3] is called K -quasiharmonic, with 1 < K =
K(z) < oo, if
F(2)]* < K(2)J (x, F)
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where K(z) = K(z)+ K ~!(z) > 2. This more general setting allows us to give a definition
of polyconvexity that can be viewed as a generalization of the classical one.
In analogy with the calculus of variations we prove that

Polyconvexity = Quasiconvexity = Rank one convexity.

Continuing this analogy one can conjecture that convexity in singular directions might
imply quasiconvexity. Let us refer the interested reader to Chapter 3 for more details.

Chapter 4 is dedicated to the question of the integrability of the Jacobian determinant
of some Sobolev mappings. Our main result asserts that if f € WHN=1(Q2 RN), N > 2,
is an orientation preserving (reversing) mapping whose cofactor matrix | D f|N/(N=1) ig
in the space LY (§2), with the function P satisfying the divergence condition

o0

S Pt(gt) dt = o0,
1

then the Jacobian determinant of f is locally integrable and obeys the rule of integration
by parts

(1.6) V@@ fydo=—\df' Ao AdF A Frdp AdFTE AL AN = Tplg)
0 [0
for all indices 7 = 1,...,n and all test functions ¢ € C§°(£2).

It is worth pointing out that both nonlinear elasticity and the theory of mappings
of finite distortion are drawn on integral estimates of J(z, f) in terms of D f. In quasi-
conformal theory the ratio |D*f|V /|J(x, £)|V ! is none other than the inner distortion
function of f.

Chapter 5 is mainly dedicated to some regularity results for vector fields of bounded
distortion. Starting from some inequalities for div-curl couples, under the assumption of
bounded distortion, we get a family of reverse Holder inequalities. Applications to the
theory of quasiconformal mappings and PDEs are given. In particular, we recover the
celebrated result of Bojarski concerning higher integrability of functions f = (f, f?) :
2 — R? of bounded distortion:

f c W1,27s = f c W1’2+5.

The end of this chapter also contains some further regularity results for mappings having
unbounded distortion in the exponential class Expy(Q) for some v > 1.
In Chapter 6, we discuss lower semicontinuity of integral functionals of the type

F(u) = S f(z,u, Lu)dx
Q
where u = (v, w) is a pair of Sobolev functions, f is a nonnegative integrand satisfying
the growth condition
0< flz,s,8) <c(1+[5]7),
q>p>1,and Lu = [Pv, Q*w] with P, Q linear differential operators forming an elliptic
complex.
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The conclusion is dedicated to the lower semicontinuity in the setting of functions of
bounded variation. It is well known that if one considers an integral functional of the type

S f(z,u(x), Du(zx)) dz

0
with f: 2 x R x RY — [0, 00|, then the convexity in the last variable is needed in order
to have lower semicontinuity in W11(£2). However, since the first result of this kind
appeared in the celebrated paper by Serrin [53], it is well known that some regularity (or
growth) assumptions on f must be present. In fact, there are counterexamples showing
that the above functional is not lower semicontinuous in L! if f is merely a Carathéodory
integrand controlled by a term like ¢(1 + |Dul). In this paper we extend a recent result
by Marcellini-Gori [44] to the BV setting by showing that no growth assumptions on f
are needed, as long as we assume f nonnegative and locally Lipschitz.

2. Requisites from analysis and function spaces

This chapter is dedicated to establishing notation and an exposition of some requisites
from functional analysis.

2.1. Orlicz spaces. The Orlicz spaces turn out to be instrumental in observing and
formulating the phenomenon of higher integrability properties of certain nonlinear differ-
ential quantities such as the Jacobian determinant or, more generally, wedge products of
differential forms.

Let 2 be an open subset of R"V. Throughout this text we shall work with the Lebesgue
measure. All functions f : {2 — V with values in a finite-dimensional inner product space
will be measurable.

By an Orlicz function we mean any P : [0, 00] — [0, 00| continuously increasing from
P(0) = 0 to P(00) = co. The Orlicz space, denoted by L¥ (2, V), consists of all mappings
f 92—V such that

SP(e|f|) < oo for some e = ¢(f) > 0.
2

This is a complete linear metric space in which the distance between f and g is defined
as
dist(f, g) = inf{K >0: | P —g) < K}
Q

A slight change in this formula gives us a nonlinear functional on L¥(£2,V),

Ifllp = inf{K >0: | P ) < 1}_
22

In general || - || p need not be a norm, but it is a norm whenever P is convex. We refer to
such P as Young function. In this case LT (£2,V) becomes a Banach space and || - || p is
called Luzemburg norm.
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Taking P(t) = tP/p, 0 < p < oo, we recover the Lebesgue spaces LP({2, V) for which
the usual notation is
» 1/p
17l = (§1r17)

0
In order to follow the lead of the L? spaces, it will be necessary to put some restrictions
on the Orlicz function P. In particular, we assume that P is C*°-smooth and log-convex.
The latter means that P can be represented by the integral

where p € C°[0, 00) is an increasing function with ¢(0) = 0 and g(c0) = co. For example
o(s) = sP with p > 0. Without loss of generality we can normalize P by requiring o(1) = 1.
Note that the inverse function o= : [0,00) — [0, 00) also meets those conditions.
Now, given a set of such functions, say {o1,..., 0k}, it is legitimate to define p by the
equation
oM () =0y '(t) -0 (D)

Then the corresponding Orlicz functions

satisfy Young’s inequality
P(ty,...,tx) < Pi(t1) ... Pe(tr)

for all nonnegative numbers ¢4, ..., t;. Because of this we refer to P as Young’s conjuga-
tion of Py,..., P.

The inequality above proves extremely useful in deriving the following analogue of
Hoélder’s inequality:

Al Al < Wfalley - L full e
for f; € LY (02,V;) withi =1,...,k.

Now a complementary couple (Py, P) is a pair of Orlicz functions for which P defined
as above is the identity function. Many analytically pleasing functions fail to be increasing.
To handle this problem we introduce the following concept.

Two functions @, ¥ € C*°[0,00) are said to be equivalent if for every £ > 0 there
exists a constant K = K(g) > 1 such that

w(}i) < ed(t) < WKL), >0,

Denote it briefly @ ~ ¥.

When two equivalent functions happen to be increasing they yield the same Orlicz
space.

Basic examples we can recall are the Zygmund classes, corresponding to P(t) ~
t?log®(e+t), p > 1 and o € R. These spaces are traditionally denoted by L? log® L(£2,V).

Furthermore, for each A € R and 1 < p,q¢ < oo, 1/p+ 1/q = 1, the pair P(t) ~
t?log™ (e+1) and Q(t) = t?log e (e +t) is a complementary couple; the complementary
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function to P(t) = tlog®(e +t), a > 0, is a function Q(t) ~ exp(t'/®) — 1. Finally, ¥ is
stronger than @, ¥ < & for short, if for every € > 0 there exists K = K () > 0 such that

d(t) <e¥(t) Vt>0.
We write ¥ < @ if ¥ is stronger than @ but they are not equivalent.

2.2. Schwartz distributions. For an arbitrary set 2 C RY we denote by C5°(£2) the
algebra of all infinitely differentiable functions ¢ : RY — R with compact support
contained in (2.

The N-term multiindez is any ordered system « = (ayq,...,ay) of nonnegative inte-
gers aq,...,an. The length of o is defined as |a| = a1 + ... 4+ an. The differential of
order « is the operator 9 = 9*t+Ftan /9zM | 9zQN which can be applied to suffi-
ciently smooth functions.

Let £2 be an open set of RY and V a finite-dimensional inner product space. A
distribution f in {2 with values in V is a linear form f : C§°(§2) — V such that for every
compact set K C (2 and any test function ¢ € C§°(K) we have the estimate

F191 < C(K) Y 110%¢]|oc-
la|<m
In general, the integer m may depend on the compact set K. If not, we say that f has
finite order in {2, and the smallest such integer m is called the order of f in (2. The space
of all distributions will be denoted by D'(£2, V).

It is immediate from the definition above that the space of distributions in {2 is com-
plete under pointwise convergence. Specifically, given a sequence { f;} of distributions in {2
such that lim,;_, f;[¢] exists for every test function ¢ € C§°(12), define f : C5°(£2) -V
by fl¢] =1lim,_, fj[¢]. Then f € D'(£2,V), as is easy to see. We then say that

f=lim f; in the sense of distributions.
]—)OO

This simple notion of convergence has far reaching applications.

The reason for calling elements of D’ (§2, V) generalized functions is that every locally
integrable function f € L .(£2, V) can be viewed as a distribution (of order zero), defined
by the rule

o | o@)f(z)dw  for ¢ € C°(£2).
0
Hence the notation L{ (2, V) C D'(2,V).

Quite often locally integrable functions are referred to as regular distributions. Al-
though it is not apparent at this point, the regular distributions are dense in D'(£2, V).
Of fundamental importance is the Dirac delta 6, € D'(£2) at the point a € 2 which
assigns to each ¢ € C§°(2) its value at a, §,[¢] = ¢(a). It has order zero but it is not a
regular distribution.

Distributions of order zero, like the Dirac delta, are all represented by integration
with respect to a suitable V-valued Radon measure on 2. This fact is usually referred to
as the Riesz representation theorem. It asserts that each f € D'(§2,V) can be written as

flo) =\ 6(2) du(z) for all ¢ € CF°(12).

(o]
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Also, let us recall that a Radon measure p on §2 is such that the absolute value |u| is a
Borel measure which is finite on compact subsets. In this way we identify Radon measures
with distributions of order zero. The regular distributions are the ones having no singular
part with respect to the Lebesgue measure. A distribution f € D'(£2,R) is said to be
positive if f[p] > 0 whenever ¢ > 0. Positive distributions have order zero, and therefore
are represented by Borel measures.

Let f € C*°(£2,V). By integration by parts we have

o f) = (0§ @70)f Vo).

Q 2
This procedure can be extended to all f € D'(£2,V) by setting

0° fle] = (=1)1* flo*g)].

Let us point out that the original purpose of the theory of distributions was to make

it possible to differentiate locally integrable functions. From this point of view Schwartz

1
loc

distributions offer us the most economical extension of the space Li. ({2, V) carrying out

this task.

2.3. The maximal operator. The concept of the maximal function can be traced back
to G. H. Hardy and J. E. Littlewood [31I] and has been under study since then. This is
partly due to the interest in Fourier analysis.

The objective of the present section is to describe some maximal inequalities that are
crucial for the higher integrability results in PDEs and quasiconformal mappings.

Let Qg be a fixed cube in R with sides parallel to the axes, and, for every set F C Qo,
denote by |E| the Lebesgue measure of E and by |f|o the integral mean of |f| over E:

57 V@)l de = § 17w da

For f € L'(Qy) define the local mazimal function

M f(x) = sup { flrw)l dy} Va € Qo
QCQo Q
where the supremum extends over all cubes Q C Qg containing x with sides parallel to
the coordinates axes. Note that the maximal operator is sublinear and homogeneous, that
is, M(f +g) < Mf+ Mg and M(\f) = AMF) for all A > 0.

The Hardy-Littlewood maximal theorem plays a fundamental role in the theory of
maximal functions. It ensures higher degree of integrability of some functions f as com-
pared to that of M f. In particular, it asserts that if f € Llog L(Qo) then M f € L*(Qy).

In [56] E. M. Stein showed that the converse of this theorem is also true; namely he
proved that

|fle =

|f(z)] N
|f(z)]log| e+ de < 2N % Mf(zx)dax
Q§0 ( |fQo) ng

for all f € Llog L(Qo), f # 0.
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The following estimate strengthens the maximal theorem:

W 1) da

[f1>¢

(2.1) {z € Qo: Mf(z) > 2t}| <

for all f € L'(Qp). This is a simple consequence of the weak-type inequality

VY @) dr
Qo

(2.2) {z € Qo: Myg(z) > t}] <

applied to
g(z) = {f(x) if z. € QoN{lf| >t}

0 otherwise,
where we notice that M f(z) < t+ Mg(x), so
{reQo: Mf(x)>2t} C{xeQ: Mg(x) >t}
The proof of involves Vitali’s covering lemma.

Notice that an inverse estimate also holds, namely

(23 o€ Qo Mp@) > 20 > D)) a

[f1>t
The proof of (2.3) is obtained using the well known Calderén—Zygmund decomposition
lemma.

2.4. Hardy spaces. Delicate cancellation properties of various nonlinear differential
and integral forms cannot be discussed without introducing the Hardy spaces. It is the
objective of this section to give a brief account of these spaces.

The Hardy space H'(RY), introduced by E. Stein and G. Weiss in [57], can be char-
acterized as follows (see [13], []]):

H'(RY) = {f € L'RY) : sup |hy » f| € L'(RY)}
t>0

where hy = 1/tNh(-/t), h € C(RN), h > 0, supph C B(0,1).

Notice, of course, that H!(RY) is a proper subspace of L*(RY). In particular in [7] the
authors proved that H!(RY) is the minimal linear subspace of L!(R") which contains
the range of the mapping

feWHN RN RYN) s det Df € LY(RY).
In this connection it is worth introducing also the function spaces BMO and VMO.

DEFINITION 2.1. A function h € L{ (RY) is said to have bounded mean oscillations if

Ihllsvo = sup §[h(z) = he dz < oo,
QCRN
Q

Observe that || - |[mo is a norm in the space BMO(RY) modulo constant functions.
Clearly, bounded functions lie in BMO(R™), but they are not dense.

Indeed, for example, it is possible to show that the function h(x) = log|z| on the
real line has bounded mean oscillation, but cannot be approximated in BMO by bounded
functions.
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The closure of C§°(RY) in the BMO-norm is the space VMO(RY) introduced by
Sarason [53]. It consists of functions with vanishing mean oscillations.

Precisely, this space is characterized by the condition:

lim g |h —hgl =0, uniformly as |Q| + Q| — .
QCRN

In words, the infinitesimal oscillations of h vanish everywhere.

Finally, there are two central facts we want to note here. The first is the result of
Coifman and Rochberg [9] asserting that the logarithm of a maximal function belongs

to BMO with norm bounded by a universal constant. Thus the maximal operator has a
certain smoothing property.

THEOREM 2.2. Let pi be a Radon measure on 2, an open domain in RN, such that Mu
is finite at some point; consequently at almost every point. Then

[log(Mp)||Bmo(2) < C(N).

The second is the duality theorem of C. Fefferman which states that BMO(RY) is the
dual space of H!(R"), and also a result of Sarason asserting that H!(RY) is the dual
space of VMO(RY). In particular, we note the following

PROPOSITION 2.3 (H!-BMO duality). There is a constant C = C(N) such that if h €
HERY) and b € L= (RY), then

| § A@)b(e) da| < OVl [blmvio.
RN

3. Elliptic complexes

3.1. Introduction. The aim of this chapter is to discuss and develop my recent joint
paper with A. Verde [2I] in which we have continued, from a more general perspective,
some themes discussed in [39] where the theory of quasiharmonic fields is formulated
using singular integrals, in particular the N-dimensional Hilbert transform. This more
general setting provides a better understanding of several unanswered questions in [39],
especially those concerning the LP-norm of the Hilbert transform and sharp estimates for
elliptic PDEs.

We start with an exposition of some basic definitions and concepts that will be useful
in what follows.

Let 2 be a domain in RY, N > 2. We shall consider Schwartz distributions on 2
with values in RY, including the Lebesgue space LP(£2,RY), 1 < p < oo, equipped with
the norm

1/p
1Pl = (§ 1@ dr) .

Q
If F € D'(2,RY) we can speak of its differential

DF = [0f'/0x;] € D'(2,RV*N).
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Then F is said to be in the Sobolev class W1P (2, RY) provided DF € LP(£2,RN*N).
Let us emphasize explicitly that in this definition we do not require F itself to be in
LP(02,RN).

Clearly, W1P(£2, RY) is a Banach space equipped with the seminorm

1Pl = (§ 1DP@)Par)”
2

The following two operators will be of fundamental importance to the arguments pre-
sented later: the divergence operator

div: D' (2,RY) — D'(2,R)

defined by
] _afl afN B 1 N
dlvff—8x1+...+—ax]v for f=(f"..., "),

and its formal adjoint, denoted by curl: D’(£2,RY) — D'(£2, R¥N*N) which is a matrix
distribution

aft  ofi .
1F = — =1,...,N.
cur |:8:EJ axl :| ) 2W) ) )
Note that a vector field F = (f!,..., fV) of divergence zero and curl zero (irrotational

field) satisfies the generalized Cauchy—Riemann system

oft)oxy + ...+ 0fN Joxy =0,

oft)ox; =0f7)0x;, i,j=1,...,N.
Locally, such a field F' is the gradient of a harmonic function, which makes it a C'°°-
smooth vector field in 2. However, distributions which are only divergence free or curl

free need not be even locally integrable. The duality between div and curl can be stated
as

(3.1)

J(B(@), B(x))dz =0

Q
whenever B, E are divergence free and curl free vector fields in L(£2,R™) and L?(£2,RY)
respectively, where 1 < p,q < oo is any Holder conjugate pair.

DEFINITION 3.1. A div-curl couple on {2 consists of a pair of distributions & = [B, E]
with divB = 0 and curl £ = 0.

A div-curl couple & = [B, E] which satisfies the equation B = E consists of two
copies of a vector field satisfying the system of the Cauchy—Riemann equations (3.1]), and
because of this we refer to such a couple as a harmonic field. Denote by HP(£2, RV*N),
1 < p < o0, the LP-space of div-curl couples. This space is easily seen to be a closed
subspace of LP(£2,RN*N). For @ = [B, E] € H} (£2,RV*") we can introduce the norm

B = (|B(2)* + |E(x)[*)"/?
and the Jacobian
J(2,0) = (B(x), E(2)).

Clearly, we have 2J(x,®) < |®|?, where equality occurs if and only if B = E.
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DEFINITION 3.2. A div-curl couple @ = [B, E] € H} (2, RN*N) is called a K-quasihar-

loc

monic field with distortion 1 < K = K(x) < oo if
(3.2) |®(2))? < (K(x) + K Y(2))J(z,d) ae.

The distortion function K = K () tells us how far @ is from a harmonic field. Precisely,
inequality (3.2)) yields
- K(z) -1
(@) < DL g )

(z)+1
where the + components of @ are defined by the rules
1 1
¢ = i(E -B), o"= §(E+ B).

Hence, harmonic fields are precisely those with the vanishing minus component, corre-
sponding to K (x) =1 (no distortion).

EXAMPLE 3.3. Let f = (f1,..., V) : 2 — RY be a mapping whose coordinates f¢ are
in WLPi () where 1 < py,...,py < co. With f we associate two vector fields F = V f!
and B = Vf2 x ... x VfV. The latter stands for the cross product of N — 1 gradient
fields in RV,
It is well known that div B = 0 provided 1/ps+...+1/px < 1. The product (B, E) is
none other than the Jacobian determinant of f, that is, (B, E) = det(D f(x)) = J(z, f).
Thus the couple ¢ = [B, E] is a quasiharmonic field if and only if

VAP + V2 x ... x VAV < (K(z) + K '(z)) det(Df).

EXAMPLE 3.4. Let f: 2 xRN — R be a Carathéodory function such that for a.e. x € £2
the function ¢ € RN — f(x,£) is convex. Denote by f*(x,n) = sup{(n,&) — f(x,£);¢ €
RV} the Young conjugate of f(x,-). Throughout this example we assume the quadratic
growth and coercivity condition which we express by a single inequality

P + Inl* < (K + K~ [f(2,8) + f*(z,n)]

where K > 1. Let u € W2(£2) be a local minimum of the variational integral

Ijv] = S f(z,Vv)dz.
Q
Precisely we mean that I[u] = min{I[v] : v € u + W;?(£2)}. Consider the solution B €
L?(£2,RY) of the dual problem in the sense of Ekeland—Temam [12]. That is, div B = 0
in (2 and

V1B, Vu) - (2. B)) = max{ J10, V) = £, X)) - X € 2(2.RY), div X = o}.
2 (]

Then the extremality relation takes the form
(B,Vu) = f(z,Vu) + f*(z,B) a.e.in {2.

Setting E = Vu we obtain the K-quasiharmonic field [B, E], which satisfies the distortion
inequality
B +|E]* < (K + K~')(B, E).
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Given a vector field F = (f!,..., fV) € LP(RY R¥), consider the Poisson equation
(3.3) F =AU = (A, ..., Aul)

for U = (ul,...,u") € D'(RY,RY). Equation (3.3)) yields the div-curl (also known as
Hodge) decomposition of F:
F=B+FE

where
B=AU+VdivU, FE =VdivU.

These fields are easily seen to be divergence and curl free, respectively.
Explicit calculations are possible by means of the Riesz transform

R : LP(RY) — LP(RY,RY)

where

Ni1 v
R = i) | 0l
2 RN

for which the following identities hold:
o*U
8xi8x]— o

where R; ; = R; o R; are the second order Riesz transforms.

-R;;(F) € LP(R*" xR") fori,j=1,...,N

Next, F' can also be written as
F =V (divU) + div(curl U).

Note that the divergence of the matrix function curl U is a vector field whose coordinates
are obtained by simply computing the divergence of the column vectors of this matrix.
For fixed F' € LP(RY ,RY), we can also define an N-dimensional version of the Hilbert
transform by
S(F)=FE - B.

Thus S acts as identity on gradient fields and as minus identity on divergence free vector
fields. Let us list basic properties of the operator S:
(i) S is an involution, that is, SoS =T.
(ii) S is self-adjoint, that is,
\isrc) = | (Fsa)
RN RN
for F € LP»(RN,RY) and G € LYRN,RV), with 1 < p,q < o0, p+ q = pq.
Thus, in particular
(iii) S is an isometry in L2(RY,RY).
The calculation of its p-norms remains an open problem, even in the case N = 2. A

lot of implications in the regularity theory of PDEs would follow if the exact value of
IS||, could be established.
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The setting presented in [2I] is the one of elliptic complexes of the first order differ-
ential operators
D'(RY,U) & D'(RY, V) & D'(RY, W)
where U,V and W are finite-dimensional inner product spaces.

Such complexes are viewed, in many ways, as generalizations of the classical exact
sequence of the gradient and rotation operator

D'(RY,R) 3% D'(RN,RY) &3 p/(RN RN *N),

3.2. Elliptic complexes. Let U, V and W be finite-dimensional vector spaces over the
field of real numbers. We assume that they are equipped with inner products.

We consider a sequence of differential operators of first order in N independent vari-
ables with constant coefficients

(3.4) D'(RN,U) B D'(RY, V) S D'RN, W).
More precisely, if u € D'(RY,U) and v € D'(RY, V), then
a ou a v
3.5 = A _— = B
(3.5) Pu ; kB Qu ; kB

where Ay € L(U,V) and By, € L(V,W) for ¥ = 1,...,N. The symbols P = P(&)
and Q = Q(§) are linear functions in & = (&1,...,&y) € RY valued in L(U, V) and in
L(V, W), respectively. They are given explicitly by

N N
(3.6) PE) =D &Ar, Q&) =) &Bs.
k=1 k=1
The complex (3.4) is said to be elliptic if the sequence of symbols
(3.7) v v 2w
is exact, i.e.
(3.8) imP(§) =ker Q(§) forall £ #0.
The dual sequence consists of the formal adjoint operators
(3.9) D'(RY,U) &= D/(RY, V) & DR, W),
al v al ow
3.10 = — Af — fw=— B —.
(3.10) P kzz:l Foxy’ Qw ; ko,

Since inner products on U, V and W have been given, the dual spaces U*, V* and W*
are identified with U, V and W, respectively. The dual complex is elliptic if the original
complex is.

Given an elliptic complex we define the associated Laplace—Beltrami operator

(3.11) ~A=PP*+Q*Q:D'(R",V) = D'RN, V).
Its symbol is a quadratic form with values in L(V, V),

Ag) = (ZlfjAj) ° (;&AZ) + (Zlij}k) o (;&Bk)
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§i&k(A; AL + Bj By)

J,k=1

1

b
Il

M= 1=

3,
If we fix an arbitrary vector field F = (f!,..., fV) € L2(RY, V), we can solve the Poisson
equation

(3.12) Ap=F

for ¢ whose second derivatives are L2-integrable on RY. As a matter of fact, these deriva-
tives can be expressed in terms of F' by using singular integrals. Indeed it is possible to
prove that

2
(3.13) 0

axiaxj

= | Kij(z —y)F(y) dy
RN

where K;;(x): V. — V are Calderén-Zygmund type singular integrands. The LP-theory
yields

(3.14) H < gl|F|p, forl<p<oco.

0%y ‘
p

6mi6xj
Next observe that for every vector v € V, we have

(A©v,v) =D & (AjAfv,0)+ ) &&(ByBro,v) = Y &&[(Afv, ATv)+(Byv, Bjv)]

Jik Jik Jik
* 2 2 * 2 2
= >G5 + | X eB| = Pr©ui+ Q)0 > 0.
J J
It is important to realize that equality occurs if and only if v = 0. Indeed,

{P*(§)v=0and Q(§)v =0} & {veckerQ(§) and v € ker P*(§)}.

By ellipticity of the complex (3.4]), ker Q(¢) = im P(&). It is well known in algebra that
im P (&) is orthogonal to ker P*(£), therefore the vector v, being orthogonal to itself, is
zero. Summarizing, the operator A(£): V — V is positive for £ # 0.

In analogy with the div-curl decomposition of a vector field, the Poisson equation

(3.15) F=Ap
for o € W2P(RN, V), 1 < p < o0, yields a decomposition of F,
(3.16) F=Pu+ Q"w

where u = P*¢ € WLP(RN U) and w = Qp € WHP(RY, W). In view of (3.14)) we have
the following estimate:
(3.17) IVullp + [IVwlly < cpll Fllp-

LEMMA 3.5 (orthogonality property). For o € WL1P(RN U) and 8 € WHI(RN, W),
1/p+1/q =1, the vector fields Pa € LP(R", V) and Q*B € LI(RYN, V) are orthogonal.

Proof. Using the equality im P = ker Q, we have
| (Pa,@8) = | (QPa, B) =0
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if « € W2P(RN U) and 8 € WH4(RY, W), with 1/p + 1/q = 1. Since W2P(RM U) is
dense in W?(RY U), the lemma follows by an approximation.

By this lemma, we are able to prove

THEOREM 3.6. FEach vector field F' € LP(R™, V), 1 < p < oo, admits a unique decompo-
sition

(3.18) F=Pu+ Q"w
with u € WHP(R", U) and w € WHP(R™, W). In symbols,
(3.19) LP(R™, V) = PWLP(R", U) @ Q*WHP(R", W).

We also have a uniform bound for the components,
(3.20) [Pullp + 1 wllp < CpllFYlp-

REMARK 3.7. Let us emphasize explicitly that u, w need not be unique, only their images
Pu and Q*w are unique.

In case of the elliptic complex
D'RN, ) 4 D'(R", 4) S D'(RN, A)

formula (3.18)) provides us with the familiar decomposition of a differential form as a sum
of an exact and coexact form (no harmonic fields in RY). Because of this analogy we call
(3.18) the Hodge decomposition associated with the given elliptic complex.

It is also possible to develop a theory of Hodge decomposition on domains 2 C RY.
But this requires some regularity of {2 if one wants to go beyond L?-theory. The interested
reader can consult [24] and the references given there.

The following inequalities allow us to improve regularity of some distributions without
affecting their image under the operator Q or P*, respectively.

LEMMA 3.8. For each distribution F € D' (RN, V) with QF € L*(RN, W), there exists
Fy € ker Q such that F — Fy € WH2(RN V) and we have a uniform bound

|F' — Folli,2 < CIQF]|2.
We argue similarly for the dual statement.

LEMMA 3.9. For each distribution F € D' (RN, V) with P*F € L*(RN, W), there exists
Fy such that P*Fy =0 and F — Fy € WY2(RYN, V) and we have a uniform bound

[1F = Foll1,2 < C[P*F|l2.

Proof of Lemma[3.8 By Hodge decomposition,

F=PP*p+ Q" Q.
Consider Fy = F — Q*Qg. Then QFy = 0 and F — Fy = Q*Qp € L?*(R", V). Hence
Q(F — Fy) = QF € L. Applying the Fourier transform we find that Q(¢)®(¢) € L? and

P*(£)@(€) € L?, where we have set & = F — Fy.
Let us observe the following inequality:

1Q(&)y| + IP*(§)yl > colé] - |yl
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with a positive constant cp. In fact, suppose that |£] = 1, |y| = 1 (by homogeneity).
If 9(&)y = 0 and P*(&)y = 0, then y € ker Q(&) N ker P*(£). This implies that y = 0,
contradicting the assumption that y was a unit vector.

Applying the above inequality to 5(5 ) we have

colél - 1P(E)] < |Q()P(E)] + [P*(£)2(E)!-
This implies |¢|®(¢) € L2 Hence ® € WH2(RY, V) and
[@[l1,2 < c(N)|QF]|2.
Let us mention that certain LP-variants of the above inequalities are also available.

Guided by [39], we define the Hilbert transform S: LP(RY V) — LP(RM V) by the
rule

(3.21) SF =Pu— Q"w
with the following properties:
(i) S is an involution;
(ii) S is self-adjoint;
(iii) S is an isometry in L?(RY RY).
Let us stress again that one fundamental question of interest in the LP-theory of PDEs
concerns the sharp constant in the inequality

(3.22) [SFlp < Ap[|Fllp, 1 <p<oo.

Several examples suggest the following conjecture of Iwaniec [34]:
1

(3.23) A, :max{p— 171)1}.

The interested reader is referred to Burkholder’s work [6] to find that inequality (3.22))
with constant (3.23]) would follow if one proves that

(3.24) E[F) = \[4,ISF| — [F[][|SF| + |F|]"~* > 0.

A reason for preferring (3.24) to the inequality (3.22)) is that the latter functional is
convex in the so-called singular directions (see Section 4 for the definition). In light of
the conjecture at ([3.23)) it may very well be that £ is also quasiconvex and, consequently,

inequality (3.24)) would follow.

3.3. Elliptic couples and quasiharmonic fields. Following the definitions in [39] we
study an extension of the notion of div-curl couples. An elliptic couple is the pair
F = [Pa, Q" f]
where o € W,2P(2,U) and 8 € W.P(2,W). Here 2 is any domain in RN, N > 2,
and 1 < p < co. The LP-space of elliptic couples [Pa, Q*f] with a € WP(£2,U), and
B € WEP(£2, W), denoted by EP(2,V x V) ;1 < p < o0, is a closed subspace of
LP(2,V x V).
Furthermore, we introduce the norm

[F (@) = [Paf® + Q"8
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and the Jacobian
J(x, F) = (A(z), B(z))v = (Pa, Q75)
for z € {2. Then the following, rather obvious, relation can be viewed as an analogue of
the Hadamard inequality for determinants:
2J(z, F) < |F(2)]?.
DEFINITION 3.10. An elliptic couple F = [Pa, Q*f] is called K-quasiharmonic with
1<K=K()<ooif
|F(2)|* < K(2)J (, F)
where K(x) = K(z) + K~ (z) > 2.
This inequality yields
(z)

@) < T @)

where the + components of F are defined by the rules
Fo=1(Pa- Q). Ft=L(PatQh)
The following result on higher integrability for the Jacobian is desired.
THEOREM 3.11. Let F € L?(£2,V x V) be an elliptic couple. Then J(z,F) € HL (£2).
We only sketch the proof as it is similar to the one in [7].

Proof. Fix an arbitrary subdomain 2’ compactly contained in {2, and fix an arbitrary
n € C§°(£2) which is equal to 1 on £2'. For each test function ¢ € C§°(£2") we shall
estimate the integral of the Jacobian

V(@) (2, F)dz = {{pPa, Q*8) = | (¢P(na), Q" (B))

Q Q RN
because 7 equals 1 on the support of ¢.

Now, we use Hodge decomposition in the entire space R to write
¢P(na) =P’ + Q*F'.

Observe that the component Q*f’ can be expressed as a singular integral of P (na),
say Q*8" = B[pP(na)]. The singular integral operator B : LP(RY, V) — LP(RN V),
projection onto Q*WP(RY, W) C LP(RM, V), is bounded for all 1 < p < oo. It is also
important to observe that B vanishes on the subspace PW?(R", U). Therefore, we can
look at Q*/3 as the image of P(n«a) under the commutator of B with the multiplication
by ¢, namely

Q"f" = (By — ¢B)(P(na)).
Next, we apply the celebrated commutator result of R. Coifman, R. Rochberg and
G. Weiss [8], which implies that

19782 < C(N)lellBmo P (na)ll2-
Since Pa’ is orthogonal to Q*(n3), by Holder’s inequality we obtain

| o@) (@, Fyde = | (Pa/, Q" mB)) + [ (28, Q" (B)) < Q"B 2|Q* (1Bl

R Rn R
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< C(M)lgllemol P2l Q* (B) 2 < e(N,m)ll@llzmollFI3-
In conclusion,

| (@) J (2, F)dz < C(N, n)ll¢llmrol| 7113

2
In view of the BMO-H! duality it follows that J(z,F) € Hi (). We also have the
following local bounds:

1 (2, F)ll21 2y < Cor||FI3.

Further, if J(z, F) > 0, by Theorem of E. Stein [56] we find that the Jacobian belongs
to the Zygmund class Llog Lioc(2).

Just as in the theory of quasiconformal mappings, constructions of quasiharmonic
fields rely on limiting processes. Therefore it is of interest to know that such fields are
closed under weak convergence. The following theorem addresses this issue.

THEOREM 3.12. Let F, be a sequence of quasiharmonic fields converging to F weakly
in L?(£2,V x V) and suppose that the distortion functions K, converge to K weakly in
LY($2). Then F is a quasiharmonic field of distortion K.

For the proof we will need the following two lemmas.

LEMMA 3.13 (lower semicontinuity of the norm). For every n € L®°(£2), n > 0 and F,
converging to F weakly in L*(£2,V x V),

| (@) F(@)| da < limint | n(a)| 7, (0)| dz.

Q T o
LEMMA 3.14 (weak continuity of the Jacobian). Under the assumptions of Theorem

for every A € L (£2),
| M@)J (2, F) do = lim | \N@)J (2, ) da.
0
Hereafter L$°(£2) denotes the space of bounded functions supported in a compact
subset of (2. The interested reader can find the proof of the two lemmas above in [21].
Proof of Theorem[3.13 Fix ¢ > 0 and § > 0. Then
|7 |2
0+el|F|+ J(z, F)
Algebraic calculations reveal that
7o l? B | >
0+e|lFl+J(x, F,) d+elF|+ J(x,F)
2lF|(1Ful — |F) | FPI (=, Fo) — I (2, F)]
~ S+elFl+ J(x, F) (0 +e|lFl+ J(z, F))?
For every nonnegative test function ¢ € L3((2), we can write
S ol gz - | el FI?
o+ e|lF|l+ J(z, F) 95+5\]-'|+J(x7]-')
[ 20FU0RL 17D g PP F) . 5)
0+ el F|+ J(z, F) (0 +el|F|+ J(z, F))?

< Ky(x).

2

dx.

(9}
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Applying the lemmas above this estimate yields

ol F(@)? L
dx <1 f
S&+a|]—'(m)|+](m,]—') TR §l

AF @
St eF @]+ I F)

0
and from the distortion inequality

< lim inf S Ok, (z)dx = S e(x)K(z) dz.
vV—00
0 0
By the monotone convergence theorem we can pass to the limit as € goes to zero:

ol F (@)
S St I ) dz < S o(x)K(z) dz.
2 Q

Since ¢ was arbitrary and nonnegative in L3°(£2), it follows that
|7 ()]

—— <K ..

S d, ) S K@) ae

Hence
|F(z)|? < K(z)[6 + J(x, F)).
The last inequality holds for every é > 0, so for § = 0 as well:
|F(@))? < K(z)J (2, F) ae.,
completing the proof.
Let us conclude the present section with one more definition (see [37]). Consider a
short elliptic complex
D'RY,U) B D®RY, V)3 DR, W)
of first order differential operators P and Q and its dual
D'RY,U) Z DR, V) L D'(RY, W).
The p-harmonic couple associated with such a sequence is a pair F = [B, E] with B €

ker P* and E € ker Q such that
@ + @ < K(z)(B, E)
p q

where 1 < p,q < oo are Holder conjugate exponents and the distortion function K =
K(z) > 1 satisfies

S *@dzr < 0o for some constant v > 0.

[0
We say that K lies in the exponential class Exp. ({2). The right spaces for £ and B are
LPlog™ L(£2,V) and L%log™ L({2, V), respectively.

3.4. Variational integrals. This section is concerned with variational integrals defined
on elliptic couples. The integrals in question take the form

117 = | f(X,Y) for F=[X.Y] € PRV, V x V).
RN
We assume here that the integrand f: V x V — R is at least continuous.
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Here are three basic definitions adopted from the calculus of variations (see for exam-
ple [10]). Observe that the notation We (RN, V) for the space of Lipschitz V-valued
functions with compact support in £2 C RY is being used in the definition below.

DEFINITION 3.15. f is said to be quasiconvex if for any constant vectors A, B € V we
have

| [f(A+Pa,B+Q"8) — f(A,B)]dz >0
RN
whenever v € W™ (RN, V) and 8 € W™ (RY, W).

The next notion seems to be a nice extension of rank-one convexity.

DEFINITION 3.16. We say that f is convex in singular directions if the real variable
function

t— f(A+tX,B+1tY)
is convex whenever A, B, X,Y € V and X is orthogonal to Y in V.
Finally, we give
DEFINITION 3.17. f is said to be polyconvez if it can be expressed as
fX,Y) =g(X,Y, (X, Y))
where g : V XV x R — R is convex.

In the recent years a fairly large amount of work has been done trying to understand
all possible connections between these notions of convexity.
It is not difficult to see that polyconvexity implies quasiconvexity. Indeed, given A, B €
V and given arbitrary functions « € T/V.l’oo(D7 U) and g € W.l’OO(D, W), supported in a
bounded domain D, we can use Jensen’s inequality to obtain
1

oy ) A+ PaB+Q8) — f(4 B)lde

RN

= lg(A+Pa, B+ Q*B,(A+Pa, B+ Q"B)) — g(A, B, (A, B))) da

D
> g[ {(A+Pa,B+Q"B,(A+Pa, B+ Q*B>)} —g(A, B,(A,B))
D
—g(a+§Pa.B+§Q8,(4,B)+ §(4,0°8) + §{(Pa, B) + §(Pa, "))

D D D D D
—g(A, B, (A, B)) =0.

The first four integral averages vanish, by the divergence theorem, the latter vanishes due
to L2-orthogonality of Pa and Q*f (cf. Lemma . Thus f is quasiconvex.

It is worth pointing out that without an additional hypothesis about the elliptic
complex quasiconvexity need not imply convexity in singular directions, in contrast to
the classical setting.
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Precisely, we have

THEOREM 3.18. Suppose that the elliptic complex (3.4)) satisfies the condition
U ker@(¢) = V.
1€l=1

Then every quasiconvex function is convex in singular directions.
For the proof we need to show the inequality
FO@+ (1= NF) < A(P) + (1 =N f(¥)

whenever 0 < A < 1 and & — ¥ = [X,Y] with X orthogonal to Y in V.
We can argue with the aid of the following

LEMMA 3.19. There ezist u € WH° (RN U), w € WH(RN W) and a partition RY =
2U 2 into disjoint measurable subsets such that

[Pu, Q" w] = [(1 = M)xe — Axe[(@ —¥),

. |2N Bg|
3.25 | — =
(8:25) Rooo | Bgl ’
and therefore
/
(3.26) fm 2OBRl

R—o0 ‘BRl
Proof of Theorem [3.18 Consider concentric balls B C Bryi and a cut-off function
n € C§°(Bpry1) such that 0 <n <1, =1on Bg and |Vn(z)| <2 in RY. The functions
a = nu and S = nw are Lipschitz with support in Br41, and therefore can be used as
the test functions in the definition of quasiconvexity. Accordingly,

BralfOS+1-N2) < | fOd+ (1 - 07+ F)
Bri1
where F = [Pa, Q* ] is an elliptic couple. We split the integral as
I T I
Br41 2NBRr 2’NBRr Bry1—Br
It is important to observe that
F_ (1=X)(®2—-V¥) on 2N Bg,

AP —") on 2 N Bp,

and || F|| Lo~y < 0o. Hence, we obtain

|BritlfO® + (1= \¥) < |20 Br|f(®) + |2 1 Br|f(#) + c| Bry1 — Bl

where c is a constant independent of R.
Finally, dividing the inequality by |Bg| and letting R go to infinity, we conclude with
the desired inequality

FAP+ (1= N¥) < Af(D) + (1= A)f(¥)
by the density relations and .
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4. Jacobian determinants

4.1. Introduction. Let 2 be a domain in RV, N > 2 and f = (f!,...,fN): 2 - RN
a mapping of Sobolev class Wé’f((l, RY), 1 < p < co. We denote by Df(x) : RV — RN
the differential matrix and by J = J(z, f) = det Df(x) the Jacobian determinant of f.
We say that f is an orientation preserving mapping if J(x, f) > 0 almost everywhere
in (2.

Determinants of differential matrices occur in many different contexts, such as the
geometric function theory, calculus of variations, nonlinear elasticity, etc. because of their
improved integrability properties. A natural question now arises: under what conditions
on f is the Jacobian function locally integrable?

By Hadamard’s inequality

[T (z, ) < DY ()] |IDFY(x)
it follows that J is integrable as soon as f € WL (02, RY).

Stefan Miiller [50] was the first to observe that under just one condition, that J(z, f)
does not change sign in {2, the degree of integrability of the Jacobian of f is better than
that of |Df(z)|"Y. More precisely, Miiller showed that the Jacobian of an orientation
preserving mapping f € WHV (2, RY) belongs to the Zygmund class L log L(K) for each
compact set K C {2.

In its most general form, the result can be stated as follows:

J
SJ@;ﬁhg<e+|(%f”)dmgCXNJQS|Df@ﬂNdx
Ik

K 0
where Jg denotes the integral mean of the Jacobian over K.
REMARK 4.1. Miiller’s theorem is sharp for more than one reason. A counterexample by
J. M. Ball and F. Murat (see [4]) shows that the condition on the sign of J cannot be
removed and that the compact set K cannot be replaced by the set §2; a counterexample
by Miiller himself shows that the Orlicz function P(t) = tlog(e + t) cannot be replaced
by a function Q(t) such that Q(t)/tlog(e +1t) = oo as t — 0.

In [29], L. Greco and T. Iwaniec showed a somewhat stronger estimate by proving the
local L'-integrability of the function Jlog |Df].

The following theorem, obtained by T. Iwaniec and C. Sbordone and published in
[38], can be viewed as dual to that of Miiller:
|Df(z)|N € Llog™" L(£2)
J>0

A precise estimate reads as follows:

(4.1) } = JeL.(9).

|Df(z)|V
J(z, f)dz < C(N, K
Y Dde < o0 ) e

where K is any compact subset of 2 and | D f|; denotes the integral mean of | D f| over {2.
This was the first time an estimate below the natural Sobolev exponent (the dimension N)
had been achieved.
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Inspired by [50] and [38], H. Brezis, N. Fusco and C. Sbordone showed how to inter-
polate between these two results (see [5]). They proved that

Df(z)|N € Llog™® L(2
(4.2) IDf (@) s ()} = J € Llog™® Lioo(2)
J>0
for 0 < a <1 and gave the estimate
D N
K K o 1og (e+ [Dfle )

Let @ be a nondecreasing function on [0, oo] which is locally absolutely continuous
and satisfies the following conditions:
(i) there exist constants a > 0 and tg > 0 such that @(¢) > at/log(e + t) for all
t 2 to;
(ii) there exist constants o > 1 and k > 0 such that &(at) < kP(t) for all ¢ > 0;
(iii) @'(t)/t is integrable in a neighborhood of zero.

Consider the function

P'(s)
o) =1\ - ds.
0
In [48], G. Moscariello proved that
Df(x)|N € L*(2
J>0

This result is a generalization of the one by H. Brezis, N. Fusco and C. Sbordone. Indeed,
if &(t) =t/log™(e+1t) for all t > 1, with 0 < a < 1, we see that
O(t) ~ tlog' (e + 1)

where ~ denotes the usual equivalence notation between convex real functions. Moreover,
(4.3) is stronger than (4.1). Indeed, if &(t) = t/log(e 4+ t), t > 1, then by easy calculations
one can deduce that

O(t) ~ tlog(log(e + t))

and so that L€ = Lloglog L. In other words

IDf(@)|N € Llog™ L(£2) }
4.4 = J € Lloglog Lio.(2).
(4.4) 750 oglog Lioc(12)
Let ¢1,...¢0m : [0,00] — [0, 00] be log-convex functions such that:

(a) ¢; = tPilog *(e+1t),i=1,...m, forsome 1 < p1,...,pm <00, 1/p1+...+1/pm
=1.

(b) There exist exponents «; € (1,p;) with 1/ay + ...+ 1/, < 1+ 1/n, for which
the functions t — t~*i®,(t) are increasing, i = 1,...,m.

Next let @ denote the log-convex function determined from the formula

()t = (P ()t
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and let ¥ be defined by

(4.5) o(t) = w(t) - | ds.
0os
Let us notice that condition (a) yields
t
D(t) 77—
®) log(e +t)

which, in turn, reveals that
U (t) = tloglog(e +t).

In [30], L. Greco, T. Iwaniec and G. Moscariello proved that

IDf ()| € L?(£2) v
4.6 = Je L. ().
( ) J >0 } loc( )
An analogous theorem in the concave case, that is, ¥(t) < ¢, also holds (see [30]).

Suppose that ¥ : [0, 00] — [0, oo] can be represented by the following Stieltjes integral
w(t) = | (1= V' dh(n)
0
where h : [0,a] = [0,00], 0 < a < 1/(n + 1), is an arbitrary nondecreasing function.
Thus ¥ is concave and ¥ (t) < t. To each such ¥ there corresponds a log-convex function
& : [0,00] — [0, 0] defined by a formula analogous to

We write it in terms of h:

o(t) = | M dh()).
0
In particular @(t) < ¥(t) < t. Therefore,  and ¥ are concave and
DF@IN € 17(2) y

4.7 = J e Li,.(92).

( ) J >0 } loc( )

REMARK 4.2. It is of interest to know whether an improvement of integrability of the
Jacobian truly takes place. To see this, we introduce the quotient

w(t)
L(t)=—=2>1
=50 >
which measures the degree of the improvement. An easy computation shows that
t

d
U(t) ~ texp “ sL(SS)} when ¥ is convex
1
and
t
d
U(t) ~ texp [—S sL(Ss)] when ¥ is concave.
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It is clear that L cannot grow too fast. Indeed, in order to guarantee ¥(t) %= ¢ and
U (t) < t, respectively, we should have

(48) S sg(ss) B

Roughly speaking, every function L, continuously increasing and satisfying (4.8]), repre-
sents as an improvement quotient ¥/®. Of course, growth conditions imposed on ¢ and
¥ yield other, rather minor, restrictions for L.

Observe that the case t < ¥(t) < tloglogt is not setted by the theorems above.
However, further studies have filled this gap; see for example [42].

THEOREM 4.3. Let f : 2 — RN be an orientation preserving mapping in the Sobolev
class WHL(Q,RYN) with |DfIN € L?(82) where @ is an Orlicz function satisfying the
divergence condition

(4.9)

fow,,

Then J(z, f) belongs to L (£2) with

Thus, in particular, J(z, f) is locally integrable.

Let us point out here that the condition (4.9) is also necessary in order to deduce the
local integrability of the Jacobian. It is in this way that we consider the last result as
optimal in the category of Orlicz—Sobolev spaces.

4.2. Distributional Jacobian. One of the most important concepts that occur in the
theory of nonlinear differential forms and their applications to the modern theory of
mappings is the distributional Jacobian. This pertains to the situations in which we
impose (a priori) lesser degree of integrability of the differential with the aid of integration
by parts.

Let f = (f%,...,f) be a mapping of Sobolev class WL (2 RY). According to
the differential forms theory, the volume form J(z, f)dz can be expressed as the wedge
product of the linear forms df!, ..., df"V

(4.10) J(z, f)de = df* A ... AdFN.
Now, by the Stokes theorem
(4.11) Vod@, fyde =\ et A ndfY)
2 2
= —Sf"dfl/\...Ad LA do AdFTUA A APY
2

for each i =1,..., N and for all test functions ¢ € C3°(£2).
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The distributional Jacobian, denoted by J¢, is a Schwartz distribution acting on a
test function ¢ € C§°(£2) by the rule

(4.12) Tle] = — S Frdf* AL AP Ad AdFITEA LA dFY
Q
where different choices of indices 1,..., N yield the same value of the integral.

It is clear that for the definition above, in view of the Sobolev imbedding theorem, one
only needs that |Df|N € LfZé(NH) (02, RN) or equivalently, that f e WLN"/ N+ (0 RN).

On the other hand, the identity (4.10) suggests investigating the partial products
dfi1 A Adf corresponding to l—tuples 1 <11 <...< 14 < N. Note that

. . i1 i
(4.13) df' AL ANdf = > CERRELEP i) dxj, A... Adxy,.
i . 8(.Z‘j1,...,.1‘jl)
1<ji<...<ji<N

Let us denote the ordered collection (say in the lexicographical order) of all such wedge
products by

(4.14) Af={df' A Adft:1<iy<...<i <N}
and identify it with the (7 ) X (le ) matrix of all I x [-subdeterminants
of!
4.1 .
(4.15) /\ = |:8$J:| I=(i1,...,01)
J=(j1,---.31)

Thus /\N f=J(x, f) and /\N_1 is none other than the matrix D¥f of cofactors of Df.
We shall make use of the Hilbert—Schmidt norm in the space R(DX(Y) of such matrices.

) . L fu 2
w0 - ¥ ey [
1<ii<...<i;<N 1<i1<...<i <N CICTRTRRED)
1< <. < <N

It is 1mp0rtant to realize that the [-forms at lj are exact if f € VVI}) Cl (2, RY). Precisely,
we have | A\ f|| € L () and for each k =1,...,1,

df' AN = dwy,  wp = (D)RTLFE A LAY Adf A LAY
By Sobolev’s imbedding f € LYY= l)(Q RYM). Hence, wy, is an (I — 1)-form of class

loc
Lﬁé (N=1) (£2). Various algebraic bounds for subdeterminants follow from the Hadamard-

type inequality

I O o 9 TR

Thus, in particular

s (Y) H/\ ™

i semas] T 1sien,
It is immediate that the distributional Jacobian can be defined whenever

[FIID*fl € Lige(£2).
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Precisely we have

(4.18) 77l < § IVl If11Df| < oo
2

We record for later use the following elementary identity:

(4.19) Trle™ = o™ (2) T (z, ) = T (@, o)) du
(7

whenever ¢ € C5°(£2) and f € Wll’Nfl(Q, RY) are such that

(4.20) [FIIDf| € Lige(£2).

In the remainder of this section we assume f to be in WLNQ/(NH)(.Q,RN), or in
WLN=1( RN) with |Dff| € L9(R2), ¢ = (N? — N)/(N? — N — 1). In either case condi-
tion is fulfilled. It is generally a nontrivial question how the distributional Jacobian
relates to the pointwise Jacobian J(z, f). First of all, it is clear that the Jacobian has
to be locally integrable. Moreover, the identity between the distributional Jacobian and
the pointwise Jacobian is valid whenever f € W1V, If we assume any lesser degree of
integrability, the Jacobian need not be locally integrable. Even more, identity may
fail if the Jacobian is a priori integrable (see [3,4]). In [49], S. Miiller proved a conjecture
of J. Ball that if J; € L', then J; = det D f. Furthermore, in [38], the validity of this
identity is proved under the assumptions |Df(x)|N € Llog™" L(§2) and J > 0. In [27],
L. Greco obtained the same identity for f an orientation preserving mapping with | D f(z)|
belonging to a class of functions, called XV, which is strictly larger than L /log L. The
reader should notice that in Miiller’s result it is assumed that the distribution Jy is
represented by a locally integrable function. This rather strong assumption is practically
impossible to verify without integration by parts, a vicious circle. In this sense the result
by L. Greco is more practical.

Now fix a nonnegative @ € C§°(B) with integral 1, and define &,(z) = t"d(t"1z),
t > 0. Given any J € D'(2) we can speak of the convolution [J * @, defined for 0 < ¢t <
dist(x, 042) by the rule
(4.21) (T 1) (@) = Ti(- — ).

This is legitimate because the function ¢(y) = &¢(xr — y) lies in C§°(£2). It should be
reasonably evident that

J*x®,—J inD(N), ast— 0.

Precisely this means
(4.22) I = lim \ n(@)(T « &) da

t—0
2

for every n € C§°(§2). The following useful approximation result holds.
PROPOSITION 4.4. For almost every x € {2 we have
(4.23) J(z, f) = }%(jf * Dy)(x).

Let us end this section with the following estimate:
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LEMMA 4.5. Given f € WI’NQ/(NH)(Q,RN) and a test function ¢ € C3°(Q) supported
in a cube Q C §2. Then

N+1

da:)N.

2

Tl < CON) [ Vlocl @5 ( § D ()| 5
Q

Proof. Let fg denote the L'-mean of f over the cube Q). We have

T5lll = 1T5-solell < VIVl 1f = fol IDFINT!
Q

con Vel QI §17 - fol™) ™ (1071
Q Q

e

N2—1

N2
CNIVellocl @ (§ DI
Q
by the Sobolev imbedding theorem.

4.3. Estimates of Jacobians by subdeterminants. It has become clear that in order
to formulate and fully benefit from higher integrability phenomena one must study map-
pings in the Orlicz—Sobolev spaces W% (2, R™), but not too far from the natural class
WLN (02, RY). Recall that W1 (02, RY) consists of vector fields f = (f1,..., fV) whose
coordinate functions have gradient in the Orlicz space L?({2). It is obvious that J(z, f)
is integrable whenever |Df|N € L(£2) or | D! f|N/(N=1) ¢ [1(2). We wish to investigate
whether L!(£2) can be replaced by a slightly larger Orlicz space LT (£2). It involves very
little loss of generality to assume that

(4.24) L) c LY ().
This latter inclusion is guaranteed if P is concave, or simply supt~!P(t) < co. However,

the critical assumption throughout this section will be the following divergence condition:

(4.25) | P(jg o _ o,

which yields information about the growth of P at infinity. Examples that we have in
mind are furnished by the iterated logarithms
t

(4.26) P(t) = - .
log(e + t) loglog(e® +t)---log- - log(e” +1t)

Moreover, in order to define the distributional Jacobian it suffices to have |D¥f| in the
space L1(2), ¢ = (N> = N)/(N? — N —1). Clearly, 1 < ¢ < N/(N — 1) for N > 2. As
a matter of fact our standing assumption (in Theorem will be that |D¥f|N/(N=1) ¢
L (£2). Practically this condition is stronger than |D*f| € L9(£2), but not always. To fill
this gap we really need that P(t) > c¢-t*, s = (N> —2N +1)/(N? — N — 1), for large
values of ¢. Another condition on P will be needed in the proof of Theorem namely
[t1=N)/N P(t)]" > 0. For esthetical reasons we condense all of it into one hypothesis

NZ_2N +1

(4.27) rP@l <0<t P@), s=qmNv T
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Such a hypothesis does not affect the behaviour of P near oo, and therefore, we refer to
it as a technical assumption.

THEOREM 4.6. Let f € WHN=L(Q RN) N > 2, be an orientation preserving (reserving)
mapping such that

(4.28) Dt f|™T e LP(02)
where P satisfies (4.25) and (4.27). Then the Jacobian determinant of f is locally inte-
grable and obeys the rule of integration by parts
(4.29)  \o(@)J(x, fydo ==\ df* Ao Adfi=E A fldp AdfTEA A dEY =2 Tyl
Q Q
for all indices i = 1,...,n and test functions ¢ € C§°(12).

The case P(t) =t has been treated in [51].
The following theorem is a refinement of some earlier results [28] 40, [36].

THEOREM 4.7. Assume, in addition to the above properties of the Orlicz function, that
the function

(4.30) t st N P(t)

is increasing. Let f = (f, ..., fV) : 2 — RY be an orientation preserving (reversing)
map, with

(4.31) IDfIN € LY (92).

Then the Jacobian determinant is locally integrable and satisfies (4.29)).

In [20] we demonstrate that both Theorems and are sharp, that is, they
fail if the integral at converges. Our approach relies on the effective interplay
between familiar results and classical tools such as Whitney cubes, maximal functions
and elementary integration theory. Even the isoperimetric inequality, of fundamental
importance to us, is used here only for smooth mappings.

4.3.1. Whitney cubes. An N-rectangle R C R is a Cartesian product of N intervals
(432) R = (al, bl] X ... X (an, bn]

={z=(21,...,2N):a, <x, <b, forv=1,...,N}
One property such rectangles have is that any intersection of a finite number of rectangles
is either empty or a rectangle again. A cube in RV with side s > 0 is simply a rectangle

R such that b; —a; = s for ¢ = 1,...,N. To every integer k£ and a lattice point j =
(j1,---5JN) EZ X ... X Z there corresponds a dyadic cube

Q=Q} ={zeRY:2%j, <, <2F+2%j, forv=1,... N}.

Dyadic cubes are very useful for constructing various disjoint covers. Any two dyadic
cubes are either disjoint or one of them contains the other. This brings us to the well
known Whitney decomposition.
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LEMMA 4.8. Let F be a non-empty closed set in RN and 2 its complement. There exists
a disjoint collection {Q1,Q2, ...} of dyadic cubes such that

(4.33) 2-Uan
i=1

(4.34) diam Q; < dist(Q;, F) < 4diam Q;.

4.3.2. Isoperimetric inequality. Our proof of Theorem [4.6]relies on local estimates similar
to those in Lemma but with cofactors replacing the differential matrix. A device for
establishing such estimates is the isoperimetric inequality. The familiar geometric form
of this inequality reads

(4.35) NN oy UV < Jou Y

where |U| stands for the volume of a region U C RY while |0U]| is its (N — 1)-dimensional

surface area. Now, if f : R — U is a smooth diffeomorphism of a “regular” domain
R C RY onto U then |U| = SR J(x, f) dz, while |0U| is dominated by SaR |D¥ f(x)| dz. In
this way we obtain what is known as the integral form of the isoperimetric inequality:

(4.36) \ (@, pyde| <cV)( | D f(2)| da e
R OR

with C(N) = (N ¥~/wny—1)""'. The point to make here is that (4.36) remains valid for
all smooth mappings f : R — R, not necessarily diffeomorphisms.
We shall confine ourselves to the following less general but precise statement.

LEMMA 4.9. Let f : 2 — RY be a C®-smooth mapping and R C §2 a closed N-
rectangle. Then inequality (4.36) holds with some constant C'(N) depending only on the
dimension.

In the proof of Theorem [£.6| we will be dealing with Whitney’s cubes, as described by
Lemma and a smooth mapping f € C*(§2, RY). In order to estimate the integral

o0

SJ(;mf)dx:Z S J(x, f)dx

2 i=1Q,

in terms of the cofactors of f one would naturally try to use isoperimetric inequalities

| § J@.f)da| <ov( ] D8£ (@) de)

i i

N—-1

In general, unfortunately, we cannot control the boundary integrals by the volume inte-
grals. The way out of difficulty is to expand slightly the cubes and choose most favourable
ones, the ones with minimal boundary integral. Here is the precise construction of such
cubes.

Consider concentric cubes Q; C AQ; C QF = (5/4)Q; with the factor A varying from
1 to 5/4. As the function A — | D f| is continuous we may choose a concentric cube,
denoted by [J;, such that

OAQ;

| ID*f(a)de < | |DHf(2)|do
o, O(AQ;)
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for all 1 < A < 5/4. Integrating with respect to the parameter A\, by Fubini’s theorem,
we have
\ D f(@)dz < 4]Qs|"~ | [D*f(x)|da.
00; Qr\Q:
We summarize this construction in the following
LEMMA 4.10. Given Whitney’s decomposition 2 = J;=, Q; and f € C>®(2,RN), there
exist concentric cubes Q; C 0; C QF C TNQ; such that

(10 r@1ae) ™ < cmi@i( § 105 do)
o0; TNQ;
foralli=1,2,...

Throughout this section it will be required that a mapping f € WLV —1(RN RN) has
compact support. For abbreviation, we introduce the function

(4.37) h=|D*f| € LY(RY)

which controls all the cofactors of Df(z). Recall that the Hardy-Littlewood maximal
function of h belongs to the Marcinkiewicz space:

(4.38) Mh € weak-L'(RY).

We have the pointwise inequality for the Jacobian

N
N-—-1

N
—1

(4.39) [J(@. )] < D (@) %7 < [Mh()]
The following estimate is crucial:
THEOREM 4.11. For all but a countable number of parameters t > 0, we have

(4.40) ‘ | I ) de| < VT e RY - Mh > 2t)]
Mh<2t

<o~ | h(a)da.
h>t
The parameters for which this inequality holds are precisely those which satisfy the
equation
(4.41) {z € RN : Mh(z) =t}| = 0.

4.4. Proof of Theorem We shall make use of the following lemma:

LEMMA 4.12. Suppose P : [0,00) — [0,00) is continuously differentiable and satisfies

oo

(4.42) | @ =
A
and
(4.43) [t P(t*)]) >0

forall t > A, where A > 1 and o > 1 are given numbers. Let u : X — R be a measurable
function on a o-finite measure space X such that
(4.44) | P(ul*) < o0,

X
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Then
. a—1 o
(4.45) jnf ¢ | Jul=o0.
|u|>t
Fix a nonnegative test function n € C§°({2) equal to 1 on the support of ¢. It is clear
that the mapping

(4.46) fF=eff 2. onf™)

lies in the Sobolev space WLH(RN RN). As a matter of fact we have |Df|N e LP(RN).

Indeed, [DFIN < C(N)DfN + C(N)|f|N where [f|¥ € L'(2) € LV (1), by (1.24).
Condition ensures that

1 1N N?
g=|DfIPe L (R f = .
g=IDfI" € L/(RT)  forp =
This justifies the use of the inequality
(4.47) ‘ | J@h dx) < OW)F | §la) da

Mg<2t g>t
for all but a countable number of the parameters ¢ > 0.
Next, we apply Lemma with o = (N +1)/N and u = g to infer that for some
A>1 )
(4.48) tiggtﬁ NS g(x)dx = 0.
g>t
Combining this fact with inequality yields
(4.49) Jliminf| | J(, f) dz‘ = 0.
Mg<2t
The rest of the proof is a simple application of the monotone convergence theorem. To
this end, we split the Jacobian determinant as

J(x, f)de =dof* Adnf? A ANdnfN =deft Adf? AL AN
= o(z)J(x, f)dz+ frdp ANdf> A ... AdFN.
Observe that
[fhdo ndf? AL AdEN| < Vel [FIIDFIN TN € LY(9).
It is at this point that we use J(z, f) > 0, precisely to ensure that the function ¢t

SMth o(z)J (x, f) dx is increasing, and therefore, has a limit at infinity

Jlim | e@J@ nde=—\ frdondf? ... ndfN = Tylgl.
% Mg<ot RN
Passing to the limit in the domain of integration we infer that J(z, f) is locally integrable,

and we obtain the identity
(4.50) V(@) (@, f)de = Tyl

0
Once we know that J(z, f) is locally integrable, formula (4.50) remains valid for all test
functions ¢ € C§°(£2), not necessarily nonnegative. We again can move the limit under the
domain of integration, this time by using the Lebesgue dominated convergence theorem.
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4.5. Proof of Theorem Fix a nonnegative test function n € C5°(§2) equal to 1 on
the support of ¢. It is clear that the mapping
F=f ol ™)
lies in the Sobolev space W1HN=1(RN RM). Indeed,
(451) DAY < CN)DFNH + CNIAY
Regarding the cofactors of Df we observe that
(452)  |DH| < C)[d(nf?) A Ad(nf™)
+C(N) i ld(efYY NdfP A NPT ANdFTE AL A AN,

i=2

The first term takes the form

(f2dn+ndf*) Ao A (fNdn +ndfN)

N
= gV A LAY N2 AP AL AP A frdg AdFTT AL A dEY
i=2
because the other possible terms in this expansion vanish, due to the identity dnAdn = 0.
Therefore, the first term in (4.52)) is dominated by
Y HDEF A+ Y2 dn| DN

The second term is easily seen to be bounded by

[l IDEf1 + |de | £ |DSIN 2.

Summarizing, we obtain the inequality
IDFF < Cllel + [nIN D f + C(|dep] + [dnl [n[V =) f] | D SN2

with C' depending only on the dimension. On the right hand side the first term belongs
to L'(§2) while the second lies in AR (£2). Since f has compact support we

~_"loc loc

see that the function h(z) = |D?f| lies in L*(RY). With these preliminaries we can apply
inequality (4.40):
(4.53) ‘ | J@ Pz <cmpes= | h)de

Mh<2t h>t

for all but a countable number of the parameters ¢t > 0. Next we observe that
|h| ™7 e LP(RN).
To see this we begin with the inequality

~ N N
|h[¥= -

T < A|DUf|W

T+ AT
where A depends on N, ¢ and 7. The first term belongs to L¥(£2) by assumption at
(4.28). The second term lies in Li (£2) C LE (£2), by Sobolev imbedding and Holder’s

loc loc

inequality. Indeed, for f € WhN=1(2 RN) we have |f|N/(N-1) ¢ LijfQNH(Q), while
|Df|(N?=2N)/(N=1) Jieg in LN*=2N+D/(N*=2N)((9) " the dual to LN ~2N+1(2). Since f

N2_2N
|
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has compact support we conclude that |E|N/(N71) € LY (RY). At this point we appeal to
Lemma with « = N/(N — 1), to infer that for some A > 1,
(4.54) tlggtﬁ S h(z)dz = 0.
h>t

This combined with inequality (4.53]) yields
(4.55) tgrgo inf NS J(z, f) dx‘ =0.

Mh<2t
The rest of the proof is almost identical to that of Theorem [£.7] The only point to clarify
is that the term

|frde Adf* AL ANdFN| < [Vl || |1D* f]
is integrable, by (4.18]).

4.6. Examples. In this section we give quite explicit examples of Sobolev mappings with
nonintegrable Jacobian and having a desired degree of regularity. They illustrate that
both Theorem and Theorem are sharp in the Orlicz—Sobolev category. Although
similar examples of radial stretchings are well known in the literature there are many
interesting features still unknown.

We discuss mappings f defined on the unit ball B with values in RV belonging to the
Sobolev class WHN=1(B, RY) of the form

(4.56) f(@) = A(|z[)z.

The function ¢ — tA(t), for 0 < ¢t < 1, will be decreasing from the value oo at t = 0,
to 1 at ¢ = 1. Thus f will map homeomorphically the unit ball B onto its exterior. In
particular, f will be an orientation reversing map (J(z, f) < 0) with

S J(z, f)de = —o0.
B
Of course, if needed one may compose f with a reflection in an (N — 1)-dimensional
hyperplane to make f orientation preserving.
We may calculate the differential matrix of f and its determinant by using the familiar

formulas:
TR T

Df(x) = A(lz)T+ Ix\/\’(lxl)W-

Hence
I (@, f) = A (|z]) + |2 N (le DAV (J]) < 0,
because A(t) + tN (¢) = [tA(¢)]’ < 0. The cofactor matrix is then computed to be

2T ®x

Dif(x) = AN 7L N AN =T — VAN P
X

where we have denoted A(|z|) and |z| briefly by A and ¢. This formula can easily be seen
by checking the identity defining the cofactor matrix

D f(z)Df(x) = J(z, /)L
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Let us disclose in advance that we shall have

(4.57) A(t) < —tN(t) < 2A(t).
Consequently, the norms of the matrices in question will satisfy
(4.58) Df ()] < 3A(ja),

(4.59) |DEf()] < AN (|-

In this way the question concerning integrability of |Df| and |D*f| reduces to the com-
putation of integrals for A(t). One integral is obvious by using polar coordinates:
1
VI, ) de = wy oy [T 0N 4 AN Y dt
B 0

1
- “”jvv—l | ditA®]Y = [BI(1 - 00) = —c0.
0

EXAMPLE 4.13. Let @ : [0,00) — [0,00) be an arbitrary concave function, continuously
increasing from 0 to oo, and such that

(4.60)

Define A by the equation

t)\(t)—( | ﬂs)ds) Y ofro<t<l
t—N

52

Then the radial stretching at (4.56) lies in the Sobolev class WHN=1(B,RY) and its
cofactor matrix satisfies

[DFF|¥5T € L (B).
In spite of that the Jacobian determinant of f fails to be locally integrable.
Proof. Tt is immediate from the definition of A\(¢) and (4.60) that the function ¢ — tA(¢)

decreases from oo to 1. We also have

(4.61) tA(t) < ( DSO ds(l)d‘s)w — (@(1)) ",

52

t_N

Next we compute the logarithmic derivative of tA:

)y (1 s72®(s)ds)  —N-lp(N)
tA N2 S:fN s—2B(s)ds NStOfN s720(s) ds
,thlq‘)(th) 1

o0

> - .
SN, s 20t Nyds Nt

This shows —1 () < (tA)’ <0, and hence (4.57) follows. Another estimate for A follows
by using concavity of @, namely

Kot=N)>d(Kt™N) for every K > 1.
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We apply this to

T B(s)ds -~
K:K(t):< | 3 ) > 1
t—N
for t <1, to obtain
(4.62) M) < e K)ot N)).
Having disposed of these preliminary inequalities we are able to integrate the derivatives
of f: L
VIDf(@) Nt do < 3¥ | AN (Ja]) do = 3V oy | AV dt
B B 0
1

St ¥ dt = NC(N) < 0

by (4.58) and (4.61)). Regarding the Cofactors of Df, we make use of (4.59)) and concavity
of @ to obtain

1

[ oD% £1757) < 5757 [ (A ([a)) dar < 25w | K (0B dt,
0
=t

B B
by (4.62)). Finally with the aid of the substitution 7 = ¢t~V we arrive at the desired
estimate
25wN_1 | ®(7)d
oDt g < B f - _POdT_
5 N .7 (ST s72P(s) ds)w
I A 1-%
- 25&)]\{,1
N-1 =%

completing the proof of Example [£.13]

4.7. Further results. Under some additional technical assumptions to Theorem [£.6] the
Jacobian determinant enjoys even higher degree of integrability.

Suppose that the Orlicz function P : [0, 00) — [0, 00) satisfies the divergence condition
and the following technical assumptions:

(4.63) (1% P#)] <0< [tTw P(t))

for large values of ¢, and t~2 P(t) integrable near zero. The improvement of the degree of
integrability of the Jacobian will be described by the Orlicz function ¥ : [0, 00) — [0, 00)
defined by

W(t) = 1L(0) = P(e) + o] 2L

THEOREM 4.14. Let f € WHN=1 (2, RN) be an orientation preserving mapping such
that

N
(4.64) (ID*f+ | f1IDFIN %)™ € L (92).
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Then det Df € LY _(2); we actually have

loc
(4.65) | w(I (@ ) de < | J(@, LD ()| ¥7) di < 00
o ol

for every compact 2 C 2.

The interested reader can find the proof in [20].

In the same paper the authors depart from the divergence condition to investigate
higher integrability properties of the Jacobian in spaces weaker than L[ (£2). If the
integral Sgo s72P(s)ds is finite then, without getting into technicalities, the Jacobian
belongs to LY _(£2) with

loc
[e'S)

w(t) = —P(t) +t |

P(s)ds

2 )

S

More precisely, if we impose the convergence condition

TP
S (s)ds <o
52

(4.66)
0
and the following technical one:

(4.67) (R P <0< [ R Pt
for large values of ¢, then the following theorem holds:

THEOREM 4.15. Let f € WEN=1 (2 RN) N > 2, be an orientation preserving mapping
such that

(4.68) (/I IDFIN=2 4 |DFf) ™ € LP(02)
Then det Df € LY (02).

loc
In the study of Jacobians the so called grand Lebesgue spaces have emerged. Let (2 be

a bounded domain in RY. The space BLP({2) consists of the functions h € N, <sep L7(£2),
p > 1, whose modulus of integrability

1
(4.69) £P(h; ) = [g | |h|p—6]
0
is bounded for 0 < ¢ < p — 1 (see [38]). BLP({2) is a Banach space equipped with the
norm
(4.70) Il = sup £7(hs ).
0<e<p—1
We say that h has vanishing modulus of integrability if LP(h; €) — 0 as e — 0. We write
h € VLP(£2). This latter space is none other than the completion of LP({2) in BLP(£2).
Some of the arguments presented here may further be extended to include the spaces of
bounded or vanishing modulus of integrability (grand Lebesgue spaces).

COROLLARY 4.16. Let f € WHN=L(02,RN) be an orientation preserving map satisfying
the condition

(4.71) ID'f| € BLY7(R2).
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Then J(z, f) is locally integrable. Moreover, J(x, f) coincides with the distributional
Jacobian whenever
(4.72) D | € VLF(22).

5. Mappings of finite distortion

5.1. Introduction. In this chapter we study mappings f = (f',...,fY) : 2 — RV
in the Sobolev class VVI})’CN((LRN)7 where {2 is a connected, open subset of RV, N > 2.
Thus, the differential matrix Df(z) € R¥*N and its Jacobian determinant J(z, f) are
defined almost everywhere in {2 . Here RV*¥ denotes the space of all N x N matrices,
equipped with the norm

|A| = max{|A¢|: € € SN},
Throughout we assume that f is an orientation preserving mapping, that is, J(z, f) > 0.

DEFINITION 5.1. A map f € Wll’N(Q,RN) is said to be of finite distortion if

(5.1) |IDf(x)|N < Ko(z) J(z, f) ae.
for some 1 < Kp(z) < o0.

Note that Hadamard’s inequality asserts that pointwise

J(x, f) < |Df(x)|Y,
thus the assumption Ko(z) > 1 is imposed on us. Moreover it is fundamental that the
Sobolev exponent is at least the dimension of {2 so that we can integrate the Jacobian.
In this case the mappings of finite distortion are actually continuous [26].
The smallest such function defined by
Df()|N/J(x, f) if J(z, f) #0,
52) Koo, f) = { PTOF 1) e D70
is called the outer distortion function of f.
Geometrically this means that at the points where J(z, f) > 0 the differential D f(x)
maps the unit ball to an ellipsoid F and
vol BO

Ko(xaf) = vol E

where Bo is the smallest ball circumscribed about E. In the same way, we may define
the inner distortion of f by

vol &
K[(it,f) - VOlB[

where By is the largest ball inscribed in E. We set K;(x, f) = 1 at degenerate points
where D f(z) = 0 and we call

K(mv f) = maX{Ko(l‘, f)’ K](l‘, f)}

the mazimal distortion,
KO (.’I}, f)

KM(m’f) = K](m f)
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the mean distortion and

H(x, f) = (Ko(x, f), Kr(x, f))'/"
the linear distortion.
The linear distortion has the representation
max{|Df(z){]: £ € SN}
min{[Df(z)¢| : £ € SN~}

H(m7f>:

at points where D f(z) # 0.

All of these distortion functions coincide when N = 2; this is not the case when N > 2.

Many constructions in analysis, geometry and topology rely on limiting processes;
the existence, uniqueness and compactness properties of families of mappings with finite
distortion make them ideal tools for solving various problems in these areas. For instance
in studying deformations of elastic bodies and the related extremals for variational in-
tegrals in certain degenerate settings, mappings of finite distortion are often the natural
candidates to consider because they are closed under uniform convergence [52].

The following limit theorem holds [19]:

THEOREM 5.2. Suppose that f, : 2 — RY is a sequence of mappings of finite distortion
which converges weakly in WII’N(Q,RN) to f and suppose that

ocC

(5.3) Ko(z, fn) < M(z) <o a.e.
form=1,2,... Then f has finite distortion and
(5.4) Ko(z,f) < M(z) a.e

This is a refinement of Reshetnyak’s theorem concerning mappings f,, of bounded
distortion, that is, mappings which satisfy (5.3)) with M (z) < K where K is a constant.
In this case, weak convergence in Wlf)’CN(.Q, RY) implies uniform convergence on compact

sets and hence, by Reshetnyak’s theorem, the limit mapping f satisfies Ko(z, f) < K
instead of the pointwise bound given in (5.4).

THEOREM 5.3. Theorem remains valid with Ky(x, ), Ky (x, f) and K(x, f) in place
of Ko(z, f).

This is not true for the linear distortion H(x, f) when N > 2.
While substantial progress has been made on the limit theorems, many questions still
remain unanswered.

5.2. The Beltrami equation. The Beltrami equation has a long history. Gauss first
studied the equation in the 1820’s while investigating the problem of existence of isother-
mal coordinates on a given surface. The complex Beltrami equation was intensively stud-
ied by Morrey in the late 1930’s, and he established the existence of homeomorphic L2-
solutions. It took another 20 years before Bers recognized that homeomorphic solutions
are quasiconformal mappings.

Studying quasiconformal mappings via the Beltrami equation is a particularly valuable
idea because from this point of view the mapping is the solution of an elliptic equation
and as such enjoys various nice properties not obvious from the definition.
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Directly from the analytic definition we see that an orientation preserving mapping
of finite distortion solves the Beltrami equation

D'f(z)Df(z) = J(z, f)¥ G(x)

where D! f(z) stands for the transpose to D f(x) and G(z) is the distortion tensor of f, a
symmetric positive definite matrix of determinant one. If G(x) is the identity everywhere
the Beltrami equation reduces to the N-dimensional Cauchy—Riemann system

D'f(2)Df(x) = J(z, f)¥1.
We have the pointwise almost everywhere estimate
1 2
— P < (G <K 2
R 1 < (G0 < K@)
for vectors ¢ € RY and thus the distortion function K = K (x) provides ellipticity bounds
for the equation. The case of K bounded gives uniform ellipticity estimates on G.
The Beltrami equation implies a number of first order differential equations analogous

to the complex Cauchy-Riemann equations.
Associated with G(z) is the energy integral

g[h] = | E(z, Dh) dz
2

where E(z, M) = (MG~'(x), M)>/N. Here we have used the inner product of matrices
defined by
(X,Y) = Trace X'Y.

It is the essence of the analytic theory of mappings with finite distortion that these
mappings minimize the energy functional, subject to a Dirichlet boundary condition. The
Euler-Lagrange equation takes the form

(5.5) divA(z,Df) =0
where A : 2 x RVXN s RVXN ig given by
N-—-2

Az, M) = (MG (z), M)~ MG *(z).

Let us stress that the equation (5.5) is of second order whereas the minimizers (map-
pings of finite distortion) solve the first order Beltrami equation. It is also of particular
importance that each component u = f%, i = 1,..., N, of a mapping of finite distortion
satisfies the equation
div A(z, Vu) =0
called the A-harmonic equation. In the case that the distortion K = 1 this reduces to
div(|Vu|N 2Vu) = 0
which is a special case of the p-harmonic equation
div(|VuP™2Vu) =0, pe (1,00).

At this point the so-called div-curl fields assume particular relevance to our study.



Elliptic complexes in the calculus of variations 45

Let us first illustrate how such fields relate to the theory of linear elliptic PDEs of the
form

div A(z)Vu = 0

where A : 2 — RY*N is a measurable function with values in symmetric matrices such
that for all £ € RV

(5.6) KN 2)lg]? < (A(2),€) < K(2)[€]°  ae.

Uniform ellipticity means that 1 < K(z) < K for some constant K.

Now the pair ¢ = [B, E] with E = Vu and B = A(xz)Vu is a div-curl field. Although
it is not apparent at this point, condition is equivalent to the so-called distortion
inequality for @:

(5.7) |21 < [K(2) + K~ (2)]J (2, D)

where, by analogy to mappings of finite distortion in the plane, we use the notation
|®|? = |B|? + |E|? and J(z,®) = (B, E).

An arbitrary div-curl field @ € L (2,RN) x L (22, R") is said to have finite dis-
tortion function K(z) if holds almost everywhere in (2. @ is said to be of bounded
distortion if 1 < K(x) < K. Obviously the natural integrability exponent here is p = 2.
Thus it is interesting considering fields with exponent p different from 2. In [I4], together
with A. Fiorenza, we prove higher integrability results for div-curl fields of bounded
distortion

® = [B,E] € L**°(2,RY) x L*75(0,RY)
with 0 < e < 1.

5.3. Regularity results for vector fields of bounded distortion. This section is
concerned with regularity results for vector fields of bounded distortion contained in [14]
already mentioned at the end of the previous section.

The following basic estimates are established in [32] (see also [64] for the present
formulation). We denote by Qo, @ open cubes in RV with sides parallel to the coordinate
axes, and by 2Q) the cube with the same centre as (Q and double side-length.

THEOREM 5.4. Let 1 < p,q < oo be a Holder conjugate pair, 1/p+1/q = 1, and let
1 < rs < oo bea Sobolev congugate pair, 1/r +1/s = 1+ 1/N. Then there exists a
constant cy = cn(p, s) such that for each cube Q satisfying 2Q C Qo C RN we have

(5.8) ‘ g %dw < CNE[ S |E|1-)p daj} %[ g |B|(1—2)a da:}%
Q| 5| £ 50 50

1 1

+cN{ { |E|<1—€>de] ’ { { |B|(1‘5)de] ’
2Q 2Q

whenever 0<2e <min{(p—1)/p, (¢—1)/q, (r—1)/r,(s—1)/s} and div B=0, curl E=0.
The next proposition by Giaquinta-Modica ([23], [25]) will be useful.

PROPOSITION 5.5. Let g € L*(Qp), a > 1, and f € L"(Qo), r > «, be two nonnegative
functions and suppose that for every cube QQ such that 2QQ C Qq the following estimate
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holds: N
(5.9) Sgadxgb{<§gdx> + &f”‘dm}—k@&gadx
Q 2Q 2Q 2Q

with b > 1. There exist constants g = 0p(c, N), o9 = 00(b, 0, a, 7, N) such that if 6 < 6,
then g € L*T7(Qq) for all 0 < 0 < og and

loc
e (L (T
Q 2Q 20

where ¢ is a positive constant depending on b,0,a,r, N.

A variant of the result established in Proposition [5.5] can be proved. We remark that
in our assumption we will consider a family of inequalities in which both the exponent
of integrability of the function g and the coefficient on the right hand side depend on e.
Nevertheless, even if Proposition [5.5] cannot be applied a priori, in the theorem we are
going to prove we get a higher integrability result for ¢ and an estimate of the type .

THEOREM 5.6. Let g € L*1=9)(Qq) and f € L"(Qp), 0 < e < 1/2, r > 2(1 —¢), be
nonnegative functions such that
(5.11) SgQ(l_s) dr < cie g 92(1—5) dx
Q 2Q
N+1

+02{( | 2o dx)T n ( | 209 dm)}
2Q 2Q

for every cube Q C 2Q C Qq, for some constants ¢ > 0, co > 0. Then there exist
g =%(c1,N) and 7] =7(c1,ca,r,6,N) such that if 0 <e <E, then g € Lfé;7€)+n(Q0) for
all 0 <np <7 and

(ngu_sm dm)ﬁ < C{( f g20-9 dw)ﬁ +( J p2a-otn dw)@}
Q 2Q 2Q

where ¢ is a positive constant depending on co, 7€, N.

Proof. Since the functions g, = g?(1=)N/(N+1) | — f2(1=e)N/(N+1) gatisfy the inequality
N+4+1

4

(5.12) SgEN&rl dx < cz{< § Je d:c) Yot ( S feNﬁl dx)} +cie S g:];rl dx
Q 2Q 2Q 2Q

we can apply Proposition with @« = (N+1)/N, b = ca. We get 6y = 6p(N) and

o9 = oo(ca,r,e,N) such that if holds with cje < /2, then g. € L¥T7(Qy) for

loc
every 0 < o < 0y, i.e.

(g2 Nﬁl]%*’ €Li.(Qo) Y0<o<op
and

N+1 N S N41 T
(5.13) (gggN +"dgg) THT < c{( [ g™ dx) o
Q 2Q
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with ¢ depending on ¢y, 7,6, N. Set

_ 6o _ _. 2Noy
— 1-— .
0<5<2€1, 0<7<( 5)N+1
Ifo<e<zand 0 <n <7, we have
_N+1 N+1

<E<l—-n——<
£sF "Ny 9Ny

or, equivalently,

21 —¢)+n<2(1—¢)

N1l —— +0g

N [N+1
N b

therefore we get g € r2(=e)+n (Qo) and inequality l) becomes

loc
1 1 1
<§92(1—E)+T7 de) 2(1—e)+n < C{( S g2(1—8) dl’) 2(1—¢) + ( S f2(1—8)+77 d.’E) 2(1—2)+n }
Q 2Q 2Q

Let us observe that, upon a closer look at the proof of Theorem one can note
that the gain of integrability given by oo = oo(c2,7,¢, N) is actually dependent only
on c2,7/(2(1 —¢€)), N. Nevertheless, if f = 0 a.e. in Qp, the number oy, and therefore
also 77 and ¢, do not depend on €. This remark is crucial to proving the following

COROLLARY 5.7. Let 0 <e < 1/2 and g € L*379)(Qy), Qo C RN, be such that
N+1
§92(1—6) dz < c1e & 209 dg +C2< & P20 dx) ~
Q 2Q 2Q
for every cube Q C 2Q C Qq. Then there exists € = €(c1, N) such that if 0 < e <E, then
g € LE*(Qo) and

loc
(5.14) (ng(us) dx) T C( S R dx)m
Q 2Q

where ¢ is a positive constant depending on co, N .

Proof. Let us apply Theorem [5.6| with f = 0 a.e. in Qp. If ¢ < min(z,7/4), choosing
n = 4e, from inequality (5.11) we get g € L1204;25 (Qo) and inequality (5.14) holds.

Now we are in a position to prove our higher integrability results.

PROPOSITION 5.8. Let 2 CRYN, 0< e <1 and & = [E, B] belonging to L>~¢(2,RY) x
L27¢(2,RY) such that div B =0, curl E = 0 and

(5.15) |B(z)]> + |E(2)|? < (K + K Y){(B(2), E(x)) a.e. in 2
where K > 1. Then there exists € = £(K, N) such that ® € LT5(2,RY) x LITe(02,RY)
forall 0 <e <% and
= =
(g |2+ da:) < c( { |<15|2’5dx> TvQ, 20c 0
Q 2Q

where ¢ is a positive constant depending on K, N.
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Proof. Fix @ a cube such that 2Q C 2. Applying Theorem with p = ¢ = 2 and
r=s=2N/(N +1), from inequality (5.8]) we get

{(BP + B = do

Q N+1
< ewie § (IR + B do+ enic( § (B2 +|BR)-9%T dz) 7
2Q 2Q
for ¢ sufficiently small. Set g2 = |B|? + |E|?. The last inequality implies
N+41
§gz—25 dv < cnxe S 92—26 dr +cN’K( S g(2—2a)NL+1 dx) N

Q 2Q 2Q
By Corollary [5.7) there exists € = (), N) such that if 0 < e < Z, then g € L}**(£2) and
<§g2+2a dac)ﬁ < c( § g% dm)ﬁ,
Q 2Q

proving the assertion.

Now consider & = (E, B) € L?~2(£2,RY) x L?>72¢(£2,R") such that
(5.16) divB=0, curlE =0,
(5.17) B@)? + |E@) < (K + K~V)(B(x), Ew)) + | F|
where F is a function in L"(£2,RN), r > 2 — 2¢, for ¢ sufficiently small.

THEOREM 5.9. Let 0 < e < 1/2 and E, B vector fields as in (5.16)), (5.17)). Then there
exist £ = €(K,N) and 71 = T(K,r,e,N) such that if 0 < e < &, then & = (E,B) €
L2200 RN) x L2 21 RN for all 0 < n <7 and

loc loc

1 _1 1
(§lop2etd0) ™ <o (§ 1@P 2 an) T 4+ (§OFR T ax) T
Q

2Q 2Q

where ¢ is a positive constant depending on K,r,e, N.

Proof. Fix a cube @ such that 2QQ C {2 and set
QT={rcQ|(B,E)>0ae}, Q ={rcQ|(B,E)<0ae}.

Observe that by , replacing |F'| with f, we have

—(B, E) . B
QS 1BFIEF @< QS(|B||E|)1 da < QS(B|2 +B[?)F da
1—e
< S |:<K+ }.1{> (B,E) + fQ] dr < S f2—2s dz < Sf2—25 da
Q- o B

and therefore
(B,E) (B, E) (B, E)
B el P W S Bt 22 g
ViarEr = ) mEEE et ) e
Q Qt Q-

> | ( B, E) Eda:—csngQde.

o UBP+TEP+ 1)
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Applying Theorem with p=¢ =2 and r = s = 2N/(N + 1), for ¢ sufficiently small,
we get

(B,E) i
Y (B Ep < oy S ove Y(BP+ 18P+ 7)o do
Q 20
N N+1
+CN( §(|B|2+ |E|2 +fZ)(l—s)Wl dx) N n § f2725 i
2Q 50

By B.17)

(B,E) 2 cx(IBP* + |EP? = £%) = e (IB]* + |E]* + f?) — 2¢x f?

and therefore

YUBP + B + %) da
Q
N+41
< ewie §(BE+ B2 + 121 do + enc ( § (BE +1BP + )0 79% dz)
2Q 2Q
f2 2—2e
+ ¢k S 5 5 oo dr + § f dx
s (B +IEP +72)= 0 )
N+41
N

<cn,k€ & (|B|2 + |E|2 + f2)1_e dr + cN,K( § (|B|2 + |E\2 + f2)(1fa)NL+1 dx)
2Q 20

+lex+1) § > de
2Q
If we set g2 = |B|? + |E|? + f?, the last inequality implies
N+1

§g2_25 dz < ey ke § ¢> % dx + Cn,K( & gt?72%) T dx) Yoy (ck +1) § 2% da.

Q 2Q 2Q 2Q
By Theorem [5.4] there exist € = (K, N) and 77 = (K, r,e, N) such that if 0 < e < g,
then g € LlOC () for all 0 < n <7 and

(2007 o (§ ) ™ 4 (50) ™)
Q

2Q 2Q

proving the assertion.

In [T4] we give some applications to the theory of quasiconformal mappings and to
the theory of regularity for very weak solutions of nonlinear elliptic equations in diver-
gence form. In particular, the following celebrated result of Bojarski concerning higher
integrability of functions f = (f1, f2) : 2 C R? — R? with bounded distortion holds:

fewWh2 (2 R?) = feWhre(Q,R?).

Moreover, our method provides, for e sufficiently small, a new proof of the regularity

result

ue W2 5(02) = uwe Wh2te(0)
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for very weak solutions of equations of the type
diva(z, Vu) = div F

where F is a function in L"(£2,R"), r > 2 —2¢, and a : 2 x RY — R¥ is a mapping such

that . N
{ x+ a(z,z) is measurable for all z € RV,

z+ a(xz,z) is continuous for almost every = € (2,
satisfying
la(z, 2)|* + [2* < (K + K~){a(z, 2), 2)
for some K > 1 and z, z arbitrary vectors in RY.

REMARK 5.10. The assumptions in Theorem cannot be weakened. Indeed, consider
f, g nonnegative functions on a cube Q) satisfying assumptions of the type of Theorem [5.6]
with ¢; = 0, namely, f, g are such that g € L*(Qy), f € L**(Qo) for some a > 1, A > 1
and

(5.18) (Sgo‘dgc)é§a§gdac—i—b(§fo‘dﬂc)é YQ, 2Q C Qq.
Q 2Q 2Q
In this case it is known ([33]) that if ) is sufficiently close to 1, then g € L}%(Qo) and
(5.19) (Sg’\"dx)ﬁga,\( Sg’\dx)%—&-b,\( & fmdx)i
Q 2Q 2Q

where a) and by are constants depending only on N, «, a,b.
We show that even if it is still true that g € L}%(Qo) for any A < 1 (sufficiently

loc

small), one cannot find any A\ < 1, ay > 0, by > 0 such that estimate holds for any
g € L¥(Qo), f € L**(Qo) satisfying .

By a contradiction argument, we are able to prove that there exists A < 1 such that
any function go € L (Qy), go > 0, satisfies a certain reverse Holder type inequality,
which is generally false.

5.4. Further results. The aim of the present section is to illustrate some continuity
properties of mappings of finite distortion. We wish to investigate them under minimal
possible assumptions on the degree of integrability of the differential. It is worth pointing
out that the first result in this sense is due to V. Goldstein and S. K. Vodopyanov [26]. We
have already observed that they showed that mappings of finite distortion in the Sobolev
class Wl’N(Q, R are actually continuous. We have repeatedly stressed that the natural

loc

Sobolev setting for mappings of finite distortion is the space Wl’N(Q, RY), largely due

loc
to the wish to integrate the Jacobian determinant by parts. However, matters are quite
complicated if one does not know a priori that the Jacobian is locally integrable or, even
if so, whether it coincides with the so-called distributional Jacobian. The first regularity
results below the natural setting were recently established by K. Astala, T. Iwaniec,
P. Koskela and G. Martin in [2]. Assuming that J(z, f) € Li .(22) and e*X € LL (£2) for

some sufficiently large A = A(N) they proved, in even dimensions, that f € WI})’CN(Q, RM).
The standing conjecture is that one can take A(IN) = 1 as the critical exponent for the
regularity conclusions; it is known that the L™V-integrability of the differential fails for

any A < 1.
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In [35] the authors continue this theme of the regularity properties of mappings of
finite distortion, refining and extending the earlier paper [2] to all dimensions.

Before illustrating the result proved in [35] it is worth recalling some results due to
L. Migliaccio and G. Moscariello [45]. Consider the p-harmonic equation

div(|VulP2Vu) =0 p e (1,00).
Setting £ = Vu and B = |Vu|P~2Vu we obtain

EP |BJ
7‘ | +7| | = (B, E).
p q
Now let us consider div-curl fields [B, E] coupled by the distortion inequality
EIP |Bl¢
(5.20) IEP + 5] < K(z){(B,E) ae.in {2

p q
where, as usual, 1 < K(z) < oo is a measurable function in {2 and 1 < p,q < oo are
conjugate Holder exponents, p + ¢ = pq. In this setting, in [45], the following higher
integrability result is proved:
THEOREM 5.11. Let @ = [B, E] be a div-curl field satisfying (5.20). If K(z) € Exp,(£2)
for some v > 1, then B € LPlog® L(c§2,RY) and E € L7log® L(c§2,RY) for any a > 0
and 0 < o < 1. Moreover for any o > 1,
IEP + 1B L 1oge-1/7 Loy < (B, E)lL10ge-1 L(2)

where ¢ = ¢(o, p, a, N, HKHEXp’y(Q)).

Note that Exp., (£2) denotes the Orlicz space defined by the function (t) = exp(t”)—1.

The proof is obtained by using well known inequalities for nonnegative div-curl prod-
ucts and maximal theorems in Orlicz spaces. It is also proved that the theorem fails if
K (x) is assumed merely in Exp(£2) = Exp, (£2).

We also wish to mention an application to mappings with unbounded distortion:

PROPOSITION 5.12. If f € WEN(2,RN) and satisfies the distortion inequality

loc
IDf (@)Y < K(2)J(z,f)  a.e
with K(x) € Exp, (£2) for some v > 1, then |Df| € LN log® L(c§2) for any o > 0 and
0<o<l1.

As a consequence they also get the following continuity result:

COROLLARY 5.13. Under the assumptions of Proposition for any o > N and any
ball B C (2, there exists ¢ = ¢(«, B) such that

[ (x) = F@)] < el B)(IFll L~ roge £+ I DSl 10ge £)(log(e + |z —y[ =)= F
for any x # y € B.

The arguments above prove rather clearly that the class of mappings with exponen-
tially integrable distortion function is optimal in many respects.

Let us conclude with one more result contained in [35].

Assume f € I/Vlicl(ﬂ, RYM). Thus the differential matrix D f(z) € RV*Y is defined at
almost every point x € 2.
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DEFINITION 5.14. A mapping f € Wl’l(.Q,]RN) is said to have finite distortion if

loc
(i) the Jacobian determinant is locally integrable;
(ii) there is a measurable function K = K (z) > 1, finite almost everywhere, such that

IDf(@)|V < K(2)J(x, f).

Every mapping of finite distortion solves a nonlinear system of first order PDEs, the
so-called Beltrami system. This in turn gives rise to a degenerate elliptic equation of
the second order. We then come to the idea to approximate these second order equa-
tions by more regular ones whose solutions yield an approximation of the mapping f.
Consequently, the authors of [35] proved the following result.

THEOREM 5.15. For each dimension N > 2 and « > 0 there exists Ao, (N) > 1 such that
if the distortion function K = K(x) of f satisfies

S M) g < 00

o}
for some A > Ao (N), then

§ Do) g (1+

B

[Df(x)]
[Df|s

for any concentric balls B C 2B C 2, where |Df|p stands for the integral average of
|Df| over the ball B.

)dx < Co(N) | J(@, f)dz

2B

Let us give an idea of the proof. Consider the Beltrami equation corresponding to the
mapping f, that is,
D'f(z)Df(z) = J(z, [)*NG(x).
Associated with G(z) is the energy integral
Elf] =\ E(x,Df)dz
0

where
E(x,Df) = (DfG~(x), Df)N/2.

The Euler—Lagrange equation takes the form
(5.21) divA(z,Df) =0
where

Az, Df) = (DG~ (x), Df) N2/ DfG(x).
The energy integrand takes the form

E(x,Df) = N¥2J(x, f) du.
From the elementary inequality
N -1
N

valid for every matrix M € RNV*¥ it is possible to deduce that a mapping of distortion
K = K(x) gives rise to an N-harmonic couple ¢ = [A(x, Df), Df] (see Chapter 3).

MY S A MY < K (@) B, M)
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A suitable approximation of equation ([5.21]) leads to a sequence of solutions for which
the following a priori estimate holds concerning integrability properties of p-harmonic
couples. This is provided in [37].

THEOREM 5.16. Let h € WP (02,RN) be a mapping of finite distortion. For every inte-
ger m > 0 there exists \p(m, N) > 1 such that if the distortion function K(x) satisfies

S M@ dy < 00
2
with some A > \p(m, N) then

(5.22) DAY, 1o peary < Co(2) {{A(z, DR), DR da
0
for every compact subset 2’ C 2.

Let us emphasize explicitly that this result requires the left hand side to be finite and
this can be ensured by assuming that the exponent p is close to N. More specifically,
N-1/2<p<N.

It is important to observe that the estimates are preserved in passing to the limit. As a
consequence, the following modulus of continuity estimate for mappings of exponentially
integrable distortion holds:

COROLLARY 5.17. For each dimension N > 2 and s > 0 there exists As(N) > 1 such
that if the distortion function K = K(z) of f: 2 — RN satisfies

S M@ dy < 00
Q
for some A > A\(N), then

If(z) = f(y)] < m

whenever x,y € B(a, R) C B(a,6R) C {2.

J(z, f)dzx
B(a,6R)

¢(N, s) S 1/N

6. Lower semicontinuity of a class of multiple integrals

6.1. Introduction. In this chapter we discuss the lower semicontinuity of an integral
functional of the type
F(u) = S fz,u, Lu)dx
Q

where u € WHP(£2,R?), f is a nonnegative integrand satisfying the growth condition
(6.1) 0< f(z,s,8 <c(1+149)
g > p > 1, and L is a linear differential operator of first order, £ : C>®(£2,RY) —
C>(02,R™).

In the special case Lu = Vu and ¢ = p, there is a vast literature on the lower
semicontinuity properties of F' (see for instance [46], 47, 11 (43} [41]).
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More recently, in connection with the applications to materials exhibiting nonstandard
elastic and magnetic behaviours, researchers have been interested in lower semicontinuity
also when p < ¢ and L is a general linear operator of first order (see [I5HIT]). To fix ideas
assume that £ : C® (RN R?) — C(RN R™) is defined by

a ou

6.2 Lu = A —

(6.2) u 1; .
where Ay, k=1,..., N, are given linear transformations of R? into R™. In [22] our main

result, when f depends only on &, is the following.

THEOREM 6.1. Assume q¢ > p > max{1l,q(N —1)/N}. Let f = f(§) : R™ — [0,00) be
a function satisfying (6.1) and L a linear differential operator of the type (6.2). Assume
that for any A € RV*? and any u € C§°(Q,R?) we have

V[F(£(Az + u()) — F(L(AD))] do > 0

Q
where Q = (0,1)N is the unit cube. Then for any u € WY'P(2,RY) and any sequence
u, € WHa(02,RY) such that u, — u weakly in W1P(2,R?) we have

| f(Lu(@)) do < Timinf | f(Lun(2)) da.
0 T

This result, very much in the spirit of the lower semicontinuity results of Fonseca—
Maly and Fonseca—Marcellini, is proved by a blow-up argument. Similar arguments are
also used to extend the result to the case when f depends both on z and s.

In this framework it is natural to consider the particular case u = (v,w) and Lu =
(Pv, Q*w) where P, Q are linear differential operators of first order with constant coeffi-
cients forming an elliptic complex (see Chapter 3 for the definition).

It is easy to check that any functional of the type

(6.3) G(u) = | g((Pv, Q"w)) da,
19
where g : R — [0,00) is convex, is quasiconvex in u. Hence Theorem implies the
lower semicontinuity of G with respect to the weak convergence in WP for all p >
(2(N —1))/N. Functionals of type (6.3) can be viewed as a generalization of the usual
polyconvex functionals. In fact if N = 2, taking
ov?  ovt
Pu = Vu, =curlv = — — —,

u U Qv = curlv B ay
u € C°(R2, R), v € C°(R?,R?), one has an elliptic complex and (Pu, Q*w) is equal to
the determinant of the matrix whose rows are given by Vu and Vw.

We shall make use of the following definition of quasiconvexity:

DEFINITION 6.2. Let f: £2 x R? x R™ — R be a Carathéodory function. We say that f
is quasiconvex with respect to the operator L if for almost every xo € (2, for any so € R?
and any matrix A € RV*? we have

(6.4) V1 (20, 50, L(Az + u(x))) = f(wo, 50, L(Az))] d > 0

Q
for all u € C§°(Q,R?), where Q = (0,1)" is the unit cube.
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Notice that by a density argument it follows that if | f(z, s,€)| < ¢(14[£]|?), then (6.4])
holds with u € Wy %(Q,R%).

6.2. Main result. This section is devoted to the proof of Theorem [6.1] We consider
fixed exponents r, ¢ > 1 and p > max{1,7(N — 1)/N,q(N — 1)/N}. The following lemma,
proved by Fonseca—Maly [15], is very useful in what follows.

LEMMA 6.3. Let V CC 2 and W C §2 be open sets, 2 = VUW, v € WH4(V) and
w € WHI(W). Let m € N. There exist a function z € W,29(2) and open sets V! C 'V
and W' C W, such that V'UW' =02, z=von 2—-W', z=w on 2 -V,
LNV nW') <Cm™!

and

Izl 2 (viewsy + [12llwravnwn

< Cm7 T (vllwrevawy + llwllwre(vaw) + mllw = vl[Le o))

where C = C(p,q,m,V,W) and 7 = 7(N,p,q,r) > 0.

In what follows we denote by B,(z) the ball {y € RN : |y — x| < o}; if the centre of
the ball is the origin we will simply write B, instead of B,(0).
Proof of Theorem The proof falls naturally into two parts.

Step 1. We prove the result in the special case that 2 = B; and w is linear, u(z) = Az
for A € RV*4, According to Rellich’s compact imbedding theorem, we may assume that

ltn — ullpr <n7th

Let R < 1 and p = (R+1)/2. We apply the lemma above to v = up, w =u, V = B,
and W = B; \ B,. Accordingly, we obtain z, € W14(B;,R?) and open sets V,, CC V,
W, € W such that V,, UW,, = By,

Zn=U, onBi\W,, z,=u onB\V,
and

LN(Vn N Wn) < C(R)a S |Ezn|q <

n
VMW,

(R, M)

nTd

where M = sup ||uy||wr» and 7 > 0 is the exponent provided by Lemma Since
Zn — U E WO1 I(By,R%), from the growth condition and the quasiconvexity of f, we have

| ricu) < | gz,

B B
Therefore
| recw) = few) < | fezn) = | fleu) < | fewy+ | f(L20)
B, B B, B B1\V,, VaNW,
<cI¥BA\V)+ | (4 [Lz)
VW,

<e(LN(Bi\By) +n ' +n) <c(l-R+n"t4+n7T9).

The conclusion follows by letting first n — oo and then o — 1.
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Step 2. Let u € WLP(02,RY), u, € WH4(2,R?), u,, — u in WHP(2,R%). With no loss
of generality we may assume that
liminf | f(Lu,)dz = lim | f(Luy)dz < oc.
n—oo n—oo
Q 2
Passing to a subsequence if necessary, we obtain the existence of finite Radon nonnegative

measures g and v such that

f(L(un(x)) =5 w-M(2), |Lupl’P =v w*-M(2),
where M (£2) is the space of all Radon measures. Now our purpose is to prove that for
LV-ae. zg € 12,

05) p(By(w0)

~ > f(Lu(xg)).
In fact if (6.5) is true, then for any ¢ € C.(£2), 0 < ¢ < 1, we have

lim Sf(ljun) > nh—>Holo S of (Luy) = Sgpd,u > S dr > S(,pf(ﬁu).
2

n—00
0]

Therefore letting ¢ — 1 and applying the monotone convergence theorem we may con-
clude that

dys
S"dLN

Tim | f(Lun) = | f(Lu).
[0 Q
It remains to prove (6.5). Let xg € {2 be such that the limits
dy u(By(w)  dv  (B,(x0)
arn (o) = o ey apw ) = i L

exist and are finite and

Note that the last three conditions are satisfied by all points zo € {2, except maybe
on a set of L¥-measure zero. Then we select g — 0T such that w(9B,,(wo)) = 0,
v(0By, (z9)) = 0. Thus
B
lim M(N)) > hm lim sup g f(Luy(x)) de = hm lim sup § f(Lvn k(y)) dy

k—oo  wWNOy k=00 poo (z0) E—=oo n—oo
Qk Zo 1

where

un(fo + Qk) - ’U,(iCo) )

Un,k =
Ok

It follows that v, , € Wh4(By, R%),

lim hn;O lvne — Vu(zo)z||L1(B,) =0

k—oon
and
11m sup lim su V. X Q0.
. p ! p || Lvn i LP(B;) = LN 0

Hence, we may extract a subsequence such that

Uk = Uk — Vu(xo)z  weakly in WP (B, RY)



Elliptic complexes in the calculus of variations 57

and

du )

m(xo) = klgl;o g f(Luk(y)) dy.
B1

Therefore from Step 1 we get

d%v(xo) = kli_)noloé F(Lok(y))dy > f(Lu(x))

and this concludes the proof.
It is possible to show the following extension of Theorem
THEOREM 6.4. Suppose that f(x,s,&) satisfies the following conditions:

(1) f(z,s,&) is quasiconvez;
(i) 0 < f(z,5,€) < (1 + |e]7);
(iii) for any (w0, 50) € 2 x R? and any € > 0, there exists § > 0 such that if |z — o]
<8, |s—so| <8 and € € RN*? then f(z,s,&) > (1 —¢)f(wo, S0,&).

Let u, € WH9(2,RY) and u € WHP(02,R?) be such that u, — u in WHP(£2,R9).
Then
S flz,u, Lu)dx < hnrglgfx f(z,up, Luy,) de.
Q Q
6.3. Polyconvex case. Now let the operator £ be defined by means of a pair of differ-
ential operators of first order in N independent variables with constant coefficients

c>@®RY,RY B co@®N R™) & ¢ (RN, R¥)
forming an elliptic complex.

The notion of polyconvex integrands, already given in the book of Morrey [47], was
deeply studied by Ball [3] providing a better understanding of several problems, especially
those concerning the theory of finite elasticity.

In [22] we prove that Theorem still holds if the function f is polyconvex according
to the definition given in [21], see Chapter 3.

Note that our definition of polyconvexity agrees with the one given by Ball in dimen-
sion two, provided that we take Pu = Vu, Qv = curlw.

Let f(z,y,2,m,€) : 2 x R¥*F x R?™ — [0, 00) be a Carathéodory function such that

(i) for all z € £2, (y, z) € R x R* the function (n,¢) — f(z,vy,2,1,£) is polyconvex;

(ii) for any (wo,y0,20) € 2 x R? x R¥ and any & > 0, there exists § > 0 such
that if |z — zo| < 6, |(y,2) — (yo,20)] < 6 and 1,6 € RN*? then f(x,y,2,1,£) >
(1 —¢)f(x0, Yo, 20,1, &)

THEOREM 6.5. Suppose that f(x,y,z,n,§) satisfies conditions (i) and (ii) and suppose
p > 2(N—1)/N. Let a,, € WH2(2,R?), B, € WL2(Q2,RF) and o € WHP(02,RY),
B € WHP(02,RF) be such that a, — « in WYP(2,RY) and B, — B in WHP(02,R¥).
Then

| f(@, 0, 8,Pa, Q") dw < hnnliogfgf(x,an,ﬁn,mn,g*ﬁn)dx.

Q Q
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Proof. There exists a sequence of continuous nonnegative functions g;(z,y, z,7,&) such
that each g; is polyconvex in (7, €) and

0 < gj(xvyvz7na€) < Cj(l + |<7I’€>|)» gj(zvyvzanvg) < gj-‘rl(xayazvnvf)a
f<x7y7z7na€) = Supgj<x7y7z7na€)
J

(see Lemma 3.2 in [I8]). Observe that polyconvexity implies quasiconvexity (see Chap-
ter 3) and that ) )
gj(xay,zanag) < C(1+ |77| +|£| )

Therefore, Theorem [6.1] holds and we have
S 9j(z, o, B, Pa, Q" B) doz < liminf \ g;(x, an, Bn, Pan, Q*Br) dz

|

Q I?7)
< limninf S

I7)

f(fE,Oén,ﬂn,'Pan, Q*ﬂn) dx.

Now notice that since g; is increasing, we get

S f(z,a,8,Pa, Q") dx = li§n S gj(z, o, B, Pa, QB) d
0 Q
S lim inf S f(fE, Qnp, 577,7 Panv Q*ﬁn) dx.

0
This concludes the proof.

6.4. Further results. We conclude this chapter with a new result on lower semiconti-
nuity with respect to the strong convergence in Li (£2) for integral functionals defined
on BV (£2), the subspace of L!(§2) of functions having bounded variation. Let us consider
the functional
(6.6) F(u,2) = | f(z, Du(x)) dz

Q
where the integrand f = f(z,§) satisfies the conditions:

f is continuous in 2 x RV,
(6.7) f is nonnegative in 2 x RV,

flx,€) is convex in & € RN for every z € £2.
It is known that the functional is not strongly lower semicontinuous if f satisfies
only the above continuity and convexity properties.

In 1961 Serrin was the first to give some sufficient conditions for strong lower semi-
continuity in the case u € Wil (£2), see [55]. Later many authors attempted to weaken
Serrin’s assumption on f, also in the more general setting of BV (§2). Nevertheless in all
these results some assumptions of uniform continuity, or of uniform lower semicontinuity
of f(x,&) with respect to « have been made.

In a recent paper [44], the usual additional hypotheses have been replaced by the
more general assumption of local Lipschitz continuity in the independent variable =z,
when u € I/Vlicl(ﬂ)

Following the same idea we are able to extend this result to u € BVj,.({2), as follows
[22].
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THEOREM 6.6. Assume that f = f(x,£) satisfies conditions (6.7) and that, for every
compact set K C 2 x RN, there exists a constant L = L(K) such that

[f(21,8) = f(w,€)] < Ly — a2

for every (z1,€),(x2,§) € K. Then for every u, € I/Vlicl(ﬂ), u € BWVipe(£2) such that
up — u in Li ($2), we have

loc

lim inf S f(z, Vup) dz > Sf(z,Vu) dzr + S f°(x, D*u)
h—ro0 P P e

where f°° is the recession function of f and D*u is the singular part of the distributional
derivative Du with respect to the Lebesgue measure.

For the proof we will need the following two lemmas. The first one is an approximation
result given by De Giorgi [11].

LEMMA 6.7. Let f = f(z,€): 2 x RN — R satisfies conditions . Then there exists
an increasing sequence of functions { f;(x, &)} jen that converges to f(x,&) uniformly on
the compact sets of £2 x RN

The functions f; can be defined as the mazimum between the zero functions and a
finite number of affine (with respect to & € RYN) functions

N
agj(x) + Y al (2)¢;
i=1
where

(i) _ o o
65) {% (£) = = §ou F@.E)Dsas(§)dE Wi=1,...,N

ao,j(x) = Son F(2, LN +)ay(€) + SV, & D (€)} de
for aj € Cs°(RN), a; >0, SRN a;(§)dE = 1.

LEMMA 6.8. Let p be a positive o-finite Borel measure in {2 and let f; : 2 — [0,00],
1 € N, be Borel functions. Then

{sup fidp=sup " | fidu
o ° iel A,
where the supremum ranges over all finite sets I C N and all families {A;}ic1 of pairwise

disjoint open sets with compact closure in 2.

Proof of Theorem Let {fj(z,&)}jen be the increasing sequence that converges to
f(x, &) uniformly on the compact sets of 2 x RY | as in Lemma

For each j € N the coefficients a9, i =0,..., N, in are locally Lipschitz contin-
uous with respect to z; in fact, for a fixed ¢,

0 (@1) = af’(w2)| = | § {£(@1,€) = F(w2,)}Diars (&) de| < mis LK )lwr —
]RN
for every w1, @2 which vary on a compact set Ko of {2 and m; ; given by

mi,j = S [ Dic; (§)] d€.

RN
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Let further £ € N and let Ag,..., Ax be pairwise disjoint open subsets of (2. For any
j€{0,...,k} and any ¢; € C5(4,), 0 < qu < 1, we have

Sf(;v Vuy)dx > Sa dx—|—§ ), Vup) ¢, (x) dz
A, A;

2

J 3

}a z)dz + <8‘” uh>¢J() x

j Aj

<

Aj

By Lipschitz continuity of the functions ay) (x),i=1,...,N, we have

da')
‘ 5 (@) < L.
Therefore, since uj, — u in L (£2), we get
1thng §2 f(z, Vuy) dz
> [ anse dw+§<%“;<> o) do -+ § (050 0) Vs 2)
Aj Aj Aj
— S ao x)dz + \ (a;(z), Du)g,(z) dx
A A
- S a0 (@) + (a;(2), Vu)g;(w) dz + | (a;(x), D u)g; ().
Aj

Taking supremum Wlth respect to the ¢; above we have
1imhinf S f(z, Vup) dz > S [ao,;(z) + {aj(x), Vu)] " dz + S (aj(z), D%u)™
N AJ‘ Aj
Since k and A; are arbitrary, by Lemma we conclude that

lim inf S fz, Vuy) de > Sf(x,Vu) dx + S f(z, D%u).
"o 2 Q
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