1. Introduction

Let A and B be subsets of R™. Their sum A + B, called the Minkowski sum of A and B,
is defined by

A+B={a+b|lac A, be B}.

Being one of the most fundamental operations on sets in spaces with the addition opera-
tion, Minkowski sum has been used, both implicitly and explicitly, in virtually all branches
of mathematics. However, there have not been many investigations of the properties of
Minkowski sum itself. One notable exception is the pioneering works by H. Brunn, H.
Minkowski, and others on the so-called Brunn—Minkowski theory, which compares the
volumes of the Minkowski sum and its summands [1, 16, 19].

Meanwhile, mainly due to the convenience of describing various geometric relations,
the Minkowski sum has been adopted and used extensively in engineering and computer
science. A few examples are mechanical engineering (collision-free path planning [13]),
image processing and mathematical morphology [6, 20], computer graphics (metamor-
phosis [5]), geometric modeling (offset and sweep curve/surface generation [15, 21], com-
putation of CSG operations [18]), and computational geometry [7].

The common problem persistent in all such applications is the efficient computation
of Minkowski sums [8, 9, 11]. But the need for dealing with complex geometric objects
encountered in real-world applications makes this goal seem far from satisfactory. Thus
there naturally arises the need for fundamental geometric and topological analysis of
Minkowski sum, which should be more detailed than just comparing volumes.

In this paper, we will investigate some global topological properties of Minkowski
sum in relation to the geometric structures of its summands. Although Minkowski sum
has a simple definition, it may lead to a lot of complicated phenomena. In general, the
Minkowski sum operation does not preserve the topological properties of the sets in the
Euclidean space. To give an idea, we first show some examples: see Figures 1, 2 and 3.
Note that all the summands in these figures are homeomorphic to the unit disk. But
in Figure 1, the result of the Minkowski sum is not simply connected. In Figure 2, the
Minkowski sum is not simply connected, and its boundary is not homeomorphic to the
unit circle. Worse still, the Minkowski sum has infinitely many “holes” in Figure 3.

These examples show that even when the summands are topologically simple, their
Minkowski sum can become quite complex in the topological sense. Especially, Minkowski
sum does not preserve even the simplest topological property of the sets in R?, that is,
that of being homeomorphic to the unit disk.

Thus the following natural problem arises:

(5]
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Fig. 1. Multiply connected Minkowski sum
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Fig. 2. Minkowski sum with singular boundary
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Fig. 3. Minkowski sum with infinitely many holes

PROBLEM 1. Find a class of sets in R? which are homeomorphic to the unit disk, such
that the Minkowski sums of sets in that class are always homeomorphic to the unit disk.

An immediate answer to this problem is the class of all convex sets which are homeo-
morphic to the unit disk, since it can be shown easily that the Minkowski sum of convex
sets is also convex. But a serious drawback of the convexity is that it is too strong: there
are too many useful sets which are not convex. So another important problem is:

PROBLEM 2. Find a class of sets in R? which contains all convex sets homeomorphic to
the unit disk, and is mazximal among all the classes satisfying the condition in Problem 1.

If we consider two bounded sets A and B in the plane as rigid, mutually impenetrable
objects, then the complement of the Minkowski sum A + B in R? represents the set of all
possible relative positions of the translates of A and —B. One such configuration can be
continuously moved into another by translation without mutual penetrating if and only if
the two configurations are in the same connected component of the complement of A+ B
in R?. So, the Minkowski sum A + B is simply connected if and only if any two relative
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positions of the translates of A and —B can be continuously moved into each other by
translation without mutual penetrating, or, in other words, any relative positions can be
continuously pulled over to separate A and —B indefinitely.

We will show that there exists an important class of planar domains that we call semi-
conver, which satisfy the conditions both in Problems 1 and 2. Intuitively speaking, a
planar domain is semi-convex if the normal vector field along the boundary does not turn
concavely by more than the angle 7. We mention that our definition of semi-convexity
differs from that introduced in [14]. It is also significantly more general than the usual
notion of star-shapedness, and, to the author’s knowledge, it is the first among the many
variations of convexity which has an optimal property with respect to the Minkowski
sum.

In general, the boundary curves of a Minkowski sum are results of the operation called
convolution on the boundary curves of the summands. The convolution can be considered
as a basic building block in analyzing the Minkowski sum of the shapes represented by
boundary curves. But there has been few precise mathematical studies on the convolu-
tion of curves in the literature. Also, we will observe in Section 2 that the convolution
can behave wildly unless we restrict the class of the curves to be convolved, which is a
fact not often noted in both theory and practice. So in Section 2, we carefully analyze
the mathematical properties of the convolution of curves, and classify the curve classes
according to their differential regularity with particular regard to convolution.

Often in practice, the curve pieces used to describe shape boundaries come from
specific fixed classes such as the class of rational curves or various classes of splines (e.g.,
the NURBS curves). However, most of these important curve classes are not closed under
convolution, which makes it impossible to represent the Minkowski sum boundary in a
uniform manner (i.e., with the curve pieces in the same curve class used to represent
the summands), and thus causes serious problems in practice. Meanwhile, it also turns
out that the curve classes C*! and C¥! introduced in Section 2 are not closed under
convolution. These facts imply that the usual conditions on the boundary curves such as
rationality or differentiability are not preserved under Minkowski sum. In particular, it
is not clear whether the notion of semi-convexity is closed under Minkowski sum, unless
we restrict the boundary curves to be in special curve classes. Thus it is a necessary and
important problem to find a condition on classes of curves which guarantees closedness
under convolution.

In Section 2, we introduce special curve classes, called Minkowski classes, which are
closed under convolution. An important example of a Minkowski class, denoted by W,
is given in Section 3, for which we use Yojasiewicz’s structure theorem for real-analytic
varieties [12]. It is shown that W contains practically all the curves used in engineer-
ing applications. This in particular means that it is not too restrictive to consider the
Minkowski sum only in the category of M-domains for a Minkowski class M. Here, an
M-domain means a subset in R? whose boundary consists of finitely many curves in M.

Note that we consider a fairly general class of domains, including ones with corners
on their boundaries. In fact, this is also necessary, since such domains can arise naturally
as a result of the Minkowski sum operation on quite nice domains. To handle them, we
introduce two concepts: sectorin Section 4, and wvirtual boundary in Section 5. A sector is a
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local germ of a domain near a boundary point, whether cornered or not. So, by examining
the effect of Minkowski sum on sectors, we can understand the essential and local behavior
of Minkowski sum. By integrating these results, we obtain the global result in Section 6
that the set of all M-domains is closed under Minkowski sum for any Minkowski class
M, which is a basis for the further closedness result for semi-convexity.

The notion of virtual boundary is a generalization of that of the usual boundary
in a way that incorporates corners in a uniform manner. It is defined to be in one-to-
one continuous correspondence with the outer normal vectors on the boundary including
those at the corners. Together with the analysis of sectors, the notion of virtual boundary
enables a uniform and easy treatment of cornered domains, thus reducing the globally
complex problem of Minkowski sum to the analysis of a few local genotypes of the sectors.

The notion of semi-convexity, which generalizes that of convexity, will be formally
introduced in Section 7. Let M be a Minkowski class. It is proved that the Minkowski
sum of any two semi-convex M-domains is homeomorphic to the unit disk, which answers
Problem 1 above within the category of M-domains. In Section 8, we prove that for any
M-domain which is homeomorphic to the unit disk but is not semi-convex, there exists
a semi-convex M-domain such that their Minkowski sum is not homeomorphic to the
unit disk. This answers Problem 2 above within the category of M-domains. In fact,
it is shown that the set of all semi-convex M-domains is uniquely maximal among all
the classes of M-domains which satisfy the condition in Problem 1 and contain all the
M-domains called flag domains. Finally, we prove in Section 9 that the set of all semi-
convex M-domains is closed under Minkowski sum. In proving these results, we will use
the Gauss—Bonnet Theorem, translated into the language of virtual boundary, as one of
the main tools. In Section 10, we summarize the results in this paper, and discuss some
further research directions.

Since semi-convexity is geometric in nature, the properties of semi-convex domains
proved in this paper reveal a new relationship between the geometric and topological
properties of Minkowski sum. Also, since semi-convexity can easily be checked algorith-
mically, it is expected to be utilized in various application areas using Minkowski sum.

2. Curves

The boundaries of reasonable domains consist of curves. So, to analyse domains, we
first analyse curves. In this section, we define various special curve classes according to
their regularity, and study their properties with respect to the operation of convolution.
In particular, the Minkowski classes are introduced, which are defined essentially to be
closed under convolution. We also set up some conventions and notations which will be
used throughout this paper.

Let v = (v1,v2), w = (w1, ws) be in R%. We write v / w if either at least one of v
and w is 0 = (0,0), or v = kw for some k € R. Let p € R? and r > 0. By B,(p), we
always denote the closed ball in R?, centered at p and with radius r. The open ball will
be denoted by B2(p). The unit circle in R? will be denoted by S!. Thus, S'={veR? |
|[v| =1} = 0B1(0).
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2.1. Convolution

DEFINITION 2.1 (C*! curve). Let k,l =1,2,...,00,w (w for real-analytic), and k > [. Let
n=1,2,... Acurvev: (a,b) — R" is called a C* curve if there exists a reparametriza-
tion ¥ : (&,b) — R2 of ~ such that 5’ # 0 on (&,b), and ¥ is C*. A curve ~ : [a,b] — R"
is called a C* curve if the restriction of v to (a,b) is a C* curve, and there exists an
extension 7 : (a — &,b 4 ¢) — R™ of  for some & > 0, such that 7 is a C' curve.

Here, it is important to note that 4’ # 0. Without this condition, a curve + may not

be a C* curve, even if it is k-times differentiable.

DEFINITION 2.2 (the class C*!). Let k,1 = 1,2,...,00,w and k > I. Then we denote
by C*! the class of all C*! curves in R? defined on closed intervals, which have no self-
intersections. An element in C*! will be called a C*¥-curve.

Note that closed loops are excluded in this definition. The inclusion relations between
the classes C*! in Figure 4 are immediate from the definition.
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Fig. 4. Inclusion relations for C¥! and C%

REMARK 2.1. Given a C*!-curve 7 : [a,b] — R?, we usually assume that it is defined on
some slightly larger open interval (a — e,b + ¢), and -y is k-times differentiable on (a,b),
I-times differentiable on (¢ —¢,b+¢), and v #0 on (a —&,b +¢€).

Let v : [a,b] — R? be a C'l-curve, and let 7 : (a — &,b+ &) — R? be a C* extension
of . It is easy to see that the limit

v[y](t) = lim ) =70,

=t [3(7) = 7(1)]
exists in S! for every t € [a,b], and v[y] : [a,b] — S! is continuous. We will denote v[y](a)
also by v[y]. Note that these are independent of the choice of 7. Let p: R — S! be the
covering map defined by u(t) = (cost,sint) for ¢ € R. Now there exists a continuous
function 0 : [a,b] — R such that v[vy](t) = p(6(¢)) for every t € [a,b]. We call 6 an angle
function of v. Note that if ¢ is another angle function of ~, then, for some integer n, we

have 0(t) = 6(t) + 2n~ for every t € [a,b]. So the following is well defined:

DEFINITION 2.3 (convex curve). Let 7 : [a,b] — R? be a Cl'1-curve, and let 0 : [a,b] — R
be an angle function of «. Then ~ is called convex if 8 is either strictly increasing or
strictly decreasing, provided it is not constant. The signature of -y, o(vy), is defined to be
+ (resp., —) if 0 is strictly increasing (resp., strictly decreasing), and 0 if 6 is constant.
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For k,1 =1,2,...,00,w with k > [, we denote by C¥ the class of all convex curves in
CF1. An element of C¥! will be called a C¥!-curve.

From the above definition, the inclusion relations between the classes C¥ in Figure 4
are obvious.

DEFINITION 2.4 (x-admissible curves). Two Cll-curves 71, 72 are said to be x-admissible
to each other if v[y1] / v]y2] and o(v1) = o(y2) # 0.

Note that the *-admissibility is a transitive relation. Let «; : [a;,b;] — R? i =
1,...,n, be CXl-curves which are x-admissible to each other. Let 8; : [a;,b;] — R be
an angle function of ~; for each i. For each 4, define 6; : [a;,b;] — R by 6;(t) = () if
v[vi] = vim), and 6;(t) = 6;(t) + 7 if v[y:] = —v[y1]. Then, with no loss of generality, we
can assume 6;(a;) = 01(a;1) for each i. Define & = min {6 (b1),...,0,(b,)} if o(71) = +
and o = max {01(b1),...,0,(by)} if o(71) = —. Let h : [0,1] — R be the linear function
with h(0) = 61(a1) and h(1) = a. Now we define v = 1 * ... x v, : [0,1] — R?, the
convolution of vy, ...,vn, by

() = 107 (h(t)) + .. + (07 (R(1)))

for t € [0, 1]. Note that v[y1](0;(h()) // - .. [ V[a) (01 (R(1))) for every t.
From the definition, it is clear that the result of convolution does not depend on the

order of operations. It is also easy to see that convolutions are continuous curves. But in
general, a convolution of C}!-curves can exhibit quite anomalous behavior, and it cannot
be expected to be even a C'!'-curve. This can happen even when the terms belong to
C¥**° as can be seen from the following example:

EXAMPLE 2.1. For some small § > 0, let y;,v_ : [0,6] — R? be given by v+(t) =
(t, f+(¢t)) for t € [0, ¢], where fi :[0,0] — R are deﬁned by

fa(t) = §§126Xp< 2){ {1+\/_Sln<g—£>}]d§

for t € [0,4]. Note that

o< Bow (1) i i vaan (2o T))] < 6 B b (1)

for every £ > 0. So we have

0< fult) < (5+f)§ exp( £)d£=(5+¢§>e}<p<—%)

for every t € (0, ]. This shows that f; and f_ are well defined. It is easy to see that fi
are real-analytic on (0, ¢], and lim; ¢ fik) = 0 for every k < co. Hence v4 € C¥**°. Note
that

HOE tl4eXp (—%) {(1 —2t) [4i {1 +V2sin (% B Z) H F V2cos <_ B %)]
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for t > 0. So it follows that f(t) > 0 for t € (0, ] if we choose sufficiently small 6 > 0.
This shows that v;,v7- € C¥°, and v[y1] = v[y] = (1,0), o(71) = o(y2) = +. Let
f=f+—f-. Then

t

0] e (D)o (=)o (1) ()
0

for t € (0,0]. Let t, = (3m/2 + 27N + 2n7)~! for n = 1,2,..., where (37/2 + 27N +
2m)~1 < § < (31/2427N)~t Let S = {(s,t) € [0,6] x[0,0] | v+ (s) = v—(t)}. It is easy to
see that S = {(tn,tn) | n =1,2,...3U{(0,0)}. Note also that f'(t,) = f\ (tn)—f.(t,) =0
for all n. Now 4 and —v_ are in C¥*°°, and *-admissible to each other. Let v = 1% (—72) :
[0,1] — RZ2. Then, from the above argument, it is easy to see that there exist sequences
an, by, \, 0 with a, 1 < b, < a, such that y(a,) = 0 and y(b,) # 0 for every n. Clearly,
this cannot happen for a C***-curve. Thus we conclude that v ¢ C**.

The following lemma shows that the convolution behaves as expected if we know
beforehand that it has only a mild regularity, i.e., C'il.

LEMMA 2.1. Let v; : [a;, b;] — R?, i = 1,2, be two CX-curves which are x-admissible to
each other. Let v = 71 * 2. Suppose v € CY'L. Then, for any t,t1,ts such that v1(t1),
v2(t2) are summed to the convolution 1 * y2, we have

viV(®) Jviml(t) ) vivel(t2)-

In consequence, v is in C;'* and is x-admissible to v and ~a.

Proof. Let v = v[y1](t1) = £v[y2](t2). First, note that

v(1) = () 1 1
= S ———,
N(T) =A@~ Tvi+hva] |va + 11| 2
where
() —m(h) ~ 72(m2) — 72(t2) b - [72(m2) — 72(t2)]
Vi — Vo R

() = )| () — 12(t2)|’ () = )|
and v(7) = v1(71) + Y2(72). Let v = lim,_; v; = £lim,_,; vo. Then

1 1+k
v[vy](t) = lim + cv=lm- ———-v.
0= (5 s |v2+%vlw> M N+ vl

Since we know that v[y](t) € S!, it follows that v[y](t) = v or —v. Now the rest of the
proof follows easily. m

2.2. Minkowski class

DEFINITION 2.5 (Minkowski class). A subclass M of CL! is called a Minkowski class if
the following two conditions are satisfied:

(1) M is closed under restriction, i.e., if v : [a,b] — R? is in M, then Ylje,q) 1s also in
M for any [c,d] C [a,b].

(2) M is closed under initial convolution, i.e., for any two s-admissible M-curves
Y1 ¢ la1, b1] — R? and 72 : [ag, bo] — R?, the convolution ¥1l(a; a,+e] * V2|jas,as+e] i €ither
an M-curve or constant for some € > 0.
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As an example, let £A be the set of all line segments and circular arcs in R2. It can
be easily checked that LA is a Minkowski class. In Section 3, we will present a non-trivial
Minkowski class W, which is significantly larger than LA.

Let v; : [a;,b;] — R%, i = 1,2, be two continuous curves. We say that ;, 7o have an
intersection at (s,t) if y1(s) = v2(t). We say that 1, 72 have an isolated intersection at
(s,t)ify1(s) = y2(¢) and 1 (s") # yo(¥') for every (s',t') € (s—e, s+e)x (t—¢, t+e)\{(s, 1)}
for some € > 0.

The next lemma shows an important property of Minkowski classes:

LEMMA 2.2. Any two v1,72 in a Minkowski class M cannot have infinitely many isolated
intersections.

Proof. With no loss of generality, assume a; = az = 0, where v; : [a;, b;] — R? fori = 1,2.
Suppose 1 and 72 have infinitely many isolated intersections. Since [a1,b;1] X [az, bo] is
compact, there exists an accumulation point of the isolated intersections, which we can
assume to be 71 (0) = 72(0). Also, we can assume 1(0) = 72(0) = 0 and v[y1] = (1,0).
Since 71(0) = 72(0) is an accumulation point of the isolated intersections, we can also
assume that v[ys] = v[y1] = (1,0) and o(v1) = o(y2) = +. Thus, for ¢ = 1, 2, we can write
vi(t) = (t, f;(t)) for small ¢ > 0, where f; is a C'! function such that f;(0) = f/(0) = 0, and
f! is strictly increasing. Now there exists a sequence t,, \, 0 such that v; and 2 have an
isolated intersection at (t,,t,) for every n. If f{(t,) = f5(t,) except for at most finitely
many n’s, then the convolution v = 71 * (—72) would not be in C'*!, which can be seen
from the argument in Example 2.1. So we can assume [} (¢,) # f5(¢n) for every n. We can
also assume that f1(t) # fa(¢) if t # t,, for any n. In this case, it is easy to see that v(¢,,)’s
are in the regions D; and Ds alternating with n, where Dy = {(x,y) € R? | z > 0, y > 0}
and D3 = {(x,y) € R? | 2 < 0, y < 0}. But this is impossible, since v should be in M,
and thus in C1'1. m

REMARK 2.2. Example 2.1 shows that two C2**°-curves can have infinitely many isolated
intersections, which implies that Cf:l is not a Minkowski class for k,1 = 1,2,...,00,w,
k > 1, except for C¥*“. Later, we will also see that C#*“ is not a Minkowski class.

Let ; : [a;,b;] — R?, i = 1,2, be two one-to-one continuous curves. We write v; &~ 7o
if there exist a; < ¢; < b; for i = 1,2 and a homeomorphism b : [a1,c¢1] — [az, c2] such
that h(a1) = ag and v1(t) = vy2(h(t)) for every t € [a1, c1]. We write v1 ~ o if 71 can be
moved to a curve 1 by a rigid motion in the plane so that 7; & ~5. Note that both the
relations =~ and ~ are symmetric and transitive.

Let v; : [a;,b;] — R2, i = 1,2, be two Cl!-curves. Note that, with appropriate rigid
motions in the plane, we can always move v, and 7, to obtain curves 71, ¥2 respectively
so that 71 (a1) = Y2(az) = 0, v[y1] = v[¥2] = (1,0) and o(71), 0(FY2) > 0. We write vy, > 72
(resp., y1 <72) if there exist continuous functions f1, f2 : [0,¢] — R, for some £ > 0, such
that the graph of f; is contained in the image of ; for i = 1,2, and fi(x) > fa(x) (resp.,
fi(z) < fa(x)) for every z € (0,¢].

Let M be a Minkowski class. As an important consequence of Definition 2.5 and
Lemma 2.2, note that, given any ~1,72 in M, there are only three possibilities: either
1 B> Y2, Or y1 <12, OF 1 ~ ¥2. Suppose 71 and 7, are *-admissible to each other. Then
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the convolution v = 1 * 75 is nitially constant (that is, constant for some interval from
the start) if and only if v1 ~ 75 and v[y;1] = —v[vs]. For the remaining cases, - is initially
in M, and the next lemma shows the relation between v and 71, 2 with regard to the
above relations >, <t and ~. See Figure 5 for the illustration of these results.

LEMMA 2.3 (convolution in Minkowski class). Let M be a Minkowski class, and let ~y; :
[a;, b)) — R2, i =1,2, be two M-curves which are x-admissible to each other. Let v be an
initial piece of the convolution ~y1 * 2, which is either in M, or is a constant.

(1) Suppose v[yi] = v[y2]. Then v is always in M, v[y] = v[n] = v[y], o(y) =
o(11) =0(12), and v < y1, ¥ < 2.

(2) Suppose v[y1] = —v[y2]. Then ~y is constant if and only if v1 ~ va. If 1 > 72

(resp., 11 <172), then 7 € M, viy] = vira] (resp.. vIa] = vin)), o) = o(n) = 0(33),
and vy > vo (resp., v > 71).
Proof. With no loss of generality, assume that a1 = aa = 0, 71(0) = 12(0) = 0, v[y1] =
(1,0), and o(v1) = o(y2) = +. There are two possibilities for v[ys]: (1,0) and (—1,0).
We can assume 1 (t) = (¢, f1(t)), 72(t) = (£t, £ f2(t)) (£ depending on the direction of
v[v2]) for small ¢ > 0, where f; is a C'! function such that f;(0) = f/(0) = 0 and f/ is
strictly increasing for ¢ = 1,2. Since either v > 2, 71 ~ 72, or 71 < 72, We can assume
that either fi(t) > fo(t), f1(t) = f2(t), or f1(t) < fa(t) for every small ¢ > 0.

Consider first the case when v[ys] = (1,0). By Lemma 2.1, it is clear that v € M,
v[vy] = (1,0) and o(y) = +. So we can write v(t) = (¢, f(¢)) for small ¢t > 0, where f is a
C! function such that f(0) = f’(0) = 0 and f’ is strictly increasing for small ¢. Since
is in M, we can see that, for i = 1,2, f(¢) is either greater than, equal to, or less than
fi(t) for every small ¢ > 0.

Now, for any small ¢ > 0, we can take small t1,ty > 0 such that ¢t = 1 + to, fi(t1) =
f'(t2), and f(t) = fi(t1) + f2(t2). By Lemma 2.1, f'(t) = f{(t1) = f'(t2). Since t > t1, 1>
and f1, f5 are strictly increasing, we have f1(¢), f5(t) > f'(t). Thus f;(¢t) > f(t),i=1,2,
for every small ¢ > 0, which implies that v <; and v <0 2. This shows (1).

Y Y
Y2

- Y1k Y2
j//y Y1 *72 //7 7

T T

2

Fig. 5. Convolutions of M-curves

Now consider the case when v[ys] = (—1,0). Obviously, v is constant if and only if
1 ~ Y2. So assume y; % 2. Then either v1 >~5 or 71 <y2. Suppose 71 <y2. By Lemma 2.1,
either v[y] = (1,0) or v[y] = (-1,0). If v[y] = (—1,0), then we must have f{(¢) > f5(t)
for small ¢ > 0, since fi, f5 are strictly increasing. It follows that fi(t) > fo(t) for
sufficiently small ¢ > 0, which contradicts the assumption that v, < v2. So v[y] = (1,0).
Since v € M and o(y) = +, we can assume Y(t) = (¢, f(¢)) for small ¢ > 0, where f is a
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C! function such that f(0) = f/(0) = 0, and f’ is strictly increasing for small ¢ > 0. Now
for any small ¢ > 0, we can take small 1,5 > 0 such that ¢t = t; — to, f1(t1) = f'(t2),
and f(t) = fi(t1) — fa(t2). By Lemma 2.1, f'(t) = fi(t1) = f'(t2). Since t < ¢; and f]
is strictly increasing, we have f{(t) < f’(t), and thus fi(t) < f(¢) for small ¢ > 0. This
implies that + > ;. By a symmetric argument, we can also show that v[y] = v[y2] and
v > 2, when 77 1> v2. Thus we have shown (2). m

3. The class W

In this section, we present an important example of a Minkowski class, called W, which is
large enough to contain practically all the important curves such as the NURBS curves.
We will need the following proposition which is part of Lojasiewicz’s Structure Theorem
for real-analytic varieties ([10], [12]).

PROPOSITION 1 (S. Lojasiewicz). Let @ : U — R be a real-analytic function on an open
set U0 inR", n>1, andlet Z = {(z1,...,2n) €U | P(x1,...,2,) = 0}. Then there
exist T € SO(n,R) and an open set N 3 0 such that the set ZNN can be decomposed as

ZNAN=Vu...uvn1

where each V¥ can be decomposed again as
Pk
vk = U rk
i=1

for some 0 < pi, < 0o. Here, each I'° is a point, and for each I'F with k > 1, there exist

1 K3
a connected open set UF € R* and real-analytic functions ff,kﬂ, . §fn on UF such that
IF=T{(x1,...,20) ER" | (z1,...,21) € Uik,:cj :gf,j(:cl,...,mk) for g =k+1,... ,n}.
In fact, what we really need is the following consequence of the above proposition.

COROLLARY 1. Let @ : U — R be a real-analytic function on an open set U > 0 in R™,
n>1, and let Z = {(x1,...,2,) € U | ®(x1,...,2,) = 0}. Then there exists an open
neighborhood N of 0 in R? such that the set Z N N has a finite number of connected
components.

By using the above result, we first see how convolution behaves in the class C2*“.
Here, we define v x w = vjws — vow; for v = (vy,v2),w = (w1, ws) € R% Note that
v /w if and only if v x w = 0.

LEMMA 3.1. Let v; : [a;,b;]) — R%, i =1,...,n, be C¥*“-curves which are x-admissible to

each other. Then, for some €1,...,en >0, ¥ = Vil[a,a14e1] ¥ -+ * Tn
constant, or is a C¥**-curve which is *-admissible to each ;.

[an.anten] 05 €ither

Proof. We assume a1 = ... =ap =0, 71(0) =... =7,(0) =0, o(m) =... =0(ywm) =+,
and v[y1] = (1,0). For each ¢, let 0; be the angle function of 4; such that 51(0) =0or T,
and define 6; : [0,b;] — R by 6; = 6; if v[y;] = (1,0), and 6; = 0; — 7 if v[y;] = (=1,0).
Then 6; is strictly increasing and 6;(0) = 0 for every i. Take small 0 < ¢; < b; for each i
such that 61(g1) = ... = 0,(e,). Let @ = 01(e71). Since ;’s are in C¥*“, we view each ~;
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as defined and real-analytic on (—d,¢;] for some § > 0. We can also assume that each 7;
is unit-speed.
Let U = (—6,e1) X ... x (—8,6,) CR™ Then F : U — R and G : U — R? defined by

F(ay,an) = Y i) x k@l Glaon.owa) = 3 (T ralan) i)

ik =1 pi

are real-analytic on U. Here, for each i, k; : (=9, &;] — R is the curvature function of ;,
Le., ki(z;) = vl (2;) %! (x;). Let Zp be the zeroset of F in U. Let Q = [0,e1) %x...%x[0,&,).
Then it is easy to see that Zp N Q = {{(¢) | t € [0,a)}, where the one-to-one map
¢ : [0,a] — R™ is defined by ¢(t) = (07 (1), ...,0, (1))

Note that #;(x;) = 0.(x;) for x; € [0,&;] for each i. So (6; 1) (t) = 1/r;(0;(t)) for
t € [0, a] for every i. Since ; is real-analytic on (-4, €;], we can take ¢; small enough so
that #; does not vanish on (0,¢;]. So 6; ! is real-analytic on (0, a] for each i, and hence ¢
is real-analytic on (0, a]. Note that v(t) = v1 (07 () + ... + v.(0;,1(t)) for t € [0,a]. So
7 is also real-analytic on (0, a]. Now

/ - rip—1 1 1
7= 2RO G e o) S
Note that |G o ¢|? is a real-analytic function on (0, a]. If |G o (|? =0 on (0, ], then v is
constant. Suppose |G o ¢|? # 0 on (0,a]. Let S = {t € (0,a] | |G o ¢|*(t) = 0}. Suppose
S has infinitely many elements. Since |G o (|? is real-analytic on (0,«], there exists a
sequence tx \, 0 in (0,«) such that S = {tx | & = 1,2,...}. Define the real-analytic
function ® by & = F + |G| on U. Let Zg be the zero set of @ in U. By Corollary 1,
there exists an open connected neighborhood N of 0 in U such that Zs N N has a finite

number of connected components. Let x; = ((t;) for k = 1,2,... Since ¢, \, 0 and
¢(0) = 0, infinitely many x’s are in N. Denote them again by xx, k = 1,2,... Then
ZgNNNQ = {xx | £k =1,2,...} U{0}. This means that Zy N N has infinitely many
isolated points, which contradicts Corollary 1. Thus S is finite. Now we can take ¢;’s
small enough again such that +/(¢) never vanishes on (0, a]. So v on (0, @] is a C¥ curve.
Note that v'(t) /~v.(0; 1 (t)) for every t € (0,a] and i = 1,...,n. So 7 is convex, C' on
[0,a], v[y] / (1,0), and o(vy) = +. We can take ¢;’s smaller still so that ~ is one-to-one.
Thus we have proved that v is a C¢*!-curve *-admissible to each ;. m

We have seen that convolutions of any C¥*“-curves belong to C<*!. In fact, this is the
best we can get. A convolution of C¥*“-curves may not even be a C¥*2-curve, which can
be seen from the following example:

ExXAMPLE 3.1. Let

’71(75) = <ta ;t2)a le [Oa 1]7 72(9) = (7 sin 03 cos 0)7 NS [0377/4}

Then 71,72 € C“. It is easy to see that, with some reparametrization,

1
~v(0) = <tan051n9,2tan29+0089>, 0 € [0,7/4],
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where v = 1 * 2. From this, we can show that

D0 x(6)]
oo [y(0)P
So the curvature of v blows up at § = 0, which is impossible for a C**2-curve. Thus
v ECE.
Note that Example 3.1 shows that the class C&** is not a Minkowski class.
Now we define the curve class VW, which is an example of a Minkowski class.

DEFINITION 3.1 (the class W). W is the set of all straight line segments and all C¥*1-
curves which are of the form ~; * ... %, for some vy,...,7, in C&“, n > 1.

As an easy consequence of Lemma 3.1, we have the following fact:
THEOREM 3.1. W is a Minkowski class.

Proof. First, it is obvious that W satisfies condition (1) in Definition 2.5. Let v1,72 € W
be x-admissible to each other. Then v; = a3 *...* ay, and 9 = (1 * ... * 3, for some
Qly.eey Qm, B,y Bn € C¥%. By the definition of convolution, 71 % 72 = a1 % ... % qyy, *
B1 % ...% (. Now from Lemma 3.1, condition (2) in Definition 2.5 is satisfied. =

Note that W is the smallest Minkowski class containing C¥*. Now we explore the
relations of W with other curve classes. Note first that C¥*“ C W C C¥*! by definition.
Example 2.1 and Lemma 2.2 show that W # C¢*1. Example 3.1 shows W # C¥*“. So
Cvv C W C Cvl. Examples 2.1 and 3.1 also show respectively that C¥** ¢ W and
W ¢ C¥2. Moreover, Example 3.2 below shows that W N (C#™ \ C¥"F1) # () for every
1 < n < co. Combining all these, Figure 6 shows the inclusion relations between W and
other curve classes.

Fig. 6. Inclusion relations for W

EXAMPLE 3.2. Let n > 1 be an integer. For some small 0 < T < 1, let 1 (t) = (¢, f(x)),
vao(t) = (=t, —g(t)) for t € [0,T], where
0 1
o =\(r=r%dr, g(t)= £
0
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Clearly, 71,72 € C&*“. Putting f/(t) = ¢'(s), we have s = t — t2. So, with reparametriza-
tion, we have
t

3(0) = n0) +2206) = (22§ (7 = 72" ar -
0

4 g2y2ntl
2n—|—1( ) ’

where v = 1 * 5. Let

(t o t2)2n+1.

S+l

By Lemma 3.1, we know that v is in C¥*!. Note that, for 1 < k < oo, 7 is in C¥* for
k=1,2,...if and only if the limit lims\ o d*F/du® exists, where u = t2. Now

F 3 2\2n 1 2n41
—§(7’—7’) dT—2n+1(\/a—u) .
So
% = (Vu—u)?" — (Vu—u)*™ (% — 1) = (t—t?)* — (t -t} (2% — 1)
= ! t2"~! 4+ higher order terms in t.
Note that dt™/du = %mtm_2 for every integer m. So, for each k =1,2,..., we have

d*F 2nt1-2k
P
for some ay, # 0. It follows that limp o d"F/du™ = 0 and limp o d" T F/du™! = —c0.
This shows that v € C¥™ \ C¥nF1,

+ higher order terms in ¢,

4. Sectors and domains

We will now define the exact meaning of the word domain used in this paper. With our
definition, the domains can be of fairly general shape. For example, ones consisting only
of curve segments, which cannot be regarded as domains in the conventional sense, are
also included. Our analysis of domains and their Minkowski sums will be based on the
global integration of various local results. The sector introduced below is a basic local
object we will use.

Let C be a class of curves in C*!. We say that C is closed under restriction if, for
every v : la,b] — R? in C, Yje,q) is also in C for every [c,d] C [a,b]. We will only
consider the curve classes which are closed under restriction. Note that C¥! Ck! for
k,1=1,2,...,00,w, k > 1 and every Minkowski class satisfy this condition.

DEFINITION 4.1 (sector). Let C be a class of curves in C1** which is closed under restric-
tion. A closed set S in R? is called a C-sector with center p € R? and radius r > 0 if S is
bounded by three continuous curves «, 3, and v which satisfy the following conditions:

(1) « : [a1,a2] — By(p) and B : [b1,b2] — B,(p) are C-curves such that a(a;) =
B(b1) = p.
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(2) The functions g, : [a1,a2] — [0,7] and gg : [b1,b2] — [0,7] defined by o.(t) =
la(t) — p| and gg(t) = |B(t) — p| are homeomorphisms.

(3) Either a([a1, az]) = B([b1,b2]), or @ and § have no intersections except at p.

(4) v traverses 0By (p) from «a(az) to B(bz) in the counter-clockwise direction.

Here, if a(as) = B(bs) (or equivalently, if a([a1, as]) = B([b1,b2])), then v is constant
just at the point a(ag) = B(b2), and S is just the set of all points on the curve « (or

equivalently, 3). The two curves 8 and « are called the start curve and the end curve of
S respectively. The cone C(S) of S is defined as

C(S)={ves'|Iyect :[0,1] — S such that v(0) = p, v/(0) = v}.

S is called sharp (resp., dull, flat) if the center angle of C(S) is less than 7 (resp., greater
than 7, equal to 7). If a([a1, as]) = B([b1, b2]), then we call S degenerate; otherwise it is
non-degenerate.

Br(p) Br(p)
B(b2)
v
a(az) = B(b2) =~
aaz)
Non-degenerate sector Degenerate sector

Fig. 7. Sector

Let S; and Sy be two Cll-sectors with center p and radius . Then S; and S are said
to be non-overlapping if S; N Sy = {p}. We list some elementary properties of sectors,
which follow immediately from Definition 4.1 and Lemma 2.2.

LEMMA 4.1. (1) Let C be a class of curves in C1'! which is closed under restriction, and
let S be a C-sector with center p and radius r. Then B, (p) NS is a C-sector with center
p and radius v’ for every 0 <1’/ <.

(2) Let M be a Minkowski class, and let S1 and Sz be two M-sectors with center
p and radius r. Then there exists 0 < 7' < r such that, for every 0 < o < 1’| the set
B,(p) N (S1USe) is either By(p), or an M-sector with center p and radius o, or a union
of two non-overlapping M-sectors with center p and radius o.

Proof. (1) is obvious, and (2) is immediate from Lemma 2.2. m
Now we define the domains:

DEFINITION 4.2 (domain). Let C be a class of curves in C1*1. A subset §2 of R? is called
a C-domain if it satisfies the following conditions:

(1) £ is connected and compact.
(2) 9092 is a union of a finite number of C-curves, no two of which meet at infinitely
many points.
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Note that, in view of this definition, the Minkowski sum in Figure 3 is not a C%>°-
domain, though its boundary consists of finitely many C***°-curves. In fact, it is not even
a C'''-domain. But the domains in our definition can be of fairly general shape such as
the one in Figure 8.

Fig. 8. Example of a “domain” with general shape

REMARK 4.1. If C is C¥*, C¥*“, or a Minkowski class (W, for example), then condition
(2) in Definition 4.2 can be omitted.

Now we start to use the local object sector to describe global properties.

LEMMA 4.2 (local condition for domain). Let £2 be a connected compact set in R?, and
let C be a class of curves in C'*! which is closed under restriction. Then the following two
conditions are equivalent:

(1) £2 is a C-domain.
(2) For every point p in 02, there exists r > 0 such that B,(p) N {2 is a union of a
finite number of mutually non-overlapping C-sectors with center p and radius 7.

Proof. Suppose {2 is a C-domain. Let p € 042. Since C C C'!, it is easy to see from
Definition 4.2(2) that there exist r > 0 and C-curves 7; : [0,a;] — B,(p) fori=1,...,n
for some 1 < n < oo such that B,(p) N 82 = (J;_,7:([0,a;]) and the function g; :
[0,a;] — [0, r] defined by g;(t) = |v:(t) —p| is a homeomorphism with g;(0) = 0 for each 1.
Again by Definition 4.2(2), we can assume ; and 7, do not meet except at p for every
1 <i# j <n.Now it is clear that B,.(p) N {2 is a union of a finite number of mutually
non-overlapping C-sectors with center p and radius r. Thus (1) implies (2).

Conversely, suppose (2). Then, for every p € 92, we can choose r(p) > 0 such that
Brpy(p) N §2 is a finite union of mutually non-overlapping C-sectors with center p and
radius r, and B, (p) N 042 is a union of a finite number of C-curves, each pair of which
have no intersections except at p. Note that {B, (p) N9£2 | p € 042} is an open cover of
the compact set 0f2. So there exist a finite number of points py,...,p, € 02 such that
002 = U, By, (p:) N0 Thus 92 = U;_; By(,)(pi) N0£2 is a union of a finite number
of C-curves. From the definition of sector, no pair of these C-curves has infinitely many
isolated intersections. Thus (2 is a C-domain. m
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As can be seen from Definition 4.2, the domains can have quite general shapes. We
give a special name for domains with some relatively good geometry.

DEFINITION 4.3 (regular domain). A C'!-domain is called regular if each connected
component of 92 is homeomorphic to S!, and is not itself a connected component of £2.

So, the snowman in Figure 8 is not a regular domain. Also, the Minkowski sum in
Figure 2 is a C**“-domain, but not a regular C***-domain. Note that, for any C C C'!,
the number of connected components of 042 is finite for a C-domain (2.

LEMMA 4.3 (local condition for regular domain). Let £2 be a connected compact set in R,
and let C be a class of curves in CY'' which is closed under restriction. Then the following
two conditions are equivalent:

(1) £2 is a regular C-domain.
(2) For every point p in 012, there exists v > 0 such that B, (p)N{2 is a non-degenerate
C-sector with center p and radius r.

Proof. Suppose {2 is a regular C-domain. Let p € 9f2. Since C C C*!, there exists r > 0
such that B,.(p) N 042 is a union of two C-curves v; : [0,a;] — B,(p), i = 1,2, such that
71(0) = ¥2(0) = p, 71 and 2 do not meet except at p, and the function p; : [0, a;] — [0, 7]
defined by ;(t) = |7:(t)—p| is a homeomorphism for i = 1, 2. Note that B, (p)N{2 # B, (p),
since p € 912. So B,.(p) N {2 is either a non-degenerate C-sector with center p and radius r,
or B (p)N 2 = ~1([0,a1]) Uy2([0, az]). Suppose the latter. Then the connected component
of 92 which contains B,.(p) N §2 is itself a connected component of 2. So we conclude
that B,(p) N {2 is a non-degenerate C-sector with center p and radius r. Thus (1) im-
plies (2).

Conversely, suppose (2). Then 942 is locally homeomorphic to R at every point in 02,
and 9f2 is a disjoint union of a finite number of 1-dimensional (topological) manifolds
embedded in R?. Since 942 is bounded, each of these manifolds is homeomorphic to S!.
So 912 is a disjoint union of a finite number of sets homeomorphic to S*. Note that
each of these sets consists of a finite number of C-curves, since S! is compact. From the
assumption, none of the connected components of 92 is itself a connected component
of 2. Thus (2) implies (1). m

REMARK 4.2. A subset 2 of R? is a regular C**“-domain if and only if it satisfies the
standing assumptions for domains in [2] and [3]. Note that a domain is a C***-domain
if and only if it is a C¢*“-domain, since a C“*“-curve can be cut into a finite number of
C¥*“-curves.

Finally, we introduce the following terminology.

DEFINITION 4.4 (sharp corner, dull corner and flat point). Let {2 be a regular C'!-
domain. Then a point p € 94?2 is called a sharp corner (resp., dull corner, flat point) if
there exists » > 0 such that B,.(p) N {2 is a sharp sector (resp., dull sector, flat sector)
with center p and radius r.

Note that the above properties are of a local nature of {2 around p, and thus are
independent of the choice of 7.
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5. Virtual boundary

In this section, we introduce the concept of virtual boundary for regular domains. This
will enable us to treat the regular domains in a more uniform manner, whether they have
corners or not.

Let 2 be a regular C''-domain. By definition, each connected component of 942 is
homeomorphic to S'. Among them, exactly one is the outer boundary, and the remaining
ones are inner boundaries. To each of these components, we give the standard orienta-
tion, i.e., counter-clockwise orientation for the outer boundary, and clockwise orientation
for the inner boundaries. Let C be a connected component of 9f2. Fix an orientation-
preserving covering map h : R — C. For any continuous curve « : [a,b] — C, there exists
a lifting of v to R with respect to h, i.e., a continuous function ¥ : [a,b] — R such that
~(t) = h(5(¢)) for t € [a,b]. We define

+ ify(b) —7(a) > 0,
0 ify(b) —7(a) = 0,
— i Y(b) — (a) < 0.

Oqa(v)

Note that this definition is independent of the choice of h. We say that « is in the standard
orientation on §2 if Ogn(7) is +.

DEFINITION 5.1 (normal cone). Let {2 be a regular C*!-domain, and let p € 9£2. Let
Yi,7— : [0,e] — O£ be one-to-one Cll-curves such that v, (0) = v_(0) = p and
Ogq(v+) = £. Then the normal cone of £2 at p, denoted by NCg(p), is defined as follows:

(1) If p is a sharp corner, then NCp(p) = {n € S |n-v[y;] <0and n-v[y_] <0}.

(2) If p is a dull corner, then NCq(p) = {n € S' |n-v[y;] > 0and n-v[y_] > 0}.

(3) If p is a flat point, then NCg,(p) consists of the (unit) vector obtained by rotating
v[y4] clockwise through 90°.

We set vi5(p) = v[y4] and v, (p) = —v[y_]. Note that these are independent of the
choice of v1. Also, v,(p) = v(p) if and only if p is a flat point of 2. In this case,
we write vo(p) = v, (p) = v (p). We denote by nj,(p) (resp., ny,(p), no(p)) the vector
obtained by rotating v{,(p) (resp., v (p), vo(p)) clockwise through 90°. Note that nj;(p)

and n,(p) are the two ends of NCgp(p).

DEFINITION 5.2 (virtual boundary). Let 2 be a regular C*!-domain. Then the virtual
boundary of £2, denoted by 0V (2, is defined to be

9" ={(p,n) € 902 x S* |n € NCp(p)}.

Let £2 be a regular C**'-domain. Then 9”2 consists of a finite number of connected
components, each homeomorphic to S, and the connected components of V2 are in one-
to-one correspondence with those of 2. Thus we can also give the standard orientation
to each of the connected components of 9V{2 in an obvious way. Let C be a connected
component of 9Vf2. Fix an orientation-preserving covering map h:R — C. For any
continuous map ¢ : [a,b] — C, there exists a lifting of ¢ to R with respect to h, ie., a
continuous function ¢ : [a, b] — R such that ¢(t) = h(¢(t)) for t € [a,b]. We define
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+ if ¢(b) — §(a) > 0,
Oa(¢) =40 if $(b) - ¢(a) =0,
— if ¢(b) — ¢(a) < 0.

The definition is independent of the choice of h. We will say that ¢ is in the standard
orientation on §2 if Ogn(¢) is +.

Let ¢ : [a,b] — R% x S, ¢(t) = (v(t),n(t)), be a continuous map. Then there exists
a continuous function 6 : [a,b] — R such that n(t) = u(6(t)), where pu(s) = (cos s, sin s)
for s € R. We call 6 an angle function of ¢. We define O(¢), the total angle of ¢, by

6(6) = 6(b) - 0(a).

Note that the total angle is independent of the choice of angle functions.
We use the following notations throughout this paper: Let X be a topological space.
Let 7 : [a,b] — X be a continuous curve. Then the curve 7 : [a,b] — X is defined by

Y(t) =v(a+b—1)

for t € [a,b]. Let v; : [a;,b;] — X, i = 1,2, be two continuous curves with v (b1) = y2(az).
Then the curve v =71 - ¥ : [a1, b1 + ba — ag] — X is defined by

7(t _ ’yl(t) ifte [al,bl],
’}/Q(t—bl +a2) iftE[bl,bl—f'bg—aQ}.

We denote by Ind (p) the index of p € R? with respect to a continuous closed curve
v : [a,b] — R2\ {p} (7y(a) = v(b)). It is well known that the index of a point takes integer
values and remains the same if we vary the curve homotopically.

The following lemmas are easy consequences of the above definitions.

LEMMA 5.1. Let 2 be a reqular CY'*-domain, and let ¢ : [a,b] — 0V$2, ¢; : [a;, b;] — 9V 92,
1 =1,2, be continuous maps such that ¢1(b1) = ¢2(az). Then:

(1) B(¢) = —6(¢).

(2) O(¢1- ¢2) = O(¢1) + O(¢2).

(3) Suppose ¢g : [a,b] — 012 is a continuous map which is homotopic to ¢ in OV
relative to ¢(a) and ¢(b), i.e., there exists a continuous map H : [a,b] x [0,1] — 012
such that H(t,0) = ¢o(t), H(t,1) = ¢(t) fort € [a,b], and H(a,s) = ¢(a), H(b,s) = ¢(b)
for s € [0,1]. Then O(¢g) = O(¢).

Proof. (1), (2) are obvious from the definitions. For (3), let H(¢,s) = (y(t, s),n(t, s)) for
(t,s) € [a,b]x[0,1]. From the assumption, there exists a continuous map 6 : [a, b] x [0, 1] —
R such that (10 6)(t,s) = n(t,s), where p : R — S! is defined by pu(t) = (cost,sint) for
t € R. Thus O(¢g) = 0(b,0) — 0(a,0) = 0(b,1) — O(a,1) = O(¢), since n(a,s) = n(a,0)
and n(b, s) =n(b,0) for every s € [0,1]. m

LEMMA 5.2. Let 2 be a regular C**-domain, and let p € int 2. Let ¢ : [a,b] — V12,
o(t) = (v(t),n(t)), be a continuous map such that p(a) = ¢(b) and On(¢d) = +. Let C be
the connected component of 02 such that v([a,b]) C C.
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(1) If ¢l{a,p) is one-to-one, then

2w if C' is the outer boundary of 02,
=21 if C is an inner boundary of 0f2.

o6 - {

(2)
LO(¢) if C is the outer boundary
— 2 )
Ind, (p) {O if C is an inner boundary.

Proof. (1) This is an easy consequence of the Gauss—Bonnet theorem (see [17, Theo-
rem 8.4]).

(2) It is obvious that Ind,(p) = 0 if C is an inner boundary. Suppose C is the
outer boundary, and let C be the connected component of 9V {2 corresponding to C. Let
do : [0,1] = C, ¢o(t) = (70(t),mo(t)), be a continuous map such that ¢o(0) = ¢o(1) =
¢(a) = ¢(b), doljo,1) is one-to-one, and Ogn(¢o) = +. By (1), we have O(¢g) = 2m. It is

easy to see that ¢ is homotopic to ¢g - ... - ¢g if Ind,(p) > 0,t0 @ - . .. - ¢ if Ind,, (p) < 0,
—_——— —_——
Ind, (p) —Ind, (p)

and to the constant map ¢(a) (= ¢(b)) if Ind,(p) = 0. Now the assertion follows from
Lemma 5.1. m

Let A be a subset of R? and p € R. Then we define
A+p={q+plgqe A} and —-A={—q|qe A}

For later reference, we collect the following elementary facts which can be easily
deduced from the definitions.

LEMMA 5.3. Let 2 be a regular CV'-domain, and let ¢ € R2. Let p € 012, and let
¢ la,b] — 082, p(t) = (y(t),n(t)), be a continuous map. Then:

(2) % (—p) = —05(p) and vEo(—p) = V(D).

(3) O(p+ q) = O(¢), where ¢+ q : [a,b] — 0Y(2 + q) is defined by (¢ + ¢)(t) =
q,n(t)) fort € [a,b].

(4) O(=¢) = O(¢), where —¢ : [a,b] — 9" (—12) 1s defined by (—¢)(t) = (—(t), —n(?))

Now we define the angle of convexity of a regular domain. This will be used in defining
the semi-convezity of domains in Section 7.

DEFINITION 5.3 (angle of convexity). Let {2 be a regular C*!-domain. The angle of
convezity of 2, denoted by ©(£2), is defined by

O(2) = nf{6(¢) : ¢ € S},

where S is the set of all continuous maps from a closed interval to 0¥ (2 such that Og(¢)
= +.

Finally, we introduce the notion of contact position which is important for analyzing
Minkowski sum.
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DEFINITION 5.4 (contact position). Two regular C1''-domains {2; and (2, are said to be
in contact position to each other if they meet at their boundaries only, i.e., 21 N {25 =

00 N oy # 0.

Let 2, and {2 be two simply connected regular C*!'-domains which are in contact
position to each other. Let U be the unbounded component of R?\ (£2,U2,). Suppose p; #
pe are two points in 921 NIy, For i = 1,2, let ¢; : [0,1] — 9V, ¢:(t) = (1:(t), ni(t)),
be one-to-one continuous maps such that ¢1(0) = (p1,ny, (p1)), ¢1(1) = (p2, 0y, (p2)),
$2(0) = (p2, 1, (p2)), $2(1) = (p1,1g,(p1)), and Og, (¢1) = On,(¢2) = +. Note that,
by interchanging p; and ps if necessary, we can assume (v;([0,1]) \ {p1,p2}) NU = 0 for
i =1,2. Let oy (resp., as) be the non-negative angle of counter-clockwise rotation from
—vg, (p1) to v (p1) (resp., from —v, (ps) to v§, (p2)). See Figure 9.

U

Fig. 9. Contact position

With the above notations, we have the following lemma:

LEMMA 5.4. Let £21 and 25 be simply connected regular C**-domains which are in contact
position to each other. Suppose p1 # pa € 821 N2 and «;, ¢; for i = 1,2 are as above.
Then:

(1) ©(¢1) +O(¢2) + a1 + g = 0.
(2) If ©(£21),0(825) > —6 for some © > 0, then —O < O(¢p;) <O fori=1,2.

(3) There exists a continuous map H : [0,1] x [0,1] — V such that H(t,0) = v1(t),
H(t,1) =74(t) fort € [0,1], and H(0,s) = p1, H(1,s) = pa for s € [0,1], where V is the
region in R? \ (£21 U 25) bounded by v1 and ..

Proof. (1) This is an easy consequence of Lemma 5.2.

(2) By (1), we have O(¢1) = —O(¢2) — a1 — aa. Since O(£2,),0(f22) > —O, we have
O(é1),0(¢2) > —O. Note that oy, as > 0 by definition. Thus O(¢1) < ©. We can also
see that ©(¢2) < O in the same way.

(3) Obvious. See Figure 9. m
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6. Minkowski sum of domains

Now we consider the Minkowski sum of domains. For reasonable results, we restrict our
analysis to M-domains, where M is a Minkowski class. After introducing the preliminary
facts in Section 6.1, we analyze the behavior of the Minkowski sum of M-sectors in
Sections 6.2 and 6.3. Finally, by using these results, we show in Section 6.4 that the set
of all M-domains is closed under Minkowski sum for any Minkowski class M.

6.1. Preliminaries. Let A and B be two subsets of R2. We define
A+B={p+qlpeA qe B}

and call it the Minkowski sum of A and B. The map M4 g : Ax B — A+ B defined by
Ma p(p,q) =p+qforpe A, g € Bis called the Minkowski map associated to A and B.
Note that M4 p is continuous for any A, B C R2. The following are easy consequences
of the definition.

LEMMA 6.1. Let A, B C R?. Suppose A =J,c; Ai and B=J
A+B= |J (A+B)
i€l jeJ
Proof. D is trivial. Suppose p € A 4+ B. Then there exist p; € A and ps € B such that

p = p1 + p2. So there exist ¢ € I and j € J such that p; € A; and po € B;. This shows
C.nm

LEMMA 6.2. Let A,B C R2, and let p € O(A + B). Then, for any p1 € A and p» € B
such that p = p1 + p2, we have py € A and ps € 0B. Equivalently, we have

M, 5(8(A+ B)) C 0A x 9B.

I B;. Then

Proof. Suppose p; € int A. Then we can take a small ball B,(p;) around p; such that
B,.(p1) C A. Clearly, B,.(p) = B-(p1) +p2 C A+ B, and this implies that p € int(A+ B).
This contradicts the assumption, and we conclude p; € JA. In the same way, we can
show that py € 0B. m

LEMMA 6.3. Let £21,825 C R?, and let 2 = (1 + §25. Let p € R?. Then:

(1) p € 2 if and only if 21 N (=22 +p) # 0.

(2) Ifint £21 N (=922 +p) # 0, then p € int 2.

(3) Suppose 21, §25 are reqular C1'1-domains. If p € 012, then 21 and —§25 + p are in
contact position to each other.

Proof. Suppose p € §2. Then there exist p; € (21 and ps € {25 such that p; + ps = p.
So 21 3 p1 = —pa +p € —{25 + p, which means that 2, N (=2 + p) # 0. Conversely,
suppose 21 N (—2s +p) # 0. Let p1 € 21 N (=22 + p). Then there exists ps € 25 such
that py = —pa + p. Thus p = p1 + p2 € 2. This shows (1).

Suppose p1 € int 21N (—22+p). Let po» = —p1+p. Then ps € (25, and p = p1+p2 € 2.
Since p; € int £21, we have p € 92 by Lemma 6.2. Thus p € int §2. This shows (2).

Suppose p € 92. By (1), 21 N (=922 + p) # 0. Let p1 € 21 N (=122 + p), and let
p2 = —p1 +p. Then we have p; € 21, pa € 25 and p; + p2 = p. By Lemma 6.2, p; € 0
and ps € 025, and so p1 = —p2 +p € (=22 + p). Thus p; € 92, NO(—22 + p). Since py
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is taken arbitrarily, it follows that {21 and —{2, + p are in contact position to each other.
This shows (3). m

REMARK 6.1. The converse of (3) in Lemma 6.3 is false: it is possible that £2; and —{2+p
are in contact position to each other, but still p & 02.

DEFINITION 6.1 (admissible sectors). Two CY!-sectors S; and S, with respective centers
p1, p2 and radius r are said to be admissible to each other if they satisfy the following
conditions:

(1) int(51 —pl) N (_(SQ —pg)) = () and int(SQ —pg) N (—(Sl —pl)) = (.

(2) For i = 1,2, let ; be the end curve or start curve of S;. If the two curves v — p1
and —(y2 —p2) (or equivalently, —(vy; —p1) and 72 — p2) meet at a point in R? other than
0, then 71, 72 have the same image.

It is easy to see that if S and Ss are admissible to each other, then so are B,/ (p1) NSy
and B, (pz) N Sy for every 0 < 7/ <.

LEMMA 6.4. Let M be a Minkowski class, and let £21 and 25 be two M-domains. Let
p1 € 0821 and pa € Of2. Suppose p = p1 + pa € 012, where 2 = 21 + (2. Then for every
sufficiently small r > 0, we have:

(1) Fori=1,2, B.(p;) N $2; = UL, Sk, where SF is an M-sector with center p; and
radius v fork=1,...,n;, and Sf ’s are mutually non-overlapping.

(2) S¥ and SL are admissible to each other for every k =1,...,ny andl=1,... ny.

Proof. (1) follows from Lemma 4.2. For (2), fix S¥ and Si. Let ay, $1 be the end curve
and start curve of SF — p; respectively, and let s, 32 be the end curve and start curve
of —(Sk — pa) respectively. Note that S¥ — p; and —(S4 — p2) are M-sectors with center
0 and radius r. Since M is a Minkowski class, we can assume that any two of aq, (1,
a2, B2 either have the same image, or do not meet except at 0. So, if S¥ and S} are not
admissible, then we would have either int S¥ N (—SL + p) # 0 or int S, N (=S¥ + p) # 0.
Then by Lemma 6.3(2), p € int {2, which is a contradiction. m

Let S be a finite union of mutually non-overlapping C**!-sectors Si, ..., S, with center
p and radius 7 > 0. Then we define C(S) = J;_, C(Sk).

LEMMA 6.5. Let £21 and 25 be two C*'-domains, and let 2 = 21 + §25. Let py € 042,
p2 € 02, and choose r > 0 such that S; = B.(p;) N 2; is a finite union of mutually
non-overlapping CY'1-sectors with center p; and radius r for i = 1,2. Suppose (p1,p2) €
M511792(8Q) and Sy is a flat C¥'-sector with center py and radius r. Then C(S2) C C(S1).

Proof. We can assume C(S;) = {(z,y) € S' | y < 0}. Suppose C(S3) ¢ C(S1). Then
there exists a Cl'-curve v : [0,e] — Sz such that (0) = py and v[y] € C(S1). So
5(0) = p1, ¥([0,¢]) € —S2 + p, and v[§] € {(z,y) € S | y < 0}, where p = p; + pa
and the C*l-curve 7 : [0,¢] — R? is defined by J(t) = —v(t) + p for t € [0,¢]. It follows
that int S; N (=52 + p) # 0. So by Lemma 6.3(2), p € int(S; + S2) C int 2, which is a

contradiction. m

LEMMA 6.6. Let C be a subclass of CY'' which is closed under restriction, and let {21 and
25 be two C-domains. Let p € 082, where 2 = {21 + (25. Then for any € > 0, there exist
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0<7ry,...,7q <cand (p,pd),...,(pY,pY) in M!;ll’nz(p) for some 1 < n < oo such that
each B, (p¥) N $; is a finite union of mutually non-overlapping C-sectors with center p¥
and radius Ty, and Mﬁllﬂz (p) C U, where

U= (B2 (0}) n21) x (Bg, (95) N 122).
k=1

Proof. By Lemma 6.2, Méll’gz (p) C 9§21 x 9f25. So, by Lemma 4.2, we can choose

0 < r(p1,p2) < € for each (p1,p2) € M§11792 (p) such that B,(,, p,)(pi) N §2; is a finite
union of C-sectors with center p; and radius r(p1, p2) for ¢ = 1,2. Note that

{(Brpy pay (1) N E21) X (B, 1y (02) N 622) | (p1,p2) € M511,92 (p)}

is an open cover of the compact set M 511, 2, (p) in 27 x £25. Thus there exists a finite
subcover {(BZ, (p}) N $21) x (B2 (p5) N §22) | 1 < k < n}, which completes the proof. m

6.2. Minkowski sum of admissible sectors. Let v : [a,b] — R? be a continuous curve. We
define 7 : [a,b] — R? by

V() =(a+b—1) +~(a) = v(b).
Note that if we translate the image of v so that «(b) is moved to 7(a), then we get the
image of 7. Note also that 7(a) = v(a). See Figure 10.

Fig. 10. v and 5

LEMMA 6.7. Let M be a Minkowski class, and let S and Sy be two admissible M-sectors
with center 0 and radius R > 0. For some sufficiently small 0 < r < R, let S} = B,(0)N.S;
fori=1,2, and let S = S{ + S5. Let a; and (3; be the end curve and start curve of S
respectively for i = 1,2. Then, for every sufficiently small o > 0, the set B,(0) N IS is
contained in the union of the images of the following curves:

(1) a, B1, ag, Ba.

(2) g * Qg, o * B2, B1 * g, B1 * Bo (if defined). R

(3) ai, B2 (if a1, —P2 have the same image), and (1, Qs (if f1, —as have the same
image).

Proof. By abuse of notation, we denote the image of a curve y also by . Set M = Mg; ;.
Note that M~1(dS) C 85 x 9S4 by Lemma 6.2. Let A; = 95!\ (a; U B;) for i = 1,2.
Then 057 x 055 = (A1 x A2) U (A1 x (aaUB2))U((anUB1) x A2)U((ag UBr) x (agUBs)).
Suppose M ((p1,p2)) € OS for some (p1,p2) € A1 X Ay. Let p = p1 + p2. Lemma 6.5
yields p; = pa. So |p| = |2p1| = 2r. This shows that M (A4; x A2) N (B,(0) N 9S) = O for
sufficiently small ¢ > 0.
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Suppose that {(p},p5)} is a sequence in (A1 X (e U B2)) U ((a1 U B1) x Ag) such that
M((pY,p5)) = p¥ + py — 0 as n — oo. We can assume that (p7,ph) € A1 x (ag U fa)
for every n. Suppose «;(0) = 6;(0) = 0 and | (a;)| = |3:(b;)| = r for i = 1,2. Since
Pt € A1, pY € as U fBs, and Si, S} are admissible, it is easy to see that there exists a
subsequence {p}*} such that either pi* — a1 (a1) or pi* — (1(b1) as k — oco. Denote this
subsequence again by {p]}; we can assume that p?" — a1(a1) as n — oco. Since S] and S}
are admissible to each other, it follows that 82(b2) = —ai(ay) and p§ — Fa2(bs). So we
must have a; &~ — (5. Since we have assumed 7 to be sufficiently small, we can also assume
that (3 and 9B, (0) meet transversally at 82(bz). So, from Lemma 6.5, M ((pY,p5)) ¢ 0S
for every sufficiently large n. Thus M ((A1 X (aaUB2))U((a1UB1) x A2))N(B,(0)NIS) =0
for sufficiently small o > 0.

It follows that B,(0) NS C M((aq U B1) X (a2 U B2)) for sufficiently small o > 0.
Set of = a;((0,a;)) and 57 = 5;((0,b;)) for i = 1,2. We divide (a1 U 51) X (a2 U B2)
into the four parts af x ag, 89 x 83, a$ x 33, 9 x a$, and the twelve parts a; x {0},
Pr x {0}, {0} x az, {0} X B2, ar x {az(az)}, ar x {B2(b2)}, B1 x {az(az)}, Br x {B2(b2)},
{a1(a1)} x ag, {B1(b1)} X ag, {ai(a1)} X Ba, {B1(b1)} X B2. Since r is assumed to be small,
Lemma 6.5 shows that the intersections of 0S and the images of the first four parts under
M are contained in the union of ay * aa, By * Ba, oy * B2, ag * B1. The images of the last
twelve parts under M are o, 01, ag, B2, a1 +aa(az), a1+ 52(b2), 81 +as(asz), B1+62(b2),
as + aq(ay), as + B1(b1), B2 + ai(ar), B2 + B1(b1) respectively. It is easy to see that if
0 € ay + B2(bs2), then Ba(b2) = —ai(a1) and oy + P2(be) = @1, since Fa(b2) € 9B,.(0) and
a1 N OB, (0) = ai(ay). Also, if 0 € a1 + as(ag), then as(az) = —ai(ar), which implies
B2(b2) = —aq(a1) and a3 + as(az) = @y, since S7 and S} are admissible to each other.
Applying the same argument to the eight curves a; + as(az2), a1 + Ba(b2), 81 + as(asq),
61+ ﬂg(bg), g + 041(0,1), o + 61(b1), B2 + ay (al), Bo + ﬂl(bl), we can see that, among
these curves, the ones containing 0 are Qj, 32 (if a1, —f2 have the same image), and
Bl, ao (if B1, —ag have the same image). Now combining the above arguments, we obtain
the desired result. m

From the above result, we are now able to derive the following theorem:

THEOREM 6.1 (Minkowski sum of admissible sectors). Let M be a Minkowski class, and
let Sy, So be admissible M-sectors with respective centers py1, po and radius R > 0. Let
S! = B(p;) NS; fori=1,2 for some sufficiently small 0 < r < R, and let S = S} + S5.
Then, for every sufficiently small ¢ > 0, either B,(p) NS = By(p), or Be(p) NS is a
finite union of mutually non-overlapping M-sectors with center p and radius o, where

p=p1+p2.

Proof. Note that B,(p) NS = [B,(0) N {(S] — p1) + (S5 — p2)}] + p for every r > 0 and
o > 0. So we can assume that p; = ps = 0. By Lemma 6.7, we can take a finite number
of M-curves v1,...,7, : [0,6] — R? for some n > 1 such that v,(0) = ... = v,(0) =0
and B,(0) N dS C Uy, w([0,¢]) C S for every sufficiently small ¢ > 0. Since M is a
Minkowski class, we can assume that, for every sufficiently small ¢ > 0, 74 ([0, £]) N9 B,(0)
is a singleton for each k, and ~;([0, €])Nv; ([0, €]) = {0} for every ¢ # j. Since 05 is compact
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and p is small, we can assume that either B,(0)N9dS = 0, or there exists 0 < m < n such
that B,(0) N dS = U, 7([0,¢]). m

6.3. Minkowski sum of admissible non-degenerate sectors. When both S; and S are
non-degenerate, we have more refined results, which will provide a local building block
for dealing with semi-convexity later.

LEMMA 6.8. Let M be a Minkowski class, and let S1, So be non-degenerate M-sectors
with center 0 and radius r > 0 which are admissible to each other. Suppose there exist
T1yeeesrn > 0 and (ph,pd), ..., (pF,p%) € MSi{SQ(O) such that By, (p¥) N S; is an M-
sector with center p¥ and radius ry for each i and k, and MS_152(0) C U, where U =
Uzzl(B;’k (p¥) N Sp) x (By, (p5) N Sz). Then Mg, s,(U\ M sy, s2(0)) s connected.

Proof. Set M = Mg, s,, and denote the image of a curve y also by 7. Let U = (B? (pl) N
S1) % (B2 (p5)NSs) for k =1,...,n. Note that M(U\M~1(0)) = Up_, M(Uk\M L0)).
Since S; and Sy are admissible, we must have (p}, pd), ..., (p7,p%) € (a1 UB1) x (U Ba),
where «;, 8; : [0,¢] — S; are the end curve and start curve of S; respectively for i =1, 2.
We first show that U, \ M~1(0) is connected for each k. Let (qi,q2),(¢%,¢3) € Ui \
M~1(0). Tt is easy to see that B, (p¥) NSy is a non-degenerate M-sector with center
p¥ and radius 4. So we can take a continuous curve 7y : [0,1] — By, (p¥) N Sy such
that v1(0) = ¢f, (1) = ¢}, and 41((0,1)) C int(Bg (p}) N S1). Take any continuous
curve vz : [0,1] — B2 (p5) N Sy such that 12(0) = q3, 12(1) = ¢3. Define v : [0,1] — Uy
by v(t) = (v1(t),72(t)). Since {p1 | (p1,p2) € M~1(0) for some ps € 25} C a; U fy, it
follows that int(Bg, (pf) N S1) N {p1 | (p1,p2) € M~*(0) for some py € 25} = 0. Thus
7([0,1]) € Uy, \ M~1(0), and this shows Uy \ M ~1(0) is connected.

Now, since S, S2 are admissible to each other, we can assume that M ~1(0) is one
of {(0,0)}, {(ar(t), Ba(1)) [ 0 <t < e}, {(Br(t), a2(t)) | 0 <t < e}, Of{al()ﬁz(t))l
0<t< s}U{(ﬁl() 2(t)) | 0 < t < €}. So we can assume that (U, \ M~1(0)) N
(Uk+1 \ M~1(0)) # 0 for k = 1,. — 1, since M~1(0) C U. Hence the set U \

L0) = Uy (U \ M~1(0)) is connected Thus M (U \ M ~1(0)) is connected, since M
is continuous. m

THEOREM 6.2 (Minkowski sum of admissible non-degenerate sectors). Let M be a Min-
kowski class, and let Sy, Sy be non-degenerate M-sectors with respective centers py, p2
and radius R > 0, which are admissible to each other. Let S = S| + S5, where S| =
B.(p;) N S; fori=1,2 for some sufficiently small 0 < r < R. Let p = p1 + pa. Suppose
B,(p) NS # B,(p) for every o > 0. Then, for every sufficiently small ¢ > 0, we have:

1. Bo(p) NS is a non-degenerate M-sector with center p and radius o.

2. Let o and 8 be the end curve and start curve of B,(p)NS. Suppose that the image
of a (resp., B) is contained in one of the images of ay + pa, f1 + P2, as + p1, B2 + p1,
a1 * o, 81 % Ba, a1 x Ba, (1 * as, where oy and (B; are the end curve and start curve
of S respectively for i = 1,2. Then there exists a continuous map ¢ : [0,e] — OVS.,
32 (t) = (9 (1), 03 (1)) (resp., @] : [0,€] — 0°S}, @7 (t) = (v/ (1), 0l (1)), for i = 1,2, with
the following properties:

(1) 7(0) = p1 and 75(0) = pa (resp., 7/ (0) = p1 and 75 (0) = ps).
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(2) a(t) =7 (£) + 48 () (resp., B(t) =77 () + 75 (1)) for every t € [0,¢].

(3) nf; yns(@(t)) = nf () = ng(t) (resp., ny 10 o(B(F) = nl(t) = n5(t)) for
every t € [0, €.

(4) Fori=1,2, ¢ and v§ (resp., qbf and %ﬂ) are either one-to-one or constant,
and Zf one Of OS1 (7?) and OSZ ('Yéx) (7"68])., OS1 (Vlﬁ) and OSZ (72/8» is —
(resp., +), then the other is + (resp., —).

3. Suppose that the image of o (resp., B) is not contained in any of the images of

a1+p2, BL+p2, aa+p1, Bo+p1, arxag, Brxf2, arxfa, Bixas. Then a\{p} C int(S;+5s)
(resp., B\ {p} C int(S1 + S2)).
Proof. We denote Mg; s, by M. We can assume p; = p2 = 0. By Theorem 6.1, B,(0)nS
is either B,(0) or a finite union of mutually non-overlapping M-sectors with center 0
and radius g, for sufficiently small o > 0. Note that S and S} are non-degenerate. So
by Lemma 6.6, there exist 0 < rq,...,7, < 0/2 and (p},pd),..., (p},p%) € M~1(0) such
that B, (pF) NS, is a non-degenerate M-sector with center p¥ and radius ry for i = 1,2,
k=1,...,n,and M~1(0) C U, where U = |J,_, (B2 (p}) N S7) x (BL (p5) N S3). Note
that M((S7 x S5) \ U) is compact and does not contain 0. So there exists 0 < & < p
such that B.(0) N M((S] x S5) \ U) = 0. It follows that B.(0) NS = B.(0) N M(U).
Since rp < /2 for k = 1,...,n, it is clear that M(U \ M~1(0)) C B,(0) N (S \ {0}).
By Lemma 6.8, M (U \ M~1(0)) is connected, since both S} and S} are non-degenerate.
So M(U \ M~'(0)) is contained in one connected component of B,(0) N (S \ {0}). Since
B.(0) NS = B.(0) N M(U), it follows that B,(0) N (S \ {0}) has exactly one connected
component. This implies that B,(0) NS is an M-sector with center 0 and radius p, since
we assumed that B,(0) NS # B,(0). Since 0 € 51, S5, we have B,(0) NS, B,(0) NS, C
B,(0) N'S. So we conclude that B,(0) NS is a non-degenerate M-sector with center 0
and radius g, since S7 and S} are non-degenerate. Thus we have shown 1.

Suppose the image of « (resp., ) is contained in one of the images of the curves ay,
81, a, Bo, a1 * aa, B1 * PBo, a1 * B2, (1 * aa. We can assume that oy, 81, as, B2, a1 * asg,
B1% B2, a1 * B2, B1*xay and «, [ are parametrized as follows: v(0) = 0 for any v among the
above curves, and, for any *-admissible 71, 72 among the above curves, v[y1](t) / v[v2](¢)
for every feasible t. Now, depending on in which of the images of the curves ay, 01, as,
B2, a1 * ag, B1 * PBa, a1 * B2, f1 * ag the image of « (resp., () is contained, we construct
¢ :[0,e] — 8S! (resp., ¢7 : [0,¢] — V) for i = 1,2 as follows:

a (resp., B) ¢ (t) (resp., ¢7(t) ¢S (t) (vesp., ¢5(t))

oo (a1(t), ng, (a1 (1)) (0,0, (e (t)))
5 (B1(t), g, (B1(t))) (0,ng, (1(1)))
o2 (0,08, (a2(1))) (az(t), ng, (a2(1)))
B2 (0,ng, (B2(1))) (B2(t), ng, (B2(¢)))
a1 az (a1(t),ng (1 (1)) (a2(t),nd, (a2(1)))
B1 * Ba (B1(t), g, (Br(t))) (B2(t),ng, (B2(t)))
o * B2 (a1(t),nf (a1 (1)) (B2(t),ng,(Ba2(t)))
B * az (Bi(t),ng, (Bi(t))  (az2(t),nE, (a2(t)))
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From the above table, it is easy to check that ¢$ and ¢¢ (resp., qbf and ¢§ ) satisfy
(1) and (2) of 2. It is also clear that ¢% and v (resp., (bf and 7? ) are either one-to-one
or constant for ¢ = 1, 2. Note that B,(0) NS, 51, S5 are non-degenerate M-sectors, and
B,(0)NS; € B,(0)N S for i = 1,2. Suppose the image of « is contained in the image
of B1. Since B,(0)N S| C B,(0)N S, it follows that a; and B; have the same image. But
this is impossible, since S| is non-degenerate. So the image of a cannot be contained in
the image of 3;. In the same way, the image of o cannot be contained in the image of (o,
and the image of # cannot be contained in the images of a; or as. Suppose the image
of « is contained in the image of 5 * 2. By Lemma 2.3, v[3; * (2] = v[31] or v[(2].
With no loss of generality, suppose v[1 % 82] = v[01] = (1,0). Clearly, v[a] = (1,0). Take
non-zero points qi, g2, ¢ in the images of 8y, B2, [ respectively such that ¢ = q1 + go.
Note that these points can be taken arbitrarily close to 0. So there exists a small § > 0
such that {¢1 +u-(0,—1) |0 <u<éd} C S and ¢o+{q1 +u-(0,-1) |0 <u<4d} =
{g+u-(0,-1)]0<wu<d} C B,(0)NS. But this contradicts the assumption that « is
the end curve of B,(0)NS. So the image of a cannot be contained in the image of Gy * Gs.
In the same way, the image of § cannot be contained in the image of a; * as. Now, the
above table shows that if one of Og, (7%) and Og,(78) (resp., Os, (77) and Og, (7)) is
— (resp., +), then the other is + (resp., —). This proves (4) of 2.

Suppose the image of « is contained in «; * ae. Then, for every ¢, either ngl (a1(t)) =
n}; (aa(t)) or n}'l (a1(t)) = fn:g: (aa(t)), since ap and ay are x-admissible to each other.
Suppose the latter is true. Since S; and S, are non-degenerate, we can take ¢y such that,
for every sufficiently small § > 0, a4 (tp) — 0 - n;:l (a1(t)) € S1 and as(tg) — 6 - n;:z (aa(t))
€ S,. This implies a(tg) £ 6 - n(a(ty)) € S, contrary to a C 9S. So ngl (a1(t)) =
nJSr2 (aa(t)) for every t, and hence, n¥ (a(t)) = nJSr1 (a1(t)) = nJSr2 (aa(t)) for every t. We
can show that (3) of 2 is true for the remaining cases in a similar way.

Now we show 3. Suppose the image of « (resp., §) is not contained in any of the
images of ay, B1, as, B2, a1 * ag, B1 * B2, a1 * P2, (1 * as. Then by Lemma 6.7, the
image of « (resp., () is contained in one of the images of @y, Qa, 51, 52. We first show
that the image of « cannot be contained in the images of @; or a@s, and the image of
([ cannot be contained in the images of B\l or B\g. Suppose the image of « is contained
in the image of @;. By Lemma 6.7, a1, —(2 have the same image. We can assume that
v[ap] = (—1,0). Since r is small, there exists f : [—7/,0] — R whose graph is the
image of «aj. Note that |(—r/, f(—r')] = r. The graph of g : [0,7/] — R defined by
g(x) = f(xz — ') — f(—r') is the image of @;. Since S} is non-degenerate, there exist
g,0 > 0 such that {(—¢,y) | f(—e) =0 <y < f(—e)} C S}. Since oy, —f2 have the
same image, we have (r’, —f(—r’)) € S5. Note that we can take |’ — | and ¢ as small as
desired. So {(—e +1",y) | g(—e + 1) —d <y < g(—e+r)} = (', f(=r) + {(=e.v) |
f(=e) =0 <y < f(—e)} C By(0)NS. This means that &; N B,(0) cannot be the end
curve of B,(0) NS, contrary to the assumption. Thus the image of o cannot be contained
in the image of a;. In the same way, the image of o cannot be contained in the image
of s, and the image of 3 cannot be contained in the images of Bl or 32.

Suppose the image of « is contained in the image of 31. By Lemma 6.7, 31, —as have
the same image. Suppose o(51) = 0. Then Bl, g have the same image. So the image of
« is contained in the image of s, contrary to the assumption. Suppose (1) = +. Then
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the image of Bl intersects int S5, since S is non-degenerate, as = —f1, and r is assumed
to be small. So B,(0) N 31 cannot be the end curve of B,(0) NS, which is a contradiction.

Thus we must have o(81) = — and () = +. We can assume that there exists 7 > r
such that T'= B,(0) N {(B(0) N .S1) + (B7(0) N S2)} is a non-degenerate M-sector with

~

center 0 and radius g, and a, Bl have the same image, where & is the end curve of T and
3, is the start curve of By(0) N Sy. Since 0(51) =+, B1 = B.(0) N 31, and r is small,
it is easy to see that a \ {0} C intT. Thus « \ {0} is in the interior of S; + S3. In the
same way, we can show that a \ {0} C int(S; + S5) if a, 32 have the same image, and
B\ {0} Cint(S; + S2) if B, @; have the same image or 3, Gy have the same image. This
shows 3. m

6.4. Closedness of Minkowski sum. Using the results of Section 6.2, we now analyze
the Minkowski sum from a more global point of view, i.e., the Minkowski sum of general
domains. It turns out that, for any Minkowski class M, the Minkowski sum of M-domains
is also an M-domain, and thus the set of all M-domains is closed under Minkowski sum.
Note that this is not true for an arbitrary curve class C which is closed under restriction.
See Figure 3 for an example.

First, we prove a lemma which will also be used later in Section 7:

LEMMA 6.9. Let M be a Minkowski class, and let 21 and 25 be two M-domains. Let
Q2 = (1 + 2. Then, for every point p € 012 and for every r > 0, there exist a finite
number of pairs (p,pi),...,(p7,p%) in M!;llﬂz(p), 0 <r1,...,7n < 7, such that, for
every sufficiently small o > 0, the following are satisfied:

(1) SF = B, (p¥) N §2; is a finite union of mutually non-overlapping M-sectors with
center pf and radius vy, for everyi=1,2 and k=1,...,n.

(2) B,(p) N (S¥ + S%) is a finite union of mutually non-overlapping M-sectors with
center p and radius o fork=1,...,n.

(3) Bo(p) N {2 is a finite union of mutually non-overlapping M-sectors with center p
and radius o, and

n
By(p) N 2 = [ J{Bo(p) N (ST + 53)}.
k=1
Proof. Suppose p € 02 and r > 0. By Lemma 6.6, there exist finitely many pairs
(p},pd), ..., (P}, py) in M;le’(b(p) and 0 < 71,...,7, < r such that SF = B,, (p¥) N §2; is
a finite union of mutually non-overlapping M-sectors with center p¥ and radius ry, for i =
1,2, k=1,...,n,and Mg, (p) C U, where U = J;_; (B2, (p}) N $21) x (B, (p§) N £22).
Thus (1) is satisfied.

k . .
Let SF = U?;l Sf 7 where Sf "’ are mutually non-overlapping M-sectors with center
pf and radius 7. Note that r;’s can be taken to be arbitrarily small. So by Lemma 6.4,
we can assume that Sf 7 and 55 7 are admissible to each other for every k = 1,...,n
and 1 < j < nk 1 < j' < nb. By Theorem 6.1, the set B,(p) N (S¥7 + S57') is either
B,(p), or a finite union of mutually non-overlapping M-sectors with center p and radius
o for sufficiently small ¢ > 0. So by Lemmas 6.1 and 4.1(2), the set B,(p) N (S¥ + S%) is

either B,(p), or a finite union of mutually non-overlapping M-sectors with center p and
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radius ¢ for sufficiently small ¢ > 0. It follows that B,(p) N (S§ + S%) is a finite union
of mutually non-overlapping M-sectors with center p and radius p, since p € 92 and
Sk 4+ Sk c 0. Thus (2) is satisfied.

Lemma 4.1(2) shows that (J;_,{B,(p) N (S¥ + S5)} is a finite union of mutually
non-overlapping M-sectors with center p and radius g for sufficiently small ¢ > 0, since
p € 02 and |, _, (S¥+5%) C 2. Note that the set Mo, o,((£21x§22)\U) in £2 is compact,
and does not contain p, since M 511 0,(P) C U. So, for sufficiently small ¢ > 0, we have
B,(p) N Mg, .0,((£21 x £22)\ U) = 0. This implies that B,(p) N2 = B,(p) N Mg, 0, (U).
Thus (3) is satisfied, since Mg, ,(U) = Up_, (ST + S5). »

It is now easy to prove the following result:

THEOREM 6.3 (closedness under Minkowski sum). Let M be a Minkowski class, and let
21 and 29 be two M-domains. Then their Minkowski sum 2 = 21+ 25 is an M-domain.

Proof. First, note that {2 is compact and connected, since it is the image of the compact
connected set 27 x {25 under the continuous Minkowski map Mg, o,. By Lemma 6.9,
there exist » > 0 such that B,.(p) N {2 is a finite union of mutually non-overlapping
M-sectors with center p and radius r for every p € 0f2. Thus (2 is an M-domain by
Lemma 4.2. m

7. Minkowski sum of semi-convex domains

Let us first define the semi-convezity:

DEFINITION 7.1 (semi-convex domain). A regular C*!-domain 2 is called semi-convez
it o(02) > —mn.
REMARK 7.1. In fact, if ©(£2) > —27 for a regular C''!-domain 2, then 2 must be

simply connected. So a semi-convex domain is automatically simply connected. It is also
easy to see that a regular C**'-domain §2 is convez if and only if ©(£2) = 0.

The domains in Figures 11 and 12 are examples of regular C''-domains which are
semi-convex and not semi-convex respectively.

Fig. 11. Examples of semi-convex domains

In this section, we will show that the Minkowski sum of two semi-convex M-domains is
homeomorphic to the unit disk in R? for any Minkowski class M. This answers Problem 1
posed in Section 1 within the category of M-domains.



34 S. W. Choi

Fig. 12. Examples of regular domains which are not semi-convex

Let M be a Minkowski class, and let {21 and {25 be two semi-convex M-domains. Let
2 = {21 + {25 be their Minkowski sum. The proof is divided into two major steps: First,
we show that 2 is regular in Section 7.1, and then we show that (2 is simply connected
in Section 7.2. The result will finally follow, since a domain is homeomorphic to the unit
disk if and only if it is regular and simply connected.

7.1. Regularity

LEMMA 7.1. Let M be a Minkowski class, and let 21, {25 be reqular M-domains. Let
Q2 = 1 + 2, and let p € 00. Suppose B,.(p) N 2 = J,_, S*, where S*¥’s are mutu-
ally non-overlapping M-sectors with center p and radius r. Then there exist ¢ > 0 and
(p1.p3), - (V. p3) in My o (p) such that SF = B,(pf) N §2; is a non-degenerate M-
sector with center p¥ and radius o, and SF —pk  (S¥+S5)—p C Sk —p for eachi =1,2
andk=1,...,n.

Proof. By Lemma 6.9, there exist 71, ...,7, >0, (¢},q¢3),..., (¢, ¢¥") in M!;ll’% (p), and
0 <o <min{r/2,7r1,...,7m} such that Tij = B, (qf) N §2; is a finite union of mutually
non-overlapping M-sectors with center qf and radius r; for ¢ = 1,2 and j = 1,...,m,
Ba,(p) N (T 4 TJ) is a finite union of mutually non-overlapping M-sectors with center
p and radius 2p for each j, and Bg,(p) N 2 = U;"Zl Bs,(p) N (Tf + sz) Since {2 and
{25 are regular, each Tf is a non-degenerate M-sector. Since r;’s can be taken arbitrarily
small, we can assume that T' 1] and T2j are admissible to each other for each j. So by
Theorem 6.2, By,(p) N (T 4+ T3) is a non-degenerate M-sector with center p and radius
20 for each j. Note that Ba,(p) N S*’s are mutually non-overlapping M-sectors with
center p and radius 2p, and Ba,(p) N 2 = [Jj_, B2,(p) N S*. So it is easy to see that
there exists 1 < jp < m such that Ba,(p) N (T* + TJ*) C Ba,(p) N S* for each k. Let
pk = qf’“, and let SF = B,(pF) N 2; = Bg(qg’“) N Tij’c fori=1,2and k=1,...,n. Then
S+ 85 = (Bylql*) N T3*) + (By(a*) NT4*) © Bay(p) N (T3 +T§*) C Bay(p) NS* C 5*
for each k. Clearly, SF —pk c (S¥+S§) —pfori=1,2and k=1,...,n. m

LEMMA 7.2. Let M be a Minkowski class. Let y; : [0,a;] — R?, i = 1,2, be two M-
curves such that v1(0) = v2(0) = 0 and their images S1 = 11([0, a1]), S2 = ¥2([0, az]) are
degenerate M-sectors with center 0 and radius r > 0. Suppose Sy, So are admissible to
each other, and Sy # —S3. Take 0 < v’ < r such that either B,.(0) NS; = B,/ (0) N S,
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or B,/(0)N Sy, B,(0) NSy do not meet except at 0. Let S be the M-sector with center 0
and radius v’ which is uniquely determined by the following conditions:

(1) S is bounded by B,/ (0) N Sy, By (0) NSy and an arc in B, (0).

(2) S is a sharp sector if v[y1] # —v[y2].

(3) When v[y1] = —v[y2], the start curve of S is B, (0)N.Sy (resp., By (0)N.S3), and
the end curve of S is B,(0) NSy (resp., By (0) N S1) if 11 <2 (resp., y1 > ¥2).

Then B,(0) NS C S1+ Sy for every sufficiently small o > 0.

Proof. We can assume v[y1] = (cos@,sinf), v[yz2] = (cos (7 — 6),sin (7 — 0)) for some
0 <6 <m/2 In case § = 0, we can also assume that o(y1) = +, o(v2) = 0 or +, and
1 B> 7¥2. Then (0, ) € S1 4 S5 for every sufficiently small ¢ > 0 when 6 # 7/2. Note that
(0, 0) € int S for sufficiently small ¢ > 0 when 6 # 7/2. In case § = /2, it is also easy to
see that there exists a point in B,(0) Nint .S (in B,(0) NS if S has no interior) which is
contained in Sq 4S9, for every sufficiently small o > 0. By Lemma 6.7 and Theorem 6.2(3),
there exist 0 < r”” < r" and ¢ > 0 such that the set B,(0)NI((B,(0)NS1)+ (B~ (0)NSs))
is contained in the union of the images of 1, y2 and 71 o (if defined). Hence, B,(0)NS C
S1 + S5 for every sufficiently small o > 0. m

THEOREM 7.1 (regularity of Minkowski sum of semi-convex domains). Let M be a
Minkowski class, and let {21 and 25 be semi-conver M-domains. Then their Minkowski
sum (2 = {1 + {25 is a regular M-domain.

Proof. By Theorem 6.3, {2 is an M-domain. Suppose {2 is not regular. Then there exists
a point p € 92 and r > 0 such that B,(p) N 2 = [J;_, S*, where S¥’s are mutually
non-overlapping M-sectors with center p and radius r and n > 2. By Lemma 7.1, there
exist (pi,pd), (p?,p2) in M§11792(p) and o > 0 such that, for each k = 1,2 and i =
1,2, SF = B,(pF) N £2; is a non-degenerate M-sector with center p¥ and radius g, and
Sk —pk c (Sk 4+ 55) —p c Sk —p. Let 25 = —2 + p. Then by Lemma 6.3(3), 2,
and f)g are in contact position to each other, and meet at p} and p?. Since S and S?
are non-overlapping, it is easy to see that pl # p?. For i = 1,2, let ¢; : [0,1] — 942,
¢i(t) = (7i(t),n;(t)), be a one-to-one continuous map such that ¢1(0) = (p%,n}'h (p1)),
61(1) = (B3, (1), 62(0) = (B, mb, (53)), B2(1) = (ph, gy, (1)) By interchanging
(p},p}) and (p?,p3) if necessary, we can assume that Ogn, (¢1) = Ogn,(d2) = +, and
(v1([0, 1)\ {p},p2}) N T = 0, where U is the unbounded component of R2 \ (£ U (2,).

Define 65 : [0,1] — 00, Ga(t) = (Fa(t), Ba(t)), by da(t) = (—7a(t) + p, —ma(t)) for
t € [0,1]. Then (72([0,1]) \ {p},p?}) N U = 0. Since 2; and 2, are semi-convex, we
have —7 < @(¢1),9(($2) < 7 by Lemma 5.4(2). So —7 < O(¢;) < 7 for i = 1,2, since
O(¢a) = O(¢2) by Lemma 5.3.

We will show that, in fact, —m < ©(¢;) < 7 for i = 1,2. Suppose O(¢1) = —7. We
can assume n;(0) = (—1,0). Let of and ¥ be the end curve and start curve of the
M-sector S¥ respectively. Then v[al] = v[37] = (0, —1). Suppose o(a}) = +. Then there
exists o € (0,1) such that ©(¢1]jo,)) > 0. So by Lemma 5.1, we have O(¢1]y,,1)) =
O(¢1) — O(d1lj0,15]) < —, which is impossible since £2; is semi-convex. Thus o(a]) =0
or —. In the same way, o(3?) = 0 or +. Since S} —p} € S*—p, S?—p? C S?—p,and S'—p
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and S? — p are non-overlapping, it follows that v[3i] = v[a2] = v[3!] = v[a?] = (0, -1),

and either o(3') = — or o(a?) = +, where o and 3* are the end curve and start
curve of S* for k = 1,2. Let a1 be the non-negative angle of counter-clockwise rotation
from —v_ (pl) = —v[B}] to v, (p}) = v[al], and let ay be the non-negative angle of
counter—clockw1se rotation from —vg, (p7) = v[67] to v (pl) = —v|[ad]. Suppose a; < 7.

Then by Lemma 7.2, the Minkowski sum of 3 and ﬁz, which is contained in S*', must
intersect S2. But this is impossible, since S! and S? are non-overlapping. So a; > 7.
In the same way, oo > 7. By Lemma 5.4(1), we have O(¢1) + O(¢a) + a1 + as = 0,
and hence O(¢1) + O(¢2) + a1 + as = 0. Since —7 < O(¢y) < 7 and oy + ay > 2,
we must have oy = az = 7 and O(¢2) = —n. So v[Bi] = v[ad] = (0,—1). Remember
that either o(3') = — or o(a?) = +. Suppose o(8') = —. Then o((33) is also —. So
there exists to € (0,1) such that ©(da|,.,1)) > 0. By Lemma 5.1, we have ©(¢2|(0,,]) =
O(p2) — O(¢2l[ty,1) < —, which is impossible since (2 is semi-convex. In the same way,
we get a contradiction if o(a?) = —. Thus we conclude that ©(¢;) # —m. By a symmetric
argument, ©(¢y) # —n. It follows from Lemma 5.4(1) that ©(¢;) # « for i = 1,2. Thus
-7 < O(¢p;) <mfori=1,2.

v, (p3)

—v, (p3)
Fig. 13. C(S1) and C(SQ)

Now let 6; (< 0) be the angle of clockwise rotation from v§; (p1) to —vg (pi), and
02 (< 0) be the angle of clockwise rotation from v, (p3) to —vy, (p3). Note that 6; =
O(¢;) — 7 + 2mn; for some n; € Z for i = 1,2. Since S and S? are non-overlapping, we
have —27 < 0; < 0 (see Figure 13). So n; = 0 for i = 1,2, since —w < O(¢;) < 7. Thus
0; = O(¢i) — 7 for i = 1,2. Let o) be the angle of rotation in C(S') from —v, (pd)
to v, (p1), and o be the angle of rotation in C(5?) from —vg, (p?) to v{, (p3). We
understand ) to be positive if the rotation is counter-clockwise, and negative if the
rotation is clockwise. Note that —v_ (pl) = vg,(p3), and —v~ (pl) = vQ (p2). So
clearly o} = a; — 7 for i = 1,2 by Lemma 7.2.

From the definitions, it is obvious that 6; + 62 + o} + o = —27 (see Figure 13).
So from the above relations between 6;’s and ©(¢;)’s, and «}’s and «a;’s, it follows that
O(¢1) + O(¢2) + a1 + as = 2w, which contradicts Lemma 5.4(1). =

7.2. Simple connectedness. In this section, we show that the Minkowski sum of two
semi-convex M-domains is simply connected for any Minkowski class M.



Minkowski sum 37

Let M be a Minkowski class, and let {2 be a simply connected regular M-domain.
For each g € (2, we fix a homotopy Hg, : 2 x [0,1] — 2 such that Hg,,(p,0) = p and
Hg.,(p, 1) = g for every p € £2. For each q € R?, we define I, : R? — R? by I,(p) = —p+q
for p € R%. Note that I, o I, is the identity map.

LEMMA 7.3. Let M be a Minkowski class, and let £21 and {25 be two semi-conver M-
domains with 0 € £21,25. Let 2 = §21 + {25, and let p € 0f2. Then there exist one-to-one
continuous maps ¢, ¢~ : [0,1] — 92, ¢E(t) = (v (t),n*(t)), and continuous maps
o, 07 2 [0,1] — 9°62, d)f(t) = (’yii(t),nf(t)) for i = 1,2, which satisfy the following
conditions:

(1) 6%(0) = (p. 05 (). O (%) = £ and () is a flat point for every t € (0,1]

(2) Each of ¢=’s and vF’s is either one-to-one or constant, and if one of Og, (VT)
and Og,(vy) is T, then the other is +.

(3) 75 (t) = 77" (1) + 75 (t) and n*(t) = ny’(t) = ny (t) fort € [0,1].

(4) O(¢*) = O(¢F) = O(¢F) and, fori = 1,2, v is homotopic to 4 in R? \ int £2;
via the homotopy HE : [0,1] x [0,1] — R?\ int 2; defined by

Hi(t,5) = Lo (Haywo(0 (t),5),  Hy (t,5) = Ly (Hoo (35 (1), 9)),
for (t,s) € [0,1] x [0, 1].

Proof. By Theorem 7.1, {2 is a regular M-domain. Let p € 9f2. By Lemma 4.3, there
exists r > 0 such that B,.(p)N {2 is a non-degenerate M-sector with center p and radius 7.
By Lemma 6.9, there exist 0 < 71,...,7, < 7,0 < o < r and (p},pd),..., (p},p%) in
M 511’ 0, (P) such that Sk = By, (p¥)N (2, is a finite union of mutually non-overlapping M-
sectors with center p¥ and radius ry, fori = 1,2 and k = 1,...,n, and S* = B,(p)N (ST +
S%) is a finite union of mutually non-overlapping sectors with center p and radius p, and
S = B,(p) N2 =J,_, S*. Since r can be taken arbitrarily small and {21, {2 are regular,
we can assume that B, (p¥) N2 is a non-degenerate M-sector with center p¥ and radius
ry, for each i and k. By Theorem 6.2, we can also assume each S* is a non-degenerate
M-sector with center p and radius p, since r’s can be taken arbitrarily small. Note that
S is a non-degenerate M-sector with center p and radius g. Let v*,v~ : [0,1] — S
be the end curve and start curve of S respectively. Since S = [JS*, there exist 1 <
k%, k= < n such that v* and v~ are the end curve of S*" and the start curve of S*
respectively. Since v and ~ are in the boundary of {2, they are in the boundary of
Sf+ + S’§+ and S¥ + S5 respectively. So by Theorem 6.2, there exist 0 < & < 1 and
continuous maps ¢ : [0,e] — 8*S*", ¢ () = (v (t),n} (1)), and @7 : [0,¢] — IVSE,
67 (1) = (7 (H),0; (1)), for i = 1,2, such that 6(0) = pk*, v5(t) = AE(t) + 15 (1)
and n?’fki (vE(t)) = ni(t) = ni(t) for t € [0,¢], each ¢ and each 4 is either one-
to-one or constant, and if one of Osiﬂi (v) and Osgi (v) is F, then the other is =.
Define ¢, ¢ : [0,¢] — S, ¢*(t) = (v5(1), n%(1)), by 6%(1) = (*(t), ng (v*(1))) for
t € [0,¢]. Note that ¢, ¢ and ¢+ are in 912, 8V2y and d¥12 respectively. Thus, by
reparametrizing them on the interval [0,1], (1)—(3) are checked easily.

Now we show (4). First, @(¢*) = O(¢F) = O(¢7), since n*(t) = ni(t) = ni(t) for
every t € [0,1]. Note that, for i = 1,2, HX(t,0) = 4 (t) and HE (t,1) = y%(t) for every
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t € [0,1]. By the definition of Hp,.o’s, we have He,.o(v3(t),s) € 25 and Hp,.o(vi(t),s) €
2 for all t,s € [0,1]. So HE(t,s) € —125 + () and HE(t,s) € —2, + ~=(t) for all
t,s. By Lemma 6.3(3), £, and —2 + y*(t) are in contact position to each other, and
25 and —£2; +y*(t) are in contact position to each other for every t. So —§25 +~F(t) C
R2\ int £2; and —£2; +yE(t) € R?\ int {2, for every t. Thus H(t,s) € R? \ int £2; and
Hi(t,s) € R?\ int £2, for all t,s. This shows (4), and the proof is complete. m

Let us introduce the following useful notations: Let Fy : [a1,b1] X [¢,d] — R? and
Fy : [ag,bs] X [¢,d] — R? be two homotopies such that Fy(b1,s) = Fy(az,s) for every
s € [¢,d]. Then we define Fy - Fy : [a1,b1 + by — az] X [¢,d] — R? by

_ Fl(tvs) if (ta 5) € [alabl] X [Cv d]a
(Fl . F2)(t’8) - {Fg(t — b1 -+ GQ,S) if (t, S) € [bl,bl +b2 — CLQ] X [C, d}

G2

Fy F

G1
B

G
Fig. 14. The homotopies F} - F» and G?

Let Gy : [a,b]x[c1,d1] — R? and Gy : [a, b] X [c2, da] — R? be two homotopies such that
G
G1(t,d1) = Ga(t, c2) for every t € [a, b]. Then we define G‘j 2 la,b] X [c1, dy +da —co] — R?
by

@ @){&@@ if (t,5) € [a,b] x [c1,d1],
a ) Ga(t,s —dy +c2) if (t,8) € [a,b] X [d1,dy + d2 — ca].

G
It is clear that Fj - F5 and Gj are well defined and continuous. See Figure 14.
Let Fj; : [ai, bi] % [¢;,dj] — R? be a homotopy for i, j = 1,2. Suppose that Fy;(by,s) =
Fsj(az, s) for every s € [¢;,d;] and j = 1,2, and Fj;1(t,dy) = Fia(t, c2) for every t € [a;, b;]
F

. F:
and 7 = 1, 2. Then we define Fi R [a1,b1 + by — az] X [c1,d1 + do — co] — R? by

Fél
Fip - Fy Fip Fy (Fi2 - F29)
Fip - Fy iy Fo (Fh1 - Fo1)

See Figure 15.
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Fio Fyo
F1y Fyy
Fig - Fap

Fig. 15. The homotopy ;, .

Fa1

For any m,n > 1, we define in an obvious way the appropriate homotopy, when given
the homotopies Fj;, ¢ = 1,...,m, j = 1,...,n with the continuity conditions on the
common boundaries.

Now, let M be a Minkowski class, and let f2; and {25 be semi-convex M-domains
with 0 € 21, 5. Let 2 = 21 + §25. Suppose ¢F : [0,1] — 92, ¢*(t) = (v*(t), n* (1)),
and ¢F : [0,1] — 9Y82, ¢¥(t) = (v¥(t),n¥(t)), are continuous maps for k,i = 1,2, which
satisfy the following conditions:

(1) 4* is one-to-one and O (v*) = +, and (1) = 7%(0).

(2) Each of ¢¥’s and 4#’s is either one-to-one or constant, and if one of Og, (7F),
Ogq,(75) is —, then the other is +.

(3) ¥*(t) = 7 (t) +75(t) and n*(t) = nf(t) = nj( ) for every ¢ € [0, 1]

(4) O(¢%) = O(¢h) = O(#5), and for i,k = 1,2, v¥ is homotopic to v* in R? \ int £2;
via the homotopy HY : [0,1] x [0,1] — R2?\ int 2;, where

Hl (ta S) = I’y"'(t) (H92;0(7§(t)’ S))? Hg(ta S) = I’y"'(t) (HQHO(fyf(t)’ S))?
for (t,s) €10,1] x [0,1] and k =1,2.

Let p = v'(1) = 42(0). From the assumptions on ¢*’s, it is obvious that ¢'(1) =
(p,03(p)) and 62(0) = (p, 0 (p)). Let s : [0, 1] — pxNCa(p) € 92, (t) = (n(t), m(1),
be a continuous map which is either one-to-one or constant and m(0) = ng,(p), m(1) =
n’(p). Note that (0) = ¢*(1), ¥(1) = ¢2(0), and n(t) = p for t € [0,1]. Note also that
1, m are one-to-one if p is a corner point, and constant if p is a flat point.

Let p} = 4}(1) and p? = 42(0) for i = 1,2. Note that p = pl +p} = p? + p2, ie,
(pl, pb) and (52, p3) ave in MpL o, (). Let ¢ < [0,1] — 8°%2, vi(t) = (m(£), ma(£)), be a
continuous map which is either one-to-one or constant, and ;(0) = (pll, n}(1)) = ¢} (1),
Yi(1) = (2,02(0)) = ¢2(0). Let £2; = —£2; + p. Note that £, and (2, are in contact
position to each other, and pl,p1 € 2N . Also, (25 and (2, are in contact position to
each other and pl, p2 € 25 N 2. We assume that (1;(0,1]) \ {p}, p2}) N TU; = 0, where
U; is the unbounded component of R? \ (£2; U 52), and Us is the unbounded component
of R2\ (2, U £2y).

Note that pl = p? if and only if p} = p3. Suppose first p} = p?. Then clearly n,
e are constant, and 1, 1 are either one-to-one or constant. Let p; = pi = p? and
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py = ps = p2. Take r > 0 such that S; = B,.(p;) N §2; is a non-degenerate M-sector with
center p; and radius r for ¢ = 1,2, and S = Bs,.(p) N 2 is a non-degenerate M-sector
with center p and radius 2r. We can assume that S7, So are admissible to each other by
Lemma 6.4. Note that S; —p; C (S1 +S2) —p C S —p. Since m(0) = m;(0) = m(0)
and m(1) = m; (1) = mz(1), we have O(¢;) = O(¢)) + 2n;7 for some n; € Z. Note that
—m < O(),O0()1),O0(1h2) <, since m, my, my rotate in NCp(p), NCp, (p1), NCgp, (p2)
respectively. So, if —71 < O(¢) < 7, we get O(¢) = O(Y1) = O(1h3).

Suppose ©(¢)) = w. Then S becomes a sharp sector, and C(S) contains only one
element. We can assume that C(S) = {(0,—-1)}. Since S; —p; C S —p for i = 1,2,
Sy, So are also sharp sectors, and C(S7) = C(S2) = {(0,—1)}. So we must have O(¢);) =
O(1hy) = w. Thus O(yp) = O(¥1) = O(1h2). Suppose O(¢)) = —x. Let o and G be the
end curve and start curve of S respectively, and let a; and (; be the end curve and
start curve of S; respectively. In this case, S becomes a dull sector, and v[a] = v[g].
With no loss of generality, assume v[a] = v[§] = (0,1). Note that ©(1)1), O(1)2) are
m or —m. Since O(¢1),0 (1) # 0, S; and Sy cannot be flat sectors. Since Sp, Sy are
admissible to each other, they cannot be dull sectors simultaneously. Suppose both S
and Sy are sharp sectors. Then it is easy to see that C(S;) = {(0,1)} or {(0,—1)} for
i =1,2. So, from Lemma 7.2, we can see that at least one of & and § is not contained
in S; + S, which contradicts the assumption that 4! = 4] + 74 and 42 = 72 + ~2.
So S, Sy cannot be sharp sectors simultaneously. It follows that one of S; and Ss,
say Sp, is a sharp sector and the other is a dull sector. Then it is easy to see that
viay] = v[fi] = (0,-1), v]as] = v[B2] = (0,1), and so O(v)1) = O(1h2) = —n. Thus we
conclude that () = O(¢1) = O()9) if pt = p? (or equivalently, pi = p3).

Suppose now pl # p3. Then it is easy to see that one of Og, (1), Og,(n2) is + and the
other is —. Moreover, O, (nil[4,5)) cannot be —Ogq, (1;) for any [a,b] C [0,1], for i = 1,2.
We will also show that ©(1) = O(¢)1) = O(1)3) in this case. First, it is easy to see that
O(11) = O(1h2) since my(0) = my(0), my (1) = mo(1), and 24, 2 are in contact position
to each other. Since m(0) = m;(0) and m(1) = m; (1), we have O(¢p1) = O(¥) + 2nw
for some n € Z. We have seen that one of Ogp, (11), On,(12) is + and the other is —.
So, one of Og, (1), On,(¥2), say Og, (1), is + and the other is —. Since (21, 25 are
semi-convex, we have O(¢1) > —m and O(1h3) < 7. So —7 < O(1) = O(32) < 7. Thus,
O(¥) = O(Y1) = O(¢2) if —m <O(Y) < .

It remains to consider the cases when ©(¢)) = 7 or —7. Take r > 0 such that SF =
B,.(p¥) N §2; is a non-degenerate M-sector with center p¥ and radius r for i,k = 1,2, and
S = Ba,(p)N {2 is a non-degenerate M-sector with center p and radius 2r. We can assume
S¥ and S} are admissible to each other. Note that S¥ —pF C (SF +S5) —p C S —p. Let
« and 8 be the end curve and start curve of S respectively, and let af and ¥ be the end
curve and start curve of S¥ respectively.

Suppose ©(1p) = 7. Then S is a sharp sector, and C(S) contains only one element,
which we assume to be (0, —1). Since S¥ —p¥ C S — p, we have C(S¥) = {(0,-1)}. So
v[a¥] = v[3¥] = (0, —1). We can assume that Og, (11) = + and Og,(1)2) = —. Suppose
(Y1) = O(¢p2) = —m. Note that m(0) = (1,0) and m(1) = (—1,0). So -7 = O(¢)1) =
w4+ O]) + m, where ¢} : [0,1] — 0Y(2; is a one-to-one continuous map such that
U1(0) = (p1,mg, (p1)), ¥1(1) = (pF,ng, (p7)), and Og, (¥}) = +. Now O(¢) = —3m,
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which is a contradiction since 2; is semi-convex. So we must have O(¢1) = O(1p2) = 7

and hence O(¢) = O(1)1) = O(1)2) if O(Y) =

Suppose O(1)) = —nw. Then S is a dull sector, and v[a] = ], which we assume

V(3
to be (0,1). Let S’ = Ba,(p) \ S. Suppose O(¢1) = O(1p2) = m. We can assume
that Og, (¢1) = + and Og,(12) = —. Note that m(0) = (—1,0), m(1) = (1,0), and
Sk —pk c SF+ S5 —p C S —p Let v[pi] = (cosf,sind). If 7/2 < § < 37/2,

then m;(0) = (—1,0) cannot be in NCgq,(p3). If —7/2 < 0 < 7/2, then there ex-
ists to € (0,1) such that @(1alp,+,)) < 0. So O(Y2|p,11) = 9(1&2 O(Y2l0,10]) >

which is impossible since 25 is semi-convex and Og,(12) = —. Thus we must have
v[34] = (0,1). Note also that o(33) # — for the same reason. In the same way, we
can see that v[a3] = (0,1) and o(a3) # +. Let v[ai] = (cosfy,sinf;) and v[3?] =
(cos B2, sin ). Suppose 7/2 < 6; < 37/2. Then we should have v[3}] = (0,1) in order
for m(0) = (—1,0) to be in NCp, (p}). Since v[33] = (0,1), it follows from Lemma 7.2
that B,(p) C S} + S3 C S for sufficiently small ¢ > 0, which is impossible. Suppose
6; = m/2. Then, in order for m(0) to be in NCgq, (pl), we must have v[31] = (0,1)
again, and C(S7) = {(0,1)} or 8B1(0). If C(S]) = 8B1(0), then we would also have
the same contradiction B,(p) C Si + S3 by Lemma 7.2. So C(S7) = {(0,1)}. Let W
be the sharp sector with center 0 and radius 2r, whose start curve and end curve are
B —pand {(x,0) | 0 < x < 2r} respectively. Let W5 be the sharp sector with cen-
ter 0 and radius 2r, whose start curve and end curve are {(z,0) | —=2r < o < 0}
and a — p respectively. Note that af — pi, 81 —pl C W; and B} — p} C W; for some
i,j = 1,2. If i # j, then B,(p) N S" C S{ +5} C S by Lemma 7.2, which is a
contradiction. So i = j. Suppose i = j = 2. Since S5 — ps C S — p, we also have

—pl € Wy and v[ad] = (0, 1) Now from Lemma 2.3, we can see that 5 — p cannot
be any of a} — pi, Bt — pi, ol — pl, B3 — pl, or their convolutions. From Lemma 6.7
and Theorem 6.2(3), we see that this contradicts the assumption that y' = i + ~4.
Suppose @ = j = 1. Since o(33) # —, we must have o(3) # — and o(a) = +.
So, a% — p3,82 — p3 C Wy and v[B3] = (0,1), since v[ad] = (0,1), o(a3) # + and
S2 —p3 c S —p. Since 42 = 92 + 3, a — p should be one of af — p?, 37 — p?,
a? — p%, 32 — p3, or their convolutions by Lemma 6.7 and Theorem 6.2(3). There are
only two cases to make this possible: Either o — p is one of a? — p?, 5% — p?, or
o0(B3) = + and a = (3 x v for v = a2 or 7. But it is easy to see from Lemma 7.2
that, in both cases, S? + S3 would intersect B,(p) N S’ for sufficiently small ¢ > 0,
which is a contradiction. Thus v[a}] # (0,1). So we have —7/2 < 61 < 7/2. Similarly,
/2 < 0y < 3m/2.

Suppose 1 = —m/2, i.e., v[ai] = (0, —1). Let a; be the non-negative angle of counter-
clockwise rotation from V[BQ} to v]ai] in V, where V is the region bounded by 7; and
—n2 + p. Let as be the non-negative angle of counter-clockwise rotation from v[3?] to
—v[a3] in V. Suppose either o(a}) = — or al <1 83. Then oy = 27, since S}, S5 are
admissible to each other. For ¢ = 1,2, we can choose [a;,b;] C [0,1] such that ¢(a;) =
(p1,ny, (p1), ¥1(b1) = (p},my, (p7)), and ¢a(az) = (p3, 0, (Ph), Ya(b2) = (p3, 1, (p3)).
Note that a; = az = 0, since v[ag] = —v|[F3] = (0, —1). By Lemma 5.4(1), O(¢1]j0,4,]) —

O(1h2][0,,]) + 27+ a2 = 0. Since 2y, 25 are semi-convex, we must have O (1|(op,]) = —,
O(Y2][0,6,]) = ™ and a = 0. Since ap = 0 and m(1) = m; (1) = my(1) = (1,0), it follows
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that ©(y;) = —m, which contradicts the assumption. Thus if v[ai] = (0,—1) then we
must have o(ai) # — and either o} > 83 or ai ~ (3. Similarly, if v[3?] = (0, —1) then
o(B?) # + and either 32 > a3 or 32 ~ 3. Now it is easy to see from Lemma 7.2 that
(ST+53)U(S?+52) contains B,(p)NS’ for sufficiently small ¢ > 0. This is a contradiction,
since Si + 53,87 + 83 € S. Thus we must have O(1)1) = O(1hy) = —

Summarizing the above arguments, we conclude that @ (1)) = O(¢1) = O(1)2) in any
case.

For i = 1,2, define 7; : [0,1] — R? by 7;(t) = —n;(t) + p. It is easy to see that 7; is in
892; and 7, (0) = pb, 71 (1) = p2, 72(0) = p!, 72(1) = p2. Let V4 be the region enclosed by
m and 72, and Vs be the region enclosed by 73 and 7;. By Lemma 5.4(3), there exists a
homotopy A4; : [0,1]x[0, 1] — V; such that A;(¢,0) = 0y (), A1(t,1) = 72(t), A1(0,5) = pi,
A1(1,s) = p?, and Aa(t,0) = nao(t), Aa(t, 1) = 71(t), A2(0,s) = p3, Aa(1,s) = p3 for every
(t,s) € [0,1] x [0,1]. For i = 1,2, let B; : [0,1] x [0,1] — R? be the homotopies defined by

Bl(tas) = IP(Hﬁz;O(UQ(t)’S))7 BQ(t S) =1 (Hﬁl;o(nl(t)’s))7

for (¢,s) € [0,1]x[0,1]. Then By (¢,0) = 72(t), Ba(t,0) = 71(t), and By (¢,1) = Ba(t,1) =p
for t € [0,1]. It is also easy to see that B;([0,1] x [0,1]) C R?\ int §2;. For i,k = 1,2 we
define EF : [0,1] x [0,1] — R? by

Ef(t,s) =/ (t)
for (t,s) € [0,1] x [0, 1].

"} . B, . HZ?
Now we can see that the homotopy G; = ;1 . 4, . p2 is well defined, where H;’s are

defined as in Lemma 7.3, and G;([0,3] x [0,2]) C R?\ int §2; for i = 1,2. See Figure 16.
Note that «} - n; - 42 is homotopic to v - -2 in R? \ int £2; via G;.

7t n=rp ¥?
H} B; H?
Vi M3—i V;
E! pi A; p; E}
7 i v;
Hil - B - H?

Fig. 16. The homotopy G; = g1 . 4, . g2

Let (E: [0,1] — 8°92, (t) = (3(t),7(t)), be a locally one-to-one, continuous map such
that Oq(¢) = + and 7(0) (1) are flat points. Since [0, 1] is compact, Lemma 7.3 shows
that there exist 7(0) = p°,...,p" = F(1) € 92 and continuous maps ¢* : [0,1] — 12
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) = (4*(t),n*(1)), and ¢f : [0,1] — 942, ¢F(t) = (yF(t),nf(t)), for i = 1,2 and

=1,...,n, such that:
(1) v%(0) = p*=1, 4%(1) = p*, 4* is one-to-one, and O, (7*) = +.

Each of ¢¥’s and ¥’s is either one-to-one or constant, and, if one of Ogq, (7¥),
) is —, then the other is +.

(3) v*(t) = ¥ (t) + 5 (t) and n*(t) = n¥(¢t) = nk(¢) for t € [0, 1].

(4) O(¢*) = O(¢F) = O(¢h), and, for i = 1,2, ¥ is homotopic to v* in R? \ int £2;
via the homotopy HF : [0,1] x [0,1] — R2\ int 2;, where

H{C(ta S) = I’yk(t) (H92;0(7§(t)’ S))? Hg(ta S) = I’yk(t) (HQMO(fyf(t)’ S))?

for (t,s) € [0,1] x [0, 1].
(5) There exists a continuous, onto, non-decreasing function h : [0,1] — [0,n] such

that 3(t) = (y* - ... -y")(h(t)) for t € [0,1].

From the above arguments, there exist continuous maps ¥* : [0,1] — V82, ¥*(t) =
(n*(t), m*(t)), and ¥ : [0,1] — v, ¥F(t) = (n¥(t), mF(t)), and a homotopy A¥ :
0,1 x [0,1] = VFfori=1,2and k=1,...,n—1 (k=1,...,n if $(0) = ¢(1)), where
VE C R2\(£;U(—£23_;+p")) is the region bounded by ¥ and 7% _, = —n5 . +p*, such that
OWF) = O(YF) = O(1%), and vF -1 - 45 is homotopic to v* - 7% -4#+1 in R? \ int £2; via

o

mk Bk HEF ~ ~
oei1 fori=1,2and k=1,...,n—1(k=1,...,nif ¢(0) = ¢(1)). Here, we let
¢mtt =l =4t and @7t = o), AT =), YT = HY B} = B} fori=1,2.
Fori=1,2andk =1,...,n—1 (or n), define EX(t,s) = ¥ (t) for (¢, s) € [0,1]x[0, 1], and

Bf(tvs) = Ip’“(HQQ;O(ng(t)’S))’ Bé(t’s) = ka (Hﬁl;O(nf(t),S)),

EF - Ak -
i i

for (¢,s) €10,1] x [0,1].
For ¢ = 1,2, let
p=¢t-Ppt-p?e YT Gn,
gi =i 0 T o,

y=Atptoq2o gt
V=
R I T
Pi=E}-ALEP- . AT B
Qi=H} B} -H} ... B! -H

When $(0) = ¢(1), we let
p=0' -yl gy,
Gi=¢i G TG,

y=Atnt2 oty

Vi=yemod e g
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~ 1, ~1 2 -1
Vi =i i Vit T3 Vi -
1 1 2 n—l
R BN AL B A AL
Qu=HI-BLHE. . BHD B
fori=1,2.
» o o p? p?
s ' =pt 7 n=p
H} B} H; B
i i 7 o
B! Al B A
v i 4 m
P2 pt not p" r’
1 n—1 _ n—1 " =t o
5 n — vy n=p AP
|
e B! Hy B
i ! i g |
[
|
n—1 pn—1 4 BT
v; N3—i e i |
|
mn— n- i i |
Ei ! Al ! El Al !
[
[
—_———e—
n—1 n—1 i 3
i i B "

Qj
Fig. 17. The homotopy H; = p,

Note that Qi(t,s) = v(t)(H.ngi;O(I'y(t) (f’%(t)),s)) for (t,S) S [O,2n - 1] X [0, 1] (fOI‘

~ ~ Q;
(t,s) € [0,2n] x [0,1] if ¢(0) = ¢(1)), for ¢ = 1,2. Let H; = 5, . See Figure 17. Now it
is easy to see that 7; is homotopic to 7; in R? \ int £2; via P;, and ¥; is homotopic to
v in R?\ int 2; via Q;. So 7; is homotopic to v in R? \ int £2; via H;. Furthermore, if

¢(0) = ¢(1), then H;(0,s) = H;(2n,s) for s € [0,2]. It is also easy to see that O(¢p) =
O(¢) = O(¢1) = O(¢2).

Finally, we obtain the following theorem by using the above arguments:

THEOREM 7.2 (simple connectedness of Minkowski sum of semi-convex domains). Let
M be a Minkowski class, and let £21 and (25 be semi-convex M-domains. Then their
Minkowski sum 2 = 21 + (25 is a simply connected regular M-domain.
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Proof. From Theorem 7.1, (2 is a regular M-domain. We can assume 0 € int {21, int {25.
Clearly, this implies 0 € int {2. Suppose {2 is not simply connected. Then there exists an
inner boundary C of 2. Let C be the connected component of 9V {2 correspondmg to C,
and let ¢ : [0,1] — C, ¢(t) = (F(t),10(t)), be a continuous map such that ¢( ) = d)(l),
7(0) =7(1) is a flat point, <Z)| [0,1) is one-to-one, and O0(¢) = +. (That is, ¢ traverses C
exactly once in the standard orientation.) Then 6(¢) = —27 by Lemma 5.2(1).

Now take ¢, ¢;, and H; for i = 1,2 as in the above arguments. We have 9(5) =
O(¢) = O(¢1) = O(¢2), and ~; is homotopic to v in R? \ int 2; via H; for i = 1,2.
Also, v and ¥ are homotopic in 0f2. So Ind5(0) = Ind,(0) = Ind,, (0) = Ind.,(0),
since 0 € int §2,int £21,int {25. Since C' is an inner boundary of {2 and 0 € int {2, we
have Ind,(0) = 0 by Lemma 5.2(2). So Ind,,(0) = 0 for ¢ = 1,2. It follows that
O(¢1) = O(¢p2) = 0 again by Lemma 5.2(2), since £2; and (2, are simply connected
and hence have no inner boundaries. So 9(5) = 0, which is a contradiction. m

8. Maximality of semi-convexity

Let C be a subclass of CL'! which is closed under restriction. In this section, we show that
for any regular C-domain which is not semi-convex, there exists a semi-convex C-domain
so that their Minkowski sum is not simply connected. Combined with Theorem 7.2,
this answers Problem 2 posed in Section 1 within the category of M-domains for any
Minkowski class M. In fact, it is shown that we can choose this domain among a special
kind of semi-convex C-domains, which we call flag domains. Note that C need not be a
Minkowski class.
First, we observe the following easy fact:

LEMMA 8.1. Let 2 be a regular Ctt-domain which is not semi-convex. Then there exists
a one-to-one continuous map ¢ : [—¢,1+¢] — 012, ¢(t) = (v(t),n(t)), for some e > 0,
which satisfies the following conditions:

(1) Op(¢) = + and O(¢lj0,1]) = —

(2) =7 < O(Pl[s,1) < 7 for every proper subinterval [s,t] of [0,1].

(3) Let 0 : [—e,14+¢] — R be an angle function of ¢. Then 8 is strictly decreasing on
[—e,e] and [1 —e,1+¢].

Proof. Since 2 is not semi-convex, there exists a one-to-one continuous map a : [a,b] —
8”02 such that Oq(¢) = + and O(¢) < —m. Let 0 : [a,b] — R be an angle function
of ¢. Since £2 is a Cl1-domain, we can divide [a,b] into a finite number of subintervals
on which 6 is either strictly increasing or strictly decreasing or constant. It follows that
the number of critical values of 6 is finite. So we can take a < a’ < b < b such that
9($| a ) = —7 and 0 is strictly monotone near every ¢ € [a, b] such that 6(t) = 8(a’) or
f(b'). Now there exist o’ < a” < b” < ' such that 9( N =0(a), 0(b") = O(V), 0 is strictly
decreasing near a” and b, and 6(b") < 6(t) < 6(a”) for every t € (a’,b"). So we can
take a strictly increasing continuous function h : [—¢,1 4 ¢] — [a, ] for some ¢ > 0 such
that 2(0) = a”, h(1) = b" and @ is strictly decreasing on h([—¢,&]) and h([1 —¢,1 + £]).
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Taking ¢(t) = G(h(t)) for t € [—¢,1 + €], we can easily check that ¢ satisfies conditions
(1)—(3). m

For any p € R?, we denote the z-coordinate of p by p,, and the y-coordinate of p
by py.

THEOREM 8.1 (maximality of semi-convexity). Let C C CL! be closed under restriction,
and let £21 be a regular C-domain which is not semi-convexr. Then there exists a semi-
convexr C-domain 25 such that 2 = (21 + {25 is not simply connected.

Proof. By Lemma 8.1, we can take a one-to-one continuous map ¢ : [—¢’, 1+¢'] — 9V42y,
#(t) = (v(t),n(t)), for some &’ > 0, such that Og,(¢) = +, O(¢[p,1)) = —7, —7 <
O(ljs,) < m for every proper subinterval [s,t] of [0,1], and @ is strictly decreasing on
[—€',¢'] and [1 — €’,1 + €], where 6 is an angle function of ¢. We can assume n(0) =
(—1,0). Let a = (1), and b = 7(0),. Let v(¢) be the unit vector obtained by rotating
n(t) counter-clockwise through 90° for ¢ € [—¢’,1 + €’]. Suppose (o), > b for some
to € (0,1) such that y(tg) # v(0). Then there exists t; € (0,tp) such that v(¢1), > 0.
So n(t1)y < 0, and hence O(¢[(,+,1) > 0, since —1 < O(¢|[o4,]) < 7. It follows that
O(Plit, 1) = O(@l,17) — O(9lj0,t]) < —m, which is impossible. Thus v(t), < b for every
t € (0,1) such that v(¢) # v(0). Analogously, v(t), > a for every ¢ € (0,1) such that
v(t) # v(1). Thus a < v(t)y < b for every ¢t € (0,1) such that v(¢) # ~(0),~(1).
Suppose Y(t1), = Y(t2), for some 0 < t; < ty < 1 such that y(t1) # v(t2). Then there
exists t3 € (t1,t2) such that v(t3), = 0. So n(t3), = 0, which implies n(t3) = (1,0) or
(=1,0). It follows that either |@(¢|(o,,])| > 7 or |©(¢|f,,17)] > 7. But this contradicts
the assumption that —m < ©(¢|[0,t]), O(@lts,1)) < 7. Thus y(t1)s # Y(t2). for every
ti1,t2 € (0,1) such that v(¢;) # ~(t2). From these observations, it is clear that there
exists a continuous function f : [a,b] — R whose graph is ([0, 1]).

Let v* : [0,1] — 021 be a one-to-one continuous curve such that v*(0) = (1) and
Ogn,(vT) = +. Note that if y7((0,&")) ¢ {(x,y) € R? |a <z < b,y > f(x)} for every
small €’ > 0, then 6 cannot be strictly decreasing on [1 —¢’,1 + ¢’]. So we can take a
continuous function g : [a,a + €] — R, for some small £ > 0, such that the graph of g is
contained in 02, g(a) = f(a), and f(x) < g(z) for every x € (a,a+ €]. In the same way,
we can take a continuous function h : [b —e,b] — R such that the graph of & is contained
in 98, h(b) = f(b), and f(x) < h(z) for every = € [b — £,b). See Figure 18.

We can assume a +¢ < 0 < b—¢ and f(0) = 0. Let F, G and H be the graphs of
f, g and h respectively. Let A = 902, \ (FUGU H). Since F and A are compact and
FnA=0, we can take 6 > 0 such that

26 <min{d(F, A),g(a+¢)— fla+¢e),h(b—¢c)— f(b—¢)}.

Let Fy, Fys be the graphs of f+ 4, f+ 20 respectively. Since 2§ < g(a+¢) — f(a+¢) and
25 < h(b—¢)— f(b—¢), Fos must meet both G and H. Let a; = max {p, : p € Fos NG}
and by = min{p, : p € Fys N H}. Then the set

Q) ={(z,y) €R? |ay <z <by, f(z)+6 <y < f(z)+26}

is a simply connected regular C-domain, and (2; and {2} are in contact position to each
other. It is also easy to see that 2} is semi-convex.
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)

Fig. 18. (2}

Let 25 = —024 + (0,9) and 2 = 2, + §25. Clearly, {25 is also semi-convex. Define

G- :la,a1] — R? and By : [by,b] — R? by

B-(t) = (t,9(t)) — (a1,9(a1)) +(0,0), t € [a,a],

B+(t) = (t,h(t)) — (b1, h(b1)) +(0,6), t € [b1,b].
If 5_ does not meet F, then let [_ be the line segment that starts from G_(a) and goes in
the direction of (0,—1) until it meets F. Also, if 81 does not meet F, then let [, be the
line segment that starts from 3, (b) and goes in the direction of (0, —1) until it meets F.
Note that a +¢ < 0 < b —e. Let D be the simply connected regular C-domain which is
enclosed by the curves F, 8_, 81 (and [_, I if needed), and let 3 : [0,1] — 9D be a
closed curve which traverses D once in the standard orientation of D. Now note that
(—254p)N§2y # B for every p € ID. So (¢) € 2 for every ¢ € [0,1] by Lemma 6.3(1). On
the other hand, note that —25 + (0,6/2) = 24 —(0,/2) has no intersections with £2;. So
(0,6/2) ¢ £2 again by Lemma 6.3(1). Since (0,6/2) € int D, we have Indg((0,46/2)) = 1.
Now suppose {2 is simply connected. Then Inda(p) = 0 for every p ¢ 2 and every closed
curve 3 in £2. So we have Indg((0,6/2)) = 0. This is a contradiction. m

REMARK 8.1. Theorem 8.1 does not guarantee that for every regular non-semi-convex
domain, there exists a conver domain such that their Minkowski sum is not simply con-
nected. In fact, this is false: Let {2 be the domain depicted in Figure 12 (left). The
Minkowski sum of {2 and any convex domain is simply connected. This can be easily seen
from the fact that there should be a “trapping region” in order for a Minkowski sum to
be non-simply connected.

Note that the domain {25 in the proof of Theorem 9.2 is of a special shape, which is
not always shared by every semi-convex domain. Since these domains play an important
role in Section 9, we give a name to them:

DEFINITION 8.1 (flag domain). A simply connected regular C'!-domain §2 is called a
flag domain if there exists a piecewise C'! function f : [a,b] — R such that:
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(1) —oo < f'(x+), f'(z—) < oo for every = € [a,b].
(2) For some rigid motion in R2,

2 ={(x,y) eR?*[a <z <, fx) <y < flx)+d}
for some d > 0.

See Figure 20 for an example of a flag domain. It is easy to see that a flag domain
is semi-convex, but not vice versa. Note that the domain {25 in Theorem 9.2 is a flag
domain. Thus we have the following statement which is stronger than Theorem 9.2:

THEOREM 8.2. LetC C CCL1 be closed under restriction, and let {21 be a regular C-domain
which is not semi-convexr. Then there exists a flag C-domain 25 such that the Minkowski
sum 2 = 1 + 25 is not simply connected.

9. Closedness of semi-convexity

In this section, we show that the Minkowski sum of two semi-convex M-domains is again
a semi-convex M-domain for any Minkowski class M. Thus the set of all semi-convex
M-domains is closed under Minkowski sum.

We start with some basic observations:

LEMMA 9.1. Let 21 and 25 be two simply connected regular C''-domains such that
21 C {2, and let p € 0021 N 02, q; € 082; fori = 1,2 with qo # p. For i = 1,2, let
vi : [0,1] — 9€2; be continuous maps such that v;(0) = p, vi(1) = q;, and let §: [0,1] —
25\ int 21 be a continuous map such that 3(0) = q1, B(1) = qo2, and either (3 is constant
or B((0,1]) C 25\ £21. Suppose there exists a homotopy H : [0,1] x [0,1] — R? \ int 24
such that H(t,0) = v1(¢), H(t,1) = y2(t) fort € [0,1], and H(0,s) = p, H(1,s) = B(s)
for s € [0,1]. Then Og, (1) - Ogn,(y2) # —.

Proof. Let 72 : [0,1] — 02 be a one-to-one continuous map such that 72(0) = p,
¥2(1) = g2, and Ogp,(72) = +. Let 41 : [0,1] — J¢21 be a continuous map such that
71(0) = p, 11(1) = q1, On,(71) # —, Y1ljp,1) is either one-to-one or constant. Clearly,
we can find a homotopy H : [0,1] x [0,1] — R2 \ int £2; such that H(t,0) = 1 (t),
ﬁ(t, 1) = Fa(¢) for every t € [0,1], and ﬁ(O,s) = p, f[(l,s) = B(s) for every s € [0,1].
For i = 1,2, let v; : [0,2] — R be the continuous function such that v;(0) = 0 and
wi(vi(t)) = (3 - %) (t) for t € [0,2], where p; : R — 92, are covering maps in the
standard orientation of 9f2; with period 1 such that p;(0) = p. See Section 5 for the
definition of % for a curve 7.

Clearly, 0 <v1(1) <1 and 0 < v5(1) < 1. Note also that the two closed curves 71 - 7,
and 73 - 7, are homotopic in R? \ int £2;. So Indy, 5, (0) = Inds,5,(0), where we have
assumed 0 € int £2;. Note that Indy, 5, (0) = v4(2) for i = 1,2. So v1(2) = v2(2) € Z. Thus
the assertion follows, since Og,(7;) is the sign of v;(1) — 1;(2). m

LEMMA 9.2. Let §2 be a simply connected regular C**-domain. Let (p1,n1) and (pa,ng)
be two points in V(2 such that ny = —ny. Suppose

2N{pr+t-n [t>0U{pa+t-ny|t>0}) =0



Minkowski sum 49
Then ©(¢p) = w for any one-to-one continuous map ¢ : [0,1] — 9¥82, ¢(t) = (v(t), n(t)),
such that ¢(0) = (p1,1n1), #(1) = (p2,n2) and On(P) = +.

Proof. We can assume that ny; = (1,0). Since {2 is bounded, there exist a; < as and
by < by such that 2 C {(x,y) € R? | a1 < x < ag, by <y < by}. See Figure 19.

Yy
bofp———- l
l2

|
|
|
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|
|

bff=—=-- -

I l z
0 ai a2

Fig. 19. Figure for Lemma 9.2

Let I; = {(z,y) €R? | z =a1,(p2)y <y < bo} and o = {(z,y) € R? | 2 = ay,
(P1)y <y < ba}. Let mi = {(2,y) € R* | a1 < @ < (p2)ay y = (p2)y} and mo = {(2,y) €
R? | (p1)s <z < as,y = (p1)y}- Let I = {(z,y) € R? | a1 < x < ag, y = ba}. By the
assumptions, the curve v and the line segments mo, s, [, l1, m1 constitute the boundary
of a simply connected regular C*!-domain, which we call 2. Let ¢ : [0,1] — 0"’ be
a one-to-one continuous map such that ¥ (0) = (p1, (0, 1)), ¥(1) = (p2,(0,—1)) and
Oq (1) = +. Tt is easy to see that O(v)) = 27. By Lemma 5.2(1), we have O () + 7/2 —
O(¢) + /2 =2n. Thus O(¢) =7. n

LEMMA 9.3. Let 21 be a flag C¥'-domain and (25 a semi-convex C''-domain. Suppose
that £21 and 25 are in contact position to each other, and that V is a bounded connected
component of R?\ (2, U £23). Then for any p1 € OV \ 082, there exist po € OV \ 02
and a continuous curve 3 :[0,1] — V such that 3(0) = p1, B(1) = pa, 3((0,1)) C V, and
(21 4 B(u) — B(0)) N 22 # D for every u € [0, 1].

Proof. We can assume that

O ={(z,y) | f(z) <y < flx) +d, 2| <1},
for some piecewise C'! function f : [~1,1] — R. Let F and F, be the graphs of f and f+d
respectively, and let [_, I be the line segments (without end points) joining (—1, f(—1))
to (=1, f(—=1) +d) and (1, f(1)) to (1, f(1) 4+ d) respectively. See Figure 20. Note that
01 = FUF;Ul_Ul;. If p1 € F (resp., p1 € Fy), then take po € 9V \ 92y such
that (p2)s = (p1)e and (p2)y = max{p, : p € OV \ 9421, pz = (p1)a, Py < (p1)y} (resp.,

(p2)y = min{py, : p € OV \ 021, pr = (p1)a, Py > (P1)y})- U p1 € 1 (vesp., p1 € 11), we
take po € OV \ 0421 such that (p2), = (p1)y and (p2), = max{p, : p € OV \ 9421, py, =

(P1)y, Pe < (P1)z} (vesp., (p2)e = min{p, : p € IV \ 9021, py = (p1)y, Px > (P1)e})- In
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Fig. 20. Flag domain

any case, we define B(u) = (1 — u)py + upy for w € [0,1]. It is clear that 5(0) = py,
B(1) = p2, B([0,1]) €V, and 5((0,1)) C V.

Now we only have to show that (21 + B(u) — 3(0)) N 2y # O for every u € [0,1].
For i = 1,2, let ¢; : [0,1] — V€2, ¢:(t) = (vi(t),n;(t)), be a one-to-one continuous
map such that Og, (¢;) = +, %([0,1]) = 9V N 2, $:(0) = (7:(0), 05, (7:(0))), ¢s(1) =
(7i(1),np, (7i(1))). Note that §2; is semi-convex, since a flag domain is semi-convex. So
by Lemma 5.4(2), we have —1 < O(¢;) < 7 for ¢ = 1, 2. From this, it is easy to see that
at least one of F', Fy, [_, I} has no intersections with 71 ([0, 1]), and if 71 ([0, 1]) intersects
one of [, [_, then it does not intersect the other. Thus, by symmetry, it is sufficient to
consider the following four cases when 71 ([0, 1]) intersects only (1) F, (2) I_, (3) F and
[_, (4) F,1_ and F,. See Figure 21.

@M

(2)
Y2
Fd Fd
Y2
(3) (4)

Fig. 21. Four cases of contact positions

First consider case (1). Let U = {(z,y) € R? | 71(0), <z < y1(1)s, y < f(2)}.
Suppose there does not exist ¢} nor ¢, in [0,1] such that v2([0,#}]) C U, % (t))s =
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71(0)z, and o ([th,1]) C U, v2(th)z = 71(1),. Then there exist 0 < t; < t2 < 1 and
e > 0 such that na(t;) = —ma(ta) = (—1,0), O(1l,—c,11), O(D1lts,024¢)) < 0, and
VN {ye(t;) —u-na(t;) | w > 0} = 0 for i = 1,2. By applying Lemma 9.2 to V, we
have O(¢2|t, 1,]) = —7. S0 O(¢2|[t; —c t,+¢]) < —7, which is impossible since (25 is semi-
convex. Thus at least one of t{, t§ above should exist. Then we can see easily that
(21 + B(u) — B(0)) N 25 # O for every u € [0, 1].

Case (2) can be treated with the same argument as in (1). Consider case (3). Note that
the case when 1(1) = (=1, f(—1)) can be treated by the same method as for case (2).
So we assume 71 (1) # (=1, f(—1)). Suppose p; € F. Let U = {(z,y) e R? | -1 <z <
(12 y < f(z)}. Suppose there does not exist ¢ € [0,1] such that v2([0,t;]) C U,
v2(t])x = —1. Then there exist 0 < t; < t2 < 1 and € > 0 such that ny(t1) = —nsy(t2) =
(21,0), 62l o)) (B2l 1)) < 0, and V1 {2(ts) — u- ma(t:) | u > 0} = 0 for
i =1,2. By Lemma 9 2, we have O(¢2|ft, +,]) = —7. S0 O(@2|[t, —c,t,4¢]) < —7, which is
impossible since (25 is semi-convex. Thus there exists t] € [0, 1] as above, and it follows
easily that (21 + 8(u) — 8(0)) N 22 # O for every u € [0, 1].

Suppose p; € I_. Let U; be the (closed) region bounded by {71 (0)+u-(—1,0) | u > 0},
{7m1(1)+u-(0,-1) | w > 0} and ~;, which does not contain ;. Let Us = {(z,y) €
R? | z < —1, f(-1) < y < 7(0),}. Suppose there do not exist ¢;, t, in [0,1] such
that 42([0,#1]) C Ui, 72(t)y = n(l)y for every ¢ € [0,t1], 72(t1)y = 71(0)y, and
v2([th, 1]) C Ua, 72(ty)y = f(—1). Then there exist 0 < ¢; < t2 < 1 and € > 0 such that
ny(t1) = —na(t2) = (0,1), O(P2li,—c,t,1), O(P2l[ta,t2+]) < 0, and V{2 (ts) —u-ma(ts) |
u > 0} = 0 for i = 1,2. By Lemma 9.2, we have O(dal, +,)) = —m. It follows that
O(P2lity—e,to4+e)) < —m, which is impossible since 23 is semi-convex. So at least one
of t, th exists. Now it is easy to see that (21 + S(u) — 6(0)) N 22 # O for every
u € [0,1].

Finally, consider case (4). Note that the cases when v,(0) = (-1, f(—1) + d) or
7 (1) = (=1, f(—1)) can be treated with the same methods as for cases (2) and (3). So
assume 71 (0) # (—1, f(—=1)+d) and 1 (1) # (-1, f(—1)). By using the same argument as
for case (3) when p; € F, we can see that (£21+8(u)—3(0)) N2 # 0 for every u € [0, 1] if
p € FUFy. Suppose p € I_. Let Us be the (closed) region bounded by {~1(1)+wu-(0,-1) |
u >0} {(-1, f(-1)+d) +u-(=1,0) | u > 0} and ¥1([0,1]) N (F UI_), which does not
contain 2;. Let Uy be the (closed) region bounded by {v1(0) + w - (0,1) | « > 0},
{(-1, f(-1))+u-(-=1,0) | u > 0} and ~v41([0,1]) N (F; Ul_) which does not contain (2;.
Suppose there do not exist ¢}, t5 in [0,1] such that 42([0,t}]) C Us, 72(t)y > 71(1)y
for every t € [0,t7], v2(t})y = f( 1) +d, and 2 ([t5, 1]) C Us, 72(t)y < 71(0)y for every
t € [th, 1], v2(th)y = f(—1). Then there exist 0 < t; < to < 1 and ¢ > 0 such that ny(t1) =
~na(tz) = (0, 1), Oaljs 1) OBl s ) < 0, and VA {ra(ts) —uemats) | u > 0} = 0
for i = 1,2. By Lemma 9.2, we have O(¢2|f, +,)) = —7, and 50 O(da|[, —c,tp4)) < —7.
But this is impossible since {2 is semi-convex. So at least one of ¢}, t, exists. Now clearly
(21 4 B(u) — B(0)) N 25 # O for every u € [0,1]. m

THEOREM 9.1 (semi-convex + flag = semi-convex). For any Minkowski class M, the
Minkowski sum of a semi-conver M-domain and a flag M-domain is a semi-convex
M-domain.
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Proof. Let M be a Minkowski class. Let {2, be a flag M-domain, and let {2 be a
semi-convex M-domain. We can assume that 0 € (21, {25. Since a flag domain is semi-
convex, the Minkowski sum (2 = (21 + (25 is a simply connected regular M-domain by
Theorem 7.2. Suppose {2 is not semi-convex. Then we can take a one-to-one continuous
map ¢ : [0,1] — 9°02, ¢(t) = ((t),n(t)), such that Op(¢) = + and O(¢) < —7. We can
assume that 5(0) and 7(1) are flat points. Now we can take the maps ¢, ¢;, ¢F, ¢F, ¥,
wf associated to (E as in Section 7.2. We also use all the related notations therein.

Let p: R — 92 and p; : R — 92; for i = 1,2 be covering maps in the standard
orientations of 912 and 942; respectively with period 1, such that 1(0) = ~(0) and u;(0) =
~i(0). Then there exist continuous functions v, vq,vs : [0,2n — 1] — R such that v(0) =
11(0) = 15(0) =0 and v = po v, v; = u; o v;. Note that such v and v;’s are unique, and
Oa(Yljap) and Og, (Vilfa,p)) are the signs of v(b) —v(a) and v;(b) — v;(a) respectively, for
any [a,b] C [0,2n — 1].

Note that O(¢) = O(¢) = O(¢1) = O(¢h2). Since (2 is semi-convex and O(¢1) < —,
we have Og, (¢1) = —. It follows that Og, (71) = —, since O(¢1) < —m. Sov1(2n—1) < 0.
Note that vy is either non-decreasing or non-increasing on the interval [k — 1, k] for
k=1,...,2n— 1. So there exist 0 = ag < bg < a1 < ... < bp_1 < @y < by, =2n -1
such that vy is non-increasing on [aj,b;] for j = 0,...,m, and vi(a;41) — v1(b;) = 0 for
7 =0,...,m — 1. Note that, from the constructions in Section 7, we can assume that
O0(Vl;,a;411) = +, and either v(b;) = 71(b;)+72(b;) or v(aj+1) = y1(aj+1)+72(a;41) for
j=0,...,m—1. We can also assume that v is non-decreasing on [a;, b;] for j =0,..., m.

Suppose y(c) # 71(c) +2(c) for some ¢ = ag, bo, - - ., @m, by Note that 25 and —2; +
v(c) are in contact position to each other by Lemma 6.3(3). Since y(c) # y1(c) + 72(c),
it follows that, for some k, ;(c) is on nf for = 1,2. Let V be the connected component
of the set R2\ (£2; U (—§2; +7(c))) such that —v;(c) +~(c) € V. Note that V is bounded
by 7% and 7¥. By applying Lemma 9.3 to —2; + v(c) and {25, we have a continuous
curve 3. : [0,1] — V such that 3.(0) = —yi(c) + v(c), B.(1) € AV \ O(—=21 + ~(c)),
B:((0,1)) C V, and (—21 +v(c) + Be(u) — B:(0)) N 29 # ( for every u € [0,1]. Now from
the constructions in Section 7, it is easy to see that we can take v, (more exactly, n5’s)
and A%’s such that:

(1) if y(c) = 71(c) + 72(c), then Ps(c, s) = y2(c) for s € [0, 1],

(2) if y(c) # y1(c) + 72(c), then Py(c, s) = B.(s) for s € [0,1],
for each ¢ = ag, by, ..., Gm, bm.

Now we show va(a;41)—v2(bj) > 0forj =0,...,m—1.Fix j,and let b= b;, aj41 = a.
Note that b < a, Oa(7v|p,q) = +, and either v(b) = v1(b) +2(b) or y(a) = v1(a) +2(a).

Suppose v(b) = v1(b) + Y2(b). Let 21 = 21 — 1 (b), and let 2 = 2 — ~1(b). Then
2 = O + £, and 25 C 2 since 0 € ;. Define % (t) = 41 (t) — y1(b) and 3(t) =
Y(t) —71(b) for t € [0,2n—1]. Then, clearly, Oy (Y|p,a) = O(Vpa) = +: O, (V1lpa) =
Oa,(nlpa)) = 0, and 72(b) = 5(b). Define Qa(t.s) = Ly (H, oLy (Pa(t. 1), 5))

o Q o
for (¢,s) € [0,2n — 1] x [0,1] and Hy = Pj . Then Hs is well defined and continuous,

Y2|[b,a] I8 homotopic to ¥|p,q) in R? \ int £2, via ﬁg‘[b7a]x[0,2], and ﬁg(b, s) = 72(b) for
s €[0,2].
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Suppose y(a) = 71(a) + v2(a). Then also Hy(a,s) = z(a) for s € [0,2]. So by
Lemma 9.1, we have O, (V2l(p,q)) # —, which implies v5(a) — 1/2( ) > 0. Suppose y(a) #
71(a2 +72(a). Then Py(a,s) = B,(s) and Qs(a,s) = B,(1) = —y1(a) + y(a) for s € [0,1].
So Hs(a,(0,2]) € R%\ 5. Since v1(b) = v1(a) (hence v1(b) = v1(a)) and B,(0) =
—y1(a) + y(a), we have —§21 + v(a) + Ba(u) — Ba(0) = =21 + Ba(u) for u € [0,1]. So
(=821 + Ba(u)) N 2y # 0 for u € [0,1], and hence 3,([0,1]) C £2 by Lemma 6.3(1). So
Hy(a, (0,2]) C 2\ £2,. Thus by applying Lemma 9.1 again, we have O, (v2lp.a)) # —
which implies that v3(a) — v2(b) > 0. In the same way, va(a) — v2(b) > 0, when v(b) #
v1(b) + v2(b) and y(a) = v1(a) + v2(a). Thus ve(a;11) — v2(b;) >0 for j=0,...,m — 1.

Now since v is non-decreasing on [a;, b;] for j = 0,...,m, we have v5(2n — 1) > 0,
and hence Ogq,(72) # —. Note that Ogp,(y2) # 0, since O(¢2) < —m. So Op,(12) = +.
But this is impossible, since {25 is semi-convex and O(¢3) < —7. m

Finally, we prove the main theorem of this section:

THEOREM 9.2 (semi-convex + semi-convex = semi-convex). For any Minkowski class M,
the Minkowski sum of two semi-conver M-domains is also a semi-convexr M-domain.

Proof. Let {27 and {25 be two semi-convex M-domains, and let 2 = 21 + (25 be their
Minkowski sum. We know from Theorem 7.2 that {2 is a simply connected regular M-
domain. Suppose {2 is not semi-convex. Then, by Theorem 8.2, there exists a flag M-
domain {23 such that {2 + {23 is not simply connected. By Theorem 9.1, 25 + (23 is a
semi-convex M-domain. So 2+ 25 = 21+ ({254 {23) is simply connected by Theorem 7.2.
This is a contradiction. m

10. Conclusion

Here we briefly summarize the important results in this paper, and mention some further
research directions. Let M be a Minkowski class. We denote the major classes of domains
in this paper as follows:

M = The set of all M-domains.

D = The set of all M-domains homeomorphic to the unit disk.

S = The set of all semi-convex M-domains.

F = The set of all flag M-domains.

C = The set of all convex M-domains homeomorphic to the unit disk.

The inclusion relations between them are shown in Figure 22.

The inclusions C C S C D C M and F C S are all proper. By Theorem 6.3, M is
closed under Minkowski sum. Let D be the class of all subsets X of D such that A+ B €
D for every A, B € X. By Theorem 7.2, S is in D, and is maximal in D with respect
to the inclusion by Theorem 8.1. In fact, S is the unique maximal element in Dy by
Theorem 8.2, where Dy = {X € D | F C X}. Finally, S is closed under Minkowski sum
by Theorem 9.2.

Now let us mention some further research directions in the subject of semi-convexity.
First, note that the semi-convexity is amenable to the algorithmic setting in that only
the rotation of normal vectors needs to be checked. Also, it is a natural generalization
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Fig. 22. Relations between classes of domains

of the usual convexity. Usually, the computation of the Minkowski sum of general shapes
can essentially be divided into a few steps:

1. Decompose the shapes into unions of simpler shapes, which are usually convex.

2. Select the simple parts which can contribute to the boundary of the Minkowski
sum.

3. Do Minkowski sum operations on these selected parts.

4. Integrate the results to form the Minkowski sum boundary, and hence the Min-
kowski sum itself.

The most important reason for using convex shapes in Step 1 is that they are closed
under Minkowski sum. But in general, the number of the decomposed parts will be large
since the convexity is very restrictive, and this results in the slow-down of the algorithms.
So if we can use semi-convex shapes instead of convex ones, it would be possible to
compute the Minkowski sum in a significantly more efficient way.

An immediate further research direction is to generalize the semi-convexity to 3 or
higher dimensions, which would be most needed in various applications. Also, note that
the current definition of semi-convexity requires some differentiability of the boundary,
i.e., C1'l. Compared to the fact that convexity has no such a priori requirements, this
may be considered as a severe restriction. So an important next step would be to remove
the regularity requirements from the definition of semi-convexity, which will be dealt with
in [4] along with relationships of semi-convexity with other notions such as visibility.

Acknowledgments. This work has been revised from the author’s doctoral dissertation
in 1999 at the Department of Mathematics, Seoul National University, Seoul, Korea. The
author wishes to thank the Global Analysis Research Center for its partial support for
this work.

References
[1] H. Brunn, Uber Ovale und Eiflichen, Dissertation, Miinchen, 1887.

[2] H. I. Choi, S. W. Choi, and H. P. Moon, Mathematical theory of medial azis transform,
Pacific J. Math. 181 (1997), 57-88.



3]
(4]

(5]

Minkowski sum 55

H. L. Choi, S. W. Choi, H. P. Moon, and N.-S. Wee, New algorithm for medial axis transform
of plane domain, Graphical Models Image Process. 59 (1997), 463—483.

S. W. Choi, Monotone-visibility: A non-differentiable generalization of semi-convexity for
planar shapes, in preparation.

E. Galin and S. Akkouche, Blob metamorphosis based on Minkowski sums, Computer Graph-
ics Forum 15 (1996), 143-153.

P. K. Ghosh, A mathematical model for shape description using Minkowski operators, Com-
puter Vision Graphics Image Process. 44 (1988), 239-269.

L. Guibas, L. Ramshaw, and J. Stolfi, A kinetic framework for computer geometry, in: Proc.
24th Annual Symp. on Foundations of Computer Science, 1983, 100-111.

L. Guibas and R. Seidel, Computing convolutions by reciprocal search, Discrete Comput.
Geom. 2 (1987), 175-193.

A. Kaul and R. T. Farouki, Computing Minkowski sums of plane curves, Internat. J. Com-
put. Geom. Appl. 5 (1995), 413-432.

S. G. Krantz and H. R. Parks, A Primer of Real Analytic Functions, Birkhduser, Basel,
1992.

I.-K. Lee, M.-S. Kim, and G. Elber, Polynomial/rational approxzimation of Minkowski sum
boundary curves, Graphical Models Image Process. 60 (1998), 136-165.

S. Lojasiewicz, Introduction to Complex Analytic Geometry, Birkhauser, Basel, 1991 (trans-
lated from the Polish by M. Klimek).

T. Lozano-Pérez and M. A. Wesley, An algorithm for planning collision-free paths among
polyhedral obstacles, Comm. Assoc. Comput. Mach. 22 (1979), 560-570.

J. Martinez-Maurica and C. Pérez Garcia, A new approach to the Krein—Milman theorem,
Pacific J. Math. 120 (1985), 417-422.

A. E. Middleditch, Ray casting set-theoretic rolling sphere blends, in: A. Bowyer (ed.),
Computer-Aided Surface Geometry and Design, The Mathematics of Surfaces IV, Claren-
don Press, Oxford, 1994, 261-280.

H. Minkowski, Volumen und Oberflache, Math. Ann. 57 (1903), 447-495.

B. O’Neill, Elementary Differential Geometry, Academic Press, New York, 1966.

S. J. Parry-Barwick and A. Bowyer, Minkowski sums of set-theoretic models, in: CSG 94 Set-
Theoretic Solid Modeling: Techniques and Applications, Information Geometers, Winch-
ester, 1994, 101-116.

R. Schneider, Convexr Bodies: the Brunn—Minkowski theory, Cambridge Univ. Press, Cam-
bridge, 1993.

J. Serra, Image Analysis and Mathematical Morphology, Academic Press, London, 1984
(English version revised by N. Cressie).

A. Sourin and A. Pasko, Function representation for sweeping by a moving solid, IEEE
Trans. Visualization Computer Graphics 2 (1996), 11-18.



