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Abstract

The key vehicle of the recent development of a topological theory of regular variation based on
topological dynamics [BO-TI], and embracing its classical univariate counterpart (cf. [BGT])
as well as fragmentary multivariate (mostly Euclidean) theories (eg [MeSh], [Res], [Ya]), are
groups with a right-invariant metric carrying flows. Following the vector paradigm, they are
best seen as normed groups. That concept only occasionally appears explicitly in the literature
despite its frequent disguised presence, and despite a respectable lineage traceable back to the
Pettis closed-graph theorem, to the Birkhoff-Kakutani metrization theorem and further back
still to Banach’s Théorie des opérations linéaires. Its most recent noteworthy appearance has
been in connection with the Effros Open Mapping Principle. We collect together known salient
features and develop their theory including Steinhaus theory unified by the Category Embedding
Theorem [BO-LBII], the associated themes of subadditivity and convexity, and a topological
duality inherent to topological dynamics. We study the latter both for its independent interest
and as a foundation for topological regular variation.
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1. Introduction

Group-norms, which behave like the usual vector norms except that scaling is restricted
to the basic scalars of group theory (the units ±1 in an abelian context and the exponents
±1 in the non-commutative context), have played a part in the early development of topo-
logical group theory. They appear naturally in the study of groups of homeomorphisms.
Although ubiquitous, they lack a clear and unified exposition. This lack is our motivation
here, since they offer the right context for the recent theory of topological regular varia-
tion. This extends the classical theory (for which see, e.g. [BGT]) from the real line to
metrizable topological groups. Normed groups are just groups carrying a right-invariant
metric. The basic metrization theorem for groups, the Birkhoff-Kakutani Theorem of
1936 ([Bir], [Kak], see [Kel, Ch. 6 Problems N-R], [Klee], [Bour, Part 2, Section 4.1], and
[ArMa], compare also [Eng, Exercise 8.1.G and Th. 8.1.21]), is usually stated as asserting
that a first-countable Hausdorff group has a right-invariant metric. It is properly speaking
a ‘normability’ theorem in the style of Kolmogorov’s Theorem ([Kol], or [Ru, Th. 1.39]; in
this connection see also [Jam], where strong forms of connectedness are used in an abelian
setting to generate norms), as we shall see below. Indeed the metric construction in [Kak]
is reminiscent of the more familiar construction of a Minkowski functional (for which
see [Ru, Sect. 1.33]), but is implicitly a supremum norm – as defined below; in Rudin’s
derivation of the metric (for a topological vector space setting, [Ru, Th. 1.24]) this norm
is explicit. Early use by A. D. Michal and his collaborators was in providing a canonical
setting for differential calculus (see the review [Michal2] and as instance [JMW]) and
included the noteworthy generalization of the implicit function theorem by Bartle [Bart]
(see Th. 10.10). In name the group-norm makes an explicit appearance in 1950 in [Pet1] in
the course of his classic closed-graph theorem (in connection with Banach’s closed-graph
theorem and the Banach-Kuratowski category dichotomy for groups). It reappears in the
group context in 1963 under the name ‘length function’, motivated by word length, in the
work of R. C. Lyndon [Lyn2] (cf. [LynSch]) on Nielsen’s Subgroup Theorem, that a sub-
group of a free group is a free group. (Earlier related usage for function spaces is in [EH].)
The latter name is conventional in geometric group theory despite the parallel usage in
algebra (cf. [Far]) and the recent work on norm extension (from a normal subgroup) of
Bökamp [Bo].

When a group is topologically complete and also abelian, then it admits a metric which
is bi-invariant, i.e. is both right- and left-invariant, as [Klee] first showed (in course of
solving a problem of Banach). In Section 3 we characterize non-commutative groups that
have a bi-invariant metric, a context of significance for the calculus of regular variation
(in the study of products of regularly varying functions with range a normed group) – see
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[BO-TIII]. In a normed group topological completeness yields a powerful Shift Theorem,
generalizing the following theorem on the reals about shift embedding of sequences (due
in a weak form to Kestelman and in a Lebesgue-measure setting to Borwein and Ditor).
We say generically all to mean ‘off a meagre/null set’, according to whether the context
is (Baire) category, where we also say quasi-all, or (Lebesgue, or more generally Haar)
measure, where we say almost all.

Theorem 1.1 (Kestelman-Borwein-Ditor Theorem, KBD). Let {zn} → 0 be a null se-
quence of reals. If T is measurable and non-null, or Baire and non-meagre, then for
generically all t ∈ T there is an infinite set Mt such that {t+ zm : m ∈Mt} ⊆ T.

A stronger form still is derived in [BO-Fun] (the Generic Reflection Theorem); see also
[BO-SO, Section 3.1 Note 3], [BO-LBI, Section 3.1 Note 1]. For proofs see the original
papers [Kes] and [BoDi]; for a unified treatment in the real-variable case see [BO-Fun].
Applications of shift embedding are implicit in Banach [Ban-Eq] and explicit though not
by name in Banach [Ban-T] in the proofs that a measurable/Baire additive function is
continuous (see the commentary by Henryk Fast loc. cit. p. 314 for various one-way im-
plications among related results). The present paper is motivated precisely by normed
groups being the natural setting for generalizations of the KBD Theorem and its numer-
ous important applications (initially noticed in the Uniform Convergence Theorem of the
theory of regular variation). Normed groups, as we will see, are subject to a dichotomy
centred on automatic continuity (for background see Section 3.3 and Section 11), as to
whether or not inner automorphisms x→ gxg−1 are continuous: normed groups are thus
either topological groups or pathological groups. That is, a smidgen of regularity tips the
normed group over to a topological group. We are thus mostly concerned with the former;
but even so in general, in the presence of completeness, they support a generalization of
KBD from which one may derive a Squared Pettis Theorem (that (AA−1)2, for A Baire
non-meagre, has the identity as an interior point, Th. 5.8); that in turn guarantees in the
category of normed groups the Banach-Mehdi Continuity Theorem for Baire-continuous
homomorphisms (Th. 11.10), the Baire Homomorphism Theorem (Th. 11.11) and the
Souslin Graph Theorem (Th. 11.12). The origin of the squaring is the following first of
several generalizations of KBD (cf. Th. 5.1).

Theorem 1.2 (Kestelman-Borwein-Ditor Theorem – Normed Groups). In a topologically
complete normed group X, if {zn} → eX (a null sequence converging to the identity), T
is Baire and non-meagre under the right norm topology, then there are t, tm ∈ T (with
tm converging to t) and an infinite set Mt such that {tt−1

m zmtm : m ∈Mt} ⊆ T.

Topological completeness is a natural assumption here, but it is unnecessarily strong.
Respectably defined subgroups of even a compact topological group need not be Gδ (see
[ChMa] and [FaSol] for such examples). In Section 5 we employ the weaker notion of
almost complete metrizability which is applicable to non-meagre Souslin-F subspaces of
a topologically complete subgroup, so embracing the non-complete examples just cited.
Critical results like Th. 1.2 will be developed below using almost completeness; elsewhere,
for simplicity, we often work with topological completeness.
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Fresh interest in metric groups dates back to the seminal work of Milnor [Mil] in 1968
on the metric properties of the fundamental group of a manifold and is key to the global
study of manifolds initiated by Gromov [Gr1], [Gr2] in the 1980s (and we will see quasi-
isometries in the duality theory of normed groups in Section 12), for which see [BH] and
also [Far] for an early account; [PeSp] contains a variety of generalizations and their uses
in interpolation theory (but the context is abelian groups).

In work on the important Effros Open Mapping Principle (Th. 3.14) van Mill [vM1]
identified in 2004 the appropriate setting for his more comprehensive variant of the prin-
ciple to be a normed group, though not by this (then unknown) name (see the Remark
after Th. 3.14). The relationship between that principle and general shift theorems men-
tioned above has only recently been understood – this is implicit in Becker’s proof of the
Effros result in [Kech-T], and explicit in [O-E]; see also [vM3].

The very recent [CSC] (see Sect. 2.1.1, Embedding quasi-normed groups into Banach
spaces) employs norms in considering Ulam’s problem (see [Ul]) on the global approxima-
tion of nearly additive functions by additive functions. This is a topic related to regular
variation, where the weaker concept of asymptotic additivity is the key. Recall the classical
definition of a regularly varying function, namely a function h : R→ R for which the limit

∂Rh(t) := lim
x→∞

h(tx)h(x)−1 (rv-limit)

exists everywhere; for h Baire, the limit function is a continuous homomorphism (i.e. a
multiplicative function). Following the pioneering study of [BajKar] launching a general
(i.e., topological) theory of regular variation, [BO-TI] has re-interpreted (rv-limit), by
replacing |x| → ∞ with ‖x‖ → ∞, for functions h : X → H, with tx being the image of x
under a T -flow on X (cf. Th. 2.7 and preceding definition), and with X,T,H all groups
with right-invariant metric (right because of the division on the right) – i.e. normed
groups (making ∂hX a differential at infinity, in Michal’s sense [Michal1]). In concrete
applications the groups may be the familiar Banach groups of functional analysis, the
associated flows either the ubiquitous domain translations of Fourier transform theory
or convolutions from the related contexts of abstract harmonic analysis (e.g. Wiener’s
Tauberian theory so relevant to classical regular variation – see e.g. [BGT, Ch. 4]). In all
of these one is guaranteed right-invariant metrics. Likewise in the foundations of regular
variation the first tool is the group H(X) of bounded self-homeomorphisms of the group
X under a supremum metric (and acting transitively on X); the metric is again right-
invariant and hence a group-norm. It is thus natural, in view of the applications and the
Birkhoff-Kakutani Theorem, to favour right-invariance.

We show in Sections 4 and 10 that normed groups offer a natural setting for subad-
ditivity and for (mid-point) convexity.

2. Metric versus normed groups

This section is devoted to group-norms and their associated metrics. We collect here
some pertinent information (some of which is scattered in the literature). A central tool
for applications is the introduction of the subgroup of bounded homeomorphisms of a
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given group G of self-homeomorphisms of a topological group X; the subgroup possesses
a guaranteed right-invariant metric. This is the archetypal example of the symbiosis of
norms and metrics, and it bears repetition that, in applications just as here, it is helpful
to work simultaneously with a right-invariant metric and its associated group-norm.

We say that the group X is normed if it has a group-norm as defined below (cf.
[DDD]).

Definition. We say that ‖ · ‖ : X → R+ is a group-norm if the following properties
hold:

(i) Subadditivity (Triangle inequality): ‖xy‖ ≤ ‖x‖+ ‖y‖;
(ii) Positivity: ‖x‖ > 0 for x 6= e and ‖e‖ = 0;

(iii) Inversion (Symmetry): ‖x−1‖ = ‖x‖.

If (i) holds we speak of a group semi-norm; if (i) and (iii) and ‖e‖ = 0 holds one
speaks of a pseudo-norm (cf. [Pet1]); if (i) and (ii) hold we speak of a group pre-norm
(see [Low] for a full vocabulary).

We say that a group pre-norm, and so also a group-norm, is abelian, or more precisely
cyclically permutable, if

(iv) Abelian norm (cyclic permutation): ‖xy‖ = ‖yx‖ for all x, y.

Other properties we wish to refer to are:

(i)K for all x, y: ‖xy‖ ≤ K(‖x‖+ ‖y‖),
(i)ult for all x, y: ‖xy‖ ≤ max{‖x‖, ‖y‖}.

Remarks 1. 1. Mutatis mutandis this is just the usual vector norm, but with scaling
restricted to the units ±1. The notation and language thus mimic the vector space coun-
terparts, with subgroups playing the role of subspaces; for example, for a symmetric,
subbadditive p : X → R+, the set {x : p(x) = 0} is a subgroup. Indeed the analysis of
Baire subadditive functions (see Section 4) is naturally connected with norms, via regular
variation. That is why normed groups occur naturally in regular variation theory.

2. When (i)K , for some constant K, replaces (i), one speaks of quasi-norms (see [CSC],
cf. ‘distance spaces’ [Rach] for a metric analogue). When (i)ult replaces (i) one speaks of
an ultra-norm, or non-Archimedean norm. For an example of the latter, in connection
with the p-adic topology of a group, see [Fu, I.7.2].

3. Note that (i) implies joint continuity of multiplication at the identity eX , while (iii)
implies continuity of inversion at eX , a matter we return to in Th. 2.19′ and in Section 3.
(Montgomery [Mon1] shows that joint continuity is implied by separate continuity when
the group is locally complete – cf. Th. 3.47; Ellis [Ell1] considers when one-sided continuity
implies joint continuity in the case of locally compact abelian groups.) In a related theme
Żelazko [Zel] considers a locally complete metric structure under which an abelian group
has separately continuous multiplication and shows this to be a topological group. See
below for the stronger notion of uniform continuity invoked in the Uniformity Theorem
of Conjugacy (Th. 12.4).

4. Abelian groups with ordered norms may also be considered, cf. [JMW].
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Remarks 2. Subadditivity implies that ‖e‖ ≥ 0 and this together with symmetry implies
that ‖x‖ ≥ 0, since ‖e‖ = ‖xx−1‖ ≤ 2‖x‖; thus a group-norm cannot take negative values.
Subadditivity also implies that ‖xn‖ ≤ n‖x‖, for natural n. The norm is said to be 2-
homogeneous if ‖x2‖ = 2‖x‖; see [CSC, Prop. 4.12 (Ch. IV.3 p. 38] for a proof that
if a normed group is amenable or weakly commutative (defined in [CSC] to mean that,
for given x, y, there is m of the form 2n, for some natural number n, with (xy)m =

xmym), then it is embeddable as a subgroup of a Banach space. In the case of an abelian
group 2-homogeneity corresponds to sublinearity, and here Berz’s Theorem characterizes
the norm (see [Berz] and [BO-GS]). The abelian property implies only that ‖xyz‖ =

‖zxy‖ = ‖yzx‖, hence the alternative name of ‘cyclically permutable’. Harding [H], in
the context of quantum logics, uses this condition to guarantee that the group operations
are jointly continuous (cf. Theorem 2.18 below) and calls this a strong norm. See [Kel,
Ch. 6 Problem O] (which notes that a locally compact group with abelian norm has a
bi-invariant Haar measure). We note Ellis’ Theorem that, for X a locally compact group,
continuity of the inverse follows from the separate continuity of multiplication (see [Ell2],
or [HS, Section 2.5]). The more recent literature concerning when joint continuity of
(x, y) → xy follows from separate continuity reaches back to Namioka [Nam] (see e.g.
[Bou1], [Bou2], [HT], [CaMo]).

Convention. For a variety of purposes and for the sake of clarity, when we deal with a
metrizable group X if we assume a metric dX on X is right/left-invariant we will write
dXR or dXL , omitting the superscript and perhaps the subscript if context permits.

Remarks 3. For X a metrizable group with right-invariant metric dX and identity eX ,
the canonical example of a group-norm is identified in Proposition 2.3 below as

‖x‖ := dX(x, eX).

It is convenient to use the above notation irrespective of whether the metric dX is invari-
ant.

Remarks 4. If f : R+ → R+ is increasing, subadditive with f(0) = 0, and ‖x‖1 is a
group-norm, then

‖x‖2 := f(‖x‖1)

is also a group-norm. See [BO-GS] for recent work on Baire (i.e., having the Baire prop-
erty) subadditive functions. These will appear in Sections 3 and 4.

We begin with two key definitions.

Definition and Notation. For X a metric space with metric dX and π : X → X a
bijection the π-permutation metric is defined by

dXπ (x, y) := dX(π(x), π(y)).

When X is a group we will also say that dXπ is the π-conjugate of dX . We write

‖x‖π := dX(π(x), π(e)),

and for d any metric on X,

Bdr (x) := {y : d(x, y) < r},
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suppressing the superscript for d = dX ; however, for d = dXπ we adopt the briefer notation

Bπr (x) := {y : dXπ (x, y) < r}.

Following [BePe], Auth(X) denotes the algebraic group of self-homeomorphisms (or auto-
homeomorphisms) of X under composition, i.e. without a topological structure. We de-
note by idX the identity map idX(x) = x on X.

Examples A. Let X be a group with metric dX . The following permutation metrics
arise naturally in this study. (We use the notation ‖x‖ := dX(x, eX), for an arbitrary
metric.)

1. With π(x) = x−1 we refer to the π-permutation metric as the involution-conjugate,
or just the conjugate, metric and write

d̃X(x, y) = dXπ (x, y) = dX(x−1, y−1), so that ‖x‖π = ‖x−1‖.

2. With π(x) = γg(x) := gxg−1, the inner automorphism, we have (dropping the
additional subscript, when context permits):

dXγ (x, y) = dX(gxg−1, gyg−1), so that ‖x‖γ = ‖gxg−1‖.

3. With π(x) = λg(x) := gx, the left-shift by g, we refer to the π-permutation metric
as the g-conjugate metric, and we write

dXg (x, y) = dX(gx, gy).

If dX is right-invariant, cancellation on the right gives

dX(gxg−1, gyg−1) = dX(gx, gy), i.e. dXγ (x, y) = dXg (x, y) and ‖x‖g = ‖gxg−1‖.

For dX right-invariant, π(x) = ρg(x) := xg, the right-shift by g, gives nothing new:

dXπ (x, y) = dX(xg, yg) = dX(x, y).

But, for dX left-invariant, we have

‖x‖π = ‖g−1xg‖.

4 (Topological permutation). For π ∈ Auth(X), i.e. a homeomorphism, and x fixed,
note that for any ε > 0 there is δ = δ(ε) > 0 such that

dπ(x, y) = d(π(x), π(y)) < ε,

provided d(x, y) < δ, i.e.
Bδ(x) ⊂ Bπε (x).

Take ξ = π(x) and write η = π(y); there is µ > 0 such that

d(x, y) = dπ−1(ξ, η) = d(π−1(ξ), π−1(η)) < ε,

provided dπ(x, y) = d(π(x), π(y)) = d(ξ, η) < µ, i.e.

Bπµ(x) ⊂ Bε(x).

Thus the topology generated by dπ is the same as that generated by d. This observation
applies to all the previous examples provided the permutations are homeomorphisms (e.g.
if X is a topological group under dX). Note that for dX right-invariant

‖x‖π = ‖π(x)π(e)−1‖.
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5. For g ∈ Auth(X), h ∈ X, the bijection π(x) = g(ρh(x)) = g(xh) is a homeomor-
phism provided right-shifts are continuous. We refer to this as the shifted g-h-permutation
metric

dXg-h(x, y) = dX(g(xh), g(yh)),

which has the associated g-h-shifted norm

‖x‖g-h = dX(g(xh), g(h)).

6 (Equivalent bounded norm). Set db(x, y) = min{dX(x, y), 1}. Then db is an equiva-
lent metric (cf. [Eng, Th. 4.1.3 p. 250]). We refer to

‖x‖b := db(x, e) = min{dX(x, e), 1} = min{‖x‖, 1}

as the equivalent bounded norm.
7. For A = Auth(X) the evaluation pseudo-metric at x on A is given by

dAx (f, g) = dX(f(x), g(x)),

and so
‖f‖x = dAx (f, id) = dX(f(x), x)

is a pseudo-norm.

Definition (Refinements). 1 (cf. [GJ, Ch. 15.3] which works with pseudo-metrics). Let
∆ = {dXi : i ∈ I} be a family of metrics on a groupX. The weak (Tikhonov) ∆-refinement
topology on X is defined by reference to the local base at x obtained by finite intersections
of ε-balls about x :⋂

i∈F
Biε(x), for F finite, i.e. Bi1ε (x) ∩ · · · ∩Binε (x), if F = {i1, . . . , in},

where
Biε(x) := {y ∈ X : dXi (x, y) < ε}.

2. The strong ∆-refinement topology on X is defined by reference to the local base at
x obtained by full intersections of ε-balls about x:⋂

d∈∆

Bdε (x). (Str)

Clearly ⋂
d∈∆

Bdε (x) ⊂
⋂
i∈F

Biε(x) for F finite,

hence the name. We will usually be concerned with a family ∆ of conjugate metrics. We
note the following, which is immediate from the definition. (For (ii) see the special case
in [dGMc, Lemma 2.1], [Ru, Ch. I, 1.38(c)], or [Eng, Th. 4.2.2 p. 259], which uses a sum
in place of a supremum, and identify X with the diagonal of

∏
d∈∆(X, d); see also [GJ,

Ch. 15].)

Proposition 2.1.

(i) The strong ∆-refinement topology is generated by the supremum metric

dX∆(x, y) = sup{dXi (x, y) : i ∈ I}.
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(ii) For ∆ a countable family of metrics indexed by I = N, the weak ∆-refinement topology
is generated by the weighted-supremum metric

dX∆(x, y) = sup
i∈I

21−i dXi (x, y)

1 + dXi (x, y)
.

This corresponds to the metric of first-difference in a product of discrete metric
spaces, e.g. in the additive group ZN. (That is, dX∆({xi}, {yi}) = 2−n(x,y), where
the two sequences first differ at index i = n(x, y).)

Examples B. 1. For X a group we may take ∆ = {dXz : z ∈ X} to obtain

dX∆(x, y) = sup{dX(zx, zy) : z ∈ X},

and if dX is right-invariant
‖x‖∆ = sup

z
‖zxz−1‖.

2. For X a topological group we may take ∆ = {dXh : h ∈ Auth(X)}, to obtain

dX∆(x, y) = sup{dX(h(x), h(y)) : h ∈ Auth(X)}.

3. In the case A = Auth(X) we may take ∆ = {dAx : x ∈ X}, the evaluation pseudo-
metrics, to obtain

dA∆(f, g) = sup
x
dAx (f, g) = sup

x
dX(f(x), g(x)),

‖f‖∆ = sup
x
dAx (f, idX) = sup

x
dX(f(x), x).

In Proposition 2.12 we will show that the strong ∆-refinement topology restricted to
the subgroup H(X) := {f ∈ A : ‖f‖∆ < ∞} is the topology of uniform conver-
gence. The weak ∆-refinement topology here is just the topology of pointwise conver-
gence.

The following result is simple; we make use of it in the definition which follows Lemma
3.23.

Proposition 2.2 (Symmetrization refinement). If ‖x‖0 is a group pre-norm, then the
symmetrization refinement

‖x‖ := max{‖x‖0, ‖x−1‖0}

is a group-norm.

Proof. Positivity is clear, likewise symmetry. Noting that, for any A,B,

a+ b ≤ max{a,A}+ max{b, B},

and supposing without loss of generality that

max{‖x‖0 + ‖y‖0, ‖y−1‖0 + ‖x−1‖0} = ‖x‖0 + ‖y‖0,

we have

‖xy‖ = max{‖xy‖0, ‖y−1x−1‖0} ≤ max{‖x‖0 + ‖y‖0, ‖y−1‖0 + ‖x−1‖0}
= ‖x‖+ ‖y‖0 ≤ max{‖x‖0, ‖x−1‖0}+ max{‖y‖0, ‖y−1‖0} = ‖x‖+ ‖y‖.
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Remark. One can use summation and take ‖x‖ := ‖x‖0 + ‖x−1‖0, as

‖xy‖ = ‖xy‖0 + ‖y−1x−1‖0 ≤ ‖x‖0 + ‖y‖0 + ‖y−1‖0 + ‖x−1‖0 = ‖x‖+ ‖y‖.

However, here and below, we prefer the more general use of a supremum or maximum,
because it corresponds directly to the intersection formula (Str) which defines the refine-
ment topology. We shall shortly see a further cogent reason (in terms of the refinement
norm).

Proposition 2.3. If ‖ · ‖ is a group-norm, then d(x, y) := ‖xy−1‖ is a right-invariant
metric; equivalently, d̃(x, y) := d(x−1, y−1) = ‖x−1y‖ is the conjugate left-invariant met-
ric on the group.

Conversely, if d is a right-invariant metric, then ‖x‖ := d(e, x) = d̃(e, x) is a group-
norm.

Thus the metric d is bi-invariant iff ‖xy−1‖ = ‖x−1y‖ = ‖y−1x‖, i.e. iff the group-
norm is abelian.

Furthermore, for (X, ‖ · ‖) a normed group, the inversion mapping x → x−1 from
(X, d) to (X, d̃) is an isometry and hence a homeomorphism.

Proof. Given a group-norm put d(x, y) = ‖xy−1‖. Then ‖xy−1‖ = 0 iff xy−1 = e, i.e.
iff x = y. Symmetry follows from inversion as d(x, y) = ‖(xy−1)−1‖ = ‖yx−1‖ = d(y, x).

Finally, d obeys the triangle inequality, since

‖xy−1‖ = ‖xz−1zy−1‖ ≤ ‖xz−1‖+ ‖zy−1‖.

As for the converse, given a right-invariant metric d, put ‖x‖ := d(e, x). Now ‖x‖ =

d(e, x) = 0 iff x = e. Next, ‖x−1‖ = d(e, x−1) = d(x, e) = ‖x‖, and so

d(xy, e) = d(x, y−1) ≤ d(x, e) + d(e, y−1) = ‖x‖+ ‖y‖.

Also d(xa, ya) = ‖xaa−1y−1‖ = d(x, y).

If d is bi-invariant iff d(e, yx−1) = d(x, y) = d(e, x−1y) iff ‖yx−1‖ = ‖x−1y‖. Inverting
the first term yields the abelian property of the group-norm.

Finally, for (X, ‖ · ‖) a normed group and with the notation d(x, y) = ‖xy−1‖ etc., the
mapping x→ x−1 from (X, dXR )→ (X, dXL ) is an isometry and so a homeomorphism, as
dL(x−1, y−1) = dR(x, y).

The two (inversion) conjugate metrics separately define a right and left uniformity;
their common refinement (join) is the symmetrized metric

dXS (x, y) := max{dXR (x, y), dXL (x, y)},

defining what is known as the ambidextrous uniformity, the only one of the three capable
in the case of topological groups of being complete – see [Br-1], [Hal-ET, p. 63] (the case
of measure algebras), [Kel, Ch. 6 Problem Q], and also [Br-2]. We return to these matters
in Section 3. Note that dXS (x, eX) = dXR (x, eX) = dXL (x, eX), i.e. the symmetrized metric
defines the same norm.
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Definitions. 1. For dXR a right-invariant metric on a group X, we are justified by Propo-
sition 2.2 in defining the g-conjugate norm from the g-conjugate metric by

‖x‖g := dXg (x, eX) = dXR (gx, g) = dXR (gxg−1, eX) = ‖gxg−1‖.

2. For ∆ a family of right-invariant metrics on X we put Γ = {‖.‖d : d ∈ ∆}, the set
of corresponding norms defined by

‖x‖d := d(x, eX) for d ∈ ∆.

The refinement norm is then, as in Proposition 2.1,

‖x‖Γ := sup
d∈∆

d(x, eX) = sup
d∈Γ
‖x‖d.

We will be concerned with special cases of the following definition.

Definition ([Gr1], [Gr2], [BH, Ch. I.8]). For constants µ ≥ 1, γ ≥ 0, the metric spaces
X and Y are said to be (µ-γ)-quasi-isometric under the mapping π : X → Y if

1

µ
dX(a, b)− γ ≤ dY (πa, πb) ≤ µdX(a, b) + γ (a, b ∈ X),

dY (y, π[X]) ≤ γ (y ∈ Y ).

Corollary 2.4. For π a homomorphism, the normed groups X,Y are (µ-γ)-quasi-
isometric under π for the corresponding metrics iff the associated norms are (µ-γ)-quasi-
equivalent, i.e.

1

µ
‖x‖X − γ ≤ ‖π(x)‖Y ≤ µ‖x‖X + γ (a, b ∈ X),

dY (y, π[X]) ≤ γ (y ∈ Y ).

Proof. This follows from π(eX) = eY and π(xy−1) = π(x)π(y)−1.

Remark. Note that p(x) = ‖π(x)‖Y is subadditive and bounded at x = e. It will follow
that p is locally bounded at every point when we later prove Lemma 4.3.

The following result (which we use in [BO-TII]) clarifies the relationship between the
conjugate metrics and the group structure. We define the ε-swelling of a set K in a metric
space X for a given (e.g. right-invariant) metric dX , to be

Bε(K) := {z : dX(z, k) < ε for some k ∈ K} =
⋃
k∈K

Bε(k)

and for the conjugate (resp. left-invariant) case we can write similarly

B̃ε(K) := {z : d̃X(z, k) < ε for some k ∈ K}.

We write Bε(x0) for Bε({x0}), so that

Bε(x0) := {z : ‖zx−1
0 ‖ < ε} = {wx0 : w = zx−1

0 , ‖w‖ < ε} = Bε(e)x0.

When x0 = eX , the ball Bε(eX) is the same under either of the conjugate metrics,
as

Bε(eX) := {z : ‖z‖ < ε}.
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Proposition 2.5.

(i) In a locally compact group X, for K compact and for ε > 0 small enough so that the
closed ε-ball Bε(eX) is compact, the swelling Bε/2(K) is precompact.

(ii) Bε(K) = {wk : k ∈ K, ‖w‖X < ε} = Bε(eX)K, where the notation refers to swellings
for dX a right-invariant metric; similarly, for d̃X , the conjugate metric, B̃ε(K) =

KBε(eX).

Proof. (i) If xn ∈ Bε/2(K), then we may choose kn ∈ K with d(kn, xn) < ε/2. Without
loss of generality kn converges to k. Thus there exists N such that, for n > N , d(kn, k) <

ε/2. For such n, we have d(xn, k) < ε. Thus the sequence xn lies in the compact closed
ε-ball centred at k and so has a convergent subsequence.

(ii) Let dX(x, y) be a right-invariant metric, so that dX(x, y) = ‖xy−1‖. If ‖w‖ < ε,
then dX(wk, k) = dX(w, e) = ‖w‖ < ε, so wk ∈ Bε(K). Conversely, if ε > dX(z, k) =

dX(zk−1, e), then, putting w = zk−1, we have z = wk ∈ Bε(K).

For further information on norms with the Heine-Borel property (for which compact
sets are precisely those sets which are closed in the right norm topology and norm-
bounded) see [O-Joint, O-LB3]).

The significance of the following simple corollary is wide-ranging. It explicitly demon-
strates that small either-sided translations λx, ρy do not much alter the norm. Its main
effect is on the analysis of subadditive functions.

Corollary 2.6. With ‖x‖ := dX(x, e), where dX is a right-invariant metric on X,

|(‖x‖ − ‖y‖)| ≤ ‖xy‖ ≤ ‖x‖+ ‖y‖.

Proof. By Proposition 2.2, the triangle inequality and symmetry holds for norms, so
‖y‖ = ‖x−1xy‖ ≤ ‖x−1‖+ ‖xy‖ = ‖x‖+ ‖xy‖.

We now generalize (rv-limit), by letting T,X be subgroups of a normed group G with
X invariant under T.

Definition. We say that a function h : X → H is slowly varying on X over T if
∂Xh(t) = eH , that is, for each t in T ,

h(tx)h(x)−1 → eH as ‖x‖ → ∞ for x ∈ X.

We omit mention of X and T when context permits. In practice G will be an internal
direct product of two normal subgroups G = TX. (For a topological view on the internal
direct product, see [Na, Ch. 2.7]; for an algebraic view see [vdW, Ch. 6, Sect. 47], [J, Ch. 9
and 10] or [Ga, Section 9.1].) We may verify the property of h just defined by comparison
with a slowly varying function.

Theorem 2.7 (Comparison criterion). h : X → H is slowly varying iff for some slowly
varying function g : X → H and some µ ∈ H,

lim
‖x‖→∞

h(x)g(x)−1 = µ.
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Proof. If this holds for some slowly varying g and some µ,

h(tx)h(x)−1 = h(tx)g(tx)−1g(tx)g(x)−1g(x)h(x)−1 → µeHµ
−1 = eH ,

so h is slowly varying; the converse is trivial.

Theorem 2.8. For dX a right-invariant metric on a group X, the norm ‖x‖ := dX(x, e),
as a function from X to the multiplicative positive reals R∗+, is slowly varying in the
multiplicative sense, i.e., for any t ∈ X,

lim
‖x‖→∞

‖tx‖
‖x‖

= 1.

Hence also
lim
‖x‖→∞

‖gxg−1‖
‖x‖

= 1.

More generally, for T a one-parameter subgroup of X, any subadditive Baire function
p : X → R∗+ with

‖p‖T := lim
x∈T, ‖x‖→∞

p(x)

‖x‖
> 0

is multiplicatively slowly varying. (The limit exists by the First Limit Theorem for Baire
subadditive functions, see [BO-GS].)

Proof. By Corollary 2.6, for x 6= e,

1− ‖t‖
‖x‖
≤ ‖tx‖
‖x‖

≤ 1 +
‖t‖
‖x‖

,

which implies slow variation. We regard p as mapping to R∗+, the strictly positive reals
(since p(x) = 0 iff x = eX). Taking h = p and µ = ‖p‖T > 0, the assertion follows from
the Comparison Criterion (Th. 2.7) above (with g(x) = ‖x‖). Explicitly, for x 6= e and
y ∈ T ,

p(xy)

p(x)
=
p(xy)

‖xy‖
· ‖xy‖
‖x‖

· ‖x‖
p(x)

→ ‖p‖T · 1 ·
1

‖p‖T
= 1.

Corollary 2.9. If π : X → Y is a group homomorphism and ‖ · ‖Y is (1-γ)-quasi-
isometric to ‖ · ‖X under the mapping π, then the subadditive function p(x) = ‖π(x)‖Y
is slowly varying. For general (µ-γ)-quasi-isometry the function p satisfies

µ−2 ≤ p∗(z) ≤ p∗(z) ≤ µ2,

where
p∗(z) = lim sup

‖x‖→∞
p(zx)p(x)−1, p∗(z) = lim inf

‖x‖→∞
p(zx)p(x)−1.

Proof. Subadditivity of p follows from π being a homomorphism, since p(xy) = ‖π(xy)‖Y
= ‖π(x)π(y)‖Y ≤ ‖π(x)‖Y + ‖π(y)‖Y . Assuming that, for µ = 1 and γ > 0, the norm
‖ · ‖Y is (µ-γ)-quasi-isometric to ‖ · ‖X , we have, for x 6= e,

1− γ

‖x‖X
≤ p(x)

‖x‖X
≤ 1− γ

‖x‖X
.

So
lim
‖x‖→∞

p(x)

‖x‖
= 1 6= 0,

and the result follows from the Comparison Criterion (Th. 2.7) and Theorem 2.5.
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If, for general µ ≥ 1 and γ > 0, the norm ‖ · ‖Y is (µ-γ)-quasi-isometric to ‖ · ‖X , we
have, for x 6= e,

µ−1 − γ

‖x‖X
≤ p(x)

‖x‖X
≤ µ− γ

‖x‖X
.

So for y fixed

p(xy)

p(x)
=
p(xy)

‖xy‖
· ‖xy‖
‖x‖

· ‖x‖
p(x)

≤
(
µ− γ

‖xy‖X

)
· ‖xy‖
‖x‖

·
(
µ−1 − γ

‖x‖X

)−1

,

giving, by Theorem 2.8 and because ‖xy‖ ≥ ‖x‖ − ‖y‖,

p∗(y) := lim sup
x→∞

p(xy)

p(x)
≤ µ2.

The left-sided inequality is proved dually (interchanging the roles of the upper and lower
bounds on ‖π(x)‖Y ).

Remarks. 1. In the case of the general (µ-γ)-quasi-isometry, p exhibits the normed-
groups O-analogue of slow-variation; compare [BGT, Cor. 2.0.5 p. 65].

2. When X = R the weaker boundedness property: “p∗(y) <∞ on a large enough set
of ys” implies that p satisfies

zd ≤ p∗(z) ≤ p∗(z) ≤ zc (z ≥ Z)

for some constants c, d, Z (so is extended regularly varying in the sense of [BGT, Ch. 2,
2.2 p. 65]). Some generalizations are given in Theorems 7.10 and 7.11.

3. We pause to consider briefly some classical examples. If X = H = R is construed
additively, so that eH = eX = 0 and ‖x‖ := |x − 0| = |x| in both cases, and with
the action tx denoting t + x, the function f(x) := |x| is not slowly varying, because
(x+ t)− x = t 9 0 = eH . On the other hand a multiplicative construction on H = R∗+,
for which eH = 1 and ‖h‖H := |log h|, but with X = R still additive and tx still meaning
t+ x, yields f as having slow variation (as in the Theorem 2.8), as

f(tx)f(x)−1 = (x+ t)/x→ 1 = eH as x→∞.

We note that in this context the regularly varying functions h on X have h(tx)h(x)−1 =

h(t+ x)− h(x)→ at, for some constant a.
Note that, for X = H = R∗+, and with tx meaning t · x, since ‖x‖ = |log x| (as just

noted) is the group-norm, we have here

f(tx)f(x)−1 = ‖tx‖/‖x‖ =
|log tx|
|log x|

=
|log t+ log x|
|log x|

→ 1 = eH as x→∞,

which again illustrates the content of Theorem 2.7. Here the regularly varying functions
h(tx)h(x)−1 → eat, for some constant a. See [BGT, Ch. 1] for background on additive
and multiplicative formulations of regular variation in the classical setting of functions
f : G→ H with G,H = R or R+.

Definitions. 1. Say that ξ ∈ X is infinitely divisible if, for each positive integer n, there
is x with xn = ξ. (Compare Section 3.2)
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2. Say that the infinitely divisible element ξ is embeddable if, for some one-parameter
subgroup T in X, we have ξ ∈ T. When such a T exists it is unique (the elements ξm/n,
for m,n integers, are dense in T ); we write T (ξ) for it.

Clearly any element of a one-parameter subgroup is both infinitely divisible and em-
beddable. For results on this see Davies [D], Heyer [Hey], McCrudden [McC]. With these
definitions, our previous analysis allows the First Limit Theorem for subadditive functions
(cf. Th. 2.8 and [BO-GS]) to be restated in the context of normed groups.

Proposition 2.10. Let ξ be infinitely divisible and embeddable in the one-parameter
subgroup T = T (ξ) of X. Suppose that limn→∞ ‖xn‖ = ∞ for x 6= eX . Then for any
Baire subadditive p : X → R+ and t ∈ T (ξ),

∂T (ξ)p(t) := lim
s∈T, ‖s‖→∞

p(ts)

‖s‖
= ‖p‖T ,

i.e., treating the subgroup T (ξ) as a direction, the limit function is determined by the
direction.

Proof. By subadditivity, p(s) = p(t−1ts) ≤ p(t−1) + p(ts), so

p(s)− p(t−1) ≤ p(ts) ≤ p(t) + p(s).

For s ∈ T with s 6= e, divide through by ‖s‖ and let ‖s‖ → ∞ (as in Th. 2.8):

‖p‖T ≤ ∂T p(t) ≤ ‖p‖T .

(We consider this in detail in Section 4.)

Definition (Supremum metric, supremum norm). Let X have a metric dX . As before
G is a fixed subgroup of Auth(X), for example TrL(X) the group of left-translations λx
(cf. Th. 3.12), defined by

λx(z) = xz.

For g, h ∈ G, define the possibly infinite number

d̂G(g, h), or d̂X(g, h) := sup
x∈X

dX(g(x), h(x)),

where the notation identifies either the domain of the metric or the source metric dX .
Put

H(X) = H(X,G) := {g ∈ G : d̂G(g, idX) <∞},

and call these the bounded elements of G. We write d̂H for the metric d̂G restricted to
H = H(X) and call d̂H(g, h) the supremum metric on H; the associated norm

‖h‖H = ‖h‖H(X) := d̂H(h, idX) = sup
x∈X

dX(h(x), x)

is the supremum norm. This metric notion may also be handled in the setting of unifor-
mities (cf. the notion of functions limited by a cover U arising in [AnB, Section 2]; see
also [BePe, Ch. IV Th. 1.2]); in such a context excursions into invariant measures, rather
than use Haar measure (as in Section 6), would refer to corresponding results established
by Itzkowitz [Itz] (cf. [SeKu, §7.4]).

Our next result justifies the terminology of the definition above.
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Proposition 2.11 (Group-norm properties in H(X)). If ‖h‖ = ‖h‖H, then ‖ · ‖ is a
group-norm: that is, for h, h′ ∈ H(X),

‖h‖ = 0 iff h = e, ‖h ◦ h′‖ ≤ ‖h‖+ ‖h′‖ and ‖h‖ = ‖h−1‖.

Proof. Evidently d̂(h, idX) = supx∈X d(h(x), x) = 0 iff h(x) = idX . We have

‖h‖ = d̂(h, idX) = sup
x∈X

d(h(x), x) = sup
y∈X

d(y, h−1(y)) = ‖h−1‖.

Next note that

d̂(idX , h ◦ h′) = sup
x∈X

d(hh′(x), x) = sup
y∈X

d(h(y), h′−1(y)) = d̂(h, h′−1). (right-inv)

But

d̂(h, h′) = sup
x∈X

d(h(x), h′(x))

≤ sup
x∈X

[d(h(x), x) + d(x, h′(x))] ≤ d̂(h, id) + d̂(h′, id) <∞.

Theorem 2.12. The set H(X) of bounded self-homeomorphisms of a metric group X is
a group under composition, metrized by the right-invariant supremum metric d̂X .

Proof. The identity, idX , is bounded. For right-invariance (cf. (right-inv)),

d̂(g ◦ h, g′ ◦ h) = sup
x∈X

d(g(h(x)), g′(h(x)) = sup
y∈X

d(g(y), g′(y)) = d̂(g, g′).

Theorem 2.13 ([BePe, Ch. IV Th. 1.1]). Let d be a bounded metric on X. As a group
under composition, A = Auth(X) is a topological group under the weak ∆-refinement
topology for ∆ := {d̂π : π ∈ A}.

Proof. To prove continuity of inversion at F , write H = F−1 and for any x put y =

f−1(x). Then

dπ(f−1(x), F−1(x)) = dπ(H(F (y)), H(f(y))) = dπH(F (y), f(y)),

and so

d̂π(f−1, F−1) = sup
x
dπ(f−1(x), F−1(x)) = sup

y
dπH(F (y), f(y)) = d̂πH(f, F ).

Thus f−1 is in any d̂π neighbourhood of F−1 provided f is in any d̂πH neighbourhood
of F.

As for continuity of composition at F,G, we have for fixed x that

dπ(f(g(x)), F (G(x))) ≤ dπ(f(g(x)), F (g(x))) + dπ(F (g(x)), F (G(x)))

= dπ(f(g(x)), F (g(x))) + dπF (g(x), G(x)) ≤ d̂π(f, F ) + d̂πF (g,G).

Hence
d̂π(fg, FG) ≤ d̂π(f, F ) + d̂πF (g,G),

so that fg is in the d̂π-ball of radius ε of FG provided f is in the d̂π-ball of radius ε/2 of
F and g is in the d̂πH -ball of radius ε/2 of G.

Remark (The compact-open topology). In similar circumstances, we show in Theorem
3.17 below that under the strong ∆-refinement topology, so a finer topology, Auth(X)

is a normed group and a topological group. Rather than use weak or strong refinement
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of metrics in Auth(X), one may consider the compact-open topology (the topology of
uniform convergence on compacts, introduced by Fox and studied by Arens in [Ar1],
[Ar2]). However, in order to ensure the kind of properties we need (especially in flows),
the metric space X would then need to be restricted to a special case. Recall some
salient features of the compact-open topology. For composition to be continuous local
compactness is essential ([Dug, Ch. XII.2], [McCN], [BePe, Section 8.2], or [vM2, Ch.1]).
When X is compact the topology is admissible (i.e. Auth(X) is a topological group
under it), but the issue of admissibility in the non-compact situation is not currently
fully understood (even in the locally compact case for which counter-examples with non-
continuous inversion exist, and so additional properties such as local connectedness are
usually invoked – see [Dij] for the strongest results). In applications the focus of interest
may fall on separable spaces (e.g. function spaces), but, by a theorem of Arens, if X is
separable metric and further the compact-open topology on C(X,R) is metrizable, then
X is necessarily locally compact and σ-compact, and conversely (see e.g. [Eng, pp. 165
and 266]).

We will now apply the supremum-norm construction to deduce that right-invariance
may be arranged if for every x ∈ X the left translation λx has finite sup-norm:

‖λx‖H = sup
z∈X

dX(xz, z) <∞.

We will need to note the connection with conjugate norms.

Definition. Recall the g-conjugate norm is defined by

‖x‖g := ‖gxg−1‖.

The conjugacy refinement norm corresponding to the family of all the g-conjugate norms
Γ = {‖ · ‖g : g ∈ G} will be denoted by

‖x‖∞ := sup
g
‖x‖g,

in contexts where this is finite.

Clearly, for any g,
‖x‖∞ = ‖gxg−1‖∞,

and so ‖x‖∞ is an abelian norm (substitute xg for x). Evidently, if the metric dXL is
left-invariant we have

‖x‖∞ = sup
g
‖x‖g = sup

z∈X
dXL (z−1xz, e) = sup

z∈X
dXL (xz, z). (shift)

One may finesse the left-invariance assumption, using (shift), as we will see in Proposition
2.14.

Example C. As H(X) is a group and d̂H is right-invariant, the norm ‖f‖H gives rise
to a conjugacy refinement norm. Working in H(X), suppose that fn → f under the
supremum norm d̂X = d̂H. Let g ∈ H(X). Then pointwise

lim
n
fn(g(x)) = f(g(x)).
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Hence, as f−1 is continuous, we have for any x ∈ X,

f−1(lim
n
fn(g(x))) = lim

n
f−1fn(g(x)) = g(x).

Likewise, as g−1 is continuous, we have for any x ∈ X,

g−1(lim
n
f−1fn(g(x))) = lim

n
g−1f−1fn(g(x)) = x.

Thus
g−1f−1fng → idX pointwise.

This result is generally weaker than the assertion ‖f−1fn‖g → 0, which requires uniform
rather than pointwise convergence.

We need the following notion of admissibility (with the norm ‖ · ‖∞ in mind; compare
also Section 3).

Definitions. 1. Say that the metric dX satisfies the metric admissibility condition on
H ⊂ X if, for any zn → e in H under dX and arbitrary yn,

dX(znyn, yn)→ 0.

2. If dX is left-invariant, the condition may be reformulated as a norm admissibility
condition on H ⊂ X, since

‖y−1
n znyn‖ = dXL (y−1

n znyn, e) = dXL (znyn, yn)→ 0. (H-adm)

3. We will say that the group X satisfies the topological admissibility condition on
H ⊂ X if, for any zn → e in H and arbitrary yn,

y−1
n znyn → e.

The next result extends the usage of ‖ · ‖H beyond H to X itself (via the left-shifts).

Proposition 2.14 (Right-invariant sup-norm). For any metric dX on a group X, put

HX := H = {x ∈ X : sup
z∈X

dX(xz, z) <∞},

‖x‖H := sup dX(xz, z) for x ∈ H.

For x, y ∈ H, let d̄H(x, y) := d̂H(λx, λy) = supz d
X(xz, yz). Then:

(i) d̄H is a right-invariant metric on H, and d̄H(x, y) = ‖xy−1‖H = ‖λxλ−1
y ‖H.

(ii) If dX is left-invariant, then d̄H is bi-invariant on H, and so ‖x‖∞ = ‖x‖H and the
norm is abelian on H.

(iii) The d̄H-topology on H is equivalent to the dX-topology on H iff dX satisfies (H-adm),
the metric admissibility condition on H.

(iv) In particular, if dX is right-invariant, then H = X and d̄H = dX .
(v) If X is a compact topological group under dX , then d̄H is equivalent to dX .

Proof. (i) The argument relies implicitly on the natural embedding of X in Auth(X) as
TrL(X) (made explicit in the next section). For x ∈ X we write

‖λx‖H := sup
z
dX(xz, z).
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For x 6= e, we have 0 < ‖λx‖H ≤ ∞. By Proposition 2.12, H(X) = H(X,TrL(X)) =

{λx : ‖λx‖H < ∞} is a subgroup of H(X,Auth(X)) on which ‖ · ‖H is thus a norm.
Identifiying H(X) with the subset H = {x ∈ X : ‖λx‖ <∞} of X, we see that on H,

d̄H(x, y) := sup
z
dX(xz, yz) = d̂H(λx, λy)

defines a right-invariant metric, as

d̄H(xv, yv) = sup
z
dX(xvz, yvz) = sup

z
dX(xz, yz) = d̄H(x, y).

Hence with
‖x‖H = d̄H(x, e) = ‖λx‖H,

by Proposition 2.11
‖λxλ−1

y ‖H = d̄H(x, y) = ‖xy−1‖H,

as asserted.
If dX is left-invariant, then

d̄H(vx, vy) = sup
z
dXL (vxz, vyz) = sup

z
dXL (xz, yz) = d̄H(x, y),

and so d̄H is both left-invariant and right-invariant. Note that

‖x‖H = d̄H(x, e) = sup
z
dXL (xz, z) = sup

z
dXL (z−1xz, e) = sup

z
‖x‖z = ‖x‖∞.

(ii) We note that
dX(zn, e) ≤ sup

y
dX(zny, y).

Thus if zn → e in the sense of dH, then also zn → e in the sense of dX . Suppose that the
metric admissibility condition holds but the metric dH is not equivalent to dX . Thus for
some zn → e (in H and under dX) and ε > 0,

sup
y
dX(zny, y) ≥ ε.

Thus there are yn with
dX(znyn, yn) ≥ ε/2,

which contradicts the admissibility condition.
For the converse, if the metric dH is equivalent to dX , and zn → e in H and under dX ,

then zn → e also in the sense of dH; hence for yn given and any ε > 0, there is N such
that for n ≥ N ,

ε > d̄H(zn, e) = sup
y
dX(zny, y) ≥ dX(znyn, yn).

Thus dX(znyn, yn)→ 0, as required.
(iii) If dX is right-invariant, then dX(znyn, yn) = dX(zn, e)→ 0 and the admissibility

condition holds on H. Of course ‖λx‖H = supz d
X(xz, z) = dX(x, e) = ‖x‖X and so

H = X.

(iv) If dX is right-invariant, then d̄H(x, y) := supz d
X(xz, yz) = dX(x, y).

(v) If X is compact, then H = HX as z → dX(xz, z) is continuous. If zn → e and
yn are arbitrary, suppose that the admissibility condition fails. Then for some ε > 0 we
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have without loss of generality
dX(znyn, yn) ≥ ε.

Passing down a subsequence ym → y and assuming that X is a topological group we
obtain

0 = dX(ey, y) ≥ ε,

a contradiction.

As a corollary we obtain the following known result ([HR, 8.18]; cf. Theorem 3.3.4 in
[vM2, p. 101] for a different proof).

Proposition 2.15. In a first-countable topological group X the (topological admissibility)
condition y−1

n znyn → e on X as zn → e is equivalent to the existence of an abelian norm
(equivalently, a bi-invariant metric).

Proof. We shall see below in the Birkhoff-Kakutani Theorem (Th. 2.19) that the topol-
ogy of X may be induced by a left-invariant metric, dXL say; we may assume without loss
of generality that it is bounded (take d = max{dXL , 1}, which is also left-invariant, cf.
Example A6 towards the start of this section). Then HX = X, and the assumed topolog-
ical admissibility condition y−1

n znyn → e on X implies (H-adm), the metric admissibility
condition on H for dXL . The metric dXL thus induces the norm ‖x‖H, which is abelian, and
in turn, by Proposition 2.3, defines an equivalent bi-invariant metric on X. Conversely, if
the norm ‖ · ‖X is abelian, then the topological admissibility condition follows from the
observation that

‖y−1
n znyn‖ = ‖yny−1

n zn‖ = ‖zn‖ → 0.

Application. Let S, T be normed groups. For α : S → T an arbitrary function we define
the possibly infinite number

‖α‖ := sup{‖α(s)‖T /‖s‖S : s ∈ S \ {e}} = inf{M : ‖α(s)‖ ≤M‖s‖ (∀s ∈ S)}.

α is called bounded if ‖α‖ is finite. The bounded functions form a group G under the
pointwise multiplication (αβ)(t) = α(t)β(t). Clearly ‖α‖ = 0 implies that α(t) = e, for
all t. Symmetry is clear. Also

‖α(t)β(t)‖ ≤ ‖α(t)‖+ ‖β(t)‖ ≤ [‖α‖+ ‖β‖]‖t‖,

so
‖αβ‖ ≤ ‖α‖+ ‖β‖.

We say that a function α : S → T is multiplicative if α is bounded and

α(ss′) = α(s)α(s′).

A function γ : S → T is asymptotically multiplicative if γ = αβ, where α is multiplicative
and bounded and β is bounded. In the commutative situation with S, T normed vector
spaces, the norm here reduces to the operator norm. This group-norm is studied exten-
sively in [CSC] in relation to Ulam’s problem. We consider in Section 3.2 the case S = T

and functions α which are inner automorphisms. In Proposition 3.42 we shall see that
the oscillation of a group X is a bounded function from X to R in the sense above.



24 N. H. Bingham and A. J. Ostaszewski

Proposition 2.16 (Magnification metric). Let T = H(X) with group-norm ‖t‖ =

dT (t, eT ) = dH(t, eT ) and A a subgroup (under composition) of Auth(T ) (so, for t ∈ T
and α ∈ A, α(t) ∈ H(X) is a homeomorphism of X). For any ε ≥ 0, put

dεA(α, β) := sup
‖t‖≤ε

d̂T (α(t), β(t)).

Suppose further that X distinguishes the maps {α(eH(X)) : α ∈ A}, i.e., for α, β ∈ A,
there is z = zα,β ∈ X with α(eH(X))(z) 6= β(eH(X))(z). Then dεA(α, β) is a metric;
furthermore, dεA is right-invariant for translations by γ ∈ A such that γ−1 maps the
ε-ball of X to the ε-ball.

Proof. To see that this is a metric, note that for t = eH(X) = idT we have ‖t‖ = 0 and

d̂T (α(eH(X)), β(eH(X))) = sup
z
dX(α(eH(X))(z), β(eH(X))(z))

≥ dX(α(eH(X))(zα,β), β(eH(X))(zα,β)) > 0,

for α 6= β. Symmetry is clear. Finally the triangle inequality follows as usual:

dεA(α, β) = sup
‖t‖≤ε

d̂T (α(t), β(t)) ≤ sup
‖t‖≤ε

[d̂T (α(t), γ(t)) + d̂T (γ(t), β(t))]

≤ sup
‖t‖≤ε

d̂T (α(t), γ(t)) + sup
‖t‖≤ε

d̂T (γ(t), β(t)) = dεA(α, γ) + dεA(γ, β).

One cannot hope for the metric to be right-invariant in general, but if γ−1 maps the
ε-ball to the ε-ball, one has

dεA(αγ, βγ) = sup
‖t‖≤ε

d̂T (α(γ(t)), β(γ(t)) = sup
‖γ−1(s)‖≤ε

d̂T (α(s), β(s)).

In this connection we note the following.

Proposition 2.17. In the setting of Proposition 2.16, denote by ‖ · ‖ε the norm induced
by dεA; then

sup
‖t‖≤ε

‖γ(t)‖T − ε ≤ ‖γ‖ε ≤ sup
‖t‖≤ε

‖γ(t)‖T + ε.

Proof. By definition, for t with ‖t‖ ≤ ε, we have

‖γ‖ε = sup
‖t‖≤ε

d̂T (γ(t), t) ≤ sup
‖t‖≤ε

[d̂T (γ(t), e) + d̂T (e, t)] ≤ sup
‖t‖≤ε

‖γ(t)‖T + ε,

‖γ(t)‖T = d̂T (γ(t), e) ≤ d̂T (γ(t), t) + d̂T (t, e) ≤ ‖t‖+ ‖γ‖ε ≤ ε+ ‖γ‖ε.

Theorem 2.18 (Invariance of Norm Theorem – for (b) cf. [Klee]).

(a) The group-norm is abelian (and the metric is bi-invariant) iff

‖xy(ab)−1‖ ≤ ‖xa−1‖+ ‖yb−1‖,

for all x, y, a, b, or equivalently,

‖uabv‖ ≤ ‖uv‖+ ‖ab‖,

for all a, b, u, v.
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(b) Hence a metric d on the group X is bi-invariant iff the Klee property holds:

d(ab, xy) ≤ d(a, x) + d(b, y). (Klee)

In particular, this holds if the group X is itself abelian.
(c) The group-norm is abelian iff the norm is preserved under conjugacy (inner auto-

morphisms).

Proof. (a) If the group-norm is abelian, then by the triangle inequality

‖xyb−1 · a−1‖ = ‖a−1xyb−1‖ ≤ ‖a−1x‖+ ‖yb−1‖.

For the converse we demonstrate bi-invariance in the form ‖ba−1‖ = ‖a−1b‖. In fact
it suffices to show that ‖yx−1‖ ≤ ‖x−1y‖; for then bi-invariance follows, since taking
x = a, y = b we get ‖ba−1‖ ≤ ‖a−1b‖, whereas taking x = b−1, y = a−1 we get the reverse
‖a−1b‖ ≤ ‖ba−1‖. As for the claim, we note that

‖yx−1‖ ≤ ‖yx−1yy−1‖ ≤ ‖yy−1‖+ ‖x−1y‖ = ‖x−1y‖.

(b) Klee’s result is deduced as follows. If d is a bi-invariant metric, then ‖·‖ is abelian.
Conversely, for d a metric, let ‖x‖ := d(e, x). Then ‖ · ‖ is a group-norm, as

d(ee, xy) ≤ d(e, x) + d(e, y).

Hence d is right-invariant and d(u, v) = ‖uv−1‖. Now we conclude that the group-norm
is abelian since

‖xy(ab)−1‖ = d(xy, ab) ≤ d(x, a) + d(y, b) = ‖xa−1‖+ ‖yb−1‖.

Hence d is also left-invariant.
(c) Suppose the norm is abelian. Then for any g, by the cyclic property ‖g−1bg‖ =

‖gg−1b‖ = ‖b‖. Conversely, if the norm is preserved under automorphism, then we have
bi-invariance, since ‖ba−1‖ = ‖a−1(ba−1)a‖ = ‖a−1b‖.

Remark. Note that, taking b = v = e, we have the triangle inequality. Thus the result (a)
characterizes maps ‖·‖ with the positivity property as group pre-norms which are abelian.
In regard to conjugacy, see also the Uniformity Theorem for Conjugation (Th. 12.4). We
now state the following classical result.

Theorem 2.19 (Normability Theorem for Groups – Birkhoff-Kakutani Theorem). Let
X be a first-countable topological group and let Vn be a symmetric local base at eX with

V 4
n+1 ⊆ Vn.

Let r =
∑∞
n=1 cn(r)2−n be a terminating representation of the dyadic number r, and put

A(r) :=

∞∏
n=1

cn(r)Vn.

Then
p(x) := inf{r : x ∈ A(r)}

is a group-norm. If further X is locally compact and non-compact, then p may be arranged
such that p is unbounded on X, but bounded on compact sets.
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For a proof see that offered in [Ru] for Th. 1.24 (pp. 18–19), which derives a metrization
of a topological vector space in the form d(x, y) = p(x − y) and makes no use of the
scalar field (so note how symmetric neighbourhoods here replace the ‘balanced’ ones in a
topological vector space). That proof may be rewritten verbatim with xy−1 substituted
for the additive notation x− y (cf. Proposition 2.2).

Remark. In fact, a close inspection of Kakutani’s metrizability proof in [Kak] (cf. [SeKu]
§7.4) for topological groups yields the following characterization of normed groups – for
details see [O-LB3].

Theorem 2.19′ (Normability Theorem for right topological groups – Birkhoff-Kakutani
Theorem). A first-countable right topological group X is a normed group iff inversion
and multiplication are continuous at the identity.

We close with some information concerning commutators, which arise in Theorems
3.7, 6.3, 10.7 and 10.9.

Definition. The right-sided and left-sided commutators are defined by

[x, y]L := xyx−1y−1, [x, y]R := x−1y−1xy = [x−1, y−1]L.

As
xy = [x, y]Lyx and xy = yx[x, y]R,

these express in terms of shifts the distortion arising from commuting factors, and so
their continuity here is significant. Let [x, y] denote either a right or left commutator;
we call the maps x → [x, y] and y → [x, y] commutator maps and in the context of a
specified norm topology (either!), we say that the commutator [·, ·] is:

(i) left continuous if for all y the map x→ [x, y] is continuous at each x;
(ii) right continuous if for all x the map y → [x, y] is continuous at each y,
(iii) separately continuous if it is left and right continuous.

We show that the commutators are like homomorphisms, in that their continuity may be
implied by continuity at the identity eX , but this does require that all the commutator
maps be continuous at the identity.

Theorem 2.20. In a normed group an either-sided commutator is left continuous iff it
is right continuous and so iff it is separately continuous.

We deduce the above theorem from the following two more detailed results; see also
Theorem 3.4 for further insights on this result.

Proposition 2.21. In a normed group under either norm topology the following are
equivalent for y ∈ X:

(i) the commutator map x→ [x, y]L is (left) continuous at x = y,
(ii) the commutator map x→ [x, y]L is (left) continuous at e, i.e. [zn, y]L → e as zn → e,
(iii) the commutator map x → [y, x]L is (right) continuous at e, i.e. [y, zn]L → e as

zn → e,
(iv) the commutator map z → [y, z]L is (right) continuous at z = y,



Normed groups 27

(v) the commutator map z → [y−1, z]R is (right) continuous at z = y−1,
(vi) the commutator map x→ [x, y−1]R is (left) continuous at x = y−1.

Proof. As the conclusions are symmetric without loss of generality we work in the right
norm topology generated by the right-invariant metric dR and write→R to show that the
convergence is in dR. Note that yn →R x iff ynx−1 → e; there is no need for a subscript
for convergence to e, as the ball Bε(eX) is the same under either of the conjugate metrics
(cf. Prop. 2.15). Indeed, writing yn = zny, we have dR(zny, y) = dR(zn, e)→ 0.

We first prove the chain of equivalences: (i)⇔(ii)⇔(iii)⇔(iv). The remaining equiva-
lences follow from the observation that

[zn, y]L = [z−1
n , y−1]R

and z−1
n is a null sequence iff zn is.

In regard to the first equivalence, employing the notation yn = zny, the identity

[zn, y]L = znyz
−1
n y−1 = (zny)y(y−1z−1

n )y−1 = ynyy
−1
n y−1 = [yn, y]L,

i.e.
[yn, y]L = [yny

−1, y]L,

shows that [zn, y]L → e iff [yn, y]L → e, i.e. (i)⇔(ii).
Turning to the second equivalence in the chain, we see from continuity of inversion at

e (or inversion invariance) that for any y

[zn, y]L = znyz
−1
n y−1 → e iff [y, zn]L = yzny

−1z−1
n → e,

giving (ii)⇔(iii). Finally, with the notation yn = zny, the identity

[y, yn]L = yyny
−1y−1

n = y(zny)y−1(y−1z−1
n ) = yzny

−1z−1
n = [y, zn]L

shows that [y, zn]L → e iff [y, yn]L → e, i.e. (iii)⇔(iv).

Proposition 2.22. For a normed groupX, with the right norm topology, and for g, h∈X,
the commutator map x→ [x, h]L is continuous at x = g provided the map x→ [x, hgh−1]L
is continuous at x = e. Hence if all the commutator maps x → [x, y]L for y ∈ X are
continuous at x = e, then they are all continuous everywhere.

Proof. For fixed g, h and with hn = znh we have the identity

[hn, g]L = [zn, hgh
−1]L[h, g]L = (znhgh

−1z−1
n hg−1h−1)(hgh−1g−1).

Suppose x→ [x, hgh−1]L is continuous at x = e. The identity above now yields [hn, g]L →
[h, g]L as hn →R h; indeed zn = hnh

−1 → eX so wn := [zn, hgh
−1]L → eX , and thus

with a := [h, g]L we have ρa(wn) = wna→ a.

Remarks. 1. If the group-norm is abelian, then we have the left-right commutator in-
equality

‖[x, y]L‖ ≤ 2‖xy−1‖ = 2dR(x, y),

because
‖[x, y]L‖ = ‖xyx−1y−1‖ ≤ ‖xy−1‖+ ‖yx−1‖ = 2‖xy−1‖.

The commutator inequality thus implies separate continuity of the commutator by Lemma
2.21.
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2. If the group-norm is arbitrary, this inequality may be stated via the symmetrized
metric:

‖[x, y−1]R‖ ≤ ‖xy−1‖+ ‖x−1y‖ = dR(x, y) + dL(x, y)

≤ 2 max{dR(x, y), dL(x, y)} := 2dS(x, y).

3. Take u = f(tx), v = f(x)−1 etc.; then, assuming the Klee Property, we have
‖f(tx)g(tx)[f(x)g(x)]−1‖ = ‖f(tx)g(tx)g(x)−1f(x)−1‖

≤ ‖f(tx)f(x)−1‖+ ‖g(tx)g(x)−1‖,

showing that the product of two slowly varying functions is slowly varying, since
f(tx)f(x)−1 → e iff ‖f(tx)f(x)−1‖ → 0.

3. Normed versus topological groups

By the Birkhoff-Kakutani Theorem above (Th. 2.19) any metrizable topological group
has a right-invariant equivalent metric, and hence is a normed group. Theorem 3.4 below
establishes a converse: a normed group is a topological group provided all its shifts (both
right- and left-sided) are continuous, i.e. provided the normed group is semitopological
(see [ArRez]). This is not altogether surprising, in the light of known results on semitopo-
logical groups: assuming that a group T is metrizable, non-meagre and analytic in the
metric, and that both left- and right-shifts are continuous, then T is a topological group
(see e.g. [THJ] for several results of this kind in [Rog2, p. 352]; compare also [Ell2] and
the literature cited under Remarks 2 in Section 2). The results here are cognate, and new
because a normed group has a one-sided rather than a two-sided topology. We will also
establish the equivalent condition that all conjugacies γg(x) := gxg−1 are continuous;
this has the advantage of being stated in terms of the norm, rather than in terms of one
of the associated metrics. As inner automorphisms are homomorphisms, this condition
ties the structure of normed groups to issues of automatic continuity of homomorphisms:
automatic continuity forces a normed group to be a topological group (and the homomor-
phisms to be homeomorphisms). Normed groups are thus either topological or pathological
(in the sense of Hamel pathology of homomorphisms, cf. [BGT, §1.1.4 and §1.2.4] and
[BO-SO]), as noted in the Introduction.

The current section falls into three parts. In the first we characterize topological
groups in the category of normed groups and so in particular, using norms, characterize
also the Klee groups (topological groups which have an equivalent bi-invariant metric).
Then we study continuous automorphisms in relation to Lipschitz norms. In the third
subsection we demonstrate that a small amount of regularity forces a normed group to
be a topological group.

3.1. Left- versus right-shifts: Equivalence Theorem. As we have seen in Th. 2.3,
a group-norm defines two metrics: the right-invariant metric which we denote as usual by
dR(x, y) := ‖xy−1‖ and the conjugate left-invariant metric, here to be denoted dL(x, y) :=

dR(x−1, y−1) = ‖x−1y‖. There is correspondingly a right and left metric topology which
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we term the right or left norm topology . We favour this over ‘right’ or ‘left’ normed groups
rather than follow the [HS] paradigm of ‘right’ and ‘left’ topological semigroups. We write
→R for convergence under dR etc. Recall that both metrics give rise to the same norm,
since dL(x, e) = dR(x−1, e) = dR(e, x) = ‖x‖, and hence define the same balls centred at
the origin e:

BdR(e, r) := {x : d(e, x) < r} = BdL(e, r).

Denoting this commonly determined set by B(r), we have seen in Proposition 2.5 that

BR(a, r) = {x : x = ya and dR(a, x) = dR(e, y) < r} = B(r)a,

BL(a, r) = {x : x = ay and dL(a, x) = dL(e, y) < r} = aB(r).

Thus the open balls are right- or left-shifts of the norm balls at the origin. This is best
viewed in the current context as saying that under dR the right-shift ρa : x→ xa is right
uniformly continuous, since

dR(xa, ya) = dR(x, y),

and likewise that under dL the left-shift λa : x→ ax is left uniformly continuous, since

dL(ax, ay) = dL(x, y).

In particular, under dR we have y →R b iff yb−1 →R e, as dR(e, yb−1) = dR(y, b).

Likewise, under dL we have x→L a iff a−1x→L e, as dL(e, a−1x) = dL(x, a).

Thus either topology is determined by the neighbourhoods of the identity (origin)
and according to choice makes the appropriately sided shift continuous; said another
way, the topology is determined by the neighbourhoods of the identity and the chosen
shifts. We noted earlier that the triangle inequality implies that multiplication is jointly
continuous at the identity e, as a mapping from (X, dR) to (X, dR). Likewise inversion is
also continuous at the identity by the symmetry axiom. (See Theorem 2.19′.) To obtain
similar results elsewhere one needs to have continuous conjugation, and this is linked to
the equivalence of the two norm topologies (see Th. 3.4). The conjugacy map under g ∈ G
(inner automorphism) is defined by

γg(x) := gxg−1.

Recall that the inverse of γg is given by conjugation under g−1 and that γg is a
homomorphism. Its continuity, as a mapping from (X, dR) to (X, dR), is thus determined
by behaviour at the identity, as we verify below. We work with the right topology (under
dR), and sometimes leave unsaid equivalent assertions about the isometric case of (X, dL)

replacing (X, dR).

Lemma 3.1. The homomorphism γg is right-to-right continuous at any point iff it is
right-to-right continuous at e.

Proof. This is immediate since x→R a if and only if xa−1 →R e and γg(x)→R γg(a) iff
γg(xa

−1)→R γg(e), since

‖gxg−1(gag−1)−1‖ = ‖gxa−1g−1‖.

We note that, by the Generalized Darboux Theorem (Th. 11.22), if γg is locally
norm-bounded and the norm is N-subhomogeneous (i.e. a Darboux norm – there are
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constants κn → ∞ with κn‖z‖ ≤ ‖zn‖), then γg is continuous. Working under dR, we
will relate inversion to left-shifts. We begin with the following, a formalization of an
earlier observation.

Lemma 3.2. If inversion is right-to-right continuous, then

x→R a iff a−1x→R e.

Proof. For x →R a, we have dR(e, a−1x) = dR(x−1, a−1) → 0, assuming continuity.
Conversely, for a−1x →R e we have dR(a−1x, e) → 0, i.e. dR(x−1, a−1) → 0. So since
inversion is assumed to be right-continuous and (x−1)−1 = x, etc, we have dR(x, a)→ 0.

We now expand this.

Theorem 3.3. The following are equivalent:

(i) inversion is right-to-right continuous,
(ii) left-open sets are right-open,
(iii) for each g the conjugacy γg is right-to-right continuous at e, i.e. for every ε > 0

there is δ > 0 such that
gB(δ)g−1 ⊂ B(ε),

(iv) left-shifts are right-continuous.

Proof. We show that (i)⇔(ii)⇔(iii)⇔(iv).
Assume (i). For any a and any ε > 0, by continuity of inversion at a, there is δ > 0

such that, for x with dR(x, a) < δ, we have dR(x−1, a−1) < ε, i.e. dL(x, a) < ε. Thus

B(δ)a = BR(a, δ) ⊂ BL(a, ε) = aB(ε), (incl)

i.e. left-open sets are right-open, giving (ii). For the converse, we just reverse the last
argument. Let ε > 0. As a ∈ BL(a, ε) and BL(a, ε) is left open, it is right open and so
there is δ > 0 such that

BR(a, δ) ⊂ BL(a, ε).

Thus for x with dR(x, a) < δ, we have dL(x, a) < ε, i.e. dR(x−1, a−1) < ε, i.e. inversion
is right-to-right continuous, giving (i).

To show that (ii)⇔(iii) note that the inclusion (incl) is equivalent to

a−1B(δ)a ⊂ B(ε),

i.e. to
γa−1 [B(δ)] ⊂ B(ε),

that is, to the assertion that γa−1(x) is continuous at x = e (and so continuous, by Lemma
3.1). The property (iv) is equivalent to (iii) since the right-shift is right-continuous and
γa(x)a = λa(x) is equivalent to γa(x) = λa(x)a−1.

We saw in the Birkhoff-Kakutani Theorem (Th. 2.19) that metrizable topological
groups are normable (equivalently, have a right-invariant metric); we now formulate a
converse, showing when the right-invariant metric derived from a group-norm equips its
group with a topological group structure. As this is a characterization of metric topolog-
ical groups, we will henceforth refer to them synonymously as normed topological groups.
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Theorem 3.4 (Equivalence Theorem). A normed group is a topological group under the
right (resp. left) norm topology iff each conjugacy

γg(x) := gxg−1

is right-to-right (resp. left-to-left) continuous at x = e (and so everywhere), i.e. for
zn →R e and any g

gzng
−1 →R e. (adm)

Equivalently, it is a topological group iff left/right-shifts are continuous for the right/left
norm topology, or iff the two norm topologies are themselves equivalent. In particular, if
also the group structure is abelian, then the normed group is a topological group.

Proof. Only one direction needs proving. We work with the dR topology, the right topol-
ogy. By Theorem 3.3 we need only show that under it multiplication is jointly right-
continuous. First we note that multiplication is right-continuous iff

dR(xy, ab) = ‖xyb−1a−1‖ as (x, y)→R (a, b).

Here, we may write Y = yb−1 so that Y →R e iff y →R b, and we obtain the equivalent
condition

dR(xY b, ab) = dR(xY, a) = ‖xY a−1‖ as (x, Y )→R (a, e).

By Theorem 3.3, as inversion is right-to-right continuous, Lemma 3.2 justifies rewriting
the second convergence condition with X = a−1x and X →R e, yielding the equivalent
condition

dR(aXY b, ab) = dR(aXY, a) = ‖aXY a−1‖ as (X,Y )→R (e, e).

But, by Lemma 3.1, this is equivalent to continuity of conjugacy.

The final assertion is related to a result of Żelazko [Zel] (cf. [Com, §11.6]). We will later
apply the Equivalence Theorem several times in conjunction with the following result (see
also Lemma 3.34 for a strengthening).

Lemma 3.5 (Weak continuity criterion). For fixed x, if for all null sequences wn, we have
γx(wn(k))→ eX down some subsequence wn(k), then γx is continuous.

Proof. We are to show that for every ε > 0 there is δ > 0 and N such that for all n > N ,

xB(δ)x−1 ⊂ B(ε).

Suppose not. Then there is ε > 0 such that for each k = 1, 2, . . . and each δ = 1/k

there is n = n(k) > k and wk with ‖wk‖ < 1/k and ‖xwkx−1‖ > ε. So wk → 0. By
assumption, down some subsequence n(k) we have ‖xwn(k)x

−1‖ → 0, but this contradicts
‖xwn(k)x

−1‖ > ε.

Corollary 3.6. For X a topological group under its norm, the left-shifts λa(x) := ax

are bounded and uniformly continuous in norm.

Proof. We have ‖λa‖ = ‖a‖ as

sup
x
dR(x, ax) = dR(e, a) = ‖a‖.



32 N. H. Bingham and A. J. Ostaszewski

We also have
dR(ax, ay) = dR(axy−1a−1, e) = ‖γa(xy−1)‖.

Hence, for any ε > 0, there is δ > 0 such that, for ‖z‖ < δ,

‖γa(z)‖ ≤ ε.

Thus provided dR(x, y) = ‖xy−1‖ < γ, we have dR(ax, ay) < ε.

Remarks. 1 (Klee property). If the group has an abelian norm (in particular if the
group is abelian), then the norm has the Klee property (see [Klee] for the original metric
formulation, or Th. 2.18), and then it is a topological group under the norm-topology.
Indeed the Klee property is that

‖xyb−1a−1‖ ≤ ‖xa−1‖+ ‖yb−1‖,

and so if x →R a and y →R b, then xy →R ab. This may also be deduced from the
observation that γg is continuous, since here

‖gxg−1‖ = ‖gxeg−1‖ ≤ ‖gg−1‖+ ‖xe‖ = ‖x‖.

Compare [vM2, Section 3.3], especially Example 3.3.6 of a topological group of real ma-
trices which fails to have an abelian norm (see also [HJ, p. 354]).

2. Theorem 3.4 may be restated in the language of commutators, introduced at the
end of Section 2 (see Th. 2.20). These are of interest in Theorems 6.3, 10.7 and 10.9.

Corollary 3.7. If the L-commutator is right continuous as a map from (X, dR) to
(X, dR), then (X, dR) is a topological group. The same conclusion holds for left continuity
and for the R-commutator.

Proof. Fix g. We will show that γg is continuous at e; so let zn → e.

First we work with the L-commutator and assume it to be, say, right continuous at e
(which is equivalent to being left continuous at e, by Lemma 2.21). From the identity

γg(zn) := gzng
−1(z−1

n zn) = [g, zn]Lzn,

the assumed right continuity implies that wn := [g, zn]L → e; but then wnzn → e, by
the triangle inequality. Thus γg is continuous. By Theorem 3.4, (X, dR) is a topological
group.

Next we work with the R-commutator and again assume that to be right continuous
at e. Noting that [g, zn]L = [g−1, z−1

n ]L and z−1
n → e we may now interpet the previous

argument as again proving that γg is continuous; indeed we may now read the earlier
identity as asserting that

γg(zn) := gzng
−1(z−1

n zn) = [g−1, z−1
n ]Rzn,

for which the earlier argument continues to hold.

3. For T a normed group with right-invariant metric dR one is led to study the
associated supremum metric on the group of bounded homeomorphisms h from T to T
(i.e. having supT d(h(t), t) <∞) with composition ◦ as group operation:

dA(h, h′) = sup
T
d(h(t), h′(t)).



Normed groups 33

This is a right-invariant metric which generates the norm

‖h‖A := dA(h, eA) = sup
T
d(h(t), t).

It is of interest from the perspective of topological flows, in view of the following obser-
vation.

Lemma 3.8 ([Dug, XII.8.3, p. 271]). Under dA on A = Auth(T ) and dT on T , the
evaluation map (h, t)→ h(t) from A× T to T is continuous.

Proof. Fix h0 and t0. The result follows from continuity of h0 at t0 via

dT (h0(t0), h(t)) ≤ dT (h0(t0), h0(t)) + dT (h0(t), h(t)) ≤ dT (h0(t0), h0(t)) + dA(h, h0).

4. Since the conjugate metric of a right-invariant metric need not be continuous, one
is led to consider the earlier defined symmetrization refinement of a metric d, which we
recall is given by

dS(g, h) = max{d(g, h), d(g−1, h−1)}. (sym)

This metric need not be translation invariant on either side (cf. [vM2, Example 1.4.8]);
however, it is inversion-invariant:

dS(g, h) = dS(g−1, h−1),

so one expects to induce topological group structure with it, as we do in Th. 3.13 below.
When d = dXR is right-invariant and so induces the group-norm ‖x‖ := d(x, e) and
d(x−1, y−1) = dXL (x, y), we may use (sym) to define

‖x‖S := dXS (x, e).

Then
‖x‖S = max{dXR (x, e), dXR (x−1, e)} = ‖x‖,

which is a group-norm, even though dXS need not be either left- or right-invariant. This
motivates the following result, which follows from the Equivalence Theorem (Th. 3.4)
and Example A4 (Topological permutations), given towards the start of Section 2.

Theorem 3.9 (Ambidextrous Refinement). For X a normed group with norm ‖ · ‖, put

dXS (x, y) := max{‖xy−1‖, ‖x−1y‖} = max{dXR (x, y), dXL (x, y)}.

Then X is a topological group under the right (or left) norm topology iff X is a topological
group under the symmetrization refinement metric dXS iff the topologies of dXS and of dXR
are identical.

Proof. Suppose that under the right-norm topology X is a topological group. Then dXL is
dXR -continuous, by Th. 3.4 (continuity of inversion), and hence dXS is also dXR -continuous.
Thus if xn → x under dXR , then also, by continuity of dXL , one has xn → x under dXS .
Now if xn → x under dXS , then also xn → x under dXR , as dXR ≤ dXS . Thus d

X
S generates

the topology and so X is a topological group under dXS .
Conversely, suppose that X is a topological group under dXS . As X is a topological

group, its topology is generated by the neighbourhoods of the identity. But as already
noted,

dXS (x, e) := ‖x‖,
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so the dXS -neighbourhoods of the identity are also generated by the norm; in particular
any left-open set aB(ε) is dXS -open (as left-shifts are homeomorphisms) and so right-open
(being a union of right-shifts of neighbourhoods of the identity). Hence by Th. 3.4 (or
Th. 3.3) X is a topological group under either norm topology.

As for the final assertion, if the dXS topology is identical with the dXR topology then
inversion is dXR -continuous and so X is a topological group by Th. 3.4. The argument of
the first paragraph shows that if dXR makes X into a topological group then dXR and dXS
generate the same topology.

Thus, according to the Ambidextrous Refinement Theorem, a symmetrization that
creates a topological group structure from a norm structure is in fact redundant. We are
about to see such an example in the next theorem.

Given a metric space (X, d), we let Hunif(X) denote the subgroup of uniformly con-
tinuous homeomorphisms (relative to d), i.e. homeomorphisms α satisfying the condition
that, for each ε > 0, there is δ > 0 such that

d(α(x), α(x′)) < ε for d(x, x′) < δ. (u-cont)

Lemma 3.10 (Compare [dGMc, Cor. 2.13]).

(i) For fixed ξ ∈ H(X), the mapping ρξ : α→ αξ is continuous.
(ii) For fixed α ∈ Hunif(X), the mapping λα : β → αβ is in Hunif(X) – i.e. is uniformly

continuous.
(iii) The mapping (α, β)→ αβ is continuous from Hunif(X)×Hunif(X) to H(X) under

the supremum norm.

Proof. (i) We have

d̂(αξ, βξ) = sup d(α(ξ(t)), β(ξ(t))) = sup d(α(s), β(s)) = d̂(α, β).

(ii) For α ∈ Hunif(X) and given ε > 0, choose δ > 0 so that (u-cont) holds. Then, for
β, γ with d̂(β, γ) < δ, we have d(β(t), γ(t)) < δ for each t, and hence

d̂(αβ, αγ) = sup d(α(β(t)), α(γ(t))) ≤ ε.

(iii) Again, for α ∈ Hunif(X) and given ε > 0, choose δ > 0 so that (u-cont) holds.
Thus, for β, η with d̂(β, η) < δ, we have d(β(t), η(t)) < δ for each t. Hence for ξ with
d̂(α, ξ) < ε we obtain

d(α(β(t)), ξ(η(t))) ≤ d(α(β(t)), α(η(t))) + d(α(η(t)), ξ(η(t))) ≤ ε+ d̂(α, ξ) ≤ ε+ ε.

Consequently, we have

d̂(αβ, ξη) = sup d(α(β(t)), ξ(η(t))) ≤ 2ε.

Comment. See also [AdC] for a discussion of the connection between choice of metric
and uniform continuity. The following result is of interest.

Proposition 3.11 (deGroot-McDowell Lemma, [dGMc, Lemma 2.2]). Given Φ, a count-
able family of self-homeomorphism of X closed under composition (i.e. a semigroup in
Auth(X)), the metric on X may be replaced by a topologically equivalent one such that
each α ∈ Φ is uniformly continuous.
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Definition. Say that a homeomorphism h is bi-uniformly continuous if both h and h−1

are uniformly continuous. Write

Hu = {h ∈ Hunif : h−1 ∈ Hunif}.

Proposition 3.12 (Group of left-shifts). For a normed topological group X with right-
invariant metric dX , the group TrL(X) of left-shifts is (under composition) a subgroup
of Hu(X) that is isometric to X.

Proof. As X is a topological group, we have TrL(X) ⊆ Hu(X) by Cor. 3.6; TrL(X) is a
subgroup and λ : X → TrL(X) is an isomorphism, because

λx ◦ λy(z) = λx(λy(z)) = x(λy(z)) = xyz = λxy(z).

Moreover, λ is an isometry, as dX is right-invariant; indeed, we have

dT (λx, λy) = sup
z
dX(xz, yz) = dX(x, y).

We now offer a generalization which motivates the duality considerations of Section
12.

Theorem 3.13. The family Hu(T ) of bi-uniformly continuous bounded homeomorphisms
of a complete metric space T is a complete topological group under the symmetrized supre-
mum metric. Consequently, under the supremum metric it is a topological group and is
topologically complete.

Proof. Suppose that T is metrized by a complete metric d. The bounded homeomorphisms
of T , i.e. those homeomorphisms h for which sup d(h(t), t) <∞, form a group H = H(T )

under composition. The subgroup

Hu = {h ∈ H : h and h−1 are uniformly continuous}

is complete under the supremum metric d̂(h, h′) = sup d(h(t), h′(t)), by the standard 3ε

argument. It is a topological semigroup since the composition map (h, h′) → h ◦ h′ is
continuous. Indeed, as in the proof of Proposition 2.13, in view of the inequality

d(h ◦ h′(t), H ◦H ′(t)) ≤ d(h ◦ h′(t), H ◦ h′(t)) + d(H ◦ h′(t), H ◦H ′(t))
≤ d̂(h,H) + d(H ◦ h′(t), H ◦H ′(t)),

for each ε > 0 there is δ = δ(H, ε) < ε such that for d̂(h′, H ′) < δ and d̂(h,H) < ε,

d̂(h ◦ h′, H ◦H ′) ≤ 2ε.

Likewise, mutatis mutandis, for their inverses; to be explicit, writing g = h′−1, G = H ′−1

etc., for each ε > 0 there is δ′ = δ(G, ε) = δ(H ′−1, ε) such that for d̂(g′, G′) < δ′ and
d̂(g,G) < ε,

d̂(g ◦ g′, G ◦G′) ≤ 2ε.

Set η = min{δ, δ′} < ε. So for max{d̂(h′, H ′), d̂(g,G)} < η and max{d̂(h,H), d̂(g′, G′)} <
η, we have d̂(h′, H ′) < δ, d̂(h,H) < δ < ε, and d̂(g′, G′) < δ and d̂(g,G) < ε. Since
(h ◦ h′)−1 = g ◦ g′ etc. we have

max{d̂(h ◦ h′, H ◦H ′), d̂(g ◦ g′, G ◦G′)} ≤ 2ε.

So composition is continuous under the symmetrized metric
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dS(g, h) = max{d̂(g, h, ), d̂(g−1, h−1)}.
But as this metric is inversion-invariant, i.e.

dS(g, h) = dS(g−1, h−1),

this gives continuity of inversion. This means that Hu is a complete metric topological
group under the symmetrized supremum metric.

The final assertion follows from the Ambidextrous Refinement Theorem, Th. 3.9. (The
symmetrized metric topology and the supremum metric coincide.)

We now deduce a corollary with important consequences for the Uniform Convergence
Theorem of topological regular variation (for which see [BO-TI]). We need the following
definitions and a result due to Effros (for a proof and related literature see [vM2]).

Definition. A group G ⊂ H(X) acts transitively on a space X if for each x, y in X

there is g in X such that g(x) = y.

The group acts micro-transitively on X if for U a neighbourhood of e in G and x ∈ X
the set {h(x) : h ∈ U} is a neighbourhood of x.

Theorem 3.14 (Effros’ Open Mapping Principle, [Eff]). Let G be a Polish topological
group acting transitively on a separable metrizable space X. The following are equivalent.

(i) G acts micro-transitively on X,
(ii) X is Polish,
(iii) X is of second category.

Remark. van Mill [vM1] gives the stronger result for G an analytic group (see Section 11
for definition) that (iii) implies (i). Thus van Mill’s variant includes meagre groups acting
transitively on a non-meagre metric space (for an example see [vM1, Remark 2]). See also
Section 10 for definitions, references and the related classical Open Mapping Theorem
(which follows from Th. 3.14: see [vM1]). Indeed, van Mill ([vM1]) notes that he uses
(i) separately continuous action (see the final page of his proof), (ii) the existence of a
sequence of symmetric neighbourhoods Un of the identity with Un+1 ⊆ U2

n+1 ⊆ Un, and
(iii) U1 = G (see the first page of his proof). By Th. 2.19′ (Birkhoff-Kakutani Normability
Theorem) van Mill’s conditions under (ii) specify a normed group, whereas condition (iii)
may be arranged by switching to the equivalent norm ‖x‖1 := max{‖x‖, 1} and then
taking Un := {x : ‖x‖1 < 2−n}. Thus in fact one has

Theorem 3.14′ (Analytic Effros Open Mapping Principle). For T an analytic normed
group acting transitively and separately continuously on a separable metrizable space X:
if X is non-meagre, then T acts micro-transitively on X.

The normed-group result is of interest, as some naturally occurring normed groups
are not complete (see Charatonik and Maćkowiak [ChMa] for Borel normed groups that
are not complete, and [FaSol] for a study of Borel subgroups of Polish groups).

Theorem 3.15 (Crimping Theorem). Let T be a Polish space with a complete metric d.
Suppose that a closed subgroup G of Hu(T ) acts on T transitively, i.e. for any s, t in T

there is h in G such that h(t) = s. Then for each ε > 0 and t ∈ T , there is δ > 0 such
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that for any s with dT (s, t) < δ, there exists h in G with ‖h‖H < ε such that h(t) = s.

Consequently:

(i) If y, z are in Bδ(t), then there exists h in G with ‖h‖H < 2ε such that h(y) = z.

(ii) Moreover, for each zn → t there are hn in G converging to the identity such that
hn(t) = zn.

Proof. As T is Polish, G is Polish, and so by Effros’ Theorem, G acts micro-transitively
on T ; that is, for each t in T and each ε > 0 the set {h(t) : h ∈ Hu(T ) and ‖h‖H < ε}
is a neighbourhood of t, i.e. for some δ = δ(ε) > 0, Bδ(t) ⊂ {h(t) : ‖h‖ < ε}. Hence if
dT (s, t) < δ we have for some h in G with ‖h‖H < ε that h(t) = s.

If y, z ∈ Bδ(t), there is h, k in G with ‖h‖ < ε and ‖k‖ < ε such that h(t) = y and
k(t) = z. Thus kh−1 is in G, kh−1(y) = z and

‖kh−1‖ ≤ ‖k‖+ ‖h−1‖ = ‖k‖+ ‖h‖ ≤ 2ε,

as the norm is inversion-symmetric.
For the final conclusion, taking for ε successively the values εn = 1/n, we define

δn = δ(εn). Let zn → t. By passing to a subsequence we may assume that dT (zn, t) < δn.

Now there exists hn in G such that ‖hn‖ < 2εn and hn(t) = zn. As hn → id, we have
constructed the ‘crimping sequence’ of homeomorphisms asserted.

Remark. By Proposition 3.12, this result applies also to the closed subgroup of left
translations on T for T a Polish topological group. For more on the relationship between
the crimping property and the Effros Theorem see [O-E].

The Crimping Theorem implies the following classical result.

Theorem 3.16 (Ungar’s Theorem, [Ung], [vM2, Th. 2.4.1 p. 78]). Let G be a subgroup of
H(X). Let X be a compact metric space on which G acts transitively. For each ε > 0, there
is δ > 0 such that for x, y with d(x, y) < δ there is h ∈ G such that h(x) = y and ‖h‖ < ε.

Proof. X is a Polish space, and H(X) = Hu(X), as X is compact. Let ε > 0. By the
Crimping Theorem, for each x ∈ X there is δ = δ(x, ε) > 0 such that for y, z ∈ Bδ(x) there
is h ∈ G with h(y) = z and ‖h‖ < ε. Thus {Bδ(x,ε)(x) : x ∈ X} covers X. By compactness,
for some finite set F = {x1, . . . , xN}, the space X is covered by {Bδ(x,ε)(x) : x ∈ F}. The
conclusion of the theorem follows on taking δ = min{δ(x, e) : x ∈ F}.
Definition. Let G be a normed group with group-norm ‖ · ‖. For g ∈ G, recall that the
g-conjugate norm is defined by

‖x‖g := ‖γg(x)‖ = ‖gxg−1‖.
If left- and right-shifts are continuous in G (in particular if G is a semitopological group
under its norm), then ‖zn‖ → 0 iff ‖zn‖g → 0.

Example. For X a normed group with metric dX , take G = Hu(X) normed by ‖h‖ :=

‖h‖H. Then
‖h‖g = sup

x
dX(ghg−1(x), x) = sup

z
dX(g(h(z)), z).

We now give an explicit construction of an equivalent bi-invariant metric on G when
one exists (compare [HR, Section 8.6]), namely

‖x‖∞ := sup{‖x‖g : g ∈ G}.
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We recall from Section 2 that the group-norm satisfies the norm admissibility condition
(on X) if, for zn → e and gn arbitrary,

‖gnzng−1
n ‖G → 0. (n-adm)

Evidently in view of the sequence {gn}, this is a sharper version of (adm).

Theorem 3.17. For G with group-norm ‖ · ‖G, suppose that ‖ · ‖∞ is finite on G. Then
‖x‖∞ is an equivalent norm iff ‖ · ‖G meets the norm admissibility condition (n-adm).

In particular, for |x| := min{‖x‖, 1} the corresponding norm |x|∞ := sup{|x|g :

g ∈ G} is an equivalent abelian norm iff (n-adm) holds.

Proof. First assume (n-adm) holds. As ‖x‖ = ‖x‖e ≤ ‖x‖∞ we need to show that if
zn → e, then ‖zn‖∞ → 0. Suppose otherwise; then for some ε > 0, without loss of
generality ‖zn‖∞ ≥ ε, and so there is for each n an element gn such that

‖gnzng−1
n ‖ ≥ ε/2.

But this contradicts the admissibility condition (n-adm).
As to the abelian property of the norm, we have

‖yzy−1‖∞ = sup{‖gyzy−1g−1‖ : g ∈ G} = sup{‖gyz(gy)−1‖ : g ∈ G} = ‖z‖∞,

and so taking z = xy we have ‖yx‖ = ‖xy‖.
For the converse, assume ‖x‖∞ is an equivalent norm. For gn arbitrary, suppose that

‖zn‖ → 0 and ε > 0. For some N and all n ≥ N we thus have ‖zn‖∞ < ε. Hence for
n ≥ N ,

‖gnzng−1
n ‖ ≤ ‖zn‖∞ < ε,

verifying the condition (n-adm).

Theorem 3.18. Let G be a normed topological group which is compact under its norm
‖ · ‖G. Then

‖x‖∞ := sup{‖x‖g : g ∈ G}

is an abelian (hence bi-invariant) norm topologically equivalent to ‖x‖.

Proof. We write ‖ · ‖ for ‖ · ‖G. Suppose, for some x, that {‖x‖g : g ∈ G} is unbounded.
We may select gn with

‖gnxg−1
n ‖ → ∞.

Passing to a convergent subsequence we obtain a contradiction. Thus ‖x‖∞ is finite and
hence a norm. We verify the admissibility condition. Suppose to the contrary that for
some zn → e, arbitrary gn, and some ε > 0 we have

‖gnzng−1
n ‖ > ε.

Using compactness, we may pass to a convergent subsequence, gm → g (in the norm
‖ · ‖G). Since multiplication is jointly continuous in G we obtain the contradiction that
‖geg−1‖ = ‖e‖ = 0 > ε.

Remarks. 1. Suppose as usual that dR is a right-invariant metric on a group G. The
right-shift ρg(x) = xg is uniformly continuous, as

dR(xg, yg) = dR(x, y).
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However, it is not necessarily bounded, as

‖ρg‖H = sup
x
dR(xg, x) = sup

x
‖g‖x = ‖g‖∞.

But on the subgroup {ρg : ‖g‖∞ < ∞}, the norm ‖ρg‖ is bi-invariant, since ‖g‖∞ is
bi-invariant.

2. The condition (n-adm) used in Theorem 3.17 to check admissibility of the supremum
norm may be reformulated, without reference to the group-norm, topologically thus:

gnzng
−1
n → e for zn → e,

with gn arbitrary. In a first-countable topological group this condition is equivalent to
the existence of a bi-invariant metric (see Proposition 2.15; cf. Theorem 3.3.4 in [vM2,
p. 101]). We will see several related conditions later: (ne) in Th. 3.30, and (W-adm) and
(C-adm) ahead of Lemma 3.33 below; we recall here the condition (H-adm) of Prop. 2.14.

3. Note that SL(2,R), the set of 2×2 real matrices with determinant 1, under matrix
multiplication and with the subspace topology of R4 forms a (locally compact) topological
group with no equivalent bi-invariant metric; for details see e.g. [HR, 4.24], or [vM2,
Example 3.3.6 p. 103], where matrices an, gn are exhibited with zn := angn → e and
gnan 9 e, so that gn(angn)g−1

n 9 e. (See also [HJ, p. 354] for a further example.)

We now apply the last theorem and earlier results to an example of our greatest
interest.

Example. Let X be a normed group with right-invariant metric dX . Give the group
G = H(X) the usual group-norm

‖f‖H := sup
x
dX(f(x), x).

Finally, for f, g ∈ G recall that the g-conjugate norm and the conjugacy refinement norm
are

‖f‖g := ‖gfg−1‖H and ‖f‖∞ := sup{‖f‖g : g ∈ G}.

Thus
‖f‖∞ = sup

x
sup
g
dXg (f(x), x).

Theorem 3.19 (Abelian normability of H(X) – cf. [BePe, Ch. IV Th. 1.1]). For X a
normed group, assume that ‖f‖∞ is finite for each f in H(X) – for instance if dX is
bounded, and in particular if X is compact. Then:

(i) H(X) under the abelian norm ‖f‖∞ is a topological group.
(ii) The norm ‖f‖∞ is equivalent to ‖f‖H iff the admissibility condition (n-adm) holds,

which here reads: for ‖fn‖H → 0 and any gn in H(X),

‖gnfng−1
n ‖H → 0.

Equivalently, for ‖zn‖H → 0 (i.e. zn converging to the identity), any gn in H(X),
and any yn ∈ X,

‖gn(zn(yn))gn(yn)−1‖X → 0.

(iii) In particular, if X is compact, H(X) = Hu(X) is under ‖f‖H a topological group.
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Proof. (i) and the first part of (ii) follow from Th. 3.17 (cf. Remarks 1 on the Klee
property, after Cor. 3.6); as to (iii), this follows from Th. 3.14 and 3.9. Turning to the
second part of (ii), suppose first that

‖gnzng−1
n ‖H → 0,

and let yn be given. For any ε > 0 there is N such that, for n ≥ N ,

ε > ‖gnzng−1
n ‖H = sup

x
d(gnzng

−1
n (x), x).

Taking x here as xn = gn(yn), we obtain

ε > d(gn(zn(yn)), gn(yn)) = d(gnzn(yn)gn(yn)−1, eX) for n ≥ N.

Hence ‖gn(zn(yn))gn(yn)−1‖X → 0, as asserted.
For the converse direction, suppose next that

‖gnzng−1
n ‖H 9 0.

Then without loss of generality there is ε > 0 such that for all n,

‖gnzng−1
n ‖H = sup

x
d(gnzng

−1
n (x), x) > ε.

Hence, for each n, there exists xn such that

d(gnzng
−1
n (xn), xn) > ε.

Equivalently, setting yn = g−1
n (xn) we obtain

d(gn(zn(yn))gn(yn)−1, eX) = d(gn(zn(yn)), gn(yn)) > ε.

Thus for this sequence yn we have

‖gn(zn(yn))gn(yn)−1‖X 9 0.

Remark. To see the need for the refinement norm in verifying continuity of compo-
sition in H(X), we work with metrics and recall the permutation metric dXg (x, y) :=

dX(g(x), g(y)). Recall also that the metric defined by the norm ‖f‖g is the supremum
metric d̂g on H(X) arising from dg on X. Indeed

d̂g(h
′, h) = ‖h′h−1‖g = sup

z
dX(gh′h−1g−1(z), z) = sup

x
dX(g(h′(x)), g(h(x)))

= sup
x
dXg (h′(x)), h(x)).

Since, as in Proposition 2.13,

d̂g(F1G1, FG) ≤ d̂g(F1, F ) + d̂gF (G1, G) ≤ d̂∞(F1, F ) + d̂∞(G1, G),

we may conclude that

d̂∞(F1G1, FG) ≤ d̂∞(F1, F ) + d̂∞(G1, G).

This reconfirms that composition is continuous. When g = e, the term d̂F arises above
and places conditions on how ‘uniformly’ close G1 needs to be to G (as in Th. 3.13). For
these reasons we find ourselves mostly concerned with Hu(X).
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3.2. Lipschitz-normed groups. Below we weaken the Klee property, characterized
by the condition ‖gxg−1‖ ≤ ‖x‖, by considering instead the existence of a real-valued
function g →Mg such that

‖gxg−1‖ ≤Mg‖x‖ for all x.

This will be of use in the development of duality in Section 12 and partly in the consid-
eration of the oscillation of a normed group in Section 3.3.

Remark. Under these circumstances, on writing xy−1 for x and with dX the right-
invariant metric defined by the norm, one has

dX(gxg−1, gyg−1) = dX(gx, gy) ≤Mgd
X(x, y),

so that the inner automorphism γg is uniformly continuous (and a homeomorphism).
Moreover, Mg is related to the Lipschitz-1 norms ‖g‖1 and ‖γg‖1, where

‖g‖1 := sup
x6=y

dX(gx, gy)

dX(x, y)
and ‖γg‖1 := sup

x 6=y

dX(gxg−1, gyg−1)

dX(x, y)
,

cf. [Ru, Ch. I, Exercise 22]. This motivates the following terminology.

Definitions. 1. Say that an automorphism f : G → G of a normed group has the
Lipschitz property if there is M > 0 such that

‖f(x)‖ ≤M‖x‖ for all x ∈ G. (Lip)

2. Say that a group-norm has the Lipschitz property, or that the group is Lipschitz-
normed , if each continuous automorphism has the Lipschitz property under the group-
norm.

Definitions. 1. Recall from the definitions of Section 2 that a group G is infinitely
divisible if for each x ∈ G and n ∈ N there is some ξ ∈ G with x = ξn. We may write
ξ = x1/n (without implying uniqueness).

2. Further recall that a group-norm is N-homogeneous if it is n-homogeneous for each
n ∈ N, i.e. for each n ∈ N, ‖xn‖ = n‖x‖ for each x. Thus if ξn = x, then ‖ξ‖ = 1

n‖x‖ and,
as ξm = xm/n, we have m

n ‖x‖ = ‖xm/n‖, i.e. for rational q > 0 we have q‖x‖ = ‖xq‖.

Theorem 3.20 below relates the Lipschitz property of a norm to local behaviour. One
should expect local behaviour to be critical, as asymptotic properties are trivial, since by
the triangle inequality

lim
‖x‖→∞

‖x‖g
‖x‖

= 1.

As this asserts that ‖x‖g is slowly varying (see Section 2) and ‖x‖g is continuous, the
Uniform Convergence Theorem (UCT) applies (see [BO-TI]; for the case G = R see
[BGT]), and so this limit is uniform on compact subsets of G. Theorem 3.21 identifies
circumstances when a group-norm on G has the Lipschitz property and Theorem 3.22
considers the Lipschitz property of the supremum norm in Hu(X).

On a number of occasions, the study of group-norm behaviour is aided by the pres-
ence of the following property. Its definition is motivated by the notion of an ‘invariant
connected metric’ as defined in [Var, Ch. III.4] (see also [NSW]). The property expresses
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scale-comparability between word-length and distance, in keeping with the key notion of
quasi-isometry.

Definition (Word-net). Say that a normed group G has a group-norm ‖ · ‖ with a
vanishingly small word-net (which may be also compactly generated, as appropriate) if,
for any ε > 0, there is η > 0 such that, for all δ with 0 < δ < η there is a set (a compact
set) of generators Zδ in Bδ(e) and a constant Mδ such that, for all x with ‖x‖ > Mδ,
there is some word w(x) = z1 . . . zn(x) using generators in Zδ with ‖zi‖ = δ(1 + εi), with
|εi| < ε, where

d(x,w(x)) < δ and 1− ε ≤ n(x)δ

‖x‖
≤ 1 + ε.

Say that the word-net is global if Mδ = 0.

Remarks. 1. Rd has a vanishingly small compactly generated global word-net and hence
so does the sequence space l2.

2. An infinitely divisible group X with an N-homogeneous norm has a vanishingly
small global word-net. Indeed, given δ > 0 and x ∈ X take n(x) = ‖x‖/δ, then if ξn = x

we have ‖x‖ = n‖ξ‖, and so ‖ξ‖ = δ and n(x)δ/‖x‖ = 1.

Theorem 3.20. Let G be a locally compact topological group with a norm having a com-
pactly generated, vanishingly small global word-net. For f a continuous automorphism
(e.g. f(x) = gxg−1), suppose

β := lim sup
‖x‖→0+

‖f(x)‖
‖x‖

<∞.

Then
M = sup

x

‖f(x)‖
‖x‖

<∞.

We defer the proof to Section 4 as it relies on the development there of the theory of
subadditive functions.

Theorem 3.21. If G is an infinitely divisible group with an N-homogeneous norm, then
its norm has the Lipschitz property, i.e. if f : G → G is a continuous automorphism,
then for some M > 0,

‖f(x)‖ ≤M‖x‖.

Proof. Suppose that δ > 0. Fix x 6= e. Define

pδ(x) := sup{q ∈ Q+ : ‖xq‖ < δ} = δ/‖x‖.

Let f be a continuous automorphism. As f(e) = e, there is δ > 0 such that, for ‖z‖ ≤ δ,

‖f(z)‖ < 1.

If ‖xq‖ < δ, then
‖f(xq)‖ < 1.

Thus for each q < pδ(x) we have
‖f(x)‖ < 1/q.

Taking limits, we obtain, with M = 1/δ,
‖f(x)‖ ≤ 1/pδ(x) = M‖x‖.
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Definitions. 1. Let G be a Lipschitz-normed topological group. We may now take
f(x) = γg(x) := gxg−1, since this homomorphism is continuous. The Lipschitz norm is
defined by

Mg := sup
x 6=e
‖γg(x)‖/‖x‖ = sup

x 6=e
‖x‖g/‖x‖.

(As noted before the introduction of the Lipschitz property this is the Lipschitz-1 norm.)
Thus

‖x‖g := ‖gxg−1‖ ≤Mg‖x‖.
2. For X a normed group with right-invariant metric dX and g ∈ Hu(X) denote the

following (inverse) modulus of continuity by
δ(g) = δ1(g) := sup{δ > 0 : dX(g(z), g(z′)) ≤ 1 for all dX(z, z′) ≤ δ}.

Theorem 3.22 (Lipschitz property in Hu). Let X be a normed group with a right-
invariant metric dX having a vanishingly small global word-net. Then

‖h‖g ≤
2

δ(g)
‖h‖ for g, h ∈ Hu(X),

and so Hu(X) has the Lipschitz property.

Proof. We have for d(z, z′) < δ(g) that

d(g(z), g(z′)) < 1.

For given x put y = h(x)x−1. In the definition of the word-net take ε < 1. Now suppose
that w(y) = w1 . . . wn(y) with ‖zi‖ = 1

2δ(1+εi) and |εi| < ε, where n(y) = n(y, δ) satisfies

1− ε ≤ n(y)δ(g)

‖y‖
≤ 1 + ε.

Put y0 = e,
yi+1 = wiyi

for 0 < i < n(y), and yn(x)+1 = y; the latter is within δ of y. Now

d(yi, yi+1) = d(e, wi) = ‖wi‖ < δ.

Finally put zi = yix, so that z0 = x and zn(y)+1 = h(x). As
d(zi, zi+1) = d(yix, yi+1x) = d(yi, yi+1) < δ,

we have
d(g(zi), g(zi+1)) ≤ 1.

Hence

d(g(x), g(h(x))) ≤ n(y) + 1 < 2‖y‖/δ(g) =
2

δ(g)
d(h(x), x).

Thus
‖h‖g = sup

x
d(g(x), g(h(x))) ≤ 2

δ(g)
sup
x
d(h(x), x) =

2

δ(g)
‖h‖.

Lemma 3.23 (Bi-Lipschitz property). In a Lipschitz-normed group Me = 1 and Mg ≥ 1,
for each g; moreover Mgh ≤MgMh and for any g and all x in G,

1

Mg−1

‖x‖ ≤ ‖x‖g ≤Mg‖x‖.

Thus in particular ‖x‖g is an equivalent norm.
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Proof. Evidently Me = 1. For g 6= e, as γg(g) = g, we see that

‖g‖ = ‖g‖g ≤Mg‖g‖,

and so Mg ≥ 1, as ‖g‖ > 0. Now for any g and all x,

‖g−1xg‖ ≤Mg−1‖x‖.

So with gxg−1 in place of x, we obtain

‖x‖ ≤Mg−1‖gxg−1‖, or
1

Mg−1

‖x‖ ≤ ‖x‖g.

Definition. In a Lipschitz-normed group, put |γg| := logMg and define the symmetriza-
tion pseudo-norm ‖γg‖ := max{|γg|, |γ−1

g |} (cf. Prop. 2.2). Furthermore, put

Zγ(G) := {g ∈ G : ‖γg‖ = 0}.

Since Mg ≥ 1 and Mgh ≤ MgMh the symmetrization in general yields, as we now show,
a pseudo-norm (unless Zγ = {e}) on the inner-automorphism subgroup

Inn := {γg : g ∈ G} ⊂ Auth(G).

Evidently, one may adjust this deficiency, e.g. by considering max{‖γg‖, ‖g‖}, as γg(g) =

g(cf. [Ru, Ch. I Ex. 22]).

Theorem 3.24. Let G be a Lipschitz-normed topological group. The set Zγ is the subgroup
of elements g characterized by

Mg = Mg−1 = 1,

equivalently by the ‘norm-central’ property

‖gx‖ = ‖xg‖ for all x ∈ G,

and so Zγ(G) ⊆ Z(G), the centre of G.

Proof. The condition max{|γg|, |γ−1
g |} = 0 is equivalent to Mg = Mg−1 = 1. Thus Zγ is

closed under inversion; the inequality 1 ≤ Mgh ≤ MgMh = 1 shows that Zγ is closed
under multiplication. For g ∈ Zγ , as Mg = 1, we have ‖gxg−1‖ ≤ ‖x‖ for all x, which on
substitution of xg for x is equivalent to

‖gx‖ ≤ ‖xg‖.

Likewise Mg−1 = 1 yields the reverse inequality:

‖xg‖ ≤ ‖g−1x−1‖ ≤ ‖x−1g−1‖ = ‖gx‖.

Conversely, if ‖gx‖ = ‖xg‖ for all x, then replacing x either by xg−1 or g−1x yields both
‖gxg−1‖ = ‖x‖ and ‖g−1xg‖ = ‖x‖ for all x, so that Mg = Mg−1 = 1.

Corollary 3.25. Mg = 1 for all g ∈ G iff the group-norm is abelian iff ‖ab‖ ≤ ‖ba‖ for
all a, b ∈ G.

Proof. Zγ = G (cf. Th. 2.18).

The condition Mg ≡ 1 is not necessary for the existence of an equivalent bi-invariant
norm, as we see below. The next result is similar to Th. 3.17 (where the Lipschitz property
is absent).
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Theorem 3.26. Let G be a Lipschitz-normed topological group. If {Mg : g ∈ G} is
bounded, then ‖x‖∞ is an equivalent abelian (hence bi-invariant) norm.

Proof. Let M be a bound for the set {Mg : g ∈ G}. Thus we have

‖x‖∞ ≤M‖x‖,

and so ‖x‖∞ is again a norm. As we have

‖x‖ = ‖x‖e ≤ ‖x‖∞ ≤M‖x‖,

we see that ‖zn‖ → 0 iff ‖zn‖∞ → 0.

Theorem 3.27. Let G be a compact, Lipschitz-normed, topological group. Then {Mg :

g ∈ G} is bounded, hence ‖x‖∞ is an equivalent abelian (hence bi-invariant) norm.

Proof. The mapping |γ.| := g → logMg is subadditive. For G a compact metric group,
|γ.| is Baire, since, by continuity of conjugacy,

{g : a < Mg < b} = proj1{(g, x) ∈ G2 : ‖gxg−1‖ > a‖x‖} ∩ {g : ‖gxg−1‖ < b‖x‖},

and so is analytic, hence by Nikodym’s Theorem (see [J-R, p. 42]) has the Baire property.
As G is Baire, the subadditive mapping |γ.| is locally bounded (the proof of Prop. 1 in
[BO-GS] is applicable here; cf. Th. 4.4), and so by the compactness of G, is bounded;
hence Theorem 3.20 applies.

Definition. Let G be a Lipschitz-normed topological group. Put

M(g) := {m : ‖x‖g ≤ m‖x‖ for all x ∈ G}, Mg := inf{m : m ∈M(g)},
µ(g) := {m > 0 : m‖x‖ ≤ ‖x‖g for all x ∈ G}, mg := sup{m : m ∈ µ(g)}.

Proposition 3.28. Let G be a Lipschitz-normed topological group. Then

m−1
g = Mg−1 .

Proof. For 0 < m < mg we have for all x that

‖x‖ ≤ 1

m
‖gxg−1‖.

Setting x = g−1zg we obtain, as in Lemma 3.23,

‖g−1zg‖ ≤ 1

m
‖z‖,

so Mg−1 ≤ 1/m.

Definitions. (Cf. [Kur-1, Ch. I §18] and [Kur-2, Ch. IV §43]; [Berg, Ch. 6], where
compact values are assumed; [Bor, Ch. 11], [Ful]; the first unification of these ideas is
attributed to Fort [For].)

1. The correspondence g →M(g) has closed graph means that if gn → g and mn → m

with mn ∈M(gn), then m ∈M(g).

2. The correspondence is upper semicontinuous means that for any open U withM(g) ⊂
U there is a neighbourhood V of g such thatM(g′) ⊂ U for g′ ∈ V.

3. The correspondence is lower semicontinuous means that for any open U withM(g)∩
U 6= ∅ there is a neighbourhood V of g such thatM(g′) ∩ U 6= ∅ for g′ ∈ V.
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Theorem 3.29. Let G be a Lipschitz-normed topological group. The mapping g →M(g)

has closed graph and is upper semicontinuous.

Proof. For the closed graph property: suppose gn → g and mn → m with mn ∈ M(gn).

Fix x ∈ G. We have
‖gnxg−1

n ‖ ≤ mn‖x‖,

so passing to the limit
‖gxg−1‖ ≤ m‖x‖.

As x was arbitrary, this shows that m ∈M(g).

For the upper semicontinuity property: suppose otherwise. Then for some g and some
open U withM(g) ⊂ U the property fails. We may thus suppose thatM(g) ⊂ (m′,∞) ⊂
U for some m′ < Mg and that there are gn → g and mn < m′ with mn ∈ M(gn). Thus,
for any n and all x,

‖gnxg−1
n ‖ ≤ mn‖x‖.

As 1 ≤ mn ≤ m′, we may pass to a convergent subsequence mn → m, so that we have in
the limit that

‖gxg−1‖ ≤ m‖x‖.

for arbitrary fixed x. Thus m ∈M(g) and yet m ≤ m′ < Mg, a contradiction.

Definition. Say that the group-norm is nearly abelian if for arbitrary gn → e and
zn → e,

lim
n
‖gnzng−1

n ‖/‖zn‖ = 1,

or equivalently
lim
n
‖gnzn‖/‖zngn‖ = 1. (ne)

Theorem 3.30. Let G be a Lipschitz-normed topological group. The following are equiv-
alent:

(i) the mapping g →Mg is continuous,
(ii) the mapping g →Mg is continuous at e,
(iii) the norm is nearly abelian, i.e. (ne) holds.

In particular, if in addition G is compact and condition (ne) holds, then {Mg : g ∈ G}
is bounded, and so again Theorem 3.24 applies, confirming that ‖x‖∞ is an equivalent
abelian (hence bi-invariant) norm.

Proof. Clearly (i)⇒(ii). To prove (ii)⇒(i), given continuity at e, we prove continuity at
h as follows. Write g = hk; then h = gk−1 and g → h iff k → e iff k−1 → e. Now by
Lemma 3.23,

Mh = Mgk−1 ≤MgMk−1 ,

so since Mk−1 →Me = 1, we have

Mh ≤ lim
g→h

Mg.

Since Mk →Me = 1 and
Mg = Mhk ≤MhMk,
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we also have
lim
g→h

Mg ≤Mh.

Next we show that (ii)⇒(iii). By Lemma 3.23, we have

1/Mg−1
n
≤ ‖gnzng−1

n ‖/‖zn‖ ≤Mgn .

By assumption, Mgn →Me = 1 and Mg−1
n
→Me = 1, so limn ‖g−1

n zngn‖/‖zn‖ = 1.

Finally we show that (iii)⇒(ii). Suppose that the mapping is not continuous at e. As
Me = 1 and Mg ≥ 1, for some ε > 0 there is gn → e such that Mgn > 1 + ε. Hence there
are xn 6= e with

(1 + ε)‖xn‖ ≤ ‖gnxng−1
n ‖.

Suppose that ‖xn‖ is unbounded. We may suppose that ‖xn‖ → ∞. Hence

1 + ε ≤ ‖gnxng
−1
n ‖

‖xn‖
≤ ‖gn‖+ ‖xn‖+ ‖g−1

n ‖
‖xn‖

,

and so as ‖gn‖ → 0 and ‖xn‖ → ∞ we have

1 + ε ≤ lim
n→∞

(
‖gn‖+ ‖xn‖+ ‖gn‖

‖xn‖

)
= lim
n→∞

(
1 +

2

‖xn‖
· ‖gn‖

)
= 1,

again a contradiction. We may thus now suppose that ‖xn‖ is bounded and so without
loss of generality convergent, to ξ ≥ 0 say. If ξ > 0, we again deduce the contradiction
that

1 + ε ≤ lim
n→∞

‖gn‖+ ‖xn‖+ ‖g−1
n ‖

‖xn‖
=

0 + ξ + 0

ξ
= 1.

Thus ξ = 0, and hence xn → e. So our assumption of (iii) yields

1 + ε ≤ lim
n→∞

‖gnxng−1
n ‖

‖xn‖
= 1,

a final contradiction.

We note the following variant on Theorem 3.30.

Theorem 3.31. Let G be a Lipschitz-normed topological group. The following are equiv-
alent:

(i) the mapping g →M(g) is continuous,
(ii) the mapping g →M(g) is continuous at e,
(iii) the norm is nearly abelian, i.e. for arbitrary gn → e and zn → e,

lim
n
‖gnzng−1

n ‖/‖zn‖ = 1.

Proof. Clearly (i)⇒(ii). To prove (ii)⇒(iii), suppose the mapping is continuous at e; then
by the continuity of the maximization operation (cf. [Bor, Ch. 12]) g →Mg is continuous
at e, and Theorem 3.30 applies.

To prove (iii)⇒(ii), assume the condition; it now suffices by Theorem 3.30 to prove
lower semicontinuity (lsc) at g = e. So suppose that, for some open U , U ∩M(e) 6= ∅.
Thus U ∩ (1,∞) 6= ∅. Choose m′ < m′′ with 1 < m′ such that (m′,m′′) ⊂ U ∩M(e). If
M is not lsc at e, then there is gn → e such

(m′,m′′) ∩M(gn) = ∅.
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Take, e.g., m := 1
2 (m′ +m′′). As m′ < m < m′′, there is xn 6= e such that

m‖xn‖ < ‖gnxng−1
n ‖.

As before, if ‖xn‖ is unbounded we may assume ‖xn‖ → ∞, and so obtain the contra-
diction

1 < m ≤ lim
n→∞

‖gn‖+ ‖xn‖+ ‖g−1
n ‖

‖xn‖
= 1.

Now assume ‖xn‖ → ξ ≥ 0. If ξ > 0 we have the contradiction

m ≤ lim
n→∞

‖gn‖+ ‖xn‖+ ‖g−1
n ‖

‖xn‖
=

0 + ξ + 0

ξ
= 1.

Thus ξ = 0. So we obtain xn → 0, and now deduce that

1 < m ≤ lim
n→∞

‖gnxng−1
n ‖

‖xn‖
= 1,

again a contradiction.

Remark. On the matter of continuity a theorem of Mueller ([Mue, Th. 3], see Th. 4.6
below) asserts that in a locally compact group a subadditive p satisfying

lim inf
x→e

(lim sup
y→x

p(y)) ≤ 0

is continuous almost everywhere. This assumption may be compared with that in [BGT,
Th. 3.2.5, formula (3.2.4)].

3.3. Cauchy dichotomy. In this section we demonstrate the impact on the structure
of normed groups of the classic Cauchy dichotomy of homomorphisms; conjugacy is a
homomorphism so, in an appropriate setting, it is either continuous or highly discontin-
uous and so pathological, as mentioned in the Introduction. Thus, since conjugacy is at
the heart of normed groups, normed groups are in turn either topological or pathological
(see e.g. Theorems 3.39–3.41 below, inspired by automatic continuity). The key here is
Darboux’s classical result on automatic continuity [Dar], that an additive function on the
reals is continuous if it is locally bounded, and its later weakening via ‘regularity’ to the
Baire property (for which see below) or Haar-measurability in a locally compact context.
Our aim here is to develop connections between continuity of automorphisms and three
areas: completeness, the Baire property and ‘boundedness’ of automorphisms. In respect
of completeness, the findings (see e.g. Th. 3.37) are in keeping with tradition as exem-
plified by [Kel, Problem 6.Q]; the Baire property yields normed groups as ‘automatically
topological’ (see the earlier cited theorems); boundedness is far more illuminating – in
particular we see that if the KBD holds in the right norm topology with a left-shift in the
standard form (i.e., as in Th. 1.1, with tzm in lieu of t + zm), as opposed to the special
form of Th. 1.2 (yet to be established in Section 5), then the normed group is topological.

In view of the importance of the Baire property to subsequent arguments, we recall
that a set is meagre if it is a countable union of nowhere dense sets, a set is Baire if
it is open modulo a meagre set, or equivalently if it is closed modulo a meagre set (cf.
Engelking [Eng] especially p. 198 Section 4.9 and Exercises 3.9.J, although we prefer
‘meagre’ to ‘of first category’). For examples, see Section 11.
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Definition. Noting that dL(xn, xm) = dR(x−1
n , x−1

m ), call a sequence {xn} bi-Cauchy
(or two-sided Cauchy) if {xn} is both dR- and dL-Cauchy, i.e. both {xn} and {x−1

n }
are dR-Cauchy sequences. Thus a sequence is bi-Cauchy iff it is dS -Cauchy, where dS =

max{dR, dL} is the symmetrization metric. Recall that dS induces a norm, the originating
norm, as ‖x‖S := dS(x, e) = ‖x‖, but does not in general induce the same topology as dR.

Discontinuity of automorphisms may be approached through bi-Cauchy sequences.
Indeed, if a normed group is not topological, then by Th. 3.4 there are a null sequence
zn, a point t, and ε > 0 such that

ε ≤ lim
n
‖tznt−1‖;

then dR(tzn, t) ≥ ε, and tzn is prevented from converging to t. Thus one asks whether
{tzn} has a convergent subsequence {tzm}m∈M (such a sequence would be bi-Cauchy, as
{z−1
n t−1} is Cauchy, since for wn null, wnx→R x for any x).

This approach suggests another: if y = limM tzm, the distance dR(y, t) measures the
discontinuity of λt in the corresponding ‘direction’ {zm}M, since

‖yt−1‖ = dR(y, t) = lim
M
dR(tzm, t) = lim

M
‖γt(zm)‖,

leading to a study of the properties of the oscillation (at eX) of γt as t varies over the
group, which we address later in this subsection. (Note that here ‖y‖ = ‖t‖, so the
maximum dispersion by a left-shift of the null sequence, away from where the right-shift
takes it, is ‖yt−1‖ ≤ 2‖t‖; it is this that the oscillation measures.) We shall see later
that if a normed group is not topological then the oscillation is bounded away from zero
on a non-empty open set, suggesting a considerable amount (in topological terms) of
pathology, in keeping with the Darboux Theorem (cf. Th. 11.22) or [BO-SO, Th. D].

Returning to the bi-Cauchy approach, in order to draw our work closer to the separate
continuity literature (esp. Bouziad [Bou2]), we restate it in terms of the following notion of
continuity due to Fuller [Ful] (in his study of the preservation of compactness), adapted
here from nets to sequences, because of our metric context. (Here one is reminded of
compact operators – cf. [Ru, 4.16].)

Definition. A function f between metric spaces is said to be subcontinuous at x if for
each sequence xn with limit x, the sequence f(xn) has a convergent subsequence.

Thus for f(x) = λt(x) = tx, with t fixed, λt is subcontinuous under dR at e iff for each
null zn there exists a convergent subsequence {tzn}n∈M. We note that λt is subcontinuous
under dR at e iff it is subcontinuous at some/all points x (since tzmx→R yx iff tzm →R y

down the same subsequence M, and xn →R x iff zn := xnx
−1 → e so that znx→R x.)

One criterion for subcontinuity is provided by a form of the Heine-Borel Theorem,
which motivates a later definition.

Proposition 3.32 (cf. [O-Mn, Prop. 2.8]). Suppose that Y = {yn : n = 1, 2, . . .} is an
infinite subset of a normed group X. Then Y contains a subsequence {yn(k)} which is
either dR -Cauchy or is uniformly separated (i.e. for some m satisfies dR(yn(k), yn(h)) ≥
1/m, for all h, k). In particular, if X is locally compact, zn is null, and the ball B‖x‖(e)
is precompact, then yn = xzn contains a dR-Cauchy sequence.
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Proof. We may assume without loss of generality that yn is injective and so identify Y
with N. Define a colouring M on N by setting M(h, k) = m iff m is the smallest integer
such that dR(yh, yk) ≥ 1/m. If an infinite subset I of N is monochromatic with colour n,
then {yi : i ∈ I} is a discrete subset inX. Now partition N3 by putting {u, v, w} in the cells
C<, C=, C> according as M(u, v) < M(v, w), M(u, v) = M(v, w), or M(u, v) > M(v, w).
By Ramsey’s Theorem (see e.g. [GRS, Ch. 1]), one cell contains an infinite set I3. As
C> cannot contain an infinite (descending) sequence, the infinite subset is either in C=,
when {yi : i ∈ I} is uniformly separated, or in C<, when {yi : i ∈ I} is a dR -Cauchy
sequence.

As for the conclusion, the set B‖x‖+ε(e) has compact closure for some ε > 0. But
‖xzn‖ ≤ ‖x‖+‖zn‖, so for large enough n the points xzn lie in the compact set B‖x‖+ε(e),
hence contain a convergent subsequence.

Our focus on metric completeness is needed in part to supply background to as-
sumptions in Section 5 (e.g. Th. 5.1). We employ definitions inspired by weakening the
admissibility condition (adm). We recall from Th. 2.15 that a normed group with (adm) is
a topological group, more in fact: a Klee group, as it has an equivalent abelian norm. We
will see that the property of (only) being a topological group is equivalent to a weakened
admissibility property; a second (less weakened) notion of admissibility – the Cauchy-
admissibility property – ensures that (X, dR) has a group completion. This motivates the
use in Section 5 of the weaker property still that (X, dR) is topologically complete, i.e.
there is a complete metric d on X equivalent to dR.

Definitions. 1. Say that the normed group satisfies the weak admissibility condition,
or (W-adm) for short, if for every convergent {xn} and null {wn},

xnwnx
−1
n → e as n→∞. (W-adm)

Note that the (W-adm) condition has a reformulation as the joint continuity of the left
commutator [x, y]L, at (w, e), when the convergent sequence {xn} has limit x; indeed

xnwnx
−1
n = xnwnx

−1
n w−1

n wn = [xn, wn]Lwn.

Likewise, if the sequence {x−1
n } has limit x−1, then one can write

xnwnx
−1
n = xnwnx

−1
n wnw

−1
n = [x−1

n , w−1
n ]Rw

−1
n .

2. Say that the normed group satisfies the Cauchy admissibility condition, or (C-adm)
for short, if for every Cauchy {xn} and null {wn},

xnwnx
−1
n → e as n→∞. (C-adm)

In what follows, we have some flexibility as to when xn is a Cauchy sequence. One
interpretation is that xn is dR-Cauchy, i.e. ‖xnx−1

m ‖ = dR(xn, xm)→ 0. The other is that
xn is dL-Cauchy; but then ym = x−1

n is dR-Cauchy and we have

xnwnx
−1
n = y−1

n wnyn → e.

The distinction is only in the positioning of the inverse; hence in arguments, as below,
which do not appeal to continuity of inversion, either format will do.
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Lemma 3.33. In a normed group the condition (C-adm) is equivalent to the following
uniformity condition holding for all {xn} Cauchy: for each ε > 0 there is δ > 0 and N
such that for all n > N and all ‖w‖ < δ,

‖xnwx−1
n ‖ < ε.

Proof. For the direct implication, suppose otherwise. Then for some Cauchy {xn} and
some ε > 0 and each δ = 1/k (k = 1, 2, . . .) there is n = n(k) > k and wk with ‖wk‖ < 1/k

such that
‖xn(k)wkx

−1
n(k)‖ > ε.

But wk is null and xn(k) is Cauchy, so from (C-adm) it follows that xn(k)wkx
−1
n(k) → e, a

contradiction.
The converse is immediate.

Definition. For an arbitrary sequence xn, putting

γx(n)(w) := xnwx
−1
n ,

we say that {γx(n)} is uniformly continuous at e if the uniformity condition of Lemma
3.33 holds. Thus that lemma may be interpreted as asserting that {γx(n)} is uniformly
continuous at e for all Cauchy {xn} iff (C-adm) holds.

Our next result strengthens Lemma 3.5 in showing that for inner automorphisms a
weak form of continuity implies continuity.

Lemma 3.34 (Weak Continuity Criterion). For any fixed sequence xn, if for all null
sequences wn we have γx(n(k))(wn(k)) → eX down some subsequence wn(k), then {γx(n)}
is uniformly continuous at e. In particular, for a fixed x and all null sequences wn, if
γx(wn(k))→ eX down some subsequence wn(k), then γx is continuous.

Proof. We are to show that for every ε > 0 there is δ > 0 and N such that for all n > N ,

xnB(δ)x−1
n ⊂ B(ε).

Suppose not. Then there is ε > 0 such that for each k = 1, 2, . . . and each δ = 1/k there
is n = n(k) > k and wk with ‖wk‖ < 1/k and ‖xn(k)wkx

−1
n(k)‖ > ε. So wk → 0. By

assumption, down some subsequence k(h) we have ‖xn(k(h))wk(h)x
−1
n(k(h))‖ → 0. But this

contradicts ‖xn(k(h))wk(h)x
−1
n(k(h))‖ > ε.

The last assertion is immediate from taking xn ≡ x, as the uniform continuity condi-
tion at e reduces to continuity at e.

Theorem 3.35. In a normed group, the condition (C-adm) holds iff the product of
Cauchy sequences is Cauchy.

Proof. We work in the right norm topology and refer to dR-Cauchy sequences.
First we assume (C-adm). Let xn and yn be Cauchy. For m,n large we are to show

that dR(xnyn, xmym) = ‖xnyny−1
m x−1

m ‖ is small. We note that

‖xnwx−1
m ‖ = ‖xnwx−1

n xnx
−1
m ‖ ≤ ‖xnwx−1

n ‖+ ‖xnx−1
m ‖

≤ ‖xnwx−1
n ‖+ dR(xn, xm).
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By (C-adm), we may apply Lemma 3.33 to deduce for w = yny
−1
m and m,n large that

‖xnwx−1
m ‖ is small. Hence so also is dR(xnyn, xmym). That is, the product of Cauchy

sequences is Cauchy.
Before considering the converse, observe that if wn = yny

−1
n+1 is given with yn Cauchy,

then wn is null and with m = n+ 1 we have as n→∞ that

‖xnwnx−1
n ‖ = ‖xnyny−1

m x−1
m xmx

−1
n ‖ ≤ ‖(xnyn)(xmym)−1‖+ ‖xmx−1

n ‖ → 0,

provided xnyn is a Cauchy sequence. We refine this observation below.
Returning to the converse: assume that in X the product of Cauchy sequences is

Cauchy. Let xn and yn be Cauchy. Let wn be an arbitrary null sequence. By Lemma 3.34
it is enough to show that down a subsequence γx(n(k))(wn(k)) → eX . Since we seek an
appropriate subsequence, we may assume (by passing to a subsequence) that without loss
of generality ‖wn‖ ≤ 2−n. We may now solve the equation wn = zn−1z

−1
n for n = 1, 2, . . .

with zn null, by taking z0 = e and inductively

zn = w−1
n zn−1 = w−1

n w−1
n−1 . . . w

−1
1 .

Indeed zn is null, since
‖zn‖ ≤ 2−(1+2+···+n) → 0.

Now, as n→∞ we have

‖xn+1wn+1x
−1
n+1‖ = ‖xn+1x

−1
n (xnznz

−1
n−1x

−1
n−1)xn−1x

−1
n ‖

≤ d(xnzn, xn−1zn−1) + d(xn+1, xn) + d(xn, xn−1)→ 0,

since xn and xnzn are Cauchy. By Lemma 3.34, {γx(n)} is uniformly continuous at e, and
so by Lemma 3.33, (C-adm) holds.

Remark. The proof in fact shows that it is enough to consider products with xn Cauchy
and yn null; since the general case gives

dR(xnyn, xmym) = xnyny
−1
m x−1

n (xnx
−1
m )

and, for yny−1
m small, this is small by an appeal to (C-adm).

Lemma 3.36. (W-adm) is satisfied iff γx is continuous for all x, i.e. iff X is topological.

Proof. We work in the right norm topology. Assume (W-adm) holds. As the constant
sequence xn ≡ x is convergent, it is immediate that γx is continuous. For the converse,
suppose xn →R x and put zn = xnx

−1 (which is null); then xn = znx→R x and

xnwnx
−1
n = zn(xwnx

−1)z−1
n → e,

by the triangle inequality (since ‖zn(xwnx
−1)z−1

n ‖ ≤ ‖xwnx−1‖+2‖zn‖) and so (W-adm)
holds.

Theorem 3.37. For X a normed group, if products of Cauchy sequences are Cauchy then
X is a topological group.

Proof. By Th. 3.35, (C-adm) holds. The latter implies the weak admissibility condition
which, by Lemma 3.33 and Th. 3.4, implies that X is a topological group.
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Definitions. 1. Say that a normed group is bi-Cauchy complete if each bi-Cauchy se-
quence has a limit.

2. For any metric d on X, the relation {xn} ∼d {yn} between d-Cauchy sequences,
defined by requiring d(xn, yn) → 0 (as n → ∞), is an equivalence (by the triangle
inequality). In particular for dS = max{dR, dL}, it defines an equivalence {xn} ∼ {yn}
between bi-Cauchy sequences. It is the intersection of the right and left equivalence
relations, demanding both dR(xn, yn)→ 0 and dL(xn, yn)→ 0.

3. For X a normed group, working modulo ∼ put

X̃ := {{xn} : {xn} is a bi-Cauchy sequence}.

Working in X̃ define

‖{xn}‖ := lim
n
‖xn‖, {xn} · {yn} := {xnyn},

d̃R({xn}, {yn}) := lim
n
‖xny−1

n ‖, d̃L({xn}, {yn}) := lim
n
‖x−1

n yn‖.

(Compare also the sequence space C(G) considered in Section 11.)

The following result is in a thin disguise the standard result on the completion of a
topological group under its ambidextrous uniformity (as under our assumptions X is in
fact a topological space), see e.g. [Kel, Problem 6Q]; here we are merely asserting addi-
tionally that the completion uniformity extends the originating norm and is normable,
provided the uniformity on X is.

Of course X̃ need not be d̃R-complete; indeed it will not be if there are Cauchy se-
quences that are not bi-Cauchy. However, X̃ under d̃R is topologically complete. Indeed
we have d̃S = max{d̃R, d̃L}, and by construction (X̃, d̃S) is complete, and being a topo-
logical group is homeomorphic to (X̃, d̃R), by the Ambidextrous Refinement Principle
(Th. 3.9). Note that (X̃, d̃R) as a metric space has a completion (X̂, d̂), not necessarily a
group, in which of course (X̃,d̃R) is embedded as a Gδ-set.

Theorem 3.38 (Bi-Cauchy completion). If the group-norm of X satisfies (C-adm), then
X̃ is a normed group extending X (isometrically), satisfying (C-adm) (so also a topological
group), in which bi-Cauchy sequences are convergent.

Proof. We work under the right norm topology. By Th. 3.35, products of Cauchy se-
quences in X are Cauchy. Note that {xn} · {yn} ∼ {e} implies that {yn} ∼ {x−1

n }. So
X∼ is equipped with an inversion.

We now verify that ‖ · ‖ is indeed a norm on X∼. We have

‖{xn} · {yn}‖ = lim
n
‖xnyn‖ ≤ lim

n
‖xn‖+ lim

n
‖yn‖,

and
‖{xn}‖ = 0 iff lim

n
‖xn‖ = 0 iff xn → e,

so {xn} ∼ {e}; also

‖{x−1
n }‖ = lim

n
‖x−1

n ‖ = lim
n
‖xn‖ = ‖{xn}‖.

We note that if xn →R x, then

‖{xn} · {x−1}‖ = lim
n
‖xnx−1‖ = 0,
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so that {xn} →R {x} and hence the map x→ {xn} where xn ≡ x isometrically embeds X
into X∼. Thus far X∼ is a normed group. Say that {xn} is d-regular if d(xn, xm) ≤ 2−n

for m ≥ n. If {{xmn }n}m is d̃R-regular with each {xmn } also dR-regular, put yn = xnn.

Then {yn} is the limit of {{xmn }n}m.
Notice that if {wmn } → e, then without loss of generality wnn is null, so we have

xnnw
n
n(xnn)−1 → eX ,

and so X∼ also satisfies (C-adm).

Remarks. 1. The definition of X̃ requires sequences to be bi-Cauchy to achieve bi-
Cauchy completeness. Compare this two-sided condition to that of Prop. 3.13 which uses
bi-uniformly continuous functions, and also [BePe, Prop. 1.1], where in the context of
Auth(X) with the weak refinement topology (that defined in Th. 2.12, as opposed to that
of Th. 3.19, where there is an abelian norm), the two-sided assumptions limn fn = f ∈ XX

and limn f
−1 = g ∈ XX (limits in the supremum metric) yield g = f−1 ∈ Auth(X). (On

this last point see also Lemma 1 of [O-Joint].)
2. If X is complete under dR there is no guarantee that X is closed under products

of Cauchy sequences, so Th. 3.35 does not characterize (C-adm).

We now consider the impact of automatic continuity. Our first result captures the
effect on automorphisms of the result, due to Darboux [Dar], that an additive function
which is locally bounded is continuous.

Definition. Say that a group is Darboux-normed if there are constants κn with κn →∞
associated with the group-norm such that for all elements z of the group

κn‖z‖ ≤ ‖zn‖,
or equivalently, if z has an n-th root,

‖z1/n‖ ≤ 1

κn
‖z‖.

Thus z1/n → e; a related condition was considered by McShane in [McSh] (cf. the
Eberlein-McShane Theorem, Th. 10.1).

Theorem 3.39. A Darboux-normed group is a topological group.

Proof. Fix x. By Theorem 3.4 we must show that γx is continuous at e . By Darboux’s
theorem (Th. 11.22), it suffices to show that γx is bounded in some ball B1/n(e). Suppose
not: then there is wn ∈ Bε(n)(e) with ε(n) = 2−n and

‖γx(wn)‖ ≥ n.

Thus wn is null. We may solve the equation wn = zn−1z
−1
n for n = 1, 2, . . . with zn null,

by taking z0 = e and inductively

zn = w−1
n zn−1 = w−1

n w−1
n−1 . . . w

−1
1 .

Indeed zn is null, since
‖zn‖ ≤ 2−(1+2+···+n) → 0.

Applying the triangle inequality twice,

d(xzn, xzm) ≤ d(xzn, e) + d(e, xzm) = ‖xzn‖+ ‖xzm‖ ≤ 2(‖x‖+ 1),
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as ‖zn‖ ≤ 1. So for all n, we have

‖xwn+1x
−1‖ = ‖xznz−1

n−1x
−1‖ ≤ d(xzn, xzn−1) ≤ 2(‖x‖+ 1).

This contradicts the unboundedness of ‖γx(wn)‖.

Two more results on the effects of automatic continuity both come from the Banach-
Mehdi Theorem on Homomorphism Continuity (Th. 11.11) or its generalization, the
Souslin Graph Theorem (Th. 11.12), both of which belong properly to a later circle of
ideas considered in Section 11 and employ the Baire property.

Theorem 3.40. For X a topologically complete, separable, normed group, if each auto-
morphism γg(x) = gxg−1 is Baire, then X is a topological group.

Proof. We work under dR. Fix g. As X is separable and γg Baire, γg is Baire-continuous
(Th. 11.8) and so by the Banach-Mehdi Theorem (Th. 11.11) is continuous. As g is
arbitrary, we deduce from Th. 3.4 that X is topological.

Remark. Here by assumption (X, dR) is a Polish space. In such a context, abandoning
the Axiom of Choice, one may consistently assume that all functions are Baire and so
that all topologically complete separable normed groups are topological. (See the models
of set theory due to Solovay [So] and to Shelah [She].)

Theorem 3.41 (On Borel/analytic inversion). For X a topologically complete, separable
normed group, if the inversion x→ x−1 regarded as a map from (X, dR) to (X, dR) is a
Borel function, or more generally has an analytic graph, then X is a topological group.

Proof. To apply Th. 11.11 or Th. 11.12 we need to interpret inversion as a homomorphism
between normed groups. To this end, define X∗ = (X, ∗, d∗) to be the metric group with
underlying set X with multiplication x∗y := yx and metric d∗(x, y) = dR(x, y). Then X∗

is isometric with (X, ·, dR) under the identity and d∗ is left-invariant, since d∗(x∗y, x∗z) =

dR(yx, zx) = dR(y, z) = d∗(y, z). Thus X∗ is separable and topologically complete. Now
f : X → X∗ defined by f(x) = x−1 is a homomorphism, which is Borel/analytic (by
the isometry). Hence f is continuous and so is right-to-right continuous. Now by the
Equivalence Theorem (Th. 3.4), the normed group X is topological.

For the connection between continuity, openness and the closed graph property of
homomorphisms, which we just exploited, see [Pet3] and the discussion in [Pet4, esp. VIII].
For related work see Solecki and Srivastava [SolSri], where the group is Baire, separable,
metrizable with continuous right-shifts ρt(s) = st and has Baire-measurable left-shifts
λs(t) = st. Before leaving the issue of automatic continuity, we note that Th. 3.40 and
3.41 have analogues in locally compact, normed groups having the Heine-Borel property
(i.e. a set is compact iff it is closed and norm-bounded) – see [O-LB3]. A further automatic
result that (X, dR) is a topological group is derived in [O-Joint] from the hypotheses that
(X, dR) is non-meagre and (X, dS) is Polish. (See also [O-AB] for the non-separable case
which requires further conditions involving the notion of σ-discreteness.)

We now study the oscillation function in a normed group setting.
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Definition. We put

ω(t) = lim
δ↘0

ωδ(t), where ωδ(t) := sup
‖z‖≤δ

‖γt(z)‖,

and call ω(·) the oscillation function of the normed group. (We will see in Prop. 3.42
that these are finite quantities.) If ω(t) < ε, then ωδ(t) < ε, for some δ > 0. In the light
of this, we will need to refer to the related sets

Ω(ε) := {t : ω(t) < ε}, Ωδ(ε) := {t : ωδ(t) < ε},
Λδ(ε) := {t : d(t, tz) ≤ ε for all ‖z‖ ≤ δ},

so that for d = dR we have Ωδ(ε) ⊆ Λδ(ε) and

Ω(ε) ⊂
⋃
δ∈R+

Λδ(ε) ⊂ Ω(2ε). (cover)

It is convenient on occasion to allow the d in Λδ(ε) to be a general metric compatible
with the topology of X (not necessarily right-invariant).

Remarks. 1. Of course if ω(t) = 0, then γt is continuous.
2. For fixed z and ε > 0, the sets

Fε(z) = {t : d(t, tz) ≤ ε}, and Gε(z) = {t : d(t, tz) < ε},

are closed, respectively open, if ρz(x) = xz is continuous under d, and so

Λδ(ε) := {t : dR(t, tz) ≤ ε for all ‖z‖ ≤ δ} =
⋂
‖z‖≤δ

Fε(z)

is closed. Evidently eX ∈ Gε(z) for ‖z‖ < ε.

Proposition 3.42 (Uniform continuity of oscillation). For X a normed group

ω(t)− 2‖s‖ ≤ ω(st) ≤ ω(t) + 2‖s‖ for all s, t ∈ X.

Hence
0 ≤ ω(s) ≤ 2‖s‖ for all s ∈ X,

and the oscillation function is uniformly continuous and norm-bounded.

Proof. We prove the right-hand side of the first inequality. Fix s, t. By the triangle in-
equality, for all 0 < δ < 1 and ‖z‖ ≤ δ we have that

‖stzt−1s−1‖ ≤ 2‖s‖+ 2‖t‖+ δ ≤ 2‖s‖+ 2‖t‖+ 1,

which shows finiteness of ωδ(st) and ωδ(t), and likewise that

‖stzt−1s−1‖ ≤ 2‖s‖+ ‖tzt−1‖ ≤ ωδ(t) + 2‖s‖.

Hence for all δ > 0,
ω(st) ≤ ωδ(st) ≤ ωδ(t) + 2‖s‖.

Passing to the limit, one has
ω(st) ≤ ω(t) + 2‖s‖.

From here
ω(t) = ω(s−1st) ≤ ω(st) + 2‖s−1‖,
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i.e.
ω(t)− 2‖s‖ ≤ ω(st).

Also since ω(eX) = 0, the substitution t = eX gives ω(s) ≤ ω(eX) + 2‖s‖, the final
inequality.

Now, working in the right norm topology, let ε > 0 and put δ = ε/2. Fix x and
consider y ∈ Bδ(x) = Bδ(eX)x. Write y = wx with ‖w‖ ≤ δ; then taking s = w and
t = x we have

ω(x)− 2δ ≤ ω(y) ≤ ω(x) + 2δ,

i.e.
|ω(y)− ω(x)| ≤ ε for all y ∈ Bε/2(x).

Thus the oscillation as a function from X to the additive reals R is bounded in the
sense of the application discussed after Prop. 2.15.

Our final group of results and later comments rely on density ideas and on the following
definition.

Definition. A point x is said to be in the topological centre ZΓ(X) of a normed group
X if γx is continuous (at eX , say).

The theorem below shows that an equivalent definition could refer to x such that λx
is continuous in (X, dR) (cf. [HS, Def. 2.4] in the context of semigroups, where one does
not have inverses); we favour a definition introducing the concept in terms of the norm,
rather than one of the associated metrics.

Proposition 3.43. The topological centre ZΓ of a normed group X is a closed subsemi-
group; it comprises the set of t such that λt is continuous under dR. Furthermore, if X
is separable and topologically complete the topological centre is a closed subgroup.

Proof. Since γxy = γx ◦ γy, the centre is a subsemigroup. Since γt = λt ◦ ρt−1.and λt =

ρt ◦ γt, we have t ∈ ZΓ iff λt is continuous. As for its being closed, suppose that xn →R x

with xn ∈ ZΓ, zn → e, and ε > 0. It is enough to prove that λx is continuous at eX
(as dR(xtn, xt) = dR(xzn, x) and zn := tnt

−1 → e iff tn →R t). There is M such that
dR(x, xM ) < ε/3, and N such that dR(xMzn, x) < ε/3 for n > N (as xM ∈ ZΓ). So for
n > N we have

dR(xzn, x) ≤ dR(xzn, xMzn) + dR(xMzn, x) ≤ 2dR(x, xM ) + dR(xMzn, x) < ε.

Thus xzn → x for each null zn. Thus λx is continuous at eX and hence continuous.
Now suppose that X is completely metrizable and separable. For t ∈ ZΓ the homo-

morphism γt is continuous, so has a closed graph Φ. But Φ may be viewed as the graph of
the inverse homomorphism (γt)

−1 = γt−1 , so by the Souslin Graph Theorem (Th. 11.12)
γt−1 is continuous, i.e. t−1 ∈ ZΓ.

The next two results stand in contrast to the possible pathology, as summarized in
Th. 3.50 below. We show in Th. 3.49 that if a normed group is topological just ‘near e’
(in no matter how small a neighbourhood), then it is topological globally. In fact being
topological just ‘somewhere’ is enough (Th. 3.50). This necessitates an appeal to the



58 N. H. Bingham and A. J. Ostaszewski

Subgroup Dichotomy Theorem for normed groups, a version of the Banach-Kuratowski
Theorem which we discuss much later in Th. 6.13.

Theorem 3.44. In a normed group X, connected and Baire under the right norm topol-
ogy, if ω = 0 in a neighbourhood of eX , then X is a topological group.

Proof. If ω = 0 in a neighbourhood of e, then e is an interior point of ZΓ, so let V :=

Bε(e) ⊆ ZΓ, for some ε > 0. Then V −1 = V , and so, by the semigroup property of ZΓ

(Th. 3.43), U :=
⋃
n∈N V

n is an open subgroup of ZΓ. As U is Baire and non-meagre, by
Th. 6.13 it is clopen and so is the whole of X (in view of connectedness). So X = ZΓ and
again by Th. 3.4 X is a topological group.

Theorem 3.45. In a topologically complete, separable, connected normed group X , if
the topological centre is non-meagre, then X is a topological group.

Proof. The centre ZΓ is a closed, hence Baire, subgroup. If it is non-meagre, by Th. 6.13
it is clopen and hence the whole of X (by connectedness). Again by Th. 3.4, X is a
topological group.

Remark. Suppose the normed group X is topologically complete and connected. Under
the circumstances, by the Squared Pettis Theorem (Th. 5.8), since ZΓ is closed and so
Baire, if non-meagre it contains eX as an interior point of (ZΓZ

−1
Γ )2; then ZΓ generates

the whole of X. But as ZΓ is only a semigroup, we cannot deduce that X is a topological
group.

We now focus on conditions which yield ‘topological group’ behaviour at least ‘some-
where’. Our analysis via ‘oscillation’ sharpens Montgomery’s result concerning ‘separate
implies joint continuity’.

A semitopological metric group X is a group with a metric that is not necessarily
invariant but with right-shifts ρy(x) = xy and left-shifts λx(y) = xy continuous (so that
multiplication is separately continuous). Montgomery [Mon2] proves that, in a semitopo-
logical metric group, joint continuity is implied by completeness. From our perspective,
we may disaggregate his result into three steps: a simple initial observation, a cate-
gory argument (Prop. 3.46), and an appeal to oscillation. For a general metric d which
defines the context of the first of these, we must interpret ‖z‖ as d(z, e) and Ω(ε) as
{t : (limδ↘0 sup‖z‖≤δ d(tz, t)) < ε}. The latter set refers to left-shifts, so the language of
the initial observation corresponds to left-shift continuity.

Initial Observation. In a Baire, left topological (in particular a semitopological) metric
group, for each non-empty open set W and ε > 0, the set Ω(ε) ∩W is non-meagre.

Proof. Let ε > 0. On taking d in place of dR, this follows from (cover), since for t ∈ W ,
λt is continuous at e and so there is δ > 0 such that t ∈ Λδ(ε/2) ∩W ⊆ Ω(ε) ∩W . The
latter set is thus non-empty and open, so non-meagre.

The rest of his argument, using a general metric d, relies on the weaker property em-
bodied in the Initial Observation, that each set Ω(ε) is non-meagre in any neighbourhood.
So we may interpret his arguments in a normed group context to yield two interesting
results. (The first may be viewed as defining a ‘local metric admissability condition’,
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compare Prop. 2.14 and the ‘uniform continuity’ of Lemma 3.5.) In Th. 3.46 below we
are able to relax the hypothesis of Montgomery’s Theorem (Th. 3.47).

Proposition 3.46 (Montgomery’s Uniformity Lemma, [Mon2, Lemma]). For a normed
group X under its right norm topology, Baire in this topology, and ε > 0, if Ω(ε) ∩ U is
non-meagre for some open set U , then there are δ = δ(ε) > 0 and an open V ⊂ U such
that V ⊆ Λδ(ε), i.e., dR(t, tz) ≤ ε for all ‖z‖ ≤ δ and t ∈ V. In particular, if in an open
set U the oscillation is less than ε at points of a non-meagre set, then it is at most ε at
all points of some non-empty open subset of U.

Proof. As Ωδ(ε) ⊆ Λδ(ε) (with d = dR), we have

Ω(ε) ∩ U ⊂
⋃

1/δ∈N

Λδ(ε) ∩ U.

So if U ∩ Ω(ε) is non-meagre, then U ∩ Λδ(ε) is non-meagre for some δ > 0 and so, by
Baire’s Theorem, dense in some open V with clV ⊂ H. But Λδ(ε) is closed, so V ⊂ Λδ(ε).

Thus d(t, tz) ≤ ε for all ‖z‖ ≤ δ and t ∈ V.

Proposition 3.47 (Montgomery’s Joint Continuity Theorem, [Mon2, Th. 1]). Let X be
a normed group, locally complete in the right norm topology, and W a non-empty open
set. If Ω(ε) ∩W is non-meagre for each ε > 0, then there is w ∈W with γw continuous.
So if Ω(ε) ∩ U is non-meagre for each ε > 0 and each non-empty U ⊆ W , then W ∩ ZΓ

is dense in W.
In particular, if Ω(ε)∩U is non-meagre for each ε > 0 and every open set U , then X

is a topological group.
More generally, if for some open W and all ε > 0 the set Ω(ε) ∩W is non-meagre

in W , and X is separable and connected, then X is a topological group.

Proof. Working in the right topology, and by Prop. 3.46 taking successively ε(n) = 2−n

for ε, we may choose inductively δ(n) and open sets Un with Un+1 ⊆ Un such that
Un+1 ⊆ Λδ(n)(ε(n)). So if w ∈

⋂
Un, then for each n we have ωδ(n)(w) ≤ ε(n), so that

ω(w) = 0.

The final assertion follows by Prop. 3.43, since now the centre ZΓ is dense in the
space.

The preceding result, already a sharpening of Montgomery’s original result, says that
if X is not a topological group then the oscillation is bounded away from zero on a co-
meagre set. But we can improve on this. It will be convenient (cf. Th. 3.48 below) to
make the following

Definition. Working in the right norm topology (X, dR), call t an ε-shifting point (on
the left) if there is δ > 0 such that for ‖z‖ ≤ δ,

dR(t, tz) < ε,

equivalently, in oscillation function terms, ωδ(t) ≤ ε (since ‖tzt−1‖ ≤ ε for ‖z‖ ≤ δ).

Remarks. 1. A sequential version may be formulated: call t an ε-shifting point for the
null sequence zn if there exists N(ε) such that for m > N(ε),

dR(t, tzm) < ε.
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Then t is an ε-shifting point iff t is ε-shifting for every null sequence. Indeed, if t is
not an ε-shifting point, then for each δ = 1/n there is zn with ‖zn‖ < 1/n such that
dR(t, tzn) ≥ ε, so t is not ε-shifting for this null sequence.

2. In the notation associated with oscillation, t is ε-shifting for {zn} if

t ∈ Hε({zn}) :=
⋃
n

Gε(zn).

3. Evidently, if t is an ε-shifting point for each ε > 0, then γt is continuous (being
continuous at e) and so a member of the topological centre ZΓ(X) of the normed group.

4. The sequential version is motivated by the Kestelman-Borwein-Ditor Theorem of
Section 1 (Th. 1.2) which, roughly speaking, says that tzn → t generically. (See Cor.
3.50.)

5. In referring to this property, the theorem which follows assumes something less
than that the centre ZΓ is dense, only that the open set Hε({zn}) is dense for each ε > 0

and each {zn}.

Theorem 3.48 (Dense Oscillation Theorem). In a normed group X,⋂
n∈N

cl[Ω(1/n)] =
⋂
n∈N

Ω(1/n) = ZΓ.

Hence, if for each ε > 0 the ε-shifting points are dense, equivalently Ω(ε) = {t : ω(t) < ε}
is dense for each ε > 0, then the normed group is topological. More generally, if for some
open W and all ε > 0 the set Ω(ε) ∩W is dense in W , then ω = 0 on W ; in particular,

(i) if eX ∈ W and X is connected and Baire under its norm topology, then X is a
topological group,

(ii) if X is separable, connected and topologically complete in its norm topology, then X
is a topological group.

Proof. The opening assertion follows from the continuity of ω. For ε > 0, if Ω(ε) is dense
on W , then clW ⊆ cl Ω(ε). Hence, if Ω(ε) is dense on W for all ε > 0, clW ⊆ ZΓ. So
if W = X = ZΓ, i.e. γs is continuous for all s ∈ X, then the conclusion follows from
the Equivalence Theorem (Th. 3.4). For a more general W , the conclusion follows from
Th. 3.45.

Remark. It is instructive to see how the density property of the last theorem bestows the
ε-shifting property to nearby points. Fix s and ε > 0. For n > 1/ε, let t ∈ Ω(1/n)∩Bε(s).
Then for some δ = δ(n) we have ωδ(t) ≤ 1/n, equivalently d(tz, t) ≤ 1/n for ‖z‖ ≤ δ,
and so for such z,

dR(sz, s) ≤ dR(sz, tz) + dR(tz, t) + dR(t, s) ≤ 2dR(s, t) + 1/n ≤ 3ε.

Thus ωδ(s) ≤ 3ε. (Since ε > 0 was arbitrary, ω(s) = 0, so γs is continuous, and so
s ∈ ZR.) We use this idea several times over in the next result.

We now give a necessary and sufficient criterion for a normed group to be topological
by referring not to continuity, but to approximation of left-shifts by right-shifts. This
turns out to be equivalent both to a commutator condition and to a shifting property
condition.
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An extended comment on the commutator condition is in order, because the condition
finesses the descriptive character of the relation x = yz. Proposition 3.49 below employs
the following ‘commutator oscillation’ set (and its density):

C(ε) :=
⋃
n∈N

C1/n(ε), where

Cδ(ε) :=
⋂
‖z‖≤δ

{y : ‖zyz−1y−1‖ ≤ ε} =
⋂
‖z‖≤δ

{y : dR(zy, yz) ≤ ε}.

This is an ‘oscillation set’, since ‖γy(z)‖ − ‖z‖ ≤ ‖[z, y]L‖ ≤ ‖γy(z)‖ + ‖z‖; indeed one
might refer to ω̄(y) := limδ↘0 sup‖z‖≤δ ‖zyz−1y−1‖, but for the fact that ω̄(y) = ω(y).

Furthermore,
⋂
n∈N C(1/n) = ZΓ, since for δ < ε we have the ‘inner regularity of C’:

Λδ(ε) ⊆ Cδ(2ε), and the ‘outer regularity of C’: Cδ(ε) ⊆ Λδ(2ε). So, since density is the
vehicle of proof, one may carry over the proof of the Montgomery Theorem (Th. 3.47) with
cl[Cδ(ε)] in lieu of Λδ(ε). Note that these inclusions permit use of Cδ(ε) even if the latter
has poor descriptive character (i.e. we do not need to know anything about the relation
x = yz). Of course, forX separable and topologically complete, if {(y, z) : dR(yz, zy) ≤ ε}
has analytic graph, then the set Cδ(ε) is co-analytic (complement of a Souslin-F set, see
Section 11 for background), because

y /∈ Cδ(ε) ⇔ (∃z ∈ Bδ(eX))[dR(yz, zy) ≤ ε].

Under these circumstances, Cδ(ε) is Baire by Nikodym’s Theorem (Th. 11.5); but Prop.
3.49 does not need this.

The next result is, for normed groups, a sharpening of the Montgomery Theorem
(Th. 3.47), in view of Montgomery’s Initial Observation above that, for a semitopological
group, each set Ω(ε) ∩W is non-meagre for W a non-empty open set (and in particular
each set Ω(ε) is dense). This arises from our use of d = dR, when Montgomery uses
an arbitrary (compatible) metric d in Th. 3.46, and so relegates the implementation of
category to the last rather than an earlier step.

Proposition 3.49 (Left-right Approximation Criterion). For W a non-empty right-open
subset of a normed group X, the following are equivalent:

(a) For each t ∈W and each η > 0, there are yη and δ > 0 such that dR(tz, zyη) ≤ η for
all ‖z‖ ≤ δ, i.e. for each t ∈W the left-shift λt may be locally approximated near the
identity by a right-shift ρy.

(b) For each ε > 0, the set C(ε) = {y : (∃δ > 0)[dR(yz, zy) ≤ ε for all all ‖z‖ ≤ δ]} is
dense in W – i.e. C(ε) ∩W is dense in W.

(c) For each ε > 0, the set Ω(ε) = {t : (∃δ > 0)[dR(tz, t) < ε for all ‖z‖ ≤ δ]} is dense
in W.

Suppose that for each t ∈W the left-shift λt may be locally approximated near the identity
by a right-shift. Then:

(i) W ∩ ZΓ is dense in W ;
(ii) ω(t) = 0 for all t ∈W.

In particular, if W = X, then X is topological.
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For a general W , as above,

(i) if eX ∈ W and X is connected and Baire (under its norm topology), then X is a
topological group,

(ii) if X is separable, connected and topologically complete (in its norm topology), then
X is a topological group.

Proof. We first verify that (a)⇒(b)⇒(c)⇒(a).
Assume (a). Let ε > 0. Consider a non-empty U ⊆ W. Pick t ∈ U and suppose that

Bη(t) ⊆ U with η < ε. By assumption, there is yη = yη(t) such that for some δ = δ(η) < η

we have
dR(tz, zyη) ≤ η/2 for all ‖z‖ ≤ δ.

Then in particular dR(t, yη) ≤ η/2 < η, and also for all ‖z‖ ≤ δ,

dR(yηz, zyη) ≤ dR(yηz, tz) + dR(tz, zyη) = dR(yη, t) + dR(tz, zyη) ≤ η < ε.

Thus yη ∈ Bη(t) ∩ C(ε) ⊆ U ∩ C(ε). That is, (b) holds.
Assume (b). Consider a non-empty U ⊆ W. Pick t ∈ U and suppose that Bη(t) ⊆ U

with η < ε/3. By assumption, there is yη = yη(t) ∈ Bη(t) such that for some δ = δ(η) < η

we have
dR(yηz, zyη) ≤ η for all ‖z‖ ≤ δ.

We prove that yη is a 3η-shifting point and so an ε-shifting point, i.e. that

dR(yηz, yη) ≤ 3η for all ‖z‖ ≤ δ.

Indeed, we have

dR(yηz, yη) ≤ dR(yηz, zyη) + dR(zyη, yη) = dR(yηz, zyη) + dR(z, e) ≤ 2η + δ < 3η < ε.

Thus, yη ∈ Bη(t) ∩ Ω(ε) ⊆ U ∩ Ω(ε). That is, (c) holds.
Now suppose that (c) holds. Consider t ∈ W and ε > 0. Suppose that Bη(t) ⊆ W

with η < ε/2. By assumption, there is yη = yη(t) such that for some δ = δ(η) < η we
have

dR(yηz, zyη) ≤ η for all ‖z‖ ≤ δ.

Hence
dR(tz, zyη) ≤ dR(tz, yηz) + dR(yηz, zyη) ≤ 2η < ε.

So for y = yη, we have dR(tz, zy) < ε for all ‖z‖ ≤ δ. Thus (a) holds.
Now that we have verified the equivalences, suppose that (a) holds.
From (c), for t ∈ W and any ε > 0, we have ω(t) ≤ ωδ(ε)(t) ≤ ε. As ε > 0 was

arbitrary, we have ω(t) = 0. Hence if W = X, then X = ZΓ and the group is topological.
The other two conclusions follow from Th. 3.44 and 3.45.

Remark. In the penultimate step above with W = X, one can take ε > 0; then for
0 < η ≤ ε we have d(t, yη(t)) ≤ η, and ω(yη) < 3η ≤ 3ε, so the points {yη(t) : t ∈ X,
0 < η ≤ ε} ⊂ Ω3ε are dense in X. Then by Th. 3.48 the group is topological.

In the next result we ask that KBD holds with left-shifts in a right norm topology.
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Corollary 3.50. Let X be a normed group, Baire in its right norm topology. Suppose
KBD holds in X in the following form: for each null zn and each non-meagre, Baire
set T , there are t ∈ T and an infinite Mt such that tzm ∈ T for m ∈Mt. Then, for each
ε > 0, S(ε) = X, i.e. every point is an ε-shifting point for any ε > 0. In particular, X
is a topological group.

Proof. Suppose not. Then there is x and ε > 0 such that x is not ε-shifting, i.e. for each
n there is zn ∈ B1/n(x) such that

d(x, xzn) ≥ ε.

Let η < ε/4. Since zn is null and Bη(x) is open (so Baire) and non-meagre, by the
assumed KBD there are t ∈ Bη(x) and an infinite Mt such that tzm ∈ Bη(x) for m ∈Mt.

So, since d(t, tzm) < 2η, for any m ∈Mt,

dR(x, xzm) ≤ dR(x, t) + dR(t, tzm) + dR(tzm, xzm) = 2dR(x, t) + dR(t, tzm) < 4η < ε,

a contradiction.
Thus X = S(ε), for each ε > 0. By Th. 3.49, X is a topological group.

Theorem. 3.51 is a corollary of the Dense Oscillation Theorem (Th. 3.48) and indicates
a ‘Darboux-like’ pathology when the normed group is not topological.

Theorem 3.51 (Pathology Theorem). If a normed group X is not a topological group,
then there is an open set on which the oscillation function is uniformly bounded away
from 0.

Proof. This follows from the continuity of ω at any point t where ω(t) > 0. This also
follows from Th. 3.48, since for some ε > 0, the open set U := X \ cl[Ω(ε)] is non-empty,
and ω(t) ≥ ε for t ∈ U , as t /∈ Ω(ε).

By way of a final clarification of our interest in ε-shifting points, we return to the
literature of ‘separate implies joint continuity’ and in particular to the key notion of
quasi-continuity, which we adapt here to a metric context (for further information see
e.g. [Bou2]).

Definition. A map f : X → Y between metric spaces is quasi-continuous at x if for
ε > 0 there are a ∈ BXε (x) and δ > 0 such that

f(u) ∈ BYε (f(x)) for all u ∈ BXδ (a).

The following result connects quasi-continuity of left-shifts λt with ε-shifting.

Theorem 3.52. Let X be a normed group.

(i) The left-shift λt(x), as a self-map of X under the right norm topology, is quasi-
continuous at some point/all points x iff for every ε > 0 there are y = y(ε) and
δ = δ(ε) > 0 such that

dL(t, y(ε)) < ε and dR(tz, y(ε)) < ε for ‖z‖ < δ.

(ii) If λt is quasi-continuous, then t is an ε-shifting point for each ε > 0.
(iii) In these circumstances, γt has zero oscillation, hence γt and so λt is continuous.
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Proof. (i) This is a routine transcription of the last definition, so we omit the details.
The point y of the theorem is obtained from the point a of the definition via y := ta−1.

(ii) This conclusion comes from taking z = e and applying the triangle inequality to
obtain

dR(tz, t) < 2ε for ‖z‖ < δ(ε).

(iii) It follows from (ii) that ω(t) = 0, so that γt is continuous at e and hence
everywhere; λt is then continuous, being a composition of continuous functions, since
tx = ρt(γt(x)).

Of course in the setting above tm := y(1/m) converges to t under both norm topolo-
gies.

This gives a restatement of a preceding result (Th. 3.46).

Theorem 3.53. In a normed group X with right norm topology, if for a dense set of t
the left-shifts λt(x) are quasi-continuous, then the normed group is topological.

Alternatively, note that under the current assumptions the topological centre ZΓ is
dense, and being closed is the whole of X. Our closing comment addresses the opening
issue of this subsection – converging subsequences – in terms of subcontinuity. We recall
a result of Bouziad, again specialized to our metric context.

Theorem 3.54 ([Bou2, Lemma 2.4]). For f : X → Y a quasi-continuous map between
metric spaces with X Baire, the set of subcontinuity points of f is a dense subset of X.

The result confirms that if λt is quasi-continuous then it is subcontinuous on a dense
set of points, a fortiori at one point, and so at e by the remarks to the definition of
subcontinuity.

4. Subadditivity

Definition. Let X be a normed group. A function p : X → R is subadditive if

p(xy) ≤ p(x) + p(y).

Thus a norm ‖x‖ and so also any g-conjugate norm ‖x‖g are examples. Recall from [Kucz,
p. 140] the definitions of upper and lower hulls of a function p:

Mp(x) = lim
r→0+

sup{p(z) : z ∈ Br(x)},

mp(x) = lim
r→0+

inf{p(z) : z ∈ Br(x)}.

(Usually these are of interest for convex functions p.) These definitions remain valid for
a normed group. (Note that e.g. inf{p(z) : z ∈ Br(x)} is a decreasing function of r.) We
understand the balls here to be defined by a right-invariant metric, i.e.

Br(x) := {y : d(x, y) < r} with d right-invariant.

These are subadditive functions if the group G is Rd. We reprove some results from
Kuczma [Kucz], thus verifying the extent to which they may be generalized to normed
groups. Only our first result appears to need the Klee property (bi-invariance of the
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metric); fortunately this result is not needed in the sequel. The Main Theorem (Th. 4.5)
below concerns the behaviour of p(x)/‖x‖.

Lemma 4.1 (cf. [Kucz, L. 1 p. 403]). For a normed group G with the Klee property, mp

and Mp are subadditive.

Proof. For a > mp(x) and b > mp(y) and r > 0, let d(u, x) < r and d(v, y) < r satisfy

inf{p(z) : z ∈ Br(x)} ≤ p(u) < a and inf{p(z) : z ∈ Br(y)} ≤ p(v) < b.

Then, by the Klee property,

d(xy, uv) ≤ d(x, u) + d(y, v) < 2r.

Now
inf{p(z) : z ∈ B2r(xy)} ≤ p(uv) ≤ p(u) + p(v) < a+ b,

hence

inf{p(z) : z ∈ B2r(xy)} ≤ inf{p(z) : z ∈ Br(x)}+ inf{p(z) : z ∈ Br(x)},

and the result follows on taking limits as r → 0 + .

Lemma 4.2 (cf. [Kucz, L. 2 p. 403]). For a normed group G, if p : G→ R is subadditive,
then

mp(x) ≤Mp(x) and Mp(x)−mp(x) ≤Mp(e).

Proof. Only the second assertion needs proof. For a > mp(x) and b < Mp(x), there exist
u, v ∈ Br(x) with

a > p(u) ≥ mp(x), and b < p(v) ≤Mp(x).

So

b− a < p(v)− p(u) ≤ p(vu−1u)− p(u) ≤ p(vu−1) + p(u)− p(u) = p(vu−1).

Now
‖vu−1‖ ≤ ‖v‖+ ‖u‖ < 2r,

so vu−1 ∈ B2r(e), and hence

p(vu−1) ≤ sup{p(z) : z ∈ B2r(e)}.

Hence, with r fixed, taking a, b to their respective limits,

Mp(x)−mp(x) ≤ sup{p(z) : z ∈ B2r(e)}.

Taking limits as r → 0+, we obtain the second inequality.

Lemma 4.3. For a normed group G and any subadditive function f : G → R, if f is
locally bounded above at some point, then it is locally bounded at every point.

Proof. We repeat the proof in [Kucz, Th. 2 p. 404], thus verifying that it continues to
hold in a normed group.

Suppose that p is locally bounded above at t0 by K. We first show that f is locally
bounded above at e. Suppose otherwise that for some tn → e we have p(tn) → ∞. Now
tnt0 → et0 = t0, and so for large n

p(tn) = p(tnt0t
−1
0 ) ≤ p(tnt0) + p(t−1

0 ) ≤ K + p(t−1
0 ),
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a contradiction. Hence p is locally bounded above at e, i.e.Mp(e) <∞. But 0 ≤Mp(x)−
mp(x) ≤Mp(e), hence both Mp(x) and mp(x) are finite for every x. That is, p is locally
bounded above and below at each x.

The next result requires that both f(x) and f(x−1) be Baire functions; this happens
for instance when (i) f is even, i.e. f(x) = f(x−1), with f(x) := ‖gxg−1‖ an example of
some interest here (cf. Th. 3.27 and in connection with the oscillation function of Section
3.3), and (ii) both f(x) and x→ x−1 are Baire, so that the normed group is a topological
group (Th. 3.41).

Proposition 4.4 ([Kucz, Th. 3 p. 404]). For a topologically complete normed group G
and a Baire function f : G → R with x → f(x−1) Baire, if f is subadditive, then f is
locally bounded.

Proof. By the Baire assumptions, for some k, Hk := {x : |f(x)| < k and |f(x−1)| < k}
is non-meagre. Note the symmetry: x ∈ Hk iff x−1 ∈ Hk. Suppose that f is not locally
bounded; then it is not locally bounded above at some point u, i.e. there exists un → u

with
f(un)→ +∞.

Put zn := unu
−1; by the KBD Theorem (Th. 1.2) (or Th. 5.1), for some k ∈ ω, t, tm ∈ Hk

and an infinite M, we have

{tt−1
m unu

−1tm : m ∈M} ⊆ Hk.

By symmetry, for m in M, we have

f(um) = f(tmt
−1(tt−1

m umu
−1tm)t−1

m u)

≤ f(tm) + f(t−1) + f(tt−1
m umu

−1tm) + f(t−1
m ) + f(u) ≤ 4k + f(u),

which contradicts f(um)→ +∞.

We recall that vanishingly small word-nets were defined in Section 3.2.

Theorem 4.5. Let G be a normed group with a vanishingly small word-net. Let p : G→
R+ be Baire, subadditive with

β := lim sup
‖x‖→0+

p(x)

‖x‖
<∞.

Then
lim sup
‖x‖→∞

p(x)

‖x‖
≤ β <∞.

Proof. Let ε > 0. Let b = β + ε. Hence on Bδ(e) for δ small enough to guarantee the
existence of Zδ and Mδ we have also

p(x)

‖x‖
≤ b.

By Lemma 4.3, we may assume that p is bounded by some constant K in Bδ(e). Let
‖x‖ > Mδ.

Choose a word w(x) = z0z1 . . . zn with ‖zi‖ = δ(1 + εi) with |εi| < ε, with

p(xi) < b‖xi‖ = bδ(1 + εi) and d(x,w(x)) < δ,
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i.e. x = w(x)s for some s with ‖s‖ < δ and

1− ε ≤ n(x)δ

‖x‖
≤ 1 + ε.

Now

p(x) = p(ws) ≤ p(w) + p(r) =
∑

p(zi) + p(s)

≤
∑

bδ(1 + εi) + p(s) = nbδ(1 + ε) +K.

So
p(x)

‖x‖
≤ nδ

‖x‖
b(1 + ε) +

M

‖x‖
.

Hence we obtain
p(x)

‖x‖
≤ b(1 + ε)2 +

M

‖x‖
.

So in the limit lim sup‖x‖→∞ p(x)/‖x‖ < β, as asserted.

We note a related result, which requires the following definition. For p subadditive,
put (for this section only)

p∗(x) = lim inf
y→x

p(y), p∗(x) := lim sup
y→x

p(y).

These are subadditive and lower (resp. upper) semicontinuous with p∗(x) ≤ p(x) ≤ p∗(x).

Theorem 4.6 (Mueller’s Theorem – [Mue, Th. 3]). Let p be subadditive on a locally
compact topological group G and suppose

lim inf
x→e

p∗(x) ≤ 0.

Then p is continuous almost everywhere.

We now return to the proof of Theorem 3.20, delayed from Section 3.2.

Proof of Theorem 3.20. Apply Theorem 4.5 to the subadditive function p(x) := ‖f(x)‖,
which is continuous and so Baire. Thus there is X such that, for ‖x‖ ≥ X,

‖f(x)‖ ≤ β‖x‖.

Taking ε = 1 in the definition of a word-net, there is δ > 0 small enough so that Bδ(e) is
precompact and there exists a compact set of generators Zδ such that for each x there is
a word of length n(x) employing generators of Zδ with n(x) ≤ 2‖x‖/δ. Hence if ‖x‖ ≤ X
we have n(x) ≤ 2M/δ. Let N := [2M/δ], the least integer greater than 2M/δ. Note that
ZNδ := Zδ · . . . · Zδ (N times) is compact (since the group is topological). The set BX(e)

is covered by the compact swelling K := cl[ZNδ Bδ(e)]. Hence, we have

sup
x∈K

‖f(x)‖
‖x‖

<∞,

(referring to βg <∞, and continuity of ‖x‖g/‖x‖ away from e), and so

M ≤ max{β, sup
x∈K
‖f(x)‖/‖x‖} <∞.



68 N. H. Bingham and A. J. Ostaszewski

5. Generic dichotomy

In this section we develop the first of several (in fact six) bi-topological approaches to
a generalization of the Kestelman-Borwein-Ditor Theorem (KBD) in the introduction
(Th. 1.1) We will see later just how useful the result can be in several areas: we regard
it as a measure-category analogue of the celebrated probabilistic method of Erdős (for
which see e.g. [AS], [TV], [GRS]), here expanded to a theorem on the generic alternative
– a generic dichotomy (as defined below). The aproach of this section, inspired by a close
reading of [BHW], ultimately rests on one-sided completeness in the underlying normed
structure, namely that the right (or, left) norm topology be completely metrizable on
some non-meagre subspace. (The two choices are equivalent, since (X, dR) and (X, dL)

are isometric – see Prop. 2.15.) This embraces groups of homeomorphisms that may not
be topological groups.

For background on topological group completeness, refer to [Br-1] for a discussion of
the three uniformities of a topological group. (There the one-sided completeness is implied
by the ambidextrous uniformity being complete, cf. [Kel, Ch. 6 Problem Q].) Compare
also Th. 3.9 on ambidextrous refinement. Actually we apparently need only local versions
of topological completeness, so we recall Brown’s Theorem that if a topological group is
locally complete then it is paracompact and topologically complete. (In fact the structure
is even more tightly prescribed, see [Br-2].)

Alternative approaches are given in subsequent sections with modified assumptions.
To formulate a first generalization of KBD we will need a pair of definitions. To

motivate them recall (see e.g. [Eng, 4.3.23 and 24]) that a metric space A is completely
metrizable iff it is a Gδ-subset of its completion (i.e. A =

⋂
n∈ω Gn with each Gn open in

the completion of A), in which case it has an equivalent metric under which it is complete.
Thus when (X, dR) is complete, a Gδ-subset A of X has a metric ρ = ρA, equivalent to
dR, under which (A, ρ) is complete. (So for each a ∈ A and ε > 0 there is δ > 0 such
that, on A, Bδ(a) ⊆ Bρε (a), where Bδ(a) refers to dR, and this enables the construction
of ρ-Cauchy sequences.)

With this in mind we may return to Brown’s theorem on completeness implied by local
completeness, to note that in the metrizable context the result follows from a localization
principle of Montgomery in [Mont0] asserting in particular that a subspace that is locally
a Gδ at all its points is itself a Gδ. (One need only embed a metric space in its own
completion.)

Definition. Say that a normed group (X, ‖ · ‖) is topologically complete if (X, dR) is
completely metrizable as a metric space; equivalently, one may require that (X, dL) be
topologically complete, as the latter is homeomorphic to (X, dR) and topological com-
pleteness is indeed topological (see [Eng, Th. 4.3.26 taken together with Th. 3.9.1] –
there the term Čech-complete is used). In particular, a locally compact normed group is
topologically complete.

The last definition places a stringent condition on a normed group: the only subgroups
of a topologically complete group which are themselves topologically complete are Gδ. Our
related second definition represents a significant weakening of topological completeness,
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as non-meagre Borel subspaces will have this property (by Th. 5.2 below, since they
have the Baire property). The format allows us to capture a feature of measure-category
duality: both exhibit Gδ inner-regularity modulo sets which we are prepared to neglect.
This generalizes a definition given in [BO-K] for the case of the real line.

Definition. For X a normed group call A ⊂ X almost complete in category/measure if

(i) (A is non-meagre and) there is a meagre set N such that A \ N is a Gδ completely
metrizable, or, respectively,

(ii) X is a locally compact topological group (hence topologically complete) and for each
ε > 0 there is a Haar-measurable set N with m(N) < ε and A \N a Gδ.

The term ‘almost complete’ (in the category sense above) is due to E. Michael (see
[Michael]), but the notion was introduced by Frolík in terms of open ‘almost covers’ (i.e.
open families that cover a dense subspace, see [Frol-60, §4]); he demonstrated its relation
to the existence of a dense Gδ-subspace. It was thus first named ‘almost Čech-complete’
by Aarts and Lutzer ([AL, Section 4.1.2]; compare [HMc]). For metric spaces our category
definition above is equivalent (and more directly connects with completeness). Indeed, on
the one hand a completely regular space is almost Čech-complete iff it contains a dense
Čech-complete (or topologically complete) subspace, i.e. one that is absolutely Gδ (is Gδ
in some/any compactification). On the other hand a metrizable Baire space X contains
a dense completely metrizable Gδ-subset iff X is a completely metrizable Gδ-set up to a
meagre set. (A metrizable subspace is absolutely Gδ iff it embeds as a Gδ in its completion
– cf. [Eng, Th. 4.3.24].)

We comment further on the definition once we have stated its primary purpose, which
is to give the weakest hypothesis under which the classical KBD Theorem may be gener-
alized.

Theorem 5.1 (Kestelman-Borwein-Ditor Theorem – [BO-Fun]). Suppose X is an almost
complete normed group (e.g. completely metrizable), or in particular a locally compact
topological group. Let {zn} → eX be a null sequence. If T ⊆ X is non-meagre Baire
under dXR (or resp. non-null Haar-measurable), then there are t, tm ∈ T with tm →R t

and an infinite set Mt such that

{tt−1
m zmtm : m ∈Mt} ⊆ T.

If further X is a topological group, then for generically all t ∈ T there is an infinite Mt

such that
{tzm : m ∈Mt} ⊆ T.

Returning to the critical notion of almost completeness, we note that A almost com-
plete is Baire resp. measurable. A bounded non-null measurable subset A is almost com-
plete: for each ε > 0 there is a compact (so Gδ) subset K with |A \K| < ε, so we may
take N = A \K. Likewise a Baire non-meagre set in a complete metric space is almost
complete – this is in effect a restatement of Baire’s Theorem:

Theorem 5.2 (Baire’s Theorem – almost completeness of Baire sets). For a completely
metrizable space X and A ⊆ X Baire non-meagre, there is a meagre set M such that



70 N. H. Bingham and A. J. Ostaszewski

A \ M is completely metrizable and so A is almost complete. Hence, in a metrizable
almost complete space a subset B is Baire iff the subspace B is almost complete.

Proof. For A ⊆ X Baire non-meagre we have A ∪M1 = U \M0 with Mi meagre and
U a non-empty open set. Now M0 =

⋃
n∈ω Nn with Nn nowhere dense; the closure

Fn := N̄n is also nowhere dense (and the complement En = X \ Fn is dense, open).
The set M ′0 =

⋃
n∈ω Fn is also meagre, so A0 := U \M ′0 =

⋂
n∈ω U ∩ En ⊆ A. Taking

Gn := U ∩ En, we see that A0 is completely metrizable.
If X is almost complete, then any subspace of X that is almost complete is a Baire

set, since an absolute Gδ has the Baire property in X. As to the converse, for a Baire
set B ⊆ X with X almost complete, write X = HX ∪ NX with NX meagre and HX

an absolute Gδ and B = (U \MB) ∪ NB with U open and MB , NB meagre. We have
just seen that without loss of generality MB may be taken to be a meagre Fσ-subset of
U (otherwise choose FB a meagre Fσ containing MB and let FB and NB ∪ (FB \MB)

replace MB and NB respectively). Intersecting the representations of X and B, one has
B = HB∪N ′B forHB := HX∩(U\FB), an absolute Gδ, and some meagre N ′B ⊆ NB∪NX .
So, B is almost complete.

Th. 5.2 says that, in a complete space, a set which is almost open is almost complete.
More generally, even if the space is not complete, any non-meagre separable analytic set
(for definition of which see Section 11) is almost complete – a result observed by S. Levi
in [Levi]. (More in fact is true – see [O-AH, Cor. 2] and [O-AB].) In an almost complete
space the distinction between the two notions of Baire property and Baire subspace is
blurred, the two being indistinguishable. Almost completely metrizable spaces may be
characterized in a useful fashion by reference to a less demanding absoluteness condition
than topological completeness (we recall the latter is equivalent to being an absolute Gδ
– see above). It may be shown that a non-meagre normed group is almost complete iff it
is almost absolutely analytic (see [O-AB], [O-LB3]).

The KBD Theorem is a generic assertion about embedding into target sets. We address
first the source of this genericity, which is that a property inheritable by supersets either
holds generically or fails outright. This is now made precise.

Definition. For X a Baire space (e.g. R+ with the Euclidean or density topology)
denote by Ba(X), or just Ba, the Baire sets of the space X, and recall these form a
σ-algebra. Say that a correspondence F : Ba → Ba is monotonic if F (S) ⊆ F (T ) for
S ⊆ T.

The nub is the following simple result, which we call the Generic Dichotomy Principle.

Theorem 5.3 (Generic Dichotomy Principle). For X Baire and F : Ba→ Ba monotonic:
either

(i) there is a non-meagre S ∈ Ba with S ∩ F (S) = ∅, or
(ii) for every non-meagre T ∈ Ba, T ∩ F (T ) is quasi-all of T.

Equivalently: the existence condition that S ∩ F (S) 6= ∅ should hold for all non-meagre
S ∈ Ba, implies the genericity condition that, for each non-meagre T ∈ Ba, T ∩ F (T ) is
quasi-all of T.
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Proof. Suppose that (i) fails. Then S ∩F (S) 6= ∅ for every non-meagre S ∈ Ba. We show
that (ii) holds. Suppose otherwise; thus for some T non-meagre in Ba, the set T ∩ F (T )

is not almost all of T. Then the set U := T \ F (T ) ⊆ T is non-meagre (it is in Ba as T
and F (T ) are) and so

∅ 6= U ∩ F (U) (S ∩ F (S) 6= ∅ for every non-meagre S)

⊆ U ∩ F (T ) (U ⊆ T and F monotonic).

But as U := T \ F (T ), U ∩ F (T ) = ∅, a contradiction.
The final assertion simply rephrases the dichotomy as an implication.

The following corollary permits the onus of verifying the existence condition of The-
orem 5.3 to be transferred to topological completeness.

Theorem 5.4 (Generic Completeness Principle). For X Baire and F : Ba→ Ba mono-
tonic, if W ∩ F (W ) 6= ∅ for all non-meagre W ∈ Gδ, then, for each non-meagre T ∈ Ba,
T ∩ F (T ) is quasi-all of T. That is, either

(i) there is a non-meagre S ∈ Gδ with S ∩ F (S) = ∅, or
(ii) for every non-meagre T ∈ Ba, T ∩ F (T ) is quasi-all of T.

Proof. From Theorem 5.2, for S non-meagre in Ba there is a non-meagre W ⊆ S with
W ∈ Gδ. So W ∩ F (W ) 6= ∅ and thus ∅ 6= W ∩ F (W ) ⊆ S ∩ F (S), by monotonicity. By
Theorem 5.3 for every non-meagre T ∈ Ba, T ∩ F (T ) is quasi-all of T.

Examples. Here are three examples of monotonic correspondences with X the reals.
The first two relate to standard results. The following one is canonical for the current
section. Each correspondence F below gives rise to a correspondence Φ(A) := F (A) ∩ A
which is a ‘lower density’ (or ‘upper’) and plays a role in the theory of liftings ([IT1],
[IT]) and category measures ([Oxt2, Th. 22.4]) and so gives rise to a fine topology on the
real line. See also [LMZ] Section 6F on lifting topologies.

1. Here we apply Theorem 5.4 to the real line with the density topology, in which the
meagre sets are the null sets. Let B denote a countable basis of intervals for the usual
(Euclidean) topology. For any set T and 0 < α < 1 put

Bα(T ) := {I ∈ B : |I ∩ T | > α|I|},

which is countable, and

F (T ) :=
⋂

α∈Q∩(0,1)

⋃
{I : I ∈ Bα(T )}.

Thus F is monotone in T , F (T ) is measurable (even if T is not) and x ∈ F (T ) iff x is
a density point of T. If T is measurable, the set of points x in T for which x ∈ I ∈ B
implies that |I ∩ T | < α|I| is null (see [Oxt2, Th. 3.20]). Hence any non-null measurable
set contains a density point. It follows that almost all points of a measurable set T are
density points. This is the Lebesgue Density Theorem ([Oxt2, Th. 3.20], or [Kucz, Section
3.5]).

2. In [PWW, Th. 2] a category analogue of Lebesgue’s Density Theorem is established.
This follows more simply from our Theorem 5.4.
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3. For KBD, let zn → 0 and put F (T ) :=
⋂
n∈ω

⋃
m>n(T − zm). Thus F (T ) ∈ Ba

for T ∈ Ba and F is monotonic. Here t ∈ F (T ) iff there is an infinite Mt such that
{t+ zm : m ∈ Mt} ⊆ T. Let us call such a t a translator (for {zn} into T ). The Generic
Dichotomy Principle asserts that once we have proved (for which see Theorem 5.6 below)
that an arbitrary non-meagre Baire set T contains a translator, then quasi-all elements
of T are translators.

Theorem 5.5B (Displacements Lemma – Baire Case). In a normed group X which is
Baire under the right norm topology, for A Baire and non-meagre in X and a ∈ A there
is r = ε(A, a) > 0 such that

A ∩A(a−1xa) is non-meagre for any x with ‖x‖ < r.

If X is a topological group there is r = δ(A) > 0 such that

A ∩Ax is non-meagre for any x with ‖x‖ < r.

Proof. We work first in a normed group under its right norm topology. Thus right-shifts
ρt(x) := xt and their inverses ρt−1(x) are uniformly continuous. Hence, for any t, the set A
is Baire iff its shift At is Baire. Since the conclusion of the lemma is inherited by supersets,
we may assume without loss of generality that A = U \M withM meagre and U open and
non-empty. Suppose that a ∈ A. Taking y = a−1, we have e = ay ∈ Ay = Uy\My = V \N
where V = Uy and N = My, which are respectively open and meagre (since ρy is a
homeomorphism). Now for some r > 0, V ⊇ Br(eX).

Thus for x ∈ Br(eX) \ N we have ‖x‖ < r and x /∈ N and, as e ∈ V \ N and
Br(x) = Br(eX)x, we have

(Br(eX) \N) ∩ (Br(x) \Nx) ⊆ (V \N) ∩ (V x \Nx) = (Uy \My) ∩ (Uyx \Myx)

⊆ Ay ∩Ayx.
Moreover if the intersection L := Br(eX) \ N ∩ Br(x) \ Nx is meagre, then, for s <
min{‖x‖, r − ‖x‖} we have, as s+ ‖x‖ < r,

Bs(eX) ⊆ Br(eX) ∩Br(x) ⊆ L ∪N ∪Nx,
so that Bs(eX) is meagre, a contradiction. Thus Ay ∩ Ayx is Baire non-meagre, for any
x with ‖x‖ < r, and hence so is A ∩Aa−1xa.

We now suppose that X is a topological group and deduce the final assertion. Fix
a ∈ A. The automorphism x→ a−1xa and its inverse y → aya−1 are now continuous at
e (Theorem 3.4); so for some δ > 0, if ‖y‖ ≤ δ, putting x = aya−1 we have ‖x‖ ≤ ε(A, a)

and so A ∩Ay is non-meagre for any y with ‖y‖ < δ.

Theorem 5.5M (Displacements Lemma – measure case; [Kem, Th. 2.1] in Rd with
Bi = E, ai = t, [WKh]). In a locally compact metric group with right-invariant Haar
measure µ, if E is non-null Borel, then f(x) := µ[E ∩Ex] is continuous at x = eX , and
so for some ε = ε(E) > 0,

E ∩ (Ex) is non-null for ‖x‖ < ε.

Proof. Apply Theorem 61.A of [Hal-M, Ch. XII p. 266], which asserts that f(x) is con-
tinuous.
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Theorem 5.6 (Generalized BHW Lemma – Existence of sequence embedding; cf. [BHW,
Lemma 2.2]). In a normed group (resp. locally compact metrizable topological group) X,
for A almost complete Baire non-meagre (resp. non-null measurable) and a null sequence
zn → eX , there exist t ∈ A, an infinite Mt and points tm ∈ A such that tm → t and

{tt−1
m zmtm : m ∈Mt} ⊆ A.

If X is a topological group, then there exist t ∈ A and an infinite Mt such that

{tzm : m ∈Mt} ⊆ A.

Proof. The result is upward hereditary, so without loss of generality we may assume that
A is topologically complete Baire non-meagre (resp. measurable non-null) and completely
metrizable, say under a metric ρ = ρA. (For A measurable non-null we may pass down to
a compact non-null subset, and for A Baire non-meagre we simply take away a meagre
set to leave a Baire non-meagre Gδ-subset; then A as a metrizable space is complete – cf.
[Eng, 4.3.23].) Since this is an equivalent metric on A, for each a ∈ A and ε > 0, there
is δ = δ(ε) > 0 such that Bδ(a) ⊆ Bρε (a), where Bδ(a) refers to the metric dXR . Thus, by
taking ε = 2−n−1 the δ-ball Bδ(a) has ρ-diameter less than 2−n.

Working inductively in a normed-group setting, we define non-empty open subsets of
A (of possible translators) Bn of ρ-diameter less than 2−n as follows; they are of course
Baire subsets of X. With n = 0, we take B0 = A. Given n and Bn open in A, choose
bn ∈ Bn and N such that ‖zk‖ < min{ 1

2‖xn‖, ε(Bn)}, for all k > N. Let xn := zN ∈ Z;
then by the Displacements Lemma Bn∩(Bnb

−1
n x−1

n bn) is non-empty (and open). We may
now choose a non-empty subset Bn+1 of A which is open in A with ρ-diameter less than
2−n−1 such that clABn+1 ⊂ Bn∩(Bnb

−1
n x−1

n bn) ⊆ Bn. By completeness, the intersection⋂
n∈NBn is non-empty. Let

t ∈
⋂
n∈N

Bn ⊂ A.

Now tb−1
n xnbn ∈ Bn ⊂ A, as t ∈ Bn+1 ⊂ Bnb

−1
n x−1

n bn, for each n. Hence M := {m :

zm = xn for some n ∈ N} is infinite. Now bn ∈ Bn so bn →R t, so wn := bnt
−1 → e. Thus

tb−1
n xnbn = w−1

n xnwnt, as bn = wnt. Moreover, if zm = xn, then adjusting the notation
we may write either

{tt−1
m zmtm : m ∈Mt} ⊆ A, or {w−1

m zmwmt : m ∈Mt} ⊆ A.

The latter shows that the right-shift ρt underlies the conclusion of the theorem and not
a left-shift.

As for the topological group setting, the Displacements Lemma shows that we may
pass to the final conclusion by substituting e for bn to obtain {tzm : m ∈Mt} ⊆ A.

We now apply Theorem 5.3 (Generic Dichotomy) to extend Theorem 5.6 from an
existence to a genericity statement, thus completing the proof of Theorem 5.1.

Theorem 5.7 (Genericity of sequence embedding). In a normed topological group (resp.
locally compact metric topological group) X, for T ⊆ X almost complete in category (resp.
measure) and zn → eX , for generically all t ∈ T there exists an infinite Mt such that

{tzm : m ∈Mt} ⊆ T.
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Proof. Working as usual in dXR , the correspondence

F (T ) :=
⋂
n∈ω

⋃
m>n

(Tz−1
m )

takes Baire sets T to Baire sets and is monotonic. Here t ∈ F (T ) iff there exists an
infinite Mt such that{tzm : m ∈ Mt} ⊆ T. By Theorem 5.6, F (T ) ∩ T 6= ∅, for T Baire
non-meagre, so by Generic Dichotomy F (T )∩T is quasi-all of T (cf. Example 1 above).

Remark. For a similar approach to work in the normed group setting we would need to
know that the monotone correspondence

G(T ) := T ∩
⋂
n∈ω

⋃
m>n

T · gm(T ), where gm(t) := t−1z−1
m t,

takes Baire sets to Baire sets. Of course t ∈ G(T ) iff t ∈ T and t = t′mt
−1
m z−1

m tm ∈ T for
some tm, t′m ∈ T and so tt−1

m zmtm = t′m ∈ T. To see the difficulty, write tm = wmt and
compute that

t ∈ G(T ) ⇔ (∀n)(∃m > n)∃{wn}(∃u, s, t′)(∀k)

[t′ ∈ T & s ∈ T & dR(wk, e) ≤ 1/k & s = wmt & t = t′u & u = wmz
−1
m w−1

m ].

If the graph of the relation t = xy were analytic, we could deduce that G(T ) is analytic
(see Section 11 for definition) for T a Gδ-set (all that is needed for Th. 5.4); that in turn
guarantees that G(T ) is Baire. However, if even the relation e = xy were analytic, this
would imply that inversion is continuous and so the normed group would be topological
(see Th. 3.41). We can nevertheless say a little more about G(T ).

Theorem 5.7A (Non-meagreness of sequence embedding – normed groups). In a normed
group X, for T ⊆ X almost complete in category, U open with T ∩ U non-meagre, and
zn → eX , the set SU of t ∈ T ∩ U for which there exist points tm ∈ T with tm →R t and
an infinite Mt with

{tt−1
m zmtm : m ∈Mt} ⊆ T

is non-meagre.

Proof. Suppose not; then there is an open set U such that SU is meagre. Letting H be a
meagre Fσ cover of SU , the set T ′ := (T \H) ∩U is Baire and non-meagre. But then by
Th. 5.6 there exist points t, tm ∈ T ′ and infinite set Mt such that

{tt−1
m zmtm : m ∈Mt} ⊆ T ′ ⊆ T ∩ U,

a contradiction.

Theorem 5.8 (Squared Pettis Theorem). Let X be a topologically complete normed group
and A Baire non-meagre under the right norm topology. Then eX is an interior point of
(AA−1)2.

Proof. Suppose not. Then we may select zn ∈ B1/n(e) \ (AA−1)2. As zn → e, we apply
Th. 5.6 to A, to find t ∈ A, Mt infinite and tm ∈ A for m ∈Mt such that tt−1

m zmtm ∈ A
for all m ∈Mt. So for m ∈Mt,

zm ∈ AA−1AA−1 = (AA−1)2,

a contradiction.



Normed groups 75

Remarks. 1. See [Fol] for an early use of a similar, doubled ‘difference set’ and [Hen]
for the consequences of higher order versions in connection with uniform boundedness.

2. One might have assumed less and required that A be almost complete; but we have
fairly general applications in mind. In fact one may assume almost completeness of X in
place of topological completeness. The proof above merely needs the Baire non-meagre
set A to contain an almost complete subset, but that turns out to be equivalent to X
being almost complete. (See [O-LB3, Th. 2] for the separable case and [O-AB] for the
non-separable case).

3. This one-sided result will be used in Section 11 (Th. 11.11) to show that Borel ho-
momorphisms of topologically complete normed separable groups are continuous. When
X is a topological group, there is no need to square (and the order AA−1 may be com-
muted to A−1A, since A is then Baire non-meagre iff A is); this follows from Th. 5.6, but
we delay this derivation to an alternative bi-topological space setting.

We close this section with a KBD-like result for normed groups. Thereafter we shall
be concerned mostly (though not exclusively) with topological normed groups. The result
is striking, since under a weak assumption it permits some non-trivial ‘left-right transfer’.
We do not know whether this assumption implies that the normed group is topological.
We need a definition.

Definition. Say that a group-norm is density-preserving if under one (or other) of the
norm topologies, for each dense set D, the set γg(D) is dense for each conjugacy γg.

Note that D is dense in X under dR iff D−1 is dense in X under dL, since dR(x, d) =

dL(x−1, d−1). Thus density preservation under dR is equivalent to density preservation
under dL.

Proposition 5.9. If the group-norm on X is density-preserving, then under the right
norm topology the left-shift gD of any dense set D is dense. Likewise for the left norm
density and right-shifts.

Proof. Fix a dense set D, a point g, and ε > 0. For any x ∈ X, put y = xg−1. Since γg(D)

is dense we may find d ∈ D such that dR(y, gdg−1) < ε; then dR(x, gd) = dR(yg, gd) =

dR(y, gdg−1) < ε. Thus gD is dense.

Remarks. 1. The result shows that density preservation can be defined equivalently by
reference to appropriate shifts.

2. If D−1 is dense under dL, then so is aD−1 (since λa(t) is a homeomorphism).
However, this does not mean that aD is dense under dR, so the definition of density
preservation asks for more.

In the theorem below, D is dense under dR; this means that D−1, and so each
xD−1, are dense under dL. The surprise is that, for quasi-all x, xD−1 is also dense
under dR.

Theorem 5.10 (Generic Density Theorem, [HJ, Th. 2.3.7]). Let X be Baire under its
right norm topology with a density-preserving norm. For A co-meagre in X and D count-
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able and dense under dR,

{x ∈ A : (xD−1) ∩A is dense in X}
is co-meagre in X.

Proof. For each x, the set Ax is co-meagre as ρx(t) = tx is a homeomorphism. Hence

B = A ∩
⋂
d∈D

Ad

is co-meagre, as D is countable. Thus for x ∈ B and d ∈ D we have xd−1 ∈ A. Now let V
be open with a ∈ Br(a) = Br(e)a ⊂ V. Let x ∈ X.We claim that there is d ∈ D such that
x ∈ Br(a)d. By assumption aD is dense, so there is ad ∈ Br(x) = Br(e)x. Put ad = zx

with ‖z‖ < r. Then x = z−1ad ∈ Br(a)d, as claimed. Thus v := xd−1 = z−1a ∈ V and
so for x ∈ B we have

v = xd−1 ∈ (xD−1) ∩A ∩ V.
That is, (xD−1) ∩A is dense in X, for x in the co-meagre set B.

6. Steinhaus theory and dichotomy

If ψn converges to the identity, then, for large n, each ψn is almost an isometry. Indeed,
as we shall see in Section 12, by Proposition 12.5, we have

d(x, y)− 2‖ψn‖ ≤ d(ψn(x), ψn(y)) ≤ d(x, y) + 2‖ψn‖.
This motivates our next result; we need to recall a definition and the Category Embedding
Theorem from [BO-LBII], whose proof we reproduce here for completeness.

Definition (Weak category convergence). A sequence of homeomorphisms ψn satisfies
the weak category convergence condition (wcc) if for any non-empty open set U , there is
a non-empty open set V ⊆ U such that, for each k ∈ ω,⋂

n≥k

V \ ψ−1
n (V ) is meagre. (wcc)

Equivalently, for each k ∈ ω, there is a meagre set M such that, for t /∈M ,

t ∈ V ⇒ (∃n ≥ k) ψn(t) ∈ V.
For this ‘convergence to the identity’ form, see [BO-LBII].

Theorem 6.1 (Category Embedding Theorem, CET). Let X be a topological space. Sup-
pose given homeomorphisms hn : X → X for which the weak category convergence con-
dition (wcc) is met. Then, for any non-meagre Baire set T , for quasi-all t ∈ T , there is
an infinite set Mt such that

{hm(t) : m ∈Mt} ⊆ T.
Proof. Take T Baire and non-meagre. We may assume that T = U \M with U non-
empty and open and M meagre. Let V ⊆ U satisfy (wcc). Since the functions hn are
homeomorphisms, the set

M ′ := M ∪
⋃
n

h−1
n (M)
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is meagre. Writing ‘i.o.’ for ‘infinitely often’, put

W = h(V ) :=
⋂
k∈ω

⋃
n≥k

V ∩ h−1
n (V ) = lim sup[h−1

n (V ) ∩ V ]

= {x : x ∈ h−1
n (V ) ∩ V i.o.} ⊆ V ⊆ U.

So for t ∈W we have t ∈ V and

vm := hm(t) ∈ V (*)

for infinitely many m – for m ∈Mt, say. Now W is co-meagre in V. Indeed

V \W =
⋃
k∈ω

⋂
n≥k

V \ h−1
n (V ),

which by (wcc) is meagre.
Take t ∈W \M ′ ⊆ U \M = T , as V ⊆ U and M ⊆M ′. Thus t ∈ T. For m ∈Mt, we

have t /∈ h−1
m (M), since t /∈ M ′ and h−1

m (M) ⊆ M ′; but vm = hm(t) so vm /∈ M. By (*),
vm ∈ V \M ⊆ U \M = T. Thus {hm(t) : m ∈Mt} ⊆ T for t in a co-meagre set.

To deduce that quasi-all t ∈ T satisfy the conclusion of the theorem, put S := T \h(T );
then S is Baire and S∩h(T ) = ∅. If S is non-meagre, then by the preceding argument there
are s ∈ S and an infinite Ms such that {hm(s) : m ∈ Ms} ⊆ S, i.e. s ∈ h(S) ⊆ h(T ), a
contradiction. (This last step is an implicit appeal to a generic dichotomy – see Th. 5.4.)

Examples. In R we may consider ψn(t) = t + zn with zn → z0 := 0. It is shown
in [BO-LBII] that for this sequence the condition (wcc) is satisfied in both the usual
topology and the density topology on R. This remains true in Rd, where the specific
instance of the theorem is referred to as the Kestelman-Borwein-Ditor Theorem; see the
next section ([Kes], [BoDi]; compare also the Oxtoby-Hoffmann-Jørgensen zero-one law
for Baire groups, [HJ, p. 356], [Oxt1, p. 85], cf. [RR-01]). In fact in any metrizable groupX
with right-invariant metric dX , for a null sequence tending to the identity zn → z0 := eX ,
the mapping defined by ψn(x) = znx converges to the identity (see [BO-TI], Corollary to
Ford’s Theorem); here too (wcc) holds. This follows from the next result, which extends
the proof of [BO-LBII]; cf. Theorem 7.5.

Theorem 6.2 (First Verification Theorem for weak category convergence). For (X, d)

a metric space, if ψn converges to the identity under d̂ = d̂H, then ψn satisfies the weak
category convergence condition (wcc).

Proof. It is more convenient to prove the equivalent statement that ψ−1
n satisfies the

category convergence condition.
Put zn = ψn(z0), so that zn → z0. Let k be given. Suppose that y ∈ Bε(z0), i.e.

r = d(y, z0) < ε. For some N > k, we have εn = d(ψn, id) < 1
3 (ε− r) for all n ≥ N. Now

d(y, zn) ≤ d(y, z0) + d(z0, zn) = d(y, z0) + d(z0, ψn(z0)) ≤ r + εn.

For y = ψn(x) and n ≥ N ,

d(z0, x) ≤ d(z0, zn) + d(zn, y) + d(y, x) = d(z0, zn) + d(zn, y) + d(x, ψn(x))

≤ εn + (r + εn) + εn < ε.
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So x ∈ Bε(z0), giving y ∈ ψn(Bε(z0)). Thus

y /∈
⋂
n≥N

Bε(z0) \ ψn(Bε(z0)) ⊇
⋂
n≥k

Bε(z0) \ ψn(Bε(z0)).

It now follows that
⋂
n≥k Bε(z0) \ ψn(Bε(z0)) = ∅.

Our next result serves a cautionary purpose: the subsequent remark shows that an
application of the Category Embedding Theorem (Th. 6.1) to shifts under the norm
topology needs X to be a topological group, rather than a normed group.

Theorem 6.3. Let X be a normed group.

(i) Under the right norm topology of dR the homeomorphisms ρn(x) := xzn converge
under d̂R to the identity for all zn → e iff X is a topological group.

(ii) The commutator condition that for any x and any null sequence zn, [zn, x]R :=

znxz
−1
n x−1 → e as n→∞, implies that X is a topological group.

Proof. (i) The right-shifts ρn(x) := xzn are continuous, as dR(xzn, yzn) = dR(x, y). Now

‖ρn‖ → 0 iff sup
g
dR(gzn, g)→ 0 iff ‖gnzng−1

n ‖ → 0 for any gn.

Thus in particular, if ρn converges to the identity for each null sequence zn → e, we have
gzng

−1 → e for each g, i.e. each conjugacy is continuous; thus X is a topological group
by Theorem 3.4 (Equivalence Theorem).

(ii) This is immediate from the corollary on commutators to Th. 3.4 (via Lemma 2.21),
but may also be proved directly as follows. Let x ∈ X and let zn → eX . Since inversion
is continuous at the identity, the commutator condition has the equivalent formulation
that (xznx

−1)z−1
n → e, and this combined with the triangle inequality

‖xznx−1‖ = ‖xznx−1z−1
n zn‖ ≤ ‖xznx−1z−1

n ‖+ ‖z−1
n ‖

implies that γx(z) is continuous at z = e. As x is arbitrary Theorem 3.4 again implies
that X is a topological group.

Remark. Let X be given the right norm topology and let zn → e. For the homeomor-
phism ψn(x) = ρn(x) = xzn one has⋂

n≥k

Bε(eX) \ ψn(Bε(e)) = ∅, k = 1, 2, . . . .

Nevertheless, we cannot deduce from here that⋂
n≥k

Bε(x) \ ψn(Bε(x)) = ∅.

The obstruction is that

ψn(Bε(x)) = Bε(x)zn = Bε(e)xzn 6= Bε(e)znx.

A natural argument that fails is to say that for z ∈ Bε(x) with z = yx one has dR(yx, x) =

‖y‖ < ε and so for n large

dR(yx, znx) ≤ dR(yx, x) + dR(x, znx) = ‖y‖+ ‖zn‖ < ε.

But this gives only that z = yx ∈ Bε(znx) = Bε(e)znx rather than in z ∈ Bε(e)xzn.
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Thus one is tempted to finesse this difficulty by requiring additionally that, for fixed
x, znxz−1

n x−1 → e as n→∞, on the grounds that for large n,

dR(yx, xzn) ≤ dR(yx, x) + dR(x, znx) + dR(znx, xzn) < ε.

This does indeed yield z = yx ∈ Bε(xzn) = Bε(x)zn = ψn(Bε(x)), as desired. However,
the assertion (ii) shows that we have appealed to a topological group structure.

We mention that the expected modification of the above argument becomes valid
under the ambidextrous topology generated by dS := max{dR, dL}. However, shifts are
not then guaranteed to be continuous.

As a first corollary we have the following topological result; we deduce later, also as
corollaries, measure-theoretic versions in Theorems 7.6 and 11.14. Here in the left-sided
category variant we refer to the left-shifts ψn(t) = znt which converge to the identity
under a right-invariant metric, but, as we also need these shifts to be homeomorphisms
(so right-to-right continuous in the sense of Section 3), it is necessary to require the
normed group to be a topological group – by the last Remark. We thus obtain here
a weakened result. (Note that ‘normed topological group’ is synonymous with ‘metric
group’.)

Corollary 6.4 (Topological Kestelman-Borwein-Ditor Theorem). In a normed topo-
logical group X let {zn} → eX be a null sequence. If T is a Baire subset of X, then for
quasi-all t ∈ T there is an infinite set Mt such that

{zmt : m ∈Mt} ⊆ T.

Likewise, for quasi-all t ∈ T there is an infinite set Mt such that

{tzm : m ∈Mt} ⊆ T.

Proof. Apply Th. 6.2, taking for d a right-invariant metric, dXR say; the continuous maps
ψn(t) = znt satisfy dXR (znt, t) = ‖zn‖H → 0, so converge to the identity. Likewise taking
for d a left-invariant metric dXL say, the continuous maps ψn(t) = tzn satisfy dXL (tzn, t) =

‖zn‖H → 0, so again converge to the identity.

As a corollary of the KBD Theorem of Section 5 (Th. 5.1) we have the following
important result known for topological groups (see [RR-TG], Rogers [J-R, p. 48], and
[Kom1] for the topological vector space setting) and here proved in the metric setting.

Theorem 6.5 (Piccard-Pettis Theorem – Piccard [Pic1], [Pic2], Pettis [Pet1], [RR-TG];
cf. [BO-TII]). In a normed topological group whose norm topology is Baire: for A Baire
and non-meagre (in the norm topology), the sets AA−1 and A−1A both have non-empty
interior.

Proof. Suppose otherwise. We work first with the right-invariant metric dR(x, y) =

‖xy−1‖ and assume A−1 is Baire non-meagre in the right-norm topology. Consider the
set A−1A. Suppose the conclusion fails for A−1A, for each integer n = 1, 2, . . . there is
zn ∈ B1/n(e)\A−1A; hence zn → z0 = e. Applying either the KBD Theorem for topolog-
ically complete normed groups or its variant for topological groups, there is a ∈ A such
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that for infinitely many n,

azn ∈ A, or zn ∈ A−1A,

a contradiction. Thus, for some n, the open ball B1/n(e) is contained in A−1A. We next
consider the set AA−1. As the inversion mapping x → x−1 is a homeomorphism (in
fact an isometry, see Prop. 2.3) from the right- to the left-norm topology, the set A is
Baire non-meagre in the left-norm topology iff A−1 is Baire non-meagre in the right-norm
topology. But the inversion mapping carries the ball B1/n(e) into itself, and so we may
now conclude that AA−1 contains an open ball B1/n(e), as (A−1)−1 = A.

One says that a set A is thick if e is an interior point of AA−1 (see e.g. [HJ, Section
3.4]). The next result (proved essentially by the same means) applied to the additive group
R implies the Kestelman-Borwein-Ditor ([BO-LBII]) theorem on the line. The name used
here refers to a similar (weaker) property studied in Probability Theory (in the context
of probabilities regarded as a semigroup under convolution, for which see [PRV], or [Par,
3.2 and 3.5], [BlHe], [Hey]). We need a definition.

Definition (cf. [BO-SO]). In a normed topological groupG, say that a setA is (properly)
right-shift compact, resp. strongly right-shift compact if, for any sequence of points an in
A (resp. in G), there is a point t and a subsequence {an : n ∈ Mt} such that ant lies
entirely in A and converges throughMt to a point a0t in A; similarly for left-shift compact.
Evidently, finite Cartesian products of shift-compact sets are shift-compact. Thus a right-
shift compact set A is precompact. (If the subsequence amt converges to a0t for m in Mt,
then likewise am converges to a0 form inMt.) Say that a set is strongly right-shift compact
(or right-shift compact for arbitrarily small shifts) if the conditions just given hold and
in addition the point t may be selected with ‖t‖ arbitrarily small.

Proposition 6.6. In a normed topological group, if a subgroup S is locally right-shift
compact, then S is closed and locally compact. Conversely, a closed, locally compact sub-
group is locally right-shift compact.

Proof. Suppose that an → a0 with an ∈ S. If amt → a0t ∈ S down a subset M , then
a0t(amt)

−1 = a0a
−1
m ∈ S for m ∈ M. Hence also a0 = a0a

−1
m am ∈ S for m ∈ M. Thus S

is closed.

Example. In the additive group R, the subgroup Z is closed and locally compact, so
shift-compact. Of course, Z is too small to contain shifts of arbitrary null sequences.
We return to this matter in the remarks after Th. 7.7, where we distinguish between
proper shift-compactness as here (so that we are concerned only with sequences in a
given set) and null-shift compactness where we are concerned with shifting subsequences
of arbitrary sequences into a given set.

Example. Note that A ⊆ R is density-open (open in the density topology) iff each point
of A is a density point of A. Suppose a0 is a limit point (in the usual topology) of such a
set A; then, for any ε > 0, we may find a point α ∈ A within ε/2 of a0 and hence some
t ∈ A within ε/2 of the point α such that some subsequence t+am is included in A, with
limit t+ a0 and with |t| < ε. That is, a density-open set is strongly shift-compact.
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Remark. Suppose that an = (ain) ∈ A =
∏
Ai. Pick ti and inductively infinite Mi ⊆

Mi−1 so that ainti → ai0t
i along n ∈ Mi with aint

i ∈ Ai for n ∈ ω. Diagonalize Mi by
setting M := {mi}, where mn+1 = min{m ∈ Mn+1 : m > mn}. Then the subsequence
{am : m ∈M} satisfies, for each J finite,

prJamt ⊆
∏
j∈J

Aj for eventually all m ∈M,

and so in the product topology amt → a0t through M, where (ai)(ti) is defined to be
(aiti).

Theorem 6.7 (Shift-Compactness Theorem). In a normed topological group G , for A
precompact, Baire and non-meagre, the set A is properly right-shift compact, i.e., for any
sequence an ∈ A, there are t ∈ G and a ∈ A such that ant ∈ A and ant → a down a
subsequence. Likewise the set A is left-shift compact.

Proof. First suppose an ∈ A ⊆ Ā with Ā compact. Without loss of generality an →
a0 ∈ Ā. Hence zn := ana

−1
0 → eG. By Theorem 6.2 (the First Verification Theorem),

ψn(x) := znx converges to the identity. Hence, for some a ∈ A and infinite M, we have
{zma : m ∈M} ⊆ A. Taking t = a−1

0 a, we thus have ant ∈ A and ant→ a ∈ A along M.
Replace A by A−1 to obtain the other-handed result.

The following theorem asserts that a ‘covering property modulo shift’ is satisfied by
bounded shift-compact sets. It will be convenient to make the following

Definitions. 1. Say that D := {D1, . . . , Dh} shift-covers X, or is a shifted-cover of X
if, for some d1, . . . , dh in G,

(D1 − d1) ∪ · · · ∪ (Dh − dh) = X.

Say thatX is compactly shift-covered if every open cover U ofX contains a finite subfamily
D which shift-covers X.

2. For N a neighbourhood of eG say that D := {D1, . . . , Dh} N -strongly shift-covers
A, or is an N -strong shifted-cover of A, if there are d1, . . . , dh in N such that

(D1 − d1) ∪ · · · ∪ (Dh − dh) ⊇ A.

Say that A is compactly strongly shift-covered, or compactly shift-covered with arbitrarily
small shifts if every open cover U of A contains for each neighbourhood N of eG a finite
subfamily D which N -strongly shift-covers A.

Theorem 6.8 (Compactness Theorem – modulo shift, [BO-SO]). Let A be a right-shift
compact subset of a separable normed topological group G. Then A is compactly shift-
covered, i.e. for any norm-open cover U of A, there is a finite subset V of U , and for
each member of V a translator, such that the corresponding translates of V cover A.

Proof. Let U be an open cover of A. Since G is second-countable we may assume that U
is a countable family. Write U = {Ui : i ∈ ω}. Let Q = {qj : j ∈ ω} enumerate a dense
subset of G. Suppose, contrary to the assertion, that there is no finite subset V of U such
that elements of V, translated each by a corresponding member of Q, cover A. For each n,
choose an ∈ A not covered by {Ui−qj : i, j < n}. As noted earlier, A is precompact, so we
may assume, by passing to a subsequence (if necessary), that an converges to some point
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a0, and also that, for some t, the sequence ant lies entirely in A. Let Ui in U cover a0t.

Without loss of generality we may assume that ant ∈ Ui for all n. Thus an ∈ Uit−1 for
all n. Thus we may select V := Uiqj to be a translation of Ui such that an ∈ V = Uiqj
for all n. But this is a contradiction, since an is not covered by {Ui′qj′ : i′, j′ < n} for
n > max{i, j}.

The above proof of the compactness theorem for shift-covering may be improved to
strong shift-covering, with only a minor modification (replacing Q with a set Qε = {qεj :

j ∈ ω} which enumerates, for given ε > 0, a dense subset of the ε-ball about e), yielding
the following.

Theorem 6.9 (Strong Compactness Theorem – modulo shift, cf. [BO-SO]). Let A be
a strongly right-shift compact subset of a separable normed topological group G. Then
A is compactly strongly shift-covered, i.e. for any norm-open cover U of A, and any
neighbourhood of eG there is a finite subset V of U , and for each member of V a translator
in N such that the corresponding translates of V cover A.

Next we turn to the Steinhaus theorem, which we will derive in Section 8 (Th. 8.3)
more directly as a corollary of the Category Embedding Theorem. For completeness we
recall in the proof below its connection with the Weil topology introduced in [We].

Definitions ([Hal-M, Section 72, pp. 257 and 273]). 1. A measurable group (X,S,m)

is a σ-finite measure space with X a group and m a non-trivial measure such that both
S and m are left-invariant and the mapping x→ (x, xy) is measurability preserving.

2. A measurable group X is separated if for each x 6= eX in X, there is a measurable
E ⊂ X of finite, positive measure such that µ(E 4 xE) > 0.

Theorem 6.10 (Steinhaus Theorem – cf. Comfort [Com, Th. 4.6 p. 1175]). Let X be a lo-
cally compact topological group which is separated under its Haar measure. For measurable
A having positive finite Haar measure, the sets AA−1 and A−1A have non-empty interior.

Proof. For X separated, we recall (see [Hal-M, Sect. 62] and [We]) that the Weil topology
on X, under which X is a topological group, is generated by the neighbourhood base at
eX comprising sets of the form NE,ε := {x ∈ X : µ(E 4 xE) < ε}, with ε > 0 and
E measurable and of finite positive measure. Recall from [Hal-M, Sect. 62] the following
results: (Th. F) a measurable set with non-empty interior has positive measure; (Th. A) a
set of positive measure contains a set of the form GG−1, with G measurable and of finite,
positive measure; and (Th. B) for such G, NGε ⊆ GG−1 for all small enough ε > 0. Thus
a measurable set has positive measure iff it is non-meagre in the Weil topology. Thus if A
is measurable and has positive measure it is non-meagre in the Weil topology. Moreover,
by [Hal-M, Sect. 61 and 62, Ths. A and B], the metric open sets of X are generated
by sets of the form NE,ε for some Borelian-(K) set E of positive, finite measure. By
the Piccard-Pettis Theorem, Th. 6.3 (from the Category Embedding Theorem, Th. 6.1)
AA−1 contains a non-empty Weil neighbourhood NE,ε.

Remark. See Section 7 below for an alternative proof via the density topology drawing
on Mueller’s Haar-measure density theorem [Mue] and a category-measure theorem of
Martin [Mar] (and also for extensions to products AB). The following theorem has two
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versions: a normed topological group version, immediately following, and a normed group
version given in Theorem 6.13; the proofs are rather different.

Theorem 6.11 (Subgroup Dichotomy Theorem – normed topological groups, Banach-Ku-
ratowski Theorem – [Ban-G, Satz 1], [Kur-1, Ch. VI, 13.XII]; cf. [Kel, Ch. 6 Prob. P]; cf.
[BGT, Cor. 1.1.4] and also [BCS] and [Be] for the measure variant). Let X be a normed
topological group which is non-meagre and A any Baire subgroup. Then A is either meagre
or clopen in X.

Proof. Suppose that A is non-meagre. We show that e is an interior point of A, from
which it follows that A is open. Suppose otherwise. Then there is a sequence zn → e with
zn ∈ B1/n(e) \ A. Now for some a ∈ A and infinite M we have zna ∈ A for all n ∈ M.

But A is a subgroup, hence zn = znaa
−1 ∈ A for n ∈M , a contradiction.

Now suppose that A is not closed. Let an be a sequence in A with limit x. Then
anx

−1 → e. Now for some a ∈ A and infinite M we have anx−1a ∈ A for all n ∈ M.

But A is a subgroup, so a−1
n and a−1 are in A and hence, for all n ∈ M , we have

x−1 = a−1
n anx

−1aa−1 ∈ A. Hence x ∈ A, as A is a subgroup.

Remark. Banach’s proof is purely topological, so applies to topological groups (even
though originally stated for metric groups), and relies on the mapping x → ax being a
homeomorphism, likewise Kuratowski’s proof, which proceeds via another dichotomy as
detailed below. We refer to McShane’s proof, cited below, as it yields a slightly more
general version.

Theorem 6.12 (Kuratowski-McShane Dichotomy – [Kur-B], [Kur-1], [McSh, Cor. 1]).
Suppose H ⊆ Auth(X) acts transitively on the topological space X, and Z ⊆ X is Baire
and has the property that for each h ∈ H,

Z = h(Z) or Z ∩ h(Z) = ∅,

i.e. under each h ∈ H, either Z is invariant or Z and its image are disjoint. Then either
Z is meagre or it is clopen.

Theorem 6.13 (Subgroup Dichotomy Theorem – normed groups). In a normed group X,
Baire under its norm topology, a Baire non-meagre subgroup is clopen.

Proof. We work under the right norm topology and denote the subgroup in question S .
Let H := {ρx : x ∈ X} ⊆ Auth(X). Then as S is a subgroup, for x ∈ S, ρx(S) = S, and,
for x /∈ S, ρx(S) ∩ S = ∅. Hence, by the Kuratowski-McShane Dichotomy (Th. 6.12), as
S is non-meagre, it is clopen.

The result below generalizes the category version of the Steinhaus Theorem [St] of
1920, first stated explicitly by Piccard [Pic1] in 1939, and restated in [Pet1] in 1950; in
the current form it may be regarded as a ‘localized-refinement’ of [RR-TG]. We need a
definition which extends sequential convergence to continuous convergence.

Definition (cf. [Mon2]). Let {ψu : u ∈ I} for I an open set in X be a family of
homeomorphisms in H(X). Let u0 ∈ I. Say that ψu converges to the identity as u→ u0

if
lim
u→u0

‖ψu‖ = 0.



84 N. H. Bingham and A. J. Ostaszewski

The setting of the next theorem is quite general: homogeneity (relative to H(X)), i.e.
all we require is that any point may be transformed to another by a bounded homeomor-
phism of (X, d).

Theorem 6.14 (Generalized Piccard-Pettis Theorem: [Pic1], [Pic2], [Pet1], [Pet2], [BGT,
Th. 1.1.1], [BO-SO], [RR-TG], cf. [Kel, Ch. 6 Prob. P]). Let X be a homogeneous space.
Suppose that the homeomorphisms ψu converge to the identity as u→ u0, and that A is
Baire and non-meagre. Then, for some δ > 0, we have

A ∩ ψu(A) 6= ∅ for all u with d(u, u0) < δ,

or, equivalently, for some δ > 0,

A ∩ ψ−1
u (A) 6= ∅ for all u with d(u, u0) < δ.

Proof. We may suppose that A = V \M with M meagre and V open. Hence, for any
v ∈ V \M , there is some ε > 0 with

Bε(v) ⊆ U.

As ψu → id, there is δ > 0 such that, for u with d(u, u0) < δ, we have

d̂(ψu, id) < ε/2.

Hence, for any such u and any y in Bε/2(v), we have

d(ψu(y), y) < ε/2.

So
W := ψu(Bε/2(z0)) ∩Bε/2(z0) 6= ∅,

and
W ′ := ψ−1

u (Bε/2(z0)) ∩Bε/2(z0) 6= ∅.

For fixed u with d(u, u0) < δ, the set

M ′ := M ∪ ψu(M) ∪ ψ−1
u (M)

is meagre. Let w ∈W \M ′ (or w ∈W ′ \M ′, as the case may be). Since w ∈ Bε(z0)\M ⊆
V \M , we have

w ∈ V \M ⊆ A.

Similarly, w ∈ ψu(Bε(z0)) \ ψu(M) ⊆ ψu(V ) \ ψu(M). Hence

ψ−1
u (w) ∈ V \M ⊆ A.

In this case, as asserted, A ∩ ψ−1
u (A) 6= ∅.

In the other case (w ∈W ′ \M ′), one obtains similarly ψu(w) ∈ V \M ⊆ A. Here too
A ∩ ψ−1

u (A) 6= ∅.

Remarks. 1. In the theorem above it is possible to work with a weaker condition, namely
local convergence at z0, where one demands that for some neighbourhood Bη(z0) and
some K,

d(ψu(z), z) ≤ Kd(u, u0) for z ∈ Bη(z0).

This implies that, for any ε > 0, there is δ > 0 such that

d(ψu(z), z) < ε for z ∈ Bδ(z0).
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2. The Piccard-Pettis Theorem for topological groups (named by Kelley, [Kel, Ch. 6
Prob. P-(b)], the Banach-Kuratowski-Pettis Theorem, say BKPT for short) asserts the
category version of the Steinhaus Theorem [St] that, for A Baire and non-meagre, the set
A−1A is a neighbourhood of the identity; our version of the Piccard theorem as stated
implies this albeit only in the context of metric groups. Let dX be a right-invariant
metric on X and take ψu(x) = ux and u0 = e. Then ψu converges to the identity (since
‖ψu‖ := supx d(ux, x) = d(u, e) = ‖u‖), and so the theorem implies that Bδ(e) ⊆ A−1A

for some δ > 0; indeed a′ ∈ A ∩ ψu(A) for u ∈ Bδ(e) means that a′ ∈ A and, for some
a ∈ A, also ua = a′ so that u = a−1a′ ∈ A−1A. It is more correct to name the following
important and immediate corollary the BKPT, since it appears in this formulation in
[Ban-G], [Kur-1], derived by different means, and was used by Pettis in [Pet1] to deduce
his Steinhaus-type theorem.

Theorem 6.15 (McShane’s Interior Points Theorem – [McSh, Cor. 3]). For X a topo-
logical space, let T : X2 → X be such that Ta(x) := T (x, a) is a self-homeomorphism
for each a ∈ X such that for each pair (x0, y0) there is a self-homeomorphism ϕ with
y0 = ϕ(x0) satisfying

T (x, ϕ(x)) = T (x0, y0) for all x ∈ X.

Let A and B be second category with B Baire. Then the image T (A,B) has interior points
and there are A0 ⊆ A,B0 ⊆ B, with A \A0 and B \B0 meagre and T (A0, B0) open.

Remark. Despite its very general appearance, Th. 6.15 has little to offer in the normed
group context. Indeed for a normed group X with right topology and with T (x, y) = xy−1

each section Ta is a homeomorphism, being the right-shift ρa−1 , which is a homeomor-
phism. However, the equation xy−1 = c has solution function y = ϕ(x) = c−1x, a
left-shift, not in general even continuous. The alternative T (x, y) = xy−1xy−1 introduces
shift operations to the left of the second x.

7. The Kestelman-Borwein-Ditor Theorem: a bi-topological
approach

In this section we develop a bi-topological approach to a generalization of the KBD
Theorem (Th. 1.1). An alternative approach is given in the next section. Let (X,S,m)

be a probability space which is totally finite. Let m∗ denote the outer measure

m∗(E) := inf{m(F ) : E ⊂ F ∈ S}.

Let the family {Kn(x) : x ∈ X} ⊂ S satisfy (i) x ∈ Kn(x), (ii) m(Kn(x)) → 0.

Relative to a fixed family {Kn(x) : x ∈ X} define the upper and lower (outer) density at
x of any set E by

D
∗
(E, x) = sup lim sup

n
m∗(E ∩Kn(x))/m(Kn(x)),

D∗(E, x) = inf lim inf
n

m∗(E ∩Kn(x))/m(Kn(x)).
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By definition D
∗
(E, x) ≥ D∗(E, x). When equality holds, one says that the density

of E exists at x, and the common value is denoted by D∗(E, x). If E is measurable the
star associated with the outer measure m∗ is omitted. If the density is 1 at x, then x

is a density point ; if the density is 0 at x, then x is a dispersion point of E. Say that a
(weak) density theorem holds for {Kn(x) : x ∈ X} if for every set (every measurable set)
A almost every point of A is a density (an outer density) point of A. Martin [Mar] shows
that the family

U = {U : D
∗
(X \ U, x) = 0 for all x ∈ U}

forms a topology, the density topology (or d-topology) on X, with the following property.

Theorem 7.1 (Density Topology Theorem). If a density theorem holds for {Kn(x) :

x ∈ X} and U is d-open, then every point of U is a density point of U and so U is
measurable. Furthermore, a measurable set such that each point is a density point is
d-open.

We note that the idea of a density topology was introduced slightly earlier by Goffman
([GoWa], [GNN]); see also Tall [T]. It can be traced to the work of Denjoy [Den] in
1915. Recall that a function is approximately continuous in the sense of Denjoy iff it is
continuous under the density topology: [LMZ, p. 1].

Theorem 7.2 (Category-Measure Theorem – [Mar, Th. 4.11]). Suppose X is a probability
space and a density theorem holds for {Kn(x) : x ∈ X}. A necessary and sufficient
condition that a set be nowhere dense in the d-topology is that it have measure zero.
Hence a necessary and sufficient condition that a set be meagre is that it have measure
zero. In particular the topological space (X,U) is a Baire space.

We now see that the preceding theorem is applicable to a Haar measure on a locally
compact group X by reference to the following result. Here bounded means precompact
(covered by a compact set).

Theorem 7.3 (Haar measure density theorem – [Mue]; cf. [Hal-M, p. 268]). Let A be
a σ-bounded subset and µ a left-invariant Haar measure of a locally compact topological
group X. Then there exists a sequence Un of bounded measurable neigbourhoods of eX
such that m∗(A ∩ Unx)/m∗(Unx)→ 1 for almost all x out of a measurable cover of A.

Corollary 7.4. In the setting of Theorem 6.4 with A of positive, totally-finite Haar
measure, let (A,SA,mA) be the induced probability subspace of X such that mA(T ) =

m(S ∩A)/m(A) for T = S ∩A ∈ SA. Then the density theorem holds in A.

We now offer a generalization of a result from [BO-LBII]; cf. Theorem 6.2.

Theorem 7.5 (Second Verification Theorem for weak category convergence). Let X be
a locally compact topological group with left-invariant Haar measure m. Let V be m-
measurable and non-null. For any null sequence {zn} → e and each k ∈ ω,

Hk =
⋂
n≥k

V \ (V · zn) is of m-measure zero, so meagre in the d-topology.

That is, the sequence hn(x) := xz−1
n satisfies the weak category convergence condition

(wcc).
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Proof. Suppose otherwise. We write V zn for V · zn, etc. Now, for some k, m(Hk) > 0.

Write H for Hk. Since H ⊆ V , we have, for n ≥ k, that ∅ = H ∩ h−1
n (V ) = H ∩ (V zn)

and so a fortiori ∅ = H ∩ (Hzn). Let u be a metric density point of H. Thus, for some
bounded (Borel) neighbourhood Uνu we have

m[H ∩ Uνu] > 3
4m[Uνu].

Fix ν and put
δ = m[Uνu].

Let E = H ∩Uνu. For any zn, we have m[(Ezn)∩Uνuzn] = m[E] > 3
4δ. By Theorem

A of [Hal-M, p. 266], for all large enough n, we have

m(Uνu4 Uνuzn) < δ/4.

Hence, for all n large enough we have m[(Ezn) \Uνu] ≤ δ/4. Put F = (Ezn)∩Uνu; then
m[F ] > δ/2.

But δ ≥ m[E ∪ F ] = m[E] +m[F ]−m[E ∩ F ] ≥ 3
4δ + 1

2δ −m[E ∩ F ]. So

m[H ∩ (Hzn)] ≥ m[E ∩ F ] ≥ 1
4δ,

contradicting ∅ = H ∩ (Hzn). This establishes the claim.

As a corollary of the Category Embedding Theorem, Theorem 6.2 and Corollary 6.4
now yield the following result (compare also Th. 10.11).

Theorem 7.6 (First Generalized Kestelman-Borwein Ditor Theorem – Measurable Case).
Let X be a normed locally compact topological group, {zn} → eX be a null sequence in X.
If T is Haar measurable and non-null, then for generically all t ∈ T there is an infinite
set Mt such that

{tzm : m ∈Mt} ⊆ T.

This theorem in turn yields an important conclusion.

Theorem 7.7 (Kodaira’s Theorem – [Kod, Corollary to Satz 18 p. 98], cf. [Com, Th. 4.17
p. 1182]). Let X be a normed locally compact group and f : X → Y a homomorphism
into a separable normed group Y. Then f is Haar-measurable iff f is Baire under the
density topology iff f is continuous under the norm topology.

Proof. Suppose that f is measurable. Then under the d-topology f is a Baire function.
Hence by the classical Baire Continuity Theorem (see, e.g., Section 11 below, especially
Th. 11.8), since Y is second-countable, f is continuous on some co-meagre set T. Now
suppose that f is not continuous at eX . Hence, for some ε > 0 and some zn → z0 = eX (in
the sense of the norm on X), we have ‖f(zn)‖ > ε, for all n. By the Kestelman-Borwein-
Ditor Theorem (Th. 7.6), there is t ∈ T and an infinite Mt such that tzn → t = tz0 ∈ T.
Hence, for n in Mt, we have

f(t)f(zn) = f(tzn)→ f(tz0) = f(t),

i.e. f(zn)→ eY , a contradiction.
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Remark. 1. Comfort [Com, Th. 4.17] proves this result for both X and Y locally com-
pact, with the hypothesis that Y is σ-compact and f measurable with respect to the two
Haar measures on X and Y . That proof employs Steinhaus’ Theorem and the Weil topol-
ogy. (Under the density topology, Y will not be second-countable.) When Y is metrizable
this implies that Y is separable; of course if f is a continuous surjection, Y will be locally
compact (cf. [Eng, Th. 3.1.10], [Kel, Ch. V Th. 8]).

2. The theorem reduces measurability to the Baire property and in so doing resolves
a long-standing issue in the foundations of regular variation; hitherto the theory was
established on two alternative foundations employing either measurable functions or Baire
functions for its scope, with historical preference for measurable functions in connection
with integration. We refer to [BGT] for an exposition of the theory, which characterizes
regularly varying functions of either type by a reduction to an underlying homomorphism
of the corresponding type relying on its continuity, and then represents either type by
very well-behaved functions. Kodaira’s Theorem shows that the broader topological class
may be given priority. See in particular [BGT, pp. 5, 11] and [BO-LBII].

3. The Kestelman-Borwein-Ditor Theorem inspires the following definitions, which we
will find useful in the next section.

Definitions. In a topological group G, following [BO-F], call a set T subuniversal,
or null-shift-precompact as in the more recent paper [BO-SO], if for any null sequence
zn → eG there is t ∈ G and infinite Mt such that

{tzm : m ∈Mt} ⊂ T.

Call a set T generically subuniversal ([BO-F]), or null-shift-compact (cf. [BO-SO]), if for
any null sequence zn → eG there is t ∈ G and infinite Mt such that

{tzm : m ∈Mt} ⊂ T and t ∈ T.

Thus the Kestelman-Borwein-Ditor Theorem asserts that a set T which is Baire non-
meagre, or measurable non-null, is (generically) subuniversal. The term subuniversal is
coined from Kestelman’s definition of a set being ‘universal for null sequences’ ([Kes,
Th. 2]), which required Mt above to be co-finite rather than infinite. By Theorem 6.7
(Shift-compactness Theorem), a generically subuniversal (null-shift-compact) subset of
a normed group is shift-compact. (The definition of ‘shift-compact’ refers to arbitrary
sequences – see Section 6.)

Our final results follow from the First Generalized KBD Theorem (Th. 7.6 above)
and are motivated by the literature of extended regular variation in which one assumes
only that for a function h : R+ → R+

h∗(u) := lim sup
‖x‖→∞

h(ux)h(x)−1

is finite on a ‘large enough’ domain set (see [BO-R], [BGT, Ch. 2, 3] for the classical
context of R∗+). We need the following definitions generalizing their R counterparts (in
[BO-R]) to the normed group context.
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Definitions. 1. Say that NT∗({Tk}) holds, in words No Trumps holds generically, if
for any null sequence zn → eX there is k ∈ ω, some t and an infinite M such that

{tzm : m ∈M} ⊂ Tk and t ∈ Tk.

For the definition of NT see [BO-F], [BO-LBI] where bounded, rather than null,
sequences zn appear and the location of the translator t need not be in Tk. [Of course
NT∗({Tk : k ∈ ω}) implies NT({Tk : k ∈ ω}).]

2. For T ⊆ X with X a normed group, h : T → Y or R+, with Y a normed group,
put according to context:

h∗(u) := lim sup
‖x‖→∞

h(ux)h(x)−1 or h∗Y (u) := lim sup
‖x‖→∞

‖h(ux)h(x)−1‖Y .

3. For X a normed group, h : T → Y or R+, with T ⊂ X, where Y is a normed group
and R+ refers to the set of positive reals, for x = {xn} with ‖xn‖ → ∞, put

Tk(x) :=
⋂
n>k

{t ∈ T : h(txn)h(xn)−1 < n}

or
TYk (x) :=

⋂
n>k

{t ∈ T : ‖h(txn)h(xn)−1‖Y < n},

according to whether h takes values in R+ or Y.
Let us say that h is NT∗ on T if for any xn → ∞ and any null sequence zn → 0,

NT∗({Tk(x)}), resp. NT∗({TYk (x)}), holds.

Theorem 7.8A (Generic No Trumps Theorem or No Trumps∗ Theorem). For X a
normed topological group, T Baire non-meagre (resp. measurable non-null) and h : X →
R+ Baire/measurable with h∗(t) < +∞ on T , h is NT∗ on T.

Proof. The sets Tk(x) are Baire/measurable. Fix t ∈ T. Since h∗(t) < ∞ suppose that
h∗(t) < k ∈ N. Then without loss of generality, for all n > k, we have h(txn)h(xn)−1 < n

and so t ∈ Tk(x). Thus
T =

⋃
k

Tk(x),

and so for some k, the set Tk(x) is Baire non-meagre/measurable non-null. The result
now follows from the topological or measurable Kestelman-Borwein-Ditor Theorem (Cor.
6.4 or Th. 7.6).

The same proof gives:

Theorem 7.8B (Generic No Trumps Theorem or No Trumps∗ Theorem). For X,Y
normed topological groups, T Baire non-meagre (resp. measurable non-null) and h : X →
Y Baire/measurable with h∗Y (t) < +∞ on T , h is NT∗ on T.

In the proof above note that if T ∩ uT−1 is Baire non-meagre (resp. measurable non-
null), then Tk(x) ∩ uT−1 is Baire non-meagre (resp. measurable non-null) for some k,
which opens the possibility of a conjuctive embedding of a null sequence (cf. Th. 9.3).
Putting s(t) := ut−1 and Sk(x) := Tk(x) ∩ uT−1 one has Sk(x) = s(T ′k(x)) where

T ′k(x) =
⋂
n>k

{t ∈ T ∩ (T−1u) : h(ut−1xn)h(xn)−1 < n},
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That is, under the circumstances, h may be regarded as being NT∗ on T ∩T−1mrlu. We
apply much the same idea below.

We now have two variant generalizations of Theorem 7 of [BO-R] which in turn was
motivated by a result due to Delange and to Csiszár and Erdös – see [BGT, Th. 2.0.1].
In the first of these we refer to a property which holds for open semigroups on the line
and in Euclidean space (see Th. 9.5): for instance for T ⊂ R the half-interval (t,∞), one
has for all u > 2t that T ∩ (u− T ) ⊃ (t, u− t) and so T ∩ (u− T ) is non-meagre for all
large enough u ∈ T. An analogous result holds in Rd for T an open cone.

Theorem 7.9A (Combinatorial Uniform Boundedness Theorem, cf. [O-knit]). In a
normed topological group X, for h : X → R+ suppose for some constant L that h∗(t) <∞
on a set T such that h is NT∗on T ∩ T−1u for every u ∈ T with ‖u‖ > L. Then for
compact K ⊂ T \BL(eX),

lim sup
‖x‖→∞

sup
u∈K

h(ux)h(x)−1 <∞.

Proof. Suppose not: then for some {un} ⊂ K ⊂ T and ‖xn‖ unbounded we have, for
all n,

h(unxn)h(xn)−1 > n2.

Without loss of generality un → u ∈ K. Put

Tk :=
⋂
n>k

{t ∈ T ∩ (T−1u) : h(txn)h(xn)−1 < n},

Put zn := u−1un → e, since dXL (u, un)→ 0 and so un = uzn. By assumption, there are k
and some s ∈ Tk with

s = t−1u ∈ T−1u ∩ T,

and an infinite M such that
{szn : m ∈M} ⊆ Tk.

So for m ∈M with m > k

h(szmxm)h(xm)−1 < m.

But

h(unxn)h(xn)−1 = h(unxn)h(tunxn)−1 × h(tunxn)h(uxn)−1 × h(uxn)h(xn)−1.

So for m > k and in M we have

m2 < h(umxm)h(xm)−1 = h(umxm)h(szmxm)−1 × h(szmxm)h(xm)−1

< h(umxm)h(t−1umxm)−1 ×m,

as s = t−1u and znu = un. So

h(umxm)h(t−1umxm)−1 > m.

Put vn = t−1unxn; then ‖vn‖ ≥ ‖xn‖−‖t−1un‖ ≥ ‖xn‖−‖un‖−‖t‖ → ∞. So tvn = unxn
and for m ∈M large enough we have

h(tvm)h(vm)−1 > m,

which contradicts h∗(t) <∞ as t ∈ T.
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A very similar proof (requiring, mutatis mutandis, the replacement of h(ux)h(x)−1

by ‖h(ux)h(x)−1‖) gives the following generalization. Note that one cannot deduce Th.
7.9A from this variant by referring to the normed group Y = R∗+, because the natural
norm on R∗+ is ‖x‖Y = |log x| (cf. Remarks to Corollary 2.9).

Theorem 7.9B (Combinatorial Uniform Boundedness Theorem). For h : X → Y a
mapping between normed topological groups and h∗Y (u) as above, suppose that h∗(t) <∞
on a set T on which h is NT∗. Then for compact K ⊂ T ,

lim sup
‖x‖→∞

sup
u∈K
‖h(ux)h(x)−1‖ <∞.

Proof. Suppose not: then for some {un} ⊂ K ⊂ T and ‖xn‖ unbounded we have, for
all n,

‖h(unxn)h(xn)−1‖ > 3n. (**)

Without loss of generality un → u ∈ K. Now ‖uxn‖ → ∞, as ‖xn‖ − ‖u‖ ≤ ‖uxn‖, by
the triangle inequality. Thus we may put y = {yn} where yn := uxn; then

Tk(y) :=
⋂
n>k

{t ∈ T : ‖h(tuxn)h(uxn)−1‖ < n},

and NT∗({Tk(y)}) holds. Now zn := unu
−1 is null. So for some k ∈ ω, t ∈ Tk(y) and

infinite M,
{t(umu−1) : m ∈M} ∈ Tk(y).

So
‖h(tumxm)h(uxm)−1‖ = ‖h(tumu

−1uxm)h(uxm)−1‖ < m and t ∈ T. (A)

Now ‖unxn‖ → ∞, as ‖xn‖ − ‖un‖ ≤ ‖unxn‖ and ‖un‖ is bounded. But t ∈ T so, as
before since h∗(t) <∞, for all n large enough

‖h(unxn)h(tunxn)−1‖ = ‖h(tunxn)h(unxn)−1‖ < n, (B)

by the symmetry axiom. Now also u ∈ K ⊂ T. So for all n large enough

‖h(uxn)h(xn)−1‖ < n. (C)

But

‖h(unxn)h(xn)−1‖ = ‖h(unxn)h(tunxn)−1‖+ ‖h(tunxn)h(uxn)−1‖+ ‖h(uxn)h(xn)−1‖.

Then, by (B), (A) and (C), for m large enough and in Mt we have

‖h(umxm)h(xm)−1‖ < 3m,

a contradiction for such m to (**).

We may now deduce the result referred to in the remarks to Corollary 2.9, regarding
π : X → Y a group homomorphism, by reference to the case h(x) = π(x) treated in the
Lemma below.

Theorem 7.10 (NT∗ property of quasi-isometry). If X is a Baire normed topological
group and π : X → Y a group homomorphism, where ‖ · ‖Y is (µ-γ)-quasi-isometric to
‖ · ‖X under the mapping π, then for any non-meagre Baire set T , π is NT∗ on T.
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Proof. Note that for h = π

‖h(txn)h(xn)−1‖ = ‖π(txn)π(xn)−1‖ = ‖π(t)‖.

Hence, as π(e) = e (see Examples A4 of Section 2),

{t ∈ T : h(txn)h(xn)−1 < n} = {t ∈ T : ‖π(t)‖ < n} = Bπn(e),

and so ⋂
n≥k

Tn(xn) = {t ∈ T : ‖π(t)‖ < k} = Bπk (e).

Now
1

µ
‖t‖X − γ ≤ ‖π(t)‖Y ≤

1

µ
‖t‖X + γ,

hence Bπn(e) is approximated from above and below by the closed sets T±n :

T+
n :=

{
t ∈ T :

1

µ
‖t‖X + γ ≤ n

}
⊂ T (xn) = Bπn(e) ⊂ T−n :=

{
t ∈ T :

1

µ
‖t‖X − γ ≤ n

}
,

which yields the equivalent approximation:

B̄µ(k−γ) ∩ T = {t ∈ T : ‖t‖X ≤ µ(k − γ)} =
⋂
n≥k

T+
n

⊂ Tk(x) ⊂
⋂
n≥k

T−n = {t ∈ T : ‖t‖X ≤ µ(k + γ)} = T ∩ B̄µ(k+γ).

Hence,
T =

⋃
k

Tk(x) =
⋃
k

T ∩ B̄µ(k+γ).

Hence, by the Baire Category Theorem, for some k the set Tk(x) contains a Baire non-
meagre set B̄µ(k−γ) ∩ T and the proof of Th. 7.8 applies. Indeed if T ∩ B̄µ(k′+γ) is non-
meagre for some k′, then so is T ∩ B̄µ(k′+γ) for k ≥ k′ + 2γ and hence also Tk(x).

Theorem 7.11 (Global bounds at infinity – Global Bounds Theorem). Let X be a locally
compact topological group with norm having a vanishingly small global word-net. For
h : X → R+, if h∗ is globally bounded, i.e.

h∗(u) = lim sup
‖x‖→∞

h(ux)h(x)−1 < B (u ∈ X)

for some positive constant B, independent of u, then there exist constants K,L,M such
that

h(ux)h(x)−1 < ‖u‖K (‖u‖ ≥ L, ‖x‖ ≥M).

Hence h is bounded away from ∞ on compact sets sufficiently far from the identity.

Proof. As X is locally compact, it is a Baire space (see e.g. [Eng, Section 3.9]). Thus, by
Th. 7.8, the Combinatorial Uniform Boundedness Theorem (Th. 7.9A) may be applied
with T = X to a compact closed neighbourhood K = B̄ε(eX) of the identity eX , where
without loss of generality 0 < ε < 1; hence we have

lim sup
‖x‖→∞

sup
u∈K

h(ux)h(x)−1 <∞.
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Now we argue as in [BGT, pp. 62–63], though with a normed group as the domain. Choose
X1 and κ > max{M, 1} such that

h(ux)h(x)−1 < κ (u ∈ K, ‖x‖ ≥ X1).

Fix v. Now there is some word w(v) = w1 . . . wm(v) using generators in the compact set
Zδ with ‖wi‖ = δ(1 + εi) < 2δ, as |εi| < 1 (so ‖wi‖ < 2δ < ε), where

d(v, w(v)) < δ and 1− ε ≤ m(v)δ

‖v‖
≤ 1 + ε,

and so
m+ 1 < 2

‖v‖
δ

+ 1 < A‖v‖+ 1, where A = 2/δ.

Put wm+1 = w−1v, v0 = e, and for k = 1, . . . ,m+ 1,

vk = w1 . . . wk,

so that vm+1 = v. Now (vk+1x)(vkx)−1 = wk+1 ∈ K. So for ‖x‖ ≥ X1 we have

h(vx)h(x)−1 =

m+1∏
k=1

[h(vkx)h(vk−1x)]−1 ≤ κm+1 ≤ ‖v‖K

(for large enough ‖v‖), where
K = A log κ+ 1.

Indeed, for ‖v‖ > log κ, we have

(m+ 1) log κ < (A‖v‖+ 1) log κ < ‖v‖(A log κ+ (log κ)‖v‖−1) < (log ‖v‖)(A log κ+ 1).

For x1 with ‖x1‖ ≥ M and with t such that ‖tx−1
1 ‖ > L, take u = tx−1

1 ; then since
‖u‖ > L we have

h(ux1)h(x1)−1 = h(t)h(x1)−1 ≤ ‖u‖K = ‖tx−1
1 ‖K ,

i.e. h(t) ≤ ‖tx−1
1 ‖Kh(x1), so that h(t) is bounded away from ∞ on compact t-sets suffi-

ciently far from the identity.

Remarks. 1. The one-sided result in Th. 7.11 can be refined to a two-sided one (as
in [BGT, Cor. 2.0.5]): taking s = t−1, g(x) = h(x)−1 for h : X → R+, and using the
substitution y = tx, yields

g∗(s) = sup
‖y‖→∞

g(sy)g(y)−1 = inf
‖x‖→∞

h(tx)h(x)−1 = h∗(s).

2. A variant of Th. 7.11 holds with ‖h(ux)h(x)−1‖Y replacing h(ux)h(x)−1.

3. Generalizations of Th. 7.11 along the lines of [BGT, Theorem 2.0.1] may be given
for h∗ finite on a ‘large set’ (rather than globally bounded), by use of the Semigroup
Theorem (Th. 9.5).

Taking h(x) := ‖π(x)‖Y , Cor. 2.9, Th. 7.10 and Th. 7.11 together immediately imply.

Corollary 7.12. If X is a Baire normed group and π : X → Y a group homomorphism,
where ‖ · ‖Y is (µ-γ)-quasi-isometric to ‖ · ‖X under the mapping π, then there exist
constants K,L,M such that

‖π(ux)‖Y /‖π(x)‖Y < ‖u‖KX (u ≥ L, ‖x‖X ≥M).
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8. The Subgroup Theorem

In this section G is a normed locally compact topological group with left-invariant Haar
measure. We shall be concerned with two topologies on G: the norm topology and the den-
sity topology. Under the latter the binary group operation need not be jointly continuous
(see Heath and Poerio [HePo]); nevertheless a right-shift x→ xa, for a constant, is con-
tinuous, and so we may say that the density topology is right-invariant. We note that if S
is measurable and non-null then S−1 is measurable and non-null under the corresponding
right-invariant Haar and hence also under the original left-invariant measure. We may
thus say that both the norm and the density topologies are inversion-invariant. Likewise
the First and Second Verification Theorems (Theorems 6.2 and 7.5) assert that under
both these topologies shift homeomorphisms satisfy (wcc). This motivates a theorem that
embraces both topologies as two instances.

Theorem 8.1 (Topological, or Category, Interior Point Theorem). Let G be given a
right-invariant and inversion-invariant topology τ , under which it is a Baire space and
suppose that the shift homeomorphisms hn(x) = xzn satisfy (wcc) for any null sequence
{zn} → e (in the norm topology). For S Baire and non-meagre in τ , the difference set
S−1S, and likewise SS−1 , is an open neighbourhood of e in the norm topology.

Proof. Suppose otherwise. Then for each positive integer n we may select

zn ∈ B1/n(e) \ S−1S.

Since {zn} → e (in the norm topology), the Category Embedding Theorem (Th. 6.1)
applies, and gives an s ∈ S and an infinite Ms such that

{hm(s) : m ∈Ms} ⊆ S.

Then for any m ∈Ms,
szm ∈ S, i.e. zm ∈ S−1S,

a contradiction. Replacing S by S−1 we obtain the corresponding result for SS−1.

One thus has again

Corollary 8.2 (Piccard Theorem, [Pic1], [Pic2]). For S Baire and non-meagre in the
norm topology, the difference sets SS−1 and S−1S have e as interior point.

First Proof. Apply the preceding Theorem, since by the First Verification Theorem
(Th. 6.2), the condition (wcc) holds.

Second Proof. Suppose otherwise. Then, as before, for each positive integer n we may
select zn ∈ B1/n(e) \ S−1S. Since zn → e, by the Kestelman-Borwein-Ditor Theorem
(Cor. 6.4), for quasi-all s ∈ S there is an infinite Ms such that {szm : m ∈ Ms} ⊆ S.

Then for any m ∈Ms, szm ∈ S , i.e. zm ∈ SS−1, a contradiction.

Corollary 8.3 (Steinhaus Theorem, [St], [We]; cf. Comfort [Com, Th. 4.6 p. 1175],
Beck et al. [BCS]). In a normed locally compact group, for S of positive measure, the
difference sets S−1S and SS−1 have e as interior point.
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Proof. Arguing as in the first proof above, by the Second Verification Theorem (Th. 7.5),
the condition (wcc) holds and S, in the density topology, is Baire and non-meagre (by the
Category-Measure Theorem, Th. 7.2). The measure-theoretic form of the second proof
above also applies.

The following corollary to the Steinhaus Theorem 6.10 (and its Baire category version)
have important consequences in the Euclidean case. See in particular [BO-SO, §6]. We
will say that the group G is (weakly) Archimedean if for each r > 0 and each g ∈ G there
is n = n(g) such that g ∈ Bn where B := {x : ‖x‖ < r} is the r-ball.

Theorem 8.4 (Category (Measure) Subgroup Theorem). For a Baire (resp. measurable)
subgroup S of a weakly Archimedean locally compact group G, the following are equivalent:

(i) S = G,
(ii) S is Baire non-meagre (resp. measurable non-null).

Proof. By Th. 8.1, for some r-ball B,

B ⊆ SS−1 ⊆ S,

and hence G =
⋃
nB

n = S.

We will see in the next section a generalization of the Pettis extension of Piccard’s
result asserting that, for S, T Baire non-meagre, the product ST contains interior points.
As our approach will continue to be bi-topological, we will deduce also the Steinhaus
result that, for S, T non-null and measurable, ST contains interior points.

9. The Semigroup Theorem

This section, just as the preceding one, is focussed on metrizable locally compact topo-
logical groups. We will thus speak of ‘the’ norm topology here (as the left and right norm
topologies are identical). Since a locally compact normed group possesses an appropria-
tely-sided invariant Haar-measure, much of the theory developed there and here goes over
to locally compact normed groups – for details see [O-LB3]. In this section G is again a
normed locally compact topological group equipped with a left-invariant Haar measure.
The aim here is to prove a generalization to the normed group setting of the following
classical result due to Hille and Phillips [H-P, Th. 7.3.2] (cf. Beck et al. [BCS, Th. 2],
[Be]) in the measurable case, and to Bingham and Goldie [BG] in the Baire case; see
[BGT, Cor. 1.1.5] and also [BO-R].

Theorem 9.1 (Category (Measure) Semigroup Theorem). For an additive Baire (resp.
measurable) subsemigroup S of R+, the following are equivalent:

(i) S contains an interval,
(ii) S ⊇ (s,∞) for some s,
(iii) S is non-meagre (resp. non-null).

We will need a strengthening of the Kestelman-Borwein-Ditor Theorem (Th. 1.1)
involving two sets. First we capture a key similarity (their topological ‘common basis’,



96 N. H. Bingham and A. J. Ostaszewski

adapting a term from logic) between the Baire and measure cases. Recall [Rog2, p. 460]
the usage in logic, whereby a set B is a basis for a class C of sets whenever any member
of C contains a point in B.

Theorem 9.2 (Common Basis Theorem). For V,W Baire non-meagre in a group G

equipped with either the norm or the density topology, there is a ∈ G such that V ∩ (aW )

contains a non-empty open set modulo meagre sets common to both, up to translation.
In fact, in both cases, up to translation, the two sets share a norm Gδ-subset which is
non-meagre in the norm case and non-null in the density case.

Proof. In the norm topology case if V,W are Baire non-meagre, we may suppose that
V = I \M0∪N0 and W = J \M1∪N1, where I, J are open and Mi, Ni are meagre. Take
V0 = I \M0 and W0 = J \M1. If v and w are points of V0 and W0, put a := vw−1. Thus
v ∈ I ∩ (aJ). So I ∩ (aJ) differs from V ∩ (aW ) by a meagre set. Since M0 ∪ N0 may
be expanded to a meagre Fσ-set M , we deduce that I \M and J \M are non-meagre
Gδ-sets.

In the density topology case, if V,W are measurable non-null let V0 and W0 be the
sets of density points of V and W. If v and w are points of V0 and W0, put a := vw−1.

Then v ∈ T := V0 ∩ (aW0) and so T is non-null and v is a density point of T. Hence if T0

comprises the density points of T , then T \T0 is null, and so T0 differs from V ∩ (aW ) by
a null set. Evidently T0 contains a non-null closed, hence Gδ-subset (as T0 is measurable
non-null, by regularity of Haar measure).

Theorem 9.3 (Conjunction Theorem). For V,W Baire non-meagre (resp. measurable
non-null) in a group G equipped with either the norm or the density topology, there is
a ∈ G such that V ∩ (aW ) is Baire non-meagre (resp. measurable non-null) and for any
null sequence zn → eG and quasi-all (almost all) t ∈ V ∩ (aW ) there exists an infinite
Mt such that

{tzm : m ∈Mt} ⊂ V ∩ (aW ).

Proof. In either case applying Theorem 9.2, for some a the set T := V ∩ (aW ) is Baire
non-meagre (resp. measurable non-null). We may now apply the Kestelman-Borwein-
Ditor Theorem to the set T. Thus for almost all t ∈ T there is an infinite Mt such
that

{tzm : m ∈Mt} ⊂ T = V ∩ (aW ).

See [BO-K] for other forms of countable conjunction theorems. The last result moti-
vates a further strengthening of generic subuniversality (compare Section 6).

Definitions. Let S be generically subuniversal (= null-shift-compact). (See the defini-
tions after Th. 7.7.)

1. Call T similar to S if for every null sequence zn → eG there is t ∈ S∩T and infinite
Mt such that

{tzm : m ∈Mt} ⊂ S ∩ T.
Thus S is similar to T and both are generically subuniversal. Call T weakly similar to S
if for every null sequence zn → 0 there are s ∈ S and Ms such that

{szm : m ∈Ms} ⊂ T.
Thus again T is subuniversal (= null-shift-precompact).
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2. Call S subuniversally self-similar, or just self-similar (up to inversion-translation),
if for some a ∈ G and some T ⊂ S, S is similar to aT−1. Call S weakly self-similar
(up to inversion-translation) if for some a ∈ G and some T ⊂ S, S is weakly similar to
aT−1.

Theorem 9.4 (Self-similarity Theorem). In a group G equipped with either the norm
or the density topology, for S Baire non-meagre (or measurable non-null), S is self-
similar.

Proof. Fix a null sequence zn → 0. If S is Baire non-meagre (or measurable non-null),
then so is S−1; thus we have for some a that T := S∩(aS−1) is likewise Baire non-meagre
(or measurable non-null) and so for quasi-all (almost all) t ∈ T there is an infinite Mt

such that
{tzm : m ∈Mt} ⊂ T ⊂ S ∩ (aS−1),

as required.

Theorem 9.5 (Semigroup Theorem – cf. [BCS], [Be]). In a group G equipped with either
the norm or the density topology, if S, T are generically subuniversal (i.e. null-shift-
compact) with T (weakly) similar to S, then ST−1 contains a ball about the identity eG.
Hence if S is generically subuniversal and (weakly) self-similar, then SS has interior
points. Hence for G = Rd, if additionally S is a semigroup, then S contains an open
sector.

Proof. For S, T (weakly) similar, we claim that ST−1 contains Bδ(e) for some δ > 0.

Suppose not: then for each positive n there is zn with

zn ∈ B 1/n(e) \ ST−1.

Now z−1
n is null, so there is s in S and infinite Ms such that

{z−1
m s : m ∈Mt} ⊂ T.

For any m in Mt pick tm ∈ T so that z−1
m s = tm; then we have

z−1
m = tms

−1, so zm = st−1
m ,

a contradiction. Thus for some δ > 0 we have Bδ(e) ⊂ ST−1.

For S self-similar, say S is similar to T := aS−1, for some a, then Bδ(e)a ⊂ ST−1a =

S(aS−1)−1a = SSa−1a, i.e. SS has non-empty interior.

For information on the structure of semigroups see also [Wr]. For applications see
[BO-R]. By the Common Basis Theorem (Th. 9.2), replacing T by T−1, we obtain as an
immediate corollary of Theorem 9.5 a new proof of two classical results, extending the
Steinhaus and Piccard Theorem and Kominek’s Vector Sum Theorem.

Theorem 9.6 (Product Set Theorem, Steinhaus [St] measure case, Pettis [Pet2] Baire
case, cf. [Kom1] and [J-R, Lemma 2.10.3] in the setting of topological vector spaces and
[Be] and [BCS] in the group setting). In a normed locally compact group, if S, T are
Baire non-meagre (resp. measurable non-null), then ST contains interior points.
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10. Convexity

This section begins by developing natural conditions under which the Portmanteau the-
orem of convex functions (cf. [BO-Aeq]) remains true when reformulated for a normed
group setting, and then deduces generalizations of classical automatic continuity theorems
for convex functions on a group.

Definitions. 1. A group G will be called 2-divisible (or quadratically closed) if the
equation x2 = g for g ∈ G always has a unique solution in the group to be denoted g1/2.
See [Lev] for a proof that any group may be embedded as a subgroup in an overgroup
where the equations over G are soluble (compare also [Lyn1]).

2. In an arbitrary group, say that a subset C is 1
2 -convex if, for all x, y,

x, y ∈ C ⇒ √
xy ∈ C,

where √xy signifies some element z with z2 = xy. We recall the following results.

Theorem 10.1 (Eberlein-McShane Theorem, [Eb], [McSh, Cor. 10]). Let X be a 2-
divisible topological group of second category. Then any 1

2 -convex non-meagre Baire set
has a non-empty interior. If X is abelian and each sequence defined by x2

n+1 = xn converges
to eX then the interior of a 1

2 -convex set C is dense in C.

Definition. We say that the function h : G→ R is 1
2 -convex on the 1

2 -convex set C if,
for x, y ∈ C,

h(
√
xy) ≤ 1

2
(h(x) + h(y)),

with √xy as above.

Example. For G = R∗+ the function h(x) = x is 1
2 -convex on G, since

2xy ≤ x2 + y2.

Theorem 10.2 (Convex Minorant Theorem, [McSh]). Let X be a 2-divisible abelian
topological group. Let f and g be real-valued functions defined on a non-meagre subset C
with f 1

2 -convex and g Baire such that

f(x) ≤ g(x) for x ∈ C.

Then f is continuous on the interior of C.

Lemma 10.3 (Averaging Lemma). In a normed topological group, a non-meagre Baire set
T is ‘averaging’, that is, for any given point u ∈ T and for any sequence {un} → u, there
are v ∈ G (a right-averaging translator) and {vn} ⊆ T such that, for infinitely many
n ∈ ω,

u2
n = vnv.

There is likewise a left-averaging translator such that for some {wn} ⊆ T , for infinitely
many n ∈ ω, we have

u2
n = wwn.
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Proof. Define null sequences byzn = unu
−1, and z̃n = u−1un. We are to solve u2

nv
−1 =

vn ∈ T , or

uz̃nznuv
−1 = vn ∈ T, equivalently z̃nznuv

−1 = u−1vn ∈ T ′ = u−1T.

Now put ψn(x) := z̃nznx; then

d(x, z̃nznx) = d(e, z̃nzn) = ‖z̃nzn‖ ≤ ‖z̃n‖+ ‖zn‖ → 0.

By the Category Embedding Theorem (Th. 6.1), for some λ ∈ T ′ = u−1T , we have with
λ = u−1t and for infinitely many n,

u−1vn := z̃nznλ ∈ T ′ = u−1T,

uz̃nznλ = vn ∈ T, or uz̃nznuu
−1λ = vn ∈ T,

so
u2
nu
−1λ = vn ∈ T, or u2

n = vnλ
−1u = vnv

(with v = λ−1u = t−1u2 ∈ T−1u2).

As for the remaining assertion, note that u−1
n → u−1, v−1

n ∈ T−1 and

u−2
n = v−1v−1

n .

Thus noting that T−1 is non-meagre (since inversion is a homeomorphism) and replacing
T−1 by T we obtain the required assertion by a right-averaging translator.

Note the connection between the norms of the null sequences is only by way of the
conjugate metrics:

‖zn‖ = d(e, unu
−1) = d(u, un) and ‖z̃n‖ = d(e, u−1un) = d(u−1

n , u−1) = d̃(un, u).

Whilst we may make no comparisons between them, both norms nevertheless converge
to zero.

Definitions. For G,H normed groups, we say that f : G→ H is locally Lipschitz at g
if, for some neighbourhood Ng of g and for some constants Kg and all x, y in Ng,

‖f(x)f(y)−1‖H ≤ Kg‖xy−1‖G.

We say that f : G → H is locally bi-Lipschitz at g if, for some neighbourhood Ng of g
and for some positive constants Kg, κg, and all x, y in Ng,

κg‖xy−1‖G ≤ ‖f(x)f(y)−1‖H ≤ Kg‖xy−1‖G.

If f : G→ H is invertible, this asserts that both f and its inverse f−1 are locally Lipschitz
at g and f(g) respectively.

We say that the norm on G is n-Lipschitz if the function fn(x) := xn from G to G is
locally Lipschitz at all g 6= e, i.e. for each such g there is a neighbourhood Ng of g and
positive constants κg,Kg such that for x, y ∈ Ng

κg‖xy−1‖G ≤ ‖xny−n‖G ≤ Kg‖xy−1‖G.

In an abelian context the power function is a homomorphism; we note that [HJ, p. 381]
refers to a semigroup being modular when each fn (defined as above) is an injective
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homomorphism. The condition on the right with K = n is automatic, and so one need
require only that for some positive constant κ,

κ‖g‖ ≤ ‖gn‖.

Note that, in the general context of a globally n-Lipschitz norm (so with a constant κ
independent of g), if xn = yn, then as (xny−n) = e, we have κ‖xy−1‖G ≤ ‖xny−n‖G =

‖e‖ = 0, and so ‖xy−1‖G = 0, i.e. the power function is injective. If, moreover, the group
is n-divisible, then the power function fn(x) is an isomorphism.

We note that in the additive group of reals x2 fails to be locally bi-Lipschitz at
the origin (since its derivative there is zero): see [Bart]. However, the following are bi-
Lipschitz. 1. In Rd with additive notation, we have ‖x2‖ := ‖2x‖ = 2‖x‖, so the norm is
2-Lipschitz. 2. In R∗+ we have ‖x2‖ := |log x2| = 2|log x| = 2‖x‖ and again the norm is
2-Lipschitz. 3. In a Klee group the mapping f(x) := xn is uniformly (locally) Lipschitz,
since

‖xny−n‖G ≤ n‖xy−1‖G,

proved inductively from the Klee property (Th. 2.18) via the observation that

‖xn+1y−(n+1)‖G = ‖xxny−ny−1‖G ≤ ‖xny−n‖G + ‖xy−1‖G.

Lemma 10.4 (Reflecting Lemma). Suppose the group-norm is everywhere locally 2-Lip-
schitz. Then, for T Baire and non-meagre, T is reflecting, i.e. for points un ∈ T with
limit u ∈ T there are w ∈ G (a right-reflecting translator) and {vn} ⊆ T such that, for
infinitely many n ∈ ω, we have

v2
n = unw.

There is likewise a left-reflecting translator.

Proof. Let T 2 := {g : g = t2 for some t ∈ T}. By assumption, T 2 is non-meagre. With
un = uzn, put S = T 2 and notice that unw ∈ S iff uznw ∈ S iff znw ∈ u−1S. Now u−1S

is non-meagre and ψn(x) := znx as usual converges to the identity, so the existence of
w ∈ u−1S is ensured such that znw = u−1v2

n for infinitely many n.

Remarks. 1. Note that the assertion here is

u−1
n vn = wv−1

n ,

so that for d a right-invariant metric

d(vn, w) = d(v−1
n , u−1

n ) = d̃(vn, un) ≈ d̃(vn, u),

or
d(vn, w) ≈ d̃(vn, u),

suggesting the terminology of reflection.
2. Boundedness theorems for reflecting and averaging sets follow as in [BO-Aeq] since

the following are true in any group, as we see below.

Theorem 10.5. In a normed topological group, for f a 1
2 -convex function, if f is locally

bounded above at x0, then it is locally bounded below at x0 (and hence locally bounded
at x0).
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Proof. Say f is bounded above in B := Bδ(x0) by M. Consider u ∈ B̃δ(x0). Thus
d̃(x0, u) = ‖u−1x0‖ < δ. Put t = u−1x2

0; then tx
−1
0 = u−1x0, and so

d(t, x0) = ‖tx−1
0 ‖ = ‖u−1x0‖ = d̃(u, x0) < δ.

Then t ∈ B, and since x2
0 = ut we have

2f(x0) ≤ f(u) + f(t) ≤ f(u) +M, or f(u) ≥ 2f(x0)−M.

Thus 2f(x0)−M is a lower bound for f on the open set B̃δ(x0).

As a corollary a suitably rephrased Bernstein-Doetsch Theorem ([Kucz], [BO-Aeq]) is
thus true.

Theorem 10.6 (Bernstein-Doetsch Theorem). In a normed group, for fa 1
2 -convex func-

tion, if f is locally bounded above at x0, then f is continuous at x0.

Proof. We repeat the ‘Second proof’ of [Kucz, p. 145]. Choose yn → x0 with f(yn) →
mf (x0) and zn → x0 with f(zn)→Mf (x0). Let un := y2

nx
−1
n . Thus y2

n = unxn and so

2f(yn) ≤ f(un) + f(zn),

i.e. f(un) ≥ 2f(yn)− f(zn). Hence in the limit we obtain

Mf (x0) ≥ lim inf f(un) ≥ 2Mf (x0)−mf (x0).

One thus has that Mf (x0) ≤ mf (x0). But mf (x0) ≤ f(x0) ≤ Mf (x0), and both hull
values are finite (by the result above). Thus mf (x0) = f(x0) = Mf (x0), from which
continuity follows.

We now consider the transferability of upper and lower local boundedness. Our proofs
work directly with definitions (so are not modelled after those in Kuczma [Kucz]). We
do not however consider domains other than the whole metric group. For clarity of proof
structure we give separate proofs for the two cases, first when G is abelian and later for
general G.

Theorem 10.7 (Local upper boundedness). In a normed topological group G, for f a
1
2 -convex function defined on G, if f is locally bounded above at some point x0, then f is
locally bounded above at all points.

Proof. Case (i): The abelian case. Say f is bounded above in B := Bδ(x0) by M. Given
a fixed point t, put z = zt := x−1

0 t2, so that t2 = x0z. Consider any u ∈ Bδ/2(t).

Write u = st with ‖s‖ < δ/2. Now put y = s2; then ‖y‖ = ‖s2‖ ≤ 2‖s‖ < δ. Hence
yx0 ∈ Bδ(x0). Now

u2 = (st)2 = s2t2 = yx0z,

as the group is abelian. So

f(u) ≤ 1

2
f(yx0) +

1

2
f(z) ≤ 1

2
M +

1

2
f(zt).

That is, 1
2 (M + f(zt)) is an upper bound for f in Bδ/2(x0).

Case (ii): The general case. As before, suppose f is bounded above in B := Bδ(x0) byM ,
and let t be a given a fixed point; put z = zt := x−1

0 t2 so that t2 = x0z.
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For this fixed t the mapping y → α(y) := ytyt−1y−2 is continuous (cf. Th. 3.7 on
commutators) with α(e) = e, so α(y) is o(y) as ‖y‖ → 0. Now

sts = [stst−1s−2]s2t = α(s)s2t,

and we may suppose that, for some η < δ/2, we have ‖α(s)‖ < δ/2, for ‖s‖ < η. Note
that

stst = α(s)s2t2.

Consider any u ∈ Br(t) with r = min{η, δ/2}. Write u = st with ‖s‖ < r ≤ δ/2. Now put
y = s2. Then ‖y‖ = ‖s2‖ ≤ 2‖s‖ < δ and ‖α(s)y‖ ≤ η+δ/2 < δ. Hence α(s)yx0 ∈ Bδ(x0).
Now

u2 = stst = α(s)s2t2 = α(s)yx0z.

Hence, by convexity,
f(u) ≤ 1

2f(α(s)yx0) + 1
2f(z) ≤ 1

2M + 1
2f(zt).

As an immediate corollary of the last theorem and the Bernstein-Doetsch Theorem
(Th. 10.6) we have the following result.

Theorem 10.8 (Dichotomy Theorem for convex functions – [Kucz, p. 147]). In a normed
topological group, for 1

2 -convex f (so in particular for additive f) either f is continuous
everywhere, or it is discontinuous everywhere.

The definition below requires continuity of ‘square-rooting’ – taken in the form of an
algebraic closure property of degree 2 in a group G, expressed as the solvability of certain
‘quadratic equations’ over the group. Its status is clarified later by reference to Bartle’s
Inverse Function Theorem. We recall that a group is n-divisible if xng = e is soluble for
each g ∈ G. (In the absence of algebraic closure of any degree an extension of G may be
constructed in which these equations are solvable – see for instance Levin [Lev].)

Definition. We say that the normed group G is locally convex at λ = t2 if for any ε > 0

there is δ > 0 such that for all g with ‖g‖ < ε the equation
xtxt = gt2,

equivalently xtxt−1 = g, has all solutions satisfying ‖x‖ < δ.

Thus G is locally convex at e if for any ε > 0 there is δ > 0 such that for all g with
‖g‖ < ε the equation

x2 = g

has all solutions with ‖x‖ < δ.

Remark. Putting u = xt the local convexity equation reduces to u2 = gt2, asserting
the local existence of square roots (local 2-divisibility). If G is abelian the condition at t
reduces to the condition at e.

Theorem 10.9 (Local lower boundedness). Let G be a locally convex group with a 2-
Lipschitz norm, i.e. g → g2 is a bi-Lipschitz isomorphism such that, for some κ > 0,

κ‖g‖ ≤ ‖g2‖ ≤ 2‖g‖.
For f a 1

2 -convex function, if f is locally bounded below at some point, then f is locally
bounded below at all points.
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Proof. Note that by Th. 3.39 the normed group is topological.

Case (i): The abelian case. We change the roles of t and x0 in the preceding abelian
theorem, treating t as a reference point, albeit now for lower boundedness, and x0 as
some arbitrary other fixed point. Suppose that f is bounded below by L on Bδ(t). Let
yx0 ∈ Bκδ(x0), so that 0 < ‖y‖ < κδ. Choose s such that s2 = y. Then

κ‖s‖ ≤ ‖y‖ < κδ,

so ‖s‖ < δ. Thus u = st ∈ Bδ(t). Now the identity u2 = s2t2 = yx0z implies that
L ≤ f(u) ≤ 1

2f(yx0) + 1
2f(zt), or 2L− f(zt) ≤ f(yx0),

i.e. that 2L− f(zt) is a lower bound for f on Bκδ(x0).

Case (ii): The general case. Suppose as before that f is bounded below by L on Bδ(t).
Since the map α(σ) := σtσt−1σ−2 is continuous (cf. again Th. 3.7 on commutators) and
α(e) = e, we may choose η such that ‖α(σ)‖ < κδ/2, for ‖σ‖ < η. Now choose ε > 0 such
that, for each y with ‖y‖ < ε, the solution u = σt to

u2 = yt2

has ‖σ‖ < η. Let r = min{κδ/2, ε}.
Let yx0 ∈ Br(x0); then 0 < ‖y‖ < κδ/2 and ‖y‖ < ε. As before put z = zt := x−1

0 t2

so that t2 = x0z. Consider u = σt such that u2 = yx0z; thus we have

u2 = σtσt = yx0z = yx0x
−1
0 t2 = yt2.

Hence ‖σ‖ < η (as ‖y‖ < ε). Now we write

u2 = σtσt = [σtσt−1σ−2]σ2t2 = α(σ)σ2t2 = yt2.

We compute that
y = α(σ)σ2

and
κδ/2 ≥ ‖y‖ = ‖α(σ)σ2‖ ≥ ‖σ2‖ − ‖α(σ)‖ ≥ κ‖σ‖ − ‖α(σ)‖,

so
‖σ‖ ≤ δ/2 + ‖α(σ)‖/κ < δ/2 + δ/2 < δ.

Thus u ∈ Bδ(t). Now the identity u2 = yx0z together with convexity implies as usual
that

L ≤ f(u) ≤ 1
2f(yx0) + 1

2f(zt), or 2L− f(zt) ≤ f(yx0),

i.e. 2L− f(zt) is a lower bound for f on Bκδ(x0).

The local 2-divisibility assumption at t2 asserts that ft(σ) := σtσt−1 is invertible
locally at e. Bartle’s theorem below guarantees that ft has uniform local inverse under
a smoothness assumption, i.e. that ‖σ‖ = ‖f−1

t (y)‖ < δ for all small enough y, say for
‖y‖ < κδ. To state the theorem we need some definitions.

Definitions. 1. f is said to have a derivative at x0 if there is a continuous homomor-
phism f ′(x0) such that

lim
‖u‖→0+

1

‖u‖
‖f(ux0)f(x0)−1[f ′(x0)(u)]−1‖ = 0.
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2. f is of class C ′ on the open set U if it has a derivative at each point u in U and,
for each x0 and each ε > 0, there is δ > 0 such that for all x1, x2 in Bδ(x0) both

‖f ′(x1)(u)[f ′(x2)(u)]−1‖ < ε‖u‖
and

‖f(x1)f(x2)−1[f ′(x0)(x1x
−1
2 )]−1‖ < ε‖x1x

−1
2 ‖.

The two conditions may be rephrased relative to the right-invariant metric d on the group
as

d(f ′(x1)(u), f ′(x2)(u)) < ε‖u‖
and

d(f(x1)f(x2)−1, f ′(x0)(x1x
−1
2 ) < εd(x1, x2).

3. Suppose that y0 = f(x0). Then f is smooth at x0 if there are positive numbers α, β
such that if 0 < d(y, y0) < β then there is x such that y = f(x) and d(x, x0) ≤ α ·d(y, y0).

If f is invertible, then this asserts that

d(f−1(y), f−1(y0)) ≤ α · d(y, y0).

Example. Let f(x) = tx with t fixed. Here f is smooth at x0 if there are positive
numbers α, β such that

‖xx−1
0 ‖ ≤ α‖tx(tx0)−1‖ = α‖txx−1

0 t−1‖.
Note that in a Klee group ‖txx−1

0 t−1‖ = ‖t−1txx−1
0 ‖ = ‖xx−1

0 ‖.

Theorem 10.10 (Bartle’s Inverse Function Theorem, [Bart, Th. 2.4]). In a topologically
complete normed group, suppose that

(i) f is of class C ′ in the ball Br(x0) = {x ∈ G : ‖xx−1
0 ‖ < r} for some r > 0,

(ii) f ′(x0) is smooth (at e and so anywhere).

Then f is smooth at x0 and hence open. If also the derivative f ′(x0) is an isomorphism,
then f has a uniformly continuous local inverse at x0.

Corollary 10.11. If ft(σ) := σtσt−1 is of class C ′ on Br(e) and f ′t(e) is smooth, then
G is locally convex at t.

Proof. Immediate since ft(e) = e.

We are now in a position to state generalizations of two results derived in the real
line case in [BO-Aeq]. The terminology is motivated by Lemmas 10.3 and 10.4.

Proposition 10.12. Let G be any locally convex group with a 2-Lipschitz norm. If f is
1
2 -convex and bounded below on a reflecting subset S of G, then f is locally bounded below
on G.

Proof. Suppose not. Let T be a reflecting subset of G. Let K be a lower bound on T. If f
is not locally bounded from below, then at any point u in T̄ there is a sequence {un} → u

with {f(un)} → −∞. For some w ∈ G, we have v2
n = wun ∈ T for infinitely many n.

Then
K ≤ f(vn) ≤ 1

2f(w) + 1
2f(un), or 2K − f(w) ≤ f(un),

i.e. f(un) is bounded from below, a contradiction.
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Theorem 10.13 (Generalized Mehdi Theorem – cf. [Meh, Th. 3]). A 1
2 -convex function

f : G → R on a normed group, bounded above on an averaging subset S, is continuous
on G.

Proof. Let T be an averaging subset of G. Suppose that f is not continuous, but is
bounded above on T by K. Then f is not locally bounded above at some point of u ∈ T̄ .
Then there is a null sequence zn → e with f(un)→∞, where un = uzn. Select {vn} and
w in G so that, for infinitely many n, we have

u2
n = wvn.

But for such n,
f(un) ≤ 1

2f(w) + 1
2f(vn) ≤ 1

2f(w) + 1
2K,

contradicting the unboundedness of f(un).

The Generalized Mehdi Theorem, together with the Averaging Lemma, implies the
classical result below and its generalizations.

Theorem 10.14 (Császár-Ostrowski Theorem [Csa], [Kucz, p. 210]). A convex function
f : R→ R bounded above on a set of positive measure (resp. non-meagre set) is continu-
ous.

Theorem 10.15 (Topological Császár-Ostrowski Theorem). A 1
2 -convex function f :

G→ R on a normed topological group, bounded above on a non-meagre subset, is contin-
uous.

Appeal to the Generalized Borwein-Ditor Theorem yields the following result, which
refers to Radon measures, for which see Fremlin [Fre-4].

Theorem 10.16 (Haar-measure Császár-Ostrowski Theorem). A 1
2 -convex function f :

G→ R on a normed topological group carrying a Radon measure, bounded above on a set
of positive measure, is continuous.

11. Automatic continuity: the Jones-Kominek Theorem

This section is dedicated to generalizations to normed groups and to a more general class
of topological groups of the following result for the real line. Here we regard R as a vector
space over Q and so we say that T is a spanning subset of R if any real number is a finite
rational combination of members of T. See below for the definition of an analytic set.

Theorem 11.1 (Theorems of Jones and Kominek). Let f be additive on R and either
have a continuous restriction, or a bounded restriction, f |T , where T is some analytic
set spanning R. Then f is continuous.

The result follows from the Expansion Lemma and Darboux’s Theorem (see below)
that an additive function bounded on an interval is continuous. In fact the bounded
case above (Kominek’s Theorem, [Kom2]) implies the continuous case (Jones’s Theo-
rem, [Jones1], [Jones2]), as was shown in [BO-Th]. [OrC] develops limit theorems for
sequences of functionals whose properties are given on various kinds of spanning sets
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including spanning in the sense of linear rational combinations. Before stating the cur-
rent generalizations we begin with some preliminaries on analytic subsets of a topological
group. We recall ([J-R, p. 11], or [Kech, Ch. III] for the Polish space setting) that in a
Hausdorff space X a K-analytic set is a set A that is the image under a compact-valued,
upper semi-continuous map from NN; if this mapping takes values that are singletons
or empty, the set A is said to be analytic. In either case A is Lindelöf. (The topologi-
cal notion of K-analyticity was introduced by Choquet, Frolík, Sion and Rogers under
variant definitions, eventually found to be equivalent, as a consequence of a theorem of
Jayne, see [J-R, Sect. 2.8 p. 37] for a discussion.) If the space X is a topological group,
then the subgroup 〈A〉 generated by an analytic subset A is also analytic and so Lindelöf
(for which, see below); note the result due to Loy [Loy] and Christensen [Ch] that an
analytic Baire topological group is Polish (cf. [HJ, Th. 2.3.6 p. 355]). Note that a Lindelöf
group need not be metric; see for example the construction due to Oleg Pavlov [Pav]. If
additionally the group X is metric, then 〈A〉 is separable, and so in fact this K-analytic
set is analytic (a continuous image of NN – see [J-R, Th. 5.5.1(b) p. 110]).

Definition. For H a family of subsets of a space X, we say that a set S is Souslin-H if
it is of the form

S =
⋃
α∈ωω

∞⋂
n=1

H(α|n),

with each H(α|n) ∈ H. We will often take H to be F(X), the family of closed subsets of
the space X.

Definition. Let G be any group. For any positive integer n and for any subset S let
S(n), the n-span of S, denote the set of S-words of length n. Say that a subset H of G
spans G (in the sense of group theory), or generates the group G, if for any g ∈ G, there
are h1, . . . , hn in H such that

g = hε11 · . . . · hεnn with εi = ±1.

(If H is symmetric, so that h−1 ∈ H iff h ∈ H, there is no need for inverses.)

We begin with results concerning K-analytic topological groups.

Proposition 11.2. In a topological group the span of a K-analytic set is K-analytic;
likewise for analytic sets.

Proof. Since f(v, w) = vw is continuous, S(2) = f(S×S) is K-analytic by [J-R, Th. 2.5.1
p. 23]. Similarly all the sets S(n) are K-analytic. Hence so is the span

⋃
n∈N S

(n) ([J-R,
Th. 2.5.4 p. 23]).

Theorem 11.3 (Intersection Theorem – [J-R, Th. 2.5.3 p. 23]). The intersection of a
K-analytic set with a Souslin-F(X) in a Hausdorff space X is K-analytic.

Theorem 11.4 (Projection Theorem – [RW] and [J-R, Th. 2.6.6 p. 30]). Let X and Y
be topological spaces with Y a K-analytic space. Then the projection on X of a Souslin-
F(X × Y ) is Souslin-F(X).

Theorem 11.5 (Nikodym’s Theorem – [Nik]; [J-R, p. 42]). The Baire sets of a space X
are closed under the Souslin operation. Hence Souslin-F(X) sets are Baire.
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We promised examples of Baire sets; we can describe a hierarchy of them.

Examples of Baire sets. By analogy with the projective hierarchy of sets (known also
as the Luzin hierarchy – see [Kech, p. 313], which may be generated from the closed
sets by iterating projection and complementation any finite number of times), we may
form the closely associated hierarchy of sets starting with the closed sets and iterating
any finite number of times the Souslin operation S (following the notation of [J-R]) and
complementation, denoted analogously by C say. Thus in a complete metric space one
obtains the family A of analytic sets, by complementation the family CA of co-analytic
sets, then SCA which contains the previous two classes, and so on. By Nikodym’s theorem
all these sets have the Baire property. One might call this the Souslin hierarchy .

One may go further and form the smallest σ-algebra (with complementation allowed)
closed under S and containing the closed sets; this contains the Souslin hierarchy (im-
plicit through an iteration over the countable ordinals). Members of the latter family are
referred to as the C-sets – see Nowik and Reardon [NR].

Definitions. 1. Say that a function f : X → Y between two topological spaces is H-
Baire, for H a class of sets in Y , if f−1(H) has the Baire property for each set H in H.
Thus f is F(Y )-Baire if f−1(F ) is Baire for all closed F in Y. Taking complements, since

f−1(Y \H) = X \ f−1(H),

f is F(Y )-Baire iff it is G(Y )-Baire, when we will simply say that f is Baire (‘f has the
Baire property’ is the alternative usage).

2. One must distinguish between functions that are F(Y )-Baire and those that lie in
the smallest family of functions closed under pointwise limits of sequences and containing
the continuous functions (for a modern treatment see [J-R, Sect. 6]). We follow tradi-
tion in calling these last Baire-measurable (originally called by Lebesgue the analytically
representable functions, a term used in the context of metric spaces in [Kur-1, 2.31.IX,
p. 392]; cf. [Fos]).

3. We will say that a function is Baire-continuous if it is continuous when restricted to
some co-meagre set. In the real line case and with the density topology, this is Denjoy’s
approximate continuity ([LMZ, p. 1]); recall ([Kech, 17.47]) that a set is (Lebesgue)
measurable iff it has the Baire property under the density topology.

The connections between these concepts are given in the theorems below. See the
cited papers for proofs, and for the starting point, Baire’s Theorem on the points of
discontinuity of a Borel measurable function.

Theorem 11.6 (Discontinuity Set Theorem – [Kur-1, p. 397] or [Kur-A]; [Ba1]; cf. [Ne,
I.4]).

(i) For f : X → Y Baire-measurable, with X,Y metric, the set of discontinuity points
is meagre; in particular

(ii) for f : X → Y Borel-measurable of class 1, with X,Y metric and Y separable, the
set of discontinuity points is meagre.

In regard to (ii) see [Han-71, Th. 10] for the non-separable case. The following theorem,
from recent literature, usefully overlaps with the last result.
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Theorem 11.7 (Banach-Neeb Theorem – [Ban-T, Th. 4 p. 35 and Vol. I p. 206]; [Ne] (i)
I.6 (ii) I.4).

(i) A Borel-measurable f : X → Y with X,Y metric and Y separable and arcwise
connected is Baire-measurable;

(ii) a Baire-measurable f : X→Y withX a Baire space and Y metric is Baire-continuous.

Remark. In fact Banach shows that a Baire-measurable function is Baire-continuous
on each perfect set ([Ban-T, Vol. II p. 206]). In (i) if X,Y are completely metrizable,
topological groups and f is a homomorphism, Neeb’s assumption that Y is arcwise con-
nected becomes unecessary, since, as Pestov [Pes] remarks, the arcwise connectedness
may be dropped by referring to a result of Hartman and Mycielski [HM] that a separable
metrizable group embeds as a subgroup of an arcwise connected separable metrizable
group.

Theorem 11.8 (Baire Continuity Theorem). A Baire function f : X → Y is Baire-
continuous in the following cases:

(i) Baire condition (see e.g. [HJ, Th. 2.2.10 p. 346]): Y is a second-countable space;
(ii) Emeryk-Frankiewicz-Kulpa ([EFK]): X is Čech-complete and Y has a base of cardi-

nality not exceeding the continuum;
(iii) Pol condition ([Pol]): f is Borel, X is Borelian-K and Y is metrizable and of non-

measurable cardinality;
(iv) Hansell condition ([Han-71]): f is σ-discrete and Y is metric.

We will say that the pair (X,Y ) enables Baire continuity if the spaces X,Y satisfy
either of the two conditions (i) or (ii) above. In the applications below Y is usually the
additive group of reals R, so satisfies (i). Building on [EFK], Fremlin ([Frem, Section 10])
characterizes a space X such that every Baire function f : X → Y is Baire-continuous
for all metric Y in the language of ‘measurable spaces with negligibles’; reference there
is made to disjoint families of negligible sets all of whose subfamilies have a measurable
union. For a discussion of discontinuous homomorphisms, especially counterexamples on
C(X) with X compact (e.g. employing Stone-Čech compactifications, X = βN \ N), see
[Dal, Section 9].

Remark. Hansell’s condition, requiring the function f to be σ-discrete, is implied by f
being analytic when X is absolutely analytic (i.e. Souslin-F(X) in any complete metric
space X into which it embeds). Frankiewicz and Kunen in [FrKu] study the consistency
relative to ZFC of the existence of a Baire function failing to have Baire continuity.

The following result provides a criterion for verifying that f is Baire.

Theorem 11.9 (Souslin criterion – for Baire functions). Let X and Y be Hausdorff
topological spaces with Y a K-analytic space. If f : X → Y has Souslin-F(X ×Y ) graph,
then f is Baire.

Proof. Let G ⊆ X × Y be the graph of f which is Souslin-F(X × Y ). For F closed in Y ,
we have

f−1(F ) = prX [G ∩ (X × F )],
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which, by the Intersection Theorem (Th. 11.3), is the projection of a Souslin-F(X × Y )

set. By the Projection Theorem (Th. 11.4), f−1(F ) is Souslin-F(X). Closed sets have the
Baire property by definition, so by Nikodym’s Theorem f−1(F ) has the Baire property.

We note that in the realm of separable metric spaces, a surjective map f with analytic
graph is in fact Borel (since for U open f−1(U) and f−1(Y \ U) are complementary
analytic and so Borel sets, by Souslin’s Theorem (see [J-R, Th. 1.4.1]); for the non-
separable case compare [Han-71, Th. 4.6(a)]).

Before stating our next theorem we recall a classical result in a sharper form. We are
grateful to the referee for the statement and proof of this result in the topological group
setting, here amended to the normed group setting.

Theorem 11.10 (Banach-Mehdi Continuity Theorem – [Ban-T, 1.3.4, p. 40], [Meh], [HJ,
Th. 2.2.12 p. 348], or [BO-TII]). A Baire-continuous homomorphism f : X → Y between
normed groups, with X Baire in the norm topology, is continuous. In particular this is
so for f Borel-measurable and Y separable.

Proof. We work with the right norm topologies without loss of generality, since inver-
sion is a homomorphism and also an isometry from the left to the right norm topology
(Prop. 2.5). We claim that it is enough to prove the following: for any non-empty open
G in X and any ε > 0 there is a non-empty open V ⊆ G with diam(f(V )) < ε. Indeed
the claim implies that for each n ∈ N the set Wn :=

⋃
{V : diam(f(V )) < 1/n and V

is open and non-empty} is dense and open in X. Hence, as X is Baire, the intersection⋂
n∈Wn is a non-empty set containing continuity points of f ; but f is a homomorphism

so is continuous everywhere.
Now fix G non-empty and open and ε > 0. As f is Baire-continuous, it is continuous

when restricted to X \M for some meagre set M. As M may be included in a countable
union of closed nowhere dense sets N , f restricted to some non-meagre Gδ-set is con-
tinuous (e.g. to X \N). Passing to a subset, there is a non-meagre Gδ-set H in X with
BXε (H) ⊆ G such that diamX(H) < ε/12 and diamY (f(H)) < ε/4.

Note that HH−1HH−1 ⊆ BXε (eX) (as ‖h′h−1‖ ≤ ‖h′‖ + ‖h‖) and likewise
f(H)f(H)−1f(H)f(H)−1 ⊆ BYε/3(eY ) . By the Squared Pettis Theorem (Th. 6.5), there
is a non-empty open set U contained in HH−1HH−1. Fix h ∈ H and put V := Uh. Then

V = Uh ⊆ HH−1HH−1h ⊆ Bε(eX)h = Bε(h) ⊆ BXε (H) ⊆ G,

and so V ⊆ G; moreover, since f is a homomorphism,

f(V ) = f(Uh) = f(U)f(h) ⊆ f(H)f(H)−1f(H)f(H)−1f(h) ⊆ BYε/3(f(h))

and so diamY f(V ) < ε, as claimed.
The final assertion now follows from the Banach-Neeb Theorem (Th. 11.7).

The Souslin criterion and the next theorem together have as an immediate corollary
the classical Souslin-graph Theorem; in this connection recall (see the corollary of [HJ,
Th. 2.3.6 p. 355]) that a normed topological group which is Baire and analytic is Polish.
Our proof, which is for normed groups, is inspired by the topological vector space proof
in [J-R, §2.10] of the Souslin-graph theorem; their proof may be construed as having
two steps: one establishing the Souslin criterion (Th. 11.9 as above), the other the Baire
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homomorphism theorem. They state without proof the topological group analogue. (See
[O-AB] for non-separable analogues.)

Theorem 11.11 (Baire Homomorphism Theorem, cf. [J-R, §2.10]). Let X and Y be
normed groups with X topologically complete. If f : X → Y is a Baire homomorphism,
then f is continuous. In particular, if f is a homomorphism with a Souslin-F(X × Y )

graph and Y is in addition a K-analytic space, then f is continuous.

Proof. For f : X → Y the given homomorphism, it is enough, as in Lemma 3.1, to prove
continuity at eX , i.e. that for any ε > 0 there is δ > 0 such that Bδ(eX) ⊆ f−1[Bε(eX)].

So let ε > 0. We work with the right norm topology.
Being K-analytic, Y is Lindelöf (cf. [J-R, Th. 2.7.1 p. 36]) and metric, so sepa-

rable; so choose a countable dense set {yn} in f(X) and select an ∈ f−1(yn). Put
T := f−1[Bε/4(eY )]. Since f is a homomorphism, f(Tan) = f(T )f(an) = Bε/4(eY )yn.

Note also that f(T−1) = f(T )−1, so

TT−1 = f−1[Bε/4(eY )]f−1[Bε/4(eY )−1] = f−1[Bε/4(eY )2] ⊆ f−1[Bε/2(eY )],

by the triangle inequality.
Now

f(X) ⊆
⋃
n

Bε(eY )yn, so X = f−1(Y ) =
⋃
n

Tan.

But X is non-meagre, so for some n the set Tan is non-meagre, and so too is T (as right-
shifts are homeomorphisms). By assumption f is Baire. Thus T is Baire and non-meagre.
By the Squared Pettis Theorem (Th. 5.8), (TT−1)2 contains a ball Bδ(eX). Thus we have

Bδ(eX) ⊆ (TT−1)2 ⊆ f−1[Bε/4(eY )4] = f−1[Bε(eY )].

Theorem 11.12 (Souslin-graph Theorem, Schwartz [Schw], cf. [J-R, p. 50]). Let X and
Y be normed groups with Y a K-analytic space and X non-meagre. If f : X → Y is a
homomorphism with Souslin-F(X × Y ) graph, then f is continuous.

Proof. This follows from Theorems 11.9 and 11.11.

Corollary 11.13 (Generalized Jones Theorem: Thinned Souslin-graph Theorem). Let
X and Y be topological groups with X non-meagre and Y a K-analytic space. Let S be
a K-analytic set spanning X and f : X → Y a homomorphism with restriction to S

continuous on S. Then f is continuous.

Proof. Since f is continuous on S, the graph {(x, y) ∈ S × Y : y = f(x)} is closed in
S × Y and so is K-analytic by [J-R, Th. 2.5.3]. Now y = f(x) iff, for some n ∈ N, there
is (y1, . . . , yn) ∈ Y n and (s1, . . . , sn) ∈ Sn such that x = s1 · . . . · sn, y = y1 · . . . · yn, and,
for i = 1, . . . , n, yi = f(si). Thus G := {(x, y) : y = f(x)} is K-analytic. Formally,

G = prX×Y
[ ⋃
n∈N

[
Mn ∩ (X × Y × Sn × Y n) ∩

⋂
i≤n

Gi,n

]]
,

where

Mn := {(x, y, s1, . . . ., sn, y1, . . . , yn) : y = y1 · . . . · yn and x = s1 · . . . · sn},
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and

Gi,n := {(x, y, s1, . . . ., sn, y1, . . . , yn) ∈ X × Y ×Xn × Y n : yi = f(si)} for i = 1, . . . , n.

Here each set Mn is closed and each Gi,n is K -analytic. Hence, by the Intersection and
Projection Theorems (Th. 11.3 and 11.4), the graphG isK-analytic. By the Souslin-graph
theorem f is thus continuous.

This is a new proof of the Jones Theorem. We now consider results for the more
special normed group context. Here again one should note the corollary of [HJ, Th. 2.3.6
p. 355] that a normed group which is Baire and analytic is Polish. Our next result has
a proof which is a minor adaptation of the proof in [BoDi]. We recall that a Hausdorff
topological space is paracompact ([Eng, Ch. 5], or [Kel, Ch. 6, especially Problem Y]) if
every open cover has a locally finite open refinement and that (i) Lindelöf spaces and (ii)
metrizable spaces are paracompact. Paracompact spaces are normal, hence topological
groups need not be paracompact, as exemplified again by the example due to Oleg Pavlov
[Pav] quoted earlier or by the example of van Douwen [vD] (see also [Com, Section 9.4
p. 1222]); however, L. G. Brown [Br-2] shows that a locally complete topological group
is paracompact (and this includes the locally compact case, cf. [Com, Th. 2.9 p. 1161]).
The assumption of paracompactness is thus natural.

Theorem 11.14 (The Second Generalized Kestelman-Borwein-Ditor Theorem: Measur-
able Case – cf. Th. 7.6). Let G be a paracompact topological group equipped with a lo-
cally finite, inner regular Borel measure m (Radon measure) which is left-invariant, resp.
right-invariant (for example, G locally compact, equipped with a Haar measure). If A
is a (Borel) measurable set with 0 < m(A) < ∞ and zn → e, then, for m-almost all
a ∈ A, there is an infinite set Ma such that the corresponding right-translates, resp.
left-translates, of zn are in A, i.e., in the first case

{zna : n ∈Ma} ⊆ A.

Proof. Without loss of generality we conside right-translation of the sequence {zn}. Since
G is paracompact, it suffices to prove the result for A open and of finite measure. By
inner-regularity A may be replaced by a σ-compact subset of equal measure. It thus
suffices to prove the theorem for K compact with m(K) > 0 and K ⊆ A. Define a
decreasing sequence of compact sets Tk :=

⋃
n≥k z

−1
n K, and let T =

⋂
k Tk. Thus x ∈ T

iff, for some infinite Mx,
znx ∈ K for m ∈Mx,

so that T is the set of ‘translators’ x for the sequence {zn}. Since K is closed, for x ∈ T ,
we have x = limn∈Mx

znx ∈ K; thus T ⊆ K. Hence, for each k,

m(Tk) ≥ m(z−1
k K) = m(K),

by left-invariance of the measure. But, for some n, Tn ⊆ A. (If z−1
n kn /∈ A on an infinite

set M of n, then since kn → k ∈ K we have z−1
n kn → k ∈ A, but k = lim z−1

n kn /∈ A,
a contradiction since A is open.) So, for some n, m(Tn) <∞, and thus m(Tk)→ m(T ).

Hence m(K) ≥ m(T ) ≥ m(K). So m(K) = m(T ) and thus almost all points of K are
translators.
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Remark. It is quite consistent to have the measure left-invariant and the metric right-
invariant.

Theorem 11.15 (Analytic Dichotomy Lemma on Spanning). Let G be a connected,
normed group (in the measure case a normed topological group). Suppose that an an-
alytic set T ⊆ G spans a set of positive measure or a non-meagre set. Then T spans G.

Proof. In the category case, the result follows from the Banach-Kuratowski Dichotomy,
Th. 6.13 ([Ban-G, Satz 1], [Kur-1, Ch. VI 13.XII], [Kel, Ch. 6 Prob. P p. 211]) by consid-
ering S, the subgroup generated by T ; since T is analytic, S is analytic and hence Baire,
and, being non-meagre, is clopen and hence all of G, as the latter is a connected group.

In the measure case, by the Steinhaus Theorem, Th. 6.10 ([St], [BGT, Th. 1.1.1],
[BO-SO]), T 2 has non-empty interior, hence is non-meagre. The result now follows from
the category case.

Our next result follows directly from Choquet’s Capacitability Theorem [Choq] (see
especially [Del2, p. 186], and [Kech, Ch. III 30.C]). For completeness, we include the brief
proof. Incidentally, the argument we employ goes back to Choquet’s theorem, and indeed
further, to [RODav] (see e.g. [Del1, p. 43]).

Theorem 11.16 (Compact Contraction Lemma). In a normed topological group carrying
a Radon measure, for T analytic, if T · T has positive Radon measure, then for some
compact subset S of T , S · S has positive measure.

Proof. We present a direct proof (see below for our original inspiration in Choquet’s
Theorem). As T 2 is analytic, we may write ([J-R]) T 2 = h(H), for some continuous h and
some Kσδ subset of the reals, e.g. the set H of the irrationals, so that H =

⋂
i

⋃
j d(i, j),

where d(i, j) are compact and, without loss of generality, the unions are each increasing:
d(i, j) ⊆ d(i, j + 1). The map g(x, y) := xy is continuous and hence so is the composition
f = g ◦ h. Thus T · T = f(H) is analytic. Suppose that T · T is of positive measure.
Hence, by the capacitability argument for analytic sets ([Choq], or [Si, Th. 4.2 p. 774],
or [Rog1, p. 90], there referred to as an ‘Increasing sets lemma’), for some compact set
A, the set f(A) has positive measure. Indeed if |f(H)| > η > 0, then the set A may be
taken in the form

⋂
i d(i, ji), where the indices ji are chosen inductively, by reference to

the increasing union, so that |f [H ∩
⋂
i<k d(i, ji)]| > η, for each k. (Thus A ⊆ H and

f(A) =
⋂
i f [H ∩

⋂
i<k d(i, ji)] has positive measure, cf. [EKR].)

The conclusion follows as S = h(A) is compact and S · S = g(S) = f(A).

Remark. The result may be deduced indirectly from the Choquet Capacitability The-
orem by considering the capacity I : G2 → R, defined by I(X) = m(g(X)), where,
as before, g(x, y) := xy is continuous and m denotes a Radon measure on G (on this
point see [Del2, Section 1.1.1 p. 186]). Indeed, the set T 2 is analytic ([Rog2, Section 2.8
pp. 37–41]), so I(T 2) = sup I(K2), where the supremum ranges over compact subsets K
of T. Actually, the Capacitability Theorem says only that I(T 2) = sup I(K2), where the
supremum ranges over compact subsets K2 of T 2, but such a set may be embedded in K2

where K = π1(K) ∪ π2(K), with πi the projections onto the axes of the product space.
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Corollary 11.17. For T analytic and εi ∈ {±1}, if T ε1 · . . . · T εd has positive measure
(measure greater than η) or is non-meagre, then for some compact subset S of T , the
compact set K = Sε1 · . . . · Sεd has K ·K of positive measure (measure greater than η).

Proof. In the measure case the same approach may be used based now on the continuous
function g(x1, . . . , xd) := xε11 · . . . · x

εd
d , ensuring that K is of positive measure (measure

greater than η). In the category case, if T ′ = T ε1 · . . . · T εd is non-meagre then, by the
Steinhaus Theorem ([St], or [BGT, Cor. 1.1.3]), T ′ · T ′ has non-empty interior. The
measure case may now be applied to T ′ in lieu of T. (Alternatively one may apply the
Pettis-Piccard Theorem, Th. 6.5, as in the Analytic Dichotomy Lemma, Th. 11.15.)

Theorem 11.18 (Compact Spanning Approximation). In a connected, normed topolog-
ical group X, for T analytic in X, if the span of T is non-null or is non-meagre, then
there exists a compact subset of T which spans X.

Proof. If T is non-null or non-meagre, then T spans X (by the Analytic Dichotomy
Lemma, Th. 11.15); then for some εi ∈ {±1}, T ε1 · . . . ·T εd has positive measure / is non-
meagre. Hence for some K compact Kε1 · . . . ·Kεd has positive measure / is non-meagre.
Hence K spans some and hence all of X.

Theorem 11.19 (Analytic Covering Lemma – [Kucz, p. 227], cf. [Jones2, Th. 11]). Given
normed groups G and H, and T analytic in G, let f : G→ H have continuous restriction
f |T. Then T is covered by a countable family of bounded analytic sets on each of which
f is bounded.

Proof. For k ∈ ω define Tk := {x ∈ T : ‖f(x)‖ < k} ∩ Bk(eG). These cover T . Now
{x ∈ T : ‖f(x)‖ < k} is relatively open and so takes the form T ∩ Uk for some open
subset Uk of G. The Intersection Theorem (Th. 11.3) shows this to be analytic since Uk
is an Fσ-set and hence Souslin-F .

Theorem 11.20 (Expansion Lemma – [Jones2, Th. 4], [Kom2, Th. 2], and [Kucz, p. 215]).
Suppose that S is Souslin-H, i.e. of the form

S =
⋃
α∈ωω

∞⋂
n=1

H(α|n),

with each H(α|n) ∈ H, for some family of analytic sets H on which f is bounded. If S
spans the normed group G, then, for each n, there are sets H1, . . . ,Hk, each of the form
H(α|n), such that

T = H1 · . . . ·Hk

has positive measure / is non-meagre, and so T · T has non-empty interior.

Proof. For any n ∈ ω we have
S ⊆

⋃
α∈ωω

H(α|n).

Enumerate the countable family {H(α|n) : α ∈ ωn} as {Th : h ∈ ω}. Since S spans G,
we have

G =
⋃
h∈ω

⋃
k∈Nh

(Tk1 · . . . · Tkh) .
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As each Tk is analytic, so is the continuous image Tk1 · . . . · Tkh , which is thus measur-
able. Hence, for some h ∈ N and k ∈ Nh the set Tk1 · . . . · Tkh has positive measure / is
non-meagre.

Definition. We say that S is a precompact set if its closure is compact. We will say
that f is a precompact function if f(S) is precompact for each precompact set S.

Theorem 11.21 (Jones-Kominek Analytic Automaticity Theorem for Metric Groups).
Let G be either a non-meagre normed topological group, or a topological group supporting
a Radon measure, and let H be K-analytic (hence Lindelöf, and so second-countable in
our metric setting). Let h : G→ H be a homomorphism between metric groups and let T
be an analytic set in G which finitely generates G.

(i) (Jones condition) If h is continuous on T , then h is continuous.
(ii) (Kominek condition) If h is precompact on T , then h is precompact.

Proof. As in the Analytic Covering Lemma (Th. 11.19), write

T =
⋃
k∈N

Tk.

(i) If h is not continuous, suppose that xn → x0 but h(xn) does not converge to h(x0).

Since
G =

⋃
m∈N

⋃
k∈N

T
(m)
k ,

G is a union of analytic sets and hence analytic ([J-R, Th. 2.5.4 p. 23]). Now, for some
m, k the m-span T

(m)
k is non-meagre, as is the m-span S

(m)
k of some compact subset

Sk ⊆ Tk. So for some shifted subsequence txn → tx0, where t and x0 lie in S(m)
k . Thus

there is an infinite set M such that, for n ∈M,

txn = t1n . . . t
m
n with tin ∈ Sk.

Without loss of generality, as Sk is compact,

t(i)n → t
(i)
0 ∈ Sk ⊂ T,

and so dropping brackets to lighten the notation

txn = t1n . . . t
m
n → t10 . . . t

m
0 = tx0 with ti0 ∈ Sk ⊂ T.

Hence, as tin → ti0 ⊂ T , we have, for n ∈M,

h(t)h(xn) = h(txn) = h(t1n . . . t
m
n ) = h(t1n) . . . h(tmn )

→ h(t10) . . . h(tm0 ) = h(t10 . . . t
m
0 ) = h(tx0) = h(t)h(x0).

Thus h(xn)→ h(x0), a contradiction.
(ii) If {h(xn)} is not precompact with {xn} precompact, by the same argument, for

some S(n)
k and some infinite set M, we have txn = t1n . . . t

m
n and tin → ti0 ⊂ T , for n ∈M.

Hence h(txn) = h(t)h(xn) is precompact and so h(xn) is precompact, a contradiction.

The following result connects the preceding theorem to Darboux’s Theorem, that a
locally bounded additive function on the reals is continuous ([Dar], or [AD]).
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Definition. Say that a homomorphism between normed groups is N-homogeneous if
‖f(xn)‖ = n‖f(x)‖, for any x and n ∈ N (cf. Section 2 where N-homogeneous norms
were considered, for which homomorphisms are automatically N-homogeneous). Thus
any homomorphism into the additive reals is N-homogeneous. Recall from Section 3.3
that the norm is a Darboux norm (or, in this context N-subhomogeneous) if there are
constants κn with κn →∞ such that for all elements z of the group

κn‖z‖ ≤ ‖zn‖, or equivalently ‖z1/n‖ ≤ 1

κn
‖z‖.

Thus z1/n → e; a related condition was considered by McShane in [McSh] (cf. the
Eberlein-McShane Theorem, Th. 10.1). In keeping with the convention of functional
analysis (appropriately to our usage of norm) the next result refers to a locally bounded
homomorphism as bounded.

Theorem 11.22 (Generalized Darboux Theorem – [Dar]). A bounded homomorphism
from a normed group to a Darboux normed group (N-subhomogeneous norm) is continu-
ous. In particular, a bounded, additive function on R is continuous.

Proof. Suppose that f : G → H is a homomorphism to a normed N-subhomogeneous
group H; thus ‖f(xn)‖ ≥ κn‖f(x)‖ for any x ∈ G and n ∈ N. Suppose that f is bounded
by M and, for ‖x‖ < η, we have

‖f(x)‖ < M.

Let ε > 0 be given. Choose N such that κN > M/ε, i.e. M/κN < ε. Now ‖xN‖ ≤ N‖x‖,
so for ‖x‖ < η/N ,

‖xN‖ < η.

Consider x with ‖x‖ < η/N. Then κN‖f(x)‖ ≤ ‖f(x)N‖ = ‖f(xN )‖ < M. So for x with
‖x‖ < η/N we have

‖f(x)‖ < M/κN < ε,

proving continuity at e.

Compare [HJ, Th. 2.4.9 p. 382]. The Main Theorem of [BO-Th] may be given a
combinatorial restatement in the group setting. We need some further definitions.

Definition. For G a metric group, let C(G) = C(N, G) := {x ∈ GN : x is convergent}
denote the sequence space of G. For x ∈ C(G) we write

L(x) = lim
n
xn.

We make C(G) into a group by setting

x · y : = 〈xnyn : n ∈ N〉.

Thus e = 〈eG〉 and x−1 = 〈x−1
n 〉.We identify G with the subgroup of constant sequences,

that is,
T = {〈g : n ∈ N〉 : g ∈ G}.

The natural action of G or T on C(G) is then tx := 〈txn : n ∈ N〉. Thus 〈g〉 = ge, and
then tx = te · x.
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Definition. For G a group, a set G of convergent sequences u = 〈un : n ∈ N〉 in C(G)

is a G-ideal in the sequence space C(G) if it is a subgroup closed under the multiplicative
action of G, and will be termed complete if it is closed under subsequence formation.
That is, a complete G-ideal in C(G) satisfies

(i) u ∈ G implies tu = 〈tun〉 ∈ G for each t in G,
(ii) u,v ∈ G implies that uv−1 ∈ G,
(iii) u ∈ G implies that uM := 〈um : m ∈M〉 ∈ G for every infinite M.

If G satisfies (i) and u,v ∈ G implies only that uv ∈ G, we say that G is a G-subideal
in C(G).

Remarks. 0. In the notation of (iii) above, if G is merely an ideal then G∗ = {uM : u ∈ t
and M ⊂ N} is a complete G-ideal; indeed tuM = (tu)M and uMv

−1
M = (uv−1)M and

uMM′ = uM′ for M′⊂M.
1. We speak of a Euclidean sequential structure whenG is the vector space Rd regarded

as an additive group.
2. The conditions (i) and (ii) assert that G is similar in structure to a left-ideal, being

closed under multiplication by G and a subgroup of C(G).

3. We refer only to the combinatorial properties of C(G); but one may give C(G) a
pseudo-norm by setting

‖x‖c := dG(Lx, e) = ‖Lx‖, where Lx := limxn.

The corresponding pseudo-metric is

d(x, y) := lim dG(xn, yn) = dG(Lx,Ly).

We may take equivalence of sequences with identical limit; then C(G)∼ becomes a normed
group (cf. Th. 3.38). However, in our theorem below we do not wish to refer to such an
equivalence.

Definitions. For a family F of functions from G to H, we denote by F(T ) the family
{f |T : f ∈ F} of functions in F restricted to T ⊆ G. Let us denote a convergent sequence
with limit x0 by {xn} → x0.We say the property Q of functions (property being regarded
set-theoretically, i.e. as a family of functions from G to H) is sequential on T if

f ∈ Q iff (∀{xn : n > 0} ⊆ T )[({xn} → x0)⇒ f |{xn : n > 0} ∈ Q({xn : n > 0})].

If we further require the limit point to be enumerated in the sequence, we callQ completely
sequential on T if

f ∈ Q iff (∀{xn} ⊆ T )[({xn} → x0)⇒ f |{xn} ∈ Q({xn})].

Our interest rests on properties that are completely sequential; our theorem below con-
tains a condition referring to completely sequential properties, that is, the condition is
required to hold on convergent sequences with limit included (so on a compact set), rather
than on arbitrary sequences.

Note that if Q is (completely) sequential then f |{xn} ∈ Q({xn}) iff f |{xn : n ∈M} ∈
Q({xn : n ∈M}) for every infinite M.
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Definition. Let h : G→ H, with G,H metric groups. Say that a sequence u = {un} is
Q-good for h if

h|{un} ∈ Q|{un},

and put
GhQ = {u : h|{un} ∈ Q|{un}}.

If Q is completely sequential, then u is Q-good for h iff every subsequence of u is Q-good
for h, so that GhQ is a G-ideal iff it is a complete G-ideal. One then has:

Lemma 11.23. If Q is completely sequential and F preserves Q under shift and multipli-
cation and division on compacts, then GhQ for h ∈ F is a G-ideal.

Theorem 11.24 (Analytic Automaticity Theorem – combinatorial form). Suppose that
functions of F having Q on G have P on G, where Q is a property of functions from G

to H that is completely sequential on G. Suppose that, for all h ∈ F , GhQ, the family of
Q-good sequences is a G -ideal. Then, for any analytic set T spanning G, functions of F
having Q on T have P on G.

This theorem is applied withG = Rd andH = R in [BO-Aeq] to subadditive functions,
convex functions, and to regularly varying functions (defined on Rd) to derive automatic
properties such as automatic continuity, automatic local boundedness and automatic
uniform boundedness.

12. Duality in normed groups

In this section – to distinguish two contexts – we use the generic notation of S for a group
with metric dS ; recall from Section 3 that Auth(S) denotes the self-homeomorphisms
(auto-homeomorphisms) of S; H(S) denotes the bounded elements of Auth(S). We write
A ⊆ H(S) for a subgroup of self-homeomorphisms of S. We work in the category of
normed groups. However, by specializing to A = Hu(S), the homeomorphisms that are
bi-uniformly continuous (relative to dS), we can regard the development as also taking
place inside the category of topological groups, by Th. 3.13. We assume that A is metrized
by the supremum metric

dA(t1, t2) = sup
s∈S

dS(t1(s), t2(s)).

Note that eA = idS . The purpose of this notation is to embrace the two cases: (i) S = X

and A = Hu(X), and (ii) S = Hu(X) and A = Hu(Hu(X)). In what follows, we regard
the group Hu(X) as the topological (uniform) dual of X and verify that (X, dX) is
embedded in the second dual Hu(Hu(X)). As an application one may use this duality to
clarify, in the context of a non-autonomous differential equation with initial conditions,
the link between its solutions trajectories and flows of its varying ‘coefficient matrix’.
See [Se1] and [Se2], which derive the close relationship for a general non-autonomous
differential equation u′ = f(u, t) with u(0) = x ∈ X, between its trajectories in X and
local flows in the function space Φ of translates ft of f (where ft(x, s) = f(x, t + s)).

One may alternatively capture the topological duality as algebraic complementarity – see
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[O-knit] for details. A summary will suffice here. One first considers the commutative
diagram below where initially the maps are only homeomorphisms (herein T ⊆ Hu(X)

and ΦT (t, x) = (t, tx) and ΦX(x, t) = (t, xt) are embeddings). Then one extends the
diagram to a diagram of isomorphisms, a change facilitated by forming the direct product
group G := T×X. Thus G = TGXG where TG and XG are normal subgroups, commuting
elementwise, and isomorphic respectively to T and X; moreover, the subgroup TG, acting
multiplicatively onXG, represents the T -flow onX and simultaneously the multiplicative
action of XG on G represents the X-flow on TX = {tx : t ∈ T, x ∈ X}, the group of right-
translates of T , where tx(u) = θx(t)(u) = t(ux). If G has an invariant metric dG, and TG
and XG are now regarded as groups of translations on G, then they may be metrized by
the supremum metric d̂G, whereupon each is isometric to itself as subgroup of G. Our
approach here suffers a loss of elegance, by dispensing with G, but gains analytically by
working directly with dX and d̂X .

(t, x) �
ΦT - (t, tx)

(x, t)
?

6

� ΦX - (t, xt)
?

6

Here the two vertical maps may, and will, be used as identifications, since (t, tx) →
(t, x)→ (t, xt) are bijections (more in fact is true, see [O-knit]).

Definitions. Let X be a topological group with right-invariant metric dX . We define
for x ∈ X a map ξx : H(X)→ H(X) by putting

ξx(s)(z) = s(λ−1
x (z)) = s(x−1z) for s ∈ Hu(X), z ∈ X.

We set
Ξ := {ξx : x ∈ X}.

By restriction we may also write ξx : Hu(X)→ Hu(X).

Proposition 12.1. Under composition, Ξ is a group of isometries of Hu(X) isomorphic
to X.

Proof. The identity is given by eΞ = ξe, where e = eX . Note that

ξx(eS)(eX) = x−1,

so the mapping x→ ξx from X to Ξ is bijective. Also, for s ∈ H(X),

(ξx ◦ ξy(s))(z) = ξx(ξy(s))(z) = (ξy(s))(x−1z) = s(y−1x−1z) = s((xy)−1z) = ξxy(s)(z),

so ξ is an isomorphism from X to Ξ and so ξ−1
x = ξx−1 .

For x fixed and s ∈ Hu(X), note that by Lemma 3.8 and Cor. 3.6 the map z → s(x−1z)

is in Hu(X). Furthermore

dH(ξx(s), ξx(t)) = sup
z
dX(s(x−1z), t(x−1z)) = sup

y
dX(s(y), t(y)) = dH(s, t),

so ξx is an isometry, and hence is continuous. ξx is indeed a self-homeomorphism of
Hu(X), as ξx−1 is the continuous inverse of ξx.
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Remark. The definition above lifts the isomorphism λ : X → TrL(X) to Hu(X). If
T ⊆ Hu(X) is λ-invariant, we may of course restrict λ to operate on T. Indeed, if
T = TrL(X), we then have ξx(λy)(z) = λyλ

−1
x (z), so ξx(λy) = λyx−1 .

In general it will not be the case that ξx ∈ Hu(Hu(X)), unless dX is bounded. Recall
that

‖x‖∞ := sup
s∈H(X)

‖x‖s = sup
s∈H(X)

dXs (x, e) = sup
s∈H(X)

dX(s(x), s(e)).

By contrast we have

‖f‖∞ = sup
z

sup
g
dXg (f(z), z).

However, for f(z) = λx(z) := xz, putting s = g ◦ ρz brings the two formulas into
alignment, as

‖λx‖∞ = sup
z

sup
g
dX(g(xz), g(z)) = sup

z
sup
g
dX(g(ρz(x)), g(ρz(e))).

This motivates the following result.

Proposition 12.2. The subgroup HX := {x ∈ X : ‖x‖∞ < ∞} equipped with the norm
‖x‖∞ embeds isometrically under ξ into Hu(Hu(X)) as

ΞH := {ξx : x ∈ HX}.

Proof. Writing y = x−1z or z = xy, we have

dH(ξx(s), s) = sup
z∈X

dX(s(x−1z), s(z)) = sup
y∈X

dX(s(y), s(xy))

= sup
y∈X

dXs (ρye, ρyx) = sup
y
dXs-y(e, x).

Hence

‖ξx‖H = sup
s∈H(X)

dH(ξx(s), s) = ‖λx‖∞ = sup
s∈H(X)

sup
y∈X

dXs (y, xy) = ‖x‖∞.

Thus for x ∈ HX the map ξx is bounded over Hu(X) and hence is in Hu(Hu(X)).

The next result adapts ideas of Section 3 on the Lipschitz property in Hu (Th. 3.22)
to the context of ξx and refers to the inverse modulus of continuity δ(s) which we recall:

δ(g) = δ1(g) := sup{δ > 0 : dX(g(z), g(z′)) ≤ 1 for all dX(z, z′) ≤ δ}.

Proposition 12.3 (Further Lipschitz properties of Hu). Let X be a normed group with
a vanishingly small global word-net. Then for x, z ∈ X and s ∈ Hu(X) the s-z-shifted
norm (recalled below from Examples A) satisfies

‖x‖s-z := dXs-z(x, e) = dX(s(z), s(xz)) ≤ 2‖x‖/δ(s).

Hence

‖ξe‖H(Hu(X)) = sup
s∈Hu(X)

sup
z∈X
‖e‖s-z = 0,
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and so ξe ∈ H(Hu(X)). Furthermore, if {δ(s) : s ∈ Hu(X)} is bounded away from 0,
then for x ∈ X,

‖ξx‖H(Hu(X)) = sup
s∈Hu(X)

dH(X)(ξx(s), s) = sup
s∈Hu(X)

sup
z∈X

dX(s(x−1z), s(z))

≤ 2‖x‖/inf{δ(s) : s ∈ Hu(X)},

and so ξx ∈ H(Hu(X)). In particular this is so if in addition X is compact.

Proof. Writing y = x−1z or z = xy, we have

dH(ξx(s), s) = sup
z∈X

dX(s(x−1z), s(z)) = sup
y∈X

dX(s(y), s(xy)).

Fix s. Since s is uniformly continuous, δ = δ(s) is well-defined and

d(s(z′), s(z)) ≤ 1

for z, z′ such that d(z, z′) < δ. In the definition of the word-net take ε < 1. Now suppose
that w(x) = w1 . . . wn(x) with ‖zi‖ = 1

2δ(1 + εi) and |εi| < ε, where n(x) = n(x, δ)

satisfies
1− ε ≤ n(x)δ

‖x‖
≤ 1 + ε.

Put z0 = z, for 0 < i < n(x)

zi+1 = ziwi,

and zn(x)+1 = x; the latter is within δ of x. As

d(zi, zi+1) = d(e, wi) = ‖wi‖ < δ,

we have d(s(zi), s(zi+1)) ≤ 1. Hence

d(s(z), s(xz)) ≤ n(x) + 1 < 2‖x‖/δ.

The final assertions follow from the subadditivity of the Lipschitz norm (cf. Theorem
3.27).

If {δ(s) : s ∈ Hu(X)} is unbounded (i.e. the inverse modulus of continuity is un-
bounded), we cannot develop a duality theory. However, a comparison with the normed
vector space context and the metrization of the translations x→ t(z+x) of a linear map
t(z) suggests that, in order to metrize Ξ by reference to ξx(t), we need to take account
of ‖t‖. Thus a natural metric here is, for any ε ≥ 0, the magnification metric

dεT (ξx, ξy) := sup
‖t‖≤ε

dT (ξx(t), ξy(t)). (mag-eps)

By Proposition 2.14 this is a metric; indeed with t = eH(X) = idX we have ‖t‖ = 0

and, since dX is assumed right-invariant, for x 6= y, we have with z := zxy = e that
dX(x−1z, y−1z) = dX(x−1, y−1) > 0. The presence of the case ε = 0 is not fortuitous;
see [O-knit] for an explanation via an isomorphism theorem. We trace the dependence on
‖t‖ in Proposition 12.5 below. We refer to Gromov’s notion [Gr1], [Gr2] of quasi-isometry
under π, in which π is a mapping between spaces. In a first application we take π to be
a self-homeomorphism, in particular a left-translation; in the second π(x) = ξx(t) with t
fixed is an evaluation map appropriate to a dual embedding. We begin with a theorem
promised in Section 3.
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Theorem 12.4 (Uniformity Theorem for Conjugation). Let Γ : G2 → G be the conjuga-
tion Γ(g, x) := g−1xg. Under a bi-invariant Klee metric, for all a, b, g, h,

dG(a, b)− 2dG(g, h) ≤ dG(gag−1, hbh−1) ≤ 2dG(g, h) + dG(a, b),

and hence conjugation is uniformly continuous.

Proof. Referring to the Klee property, via the cyclic property we have

dG(gag−1, hbh−1) = ‖gag−1hb−1h−1‖ = ‖h−1gag−1hb−1‖
≤ ‖h−1g‖+ ‖ag−1hb−1‖ ≤ ‖h−1g‖+ ‖ab−1‖+ ‖g−1h‖

for all a, b, yielding the right inequality. Then substitute g−1ag for a etc., g−1 for g etc.,
to obtain

dG(a, b) ≤ 2dG(g−1, h−1) + dG(gag−1, hbh−1).

This yields the left inequality, as dG is bi-invariant and so
dG(g−1, h−1) = d̃G(g, h) = dG(g, h).

Proposition 12.5 (Permutation metric). For π ∈ H(X), let dπ(x, y) := dX(π(x), π(y)).

Then dπ is a metric, and
dX(x, y)− 2‖π‖ ≤ dπ(x, y) ≤ dX(x, y) + 2‖π‖.

In particular, if dX is right-invariant and π(x) is the left-translation λz(x) = zx, then

dX(x, y)− 2‖z‖ ≤ dXz (x, y) = dX(zx, zy) ≤ dX(x, y) + 2‖z‖.

Proof. By the triangle inequality,

dX(π(x), π(y)) ≤ dX(π(x), x) + dX(x, y) + dX(y, π(y)) ≤ 2‖π‖+ dX(x, y).

Likewise,

dX(x, y) ≤ dX(x, π(x)) + dX(π(x), π(y)) + dX(π(y), y) ≤ 2‖π‖+ dX(π(x), π(y)).

If π(x) := zx, then ‖π‖ = sup dX(zx, x) = ‖z‖ and the result follows.

Recall from Proposition 2.2 that for d a metric on a group X, we write d̃(x, y) =

d(x−1, y−1) for the (inversion) conjugate metric. The conjugate metric d̃ is left-invariant
iff the metric d is right-invariant. Under such circumstances both metrics induce the
same norm (since d(e, x) = d(x−1, e), as we have seen above). In what follows note that
ξ−1
x = ξx−1 .

Theorem 12.6 (Quasi-isometric duality). If the metric dX on X is right-invariant and
T ⊂ H(X) is a subgroup, then for t ∈ T

d̃X(x, y)− 2‖t‖H(X) ≤ dT (ξx(t), ξy(t)) ≤ d̃X(x, y) + 2‖t‖H(X),

and hence, for each ε ≥ 0, the magnification metric (mag-eps) satisfies
d̃X(x, y)− 2ε ≤ dεT (ξx, ξy) ≤ d̃X(x, y) + 2ε.

Equivalently, in terms of conjugate metrics,
dX(x, y)− 2ε ≤ d̃εT (ξx, ξy) ≤ dX(x, y) + 2ε.

Hence,
‖x‖ − 2ε ≤ ‖ξx‖ε ≤ ‖x‖+ 2ε,

and so ‖xn‖ → ∞ iff dT (ξx(n)(t), ξe(t))→∞.
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Proof. We follow a similar argument to that for the permutation metric. By right-
invariance,

dX(t(x−1z), t(y−1z)) ≤ dX(t(x−1z), x−1z) + dX(x−1z, y−1z) + dX(y−1z, t(y−1z))

≤ 2‖t‖+ dX(x−1, y−1),

so
dT (ξx(t), ξy(t)) = sup

z
dX(t(x−1z), t(y−1z)) ≤ 2‖t‖+ dX(x, eX).

Now, again by right-invariance,

dX(x−1, y−1) ≤ dX(x−1, t(x−1)) + dX(t(x−1), t(y−1)) + dX(t(y−1), y−1).

But
dX(t(x−1), t(y−1)) ≤ sup

z
dX(t(x−1z), t(y−1z)),

so
dX(x−1, y−1) ≤ 2‖t‖+ sup

z
dX(t(x−1z), t(y−1z)) = 2‖t‖+ dT (ξx(t), ξy(t)),

as required.

We thus obtain the following result.

Theorem 12.7 (Topological Quasi-Duality Theorem). For X a normed group, the second
dual Ξ is a normed group isometric to X which, for any ε ≥ 0, is ε-quasi-isometric to X
in relation to d̃εT (ξx, ξy) and the ‖ · ‖ε norm. Here T = Hu(X).

Proof. We metrize Ξ by setting dΞ(ξx, ξy) = dX(x, y). This makes Ξ an isometric copy
of X and an ε-quasi-isometric copy in relation to the conjugate metric d̃εT (ξx, ξy) which
is given, for any ε ≥ 0, by

d̃εT (ξx, ξy) := sup
‖t‖≤ε

dT (ξ−1
x (t), ξ−1

y (t)).

In particular for ε = 0 we have for dX right-invariant

dT (ξ−1
x (e), ξ−1

y (e)) = sup
z
dX(xz, yz) = d(x, y).

As dX is right-invariant, dΞ is right-invariant, since

dΞ(ξxξz, ξyξz) = dΞ(ξxz, ξyz) = dX(xz, yz) = dX(x, y).

Remark. Alternatively, working in TrL(X) rather than in Hu(X) and with dXR again
right-invariant, since ξx(λy)(z) = λyλ

−1
x (z) = λyx−1(z), we have

sup
w
dH(ξx(λw), ξe(λw)) = sup

v
dXv (e, x) = ‖x‖X∞,

possibly infinite. Indeed

sup
w
dH(ξx(λw), ξy(λw)) = sup

w
sup
z
dXR (ξx(λw)(z), ξy(λw)(z))

= sup
w

sup
z
dXR (wx−1z, wy−1z) = sup

w
dXR (vxx−1, vxy−1)

= sup
v
dXR (vy, vx) = sup

v
dXv (y, x).

(Here we have written w = vx.)
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The refinement metric supv d
X(vy, vx) is left-invariant on the bounded elements (i.e.

bounded under the corresponding norm ‖x‖ := sup{‖vxv−1‖ : v ∈ X}; cf. Proposition
2.12). Of course, if dX were bi-invariant (both right- and left-invariant), we would have

sup
w
dH(ξx(λw), ξy(λw)) = dX(x, y).

13. Divergence in the bounded subgroup

In earlier sections we made on occasion the assumption of a bounded norm. Here we are
interested in norms that are unbounded. For S a space and A a subgroup of Auth(S)

equipped with the supremum norm, suppose ϕ : A × S → S is a continuous flow (see
Lemma 3.8, for an instance). We will write α(s) := ϕα(s) = ϕ(α, s). This is consistent
with A being a subgroup of Auth(S). As explained at the outset of Section 12, we have
in mind two pairs (A, S), as follows.

Example 1. Take S = X to be a normed topological group and A = T ⊆ H(X) to be
a subgroup of automorphisms of X such that T is a topological group with supremum
metric

dT (t1, t2) = sup
x
dX(t1(x), t2(x)),

e.g. T = Hu(X). Note that here eT = idX .

Example 2. (A, S) = (Ξ, T ) = (X,T ). Here X is identified with its second dual Ξ (of
the preceding section).

Given a flow ϕ(t, x) on T ×X, with T closed under translation, the action defined by

ϕ(ξx, t) := ξx−1(t)(eX)

is continuous, hence a flow on Ξ × T , which is identified with X × T . Observe that
t(x) = ξx−1(t)(eX), i.e. projection onto the eX coordinate retrieves the T -flow ϕ. Here,
for ξ = ξx−1 , writing x(t) for the translate of t, we have

ξ(t) := ϕξ(t) = ϕ(ξ, t) = x(t),

so that ϕ may be regarded as an X-flow on T.We now formalize the notion of a sequence
converging to the identity and divergent sequence. These are critical to the definition of
regular variation [BO-TI].

Definition. Let ψn : X → X be self-homeomorphisms. As in Section 6, we say that the
sequence ψn in H(X) converges to the identity if

‖ψn‖ = d̂(ψn, id) := sup
t∈X

d(ψn(t), t)→ 0.

Thus, for all t, we have zn(t) := d(ψn(t), t) ≤ ‖ψn‖ and zn(t) → 0. Thus the sequence
‖ψn‖ is bounded.

Illustrative examples. In R we may consider ψn(t) = t+zn with zn → 0. In a more general
context, we note that a natural example of a convergent sequence of homeomorphisms
is provided by a flow parametrized by discrete time (thus also termed a ‘chain’) towards
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a sink. If ψ : N × X → X is a flow and ψn(x) = ψ(n, x), then, for each t, the orbit
{ψn(t) : n = 1, 2, . . .} is the image of the real null sequence {zn(t) : n = 1, 2, . . .}, where
zn(t) = d(ψn(t), t).

Proposition 13.1.

(i) For a sequence ψn in H(X), ψn converges to the identity iff ψ−1
n converges to the

identity.
(ii) Suppose X has abelian norm. For h ∈ H(X), if ψn converges to the identity then so

does h−1ψnh.

Proof. Only (ii) requires proof, and that follows from ‖h−1ψnh‖ = ‖hh−1ψn‖ = ‖ψn‖,
by the cyclic property.

Definitions. 1. Again let ϕn : X → X be self-homeomorphisms. We say that the
sequence ϕn in G diverges uniformly if for any M > 0 we have, for all large enough n,

d(ϕn(t), t) ≥M for all t.

Equivalently, putting d∗(h, h′) = infx∈X d(h(x), h′(x)), we have d∗(ϕn, id)→∞.
2. More generally, let A ⊆ H(S) with A a metrizable topological group. We say that

αn is a pointwise divergent sequence in A if, for each s ∈ S,

dS(αn(s), s)→∞,

equivalently, αn(s) does not contain a bounded subsequence.
3. We say that αn is a uniformly divergent sequence in A if

‖αn‖A := dA(eA, αn)→∞,

equivalently, αn does not contain a bounded subsequence.

Examples. In R we may consider ϕn(t) = t + xn where xn → ∞. In a more general
context, a natural example of a uniformly divergent sequence of homeomorphisms is
again provided by a flow parametrized by discrete time from a source to infinity. If
ϕ : N × X → X is a flow and ϕn(x) = ϕ(n, x), then, for each x, the orbit {ϕn(x) :

n = 1, 2, . . .} is the image of the divergent real sequence {yn(x) : n = 1, 2, . . .}, where
yn(x) := d(ϕn(x), x) ≥ d∗(ϕn, id).

Remark. Our aim is to offer analogues of the topological vector space characterization
of boundedness: for a bounded sequence of vectors {xn} and scalars αn → 0 ([Ru, cf.
Th. 1.30]), αnxn → 0. But here αnxn is interpreted in the spirit of duality as αn(xn)

with the homeomorphisms αn converging to the identity.

Examples. 1. Evidently, if S = X, the pointwise definition reduces to functional diver-
gence in H(X) defined pointwise:

dX(αn(x), x)→∞.

The uniform version corresponds to divergence in the supremum metric in H(X).

2. If S = T and A = X = Ξ, we have, by the Quasi-isometric Duality Theorem
(Th. 12.7),

dT (ξx(n)(t), ξe(t))→∞ iff dX(xn, eX)→∞,
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and the assertion is ordinary divergence in X. Since

dΞ(ξx(n), ξe) = dX(xn, eX),

the uniform version also asserts that

dX(xn, eX)→∞.

Recall that ξx(s)(z) = s(λ−1
x (z)) = s(x−1z), so the interpretation of Ξ as having the

action of X on T was determined by

ϕ(ξx, t) = ξx−1(t)(e) = t(x).

One may write
ξx(n)(t) = t(xn).

When interpreting ξx(n) as xn in X acting on t, note that

dX(xn, eX) ≤ dX(xn, t(xn)) + dX(t(xn), eX) ≤ ‖t‖+ dX(t(xn), eX),

so, as expected, the divergence of xn implies the divergence of t(xn).

The next definition extends our earlier one from sequential to continuous limits, as in
Th. 6.14.

Definition. Let {ψu : u ∈ I} for I an open set in X be a family of homeomorphisms
(cf. [Mon2]). Let u0 ∈ I. Say that ψu converges to the identity as u→ u0 if

lim
u→u0

‖ψu‖ = 0.

This property is preserved under topological conjugacy; more precisely we have the
following result, whose proof is routine and hence omitted.

Lemma 13.2. Let σ ∈ Hunif(X) be a homeomorphism which is uniformly continuous
with respect to dX , and write u0 = σz0. If {ψz : z ∈ Bε(z0)} converges to the identity as
z → z0, then as u→ u0 so does the conjugate {ψu = σψzσ

−1 : u ∈ Bε(u0), u = σz}.

Lemma 13.3. Suppose that the homeomorphisms {ϕn} are uniformly divergent, {ψn} are
convergent and σ is bounded, i.e. is in H(X). Then {ϕnσ} is uniformly divergent and
likewise {σϕn}. In particular {ϕnψn} is uniformly divergent, and likewise {ϕnσψn}, for
any bounded homeomorphism σ ∈ H(X).

Proof. Consider s := ‖σ‖ = sup d(σ(x), x) > 0. For anyM , from some n onwards we have

d∗(ϕn, id) = inf
x∈X

d(ϕn(x), x) > M, i.e. d(ϕn(x), x) > M for all x.

For such n, we have d∗(ϕnσ, id) > M − s, i.e. for all t we have

d(ϕn(σ(t)), t) > M − s.

Indeed, otherwise at some t this last inequality is reversed, and then

d(ϕn(σ(t)), σ(t)) ≤ d(ϕn(σ(t)), t) + d(σ(t), t) ≤M − s+ s = M.

But this contradicts our assumption on ϕn with x = σ(t). Hence d∗(ϕnσ, id) > M − s for
all large enough n.

The other cases follow by the same argument, with the interpretation that now s > 0

is arbitrary; then we have for all large enough n that d(ψn(x), x) < s for all x.
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Remark. Lemma 13.3 says that the filter of sets (countably) generated from the sets

{ϕ | ϕ : X → X is a homeomorphism and ‖ϕ‖ ≥ n}

is closed under composition with elements of H(X).

We now return to the notion of divergence.

Definition. We say that pointwise (resp. uniform) divergence is unconditional diver-
gence in A if, for any (pointwise/uniform) divergent sequence αn,

(i) for any bounded σ, the sequence σαn is (pointwise/uniform) divergent;
(ii) for any ψn convergent to the identity, ψnαn is (pointwise/uniform) divergent.

Remark. In clause (ii) each of the functions ψn has a bound depending on n. The two
clauses could be combined into one by requiring that if the bounded functions ψn converge
to ψ0 in the supremum norm, then ψnαn is (pointwise/uniform) divergent.

By Lemma 13.3 uniform divergence in H(X) is unconditional. We move to other forms
of this result.

Proposition 13.4. If the metric on A is left- or right-invariant, then uniform divergence
is unconditional in A.

Proof. If the metric d = dA is left-invariant, then observe that if βn is a bounded sequence,
then so is σβn, since

d(e, σβn) = d(σ−1, βn) ≤ d(σ−1, e) + d(e, βn).

Since ‖β−1
n ‖ = ‖βn‖, the same is true for right-invariance. Further, if ψn is convergent to

the identity, then also ψnβn is a bounded sequence, since

d(e, ψnβn) = d(ψ−1
n , βn) ≤ d(ψ−1

n , e) + d(e, βn).

Here we note that, if ψn is convergent to the identity, then so is ψ−1
n by symmetry of

inversion (or by metric invariance). The same is again true for right-invariance.

The case where the subgroup A of self-homeomorphisms is the translations Ξ, though
immediate, is worth noting.

Theorem 13.5 (The case A = Ξ). If the metric on the group X is left- or right-invariant,
then uniform divergence is unconditional in A = Ξ.

Proof. We have already noted that Ξ is isometrically isomorphic to X.

Remarks. 1. If the metric is bounded, there may not be any divergent sequences.
2. We already know from Lemma 13.3 that uniform divergence in A = H(X) is

unconditional.
3. The unconditionality condition (i) corresponds directly to the technical condition

placed in [BajKar] on their filter F . In our metric setting, we thus employ a stronger
notion of limit to infinity than they do. The filter implied by the pointwise setting is
generated by sets of the form⋂

i∈I
{α : dX(αn(xi), xi) > M ultimately} with I finite.
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However, whilst this is not a countably generated filter, its projection on the x-coordinate,
{α : dX(αn(x), x) > M ultimately}, is.

4. When the group is locally compact, ‘bounded’ may be defined as ‘precompact’, and
so ‘divergent’ becomes ‘unbounded’. Here divergence is unconditional (because continuity
preserves compactness).

Theorem 13.6. For A ⊆ H(S), pointwise divergence in A is unconditional.

Proof. For fixed s ∈ S and σ ∈ H(S), and for dX(αn(s), s) unbounded, suppose that
dX(σαn(s), s) is bounded by K. Then

dS(αn(s), s) ≤ dS(αn(s), σ(αn(s))) + dS(σ(αn(s)), s) ≤ ‖σ‖H(S) +K,

contradicting that dS(αn(s), s)) is unbounded. Similarly, for ψn converging to the identity,
if dS(ψn(αn(x)), x) is bounded by L, then

dS(αn(s), s) ≤ dS(αn(s), ψn(αn(s))) + dS(ψn(αn(s)), s) ≤ ‖ψn‖H(S) + L,

contradicting that dS(αn(s), s)) is unbounded.

Corollary 13.7. Pointwise divergence in A ⊆ H(X) is unconditional.

Corollary 13.8. Pointwise divergence in A = Ξ is unconditional.

Proof. In Theorem 13.6, take αn = ξx(n). Then unboundedness of dT (ξx(n)(t), t) implies
unboundedness of dT (σξx(n)(t), t) and of dT (ψnξx(n)(t), t).

Postscript. We have recently become aware of some affinities of thought with [Dieu] (e.g. in
respect of Th. 3.13): for more on this see [MO].

References

[AL] J. M. Aarts and D. J. Lutzer, Completeness properties designed for recognizing Baire
spaces, Dissertationes Math. (Rozprawy Mat.) 116 (1974), 48 pp.

[AD] J. Aczél and J. Dhombres, Functional Equations in Several Variables, Encyclopedia
Math. Appl. 31, Cambridge Univ. Press, 1989.

[AdC] O. Alas and A. di Concilio, Uniformly continuous homeomorphisms, Topology Appl.
84 (1998), 33–42.

[AS] N. Alon and J. H. Spencer, The Probabilistic Method, 3rd ed., Wiley, 2008 (2nd ed.
2000, 1st ed. 1992).

[AnB] R. D. Anderson and R. H. Bing, A completely elementary proof that Hilbert space is
homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc. 74
(1968), 771–792.

[Ar1] R. F. Arens, A topology for spaces of transformations, Ann. of Math. (2) 47 (1946),
480–495.

[Ar2] —, Topologies for homeomorphism groups, Amer. J. Math. 68 (1946), 593–610.
[ArMa] A. V. Arkhangel’skii and V. I. Malykhin, Metrizability of topological groups, Vestnik

Moskov. Univ. Ser. I Mat. Mekh. 1996, no. 3, 13–16, 91 (in Russian); English transl.:
Moscow Univ. Math. Bull. 51 (1996), no. 3, 9–11.

[ArRez] A. V. Arkhangel’skii and E. A. Reznichenko, Paratopological and semitopological
groups versus topological groups, Topology Appl. 151 (2005), 107–119.

[Ba1] R. Baire, Sur les fonctions de variables réelles, Ann. Mat. (3) 3 (1899), 1–123.



128 N. H. Bingham and A. J. Ostaszewski

[Ba2] R. Baire, Sur la représentation des fonctions discontinues (2me partie), Acta Math.
32 (1909), 97–176.

[BajKar] B. Bajšanski and J. Karamata, Regular varying functions and the principle of equi-
continuity, Publ. Ramanujan Inst. 1 (1969), 235–246.

[Ban-Eq] S. Banach, Sur l’équation fonctionnelle f(x+y) = f(x)+f(y), Fund. Math. 1 (1920),
123–124; reprinted in: Oeuvres, Vol. I, PWN, Warszawa, 1967, 47–48 (commentary
by H. Fast, p. 314).

[Ban-G] —, Über metrische Gruppen, Studia Math. III (1931), 101–113; reprinted in: Oeuvres,
Vol. II, PWN, Warszawa, 1979, 401–411.

[Ban-T] —, Théorie des opérations linéaires, 1932; reprinted in: Oeuvres, Vol. II, PWN, War-
szawa, 1979, 19–219.

[Bart] R. G. Bartle, Implicit functions and solutions of equations in groups, Math. Z. 62
(1955), 335–346.

[Be] A. Beck, A note on semi-groups in a locally compact group, Proc. Amer. Math. Soc.
11 (1960), 992–993.

[BCS] A. Beck, H. H. Corson and A. B. Simon, The interior points of the product of two
subsets of a locally compact group, ibid. 9 (1958), 648–652.

[Berg] C. Berge, Topological Spaces, Including a Treatment of Multi-Valued Functions, Vec-
tor Spaces and Convexity, Oliver and Boyd, 1963 (reprint, Dover, 1997).

[BHW] V. Bergelson, N. Hindman and B. Weiss, All-sums sets in (0, 1]—category and mea-
sure, Mathematika 44 (1997), 61–87.

[Berz] E. Berz, Sublinear functions on R, Aequationes Math. 12 (1975), 200–206.
[BePe] Cz. Bessaga and A. Pełczyński, Selected Topics in Infinite-Dimensional Topology,

PWN, Warszawa, 1975.
[BG] N. H. Bingham and C. M. Goldie, Extensions of regular variation, I: Uniformity and

quantifiers, Proc. London Math. Soc. (3) 44 (1982), 473–496.
[BGT] N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, 2nd ed., Ency-

clopedia Math. Appl. 27, Cambridge Univ. Press, 1989 (1st ed. 1987).
[BO-GS] N. H. Bingham and A. J. Ostaszewski, Generic subadditive functions, Proc. Amer.

Math. Soc. 136 (2008), 4257–4266.
[BO-F] —, —, Infinite combinatorics and the foundations of regular variation, J. Math.

Anal. Appl. 360 (2009), 518–529.
[BO-Fun] —, —, Infinite combinatorics in function spaces: category methods, Publ. Inst. Math.

Béograd 86 (100) (2009), 55–73.
[BO-LBI] —, —, Beyond Lebesgue and Baire: generic regular variation, Colloq. Math 116

(2009), 119–138.
[BO-Aeq] —, —, Automatic continuity: subadditivity, convexity, uniformity, Aequationes Math.

78 (2009), 257–270.
[BO-Th] —, —, Automatic continuity via analytic thinning, Proc. Amer. Math. Soc. 138

(2010), 907–919.
[BO-R] —, —, Regular variation without limits, J. Math. Anal. Appl. 370 (2010), 322–338.
[BO-LBII] —, —, Beyond Lebesgue and Baire II: Bitopology and measure-category duality,

Colloq. Math., in press.
[BO-TI] —, —, Topological regular variation: I. Slow variation, Topology Appl. 157 (2010),

1999–2013.
[BO-TII] —, —, Topological regular variation: II. The fundamental theorems, ibid. 157 (2010),

2014–2023.



Normed groups 129

[BO-TIII] N. H. Bingham and A. J. Ostaszewski, Topological regular variation: III. Regular
variation, ibid. 157 (2010), 2024–2037.

[BO-K] —, —, Kingman, category and combinatorics, in: Probability and Mathematical
Genetics, J. F. C. Kingman Festschrift (ed. by N. H. Bingham and C. M. Goldie),
London Math. Soc. Lecture Note Ser. 378, Cambridge Univ. Press, 2010, 135–168.

[BO-SO] —, —, Dichotomy and infinite combinatorics: the theorems of Steinhaus and Os-
trowski, Math. Proc. Cambridge Philos. Soc., in press.

[Bir] G. Birkhoff, A note on topological groups, Compos. Math. 3 (1936), 427–430.
[BlHe] W. Bloom and H. Heyer, Harmonic Analysis of Probability Measures on Hypergroups,

de Gruyter Stud. Math. 20, de Gruyter, Berlin, 1995.
[Bo] T. Bökamp, Extending norms on groups, Note Mat. 14 (1994), 217–227.
[Bor] K. C. Border, Fixed Point Theorems with Applications to Economics and Game

Theory, Cambridge Univ. Press, 1989.
[BoDi] D. Borwein and S. Z. Ditor, Translates of sequences in sets of positive measure,

Canad. Math. Bull. 21 (1978), 497–498.
[Bour] N. Bourbaki, Elements of Mathematics: General Topology, Parts 1 and 2, Hermann

and Addison-Wesley, 1966.
[Bou1] A. Bouziad, The Ellis theorem and continuity in groups, Topology Appl. 50 (1993),

73–80.
[Bou2] —, Every Čech-analytic Baire semitopological group is a topological group, Proc.

Amer. Math. Soc. 124 (1996), 953–959.
[BH] M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Springer

1999.
[Br-1] L. G. Brown, Note on the open mapping theorem, Pacific J. Math. 38 (1971), 25–28.
[Br-2] —, Topologically complete groups, Proc. Amer. Math. Soc. 35 (1972), 593–600.
[CSC] F. Cabello Sánchez and J. M. F. Castillo, Banach space techniques underpinning a

theory for nearly additive mappings, Dissertationes Math. 404 (2002), 73 pp.
[CaMo] J. Cao and W. B. Moors, Separate and joint continuity of homomorphisms defined

on topological groups, New Zealand J. Math. 33 (2004), 41–45.
[ChMa] J. J. Charatonik and T. Maćkowiak, Around Effros’ theorem, Trans. Amer. Math.

Soc. 298 (1986), 579–602.
[Choq] G. Choquet, Theory of capacities, Ann. Inst. Fourier (Grenoble) 5 (1953-54), 131–

295.
[Ch] J. P. R. Christensen, Topology and Borel Structure. Descriptive Topology and Set

Theory with Applications to Functional Analysis and Measure Theory, North-Holland
and American Elsevier, 1974.

[Com] W. W. Comfort, Topological groups, Ch. 24 in [KuVa].
[Csa] A. Császár, Konvex halmazokról és fuggvényegyenletekröl (Sur les ensembles et les

fonctions convexes), Mat. Lapok 9 (1958), 273–282.
[Dal] H. G. Dales, Automatic continuity: a survey, Bull. London Math. Soc. 10 (1978),

129–183.
[Dar] G. Darboux, Sur la composition des forces en statiques, Bull. Sci. Math. (1) 9 (1875),

281–288.
[D] E. B. Davies, One-Parameter Semigroups, London Math. Soc. Monogr. 15, Academic

Press, 1980.
[RODav] R. O. Davies, Subsets of finite measure in analytic sets, Nederl. Akad. Wetensch.

Proc. Ser. A. 55 = Indag. Math. 14 (1952), 488–489.



130 N. H. Bingham and A. J. Ostaszewski

[dGMc] J. de Groot and R. H. McDowell, Extension of mappings on metric spaces, Fund.
Math. 48 (1959-60), 252–263.

[Del1] C. Dellacherie, Capacités et Processus Stochastiques, Ergeb. Math. Grenzgeb. 67,
Springer, 1972.

[Del2] —, Un cours sur les ensembles analytiques, Part 2 (pp. 183–316) in [Rog2].
[Den] A. Denjoy, Sur les fonctions dérivées sommables, Bull. Soc. Math. France 43 (1915),

161–248.
[DDD] E. Deza, M. M. Deza and M. Deza, Dictionary of Distances, Elsevier, 2006.
[Dieu] J. Dieudonné, On topological groups of homeomorphisms, Amer. J. Math. 70 (1948).

659–680.
[Dij] J. J. Dijkstra, On homeomorphism groups and the compact-open topology, Amer.

Math. Monthly 112 (2005), 910–912.
[Dug] J. Dugundji, Topology, Allyn and Bacon, 1966.
[Eb] W. F. Eberlein, Closure, convexity, and linearity in Banach spaces, Ann. of Math.

47 (1946), 688–703.
[Eff] E. G. Effros, Transformation groups and C ∗-algebras, ibid. (2) 81 (1965), 38–55.
[EH] H. W. Ellis and I. Halperin, Function spaces determined by a levelling length function,

Canad. J. Math. 5 (1953), 576–592.
[Ell1] R. Ellis, Continuity and homeomorphism groups, Proc. Amer. Math. Soc. 4 (1953),

969–973.
[Ell2] —, A note on the continuity of the inverse, ibid. 8 (1957), 372–373.
[EFK] A. Emeryk, R. Frankiewicz and W. Kulpa, On functions having the Baire property,

Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 489–491.
[Eng] R. Engelking, General Topology, Heldermann, 1989.
[EKR] P. Erdős, H. Kestelman and C. A. Rogers, An intersection property of sets with

positive measure, Colloq. Math. 11 (1963), 75–80.
[FaSol] I. Farah and S. Solecki, Borel subgroups of Polish groups, Adv. Math. 199 (2006),

499–541.
[Far] D. R. Farkas, The algebra of norms and expanding maps on groups, J. Algebra 133

(1994), 386–403.
[Fol] E. Følner, Generalization of a theorem of Bogoliouboff to topological abelian groups,

Math. Scand. 2 (1954), 5–18.
[For] M. K. Fort Jr., A unified theory of semi-continuity, Duke Math. J. 16 (1949), 237–

246.
[Fos] M. Fosgerau, When are Borel functions Baire functions?, Fund. Math. 143 (1993),

137–152.
[FrKu] R. Frankiewicz and K. Kunen, Solution of Kuratowski’s problem on function having

the Baire property. I, ibid. 128 (1987), 171–180.
[Frem] D. H. Fremlin, Measure-additive coverings and measurable selectors, Dissertationes

Math. (Rozprawy Mat.) 260 (1987), 116 pp.
[Fre-4] —, Measure Theory. Vol. 4. Topological Measure Spaces. Part I, II, Corrected second

printing of the 2003 original, Torres Fremlin, Colchester, 2006.
[Frol-60] Z. Frolík, Generalizations of the Gδ-property of complete metric spaces, Czechoslovak

Math. J. 10 (85) (1960), 359–379.
[Fu] L. Fuchs, Infinite Abelian Groups, Vol. I, Pure Appl. Math. 36, Academic Press,

1970.
[Ful] R. V. Fuller, Relations among continuous and various non-continuous functions,

Pacific J. Math. 25 (1968), 495–509.
[Ga] J. Gallian, Contemporary Abstract Algebra, 4th ed., Houghton Mifflin, Boston, 1998.



Normed groups 131

[GJ] L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, 1960
(reprinted as Grad. Texts in Math. 43, Springer, 1976).

[GNN] C. Goffman, C. J. Neugebauer and T. Nishiura, Density topology and approximate
continuity, Duke Math. J. 28 (1961), 497–505.

[GoWa] C. Goffman and D. Waterman, Approximately continuous transformations, Proc.
Amer. Math. Soc. 12 (1961), 116–121.

[GRS] R. L. Graham, B. L. Rothschild and J. H. Spencer, Ramsey Theory, 2nd ed., Wiley,
1990 (1st ed. 1980).

[Gr1] M. Gromov, Hyperbolic manifolds, groups and actions, in: Riemann Surfaces and
Related Topics (Stony Brook, NY, 1978), Ann. of Math. Stud. 97, Princeton Univ.
Press, 1981, 183–213.

[Gr2] —, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ.
Math. 53 (1981), 53–73.

[Hal-M] P. R. Halmos, Measure Theory, Van Nostrand, 1950 (Grad. Texts in Math. 18,
Springer, 1979).

[Hal-ET] —, Lectures on Ergodic Theory, Chelsea Publ., 1956.
[HT] G. Hansel and J.-P. Troallic, Quasicontinuity and Namioka’s theorem, Topology

Appl. 46 (1992), 135–149.
[Han-71] R. W. Hansell, Borel measurable mappings for nonseparable metric spaces, Trans.

Amer. Math. Soc. 161 (1971), 145–169.
[Han-92] —, Descriptive topology, in: H. Hušek and J. van Mill, Recent Progress in General

Topology, Elsevier, 1992, 275–315.
[H] J. Harding, Decompositions in quantum logic, Trans. Amer. Math. Soc. 348 (1996),

1839–1862.
[HM] S. Hartman and J. Mycielski, On the imbedding of topological groups into connected

topological groups, Colloq. Math. 5 (1958), 167–169.
[HMc] R. C. Haworth and R. A. McCoy, Baire spaces, Dissertationes Math. (Rozprawy

Mat.) 141 (1977), 73 pp.
[HePo] R. W. Heath and T. Poerio, Topological groups and semi-groups on the reals with the

density topology, Conference papers, Oxford, 2006 (Conference in honour of Peter
Collins and Mike Reed).

[Hen] R. Henstock,Difference-sets and the Banach-Steinhaus Theorem, Proc. LondonMath.
Soc. (3) 13 (1963), 305–321.

[HR] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. I. Structure of Topo-
logical Groups, Integration Theory, Group Representations, 2nd ed., Grundlehren
Math. Wiss. 115, Springer, 1979.

[Hey] H. Heyer, Probability Measures on Locally Compact Groups, Ergeb. Math. Grenzgeb.
94, Springer, 1977.

[H-P] E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, rev. ed., Amer.
Math. Soc. Colloq. Publ. 31, Amer. Math. Soc., Providence, RI, 1957.

[HS] N. Hindman and D. Strauss, Algebra in the Stone–Čech Compactification.Theory
and Applications, de Gruyter Exp. Math. 27, de Gruyter, 1998.

[HJ] J. Hoffmann-Jørgensen, Automatic continuity, Section 3 of [THJ].
[IT1] A. Ionescu Tulcea and C. Ionescu Tulcea, On the lifting property. I, J. Math. Anal.

Appl. 3 (1961), 537–546.
[IT] —, —, Topics in the Theory of Lifting, Ergeb. Math. Grenzgeb. 48, Springer, 1969.



132 N. H. Bingham and A. J. Ostaszewski

[Itz] G. L. Itzkowitz, A characterization of a class of uniform spaces that admit an in-
variant integral, Pacific J. Math. 41 (1972), 123–141.

[J] N. Jacobson, Lectures in Abstract Algebra. Vol. I. Basic Concepts, Van Nostrand,
1951.

[Jam] R. C. James, Linearly arc-wise connected topological Abelian groups, Ann. of Math.
(2) 44 (1943). 93–102.

[JMW] R. C. James, A. D. Michal and M. Wyman, Topological Abelian groups with ordered
norms, Bull. Amer. Math. Soc. 53 (1947), 770–774.

[J-R] J. Jayne and C. A. Rogers, Analytic sets, Part 1 of [Rog2].
[Jones1] F. B. Jones, Connected and disconnected plane sets and the functional equation

f(x+ y) = f(x) + f(y), Bull. Amer. Math. Soc. 48 (1942), 115–120.
[Jones2] —, Measure and other properties of a Hamel basis, Bull. Amer. Math. Soc. 48 (1942),

472–481.
[Kak] S. Kakutani,Über die Metrisation der topologischen Gruppen, Proc. Imp. Acad. Tokyo

12 (1936), 82–84 (also in: Selected Papers, Vol. 1, ed. R. R. Kallman, Birkhäuser,
1986, 60–62).

[Kech] A. S. Kechris, Classical Descriptive Set Theory, Grad. Texts in Math. 156, Springer,
1995.

[Kech-T] —, Topology and descriptive set theory, Topology Appl. 58 (1994), 195–222.
[Kel] J. L. Kelley, General Topology, Van Nostrand, 1955.
[Kem] J. H. B. Kemperman, A general functional equation, Trans. Amer. Math. Soc. 86

(1957), 28–56.
[Kes] H. Kestelman, The convergent sequences belonging to a set, J. London Math. Soc.

22 (1947), 130–136.
[Klee] V. L. Klee, Invariant metrics in groups (solution of a problem of Banach), Proc.

Amer. Math. Soc. 3 (1952), 484–487.
[Kod] K. Kodaira, Über die Beziehung zwischen den Massen und den Topologien in einer

Gruppe, Proc. Phys.-Math. Soc. Japan (3) 23 (1941), 67–119.
[Kol] A. Kolmogorov, Zur Normierbarkeit eines allgemeinen topologischen linearen Raumes,

Studia Math. 5 (1934), 29–33.
[Kom1] Z. Kominek, On the sum and difference of two sets in topological vector spaces, Fund.

Math. 71 (1971), 165–169.
[Kom2] —, On the continuity of Q-convex and additive functions, Aequationes Math. 23

(1981), 146–150.
[Kucz] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities.

Cauchy’s Functional Equation and Jensen’s Inequality, PWN, Warszawa, 1985.
[KuVa] K. Kunen and J. E. Vaughan (eds.), Handbook of Set-Theoretic Topology, North-

Holland, 1984.
[Kur-A] K. Kuratowski, Sur les fonctions représentables analytiquement et les ensembles de

première catégorie, Fund. Math. 5 (1924), 75–86.
[Kur-B] —, Sur la propriété de Baire dans les groupes métriques, Studia Math. 4 (1933),

38–40.
[Kur-1] —, Topology, Vol. I, PWN, Warszawa, 1966.
[Kur-2] —, Topology, Vol. II, PWN, Warszawa, 1968.
[Levi] S. Levi, On Baire cosmic spaces, in: General Topology and its Relations to Modern

Analysis and Algebra, V (Prague, 1981), Sigma Ser. Pure Math. 3, Heldermann,
Berlin, 1983, 450–454.



Normed groups 133

[Lev] F. Levin, Solutions of equations over groups, Bull. Amer. Math. Soc. 68 (1962),
603–604.

[Low] R. Lowen, Approach Spaces. The Missing Link in the Topology-Uniformity-Metric
Triad, Oxford Math. Monogr., Oxford Univ. Press, 1997.

[Loy] R. J. Loy, Multilinear mappings and Banach algebras, J. London Math. Soc. (2) 14
(1976), 423–429.

[LMZ] J. Lukeš, J. Malý and L. Zajíček, Fine Topology Methods in Real Analysis and Po-
tential Theory, Lecture Notes in Math. 1189, Springer, 1986.

[Lyn1] R. C. Lyndon, Equations in free groups, Trans. Amer. Math. Soc. 96 (1960), 445–457.
[Lyn2] —, Length functions in groups, Math. Scand. 12 (1963), 209–234
[LynSch] R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer, 1977.
[Mar] N. F. G. Martin, A topology for certain measure spaces, Trans. Amer. Math. Soc.

112 (1964), 1–18.
[McCN] R. A. McCoy and I. Ntantu, Topological Properties of Spaces of Continuous Func-

tions, Lecture Notes in Math. 1315, Springer, 1988.
[McC] M. McCrudden, The embedding problem for probabilities on locally compact groups,

in: Probability Measures on Groups: Recent Directions and Trends, S. G. Dani and
P. Graczyk (eds.), Tata Inst. Fund. Res., Mumbai, 2006, 331–363.

[McSh] E. J. McShane, Images of sets satisfying the condition of Baire, Ann. of Math. 51
(1950), 380–386.

[MeSh] M. S. Meerschaert and H.-P. Scheffler, Limit Distributions for Sums of Independent
Random Vectors: Heavy Tails in Theory and Practice, Wiley, 2001.

[Meh] M. R. Mehdi, On convex functions, J. London Math. Soc. 39 (1964), 321–326.
[Michael] E. Michael, Almost complete spaces, hypercomplete spaces and related mapping the-

orems, Topology Appl. 41 (1991), 113–130.
[Michal1] A. D. Michal, Differentials of functions with arguments and values in topological

abelian groups, Proc. Nat. Acad. Sci. U.S.A. 26 (1940), 356–359.
[Michal2] —, Functional analysis in topological group spaces, Math. Mag. 21 (1947), 80–90.
[MO] H. I. Miller and A. J. Ostaszewski, Group actions and shift-compactness, preprint.
[Mil] J. Milnor, A note on curvature and fundamental group, J. Differential Geom. 2

(1968), 1–7.
[Mont0] D. Montgomery, Nonseparable metric spaces, Fund. Math. 25 (1935), 527–534.
[Mon1] —, Continuity in topological groups, Bull. Amer. Math. Soc. 42 (1936), 879–882.
[Mon2] —, Locally homogeneous spaces, Ann. of Math. (2) 52 (1950), 261–271.
[Mue] B. J. Mueller, Three results for locally compact groups connected with the Haar mea-

sure density theorem, Proc. Amer. Math. Soc. 16 (1965), 1414–1416.
[Na] L. Nachbin, The Haar Integral, Van Nostrand, 1965.
[NSW] A. Nagel, E. M. Stein and S. Wainger, Balls and metrics defined by vector fields. I.

Basic properties, Acta Math. 155 (1985), 103–147.
[Nam] I. Namioka, Separate and joint continuity, Pacific J. Math. 51 (1974), 515–531.
[Ne] K.-H. Neeb, On a theorem of S. Banach, J. Lie Theory 7 (1997), 293–300.
[Nik] O. Nikodym, Sur une propriété de l’opération A, Fund. Math. 7 (1925), 149–154.
[NR] A. Nowik and P. Reardon, A dichotomy theorem for the Ellentuck topology, Real

Anal. Exchange 29 (2003/04), 531–542.
[OrC] W. Orlicz and Z. Ciesielski, Some remarks on the convergence of functionals on

bases, Studia Math. 16 (1958), 335–352.



134 N. H. Bingham and A. J. Ostaszewski

[O-Mn] A. J. Ostaszewski, Monotone normality and Gδ-diagonals in the class of inductively
generated spaces, in: Topology, Vol. II (Budapest, 1978), Colloq. Math. Soc. János
Bolyai 23, North-Holland, 1980, 905–930.

[O-knit] —, Regular variation, topological dynamics, and the Uniform Boundedness Theorem,
Topology Proc. 36 (2010), 305–336.

[O-AH] —, Analytically heavy spaces: Analytic Baire and analytic Cantor theorems, preprint.
[O-LB3] —, Beyond Lebesgue and Baire: III. Analyticity and shift-compactness, preprint.
[O-Joint] —, Continuity in groups: one-sided to joint, preprint.
[O-AB] —, Analytic Baire spaces, preprint.
[O-E] —, On the Effros Open Mapping Principle, preprint.
[Oxt1] J. C. Oxtoby, Cartesian products of Baire spaces, Fund. Math. 49 (1960), 157–166.
[Oxt2] —, Measure and Category, 2nd ed., Grad. Texts in Math. 2, Springer, 1980.
[Par] K. R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, 1967

(reprinted, Amer. Math. Soc., 2005).
[PRV] K. R. Parthasarathy, R. Ranga Rao and S. R. S. Varadhan, Probability distributions

on locally compact abelian groups, Illinois J. Math. 7 (1963), 337–369.
[Pav] O. Pavlov, A Lindelöf topological group whose square is not normal, preprint.
[PeSp] J. Peetre and G. Sparr, Interpolation of normed abelian groups, Ann. Mat. Pura

Appl. (4) 92 (1972), 217–262.
[Pes] V. Pestov, Review of [Ne], MR1473172 (98i:22003).
[Pet1] B. J. Pettis, On continuity and openness of homomorphisms in topological groups,

Ann. of Math. (2) 52 (1950), 293–308.
[Pet2] —, Remarks on a theorem of E. J. McShane, Proc. Amer. Math. Soc. 2 (1951),

166–171.
[Pet3] —, Comments on open homomorphisms, ibid. 8 (1957), 583–586.
[Pet4] —, Closed graph and open mapping theorems in certain topologically complete spaces,

Bull. London Math. Soc. 6 (1974), 37–41.
[Pic1] S. Piccard, Sur les ensembles de distances des ensembles de points d’un espace eu-

clidien, Mém. Univ. Neuchâtel 13 (1939).
[Pic2] —, Sur des ensembles parfaites, ibid. 16 (1942).
[Pol] R. Pol, Remark on the restricted Baire property in compact spaces, Bull. Acad. Polon.

Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 599–603.
[PWW] W. Poreda, E. Wagner-Bojakowska and W. Wilczyński, A category analogue of the

density topology, Fund. Math. 125 (1985), 167–173.
[Rach] S. T. Rachev, Probability Metrics and the Stability of Stochastic Models, Wiley, 1991.
[RR-01] K. P. S. Bhaskara Rao and M. Bhaskara Rao, A category analogue of the Hewitt–

Savage zero-one law, Proc. Amer. Math. Soc. 44 (1974), 497–499.
[RR-TG] —, —, On the difference of two second category Baire sets in a topological group,

ibid. 47 (1975), 257–258.
[Res] S. I. Resnick,Heavy-Tail Phenomena. Probabilistic and Statistical Modeling, Springer,

2007.
[Rog1] C. A. Rogers, Hausdorff Measures, Cambridge Univ. Press, 1970.
[Rog2] C. A. Rogers, J. Jayne, C. Dellacherie, F. Topsøe, J. Hoffmann-Jørgensen, D. A.

Martin, A. S. Kechris and A. H. Stone, Analytic Sets, Academic Press, 1980.
[RW] C. A. Rogers and R. C. Willmott, On the projection of Souslin sets, Mathematika

13 (1966), 147–150.
[Ru] W. Rudin, Functional Analysis, 2nd ed., McGraw-Hill, 1991 (1st ed. 1973).



Normed groups 135

[Schw] L. Schwartz, Sur le théorème du graphe fermé, C. R. Acad. Sci. Paris Sér. A-B 263
(1966), 602–605.

[SeKu] I. E. Segal and R. A. Kunze, Integrals and Operators, McGraw-Hill, 1968.
[Se1] G. R. Sell, Nonautonomous differential equations and topological dynamics. I. The

basic theory, Trans. Amer. Math. Soc. 127 (1967), 241–262.
[Se2] —, Nonautonomous differential equations and topological dynamics. II. Limiting

equations, ibid. 127 (1967), 263–283.
[She] S. Shelah, Can you take Solovay’s inaccessible away?, Israel J. Math. 48 (1984),

1–47.
[Si] M. Sion, Topological and measure-theoretic properties of analytic sets, Proc. Amer.

Math. Soc. 11 (1960), 769–776.
[SolSri] S. Solecki and S. M. Srivastava, Automatic continuity of group operations, Topology

Appl. 77 (1997), 65–75.
[So] R. M. Solovay, A model of set theory in which every set of reals is Lebesgue measur-

able, Ann. of Math. 92 (1970), 1–56.
[St] H. Steinhaus, Sur les distances des points de mesure positive, Fund. Math. 1 (1920),

93–104.
[T] F. D. Tall, The density topology, Pacific J. Math. 62 (1976), 275–284.
[TV] T. Tao and V. N. Vu, Additive Combinatorics, Cambridge Univ. Press, 2006.
[THJ] F. Topsøe and J. Hoffmann-Jørgensen, Analytic spaces and their applications, Part

3 of [Rog2].
[Ul] S. M. Ulam, A Collection of Mathematical Problems, Wiley, 1960.
[Ung] G. S. Ungar, On all kinds of homogeneous spaces, Trans. Amer. Math. Soc. 212

(1975), 393–400.
[vdW] B. L. van der Waerden, Modern Algebra, Vol. I, Ungar, New York, 1949.
[vD] E. van Douwen, A technique for constructing honest locally compact submetrizable

examples, Topology Appl. 47 (1992), 179–201.
[vM1] J. van Mill, A note on the Effros Theorem, Amer. Math. Monthly 111 (2004), 801–

806.
[vM2] —, The topology of homeomorphism groups, in preparation, partly available at:

http://www.cs.vu.nl/~dijkstra/teaching/Caput/groups.pdf
[vM3] —, Analytic groups and pushing small sets apart, Trans. Amer. Math. Soc. 361

(2009), 5417–5434.
[Var] N. Th. Varopoulos, L. Saloff-Coste and T. Coulhon, Analysis and Geometry on

Groups, Cambridge Tracts in Math. 100, Cambridge Univ. Press, 1992.
[We] A. Weil, L’intégration dans les groupes topologiques et ses applications, Actual. Sci.

Ind. 869, Hermann, Paris, 1940 (republished, Princeton Univ. Press, 1941).
[WKh] W. Wilczyński and A. B. Kharazishvili, Translations of measurable sets and sets

having the Baire property, Soobshch. Akad. Nauk Gruzii 145 (1992), no. 1, 43–46.
[Wr] F. B. Wright, Semigroups in compact groups, Proc. Amer. Math. Soc. 7 (1956),

309–311.
[Ya] A. L. Yakimiv, Probabilistic Applications of Tauberian Theorems, VSP, Leiden, 2005.
[Zel] W. Żelazko, A theorem on B0 division algebras, Bull. Acad. Polon. Sci. 8 (1960),

373–375.



Index

Auth(X), 10

abelian, 8
Abelian Normability of H(X), 39
admissibility

Cauchy (C-adm), 50
metric, 21
norm, 21, 38
topological , 21

admissibility
weak (W-adm), 50

almost complete, 69
ambidextrous refinement, 33
ambidextrous uniformity, 13, 53
amenable, 9
analytic, 106
Analytic Automaticity Th., 117
Analytic Dichotomy Lemma – Spanning, 112
asymptotically multiplicative, 23
Averaging Lemma, 98

Baire, 48
Baire Continuity Th., 108
Baire function, 107
Baire Homomorphism Th., 110
Baire-continuous, 107
Baire-measurable, 107
Banach-Kuratowski Th., 83
Banach-Mehdi Th., 109
Banach-Neeb Theorem, 108
Bartle’s Inverse Function Th., 104
Bernstein-Doetsch Th., 101
bi-Cauchy, 49
bi-Cauchy completion, 53
bi-invariant (not) – SL(2,R), 39
bi-Lipschitz property, 43
bi-uniformly continuous, 35, 117
Borel/analytic inversion, 55
bounded, 23
bounded elements, 18

C-sets, 107
Cauchy dichotomy, 48
centre, 44
Zγ(G), norm centre, 44
CET, Category Embedding Th., 76
Choquet’s Capacitability Theorem, 112
class C′, 104
closed graph, 45
Combinatorial Uniform Boundedness Th.,

90
Common Basis Th., 96
commutator, 26
Compact Contraction Lemma, 112
Compact Spanning Approximation, 113
compact-open topology, 19
completely metrizable, 68
conjugacy refinement norm, 20
Conjunction Th., 96
converges to the identity, 123, 125
convex, 98
Crimping Th., 36

dXR , 9
Darboux norm, 115
Darboux’s Th., 48
Darboux-normed, 54
Dense Oscillation Th., 60
Density Topology Th., 86
density-preserving, 75
derivative, 103
Dichotomy Th., convex functions, 102
Displacements Lemma – Baire, 72
Displacements Lemma – measure, 72
diverges uniformly, 124
divisible – 2-divisible, 98
divisible – infinitely divisible, 17

ε-shifting point, 59
Effros’ Open Mapping Principle, 36
embeddable, 18
enables Baire continuity, 108

[136]



Index 137

ε-swelling, 14
Equivalence Th., 31
equivalent bounded norm, 11
evaluation map, 33
Example C, 20
Examples A, 10
Examples B, 12

First Verification Th., 77

g-conjugate norm, 14
G-ideal, 116
γg(x), 10
Generalized Darboux Th., 115
Generalized Mehdi Th., 105
Generalized Piccard-Pettis Th., 84
Generic Dichotomy Principle, 70
Global Bounds Th., 92
group of left-shifts, 35
group-norm, 8

Heine-Borel property , 55
Heine-Borel Th., 49
N-homogeneous, 41
homogeneous – 2-homogeneous, 9
homogeneous – n-homogeneous, 41
homomorphism, 29

infinitely divisible, 41
inner-regularity, 69
Interior Point Th., 94
Invariance of Norm Th., 24

Jones-Kominek Th., 114

Kakutani-Birkhoff Th., 25
KBD – First Generalized Measurable Th.,

87
KBD – Kestelman-Borwein-Ditor Th., 6
KBD – normed groups, 6
KBD – Second Generalized Measurable, 111
KBD – topological groups, 79
KBD – topologically complete norm, 69
Klee group, 28
Klee property, 25, 32
Kodaira’s Th., 87
Kuratowski Dichotomy, 83

left-invariant metric, 13
Left-right Approximation, 61
left-right commutator inequality, 27
λg(x), 10
Lindelöf, 106

Lipschitz properties of Hu, 119
Lipschitz property, 41
Lipschitz-1 norms, 41
Lipschitz-normed, 41
locally bi-Lipschitz, 99
locally convex, 102
locally Lipschitz, 99
lower hull, 64
Luzin hierarchy, 107

magnification metric, 24
McShane’s Interior Points Th., 85
meagre, 48
modular, 99
Montgomery’s Th., 59
multiplicative, 23

N-homogeneous – homomorphism, 115
n-Lipschitz, 99
nearly abelian norm, 46
Nikodym’s Th., 106
No Trumps Th., 89
norm topology, 29
norm-central, 44

originating norm, 49
oscillation function, 56

Pathology Th., 63
Permutation metric, 121
Piccard Th., 94
Piccard-Pettis Th., 79
pointwise divergent sequence, 124
Product Set Th., 97

Q-good, 117
quasi-continuous, 63
quasi-isometric duality, 121
quasi-isometry, 14, 91

Ramsey’s Th., 50
refinement norm, 14
refinement topology, 11
Reflecting Lemma, 100
right-invariant metric, 13
right-invariant sup-norm, 21
ρg(x), 10
right-shift compact, 80

Second Verification Th., 86
Self-similarity Th., 97
semicontinuous, 67
semicontinuous – lower, 45



138 Index

semicontinuous – upper, 45
Semigroup Th., 95, 97
semitopological, 58
semitopological group, 28
sequence space, 53, 115
sequential, 116
sequential – completely sequential, 116
Shift-Compactness Th., 81
shifted-cover, 81
slowly varying, 15
smooth, 104
Souslin criterion – Baire functions, 108
Souslin hierarchy, 107
Souslin-H, 106
Souslin-graph Th., 110
span, 106
Squared Pettis Th., 74
Steinhaus Th., 94
Steinhaus Th. – Weil Topology, 82
subadditive, 64
subcontinuous, 49
Subgroup Dichotomy Th. – normed

groups, 83

Subgroup Dichotomy Th. – topological
groups, 83

Subgroup Th., 95
subuniversal set, 88
supremum norm, 18

Th. of Jones and Kominek, 105
thick, 80
topological centre, 57
Topological Quasi-Duality Th., 122
topological under weak refinement, 19
topologically complete, 68

unconditional divergence, 126
Ungar’s Th., 37
Uniformity Th. for Conjugation, 121
uniformly continuous, 51
uniformly divergent sequence, 124

vanishingly small word-net, 42

weak category convergence, 76
weak continuity, 31, 51


	Introduction
	Metric versus normed groups
	Normed versus topological groups
	Left- versus right-shifts: Equivalence Theorem
	Lipschitz-normed groups
	Cauchy dichotomy

	Subadditivity
	Generic dichotomy
	Steinhaus theory and dichotomy
	The Kestelman-Borwein-Ditor Theorem: a bi-topological approach
	The Subgroup Theorem
	The Semigroup Theorem
	Convexity
	Automatic continuity: the Jones-Kominek Theorem
	Duality in normed groups
	Divergence in the bounded subgroup
	References
	Index

