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Abstract

The spaces L*(m) of all m-integrable (resp. Li,(m) of all scalarly m-integrable) functions for a
vector measure m, taking values in a complex locally convex Hausdorff space X (briefly, 1cHs),
are themselves 1cHs for the mean convergence topology. Additionally, L1, (m) is always a complex
vector lattice; this is not necessarily so for L'(m). To identify precisely when L'(m) is also a
complex vector lattice is one of our central aims. Whenever X is sequentially complete, then
this is the case. If, additionally, the inclusion L'(m) C Li,(m) (which always holds) is proper,
then L'(m) and L. (m) contain lattice-isomorphic copies of the complex Banach lattices co
and £°°, respectively. On the other hand, whenever L'(m) contains an isomorphic copy of co,
merely in the 1cHs sense, then necessarily L'(m) € Ly, (m). Moreover, the X-valued integration
operator I, : f +— [ fdm, for f € L'(m), then fixes a copy of co. For X a Banach space, the
validity of L' (m) = L1 (m) turns out to be equivalent to I, being weakly completely continuous.
A sufficient condition for this is the (g, 1)-concavity of I, for some 1 < ¢ < oo. This criterion is
fulfilled when I,,, belongs to various classical operator ideals. Unlike for L, (m), the space L' (m)
can never contain an isomorphic copy of £°°. A rich supply of examples and counterexamples is
presented. The methods involved are a hybrid of vector measure/integration theory, functional
analysis, operator theory and complex vector lattices.
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1. Introduction and main results

The theory of Banach-space-valued vector measures, their associated L'-space and the
integration operator is well established, with myriad applications in classical and har-
monic analysis, the geometry of Banach spaces and functional analysis; see, for example,
the monographs [14], [I8], [19], [31], [46], [57], and the references therein. The moment
one considers, for example, a Banach space in its weak topology or applies the Banach
space theory pointwise to operator-valued measures acting in a Banach space (for the
weak or strong operator topology), then the natural framework shifts to the setting of
vector measures taking values in a locally convexr Hausdorff space (briefly, IcHs); see, for
example, [31], [47], [52]. Moreover, the 1cHs involved are typically no longer sequentially
complete (just consider the Banach space ¢ in its weak topology, or the space of all con-
tinuous linear operators on ¢y equipped with the weak operator topology). This causes
various inherent difficulties (see e.g. [41], [53]), in particular, concerning the interplay of
the topological properties of the L!-space of integrable functions and its order properties
as a vector lattice of functions. Given the richness of this interplay for Banach-space-
valued (or sequentially complete lcHs-valued) vector measures, it is desirable to better
understand this interplay in general, i.e., without sequential completeness as an a priori
assumption. Moreover, applications demand a theory for complex spaces. However, in this
setting, it turns out that the L!'-space of integrable functions (over C) may even fail to
be a complex vector lattice! Nevertheless, it will be seen that many important structural
results (well known for sequentially complete spaces over R) still carry over in general.
It is time to be more precise.

Let X be a IcHs, over C. Consider an X-valued vector measure (i.e., a o-additive
set function) m defined on a measurable space (£2,X). Associated with m are the com-
plex vector space L'(m) of all (equivalence classes of) C-valued m-integrable functions
on € and the larger complex vector space L} (m) of all (equivalence classes of) C-valued,
scalarly m-integrable functions on Q. We equip L!(m) with the mean convergence topol-
ogy 7(m) (i.e., the topology of uniform convergence of indefinite integrals), which can
be extended to a lcH-topology 7(m),, on L. (m) so that 7(m),, in turn, induces 7(m)
on L'(m). Section 2 presents the basic concepts and results concerning the 1cHs L!(m)
and L. (m).

The main aim of this paper is to determine when L!(m) or L1 (m) contains a lattice-
isomorphic copy of the complex Banach lattice ¢y or of £°°, which is related to the
inclusion L'(m) C L (m) being proper (or to L'(m) = L (m)). Of course, such a
lattice-isomorphic copy is also an isomorphic copy in the IcHs sense.
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Results concerning lattice-isomorphic copies of (co)r := coNRY and (£>°)g := ¢ NRY
in general locally solid Riesz spaces X over R (which are topologically complete or, at
least, sequentially complete) can be found, for example, in [21], [59] and the references
therein. The criteria there are typically in terms of order properties of X (e.g. Dedekind o-
completeness) and/or properties related to the topology of X (e.g., o-Levi, o-Lebesgue).
Our aim is to focus directly on the special features of the particular complex vector
spaces L'(m) and L1 (m), which are the central spaces of importance here, rather than
attempting to extend such real results to general complex Riesz spaces.

Our motivation originates from the special case when X is a Banach space; L' (m)
is then a complex Banach lattice. For instance, the monograph [46, Ch. 3| treats L!(m)
from the viewpoint of complex Banach lattices. According to [L0, Theorem 2.2], [T} The-
orem 2|, if the Banach space X does not contain an isomorphic copy of ¢g, then neither
does L1 (m); this seems to be the first result regarding the existence or not of an isomorphic
copy of ¢ in L'(m). Moreover, whenever X does not contain an isomorphic copy of cg
(equivalently, if X is weakly Y-complete), then necessarily L'(m) = L. (m) [3I, The-
orem II.5.1], [34, Theorem 5.1]; see also Lemmas and [2.5]iv) below. The question of
the role played by these two necessary conditions, namely that L'(m) does not contain
an isomorphic copy of ¢y and that L'(m) = L. (m), already has an answer (following
from the well known case when the codomain space of m is a real Banach space). Namely,
for a general Banach-space-valued vector measure m, the following three conditions are
equivalent:

(A) L(m) = Ly, (m);
(B) L'(m) does not contain a lattice-isomorphic copy of co;
(C) L'(m) does not contain an isomorphic copy of co;

see Proposition [3.11] The equivalence of these three conditions for a vector measure with
values in a real Fréchet space is also available (together with other equivalent conditions)
[8, Proposition 3.4].

The core of this paper is the investigation of the above conditions (A)—(C) for a general
IcHs-valued vector measure m, together with the question of whether or not L1 (m)
contains a lattice-isomorphic copy of ¢y or of £°°. We provide criteria which guarantee
the equivalence of these three conditions. Let us emphasize again that the codomain space
X of m is a complex 1cHs and, hence, so are the lcHs L' (m) and L} (m). For tackling the
problem of whether a lattice copy of the complex Banach lattice ¢ or £ is in L!(m) and
L1 (m), it is first necessary to determine whether or not L*(m) and L} (m) are themselves
complex vector lattices. Accordingly, in Section 3 we define complex vector lattices and
present relevant results which can be applied to L'(m) and L} (m). To be precise, a
complex vector lattice is defined as the complexification E¢ := E + ¢E of a real vector
lattice E having the “complex modulus property”, which then enables us to consider both
complex conjugation and forming the modulus in E¢. This class of complex vector lattices
is strictly larger than that of [55] and [60]. Indeed, according to [55, Definition I1.11.1], a
complex vector lattice is the complexification of a real vector lattice E satisfying Axiom
(08); it is Axiom (OS) that guarantees the complex modulus property of E. On the
other hand, a complex vector lattice according to [60, §91] is the complexification of a
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real vector lattice which is both Archimedean and uniformly complete. It turns out that
a real vector lattice satisfies Axiom (OS) if and only if it is Archimedean and uniformly
complete. Consequently, the class of complex vector lattices in [55] coincides with that
in [60]; see Remark

Now, let L!(m)g (resp. L. (m)gr) be the real vector subspace of L!(m) (resp. L. (m))
consisting of all (equivalence classes of) R-valued, m-integrable (resp. scalarly m-inte-
grable) functions. Then L' (m)g is a real vector lattice with respect to the m-a.e. pointwise
order. The complex vector space L!(m) is a complex vector lattice for the m-a.e. pointwise
order, realized as the complexification of L!(m)g, if and only if it is closed under complex
conjugation and under forming the modulus, both being defined pointwise m-a.e. In this
case the complex conjugation and modulus formed pointwise m-a.e. coincide with those
intrinsic to the complex vector lattice L!(m); see Proposition ii). Via this criterion,
parts (i) and (iii) of Example provide normed-space-valued vector measures whose
associated L!-space is a complex vector lattice in our sense, but not in the sense of [55]
and [60]. In contrast, parts (iv) and (v) of Example exhibit normed-space-valued
vector measures whose associated L'-spaces are not complex vector lattices at all. On
the other hand, it turns out that Ll (m) is always a complex vector lattice in the m-a.e.
pointwise order, realized as the complexification of L. (m)g; see Proposition iv).

Let X,Y be lcHs and T : X — Y be a continuous linear operator. Then T is said to
fiz a copy of ¢ if there exist a complete subspace W of X (for the relative topology) and
a bi-continuous isomorphism of ¢y onto W such that the restriction T|w : W — Y is a
bi-continuous isomorphism onto its range in Y.

It is time to formulate our three main results. The first two of them hold for a general
lcHs-valued measure, independent of whether or not L!(m) is a complex vector lattice.

THEOREM 1.1. Let m : ¥ — X be a lcHs-valued vector measure whose associated lcHs
LY(m) contains an isomorphic copy of the Banach space cy. Then:

(i) The inclusion L*(m) C L. (m) is proper.
(i) The integration operator I, : L'(m) — X fizes a copy of co.

Section 4 is devoted to the proof of Theorem [I.I] and some immediate consequences
together with relevant examples.

A natural question suggested by Theorem [I.1] is whether or not there exists a lcHs-
valued vector measure m for which L!(m) contains an isomorphic copy of £>°. The answer
is negative.

THEOREM 1.2. Let m : ¥ — X be any lcHs-valued vector measure. Then its associated
lcHs L*(m) does not contain an isomorphic copy of the Banach space £°°.

The proof of Theorem [I.2] is presented in Section 5. Important is the fact that the
L'-space of a Banach-space-valued vector measure is always a complex Banach lattice
with order continuous norm.

The third theorem is the following one.

THEOREM 1.3. Let X be a sequentially complete IcHs and m : ¥ — X be a vector
measure. Then:
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(i) The space L*(m) is a complex vector lattice for the m-a.e. pointwise order.
(i) If L*(m) € L% (m), then L'(m) and L. (m) contain lattice-isomorphic copies of the
complex Banach lattices co and £°°, respectively.

In Section 6 we first establish Theorem [I.3]and then analyze some of the earlier results
together with various illustrative examples. To summarize Section 6 briefly, let us consider
the following conditions for a general lcHs-valued vector measure m:

(a) L'(m) € LL(m);

(b) L'(m) is a complex vector lattice in the m-a.e. pointwise order and contains a lattice-
isomorphic copy of cg;

(c) L'(m) contains an isomorphic copy of the Banach space co; and

(d) LL(m) contains a lattice-isomorphic copy of £>°.

Whenever X is sequentially complete, Theorems [[.IHI.3] together guarantee the equiv-
alence of all four of the conditions (a)—(d). Consequently, this conclusion remains valid
whenever L' (m) = L'(Jom), with J denoting the natural embedding of a general lcHs X
into its sequential completion X. A special case of this occurs when L!(m) is sequentially
complete as then L'(m) = L'(J om) follows; see Lemma (ii). The just mentioned
sufficient conditions for the equivalence of (a)—(d) are formally stated in Proposition
Furthermore, in Example it is shown that the sequential completeness of X need not
always imply that of L!(m) and, vice versa, that the equality L'(m) = L'(J o m) does
not imply the sequential completeness of X or of L!(m), in general. Actually, the identity
LY(m) = L*(J om) is characterized by the o-monotone completeness property of L'(m);
see Lemma [6.6]
For a general lcHs-valued vector measure m, we always have

(b)=(c)=(d)=(a).

The reverse implications are false, in general. Indeed, we present examples corresponding
to (¢)=(b), (d)#(c) and (a)=(d); see Examples and [2.6{(iii), respectively.

The final Section 7 is devoted to an investigation of the validity of L'(m) = Ll (m)
for a Banach-space-valued vector measure m : ¥ — X. For instance, it is known that
this is the case whenever the integration operator I,,, : L'(m) — X is either weakly com-
pact or completely continuous. In Proposition [7.7]it is established that L'(m) = L1 (m)
holds precisely when I, is weakly completely continuous, a class of linear operators
first considered by J. Dieudonné and A. Grothendieck. Utilizing the fact that the do-
main space L!(m) of I,, is a Banach lattice, it is shown in Proposition i) that the
(g, 1)-concavity of I,,, for some 1 < ¢ < oo, is sufficient (but not necessary; see Ex-
ample for I,, to be weakly completely continuous. This “concavity criterion” is
satisfied by the membership of I,,, in various classical operator ideals.

2. Preliminaries and basic results

Vector spaces over C are simply called vector spaces here. When the scalar field C needs
to be emphasized, we speak of complex vector spaces. Vector spaces over R are usually
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called real vector spaces. Of course, vector subspaces of a real vector space are understood
to be over R even when we do not say real vector subspaces.

Let X be a IcHs (over C) with topological dual space X*. The duality between X
and X* is denoted by (x,z*) := z*(x), for x € X, z* € X*. We denote by P(X) the
class of all continuous seminorms on X. Given p € P(X), let U, := {z € X : p(z) < 1}.
The polar set Uy = {z* € X* : [(z,2*)| <1 for all z € U, } of U, can be rewritten as

Uy ={z" € X" : [(z,2")] < p(z) for all z € X}. (2.1)
Let X/p~'({0}) be the quotient normed space associated with p and let X, denote its

Banach space completion with norm ||-||x,. The canonical map 7, : X — X, is continuous
and linear. Moreover, (2.1)) gives

m,(B[X,]) =U,, (2.2)
where 7 is the adjoint map of , from the dual space X (of X,) into X* and B[X}] is
the closed unit ball of X7 with respect to the dual norm.

A sequence {z,}52 in a IcHs X is called summable if the sequence {25:1 Tn } g
of its partial sums is convergent in X (with respect to its given topology). It will be
clearly indicated whenever we consider different lcH-topologies on X, such as the weak
topology (X, X*), for example. A sequence {x,}2°; in X is subseries summable if
every subsequence {z,, ) }re, of {x,}72, is summable, and is unconditionally summable
if {x;(n)}5Z, is summable for every permutation 7: N — N.

LEMMA 2.1. Let X be a lcHs.

(i) Every subseries summable sequence in X is unconditionally summable. If X is se-
quentially complete, then the converse also holds.

(ii) A sequence in X is subseries summable in the weak topology if and only if it is
subseries summable for the given topology in X.

Proof. (i) See |27, Proposition 14.6.2 and Corollary 14.6.6].
(ii) See [37, Theorem 1]. m

Part (i) of Lemma [2.1]is known as the Orlicz—Pettis Theorem, a survey of which can
be found in [30], for example.

A sequence {z,,}5°; in a lcHs X is called weakly absolutely Cauchy if Y > | [{xn, 2*)]
< oo for all z* € X*. Our terminology is essentially the same as that in [27]. Indeed, our
weakly absolutely Cauchy sequences are exactly those absolutely Cauchy sequences in the
weak topology according to [27, p. 305]. In Banach space theory, the fact that {z,}22
is weakly absolutely Cauchy is also expressed by saying that the formal series >~ | z,
is weakly unconditionally Cauchy [38|, p. 390]. According to [57, p. 5], the IcHs X is said
to be weakly X-complete if every weakly absolutely Cauchy sequence in X is summable
in the weak topology. This concept was already considered earlier in the Banach space
setting [5].

LEMMA 2.2. Let X be a lcHs. The following conditions are equivalent:

(i) X is weakly X-complete.
(ii) Every weakly absolutely Cauchy sequence in X is subseries summable in the weak
topology.
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(iii) Fvery weakly absolutely Cauchy sequence in X is subseries summable in the given
topology of X .

(iv) Every weakly absolutely Cauchy sequence in X is summable in the given topology
of X.

Proof. (i)=(ii). Use the fact that all the subsequences of a weakly absolutely Cauchy
sequence are again weakly absolutely Cauchy.

(ii)=-(iii). Apply the Orlicz—Pettis Theorem, i.e., Lemma 2.1(ii).

(iii)=-(iv)=(i). These implications are clear. =

In [31, p. 31], a IcHs X satisfying condition (iv) above is said to have the (B-P)-
property, so that X being weakly Y-complete is equivalent to X having the (B-P)-property
via Lemma [2.2]

Given a IcHs Y, let £(X,Y) denote the vector space of all continuous linear maps
from X into Y. When X =Y, we write £(X) := L(X,X). The range of an operator
T € L(X,Y) is denoted by R(T); it is always equipped with the relative topology from Y.
A useful fact is that every T € L£(X,Y) maps each weakly absolutely Cauchy sequence
in X to a weakly absolutely Cauchy sequence in Y because the adjoint T of T satisfies
T*(Y*) C X* and (Tz,y*) = (z, T*y*) for every x € X and y* € Y*.

By an isomorphism between lcHs, we mean a bi-continuous linear bijection. When
there exists an isomorphism 7" : ¢ — X (resp. T : {>*° — X) onto R(T) C X, we say
that X contains an isomorphic copy of ¢g (resp. £°°). Here, the Banach spaces ¢y and £*°
are, of course, equipped with their uniform norms |[|+||¢, and [|+||¢=, respectively.

LEMMA 2.3. Let X be a lcHs.

(i) If X is weakly X-complete, then X does not contain an isomorphic copy of co.
(ii) Suppose that X is sequentially complete. Then X is weakly 3-complete if and only if
X does not contain an isomorphic copy of cg.

Proof. Part (i) is clear as ¢g is not weakly X-complete. For (ii), see [68, Theorem 4]. m

Every weakly sequentially complete IcHs is clearly weakly Y-complete. For example,
if Y is a Banach space, then the IcHs X := Y.} is quasi-complete (for o(Y™*,Y)),
and hence X is weakly sequentially complete (as (X, X*) = o(Y*,Y)).

Throughout this section let (£2,%) denote a measurable space, in other words, ¥ is
a o-algebra of subsets of a non-empty set Q. By £°(3) we denote the vector space of
all C-valued, X-measurable functions on . Given a IcHs X, let m : ¥ — X be a vector
measure, that is, m is a o-additive set function. For each z* € X*, the complex measure
(m,z*) : A— (m(A),2*) on X induces its total variation measure |(m,2*)| : ¥ — [0, 00)
[54, §6.1]. A function f € £°(X) is said to be m-integrable if it satisfies the following two
conditions:

(I-1) [, [fld|(m,z*)| < oo for all 2* € X*, and
(I-2) given A € X, there is a unique element [ 4 fdm € X such that

</Afdm,x*>:/Afd<m,x*), e X",
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In this case, [ 4 Jdm is called the integral of f over A € 3 with respect to m. The
resulting X-valued set function

mf:A+—>/Afdm, Ael, (2.3)

is called the indefinite integral of f with respect to m. The set function my is again
o-additive thanks to the Orlicz—Pettis Theorem; see Lemma ii). The subset £1(m) C
L2(X) of all m-integrable functions is a vector subspace. The vector subspace sim Y C
LO(%) of all C-valued, ¥-simple functions is contained in £!(m). This can be seen from
the fact that the characteristic function x4 of each set A € X is m-integrable with
S5 xadm =m(ANB) for B € X. A useful fact, for each f € £'(m) and A € ¥, is that

fxa € LY(m) and / fxadm= fdm for B e X. (2.4)
B ANnB

In particular, if f € £!(m) is R-valued, then both f* := max{f,0} = fxa and f~ =
(—f)T = fxp belong to £!(m), where A := {w € Q: f(w) > 0} and B := {w € Q :
f(w) < 0}. Hence, for such f, also |f| € £ (m).
Fix p € P(X) and define p(m) on L£(m) by
p(m)(f) := sup / |f] d|{m, z* f e Lt(m). (2.5)

z*elUp

Then, for every f € £'(m), we have p(m)(f) > 0 and

ilé};p(/ fdm> < p(m)(f) <4zgp(/ fdm) < 00. (2.6)

Indeed, [34, Theorem 2.2(1)] gives p(m)(f) = supg-cyo |{mys, z*)|(2), where the right
side equals ||my||,(2) with ||my]|,(-) denoting the p—sem?variation of the vector measure

¢+ ¥ — X [34, Definition 1.2]. This observation together with m; having bounded
range in X establishes [34, p. 158]. Moreover, the definition of p(m) gives

p(m)(f) < p(m)(g) whenever f,g € £1(m) satisty |f] < |g]. (2.7)
Although p(m)(f) in is defined in terms of |f|, for every f € £!(m), we point out
that the inclusion
{If]: feLt(m)}cL(m) (2.8)
is not always valid. In other words, £!(m) may not be closed under the pointwise modulus
operation in £°(X); see Section 3 for relevant results and counterexamples. Of course, as
noted immediately after , if X is a real vector space, then always holds. Now,
since m, € L(X, X,), the composition m, o m : ¥ — X, is a Banach-space-valued vector
measure. Moreover,
LY(m) C LY (7, om) (2.9)
and

/fdﬂ'pom —ﬂ'p</fdm) fecLtm), Aey, (2.10)

both of which are immediate from the relevant definitions. From (2.2)), it follows that

p(m)(f) = sup / Fldimy om, €7, f e £i(m). (2.11)

£ eBX;]
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The le-topology on £!(m) defined by the family of seminorms {p(m) : p € P(X)}
is called the mean convergence topology and is the topology of uniform convergence of
indefinite integrals in view of .

Define the closed subspace

N(m):= (] p(m)"'({0}) (2.12)

PEP(X)

of £'(m). By the associated 1cHs with the mean convergence topology is meant the
quotient space L'(m) := L(m)/N(m); we denote by 7(m) the corresponding quotient
le-topology on L'(m). Even though may fail to be satisfied in general, it is always
true that |f] € N(m) C £'(m) whenever f € N(m); see and (2.6). Then
implies that f € £'(m) satisfies f € N(m) if and only if |f| € N(m). A useful fact is
that

N(m)= (] N(m,z")), (2.13)

rreX*
which is a consequence of X* = |J,cp(x)Uy. Each function f in N(m) is said to be
m-null and its indefinite integral is the zero vector measure. A set A € X is called m-null
if x4 € N(m). Observe that a set A € ¥ is m-null if and only if m(B) =0 for all B € &.
with B C A. The family of all m-null sets is denoted by Ny(m). A property is said to
hold m-almost everywhere, briefly m-a.e., if it holds outside an m-null set. A function
f € L£°%X) is called m-null if f is m-a.e. equal to 0, i.e., there is A € ¥ satisfying
both Q\ A € Ny(m) and (fxa)(w) =0 for all w € Q. In this case, f € N(m) C LY(m).
Similarly, functions f,g € £°(Z) satisfy f > g (m-a.e.) if and only if fxa > gxa pointwise
for some A € ¥ with Q\ A € Ny(m).
The integration operator I, : £L'(m) — X is defined by

= / fdm, feL'(m), (2.14)
Q

and is linear and continuous by (2.6). Since I,,,(A(m)) = {0}, the operator I, induces a
unique X-valued, continuous linear map on L'(m), namely

FHNm)— I.f, fe€L(m).

We say that a function f € £°(X) is scalarly m-integrable (or weakly m-integrable)
if it satisfies (I-1). The vector subspace L. (m) C L£°(X), consisting of all the scalarly
m-~integrable functions on €, satisfies

N(m)C £ (m) S Ly(m)= () Li(mpom)C LX) (2.15)
PEP(X)

The equality in follows from X* = U,cp(x) Uy = Upepx) Tp (BIX}]) (see 22)
while the rest of is clear.

It seems that the concept of scalar m-integrability formally appeared for the first time
in [34], Definition 2.5] for a normed-space-valued measure. G. F. Stefansson [56] presents
a systematic study of £ (m) and related topics in the case of Banach-space-valued mea-
sures. For Fréchet-space-valued measures m, the space L1 (m) has been investigated in [8].
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Let us proceed to define a le-topology on L1 (m). Fix p € P(X) and let

pm)u()i= sup [ [fldlmanl, f e chim) (2.16)

z*eUy

It turns out that p(m), is a seminorm extending p(m) from L£'(m) to £} (m). To see
this, it suffices to show that p(m),(f) < oo for each f € L1 (m). To this end, we first

show that
[ .| <
A

Indeed, via [34, p. 163], there is &4, in the bidual Banach space XJ* of X, such that
Ja fd(mpom, &) = (€*,&4,) for all £ € X5, This, together with (2.2)), verifies (2.17)

sup oo, AeX. (2.17)

z*eUyp

as
sup /fd<m,33*> = sup /fd L om, £)
z*elUp A f*e]BX |
= ol e = iyl < oo

Now, applying the Nikodym Boundedness Theorem [I8, Theorem 1.3.1] to the family of
indefinite integrals {(m,z*); : 2* € Uy} (see with (m,z*) in place of m) gives
p(m)y(f) < oo because the total variation measure |[(m,z*)s| : ¥ — [0,00) satis-
fies |(m,2*)f|(Q) = [, |fd|(m,z*)|; see [54, Theorems 6.12 and 6.13]. The fact that
p(m)y(f) < o0 also follows from [56, Proposition 2 and p. 227], which gives

sup [ [71dl(my 0 m, )] < ox.

¢reB[X;] /O
The seminorm p(m),, : £ (m) — [0,00) also satisfies

p(m)u(f) < p(m)u(g)  for all f,g € Ly, (m) with |f] < |g]. (2.18)

We note here that £} (m) is always closed under the modulus in £°(X), in contrast with
LY (m), i.e., |f| € L (m) whenever f € L} (m).

REMARK 2.4. For a general lcHs-valued vector measure m : ¥ — X, given f € L] (m)
and A € ¥, the linear functional

xj:x*»—>/fd<m,x*>, e X7,
A

is continuous with respect to the strong dual topology 8(X*, X) (see [27, p. 154]), i.e

2’y belongs to the bidual X™* = (XJ . )) . This is an extension of the case of a
normed-space-valued measure [34, p. 163] (see also [56, Corollary 3]), which we have
already used above. The case of a Fréchet-space-valued measure is also known [8, Propo-
sition 2.3]. To verify z** € X**, select {s,}72; C sim X such that |s,,| < |f| for n € N and
lim, o 8, = f pointwise on Q. The subset W := {[, s, dm : n € N} C X is bounded
because, given p € P(X), we deduce from (with f :=s,) and (with f := s,
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and g := f) that

:ggp( /A 5 dm) < sup (1) () = Sup P (52) < plm) () < o

The polar set W° := {z* € X* : [(z,2*)] <1 for all x € W} is then a neighbourhood
of 0 in XE(X*,X) and
@) =] [ ratma)| -
A

</sndm,x*>‘§1, xtewe,
A

via the Lebesgue Dominated Convergence Theorem for a scalar measure. Thus, z%" is
B(X*, X)-continuous on X*. o

The identity

lim / Sp d{m, z*)
A

n—oo

< sup
neN

N(m)= [ (p(m)w)""({0}) (2.19)

pEP(X)
is a consequence of X* = J,cpx) U, and the fact that if f € L1 (m) satisfies p(m), (f)
=0 for all p € P(X), then f € N(m) C L'(m). Accordingly, the lcHs associated with
LL(m)is LL (m) := LL (m)/N(m). Let 7(m),, denote the resulting quotient lcH-topology
on L} (m). The quotient vector space £L°(X)/N(m) is denoted by L°(m). It follows from

[@15) and [19) that

LY (m) € L, (m) € L(m) (2.20)
as vector subspaces of L°(m). Moreover, 7(m) on L!(m) is the relative topology from
7(m), on LL (m).

The sequential closure of a vector subspace F' of a IcHs X is the smallest vector
subspace of X which contains F' and is sequentially closed A IcHs X can always be iden-
tified with a vector subspace of its quasi-completion X [32, pp. 296-297]. The sequential
closure of X in X denoted by X is called the sequentml completion of X. Since every
Cauchy sequence in X is Cauchy and bounded in X this sequence has a limit in X. But,
X is sequentially closed in X and so this limit belongs to X. Hence, X isa sequentially
complete lcHs. Let _

J: X=X
be the natural embedding of X into the sequentially complete lcHs X. Each p € P(X)
admits a unique extension p € P(X ). Conversely, every continuous seminorm on X is
such an extension of its restriction to X. In other words

P(X)=1{p:pePX)} (2.21)
Moreover, X* = (X)* and Uy = Uz € X*. In particular, if X has its weak topology
o(X, X*), then also X has its weak topology and so it is weakly sequentially complete.
LEMMA 2.5. The following statements hold for a lcHs-valued vector measure m : ¥ — X :

(i) N(m) = N(J om) as vector subspaces of LO(X).
(i) LI (m) = LL(Jom) as lcHs, i.c., they are the same as vector subspaces of L°(m)
and the topologies T(m),, and 7(J om),, coincide.
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(iii) The inclusions
L*(m) C L'(Jom) C Ly, (m) (2.22)

as vector subspaces of L°(m) are valid. Moreover, the lcH-topology T(m),, induces
7(Jom) on LY*(J om) and 7(J om) in turn induces 7(m) on L*(m).

(iv) If X is weakly X-complete, then L'(m) = L. (m) as lcHs. In particular, L'(m) =
LY(Jom) as lcHs.

Proof. (i) This is immediate from X* = (X)* and 2.13).

(i) The identity £ (m) = £ (J o m) holds via X* = (X)*. This and part (i) lead to
Ll (m) = LL(J om) as vector subspaces of L°(m). Moreover, given p € P(X), we have
p(m)w = p(J 0 m)y,, because of Uy = Uy in X* = (X)*. So, (ii) holds.

(iii) From X* = (X)* we obtain the inclusion £!(m) C £*(J om). This together with
part (i) ensures that L'(m) C L'(J om) as vector subspaces of L°(m). That 7(J o m)
induces 7(m) on L'(m) follows from the fact that p(m) is the restriction of p(J o m) to
L' (m) via Uy = Ug for each p € P(X).

Note that L'(J om) C L. (J om) by (2.20), with J o m in place of m, and that
7(J o m),, induces 7(J o m) on L'(J o m). Now apply part (i) to complete the proof
of (iii).

(iv) See [31, Theorem II.5.1] together with Lemma "

In the notation of Lemma above, if L'(m) and L'(J o m) are equal as vector
spaces, then they are equal as 1cHs, which follows immediately from part (iii) there.

Throughout this paper we regard sequences with entries from C as C-valued functions
on N, unless stated otherwise. Then coordinatewise multiplication of sequences can be
naturally expressed as pointwise multiplication of functions defined on N. Moreover, vec-
tor subspaces of CN such as c¢p, £P are then function spaces on N. Given a vector subspace
Y of CY and f € CN we write

fY:={fg:geY}
EXAMPLE 2.6. Let Q := N and ¥ := 2". The identity function from N to itself is denoted
by ¢, i.e., p(n) =n for n € N.

(i) Let X be the space (1/¢)sim¥ := {s/¢ : s € simX} equipped with the norm
induced from co. Define m : £ — X by m(A) := xa/p for A € ¥. Since X = ¢y, the
vector measure J om : ¥ — ¢q is precisely the one used in [31, Example 11.5.1]. Clearly
N (m) = {0}. Tt is routine to obtain the following identities:

L'(m)=sim%, L'(Jom)=¢ ¢y, LL(m)=¢p- .

Hence, L'(m) € L'(J om) € L1 (m), that is, both of the inclusions in (2.22) may be
strict (simultaneously).

(ii) Let X be the Banach space ¢g. Then the X-valued vector measure m : A — xa/p
on Y satisfies

L'm)=L"(Jom)=p-cg and LL(m)=¢- £

So, L*(m) = LY(J om) € LL(m), that is, the first inclusion in (2.22) is an equality
whereas the second inclusion is strict.
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(iii) Let X := (1/¢)sim X, equipped with the norm induced from ¢2, and let m be as
above. Then X = ¢2. Moreover,

L*(m) =simY, L'(Jom)=LL(m)=¢-

and hence L'(m) C L'(J om) = L. (m), that is, the first inclusion in (2.22) is strict
whereas the second inclusion is an equality. o

We shall, from now on, identify each f € £°(X) with its quotient class f + A(m)
€ LY%(m) as in the case of scalar measure theory, except when such a distinction is
required for precise arguments. When we need to emphasize that we are dealing with
functions in £°(X), we may speak of individual functions. The function spaces L£!(m)
and L. (m) will be identified with their quotient spaces L!(m) and L. (m), respectively.

We say that the vector measure m has the Lebesgue Convergence Property, briefly
LCP, if, whenever a Y-measurable function f : ) — C is the m-a.e. pointwise limit of a
sequence {f,}°2, of m-integrable functions satisfying |f,| < g (m-a.e.) for each n € N
and some non-negative m-integrable function g, then it follows that f is m-integrable
and {f,}52, is 7(m)-convergent to f.

LEMMA 2.7. Let m : ¥ — X be a lcHs-valued vector measure.
(i) The following conditions are equivalent for a ¥-measurable function f :Q — C:

(a) f is m-integrable.

(b) There exists a sequence {s,}52; C sim Y converging m-a.e. pointwise to f such
that the sequence { [, s, dm}32, is convergent in X for each A € X.

(c) The same condition as in (b) with L'(m) in place of sim X.

Moreover, if (b) or (c) holds, then limy, o [, s, dm = [, fdm for every A € X,
and {s, Y22, is T(m)-convergent to f in L'(m).

(ii) If L*(m) is sequentially complete, then L'(m) = L*(J om).

(iil) If X is sequentially complete, then m has the LCP.

(iv) If X is sequentially complete, then every C-valued, bounded, ¥-measurable function
on ) is m-integrable.

Proof. (i) This follows from [34] Theorem 2.4|. The current form occurs in [41] Proposi-
tion 1.2].

(ii) Let f € L'(Jom). Observe first that the (J om)-null and the m-null sets coincide
by Lemma [2.5(i). Select {s,}52,; C sim¥ satisfying condition (b) in part (i). Then (i)
ensures that {s,}52, is 7(J o m)-convergent to f. On the other hand, since 7(m) is the
topology induced by 7(Jom) (see Lemma[2.5[iii)), the sequence {s, }52 is 7(m)-Cauchy,
and hence admits a 7(m)-limit in the sequentially complete IcHs L!(m). Then f must
equal this 7(m)-limit, so that f € L*(m). Thus L'(J om) C L!(m), and hence (ii) holds
via .

(iii) See [34, Theorem 2.2].

(iv) This follows from part (iii) because constant functions are m-integrable. An al-
ternative proof is in [31, Theorem I1.3.1]. m



Lattice copies of ¢p and £*° 17

When X is a Banach space, Lemma i) ensures that our m-integrability is equiva-
lent to that in [3], Definition 2.5].

Parts (i) and (ii) of the following lemma occur in [4I, Lemma 1.3] whereas part (iii)
is straightforward.

LEMMA 2.8. Given are a lcHs-valued vector measure m : X — X and a continuous linear
operator T from X into a IcHs 'Y .

(i) The set function Tom : X —'Y is a vector measure.
(ii) Ewvery m-integrable function f is also (T o m)-integrable and

/deom </fdm> Acs.

(iii) The corresponding linear map [T}, : L*(m) — L*(T o m) which assigns to each
f € LY(m) the same function f in Ll(To m) is continuous.

REMARK 2.9. The precise definition of [T, in Lemma [2.8{(iii) is
[Tl (f + N(m)) :=Tf+N(Tom), feL(m)
This is well defined because (2.13)), applied twice, gives
N(m)= (] N(m,2") < (| N(m,Ty") = (| N(Tom,y")=N(Tom).
r*EX* y*eY* y*EY*
It is clear that [T],, is injective if and only if N'(m) = N/ (T'om). This applies, in particular,
whenY : =X and T :=J. o

To discuss whether or not the lcHs L' (m) is complete for a lcHs-valued vector measure
m : 3 — X, we recall the concept of a closed vector measure. According to |31, p. 71],
this means that the subset X(m) := {xa + N(m) : A € ¥} C L'(m) is 7(m)-complete.
We identify ¥(m) with {x4 : A € X}. Let [X],, denote the sequential closure in X of the
linear span of the range of m.

LEMMA 2.10. Let m : X — X be a lcHs-valued vector measure.

(i) The subset X(m) is always closed in the lcHs L*(m).

(ii) In the case when [X],, is sequentially complete, the lcHs L'(m) is complete if and
only if m is a closed measure.

(iii) The following conditions are equivalent:
(a) LY(m) is complete.
(b) L(m) is quasi-complete
(c) m is a closed measure and L*(m) is sequentially complete.
(d) m is a closed measure and L*(m) = L*(J om) as lcHs.

(iv) If X is metrizable, then m is a closed measure.

(v) If X is a Banach (resp. Fréchet) space, then so is L'(m).

(vi) If X is a normed (resp. metrizable) space, then L. (m) is a Banach (resp. Fréchet)
space.

Proof. (i) This fact has been used in the literature starting with [3I, proof of The-

orem 1V.4.1], but without proof. For the sake of completeness we now present its proof.
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Let {xa(x}r be a net in (m) having a 7(m)-limit f € L'(m). Let B(f) := {w € O :
|Re (f(w))| £1/2} € ¥. Then |xa) — XB(s)| < 2Ixao) — f| pointwise on Q, and hence
it follows from (2.7)) that

p(m)(xam) — xB(p)) < 2p(m)(xany — f),  p € PX).

Accordingly, the net {x 4(x)}x is 7(m)-convergent to x p(), which implies that f = xp(y)
(m-a.e.). So, X(m) is 7(m)-closed in L' (m).

(ii) See [51, Theorem 2.

(iii) The implication (a)=-(b) is clear. Since ¥(m) is a bounded subset of L!(m), by
part (i) we have (b)=>(c). For (c)=>(d) apply Lemma [2.7(ii). Now assume (d). Since m
is closed if and only if J o m is closed, part (ii) ensures that L(J o m) is complete, and
hence so is L!(m). So, we have established (d)=-(a).

(iv) See [31, Theorem IV.7.1].

(v) This is a consequence of (ii) and (iv), in view of the definition of L!(m).

(vi) See [8, Theorem 2.5]. m

Regarding part (ii) above, an earlier result [3I, Theorem IV.4.1] was extended in
[20, p. 139]; in [50, Proposition 1] and [51] it occurs in the current general form. Part (iii)
is essentially in [5I]. A generalization of (iv) is that, if m is countably determined, then m
is a closed measure [42] Propositions 1.2 and 1.6]. Here m is called countably determined
if No(m) = N, No({(m,z})) for some sequence {z}>2; in X*. More generally, m is a
closed measure whenever m is absolutely continuous with respect to a localizable scalar
measure [3I, Theorem IV.7.3].

REMARK 2.11. Concerning Lemma [2.10|v), when X is a Banach space with norm |- x,

then the corresponding seminorm (2.5), with p := ||+||x , is the norm
£ 1l = swp [ 17]dlm.a)] (229
z*EB[X*] JQ

for which L'(m) is a Banach space. According to Lemmas [2.5(iii) and v)&(vi), the
right side of (2.23) is also the norm ||+[[11 () of the Banach space L,,(m), and L'(m) is
a closed subspace of L. (m). o

We refer to [14], [18], [46] for the theory and applications of Banach-space-valued
vector measures.

3. Complex vector lattices

Our aim is to determine when L!(m), for a lcHs-valued vector measure m, is a complex
vector lattice with respect to the m-a.e. pointwise order.

Let E be a vector lattice (also called a Riesz space) with order relation <. In other
words, F is an ordered vector space over R such that both

xVy :=sup{z,y} and zAy:=inf{z,y} (3.1)
exist in F whenever x,y € E [55, Definition II. 2.1], [61, Ch. 2, §4]. Given = € E, we
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adopt the standard symbols:
T i=2Vv0, z7:=(-2)V0, |z]:=2V(-2),
which are called the positive part, negative part and modulus of x, respectively. The
positive cone {x € E : x > 0} of F is denoted by ET. A vector subspace of E is called a
vector sublattice if it is closed under the lattice operations . Each vector sublattice is,
of course, a vector lattice in the order induced by E. A vector subspace F' of E is a vector
sublattice if and only if z+ € F for each x € F if and only if |z| € F for each z € F,
which is a consequence of basic lattice identities [I, Theorem 1.1], [36, Theorem 11.8].
We say that a vector sublattice F' is order dense in E if, given x € ET \ {0}, there is
y € FT\ {0} satisfying y < z [I, Definition 1.9|, [61, Definition 23.1]. A vector subspace
F of E is called an ideal if, whenever x € F and y € F satisfy |z| < |y|, we have x € F'.
In this case we can define the quotient vector lattice E/F [36, pp. 100-102]. An ideal
F C FE is called a o-ideal if, given any countable subset H C F' with supy H existing
in E, we necessarily have supy H € F' [30], Definition 17.1(iii)|, [55} p. 61]. Via standard
vector lattice identities [36, Theorems 11.7 & 11.8], it is routine to verify that every ideal
F C FE is necessarily a vector sublattice of E.
Let us formulate a known fact whose proof is straightforward.

LEMMA 3.1. Let F be a vector sublattice of a vector lattice E. Given a subset H C F which
has a supremum supg H in E, if the element supg H belongs to F, then the supremum
supp H of the set H in F exists and is precisely the element supyp H.

The complezification Ec := E + iFE of a vector lattice E is a complex vector space
[55, p. 134], [60, Section 91], [61, Ch. 6]. Each z € E¢ corresponds to a unique pair
(z,y) € E x E so that z = x + 4y; in this case = (resp. y) is called the real (resp.
imaginary) part of z and is denoted by Re(z) (resp. Im(z)). The complex conjugate
Z € E¢ of such a z is defined as Z := x — iy. We say that a real vector lattice E has the
complex modulus property if the supremum supgeg o5 |(cos 0)x + (sin 0)y| exists in £ for
each pair (z,y) € E x E. In this case, the modulus |z| of z = (x + iy) € E¢ is defined to
be the element

|z| = |z +iy| := sup [(cosB)x + (sinf)y] (3.2)

0€[0,27]
of E*. The modulus map z — |z| from E¢ onto E™T satisfies the “standard” conditions
of a modulus. Namely, |z| = 0 if and only if z = 0, with |az| = |a] - |z for all « € C and
z € Ec and |21 + 22| < |z1] + |22| for all 21,29 € Ec [565] (3), p. 134], [60, Section 91],
[61, Ch. 6]. Moreover, |Z| = |z| for each z € E¢ because, with 2 := Re(z) and y := Im(z),
we have
IZ| = |z —iy| = sup [(cos@)z + (sinf)(—y)|
0€[0,27]

sup [(cos(=0))z + (sin(=0))y| = |x + 1y| = |z].
0€[0,27]
It is also clear from that if z =z + 40 with z € E*, then |z| = z. Hence, ||z|| = |2
for every z € Eg.
The complexification of a real vector lattice with the complex modulus property
is called a complex vector lattice. Our class of complex vector lattices properly includes
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those complex lattices (or complex Riesz spaces) given in [55, Definition II1.11.1],
[60, p. 191] (see also [61, Ch. 6]); see Remark 3.3 below. An axiomatic way of defin-
ing complex vector lattices has been adopted in [39].

Let us discuss some sufficient conditions for E to have the complex modulus property.
According to [55, Definition I1.1.8], E satisfies Axiom (OS) if, whenever {z,}52, is a
sequence in ET for which there exist « € ¢! (with a(n) € R forn € N) and z € F
satisfying x, < a(n)x for each n € N, then the supremum sup ¢y ZnN:]_ X, exists in E.
It is routine to check that an equivalent statement to Axiom (OS) occurs if it is formulated
with € ET in place of x € E. It turns out that E satisfies Axiom (OS) if and only
if £ is Archimedean and uniformly complete; see Remark iii) below. A seminorm
(resp. norm) ¢ on E is called a lattice seminorm (resp. lattice norm) if q(z) < q(y) for all
x,y € E with |z| < |y|. The terminology Riesz seminorm / Riesz norm is also common
[36], [60], [61]. A vector lattice equipped with a lattice norm for which it is complete is
by definition a Banach lattice.

LEMMA 3.2. Let E be a vector lattice.

(i) Given z,y € E, it follows that suppe(o on |(cos 0)x + (sin 9)y| exists in E if and only
if SuPgeo,20)((cos O)x + (sinb)y) exists in E, in which case

sup |(cos@)x + (sinf)y| = sup ((cosf)z + (sinf)y). (3.3)
0e€l0,27] 0€0,27]

(ii) The vector lattice E has the complex modulus property if and only if

sup ((cos8)x + (sinf)y)
0€[0,27]

exists in E for all pairs x,y € E, in which case

|z +iy| = sup ((cos@)x + (sinf)y). (3.4)
0€0,27]
(iii) If E satisfies Aziom (OS), then it has the complex modulus property.
(iv) Each of the following conditions guarantees that E satisfies Aziom (OS), and hence
that E has the complex modulus property:
(a) E is Dedekind o-complete.
(b) E is sequentially complete with respect to a real lcH-topology generated by a
family of lattice seminorms.
(¢) E is equipped with a lattice norm for which it is a Banach lattice.

(v) If E satisfies Aziom (OS), then so does every ideal F in E.

(vi) If E has the complex modulus property, then so does every ideal F in E. Moreover,
given x,y € F, the modulus |x + iy| of © + iy in Ec equals that of x + iy in the
complex vector lattice F' 4 i F.

Proof. (i) This is a consequence, for each 6 € [0, 27], of the equalities
|(cos 0)x + (sinB)y| = ((cosB)x + (sinh)y) V (—(cosO)z — (sin f)y)
= ((cos )z + (sinB)y) V ((cos(f + 7))z + (sin( + 7))y).
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(ii) Apply part (i) after recalling the definition of the complex modulus property.

(iil) See [55, p. 134].

(iv) Condition (a) implies Axiom (OS) as noted in [55] p. 54]. Via [I, Theorem 5.6(iii)],
condition (b) also ensures Axiom (OS). Condition (c) is a special case of (b). In each case
the complex modulus property of E then follows from part (iii).

(v) The proof is a routine application of Lemma [3.1]

(vi) This is also an immediate consequence of Lemma ]

REMARK 3.3. (i) The complex vector lattices defined in [55 Definition II.11.1] are lim-
ited to those which are the complexification of some vector lattice satisfying Axiom (OS).
Such complex vector lattices are also complex vector lattices in our sense because Ax-
iom (OS) guarantees the complex modulus property; see Lemma iii). The converse
is not valid (see the spaces (sim2Y)g and RL. in part (iv) together with Fact 1 below),
so that the class of complex vector lattices considered here is strictly larger than that
in [55].

(ii) The complex vector lattices defined in [60, p. 191] are those which are the com-
plexification of some Archimedean, uniformly complete vector lattice. It turns out that
the class of complex vector lattices in [60] is exactly the same as that in [55]. This is a
consequence of the following

Fact 1. A wvector lattice satisfies Aziom (OS) if and only if it is Archimedean and uni-
formly complete.

The proof of Fact 1 is given in part (iii) below.

Every Banach lattice is Archimedean [60, p. 282], and uniformly complete [60, The-
orem 100.4(ii)]. The Banach lattice C([0,1)) consisting of all R-valued, continuous func-
tions on [0,1] and equipped with the uniform norm fails to be Dedekind o-complete
[36, Example 23.3(ii)]. Hence, Dedekind o-completeness is not equivalent to Axiom (OS).
On the other hand, every Dedekind o-complete vector lattice is Archimedean [61 p. 62],
and uniformly complete [61, Theorem 12.8].

(iii) Let E be a vector lattice. Recall that E is Archimedean if inf,eny 2u = 0 for
every u € E1 |36, p. 78]. Given u € ET, a sequence {z,,}5°, in E is said to converge
u-uniformly to x € E if for every € > 0 there exists N. € N such that |z —z,| < eu for all
n > N.. The definition of a u-uniform Cauchy sequence is similar [36], Definition 39.1].
Then E is called uniformly complete if, for every u € E™, all u-uniform Cauchy sequences
are u-uniformly convergent in F [36, Definition 42.1].

To verify Fact 1, assume first that E satisfies Axiom (OS). Then E is Archimedean
[55, p. 54]. To obtain the uniform completeness of F, let u € ET \ {0} and {z,,}52, be
an increasing, u-uniform Cauchy sequence in E. Set y,, := x,, — 21 for n € N, in which
case {y,}5°, C E™T is also increasing and u-uniformly Cauchy. Select a subsequence
{Une) 1221 of {yn}nZ, such that

0 < (Yn(k+1) = Yn(k)) = [Ynk+1) = Yniy| < szu, K eN.

As {2752 € ', Axiom (OS) ensures that y := supyen Yopey Yn(k) exists in E. Ac-
cording to [36, Lemma 39.2|, the sequence {y,)}3Z; is u-uniformly convergent to y,
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from which it follows that {z,)}32, is u-uniformly convergent to y + 1. Therefore the
original sequence {z,}52 1, which is u-uniformly Cauchy, is also u-uniformly convergent
(to y + x1).

If {x,}52; is a decreasing, u-uniform Cauchy sequence in E, then it admits a
u-uniform limit because so does the increasing, u-uniform Cauchy sequence {—x,}22 ;.
So, E is uniformly complete via [36, Theorem 39.4].

Conversely, assume that E is Archimedean and uniformly complete. To prove that E
satisfies Axiom (OS), let {z,}5°; C ET, z € ET \ {0} and « € ¢! satisfy z,, < a(n)z
for n € N. Define y, := >37_, ; for n € N. Given ¢ > 0, choose N. € N such that
Z;L:k+1 a(j) < e whenever n > k > N.. Then

— il = Z%SZ jz<exr, n>k>N..
j=k+1 j=k+1

So, the increasing sequence {y, }22; is z-uniformly Cauchy, and hence has an z-uniform
limit y by the uniform completeness of E. Again by [36, Lemma 39.2|, the supremum
SUp,,cn Yn €xists in E and equals y. Consequently, E satisfies Axiom (OS).

(iv) Concerning Fact 1 above, we now exhibit three vector lattices, two of which
are Archimedean but not uniformly complete with the third one being uniformly com-
plete but not Archimedean. To this end, consider the vector lattice RY consisting of all
R-valued functions on N equipped with the pointwise order. Then RN and all of its vec-
tor sublattices are Archimedean [61, Theorem 9.1(iii) and Example 9.2(iii)]. Since RY is
Dedekind complete, it follows from [36 p. 276] that RY is also uniformly complete. Set
€n = X{n} € RN for each n € N.

For our first example, the claim is that the vector sublattice (sim 2)g := RN N sim 2%
of RY is Archimedean but not uniformly complete. That it is Archimedean has already
been noted. To see that (sim2Y)g is not uniformly complete, consider the sequence
{fi}s2, in (sim2MN)g given by f = 22:1 n~le, for k € N. Given ¢ > 0, choose an
N. € N for which 1/N. < €. Then it follows that

i nflenSNgl i e, < eu

n=k+1 n=k+1

whenever j, k € N satisfy j > k > N., where u := xy € (sim2V)g. So, the sequence
{fr}22, is u-uniformly Cauchy in (sim2N)g, but it does not have a u-uniform limit in
(sim 2Y)g because its u-uniform limit in the ambient vector lattice RY is the element
> n~'e, which does not belong to (sim2Y)g. Thus, (sim2V)g fails to be uniformly
complete.

We point out that (sim2V)g failing to be uniformly complete can also be deduced
from Fact 1 above. To see this, let g, := 27 "e,, € (sim2Y)g for each n € N, and define
a € ¢ via a(k) = 27" for k € N. Clearly 0 < g, < a(n)xy for n € N. However, the
supremum “supycy Yon_; g,” does not exist in (sim2Y)g. So, (sim2Y)g fails to satisfy
Axiom (OS), and hence by Fact 1, cannot be uniformly complete (as we already know
that (sim 2Y)g is Archimedean).
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The second example, exhibiting the same features, is the vector sublattice RL.
of RN consisting of all f € RY for which there exists & € N (depending on f) such
that f(n) = f(k) for all n > k, i.e., f is eventually constant. Since RY is Archimedean,
it follows that so is RL.. The functions {g,}°; of the previous paragraph also belong
to RY, and the same argument applies to show that R, fails Axiom (OS), and hence
RL is not uniformly complete. Observe that if f,g € R, then also \/f2 + g2 € R,
Moreover, \/ f2 + g2 = supge(o 2, ((cos 0) f +(sin #)g) in the order of the vector lattice R
[61, Example 13.2]. Hence, RY, has the complex modulus property.

The third example alluded to is immediate from the following result.

FacT 2. Let F C RY be any proper ideal containing {e, : n € N}. Then the quotient
vector lattice RN/ F is uniformly complete but not Archimedean.

To verify Fact 2, first recall that the quotient space RY/F is indeed a vector lattice
[36, Theorem 18.9]. Moreover, according to [36, Corollary 59.4] the vector lattice RY/F is
uniformly complete. To show that RY/F is not Archimedean, we adapt the argument in
[36, Example 60.1(i)], which corresponds to the special case of F' := (£*°)g. Since F # RY,
we may choose an element f € (RY)* \ F. Now define g € (RY)* by g(n) := nf(n) for
n € N. With [f] and [g] denoting the quotient classes in RY/F containing f and g,
respectively, we shall verify that

[f1<k7'g, keN (3.5)

If k=1, then f < g in RY gives [f] < [g]. For each k > 2, the inequality (3.5]) still
holds because

with Z n/k: —1)f(n)e, € F by the assumptions on F. This establishes (3.5). Since
[f] # [0] in RN/F, it follows from the discussion on pp. 78-79 of [36] that RY/F is not
Archimedean.

(v) Let E be a vector lattice. A sequence {z,,}°2; C E is said to be relatively uni-
formly convergent to x € E if {,,}°°, is u-uniformly convergent to = for some u € E™
[36, Theorem 16.2]. A subset W of E is called uniformly closed if, whenever a sequence
{zn}52; in W is relatively uniformly convergent to some z in E, then necessarily z € W
36, p. 84].

Recall that a Fréchet lattice is a vector lattice with a complete lcH-topology which is
generated by countably many lattice seminorms. For the particular Fréchet lattice RN of
part (iv), equipped with the lcH-topology generated by the sequence of lattice seminorms
{pn}52, with p,(z) := maxi<p<n |2(k)| for z € RY, it is clear in Fact 2 above that the
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conditions on the ideal F C RN imply that F is not topologically closed in RY. The
following result shows that this is no coincidence.

Facr 3. For an ideal F' in a Fréchet lattice E the following assertions are equiva-
lent:

(i) The quotient vector lattice E/F is Archimedean.
(ii) F is uniformly closed in E.
(iii) F is topologically closed in E.

Proof. The equivalence (1)< (ii) holds for a general vector lattice and its quotient vec-
tor lattices [36, Theorem 60.2]. The equivalence (ii)<(iii) is a consequence of Proposi-
tion 4.2.4 in [48], once we observe that the definition of relatively uniformly convergent
sequences in [48, Definition 1.5.7] is equivalent to that given above. m

Since a Fréchet lattice E is uniformly complete (by Lemma iv)(b) and Fact 1), its
quotient vector lattice E/F with respect to an ideal F' in E is also uniformly complete
[36, Corollary 59.4]. Then the equivalence (i)<(iii) in Fact 3, together with Fact 1, shows
that an ideal F' of a Fréchet lattice E is topologically closed if and only if E/F satisfies
Axiom (OS).

(vi) Let us point out, for the equivalence (ii)«<(iii) in Fact 3, that the topological
completeness of E is crucial. There exist examples which satisfy condition (ii) but not
condition (iii); see, for instance, [48, Example 4.2.5] and [60, Exercise 100.13].

The implication (iii)=-(ii) in Fact 3 holds even if E is merely a metrizable locally
convex vector lattice (i.e., a vector lattice with a lcH-topology generated by countably
many lattice seminorms). In fact, (iii) implies that the quotient vector lattice E/F is
also a 1cHs [1, Theorem 4.7(iii)], and hence it is Arichmedean [I, Theorem 5.6(i)], i.e.,
(i) holds. Moreover, (ii) also holds via the general equivalence (i)<(ii); see the proof of
Fact 3. o

According to [55, Definition I1.11.3], a complex Banach lattice is defined as the com-
plexification E¢ of a Banach lattice E with a lattice norm ||-||g, in which case E¢ is
complete with respect to the norm z — |||z|HE for z € E¢. It is important to note
that E¢ is a complex vector lattice because of the complex modulus property of E; see
Lemma [3.2{iv)(c).

The complex sequence spaces cg and ¢°° are complex Banach lattices equipped with
their respective uniform norm. Indeed, ¢y (resp. £>°) is realized as the complexification
of the Banach lattice

(co)r := co NRY  (resp. (£%°)g := £ NRY)

equipped with the uniform norm (which is a lattice norm).

Let us return to a general complex vector lattice Ec = E + iFE, i.e., E¢ is the com-
plexification of a vector lattice F with the complex modulus property. Relevant is the
question: Given a complex vector subspace G C E¢, when is G a complex vector lattice?
We will say that G is closed under complex conjugation if, given z € G, its complex
conjugate Z in E¢ belongs to G. Similarly, G is said to be closed under forming the mod-
ulus if, given z € G, its modulus |z| in Ec (recall that |z| € ET) belongs to G. Finally,
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G is called solid if z € E¢c, w € G and |z| < |w| imply that z € G, in which case G is
necessarily closed under complex conjugation (since |z| = |Z| for z € E¢) and forming the
modulus. To verify the latter claim, given w € G let z := |w| (the modulus of w in E¢).
Then z € Eg satisfies |z| = ||w|| = [w]| < |w|. Since G is solid, it follows that z € G, i.e.,
lw| € G.

Returning to a general complex vector subspace G C E¢, define

Gr:=GNE.

The inclusion
Gr+iGr C G (3.6)

always holds because G is a vector subspace of E¢. Assume further that Gg is a vector
sublattice of E. Then we say that G is a complex vector lattice in the order induced by E¢
if Gg has the complex modulus property and if G is the complexification of Gg, i.e.,

G = Gr + iGR. (3.7)

LEMMA 3.4. Let G be a complex vector subspace of a complex vector lattice Ec = F+iFE
such that Gr is a vector sublattice of E.

(i) The complex vector subspace G is closed under complex conjugation if and only if
holds.

(ii) Assume that G is closed under complex conjugation and forming the modulus. Then
G is a complex vector lattice in the order induced by Ec. Moreover, given z € G, the
modulus of z in G equals that of z in Ec.

(i) If G is solid, then the same conclusion as in part (i) holds.

(iv) Assume that Gg is order dense in E. Then G is a complex vector lattice in the order
induced by Ec if and only if G is closed under complex conjugation and forming the
modulus.

Proof. (i) Suppose that G is closed under complex conjugation. Let z € G, in which case
z = x + iy with x,y € E. By assumption also Z = x — iy € G. Since G is a vector
space, the identities = 1(z + Z) and y = 5;(z — Z) show that both z,y are in G, i.e.,
x,y € Gg := GN E. This, together with , imply .

Clearly implies that G is closed under complex conjugation.

(ii) Let =,y € Gg, in which case x + iy € G via , and define

H = {(cosf)z + (sinf)y : 0 € [0,27]} C Gr C E. (3.8)

Then |z +iy| := supg H € E belongs to Gg (by the assumptions on G). Lemma [3.1] with
F = GR tells us that supy H equals the supremum of H in Gg. Accordingly, Gr has
the complex modulus property. This, together with part (i), ensures that G is a complex
vector lattice in the order induced by Eg¢.

The second conclusion has already been established.

(iii) This holds because the assumptions of part (ii) hold when G is solid; see the
discussion prior to Lemma[3.4]

(iv) Suppose that G is a complex vector lattice in the order induced by E¢. That G
is closed under complex conjugation is clear from ; see part (i). Next, let z,y € Gg.
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Then z + iy € Gj see . The set H C Gy given in admits a supremum supg, H
in Gg (as Gg has the complex modulus property). But this supremum supg, H of H
in Gr equals its supremum supp H in E because of the order denseness of Gg in F
[T, Theorem 1.10]. So, |z + iy| := supy H = supg, H € Gg, and therefore G is closed
under forming the modulus.

The converse implication is precisely part (ii). Note that here the order denseness of
Gr in E is not required. m

We proceed to apply the general results just established to various function spaces
associated with a vector measure. So, let X be a IcHs and m be an X-valued vector
measure defined on a measurable space (£2,X). To see that the vector space L°(X) (see
Section 2) is a complex vector lattice, observe first that the real vector space

LO(D)g = LX) NRY

is a vector sublattice of the vector lattice R in the pointwise order. It is clear that £°()
equals the complexification of £°(3)g, namely

L£0(%) = L2D)g +iL2(Z)g. (3.9)
A useful fact is that a subset H C R admits a supremum in R if and only if sup rer flw)
< 0o for each w € (2, in which case sup H € R is the function w + supscp f(w) on €.
In other words, the supremum in R® is the pointwise supremum. This also applies to
L°(X)r when we limit ourselves to the suprema of its countable subsets. A consequence
is that £°(X)g is Dedekind o-complete, so that it satisfies Axiom (OS), and hence has
the complex modulus property; see Lemma ii), (iii) and the proof. So, £L(¥) is a
complex vector lattice via ([3.9). Moreover, given f,g € L%(X)r, the modulus |f + ig| of
f +ig in the complex vector lattice £°(3) equals the pointwise modulus, i.e.,

|f +ig| == sup ((cosB)f + (sinf)g) =/ f? + g2 (3.10)

0€[0,27]
This is an application of Lemma with E := R® and F := LO(X)g. Alternatively,
Lemma|3.4(ii) with £ := R and G := L°(X) gives both the fact that £°(X) is a complex
vector lattice and that holds.

Recall from Section 2 the vector subspace N(m) C L£1(m) C £°() of all m-null

functions. Define

N(m)R = N(m) n ,CO(E)R
so that

N(m) = N(m)r +iN(m)g. (3.11)

Clearly, N'(m)g is an ideal in £°(X)g; see and (2.12). Moreover, it is also a o-
ideal. To see this let {f,}nen be a countable subset of N'(m)r such that ¢ := sup,,cy fn
exists in £%(X)g. Then the increasing sequence g, := fi V---V f, € N(m)r for n € N,
satisfies f, < g, < ¢, for n € N. The Dedekind o-completeness of L£(X)r ensures
that ¢ := sup,cygn exists in L£°(X)g. It is routine to verify that ¢ = 1. Moreover,
gn € N(m)r for each n € N and g,, 1 ¢ pointwise on Q. The identity and the
Monotone Convergence Theorem for each scalar measure |(m,z*)|, for * € X*, imply
that ¢ € N'(m), i.e., p € N(m)g. Accordingly, the quotient vector lattice LO(X)r /N (m)r
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is Dedekind o-complete. For this fact, see [24, proof of Proposition 62G and Notes and
Comments on p. 159]. So, L9(X)g/N(m)r satisfies Axiom (OS), or equivalently, it is
Archimedean and uniformly complete via Fact 1 of Remark [3.3] This enables us to apply
[60, pp. 198-199] to establish that the quotient vector space L%(m) = L°(X)/N(m) is a
complex vector lattice as follows.

Let 11 : £9(X) — L£°(2)/N(m) be the quotient map and write [h] := II(h) for h €
L%(X). Then, with the natural identification TI(L%(X)r) = LY(X)r /N (m)r, we have

LX) /N (m) = (L2(X)r /N (m)g) + i(L(E)r/N (m)r) (3.12)
and hence
[f +ig) = [f] +ilg), f.g€ LD, (3.13)
which can naturally be seen from
(f +ig) + N(m) = (f +1ig) + N (m)r + iN(m)r) = (f + N(m)g) + i(g + N (m)g).
So, LY(X)/N(m) is a complex vector lattice. In view of we write
LY(m)g := LO(D)r/N(m)g,
so that can be rewritten simply as
L°(m) = L°(m)g + iL°(m)g.
Regarding the modulus, for h € £L°(X) with f := Re(h) and g := Im(h), we have the

formula

[} = sup ((cosB)[f] + sinOlg]) = [[h]]. (3.14)
0€[0,27]

Applying both of the above facts, derived from [60] and Lemma we shall deter-
mine in Proposition below whether or not L!'(m) := L£*(m)/N(m) and L. (m) :=
L1 (m)/N(m) are complex vector lattices. To this end, let F C L°(X) be any vec-
tor subspace satisfying the two conditions that F contains N'(m) and that its subset
Fr = F N LYD)g is a vector sublattice of £7(X)g. First, observe that the quotient vec-
tor space F /N (m) equals II(F), and hence is a vector subspace of L(m) = L°(Z)/N (m).
On the other hand, A (m)g being an ideal of Fg also allows us to consider the quotient
vector lattice Fr /N (m)g, which is also a vector sublattice of £°(X)g /N (m)r. In partic-
ular, the order in the quotient vector lattice Fgr /N (m)gr coincides with that induced by
L0(Z)r /N (m)g. To understand Lemma [3.5) below, recall and observe that

(Fr/N(m)r) +i(Fr/N(m)r) € F/N(m) € LO(D)/N(m) = L*(m). (3.15)

LEMMA 3.5. Suppose that m : X — X is a non-zero, lcHs-valued vector measure defined
on a measurable space (,X). Let F C L(X) be any vector subspace containing N (m)
and such that Fg := F N LY(X)r is a vector sublattice of LO(X)g.

(i) The identity F = Fgr + iFr holds in L°(X) if and only if the identity F /N (m) =
(Fr/N (m)gr) + i(Fr /N (m)r) holds in L°(m).
(ii) The vector subspace F C LO(X) is closed under forming the modulus if and only if
the vector subspace F /N (m) C L°(m) is closed under forming the modulus.
(iii) The vector subspace F C L°(X) is closed under complex conjugation and forming
the modulus if and only if the same holds for the vector subspace F /N (m) C L°(m).
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(iv) The vector subspace F C LO(X) is solid if and only if the vector subspace F /N (m) C
L°(m) is solid.

(v) If F D sim ¥, then Fr and Fr/N(m)r are order dense in L°(X) and L°(m), respec-
tively.

Proof. (i) Once we observe, given h € F C £L°(X) with f := Re(h) and g := Im(h), that

[h]=[f]+i[g]in L°(m) by (3.13), part (i) follows routinely.
(ii) By (3.14)), for each h € F, we have

[Pl =[Ial]  in L°(m), (3.16)

which verifies the “only if” part. Conversely, assume that F /AN (m) is closed under forming
the modulus. Then, given h € F, it follows from that [|h|] = [[h]| € F/N(m). So,
|h| € F because F 2 N (m), which establishes the “if” part.

(iii) This follows from parts (i) and (ii).

(iv) Suppose that F is solid. Let h; € L°(X) and hy € F satisfy [[h1]] < |[ho]|
in L°(m). Then yields [|h1|] < [|h2|] in L°(m). Hence, there is A € X, with
Q\ A € My(m), such that |h1|xa < |he|xa < |h2|. This implies that hyxa € F because
hy € F with F solid. Thus

hy :h1XA+h1XQ\A 6.7-"+N(m) C F,

which yields [hq] € F/N(m). So, F/N(m) is solid.

Suppose now that F/N(m) is solid. Let hy € L%(X) and he € F satisfy |hi| < |hal.
Then |[h1]] = [|h1|] < [|he]] = |[h2]| by (B16). This and the solidness of F /N (m)
yield [h1] € F/N(m), and hence hy € F because F 2 N(m).

(v) Clearly (sim X)g := (sim X)) N L%(2)g is order dense in £°(X)g, and hence so is Fr
as it contains (sim X)g. To prove the order denseness of Fg /N (m)r in L°(X)g/N(m)g,
let 0 < f e LYZ)r \ N(m)g, so that 0 < [f] € (LYZ)r/N(m)r) \ {0}. Choose 0 < s €
(sim X)g \ M (m)g satisfying s < f. Then 0 < [s] < [f] with [s] # 0. This implies the
order denseness of Fr /N (m)g in L%(X)g/N (m)r because [s] belongs to Fr /N (m)g. m

DEFINITION 3.6. Under the same assumptions as in Lemma[3.5] we say that the quotient
vector space F/N(m) C L°(m) is a complex vector lattice in the m-a.e. pointwise order
if it is a complex vector lattice in the order induced by L°(m).

PROPOSITION 3.7. Let m : ¥ — X be a non-zero, lcHs-valued vector measure defined on
a measurable space (§2,%).

(i) Both vector subspaces LY (m)g := L1(m) N LY(X)r and LL (m)r := LL (m) N LO(D)r
of the vector lattice L°(X)r are vector sublattices. Furthermore, the quotient vec-
tor lattices L*(m)g := L*(m)g /N (m)g and Lt (m)g := LL (m)r/N(m)r are vector
sublattices of the quotient vector lattice L°(m)g := L°(X)r /N (m)g.

(ii) The following conditions are equivalent:

(a) The vector subspace L1(m) C L°(X) is closed under complex conjugation and
forming the modulus.
(b) LY(m) is a complex vector lattice in the order induced by L°(X).
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(c) The vector subspace L*(m) C L°(m) is closed under complex conjugation and
forming the modulus.
(d) LY(m) is a complex vector lattice in the m-a.e. pointwise order.

(iii) The vector subspace L1 (m) C L°(X) is solid, and hence is a complex vector lattice
in the order induced by L°(X).

(iv) The wvector subspace Lk (m) := LL(m)/N(m) C L°m) is solid, and hence is a
complex vector lattice in the m-a.e. pointwise order.

Proof. (i) Let f € L'(m)r and set A := f~1([0,00)). Then fya is m-integrable
(see (24)), and hence f* € L'(m)g, from which it routinely follows that £!(m)g is
a vector sublattice of £L°(X)g.

Next, £1(m) is solid in £°(X) by its definition, and hence £} (m)gr is an ideal of
L0(X)g. In particular, £! (m)g is a vector sublattice.

The statement regarding the quotient vector lattices L' (m)g and L1 (m)g has already
been verified, immediately prior to Lemma with F := LY(m)g or F := L. (m)g.

(ii) From Lemma [3.5(v) with F := £(m) 2 sim¥, we deduce that £!(m) and
LY(m)/N(m) are order dense in L£°(X) and L°(m), respectively. So, the equivalences
(a)<(b) and (c)<(d) follow from Lemma [3.4(iv) with G := L£'(m), Ec := L°(X) and
with G := L*(m), E¢ := L°(m), respectively. Next, the equivalence (a)<(c) is a special
case of Lemma [3.5(iii) with F := £ (m).

(iii) and (iv). Since LI (m) is solid in £°(X), so is L}, (m) in L°(m) via Lemma [3.5{iv)
with F := £ (m). Now apply Lemma [3.4(iii) with G := £} (m) and with G := L} (m)
to establish parts (iii) and (iv), respectively. m

Assume that any one of (a)—(d) in Proposition ii) above holds. Given h € L(m),
its modulus in the complex vector lattice £(m) equals its pointwise modulus. To see
this, apply both Lemma (ii) (with G := £}(m) and Ec := £°(X)) and (with
f = Re(h) and g := Im(h)). Similarly, the modulus of [h] € L'(m) equals [|h|]. The
corresponding results for £1 (m) and L (m) are also valid.

In view of this observation, Lemma [3.5] and Proposition [3.7, we may, for a sim-
pler presentation, identify the quotient spaces L!'(m) = L'(m)/N(m) and L} (m) =
L1 (m)/N(m) with £1(m) and L} (m), respectively, unless stated otherwise. In the same
spirit, we identify L'(m)r = L'(m)r/N(m)r and L. (m)g = L. (m)r/N(m)r with
LY (m)g and L} (m)g, respectively.

Before discussing sufficient conditions for L' (m) to be a complex vector lattice in the
m-a.e. pointwise order, observe that the following containments always hold (see
with F := L1(m)):

LY(m)g +iL' (m)g C L'(m) C L°(m).
REMARK 3.8. Let m : ¥ — X be as in the statement of Proposition [3.7]

(i) Each of the following conditions is sufficient for L'(m) to be a complex vector

lattice in the m-a.e. pointwise order:

(a) LY(m) is solid in L°(m).
(8) The sequential closure [X),, of the linear span of m(X) in X is sequentially complete.
(v) LY(m) is 7(m)-sequentially complete.
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Indeed, condition (a) is sufficient via Lemma[3.4|iii) with G := L'(m) and E¢ := L°(m).
Conditions (8) and () are also sufficient because of the implications (8)=-(a) and
(7)=(a) established in Propositions 2.7 and 2.8 of [41], respectively.

We point out that («) implies the Dedekind o-completeness of L!'(m)g because
L'(m)g is then an ideal of the Dedekind o-complete vector lattice L°(m)g. In partic-
ular, L'(m)g satisfies Axiom (OS).

Conditions equivalent to («) can be found in [4I], Proposition 2.4].

We point out that conditions (/) and () are unrelated, that is, () does not always
imply () (see Example[6.5{i)) and () does not imply (8) in general (see Example[6.5{iv)).

(ii) Suppose that X is a Banach space. Then L!(m) is a complex Banach lattice. In-
deed, first observe that L!(m) is a complex vector lattice in the m-a.e. pointwise order via
(8) in part (i). Next, L'(m) is a Banach space in the norm ||+|| 11 () (see Lemma m(v)
and (2:23)). Further, the restriction of ||+|| 1 () to L'(m)r is a lattice norm for which
L'(m)g is a Banach lattice. So, L'(m) is a complex Banach lattice. Similarly, L1 (m) is
also a complex Banach lattice. Indeed, by Proposition iv) we see that Ll (m) is a com-
plex vector lattice and via Remark that it is a Banach space for the norm ||-[| 1 (1)
Further, the restriction of |||l 1 (m) to Lj,(m)r is a lattice norm for which L}, (m)g is a
Banach lattice. So, LL (m) is a complex Banach lattice.

It is worth noting that [|+||11(y) is order continuous in the sense that, if {fy} is
any downwards directed net in L'(m)r with infy fy = 0, then limy || fx|lpim) = O,
[46, Theorem 3.7(iii)]. o

EXAMPLE 3.9. Let p be Lebesgue measure on the Borel o-algebra ¥ := B(£2) of the
interval  := (0, 1]. Suppose that X C L!(u) is a vector subspace satisfying xo € X and
fs e X forall f € X and all s € simX. In particular, sim¥ C X. Equip X with the
norm induced by L!(x). Then the X-valued set function m : A + x4 on ¥ is a vector
measure with L!(m) = X as IcHs or, more precisely, as normed spaces [41}, Corollary 3.2].
The identity function on €2 is denoted by x.

(i) Let X := sim¥. Then L!'(m) = sim ¥ is closed under complex conjugation and
forming the modulus, so that L!(m) is a complex vector lattice in the m-a.e. pointwise
order (see Proposition ii)). However, L!(m)g does not satisfy Axiom (OS). To see
this, let A(n) := (1/(n+1),1/n] and f, := (1/2")Xx ), so that 0 < f,, < (1/2")xq for
n € N, with (1/27)2°; € ¢!. Then the supremum of {22[:1 fn}R—; does not exist in
LY(m)g = (sim X)g.

It is clear that m fails to have the LCP.

(ii) Let X := L°°(u). Then L'(m) = L>(u) is solid in L°(m). So, L'(m) is a complex
vector lattice in the m-a.e. pointwise order via condition (c) in Remark [3.§{i). However,
conditions () and () there do not hold [41l, Example 3.5].

As L*(m) is solid, the vector measure m has the LCP [41], Proposition 2.4].

(iii) Let X := L*® (u)—i—ﬁ sim 3. Then L!(m) = X is clearly closed under complex con-
jugation. The claim is that L!(m) = X is also closed under forming the modulus, which
corrects the corresponding false assertion in [41, Example 3.4(i)]. To prove this, fix f €
L% (u) and s € sim X and define A:= s71({0}) and B:= {w € Q: f(w) + s(w)/\/w = 0}.
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Clearly,

1
‘f+ —=s|xauB = fxa\p € L=(n) C X.

Jx

To verify that |f + s| € X, observe that on (AU B)¢ we have

‘f+s':’f+\/lg5| *(ﬁ|8|)2 o EUP sy L
V=T TR T + M= AT v

But, |s| € sim ¥ and so ﬁ|s|x<AuB)c € X. So, it suffices to show that

VXL + (f5+ f9)
VX f+s|+]s]
Now, the inequalities \/x < 1 and |\/x+s|+|s| > |s| on 2, and the fact that f € L>(u),
imply that on (AU B)¢ we have

X(auB)e € L= (n) € X.

2 = F 2 = F 2
VEIE - (54 Fs) 1R WS Tsl R
[V [+ s[+]s| s 5] |s]
Since |s| > min{|s(w)|: w ¢ AUB} > 0, it follows that the right side (hence also the left

side) of the previous inequality does indeed belong to L>(u) € X. Consequently, L!(m)

IN

is a complex vector lattice in the m-a.e. pointwise order; see Proposition ii). Hence,
by the definition of a complex vector lattice, L'(m)g has the complex modulus property.
However, by considering the functions 0 + % fn, with f,, as in part (i), for n € N, the
argument of part (i) shows that L!(m)g fails Axiom (OS).

The fact that m fails to have the LCP has been asserted in [41, Example 3.4(i)] with
correct arguments.

(iv) Define X :=sim X + ﬁ sim ¥. Then L'(m) = X is not closed under forming the
modulus because

¢ X (3.17)

)
Xa + EXQ

whereas xq + ﬁxg € X. To prove (3.17) assume, on the contrary, that there exist
S1,S2 € sim ¥ satisfying
1
+ —=sa. 3.18
\/§$2 ( )
We may assume that s1,s9 € (sim X)g. Select n € N, pairwise disjoint, non-g-null sets
A(1),...,A(n) € ¥ with U?=1 A(j) = Q, and scalars aq,...,a,,b1,...,b, € R such that

s1= 211 ajxa(j) and sz = Y7 bjxa()- This and (3.18) give

VET X = VE

)
+—=xa| =
XQ \/}EXQ S1

=D (avx+b))xa (3.19)

Jj=1
More precisely, we have (3.19) holding in the normed space X C L!(u), and hence it

holds m-a.e. pointwise on 2. Because Q) = U?:l A(j), we may assume that

VX + xao = a1vx+ by (3.20)

XQ+
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p-a.e. on A(1), say. In particular, (3.20) holds at infinitely many points in A(1). Such
points necessarily belong to the set

C:={weQ:(1-a})w+1-0b=2abyw}.

This is a contradiction because C' is either empty or a singleton set, which thereby verifies
(13.17)).
It is clear that L'(m) is closed under complex conjugation. That m fails to have the
LCP can be deduced from
i

1
< —vyq €Lt
xXa + \/}EXQ < xa+ XXQ (m)

G

together with (3.17).
(v) Let X := L>(u) + (ﬁ + iInx) sim X. Then L'(m) = X is not a complex vector

lattice in the m-a.e. pointwise order because L!(m) is not closed under forming the

modulus or under complex conjugation (see Proposition ii)). However, m does have
the LCP. For the details, see [41, Example 3.4(ii)]. o

REMARK 3.10. Let the setting be as in Example[3.9]above. There exists a vector subspace
X C L'(u), satisfying the requirements of Example such that L'(m) = X is closed
under forming the modulus, but not closed under complex conjugation; see [49] and [53]
Theorems 2 and 4|. o

Given a lcHs-valued measure m we shall discuss, in later sections, whether or not
L'(m) or L} (m) contains a lattice-isomorphic copy of the complex Banach lattice ¢
or £°°. For this purpose, let us clarify what we mean, more generally, by saying that L' (m)
or Ll (m) contains a lattice-isomorphic copy of a complex Banach lattice Ec = E + i E.
First, L'(m) must be a complex vector lattice in the m-a.e. pointwise order. Then a
linear map T : Ec — L'(m) is called a lattice-isomorphism (onto its range) if T' is an
isomorphism (in the topological sense explained in Section 2) and if T(E) C L'(m)g
with the resulting R-linear map from E into L'(m)r being a lattice-homomorphism (i.e.,
preserving the lattice operations (3.1])). When such a lattice-isomorphism exists, we say
that L'(m) contains a lattice-isomorphic copy of Ec.

The corresponding terminology also applies to L. (m), in which case we do not need
to assume that Ll (m) is a complex vector lattice in the m-a.e. pointwise order because
it always is; see Proposition [3.7(iv).

We end this section with a prototype for Banach spaces of a result whose extension
(in subsequent sections) to the case of lcHs-valued vector measures is the main theme
of this paper. For a Banach-space-valued vector measure recall from Remark ii) that
L'(m) and L (m) are complex Banach lattices.

ProprosiTION 3.11. The following conditions are equivalent for a Banach-space-valued
vector measure m:

(i) L'(m) = LL(m).
(i) The complex Banach lattice L*(m) does not contain a lattice-isomorphic copy of the
complex Banach lattice cg.
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(iii) The complex Banach space L*(m) does not contain an isomorphic copy of the com-
plex Banach space cq.

Proof. Condition (i) is equivalent to the weak sequential completeness of L'(m) [46,
Proposition 3.38(I)]. This latter condition implies the weak Y-completeness of L'(m),
from which (iii) follows; see Lemma i) with X := L'(m).

The implication (iii)=-(ii) is clear.

Now, (ii) is equivalent to L!'(m)g not containing a lattice-isomorphic copy of (co)r
[46, Lemma 3.8(i), (iv)]. But, this latter condition holds if and only if L'(m)g does not
contain an isomorphic copy of (co)g if and only if L!(m)g is weakly sequentially complete
[2, Theorem 14.12]. This observation establishes that (ii) implies the weak sequential
completeness of L!'(m), and hence implies condition (i) because the weak sequential
completeness of L (m) is equivalent to that of L'(m)g [46, Lemma 3.35(i)]. =

Observe in Proposition that the implication (ii)=-(iii) is proved indirectly and
proceeds via the implications (ii)=(i) =(iii) together with the equivalence of (i) and the
weak sequential completeness of L!(m). This is because our proof is based on the key fact
[2, Theorem 14.12], in which the corresponding real case also involves the weak sequen-
tial completeness condition. It is also worthwhile to exhibit a direct proof of (ii)=>(iii)
for L*(m). This is presented in Remark

4. Proof of Theorem 1.1

Throughout this section, let m : ¥ — X be a IcHs-valued vector measure defined on a
measurable space (£2,X) unless stated otherwise. By X, we denote X equipped with its
weak topology o(X, X™*). To avoid the trivial case, we assume that m is not the zero
vector measure.

REMARK 4.1. Let i, : X — X, denote the identity map. Then i, o m : ¥ — X, is also
a vector measure. The equality X* = (X,)* implies that £*(m) = L(i, o m) as vector
spaces, and that N'(m) = N (i, om); see (2.13). Hence, also L*(m) = L*(i, om) as vector
spaces. Similarly, L. (m) = L. (i, o m) as vector spaces. o

The 1cHs L'(m) has the topology 7(m); see Section 2. As indicated above, L!(m)
equipped with its weak topology o(L*(m), (L*(m))*) is denoted by L'(m),. Except for
the case of a Banach space [40], there is, in general, no adequate description available of
the dual space (L'(m))*. Now, for each A € ¥, multiplication by y4 defines the linear
operator

My : L*(m) — L'(m) via f— xaf, (4.1)

which is clearly continuous by the definition of 7(m). Moreover, M, is also weakly con-
tinuous, i.e., M4 € L(L*(m),) because L(L*(m)) C L(L'(m),) |32, §20, 4(5)].

LEMMA 4.2. Suppose that {fi}32, is a Cauchy sequence in L'(m), converging pointwise
m-a.e. to a function f € L*(m). Then limy_,o fx = f in L' (m),.
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Proof. Consider the L'(m)-valued set function [m] : A — x4 on ¥. It follows from
[41, Proposition 3.1] that [m] is o-additive, that L'([m]) = L'(m) as 1cHs and that the
integration operator Ip,, : L*([m]) — L*(m) is the identity.

The identity map i, : L'(m) — L'(m), is linear and continuous, so that i, o [m] :
¥ — LY(m), is also a vector measure. Moreover, L!(i, o [m]) = L([m]) as vector
spaces; see Remark (with [m] in place of m and X := L'(m)). By J, we denote the
natural embedding of L'(m), into its sequential completion (L!(m),)™; see Section 2.
The resulting vector measure J, o i, o [m] : ¥ — (L*(m),)™ satisfies

L'(iy o [m]) € L'(Jy 0ig o [m])

and 7(i, o [m]) is the relative topology induced by 7(J, o i, o [m]); see Lemma [2.5{iii)
(with i, o [m] in place of m, J, in place of J and X := L'(m),). Moreover, each function
fx is (J5 0 iy o [m])-integrable and, for each A € ¥, we have

[ Bt oz fml) = (Jp i (/ fedim ) (T 0 i) (fixa)
— (Jyoigo Ma)(fi), kEN;

apply Lemmawith [m] in place of m, X := L'(m), Y = (L'(m),)~ and T := J, oi,.
Since J, 04,0 M4 is continuous from L*(m) into (L'(m),)~, and (L'(m), )™ has its weak
topology, it follows that J, o, o M4 is also continuous from L'(m), into (L'(m),)™.
Accordingly, the sequence {(J, o i, o M4)(f)}32, is Cauchy in (L'(m),)~, and hence
admits a limit there. As we know that f € L!(J, o i, o [m]), by Lemma i) (with
T := J, oi, and [m] in place of m), we find that {fx}2°; is 7(J, 0 iy o [m])-convergent
to f via Lemma [2.7(i) (with J, 04, o [m] in place of m and X := (L'(m),)~). As
f, fx € LY(m) = L*([m]) = L' (i, o [m]) for k € N and since 7(.J, o i, o [m]) induces the
topology 7(i, o [m]) on L' (i, o [m]), it then follows that {fx}%2, is 7(i, o [m])-convergent
to f. Therefore

f IZ o[m (f) = lim Iigo[m](fk) = lim fk
k—oo k—oo

in L*(m), because the integration operator I; o[ : L' (is0[m]) = L'(m), is the identity
and is continuous. m

LEMMA 4.3. LetY, Z and W be lcHs.

(i) Given a surjective linear map R € L(Y,Z) and a linear map V € L(Z, W), suppose
that their composition Vo R :Y — W is a surjective isomorphism. Then both R and
V' are also surjective isomorphisms.

(ii) Suppose that R € L(Y,Z) and V € L(Z, W) are linear maps such that their compo-
sition Vo R:Y — W is an isomorphism onto its range. Then both R:Y — Z and
the restriction V|gry : R(R) = W of V to R(R) C Z are isomorphisms onto their
respective ranges.

Proof. (i) Let H := Vo R. Clearly, V is surjective. If z € V=1({0}) C Z, then there exists
y € Y satisfying z = Ry (as R is surjective). It then follows that 0 = Vz = (VoR)y = Hy,
and hence the injectivity of H gives y = 0, by which z = 0. Consequently, V is also
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injective. Since V o (Ro H~!) is the identity on W, we have V=1 = Ro H=1 € L(W, Z),
and V is a surjective isomorphism.

Next, the injectivity of H implies that of R via H = V o R. Since (H !0 V)o R is
the identity on Y, it follows that R™* = H=1oV € £(Z,Y), which implies that R is also
a surjective isomorphism.

(ii) First replace W by R(V o R) so that we may assume that V o R is a surjective
isomorphism. Then apply part (i) with R(R) in place of Z and V|g(g) in place of V. =

Proof of Theorem 1.1. (i) Let S : ¢o — L'(m) be any isomorphism onto its range. Then
we can select ¢ € P(X) satisfying

lelley < g(m)(S(@)), € co. (4.2)

With {e,, }5° ; denoting the canonical basis of cg, let g, := S(e,,) € L*(m) for n € N. The
claim is that there exist a function f € £L%(X), a set B € ¥ with q(m)(xa\s) = 0 and an
increasing sequence {n(k)};2, in N such that

n(k)

Jin 3 (o7xe)(0) = flw), v en (43)

To verify this, choose a Rybakov functional 5 € X for the Banach-space-valued vector
measure my = mgom : X — Xg, ie, No((mg,&5)) = No(myg), [18, Theorem IX.2.2|,
and define zf 1= §§ omy € X*. Then (m,z§) = (my, ;). By Lemma (with Y :=C
and T := xj, € L(X,C)), consider the canonical map [z], : L*(m) — L*((m, z§)) which
assigns to each h € L'(m) the same function h in L'({(m,x)); see also Remark In
particular, g, = ([#§]m © S)(ey) for all n € N. As {e, }°2, is weakly absolutely Cauchy
in ¢y and as [z3],, 0 S € L(co, L' ({m,x}))), the functions g, = ([2§]m o S)(e,) for n € N
form a weakly absolutely Cauchy sequence in the weakly sequentially complete (hence
also weakly Y-complete) Banach space L!'({m,x)). Therefore, {g,}>%; is summable
in the norm of L*((m,xz})); see Lemma Setting g := > | gn, We can select a set
B € ¥ with Q\ B € Ny((m, z)) and an increasing sequence {n(k)}?°; in N such that

n(k)
Jim Z_:l(ngB)(w) = (gxp)(w), we

So, (4.3) holds with f := gxp. Next, observe that

q(m)(xa\p) = sup |[(m,z*)[(Q\ B) = sup |(mq,£)[(2\ B) =0
z*elUQ §rEB[X ]

because 7} (B[X;]) = Uy (see (2.2)) and because Q\ B € No((m, z5)) = No(mg) implies
that Q\ B € No((mg,£*)) for all £* € B[X]. Thus, the claim is verified. So, fix now the
function f, the set B and the sequence {n(k)}72; as in the claim.

It follows, from (with ¢ in place of p and hxq\ g in place of f) and the fact that
Q\ B € No((mg,£*)) for all £* € B[X ], that ¢(m)(hxa\p) = 0 for all b € L*(m). So, for
each h € L'(m), we find via the triangle inequality for g(m)(-) that

q(m)(h) = q(m)(hxs + hxa\s) < q(m)(hxs) < q(m)(h).
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That is, g(m)(Mg(h)) = q(m)(h) for all h € L*(m). In view of we have
lafle, < g(m)(S(@)) = g(m)((Mp o S)(a)), a & co.

Recalling that Mp : L*(m) — L'(m) is continuous, it follows that Mp o S : cog — L (m)
is an isomorphism onto its range. Setting fj := (Mpo.S) (Z?g) e;) € L'(m) for k € N, it
follows that { fi }2°, is weakly Cauchy but not weakly convergent in L' (m); this is because
{Z?ikl) e; }72 ; has this same property in ¢y and because Mpo S is an isomorphism onto its
range with respect to the weak topologies on both ¢y and L!(m). Since f; — f pointwise
on  (see (4.3)) we can apply Lemma to conclude that f is not m-integrable.

To show that f € L}, (m), fix z* € X*. Given A € X, the image { [, fr d(m,z*)}72,
C C of the weakly Cauchy sequence {f,}32, C L'(m) under z*ol,,oM4 € L(L'(m),C) =
L(L'(m),,C) is (weakly) Cauchy, and hence has a limit in C. So, Lemma (1) applied
to the scalar measure (m,z*) tells us that the pointwise limit f of {fx}72, is (m,z*)-
integrable. Since x* € X* is arbitrary, we conclude that f € L. (m). Hence, the function
f belongs to L} (m)\ L'(m).

(ii) For a Banach-space-valued vector measure this result is known [10, pp. 43-44]. The
following proof is along the lines of that in [10], suitably adapted to the more general set-
ting. Recall that ¢ € P(X) satisfies and that m, : ¥ — X, is a Banach-space-valued
vector measure. The natural map [rg],, : L'(m) — L'(m,) is defined via Lemma
with Y := X, and T := 7, € L(X, X,). For each « € ¢¢, we deduce from and
that

lalleo < g(m)(S(@)) = [[([7g)m © S) ()| L1 (m,)- (4.4)

It follows that the continuous linear map ([}, 0 S) : ¢co — L*(m,) is an isomorphism
onto its range. Recall from the proof of part (i) that the sequence {g; 521 Is summable in
the norm of L'((m, xy)) = L'({my, &), which implies that lim;_ e 95l (¢mg.e50) = O
Consequently, {g;}72; has a subsequence which converges to 0 pointwise (mg, &7)-a.e.,
and hence also mg4-a.e. because & is a Rybakov functional for m,. For ease of notation,
we may assume that {g; };";1 itself is convergent to 0 pointwise mg-a.e. According to ,
for each j € N, we have

19511 (mg) = [I([7g]) @ S) (el L1 (my) > llejlle, =1
so that the sequence {g;}32, C L'(my) is not 7(mq)-convergent to 0 in L'(m,). Since
g; — 0 pointwise mg-a.e., it follows from Lemma (i), with X, in place of X and
myg in place of m, that there is a set F' € ¥ for which the sequence { [5. g; dmq }32, is not
norm-convergent to 0 in X,. By passing to a subsequence of {g; };";1 if necessary, we may
again assume, with u; := fF g;j dmg for j € N, that

i [y x, > 0. (4.5)
For each j € N, the identity
Uj:/ngdeq:(FqO[mOMFOS>(€j) (4.6)
Q

implies that {u;}52, is weakly null in X, because it is the image of the weakly null
sequence {e; }32, in ¢o under the operator (r,0l,,0 MpoS) € L(co, X,). This fact, together
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with (£.5)), guarantees that {u;}52, has a subsequence which is basic [38, Theorem 4.1.32].
Again, for simplicity of presentation, assume that {u; }‘;‘;1 itself is a basic sequence in X,.
Via (4 , observe that the sequence {u; }°° is the image of the weakly absolutely Cauchy
sequence {e;}22, in ¢o under the operator (m; o I,, o Mp o S) € L(co, X4), and hence is
itself also weakly absolutely Cauchy in X,. This, together with , implies that the
basic sequence {u;}32; is equivalent to the canonical basis of ¢y [38, Theorem 4.3.10].
Let T : ¢o — X, denote the corresponding isomorphism onto its range (i.e., T'(e;) = u,
for j € N) [38], Proposition 4.3.2].
As an equality in £(co, X4), we have

T = (ngoly)o(MpolS)

because both operators coincide on each basis vector e; € ¢ for j € N; see (4.6)). Setting
U :=R(MpoS)C L'(m) it follows that

(a) (Mg oS) € L(co, L*(m)) is an isomorphism onto its range, and
(b) the restriction (7 o I),)|v : U — X, is an isomorphism onto its range.

This can be verified via Lemma (ii) applied to the spaces Y := ¢y, Z := L'(m),
W := X, and the operators R := (MpoS) € L(Y,Z) and V := (w40 I,,) € L(Z, W)
because their composition T =V o R: Y — W is an isomorphism onto its range.

According to (a) above, U is isomorphic to ¢g. The claim is that the restriction I, |y :
U — X is an isomorphism onto its range. This again follows from Lemma ii), now
applied to the spaces Y :=U, Z := X, W := X, and the operators R :=I,,,|uy € L(Y, Z)
and V := m, € L(Z,W), upon noting (via (b) above) that their composition V o R =
(g 0 In)|lu : Y — Z is an isomorphism onto its range. So, R = I,,|y € L(U, X) is an
isomorphism onto its range. Therefore, I, fixes a copy of ¢y. m

We point out that the argument given in the proof of Theorem (ii) shows that
there exists a subsequence {g;x)}72; of {g;}32, and a set F' € ¥ such that the closed
subspace U of L'(m) is precisely the closed linear span of {g;x)xr : k € N} in L'(m).
This corresponds to the comment given in [I0, p. 44] for the case of a Banach-space-
valued vector measure. The proof shows, in particular, that every isomorphic copy of ¢y
in L'(m) generates a further isomorphic copy of ¢y in L!(m) which is fixed by I,,.

The proof of Theorem [L.1fi) is motivated by the second proof of Theorem 2.2 of [10],
where X is a real Banach space; the same result appears in [II, Theorem 2| with a
different proof. We formulate Theorem 2.2 of [10] in Corollary [4.4{iv) below (which will
also follow immediately from Theorem 1.1).

Recall that J denotes the canonical embedding of X into its sequential completion X ;
see Section 2.

COROLLARY 4.4. Let m: X — X be a lcHs-valued vector measure.

(i) If LY(m) = ( ) then L'(m) does not contain an isomorphic copy of .
(i) If LY(J om) = LL (m), then L*(m) does not contain an isomorphic copy of co.
(iii) If L*(m) contains an isomorphic copy of co, then so does L'(my o m) for some
g € P(X).
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(iv) Suppose that X is a Banach space. If X does not contain an isomorphic copy of cy,
then neither does the Banach space L*(m).

Proof. (i) This is the contrapositive of Theorem [L.1

(ii) The assumption L'(J o m) = L} (m) means that L'(J om) = L. (J om) as
Ll (m) = L.L(Jom) via Lemma (ii). So, part (i) applied to J om instead of m shows
that L'(.J om) does not contain an isomorphic copy of ¢, and hence neither does L!(m)
via Lemma [2.5[(iii).

(iii) As in the proof of Theorem 1.1, take an isomorphism S : ¢g — L'(m) onto its
range and choose ¢ € P(X) satisfying . Now, m, € L(X, X,) induces the operator
[Tqlm € L(LY(m), L* (7, 0o m)) given by [my]m(f) := f for f € L'(m); see Lemma (iii)
with Y := X, and T := m;. Moreover, for a given f € L'(m), we have g(m)(f) =
17 gl () L1 (ryom); SCC with p := ¢ and which give

[[mglm ()21 (rgomy = I F |21 (rgom)y = sup /|f|d|<7rq°mﬂ7>|, fe Lt (m).
neB[X:]JQ

Therefore, it follows from (4.2)) that

lle, < q(m)(S(@) = [[([mglm o S |1 (xom), @ € co,

which establishes part (iii) because [my]m 0 S : ¢g — L*(m, 0 m) is continuous.

(iv) First recall, from Lemma [2.10[v), that L'(m) is a Banach space. To verify
that L'(m) does not contain an isomorphic copy of ¢y assume, on the contrary, that
it does. Then Theorem 1.1 yields L!(m) € L1 (m). On the other hand, since X is weakly
Y-complete (see Lemma [2.3(ii)), it follows from Lemma [2.5(iv) that L'(m) = L1 (m).
This contradiction proves part (iv). m

Observe in Corollarythat part (ii) is a stronger statement than part (i), since the
assumption L!'(m) = L! (m) in (i) implies the assumption L*(J o m) = L} (m) in (ii).
This is because of the general inclusion L!(m) C L*(Jom) C L. (m); see Lemma iii).
Moreover, part (ii) is genuinely stronger than part (i); indeed, the vector measure m in
Example [2.6(iii) satisfies L!(m) C L'(J om) = L (m).

The converse of part (iii) in Corollary is not valid in general, as can be seen by
the following example.

EXAMPLE 4.5. Let the notation and setting be as in Example iii). Then L'(m) does
not contain an isomorphic copy of ¢g by Corollary ii). On the other hand, considering
the sup-norm ¢q on X := ((1/¢)sim X, ||+||s2) it is clear that ¢ is continuous on X, that
X, = ¢p and that (m, om)(A) = xa/p € ¢ for all A € . So, L (mg0om) = ¢ - ¢y by
Example (ii). The corresponding integration operator is a surjective isomorphism from
L'(mg 0om) onto co; indeed, it is the multiplication operator f + (1/¢) - f for f € ¢ - co.
So, we conclude that L!(m, o m) contains an isomorphic copy of ¢y whereas L*(m) does
not. o

Since L'(m) = simY does not contain an isomorphic copy of ¢y (cf. Lemma
below), the vector measure m in Example[2.6(i) provides a counterexample to the converse

of Corollary [4.4[(ii).
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Let us exhibit a class of vector measures m which satisfy the assumption L*(Jom) =
L1 (m) of Corollary ii).
EXAMPLE 4.6. (i) Let Y be a IcHs and let X :=Y,, in which case X* = Y™* as vector
spaces. As noted in Section 2, the sequential completion X of X is weakly sequentially
complete. So, given a vector measure m : ¥ — X, the vector measure Jom : ¥ — X
satisfies L'(J om) = L. (m) by parts (ii) and (iv) of Lemma

Both cases, namely L'(m) = L. (m) and L'(m) € L1 (m), can occur, as will now be
shown.

(ii) Choose Y := ¢y and X :=Y,. Let v : 2Y — Y be the vector measure A +— xa/¢
of Example (ii), where it is denoted by m. With i, : Y — X being the identity map,
the vector measure m := i, o v satisfies

L'(m) = L'(v) = ¢-co G ¢ -7 = L, (v) = Ly,(m).
Here, Remark (with v in place of m) gives the first and last equalities whereas the
fact that L'(v) = ¢ - ¢ and L (v) = ¢ - £>° occurs in Example (ii).

(iii) Let Y be a weakly X-complete IcHs and v : ¥ — Y be any vector measure. With
iy denoting the identity map from Y onto X := Y, it follows from Lemma iv) and
Remark [41] that

L*(m) =L'(v) = L. (v) = L, (m). o

5. Proof of Theorem 1.2

To establish Theorem 1.2, recall that a real or complex Banach space Y has property (u) if
every weakly Cauchy sequence {y,, }22; in Y admits a weakly absolutely Cauchy sequence
{zn}pZy in Y such that {y, — 7, 2;}52, is weakly null [2, Definition 14.6]. Whereas
we have defined weakly absolutely Cauchy sequences in a complex lcHs (see Section 2),
there are no difficulties in also considering such sequences in a real IcHs, especially in a
real Banach space.

LEMMA 5.1. Let Ec = E+iFE be a complex Banach lattice realized as the complexification
of a real Banach lattice E.

(i) Let x*,y* € E*. Then the functional (x* + iy*) : Ec — C defined by
(z4iy, 2" +iy") := (z,27) — (y,y") +i((z,y") + (y,27)) (5.1)
for each x + iy € E¢ (with x,y € E) is linear and continuous. Conversely, every
continuous linear functional on Ec is of the form (b.1) for some z*,y* € E. In
short,
(Ec)* = E* +1iE™.
(ii) Let {2,152 be a sequence in E¢ and set
Zn:=Re(z,) € E and y,:=Im(z,) € E, neN. (5.2)

(a) The sequence {zn}2, is weakly Cauchy in Ec if and only if both {x,}52 1 and
{yn}52 are weakly Cauchy in E.
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(b) The sequence {z,}5% is weakly null in Ec if and only if both {x,}52, and
{yn}>2, are weakly null in E.

(¢) The sequence {z,}52 is weakly absolutely Cauchy in Ec if and only if both
{xn}2, and {yn}>2, are weakly absolutely Cauchy in E.

(iii) If, in addition, E is Dedekind o-complete and has order continuous norm, then Eg
has property (u). Consequently, Ec does not contain an isomorphic copy of £°.

Proof. (i) See [60, pp. 323-324], |55}, pp. 134-135].

(ii) This follows from part (i).

(iii) Recall that E having order continuous norm means that, whenever {zy}, is a
decreasing net in E* with inf 2, = 0, then lim, ||z,||g = 0 |2, Definition 12.7]. Now, let
{zn}52; be a weakly Cauchy sequence in Ec. In the notation of , the sequences
{zn}52, and {y,}52, are weakly Cauchy in F via part (ii)(a). Since E necessarily
has property (u) [2, Theorem 14.9], we can select weakly absolutely Cauchy sequences
{un}22; and {v,}22; in E such that both of the sequences {z, — Z?:l u; 192, and
{yn — Z?:l v; 192, are weakly null in E. Thus, it follows from and part (ii)(b) that

n

nl;rr;o (:vn +iyn — Z(u] + z'vj)> =0
j=1

weakly in E¢. This, together with the fact that {u, +iv, }$2; is weakly absolutely Cauchy

in E¢ (via part (ii)(c)), guarantees property (u) of E¢.

From properties (a)—(c) of part (ii) it is routine to check that (¢°°)g has property (u)
whenever £>° has property (u). But, it is known that (¢°°)gr fails to have property (u)
[2, Example 14.8], and so £*° does not have property (u) either. Moreover, by a result of A.
Petczynski, every closed subspace of a Banach space (real or complex) with property (u)
also has property (u) [2, Theorem 14.7]. Accordingly, F¢ does not contain an isomorphic

copy of /. m

Proof of Theorem 1.2. Assume, on the contrary, that there exists an isomorphism S :
(> — L'(m) onto its range. Then there exists ¢ € P(X) such that

1Blle= < q(m)(S(8)), B €. (5-3)
Now, consider the continuous linear map
[Tglm : L' (m) — L*(7y om);
see Lemmawith Y := X, and 7, in place of T'. Then q(m)(f) = ||[7g]m (f)||lL1 (m,) for
f € LY (m); see the proof of Corollary iii). This and yield

1Blle=e < I([7qlm © SYB) Lt (rgomy, B € £,

which implies that [m,];, 08 : €% — L'(m, 0om) is an isomorphism onto its range (because
we already know that [my],, o S is continuous).

On the other hand, recall from Remark ii) that L'(m, o m) is a complex Banach
lattice realized as the complexification of the real Banach lattice L'(m, o m)g. Since
L'(mgom) is solid in L°(m; om), Remark i) guarantees that L' (7, om)g is Dedekind
o-complete. Also, L'(m, o m)g has order continuous norm [46, Theorem 3.7(iii)]. So, the
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space L!(m, o m) does not contain an isomorphic copy of £*° (via Lemma [5.1Jiii)). This
contradiction establishes Theorem 1.2. m

6. Proof of Theorem 1.3 and further results

Our main aim in this section is to establish Theorem In addition, further conditions
involving various copies of ¢y and £*° in L*(m) and L (m), respectively, are investigated
in relation to the criterion L'(m) € L1 (m). Throughout this section let m : ¥ — X be a
lcHs-valued vector measure defined on a measurable space (€, 33), unless stated otherwise.

Proof of Theorem 1.8. (i) That L'(m) is a complex vector lattice in the m-a.e. pointwise
order has already been established (see Remark 1)(5)) Moreover, L} (m) is always a
complex vector lattice in the m-a.e. pointwise order, whether X is sequentially complete
or not; see Proposition iv).

(ii) Recall that L'(m) C L. (m) is being assumed. Choose f € L. (m)* \ L'(m),
which is possible as Ll (m) is a complex vector lattice. For each n € N and with
A(n) := f~([0,n]), the bounded, Y-measurable function f, := XA is m-integrable;
see Lemma iv). As f ¢ L'(m) and lim, . f, = f pointwise on Q, it follows from
Lemma i) that there must exist B € X for which the sequence { [ f, dm};, is
not Cauchy in the sequentially complete lcHs X. This enables us to choose ¢ € P(X),
a positive number ¢, and increasing sequences {u(k)}?° ; and {v(k)}72, in N satisfying

u(l) <v(l) <u(2) <v(2) <---
such that, for every k € N, we have

”q(/B(fv(k) —fu(m)dm)HXq =q</B(fv(k> —fu(k))dm> > 6. (6.1)

Define, for each k € N, the elements
gk = (foky = fuwy)xz € L'(m)™ and & = mg 0 Iu(gx) € X, (6.2)

It is clear from (6.1 that no function gi, for k € N, is m-null. Fix any « € ¢ and N € N.
Since the functions ¢1,...,gn are disjointly supported (as A(n) 1 Q) with g, < f for
k € N, it follows that

‘ia(k‘)gk‘ = i |a(k)|gr < ( max |a(k)|)f,
k=1

1<k<N
k=1

which implies that

Hiauﬂ)ekux - H(wqofm(ia(k)gk)jx =q(fm(ia<k>gk))
k=1 a

k=1 a k=1

/N
(=
2
=
S
N—

< q(m)( S a(k)gr ) = a(m)

k=1 k=1

< ( max |a(k)\)q(m)w<f)~ (6.3)

1<k<N
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Here we have applied with p := ¢ and used the fact that ¢(m),,, which extends ¢(m),
satisfies with p := ¢. Now, holds for all a € ¢y and N € N and so {&,}72
is weakly absolutely Cauchy in the Banach space X, [38] Proposition 4.3.9]. Moreover,
the resulting weakly null sequence {&.}72, in X, satisfies infren [|xllx, > 0 > 0 (see
and ), and therefore admits a subsequence which is a basic sequence in X, [38]
Theorem 4.1.32]. For ease of presentation and without loss of generality, we may assume
that {£,}72, itself is a basic sequence. Then together with infren [[€xllx, >0 >0
implies that {£;,}32, € X, is equivalent to the canonical basis of cq [38, Theorem 4.3.7].
Let S : ¢ — X, be the corresponding isomorphism onto its range, i.e., S(ex) := & for
k € N [38, Proposition 4.3.2].

Fix a € cg. The gp’s, for k£ € N, being disjointly supported enables us to define a
function T'(a) : @ = C by T(«) := Y 7o, a(k)g. The claim is that T'(a) € L*(m) and
B0 Yopy (k)gr = T(a) with respect to 7(m). In fact, {3, a(k)gr} 35—, € L'(m)
converges pointwise on 2 to T'(«). Moreover, given A € ¥ and p € P(X), forall M, N € N
with M < N we have

N N
p(&(g%a%mﬁdm>Sp@”&E&MM%)g(ﬁggwampmmAﬁ, (6.4)

which can be verified analogously to with p in place of ¢q. Consequently, because
« € ¢o, the sequence {[, (Z,ivzl a(k)gr) dm}3_, is Cauchy (hence, convergent) in
the sequentially complete lcHs X. So, T(a) € L'(m) and {Zszl a(k)gr}_, is 7(m)-
convergent to T'(a) via Lemma i).

The so-defined linear map T : a — T(a) is continuous from cq into L'(m). Indeed,
via with M := 1, we have

N
p(m)(T(a)) = Jim_p(m)( Y alk)g)

N—o0
k=1
< Jim ((max ja(b)])p(m)u(f) = pm)u(Dllole,.  (65)
Now, for each a € ¢y, observe that
S(a) = S(Z alk)er) =Y a(k)S(er) = 3 alk)é
k=1 k=1 k=1

In other words,
S =(mgoly,)oT € L(cy, Xy). (6.6)

As S is an isomorphism onto its range, both T": ¢g — L'(m) and (74 o Iy,)|r(1) : R(T)
— X are also isomorphisms onto their respective ranges. This follows from Lemma [4.3(ii)
applied to the spaces Y := ¢g, Z := L'(m), W := X, and the operators R := T and
V :=mg 0 I, in which case yields S =V o R.

Recalling that the functions {gy : & € N} C L'(m){ are disjointly supported, it
follows from the definition of 7" and the identity T'(ey) = gg, for each k € N, that



Lattice copies of ¢p and £*° 43

T((co)r) € L'(m)g, that R(Tr) is a real vector sublattice of L'(m)g, and that the
restriction Tk : (co)r — L'(m)r of T to (co)r is R-linear. Since Tk is bijective onto its
range and both Tg : (co)r — R(Tr) and TR_1 : R(Tr) — (co)r are positive operators, the
operators Tg, Ty L are lattice-homomorphisms [2, Theorem 7.3]. Moreover, the identity
R(Tk) = R(T)NL*(m)g and the fact that T is a topological isomorphism of ¢ onto R(T)
imply that Tk is a topological isomorphism of (¢g)g onto R(Tk). In particular, R(Tk) has
the complex modulus property (see Lemma iv)(b)) and so R(T) = R(Tgr) + iR(Tr)
is a complex vector lattice. According to the discussion after Remark [3.10] the operator T
is a (complex) lattice-isomorphism of ¢y onto R(T') € L'(m). This completes the proof
that L'(m) contains a lattice-isomorphic copy of cg.

We shall now construct a lattice-isomorphism 7(*) : ¢> — Ll (m) onto its range
by extending T : ¢y — L'(m). Given 3 € £*°, we can define the function Y -, 3(k)gs
pointwise on (2 as the g;’s, for k € N, are disjointly supported. Moreover, Y 72 | 3(k)gx
is dominated pointwise on Q by ||B|l¢=f € LL(m), and hence belongs to LY (m) via
Proposition (iv). The resulting L} (m)-valued, linear map T : 8+ S22 B(k) gy
on {*° is continuous because

p(m)w (T (8)) < ||Blle=p(m)u(f), B €L,

for each p € P(X) via (with >~72, B(k)gr in place of f and ||B||¢= f in place of g).
The injectivity of T(*) is a consequence of the fact that the gi’s, for k € N, are disjointly
supported and that no function g, for k € N, is m-null.

Next, for that particular ¢ € P(X) satisfying (6.1), we claim that

CliBlle= < a(m)u(T™(B)), B €L,
for some C' > 0. To see this fix any 5 € £*°. Select C' > 0 satisfying

, O Ecp, (6.7)

q

Cllall, < 150, < | S a6

which is possible as S : cp = X, is an isomorphism onto its range. Then and .,
both with ay = Zk:l B(k)er € co C £ in place of o, for N € N (and observmg that

S(an) = S, B(k)E), vield

CllBlle= = Clsvup lanlle, < sup 15 (an)lx,

sup ¢(m (Zﬂ gk)—sup sup /‘ZB gk’d|m$>|

NeN NeNz*eUg

IN

= sup Sup/ ’Zﬁ gk’d|m$ q(m)w(T™(B)).

z*€Ug NEN

Here, for the last equality and each z* € Uy, we can apply the Lebesgue Dominated
Convergence Theorem for scalar measures because

N N
> 89| = - 18R)gk < IBlle=f, N €N,
k=1 k=1
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with ||8]|ec f € L*(|(m,2*)|). Our claim is thus established. Hence, T) : ¢> — LI (m)
is an isomorphism onto its range.

Finally, the fact that the g’s, for £k € N, are disjointly supported, non-negative
functions in L. (m) ensures that T) is a lattice-isomorphism onto its range, that is,
L1 (m) contains a lattice-isomorphic copy of £*°. The argument is an adaption of that
which showed that T': ¢g — L*(m) was a lattice-isomorphism. m

REMARK 6.1. A careful examination of the proof of Theorem [[.3] shows that it actually
suffices for [X],,, rather than X itself, to be sequentially complete. o

Recall from Section 2 that the natural embedding of X into its sequential completion
X is denoted by J. Basic facts relevant to J and our vector measure m : ¥ — X are
presented in Lemma We also recall that the identity L'(m) = L(J o m) of vec-
tor spaces implies the identity of IcHs; see the comment immediately after Lemma [2.5
So, it will suffice to speak of the identity L'(m) = L!(J o m) without further explana-
tion. The same principle applies when we speak of the identities L'(m) = L1 (m) and
LY(J om) = L} (m) because such identities as vector spaces imply the identities as lcHs
via Lemma iii).

COROLLARY 6.2. Let m : ¥ — X be a lcHs-valued vector measure such that L*(m) C
Ly, (m).

(i) If L*(m) = LY (Jom), then L*(m) is a complex vector lattice in the m-a.e. pointwise
order. Moreover, L'(m) and L. (m) then contain lattice-isomorphic copies of co
and £>°, respectively.

(ii) If L*(m) happens to be sequentially complete, then the same conclusion as in part
(i) holds.

(ili) If X is sequentially complete, then there exists a closed vector sublattice U of L*(m)
which is lattice-isomorphic to ¢y and such that the restricted integration operator
Iy, : U = X is a topological isomorphism onto its range.

Proof. (i) Apply Theorem 1.3 with X in place of X and J om in place of m.

(i) This is a special case of part (i) because L'(m) = L*(.J o m) via Lemma [2.7](ii).

(iii) Appealing to Remark (1)(5) we see that L'(m) is a vector lattice. In the
proof of Theorem recall the discussion immediately after which asserts that
(mq o Im)|lr(r) : R(T) — X, is an isomorphism onto its range. Since (mq o I,y)|r () =
7q © (Im|®r(1)), We can apply Lemma ii) to the spaces Y :=R(T), Z =X, W := X,
and the operators R := I,,|g(r) and V := m,; to deduce that the restricted integration
operator I,|z(ry : R(T) — X (which equals R) is an isomorphism onto its range.
Moreover, its domain space U := R(T) is lattice-isomorphic to ¢y because T': co — L (m)
is a lattice-isomorphism onto R(T'); see the first paragraph after the paragraph contain-

ing (6.6). m

REMARK 6.3. (i) A careful examination of the proof of Corollary [6.2[(iii) (via Theo-
rem ii)) shows that every function f € LL (m)*\ L'(m) generates a lattice-isomorphic
copy U C L*(m) of cg, with U depending on f, such that I,,, : U — X is a topological
isomorphism onto its range.
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(ii) In Corollary[6.2](iii) the restricted integration operator I,,, : U — X is a topological
isomorphism, but typically not a lattice-homomorphism. Indeed, in general X is only
assumed to be a IcHs and not a vector lattice. But, even in the event that X is a vector
lattice, I, need not be a lattice-homomorphism. Consider the simplest of cases when X
is the 1-dimensional real Banach lattice R, the c-algebra 3 is B([0,1]) and the vector
measure m : X — X is defined by m(A) := [, 1(t) dt for A € X, where t)(t) := 7 sin(27t)
for t € [0,1]. If N(A) := [, |&(t)| dt for A € X, then it is routine to check that L'(m) =
LY(X\) with [|*|[z1(m) = IIl2(n), and that I, is given by f — f[o,l] F)w(t)dt for f €
LY(m). If we set g := X[0,1/2] and h := x[1/2,1], it turns out that I,,(gVh) = Ln(X[0,11) = 0
whereas I,,,(g) V I,(h) =1V (=1) = 1, i.e., I, is not a lattice-homomorphism. o

Having established Theorem [[.3] and its immediate consequence Corollary let us
now formulate some relevant conditions for further investigation of a lcHs-valued vector
measure m : X — X:

(a) L'(m) € L} (m).

(b) L'(m) is a complex vector lattice in the m-a.e. pointwise order and contains a lattice-
isomorphic copy of ¢g.

(c) The IcHs L'(m) contains an isomorphic copy of cg.

(d) Ll (m) contains a lattice-isomorphic copy of £>°.

(e) The IcHs L (m) contains an isomorphic copy of £>°.

(f) Ll (m) contains a lattice-isomorphic copy of co.

(g) The IcHs Ll (m) contains an isomorphic copy of co.

In conditions (d) and (f), recall from Proposition (iv) that L1

w

(m) is necessarily a
complex vector lattice in the m-a.e. pointwise order. This is not always the case for
L'(m); see Example |3.9(iii), (iv). The following condition is also relevant:

(a)* L\(Jom) C LL,(m).

This condition is precisely (a) with Jom in place of m because LL (m) = L. (J om); see
Lemma [2.5((ii).

PROPOSITION 6.4. Let m : ¥ — X be a lcHs-valued vector measure.

(1) If X is sequentially complete, then all of the conditions (a)—(g) are equivalent.

(i) If LY(m) = LY(J om), then all of the conditions (a)—(g) are equivalent.
(iii) If L'(m) is sequentially complete, then all of the conditions (a)—(g) are equivalent.
(iv) The four conditions (d)—(g) are always equivalent and each one is equivalent to (a)*.
(v) The implications (b)=(c) =(d)=(a) are always valid.

Proof. (i) To establish (a)<(b)<(c) first observe that Theorem 1.3 gives (a)=(b). The
implication (b)=-(c) is clear. Finally, (¢)=(a) via Theorem 1.1 (in which the sequential
completeness of X is not required).

(a)=>(d). See Theorem 1.3.

(d)=(e)=(g) and (d)=(f)=(g). These implications are obvious.

(g)=>(a). Assume that (g) holds but (a) fails, i.e., L'(m) = L. (m) contains an iso-
morphic copy of ¢g. Then Theorem 1.1 implies that L'(m) C LL (m), i.e., (a) holds. This
is a contradiction, and hence the implication (g)=-(a) is valid.
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(ii) This follows from part (i) applied to Jom whose codomain space X is sequentially
complete.

(iii) This is a special case of part (i) because L!(m) = L(.J om); see Lemma [2.7(i).

(iv) The equivalence of (d)—(g) follows from part (ii) because Ll (m) = LL(J om);
see Lemma (ii). Then part (i) with Jom : ¥ — X in place of m gives the equivalence
of (a)* to any one of (d)-(g) because L. (m) = L. (J o m); see Lemma [2.5{ii).

(v) Clearly (b)=-(c). The implications (c)=-(d)=>(a) hold because Lemma [2.5[iii)
yields both (c)=(g) and (a)"=(a) and because (a)"<(d)<(g) via part (iv). m

In Proposition since the sequential completeness of either X or L'(m) implies
that L'(m) = L'(J o m), part (ii) is a stronger statement than (i) and (iii). There
is no direct relationship between the assumptions of (i) and (iii). In other words, the
sequential completeness of X does not always imply that of L!(m) (see Example i)
below) whereas the sequential completeness of L'(m) need not imply that of X (see
Example iv)). Furthermore, part (iii) of Example exhibits a vector measure m
satisfying L'(m) = L'(J o m), but such that neither the codomain space X of m nor
L'(m) is sequentially complete.

EXAMPLE 6.5. (i) There exists a vector measure taking values in a sequentially com-
plete lcHs such that its corresponding L!-space is not sequentially complete. Indeed, [25]
Example B in §4] provides a non-separable Hilbert space H and an L,(H)-valued spec-
tral measure P defined on a measurable space (£2,%) such that its range P(X) is not
a sequentially closed subset of L;(H). Here, the definition of a spectral measure can be
found in [46], Definition 3.16|, [52, Definition III1.2|, for example, and L£;(H) denotes the
vector space L(H) equipped with the strong operator topology [22, Definition IV.1.2].
Thanks to the completeness of H and the Banach—Steinhaus Theorem the lcHs £;(H)
is quasi-complete and, in particular, sequentially complete. Consequently, P(X) is not a
sequentially complete subset of L,(H).

To prove that the lcHs L'(P) is not sequentially complete, assume the contrary.
Then the closed subset (P) C L'(P) (see Lemma i) with m := P) is necessarily
sequentially complete. The integration operator Ip : L'(P) — L (H), which is known
to be an isomorphism onto its range (see [52, Theorem V.5], for example), preserves
sequentially complete sets. Consequently, P(X) = Ip(X(P)) is sequentially complete.
This is a contradiction, and hence L!(P) is not sequentially complete.

We also claim that L*(P) = L. (P). Indeed, first observe that the IcHs £,(H) is quasi-
complete for its weak topology. This fact can be verified via the Uniform Boundedness
Principle because H is quasi-complete for its weak topology [32] §23, 1(3)], and because
the weak topology on L (H) is exactly the weak operator topology; see [22, Defini-
tion VI.1.3] and [32], §39, 7(2)]. In particular, £L,(H) is also weakly 3-complete, and
hence L!'(P) = L} (P) via Lemma (iv).

(ii) We now present a simple method of producing a vector measure m whose codomain
space is not sequentially complete but L!(m) = L*(J om).

Take any lcHs-valued vector measure v : 3 — Y, with Y sequentially complete, such
that the range R(I,) of the corresponding integration operator I, : L'(v) — Y is not
sequentially closed in Y. Then the vector subspace X := R(I,) C Y, equipped with the
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induced topology from Y, is not sequentially complete; its sequential completion X is
exactly the sequential closure of X in Y. Such an example occurs in [51, Example 1], for
instance, where Y is the Banach space c(Z), X is the dense subspace {f : f € L'([0,27])}
of Y equipped with the norm from Y (with ~ denoting Fourier transform), v(A4) = xa
for each Borel set A C [0,27], in which case L'(v) = L'([0,27]) with I,(f) = f, for
feLl'(v),and R(I,) = X C Y.

Back to the general set up with v : ¥ — Y (as described above), let m : ¥ — X denote
the vector measure v regarded as being X-valued. Then L*(m) = L'(Jom) = L'(v) (as
IcHs), which is routine to verify.

(iii) In the notation of part (i), it follows from part (i) with YV := L,(H) and v := P
that the resulting vector measure m : ¥ — X := R(Ip) satisfies L'(m) = L'(J o m).
However, as noted in part (i), neither of the (isomorphic) IcHs L!(m) and X is sequentially
complete.

(iv) Let us apply part (ii) to the Banach space case. We claim, given any infinite-
dimensional Banach space Y, that there always exists a Y-valued vector measure v defined
on the Borel o-algebra B([0,1]) of [0,1] such that v satisfies the condition in part (ii).
Indeed, take any vector measure v : B([0,1]) — Y such that I, : L'(v) — Y is a compact
operator and R(v) is not contained in any finite-dimensional vector subspace of Y’; see
Theorem 2 and its proof in [43]. Then X := R([,) is not closed in Y, which establishes
the claim.

Now, the X-valued vector measure m : B([0,1]) — X as given in part (ii) satisfies the
following conditions: its codomain space X is not sequentially complete, the equalities
(as 1cHs) L'(m) = L'(J om) = L*(v) hold and L'(m) is a Banach space. In particular,
L (m) is surely sequentially complete. o

In part (i) of Example above, the fact that the codomain space L4(H) of P is
not metrizable is crucial. The non-metrizability follows, for example, from the fact that
Ls(H) is quasi-complete but not complete.

Now, let us analyze the condition L!'(m) = L'(J o m), which is not only the as-
sumption of Proposition ii) but has also appeared in various other statements and
examples in this paper. In Lemma below, we characterize when the identity L'(m) =
LY(J o m) is valid. Recall that L'(m)g has the o-Monotone Completeness Property,
briefly o-MCP, if every increasing 7(m)-Cauchy sequence in L'(m)g is 7(m)-convergent
in L'(m)g [1, Definition 7.4]. Recall from Proposition i) that L!(m)g is always a
vector lattice (whether or not L!(m) is a complex vector lattice for the m-a.e. pointwise
order).

LEMMA 6.6. Given a lcHs-valued vector measure m : ¥ — X, the identity L'(m) =
LY(J om) holds if and only if L*(m)r has the o-MCP.

Proof. Suppose that L!(m) = L'(Jom). According to Proposition[6.4ii) the space L (m)
is a complex vector lattice. Take an increasing 7(m)-Cauchy sequence { f,,}5°; C L!(m)g.
To prove its 7(m)-convergence (by considering { f,, — f1}52 if necessary), we may assume
that f,, > 0 for all n € N. The function F': Q — [0, 00] defined by the pointwise limit of
{fn}52, on N is then Y-measurable. With B := {w € Q: F(w) < oo}, we claim that Q\ B
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is m-null. To see this, fix z* € X*\{0}. Then p,«(z) := |(z, z*}|, for x € X, is a continuous
seminorm on X and z* € Uy .. Hence, (2.5) implies that [, |9 d|(m,z*)| < p-(m)(g)
for all g € L'(m). Since {f,}5; is increasing and 7(m)-Cauchy, it follows that

n—oo

/Fd|m:c = Jim [ o) < supp-(m)(f) < o0

(via the Monotone Convergence Theorem for |{m,z*)|). Consequently, F is finite-valued
[(m, x*)|-a.e., so Q\ B is [(m, z*)|-null. As z* € X*\ {0} is arbitrary, this establishes the
claim.

Next we show that f := Fxp € L'(m) and that {f,}5°, is 7(m)-convergent to f.
First, observe that lim, .. fnxp = [ pointwise on Q. Given A € 3, the sequence
{ [ fndm}32, is Cauchy in X (see (2.6)) and so admits a limit in X. Hence, Lemmai)
(with J o m in place of m) implies that f € LY(J om) and that {f,}°, is 7(J o m)-
convergent to f. The assumption that L'(m) = L'(J om) now gives f € Ll( ) to which
{fn}2o is 7(m)-convergent. Thus, L' (m)g has the o-MCP.

Conversely, suppose that L' (m)g has the o-MCP. To verify that L'(Jom)# C L*(m),
fix f € LY(J om)g. Select an increasing sequence {s,}>; C (sim¥)f converging
pointwise on 2 to f. Thanks to the LCP of the X-valued vector measure J o m (see
Lemma [2.7(iii)), the sequence {s,}3; is 7(J o m)-convergent to f. Consequently, the
increasing sequence {s,}5°; is 7(m)-Cauchy in L'(m)g, and hence admits a 7(m)-limit

g € LY(m)g as L'(m)g is assumed to have the o-MCP. Thus, f = g € L'(m)g, which
establishes the inclusion L!(J om)i C L'(m).

Next, since L!(J o m) is a complex vector lattice in the (J o m)-a.e. pointwise order

(see Remark i)(8) with J o m in place of m and X in place of X), it follows that

L om) = LN o m)f — L'(J om)f + (LA om)f — L(J o m)E)
C L'(m) C LY(J om).
In other words, L'(m) = L*(Jom). =

REMARK 6.7. Our motivation for considering the o-MCP is from [21]. If we have a vector
measure m with values in a real 1cHs X, then all m-integrable and all J o m-integrable
functions are taken to be R-valued, i.e., L*(m) = L'(m)g and L'(J om) = L (J o m)g,
and the result corresponding to Lemma [6.6] is still valid. Namely, L'(m)g = L*(J o m)r
if and only if L!'(m)g has the o-MCP. Of course, J o m now takes its values in the real
sequential completion of the real lcHs X. This observation and [2I, Theorem 2.4| give
the equivalence of (b) and (c) in the above list of conditions (a)—(g), with (co)gr in place
of ¢y. Consequently, we can obtain a part of Proposition (ii) in the real case. Similarly,
a corresponding result for L!(m)r can be established even if we begin with a vector
measure m taking values in a (complex) lcHs. o

We now turn our attention to part (v) of Proposition for a general IcHs-valued
vector measure m : ¥ — X. The reverse implications to (b)=-(c)=(d)=-(a) fail to hold, in
general. Indeed, for (c)#(b) and (d)#(c), see Examples [6.8and [6.11] below, respectively,
whereas Example [2.6(iii) shows that (a)#(d).



Lattice copies of ¢p and £*° 49

EXAMPLE 6.8. We adopt Example [3.9(iv)&(v) to show that (c)#(b). Let 2, and ¢
be as in Example By p we denote the ¢p-valued vector measure A — ya/¢ on X.
As p is exactly the vector measure of Example ii), where it is denoted by m, we
deduce from there that L*(u) = ¢ - ¢g. Moreover, L () is a complex Banach lattice (see
Remark ii)) and || fl|L1 () = IIf/¢lleo for f € L (u), which can be proved directly or
obtained from [46, Lemma 3.13]. With 2N := {2n : n € N}, let

sim 22N := span{x4 : A C 2N} C L'(p).

(i) Let X be any vector subspace of L!(u) satisfying the following three conditions:

XN € X, (6.8)
fsim¥X C X  forall feX, (6.9)
(pxan-1) -co € X. (6.10)

We can consider the X-valued set function m : A — x4 on 2N because of the inclusion
simY C X; see with f := xy € X. Equip X with the norm induced by L!(u).
Then m : ¥ — X is a vector measure [41l Proposition 3.1]. Furthermore, the associated
integration operator I,, : L'(m) — X is the identity map, with L'(m) = X as an
isomorphism of normed spaces [41, Corollary 3.2]. We can say more: L'(m) and X even
have equal norms. Indeed, given f € L!(m), we claim that

[fllzr(m) = sup [ (fs)lx = sup || fs]x = [Ifllx, (6.11)

where the supremum is taken over the set {s € sim¥ : |s(n)| < 1 for all n € N}. Even
though m takes its values in a normed space, the first equality in can be proved as
in Lemma 3.11 of [46] (where it is only stated for Banach spaces) and the last equality
in holds because L'(p) induces the norm on X; again apply [46, Lemma 3.11]
to the Banach-space-valued vector measure p. The inclusion enables us to define
a linear map T : ¢y — L'(m) = X by T(g) :== >.or; ¢(2n — 1)g(n)es,—1 for g € co,
with {e,}52; denoting the canonical basis of ¢g. It follows from that T is a linear
isometry onto its range. In particular, m satisfies condition (c).

In parts (ii) and (iii) below, concrete examples of such spaces X will be presented.

(i) The vector subspace of L!(u) given by

X = (pxan—1) - co + sim 2% 4/ sim 2°"

satisfies the three conditions f imposed in part (i). So, part (i) implies that
the X-valued vector measure m : A — ya on ¥ satisfies L'(m) = X and condition (c).
It is clear that L!(m) is closed under complex conjugation. However, L!(m) is not closed
under forming the modulus because

[Xan + i@ xon| € L' (m) = X, (6.12)

whereas xan + iy/@xon € L'(m). To verify that (6.12) is valid assume, on the contrary,
that |yon + i/@xan| € L*(m). Observing that |yan + i/@xan| has its support in 2N,
there exist s, 5o € sim 22N such that

(\/ 14 ‘P)XZN = VX2N + ¥Xon = |X2N + i\/@XQNf =51+ /¥ s2,
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that is, (\/1 + QD)X2N — /¢ 52 = s1. It follows that

X2N
§]— —F—— = — S9). 6.13
1 m+ \/SZ SD(XQN 2) < )

Since the left side of (6.13) is uniformly bounded and since ,/p is unbounded on N, the
function /@ (x2n — s2) must vanish outside some finite subset of N, which implies that

V@ (Xon — s2) € sim 22N Consequently,
X2N

m =51 — /P (xon — $2) € sim
This contradicts the fact that the left side of has infinite range, and hence does not
belong to sim 22N. Thereby is verified. So, L!(m) is not a complex vector lattice in
the (m-a.e.) pointwise order (note that No(m) = 0).
That m fails the LCP can be deduced from together with

|Xan + iv/@ Xan| < Xon + V@ Xon € L (m).
(iii) Let h := (/@ + iIn ) xon. Then the vector subspace

22, (6.14)

X = (pxan-1) - co + Xan - £ + hsim 2° C L' ()

satisfies the three conditions 7 imposed in part (i). Again by part (i), the X-
valued vector measure m : A — y 4 on X satisfies condition (c). Clearly h € X = L(m).
However, neither || nor h belongs to L(m). So, it follows from Proposition (ii) that
L (m) is not a complex vector lattice in the m-a.e. pointwise order, and hence m fails to
satisfy condition (b).

Finally, observe that every non-negative function belonging to L'(m) has the form
©xan—1f + Xong for some non-negative elements f € ¢y and g € £>°. Even though L*(m)
is not closed under forming the modulus, this description for elements of L!(m)* implies
that L!'(m) does have the property that if F' is m-integrable and satisfies |F| < G for
some G € L'(m)T, then |F| € L'(m). In particular, if F is the m-a.e. pointwise limit
of a sequence of m-integrable functions {F,}22 ; satisfying |F,| < G for n € N, then
also |F| < G, and hence F is m-integrable. By the Dominated Convergence Theorem
applied to the vector measure mo J : ¥ — X [46, Theorem 3.7(i)], it follows that
{F,}2, is 7(m o J)-convergent to F. Since the norm in the Banach space X = L!(y)
is the continuous extension of the (relative) norm in its dense subspace X, it is clear
from that 7(m o J) coincides with 7(m) on L*(m) C L*(mo J) and so {F,}5°, is
7(m)-convergent to F. This shows that m has the LCP. o

PROBLEM 6.9. Does there exist a lcHs-valued vector measure m satisfying condition (c)
such that L'(m) is a complex vector lattice in the m-a.e. pointwise order, but L*(m)
does not contain a lattice-isomorphic copy of ¢y? =

Let us undertake some preparations to show that the vector measure in Example i)
serves to establish that (a)=-(c). By F(N) we denote the class of all non-empty, finite
subsets of N, directed by inclusion. Consider a sequence {y,}52; in a lcHs Y. Recall
that {y,};, is unordered summable if the net {>° _ ¥n}oera) is convergent in Y (cf.
condition (c) in [I5, p. 78]). Following [4, p. 86] a sequence {yy }52

oo, is called subfamily
summable if every subsequence of {y,}52; is unordered summable in Y.
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FacT 4. In any lcHs a series is subfamily summable if and only if it is subseries sum-
mable.

Proof. Let Y be a IcHs. Assume that the series {y,}22; is subfamily summable in Y.
Then an arbitrary subsequence {y, )72, of {yn}5Z, is unconditionally summable (see
Section 2) because unordered summability and unconditional summability for a sequence
in a lcHs are equivalent [I5, (1)(b), p. 79]. In particular, {y,x)}72, is summable. This
shows that {y,}52; is subseries summable.

Conversely, suppose that a series {y,}52; C Y is subseries summable. Again, take an
arbitrary subsequence {y, )} 32 of {yn }n1- Then {y, )}, is also subseries summable,
and hence unconditionally summable; see Lemma [2.1[i). Again by [I5, (1)(b), p. 79],
the subsequence {y,, () }72; is unordered summable. Consequently, {3, }5Z, is subfamily
summable. m

LEMMA 6.10. Equip the vector space sim 2N with the uniform norm inherited from .
There is no continuous linear injection from any infinite-dimensional Banach space into
the normed space sim 2V.

Proof. Assume, on the contrary, that there exist an infinite-dimensional Banach space Y
and a continuous linear injection 7' : Y — sim 2N, Select a linearly independent, infinite
subset {y, : n € N} from the closed unit ball of Y. With z, := 27"y, for n € N, the
sequence {z,}22; is subseries summable because Y - [|z,]ly < oo and because Y is

complete. Then {7 (z,)}22; is also subseries summable in sim 2" (as 7" is continuous and

linear), and hence {T'(z,,)}72, is subfamily summable by Fact 4 above. It now follows from
[4, Theorem 1] that span{T'(z,) : n € N} is finite-dimensional. This is a contradiction
because T being a continuous linear injection implies that {T'(z,) : n € N} is an infinite,

linearly independent subset of sim 2V, =

EXAMPLE 6.11. Let the notation be as in Example i). Then L'(m) is a normed space
with norm || f|| 21 (m) 1= sup,ey | f(n)/¢(n)| for f € L'(m) =simX. Let (sim X))o, denote
sim Y equipped with the uniform norm (i.e., from ¢*°) and let j,, denote the natural
embedding of (simX)., into its completion ¢>°. With S : L'(m) — (simX)., being the
identity map, we see that the composition js, oS : L'(m) — ¢ is a closed linear
map.

Assume that condition (c) holds, that is, there is an isomorphism T : ¢g — L!(m)
onto its range. Then the composition jo, o (S oT) : cg — £*° is a closed linear map, and
hence is continuous via the Closed Graph Theorem. Consequently, SoT : ¢y — (sim X))o
is a continuous linear injection. This contradicts Lemma and so condition (c) fails
to hold.

On the other hand, m does satisfy condition (d) because L. (m) = (1/p) - £>°. So,
m is an example showing that (d)=(c). Moreover, we can see directly that (a)*=(c) and
(a)#(c) because L'(m) C L'(Jom) C L. (m). It is worth noting that L*(J om) =
(1/¢) - co is lattice-isomorphic to ¢g. o

In Example [6.12] below we shall construct a non-atomic vector measure satisfying

condition (b) from a purely atomic vector measure with the same property. Recall that
aset A € X is an atom for a lcHs-valued vector measure m : ¥ — X if m(A) # 0 and if,
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for each B € X, either m(ANB) =0 or m(A\ B) =0 [26, p. 7], [31, p. 32]. We call m
non-atomic if m does not have any atoms. Analogously to the case of a scalar measure
[28, p. 650], we say that m is purely atomic if every non-m-null set contains an atom.

EXAMPLE 6.12. Let X := c¢o. With ¢ : N — N denoting the identity, let v : 2V — X
be the vector measure in Example [2.6]ii), denoted there by m, i.e., v(A) := xa/¢ for
A € 2Y. Then LY (v) = ¢-co S p-¢>° = L. (v). That L (v) (resp. L. (v)) contains a lattice-
isomorphic copy of cg (resp. £>°) can be seen once we observe that [|gz1) = |lg/¢llc
for g € L'(v) (resp. lglle ) = llg/@lle= for g € L}, (v)). Moreover, v is purely atomic
and its atoms are all the singleton sets {n} for n € N.

Define € := [0, 1] x N. For each ¢» € CV, we denote by X[0,1] ® % the C-valued function
(t,n) = X[0,1)(t)1(n) on Q. For a subset W of CN, define X[0,1]@W == {Xx[0,)®Y : ¢ € W}.
Let ¥ be the product o-algebra B([0,1]) ® 2%, in which case

= { | (Ba x {n}) : B, € B([0,1]) for each n € N}.

n=1

Lebesgue measure on B([0, 1]) is denoted by u. The set function m : ¥ — X defined by

mia= [ ( /H Xaltn) ) ) avin). A€,

is clearly finitely additive. Given a decreasing sequence {A(k)}?° , in ¥ with N, A(k)
= (), the o-additivity of y ensures that the decreasing sequence {f[O,l] XAk (ts ) du(t) 132,
of v-integrable functions converges to 0 pointwise on N. This enables us to apply the
LCP of v (see Lemma [2.7(iii)) to deduce that limj_,oo m(A(k)) = 0 in X. Hence, m is
o-additive. Fix h € X* = (1. Given B € B([0,1]) and n € N, it follows that

(m, h)(B x {n}) = (u(B)r({n}), h) = (h(n)/¢(n))u(B).
Consequently,
[(m, )|(B x {n}) = (|h(n)[/¢(n))u(B). (6.15)

So, given f € LO(X), since Q is the disjoint union of its subsets Q(n) := [0,1] x {n} for
n € N, we find from (6.15) that

/Qlf\de, ) :7;/%) Fld(m, 1)

Z n)l/o(n /H|f<t,n>|du<t>. (6.16)

= s

Therefore, f € Ll (m) if and only if n — (Jio.y If ()l dp(t)) /(n), for n € N, is an
element of £, i.e.,
i

sup —— |£(t, )| du(t) < oo, (6.17)

neN ©(n) Jjo]
in which case the left side of (6.17) equals || f][11 (). Consequently, xjo1] ® Ly, (v) C
LL,(m) and [x0 @ gllea my = I9llz3.0y = lg/llem for all g € LL(v). So, the lincar
map S : /> — L. (m) defined by S(v) := X[0,1] @ (@v), for ¢ € £°°, is a linear isometry
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onto R(S) = x[0,1] ® Ly, (v). Furthermore, S is a lattice-isomorphism onto its range, i.e.,
m satisfies condition (d).

Let us identify L'(m), which is strictly smaller than L. (m) via Proposition (1)
(i.e., (d)=>(a)). For each f € L. (m) and A € ¥ we can, similarly to (6.16), deduce
that

ft,n)xa(t,n)du(t), hert.

[ fatmny = 3wt

n=1

N
p(n) [0,1]

Accordingly, such an f belongs to L!(m) if and only if

1
lim—/ ft,n)|xalt,n)du(t) =0, AeX,
Jm oo [ et duto)

which is, in turn, equivalent to

1

ti o [ ) dute) o
n—o0 p(n) [0,1]

So, S(co) = Xjo1] ® L'(v) € L*(m). Let T : ¢ — L'(m) be the restriction S|., with

codomain space L'(m). Then T is a lattice-isomorphism onto R(T) = xjo,1] ® L'(v).

Since L'(m) is a Banach lattice, this shows that m satisfies condition (b). Moreover, we

see explicitly from

S\ o) = xpo.1) @ (Loy () \ L' (¥)) € Ly, (m) \ L' (m)

that condition (a) is satisfied; see also (a)«<(b) in Proposition [6.4{i).

Finally, we claim that m is non-atomic. To see this, let A € ¥ be any non-m-null
set. Then m(A) = > o2, m(Q(n) N A) # 0. So, select n € N with m(Q(n) N A) # 0.
Then Q(n) N A = B x {n} for some B € B([0,1]). Since we have 0 # m(Q2(n) N A) =
m(B x {n}) = p(B)rv({n}), it follows that u(B) > 0. Writing B = C U D for dis-
joint Borel sets C,D satisfying u(C) > 0 and (D) > 0 we have m(C x {n}) =
w(Cyv({n}) # 0 and m(D x {n}) = pw(D)v({n}) # 0. Since C x {n} and D x {n}
are pairwise disjoint subsets of A we see that A is not an atom. That is, m is non-
atomic. o

REMARK 6.13. Let m : 3 — X be a Banach-space-valued vector measure. As observed
at the end of Section 3 the proof of the implication (ii)=-(iii) of Proposition is
indirect. We end this section by presenting a rather interesting direct proof (via the
contrapositive implication (iii)=-(ii)). This is achieved by applying the classical Kadec—
Pelczyniski “disjointification method” to construct a lattice-isomorphic copy of ¢ in L (m)
from any given Banach space isomorphic copy of ¢o in L!(m).

More precisely, suppose that there exists a Banach space isomorphism Sy : ¢o — L*(m)
onto its range. Then there exist positive constants ag, by satisfying

aollSo(a)l[L1(m) < llelley < bollSo(@)llL1(m), o € co.
In particular, with {e,}52; denoting the canonical basis of ¢y, we have

ao < 1/[So(en)llrr(m) < b0, ne€N.
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This enables us to define a surjective isomorphism T : ¢ — ¢¢ by

Z 1150 (e, ||L1(m) a(n)en, o€ co.

Then the composition Sy o Ty : ¢g — L' (m) is an isomorphism onto its range, i.e., onto
R(Sp). Accordingly, with S := Sy 0 Ty and f,, := S(e,) for n € N, there exist constants
a,b with 0 < a < b such that, for every a € ¢q, we have

N N N
aH zzla(n)f"’ Li(m) = H ;a(n)e" co = bH Z:lo‘ "

for all N € N. Note also that || f,|[11(m) = 1 for all n € N,

Choose z* € X* such that p := |(m,z*)| is a probability measure on ¥ with
and m being mutually absolutely continuous [I8, Theorem IX.2.2]. The natural embed-
ding ® : L'(m) — L'(p) is then continuous (see (2:23)), and hence the composition
®oS :cy — L'Y(u), which is also continuous, preserves weakly absolutely Cauchy se-
quences. So, the functions (® o S)(e,) = ®(f,), for n € N, form a weakly absolutely
Cauchy sequence in L'(u). Since the weakly sequentially complete space L'(u) [22, The-
orem IV.8.6] is necessarily weakly 3-complete, we can apply Lemma to deduce that
{®(fn)}2o; is a norm-summable sequence in the Banach space L!'(u). In particular,
limnﬁoo H(I)(fn)HLl(;L) =0.

Assume, for the moment, that there exist a subsequence { f,,x)}72, of {fn}5Z; and a
disjointly supported sequence {gx}72 ; of functions in the Banach lattlce LY (m) satlsfylng

(6.18)

(| fgky = giell 1 m) = 0- (6.19)
We shall proceed, leaving the verification of this fact until the end of the proof.
Without loss of generality we may suppose that
I faky — gellLromy < 1/(025TY), k€N, (6.20)

as we can select further subsequences of { f,,(x)}3Z; and of {gx}32, with this property, if
necessary. Given N € N and « € ¢y, we claim that

N
2a
— < . 21
3 H ’;a(k)g ‘ L'(m) l<ka<XN |Oé | 2bH Z ‘ L' (m) (6 )
In fact, the triangle inequality and ( - 6.20]) yield
N N N
Bar |, <ol Zo®o =], + [ e@fuw],, )
a > oo, < a( CCIUES A0 W DI Ho
a
—b gl_ |oe(k \—i—aHZ
But, with & := Y7, a(k)en () in place of a in (6.18), we have
n(N)
= < a = .
S ety =l 508, < 5 03], i, o
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Since a/(2b) + 1 < 3/2 (recall that a < b), we conclude that
3
< - max |a(k)],

N
aH ;a(k)gk’ Li(m) ~ 2 1<k<N

which verifies the first inequality in (6.21)). On the other hand, from (6.18]) and (6.20) we
have

n(N)
max fo(k) = _max_[a(r)] ng S an)
r=1

1<k<N 1<r<n(N

<o{][3 atwin

N
<bH k ‘
< ];Oé( )k ;

from which the second inequality in (6.21]) follows. It then follows from (6.21)) that

Lt(m)

N
ey
Lo kZ:l (k) ey

Ly H éa(k)(gk - fn(lc))‘ Ll(m)>

, T (6/20) max la(k)l,

l(m

N N
2a
=2 < < .
3 H I;a(k”gkl‘ Ligmy <1 5 ol < QbH kzla(k)'gk" L1 (m) (6.22)

because the disjointly supported functions g, for 1 < k < N, satisfy
N N N
X awe =3 ats - ‘ > atlonl|
=1 (m) N3 OO R Lt L} (m)
N
= alk ‘ , NEeEN,
| > atblal],,

as L'(m) is a complex Banach lattice for the m-a.e. pointwise order.

Given «a € ¢y, it follows from that the sequence {Ziv:l a(k)|gr|}35_, of partial
sums is Cauchy, and hence converges in L!'(m). This allows us to define a linear map
R:cy— L'(m) by R(a) := >3, a(k)|gk| for a € ¢o. By letting N — oo in it is
clear that R is an isomorphism onto its range. Since the non-negative functions |gy/|, for
k € N, are disjointly supported it is clear that R is also a lattice-isomorphism onto its
range. In other words, L!(m) contains a lattice-isomorphic copy of cg.

Finally, it remains to verify the existence of a subsequence { fy,(x)}72; of { fn}5z, and
of a sequence {g; }7 ; of disjointly supported functions in L*(m) which satisfy (6.19). We
shall follow the arguments in the proof of Proposition 1.c.8 in [35], which is taken from
[23, Theorem 4.1]. Actually, such arguments originated in [29] §2]. Recall the natural
embedding ® : L'(m) — L'(u) mentioned above. No confusion will arise by writing
f = ®(f) for each f € L'(m) C L*(u). Moreover, we may assume that |[xa|rim) = 1;
otherwise replace m by the vector measure km : ¥ — X with x := 1/||xallz1(m). Fix
e € (0,1). Define the ¥-measurable sets

o(f.e)i={weQ:|f(w)] >ellflriwm}, fe€L(m),
and the subset of L!(m) given by

M(e):={f € L'(m) : p(o(f.)) > e}.
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Given any j € NU{0}, we claim that there exists N(g,j) € N satisfying both N(e,j) > j
and

0 < p(o(fn(e, ). €)) <e. (6.23)

Indeed, since limy, o0 || fnll1 () = 0, We can select N (e, j) € N satisfying N (e, j) > j and
such that || fx (e j)llz1 () < €. Recalling that || fx(c j)llz1(m) = 1, we have

e=cllfnepnlim S1ive W)l w e a(fnes €

and hence

e(0(fN(eg):€)) S e XotineollLrw < IFnep e < e%.
Accordingly, p(o(fn(e,j),€)) < €, which is one part of (6.23)). To verify the other part

of (6.23)) assume, on the contrary, that u(o(fn(e,j),€)) = 0, that is, [ fx( 5 (w)| < € for
p-a.e. w € €. This implies that

L= [fnemnlleiom < llexalloim) =€,
which contradicts € € (0,1). Thus u(o(fn(e,j),€)) > 0, and hence (6.23) is verified.
Next, define an increasing sequence {s(n)}52; in N inductively via s(1) := N(1/2,0)
>1and s(n) := N(27",s(n—1)) for n > 2. Then, given any n € N, it follows from (6.23))
for e := 27" with j:=s(n—1) if n > 2 and j :=0if n = 1 that

0< ,u(o-(fs(n)a 27”)) <27

In particular, fy,) ¢ M(27") for n € N. As L'(m) is a complex Banach lattice with order
continuous norm (see Remark (ii))7 by setting z, := fyp) for n € N, we can use the
argument in the latter part of the proof of Proposition 1.c.8 in [35] to select a subsequence
{fsmm izt of { fsn) o1 and a sequence of pairwise disjoint sets A(k) := o (fs(n,),27™)
in 3, for k£ € N, such that

I fstriyXam) = Fselloim <2'7%, kel (6.24)
Then the functions gr = fym,)Xawm) € LY(m), for k € N, are disjointly supported and

(6.24]) implies that (6.19) holds, as required. o

7. Characterization of the equality L'(m) = L. (m)

Throughout this section the setting is that of a Banach-space-valued vector measure
m : ¥ — X, in which case both L'(m) and L. (m) are Banach lattices. According to
Corollary iv)7 if X does not contain an isomorphic copy of ¢y, then neither does
L'(m). Then Proposition i)&(iii) implies (via the equivalence (a)<(c) of the con-
ditions immediately prior to that necessarily L'(m) = L. (m). It is known (see
[46, Proposition 3.38], for example, and the references given there) that each of the fol-
lowing conditions is equivalent to L'(m) = L} (m):

e L'(m) is weakly sequentially complete.
e L'(m) does not contain an isomorphic copy of cg.
e Ll (m) is weakly sequentially complete.
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e The Banach lattice L' (m) has the Fatou property.
e The Banach lattice Ll (m) has order continuous norm.

All of the above equivalent conditions, characterizing the equality L'(m) = L1 (m),
are in terms of Banach space or Banach lattice properties of L'(m) and L. (m). The
first aim of this section is to characterize the equality L!'(m) = L. (m) in terms of the
integration operator I,, : L'(m) — X; here Corollary plays a crucial role. In the
latter part of the section we present various sufficient conditions on I,,, mainly in terms
of concavity requirements or membership of I,,, in certain operator ideals, which ensure
that L'(m) = LL (m).

Let us begin with the following known result.

PROPOSITION 7.1. Let m be a Banach-space-valued vector measure.

(i) If I, is weakly compact, then necessarily L*(m) = L% (m).
(ii) If I, is completely continuous, then necessarily L*(m) = LL (m).

Recall that I, is weakly compact if, whenever {f,}52 is a norm-bounded sequence
in L'(m), then its image {I,,(f)}3%; has a weakly convergent subsequence [I7, p. 49].
Proposition [7.1](i) occurs in [13} Corollary 2.3]; its converse is not valid in general (see
Examples [7.2)i) and [7.3] below).

The integration operator I, is completely continuous if it maps weakly Cauchy
sequences in L'(m) to norm-convergent sequences in X [2, Theorem 19.1]. Proposi-
tion ii) occurs (even for Fréchet-space-valued measures) in [9, Theorem 3.6]; its con-
verse also fails to hold, in general (see Examples ii) and below).

It is important to note that the weak compactness of I,,, need not imply its complete
continuity (see Example [7.2ii)), nor vice versa (see Examples [7.2{i) and [7.3[ii)). There
also exist Banach-space-valued vector measures m for which L'(m) = L. (m) but I,, is
neither weakly compact nor completely continuous; see Example [7.3]

The variation measure |m| : ¥ — [0, 00] of a Banach-space-valued vector measure m
is defined as for scalar measures [I8] Definition I.1.4]; it is the smallest o-additive, [0, oo]-
valued measure dominating m in the sense that |[m(A)||x < |m|(A) for every A € .

Moreover, with continuous inclusions, it is always the case that
LY(|m[) € L (m) € Ly, (m);
see [40, Lemma 3.14(i) and p. 138].
EXAMPLE 7.2. Let 1 <r < oo and consider the Volterra vector measure v, : B([0,1]) —
L7([0,1]) given by
v (A) :tr—>/0tx,4(s)ds, t €10,1],

for each A € B([0,1]). For 1 < r < oo the codomain space L" ([0, 1]) is weakly sequentially
complete, and hence also weakly -complete. It then follows from Lemma iv) (with
m = v,) that L'(v,) = L. (v,.).

(i) Suppose that r = 1 or co. Then L(v,.) = L'(|v,|) and the integration operator
I, is completely continuous but not weakly compact [46, Example 3.49(iv)]. Moreover,
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L'(v,) = L. (v) follows from Proposition |7.1{(ii), or via the weak sequential completeness
of L'(v,) = L*(|v;|); see the beginning of this section.

(ii) Let 1 < r < oo. In contrast to part (i) we know that I, is now weakly compact
(as its codomain space L" ([0, 1]) is reflexive), but not completely continuous [46, Proposi-
tion 3.52]. According to [46, Example 3.26] we see that v, has finite variation for every
1<r<oo,butif 1 <r < oo, then L*(|v,]) € L'(vy). ©

The following examples arise in classical harmonic analysis.

EXAMPLE 7.3. (i) Let T := {z € C: |z| = 1} be the circle group equipped with normal-
ized Haar measure. By ¢o(Z) we denote the Banach space of all functions 1 : Z — C for
which lim|,| . [#(n)| = 0, equipped with the uniform norm. The Riemann-Lebesgue
Lemma ensures that the Fourier transform f of each f € LY(T) belongs to co(Z).
Let F € L(LY(T),co(Z)) denote the Fourier transform map, i.e., F(f) := f for each
f € LY(T).

Define a vector measure m : B(T) — ¢o(Z) by m(A) = F(xa) = X, for A € B(T), in
which case

LY(T) = LY (jml) = LY (m) = L. (m)

with the integration operator I,,, = F [46], p. 299]. Moreover, I, is neither weakly compact
nor completely continuous [46, Proposition 7.3(iii)].

(ii) For each complex measure A : B(T) — C define the convolution vector measure
vy : B(T) — LY(T) by

27
va(A) ::)\*XA:S’—)/ xAa(s —t)dA(t), se]0,2n] ~T.
0

It is known that
LYT) = L'(wal) = L' (va) = Ly, (va)

and that the integration operator I,, : L'(vy) — L'(T) is precisely the convolution
operator f + \x f for f € L'(T) [46, Remark 7.36]. Moreover, I, is compact if and
only if it is weakly compact if and only if A is absolutely continuous with respect to Haar
measure. On the other hand, I, is completely continuous if and only if the Fourier—
Stieltjes transform A of A (i.e., A(n) := = 02Tr e~ "t d\(t) for n € Z) belongs to co(Z)
[46, Remark 7.36(ii)]. Hence, every measure A which fails to be absolutely continuous
but satisfies A € ¢o(Z) (see [46, p. 320] for the existence of such A) has the property
that its integration operator I,,, is completely continuous but not weakly compact. If
X\ satisfies \ ¢ ¢o(Z) (e.g., the Dirac measure at any point of T or Cantor-Lebesgue
measure or certain Riesz product measures), then L!'(vy) = L. (vy) but I, is neither

weakly compact nor completely continuous. o

Recall that a continuous linear operator between Banach spaces is strictly singular
if no restriction to any closed, infinite-dimensional subspace of the domain space is an
isomorphism (onto its range). Clearly, every compact operator is strictly singular, but
not conversely; see Remark [7.5] below.

PROPOSITION 7.4. Let m be a Banach-space-valued vector measure whose integration
operator I, is strictly singular. Then necessarily L*(m) = L. (m).



Lattice copies of ¢p and £*° 59

Proof. Since I, is strictly singular it cannot fix any copy of ¢y. So, Corollary (iii)
yields L'(m) = L (m). m

REMARK 7.5. There exist vector measures m such that I, is strictly singular, but nei-
ther weakly compact nor completely continuous [45, Proposition 2.10|. The paragraph
immediately prior to Example 2.14 in [45] exhibits a vector measure m such that I, is
strictly singular and weakly compact, but not compact (as L'(m) # L(|m|) [43, The-
orems 1 & 4]). There also exist vector measures m satisfying L' (m) = Ll (m) with I,,, not
strictly singular. Indeed, in [46, Example 3.49(ii)] the ¢!-valued vector measure m := v
has the property that I,,, : L'(m) — ¢! is a surjective linear isomorphism, and hence is
surely not strictly singular. On the other hand, being isomorphic to ¢!, the space L!(m) is
weakly sequentially complete and so L!(m) = L. (m); see the beginning of this section. o

The two (rather extensive) classes of operators that occur in Proposition are
not comparable, but they have the property that I,, belonging to either class ensures
that L'(m) = L1 (m). Proposition exhibits the same feature. There is available a
further class of operators, containing all weakly compact and all completely continuous
operators, which characterizes the property L'(m) = Ll (m) via its membership of I,;
see Proposition [7.7] below.

A continuous linear operator between Banach spaces (or IcHs) is said to be weakly com-
pletely continuous if it maps weakly Cauchy sequences to weakly convergent sequences,
a notion going back to J. Dieudonné and A. Grothendieck [6] p. 27]. Clearly, every com-
pletely continuous operator is also weakly completely continuous. The following observa-
tion shows that the same is true of weakly compact operators.

Fact 5. Every weakly compact operator between two Banach spaces is also weakly com-
pletely continuous.

Proof. Let T :' Y — Z be a weakly compact operator between Banach spaces. Given a
weakly Cauchy sequence {y,}52; in Y, the continuity of T from Y, into Z, implies that
{Ty,}52, is weakly Cauchy in Z. Moreover, the weak compactness of T implies that
{Ty,}52, lies in a weakly compact subset of Z. By the Eberlein-Smulian Theorem 22,
Theorem V.6.1], {Ty,}>2 ; has a convergent subsequence in Z,. Since {Ty, }2°; is itself
Cauchy in Z,, it follows that {Ty,}>2, is also convergent in Z,. Hence, T is weakly
completely continuous. m

We also require the following useful information.
LEMMA 7.6.

(i) The composition of a weakly completely continuous operator with any continuous
linear operator (on the left or the right) is again weakly completely continuous.
(ii) Ewvery Banach-space-valued continuous linear operator defined on a weakly sequen-
tially complete Banach space is necessarily weakly completely continuous.
(iii) Let Y be a closed subspace of the Banach space Z and ® :'Y — Z be the iden-
tity inclusion. Then ® is weakly completely continuous if and only if Y is weakly
sequentially complete.
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Proof. (i) This follows routinely from the definition of a weakly completely continuous
operator and the fact that a continuous linear operator is also continuous for the weak
topologies.

(ii) Let Y, Z be Banach spaces, with Y weakly sequentially complete, and T € L(Y, Z).
Fix any weakly Cauchy sequence {y,}52; in Y. Then {y, }7%, has a limit vector y in Y.
Since T € L(Y,,Z,), it follows that {T(y,)}52, converges in Z,. Thus, T is weakly
completely continuous.

(iii) If Y is weakly sequentially complete, then ® is weakly completely continuous by
part (ii).

Conversely, suppose that ® is weakly completely continuous. Let {u,, }22 ; be a Cauchy
sequence in Y. Then {®(u,)}5$2, converges in Z,, say to z € Z. Since Y is norm-closed
in Z it is also closed in Z, and so actually z € Y. Given any y* € Y*, the Hahn-Banach
Theorem ensures the existence of z* € Z* satisfying z*|y = y*. From this, together
with the fact that (®(uy) — z,2*) — 0 and {®(u,) — 2}52,; C Y, we can conclude that
limy, 00 (P (uy) — 2,y*) = 0. Since y* € Y™ is arbitrary, it follows that u, = ®(u,) — 2
in Y,. Hence, Y is weakly sequentially complete. m

For a Banach-space-valued vector measure m : ¥ — X we recall from Remark
that L'(m) is a closed subspace of Ll (m). Denote the identity inclusion of L!(m) into
L% (m) by pn. We can now formulate the main result of this section.

PROPOSITION 7.7. Let m : ¥ — X be a Banach-space-valued vector measure. The fol-
lowing assertions are equivalent:

(i) L'(m) = Ly,(m).

(ii) The identity operator idpi(my on LY(m) is weakly completely continuous.
(iii) The natural inclusion p,, : L*(m) — L. (m) is weakly completely continuous.
(iv) The integration operator I, : L*(m) — X is weakly completely continuous.

Proof. (i)<(ii). This follows from Lemma iii) with Y = Z = L'(m) and & :=
id 1 (s together with the fact (see the beginning of this section) that L'(m) = L1 (m) if
and only if L*(m) is weakly sequentially complete.

(ii)=-(iii). This follows from p,, = pm 0 idp1(;) and Lemma (1)

(iii)=(i). Apply Lemmal[7.6(iii) with Y := L'(m), Z := L} (m) and ® := p,,, together
with the fact that L!'(m) = L1 (m) if and only if L' (m) is weakly sequentially complete.

(i)=(iv). By (i) the space L!(m) is weakly sequentially complete. The desired con-
clusion is then immediate from Lemma ii).

(iv)=-(i). Assume that L'(m) C L1 (m). Then I,, fixes an isomorphic copy of co; see
Corollary iii). That is, there exists an isomorphism (onto its range) S € L(cg, L*(m))
such that I,, 0 S : ¢ — X is an isomorphism onto its range. So, (I,,, ©.S)~! o (I, 0 5)
equals the identity operator id., on cp. Since the standard basis vectors of ¢y form a
weakly Cauchy sequence which fails to be weakly convergent, it is clear that id,, is not
weakly completely continuous. In other words, the composition (I,, o S)~t o I, 0 S is
not weakly completely continuous. Hence, by Lemma i) the operator I,,, also fails to
be weakly completely continuous. This establishes that L!(m) = L} (m) whenever I,,, is
weakly completely continuous. m
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REMARK 7.8. The class of weakly completely continuous operators properly contains the
weakly compact operators and the completely continuous operators. This follows from
Proposition and Example i) (resp. Example ii)), where the vector measure
m (resp. vy with A & co(Z)) satisfies L'(m) = LL(m) (resp. L*(vy) = LL(v)), but
I, (resp. I,,) is neither weakly compact nor completely continuous. Concerning m from
Example [7.3(i), recall that L'(m) = L},(m) = LY(T) and so p,, = idpi(r) is weakly
completely continuous via Proposition However, since L'(T) is not reflexive, id 1 ()
is not weakly compact. To see that idp1(,,) is not completely continuous either, observe
that the sequence {e~"()}°2 | converges weakly to 0 in L' (T) (by the Riemann-Lebesgue
Lemma), but {e="()}22, is not norm-convergent to 0 in L*(T) because ||| 1 (p) = 1
foralln € N. o

Checking directly whether one of the equivalences in Proposition [7.7] is satisfied may
not be easy in practise. The fact that L'(m) is a complex Banach lattice (see Re-
mark [3.§[(ii)) provides a means to exhibit classical classes of operators with the property
that I,,, is weakly completely continuous whenever it belongs to one of these classes.

Let X be a Banach space and E be a complex Banach lattice (see Section 3). Given
1 < ¢ < 00, an operator R € L(F, X) is said to be (g, 1)-concave if there exists a constant
Cy > 0 such that

E

(D IR@)I%) ™ < Cof| D Ius
j=1 j=1
for all choices of finitely many elements {u;}?_; C E with n € N [I7, p. 330].
PROPOSITION 7.9. Let m : ¥ — X be a Banach-space-valued vector measure.
(i) If the integration operator I, : L*(m) — X is (g, 1)-concave for some 1 < q < 0o,

then I, is weakly completely continuous. In particular, L*(m) = L. (m).
(ii) Given any 1 < g < 00, the following conditions are equivalent:

(a) The integration operator I, : L*(m) — X is (g, 1)-concave.
(b) The identity operator idpi(m): L*(m) — L*(m) is (q,1)-concave.
(c) The embedding py, : L*(m) — L. (m) is (q,1)-concave.

Proof. (i) Let Cy > 0 satisfy

(1) " < e S

whenever {f;}"_; C L'(m), with n € N, is a finite set. Suppose that L*(m) C L. (m).
Via Corollary [6.2](iii) there is a lattice-isomorphism S : ¢y — L!(m) (onto its range) such
that In|r(s) : R(S) — X is a topological isomorphism onto its range. Consequently,
ILnpoS @ ¢g — X is a topological isomorphism onto its range and so there exists a
constant M > 0 such that

lelleg < M|[(Im © S)(a)llx, o € co. (7.2)

(7.1)

Lt (m)

On the other hand, being a lattice-isomorphism, S is a positive operator, i.e., S(cf) C
LY(m)™ [2, Theorem 7.3]. It then follows from [46, Lemma 2.57(ii)(a)|, with ¢ = 1 there,



62 S. Okada et al.

that -7, [S(ay)| < S(X27_, |ay]) in the order of L'(m), and hence, since ||+ L1(m) is a

lattice norm, that
. < .
IS5t < 5(55 )

whenever ay,...,a, € ¢g and n € N.

Let {e;}32, denote the canonlcal basis of ¢y and ||S|lop denote the operator norm
of S. Fix n E N. It follows from (7.1)—(7.3) that

wi= (3 ||ej||zo) < M(Z o S)eDls)
s (;leﬂ)\

ZeJH = MCq||S|lop-
— o

o (7.3)

Lt(m) Lt (m)

< MCyl|Slop

Since n € N is arbitrary, this is impossible. So, we must have L!(m) = L. (m), which,
via Proposition [7.7] is equivalent to I,, being weakly completely continuous.
(ii) (a)=(b). Let Cy > 0 be a constant satisfying
.|‘

(inz i) <

whenever {g;}}_; € L'(m) is a finite set, with n € N. Fix now n € N and {f;}}_, C
LY(m). It follows from [46, Lemma 3.71| that

(X itm) ' - R (ZIII s 0%) " (75)

=1 T St

(7.4)

L'(m)

where the supremum on the right side is taken over all choices of s; € simX with
SUP,eq |S;j(w)| < 1. For any such choice s1,...,s, we deduce from (7.4)), with g; := s, f;
for 1 < j < n, that

(S latss£1%) " < | bt
Jj=1 J=1

This and (7.5)) yield

L' (m)

L1(m) = Cquzi;m’

o (7.6)

(S 151m) " < 15
Jj=1 j=1

Thus, (b) holds because n € N and {f;}}_; € L'(m) are arbitrary.

(b)=(a). By the hypothesis on id1 () there exists C;, > 0 such that ( . ) holds for
any finite set {f;}7_; C L'(m), with n € N Fix such a choice of {f;}}_, € L'(m). Since
I Im]lop = 1 [46 p. 152], it follows from (7.6] that

(Enl I IE) " < ( i Hfjllﬁf)l/q <q,
,

As {f;}5-) C Ll( ), with n € N, is arbitrary, I,, is (g, 1)-concave.

> IS
j=1
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(b)<(c). This equivalence is a routine consequence of the definition of (g, 1)-concave
operators and the fact that ||pm (f)l1 (m) = | fllL1(m) for each f € L'(m). =

COROLLARY 7.10. Let m be a Banach-space-valued vector measure.

i) If the embedding p,, : L'(m) — LL (m) is (g, 1)-concave for some 1 < q < oo, then
g p w
Pm 1S weakly completely continuous.
ii) If the identity operator idri,, s (q,1)-concave for some 1 < q < oo, then idpi(,,
(m) (m)
1s weakly completely continuous.

Proof. (i) From Proposition (ii) we see that I, is (g, 1)-concave, and hence, by Propo-
sition (i)7 it follows that L'(m) = L. (m). As recorded at the beginning of this section,
L'(m) is then weakly sequentially complete. Now apply Lemma ii) to conclude that
pm is weakly completely continuous.

(ii) A similar argument as for part (i) applies. m

Let o be any o-additive, positive measure and X be any Banach space. Then every
continuous linear operator 7' : L*(u) — X is necessarily (1, 1)-concave. Indeed, given any
finite set {f;}7—; € L'(u), with n € N, we have

ST < 1T lop D il = ITlen | 21541
j=1 j=1 j=1

Since the vector measures m and v, (with A any complex measure on B(T)) presented
in Examples i) and (ii), respectively, have the property that their corresponding
spaces L'(m) and L (vy) are of the form L!(u), it follows from the previous observation

Li(u)

that the integration operators I, and I,, are necessarily (1,1)-concave, although, as
noted before, they are neither weakly compact nor completely continuous. We now exhibit
a vector measure m such that I,,, is weakly completely continuous but not (g, 1)-concave
for any 1 < ¢ < co. So, Proposition does not cover all cases.

EXAMPLE 7.11. Let Q := [0,00) and ¥ := B(f2). Denote Lebesgue measure on X by p.
Fix a strictly increasing sequence {py}3>; C [1,00) satisfying limy_, o pr = co. For each
k € Nlet Q(k) := [(k — 1), k), in which case the closed subspace LP*(Q(k)) := {fxa) :
f € LP:(u)} of the Banach space LP*(u) is again a Banach space for the induced norm
|“llp, from LP=(u). The €2-direct sum X = (@r, LP*(Q(k)))2 of the Banach spaces
(LP*(2(k)), ||*|lps ), for k& € N, is the vector space consisting of all f € L°(X) satisfying

= /
(Z HfXQ(k)Hf)k)l ’ < 090, (7.7)

k=1

with the norm || f[|x of f defined by the left side of (7.7)), in which case X is a Banach
space [I7, p. xiv, Notation]. Moreover, X is also a complex Banach lattice for the p-a.e.
pointwise order and ||-||x is the corresponding (complex) lattice norm. Noting that X
is an ideal in L°(X), and hence is Dedekind o-complete [61, p. 107], and that X is also
separable, it follows that X has order continuous norm [60, Theorem 117.3].

Clearly the function g := Zz’;l(l/kj)xg(k), defined pointwise on 2, belongs to X T
and so gxa € X for all A € ¥ as ||-|x is a lattice norm. This enables us to define a
finitely additive measure m : ¥ — X by m(A) := gxa for A € ¥. The o-additivity of
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m is a routine consequence of X having order continuous norm. The claim is that the
integration operator I,,, : L'(m) — X has the form

Im(f):fga fGLl(m), (78)
and is a linear isometry.
To establish (7.§) first fix f € L' (m)*. Choose an increasing sequence {s;}52; C sim %
converging pointwise to f with 0 < s; < f for j € N. It is clear from the definition of m
that

/ sjdm = In(sjxa) =sjgxa, A€, jeN
A

Moreover, lim; .o ||f — 55|21 (m) = 0; apply Lemma i) in the Banach space setting.
Continuity of I, : L*(m) — X implies that s;g = I, (s;) = Ln(f) in X as j — oc.
Since X is an ideal in L°(X), it is a Banach function space over (2,3, ), also called
a Kothe function space, in the sense of [36, Ch.1, §9]. Hence, there exists a pointwise
p-a.e. convergent subsequence s(,yg —+ I (f) for n — oo. This follows from the general
fact that, in any Banach lattice, a norm convergent sequence has an order convergent
subsequence [60, Theorem 100.6]. On the other hand, also s;g — fg pointwise on 2
as j — oo, and hence I,,,(f) = fyg, i.e., holds whenever f € L'(m)T. Since every
function in L'(m) can be expressed as a linear combination of four positive functions
from L!(m), it follows that holds in general.

Noting that m is a positive vector measure, i.e., m(X) C X+, it follows from [46,
Lemma 3.13], the fact that g > 0 and that

£z my = Im(IFD1x = If19]l = 1f9lx = Hm(Plx,  f €L (m).
Hence, I,, is a linear isometry, which completes the proof of the claim.

As X is reflexive, I, is weakly compact, and hence also weakly completely continuous;
see Fact 5.

Fix 1 < ¢ < c0. Choose any K € N satisfying px > ¢ and fix it henceforth. Select any
sequence {A(j)}32, of pairwise disjoint subintervals of Q(K). For each j € N, define f; :=
Kp(A(4))~1P< xa(), in which case gf; = p(A(j)) /"< xa) € X. Clearly {f;}52, C
L*(m)*. Moreover, for each j € N, we have

m (F)llx = 1 £590x = 1K fillpse = 1. (7.9)
Fix n € N. It follows from that

(S 1utsIg) " = niva (7.10)
j=1

On the other hand, recalling that I,, is a linear isometry and the functions {f;}7_; C
LY(m)* are disjointly supported, we deduce from (7.9) that

|18y = [ (15D = [ 205
j=1 j=1 j=1
IS
j=1

PK
X

PK n _1 P
L= IR e =
j=1



Lattice copies of ¢p and £*° 65

That is,

IS5, = -
= (m)

Since (7.10) and (7.11)) hold for all n € N and ¢~! > pf(l, it follows that I,, is not
(g, 1)-concave. o

REMARK 7.12. Clearly every (1, 1)-concave operator defined on a Banach lattice is (g, 1)-
concave whenever 1 < ¢ < oo. Those Banach-space-valued vector measures m whose
integration operator I, is (1,1)-concave have been characterized in Proposition 3.74
of [46]. Namely, I, is (1,1)-concave if and only if L*(m) = L!(|m|) as an equality of
isomorphic Banach spaces. o

We now exhibit several classical operator ideals [I7, p. 131] such that, if I, belongs
to any one of them, then I, is (g, 1)-concave for some suitable 1 < ¢ < oo and so, in
particular, I,,, is weakly completely continuous; see Proposition (1)

ExampLE 7.13. Consider a Banach-space-valued vector measure m : ¥ — X and its
associated integration operator I, : L*(m) — X.

(i) Suppose that I,,, is a compact operator. Then L'(m) = L'(|m|) as an equality of
vector spaces, [46], Proposition 3.48], and hence, also an equality as isomorphic Banach
spaces (because the natural embedding from L'(|m|) into L'(m) is continuous; see the
discussion prior to Example [7.2)). Then Remark tells us that I, is (1, 1)-concave.

(ii) Let 1 < p < q¢ < oo and suppose that I, is a (q,p)-summing operator; see
[I7, p. 197] for the definition. Then I,, is also (g, 1)-summing [I7, p. 198]. Hence, I, is
(g, 1)-concave [17, p. 330].

(iii) Let 1 < p < co. The p-summing operators are exactly the (p, p)-summing opera-
tors |17, p. 31 & p. 197]. So, if I,,, is p-summing, then it is (p, 1)-concave by part (ii) with
p = q. Actually, this can be improved. Indeed, it follows essentially from [7, Theorem
2.7] and [46, Proposition 3.74] that L'(m) = L'(|m|); more precisely, see the paragraph
immediately prior to Proposition 2.4 of [44]. So, an appeal to Remark shows that
I, is (1,1)-concave.

(iv) Let 1 < p < r < oo. A continuous linear operator T : Y — Z between Banach
spaces is called (r,p)-mizing if S o T is p-summing for every Banach-space-valued r-
summing operator S defined on Z, [16] p. 415]. Every (r, p)-mixing operator is necessarily
(¢, p)-summing with ¢ € (p, c0) determined by 1/q+1/r = 1/p, [16] p. 426, Remark 1]. In
particular, if I, is (r, p)-mixing, then I,, is (¢, p)-summing for an appropriate ¢ € (p, c0),
and hence is (g, 1)-concave by part (ii) above.

(v) For the definition of the cotype of a Banach space see [I7, p. 218]. Suppose that
L'(m) has cotype 2. Then the identity operator idpi(,, is (2,1)-mixing [16, p. 417,
32.2(4)]. Accordingly, id 1 () is (2, 1)-concave; see part (iv) above with p := 1 and r := 2
(in which case ¢ = 2). So, Proposition ii) implies that I, is also (2, 1)-concave.

Next suppose that L!(m) has cotype r > 2. Recalling that 7* is the conjugate index
of r, we see that idzi(,,) is ((r* — €), 1)-mixing whenever ¢ satisfies 0 < ¢ < r* — 1
[16, p. 417, 32.2(5)]. So, by part (iv) above, the operator idz1 () is (g(e), 1)-summing for
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q(e) € (1,00) determined by 1/q(¢) + 1/(r* —e) = 1. Again Proposition ii) implies
that I,, is (¢q(e), 1)-concave (with g(g) > 1). o

Concerning Example|7.13[(ii), it should be noted that there exist Banach-space-valued
vector measures m for which I,,, is (2, 1)-summing but I,,, is neither weakly compact nor
completely continuous. For instance, let m be the L([0, 1])-valued vector measure which
assigns x4 to each A € B([0,1]). Then L'(m) = L([0,1]) and I,,, which is given by
I,(f) = f for f € L*(m), is a surjective linear isometry [46, Example 3.61]. It follows
from Orlicz’s Theorem [I7, Theorem 3.12 & p. 197], that I,,, = id1([o,17) is (2, 1)-summing.
On the other hand, I, is not weakly compact or completely continuous.

In conclusion, concerning Example v) we point out that L'(m) necessarily has
cotype ¢ whenever the codomain space X of m has cotype ¢ with ¢ € [2,00) [12, Theo-
rem 1].
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