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Abstract

The theory of multi-norms was developed by H. G. Dales and M. E. Polyakov in a memoir that
was published in Dissertationes Mathematicae. In that memoir, the notion of ‘equivalence’ of
multi-norms was defined. In the present memoir, we make a systematic study of when various
pairs of multi-norms are mutually equivalent.

In particular, we study when (p, q)-multi-norms defined on spaces Lr(Ω) are equivalent,
resolving most cases; we have stronger results in the case where r = 2. We also show that the
standard [t]-multi-norm defined on Lr(Ω) is not equivalent to a (p, q)-multi-norm in most cases,
leaving some cases open. We discuss the equivalence of the Hilbert space multi-norm, the (p, q)-
multi-norm, and the maximum multi-norm based on a Hilbert space. We calculate the value of
some constants that arise.

Several results depend on the classical theory of (q, p)-summing operators.
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1. Introduction

The theory of multi-norms was developed by H. G. Dales and M. E. Polyakov in a

memoir [11], which was published in Dissertationes Mathematicae. One motivation for

the development of this theory was to resolve a question on the injectivity of the Banach

left modules Lp(G) over the group algebra L1(G) of a locally compact group G: indeed,

for p > 1, Lp(G) is injective if and only if G is amenable [12].

However, the theory of multi-norms developed a life of its own: it is shown in [11] that

the theory has connections with tensor norms on the spaces c0 ⊗ E, with the theory of

(q, p)-summing operators, and with Banach algebras of operators, through the concept

of a ‘multi-bounded’ operator.

In [11], there are many examples of multi-norms based on a normed space. For exam-

ple, this memoir introduced the maximum and minimum multi-norms, the (p, q)-multi-

norm based on a normed space (for 1 ≤ p ≤ q < ∞), the standard t-multi-norm based on

a space Lr(Ω) (for 1 ≤ r ≤ t < ∞), and the Hilbert multi-norm based on a Hilbert space.

There is a natural notion of ‘equivalence’ of two multi-norms based on the same

normed space, and we find it of interest to establish when various pairs of the known

examples are indeed mutually equivalent. This often leads to questions of the equality of

various classes of summing operators on certain Banach spaces. However, this relationship

to summing operators is not entirely straightforward: results on such operators in the

literature seem to give only partial indications. For example, in the case of (p, q)-multi-

norms on a Hilbert space H, we would like information about Πq,p(H, c0), but classical

results determine Πq,p(H).

Some easy results on the equivalences of pairs of multi-norms were given in [11] and in

[12]. In the present paper, we shall present a more systematic study of these equivalences.

In Chapter 1, we shall recall some background in functional analysis, including the

theory of summing norms and tensor norms. In particular, we shall define the Banach

space (Πq,p(E,F ), πq,p) of (q, p)-summing operators between Banach spaces E and F .

In Chapter 2, we shall give the definition of a multi-norm, and introduce the notions

of the rate of growth (ϕn(E)) of a multi-norm based on a space E and our notion of the

mutual equivalence of two multi-norms based on the same normed space. Two equivalent

multi-norms have similar rates of growth, but the converse is, in general, not true. We

shall recall the definitions of the maximum and minimum multi-norms, (‖ · ‖max
n : n ∈ N)

and (‖ · ‖min
n : n ∈ N), based on a normed space.

We shall define the (p, q)-multi-norm (‖ · ‖(p,q)n : n ∈ N) based on such a space E in the

case where 1 ≤ p ≤ q < ∞, and we shall related these multi-norms to certain c0-norms

[5]



6 H. G. Dales et al.

on the algebraic tensor product c0 ⊗ E; for example, it is shown in Theorem 2.10 that

the (p, p)-multi-norm corresponds to the Chevet–Saphar norm on c0 ⊗E. We shall show

in Corollary 2.9 that the multi-norms corresponding to points (p1, q1) and (p2, q2) are

mutually equivalent if and only if the Banach spaces Πq1,p1
(E′, c0) and Πq2,p2

(E′, c0) are

the same.

We shall begin to study the relations between (p, q)-multi-norms in §2.5, giving first

indications in a diagram on page 20; this diagram follows from standard results on (q, p)-

summing operators given by Diestel, Jarchow, and Tonge in the fine text [14]. In Examples

2.16 and 2.17, we shall calculate some explicit (p, q)-multi-norms; these results will be

used later to show that certain (p, q)-multi-norms are not mutually equivalent. It was

already known that the (1, 1)-multi-norm is the maximum multi-norm on each normed

space.

In §2.6, we shall describe the standard t-multi-norm on a Banach space Lr(Ω, µ),

where (Ω, µ) is a measure space; these multi-norms played an important role in [11],

especially in connection with the theory of multi-bounded operators between Banach

lattices. In §2.7, we shall describe the Hilbert multi-norm based on a Hilbert space; in

fact, this is equal to the (2, 2)-multi-norm based on the same space.

Our first aim in Chapter 3 is to determine when two (p, q)-multi-norms based on a

space Lr(Ω, µ) are mutually equivalent; here 1 ≤ p ≤ q < ∞ and r ≥ 1. In the case

where r = 1, complete results are given in §3.1. The case where r > 1 is more difficult,

and there is a clear distinction between the cases where r < 2 and r ≥ 2. To discuss the

question, it is helpful to consider certain curves Cc and Dc, defined for for 0 ≤ c < 1; the

union of these curves fills out the ‘triangle’ T = {(p, q) : 1 ≤ p ≤ q}. A picture of these

curves in the case where r > 2 is given on page 32.

We say that two points P1 = (p1, q1) and P2 = (p2, q2) in T are equivalent if the

corresponding (p, q)-multi-norms are equivalent on Lr(Ω). In Theorem 3.11, we shall show

that in the ‘upper-left’ of our diagram, P1 and P2 are mutually equivalent, and that the

corresponding multi-norms are equivalent to the minimum multi-norm. It is also shown

that, otherwise, P1 and P2 are not equivalent whenever they lie on distinct curves Dc.

Thus we must turn to consideration of points on the same curve Dc (for c < 1/r̄, where

r̄ = min{2, r}). In §3.6, we shall use Khintchine’s inequalities to show that P1 and P2

are not equivalent on the space ℓr whenever they are not equivalent on ℓ2, and hence

whenever the spaces Πq1,p1
(ℓ2) and Πq2,p2

(ℓ2) are distinct; the latter question is classical,

and full results are given in [14]. Thus we are able to resolve most questions of mutual

equivalence of (p, q)-multi-norms on Lr(Ω, µ). Results in the case where r ∈ (1, 2) are

given in Theorem 3.16, and those in the case where r ≥ 2 are given in Theorem 3.18.

Some cases are left open in Theorems 3.16 and 3.18, but a full solution is given in the

case where r = 2. Some of the remaining cases will be resolved in [7].

Let Ω be a measure space, and take r ≥ 1. In §3.8, we shall consider the conjecture

that the multi-norms (‖ · ‖[t]n ) and (‖ · ‖(p,q)n ) are not mutually equivalent whenever r > 1

and Lr(Ω) is infinite-dimensional. (By Theorem 2.20, (‖ · ‖[q]n ) = (‖ · ‖(1,q)n ) on L1(Ω) for

q ≥ 1.) We shall prove this conjecture for many, but not all, values of p, q, and r in

Theorem 3.22. Further results will be given in [7].



Equivalence of multi-norms 7

Let H be a complex Hilbert space. Then the Hilbert multi-norm, the (p, p)-multi-

norms for p ∈ [1, 2], and the maximum multi-norm based on H are all pairwise equivalent.

In Chapter 4, we shall discuss these norms in more detail. For example, we know that,

for each p ∈ [1, 2], there is a constant Cp such that ‖x‖max
n = ‖x‖(1,1)n ≤ Cp‖x‖(p,p)n for

all x ∈ Hn and all n ∈ N. In §4.1, we shall show that 2/
√
π is the best value of C2; this

is a consequence of the ‘Little Grothendieck Theorem’.

In the remainder of Chapter 4, we shall consider the best constant cn, defined for each

fixed n ∈ N, such that ‖x‖max
n ≤ cn‖x‖(2,2)n for x ∈ Hn. We shall show that c2 = 1, but

that c3 > 1 in the real case; however, a rather long calculation will show that c3 = 1 in

the complex case; finally, we shall show in §4.5 that c4 > 1 even in the complex case.

Two points left open in the present work will be resolved in [7]; see Remarks 3.17 and

3.19.

We first give some background to the material of this paper, and recall some definitions

from earlier works.

1.1. Basic notation. The natural numbers and the integers are N and Z, respectively.

For n ∈ N, we set Nn = {1, . . . , n}. The complex field is C; the unit circle and open unit

disc in C are T and D, respectively.

Let 1 ≤ p ≤ ∞. Then the conjugate to p is denoted by p′, so that 1 ≤ p′ ≤ ∞ and

satisfies 1/p+ 1/p′ = 1.

Let (αn) and (βn) be two sequences of complex numbers. Then (αn) and (βn) are

similar , written αn ∼ βn, if there are constants C1, C2 > 0 such that

C1|αn| ≤ |βn| ≤ C2|αn| (n ∈ N).

An easy form of Hölder’s inequality gives the following. Let p, q ∈ [1,∞] be conjugate

indices. Then, for each n ∈ N and each x1, . . . , xn, y1, . . . , yn ∈ C, we have
n∑

j=1

|xjyj | ≤
( n∑

j=1

|xj |p
)1/p ( n∑

j=1

|yj |q
)1/q

. (1.1)

Now take a1, . . . , an ∈ R+ and r, s with 1 ≤ r ≤ s. Then (in the case where r < s) we

apply (1.1) with xj = arj and yj = 1 for j ∈ Nn and with p = s/r and q = s/(s − r) to

see that
1

n1/r
(ar1 + · · ·+ arn)

1/r ≤ 1

n1/s
(as1 + · · ·+ asn)

1/s. (1.2)

1.2. Linear and Banach spaces. Let E be a linear space (always taken to be over the

complex field, C, unless otherwise stated).

Let C be a convex set in E. An element x ∈ C is an extreme point if C \ {x} is also

convex; the set of extreme points of C is denoted by exC. Let x ∈ C. Then, to show that

x ∈ exC, it suffices to show that u = 0 whenever u ∈ E and x± u ∈ C.

For a linear space E and n ∈ N, we denote by En the linear space direct product of n

copies of E. g Let F be another linear space. Then the linear space of all linear operators

from E to F is denoted by L(E,F ). The identity operator on E is IE , or just I when the

space is obvious.
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Let E be a normed space. The closed unit ball and unit sphere of E are denoted by E[1]

and SE , respectively, so that exE[1] ⊂ SE . We denote the dual space of E by E′; the

action of λ ∈ E′ on an element x ∈ E is written as 〈x, λ〉, and the canonical embedding

of E into its bidual E′′ is κE : E → E′′.

Let E and F be normed spaces. Then B(E,F ) is the normed space of all bounded

linear operators from E to F ; it is a Banach space whenever F is complete. The ideal

of finite-rank operators in B(E,F ) is denoted by F(E,F ). We set B(E) = B(E,E), so

that B(E) is a unital normed algebra; it is a Banach algebra whenever E is complete.

The dual of T ∈ B(E,F ) is T ′ ∈ B(F ′, E′), so that ‖T ′‖ = ‖T‖. The closed ideal of B(E)

consisting of the compact operators is denoted by K(E).

A closed subspace F of a normed space E is λ-complemented if there exists P ∈ B(E)

with P 2 = P , with P (E) = F , and with ‖P‖ ≤ λ.

We write E ∼= F when two Banach spaces (E, ‖ · ‖) and (F, ‖ · ‖) are isometrically

isomorphic.

Let (Ω, µ) be a measure space, and take p ≥ 1. Then we denote by Lp(Ω) = Lp(Ω, µ)

(or Lp(µ)) the Banach space of (equivalence classes of) complex-valued, p-integrable func-

tions on Ω, equipped with the norm ‖ · ‖p, which is given by

‖f‖p =

(∫

Ω

|f(x)|p dµ(x)
)1/p

=

(∫

Ω

|f |p dµ
)1/p

(f ∈ Lp(Ω)).

We also define the related space L∞(Ω) = L∞(Ω, µ). All these spaces are Dedekind

complete (complex) Banach lattices in the standard way. For some background on Banach

lattices that is sufficient for our purposes, see [11, §1.3].
Let c0 and ℓp be the usual Banach spaces of sequences, where 1 ≤ p ≤ ∞. We shall

write (δn)
∞
n=1 for the standard unit Schauder basis for c0 and ℓp (when p ≥ 1). For n ∈ N,

we write ℓ∞n and ℓpn for the linear space Cn with the supremum and ℓp norms, respectively;

we regard each ℓ∞n as a subspace of c0, and hence regard (δi)
n
i=1 as a basis for ℓ∞n . The

space of all continuous functions on a compact Hausdorff space K is denoted by C(K).

We shall several times use the following two results.

Proposition 1.1. Take p ≥ 1, and let Ω be a measure space such that Lp(Ω) is infinite-

dimensional. Then there is an isometric lattice homomorphism J : ℓp → Lp(Ω) and a

positive contraction of Lp(Ω) onto J(ℓp), so that J(ℓp) is 1-complemented in Lp(Ω).

Proof. This is [4, 4.1], for example.

Proposition 1.2. Let E be an infinite-dimensional Banach space, and take ε > 0 and

n ∈ N. Then there exist x1, . . . , xn ∈ E such that

1− ε ≤ ‖xn‖ ≤ 1 (n ∈ N)

and ∥∥∥
n∑

i=1

αixi

∥∥∥ ≤
( n∑

i=1

|αi|2
)1/2

(α1, . . . , αn ∈ C).

Proof. By Dvoretzky’s theorem, E contains near-isometric copies of ℓ2n, and this gives

the result. Actually, our claim is somewhat weaker, and follows from more elementary

arguments, given in [14, Lemma 1.3], for example.
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We shall refer to Lorentz sequence spaces. Suppose that 1 ≤ p ≤ q < ∞. Then the

Lorentz sequence space ℓp,q consists of the sequences x = (xn) ∈ c0 such that

‖x‖p,q =
( ∞∑

n=1

nq/p−1(x∗
n)

q
)1/q

< ∞,

where x∗ is the decreasing re-arrangement of |x|; the version based on Nn is ℓp,qn . For this

definition, see [14, p. 207], for example. The spaces (ℓp,q, ‖ · ‖p,q) are Banach spaces. In

the case where q = p, we obtain the usual spaces ℓp and ℓpn.

We shall also refer to Schatten classes. Let H be a Hilbert space. For p ≥ 1, the p-th

Schatten class Sp(H) consists of the compact operators T ∈ K(H) such that the positive

operator (T ∗T )p/2 has finite trace; the norm ‖ · ‖Sp
on Sp(H) is given by

‖T‖Sp
=

(
tr((T ∗T )p/2)

)1/p
(T ∈ Sp(H)).

Equivalently, T ∈ Sp(H) if and only if the operator |T | = (T ∗T )1/2 is compact and

λ = (λn) ∈ ℓp, where (λn) is the (decreasing) sequence of non-zero eigenvalues of |T |,
counted according to their multiplicities; now ‖T‖Sp

= ‖λ‖p. The space (Sp(H), ‖ · ‖Sp
)

is a Banach operator ideal in B(H); the ideal S2(H) coincides with the space of Hilbert–

Schmidt operators on H, and the corresponding norm is the Hilbert–Schmidt norm.

In the case where 2 < p < q < ∞, the space S2q/p,q(H) consists of the operators

T ∈ B(H) such that the above sequence of eigenvalues belongs to the Lorentz sequence

space ℓ2q/p,q, and so satisfies the condition that

‖T‖S2q/p,q
=

( ∞∑

n=1

np/2−1λq
n

)1/q

< ∞.

Suppose that H is an infinite-dimensional Hilbert space, and let (en) be an ortho-

normal sequence in H. For α > 0, set Tαen = n−αen (n ∈ N), so that Tα extends to

an operator in B(H) in an obvious way. Then Tα ∈ Sp(H) if and only if αp > 1. Thus

Sp(H) 6= Sq(H) whenever p, q ≥ 1 with p 6= q. Further, Tα ∈ S2q/p,q(H) if and only if

α > p/2q, and so Sr(H) 6= S2q/p,q(H) whenever r 6= 2q/p.

Now suppose that r = 2q/p. We take an infinite subset X of N, and define T ∈ B(H)

by setting Ten = n−αen (n ∈ X) and Ten = 0 (n ∈ N \ X), where qα = 1 − p/2, and

again extending T to belong to B(H). Then T ∈ Sr(H) if and only if
∑

n∈X

n2/p−1 < ∞,

and so T ∈ Sr(H) for a suitably ‘sparse’ set X, noting that 2/p − 1 < 0. However,

T ∈ S2q/p,q(H) if and only if
∑

n∈X 1 < ∞, and this is never the case for infinite X. Thus

it is always true that the spaces Sr(H) and S2q/p,q(H) are distinct.

Similarly, the spaces S2q/p,q(H) corresponding to pairs (p1, q1) and (p2, q2) are distinct

whenever (p1, q1) 6= (p2, q2).

1.3. Summing norms and summing operators. Let E be a normed space, and let

n ∈ N. Following the notation of [11, 12, 18], we define the weak p-summing norm (for

1 ≤ p < ∞) on En by
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µp,n(x) = sup
{( n∑

i=1

|〈xi, λ〉|p
)1/p

: λ ∈ E′
[1]

}
,

where x = (x1, . . . , xn) ∈ En. We set ℓ pn(E)w = (En, µp,n). It follows from [18, p. 26]

that, for each x = (x1, . . . , xn) ∈ En, we have

µp,n(x) = sup
{∥∥∥

n∑

i=1

ζixi

∥∥∥ : ζ1, . . . , ζn ∈ C,

n∑

i=1

|ζi|p
′ ≤ 1

}
. (1.3)

We also have

µp,n(x) = ‖Tx : ℓp
′

n → E‖, (1.4)

where Tx : (β1, . . . , βn) 7→
∑n

i=1 βixi belongs to B(ℓp′

n , E). Thus the map x 7→ Tx is an

isometric isomorphism from (En, µp,n) onto B(ℓp′

n , E). Also, let F be another normed

space, and take T ∈ B(E,F ). Then clearly

µp,n(Tx1, . . . , Txn) ≤ ‖T‖µp,n(x1, . . . , xn) (x1, . . . , xn ∈ E, n ∈ N).

We note that

µp1,n(x) ≥ µp2,n(x) (x ∈ En, n ∈ N)

whenever 1 ≤ p1 ≤ p2 < ∞.

We also define the weak p-summing norm of a sequence x = (xi) of elements in E by

µp(x) = sup
{( ∞∑

i=1

|〈xi, λ〉|p
)1/p

: λ ∈ E′
[1]

}
= lim

n→∞
µp,n(x1, . . . , xn);

thus µp(x) takes values in [0,∞]. The sequences x such that µp(x) < ∞ are the weakly

p-summable sequences in E, and the space of these sequences is ℓp(E)w; see [14, p. 32]

and [24, p. 134], where µp( · ) is denoted by ‖ · ‖weak
p and ‖ · ‖wp , respectively. It follows

from [18, p. 26] that, for each sequence x = (xi) in E, we have

µp(x) = sup
{∥∥∥

∞∑

i=1

ζixi

∥∥∥ : (ζi) ∈ (ℓp
′

)[1]

}
. (1.5)

Suppose that 1 ≤ p ≤ q < ∞. We recall from [14, Chapter 10] that an operator T

from a normed space E into another normed space F is (q, p)-summing if there exists a

constant C such that

( n∑

i=1

‖Txi‖q
)1/q

≤ C µp,n(x1, . . . , xn) (x1, . . . , xn ∈ E, n ∈ N).

The smallest such constant C is denoted by πq,p(T ). The set of these (q, p)-summing

operators, which is denoted by Πq,p(E,F ), is a linear subspace of B(E,F ) and a normed

space when equipped with the norm πq,p; (Πq,p(E,F ), πq,p) is a Banach space when E

and F are Banach spaces. In the case where p = q, we shall write Πp and πp instead

of Πp,p and πp,p, respectively. The space (Πp, πp) of all p-summing operators has been

studied by many authors; see [13, 14, 17, 18, 24], for example. In the case where E = F ,

we shall write Πq,p(E) instead of Πq,p(E,E), πq,p(E) instead of πq,p(E,E), etc.
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A basic inclusion theorem [14, Theorem 2.8] shows that Πp(E,F ) ⊂ Πq(E,F ) when-

ever 1 ≤ p ≤ q < ∞. A more complicated inclusion theorem [14, Theorem 10.4] will be

used in Theorem 2.11, given below.

Let us make some obvious remarks about summing operators. Let E, F , and G be

Banach spaces, and take T ∈ B(E,F ) and 1 ≤ p ≤ q < ∞. Then:

• T ∈ Πq,p(E,F ) if and only if S ◦ T ∈ Πq,p(E,G), with equal norm, for any isometry

S : F → G ;

• T ∈ Πq,p(E,F ) if and only if T ◦ P ∈ Πq,p(G,F ), with equal norm, for any contractive

projection P : G → E.

These remarks will be used implicitly at some future points.

The Pietsch domination theorem can be stated in the following way (cf. the discussion

after [24, Theorem 6.18]). Take p ≥ 1. A map T ∈ B(E,F ) is p-summing if and only if

we can find a non-empty, compact Hausdorff space K and a probability measure µ on

K, together with operators V ∈ B(E,C(K)) and U ∈ B(Lp(µ), ℓ∞(I)) such that the

following diagram commutes:

E
T //

V

��

F
�

� // ℓ∞(I)

C(K) // Lp(µ)

U

OO

Here the map C(K) → Lp(µ) is the canonical inclusion map, I is a suitable index set,

and ℓ∞(I) can be replaced by any injective Banach space G such that F is isometric to

a subspace of G.

Let E and F be normed spaces. Take n ∈ N, and suppose that 1 ≤ p ≤ q < ∞. Then

the (q, p)-summing constants of the operator T ∈ B(E,F ) are the numbers

π(n)
q,p (T ) := sup

{( n∑

i=1

‖Txi‖ q
)1/q

: x1, . . . , xn ∈ E, µp,n(x1, . . . , xn) ≤ 1
}
.

Further, π
(n)
q,p (E) = π

(n)
p,q (IE); these are the (q, p)-summing constants of the normed

space E. We write π
(n)
p (T ) for π

(n)
p,p (T ) and π

(n)
p (E) for π

(n)
p,p (E). It follows that

π(n)
q,p (E) = sup

{( n∑

i=1

‖xi‖ q
)1/q

: x1, . . . , xn ∈ E, µp,n(x1, . . . , xn) ≤ 1
}
. (1.6)

Proposition 1.3. Suppose that 1 ≤ p ≤ q < ∞ and that n ∈ N. Then:

(i) π
(n)
q,p (E) ≤ n1/q for each normed space E;

(ii) π
(n)
q,p (E) = n1/q for each infinite-dimensional normed space E whenever p ≥ 2;

(iii) π
(n)
q,p (E) ≥ n1/2−1/p+1/q for each infinite-dimensional normed space E whenever

p ≤ 2;

(iv) π
(n)
q,p (ℓs) = n1/q whenever s ∈ [1,∞] and p ≥ min{s′, 2}.

Proof. (i) This is immediate.
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(ii) Take ε > 0, and choose x1, . . . , xn ∈ E to be as specified in Proposition 1.2. For

each ζ1, . . . , ζn ∈ C with
∑n

i=1 |ζi|p
′ ≤ 1, we have

∥∥∥
n∑

i=1

ζixi

∥∥∥ ≤
( n∑

i=1

|ζi|2
)1/2

≤
( n∑

i=1

|ζi|p
′
)1/p′

because p′ ≤ 2. Thus, by equation (1.3), µp,n(x1, . . . , xn) ≤ 1, and so

π(n)
q,p (E) ≥ (1− ε)n1/q.

This holds true for each ε > 0, and so π
(n)
q,p (E) ≥ n1/q. By (i), π

(n)
q,p (E) = n1/q.

(iii) Take ε > 0 and choose x1, . . . , xn ∈ E as in (ii). Now, since p′ ≥ 2, the argument

in (ii) shows that µp,n(x1, . . . , xn) ≤ n1/2−1/p′

, and so

π(n)
q,p (E) ≥ (1− ε)n1/2−1/p+1/q

for every ε > 0. Hence π
(n)
q,p (E) ≥ n1/2−1/p+1/q.

(iv) In the case where p ≥ 2, this follows from (ii). Now suppose that p ≥ s′. Take

xj = δj (j ∈ Nn). As in the proof of (ii), we see that µp,n(x1, . . . , xn) ≤ 1, and so

π
(n)
q,p (ℓs) ≥ n1/q.

We shall also need the following simple interpolation result.

Proposition 1.4. Let E be a normed space. Suppose that 1 ≤ p ≤ q1 < q < q2 < ∞, so

that
1

q
=

1− θ

q1
+

θ

q2

for some θ ∈ (0, 1). Then

π(n)
q,p (E) ≤ (π(n)

q1,p(E))1−θ · (π(n)
q2,p(E))θ (n ∈ N).

Proof. Take x1, . . . , xn ∈ E with µp,n(x1, . . . , xn) ≤ 1. Using a version of Hölder’s in-

equality, we see that

( n∑

i=1

‖xi‖ q
)1/q

≤
( n∑

i=1

‖xi‖(1−θ)[q1/(1−θ)]
)(1−θ)/q1

·
( n∑

i=1

‖xi‖θ[q2/θ]
)θ/q2

≤ (π(n)
q1,p(E))1−θ · (π(n)

q2,p(E))θ,

which implies the result.

1.4. Tensor norms. Let E and F be linear spaces. Then E ⊗ F denotes the algebraic

tensor product of E and F .

Let E1, E2, F1, F2 be linear spaces, and take S ∈ L(E1, E2) and T ∈ L(F1, F2). Then

S ⊗ T denotes the unique linear operator from E1 ⊗ F1 to E2 ⊗ F2 such that

(S ⊗ T )(x⊗ y) = Sx⊗ Ty (x ∈ E1, y ∈ F1).

In particular, we have defined λ⊗µ whenever λ and µ are linear functionals on E1 and F1,

respectively.

Now suppose that E and F are normed spaces. We shall discuss various norms on the

space E ⊗ F . For the definitions and properties stated below, see [13, Chapter I], [14],

and [24, Section 6.1], for example.
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We shall often regard E ⊗ F as a linear subspace of B(F ′, E) by setting

(x⊗ y)(λ) = 〈y, λ〉x (x ∈ E, y ∈ F, λ ∈ F ′);

in this way, we identify E⊗F with F(F ′, E) ⊂ B(F ′, E). Similarly, we can identify E⊗F

with F(E′, F ) ⊂ B(E′, F ).

The injective and projective tensor norms on E ⊗ F are denoted by ‖ · ‖ε and ‖ · ‖π,
respectively; the completions of E ⊗ F with respect to these norms are denoted by

(E

〈⊗F, ‖ · ‖ε) and (E ⊗̂F, ‖ · ‖π),
respectively.

For µ ∈ (E ⊗̂F )′, define Tµ by

〈y, Tµx〉 = 〈x⊗ y, µ〉 (x ∈ E, y ∈ F ).

Then Tµx ∈ F ′ (x ∈ E), Tµ ∈ B(E,F ′), and the map

µ 7→ Tµ, (E ⊗̂F )′ → B(E,F ′), (1.7)

is an isometric isomorphism, and so (E ⊗̂F )′ ∼= B(E,F ′).

A norm ‖ · ‖ on E ⊗ F is a sub-cross-norm if

‖x⊗ y‖ ≤ ‖x‖ ‖y‖ (x ∈ E, y ∈ F )

and a cross-norm if

‖x⊗ y‖ = ‖x‖ ‖y‖ (x ∈ E, y ∈ F ).

Further, a sub-cross-norm ‖ · ‖ on E⊗F is a reasonable cross-norm if the linear functional

λ⊗µ is bounded and ‖λ⊗µ‖ ≤ ‖λ‖ ‖µ‖ for each λ ∈ E′ and µ ∈ F ′. In fact, a sub-cross-

norm is reasonable if and only if

‖z‖ε ≤ ‖z‖ ≤ ‖z‖π (z ∈ E ⊗ F ).

Let α be a reasonable cross-norm on E⊗F . Then the completion of the normed space

(E ⊗ F, α) is denoted by E ⊗̂α F . The map in (1.7) identifies the dual of E ⊗̂α F with a

linear subspace of B(E,F ′).

A uniform cross-norm is an assignment of a cross-norm to E ⊗ F for all pairs of

Banach spaces (E,F ), with the property that, for each operator S ∈ B(E1, E2) and

T ∈ B(F1, F2), the linear map S⊗T : E1⊗F1 → E2⊗F2 is bounded, with norm at most

‖S‖ ‖T‖, with respect to the assigned norms on E1⊗F1 and E2⊗F2. The projective and

injective tensor norms are uniform cross-norms. For further details, see [13, §12.1] and
[24, §6.1].

For Banach spaces E and F , the (right) Chevet–Saphar norm dp on E ⊗F is defined

as

dp(z) = inf
n∈N

{
µp′,n(x1, . . . , xn)

( n∑

i=1

‖yi‖p
)1/p

: z =

n∑

i=1

xi ⊗ yi ∈ E ⊗ F
}
;

see, for example, [13, Chapter 12] and [24, p. 135]. This norm is a reasonable cross-norm;

in fact, it is a uniform cross-norm.

Given a tensor z ∈ E ⊗ F , let zt be the ‘flipped’ tensor in F ⊗ E. We define the left

Chevet–Sapher norm gp by gp(z) = dp(z
t) [24, p. 135].
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Let α be a uniform cross-norm. Following [24, Chapter 7], we define the Schatten dual

tensor norm αs by

αs(z) = sup{|〈z, λ〉| : λ ∈ E′ ⊗ F ′, α(λ) ≤ 1} (z ∈ E ⊗ F ),

using the obvious dual pairing between E⊗F and E′⊗F ′. In general, this does not lead

to a satisfactory duality theory, as it may happen that (αs)s 6= α. To correct this, we

define the dual tensor norm α′ by first setting α′ = αs on E ⊗ F whenever E and F are

finite-dimensional spaces, and then extend α′ to all Banach spaces by finite generation.

The details are technical, and we refer the reader to [13, Chapter II] and [24, Chapter 7]

for further information.

We say that a uniform cross-norm α is totally accessible if the embedding of E⊗F into

(E′ ⊗̂ α′F ′)′ induces the norm α on E ⊗ F for all Banach spaces E and F . That is, α is

totally accessible if (α′)s = α. In the case where this is true under the additional hypoth-

esis that at least one of the two spaces E or F has the metric approximation property,

α is said to be accessible. For us, it is important that c0 has the metric approximation

property and that many norms α on spaces E ⊗ F are accessible. For example, by [24,

Proposition 7.21], gp is an accessible norm for any p (and hence the same is true of dp).

Let E and F be normed spaces. A bounded operator T : E → F is p-integral if it

gives a bounded linear functional on the space E ⊗̂ g′
p
F ′, and the p-integral norm of T ,

denoted by ip(T ), is defined to be the norm of this functional; see [24, §7.3]. Such maps

have a representation theory which is analogous to the Pietsch representation theorem

for p-summing operators; see [24, Theorem 7.22], for example. Indeed, we can factor such

an operator T as

E
T //

��

F
κF // F ′′

C(K) // Lp(µ)

OO

Comparing this to the factorisation result above for p-summing maps, we see that the

only difference is that here we embed F into its bidual F ′′, but for a p-summing map,

we embed F into an injective space. Thus every p-integral map is p-summing. In the

special case where F = c0, we know that F ′′ = ℓ∞, and so we conclude with the following

proposition.

Proposition 1.5. Let E be a normed space. Then the classes of p-summing and p-

integral maps from E to c0 coincide, with equal norms.

2. Basic facts on multi-normed spaces

2.1. Multi-normed spaces. The following definition is due to Dales and Polyakov.

For a full account of the theory of multi-normed spaces, see [11], and, for further work,

see [12]. The main definition is taken from [11, Definition 2.1].

Definition 2.1. Let (E, ‖ · ‖) be a normed space, and let (‖ · ‖n : n ∈ N) be a sequence

such that ‖ · ‖n is a norm on En for each n ∈ N, with ‖ · ‖1 = ‖ · ‖ on E = E1. Then the
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sequence (‖ · ‖n : n ∈ N) is a multi-norm if the following axioms hold (where in each case

the axiom is required to hold for all n ∈ N and all x1, . . . , xn ∈ E):

(A1) ‖(xσ(1), . . . , xσ(n))‖n = ‖(x1, . . . , xn)‖n for each permutation σ of Nn;

(A2) ‖(α1x1, . . . , αnxn)‖n ≤ maxi∈Nn
|αi| ‖(x1, . . . , xn)‖n (α1, . . . , αn ∈ Cn);

(A3) ‖(x1, . . . , xn, 0)‖n+1 = ‖(x1, . . . , xn)‖n;
(A4) ‖(x1, . . . , xn−1, xn, xn)‖n+1 = ‖(x1, . . . , xn−1, xn)‖n.
The space E equipped with a multi-norm is a multi-normed space, written in full as

((En, ‖ · ‖n) : n ∈ N); we say that the multi-norm is based on E.

In the case where E is a Banach space, (En, ‖ · ‖n) is a Banach space for each n ∈ N,

and we refer to a multi-Banach space.

Let (‖ · ‖1n : n ∈ N) and (‖ · ‖2n : n ∈ N) be two multi-norms based on a normed

space E. Then, following [11, Definition 2.23], we write

(‖ · ‖1n) ≤ (‖ · ‖2n)
if ‖x‖1n ≤ ‖x‖2n for each x ∈ En and n ∈ N, and write

(‖ · ‖1n) = (‖ · ‖2n)
if ‖x‖1n = ‖x‖2n for each x ∈ En and n ∈ N. The multi-norm (‖ · ‖2n : n ∈ N) dominates a

multi-norm (‖ · ‖1n : n ∈ N) if there is a constant C > 0 such that

‖x‖1n ≤ C‖x‖2n (x ∈ En, n ∈ N), (2.1)

and, in this case, we write

(‖ · ‖1n) 4 (‖ · ‖2n).
The two multi-norms are equivalent, written

(‖ · ‖1n) ∼= (‖ · ‖2n),
if each dominates the other; if the two multi-norms are not equivalent, we shall write

(‖ · ‖1n) 6∼= (‖ · ‖2n).
We shall be interested in determining when one multi-norm dominates the other (and,

in this case, in the best value of the constant C in equation (2.1)) and when two multi-

norms are equivalent.

Let ((En, ‖ · ‖n) : n ∈ N) be a multi-normed space. For n ∈ N, define

ϕn(E) = sup{‖(x1, . . . , xn)‖n : x1, . . . , xn ∈ E[1]}.
Then the sequence (ϕn(E)) is the rate of growth corresponding to the multi-norm [11,

Definition 3.1]. This sequence depends on both E and the specific multi-norm.

2.2. Multi-norms as tensor norms. In [12], we explained how multi-norms correspond

to certain tensor norms. We recall this briefly; details are given in [12, §3].
Definition 2.2. Let E be a normed space. Then a norm ‖ · ‖ on c0 ⊗ E is a c0-norm

if ‖δ1 ⊗ x‖ = ‖x‖ for each x ∈ E and if the linear operator T ⊗ IE is bounded on

(c0 ⊗ E, ‖ · ‖), with norm at most ‖T‖, for each T ∈ K(c0).

Similarly, a norm ‖ · ‖ on ℓ∞⊗E is an ℓ∞-norm if ‖δ1 ⊗ x‖ = ‖x‖ for each x ∈ E and

if T ⊗ IE is bounded on (ℓ∞ ⊗ E, ‖ · ‖), with norm at most ‖T‖, for each T ∈ K(ℓ∞).
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By [12, Lemma 3.3], each c0-norm on c0 ⊗ E and each ℓ∞-norm on ℓ∞ ⊗ E is a

reasonable cross-norm.

Suppose that ‖ · ‖ is a c0-norm on c0 ⊗ E, and set

‖(x1, . . . , xn)‖n =
∥∥∥

n∑

i=1

δi ⊗ xi

∥∥∥ (x1, . . . , xn ∈ E, n ∈ N).

Then (‖ · ‖n : n ∈ N) is a multi-norm based on E.

A more general and detailed version of the following theorem is given as [12, Theo-

rem 3.4].

Theorem 2.3. Let E be a normed space. Then the above construction defines a bijection

from the family of c0-norms on c0 ⊗ E to the family of multi-norms based on E.

We shall be interested in uniform cross-norms, restricted to tensor products of the

form c0 ⊗ E. This motivates us to give the following definition.

Definition 2.4. A uniform c0-norm is an assignment of a c0-norm ‖ · ‖ to c0⊗E for all

Banach spaces E such that the operator I⊗T : c0⊗E → c0⊗F is bounded with respect

to the two corresponding norms, with norm ‖T‖, for any normed spaces E and F and

each T ∈ B(E,F ).

Let E be a normed space. As in [11] and [12], there is a maximum multi-norm based

on E; it is denoted by (‖ · ‖max
n : n ∈ N), and is defined by the property that

‖x‖n ≤ ‖x‖max
n (x ∈ En, n ∈ N)

for every multi-norm (‖ · ‖n : n ∈ N) based on E. This multi-norm corresponds to the

projective tensor norm ‖ · ‖π on c0 ⊗ E via the above correspondence. By [11, Theorem

3.33], for each n ∈ N and x = (x1, . . . , xn) ∈ En, we have

‖x‖max
n = sup

{∣∣∣
n∑

i=1

〈xi, λi〉
∣∣∣ : λ1, . . . , λn ∈ E′, µ1,n(λ1, . . . , λn) ≤ 1

}
. (2.2)

The rate of growth sequence corresponding to the maximum multi-norm based on E is

intrinsic to E; it is denoted by (ϕmax
n (E)). The value of this sequence for various examples

is calculated in [11, §3.6]. For example, for n ∈ N, we have ϕmax
n (ℓp) = n1/p for p ∈ [1, 2]

and ϕmax
n (ℓp) = n1/2 for p ∈ [2,∞] [11, Theorem 3.54]. It is shown in [11, Theorem 3.58]

that
√
n ≤ ϕmax

n (E) ≤ n (n ∈ N) for each infinite-dimensional Banach space E.

Similarly, there is a minimum multi-norm (‖ · ‖min
n : n ∈ N) based on a normed

space E. As in [11, Definition 3.2], it is defined by

‖(x1, . . . , xn)‖min
n = max

i∈N

‖xi‖ (x1, . . . , xn ∈ E).

The minimum multi-norm based on E corresponds to the injective tensor norm ‖ · ‖ε on

c0 ⊗ E in the above correspondence, and so the minimum multi-norm on c0 ⊗ E is the

relative norm on F(E′, c0) from (B(E′, c0), ‖ · ‖). Of course, the rate of growth sequence

of the minimum multi-norm is the constant sequence 1.
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2.3. The (p, q)-multi-norm. We recall the definition of the (p, q)-multi-norm based on

a normed space E.

Let E be a normed space, and take p, q ∈ [1,∞). Following [11, Definition 4.1.1] and

[12, §1], for each n ∈ N and each x = (x1, . . . , xn) ∈ En, we define

‖x‖(p,q)n = sup
{( n∑

i=1

|〈xi, λi〉|q
)1/q

: µp,n(λ) ≤ 1
}
,

where the supremum is taken over all λ = (λ1, . . . , λn) ∈ (E′)n. It is clear that ‖ · ‖(p,q)n

is a norm on En. As noted in [11, Theorem 4.1], (‖ · ‖(p,q)n : n ∈ N) is a multi-norm based

on E whenever 1 ≤ p ≤ q < ∞.

Definition 2.5. Let E be a normed space, and suppose that 1 ≤ p ≤ q < ∞. Then

the multi-norm (‖ · ‖(p,q)n : n ∈ N) described above is the (p, q)-multi-norm over E. The

corresponding c0-norm on c0 ⊗ E is ‖ · ‖(p,q).
The rate of growth sequence corresponding to the above (p, q)-multi-norm is denoted

by (ϕ
(p,q)
n (E)), as in [11, Definition 4.2].

We shall use the following remark, from [11, Proposition 4.3]. Let F be a 1-comp-

lemented subspace of a Banach space E, and take x1, . . . , xn ∈ F . Then the value of

‖(x1, . . . , xn)‖(p,q)n is independent of whether it be calculated with respect to F or E.

Let E and F be normed spaces, and take T ∈ B(E,F ). Then clearly

‖(Tx1, . . . , Txn)‖(p,q)n ≤ ‖T‖‖(x1, . . . , xn)‖(p,q)n (x1, . . . , xn ∈ E, n ∈ N).

The following theorem refers to multi-bounded sets in and multi-bounded operators

on multi-normed spaces; for background information, see [12], and, in more detail, [11,

Chapter 6]. For example, the multi-bound of a multi-bounded set B is defined by

cB = sup
n∈N

{‖(x1, . . . , xn)‖n : x1, . . . , xn ∈ B}.

Theorem 2.6. Let E be a normed space, and suppose that 1 ≤ p ≤ q < ∞. Then the

(p, q)-multi-norm induces the norm on c0⊗E given by embedding c0⊗E into Πq,p(E
′, c0).

This norm is a uniform c0-norm on c0 ⊗ E.

Proof. We start by observing that [12, Theorem 4.2] shows that the ℓ1-norm (that is, the

dual multi-norm) on ℓ1 ⊗ E′ norms c0 ⊗ E. The converse is also true, so that we have

ℓ1 ⊗ E′ ⊂ (c0 ⊗ E)′, and the embedding is an isometry.

In [12, Definition 5.4], we defined Bp,q(ℓ
1, E) to be the set of those T ∈ B(ℓ1, E) which

are multi-bounded when we take the minimum multi-norm based on ℓ1 and the (p, q)-

multi-norm based on E. The norm on the space Bp,q(ℓ
1, E) is denoted by αp,q, so that

αp,q(T ) is equal to the multi-bound cB of the set B := {T (δk) : k ∈ N}. Thus the natural
inclusion of c0 ⊗ E into Bp,q(ℓ

1, E) (where we identify c0 ⊗ E with F(ℓ1, E)) induces

the (p, q)-multi-norm on c0 ⊗ E. It follows from [12, Proposition 5.5] that T belongs to

Bp,q(ℓ
1, E) if and only if the dual operator T ′ belongs to Πq,p(E

′, ℓ∞), with equal norms.

The combination of these two results immediately gives the result.

It remains to show that the resulting norm is a uniform c0-norm. Let T ∈ B(E,F ),

and consider the operator I ⊗ T : c0 ⊗ E → c0 ⊗ F . It is easy to see that we have the
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following commutative diagram:

c0 ⊗ E
I⊗T //

��

c0 ⊗ F

��
Πq,p(E

′, c0)
ϕ // Πq,p(F

′, c0)

Here ϕ is the map S 7→ S ◦T ′. Since the vertical arrows are isometries, it suffices to show

that ‖ϕ‖ ≤ ‖T‖ = ‖T ′‖. But this follows immediately from properties of (q, p)-summing

maps; see [14, Proposition 10.2].

Remark 2.7. A refinement of the above argument shows that, for each normed space E,

the (p, q)-multi-norm based on E′ induces the norm on c0⊗E′ given by embedding c0⊗E′

into Πq,p(E, c0).

It follows immediately from Theorem 2.6 and the closed graph theorem that the

(p1, q1)- and (p2, q2)-multi-norms are equivalent on E whenever

Πq1,p1
(E′, c0) = Πq2,p2

(E′, c0);

moreover, c0 can be replaced by any infinite-dimensional C(K)-space. The converse is

also true; this is a special case of the following theorem.

Theorem 2.8. Let E be a Banach space, and take p1, q1, p2, q2 such that 1 ≤ p1 ≤ q1 < ∞
and 1 ≤ p2 ≤ q2 < ∞. Suppose that the (p1, q1)- and (p2, q2)-multi-norms are mutually

equivalent on E. Then

Πq1,p1
(E′, F ) = Πq2,p2

(E′, F )

for every Banach space F .

Proof. Let F be a Banach space. It is standard that there is an isometry ϕ : F → ℓ∞(I)

for some index set I. For each finite subset A ⊂ I, let PA : ℓ∞(I) → c0 be the projection

map

ℓ∞(I) → ℓ∞(A) ⊂ c0.

Assume towards a contradiction that we have Πq1,p1
(E′, F ) 6⊂ Πq2,p2

(E′, F ), and take

T ∈ Πq1,p1
(E′, F ) \Πq2,p2

(E′, F ). From the definition of the (q, p)-summing norm, we see

that

πq,p(T ) = πq,p(ϕ ◦ T ) = sup
A

πq,p(PA ◦ ϕ ◦ T );

here we take the supremum over all finite subsets A ⊂ I. Hence there exists a sequence

(An) of finite subsets of I such that

n · πq1,p1
(Tn) < πq2,p2

(Tn) (n ∈ N),

where Tn := PAn
◦ ϕ ◦ T : E′ → ℓ∞(An) ⊂ c0 .

Take n ∈ N. Since Tn ∈ F(E′, c0), the operator Tn is induced by a tensor τn ∈ c0⊗E′′.

Remark 2.7 and the previous paragraph then show that

n · ‖τn‖(p1,q1)
c0⊗E′′ = n · πq1,p1

(Tn) < πq2,p2
(Tn) = ‖τn‖(p2,q2)

c0⊗E′′ .
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In fact, since An is finite, the tensor τn can be identified with an element xn ∈ (E′′)m(n)

for some m(n) ∈ N. Thus, this shows that the identity operator

((E′′)m(n), ‖ · ‖(p1,q1)
m(n) ) → ((E′′)m(n), ‖ · ‖(p2,q2)

m(n) )

has norm at least n. By [11, Corollary 4.14], it follows that the identity operator

(Em(n), ‖ · ‖(p1,q1)
m(n) ) → (Em(n), ‖ · ‖(p2,q2)

m(n) )

has norm at least n. This is true for every n ∈ N. But this contradicts the assumption

that the (p1, q1)- and the (p2, q2)-multi-norms are equivalent on E.

Corollary 2.9. Let E be a Banach space, and suppose that 1 ≤ p1 ≤ q1 < ∞ and

1 ≤ p2 ≤ q2 < ∞. Then the following are equivalent:

(a) (‖ · ‖(p1,q1)
n : n ∈ N) ∼= (‖ · ‖(p2,q2)

n : n ∈ N) on E;

(b) Πq1,p1
(E′, c0) = Πq2,p2

(E′, c0).

2.4. The (p, p)-multi-norm. We now give another description of the (p, p)-multi-norm.

Theorem 2.10. Let E be a normed space. Then the tensor norm on c0⊗E induced from

the (p, p)-multi-norm is the Chevet–Saphar norm dp on c0 ⊗ E.

Proof. By Theorem 2.6, the embedding of c0⊗E into Πp(E
′, c0) induces the (p, p)-multi-

norm. By Proposition 1.5, Πp(E
′, c0) agrees isometrically with the class of p-integral maps

from E′ to c0. By definition, the p-integral norm, ip(T ), of a map T : E′ → c0 is the

norm of the induced functional on E′ ⊗̂ g′
p
ℓ1 = ℓ1 ⊗̂ d′

p
E′. Hence the natural map

(c0 ⊗ E, ‖ · ‖(p,p)) → (ℓ1 ⊗̂ d′
p
E′)′

is an isometry. Since c0 has the metric approximation property and dp is an accessible

tensor norm, as explained in the introduction, it follows that the ‖ · ‖(p,p)-norm on c0⊗E

is just the dp norm, as claimed.

Thus we have another description of the (p, p)-multi-norm based on a normed space E.

The value of this result is that it gives an excellent description of the dual space to

(c0 ⊗ E, ‖ · ‖(p,p)), namely as

(c0 ⊗̂ dp
E)′ ∼= Πp′(c0, E

′),

the collection of p′-summing maps from c0 to E′; see [24, Proposition 6.11]. The maps in

Πp′(c0, E
′) are usually rather well understood.

In the general case where q ≥ p, we can give an abstract description of the dual space

of (c0 ⊗ E, ‖ · ‖(p,q)), as [11, §4.1.4], but we lack a good concrete description of this dual

space, and this means that we are unable to adapt the arguments of this section to the

more general case.

2.5. Relations between (p, q)-multi-norms. Let E be a normed space, and consider

the above (p, q)-multi-norms based on E, where 1 ≤ p ≤ q < ∞. It is clear that, for

each fixed p ≥ 1 and q1 ≥ q2 ≥ p, we have (‖ · ‖(p,q1)n ) ≤ (‖ · ‖(p,q2)n ), and, for each fixed

q ≥ 1 and p1 ≤ p2 ≤ q, we have (‖ · ‖(p1,q)
n ) ≤ (‖ · ‖(p2,q)

n ). Further, it is proved in [11,
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Theorem 4.4] that (‖ · ‖(p,p)n ) ≥ (‖ · ‖(q,q)n ) whenever 1 ≤ p ≤ q < ∞, and so (‖ · ‖(1,1)n ) is

the maximum among these multi-norms; by (2.2), it is the maximum multi-norm.

The following theorem, which follows immediately from Theorem 2.6 and the analo-

gous result for (q, p)-summing operators that is given in [14, Theorem 10.4], for example,

gives more information about the relations between (p, q)-multinorms.

To picture the theorem, consider the following. We write T for the extended ‘triangle’

given by

T = {(p, q) ∈ R2 : 1 ≤ p ≤ q},
and, for c ∈ [0, 1), we consider the curve

Cc = {(p, q) ∈ T : 1/p− 1/q = c};
we have

T =
⋃

{Cc : c ∈ [0, 1)}.

Then the multi-norm (‖ · ‖(p,q)n ) increases as we move down a fixed curve Cc, and it

increases when we move to a lower point on a curve to the right.

In the diagram, arrows indicate increasing multi-norms in the ordering ≤.

p(1, 1)

q

(p, q)
(q, q)

(p, p)

Cc C0

T

Theorem 2.11. Let E be a normed space, and take (p1, q1) and (p2, q2) in T . Then

(‖ · ‖(p1,q1)
n ) ≤ (‖ · ‖(p2,q2)

n ) whenever both 1/p2 − 1/q2 ≤ 1/p1 − 1/q1 and q2 ≤ q1.

It is easy to see that ϕ
(p,q)
n (E) = π

(n)
q,p (E′) for each normed space E and each n ∈ N

[11, Theorem 4.4], and so the following result is immediate from Proposition 1.3.

Proposition 2.12. Suppose that (p, q) is in T and that n ∈ N. Then:

(i) ϕ
(p,q)
n (E) ≤ n1/q for each normed space E;

(ii) ϕ
(p,q)
n (E) = n1/q for each infinite-dimensional normed space E whenever p ≥ 2;

(iii) ϕ
(p,q)
n (E) ≥ n1/2−1/p+1/q for each infinite-dimensional normed space E whenever

p ≤ 2;

(iv) ϕ
(p,q)
n (ℓr) = n1/q whenever r ≥ 1 and p ≥ min{r, 2}.

In Theorem 3.10, we shall improve clause (iv) of the above proposition by giving

(asymptotic) values of ϕ
(p,q)
n (ℓr) for all values of p and q with 1 ≤ p ≤ q < ∞ in the case

where r > 1.
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Corollary 2.13. Let E be an infinite-dimensional Banach space, and take (p1, q1) and

(p2, q2) in T . Then the (p1, q1)- and (p2, q2)-multi-norms based on E are not equivalent

whenever p1, p2 ≥ 2 and q1 6= q2.

Combining the previous proposition with Theorem 2.11, we obtain the following.

Corollary 2.14. Let E be an infinite-dimensional Banach space. Suppose that (p, q) is

in T .

(i) The (p, q)- and the maximum multi-norms based on E are not equivalent whenever

q > 2.

(ii) The (p, q)- and the minimum multi-norms based on E are not equivalent whenever

1/p− 1/q < 1/2.

Proof. (i) Take p1 ∈ (2, q). Then

(‖ · ‖(p,q)n ) ≤ (‖ · ‖(p1,p1)
n ) ≤ (‖ · ‖(2,2)n ).

However, (‖ · ‖(p1,p1)
n ) 6∼= (‖ · ‖(2,2)n ) on E by Proposition 2.12(ii), and so this implies that

(‖ · ‖(p,q)n ) 6∼= (‖ · ‖max
n ) on E.

(ii) This follows from Proposition 2.12.

We shall compare the (p, q)-multi-norms on Lr(Ω), and, when r > 1, we shall compute

ϕ
(p,q)
n (ℓr) asymptotically for all other values of p and q later. For these calculations,

we shall need to use the following proposition, which is an immediate consequence of

Proposition 1.4.

Proposition 2.15. Let E be a normed space. Suppose that 1 ≤ p ≤ q1 < q < q2 < ∞,

so that
1

q
=

1− θ

q1
+

θ

q2

for some θ ∈ (0, 1). Then

ϕ(p,q)
n (E) ≤ (ϕ(p,q1)

n (E))1−θ · (ϕ(p,q2)
n (E))θ (n ∈ N).

The following calculations of some specific (p, q)-multi-norms will also be useful.

Example 2.16. Let r ≥ 1, set s = r′, and take (p, q) ∈ T . Then

‖(δ1, . . . , δn)‖(p,q)n =
∥∥∥

n∑

i=1

ei ⊗ δi

∥∥∥
c0⊗ℓr

=
∥∥∥

n∑

i=1

ei ⊗ δi

∥∥∥
Πq,p(ℓs,c0)

= πq,p(In)

for each n ∈ N, where In is the formal identity map from ℓ sn to ℓ∞n . Here we are now

writing (δi) and (ei) for the standard bases in ℓr and c0, respectively.

The value of ‖(δ1, . . . , δn)‖(p,q)n based on the Banach space ℓr is calculated for certain

values of p and q in [11, Example 4.8]. We now calculate this value for all (p, q) ∈ T by

elementary means.

Fix n ∈ N, and, for (p, q) ∈ T , write

∆n(p, q) = ‖(δ1, . . . , δn)‖(p,q)n . (2.3)
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Set s = r′ and u = p′. Then

∆n(p, q) = sup
{( n∑

i=1

|λi,i|q
)1/q

: λ1, . . . , λn ∈ ℓsn, µp,n(λ1, . . . , λn) ≤ 1
}
,

and so, using (1.4), we see that

∆n(p, q) = sup
{( n∑

i=1

|λi,i|q
)1/q

: (λi,j)
n
i,j=1 ∈ B(ℓun, ℓsn)[1]

}
. (2.4)

We now use [21, Proposition 1.c.8], which states the following: Suppose that a matrix

(λi,j)
n
i,j=1 defines a contraction from ℓun to ℓsn. Then the ‘diagonal’ operator obtained by

setting all the off-diagonal terms of our matrix to 0 also defines a contraction between

the same spaces. As the sum in (2.4) involves only the terms λi,j with j = i, we see that

we can make this change without changing the value of ∆n(p, q), and thus we can say

that

∆n(p, q) = sup{‖α‖q : Dα ∈ B(ℓun, ℓsn)[1]},
where Dαx = (α1x1, . . . , αnxn) for each α, x ∈ Cn.

We claim that

∆n(p, q) =





n1/q when u ≤ s,

n1/q+1/u−1/s when u > s and 1/q + 1/u ≥ 1/s,

1 when 1/q + 1/u < 1/s.

Indeed, suppose first that u > s. Then there exists t > 1 such that 1/s = 1/u + 1/t.

Let α = (α1, . . . , αn) ∈ Cn. A version of Hölder’s inequality implies that

( n∑

i=1

|αixi|s
)1/s

≤
( n∑

i=1

|αi|t
)1/t( n∑

i=1

|xi|u
)1/u

for every (xi) ∈ ℓun. Moreover, equality is attained for a suitable choice of (xi), and so we

see that

‖Dα : ℓun → ℓsn‖ = ‖α‖t (α ∈ Cn).

Thus the problem now is to compute

∆n(p, q) = sup{‖α‖q : α ∈ (ℓtn)[1]}.
If t > q, the supremum occurs when α = (αi) is the constant sequence (n−1/t), in which

case we obtain
( n∑

i=1

|αi|q
)1/q

= (n · n−q/t)1/q = n1/q−1/t = n1/q+1/u−1/s.

If t ≤ q, the supremum occurs at a point mass, in which case we obtain ‖α‖q = 1.

Finally, suppose that u ≤ s. Then we see that

( n∑

i=1

|αixi|s
)1/s

≤
( n∑

i=1

|αixi|u
)1/u

≤ ‖α‖∞
( n∑

i=1

|xi|u
)1/u

,

and equality occurs when (x1, . . . , xn) is a point mass. Thus

‖Dα : ℓun → ℓsn‖ = ‖α‖∞ (α ∈ Cn).
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It follows that

∆n(p, q) = sup{‖α‖q : α ∈ (ℓ∞n )[1]} = n1/q.

This establishes the claim.

We conclude as follows. Suppose that r ≥ 1 and (p, q) ∈ T . Then the (p, q)-multi-norm

based on ℓr satisfies the following equation for each n ∈ N:

‖(δ1, . . . , δn)‖(p,q)n =





n1/r+1/q−1/p when p < r and 1/p− 1/q ≤ 1/r,

1 when 1/p− 1/q > 1/r,

n1/q when p ≥ r.

(2.5)

We can also write the above formula more concisely as follows:

‖(δ1, . . . , δn)‖(p,q)n = nα (n ∈ N),

where

α =

(
1

q
−
(
1

p
− 1

r

)+)+

.

Here, x+ = max{x, 0} for each x ∈ R.

Example 2.17. Suppose that r ≥ 1 and (p, q) ∈ T . Set s = r′ and u = p′, as before.

Fix n ∈ N. For i ∈ Nn, take

fi =
1

n1/r

n∑

j=1

ζ−ijδj =
1

n1/r
(ζ−i, ζ−2i, . . . , ζ−ni, 0, 0, . . . ) ∈ ℓr,

where ζ = exp(2πi/n), so that ‖fi‖ℓr = 1 (i ∈ Nn), and then set f = (f1, . . . , fn). Next

take λ = (λ1, . . . , λn), where

λi =

n∑

j=1

ζijδj = (ζi, ζ2i, . . . , ζni, 0, 0, . . . ) ∈ ℓs.

Note that
( n∑

i=1

|〈fi, λi〉|q
)1/q

= n1+1/q−1/r. (2.6)

We take ζ1, . . . , ζn ∈ C with
∑n

i=1 |ζi|u ≤ 1, and set zi =
∑n

j=1 ζjζ
ij (i ∈ Nn), so that

n∑

i=1

|zi|2 = n
n∑

i=1

|ζi|2 and
∥∥∥

n∑

i=1

ζiλi

∥∥∥
ℓs

=
( n∑

i=1

|zi|s
)1/s

.

Now suppose that r ≥ 2, so that 1 ≤ s ≤ 2.

In the case where p ≥ 2, so that u ≤ 2, we have
∑n

i=1 |ζi|2 ≤ ∑n
i=1 |ζi|u ≤ 1, and so

∥∥∥
n∑

j=1

ζjλj

∥∥∥
ℓs

= ‖(z1, . . . , zn)‖ℓs =
( n∑

j=1

|zj |s
)1/s

.

Hence, by (1.2),

µp,n(λ) ≤
n1/s

n1/2

( n∑

i=1

|zi|2
)1/2

≤ n1/s.
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It follows from (2.6) that

‖f‖(p,q)n ≥ n1+1/q

n1/r+1/s
= n1/q.

In the case where 1 ≤ p ≤ 2, so that u ≥ 2, we have

( n∑

i=1

|ζi|2
)1/2

≤ n1/2

n1/u

( n∑

i=1

|ζi|u
)1/u

≤ n1/2−1/u,

and so

µp,n(λ) ≤
n1/s

n1/2

( n∑

i=1

|zi|2
)1/2

≤ n1/2+1/s−1/u.

Hence, again by (2.6),

‖f‖(p,q)n ≥ n1+1/q+1/u

n1/2+1/s+1/r
= n1/2−1/p+1/q.

It is always true that ‖f‖(p,q)n ≥ 1.

We conclude that, in the case where r ≥ 2, we have the following estimates, which

hold for each n ∈ N:

‖f‖(p,q)n ≥





n1/2−1/p+1/q when 1 ≤ p ≤ 2 and 1/p− 1/q ≤ 1/2,

1 when 1/p− 1/q > 1/2,

n1/q when p ≥ 2.

(2.7)

We shall see from Theorem 3.10, given below, that ‖f‖(p,q)n is always equal to the

term on the right-hand side of (2.7) to within a constant independent of n.

2.6. The standard t-multi-norm on Lr-spaces. Let (Ω, µ) be a measure space, take

r ≥ 1, and suppose that r ≤ t < ∞. In [11, §4.2] and [12, §6], there is a definition

and discussion of the standard t-multi-norm on the Banach space Lr(Ω). We recall the

definition.

Take n ∈ N. For each ordered partition X = (X1, . . . , Xn) of Ω into measurable

subsets and each f1, . . . , fn ∈ Lr(Ω), we define

rX((f1, . . . , fn)) =
( n∑

i=1

‖PXi
fi‖t

)1/t

.

Here PXi
: f 7→ f |Xi is the projection of Lr(Ω) onto Lr(Xi), and ‖ · ‖ is the Lr-norm.

Then we define

‖(f1, . . . , fn)‖[t]n = sup
X

rX((f1, . . . , fn)),

where the supremum is taken over all such measurable ordered partitions X.

As in [11, §4.2.1], we see that (‖ · ‖[t]n : n ∈ N) is a multi-norm based on Lr(Ω); it is

the standard t-multi-norm on Lr(Ω).

Clearly the norms ‖ · ‖[t]n decrease as a function of t ∈ [r,∞), and so the maximum

among these norms is ‖ · ‖[r]n .
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For example, by [11, (4.9)], we have

‖(f1, . . . , fn)‖[t]n = (‖f1‖t + · · ·+ ‖fn‖t)1/t (n ∈ N)

whenever f1, . . . , fn in Lr(Ω) have pairwise disjoint supports, and, in particular,

‖(δ1, . . . , δn)‖[t]n = n1/t (n ∈ N).

As remarked in [11], it appears that the definition of the standard t-multi-norm de-

pends on the concrete representation of the space Lr(Ω). However, in [11, §4.2.8], there
is a definition of an ‘abstract t-multi-norm based on a σ-Dedekind complete Banach lat-

tice E’, and it is shown in [11, Theorem 4.36] that the standard t-multi-norm based on

a Banach lattice Lr(Ω) depends on only the norm and the lattice structure of the space.

For a related result, see [11, Theorem 4.40].

The rate of growth of the standard t-multi-norm based on Lr(Ω) is denoted by

ϕ
[t]
n (Lr(Ω)), as in [11, Definition 4.21]. In fact, it is easily seen that

ϕ[t]
n (Lr(Ω)) = n1/t (2.8)

for every infinite-dimensional Lr(Ω)-space.

In the special case where t = r, we have

‖(f1, . . . , fn)‖[r]n =

(∫

Ω

(|f1| ∨ · · · ∨ |fn|) r
)1/r

(2.9)

for n ∈ N and elements f1, . . . , fn ∈ Lr(Ω); this is equation (4.12) in [11].

For a Banach space E and r ≥ 1, the space Lr(Ω, E) consists of (equivalence classes

of) µ-measurable functions F : Ω → E such that the function s 7→ ‖F (s)‖ on Ω belongs

to the space Lp(Ω); with respect to the norm ‖ · ‖ specified by

‖F‖ =

(∫

Ω

‖F (s)‖r dµ(s)
)1/r

(F ∈ Lr(Ω, E)),

the space Lr(Ω, E) is a Banach space. The tensor product Lr(Ω) ⊗ E can be identified

with a dense subspace of Lr(Ω, E). Indeed, f⊗x ∈ Lr(Ω)⊗E corresponds to the function

s 7→ f(s)x. See [13, Chapter 7] and [24, §2.3].
Now take n ∈ N and f1, . . . , fn ∈ Lr(Ω). Then (f1, . . . , fn) corresponds to the element∑n

i=1 δi ⊗ fi in c0 ⊗ Lr(Ω), and hence to the function

s 7→
n∑

i=1

fi(s)δi ∈ Lr(Ω, c0),

and its norm in Lr(Ω, c0) is exactly ‖(f1, . . . , fn)‖[r]n by equation (2.9).

Thus, in the case where t = r, we can regard the standard r-multi-norm on Lr(Ω)

simply as that given by the embedding of c0 ⊗ Lr(Ω) in Lr(Ω, c0).

There seems to be no similarly useful representation of the standard t-multi-norm

on Lr(Ω) in the case where t > r.

2.7. The Hilbert multi-norm. We now recall an alternative description of the (2, 2)-

multi-norm based on a Hilbert space. This involves the Hilbert multi-norm that was

introduced in [11, §4.1.5].



26 H. G. Dales et al.

Let H be a Hilbert space, with inner-product denoted by [ ·, · ]. For n ∈ N, we write

H = H1 ⊕⊥ · · · ⊕⊥ Hn

when H1, . . . , Hn are pairwise-orthogonal (closed) subspaces of H.

Take n ∈ N. For each family H = {H1, . . . , Hn} such that H = H1 ⊕⊥ · · · ⊕⊥ Hn, we

set

rH((x1, . . . , xn)) = (‖P1x1‖2 + · · ·+ ‖Pnxn‖2)1/2 = ‖P1x1 + · · ·+ Pnxn‖

for x1, . . . , xn ∈ H, where Pi : H → Hi is the orthogonal projection for i ∈ Nn. Then we

set

‖x‖Hn = sup
H

rH(x) (x ∈ Hn),

where the supremum is taken over all orthogonal decompositions H of H. As in [11,

Theorem 4.15], (‖ · ‖Hn : n ∈ N) is a multi-norm based on H; it is called the Hilbert

multi-norm.

The following result is [11, Theorem 4.19].

Theorem 2.18. Let H be a Hilbert space. Then (‖ · ‖Hn ) = (‖ · ‖(2,2)n ).

2.8. Relations between multi-norms. In this subsection, we shall first summarize

some results about the relationships between multi-norms that were already established

in [11].

Theorem 2.19. Let E be a normed space. Then (‖ · ‖(1,1)n ) = (‖ · ‖max
n ).

Proof. This is [11, Theorem 4.6].

Theorem 2.20. Take r, t with 1 ≤ r ≤ t < ∞, and let Ω be a measure space. Then

(‖ · ‖[t]n ) ≤ (‖ · ‖(r,t)n ) on Lr(Ω).

Moreover, when r = 1, these two multi-norms are equal on L1(Ω) whenever t ∈ [1,∞).

Further, (‖ · ‖[1]n ) = (‖ · ‖max
n ) on L1(Ω).

Proof. This combines [11, Theorems 4.22, 4.23, and 4.26].

By (2.8), different standard t-multi-norms on an infinite-dimensional Lr(Ω) space are

not equivalent to each other, and they are never equivalent to the minimum multi-norm;

we shall see in Theorem 3.22 that they are never equivalent to the maximum multi-norm.

Theorem 2.21. Take r ≥ 1, and suppose that r ≤ t < ∞. Suppose that either 2 ≤ r ≤ t

or that 1 < r < 2 and r ≤ t < r/(2 − r). Then the multi-norms (‖ · ‖[t]n : n ∈ N) and

(‖ · ‖(r,t)n : n ∈ N) based on ℓr are not equivalent.

Proof. This is [11, Theorem 4.27].

We shall extend and complement the above results in the present memoir.
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3. Comparing (p, q)-multi-norms on L
r spaces

In this section, we aspire to determine when two (p, q)-multi-norms based on a space

Lr(Ω) are equivalent; we shall obtain a reasonably complete classification, but cannot

give a fully comprehensive account.

3.1. The case where r = 1. In this section, we investigate the equivalence of various

(p, q)-multi-norms on spaces of the form L1(Ω).

By Example 2.16, (‖ · ‖(p1,q1)
n ) is not equivalent to (‖ · ‖(p2,q2)

n ) on L1(Ω) whenever

L1(Ω) is infinite-dimensional and q1 6= q2 because ∆n(p, q) = n1/q (n ∈ N) for each

(p, q) ∈ T , in the notation of that example; it remains to investigate the case where

q1 = q2.

The following result is [12, Theorem 5.6]. It is also a consequence of Theorem 2.6 and

the corresponding result in [23, Corollary 2.5] (see also [14, Theorem 10.9]).

Theorem 3.1. Let Ω be a measure space, and take p, q, s ∈ R with 1 ≤ p < q < s < ∞.

Then

(‖ · ‖(p,q)n ) ∼= (‖ · ‖(1,q)n ) < (‖ · ‖(s,s)n ) on L1(Ω).

The following result shows that the condition ‘p < q’ in the above theorem is sharp.

Note also that

‖(δ1, . . . , δn)‖(q,q)n = ‖(δ1, . . . , δn)‖(1,q)n (= n1/q) (n ∈ N),

for q ≥ 1, and so the above equation is not sufficient to enforce the non-equivalence of

(‖ · ‖(q,q)n ) and (‖ · ‖(1,q)n ).

Theorem 3.2. Let Ω be a measure space such that L1(Ω) is infinite-dimensional. Take

q > 1. Then (‖ · ‖(q,q)n ) ≥ (‖ · ‖(1,q)n ), but (‖ · ‖(q,q)n ) 6∼= (‖ · ‖(1,q)n ) on L1(Ω).

Proof. First, suppose that our multi-norms are based on ℓ1.

Take n ∈ N, and let In be the identity map from ℓ∞n to the Lorentz space ℓq,1n .

A calculation of Montgomery-Smith [22] (see [9] for a statement of this example) shows

that

πq,q(In) ∼ n1/q(1 + log n)1−1/q, πq,1(In) ∼ n1/q.

For each n ∈ N, we can find m = m(n) ∈ N, with m(n) ≥ n, and an operator

ϕn : ℓq,1n → ℓ∞m(n) with

(1− 1/n)‖x‖q,1 ≤ ‖ϕn(x)‖∞ ≤ ‖x‖q,1 (x ∈ ℓq,1n ).

Let pn : ℓ∞ → ℓ∞n be the natural projection, and define

Tn =
1

n1/q
ϕn ◦ In ◦ pn : ℓ∞ → ℓ∞m(n) ⊂ c0.

From the definition of the (q, p)-summing norm, it follows that

(1− 1/n)
1

n1/q
πq,p(In) ≤ πq,p(Tn) ≤

1

n1/q
πq,p(In)

whenever 1 ≤ p ≤ q < ∞. In particular, πq,1(Tn) ∼ 1, but πq,q(Tn) ∼ (1 + log n)1−1/q.
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Since Tn = Tn ◦ pn, we see that Tn is the image of

xn :=

n∑

i=1

Tn(ei)⊗ δi

via the natural inclusion c0 ⊗ ℓ1 →֒ B(ℓ∞, c0). The previous paragraph and Theorem 2.6

imply that

‖xn‖(q,1)
c0⊗ℓ1 ∼ 1, but ‖xn‖(q,q)

c0⊗ℓ1 ∼ (1 + log n)1−1/q.

Hence (‖ · ‖(q,q)n ) 6∼= (‖ · ‖(1,q)n ) on ℓ1.

For a general measure space Ω, the result follows from Theorem 1.1.

We summarize the situation for (p, q)-multi-norms based on L1(Ω). In this special

case, we have a full solution to the question of equivalences.

Theorem 3.3. Let Ω be a measure space such that L1(Ω) is infinite-dimensional, and

suppose that (p1, q1), (p2, q2) ∈ T

(i) Suppose that q2 > q1. Then (‖ · ‖(p1,q1)
n ) < (‖ · ‖(p2,q2)

n ), and these multi-norms are

not equivalent on L1(Ω).

(ii) Suppose that q2 = q1 = q and p2 > p1. Then (‖ · ‖(p2,q)
n ) ≥ (‖ · ‖(p1,q)

n ); these multi-

norms are equivalent on L1(Ω) when also p2 < q, but they are not equivalent to

(‖ · ‖(q,q)n ).

Corollary 3.4. Let Ω be a measure space such that L1(Ω) is infinite-dimensional, and

suppose that (p, q) ∈ T . Then the (p, q)-multi-norm on L1(Ω) is not equivalent to the

minimum multi-norm, and it is equivalent to the maximum multi-norm if and only if

p = q = 1, in which case, it is actually equal to the maximum multi-norm.

3.2. The case where r > 1. In this case, it is more difficult to determine when the

(p, q)-multi-norms are equivalent on Lr(Ω).

Throughout we suppose that Lr(Ω) is infinite-dimensional.

In this section, it is convenient to continue to use the earlier notation Cc for the curve
Cc = {(p, q) ∈ T : 1/p− 1/q = c},

whenever c ∈ [0, 1). This curve is contained in the triangle T .

We shall consider points P1 and P2 in T , and shall say P1 and P2 are equivalent (re-

spectively, not equivalent) on E to mean that the multi-norms (‖ · ‖(p1,q1)
n ) and (‖ · ‖(p2,q2)

n )

based on a Banach space E are equivalent (respectively, not equivalent).

The first result, which shows that various pairs of multi-norms are not equivalent,

follows directly from Proposition 2.12 and the calculation given in Example 2.16. Indeed,

(i) follows from Proposition 2.12(iv), and (ii)–(iv) follow from equation (2.5).

Proposition 3.5. Let Ω be a measure space, and take r ≥ 1. Then two points P1 ∈ Cc1
and P2 ∈ Cc2 are not equivalent on Lr(Ω) in the following cases:

(i) p1, p2 ≥ min{r, 2}, and q1 6= q2;

(ii) p1, p2 ≤ r, min{c1, c2} < 1/r, and c1 6= c2;
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(iii) p1 ≤ r ≤ p2, and
1

r
− 1

p1
+

1

q1
6= 1

q2
;

(iv) p1 ≥ r ≥ p2, and
1

r
− 1

p2
+

1

q2
6= 1

q1
.

We now concentrate on the (p, p)-multi-norms and the maximum multi-norm

on Lr(Ω).

Let E be a normed space. We recall that it follows from Theorem 2.10 that the dual

space of (c0⊗E, ‖ · ‖(p,p)) is Πp′(c0, E
′); the dual of the maximum multi-norm, identified

with (c0 ⊗̂E, ‖ · ‖π), is B(c0, E′).

Proposition 3.6. Let Ω be a measure space. Suppose that

either 1 ≤ p ≤ 2 ≤ r < ∞ or 1 ≤ p < r < 2.

Then (‖ · ‖(p,p)n ) is equivalent to (‖ · ‖max
n ) on Lr(Ω).

Proof. In the case where 1 ≤ p ≤ 2 ≤ r < ∞, so that r′ ∈ (1, 2], we use [14, The-

orem 3.7], which tells us that every operator T : c0 → Lr′(Ω) is 2-summing, with

π2(T ) ≤ KG‖T‖, where KG is the Grothendieck constant. Since Π2(c0, E) ⊂ Πp′(c0, E)

is a norm-decreasing inclusion (for any Banach space E), we conclude that

(c0 ⊗ Lr(Ω), ‖ · ‖(p,p))′ = Πp′(c0, L
r′(Ω)) = B(c0, Lr′(Ω)) = (c0 ⊗ Lr(Ω), ‖ · ‖max

)′,

which gives the result.

Similarly, in the case where 1 ≤ p < r < 2, so that r′ > 2, we appeal to [14,

Corollary 10.10], which shows in particular that we have Πp′(c0, L
r′(Ω)) = B(c0, Lr′(Ω)).

The result follows.

Proposition 3.7. Let Ω be a measure space such that Lr(Ω) is infinite-dimensional.

Suppose that 1 ≤ r < 2. Then (‖ · ‖(r,r)n ) 6∼= (‖ · ‖max
n ) on Lr(Ω).

Proof. Here we appeal to [20, Theorem 7, clause 2], which, using an example of Schwartz

[25], shows that Πs(c0, ℓ
s) 6= B(c0, ℓs) for s > 2. The required conclusion follows.

Thus we have a complete classification of the (p, p)-multi-norms on Lr(Ω) into equiv-

alence classes, summarized in the following theorem.

Theorem 3.8. Let Ω be a measure space such that Lr(Ω) is infinite-dimensional, where

r ≥ 1. Set r = min{2, r}. Then:
(i) (‖ · ‖(q,q)n ) 6∼= (‖ · ‖(p,p)n ) on Lr(Ω) whenever p, q ≥ r and p 6= q;

(ii) (‖ · ‖(p,p)n ) 6∼= (‖ · ‖max
n ) on Lr(Ω) whenever p > r;

(iii) (‖ · ‖(p,p)n ) ∼= (‖ · ‖max
n ) on Lr(Ω) whenever 1 ≤ p < r;

(iv) (‖ · ‖(1,1)n ) = (‖ · ‖max
n ) on Lr(Ω);

(v) if 1 < r < 2, then r = r and (‖ · ‖(r,r)n ) 6∼= (‖ · ‖max
n ) on Lr(Ω);

(vi) if r ≥ 2, then r = 2 and (‖ · ‖(2,2)n ) ∼= (‖ · ‖max
n ) on Lr(Ω).

Proof. Notice that (ii) follows by applying (i) with q = r̄ and (iv) is just a special case

of Theorem 2.19.
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3.3. The role of Orlicz’s theorem. We shall now determine when the (p, q)-multi-

norm based on L r(Ω) is equivalent to the minimum multi-norm. For this, we shall need a

form of Orlicz’s theorem. Indeed, a generalization of Orlicz’s theorem given in [14, Theo-

rem 10.7] shows that, for each s ∈ [1,∞), the identity operator on Ls(Ω) is (s̃, 1)-summing,

where s̃ := max{s, 2}. In the case where s = 2, so that s̃ = 2 also, the (2, 1)-summing

norm of the identity operator on L2(Ω) is equal to 1.

Now suppose that r > 1, and again set r̄ = min{2, r}. Set s = r′, the conjugate of r,

so that

s̃ = max{s, 2} = r̄ ′.

Then, since the identity operator on Ls(Ω) belongs to Πs̃,1(L
s(Ω)), we obtain

B(Ls(Ω), F ) = Πs̃,1(L
s(Ω), F )

for each Banach space F ; in the case where r = 2, we have equality of the norms as well.

It follows from Theorem 2.6 that the tensor norm on c0 ⊗ Lr(Ω) induced from

the (1, r̄ ′)-multi-norm is equivalent to the injective tensor norm, which is induced by

B(Ls(Ω), c0). That is, the (1, r̄ ′)- and the minimum multi-norms on Lr(Ω) are equiva-

lent. This and Theorem 2.11 imply the following.

Theorem 3.9. Let Ω be a measure space, take r > 1, and set r̄ := min{r, 2}. Suppose
that 1 ≤ p ≤ q < ∞. Then (‖ · ‖(p,q)n ) ∼= (‖ · ‖min

n ) on Lr(Ω) whenever 1/p − 1/q ≥ 1/r̄.

Moreover (‖ · ‖(p,q)n ) = (‖ · ‖min
n ) on L2(Ω) whenever 1/p− 1/q ≥ 1/2.

3.4. Asymptotic estimates. The next stage of our analysis is to give a complete

asymptotic estimate for ϕ
(p,q)
n (ℓr) for all relevant values of p, q when r > 1.

Theorem 3.10. Let Ω be a measure space such that Lr(Ω) is infinite-dimensional, where

r > 1. Set r̄ = min{r, 2}, and suppose that 1 ≤ p ≤ q < ∞. Then:

(i) ϕ
(p,q)
n (Lr(Ω)) ∼ 1 when 1/p− 1/q ≥ 1/r̄;

(ii) ϕ
(p,q)
n (Lr(Ω)) = n1/q when p ≥ r̄;

(iii) ϕ(p,q)
n (Lr(Ω)) ∼ n1/r̄−1/p+1/q when 1/p− 1/q ≤ 1/r̄ and p ≤ r̄.

In the case where r = 2, all three estimates are actual equalities.

Proof. Statements (i) and (ii) follow from Theorem 3.9 and Proposition 2.12(iv), res-

pectively.

(iii) Suppose now that 1/p − 1/q < 1/r̄ and that p < r̄. Again, we need to consider

only the space ℓr. By Proposition 2.12(iii) (when r ≥ 2) or by Example 2.16 (when r ≤ 2),

we see that

ϕ(p,q)
n (ℓr) ≥ n1/r̄−1/p+1/q (n ∈ N).

When q = p, we know by Theorem 3.8(iii) that (‖ · ‖(p,p)n ) ∼= (‖ · ‖max
n ), and so

ϕ(p,p)
n (ℓr) ∼ ϕmax

n (ℓr) ∼ n1/r̄

by [11, Theorem 3.54]. Thus we need to consider only the case where q > p.

Set q1 = p and q2 = pr̄/(r̄−p), so that 1/p−1/q2 = 1/r̄. We also see that q1 < q < q2,

and so
1

q
=

1− θ

q1
+

θ

q2
,
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where θ = r̄(1/p − 1/q). Using Proposition 2.15, we deduce from (i) and the previous

paragraph that

ϕ(p,q)
n (ℓr) ≤ (ϕ(p,p)

n (ℓr))1−θ · (ϕ(p,q2)
n (ℓr))θ ≤ Cr n

(1−θ)/r̄ = Cr n
1/r̄−1/p+1/q

for all n ∈ N, where Cr is a constant depending only on r; when r = 2, this constant can

be taken to be 1.

This completes the proof.

We now obtain the following asymptotic estimates, where f is as in Example 2.17

and the multi-norm is calculated with respect to ℓr, where r ≥ 2:

‖f‖(p,q)n ∼





n1/2−1/p+1/q when 1 ≤ p ≤ 2 and 1/p− 1/q ≤ 1/2,

1 when 1/p− 1/q > 1/2,

n1/q when p ≥ 2.

(3.1)

It is interesting to see where the maximum rate of growth is attained. Indeed, suppose

that (p, q) ∈ T and we are considering the rate of growth of the (p, q)-multi-norm on ℓr,

where r ≥ 1. Then it follows from equation (2.5) in Example 2.16 that

ϕ(p,q)
n (ℓr) ∼ ‖(δ1, . . . , δn)‖(p,q)n when r ≤ 2

and from equation (2.7) in Example 2.17 that

ϕ(p,q)
n (ℓr) ∼ ‖(f1, . . . , fn)‖(p,q)n when r ≥ 2,

where, for i ∈ Nn, we are setting

fi =
1

n1/r

n∑

j=1

ζ−ijδj with ζ = exp(2πi/n).

Thus the maximum rate of growth is attained at either (δ1, . . . , δn) or at (f1, . . . , fn).

3.5. Classification theorem. We now give our main classification result obtained in

the case where r > 1. For this, let us modify the curves Cc to obtain curves Dc for

0 ≤ c < 1 as follows. Set r̄ = min{2, r}.

(i) The case where c ∈ [1/r̄, 1): Set Dc = Cc.
(ii) The case where c ∈ [0, 1/r): Set uc = r/(1 − cr), so that Cc meets the vertical line

p = r at (r, uc). Set

Dc = {(p, q) ∈ Cc : p ∈ [1, r]} ∪ {(p, uc) : p ∈ [r, uc]}.
Thus Dc agrees with Cc on the interval [1, r] and is the horizontal line q = uc on the

interval [r, uc]. In the case where r < 2 and c ∈ (1/2, 1/r), the point at which the

line q = uc meets the curve C1/2 is denoted by xc, so that r < xc < 2.

Note that D0 is the diagonal line segment {(p, p) : 1 ≤ p ≤ r}.
(iii) The case where c ∈ [1/r, 1/2) (which only occurs when r > 2): Set vc = 2/(1− 2c),

so that Cc meets the vertical line p = 2 at (2, vc), and set wc := rvc/(r− vc), so that

the horizontal line q = vc meets the curve C1/r at (wc, vc). Set

Dc = {(p, q) ∈ Cc : p ∈ [1, 2]} ∪ {(p, vc) : p ∈ [2, wc]}.
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Thus Dc agrees with the old curve Cc on the interval [1, 2], and then it becomes

the horizontal line q = vc until this line meets the curve C1/r, at which point it

terminates. Note that D1/r is the curve C1/r restricted to the interval [1, 2].

Note that
⋃{Dc : 0 ≤ c < 1} = T . Note also that, unlike the curves Cc, the curves Dc

depend on the value of r. The case where r > 2 is illustrated in the diagram, in which

we present in bold the curves Dc when c ≥ 1/2, when c ∈ (1/r, 1/2), when c = 1/r, when

c ∈ (0, 1/r), and when c = 0.

(1, 1) p

q

2 r

uc

vc

2

r′

C1/2 C1/r C0

Theorem 3.11. Take r > 1, let Ω be a measure space such that Lr(Ω) is infinite-dimen-

sional, and set r̄ = min{2, r}. Take c1, c2 ∈ [0, 1), and consider points P1 ∈ Dc1 and

P2 ∈ Dc2 .

(i) Suppose that c1, c2 ∈ [1/r̄, 1). Then P1 and P2 are equivalent (and the corresponding

(p, q)-multi-norms are equivalent to the minimum multi-norm ) on Lr(Ω).

(ii) Suppose that c1 ∈ [1/r̄, 1) and c2 ∈ [0, 1/r̄). Then P1 and P2 are not equivalent on

Lr(Ω).

(iii) Suppose that c1, c2 ∈ [0, 1/r̄) and that c1 6= c2. Then P1 and P2 are not equivalent

on Lr(Ω).

Proof. Clause (i) follows from Theorem 3.9, whereas (ii) follows from Theorem 3.10.

It remains to prove clause (iii). For this, we suppose that c1, c2 ∈ [0, 1/r̄) and that

c1 6= c2.

Assume towards a contradiction that P1 and P2 are equivalent on Lr(Ω).

Case 1: p1, p2 ≤ r̄. In this case, the desired contradiction follows from Theorem 3.10(iii),

noting that Pi ∈ Cci for both i = 1 and i = 2 in this case.

Case 2: p1, p2 ≥ r̄. In this case, we must have q1 = q2 by Theorem 3.10(ii). From the

definition of the curves Dc, this can happen (with c1 6= c2) only when min{p1, p2} < r, and
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so r > 2, and min{c1, c2} < 1/r. In particular, we must have r̄ = 2. By Proposition 3.5(i),

we must have max{p1, p2} > r. Thus, without loss of generality, we may suppose that

p1 > r > p2 ≥ 2. Proposition 3.5(iv) then implies that

1

r
− 1

p2
+

1

q2
=

1

q1
.

Since q1 = q2, this implies that p2 = r, a contradiction.

It remains to consider the case where p1 < r̄ < p2; the case where p1 > r̄ > p2 is dealt

with similarly. We divide this case further into the following two cases.

Case 3: r ≤ 2, so that r̄ = r, and p1 < r < p2. In this case, it follows from either Theorem

3.10 or Proposition 3.5(iii) that

1

r
− 1

p1
+

1

q1
=

1

q2
.

This implies first that (r, q2) ∈ Cc1 ∩ Dc1 , and then that (p2, q2) ∈ Dc1 by the definition

of Dc1 , a contradiction of the assumption that c1 6= c2.

Case 4: r > 2, so that r̄ = 2, and p1 < 2 < p2. In this case, it follows from Theorem 3.10

that
1

2
− 1

p1
+

1

q1
=

1

q2
.

This implies that (2, q2) ∈ Cc1 ∩ Dc1 . So it follows from the definition of Dc and the

assumption that (p2, q2) /∈ Dc1 that c2 < 1/r. By Proposition 3.5(i), we deduce that

p2 > r. But then Proposition 3.5(iii) implies that

1

r
− 1

p1
+

1

q1
=

1

q2
,

and so r = 2, again a contradiction.

This concludes the proof of the theorem.

3.6. The role of Khintchine’s inequalities. The previous theorem reduces our prob-

lem to that of determining the equivalence of two points P1 and P2 lying on the same

curve Dc, where c ∈ [1, 1/r). For further progress, we shall use Khintchine’s inequalities,

for which see [17, Chapter 12], for example.

Let n ∈ N. We shall consider (εi,j) to be a fixed n× 2n matrix with entries in {−1, 1}
such that its 2n columns range over all possible choices of n-tuples of ±1. The Khintchine

inequality tells us that, for each r > 1, there exist constants Ar, Br > 0, depending only

on r (but not on n), such that

Ar

( n∑

i=1

|αi|2
)1/2

≤
(

1

2n

2n∑

j=1

∣∣∣
n∑

i=1

εi,jαi

∣∣∣
r
)1/r

≤ Br

( n∑

i=1

|αi|2
)1/2

for every α1, . . . , αn ∈ C and every n ∈ N. These constants are those specified in the next

lemma.
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Lemma 3.12. Let r > 1, and take n ∈ N. Then there exists a linear monomorphism

Rn : ℓ2n → ℓr such that

1

Br′
‖(x1, . . . , xn)‖(p,q)n ≤ ‖(Rnx1, . . . , Rnxn)‖(p,q)n ≤ Br‖(x1, . . . , xn)‖(p,q)n

whenever 1 ≤ p ≤ q < ∞ and x1, . . . , xn ∈ ℓ2n.

Proof. Set s = r′, the conjugate index to r, so that 1 < s < ∞. For each i ∈ Nn, set

gi =
1

2n/r
(εi,1, . . . , εi,2n , 0, 0, . . .) ∈ ℓr and ϕi =

1

2n/s
(εi,1, . . . , εi,2n , 0, 0, . . .) ∈ ℓs.

The maps δi 7→ gi and δi 7→ ϕi extend linearly to linear operators R : ℓ2n → ℓr and

S : ℓ2n → ℓs, respectively. Moreover, by the Khintchine inequality, we see that

Ar‖x‖ℓ2 ≤ ‖Rx‖ℓr ≤ Br‖x‖ℓ2 and As‖x‖ℓ2 ≤ ‖Sx‖ℓs ≤ Bs‖x‖ℓ2 (x ∈ ℓ2n),

so that, in particular, both R and S are linear monomorphisms. It is also the case that

〈Rx, Sy〉 = 〈x, y〉 (x, y ∈ ℓ2n),

where we identify (ℓ2n)
′ = ℓ2n in an obvious manner.

Take p, q ∈ T and take x1, . . . , xn ∈ ℓ2n. We then see that

‖(Rx1, . . . , Rxn)‖(p,q)n

= sup
{( n∑

i=1

|〈Rxi, λi〉|q
)1/q

: λ1, . . . , λn ∈ ℓs, µp,n(λ1, . . . , λn) ≤ 1
}

= sup
{( n∑

i=1

|〈xi, R
′λi〉|q

)1/q

: λ1, . . . , λn ∈ ℓs, µp,n(λ1, . . . , λn) ≤ 1
}

≤ sup
{( n∑

i=1

|〈xi, yi〉|q
)1/q

: y1, . . . , yn ∈ ℓ2n, µp,n(y1, . . . , yn) ≤ Br

}

= Br‖(x1, . . . , xn)‖(p,q)n .

On the other hand, from the first equation above, we also see that

‖(Rx1, . . . , Rxn)‖(p,q)n

≥ sup
{( n∑

i=1

|〈Rxi, Syi〉|q
)1/q

: y1, . . . , yn ∈ ℓ2n, µp,n(y1, . . . , yn) ≤ 1/Bs

}

= sup
{( n∑

i=1

|〈xi, yi〉|q
)1/q

: y1, . . . , yn ∈ ℓ2n, µp,n(y1, . . . , yn) ≤ 1/Bs

}

=
1

Bs
‖(x1, . . . , xn)‖(p,q)n .

Thus, setting Rn := R, we obtain the desired operator.

Theorem 3.13. Suppose that (p1, q1), (p2, q2) ∈ T . Assume that the (p1, q1)- and (p2, q2)-

multi-norms are not equivalent on ℓ2. Then, for every r > 1, the (p1, q1)- and (p2, q2)-

multi-norms are not equivalent on ℓr.
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Proof. Take r > 1. Without loss of generality, by the assumption, we see that there exist

a sequence (αn) in (0,∞) with αn ր ∞ and a sequence (xn) where, for each n ∈ N,

xn = (xn,1, . . . , xn,n) ∈ (ℓ2)n, such that

‖(xn,1, . . . , xn,n)‖(p1,q1)
n > αn‖(xn,1, . . . , xn,n)‖(p2,q2)

n .

It is obvious that we may consider xn,1, . . . , xn,n as belonging to ℓ2n. Now set yn,i = Rnxn,i

for each i ∈ Nn, where Rn is the map defined in the previous lemma. We then obtain, for

each n ∈ N, a tuple (yn,1, . . . , yn,n) ∈ (ℓr)n such that

‖(yn,1, . . . , yn,n)‖(p1,q1)
n >

αn

BrBr′
‖(yn,1, . . . , yn,n)‖(p2,q2)

n .

Thus (‖ · ‖(p1,q1)
n ) and (‖ · ‖(p1,q1)

n ) are not equivalent on ℓr. This completes the proof.

Corollary 3.14. Let (p1, q1), (p2, q2) ∈ T . Suppose that Πq1,p1
(ℓ2, F ) 6= Πq2,p2

(ℓ2, F )

for some Banach space F . Then, for each r > 1, the (p1, q1)- and (p2, q2)-multi-norms

are not equivalent on ℓr.

Proof. This follows from the previous theorem and Theorem 2.8, using the Riesz repre-

sentation theorem.

3.7. Final classification. Theorem 3.13 suggests that we study more closely the spaces

Πq,p(H), where H is a Hilbert space, and this we shall do to obtain the final classification

that we can achieve.

We first state some results that identify Πq,p(H). Clause (i) of the following theo-

rem combines Corollaries 3.16 and 4.13 of [14], and the remaining clauses are stated on

page 207 of [14]. In fact, clauses (ii) and (iii) of the following theorem originate in [19,

Theorem 2] (where this result is attributed to Mityagin), and (iv) is from [5] and [6,

Theorem 3]. Recall that Sr(H) and S2q/p,q(H) were defined in §1.2.
Theorem 3.15. Let H be a Hilbert space, and take (p, q) ∈ T .

(i) Suppose that p = q. Then Πp(H) = Π2(H) = S2(H).

(ii) Suppose that p ≤ 2 and 1/p− 1/q < 1/2. Then Πq,p(H) = Sr(H), where

1/r = 1/q − 1/p+ 1/2.

(iii) Suppose that 1/p− 1/q ≥ 1/2. Then Πq,p(H) = B(H).

(iv) Suppose that 2 < p < q < ∞. Then Πq,p(H) = S2q/p,q(H).

In connection with clause (i), we note that the exact constants that determine the

relations between the πp-norm and the π2-norm on (real and complex) Hilbert spaces of

various dimensions are calculated in [15].

Recall that the point xc ∈ (r, uc) was defined on page 31.

Theorem 3.16. Take r ∈ (1, 2), and let Ω be a measure space such that Lr(Ω) is infinite-

dimensional. Suppose that two distinct points P1 = (p1, q1) and P2 = (p2, q2) in T are

equivalent on Lr(Ω). Then one of the following cases must occur.

(i) The points P1 and P2 both lie in the region

{(p, q) ∈ T : 1/p− 1/q ≥ 1/r};
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in this case, the (p, q)-multi-norms corresponding to points in this region are all

equivalent to the minimum multi-norm on Lr(Ω).

(ii) The points P1 and P2 both lie on the same curve {(p, q) ∈ Dc : 1/p− 1/q ≥ 1/2} for

some c ∈ [1/2, 1/r). Further, p1, p2 ∈ [1, xc].

(iii) The points P1 and P2 both lie on the same curve {(p, q) ∈ Cc : 1 ≤ p ≤ r} for some

c ∈ (0, 1/2).

(iv) The points P1 and P2 both lie on the line segment {(p, p) : 1 ≤ p < r}; in this case,

the (p, p)-multi-norms corresponding to points on this line segment are all equivalent

to the maximum multi-norm on Lr(Ω).

Proof. By Theorems 3.8 and 3.11, all that remains to be considered is the case where P1

and P2 both lie on the same curve Dc, where 0 < c < 1/r. Without loss of generality, we

may suppose that p1 < p2, and so p1 < q1 and

1/p1 − 1/q1 ≥ 1/p2 − 1/q2.

Case 1: c ∈ [1/2, 1/r) and 1/pi − 1/qi < 1/2 for both i = 1, 2. Then, by Theorem 3.15(i),

(ii), or (iv), we have, for each i = 1, 2,

Πqi,pi
(ℓ2) = either S2qi/pi,qi(ℓ

2) or Sri(ℓ
2),

where 1/ri = 1/2 − 1/pi + 1/qi. Note that, since c ≥ 1/2 and P1 6= P2, we must have

1/p1 − 1/q1 6= 1/p2 − 1/q2, and so r1 6= r2. Thus we see, by a remark on page 9, that

Πq1,p1
(ℓ2) 6= Πq2,p2

(ℓ2), and hence, by Corollary 3.14, P1 and P2 are not equivalent on ℓr.

This contradicts the hypothesis, and so this case cannot occur.

Case 2: c ∈ [1/2, 1/r) and 1/p2 − 1/q2 < 1/2 ≤ 1/p1 − 1/q1. Then, by Theorem 3.15, we

have

Πq2,p2
(ℓ2) = either S2q2/p2,q2(ℓ

2) or Sr2(ℓ
2),

where 1/r2 = 1/2 − 1/p2 + 1/q2. On the other hand, the same theorem implies that

Πq1,p1
(ℓ2) = B(ℓ2). So again we see that Πq1,p1

(ℓ2) 6= Πq2,p2
(ℓ2), and hence, by Corollary

3.14, P1 and P2 are not equivalent on ℓr. This contradicts the hypothesis, and so this

case cannot occur.

We have shown in the above two cases that we cannot have both 1/p2 − 1/q2 < 1/2

and c ∈ [1/2, 1/r), and so necessarily 1 ≤ p1 ≤ p2 ≤ xc when c ∈ [1/2, 1/r).

Case 3: c ∈ (0, 1/2). Now 1/pi − 1/qi < 1/2 for each i = 1, 2, and so, by Theorem 3.15,

we have
Πqi,pi

(ℓ2) = either S2qi/pi,qi(ℓ
2) or Sri(ℓ

2),

for each i = 1, 2, where 1/ri = 1/2 − 1/pi + 1/qi. Note that r1 and r2 cannot both be

equal to 2. Thus, since P1 and P2 are equivalent on ℓr, by Corollary 3.14, we must have

Πq1,p1
(ℓ2) = Πq2,p2

(ℓ2). The only way this can happen, by the remark on page 9, is when

pi ≤ 2 (i = 1, 2) and 1/p1 − 1/q1 = 1/p2 − 1/q2. By the definition of the curve Dc, this

can happen only if pi ≤ r (i = 1, 2).

The three cases above complete the proof.



Equivalence of multi-norms 37

Remark 3.17. In [7], it will be shown that P1 and P2 are equivalent whenever 1 < r < 2

and both points lie on the same curve Cc for some c ∈ (0, 1/r). Thus we know in every

case whether P1 and P2 are equivalent, save for the case where both points lie on the same

horizontal line q = uc and where r ≤ p1 < p2 ≤ xc. In this case, Πq1,p1
(ℓ2) = Πq2,p2

(ℓ2), a

necessary condition for equivalence of the two multi-norms by Theorems 2.8 and 3.13.

Theorem 3.18. Take r ≥ 2, and let Ω be a measure space such that Lr(Ω) is infinite-

dimensional. Suppose that two distinct points P1 = (p1, q1) and P2 = (p2, q2) in T are

equivalent on Lr(Ω). Then one of the following cases must occur.

(i) The points P1 and P2 both lie in the region

{(p, q) ∈ T : 1/p− 1/q ≥ 1/2};
in this case, the (p, q)-multi-norms corresponding to points in this region are all

equivalent to the minimum multi-norm on Lr(Ω).

(ii) The points P1 and P2 both lie on the same curve {(p, q) ∈ Cc : 1 ≤ p ≤ 2} for some

c ∈ (0, 1/2).

(iii) The points P1 and P2 both lie on the line segment {(p, p) : 1 ≤ p ≤ 2}; in this case,

the (p, p)-multi-norms corresponding to points on this line segment are all equivalent

to the maximum multi-norm on Lr(Ω).

Proof. As in Theorem 3.16, all that remains to be considered is the case where P1 and P2

both lie on the same curve Dc, where 0 < c < 1/2. We again need to consider only

the space ℓr. For this, suppose without loss of generality that p1 < p2, and so p1 < q1.

Assume towards a contradiction that p2 > 2. Then, by Theorem 3.15(i) or (iv), we have

Πq2,p2
(ℓ2) = either S2q2/p2,q2(ℓ

2) or S2(ℓ
2).

First, suppose that p1 > 2. Then, by Theorem 3.15(iv), we have

Πq1,p1
(ℓ2) = S2q1/p1,q1 .

But we know that S2q1/p1,q1(ℓ
2) is never equal to either S2q2/p2,q2(ℓ

2) or S2(ℓ
2), and so

P1 and P2 are not equivalent on ℓr by Corollary 3.14.

Second, suppose that p1 ≤ 2. Then Πq1,p1
(ℓ2) = Sr1(ℓ

2) by Theorem 3.15(ii), where

1/r1 = 1/2−c, and so r1 > 2. Thus again we see that Πq1,p1
(ℓ2) 6= Πq2,p2

(ℓ2) by a remark

on page 9.

In both cases, we arrive at a contradiction to the assumption that P1 and P2 are

equivalent on ℓr. Therefore p2 ≤ 2, and the proof is completed.

In the Hilbert spaces case, i.e. when r = 2, using Theorems 2.18, we see that the

(p, p)-multi-norms corresponding to points in the clause (iii) above are all equivalent to

the Hilbert space multi-norm.

Remark 3.19. There remains the case where P1, P2 both lie on a curve Cc such that

0 ≤ c < 1/2 and p1, p2 ∈ [1, 2]. Then again Πq1,p1
(ℓ2) = Πq2,p2

(ℓ2), a necessary condition

for equivalence by Theorems 2.8 and 3.13. In [7], it will be shown that P1 and P2 are

indeed equivalent whenever r ≥ 2 and both points lie on the same curve Cc for some

c ∈ (0, 1/2). Thus we have a complete classification whenever r ≥ 2.
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3.8. The relation with standard t-multi-norms. Let Ω be a measure space, and take

r ≥ 1. Then we have defined the standard t-multi-norm (‖ · ‖[t]n ) on Lr(Ω) whenever t ≥ r,

and we have defined the (p, q)-multi-norm (‖ · ‖(p,q)n ) on Lr(Ω) whenever (p, q) ∈ T . We

conjecture that (‖ · ‖[t]n ) 6∼= (‖ · ‖(p,q)n ) whenever r > 1 and Lr(Ω) is infinite-dimensional.

The first result proves rather more than the conjecture, but only in the special case

in which t = r. In the following theorem, we suppose that c0⊗Lr(Ω) ⊂ Lr(Ω, c0) has the

norm from Lr(Ω, c0) corresponding to the standard r-multi-norm based on Lr(Ω) in the

manner explained above.

Theorem 3.20. Let Ω be a measure space, and take r > 1. Suppose that Lr(Ω) is an

infinite-dimensional space. Then the c0-norm on c0 ⊗ Lr(Ω) induced by the standard

r-multi-norm (‖ · ‖[r]n : n ∈ N) based on Lr(Ω) is not equivalent to any uniform c0-norm.

Proof. The following theorem is proved in [13, Section 7.3]. Suppose that S ∈ B(Lr(Ω)).

Then the operator I ⊗ S : c0 ⊗ Lr(Ω) → c0 ⊗ Lr(Ω) extends to a bounded operator on

Lr(Ω, c0) if and only if S is regular, in the sense that it is a linear combination of positive

operators on the Banach lattice Lr(Ω). However, since Lr(Ω) is an infinite-dimensional

space, not all the operators S ∈ B(Lr(Ω)) are regular.

Indeed, for a concrete example of an operator in B(Lr(Ω)) which is not regular, we

follow [13, Section 7.6]. Set s = r′, and let S : ℓs(Z) → ℓs(Z) be the discrete Hilbert

transform given by

S(δk) =
∑

m 6=k

1

m− k
δm (k ∈ N).

Then S is bounded on ℓs(Z), but I⊗S is not bounded on the space ℓ1⊗ℓs(Z) ⊂ ℓs(Z, ℓ1).

By duality, we see that I ⊗ S′ is not bounded on the space c0 ⊗ ℓr(Z) ⊂ ℓr(Z, c0). In

the case where Lr(Ω) is infinite-dimensional, this latter space contains a 1-complemented

copy of ℓr(Z), and so we obtain an example of an operator on Lr(Ω) that is not regular.

For a stronger example, it is shown by Arendt and Voigt [4] that the subalgebra of

regular operators on Lr(Ω) is not even dense in B(Lr(Ω)) whenever r > 1 and Lr(Ω) is

infinite-dimensional.

We conclude that the standard r-multi-norm cannot be equivalent to any uniform

c0-norm on c0 ⊗ Lr(Ω).

Corollary 3.21. Let Ω be a measure space, and take r > 1. Suppose that Lr(Ω) is

an infinite-dimensional space. Then the standard r-multi-norm is not equivalent to the

maximum or minimum multi-norms or to any (p, q)-multi-norm on Lr(Ω) for (p, q) ∈ T .

Proof. This follows from the theorem because the projective, injective, and Chevet–

Saphar norms are uniform c0-norms.

Again suppose that Ω is a measure space. Since L1(Ω) is Dedekind complete as a

Banach lattice, it follows from a remark on page 13 of [2] that every order-bounded

operator on L1(Ω) is regular. Since L1(Ω) is an AL-space, and hence a KB-space (see [2]),

it follows from [2, Theorem 15.3] that every bounded operator on L1(Ω) is order-bounded.

Thus, in this case, every S ∈ B(L1(Ω)) is regular. Thus the argument of the above proof
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does not apply. Indeed, the conclusion of the preceding paragraph does not hold: by

Theorem 2.20, (‖ · ‖[q]n ) = (‖ · ‖(1,q)n ) on L1(Ω) for every q ≥ 1 (cf. Theorem 3.3).

The following theorem subsumes Theorem 2.21 and part of Corollary 3.21.

Theorem 3.22. Let Ω be a measure space, and take r > 1, where Lr(Ω) is infinite-

dimensional. Suppose that t ≥ r and that (p, q) ∈ T , and assume that

(‖ · ‖(p,q)n ) ∼= (‖ · ‖[t]n ) on Lr(Ω).

Then r < 2, t ≥ 2r/(2−r), and (p, q) lies on the same curve Dc as (r, t) with p ≤ 2t/(2+t),

so that 1/p− 1/q ≥ 1/2. Moreover, we must also have (‖ · ‖[t]n ) ∼= (‖ · ‖(r,t)n ) on Lr(Ω).

Proof. We need to consider only the space ℓr. Set r̄ = min{r, 2}, as before. By (2.8),

ϕ
[t]
n (ℓr) = n1/t, and so it follows from Theorem 3.10 that one of the following must

happen:

(i) either p ≥ r̄ and q = t;

(ii) or p ≤ r̄ and 1/t = 1/r̄ − 1/p+ 1/q.

Let n ∈ N, and take g = (g1, . . . , gn) ∈ (ℓr)n to be as in the proof of Lemma 3.12.

Then we see that

‖g‖[t]n =
1

2n/r
sup{(mt/r

1 + · · ·+m
t/r
k )1/t : m1 + · · ·+mk = 2n}.

Since t/r ≥ 1, we have m
t/r
1 + · · ·+m

t/r
k ≤ 2nt/r, and so ‖g‖[t]n ≤ 1. On the other hand,

Lemma 3.12 tells us that
‖g‖(p,q)n ∼ ‖(δ1, . . . , δn)‖(p,q)n ,

where (δk) is the standard basis sequence for ℓ2. These and Example 2.16 imply that

1/p− 1/q ≥ 1/2.

The previous two paragraphs now imply the claimed result.

Thus (‖ · ‖(p,q)n ) is not equivalent to (‖ · ‖[t]n ) on Lr(Ω) in each of the following cases:

(i) r ≥ 2;

(ii) 1 < r < 2 and t < 2r/(2− r);

(iii) 1/p− 1/q < 1/2;

(iv) (p, q) and (r, t) lie on different curves Dc.

Moreover, our conjecture would be established if we could prove that ‖ · ‖[t]n 6∼= ‖ · ‖(r,t)n

on ℓr for any t ≥ r; this is open only when 1 < r < 2 and t ≥ 2r/(2 − r). Some further

partial results will be given in [7]; in particular, it will be proved that, in certain special

cases, our conjecture on page 38 is false.

4. The Hilbert space multi-norm

4.1. Equivalent norms. Let H be a (complex) Hilbert space with inner product de-

noted by [ ·, · ], and take p ∈ [1, 2]. We know from Propositions 3.6, 2.19, and 2.18 that

there is a constant Cp such that

‖x‖Hn = ‖x‖(2,2)n ≤ ‖x‖(p,p)n ≤ ‖x‖max
n = ‖x‖(1,1)n ≤ Cp‖x‖(p,p)n (x ∈ Hn)

for all n ∈ N. Our first theorem gives the best value of C2.
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Theorem 4.1. Let H be an infinite-dimensional, complex Hilbert space. Then

‖x‖Hn = ‖x‖(2,2)n ≤ ‖x‖max
n ≤ 2√

π
‖x‖(2,2)n (x ∈ Hn, n ∈ N);

the constant 2/
√
π is best-possible in this inequality.

Proof. By Theorem 2.10, the (2, 2)-multi-norm on H is the Chevet–Saphar norm d2 on

c0⊗H. Thus the dual space of (c0 ⊗H, ‖ · ‖H) is the space Π2(c0, H
′) = Π2(c0, H), where

H is the conjugate of H. Thus, by duality, the claim is equivalent to showing that

‖T‖ ≤ π2(T ) ≤
2√
π
‖T‖ (T ∈ B(c0, H)).

The ‘Little Grothendieck Theorem’ says that every T ∈ B(ℓ∞n , H) is 2-summing, with

π2(T ) ≤ (2/
√
π )‖T‖ for each n ∈ N. See [13, Theorem 11.11] for the estimate, and [13,

Section 20.19], where it is shown that this constant is the best possible (when the scalars

are the complex numbers). In particular, we see that each operator T ∈ B(c0, H) is such

that π2(T ) ≤ (2/
√
π )‖T‖; it follows that

sup{π2(T )/‖T‖ : T ∈ B(c0, H)} = 2/
√
π,

and this gives the required estimate.

The function p 7→ Cp, [1, 2] → [1, 2/
√
π] , is increasing, with C1 = 1 and C2 = 2/

√
π;

we do not have a formula for Cp.

4.2. Equivalence at level n. We now consider the best constant cn, defined for each

n ∈ N, such that

‖x‖max
n ≤ cn‖x‖(2,2)n (x ∈ Hn).

We know that (cn) is an increasing sequence in [1, 2/
√
π ] with c1 = 1 and that

lim
n→∞

cn = 2/
√
π.

We wonder: which is the smallest value of n such that cn > 1? The first fact that we can

offer is that c2 = c3 = 1, so that

‖x‖max
n = ‖x‖(2,2)n = ‖x‖Hn (x ∈ Hn)

for n = 1, 2, 3.

We start with some preliminary results. The following is a slight generalization of [18,

Proposition 2.8]. In the result, we define r by

1

r
=

1

p
− 1

2
=

1

2
− 1

p′

in the case where 1 < p < 2, so that p = 2r/(r + 2).

Proposition 4.2. Let 1 ≤ p < ∞, and let (x1, . . . , xn) be an orthogonal n-tuple in a

Hilbert space. Then

µp,n(x1, . . . , xn) =





max {‖xi‖ : i ∈ Nn} (p ≥ 2),
(∑n

i=1 ‖xi‖r
)1/r

(1 < p < 2),
(∑n

i=1 ‖xi‖2
)1/2

(p = 1).
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Proof. We calculate simply that

µp,n(x1, . . . , xn) = sup
{∥∥∥

n∑

i=1

αixi

∥∥∥ :

n∑

i=1

|αi|p
′ ≤ 1

}

= sup
{( n∑

i=1

|αi|2‖xi‖2
)1/2

:
n∑

i=1

|αi|p
′ ≤ 1

}
.

Suppose that p ≥ 2. Then p′ ≤ 2, and we see that the supremum is attained when

(αi) = (δi,i0) for some i0 ∈ Nn.

Next, suppose that 1 < p < 2, so that 2 < p′ < ∞. We set R = r/2, so that

R = p′/(p′ − 2) and R′ = p′/2 > 1. Then, by ℓR-ℓR
′

-duality, we see that

( n∑

i=1

‖xi‖2R
)1/R

= sup
{ n∑

i=1

|αi|2‖xi‖2 :

n∑

i=1

|αi|2R
′ ≤ 1

}
= µp,n(x1, . . . , xn)

2

because 2R′ = p′, and hence

( n∑

i=1

‖xi‖r
)1/r

= µp,n(x1, . . . , xn).

Suppose that p = 1. Then we are really taking the supremum over the collection of

sequence (αi) such that |αi| ≤ 1 (i ∈ Nn), and the result follows immediately.

The result follows in each case.

Let H be a Hilbert space, and take r with 2 ≤ r ≤ ∞. For n ∈ N, we denote by

Sr
n ⊂ Hn the set of all orthogonal n-tuples (x1, . . . , xn) ∈ Hn with

∑n
i=1 ‖xi‖r = 1. In

particular, we have

S2
n = {(xi) ∈ Hn : (xi) orthogonal and ‖x1 + · · ·+ xn‖ = 1}.

By Proposition 4.2, with r as defined for some p ∈ (1, 2), we have

〈Sr
n〉 ⊂ (Hn, µp,n)[1].

That is, the closed convex hull of Sr
n is a subset of the closed unit ball of Hn equipped

with the norm µp,n. By Proposition 4.2, this result also holds when p = 1 and r = 2, and

it holds for r = ∞ and any p ≥ 2. For us, it is actually these cases which are of most

interest:

〈S∞
n 〉 ⊂ (Hn, µ2,n)[1], 〈S2

n〉 ⊂ (Hn, µ1,n)[1].

The Russo–Dye theorem [10, Theorem 3.2.18(iii)] can be used to show that the closed

unit ball (Hn, µ2,n)[1] is precisely 〈S∞
n 〉. Thus we could ask: for which n ∈ N is it true

that 〈S2
n〉 = (Hn, µ1,n)[1]? We shall show shortly that this is equivalent to asking if the

Hilbert multi-norm and the maximum multi-norm agree at level n.

Lemma 4.3. Let H be a Hilbert space, and suppose that 2 ≤ r < ∞ and n ∈ N. Then

Sr
n ⊂ ex 〈Sr

n〉.

In the case where H is a finite-dimensional, Sr
n = ex 〈Sr

n〉.
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Proof. Let X be the space Hn with the norm ‖ · ‖ given by

‖(xi)‖X =
( n∑

i=1

‖xi‖r
)1/r

((xi) ∈ X).

Then Sr
n is a subset of the closed unit ball of X, and hence also 〈Sr

n〉 is a subset of the

closed unit ball of X. The space X is strictly convex (see, for example, [8]).

Assume towards a contradiction that (yi) ∈ Sr
n, but that (yi) is not an extreme point

of 〈Sr
n〉, so that we can find x, z ∈ 〈Sr

n〉 with x 6= z and 2y = x+ z. We then have

1 = ‖y‖X ≤ 1

2
(‖x‖X + ‖z‖X) ≤ 1,

and so ‖x‖X = ‖z‖X = 1. By the strict convexity of X, we have ‖(x+ z)/2‖ < 1 because

x 6= z, a contradiction, as required.

Now suppose that H is finite-dimensional. Then the set Sr
n is closed, and so, by

Mil’man’s converse to the Krein–Mil’man theorem, Sr
n = ex 〈Sr

n〉.
Finally, we show the link with the Hilbert multi-norm. In the result, we identify (anti-

linearly) the dual space of Hn with Hn; a sequence (xn) in a Hilbert space is orthogonal

if [xi, xj ] = 0 whenever i 6= j.

Theorem 4.4. Let H be a Hilbert space, and let n ∈ N. Then:

(i) the unit ball of the dual of (Hn, ‖ · ‖Hn ) is 〈S2
n〉;

(ii) the unit ball of the dual of (Hn, ‖ · ‖max
n ) is the unit ball of (Hn, µ1,n).

In particular, ‖ · ‖Hn = ‖ · ‖max
n on Hn whenever S2

n = ex((Hn, µ1,n)[1]).

Proof. For (i), let y = (yi) ∈ Hn be an orthogonal family with
∑n

i=1 ‖yi‖2 ≤ 1. Let

x = (xi) ∈ Hn satisfy ‖x‖Hn ≤ 1, and then choose a family (Pi)
n
i=1 of mutually orthogonal

projections summing to IH with Pi(yi) = yi (i ∈ Nn). Then

[x, y] =
∣∣∣

n∑

i=1

[xi, Pi(yi)]
∣∣∣ ≤

( n∑

i=1

‖Pi(xi)‖2
)1/2

·
( n∑

i=1

‖yi‖2
)1/2

≤ ‖x‖Hn ≤ 1.

Thus the norm of y as a functional on (Hn, ‖ · ‖Hn ) is at most 1. We conclude that

S2
n ⊂ (Hn, ‖ · ‖Hn )′[1], and hence 〈S2

n〉 ⊂ (Hn, ‖ · ‖Hn )′[1].

Conversely, assume towards a contradiction that 〈S2
n〉 ( (Hn, ‖ · ‖Hn )′[1]. Then there

exists x ∈ (Hn, ‖ · ‖Hn )′[1] such that a small open ball about x is disjoint from 〈S2
n〉. By

the Hahn–Banach theorem, there exists z = (zi) ∈ Hn and γ ∈ R such that

ℜ
( n∑

i=1

[zi, xi]
)
< γ ≤ ℜ

( n∑

i=1

[zi, yi]
) (

(yi) ∈ 〈S2
n〉

)
.

Since 〈S2
n〉 is absolutely convex, we see that γ < 0, and so actually

−ℜ
( n∑

i=1

[zi, xi]
)
> |γ| ≥

∣∣∣
n∑

i=1

[zi, yi]
∣∣∣

(
(yi) ∈ 〈S2

n〉
)
.

Now observe that

sup
{∣∣∣

n∑

i=1

[zi, yi]
∣∣∣ : (yi) ∈ 〈S2

n〉
}
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is greater than or equal to

sup
∣∣∣

n∑

i=1

[zi, yi]
∣∣∣

with the supremum taken over all orthogonal sequences in H with
∑n

i=1 ‖yi‖2 ≤ 1, and

that this supremum is equal to

sup
∣∣∣

n∑

i=1

αi[zi, ei]
∣∣∣

taken over all orthonormal sequences (ei) inH and all sequences (αi) with
∑n

i=1 |αi|2 ≤ 1.

In its turn, this supremum is equal to

sup
( n∑

i=1

|[zi, ei]|2
)1/2

taken over all orthonormal sequences (ei) in H, and hence, finally, to ‖(zi)‖Hn . Thus

−ℜ
( n∑

i=1

[zi, xi]
)
> ‖(zi)‖Hn .

But this contradicts the fact that (xi) ∈ (Hn, ‖ · ‖Hn )′[1]. Thus (i) holds.

For (ii), we know that (Hn, ‖ · ‖max
n ) ∼= ℓ∞n ⊗̂H, and that the dual of the latter space

is ℓ1n

〈⊗H ′ = B(H, ℓ1n). By definition, the space (Hn, µ1,n) can be identified with B(H, ℓ1n),

and so (ii) follows.

In conclusion, it follows that ‖ · ‖Hn = ‖ · ‖max
n if and only if 〈S2

n〉 = (Hn, µ1,n)[1]. By

the previous lemma, this equality holds whenever S2
n = ex(Hn, µ1,n)[1].

We shall show that indeed S2
n = ex(Hn, µ1,n)[1] when n = 2 or n = 3; thus, in these

cases, we have a description of the dual space of (Hn, µ1,n), which may be of independent

interest.

4.3. Calculation of c2. We begin with an elementary result that shows that c2 = 1.

Theorem 4.5. Let H be a complex Hilbert space. Then ‖ · ‖H2 = ‖ · ‖max
2 on H2.

Proof. It is sufficient to prove the result in the case where the dimension of H is at least 2.

Set L := (H2, µ1,2)[1], and recall that

µ1,2(y1, y2) = sup{‖ζ1y1 + ζ2y2‖ : ζ1, ζ2 ∈ T} (y1, y2 ∈ H).

Let (y1, y2) ∈ exL. By replacing y1 and y2 by η1y1 and η2y2, respectively, for suitable

η1, η2 ∈ T, we may suppose that ‖y1 + y2‖ = 1, and so

‖y1‖2 + ‖y2‖2 + 2ℜ(ζ1ζ2[y1, y2]) ≤ ‖y1‖2 + ‖y2‖2 + 2ℜ[y1, y2] = 1

for each ζ1, ζ2 ∈ T. We have ℜ(ζ[y1, y2]) ≤ ℜ[y1, y2] (ζ ∈ T), and so [y1, y2] ≥ 0.

Assume towards a contradiction that [y1, y2] > 0.

Choose u ∈ H with ‖u‖ = 1 such that [y1, u] = [u, y2], and then choose ε > 0 with

ε2 < [y1, y2]. Set w1 = y1 + εu and w2 = y2 − εu. Then we have

‖w1‖2 + ‖w2‖2 = ‖y1‖2 + ‖y2‖2 + 2ε2
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because [y1, u] = [u, y2], and

ℜ (ζ1ζ2([y1, y2]− ε2)) ≤ [y1, y2]− ε2 = [w1, w2]

for each ζ1, ζ2 ∈ T because [y1, y2]− ε2 > 0. Hence

‖ζ1w1 + ζ2w2‖ ≤ ‖w1 + w2‖ = 1 (ζ1, ζ2 ∈ T),

and so (y1 + εu, y2 − εu) ∈ L. Similarly, (y1 − εu, y2 + εu) ∈ L. However

2(y1, y2) = (y1 + εu, y2 − εu) + (y1 − εu, y2 + εu).

It follows that (y1, y2) is not an extreme point of L, the required contradiction.

We have shown that (y1, y2) ∈ S2
2 . Thus exL ⊂ S2

2 , and so L ⊂ 〈S2
2〉. This implies

that L = 〈S2
2〉 (and, by Lemma 4.3, we must also have exL = S2

2 .)

4.4. Calculation of c3. Next we consider the case where n = 3. In fact, there is now a

difference between real and complex Hilbert spaces.

Proposition 4.6. Let H be a real Hilbert space of dimension at least 3. Then ‖ · ‖H3 and

‖ · ‖max
3 are not equal on H3.

Proof. It is sufficient to consider H to be the real 3-dimensional Hilbert space ℓ 23 (R). Set

L = (H3, µ1,3)[1].

For y1, y2, y3 ∈ H, we now have

µ1,3(y1, y2, y3) = sup{‖t1y1 + t2y2 + t3y3‖ : t1, t2, t3 ∈ {±1}}.
Consider the vectors

y1 =
1√
11

(1, 0, 0), y2 =
1√
11

(1, 1, 0), y3 =
1√
11

(−1, 2, 1).

We see that [y1, y2] = [y2, y3] = 1/11 and [y1, y3] = −1/11, and so

‖y1 + y2 + y3‖2 =

3∑

j=1

‖yj‖2 + 2
∑

i<j

[yi, yj ] =
1

11
(9 + 2 · 1) = 1.

For each t1, t2, t3 ∈ {±1}, we have t1t2−t1t3+t2t3 ≤ 1, and so it follows immediately that

µ1,3(y1, y2, y3) = 1, showing that (y1, y2, y3) ∈ L. Note that the expression t1t2−t1t3+t2t3
takes its maximum value of 1 when t1 = t2 = t3 = 1, when t1 = t2 = 1 and t3 = −1, and

when t1 = 1 and t2 = t3 = −1.

We claim that y := (y1, y2, y3) is an extreme point of L.

Assume towards a contradiction that there exists u ∈ H3 with u 6= 0 such that

y ± u ∈ L, say u = (u1, u2, u3), with u1, u2, u3 ∈ H.

Take t1, t2, t3 ∈ {±1} with t1t2− t1t3+ t2t3 = 1. Then clearly ‖t1y1+ t2y2+ t3y3‖ = 1.

However

‖t1(y1 + u1) + t2(y2 + u2) + t3(y3 + u3)‖ ≤ 1

and

‖t1(y1 − u1) + t2(y2 − u2) + t3(y3 − u3)‖ ≤ 1.

Since H is strictly convex, it follows that t1u1 + t2u2 + t3u3 = 0. By taking the various

possibilities for t1, t2, t3 such that t1t2 − t1t3 + t2t3 = 1 specified above, we see that
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u1+u2+u3 = 0, that u1+u2−u3 = 0, and that u1−u2−u3 = 0. Thus u1 = u2 = u3 = 0,

a contradiction. Hence (y1, y2, y3) ∈ exL.

Since {y1, y2, y3} is manifestly not an orthogonal set in H, it follows that y is not in

the set S2
3 , and so the two multi-norms are not equal.

We shall now show that we obtain a different result from the above in the case where

H is a complex Hilbert space. Indeed ‖ · ‖H3 = ‖ · ‖max
3 on each complex Hilbert space H.

But now the (elementary) calculations seem to be much more challenging.

Lemma 4.7. Take (y1, y2, y3) ∈ H3. Suppose that (ξ1, ξ2, ξ3) ∈ T 3 is such that

‖ξ1y1 + ξ2y2 + ξ3y3‖ = max{‖η1y1 + η2y2 + η3y3‖ : (η1, η2, η3) ∈ T 3}.
Then

ℑ[ξ1y1, ξ2y2] = ℑ[ξ2y2, ξ3y3] = ℑ[ξ3y3, ξ1y1].
Proof. We see that ‖η1y1 + η2y2 + η3y3‖ for (η1, η2, η3) ∈ T 3 attains its maximum at the

point (η1, η2, η3) = (ξ1, ξ2, ξ3) whenever

ℜ(η1η2[y1, y2]) + ℜ(η2η3[y2, y3]) + ℜ(η3η1[y3, y1])
attains its maximum at (η1, η2, η3) = (ξ1, ξ2, ξ3).

Next set [y1, y2] = a exp(iα), [y2, y3] = b exp(iβ), and [y3, y1] = c exp(iγ), where

a, b, c ≥ 0 and α, β, γ ∈ R. Also, take t1, t2, t3 ∈ R with ηi = exp(iti) for i = 1, 2, 3. Then

the fact that the real-valued function

F : (t1, t2, t3) 7→ a cos(t1 − t2 + α) + b cos(t2 − t3 + β) + c cos(t3 − t1 + γ)

attains its maximum at (t1, t2, t3) implies that

0 =
∂F

∂t1
(t1, t2, t3) =

∂F

∂t2
(t1, t2, t3) =

∂F

∂t3
(t1, t2, t3),

and hence that

a sin(t1 − t2 + α) = b sin(t2 − t3 + β) = c sin(t3 − t1 + γ).

This gives the specified equations.

In the following lemmas, A is the angle at the vertex A of the triangle ABC, and BC

is the length of the side from B to C, etc. In the first two lemmas, ABC is a triangle

(if such a triangle exists) with BC = 1/a, CA = 1/b, and AB = 1/c, where a, b, c > 0.

Further, we shall consider the function

F : (r, s, t) 7→ a cos r + b cos s+ c cos t, R 3 → R.

Lemma 4.8. Consider Fπ to be the restriction of F to the set

{(r, s, t) ∈ R 3 : r + s+ t ≡ π (mod 2π)}.
(i) Suppose that the triangle ABC exists. Then Fπ attains its maximum at exactly two

points (r, s, t) = (A,B,C) or (r, s, t) = (−A,−B,−C) (mod 2π).

(ii) Suppose that the triangle ABC does not exist and that a ≤ b ≤ c. Then Fπ attains

its maximum at exactly the point (r, s, t) = (π, 0, 0) (mod 2π).

Proof. This is elementary.
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Lemma 4.9. Suppose that M 6≡ π (mod 2π), and consider FM to be the restriction of F

to the set

{(r, s, t) ∈ R 3 : r + s+ t ≡ M (mod 2π)}.

Then FM attains its maximum at exactly one tuple (r, s, t) (mod 2π).

Proof. Without loss of generality, we may suppose that a ≤ b ≤ c. The case where M = 0

(mod 2π) is obvious. Replacing M by M +2kπ or 2kπ−M , if necessary, we may suppose

that 0 < M < π. Note that the maximum of FM is at least

a cosM + b+ c > b+ c− a ≥ c.

Set

p = arcsin(a/b) and q = arcsin(a/c),

so that we have the picture below.

a b

c
a b

c
k

p q

α β γ

Suppose that (r, s, t) is any point where FM attains its maximum; say r, s, t ∈ (−π, π].

We have seen that (r, s, t) must satisfy

a sin r = b sin s = c sin t as well as r + s+ t ≡ M (mod 2π). (4.1)

Set h = a sin r. Then h 6= 0 and

cos r = ±
√
1− h2

a2
, cos s = ±

√
1− h2

b2
, and cos t = ±

√
1− h2

c2
.

Since a ≤ b ≤ c and FM (r, s, t) > c, we deduce that

cos s =

√
1− h2

b2
and cos t =

√
1− h2

c2
,

so that s = arcsin(h/b) and t = arcsin(h/c). In particular, we must have

|s| ≤ p and |t| ≤ q.

Assume toward a contradiction that h < 0. In the case where cos r ≥ 0, we see that

r, s, t ∈ [−π/2, 0) and so r + s+ t = M − 2π. This implies that

p+ q ≥ 3π

2
−M >

π

2
.

In particular, we must have 1/b2+1/c2 > 1/a2, so that ABC is an (acute) triangle. Since

3π/2 ≤ 2π + r < π − s− t ≤ 2π, we see that

FM (r, s, t) = FM (2π + r, s, t) < F (π − s− t, s, t) ≤ F (A,B,C) < F (A′, B′, C ′),
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where the second inequality follows from Lemma 4.8 and where A′ ∈ (0, A), B′ ∈ (0, B),

and C ′ ∈ (0, C) are such that A′ +B′ +C ′ = M (this is possible since 0 < M < π). This

contradicts the assumption that FM attains its maximum at (r, s, t).

In the case where cos r < 0, we see that r ∈ (−π,−π/2), whereas s, t ∈ [−π/2, 0), and

so r + s+ t = M − 2π. It follows that π > −r > M − π − r = π + s+ t > 0, and so

FM (r, s, t) < a cos(π + s+ t) + b cos(−s) + c cos(−t) = F (π + s+ t,−s,−t).

Choosing u ∈ (0, π+ s+ t), v ∈ (0,−s), and w ∈ (0,−t) such that u+ v+w = M , which

is possible since 0 < M < π, the above implies that

FM (r, s, t) < FM (u, v, w).

This again contradicts the assumption that FM attains its maximum at (r, s, t).

Thus we must have h > 0, so that r ∈ (0, π), s ∈ (0, p], and t ∈ (0, q]. We consider

the following two cases.

Case 1: M ≤ π/2 + p + q. Assume toward a contradiction that cos r < 0. Then r ∈
(π/2, π), whereas s, t ∈ (0, π/2], and so r+ s+ t = M . Consider the function g defined by

g(k) = π − arcsin

(
k

a

)
+ arcsin

(
k

b

)
+ arcsin

(
k

c

)
(0 ≤ k ≤ a).

Then g(h) = M and g(a) = π/2+p+q. If p+q ≥ π/2, then g(h) < π ≤ g(a), and so there

exists k ∈ (h, a] such that g(k) = π. But this means that π−arcsin(k/a), arcsin(k/b), and

arcsin(k/c) are three angles of a triangle whose sides are 1/a, 1/b and 1/c. In particular,

this implies that ABC is a triangle with A ≥ π/2, so that 1/a2 ≥ 1/b2+1/c2, which means

that p+ q ≤ π/2. Thus we must have p+ q ≤ π/2 anyways, so that 1/a2 ≥ 1/b2 + 1/c2.

We see that

g′(k) = − 1√
a2 − k2

+
1√

b2 − k2
+

1√
c2 − k2

,

and, for k ∈ (0, a), since 1/a2 ≥ 1/b2 + 1/c2, we have

g′′(k) = − k

(a2 − k2)3/2
+

k

(b2 − k2)3/2
+

k

(c2 − k2)3/2

< − k/a3

(
1− k2

a2

)3/2
+

k/b3

(
1− k2

a2

)3/2
+

k/c3

(
1− k2

a2

)3/2
< 0.

Note that g′(0) > 0 and g′(a) = −∞. So we see that there exists a unique k0 ∈ (0, a) such

that g′(k0) = 0, g is strictly increasing on (0, k0), and g is strictly decreasing on (k0, a).

In particular, since h ∈ (0, a), we must have M = g(h) > min{g(0), g(a)} = π/2 + p+ q;

a contradiction of the assumption of Case 1.

Thus we must have cos r ≥ 0, and so r, s, t ∈ (0, π/2]. Hence (r, s, t) must be the unique

triple (α, β, γ) that satisfies (4.1) and such that α, β, γ ∈ (0, π/2] (see the picture).

Case 2: M > π/2 + p+ q. In this case, there exists no triple (α, β, γ) that satisfies (4.1)

and such that α, β, γ ∈ (0, π/2], and so r ∈ (π/2, π]. It follows that r + s + t = M . We

also see from the assumption that p + q < π/2, so that 1/a2 > 1/b2 + 1/c2. Consider

the function g defined as in Case 1. Then g(h) = M . We again find a unique k0 ∈ (0, a)
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such that g is strictly increasing on (0, k0), and g is strictly decreasing on (k0, a). Since

g(a) = π/2+ p+ q < M < g(0) = π, h is the unique point l ∈ (k0, a) such that g(l) = M .

This shows that (r, s, t) is the unique triple (mod 2π) at which FM attains its maximum.

We summarize the above lemmas in the setting of our problem as follows.

Let (y1, y2, y3) ∈ L, where L = (H3, µ1,3)[1]. For (η1, η2, η3) ∈ T 3, set

N(η1, η2, η3) = ‖η1y1 + η2y2 + η3y3‖
and

F (η1, η2, η3) = ℜ(η1η2[y1, y2]) + ℜ(η2η3[y2, y3]) + ℜ(η3η1[y3, y1]),
so that N and F attain their maxima at the same tuple(s) (η1, η2, η3).

We shall now use square-bracket notation [η1, η2, η3] to denote the class of all tuples

(ζη1, ζη2, ζη3) (ζ ∈ T); we shall also call [η1, η2, η3] a ‘tuple’, with the understanding that

we are identifying all those [ζη1, ζη2, ζη3] for which ζ ∈ T.

Set

a = | [y1, y2] |, b = | [y2, y3] |, c = | [y1, y2] |,
and then set M = arg[y1, y2] + arg[y2, y3] + arg[y3, y1].

Suppose that a, b, c > 0. Then, by the previous three lemmas (and inspecting their

proofs as well), we have maxF (η1, η2, η3) > max{a, b, c}, and there are the following

cases:

I. M ≡ 0 (mod 2π): N attains its maximum at the unique [ξ1, ξ2, ξ3] in T 3 satisfying the

conditions that ξ1ξ2[y1, y2] > 0, that ξ2ξ3[y2, y3] > 0, and that ξ3ξ1[y3, y1] > 0. (Actually,

if any two of these inequalities hold, then the third must also hold.)

II. M ≡ π (mod 2π) and 1/a, 1/b, and 1/c are the sides of a triangle: N attains its

maximum at those [ξ1, ξ2, ξ3] in T 3 such that

ℑ(ξ1ξ2[y1, y2]) = ℑ(ξ2ξ3[y2, y3]) = ℑ(ξ3ξ1[y3, y1]) =: k 6= 0.

There are exactly 2 such tuples [ξ1, ξ2, ξ3], and, moreover, for one such tuple, k > 0 and,

for the other, k < 0.

III. M ≡ π (mod 2π) and 1/a, 1/b, 1/c cannot be the sides of any triangle: N attains

its maximum at the unique [ξ1, ξ2, ξ3] in T 3 such that

ℑ(ξ1ξ2[y1, y2]) = ℑ(ξ2ξ3[y2, y3]) = ℑ(ξ3ξ1[y3, y1]) = 0.

IV. 0 < M < π (mod 2π): N attains its maximum at the unique [ξ1, ξ2, ξ3] in T 3 such

that

ℑ(ξ1ξ2[y1, y2]) = ℑ(ξ2ξ3[y2, y3]) = ℑ(ξ3ξ1[y3, y1]) =: k > 0.

V. π < M < 2π (mod 2π): N attains maximum at the unique [ξ1, ξ2, ξ3] in T 3 such that

ℑ(ξ1ξ2[y1, y2]) = ℑ(ξ2ξ3[y2, y3]) = ℑ(ξ3ξ1[y3, y1]) =: k < 0.

Now take (y1, y2, y3) ∈ L, and suppose that N attains its maximum on T 3 at the

point (ξ1, ξ2, ξ3) ∈ T 3. Consider the elements u = (u1, u2, u3) ∈ H3 with u 6= 0, if any,

such that

(y1 + εu1, y2 + εu2, y3 + εu3) ∈ L
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for ε = −1 and ε = 1, and hence, by convexity, for all ε ∈ [−1, 1]. Since

ξ1y1 + ξ2y2 + ξ3y3 ∈ exH[1],

it follows that ξ1u1 + ξ2u2 + ξ3u3 = 0. So, for each ε ∈ [−1, 1], the function

(η1, η2, η3) 7→ ‖η1(y1 + εu1) + η2(y2 + εu2) + η3(y3 + εu3)‖, T 3 → R+,

also attains its maximum at (ξ1, ξ2, ξ3). Lemma 4.7 then implies that

ℑ(ξ1ξ2[y1 + εu1, y2 + εu2]) = ℑ(ξ2ξ3[y2 + εu2, y3 + εu3]) = ℑ(ξ3ξ1[y3 + εu3, y1 + εu1]).

Since ξ1u1 + ξ2u2 + ξ3u3 = 0, the coefficients of ε2 are equal. Comparing the coefficients

of ε, we see that the above equalities are equivalent to

[ui, ξ1y1 + ξ2y2 + ξ3y3] = 0 (i = 1, 2, 3).

Theorem 4.10. Let H be a complex Hilbert space. Then ex(H3, µ1,3)[1] = S2
3 , and

‖ · ‖H3 = ‖ · ‖max
3 on H3.

Proof. It is sufficient to consider only the case where H has dimension at least 3.

Let (y1, y2, y3) ∈ exL, where L = (H3, µ1,3)[1] as before. For (η1, η2, η3) ∈ T 3, we

define N(η1, η2, η3) and F (η1, η2, η3), and then a, b, c,M , as before.

Suppose that N attains its maximum, which is 1, at [ξ1, ξ2, ξ3] in T 3. Let (u1, u2, u3)

in H3 be non-zero and such that

ξ1u1 + ξ2u2 + ξ3u3 = 0

[ui, ξ1y1 + ξ2y2 + ξ3y3] = 0 (i ∈ N3).

In the case where N attains maximum at another (different) tuple [ζ1, ζ2, ζ3] in T 3, we

require, further, that (u1, u2, u3) also satisfies

ζ1u1 + ζ2u2 + ζ3u3 = 0

[ui, ζ1y1 + ζ2y2 + ζ3y3] = 0 (i ∈ N3).

It is easy to see that such (u1, u2, u3) always exists.

For each ε ∈ R, set yi,ε = yi + εui. For (η1, η2, η3) ∈ T 3, set

Nε(η1, η2, η3) = ‖η1y1,ε + η2y2,ε + η3y3,ε‖
and

Fε(η1, η2, η3) = ℜ(η1η2[y1,ε, y2,ε]) + ℜ(η2η3[y2,ε, y3,ε]) + ℜ(η3η1[y3,ε, y1,ε]).
Finally, set

aε = | [y1,ε, y2,ε] |, bε = | [y2,ε, y3,ε] |, cε = | [y3,ε, y1,ε] |,
and set M = arg[y1,ε, y2,ε] + arg[y2,ε, y3,ε] + arg[y3,ε, y1,ε]. Then we see that

Nε(ξ1, ξ2, ξ3) = Nε(ζ1, ζ2, ζ3) = 1,

and, from the discussion preceding this theorem, we have

ℑ(ξ1ξ2[y1,ε, y2,ε]) = ℑ(ξ2ξ3[y2,ε, y3,ε]) = ℑ(ξ3ξ1[y3,ε, y1,ε]) =: Iε

ℑ(ζ1ζ2[y1,ε, y2,ε]) = ℑ(ζ2ζ3[y2,ε, y3,ε]) = ℑ(ζ3ζ1[y3,ε, y1,ε]) =: Jε.

(The above equalities about [ζ1, ζ2, ζ3] are considered only when the relevant tuple exists.)
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First, we claim that, in the case where both I0 = 0 and F (ξ1, ξ2, ξ3) > 0, for |ε|
sufficiently small, the sign of Iε and the sign of

ℑ([y1,ε, y2,ε][y2,ε, y3,ε][y3,ε, y1,ε]) = ℑ
(
ξ1ξ2[y1,ε, y2,ε]ξ2ξ3[y2,ε, y3,ε]ξ3ξ1[y3,ε, y1,ε]

)

are the same. Indeed, since I0 = 0, this can be verified by considering the cases where

the coefficients of ε or ε2 in Iε are non-zero. This claim implies that, in the case where

both I0 = 0 and F (ξ1, ξ2, ξ3) > 0:

(i) 0 < Mε < π (mod 2π) implies that Iε > 0 ;

(ii) π < Mε < 2π (mod 2π) implies that Iε < 0 ;

(iii) Mε ≡ 0 or π (mod 2π) implies that Iε = 0 .

Assume toward a contradiction that a, b, c > 0. Then, for |ε| sufficiently small, we

have aε, bε, cε > 0. As discussed above, there are five cases:

Case 1: (y1, y2, y3) falls in class I. Then, for sufficiently small |ε|, we also have

ℜ(ξ1ξ2[y1,ε, y2,ε]) > 0, ℜ(ξ2ξ3[y2,ε, y3,ε]) > 0, ℜ(ξ3ξ1[y3,ε, y1,ε]) > 0,

Fε(ξ1, ξ2, ξ3) > max{aε, bε, cε}, and Mε is ‘close’ to 0 mod 2π.

By the claim, if 0 < Mε < π (mod 2π), then Iε > 0, so that (y1,ε, y2,ε, y3,ε) belongs to class

IV, and Nε attains its maximum at [ξ1, ξ2, ξ3]. If π < Mε < 2π (mod 2π), then Iε < 0,

so that (y1,ε, y2,ε, y3,ε) belongs to class V, and Nε attains its maximum at [ξ1, ξ2, ξ3].

Finally, if Mε = 0 (mod 2π), then Iε = 0, so that (y1,ε, y2,ε, y3,ε) belongs to class I,

and Nε again attains its maximum at [ξ1, ξ2, ξ3]. Thus we always have (y1,ε, y2,ε, y3,ε) ∈ L

for |ε| sufficiently small, and so (y1, y2, y3) cannot be an extreme point of L.

Case 2: (y1, y2, y3) falls into class II. Suppose that I0 > 0 and J0 < 0. Then, for

sufficiently small |ε|, we also have

1/aε, 1/bε, 1/cε are the sides of a triangle, Iε > 0, Jε < 0,

Fε(ξ1, ξ2, ξ3) > max{aε, bε, cε}, Fε(ζ1, ζ2, ζ3) > max{aε, bε, cε},
and Mε is ‘close’ to π mod 2π.

If 0 < Mε < π (mod 2π), then (y1,ε, y2,ε, y3,ε) belongs to class IV, and Nε attains

its maximum at [ξ1, ξ2, ξ3]. If π < Mε < 2π (mod 2π), then (y1,ε, y2,ε, y3,ε) belongs to

class V, and Nε attains its maximum at [ζ1, ζ2, ζ3]. Finally, if Mε = π (mod 2π), then

(y1,ε, y2,ε, y3,ε) belongs to class II, and Nε attains its maximum at both [ξ1, ξ2, ξ3] and

[ζ1, ζ2, ζ3]. Thus we always have (y1,ε, y2,ε, y3,ε) ∈ L for |ε| sufficiently small, and so

(y1, y2, y3) cannot be an extreme point of L.

The other cases where (y1, y2, y3) falls into classes III, IV, V can be covered by

similar arguments to obtain contradictions.

Thus we have proved that one of a, b, c must be 0. Say a = 0. Assume toward a

contradiction that b, c > 0. Then we see that N attains its maximum at the unique

[ξ1, ξ2, ξ3] in T 3 such that ξ2ξ3[y2, y3] > 0 and ξ3ξ1[y3, y1] > 0. We also see easily that

F (ξ1, ξ2, ξ3) > max{a = 0, b, c}. If aε ≡ 0, then obviously, when |ε| is sufficiently small Nε

again attains its maximum at [ξ1, ξ2, ξ3], and so (y1,ε, y2,ε, y3,ε) ∈ L, hence (y1, y2, y3)

cannot be an extreme point of L. So aε 6= 0 for sufficiently small |ε|. Again, we can argue
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as above, checking (y1,ε, y2,ε, y3,ε) against each of the classes I and III–V (we can avoid

class II) and the case where [y1,ε, y2,ε] = 0 to arrive at a contradiction.

Now we have proved that two of a, b, or c must be 0. We can now argue as above to

show that all a, b, c are 0. Hence (y1, y2, y3) ∈ S2
3 .

Thus we have proved that exL ⊂ S2
3 . This implies that L ⊂ 〈S2

3〉 ⊂ L. Hence exL = S2
3

and the proof is complete.

4.5. Calculation of c4. We can give some information about the constant c4.

Theorem 4.11. Let H be a complex Hilbert space of dimension at least 3. Then ‖ · ‖Hn is

not equal to ‖ · ‖max
n on Hn for every n ≥ 4.

Proof. It is sufficient to consider the case where n = 4 and H = ℓ23. Set L := (H4, µ1,4)[1].

Set x1 = (1, 0, 0), x2 = (−1, 2, 0), x3 = (−1,−1, 3), and x4 = (−1,−1,−1). Then we have

[xi, xj ] = −1 for every i, j ∈ N4 with i 6= j. For each (ξ1, ξ2, ξ3, ξ4) ∈ T4, we have

ℜ
∑

i<j

ξiξj ≥ −2,

with the minimum attained at those (ξ1, ξ2, ξ3, ξ4) ∈ T4 for which ξ1 + · · ·+ ξ4 = 0, and

so it follows that the function

(ξ1, ξ2, ξ3, ξ4) 7→ ‖ξ1x1 + · · ·+ ξ4x4‖, T4 → R,

attains its maximum at each (ξ1, ξ2, ξ3, ξ4) ∈ S, where we set

S := {(ξ1, ξ2, ξ3, ξ4) ∈ T4 : ξ1 + · · ·+ ξ4 = 0}
= {(ξ1, ξ2,−ξ1,−ξ2) and (ξ1, ξ2,−ξ2,−ξ1) : ξ1, ξ2 ∈ T}.

Let y = (y1, . . . , y4) be a scaling of (x1, . . . , x4) such that µ1,4((y1, . . . , y4)) = 1. In

particular, y ∈ L \ S2
4 . We also have

‖ξ1y1 + · · ·+ ξ4y4‖ ≤ 1

for every (ξ1, ξ2, ξ3, ξ4) ∈ T4, and the equality is attained whenever (ξ1, ξ2, ξ3, ξ4) ∈ S.

Suppose that u = (u1, . . . , u4) ∈ H4 is such that y ± u ∈ L. Then, for every

(ξ1, ξ2, ξ3, ξ4) ∈ T4 and every ε ∈ [−1, 1], we have

‖ξ1(y1 + εu1) + · · ·+ ξ4(y4 + εu4)‖ ≤ 1.

In particular, for each (ξ1, ξ2, ξ3, ξ4) ∈ S, since ξ1y1 + · · · + ξ4y4, being of norm 1, is an

extreme point of H[1], we obtain

ξ1u1 + · · ·+ ξ4u4 = 0.

This implies that u1 = · · · = u4 =: u.

Fix an ε ∈ R with |ε| sufficiently small so that ai, bi > 0 and Ai, Bi ∈ (π/2, 3π/2)

(i ∈ N3) can be chosen to satisfy the following equations:

ai exp(iAi) = [yi + εu, y4 + εu] (i = 1, 2, 3), b1 exp(iB1) = [y2 + εu, y3 + εu],

b2 exp(iB2) = [y3 + εu, y1 + εu], and b3 exp(iB3) = [y1 + εu, y2 + εu];

this can be done since [yi, yj ] < 0 for every i, j ∈ N4 with i 6= j. Using

ξi = exp(iαi) (i ∈ N3), and ξ4 = 1,
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the previous paragraph then implies that the function f : R3 → R defined by

f(α1, α2, α3) :=a1 cos(α1 +A1) + a2 cos(α2 +A2) + a3 cos(α3 +A3)

+ b1 cos(α2 − α3 +B1) + b2 cos(α3 − α1 +B2) + b3 cos(α1 − α2 +B3),

attains its maximum at (α, π, α + π) and (π, α, α + π) for every α ∈ R. In particular,

these triples must be solutions of the equations

0 =
∂f

∂α1
(α1, α2, α3) =

∂f

∂α2
(α1, α2, α3) =

∂f

∂α3
(α1, α2, α3).

This implies that Ai = Bi = π (i ∈ N3) and a1 = a2 = a3 = b1 = b2 = b3.

Thus we have shown that, for each ε ∈ R with sufficiently small |ε|, all the numbers

[yi + εu, yj + εu] (i, j ∈ N4, i 6= j)

are equal to the same negative real number. Thus, the numbers

[yi, u] + [u, yj ] (i, j ∈ N4, i 6= j)

are all equal, and since y = (y1, . . . , y4) is a scaling of (x1, . . . , x4), we deduce that

[u, x1] = [u, x2] = [u, x3] = [u, x4].

Solving these linear equations, we obtain u = 0. This implies that y is an extreme point

of L. Hence S2
4 ( exL, and so ‖ · ‖H4 6= ‖ · ‖max

4 on H4.

The above calculation shows that 1 < c4 ≤ cn ≤ 2/
√
π for all n ≥ 4. However, we

have not calculated the actual value of c4, or of any cn for n ≥ 4.
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