
1. Introduction

Let A and B be subsets of Rn. Their sum A+B, called the Minkowski sum of A and B,

is defined by

A+B = {a+ b | a ∈ A, b ∈ B}.

Being one of the most fundamental operations on sets in spaces with the addition opera-

tion, Minkowski sum has been used, both implicitly and explicitly, in virtually all branches

of mathematics. However, there have not been many investigations of the properties of

Minkowski sum itself. One notable exception is the pioneering works by H. Brunn, H.

Minkowski, and others on the so-called Brunn–Minkowski theory, which compares the

volumes of the Minkowski sum and its summands [1, 16, 19].

Meanwhile, mainly due to the convenience of describing various geometric relations,

the Minkowski sum has been adopted and used extensively in engineering and computer

science. A few examples are mechanical engineering (collision-free path planning [13]),

image processing and mathematical morphology [6, 20], computer graphics (metamor-

phosis [5]), geometric modeling (offset and sweep curve/surface generation [15, 21], com-

putation of CSG operations [18]), and computational geometry [7].

The common problem persistent in all such applications is the efficient computation

of Minkowski sums [8, 9, 11]. But the need for dealing with complex geometric objects

encountered in real-world applications makes this goal seem far from satisfactory. Thus

there naturally arises the need for fundamental geometric and topological analysis of

Minkowski sum, which should be more detailed than just comparing volumes.

In this paper, we will investigate some global topological properties of Minkowski

sum in relation to the geometric structures of its summands. Although Minkowski sum

has a simple definition, it may lead to a lot of complicated phenomena. In general, the

Minkowski sum operation does not preserve the topological properties of the sets in the

Euclidean space. To give an idea, we first show some examples: see Figures 1, 2 and 3.

Note that all the summands in these figures are homeomorphic to the unit disk. But

in Figure 1, the result of the Minkowski sum is not simply connected. In Figure 2, the

Minkowski sum is not simply connected, and its boundary is not homeomorphic to the

unit circle. Worse still, the Minkowski sum has infinitely many “holes” in Figure 3.

These examples show that even when the summands are topologically simple, their

Minkowski sum can become quite complex in the topological sense. Especially, Minkowski

sum does not preserve even the simplest topological property of the sets in R2, that is,

that of being homeomorphic to the unit disk.

Thus the following natural problem arises:

[5]
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Fig. 1. Multiply connected Minkowski sum
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Fig. 3. Minkowski sum with infinitely many holes

Problem 1. Find a class of sets in R2 which are homeomorphic to the unit disk, such

that the Minkowski sums of sets in that class are always homeomorphic to the unit disk.

An immediate answer to this problem is the class of all convex sets which are homeo-

morphic to the unit disk, since it can be shown easily that the Minkowski sum of convex

sets is also convex. But a serious drawback of the convexity is that it is too strong: there

are too many useful sets which are not convex. So another important problem is:

Problem 2. Find a class of sets in R2 which contains all convex sets homeomorphic to

the unit disk, and is maximal among all the classes satisfying the condition in Problem 1.

If we consider two bounded sets A and B in the plane as rigid, mutually impenetrable

objects, then the complement of the Minkowski sum A+B in R2 represents the set of all

possible relative positions of the translates of A and −B. One such configuration can be

continuously moved into another by translation without mutual penetrating if and only if

the two configurations are in the same connected component of the complement of A+B

in R2. So, the Minkowski sum A+ B is simply connected if and only if any two relative
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positions of the translates of A and −B can be continuously moved into each other by

translation without mutual penetrating, or, in other words, any relative positions can be

continuously pulled over to separate A and −B indefinitely.

We will show that there exists an important class of planar domains that we call semi-

convex , which satisfy the conditions both in Problems 1 and 2. Intuitively speaking, a

planar domain is semi-convex if the normal vector field along the boundary does not turn

concavely by more than the angle π. We mention that our definition of semi-convexity

differs from that introduced in [14]. It is also significantly more general than the usual

notion of star-shapedness, and, to the author’s knowledge, it is the first among the many

variations of convexity which has an optimal property with respect to the Minkowski

sum.

In general, the boundary curves of a Minkowski sum are results of the operation called

convolution on the boundary curves of the summands. The convolution can be considered

as a basic building block in analyzing the Minkowski sum of the shapes represented by

boundary curves. But there has been few precise mathematical studies on the convolu-

tion of curves in the literature. Also, we will observe in Section 2 that the convolution

can behave wildly unless we restrict the class of the curves to be convolved, which is a

fact not often noted in both theory and practice. So in Section 2, we carefully analyze

the mathematical properties of the convolution of curves, and classify the curve classes

according to their differential regularity with particular regard to convolution.

Often in practice, the curve pieces used to describe shape boundaries come from

specific fixed classes such as the class of rational curves or various classes of splines (e.g.,

the NURBS curves). However, most of these important curve classes are not closed under

convolution, which makes it impossible to represent the Minkowski sum boundary in a

uniform manner (i.e., with the curve pieces in the same curve class used to represent

the summands), and thus causes serious problems in practice. Meanwhile, it also turns

out that the curve classes Ck:l and Ck:l
c introduced in Section 2 are not closed under

convolution. These facts imply that the usual conditions on the boundary curves such as

rationality or differentiability are not preserved under Minkowski sum. In particular, it

is not clear whether the notion of semi-convexity is closed under Minkowski sum, unless

we restrict the boundary curves to be in special curve classes. Thus it is a necessary and

important problem to find a condition on classes of curves which guarantees closedness

under convolution.

In Section 2, we introduce special curve classes, called Minkowski classes, which are

closed under convolution. An important example of a Minkowski class, denoted by W ,

is given in Section 3, for which we use Łojasiewicz’s structure theorem for real-analytic

varieties [12]. It is shown that W contains practically all the curves used in engineer-

ing applications. This in particular means that it is not too restrictive to consider the

Minkowski sum only in the category of M-domains for a Minkowski class M. Here, an

M-domain means a subset in R2 whose boundary consists of finitely many curves inM.

Note that we consider a fairly general class of domains, including ones with corners

on their boundaries. In fact, this is also necessary, since such domains can arise naturally

as a result of the Minkowski sum operation on quite nice domains. To handle them, we

introduce two concepts: sector in Section 4, and virtual boundary in Section 5. A sector is a
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local germ of a domain near a boundary point, whether cornered or not. So, by examining

the effect of Minkowski sum on sectors, we can understand the essential and local behavior

of Minkowski sum. By integrating these results, we obtain the global result in Section 6

that the set of all M-domains is closed under Minkowski sum for any Minkowski class

M, which is a basis for the further closedness result for semi-convexity.

The notion of virtual boundary is a generalization of that of the usual boundary

in a way that incorporates corners in a uniform manner. It is defined to be in one-to-

one continuous correspondence with the outer normal vectors on the boundary including

those at the corners. Together with the analysis of sectors, the notion of virtual boundary

enables a uniform and easy treatment of cornered domains, thus reducing the globally

complex problem of Minkowski sum to the analysis of a few local genotypes of the sectors.

The notion of semi-convexity, which generalizes that of convexity, will be formally

introduced in Section 7. Let M be a Minkowski class. It is proved that the Minkowski

sum of any two semi-convexM-domains is homeomorphic to the unit disk, which answers

Problem 1 above within the category ofM-domains. In Section 8, we prove that for any

M-domain which is homeomorphic to the unit disk but is not semi-convex, there exists

a semi-convex M-domain such that their Minkowski sum is not homeomorphic to the

unit disk. This answers Problem 2 above within the category of M-domains. In fact,

it is shown that the set of all semi-convex M-domains is uniquely maximal among all

the classes of M-domains which satisfy the condition in Problem 1 and contain all the

M-domains called flag domains. Finally, we prove in Section 9 that the set of all semi-

convex M-domains is closed under Minkowski sum. In proving these results, we will use

the Gauss–Bonnet Theorem, translated into the language of virtual boundary, as one of

the main tools. In Section 10, we summarize the results in this paper, and discuss some

further research directions.

Since semi-convexity is geometric in nature, the properties of semi-convex domains

proved in this paper reveal a new relationship between the geometric and topological

properties of Minkowski sum. Also, since semi-convexity can easily be checked algorith-

mically, it is expected to be utilized in various application areas using Minkowski sum.

2. Curves

The boundaries of reasonable domains consist of curves. So, to analyse domains, we

first analyse curves. In this section, we define various special curve classes according to

their regularity, and study their properties with respect to the operation of convolution.

In particular, the Minkowski classes are introduced, which are defined essentially to be

closed under convolution. We also set up some conventions and notations which will be

used throughout this paper.

Let v = (v1, v2), w = (w1, w2) be in R2. We write v //w if either at least one of v

and w is 0 = (0, 0), or v = kw for some k ∈ R. Let p ∈ R2 and r > 0. By Br(p), we

always denote the closed ball in R2, centered at p and with radius r. The open ball will

be denoted by Bor (p). The unit circle in R2 will be denoted by S1. Thus, S1 = {v∈R2 |
|v| = 1} = ∂B1(0).
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2.1. Convolution

Definition 2.1 (Ck:l curve). Let k, l = 1, 2, . . . ,∞, ω (ω for real-analytic), and k ≥ l. Let

n = 1, 2, . . . A curve γ : (a, b)→ Rn is called a Ck curve if there exists a reparametriza-

tion γ̆ : (ă, b̆) → R2 of γ such that γ̆′ 6= 0 on (ă, b̆), and γ̆ is Ck. A curve γ : [a, b] → Rn
is called a Ck:l curve if the restriction of γ to (a, b) is a Ck curve, and there exists an

extension γ̃ : (a− ε, b+ ε)→ Rn of γ for some ε > 0, such that γ̃ is a C l curve.

Here, it is important to note that γ̆′ 6= 0. Without this condition, a curve γ may not

be a Ck curve, even if it is k-times differentiable.

Definition 2.2 (the class Ck:l). Let k, l = 1, 2, . . . ,∞, ω and k ≥ l. Then we denote

by Ck:l the class of all Ck:l curves in R2 defined on closed intervals, which have no self-

intersections. An element in Ck:l will be called a Ck:l-curve.

Note that closed loops are excluded in this definition. The inclusion relations between

the classes Ck:l in Figure 4 are immediate from the definition.

C1:1

∪
C2:1 ⊃ C2:2

∪ ∪

..
.

..
.

∪ ∪
C∞:1 ⊃ C∞:2 ⊃ . . . ⊃ C∞:∞

∪ ∪ ∪
Cω:1 ⊃ Cω:2 ⊃ . . . ⊃ Cω:∞ ⊃ Cω:ω

C1:1
c

∪
C2:1
c ⊃ C2:2

c

∪ ∪

..
.

..
.

∪ ∪
C∞:1
c ⊃ C∞:2

c ⊃ . . . ⊃ C∞:∞
c

∪ ∪ ∪
Cω:1
c ⊃ Cω:2

c ⊃ . . . ⊃ Cω:∞
c ⊃ Cω:ω

c

Fig. 4. Inclusion relations for Ck:l and Ck:l
c

Remark 2.1. Given a Ck:l-curve γ : [a, b]→ R2, we usually assume that it is defined on

some slightly larger open interval (a− ε, b + ε), and γ is k-times differentiable on (a, b),

l-times differentiable on (a− ε, b+ ε), and γ ′ 6= 0 on (a− ε, b+ ε).

Let γ : [a, b] → R2 be a C1:1-curve, and let γ̃ : (a− ε, b + ε) → R2 be a C1 extension

of γ. It is easy to see that the limit

v[γ](t) = lim
τ→t

γ̃(τ)− γ̃(t)

|γ̃(τ)− γ̃(t)|
exists in S1 for every t ∈ [a, b], and v[γ] : [a, b]→ S1 is continuous. We will denote v[γ](a)

also by v[γ]. Note that these are independent of the choice of γ̃. Let µ : R → S1 be the

covering map defined by µ(t) = (cos t, sin t) for t ∈ R. Now there exists a continuous

function θ : [a, b] → R such that v[γ](t) = µ(θ(t)) for every t ∈ [a, b]. We call θ an angle

function of γ. Note that if θ̃ is another angle function of γ, then, for some integer n, we

have θ̃(t) = θ(t) + 2nπ for every t ∈ [a, b]. So the following is well defined:

Definition 2.3 (convex curve). Let γ : [a, b]→ R2 be a C1:1-curve, and let θ : [a, b]→ R
be an angle function of γ. Then γ is called convex if θ is either strictly increasing or

strictly decreasing, provided it is not constant. The signature of γ, σ(γ), is defined to be

+ (resp., −) if θ is strictly increasing (resp., strictly decreasing), and 0 if θ is constant.



10 S. W. Choi

For k, l = 1, 2, . . . ,∞, ω with k ≥ l, we denote by Ck:l
c the class of all convex curves in

Ck:l. An element of Ck:l
c will be called a Ck:l

c -curve.

From the above definition, the inclusion relations between the classes Ck:l
c in Figure 4

are obvious.

Definition 2.4 (∗-admissible curves). Two C1:1
c -curves γ1, γ2 are said to be ∗-admissible

to each other if v[γ1] //v[γ2] and σ(γ1) = σ(γ2) 6= 0.

Note that the ∗-admissibility is a transitive relation. Let γi : [ai, bi] → R2, i =

1, . . . , n, be C1:1
c -curves which are ∗-admissible to each other. Let θ̃i : [ai, bi] → R be

an angle function of γi for each i. For each i, define θi : [ai, bi] → R by θi(t) = θ̃i(t) if

v[γi] = v[γ1], and θi(t) = θ̃i(t) + π if v[γi] = −v[γ1]. Then, with no loss of generality, we

can assume θi(ai) = θ1(a1) for each i. Define α = min {θ1(b1), . . . , θn(bn)} if σ(γ1) = +,

and α = max {θ1(b1), . . . , θn(bn)} if σ(γ1) = −. Let h : [0, 1] → R be the linear function

with h(0) = θ1(a1) and h(1) = α. Now we define γ = γ1 ∗ . . . ∗ γn : [0, 1] → R2, the

convolution of γ1, . . . , γn, by

γ(t) = γ1(θ−1
1 (h(t))) + . . .+ γn(θ−1

n (h(t)))

for t ∈ [0, 1]. Note that v[γ1](θ−1
1 (h(t))) // . . . //v[γn](θ−1

n (h(t))) for every t.

From the definition, it is clear that the result of convolution does not depend on the

order of operations. It is also easy to see that convolutions are continuous curves. But in

general, a convolution of C1:1
c -curves can exhibit quite anomalous behavior, and it cannot

be expected to be even a C1:1-curve. This can happen even when the terms belong to

Cω:∞
c , as can be seen from the following example:

Example 2.1. For some small δ > 0, let γ+, γ− : [0, δ] → R2 be given by γ±(t) =

(t, f±(t)) for t ∈ [0, δ], where f± : [0, δ]→ R are defined by

f±(t) =

t�

0

1

ξ2
exp

(
−1

ξ

)[
4±

{
1 +
√

2 sin

(
1

ξ
− π

4

)}]
dξ

for t ∈ [0, δ]. Note that

0 <
1

ξ2
exp

(
−1

ξ

)[
4±

{
1 +
√

2 sin

(
1

ξ
− π

4

)}]
≤ (5 +

√
2)

1

ξ2
exp

(
−1

ξ

)

for every ξ > 0. So we have

0 < f±(t) ≤ (5 +
√

2)

t�

0

1

ξ2
exp

(
−1

ξ

)
dξ = (5 +

√
2) exp

(
−1

t

)

for every t ∈ (0, δ]. This shows that f+ and f− are well defined. It is easy to see that f±
are real-analytic on (0, δ], and limt→0+ f

(k)
± = 0 for every k <∞. Hence γ± ∈ Cω:∞. Note

that

f ′′±(t) =
1

t4
exp

(
−1

t

)[
(1− 2t)

[
4±

{
1 +
√

2 sin

(
1

t
− π

4

)}]
∓
√

2 cos

(
1

t
− π

4

)]
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for t > 0. So it follows that f ′′±(t) > 0 for t ∈ (0, δ] if we choose sufficiently small δ > 0.

This shows that γ+, γ− ∈ Cω:∞
c , and v[γ1] = v[γ2] = (1, 0), σ(γ1) = σ(γ2) = +. Let

f = f+ − f−. Then

f(t) = 2

t�

0

1

ξ2
exp

(
−1

ξ

){
1 +
√

2 sin

(
1

ξ
− π

4

)}
dξ = 2 exp

(
−1

t

)(
1 + sin

1

t

)

for t ∈ (0, δ]. Let tn = (3π/2 + 2πN + 2nπ)−1 for n = 1, 2, . . . , where (3π/2 + 2πN +

2π)−1 ≤ δ < (3π/2+2πN)−1. Let S = {(s, t) ∈ [0, δ]× [0, δ] | γ+(s) = γ−(t)}. It is easy to

see that S = {(tn, tn) | n = 1, 2, . . .}∪{(0, 0)}. Note also that f ′(tn) = f ′+(tn)−f ′−(tn) = 0

for all n. Now γ+ and −γ− are in Cω:∞
c , and ∗-admissible to each other. Let γ = γ1∗(−γ2) :

[0, 1] → R2. Then, from the above argument, it is easy to see that there exist sequences

an, bn ↘ 0 with an+1 < bn < an such that γ(an) = 0 and γ(bn) 6= 0 for every n. Clearly,

this cannot happen for a C1:1-curve. Thus we conclude that γ /∈ C1:1.

The following lemma shows that the convolution behaves as expected if we know

beforehand that it has only a mild regularity, i.e., C1:1.

Lemma 2.1. Let γi : [ai, bi] → R2, i = 1, 2, be two C1:1
c -curves which are ∗-admissible to

each other. Let γ = γ1 ∗ γ2. Suppose γ ∈ C1:1. Then, for any t, t1, t2 such that γ1(t1),

γ2(t2) are summed to the convolution γ1 ∗ γ2, we have

v[γ](t) //v[γ1](t1) //v[γ2](t2).

In consequence, γ is in C1:1
c and is ∗-admissible to γ1 and γ2.

Proof. Let v = v[γ1](t1) = ±v[γ2](t2). First, note that

γ(τ)− γ(t)

|γ(τ)− γ(t)| =
1

|v1 + kv2|
· v1 +

1∣∣v2 + 1
kv1

∣∣ · v2,

where

v1 =
γ1(τ1)− γ1(t1)

|γ1(τ1)− γ1(t1)| , v2 =
γ2(τ2)− γ2(t2)

|γ2(τ2)− γ2(t2)| , k =
|γ2(τ2)− γ2(t2)|
|γ1(τ1)− γ1(t1)| ,

and γ(τ) = γ1(τ1) + γ2(τ2). Let v = limτ→t v1 = ± limτ→t v2. Then

v[γ](t) = lim
τ→t

(
1

|v1 + kv2|
± 1∣∣v2 + 1

kv1

∣∣
)
· v = lim

τ→t
1± k

|v1 + kv2|
· v.

Since we know that v[γ](t) ∈ S1, it follows that v[γ](t) = v or −v. Now the rest of the

proof follows easily.

2.2. Minkowski class

Definition 2.5 (Minkowski class). A subclass M of C1:1
c is called a Minkowski class if

the following two conditions are satisfied:

(1) M is closed under restriction, i.e., if γ : [a, b]→ R2 is in M, then γ|[c,d] is also in

M for any [c, d] ⊂ [a, b].

(2) M is closed under initial convolution, i.e., for any two ∗-admissible M-curves

γ1 : [a1, b1]→ R2 and γ2 : [a2, b2]→ R2, the convolution γ1|[a1,a1+ε] ∗ γ2|[a2,a2+ε] is either

an M-curve or constant for some ε > 0.
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As an example, let LA be the set of all line segments and circular arcs in R2. It can

be easily checked that LA is a Minkowski class. In Section 3, we will present a non-trivial

Minkowski class W , which is significantly larger than LA.

Let γi : [ai, bi] → R2, i = 1, 2, be two continuous curves. We say that γ1, γ2 have an

intersection at (s, t) if γ1(s) = γ2(t). We say that γ1, γ2 have an isolated intersection at

(s, t) if γ1(s) = γ2(t) and γ1(s′) 6= γ2(t′) for every (s′, t′) ∈ (s−ε, s+ε)×(t−ε, t+ε)\{(s, t)}
for some ε > 0.

The next lemma shows an important property of Minkowski classes:

Lemma 2.2. Any two γ1, γ2 in a Minkowski classM cannot have infinitely many isolated

intersections.

Proof. With no loss of generality, assume a1 = a2 = 0, where γi : [ai, bi]→ R2 for i = 1, 2.

Suppose γ1 and γ2 have infinitely many isolated intersections. Since [a1, b1] × [a2, b2] is

compact, there exists an accumulation point of the isolated intersections, which we can

assume to be γ1(0) = γ2(0). Also, we can assume γ1(0) = γ2(0) = 0 and v[γ1] = (1, 0).

Since γ1(0) = γ2(0) is an accumulation point of the isolated intersections, we can also

assume that v[γ2] = v[γ1] = (1, 0) and σ(γ1) = σ(γ2) = +. Thus, for i = 1, 2, we can write

γi(t) = (t, fi(t)) for small t ≥ 0, where fi is a C1 function such that fi(0) = f ′i(0) = 0, and

f ′i is strictly increasing. Now there exists a sequence tn ↘ 0 such that γ1 and γ2 have an

isolated intersection at (tn, tn) for every n. If f ′1(tn) = f ′2(tn) except for at most finitely

many n’s, then the convolution γ = γ1 ∗ (−γ2) would not be in C1:1, which can be seen

from the argument in Example 2.1. So we can assume f ′1(tn) 6= f ′2(tn) for every n. We can

also assume that f1(t) 6= f2(t) if t 6= tn for any n. In this case, it is easy to see that γ(tn)’s

are in the regions D1 and D3 alternating with n, where D1 = {(x, y) ∈ R2 | x > 0, y > 0}
and D3 = {(x, y) ∈ R2 | x < 0, y < 0}. But this is impossible, since γ should be in M,

and thus in C1:1
c .

Remark 2.2. Example 2.1 shows that two Cω:∞
c -curves can have infinitely many isolated

intersections, which implies that Ck:l
c is not a Minkowski class for k, l = 1, 2, . . . ,∞, ω,

k ≥ l, except for Cω:ω
c . Later, we will also see that Cω:ω

c is not a Minkowski class.

Let γi : [ai, bi]→ R2, i = 1, 2, be two one-to-one continuous curves. We write γ1 ≈ γ2

if there exist ai < ci ≤ bi for i = 1, 2 and a homeomorphism h : [a1, c1] → [a2, c2] such

that h(a1) = a2 and γ1(t) = γ2(h(t)) for every t ∈ [a1, c1]. We write γ1 ∼ γ2 if γ1 can be

moved to a curve γ̃1 by a rigid motion in the plane so that γ̃1 ≈ γ2. Note that both the

relations ≈ and ∼ are symmetric and transitive.

Let γi : [ai, bi] → R2, i = 1, 2, be two C1:1
c -curves. Note that, with appropriate rigid

motions in the plane, we can always move γ1 and γ2 to obtain curves γ̃1, γ̃2 respectively

so that γ̃1(a1) = γ̃2(a2) = 0, v[γ̃1] = v[γ̃2] = (1, 0) and σ(γ̃1), σ(γ̃2) ≥ 0. We write γ1Bγ2

(resp., γ1C γ2) if there exist continuous functions f1, f2 : [0, ε]→ R, for some ε > 0, such

that the graph of fi is contained in the image of γ̃i for i = 1, 2, and f1(x) > f2(x) (resp.,

f1(x) < f2(x)) for every x ∈ (0, ε].

Let M be a Minkowski class. As an important consequence of Definition 2.5 and

Lemma 2.2, note that, given any γ1, γ2 in M, there are only three possibilities: either

γ1 B γ2, or γ1 C γ2, or γ1 ∼ γ2. Suppose γ1 and γ2 are ∗-admissible to each other. Then
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the convolution γ = γ1 ∗ γ2 is initially constant (that is, constant for some interval from

the start) if and only if γ1 ∼ γ2 and v[γ1] = −v[γ2]. For the remaining cases, γ is initially

in M, and the next lemma shows the relation between γ and γ1, γ2 with regard to the

above relations B, C and ∼. See Figure 5 for the illustration of these results.

Lemma 2.3 (convolution in Minkowski class). Let M be a Minkowski class, and let γi :

[ai, bi]→ R2, i = 1, 2, be two M-curves which are ∗-admissible to each other. Let γ be an

initial piece of the convolution γ1 ∗ γ2, which is either in M, or is a constant.

(1) Suppose v[γ1] = v[γ2]. Then γ is always in M, v[γ] = v[γ1] = v[γ2], σ(γ) =

σ(γ1) = σ(γ2), and γ C γ1, γ C γ2.

(2) Suppose v[γ1] = −v[γ2]. Then γ is constant if and only if γ1 ∼ γ2. If γ1 B γ2

(resp., γ1 C γ2), then γ ∈ M, v[γ] = v[γ2] (resp., v[γ] = v[γ1]), σ(γ) = σ(γ1) = σ(γ2),

and γ B γ2 (resp., γ B γ1).

Proof. With no loss of generality, assume that a1 = a2 = 0, γ1(0) = γ2(0) = 0, v[γ1] =

(1, 0), and σ(γ1) = σ(γ2) = +. There are two possibilities for v[γ2]: (1, 0) and (−1, 0).

We can assume γ1(t) = (t, f1(t)), γ2(t) = (±t,±f2(t)) (± depending on the direction of

v[γ2]) for small t ≥ 0, where fi is a C1 function such that fi(0) = f ′(0) = 0 and f ′i is

strictly increasing for i = 1, 2. Since either γ1 B γ2, γ1 ∼ γ2, or γ1 C γ2, we can assume

that either f1(t) > f2(t), f1(t) = f2(t), or f1(t) < f2(t) for every small t > 0.

Consider first the case when v[γ2] = (1, 0). By Lemma 2.1, it is clear that γ ∈ M,

v[γ] = (1, 0) and σ(γ) = +. So we can write γ(t) = (t, f(t)) for small t ≥ 0, where f is a

C1 function such that f(0) = f ′(0) = 0 and f ′ is strictly increasing for small t. Since γ

is in M, we can see that, for i = 1, 2, f(t) is either greater than, equal to, or less than

fi(t) for every small t > 0.

Now, for any small t > 0, we can take small t1, t2 > 0 such that t = t1 + t2, f ′1(t1) =

f ′(t2), and f(t) = f1(t1) + f2(t2). By Lemma 2.1, f ′(t) = f ′1(t1) = f ′(t2). Since t > t1, t2
and f ′1, f ′2 are strictly increasing, we have f ′1(t), f ′2(t) > f ′(t). Thus fi(t) > f(t), i = 1, 2,

for every small t > 0, which implies that γ C γ1 and γ C γ2. This shows (1).

y

x
0

γ1

γ2

γ1 ∗ γ2

y

x
0

γ1

γ1 ∗ γ2

γ2

Fig. 5. Convolutions of M-curves

Now consider the case when v[γ2] = (−1, 0). Obviously, γ is constant if and only if

γ1 ∼ γ2. So assume γ1 6∼ γ2. Then either γ1Bγ2 or γ1Cγ2. Suppose γ1Cγ2. By Lemma 2.1,

either v[γ] = (1, 0) or v[γ] = (−1, 0). If v[γ] = (−1, 0), then we must have f ′1(t) > f ′2(t)

for small t > 0, since f ′1, f
′
2 are strictly increasing. It follows that f1(t) > f2(t) for

sufficiently small t > 0, which contradicts the assumption that γ1 C γ2. So v[γ] = (1, 0).

Since γ ∈ M and σ(γ) = +, we can assume γ(t) = (t, f(t)) for small t ≥ 0, where f is a
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C1 function such that f(0) = f ′(0) = 0, and f ′ is strictly increasing for small t > 0. Now

for any small t > 0, we can take small t1, t2 > 0 such that t = t1 − t2, f ′1(t1) = f ′(t2),

and f(t) = f1(t1) − f2(t2). By Lemma 2.1, f ′(t) = f ′1(t1) = f ′(t2). Since t < t1 and f ′1
is strictly increasing, we have f ′1(t) < f ′(t), and thus f1(t) < f(t) for small t > 0. This

implies that γ B γ1. By a symmetric argument, we can also show that v[γ] = v[γ2] and

γ B γ2, when γ1 B γ2. Thus we have shown (2).

3. The class W

In this section, we present an important example of a Minkowski class, calledW , which is

large enough to contain practically all the important curves such as the NURBS curves.

We will need the following proposition which is part of Łojasiewicz’s Structure Theorem

for real-analytic varieties ([10], [12]).

Proposition 1 (S. Łojasiewicz). Let Φ : U → R be a real-analytic function on an open

set U 3 0 in Rn, n ≥ 1, and let Z = {(x1, . . . , xn) ∈ U | Φ(x1, . . . , xn) = 0}. Then there

exist T ∈ SO(n,R) and an open set N 3 0 such that the set Z ∩N can be decomposed as

Z ∩N = V 0 ∪ . . . ∪ V n−1,

where each V k can be decomposed again as

V k =

pk⋃

i=1

Γ ki

for some 0 ≤ pk <∞. Here, each Γ 0
i is a point, and for each Γ ki with k ≥ 1, there exist

a connected open set Uki ∈ Rk and real-analytic functions ξki,k+1, . . . ξ
k
i,n on Uki such that

Γ ki = T ·{(x1, . . . , xn) ∈ Rn | (x1, . . . , xk) ∈ Uki , xj = ξki,j(x1, . . . , xk) for j = k+1, . . . , n}.
In fact, what we really need is the following consequence of the above proposition.

Corollary 1. Let Φ : U → R be a real-analytic function on an open set U 3 0 in Rn,
n ≥ 1, and let Z = {(x1, . . . , xn) ∈ U | Φ(x1, . . . , xn) = 0}. Then there exists an open

neighborhood N of 0 in R2 such that the set Z ∩ N has a finite number of connected

components.

By using the above result, we first see how convolution behaves in the class Cω:ω
c .

Here, we define v × w = v1w2 − v2w1 for v = (v1, v2),w = (w1, w2) ∈ R2. Note that

v //w if and only if v ×w = 0.

Lemma 3.1. Let γi : [ai, bi]→ R2, i = 1, . . . , n, be Cω:ω
c -curves which are ∗-admissible to

each other. Then, for some ε1, . . . , εn > 0, γ = γ1|[a1,a1+ε1] ∗ . . . ∗ γn|[an,an+εn] is either

constant, or is a Cω:1
c -curve which is ∗-admissible to each γi.

Proof. We assume a1 = . . . = an = 0, γ1(0) = . . . = γn(0) = 0, σ(γ1) = . . . = σ(γn) = +,

and v[γ1] = (1, 0). For each i, let θ̃i be the angle function of γi such that θ̃i(0) = 0 or π,

and define θi : [0, bi] → R by θi = θ̃i if v[γi] = (1, 0), and θi = θ̃i − π if v[γi] = (−1, 0).

Then θi is strictly increasing and θi(0) = 0 for every i. Take small 0 < εi ≤ bi for each i

such that θ1(ε1) = . . . = θn(εn). Let α = θ1(ε1). Since γi’s are in Cω:ω
c , we view each γi



Minkowski sum 15

as defined and real-analytic on (−δ, εi] for some δ > 0. We can also assume that each γi
is unit-speed.

Let U = (−δ, ε1)× . . .× (−δ, εn) ⊂ Rn. Then F : U → R and G : U → R2 defined by

F (x1, . . . , xn) =

n∑

j 6=k
|γ′j(xj)× γ′k(xk)|2, G(x1, . . . , xn) =

n∑

i=1

( n∏

p6=i
κp(xp)

)
γ′i(xi)

are real-analytic on U . Here, for each i, κi : (−δ, εi]→ R is the curvature function of γi,

i.e., κi(xi) = γ′i(xi)×γ′′i (xi). Let ZF be the zero set of F in U . LetQ = [0, ε1)×. . .×[0, εn).

Then it is easy to see that ZF ∩ Q = {ζ(t) | t ∈ [0, α)}, where the one-to-one map

ζ : [0, α]→ Rn is defined by ζ(t) = (θ−1
1 (t), . . . , θ−1

n (t)).

Note that κi(xi) = θ′i(xi) for xi ∈ [0, εi] for each i. So (θ−1
i )′(t) = 1/κi(θ

−1
i (t)) for

t ∈ [0, α] for every i. Since γi is real-analytic on (−δ, εi], we can take εi small enough so

that κi does not vanish on (0, εi]. So θ−1
i is real-analytic on (0, α] for each i, and hence ζ

is real-analytic on (0, α]. Note that γ(t) = γ1(θ−1
1 (t)) + . . .+ γn(θ−1

n (t)) for t ∈ [0, α]. So

γ is also real-analytic on (0, α]. Now

γ′(t) =
n∑

i=1

γ′i(θ
−1
i (t))

1

κi(θ
−1
i (t))

=
1∏n

i=1 κi(θ
−1
i (t))

G(ζ(t)).

Note that |G ◦ ζ|2 is a real-analytic function on (0, α]. If |G ◦ ζ|2 ≡ 0 on (0, α], then γ is

constant. Suppose |G ◦ ζ|2 6≡ 0 on (0, α]. Let S = {t ∈ (0, α] | |G ◦ ζ|2(t) = 0}. Suppose

S has infinitely many elements. Since |G ◦ ζ|2 is real-analytic on (0, α], there exists a

sequence tk ↘ 0 in (0, α) such that S = {tk | k = 1, 2, . . .}. Define the real-analytic

function Φ by Φ = F + |G|2 on U . Let ZΦ be the zero set of Φ in U . By Corollary 1,

there exists an open connected neighborhood N of 0 in U such that ZΦ ∩N has a finite

number of connected components. Let xk = ζ(tk) for k = 1, 2, . . . Since tk ↘ 0 and

ζ(0) = 0, infinitely many xk’s are in N . Denote them again by xk, k = 1, 2, . . . Then

ZΦ ∩ N ∩ Q = {xk | k = 1, 2, . . .} ∪ {0}. This means that ZΦ ∩ N has infinitely many

isolated points, which contradicts Corollary 1. Thus S is finite. Now we can take εi’s

small enough again such that γ′(t) never vanishes on (0, α]. So γ on (0, α] is a Cω curve.

Note that γ′(t) // γ′i(θ
−1
i (t)) for every t ∈ (0, α] and i = 1, . . . , n. So γ is convex, C1 on

[0, α], v[γ] // (1, 0), and σ(γ) = +. We can take εi’s smaller still so that γ is one-to-one.

Thus we have proved that γ is a Cω:1
c -curve ∗-admissible to each γi.

We have seen that convolutions of any Cω:ω
c -curves belong to Cω:1

c . In fact, this is the

best we can get. A convolution of Cω:ω
c -curves may not even be a Cω:2

c -curve, which can

be seen from the following example:

Example 3.1. Let

γ1(t) =

(
t,

1

2
t2
)
, t ∈ [0, 1], γ2(θ) = (− sin θ, cos θ), θ ∈ [0, π/4].

Then γ1, γ2 ∈ Cω:ω
c . It is easy to see that, with some reparametrization,

γ(θ) =

(
tan θ − sin θ,

1

2
tan2 θ + cos θ

)
, θ ∈ [0, π/4],
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where γ = γ1 ∗ γ2. From this, we can show that

lim
θ↘0

|γ′(θ)× γ′′(θ)|
|γ′(θ)|3 =∞.

So the curvature of γ blows up at θ = 0, which is impossible for a Cω:2
c -curve. Thus

γ 6∈ Cω:2
c .

Note that Example 3.1 shows that the class Cω:ω
c is not a Minkowski class.

Now we define the curve class W , which is an example of a Minkowski class.

Definition 3.1 (the class W). W is the set of all straight line segments and all Cω:1
c -

curves which are of the form γ1 ∗ . . . ∗ γn for some γ1, . . . , γn in Cω:ω
c , n ≥ 1.

As an easy consequence of Lemma 3.1, we have the following fact:

Theorem 3.1. W is a Minkowski class.

Proof. First, it is obvious that W satisfies condition (1) in Definition 2.5. Let γ1, γ2 ∈ W
be ∗-admissible to each other. Then γ1 = α1 ∗ . . . ∗ αm and γ2 = β1 ∗ . . . ∗ βn for some

α1, . . . , αm, β1, . . . , βn ∈ Cω:ω
c . By the definition of convolution, γ1 ∗ γ2 = α1 ∗ . . . ∗ αm ∗

β1 ∗ . . . ∗ βn. Now from Lemma 3.1, condition (2) in Definition 2.5 is satisfied.

Note that W is the smallest Minkowski class containing Cω:ω
c . Now we explore the

relations of W with other curve classes. Note first that Cω:ω
c ⊂ W ⊂ Cω:1

c by definition.

Example 2.1 and Lemma 2.2 show that W 6= Cω:1
c . Example 3.1 shows W 6= Cω:ω

c . So

Cω:ω
c ( W ( Cω:1

c . Examples 2.1 and 3.1 also show respectively that Cω:∞
c 6⊂ W and

W 6⊂ Cω:2
c . Moreover, Example 3.2 below shows that W ∩ (Cω:n

c \ Cω:n+1
c ) 6= ∅ for every

1 ≤ n <∞. Combining all these, Figure 6 shows the inclusion relations between W and

other curve classes.

Cω:ω
cCω:∞

c

Cω:2
c

Cω:1
c

���

W

Fig. 6. Inclusion relations for W

Example 3.2. Let n ≥ 1 be an integer. For some small 0 < T < 1, let γ1(t) = (t, f(x)),

γ2(t) = (−t,−g(t)) for t ∈ [0, T ], where

f(t) =

t�

0

(τ − τ2)2n dτ, g(t) =
1

2n+ 1
t2n+1.
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Clearly, γ1, γ2 ∈ Cω:ω
c . Putting f ′(t) = g′(s), we have s = t− t2. So, with reparametriza-

tion, we have

γ(t) = γ1(t) + γ2(s) =

(
t2,

t�

0

(τ − τ2)2n dτ − 1

2n+ 1
(t− t2)2n+1

)
,

where γ = γ1 ∗ γ2. Let

F (t) =

t�

0

(τ − τ2)2n dτ − 1

2n+ 1
(t− t2)2n+1.

By Lemma 3.1, we know that γ is in Cω:1
c . Note that, for 1 ≤ k < ∞, γ is in Cω:k

c for

k = 1, 2, . . . if and only if the limit limt↘0 d
kF/duk exists, where u = t2. Now

F =

√
u�

0

(τ − τ2)2n dτ − 1

2n+ 1
(
√
u− u)2n+1.

So

dF

du
= (
√
u− u)2n − (

√
u− u)2n

(
1

2
√
u
− 1

)
= (t− t2)2n − (t− t2)2n

(
1

2t
− 1

)

= −1

2
t2n−1 + higher order terms in t.

Note that dtm/du = 1
2mt

m−2 for every integer m. So, for each k = 1, 2, . . . , we have

dkF

duk
= akt

2n+1−2k + higher order terms in t,

for some ak 6= 0. It follows that limt↘0 d
nF/dun = 0 and limt↘0 d

n+1F/dun+1 = −∞.

This shows that γ ∈ Cω:n
c \ Cω:n+1

c .

4. Sectors and domains

We will now define the exact meaning of the word domain used in this paper. With our

definition, the domains can be of fairly general shape. For example, ones consisting only

of curve segments, which cannot be regarded as domains in the conventional sense, are

also included. Our analysis of domains and their Minkowski sums will be based on the

global integration of various local results. The sector introduced below is a basic local

object we will use.

Let C be a class of curves in C1:1. We say that C is closed under restriction if, for

every γ : [a, b] → R2 in C, γ|[c,d] is also in C for every [c, d] ⊂ [a, b]. We will only

consider the curve classes which are closed under restriction. Note that Ck:l, Ck:l
c for

k, l = 1, 2, . . . ,∞, ω, k ≥ l and every Minkowski class satisfy this condition.

Definition 4.1 (sector). Let C be a class of curves in C1:1 which is closed under restric-

tion. A closed set S in R2 is called a C-sector with center p ∈ R2 and radius r > 0 if S is

bounded by three continuous curves α, β, and γ which satisfy the following conditions:

(1) α : [a1, a2] → Br(p) and β : [b1, b2] → Br(p) are C-curves such that α(a1) =

β(b1) = p.
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(2) The functions %α : [a1, a2] → [0, r] and %β : [b1, b2] → [0, r] defined by %α(t) =

|α(t)− p| and %β(t) = |β(t)− p| are homeomorphisms.

(3) Either α([a1, a2]) = β([b1, b2]), or α and β have no intersections except at p.

(4) γ traverses ∂Br(p) from α(a2) to β(b2) in the counter-clockwise direction.

Here, if α(a2) = β(b2) (or equivalently, if α([a1, a2]) = β([b1, b2])), then γ is constant

just at the point α(a2) = β(b2), and S is just the set of all points on the curve α (or

equivalently, β). The two curves β and α are called the start curve and the end curve of

S respectively. The cone C(S) of S is defined as

C(S) = {v ∈ S1 | ∃γ ∈ C1:1 : [0, 1]→ S such that γ(0) = p, γ′(0) = v}.
S is called sharp (resp., dull, flat) if the center angle of C(S) is less than π (resp., greater

than π, equal to π). If α([a1, a2]) = β([b1, b2]), then we call S degenerate; otherwise it is

non-degenerate.

β

α

γS

Br(p)

p

β(b2)

α(a2)

Non-degenerate sector

Br(p)

p

α = β = S

α(a2) = β(b2) = γ

Degenerate sector

Fig. 7. Sector

Let S1 and S2 be two C1:1-sectors with center p and radius r. Then S1 and S2 are said

to be non-overlapping if S1 ∩ S2 = {p}. We list some elementary properties of sectors,

which follow immediately from Definition 4.1 and Lemma 2.2.

Lemma 4.1. (1) Let C be a class of curves in C1:1 which is closed under restriction, and

let S be a C-sector with center p and radius r. Then Br′(p) ∩ S is a C-sector with center

p and radius r′ for every 0 < r′ ≤ r.
(2) Let M be a Minkowski class, and let S1 and S2 be two M-sectors with center

p and radius r. Then there exists 0 < r′ ≤ r such that, for every 0 < % ≤ r′, the set

B%(p)∩ (S1 ∪S2) is either B%(p), or an M-sector with center p and radius %, or a union

of two non-overlapping M-sectors with center p and radius %.

Proof. (1) is obvious, and (2) is immediate from Lemma 2.2.

Now we define the domains:

Definition 4.2 (domain). Let C be a class of curves in C1:1. A subset Ω of R2 is called

a C-domain if it satisfies the following conditions:

(1) Ω is connected and compact.

(2) ∂Ω is a union of a finite number of C-curves, no two of which meet at infinitely

many points.
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Note that, in view of this definition, the Minkowski sum in Figure 3 is not a Cω:∞-

domain, though its boundary consists of finitely many Cω:∞-curves. In fact, it is not even

a C1:1-domain. But the domains in our definition can be of fairly general shape such as

the one in Figure 8.

Fig. 8. Example of a “domain” with general shape

Remark 4.1. If C is Cω:ω, Cω:ω
c , or a Minkowski class (W , for example), then condition

(2) in Definition 4.2 can be omitted.

Now we start to use the local object sector to describe global properties.

Lemma 4.2 (local condition for domain). Let Ω be a connected compact set in R2, and

let C be a class of curves in C1:1 which is closed under restriction. Then the following two

conditions are equivalent:

(1) Ω is a C-domain.

(2) For every point p in ∂Ω, there exists r > 0 such that Br(p) ∩ Ω is a union of a

finite number of mutually non-overlapping C-sectors with center p and radius r.

Proof. Suppose Ω is a C-domain. Let p ∈ ∂Ω. Since C ⊂ C1:1, it is easy to see from

Definition 4.2(2) that there exist r > 0 and C-curves γi : [0, ai] → Br(p) for i = 1, . . . , n

for some 1 ≤ n < ∞ such that Br(p) ∩ ∂Ω =
⋃n
i=1 γi([0, ai]) and the function %i :

[0, ai]→ [0, r] defined by %i(t) = |γi(t)−p| is a homeomorphism with %i(0) = 0 for each i.

Again by Definition 4.2(2), we can assume γi and γj do not meet except at p for every

1 ≤ i 6= j ≤ n. Now it is clear that Br(p) ∩ Ω is a union of a finite number of mutually

non-overlapping C-sectors with center p and radius r. Thus (1) implies (2).

Conversely, suppose (2). Then, for every p ∈ ∂Ω, we can choose r(p) > 0 such that

Br(p)(p) ∩ Ω is a finite union of mutually non-overlapping C-sectors with center p and

radius r, and Br(p)(p) ∩ ∂Ω is a union of a finite number of C-curves, each pair of which

have no intersections except at p. Note that {Bo
r(p)(p)∩∂Ω | p ∈ ∂Ω} is an open cover of

the compact set ∂Ω. So there exist a finite number of points p1, . . . , pn ∈ ∂Ω such that

∂Ω =
⋃n
i=1B

o
r(pi)

(pi)∩∂Ω. Thus ∂Ω =
⋃n
i=1Br(pi)(pi)∩∂Ω is a union of a finite number

of C-curves. From the definition of sector, no pair of these C-curves has infinitely many

isolated intersections. Thus Ω is a C-domain.
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As can be seen from Definition 4.2, the domains can have quite general shapes. We

give a special name for domains with some relatively good geometry.

Definition 4.3 (regular domain). A C1:1-domain is called regular if each connected

component of ∂Ω is homeomorphic to S1, and is not itself a connected component of Ω.

So, the snowman in Figure 8 is not a regular domain. Also, the Minkowski sum in

Figure 2 is a Cω:ω-domain, but not a regular Cω:ω-domain. Note that, for any C ⊂ C1:1,

the number of connected components of ∂Ω is finite for a C-domain Ω.

Lemma 4.3 (local condition for regular domain). Let Ω be a connected compact set in R2,

and let C be a class of curves in C1:1 which is closed under restriction. Then the following

two conditions are equivalent:

(1) Ω is a regular C-domain.

(2) For every point p in ∂Ω, there exists r > 0 such that Br(p)∩Ω is a non-degenerate

C-sector with center p and radius r.

Proof. Suppose Ω is a regular C-domain. Let p ∈ ∂Ω. Since C ⊂ C1:1, there exists r > 0

such that Br(p) ∩ ∂Ω is a union of two C-curves γi : [0, ai] → Br(p), i = 1, 2, such that

γ1(0) = γ2(0) = p, γ1 and γ2 do not meet except at p, and the function %i : [0, ai]→ [0, r]

defined by %i(t) = |γi(t)−p| is a homeomorphism for i = 1, 2. Note thatBr(p)∩Ω 6= Br(p),

since p ∈ ∂Ω. So Br(p)∩Ω is either a non-degenerate C-sector with center p and radius r,

or Br(p)∩Ω = γ1([0, a1])∪γ2([0, a2]). Suppose the latter. Then the connected component

of ∂Ω which contains Br(p) ∩ Ω is itself a connected component of Ω. So we conclude

that Br(p) ∩ Ω is a non-degenerate C-sector with center p and radius r. Thus (1) im-

plies (2).

Conversely, suppose (2). Then ∂Ω is locally homeomorphic to R at every point in ∂Ω,

and ∂Ω is a disjoint union of a finite number of 1-dimensional (topological) manifolds

embedded in R2. Since ∂Ω is bounded, each of these manifolds is homeomorphic to S1.

So ∂Ω is a disjoint union of a finite number of sets homeomorphic to S1. Note that

each of these sets consists of a finite number of C-curves, since S1 is compact. From the

assumption, none of the connected components of ∂Ω is itself a connected component

of Ω. Thus (2) implies (1).

Remark 4.2. A subset Ω of R2 is a regular Cω:ω-domain if and only if it satisfies the

standing assumptions for domains in [2] and [3]. Note that a domain is a Cω:ω-domain

if and only if it is a Cω:ω
c -domain, since a Cω:ω-curve can be cut into a finite number of

Cω:ω
c -curves.

Finally, we introduce the following terminology.

Definition 4.4 (sharp corner, dull corner and flat point). Let Ω be a regular C1:1-

domain. Then a point p ∈ ∂Ω is called a sharp corner (resp., dull corner, flat point) if

there exists r > 0 such that Br(p) ∩ Ω is a sharp sector (resp., dull sector, flat sector)

with center p and radius r.

Note that the above properties are of a local nature of Ω around p, and thus are

independent of the choice of r.
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5. Virtual boundary

In this section, we introduce the concept of virtual boundary for regular domains. This

will enable us to treat the regular domains in a more uniform manner, whether they have

corners or not.

Let Ω be a regular C1:1-domain. By definition, each connected component of ∂Ω is

homeomorphic to S1. Among them, exactly one is the outer boundary, and the remaining

ones are inner boundaries. To each of these components, we give the standard orienta-

tion, i.e., counter-clockwise orientation for the outer boundary, and clockwise orientation

for the inner boundaries. Let C be a connected component of ∂Ω. Fix an orientation-

preserving covering map h : R→ C. For any continuous curve γ : [a, b]→ C, there exists

a lifting of γ to R with respect to h, i.e., a continuous function γ̃ : [a, b] → R such that

γ(t) = h(γ̃(t)) for t ∈ [a, b]. We define

OΩ(γ) =





+ if γ̃(b)− γ̃(a) > 0,

0 if γ̃(b)− γ̃(a) = 0,

− if γ̃(b)− γ̃(a) < 0.

Note that this definition is independent of the choice of h. We say that γ is in the standard

orientation on Ω if OΩ(γ) is +.

Definition 5.1 (normal cone). Let Ω be a regular C1:1-domain, and let p ∈ ∂Ω. Let

γ+, γ− : [0, ε] → ∂Ω be one-to-one C1:1-curves such that γ+(0) = γ−(0) = p and

OΩ(γ±) = ±. Then the normal cone of Ω at p, denoted by NCΩ(p), is defined as follows:

(1) If p is a sharp corner, then NCΩ(p) = {n ∈ S1 | n · v[γ+] ≤ 0 and n · v[γ−] ≤ 0}.
(2) If p is a dull corner, then NCΩ(p) = {n ∈ S1 | n · v[γ+] ≥ 0 and n · v[γ−] ≥ 0}.
(3) If p is a flat point, then NCΩ(p) consists of the (unit) vector obtained by rotating

v[γ+] clockwise through 90◦.

We set v+
Ω(p) = v[γ+] and v−Ω(p) = −v[γ−]. Note that these are independent of the

choice of γ±. Also, v+
Ω(p) = v−Ω(p) if and only if p is a flat point of Ω. In this case,

we write vΩ(p) = v+
Ω(p) = v−Ω(p). We denote by n+

Ω(p) (resp., n−Ω(p), nΩ(p)) the vector

obtained by rotating v+
Ω(p) (resp., v−Ω(p), vΩ(p)) clockwise through 90◦. Note that n+

Ω(p)

and n−Ω(p) are the two ends of NCΩ(p).

Definition 5.2 (virtual boundary). Let Ω be a regular C1:1-domain. Then the virtual

boundary of Ω, denoted by ∂vΩ, is defined to be

∂vΩ = {(p,n) ∈ ∂Ω × S1 | n ∈ NCΩ(p)}.

Let Ω be a regular C1:1-domain. Then ∂vΩ consists of a finite number of connected

components, each homeomorphic to S1, and the connected components of ∂vΩ are in one-

to-one correspondence with those of ∂Ω. Thus we can also give the standard orientation

to each of the connected components of ∂vΩ in an obvious way. Let Ĉ be a connected

component of ∂vΩ. Fix an orientation-preserving covering map ĥ : R → Ĉ. For any

continuous map φ : [a, b] → Ĉ, there exists a lifting of φ to R with respect to ĥ, i.e., a

continuous function φ̃ : [a, b]→ R such that φ(t) = ĥ(φ̃(t)) for t ∈ [a, b]. We define
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OΩ(φ) =





+ if φ̃(b)− φ̃(a) > 0,

0 if φ̃(b)− φ̃(a) = 0,

− if φ̃(b)− φ̃(a) < 0.

The definition is independent of the choice of ĥ. We will say that φ is in the standard

orientation on Ω if OΩ(φ) is +.

Let φ : [a, b] → R2 × S1, φ(t) = (γ(t),n(t)), be a continuous map. Then there exists

a continuous function θ : [a, b] → R such that n(t) = µ(θ(t)), where µ(s) = (cos s, sin s)

for s ∈ R. We call θ an angle function of φ. We define Θ(φ), the total angle of φ, by

Θ(φ) = θ(b)− θ(a).

Note that the total angle is independent of the choice of angle functions.

We use the following notations throughout this paper: Let X be a topological space.

Let γ : [a, b]→ X be a continuous curve. Then the curve γ : [a, b]→ X is defined by

γ(t) = γ(a+ b− t)

for t ∈ [a, b]. Let γi : [ai, bi]→ X, i = 1, 2, be two continuous curves with γ1(b1) = γ2(a2).

Then the curve γ = γ1 · γ2 : [a1, b1 + b2 − a2]→ X is defined by

γ(t) =

{
γ1(t) if t ∈ [a1, b1],

γ2(t− b1 + a2) if t ∈ [b1, b1 + b2 − a2].

We denote by Indγ(p) the index of p ∈ R2 with respect to a continuous closed curve

γ : [a, b]→ R2 \{p} (γ(a) = γ(b)). It is well known that the index of a point takes integer

values and remains the same if we vary the curve homotopically.

The following lemmas are easy consequences of the above definitions.

Lemma 5.1. Let Ω be a regular C1:1-domain, and let φ : [a, b]→ ∂vΩ, φi : [ai, bi]→ ∂vΩ,

i = 1, 2, be continuous maps such that φ1(b1) = φ2(a2). Then:

(1) Θ(φ) = −Θ(φ).

(2) Θ(φ1 · φ2) = Θ(φ1) +Θ(φ2).

(3) Suppose φ0 : [a, b] → ∂vΩ is a continuous map which is homotopic to φ in ∂vΩ

relative to φ(a) and φ(b), i.e., there exists a continuous map H : [a, b] × [0, 1] → ∂vΩ

such that H(t, 0) = φ0(t), H(t, 1) = φ(t) for t ∈ [a, b], and H(a, s) = φ(a), H(b, s) = φ(b)

for s ∈ [0, 1]. Then Θ(φ0) = Θ(φ).

Proof. (1), (2) are obvious from the definitions. For (3), let H(t, s) = (γ(t, s),n(t, s)) for

(t, s) ∈ [a, b]×[0, 1]. From the assumption, there exists a continuous map θ : [a, b]×[0, 1]→
R such that (µ ◦ θ)(t, s) = n(t, s), where µ : R→ S1 is defined by µ(t) = (cos t, sin t) for

t ∈ R. Thus Θ(φ0) = θ(b, 0) − θ(a, 0) = θ(b, 1) − θ(a, 1) = Θ(φ), since n(a, s) = n(a, 0)

and n(b, s) = n(b, 0) for every s ∈ [0, 1].

Lemma 5.2. Let Ω be a regular C1:1-domain, and let p ∈ intΩ. Let φ : [a, b] → ∂vΩ,

φ(t) = (γ(t),n(t)), be a continuous map such that φ(a) = φ(b) and OΩ(φ) = +. Let C be

the connected component of ∂Ω such that γ([a, b]) ⊂ C.
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(1) If φ|[a,b) is one-to-one, then

Θ(φ) =

{
2π if C is the outer boundary of ∂Ω,

−2π if C is an inner boundary of ∂Ω.

(2)

Indγ(p) =

{
1

2πΘ(φ) if C is the outer boundary,

0 if C is an inner boundary.

Proof. (1) This is an easy consequence of the Gauss–Bonnet theorem (see [17, Theo-

rem 8.4]).

(2) It is obvious that Indγ(p) = 0 if C is an inner boundary. Suppose C is the

outer boundary, and let Ĉ be the connected component of ∂vΩ corresponding to C. Let

φ0 : [0, 1] → Ĉ, φ0(t) = (γ0(t),n0(t)), be a continuous map such that φ0(0) = φ0(1) =

φ(a) = φ(b), φ0|[0,1) is one-to-one, and OΩ(φ0) = +. By (1), we have Θ(φ0) = 2π. It is

easy to see that φ is homotopic to φ0 · . . . · φ0︸ ︷︷ ︸
Indγ(p)

if Indγ(p) > 0, to φ0 · . . . · φ0︸ ︷︷ ︸
−Indγ(p)

if Indγ(p) < 0,

and to the constant map φ(a) (= φ(b)) if Indγ(p) = 0. Now the assertion follows from

Lemma 5.1.

Let A be a subset of R2 and p ∈ R. Then we define

A+ p = {q + p | q ∈ A} and −A = {−q | q ∈ A}.

For later reference, we collect the following elementary facts which can be easily

deduced from the definitions.

Lemma 5.3. Let Ω be a regular C1:1-domain, and let q ∈ R2. Let p ∈ ∂Ω, and let

φ : [a, b]→ ∂vΩ, φ(t) = (γ(t),n(t)), be a continuous map. Then:

(1) n±Ω+q(p+ q) = n±Ω(p) and v±Ω+q(p+ q) = v±Ω(p).

(2) n±−Ω(−p) = −n±Ω(p) and v±−Ω(−p) = −v±Ω(p).

(3) Θ(φ + q) = Θ(φ), where φ + q : [a, b] → ∂v(Ω + q) is defined by (φ + q)(t) =

(γ(t) + q,n(t)) for t ∈ [a, b].

(4) Θ(−φ) = Θ(φ), where −φ : [a, b]→ ∂v(−Ω) is defined by (−φ)(t) = (−γ(t),−n(t))

for t ∈ [a, b].

Now we define the angle of convexity of a regular domain. This will be used in defining

the semi-convexity of domains in Section 7.

Definition 5.3 (angle of convexity). Let Ω be a regular C1:1-domain. The angle of

convexity of Ω, denoted by Θ(Ω), is defined by

Θ(Ω) = inf{Θ(φ) : φ ∈ S},

where S is the set of all continuous maps from a closed interval to ∂vΩ such that OΩ(φ)

= +.

Finally, we introduce the notion of contact position which is important for analyzing

Minkowski sum.
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Definition 5.4 (contact position). Two regular C1:1-domains Ω1 and Ω2 are said to be

in contact position to each other if they meet at their boundaries only, i.e., Ω1 ∩ Ω2 =

∂Ω1 ∩ ∂Ω2 6= ∅.

Let Ω1 and Ω2 be two simply connected regular C1:1-domains which are in contact

position to each other. Let U be the unbounded component of R2\(Ω1∪Ω2). Suppose p1 6=
p2 are two points in ∂Ω1 ∩ ∂Ω2. For i = 1, 2, let φi : [0, 1]→ ∂vΩi, φi(t) = (γi(t),ni(t)),

be one-to-one continuous maps such that φ1(0) = (p1,n
+
Ω1

(p1)), φ1(1) = (p2,n
−
Ω1

(p2)),

φ2(0) = (p2,n
+
Ω2

(p2)), φ2(1) = (p1,n
−
Ω2

(p1)), and OΩ1
(φ1) = OΩ2

(φ2) = +. Note that,

by interchanging p1 and p2 if necessary, we can assume (γi([0, 1]) \ {p1, p2}) ∩ U = ∅ for

i = 1, 2. Let α1 (resp., α2) be the non-negative angle of counter-clockwise rotation from

−v−Ω2
(p1) to v+

Ω1
(p1) (resp., from −v−Ω1

(p2) to v+
Ω2

(p2)). See Figure 9.

Ω1
Ω2

p1

p2

v+
Ω1

(p1)

−v−Ω1
(p2)

−v−Ω2
(p1)

v+
Ω2

(p2)

α1

α2

U

V

Fig. 9. Contact position

With the above notations, we have the following lemma:

Lemma 5.4. Let Ω1 and Ω2 be simply connected regular C1:1-domains which are in contact

position to each other. Suppose p1 6= p2 ∈ ∂Ω1 ∩ ∂Ω2 and αi, φi for i = 1, 2 are as above.

Then:

(1) Θ(φ1) +Θ(φ2) + α1 + α2 = 0.

(2) If Θ(Ω1), Θ(Ω2) ≥ −Θ for some Θ ≥ 0, then −Θ ≤ Θ(φi) ≤ Θ for i = 1, 2.

(3) There exists a continuous map H : [0, 1] × [0, 1] → V such that H(t, 0) = γ1(t),

H(t, 1) = γ2(t) for t ∈ [0, 1], and H(0, s) = p1, H(1, s) = p2 for s ∈ [0, 1], where V is the

region in R2 \ (Ω1 ∪Ω2) bounded by γ1 and γ2.

Proof. (1) This is an easy consequence of Lemma 5.2.

(2) By (1), we have Θ(φ1) = −Θ(φ2)− α1 − α2. Since Θ(Ω1), Θ(Ω2) ≥ −Θ, we have

Θ(φ1), Θ(φ2) ≥ −Θ. Note that α1, α2 ≥ 0 by definition. Thus Θ(φ1) ≤ Θ. We can also

see that Θ(φ2) ≤ Θ in the same way.

(3) Obvious. See Figure 9.
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6. Minkowski sum of domains

Now we consider the Minkowski sum of domains. For reasonable results, we restrict our

analysis toM-domains, whereM is a Minkowski class. After introducing the preliminary

facts in Section 6.1, we analyze the behavior of the Minkowski sum of M-sectors in

Sections 6.2 and 6.3. Finally, by using these results, we show in Section 6.4 that the set

of all M-domains is closed under Minkowski sum for any Minkowski class M.

6.1. Preliminaries. Let A and B be two subsets of R2. We define

A+B = {p+ q | p ∈ A, q ∈ B},
and call it the Minkowski sum of A and B. The map MA,B : A×B → A+B defined by

MA,B(p, q) = p+ q for p ∈ A, q ∈ B is called the Minkowski map associated to A and B.

Note that MA,B is continuous for any A,B ⊂ R2. The following are easy consequences

of the definition.

Lemma 6.1. Let A,B ⊂ R2. Suppose A =
⋃
i∈I Ai and B =

⋃
j∈J Bj. Then

A+B =
⋃

i∈I, j∈J
(Ai +Bj).

Proof. ⊇ is trivial. Suppose p ∈ A + B. Then there exist p1 ∈ A and p2 ∈ B such that

p = p1 + p2. So there exist i ∈ I and j ∈ J such that p1 ∈ Ai and p2 ∈ Bj . This shows

⊆.

Lemma 6.2. Let A,B ⊂ R2, and let p ∈ ∂(A + B). Then, for any p1 ∈ A and p2 ∈ B
such that p = p1 + p2, we have p1 ∈ ∂A and p2 ∈ ∂B. Equivalently, we have

M−1
A,B(∂(A+B)) ⊂ ∂A× ∂B.

Proof. Suppose p1 ∈ intA. Then we can take a small ball Br(p1) around p1 such that

Br(p1) ⊂ A. Clearly, Br(p) = Br(p1) + p2 ⊂ A+B, and this implies that p ∈ int(A+B).

This contradicts the assumption, and we conclude p1 ∈ ∂A. In the same way, we can

show that p2 ∈ ∂B.

Lemma 6.3. Let Ω1, Ω2 ⊂ R2, and let Ω = Ω1 +Ω2. Let p ∈ R2. Then:

(1) p ∈ Ω if and only if Ω1 ∩ (−Ω2 + p) 6= ∅.
(2) If intΩ1 ∩ (−Ω2 + p) 6= ∅, then p ∈ intΩ.

(3) Suppose Ω1, Ω2 are regular C1:1-domains. If p ∈ ∂Ω, then Ω1 and −Ω2 + p are in

contact position to each other.

Proof. Suppose p ∈ Ω. Then there exist p1 ∈ Ω1 and p2 ∈ Ω2 such that p1 + p2 = p.

So Ω1 3 p1 = −p2 + p ∈ −Ω2 + p, which means that Ω1 ∩ (−Ω2 + p) 6= ∅. Conversely,

suppose Ω1 ∩ (−Ω2 + p) 6= ∅. Let p1 ∈ Ω1 ∩ (−Ω2 + p). Then there exists p2 ∈ Ω2 such

that p1 = −p2 + p. Thus p = p1 + p2 ∈ Ω. This shows (1).

Suppose p1 ∈ intΩ1∩(−Ω2+p). Let p2 = −p1+p. Then p2 ∈ Ω2, and p = p1+p2 ∈ Ω.

Since p1 ∈ intΩ1, we have p 6∈ ∂Ω by Lemma 6.2. Thus p ∈ intΩ. This shows (2).

Suppose p ∈ ∂Ω. By (1), Ω1 ∩ (−Ω2 + p) 6= ∅. Let p1 ∈ Ω1 ∩ (−Ω2 + p), and let

p2 = −p1 + p. Then we have p1 ∈ Ω1, p2 ∈ Ω2 and p1 + p2 = p. By Lemma 6.2, p1 ∈ ∂Ω1

and p2 ∈ ∂Ω2, and so p1 = −p2 + p ∈ ∂(−Ω2 + p). Thus p1 ∈ ∂Ω1 ∩ ∂(−Ω2 + p). Since p1
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is taken arbitrarily, it follows that Ω1 and −Ω2 + p are in contact position to each other.

This shows (3).

Remark 6.1. The converse of (3) in Lemma 6.3 is false: it is possible that Ω1 and −Ω2+p

are in contact position to each other, but still p 6∈ ∂Ω.

Definition 6.1 (admissible sectors). Two C1:1-sectors S1 and S2 with respective centers

p1, p2 and radius r are said to be admissible to each other if they satisfy the following

conditions:

(1) int(S1 − p1) ∩ (−(S2 − p2)) = ∅ and int(S2 − p2) ∩ (−(S1 − p1)) = ∅.
(2) For i = 1, 2, let γi be the end curve or start curve of Si. If the two curves γ1 − p1

and −(γ2−p2) (or equivalently, −(γ1−p1) and γ2−p2) meet at a point in R2 other than

0, then γ1, γ2 have the same image.

It is easy to see that if S1 and S2 are admissible to each other, then so are Br′(p1)∩S1

and Br′(p2) ∩ S2 for every 0 < r′ ≤ r.
Lemma 6.4. Let M be a Minkowski class, and let Ω1 and Ω2 be two M-domains. Let

p1 ∈ ∂Ω1 and p2 ∈ ∂Ω2. Suppose p = p1 + p2 ∈ ∂Ω, where Ω = Ω1 +Ω2. Then for every

sufficiently small r > 0, we have:

(1) For i = 1, 2, Br(pi)∩Ωi =
⋃ni
k=1 S

k
i , where Ski is an M-sector with center pi and

radius r for k = 1, . . . , ni, and Ski ’s are mutually non-overlapping.

(2) Sk1 and Sl2 are admissible to each other for every k = 1, . . . , n1 and l = 1, . . . , n2.

Proof. (1) follows from Lemma 4.2. For (2), fix Sk1 and Sl2. Let α1, β1 be the end curve

and start curve of Sk1 − p1 respectively, and let α2, β2 be the end curve and start curve

of −(Sl2 − p2) respectively. Note that Sk1 − p1 and −(Sl2 − p2) are M-sectors with center

0 and radius r. Since M is a Minkowski class, we can assume that any two of α1, β1,

α2, β2 either have the same image, or do not meet except at 0. So, if Sk1 and Sl2 are not

admissible, then we would have either intSk1 ∩ (−Sl2 + p) 6= ∅ or intSl2 ∩ (−Sk1 + p) 6= ∅.
Then by Lemma 6.3(2), p ∈ intΩ, which is a contradiction.

Let S be a finite union of mutually non-overlapping C1:1-sectors S1, . . . , Sn with center

p and radius r > 0. Then we define C(S) =
⋃n
k=1 C(Sk).

Lemma 6.5. Let Ω1 and Ω2 be two C1:1-domains, and let Ω = Ω1 + Ω2. Let p1 ∈ ∂Ω1,

p2 ∈ ∂Ω2, and choose r > 0 such that Si = Br(pi) ∩ Ωi is a finite union of mutually

non-overlapping C1:1-sectors with center pi and radius r for i = 1, 2. Suppose (p1, p2) ∈
M−1
Ω1,Ω2

(∂Ω) and S1 is a flat C1:1-sector with center p1 and radius r. Then C(S2) ⊂ C(S1).

Proof. We can assume C(S1) = {(x, y) ∈ S1 | y ≤ 0}. Suppose C(S2) 6⊂ C(S1). Then

there exists a C1:1-curve γ : [0, ε] → S2 such that γ(0) = p2 and v[γ] 6∈ C(S1). So

γ̃(0) = p1, γ̃([0, ε]) ⊂ −S2 + p, and v[γ̃] ∈ {(x, y) ∈ S1 | y < 0}, where p = p1 + p2

and the C1:1-curve γ̃ : [0, ε] → R2 is defined by γ̃(t) = −γ(t) + p for t ∈ [0, ε]. It follows

that intS1 ∩ (−S2 + p) 6= ∅. So by Lemma 6.3(2), p ∈ int(S1 + S2) ⊂ intΩ, which is a

contradiction.

Lemma 6.6. Let C be a subclass of C1:1 which is closed under restriction, and let Ω1 and

Ω2 be two C-domains. Let p ∈ ∂Ω, where Ω = Ω1 + Ω2. Then for any ε > 0, there exist
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0 < r1, . . . , rn < ε and (p1
1, p

1
2), . . . , (pn1 , p

n
2 ) in M−1

Ω1,Ω2
(p) for some 1 ≤ n <∞ such that

each Brk(pki ) ∩Ωi is a finite union of mutually non-overlapping C-sectors with center pki
and radius rk, and M−1

Ω1,Ω2
(p) ⊂ U, where

U =
n⋃

k=1

(Bork(pk1) ∩Ω1)× (Bork(pk2) ∩Ω2).

Proof. By Lemma 6.2, M−1
Ω1,Ω2

(p) ⊂ ∂Ω1 × ∂Ω2. So, by Lemma 4.2, we can choose

0 < r(p1, p2) < ε for each (p1, p2) ∈ M−1
Ω1,Ω2

(p) such that Br(p1,p2)(pi) ∩ Ωi is a finite

union of C-sectors with center pi and radius r(p1, p2) for i = 1, 2. Note that

{(Bor(p1,p2)(p1) ∩Ω1)× (Bor(p1,p2)(p2) ∩Ω2) | (p1, p2) ∈M−1
Ω1,Ω2

(p)}
is an open cover of the compact set M−1

Ω1,Ω2
(p) in Ω1 × Ω2. Thus there exists a finite

subcover {(Bork(pk1) ∩Ω1)× (Bork(pk2) ∩Ω2) | 1 ≤ k ≤ n}, which completes the proof.

6.2. Minkowski sum of admissible sectors. Let γ : [a, b]→ R2 be a continuous curve. We

define γ̂ : [a, b]→ R2 by

γ̂(t) = γ(a+ b− t) + γ(a)− γ(b).

Note that if we translate the image of γ so that γ(b) is moved to γ(a), then we get the

image of γ̂. Note also that γ̂(a) = γ(a). See Figure 10.

γ̂

γ

γ(a) = γ̂(a)

γ̂(b)

γ(b)

Fig. 10. γ and γ̂

Lemma 6.7. LetM be a Minkowski class, and let S1 and S2 be two admissibleM-sectors

with center 0 and radius R > 0. For some sufficiently small 0 < r ≤ R, let S ′i = Br(0)∩Si
for i = 1, 2, and let S = S ′1 + S′2. Let αi and βi be the end curve and start curve of S ′i
respectively for i = 1, 2. Then, for every sufficiently small % > 0, the set B%(0) ∩ ∂S is

contained in the union of the images of the following curves :

(1) α1, β1, α2, β2.

(2) α1 ∗ α2, α1 ∗ β2, β1 ∗ α2, β1 ∗ β2 (if defined).

(3) α̂1, β̂2 (if α1, −β2 have the same image), and β̂1, α̂2 (if β1, −α2 have the same

image).

Proof. By abuse of notation, we denote the image of a curve γ also by γ. Set M = MS′1,S
′
2
.

Note that M−1(∂S) ⊂ ∂S′1 × ∂S′2 by Lemma 6.2. Let Ai = ∂S′i \ (αi ∪ βi) for i = 1, 2.

Then ∂S′1×∂S′2 = (A1×A2)∪ (A1× (α2∪β2))∪ ((α1∪β1)×A2)∪ ((α1∪β1)× (α2∪β2)).

Suppose M((p1, p2)) ∈ ∂S for some (p1, p2) ∈ A1 × A2. Let p = p1 + p2. Lemma 6.5

yields p1 = p2. So |p| = |2p1| = 2r. This shows that M(A1 × A2) ∩ (B%(0) ∩ ∂S) = ∅ for

sufficiently small % > 0.
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Suppose that {(pn1 , pn2 )} is a sequence in (A1× (α2 ∪β2))∪ ((α1 ∪β1)×A2) such that

M((pn1 , p
n
2 )) = pn1 + pn2 → 0 as n → ∞. We can assume that (pn1 , p

n
2 ) ∈ A1 × (α2 ∪ β2)

for every n. Suppose αi(0) = βi(0) = 0 and |αi(ai)| = |βi(bi)| = r for i = 1, 2. Since

pn1 ∈ A1, pn2 ∈ α2 ∪ β2, and S′1, S′2 are admissible, it is easy to see that there exists a

subsequence {pnk1 } such that either pnk1 → α1(a1) or pnk1 → β1(b1) as k →∞. Denote this

subsequence again by {pn1}; we can assume that pn1 → α1(a1) as n→∞. Since S′1 and S′2
are admissible to each other, it follows that β2(b2) = −α1(a1) and pn2 → β2(b2). So we

must have α1 ≈ −β2. Since we have assumed r to be sufficiently small, we can also assume

that β2 and ∂Br(0) meet transversally at β2(b2). So, from Lemma 6.5, M((pn1 , p
n
2 )) 6∈ ∂S

for every sufficiently large n. Thus M((A1×(α2∪β2))∪((α1∪β1)×A2))∩(B%(0)∩∂S) = ∅
for sufficiently small % > 0.

It follows that B%(0) ∩ ∂S ⊂ M((α1 ∪ β1) × (α2 ∪ β2)) for sufficiently small % > 0.

Set αoi = αi((0, ai)) and βoi = βi((0, bi)) for i = 1, 2. We divide (α1 ∪ β1) × (α2 ∪ β2)

into the four parts αo1 × αo2, βo1 × βo2 , αo1 × βo2 , βo1 × αo2, and the twelve parts α1 × {0},
β1×{0}, {0}×α2, {0}× β2, α1×{α2(a2)}, α1×{β2(b2)}, β1×{α2(a2)}, β1×{β2(b2)},
{α1(a1)}×α2, {β1(b1)}×α2, {α1(a1)}×β2, {β1(b1)}×β2. Since r is assumed to be small,

Lemma 6.5 shows that the intersections of ∂S and the images of the first four parts under

M are contained in the union of α1 ∗ α2, β1 ∗ β2, α1 ∗ β2, α2 ∗ β1. The images of the last

twelve parts under M are α1, β1, α2, β2, α1 +α2(a2), α1 +β2(b2), β1 +α2(a2), β1 +β2(b2),

α2 + α1(a1), α2 + β1(b1), β2 + α1(a1), β2 + β1(b1) respectively. It is easy to see that if

0 ∈ α1 + β2(b2), then β2(b2) = −α1(a1) and α1 + β2(b2) = α̂1, since β2(b2) ∈ ∂Br(0) and

α1 ∩ ∂Br(0) = α1(a1). Also, if 0 ∈ α1 + α2(a2), then α2(a2) = −α1(a1), which implies

β2(b2) = −α1(a1) and α1 + α2(a2) = α̂1, since S′1 and S′2 are admissible to each other.

Applying the same argument to the eight curves α1 + α2(a2), α1 + β2(b2), β1 + α2(a2),

β1 + β2(b2), α2 + α1(a1), α2 + β1(b1), β2 + α1(a1), β2 + β1(b1), we can see that, among

these curves, the ones containing 0 are α̂1, β̂2 (if α1, −β2 have the same image), and

β̂1, α̂2 (if β1, −α2 have the same image). Now combining the above arguments, we obtain

the desired result.

From the above result, we are now able to derive the following theorem:

Theorem 6.1 (Minkowski sum of admissible sectors). Let M be a Minkowski class, and

let S1, S2 be admissible M-sectors with respective centers p1, p2 and radius R > 0. Let

S′i = Br(pi) ∩ Si for i = 1, 2 for some sufficiently small 0 < r < R, and let S = S ′1 + S′2.

Then, for every sufficiently small % > 0, either B%(p) ∩ S = B%(p), or B%(p) ∩ S is a

finite union of mutually non-overlapping M-sectors with center p and radius %, where

p = p1 + p2.

Proof. Note that B%(p) ∩ S = [B%(0) ∩ {(S′1 − p1) + (S′2 − p2)}] + p for every r > 0 and

% > 0. So we can assume that p1 = p2 = 0. By Lemma 6.7, we can take a finite number

of M-curves γ1, . . . , γn : [0, ε] → R2 for some n ≥ 1 such that γ1(0) = . . . = γn(0) = 0

and B%(0) ∩ ∂S ⊂ ⋃nk=1 γk([0, ε]) ⊂ S for every sufficiently small % > 0. Since M is a

Minkowski class, we can assume that, for every sufficiently small % > 0, γk([0, ε])∩∂B%(0)

is a singleton for each k, and γi([0, ε])∩γj([0, ε]) = {0} for every i 6= j. Since ∂S is compact
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and % is small, we can assume that either B%(0)∩∂S = ∅, or there exists 0 < m ≤ n such

that B%(0) ∩ ∂S =
⋃m
k=1 γk([0, ε]).

6.3. Minkowski sum of admissible non-degenerate sectors. When both S1 and S2 are

non-degenerate, we have more refined results, which will provide a local building block

for dealing with semi-convexity later.

Lemma 6.8. Let M be a Minkowski class, and let S1, S2 be non-degenerate M-sectors

with center 0 and radius r > 0 which are admissible to each other. Suppose there exist

r1, . . . , rn > 0 and (p1
1, p

1
2), . . . , (pn1 , p

n
2 ) ∈ M−1

S1,S2
(0) such that Brk(pki ) ∩ Si is an M-

sector with center pki and radius rk for each i and k, and M−1
S1,S2

(0) ⊂ U, where U =⋃n
k=1(Bork(pk1) ∩ S1)× (Bork(pk2) ∩ S2). Then MS1,S2

(U \M−1
S1,S2

(0)) is connected.

Proof. Set M = MS1,S2
, and denote the image of a curve γ also by γ. Let Uk = (Bork(pk1)∩

S1)×(Bork(pk2)∩S2) for k = 1, . . . , n. Note that M(U \M−1(0)) =
⋃n
k=1M(Uk \M−1(0)).

Since S1 and S2 are admissible, we must have (p1
1, p

1
2), . . . , (pn1 , p

n
2 ) ∈ (α1∪β1)×(α2∪β2),

where αi, βi : [0, ε]→ Si are the end curve and start curve of Si respectively for i = 1, 2.

We first show that Uk \ M−1(0) is connected for each k. Let (q1
1 , q

1
2), (q2

1 , q
2
2) ∈ Uk \

M−1(0). It is easy to see that Brk(pk1) ∩ S1 is a non-degenerate M-sector with center

pk1 and radius rk. So we can take a continuous curve γ1 : [0, 1] → Bork(pk1) ∩ S1 such

that γ1(0) = q1
1 , γ1(1) = q2

1 , and γ1((0, 1)) ⊂ int(Bork(pk1) ∩ S1). Take any continuous

curve γ2 : [0, 1] → Bork(pk2) ∩ S2 such that γ2(0) = q1
2 , γ2(1) = q2

2 . Define γ : [0, 1] → Uk
by γ(t) = (γ1(t), γ2(t)). Since {p1 | (p1, p2) ∈ M−1(0) for some p2 ∈ Ω2} ⊂ α1 ∪ β1, it

follows that int(Bork(pk1) ∩ S1) ∩ {p1 | (p1, p2) ∈ M−1(0) for some p2 ∈ Ω2} = ∅. Thus

γ([0, 1]) ∈ Uk \M−1(0), and this shows Uk \M−1(0) is connected.

Now, since S1, S2 are admissible to each other, we can assume that M−1(0) is one

of {(0, 0)}, {(α1(t), β2(t)) | 0 ≤ t ≤ ε}, {(β1(t), α2(t)) | 0 ≤ t ≤ ε}, or {(α1(t), β2(t)) |
0 ≤ t ≤ ε} ∪ {(β1(t), α2(t)) | 0 ≤ t ≤ ε}. So we can assume that (Uk \ M−1(0)) ∩
(Uk+1 \ M−1(0)) 6= ∅ for k = 1, . . . , n − 1, since M−1(0) ⊂ U . Hence the set U \
M−1(0) =

⋃n
k=1(Uk \M−1(0)) is connected. Thus M(U \M−1(0)) is connected, since M

is continuous.

Theorem 6.2 (Minkowski sum of admissible non-degenerate sectors). Let M be a Min-

kowski class, and let S1, S2 be non-degenerate M-sectors with respective centers p1, p2

and radius R > 0, which are admissible to each other. Let S = S ′1 + S′2, where S′i =

Br(pi) ∩ Si for i = 1, 2 for some sufficiently small 0 < r < R. Let p = p1 + p2. Suppose

B%(p) ∩ S 6= B%(p) for every % > 0. Then, for every sufficiently small % > 0, we have:

1. B%(p) ∩ S is a non-degenerate M-sector with center p and radius %.

2. Let α and β be the end curve and start curve of B%(p)∩S. Suppose that the image

of α (resp., β) is contained in one of the images of α1 + p2, β1 + p2, α2 + p1, β2 + p1,

α1 ∗ α2, β1 ∗ β2, α1 ∗ β2, β1 ∗ α2, where αi and βi are the end curve and start curve

of S′i respectively for i = 1, 2. Then there exists a continuous map φαi : [0, ε] → ∂vS′i,
φαi (t) = (γαi (t),nαi (t)) (resp., φβi : [0, ε]→ ∂vS′i, φ

β
i (t) = (γβi (t),nβi (t))), for i = 1, 2, with

the following properties:

(1) γα1 (0) = p1 and γα2 (0) = p2 (resp., γβ1 (0) = p1 and γβ2 (0) = p2).
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(2) α(t) = γα1 (t) + γα2 (t) (resp., β(t) = γβ1 (t) + γβ2 (t)) for every t ∈ [0, ε].

(3) n+
B%(p)∩S(α(t)) = nα1 (t) = nα2 (t) (resp., n−B%(p)∩S(β(t)) = nβ1 (t) = nβ2 (t)) for

every t ∈ [0, ε].

(4) For i = 1, 2, φαi and γαi (resp., φβi and γβi ) are either one-to-one or constant,

and if one of OS1
(γα1 ) and OS2

(γα2 ) (resp., OS1
(γβ1 ) and OS2

(γβ2 )) is −
(resp., +), then the other is + (resp., −).

3. Suppose that the image of α (resp., β) is not contained in any of the images of

α1+p2, β1+p2, α2+p1, β2+p1, α1∗α2, β1∗β2, α1∗β2, β1∗α2. Then α\{p} ⊂ int(S1+S2)

(resp., β \ {p} ⊂ int(S1 + S2)).

Proof. We denote MS′1,S
′
2

by M . We can assume p1 = p2 = 0. By Theorem 6.1, B%(0)∩S
is either B%(0) or a finite union of mutually non-overlapping M-sectors with center 0

and radius %, for sufficiently small % > 0. Note that S ′1 and S′2 are non-degenerate. So

by Lemma 6.6, there exist 0 < r1, . . . , rn < %/2 and (p1
1, p

1
2), . . . , (pn1 , p

n
2 ) ∈M−1(0) such

that Brk(pki )∩S′i is a non-degenerateM-sector with center pki and radius rk for i = 1, 2,

k = 1, . . . , n, and M−1(0) ⊂ U , where U =
⋃n
k=1(Bork(pk1) ∩ S′1) × (Bork(pk2) ∩ S′2). Note

that M((S′1 × S′2) \ U) is compact and does not contain 0. So there exists 0 < ε < %

such that Bε(0) ∩M((S′1 × S′2) \ U) = ∅. It follows that Bε(0) ∩ S = Bε(0) ∩M(U).

Since rk < %/2 for k = 1, . . . , n, it is clear that M(U \M−1(0)) ⊂ B%(0) ∩ (S \ {0}).
By Lemma 6.8, M(U \M−1(0)) is connected, since both S ′1 and S′2 are non-degenerate.

So M(U \M−1(0)) is contained in one connected component of B%(0) ∩ (S \ {0}). Since

Bε(0) ∩ S = Bε(0) ∩M(U), it follows that B%(0) ∩ (S \ {0}) has exactly one connected

component. This implies that B%(0)∩S is anM-sector with center 0 and radius %, since

we assumed that B%(0) ∩ S 6= B%(0). Since 0 ∈ S′1, S′2, we have B%(0) ∩ S′1, B%(0) ∩ S′2 ⊂
B%(0) ∩ S. So we conclude that B%(0) ∩ S is a non-degenerate M-sector with center 0

and radius %, since S′1 and S′2 are non-degenerate. Thus we have shown 1.

Suppose the image of α (resp., β) is contained in one of the images of the curves α1,

β1, α2, β2, α1 ∗ α2, β1 ∗ β2, α1 ∗ β2, β1 ∗ α2. We can assume that α1, β1, α2, β2, α1 ∗ α2,

β1∗β2, α1∗β2, β1∗α2 and α, β are parametrized as follows: γ(0) = 0 for any γ among the

above curves, and, for any ∗-admissible γ1, γ2 among the above curves, v[γ1](t) //v[γ2](t)

for every feasible t. Now, depending on in which of the images of the curves α1, β1, α2,

β2, α1 ∗ α2, β1 ∗ β2, α1 ∗ β2, β1 ∗ α2 the image of α (resp., β) is contained, we construct

φαi : [0, ε]→ ∂vS′i (resp., φβi : [0, ε]→ ∂vS′i) for i = 1, 2 as follows:

α (resp., β) φα1 (t) (resp., φβ1 (t)) φα2 (t) (resp., φβ2 (t))

α1 (α1(t),n+
S1

(α1(t))) (0,n+
S1

(α1(t)))

β1 (β1(t),n−S1
(β1(t))) (0,n−S1

(β1(t)))

α2 (0,n+
S2

(α2(t))) (α2(t),n+
S2

(α2(t)))

β2 (0,n−S2
(β2(t))) (β2(t),n−S2

(β2(t)))

α1 ∗ α2 (α1(t),n+
S1

(α1(t))) (α2(t),n+
S2

(α2(t)))

β1 ∗ β2 (β1(t),n−S1
(β1(t))) (β2(t),n−S2

(β2(t)))

α1 ∗ β2 (α1(t),n+
S1

(α1(t))) (β2(t),n−S2
(β2(t)))

β1 ∗ α2 (β1(t),n−S1
(β1(t))) (α2(t),n+

S2
(α2(t)))
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From the above table, it is easy to check that φα1 and φα2 (resp., φβ1 and φβ2 ) satisfy

(1) and (2) of 2. It is also clear that φαi and γαi (resp., φβi and γβi ) are either one-to-one

or constant for i = 1, 2. Note that B%(0) ∩ S, S′1, S′2 are non-degenerate M-sectors, and

B%(0) ∩ S′i ⊂ B%(0) ∩ S for i = 1, 2. Suppose the image of α is contained in the image

of β1. Since B%(0)∩ S′1 ⊂ B%(0)∩ S, it follows that α1 and β1 have the same image. But

this is impossible, since S′1 is non-degenerate. So the image of α cannot be contained in

the image of β1. In the same way, the image of α cannot be contained in the image of β2,

and the image of β cannot be contained in the images of α1 or α2. Suppose the image

of α is contained in the image of β1 ∗ β2. By Lemma 2.3, v[β1 ∗ β2] = v[β1] or v[β2].

With no loss of generality, suppose v[β1 ∗β2] = v[β1] = (1, 0). Clearly, v[α] = (1, 0). Take

non-zero points q1, q2, q in the images of β1, β2, β respectively such that q = q1 + q2.

Note that these points can be taken arbitrarily close to 0. So there exists a small δ > 0

such that {q1 + u · (0,−1) | 0 ≤ u ≤ δ} ⊂ S ′1 and q2 + {q1 + u · (0,−1) | 0 ≤ u ≤ δ} =

{q + u · (0,−1) | 0 ≤ u ≤ δ} ⊂ B%(0) ∩ S. But this contradicts the assumption that α is

the end curve of B%(0)∩S. So the image of α cannot be contained in the image of β1 ∗β2.

In the same way, the image of β cannot be contained in the image of α1 ∗ α2. Now, the

above table shows that if one of OS1
(γα1 ) and OS2

(γα2 ) (resp., OS1
(γβ1 ) and OS2

(γβ2 )) is

− (resp., +), then the other is + (resp., −). This proves (4) of 2.

Suppose the image of α is contained in α1 ∗α2. Then, for every t, either n+
S1

(α1(t)) =

n+
S2

(α2(t)) or n+
S1

(α1(t)) = −n+
S2

(α2(t)), since α1 and α2 are ∗-admissible to each other.

Suppose the latter is true. Since S1 and S2 are non-degenerate, we can take t0 such that,

for every sufficiently small δ > 0, α1(t0)− δ · n+
S1

(α1(t)) ∈ S1 and α2(t0)− δ · n+
S2

(α2(t))

∈ S2. This implies α(t0) ± δ · n+
S (α(t0)) ∈ S, contrary to α ⊂ ∂S. So n+

S1
(α1(t)) =

n+
S2

(α2(t)) for every t, and hence, n+
S (α(t)) = n+

S1
(α1(t)) = n+

S2
(α2(t)) for every t. We

can show that (3) of 2 is true for the remaining cases in a similar way.

Now we show 3. Suppose the image of α (resp., β) is not contained in any of the

images of α1, β1, α2, β2, α1 ∗ α2, β1 ∗ β2, α1 ∗ β2, β1 ∗ α2. Then by Lemma 6.7, the

image of α (resp., β) is contained in one of the images of α̂1, α̂2, β̂1, β̂2. We first show

that the image of α cannot be contained in the images of α̂1 or α̂2, and the image of

β cannot be contained in the images of β̂1 or β̂2. Suppose the image of α is contained

in the image of α̂1. By Lemma 6.7, α1, −β2 have the same image. We can assume that

v[α1] = (−1, 0). Since r is small, there exists f : [−r′, 0] → R whose graph is the

image of α1. Note that |(−r′, f(−r′)| = r. The graph of g : [0, r′] → R defined by

g(x) = f(x − r′) − f(−r′) is the image of α̂1. Since S′1 is non-degenerate, there exist

ε, δ > 0 such that {(−ε, y) | f(−ε) − δ ≤ y ≤ f(−ε)} ⊂ S ′1. Since α1, −β2 have the

same image, we have (r′,−f(−r′)) ∈ S′2. Note that we can take |r′− ε| and δ as small as

desired. So {(−ε + r′, y) | g(−ε + r′) − δ ≤ y ≤ g(−ε + r′)} = (r′,−f(−r′)) + {(−ε, y) |
f(−ε) − δ ≤ y ≤ f(−ε)} ⊂ B%(0) ∩ S. This means that α̂1 ∩ B%(0) cannot be the end

curve of B%(0)∩S, contrary to the assumption. Thus the image of α cannot be contained

in the image of α̂1. In the same way, the image of α cannot be contained in the image

of α̂2, and the image of β cannot be contained in the images of β̂1 or β̂2.

Suppose the image of α is contained in the image of β̂1. By Lemma 6.7, β1, −α2 have

the same image. Suppose σ(β1) = 0. Then β̂1, α2 have the same image. So the image of

α is contained in the image of α2, contrary to the assumption. Suppose σ(β1) = +. Then
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the image of β̂1 intersects intS′2, since S′2 is non-degenerate, α2 = −β1, and r is assumed

to be small. So B%(0)∩ β̂1 cannot be the end curve of B%(0)∩S, which is a contradiction.

Thus we must have σ(β1) = − and σ(β̂1) = +. We can assume that there exists r̃ > r

such that T = B%(0) ∩ {(Br̃(0) ∩ S1) + (Br̃(0) ∩ S2)} is a non-degenerate M-sector with

center 0 and radius %, and α̃,
̂̃
β1 have the same image, where α̃ is the end curve of T and

β̃1 is the start curve of Br̃(0) ∩ S1. Since σ(β̂1) = +, β1 = Br(0) ∩ β̃1, and r is small,

it is easy to see that α \ {0} ⊂ intT . Thus α \ {0} is in the interior of S1 + S2. In the

same way, we can show that α \ {0} ⊂ int(S1 + S2) if α, β̂2 have the same image, and

β \ {0} ⊂ int(S1 + S2) if β, α̂1 have the same image or β, α̂2 have the same image. This

shows 3.

6.4. Closedness of Minkowski sum. Using the results of Section 6.2, we now analyze

the Minkowski sum from a more global point of view, i.e., the Minkowski sum of general

domains. It turns out that, for any Minkowski classM, the Minkowski sum ofM-domains

is also anM-domain, and thus the set of allM-domains is closed under Minkowski sum.

Note that this is not true for an arbitrary curve class C which is closed under restriction.

See Figure 3 for an example.

First, we prove a lemma which will also be used later in Section 7:

Lemma 6.9. Let M be a Minkowski class, and let Ω1 and Ω2 be two M-domains. Let

Ω = Ω1 + Ω2. Then, for every point p ∈ ∂Ω and for every r > 0, there exist a finite

number of pairs (p1
1, p

1
2), . . . , (pn1 , p

n
2 ) in M−1

Ω1,Ω2
(p), 0 < r1, . . . , rn < r, such that, for

every sufficiently small % > 0, the following are satisfied:

(1) Ski = Brk(pki ) ∩ Ωi is a finite union of mutually non-overlapping M-sectors with

center pki and radius rk for every i = 1, 2 and k = 1, . . . , n.

(2) B%(p) ∩ (Sk1 + Sk2 ) is a finite union of mutually non-overlapping M-sectors with

center p and radius % for k = 1, . . . , n.

(3) B%(p) ∩Ω is a finite union of mutually non-overlapping M-sectors with center p

and radius %, and

B%(p) ∩Ω =
n⋃

k=1

{B%(p) ∩ (Sk1 + Sk2 )}.

Proof. Suppose p ∈ ∂Ω and r > 0. By Lemma 6.6, there exist finitely many pairs

(p1
1, p

1
2), . . . , (pn1 , p

n
2 ) in M−1

Ω1,Ω2
(p) and 0 < r1, . . . , rn < r such that Ski = Brk(pki ) ∩Ωi is

a finite union of mutually non-overlappingM-sectors with center pki and radius rk for i =

1, 2, k = 1, . . . , n, and M−1
Ω1,Ω2

(p) ⊂ U , where U =
⋃n
k=1(Bork(pk1)∩Ω1)× (Bork(pk2)∩Ω2).

Thus (1) is satisfied.

Let Ski =
⋃nki
j=1 S

k,j
i , where Sk,ji ’s are mutually non-overlappingM-sectors with center

pki and radius rk. Note that rk’s can be taken to be arbitrarily small. So by Lemma 6.4,

we can assume that Sk,j1 and Sk,j
′

2 are admissible to each other for every k = 1, . . . , n

and 1 ≤ j ≤ nk1 , 1 ≤ j′ ≤ nk2 . By Theorem 6.1, the set B%(p) ∩ (Sk,j1 + Sk,j
′

2 ) is either

B%(p), or a finite union of mutually non-overlapping M-sectors with center p and radius

% for sufficiently small % > 0. So by Lemmas 6.1 and 4.1(2), the set B%(p)∩ (Sk1 + Sk2 ) is

either B%(p), or a finite union of mutually non-overlapping M-sectors with center p and
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radius % for sufficiently small % > 0. It follows that B%(p) ∩ (Sk1 + Sk2 ) is a finite union

of mutually non-overlapping M-sectors with center p and radius %, since p ∈ ∂Ω and

Sk1 + Sk2 ⊂ Ω. Thus (2) is satisfied.

Lemma 4.1(2) shows that
⋃n
k=1{B%(p) ∩ (Sk1 + Sk2 )} is a finite union of mutually

non-overlapping M-sectors with center p and radius % for sufficiently small % > 0, since

p ∈ ∂Ω and
⋃n
k=1(Sk1 +Sk2 ) ⊂ Ω. Note that the set MΩ1,Ω2

((Ω1×Ω2)\U) in Ω is compact,

and does not contain p, since M−1
Ω1,Ω2

(p) ⊂ U . So, for sufficiently small % > 0, we have

B%(p) ∩MΩ1,Ω2
((Ω1 ×Ω2) \ U) = ∅. This implies that B%(p) ∩Ω = B%(p) ∩MΩ1,Ω2

(U).

Thus (3) is satisfied, since MΩ1,Ω2
(U) =

⋃n
k=1(Sk1 + Sk2 ).

It is now easy to prove the following result:

Theorem 6.3 (closedness under Minkowski sum). Let M be a Minkowski class, and let

Ω1 and Ω2 be twoM-domains. Then their Minkowski sum Ω = Ω1+Ω2 is anM-domain.

Proof. First, note that Ω is compact and connected, since it is the image of the compact

connected set Ω1 × Ω2 under the continuous Minkowski map MΩ1,Ω2
. By Lemma 6.9,

there exist r > 0 such that Br(p) ∩ Ω is a finite union of mutually non-overlapping

M-sectors with center p and radius r for every p ∈ ∂Ω. Thus Ω is an M-domain by

Lemma 4.2.

7. Minkowski sum of semi-convex domains

Let us first define the semi-convexity :

Definition 7.1 (semi-convex domain). A regular C1:1-domain Ω is called semi-convex

if Θ(Ω) ≥ −π.

Remark 7.1. In fact, if Θ(Ω) > −2π for a regular C1:1-domain Ω, then Ω must be

simply connected. So a semi-convex domain is automatically simply connected. It is also

easy to see that a regular C1:1-domain Ω is convex if and only if Θ(Ω) = 0.

The domains in Figures 11 and 12 are examples of regular C1:1-domains which are

semi-convex and not semi-convex respectively.

Fig. 11. Examples of semi-convex domains

In this section, we will show that the Minkowski sum of two semi-convexM-domains is

homeomorphic to the unit disk in R2 for any Minkowski classM. This answers Problem 1

posed in Section 1 within the category of M-domains.
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Fig. 12. Examples of regular domains which are not semi-convex

LetM be a Minkowski class, and let Ω1 and Ω2 be two semi-convexM-domains. Let

Ω = Ω1 +Ω2 be their Minkowski sum. The proof is divided into two major steps: First,

we show that Ω is regular in Section 7.1, and then we show that Ω is simply connected

in Section 7.2. The result will finally follow, since a domain is homeomorphic to the unit

disk if and only if it is regular and simply connected.

7.1. Regularity

Lemma 7.1. Let M be a Minkowski class, and let Ω1, Ω2 be regular M-domains. Let

Ω = Ω1 + Ω2, and let p ∈ ∂Ω. Suppose Br(p) ∩ Ω =
⋃n
k=1 S

k, where Sk’s are mutu-

ally non-overlapping M-sectors with center p and radius r. Then there exist % > 0 and

(p1
1, p

1
2), . . . , (pn1 , p

n
2 ) in M−1

Ω1,Ω2
(p) such that Ski = B%(p

k
i ) ∩ Ωi is a non-degenerate M-

sector with center pki and radius %, and Ski −pki ⊂ (Sk1 +Sk2 )−p ⊂ Sk−p for each i = 1, 2

and k = 1, . . . , n.

Proof. By Lemma 6.9, there exist r1, . . . , rm > 0, (q1
1 , q

1
2), . . . , (qm1 , q

m
2 ) in M−1

Ω1,Ω2
(p), and

0 < % < min {r/2, r1, . . . , rm} such that T ji = Brj (q
j
i ) ∩ Ωi is a finite union of mutually

non-overlapping M-sectors with center qji and radius rj for i = 1, 2 and j = 1, . . . ,m,

B2%(p) ∩ (T j1 + T j2 ) is a finite union of mutually non-overlapping M-sectors with center

p and radius 2% for each j, and B2%(p) ∩ Ω =
⋃m
j=1B2%(p) ∩ (T j1 + T j2 ). Since Ω1 and

Ω2 are regular, each T ji is a non-degenerateM-sector. Since rj ’s can be taken arbitrarily

small, we can assume that T j1 and T j2 are admissible to each other for each j. So by

Theorem 6.2, B2%(p)∩ (T j1 + T j2 ) is a non-degenerate M-sector with center p and radius

2% for each j. Note that B2%(p) ∩ Sk’s are mutually non-overlapping M-sectors with

center p and radius 2%, and B2%(p) ∩ Ω =
⋃n
k=1B2%(p) ∩ Sk. So it is easy to see that

there exists 1 ≤ jk ≤ m such that B2%(p) ∩ (T jk1 + T jk2 ) ⊂ B2%(p) ∩ Sk for each k. Let

pki = qjki , and let Ski = B%(p
k
i ) ∩ Ωi = B%(q

jk
i ) ∩ T jki for i = 1, 2 and k = 1, . . . , n. Then

Sk1 + Sk2 = (B%(q
jk
1 )∩ T jk1 ) + (B%(q

jk
2 )∩ T jk2 ) ⊂ B2%(p)∩ (T jk1 + T jk2 ) ⊂ B2%(p)∩ Sk ⊂ Sk

for each k. Clearly, Ski − pki ⊂ (Sk1 + Sk2 )− p for i = 1, 2 and k = 1, . . . , n.

Lemma 7.2. Let M be a Minkowski class. Let γi : [0, ai] → R2, i = 1, 2, be two M-

curves such that γ1(0) = γ2(0) = 0 and their images S1 = γ1([0, a1]), S2 = γ2([0, a2]) are

degenerate M-sectors with center 0 and radius r > 0. Suppose S1, S2 are admissible to

each other, and S1 6= −S2. Take 0 < r′ ≤ r such that either Br′(0) ∩ S1 = Br′(0) ∩ S2,
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or Br′(0)∩ S1, Br′(0)∩ S2 do not meet except at 0. Let S be the M-sector with center 0

and radius r′ which is uniquely determined by the following conditions :

(1) S is bounded by Br′(0) ∩ S1, Br′(0) ∩ S2 and an arc in ∂Br′(0).

(2) S is a sharp sector if v[γ1] 6= −v[γ2].

(3) When v[γ1] = −v[γ2], the start curve of S is Br′(0)∩S1 (resp., Br′(0)∩S2), and

the end curve of S is Br′(0) ∩ S2 (resp., Br′(0) ∩ S1) if γ1 C γ2 (resp., γ1 B γ2).

Then B%(0) ∩ S ⊂ S1 + S2 for every sufficiently small % > 0.

Proof. We can assume v[γ1] = (cos θ, sin θ), v[γ2] = (cos (π − θ), sin (π − θ)) for some

0 ≤ θ ≤ π/2. In case θ = 0, we can also assume that σ(γ1) = +, σ(γ2) = 0 or +, and

γ1B γ2. Then (0, %) ∈ S1 +S2 for every sufficiently small % > 0 when θ 6= π/2. Note that

(0, %) ∈ intS for sufficiently small % > 0 when θ 6= π/2. In case θ = π/2, it is also easy to

see that there exists a point in B%(0) ∩ intS (in B%(0) ∩ S if S has no interior) which is

contained in S1+S2, for every sufficiently small % > 0. By Lemma 6.7 and Theorem 6.2(3),

there exist 0 < r′′ < r′ and % > 0 such that the set B%(0)∩∂((Br′′(0)∩S1)+(Br′′(0)∩S2))

is contained in the union of the images of γ1, γ2 and γ1∗γ2 (if defined). Hence, B%(0)∩S ⊂
S1 + S2 for every sufficiently small % > 0.

Theorem 7.1 (regularity of Minkowski sum of semi-convex domains). Let M be a

Minkowski class, and let Ω1 and Ω2 be semi-convex M-domains. Then their Minkowski

sum Ω = Ω1 +Ω2 is a regular M-domain.

Proof. By Theorem 6.3, Ω is an M-domain. Suppose Ω is not regular. Then there exists

a point p ∈ ∂Ω and r > 0 such that Br(p) ∩ Ω =
⋃n
k=1 S

k, where Sk’s are mutually

non-overlapping M-sectors with center p and radius r and n ≥ 2. By Lemma 7.1, there

exist (p1
1, p

1
2), (p2

1, p
2
2) in M−1

Ω1,Ω2
(p) and % > 0 such that, for each k = 1, 2 and i =

1, 2, Ski = B%(p
k
i ) ∩ Ωi is a non-degenerate M-sector with center pki and radius %, and

Ski − pki ⊂ (Sk1 + Sk2 ) − p ⊂ Sk − p. Let Ω̃2 = −Ω2 + p. Then by Lemma 6.3(3), Ω1

and Ω̃2 are in contact position to each other, and meet at p1
1 and p2

1. Since S1 and S2

are non-overlapping, it is easy to see that p1
1 6= p2

1. For i = 1, 2, let φi : [0, 1] → ∂vΩi,

φi(t) = (γi(t),ni(t)), be a one-to-one continuous map such that φ1(0) = (p1
1,n

+
Ω1

(p1
1)),

φ1(1) = (p2
1,n
−
Ω1

(p2
1)), φ2(0) = (p2

2,n
+
Ω2

(p2
2)), φ2(1) = (p1

2,n
−
Ω2

(p1
2)). By interchanging

(p1
1, p

1
2) and (p2

1, p
2
2) if necessary, we can assume that OΩ1

(φ1) = OΩ2
(φ2) = +, and

(γ1([0, 1]) \ {p1
1, p

2
1}) ∩ U = ∅, where U is the unbounded component of R2 \ (Ω1 ∪ Ω̃2).

Define φ̃2 : [0, 1] → ∂vΩ̃2, φ̃2(t) = (γ̃2(t), ñ2(t)), by φ̃2(t) = (−γ2(t) + p,−n2(t)) for

t ∈ [0, 1]. Then (γ̃2([0, 1]) \ {p1
1, p

2
1}) ∩ U = ∅. Since Ω1 and Ω̃2 are semi-convex, we

have −π ≤ Θ(φ1), Θ(φ̃2) ≤ π by Lemma 5.4(2). So −π ≤ Θ(φi) ≤ π for i = 1, 2, since

Θ(φ̃2) = Θ(φ2) by Lemma 5.3.

We will show that, in fact, −π < Θ(φi) < π for i = 1, 2. Suppose Θ(φ1) = −π. We

can assume n1(0) = (−1, 0). Let αki and βki be the end curve and start curve of the

M-sector Ski respectively. Then v[α1
1] = v[β2

1 ] = (0,−1). Suppose σ(α1
1) = +. Then there

exists t0 ∈ (0, 1) such that Θ(φ1|[0,t0]) > 0. So by Lemma 5.1, we have Θ(φ1|[t0,1]) =

Θ(φ1)−Θ(φ1|[0,t0]) < −π, which is impossible since Ω1 is semi-convex. Thus σ(α1
1) = 0

or −. In the same way, σ(β2
1) = 0 or +. Since S1

1−p1
1 ⊂ S1−p, S2

1−p2
1 ⊂ S2−p, and S1−p
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and S2 − p are non-overlapping, it follows that v[β1
1 ] = v[α2

1] = v[β1] = v[α2] = (0,−1),

and either σ(β1) = − or σ(α2) = +, where αk and βk are the end curve and start

curve of Sk for k = 1, 2. Let α1 be the non-negative angle of counter-clockwise rotation

from −v−
Ω̃2

(p1
1) = −v[β1

2 ] to v+
Ω1

(p1
1) = v[α1

1], and let α2 be the non-negative angle of

counter-clockwise rotation from −v−Ω1
(p2

1) = v[β2
1 ] to v+

Ω̃2
(p2

1) = −v[α2
2]. Suppose α1 < π.

Then by Lemma 7.2, the Minkowski sum of β1
1 and β1

2 , which is contained in S1, must

intersect S2. But this is impossible, since S1 and S2 are non-overlapping. So α1 ≥ π.

In the same way, α2 ≥ π. By Lemma 5.4(1), we have Θ(φ1) + Θ(φ̃2) + α1 + α2 = 0,

and hence Θ(φ1) + Θ(φ2) + α1 + α2 = 0. Since −π ≤ Θ(φ2) ≤ π and α1 + α2 ≥ 2π,

we must have α1 = α2 = π and Θ(φ2) = −π. So v[β1
2 ] = v[α2

2] = (0,−1). Remember

that either σ(β1) = − or σ(α2) = +. Suppose σ(β1) = −. Then σ(β1
2) is also −. So

there exists t0 ∈ (0, 1) such that Θ(φ2|[t0,1]) > 0. By Lemma 5.1, we have Θ(φ2|[0,t0]) =

Θ(φ2)−Θ(φ2|[t0,1]) < −π, which is impossible since Ω2 is semi-convex. In the same way,

we get a contradiction if σ(α2) = −. Thus we conclude that Θ(φ1) 6= −π. By a symmetric

argument, Θ(φ2) 6= −π. It follows from Lemma 5.4(1) that Θ(φi) 6= π for i = 1, 2. Thus

−π < Θ(φi) < π for i = 1, 2.

v+
Ω2

(p2
2)

−v−Ω1
(p2

1)

v+
Ω1

(p1
1)

−v−Ω2
(p1

2)

θ1

θ2

α′2

α′1

C(S2)

C(S1)

Fig. 13. C(S1) and C(S2)

Now let θ1 (≤ 0) be the angle of clockwise rotation from v+
Ω1

(p1
1) to −v−Ω1

(p2
1), and

θ2 (≤ 0) be the angle of clockwise rotation from v+
Ω2

(p2
2) to −v−Ω2

(p1
2). Note that θi =

Θ(φi)− π + 2πni for some ni ∈ Z for i = 1, 2. Since S1 and S2 are non-overlapping, we

have −2π ≤ θi ≤ 0 (see Figure 13). So ni = 0 for i = 1, 2, since −π < Θ(φi) < π. Thus

θi = Θ(φi) − π for i = 1, 2. Let α′1 be the angle of rotation in C(S1) from −v−Ω2
(p1

2)

to v+
Ω1

(p1
1), and α′2 be the angle of rotation in C(S2) from −v−Ω1

(p2
1) to v+

Ω2
(p2

2). We

understand α′i to be positive if the rotation is counter-clockwise, and negative if the

rotation is clockwise. Note that −v−
Ω̃2

(p1
1) = v−Ω2

(p1
2), and −v+

Ω̃2
(p2

1) = v+
Ω2

(p2
2). So

clearly α′i = αi − π for i = 1, 2 by Lemma 7.2.

From the definitions, it is obvious that θ1 + θ2 + α′1 + α′2 = −2π (see Figure 13).

So from the above relations between θi’s and Θ(φi)’s, and α′i’s and αi’s, it follows that

Θ(φ1) +Θ(φ2) + α1 + α2 = 2π, which contradicts Lemma 5.4(1).

7.2. Simple connectedness. In this section, we show that the Minkowski sum of two

semi-convex M-domains is simply connected for any Minkowski class M.
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Let M be a Minkowski class, and let Ω be a simply connected regular M-domain.

For each q ∈ Ω, we fix a homotopy HΩ;q : Ω × [0, 1] → Ω such that HΩ;q(p, 0) = p and

HΩ;q(p, 1) = q for every p ∈ Ω. For each q ∈ R2, we define Iq : R2 → R2 by Iq(p) = −p+q

for p ∈ R2. Note that Iq ◦ Iq is the identity map.

Lemma 7.3. Let M be a Minkowski class, and let Ω1 and Ω2 be two semi-convex M-

domains with 0 ∈ Ω1, Ω2. Let Ω = Ω1 +Ω2, and let p ∈ ∂Ω. Then there exist one-to-one

continuous maps φ+, φ− : [0, 1] → ∂vΩ, φ±(t) = (γ±(t),n±(t)), and continuous maps

φ+
i , φ

−
i : [0, 1] → ∂vΩi, φ

±
i (t) = (γ±i (t),n±i (t)) for i = 1, 2, which satisfy the following

conditions:

(1) φ±(0) = (p,n±Ω(p)), OΩ(φ±) = ±, and γ±(t) is a flat point for every t ∈ (0, 1].

(2) Each of φ±i ’s and γ±i ’s is either one-to-one or constant, and if one of OΩ1
(γ±1 )

and OΩ2
(γ±2 ) is ∓, then the other is ±.

(3) γ±(t) = γ±1 (t) + γ±2 (t) and n±(t) = n±1 (t) = n±2 (t) for t ∈ [0, 1].

(4) Θ(φ±) = Θ(φ±1 ) = Θ(φ±2 ) and, for i = 1, 2, γ±i is homotopic to γ± in R2 \ intΩi
via the homotopy H±i : [0, 1]× [0, 1]→ R2 \ intΩi defined by

H±1 (t, s) = Iγ±(t)(HΩ2;0(γ±2 (t), s)), H±2 (t, s) = Iγ±(t)(HΩ1;0(γ±1 (t), s)),

for (t, s) ∈ [0, 1]× [0, 1].

Proof. By Theorem 7.1, Ω is a regular M-domain. Let p ∈ ∂Ω. By Lemma 4.3, there

exists r > 0 such that Br(p)∩Ω is a non-degenerateM-sector with center p and radius r.

By Lemma 6.9, there exist 0 < r1, . . . , rn < r, 0 < % < r and (p1
1, p

1
2), . . . , (pn1 , p

n
2 ) in

M−1
Ω1,Ω2

(p) such that Ski = Brk(pki )∩Ωi is a finite union of mutually non-overlappingM-

sectors with center pki and radius rk for i = 1, 2 and k = 1, . . . , n, and Sk = B%(p)∩ (Sk1 +

Sk2 ) is a finite union of mutually non-overlapping sectors with center p and radius %, and

S = B%(p)∩Ω =
⋃n
k=1 S

k. Since r can be taken arbitrarily small and Ω1, Ω2 are regular,

we can assume that Brk(pki )∩Ωi is a non-degenerateM-sector with center pki and radius

rk for each i and k. By Theorem 6.2, we can also assume each Sk is a non-degenerate

M-sector with center p and radius %, since rk’s can be taken arbitrarily small. Note that

S is a non-degenerate M-sector with center p and radius %. Let γ+, γ− : [0, 1] → S

be the end curve and start curve of S respectively. Since S =
⋃
Sk, there exist 1 ≤

k+, k− ≤ n such that γ+ and γ− are the end curve of Sk
+

and the start curve of Sk
−

respectively. Since γ+ and γ− are in the boundary of Ω, they are in the boundary of

Sk
+

1 + Sk
+

2 and Sk
−

1 + Sk
−

2 respectively. So by Theorem 6.2, there exist 0 < ε < 1 and

continuous maps φ+
i : [0, ε] → ∂vSk

+

i , φ+
i (t) = (γ+

i (t),n+
i (t)), and φ−i : [0, ε] → ∂vSk

−
i ,

φ−i (t) = (γ−i (t),n−i (t)), for i = 1, 2, such that φ±i (0) = pk
±
i , γ±(t) = γ±1 (t) + γ±2 (t)

and n±
Sk±

(γ±(t)) = n±1 (t) = n±2 (t) for t ∈ [0, ε], each φ±i and each γ±i is either one-

to-one or constant, and if one of O
Sk
±

1
(γ±1 ) and O

Sk
±

2
(γ±2 ) is ∓, then the other is ±.

Define φ+, φ− : [0, ε] → ∂vS, φ±(t) = (γ±(t),n±(t)), by φ±(t) = (γ±(t),n±S (γ±(t))) for

t ∈ [0, ε]. Note that φ±1 , φ±2 and φ± are in ∂vΩ1, ∂vΩ2 and ∂vΩ respectively. Thus, by

reparametrizing them on the interval [0, 1], (1)–(3) are checked easily.

Now we show (4). First, Θ(φ±) = Θ(φ±1 ) = Θ(φ±2 ), since n±(t) = n±1 (t) = n±2 (t) for

every t ∈ [0, 1]. Note that, for i = 1, 2, H±i (t, 0) = γ±i (t) and H±i (t, 1) = γ±(t) for every
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t ∈ [0, 1]. By the definition of HΩi;0’s, we have HΩ2;0(γ±2 (t), s) ∈ Ω2 and HΩ1;0(γ±1 (t), s) ∈
Ω1 for all t, s ∈ [0, 1]. So H±1 (t, s) ∈ −Ω2 + γ±(t) and H±2 (t, s) ∈ −Ω1 + γ±(t) for all

t, s. By Lemma 6.3(3), Ω1 and −Ω2 + γ±(t) are in contact position to each other, and

Ω2 and −Ω1 + γ±(t) are in contact position to each other for every t. So −Ω2 + γ±(t) ⊂
R2 \ intΩ1 and −Ω1 + γ±(t) ⊂ R2 \ intΩ2 for every t. Thus H±1 (t, s) ∈ R2 \ intΩ1 and

H±2 (t, s) ∈ R2 \ intΩ2 for all t, s. This shows (4), and the proof is complete.

Let us introduce the following useful notations: Let F1 : [a1, b1] × [c, d] → R2 and

F2 : [a2, b2] × [c, d] → R2 be two homotopies such that F1(b1, s) = F2(a2, s) for every

s ∈ [c, d]. Then we define F1 · F2 : [a1, b1 + b2 − a2]× [c, d]→ R2 by

(F1 · F2)(t, s) =

{
F1(t, s) if (t, s) ∈ [a1, b1]× [c, d],

F2(t− b1 + a2, s) if (t, s) ∈ [b1, b1 + b2 − a2]× [c, d].

F1 F2

G2

G1

F1 · F2

G2
·
G1

Fig. 14. The homotopies F1 · F2 and
G2
·
G1

LetG1 : [a, b]×[c1, d1]→ R2 and G2 : [a, b]×[c2, d2]→ R2 be two homotopies such that

G1(t, d1) = G2(t, c2) for every t ∈ [a, b]. Then we define
G2
·
G1

: [a, b]× [c1, d1 +d2−c2]→ R2

by (
G2
·
G1

)
(t, s) =

{
G1(t, s) if (t, s) ∈ [a, b]× [c1, d1],

G2(t, s− d1 + c2) if (t, s) ∈ [a, b]× [d1, d1 + d2 − c2].

It is clear that F1 · F2 and
G2
·
G1

are well defined and continuous. See Figure 14.

Let Fij : [ai, bi]× [cj , dj ]→ R2 be a homotopy for i, j = 1, 2. Suppose that F1j(b1, s) =

F2j(a2, s) for every s ∈ [cj , dj ] and j = 1, 2, and Fi1(t, d1) = Fi2(t, c2) for every t ∈ [ai, bi]

and i = 1, 2. Then we define
F12
·

F11

·
·
F22
·
F21

: [a1, b1 + b2 − a2]× [c1, d1 + d2 − c2]→ R2 by

F12 · F22

· ·
F11 · F21

=



F12

·
F11


 ·



F22

·
F21


 =

(F12 · F22)

·
(F11 · F21)

.

See Figure 15.
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F12

F11

F22

F21

Fig. 15. The homotopy
F12
·

F11

·
·
F22
·
F21

For any m,n ≥ 1, we define in an obvious way the appropriate homotopy, when given

the homotopies Fij , i = 1, . . . ,m, j = 1, . . . , n with the continuity conditions on the

common boundaries.

Now, let M be a Minkowski class, and let Ω1 and Ω2 be semi-convex M-domains

with 0 ∈ Ω1, Ω2. Let Ω = Ω1 + Ω2. Suppose φk : [0, 1] → ∂vΩ, φk(t) = (γk(t),nk(t)),

and φki : [0, 1] → ∂vΩi, φ
k
i (t) = (γki (t),nki (t)), are continuous maps for k, i = 1, 2, which

satisfy the following conditions:

(1) γk is one-to-one and OΩ(γk) = +, and γ1(1) = γ2(0).

(2) Each of φki ’s and γki ’s is either one-to-one or constant, and if one of OΩ1
(γk1 ),

OΩ2
(γk2 ) is −, then the other is +.

(3) γk(t) = γk1 (t) + γk2 (t) and nk(t) = nk1(t) = nk2(t) for every t ∈ [0, 1].

(4) Θ(φk) = Θ(φk1) = Θ(φk2), and for i, k = 1, 2, γki is homotopic to γk in R2 \ intΩi
via the homotopy Hk

i : [0, 1]× [0, 1]→ R2 \ intΩi, where

Hk
1 (t, s) = Iγk(t)(HΩ2;0(γk2 (t), s)), Hk

2 (t, s) = Iγk(t)(HΩ1;0(γk1 (t), s)),

for (t, s) ∈ [0, 1]× [0, 1] and k = 1, 2.

Let p = γ1(1) = γ2(0). From the assumptions on φk’s, it is obvious that φ1(1) =

(p,n−Ω(p)) and φ2(0) = (p,n+
Ω(p)). Let ψ : [0, 1]→ p×NCΩ(p) ⊂ ∂vΩ, ψ(t) = (η(t),m(t)),

be a continuous map which is either one-to-one or constant and m(0) = n−Ω(p), m(1) =

n+
Ω(p). Note that ψ(0) = φ1(1), ψ(1) = φ2(0), and η(t) = p for t ∈ [0, 1]. Note also that

ψ, m are one-to-one if p is a corner point, and constant if p is a flat point.

Let p1
i = γ1

i (1) and p2
i = γ2

i (0) for i = 1, 2. Note that p = p1
1 + p1

2 = p2
1 + p2

2, i.e.,

(p1
1, p

1
2) and (p2

1, p
2
2) are in M−1

Ω1,Ω2
(p). Let ψi : [0, 1]→ ∂vΩi, ψi(t) = (ηi(t),mi(t)), be a

continuous map which is either one-to-one or constant, and ψi(0) = (p1
i ,n

1
i (1)) = φ1

i (1),

ψi(1) = (p2
i ,n

2
i (0)) = φ2

i (0). Let Ω̃i = −Ωi + p. Note that Ω1 and Ω̃2 are in contact

position to each other, and p1
1, p

2
1 ∈ Ω1 ∩ Ω̃2. Also, Ω2 and Ω̃1 are in contact position to

each other and p1
2, p

2
2 ∈ Ω2 ∩ Ω̃1. We assume that (ηi([0, 1]) \ {p1

i , p
2
i }) ∩ U i = ∅, where

U1 is the unbounded component of R2 \ (Ω1 ∪ Ω̃2), and U2 is the unbounded component

of R2 \ (Ω2 ∪ Ω̃1).

Note that p1
1 = p2

1 if and only if p1
2 = p2

2. Suppose first p1
1 = p2

1. Then clearly η1,

η2 are constant, and ψ1, ψ2 are either one-to-one or constant. Let p1 = p1
1 = p2

1 and
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p2 = p1
2 = p2

2. Take r > 0 such that Si = Br(pi) ∩Ωi is a non-degenerate M-sector with

center pi and radius r for i = 1, 2, and S = B2r(p) ∩ Ω is a non-degenerate M-sector

with center p and radius 2r. We can assume that S1, S2 are admissible to each other by

Lemma 6.4. Note that Si − pi ⊂ (S1 + S2) − p ⊂ S − p. Since m(0) = m1(0) = m2(0)

and m(1) = m1(1) = m2(1), we have Θ(ψi) = Θ(ψ) + 2niπ for some ni ∈ Z. Note that

−π ≤ Θ(ψ), Θ(ψ1), Θ(ψ2) ≤ π, since m, m1, m2 rotate in NCΩ(p), NCΩ1
(p1), NCΩ2

(p2)

respectively. So, if −π < Θ(ψ) < π, we get Θ(ψ) = Θ(ψ1) = Θ(ψ2).

Suppose Θ(ψ) = π. Then S becomes a sharp sector, and C(S) contains only one

element. We can assume that C(S) = {(0,−1)}. Since Si − pi ⊂ S − p for i = 1, 2,

S1, S2 are also sharp sectors, and C(S1) = C(S2) = {(0,−1)}. So we must have Θ(ψ1) =

Θ(ψ2) = π. Thus Θ(ψ) = Θ(ψ1) = Θ(ψ2). Suppose Θ(ψ) = −π. Let α and β be the

end curve and start curve of S respectively, and let αi and βi be the end curve and

start curve of Si respectively. In this case, S becomes a dull sector, and v[α] = v[β].

With no loss of generality, assume v[α] = v[β] = (0, 1). Note that Θ(ψ1), Θ(ψ2) are

π or −π. Since Θ(ψ1), Θ(ψ2) 6= 0, S1 and S2 cannot be flat sectors. Since S1, S2 are

admissible to each other, they cannot be dull sectors simultaneously. Suppose both S1

and S2 are sharp sectors. Then it is easy to see that C(Si) = {(0, 1)} or {(0,−1)} for

i = 1, 2. So, from Lemma 7.2, we can see that at least one of α and β is not contained

in S1 + S2, which contradicts the assumption that γ1 = γ1
1 + γ1

2 and γ2 = γ2
1 + γ2

2 .

So S1, S2 cannot be sharp sectors simultaneously. It follows that one of S1 and S2,

say S1, is a sharp sector and the other is a dull sector. Then it is easy to see that

v[α1] = v[β1] = (0,−1), v[α2] = v[β2] = (0, 1), and so Θ(ψ1) = Θ(ψ2) = −π. Thus we

conclude that Θ(ψ) = Θ(ψ1) = Θ(ψ2) if p1
1 = p2

1 (or equivalently, p1
2 = p2

2).

Suppose now p1
1 6= p2

1. Then it is easy to see that one of OΩ1
(η1), OΩ2

(η2) is + and the

other is −. Moreover, OΩi(ηi|[a,b]) cannot be −OΩi(ηi) for any [a, b] ⊂ [0, 1], for i = 1, 2.

We will also show that Θ(ψ) = Θ(ψ1) = Θ(ψ2) in this case. First, it is easy to see that

Θ(ψ1) = Θ(ψ2) since m1(0) = m2(0), m1(1) = m2(1), and Ω1, Ω̃2 are in contact position

to each other. Since m(0) = m1(0) and m(1) = m1(1), we have Θ(ψ1) = Θ(ψ) + 2nπ

for some n ∈ Z. We have seen that one of OΩ1
(η1), OΩ2

(η2) is + and the other is −.

So, one of OΩ1
(ψ1), OΩ2

(ψ2), say OΩ1
(ψ1), is + and the other is −. Since Ω1, Ω2 are

semi-convex, we have Θ(ψ1) ≥ −π and Θ(ψ2) ≤ π. So −π ≤ Θ(ψ1) = Θ(ψ2) ≤ π. Thus,

Θ(ψ) = Θ(ψ1) = Θ(ψ2) if −π < Θ(ψ) < π.

It remains to consider the cases when Θ(ψ) = π or −π. Take r > 0 such that Ski =

Br(p
k
i )∩Ωi is a non-degenerateM-sector with center pki and radius r for i, k = 1, 2, and

S = B2r(p)∩Ω is a non-degenerateM-sector with center p and radius 2r. We can assume

Sk1 and Sk2 are admissible to each other. Note that Ski − pki ⊂ (Sk1 + Sk2 )− p ⊂ S − p. Let

α and β be the end curve and start curve of S respectively, and let αki and βki be the end

curve and start curve of Ski respectively.

Suppose Θ(ψ) = π. Then S is a sharp sector, and C(S) contains only one element,

which we assume to be (0,−1). Since Ski − pki ⊂ S − p, we have C(Ski ) = {(0,−1)}. So

v[αki ] = v[βki ] = (0,−1). We can assume that OΩ1
(ψ1) = + and OΩ2

(ψ2) = −. Suppose

Θ(ψ1) = Θ(ψ2) = −π. Note that m(0) = (1, 0) and m(1) = (−1, 0). So −π = Θ(ψ1) =

π + Θ(ψ′1) + π, where ψ′1 : [0, 1] → ∂vΩ1 is a one-to-one continuous map such that

ψ′1(0) = (p1
1,n

+
Ω1

(p1
1)), ψ′1(1) = (p2

1,n
−
Ω1

(p2
1)), and OΩ1

(ψ′1) = +. Now Θ(ψ′1) = −3π,
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which is a contradiction since Ω1 is semi-convex. So we must have Θ(ψ1) = Θ(ψ2) = π,

and hence Θ(ψ) = Θ(ψ1) = Θ(ψ2) if Θ(ψ) = π.

Suppose Θ(ψ) = −π. Then S is a dull sector, and v[α] = v[β], which we assume

to be (0, 1). Let S′ = B2r(p) \ S. Suppose Θ(ψ1) = Θ(ψ2) = π. We can assume

that OΩ1
(ψ1) = + and OΩ2

(ψ2) = −. Note that m(0) = (−1, 0), m(1) = (1, 0), and

Ski − pki ⊂ Sk1 + Sk2 − p ⊂ S − p. Let v[β1
2 ] = (cos θ, sin θ). If π/2 < θ < 3π/2,

then m1(0) = (−1, 0) cannot be in NCΩ2
(p1

2). If −π/2 ≤ θ < π/2, then there ex-

ists t0 ∈ (0, 1) such that Θ(ψ2|[0,t0]) < 0. So Θ(ψ2|[t0,1]) = Θ(ψ2) − Θ(ψ2|[0,t0]) > π,

which is impossible since Ω2 is semi-convex and OΩ2
(ψ2) = −. Thus we must have

v[β1
2 ] = (0, 1). Note also that σ(β1

2) 6= − for the same reason. In the same way, we

can see that v[a2
2] = (0, 1) and σ(α2

2) 6= +. Let v[α1
1] = (cos θ1, sin θ1) and v[β2

1 ] =

(cos θ2, sin θ2). Suppose π/2 < θ1 < 3π/2. Then we should have v[β1
1 ] = (0, 1) in order

for m(0) = (−1, 0) to be in NCΩ1
(p1

1). Since v[β1
2 ] = (0, 1), it follows from Lemma 7.2

that B%(p) ⊂ S1
1 + S1

2 ⊂ S for sufficiently small % > 0, which is impossible. Suppose

θ1 = π/2. Then, in order for m(0) to be in NCΩ1
(p1

1), we must have v[β1
1 ] = (0, 1)

again, and C(S1
1) = {(0, 1)} or ∂B1(0). If C(S1

1) = ∂B1(0), then we would also have

the same contradiction B%(p) ⊂ S1
1 + S1

2 by Lemma 7.2. So C(S1
1) = {(0, 1)}. Let W1

be the sharp sector with center 0 and radius 2r, whose start curve and end curve are

β − p and {(x, 0) | 0 ≤ x ≤ 2r} respectively. Let W2 be the sharp sector with cen-

ter 0 and radius 2r, whose start curve and end curve are {(x, 0) | −2r ≤ x ≤ 0}
and α − p respectively. Note that α1

1 − p1
1, β

1
1 − p1

1 ⊂ Wi and β1
2 − p1

2 ⊂ Wj for some

i, j = 1, 2. If i 6= j, then B%(p) ∩ S′ ⊂ S1
1 + S1

2 ⊂ S by Lemma 7.2, which is a

contradiction. So i = j. Suppose i = j = 2. Since S1
2 − p1

2 ⊂ S − p, we also have

α1
2 − p1

2 ⊂ W2 and v[α1
2] = (0, 1). Now from Lemma 2.3, we can see that β − p cannot

be any of α1
1 − p1

1, β1
1 − p1

1, α1
2 − p1

2, β1
2 − p1

2, or their convolutions. From Lemma 6.7

and Theorem 6.2(3), we see that this contradicts the assumption that γ1 = γ1
1 + γ1

2 .

Suppose i = j = 1. Since σ(β1
2) 6= −, we must have σ(β) 6= − and σ(α) = +.

So, α2
2 − p2

2, β
2
2 − p2

2 ⊂ W1 and v[β2
2 ] = (0, 1), since v[α2

2] = (0, 1), σ(α2
2) 6= + and

S2
2 − p2

2 ⊂ S − p. Since γ2 = γ2
1 + γ2

2 , α − p should be one of α2
1 − p2

1, β2
1 − p2

1,

α2
2 − p2

2, β2
2 − p2

2, or their convolutions by Lemma 6.7 and Theorem 6.2(3). There are

only two cases to make this possible: Either α − p is one of α2
1 − p2

1, β2
1 − p2

1, or

σ(β2
2) = + and α = β2

2 ∗ γ for γ = α2
1 or β2

1 . But it is easy to see from Lemma 7.2

that, in both cases, S2
1 + S2

2 would intersect B%(p) ∩ S′ for sufficiently small % > 0,

which is a contradiction. Thus v[α1
1] 6= (0, 1). So we have −π/2 ≤ θ1 < π/2. Similarly,

π/2 < θ2 ≤ 3π/2.

Suppose θ1 = −π/2, i.e., v[α1
1] = (0,−1). Let α1 be the non-negative angle of counter-

clockwise rotation from −v[β1
2 ] to v[α1

1] in V , where V is the region bounded by η1 and

−η2 + p. Let α2 be the non-negative angle of counter-clockwise rotation from v[β2
1 ] to

−v[α2
2] in V . Suppose either σ(α1

1) = − or α1
1 C β1

2 . Then α1 = 2π, since S1
1 , S1

2 are

admissible to each other. For i = 1, 2, we can choose [ai, bi] ⊂ [0, 1] such that ψ1(a1) =

(p1
1,n

+
Ω1

(p1
1), ψ1(b1) = (p2

1,n
−
Ω1

(p2
1)), and ψ2(a2) = (p1

2,n
−
Ω2

(p1
2), ψ2(b2) = (p2

2,n
+
Ω2

(p2
2)).

Note that a1 = a2 = 0, since v[α1
1] = −v[β1

2 ] = (0,−1). By Lemma 5.4(1), Θ(ψ1|[0,b1])−
Θ(ψ2|[0,b2])+2π+α2 = 0. Since Ω1, Ω2 are semi-convex, we must have Θ(ψ1|[0,b1]) = −π,

Θ(ψ2|[0,b2]) = π and α2 = 0. Since α2 = 0 and m(1) = m1(1) = m2(1) = (1, 0), it follows



42 S. W. Choi

that Θ(ψ1) = −π, which contradicts the assumption. Thus if v[α1
1] = (0,−1) then we

must have σ(α1
1) 6= − and either α1

1 B β1
2 or α1

1 ∼ β1
2 . Similarly, if v[β2

1 ] = (0,−1) then

σ(β2
1) 6= + and either β2

1 B α2
2 or β2

1 ∼ α2
2. Now it is easy to see from Lemma 7.2 that

(S1
1 +S1

2)∪(S2
1 +S2

2) contains B%(p)∩S′ for sufficiently small % > 0. This is a contradiction,

since S1
1 + S1

2 , S
2
1 + S2

2 ⊂ S. Thus we must have Θ(ψ1) = Θ(ψ2) = −π.

Summarizing the above arguments, we conclude that Θ(ψ) = Θ(ψ1) = Θ(ψ2) in any

case.

For i = 1, 2, define η̃i : [0, 1]→ R2 by η̃i(t) = −ηi(t) + p. It is easy to see that η̃i is in

∂Ω̃i and η̃1(0) = p1
2, η̃1(1) = p2

2, η̃2(0) = p1
1, η̃2(1) = p2

1. Let V1 be the region enclosed by

η1 and η̃2, and V2 be the region enclosed by η2 and η̃1. By Lemma 5.4(3), there exists a

homotopyAi : [0, 1]×[0, 1]→ Vi such thatA1(t, 0) = η1(t),A1(t, 1) = η̃2(t),A1(0, s) = p1
1,

A1(1, s) = p2
1, and A2(t, 0) = η2(t), A2(t, 1) = η̃1(t), A2(0, s) = p1

2, A2(1, s) = p2
2 for every

(t, s) ∈ [0, 1]× [0, 1]. For i = 1, 2, let Bi : [0, 1]× [0, 1]→ R2 be the homotopies defined by

B1(t, s) = Ip(HΩ2;0(η2(t), s)), B2(t, s) = Ip(HΩ1;0(η1(t), s)),

for (t, s) ∈ [0, 1]×[0, 1]. Then B1(t, 0) = η̃2(t),B2(t, 0) = η̃1(t), and B1(t, 1) = B2(t, 1) = p

for t ∈ [0, 1]. It is also easy to see that Bi([0, 1]× [0, 1]) ⊂ R2 \ intΩi. For i, k = 1, 2 we

define Eki : [0, 1]× [0, 1]→ R2 by

Eki (t, s) = γki (t)

for (t, s) ∈ [0, 1]× [0, 1].

Now we can see that the homotopy Gi =
H1
i·

E1
i

·
·
Bi
·
Ai

·
·

H2
i·

E2
i

is well defined, where Hi’s are

defined as in Lemma 7.3, and Gi([0, 3]× [0, 2]) ⊂ R2 \ intΩi for i = 1, 2. See Figure 16.

Note that γ1
i · ηi · γ2

i is homotopic to γ1 · η · γ2 in R2 \ intΩi via Gi.

H1
i Bi H2

i

E1
i Ai E2

i

γ1 η = p γ2

γ1
i η̃3−i γ2

i

γ1
i

ηi γ2
i

p1
i p2

i

Fig. 16. The homotopy Gi =
H1
i·

E1
i

·
·
Bi·
Ai

·
·

H2
i·

E2
i

Let φ̃ : [0, 1]→ ∂vΩ, φ̃(t) = (γ̃(t), ñ(t)), be a locally one-to-one, continuous map such

that OΩ(φ̃) = + and γ̃(0), γ̃(1) are flat points. Since [0, 1] is compact, Lemma 7.3 shows

that there exist γ̃(0) = p0, . . . , pn = γ̃(1) ∈ ∂Ω and continuous maps φk : [0, 1] → ∂vΩ,
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φk(t) = (γk(t),nk(t)), and φki : [0, 1] → ∂vΩi, φ
k
i (t) = (γki (t),nki (t)), for i = 1, 2 and

k = 1, . . . , n, such that:

(1) γk(0) = pk−1, γk(1) = pk, γk is one-to-one, and OΩ(γk) = +.

(2) Each of φki ’s and γki ’s is either one-to-one or constant, and, if one of OΩ1
(γk1 ),

OΩ2
(γk2 ) is −, then the other is +.

(3) γk(t) = γk1 (t) + γk2 (t) and nk(t) = nk1(t) = nk2(t) for t ∈ [0, 1].

(4) Θ(φk) = Θ(φk1) = Θ(φk2), and, for i = 1, 2, γki is homotopic to γk in R2 \ intΩi
via the homotopy Hk

i : [0, 1]× [0, 1]→ R2 \ intΩi, where

Hk
1 (t, s) = Iγk(t)(HΩ2;0(γk2 (t), s)), Hk

2 (t, s) = Iγk(t)(HΩ1;0(γk1 (t), s)),

for (t, s) ∈ [0, 1]× [0, 1].

(5) There exists a continuous, onto, non-decreasing function h̃ : [0, 1] → [0, n] such

that γ̃(t) = (γ1 · . . . · γn)(h̃(t)) for t ∈ [0, 1].

From the above arguments, there exist continuous maps ψk : [0, 1] → ∂vΩ, ψk(t) =

(ηk(t),mk(t)), and ψki : [0, 1] → ∂vΩi, ψ
k
i (t) = (ηki (t),mk

i (t)), and a homotopy Aki :

[0, 1]× [0, 1] → V ki for i = 1, 2 and k = 1, . . . , n− 1 (k = 1, . . . , n if φ̃(0) = φ̃(1)), where

V ki ⊂ R2\(Ωi∪(−Ω3−i+pk)) is the region bounded by ηki and η̃k3−i = −ηk3−i+pk, such that

Θ(ψk) = Θ(ψk1 ) = Θ(ψk2 ), and γki ·ηki ·γk+1
i is homotopic to γk ·ηk ·γk+1 in R2 \ intΩi via

Hki·
Ek
i

·
·

Bki·
Ak
i

·
·

H
k+1
i·

E
k+1
i

for i = 1, 2 and k = 1, . . . , n−1 (k = 1, . . . , n if φ̃(0) = φ̃(1)). Here, we let

φn+1 = φ1, γn+1 = γ1, and φn+1
i = φ1

i , γ
n+1
i = γ1

i , Hn+1
i = H1

i , En+1
i = E1

i for i = 1, 2.

For i = 1, 2 and k = 1, . . . , n−1 (or n), define Eki (t, s) = γki (t) for (t, s) ∈ [0, 1]×[0, 1], and

Bk1 (t, s) = Ipk(HΩ2;0(ηk2 (t), s)), Bk2 (t, s) = Ipk(HΩ1;0(ηk1 (t), s)),

for (t, s) ∈ [0, 1]× [0, 1].

For i = 1, 2, let

φ = φ1 · ψ1 · φ2 · . . . · ψn−1 · φn,
φi = φ1

i · ψ1
i · φ2

i · . . . · ψn−1
i · φni ,

γ = γ1 · η1 · γ2 · . . . · ηn−1 · γn,
γi = γ1

i · η1
i · γ2

i · . . . · ηn−1
i · γni ,

γ̃i = γ1
i · η̃1

3−i · γ2
i · . . . · η̃n−1

3−i · γni ,
Pi = E1

i ·A1
i · E2

i · . . . ·An−1
i · Eni ,

Qi = H1
i ·B1

i ·H2
i · . . . ·Bn−1

i ·Hn
i .

When φ̃(0) = φ̃(1), we let

φ = φ1 · ψ1 · φ2 · . . . · ψn−1 · φn · ψn,

φi = φ1
i · ψ1

i · φ2
i · . . . · ψn−1

i · φni · ψni ,

γ = γ1 · η1 · γ2 · . . . · ηn−1 · γn · ηn,

γi = γ1
i · η1

i · γ2
i · . . . · ηn−1

i · γni · ηni ,



44 S. W. Choi

γ̃i = γ1
i · η̃1

3−i · γ2
i · . . . · η̃n−1

3−i · γni · η̃n3−i,

Pi = E1
i ·A1

i · E2
i · . . . ·An−1

i · Eni ·Ani ,

Qi = H1
i ·B1

i ·H2
i · . . . · Bn−1

i ·Hn
i ·Bni ,

for i = 1, 2.

. . .

. . .

. . .

E1
i

H1
i

A1
i

B1
i

E2
i

H2
i

A2
i

B2
i

p0 p1 p1 p2 p2

γ1
i η1

i γ2
i η2

i

γ1
i η̃1

3−i γ2
i η̃2
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Fig. 17. The homotopy Hi =
Qi·
Pi

Note that Qi(t, s) = Iγ(t)(HΩ3−i;0(Iγ(t)(γ̃i(t)), s)) for (t, s) ∈ [0, 2n − 1] × [0, 1] (for

(t, s) ∈ [0, 2n] × [0, 1] if φ̃(0) = φ̃(1)), for i = 1, 2. Let Hi =
Qi
·
Pi

. See Figure 17. Now it

is easy to see that γi is homotopic to γ̃i in R2 \ intΩi via Pi, and γ̃i is homotopic to

γ in R2 \ intΩi via Qi. So γi is homotopic to γ in R2 \ intΩi via Hi. Furthermore, if

φ̃(0) = φ̃(1), then Hi(0, s) = Hi(2n, s) for s ∈ [0, 2]. It is also easy to see that Θ(φ̃) =

Θ(φ) = Θ(φ1) = Θ(φ2).

Finally, we obtain the following theorem by using the above arguments:

Theorem 7.2 (simple connectedness of Minkowski sum of semi-convex domains). Let

M be a Minkowski class, and let Ω1 and Ω2 be semi-convex M-domains. Then their

Minkowski sum Ω = Ω1 +Ω2 is a simply connected regular M-domain.
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Proof. From Theorem 7.1, Ω is a regular M-domain. We can assume 0 ∈ intΩ1, intΩ2.

Clearly, this implies 0 ∈ intΩ. Suppose Ω is not simply connected. Then there exists an

inner boundary C of Ω. Let C̃ be the connected component of ∂vΩ corresponding to C,

and let φ̃ : [0, 1] → C̃, φ̃(t) = (γ̃(t), ñ(t)), be a continuous map such that φ̃(0) = φ̃(1),

γ̃(0) = γ̃(1) is a flat point, φ̃|[0,1) is one-to-one, and OΩ(φ̃) = +. (That is, φ̃ traverses C̃

exactly once in the standard orientation.) Then Θ(φ̃) = −2π by Lemma 5.2(1).

Now take φ, φi, and Hi for i = 1, 2 as in the above arguments. We have Θ(φ̃) =

Θ(φ) = Θ(φ1) = Θ(φ2), and γi is homotopic to γ in R2 \ intΩi via Hi for i = 1, 2.

Also, γ and γ̃ are homotopic in ∂Ω. So Indγ̃(0) = Indγ(0) = Indγ1
(0) = Indγ2

(0),

since 0 ∈ intΩ, intΩ1, intΩ2. Since C is an inner boundary of Ω and 0 ∈ intΩ, we

have Indγ(0) = 0 by Lemma 5.2(2). So Indγi(0) = 0 for i = 1, 2. It follows that

Θ(φ1) = Θ(φ2) = 0 again by Lemma 5.2(2), since Ω1 and Ω2 are simply connected

and hence have no inner boundaries. So Θ(φ̃) = 0, which is a contradiction.

8. Maximality of semi-convexity

Let C be a subclass of C1:1
c which is closed under restriction. In this section, we show that

for any regular C-domain which is not semi-convex, there exists a semi-convex C-domain

so that their Minkowski sum is not simply connected. Combined with Theorem 7.2,

this answers Problem 2 posed in Section 1 within the category of M-domains for any

Minkowski class M. In fact, it is shown that we can choose this domain among a special

kind of semi-convex C-domains, which we call flag domains. Note that C need not be a

Minkowski class.

First, we observe the following easy fact:

Lemma 8.1. Let Ω be a regular C1:1
c -domain which is not semi-convex. Then there exists

a one-to-one continuous map φ : [−ε, 1 + ε] → ∂vΩ, φ(t) = (γ(t),n(t)), for some ε > 0,

which satisfies the following conditions:

(1) OΩ(φ) = + and Θ(φ|[0,1]) = −π.

(2) −π < Θ(φ|[s,t]) < π for every proper subinterval [s, t] of [0, 1].

(3) Let θ : [−ε, 1 + ε]→ R be an angle function of φ. Then θ is strictly decreasing on

[−ε, ε] and [1− ε, 1 + ε].

Proof. Since Ω is not semi-convex, there exists a one-to-one continuous map φ̃ : [a, b] →
∂vΩ such that OΩ(φ̃) = + and Θ(φ) < −π. Let θ̃ : [a, b] → R be an angle function

of φ̃. Since Ω is a C1:1
c -domain, we can divide [a, b] into a finite number of subintervals

on which θ̃ is either strictly increasing or strictly decreasing or constant. It follows that

the number of critical values of θ̃ is finite. So we can take a < a′ < b′ < b such that

Θ(φ̃|[a′,b′]) = −π and θ̃ is strictly monotone near every t ∈ [a, b] such that θ̃(t) = θ̃(a′) or

θ̃(b′). Now there exist a′ ≤ a′′ < b′′ ≤ b′ such that θ̃(a′′) = θ̃(a′), θ̃(b′′) = θ̃(b′), θ̃ is strictly

decreasing near a′′ and b′′, and θ̃(b′′) < θ̃(t) < θ̃(a′′) for every t ∈ (a′′, b′′). So we can

take a strictly increasing continuous function h : [−ε, 1 + ε]→ [a, b] for some ε > 0 such

that h(0) = a′′, h(1) = b′′ and θ̃ is strictly decreasing on h([−ε, ε]) and h([1− ε, 1 + ε]).
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Taking φ(t) = φ̃(h(t)) for t ∈ [−ε, 1 + ε], we can easily check that φ satisfies conditions

(1)–(3).

For any p ∈ R2, we denote the x-coordinate of p by px, and the y-coordinate of p

by py.

Theorem 8.1 (maximality of semi-convexity). Let C ⊂ C1:1
c be closed under restriction,

and let Ω1 be a regular C-domain which is not semi-convex. Then there exists a semi-

convex C-domain Ω2 such that Ω = Ω1 +Ω2 is not simply connected.

Proof. By Lemma 8.1, we can take a one-to-one continuous map φ : [−ε′, 1 + ε′]→ ∂vΩ1,

φ(t) = (γ(t),n(t)), for some ε′ > 0, such that OΩ1
(φ) = +, Θ(φ|[0,1]) = −π, −π <

Θ(φ|[s,t]) < π for every proper subinterval [s, t] of [0, 1], and θ is strictly decreasing on

[−ε′, ε′] and [1 − ε′, 1 + ε′], where θ is an angle function of φ. We can assume n(0) =

(−1, 0). Let a = γ(1)x and b = γ(0)x. Let v(t) be the unit vector obtained by rotating

n(t) counter-clockwise through 90◦ for t ∈ [−ε′, 1 + ε′]. Suppose γ(t0)x ≥ b for some

t0 ∈ (0, 1) such that γ(t0) 6= γ(0). Then there exists t1 ∈ (0, t0) such that v(t1)x ≥ 0.

So n(t1)y ≤ 0, and hence Θ(φ|[0,t1]) ≥ 0, since −π < Θ(φ|[0,t1]) < π. It follows that

Θ(φ|[t1,1]) = Θ(φ|[0,1]) − Θ(φ|[0,t1]) ≤ −π, which is impossible. Thus γ(t)x < b for every

t ∈ (0, 1) such that γ(t) 6= γ(0). Analogously, γ(t)x > a for every t ∈ (0, 1) such that

γ(t) 6= γ(1). Thus a < γ(t)x < b for every t ∈ (0, 1) such that γ(t) 6= γ(0), γ(1).

Suppose γ(t1)x = γ(t2)x for some 0 < t1 < t2 < 1 such that γ(t1) 6= γ(t2). Then there

exists t3 ∈ (t1, t2) such that v(t3)x = 0. So n(t3)y = 0, which implies n(t3) = (1, 0) or

(−1, 0). It follows that either |Θ(φ|[0,t3])| ≥ π or |Θ(φ|[t3,1])| ≥ π. But this contradicts

the assumption that −π < Θ(φ|[0,t3]), Θ(φ|[t3,1]) < π. Thus γ(t1)x 6= γ(t2)x for every

t1, t2 ∈ (0, 1) such that γ(t1) 6= γ(t2). From these observations, it is clear that there

exists a continuous function f : [a, b]→ R whose graph is γ([0, 1]).

Let γ+ : [0, 1] → ∂Ω1 be a one-to-one continuous curve such that γ+(0) = γ(1) and

OΩ1
(γ+) = +. Note that if γ+((0, ε′′)) 6⊂ {(x, y) ∈ R2 | a < x < b, y > f(x)} for every

small ε′′ > 0, then θ cannot be strictly decreasing on [1 − ε′, 1 + ε′]. So we can take a

continuous function g : [a, a+ ε] → R, for some small ε > 0, such that the graph of g is

contained in ∂Ω1, g(a) = f(a), and f(x) < g(x) for every x ∈ (a, a+ ε]. In the same way,

we can take a continuous function h : [b− ε, b]→ R such that the graph of h is contained

in ∂Ω1, h(b) = f(b), and f(x) < h(x) for every x ∈ [b− ε, b). See Figure 18.

We can assume a + ε < 0 < b − ε and f(0) = 0. Let F , G and H be the graphs of

f , g and h respectively. Let A = ∂Ω1 \ (F ∪G ∪H). Since F and A are compact and

F ∩A = ∅, we can take δ > 0 such that

2δ < min {d(F,A), g(a+ ε)− f(a+ ε), h(b− ε)− f(b− ε)}.
Let Fδ, F2δ be the graphs of f + δ, f + 2δ respectively. Since 2δ < g(a+ ε)− f(a+ ε) and

2δ < h(b− ε)− f(b− ε), F2δ must meet both G and H. Let a1 = max {px : p ∈ F2δ ∩G}
and b1 = min {px : p ∈ F2δ ∩H}. Then the set

Ω′2 = {(x, y) ∈ R2 | a1 ≤ x ≤ b1, f(x) + δ ≤ y ≤ f(x) + 2δ}
is a simply connected regular C-domain, and Ω1 and Ω′2 are in contact position to each

other. It is also easy to see that Ω′2 is semi-convex.
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Fig. 18. Ω′2

Let Ω2 = −Ω′2 + (0, δ) and Ω = Ω1 + Ω2. Clearly, Ω2 is also semi-convex. Define

β− : [a, a1]→ R2 and β+ : [b1, b]→ R2 by

β−(t) = (t, g(t))− (a1, g(a1)) + (0, δ), t ∈ [a, a1],

β+(t) = (t, h(t))− (b1, h(b1)) + (0, δ), t ∈ [b1, b].

If β− does not meet F , then let l− be the line segment that starts from β−(a) and goes in

the direction of (0,−1) until it meets F . Also, if β+ does not meet F , then let l+ be the

line segment that starts from β+(b) and goes in the direction of (0,−1) until it meets F .

Note that a + ε < 0 < b − ε. Let D be the simply connected regular C-domain which is

enclosed by the curves F , β−, β+ (and l−, l+ if needed), and let β : [0, 1] → ∂D be a

closed curve which traverses ∂D once in the standard orientation of D. Now note that

(−Ω2+p)∩Ω1 6= ∅ for every p ∈ ∂D. So β(t) ∈ Ω for every t ∈ [0, 1] by Lemma 6.3(1). On

the other hand, note that −Ω2 +(0, δ/2) = Ω′2− (0, δ/2) has no intersections with Ω1. So

(0, δ/2) 6∈ Ω again by Lemma 6.3(1). Since (0, δ/2) ∈ intD, we have Indβ((0, δ/2)) = 1.

Now suppose Ω is simply connected. Then Indβ̃(p) = 0 for every p /∈ Ω and every closed

curve β̃ in Ω. So we have Indβ((0, δ/2)) = 0. This is a contradiction.

Remark 8.1. Theorem 8.1 does not guarantee that for every regular non-semi-convex

domain, there exists a convex domain such that their Minkowski sum is not simply con-

nected. In fact, this is false: Let Ω be the domain depicted in Figure 12 (left). The

Minkowski sum of Ω and any convex domain is simply connected. This can be easily seen

from the fact that there should be a “trapping region” in order for a Minkowski sum to

be non-simply connected.

Note that the domain Ω2 in the proof of Theorem 9.2 is of a special shape, which is

not always shared by every semi-convex domain. Since these domains play an important

role in Section 9, we give a name to them:

Definition 8.1 (flag domain). A simply connected regular C1:1-domain Ω is called a

flag domain if there exists a piecewise C1 function f : [a, b]→ R such that:
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(1) −∞ < f ′(x+), f ′(x−) <∞ for every x ∈ [a, b].

(2) For some rigid motion in R2,

Ω = {(x, y) ∈ R2 | a ≤ x ≤ b, f(x) ≤ y ≤ f(x) + d}
for some d > 0.

See Figure 20 for an example of a flag domain. It is easy to see that a flag domain

is semi-convex, but not vice versa. Note that the domain Ω2 in Theorem 9.2 is a flag

domain. Thus we have the following statement which is stronger than Theorem 9.2:

Theorem 8.2. Let C ⊂ C1:1
c be closed under restriction, and let Ω1 be a regular C-domain

which is not semi-convex. Then there exists a flag C-domain Ω2 such that the Minkowski

sum Ω = Ω1 +Ω2 is not simply connected.

9. Closedness of semi-convexity

In this section, we show that the Minkowski sum of two semi-convexM-domains is again

a semi-convex M-domain for any Minkowski class M. Thus the set of all semi-convex

M-domains is closed under Minkowski sum.

We start with some basic observations:

Lemma 9.1. Let Ω1 and Ω2 be two simply connected regular C1:1-domains such that

Ω1 ⊂ Ω2, and let p ∈ ∂Ω1 ∩ ∂Ω2, qi ∈ ∂Ωi for i = 1, 2 with q2 6= p. For i = 1, 2, let

γi : [0, 1] → ∂Ωi be continuous maps such that γi(0) = p, γi(1) = qi, and let β : [0, 1] →
Ω2 \ intΩ1 be a continuous map such that β(0) = q1, β(1) = q2, and either β is constant

or β((0, 1]) ⊂ Ω2 \ Ω1. Suppose there exists a homotopy H : [0, 1] × [0, 1] → R2 \ intΩ1

such that H(t, 0) = γ1(t), H(t, 1) = γ2(t) for t ∈ [0, 1], and H(0, s) = p, H(1, s) = β(s)

for s ∈ [0, 1]. Then OΩ1
(γ1) ·OΩ2

(γ2) 6= −.

Proof. Let γ̃2 : [0, 1] → ∂Ω2 be a one-to-one continuous map such that γ̃2(0) = p,

γ̃2(1) = q2, and OΩ2
(γ̃2) = +. Let γ̃1 : [0, 1] → ∂Ω1 be a continuous map such that

γ̃1(0) = p, γ̃1(1) = q1, OΩ1
(γ̃1) 6= −, γ̃1|[0,1) is either one-to-one or constant. Clearly,

we can find a homotopy H̃ : [0, 1] × [0, 1] → R2 \ intΩ1 such that H̃(t, 0) = γ̃1(t),

H̃(t, 1) = γ̃2(t) for every t ∈ [0, 1], and H̃(0, s) = p, H̃(1, s) = β(s) for every s ∈ [0, 1].

For i = 1, 2, let νi : [0, 2] → R be the continuous function such that νi(0) = 0 and

µi(νi(t)) = (γ̃i · γi)(t) for t ∈ [0, 2], where µi : R → ∂Ωi are covering maps in the

standard orientation of ∂Ωi with period 1 such that µi(0) = p. See Section 5 for the

definition of γ for a curve γ.

Clearly, 0 ≤ ν1(1) ≤ 1 and 0 < ν2(1) < 1. Note also that the two closed curves γ̃1 · γ1

and γ̃2 · γ2 are homotopic in R2 \ intΩ1. So Indγ̃1·γ1
(0) = Indγ̃2·γ2

(0), where we have

assumed 0 ∈ intΩ1. Note that Indγ̃i·γi(0) = νi(2) for i = 1, 2. So ν1(2) = ν2(2) ∈ Z. Thus

the assertion follows, since OΩi(γi) is the sign of νi(1)− νi(2).

Lemma 9.2. Let Ω be a simply connected regular C1:1-domain. Let (p1,n1) and (p2,n2)

be two points in ∂vΩ such that n1 = −n2. Suppose

Ω ∩ ({p1 + t · n1 | t > 0} ∪ {p2 + t · n2 | t > 0}) = ∅.
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Then Θ(φ) = π for any one-to-one continuous map φ : [0, 1]→ ∂vΩ, φ(t) = (γ(t),n(t)),

such that φ(0) = (p1,n1), φ(1) = (p2,n2) and OΩ(φ) = +.

Proof. We can assume that n1 = (1, 0). Since Ω is bounded, there exist a1 < a2 and

b1 < b2 such that Ω ⊂ {(x, y) ∈ R2 | a1 < x < a2, b1 < y < b2}. See Figure 19.
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Fig. 19. Figure for Lemma 9.2

Let l1 = {(x, y) ∈ R2 | x = a1, (p2)y ≤ y ≤ b2} and l2 = {(x, y) ∈ R2 | x = a2,

(p1)y ≤ y ≤ b2}. Let m1 = {(x, y) ∈ R2 | a1 ≤ x ≤ (p2)x, y = (p2)y} and m2 = {(x, y) ∈
R2 | (p1)x ≤ x ≤ a2, y = (p1)y}. Let l = {(x, y) ∈ R2 | a1 ≤ x ≤ a2, y = b2}. By the

assumptions, the curve γ and the line segments m2, l2, l, l1, m1 constitute the boundary

of a simply connected regular C1:1-domain, which we call Ω′. Let ψ : [0, 1] → ∂vΩ′ be

a one-to-one continuous map such that ψ(0) = (p1, (0,−1)), ψ(1) = (p2, (0,−1)) and

OΩ′(ψ) = +. It is easy to see that Θ(ψ) = 2π. By Lemma 5.2(1), we have Θ(ψ) + π/2−
Θ(φ) + π/2 = 2π. Thus Θ(φ) = π.

Lemma 9.3. Let Ω1 be a flag C1:1-domain and Ω2 a semi-convex C1:1-domain. Suppose

that Ω1 and Ω2 are in contact position to each other, and that V is a bounded connected

component of R2 \ (Ω1 ∪ Ω2). Then for any p1 ∈ ∂V \ ∂Ω2, there exist p2 ∈ ∂V \ ∂Ω1

and a continuous curve β : [0, 1]→ V such that β(0) = p1, β(1) = p2, β((0, 1)) ⊂ V, and

(Ω1 + β(u)− β(0)) ∩Ω2 6= ∅ for every u ∈ [0, 1].

Proof. We can assume that

Ω1 = {(x, y) | f(x) ≤ y ≤ f(x) + d, |x| ≤ 1},
for some piecewise C1 function f : [−1, 1]→ R. Let F and Fd be the graphs of f and f+d

respectively, and let l−, l+ be the line segments (without end points) joining (−1, f(−1))

to (−1, f(−1) + d) and (1, f(1)) to (1, f(1) + d) respectively. See Figure 20. Note that

∂Ω1 = F ∪ Fd ∪ l− ∪ l+. If p1 ∈ F (resp., p1 ∈ Fd), then take p2 ∈ ∂V \ ∂Ω1 such

that (p2)x = (p1)x and (p2)y = max {py : p ∈ ∂V \ ∂Ω1, px = (p1)x, py < (p1)y} (resp.,

(p2)y = min {py : p ∈ ∂V \ ∂Ω1, px = (p1)x, py > (p1)y}). If p1 ∈ l− (resp., p1 ∈ l+), we

take p2 ∈ ∂V \ ∂Ω1 such that (p2)y = (p1)y and (p2)x = max{px : p ∈ ∂V \ ∂Ω1, py =

(p1)y, px < (p1)x} (resp., (p2)x = min {px : p ∈ ∂V \ ∂Ω1, py = (p1)y, px > (p1)x}). In
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Fig. 20. Flag domain

any case, we define β(u) = (1 − u)p1 + up2 for u ∈ [0, 1]. It is clear that β(0) = p1,

β(1) = p2, β([0, 1]) ⊂ V , and β((0, 1)) ⊂ V .

Now we only have to show that (Ω1 + β(u) − β(0)) ∩ Ω2 6= ∅ for every u ∈ [0, 1].

For i = 1, 2, let φi : [0, 1] → ∂vΩi, φi(t) = (γi(t),ni(t)), be a one-to-one continuous

map such that OΩi(φi) = +, γi([0, 1]) = ∂V ∩ ∂Ωi, φi(0) = (γi(0),n+
Ωi

(γi(0))), φi(1) =

(γi(1),n−Ωi(γi(1))). Note that Ω1 is semi-convex, since a flag domain is semi-convex. So

by Lemma 5.4(2), we have −π ≤ Θ(φi) ≤ π for i = 1, 2. From this, it is easy to see that

at least one of F , Fd, l−, l+ has no intersections with γ1([0, 1]), and if γ1([0, 1]) intersects

one of l+, l−, then it does not intersect the other. Thus, by symmetry, it is sufficient to

consider the following four cases when γ1([0, 1]) intersects only (1) F , (2) l−, (3) F and

l−, (4) F , l− and Fd. See Figure 21.
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Fig. 21. Four cases of contact positions

First consider case (1). Let U = {(x, y) ∈ R2 | γ1(0)x ≤ x ≤ γ1(1)x, y ≤ f(x)}.
Suppose there does not exist t′1 nor t′2 in [0, 1] such that γ2([0, t′1]) ⊂ U , γ2(t′1)x =
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γ1(0)x, and γ2([t′2, 1]) ⊂ U , γ2(t′2)x = γ1(1)x. Then there exist 0 < t1 < t2 < 1 and

ε > 0 such that n2(t1) = −n2(t2) = (−1, 0), Θ(φ1|[t1−ε,t1]), Θ(φ1|[t2,t2+ε]) < 0, and

V ∩ {γ2(ti) − u · n2(ti) | u > 0} = ∅ for i = 1, 2. By applying Lemma 9.2 to V , we

have Θ(φ2|[t1,t2]) = −π. So Θ(φ2|[t1−ε,t2+ε]) < −π, which is impossible since Ω2 is semi-

convex. Thus at least one of t′1, t′2 above should exist. Then we can see easily that

(Ω1 + β(u)− β(0)) ∩Ω2 6= ∅ for every u ∈ [0, 1].

Case (2) can be treated with the same argument as in (1). Consider case (3). Note that

the case when γ1(1) = (−1, f(−1)) can be treated by the same method as for case (2).

So we assume γ1(1) 6= (−1, f(−1)). Suppose p1 ∈ F . Let U = {(x, y) ∈ R2 | −1 ≤ x ≤
γ1(1)x, y ≤ f(x)}. Suppose there does not exist t′1 ∈ [0, 1] such that γ2([0, t′1]) ⊂ U ,

γ2(t′1)x = −1. Then there exist 0 < t1 < t2 < 1 and ε > 0 such that n2(t1) = −n2(t2) =

(−1, 0), Θ(φ2|[t1−ε,t1]), Θ(φ2|[t2,t2+ε]) < 0, and V ∩ {γ2(ti) − u · n2(ti) | u > 0} = ∅ for

i = 1, 2. By Lemma 9.2, we have Θ(φ2|[t1,t2]) = −π. So Θ(φ2|[t1−ε,t2+ε]) < −π, which is

impossible since Ω2 is semi-convex. Thus there exists t′1 ∈ [0, 1] as above, and it follows

easily that (Ω1 + β(u)− β(0)) ∩Ω2 6= ∅ for every u ∈ [0, 1].

Suppose p1 ∈ l−. Let U1 be the (closed) region bounded by {γ1(0)+u·(−1, 0) | u ≥ 0},
{γ1(1) + u · (0,−1) | u ≥ 0} and γ1, which does not contain Ω1. Let U2 = {(x, y) ∈
R2 | x ≤ −1, f(−1) ≤ y ≤ γ1(0)y}. Suppose there do not exist t′1, t′2 in [0, 1] such

that γ2([0, t′1]) ⊂ U1, γ2(t)y ≥ γ1(1)y for every t ∈ [0, t′1], γ2(t′1)y = γ1(0)y, and

γ2([t′2, 1]) ⊂ U2, γ2(t′2)y = f(−1). Then there exist 0 < t1 < t2 < 1 and ε > 0 such that

n2(t1) = −n2(t2) = (0, 1), Θ(φ2|[t1−ε,t1]), Θ(φ2|[t2,t2+ε]) < 0, and V ∩{γ2(ti)−u ·n2(ti) |
u > 0} = ∅ for i = 1, 2. By Lemma 9.2, we have Θ(φ2|[t1,t2]) = −π. It follows that

Θ(φ2|[t1−ε,t2+ε]) < −π, which is impossible since Ω2 is semi-convex. So at least one

of t′1, t′2 exists. Now it is easy to see that (Ω1 + β(u) − β(0)) ∩ Ω2 6= ∅ for every

u ∈ [0, 1].

Finally, consider case (4). Note that the cases when γ1(0) = (−1, f(−1) + d) or

γ1(1) = (−1, f(−1)) can be treated with the same methods as for cases (2) and (3). So

assume γ1(0) 6= (−1, f(−1)+d) and γ1(1) 6= (−1, f(−1)). By using the same argument as

for case (3) when p1 ∈ F , we can see that (Ω1 +β(u)−β(0))∩Ω2 6= ∅ for every u ∈ [0, 1] if

p ∈ F ∪Fd. Suppose p ∈ l−. Let U3 be the (closed) region bounded by {γ1(1)+u ·(0,−1) |
u ≥ 0}, {(−1, f(−1) + d) + u · (−1, 0) | u ≥ 0} and γ1([0, 1]) ∩ (F ∪ l−), which does not

contain Ω1. Let U4 be the (closed) region bounded by {γ1(0) + u · (0, 1) | u ≥ 0},
{(−1, f(−1)) + u · (−1, 0) | u ≥ 0} and γ1([0, 1]) ∩ (Fd ∪ l−) which does not contain Ω1.

Suppose there do not exist t′1, t′2 in [0, 1] such that γ2([0, t′1]) ⊂ U3, γ2(t)y ≥ γ1(1)y
for every t ∈ [0, t′1], γ2(t′1)y = f(−1) + d, and γ2([t′2, 1]) ⊂ U4, γ2(t)y ≤ γ1(0)y for every

t ∈ [t′2, 1], γ2(t′2)y = f(−1). Then there exist 0 < t1 < t2 < 1 and ε > 0 such that n2(t1) =

−n2(t2) = (0, 1), Θ(φ2|[t1−ε,t1]), Θ(φ2|[t2,t2+ε]) < 0, and V ∩{γ2(ti)−u·n2(ti) | u > 0} = ∅
for i = 1, 2. By Lemma 9.2, we have Θ(φ2|[t1,t2]) = −π, and so Θ(φ2|[t1−ε,t2+ε]) < −π.

But this is impossible since Ω2 is semi-convex. So at least one of t′1, t′2 exists. Now clearly

(Ω1 + β(u)− β(0)) ∩Ω2 6= ∅ for every u ∈ [0, 1].

Theorem 9.1 (semi-convex + flag ⇒ semi-convex). For any Minkowski class M, the

Minkowski sum of a semi-convex M-domain and a flag M-domain is a semi-convex

M-domain.
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Proof. Let M be a Minkowski class. Let Ω1 be a flag M-domain, and let Ω2 be a

semi-convex M-domain. We can assume that 0 ∈ Ω1, Ω2. Since a flag domain is semi-

convex, the Minkowski sum Ω = Ω1 + Ω2 is a simply connected regular M-domain by

Theorem 7.2. Suppose Ω is not semi-convex. Then we can take a one-to-one continuous

map φ̃ : [0, 1]→ ∂vΩ, φ̃(t) = (γ̃(t), ñ(t)), such that OΩ(φ̃) = + and Θ(φ̃) < −π. We can

assume that γ̃(0) and γ̃(1) are flat points. Now we can take the maps φ, φi, φ
k, φki , ψk,

ψki associated to φ̃ as in Section 7.2. We also use all the related notations therein.

Let µ : R → ∂Ω and µi : R → ∂Ωi for i = 1, 2 be covering maps in the standard

orientations of ∂Ω and ∂Ωi respectively with period 1, such that µ(0) = γ(0) and µi(0) =

γi(0). Then there exist continuous functions ν, ν1, ν2 : [0, 2n − 1] → R such that ν(0) =

ν1(0) = ν2(0) = 0 and γ = µ ◦ ν, γi = µi ◦ νi. Note that such ν and νi’s are unique, and

OΩ(γ|[a,b]) and OΩi(γi|[a,b]) are the signs of ν(b)− ν(a) and νi(b)− νi(a) respectively, for

any [a, b] ⊂ [0, 2n− 1].

Note that Θ(φ̃) = Θ(φ) = Θ(φ1) = Θ(φ2). Since Ω1 is semi-convex and Θ(φ1) < −π,

we have OΩ1
(φ1) = −. It follows that OΩ1

(γ1) = −, since Θ(φ1) < −π. So ν1(2n−1) < 0.

Note that ν1 is either non-decreasing or non-increasing on the interval [k − 1, k] for

k = 1, . . . , 2n − 1. So there exist 0 = a0 ≤ b0 < a1 < . . . < bm−1 < am ≤ bm = 2n − 1

such that ν1 is non-increasing on [aj , bj ] for j = 0, . . . ,m, and ν1(aj+1)− ν1(bj) = 0 for

j = 0, . . . ,m − 1. Note that, from the constructions in Section 7, we can assume that

OΩ(γ|[bj ,aj+1]) = +, and either γ(bj) = γ1(bj)+γ2(bj) or γ(aj+1) = γ1(aj+1)+γ2(aj+1) for

j = 0, . . . ,m−1. We can also assume that ν2 is non-decreasing on [aj , bj ] for j = 0, . . . ,m.

Suppose γ(c) 6= γ1(c)+γ2(c) for some c = a0, b0, . . . , am, bm. Note that Ω2 and −Ω1 +

γ(c) are in contact position to each other by Lemma 6.3(3). Since γ(c) 6= γ1(c) + γ2(c),

it follows that, for some k, γi(c) is on ηki for i = 1, 2. Let V be the connected component

of the set R2 \ (Ω2 ∪ (−Ω1 + γ(c))) such that −γ1(c) + γ(c) ∈ V . Note that V is bounded

by ηk2 and η̃k1 . By applying Lemma 9.3 to −Ω1 + γ(c) and Ω2, we have a continuous

curve βc : [0, 1] → V such that βc(0) = −γ1(c) + γ(c), βc(1) ∈ ∂V \ ∂(−Ω1 + γ(c)),

βc((0, 1)) ⊂ V , and (−Ω1 + γ(c) + βc(u)− βc(0))∩Ω2 6= ∅ for every u ∈ [0, 1]. Now from

the constructions in Section 7, it is easy to see that we can take γ2 (more exactly, ηk2 ’s)

and Ak2 ’s such that:

(1) if γ(c) = γ1(c) + γ2(c), then P2(c, s) = γ2(c) for s ∈ [0, 1],

(2) if γ(c) 6= γ1(c) + γ2(c), then P2(c, s) = βc(s) for s ∈ [0, 1],

for each c = a0, b0, . . . , am, bm.

Now we show ν2(aj+1)−ν2(bj) ≥ 0 for j = 0, . . . ,m−1. Fix j, and let b = bj , aj+1 = a.

Note that b < a, OΩ(γ|[b,a]) = +, and either γ(b) = γ1(b) +γ2(b) or γ(a) = γ1(a) +γ2(a).

Suppose γ(b) = γ1(b) + γ2(b). Let Ω̆1 = Ω1 − γ1(b), and let Ω̆ = Ω − γ1(b). Then

Ω̆ = Ω̆1 + Ω2, and Ω2 ⊂ Ω̆ since 0 ∈ Ω̆1. Define γ̆1(t) = γ1(t) − γ1(b) and γ̆(t) =

γ(t)−γ1(b) for t ∈ [0, 2n−1]. Then, clearly, OΩ̆(γ̆|[b,a]) = OΩ(γ|[b,a]) = +, OΩ̆1
(γ̆1|[b,a]) =

OΩ1
(γ1|[b,a]) = 0, and γ2(b) = γ̆(b). Define Q̆2(t, s) = Iγ̆(t)(HΩ̆1;0(Iγ̆(t)(P2(t, 1)), s))

for (t, s) ∈ [0, 2n − 1] × [0, 1] and H̆2 =
Q̆2
·
P2

. Then H̆2 is well defined and continuous,

γ2|[b,a] is homotopic to γ̆|[b,a] in R2 \ intΩ2 via H̆2|[b,a]×[0,2], and H̆2(b, s) = γ2(b) for

s ∈ [0, 2].
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Suppose γ(a) = γ1(a) + γ2(a). Then also H̆2(a, s) = γ2(a) for s ∈ [0, 2]. So by

Lemma 9.1, we have OΩ2
(γ2|[b,a]) 6= −, which implies ν2(a)− ν2(b) ≥ 0. Suppose γ(a) 6=

γ1(a) + γ2(a). Then P2(a, s) = βa(s) and Q̆2(a, s) = βa(1) = −γ1(a) + γ(a) for s ∈ [0, 1].

So H̆2(a, (0, 2]) ⊂ R2 \ Ω2. Since ν1(b) = ν1(a) (hence γ1(b) = γ1(a)) and βa(0) =

−γ1(a) + γ(a), we have −Ω1 + γ(a) + βa(u) − βa(0) = −Ω̆1 + βa(u) for u ∈ [0, 1]. So

(−Ω̆1 + βa(u)) ∩ Ω2 6= ∅ for u ∈ [0, 1], and hence βa([0, 1]) ⊂ Ω̆ by Lemma 6.3(1). So

H̆2(a, (0, 2]) ⊂ Ω̆ \ Ω2. Thus by applying Lemma 9.1 again, we have OΩ2
(γ2|[b,a]) 6= −,

which implies that ν2(a) − ν2(b) ≥ 0. In the same way, ν2(a) − ν2(b) ≥ 0, when γ(b) 6=
γ1(b) + γ2(b) and γ(a) = γ1(a) + γ2(a). Thus ν2(aj+1)− ν2(bj) ≥ 0 for j = 0, . . . ,m− 1.

Now since ν2 is non-decreasing on [aj , bj ] for j = 0, . . . ,m, we have ν2(2n − 1) ≥ 0,

and hence OΩ2
(γ2) 6= −. Note that OΩ2

(γ2) 6= 0, since Θ(φ2) < −π. So OΩ2
(γ2) = +.

But this is impossible, since Ω2 is semi-convex and Θ(φ2) < −π.

Finally, we prove the main theorem of this section:

Theorem 9.2 (semi-convex + semi-convex⇒ semi-convex). For any Minkowski classM,

the Minkowski sum of two semi-convex M-domains is also a semi-convex M-domain.

Proof. Let Ω1 and Ω2 be two semi-convex M-domains, and let Ω = Ω1 + Ω2 be their

Minkowski sum. We know from Theorem 7.2 that Ω is a simply connected regular M-

domain. Suppose Ω is not semi-convex. Then, by Theorem 8.2, there exists a flag M-

domain Ω3 such that Ω + Ω3 is not simply connected. By Theorem 9.1, Ω2 + Ω3 is a

semi-convexM-domain. So Ω+Ω3 = Ω1+(Ω2+Ω3) is simply connected by Theorem 7.2.

This is a contradiction.

10. Conclusion

Here we briefly summarize the important results in this paper, and mention some further

research directions. LetM be a Minkowski class. We denote the major classes of domains

in this paper as follows:

M = The set of all M-domains.

D = The set of all M-domains homeomorphic to the unit disk.

S = The set of all semi-convex M-domains.

F = The set of all flag M-domains.

C = The set of all convex M-domains homeomorphic to the unit disk.

The inclusion relations between them are shown in Figure 22.

The inclusions C ⊂ S ⊂ D ⊂ M and F ⊂ S are all proper. By Theorem 6.3, M is

closed under Minkowski sum. Let D be the class of all subsets X of D such that A+B ∈
D for every A,B ∈ X. By Theorem 7.2, S is in D, and is maximal in D with respect

to the inclusion by Theorem 8.1. In fact, S is the unique maximal element in DF by

Theorem 8.2, where DF = {X ∈ D | F ⊂ X}. Finally, S is closed under Minkowski sum

by Theorem 9.2.

Now let us mention some further research directions in the subject of semi-convexity.

First, note that the semi-convexity is amenable to the algorithmic setting in that only

the rotation of normal vectors needs to be checked. Also, it is a natural generalization



54 S. W. Choi

M

D
S

C
F

Fig. 22. Relations between classes of domains

of the usual convexity. Usually, the computation of the Minkowski sum of general shapes

can essentially be divided into a few steps:

1. Decompose the shapes into unions of simpler shapes, which are usually convex.

2. Select the simple parts which can contribute to the boundary of the Minkowski

sum.

3. Do Minkowski sum operations on these selected parts.

4. Integrate the results to form the Minkowski sum boundary, and hence the Min-

kowski sum itself.

The most important reason for using convex shapes in Step 1 is that they are closed

under Minkowski sum. But in general, the number of the decomposed parts will be large

since the convexity is very restrictive, and this results in the slow-down of the algorithms.

So if we can use semi-convex shapes instead of convex ones, it would be possible to

compute the Minkowski sum in a significantly more efficient way.

An immediate further research direction is to generalize the semi-convexity to 3 or

higher dimensions, which would be most needed in various applications. Also, note that

the current definition of semi-convexity requires some differentiability of the boundary,

i.e., C1:1. Compared to the fact that convexity has no such a priori requirements, this

may be considered as a severe restriction. So an important next step would be to remove

the regularity requirements from the definition of semi-convexity, which will be dealt with

in [4] along with relationships of semi-convexity with other notions such as visibility.
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lated from the Polish by M. Klimek).
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[17] B. O’Neill, Elementary Differential Geometry, Academic Press, New York, 1966.

[18] S. J. Parry-Barwick and A. Bowyer, Minkowski sums of set-theoretic models, in: CSG 94 Set-

Theoretic Solid Modeling: Techniques and Applications, Information Geometers, Winch-

ester, 1994, 101–116.

[19] R. Schneider, Convex Bodies: the Brunn–Minkowski theory, Cambridge Univ. Press, Cam-

bridge, 1993.

[20] J. Serra, Image Analysis and Mathematical Morphology, Academic Press, London, 1984

(English version revised by N. Cressie).

[21] A. Sourin and A. Pasko, Function representation for sweeping by a moving solid, IEEE

Trans. Visualization Computer Graphics 2 (1996), 11–18.


