1. Introduction

In this paper we are concerned with the semilinear Neumann problem

{—Au + Au= Q(z)|u)? ~2u + h(z)|u|?2u in 2,

(L1) Ou/ov(z) =0 on 0L,

where 2 C R¥ is a bounded domain with a smooth boundary 942, the coefficients @ and
h are continuous on {2, ) is positive on {2 and A > 0 is a parameter. We take N > 3 and
denote by 2* = 2N/(N — 2) the critical Sobolev exponent. The exponent g satisfies the
inequality 2 < ¢ < 2*. In the second part of this work we consider a modified problem
(1.1) with @ replaced by —@. In this case the exponent 2* can be replaced by any p > ¢
and we no longer require the coeflicients to be smooth.

Throughout this work by a solution of problem (1.1) we mean a nontrivial solution.

Solutions of (1.1) are sought in the Sobolev space H'(£2). We recall that by H!(2)
we denote the usual Sobolev space equipped with the norm

lul = {(IVul? + u?) da.
Q

Semilinear Neumann problems arise in the study of mathematical models in biological
formation theory governed by diffusion and cross-diffusion systems [42]. Such problems
also have a number of applications in various branches of differential geometry [32],
[46]. The pioneering paper by Brézis and Nirenberg [21] has inspired research on elliptic
equations with critical Sobolev exponents.

If @ =1 and h = 0, then problem (1.1) has an extensive literature. We refer to the
papers [2]-[7], [34], [51]-[57], [43], [44], where the existence of least energy solutions and
their properties have been investigated. In these papers, solutions of (1.1) were obtained
as minimizers of a functional

B SQ(|Vu|2 + Mu?) dx

on H*(£2)\ {0}. A minimizer u of I over H'(£2)\ {0} is called a least energy solution,
that is,

Ix(u)

AT e\ oy Av) = hw)

The main idea in the proof of the existence of a least energy solution is to show that
my < 8/2%N where S is the best Sobolev constant. The inequality my < S/2%/V allows
us to show that every minimizing sequence is relatively compact in H!(2).

(5]
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It is easily verified that problem (1.1) always has a constant solution A/ ~2). How-
ever, comparing the energy levels of least energy solutions and constant solutions, one
can show that least energy solutions are nonconstant for large A\. Moreover, it has been
proved in [8] that there exists A, > 0 such that least energy solutions for A < A, are
constant. The least energy solutions u) can be chosen to be positive and have the fol-
lowing concentration property: they are single-peaked in the sense that every u), for A
large, attains its unique maximum at a point Py € 92 and Py — P,, as A — oo, with
H(P,) = maxpecan H(P), where H is the mean curvature of 0f2 with respect to the inner
normal. These results have been extended to the case Q # const and h = 0 in the papers
[23], [24] and [27].

The purpose of this work is twofold. Firstly we investigate the combined effect of both
coefficients @ and h and the mean curvature of 3f2 on the existence and nonexistence
of solutions of problem (1.1). The existence results depend on the relationship between
the global maximum Qy = max, .5 Q(7) and Qn, = max,cpn Q(z). The first part of
this work focuses on seeking the so-called low energy solutions, generated as the lim-
its of Palais—Smale sequences. According to [25] a higher energy Palais—Smale sequence
of (1.1), with a nonconstant coefficient @, displays a very complicated behaviour and
can concentrate at any point of (2. The only Palais—-Smale sequences that are relatively
easy to control are those corresponding to a low energy level of a variational functional
of (1.1).

In the second part of this work we consider problem (1.1) with @ replaced by —Q.
The existence results will be described in terms of some integrability conditions imposed
on () and h. In this case the influence of the relationship of Qv and Q. as well as of
the mean curvature of 92 completely disappears. Moreover the term —Q(z)|u|? ~2u can
be replaced by —Q(z)|u|P~2u with ¢ < p. The underlying Sobolev space H'({2) is now
replaced by a weighted Sobolev space. However, in order to get the existence of solutions
we must restrict the parameter A to an interval (—oo, Ao] with 0 < A, < 0o. We present
conditions guaranteeing A, < oo and A\, = o0.

Throughout this work we use standard notations. The norms in the Lebesgue spaces
LP(£2),1 < p < o0, are denoted by || - ||,. If h is a measurable and positive a.e. function
on 2, then by LP(£2, h) we denote the weighted Lebesgue space equipped with the norm

lull? ), = | Ju(2)["h(z) da.
2

The symbol |A| stands for the Lebesgue measure of A C R. In a Banach space X
we denote by “—” the strong convergence and a weak convergence is denoted by “—”.
We always denote by (-,-) the duality pairing between the Banach space X and its
dual X*.

The paper is organized as follows. The first part of this paper consisting of Sections
1-8 is devoted to problem (1.1). In the remaining sections we examine equation (1.1)
with @ replaced by —@Q. In Sections 3-4 solutions to problem (1.1) are found through
the mountain-pass principle [12]. These solutions are low energy solutions. To apply
the mountain-pass principle we need the Palais-Smale condition. Energy levels of the
variational functional for problem (1.1) below which the Palais—Smale condition holds are
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investigated in Section 3. The existence and nonexistence results are given in Sections 4
and 6. In Section 5, we study the existence of multiple solutions in terms of the Lusternik—
Schnirelmann category of level sets of @ on the boundary or interior of the domain. In
Section 7 we consider the problem (1.1) at resonance, that is, for A = 0. This problem has
already been studied in the paper [23] with h = 0. However, in this case solutions exist if
Q changes sign in 2 and | o Q(z) dr < 0. Here the presence of a lower order nonlinearity
with a coefficient h changing sign allows us to establish the existence of a solution when
Q is positive. In Section 8 we implement the fountain theorem [16] to generate infinitely
many solutions when 1 < ¢ < 2.

Sections 9, 10 and 11 are devoted to problem (1.1) with Q replaced by —@Q. In this case
the variational functional no longer has the mountain-pass geometry and instead we seek
solutions through a local minimization. This approach does not require smoothness of the
coefficients Q and h. We obtain some existence results under rather general integrability
conditions on @ and h. This situation is discussed in Section 9. Some results without the
integrability conditions on @ and h are given in Section 10. The main ingredient here is
the use of the Hardy inequality. In Section 11 we consider the case where @ and h vanish
on some subsets of (2. In this situation it is not clear whether the Palais—Smale condition
holds. The existence of solutions is obtained through constrained minimization. The set of
constraints consists of functions between a sub and supersolution of (11.1). It is relatively
easy to construct a subsolution. However the construction of a supersolution is more
involved and it is obtained through the bifurcation theorem [30]. These solutions are of
negative energy. In the second part of Section 12 we adopt a different approach to problem
(11.1). We apply the mountain-pass theorem to a truncated variational functional to
obtain solutions with positive energy. Section 12 concentrates on problem (1.1) when
2* is replaced by a supercritical exponent, and the coefficient @) is replaced with u@,
some small g > 0. Assuming that the coefficients @ and h are positive and in L*°(Q) we
establish the existence of a solution in H'(£2) N L>°(§2). The final Section 13 is devoted
to the study of semilinear parabolic equations involving the critical Sobolev exponent.
The optimal Sobolev inequalities from Section 3 are used to derive criteria for blow-up
and no blow-up of solutions.

2. Preliminaries

In this work we frequently use an equivalent norm in H!(§2): || - ||x defined by

lullx = [ (I Vul? + xu?) da.
0
By S we denote the best Sobolev constant defined by
S = inf{ | IVu?de:ue D2®Y), | juf? dz = 1},
RN RN

where D12(RY) is the Sobolev space obtained as the completion of C§°(RY) with respect
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to the norm
lul}yiz = | [Vul? da.
RN
The best Sobolev constant S is achieved by
c
U = e

where ¢y > 0 is a constant depending on N. The function U, called an instanton, satisfies
the equation

~AU =U*"' inRV.
We use the notation

U.,(z) = a<N2)/2U<¥>, £>0,yecRY.

We frequently refer to the Sobolev inequality

(2.1) (§ d:c>2/2* < ¢ [(IVul? +u?) do
(9] (9]

for all u € H'(£2), where C5 > 0 is a constant. Letting C5(\) = Cs for A > 1 and
Cs(A\) = Cs /A for 0 < A < 1 we can write inequality (2.1) in the following form:

(2,) (] dx)w <o) [(Vul + a2 da
2 2

for all u € H'(£2). Throughout this work we shall often use P. L. Lions’s concentration-
compactness principle [39]:

If w,, — u in H'(£2), then there exist Borel measures i and v such that
2 x

41/

[Vt,|? = p and  |uy,

weakly in the sense of measures, where
w> | Vaul? + Z,ujéwj, v=l|u?* + Zujé%..
JjeJ jeJ
Here the set of indices J is at most countable and the constants v; > 0 and p; > 0 satisfy:
2/2*

(2.2) if zj € £2, then Svi’™ < py;
SV
(2.3) if z; € 902, then QJW < .

We associate with problem (1.1) a variational functional Jy given by

1 1 . 1
Ia(u) = 5 (1Vul? + 3?) de — — | Q@) |ul* do — = | h(w)|ul? da.
2 2% q
Q Q 0
Critical points of Jy are solutions of problem (1.1). Critical points of J) can be taken
to be positive on (2. Indeed, we can modify the nonlinearity in (1.1) by setting f(¢) =
Q(z)t* '+ h(z)t! for t > 0 and f(z,t) = 0 for t < 0. If u # 0 is a critical point of .J,
then
0= (4 (w),u) = §(IVu™ P + Au)*) de =0,
0
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Thus u~ = 0 and by Hopf’s boundary point lemma u > 0 on {2. To find critical points of
Jy we use the mountain-pass theorem [12]. First we check that Jy has a mountain-pass
geometry. If u € H'(£2), then

min(1, A « * o
e e el e A T e
min(1, \) . . _
=l (M) QU 2l ).
Hence there exists a constant ¢ = 9(A, Cs, [|@]co, ||]|oo) > 0 such that
min(1, A

(2.4) Ia(u) > % 0*  for ||lu| = o.
It is easy to see that for each € € (0,&,], with €, small and fixed, and y € RY we have
(2.5) IA({tUey) <0 and |tU., || > 0

for t > 0 sufficiently large. The mountain-pass level is defined by

cx = inf Jnax IA(v(1)),

where I' = {y € C([0,1], H*(£2)) : v(0) = 0, y(1) = tU. ,}. In the next section we shall
examine Palais—Smale sequences for Jy.

Solutions of problem (1.1) are in C'*%(£2). This can be deduced from the following
two lemmas whose proofs can be found in the paper [51].

LEMMA 2.1. Suppose that 02 € C* and u € H'(82) is a solution of the problem
—Au=a(z)u in 2,
{3u/8u =0 on 012,
with a € LN/2(0), then u € LY(2) for every t > 1.

LEMMA 2.2. Suppose that 92 € C? and f € LP(2) with 1 < p < co. If u is a solution of
the problem

—Au=f in £,
ou/ov =0 on 012,

then ||ul| 2.0 2y < C||fllp for some constant C' > 0.

First we apply Lemma 2.1 with a(z) = Q(z)[u[?> =2 + h(z)|u|?"2 and then Lemma

2.2 with f(z) = Q(2)|u|?" ~2u + h(z)|ul1=2u.

3. The Palais—Smale condition

We recall that {u,,} C H(£2) is said to be a Palais—Smale sequence at a level ¢ ((PS).
sequence for short) if Jy(um) — ¢ and J5(um) — 0 in H1(£2).

We say that Jy satisfies the Palais—Smale condition at a level ¢ ((PS). condition for
short) if every (PS). sequence is relatively compact in H!(2).
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Let Qm = max,con Q(z) and Qu = max_ .5 Q(x). We set
SN/2 SN/2
QNQﬁnN_Q)m J NQg\/][V—Q)/Q ) :

PROPOSITION 3.1. For every A > 0 the functional Jy satisfies the (PS). condition with
¢ < Se.

Seo = min(

Proof. The concentration-compactness principle is invoked to establish that any (PS).. se-
quence is relatively compact. We establish this result only in the case Qy < 22/(V=2)Q,,.
In this case S.o = SN/Q/(QNQI(HN_Q)/Q) but the case Qu > 22V-2Q,, with S, =
SN/2/(NQ1(\2V_2)/2) can be treated in the same way. Let {u,,} C H'(£2) be such that
SN/2
2ZVC?EMN72)/2
Indeed, for large m, say m > m,, we have

(3.1) Ia(tm) — ¢ < and  J{(um) — 0 in H™ ().

1
et 1t o(fumll) 2 Jx(um) = (Jx(um), tm)

— 1_1 2 2 l_i 2%
— (2 q) S(|Vum\ + Auy) dx + (q 2*>§2Q|um| dz.

Q
From this we deduce that {u,,} is bounded in H'(£2). Therefore we may assume that
U — uw in HY (), uy, — win LI(2) and a.e. on 2. By the concentration-compactness
principle we have

CONCENTHCI S R PR LW o P

JeJ =
with 41; and v; satisfying (2.2) and (2.3), respectively. Applying a family of test functions
concentrating at z; and using the second condition of (3.1) we get Q(z;)v; = p; for each
J € J. It then follows from (2.2) and (2.3) that if v; > 0 for some j € J, then

SN/2
SN/ .
(3.3) Vj > W if T; € 092.
We now show that v; = 0 for each j € J. We write
1 1 1
(3.4) In(m) — = (J5(Um), Um) = (— — —) S(|Vum|2 + M) dx
q 2 q/;
1 1 .
+ (— — —> | Q@) |* da
a 2/

Letting m — oo we get

¢> G— é) D i+ (é —2—1*> > Q)

JjeJ jeJ

= %ZQ(%‘)%‘ = % > vQ(x)) +% > vQ(xy).

jeJ T €0 z, €002
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If v; > 0 for some x; € £2, then by (3.2)
GN/2 GN/2 GN/2
2 NQu) NI = NQU AT Z G
which is impossible. Similarly, if z; € 042, then by (3.3)
GN/2 GN/2
©Z INQ,) VD Z G -D

and again we have arrived at a contradiction. This means that v; = 0 for each j € J and
U, — u in L2 (£2). This yields, using J4 (uy,) — 0 in H=1(2), upy — w in H (). =

We need some weighted Sobolev inequalities whose proof can be found in the papers
[27] and [24] (see also [59] for some related results):

(I) Let N > 5 and Qy > 22/(V=2Q,,,. Then there exists a constant A; > 0 such that

(S Q(z)|ul* dx)Z/Z* < M(S |Vul|? dz + Ay S u? dx)
2 7 2

for all u € H'(92).

To formulate other weighted Sobolev inequalities we need the following assumptions:

(S1) {x €0 :H(zx) <0} #0and {zr € 92 : Q(x) = Qm} C {x € 02 : H(z) < 0}
and
Q(z) = Q(zo)| = oz — o) as |z —zo] =0
for every z, € 012 such that Qn = Q(z,).
(S2)  D(0,a) C 012 for some a > 0, where D(0,a) = B(0,a) N {zxy =0} and {z € 912 :
Q(z) = Qm} C D(0,a/2) and moreover for every z, € D(0,a/2),

1Q(z) — Q(xo)| = o(|lz — 20|*)  as z — wo.

We are now in a position to state two weighted Sobolev inequalities corresponding to
assumptions (S1) and (S2):

(IT) Let N > 5 and Q < 2%(N=2)Q,, and suppose that (S;) holds. Then there exists
a constant A5 > 0 such that
. 2/2* 22/NQ(N*2)/N
2 m 2 2
(S Q(z)|ul dx) < f(g |Vul® dx + As S u dx)
Q Q Q
for all u € H(2).

(III) Let N > 5 and Qu < 22/(N=2)) = and suppose that (S2) holds. Then there
exists a constant Az > 0 such that

(§ @@y @)™ <
[0}

for every u € H(2).
Solutions u of (1.1) satisfying Jx(u) < S will be referred to as low energy solutions.

02/N QIN=2)/N

5 <S |Vu|? do + As S u? dx)
Q

9]
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LEMMA 3.2. Let N > 5.

(i) Suppose that Qn > 22/ N=2Q.,. If b < 0 on 2, then problem (1.1) does not have
a low energy solution for A > Aj.
(ii) Suppose that Qy < 22/ N=2)Q... If (S1) holds and h < 0 on £2, then problem
(1.1) does not have a low energy solution for A > As.
(iii) Suppose that Qu < 22/N=2)Q.,. If (S2) holds and h < 0 on §2, then problem
(1.1) does not have a low energy solution for A > As.

Proof. We only prove (i). Let u be a solution of (1.1), with A > Ay, satisfying Jy(u) <
SN2 )(NQ\N2/2). Then it follows from inequality (I) that

S(|Vu|2 + \u?) dx = S Qlu|? dx + S hlu|? dz < S Qlu|* dx

(% (] (7 (]
(N—2)/N\ 2*/2 2 /2
< M 2 2 .
< (75 ) (§(|vu| + )dx)
(%
Hence 2 /(N—2)
N/(N-2) -
CAl— < (S (IVul® + Au?) dx)
Qu P
and N/2
1 1 S
a(u) = 7 () w) = 5= VIVl + Aa?) do > o
2 M

which is impossible for A > 0 large. m

It is easy to see that one can always obtain a solution through the mountain-pass
theorem for A > 0 small and for h with small norm ||A]| -

4. Existence of solutions of problem (1.1) for every \ >0

In this section we present some existence results for each A\ > 0 in both cases Qn >
22/(N=2) - and Qum < 22/WN=-2Q... If Qu > 22(V=2)Q,, and h = 0 on 2, then prob-
lem (1.1) does not have low energy solutions for A > A;, where A; is a constant from
inequality (I) (see [27]). However, the presence of a coefficient h with h(y) > 0 for some
y € {x € £2: Q(x) = Qum} produces low energy solutions for all A > 0.

THEOREM 4.1. Suppose that Qy > 22/ N=2Q.., h(x) > 0 on 2 and h(z) > 0 for each
z€{x:Q(z) =Qm}.

() If N >4,2 < q <2 and Q is C? on B(y,0) C 2 and Di;jQ(y) = 0, i,j =
1,...,N, for some y € {z; Q(z) = Qum}, then problem (1.1) has a solution for every
A>0.

(i) If N > 3,2(N—-1)/(N—-2) < q < 2" and Q is differentiable at some point
y € {x: Q(x) = Qm}, then problem (1.1) has a solution for every A > 0.

Proof. We set

ey = uegllf(n) max Ja(tu).



Neumann problem with critical nonlinearities 13

It is well known that ¢y < ¢5. We only consider the case 2(IV — 1)/ ( — 2) < g < 2*. For

simplicity we assume that 0 € {z : Q(z) = Qum} and D;Q(0 ) 0,1 .-, N, and set

ue = Uy g. For each € > 0 there exists t. > 0 such that

Ja(teue) = max Jy(tue) = é S(|Vu 1> 4+ \u?) dx — é S Q(z)u? dx — te S h(z)ud dx
Alele O§t<oo>\ € 29 € e 2*0 e qQ e )

where t. satisfies 0 < t, <t. < M < oo, with t, and M independent of ¢ for £ small. We
may assume that SQ h(z)ul dx > 0 for small € > 0. We now choose 0 < t, < t, so that

SN/Q
Ia(tue) < W
for 0 <t < t,. Then for t, <t we have
t2 9 9 tZ* tq
41 Dtue) < 5 V(Vue + 22) do — o | Q(a)u?" do — = | h(w)ud da
2 2% q
2 2 2
t2 2y 2 ¥ - t! .
< pmax {2 S(|Vu5\ + Aul) dr — o S Q(z)u: dx| — " S h(z)ul dx
2 2 2
tq
=M, — 4 S h(z)ul dx.

Q
We now observe that there exists ¢, > 0 such that

— — %

_ i 2 2 te o, 1
M, = ) §2(|Vu5 + Aul) dx — o éQ(a:)us dx = N q

§o(IVue|? + M) da )N/2
o Q(x)u" da)N=2/N

To proceed further we need the following asymptotic formulae:

VIVuc?de = K1+ 0(N72), | Qa)u? do = KaQu + O(e),
(% (]

where K = [ [VU[? dz, Ky = §p U? do and S = Ky /Ky" /™. Thus

1 Ky 4+ 0(eN-2) N/z
MEN((QMK2+O(E))(N_2)/N> +/\O(52)

:i[ N/2
N

+ OV (QuE) N2 4 0(e)] + O(A?)

N/2
1KY
N—-2)/2 N—-2)/2
N QW22 (N=2)/

+0(e) + O()\EZ).
From this we deduce the estimate

(4.2) Ta(tug) <

for each ¢t > 0. We now use the following estimate:

S uldr > CeN(-a/27)
Q
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for some C > 0 independent of €, which is valid for N/(N — 2) < q. Since N/(N —2) <
2(N —1)/(N — 2) < g we derive from this estimate that

(4.3) | h(z)ut dz > ah(0)eN~ (V=22
2

for some constant a > 0 independent of €. Since 0 < N — (N — 2)g/2 < 1, we deduce
from (4.2) and (4.3) that

gN/2 ) . N2 _ GN/2
Inltue) < oy +AOLE) +0(e) — thah(0)e S No

for small e > 0. The proof in case (ii) when 2 < ¢ < 2* is similar. In this case the
asymptotic formula for S P Q(x)u?" dx is replaced by

| Q@) dz = K2Qu + O(e?),
0]
which yields

1 SN2 JQINTR/Z 4 Neelog(e) + O(e2)  if N =4,
N sz T2 4 Nee? 4 O(e2) ifN>5 u

We now turn our attention to the case Qum < 22/(N=2Q,,..

THEOREM 4.2. (i) Let Qu < 22N=2Q., h > 0 on 2 and {z € 092 : Q(x) = Qu} C
{x € 02 : H(z) > 0}. Moreover, assume that |Q(z) — Q(y)| = o(|Jx —y|) for some y € N2
with Qm = Q(y). Then problem (1.1) has a low energy solution for every X > 0.

(i) If2 < ¢ <2(N—-1)/(N—=2) for N > 4 and 3 < q < 4 for N = 3, then the
assumption h > 0 on §2 can be dropped and a low energy solution of problem (1.1) exists
for every A > 0.

Proof. Since part (i) is well established (see [27], [51]), we only prove part (ii). For sim-
plicity we assume that 0 € 92 and Q(0) = Q. Let

*

fate) = max [g §2(Vu5|2 + \u?) dr — i S Q(x)u? dx — % S h(z)ud dx},

0<t<o0o 2%
0 2

where u. = U . If 0 < t. <1, then

1 (V0 + M) da) /2
(4.4) f)\(ts) < N (?Q Q(:c)ug* dz)(N72)/2

1
+ - S |hud dz.

15
If t. > 1, then setting A = SQ(|VUE\2 + Au2)dr and B = SQ Qu?" dz, and observing that
B+ SQhugdx > 0 for small € > 0 we have

Ate = B2t 4427 \ hul de > Bret 4127 | hut da.
2 2

A 1/(a—2)
S .
- <B+ SQ hu?dm)

Hence

This implies that
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s

(4.5) filte) < O<mtz?c(>o {g §Z(|Vug|2 + /\ug) dx — 7;—* !S?Q(x)ui* dx}

1 A q/(q—2)
T G
q B+ SQ hud dx

_ 10y (|vua|2+>\u§)dx)N/2
N SQ Qu dx)(N-2)/2
1 (SQ(|VUE|2 + )\ug) daj)q/(q—2)
q (SQ ng* dx + SQ hud d:c)Q/(q72) )

S |h|ud dx

We now need the following estimate (see [2]):
SQ(\VU5|2 + Au?) dx

4.6
S/24N — AyH(0)elog L + anAe + O(e) + o(Xe) ifN =3,
< 9§ 5/24N — ANH(0)e + anAe?log L + O(e?log 1) + o(Ae?log 1) if N =4,
/22N — AN H(0)e + anAe? + O(e2) + o(Ae?) N 25,

where An and apy are positive constants depending on N. The integral S o huddz in (4.4)
and (4.5) satisfies the estimate

S \h|ud dz = O(e~9N=2/24N)  brovided ¢ > N/(N — 2)
2
with —¢(N — 2)/2+N > 1. Combining this with (4.4)—(4.6) we deduce that the mountain-
pass level satisfies the inequality
SN/Q

ex < INQWN D/

and this completes the proof. m
We now consider the case {x € 002 : Q(x) = Qum} C {x € 02 : H(z) < 0}.

THEOREM 4.3. Suppose that Qy < 22/ (N2 Q.. and that the assumption (S1) holds. Fur-
ther, assume that h(x) > 0 on 2 and h(x) > 0 for all x € {x € 982 : H(x) < 0}. If
2(N —1)/(N —2) < q < 2%, then there exists a low energy solution of problem (1.1) for
every A > 0.

Proof. As in the proof of Theorem 4.2 we have

*

f(te) = max ﬁS(\Vu |2+)\u2)d;v—t—SQuQ*dx—ﬁShuqu
A T oo 2Q € € 2*9 N qQ6 ’

with 0 < t, <t. < M < oo for some constants t, and M independent of €. Here we have
assumed that 0 € {x € 02 : H(z) < 0}, Q(0) = Qm and h(0) > 0. By straightforward
estimates we obtain

N/2
Iy (tue) < 5 +0(e) + A\O(e?) — bt

—q(N—-2)/24+N
= N "o

for some constant b > 0 independent of €. Since —(N — 2)¢/2+ N < 1, we conclude that
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SN/2
2NQ(N 2)/2

for sufficiently small € > 0 and the result follows. m

cy <

Finally, we establish the existence result in the flat case.

THEOREM 4.4. Let N > 5 and suppose that (Sq) holds. If 2 < q < 2*, h(z) > 0 on {2 and
h(x) > 0 for x € {x € 92 : Q(x) = Qm}, then problem (1.1) has a low energy solution
for every A > 0.

Proof. For simplicity we assume that 0 belongs to the flat part of the boundary 042,
Q(0) = Qu, and h(0) > 0. The proof is parallel to the arguments from Theorems 4.1-4.3.
The only change is in the estimation of

§ o (IVue? + Au2) do (K1/2+ O(eN72) 4 X0 (£2))N/2

(§, Quz do)™V=2/2 " (K3Qum /2 + O(eN) 4 o(c2)) N -2)/2

Since SQ hud dz > be=9N=2)/24N for some constant b > 0, with —¢(N —2)/2 + N < 2
Q")

we derive the estimate for the mountain-pass level ¢y < SV/2/(2N . m

5. Multiple solutions in terms of
Lusternik—Schnirelmann category

In this section, we relate the number of solutions of (1.1) to the category of a maximal
level set of the coefficient Q. Willem [58] details the Lusternik—Schnirelmann category
and its applications. Let M? = {z € 02 : Q(z) = Qu}, and M = {z € 2 : Q(z) = Qum}
and for small ¢ > 0, let M} = {z € 2 : dist(x, M7) < g}, j = 0,1. Let N be a Nehari
manifold for Jy:
N = {u € H'(2)\ {0} : (J4(u),u) = O},
For k € R, denote Ef = {u € N, : Jy(u) < k}.
By the implicit function theorem, Ay is a smooth manifold of codimension 1. In fact,
for each u € H!, there is a unique s(u) > 0 such that s(u)u € Ny, where s(u) maximizes
2
f(s):S—S<|Vu2+ >dx——SQu dx——Shuqda:
2 q
Q Q Q
In a standard way [1], NV is a natural constraint and any critical point u # 0 of J)
in H'(§2) corresponds to a critical point of the restriction of .J to Ny.
We introduce a barycentre for u € H'(§2), defined by
o9
sl = Jo

SQ |u|?" dx

LEMMA 5.1. For every (sufficiently small) o > 0, there exists X\ > 1 such that
(i) if Qu < 22 N"2Qu,, Bu) € MY,
(i) if Qu > 22/ WNV=2Q,,, B(u) € M7,
(iii) if Qu = 22N "2 Qu, B(u) € MO UM] foru e EJ>, A > X.
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Proof. Suppose to the contrary that there is a sequence Ap — o0 and u, € ES with
(i) limy, o0 B(un) & M, g7 (ii) limyp, oo B(un) & M, 07 (111) limy, oo B(un) & MI U MO

By considering Jy (u) f% (J4 (), u), we note that for any K > 0, |-, EX is bounded.
It also follows that A, {u2 da is bounded, so u,, — 0 in L2(£2) and L9(£2) and u,, — 0 in
H'(£2) and L* (02).

Let v, = un(SQu% dz)~'/?". Then v, — 0 in H'(£2) and the concentration-com-

pactness principle states that

Vo, |? - Z’uj&wj’ |Un‘2* - Zyj(sl’j

jeJ jeJ
weakly in the sense of measures. Hence

Soo = lim Jy(u,) = lim [max Jy(tvy,)]

n— oo n—oo t>0

2 2
= lim max{ S\Vun|2dﬂc+ )\Sv dx—t—San\Q dx}+o(1)

n—oo t>0

n—oo

ZJL%O—( Vol )N/QZ%(ZM)N/Q
wjef_Z
. L2/2\ N/2
> (S s - T)

;€0 ;€00

SN2 (Qay)vy)** (Qay)vy)** \ M2
2 N < Z 2/2* + Z 22/NQ2/2* ) :

xj en M ijSQ m
Now, 1= SQ Qu?’ dr=>";Q(z;)v;. Suppose that for some i (and hence all 7), Q(z;)v; <1.
Then (Q(xi)z/lv)Q/Q* > Q(z;)v;. In the case that Qum < 22/(N=2)

SN/2 (E Q(IJ)VJ)N/Z SN/2
0 Z T Q-2 > SNQN D

:SOO

while if Qy > 22/V=2)Q,,,, we similarly obtain a contradiction. Thus there can be only
one point of concentration and Q(z;)v; = 1 for some z; € §2.

Consider case (i) when Qy < 2¥(V=2Q,.. If z; € £2 then a contradiction arises as
the sequence of inequalities implies that
SN/Q SN/2
Soo > >
NQ(Z‘Z‘)(N—Q)/Q 2NQ£HN—2)/2

while if z; € 2\ M° then
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SN/2 SN/2
* 2 ANQU) I TGNl

S

and consequently z; € MP.
Consider case (ii) when Qy > 2%/ (N=2Q,,. If z; € 012, then again we have a contra-
diction as

SN/2 SN/2
Soo 2 INQ(z;)N-2)/2 > T IN=)/2
i QM
while if z; € 2\ M’ then
SN/2 SN/Q

S

wzzwymyN4w2>NQ$me'

Similarly, case (iii) when Qy = 2%(N=2Q,, rejects the possibility that z; € 2\
(M°u MT).

In case (i), we have [v,|>" = Q;,'d,,, while in case (ii) we have |v,[? = Qy'0x,, and
in case (iii) either may occur. In all cases S(v,) = B(un) — x;. »

THEOREM 5.2. Suppose that

(i) the conditions of Theorem 4.2 or 4.3 or 4.4 hold, along with Qy < 2%/ (N=2 Q.
(ii) the conditions of Theorem 4.1 hold with Qy > 2%/ (N =2 Q.
(iii) the conditions of Theorem 4.1 hold with Qy = 22/ (N=2)Q,,,.
There exists X' > 1 sufficiently large that for all A > N problem (1.1) possesses at least
(i) cat(MP) solutions, (ii) cat(M?) solutions or (iii) cat(M®) + cat(M?T) solutions.

Proof. (i) Let o > 0 be sufficiently small that catyo M = cat(M°). By the estimates in
Section 4, we know that for each A > 1 and 2 € MY there is ¢ > 0 such that

IN(8(Ue,0)Us z) < Soo.
We choose £(\) sufficienly small to construct ¢() satisfying

max {Jx(s(Uz2)Uzz)} < ¢(N) < Seo.
z€eMO

Define a map @y : M° — ED by &5(z) = s(Uz,,)Uz .. By the previous lemma, for all
A> N, B(Pr(x)) € Mg.
It is easy to see that (3o &, (x) is homotopic to the inclusion M? — M. Let
H(t,2) = 2+ tB(&x(x) — 7).
Then dist(H(t,z), M) < |B(®r(z)) — x| < o for every z € M and t € [0,1], so H :
[0, 1] x MO — M.
Recall that for each A, Jy satisfies the (PS).y) condition. By Lusternik-Schnirelmann

theory, in order to show the theorem, it suffices to confirm that

Cat(Ei()‘)) > catpo (MO).
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This follows in an identical way to [17] (see also [19], [18]). Suppose that cat(Ef\(/\)) =n.
Then
EY c AU UA,,

c(N)

where each A; is closed in )"’ and is contractible in Ei()‘):

hi(0,u) =u, hi(l,u) =w; € Ef\(k).

Set C; = @, '(A;). Then catMg(MO) <3h, catMg(Ci). The map ho 3o H;(1,-) o Py :
K; — M is homotopic to the identity, yielding

catar, (K;) < catar,(ho BoH;(1,-) o Dx(K;)) < catar,(hoBoH;i(1,4;)) =1
so cat(MP) = cat o (M%) < n.

(i) We remark that M7 lies entirely within §2, so for small enough o > 0, M é e N
and catpyz (MT) = cat(MT). Again, Theorem 4.1 shows that for each A > \’, there exist
c(X) and (\) > 0 such that for all x € M1,

In(8(Uz,0)Us z) < ¢(N) < Seo.
Let @x(z) = 5(Uz,c)Uz 2. Again B(P(x)) is homotopic to M' — ML as [Bo®y(z)—x| < o
for all z € M!. The remainder of the proof follows part (i).

(iii) We note that ¢ > 0 can be taken sufficiently small that Mé and Mg are disjoint
and catMé(MI) = cat(M?') and catMg(MO) = cat(MP). For given A > 0, ®)(z) =
$(Uz)Uz, where € is chosen so that

Ir(P < ¢(N) < Sy
Jemax JA(@a()) < e(A) < Sy
It follows that for any = € M° U M”, B(®x(x)) € M} U MY. The remainder of the proof
follows as before, and there are at least cat(M° U MT) solutions. Since Mg and M é are
disjoint sets, cat(M® U MT) = cat(M°) + cat(M7). u

6. Nonexistence results

We commence by considering the case Qy > 22/(V=2Q,,.

PROPOSITION 6.1. Let Qu > 22/ (N=2) Q... and suppose that for every X > 0 there exists
a low energy solution uy. Then
] SN/2 ) 9 9 ] o SN/2
7] M
and
,\ILH;O S h(z)uf dx = 0.
Proof. First we observe that if A\ > Ay, then S o hug\ dx > 0. This follows from the proof
of Lemma 3.2. Hence

N/2 1 1 11

1, .
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This implies that {uy} is bounded in H'(£2). Therefore we may assume that uy — u in
H(£2). Since uy — 0 in L?(£2), u = 0. It then follows from (6.1) that

o SN/Z
limsup \ Quy dr < ————=.
Suppose that
. SN/2
. 2 e
(6.2) )\ilinoo S Quy, dr < Ql(\fIV_Q)ﬂ

for some sequence A\ — oo. For A\ > A; we have

J(Tun, 2+ Meid,) do = § Qui da+ § i, dr < C(un, |2+, |)
Q Q 0
for some constant C' > 0 independent of Ax. Hence

(6.3) lwa, || > const > 0

for A\, > A; and also
klirgo S Quik dzx > 0.

Using the concentration-compactness principle we show that (6.2) is impossible. Indeed,
we have

klirrgo S Quik dzx = ZQ(xj)Vj.
Q jeJ
Using a family of functions concentrating at z; we check that p; < v;Q(x;). Combining
this with (3.2) and (3.3) we get

. SN/2
: 2
Jm § @, de 2~y
2 Qu

which contradicts (6.2). m

THEOREM 6.2. Let Qy > 22/N=2)Qu, h > 0 on 2 and h(z) = 0 for x € {z € 2 :
Q(r) = Qu} and h € C%(1).

(i) If2<q<2(N-1)/(N-2), Dih(z) =0,i=1,...,N, forz € {z : Q(z) =
Qwm}, then there exists A > 0 such that problem (1.1) for A > A has no low energy
solution.

(ii) If Dih(z) = 0, D;jh(z) =0, 3,5 = 1,...,N, for z € {z : Q(x) = Qu} and
2 < g < 2%, then there exists A* > 0 such that problem (1.1) with A > A* has no low
energy solution.

Proof. Suppose that problem (1.1) has a solution uy for every A > 0. Let

My = maxuy(z) = ux(zy)
e

for some ) € £2. It is easy to check that My — oco. We now use a blow-up technique. We
follow the ideas from the paper [5]. Define ) = Mi/(ZfN), 2, = (2—x))/ex and set

ua(z) = 55\N_2)/2u,\(5,\m + ).
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By a simple rescaling argument we can assume that @y = 1. Then we have

—Avy + Ae3ux = Q(erz + x,\)vA Y4 h(exz + Ty)Ey (N+2)/2=(g— 1)(N72)/2v§\_1 in 2y,
Ovy
0 <wur(z) <oua(0)=1 in £2y, W:O on 0f2).

The term E%\)\ is bounded as A — oco. Indeed, we have
0< §(@Qlua” + hlual? = i) do = § ud (Qlua* ™2 + Blur| =2 = A da
Q 0

From this we deduce that
QuMS % + Al M = X > 0.
By the Young inequality for every § > 0 we can find C(§) > 0 such that

2*—2
2% —¢

Pl MY~ < OMT 72 + C(8) ]| %

and consequently

2% 2
2% —¢

(Qu+ M 2> X=C(0)|n]2

and our claim follows. We can assume that for a sequence Ay — 0o, x5, — Y, A\ker — a
and
dist(zy, ,082)

EXp

— Q.

Let limg 00 2, = 2. By standard elliptic estimates ([33]), we obtain vy, — w in
02

2 (£2), where w satisfies

—Aw+aw = Q(y)w?* 7' in 2,
Ow

0<w(z)<w(0)=1 in N, 5:0 on 92,
It is easy to check that {, |Vw|?dz < oo and {, w? dz < oco. By Pokhozhaev’s

identity [45], a = 0 and

QOO

w(z) = Qy) M UL . (x).

Since maxg_w = w(0) = 1, we see that z =0, ¢ = Q(y) /2 and 2o = RY (a =0) or
Qo =RY (= 00). If 2 =RY, then y € 912 and by Proposition 6.1,

Q(y)f2/(2*,2) SN/2 _ Q(y)72/(2*72) S |VU|2 dr < lim S |VU |2 de < L/Z
2 = koo Ak = QW72
Ri\_] Q>‘k: M

This implies that Qy < 22/(N=2 Q... which is impossible. Thus the case 2, = RV
prevails and by Proposition 6.1 we have

SN/2

— oz S QW) HE=DGNZ = Q(y)~HE D S VU dx
M RY
SN/2
. 2
< dim 1 Ivolde < oo

Ak
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It then follows that Q(y) = @Qm. Then we have
(6.4) Jim VIV (ur, = Usy )P d = 0.
2

We now follow the argument from the paper of Z. Q. Wang [54]. First we observe that
(6.4) implies the representation

UN, = CkUEk,yk + Wk

with wy, — 0in H'($2), C}, — 1 and SQ Vwi VU, 4, dz = 0. It then follows from Lemma
4.6 in Z. Q. Wang [54] that
SN/2 B B _ i

T Uey) =~ + b Arei + O(e) %) + O(e "N 72/

with i = 1 if Dyh(0) =0, k = 1,..., N, and i = 2 if D,sh(0) = 0, r,s = 1,..., N. This
. . N/2 (N-2)/2 .

can be used to show as in Lemma 4.7 in [54] that Jy, (ua,) > S™2/(NQyy ), which
is impossible. m

Related nonexistence results in the case Q(x) = const can be found in [29]. In a similar
manner we can establish the nonexistence results under assumptions (S1) and (Sz).

THEOREM 6.3. Let N > 5 and let (S1) hold. Suppose that Qy < 22/(N=2Q.,, h(z) > 0
on 2 and h(z) =0 forx € {x € 02 : Q(z) = Qm}. If 2 < ¢ < 2(N —1)/(N — 2),
then there exists Ay > 0 such that problem (1.1) with X > Ay does not have a low energy
solution. If in addition D;h(y) =0,i=1,...,N, for somey € {x € 02 : Q(x) = Qu},
then there exists a constant As > 0 such that problem (1.1) with A > As does not have a
low energy solution.

THEOREM 6.4. Let N > 5 and (Sg) hold. Suppose that Qy < 22/N=2Q.,, h(z) > 0 on
2 and h(z) =0 for x € {002 : Q(x) = Qu}. Then there exists Az > 0 such that problem
(1.1) with A > As does not have a low energy solution.

7. Problem at resonance

The value A = 0 is the first eigenvalue of the Laplace operator —A with zero Neumann
boundary conditions. The corresponding eigenfunctions are constant. This section is de-
voted to the discussion of the solvability of the problem
{ —Au = Q(x)|ul> ~2u + h(x)|u|9%u  in £,
du/Ov =0 on 2.
If h=0and Q(z) > 0 on {2, then problem (7.1) does not have a positive solution. This
follows from the direct integration of (7.1):

0=-— S Audx = S Q(x)u? ~tda.
2 2

(7.1)

In this case a positive solution exists if ) changes sign and S o Q(z) dr < 0. This result
can be found in the paper [24] (for a related result see [40]). Here we continue the
investigation of the solvability of the Neumann problem assuming that Q(xz) > 0 on
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2 and that h changes sign on 2. As in the previous sections we also assume that the
coefficients () and h are smooth on f2.
We decompose H!(£2) as
H'(2) =spanl1 @V,
where V = {v € H'(£2) : { , vdx = 0}. Having this decomposition we define an equivalent
norm in H'(£2) by
[ull} = 2 + [[Voll3.

To check the mountain-pass geometry for the variational functional

J(u) = 1 | IVul? do — 1 | Q@) do - é | h(@)[ul? dz

T2 2%
(93 (9] (]

we need the following quantitative statement:

LEMMA 7.1. Suppose that h(x) changes sign on £2 and SQ h(z) dz < 0. Then there exists
a constant n > 0 such that for each t € R and v € V' the inequality

(§19v@)ar) " <o
2

implies
q
| h@)ft + v(@)|" dz < % | h(z) da.
(] (7

For the proof we refer to the paper [20].

PROPOSITION 7.2. Suppose that h(x) changes sign on 2 and SQ h(z)dx < 0. Then there
exist constants o > 0 and 8 > 0 such that

J(u) > B for all u satisfying |ullv = o.

Proof. Let n > 0 be the constant from Lemma 7.1. We distinguish two cases: (i) ||Vol|2 <
nft] and (ii) [|Voll2 > nlt]. If | Voll2 < nlt| and [[V[]3 + 12 = ¢?, then 2 > ¢®/(1+n?).
By Lemma 7.1 we get

\ h@)[t+ ()] de < @ | n(@) de = —t]%0,
2 (7]

with a = —% SQ h(z)dz > 0. Using this and the Sobolev inequality in V' we obtain the
estimate of J from below:

q . q
ﬂa > _E 24 ag

C « O o
T >~ Cioenz — S s
(w) 2 = IVolly = 1 + = q(1 +n?)e/?

4 o B 209> 1 ola

IRRVIETSTE 20 ) T 2q(1+?)/?
for ¢ > 0 small enough, say o < 0., and some constant C > 0. In case (ii) we have
lully < [|Voll2(1 4 1/5?)Y/2. Thus applying the Sobolev inequality we get

. . 1\%/? .
Qi do < Cillull < (145 ) Il
(9]



24 J. Chabrowski and E. Tonkes

and

1 q/2
[ Jr@luftde] < Callllt < €1+ ) 19l
22

for some constants C; > 0 and C5 > 0. Hence

1, s 1\*72 _ .. 192
I 2 5Ivel - G (14 55 ) IVl -Gt 5) Il
Taking ||Vvl|2 < g small enough we derive from the above inequality the estimate
1
7w = L9
On the other hand if ||lu||yv = o, then ¢ < ||Vvl|2(1 +7?)'/2 /5. Consequently,

2 2
ne
= a0y
2 aq
(’Zf,ﬁ), Zq(ling)q/g) the result follows. m

If we take g = min(4

PROPOSITION 7.3. Suppose that h changes sign in {2 and SQ h(z)dz < 0. Then J satis-
fies the (PS). condition with ¢ < Sx.

Proof. We commence by showing that {u,,} is bounded in H!(£2). We have

) = 2 ) = (5= 2) §IVun ot (5= 50} § Q@ o

2 2%
Q Q
= emlltml| 4+ 0(1) +c.
By the Holder inequality we have

VYUl + 12 do < § (G 2 da + 21722 (| fu | do) v

[0} 0 [0}
x . 2/2" *
< § IVl dz+ Q% (§ Qun* dz) " |22/,
2 0]

where Q. = min 5 Q(x). These two relations show that the sequence {u,} is bounded
in H'(2). The remaining part of the proof is the same as in the proof of Proposition 3.1. m

We are now in a position to formulate the following existence results:

THEOREM 7.4. Suppose that Qu < 22/(N=2)Q,.. h(zx) changes sign on 2 and SQ h(zx)dx
< 0.

(i) If2<q<2(N—-1)/(N—=2) for N>4 and 3 < q <4 for N =3, then problem
(7.1) has a solution.
(ii) If

11 (= Jg h() da)? /@0
(q‘z*) 1, Q@) dnyie—a <%

then problem (7.1) has a solution.

Proof. The proof of assertion (i) is identical to that of Theorem 4.2(ii). Part (ii) follows
by observing that
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0=

(1 1 ) (—§,, h(x) dz)? /" —0
q 2% (S_Q Q(Qj) dx)‘I/(Q*_(I)
and an application of the mountain-pass theorem. m

Further results in the case when A interferes with the eigenvalues of higher order can
be found in [26]. In this paper solutions are obtained via a topological linking.

8. Existence of infinitely many solutions

To establish the existence of infinitely many solutions we assume that 1 < ¢ < 2 and
that h(z) > 0 on £2. Moreover we replace the coefficient h(x) by ph(x), where > 0 is a
parameter. Explicitly, we consider the problem
—Au + M= Q) [u|? "2u + ph(x)|u|9%u  in £,
du/Ov =0 on 2.

By J,, we denote the corresponding variational functional

(8.1)

1 1 x
Inw) = 5 Y1Vl + 2y do = o2 § Q@) |l = & | ha)ful? da
2 2 q
2 2 2
Our approach is based on the fountain theorem due to Bartsch-Willem [16, 58]. Let
{er} be an orthonormal base of H!({2). We set
X(j) =span(er,....e;),  Xp=EPX(), X'=EPX@).
Jjzk i<k

THEOREM 8.1 (Bartsch-Willem). Let ¢ € C1(H'(£2),R) be an even functional. Suppose
that

(A1)  there exists ko such that for every k > ko we can find Ry, > 0 such that ¢(u) >0
for all uw € X}, with ||u| = Ry,

(A2) by =infpe r,) ¢(u) — 0 as k — oo, where B(0, Ry) is a ball of radius Ry, in Xy,

(Ag)  for every k > 1 there exist ri, € (0, Ry) and di, < 0 such that ¢(u) < dj, for every
u € X* with ||ul| = ry,

(Ay)  every sequence {un} such that u, € X™, ¢(uy) < 0 and ¢'|xm (um) — 0 as
m — oo has a subsequence convergent to a critical point of ¢.

Then for each k > ko, ¢ has a critical value ¢y, € [by, dy], with ¢, — 0 as k — oo.

To formulate the (PS). condition we need the following estimate:

(W) = 5 (T (w),u)

1 . 1 1
= S Qlul? dx — (— - §>,u S hlu|? dx
2 q Q

11 02" (2 —a) 2" o\
;) QY 12§ Qluf da

0

\Y
2l
D
L)
<
N
QU
&
|
/N
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for all u € H'(£2), where r = 2*/(2* — q) and C, = C.(N, q, Q+,||h|ls) > 0 is a constant
and Q. = min, o Q().
With the aid of this estimate we can establish the (PS). condition for J) ,,.

LEMMA 8.2. The functional Jx, satisfies the modified (PS). condition (A4) with ¢ <
Soo — 1" Cy for each A >0 and p > 0.

The proof parallels Lemma 3.21 in [58] and is omitted.
We now choose o > 0 so that Soo — u"C, > 0 for all 0 < pu < .

THEOREM 8.3. Let 0 < p < po. Suppose that h(x) > 0 on 2 and 1 < ¢ < 2. Then
problem (1.1) has infinitely many solutions for A > 0.

Proof. We apply Theorem 8.1 to the functional J) ,. Obviously this functional is even.
We define
SQ ‘u|q dx) 1/q
i = sup

ueX,\{0} ||U’H)\

Since the space LI(§2, h) is compactly embedded in H'({2) we see that p; — 0 as k — oo.
For every u € X, we have

1 e} .
Do) = 5 [lull} = Tk [ull = CullullX
for some constant C'; > 0 independent of k. For R > 0 sufficiently small we have
. 1
CillullX < 7lulX for Jlul < B,

Thus 1
HHE
JA,N(“)ZZHU‘K . [l -

If Ry = (ﬁ)l/(q_m, then Ry — 0 and Jy(u) > 0 for ||u|]|x = Rg. Then (A;) of Theorem
8.1 is satisfied. Assumption (Ag) follows from the fact that Ry — 0. The Palais—Smale
condition appearing in (A4) follows from Lemma 8.2. Since all norms in X* are equivalent

it is easy to check that (A3) also holds by choosing 7 > 0 sufficiently small. m

Alternatively, the existence of infinitely many solutions can be established using
Clark’s critical point theorem [28], [48]. This approach has been exploited in the pa-
per [38] in the case of equation (8.1) with the Dirichlet boundary conditions (see also
47)).

We remark that if @ < 0 in {2 then the geometry of J , is maintained. Condition
(A4) holds for all ¢ € R and all g > 0, so fto = 00 in Theorem 8.3.

9. Existence results under integrability conditions on () and h

In this section we consider problem (1.1) with @ replaced by —Q. We rewrite this problem
as
9.1) —Au+ du = h(z)|u|9%u — Q(x)|ulP~2u in £,

' Ou/Ov =0 on 02,
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where h and ) are measurable and positive a.e. functions on (2. We no longer assume the
continuity of @ and h. It is assumed that 2 < ¢ < p < co and we do not require p = 2%,
that is, p can be a supercritical exponent.

We assume that h and @Q are in L!(§2) and

h(x)p 1/(p—q)

A d .
( Q7h) X(Q(l’)q) T < 00

In what follows we also need either

1
(An) S 7h(x)2/(q72) dr < o0
0

or
(Ao) | =g do < o

= PROIRIT) '

We notice that if h(z) = Q(z) on {2 then (Ag p) is obviously satisfied. We follow some
ideas from the paper of Alama—Tarantello [10], where the Dirichlet problem for equation
(9.1) under assumption (Ag ) was investigated (see also [9], [11]). Solutions to problem
(9.1) will be sought in the weighted Sobolev space Eg defined by

Eqg = {u : Vu € L*(2) and S Q) |ulf dx < oo}.
0
The norm in Eg is given by

Jully, = § 170l ar+ (§ Qa)luf? ax) ™
) 7]

If u € Eg and (Aq,p) holds, then by the Holder inequality we have

/(p—a) (p=a)/
fran = (§oneas)” (§ giar)
2 2 2

If u € Eg, then u € L2 _(£2) (see [41], p. 7). To ensure that u € L%(£2) we need either

loc

(Ag) or (Ap). Indeed, using (Ag), we check that if u € Eg, then

(p—2)/p
S wldr < (S Qlul? da:)Z/p (S 7@2/(11772) dx)
Q Q 1)

while if u € Eg and (Ap,) hold, then

(¢—2)/
fuirz (§e)”(§ )
2 2 2

These estimates show that under assumptions (Ag ) and (Ag) (or (Ap)) Eg is continu-
ously embedded into L2(£2) and L?(§2, h). We also note that E¢ is continuously embedded
into H!(2).

We now make the following remarks about assumptions (Ag ), (Ag) and (Ap). If
0 <m < Q(z) < M on {2 for some constants m and M, then assumption (Ag) is
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automatically satisfied. Assumption (Aq ;) takes the form

S h(z)P/ P=D dz < co.
0
In this case we can take as a norm in the space Eg:

lul% = § 1Vuf?dz + ( § |u|pdx>2/p.
2 0

Eq is continuously embedded in L?(§2) under only the assumption (Ag p).
If0<m < h(z) < M on 2, where m and M are some constants, then assumption
(Ag,n) can be written as

R
; Q(g;)q/(p*q) T o

This inequality implies that E¢ is continuously embedded in L?(§2) and L?({2). On the
other hand by the Hdélder inequality we have

2(p—q)

a(p—2)
S e <@ (|t )"
Q2/( ; Q/(r—a) ’

o (Ag) holds.
Finally, assumptions (Ag ) and (Ap) imply (Ag). Indeed, by the Hélder inequality

we have
1 pr/(p—a) E=) =)
§ZQ2/(P—2) @ < (S Q0 ) <§2 Rl > '

We associate with (9.1) the variational functional

In(u) = % S(\Vu|2 + Mu?) da + % S Q(x)|u|? de — 3 S h(z)|ul? dz.
Q 2 Q

It is easy to check that Iy is of class C! on Eqg.
Throughout this and next sections we shall frequently refer to the following inequality:
for all @ > 0 and b > 0 and s < r we have

s/(r—s)
(9.2) alu|® = blu|” < C’Tsa(%) ,

for every u € R, where C).s > 0 is a constant depending on r and s.

PROPOSITION 9.1. Suppose that (Ag) and either (Ag) or (Ap) hold. Then for each
A € R the functional I is bounded from below on Eq.

Proof. Suppose that (Ag ;) and (Ag) hold. We use the Young inequality: for every 6 > 0
there exist constants C1(d) > 0 and Co(d) > 0 such that

1
9.3) Ju?de < 6 | Qul de + C1(6) | ) g
2 2
pp/(p—a)
(0.4) Lttt de <0 § @i do-+ Co(0) | gy e
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If A < 0 we insert (9.3) and (9.4) into I to obtain

L(u) > - | IVul? dz + (1 + 6N — 5) | Qul dx
2!2 p q 2

p/(p—q)
d Cy(9) S h

1
+2310) | oy de = == | G 4
2 2

We now select ¢ so that 1/p + Ad — §/q > 0 and the assertion follows. If A > 0 we need
only inequality (9.4). We argue in a similar manner if (Ag ;) and (Ay) hold. =

PROPOSITION 9.2.  Suppose that (Ag.n) and either (Ag) or (An) hold. Then Iy satisfies
the (PS). condition for every c.

Proof. Let {uy,} be a (PS). sequence for I. First we show that it is bounded in Eg.
This is obvious if A > 0. So we consider the case A < 0. We have I (u,,) < ¢+ 1 for large
m, say m > m,. Using the Young inequality, in conjunction with (Ag ) and (Ag) for
every 6 > 0 we can find a constant C(0) > 0 such that

1 1 A 1
(9.5) = S |Vt |? dz + — S Qlum P dx < A S u?, dr + - S hlum|Tde +c+1
2 P 2 q
Q Q Q Q
1 pp/(p—a)
0 0 Q
If (Ap) holds then the integral S o mdaz in the above inequality is replaced by

§, 7375== dx. Taking 0 < 6(1 + IAIP/2) < 1/p we derive from (9.5) that {||un|lg,} is
bounded. The sequence is also bounded in H*({2). Therefore we can assume that u,, — u
in Eg, H'(£2), LY(£2,Q) and L9($2,h) and u,, — u in L?({2). We now show that w,, — u
in H'(£2). We set

Pz = 0@ Q@) o) = Rute.
We then have
Fulw,u) = (¢ = Dh(@)ul"™ = (p— DQ)|ul"~ < cpqh(%>

for all v € R and some constant Cpq > 0. Hence

96) | [V (tm —wn)?do = =2 { (um — up)? d
2 2

2
1

Sfu(x, Uy + (U, — Up)) At (U — up)? d + o(1)

|
D




30 J. Chabrowski and E. Tonkes

According to (Ag 1), (h/Q)a=2/P=a) ¢ [4/(a=2)(Q h) and moreover (w,, —u,)? — 0 as
m,n — oo in L%/2(£2, h). Therefore the right hand side of (9.6) tends to 0 as m,n — oo.
This shows that u,, — u in H'(§2). In the final step of the proof we show that wu,, — u
in Eg. To show this we use (I} (u),u) = 0 to write

o(1) = (I} (u) ) — (I () t) = | (@) (sl — [u]?) de — § Qi l? — Ju]?) die + o(1)
(9] (9]

1 1
o(1) = In(u) = In(um) = = | h(@) (Juml|? = [u]?) dz — = § Q(lum[" — [u[") dz + o(1).
15 P o
These two relations show that u,, — w in LP(§2,Q) and L?(§2, h) and this completes the
proof. =

THEOREM 9.3. Suppose that (Ag ) and (Ag) (or (Ay)) hold. Then there exists 0 < A,
< 0o such that for every A < A, problem (9.1) has a solution which is a global minimizer
of In on Eg.

Proof. If A < 0, then for ¢ > 0 we have
/\t2|(2\

I\(t) = 5

SQd q(S)hdm<;§Qd —Eéhdx<o

taking ¢ sufficiently small. If A > 0 we first choose t > 0 so that

Sde——thx<O
I7) 75
We then select A, > 0 such that I (¢) < 0 for all 0 < A < A,. Thus for each A < Ao,

inf [ 0.
w2E, B <

Applying the Ekeland variational principle [31] for each A < A, we can find a sequence
{um} C Eq such that I)(un) — infuepg Ix(u) and I} (un) — 0 in Ef. By Proposition
9.2 up to a subsequence u,, — u in Eg and v is a minimizer of 1. We set

A« = sup{A : problem (9.1) has a solution}.

It is clear that A, > 0. To complete the proof we show that for each A\ < A, problem
(9.1) has a solution. It is sufficient to consider A; > 0. There exists \; < & < A, such that
problem (9.1) with A = x has a solution u,. We now consider the minimization problem

inf{I,(u) : v € Eq, u(x) > u,}.

It follows from the proof of Proposition 9.1 that I, is lower semicontinuous. Thus Iy,
attains its minimum at some u > u,. Since u, is a supersolution, u must be a solution
of problem (9.1). m

Under a stronger assumption on h we can show that A\, < co. We impose the following
condition on @ and h:

p—1

(Bq.n) ;} (%)2@ < o0.
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To compare assumptions (Ag ) and (Bg,,) we use the Hélder inequality to obtain

q

éh(%)ﬁdaz - !S?hﬁ (g)ﬁhﬁ dz

—-1) q q—2
h - 2(¢—1) 1 2(¢—1)
(1)) (1)
0 Q o hi2

B\ 7oa hp=a

Sh(_> dr=\ Q7T da
Q 5 QT dG=D
2(p—1)

< (é#dx) 2(p—1) (é Q:% dx) 2(p—1).

Thus if (Bg,) and either (Ag) or (Ay) hold, then (Ag ;) is satisfied.

and

PROPOSITION 9.4. Let 2 < g < 2*. Suppose that (Bg,n) and either (Ag) or (An) hold.
If h e L¥/"=9(0), then \, < cc.

Proof. Suppose that A\, = co. Then for each A > 0 problem (9.1) has a solution uy. We
then have

p—1

hr=a
S(|Vu)\|2 +Mi3) de = S hlux|? dx — S QluxlP dx < Cpq S — |ux|dz
Q Q Q o Qe
Ao g Coap (B0
S§SU}\d$+§S Qﬁ d.’ﬂ
Q Q
Assuming that A > 2 we deduce from this that
C2 hze_:rlz 2
S(|Vu)\‘2+u?\)dx < 2—1))\(18 ( (11) dex.
0 0 QP q
On the other hand by (2.1) we have for A > 1 that
S(|Vu,\|2 +u3)de < S(|Vu,\|2 +\u3) da
Q Q
 on (2"—q)/2" . /2"
< (S ‘h|2 /(2% —q) d.’I?) <S |u/\|2 da:)
Q Q

q/2
< Cullbllo o) (Va2 + ) d)
0

Hence

(Csllh

2+ j(2e—q)) /7D < S(|VU)\|2 + u3) dr,
2

which is impossible for large A > 0. =
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The proof of Proposition 9.4 shows that

=i\ 2
2*/(2*_q))2/(q_2) S < = ) dx) .

P Qr—a
PROPOSITION 9.5. Let A =0, Q(z) = h(z) a.e. on 2 and suppose that either (Ag) or
(Ap) holds. Then uw =1 is a global minimizer of I,.

1
A« < max <2, §C§q(cs||h

Proof. Obviously u = 1 is a solution of problem (9.1) with A = 0. By Theorem 9.3
problem (9.1) has a global minimizer u, € Eq. Thus I(u.) < I,(1). Applying the Young
inequality we deduce from this that
1 1 1 1
N IVuoPdz + = | hluoPda + (= — =) | hda
2 p qa p
Q Q Q

1 1
< —Sh|uo|qd:c§ —<
q

q

) Sh|uo|pda:+]%ghd:c>.

g
P o Q
Hence SQ |Vuo|? dr = 0, that is, uo = 1 on 2. m

We now state the existence results for (9.1) with (Ag ) replaced by the integrability
condition:

h(z)i=: \ V2 o
(AgQn,N) §2<7Q(x)§__(22> dz < oo.

LEMMA 9.6. If (Agn,n) and either (Ag) or (Ay) hold, then for every X € R, the func-
tional Iy is bounded from below on Eg.

Proof. We only consider the case A < 0 assuming (Ag). First by the Young inequality
and (Ag) for every ¢ > 0 there exists a constant C(6) > 0 such that

1

Q2 -

(9.7) u?dz <5\ Qulrde + C(0) |
Q Q Q
As in the paper [10] we define for nn > 0 and M > 0 the sets
X={zeR:h(z)<M and Q(z) > n},
Y={ze:h(zx)<Mand Q(z) <n},
Z ={xe2:h(x) > M}.
We now use inequality (9.2) and the Sobolev inequality to get

(9.8) | (ﬁuw @ |u|p> dz < Cp | hape
X

he q 2p Q(gj)Q/(p q)
and
09§ (Bur- Zur)a <, § (M5 e w
vuz M P yuz \Q(z)r=e
hg_:fl N/2 2/N hﬁ N/2 2/N
SC&( S <q—_2> da:) [|)| 2 SC’g( S <q—_2> dx) S(\Vu|2—|—u2)dx.
yuz @771 YUuZ P 7]
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We now observe that |Z| — 0 as M — oo and for every M, |Y| — 0 as n — 0. Given
€ > 0 we first select M > 0 large and then 1 > 0 small enough so that

(9.10) 02< | (%)m da:)Q/N <e.

Yuz poe
It then follows from (9.7)—(9.9) and (9.10)

1 ) 1 . (z)P/(P=a)
(9.11)  IL(u) > §S\Vu| dx+2—pSQ(x)|u| dz —C, S O dz
0 Q b'e
—e (VP +u?) dz - A0 | QlulP dz — xC(9) | _ 1 g
2 Q2/(—a)
2 0 9
If we apply again inequality (9.7) and choose § > 0 and € > 0 so that
1 [A|0 1
%_65_7>0 and §—€>O

the result readily follows. m

PROPOSITION 9.7. If (Agn,n) and either (Ag) or (Ap) hold, then for every X € R, I
satisfies the (PS). condition for every c € R.

Proof. We only consider the case A < 0 assuming that (Ag) holds. As in the proof of
Lemma 9.6 we obtain estimate (9.11) for the (PS). sequence {u,}. From this we deduce
that {u,,} is bounded in Eg. So we can assume that u,, — u in H'(12), Eq, L?(£2,Q),
L4(02,h) and u,, — u in L%(£2). Repeating the final part of the proof of Proposition 9.2,
with obvious modifications, we show that up to a subsequence u,, — u in Eg. =

It is worth mentioning that under the assumptions of Proposition 9.7 one can show
that a solution of (9.1) in Eg belongs to C%(£2) for each 0 < a < 1. This can be proved
using the iteration technique from the paper [10] (pp. 170-171).

THEOREM 9.8. If (Ag n,n) and either (Ag) or (Ap) hold, then there exists 0 < Ao < 00
such that for each A < Ao problem (9.1) has a solution.

Proof. Tt is evident that there exists A > 0 such that for every A < X, inf Bo In(u) < 0. It
then follows from Proposition 9.7 that for each A < X there exists a global minimizer of
I, which is a solution of problem (9.1). We now set

Ao = sup{A: problem (9.1) has a solution}.

It is clear that A\, > 0 and as in the proof of Theorem 9.3 we check that for each A < A,
problem (9.1) has a solution. In the final step of the proof we show that A, < co. We
follow the argument from the paper [10] (pp. 176-177). We define

q—2

_ g — 2 =

P4 [ (g )h(m)] .

p—2 (p—2)Q(z)

Let p1 be the first eigenvalue of the eigenvalue problem
—Au—a(z)u = pu in 2,
Ou/dv =0 on 0f2.

a(z) =
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Since a(z) £ 0 and a(x) > 0 on {2, we see that u; < 0. Let e; be the corresponding
eigenfunction. If uy is a solution of (9.1), then

0= S VuyVeydz + A S uyey dr + S Qu§7161 do — S hugflel dx
Q Q Q Q

1
> S VuyVeydr + A S urey dx — S auyey dx + 3 S Qulg\*lel dx
I7) Q I7) 7]
> S uyep dxr + A S uyey dx.
Q Q
This obviously implies that Ao < —pq. =

The existence results in Theorems 9.3 and 9.8 were obtained for A < X and in general
A < 00. We now consider a situation where a solution of problem (9.1) exists for every .
To achieve this we introduce a new parameter v > 0 with the coefficient ). The problem
we shall consider is
(9.12) { — Au+ = h(z)[ult 20— 1Q(@)[uP2u in 2,

Ou/dv =0 on 0f2.
Let
Inn(u) = % V(Vul? + M) do — ! \ h(@)[ul? dz + i | Q@) da
Q 15 P o

be a variational functional for problem (9.12).
THEOREM 9.9. Suppose that (Ag n,n) and either (Ag) or (Ap) hold. Then for every A

there exists v* = v*(\) such that problem (9.12) with 0 <y < ~v* admits a solution.
Proof. Let us assume that (Ag n,n) and (Ag) hold. Let ¢t € R. Then

At? t|? tP
15 Pog
Y P
Q 0
First we choose t large to satisfy
A2
#H — | h(z)dx < 0.
0

Then there exists 7 = F(\) such that I, 4(¢) < 0 for every 0 < v < 7. By Lemma 9.6,
I ~ is bounded from below. Therefore if we fix A € R and take 0 < v < F(\), then
inf,c g1 (o) In~(u) < 0. By Proposition 9.7 with the aid of the Ekeland variational prin-
ciple we can show that problem (9.12), with 0 < v < 7F(\), has a solution. To complete
the proof we define for a fixed A € R,

7*(A) = sup{~ : problem (9.12) has a solution in Eq}.
We now show that v*(\) < oo for every A. If u € Eq is a solution of problem (9.12) then

V(Vul 4+ xe?) de = | h(z)[ul? dz — 5 | Q(@)|ul? dx
2 2 2
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Y=

S g=2

o (1Q)r=a

p=2 N/2 2/N ) (N-2)/N
en(§ (o)) " (1
n (vQ) ==

Q
hﬁ N/2 2/N
<Gue(§(Fm) o) § ) de
o N(vQ)re o}

where C()) is the best Sobolev constant from inequality (2). From this estimate we

derive that
i} = S
() < <CquS()\) S( _> da:) .
0 QP*‘]
The above estimates show that v*(A) < oo for A > 0 and v*(\) is a bounded function
for large A > 0. On the other hand by Theorem 9.8, v*(\) = oo for A < 0.
A similar result can be established under assumptions (Bg ) and (Ag) (or (Ay)).

u? dx

IN

Opq

IN

10. Problem (9.1) without the integrability condition (Ag )

In this section we briefly discuss the case when the assumption (A ;) is not satisfied. For
simplicity we assume that h € L>(£2), h(z) >a on B(z.,d) and limsup,,_,, Q(z)/|z — z.|°
= 3 for some x, € {2 and constants a > 0, § > 0 and s > 0. It is easy to check that if
s > N(p—q)/q, then (Ag ) does not hold. On the other hand if s > 2(p — ¢)/(qg — 2),
then (Ag 5, n) does not hold. We now observe that 2(p — q)/(¢ —2) > N(p — q)/q if and
only if ¢ < 2*. This means that if (Ag nx) is not satisfied then also (Ag,n) does not
hold.

Let Q(z) = 7|z — 2,|?®~9/(a=2) v > 0. It can be verified that if ¢ and p satisfy 2 <
g<p<4/(4—q)with2 < ¢<2* then1/(¢ —2)—1/(p—2) < 1/2. This in turn implies
that 4/(¢q—2) —4/(p—2) <2 < N. Hence N — 4(p—q)/((g — 2)(p — 2)) > 0, that is,
condition (Ag) holds. As in the paper [10] in the case ¢ < 2* one can construct a sequence
{un} C Eq such that Ix(u,) — —oc and ||us|/g, — oo, which shows that Iy is not
coercive. In this section we establish the existence result for Q(z) = |z — x,|?P~9/(@=2),
v > 0.

We need a version of the Hardy inequality in H*(£2). We recall that if 0 € £2, then

u(x)? N —2\? ()2 d
= (M) §vura

for every u € HI(£2) (see [22]). Let ¢ € CL(2) and w € H'(£2). Then by the Hardy
inequality we have

2

| e < (?) §2|V(u¢)|2dx+§2Mdm.

ER ER
[0
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Assuming that ¢ = 1 in a ball B(0,) C 2 we deduce from this inequality that there is

a constant C; > 0 such that
2

(10.1) S ‘Z? dx < C4 S(|Vu|2 +u?) dz

Q Q
for every u € H(£2).
PROPOSITION 10.1. Let Q(x) = |z — 2, [P0/~ ~ > 0 and let ¢ < 2N/(N — 2)
and 2 < q < p < 4/(4—q). Then for every A there erists Yo = Yo(A) > 0 such that for
Y > Yo, Ix is bounded from below on Eq.

Proof. For simplicity assume that z, = 0 and 0 € {2. We shall only consider the case
A < 0. Applying (9.2) and (10.1) we have

2(;'_—241) |u|p d

1
(10.2) Ly(w) > 5 {(Vul® + Xu?) de + - | |z
2 2 2p 2

2(p—q)

1
+ L S |z| a2 |ulP dox — — S hlu|? dz
5 15

v
| =

JUVul? + x?) do + L §af 5 jul? do
0] 2p 2

q—2
h\ 7= u?
‘Cméh(;) o2
2(

YVl + ) da+ L § lal 5l da
2 2]) [0}

|
N —

IRIE" § (vul? + u?) da.
yPa

On the other hand by (Ag) we have

— CpeCh

1

0

(10.3) Vu2de <6\ Qi de+C(5) |
19 19 0
for every 0 > 0. Inserting this into (10.2) and taking ¢ > 0 sufficiently small and v > 0

large the boundedness from below of I follows. m

An inspection of the proof of Proposition 10.1 shows that the choice of 7, can be
made independent of A for A > 0.

ProOPOSITION 10.2. Under the assumptions of Proposition 10.1 there exists Ao > 0 such
that for every A < A, there exists vo = 7o(A) such that problem (9.1) admits a global
minimizer for Iy for every A < Ao and v > vo.

Proof. By Proposition 10.1 for A < A, we have

—oo < inf Iy(u) <0,
uckq

where A\, > 0 is determined as in the proof of Theorem 9.3. By the Ekeland variational
principle there exists a minimizing sequence {u,,} satisfying I} (u,,) — 0 in Ef. For
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large m, say m > m,, we have

1 9 9 1 »
B S(|Vum| + Auz))dr + % S Qlum|? dx
2 (]

< inf I,\(u)—l—l—f—lSh\u |de—i§cg|u P da

1
u€H( s 2p s

2
h b—a a2
< if I)\(u)—i-l—l—CpqSh(_)Pqu_mdx
ueH1(2) 2 \7

C

< inf D(u)+ 1+ —25 | ((Vuml? + ) da,
weH(£2) =

This combined with estimate (10.3) applied to u,, implies the boundedness of {u,}

in Eg. It is now routine to show that u,, — u in Eg. =

11. Case where the (PS) condition fails

In this section we investigate problem (9.1) assuming that

(A) Q(x)>0,#0on 2 and Q(z) = 0 on a nonempty subdomain 2, C 2, h(x) > 0
and h # 0 on {2.

It is assumed that the coefficients @) and h are smooth on {2 with a smooth boundary
02. We also insert a new parameter v > 0 in problem (9.1), that is, we now consider the
problem

— = q—=24, _ p—2 :
(11.1) { Au+ M= h()]uld%u — 1Q(z)|u[Pu in 12,

Ou/dv =0 on 0f2.

We shall prove the existence of solutions for large v > 0. By J» , we denote the variational
functional for (11.1)

Tan(u) = 5 V(Vul + xu?) do + % | Q(@)lul? do — é | h(@)ul? da.

2 2 2

DN | =

Under assumption (A), J -, is not well defined on E¢ nor on H'(2). Therefore we adopt
a more regular approach. We shall work with .J, , on a subset of H' where its regularity
can be controlled. This particular region is bounded by a sub- and supersolution. First
we construct a sub- and supersolution for problem (11.1). These functions will be used
to define a closed and convex subset of H'(£2) and a solution will be found by the
minimization of J) , restricted to this set. The construction of a subsolution is based on
the bifurcation theorem.

Let X and Y be Banach spaces. Let F': X x R — Y be a continuously differentiable
mapping. We assume that F(0,\) = 0 for every A € A, where A C R is an open interval
containing \, and every neighbourhood of (0, ;) contains a zero of F(z,\) which does
not belong to the curve I" = {(0,A) : A € A}. Then (0, \,) is said to be a bifurcation
point of F(x, \) with respect to I'.
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BIFURCATION THEOREM [30]. Let X and Y be Banach spaces and let V' be a neighbour-
hood of 0 in X. Suppose that F : (—1,1) x U — Y satisfies:

(i) F(0,) =0 for |\ <1,

(ii) the partial derivatives Fy, F, and Fy, exist and are continuous,

(iii) N(F;(0,0)) and Y/R(F.(0,0)) are one-dimensional,

(iv) Fiz(0,0)z0 & R(F2(0,0)),
where N (F,(0,0)) = span{xo}. If Z is any complement of N'(F,(0,0)) in X, then there
exist a neighbourhood U of (0,0) in X x R, an interval (—a,a), continuous functions
¢:(—a,a) =R and ¢ : (—a,a) — Z such that $(0) =0, »(0) =0 and

F7H0)NU = {(¢(a),azs + arp(a)) : |a] < a} U{(0,t):(0,t) € U}.

THEOREM 11.1. Suppose that (A) holds. Then for every —\; < X < 0, there exist v, =
Y1 (A) and e, > 0 such that problem (11.1) has a solution for X < X\ < e, and v > ;.
(Here A1 is the first eigenvalue of —A on 2, with the Dirichlet boundary condition.)

Proof. We begin by constructing a supersolution for (11.1). We consider the problem

—Au+ pu = —Q(z)[ulP2u in £,
Ou/Ov =0 on (2,

where p € R is a parameter. It is easy to check that this problem has no nontrivial

(11.2)

solution for p > 0. By the result of Ouyang [46] problem (11.2) has a unique smooth
positive solution w, if —A; < p < 0. We rescale the solution w, as wy = V=2,
Let —A\; < XA < 0 and choose —\; < A < A < 0. We now select v; > 0 so that

h(:v)wgl_2 <A—X onf
We use a notation w,, for a solution of (11.2) with p = A. Then for X < A and v <7
we have
— Awy, + My, +7QuP T — hwd !
> —Aw,, + Aw,, + 'lewgl_l - hwgl_1 > —Awsy, + wal + 71@1021_1 =0

in (2. Thus w.,, is a supersolution of problem (11.1) with v > ~; and A > X. To construct
a subsolution we employ a bifurcation argument from the trivial solution at A = 0 (see
[30]). We set X = C?P(2)NCHN2) and Y = C%P(02), 0 < B < 1. We define a map
F: X xR—-Y by

Flu,\) = —Au + M — h(z)u?™ ' + 4Q(x)uP™t.
We have F(0,)) = 0 for every A € R, F,(0,0)v = —Av, N(F,(0,0)) = span{l}. Since
R(Fu(0,0))={feY: SQ fdxz =0}, we see that F»,(0,0)1 ¢ R(F(0,0)). Obviously
dim NV (F,(0,0)) = dimY/R(F,(0,0)) = 1.

By the Crandall-Rabinowitz bifurcation theorem [30], (0,0) is a bifurcation point for F.
Therefore we obtain a decomposition X = span{l} @ Z, a neighbourhood U of (0, 0)
in X x R, and continuous functions ¢ : (—a,a) — R, ¢ : (—a,a) — Z, with ¢(0) = 0,
1(0) = 0, such that

FH0,00NU = {(a- 1+ avh(a), ¢()) - a € (=a,a)} U{(0, ) : (0,p) € U}
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The curve u, = a(1+1(«)) represents solutions of (11.1) with A = ¢(«). Since ¥(a) — 0
as a — 0 uniformly on {2, we may assume that u, > 0 on {2 for > 0 small enough.
Testing equation (11.1) with the constant function 1 we obtain
() S Uq do = S hul~tde —~ S QuPtdr = a7t S hdzx + o(a?t).
Q Q Q 7]
This in turn implies that

‘b(O;)_'f' = | h(x)dz +0(1) > 0
@ 2
for o« > 0 small. Hence (@
ola) 1
(11.3) am0 d=2  [02] éh(x) dz.

This relation implies that ¢(a) > 0 for o > 0 small. We now observe that for v > v, and
A € (—A1,0) we have

Dy (ua) _ Joy(ua)
ad - ol

1 1 1 1 11
= a‘1<_2 §2¢(a)ui dx + (2 - q) ;}hugdx+ <—2 + p>75 QuP, da:)

2
iC) LI (1 - é) | hdw +o(1).

20042 2
Q

A

This combined with (11.3) gives

T (g 1
1imMg——§hdx<o.
a—0 ad qQ

We fix v > v and taking a, > 0 sufficiently small we get uo, < w+, on £2 and Jy 4 (uq,) <
Joy(Ua,) < 0 for every A € (—A1,0). We now choose 0 < g, < ¢(as) so small that

€o
2
for every X < )\ <e,. Since for A < e, we have

J/\/Y(uao) < JO,'y(“ao) + ||“%H% = JEO,W(“%) <0

7Au0£o + )\uao - hug;l + ’YQUIOZI < *Auao + d)(ao)uao - hug;l + ')/ng;l =0
in 2, we see that u,, is a subsolution of (11.1) for A < e, and v > 7;. A solution u) of
(11.1) for every A € [\, &,] is obtained through the minimization
Iaq(un) = inf{Jy 5 (w) : w € HY(Q), wy, <w < gy} < Jyy(tia,) <0. u
Inspection of the proof of Theorem 11.1 shows that we may relax the hypothesis
h >0 on §2 assuming that {  hdz > 0. Also, assuming that {  hdz <0 we can obtain a

solution bifurcating to the left at 0.
The following definition is suggested by Theorem 11.1:

7(A) = inf{y > 0 : problem (11.1) has a solution u € E¢ satisfying I ,(u) < 0}.

If h and @ satisfy the assumptions of Theorem 9.3 then for every A < \,, we have
J(A) = 0. Here A, is the constant determined by Theorem 9.3. This is no longer true if h



40 J. Chabrowski and E. Tonkes

and () vanish on some subsets of {2. In Proposition 11.2 we show that if supp hNsupp Q =
(0, then 7 > 0.

PROPOSITION 11.2. Let ¢ < p = 2*. Suppose that h and Q satisfy the assumptions of
Theorem 11.1 and that supp hNsupp Q = 0. Moreover, we assume that h(z) > 0 on some
neighbourhood of 002. Then for every —A1 < A < e, we have ¥(\) > 0. (Here A1 and &,
are constants from Theorem 11.1.)

Proof. Let —A\; < A < &,. Arguing by contradiction we assume F(A) = 0. Let v, — 0
and {u,} be a corresponding sequence of solutions of (11.1) with I -, (u,) < 0. Then

(11.4) (% - %) J Alual® do < (% - %)v { Qlunl? da.

[0} 0

Let n(x) be a smooth function such that n(z) = 0 on supph and n(z) = 1 on supp Q.
Testing equation (11.1) with u,n? we obtain

S 02|V, |* dr + S uln?dz + 7y, S Qlun|P dz = -2 S Un Vu,nVndr.
Q Q Q Q
By the Young inequality we get

1
5 S |V, |?n? de + v, S Qlup|P dz < C S u? dx
Q 2 Q

for some constant C' > 0 independent of n. This implies that

(11.5) Yn S Qlup|P dz < C S u? dx
2 7]
and by (11.4)
(11.6) S hluy|?dx < C S u? d.
2 2

Since I -, (un) < 0 we see that

(11.7) S |Vu,|? dz < C S u? d.

Q Q
We claim that {u,} is bounded in L?(2). In the contrary case we may assume that
SQ u2 dr — oo and set v, = Uy /||ty 2. Then by (11.7), the sequence {v,} is bounded in
H'(£). So we may assume that v, — v, in H*(£2) and v, — v, in L*(2) and LI(2).
It then follows from (11.6) that SQ hlve|?dz = 0 and v, () = 0 on supp h. Testing (11.1)
with v, we obtain

S Vo, Vo dz + A S Uno A + || un |52 S Q|vn [P~ 2vpv, dz = 0.
Q 2 Q
Letting n — oo we get
S |V, | dx + X S v2dx < 0.
2 2

Since A > —\; we get a contradiction. Since {u,} is bounded in L?({2), we see that
according to (11.7) {u, } is also bounded in H'({2). Hence we may assume that u,, — u in
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H'(2), up, — uin L"(£2) for every 2 < r < 2*. Then by (11.4), limy, oo {, h|un|? dz = 0.
Thus

S(|Vu\2+)\u dr < lim S|Vun|2d:c+)\8u2da:+ lim fynSQ\un\pda:

2 7 2 Q
= lim S hlu,|? dx = 0.

Consequently u,, — 0 in H'(2). On the other hand since u,, is a solution of (11.1) we
have

11 oL 11 )
- _Z <(Z_Z
(2 q) §(|Vun| + Auy) de < (2 p)'ynfSZQ|un| dx

i)

1 1 p/2
< 4 Cs(N) <_ - _> (S(\w? ) dx)
2 p p
Therefore there exists a constant C' > 0, independent of n, such that
VIV + M) da > €y, 072,
0
which contradicts the fact that u, — 0 in H(§2). m

Solutions of problem (11.1) from Theorem 11.1 have negative energy. In Section 12
we establish the existence of solutions with positive energy for small v > 0. This will be
accomplished through the mountain-pass theorem applied to the truncated variational
functional.

12. Supercritical problem for (1.1)

In Sections 9, 10 and 11 we have considered problem (9.1) which has been obtained from
(1.1) by replacing @ by —@Q. This allowed us to replace 2* by any ¢ < p < co. A question
arises whether in problem (1.1) we can directly replace 2* by any ¢ < p < oo and obtain
some existence results. In this section we show that this is possible provided @ is replaced
by pu@ with p being a positive parameter whose range will depend on .

Therefore we are led to consider the following problem:

—Au+ M= pQ(z) uP~2u + h(x)|u|7%u  in £,

{ du/Ov =0 on 912,
where A > 0 and p > 0 are parameters. We assume that the coefficients ) and h are
positive, measurable and bounded on 2. Moreover we assume that 2 < ¢ < 2* < p < 0.
To obtain a solution of (12.1) we first consider a truncated problem. Let K > 0 be a
constant and define

(12.1)

0 for u < 0,
g(u) = ¢ uP~t for0 <u< K,
KP~4y9~ ' foru> K,
and set G(u So s)ds. It is easy to verify that
g(u) < KP~%% 1 for every u > 0,
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P—q
1g(u)u and G(u) < K
q

G(u) < u?  for u > 0.

q
We commence by solving the truncated problem

—Au+ M= pQ(x)g(u) + h(z)|ul?2u  in £,
du/Ov =0 on 92

The variational functional for (12.2) given by

(12.2)

Jax (u) = % §2(|w|2 + Mu?) da — ué@(x)a(u) da — é (S)h(x)|u|qu

is well defined on H'(§2). It is easy to verify that Jy x has a mountain-pass structure.
Since 2 < ¢ < 2*, Jy i satisfies the (PS). condition for every ¢ € R. Let t, > 0 be a
constant sufficiently large so that Jy k(t,) < 0 and set

Iyi ={y € C([0,1], H'(£2)) : 7(0) = 0, (1) = to}
and let

— inf J £)).
ok = dnf - max A (7(1)

PROPOSITION 12.1. For each A > 0, 1 > 0 and K > 0 problem (12.2) admits a mountain-
pass solution uy , x > 0.

For brevity we set u = uy , k-

PROPOSITION 12.2.  For every A > 0 there exist juo > 0 and K, > 0 such that for every
0 < p <o and K > K, the truncated problem (12.2) has a solution u > 0 satisfying

Hu||Loo S K.

Proof. We follow a standard bootstrap argument (see for example [33, Section 8.6]). For
every L > K we define a function uy, by
R for u < L,
o L foru> L.
For a constant 8 > 1, to be determined later, we set ¢ = uQL(Bfl)u. Taking ¢ as a test
function for (12.2) we obtain

(123) [ @377V 9u? + 208 - Duy’ PuvuVug + aetuy V) do
Q
= u | Q@)g(uyur;? ™V da + | () u ;" da
2 2

We now note that
(12.4) S uiﬁ_guVuVuL dx = S w?PV|Vu2de > 0

) 20(lul<L)
and
(12.5) S Q(x)g(u)uuQ(B_l) de < KP4 S Q($)|u|qu%(ﬁil) dz.

Q Q
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Combining (12.3), (12.4) and (12.5) we obtain
S(ui(ﬂ_l)WuP + )\uzui(ﬁ_l))dx < uKP1 S Q(x)\u|qui(ﬂ_l) dx + S h(w)|u|qui(ﬂ_1) dx.
2 2 2

Let My = sup,co Q(x) + sup,cp h(z) and C, x = Mi(pKP~? 4+ 1). We rewrite the
previous estimate

12.6 Al v + 222 B Y dg < Mp(pKP~941 ul9u2PY dg
L L L
17 Q
=Curk S 72 da.
17

It is now convenient to introduce a function wj, defined by wy, = uu’g_l and note that

Vwr =Vu- ui—j_l + (8- 1)uuﬁ72VuL.
From this we deduce the following estimate:
(127) | IVuPde <2{|Vulu]Vdz +2(8 - 1)? | u] V| Vu, 2 da
2 Q 2
=201+ (8- 1)) [ IVuPui? Y de <482 | |Vuu]” Y da.
Q 2
It then follows from (12.6) and (12.7) that

{IVwr?de + 2 {w? de < 482C, i § fultu} Y da
2 0 0
Using inequality (2.1) we deduce from this that

. 2/2"
ct min(l,)\)(s lwp, |2 da:) <4B%C, i S |u|qui(6_1) dx.
Q Q

Using the Holder inequality we obtain

. 2/2* ) _22* (2" —q+2)/2"
(12.8) c;lmm(l,A)(g wz|? d:c) < 4B2C, x|l <§wL Rk d:c) .
2 2

It remains to estimate ||u||2~. We accomplish this by estimating the mountain-pass level

A2t
(12.9) CA,KSI?Zaé(JA,K()<maX< 5 p §2hd )

_ (a=2)A2| (SA|(2| )2/@2).

2q P hdx

On the other hand since u is a critical point of Jy g at level ¢y x we get

ek = Ik (u) > §(|vu|2 +2?) dx — p S Q(z)g(u)udr — é | h(@)[ult da

7] 2
(— — —) S (IVul® + \u?) dz
o)
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(¢ — 2) min(1, \) 9 9 (¢ — 2) min(1, \) o 2/2"
> 7 > 7 .
T §z(|w +u?)de > 3C (S Jul dx)

Combining the above estimate with (12.9), we therefore have

. 2/2* C, (A $2[)2/(a=2)
2
< .
<S |ul da?) ~ min(1, \) (SQ h(z) dx)?/(a=2)

(12.10)

Using (12.10) and (12.8) we can conclude that

C N2 AB2C, CYP(A0))9/? - (2" —q+2)/2"
2 < K 2:2% /(2% —q+2)
(12.11) (§2|wL d:c) < (1, )12 SQ il ( S |wr | da:) .

Let oo =2-2%/(2* — g + 2). One easily verifies that o < 2*. We now set

20, RCP (g2
~ min(1, NS, hdx)t/?

If SQ |u|P* dx < oo, letting L — oo, we conclude from (12.11) that

)1/(ﬁ2*) 1/(Ba)

(12.12) (S " da < le/%l/ﬁ(g [P dx)
(9] (9]

This inequality can now be iterated to yield the boundedness of u. First we choose f = (51
in (12.12) so that Sy« = 2*. For this choice of 3 we have

(12.13) (S 2" dx>1/(ﬁ12*) < M21/ﬁ1/811/ﬁ1 (S lu /2"
7 7

z dx)

In the next step we choose (32 so that foax = £12%, that is, £a = (2*/a)?. It then follows
from (12.12) and (12.13) that

. 1/(B22%) . 1/(B12%)
(S |u‘ﬂ22 d:L‘) 2 < M21/52ﬁ21/52 (S |u‘ﬂ12 d:L‘) !
2 9]

LoN12
< M21/61+1/62B11/61ﬁ21/ﬂ2(s |u|2 dx) .
(9]

In the kth step we obtain the following estimate

1/(Bx2%) e
> < ML/ Bt B gl B LB gL/ (S ? dx)

9]

(12.14) (S |2 da
2

with 8 = (2*/a)*. Since

and
o /2" +2(a/2%) 2 4.+ k(a/2%)F
klingoﬂi/ﬁl B8P = lim <a> = A7 >0,
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letting & — oo in (12.14) and using (12.10) we get

Mg 372 Cs" (A2 (2a—2)
min(1, N2 (§ hdr) /@2 "

Estimate (12.15) will be used to show that problem (12.1) has a solution.

(12.15) [ull Lo () <

THEOREM 12.3. For every A > 0 there exist po = fio(A) > 0 and Ko = Ko(X\) > 0 such
that for every 0 < pu < po and K > K, problem (12.1) has a solution u € H*(2)NL>(£2)
such that

[ullLe (o) < K.

Proof. We use (12.15). It is sufficient to choose K so that
MS 72 O;/2(>\|_Q|)q/(2(qf2))
min(1, \)V/2(§, hdx)t/(@=2) =
This is equivalent to the inequality

(LKP~2 +1)7/2 < K M;

(12.16)

with
min(1, >\)1/2+(q/01)/4(80 h dzx)or/2+1/(a=2)

901 C1 /A2 (N 0|)a/ (2(a-2) +a01 /4

Given A > 0 we choose K, > M3. Hence for K > K, we have K M3 > 1. Consequently,
we can choose i, > 0 so that for 0 < u < p, inequality (12.16) is satisfied. This completes
the proof of Theorem 12.3. m

3 =

We now turn our attention to problem (11.1). First we consider the truncated problem
(12.17) Au+ Au = h(z)[u|?*u —1Q(z)g(u) on £,

’ Ou/Ov =0 on 02,
where g is the truncation of the homogeneous term |u|P~2u defined at the beginning of
this section. In the sequel we assume that assumption (A) holds. However, no smoothness
of the coefficients ) and h is required here. It is sufficient to assume that ) and h are in
L>(Q), For every K > 0 appearing in the definition of g, we define a truncated functional

1 1
Inerii () = 5 V(Vul? + 2u?) dz + 7 | Q)G (w) do — = | h(a)|ul? da.
q
Q Q Q
PROPOSITION 12.4. For every K > 0 and v > 0 problem (12.17) has a positive solution.

Proof. We first show that the functional Jj  x has a mountain-pass structure. With the
aid of the Sobolev inequality we obtain

17l

1 o]
Trye(w) 2 5 min(L ) Juf* - Kl | lul? do — =12 Ju) da
1 0 9 0
in(1, \
> ol (222 — g2 )

for some constant C7 > 0. From this we deduce that there exist constants o > 0 and
a > 0 such that
Inqyk(u) 2 a for |lul = o.
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We now fix a function ¢ € H*(£2) with supp ¢ C 2, and ¢ # 0. (We recall that Q(z) = 0
on (2,.) Therefore,

t2 2 2 [t]?
Inaclt9) = 5 JIVOP +20%) dw = == | ha)lol do

o 2
We choose a constant t, > 0 such that Jy , x(to¢) < 0 and |[to¢| > o. Let

Do = {€ € C([0,1], H'(2)) : €(0) = 0, (1) = to0)

and set

c = inf max J t)).
A K £€l 4, K tG[O,)f] )\;%K(g( ))

We now show that Jy , x satisfies the (PS). condition for every ¢ € R. First we observe
that G(s) = s?/p for 0 < s < K and G(s) = K?/p+ KPP~ 9s%/q — K?/q for s > K. Let
{um} C HY(£2) be a (PS).-sequence for the functional Jy - x. Then

1
J)\,’y,K(um) - 5 <J§\,7,K (um), um>

g

- <_ - _> [t |2 + S Q)G () dz — 2~ S Q(x)g(um)tm dx

2 q q
2N(0<um<K) 2N(0<um <K)

N =
Q| =

Vil 7 § Q)G do = 2§ Qg d

2 2

—_

+v | e@Gumd -1 | Q@)g(um)un, dr

20 (um>K) a4 2n(um>K)
11
(53 )lmlB+ 2§ Qupar-l  § i
2 q P, q
N(O0< U <K) Q(0<u, <K)
KP KP4 KP
+ S Q(x) (— + ul — —) de — 7 S Q(x)KP™ M, dx
20 >K) b 1 1 © om0
11
(5l Q@ude-l§ Qs
9 P 20(0<u, <K) 2n(0<um <K)
11
+yK? <— - —) S Q(z) dx.
P q

2N(um>K)

It is now routine to deduce from this identity the boundedness of {u,,} in H*(£2). Since
problem (12.17) is subcritical the (PS). condition readily follows. This obviously yields
the existence of a solution u of (12.7). m

For future use we now estimate ||ul|. Since

o < (t2|¢||§ -1 h(x)|¢|qu>

t>0 2 tq
1)
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we have

2/(q—2)
(1218) croac <ol (L)
o § h()|0] da

On the other hand we have

1 1
exie = Iaoc(u) = 5 V(YU + 22y de + v | Q(a)Glu) da - . | h(@)[ul da
2 2 2

_ (1 _ 2) (IVul? + xi?) dz + 7 | Q(2)G (u) do — g | Q@)g(uyude

2N(u<K)
K? KPP
-1 Q(x)updxﬂ(———) | Q@da
4 2N(u<K) P 9 2N(u>K)
q—2 K?
> L= f Qwdr—T | Quwrde.
2N(u>K) N2N(u<K)

This estimate combined with (12.18) gives

2q [q— I3 M2 oKy
[[ullx < q_—z{ |¢||/\<W> + S Q(z) d$]'

We set

ol Y 4k
=Wk (ies) { Q)

and using (2.1) we deduce from the above estimate that

N7 M,C
12.1 2 < s
(12.19) (§Z|U| dx) ~ min(1, \)

PROPOSITION 12.5. A mountain-pass solution u of problem (12.7) is bounded.

Proof. We follow the proof of Proposition 12.1. Using the same notations as in Proposition
12.1 we obtain the estimate of the form (12.8) with C,, k = ||h||~, that is,

)(2*—Q+2)/2*

C ' min(1, )\)( S lwp|? da:)Q/T < 4/3? :2<S lwp |22/ @7 =a+2) gy
o) o)

This estimate combined with (12.19) leads to the following estimate:

({1

2

2 \H2 _ 4B h]o My P08
dx)

(2" —g+2)/2"
- min(1, \)7/2 ) ’

(§ 010
(]
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Letting L — oo, we find as in Proposition 12.1 that

. 1/(82%) 1/(Ba)
(Sum dx) gﬁl/ﬁMé/ﬁ(Suﬁadx) ,
0 0
where
—4)/4 ~q/4y 7 11/2
_ 2 Ve 1

M.
2 min(1, \)4/4

By the iterating procedure with the aid of (12.19) we conclude that

M2<71 5!172 ]\4’11/2081/2

12.2 o <
(1220) Jullos < 2t

for some constants o1 > 0 and o9 > 0. =
We now define a constant A by
A= 97Clan D A7 B2/,

It is convenient to write (12.20) in an explicit form

(12.21) ulloe < A TP L S R
' o= nin (L, 3 o278 [T () | gle da
(go1+2)/4
4KP
+ =7 S Q(x) dx}
q—2 4

THEOREM 12.6. Suppose that (A) holds. Then for every X\ > 0 there exists 7o > 0 such
that problem (11.1) for 0 < v <~ has a solution.

Proof. 1t is sufficient to choose a constant K > 0 so that

(12.22) 4 [wn? (%)Z/M
’ min(1, \)(g91+2)/4 A SQ h(z)[¢|9 dx

4KP~y
q—2

+

S Q(x) dx

0

(go142)/4
} < K.

To accomplish this we first choose K > 0 so that

- [l 2/(g=2)7 (go1+2)/4
in(1, \)(go1+2)/4 {WHi(iAq) }

Then we select v > 0 small enough so that (12.22) holds. =

< K.

13. Blow-up for semilinear parabolic equations

As an application of the optimal Sobolev inequalities we investigate the blow-up for the
Neumann problem for the semilinear parabolic equation
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ou/ot — Au+ I = Q(z)|u|> 2u for (z,t) € 2 x (0,T],
(13.1) u(z,t) =0 for (z,t) € 92 x (0,71,
u(z,0) = uo(x) for z € £2, us > 0 and u, # 0,

where A > 0 is a parameter and u, € H({2). As in the previous sections we assume that
2 C RY is a bounded domain with a smooth boundary 9f2.

By u(z,t) = u(x,t,u,) we denote a solution of problem (13.1) defined for (z,t) €
2x(0,T,,), where (0,T;,) is the maximal interval of existence of the solution u. A solution
is understood in the weak sense, it belongs to H!(§2 x (0,7},)) and is continuous in ¢
with respect to the norm in L?(£2) on [0,7,,) ([13], [14] and [36]).

Let
Ia(u) = 5 (IVul? + xu?) dz — 2i | Q@)lul? da.

0 2

1
2
PROPOSITION 13.1. If Jy(uo) < 0, then u(z,t) blows up at a finite time, that is, Ty, < 0.

Proof. We follow some ideas from the paper [49]. We set

t

7(6) = 5 §lhuC.9) 13 ds.

0

It is easy to check that

(13.2)

O ey o+

S u? dzds + % S(|Vru(x,t)|2 + u(z, t)?) do — 2% S Q(x)|u(-,t)|* dx
Q Q Q
= J)\(uo)a

(183) (1) = glluel3 +

O ey

S —|Vou(z, s)|? dz — Mu(z, 5)% + Q(z)|u(z, s)|*) dx ds,
2
(13.4)  f"(t) = — §(|v u(z, )2 + Mz, 1)?) dz + | Q@) |u(w, 1) da.

o)
We deduce from (13.2) and (13.4) that

(13.5)  f"(t) _(—1>S|Vu:ct|2+/\u(xt))d
(7]

—Q*J,\(uo + 2%

O ey

Sut Z,8) 2 dxds.
Q

Suppose that T, = co. Since Jy(u,) < 0, we see that
2*
(13.6) ) > (5 - 1) S(|Vzu(:c,t)|2 + u(z,)?) de — 2% T\ (uo) > 0.
o)
Selecting ¢; > 0 we derive from (13.5) that
t1

>2*SSufdxds
00
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for ¢t > t1. This inequality implies that
lim f(t) = lim f'(t) = .
t—o0 t—o0

On the other hand, from (13.5) and (13.6) we have
¢
@) > 2*8 S ug(x, 8)? dads.
00

Applying the Hélder inequality we get

FOf" () = %(S JuC-,9)l13 ds ) (§ s )3 ds)
0 0
> 22—*(§ S Ul dxds)2 = %(% S u(z, t)? dr — % S Uo () d:z;)2
08 [0} 2
2*

=200 - s
Since lim; o f/(t) = oo, there exist t3 > 0 and « > 0 such that
FOF () = 1+ a)f'(t)?
for t>t5. Thus f~% is concave on (2, 00) and this contradicts the fact that lim;_, o f~%(¢)
=0. =

We now define

Sy = inf{ S(|Vu|2 + \u?) dx S Qx)u? de=1,uc Hl(Q)}
17 2
It follows from the definition of S that

(13.7) 5y (§ @)l dx)Q/Q* < [(IVoul? + Au?) da
(9] (%}

for every u € H(£2).

PROPOSITION 13.2. Suppose that

N/2

(a) Ia(uo) < S;‘v and S Q(x)|uo|? dx < SiV/Q.
Q

Then the solution u of (13.1) exists for every t > 0.
Proof. We write (13.2) as

t N/2
(138) § s, ) ds + (1)) = Ja(we) < B

0
Suppose that

(13.9) [ Q@)lu(a, > do = 832
(9]
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for some 0 < t* < T,,. We derive from (13.8) that
* 1 * *
Ta(u( 1) < 5 § Q@) ua, ) do
Q
and consequently

S(|Vmu(x,t*)|2 + Au(z, t*)?) dz < S Q(x)|u(z, t*)*" da.
Q Q
Combining this with (13.7) we obtain

SV <V Q@)lu(z, 1) da,
2
which contradicts (13.9). Therefore for each 0 < t < T,,, we have

\Q@)lu(z, 0 do < 837,
(]

This in turn implies that

V(IVau(e, )1 + Mz, 1)) de > | Q@) |u(z, H)[* da
Q Q
for each 0 <t < T,,. Combining this with (13.8) we obtain
t
VIl s) 13 ds + + §(|v u(z, 1)) + Mu(z, 1)?) de < Jx(us) < —SN/2
0 N
This obviously implies that T;,, = co. m

In general, it is difficult to estimate S). However, under conditions guaranteeing
the validity of optimal Sobolev inequalities, Sy is constant for large A. Therefore using
Proposition 13.1 we can formulate the following theorem giving conditions for no blow-up.

THEOREM 13.3. (i) Let N > 5 and Qv > 22/N=2Q,,. Suppose that SQ z)|uo|* da <
SN/2/Q§\£[V_2)/2 and Jx(uo) < SN/2/(NQ§[V 2) /2). Then there exists a A1 > 0 such that
problem (13.1) for A > Ay has a solution for all t > 0.

(ii) Let N > 5 and suppose that (S1) holds. If Jx(uo) < SN/Z/(QNQ&N_Q)M) and
SQ Q(x)|uo|? dx < SN/2/(2NQI(HN_2)/2), then there exists a Ay > 0 such that problem
(13.1) for A > Ay has a solution for all t > 0.

(iii) Let N > 5 and suppose that (Sz) holds. If Jx(uo) < SN/2/(2NQ Nﬁz)/Q) and
Sn Q(x)|uo|* < SN/2/(2NQ(N 2/ %), then there exists a Ag > 0 such that problem (13.1)
for X > A3 has a solution for all t > 0.

In Proposition 13.4 we examine the behaviour of the norm |Ju(-,t)||x of a solution of
(13.1).

PROPOSITION 13.4. Let N > 5. Suppose that

2/(N—2) SN/2 o SN/Q
QM > 2 Qm, J)\(Uo) < TM’ S Q($)|Uo| dx < W
NQy 2 Qn
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Then the global solution u of (13.1) satisfies
S(\qu(:c, )2 + Mu(z, t)?) de = O(e™ ")
2

for large X\, for every t > 0 and some constant o > 0.
Proof. We set
H(u(-,t)) = S(|qu(x,t)|2 + Au(z, t)?) dz — S Q(x)|u(z, t)|* da.
19, Q

We assume that A > A;. It follows from the proof of Proposition 13.2 that H (u(-,t)) > 0
for every t > 0. The Sobolev inequality (I) of Section 3 and the inequality

1
Ta(e) > V(IVau(e, )7 + u(z, 1)?) do
7]
yield the estimate
. (N—=2)/N\ 2%/2 )
S Q(x)|u(z, t)* dx < (MT> (NJx(uo))? /271 S(\un(a:,tﬂg + Mu(w, t)?) dz.
Q 7]

According to our assumption

(N—=2)/N \ 2%/2
5= <M7) (NJx(u))?/*7t < 1,

S
so setting v = 1 — §, we can write the last estimate in the form
(13100 [ Q@)ule,t) do < (1—7) [ (Vaule, ) + Mz, t)?) da.
7] Q
For a fixed T' > 0 the integration over (¢,7T) of
1d
5 g ) ule: 1)’ de = —H(u(-.t))
Q
gives
T 1 1
S H(u(,s))ds = 5 S u(z,t)* do — 5 S u(z,T)? dx
t Q Q
1
< — 2 %) dx.
<5 (S)(Vzu(x,tﬂ + u(x,)?) du

On the other hand we have

(13.11)  Ja(u(-,t)) = % S(\Vzu(x,t)|2 + u(z, t)?) do — 2i S Q) |u(z, 1)) da
2 2

_ % [1Vaule, 02 + Mz, %) da
2
+ 1 {H(u( ) — S(|V u(z, t)|* + Au(z, t)?) da:]
2% ’ T ) )

(0]
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Jauta, 0 + X, 0) o+ o Hu(-,1)
(%}

> < V(Vou(e, )] + Au(z, 1)?) da.

9]

2= =2l

Combining the last two inequalities we get

(13.12) §H(u( ))ds<%JA(( t).

We now rewrite inequality (13.10) as
(13.13) Y Y (Vo O + N, 0)?) do < H(u(- 1),
2
Inequality (13.13) and the equality part of (13.11) imply that
1 1
D) < (577 + g ) HOuC0)

Combining the last estimate with (13.12) we get

i 1 N

: < 1)).
§Aw&$ﬁk (%V+22A)Awum
We choose a constant T, > 1/(2\y) + N/(2-2*)) and write the last inequality in the

form

o0
(13.14) VI, 5)) ds < Toda(ul- 1)
t
for every t > T,. By standard calculations we deduce from (13.14) the inequality
(13.15) V) ds < Tody(u(-, To))el /7
t
for every t > T,. Since
T, +t
S s> | Jn(u(,9))ds > Todx(u(, T + 1))
t t

we deduce from (13.15) that
In(u(, To + 1)) < Ja(u(-, Tp))e' /7o,
The assertion of Proposition follows from (13.11). m

A similar asymptotic estimate of v can be obtained with the aid of the optimal Sobolev
inequalities (IT) and (III).

PROPOSITION 13.5. Let N > 5 and Qn > 22/(N=2) Suppose that

SN/2 o SN/2
0< J,\(Uo) < W and §2Q($)|Uo dr > Ql(vjlviz)/g

for A > Ay. Then a solution of (13.1) blows up at a finite time.
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Proof. We commence by showing that there is no function w, satisfying

gN/2 - SN/2
(1316) J)\(Uo) < W and §2Q(.’E)|Uo| dx = W

Indeed, assuming that there is a function u, satisfying (13.16) we get

* 1 *
2 2
- dx < N S Q(x)|uol® de.

0 0 0

0T+ x2y e — - § Q) e

Hence
S(|Vuo\2 + Mu?) dx < S Q(:c)|uo|2* dz.

0 2
By (I) we have
. 2/2" S .
(Y Q@luel* do) ™ —Z575 < § Q@) da
0 M 0
and consequently
SN/Q o
W < SQ(x)|U0| dz,
M Q
which is impossible. Therefore we only consider the case
: 5N/2
S Q(x)\uo|2 dr > W
2 Qu

We then have

SN/2 *
(].3].7) W < S(|v1uo|2 + )\ug) dr < S Q(x)‘uOP dzx.
QM 0 9]
If the second part of this inequality is not true, then
1 . SN/2
I(uo) = = | Q@)uol” do > —5—75.
N NQy

which is impossible. Similarly, if the first part of (13.17) does not hold, then we easily
arrive at a contradiction with the aid of inequality (I). Obviously by continuity we have

N/2 .
(13.18) ﬁ < S(|Vmu(:c,t)|2 + u(z, t)?) dx < S Q(x)|u(z, t)]* dx
@ 2 2

for small ¢ > 0. We now show that (13.18) remains valid for ¢ € [0,7,). If for some
te0,7),

S(|V1u(x,f)|2 + Au(z,t)?) do = S Q(z)|u(x,t)* d,

2 2

then

- . SN/Q
S(vau(az,t)l + (e, t)%) de > —J—575-
o M
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Since Jy(u-,t) is decreasing in ¢ we must have

_ 1 - 2 SN2
Ia(u(, 1)) = 5 (I Vaule, 0] + Au(e,1)%) de < NI
£2 M

which is impossible. Therefore the second part of inequality (13.18) is valid for ¢ € [0,T},).
To proceed further we employ the method due to Ishii [37] (see also [49]). We define

X(1) = 5 (Vaue, O + M, 0) de, V(1) = o= § Qo 0 dr.

2 Q
By inequality (I) we have

(N=2)/N \ 2*/2
Yy < i 2621\47 x2°/2
2% S

We now set

o 5 and a:?>1.

Let (Xo,Ys) be a point where the curve Y = ¢X® crosses the line Y = a1 X in the half

plane X > 0. It is easy to check that
d o
d_X(CX ) =1 at X = Xo

Thus the tangent line to the curve Y = ¢X® at (X,,Ys) is given by

o 1 <2Q$_2)/N>2*/2 o

Y=X-d with d=X,-Y.
Easy calculations show that

-1 N/2
d="2 (ca)~ V@) —max(X —V;Y = cX?) = 5

« NQI(\/][V_Z)/Q ’
We now consider the set U defined by

U={(X,)Y)ER*: X >0,Y <cX* Y > X —d},
which is the union of two connected components
W={X,Y)eU:Y<a'X}, V={X,Y)eU:Y >a 'X}.

The component W is a bounded subset of R? and X —Y > 0 for (X,Y) € W. We also
have
SN/2

(N-2)/2
M

for (X,Y) € V. This shows that the first part of inequality (13.18) is valid for every
t € (0,T,,). We now consider the line Y = X —r with 0 < r < d. Let us denote by
(X_,Y_) and (X,,Y,) the intersection points of Y = X — r with the curve ¥ = ¢X®
such that X_ < X, < X;.Let Y = _X and Y = . X be the lines passing through the
points (X_,Y_) and (X4, Y, ), respectively. Since X_ (r) is strictly increasing and X (r)
is strictly decreasing in 7 € (0,d), we see that S_(r) = ¢X* *(r) is strictly increasing

X > (ca)*l/(afl) =
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and B, (r) = c¢X; (r)*~ ! is strictly decreasing in r € (0,d). Thus we have
Y<pg_(r)X for(X,Y)eW with X -Y =,
Y>0.(r)X for (X,)V)eVwith X -Y =r

and moreover
B_(r)<at<pBi(r) for0<r<d.

Since d = SN/Q/(NQl(\f[V_Q)/Q), we have

SN/2 GN/2 1 2
B- (W)Zﬁ <W)=5=2—*~

Taking r = Jx(uo), we get

SN/2

W =d>r= J)\(Uo) > J)\(U(,t)) = X(t) — Y(t)

Hence
Y(t) = B (Ia(u(, 1) X (1) = B4 (Ia(uo)) X (t)
and N2
S 2
B (Ia(uo)) > By (W> = o
Thus we can find an 7 > 0 such that
V()= 2 (14X ()

for all ¢ € [0,T,) or equivalently
(13.19) (L) ([ Vulz, O] + Mu(e, 1)) de < | Q@)|u(z, )] do

Q Q
for all t € [0, T},). Inequality (13.19) is crucial to prove that the blow-up occurs at a finite
time. Assume that T, = oo and define
t

Yl 5)113 ds.

o

DN | =

flt) =

We follow the argument from the proof of Proposition 13.1. From (13.4) we derive that

F(#) =0 \(IVul@, )2 + Au(z, 1)?) da.
2

From this we deduce that lim;_, o f(t) = lim;_,o0 f'(t) = co. We now observe that

2*
(7 - 1) V(I )2 + M, 1)?) dz — 2773 (uo) > 0.
(]
It then follows from (13.5) that
t
> 2*8 S u? dzds.
00

The remaining part of the proof is similar to that of Proposition 13.1. m
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