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Abstract

The spaces L1(m) of all m-integrable (resp. L1
w(m) of all scalarly m-integrable) functions for a

vector measure m, taking values in a complex locally convex Hausdorff space X (briefly, lcHs),
are themselves lcHs for the mean convergence topology. Additionally, L1

w(m) is always a complex
vector lattice; this is not necessarily so for L1(m). To identify precisely when L1(m) is also a
complex vector lattice is one of our central aims. Whenever X is sequentially complete, then
this is the case. If, additionally, the inclusion L1(m) ⊆ L1

w(m) (which always holds) is proper,
then L1(m) and L1

w(m) contain lattice-isomorphic copies of the complex Banach lattices c0
and `∞, respectively. On the other hand, whenever L1(m) contains an isomorphic copy of c0,
merely in the lcHs sense, then necessarily L1(m) ( L1

w(m). Moreover, the X-valued integration
operator Im : f 7→

∫
f dm, for f ∈ L1(m), then fixes a copy of c0. For X a Banach space, the

validity of L1(m) = L1
w(m) turns out to be equivalent to Im being weakly completely continuous.

A sufficient condition for this is the (q, 1)-concavity of Im for some 1 ≤ q <∞. This criterion is
fulfilled when Im belongs to various classical operator ideals. Unlike for L1

w(m), the space L1(m)
can never contain an isomorphic copy of `∞. A rich supply of examples and counterexamples is
presented. The methods involved are a hybrid of vector measure/integration theory, functional
analysis, operator theory and complex vector lattices.
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1. Introduction and main results

The theory of Banach-space-valued vector measures, their associated L1-space and the
integration operator is well established, with myriad applications in classical and har-
monic analysis, the geometry of Banach spaces and functional analysis; see, for example,
the monographs [14], [18], [19], [31], [46], [57], and the references therein. The moment
one considers, for example, a Banach space in its weak topology or applies the Banach
space theory pointwise to operator-valued measures acting in a Banach space (for the
weak or strong operator topology), then the natural framework shifts to the setting of
vector measures taking values in a locally convex Hausdorff space (briefly, lcHs); see, for
example, [31], [47], [52]. Moreover, the lcHs involved are typically no longer sequentially
complete (just consider the Banach space c0 in its weak topology, or the space of all con-
tinuous linear operators on c0 equipped with the weak operator topology). This causes
various inherent difficulties (see e.g. [41], [53]), in particular, concerning the interplay of
the topological properties of the L1-space of integrable functions and its order properties
as a vector lattice of functions. Given the richness of this interplay for Banach-space-
valued (or sequentially complete lcHs-valued) vector measures, it is desirable to better
understand this interplay in general, i.e., without sequential completeness as an a priori
assumption. Moreover, applications demand a theory for complex spaces. However, in this
setting, it turns out that the L1-space of integrable functions (over C) may even fail to
be a complex vector lattice! Nevertheless, it will be seen that many important structural
results (well known for sequentially complete spaces over R) still carry over in general.
It is time to be more precise.

Let X be a lcHs, over C. Consider an X-valued vector measure (i.e., a σ-additive
set function) m defined on a measurable space (Ω,Σ). Associated with m are the com-
plex vector space L1(m) of all (equivalence classes of) C-valued m-integrable functions
on Ω and the larger complex vector space L1

w(m) of all (equivalence classes of) C-valued,
scalarly m-integrable functions on Ω. We equip L1(m) with the mean convergence topol-
ogy τ(m) (i.e., the topology of uniform convergence of indefinite integrals), which can
be extended to a lcH-topology τ(m)w on L1

w(m) so that τ(m)w, in turn, induces τ(m)

on L1(m). Section 2 presents the basic concepts and results concerning the lcHs L1(m)

and L1
w(m).

The main aim of this paper is to determine when L1(m) or L1
w(m) contains a lattice-

isomorphic copy of the complex Banach lattice c0 or of `∞, which is related to the
inclusion L1(m) ⊆ L1

w(m) being proper (or to L1(m) = L1
w(m)). Of course, such a

lattice-isomorphic copy is also an isomorphic copy in the lcHs sense.

[5]
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Results concerning lattice-isomorphic copies of (c0)R := c0∩RN and (`∞)R := `∞∩RN

in general locally solid Riesz spaces X over R (which are topologically complete or, at
least, sequentially complete) can be found, for example, in [21], [59] and the references
therein. The criteria there are typically in terms of order properties ofX (e.g. Dedekind σ-
completeness) and/or properties related to the topology of X (e.g., σ-Levi, σ-Lebesgue).
Our aim is to focus directly on the special features of the particular complex vector
spaces L1(m) and L1

w(m), which are the central spaces of importance here, rather than
attempting to extend such real results to general complex Riesz spaces.

Our motivation originates from the special case when X is a Banach space; L1(m)

is then a complex Banach lattice. For instance, the monograph [46, Ch. 3] treats L1(m)

from the viewpoint of complex Banach lattices. According to [10, Theorem 2.2], [11, The-
orem 2], if the Banach space X does not contain an isomorphic copy of c0, then neither
does L1(m); this seems to be the first result regarding the existence or not of an isomorphic
copy of c0 in L1(m). Moreover, whenever X does not contain an isomorphic copy of c0
(equivalently, if X is weakly Σ-complete), then necessarily L1(m) = L1

w(m) [31, The-
orem II.5.1], [34, Theorem 5.1]; see also Lemmas 2.2 and 2.5(iv) below. The question of
the role played by these two necessary conditions, namely that L1(m) does not contain
an isomorphic copy of c0 and that L1(m) = L1

w(m), already has an answer (following
from the well known case when the codomain space of m is a real Banach space). Namely,
for a general Banach-space-valued vector measure m, the following three conditions are
equivalent:

(A) L1(m) = L1
w(m);

(B) L1(m) does not contain a lattice-isomorphic copy of c0;
(C) L1(m) does not contain an isomorphic copy of c0;

see Proposition 3.11. The equivalence of these three conditions for a vector measure with
values in a real Fréchet space is also available (together with other equivalent conditions)
[8, Proposition 3.4].

The core of this paper is the investigation of the above conditions (A)–(C) for a general
lcHs-valued vector measure m, together with the question of whether or not L1

w(m)

contains a lattice-isomorphic copy of c0 or of `∞. We provide criteria which guarantee
the equivalence of these three conditions. Let us emphasize again that the codomain space
X of m is a complex lcHs and, hence, so are the lcHs L1(m) and L1

w(m). For tackling the
problem of whether a lattice copy of the complex Banach lattice c0 or `∞ is in L1(m) and
L1
w(m), it is first necessary to determine whether or not L1(m) and L1

w(m) are themselves
complex vector lattices. Accordingly, in Section 3 we define complex vector lattices and
present relevant results which can be applied to L1(m) and L1

w(m). To be precise, a
complex vector lattice is defined as the complexification EC := E + iE of a real vector
lattice E having the “complex modulus property”, which then enables us to consider both
complex conjugation and forming the modulus in EC. This class of complex vector lattices
is strictly larger than that of [55] and [60]. Indeed, according to [55, Definition II.11.1], a
complex vector lattice is the complexification of a real vector lattice E satisfying Axiom
(OS); it is Axiom (OS) that guarantees the complex modulus property of E. On the
other hand, a complex vector lattice according to [60, §91] is the complexification of a
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real vector lattice which is both Archimedean and uniformly complete. It turns out that
a real vector lattice satisfies Axiom (OS) if and only if it is Archimedean and uniformly
complete. Consequently, the class of complex vector lattices in [55] coincides with that
in [60]; see Remark 3.3.

Now, let L1(m)R (resp. L1
w(m)R) be the real vector subspace of L1(m) (resp. L1

w(m))
consisting of all (equivalence classes of) R-valued, m-integrable (resp. scalarly m-inte-
grable) functions. Then L1(m)R is a real vector lattice with respect to them-a.e. pointwise
order. The complex vector space L1(m) is a complex vector lattice for them-a.e. pointwise
order, realized as the complexification of L1(m)R, if and only if it is closed under complex
conjugation and under forming the modulus, both being defined pointwise m-a.e. In this
case the complex conjugation and modulus formed pointwise m-a.e. coincide with those
intrinsic to the complex vector lattice L1(m); see Proposition 3.7(ii). Via this criterion,
parts (i) and (iii) of Example 3.9 provide normed-space-valued vector measures whose
associated L1-space is a complex vector lattice in our sense, but not in the sense of [55]
and [60]. In contrast, parts (iv) and (v) of Example 3.9 exhibit normed-space-valued
vector measures whose associated L1-spaces are not complex vector lattices at all. On
the other hand, it turns out that L1

w(m) is always a complex vector lattice in the m-a.e.
pointwise order, realized as the complexification of L1

w(m)R; see Proposition 3.7(iv).
Let X,Y be lcHs and T : X → Y be a continuous linear operator. Then T is said to

fix a copy of c0 if there exist a complete subspace W of X (for the relative topology) and
a bi-continuous isomorphism of c0 onto W such that the restriction T |W : W → Y is a
bi-continuous isomorphism onto its range in Y .

It is time to formulate our three main results. The first two of them hold for a general
lcHs-valued measure, independent of whether or not L1(m) is a complex vector lattice.

Theorem 1.1. Let m : Σ → X be a lcHs-valued vector measure whose associated lcHs
L1(m) contains an isomorphic copy of the Banach space c0. Then:

(i) The inclusion L1(m) ⊆ L1
w(m) is proper.

(ii) The integration operator Im : L1(m)→ X fixes a copy of c0.

Section 4 is devoted to the proof of Theorem 1.1 and some immediate consequences
together with relevant examples.

A natural question suggested by Theorem 1.1 is whether or not there exists a lcHs-
valued vector measurem for which L1(m) contains an isomorphic copy of `∞. The answer
is negative.

Theorem 1.2. Let m : Σ → X be any lcHs-valued vector measure. Then its associated
lcHs L1(m) does not contain an isomorphic copy of the Banach space `∞.

The proof of Theorem 1.2 is presented in Section 5. Important is the fact that the
L1-space of a Banach-space-valued vector measure is always a complex Banach lattice
with order continuous norm.

The third theorem is the following one.

Theorem 1.3. Let X be a sequentially complete lcHs and m : Σ → X be a vector
measure. Then:
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(i) The space L1(m) is a complex vector lattice for the m-a.e. pointwise order.
(ii) If L1(m) ( L1

w(m), then L1(m) and L1
w(m) contain lattice-isomorphic copies of the

complex Banach lattices c0 and `∞, respectively.

In Section 6 we first establish Theorem 1.3 and then analyze some of the earlier results
together with various illustrative examples. To summarize Section 6 briefly, let us consider
the following conditions for a general lcHs-valued vector measure m:

(a) L1(m) ( L1
w(m);

(b) L1(m) is a complex vector lattice in the m-a.e. pointwise order and contains a lattice-
isomorphic copy of c0;

(c) L1(m) contains an isomorphic copy of the Banach space c0; and
(d) L1

w(m) contains a lattice-isomorphic copy of `∞.

Whenever X is sequentially complete, Theorems 1.1–1.3 together guarantee the equiv-
alence of all four of the conditions (a)–(d). Consequently, this conclusion remains valid
whenever L1(m) = L1(J ◦m), with J denoting the natural embedding of a general lcHs X
into its sequential completion X̃. A special case of this occurs when L1(m) is sequentially
complete as then L1(m) = L1(J ◦ m) follows; see Lemma 2.7(ii). The just mentioned
sufficient conditions for the equivalence of (a)–(d) are formally stated in Proposition 6.4.
Furthermore, in Example 6.5 it is shown that the sequential completeness of X need not
always imply that of L1(m) and, vice versa, that the equality L1(m) = L1(J ◦m) does
not imply the sequential completeness of X or of L1(m), in general. Actually, the identity
L1(m) = L1(J ◦m) is characterized by the σ-monotone completeness property of L1(m);
see Lemma 6.6.

For a general lcHs-valued vector measure m, we always have

(b)⇒(c)⇒(d)⇒(a).

The reverse implications are false, in general. Indeed, we present examples corresponding
to (c);(b), (d);(c) and (a);(d); see Examples 6.8, 6.11 and 2.6(iii), respectively.

The final Section 7 is devoted to an investigation of the validity of L1(m) = L1
w(m)

for a Banach-space-valued vector measure m : Σ → X. For instance, it is known that
this is the case whenever the integration operator Im : L1(m)→ X is either weakly com-
pact or completely continuous. In Proposition 7.7 it is established that L1(m) = L1

w(m)

holds precisely when Im is weakly completely continuous, a class of linear operators
first considered by J. Dieudonné and A. Grothendieck. Utilizing the fact that the do-
main space L1(m) of Im is a Banach lattice, it is shown in Proposition 7.9(i) that the
(q, 1)-concavity of Im, for some 1 ≤ q < ∞, is sufficient (but not necessary; see Ex-
ample 7.11) for Im to be weakly completely continuous. This “concavity criterion” is
satisfied by the membership of Im in various classical operator ideals.

2. Preliminaries and basic results

Vector spaces over C are simply called vector spaces here. When the scalar field C needs
to be emphasized, we speak of complex vector spaces. Vector spaces over R are usually
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called real vector spaces. Of course, vector subspaces of a real vector space are understood
to be over R even when we do not say real vector subspaces.

Let X be a lcHs (over C) with topological dual space X∗. The duality between X

and X∗ is denoted by 〈x, x∗〉 := x∗(x), for x ∈ X, x∗ ∈ X∗. We denote by P(X) the
class of all continuous seminorms on X. Given p ∈ P(X), let Up := {x ∈ X : p(x) ≤ 1}.
The polar set U◦p := {x∗ ∈ X∗ : |〈x, x∗〉| ≤ 1 for all x ∈ Up} of Up can be rewritten as

U◦p = {x∗ ∈ X∗ : |〈x, x∗〉| ≤ p(x) for all x ∈ X}. (2.1)

Let X/p−1({0}) be the quotient normed space associated with p and let Xp denote its
Banach space completion with norm ‖·‖Xp . The canonical map πp : X → Xp is continuous
and linear. Moreover, (2.1) gives

π∗p(B[X∗p ]) = U◦p , (2.2)
where π∗p is the adjoint map of πp from the dual space X∗p (of Xp) into X∗ and B[X∗p ] is
the closed unit ball of X∗p with respect to the dual norm.

A sequence {xn}∞n=1 in a lcHs X is called summable if the sequence {
∑N
n=1 xn}∞N=1

of its partial sums is convergent in X (with respect to its given topology). It will be
clearly indicated whenever we consider different lcH-topologies on X, such as the weak
topology σ(X,X∗), for example. A sequence {xn}∞n=1 in X is subseries summable if
every subsequence {xn(k)}∞k=1 of {xn}∞n=1 is summable, and is unconditionally summable
if {xτ(n)}∞n=1 is summable for every permutation τ : N→ N.

Lemma 2.1. Let X be a lcHs.

(i) Every subseries summable sequence in X is unconditionally summable. If X is se-
quentially complete, then the converse also holds.

(ii) A sequence in X is subseries summable in the weak topology if and only if it is
subseries summable for the given topology in X.

Proof. (i) See [27, Proposition 14.6.2 and Corollary 14.6.6].
(ii) See [37, Theorem 1].

Part (ii) of Lemma 2.1 is known as the Orlicz–Pettis Theorem, a survey of which can
be found in [30], for example.

A sequence {xn}∞n=1 in a lcHs X is called weakly absolutely Cauchy if
∑∞
n=1 |〈xn, x∗〉|

<∞ for all x∗ ∈ X∗. Our terminology is essentially the same as that in [27]. Indeed, our
weakly absolutely Cauchy sequences are exactly those absolutely Cauchy sequences in the
weak topology according to [27, p. 305]. In Banach space theory, the fact that {xn}∞n=1

is weakly absolutely Cauchy is also expressed by saying that the formal series
∑∞
n=1 xn

is weakly unconditionally Cauchy [38, p. 390]. According to [57, p. 5], the lcHs X is said
to be weakly Σ-complete if every weakly absolutely Cauchy sequence in X is summable
in the weak topology. This concept was already considered earlier in the Banach space
setting [5].

Lemma 2.2. Let X be a lcHs. The following conditions are equivalent:

(i) X is weakly Σ-complete.
(ii) Every weakly absolutely Cauchy sequence in X is subseries summable in the weak

topology.
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(iii) Every weakly absolutely Cauchy sequence in X is subseries summable in the given
topology of X.

(iv) Every weakly absolutely Cauchy sequence in X is summable in the given topology
of X.

Proof. (i)⇒(ii). Use the fact that all the subsequences of a weakly absolutely Cauchy
sequence are again weakly absolutely Cauchy.

(ii)⇒(iii). Apply the Orlicz–Pettis Theorem, i.e., Lemma 2.1(ii).
(iii)⇒(iv)⇒(i). These implications are clear.

In [31, p. 31], a lcHs X satisfying condition (iv) above is said to have the (B-P)-
property, so thatX being weakly Σ-complete is equivalent toX having the (B-P)-property
via Lemma 2.2.

Given a lcHs Y , let L(X,Y ) denote the vector space of all continuous linear maps
from X into Y . When X = Y , we write L(X) := L(X,X). The range of an operator
T ∈ L(X,Y ) is denoted by R(T ); it is always equipped with the relative topology from Y .
A useful fact is that every T ∈ L(X,Y ) maps each weakly absolutely Cauchy sequence
in X to a weakly absolutely Cauchy sequence in Y because the adjoint T ∗ of T satisfies
T ∗(Y ∗) ⊆ X∗ and 〈Tx, y∗〉 = 〈x, T ∗y∗〉 for every x ∈ X and y∗ ∈ Y ∗.

By an isomorphism between lcHs, we mean a bi-continuous linear bijection. When
there exists an isomorphism T : c0 → X (resp. T : `∞ → X) onto R(T ) ⊆ X, we say
that X contains an isomorphic copy of c0 (resp. `∞). Here, the Banach spaces c0 and `∞

are, of course, equipped with their uniform norms ‖·‖c0 and ‖·‖`∞ , respectively.

Lemma 2.3. Let X be a lcHs.

(i) If X is weakly Σ-complete, then X does not contain an isomorphic copy of c0.
(ii) Suppose that X is sequentially complete. Then X is weakly Σ-complete if and only if

X does not contain an isomorphic copy of c0.

Proof. Part (i) is clear as c0 is not weakly Σ-complete. For (ii), see [58, Theorem 4].

Every weakly sequentially complete lcHs is clearly weakly Σ-complete. For example,
if Y is a Banach space, then the lcHs X := Y ∗σ(Y ∗,Y ) is quasi-complete (for σ(Y ∗, Y )),
and hence X is weakly sequentially complete (as σ(X,X∗) = σ(Y ∗, Y )).

Throughout this section let (Ω,Σ) denote a measurable space, in other words, Σ is
a σ-algebra of subsets of a non-empty set Ω. By L0(Σ) we denote the vector space of
all C-valued, Σ-measurable functions on Ω. Given a lcHs X, let m : Σ → X be a vector
measure, that is, m is a σ-additive set function. For each x∗ ∈ X∗, the complex measure
〈m,x∗〉 : A 7→ 〈m(A), x∗〉 on Σ induces its total variation measure |〈m,x∗〉| : Σ→ [0,∞)

[54, §6.1]. A function f ∈ L0(Σ) is said to be m-integrable if it satisfies the following two
conditions:

(I-1)
∫

Ω
|f | d|〈m,x∗〉| <∞ for all x∗ ∈ X∗, and

(I-2) given A ∈ Σ, there is a unique element
∫
A
f dm ∈ X such that〈∫

A

f dm, x∗
〉

=

∫
A

f d〈m,x∗〉, x∗ ∈ X∗.
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In this case,
∫
A
f dm is called the integral of f over A ∈ Σ with respect to m. The

resulting X-valued set function

mf : A 7→
∫
A

f dm, A ∈ Σ, (2.3)

is called the indefinite integral of f with respect to m. The set function mf is again
σ-additive thanks to the Orlicz–Pettis Theorem; see Lemma 2.1(ii). The subset L1(m) ⊆
L0(Σ) of all m-integrable functions is a vector subspace. The vector subspace sim Σ ⊆
L0(Σ) of all C-valued, Σ-simple functions is contained in L1(m). This can be seen from
the fact that the characteristic function χA of each set A ∈ Σ is m-integrable with∫
B
χA dm = m(A ∩B) for B ∈ Σ. A useful fact, for each f ∈ L1(m) and A ∈ Σ, is that

fχA ∈ L1(m) and
∫
B

fχA dm =

∫
A∩B

f dm for B ∈ Σ. (2.4)

In particular, if f ∈ L1(m) is R-valued, then both f+ := max{f, 0} = fχA and f− :=

(−f)+ = fχB belong to L1(m), where A := {w ∈ Ω : f(w) ≥ 0} and B := {w ∈ Ω :

f(w) ≤ 0}. Hence, for such f , also |f | ∈ L1(m).
Fix p ∈ P(X) and define p(m) on L1(m) by

p(m)(f) := sup
x∗∈U◦p

∫
Ω

|f | d|〈m,x∗〉|, f ∈ L1(m). (2.5)

Then, for every f ∈ L1(m), we have p(m)(f) ≥ 0 and

sup
A∈Σ

p

(∫
A

f dm

)
≤ p(m)(f) ≤ 4 sup

A∈Σ
p

(∫
A

f dm

)
<∞. (2.6)

Indeed, [34, Theorem 2.2(1)] gives p(m)(f) = supx∗∈U◦p |〈mf , x
∗〉|(Ω), where the right

side equals ‖mf‖p(Ω) with ‖mf‖p(·) denoting the p-semivariation of the vector measure
mf : Σ → X [34, Definition 1.2]. This observation together with mf having bounded
range in X establishes (2.6) [34, p. 158]. Moreover, the definition of p(m) gives

p(m)(f) ≤ p(m)(g) whenever f, g ∈ L1(m) satisfy |f | ≤ |g|. (2.7)

Although p(m)(f) in (2.5) is defined in terms of |f |, for every f ∈ L1(m), we point out
that the inclusion

{|f | : f ∈ L1(m)} ⊆ L1(m) (2.8)

is not always valid. In other words, L1(m) may not be closed under the pointwise modulus
operation in L0(Σ); see Section 3 for relevant results and counterexamples. Of course, as
noted immediately after (2.4), if X is a real vector space, then (2.8) always holds. Now,
since πp ∈ L(X,Xp), the composition πp ◦m : Σ → Xp is a Banach-space-valued vector
measure. Moreover,

L1(m) ⊆ L1(πp ◦m) (2.9)

and ∫
A

f d(πp ◦m) = πp

(∫
A

f dm

)
, f ∈ L1(m), A ∈ Σ, (2.10)

both of which are immediate from the relevant definitions. From (2.2), it follows that

p(m)(f) = sup
ξ∗∈B[X∗p ]

∫
Ω

|f | d|〈πp ◦m, ξ∗〉|, f ∈ L1(m). (2.11)
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The lc-topology on L1(m) defined by the family of seminorms {p(m) : p ∈ P(X)}
is called the mean convergence topology and is the topology of uniform convergence of
indefinite integrals in view of (2.6).

Define the closed subspace

N (m) :=
⋂

p∈P(X)

p(m)−1({0}) (2.12)

of L1(m). By the associated lcHs with the mean convergence topology is meant the
quotient space L1(m) := L1(m)/N (m); we denote by τ(m) the corresponding quotient
lc-topology on L1(m). Even though (2.8) may fail to be satisfied in general, it is always
true that |f | ∈ N (m) ⊆ L1(m) whenever f ∈ N (m); see (2.5) and (2.6). Then (2.11)
implies that f ∈ L1(m) satisfies f ∈ N (m) if and only if |f | ∈ N (m). A useful fact is
that

N (m) =
⋂

x∗∈X∗
N (〈m,x∗〉), (2.13)

which is a consequence of X∗ =
⋃
p∈P(X) U

◦
p . Each function f in N (m) is said to be

m-null and its indefinite integral is the zero vector measure. A set A ∈ Σ is called m-null
if χA ∈ N (m). Observe that a set A ∈ Σ is m-null if and only if m(B) = 0 for all B ∈ Σ

with B ⊆ A. The family of all m-null sets is denoted by N0(m). A property is said to
hold m-almost everywhere, briefly m-a.e., if it holds outside an m-null set. A function
f ∈ L0(Σ) is called m-null if f is m-a.e. equal to 0, i.e., there is A ∈ Σ satisfying
both Ω \ A ∈ N0(m) and (fχA)(w) = 0 for all w ∈ Ω. In this case, f ∈ N (m) ⊆ L1(m).
Similarly, functions f, g ∈ L0(Σ) satisfy f ≥ g (m-a.e.) if and only if fχA ≥ gχA pointwise
for some A ∈ Σ with Ω \A ∈ N0(m).

The integration operator Im : L1(m)→ X is defined by

Im(f) :=

∫
Ω

f dm, f ∈ L1(m), (2.14)

and is linear and continuous by (2.6). Since Im(N (m)) = {0}, the operator Im induces a
unique X-valued, continuous linear map on L1(m), namely

f +N (m) 7→ Imf, f ∈ L1(m).

We say that a function f ∈ L0(Σ) is scalarly m-integrable (or weakly m-integrable)
if it satisfies (I-1). The vector subspace L1

w(m) ⊆ L0(Σ), consisting of all the scalarly
m-integrable functions on Ω, satisfies

N (m) ⊆ L1(m) ⊆ L1
w(m) =

⋂
p∈P(X)

L1
w(πp ◦m) ⊆ L0(Σ). (2.15)

The equality in (2.15) follows from X∗ =
⋃
p∈P(X) U

◦
p =

⋃
p∈P(X) π

∗
p(B[X∗p ]) (see (2.2))

while the rest of (2.15) is clear.
It seems that the concept of scalar m-integrability formally appeared for the first time

in [34, Definition 2.5] for a normed-space-valued measure. G. F. Stefansson [56] presents
a systematic study of L1

w(m) and related topics in the case of Banach-space-valued mea-
sures. For Fréchet-space-valued measuresm, the space L1

w(m) has been investigated in [8].
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Let us proceed to define a lc-topology on L1
w(m). Fix p ∈ P(X) and let

p(m)w(f) := sup
x∗∈U◦p

∫
Ω

|f | d|〈m,x∗〉|, f ∈ L1
w(m). (2.16)

It turns out that p(m)w is a seminorm extending p(m) from L1(m) to L1
w(m). To see

this, it suffices to show that p(m)w(f) < ∞ for each f ∈ L1
w(m). To this end, we first

show that

sup
x∗∈U◦p

∣∣∣∣ ∫
A

f d〈m,x∗〉
∣∣∣∣ <∞, A ∈ Σ. (2.17)

Indeed, via [34, p. 163], there is ξ∗∗A,p in the bidual Banach space X∗∗p of Xp such that∫
A
f d〈πp ◦m, ξ∗〉 = 〈ξ∗, ξ∗∗A,p〉 for all ξ∗ ∈ X∗p . This, together with (2.2), verifies (2.17)

as

sup
x∗∈U◦p

∣∣∣∣ ∫
A

f d〈m,x∗〉
∣∣∣∣ = sup

ξ∗∈B[X∗p ]

∣∣∣∣ ∫
A

f d〈πp ◦m, ξ∗〉
∣∣∣∣

= sup
ξ∗∈B[X∗p ]

∣∣〈ξ∗, ξ∗∗A,p〉∣∣ =
∥∥ξ∗∗A,p∥∥X∗∗p <∞.

Now, applying the Nikodým Boundedness Theorem [18, Theorem I.3.1] to the family of
indefinite integrals

{
〈m,x∗〉f : x∗ ∈ U◦p

}
(see (2.3) with 〈m,x∗〉 in place of m) gives

p(m)w(f) < ∞ because the total variation measure |〈m,x∗〉f | : Σ → [0,∞) satis-
fies |〈m,x∗〉f |(Ω) =

∫
Ω
|f | d|〈m,x∗〉|; see [54, Theorems 6.12 and 6.13]. The fact that

p(m)w(f) <∞ also follows from [56, Proposition 2 and p. 227], which gives

sup
ξ∗∈B[X∗p ]

∫
Ω

|f | d|〈πp ◦m, ξ∗〉| <∞.

The seminorm p(m)w : L1
w(m)→ [0,∞) also satisfies

p(m)w(f) ≤ p(m)w(g) for all f, g ∈ L1
w(m) with |f | ≤ |g|. (2.18)

We note here that L1
w(m) is always closed under the modulus in L0(Σ), in contrast with

L1(m), i.e., |f | ∈ L1
w(m) whenever f ∈ L1

w(m).

Remark 2.4. For a general lcHs-valued vector measure m : Σ → X, given f ∈ L1
w(m)

and A ∈ Σ, the linear functional

x∗∗A : x∗ 7→
∫
A

f d〈m,x∗〉, x∗ ∈ X∗,

is continuous with respect to the strong dual topology β(X∗, X) (see [27, p. 154]), i.e.,
x∗∗A belongs to the bidual X∗∗ := (X∗β(X∗,X))

∗. This is an extension of the case of a
normed-space-valued measure [34, p. 163] (see also [56, Corollary 3]), which we have
already used above. The case of a Fréchet-space-valued measure is also known [8, Propo-
sition 2.3]. To verify x∗∗A ∈ X∗∗, select {sn}∞n=1 ⊆ sim Σ such that |sn| ≤ |f | for n ∈ N and
limn→∞ sn = f pointwise on Ω. The subset W := {

∫
A
sn dm : n ∈ N} ⊆ X is bounded

because, given p ∈ P(X), we deduce from (2.6) (with f := sn) and (2.18) (with f := sn
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and g := f) that

sup
n∈N

p

(∫
A

sn dm

)
≤ sup
n∈N

p(m)(sn) = sup
n∈N

p(m)w(sn) ≤ p(m)w(f) <∞.

The polar set W ◦ := {x∗ ∈ X∗ : |〈x, x∗〉| ≤ 1 for all x ∈ W} is then a neighbourhood
of 0 in X∗β(X∗,X) and

|x∗∗A (x∗)| =
∣∣∣∣ ∫
A

f d〈m,x∗〉
∣∣∣∣ =

∣∣∣∣ lim
n→∞

∫
A

sn d〈m,x∗〉
∣∣∣∣

≤ sup
n∈N

∣∣∣∣〈 ∫
A

sn dm, x
∗
〉∣∣∣∣ ≤ 1, x∗ ∈W ◦,

via the Lebesgue Dominated Convergence Theorem for a scalar measure. Thus, x∗∗A is
β(X∗, X)-continuous on X∗.

The identity
N (m) =

⋂
p∈P(X)

(p(m)w)−1({0}) (2.19)

is a consequence of X∗ =
⋃
p∈P(X) U

◦
p and the fact that if f ∈ L1

w(m) satisfies p(m)w(f)

= 0 for all p ∈ P(X), then f ∈ N (m) ⊆ L1(m). Accordingly, the lcHs associated with
L1
w(m) is L1

w(m) := L1
w(m)/N (m). Let τ(m)w denote the resulting quotient lcH-topology

on L1
w(m). The quotient vector space L0(Σ)/N (m) is denoted by L0(m). It follows from

(2.15) and (2.19) that
L1(m) ⊆ L1

w(m) ⊆ L0(m) (2.20)

as vector subspaces of L0(m). Moreover, τ(m) on L1(m) is the relative topology from
τ(m)w on L1

w(m).
The sequential closure of a vector subspace F of a lcHs X is the smallest vector

subspace of X which contains F and is sequentially closed. A lcHs X can always be iden-
tified with a vector subspace of its quasi-completion X̂ [32, pp. 296–297]. The sequential
closure of X in X̂, denoted by X̃, is called the sequential completion of X. Since every
Cauchy sequence in X̃ is Cauchy and bounded in X̂, this sequence has a limit in X̂. But,
X̃ is sequentially closed in X̂ and so this limit belongs to X̃. Hence, X̃ is a sequentially
complete lcHs. Let

J : X → X̃

be the natural embedding of X into the sequentially complete lcHs X̃. Each p ∈ P(X)

admits a unique extension p̃ ∈ P(X̃). Conversely, every continuous seminorm on X̃ is
such an extension of its restriction to X. In other words

P(X̃) = {p̃ : p ∈ P(X)}. (2.21)

Moreover, X∗ = (X̃)∗ and U◦p = U◦p̃ ⊆ X∗. In particular, if X has its weak topology
σ(X,X∗), then also X̃ has its weak topology and so it is weakly sequentially complete.

Lemma 2.5. The following statements hold for a lcHs-valued vector measure m : Σ→ X:

(i) N (m) = N (J ◦m) as vector subspaces of L0(Σ).
(ii) L1

w(m) = L1
w(J ◦m) as lcHs, i.e., they are the same as vector subspaces of L0(m)

and the topologies τ(m)w and τ(J ◦m)w coincide.
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(iii) The inclusions
L1(m) ⊆ L1(J ◦m) ⊆ L1

w(m) (2.22)

as vector subspaces of L0(m) are valid. Moreover, the lcH-topology τ(m)w induces
τ(J ◦m) on L1(J ◦m) and τ(J ◦m) in turn induces τ(m) on L1(m).

(iv) If X is weakly Σ-complete, then L1(m) = L1
w(m) as lcHs. In particular, L1(m) =

L1(J ◦m) as lcHs.

Proof. (i) This is immediate from X∗ = (X̃)∗ and (2.13).
(ii) The identity L1

w(m) = L1
w(J ◦m) holds via X∗ = (X̃)∗. This and part (i) lead to

L1
w(m) = L1

w(J ◦m) as vector subspaces of L0(m). Moreover, given p ∈ P(X), we have
p(m)w = p̃(J ◦m)w because of U◦p = U◦p̃ in X∗ = (X̃)∗. So, (ii) holds.

(iii) From X∗ = (X̃)∗ we obtain the inclusion L1(m) ⊆ L1(J ◦m). This together with
part (i) ensures that L1(m) ⊆ L1(J ◦m) as vector subspaces of L0(m). That τ(J ◦m)

induces τ(m) on L1(m) follows from the fact that p(m) is the restriction of p̃(J ◦m) to
L1(m) via U◦p = U◦p̃ for each p ∈ P(X).

Note that L1(J ◦ m) ⊆ L1
w(J ◦ m) by (2.20), with J ◦ m in place of m, and that

τ(J ◦ m)w induces τ(J ◦ m) on L1(J ◦ m). Now apply part (ii) to complete the proof
of (iii).

(iv) See [31, Theorem II.5.1] together with Lemma 2.2.

In the notation of Lemma 2.5 above, if L1(m) and L1(J ◦ m) are equal as vector
spaces, then they are equal as lcHs, which follows immediately from part (iii) there.

Throughout this paper we regard sequences with entries from C as C-valued functions
on N, unless stated otherwise. Then coordinatewise multiplication of sequences can be
naturally expressed as pointwise multiplication of functions defined on N. Moreover, vec-
tor subspaces of CN such as c0, `p are then function spaces on N. Given a vector subspace
Y of CN and f ∈ CN we write

f · Y := {fg : g ∈ Y }.

Example 2.6. Let Ω := N and Σ := 2N. The identity function from N to itself is denoted
by ϕ, i.e., ϕ(n) = n for n ∈ N.

(i) Let X be the space (1/ϕ) sim Σ := {s/ϕ : s ∈ sim Σ} equipped with the norm
induced from c0. Define m : Σ → X by m(A) := χA/ϕ for A ∈ Σ. Since X̃ = c0, the
vector measure J ◦m : Σ → c0 is precisely the one used in [31, Example II.5.1]. Clearly
N (m) = {0}. It is routine to obtain the following identities:

L1(m) = sim Σ, L1(J ◦m) = ϕ · c0, L1
w(m) = ϕ · `∞.

Hence, L1(m) ( L1(J ◦ m) ( L1
w(m), that is, both of the inclusions in (2.22) may be

strict (simultaneously).
(ii) Let X be the Banach space c0. Then the X-valued vector measure m : A 7→ χA/ϕ

on Σ satisfies
L1(m) = L1(J ◦m) = ϕ · c0 and L1

w(m) = ϕ · `∞.

So, L1(m) = L1(J ◦ m) ( L1
w(m), that is, the first inclusion in (2.22) is an equality

whereas the second inclusion is strict.
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(iii) Let X := (1/ϕ) sim Σ, equipped with the norm induced from `2, and let m be as
above. Then X̃ = `2. Moreover,

L1(m) = sim Σ, L1(J ◦m) = L1
w(m) = ϕ · `2,

and hence L1(m) ( L1(J ◦ m) = L1
w(m), that is, the first inclusion in (2.22) is strict

whereas the second inclusion is an equality.

We shall, from now on, identify each f ∈ L0(Σ) with its quotient class f + N (m)

∈ L0(m) as in the case of scalar measure theory, except when such a distinction is
required for precise arguments. When we need to emphasize that we are dealing with
functions in L0(Σ), we may speak of individual functions. The function spaces L1(m)

and L1
w(m) will be identified with their quotient spaces L1(m) and L1

w(m), respectively.
We say that the vector measure m has the Lebesgue Convergence Property, briefly

LCP, if, whenever a Σ-measurable function f : Ω → C is the m-a.e. pointwise limit of a
sequence {fn}∞n=1 of m-integrable functions satisfying |fn| ≤ g (m-a.e.) for each n ∈ N
and some non-negative m-integrable function g, then it follows that f is m-integrable
and {fn}∞n=1 is τ(m)-convergent to f .

Lemma 2.7. Let m : Σ→ X be a lcHs-valued vector measure.

(i) The following conditions are equivalent for a Σ-measurable function f : Ω→ C:

(a) f is m-integrable.
(b) There exists a sequence {sn}∞n=1 ⊆ sim Σ converging m-a.e. pointwise to f such

that the sequence {
∫
A
sn dm}∞n=1 is convergent in X for each A ∈ Σ.

(c) The same condition as in (b) with L1(m) in place of sim Σ.

Moreover, if (b) or (c) holds, then limn→∞
∫
A
sn dm =

∫
A
f dm for every A ∈ Σ,

and {sn}∞n=1 is τ(m)-convergent to f in L1(m).
(ii) If L1(m) is sequentially complete, then L1(m) = L1(J ◦m).
(iii) If X is sequentially complete, then m has the LCP.
(iv) If X is sequentially complete, then every C-valued, bounded, Σ-measurable function

on Ω is m-integrable.

Proof. (i) This follows from [34, Theorem 2.4]. The current form occurs in [41, Proposi-
tion 1.2].

(ii) Let f ∈ L1(J ◦m). Observe first that the (J ◦m)-null and the m-null sets coincide
by Lemma 2.5(i). Select {sn}∞n=1 ⊆ sim Σ satisfying condition (b) in part (i). Then (i)
ensures that {sn}∞n=1 is τ(J ◦m)-convergent to f . On the other hand, since τ(m) is the
topology induced by τ(J ◦m) (see Lemma 2.5(iii)), the sequence {sn}∞n=1 is τ(m)-Cauchy,
and hence admits a τ(m)-limit in the sequentially complete lcHs L1(m). Then f must
equal this τ(m)-limit, so that f ∈ L1(m). Thus L1(J ◦m) ⊆ L1(m), and hence (ii) holds
via (2.22).

(iii) See [34, Theorem 2.2].
(iv) This follows from part (iii) because constant functions are m-integrable. An al-

ternative proof is in [31, Theorem II.3.1].
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When X is a Banach space, Lemma 2.7(i) ensures that our m-integrability is equiva-
lent to that in [3, Definition 2.5].

Parts (i) and (ii) of the following lemma occur in [41, Lemma 1.3] whereas part (iii)
is straightforward.

Lemma 2.8. Given are a lcHs-valued vector measure m : Σ→ X and a continuous linear
operator T from X into a lcHs Y .

(i) The set function T ◦m : Σ→ Y is a vector measure.
(ii) Every m-integrable function f is also (T ◦m)-integrable and∫

A

f d(T ◦m) = T

(∫
A

f dm

)
, A ∈ Σ.

(iii) The corresponding linear map [T ]m : L1(m) → L1(T ◦ m) which assigns to each
f ∈ L1(m) the same function f in L1(T ◦m) is continuous.

Remark 2.9. The precise definition of [T ]m in Lemma 2.8(iii) is

[T ]m(f +N (m)) := Tf +N (T ◦m), f ∈ L1(m).

This is well defined because (2.13), applied twice, gives

N (m) =
⋂

x∗∈X∗
N (〈m,x∗〉) ⊆

⋂
y∗∈Y ∗

N (〈m,T ∗y∗〉) =
⋂

y∗∈Y ∗
N (〈T ◦m, y∗〉) = N (T ◦m).

It is clear that [T ]m is injective if and only ifN (m) = N (T ◦m). This applies, in particular,
when Y := X̃ and T := J .

To discuss whether or not the lcHs L1(m) is complete for a lcHs-valued vector measure
m : Σ → X, we recall the concept of a closed vector measure. According to [31, p. 71],
this means that the subset Σ(m) := {χA +N (m) : A ∈ Σ} ⊆ L1(m) is τ(m)-complete.
We identify Σ(m) with {χA : A ∈ Σ}. Let [X]m denote the sequential closure in X of the
linear span of the range of m.

Lemma 2.10. Let m : Σ→ X be a lcHs-valued vector measure.

(i) The subset Σ(m) is always closed in the lcHs L1(m).
(ii) In the case when [X]m is sequentially complete, the lcHs L1(m) is complete if and

only if m is a closed measure.
(iii) The following conditions are equivalent:

(a) L1(m) is complete.
(b) L1(m) is quasi-complete
(c) m is a closed measure and L1(m) is sequentially complete.
(d) m is a closed measure and L1(m) = L1(J ◦m) as lcHs.

(iv) If X is metrizable, then m is a closed measure.
(v) If X is a Banach (resp. Fréchet) space, then so is L1(m).
(vi) If X is a normed (resp. metrizable) space, then L1

w(m) is a Banach (resp. Fréchet)
space.

Proof. (i) This fact has been used in the literature starting with [31, proof of The-
orem IV.4.1], but without proof. For the sake of completeness we now present its proof.
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Let {χA(λ)}λ be a net in Σ(m) having a τ(m)-limit f ∈ L1(m). Let B(f) := {w ∈ Ω :

|Re (f(w))| ≤ 1/2} ∈ Σ. Then |χA(λ) − χB(f)| ≤ 2|χA(λ) − f | pointwise on Ω, and hence
it follows from (2.7) that

p(m)(χA(λ) − χB(f)) ≤ 2p(m)(χA(λ) − f), p ∈ P(X).

Accordingly, the net {χA(λ)}λ is τ(m)-convergent to χB(f), which implies that f = χB(f)

(m-a.e.). So, Σ(m) is τ(m)-closed in L1(m).
(ii) See [51, Theorem 2].
(iii) The implication (a)⇒(b) is clear. Since Σ(m) is a bounded subset of L1(m), by

part (i) we have (b)⇒(c). For (c)⇒(d) apply Lemma 2.7(ii). Now assume (d). Since m
is closed if and only if J ◦m is closed, part (ii) ensures that L1(J ◦m) is complete, and
hence so is L1(m). So, we have established (d)⇒(a).

(iv) See [31, Theorem IV.7.1].
(v) This is a consequence of (ii) and (iv), in view of the definition of L1(m).
(vi) See [8, Theorem 2.5].

Regarding part (ii) above, an earlier result [31, Theorem IV.4.1] was extended in
[20, p. 139]; in [50, Proposition 1] and [51] it occurs in the current general form. Part (iii)
is essentially in [51]. A generalization of (iv) is that, if m is countably determined, then m
is a closed measure [42, Propositions 1.2 and 1.6]. Here m is called countably determined
if N0(m) =

⋂∞
n=1N0(〈m,x∗n〉) for some sequence {x∗n}∞n=1 in X∗. More generally, m is a

closed measure whenever m is absolutely continuous with respect to a localizable scalar
measure [31, Theorem IV.7.3].

Remark 2.11. Concerning Lemma 2.10(v), when X is a Banach space with norm ‖·‖X ,
then the corresponding seminorm (2.5), with p := ‖·‖X , is the norm

f 7→ ‖f‖L1(m) := sup
x∗∈B[X∗]

∫
Ω

|f | d|〈m,x∗〉|, (2.23)

for which L1(m) is a Banach space. According to Lemmas 2.5(iii) and 2.10(v)&(vi), the
right side of (2.23) is also the norm ‖·‖L1

w(m) of the Banach space L1
w(m), and L1(m) is

a closed subspace of L1
w(m).

We refer to [14], [18], [46] for the theory and applications of Banach-space-valued
vector measures.

3. Complex vector lattices

Our aim is to determine when L1(m), for a lcHs-valued vector measure m, is a complex
vector lattice with respect to the m-a.e. pointwise order.

Let E be a vector lattice (also called a Riesz space) with order relation ≤. In other
words, E is an ordered vector space over R such that both

x ∨ y := sup{x, y} and x ∧ y := inf{x, y} (3.1)

exist in E whenever x, y ∈ E [55, Definition II. 2.1], [61, Ch. 2, §4]. Given x ∈ E, we
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adopt the standard symbols:

x+ := x ∨ 0, x− := (−x) ∨ 0, |x| := x ∨ (−x),

which are called the positive part, negative part and modulus of x, respectively. The
positive cone {x ∈ E : x ≥ 0} of E is denoted by E+. A vector subspace of E is called a
vector sublattice if it is closed under the lattice operations (3.1). Each vector sublattice is,
of course, a vector lattice in the order induced by E. A vector subspace F of E is a vector
sublattice if and only if x+ ∈ F for each x ∈ F if and only if |x| ∈ F for each x ∈ F ,
which is a consequence of basic lattice identities [1, Theorem 1.1], [36, Theorem 11.8].
We say that a vector sublattice F is order dense in E if, given x ∈ E+ \ {0}, there is
y ∈ F+ \ {0} satisfying y ≤ x [1, Definition 1.9], [61, Definition 23.1]. A vector subspace
F of E is called an ideal if, whenever x ∈ E and y ∈ F satisfy |x| ≤ |y|, we have x ∈ F .
In this case we can define the quotient vector lattice E/F [36, pp. 100–102]. An ideal
F ⊆ E is called a σ-ideal if, given any countable subset H ⊆ F with supE H existing
in E, we necessarily have supE H ∈ F [36, Definition 17.1(iii)], [55, p. 61]. Via standard
vector lattice identities [36, Theorems 11.7 & 11.8], it is routine to verify that every ideal
F ⊆ E is necessarily a vector sublattice of E.

Let us formulate a known fact whose proof is straightforward.

Lemma 3.1. Let F be a vector sublattice of a vector lattice E. Given a subset H ⊆ F which
has a supremum supE H in E, if the element supE H belongs to F , then the supremum
supF H of the set H in F exists and is precisely the element supE H.

The complexification EC := E + iE of a vector lattice E is a complex vector space
[55, p. 134], [60, Section 91], [61, Ch. 6]. Each z ∈ EC corresponds to a unique pair
(x, y) ∈ E × E so that z = x + iy; in this case x (resp. y) is called the real (resp.
imaginary) part of z and is denoted by Re(z) (resp. Im(z)). The complex conjugate
z ∈ EC of such a z is defined as z := x− iy. We say that a real vector lattice E has the
complex modulus property if the supremum supθ∈[0,2π] |(cos θ)x+ (sin θ)y| exists in E for
each pair (x, y) ∈ E ×E. In this case, the modulus |z| of z = (x+ iy) ∈ EC is defined to
be the element

|z| = |x+ iy| := sup
θ∈[0,2π]

|(cos θ)x+ (sin θ)y| (3.2)

of E+. The modulus map z 7→ |z| from EC onto E+ satisfies the “standard” conditions
of a modulus. Namely, |z| = 0 if and only if z = 0, with |αz| = |α| · |z| for all α ∈ C and
z ∈ EC and |z1 + z2| ≤ |z1| + |z2| for all z1, z2 ∈ EC [55, (3), p. 134], [60, Section 91],
[61, Ch. 6]. Moreover, |z| = |z| for each z ∈ EC because, with x := Re(z) and y := Im(z),
we have

|z| = |x− iy| = sup
θ∈[0,2π]

|(cos θ)x+ (sin θ)(−y)|

= sup
θ∈[0,2π]

|(cos(−θ))x+ (sin(−θ))y| = |x+ iy| = |z|.

It is also clear from (3.2) that if z = x+ i0 with x ∈ E+, then |z| = x. Hence,
∣∣|z|∣∣ = |z|

for every z ∈ EC.
The complexification of a real vector lattice with the complex modulus property

is called a complex vector lattice. Our class of complex vector lattices properly includes
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those complex lattices (or complex Riesz spaces) given in [55, Definition II.11.1],
[60, p. 191] (see also [61, Ch. 6]); see Remark 3.3 below. An axiomatic way of defin-
ing complex vector lattices has been adopted in [39].

Let us discuss some sufficient conditions for E to have the complex modulus property.
According to [55, Definition II.1.8], E satisfies Axiom (OS) if, whenever {xn}∞n=1 is a
sequence in E+ for which there exist α ∈ `1 (with α(n) ∈ R for n ∈ N) and x ∈ E

satisfying xn ≤ α(n)x for each n ∈ N, then the supremum supN∈N
∑N
n=1 xn exists in E.

It is routine to check that an equivalent statement to Axiom (OS) occurs if it is formulated
with x ∈ E+ in place of x ∈ E. It turns out that E satisfies Axiom (OS) if and only
if E is Archimedean and uniformly complete; see Remark 3.3(iii) below. A seminorm
(resp. norm) q on E is called a lattice seminorm (resp. lattice norm) if q(x) ≤ q(y) for all
x, y ∈ E with |x| ≤ |y|. The terminology Riesz seminorm / Riesz norm is also common
[36], [60], [61]. A vector lattice equipped with a lattice norm for which it is complete is
by definition a Banach lattice.

Lemma 3.2. Let E be a vector lattice.

(i) Given x, y ∈ E, it follows that supθ∈[0,2π]

∣∣(cos θ)x+ (sin θ)y
∣∣ exists in E if and only

if supθ∈[0,2π]((cos θ)x+ (sin θ)y) exists in E, in which case

sup
θ∈[0,2π]

|(cos θ)x+ (sin θ)y| = sup
θ∈[0,2π]

((cos θ)x+ (sin θ)y). (3.3)

(ii) The vector lattice E has the complex modulus property if and only if

sup
θ∈[0,2π]

((cos θ)x+ (sin θ)y)

exists in E for all pairs x, y ∈ E, in which case

|x+ iy| = sup
θ∈[0,2π]

((cos θ)x+ (sin θ)y). (3.4)

(iii) If E satisfies Axiom (OS), then it has the complex modulus property.
(iv) Each of the following conditions guarantees that E satisfies Axiom (OS), and hence

that E has the complex modulus property:

(a) E is Dedekind σ-complete.
(b) E is sequentially complete with respect to a real lcH-topology generated by a

family of lattice seminorms.
(c) E is equipped with a lattice norm for which it is a Banach lattice.

(v) If E satisfies Axiom (OS), then so does every ideal F in E.
(vi) If E has the complex modulus property, then so does every ideal F in E. Moreover,

given x, y ∈ F , the modulus |x + iy| of x + iy in EC equals that of x + iy in the
complex vector lattice F + iF .

Proof. (i) This is a consequence, for each θ ∈ [0, 2π], of the equalities

|(cos θ)x+ (sin θ)y| = ((cos θ)x+ (sin θ)y) ∨ (−(cos θ)x− (sin θ)y)

= ((cos θ)x+ (sin θ)y) ∨
(
(cos(θ + π))x+ (sin(θ + π))y

)
.
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(ii) Apply part (i) after recalling the definition of the complex modulus property.
(iii) See [55, p. 134].
(iv) Condition (a) implies Axiom (OS) as noted in [55, p. 54]. Via [1, Theorem 5.6(iii)],

condition (b) also ensures Axiom (OS). Condition (c) is a special case of (b). In each case
the complex modulus property of E then follows from part (iii).

(v) The proof is a routine application of Lemma 3.1.
(vi) This is also an immediate consequence of Lemma 3.1.

Remark 3.3. (i) The complex vector lattices defined in [55, Definition II.11.1] are lim-
ited to those which are the complexification of some vector lattice satisfying Axiom (OS).
Such complex vector lattices are also complex vector lattices in our sense because Ax-
iom (OS) guarantees the complex modulus property; see Lemma 3.2(iii). The converse
is not valid (see the spaces (sim 2N)R and RN

ec in part (iv) together with Fact 1 below),
so that the class of complex vector lattices considered here is strictly larger than that
in [55].

(ii) The complex vector lattices defined in [60, p. 191] are those which are the com-
plexification of some Archimedean, uniformly complete vector lattice. It turns out that
the class of complex vector lattices in [60] is exactly the same as that in [55]. This is a
consequence of the following

Fact 1. A vector lattice satisfies Axiom (OS) if and only if it is Archimedean and uni-
formly complete.

The proof of Fact 1 is given in part (iii) below.
Every Banach lattice is Archimedean [60, p. 282], and uniformly complete [60, The-

orem 100.4(ii)]. The Banach lattice C([0, 1)) consisting of all R-valued, continuous func-
tions on [0, 1] and equipped with the uniform norm fails to be Dedekind σ-complete
[36, Example 23.3(ii)]. Hence, Dedekind σ-completeness is not equivalent to Axiom (OS).
On the other hand, every Dedekind σ-complete vector lattice is Archimedean [61, p. 62],
and uniformly complete [61, Theorem 12.8].

(iii) Let E be a vector lattice. Recall that E is Archimedean if infn∈N
1
nu = 0 for

every u ∈ E+ [36, p. 78]. Given u ∈ E+, a sequence {xn}∞n=1 in E is said to converge
u-uniformly to x ∈ E if for every ε > 0 there exists Nε ∈ N such that |x−xn| ≤ εu for all
n ≥ Nε. The definition of a u-uniform Cauchy sequence is similar [36, Definition 39.1].
Then E is called uniformly complete if, for every u ∈ E+, all u-uniform Cauchy sequences
are u-uniformly convergent in E [36, Definition 42.1].

To verify Fact 1, assume first that E satisfies Axiom (OS). Then E is Archimedean
[55, p. 54]. To obtain the uniform completeness of E, let u ∈ E+ \ {0} and {xn}∞n=1 be
an increasing, u-uniform Cauchy sequence in E. Set yn := xn − x1 for n ∈ N, in which
case {yn}∞n=1 ⊆ E+ is also increasing and u-uniformly Cauchy. Select a subsequence
{yn(k)}∞k=1 of {yn}∞n=1 such that

0 ≤ (yn(k+1) − yn(k)) = |yn(k+1) − yn(k)| ≤
1

2k
u, k ∈ N.

As {2−k}∞k=1 ∈ `1, Axiom (OS) ensures that y := supN∈N
∑N
k=1 yn(k) exists in E. Ac-

cording to [36, Lemma 39.2], the sequence {yn(k)}∞k=1 is u-uniformly convergent to y,
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from which it follows that {xn(k)}∞k=1 is u-uniformly convergent to y + x1. Therefore the
original sequence {xn}∞n=1, which is u-uniformly Cauchy, is also u-uniformly convergent
(to y + x1).

If {xn}∞n=1 is a decreasing, u-uniform Cauchy sequence in E, then it admits a
u-uniform limit because so does the increasing, u-uniform Cauchy sequence {−xn}∞n=1.
So, E is uniformly complete via [36, Theorem 39.4].

Conversely, assume that E is Archimedean and uniformly complete. To prove that E
satisfies Axiom (OS), let {xn}∞n=1 ⊆ E+, x ∈ E+ \ {0} and α ∈ `1 satisfy xn ≤ α(n)x

for n ∈ N. Define yn :=
∑n
j=1 xj for n ∈ N. Given ε > 0, choose Nε ∈ N such that∑n

j=k+1 α(j) < ε whenever n > k ≥ Nε. Then

|yn − yk| =
n∑

j=k+1

xj ≤
n∑

j=k+1

α(j)x ≤ εx, n > k ≥ Nε.

So, the increasing sequence {yn}∞n=1 is x-uniformly Cauchy, and hence has an x-uniform
limit y by the uniform completeness of E. Again by [36, Lemma 39.2], the supremum
supn∈N yn exists in E and equals y. Consequently, E satisfies Axiom (OS).

(iv) Concerning Fact 1 above, we now exhibit three vector lattices, two of which
are Archimedean but not uniformly complete with the third one being uniformly com-
plete but not Archimedean. To this end, consider the vector lattice RN consisting of all
R-valued functions on N equipped with the pointwise order. Then RN and all of its vec-
tor sublattices are Archimedean [61, Theorem 9.1(iii) and Example 9.2(iii)]. Since RN is
Dedekind complete, it follows from [36, p. 276] that RN is also uniformly complete. Set
en := χ{n} ∈ RN for each n ∈ N.

For our first example, the claim is that the vector sublattice (sim 2N)R := RN ∩ sim 2N

of RN is Archimedean but not uniformly complete. That it is Archimedean has already
been noted. To see that (sim 2N)R is not uniformly complete, consider the sequence
{fk}∞k=1 in (sim 2N)R given by fk :=

∑k
n=1 n

−1en for k ∈ N. Given ε > 0, choose an
Nε ∈ N for which 1/Nε < ε. Then it follows that

|fj − fk| =
j∑

n=k+1

n−1en ≤ N−1
ε

j∑
n=k+1

en ≤ εu

whenever j, k ∈ N satisfy j > k ≥ Nε, where u := χN ∈ (sim 2N)R. So, the sequence
{fk}∞k=1 is u-uniformly Cauchy in (sim 2N)R, but it does not have a u-uniform limit in
(sim 2N)R because its u-uniform limit in the ambient vector lattice RN is the element∑∞
n=1 n

−1en which does not belong to (sim 2N)R. Thus, (sim 2N)R fails to be uniformly
complete.

We point out that (sim 2N)R failing to be uniformly complete can also be deduced
from Fact 1 above. To see this, let gn := 2−nen ∈ (sim 2N)R for each n ∈ N, and define
α ∈ `1 via α(k) := 2−k for k ∈ N. Clearly 0 ≤ gn ≤ α(n)χN for n ∈ N. However, the
supremum “supN∈N

∑N
n=1 gn” does not exist in (sim 2N)R. So, (sim 2N)R fails to satisfy

Axiom (OS), and hence by Fact 1, cannot be uniformly complete (as we already know
that (sim 2N)R is Archimedean).
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The second example, exhibiting the same features, is the vector sublattice RN
ec

of RN consisting of all f ∈ RN for which there exists k ∈ N (depending on f) such
that f(n) = f(k) for all n ≥ k, i.e., f is eventually constant. Since RN is Archimedean,
it follows that so is RN

ec. The functions {gn}∞n=1 of the previous paragraph also belong
to RN

ec and the same argument applies to show that RN
ec fails Axiom (OS), and hence

RN
ec is not uniformly complete. Observe that if f, g ∈ RN

ec, then also
√
f2 + g2 ∈ RN

ec.
Moreover,

√
f2 + g2 = supθ∈[0,2π]((cos θ)f+(sin θ)g) in the order of the vector lattice RN

ec

[61, Example 13.2]. Hence, RN
ec has the complex modulus property.

The third example alluded to is immediate from the following result.

Fact 2. Let F ⊆ RN be any proper ideal containing {en : n ∈ N}. Then the quotient
vector lattice RN/F is uniformly complete but not Archimedean.

To verify Fact 2, first recall that the quotient space RN/F is indeed a vector lattice
[36, Theorem 18.9]. Moreover, according to [36, Corollary 59.4] the vector lattice RN/F is
uniformly complete. To show that RN/F is not Archimedean, we adapt the argument in
[36, Example 60.1(i)], which corresponds to the special case of F := (`∞)R. Since F 6= RN,
we may choose an element f ∈ (RN)+ \ F . Now define g ∈ (RN)+ by g(n) := nf(n) for
n ∈ N. With [f ] and [g] denoting the quotient classes in RN/F containing f and g,
respectively, we shall verify that

[f ] ≤ k−1[g], k ∈ N. (3.5)

If k = 1, then f ≤ g in RN gives [f ] ≤ [g]. For each k ≥ 2, the inequality (3.5) still
holds because

1

k
g − f =

1

k

( k−1∑
n=1

g(n)en +

∞∑
n=k

g(n)en

)
−
( k−1∑
n=1

f(n)en +

∞∑
n=k

f(n)en

)
=

k−1∑
n=1

(
n

k
− 1

)
f(n)en +

∞∑
n=k

(
n

k
− 1

)
f(n)en

≥
k−1∑
n=1

(
n

k
− 1

)
f(n)en,

with
∑k−1
n=1(n/k − 1)f(n)en ∈ F by the assumptions on F . This establishes (3.5). Since

[f ] 6= [0] in RN/F , it follows from the discussion on pp. 78–79 of [36] that RN/F is not
Archimedean.

(v) Let E be a vector lattice. A sequence {xn}∞n=1 ⊆ E is said to be relatively uni-
formly convergent to x ∈ E if {xn}∞n=1 is u-uniformly convergent to x for some u ∈ E+

[36, Theorem 16.2]. A subset W of E is called uniformly closed if, whenever a sequence
{xn}∞n=1 in W is relatively uniformly convergent to some x in E, then necessarily x ∈W
[36, p. 84].

Recall that a Fréchet lattice is a vector lattice with a complete lcH-topology which is
generated by countably many lattice seminorms. For the particular Fréchet lattice RN of
part (iv), equipped with the lcH-topology generated by the sequence of lattice seminorms
{pn}∞n=1 with pn(x) := max1≤k≤n |x(k)| for x ∈ RN, it is clear in Fact 2 above that the
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conditions on the ideal F ⊆ RN imply that F is not topologically closed in RN. The
following result shows that this is no coincidence.

Fact 3. For an ideal F in a Fréchet lattice E the following assertions are equiva-
lent :

(i) The quotient vector lattice E/F is Archimedean.
(ii) F is uniformly closed in E.
(iii) F is topologically closed in E.

Proof. The equivalence (i)⇔(ii) holds for a general vector lattice and its quotient vec-
tor lattices [36, Theorem 60.2]. The equivalence (ii)⇔(iii) is a consequence of Proposi-
tion 4.2.4 in [48], once we observe that the definition of relatively uniformly convergent
sequences in [48, Definition 1.5.7] is equivalent to that given above.

Since a Fréchet lattice E is uniformly complete (by Lemma 3.2(iv)(b) and Fact 1), its
quotient vector lattice E/F with respect to an ideal F in E is also uniformly complete
[36, Corollary 59.4]. Then the equivalence (i)⇔(iii) in Fact 3, together with Fact 1, shows
that an ideal F of a Fréchet lattice E is topologically closed if and only if E/F satisfies
Axiom (OS).

(vi) Let us point out, for the equivalence (ii)⇔(iii) in Fact 3, that the topological
completeness of E is crucial. There exist examples which satisfy condition (ii) but not
condition (iii); see, for instance, [48, Example 4.2.5] and [60, Exercise 100.13].

The implication (iii)⇒(ii) in Fact 3 holds even if E is merely a metrizable locally
convex vector lattice (i.e., a vector lattice with a lcH-topology generated by countably
many lattice seminorms). In fact, (iii) implies that the quotient vector lattice E/F is
also a lcHs [1, Theorem 4.7(iii)], and hence it is Arichmedean [1, Theorem 5.6(i)], i.e.,
(i) holds. Moreover, (ii) also holds via the general equivalence (i)⇔(ii); see the proof of
Fact 3.

According to [55, Definition II.11.3], a complex Banach lattice is defined as the com-
plexification EC of a Banach lattice E with a lattice norm ‖·‖E , in which case EC is
complete with respect to the norm z 7→

∥∥|z|∥∥
E

for z ∈ EC. It is important to note
that EC is a complex vector lattice because of the complex modulus property of E; see
Lemma 3.2(iv)(c).

The complex sequence spaces c0 and `∞ are complex Banach lattices equipped with
their respective uniform norm. Indeed, c0 (resp. `∞) is realized as the complexification
of the Banach lattice

(c0)R := c0 ∩ RN (resp. (`∞)R := `∞ ∩ RN)

equipped with the uniform norm (which is a lattice norm).
Let us return to a general complex vector lattice EC = E + iE, i.e., EC is the com-

plexification of a vector lattice E with the complex modulus property. Relevant is the
question: Given a complex vector subspace G ⊆ EC, when is G a complex vector lattice?
We will say that G is closed under complex conjugation if, given z ∈ G, its complex
conjugate z in EC belongs to G. Similarly, G is said to be closed under forming the mod-
ulus if, given z ∈ G, its modulus |z| in EC (recall that |z| ∈ E+) belongs to G. Finally,
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G is called solid if z ∈ EC, w ∈ G and |z| ≤ |w| imply that z ∈ G, in which case G is
necessarily closed under complex conjugation (since |z| = |z| for z ∈ EC) and forming the
modulus. To verify the latter claim, given w ∈ G let z := |w| (the modulus of w in EC).
Then z ∈ EC satisfies |z| =

∣∣|w|∣∣ = |w| ≤ |w|. Since G is solid, it follows that z ∈ G, i.e.,
|w| ∈ G.

Returning to a general complex vector subspace G ⊆ EC, define

GR := G ∩ E.

The inclusion
GR + iGR ⊆ G (3.6)

always holds because G is a vector subspace of EC. Assume further that GR is a vector
sublattice of E. Then we say that G is a complex vector lattice in the order induced by EC
if GR has the complex modulus property and if G is the complexification of GR, i.e.,

G = GR + iGR. (3.7)

Lemma 3.4. Let G be a complex vector subspace of a complex vector lattice EC = E+ iE

such that GR is a vector sublattice of E.

(i) The complex vector subspace G is closed under complex conjugation if and only if
(3.7) holds.

(ii) Assume that G is closed under complex conjugation and forming the modulus. Then
G is a complex vector lattice in the order induced by EC. Moreover, given z ∈ G, the
modulus of z in G equals that of z in EC.

(iii) If G is solid, then the same conclusion as in part (ii) holds.
(iv) Assume that GR is order dense in E. Then G is a complex vector lattice in the order

induced by EC if and only if G is closed under complex conjugation and forming the
modulus.

Proof. (i) Suppose that G is closed under complex conjugation. Let z ∈ G, in which case
z = x + iy with x, y ∈ E. By assumption also z = x − iy ∈ G. Since G is a vector
space, the identities x = 1

2 (z + z) and y = 1
2i (z − z) show that both x, y are in G, i.e.,

x, y ∈ GR := G ∩ E. This, together with (3.6), imply (3.7).
Clearly (3.7) implies that G is closed under complex conjugation.
(ii) Let x, y ∈ GR, in which case x+ iy ∈ G via (3.6), and define

H := {(cos θ)x+ (sin θ)y : θ ∈ [0, 2π]} ⊆ GR ⊆ E. (3.8)

Then |x+ iy| := supE H ∈ E belongs to GR (by the assumptions on G). Lemma 3.1 with
F := GR tells us that supE H equals the supremum of H in GR. Accordingly, GR has
the complex modulus property. This, together with part (i), ensures that G is a complex
vector lattice in the order induced by EC.

The second conclusion has already been established.
(iii) This holds because the assumptions of part (ii) hold when G is solid; see the

discussion prior to Lemma 3.4.
(iv) Suppose that G is a complex vector lattice in the order induced by EC. That G

is closed under complex conjugation is clear from (3.7); see part (i). Next, let x, y ∈ GR.
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Then x+ iy ∈ G; see (3.6). The set H ⊆ GR given in (3.8) admits a supremum supGR
H

in GR (as GR has the complex modulus property). But this supremum supGR
H of H

in GR equals its supremum supE H in E because of the order denseness of GR in E

[1, Theorem 1.10]. So, |x + iy| := supE H = supGR
H ∈ GR, and therefore G is closed

under forming the modulus.
The converse implication is precisely part (ii). Note that here the order denseness of

GR in E is not required.

We proceed to apply the general results just established to various function spaces
associated with a vector measure. So, let X be a lcHs and m be an X-valued vector
measure defined on a measurable space (Ω,Σ). To see that the vector space L0(Σ) (see
Section 2) is a complex vector lattice, observe first that the real vector space

L0(Σ)R := L0(Σ) ∩ RΩ

is a vector sublattice of the vector lattice RΩ in the pointwise order. It is clear that L0(Σ)

equals the complexification of L0(Σ)R, namely

L0(Σ) = L0(Σ)R + iL0(Σ)R. (3.9)

A useful fact is that a subsetH ⊆ RΩ admits a supremum in RΩ if and only if supf∈H f(w)

<∞ for each w ∈ Ω, in which case supH ∈ RΩ is the function w 7→ supf∈H f(w) on Ω.
In other words, the supremum in RΩ is the pointwise supremum. This also applies to
L0(Σ)R when we limit ourselves to the suprema of its countable subsets. A consequence
is that L0(Σ)R is Dedekind σ-complete, so that it satisfies Axiom (OS), and hence has
the complex modulus property; see Lemma 3.2(ii), (iii) and the proof. So, L0(Σ) is a
complex vector lattice via (3.9). Moreover, given f, g ∈ L0(Σ)R, the modulus |f + ig| of
f + ig in the complex vector lattice L0(Σ) equals the pointwise modulus, i.e.,

|f + ig| := sup
θ∈[0,2π]

((cos θ)f + (sin θ)g) =
√
f2 + g2. (3.10)

This is an application of Lemma 3.1 with E := RΩ and F := L0(Σ)R. Alternatively,
Lemma 3.4(ii) with E := RΩ and G := L0(Σ) gives both the fact that L0(Σ) is a complex
vector lattice and that (3.10) holds.

Recall from Section 2 the vector subspace N (m) ⊆ L1(m) ⊆ L0(Σ) of all m-null
functions. Define

N (m)R := N (m) ∩ L0(Σ)R

so that
N (m) = N (m)R + iN (m)R. (3.11)

Clearly, N (m)R is an ideal in L0(Σ)R; see (2.11) and (2.12). Moreover, it is also a σ-
ideal. To see this let {fn}n∈N be a countable subset of N (m)R such that ϕ := supn∈N fn
exists in L0(Σ)R. Then the increasing sequence gn := f1 ∨ · · · ∨ fn ∈ N (m)R for n ∈ N,
satisfies fn ≤ gn ≤ ϕ, for n ∈ N. The Dedekind σ-completeness of L0(Σ)R ensures
that ψ := supn∈N gn exists in L0(Σ)R. It is routine to verify that ϕ = ψ. Moreover,
gn ∈ N (m)R for each n ∈ N and gn ↑ ψ pointwise on Ω. The identity (2.13) and the
Monotone Convergence Theorem for each scalar measure |〈m,x∗〉|, for x∗ ∈ X∗, imply
that ψ ∈ N (m), i.e., ϕ ∈ N (m)R. Accordingly, the quotient vector lattice L0(Σ)R/N (m)R
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is Dedekind σ-complete. For this fact, see [24, proof of Proposition 62G and Notes and
Comments on p. 159]. So, L0(Σ)R/N (m)R satisfies Axiom (OS), or equivalently, it is
Archimedean and uniformly complete via Fact 1 of Remark 3.3. This enables us to apply
[60, pp. 198–199] to establish that the quotient vector space L0(m) = L0(Σ)/N (m) is a
complex vector lattice as follows.

Let Π : L0(Σ) → L0(Σ)/N (m) be the quotient map and write [h] := Π(h) for h ∈
L0(Σ). Then, with the natural identification Π(L0(Σ)R) = L0(Σ)R/N (m)R, we have

L0(Σ)/N (m) = (L0(Σ)R/N (m)R) + i(L0(Σ)R/N (m)R) (3.12)

and hence
[f + ig] = [f ] + i[g], f, g ∈ L0(Σ)R, (3.13)

which can naturally be seen from

(f + ig) +N (m) = (f + ig) + (N (m)R + iN (m)R) = (f +N (m)R) + i(g +N (m)R).

So, L0(Σ)/N (m) is a complex vector lattice. In view of (3.12) we write

L0(m)R := L0(Σ)R/N (m)R,

so that (3.12) can be rewritten simply as

L0(m) = L0(m)R + iL0(m)R.

Regarding the modulus, for h ∈ L0(Σ) with f := Re(h) and g := Im(h), we have the
formula

[|h|] = sup
θ∈[0,2π]

((cos θ)[f ] + sin θ[g]) = |[h]|. (3.14)

Applying both of the above facts, derived from [60] and Lemma 3.4, we shall deter-
mine in Proposition 3.7 below whether or not L1(m) := L1(m)/N (m) and L1

w(m) :=

L1
w(m)/N (m) are complex vector lattices. To this end, let F ⊆ L0(Σ) be any vec-

tor subspace satisfying the two conditions that F contains N (m) and that its subset
FR := F ∩ L0(Σ)R is a vector sublattice of L0(Σ)R. First, observe that the quotient vec-
tor space F/N (m) equals Π(F), and hence is a vector subspace of L0(m) = L0(Σ)/N (m).
On the other hand, N (m)R being an ideal of FR also allows us to consider the quotient
vector lattice FR/N (m)R, which is also a vector sublattice of L0(Σ)R/N (m)R. In partic-
ular, the order in the quotient vector lattice FR/N (m)R coincides with that induced by
L0(Σ)R/N (m)R. To understand Lemma 3.5 below, recall (3.12) and observe that

(FR/N (m)R) + i(FR/N (m)R) ⊆ F/N (m) ⊆ L0(Σ)/N (m) = L0(m). (3.15)

Lemma 3.5. Suppose that m : Σ→ X is a non-zero, lcHs-valued vector measure defined
on a measurable space (Ω,Σ). Let F ⊆ L0(Σ) be any vector subspace containing N (m)

and such that FR := F ∩ L0(Σ)R is a vector sublattice of L0(Σ)R.

(i) The identity F = FR + iFR holds in L0(Σ) if and only if the identity F/N (m) =

(FR/N (m)R) + i(FR/N (m)R) holds in L0(m).
(ii) The vector subspace F ⊆ L0(Σ) is closed under forming the modulus if and only if

the vector subspace F/N (m) ⊆ L0(m) is closed under forming the modulus.
(iii) The vector subspace F ⊆ L0(Σ) is closed under complex conjugation and forming

the modulus if and only if the same holds for the vector subspace F/N (m) ⊆ L0(m).
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(iv) The vector subspace F ⊆ L0(Σ) is solid if and only if the vector subspace F/N (m) ⊆
L0(m) is solid.

(v) If F ⊇ sim Σ, then FR and FR/N (m)R are order dense in L0(Σ) and L0(m), respec-
tively.

Proof. (i) Once we observe, given h ∈ F ⊆ L0(Σ) with f := Re(h) and g := Im(h), that
[h ] = [ f ] + i[ g ] in L0(m) by (3.13), part (i) follows routinely.

(ii) By (3.14), for each h ∈ F , we have

|[h]| = [|h|] in L0(m), (3.16)

which verifies the “only if” part. Conversely, assume that F/N (m) is closed under forming
the modulus. Then, given h ∈ F , it follows from (3.16) that [|h|] = |[h]| ∈ F/N (m). So,
|h| ∈ F because F ⊇ N (m), which establishes the “if” part.

(iii) This follows from parts (i) and (ii).
(iv) Suppose that F is solid. Let h1 ∈ L0(Σ) and h2 ∈ F satisfy |[h1]| ≤ |[h2]|

in L0(m). Then (3.16) yields [ |h1| ] ≤ [ |h2| ] in L0(m). Hence, there is A ∈ Σ, with
Ω \ A ∈ N0(m), such that |h1|χA ≤ |h2|χA ≤ |h2|. This implies that h1χA ∈ F because
h2 ∈ F with F solid. Thus

h1 = h1χA + h1χΩ\A ∈ F +N (m) ⊆ F ,

which yields [h1] ∈ F/N (m). So, F/N (m) is solid.
Suppose now that F/N (m) is solid. Let h1 ∈ L0(Σ) and h2 ∈ F satisfy |h1| ≤ |h2|.

Then | [h1 ] | = [ |h1| ] ≤ [ |h2| ] = | [h2 ] | by (3.16). This and the solidness of F/N (m)

yield [h1] ∈ F/N (m), and hence h1 ∈ F because F ⊇ N (m).
(v) Clearly (sim Σ)R := (sim Σ)∩L0(Σ)R is order dense in L0(Σ)R, and hence so is FR

as it contains (sim Σ)R. To prove the order denseness of FR/N (m)R in L0(Σ)R/N (m)R,
let 0 ≤ f ∈ L0(Σ)R \ N (m)R, so that 0 ≤ [ f ] ∈ (L0(Σ)R/N (m)R) \ {0}. Choose 0 ≤ s ∈
(sim Σ)R \ N (m)R satisfying s ≤ f . Then 0 ≤ [ s ] ≤ [ f ] with [ s ] 6= 0. This implies the
order denseness of FR/N (m)R in L0(Σ)R/N (m)R because [ s ] belongs to FR/N (m)R.

Definition 3.6. Under the same assumptions as in Lemma 3.5, we say that the quotient
vector space F/N (m) ⊆ L0(m) is a complex vector lattice in the m-a.e. pointwise order
if it is a complex vector lattice in the order induced by L0(m).

Proposition 3.7. Let m : Σ→ X be a non-zero, lcHs-valued vector measure defined on
a measurable space (Ω,Σ).

(i) Both vector subspaces L1(m)R := L1(m) ∩ L0(Σ)R and L1
w(m)R := L1

w(m) ∩ L0(Σ)R
of the vector lattice L0(Σ)R are vector sublattices. Furthermore, the quotient vec-
tor lattices L1(m)R := L1(m)R/N (m)R and L1

w(m)R := L1
w(m)R/N (m)R are vector

sublattices of the quotient vector lattice L0(m)R := L0(Σ)R/N (m)R.
(ii) The following conditions are equivalent:

(a) The vector subspace L1(m) ⊆ L0(Σ) is closed under complex conjugation and
forming the modulus.

(b) L1(m) is a complex vector lattice in the order induced by L0(Σ).
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(c) The vector subspace L1(m) ⊆ L0(m) is closed under complex conjugation and
forming the modulus.

(d) L1(m) is a complex vector lattice in the m-a.e. pointwise order.

(iii) The vector subspace L1
w(m) ⊆ L0(Σ) is solid, and hence is a complex vector lattice

in the order induced by L0(Σ).
(iv) The vector subspace L1

w(m) := L1
w(m)/N (m) ⊆ L0(m) is solid, and hence is a

complex vector lattice in the m-a.e. pointwise order.

Proof. (i) Let f ∈ L1(m)R and set A := f−1([0,∞)). Then fχA is m-integrable
(see (2.4)), and hence f+ ∈ L1(m)R, from which it routinely follows that L1(m)R is
a vector sublattice of L0(Σ)R.

Next, L1
w(m) is solid in L0(Σ) by its definition, and hence L1

w(m)R is an ideal of
L0(Σ)R. In particular, L1

w(m)R is a vector sublattice.
The statement regarding the quotient vector lattices L1(m)R and L1

w(m)R has already
been verified, immediately prior to Lemma 3.5, with F := L1(m)R or F := L1

w(m)R.
(ii) From Lemma 3.5(v) with F := L1(m) ⊇ sim Σ, we deduce that L1(m) and

L1(m)/N (m) are order dense in L0(Σ) and L0(m), respectively. So, the equivalences
(a)⇔(b) and (c)⇔(d) follow from Lemma 3.4(iv) with G := L1(m), EC := L0(Σ) and
with G := L1(m), EC := L0(m), respectively. Next, the equivalence (a)⇔(c) is a special
case of Lemma 3.5(iii) with F := L1(m).

(iii) and (iv). Since L1
w(m) is solid in L0(Σ), so is L1

w(m) in L0(m) via Lemma 3.5(iv)
with F := L1

w(m). Now apply Lemma 3.4(iii) with G := L1
w(m) and with G := L1

w(m)

to establish parts (iii) and (iv), respectively.

Assume that any one of (a)–(d) in Proposition 3.7(ii) above holds. Given h ∈ L1(m),
its modulus in the complex vector lattice L1(m) equals its pointwise modulus. To see
this, apply both Lemma 3.4(ii) (with G := L1(m) and EC := L0(Σ)) and (3.10) (with
f := Re(h) and g := Im(h)). Similarly, the modulus of [h ] ∈ L1(m) equals [ |h| ]. The
corresponding results for L1

w(m) and L1
w(m) are also valid.

In view of this observation, Lemma 3.5 and Proposition 3.7, we may, for a sim-
pler presentation, identify the quotient spaces L1(m) = L1(m)/N (m) and L1

w(m) =

L1
w(m)/N (m) with L1(m) and L1

w(m), respectively, unless stated otherwise. In the same
spirit, we identify L1(m)R = L1(m)R/N (m)R and L1

w(m)R = L1
w(m)R/N (m)R with

L1(m)R and L1
w(m)R, respectively.

Before discussing sufficient conditions for L1(m) to be a complex vector lattice in the
m-a.e. pointwise order, observe that the following containments always hold (see (3.15)
with F := L1(m)):

L1(m)R + iL1(m)R ⊆ L1(m) ⊆ L0(m).

Remark 3.8. Let m : Σ→ X be as in the statement of Proposition 3.7.
(i) Each of the following conditions is sufficient for L1(m) to be a complex vector

lattice in the m-a.e. pointwise order:

(α) L1(m) is solid in L0(m).
(β) The sequential closure [X]m of the linear span of m(Σ) in X is sequentially complete.
(γ) L1(m) is τ(m)-sequentially complete.
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Indeed, condition (α) is sufficient via Lemma 3.4(iii) with G := L1(m) and EC := L0(m).
Conditions (β) and (γ) are also sufficient because of the implications (β)⇒(α) and
(γ)⇒(α) established in Propositions 2.7 and 2.8 of [41], respectively.

We point out that (α) implies the Dedekind σ-completeness of L1(m)R because
L1(m)R is then an ideal of the Dedekind σ-complete vector lattice L0(m)R. In partic-
ular, L1(m)R satisfies Axiom (OS).

Conditions equivalent to (α) can be found in [41, Proposition 2.4].
We point out that conditions (β) and (γ) are unrelated, that is, (β) does not always

imply (γ) (see Example 6.5(i)) and (γ) does not imply (β) in general (see Example 6.5(iv)).
(ii) Suppose that X is a Banach space. Then L1(m) is a complex Banach lattice. In-

deed, first observe that L1(m) is a complex vector lattice in them-a.e. pointwise order via
(β) in part (i). Next, L1(m) is a Banach space in the norm ‖·‖L1(m) (see Lemma 2.10(v)
and (2.23)). Further, the restriction of ‖·‖L1(m) to L1(m)R is a lattice norm for which
L1(m)R is a Banach lattice. So, L1(m) is a complex Banach lattice. Similarly, L1

w(m) is
also a complex Banach lattice. Indeed, by Proposition 3.7(iv) we see that L1

w(m) is a com-
plex vector lattice and via Remark 2.11 that it is a Banach space for the norm ‖·‖L1

w(m).
Further, the restriction of ‖·‖L1

w(m) to L1
w(m)R is a lattice norm for which L1

w(m)R is a
Banach lattice. So, L1

w(m) is a complex Banach lattice.
It is worth noting that ‖·‖L1(m) is order continuous in the sense that, if {fλ}λ is

any downwards directed net in L1(m)R with infλ fλ = 0, then limλ ‖fλ‖L1(m) = 0,
[46, Theorem 3.7(iii)].

Example 3.9. Let µ be Lebesgue measure on the Borel σ-algebra Σ := B(Ω) of the
interval Ω := (0, 1]. Suppose that X ⊆ L1(µ) is a vector subspace satisfying χΩ ∈ X and
fs ∈ X for all f ∈ X and all s ∈ sim Σ. In particular, sim Σ ⊆ X. Equip X with the
norm induced by L1(µ). Then the X-valued set function m : A 7→ χA on Σ is a vector
measure with L1(m) = X as lcHs or, more precisely, as normed spaces [41, Corollary 3.2].
The identity function on Ω is denoted by x.

(i) Let X := sim Σ. Then L1(m) = sim Σ is closed under complex conjugation and
forming the modulus, so that L1(m) is a complex vector lattice in the m-a.e. pointwise
order (see Proposition 3.7(ii)). However, L1(m)R does not satisfy Axiom (OS). To see
this, let A(n) := (1/(n+ 1), 1/n] and fn := (1/2n)χA(n), so that 0 ≤ fn ≤ (1/2n)χΩ for
n ∈ N, with (1/2n)∞n=1 ∈ `1. Then the supremum of {

∑N
n=1 fn}∞N=1 does not exist in

L1(m)R = (sim Σ)R.
It is clear that m fails to have the LCP.
(ii) Let X := L∞(µ). Then L1(m) = L∞(µ) is solid in L0(m). So, L1(m) is a complex

vector lattice in the m-a.e. pointwise order via condition (α) in Remark 3.8(i). However,
conditions (β) and (γ) there do not hold [41, Example 3.5].

As L1(m) is solid, the vector measure m has the LCP [41, Proposition 2.4].
(iii) LetX := L∞(µ)+ 1√

x

sim Σ. Then L1(m) =X is clearly closed under complex con-
jugation. The claim is that L1(m) = X is also closed under forming the modulus, which
corrects the corresponding false assertion in [41, Example 3.4(i)]. To prove this, fix f ∈
L∞(µ) and s∈ sim Σ and define A := s−1({0}) and B := {w ∈ Ω : f(w) + s(w)/

√
w = 0}.



Lattice copies of c0 and `∞ 31

Clearly, ∣∣∣∣f +
1√
x

s

∣∣∣∣χA∪B = fχA\B ∈ L∞(µ) ⊆ X.

To verify that
∣∣f + 1√

x

s
∣∣ ∈ X, observe that on (A ∪B)c we have∣∣∣∣f +

1√
x

s

∣∣∣∣ =

∣∣f + 1√
x

s
∣∣2 − ( 1√

x

|s|
)2∣∣f + 1√

x

s
∣∣+ 1√

x

|s|
+

1√
x

|s| =
√
x |f |2 + (fs+ fs)

|
√
x f + s|+ |s|

+
1√
x

|s|.

But, |s| ∈ sim Σ and so 1√
x

|s|χ(A∪B)c ∈ X. So, it suffices to show that
√
x |f |2 + (fs+ fs)

|
√
x f + s|+ |s|

χ(A∪B)c ∈ L∞(µ) ⊆ X.

Now, the inequalities
√
x ≤ 1 and |

√
x+ s|+ |s| ≥ |s| on Ω, and the fact that f ∈ L∞(µ),

imply that on (A ∪B)c we have
√
x |f |2 + (fs+ fs)

|
√
x f + s|+ |s|

≤ |f |
2

|s|
+
|fs+ fs|
|s|

≤ |f |
2

|s|
+ 2|f |.

Since |s| ≥ min{|s(w)| : w /∈ A∪B} > 0, it follows that the right side (hence also the left
side) of the previous inequality does indeed belong to L∞(µ) ⊆ X. Consequently, L1(m)

is a complex vector lattice in the m-a.e. pointwise order; see Proposition 3.7(ii). Hence,
by the definition of a complex vector lattice, L1(m)R has the complex modulus property.
However, by considering the functions 0 + 1√

x

fn, with fn as in part (i), for n ∈ N, the
argument of part (i) shows that L1(m)R fails Axiom (OS).

The fact that m fails to have the LCP has been asserted in [41, Example 3.4(i)] with
correct arguments.

(iv) Define X := sim Σ + 1√
x

sim Σ. Then L1(m) = X is not closed under forming the
modulus because ∣∣∣∣χΩ +

i√
x

χΩ

∣∣∣∣ /∈ X (3.17)

whereas χΩ + i√
x

χΩ ∈ X. To prove (3.17) assume, on the contrary, that there exist
s1, s2 ∈ sim Σ satisfying ∣∣∣∣χΩ +

i√
x

χΩ

∣∣∣∣ = s1 +
1√
x

s2. (3.18)

We may assume that s1, s2 ∈ (sim Σ)R. Select n ∈ N, pairwise disjoint, non-µ-null sets
A(1), . . . , A(n) ∈ Σ with

⋃n
j=1A(j) = Ω, and scalars a1, . . . , an, b1, . . . , bn ∈ R such that

s1 =
∑n
j=1 ajχA(j) and s2 =

∑n
j=1 bjχA(j). This and (3.18) give

√
x+ χΩ =

√
x

∣∣∣∣χΩ +
i√
x

χΩ

∣∣∣∣ =

n∑
j=1

(
aj
√
x+ bj

)
χA(j). (3.19)

More precisely, we have (3.19) holding in the normed space X ⊆ L1(µ), and hence it
holds m-a.e. pointwise on Ω. Because Ω =

⋃n
j=1A(j), we may assume that

√
x+ χΩ = a1

√
x+ b1 (3.20)
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µ-a.e. on A(1), say. In particular, (3.20) holds at infinitely many points in A(1). Such
points necessarily belong to the set

C := {w ∈ Ω : (1− a2
1)w + 1− b21 = 2a1b1

√
w}.

This is a contradiction because C is either empty or a singleton set, which thereby verifies
(3.17).

It is clear that L1(m) is closed under complex conjugation. That m fails to have the
LCP can be deduced from∣∣∣∣χΩ +

i√
x

χΩ

∣∣∣∣ ≤ χΩ +
1√
x

χΩ ∈ L1(m)

together with (3.17).
(v) Let X := L∞(µ) +

(
1√
x

+ i lnx
)

sim Σ. Then L1(m) = X is not a complex vector
lattice in the m-a.e. pointwise order because L1(m) is not closed under forming the
modulus or under complex conjugation (see Proposition 3.7(ii)). However, m does have
the LCP. For the details, see [41, Example 3.4(ii)].

Remark 3.10. Let the setting be as in Example 3.9 above. There exists a vector subspace
X ⊆ L1(µ), satisfying the requirements of Example 3.9, such that L1(m) = X is closed
under forming the modulus, but not closed under complex conjugation; see [49] and [53,
Theorems 2 and 4].

Given a lcHs-valued measure m we shall discuss, in later sections, whether or not
L1(m) or L1

w(m) contains a lattice-isomorphic copy of the complex Banach lattice c0
or `∞. For this purpose, let us clarify what we mean, more generally, by saying that L1(m)

or L1
w(m) contains a lattice-isomorphic copy of a complex Banach lattice EC = E + iE.

First, L1(m) must be a complex vector lattice in the m-a.e. pointwise order. Then a
linear map T : EC → L1(m) is called a lattice-isomorphism (onto its range) if T is an
isomorphism (in the topological sense explained in Section 2) and if T (E) ⊆ L1(m)R
with the resulting R-linear map from E into L1(m)R being a lattice-homomorphism (i.e.,
preserving the lattice operations (3.1)). When such a lattice-isomorphism exists, we say
that L1(m) contains a lattice-isomorphic copy of EC.

The corresponding terminology also applies to L1
w(m), in which case we do not need

to assume that L1
w(m) is a complex vector lattice in the m-a.e. pointwise order because

it always is; see Proposition 3.7(iv).
We end this section with a prototype for Banach spaces of a result whose extension

(in subsequent sections) to the case of lcHs-valued vector measures is the main theme
of this paper. For a Banach-space-valued vector measure recall from Remark 3.8(ii) that
L1(m) and L1

w(m) are complex Banach lattices.

Proposition 3.11. The following conditions are equivalent for a Banach-space-valued
vector measure m:

(i) L1(m) = L1
w(m).

(ii) The complex Banach lattice L1(m) does not contain a lattice-isomorphic copy of the
complex Banach lattice c0.
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(iii) The complex Banach space L1(m) does not contain an isomorphic copy of the com-
plex Banach space c0.

Proof. Condition (i) is equivalent to the weak sequential completeness of L1(m) [46,
Proposition 3.38(I)]. This latter condition implies the weak Σ-completeness of L1(m),
from which (iii) follows; see Lemma 2.3(i) with X := L1(m).

The implication (iii)⇒(ii) is clear.
Now, (ii) is equivalent to L1(m)R not containing a lattice-isomorphic copy of (c0)R

[46, Lemma 3.8(i), (iv)]. But, this latter condition holds if and only if L1(m)R does not
contain an isomorphic copy of (c0)R if and only if L1(m)R is weakly sequentially complete
[2, Theorem 14.12]. This observation establishes that (ii) implies the weak sequential
completeness of L1(m), and hence implies condition (i) because the weak sequential
completeness of L1(m) is equivalent to that of L1(m)R [46, Lemma 3.35(i)].

Observe in Proposition 3.11 that the implication (ii)⇒(iii) is proved indirectly and
proceeds via the implications (ii)⇒(i) ⇒(iii) together with the equivalence of (i) and the
weak sequential completeness of L1(m). This is because our proof is based on the key fact
[2, Theorem 14.12], in which the corresponding real case also involves the weak sequen-
tial completeness condition. It is also worthwhile to exhibit a direct proof of (ii)⇒(iii)
for L1(m). This is presented in Remark 6.13.

4. Proof of Theorem 1.1

Throughout this section, let m : Σ → X be a lcHs-valued vector measure defined on a
measurable space (Ω,Σ) unless stated otherwise. By Xσ we denote X equipped with its
weak topology σ(X,X∗). To avoid the trivial case, we assume that m is not the zero
vector measure.

Remark 4.1. Let iσ : X → Xσ denote the identity map. Then iσ ◦m : Σ → Xσ is also
a vector measure. The equality X∗ = (Xσ)∗ implies that L1(m) = L1(iσ ◦m) as vector
spaces, and that N (m) = N (iσ ◦m); see (2.13). Hence, also L1(m) = L1(iσ ◦m) as vector
spaces. Similarly, L1

w(m) = L1
w(iσ ◦m) as vector spaces.

The lcHs L1(m) has the topology τ(m); see Section 2. As indicated above, L1(m)

equipped with its weak topology σ(L1(m), (L1(m))∗) is denoted by L1(m)σ. Except for
the case of a Banach space [40], there is, in general, no adequate description available of
the dual space (L1(m))∗. Now, for each A ∈ Σ, multiplication by χA defines the linear
operator

MA : L1(m)→ L1(m) via f 7→ χAf, (4.1)

which is clearly continuous by the definition of τ(m). Moreover, MA is also weakly con-
tinuous, i.e., MA ∈ L(L1(m)σ) because L(L1(m)) ⊆ L(L1(m)σ) [32, §20, 4(5)].

Lemma 4.2. Suppose that {fk}∞k=1 is a Cauchy sequence in L1(m)σ converging pointwise
m-a.e. to a function f ∈ L1(m). Then limk→∞ fk = f in L1(m)σ.
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Proof. Consider the L1(m)-valued set function [m] : A 7→ χA on Σ. It follows from
[41, Proposition 3.1] that [m] is σ-additive, that L1([m]) = L1(m) as lcHs and that the
integration operator I[m] : L1([m])→ L1(m) is the identity.

The identity map iσ : L1(m) → L1(m)σ is linear and continuous, so that iσ ◦ [m] :

Σ → L1(m)σ is also a vector measure. Moreover, L1(iσ ◦ [m]) = L1([m]) as vector
spaces; see Remark 4.1 (with [m] in place of m and X := L1(m)). By Jσ we denote the
natural embedding of L1(m)σ into its sequential completion (L1(m)σ)∼; see Section 2.
The resulting vector measure Jσ ◦ iσ ◦ [m] : Σ→ (L1(m)σ)∼ satisfies

L1(iσ ◦ [m]) ⊆ L1(Jσ ◦ iσ ◦ [m])

and τ(iσ ◦ [m]) is the relative topology induced by τ(Jσ ◦ iσ ◦ [m]); see Lemma 2.5(iii)
(with iσ ◦ [m] in place of m, Jσ in place of J and X := L1(m)σ). Moreover, each function
fk is (Jσ ◦ iσ ◦ [m])-integrable and, for each A ∈ Σ, we have∫

A

fk d(Jσ ◦ iσ ◦ [m]) = (Jσ ◦ iσ)

(∫
A

fk d[m]

)
= (Jσ ◦ iσ)(fkχA)

= (Jσ ◦ iσ ◦MA)(fk), k ∈ N;

apply Lemma 2.8 with [m] in place of m, X := L1(m), Y := (L1(m)σ)∼ and T := Jσ ◦ iσ.
Since Jσ ◦iσ ◦MA is continuous from L1(m) into (L1(m)σ)∼, and (L1(m)σ)∼ has its weak
topology, it follows that Jσ ◦ iσ ◦MA is also continuous from L1(m)σ into (L1(m)σ)∼.
Accordingly, the sequence {(Jσ ◦ iσ ◦MA)(fk)}∞k=1 is Cauchy in (L1(m)σ)∼, and hence
admits a limit there. As we know that f ∈ L1(Jσ ◦ iσ ◦ [m]), by Lemma 2.8(ii) (with
T := Jσ ◦ iσ and [m] in place of m), we find that {fk}∞k=1 is τ(Jσ ◦ iσ ◦ [m])-convergent
to f via Lemma 2.7(i) (with Jσ ◦ iσ ◦ [m] in place of m and X := (L1(m)σ)∼). As
f, fk ∈ L1(m) = L1([m]) = L1(iσ ◦ [m]) for k ∈ N and since τ(Jσ ◦ iσ ◦ [m]) induces the
topology τ(iσ ◦ [m]) on L1(iσ ◦ [m]), it then follows that {fk}∞k=1 is τ(iσ ◦ [m])-convergent
to f . Therefore

f = Iiσ◦[m](f) = lim
k→∞

Iiσ◦[m](fk) = lim
k→∞

fk

in L1(m)σ because the integration operator Iiσ◦[m] : L1(iσ◦[m])→ L1(m)σ is the identity
and is continuous.

Lemma 4.3. Let Y , Z and W be lcHs.

(i) Given a surjective linear map R ∈ L(Y,Z) and a linear map V ∈ L(Z,W ), suppose
that their composition V ◦R : Y →W is a surjective isomorphism. Then both R and
V are also surjective isomorphisms.

(ii) Suppose that R ∈ L(Y,Z) and V ∈ L(Z,W ) are linear maps such that their compo-
sition V ◦ R : Y → W is an isomorphism onto its range. Then both R : Y → Z and
the restriction V |R(R) : R(R)→ W of V to R(R) ⊆ Z are isomorphisms onto their
respective ranges.

Proof. (i) Let H := V ◦R. Clearly, V is surjective. If z ∈ V −1({0}) ⊆ Z, then there exists
y ∈ Y satisfying z = Ry (as R is surjective). It then follows that 0 = V z = (V ◦R)y = Hy,
and hence the injectivity of H gives y = 0, by which z = 0. Consequently, V is also



Lattice copies of c0 and `∞ 35

injective. Since V ◦ (R ◦H−1) is the identity on W , we have V −1 = R ◦H−1 ∈ L(W,Z),
and V is a surjective isomorphism.

Next, the injectivity of H implies that of R via H = V ◦ R. Since (H−1 ◦ V ) ◦ R is
the identity on Y , it follows that R−1 = H−1 ◦V ∈ L(Z, Y ), which implies that R is also
a surjective isomorphism.

(ii) First replace W by R(V ◦ R) so that we may assume that V ◦ R is a surjective
isomorphism. Then apply part (i) with R(R) in place of Z and V |R(R) in place of V .

Proof of Theorem 1.1. (i) Let S : c0 → L1(m) be any isomorphism onto its range. Then
we can select q ∈ P(X) satisfying

‖α‖c0 ≤ q(m)(S(α)), α ∈ c0. (4.2)

With {en}∞n=1 denoting the canonical basis of c0, let gn := S(en) ∈ L1(m) for n ∈ N. The
claim is that there exist a function f ∈ L0(Σ), a set B ∈ Σ with q(m)(χΩ\B) = 0 and an
increasing sequence {n(k)}∞k=1 in N such that

lim
k→∞

n(k)∑
j=1

(gjχB)(w) = f(w), w ∈ Ω. (4.3)

To verify this, choose a Rybakov functional ξ∗0 ∈ X∗q for the Banach-space-valued vector
measure mq := πq ◦ m : Σ → Xq, i.e., N0(〈mq, ξ

∗
0〉) = N0(mq), [18, Theorem IX.2.2],

and define x∗0 := ξ∗0 ◦ πq ∈ X∗. Then 〈m,x∗0〉 = 〈mq, ξ
∗
0〉. By Lemma 2.8 (with Y := C

and T := x∗0 ∈ L(X,C)), consider the canonical map [x∗0]m : L1(m)→ L1(〈m,x∗0〉) which
assigns to each h ∈ L1(m) the same function h in L1(〈m,x∗0〉); see also Remark 2.9. In
particular, gn = ([x∗0]m ◦ S)(en) for all n ∈ N. As {en}∞n=1 is weakly absolutely Cauchy
in c0 and as [x∗0]m ◦ S ∈ L(c0, L

1(〈m,x∗0〉)), the functions gn = ([x∗0]m ◦ S)(en) for n ∈ N
form a weakly absolutely Cauchy sequence in the weakly sequentially complete (hence
also weakly Σ-complete) Banach space L1(〈m,x∗0〉). Therefore, {gn}∞n=1 is summable
in the norm of L1(〈m,x∗0〉); see Lemma 2.2. Setting g :=

∑∞
n=1 gn, we can select a set

B ∈ Σ with Ω \B ∈ N0(〈m,x∗0〉) and an increasing sequence {n(k)}∞k=1 in N such that

lim
k→∞

n(k)∑
j=1

(gjχB)(w) = (gχB)(w), w ∈ Ω.

So, (4.3) holds with f := gχB . Next, observe that

q(m)(χΩ\B) = sup
x∗∈U◦q

|〈m,x∗〉|(Ω \B) = sup
ξ∗∈B[X∗q ]

|〈mq, ξ
∗〉|(Ω \B) = 0

because π∗q (B[X∗q ]) = U◦q (see (2.2)) and because Ω \B ∈ N0(〈m,x∗0〉) = N0(mq) implies
that Ω \B ∈ N0(〈mq, ξ

∗〉) for all ξ∗ ∈ B[X∗q ]. Thus, the claim is verified. So, fix now the
function f , the set B and the sequence {n(k)}∞k=1 as in the claim.

It follows, from (2.11) (with q in place of p and hχΩ\B in place of f) and the fact that
Ω \B ∈ N0(〈mq, ξ

∗〉) for all ξ∗ ∈ B[X∗q ], that q(m)(hχΩ\B) = 0 for all h ∈ L1(m). So, for
each h ∈ L1(m), we find via the triangle inequality for q(m)(·) that

q(m)(h) = q(m)
(
hχB + hχΩ\B

)
≤ q(m)

(
hχB

)
≤ q(m)(h).
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That is, q(m)(MB(h)) = q(m)(h) for all h ∈ L1(m). In view of (4.2) we have

‖α‖c0 ≤ q(m)(S(α)) = q(m)((MB ◦ S)(α)), α ∈ c0.

Recalling that MB : L1(m)→ L1(m) is continuous, it follows that MB ◦ S : c0 → L1(m)

is an isomorphism onto its range. Setting fk := (MB ◦S)(
∑n(k)
j=1 ej) ∈ L1(m) for k ∈ N, it

follows that {fk}∞k=1 is weakly Cauchy but not weakly convergent in L1(m); this is because
{
∑n(k)
j=1 ej}∞k=1 has this same property in c0 and becauseMB◦S is an isomorphism onto its

range with respect to the weak topologies on both c0 and L1(m). Since fk → f pointwise
on Ω (see (4.3)) we can apply Lemma 4.2 to conclude that f is not m-integrable.

To show that f ∈ L1
w(m), fix x∗ ∈ X∗. Given A ∈ Σ, the image {

∫
A
fk d〈m,x∗〉}∞k=1

⊆ C of the weakly Cauchy sequence {fk}∞k=1 ⊆ L1(m) under x∗◦Im◦MA ∈ L(L1(m),C) =

L(L1(m)σ,C) is (weakly) Cauchy, and hence has a limit in C. So, Lemma 2.7(i) applied
to the scalar measure 〈m,x∗〉 tells us that the pointwise limit f of {fk}∞k=1 is 〈m,x∗〉-
integrable. Since x∗ ∈ X∗ is arbitrary, we conclude that f ∈ L1

w(m). Hence, the function
f belongs to L1

w(m) \ L1(m).
(ii) For a Banach-space-valued vector measure this result is known [10, pp. 43–44]. The

following proof is along the lines of that in [10], suitably adapted to the more general set-
ting. Recall that q ∈ P(X) satisfies (4.2) and that mq : Σ→ Xq is a Banach-space-valued
vector measure. The natural map [πq]m : L1(m) → L1(mq) is defined via Lemma 2.8,
with Y := Xq and T := πq ∈ L(X,Xq). For each α ∈ c0, we deduce from (2.11) and (4.2)
that

‖α‖c0 ≤ q(m)(S(α)) = ‖([πq]m ◦ S)(α)‖L1(mq). (4.4)

It follows that the continuous linear map ([πq]m ◦ S) : c0 → L1(mq) is an isomorphism
onto its range. Recall from the proof of part (i) that the sequence {gj}∞j=1 is summable in
the norm of L1(〈m,x∗0〉) = L1(〈mq, ξ

∗
0〉), which implies that limj→∞ ‖gj‖L1(〈mq,ξ∗0 〉) = 0.

Consequently, {gj}∞j=1 has a subsequence which converges to 0 pointwise 〈mq, ξ
∗
0〉-a.e.,

and hence also mq-a.e. because ξ∗0 is a Rybakov functional for mq. For ease of notation,
we may assume that {gj}∞j=1 itself is convergent to 0 pointwisemq-a.e. According to (4.4),
for each j ∈ N, we have

‖gj‖L1(mq) = ‖([πq]) ◦ S)(ej)‖L1(mq) ≥ ‖ej‖c0 = 1

so that the sequence {gj}∞j=1 ⊆ L1(mq) is not τ(mq)-convergent to 0 in L1(mq). Since
gj → 0 pointwise mq-a.e., it follows from Lemma 2.7(i), with Xq in place of X and
mq in place of m, that there is a set F ∈ Σ for which the sequence {

∫
F
gj dmq}∞j=1 is not

norm-convergent to 0 in Xq. By passing to a subsequence of {gj}∞j=1 if necessary, we may
again assume, with uj :=

∫
F
gj dmq for j ∈ N, that

inf
j∈N
‖uj‖Xq > 0. (4.5)

For each j ∈ N, the identity

uj =

∫
Ω

gjχF dmq = (πq ◦ Im ◦MF ◦ S)(ej) (4.6)

implies that {uj}∞j=1 is weakly null in Xq because it is the image of the weakly null
sequence {ej}∞j=1 in c0 under the operator (πq◦Im◦MF ◦S) ∈ L(c0, Xq). This fact, together



Lattice copies of c0 and `∞ 37

with (4.5), guarantees that {uj}∞j=1 has a subsequence which is basic [38, Theorem 4.1.32].
Again, for simplicity of presentation, assume that {uj}∞j=1 itself is a basic sequence in Xq.
Via (4.6), observe that the sequence {uj}∞j=1 is the image of the weakly absolutely Cauchy
sequence {ej}∞j=1 in c0 under the operator (πq ◦ Im ◦MF ◦ S) ∈ L(c0, Xq), and hence is
itself also weakly absolutely Cauchy in Xq. This, together with (4.5), implies that the
basic sequence {uj}∞j=1 is equivalent to the canonical basis of c0 [38, Theorem 4.3.10].
Let T : c0 → Xq denote the corresponding isomorphism onto its range (i.e., T (ej) = uj
for j ∈ N) [38, Proposition 4.3.2].

As an equality in L(c0, Xq), we have

T = (πq ◦ Im) ◦ (MF ◦ S)

because both operators coincide on each basis vector ej ∈ c0 for j ∈ N; see (4.6). Setting
U := R(MF ◦ S) ⊆ L1(m) it follows that

(a) (MF ◦ S) ∈ L(c0, L
1(m)) is an isomorphism onto its range, and

(b) the restriction (πq ◦ Im)|U : U → Xq is an isomorphism onto its range.

This can be verified via Lemma 4.3(ii) applied to the spaces Y := c0, Z := L1(m),
W := Xq and the operators R := (MF ◦ S) ∈ L(Y,Z) and V := (πq ◦ Im) ∈ L(Z,W )

because their composition T = V ◦R : Y →W is an isomorphism onto its range.
According to (a) above, U is isomorphic to c0. The claim is that the restriction Im|U :

U → X is an isomorphism onto its range. This again follows from Lemma 4.3(ii), now
applied to the spaces Y := U , Z := X, W := Xq and the operators R := Im|U ∈ L(Y,Z)

and V := πq ∈ L(Z,W ), upon noting (via (b) above) that their composition V ◦ R =

(πq ◦ Im)|U : Y → Z is an isomorphism onto its range. So, R = Im|U ∈ L(U,X) is an
isomorphism onto its range. Therefore, Im fixes a copy of c0.

We point out that the argument given in the proof of Theorem 1.1(ii) shows that
there exists a subsequence {gj(k)}∞k=1 of {gj}∞j=1 and a set F ∈ Σ such that the closed
subspace U of L1(m) is precisely the closed linear span of {gj(k)χF : k ∈ N} in L1(m).
This corresponds to the comment given in [10, p. 44] for the case of a Banach-space-
valued vector measure. The proof shows, in particular, that every isomorphic copy of c0
in L1(m) generates a further isomorphic copy of c0 in L1(m) which is fixed by Im.

The proof of Theorem 1.1(i) is motivated by the second proof of Theorem 2.2 of [10],
where X is a real Banach space; the same result appears in [11, Theorem 2] with a
different proof. We formulate Theorem 2.2 of [10] in Corollary 4.4(iv) below (which will
also follow immediately from Theorem 1.1).

Recall that J denotes the canonical embedding of X into its sequential completion X̃;
see Section 2.

Corollary 4.4. Let m : Σ→ X be a lcHs-valued vector measure.

(i) If L1(m) = L1
w(m), then L1(m) does not contain an isomorphic copy of c0.

(ii) If L1(J ◦m) = L1
w(m), then L1(m) does not contain an isomorphic copy of c0.

(iii) If L1(m) contains an isomorphic copy of c0, then so does L1(πq ◦ m) for some
q ∈ P(X).
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(iv) Suppose that X is a Banach space. If X does not contain an isomorphic copy of c0,
then neither does the Banach space L1(m).

Proof. (i) This is the contrapositive of Theorem 1.1.
(ii) The assumption L1(J ◦ m) = L1

w(m) means that L1(J ◦ m) = L1
w(J ◦ m) as

L1
w(m) = L1

w(J ◦m) via Lemma 2.5(ii). So, part (i) applied to J ◦m instead of m shows
that L1(J ◦m) does not contain an isomorphic copy of c0, and hence neither does L1(m)

via Lemma 2.5(iii).
(iii) As in the proof of Theorem 1.1, take an isomorphism S : c0 → L1(m) onto its

range and choose q ∈ P(X) satisfying (4.2). Now, πq ∈ L(X,Xq) induces the operator
[πq]m ∈ L(L1(m), L1(πq ◦m)) given by [πq]m(f) := f for f ∈ L1(m); see Lemma 2.8(iii)
with Y := Xq and T := πq. Moreover, for a given f ∈ L1(m), we have q(m)(f) =

‖[πq]m(f)‖L1(πq◦m); see (2.11) with p := q and (2.23) which give

‖[πq]m(f)‖L1(πq◦m) = ‖f‖L1(πq◦m) = sup
η∈B[X∗q ]

∫
Ω

|f | d|〈πq ◦m, η〉|, f ∈ L1(m).

Therefore, it follows from (4.2) that

‖α‖c0 ≤ q(m)(S(α)) = ‖([πq]m ◦ S)(α)‖L1(πq◦m), α ∈ c0,

which establishes part (iii) because [πq]m ◦ S : c0 → L1(πq ◦m) is continuous.
(iv) First recall, from Lemma 2.10(v), that L1(m) is a Banach space. To verify

that L1(m) does not contain an isomorphic copy of c0 assume, on the contrary, that
it does. Then Theorem 1.1 yields L1(m) ( L1

w(m). On the other hand, since X is weakly
Σ-complete (see Lemma 2.3(ii)), it follows from Lemma 2.5(iv) that L1(m) = L1

w(m).
This contradiction proves part (iv).

Observe in Corollary 4.4 that part (ii) is a stronger statement than part (i), since the
assumption L1(m) = L1

w(m) in (i) implies the assumption L1(J ◦m) = L1
w(m) in (ii).

This is because of the general inclusion L1(m) ⊆ L1(J ◦m) ⊆ L1
w(m); see Lemma 2.5(iii).

Moreover, part (ii) is genuinely stronger than part (i); indeed, the vector measure m in
Example 2.6(iii) satisfies L1(m) ( L1(J ◦m) = L1

w(m).
The converse of part (iii) in Corollary 4.4 is not valid in general, as can be seen by

the following example.

Example 4.5. Let the notation and setting be as in Example 2.6(iii). Then L1(m) does
not contain an isomorphic copy of c0 by Corollary 4.4(ii). On the other hand, considering
the sup-norm q on X := ((1/ϕ) sim Σ, ‖·‖`2) it is clear that q is continuous on X, that
Xq = c0 and that (πq ◦m)(A) = χA/ϕ ∈ c0 for all A ∈ Σ. So, L1(πq ◦m) = ϕ · c0 by
Example 2.6(ii). The corresponding integration operator is a surjective isomorphism from
L1(πq ◦m) onto c0; indeed, it is the multiplication operator f 7→ (1/ϕ) · f for f ∈ ϕ · c0.
So, we conclude that L1(πq ◦m) contains an isomorphic copy of c0 whereas L1(m) does
not.

Since L1(m) = sim Σ does not contain an isomorphic copy of c0 (cf. Lemma 6.10
below), the vector measurem in Example 2.6(i) provides a counterexample to the converse
of Corollary 4.4(ii).
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Let us exhibit a class of vector measures m which satisfy the assumption L1(J ◦m) =

L1
w(m) of Corollary 4.4(ii).

Example 4.6. (i) Let Y be a lcHs and let X := Yσ, in which case X∗ = Y ∗ as vector
spaces. As noted in Section 2, the sequential completion X̃ of X is weakly sequentially
complete. So, given a vector measure m : Σ → X, the vector measure J ◦m : Σ → X̃

satisfies L1(J ◦m) = L1
w(m) by parts (ii) and (iv) of Lemma 2.5.

Both cases, namely L1(m) = L1
w(m) and L1(m) ( L1

w(m), can occur, as will now be
shown.

(ii) Choose Y := c0 and X := Yσ. Let ν : 2N → Y be the vector measure A 7→ χA/ϕ

of Example 2.6(ii), where it is denoted by m. With iσ : Y → X being the identity map,
the vector measure m := iσ ◦ ν satisfies

L1(m) = L1(ν) = ϕ · c0 ( ϕ · `∞ = L1
w(ν) = L1

w(m).

Here, Remark 4.1 (with ν in place of m) gives the first and last equalities whereas the
fact that L1(ν) = ϕ · c0 and L1

w(ν) = ϕ · `∞ occurs in Example 2.6(ii).
(iii) Let Y be a weakly Σ-complete lcHs and ν : Σ→ Y be any vector measure. With

iσ denoting the identity map from Y onto X := Yσ, it follows from Lemma 2.5(iv) and
Remark 4.1 that

L1(m) = L1(ν) = L1
w(ν) = L1

w(m).

5. Proof of Theorem 1.2

To establish Theorem 1.2, recall that a real or complex Banach space Y has property (u) if
every weakly Cauchy sequence {yn}∞n=1 in Y admits a weakly absolutely Cauchy sequence
{zn}∞n=1 in Y such that {yn −

∑n
j=1 zj}∞n=1 is weakly null [2, Definition 14.6]. Whereas

we have defined weakly absolutely Cauchy sequences in a complex lcHs (see Section 2),
there are no difficulties in also considering such sequences in a real lcHs, especially in a
real Banach space.

Lemma 5.1. Let EC = E+iE be a complex Banach lattice realized as the complexification
of a real Banach lattice E.

(i) Let x∗, y∗ ∈ E∗. Then the functional (x∗ + iy∗) : EC → C defined by

〈x+ iy, x∗ + iy∗〉 := 〈x, x∗〉 − 〈y, y∗〉+ i(〈x, y∗〉+ 〈y, x∗〉) (5.1)

for each x + iy ∈ EC (with x, y ∈ E) is linear and continuous. Conversely, every
continuous linear functional on EC is of the form (5.1) for some x∗, y∗ ∈ E. In
short,

(EC)∗ = E∗ + iE∗.

(ii) Let {zn}∞n=1 be a sequence in EC and set

xn := Re(zn) ∈ E and yn := Im(zn) ∈ E, n ∈ N. (5.2)

(a) The sequence {zn}∞n=1 is weakly Cauchy in EC if and only if both {xn}∞n=1 and
{yn}∞n=1 are weakly Cauchy in E.
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(b) The sequence {zn}∞n=1 is weakly null in EC if and only if both {xn}∞n=1 and
{yn}∞n=1 are weakly null in E.

(c) The sequence {zn}∞n=1 is weakly absolutely Cauchy in EC if and only if both
{xn}∞n=1 and {yn}∞n=1 are weakly absolutely Cauchy in E.

(iii) If, in addition, E is Dedekind σ-complete and has order continuous norm, then EC
has property (u). Consequently, EC does not contain an isomorphic copy of `∞.

Proof. (i) See [60, pp. 323–324], [55, pp. 134–135].
(ii) This follows from part (i).
(iii) Recall that E having order continuous norm means that, whenever {xλ}λ is a

decreasing net in E+ with inf xλ = 0, then limλ ‖xλ‖E = 0 [2, Definition 12.7]. Now, let
{zn}∞n=1 be a weakly Cauchy sequence in EC. In the notation of (5.2), the sequences
{xn}∞n=1 and {yn}∞n=1 are weakly Cauchy in E via part (ii)(a). Since E necessarily
has property (u) [2, Theorem 14.9], we can select weakly absolutely Cauchy sequences
{un}∞n=1 and {vn}∞n=1 in E such that both of the sequences {xn −

∑n
j=1 uj}∞n=1 and

{yn−
∑n
j=1 vj}∞n=1 are weakly null in E. Thus, it follows from (5.1) and part (ii)(b) that

lim
n→∞

(
xn + iyn −

n∑
j=1

(uj + ivj)
)

= 0

weakly in EC. This, together with the fact that {un+ivn}∞n=1 is weakly absolutely Cauchy
in EC (via part (ii)(c)), guarantees property (u) of EC.

From properties (a)–(c) of part (ii) it is routine to check that (`∞)R has property (u)
whenever `∞ has property (u). But, it is known that (`∞)R fails to have property (u)
[2, Example 14.8], and so `∞ does not have property (u) either. Moreover, by a result of A.
Pełczyński, every closed subspace of a Banach space (real or complex) with property (u)
also has property (u) [2, Theorem 14.7]. Accordingly, EC does not contain an isomorphic
copy of `∞.

Proof of Theorem 1.2. Assume, on the contrary, that there exists an isomorphism S :

`∞ → L1(m) onto its range. Then there exists q ∈ P(X) such that

‖β‖`∞ ≤ q(m)(S(β)), β ∈ `∞. (5.3)

Now, consider the continuous linear map

[πq]m : L1(m)→ L1(πq ◦m);

see Lemma 2.8 with Y := Xq and πq in place of T . Then q(m)(f) = ‖[πq]m(f)‖L1(mq) for
f ∈ L1(m); see the proof of Corollary 4.4(iii). This and (5.3) yield

‖β‖`∞ ≤ ‖([πq]m ◦ S)(β)‖L1(πq◦m), β ∈ `∞,

which implies that [πq]m ◦S : `∞ → L1(πq ◦m) is an isomorphism onto its range (because
we already know that [πq]m ◦ S is continuous).

On the other hand, recall from Remark 3.8(ii) that L1(πq ◦m) is a complex Banach
lattice realized as the complexification of the real Banach lattice L1(πq ◦ m)R. Since
L1(πq ◦m) is solid in L0(πq ◦m), Remark 3.8(i) guarantees that L1(πq ◦m)R is Dedekind
σ-complete. Also, L1(πq ◦m)R has order continuous norm [46, Theorem 3.7(iii)]. So, the
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space L1(πq ◦m) does not contain an isomorphic copy of `∞ (via Lemma 5.1(iii)). This
contradiction establishes Theorem 1.2.

6. Proof of Theorem 1.3 and further results

Our main aim in this section is to establish Theorem 1.3. In addition, further conditions
involving various copies of c0 and `∞ in L1(m) and L1

w(m), respectively, are investigated
in relation to the criterion L1(m) ( L1

w(m). Throughout this section let m : Σ→ X be a
lcHs-valued vector measure defined on a measurable space (Ω,Σ), unless stated otherwise.

Proof of Theorem 1.3. (i) That L1(m) is a complex vector lattice in the m-a.e. pointwise
order has already been established (see Remark 3.8(i)(β)). Moreover, L1

w(m) is always a
complex vector lattice in the m-a.e. pointwise order, whether X is sequentially complete
or not; see Proposition 3.7(iv).

(ii) Recall that L1(m) ( L1
w(m) is being assumed. Choose f ∈ L1

w(m)+ \ L1(m),
which is possible as L1

w(m) is a complex vector lattice. For each n ∈ N and with
A(n) := f−1([0, n]), the bounded, Σ-measurable function fn := fχA(n) is m-integrable;
see Lemma 2.7(iv). As f /∈ L1(m) and limn→∞ fn = f pointwise on Ω, it follows from
Lemma 2.7(i) that there must exist B ∈ Σ for which the sequence {

∫
B
fn dm}∞n=1 is

not Cauchy in the sequentially complete lcHs X. This enables us to choose q ∈ P(X),
a positive number δ, and increasing sequences {u(k)}∞k=1 and {v(k)}∞k=1 in N satisfying

u(1) < v(1) < u(2) < v(2) < · · ·

such that, for every k ∈ N, we have∥∥∥∥πq(∫
B

(fv(k) − fu(k)) dm

)∥∥∥∥
Xq

= q

(∫
B

(fv(k) − fu(k)) dm

)
≥ δ. (6.1)

Define, for each k ∈ N, the elements

gk := (fv(k) − fu(k))χB ∈ L1(m)+ and ξk := πq ◦ Im(gk) ∈ Xq. (6.2)

It is clear from (6.1) that no function gk, for k ∈ N, is m-null. Fix any α ∈ c0 and N ∈ N.
Since the functions g1, . . . , gN are disjointly supported (as A(n) ↑ Ω) with gk ≤ f for
k ∈ N, it follows that∣∣∣ N∑

k=1

α(k)gk

∣∣∣ =

N∑
k=1

|α(k)|gk ≤
(

max
1≤k≤N

|α(k)|
)
f,

which implies that∥∥∥ N∑
k=1

α(k)ξk

∥∥∥
Xq

=
∥∥∥(πq ◦ Im)

( N∑
k=1

α(k)gk

)∥∥∥
Xq

= q
(
Im

( N∑
k=1

α(k)gk

))
≤ q(m)

( N∑
k=1

α(k)gk

)
= q(m)w

( N∑
k=1

α(k)gk

)
≤
(

max
1≤k≤N

|α(k)|
)
q(m)w(f). (6.3)
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Here we have applied (2.6) with p := q and used the fact that q(m)w, which extends q(m),
satisfies (2.18) with p := q. Now, (6.3) holds for all α ∈ c0 and N ∈ N and so {ξk}∞k=1

is weakly absolutely Cauchy in the Banach space Xq [38, Proposition 4.3.9]. Moreover,
the resulting weakly null sequence {ξk}∞k=1 in Xq satisfies infk∈N ‖ξk‖Xq ≥ δ > 0 (see
(6.1) and (6.2)), and therefore admits a subsequence which is a basic sequence in Xq [38,
Theorem 4.1.32]. For ease of presentation and without loss of generality, we may assume
that {ξk}∞k=1 itself is a basic sequence. Then (6.3) together with infk∈N ‖ξk‖Xq ≥ δ > 0

implies that {ξk}∞k=1 ⊆ Xq is equivalent to the canonical basis of c0 [38, Theorem 4.3.7].
Let S : c0 → Xq be the corresponding isomorphism onto its range, i.e., S(ek) := ξk for
k ∈ N [38, Proposition 4.3.2].

Fix α ∈ c0. The gk’s, for k ∈ N, being disjointly supported enables us to define a
function T (α) : Ω → C by T (α) :=

∑∞
k=1 α(k)gk. The claim is that T (α) ∈ L1(m) and

limN→∞
∑N
k=1 α(k)gk = T (α) with respect to τ(m). In fact, {

∑N
k=1 α(k)gk}∞N=1 ⊆ L1(m)

converges pointwise on Ω to T (α). Moreover, given A ∈ Σ and p ∈ P(X), for allM,N ∈ N
with M < N we have

p

(∫
A

( N∑
k=M

α(k)gk

)
dm

)
≤ p(m)

( N∑
k=M

α(k)gk

)
≤
(

max
M≤k≤N

|α(k)|
)
p(m)w(f), (6.4)

which can be verified analogously to (6.3) with p in place of q. Consequently, because
α ∈ c0, the sequence {

∫
A

(∑N
k=1 α(k)gk

)
dm}∞N=1 is Cauchy (hence, convergent) in

the sequentially complete lcHs X. So, T (α) ∈ L1(m) and {
∑N
k=1 α(k)gk}∞N=1 is τ(m)-

convergent to T (α) via Lemma 2.7(i).
The so-defined linear map T : α 7→ T (α) is continuous from c0 into L1(m). Indeed,

via (6.4) with M := 1, we have

p(m)(T (α)) = lim
N→∞

p(m)
( N∑
k=1

α(k)gk

)
≤ lim
N→∞

(
max

1≤k≤N
|α(k)|

)
p(m)w(f) = p(m)w(f)‖α‖c0 . (6.5)

Now, for each α ∈ c0, observe that

S(α) = S
( ∞∑
k=1

α(k)ek

)
=

∞∑
k=1

α(k)S(ek) =

∞∑
k=1

α(k)ξk

=

∞∑
k=1

α(k)(πq ◦ Im)(gk) = (πq ◦ Im)
( ∞∑
k=1

α(k)gk

)
= ((πq ◦ Im) ◦ T )(α).

In other words,
S = (πq ◦ Im) ◦ T ∈ L(c0, Xq). (6.6)

As S is an isomorphism onto its range, both T : c0 → L1(m) and (πq ◦ Im)|R(T ) : R(T )

→ X are also isomorphisms onto their respective ranges. This follows from Lemma 4.3(ii)
applied to the spaces Y := c0, Z := L1(m), W := Xq and the operators R := T and
V := πq ◦ Im, in which case (6.6) yields S = V ◦R.

Recalling that the functions {gk : k ∈ N} ⊆ L1(m)+
R are disjointly supported, it

follows from the definition of T and the identity T (ek) = gk, for each k ∈ N, that
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T ((c0)R) ⊆ L1(m)R, that R(TR) is a real vector sublattice of L1(m)R, and that the
restriction TR : (c0)R → L1(m)R of T to (c0)R is R-linear. Since TR is bijective onto its
range and both TR : (c0)R → R(TR) and T−1

R : R(TR)→ (c0)R are positive operators, the
operators TR, T−1

R are lattice-homomorphisms [2, Theorem 7.3]. Moreover, the identity
R(TR) = R(T )∩L1(m)R and the fact that T is a topological isomorphism of c0 onto R(T )

imply that TR is a topological isomorphism of (c0)R onto R(TR). In particular, R(TR) has
the complex modulus property (see Lemma 3.2(iv)(b)) and so R(T ) = R(TR) + iR(TR)

is a complex vector lattice. According to the discussion after Remark 3.10 the operator T
is a (complex) lattice-isomorphism of c0 onto R(T ) ⊆ L1(m). This completes the proof
that L1(m) contains a lattice-isomorphic copy of c0.

We shall now construct a lattice-isomorphism T (w) : `∞ → L1
w(m) onto its range

by extending T : c0 → L1(m). Given β ∈ `∞, we can define the function
∑∞
k=1 β(k)gk

pointwise on Ω as the gk’s, for k ∈ N, are disjointly supported. Moreover,
∑∞
k=1 β(k)gk

is dominated pointwise on Ω by ‖β‖`∞f ∈ L1
w(m), and hence belongs to L1

w(m) via
Proposition 3.7(iv). The resulting L1

w(m)-valued, linear map T (w) : β 7→
∑∞
k=1 β(k)gk

on `∞ is continuous because

p(m)w(T (w)(β)) ≤ ‖β‖`∞p(m)w(f), β ∈ `∞,

for each p ∈ P(X) via (2.18) (with
∑∞
k=1 β(k)gk in place of f and ‖β‖`∞f in place of g).

The injectivity of T (w) is a consequence of the fact that the gk’s, for k ∈ N, are disjointly
supported and that no function gk, for k ∈ N, is m-null.

Next, for that particular q ∈ P(X) satisfying (6.1), we claim that

C‖β‖`∞ ≤ q(m)w(T (w)(β)), β ∈ `∞,

for some C > 0. To see this fix any β ∈ `∞. Select C > 0 satisfying

C‖α‖c0 ≤ ‖S(α)‖Xq ≤
∥∥∥ ∞∑
k=1

α(k)ξk

∥∥∥
Xq
, α ∈ c0, (6.7)

which is possible as S : c0 → Xq is an isomorphism onto its range. Then (6.3) and (6.7),
both with αN :=

∑N
k=1 β(k)ek ∈ c0 ⊆ `∞ in place of α, for N ∈ N (and observing that

S(αN ) =
∑N
k=1 β(k)ξk), yield

C‖β‖`∞ = C sup
N∈N
‖αN‖c0 ≤ sup

N∈N
‖S(αN )‖Xq

≤ sup
N∈N

q(m)w

( N∑
k=1

β(k)gk

)
= sup
N∈N

sup
x∗∈U◦q

∫
Ω

∣∣∣ N∑
k=1

β(k)gk

∣∣∣ d|〈m,x∗〉|
= sup
x∗∈U◦q

sup
N∈N

∫
Ω

∣∣∣ N∑
k=1

β(k)gk

∣∣∣ d|〈m,x∗〉| = q(m)w(T (w)(β)).

Here, for the last equality and each x∗ ∈ U◦q , we can apply the Lebesgue Dominated
Convergence Theorem for scalar measures because∣∣∣ N∑

k=1

β(k)gk

∣∣∣ =

N∑
k=1

|β(k)|gk ≤ ‖β‖`∞f, N ∈ N,
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with ‖β‖∞f ∈ L1(|〈m,x∗〉|). Our claim is thus established. Hence, T (w) : `∞ → L1
w(m)

is an isomorphism onto its range.
Finally, the fact that the gk’s, for k ∈ N, are disjointly supported, non-negative

functions in L1
w(m) ensures that T (w) is a lattice-isomorphism onto its range, that is,

L1
w(m) contains a lattice-isomorphic copy of `∞. The argument is an adaption of that

which showed that T : c0 → L1(m) was a lattice-isomorphism.

Remark 6.1. A careful examination of the proof of Theorem 1.3 shows that it actually
suffices for [X]m, rather than X itself, to be sequentially complete.

Recall from Section 2 that the natural embedding of X into its sequential completion
X̃ is denoted by J . Basic facts relevant to J and our vector measure m : Σ → X are
presented in Lemma 2.5. We also recall that the identity L1(m) = L1(J ◦ m) of vec-
tor spaces implies the identity of lcHs; see the comment immediately after Lemma 2.5.
So, it will suffice to speak of the identity L1(m) = L1(J ◦m) without further explana-
tion. The same principle applies when we speak of the identities L1(m) = L1

w(m) and
L1(J ◦m) = L1

w(m) because such identities as vector spaces imply the identities as lcHs
via Lemma 2.5(iii).

Corollary 6.2. Let m : Σ → X be a lcHs-valued vector measure such that L1(m) (
L1
w(m).

(i) If L1(m) = L1(J ◦m), then L1(m) is a complex vector lattice in the m-a.e. pointwise
order. Moreover, L1(m) and L1

w(m) then contain lattice-isomorphic copies of c0
and `∞, respectively.

(ii) If L1(m) happens to be sequentially complete, then the same conclusion as in part
(i) holds.

(iii) If X is sequentially complete, then there exists a closed vector sublattice U of L1(m)

which is lattice-isomorphic to c0 and such that the restricted integration operator
Im : U → X is a topological isomorphism onto its range.

Proof. (i) Apply Theorem 1.3 with X̃ in place of X and J ◦m in place of m.
(ii) This is a special case of part (i) because L1(m) = L1(J ◦m) via Lemma 2.7(ii).
(iii) Appealing to Remark 3.8(i)(β) we see that L1(m) is a vector lattice. In the

proof of Theorem 1.3, recall the discussion immediately after (6.6) which asserts that
(πq ◦ Im)|R(T ) : R(T ) → Xq is an isomorphism onto its range. Since (πq ◦ Im)|R(T ) =

πq ◦ (Im|R(T )), we can apply Lemma 4.3(ii) to the spaces Y := R(T ), Z := X, W := Xq

and the operators R := Im|R(T ) and V := πq to deduce that the restricted integration
operator Im|R(T ) : R(T ) → X (which equals R) is an isomorphism onto its range.
Moreover, its domain space U := R(T ) is lattice-isomorphic to c0 because T : c0 → L1(m)

is a lattice-isomorphism onto R(T ); see the first paragraph after the paragraph contain-
ing (6.6).

Remark 6.3. (i) A careful examination of the proof of Corollary 6.2(iii) (via Theo-
rem 1.3(ii)) shows that every function f ∈ L1

w(m)+\L1(m) generates a lattice-isomorphic
copy U ⊆ L1(m) of c0, with U depending on f , such that Im : U → X is a topological
isomorphism onto its range.
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(ii) In Corollary 6.2(iii) the restricted integration operator Im : U → X is a topological
isomorphism, but typically not a lattice-homomorphism. Indeed, in general X is only
assumed to be a lcHs and not a vector lattice. But, even in the event that X is a vector
lattice, Im need not be a lattice-homomorphism. Consider the simplest of cases when X
is the 1-dimensional real Banach lattice R, the σ-algebra Σ is B([0, 1]) and the vector
measure m : Σ→ X is defined by m(A) :=

∫
A
ψ(t) dt for A ∈ Σ, where ψ(t) := π sin(2πt)

for t ∈ [0, 1]. If λ(A) :=
∫
A
|ψ(t)| dt for A ∈ Σ, then it is routine to check that L1(m) =

L1(λ) with ‖·‖L1(m) = ‖·‖L1(λ), and that Im is given by f 7→
∫

[0,1]
f(t)ψ(t) dt for f ∈

L1(m). If we set g := χ[0,1/2] and h := χ[1/2,1], it turns out that Im(g∨h) = Im(χ[0,1]) = 0

whereas Im(g) ∨ Im(h) = 1 ∨ (−1) = 1, i.e., Im is not a lattice-homomorphism.

Having established Theorem 1.3 and its immediate consequence Corollary 6.2, let us
now formulate some relevant conditions for further investigation of a lcHs-valued vector
measure m : Σ→ X:

(a) L1(m) ( L1
w(m).

(b) L1(m) is a complex vector lattice in the m-a.e. pointwise order and contains a lattice-
isomorphic copy of c0.

(c) The lcHs L1(m) contains an isomorphic copy of c0.
(d) L1

w(m) contains a lattice-isomorphic copy of `∞.
(e) The lcHs L1

w(m) contains an isomorphic copy of `∞.
(f) L1

w(m) contains a lattice-isomorphic copy of c0.
(g) The lcHs L1

w(m) contains an isomorphic copy of c0.

In conditions (d) and (f), recall from Proposition 3.7(iv) that L1
w(m) is necessarily a

complex vector lattice in the m-a.e. pointwise order. This is not always the case for
L1(m); see Example 3.9(iii), (iv). The following condition is also relevant:

(a)∗ L1(J ◦m) ( L1
w(m).

This condition is precisely (a) with J ◦m in place of m because L1
w(m) = L1

w(J ◦m); see
Lemma 2.5(ii).

Proposition 6.4. Let m : Σ→ X be a lcHs-valued vector measure.

(i) If X is sequentially complete, then all of the conditions (a)–(g) are equivalent.
(ii) If L1(m) = L1(J ◦m), then all of the conditions (a)–(g) are equivalent.
(iii) If L1(m) is sequentially complete, then all of the conditions (a)–(g) are equivalent.
(iv) The four conditions (d)–(g) are always equivalent and each one is equivalent to (a)

∗.
(v) The implications (b)⇒(c) ⇒(d)⇒(a) are always valid.

Proof. (i) To establish (a)⇔(b)⇔(c) first observe that Theorem 1.3 gives (a)⇒(b). The
implication (b)⇒(c) is clear. Finally, (c)⇒(a) via Theorem 1.1 (in which the sequential
completeness of X is not required).

(a)⇒(d). See Theorem 1.3.
(d)⇒(e)⇒(g) and (d)⇒(f)⇒(g). These implications are obvious.
(g)⇒(a). Assume that (g) holds but (a) fails, i.e., L1(m) = L1

w(m) contains an iso-
morphic copy of c0. Then Theorem 1.1 implies that L1(m) ( L1

w(m), i.e., (a) holds. This
is a contradiction, and hence the implication (g)⇒(a) is valid.
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(ii) This follows from part (i) applied to J ◦m whose codomain space X̃ is sequentially
complete.

(iii) This is a special case of part (ii) because L1(m) = L1(J ◦m); see Lemma 2.7(ii).
(iv) The equivalence of (d)–(g) follows from part (ii) because L1

w(m) = L1
w(J ◦m);

see Lemma 2.5(ii). Then part (i) with J ◦m : Σ→ X̃ in place of m gives the equivalence
of (a)

∗ to any one of (d)–(g) because L1
w(m) = L1

w(J ◦m); see Lemma 2.5(ii).
(v) Clearly (b)⇒(c). The implications (c)⇒(d)⇒(a) hold because Lemma 2.5(iii)

yields both (c)⇒(g) and (a)
∗⇒(a) and because (a)

∗⇔(d)⇔(g) via part (iv).

In Proposition 6.4, since the sequential completeness of either X or L1(m) implies
that L1(m) = L1(J ◦ m), part (ii) is a stronger statement than (i) and (iii). There
is no direct relationship between the assumptions of (i) and (iii). In other words, the
sequential completeness of X does not always imply that of L1(m) (see Example 6.5(i)
below) whereas the sequential completeness of L1(m) need not imply that of X (see
Example 6.5(iv)). Furthermore, part (iii) of Example 6.5 exhibits a vector measure m
satisfying L1(m) = L1(J ◦ m), but such that neither the codomain space X of m nor
L1(m) is sequentially complete.

Example 6.5. (i) There exists a vector measure taking values in a sequentially com-
plete lcHs such that its corresponding L1-space is not sequentially complete. Indeed, [25,
Example B in §4] provides a non-separable Hilbert space H and an Ls(H)-valued spec-
tral measure P defined on a measurable space (Ω,Σ) such that its range P (Σ) is not
a sequentially closed subset of Ls(H). Here, the definition of a spectral measure can be
found in [46, Definition 3.16], [52, Definition III.2], for example, and Ls(H) denotes the
vector space L(H) equipped with the strong operator topology [22, Definition IV.1.2].
Thanks to the completeness of H and the Banach–Steinhaus Theorem the lcHs Ls(H)

is quasi-complete and, in particular, sequentially complete. Consequently, P (Σ) is not a
sequentially complete subset of Ls(H).

To prove that the lcHs L1(P ) is not sequentially complete, assume the contrary.
Then the closed subset Σ(P ) ⊆ L1(P ) (see Lemma 2.10(i) with m := P ) is necessarily
sequentially complete. The integration operator IP : L1(P ) → Ls(H), which is known
to be an isomorphism onto its range (see [52, Theorem V.5], for example), preserves
sequentially complete sets. Consequently, P (Σ) = IP (Σ(P )) is sequentially complete.
This is a contradiction, and hence L1(P ) is not sequentially complete.

We also claim that L1(P ) = L1
w(P ). Indeed, first observe that the lcHs Ls(H) is quasi-

complete for its weak topology. This fact can be verified via the Uniform Boundedness
Principle because H is quasi-complete for its weak topology [32, §23, 1(3)], and because
the weak topology on Ls(H) is exactly the weak operator topology; see [22, Defini-
tion VI.1.3] and [32, §39, 7(2)]. In particular, Ls(H) is also weakly Σ-complete, and
hence L1(P ) = L1

w(P ) via Lemma 2.5(iv).
(ii) We now present a simple method of producing a vector measurem whose codomain

space is not sequentially complete but L1(m) = L1(J ◦m).
Take any lcHs-valued vector measure ν : Σ→ Y , with Y sequentially complete, such

that the range R(Iν) of the corresponding integration operator Iν : L1(ν) → Y is not
sequentially closed in Y . Then the vector subspace X := R(Iν) ⊆ Y , equipped with the
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induced topology from Y , is not sequentially complete; its sequential completion X̃ is
exactly the sequential closure of X in Y . Such an example occurs in [51, Example 1], for
instance, where Y is the Banach space c0(Z),X is the dense subspace {f̂ : f ∈ L1([0, 2π])}
of Y equipped with the norm from Y (with ·̂ denoting Fourier transform), ν(A) = χ̂A
for each Borel set A ⊆ [0, 2π], in which case L1(ν) = L1([0, 2π]) with Iν(f) = f̂ , for
f ∈ L1(ν), and R(Iν) = X ( Y .

Back to the general set up with ν : Σ→ Y (as described above), letm : Σ→ X denote
the vector measure ν regarded as being X-valued. Then L1(m) = L1(J ◦m) = L1(ν) (as
lcHs), which is routine to verify.

(iii) In the notation of part (i), it follows from part (ii) with Y := Ls(H) and ν := P

that the resulting vector measure m : Σ → X := R(IP ) satisfies L1(m) = L1(J ◦ m).
However, as noted in part (i), neither of the (isomorphic) lcHs L1(m) andX is sequentially
complete.

(iv) Let us apply part (ii) to the Banach space case. We claim, given any infinite-
dimensional Banach space Y , that there always exists a Y -valued vector measure ν defined
on the Borel σ-algebra B([0, 1]) of [0, 1] such that ν satisfies the condition in part (ii).
Indeed, take any vector measure ν : B([0, 1])→ Y such that Iν : L1(ν)→ Y is a compact
operator and R(ν) is not contained in any finite-dimensional vector subspace of Y ; see
Theorem 2 and its proof in [43]. Then X := R(Iν) is not closed in Y , which establishes
the claim.

Now, the X-valued vector measure m : B([0, 1])→ X as given in part (ii) satisfies the
following conditions: its codomain space X is not sequentially complete, the equalities
(as lcHs) L1(m) = L1(J ◦m) = L1(ν) hold and L1(m) is a Banach space. In particular,
L1(m) is surely sequentially complete.

In part (i) of Example 6.5 above, the fact that the codomain space Ls(H) of P is
not metrizable is crucial. The non-metrizability follows, for example, from the fact that
Ls(H) is quasi-complete but not complete.

Now, let us analyze the condition L1(m) = L1(J ◦ m), which is not only the as-
sumption of Proposition 6.4(ii) but has also appeared in various other statements and
examples in this paper. In Lemma 6.6 below, we characterize when the identity L1(m) =

L1(J ◦ m) is valid. Recall that L1(m)R has the σ-Monotone Completeness Property,
briefly σ-MCP, if every increasing τ(m)-Cauchy sequence in L1(m)R is τ(m)-convergent
in L1(m)R [1, Definition 7.4]. Recall from Proposition 3.7(i) that L1(m)R is always a
vector lattice (whether or not L1(m) is a complex vector lattice for the m-a.e. pointwise
order).

Lemma 6.6. Given a lcHs-valued vector measure m : Σ → X, the identity L1(m) =

L1(J ◦m) holds if and only if L1(m)R has the σ-MCP.

Proof. Suppose that L1(m) = L1(J◦m). According to Proposition 6.4(ii) the space L1(m)

is a complex vector lattice. Take an increasing τ(m)-Cauchy sequence {fn}∞n=1 ⊆ L1(m)R.
To prove its τ(m)-convergence (by considering {fn−f1}∞n=1 if necessary), we may assume
that fn ≥ 0 for all n ∈ N. The function F : Ω→ [0,∞] defined by the pointwise limit of
{fn}∞n=1 on Ω is then Σ-measurable. With B := {w ∈ Ω : F (w) <∞}, we claim that Ω\B
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ism-null. To see this, fix x∗ ∈ X∗\{0}. Then px∗(x) := |〈x, x∗〉|, for x ∈ X, is a continuous
seminorm on X and x∗ ∈ U◦px∗ . Hence, (2.5) implies that

∫
Ω
|g| d|〈m,x∗〉| ≤ px∗(m)(g)

for all g ∈ L1(m). Since {fn}∞n=1 is increasing and τ(m)-Cauchy, it follows that∫
Ω

F d|〈m,x∗〉| = lim
n→∞

∫
Ω

fn d|〈m,x∗〉| ≤ sup
n∈N

px∗(m)(fn) <∞

(via the Monotone Convergence Theorem for |〈m,x∗〉|). Consequently, F is finite-valued
|〈m,x∗〉|-a.e., so Ω \B is |〈m,x∗〉|-null. As x∗ ∈ X∗ \ {0} is arbitrary, this establishes the
claim.

Next we show that f := FχB ∈ L1(m) and that {fn}∞n=1 is τ(m)-convergent to f .
First, observe that limn→∞ fnχB = f pointwise on Ω. Given A ∈ Σ, the sequence
{
∫
A
fn dm}∞n=1 is Cauchy inX (see (2.6)) and so admits a limit in X̃. Hence, Lemma 2.7(i)

(with J ◦ m in place of m) implies that f ∈ L1(J ◦ m) and that {fn}∞n=1 is τ(J ◦ m)-
convergent to f . The assumption that L1(m) = L1(J ◦m) now gives f ∈ L1(m) to which
{fn}∞n=1 is τ(m)-convergent. Thus, L1(m)R has the σ-MCP.

Conversely, suppose that L1(m)R has the σ-MCP. To verify that L1(J ◦m)+
R ⊆ L1(m),

fix f ∈ L1(J ◦ m)+
R . Select an increasing sequence {sn}∞n=1 ⊆ (sim Σ)+

R converging
pointwise on Ω to f . Thanks to the LCP of the X̃-valued vector measure J ◦ m (see
Lemma 2.7(iii)), the sequence {sn}∞n=1 is τ(J ◦ m)-convergent to f . Consequently, the
increasing sequence {sn}∞n=1 is τ(m)-Cauchy in L1(m)R, and hence admits a τ(m)-limit
g ∈ L1(m)R as L1(m)R is assumed to have the σ-MCP. Thus, f = g ∈ L1(m)R, which
establishes the inclusion L1(J ◦m)+

R ⊆ L1(m).
Next, since L1(J ◦m) is a complex vector lattice in the (J ◦m)-a.e. pointwise order

(see Remark 3.8(i)(β) with J ◦m in place of m and X̃ in place of X), it follows that

L1(J ◦m) = L1(J ◦m)+
R − L

1(J ◦m)+
R + i(L1(J ◦m)+

R − L
1(J ◦m)+

R )

⊆ L1(m) ⊆ L1(J ◦m).

In other words, L1(m) = L1(J ◦m).

Remark 6.7. Our motivation for considering the σ-MCP is from [21]. If we have a vector
measure m with values in a real lcHs X, then all m-integrable and all J ◦m-integrable
functions are taken to be R-valued, i.e., L1(m) = L1(m)R and L1(J ◦m) = L1(J ◦m)R,
and the result corresponding to Lemma 6.6 is still valid. Namely, L1(m)R = L1(J ◦m)R
if and only if L1(m)R has the σ-MCP. Of course, J ◦m now takes its values in the real
sequential completion of the real lcHs X. This observation and [21, Theorem 2.4] give
the equivalence of (b) and (c) in the above list of conditions (a)–(g), with (c0)R in place
of c0. Consequently, we can obtain a part of Proposition 6.4(ii) in the real case. Similarly,
a corresponding result for L1(m)R can be established even if we begin with a vector
measure m taking values in a (complex) lcHs.

We now turn our attention to part (v) of Proposition 6.4 for a general lcHs-valued
vector measurem : Σ→ X. The reverse implications to (b)⇒(c)⇒(d)⇒(a) fail to hold, in
general. Indeed, for (c);(b) and (d);(c), see Examples 6.8 and 6.11 below, respectively,
whereas Example 2.6(iii) shows that (a);(d).
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Example 6.8. We adopt Example 3.9(iv)&(v) to show that (c);(b). Let Ω,Σ and ϕ

be as in Example 2.6. By µ we denote the c0-valued vector measure A 7→ χA/ϕ on Σ.
As µ is exactly the vector measure of Example 2.6(ii), where it is denoted by m, we
deduce from there that L1(µ) = ϕ · c0. Moreover, L1(µ) is a complex Banach lattice (see
Remark 3.8(ii)) and ‖f‖L1(µ) = ‖f/ϕ‖c0 for f ∈ L1(µ), which can be proved directly or
obtained from [46, Lemma 3.13]. With 2N := {2n : n ∈ N}, let

sim 22N := span{χA : A ⊆ 2N} ⊆ L1(µ).

(i) Let X be any vector subspace of L1(µ) satisfying the following three conditions:

χN ∈ X, (6.8)

f sim Σ ⊆ X for all f ∈ X, (6.9)

(ϕχ2N−1) · c0 ⊆ X. (6.10)

We can consider the X-valued set function m : A 7→ χA on 2N because of the inclusion
sim Σ ⊆ X; see (6.9) with f := χN ∈ X. Equip X with the norm induced by L1(µ).
Then m : Σ → X is a vector measure [41, Proposition 3.1]. Furthermore, the associated
integration operator Im : L1(m) → X is the identity map, with L1(m) = X as an
isomorphism of normed spaces [41, Corollary 3.2]. We can say more: L1(m) and X even
have equal norms. Indeed, given f ∈ L1(m), we claim that

‖f‖L1(m) = sup ‖Im(fs)‖X = sup ‖fs‖X = ‖f‖X , (6.11)

where the supremum is taken over the set {s ∈ sim Σ : |s(n)| ≤ 1 for all n ∈ N}. Even
though m takes its values in a normed space, the first equality in (6.11) can be proved as
in Lemma 3.11 of [46] (where it is only stated for Banach spaces) and the last equality
in (6.11) holds because L1(µ) induces the norm on X; again apply [46, Lemma 3.11]
to the Banach-space-valued vector measure µ. The inclusion (6.10) enables us to define
a linear map T : c0 → L1(m) = X by T (g) :=

∑∞
n=1 ϕ(2n − 1)g(n)e2n−1 for g ∈ c0,

with {en}∞n=1 denoting the canonical basis of c0. It follows from (6.11) that T is a linear
isometry onto its range. In particular, m satisfies condition (c).

In parts (ii) and (iii) below, concrete examples of such spaces X will be presented.
(ii) The vector subspace of L1(µ) given by

X := (ϕχ2N−1) · c0 + sim 22N +
√
ϕ sim 22N

satisfies the three conditions (6.8)–(6.10) imposed in part (i). So, part (i) implies that
the X-valued vector measure m : A 7→ χA on Σ satisfies L1(m) = X and condition (c).
It is clear that L1(m) is closed under complex conjugation. However, L1(m) is not closed
under forming the modulus because∣∣χ2N + i

√
ϕχ2N

∣∣ /∈ L1(m) = X, (6.12)

whereas χ2N + i
√
ϕχ2N ∈ L1(m). To verify that (6.12) is valid assume, on the contrary,

that |χ2N + i
√
ϕχ2N| ∈ L1(m). Observing that |χ2N + i

√
ϕχ2N| has its support in 2N,

there exist s1, s2 ∈ sim 22N such that(√
1 + ϕ

)
χ2N =

√
χ2N + ϕχ2N =

∣∣χ2N + i
√
ϕχ2N

∣∣ = s1 +
√
ϕs2,
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that is,
(√

1 + ϕ
)
χ2N −

√
ϕs2 = s1. It follows that

s1 −
χ2N√

1 + ϕ+
√
ϕ

=
√
ϕ (χ2N − s2). (6.13)

Since the left side of (6.13) is uniformly bounded and since √ϕ is unbounded on N, the
function √ϕ (χ2N − s2) must vanish outside some finite subset of N, which implies that√
ϕ (χ2N − s2) ∈ sim 22N. Consequently,

χ2N√
1 + ϕ+

√
ϕ

= s1 −
√
ϕ (χ2N − s2) ∈ sim 22N. (6.14)

This contradicts the fact that the left side of (6.14) has infinite range, and hence does not
belong to sim 22N. Thereby (6.12) is verified. So, L1(m) is not a complex vector lattice in
the (m-a.e.) pointwise order (note that N0(m) = ∅).

That m fails the LCP can be deduced from (6.12) together with∣∣χ2N + i
√
ϕχ2N

∣∣ ≤ χ2N +
√
ϕχ2N ∈ L1(m).

(iii) Let h :=
(√
ϕ+ i lnϕ

)
χ2N. Then the vector subspace

X := (ϕχ2N−1) · c0 + χ2N · `∞ + h sim 22N ⊆ L1(µ)

satisfies the three conditions (6.8)–(6.10) imposed in part (i). Again by part (i), the X-
valued vector measure m : A 7→ χA on Σ satisfies condition (c). Clearly h ∈ X = L1(m).
However, neither |h| nor h belongs to L1(m). So, it follows from Proposition 3.7(ii) that
L1(m) is not a complex vector lattice in the m-a.e. pointwise order, and hence m fails to
satisfy condition (b).

Finally, observe that every non-negative function belonging to L1(m) has the form
ϕχ2N−1f +χ2Ng for some non-negative elements f ∈ c0 and g ∈ `∞. Even though L1(m)

is not closed under forming the modulus, this description for elements of L1(m)+ implies
that L1(m) does have the property that if F is m-integrable and satisfies |F | ≤ G for
some G ∈ L1(m)+, then |F | ∈ L1(m). In particular, if F is the m-a.e. pointwise limit
of a sequence of m-integrable functions {Fn}∞n=1 satisfying |Fn| ≤ G for n ∈ N, then
also |F | ≤ G, and hence F is m-integrable. By the Dominated Convergence Theorem
applied to the vector measure m ◦ J : Σ → X̃ [46, Theorem 3.7(i)], it follows that
{Fn}∞n=1 is τ(m ◦ J)-convergent to F . Since the norm in the Banach space X̃ = L1(µ)

is the continuous extension of the (relative) norm in its dense subspace X, it is clear
from (2.5) that τ(m ◦ J) coincides with τ(m) on L1(m) ⊆ L1(m ◦ J) and so {Fn}∞n=1 is
τ(m)-convergent to F . This shows that m has the LCP.

Problem 6.9. Does there exist a lcHs-valued vector measure m satisfying condition (c)
such that L1(m) is a complex vector lattice in the m-a.e. pointwise order, but L1(m)

does not contain a lattice-isomorphic copy of c0?

Let us undertake some preparations to show that the vector measure in Example 2.6(i)
serves to establish that (a);(c). By F(N) we denote the class of all non-empty, finite
subsets of N, directed by inclusion. Consider a sequence {yn}∞n=1 in a lcHs Y . Recall
that {yn}∞n=1 is unordered summable if the net {

∑
n∈σ yn}σ∈F(N) is convergent in Y (cf.

condition (c) in [15, p. 78]). Following [4, p. 86] a sequence {yn}∞n=1 is called subfamily
summable if every subsequence of {yn}∞n=1 is unordered summable in Y .
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Fact 4. In any lcHs a series is subfamily summable if and only if it is subseries sum-
mable.

Proof. Let Y be a lcHs. Assume that the series {yn}∞n=1 is subfamily summable in Y .
Then an arbitrary subsequence {yn(k)}∞k=1 of {yn}∞n=1 is unconditionally summable (see
Section 2) because unordered summability and unconditional summability for a sequence
in a lcHs are equivalent [15, (1)(b), p. 79]. In particular, {yn(k)}∞k=1 is summable. This
shows that {yn}∞n=1 is subseries summable.

Conversely, suppose that a series {yn}∞n=1 ⊆ Y is subseries summable. Again, take an
arbitrary subsequence {yn(k)}∞k=1 of {yn}∞n=1. Then {yn(k)}∞k=1 is also subseries summable,
and hence unconditionally summable; see Lemma 2.1(i). Again by [15, (1)(b), p. 79],
the subsequence {yn(k)}∞k=1 is unordered summable. Consequently, {yn}∞n=1 is subfamily
summable.

Lemma 6.10. Equip the vector space sim 2N with the uniform norm inherited from `∞.
There is no continuous linear injection from any infinite-dimensional Banach space into
the normed space sim 2N.

Proof. Assume, on the contrary, that there exist an infinite-dimensional Banach space Y
and a continuous linear injection T : Y → sim 2N. Select a linearly independent, infinite
subset {yn : n ∈ N} from the closed unit ball of Y . With zn := 2−nyn for n ∈ N, the
sequence {zn}∞n=1 is subseries summable because

∑∞
n=1 ‖zn‖Y < ∞ and because Y is

complete. Then {T (zn)}∞n=1 is also subseries summable in sim 2N (as T is continuous and
linear), and hence {T (zn)}∞n=1 is subfamily summable by Fact 4 above. It now follows from
[4, Theorem 1] that span{T (zn) : n ∈ N} is finite-dimensional. This is a contradiction
because T being a continuous linear injection implies that {T (zn) : n ∈ N} is an infinite,
linearly independent subset of sim 2N.

Example 6.11. Let the notation be as in Example 2.6(i). Then L1(m) is a normed space
with norm ‖f‖L1(m) := supn∈N |f(n)/ϕ(n)| for f ∈ L1(m) = sim Σ. Let (sim Σ)∞ denote
sim Σ equipped with the uniform norm (i.e., from `∞) and let j∞ denote the natural
embedding of (sim Σ)∞ into its completion `∞. With S : L1(m) → (sim Σ)∞ being the
identity map, we see that the composition j∞ ◦ S : L1(m) → `∞ is a closed linear
map.

Assume that condition (c) holds, that is, there is an isomorphism T : c0 → L1(m)

onto its range. Then the composition j∞ ◦ (S ◦ T ) : c0 → `∞ is a closed linear map, and
hence is continuous via the Closed Graph Theorem. Consequently, S ◦T : c0 → (sim Σ)∞
is a continuous linear injection. This contradicts Lemma 6.10 and so condition (c) fails
to hold.

On the other hand, m does satisfy condition (d) because L1
w(m) = (1/ϕ) · `∞. So,

m is an example showing that (d);(c). Moreover, we can see directly that (a)
∗;(c) and

(a);(c) because L1(m) ( L1(J ◦ m) ( L1
w(m). It is worth noting that L1(J ◦ m) =

(1/ϕ) · c0 is lattice-isomorphic to c0.

In Example 6.12 below we shall construct a non-atomic vector measure satisfying
condition (b) from a purely atomic vector measure with the same property. Recall that
a set A ∈ Σ is an atom for a lcHs-valued vector measure m : Σ→ X if m(A) 6= 0 and if,
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for each B ∈ Σ, either m(A ∩ B) = 0 or m(A \ B) = 0 [26, p. 7], [31, p. 32]. We call m
non-atomic if m does not have any atoms. Analogously to the case of a scalar measure
[28, p. 650], we say that m is purely atomic if every non-m-null set contains an atom.

Example 6.12. Let X := c0. With ϕ : N → N denoting the identity, let ν : 2N → X

be the vector measure in Example 2.6(ii), denoted there by m, i.e., ν(A) := χA/ϕ for
A ∈ 2N. Then L1(ν) = ϕ·c0 ( ϕ·`∞ = L1

w(ν). That L1(ν) (resp. L1
w(ν)) contains a lattice-

isomorphic copy of c0 (resp. `∞) can be seen once we observe that ‖g‖L1(ν) = ‖g/ϕ‖c0
for g ∈ L1(ν) (resp. ‖g‖L1

w(ν) = ‖g/ϕ‖`∞ for g ∈ L1
w(ν)). Moreover, ν is purely atomic

and its atoms are all the singleton sets {n} for n ∈ N.
Define Ω := [0, 1]×N. For each ψ ∈ CN, we denote by χ[0,1]⊗ψ the C-valued function

(t, n) 7→ χ[0,1](t)ψ(n) on Ω. For a subsetW of CN, define χ[0,1]⊗W := {χ[0,1]⊗ψ : ψ ∈W}.
Let Σ be the product σ-algebra B([0, 1])⊗ 2N, in which case

Σ =
{ ∞⋃
n=1

(Bn × {n}) : Bn ∈ B([0, 1]) for each n ∈ N
}
.

Lebesgue measure on B([0, 1]) is denoted by µ. The set function m : Σ→ X defined by

m(A) :=

∫
N

(∫
[0,1]

χA(t, n) dµ(t)

)
dν(n), A ∈ Σ,

is clearly finitely additive. Given a decreasing sequence {A(k)}∞k=1 in Σ with
⋂∞
k=1A(k)

= ∅, the σ-additivity of µ ensures that the decreasing sequence {
∫

[0,1]
χA(k)(t, ·) dµ(t)}∞k=1

of ν-integrable functions converges to 0 pointwise on N. This enables us to apply the
LCP of ν (see Lemma 2.7(iii)) to deduce that limk→∞m(A(k)) = 0 in X. Hence, m is
σ-additive. Fix h ∈ X∗ = `1. Given B ∈ B([0, 1]) and n ∈ N, it follows that

〈m,h〉(B × {n}) = 〈µ(B)ν({n}), h〉 = (h(n)/ϕ(n))µ(B).

Consequently,
|〈m,h〉|(B × {n}) = (|h(n)|/ϕ(n))µ(B). (6.15)

So, given f ∈ L0(Σ), since Ω is the disjoint union of its subsets Ω(n) := [0, 1] × {n} for
n ∈ N, we find from (6.15) that∫

Ω

|f | d|〈m,h〉| =
∞∑
n=1

∫
Ω(n)

|f | d|〈m,h〉|

=

∞∑
n=1

(|h(n)|/ϕ(n))

∫
[0,1]

|f(t, n)| dµ(t). (6.16)

Therefore, f ∈ L1
w(m) if and only if n 7→ (

∫
[0,1]
|f(t, n)| dµ(t))/ϕ(n), for n ∈ N, is an

element of `∞, i.e.,

sup
n∈N

1

ϕ(n)

∫
[0,1]

|f(t, n)| dµ(t) <∞, (6.17)

in which case the left side of (6.17) equals ‖f‖L1
w(m). Consequently, χ[0,1] ⊗ L1

w(ν) ⊆
L1
w(m) and ‖χ[0,1] ⊗ g‖L1

w(m) = ‖g‖L1
w(ν) = ‖g/ϕ‖`∞ for all g ∈ L1

w(ν). So, the linear
map S : `∞ → L1

w(m) defined by S(ψ) := χ[0,1] ⊗ (ϕψ), for ψ ∈ `∞, is a linear isometry
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onto R(S) = χ[0,1] ⊗ L1
w(ν). Furthermore, S is a lattice-isomorphism onto its range, i.e.,

m satisfies condition (d).
Let us identify L1(m), which is strictly smaller than L1

w(m) via Proposition 6.4(i)
(i.e., (d)⇒(a)). For each f ∈ L1

w(m) and A ∈ Σ we can, similarly to (6.16), deduce
that ∫

A

f d〈m,h〉 =

∞∑
n=1

h(n)
1

ϕ(n)

∫
[0,1]

f(t, n)χA(t, n) dµ(t), h ∈ `1.

Accordingly, such an f belongs to L1(m) if and only if

lim
n→∞

1

ϕ(n)

∫
[0,1]

|f(t, n)|χA(t, n) dµ(t) = 0, A ∈ Σ,

which is, in turn, equivalent to

lim
n→∞

1

ϕ(n)

∫
[0,1]

|f(t, n)| dµ(t) = 0.

So, S(c0) = χ[0,1] ⊗ L1(ν) ⊆ L1(m). Let T : c0 → L1(m) be the restriction S|c0 with
codomain space L1(m). Then T is a lattice-isomorphism onto R(T ) = χ[0,1] ⊗ L1(ν).
Since L1(m) is a Banach lattice, this shows that m satisfies condition (b). Moreover, we
see explicitly from

S(`∞ \ c0) = χ[0,1] ⊗ (L1
w(ν) \ L1(ν)) ⊆ L1

w(m) \ L1(m)

that condition (a) is satisfied; see also (a)⇔(b) in Proposition 6.4(i).
Finally, we claim that m is non-atomic. To see this, let A ∈ Σ be any non-m-null

set. Then m(A) =
∑∞
n=1m(Ω(n) ∩ A) 6= 0. So, select n ∈ N with m(Ω(n) ∩ A) 6= 0.

Then Ω(n) ∩ A = B × {n} for some B ∈ B([0, 1]). Since we have 0 6= m(Ω(n) ∩ A) =

m(B × {n}) = µ(B)ν({n}), it follows that µ(B) > 0. Writing B = C ∪ D for dis-
joint Borel sets C,D satisfying µ(C) > 0 and µ(D) > 0 we have m(C × {n}) =

µ(C)ν({n}) 6= 0 and m(D × {n}) = µ(D)ν({n}) 6= 0. Since C × {n} and D × {n}
are pairwise disjoint subsets of A we see that A is not an atom. That is, m is non-
atomic.

Remark 6.13. Let m : Σ → X be a Banach-space-valued vector measure. As observed
at the end of Section 3 the proof of the implication (ii)⇒(iii) of Proposition 3.11 is
indirect. We end this section by presenting a rather interesting direct proof (via the
contrapositive implication (iii);(ii)). This is achieved by applying the classical Kadec–
Pełczyński “disjointification method” to construct a lattice-isomorphic copy of c0 in L1(m)

from any given Banach space isomorphic copy of c0 in L1(m).
More precisely, suppose that there exists a Banach space isomorphism S0 : c0→L1(m)

onto its range. Then there exist positive constants a0, b0 satisfying

a0‖S0(α)‖L1(m) ≤ ‖α‖c0 ≤ b0‖S0(α)‖L1(m), α ∈ c0.

In particular, with {en}∞n=1 denoting the canonical basis of c0, we have

a0 ≤ 1/‖S0(en)‖L1(m) ≤ b0, n ∈ N.
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This enables us to define a surjective isomorphism T0 : c0 → c0 by

T0(α) :=

∞∑
n=1

1

‖S0(en)‖L1(m)
α(n)en, α ∈ c0.

Then the composition S0 ◦ T0 : c0 → L1(m) is an isomorphism onto its range, i.e., onto
R(S0). Accordingly, with S := S0 ◦ T0 and fn := S(en) for n ∈ N, there exist constants
a, b with 0 < a ≤ b such that, for every α ∈ c0, we have

a
∥∥∥ N∑
n=1

α(n)fn

∥∥∥
L1(m)

≤
∥∥∥ N∑
n=1

α(n)en

∥∥∥
c0
≤ b
∥∥∥ N∑
n=1

α(n)fn

∥∥∥
L1(m)

(6.18)

for all N ∈ N. Note also that ‖fn‖L1(m) = 1 for all n ∈ N.
Choose x∗ ∈ X∗ such that µ := |〈m,x∗〉| is a probability measure on Σ with µ

and m being mutually absolutely continuous [18, Theorem IX.2.2]. The natural embed-
ding Φ : L1(m) → L1(µ) is then continuous (see (2.23)), and hence the composition
Φ ◦ S : c0 → L1(µ), which is also continuous, preserves weakly absolutely Cauchy se-
quences. So, the functions (Φ ◦ S)(en) = Φ(fn), for n ∈ N, form a weakly absolutely
Cauchy sequence in L1(µ). Since the weakly sequentially complete space L1(µ) [22, The-
orem IV.8.6] is necessarily weakly Σ-complete, we can apply Lemma 2.2 to deduce that
{Φ(fn)}∞n=1 is a norm-summable sequence in the Banach space L1(µ). In particular,
limn→∞ ‖Φ(fn)‖L1(µ) = 0.

Assume, for the moment, that there exist a subsequence {fn(k)}∞k=1 of {fn}∞n=1 and a
disjointly supported sequence {gk}∞k=1 of functions in the Banach lattice L1(m) satisfying

lim
k→∞

‖fn(k) − gk‖L1(m) = 0. (6.19)

We shall proceed, leaving the verification of this fact until the end of the proof.
Without loss of generality we may suppose that

‖fn(k) − gk‖L1(m) ≤ 1/(b2k+1), k ∈ N, (6.20)

as we can select further subsequences of {fn(k)}∞k=1 and of {gk}∞k=1 with this property, if
necessary. Given N ∈ N and α ∈ c0, we claim that

2a

3

∥∥∥ N∑
k=1

α(k)gk

∥∥∥
L1(m)

≤ max
1≤k≤N

|α(k)| ≤ 2b
∥∥∥ N∑
k=1

α(k)gk

∥∥∥
L1(m)

. (6.21)

In fact, the triangle inequality and (6.20) yield

a
∥∥∥ N∑
k=1

α(k)gk

∥∥∥
L1(m)

≤ a
(∥∥∥ N∑

k=1

α(k)(gk − fn(k))
∥∥∥
L1(m)

+
∥∥∥ N∑
k=1

α(k)fn(k)

∥∥∥
L1(m)

)
≤ a

2b
max

1≤k≤N
|α(k)|+ a

∥∥∥ N∑
k=1

α(k)fn(k)

∥∥∥
L1(m)

.

But, with α̃ :=
∑∞
k=1 α(k)en(k) in place of α in (6.18), we have

a
∥∥∥ N∑
k=1

α(k)fn(k)

∥∥∥
L1(m)

= a
∥∥∥ n(N)∑
r=1

α̃(r)fr

∥∥∥
L1(m)

≤
∥∥∥ n(N)∑
r=1

α̃(r)er

∥∥∥
c0

= max
1≤k≤N

|α(k)|.
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Since a/(2b) + 1 ≤ 3/2 (recall that a ≤ b), we conclude that

a
∥∥∥ N∑
k=1

α(k)gk

∥∥∥
L1(m)

≤ 3

2
max

1≤k≤N
|α(k)|,

which verifies the first inequality in (6.21). On the other hand, from (6.18) and (6.20) we
have

max
1≤k≤N

|α(k)| = max
1≤r≤n(N)

|α̃(r)| ≤ b
∥∥∥ n(N)∑
r=1

α̃(r)fr

∥∥∥
L1(m)

= b
∥∥∥ N∑
k=1

α(k)fn(k)

∥∥∥
L1(m)

≤ b
(∥∥∥ N∑

k=1

α(k)gk

∥∥∥
L1(m)

+
∥∥∥ N∑
k=1

α(k)(gk − fn(k))
∥∥∥
L1(m)

)
≤ b
∥∥∥ N∑
k=1

α(k)gk

∥∥∥
L1(m)

+ (b/2b) max
1≤k≤N

|α(k)|,

from which the second inequality in (6.21) follows. It then follows from (6.21) that

2a

3

∥∥∥ N∑
k=1

α(k)|gk|
∥∥∥
L1(m)

≤ max
1≤k≤N

|α(k)| ≤ 2b
∥∥∥ N∑
k=1

α(k)|gk|
∥∥∥
L1(m)

(6.22)

because the disjointly supported functions gk, for 1 ≤ k ≤ N , satisfy∥∥∥ N∑
k=1

α(k)gk

∥∥∥
L1(m)

=

∥∥∥∥∣∣∣ N∑
k=1

α(k)gk

∣∣∣∥∥∥∥
L1(m)

=

∥∥∥∥∣∣∣ N∑
k=1

α(k)|gk|
∣∣∣∥∥∥∥
L1(m)

=
∥∥∥ N∑
k=1

α(k)|gk|
∥∥∥
L1(m)

, N ∈ N,

as L1(m) is a complex Banach lattice for the m-a.e. pointwise order.
Given α ∈ c0, it follows from (6.22) that the sequence {

∑N
k=1 α(k)|gk|}∞N=1 of partial

sums is Cauchy, and hence converges in L1(m). This allows us to define a linear map
R : c0 → L1(m) by R(α) :=

∑∞
k=1 α(k)|gk| for α ∈ c0. By letting N → ∞ in (6.22) it is

clear that R is an isomorphism onto its range. Since the non-negative functions |gk|, for
k ∈ N, are disjointly supported it is clear that R is also a lattice-isomorphism onto its
range. In other words, L1(m) contains a lattice-isomorphic copy of c0.

Finally, it remains to verify the existence of a subsequence {fn(k)}∞k=1 of {fn}∞n=1 and
of a sequence {gk}∞k=1 of disjointly supported functions in L1(m) which satisfy (6.19). We
shall follow the arguments in the proof of Proposition 1.c.8 in [35], which is taken from
[23, Theorem 4.1]. Actually, such arguments originated in [29, §2]. Recall the natural
embedding Φ : L1(m) → L1(µ) mentioned above. No confusion will arise by writing
f = Φ(f) for each f ∈ L1(m) ⊆ L1(µ). Moreover, we may assume that ‖χΩ‖L1(m) = 1;
otherwise replace m by the vector measure κm : Σ → X with κ := 1/‖χΩ‖L1(m). Fix
ε ∈ (0, 1). Define the Σ-measurable sets

σ(f, ε) := {w ∈ Ω : |f(w)| ≥ ε‖f‖L1(m)}, f ∈ L1(m),

and the subset of L1(m) given by

M(ε) := {f ∈ L1(m) : µ(σ(f, ε)) ≥ ε}.
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Given any j ∈ N∪{0}, we claim that there exists N(ε, j) ∈ N satisfying both N(ε, j) > j

and
0 < µ(σ(fN(ε,j), ε)) < ε. (6.23)

Indeed, since limn→∞ ‖fn‖L1(µ) = 0, we can select N(ε, j) ∈ N satisfying N(ε, j) > j and
such that ‖fN(ε,j)‖L1(µ) < ε2. Recalling that ‖fN(ε,j)‖L1(m) = 1, we have

ε = ε‖fN(ε,j)‖L1(m) ≤ |fN(ε,j)(w)|, w ∈ σ(fN(ε,j), ε),

and hence

εµ(σ(fN(ε,j), ε)) ≤ ‖fN(ε,j)χσ(fN(ε,j),ε)‖L1(µ) ≤ ‖fN(ε,j)‖L1(µ) < ε2.

Accordingly, µ(σ(fN(ε,j), ε)) < ε, which is one part of (6.23). To verify the other part
of (6.23) assume, on the contrary, that µ(σ(fN(ε,j), ε)) = 0, that is, |fN(ε,j)(w)| < ε for
µ-a.e. w ∈ Ω. This implies that

1 = ‖fN(ε,j)‖L1(m) ≤ ‖εχΩ‖L1(m) = ε,

which contradicts ε ∈ (0, 1). Thus µ(σ(fN(ε,j), ε)) > 0, and hence (6.23) is verified.
Next, define an increasing sequence {s(n)}∞n=1 in N inductively via s(1) := N(1/2, 0)

≥ 1 and s(n) := N(2−n, s(n−1)) for n ≥ 2. Then, given any n ∈ N, it follows from (6.23)
for ε := 2−n with j := s(n− 1) if n ≥ 2 and j := 0 if n = 1 that

0 < µ(σ(fs(n), 2
−n)) < 2−n.

In particular, fs(n) /∈M(2−n) for n ∈ N. As L1(m) is a complex Banach lattice with order
continuous norm (see Remark 3.8(ii)), by setting zn := fs(n) for n ∈ N, we can use the
argument in the latter part of the proof of Proposition 1.c.8 in [35] to select a subsequence
{fs(nk)}∞k=1 of {fs(n)}∞n=1 and a sequence of pairwise disjoint sets A(k) := σ(fs(nk), 2

−nk)

in Σ, for k ∈ N, such that

‖fs(nk)χA(k) − fs(nk)‖L1(m) ≤ 21−k, k ∈ N. (6.24)

Then the functions gk := fs(nk)χA(k) ∈ L1(m), for k ∈ N, are disjointly supported and
(6.24) implies that (6.19) holds, as required.

7. Characterization of the equality L1(m) = L1
w(m)

Throughout this section the setting is that of a Banach-space-valued vector measure
m : Σ → X, in which case both L1(m) and L1

w(m) are Banach lattices. According to
Corollary 4.4(iv), if X does not contain an isomorphic copy of c0, then neither does
L1(m). Then Proposition 6.4(i)&(iii) implies (via the equivalence (a)⇔(c) of the con-
ditions immediately prior to 6.4) that necessarily L1(m) = L1

w(m). It is known (see
[46, Proposition 3.38], for example, and the references given there) that each of the fol-
lowing conditions is equivalent to L1(m) = L1

w(m):

• L1(m) is weakly sequentially complete.
• L1(m) does not contain an isomorphic copy of c0.
• L1

w(m) is weakly sequentially complete.
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• The Banach lattice L1(m) has the Fatou property.
• The Banach lattice L1

w(m) has order continuous norm.

All of the above equivalent conditions, characterizing the equality L1(m) = L1
w(m),

are in terms of Banach space or Banach lattice properties of L1(m) and L1
w(m). The

first aim of this section is to characterize the equality L1(m) = L1
w(m) in terms of the

integration operator Im : L1(m) → X; here Corollary 6.2 plays a crucial role. In the
latter part of the section we present various sufficient conditions on Im, mainly in terms
of concavity requirements or membership of Im in certain operator ideals, which ensure
that L1(m) = L1

w(m).
Let us begin with the following known result.

Proposition 7.1. Let m be a Banach-space-valued vector measure.

(i) If Im is weakly compact, then necessarily L1(m) = L1
w(m).

(ii) If Im is completely continuous, then necessarily L1(m) = L1
w(m).

Recall that Im is weakly compact if, whenever {fn}∞n=1 is a norm-bounded sequence
in L1(m), then its image {Im(fn)}∞n=1 has a weakly convergent subsequence [17, p. 49].
Proposition 7.1(i) occurs in [13, Corollary 2.3]; its converse is not valid in general (see
Examples 7.2(i) and 7.3 below).

The integration operator Im is completely continuous if it maps weakly Cauchy
sequences in L1(m) to norm-convergent sequences in X [2, Theorem 19.1]. Proposi-
tion 7.1(ii) occurs (even for Fréchet-space-valued measures) in [9, Theorem 3.6]; its con-
verse also fails to hold, in general (see Examples 7.2(ii) and 7.3 below).

It is important to note that the weak compactness of Im need not imply its complete
continuity (see Example 7.2(ii)), nor vice versa (see Examples 7.2(i) and 7.3(ii)). There
also exist Banach-space-valued vector measures m for which L1(m) = L1

w(m) but Im is
neither weakly compact nor completely continuous; see Example 7.3.

The variation measure |m| : Σ → [0,∞] of a Banach-space-valued vector measure m
is defined as for scalar measures [18, Definition I.1.4]; it is the smallest σ-additive, [0,∞]-
valued measure dominating m in the sense that ‖m(A)‖X ≤ |m|(A) for every A ∈ Σ.
Moreover, with continuous inclusions, it is always the case that

L1(|m|) ⊆ L1(m) ⊆ L1
w(m);

see [46, Lemma 3.14(i) and p. 138].

Example 7.2. Let 1 ≤ r ≤ ∞ and consider the Volterra vector measure νr : B([0, 1])→
Lr([0, 1]) given by

νr(A) : t 7→
∫ t

0

χA(s) ds, t ∈ [0, 1],

for each A ∈ B([0, 1]). For 1 ≤ r <∞ the codomain space Lr([0, 1]) is weakly sequentially
complete, and hence also weakly Σ-complete. It then follows from Lemma 2.5(iv) (with
m := νr) that L1(νr) = L1

w(νr).
(i) Suppose that r = 1 or ∞. Then L1(νr) = L1(|νr|) and the integration operator

Iνr is completely continuous but not weakly compact [46, Example 3.49(iv)]. Moreover,



58 S. Okada et al.

L1(νr) = L1
w(νr) follows from Proposition 7.1(ii), or via the weak sequential completeness

of L1(νr) = L1(|νr|); see the beginning of this section.
(ii) Let 1 < r < ∞. In contrast to part (i) we know that Iνr is now weakly compact

(as its codomain space Lr([0, 1]) is reflexive), but not completely continuous [46, Proposi-
tion 3.52]. According to [46, Example 3.26] we see that νr has finite variation for every
1 ≤ r ≤ ∞, but if 1 < r <∞, then L1(|νr|) ( L1(νr).

The following examples arise in classical harmonic analysis.

Example 7.3. (i) Let T := {z ∈ C : |z| = 1} be the circle group equipped with normal-
ized Haar measure. By c0(Z) we denote the Banach space of all functions ψ : Z→ C for
which lim|n|→∞ |ψ(n)| = 0, equipped with the uniform norm. The Riemann–Lebesgue
Lemma ensures that the Fourier transform f̂ of each f ∈ L1(T) belongs to c0(Z).
Let F ∈ L(L1(T), c0(Z)) denote the Fourier transform map, i.e., F (f) := f̂ for each
f ∈ L1(T).

Define a vector measure m : B(T)→ c0(Z) by m(A) = F (χA) = χ̂
A
for A ∈ B(T), in

which case
L1(T) = L1(|m|) = L1(m) = L1

w(m)

with the integration operator Im = F [46, p. 299]. Moreover, Im is neither weakly compact
nor completely continuous [46, Proposition 7.3(iii)].

(ii) For each complex measure λ : B(T) → C define the convolution vector measure
νλ : B(T)→ L1(T) by

νλ(A) := λ ∗ χA : s 7→
∫ 2π

0

χA(s− t) dλ(t), s ∈ [0, 2π] ' T.

It is known that
L1(T) = L1(|νλ|) = L1(νλ) = L1

w(νλ)

and that the integration operator Iνλ : L1(νλ) → L1(T) is precisely the convolution
operator f 7→ λ ∗ f for f ∈ L1(T) [46, Remark 7.36]. Moreover, Iνλ is compact if and
only if it is weakly compact if and only if λ is absolutely continuous with respect to Haar
measure. On the other hand, Iνλ is completely continuous if and only if the Fourier–
Stieltjes transform λ̂ of λ (i.e., λ̂(n) := 1

2π

∫ 2π

0
e−int dλ(t) for n ∈ Z) belongs to c0(Z)

[46, Remark 7.36(ii)]. Hence, every measure λ which fails to be absolutely continuous
but satisfies λ̂ ∈ c0(Z) (see [46, p. 320] for the existence of such λ) has the property
that its integration operator Iνλ is completely continuous but not weakly compact. If
λ satisfies λ̂ /∈ c0(Z) (e.g., the Dirac measure at any point of T or Cantor–Lebesgue
measure or certain Riesz product measures), then L1(νλ) = L1

w(νλ) but Iνλ is neither
weakly compact nor completely continuous.

Recall that a continuous linear operator between Banach spaces is strictly singular
if no restriction to any closed, infinite-dimensional subspace of the domain space is an
isomorphism (onto its range). Clearly, every compact operator is strictly singular, but
not conversely; see Remark 7.5 below.

Proposition 7.4. Let m be a Banach-space-valued vector measure whose integration
operator Im is strictly singular. Then necessarily L1(m) = L1

w(m).
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Proof. Since Im is strictly singular it cannot fix any copy of c0. So, Corollary 6.2(iii)
yields L1(m) = L1

w(m).

Remark 7.5. There exist vector measures m such that Im is strictly singular, but nei-
ther weakly compact nor completely continuous [45, Proposition 2.10]. The paragraph
immediately prior to Example 2.14 in [45] exhibits a vector measure m such that Im is
strictly singular and weakly compact, but not compact (as L1(m) 6= L1(|m|) [43, The-
orems 1 & 4]). There also exist vector measuresm satisfying L1(m) = L1

w(m) with Im not
strictly singular. Indeed, in [46, Example 3.49(ii)] the `1-valued vector measure m := ν

has the property that Im : L1(m) → `1 is a surjective linear isomorphism, and hence is
surely not strictly singular. On the other hand, being isomorphic to `1, the space L1(m) is
weakly sequentially complete and so L1(m) = L1

w(m); see the beginning of this section.

The two (rather extensive) classes of operators that occur in Proposition 7.1 are
not comparable, but they have the property that Im belonging to either class ensures
that L1(m) = L1

w(m). Proposition 7.4 exhibits the same feature. There is available a
further class of operators, containing all weakly compact and all completely continuous
operators, which characterizes the property L1(m) = L1

w(m) via its membership of Im;
see Proposition 7.7 below.

A continuous linear operator between Banach spaces (or lcHs) is said to be weakly com-
pletely continuous if it maps weakly Cauchy sequences to weakly convergent sequences,
a notion going back to J. Dieudonné and A. Grothendieck [6, p. 27]. Clearly, every com-
pletely continuous operator is also weakly completely continuous. The following observa-
tion shows that the same is true of weakly compact operators.

Fact 5. Every weakly compact operator between two Banach spaces is also weakly com-
pletely continuous.

Proof. Let T : Y → Z be a weakly compact operator between Banach spaces. Given a
weakly Cauchy sequence {yn}∞n=1 in Y , the continuity of T from Yσ into Zσ implies that
{Tyn}∞n=1 is weakly Cauchy in Z. Moreover, the weak compactness of T implies that
{Tyn}∞n=1 lies in a weakly compact subset of Z. By the Eberlein–Šmulian Theorem [22,
Theorem V.6.1], {Tyn}∞n=1 has a convergent subsequence in Zσ. Since {Tyn}∞n=1 is itself
Cauchy in Zσ, it follows that {Tyn}∞n=1 is also convergent in Zσ. Hence, T is weakly
completely continuous.

We also require the following useful information.

Lemma 7.6.

(i) The composition of a weakly completely continuous operator with any continuous
linear operator (on the left or the right) is again weakly completely continuous.

(ii) Every Banach-space-valued continuous linear operator defined on a weakly sequen-
tially complete Banach space is necessarily weakly completely continuous.

(iii) Let Y be a closed subspace of the Banach space Z and Φ : Y → Z be the iden-
tity inclusion. Then Φ is weakly completely continuous if and only if Y is weakly
sequentially complete.
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Proof. (i) This follows routinely from the definition of a weakly completely continuous
operator and the fact that a continuous linear operator is also continuous for the weak
topologies.

(ii) Let Y,Z be Banach spaces, with Y weakly sequentially complete, and T ∈ L(Y,Z).
Fix any weakly Cauchy sequence {yn}∞n=1 in Y . Then {yn}∞n=1 has a limit vector y in Yσ.
Since T ∈ L(Yσ, Zσ), it follows that {T (yn)}∞n=1 converges in Zσ. Thus, T is weakly
completely continuous.

(iii) If Y is weakly sequentially complete, then Φ is weakly completely continuous by
part (ii).

Conversely, suppose that Φ is weakly completely continuous. Let {un}∞n=1 be a Cauchy
sequence in Yσ. Then {Φ(un)}∞n=1 converges in Zσ, say to z ∈ Z. Since Y is norm-closed
in Z it is also closed in Zσ and so actually z ∈ Y . Given any y∗ ∈ Y ∗, the Hahn–Banach
Theorem ensures the existence of z∗ ∈ Z∗ satisfying z∗|Y = y∗. From this, together
with the fact that 〈Φ(un) − z, z∗〉 → 0 and {Φ(un) − z}∞n=1 ⊆ Y , we can conclude that
limn→∞〈Φ(un) − z, y∗〉 = 0. Since y∗ ∈ Y ∗ is arbitrary, it follows that un = Φ(un) → z

in Yσ. Hence, Y is weakly sequentially complete.

For a Banach-space-valued vector measure m : Σ → X we recall from Remark 2.11
that L1(m) is a closed subspace of L1

w(m). Denote the identity inclusion of L1(m) into
L1
w(m) by ρm. We can now formulate the main result of this section.

Proposition 7.7. Let m : Σ → X be a Banach-space-valued vector measure. The fol-
lowing assertions are equivalent:

(i) L1(m) = L1
w(m).

(ii) The identity operator idL1(m) on L1(m) is weakly completely continuous.
(iii) The natural inclusion ρm : L1(m)→ L1

w(m) is weakly completely continuous.
(iv) The integration operator Im : L1(m)→ X is weakly completely continuous.

Proof. (i)⇔(ii). This follows from Lemma 7.6(iii) with Y = Z := L1(m) and Φ :=

idL1(m) together with the fact (see the beginning of this section) that L1(m) = L1
w(m) if

and only if L1(m) is weakly sequentially complete.
(ii)⇒(iii). This follows from ρm = ρm ◦ idL1(m) and Lemma 7.6(i).
(iii)⇒(i). Apply Lemma 7.6(iii) with Y := L1(m), Z := L1

w(m) and Φ := ρm together
with the fact that L1(m) = L1

w(m) if and only if L1(m) is weakly sequentially complete.
(i)⇒(iv). By (i) the space L1(m) is weakly sequentially complete. The desired con-

clusion is then immediate from Lemma 7.6(ii).
(iv)⇒(i). Assume that L1(m) ( L1

w(m). Then Im fixes an isomorphic copy of c0; see
Corollary 6.2(iii). That is, there exists an isomorphism (onto its range) S ∈ L(c0, L

1(m))

such that Im ◦ S : c0 → X is an isomorphism onto its range. So, (Im ◦ S)−1 ◦ (Im ◦ S)

equals the identity operator idc0 on c0. Since the standard basis vectors of c0 form a
weakly Cauchy sequence which fails to be weakly convergent, it is clear that idc0 is not
weakly completely continuous. In other words, the composition (Im ◦ S)−1 ◦ Im ◦ S is
not weakly completely continuous. Hence, by Lemma 7.6(i) the operator Im also fails to
be weakly completely continuous. This establishes that L1(m) = L1

w(m) whenever Im is
weakly completely continuous.
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Remark 7.8. The class of weakly completely continuous operators properly contains the
weakly compact operators and the completely continuous operators. This follows from
Proposition 7.7 and Example 7.3(i) (resp. Example 7.3(ii)), where the vector measure
m (resp. νλ with λ̂ /∈ c0(Z)) satisfies L1(m) = L1

w(m) (resp. L1(νλ) = L1
w(νλ)), but

Im (resp. Iνλ) is neither weakly compact nor completely continuous. Concerning m from
Example 7.3(i), recall that L1(m) = L1

w(m) = L1(T) and so ρm = idL1(T) is weakly
completely continuous via Proposition 7.7. However, since L1(T) is not reflexive, idL1(m)

is not weakly compact. To see that idL1(m) is not completely continuous either, observe
that the sequence {e−in(·)}∞n=1 converges weakly to 0 in L1(T) (by the Riemann–Lebesgue
Lemma), but {e−in(·)}∞n=1 is not norm-convergent to 0 in L1(T) because ‖e−in(·)‖L1(T) = 1

for all n ∈ N.

Checking directly whether one of the equivalences in Proposition 7.7 is satisfied may
not be easy in practise. The fact that L1(m) is a complex Banach lattice (see Re-
mark 3.8(ii)) provides a means to exhibit classical classes of operators with the property
that Im is weakly completely continuous whenever it belongs to one of these classes.

Let X be a Banach space and E be a complex Banach lattice (see Section 3). Given
1 ≤ q <∞, an operator R ∈ L(E,X) is said to be (q, 1)-concave if there exists a constant
Cq > 0 such that ( n∑

j=1

‖R(uj)‖qX
)1/q

≤ Cq
∥∥∥ n∑
j=1

|uj |
∥∥∥
E

for all choices of finitely many elements {uj}nj=1 ⊆ E with n ∈ N [17, p. 330].

Proposition 7.9. Let m : Σ→ X be a Banach-space-valued vector measure.

(i) If the integration operator Im : L1(m) → X is (q, 1)-concave for some 1 ≤ q < ∞,
then Im is weakly completely continuous. In particular, L1(m) = L1

w(m).
(ii) Given any 1 ≤ q <∞, the following conditions are equivalent:

(a) The integration operator Im : L1(m)→ X is (q, 1)-concave.
(b) The identity operator idL1(m) : L1(m)→ L1(m) is (q, 1)-concave.
(c) The embedding ρm : L1(m)→ L1

w(m) is (q, 1)-concave.

Proof. (i) Let Cq > 0 satisfy( n∑
j=1

‖Im(fj)‖qX
)1/q

≤ Cq
∥∥∥ n∑
j=1

|fj |
∥∥∥
L1(m)

(7.1)

whenever {fj}nj=1 ⊆ L1(m), with n ∈ N, is a finite set. Suppose that L1(m) ( L1
w(m).

Via Corollary 6.2(iii) there is a lattice-isomorphism S : c0 → L1(m) (onto its range) such
that Im|R(S) : R(S) → X is a topological isomorphism onto its range. Consequently,
Im ◦ S : c0 → X is a topological isomorphism onto its range and so there exists a
constant M > 0 such that

‖α‖c0 ≤M‖(Im ◦ S)(α)‖X , α ∈ c0. (7.2)

On the other hand, being a lattice-isomorphism, S is a positive operator, i.e., S(c+0 ) ⊆
L1(m)+ [2, Theorem 7.3]. It then follows from [46, Lemma 2.57(ii)(a)], with q = 1 there,
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that
∑n
j=1 |S(αj)| ≤ S(

∑n
j=1 |αj |) in the order of L1(m), and hence, since ‖·‖L1(m) is a

lattice norm, that ∥∥∥ n∑
j=1

|S(αj)|
∥∥∥
L1(m)

≤
∥∥∥S( n∑

j=1

|αj |
)∥∥∥

L1(m)
(7.3)

whenever α1, . . . , αn ∈ c0 and n ∈ N.
Let {ej}∞j=1 denote the canonical basis of c0 and ‖S‖op denote the operator norm

of S. Fix n ∈ N. It follows from (7.1)–(7.3) that

n1/q =
( n∑
j=1

‖ej‖qc0
)1/q

≤M
( n∑
j=1

‖(Im ◦ S)(ej)‖qX
)1/q

≤MCq

∥∥∥ n∑
j=1

|S(ej)|
∥∥∥
L1(m)

≤MCq

∥∥∥S( n∑
j=1

|ej |
)∥∥∥

L1(m)

≤MCq‖S‖op

∥∥∥ n∑
j=1

ej

∥∥∥
c0

= MCq‖S‖op.

Since n ∈ N is arbitrary, this is impossible. So, we must have L1(m) = L1
w(m), which,

via Proposition 7.7, is equivalent to Im being weakly completely continuous.
(ii) (a)⇒(b). Let Cq > 0 be a constant satisfying( n∑

j=1

‖Im(gj)‖qX
)1/q

≤ Cq
∥∥∥ n∑
j=1

|gj |
∥∥∥
L1(m)

(7.4)

whenever {gj}nj=1 ⊆ L1(m) is a finite set, with n ∈ N. Fix now n ∈ N and {fj}nj=1 ⊆
L1(m). It follows from [46, Lemma 3.71] that( n∑

j=1

‖fj‖qL1(m)

)1/q

= sup
s1,...,sn

( n∑
j=1

‖Im(sjfj)‖qX
)1/q

, (7.5)

where the supremum on the right side is taken over all choices of sj ∈ sim Σ with
supw∈Ω |sj(w)| ≤ 1. For any such choice s1, . . . , sn we deduce from (7.4), with gj := sjfj
for 1 ≤ j ≤ n, that( n∑

j=1

‖Im(sjfj)‖qX
)1/q

≤ Cq
∥∥∥ n∑
j=1

|sjfj |
∥∥∥
L1(m)

≤ Cq
∥∥∥ n∑
j=1

|fj |
∥∥∥
L1(m)

.

This and (7.5) yield ( n∑
j=1

‖fj‖qL1(m)

)1/q

≤ Cq
∥∥∥ n∑
j=1

|fj |
∥∥∥
L1(m)

. (7.6)

Thus, (b) holds because n ∈ N and {fj}nj=1 ⊆ L1(m) are arbitrary.
(b)⇒(a). By the hypothesis on idL1(m) there exists Cq > 0 such that (7.6) holds for

any finite set {fj}nj=1 ⊆ L1(m), with n ∈ N. Fix such a choice of {fj}nj=1 ⊆ L1(m). Since
‖Im‖op = 1 [46, p. 152], it follows from (7.6) that( n∑

j=1

‖Im(fj)‖qX
)1/q

≤
( n∑
j=1

‖fj‖qX
)1/q

≤ Cq
∥∥∥ n∑
j=1

|fj |
∥∥∥
L1(m)

.

As {fj}nj=1 ⊆ L1(m), with n ∈ N, is arbitrary, Im is (q, 1)-concave.
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(b)⇔(c). This equivalence is a routine consequence of the definition of (q, 1)-concave
operators and the fact that ‖ρm(f)‖L1

w(m) = ‖f‖L1(m) for each f ∈ L1(m).

Corollary 7.10. Let m be a Banach-space-valued vector measure.

(i) If the embedding ρm : L1(m) → L1
w(m) is (q, 1)-concave for some 1 ≤ q < ∞, then

ρm is weakly completely continuous.
(ii) If the identity operator idL1(m) is (q, 1)-concave for some 1 ≤ q < ∞, then idL1(m)

is weakly completely continuous.

Proof. (i) From Proposition 7.9(ii) we see that Im is (q, 1)-concave, and hence, by Propo-
sition 7.9(i), it follows that L1(m) = L1

w(m). As recorded at the beginning of this section,
L1(m) is then weakly sequentially complete. Now apply Lemma 7.6(ii) to conclude that
ρm is weakly completely continuous.

(ii) A similar argument as for part (i) applies.

Let µ be any σ-additive, positive measure and X be any Banach space. Then every
continuous linear operator T : L1(µ)→ X is necessarily (1, 1)-concave. Indeed, given any
finite set {fj}nj=1 ⊆ L1(µ), with n ∈ N, we have

n∑
j=1

‖T (fj)‖X ≤ ‖T‖op

n∑
j=1

‖fj‖L1(µ) = ‖T‖op

∥∥∥ n∑
j=1

|fj |
∥∥∥
L1(µ)

.

Since the vector measures m and νλ (with λ any complex measure on B(T)) presented
in Examples 7.3(i) and 7.3(ii), respectively, have the property that their corresponding
spaces L1(m) and L1(νλ) are of the form L1(µ), it follows from the previous observation
that the integration operators Im and Iνλ are necessarily (1, 1)-concave, although, as
noted before, they are neither weakly compact nor completely continuous. We now exhibit
a vector measure m such that Im is weakly completely continuous but not (q, 1)-concave
for any 1 ≤ q <∞. So, Proposition 7.9 does not cover all cases.

Example 7.11. Let Ω := [0,∞) and Σ := B(Ω). Denote Lebesgue measure on Σ by µ.
Fix a strictly increasing sequence {pk}∞k=1 ⊆ [1,∞) satisfying limk→∞ pk =∞. For each
k ∈ N let Ω(k) := [(k − 1), k), in which case the closed subspace Lpk(Ω(k)) := {fχΩ(k) :

f ∈ Lpk(µ)} of the Banach space Lpk(µ) is again a Banach space for the induced norm
‖·‖pk from Lpk(µ). The `2-direct sum X := (

⊕∞
k=1 L

pk(Ω(k)))2 of the Banach spaces
(Lpk(Ω(k)), ‖·‖pk), for k ∈ N, is the vector space consisting of all f ∈ L0(Σ) satisfying( ∞∑

k=1

‖fχΩ(k)‖2pk
)1/2

<∞, (7.7)

with the norm ‖f‖X of f defined by the left side of (7.7), in which case X is a Banach
space [17, p. xiv, Notation]. Moreover, X is also a complex Banach lattice for the µ-a.e.
pointwise order and ‖·‖X is the corresponding (complex) lattice norm. Noting that X
is an ideal in L0(Σ), and hence is Dedekind σ-complete [61, p. 107], and that X is also
separable, it follows that X has order continuous norm [60, Theorem 117.3].

Clearly the function g :=
∑∞
k=1(1/k)χΩ(k), defined pointwise on Ω, belongs to X+

and so gχA ∈ X for all A ∈ Σ as ‖·‖X is a lattice norm. This enables us to define a
finitely additive measure m : Σ → X by m(A) := gχA for A ∈ Σ. The σ-additivity of
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m is a routine consequence of X having order continuous norm. The claim is that the
integration operator Im : L1(m)→ X has the form

Im(f) = fg, f ∈ L1(m), (7.8)

and is a linear isometry.
To establish (7.8) first fix f ∈ L1(m)+. Choose an increasing sequence {sj}∞j=1 ⊆ sim Σ

converging pointwise to f with 0 ≤ sj ≤ f for j ∈ N. It is clear from the definition of m
that ∫

A

sj dm = Im(sjχA) = sjgχA, A ∈ Σ, j ∈ N.

Moreover, limj→∞ ‖f − sj‖L1(m) = 0; apply Lemma 2.7(i) in the Banach space setting.
Continuity of Im : L1(m) → X implies that sjg = Im(sj) → Im(f) in X as j → ∞.
Since X is an ideal in L0(Σ), it is a Banach function space over (Ω,Σ, µ), also called
a Köthe function space, in the sense of [36, Ch. 1, §9]. Hence, there exists a pointwise
µ-a.e. convergent subsequence sj(n)g → Im(f) for n→∞. This follows from the general
fact that, in any Banach lattice, a norm convergent sequence has an order convergent
subsequence [60, Theorem 100.6]. On the other hand, also sjg → fg pointwise on Ω

as j → ∞, and hence Im(f) = fg, i.e., (7.8) holds whenever f ∈ L1(m)+. Since every
function in L1(m) can be expressed as a linear combination of four positive functions
from L1(m), it follows that (7.8) holds in general.

Noting that m is a positive vector measure, i.e., m(Σ) ⊆ X+, it follows from [46,
Lemma 3.13], the fact that g ≥ 0 and (7.8) that

‖f‖L1(m) = ‖Im(|f |)‖X =
∥∥|f |g∥∥

X
= ‖fg‖X = ‖Im(f)‖X , f ∈ L1(m).

Hence, Im is a linear isometry, which completes the proof of the claim.
As X is reflexive, Im is weakly compact, and hence also weakly completely continuous;

see Fact 5.
Fix 1 ≤ q <∞. Choose any K ∈ N satisfying pK > q and fix it henceforth. Select any

sequence {A(j)}∞j=1 of pairwise disjoint subintervals of Ω(K). For each j ∈ N, define fj :=

Kµ(A(j))−1/pKχA(j), in which case gfj = µ(A(j))−1/pKχA(j) ∈ X. Clearly {fj}∞j=1 ⊆
L1(m)+. Moreover, for each j ∈ N, we have

‖Im(fj)‖X = ‖fjg‖X = ‖K−1fj‖pK = 1. (7.9)

Fix n ∈ N. It follows from (7.9) that( n∑
j=1

‖Im(fj)‖qX
)1/q

= n1/q. (7.10)

On the other hand, recalling that Im is a linear isometry and the functions {fj}nj=1 ⊆
L1(m)+ are disjointly supported, we deduce from (7.9) that∥∥∥ n∑

j=1

|fj |
∥∥∥pK
L1(m)

=
∥∥∥Im( n∑

j=1

|fj |
)∥∥∥pK

X
=
∥∥∥ n∑
j=1

gfj

∥∥∥pK
X

=
∥∥∥ n∑
j=1

K−1fj

∥∥∥pK
pK

=

n∑
j=1

‖K−1fj‖pKpK = n.



Lattice copies of c0 and `∞ 65

That is, ∥∥∥ n∑
j=1

|fj |
∥∥∥
L1(m)

= n1/pK . (7.11)

Since (7.10) and (7.11) hold for all n ∈ N and q−1 > p−1
K , it follows that Im is not

(q, 1)-concave.

Remark 7.12. Clearly every (1, 1)-concave operator defined on a Banach lattice is (q, 1)-
concave whenever 1 ≤ q < ∞. Those Banach-space-valued vector measures m whose
integration operator Im is (1, 1)-concave have been characterized in Proposition 3.74
of [46]. Namely, Im is (1, 1)-concave if and only if L1(m) = L1(|m|) as an equality of
isomorphic Banach spaces.

We now exhibit several classical operator ideals [17, p. 131] such that, if Im belongs
to any one of them, then Im is (q, 1)-concave for some suitable 1 ≤ q < ∞ and so, in
particular, Im is weakly completely continuous; see Proposition 7.9(i).

Example 7.13. Consider a Banach-space-valued vector measure m : Σ → X and its
associated integration operator Im : L1(m)→ X.

(i) Suppose that Im is a compact operator. Then L1(m) = L1(|m|) as an equality of
vector spaces, [46, Proposition 3.48], and hence, also an equality as isomorphic Banach
spaces (because the natural embedding from L1(|m|) into L1(m) is continuous; see the
discussion prior to Example 7.2). Then Remark 7.12 tells us that Im is (1, 1)-concave.

(ii) Let 1 ≤ p ≤ q < ∞ and suppose that Im is a (q, p)-summing operator ; see
[17, p. 197] for the definition. Then Im is also (q, 1)-summing [17, p. 198]. Hence, Im is
(q, 1)-concave [17, p. 330].

(iii) Let 1 ≤ p <∞. The p-summing operators are exactly the (p, p)-summing opera-
tors [17, p. 31 & p. 197]. So, if Im is p-summing, then it is (p, 1)-concave by part (ii) with
p = q. Actually, this can be improved. Indeed, it follows essentially from [7, Theorem
2.7] and [46, Proposition 3.74] that L1(m) = L1(|m|); more precisely, see the paragraph
immediately prior to Proposition 2.4 of [44]. So, an appeal to Remark 7.12 shows that
Im is (1, 1)-concave.

(iv) Let 1 ≤ p < r < ∞. A continuous linear operator T : Y → Z between Banach
spaces is called (r, p)-mixing if S ◦ T is p-summing for every Banach-space-valued r-
summing operator S defined on Z, [16, p. 415]. Every (r, p)-mixing operator is necessarily
(q, p)-summing with q ∈ (p,∞) determined by 1/q+1/r = 1/p, [16, p. 426, Remark 1]. In
particular, if Im is (r, p)-mixing, then Im is (q, p)-summing for an appropriate q ∈ (p,∞),
and hence is (q, 1)-concave by part (ii) above.

(v) For the definition of the cotype of a Banach space see [17, p. 218]. Suppose that
L1(m) has cotype 2. Then the identity operator idL1(m) is (2, 1)-mixing [16, p. 417,
32.2(4)]. Accordingly, idL1(m) is (2, 1)-concave; see part (iv) above with p := 1 and r := 2

(in which case q = 2). So, Proposition 7.9(ii) implies that Im is also (2, 1)-concave.
Next suppose that L1(m) has cotype r > 2. Recalling that r∗ is the conjugate index

of r, we see that idL1(m) is ((r∗ − ε), 1)-mixing whenever ε satisfies 0 < ε < r∗ − 1

[16, p. 417, 32.2(5)]. So, by part (iv) above, the operator idL1(m) is (q(ε), 1)-summing for
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q(ε) ∈ (1,∞) determined by 1/q(ε) + 1/(r∗ − ε) = 1. Again Proposition 7.9(ii) implies
that Im is (q(ε), 1)-concave (with q(ε) > 1).

Concerning Example 7.13(ii), it should be noted that there exist Banach-space-valued
vector measures m for which Im is (2, 1)-summing but Im is neither weakly compact nor
completely continuous. For instance, let m be the L1([0, 1])-valued vector measure which
assigns χA to each A ∈ B([0, 1]). Then L1(m) = L1([0, 1]) and Im, which is given by
Im(f) = f for f ∈ L1(m), is a surjective linear isometry [46, Example 3.61]. It follows
from Orlicz’s Theorem [17, Theorem 3.12 & p. 197], that Im = idL1([0,1]) is (2, 1)-summing.
On the other hand, Im is not weakly compact or completely continuous.

In conclusion, concerning Example 7.13(v) we point out that L1(m) necessarily has
cotype q whenever the codomain space X of m has cotype q with q ∈ [2,∞) [12, Theo-
rem 1].
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