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Abstract

We modify the very well known theory of normed spaces (E, ‖ · ‖) within functional analysis by
considering a sequence (‖ · ‖n : n ∈ N) of norms, where ‖ · ‖n is defined on the product space En

for each n ∈ N.
Our theory is analogous to, but distinct from, an existing theory of ‘operator spaces’; it is

designed to relate to general spaces Lp for p ∈ [1,∞], and in particular to L1-spaces, rather than
to L2-spaces.

After recalling in Chapter 1 some results in functional analysis, especially in Banach space,
Hilbert space, Banach algebra, and Banach lattice theory, that we shall use, we shall present
in Chapter 2 our axiomatic definition of a ‘multi-normed space’ ((En, ‖ · ‖n) : n ∈ N), where
(E, ‖ · ‖) is a normed space. Several different, equivalent, characterizations of multi-normed
spaces are given, some involving the theory of tensor products; key examples of multi-norms are
the minimum, maximum, and (p, q)-multi-norms based on a given space. Multi-norms measure
‘geometrical features’ of normed spaces, in particular by considering their ‘rate of growth’. There
is a strong connection between multi-normed spaces and the theory of absolutely summing
operators.

A substantial number of examples of multi-norms will be presented.
Following the pattern of standard presentations of the foundations of functional analysis,

we consider generalizations to ‘multi-topological linear spaces’ through ‘multi-null sequences’,
and to ‘multi-bounded’ linear operators, which are exactly the ‘multi-continuous’ operators. We
define a new Banach space M(E,F ) of multi-bounded operators, and show that it generalizes
well-known spaces, especially in the theory of Banach lattices.

We conclude with a theory of ‘orthogonal decompositions’ of a normed space with respect
to a multi-norm, and apply this to construct a ‘multi-dual’ space.

Applications of this theory will be presented elsewhere.
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1. Introduction

In this introductory chapter, we shall recall some background that we shall require, and
establish our notation; many of the results are well known. We shall conclude the chapter
with a summary, with some history of our project, and with some acknowledgements.

1.1. Basic notation. We begin by recalling some standard notation that will be fixed
throughout this memoir.

1.1.1. Sets and sequences. We write N, Z, and Z+ for the three sets {1, 2, . . . } of
natural numbers, {0,±1,±2, . . . } of integers, and {0, 1, 2, . . . } of non-negative integers,
respectively. For each n ∈ N, we denote by Nn and Z+

n the sets {1, . . . , n} and {0, 1, . . . , n},
respectively. Also, we denote by Sn the group of permutations on n symbols; we write
SN for the group of all permutations of N.

The real field is R, and R+ = [0,∞); the unit interval [0, 1] in R is denoted by I. The
complex field is C; the open unit disc in C is always denoted by D = {z ∈ C : |z| < 1},
and its closure is D = {z ∈ C : |z| ≤ 1}, the closed unit disc. We write [x] for the integer
part of x ∈ R+.

For i ∈ Nn, the ith coordinate functional on Cn or Rn is denoted by Zi, so that

Zi : (z1, . . . , zn) 7→ zi, Cn → C.

The cardinality of a set S is denoted by |S|, and the symmetric difference of two sets
S and T is S 4 T .

The space of all complex-valued sequences on N is CN, and we often write (αi) for
α = (αi : i ∈ N) ∈ CN. Let α, β ∈ CN. Then:

• α = O(β) if there is a constant K with |αi| ≤ K|βi| (i ∈ N);
• α = o(β) if, for each ε > 0, there exists i0 ∈ N with |αi| ≤ ε|βi| (i ≥ i0);
• α ∼ β if α = O(β) and β = O(α), in which case α and β are said to be similar

sequences.

1.1.2. Inequalities. We shall use various inequalities; for an attractive discussion of
many inequalities in related areas, see [31].

Take p with 1 < p <∞. Then the conjugate index to p is q, where
1
p

+
1
q

= 1;

we also regard 1 and∞ as being conjugates of each other; later we shall sometimes denote
the conjugate of p by p′. We shall interpret (αq1 + · · · + αqn)1/q, where α1, . . . , αn ∈ R+,
as max{α1, . . . , αn} when q =∞.

[7]
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First, an easy form of Hölder’s inequality gives the following. Let p, q ∈ [1,∞] be
conjugate indices. Then, for each n ∈ N and each x1, . . . , xn, y1, . . . , yn ∈ C, we have

n∑
j=1

|xjyj | ≤
( n∑
j=1

|xj |p
)1/p( n∑

j=1

|yj |q
)1/q

. (1.1)

Now take a1, . . . , an ∈ R+ and r, s with 1 ≤ r ≤ s. Then (in the case where r < s) we
apply (1.1) with xj = arj and yj = 1 for j ∈ Nn and with p = s/r and q = s/(s − r) to
see that

1
n1/r

(ar1 + · · ·+ arn)1/r ≤ 1
n1/s

(as1 + · · ·+ asn)1/s. (1.2)

For k ∈ N with k ≥ 2, set ζ = exp(2πi/k), so that 1 + ζt + · · · + ζt(k−1) = 0 for
±t ∈ Nk−1, and then take ζ1, . . . , ζk ∈ C and set

zi =
k∑
j=1

ζjζ
ij (i ∈ Nk).

Lemma 1.1. Let k ∈ N, and let q ∈ [1, 2].

(i) Take ζ1, . . . , ζk ∈ C with
∑k
i=1 |ζi|2 = 1. Then

∑k
i=1 |zi|2 = k and( k∑

i=1

|zi|q
)1/q

≤ k1/q.

(ii) Take ζ1, . . . , ζk ∈ T. Then
∑k
i=1 |zi|2 = k2 and( k∑
i=1

|zi|q
)1/q

≤ k1/2+1/q.

Proof. For r, s ∈ Nk with r 6= s, the coefficient of ζrζs in the expansion of
∑k
i=1 zizi is∑k

i=1 ζ
it, where t = r − s, so that |t| ∈ Nk−1. Hence this coefficient is 0. For r ∈ Nk, the

coefficient of ζrζr in the expansion is k, so that
∑k
i=1 |zi|2 = k

∑k
i=1 |ζi|2, and this is k

in case (i) and k2 in case (ii), giving the equalities in the two results. The subsequent
inequalities follow from (1.2).

1.1.3. Linear spaces. Let E be a linear space over the real or complex field. In fact,
we shall usually implicitly assume that E is taken over the complex field C; small modi-
fications usually give the same result for spaces over the real field R, but at a few points
it will be important to specify the underlying field. Note that a linear space E over C
can be regarded as a linear space over R by restricting the scalars to R; we obtain the
underlying real-linear space.

A real-linear space V has a standard complexification of the form E = V ⊕ iV , where
(α+ iβ)(x+ iy) = αx−βy+ i(βx+αy) for α, β ∈ R and x, y ∈ V , so that E is a complex
linear space; we set ER = V .

The dimension of E over the underlying field and the linear subspace spanned by a
subset S of E are denoted by

dimE and linS,

respectively.
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Let F and G be linear subspaces of a linear space E. Then we set

F +G = {x+ y : x ∈ F, y ∈ G},

so that F + G is a linear subspace of E; further, we write E = F ⊕ G if F ∩ G = {0}
and F + G = E. More generally, let E1, . . . , En be linear subspaces of E such that
E1 + · · ·+ En = E and Ei ∩ Ej = {0} whenever i, j ∈ Nn with i 6= j. Then we write

E = E1 ⊕ · · · ⊕ En;

this is a direct sum decomposition of E. In this case, each x ∈ E has a unique expression
as x = x1+· · ·+xn, where xi ∈ Ei (i ∈ Nn). Two direct sum decompositions E1⊕· · ·⊕Em
and F1 ⊕ · · · ⊕ Fn of E are equal if n = m and Fi = Ei (i ∈ Nm).

Let E be a linear space. For x, y ∈ E, define

[x, y] = {tx+ (1− t)y : t ∈ I}.

A non-empty subset K of a linear space E is convex if [x, y] ⊂ K whenever x, y ∈ K.
The convex hull of a non-empty subset S of E is the intersection of the convex subsets
of E that contain S; it is denoted by co(S), so that

co(S) =
{
t1x1 + · · ·+ tnxn : t1, . . . , tn ∈ I,

n∑
i=1

ti = 1, x1, . . . , xn ∈ S
}
.

The set of extreme points of a convex subset K of E is denoted by exK, so that, for
x ∈ K, we have x ∈ exK if and only if K \ {x} is convex.

Now suppose that E is a complex linear space. For α ∈ C and a subset S of E, we
write αS = {αx : x ∈ S}; S is absorbing if⋃

{αS : α > 0} = E,

balanced if αS ⊂ S (α ∈ D), and absolutely convex if S is convex and balanced. Equiv-
alently, S is absolutely convex if αx + βy ∈ S whenever x, y ∈ S and α, β ∈ C with
|α|+ |β| ≤ 1. The absolutely convex hull of a non-empty subset S of E is the intersection
of the absolutely convex subsets of E that contain S; it is denoted by aco(S), so that

aco(S) =
{
α1x1 + · · ·+ αnxn :

n∑
i=1

|αi| ≤ 1, x1, . . . , xn ∈ S
}
,

where α1, . . . , αn ∈ C. In the case where S is balanced, aco(S) = co(S).
Let K be an absolutely convex, absorbing subset of the space E. Then the Minkowski

functional pK of K, defined by

pK(x) = inf{α > 0 : x ∈ αK} (x ∈ E),

is a seminorm on E; pK is a norm if and only if⋂
{(1/n)K : n ∈ N} = {0}.

Of course, we have

{x ∈ E : pK(x) < 1} ⊂ K ⊂ {x ∈ E : pK(x) ≤ 1}.

Let S be a non-empty set. The linear spaces of all functions from S to C and R
are denoted by CS and RS , respectively; CS and RS are complex and real algebras,
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respectively, for the pointwise operations. There is an obvious ordering on the space RS :
for each f, g ∈ RS , we set f ≤ g if f(s) ≤ g(s) (s ∈ S), so that (RS ,≤) is a partially
ordered linear space. Indeed, fg ≥ 0 whenever f, g ≥ 0 in RS , and so (RS ,≤) is a partially
ordered algebra. For a subset F of RS , we set

F+ = {f ∈ F : f ≥ 0}.

The functions |f | and exp f , etc., for functions f, g ∈ CS , and f ∨g and f ∧g for functions
f, g ∈ RS , are defined pointwise. For example,

(f ∨ g)(s) = max{f(s), g(s)}, (f ∧ g)(s) = min{f(s), g(s)} (s ∈ S).

We then define the functions f+ = f ∨ 0, f− = (−f) ∨ 0, and

|f | = f+ + f− = f ∨ (−f),

so that f = f+ − f− and f+f− = 0.
Let E be a linear space, and take n ∈ N. Then we denote by En the linear space

n︷ ︸︸ ︷
E × · · · × E,

where there are n copies of the space E. Thus En consists of n-tuples (x1, . . . , xn), where
x1, . . . , xn ∈ E. As a matter of notational convenience, we regard the generic element
(x1, . . . , xk−1, y1, . . . , ym) for k,m ∈ N as (y1, . . . , ym) in the special case where k = 1,
and we write x, rather than (x), in the case where n = 1. The linear operations on En

are defined coordinatewise. The zero element of either E or En is denoted by 0. When
we write

(0, . . . , 0, xi, 0, . . . , 0)

for an element in En, we understand that xi appears in the ith coordinate, unless we say
otherwise. An element x of En is often written as either (x1, . . . , xn) or (xi). For each
x ∈ E, the constant sequence with value x is the sequence (x) = (x, . . . , x) ∈ En.

Definition 1.2. Let E be a linear space.
Take n ∈ N and k ∈ Nn, and let (x1, . . . , xn) ∈ En. Then an element (y1, . . . , yk) ∈ Ek

is a coagulation of (x1, . . . , xn) if there is a partition {Sj : j ∈ Nk} of Nn such that
yj =

∑
{xi : i ∈ Sj} for each j ∈ Nk.

Let n, k ∈ N, and take x = (x1, . . . , xk) ∈ Ek. Then

x[n] = (x1, . . . , xk, x1, . . . , xk, . . . , x1, . . . , xk) ∈ Enk,

where there are n copies of each block (x1, . . . , xk); x[n] is the nth amplification of x.

Let E be a linear space, and consider the space EN, which is also a linear space.
A generic element of EN is often written as

x = (xi) = (xi : i ∈ N);

the zero element of EN is 0 = (0, 0, 0, . . . ), and, for x ∈ E, the ‘constant sequence with
value x’ is again (x). Define ι : x 7→ (x), E → EN, so that ι(E) is a linear subspace of EN.



1.1. Basic notation 11

1.1.4. Linear operators and matrices. Let E and F be linear spaces. Then the linear
space of all linear operators from E to F is denoted by L(E,F ); we set L(E) = L(E,E).
The identity operator on E is denoted by IE . Thus L(E) is a unital algebra with respect
to the composition of operators.

Now let V and W be real-linear spaces, and let T be a real-linear map from V to W .
Set E = V ⊕ iV and F = W ⊕ iW . The complexification TC of T is defined by

TC(x+ iy) = Tx+ iTy (x, y ∈ V ),

so that TC is a complex-linear map from E to F .
Let E be a linear space, and take m,n ∈ N. Then we denote by Mm,n(E) the linear

space of all m × n matrices with coefficients in E; also, we write Mn(E) for Mn,n(E).
We write Mm,n and Mn for Mm,n(C) and Mn(C), respectively. Let v ∈ Mm(E) and
w ∈Mn(E). Then v ⊕ w is the matrix in Mm+n(E) of the form[

v 0
0 w

]
.

Let x = (xij) ∈Mm,n(E). Then the transpose of x is the matrix

xt = (xji) ∈Mn,m(E).

Let E be a linear space, and take m,n ∈ N. Then each element a ∈ Mm,n defines an
element of L(En, Em) by matrix multiplication.

Let E1, . . . , En and F be linear spaces. Then the linear space of n-linear maps from
E1 × · · · × En to F is denoted by Ln(E1, . . . , En;F ).

Let E be a linear space, take n ∈ N, and let S be a subset of Nn. For x = (xi) ∈ En,
we set

PS(x) = (yi), where yi = xi (i ∈ S) and yi = 0 (i 6∈ S),

QS(x) = (yi), where yi = xi (i 6∈ S) and yi = 0 (i ∈ S).

Thus PS is the projection onto S and QS is the projection onto the complement of S.
Clearly PS and QS are idempotents in the algebra L(En), and PS +QS = IEn . Also, for
i ∈ Nn, we set

Pi(x) = (0, . . . , 0, xi, 0, . . . , 0),

Qi(x) = (x1, . . . , xi−1, 0, xi+1, . . . , xn)

}
(x = (x1, . . . , xn) ∈ En),

so that Pi = P{i} and Qi = Q{i}.
We conclude this section by defining more formally some operators that will be im-

portant for us.

Definition 1.3. Let E be a linear space, and take n ∈ N. For σ ∈ Sn, define

Aσ(x) = (xσ(1), . . . , xσ(n)) (x = (x1, . . . , xn) ∈ En).

For α = (αi) ∈ Cn, define

Mα(x) = (αixi) (x = (x1, . . . , xn) ∈ En).

Let E and F be linear spaces, and let T ∈ L(E,F ). For n ∈ N, define

T (n) : (x1, . . . , xn) 7→ (Tx1, . . . , Txn), En → Fn; (1.3)

T (n) is the nth amplification of T .
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Thus we see that Aσ ∈ L(En) for each σ ∈ Sn, that Mα ∈ L(En) for each α ∈ Cn,
and that T (n) ∈ L(En, Fn).

1.2. Banach spaces and Banach algebras. We recall some basic facts about Banach
spaces and algebras that we shall use.

1.2.1. Banach spaces and operators. For attractive introductions to Banach space
theory, see [6, 8, 54, 74], for example; standard and beautiful classical texts on functional
analysis are [27] and [65]. Most of the results on these topics that we shall use are
summarized in [16, Appendix A.3].

Suppose that (E, ‖ · ‖) is a normed space (over a scalar field K, always taken to be R
or C). We denote by E[r] the closed ball in E with centre 0 and radius r ≥ 0. We recall
that each E[r] is an absolutely convex, absorbing, and closed neighbourhood of 0. We also
denote by SE the unit sphere of E, so that

SE = {x ∈ E : ‖x‖ = 1}.

We shall later consider direct sum decompositions of a Banach space E, say

E = E1 ⊕ · · · ⊕ En.

In this situation, we shall always suppose that each of the linear subspaces E1, . . . , En is
closed in E.

A sequence (xn : n ∈ N) in a normed space E is a null sequence if

lim
n→∞

xn = 0;

the subspace of EN consisting of all null sequences in E is denoted by c0(E).
The dual space of a normed space (E, ‖ · ‖) is denoted by E′; the action of λ ∈ E′ on

x ∈ E gives the number 〈x, λ〉. We shall sometimes denote the dual norm on E′ by ‖ · ‖′.
The second dual space of E is denoted by E′′, and the action of Φ ∈ E′′ on λ ∈ E′ gives
〈Φ, λ〉 in our notation; we shall sometimes denote the dual norm on E′′ by ‖ · ‖′′. The
canonical embedding ι : E → E′′ is defined by the equation

〈ι(x), λ〉 = 〈x, λ〉 (x ∈ E, λ ∈ E′),

so that ι is an isometry; the space E is reflexive if ι is a surjection. In fact, we shall
usually identify x with ι(x) and sometimes write ‖ · ‖ for the second dual norm on E′′.

The weak topology on E is denoted by σ(E,E′), the weak-∗ topology on E′ is σ(E′, E),
and the weak-∗ topology on E′′ is σ(E′′, E′), so that (E′, σ(E′, E)) is a locally convex
space whose dual space is E. Of course, by Goldstein’s theorem, E[1] is σ(E′′, E′)-dense
in E′′[1], and, by the Banach–Alaoglu theorem, E′[1] is σ(E′, E)-compact.

For a subset X ⊂ E, we define its annihilator X◦ to be

X◦ = {λ ∈ E : 〈x, λ〉 = 0 (x ∈ X)}.

Evidently X◦ is a σ(E′, E)-closed linear subspace of E′.
A form of the Hahn–Banach separation theorem [65, Theorem 3.7] is the following.

Let (E, τ) be a locally convex space. Suppose that S is a closed, absolutely convex subset
of E and that x0 ∈ E \ S. Then there exists λ ∈ (E, τ)′ such that 〈x0, λ〉 > 1 and
|〈x, λ〉| ≤ 1 (x ∈ S).
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Let E and F be normed spaces. We denote by B(E,F ) the normed space (with respect
to the operator norm) of bounded linear operators from E to F ; B(E,F ) is a Banach
space whenever F is a Banach space. Let T ∈ B(E,F ). Then we denote the operator
norm by ‖T‖ or, occasionally, by

‖T : E → F‖.

We set B(E) = B(E,E), so that B(E) is a unital normed algebra. A map T ∈ B(E,F )
is an isometry if ‖Tx‖ = ‖x‖ (x ∈ E); T is a contraction if ‖Tx‖ ≤ ‖x‖ (x ∈ E); T is an
isometric isomorphism if T is a bijection and T and T−1 are isometries.

Let E and F be two Banach spaces. The space E is linearly homeomorphic, or iso-
morphic, to F if there exists a bijection T ∈ B(E,F ) (so that we have T−1 ∈ B(F,E));
such a map T is a linear homeomorphism or an isomorphism. In this case, we write

E ∼ F ;

the Banach–Mazur distance from E to F is

d(E,F ) = inf{‖T‖ ‖T−1‖ : T ∈ B(E,F ) is an isomorphism};

see [6, Definition 7.4.5], for example. The space E is isometrically isomorphic to F if
there is an isometric isomorphism T ∈ B(E,F ), so that d(E,F ) = 1; in this case, we
shall write

E ∼= F.

For λ0 ∈ E′ and y0 ∈ F , set

y0 ⊗ λ0 : x 7→ 〈x, λ0〉y0, E → F.

Then y0 ⊗ λ0 is a rank-one operator in B(E,F ) with ‖y0 ⊗ λ0‖ = ‖y0‖ ‖λ0‖, and each
finite-rank operator in B(E,F ) is a finite sum of such operators. The linear subspace
of B(E,F ) consisting of the finite-rank operators is denoted by F(E,F ). An operator
T ∈ B(E,F ) is nuclear if it can be expressed in the form T =

∑∞
i=1 yi ⊗ λi, where (λi)

is a sequence in E′, (yi) is a sequence in F , and
∞∑
i=1

‖yi‖ ‖λi‖ <∞;

the nuclear norm ν(T ) of the operator T is defined to be the infimum of the specified
sums

∑∞
i=1 ‖yi‖ ‖λi‖. In particular,

ν(y0 ⊗ λ0) = ‖y0 ⊗ λ0‖ = ‖y0‖ ‖λ0‖ (λ0 ∈ E′, y0 ∈ F ).

The space of nuclear operators is denoted by N (E,F ); (N (E,F ), ν) is a Banach space
when E and F are Banach spaces, and F(E,F ) is dense in (N (E,F ), ν).

The closure of the space F(E,F ) in (B(E,F ), ‖ · ‖) forms the closed subspace of
approximable operators. The spaces of approximable and compact operators from E to
F are denoted by

A(E,F ) and K(E,F ),

respectively. In the case where F = E, we write F(E), N (E), A(E), and K(E) for
F(E,E), N (E,E), A(E,E), and K(E,E) respectively; each of these is an ideal in the
normed algebra B(E).
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For T ∈ B(E,F ), the dual operator T ′ of T is defined by the equation

〈x, T ′λ〉 = 〈Tx, λ〉 (x ∈ E, λ ∈ F ′);

we have T ′ ∈ B(F ′, E′) and ‖T ′‖ = ‖T‖. The dual of an isometry is also an isometry.
A closed subspace F of a Banach space E is complemented if there is a projection

P ∈ B(E,F ) with P (E) = F , and λ-complemented (for λ ≥ 1) if there is a projection P

of E onto F with ‖P‖ ≤ λ.
We shall sometimes use the following Principle of Local Reflexivity, proved in [6,

Theorem 11.2.4] and [66, Theorem 5.54], for example.

Theorem 1.4. Let E be a Banach space, let X and Y be finite-dimensional subspaces of
E′′ and E′, respectively, and take ε > 0. Then there is an injective, bounded linear map
S : X → E with the following properties:

(i) Sx = x (x ∈ X ∩ E);
(ii) 〈S(Λ), λ〉 = 〈Λ, λ〉 (λ ∈ Y, Λ ∈ X);
(iii) (1− ε)‖Λ‖ ≤ ‖S(Λ)‖ ≤ (1 + ε)‖Λ‖ (Λ ∈ X).

Let E1, . . . , En and F be normed spaces. Then the space of bounded n-linear maps
from E1× · · ·×En to F is denoted by Bn(E1, . . . , En;F ). This is a normed space for the
norm ‖ · ‖ defined by

‖T‖ = sup{‖T (x1, . . . , xn)‖ : xj ∈ (Ej)[1], j ∈ Nn}

for T ∈ Bn(E1, . . . , En;F ), and it is a Banach space whenever F is complete.

1.2.2. Tensor products. Let E and F be linear spaces. Each element of the (algebraic)
tensor product E ⊗ F has the form

∑m
i=1 xi ⊗ yi for some m ∈ N, x1, . . . , xm ∈ E, and

y1, . . . , ym ∈ F ; such a representation is not unique.
Let G be a third linear space. For each bilinear map T : E × F → G, there is a unique

linear map T̃ : E ⊗ F → G such that

T̃ (x⊗ y) = T (x, y) (x ∈ E, y ∈ F ).

Let S ∈ L(E) and T ∈ L(F ). Then there exists a map S ⊗ T ∈ L(E ⊗ F ) such that

(S ⊗ T )(x⊗ y) = Sx⊗ Ty (x ∈ E, y ∈ F ).

Now suppose that E and F are normed spaces, and that ‖ · ‖ is a norm on the linear
space E ⊗ F . Then ‖ · ‖ is a sub-cross-norm if

‖x⊗ y‖ ≤ ‖x‖ ‖y‖ (x ∈ E, y ∈ F )

and a cross-norm if
‖x⊗ y‖ = ‖x‖ ‖y‖ (x ∈ E, y ∈ F ).

Further, a sub-cross-norm ‖·‖ on E⊗F is a reasonable cross-norm if the linear functional
λ⊗µ is bounded and ‖λ⊗µ‖ ≤ ‖λ‖ ‖µ‖ for each λ ∈ E′ and µ ∈ F ′. For these definitions
and the properties stated below, see [25, §VIII,1] and [66, §6.1].

Proposition 1.5. Let E and F be normed spaces. Then each reasonable cross-norm on
E ⊗ F is a cross-norm, and

‖λ⊗ µ‖ = ‖λ‖ ‖µ‖ (λ ∈ E′, µ ∈ F ′).
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The projective norm ‖ · ‖π on E ⊗ F is defined by

‖z‖π = inf
{ m∑
i=1

‖xi‖ ‖yi‖ : z =
m∑
i=1

xi ⊗ yi ∈ E ⊗ F
}
,

where the infimum is taken over all representations z =
∑m
i=1 xi ⊗ yi of z ∈ E ⊗ F ;

(E ⊗ F, ‖ · ‖π) is then a normed space, and its completion

(E ⊗̂F, ‖ · ‖π)

is the projective tensor product of E and F . We note that

‖x⊗ y‖π = ‖x‖ ‖y‖ (x ∈ E, y ∈ F ), (1.4)

so that ‖ · ‖π is a cross-norm on E ⊗ F . In fact, ‖ · ‖π is a reasonable cross-norm, and
‖z‖ ≤ ‖z‖π (z ∈ E⊗F ) for each reasonable cross-norm ‖ · ‖ on E⊗F . The key property
of this tensor product is the following.

Proposition 1.6. Let E, F , and G be three Banach spaces. Then, for each bilinear
operator T ∈ B(E,F ;G), there exists a unique linear operator T̃ ∈ B(E ⊗̂F,G) such that

T̃ (x⊗ y) = T (x, y) (x ∈ E, y ∈ F ),

and the map T 7→ T̃ , B(E,F ;G)→ B(E ⊗̂F,G), is an isometric isomorphism.

Let E and F be two Banach spaces. For µ ∈ (E ⊗̂F )′, define Tµ by

〈y, Tµx〉 = 〈x⊗ y, µ〉 (x ∈ E, y ∈ F ).

Then Tµx ∈ F ′ (x ∈ E), Tµ ∈ B(E,F ′), and the map

µ 7→ Tµ, (E ⊗̂F )′ → B(E,F ′),

is an isometric isomorphism, and so
(E ⊗̂F )′ ∼= B(E,F ′). (1.5)

Let E and F be normed spaces over a field K. For x ∈ E and y ∈ F , set

Tx,y(λ, µ) = 〈x, λ〉〈y, µ〉 (λ ∈ E′, µ ∈ F ′),

so that Tx,y ∈ B(E′, F ′; K); the map

(x, y) 7→ Tx,y, E × F → B(E′, F ′; K),

is bilinear. There is an injective linear map ι : E ⊗ F → B(E′, F ′; K) such that

ι(x⊗ y) = Tx,y (x ∈ E, y ∈ F ),

and so we may regard E ⊗ F as a linear subspace of B(E′, F ′; K). The injective norm
‖ · ‖ε on E ⊗ F is the norm inherited from B(E′, F ′; K), and so

‖z‖ε = sup
{∣∣∣ m∑

i=1

〈xi, λ〉〈yi, µ〉
∣∣∣ : λ ∈ E′[1], µ ∈ F

′
[1]

}
,

for any representation z =
∑m
i=1 xi⊗yi of z ∈ E⊗F . The closure of E⊗F in B(E′, F ′; K),

denoted by

(E
b
⊗F, ‖ · ‖ε),

is the injective tensor product of E and F . We note that

‖x⊗ y‖ε = ‖x‖ ‖y‖ (x ∈ E, y ∈ F ), (1.6)
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so that ‖ · ‖ε is also cross-norm on E ⊗ F . In fact, ‖ · ‖ε is a reasonable cross-norm, and
‖z‖ε ≤ ‖z‖ (z ∈ E ⊗ F ) for each reasonable cross-norm ‖ · ‖ on E ⊗ F .

It is shown in [66, Proposition 6.1] that a norm ‖·‖ on E⊗F is a reasonable cross-norm
if and only if

‖z‖ε ≤ ‖z‖ ≤ ‖z‖π (z ∈ E ⊗ F ). (1.7)

1.2.3. Direct sum decompositions. Let (E, ‖ · ‖) be a normed space, and suppose
that E = E1 ⊕ · · · ⊕Ek is a direct sum decomposition of E, where E1, . . . , Ek are closed
subspaces of E; we allow the possibility that Ej = {0} for some j ∈ Nk. We say that the
decomposition has length k in this case. Thus each element x ∈ E has a unique expression
as x = x1 + · · ·+ xk, where xj ∈ Ej (j ∈ Nk). The decomposition is trivial if E = Ej for
some j ∈ Nk. We write Pj : E → Ej (j ∈ Nk) for the natural projections.

Now suppose that E = E1 ⊕ · · · ⊕ Ek is a Banach space. Then, for each j ∈ Nk, the
map Pj is continuous, and is regarded as a member of the Banach space B(E,Ej). It is
not necessarily true that ‖Pj‖ ≤ 1.

Definition 1.7. Let (E, ‖ · ‖) be a normed space, and consider a family K of direct sum
decompositions of E. The family K is closed provided that the following conditions are
satisfied for each k ∈ N:

(C1) Eσ(1) ⊕ · · · ⊕ Eσ(k) ∈ K whenever E1 ⊕ · · · ⊕ Ek ∈ K, σ ∈ Sk, and k ∈ N;
(C2) F ⊕ E3 ⊕ · · · ⊕ Ek ∈ K whenever E1 ⊕ · · · ⊕ Ek ∈ K, F = E1 ⊕ E2, and k ≥ 3;
(C3) K contains all trivial direct sum decompositions.

It follows from (C3) that, for each k ∈ N, there exists an element of K with length k.
For example, the families of all direct sum decompositions and of all trivial direct sum

decompositions of E are closed families.
We see immediately that the intersection of a collection of closed families of direct sum

decompositions of a normed space is also a closed family of direct sum decompositions.
Thus the following notion is well-defined.

Definition 1.8. Let (E, ‖ · ‖) be a normed space, and consider a family K of direct sum
decompositions of E. Then the smallest closed family L of direct sum decompositions
of E such that L contains K is the closed family generated by K.

Let E = E1 ⊕ · · · ⊕ Ek be a direct sum decomposition. For j ∈ Nk, the dual map

P ′j : λ 7→ λ ◦ Pj , E′j → E′,

is a continuous linear embedding, and the image P ′j(E
′
j) is a closed subspace of E′; we

shall usually regard E′j as a subspace of E′ by identifying λ ∈ E′j with λ ◦ Pj ∈ E′, and
then E′ = E′1 ⊕ · · · ⊕ E′k.

Definition 1.9. Let (E, ‖ · ‖) be a normed space, and let K be a closed family of direct
sum decompositions of E. The dual to the family K is

K′ = {E′1 ⊕ · · · ⊕ E′k : E1 ⊕ · · · ⊕ Ek ∈ K}.

Thus K′ is a closed family of direct sum decompositions of E′.
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1.2.4. Duals of products of Banach spaces. Let (E, ‖ · ‖) be a normed space, and
take k ∈ N. Let ||| · ||| be any norm on the linear space Ek such that

|||x||| ≥ max{‖xi‖ : i ∈ Nk} (x = (xi) ∈ Ek) (1.8)

and
|||(0, . . . , 0, xi, 0, . . . , 0)||| = ‖xi‖ (xi ∈ E, i ∈ Nk). (1.9)

For λ1, . . . , λk ∈ E′, define λ on Ek by

〈x, λ〉 =
k∑
i=1

〈xi, λi〉 (x = (x1, . . . , xk) ∈ Ek). (1.10)

Then λ is a linear functional on Ek, and

|〈x, λ〉| ≤
( k∑
i=1

‖λi‖
)

max{‖xi‖ : i ∈ Nk} ≤
( k∑
i=1

‖λi‖
)
|||x|||

for each x = (x1, . . . , xk) ∈ Ek. Thus λ ∈ (Ek, ||| · |||)′ with

max{‖λi‖ : i ∈ Nk} ≤ |||λ|||′ ≤
k∑
i=1

‖λi‖, (1.11)

where ||| · |||′ is the dual norm to ||| · |||. Further, each element in (Ek, ||| · |||)′ arises in this way.
Thus we may regard (E′)k as a Banach space for the norm |||·|||′, identifying λ ∈ (Ek, |||·|||)′
with (λ1, . . . , λk) ∈ (E′)k.

In this case, it is easily seen that ||| · |||′ is a norm on (E′)k that also satisfies (1.8)
and (1.9), and so we may also regard (E′′)k as a Banach space for the norm ||| · |||′′. The
weak-∗ topology on (Ek, ||| · |||)′ as the dual of (Ek, ||| · |||) is equal to the product topology
on (E′, σ(E′, E))k.

Let E be a normed space, and suppose that, for each k ∈ N, ‖ · ‖k is a norm on Ek

satisfying (1.8) and (1.9), so that ‖ · ‖′k is a norm on (E′)k. Then (‖ · ‖′k : k ∈ N) is the
dual sequence to (‖ · ‖k : k ∈ N).

1.2.5. Families of Banach spaces. Let {(Eα, ‖ · ‖α) : α ∈ A} be a family of normed
spaces, defined for each α in a non-empty index set A (perhaps finite). Then we shall
consider the following spaces.

First set
`∞(Eα) =

{
(xα : α ∈ A) : ‖(xα)‖ = sup

α
‖xα‖α <∞

}
.

Similarly, for p with 1 ≤ p <∞, we define

`p(Eα) =
{

(xα : α ∈ A) : ‖(xα)‖ =
(∑

α

‖xα‖pα
)1/p

<∞
}
.

Clearly, `∞(Eα) and `p(Eα) are normed spaces; they are Banach spaces if each of the
spaces Eα is a Banach space. We write

F ⊕∞ G and F ⊕p G
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for the sum of two normed spaces F and G with the appropriate norms, etc., and we
write `pn(E) for En with the norm given by

‖(x1, . . . , xn)‖ =
( n∑
i=1

‖xi‖p
)1/p

(x1, . . . , xn ∈ E).

1.2.6. Hilbert spaces and C∗-algebras. We recall some basic facts about Hilbert
spaces; for further background, see [8, 43], for example.

Let H be a Hilbert space, with inner product denoted by [ · , · ]. For example, let
H = `2, where the inner product is specified by

[(zj), (wj)] =
∞∑
j=1

zjwj ((zj), (wj) ∈ `2).

We recall that ‖x‖2 = [x, x] (x ∈ H) and that

‖x+ y‖2 = ‖x‖2 + 2< [x, y] + ‖y‖2 (x, y ∈ H). (1.12)

The Cauchy–Schwarz inequality asserts that

| [x, y] | ≤ ‖x‖ ‖y‖ (x, y ∈ H).

Two vectors x, y ∈ H are orthogonal , written x ⊥ y, if [x, y] = 0; a subset S of SH
is orthonormal if x ⊥ y whenever x, y ∈ S with x 6= y, and an n-tuple (e1, . . . , en) of
elements in SH is orthonormal if ei ⊥ ej whenever i, j ∈ Nn with i 6= j.

Let S be an orthonormal set in H. Then∑
e∈S
|[x, e]|2 ≤ ‖x‖2 (x ∈ H),

with equality if and only if x ∈ linS. A maximal orthonormal set is an orthonormal basis
for H; an orthonormal set is an orthonormal basis if and only if its closed linear span
is H. The Hilbert dimension of H is the cardinality of such a basis; it is independent
of the choice of the basis. Every Hilbert space is isomorphic to one of the form `2(I),
where I is an index set with |I| equal to the Hilbert dimension of H.

Two linear subspaces F and G of H are orthogonal if

[x, y] = 0 (x ∈ F, y ∈ G),

and we write F ⊥ G in this case. Suppose that H = F⊕G, where F ⊥ G. Then H = F⊕G
is an orthogonal decomposition, and we write

H = F ⊕⊥ G.

Let H be a Hilbert space. There is a standard involution ∗ on B(H), defined by the
condition that

[T ∗x, y] = [x, Ty] (x, y ∈ H, T ∈ B(H)),

and then
‖T ∗T‖ = ‖T‖2 (T ∈ B(H)),

showing that B(H) is a C∗-algebra; see [43, Chapter 4]. Subalgebras of B(H) that are
∗-closed and norm-closed are also C∗-algebras, and the Gel’fand–Naimark representation
theorem asserts that every abstractly defined C∗-algebra has this form.
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Let A be a unital C∗-algebra, with identity eA. An element u ∈ A is unitary if
u∗u = uu∗ = eA; the set of unitary elements is the unitary group, U(A), of A. We shall
use the Russo–Dye theorem [16, Theorem 3.2.18], which asserts that

A[1] = co(U(A)). (1.13)

Suppose that (e1, . . . , en) is an orthonormal n-tuple in Hn and that U is a unitary
operator on H. Then (Ue1, . . . , Uen) is also an orthonormal n-tuple in Hn.

Let H be a Hilbert space. A projection in B(H) is an element P in B(H) such that
P = P ∗ = P 2. In the case where H = F ⊕⊥ G, set y = PFx and z = PGx, so that
x = y + z. Then PF and PG are projections in B(H) such that PF + PG = IH and
PFPG = PGPF = 0, so that PF and PG are orthogonal projections. Conversely, each pair
of orthogonal projections gives an orthogonal decomposition of H. Take x ∈ H = F⊕⊥G,
and set e = PFx/‖PFx‖, with e = 0 when PFx = 0. Then

e ∈ F and ‖PFx‖ = [e, x]. (1.14)

We set
H = H1 ⊕⊥ · · · ⊕⊥ Hn

when H1, . . . ,Hn are closed subspaces of H with H = H1 ⊕ · · · ⊕ Hn and Hi ⊥ Hj

whenever i, j ∈ Nn with i 6= j; this is an orthogonal decomposition. It corresponds to an
orthogonal family {P1, . . . , Pn} of projections, where PiPj = 0 whenever i, j ∈ Nn with
i 6= j.

1.2.7. Standard Banach spaces. Throughout we have certain fixed notations for some
standard elements and Banach spaces.

Consider the space CN, which consists of all complex-valued sequences, regarded as
functions from N to C. For n ∈ N, set

δn = (δm,n : m ∈ N) ∈ CN,

where δm,n = 1 (m = n) and δm,n = 0 (m 6= n). Define

c00 = lin{δn : n ∈ N} ⊂ CN,

and, for p with 1 ≤ p <∞, set

`p =
{

(αi) ∈ CN :
∞∑
i=1

|αi|p <∞
}
,

so that `p is a Banach space for the norm given by

‖(αi)‖`p = ‖(αi)‖ =
( ∞∑
i=1

|αi|p
)1/p

((αi) ∈ `p).

(We shall usually suppress the dependence of the norm ‖·‖ on the index p in the notation,
but we shall occasionally write ‖ · ‖`p when there is a possibility of confusion.)

Further, we set

`∞ =
{

(αi) ∈ CN : |(αi)|N = sup
i∈N
|αi| <∞

}
,
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so that (`∞, | · |N) is a Banach space; the spaces

c0 =
{

(αi) ∈ CN : lim
i→∞

αi = 0
}

and c =
{

(αi) ∈ CN : lim
i→∞

αi exists
}

of null sequences and convergent sequences, respectively, are each closed subspaces of
(`∞, | · |N). Of course, c = c0 ⊕ C1, where 1 is the sequence identically equal to 1, c00 is
a dense linear subspace of each `p for p ≥ 1 and of c0, and {δn : n ∈ N} is a Schauder
basis for each of these spaces; we call it the standard basis. Note that ‖δn‖ = 1 (n ∈ N),
where ‖ · ‖ is calculated in any of the spaces `p (for p ≥ 1) or c0.

Similarly, we regard {δ1, . . . , δn} as the standard basis of Cn for n ∈ N.
The real-valued versions of these spaces are `pR, `∞R , c0,R and cR, regarded as subspaces

of RN.
We note that the spaces `p for 1 < p < ∞ are reflexive, that the spaces `p for

1 ≤ p <∞ and c0 are separable, that `∞ is not separable, and that

`1 ⊂ `p ⊂ `q ⊂ c0 ⊂ `∞ whenever 1 ≤ p ≤ q <∞.

Of course, c′0 ∼= `1, (`1)′ ∼= `∞, and (`p)′ ∼= `q for 1 < p < ∞, with the standard
duality, where q is the conjugate index to p.

Let n ∈ N. The n-dimensional versions of the above spaces are denoted by `pn (for
p ≥ 1) and by `∞n . Now (`∞n )′ = `1n.

Let m,n ∈ N. Then we can identify Mm,n with the Banach space B(`∞n , `
∞
m ), so that

(Mm,n, ‖ · ‖) is a Banach space. Indeed, the formula for the norm in Mm,n of an element
a = (aij) is then

‖a : `∞n → `∞m‖ = max
{ n∑
j=1

|aij | : i ∈ Nm
}
. (1.15)

In the case where m = n, we obtain a unital Banach algebra (Mn, ‖ · ‖). More generally,
let p, q ∈ [1,∞]. Then we can also identify Mm,n with B(`pn, `

q
m), and in this case we may

denote the norm of a ∈Mm,n by

‖a : `pn → `qm‖.

For example,

‖a : `1n → `1m‖ = max
{ m∑
i=1

|aij | : j ∈ Nn
}
. (1.16)

Let p1, p2 ∈ [1,∞], and take q1, q2 to be the two conjugate indices to p1 and p2, respec-
tively. For each a ∈Mm,n, we have at = a′ and

‖a : `p1n → `p2m‖ = ‖at : `q2m → `q1n ‖. (1.17)

Let µ be a positive measure on a measure space Ω. (We use the terminology concerning
measures of [15, 64, 65].) An ordered partition of Ω is an n-tuple (S1, . . . , Sn) of measurable
subsets of Ω such that S1 ∪ · · · ∪ Sn = Ω and Si ∩ Sj = ∅ whenever i, j ∈ Nn with i 6= j.
(We allow some of the sets Sj to be empty.)

We shall consider measurable functions f : Ω→ C. For p ≥ 1, we set

Lp(Ω, µ) =
{
f :
∫

Ω

|f |p dµ <∞
}
,
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so that Lp(Ω, µ) is a Banach space for the norm ‖ · ‖, where

‖f‖Lp = ‖f‖ =
(∫

Ω

|f |p dµ
)1/p

=
(∫

Ω

|f(x)|p dµ(x)
)1/p

(f ∈ Lp(Ω, µ)).

Here we equate functions that are equal almost everywhere with respect to µ in the usual
way. We shall often write Lp(Ω) for Lp(Ω, µ) and

∫
Ω
f or

∫
f for

∫
Ω
f dµ.

The space L∞(Ω, µ) consists of the essentially bounded functions on Ω, with the
essential supremum norm.

The real-linear subspaces of Lp(Ω, µ) and L∞(Ω, µ) consisting of the real-valued func-
tions are denoted by LpR(Ω, µ) and L∞R (Ω, µ), respectively.

We shall use Hölder’s inequality in the following form. Take p ≥ 1, with conjugate
index q. Then, for f ∈ Lp(Ω, µ) and g ∈ Lq(Ω, µ), we have fg ∈ L1(Ω, µ) and∫

Ω

|fg| ≤
(∫

Ω

|f |p
)1/p(∫

Ω

|g|q
)1/q

. (1.18)

We shall identify the dual space Lp(Ω, µ)′ with Lq(Ω, µ) in the cases where p > 1, where
p = 1 and µ is σ-finite, and where µ is counting measure on a non-empty set S, so that
`1(S)′ = `∞(S); the duality is specifed by

〈f, g〉 =
∫

Ω

fg dµ (f ∈ Lp(Ω, µ), g ∈ Lq(Ω, µ)).

See [15, Theorem 4.5.1] or [64, Theorem 6.16]. Again the spaces Lp(Ω, µ) for 1 < p <∞
are reflexive.

When we consider the spaces Lp(I), we always suppose that the measure on I is the
Lebesgue measure.

Throughout, a locally compact topological space is supposed to be Hausdorff.
Let K be a non-empty, locally compact space. Then C0(K) is the space of all complex-

valued, continuous functions on K that vanish at infinity, and C0,R(K) is the real-linear
subspace of real-valued functions in C0(K). We write C(K) for C0(K) in the case where
K is compact. Thus C0(K) is a Banach space with respect to the uniform norm | · |K
on Ω, defined by

|f |K = sup{|f(x)| : x ∈ K} (f ∈ C0(K)). (1.19)

Let f, g ∈ C0,R(K). Then |f |, f+, f−, |f | ∨ |g|, |f | ∧ |g| belong to C0,R(K).
Let K be a non-empty, locally compact space. We denote by M(K) the space of all

complex-valued, regular Borel measures on K, taken with the total variation norm

‖µ‖ = |µ|(K) (µ ∈M(K));

the subspace of real-valued measures is MR(K). We shall write δx for the measure which is
the point mass at x for x ∈ K. A subset S of K is said to be measurable if it is measurable
with respect to the σ-algebra of Borel subsets of K. For a (Borel) measurable subset X
of K, we define the restriction measure µ|X for µ ∈M(K) by (µ|X)(B) = µ(X ∩B) for
each Borel subset B of K. We identify the dual space C0(K)′ with M(K); the duality is

〈f, µ〉 =
∫
K

f dµ (f ∈ C0(K), µ ∈M(K)).

See [15, §4.1] and [64, Chapter 6].
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A measure µ ∈ M(K) is discrete if there is a countable subset S of K such that
|µ|(K \ S) = 0; the closed subspace of M(K) consisting of the discrete measures is
denoted by Md(K), and identified with `1(K). A measure µ ∈ M(K) is continuous if
µ({x}) = 0 (x ∈ K); the closed subspace of M(K) consisting of the continuous measures
is denoted by Mc(K). We have M(K) = Md(K)⊕Mc(K), and ‖µ+ ν‖ = ‖µ‖+ ‖ν‖ for
each µ ∈Md(K) and ν ∈Mc(K), so that

M(K) = `1(K)⊕1 Mc(K).

We shall use Hahn’s decomposition theorem in the following form. Let µ ∈ MR(K).
Then there exist measurable subsets P and N of K such that µ(S) ≥ 0 for each measur-
able subset S of P and µ(S) ≤ 0 for each measurable subset S of N .

1.2.8. Banach algebras. We shall sometimes refer to Banach algebras. As a standard
reference for this topic, we shall cite [16], and we shall use the terminology of that book.
For an introduction to the theory of Banach algebras that is sufficient for our purposes,
see [8, Part II].

Thus a Banach algebra is a linear, associative algebra A over C such that A is also a
Banach space and

‖ab‖ ≤ ‖a‖ ‖b‖ (a, b ∈ A).

Let G be a locally compact group. Then the group algebra L1(G) and the measure
algebra M(G) are Banach algebras with respect to convolution multiplication. For details
of these algebras, see [16, 18, 22, 36].

The spectrum of an element a in a Banach algebra A is denoted by σA(a) or σ(a) [16,
Definition 1.5.27]; σA(a) is always a non-empty, compact subset of C. The corresponding
spectral radius is denoted by ν(a); by definition, ν(a) = sup{|z| : z ∈ σA(a)}, and the
spectral radius formula [16, Theorem 2.3.8(iii)] states that

ν(a) = lim
n→∞

‖an‖1/n.

For example, the spaces `p (for p ≥ 1), `∞, and c0 are Banach algebras with respect to
the product defined by coordinatewise multiplication; indeed, they are Banach sequence
algebras in the sense of [16, §4.1].

Let E be a Banach space. A Banach operator algebra is a subalgebra A of B(E)
containing F(E) such that A is a Banach algebra with respect to a norm, say ||| · |||;
necessarily |||T ||| ≥ ‖T‖ (T ∈ A). For example, (K(E), ‖ · ‖), (B(E), ‖ · ‖), and (N (E), ν)
are Banach operator algebras. The spectrum σ(T ) of T ∈ K(E) is always either finite or
a sequence converging to 0, together with {0}. See [16, §2.5], for example.

For each compact space K (always assumed to be Hausdorff), the algebra C(K) is
a commutative, unital C∗-algebra, and each commutative C∗-algebra A has the form
C0(ΦA), where ΦA is the (locally compact) character space of A.

We quote the following form of the Banach–Stone theorem, as stated in [27, V.8.8],
for example. For an account of related results, see [22, Chapter 2] and [30].

Theorem 1.10. Let K and L be two compact spaces, and suppose that T : C(K)→ C(L)
is an isometric isomorphism. Then there is a homeomorphism η : L→ K and a function
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h ∈ C(L) with h(L) ⊂ T such that

(Tg)(x) = h(x)(g ◦ η)(x) (g ∈ C(K), x ∈ L).

A related result is described in [30, §3.2], which is largely an exposition of results of
Lamperti [51]; see [30, Theorem 3.2.5]. We first recall some background.

Let (Ω1, µ1) and (Ω2, µ2) be measure spaces. A map σ from the measurable subsets
of Ω1 to the measurable subsets of Ω2 is defined to be a regular set isomorphism if
σ(Ω1 \X) = σ(Ω1) \ σ(X) for each measurable subset of Ω1, if σ(

⋃
Xn) =

⋃
σ(Xn) for

pairwise-disjoint families {Xn : n ∈ N} of measurable subsets of Ω1, and, for a measurable
subset X of Ω1, σ(X) is a µ2-null set if and only if X is a µ1-null set. In the case where Ω
is discrete, such a map σ : Ω→ Ω is just a permutation of Ω. A regular set isomorphism
σ induces a unique linear map Tσ on the space of measurable functions on Ω such that
Tσ(χX) = χσ(X) for all measurable subsets X of Ω and Tσ(fg) = Tσ(f) · Tσ(g) for all
measurable functions f and g on Ω.

Theorem 1.11 (Lamperti). Let (Ω1, µ1) and (Ω2, µ2) be measure spaces. Suppose that
p ∈ [1,∞) with p 6= 2. Then an isometric isomorphism U from Lp(Ω1, µ1) to Lp(Ω2, µ2)
has the form

U : f 7→ h · Tσf, Lp(Ω1, µ1)→ Lp(Ω2, µ2), (1.20)

where h : Ω→ C is such that ∫
σ(X)

|h|p dµ2 = µ1(X)

for each measurable subset X of Ω, and Tσ ∈ B(Lp(Ω1), Lp(Ω2)) is induced by a regular
set isomorphism σ.

In the case where Lp(Ω1, µ1) = Lp(Ω2, µ2) = `p, the function h : N→ C is such that
|h(i)| = 1 (i ∈ N).

A Hausdorff topological space X is extremely disconnected if the closure of every open
set is itself open; this is equivalent to requiring that, for every pair {U, V } of open sets in
X with U ∩V = ∅, we have U ∩V = ∅. A compact, extremely disconnected space is called
a Stonean space. A Stonean space has a basis for its topology consisting of clopen sets.
By definition, a compact space K such that C(K) is isometrically isomorphic to the dual
of a Banach space is a hyper-Stonean space (in which case the predual is unique up to
isometric isomorphism). A hyper-Stonean space is Stonean. For a discussion and further
characterizations of Stonean and hyper-Stonean spaces, see [22, Theorems 2.5 and 2.9].

Let Ω be a measure space, and consider the Banach space L∞(Ω). This is a com-
mutative C∗-algebra for the pointwise product (defined almost everywhere), and so this
space is isometrically isomorphic by the Gel’fand transform to C(Φ) for a certain com-
pact space Φ; the identification is an isomorphism of commutative C∗-algebras. Thus,
when Ω is σ-finite, the dual space and the second dual space of L1(Ω) are isometrically
isomorphic to C(Φ) and M(Φ), respectively. In the case where Ω = S is discrete, we have
Φ = βS, the Stone–Čech compactification of the set S; we shall sometimes identify `∞

with the space C(βN).
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Let K be a non-empty, locally compact space. We shall also identify the space
M(K)′ = C0(K)′′ as C(K̃), where K̃ is a certain hyper-Stonean space, called the hyper-
Stonean envelope of K in [22]; in particular, K̃ is compact and extremely disconnected.
Thus we are identifying M(K)′′ with M(K̃). For further details of K̃ and these identifi-
cations, see [22].

1.2.9. Hermitian elements. We shall require some notions concerned with numerical
ranges and hermitian elements of a Banach algebra.

Let A be a unital Banach algebra, with identity eA. Then the state space of A is

S(A) = {λ ∈ A′ : ‖λ‖ = 〈eA, λ〉 = 1}.

Clearly S(A) contains the character space ΦA, and so is non-empty; it is convex and
closed in the weak-∗ topology. The numerical range of a ∈ A is

V (A, a) = {〈a, λ〉 : λ ∈ S(A)}.

See [13, 14]. We see that V (A, a) ⊃ σ(a), the spectrum of a.
Let E be a Banach space. Then

Π(E) = {(x, λ) ∈ E × E′ : ‖x‖ = ‖λ‖ = 〈x, λ〉 = 1}.

Take T ∈ B(E). Then the spatial numerical range of T is

V (T ) = {〈Tx, λ〉 : (x, λ) ∈ Π(E)}.

Clearly, V (T ) ⊂ V (B(E), T ), and, in fact, V (B(E), T ) = coV (T ) [13, §9, Theorem 4(i)].

Definition 1.12. Let (A, ‖ · ‖) be a unital Banach algebra. Then an element a ∈ A is
hermitian if ‖exp(ita)‖ = 1 for all t ∈ R.

The following result is basic; see [13, §5] and [30, Theorem 5.2.6] for other equivalences.

Proposition 1.13. (i) Let A be a unital Banach algebra, and take a ∈ A. Then a is
hermitian if and only if V (A, a) ⊂ R.

(ii) Let E be a Banach space, and take T ∈ B(E). Then T is hermitian if and only if
V (T ) ⊂ R.

The following result is close to [14, §29, Theorem 3]. Let K be a compact space. Point
evaluation at x ∈ K is denoted by εx.

Theorem 1.14. Let K be a compact space, and let T be a hermitian operator on C(K).
Then there exists an element h ∈ CR(K) such that Tf = hf (f ∈ C(K)).

Proof. We define h = T (1) ∈ C(K).
Let g ∈ C(K) with |g|K = 1, and take x ∈ K with |g(x)| = 1. Then clearly we have

〈g, εx〉 ∈ Π(C(K)), and so 〈Tg, εx〉 ∈ V (T ) ⊂ R. In particular, h ∈ CR(K).
Now take f ∈ CR(K) with |f |K = 1, and write f = f+−f−, where f+, f− ∈ CR(K)+.

Suppose that x ∈ K with f(x) = 0, so that f+(x) = 0 and f(K) ⊂ I. Then

|1− f+|K = |(1− f+)(x)| = 1,

and so T (1 − f+)(x) ∈ R, whence (Tf+)(x) ∈ R. Similarly, (Tf−)(x) ∈ R, and so
(Tf)(x) ∈ R. Next set

v = (1− f2)1/2 and g = v + if,
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so that v, g ∈ C(K). Further, v(x) = g(x) = 1 and |v|K = |g|K = 1, and so we have both
(Tv)(x) ∈ R and (Tg)(x) ∈ R. Since Tg = Tv + iTf , it follows that (Tf)(x) = 0. Thus,
by scaling, we see that (Tf)(x) = 0 whenever f ∈ CR(K) with f(x) = 0.

Next, take an arbitrary f ∈ CR(K) and x ∈ K. Then (f − f(x)1)(x) = 0, and so
T (f − f(x)1)(x) = 0. This says that Tf(x) = h(x)f(x). Hence Tf = hf ∈ CR(K).

Finally, take f ∈ C(K), say f = f1 + if2, where f1, f2 ∈ CR(K). Then

Tf = T (f1 + if2) = h(f1 + if2) = hf.

An elementary argument, given in [14, §29] gives the following, related result; the
result is due to Tam [70].

Theorem 1.15. Suppose that p ∈ [1,∞] with p 6= 2. Then each hermitian operator on `p

has the form α 7→ βα for some β ∈ `∞R .

1.3. Banach lattices. There is a strong connection between the old theory of Banach
lattices and our new theory of multi-Banach spaces. This will be explained in Chapter 4,
§4.3. Here we recall briefly some basic notions of the theory of Banach lattices; for details,
see [1], [7, Chapter 4], [52, Volume II], [55], and [67]. In fact, we choose forms of the
standard definitions and notations that are most convenient for us.

1.3.1. Definitions. Let (S,≤) be a partially ordered set. For x, y ∈ S, the order-interval
[x, y] is the set {z ∈ S : x ≤ z ≤ y}, and a subset T of S is order-bounded if there exist
x, y ∈ S such that T ⊂ [x, y]. A net (xα : α ∈ A) in S is order-bounded if {xα : α ∈ A} is
order-bounded. Further, (xα : α ∈ A) is increasing (respectively, decreasing) if xα ≤ xβ
(respectively, xα ≥ xβ) whenever α ≤ β in A. We write

xα ↓ x and xα ↑ x

if (xα) is a decreasing net in S and x = inf{xα : α ∈ A}, or if (xα) is an increasing net
in S and x = sup{xα : α ∈ A}, respectively.

Definition 1.16. A partially ordered set (S,≤) is a lattice if, for each pair {s, t} of
elements of S, there is a supremum, denoted by s ∨ t, and an infimum, denoted by s ∧ t.

A lattice is Dedekind complete (respectively, σ-Dedekind complete) if every non-empty
(respectively, every countable, non-empty) subset which is bounded above has a sup-
remum and every non-empty (respectively, every countable, non-empty) subset which is
bounded below has an infimum.

The supremum and infimum of a non-empty subset S of a lattice E are denoted by∨
S and

∧
S, respectively (if they exist). Suppose that x0 =

∨
S. Then the family F

of finite subsets of S forms a directed set when ordered by inclusion; in this case, set
xF =

∨
{y : y ∈ F} for F ∈ F . Then {xF : F ∈ F} is a net and xF ↑ x0.

Let E be a linear space over the real field R such that (E,≤) is also a partially
ordered set for an order ≤. Then E is an ordered linear space if the linear space and
order structures are compatible, in the sense that:

(i) x+ z ≤ y + z whenever x, y, z ∈ E and x ≤ y;
(ii) αx ≤ αy whenever α ∈ R+ and x, y ∈ E with x ≤ y.
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Definition 1.17. An ordered linear space E is a Riesz space if (E,≤) is a lattice.

Let (E,≤) be a Riesz space. Then the operations (x, y) 7→ x ∨ y and (x, y) 7→ x ∧ y
are the lattice operations. A linear subspace F of E is a sublattice if x ∨ y, x ∧ y ∈ F

whenever x, y ∈ F . The positive cone of E is

E+ = {x ∈ E : x ≥ 0}.

The ordering on a Riesz space is determined by E+. For x ∈ E, set

x+ = x ∨ 0, x− = (−x) ∨ 0, |x| = x ∨ (−x);

thus x+, x−, and |x| are the positive part , the negative part , and the modulus of x,
respectively. Elements x and y of E are disjoint , written x ⊥ y, if |x| ∧ |y| = 0. Two
subsets S and T of E are disjoint , written S ⊥ T , if x ⊥ y whenever x ∈ S and y ∈ T .

For each non-empty set S, the space RS is a Riesz space with the pointwise lattice
operations, and the definitions of |f |, etc., coincide with the ones given on page 10.

Let E be a Riesz space. Here are some elementary consequences of the above defini-
tions; they hold for all x, y, z ∈ E and α ∈ R:

x = x+ − x−; |x| = x+ + x−; |αx| = |α| |x|; |x+ y| ≤ |x|+ |y|.

Proposition 1.18. Let E be a Riesz space, and take x, y, z ∈ E. Then:

(i) x+ y = x ∨ y + x ∧ y;
(ii) (x ∨ y) + z = (x+ z) ∨ (y + z);
(iii) x ⊥ y if and only if |x| ∨ |y| = |x|+ |y|, and then |x+ y| = |x|+ |y|;
(iv) |x| ∨ |y| = (|x+ y|+ |x− y|)/2;
(v) αx+ βy ≤ x ∨ y whenever α, β ∈ I with α+ β = 1.

An element e in a Riesz space E is an order-unit if, for each x ∈ E, there exists α > 0
such that |x| ≤ αe.

A net (xα : α ∈ A) in a Riesz space E is order-convergent to x ∈ E if there exists a
net (yα : α ∈ A) and α0 ∈ A such that |xα − x| ≤ yα (α ≥ α0) and yα ↓ 0; in this case,
the element x is the order-limit of (xα : α ∈ A), and we write

x = o-lim
α

xα.

An order-limit is unique. A net (xα : α ∈ A) is order-null if

o-lim
α

xα = 0,

and a subset T of E is order-closed if x ∈ T whenever (xα : α ∈ A) is a net in T with
x = o-limα xα. For a discussion of the notion of order-convergence of nets in a Riesz
space, see [3, 45].

Let (E,≤) be a Riesz space. A subset S of E is solid if x ∈ S whenever x ∈ E and
|x| ≤ |y| for some y ∈ S; a solid linear subspace of E is an order-ideal in E. Clearly each
order-ideal in E is a sublattice of E. Let F be an order-ideal in E, and let π : E → E/F

be the quotient map. Then the space E/F , with positive cone π(E+), is a Riesz space. An
order-closed order-ideal in E is a band. Suppose that E = E1 ⊕ · · · ⊕ En is a direct-sum
decomposition, where each of E1, . . . , En is an order-ideal. Then each of E1, . . . , En is a
band, and the decomposition is a band decomposition.
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It is clear that a Riesz space (E,≤) is Dedekind complete if every non-empty subset
which is bounded above has a supremum.

Let (E,≤) and (F,≤) be two Riesz spaces. An operator T ∈ L(E,F ) is an order-
homomorphism if

T (x ∨ y) = Tx ∨ Ty (x, y ∈ E);

a bijective order-homomorphism is an order-isomorphism, and then (E,≤) and (F,≤)
are order-isomorphic. We see easily that the operator T is an order-homomorphism if
and only if T (|x|) = |Tx| (x ∈ E).

Definition 1.19. Let (E,≤) be a Riesz space. A norm ‖ · ‖ on E is a lattice norm if
‖x‖ ≤ ‖y‖ whenever x, y ∈ E with |x| ≤ |y|. A normed Riesz space is a Riesz space
equipped with a lattice norm. A real Banach lattice is a normed Riesz space which is a
real Banach space with respect to the norm.

For example, the spaces LpR(Ω, µ) for p ≥ 1 and L∞R (Ω, µ) for a measure space (Ω, µ)
and the spaces C0,R(K) for a non-empty, locally compact space K are real Banach lattices
with respect to the pointwise lattice operations. In the case where K is compact, the
constant function 1 is an order-unit of CR(K).

In a normed Riesz space (E, ‖ · ‖,≤), we have

‖x‖ = ‖ |x| ‖ (x ∈ E);

further, the lattice operations are uniformly continuous, and so the positive cone E+ and
each order-interval [x, y] in E are closed in (E, ‖ · ‖).

Let E and F be normed Riesz spaces, and take T ∈ L(E,F ). Then T is an order-
isometry if it is an order-homomorphism and an isometry; if there is such a map which
is a bijection, E and F are order-isometric.

The functional calculus or Krivine calculus for a real Banach lattice E is described in
[52, II, §1.d], for example. Indeed, a function f : Rn → R is homogeneous of degree 1 if

f(αt1, . . . , αtn) = αf(t1, . . . , tn) (α ∈ R+, t1, . . . , tn ∈ R).

The lattice of all such continuous functions is denoted by Hn. Then, by [26, Chapter 16]
or [52, II, Theorem 1.d.1], for each x1, . . . , xn ∈ E, there is a unique order-homomorphism
τ : Hn → E such that τ(Zi) = xi (i ∈ Nn). In particular, for x1, . . . , xn ∈ E, we can
define ( n∑

i=1

|xi|p
)1/p

∈ E

for each p ≥ 1.

1.3.2. Complexifications. Suppose that (ER, ‖ · ‖) is a real Banach lattice. Then we
make the following definitions. Take z ∈ E, say z = x + iy, where x, y ∈ ER, and first
define the modulus |z| ∈ E+ of z by

|z| =
∨
{x cos θ + y sin θ : 0 ≤ θ ≤ 2π} = (|x|2 + |y|2)1/2. (1.21)
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We see that, for α ∈ C and z, w ∈ E, we have: |z| = 0 if and only if z = 0; |αz| = |α| |z|;
|z + w| ≤ |z|+ |w|. Next, define

‖z‖ = ‖ |z| ‖ (z ∈ E).

Then ‖ · ‖ is a norm on E, and (E, ‖ · ‖) is a Banach space. In fact, we have

1
2

(‖x‖+ ‖y‖) ≤ ‖z‖ ≤ ‖x‖+ ‖y‖ (z = x+ iy ∈ E).

For details of these remarks, see [1, §3.2], [67, Chapter II, §11], and [75].
The above complexification of a real Banach lattice is defined to be a (complex)

Banach lattice [1, §3.2]. We denote such a Banach lattice by E or (E, ‖ · ‖,≤), although,
strictly, the order ≤ is only defined on the real part, ER, of E. For example, the spaces
Lp(Ω, µ) for p ≥ 1 and L∞(Ω, µ) for a measure space (Ω, µ) and the spaces C0(K) for a
non-empty, locally compact space K are Banach lattices which are the complexifications
of the analogous real Banach lattices.

We write E+ for E+
R , and set E+

[1] = {x ∈ E+ : ‖x‖ ≤ 1}. For v ∈ E+, we set

∆v = {z ∈ E : |z| ≤ v}.

Let E be a Banach lattice. Again, elements z and w of E are disjoint , written z ⊥ w,
if |z|∧ |w| = 0, and so z ⊥ w if and only if |z|∨ |w| = |z|+ |w|. In this case, take z = x+iy
and w = u+ iv in E. Then we see that

|z + w| =
∨
{(x+ u) cos θ + (y + v) sin θ}

=
∨
{|x cos θ + y sin θ| ∨ |u cos θ + v sin θ|}

=
∨
{|x cos θ + y sin θ|} ∨

∨
{|u cos θ + v sin θ|},

where we are taking suprema over θ ∈ [0, 2π], and so

|z + w| = |z| ∨ |w| = |z|+ |w|. (1.22)

A sequence (zi) in E is pairwise-disjoint if zi ⊥ zj for i, j ∈ N with i 6= j.
Two subsets S and T of E are disjoint , written S ⊥ T , if z ⊥ w whenever z ∈ S and

w ∈ T . The disjoint complement S⊥ of a non-empty subset S of E is defined by

S⊥ = {w ∈ E : w ⊥ z (z ∈ S)}.

Note that S ∩ S⊥ ⊂ {0}.
Let (E, ‖ · ‖,≤) be a Banach lattice. A subset S is order-bounded if {|z| : z ∈ S} is

order-bounded in ER; this holds if and only if there exists x ∈ E+ with |z| ≤ x (z ∈ S).
Similarly, we define solid subsets, order-closed subsets, order-ideals, and bands. It is easy
to see that a subset of E is a subspace (respectively, an order-ideal) if and only if it has
the form V ⊕ iV , where V is a real subspace (respectively, order-ideal) in ER.

The smallest band containing a subset A of E is denoted by B(A), and we also set
Bx = B({x}) for x ∈ E; the latter set is a principal band. An element x ∈ E+ is a weak
order unit if Bx = E. A band B in E is a projection band if there exists a projection
P ∈ B(E) with P (E) = B and 0 ≤ Px ≤ x (x ∈ E+), and then E = B ⊕⊥ B⊥.
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It follows from (c) and (d) of [7, pp. 259–260] that every separable Banach lattice
contains a weak order unit. In particular, the Banach lattices Lp(Ω, µ) contain a weak
order unit whenever p ∈ [1,∞) and the measure space is σ-finite.

Let E = E1 ⊕ · · · ⊕ En be a direct sum decomposition of a Banach lattice E. This
decomposition is a band decomposition if each of E1, . . . , En is a band, or equivalently, if
Ei ⊥ Ej whenever i, j ∈ Nn and i 6= j. We then write

E = E1 ⊕⊥ · · · ⊕⊥ En.

In this case, each of E1, . . . , En is a projection band, and, using [1, Theorem 1.34], each
Pi : E → Ei is a contraction with

|Pix| = Pi(|x|) ≤ |x| (x ∈ E, i ∈ Nn). (1.23)

Further,
n∑
i=1

|xi| =
∣∣∣ n∑
i=1

xi

∣∣∣ (xi ∈ Ei, i ∈ Nn). (1.24)

Indeed, set x =
∑n
i=1 xi. Then

∑n
i=1 |xi| =

∑n
i=1 |Pix| =

∑n
i=1 Pi(|x|).

Suppose that E = E1 ⊕⊥ · · · ⊕⊥ En, and take zi ∈ Ei for i ∈ Nn. Then we have

|z1 + · · ·+ zn| = |z1| ∨ · · · ∨ |zn| = |z1|+ · · ·+ |zn|, (1.25)

and so
‖z1 + · · ·+ zn‖ = ‖ |z1| ∨ · · · ∨ |zn| ‖ = ‖ |z1|+ · · ·+ |zn| ‖. (1.26)

Definitions are carried over from real Banach lattices to Banach lattices in the obvious
way; for example, a Banach lattice E is Dedekind complete if (ER,≤) is a Dedekind
complete real Banach lattice.

In general, a Banach lattice is not necessarily Dedekind complete. Indeed, the Ba-
nach lattices Lp(Ω) are always Dedekind complete [55, Example (v), p. 9], but the Ba-
nach lattice C(K) is Dedekind complete if and only if the compact space K is Stonean
[16, Proposition 4.2.29(i)], [52, II, Proposition 1.a.4(ii)], [55, Proposition 2.1.4]; C(K)
is σ-Dedekind complete if and only if K is basically disconnected [52, II, Proposition
1.a.4(i)]. A simple example of a σ-Dedekind complete space of the form C(K) which is
not Dedekind complete is the subspace of `∞(S), for S an uncountable set, spanned by
the constant functions and the functions with countable support.

We shall use the following theorem of F. Riesz; see [7, Theorems 3.8 and 3.13], [55,
Theorem 1.2.9 and Proposiiton 1.2.11], and [67, Chapter II, §2].

Proposition 1.20.

(i) Every band in a Dedekind complete Riesz space is a projection band.
(ii) Every principal band in a σ-Dedekind complete Riesz space is a projection band.

Suppose that E and F are Banach lattices. For each T ∈ B(ER, FR), we see that

‖T‖ ≤ ‖TC‖ ≤ 2‖T‖,

and so TC ∈ B(E,F ). Clearly each bounded linear operator from E to F has the form
S + iT , where S, T ∈ B(ER, FR).
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1.3.3. Continuity, boundedness and completeness. We first define two properties
related to order of the norm on a Banach lattice.

Definition 1.21. Let (E, ‖ · ‖) be a Banach lattice. The norm ‖ · ‖ is order-continuous if
‖xα‖ ↓ 0 whenever (xα) is a net in E such that xα ↓ 0. The norm ‖·‖ is σ-order-continuous
if ‖xn‖ ↓ 0 whenever (xn) is a sequence in E such that xn ↓ 0.

Characterizations of order-continuous Banach lattices are given in [1, §2.3], [7, §12],
and [55, §2.4]. For example, the spaces Lp(Ω) for p ≥ 1 and Banach lattices which are
reflexive as Banach spaces have order-continuous norms, but the norm | · |K in C(K) is
order-continuous only if K is finite; the uniform norm on c0 is order-continuous. Each
Banach lattice with an order-continuous norm is Dedekind complete. The uniform norm
on the Banach lattice C(I) is not a σ-order-continuous norm; however, the uniform norm
on the space C([0, ω1]) is σ-order-continuous, but not order-continuous. Suppose that K
is Stonean and infinite. Then C(K) is Dedekind complete, but the norm is not order-
continuous.

Our final definitions in this area are the following. The terms ‘monotonically com-
plete’ and ‘Nakano property’, are defined in [55, Definition 2.4.18(iii)], in [73], and in [7,
Definition 14.10], but we have not seen the term ‘monotonically bounded’ in the literature.

Definition 1.22. Let (E, ‖ · ‖) be a Banach lattice. Then:

(i) E is monotonically bounded if every increasing net in E+
[1] is bounded above;

(ii) E is monotonically complete if every increasing net in E+
[1] has a supremum;

(iii) E has the weak Nakano property if there is a constant K ≥ 1 such that, for every
increasing, order-bounded net (xα : α∈A) in ER and every ε>0, the set {xα : α∈A}
has an upper bound u ∈ ER such that ‖u‖ ≤ K supα∈A ‖xα‖+ ε;

(iv) E has the weak σ-Nakano property if there is a constant K ≥ 1 such that, for every
increasing, order-bounded sequence (xn : n ∈ N) in ER and every ε > 0, the set
{xn : n ∈ N} has an upper bound u ∈ ER such that ‖u‖ ≤ K supn∈N ‖xn‖+ ε;

(v) E has the Nakano property if it has the weak Nakano property with K = 1.

Trivially, every monotonically complete Banach lattice is monotonically bounded and
Dedekind complete. A Banach lattice with an order-continuous norm has the Nakano
property. We note the following result which is essentially [55, Proposition 2.4.19].

Proposition 1.23. A monotonically bounded Banach lattice has the weak Nakano prop-
erty.

A Banach lattice is said to be a KB-space if it is monotonically complete and has an
order-continuous norm [2, p. 89]. Thus every KB-space is Dedekind complete, monoton-
ically bounded, and has the Nakano property. The Lp spaces for p ≥ 1 are examples of
KB-spaces.

The Banach lattice c0 is Dedekind complete and has the Nakano property, but it is
not monotonically bounded because the increasing sequence (δ1 + · · · + δn : n ∈ N) in
(c0,R)[1] has no upper bound, and hence c0 is not monotonically complete.

Let K be a compact space. Then the Banach lattice C(K) is monotonically complete
if and only if it is Dedekind complete (if and only if K is Stonean), and so the Banach
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lattice `∞ ∼= C(βN) is monotonically complete, but its norm is not order-continuous;
C(K) is always monotonically bounded; C(K) has the Nakano property whenever K is
Stonean. The Banach lattice M(K) is monotonically complete.

Example 1.24. For K ≥ 1, the Banach lattice (`∞, ‖ · ‖K), where ‖ · ‖K is given by

‖(αn)‖ = |(αn)|N +K lim sup
n→∞

|αn| ((αn) ∈ `∞),

is monotonically complete and has the weak Nakano property, but not the Nakano prop-
erty whenever K > 1. The Banach lattice `∞((`∞, ‖ ·‖K) : K ∈ N) is Dedekind complete,
but it does not have the weak σ-Nakano property.

A Dedekind-complete lattice has the Nakano property if and only if the norm is a
Fatou norm, in the sense of [1, p. 65] and [55, Definition 2.4.18]. In [2] and [5], a norm
‖·‖ on a Banach lattice E is said to be a Levi norm if (E, ‖·‖) is monotonically complete.

1.3.4. Positive, regular, and order-bounded operators. Let E and F be real Ba-
nach lattices, and take S, T ∈ L(E,F ). We define

S ≤ T if Sx ≤ Tx (x ∈ E+).

Clearly, (L(E,F ),≤) is an ordered linear space.

Definition 1.25. Let E and F be real Banach lattices, and consider T ∈ L(E,F ). Then:

(i) T is positive if T ≥ 0;
(ii) T is regular if T = T1 − T2, where T1 and T2 are positive operators;
(iii) T is order-bounded if T (B) is an order-bounded subset of F for each order-bounded

subset B of E.

The set of positive operators from E to F is closed under addition and multiplication
by α ∈ R+, and so it is a cone, denoted by L(E,F )+.

The book [7] is devoted to positive operators.
We shall (at least implicitly) use a basic theorem of Kantorovich [7, Theorem 1.7]:

each additive map T : E+ → F+ extends uniquely to a positive operator from E to F ,
and the unique extension T satisfies

Tx = T (x+)− T (x−) (x ∈ E).

Thus a positive operator T has been specified as soon as we know that T : E+ → F+ is
additive.

Let E be a σ-Dedekind complete Banach lattice. Then, for each v ∈ E+, a projection
Pv is defined by first setting

Pv(x) =
∨
{nv ∧ x : n ∈ N} (x ∈ E+), (1.27)

and then extending Pv by linearity to the whole of E; see [52, II, p. 8]. In this case, the
map Pv : E → E is a positive linear projection with ‖Pv‖ ≤ 1 for each v ∈ E+. Note
that P|x|(x) = x (x ∈ E). In the special case where E is Lp(Ω) for p ∈ [1,∞] and a
measure space Ω, the map Pv is just multiplication by the characteristic function of the
set {t ∈ Ω : v(t) 6= 0}.
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The space of all regular operators from E to F is denoted by Lr(E,F ). We see im-
mediately that (Lr(E,F ),≤) is an ordered linear subspace of (L(E,F ),≤), with positive
cone L(E,F )+.

The space of all order-bounded operators from E to F is denoted by Lb(E,F ). Clearly
(Lb(E,F ),≤) is an ordered linear subspace of (L(E,F ),≤) and

L(E,F )+ ⊂ Lr(E,F ) ⊂ Lb(E,F ) ⊂ L(E,F ).

Each order-bounded linear operator is continuous [1, p. 22], and so Lb(E,F ) ⊂ B(E,F ).
For this reason, we denote L(E,F )+, Lr(E,F ), and Lb(E,F ) by B(E,F )+, Br(E,F ),
and Bb(E,F ), respectively.

Now suppose that E and F are Banach lattices. In the case where T : ER → FR
is a positive operator, we have ‖TC‖ = ‖T‖ (but this is not necessarily true for all
regular operators T [1, Exercise 9 of §3.2]). We shall use the following observation. Take
T ∈ B(E,F )+. Then

‖T‖ = sup{‖Tx‖ : x ∈ E+, ‖x‖ ≤ 1}. (1.28)

An operator S + iT ∈ B(E,F ) is regular or order-bounded or order-isometric if both
S and T are regular or order-bounded or order-isometric, respectively. Again, each order-
bounded operator is continuous, and so we denote the spaces of all positive, all regular,
and all order-bounded operators from E to F by B(E,F )+, Br(E,F ), and Bb(E,F ),
respectively. Thus we have

B(E,F )+ ⊂ Br(E,F ) ⊂ Bb(E,F ) ⊂ B(E,F ).

We write Br(E) and Bb(E) for Br(E,E) and Bb(E,E), respectively.
An operator T ∈ B(E,F ) is order-continuous if Tx = o-limα T (xα) in F whenever

x = o-limα xα in E. By [3, Theorem 2.1], each such operator is order-bounded.
The following result is based on [72, §3].

Proposition 1.26. Let E and F be Banach lattices. Then, for each T ∈ Bb(E,F ), there
exists c > 0 such that, for each v ∈ E+, there exists w ∈ F+ with T (∆v) ⊂ ∆w and
‖w‖ ≤ c‖v‖.

Proof. Assume towards a contradiction that no such constant c exists. For each n ∈ N,
there exists vn ∈ E+ with ‖vn‖ = 1/2n such that ‖w‖ ≥ n whenever w ∈ F+ has the
property that |Tx| ≤ w for each x ∈ E with |x| ≤ vn. Take

v =
∞∑
n=1

vn ∈ E+.

Then there exists w0 ∈ F+ such that |Tx| ≤ w0 whenever x ∈ E with |x| ≤ v. For each
n ∈ N, we have vn ≤ v, and so |Tx| ≤ w0 whenever |x| ≤ vn, whence ‖w0‖ ≥ n. This is
the required contradiction.

Definition 1.27. Let E and F be Banach lattices, and let T ∈ Bb(E,F ). Then the
infimum of the constants c such that, for each v ∈ E+, there exists w ∈ F+ with
T (∆v) ⊂ ∆w and ‖w‖ ≤ c‖v‖, is denoted by ‖T‖b.

Now consider T ∈ Br(E,F ). The following definition is given in [55, Exercise 2.2.E2].
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Definition 1.28. Let E and F be Banach lattices. For T ∈ Br(E,F ), set

‖T‖r = inf{‖S‖ : S ∈ B(E,F )+, |Tz| ≤ S(|z|) (z ∈ E)}.

Proposition 1.29. Let E and F be Banach lattices. Then:

(i) ‖ · ‖b is a norm on the space Bb(E,F ) such that ‖T‖b ≥ ‖T‖ (T ∈ Bb(E,F )), and
(Bb(E,F ), ‖ · ‖b) is a Banach space;

(ii) ‖ · ‖r is a norm on Br(E,F ) with

‖T‖r ≥ ‖T‖b ≥ ‖T‖ (T ∈ Br(E,F )),

and (Br(E,F ), ‖ · ‖r) is a Banach space.

If Br(E,F ) = Bb(E,F ), then the norms ‖·‖r and ‖·‖b are equivalent on Br(E,F ), but
examples in [72] shows that the norms are not necessarily equal in this case, and that,
in general, the norms are not necessarily equivalent on Br(E,F ); Example 4.1 of [72]
exhibits Banach lattices E and F and a compact, order-bounded operator V : E → F

which is not even in the ‖ · ‖b-closure of Br(E,F ). Examples with Br(E,F ) ( Bb(E,F )
and with Bb(E,F ) ( B(E,F ) are given in [7, Examples 1.11 and 15.1]. An example
given in [72, §2] shows that there may be operators in Bb(E,F ) that are not even in the
‖ · ‖-closure of Br(E,F ).

The three clauses of the following theorem are taken from [9], from [1, Theorem 3.9]
and [7, Theorem 15.3], and from [11], respectively.

Theorem 1.30.

(i) Let K be a compact space with weight smaller than the smallest strongly inaccessible
cardinal. Then Br(C(K)) = B(C(K)) if and only if K is Stonean.

(ii) Let Ω be a measure space. Then Br(L1(Ω)) = B(L1(Ω)) and, further,

‖T‖r = ‖T‖ (T ∈ B(L1(Ω))).

(iii) Let Ω be a measure space and take p with 1 < p < ∞ such that Lp(Ω) is infinite-
dimensional. Then Br(Lp(Ω)) is not dense in B(Lp(Ω)), and ‖ · ‖r and ‖ · ‖ are not
equivalent on Br(Lp(Ω)).

Let T ∈ B(E,F )+. Then
‖T‖b = ‖T‖r = ‖T‖. (1.29)

We shall use the following standard theorem of F. Riesz and Kantorovich; see [1,
Theorems 1.16, 1.32, 3.24, 3.25], [7, Theorems 1.10 and 1.13], [55, Propositions 1.3.6 and
2.2.6], and [67, Chapter 4, §1].

Theorem 1.31. Let E and F be real Banach lattices, with F Dedekind complete. Then
Br(E,F ) = Bb(E,F ) is a Dedekind complete real Banach lattice for the lattice operations
defined for T ∈ Br(E,F ) and x ∈ E+ by

T+(x) = sup{Ty : y ∈ [0, x]}, T−(x) = sup{−Ty : y ∈ [0, x]}.

Let T1, . . . , Tn ∈ Br(E,F ) and x ∈ E+. Then

(T1 ∨ · · · ∨ Tn)(x) =
∨{ n∑

i=1

Tixi : xi ∈ E+, x1 + · · ·+ xn = x
}
. (1.30)
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Let E and F be Banach lattices, with F Dedekind complete. Then Br(E,F ) = Bb(E,F )
is a Dedekind complete Banach lattice, and

|T |(u) = sup{|Tz| : |z| ≤ u} (u ∈ E+).

Further, ‖T‖r = ‖ |T | ‖ and |Tx| ≤ |T |(|z|) (z ∈ E) for T ∈ Br(E,F ).

1.3.5. The Banach algebra Br(E). The following result is clear.

Theorem 1.32. Let E be a Banach lattice. Then (Br(E), ‖ · ‖r) and (Bb(E), ‖ · ‖b) are
unital Banach algebras.

There appears to be surprisingly little about the Banach algebra Br(E) in the lit-
erature; for example, it is not mentioned in [16]. There seems to be no mention of the
Banach algebra Bb(E) at all.

Definition 1.33. Let E be a Banach lattice, and take T ∈ Bb(E). The order-spectrum,
σo(T ), of T is the spectrum of T with respect to the Banach algebra (Bb(E), ‖ · ‖b). The
corresponding order-spectral radius is denoted by νo(a).

Of course, σo(T ) ⊃ σ(T ) and νo(T ) ≥ ν(T ) for each T ∈ Bb(E).
For a discussion of σo(T ) and νo(a), see [1, §7.4] and [55, §4.5]; in the latter source,

and elsewhere, the order-spectrum is defined for T ∈ Br(E) with respect to the Banach
algebra Br(E).

Example 1.34. Let E be the Banach lattice L2(T), so that E is monotonically complete
with order-continuous norm.

An example of Arendt [10] exhibits a positive, compact operator T ∈ K(E) ∩ Br(E)
(so that σ(T ) ⊂ R is countable) such that σo(T ) contains the unit circle T. The operator
has the form

Tµ : f 7→ µ ? f, L2(T)→ L2(T),

where µ is a certain singular measure on T. Note the interesting fact that

σo(Tµ) = σM(T)(µ) ) σ(Tµ).

It follows that there are compact operators on L2(T) which are not regular.
An example of Ando, which is discussed in [1, Example 7.36] and [55, p. 306], exhibits

a Dedekind complete Banach lattice E with order-continuous norm and an operator
T ∈ Br(E) such that νo(T ) > ν(T ).

1.3.6. Dual Banach lattices. Let E be a real Banach lattice, with dual space E′. Then
E′ is ordered by the requirement that λ ∈ E′ belongs to (E′)+ if and only if 〈x, λ〉 ≥ 0
(x ∈ E+), and then E′ becomes a real Banach lattice with respect to the following
definitions of λ∨µ and λ∧µ for λ, µ ∈ E′. In fact, λ∨µ and λ∧µ are defined for x ∈ E+

by {
〈x, λ ∨ µ〉 = sup{〈y, λ〉+ 〈z, µ〉 : y, z ∈ E+, y + z = x},
〈x, λ ∧ µ〉 = inf{〈y, λ〉+ 〈z, µ〉 : y, z ∈ E+, y + z = x},

(1.31)

and then λ ∨ µ and λ ∧ µ are extended to E′. The dual of a Banach lattice E is also a
Banach lattice; this is the dual Banach lattice of E.
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Let E be a real Banach lattice, and take x ∈ E+ and λ ∈ E′. Then we have

〈x, λ+〉 = sup{〈y, λ〉 : 0 ≤ y ≤ x}.

Let E be a Banach lattice. We note that

|〈z, λ〉| ≤ 〈|z|, |λ|〉 (z ∈ E, λ ∈ E′); (1.32)

this is easily checked.
Let (λα : α ∈ A) be a net in E′, where E is a real Banach lattice, and suppose that

λα ↑ λ ∈ (E′)+. Define µ(x) = limα〈x, λα〉 (x ∈ E). Then µ is a positive linear functional
on E, and so µ ∈ E′; λα ≤ µ ≤ λ (α ∈ A), whence µ = λ. It follows that

〈x, λα〉 ↑ 〈x, λ〉 (x ∈ E+). (1.33)

A dual Banach lattice E′ is monotonically complete and has the Nakano property;
E′ is always Dedekind complete, and so every band in E′ is a projection band.

For example, let (Ω, µ) be a measure space, and take E = Lp(Ω, µ), where p ≥ 1, in
the case where E′ = Lq(Ω, µ), where q is the conjugate index to p. Then the dual lattice
operations on E′ coincide with the given lattice operations on Lq(Ω, µ).

Let K be a non-empty, locally compact space. Then M(K) = C0(K)′ is a dual Banach
lattice, and

(µ ∨ ν)(S) = sup{µ(S1) + ν(S2)}, (µ ∧ ν)(S) = inf{µ(S1) + ν(S2)}

for µ, ν ∈ MR(K) and a measurable subset S of K, where the supremum and infimum
are taken over all ordered partitions (S1, S2) of S. Let µ, ν ∈ M(K). Then µ ⊥ ν in the
Banach lattice M(K) if and only if |µ| ∧ |ν| = 0, so that µ and ν are mutually singular
in the classical sense of measures. We see that the following are equivalent:

(a) µ ⊥ ν;
(b) ‖µ‖+ ‖ν‖ = ‖µ+ ν‖ = ‖µ− ν‖;
(c) ‖ |µ| + |ν| ‖ = ‖ |µ| ∨ |ν| ‖.

For example, M(K) = Md(K)⊕⊥Mc(K) is a band decomposition.
We shall use the following proposition.

Proposition 1.35. Let E be a Banach lattice, and take x ∈ E+, λ ∈ E′, and ε > 0.
Then there exists z ∈ E such that

|z| ≤ x and 〈z, λ〉 > 〈x, |λ|〉 − ε.

Proof. We write λ = µ+ iν, where µ, ν ∈ (ER)′. By the definition, we have

|λ| =
∨
{µ cos θ + ν sin θ : 0 ≤ θ ≤ 2π},

and so there exist θ1, . . . , θn ∈ [0, 2π] such that

〈x, (µ cos θ1 + ν sin θ1) ∨ · · · ∨ (µ cos θn + ν sin θn)〉 > 〈x, |λ|〉 − ε.

By extending the definition in (1.31), we see that there exist u1, . . . , un ∈ E+ such that
u1 + · · ·+ un = x and

〈u1, µ cos θ1 + ν sin θ1〉+ · · ·+ 〈un, µ cos θn + ν sin θn〉 > 〈x, |λ|〉 − ε.
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Thus
n∑
j=1

〈(cos θj)uj , µ〉+
n∑
j=1

〈(sin θj)uj , ν〉 > 〈x, |λ|〉 − ε. (1.34)

Set

w =
n∑
j=1

(cos θj − i sin θj)uj ∈ E.

Then (1.34) states that < 〈w, λ〉 > 〈x, |λ|〉 − ε, and so |〈w, λ〉| > 〈x, |λ|〉 − ε. For each
θ ∈ [0, 2π], we have

n∑
j=1

(cos θ cos θj − sin θ sin θj)uj =
n∑
j=1

cos(θ + θj)uj ,

and hence

|w| = sup
{ n∑
j=1

cos(θ + θj)uj : 0 ≤ θ ≤ 2π
}
≤

n∑
j=1

uj = x.

Finally, set z = ζw, where ζ ∈ T is chosen to be such that ζ〈w, λ〉 = |〈w, λ〉|. Then
|z| = |w| ≤ x and 〈z, λ〉 > 〈x, |λ|〉 − ε, as required.

Let E = E1 ⊕⊥ · · · ⊕⊥ En be a band decomposition of a Banach lattice E. Then the
corresponding decomposition of E′ is a band decomposition, so that

E′ = E′1 ⊕⊥ · · · ⊕⊥ E′n. (1.35)

However, in general, it is not true that every band decomposition of E′ arises in this way.

1.3.7. AL and AM spaces. We now define some special types of Banach lattices.

Definition 1.36. A real Banach lattice (E, ‖ · ‖) is: an AL-space if

‖x+ y‖ = ‖x‖+ ‖y‖ whenever x, y ∈ E+ with x ∧ y = 0;

an ALp-space (for p ≥ 1) if

‖x+ y‖p = ‖x‖p + ‖y‖p whenever x, y ∈ E+ with x ∧ y = 0;

and an AM -space if

‖x ∨ y‖ = max{‖x‖, ‖y‖} whenever x, y ∈ E+ with x ∧ y = 0.

A Banach lattice is an AL-space or an ALp-space or an AM -space if ER has the appro-
priate property.

For example, each space of the form Lp(Ω, µ), where (Ω, µ) is a measure space, is an
ALp-space, and each space C0(K), where K is a non-empty, locally compact space, is an
AM -space.

Let E be a Banach lattice. Then E is an AL-space if and only if

‖x+ y‖ = ‖x‖+ ‖y‖ (x, y ∈ E+), (1.36)

and an AM -space if and only if

‖x ∨ y‖ = max{‖x‖, ‖y‖} (x, y ∈ E+). (1.37)

The following duality result is [7, Theorem 12.22], for example.
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Theorem 1.37. Let E be a Banach lattice, with dual Banach lattice E′. Then E is an
AL-space if and only if E′ is an AM -space, and E is an AM -space if and only if E′ is
an AL-space.

The following central representation theorem is proved in [1, Theorems 3.5 and 3.6],
[7, Theorems 12.26 and 12.28], and [52, II. §1.b]. We shall call it Kakutani’s theorem;
detailed attributions for the various statements are given in [1].

Theorem 1.38.

(i) Take p ≥ 1. A Banach lattice is an ALp-space if and only if it is order-isometric to
a Banach lattice of the form Lp(Ω, µ), where (Ω, µ) is a measure space, and hence
each ALp-space has an order-continuous norm and is Dedekind complete.

(ii) A Banach lattice is an AM -space if and only if it is order-isometric to a closed
sublattice of a space C(K), where K is a compact space.

Corollary 1.39. Let (Ω, µ) be a measure space. Then there is an order-isomorphism θ

from the dual space of L1(Ω, µ) onto C(K) for some compact space K, and the restric-
tion of θ to L∞(Ω, µ) is the Gel’fand identification of L∞(Ω, µ) with a C∗-subalgebra of
C(K).

Corollary 1.40. Let K be a non-empty, locally compact space. Then M(K) is order-
isometric to the space L1(Ω, µ) for some measure space (Ω, µ).

We also mention a related result from [73]. Let E be a Banach lattice. Then E is
an AM -space with the Nakano property if and only if E is order-isometric to C0(K) for
some locally compact space K.

1.4. Summary. In Chapter 2, we shall begin with our axiomatic definitions of multi-
normed spaces and of their relatives, the dual multi-normed spaces; we shall obtain some
immediate consequences and some characterizations. In particular, we shall show that,
of course, the concept of a ‘dual multi-normed space’ is dual to that of ‘multi-normed
space’. We shall give alternative characterizations of multi-normed spaces in terms of
matrices and of tensor products, and we shall show that our notion of a multi-normed
space coincides with that of spaces satisfying ‘condition (P)’ of Pisier.

In Chapter 3, we shall give the first examples of multi-normed spaces. These are the
minimum and the maximum multi-norms associated with a fixed normed space E. The
latter notion leads to a sequence (ϕmax

n (E)) that is intrinsic to E. We shall relate this
sequence to some known sequences connected with the theory of absolutely summing
operators; the background involving p-summing operators will be reviewed. We shall give
various characterizations of the maximum multi-norm, and then calculate the sequence
(ϕmax
n (E)) for a variety of examples, including the spaces `p.
In Chapter 4, we shall give several specific examples of multi-norms, including the

(p, q)-multi-norm based on an arbitrary normed space, the Hilbert multi-norm based on
a Hilbert space, and the standard q-multi-norm based on Lp(Ω) for 1 ≤ p ≤ q. We shall
compare these multi-norms, and determine in some cases when they are mutually equiv-
alent. This chapter concludes with the definition of the lattice multi-norm based on a
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Banach lattice; there is a representation theorem that shows that every multi-normed
space is a sub-multi-normed space of such an example.

In Chapter 5, we shall extend our theory to cover some multi-topological linear spaces,
and shall discuss the notion of multi-convergence in these spaces, concentrating on the
case of multi-convergence in multi-normed spaces.

In Chapter 6, we shall develop a theory of multi-bounded subsets of a multi-normed
space and of multi-bounded and multi-continuous linear operators between multi-Banach
spaces based on E and F that is parallel to the classical theory of continuous and bounded
linear operators between the Banach spaces E and F . For a monotonically bounded Ba-
nach lattice, a subset is multi-bounded with respect to the lattice multi-norm if and only
if it is order-bounded. The space of multi-bounded operators M(E,F ) is a Banach op-
erator algebra in B(E,F ), and can be given a natural multi-normed structure. Examples
show that sometimes M(E,F ) coincides with B(E,F ), but can coincide with N (E,F ),
the space of nuclear operators from E to F . The multi-normed space based on M(E,F )
is identified for various classes of Banach lattices.

In Chapter 7, our aim is to find a reasonable theory of ‘multi-dual spaces’: we require a
multi-norm based on E′, given a multi-norm based on a normed space E. We shall achieve
this by first establishing a theory of direct sum decompositions of a normed space E with
respect to a multi-norm based on E,and then by using the duals of these decompositions
to generate a multi-norm based on E′.

1.5. History and acknowledgements. This work was commenced in 2005 when Mak-
sim Polyakov, from Moscow, was a Marie-Curie Research Fellow at the University of
Leeds.

Our motivation at that time was to seek to resolve some questions left open in [18]. In
particular, we were concerned with the following question; for the definitions of the terms
used, see [18]. Let G be a locally compact group, and let L1(G) be the group algebra
of G. For each p ∈ [1,∞], the Banach space Lp(G) is a Banach left L1(G)-module in a
natural way. We would like to know when these modules are injective in the appropriate
category. For p = ∞, this holds for each locally compact group G [18, Theorem 2.4];
for p = 1, this holds if and only if G is discrete and amenable [18, Theorem 4.9]. Now
suppose that 1 < p < ∞. Then Lp(G) is a dual Banach left L1(G)-module, and so it
follows from now standard results that Lp(G) is injective whenever G is an amenable
group. We conjectured that the converse is true. In [18, Theorem 5.12], we proved that,
in the case where G is discrete and `p(G) is injective for some p ∈ (1,∞), the group G is at
least ‘pseudo-amenable’. No example of a pseudo-amenable group which is not amenable
is known; since such a group cannot contain the free group on two generators, there are
very few candidates for such a group. In fact this conjectured result has now been proved,
and will be established (with other results) in [19].

We realised that the above question, and other related questions, can be reformulated
in the language of what we call ‘multi-Banach algebras’, and we began to develop a
theory of such algebras. This required a substantial background in a new theory of ‘multi-
normed spaces’; this new theory came to life in its own right, and it seems to be a useful
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framework in which many important concepts of functional analysis can be expressed,
often generalizing known ideas to a wider situation.

Tragically, Maksim Polyakov died in Moscow in January 2006 when this project had
just been commenced. I pay great tribute to this fine mathematician and colleague, and
especially to his original ideas which underlie this work.

In due course, the project was continued by myself. Eventually it became apparent
that the preliminary work on multi-normed spaces was so considerable that there should
be one memoir devoted just to this topic; this is the present work. Thus this work was de-
veloped with particular applications in mind, but these applications will not be discussed
here. The subsequent papers [19] and [20] will develop a theory of multi-normed spaces,
with particular application to the theory of modules over the group algebras L1(G), where
G is a locally compact group; I anticipate a future paper on ‘multi-Banach algebras’.

I acknowledge with thanks the financial support of the original Marie-Curie Interna-
tional Fellowship, awarded for 2005-2007. I also acknowledge with thanks the financial
support of EPSRC grant EP/H019405/1 that enabled Hung Le Pham to come to the
University of Leeds for three months in 2010, during which time we discussed the present
manuscript and its successors [19, 20].

I am very grateful to Matthew Daws (Leeds), Mohammad Moslehian (Mashhad),
Hung Le Pham (Wellington), Paul Ramsden (Leeds), and Marzieh Shamsi Yousefi (Teh-
eran) for careful readings of various drafts of this work, for pointing out some errors,
and for suggesting some changes and additions. I am also very grateful to Oscar Blasco
(Valencia), Graham Jameson (Lancaster), to Nigel Kalton (Columbia), to Michael Elliott,
Stanislav Shkarin and Anthony Wickstead (Belfast), and to Volker Runde and Vladimir
Troitsky (Edmonton) for corrections and valuable background information and references.

H. G. D., Lancaster, September, 2011



2. The axioms and some consequences

We shall now commence our study of multi-norms.

2.1. The axioms

2.1.1. Multi-norms. We begin with our definition of a multi-norm.

Definition 2.1. Let (E, ‖ · ‖) be a complex (respectively, real) normed space, and take
n ∈ N. A multi-norm of level n on {Ek : k ∈ Nn} is a sequence (‖ · ‖k) = (‖ · ‖k : k ∈ Nn)
such that ‖ · ‖k is a norm on Ek for each k ∈ Nn, such that ‖x‖1 = ‖x‖ for each x ∈ E
(so that ‖ · ‖1 is the initial norm), and such that the following Axioms (A1)–(A4) are
satisfied for each k ∈ Nn with k ≥ 2:

(A1) for each σ ∈ Sk and x ∈ Ek, we have

‖Aσ(x)‖k = ‖x‖k;

(A2) for each α1, . . . , αk ∈ C (respectively, each α1, . . . , αk ∈ R) and x ∈ Ek, we have

‖Mα(x)‖k ≤
(

max
i∈Nk
|αi|
)
‖x‖k;

(A3) for each x1, . . . , xk−1 ∈ E, we have

‖(x1, . . . , xk−1, 0)‖k = ‖(x1, . . . , xk−1)‖k−1;

(A4) for each x1, . . . , xk−1 ∈ E, we have

‖(x1, . . . , xk−2, xk−1, xk−1)‖k = ‖(x1, . . . , xk−2, xk−1)‖k−1.

In this case, ((Ek, ‖ · ‖k) : k ∈ Nn) is a multi-normed space of level n.
A multi-norm on {Ek : k ∈ N} is a sequence

(‖ · ‖k) = (‖ · ‖k : k ∈ N)

such that (‖ · ‖k : k ∈ Nn) is a multi-norm of level n for each n ∈ N. In this case,
((En, ‖ · ‖n) : n ∈ N) is a multi-normed space.

We shall sometimes say that (‖ · ‖k : k ∈ N) is a multi-norm based on E.
Let (E, ‖ · ‖) be a normed space. Then Axiom (A1) says that Aσ is an isometry on

(Ek, ‖ · ‖k) whenever σ ∈ Sk, and Axiom (A2) says that ‖Mα‖ ≤ 1 whenever α ∈ Dk,
where we regard Mα as a bounded linear operator on (Ek, ‖ · ‖k); in fact,

‖Mα‖ = max
i∈Nk
|αi| (α = (α1, . . . , αn) ∈ Cn).

Note that Axioms (A1) and (A4) together say precisely that, for each n ∈ N, the
value of ‖(x1, . . . , xn)‖n depends on only the set {x1, . . . , xn}.

[40]
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2.1.2. Dual multi-norms. We shall also have some occasion to refer to a dual concept
to that of a multi-norm. We give the definition just in the case where the index set
is N, but there is also an obvious definition of ‘dual multi-normed space of level n’. The
justification of the term ‘dual multi-normed space’ will be apparent in §5 of this chapter.

Definition 2.2. Let (E, ‖ · ‖) be a normed space. A dual multi-norm on {Ek : k ∈ N}
is a sequence (‖ · ‖k) = (‖ · ‖k : k ∈ N) such that ‖ · ‖k is a norm on Ek for each k ∈ N,
such that ‖x‖1 = ‖x‖ for each x ∈ E, and such that Axioms (A1), (A2), (A3) and the
following modified form of Axiom (A4) are satisfied for each k ∈ N with k ≥ 2:

(B4) for each x1, . . . , xk−1 ∈ E, we have

‖(x1, . . . , xk−2, xk−1, xk−1)‖k = ‖(x1, . . . , xk−2, 2xk−1)‖k−1.

In this case, we say that ((Ek, ‖ · ‖k) : k ∈ N) is a dual multi-normed space.

We sometimes say, in the above situation, that (‖ · ‖k : k ∈ N) is a dual multi-norm
based on E.

Suppose that the normed spaces (E, ‖ · ‖) and (E2, ‖ · ‖2) satisfy just the case k = 2
of both Axioms (A4) and (B4). Then

‖x‖ = ‖(x, x)‖2 = 2‖x‖ (x ∈ E),

and so E = {0}. Thus we should stress that a dual multi-normed space is not a multi-
normed space unless E = {0}.

2.1.3. Independence of the axioms. It is natural to ask whether the four Axioms
(A1)–(A4) are independent. We give examples to show that this is indeed the case.

Example 2.3. Let (E, ‖ · ‖) be a non-zero normed space. We set ‖x‖1 = ‖x‖ (x ∈ E),
and, for each n ∈ N with n ≥ 2, set

‖(x1, . . . , xn)‖n = max{‖x1‖, ‖x2‖/2, . . . , ‖xn‖/2} ((x1, . . . , xn) ∈ En).

Then it is immediately checked that ‖ · ‖n is a norm on En for each n ∈ N, and that
(‖ ·‖n) is a sequence that satisfies Axioms (A2), (A3), and (A4) for each n ∈ N. However,
take x ∈ E with ‖x‖ = 1. Then ‖(2x, 3x)‖2 = 2, but ‖(3x, 2x)‖2 = 3, and so ‖ · ‖2 does
not satisfy Axiom (A1).

Example 2.4. In this example, we work with E = C. For z ∈ C, we set ‖z‖1 = |z|. Next,
for (z, w) ∈ C2, set

r((z, w)) =
1
2

(|z − w|+ |z + w|).

Then r is a norm on C2. Further, r((z, z)) = r((z, 0)) = |z| (z ∈ C) and also

r((z, w)) = r((w, z)) ≥ max{|z|, |w|} ((z, w) ∈ C2).

Finally, for n ∈ N with n ≥ 2, set

‖(z1, . . . , zn)‖n = max{r((zi, zj)) : i, j ∈ Nn} ((z1, . . . , zn) ∈ Cn),

so that ‖(z, w)‖2 = r((z, w)) ((z, w) ∈ C2) and

‖(z1, . . . , zn)‖n ≥ max
i∈Nn

|zi| ((z1, . . . , zn) ∈ Cn).
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It follows easily that ‖ ·‖n is a norm on Cn and that the sequence (‖ ·‖n) satisfies Axioms
(A1), (A3), and (A4) for each n ∈ N.

However we claim that ‖ · ‖2 does not satisfy Axiom (A2). Indeed,

‖(1, i)‖2 =
1
2

(|1− i|+ |1 + i|) =
√

2 > 1 = ‖(1, 1)‖2,

giving the claim.
Here is a similar example involving real spaces. Let E = R, and define

‖(x1, . . . , xn)‖n = max
{

max
i∈Nn

|xi|, max
i,j∈Nn

|xi − xj |
}

for n ∈ N and x1, . . . , xn ∈ R. Then (‖ · ‖n : n ∈ N) satisfies Axioms (A1), (A3), and
(A4), but Axiom (A2) fails because ‖(1, 1)‖2 = 1, whilst ‖(1,−1)‖2 = 2.

We now consider the independence of Axiom (A3). The following example shows that
for multi-norms of level 2, (A3) is indeed independent of the other axioms. However we
shall see below that Axiom (A3) follows from Axioms (A1), (A2), and (A4) for multi-
norms on the whole family {En : n ∈ N}.

Example 2.5. We again take E = C, and set ‖z‖1 = |z| (z ∈ C). Set

‖(z, w)‖2 =
1
2

(|z|+ |w|) (z, w ∈ C).

Then ‖ · ‖2 is a norm on C2, and ‖ · ‖2 satisfies Axioms (A1), (A2), and (A4) for n = 2.
However ‖(1, 0)‖2 = 1/2 < 1 = ‖1‖1, and so Axiom (A3) does not hold.

Example 2.6. Let (E, ‖ · ‖) be a non-zero normed space. For each n ∈ N, set

‖(x1, . . . , xn)‖n =
( n∑
j=1

‖xj‖p
)1/p

((x1, . . . , xn) ∈ En),

where p ≥ 1. Then it is immediately checked that, for each p, the function ‖ ·‖n is a norm
on En, and that (‖ · ‖n) is a sequence that satisfies Axioms (A1), (A2), and (A3) for each
n ∈ N, but ‖ · ‖2 does not satisfy Axiom (A4).

We note that the sequence (‖ · ‖n : n ∈ N) satisfies Axiom (B4) if and only if p = 1;
in this latter case, (‖ · ‖n : n ∈ N) is a dual multi-norm.

We shall now show that Axiom (A3) follows from the other axioms in the case where
we have norms on the whole family {En : n ∈ N}.

Proposition 2.7. Let (E, ‖·‖) be a normed space. Let (‖·‖n : n ∈ N) be a sequence such
that ‖ · ‖n is a norm on En for each n ∈ N, such that ‖x‖1 = ‖x‖ for each x ∈ E, and
such that Axioms (A1), (A2), and (A4) are satisfied for each n ∈ N. Then (‖ ·‖n : n ∈ N)
is a multi-norm on {En : n ∈ N}.

Proof. We must show that Axiom (A3) holds.
Let n ∈ N, and take x = (xi) ∈ En, say ‖x‖n = 1. Set

α = ‖(x1, . . . , xn, 0)‖n+1,
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so that 0 < α ≤ 1 by (A2) and (A4). For each k ∈ N, we see that x[k+1] ∈ E(k+1)n and
that ‖x[k+1]‖(k+1)n = 1 by (A1) and (A4). For i ∈ Nn+1, let Bi be the subset

{(i− 1)k + 1, . . . , ik}

of N(n+1)k, and let QBi be the projection onto the complement of Bi; by (A1) and (A4),
we have ‖QBi(x[k+1])‖(k+1)n = α. Further,

k+1∑
i=1

QBi(x
[k+1]) = kx[k+1],

and so

k = k‖x[k+1]‖(k+1)n ≤
k+1∑
i=1

‖QBi(x[k+1])‖(k+1)n = (k + 1)α,

whence α ≥ k/(k + 1). This holds for each k ∈ N, and so α = 1.
The result follows.

Stanislav Shkarin has pointed out that Axiom (A3) also follows from Axioms (A1),
(A2), and (B4), imposed on the family {(En, ‖ · ‖n) : n ∈ N}.

2.2. Elementary consequences of the axioms. The following are immediate conse-
quences of the axioms for multi-normed and dual multi-normed spaces.

2.2.1. Results for special-norms. A sequence (‖ · ‖k) = (‖ · ‖k : k ∈ N) such that
‖ · ‖k is a norm on Ek for each k ∈ N, such that ‖x‖1 = ‖x‖ for each x ∈ E, and such
that just the Axioms (A1), (A2), and (A3) are satisfied is called a special-norm in [61],
and ((En, ‖ · ‖n) : n ∈ N) is then a special-normed space. Thus multi-norms and dual
multi-norms are examples of special-norms.

Initially in this subsection, we suppose that (E, ‖ · ‖) is a complex normed space, that
n ∈ N, and that (‖ · ‖k : k ∈ Nn) is a special-norm. Thus our first results apply to both
multi-normed spaces and to dual multi-normed spaces of level n.

Trivial modifications give entirely similar results when (E, ‖·‖) is a real normed space.

Lemma 2.8. Let k ∈ Nn, x1, . . . , xk ∈ E, and ζ1, . . . , ζk ∈ T. Then

‖(ζ1x1, . . . , ζkxk)‖k = ‖(x1, . . . , xk)‖k.

Proof. This is immediate from (A2).

Lemma 2.9. Let k ∈ Nn−1 and x1, . . . , xk+1 ∈ E. Then

‖(x1, . . . , xk)‖k ≤ ‖(x1, . . . , xk, xk+1)‖k+1.

Proof. We have
‖(x1, . . . , xk)‖k = ‖(x1, . . . , xk, 0)‖k+1 by (A3)

≤ ‖(x1, . . . , xk, xk+1)‖k+1 by (A2),

giving the result.

Lemma 2.10. Let j, k ∈ N with j + k ≤ n and x1, . . . , xj , y1, . . . , yk ∈ E. Then

‖(x1, . . . , xj , y1, . . . , yk)‖j+k ≤ ‖(x1, . . . , xj)‖j + ‖(y1, . . . , yk)‖k.

Proof. This is immediate from Axiom (A3).
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Lemma 2.11. Let k ∈ Nn and x1, . . . , xk ∈ E. Then

max
i∈Nk
‖xi‖ ≤ ‖(x1, . . . , xk)‖k ≤

k∑
i=1

‖xi‖ ≤ kmax
i∈Nk
‖xi‖.

Proof. Set x = (xi). For i ∈ Nk, we have ‖xi‖ = ‖(0, . . . , 0, xi, 0, . . . , 0)‖k ≤ ‖x‖k by
(A1), (A2), and (A3), and so the stated inequalities follow.

It follows that any two special-norms on {Ek : k ∈ Nn} define the same topology on
the space Ek for each k ∈ Nn; the topology is the product topology.

Corollary 2.12. Suppose that (E, ‖ · ‖) is a Banach space. Then the normed space
(Ek, ‖ · ‖k) is a Banach space for each k ∈ Nn.

As we remarked, the above results apply to both multi-normed spaces and to dual
multi-normed spaces, and so, in the light of the above corollary, the following definition
is reasonable.

Definition 2.13. Let ((En, ‖ · ‖n) : n ∈ N) be a multi-normed space (respectively, dual
multi-normed space) for which (E, ‖ · ‖) is a Banach space. Then ((En, ‖ · ‖n) : n ∈ N) is
a multi-Banach space (respectively, dual multi-Banach space).

More generally, we can refer to special-Banach spaces.

2.2.2. Results for multi-norms. We now give some elementary lemmas that suppose,
further, that the sequence (‖ · ‖k : k ∈ Nn) also satisfies Axiom (A4), and hence that
((Ek, ‖ · ‖k) : k ∈ Nn) is a multi-normed space of level n, where n ∈ N.

Lemma 2.14. Let k ∈ Nn and x ∈ E. Then ‖(x, . . . , x)‖k = ‖x‖.

Proof. This is immediate from (A4).

Lemma 2.15. Let j, k ∈ Nn and x1, . . . , xj , y1, . . . , yk ∈ E be such that {x1, . . . , xj} is a
subset of {y1, . . . , yk}. Then

‖(x1, . . . , xj)‖j ≤ ‖(y1, . . . , yk)‖k.

Proof. By Axioms (A1) and (A4), we may suppose that j ≤ k and that xi = yi (i ∈ Nj).
Now the result follows from Lemma 2.9.

Lemma 2.16. Let k ∈ {2, . . . , n} and x1, . . . , xk ∈ E. Take α, β ∈ I with α+ β = 1, and
set x = αxk−1 + βxk. Then

‖(x1, . . . , xk−2, x, x)‖k ≤ ‖(x1, . . . , xk−2, xk−1, xk)‖k.

Proof. Set y = (x1, . . . , xk−2) and A = ‖(y, xk−1, xk)‖k. Then

(y, x, x) = α2(y, xk−1, xk−1) + αβ(y, xk−1, xk) + αβ(y, xk, xk−1) + β2(y, xk, xk).

But ‖(y, xk, xk−1)‖k = A by (A1). Also ‖(y, xk−1, xk−1)‖k ≤ A and ‖(y, xk, xk)‖k ≤ A

by Lemma 2.15. Hence

‖(x1, . . . , xk−2, x, x)‖k ≤ (α+ β)2A = A,

giving the result.

The following inequality-of-roots will be useful later.
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Proposition 2.17. Let ((En, ‖ · ‖n) : n ∈ N) be a multi-normed space, and take k ∈ N.
Set ζk = exp (2πi/k). Then

‖(x1, . . . , xk)‖k ≤
1
k

k∑
j=1

∥∥∥ k∑
m=1

ζjmk xm

∥∥∥ (x1, . . . , xk ∈ E). (2.1)

Proof. We write ζ for ζk.
First note that

x` =
1
k

k∑
m=1

k∑
j=1

ζj(m−`)xm (` ∈ Nk)

because
∑k
j=1 ζ

j(m−`) = 0 when m 6= ` and
∑k
j=1 ζ

j(m−`) = k when m = `. Thus

‖(x1, . . . , xk)‖k ≤
1
k

k∑
j=1

∥∥∥( k∑
m=1

ζj(m−1)xm, . . . ,

k∑
m=1

ζj(m−k)xm

)∥∥∥
k
.

For j ∈ Nk, set yj =
∑k
m=1 ζ

jmxm (j ∈ Nk). Then∥∥∥( k∑
m=1

ζj(m−1)xm, . . . ,

k∑
m=1

ζj(m−k)xm

)∥∥∥
k

= ‖(ζ−jyj , . . . , ζ−kjyj)‖k.

But ‖(ζ−jyj , . . . , ζ−kjyj)‖k = ‖yj‖ (j ∈ Nk) by (A2) and Lemma 2.14, and so inequality
(2.1) follows.

Corollary 2.18. Let E = `r, where r ≥ 1, and let (‖ · ‖n : n ∈ N) be a multi-norm
based on E. Then

‖(δ1, . . . , δk)‖k ≤ k1/r (k ∈ N).

Proof. In this case, ∥∥∥ k∑
m=1

ζjmk δm

∥∥∥ = ‖(ζjk, . . . , ζ
kj
k )‖`r = k1/r

for each j ∈ Nk, and so the result follows from the proposition.

2.2.3. Results for dual multi-norms. We now have some elementary lemmas about
dual multi-normed spaces. In the remainder of this section, we suppose that (E, ‖ · ‖) is
a normed space and that ((Ek, ‖ · ‖k) : k ∈ N) is a dual multi-normed space, and so the
sequence (‖ · ‖k : k ∈ N) satisfies Axioms (A1)–(A3) and Axiom (B4).

Lemma 2.19. Let k ∈ N and x1, . . . , xk ∈ E. Then

‖(x1, . . . , xk−2, xk−1 + xk)‖k−1 ≤ ‖(x1, . . . , xk−2, xk−1, xk)‖k.

Proof. We have

‖(x1, xk−2, xk−1 + xk)‖k−1 = ‖(x1, . . . , xk−2, (xk−1 + xk)/2, (xk−1 + xk)/2‖k by (B4)

=
1
2
‖(x1, . . . , xk−2, xk−1, xk) + (x1, . . . , xk−2, xk, xk−1)‖k

≤ ‖(x1, . . . , xk−2, xk−1, xk)‖k by (A1),

as required.
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Lemma 2.20. Let k ∈ N and x1, . . . , xk ∈ E. Then

sup{‖ζ1x1 + · · ·+ ζkxk‖ : ζ1, . . . , ζk ∈ T} ≤ ‖(x1, . . . , xk)‖k.

Proof. This follows from Lemmas 2.8 and 2.19.

Lemma 2.21. Let m,n ∈ N with m ≤ n, let x ∈ En, and let y ∈ Em be a coagulation
of x. Then ‖y‖m ≤ ‖x‖n.

Proof. This follows from Lemma 2.19.

Lemma 2.22. Let k ∈ N, α1, . . . , αk ∈ C, and x ∈ E. Then

‖(α1x, . . . , αkx)‖k =
( k∑
j=1

|αj |
)
‖x‖.

Proof. By Lemma 2.11, we have

‖(α1x, . . . , αkx)‖k ≤
( k∑
j=1

|αj |
)
‖x‖.

But also

‖(α1x, . . . , αkx)‖k = ‖(|α1|x, . . . , |αk|x)‖k by Lemma 2.8

≥
∥∥∥ k∑
j=1

|αj |x
∥∥∥ =

( k∑
j=1

|αj |
)
‖x‖ by Lemma 2.19.

The result follows.

2.2.4. The family of multi-norms. We first have an elementary result.

Proposition 2.23. Let (E, ‖ ·‖) be a normed space. Take n ∈ N, and let (‖ ·‖1k : k ∈ Nn)
and (‖ · ‖2k : k ∈ Nn) be two multi-norms of level n on the family {Ek : k ∈ Nn}. For
k ∈ Nn and x1, . . . , xk ∈ E, set

‖(x1, . . . , xk)‖k = max{‖(x1, . . . , xk)‖1k, ‖(x1, . . . , xk)‖2k}.

Then ((Ek, ‖ · ‖k) : k ∈ Nn) is a multi-normed space of level n.

Proof. This is immediately checked.

We now define a family of multi-norms.

Definition 2.24. Let (E, ‖ · ‖) be a normed space. Then EE is the family of all multi-
norms based on E. Let (‖ · ‖1k : k ∈ N) and (‖ · ‖2k : k ∈ N) belong to EE . Then

(‖ · ‖1k : k ∈ N) ≤ (‖ · ‖2k : k ∈ N)

if
‖(x1, . . . , xk)‖1k ≤ ‖(x1, . . . , xk)‖2k (x1, . . . , xk ∈ E, k ∈ N).

Further, the multi-norm (‖·‖2k : k ∈ N) dominates the multi-norm (‖·‖1k : k ∈ N), written

(‖ · ‖1k : k ∈ N) 4 (‖ · ‖2k : k ∈ N),

if there is a constant C > 0 such that

‖(x1, . . . , xk)‖1k ≤ C‖(x1, . . . , xk)‖2k (x1, . . . , xk ∈ E, k ∈ N). (2.2)
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The two multi-norms (‖ · ‖1k : k ∈ N) and (‖ · ‖2k : k ∈ N) are equivalent, written

(‖ · ‖1k : k ∈ N) ∼= (‖ · ‖2k : k ∈ N),

if each dominates the other.

It is clear that (EE ,≤) is a partially ordered set; by Proposition 2.23, each pair of
elements has an upper bound. We shall see in Proposition 3.10 that (EE ,≤) is a Dedekind-
complete lattice.

There is an entirely similar ordering of, and notion of equivalence for, the family of
dual multi-norms on {Ek : k ∈ Nn}.

In [20], we shall explore when various specific multi-norms are mutually equivalent,
and sometimes calculate the best constant C in (2.2).

2.2.5. Standard constructions. We now give some standard constructions that gen-
erate new multi-normed spaces from old ones. Analogous constructions also generate new
dual multi-normed spaces.

Let ((En, ‖ · ‖n) : n ∈ N) be a multi-normed space, and let F be a closed linear
subspace of E. For n ∈ N and x1, . . . , xn ∈ E, define

‖(x1 + F, . . . , xn + F )‖n = inf{‖(y1, . . . , yn)‖n : yi ∈ xi + F (i ∈ Nn)},

so that ‖ · ‖n is a norm on (E/F )n.

Proposition 2.25. Let ((En, ‖ · ‖n) : n ∈ N) be a multi-normed space.

(i) Let F be a linear subspace of E. Then ((Fn, ‖ · ‖n) : n ∈ N) is a multi-normed space.
(ii) Let F be a closed linear subspace of E. Then (((E/F )n, ‖ · ‖n) : n ∈ N) is a multi-

normed space.

Proof. These are easily checked; to show that each norm ‖ · ‖n on (E/F )n satisfies (A4),
we use Lemma 2.16.

We say that ((Fn, ‖ · ‖n) : n ∈ N) and (((E/F )n, ‖ · ‖n) : n ∈ N) are a multi-normed
subspace and a multi-normed quotient space, respectively, of the multi-normed space
((En, ‖ · ‖n) : n ∈ N).

Proposition 2.26. Let F be a 1-complemented subspace of a normed space E, and sup-
pose that (‖ · ‖n : n ∈ N) is a multi-norm on {Fn : n ∈ N}. Then there is a multi-norm
(||| · |||n : n ∈ N) on {En : n ∈ N} such that ((Fn, ‖ · ‖n) : n ∈ N) is a multi-normed
subspace of ((En, ||| · |||n) : n ∈ N).

Proof. Let P : E → F be a projection onto F with ‖P‖ = 1, and set

|||(x1, . . . , xn)|||n = max{‖x1‖, . . . , ‖xn‖, ‖(Px1, . . . , Pxn)‖n}

for x1, . . . , xn ∈ E. Then the sequence (||| · |||n : n ∈ N) has the required properties, as is
easily checked.

Proposition 2.27. Let ((En, ‖ ·‖n) : n ∈ N) be a multi-normed space, and let k ∈ N. Set
F = Ek and ‖ · ‖F = ‖ · ‖k. Then (F, ‖ · ‖F ) is a normed space, and ((Fn, ‖ · ‖nk) : n ∈ N)
is a multi-normed space.
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Proof. Let y1, . . . , yn ∈ F , say yi = (xi,1, . . . , xi,k) (i ∈ Nn). Then

‖(y1, . . . , yn)‖n = ‖(x1,1, . . . , x1,k, . . . , xn,1, . . . , xn,k)‖nk,

and ((Fn, ‖ · ‖nk) : n ∈ N) is clearly a multi-normed space.

Let {((Enα, ‖ · ‖αn) : n ∈ N) : α ∈ A} be a family of multi-normed spaces, defined
for each α in a non-empty index set A (perhaps finite). Then we consider the following
spaces.

First, for n ∈ N and (x1
α), . . . , (xnα) ∈ `∞(Eα), set

‖((x1
α), . . . , (xnα))‖n = sup{‖(x1

α, . . . , x
n
α)‖αn : α ∈ A}.

Proposition 2.28. The space ((`∞(Eα)n, ‖ · ‖n) : n ∈ N) is a multi-normed space.

Proof. This is immediately checked.

Take p with 1 ≤ p <∞. For n ∈ N and (x1
α), . . . , (xnα) ∈ `p(Eα), we define

‖((x1
α), . . . , (xnα))‖n =

(∑
α

(‖(x1
α, . . . , x

n
α)‖αn)p

)1/p

.

Proposition 2.29. The space ((`p(Eα))n, ‖ · ‖n) : n ∈ N) is a multi-normed space.

Proof. We must show that ‖((x1
α), . . . , (xnα))‖n, as defined above, is finite in each case.

Indeed, (∑
α

(‖(x1
α, . . . , x

n
α)‖αn)p

)1/p

≤
(∑

α

(‖x1
α‖α + · · ·+ ‖xnα‖αn)p

)1/p

by Lemma 2.11, and so, by Minkowski’s inequality,

‖((x1
α), . . . , (xnα))‖n ≤

(∑
α

(‖x1
α‖α)p

)1/p

+ · · ·+
(∑

α

(‖xnα‖α)p
)1/p

,

and the right-hand side is finite.
The triangle inequality for ‖ · ‖n also follows from Minkowski’s inequality, and the

remainder is easy to check.

In particular, let ((En, ‖ · ‖n) : n ∈ N) and ((Fn, ‖ · ‖n) : n ∈ N) be multi-normed
spaces. Set G = E ⊕ F . For n ∈ N, define ‖ · ‖n on Gn by taking

‖(x1 + y1, . . . , xn + yn)‖n

to be either

max{‖(x1, . . . , xn)‖n, ‖(y1, . . . , yn)‖n} or ‖(x1, . . . , xn)‖n + ‖(y1, . . . , yn)‖n

for x1, . . . , xn ∈ E and y1, . . . , yn ∈ F . Then ((Gn, ‖ · ‖n) : n ∈ N) is a multi-normed
space, denoted by

(((E ⊕∞ F )n, ‖ · ‖n) : n ∈ N) or (((E ⊕1 F )n, ‖ · ‖n) : n ∈ N),

respectively.



2.3. Theorems on duality 49

2.3. Theorems on duality. In this section, we shall justify the term ‘dual multi-normed
space’.

2.3.1. Special-normed spaces. Let (E, ‖·‖) be a normed space, let k ∈ N, and let ‖·‖k
be any norm on the space Ek. As before, the dual norm on the space (E′)k is denoted
by ‖ · ‖′k, so that, explicitly,

‖(λ1, . . . , λk)‖′k = sup
{∣∣∣ k∑
j=1

〈xj , λj〉
∣∣∣ : ‖(x1, . . . , xk)‖k ≤ 1

}
for λ1, . . . , λk ∈ E′, taking the supremum over x1, . . . , xk ∈ E.

Now let ((Ek, ‖ · ‖k) : k ∈ N) be a special-normed space. Then it follows from
Lemma 2.11 and Axiom (A3) that each norm ‖ ·‖k satisfies (1.8) and (1.9) (with ‖ ·‖k for
||| · |||), and so ((Ek)′, ‖ · ‖′k) is linearly homeomorphic to (E′)k (with the product topology
from E′). Thus we have defined a sequence (‖ · ‖′k : k ∈ N) such that ‖ · ‖′k is a norm on
(E′)k for each k ∈ N. Clearly ‖λ‖′1 = ‖λ‖′ for each λ ∈ E′.
Proposition 2.30. Let ((Ek, ‖ · ‖k) : k ∈ N) be a special-normed space. Then it also
holds that (((E′)k, ‖ · ‖′k) : k ∈ N) is a special-Banach space.

Proof. It is clear that Axioms (A1) and (A2) for ((Ek, ‖ · ‖k) : k ∈ N) imply, respectively,
that (A1) and (A2) hold for (((E′)k, ‖ · ‖′k) : k ∈ N).

Take k ≥ 2 and λ1, . . . , λk−1 ∈ E′. For each x1, . . . , xk ∈ E, it follows from Lemma 2.9
that ‖(x1, . . . , xk−1)‖k−1 ≤ ‖(x1, . . . , xk−1, xk)‖k, and so

‖(λ1, . . . , λk−1, 0)‖′k ≥ ‖(λ1, . . . , λk−1)‖′k−1.

Thus (‖ · ‖′k : k ∈ N) satisfies (A3).

2.3.2. Multi-normed and dual multi-normed spaces. We now establish the duality
that we are seeking. Throughout, (E, ‖ · ‖) and (F, ‖ · ‖) are normed spaces.

Theorem 2.31. Let ((Ek, ‖ · ‖k) : k ∈ N) be a multi-normed space. Then

(((E′)k, ‖ · ‖′k) : k ∈ N)

is a dual multi-Banach space.

Proof. By Proposition 2.30, it suffices to show that (((E′)k, ‖ · ‖′k) : k ∈ N) satisfies (B4).
Fix λ1, . . . , λk−1 ∈ E′, and set

A = ‖(λ1, . . . , λk−2, λk−1, λk−1)‖′k, B = ‖(λ1, . . . , λk−2, 2λk−1)‖′k−1.

Take ε > 0.
First choose (x1, . . . , xk) ∈ (Ek, ‖ · ‖k)[1] with∣∣∣k−2∑

j=1

〈xj , λj〉+ 〈xk−1, λk−1〉+ 〈xk, λk−1〉
∣∣∣ > A− ε.

Set x = (xk−1 + xk)/2, so that it follows from Lemma 2.16 and (A4) that we have
(x1, . . . , xk−2, x) ∈ (Ek−1, ‖ · ‖k−1)[1], and hence

B ≥
∣∣∣k−2∑
j=1

〈xj , λj〉+ 〈x, 2λk−1〉
∣∣∣ =

∣∣∣k−2∑
j=1

〈xj , λj〉+ 〈xk−1, λk−1〉+ 〈xk, λk−1〉
∣∣∣ > A− ε.
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Second, choose (x1, . . . , xk−1) ∈ (Ek−1, ‖ · ‖k−1)[1] with∣∣∣k−2∑
j=1

〈xj , λj〉+ 〈xk−1, 2λk−1〉
∣∣∣ > B − ε.

Then (x1, . . . , xk−1, xk−1) ∈ (Ek, ‖ · ‖k)[1] by (A4), and so

A ≥
∣∣∣k−2∑
j=1

〈xj , λj〉+ 〈xk−1, 2λk−1〉
∣∣∣ > B − ε.

The above two inequalities hold for each ε > 0, and so A = B.
Thus the sequence (‖ · ‖′k : k ∈ N) satisfies Axiom (B4), and hence we have shown

that (((E′)k, ‖ · ‖′k) : k ∈ N) is a dual multi-Banach space.

Definition 2.32. Let ((Ek, ‖ · ‖k) : k ∈ N) be a multi-normed space. Then

(((E′)k, ‖ · ‖′k) : k ∈ N)

is the dual multi-Banach space of the space ((Ek, ‖ · ‖k) : k ∈ N).

Theorem 2.33. Let ((F k, ‖ · ‖k) : k ∈ N) be a dual multi-normed space. Then

(((F ′)k, ‖ · ‖′k) : k ∈ N)

is a multi-Banach space.

Proof. It suffices to show that (((E′)k, ‖ · ‖′k) : k ∈ N) satisfies Axiom (A4).
Fix λ1, . . . , λk−1 ∈ F ′, and set

A = ‖(λ1, . . . , λk−2, λk−1, λk−1)‖′k, B = ‖(λ1, . . . , λk−2, λk−1)‖′k−1.

Take ε > 0.
First choose (x1, . . . , xk) ∈ (F k, ‖ · ‖k)[1] with∣∣∣k−1∑

j=1

〈xj , λj〉+ 〈xk, λk−1〉
∣∣∣ > A− ε.

Then (x1, . . . , xk−2, xk−1 + xk) ∈ (F k−1, ‖ · ‖k−1)[1] by Lemma 2.19, and so

B ≥
∣∣∣k−2∑
j=1

〈xj , λj〉+ 〈xk−1 + xk, λk−1〉
∣∣∣ > A− ε.

Second, choose (x1, . . . , xk−1) ∈ (F k−1, ‖ · ‖k−1)[1] with∣∣∣k−1∑
j=1

〈xj , λj〉
∣∣∣ > B − ε.

Then (x1, . . . , xk−1, 0) ∈ (F k, ‖ · ‖k)[1] by (A3), and so A > B − ε.
It follows that A = B, and so the sequence (‖ · ‖′k : k ∈ N) satisfies Axiom (A4). Thus

(((F ′)k, ‖ · ‖′k) : k ∈ N) is a multi-Banach space.

Let ((Ek, ‖ · ‖k) : k ∈ N) be a multi-normed space. Then, for each k ∈ N, the norm
on (E′′)k which is the dual norm to ‖ · ‖′k on (E′)k is temporarily denoted by ‖ · ‖′′k . It is
clear from Theorems 2.31 and 2.33 that (((E′′)k, ‖ · ‖′′k) : k ∈ N) is a multi-Banach space.
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Of course the embedding of each space (Ek, ‖ · ‖k) into ((E′′)k, ‖ · ‖′′k) is an isometry of
normed spaces, and so we can write ‖ · ‖k consistently for ‖ · ‖′′k on (Ek)′′. Thus we have
the following conclusion.

Theorem 2.34. Let ((Ek, ‖ · ‖k) : k ∈ N) be a multi-normed space. Then

((Ek, ‖ · ‖k) : k ∈ N)

is a multi-normed subspace of the multi-Banach space (((E′′)k, ‖ · ‖k) : k ∈ N).

2.4. Reformulations of the axioms. In this section, we shall give some reformulations
of the axioms for a multi-normed space ((En, ‖ · ‖n) : n ∈ N).

2.4.1. Multi-norms and matrices. Again, let E be a linear space, and suppose that
m,n ∈ N. We have remarked that Mm,n acts as a map from En to Em in the obvious
way; in particular, En is a left Mn-module. Our reformulation requires these actions to
be ‘Banach’ actions, so that, for each m,n ∈ N, we have

‖a · x‖m ≤ ‖a‖ ‖x‖n (x ∈ En, a ∈Mm,n),

where we recall that ‖a‖ is an abbreviation of ‖a : `∞n → `∞m‖. In particular, En is a
Banach left Mn-module. See [16] for a discussion of the theory of Banach left A-modules
over a Banach algebra A.

We first give some preliminary notions. Let m,n ∈ N, and let

a = (aij) ∈Mm,n.

Then a is a row-special matrix if, for each i ∈ Nm, there is at most one non-zero term,
say ai,j(i), in the ith row, the term ai,j(i) being in the j(i)th column.

We claim that each a = (aij) ∈Mm,n can be written as

a =
k∑
r=1

ar,

where a1, . . . , ak are row-special matrices in Mm,n and

‖a‖ =
k∑
r=1

‖ar‖.

To prove this claim, we may suppose that a 6= 0. For each i ∈ Nm such that the ith

row of a is non-zero, choose j(i) ∈ Nn to be the maximum number j ∈ Nn such that
aij 6= 0, and set

ci = ai,j(i) (i ∈ Nn),

taking ci = 0 when the ith row of a is zero. Then choose i0 ∈ Nn such that

|ci0 | = min{|ci| : ci 6= 0, i ∈ Nm}.
Finally, define a matrix b ∈Mm,n by setting

bi,j(i) =
ci
|ci|
|ci0 | (i ∈ Nm),

(with bi,j = 0 (j ∈ Nn) whenever the ith row of a is zero), and setting br,s = 0 whenever
(r, s) 6= (i, j(i)) for any i ∈ Nn. The matrix b is row-special. Further, we can see from
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(1.15) that ‖b‖ = |ci0 |. The coefficients of the matrix a − b are the same as those of a,
save that, for each i ∈ Nn for which the ith row of a is non-zero, the coefficient ai,j(i) has
been replaced by

ai,j(i)

(
1− |ci0 |

|ci|

)
= ci

(
1− |ci0 |

|ci|

)
,

and so
∑n
j=1 |aij | is replaced by

∑n
j=1 |aij |−|ci0 | ≥ 0, and ai0,j(i0) becomes 0. Note that no

zero term in the matrix (aij) is changed. It follows immediately that ‖a−b‖ = ‖a‖−|ci0 |,
and so ‖a− b‖+ ‖b‖ = ‖a‖.

We continue to decompose a− b in a similar way; after at most mn steps, the process
must terminate, and then we have the claimed representation of the matrix a.

Theorem 2.35. Let (E, ‖ · ‖) be a normed space, and take N ∈ N. Suppose that, for each
n ∈ NN , ‖ · ‖n is a norm on the space En and, further, that ‖x‖1 = ‖x‖ (x ∈ E). Then
the following are equivalent:

(a) (‖ · ‖n : n ∈ NN ) is a multi-norm of level N on {En : n ∈ NN};
(b) ‖a · x‖m ≤ ‖a‖ ‖x‖n for each row-special matrix a ∈ Mm,n, each x ∈ En, and each

m,n ∈ NN ;
(c) ‖a · x‖m ≤ ‖a‖ ‖x‖n for each a ∈Mm,n, each x ∈ En, and each m,n ∈ NN .

Proof. (a)⇒(b) Suppose that (‖ · ‖n : n ∈ NN ) is a multi-norm of level N on the family
{En : n ∈ NN}, and let a be a row-special matrix, of the form specified above. Then, for
each x ∈ En, we have the following, where we take ai,j(i) = 0 when the ith row of a is
zero:

‖a · x‖m = ‖(a1,j(1)xj(1), . . . , am,j(m)xj(m))‖m
≤ max{|a1,j(1)|, . . . , |am,j(m)|}‖(x1, . . . , xn)‖n by Lemma 2.15

= ‖a‖ ‖x‖n by (1.15),

and so (b) holds.
(b)⇒(c) Let a ∈ Mm,n, where m,n ∈ NN . Then a =

∑k
r=1 ar, where a1, . . . ak are

row-special matrices in Mm,n and ‖a‖ =
∑k
r=1 ‖ar‖, as in the decomposition given above.

For each x ∈ En, we have

‖a · x‖m ≤ ‖a1 · x‖n + · · ·+ ‖ak · x‖n ≤ (‖a1‖+ · · ·+ ‖ak‖)‖x‖n = ‖a‖ ‖x‖n,

as required.
(c)⇒(b) This is immediate.
(b)⇒(a) We must show that Axioms (A1)–(A4) of Definition 2.1 are satisfied. Let

k ∈ NN with k ≥ 2.
Let x ∈ Ek. By taking a to be, first, a suitable matrix in Mk with exactly one non-zero

term equal to 1 in each row, so that a corresponds to a given permutation in Sk, and,
second, a diagonal matrix with diagonal terms α1, . . . , αk ∈ C, we see that (A1) and (A2)
follow immediately from (b).
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Now take x1, . . . , xk−1 ∈ E, and take a ∈Mk,k−1 to be the row-special matrix
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
0 0 . . . 0

 .
It follows from (b) that ‖(x1, . . . , xk−1, 0)‖k ≤ ‖(x1, . . . , xk−1)‖k−1. Similarly, we see that
‖(x1, . . . , xk−1)‖k−1 ≤ ‖(x1, . . . , xk−1, 0)‖k, and so (A3) holds.

Finally, take a ∈Mk to be the row-special matrix
1 · · · 0 0 0
...

. . .
...

...
...

0 · · · 1 0 0
0 · · · 0 1 0
0 · · · 0 1 0

 .
Then ‖a‖ = 1, and it follows from (b), (A2), and (A3) that

‖(x1, . . . , xk−1, xk−1)‖k ≤ ‖(x1, . . . , xk−1, 0)‖k = ‖(x1, . . . , xk−1)‖k−1.

Similarly, ‖(x1, . . . , xk−1)‖k−1 ≤ ‖(x1, . . . , xk−1, xk−1)‖k, and so (A4) holds.
We have shown that (‖ · ‖n : n ∈ NN ) is a multi-norm of level N on the family

{En : n ∈ NN}, giving (a).

2.4.2. Dual multi-norms and matrices. Let m,n ∈ N, and let a = (aij) ∈ Mm,n.
Then a is a column-special matrix if, for each j ∈ Nn, there is at most one non-zero
term in the jth column. Clearly the transpose of a row-special matrix is a column-special
matrix, and vice versa.

We claim that each a = (aij) ∈Mm,n can be written as

a =
k∑
r=1

ar,

where a1, . . . , ak are column-special matrices in Mm,n and ‖a‖ =
∑k
r=1 ‖ar‖, where now

‖a‖ is an abbreviation of ‖a : `1n → `1m‖. This claim follows from an earlier remark by
taking transposes.

The following theorem can be proved by a similar argument to that in Theorem 2.35.
Indeed, the proof uses Lemma 2.21 and the above decomposition of matrices. For details,
see [61, Theorem 4.6.4].

Theorem 2.36. Let (E, ‖ · ‖) be a normed space, and take N ∈ N. Suppose that, for each
n ∈ NN , ‖ · ‖n is a norm on the spaces En and, further, that ‖x‖1 = ‖x‖ (x ∈ E). Then
the following are equivalent:

(a) (‖ · ‖n : n ∈ NN ) is a dual multi-norm of level N on {En : n ∈ NN};
(b) ‖a · x‖m ≤ ‖a : `1n → `1m‖ ‖x‖n for each column-special a ∈ Mm,n, each x ∈ En, and

each m,n ∈ NN ;
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(c) ‖a · x‖m ≤ ‖a : `1n → `1m‖ ‖x‖n for each a ∈ Mm,n, each x ∈ En, and each
m,n ∈ NN .

As remarked in [61], the above two characterizations of multi-normed spaces and of
dual multi-normed spaces together give an alternative proof of Theorems 2.31 and 2.33.

2.4.3. Generalizations. Consideration of Theorems 2.35 and 2.36 suggest a further
generalization of the notions of multi-norms and dual multi-norms. The following is [61,
Definition 4.3.1].

Definition 2.37. Let (E, ‖ · ‖) be a normed space, and take p ∈ [1,∞]. A type-p multi-
norm on {En : n ∈ N} is a sequence (‖ · ‖n : n ∈ N) such that ‖ · ‖n is a norm on En for
each n ∈ N, such that ‖x‖1 = ‖x‖ for each x ∈ E, and such that

‖a · x‖m ≤ ‖a : `pn → `pm‖ ‖x‖n
for each matrix a ∈Mm,n, each x ∈ En, and each m,n ∈ N.

Thus a multi-norm is a type-∞ multi-norm and a dual multi-norm is a type-1 multi-
norm in the sense of the above definition. A type-p multi-norm is a special-norm in the
above sense.

For example, fix p ∈ [1,∞], let E = C, and take the `p-norm on En for each n ∈ N.
Then we obtain a type-p multi-norm. Further, a short calculation involving the matrices[

1 1
0 0

]
and

[
0 1
0 1

]
in M2,

shows that this example is not a type-q multi-norm for any q ∈ [1,∞] save for q = p.
Thus the classes prescribed by type-p multi-norms are distinct for different values of p.

Example 2.38. Let E be a Banach space, and take p ∈ [1,∞]. For n ∈ N, define

‖(x1, . . . , xn)‖n =
( n∑
i=1

‖xi‖p
)1/p

(x1, . . . , xn ∈ E),

and consider the sequence (‖ · ‖n : n ∈ N). In the case where p = 1, we obtain a dual
multi-norm, and in the case where p =∞, we obtain a multi-norm based on E. Now take
p ∈ (1,∞). Then it follows from [47, §4] that (‖ · ‖n : n ∈ N) is a type-p multi-norm if
and only if E is isometrically isomorphic to a subspace of a quotient of an Lp-space.

The following is [61, Lemmas 4.3.2 and 4.3.3].

Proposition 2.39. Let E be a normed space. Suppose that (‖ · ‖n : n ∈ N) is a type-p
multi-norm on {En : n ∈ N}, where p ∈ [1,∞]. Take n ∈ N and α, β ∈ C. Then

‖(x1, . . . , xn−1, αxn, βxn)‖n+1 = ‖(x1, . . . , xn−1, γxn‖n
for x1, . . . , xn ∈ E, where γ = (|α|p + |β|p)1/p. In particular,

‖(x1, . . . , xn−1, xn, xn)‖n+1 = ‖(x1, . . . , xn−1, 21/pxn)‖n
for x1, . . . , xn ∈ E.

The following result, from [61], generalizes those of §2.3.
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Theorem 2.40. Let E be a normed space, and take p ∈ [1,∞]. Then the dual of a type-p
multi-norm on {En : n ∈ N} is a type-q multi-norm on {(E′)n : n ∈ N}, where q is the
conjugate index to p.

2.4.4. Sequential norms. Let E be a Banach space. A somewhat similar notion to that
of our multi-norms has already been defined; these are sequential norms on the family
{En : n ∈ N}; these norms were first defined and extensively studied in [49], and their
definition and basic properties are summarized in [50].

Indeed, a sequential norm on {En : n ∈ N} is a sequence (‖ · ‖n : n ∈ N) such that
‖ · ‖n is a norm on En for each n ∈ N, such that ‖x‖1 = ‖x‖ for each x ∈ E, and such
that the following axioms are satisfied for each m,n ∈ N:

(L1) ‖(x1, . . . , xn, 0)‖n+1 = ‖(x1, . . . , xn)‖n (x1, . . . , xn ∈ E);

(L2) ‖(x1, . . . , xm, y1, . . . , yn)‖2m+n = ‖(x1, . . . , xm)‖2m + ‖(y1, . . . , yn)‖2n
whenever x1, . . . , xm, y1, . . . , yn ∈ E;

(L3) ‖a · x‖m ≤ ‖a : `2n → `2m‖ ‖x‖n (x ∈ En, a ∈Mm,n).

The space E together with the sequential norm (‖ · ‖n : n ∈ N) is called an operator
sequence space over E.

It is clear that a sequential norm is a type-2 multi-norm, and so it satisfies our axioms
(A1), (A2), and (A3). The above example, with p = 2, gives a sequential norm which is
not a type-q multi-norm for any q ∈ [1,∞] save for q = 2. On the other hand, a multi-
norm satisfies (L1), but it need not satisfy (L2). For example, let E = C, and consider
the multi-norm specified by

‖(α, β)‖2 = |α|+ |β| (α, β ∈ C).

This is rarely equal to (|α|2 + |β|2)1/2, as required by (L2). In fact, a multi-norm never
satisfies (L3) (unless E = {0}). For take x ∈ E with ‖x‖ = 1, and take

a =
[
1 1
0 0

]
∈M2,

so that ‖(x, x)‖2 = 1 by Lemma 2.15 and hence ‖a‖ =
√

2, but ‖a · x‖2 = ‖(2x, 0)‖2 = 2
by (A3). Thus (L3) fails.

2.4.5. Multi-norms and tensor norms. The following definition and theorem (with
a proof) will be given in [19].

Definition 2.41. Let (E, ‖ · ‖) be a normed space. Then a norm ‖ · ‖ on the tensor
product c0 ⊗ E is a c0-norm if

‖δ1 ⊗ x‖ = ‖x‖ (x ∈ E)

and if T ⊗ IE is a bounded linear operator on (c0 ⊗ E, ‖ · ‖) with

‖T ⊗ IE‖ ≤ ‖T‖ (T ∈ K(c0)).

In fact, each such c0-norm ‖ · ‖ is a reasonable cross-norm, and so we have

‖z‖ε ≤ ‖z‖ ≤ ‖z‖π (z ∈ c0 ⊗ E).
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It will also be noted in [19] that, for each such c0-norm ‖ · ‖ on c0 ⊗ E, we have

‖T ⊗ IE‖ = ‖T‖ (T ∈ B(c0)). (2.3)

Let ‖ · ‖ be a c0-norm on a space c0 ⊗ E, and take n ∈ N. We define

‖(x1, . . . , xn)‖n =
∥∥∥ n∑
j=1

δj ⊗ xj
∥∥∥ (x1, . . . , xn ∈ E). (2.4)

For example, the injective norm ‖ · ‖ε on the tensor product c0 ⊗ E is such that∥∥∥ n∑
j=1

δj ⊗ xj
∥∥∥
ε

= max
i∈Nn

‖xi‖ (x1, . . . , xn ∈ E)

for each n ∈ N, and it is easily seen that ‖ · ‖ε is a c0-norm. It is also easily seen that the
projective norm ‖ · ‖π is a c0-norm. Thus ‖ · ‖ε and ‖ · ‖π are the minimum and maximum
c0-norms on c0 ⊗ E, respectively.

Theorem 2.42. Let E be a normed space. Then the family EE of multi-norms based on
E corresponds bijectively to the family of c0-norms on c0 ⊗ E via the above correspon-
dence.

In fact, a more general theorem will be proved in [19, Theorem 3.5]. There is a similar
characterization of dual multi-norms; one replaces ‘c0’ by ‘`1’; see [19].

Let E be a normed space. Then we have seen that there are two complementary
approaches to the theory of multi-normed spaces: the ‘coordinate approach’ involving
sequences (‖ · ‖n : n ∈ N) of norms, where ‖ · ‖n is a norm on En for each n ∈ N, and the
‘non-coordinate approach’ involving norms on the tensor product c0 ⊗ E. An analogous
contrast appears in the well-known theory of operator space theory , or quantum functional
analysis. The ‘coordinate approach’ to this theory involves sequences (‖ · ‖n : n ∈ N) of
norms, where ‖ · ‖n is a norm on Mn(E) for each n ∈ N; the complementary ‘non-
coordinate approach’ involves norms on F(L) ⊗ E, where F(L) denotes the space of
finite-rank operators on a fixed separable Hilbert space L. The former approach predom-
inates in the works [12, 28, 57, 60], for example; the latter approach predominates in the
monograph [35] of Helemskii, and the Introduction to [35] contains a clear discussion of
the contrasting strengths of the two approaches. We give some brief details of the two
approaches.

Definition 2.43. Let E be a linear space, and consider an assignment of norms ‖ · ‖n
on Mn(E) for each n ∈ N; these norms are called the matrix norms. An abstract operator
space on E is a sequence (‖ · ‖n : n ∈ N) of matrix norms such that:

(M1) ‖αvβ‖n ≤ ‖α‖ ‖v‖m‖β‖ for m,n ∈ N, α ∈Mn,m, β ∈Mm,n, and v ∈Mm(E).
(M2) ‖v ⊕ w‖m+n = max{‖v‖m, ‖w‖n} for m,n ∈ N, v ∈Mm(E), and w ∈Mn(E).

The following definition is taken from [35]. We set F = F(L) for a fixed Hilbert
space L, and note that F ⊗ E is a bimodule (with operations denoted by ·) over B(L).

Definition 2.44. Let E be a linear space. Then a quantum norm on E is a norm ‖ · ‖
on F ⊗ E satisfying the following two conditions:
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(R1) ‖T · u‖, ‖u · T‖ ≤ ‖T‖ ‖u‖ whenever T ∈ B(L) and u ∈ F ⊗ E;
(R2) whenever u, v ∈ F ⊗ E and there exist self-adjoint projections P,Q ∈ B(L) with

P · u · P = u, with Q · v ·Q = v, and with PQ = 0, then ‖u+ v‖ ≤ max{‖u‖, ‖v‖}.

It is shown in [35] that the family of quantum norms on E corresponds bijectively to
the abstract operator space on E described in Definition 2.43.

Given an axiomatic theory one often wishes to find a ‘concrete representation’ of the
objects defined by the theory. For example, the Gel’fand–Naimark theory gives a concrete
representation of each abstractly-defined C∗-algebra as a self-adjoint, norm-closed sub-
algebra of the C∗-algebra B(H) for some Hilbert space H. The concrete representation
of an abstract operator space is Ruan’s theorem, which represents each such system as a
closed subspace of B(H) for some Hilbert space H, the matricial norms being recovered
in a canonical way.

After a first draft of this work was completed, the late Professor Nigel Kalton pointed
out the memoir [53] of Marcolini Nhani; I am deeply grateful for this reference and for
some valuable comments.

In fact, let E be a Banach space. Then a norm ‖ · ‖ on c0⊗E satisfies ‘condition (P)’
of [53, §2, p. 12] if

‖(T ⊗ IE)(z)‖ ≤ ‖T‖ ‖z‖ (z ∈ c0 ⊗ E, T ∈ B(c0)).

It is clear from our remarks that such norms are exactly the c0-norms of Definition 2.41,
and so the definition of a multi-normed space corresponds to the theory in [53] of norms
on c0 ⊗ E satisfying property (P).

As remarked in [53], this theory is a form of ‘commutative counterpart’ to that of
operator space theory. Indeed, we obtain the Axiom (P) by replacing F by c0 in the
axiom (R1). However, our theory has no analogue of Axiom (R2), so, in that sense, it is
more general.

The analogue of Ruan’s theorem is Pisier’s theorem, given as Théorème 2.1 in [53];
we shall describe this result in Theorem 4.56, below.
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In this chapter, we shall first define a ‘rate-of-growth’ sequence (ϕn(E)) for each multi-
normed space ((En, ‖ · ‖n) : n ∈ N), and then define two important examples of multi-
norms for an arbitrary normed space E: these are the minimum and the maximum multi-
norms. We shall investigate the duals of these multi-norms and the sequence (ϕmax

n (E))
corresponding to the maximum multi-norm, and relate them to p-summing constants.

3.1. An associated sequence

Definition 3.1. Let ((En, ‖ · ‖n) : n ∈ N) be a multi-normed space. For each n ∈ N, set

ϕn(E) = sup{‖(x1, . . . , xn)‖n : x1, . . . , xn ∈ E[1]}.

The sequence (ϕn(E) : n ∈ N) is the rate of growth sequence for the multi-normed space.

Note that ϕn(E) is not intrinsic to the initial normed space E; it depends on the
multi-norm, and so, strictly, we should write (ϕn(En, ‖ · ‖n)) instead of (ϕn(E)).

Suppose that two multi-norms are equivalent. Then their rate of growth sequences
are similar. However, the converse to this is not true; see Proposition 4.29 below.

Clearly (ϕn(E) : n ∈ N) is an increasing sequence in R for each multi-normed space
((En, ‖ · ‖n) : n ∈ N), and it follows from Lemma 2.11 that

1 ≤ ϕn(E) ≤ n (n ∈ N)

and from Lemma 2.10 that

ϕm+n(E) ≤ ϕm(E) + ϕn(E) (m,n ∈ N).

Let F be a subspace of a normed space E, so that ((Fn, ‖ · ‖n) : n ∈ N) is a multi-
normed subspace of a multi-normed space ((En, ‖ · ‖n) : n ∈ N). Then clearly we have
ϕn(F ) ≤ ϕn(E) (n ∈ N).

3.2. The minimum multi-norm

3.2.1. Definitions. We first define the most obvious multi-norm.

Definition 3.2. Let (E, ‖ · ‖) be a normed space. For k ∈ N, define ‖ · ‖min
k on Ek by

‖(x1, . . . , xk)‖min
k = max

i∈Nk
‖xi‖ (x1, . . . , xk ∈ E).

It is immediate that ‖ · ‖min
k is a norm on Ek for each k ∈ N, and then that, for

each n ∈ N, the sequence (‖ · ‖min
k : k ∈ Nn) is a multi-norm of level n. It follows that

((Ek, ‖ · ‖min
k ) : k ∈ N) is a multi-normed space.

[58]
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Definition 3.3. Let (E, ‖ · ‖) be a normed space. For each n ∈ N, the sequence

(‖ · ‖min
k : k ∈ Nn)

is the minimum multi-norm of level n. The sequence (‖ · ‖min
n : n ∈ N) is the minimum

multi-norm. The rate of growth of this multi-norm is (ϕmin
n (E) : n ∈ N).

It follows immediately from this example that there is indeed a multi-norm based on
each normed space (E, ‖ · ‖). The terminology ‘minimum’ is justified by Lemma 2.11,
given above. The minimum multi-norm corresponds to the injective norm on the tensor
product c0 ⊗ E via the correspondence of Chapter 2, §6.4; see [19].

Let (EE ,≤) be the partially ordered family of multi-norms based on E, as in Def-
inition 2.24. Then it is clear that the minimum multi-norm is the minimum element
in (EE ,≤).

More generally, take n ∈ N, and let ((Ek, ‖ · ‖k) : k ∈ Nn) be a multi-normed space of
level n on {Ek : k ∈ Nn}. For m > n, define

‖(x1, . . . , xm)‖m = max{‖(y1, . . . , yn)‖n : y1, . . . , yn ∈ {x1, . . . , xm}}

for x1, . . . , xm ∈ E. Then ((Em, ‖ · ‖m) : m ∈ N) is a multi-normed space. Thus a
multi-norm of level n can be extended to a multi-norm, in an obvious sense.

The following result is immediate.

Proposition 3.4. Let E be a normed space, and let (‖ · ‖n : n ∈ N) be a multi-norm
based on E. Then (‖ · ‖n : n ∈ N) is equal to the minimum multi-norm if and only if
ϕn(E) = 1 (n ∈ N), and it is equivalent to the minimum multi-norm if and only if
(ϕn(E) : n ∈ N) is bounded.

Let E be a normed space, let n ∈ N, and let ((Ek, ‖ · ‖k) : k ∈ Nn) be a multi-normed
space of level n. Extend this multi-norm to the multi-normed space ((Em, ‖·‖m) : m ∈ N),
as above. Then clearly ϕm(E) = ϕn(E) (m ≥ n). Thus there are multi-norms which are
equivalent to the minimum multi-norm, but are not equal to it, whenever ϕ2(E) > 1.

Let (E, ‖ · ‖) be a normed space. As noted above, there is a similar ordering of dual
multi-norms on the family {En : n ∈ N}. As in Example 2.6, the sequence (‖·‖n : n ∈ N),
where

‖(x1, . . . , xn)‖n =
n∑
j=1

‖xj‖ (x1, . . . , xn ∈ E),

is a dual multi-norm on {En : n ∈ N}. It follows from Lemma 2.11 that this sequence
(‖ · ‖n : n ∈ N) is the maximum dual multi-norm on {En : n ∈ N}.

Let E be a normed space. It is easily seen that the dual of the minimum multi-norm
on {En : n ∈ N} is (‖ · ‖′n : n ∈ Nn), where ‖ · ‖′n is defined by

‖(λ1, . . . , λn)‖′n =
n∑
j=1

‖λj‖ (λ1, . . . , λn ∈ E′),

and that the dual of the maximum dual multi-norm on {En : n ∈ N} is the sequence
(‖ · ‖′n : n ∈ Nn), where

‖(λ1, . . . , λn)‖′n = max{‖λ1‖, . . . , ‖λn‖} (λ1, . . . , λn ∈ E′),
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and so, by Lemma 2.11, which applies to dual multi-norms, the following result is imme-
diate.

Proposition 3.5. Let E be a normed space, and take n ∈ N. Then:

(i) the dual of the minimum multi-norm on {En : n ∈ N} is the maximum dual multi-
norm on {(E′)n : n ∈ N};

(ii) the dual of the maximum dual multi-norm on {En : n ∈ N} is the minimum multi-
norm on {(E′)n : n ∈ N};

(iii) the second dual of the minimum multi-norm on {En : n ∈ N} is the minimum
multi-norm on {(E′′)n : n ∈ N}.

3.2.2. Finite-dimensional spaces. We show the uniqueness of multi-norms based on
finite-dimensional normed spaces.

Proposition 3.6. Let n ∈ N. Then the minimum multi-norm of level n is the unique
multi-norm of level n on {Ck : k ∈ Nn}.

Proof. Let (‖ · ‖k : k ∈ Nn) be a multi-norm of level n on the family {Ck : k ∈ Nn}.
Take k ∈ Nn. By Lemma 2.15, we have ‖(1, . . . , 1)‖k = 1. Now take (α1, . . . , αk) ∈ Ck.
By (A2), we have

‖(α1, . . . , αk)‖k ≤
(

max
i∈Nk
|αi|
)
‖(1, . . . , 1)‖k = max

i∈Nk
|αi|,

and, by Lemma 2.11,
max
i∈Nk
|αi| ≤ ‖(α1, . . . , αk)‖k.

Thus
‖(α1, . . . , αk)‖k = max

i∈Nk
|αi|,

giving the result.

Proposition 3.7. Let ((En, ‖ · ‖n) : n ∈ N) be a multi-normed space such that E is
finite-dimensional. Then (‖ · ‖n : n ∈ N) is equivalent to the minimum multi-norm.

Proof. Suppose that dimE = m, and take {e1, . . . , em} to be a basis of E; we may
suppose that ‖ej‖ = 1 (j ∈ Nn). Set e = (e1, . . . , em) ∈ Em, so that ‖e‖m ≤ m.

There exists a constant C > 0 such that each x ∈ E can be written uniquely as
x =

∑m
j=1 αjej , with

∑m
j=1 |αj | ≤ C‖x‖.

Now take n ∈ N and x1, . . . , xn ∈ E[1], say xi =
∑m
j=1 αi,jej for i ∈ Nn. Then∑m

j=1 |αi,j | ≤ C (i ∈ Nn). Set a = (αi,j) ∈Mn,m, so that

‖a : `∞m → `∞n ‖ = max
i∈Nn

m∑
j=1

|αi,j | ≤ C.

Then, using Theorem 2.35, (a)⇒(c), we have

‖(x1, . . . , xn)‖n = ‖a · e‖n ≤ ‖a : `∞m → `∞n ‖ ‖e‖m ≤ Cm.

Thus ϕn(E) ≤ Cm (n ∈ N). By Proposition 3.4, (‖ · ‖n : n ∈ N) is equivalent to the
minimum multi-norm.
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3.3. The maximum multi-norm. Let E be a normed space. The multi-norm based
on E to be defined in this section, whilst natural, is much more interesting than the
minimum multi-norm.

3.3.1. Existence of the maximum multi-norm. We first show that there is a maxi-
mum multi-norm.

Definition 3.8. Let (E, ‖ · ‖) be a normed space, take n ∈ N, and suppose that

(||| · |||k : k ∈ Nn)

is a multi-norm of level n on {Ek : k ∈ Nn}. Then (||| · |||k : k ∈ Nn) is the maximum
multi-norm of level n if

‖(x1, . . . , xk)‖k ≤ |||(x1, . . . , xk)|||k (x1, . . . , xk ∈ E, k ∈ Nn)

whenever (‖ · ‖k : k ∈ Nn) is a multi-norm of level n on {Ek : k ∈ Nn}.
We define the maximum multi-norm on the family {En : n ∈ N} similarly.
Let n ∈ N. Then it is easy to see that there is a maximum multi-norm of level n on

{Ek : k ∈ Nn} for each normed space (E, ‖ · ‖). Indeed let {(‖ · ‖αk : k ∈ Nn) : α ∈ A} be
the (non-empty) family of all multi-norms of level n on {Ek : k ∈ Nn}, and, for k ∈ Nn,
set

|||(x1, . . . , xk)|||k = sup
α∈A
‖(x1, . . . , xk)‖αk (x1, . . . , xk ∈ E).

It follows from Lemma 2.11 that the supremum is finite in each case, and then it is easily
checked that the sequence (||| · |||k : k ∈ Nn) is a multi-norm of level n on {Ek : k ∈ Nn},
and hence (||| · |||k : k ∈ Nn) is the maximum multi-norm of level n on {Ek : k ∈ Nn}.
Similarly this applies to multi-norms themselves.

Definition 3.9. Let (E, ‖ · ‖) be a normed space. We write

(‖ · ‖max
n : n ∈ N)

for the maximum multi-norm on {En : n ∈ N}.
Suppose that m,n ∈ N with m ≤ n, and let (‖ · ‖max

k : k ∈ Nn) be the maximum
multi-norm of level n on {Ek : k ∈ Nn}. Then it is immediate that (‖ · ‖max

k : k ∈ Nm) is
the maximum multi-norm of level m on {Ek : k ∈ Nm}.

Let (EE ,≤) be the partially ordered family of multi-norms on the family {En : n ∈ N}
for a normed space E, as in Definition 2.24. It is clear that the maximum multi-norm is the
maximum element in (EE ,≤). The maximum multi-norm corresponds to the projective
norm on the tensor product c0 ⊗ E via the correspondence of Chapter 2, §6.4; see [19].

Proposition 3.10. Let E be a normed space. Then (EE ,≤) is a Dedekind complete
lattice.

Proof. We know that (EE ,≤) has a maximum and a minimum element. By Proposition
2.23, the maximum of each pair of elements EE belongs to EE . It is now routine to check
that the pointwise supremum of a non-empty set in EE is the supremum of the set.

To see that each non-empty subset S in EE has an infimum, consider the set T of
multi-norms that lie under every element of S. This set T has a supremum, and this
supremum is the infimum of S.
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Similarly, the family of dual multi-norms on {En : n ∈ N} is a Dedekind complete
lattice.

3.3.2. The sequence (ϕmax
n (E)). We now define a key sequence associated to each

normed space E.

Definition 3.11. For n ∈ N, set

ϕmax
n (E) = sup{‖(x1, . . . , xn)‖max

n : x1, . . . , xn ∈ E[1]}.

Thus the sequence (ϕmax
n (E) : n ∈ N) is now intrinsic to the normed space (E, ‖ · ‖);

it is the maximum rate of growth of any multi-norm on {En : n ∈ N}. We find it to be
interesting to calculate this sequence for an arbitrary normed space E and for a variety
of examples; we shall give some explicit calculations later.

Let E be a normed space with dimE ≥ n. Then

ϕmax
n (E) ≤ sup{ϕmax

n (F ) : dimF ≤ n}, (3.1)

where the supremum is taken over all subspaces F of E with dimF ≤ n. We shall see in
Example 3.51 that we can have strict inequality in (3.1).

Theorem 3.12. Let E and F be Banach spaces, and let G be a λ-complemented subspace
of E with G linearly homeomorphic to F . Then

ϕmax
n (E) ≥ ϕmax

n (F )/d(F,G)λ (n ∈ N).

Proof. There is a projection P : E → G with ‖P‖ ≤ λ.
Set C = d(F,G), and take ε > 0. Then there is a bijection T ∈ B(F,G) with

‖T‖ ‖T−1‖ < C + ε.
Let n ∈ N. Then there are elements y1, . . . , yn ∈ F[1] and a multi-norm (‖ · ‖k : k ∈ N)

on {F k : k ∈ N} such that

‖(y1, . . . , yn)‖n > ϕmax
n (F )− ε.

Set Q = T−1 ◦ P ∈ B(E,F ), so that

‖Q‖ ‖T‖ ≤ (C + ε)‖P‖ ≤ (C + ε)λ,

and then set

|||(x1, . . . , xk)|||k = max{‖x1‖, . . . , ‖xk‖, ‖(Qx1, . . . , Qxk)‖k/‖Q‖}

for each k ∈ N and x1, . . . , xk ∈ E, so that |||x|||1 = ‖x‖ (x ∈ E). Then we quickly see
that (||| · |||k : k ∈ N) is a multi-norm on the family {Ek : k ∈ N}.

For j ∈ Nn, set zj = Tyj/‖T‖ ∈ G[1], so that Qzj = yj/‖T‖. Then

|||(z1, . . . , zn)|||n ≥
‖(y1, . . . , yn)‖n
‖Q‖ ‖T‖

≥ ϕmax
n (F )− ε
(C + ε)λ

.

Thus ϕmax
n (E) ≥ (ϕmax

n (F ) − ε)/(C + ε)λ. This holds true for each ε > 0, and so the
result follows.

Corollary 3.13. Let E be a Banach space, and let F be a λF -complemented subspace
of E. Then

ϕmax
n (F ) ≤ λFϕmax

n (E) (n ∈ N).
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Corollary 3.14. Let E and F be two linearly homeomorphic Banach spaces. Then

ϕmax
n (F ) ≤ d(E,F )ϕmax

n (E) (n ∈ N).

The above corollary shows that, when we are seeking to calculate the sequence
(ϕmax
n (E) : n ∈ N) for a normed space E of dimension n, we may suppose that we

have (`1n)[1] ⊂ E[1] ⊂ (`∞n )[1] because E is isometrically isomorphic to a normed space F
with this additional property.

3.4. Summing norms

3.4.1. Introduction. We shall see below that the calculation of the (ϕmax
n (E) : n ∈ N)

for certain normed spaces (E, ‖ · ‖) involves some summing operators and p-summing
norms. For this reason, we make some preliminary remarks on these norms. For much
more information, including considerable history, see [26, 31, 39, 66, 71, 74], for example.
Some remarks that we make will not actually be used, and are given to establish some
background.

The first definition slightly extends [39, p. 24].

Definition 3.15. Let E be a normed space, let x1, . . . , xn ∈ E, and take p ≥ 1. Then

µp,n(x1, . . . , xn) = sup
{( n∑

j=1

|〈xj , λ〉|p
)1/p

: λ ∈ E′[1]

}
.

Then µp,n is the weak p-summing norm on En.

Let E be a normed space, and take p ≥ 1 and n ∈ N. We see that µp,n(x1, . . . , xn) ≤ 1
if and only if ‖(〈xj , λ〉 : j ∈ Nn)‖`pn ≤ 1 for each λ ∈ E′[1]. It is clear that each µp,n is a
norm on the space En, and indeed (En, µp,n) is a Banach space whenever E is a Banach
space. We shall write `pn(E)w for the space (En, µp,n).

The sequences x = (xj) for which there is a constant C ≥ 0 such that

µp,n(x1, . . . , xn) ≤ C (n ∈ N)

are the weakly p-summable sequences in E [66, p. 134]; the least such constant C is a
norm on the space of these sequences. These norms are denoted by ‖ · ‖weak

p in [26, p. 32]
and by ‖ · ‖wp in [66, (6.4)]. We shall write `p(E)w for the space of weakly p-summable
sequences in E.

Clearly µp,n(0, . . . , 0, xj , 0, . . . , 0) = ‖xj‖ and

max{‖xi‖ : i ∈ Nn} ≤ µp,n(x1, . . . , xn) ≤
( n∑
j=1

‖xj‖p
)1/p

(3.2)

for x1, . . . , xn ∈ E, and so µp,n satisfies (1.8) and (1.9). Now let T ∈ B(E). Then clearly

µp,n(Tx1, . . . , Txn) ≤ ‖T‖µp,n(x1, . . . , xn) (x1, . . . , xn ∈ E). (3.3)

Further, we have

µp,n(x1, . . . , xn) ≥ µq,n(x1, . . . , xn) (x1, . . . , xn ∈ E)

whenever 1 ≤ p ≤ q.
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Theorem 3.16. Let E be a normed space, and take p ≥ 1. Then (µp,n : n ∈ N) is a
type-p multi-norm.

Proof. It is easily checked that (µp,n : n ∈ N) satisfies Axioms (A1)–(A3), and so the
sequence (µp,n : n ∈ N) is a special-norm.

Take m,n ∈ N, and then take x = (x1, . . . , xn) ∈ En and a ∈ Mm,n. Set y = a · x so
that y ∈ Em, and consider λ ∈ E′[1]; we write

uλ = (〈xj , λ〉 : j ∈ Nn) ∈ `pn and vλ = (〈yi, λ〉 : i ∈ Nm) ∈ `pm.

Then vλ = a · uλ, and so

‖vλ‖`pm ≤ ‖a : `pn → `pm‖ ‖uλ‖`pn .

It follows that µp,m(y) ≤ ‖a : `pn → `pm‖µp,n(x), and hence (µp,n : n ∈ N) is a type-p
multi-norm.

It follows from Proposition 2.39 that

µp,n+1(x1, . . . , xn−1, αxn, βxn) = µp,n(x1, . . . , xn−1, γxn)

for x1, . . . , xn ∈ E and n ∈ N, where γ = (|α|p + |β|p)1/p.
Suppose that F is a subspace of a normed space E, and take elements x1, . . . , xn ∈ F .

Then, by the Hahn–Banach theorem, the value of µp,n(x1, . . . , xn) is the same, whether
it be evaluated with respect to either F or E. In particular, the restriction of the weak
p-summing norm defined on (E′′)n to the subspace En agrees with the weak p-summing
norm defined on this space.

Let E be a normed space, and take p > 1; the conjugate index to p is denoted by q.
By [39, p. 26] and [66, (6.4)], it follows that, for each n ∈ N and x1, . . . , xn ∈ E, we have

µp,n(x1, . . . , xn) = sup
{∥∥∥ n∑

j=1

ζjxj

∥∥∥ :
n∑
j=1

|ζj |q ≤ 1
}
. (3.4)

(Here, and later, we think of E as a complex normed space and take ζ1, . . . , ζn ∈ C; in
the case where E is a real normed space, we must take ζ1, . . . , ζn ∈ R.) Similarly, by [39,
2.2], we have

µ1,n(x1, . . . , xn) = sup
{∥∥∥ n∑

j=1

ζjxj

∥∥∥ : ζ1, . . . , ζn ∈ T
}
. (3.5)

(In the real case, the numbers ζ1, . . . , ζn range over the finite set {±1}.)
Take p ≥ 1 with conjugate index q. For each x = (x1, . . . , xn) ∈ En, define

Tx : (ζ1, . . . , ζn) 7→
n∑
j=1

ζjxj , `qn → E.

Then Tx ∈ B(`qn, E), and it follows from (3.4) and (3.5) that µp,n(x1, . . . , xn) = ‖Tx‖.
Further, the map x 7→ Tx, (En, µp,n) → B(`qn, E), is an isometric isomorphism, and so,
as in [26, Proposition 2.2],

(En, µp,n) = `pn(E)w ∼= B(`qn, E) ∼= (`pn ⊗ E, ‖ · ‖π)′. (3.6)
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Let E be a normed space, and take p ≥ 1. By [39, p. 26], we have

µp,n(λ1, . . . , λn) = sup
{( n∑

j=1

|〈x, λj〉|p
)1/p

: x ∈ E[1]

}
(3.7)

for λ1, . . . , λn ∈ E′. In particular,

µ1,n(λ1, . . . , λn) = sup
{ n∑
j=1

|〈x, λj〉| : x ∈ E[1]

}
. (3.8)

Proposition 3.17. Let E be a normed space, and take p ≥ 1 and n ∈ N. Then the weak
p-summing norm on (E′′)n is the second dual of the weak p-summing norm on En.

Proof. We write µp,n and νp,n for the weak p-summing norms on En and (E′′)n, respect-
ively. Take Λ = (Λ1, . . . ,Λn) ∈ (E′′)n. By (3.7),

νp,n(Λ) = sup
{( n∑

j=1

|〈Λj , λ〉|p
)1/p

: λ ∈ (E′)n[1]

}
.

Take a net (xα) in En such that xα → Λ in the weak-∗ topology on (E′′)n. For each
λ ∈ (E′)n, we have 〈xα, λ〉 → 〈Λ, λ〉, and so νp,n(xα)→ ν(Λ). Since νp,n | En = µp,n, it
follows that νp,n(Λ) = µ′′p,n(Λ). This gives the result.

Recall that we take γ = max{|α|, |β|} for γ = (|α|q+ |β|q)1/q in the special case where
q =∞.

Proposition 3.18. Let E be a normed space. Take n ∈ N, p ≥ 1, and α, β ∈ C, and set
γ = (|α|q + |β|q)1/q, where q is the conjugate index to p. Then

µp,n(x1, . . . , xn−1, αxn + βxn+1) ≤ µp,n+1(x1, . . . , xn−1, γxn, γxn+1)

for each x1, . . . , xn+1 ∈ E.

Proof. Take λ ∈ E′. Then we have

|〈αxn + βxn+1, λ〉| ≤ γ(|〈xn, λ〉|p + |〈xn+1, λ〉|p)1/p

by Hölder’s inequality, and so

|〈αxn + βxn+1, λ〉|p ≤ |〈γxn, λ〉|p + |〈γxn+1, λ〉|p.

The result follows from (3.7).

Theorem 3.19. Let (E, ‖·‖) be a normed space. Then (µ1,n : n ∈ N) is a dual multi-norm
on {En : n ∈ N}, and

µ1,n(x1, . . . , xn) ≤ ‖(x1, . . . , xn)‖n (x1, . . . , xn ∈ E) (3.9)

whenever (‖ · ‖n : n ∈ N) is a dual multi-norm on {En : n ∈ N}.

Proof. It is immediate that (µ1,n : n ∈ N) also satisfies Axiom (B4), and so (µ1,n : n ∈ N)
is a dual multi-norm. Inequality (3.9) follows from (3.5) and Lemma 2.20.

Thus (µ1,n : n ∈ N) is the minimum dual multi-norm on {En : n ∈ N}.
Clause (i) of the following proposition concerning a specific normed space is given in

[39, 2.6]; clause (ii) follows because, for each measure space Ω, the dual space to L1(Ω) is
order-isometric to a space C(K) for some compact space K, as noted in Corollary 1.39.
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Proposition 3.20. Let n ∈ N and take p ≥ 1.

(i) Let K be a compact space. Then

µp,n(f1, . . . , fn) =
∣∣∣ n∑
i=1

|fi|p
∣∣∣1/p
K

(f1, . . . , fn ∈ C(K)).

(ii) Let Ω be a measure space. Then

µp,n(λ1, . . . , λn) =
∥∥∥ n∑
i=1

|λi|p
∥∥∥1/p

(λ1, . . . , λn ∈ L1(Ω)′).

3.4.2. Summing constants. The following definition of certain important constants is
given explicitly in [24], extending one in [26, p. 56], [31, §16.3], [39, p. 33], and [66, §6.3].

Definition 3.21. Let E and F be normed spaces, and take n ∈ N and p, q ∈ [1,∞) with
p ≤ q. Then the (q, p)-summing constants of the operator T ∈ B(E,F ) are the numbers

π(n)
q,p (T ) := sup

{( n∑
j=1

‖Txj‖q
)1/q

: x1, . . . , xn ∈ E, µp,n(x1, . . . , xn) ≤ 1
}
.

Further, π(n)
q,p (E) = π

(n)
q,p (IE); these are the (q, p)-summing constants of the normed

space E. We write π(n)
p (T ) for π(n)

p,p (T ) and π
(n)
p (E) for π(n)

p,p (E).

Let E be a normed space, and take n ∈ N. For each p ≥ 1, it follows that

π(n)
p (E) = sup

{( n∑
j=1

‖xj‖p
)1/p

: µp,n(x1, . . . , xn) ≤ 1
}
, (3.10)

where the supremum is taken over x1, . . . , xn ∈ E. In particular,

π
(n)
1 (E) = sup

{ n∑
j=1

‖xj‖ :
∥∥∥ n∑
j=1

ζjxj

∥∥∥ ≤ 1 (ζ1, . . . , ζn ∈ T)
}
, (3.11)

where again the supremum is taken over x1, . . . , xn ∈ E.
Clearly, in each case,

‖T‖ ≤ π(n)
q,p (T ) ≤ n‖T‖,

so that 1 ≤ π(n)
q,p (E) ≤ n, and (π(n)

q,p (T ) : n ∈ N) is an increasing sequence. Also, each π(n)
q,p

is a norm on B(E,F ). Suppose that E is a closed subspace of a Banach space F . Then it
is clear that π(n)

q,p (E) ≤ π(n)
q,p (F ).

Let E and F be normed spaces. Then these norms are closely related to the standard
(q, p)-summing norms. Indeed, for T ∈ B(E,F ), we set

πq,p(T ) = sup{π(n)
q,p (T ) : n ∈ N} = lim

n→∞
π(n)
q,p (T ) ∈ [0,∞].

In the case where πq,p(T ) <∞, the operator T is said to be (absolutely) (q, p)-summing ;
the set of these operators is denoted by Πq,p(E,F ). We shall write πp(E) for πp(IE), πp(T )
for πp,p(T ), and (Πp(E,F ), πp) for (Πp,p(E,F ), πp,p), etc. It is clear that (Πq,p(E,F ), πq,p)
is a Banach space whenever F is a Banach space, and indeed it is a component of an
operator ideal. There are extensive studies of these ideals in [26, 39, 41, 58, 66, 71, 74],
for example.
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Elements of Π1(E,F ) are also called the (absolutely) summing operators ; they are
characterized by the property that the series

∑∞
j=1 Txj converges absolutely in F when-

ever
∑∞
j=1 xj converges weakly unconditionally in E.

We shall use the following results about the norms π(n)
p .

Proposition 3.22. Let E be a normed space, and take n ∈ N. Then:

(i) π
(n)
2 (T ) ≤ π(n)

1 (T ) and π2(T ) ≤ π1(T ) for each T ∈ B(E);
(ii) π2(E) =

√
n whenever dimE = n;

(iii) π1(E) ≥
√
n whenever dimE ≥ n;

(iv) π
(n)
p (E) = π

(n)
p (E′′) for each p ≥ 1.

Proof. Clause (i) is a small variation of [39, 3.3, p. 32], and (ii) is [39, Proposition 5.13,
p. 62] and [26, Theorem 4.17]. Clearly (iii) follows from (i) and (ii).

Clause (iv) is essentially [39, Proposition 17.4, p. 157]; it follows from the Principle
of Local Reflexivity, Proposition 1.4.

There have been studies of the relationship of the numbers π(n)
q,p (T ), and especially

when suitable multiples bound πq,p(T ). For a summary, see [71, Chapter 4]; further results
are given in [24] and [40]. We shall use the following result of Szarek [68, Theorem 3].

Theorem 3.23. There is a universal constant C > 0 such that, for each n ∈ N, each
Banach spaces E and F with dimE = n, and each T ∈ B(E,F ), there exists k ∈ N with
k ≤ n log n such that

π1(T ) ≤ Cπ(k)
1 (T ).

In the following corollary, C is the constant of the above theorem.

Corollary 3.24. Let n ∈ N, and let F be a normed space such that dimF ≥ n. Then

π
(n)
1 (F ) ≥ 1

C

√[
n

log n

]
.

Proof. Set m = [n/log n], and take a subspace E of F with dimE = m; let T be the
embedding of E into F .

We have π(n)
1 (T ) = π

(n)
1 (E) ≤ π(n)

1 (F ), and it follows from (i) and (ii) of Proposition
3.22 that

√
m = π2(T ) ≤ π1(T ). By Theorem 3.23, there exists k ∈ N with k ≤ m logm

and π1(T ) ≤ Cπ(k)
1 (T ). But

m logm ≤ n

log n
· (log n− log log n) < n,

and so k ≤ n. Thus

π
(k)
1 (T ) ≤ π(n)

1 (T ).

By combining the various inequalities, we obtain the result.

For a similar result involving π(n)
p (F ) for p ≥ 1, see [42].
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3.4.3. Related constants. We now introduce two constants related to π
(n)
1 (E) that

will be referred to later. Recall that SE denotes the unit sphere of a normed space E.

Definition 3.25. Let E be a normed space, and take n ∈ N. Then

π
(n)
1 (E) = sup

{( n∑
j=1

‖xj‖
)

: ‖x1‖ = · · · = ‖xn‖, µ1,n(x1, . . . , xn) ≤ 1
}

and

cn(E) = inf{sup{‖ζ1x1 + · · ·+ ζnxn‖ : ζ1, . . . , ζn ∈ T} : x1, . . . , xn ∈ SE}.

In particular, c1(E) = 1 and

c2(E) = inf
{

sup
ζ∈T
{‖x1 + ζx2‖} : x1, x2 ∈ SE

}
. (3.12)

We see that (cn(E) : n ∈ N) is an increasing sequence in [1,∞). Let n ∈ N. Then it
follows from (3.5) that

cn(E) = inf{µ1,n(x1, . . . , xn) : x1, . . . , xn ∈ SE}.

Clearly, π(n)
1 (E) ≤ π(n)

1 (E) and π
(n)
1 (E) · cn(E) = n, and so

π
(n)
1 (E) · cn(E) ≥ n (n ∈ N). (3.13)

We first make a simple remark. Let (E, ‖ · ‖) be a normed space. Suppose that
x1, . . . , xn ∈ E are such that

sup{‖ζ1x1 + · · ·+ ζnxn‖ : ζ1, . . . , ζn ∈ T} = C

(so that C ∈ R+), and take t ≥ 1. Then we claim that

sup{‖ζ1tx1 + ζ2x2 + · · ·+ ζnxn‖ : ζ1, . . . , ζn ∈ T} ≥ C.

Indeed, take ε > 0 and ζ1, . . . , ζn ∈ T with ‖ζ1x1 + ζ2x2 + · · · + ζnxn‖ > C − ε. Set
y = ζ1x1 + ζ2x2 + · · ·+ ζnxn and z = ζ1x1 − ζ2x2 − · · · − ζnxn, so that ‖z‖ ≤ C. Then

2(ζ1tx1 + · · ·+ ζnxn) = (t+ 1)y + (t− 1)z,

and so

2‖ζ1tx1 + · · ·+ ζnxn‖ ≥ (t+ 1)(C − ε)− (t− 1)C = 2C − (t− 1)ε,

from which the claim follows. It follows that

cn(E) ≤ sup{‖ζ1t1x1 + · · ·+ ζntnxn‖ : ζ1, . . . , ζn ∈ T} (3.14)

for each x1, . . . , xn ∈ SE and t1, . . . , tn ≥ 1.

Proposition 3.26. Let (E, ‖ · ‖) and (F, ‖ · ‖) be Banach spaces, and let G be a closed
subspace of E with G linearly homeomorphic to F . Then

cn(E) ≤ cn(F )d(F,G) (n ∈ N).

Proof. Set C = d(F,G), and take ε > 0. Then there is a bijection T ∈ B(F,G) with
‖T‖ ‖T−1‖ < C + ε.

Let n ∈ N. Then there are elements y1, . . . , yn ∈ SF such that

‖ζ1y1 + · · ·+ ζnyn‖ < cn(F ) + ε (ζ1, . . . , ζn ∈ T).
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Set xj = Tyj/‖Tyj‖ (j ∈ Nn). Then x1, . . . , xn ∈ SE . For j ∈ Nn, set tj = ‖T−1‖ ‖Tyj‖,
so that tj ≥ 1. By (3.14), we have

cn(E) ≤ sup{‖ζ1t1x1 + · · ·+ ζntnxn‖ : ζ1, . . . , ζn ∈ T}
= ‖T−1‖ sup{‖ζ1Ty1 + · · ·+ ζnTyn‖ : ζ1, . . . , ζn ∈ T}
≤ (C + ε)(cn(F ) + ε).

This holds true for each ε > 0, and so the result follows.

3.4.4. Orlicz property. The following definition is given in [39, p. 43] and [74, Remark
II.D.7].

Definition 3.27. A Banach space (E, ‖ · ‖) has the Orlicz property with constant C if
π2,1(E) = C is finite, so that

C := sup
{( n∑

j=1

‖xj‖2
)1/2

: x1, . . . , xn ∈ E, µ1,n(x1, . . . , xn) ≤ 1
}
<∞.

Clearly C ≥ 1 in each case. It is shown in [26, Corollary 11.17] and [39, p. 69] that
every Banach space ‘of cotype 2’ has the Orlicz property. We remark that, by [26, Theorem
14.5], an infinite-dimensional Banach space E with the Orlicz property is ‘of cotype q’
for each q > 2, but an example of Talagrand [69] shows that there is a Banach lattice E
with the Orlicz property such that E is not of cotype 2.

Theorem 3.28. Let E be a Banach space such that E has the Orlicz property with
constant C. Then

π
(n)
1 (E) ≤ C

√
n,

√
n ≤ Ccn(E) (n ∈ N).

Proof. Let n ∈ N and x1, . . . , xn ∈ E. Then
n∑
j=1

‖xj‖ ≤
√
n
( n∑
j=1

‖xj‖2
)1/2

by the Cauchy–Schwarz inequality. Now suppose that µ1,n(x1, . . . , xn) ≤ 1. Then it fol-
lows from Definition 3.27 that

n∑
j=1

‖xj‖ ≤ C
√
n,

and so the result follows from (3.10) and (3.13).

In particular, (π(n)
1 (E)) = O(

√
n) for each Banach space E of cotype 2.

The following theorem of Orlicz [56] can be regarded as the historical beginning of the
study of summing operators; a proof is given in [26, Corollary 11.7(a)] and [74, Theorem
II.D.6].

Theorem 3.29. Let (Ω, µ) be a measure space, and take q ∈ [1, 2]. Then the Banach
space Lq(Ω, µ) has cotype 2, and hence the Orlicz property.

The Orlicz constant associated with the space `q (for 1 ≤ q ≤ 2) is denoted by Cq.
We know that C2 = 1 [39, 3.25] and that C1 ≤

√
2 [39, 7.6].
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Corollary 3.30. Let q ∈ [1, 2]. Then

π
(n)
1 (`q) ≤ Cq

√
n (n ∈ N).

In particular, π(n)
1 (`2) ≤

√
n (n ∈ N).

Proof. This follows from Theorems 3.28 and 3.29.

3.4.5. Specific spaces. We shall also use the following specific calculations involving
the spaces `p, where p ≥ 1. Note that, for n ∈ N, always π(n)

1 (`pn) ≤ π(n)
1 (`p) ≤ π1(`p).

Proposition 3.31. Let n ∈ N. Then:

(i) for each q ∈ [1, 2], we have
√
n ≤ π(n)

1 (`qn);
(ii)
√
n ≤ π(n)

1 (`1n) ≤ π(n)
1 (`1) = π1(`1n) ≤

√
2n;

(iii)
√
n = π

(n)
1 (`2n) = π

(n)
1 (`2) ≤ π1(`2n) ≤ (2/

√
π )
√
n;

(iv) π
(n)
1 (`∞n ) = π

(n)
1 (`∞) = n;

(v) for each q ∈ [2,∞), we have
√
n ≤ n1−1/q ≤ π(n)

1 (`qn) ≤ π(n)
1 (`q).

Proof. (i) Take ζ = exp(2πi/n) and then set fi = (ζi, ζ2i, . . . , ζni) for i ∈ Nn. Then we
have ‖ζ1f1 + · · ·+ ζnfn‖ ≤ n1/2+1/q by Lemma 1.1(ii). But

∑n
i=1 ‖fi‖ = n1+1/q, and so

π
(n)
1 (`qn) ≥

√
n by (3.11).

(ii) We have π(n)
1 (`1) = π1(`1n) ≤

√
2n by [39, 7.18 and 7.12].

(iii) We have π(n)
1 (`2) =

√
n by [39, 3.9] and π1(`2n) ≤ (2/

√
π )
√
n by [39, 8.10].

(iv) By taking xj = δj (j ∈ Nn) in (3.11), we see that π(n)
1 (`∞n ) ≥ n; certainly

π
(n)
1 (`∞) ≤ n.

(v) Let q ∈ [2,∞). By taking xj = δj/n
1/q (j ∈ Nn) in equation (3.11), we see that

π
(n)
1 (`qn) ≥ n1−1/q.

We note that the precise value of π1(`2n) is given in [39, 8.10], and that π1(`2n) >
√
n for

n ≥ 2; the results are due to Gordon [33]. We also remark that the following estimates
(and more general estimates) are contained in [33, Theorem 5]; we shall not use the
results. (The results in [33] are for real-valued spaces, but the analogous results follow
for our complex-valued spaces, with a possible change in the implicit constants.)

Proposition 3.32.

(i) Take q with 2 ≤ q <∞. Then π
(n)
1 (`qn) ∼ n1−1/q as n→∞.

(ii) Take q with 1 ≤ q ≤ 2. Then π
(n)
1 (`qn) ∼ n1/2 as n→∞.

It would be interesting to find the exact values of π(n)
1 (`pm) for each m,n ∈ N and

p ∈ [1,∞]. Towards this, take q to be the conjugate index to p, and let λ1, . . . , λn ∈ `qm,
say λj = (λ1j , . . . , λmj) (j = 1, . . . , n). Then set Λ = (λij : i ∈ Nm, j ∈ Nn), an m × n-
matrix, so that Λ ∈ Mm,n. Following Feng and Tonge in [29] (but replacing their p and
q by u and v, where 1 ≤ u, v ≤ ∞), we define

|Λ|u,v =
( n∑
j=1

( m∑
i=1

|λij |u
)v/u)1/v
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and
‖Λ‖u,v = max{‖Λx‖v : ‖x‖u ≤ 1}.

By (3.7), the condition that µ1,n(λ1, . . . , λn) ≤ 1 is just the condition that ‖Λ‖p,1 ≤ 1.
The number

∑n
j=1 ‖λj‖ is just |Λ|q,1. Thus π(n)

1 (`pm) is the least constant d such that

|Λ|q,1 ≤ d‖Λ‖p,1

for each Λ ∈Mm,n. The determination of such a d is exactly a special case of the question
addressed in [29, Problem 1, (4)]; unfortunately, this is a case that is left open in [29].

More generally, Feng and Tonge study in [29], for fixed m,n ∈ N, the constant

dm,n(u, v, r, s) = sup{|Λ|u,v : Λ ∈Mm,n, ‖Λ‖r,s ≤ 1};

this number was determined in the case where u = v ≥ 2 for most (but not all) choices
of r, s ∈ [1,∞). We see that the above argument shows that

dm,n(u, v, r, s) = π
(n)
v,r′(I : `sm → `um),

where I is the identity map and r′ is the conjugate index to r.

3.5. Characterizations of the maximum multi-norm

3.5.1. Characterizations in terms of weak summing norms. We now give some
alternative descriptions of the maximum multi-norm; these remarks will be used to give
some calculations of the maximum rate of growth for certain Banach spaces E.

Let E be a normed space, and take n ∈ N. Then we set

Sn = {(ζ1x, . . . , ζnx) ∈ En : ζ1, . . . , ζn ∈ T, x ∈ SE}

and Kn = co(Sn), the closed convex hull of Sn, so that Kn is absolutely convex and
absorbing. Then the Minkowski functional, temporarily called pn, of Kn is a norm on En.
Since Aσ(Kn) = Kn for each σ ∈ Sn and Mα(Kn) ⊂ Kn for each α ∈ Dn, the norm
pn satisfies Axioms (A1) and (A2). Now let n vary in N, so that we obtain a sequence
(pn : n ∈ N) of norms. This sequence clearly satisfies (A3) and (A4), and so (pn : n ∈ N)
is a multi-norm on {En : n ∈ N}. Further, let (‖ · ‖n : n ∈ N) be any multi-norm on
{En : n ∈ N}, and let Bn be the closed unit ball of (En, ‖·‖n). Then we see that Kn ⊂ Bn,
and so (pn : n ∈ N) is the maximum multi-norm on {En : n ∈ N}. We conclude that the
closed unit ball of (En, ‖ · ‖max

n ) is the set Kn.
The first characterization of ‖ · ‖max

n follows easily from the Hahn–Banach theorem;
in the proof, we temporarily write pn for ‖ · ‖max

n , qn for the dual norm to pn, and we
write µ1,n for the weak 1-summing norm on (E′)n.

Theorem 3.33. Let E be a normed space, and take n ∈ N. Then

‖(x1, . . . , xn)‖max
n = sup

{∣∣∣ n∑
j=1

〈xj , λj〉
∣∣∣ : µ1,n(λ1, . . . , λn) ≤ 1

}
for each x1, . . . , xn ∈ E, where the supremum is taken over λ1, . . . , λn ∈ E′. Further, the
dual of ‖ · ‖max

n is µ1,n.
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Proof. Let x1, . . . , xn ∈ E, and set x = (x1, . . . , xn). By the Hahn–Banach theorem,

‖x‖max
n = sup{|〈x, λ〉| : qn(λ) ≤ 1},

where 〈x, λ〉 =
∑n
j=1〈xj , λj〉 for λ = (λ1, . . . , λn) ∈ (E′)n, as in (1.10). However it is

clear that qn(λ) ≤ 1 if and only if |〈y, λ〉| ≤ 1 (y ∈ Sn), and so qn(λ) ≤ 1 if and only if∣∣∣ n∑
j=1

〈ζjy, λj〉
∣∣∣ ≤ 1 (ζ1, . . . , ζn ∈ T, y ∈ SE).

This latter occurs if and only if
∑n
j=1 |〈y, λj〉| ≤ 1 for each y ∈ E[1].

Further, qn(λ) ≤ 1 if and only if∣∣∣ n∑
j=1

〈y, ζjλj〉
∣∣∣ ≤ 1 (ζ1, . . . , ζn ∈ T, y ∈ SE),

and this occurs if and only if µ1,n(λ1, . . . , λn) ≤ 1. Hence qn = µ1,n.
The result follows.

Thus we can confirm from Theorem 2.31 that (((E′)n, µ1,n) : n ∈ N) is a dual multi-
Banach space, as already noted in Theorem 3.19. For a related result, see Theorem 4.4.

Corollary 3.34. Let E = `r, where r ≥ 1. Then

‖(δ1, . . . , δn)‖max
n = n1/r (n ∈ N).

Proof. By Corollary 2.18, ‖(δ1, . . . , δn)‖max
n ≤ n1/r (n ∈ N).

The conjugate index to r is s. Take λj = δj ∈ E′ (j ∈ Nn). By (3.5),

µ1,n(δ1, . . . , δn) = sup{‖(ζ1, . . . , ζn)‖`s : ζ1, . . . , ζn ∈ T} = n1/s (n ∈ N),

and so ‖(δ1, . . . , δn)‖max
n ≥ n/n1/s = n1/r (n ∈ N).

Corollary 3.35. Let E be a normed space, and take n ∈ N. Then

ϕmax
n (E) = sup

{ n∑
j=1

‖λj‖ : µ1,n(λ1, . . . , λn) ≤ 1
}

= sup
{ n∑
j=1

‖λj‖ : ‖
n∑
j=1

ζjλj‖ ≤ 1 (ζ1, . . . , ζn ∈ T)
}
,

where the supremum is taken over λ1, . . . , λn ∈ E′, and so

ϕmax
n (E) = π

(n)
1 (E′) ≥ n/cn(E′).

Proof. Take λ1, . . . , λn ∈ E′. Then

sup
{∣∣∣ n∑
j=1

〈xj , λj〉
∣∣∣ : x1, . . . , xn ∈ E[1]

}
=

n∑
j=1

‖λj‖,

and so the first equality holds. The final remark follow from (3.10) and (3.13).

Corollary 3.36. Let E be a normed space, and take n ∈ N. Then

ϕmax
n (E′) = π

(n)
1 (E) and ϕmax

n (E) = ϕmax
n (E′′).

Proof. These follow from Proposition 3.22(iv) and Corollary 3.35.
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Corollary 3.37. There is a constant C > 0 such that, for each n ∈ N and each normed
space E with dimE ≥ n, we have

ϕmax
n (E) ≥ 1

C

√[
n

log n

]
.

Proof. Since dimE ≥ n, we have dimE′ ≥ n, and so this follows from Corollaries 3.24
and 3.35.

We do not know if the factor ‘log n’ is required in the above theorem; we shall see in
Theorem 3.58 that it is not required in the case where the space E is infinite-dimensional.

3.5.2. The dual of the minimum dual multi-norm. Let (E, ‖·‖) be a normed space.
Then we have seen that (µ1,n : n ∈ N) is the minimum dual multi-norm on {En : n ∈ N},
and so (µ′1,n : n ∈ N) is a multi-norm on {(E′)n : n ∈ N}. We ask if it is the maximum
multi-norm. To see that this is the case, take λ1, . . . , λn ∈ E′, and set λ = (λ1, . . . , λn).
By Theorem 3.33, we have

‖λ‖max
n = sup

{∣∣∣ n∑
j=1

〈Λj , Λj〉
∣∣∣ : Λ1, . . . ,Λn ∈ E′′, µ1,n(Λ1, . . . ,Λn) ≤ 1

}
.

On the other hand, we have

µ′1,n(λ) = sup
{∣∣∣ n∑
j=1

〈xj , Λj〉
∣∣∣ : x1, . . . , xn ∈ E, µ1,n(x1, . . . , xn) ≤ 1

}
,

where we recall that the restriction of µ1,n defined on (E′′)n to En is just µ1,n defined
on En. Clearly, µ′1,n(λ) ≤ ‖λ‖max

n . The reverse inequality follows from the Principle of
Local Reflexivity.

Theorem 3.38. Let E be a normed space, and take n ∈ N. For each λ ∈ (E′)n, we have
µ′1,n(λ) = ‖λ‖max

n .

Proof. Take ε > 0. Then there exists Λ = (Λ1, . . . ,Λn) ∈ (E′′)n with µ1,n(Λ) ≤ 1 and∣∣∣ n∑
j=1

〈Λj , λj〉
∣∣∣ ≥ ‖λ‖max

n − ε.

Set X = lin{Λ1, . . . ,Λn} and Y = lin{λ1, . . . , λn}, so that X and Y are finite-dimensional
subspaces of E′′ and E′, respectively. By the Principle of Local Reflexivity, Theorem 1.4,
there is an injective, bounded linear map S : X → E with ‖S‖ < 1 + ε and with
〈S(Λj), λj〉 = 〈Λj , λj〉 (j ∈ Nn). Set x = (S(Λ1), . . . , S(Λn)) ∈ En. Then it follows
from (3.3) that µ1,n(x) ≤ (1 + ε)µ1,n(Λ) (with T taken to be S : X → S(X)), and so
µ1,n(x) ≤ 1 + ε. Now we have

µ′1,n(λ) ≥ 1
1 + ε

∣∣∣ n∑
j=1

〈S(Λj), λj〉
∣∣∣ =

1
1 + ε

∣∣∣ n∑
j=1

〈Λj , λj〉
∣∣∣ ≥ 1

1 + ε
(‖λ‖max

n − ε).

This holds true for each ε > 0, and so µ′1,n(λ) ≥ ‖λ‖max
n .

Thus ‖λ‖max
n = µ′1,n(λ), as required.
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Theorem 3.39. Let E be a normed space. Then (µ′1,n : n ∈ N) is the maximum multi-
norm on the family {(E′)n : n ∈ N}.

In summary, we have the following. Let E be a normed space. Then the minimum
and maximum multi-norms based on E are (‖ · ‖min

n : n ∈ N) and (‖ · ‖max
n : n ∈ N),

respectively. The dual of these multi-norms are the maximum and minimum dual multi-
norms, respectively, on the family {(E′)n : n ∈ N}, and the latter is exactly the multi-
norm (µ1,n : n ∈ N). Combining these remarks, we have the following consequence.

Corollary 3.40. Let E be a normed space. Then the second dual of the maximum
multi-norm (‖ · ‖max

n : n ∈ N) based on E is the maximum multi-norm based on E′′.

3.5.3. Characterizations in terms of projective norms. Our second characteriza-
tion of the maximum multi-norm involves a projective norm.

Definition 3.41. Let E be a linear space. A subset S of E is one-dimensional if S ⊂ Cx
for some x ∈ E. A family {y1, . . . , ym} in E has an elementary representation if there
exist n ∈ N and xij ∈ E for i ∈ Nm and j ∈ Nn with

yi =
n∑
j=1

xij (i ∈ Nm)

and such that {xij : i ∈ Nm} of E is one-dimensional for each j ∈ Nn.

Each family {y1, . . . , ym} in the linear space E has at least one elementary represen-
tation. Indeed, each such family has a representation of the form

yi =
n∑
j=1

αijxj (i ∈ Nm), (3.15)

where n ∈ N, αij ∈ C (i ∈ Nm, j ∈ Nn), and xj ∈ E (j ∈ Nn) have the property that
‖x1‖ = · · · = ‖xn‖ = 1.

Let ((En, ‖ · ‖n) : n ∈ N) be a multi-normed space. Take k ∈ N, and suppose that
{x1, . . . , xk} is a one-dimensional set in E. Then clearly

‖(x1, . . . , xk)‖k = max{‖x1‖, . . . , ‖xk‖}.

Now let {y1, . . . , ym} be a family in E with the elementary representation of (3.15). Then

‖(y1, . . . , ym)‖m =
∥∥∥ n∑
j=1

(α1jxj , . . . , αmjxj)
∥∥∥
m
≤

n∑
j=1

‖(α1jxj , . . . , αmjxj)‖m

=
n∑
j=1

max{|αij | : i ∈ Nm},

and so
‖(y1, . . . , ym)‖m ≤ |||(y1, . . . , ym)|||m, (3.16)

where

|||(y1, . . . , ym)|||m = inf
{ n∑
j=1

max{|αij | : i ∈ Nm}
}

(3.17)
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and the infimum is taken over all elementary representations as specified in equation
(3.15) of the family {y1, . . . , ym}.

Theorem 3.42. Let E be a normed space. Then the above sequence (||| · |||n : n ∈ N) is
the maximum multi-norm on {En : n ∈ N}, and, for each m ∈ N, we have

ϕmax
m (E) = sup

{
inf
{ n∑
j=1

max{|αij | : i ∈ Nm}
}

: y1, . . . , ym ∈ E[1]

}
,

where the infimum is taken over all elementary representations of the form

yi =
n∑
j=1

αijxj (i ∈ Nm)

for which n ∈ N, αij ∈ C (i ∈ Nm, j ∈ Nn), and xj ∈ E[1] (j ∈ Nn).

Proof. It is clear from (3.16) that it is sufficient to show that (||| · |||n : n ∈ N) is a
multi-norm on {En : n ∈ N}. However it is easily checked that ||| · |||n is a norm on En

for each n ∈ N, that ||| · |||1 is the initial norm on E, and that Axioms (A1), (A2), and
(A4) are satisfied. It follows that (||| · |||n : n ∈ N) is indeed a multi-norm.

We can re-express the above evaluation of ‖ · ‖max
m as follows. In the statement, π

denotes the projective norm on the space `∞m ⊗E. More general versions of the following
theorem will be given in [19].

Theorem 3.43. Let E be a normed space, and take m ∈ N. Then

(Em, ‖ · ‖max
m ) ∼= (`∞m ⊗ E, ‖ · ‖π).

Proof. Let m ∈ N, and take {δ1, . . . , δm} to be the standard basis of `∞m . Then the map

T : (y1, . . . , yn) 7→
m∑
i=1

δi ⊗ yi, Em → `∞n ⊗ E,

is a linear bijection. Let yi =
∑n
j=1 αijxj be the elementary representation of yi for

i ∈ Nm, as in (3.15), where ‖x1‖ = · · · = ‖xn‖ = 1, and set z = T (y1, . . . , ym). Then

z =
m∑
i=1

( n∑
j=1

αijδi

)
⊗ xj ,

and every representation of z as an element of `∞m ⊗E has this form. By (3.17), we have

‖z‖π = inf
{ n∑
j=1

max{|αij | : i ∈ Nm}
}

= ‖(y1, . . . , ym)‖max
m .

This shows that T is an isometry.

The following is related to (3.6).

Corollary 3.44. Let E be a normed space. Then

((E′)n, µ1,n) = `pn(E′)w ∼= B(E, `1n) ∼= B(`∞n , E
′) (n ∈ N).

Proof. Let n ∈ N. By Theorem 3.33, the dual space to (En, ‖ · ‖max
n ) is ((E′)n, µ1,n). By

(1.5), the dual space of (`∞n ⊗ E, ‖ · ‖π) is the Banach space B(E, `1n) ∼= B(`∞n , E
′).
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3.6. The function ϕmax
n for some examples. We shall calculate the value of ϕmax

n (E)
for some standard Banach spaces E; sometimes we shall use elementary means, even if
more general theorems are available.

3.6.1. The spaces `p. In the following examples, p ∈ [1,∞], and q is the conjugate index
to p. Take n ∈ N. Then `pn is 1-complemented in `p, and so it follows from Corollary 3.13
that ϕmax

n (`p) ≥ ϕmax
n (`pn).

Example 3.45. Let n ∈ N. Then we have π
(n)
1 (`∞n ) = π

(n)
1 (`∞) = n by Proposition

3.31(iv), and so, by Corollary 3.35,

ϕmax
n (`1n) = ϕmax

n (`1) = n.

The maximum multi-norm on the family {(`1)n : n ∈ N} will be calculated in Theorem
4.23.

Example 3.46. Let n ∈ N, and take q > 1. Set F = `qn. By the choice λj = δj ∈ SF for
j ∈ Nn, we see that cn(`qn) ≤ n1/q. Now take p > 1. Then (`pn)′ = `qn, whence

ϕmax
n (`p) ≥ ϕmax

n (`pn) ≥ n/n1/q

by Corollary 3.35, and so ϕmax
n (`p) ≥ n1/p.

We make a trivial preliminary remark: for ζ ∈ T and q ≥ 1, we have

|1 + ζ|q + |1− ζ|q ≤ max{2 · 2q/2, 2q}. (3.18)

Example 3.47. Let F = `q2, where q ≥ 1. We choose

λ1 = (1, 1)/21/q and λ2 = (1,−1)/21/q,

so that λ1, λ2 ∈ SF . By (3.18), sup{‖ζ1λ1 + ζ2λ2‖ : ζ1, ζ2 ∈ T} ≤ max{
√

2, 21/p}.
Now suppose that p ≥ 2, so that 21/p ≤

√
2. Then c2(F ) ≤

√
2, and so, by Corollary

3.35, we have
ϕmax

2 (`p) ≥ ϕmax
2 ( `p2) ≥

√
2. (3.19)

By Examples 3.45 and 3.46, this inequality also holds for p ∈ [1, 2], and so (3.19) holds
for all p ≥ 1.

Example 3.48. Let n ∈ N. We have noted in Proposition 3.31(iii) the equality

π
(n)
1 (`2n) = π

(n)
1 (`2) =

√
n,

and hence, by Corollary 3.35, we have

ϕmax
n (`2) = ϕmax

n (`2n) =
√
n.

We wish to obtain this result directly from our definitions.
Let E = `2, so that E′ = E, and we write F for E′; the usual inner product on E

is denoted by [ · , · ]. Let (‖ · ‖n : n ∈ N) be any multi-norm on {En : n ∈ N}, and take
n ∈ N. For x1, . . . , xn ∈ E[1] and ζ = exp(2πi/n), we have

n∑
j=1

∥∥∥ n∑
m=1

ζjmxm

∥∥∥2

=
n∑
j=1

n∑
m=1

[ζjmxm, ζjmxm] =
n∑
j=1

k∑
m=1

‖xm‖2 ≤ k2,
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and so, by Hölder’s inequality, we have
n∑
j=1

∥∥∥ n∑
m=1

ζjmxm

∥∥∥ ≤ k1/2
( n∑
j=1

∥∥∥ n∑
m=1

ζjmxm

∥∥∥2)1/2

.

Hence
1
n

n∑
j=1

∥∥∥ n∑
m=1

ζjmxm

∥∥∥ ≤ n1/2.

It follows from Proposition 2.17 that ‖(x1, . . . , xn)‖n ≤ n1/2, and thus we have ϕmax
n (E)

≤ n1/2.
By Example 3.46, ϕmax

n (E) ≥ n1/2, and so ϕmax
n (`2) = n1/2.

It now follows from Corollary 3.35 that cn(`2) ≥ n1/2, and so, by Example 3.46, we
have cn(`2) = cn(`2n) = n1/2.

Example 3.49. Let n ∈ N, and take F = `qn, where q ∈ [1, 2].
Let ζ = exp(2πi/n), and then set

λj =
1

n1/q
(ζj , ζ2j , . . . , ζnj) ∈ SF (j ∈ Nn).

For each ζ1, . . . , ζn ∈ T, we have ‖ζ1λ1 + · · · + ζnλn‖ ≤
√
n by Lemma 1.1(ii), and so

cn(`q) ≤ cn(`qn) ≤
√
n.

Now take p with 2 ≤ p < ∞, so that q ∈ (1, 2]. Set E = `pn and F = E′ = `qn.
By Corollaries 3.13 and 3.35, ϕmax

n (`p) ≥ ϕmax
n (`pn) ≥

√
n. By Corollaries 3.30 and 3.35,

ϕmax
n (`p) ≤ Cq

√
n, where Cq is the Orlicz constant for `q, and so, again by Corollary

3.35, cn(`q) ≥
√
n/Cq.

In particular, we have shown that
√
n ≤ ϕmax

n (`pn) ≤ ϕmax
n (`p) ≤ Cq

√
n (n ∈ N)

whenever 2 ≤ p <∞.

Example 3.50. Let n ∈ N. As in Example 3.49, cn(`1n) ≤
√
n, and so, by Corollary 3.35,

ϕmax
n (`∞n ) ≥

√
n. Thus it follows from Proposition 3.31(ii) and Corollary 3.36 that

√
n ≤ ϕmax

n (`∞n ) ≤ ϕmax
n (`∞) ≤

√
2n.

The above two results are in accord with the estimates of Gordon given in Proposition
3.32.

Example 3.51. This example shows that strict inequality can arise in (3.1).
Indeed, take n ∈ N, and consider E = `∞, so that ϕmax

n (E) ≤
√

2n by Example 3.50.
By [6, Theorem 2.5.7], each separable Banach space is isometrically isomorphic to a
closed subspace of `∞, and so we can regard `1 as a closed subspace of E. However, by
Example 3.45, we know that ϕmax

n (`1n) = ϕmax
n (`1) = n. Thus F := `1n is a closed subspace

of E with dimF = n and

ϕmax
n (E) ≤

√
2n < n = ϕmax

n (F )

for n ≥ 3.

The next result refers to the Banach–Mazur distance d(F, `2n) for a normed space F
with dimF = n.
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Proposition 3.52. Let E be a Banach space. Then

ϕmax
n (E) ≤

√
n sup{d(F, `2n) : F ⊂ E,dimF = n} (n ∈ N).

Proof. This follows from (3.1), Corollary 3.14, and Example 3.48.

Example 3.53. Let p ∈ [1,∞], and take n ∈ N. By [74, Corollary III.B.9], we have

d(F, `2n) ≤ n|1/p−1/2| (n ∈ N) (3.20)

whenever F is a subspace of `p with dimF = n.
Now suppose that p ∈ [1, 2]. By (3.20), d(F, `2n) ≤ n1/p−1/2 whenever F is a subspace

of `p with dimF = n, and so ϕmax
n (`p) ≤ n1/p by Proposition 3.52. By Example 3.46,

ϕmax
n (`pn) ≥ n1/p, and so we see that

ϕmax
n (`p) = ϕmax

n (`pn) = n1/p (n ∈ N).

This is a sharpening of the result of Gordon contained in Proposition 3.32.
It now follows from Corollary 3.35 and Example 3.46 that for q ≥ 2 we have

cn(`q) = cn(`qn) = n1/q (n ∈ N).
We summarize some results of this section; again, q is the conjugate index to p ∈ [1,∞]

and Cq is the Orlicz constant for `q, where q ∈ [1, 2].

Theorem 3.54. Let n ∈ N. Then:

(i) for p ∈ [1, 2], we have ϕmax
n (`p) = ϕmax

n (`pn) = n1/p;
(ii) for p ∈ [2,∞], we have

√
n ≤ ϕmax

n (`pn) ≤ ϕmax
n (`p) ≤ Cq

√
n.

3.6.2. The spaces Lp. We now consider, more briefly, spaces denoted by Lp := Lp(Ω, µ)
for a measure space (Ω, µ). Throughout, we shall suppose that Lp is infinite-dimensional,
and so, for each n ∈ N, there exist pairwise-disjoint, measurable subsets X1, . . . , Xn of Ω
with 0 < µ(Xi) < ∞ (i ∈ Nn); we may suppose that Ω is σ-finite. We shall determine
the rate of growth of the sequence (ϕmax

n (Lp) : n ∈ N).

Theorem 3.55. Let n ∈ N. Then:

(i) for p ∈ [1, 2], we have ϕmax
n (Lp) = n1/p (n ∈ N);

(ii) for p ∈ [2,∞], we have ϕmax
n (Lp) ∼

√
n as n→∞.

Proof. Take p ∈ [1,∞], with conjugate index q. Fix n ∈ N, and take measurable subsets
X1, . . . , Xn of Ω with 0 < µ(Xi) <∞ (i ∈ Nn). For each i ∈ Nn, set χi = χXi/µ(Xi)1/q

when q < ∞ and χi = χXi when q = ∞, so that ‖χi‖ = 1 in Lq = (Lp)′ for each
p ∈ [1,∞]. Clearly,

‖ζ1χ1 + · · ·+ ζnχn‖Lq = ‖(ζ1, . . . , ζn)‖`q (ζ1, . . . , ζn ∈ C).

It follows immediately that cn(Lq) ≤ n1/q when q ≥ 2 and cn(Lq) ≤
√
n when

q ∈ [1, 2]. By Corollary 3.35, ϕmax
n (Lp) ≥ n1/p when p ∈ [1, 2] and ϕmax

n (Lp) ≥
√
n when

p ∈ [2,∞].
Again by [74, Corollary III.B.9], we have

d(F, `2n) ≤ n|1/p−1/2| (n ∈ N)
whenever F is a subspace of Lp with dimF = n.

For p ∈ [1, 2], it follows from Proposition 3.52 that ϕmax
n (Lp) ≤ n1/p, and thus we

have shown that ϕmax
n (Lp) = n1/p.
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For p ∈ [2,∞], Lq has the Orlicz property, and so π
(n)
1 (Lq) ≤ C

√
n for a constant

C > 0. By Corollary 3.35, ϕmax
n (Lp) ≤ C

√
n, and so we have ϕmax

n (Lp) ∼
√
n.

3.6.3. The spaces C(K). The calculation of the maximum rate of growth of the spaces
C(K) is rather easy.

Theorem 3.56. Let K be an infinite, compact space. For each n ∈ N, we have
√
n ≤ ϕmax

n (C(K)) ≤
√

2n.

Proof. Take n ∈ N. There exist f1, . . . , fn ∈ C(K)+ with |f1|K = · · · = |fn|K = 1 and
such that fifj = 0 for i, j ∈ Nn with i 6= j. The map

(ζ1, . . . , ζn) 7→
n∑
j=1

ζjfj , `∞n → C(K),

is an isometry onto a closed subspace of C(K), and so, by Example 3.50, we have
ϕmax
n (C(K)) ≤ ϕmax

n (`∞n ) ≤
√

2n.
There exist µ1, . . . , µn ∈M(K)+ such that ‖µ1‖ = · · · = ‖µn‖ = 1 and with pairwise-

disjoint supports. The map

(ζ1, . . . , ζn) 7→
n∑
j=1

ζjµj , ` 1
n →M(K),

is an isometry onto a closed subspace of M(K), and so cn(M(K)) ≤ cn(`1n) by Proposition
3.26. By Example 3.50, cn(`1n) ≤

√
n, and so, by Corollary 3.35, ϕmax

n (C(K)) ≥
√
n.

The result follows.

3.6.4. A lower bound for ϕmax
n (E). We shall now establish that ϕmax

n (E) ≥
√
n for

each n ∈ N and each infinite-dimensional Banach space E (cf. Corollary 3.37). Since
ϕmax
n (`2) =

√
n (n ∈ N), this is the best-possible lower bound. For this, we shall use the

following famous theorem of Dvoretzky, sometimes called the theorem on almost spherical
sections; for proofs and discussions, see [6, §12.3], [26, Chapter 19], or [59, Chapter 4].

Theorem 3.57. For each n ∈ N and ε > 0, there exists m = m(n, ε) in N such that, for
each normed space F with dimF ≥ m, there is an n-dimensional subspace L of F such
that d(L, `2n) < 1 + ε.

Theorem 3.58. Let E be an infinite-dimensional normed space. Then

ϕmax
n (E) ≥

√
n (n ∈ N).

Proof. Fix n ∈ N, and take ε > 0.
By Theorem 3.57, there is an n-dimensional subspace L of E′ with d(L, `2n) < 1 + ε.

By Proposition 3.26,
cn(E′) ≤ cn(`2n)d(L, `2n).

As in Example 3.48, cn(`2n) =
√
n. Thus cn(E′) ≤ (1 + ε)

√
n. This holds true for each

ε > 0, and so cn(E′) ≤
√
n.

By Corollary 3.35, ϕmax
n (E) ≥

√
n.

Corollary 3.59. Let E be an infinite-dimensional normed space. Then the maximum
multi-norm is not equivalent to the minimum multi-norm.



4. Specific examples of multi-norms

In this chapter, we shall give some specific examples of multi-normed spaces.

4.1. The (p, q)-multi-norm

4.1.1. Definition. Let (E, ‖·‖) be a normed space, and take p, q such that 1 ≤ p, q <∞.
Again we shall sometimes write p′ and q′ for the conjugate indices of p and q, respectively.

For each n ∈ N and x = (x1, . . . , xn) ∈ En, we define

‖x‖(p,q)n = sup
{( n∑

i=1

|〈xi, λi〉|q
)1/q

: µp,n(λ1, . . . , λn) ≤ 1
}
, (4.1)

taking the supremum over λ1, . . . , λn ∈ E′. It is clear that ‖ · ‖(p,q)n is a norm on En.
It is convenient for calculations to see that, for a constant C ≥ 0, we have ‖x‖(p,q)n ≤ C

if and only if ( n∑
i=1

|〈xi, λi〉|q
)1/q

≤ C sup
{( n∑

i=1

|〈y, λi〉|p
)1/p

: y ∈ E[1]

}
(4.2)

for all λ1, . . . , λn ∈ E′; this is immediate from (3.7).

Theorem 4.1. Let E be a normed space. Suppose that p, q ∈ [1,∞). Then the sequence
(‖ · ‖(p,q)n : n ∈ N) is a special-norm based on E; it is a multi-norm when 1 ≤ p ≤ q <∞.

Proof. It is clear that (‖·‖(p,q)n : n ∈ N) satisfies Axioms (A1)–(A3), and so it is a special-
norm; we shall verify that the sequence satisfies Axiom (A4) when 1 ≤ p ≤ q <∞.

Take n ∈ N, let x1, . . . , xn ∈ E, and set

x = (x1, . . . , xn−1, xn, xn) ∈ En+1.

By Lemma 2.9, it suffices to show that ‖x‖(p,q)n+1 ≤ ‖(x1, . . . , xn)‖(p,q)n .
Take ε > 0. Then there exist elements λ1, . . . , λn+1 ∈ E′ such that

µp,n+1(λ1, . . . , λn+1) ≤ 1

and such that(n−1∑
i=1

|〈xi, λi〉|q + |〈xn, λn〉|q + |〈xn, λn+1〉|q
)1/q

> ‖x‖(p,q)n+1 − ε.

Since (`q2)′ = `q
′

2 , there exist α, β ∈ C with |α|q′ + |β|q′ ≤ 1 and

|〈xn, λn〉|q + |〈xn, λn+1〉|q = 〈xn, αλn + βλn+1〉q.

[80]
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Set γ = |α|p′ + |β|p′ ; since q′ ≤ p′, we have γ ≤ 1. By Proposition 3.18,

µp,n(λ1, . . . , λn−1, αλn + βλn+1) ≤ µp,n+1(λ1, . . . , λn−1, γλn, γλn+1),

and so, since µp,n+1 satisfies (A2),

µp,n(λ1, . . . , λn−1, αλn + βλn+1) ≤ max{1, γ}µp,n+1(λ1, . . . , λn+1) ≤ 1.

Hence

‖(x1, . . . , xn)‖(p,q)n ≥
(n−1∑
i=1

|〈xi, λi〉|q + 〈xn, αλn + βλn+1〉q
)1/q

=
(n−1∑
i=1

|〈xi, λi〉|q + |〈xn, λn〉|q + |〈xn, λn+1〉|q
)1/q

> ‖x‖(p,q)n+1 − ε.

This holds true for each ε > 0, and so the result follows.

Definition 4.2. Let E be a normed space, and take p, q ∈ [1,∞). Then (‖·‖(p,q)n : n ∈ N)
is the (p, q)-special-norm based on E ; it is the (p, q)-multi-norm when 1 ≤ p ≤ q < ∞.
The rate of growth of this multi-norm is denoted by (ϕ(p,q)

n (E) : n ∈ N).

Let E be a normed space, take 1 ≤ p ≤ q <∞, and take x1, . . . , xn ∈ E. Suppose that
F is a closed subspace of E with x1, . . . , xn ∈ E. Then the value of ‖(x1, . . . , xn)‖(p,q)n

might depend on the space F to which x1, . . . , xn belong. To indicate this, we (tempor-
arily) write (‖ · ‖(p,q)n,F ) for the (p, q)-special-norm based on F .

Proposition 4.3. Let E be a normed space, let F be a closed subspace of E, and suppose
that p, q ∈ [1,∞). Let n ∈ N and x = (x1, . . . , xn) ∈ Fn. Then ‖x‖(p,q)n,F ≥ ‖x‖

(p,q)
n,E . In the

case where F is 1-complemented in E, ‖x‖(p,q)n,F = ‖x‖(p,q)n,E .

Proof. Take λ1, . . . , λn ∈ E′. By (3.7), µp,n(λ1|F, . . . , λn|F ) ≤ µp,n(λ1, . . . , λn), and so
‖x‖(p,q)n,F ≥ ‖x‖

(p,q)
n,E .

Now suppose that F is 1-complemented in E, so that there is a projection P : E → F

with ‖P‖ = 1. For λ1, . . . , λn ∈ F ′, we have

|〈y, P ′λj〉| = |〈Py, λj〉| (y ∈ E[1]).

Since Py ∈ F[1], it follows from (3.7) that ‖x‖(p,q)n,F ≤ ‖x‖
(p,q)
n,E . Hence ‖x‖(p,q)n,F = ‖x‖(p,q)n,E .

The following result is a generalization of Corollary 3.35; it follows by the same argu-
ment.

Theorem 4.4. Let E be a normed space. Suppose that 1 ≤ p ≤ q <∞ and n ∈ N. Then
ϕ

(p,q)
n (E) = π

(n)
q,p (E′).

Indeed, it is explained in [20] that the (p, q)-multi-norm based on a normed space E
corresponds via the correspondence of §2.4.5 to the norm induced on the space c0 ⊗ E
by embedding c0⊗E into Πq,p(E′, c0). The (p, p)-multi-norm corresponds to the Chevet–
Saphar norm, dp, on the tensor product c0 ⊗ E; for a discussion of the Chevet–Saphar
norm and related norms on tensor products, see [23] and [66, §6.2].
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4.1.2. Relations between (p, q)-multi-norms. Take n ∈ N. Clearly, for each fixed
p ≥ 1 and q1 ≥ q2 ≥ p, we have ‖ · ‖(p,q1)

n ≤ ‖ · ‖(p,q2)
n , and, for each fixed q ≥ 1 and

p1 ≤ p2 ≤ q, we have ‖ · ‖(p1,q)n ≤ ‖ · ‖(p2,q)n . In fact, ‖ · ‖(p,p) is also a decreasing function
of p on the interval [1,∞); this is not immediately obvious, but is given by the following
calculation, which is essentially that of page 134 of [66]. A more general result is given in
[26, Theorem 10.4]. Thus the maximum among these norms is ‖ · ‖(1,1)

n .

Theorem 4.5. Let E be a normed space, and suppose that 1 ≤ p ≤ q <∞. Then

‖x‖(p,p)n ≥ ‖x‖(q,q)n (x ∈ En)

for each n ∈ N.

Proof. We may suppose that p < q.
Take n ∈ N and x = (x1, . . . , xn) ∈ En, and set C = ‖x‖(p,p)n . Then

A :=
( n∑
i=1

|〈xi, λi〉|q
)1/p

=
( n∑
i=1

|〈xi, αiλi〉|p
)1/p

,

where αi = |〈xi, λi〉|(q−p)/p for i ∈ Nn. By (3.7) and (4.2), we have( n∑
i=1

|〈xi, αiλi〉|p
)1/p

≤ C sup
{( n∑

i=1

|〈y, αiλi〉|p
)1/p

: y ∈ E[1]

}
.

However
n∑
i=1

|〈y, αiλi〉|p =
n∑
i=1

|〈xi, λi〉|q−p|〈y, λi〉|p.

By Hölder’s inequality with conjugate exponents q/(q − p) and q/p, the right-hand side
of the above equation is at most( n∑

i=1

|〈xi, λi〉|q
)(q−p)/q

·
( n∑
i=1

|〈y, λi〉|q
)p/q

.

Hence we have

A ≤ C sup
{( n∑

i=1

|〈xi, λi〉|q
)(q−p)/pq

·
( n∑
i=1

|〈y, λi〉|q
)1/q

: y ∈ E[1]

}
.

Note that (1/p)− (q − p)/pq = 1/q, and so, by an appropriate division, we see that( n∑
i=1

|〈xi, λi〉|q
)1/q

≤ C sup
{( n∑

i=1

|〈y, λi〉|q
)1/q

: y ∈ E[1]

}
.

Thus ‖x‖(q,q)n ≤ C = ‖x‖(p,p)n , as required.

By Theorem 3.33, we have the following result.

Theorem 4.6. Let E be a normed space. Then ‖ · ‖(1,1)
n = ‖ · ‖max

n for n ∈ N, and so
(‖ · ‖(1,1)

n : n ∈ N) is the maximum multi-norm based on E.

The relations between the multi-norms (‖x‖(p,p)n : n ∈ N) can be illustrated in the
following diagram, where the arrows indicate increasing multi-norms in the ordering ≤:
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(p, p)•

-
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Proposition 4.7. Let E be a normed space, and suppose that 1 ≤ p ≤ q < ∞. Then
ϕ

(p,q)
n (E) ≤ n1/q for n ∈ N.

Proof. Consider λ1, . . . , λn ∈ E′ with µp,n(λ1, . . . , λn) ≤ 1. Then ‖λi‖ ≤ 1 (n ∈ N). Now
take x1, . . . , xn ∈ E[1]. Then |〈xi, λi〉| ≤ 1 (i ∈ Nn), and so ‖(x1, . . . , xn)‖(p,q)n ≤ n1/q.
The result follows.

Example 4.8. Let E = `r, where r ≥ 1, so that E′ = `s, where s = r′.
Fix p, q with 1 ≤ p ≤ q < ∞, and take n ∈ N. We shall calculate ‖f‖(p,q)n , where

f = (δ1, . . . , δn) ∈ En. Set u = p′.
By Proposition 4.7, ‖f‖(p,q)n ≤ n1/q.
Now consider the choice λi = δi (i ∈ Nn), and set ζ = (ζ1, . . . , ζn) ∈ Cn. Then

µp,n(λ1, . . . , λn) = sup{‖ζ‖`s : ‖ζ‖`u ≤ 1}. In the case where u ≤ s, i.e., p ≥ r, we have
‖ζ‖`s ≤ ‖ζ‖`u , and so µp,n(λ1, . . . , λn) ≤ 1. Hence ‖f‖(p,q)n ≥ n1/q.

This implies that

‖(δ1, . . . , δn)‖(p,q)n = n1/q whenever p ≥ r.

A similar calculation gives the same conclusion in the case where r = 1.
We conclude that two multi -norms (‖ · ‖(p1,q1)

n ) and (‖ · ‖(p2,q2)
n ) based on `r are not

equivalent whenever p1, p2 ≥ r and q1 6= q2.
It follows that

‖(δ1, . . . , δn)‖(p,q)n ≤ n1/q whenever q ≥ r.

However, we know from Corollary 3.34 that

‖(δ1, . . . , δn)‖max
n = n1/r (n ∈ N),

and so the multi-norm (‖ · ‖(p,q)n ) is not equivalent to (‖ · ‖max
n ) whenever q > r. Further,

‖(δ1, . . . , δn)‖(p,p)n = n1/r (n ∈ N) whenever p ∈ [1, r].

The general question of the equivalence of the two multi-norms

(‖ · ‖(p1,q1)
n : n ∈ N) and (‖ · ‖(p2,q2)

n : n ∈ N)

on the spaces Lr(Ω) will be addressed in [20].

Theorem 4.9. Let E and F be isomorphic Banach spaces such that d(E,F ) ≤ C, and
suppose that 1 ≤ p ≤ q <∞. Then

ϕ(p,q)
n (E) ≤ Cϕ(p,q)

n (F ) (n ∈ N).



84 4. Specific examples of multi-norms

Proof. Take ε > 0. Then there exists a linear bijection T : E → F with ‖T‖ < C + ε and
‖S‖ = 1, where S = T−1 : F → E. We have ‖S′‖ = 1.

Take n ∈ N and x1, . . . , xn ∈ E[1]. Suppose that λ = (λ1, . . . , λn) ∈ (E′)n with
µp,n(λ) ≤ 1. By (3.3), µp,n(S′λ1, . . . , S

′λn) ≤ 1, and so( n∑
i=1

|〈xi, λi〉|q
)1/q

=
( n∑
i=1

|〈Txi, S′λi〉|q
)1/q

≤ (C + ε)ϕ(p,q)
n (F ).

Thus ϕ(p,q)
n (E) ≤ (C + ε)ϕ(p,q)

n (F ). This holds true for each ε > 0, and so the result
follows.

4.1.3. Duality theory. Let E be a normed space, and take p, q ∈ [1,∞). For n ∈ N
and λ = (λ1, . . . , λn) ∈ (E′)n, the formula for ‖λ‖(p,q)n is

‖λ‖(p,q)n = sup
{( n∑

i=1

|〈Λi, λi〉|q
)1/q

: µp,n(Λ1, . . . ,Λn) ≤ 1
}
,

taking the supremum over Λ1, . . . ,Λn ∈ E′′. In fact, there is a simpler formula for ‖λ‖(p,q)n ;
the proof, from the Principle of Local Reflexivity, of the following proposition is almost
identical to that of Theorem 3.38, and is omitted.

Proposition 4.10. Let E be a normed space, and take p, q ∈ [1,∞). For each n ∈ N
and λ ∈ (E′)n, we have

‖λ‖(p,q)n = sup
{( n∑

i=1

|〈xi, λi〉|q
)1/q

: µp,n(x1, . . . , xn) ≤ 1
}
,

taking the supremum over x1, . . . , xn ∈ E.

4.1.4. The dual of the (p, q)-special-norm. In this section, we shall determine the
dual of the the special-norm (‖ · ‖(p,q)n : n ∈ N) based on (E′)n, following remarks of Paul
Ramsden.

Let E be a Banach space, and fix r, s with 1 ≤ r <∞ and 1 < s ≤ ∞. The conjugate
index to r is r′. For each n ∈ N and x = (x1, . . . , xn) ∈ En, we set

|||x|||(r,s)n = inf
{ m∑
k=1

‖αk‖s · µr,n(yk)
}
,

where the infimum is taken over all representations

x =
m∑
k=1

Mαk(yk)

for which α1, . . . , αm ∈ Cn, y1, . . . , ym ∈ En, and m ∈ N. It is clear that ||| · |||(r,s)n is a
norm on En.

The following is ‘dual’ to the proof of Theorem 4.1, and will also follow from Theorem
4.13, below, and so the direct proof is omitted.

Theorem 4.11. Let E be a normed space, and take r, s ∈ [1,∞] with 1 ≤ r ≤ s′ < ∞.
Then the sequence (||| · |||(r,s)n : n ∈ N) is a dual multi-norm based on E.
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Definition 4.12. Let E be a normed space, and take r, s ∈ [1,∞] with 1 ≤ r ≤ s′ <∞.
Then (||| · |||(r,s)n : n ∈ N) is the (r, s)-dual multi-norm based on E.

Let E be a normed space, and take p, q ∈ [1,∞). For n ∈ N and x = (x1, . . . , xn) ∈ En,
define an embedding

νE(x) : (λ1, . . . , λn) 7→ (〈x1, λ1〉, . . . , 〈xn, λn〉), `pn(E′)w → `qn.

Then νE(x) : `pn(E′)w → `qn is a bounded linear map, and we have ‖νE(x)‖ = ‖x‖(p,q)n ,
and so we have an isometric embedding

νE : (En, ‖ · ‖(p,q)n )→ B(`pn(E′)w, `qn). (4.3)

Now take r, s with 1 ≤ r < ∞ and 1 < s ≤ ∞. Then there is a continuous linear
surjection θE : `rn(E)w ⊗̂ `sn → En such that

θE(x⊗ α) = (α1x1, . . . , αnxn)

whenever x = (x1, . . . , xn) ∈ En and α = (α1, . . . , αn) ∈ `sn. Thus there is an isometric
isomorphism of Banach spaces

(`rn(E)w ⊗̂ `sn)/ker θE ∼= (En, ||| · |||(r,s)n ).

Theorem 4.13. Let E be a Banach space, and take p, q, r, s such that 1 ≤ p, q, r < ∞
and 1 < s ≤ ∞. Then there are isometric isomorphisms:

(i) (En, ‖ · ‖(p,q)n )′ ∼= ((E′)n, ||| · |||(p,q
′)

n );
(ii) (En, ||| · |||(r,s)n )′ ∼= ((E′)n, ‖ · ‖(r,s

′)
n ).

Proof. (i) It is easily checked that the following diagram commutes:

(`pn(E′)w ⊗̂ `q′n )′′
ν′E // (E′)n

`pn(E′)w ⊗̂ `q′n .

OO

θE′
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Hence we have isometric isomorphisms of Banach spaces

(En, ‖ · ‖(p,q)n )′ ∼= (`pn(E′)w ⊗̂ `q
′

n )′′/ker ν′E ∼= (`pn(E′)w ⊗̂ `q
′

n )/ker θE′ ∼= ((E′)n, ||| · |||(p,q
′)

n ).

(ii) Similarly, the following diagram commutes:

(E′)n
θ′E //

νE′
&&MMMMMMMMMMM B(`rn(E)w, `s

′

n )

B(`rn(E′′)w, `s
′

n )

j:T 7→T |En
OO

Hence there is an isometric isomorphism

(En, ||| · |||(r,s)n )′ ∼= im θ′E = im(j ◦ νE′).

By Proposition 4.10, there is an isometric isomorphism

im(j ◦ νE′) ∼= im νE′ ∼= ((E′)n, ‖ · ‖(r,s
′)

n ),

and so the result follows.
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Thus, in the case where 1 ≤ p ≤ q <∞, the dual of the multi-norm (‖ · ‖(p,q)n : n ∈ N)
based on E is the dual multi-norm (||| · |||(p,q

′)
n : n ∈ N) based on E′.

The following corollary resolves a ‘second dual question’ for the (p, q)-multi-norm
(defined when 1 ≤ p ≤ q <∞).

Corollary 4.14. Let E be a Banach space, and take p, q ∈ [1,∞). Then

(En, ‖ · ‖(p,q)n )′′ ∼= ((E′′)n, ‖ · ‖(p,q)n ).

4.1.5. Multi-norms on Hilbert spaces. We now consider an example which involves
Hilbert spaces. It will lead to an alternative description of the (2, 2)-multi-norm based
on a Hilbert space.

Let (H, ‖ · ‖) be a Hilbert space. (Basic facts about Hilbert spaces were recalled in
§1.2.6.) For each family H = {H1, . . . ,Hn}, where n ∈ N and each Hj is a closed subspace
of H and H = H1 ⊕⊥ · · · ⊕⊥ Hn, set

rH((x1, . . . , xn)) = (‖P1x1‖2 + · · ·+ ‖Pnxn‖2)1/2 = ‖P1x1 + · · ·+ Pnxn‖ (4.4)

for x1, . . . , xn ∈ H, where Pi : H → Hi for i ∈ Nn is the orthogonal projection, and then
set

‖(x1, . . . , xn)‖Hn = sup
H
rH((x1, . . . , xn)) (x1, . . . , xn ∈ H), (4.5)

where the supremum is taken over all such families H. (We allow the possibility that
Hj = {0} and Pj = 0 for some j ∈ Nn.)

The following result is easily checked.

Theorem 4.15. Let H be a Hilbert space. Then (‖ · ‖Hn : n ∈ N) is a multi-norm on the
family {Hn : n ∈ N}.

For example, let H = `2, and take n ∈ N and β1, . . . , βn ∈ C. Then

‖(β1δ1, . . . , βnδn)‖Hn =
( n∑
j=1

β2
j

)1/2

.

Definition 4.16. Let (H, ‖·‖) be a Hilbert space. Then the Hilbert multi-norm based on
H is the multi-norm (‖ · ‖Hn : n ∈ N) defined above. The rate of growth of this multi-norm
is denoted by (ϕHn (H) : n ∈ N).

The following results are based on remarks of Hung Le Pham.

Proposition 4.17. Let H be a Hilbert space, take n ∈ N, and x1, . . . , xn ∈ H. Then

‖(x1, . . . , xn)‖Hn = sup{|α1[e1, x1] + · · ·+ αn[en, xn]|}, (4.6)

taking the supremum over orthonormal sets {e1, . . . , en} in H and (α1, . . . , αn) ∈ (`2n)[1].

Proof. Set A = ‖(x1, . . . , xn)‖Hn and B = sup{|α1[e1, x1] + · · ·+ αn[en, xn]|}.
Given ε > 0, let {P1, . . . , Pn} be an orthogonal family of projections such that

‖P1x1‖2 + · · · + ‖Pnxn‖2 > A2 − ε. It follows from (1.14) that there is an orthonormal
set {e1, . . . , en} in H such that

‖P1x1‖2 + · · ·+ ‖Pnxn‖2 = [e1, x1]2 + · · ·+ [en, xn]2.
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Set αj = [ej , xj ]/(A+ ε) (j ∈ Nn). Then
n∑
j=1

|αj |2 ≤ 1 and
n∑
j=1

|αj [ej , xj ]| >
A2 − ε
A+ ε

.

Thus B ≥ (A2 − ε)/(A+ ε). Since this holds true for each ε > 0, we have B ≥ A.
Conversely, given an orthonormal set {e1, . . . , en} inH, there is an orthogonal decomp-

osition H = H1 ⊕⊥ · · · ⊕⊥ Hn such that ej ∈ Hj (j ∈ Nn), and then

|[ej , x]| ≤ ‖Pjx‖ (x ∈ H, j ∈ Nn).

Take α1, . . . , αn ∈ C such that
∑n
j=1 |αj |2 ≤ 1. Then

n∑
j=1

|αj [ej , xj ]| ≤
n∑
j=1

|αj |‖Pjx‖ ≤
( n∑
j=1

‖Pjx‖2
)1/2

≤ A

by the Cauchy–Schwarz inequality. Hence B ≤ A.
The result follows.

In the following result, Dn denotes the family of all orthonormal n-tuples of elements
in H, and the closure of co(Dn) is taken in the weak-∗ topology on Hn.

Proposition 4.18. Take n ∈ N, and let H be a Hilbert space with dimH ≥ n. Then the
closed unit ball of (Hn, µ2,n) is equal to co(Dn).

Proof. We write Bn for (Hn, µ2,n)[1], and we identify H with `2(I), for an index set I;
we may suppose that Nn is a subset of I.

It is clear from (3.4) that Dn ⊂ Bn, and so co(Dn) ⊂ Bn.
For the converse, take x = (x1, . . . , xn) ∈ Bn. Define S : H → H by setting

S(δi) = xi (i ∈ Nn), S(δi) = 0 (i ∈ I \ Nn).

Since µ2,n(x) ≤ 1, we see that ‖S‖ ≤ 1, and so S ∈ co(U(B(H)) by the Russo–Dye
theorem. Hence (x1, . . . , xn) = (S(δ1), . . . , S(δn)) ∈ co(Dn), as required.

Theorem 4.19. Let H be an infinite-dimensional Hilbert space. Then

‖(x1, . . . , xn)‖Hn = ‖(x1, . . . , xn)‖(2,2)
n (x1, . . . , xn ∈ H)

for each n ∈ N.

Proof. This follows from the two previous propositions.

Thus the Hilbert multi-norm and the (2, 2)-multi-norm on `2 are equal. It is natural
to ask if these multi-norms are also equal to the maximum multi-norm on `2; in fact,
they are equivalent to the maximum multi-norm, but not equal to it [20].

A more general version of following result will be proved in [20].

Theorem 4.20. Let H be an infinite-dimensional Hilbert space. Then the following multi-
norms based on H are mutually equivalent:

(a) the Hilbert multi-norm (‖ · ‖Hn );
(b) the maximum multi-norm (‖ · ‖max

n );
(c) the (p, p)-multi-norm (‖ · ‖(p,p)n ) for p ∈ [1, 2].

For the above multi-norms, the rate of growth is equivalent to (
√
n : n ∈ N).
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Further, the (p, p)-multi-norm and the (q, q)-multi-norms based on H are not equiva-
lent whenever p 6= q and max{p, q} > 2.

4.2. Standard q-multi-norms. We shall now construct some multi-norms based on
the Banach spaces Lp(Ω, µ) and M(K). We begin with the spaces Lp(Ω, µ).

4.2.1. Definition. Let (Ω, µ) be a measure space. For each p ∈ [1,∞), we consider the
Banach space E = Lp(Ω, µ), with the norm

‖f‖ =
(∫

Ω

|f |p
)1/p

=
(∫

Ω

|f |p dµ
)1/p

(f ∈ E),

as in §1.2.7. For a measurable subset X of Ω, we write rX for the seminorm on E specified
by

rX(f) = ‖fχX‖ =
(∫

X

|f |p
)1/p

(f ∈ E),

where we again suppress in the notation the dependence on p. (We take rX(f) = 0 when
X = ∅.)

Now take q ≥ p; we shall define a multi-norm based on E that depends on q.
Take n ∈ N. For each ordered partition X = (X1, . . . , Xn) of Ω into measurable

subsets and each f1, . . . , fn ∈ E, we set

rX((f1, . . . , fn)) = (rX1(f1)q + · · ·+ rXn(fn)q)1/q

=
((∫

X1

|f1|p
)q/p

+ · · ·+
(∫

Xn

|fn|p
)q/p)1/q

,

so that rX is a seminorm on En and

rX((f1, . . . , fn)) ≤ (‖f1‖q + · · ·+ ‖fn‖q)1/q.

Finally, we define

‖(f1, . . . , fn)‖[q]n = sup
X
rX((f1, . . . , fn)) (f1, . . . , fn ∈ E), (4.7)

where the supremum is taken over all such ordered partitions X. Then ‖ · ‖[q]n is a norm
on En.

In the case where q = p, we have

‖(f1, . . . , fn)‖[p]n = sup
X
‖f1|X1 + · · ·+ fn|Xn‖ (f1, . . . , fn ∈ E). (4.8)

In the case where q ≥ p and f1, . . . , fn ∈ E have disjoint support, we have

‖(f1, . . . , fn)‖[q]n = (‖f1‖q + · · ·+ ‖fn‖q)1/q; (4.9)

if, further, q = p, then
‖(f1, . . . , fn)‖[p]n = ‖f1 + · · ·+ fn‖. (4.10)

It is easily checked that (‖ · ‖[q]n : n ∈ N) is a multi-norm based on E: indeed, Axioms
(A1), (A2), and (A3) are immediate, and Axiom (A4) follows because

(αp + βp)1/p ≥ (αq + βq)1/q (α, β ∈ R+)



4.2. Standard q-multi-norms 89

whenever p ≤ q. Further, for each n ∈ N, we have

‖(f1, . . . , fn)‖[q]n ≤ (‖f1‖q + · · ·+ ‖fn‖q)1/q (f1, . . . , fn ∈ E). (4.11)

Definition 4.21. Let Ω be a measure space, and take p ≥ 1. Then, for each q ≥ p, the
standard q-multi-norm based on Lp(Ω) is the multi-norm (‖ · ‖[q]n : n ∈ N). The rate of
growth of this multi-norm is denoted by (ϕ[q]

n (Lp(Ω)) : n ∈ N).

At this point, it appears that the definition of the standard q-multi-norm based on
Lp(Ω) depends on the concrete representation of Lp(Ω) as a Banach space of functions.
We would wish that, if Lp(Ω1) and Lp(Ω2) are isometrically order-isomorphic Banach
lattices, then the corresponding standard q-multi-norms based on Lp(Ω 1) and on Lp(Ω 2)
are equal. We shall see in Theorem 4.36 that this is indeed the case; see also Theorem 4.37.

It follows from (4.11) that ϕ[q]
n (Lp(Ω)) ≤ n1/q.

We may consider these multi-norms (‖·‖[q]n : n ∈ N) as a function of q when q ∈ [p,∞);
clearly, for each n ∈ N, the norms ‖ · ‖[q]n decrease as q increases, and so the maximum
multi-norm among these multi-norms is (‖ · ‖[p]n : n ∈ N).

There is an equivalent way of defining the norm ‖(f1, . . . , fn)‖[q]n for f1, . . . , fn ∈ Lp(Ω)
in the special case where q = p. Indeed, set f = |f1| ∨ · · · ∨ |fn|, so that

f(x) = max{|f1(x)|, . . . , |fn(x)|} (x ∈ Ω).

Then we see immediately that

‖(f1, . . . , fn)‖[p]n = ‖f‖ =
(∫

Ω

(|f1| ∨ · · · ∨ |fn|)p
)1/p

. (4.12)

In particular, in the case where E = `p, we have

‖(f1, . . . , fn)‖[p]n =
( ∞∑
j=1

(|f1(j)| ∨ · · · ∨ |fn(j)|)p
)1/p

. (4.13)

[To see that the formula ‖(f1, . . . , fn)‖[q]n = ‖f‖ is correct only when q = p, consider the
case where X1 and X2 are disjoint subsets of N of cardinalities m and n, respectively,
and let fj be the characteristic function of Xj for j = 1, 2. By (4.7),

(‖(f1, f2)‖[q]2 )q = mq/p + nq/p

whereas ‖f‖q = (m + n)q/p, and we have mq/p + nq/p = (m + n)q/p for all m,n ∈ N if
and only if q = p.]

Suppose that 1 ≤ p ≤ q < ∞, and set E = `p. Take n ∈ N, and consider the
elements δ1, . . . , δn ∈ E[1]. Let X = (X1, . . . , Xn) be an ordered partition of N; suppose,
in fact, that i ∈ Xi (i ∈ Nn). For each q ≥ p, we have rX((δ1, . . . , δn)) = n1/q, and so
‖(δ1, . . . , δn)‖[q]n ≥ n1/q. It follows that

ϕ[q]
n (`p) = n1/q (n ∈ N). (4.14)

In particular, taking q = p, we see that ϕmax
n (`p) ≥ ϕ

[p]
n (`p) = n1/p for n ∈ N, so

recovering a result of Example 3.46.
Let n ∈ N, and let (αi) be a fixed element of Cn. Set xi = αiδi (i ∈ Nn). Then we

now have
‖(x1, . . . , xn)‖[q]n = (|α1|q + · · ·+ |αn|q)1/q (n ∈ N). (4.15)

Thus (En, ‖ · ‖[q]n ) contains `qn as a closed subspace.
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There does not seem to be an accessible, explicit formula for the dual of the standard
q-multi-norm based on Lp(Ω) in the general case where q ≥ p. Let (||| · |||[s]n : n ∈ N) denote
the dual multi-norm, based on Lr(Ω), to the standard q-multi-norm based on Lp(Ω); here
r and s are the conjugate indices to p and q, respectively, so that we have 1 < s ≤ r <∞.
Then we have an estimate

|||(λ1, . . . , λn)|||[s]n ≤ inf
X

{ n∑
k=1

( n∑
j=1

‖λj+k−1 | Xj‖s`r
)1/s}

for λ1, . . . , λn ∈ Lr(Ω) and n ∈ N, where the infimum is taken over all ordered partitions
X = (X1, . . . , Xn) of Ω into measurable subsets. For the special case where q = p, see
Example 4.47, below; unfortunately, the above estimate does not give the ‘correct’ value
even in this special case.

4.2.2. A comparison of multi-norms. Suppose that 1 ≤ p ≤ q <∞. We have defined
the (p, q)-multi-norm (‖ · ‖(p,q)n : n ∈ N) and the standard q-multi-norm (‖ · ‖[q]n : n ∈ N)
based on E := Lp(Ω), where Ω is a measure space. We shall now show that

(‖ · ‖[q]n : n ∈ N) ≤ (‖ · ‖(p,q)n : n ∈ N)

in EE in the notation of Definition 2.24.

Theorem 4.22. Let (Ω, µ) be a measure space, and suppose that 1 ≤ p ≤ q <∞. Then

‖(f1, . . . , fn)‖[q]n ≤ ‖(f1, . . . , fn)‖(p,q)n (f1. . . . , fn ∈ Lp(Ω, µ), n ∈ N).

Proof. We set r = p′, the conjugate index to p. Take n ∈ N and f1. . . . , fn ∈ Lp(Ω), and
then suppose that X = (X1, . . . , Xn) is an ordered partition of Ω. There exist elements
λ1, . . . , λn ∈ Lr(Ω) such that suppλi ⊂ Xi, such that ‖λi‖Lr = 1, and such that we have
〈fi, λi〉 = ‖fi|Xi‖Lp for i ∈ Nn. For each ζ1, . . . , ζn ∈ C, we have∥∥∥ n∑

i=1

ζiλi

∥∥∥
Lr

=
( n∑
i=1

|ζi|r
)1/r

,

and so, by (3.4),

µp,n(λ1, . . . , λn) = sup
{∥∥∥ n∑

i=1

ζiλi

∥∥∥
Lr

:
n∑
i=1

|ζi|r ≤ 1
}
≤ 1.

Thus

rX((f1, . . . , fn)) =
( n∑
i=1

‖fi|Xi‖qLp
)1/q

=
( n∑
i=1

〈fi, λi〉q
)1/q

≤ ‖(f1, . . . , fn)‖(p,q)n .

This holds for each ordered partition X of Ω, and so the result follows.

4.2.3. Maximality. The following result was pointed out by Paul Ramsden; a more
general version will be given in Theorem 4.54(i), below.

Theorem 4.23. Let Ω be a measure space. Then the standard 1-multi-norm and the
maximum multi-norm based on L1(Ω) are equal.
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Proof. Set E = L1(Ω). Fix n ∈ N, take f1, . . . , fn ∈ E, and set f = |f1| ∨ · · · ∨ |fn| in E.
For λ1, . . . , λn ∈ E′, it follows from Proposition 3.20(ii) that∣∣∣ n∑

j=1

〈fj , λj〉
∣∣∣ ≤ n∑

j=1

|〈fj , λj〉| ≤
n∑
j=1

〈|fj |, |λj |〉 ≤
〈
f,

n∑
j=1

|λj |
〉

≤ ‖f‖
∥∥∥ n∑
j=1

|λj |
∥∥∥ = ‖(f1, . . . , fn)‖[1]

n µ1,n(λ1, . . . , λn).

Hence ‖(f1, . . . , fn)‖max
n ≤ ‖(f1, . . . , fn)‖[1]

n by Theorem 3.33, giving the result.

Proposition 4.24. Suppose that 1 ≤ p < q < ∞. Then the (p, q)-multi-norm is not
equivalent to the maximum multi-norm on `p.

Proof. By Proposition 4.7, ϕ(1,q)
n (`1) ≤ n1/q (n ∈ N).

Suppose that p ∈ [1, 2]. By Theorem 3.54(i), ϕmax
n (`p) = n1/p (n ∈ N). Since there

is no constant C > 0 such that n1/p ≤ Cn1/q (n ∈ N), the two multi-norms are not
equivalent.

Suppose that p ∈ [2,∞). By Theorem 3.54(ii), ϕmax
n (`p) ∼ n1/2. Since there is no con-

stant C > 0 such that n1/2 ≤ Cn1/q (n ∈ N), the two multi-norms are not equivalent.

4.2.4. Equality of two multi-norms on L1(Ω). The first result of this section is
similar to that given in Proposition 4.18.

Let (Ω, µ) be a measure space, and set E = L1(Ω, µ). Then there is a compact space K
such that E′ is order-isometric to C(K); F := L∞(Ω, µ) is a C∗-subalgebra of C(K). For
n ∈ N, the weak-∗ topology on (E′)n as the dual of En is denoted by σn. In the following
result, co(S) denotes the σn-closure of the convex hull of a subset S of (E′)n.

For each n ∈ N, let Dn be the set of elements (λ1, . . . , λn) in Fn such that the
subsets suppλ1, . . . , suppλn of Ω are pairwise disjoint. Since Dn is balanced, co(Dn) is
also balanced, and hence absolutely convex.

Lemma 4.25. Let n ∈ N. Then (Fn, µ1,n)[1] = co(Dn).

Proof. Write Bn for the closed unit ball (Fn, µ1,n)[1]. Clearly we have Dn ⊂ Bn, and so
co(Dn) ⊂ Bn.

Assume towards a contradiction that there exists

λ = (λ1, . . . , λn) ∈ Bn \ co(Dn).

By the Hahn–Banach separation theorem, there exists f = (f1, . . . , fn) ∈ En such that∑n
i=1〈fi, λj〉 > 1, but |

∑n
i=1〈fi, µi〉| ≤ 1 (µ1, . . . , µn ∈ Dn). By the definition of the

standard 1-multi-norm (‖ · ‖[1]
n ) on E, we have

‖f‖[1]
n = sup

{ n∑
i=1

‖fi|Xi‖ : X = (X1, . . . , Xn)
}
,

where the supremum is taken over all ordered partitions X of Ω. For i ∈ Nn, we have
‖fi|Xi‖ = sup{|〈fi, µi〉| : µi ∈ L1(Xi)′[1]}, and so

‖f‖[1]
n = sup

{∣∣∣ n∑
i=1

〈fi, µi〉
∣∣∣ : µ1, . . . , µn ∈ Dn

}
≤ 1,
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whereas ‖f‖(1,1)
n ≥

∑n
i=1〈fi, λj〉 > 1. However ‖f‖[1]

n = ‖f‖max
n by Theorem 4.23, and so

‖f‖max
n < ‖f‖[1]

n , a contradiction.

Theorem 4.26. Let Ω be a measure space, and take q ≥ 1. Then the standard q-multi-
norm and the (1, q)-multi-norm based on L1(Ω) are equal.

Proof. Set E = L1(Ω, µ), and take n ∈ N and f = (f1, . . . , fn) ∈ En. By replacing Ω by⋃n
i=1 supp fi, we may suppose that Ω is σ-finite and hence that F = E′ in the notation

of Lemma 4.25. Then

‖f‖(1,q)n = sup
{( n∑

i=1

|〈fi, λi〉|q
)1/q

: µp,n(λ1, . . . , λn) ≤ 1
}

and
‖f‖[q]n = sup

{( n∑
i=1

|〈fi, λi〉|q
)1/q

: (λ1, . . . , λn) ∈ Dn

}
,

taking the supremum over all λ1, . . . , λn ∈ E′ in each case. By Lemma 4.25, the two
suprema are equal.

4.2.5. Equivalence of multi-norms on `p. We now ask when various multi-norms
based on the spaces `p are equivalent.

Take p, q such that 1 ≤ p ≤ q <∞, and set E = `p. Then we know that

‖f‖[q]n ≤ ‖f‖(p,q)n ≤ ‖f‖max
n (f ∈ En)

for each n ∈ N. We ask whether (‖ ·‖[q]n ) is equivalent to (‖ ·‖(p,q)n ), and whether (‖ ·‖(p,q)n )
is equivalent to (‖ · ‖max

n ), where each multi-norm is based on `p.
First suppose that p = 1. Then we saw in Theorem 4.23 that the answer to both these

questions is ‘yes’ when also q = 1 (with equality of norms). In the case where q > 1,
the (1, q)-multi-norm is not equivalent to the maximum multi-norm by Proposition 4.24.
However, by Theorem 4.26, ‖f‖[q]n = ‖f‖(1,q)n for f ∈ (`1)n, n ∈ N, and all q ≥ 1. Thus we
have complete answers when p = 1, and so we shall now consider the case where p > 1.

We shall show first that (‖ · ‖[q]n ) is not equivalent to (‖ · ‖(p,q)n ) on `p in certain cases
when p > 1.

Theorem 4.27. Take p, q such that 1 < p ≤ q < ∞. Suppose that either 2 ≤ p ≤ q

or that 1 < p < 2 and p ≤ q < p/(2 − p). Then the multi-norms (‖ · ‖[q]n : n ∈ N) and
(‖ · ‖(p,q)n : n ∈ N) based on `p are not equivalent.

Proof. The conjugate index to p is denoted by r.
Assume towards a contradiction that the two multi-norms are equivalent, so that there

exists C > 0 such that
‖(f1, . . . , fk)‖(p,q)k ≤ C‖(f1, . . . , fk)‖[q]k

for each k ∈ N and each f1, . . . , fk ∈ `p.
Fix k ∈ N. For i ∈ Nk, take

fi =
k∑
j=1

ζ−ijδj = (ζ−i, ζ−2i, . . . , ζ−ki, 0, 0, . . . ) ∈ `p,

where ζ = exp(2πi/k), and set f = (f1, . . . , fk).
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For each ordered partition X = (X1, . . . , Xk) of Nk, we have

rX((f1, . . . , fk)) ≤ (|X1|q/p + · · ·+ |Xk|q/p)1/q ≤ k1/p,

and so ‖f‖[q]k = k1/p.
Now take λ = (λ1, . . . , λk), where

λi =
k∑
j=1

ζijδj = (ζi, ζ2i, . . . , ζki, 0, 0, . . . ) ∈ `r.

As in Lemma 1.1, we set zi =
∑k
j=1 ζjζ

ij (i ∈ Nk), so that∥∥∥ k∑
i=1

ζiλi

∥∥∥
`r

=
( k∑
i=1

|zi|r
)1/r

.

It follows from (3.4) that

µ2,k(λ) = sup
{( k∑

i=1

|zi|r
)1/r

:
k∑
i=1

|ζi|2 ≤ 1
}
.

In the case where 2 ≤ p ≤ q, we have µp,k(λ) ≤ µ2,k(λ), and so, by Lemma 1.1(i),
µp,k(λ) ≤ k1/r. Hence

‖f‖(p,q)k ≥ 1
k1/r

( k∑
i=1

|〈fi, λi〉|q
)1/q

=
1

k1/r
(k · kq)1/q = k1/p+1/q.

We conclude that k1/p+1/q ≤ Ck1/p for each k ∈ N, a contradiction.
In the case where 1 < p < 2, so that r > 2, it follows from (1.2) that( k∑

i=1

|ζi|2
)1/2

≤ k1/2−1/r

whenever
∑k
i=1 |ζi|r ≤ 1, and so, using Lemma 1.1(i) again,∥∥∥ k∑
i=1

ζiλi

∥∥∥
`r
≤
∥∥∥ k∑
i=1

ζiλi

∥∥∥
`2

=
( k∑
i=1

|zi|2
)1/2

≤ k1/2 · k1/2−1/r = k1/p.

Thus µp,k(λ) ≤ k1/p, and so

‖f‖(p,p)k ≥ 1
k1/p

( k∑
i=1

|〈fi, λi〉|q
)1/q

=
1

k1/p
(k · kq)1/q = k1+1/q−1/p.

We conclude that k1+1/q−1/p ≤ Ck1/p for each k ∈ N. Thus 1 + 1/q ≤ 2/p, and so
q ≥ p/(2− p), again a contradiction of an hypothesis.

Thus the two multi-norms are not equivalent in the cases stated.

We do not know if the two multi-norms are equivalent in the case where 1 < p < 2
and q ≥ p/(2− p). This point, and more general ones, will be discussed in [20].

Corollary 4.28. Let p ≥ 1. Then the two multi-norms

(‖ · ‖[p]n : n ∈ N) and (‖ · ‖max
n : n ∈ N)

based on `p are equivalent if and only if p = 1.
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We noted in §3.1 that the rates of growth of two equivalent multi-norms are similar.
The next result, taken together with Corollary 4.28, shows that the converse statement
is not true.

Proposition 4.29. Take p ≥ 1 and n ∈ N. Then:

(i) ϕ
[p]
n (`p) = n1/p;

(ii) ϕmax
n (`p) = n1/p when p ∈ [1, 2] and ϕmax

n (`p) ∼
√
n when p ∈ [2,∞).

Thus, for p ∈ (1, 2], we have (ϕ[p]
n (`p)) ∼ (ϕmax

n (`p)), but the multi-norms (‖ · ‖[p]n ) and
(‖ · ‖max

n ) based on `p are not equivalent.

Proof. This follows from (4.14), Theorem 3.54, and Corollary 4.28.

There remains the question whether the two multi-norms (‖ · ‖(p,p)n ) and (‖ · ‖max
n )

based on `p are equivalent. We know from Theorem 4.26 that they are equivalent in the
case where p = 1, and, as we remarked in Theorem 4.20, they are equivalent in the case
where p = 2. The question for other values of p will be resolved in [20].

4.2.6. The spaces M(K). Throughout this section, K is a non-empty, locally compact
space. For q ≥ 1, we shall define the standard q-multi-norm based on M(K) in essentially
the same way as above.

Take q ≥ 1. For each ordered partition X = (X1, . . . , Xn) of K into (Borel) measurable
subsets and each µ1, . . . , µn ∈M(K), we set

rX((µ1, . . . , µn)) = (‖µ1|X1‖q + · · ·+ ‖µn|Xn‖q)1/q,

so that rX is a seminorm on M(K)n and

rX((µ1, . . . , µn)) ≤ (‖µ1‖q + · · ·+ ‖µn‖q)1/q (µ1, . . . , µn ∈M(K)).

Finally, we define

‖(µ1, . . . , µn)‖[q]n = sup
X
rX((µ1, . . . , µn)) (µ1, . . . , µn ∈M(K)),

where the supremum is taken over all such ordered partitions X. Then ‖ · ‖[q]n is a norm
on M(K)n, and it is again easily checked that (‖ · ‖[q]n : n ∈ N) is a multi-norm on
{M(K)n : n ∈ N}.

Definition 4.30. Let K be a non-empty, locally compact space. For each q ≥ 1, the
standard q-multi-norm based on M(K) is the multi-norm (‖ · ‖[q]n : n ∈ N), with rate of
growth (ϕ[q]

n (M(K)) : n ∈ N).

We shall see in Theorem 4.37 that the standard q-multi-norm on a space of the form
M(K) is a property of the Banach space M(K).

Theorem 4.31. Let K be a non-empty, locally compact space. Then the standard 1-multi-
norm (‖ · ‖[1]

n : n ∈ N) based on M(K) is given by

‖(µ1, . . . , µn)‖[1]
n = ‖ |µ1| ∨ · · · ∨ |µn| ‖ (µ1, . . . , µn ∈M(K)). (4.16)

Proof. Take µ1, . . . , µn ∈M(K), and set µ = |µ1| ∨ · · · ∨ |µn| ∈M(K).



4.2. Standard q-multi-norms 95

For each ordered partition X = (X1, . . . , Xn) of K, we have

‖µ1|X1‖+ · · ·+ ‖µn|Xn‖ =
n∑
i=1

|µi|(Xi) ≤
n∑
i=1

µ(Xi) = ‖µ‖.

Thus ‖(µ1, . . . , µn)‖[1]
n ≤ ‖ |µ1| ∨ · · · ∨ |µn| ‖.

For the opposite inequality, we shall show that, for each n ≥ 2 and µ1, . . . , µn ∈M(K),
there is an ordered partition X = (X1, . . . , Xn) of K such that

‖µ‖ = ‖µ1|X1‖+ · · ·+ ‖µn|Xn‖.

Consider first the case where n = 2 and µ1, µ2 ∈M(K). Let P = X1 and N = X2 be
the measurable subsets of K associated with |µ1| − |µ2| in the Hahn decomposition. (See
page 22.) Then

‖ |µ1| ∨ |µ2| ‖ = (|µ1| ∨ |µ2|)(X1) + (|µ1| ∨ |µ2|)(X2)

= |µ1|(X1) + |µ2|(X2) = ‖µ1|X1‖+ ‖µ2|X2‖,

and so (X1, X2) is the required partition.
The result for a general n ∈ N follows by an easy induction.

We shall see in Theorem 4.54(i) that the standard 1-multi-norm based on M(K) is
the maximum multi-norm on M(K).

Recall that the topology of a Stonean space has a basis consisting of clopen subsets;
the space βN is a Stonean space.

Proposition 4.32. Let K be a Stonean space, and take q ≥ 1. Then, for each n ∈ N
and µ1, . . . , µn ∈M(K), we have

‖(µ1, . . . , µn)‖[q]n = sup(‖µ1|K1‖q + · · ·+ ‖µn|Kn‖q)1/q,

taking the supremum over all ordered partitions (K1, . . . ,Kn) of K into clopen subspaces.

Proof. Clearly,

‖(µ1, . . . , µn)‖[q]n ≥ (‖µ1|K1‖q + · · ·+ ‖µn|Kn‖q)1/q

for each such ordered partition (K1, . . . ,Kn).
Now fix ε > 0, and choose an ordered partition X = (X1, . . . , Xn) of K into measur-

able subsets such that

rX((µ1, . . . , µn)) > ‖(µ1, . . . , µn)‖[q]n − ε.

Set µ = |µ1|+ · · ·+ |µn|. Since µ is regular, there exists a family {L1, . . . , Ln} of clopen
subsets of K such that µ(Li4Xi) < ε (i ∈ Nn). Set K1 = L1 and Ki = Li\(L1∪· · ·∪Li−1)
for i = 2, . . . , n, so that (K1, . . . ,Kn) is an ordered partition of K into clopen subspaces.
Then

µ(Ki 4Xi) < ε+
i−1∑
j=1

µ(Li ∩ Lj) < 2nε (i = 2, . . . , n),
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where in the last inequality we also use the fact that Li ∩ Lj = ∅ when j < i. Thus we
see that

rX((µ1, . . . , µn)) <
( n∑
i=1

(‖µi|Ki‖+ 2nε)q
)1/q

,

and hence that

‖(µ1, . . . , µn)‖[q]n <
( n∑
i=1

‖µi|Ki‖q
)1/q

+O(ε) as ε↘ 0.

The result follows.

4.2.7. The Schauder multi-norm. We now give an example related to the standard
p-multi-norm on `p.

Let (E, ‖ · ‖) be a Banach space. A series
∑∞
n=1 xn in E is said to converge uncondi-

tionally if the series
∑∞
n=1 εnxn converges in E whenever εn ∈ {1,−1} (n ∈ N). This is

equivalent to the requirement that
∑∞
n=1 xσ(n) converges in E for each σ ∈ SN.

Now suppose that E has a Schauder basis {en : n ∈ N}, so that each x ∈ E has a
unique expansion in the form

x =
∞∑
n=1

αnen,

where αn ∈ C (n ∈ N). The basis {en : n ∈ N} is an unconditional basis if, for each x ∈ E,
the corresponding series

∑∞
n=1 αnen converges unconditionally. The standard basis of `p

(for p ≥ 1) and of c0 is unconditional in the appropriate Banach space. We note that the
Banach spaces Lp(I) have an unconditional basis whenever p > 1, but that the Banach
spaces L1(I) and C(I) do not have an unconditional basis.

For details of these and related results about unconditional bases, see [6, §3.1], [52, I,
§1.c], or [74, §II.D], for example.

We now define∣∣∣∣∣∣∣∣∣ ∞∑
n=1

αnen

∣∣∣∣∣∣∣∣∣ = sup
{∥∥∥ ∞∑

n=1

αnβnen

∥∥∥ : |βn| ≤ 1 (n ∈ N)
}
.

As in [52, I, p. 19], ||| · ||| is a norm on E such that

‖x‖ ≤ |||x||| ≤ C‖x‖ (x ∈ E)

for some constant C ≥ 1. The original norm is 1-unconditional if the modified norm
coincides with the original one. In the case where E = `p for p ≥ 1, the usual norm is
1-unconditional.

Now suppose that ‖ · ‖ is a 1-unconditional norm on E. For each non-empty subset S
of N, define

PS :
∞∑
n=1

αnen 7→
∑
n∈S

αnen, E → E,

so that ‖PS‖ = 1. Let S = (S1, . . . , Sn) be an ordered partition of N, say into infinite
subsets of N, and define

rS((x1, . . . , xn)) = ‖PS1(x1) + · · ·+ PSn(xn)‖ (x1, . . . , xn ∈ E),
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and then set

‖(x1, . . . , xn)‖n = sup
S
rS((x1, . . . , xn)) (x1, . . . , xn ∈ E),

where the supremum is taken over all such ordered partitions S. It is again easily checked
that (‖ · ‖n : n ∈ N) is a multi-norm on {En : n ∈ N}.

In the case where E = `p, these norms are exactly the standard p-multi-norms on `p

of §4.2.1.

Definition 4.33. Let (E, ‖ · ‖) be a Banach space with a 1-unconditional norm. Then
the Schauder multi-norm on {En : n ∈ N} is the multi-norm defined above.

In particular, let E = Ck for some k ∈ N, and let ‖ · ‖ be a norm on E such that

‖(ζ1z1, . . . , ζkzk)‖ = ‖(z1, . . . , zk)‖ (z1, . . . , zk ∈ C, ζ1, . . . , ζk ∈ T).

Then we can generate a Schauder multi-norm on {En : n ∈ N}.

4.2.8. Abstract q-multi-norms. We now give a more abstract version of the standard
q-multi-norm on the space Lp(Ω), where Ω is a measure space. This subsection is based
on discussions with Hung Le Pham.

Let E be a σ-Dedekind complete Banach lattice. Recall from (1.27) that, for each
v ∈ E+, there is a certain positive linear projection Pv with ‖Pv‖ ≤ 1. Now take q ≥ 1
and n ∈ N. For each v = (v1, . . . , vn) ∈ En with |vi| ∧ |vj | = 0 for i, j ∈ Nn with i 6= j,
set

rv((x1, . . . , xn)) =
( n∑
i=1

‖P|vi|xi‖
q
)1/q

(x1, . . . , xn ∈ E).

Next define

‖(x1, . . . , xn)‖[q]n = sup
v
rv((x1, . . . , xn)) (x1, . . . , xn ∈ E),

where the supremum is taken over all v = (vi) ∈ En with |vi| ∧ |vj | = 0 for i, j ∈ Nn with
i 6= j.

Let n ∈ N, and take q ≥ 1. Then it is obvious that ‖ · ‖[q]n is a norm on En. Since
P|x|(x) = x (x ∈ E), we have ‖x‖[q]1 = ‖x‖ (x ∈ E). Moreover, we see that

‖(x1, . . . , xn)‖[q]n = sup
( n∑
i=1

‖yi‖q
)1/q

(x1, . . . , xn ∈ E), (4.17)

where the supremum is taken over y1, . . . , yn ∈ E+ with yi ≤ |xi| (i ∈ Nn) and yi∧yj = 0
for i, j ∈ Nn with i 6= j.

The following is clear.

Theorem 4.34. Let (E, ‖ · ‖) be a σ-Dedekind complete Banach lattice, and take q ≥ 1.
Then (‖ · ‖[q]n : n ∈ N) is a special-norm; it is a multi-norm if and only if

‖x+ y‖q ≥ ‖x‖q + ‖y‖q for x, y ∈ E with |x| ∧ |y| = 0.

In the case where E is an ALp-space and q ≥ p, (‖ · ‖[q]n : n ∈ N) is a multi-norm on
{En : n ∈ N}.



98 4. Specific examples of multi-norms

Definition 4.35. Let (E, ‖ · ‖) be an ALp-space, and take q ≥ p. Then (‖ · ‖[q]n : n ∈ N)
is the abstract q-multi-norm based on E.

For example, suppose that p ≥ 1 and E = Lp(Ω) for a measure space Ω and q ≥ p, or
that E = M(K) for a non-empty, locally compact space K and q ≥ 1. Then the abstract
q-multi-norm (‖ · ‖[q]n : n ∈ N) is precisely the standard q-multi-norm of Definition 4.21
or 4.30. Thus the following theorem follows easily from (4.17).

Theorem 4.36. Let E be the Banach lattice Lp(Ω) for a measure space Ω and p ≥ 1, or
the Banach lattice M(K) for a non-empty, locally compact space K. Suppose that q ≥ p

or q ≥ 1, respectively. Then the standard q-multi-norm on E does not depend on the
particular realization of E as an Lp-space or as a space of measures; it depends on only
the norm and the lattice structures of E.

In fact, more can be said. Let E be an ALp-space, and take q ≥ p. In Definition 4.35,
we defined the abstract q-multi-norm based on E. We shall now show that the abstract
q-multi-norms based on two ALp-spaces which are just isometrically isomorphic are equal
whenever p 6= 2.

The first result is a special case of Theorem 4.39, given below, but we give a separate
short proof.

Theorem 4.37. Let Ω be a measure space, and take q ≥ 1. Then the standard q-multi-
norm on L1(Ω) is determined by the Banach-space structure of L1(Ω).

Proof. By Theorem 4.26, the standard q-multi-norm and the (1, q)-multi-norm based
on L1(Ω) are equal. However, the (1, q)-multi-norm is determined by the Banach-space
structure of L1(Ω).

We shall now consider the ‘second dual question’ (cf. Corollary 4.14): we should like
the second dual of the abstract q-multi-norm on Lp(Ω) or M(K) to be the abstract q-
multi-norm on the second dual of the respective space. In the case of Lp(Ω) for p > 1,
this is immediate because Lp(Ω) is then a reflexive Banach space, and so it suffices to
consider the spaces L1(Ω) and M(K), which are AL-spaces.

Theorem 4.38. Let E be an AL-space. For each q ≥ 1, the second dual of the abstract
q-multi-norm based on E is the abstract q-multi-norm based on E′′.

Proof. The standard q-multi-norm on the second dual of an AL-space is the same whether
the second dual be considered as a measure space or as an L1-space, and is equal to the
abstract q-multi-norm by Theorem 4.36; by Theorem 4.26, it is the (1, q)-multi-norm,
say on a space L1(Ω). Also by Theorem 4.26, the standard q-multi-norm on E is the
(1, q)-multi-norm. Thus the result follows from Corollary 4.14.

We now extend Theorem 4.37 to multi-norms based on Lp(Ω) when p 6= 2. In the fol-
lowing result (‖ · ‖[q]n : n ∈ N) denotes the abstract q-multi-norm based on both E and F .

Theorem 4.39. Take p, q with 1 ≤ p ≤ q < ∞ and p 6= 2. Suppose that both E and F

are ALp-spaces and that U : E → F is an isometric isomorphism. Then
U (n) : (En, ‖ · ‖[q]n )→ (Fn, ‖ · ‖[q]n )

is an isometry for each n ∈ N.
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Proof. By Theorem 1.38(i), we may suppose that E = Lp(Ω 1) and F = Lp(Ω 2), where
Ω 1 and Ω 2 are measure spaces.

Fix n ∈ N. In our setting, we have

‖(f1, . . . , fn)‖[q]n = sup
( n∑
i=1

‖pi · fi‖q
)1/q

(f1, . . . , fn ∈ Lp(Ω 1)),

where the supremum is taken over the collection, say Cn,E , of all tuples (p1, . . . , pn) of
disjoint projections in L∞(Ω 1) and pi · fi is the L∞(Ω 1)-module product in E; a similar
formula holds for elements in Fn.

By Lamperti’s theorem, Theorem 1.11 (which applies because p 6= 2), we see that U
has the form

U : f 7→ h · Tσf, Lp(Ω1)→ Lp(Ω2),

where h : Ω2 → C and Tσ ∈ B(Lp(Ω1), Lp(Ω2)) is induced by a regular set isomorphism σ.
Note that Tσ extends to a ∗-isomorphism from the algebra of all measurable functions
on Ω1 (modulo null functions), and so Tσ restricts to a ∗-isomorphism from L∞(Ω 1) to
L∞(Ω 2). For each p ∈ L∞(Ω 1) and f ∈ Lp(Ω1), we have

Tσ(p) · Uf = Tσ(p)h · Tσf = hTσ(pf),

and so U(p · f) = Tσ(p) · Uf . Hence, for each n ∈ N and f1, . . . , fn ∈ Lp(Ω 1), we have

‖(Uf1, . . . , Ufn)‖[q]n = sup
(qi)∈Cn,F

( n∑
i=1

‖qi · Ufi‖q
)1/q

= sup
(pi)∈Cn,E

( n∑
i=1

‖U(pi · fi)‖q
)1/q

= sup
(pi)∈Cn,E

( n∑
i=1

‖pi · fi‖q
)1/q

= ‖(f1, . . . , fn)‖[q]n ,

and so U (n) is an isometry, as required.

Theorem 4.40. Let E be an ALp-space, where p ≥ 1 and p 6= 2. Then, for each q ≥ p,
the abstract q-multi-norms based on E depends on only the Banach space E, and not on
its lattice structure.

4.3. Lattice multi-norms. We now define a ‘lattice multi-norm’ based on a Banach
lattice. Basic facts about Banach lattices were recalled in §1.3.

4.3.1. Multi-norms and Banach lattices. We define a multi-norm and a dual multi-
norm naturally connected with a Banach lattice.

Definition 4.41. Let (E, ‖ · ‖) be a Banach lattice. For n ∈ N and x1, . . . , xn ∈ E, set

‖(x1, . . . , xn)‖Ln = ‖ |x1| ∨ · · · ∨ |x1| ‖, ‖(x1, . . . , xn)‖DLn = ‖ |x1|+ · · ·+ |x1| ‖.

Theorem 4.42. Let (E, ‖ · ‖) be a Banach lattice. Then the sequence (‖ · ‖Ln : n ∈ N) is
a multi-norm based on E, and (‖ · ‖DLn : n ∈ N) is a dual multi-norm based on E

Proof. This is immediately checked.
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Definition 4.43. Let (E, ‖ · ‖) be a Banach lattice. Then (‖ · ‖Ln : n ∈ N) is the lattice
multi-norm based on {En : n ∈ N} and (‖ · ‖DLn : n ∈ N) is the dual lattice multi-norm
based on {En : n ∈ N}. The rate of growth of the lattice multi-norm is denoted by
(ϕLn(E) : n ∈ N).

Theorem 4.44. Let (E, ‖·‖) be a Banach lattice. Then the dual of the lattice multi-norm
on {En : n ∈ N} is the dual lattice multi-norm on {(E′)n : n ∈ N}.

Proof. Let (‖ · ‖Ln : n ∈ N) be the lattice multi-norm on the family {En : n ∈ N}.
For n ∈ N, write ‖ · ‖′n for the dual norm to ‖ · ‖Ln on (E′)n. We must prove that

‖(λ1, . . . , λn)‖′n = ‖ |λ1|+ · · ·+ |λn| ‖ (λ1, . . . , λn ∈ E′). (4.18)

Indeed, take λ1, . . . , λn ∈ E′, and write λ = |λ1|+ · · ·+ |λn| ∈ E′.
Suppose that x1, . . . , xn ∈ E with ‖(x1, . . . , xn)‖Ln ≤ 1, and set

x = |x1| ∨ · · · ∨ |xn|,

so that ‖x‖ ≤ 1. Using (1.32), we see that

|〈(x1, . . . , xn), (λ1, . . . , λn)〉| ≤
n∑
j=1

|〈xj , λj〉| ≤
n∑
j=1

〈|xj |, |λj |〉 ≤ 〈x, λ〉,

and hence that ‖(λ1, . . . , λn)‖′n ≤ ‖λ‖.
Given ε > 0, there exists x ∈ E+ with ‖x‖ = 1 and 〈x, λ〉 > ‖λ‖ − ε. It follows

from Proposition 1.35 that, for each j ∈ Nn, there exists yj ∈ E with |yj | ≤ x and
〈yj , λ〉 > 〈x, |λ|〉 − ε. We have |y1| ∨ · · · ∨ |yn| ≤ x, and so

‖(y1, . . . , yn)‖Ln = ‖ |y1| ∨ · · · ∨ |yn| ‖ ≤ ‖x‖ ≤ 1.

Also,

|〈(y1, . . . , yn), (λ1, . . . , λn)〉| =
∣∣∣ n∑
j=1

〈yj , λj〉
∣∣∣ ≥ n∑

j=1

〈x, |λj |〉 − nε

= 〈x, |λ|〉 − nε > ‖λ‖ − (n+ 1)ε,

and so ‖(λ1, . . . , λn)‖′n ≥ ‖λ‖ − (n + 1)ε. This holds true for each ε > 0, and so
‖(λ1, . . . , λn)‖′n ≥ ‖λ‖.

Thus (4.18) holds.

Theorem 4.45. Let (E, ‖ ·‖) be a Banach lattice. Then the dual of the dual lattice multi-
norm on {En : n ∈ N} is the lattice multi-norm on {(E′)n : n ∈ N}.

Proof. This is similar to the above proof.

Corollary 4.46. Let (E, ‖ · ‖) be a Banach lattice. Then the second dual of the lattice
multi-norm on {En : n ∈ N} is the lattice multi-norm on {(E′′)n : n ∈ N}.

Example 4.47. Let Ω be a measure space, take p ≥ 1, and let E be the Banach lattice
Lp(Ω). Then the corresponding lattice multi-norm {(En, ‖ · ‖n) : n ∈ N} is given by

‖(f1, . . . , fn)‖Ln =
(∫

Ω

(|f1| ∨ · · · ∨ |fn|)p
)1/p

= ‖(f1, . . . , fn)‖[p]n ,
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where we are using (4.12). Thus the lattice multi-norm and the standard p-multi-norm
based on E coincide.

It follows that the dual of the standard p-multi-norm based on Lp(Ω) is given by

|||(λ1, . . . , λn)|||[r]n = ‖ |λ1|+ · · ·+ |λn| ‖Lr(Ω)

for λ1, . . . , λn ∈ Lr(Ω) and n ∈ N, where r = p′.

Example 4.48. Let K be a non-empty, locally compact space, so that the Banach space
(M(K), ‖ · ‖) is a Banach lattice. Then the corresponding lattice multi-norm based on
M(K) is just the standard 1-multi-norm; for this, see Theorem 4.31.

Definition 4.49. Let (E, ‖ · ‖) be a Banach lattice. Then a multi-norm (‖ · ‖n : n ∈ N)
on {En : n ∈ N} is compatible with the lattice structure if, for each n ∈ N, we have

‖(x1, . . . , xn)‖n ≤ ‖(y1, . . . , yn)‖n
whenever |xi| ≤ |yi| in ER for each i ∈ Nn.

Proposition 4.50. Let (E, ‖ · ‖) be a Banach lattice. Then the lattice multi-norm is the
maximum multi-norm which is compatible with the lattice structure.

Proof. Certainly the lattice multi-norm (‖ · ‖Ln : n ∈ N) is compatible with the lattice
structure. Let (‖ · ‖n : n ∈ N) be any multi-norm which is compatible with the lattice
structure. Take n ∈ N and x1, . . . , xn ∈ E, and set x = |x1| ∨ · · · ∨ |xn|. Then

‖(x1, . . . , xn)‖n ≤ ‖(x, . . . , x)‖n = ‖x‖ = ‖(x1, . . . , xn)‖Ln ,

and so the lattice multi-norm is the maximal norm with this property.

Proposition 4.51. Let (E, ‖ · ‖) be a Banach lattice, let n ∈ N, and suppose that

E = E1 ⊕⊥ · · · ⊕⊥ En.

Then
‖(x1, . . . , xn)‖Ln = ‖ |x1|+ · · ·+ |xn| ‖ = ‖x1 + · · ·+ xn‖

whenever xj ∈ Ej for j ∈ Nn.

Proof. This follows immediately from (1.26).

Thus the lattice multi-norm and the dual lattice multi-norm coincide on elements
(x1, . . . , xn) ∈ En such that xj ∈ Ej for j ∈ Nn.

The following result is easily checked.

Proposition 4.52. Let E be a Banach lattice, and let F be a closed subspace which is
an order-ideal in E. Then the multi-norm defined by the Banach lattice E/F coincides
with the quotient multi-norm.

There is one circumstance in which we can identify the lattice multi-norm as the
maximum multi-norm.

Proposition 4.53. Let (E, ‖ · ‖) be a Banach lattice, and take n ∈ N. Then

µ1,n(x1, . . . , xn) ≤ ‖ |x1|+ · · ·+ |xn| ‖ (x1, . . . , xn ∈ E).
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Further, suppose that E is an AM -space. Then

µ1,n(x1, . . . , xn) = ‖ |x1|+ · · ·+ |xn| ‖ (x1, . . . , xn ∈ E),

and the dual (µ′1,n : n ∈ N) is equal to the maximum multi-norm based on E′.

Proof. The first part of the proposition follows immediately from (3.5) (and also from
Theorems 3.19 and 4.42); see also [39, 18.4].

To show that (µ′1,n : n ∈ N) is equal to the maximum multi-norm based on E′, we
must show that their respective dual norms are equal on the family {(E′′)n : n ∈ N}.
By Theorem 3.33, the dual of the maximum multi-norm on {(E′)n : n ∈ N} is the weak
1-summing norm on {(E′′)n : n ∈ N}, and, by Proposition 3.17, the latter norm is µ′′1,n.
Thus the last clause follows.

Theorem 4.54. Let (E, ‖ · ‖) be a Banach lattice.

(i) Suppose that E is an AL-space. Then the lattice multi-norm is the maximum multi-
norm based on E.

(ii) Suppose that E is an AM -space. Then the lattice multi-norm is the minimum multi-
norm based on E.

Proof. (i) By Theorem 4.44, the dual of the lattice multi-norm based on E is the dual
lattice multi-norm based on E′. The dual of the maximum multi-norm based on E is
(µ1,n : n ∈ N). By Theorem 1.37, E′ is an AM -space, and so, by Proposition 4.53, the
latter two multi-norms are equal on the family {(E′)n : n ∈ N}. Thus the result follows.

(ii) Using (1.37), we see that

‖(x1, . . . , xn)‖Ln = ‖ |x1| ∨ · · · ∨ |xn| ‖ = max{‖ |x1| ‖, . . . , ‖ |xn| ‖}
= max{‖x1‖, . . . , ‖xn‖} = ‖(x1, . . . , xn)‖min

n

for each n ∈ N and x1, . . . , xn ∈ E. Thus the lattice multi-norm is the minimum multi-
norm on {En : n ∈ N}.

The following corollary gives a different proof of Theorem 4.23.

Corollary 4.55. Let Ω be a measure space. Then the standard 1-multi-norm based on
L1(Ω) is the maximum multi-norm.

Proof. This follows from Example 4.47 and Theorem 4.54(i).

4.3.2. A representation theorem. The following theorem gives a general representa-
tion theorem for multi-normed spaces. It shows a universal property of the lattice multi-
norms of this section; the result follows from a theorem of Pisier stated as [53, Théorème
2.1] and translated into our notation via Theorem 2.42.

Theorem 4.56. Let ((En, ‖ · ‖n) : n ∈ N) be a multi-Banach space. Then there is a
Banach lattice X and an isometric embedding J : E → X such that

‖(Jx1, . . . , Jxn)‖Ln = ‖(x1, . . . , xn)‖n (x1, . . . , xn ∈ E).

for each n ∈ N.

Thus our multi-normed spaces are the ‘sous-espace de trellis’ of [53, Définition 3.1].
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As noted in [53, p. 18], a lattice multi-norm corresponding to the minimum multi-
norm is easily described. Indeed, let E be a Banach space, and set K = (E′[1], σ(E′, E)),
a compact space, so that C(K) is a Banach lattice. Then the map

J : x 7→ ι(x) | K, E → C(K),
is an isometry, and

‖(Jx1, . . . , Jxn)‖Ln = ‖(x1, . . . , xn)‖min
n (x1, . . . , xn ∈ E).

A description of a lattice multi-norm corresponding to the maximum multi-norm
is also given in [53, Proposition 3.1]. Indeed, let E be a Banach space, and then set
Γ = B(E, `1)[1], so that `∞(Γ, `1) is a Banach lattice. Then the map

J : x 7→ (Tx : T ∈ Γ), E → `∞(Γ, `1),
is an isometry, and

‖(Jx1, . . . , Jxn)‖Ln = ‖(x1, . . . , xn)‖max
n (x1, . . . , xn ∈ E).

4.4. Summary. We collect here summary descriptions of the main multi-norms that we
have defined, their dual multi-norms, and their rates of growth.

1. The minimum multi-norm ((En, ‖ · ‖min
n ) : n ∈ N) based on a normed space E is

defined by
‖(x1, . . . , xn)‖min

n = max
i∈Nn

‖xi‖ (x1, . . . , xn ∈ E).

The dual multi-norm is the maximum dual multi-norm based on E′. The rate of growth
of the minimum multi-norm is given by ϕmin

n (E) = 1 (n ∈ N).
2. The maximum multi-norm based on a normed space E is denoted by

((En, ‖ · ‖max
n ) : n ∈ N).

The dual multi-norm is (µ1,n : n ∈ N), where µ1,n is the weak 1-summing norm on
(E′)n. The rate of growth of the maximum multi-norm (for E infinite dimensional)
satisfies √

n ≤ ϕmax
n (E) = π

(n)
1 (E′) ≤ n (n ∈ N),

and both bounds can be attained. For example, we have the following.

Let Lp be an infinite-dimensional measure space. Then:

ϕmax
n (Lp) = n1/p (n ∈ N) for p ∈ [1, 2];

ϕmax
n (Lp) ∼

√
n as n→∞ for p ∈ [2,∞].

Let K be an infinite compact space. Then:
√
n ≤ ϕmax

n (C(K)) ≤
√

2n (n ∈ N).

3. Let E be a normed space. For 1 ≤ p ≤ q < ∞, the (p, q)-multi-norm based on E is
denoted by ((En, ‖ · ‖(p,q)n ) : n ∈ N). The dual multi-norm based on E′ is

((E′)n, ||| · |||(p,q
′)

n ) : n ∈ N).

The rate of growth of the (p, q)-multi-norm satisfies

ϕ(p,q)
n (E) = π(n)

q,p (E′) ≤ n1/q (n ∈ N),

and the upper bound can be attained.
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4. Fix p ∈ [1,∞), and take q ≥ p. For a measure space Lp, the standard q-multi-norm
based on Lp is denoted by (‖ · ‖[q]n : n ∈ N). We have

‖(f1, . . . , fn)‖[q]n ≤ ‖(f1, . . . , fn)‖(p,q)n ≤ ‖(f1, . . . , fn)‖max
n

for all f1. . . . , fn ∈ Lp and n ∈ N. The rate of growth of the standard q-multi-norm
satisfies ϕ[q]

n (Lp) = n1/q (n ∈ N).
5. The Hilbert multi-norm based on a Hilbert space H is denoted by (‖ · ‖Hn : n ∈ N). This

multi-norm is equal to the (2, 2)-multi-norm, and is equivalent to the (p, p)-multi-norm
for p ∈ [1, 2] and to the maximum multi-norm. The rate of growth of this multi-norm
(for infinite-dimensional H) is given by ϕmin

n (H) =
√
n (n ∈ N).

6. The lattice multi-norm based on a Banach lattice E is denoted by (‖ · ‖Ln : n ∈ N); it
is defined by

‖(x1, . . . , xn)‖Ln = ‖ |x1| ∨ · · · ∨ |x1| ‖ (x1, . . . , xn ∈ E, n ∈ N).

The dual multi-norm based on E′ is the dual lattice multi-norm (‖ · ‖DLn : n ∈ N); it
is defined by

‖(x1, . . . , xn)‖DLn = ‖ |x1|+ · · ·+ |x1| ‖ (x1, . . . , xn ∈ E, n ∈ N).

For an AL-space, the lattice multi-norm is the maximum multi-norm based on E, and,
for an AM -space, it is the minimum multi-norm based on E. The rate of growth of
this multi-norm is denoted by (ϕLn(E) : n ∈ N).



5. Multi-topological linear spaces and multi-norms

5.1. Basic sets

5.1.1. Topological linear spaces. Let E be a linear space. A local base of E is a family
B of non-empty, balanced, absorbing subsets of E such that:

(i) for each B ∈ B, there exists C ∈ B with C + C ⊂ B;
(ii) for each B1, B2 ∈ B, there exists C ∈ B with C ⊂ B1 ∩B2;
(iii) for each B ∈ B and x ∈ B, there exists C ∈ B with x+ C ⊂ B.

A subset B of a topological linear space is bounded if, for each neighbourhood U of 0
in E, there exists α > 0 with B ⊂ βU (β > α).

Let E be a topological linear space. Then E has a local base B consisting of all the
balanced neighbourhoods of 0; in this case, each neighbourhood of 0 contains a member
of B (and then the open sets of F are precisely the unions of translates of members of B).
Conversely, let B be a local base of E. Then there is a unique topology τ on E such that
(E, τ) is topological linear space and B is a local base for τ at 0. The topological linear
space is Hausdorff if and only if

⋂
{B : B ∈ B} = {0}.

For details of these remarks, see [65], for example.

5.1.2. Multi-topological linear spaces. Let E be a linear space, and consider the
space EN, also a linear space; a generic element of EN is x = (xi) = (xi : i ∈ N). Define
ι : x 7→ (x), E → EN, so that ι(E) is a linear subspace of EN.

For a non-empty subset S of N, we define PS , QS on EN essentially as in §1.1.4. We
also define Aσ and Mα in L(EN) for σ ∈ SN and α = (αi) ∈ DN

by

Aσ((xi)) = (xσ(i)), Mα((xi)) = (αixi) ((xi) ∈ EN).

Finally we define the amalgamation x q y of two elements x = (xi) and y = (yi) of EN

as the element
xq y = (x1, y1, x2, y2, x3, y3, . . . )

of EN. Let k ∈ N. The amalgamation of k copies of x ∈ EN is denoted by xqk x, so that

xqk x = (
k︷ ︸︸ ︷

x1, . . . , x1,

k︷ ︸︸ ︷
x2, . . . , x2, . . . ).

Definition 5.1. Let E be a linear space, and let F be a linear subspace of EN with
ι(E) ⊂ F . A subset B of F is basic if:

(T1) Aσ(B) = B for each σ ∈ SN;
(T2) Mα(B) ⊂ B for each α ∈ DN

;

[105]
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(T3) for each x ∈ F , x ∈ B if and only if xq x ∈ B;
(T4) for each x ∈ F , x ∈ B if and only if PNn(x) ∈ B (n ∈ N).

Let τ be a topology on F . Then E is a multi-topological linear space (with respect to
(F, τ)) if (F, τ) is a Hausdorff topological linear space with a local base B consisting of
basic sets, each a neighbourhood of 0.

It may be that F = EN in the above definition, but we allow greater generality for
the sake of future applications.

Let E be a multi-topological linear space with respect to (F, τ). For each x ∈ E, we
have ι1(x) := (x, 0, 0, 0, . . . ) ∈ F , and so τ induces a topology called τE on E such that
a subset U of E belongs to τE if and only if ι1(U) is relatively τ -open in F . It is clear
that (E, τE) is a topological linear space.

Let E be such a multi-topological linear space, let B be a basic set in (F, τ) that is
a neighbourhood of 0, and take x ∈ F . Since the set B is absorbing, there exists β > 0
such that x ∈ βB. It follows easily from the definitions that Aσ(x) ∈ F for each σ ∈ SN,
that Mα(x) ∈ F for each α ∈ DN

, that x q x ∈ F , and that PNn(x) ∈ F for each
n ∈ N.

Proposition 5.2. Let E be a multi-topological linear space with respect to (F, τ), and
let B be a basic set in F .

(i) Take x ∈ F and k ∈ N. Then x ∈ B if and only if xqk x ∈ B.
(ii) Take x ∈ F . Then x ∈ B if and only if xq 0 ∈ B.
(iii) Take (xi) ∈ F . Then (xi) ∈ B if and only if (0, x1, x2, x3, . . . ) ∈ B.
(iv) Take x, y ∈ B. Then xq y ∈ B +B.
(v) Take x = (xi) ∈ B, and let (kn) be strictly increasing in N. Then (xkn) ∈ B.
(vi) Take x = (xi) ∈ B, and suppose that y is a sequence that contains finitely many

occurrences of each xi in any order. Then y ∈ B.

Proof. (i) Take n ∈ N such that 2j ≥ k. By (T3), x ∈ B if and only if xq2j x ∈ B. Take
m ≥ k. By (T4), xqm x ∈ B if and only if PNn(xqm x) ∈ B (n ∈ N). By (T2) and (T1),
this holds if and only if PNn(x qk x) ∈ B (n ∈ N). By (T4) again, this holds if and only
if xqk x ∈ B. The result follows.

(ii) Suppose that x ∈ B. Then x q x ∈ B by (T3), and then x q 0 ∈ B by (T2).
Suppose that x q 0 ∈ B. Then it follows from (T4) that PN2n(x q 0) ∈ B (n ∈ N).
By (T1), PNn(x) ∈ B (n ∈ N), and so x ∈ B by (T4).

(iii) This is immediate from (T1) and (T4).
(iv) By (ii), xq 0, y q 0 ∈ B. By (T1), 0q y ∈ B. Thus

xq y = xq 0 + 0q y ∈ B +B.

(v) By (T2), (0, . . . , 0, xk1 , 0, . . . , 0, xk2 , 0, . . . ) ∈ B. By (T1), we have (xkn) q 0 ∈ B.
By (ii), (xkn) ∈ B.

(vi) Suppose that y contains ki copies of xi for i ∈ N. Take n ∈ N, and then set
m = max{k1, . . . , kn}. By (i), xqm x ∈ B. By (T4), PNn(xqm x) ∈ B. By (T2) and (T1),
PNn(y) ∈ B. But this holds for each n ∈ N, and so y ∈ B by (T4).
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5.2. Multi-null sequences

5.2.1. Convergence. Let E be a multi-topological linear space. We can define a notion
of convergence in E as follows.

Definition 5.3. Let E be a multi-topological linear space with respect to (F, τ) such
that (F, τ) has a local base B of basic subsets of F , and let (xi) be a sequence in E. Then

Lim
i→∞

xi = 0 in E

if, for each B ∈ B, there exists n0 ∈ N such that (xn, xn+1, xn+2, . . . ) ∈ B (n ≥ n0).
Such sequences (xi) are the multi-null sequences in E. Further, let x ∈ E. Then

Lim
i→∞

xi = x in E

if (xi − x) is a multi-null sequence in E; the sequence (xi) is multi-convergent to x.
The collections of multi-convergent and multi-null sequences in E are denoted by

cm(E) and cm,0(E), respectively.

Let E be a multi-topological linear space with respect to (F, τ). Clearly, each multi-
null sequence in E is a null sequence in (E, τE), where τE was described above. Further,
let (xi) be a sequence such that limi→∞ xi = 0 in (E, τE). Then there is a subsequence
(xki) of (xi) such that Limi→∞ xki = 0. Let S be a subset of E. One might define the
‘multi-closure’ of S to be the set of elements x in E such that there exists a multi-null
sequence (xi) contained in S with Limi→∞ xi = x; however, the above remark shows that
this multi-closure coincides with the closure of S in (E, τE).

The four axioms specified above have an immediate and natural interpretation in
terms of this convergence. Thus: (T1) states that each permutation of a multi-null se-
quence is a multi-null sequence; (T2) states that Mα(x) is a multi-null sequence whenever
α = (αi) is a bounded sequence in C and x is a multi-null sequence; (T3) states that xqx
is a multi-null sequence if and only if x is a multi-null sequence. Axiom (T4) is a ‘Cauchy
criterion’ for multi-null sequences. A sequence (xi) ∈ EN is a multi-Cauchy sequence if,
for each B ∈ B, there exists n0 ∈ N such that

(xm, xm+1, . . . , xn, 0, 0, . . . ) ∈ B (n ≥ m ≥ n0).

By (T4), a sequence is a multi-null sequence if and only if it is a multi-Cauchy sequence.
We shall see shortly that the notion of a multi-null sequence can depend on the choice

of the space F .

Proposition 5.4. Let E be a multi-topological linear space.

(i) Each subsequence of a multi-null sequence in E is itself a multi-null sequence.
(ii) Let α, β ∈ C, and let (xi), (yi) ∈ EN be such that

Lim
i→∞

xi = x and Lim
i→∞

yi = y

in E. Then Limi→∞(αxi + βyi) = αx+ βy in E.
(iii) The collections cm(E) and cm,0(E) are linear subspaces of EN.

Proof. These are immediately checked.
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5.2.2. Multi-normed spaces. We now investigate the relation between multi-topo-
logical linear spaces and multi-normed spaces.

Definition 5.5. Let ((En, ‖ · ‖n) : n ∈ N) be a multi-normed space, and suppose that
x = (xi) ∈ EN. Then

Supx = Sup(xi) = sup{‖(xk1 , . . . , xkn)‖n : k1, . . . , kn ∈ N, n ∈ N}.

In fact, it follows from (A1), (A4), and Lemma 2.9 that (‖(x1, x2, . . . , xn)‖n : n ∈ N)
is an increasing sequence and that

Supx = sup{‖(x1, x2, . . . , xn)‖n : n ∈ N} = lim
n→∞

‖(x1, x2, . . . , xn)‖n. (5.1)

Define
F = {x ∈ EN : Supx <∞}. (5.2)

For each ε > 0, set
Bε = {x ∈ F : Supx < ε},

and set B = {Bε : ε > 0}.

Theorem 5.6. Let ((En, ‖ · ‖n) : n ∈ N) be a multi-normed space, and let F and B be
as above. Then F is a linear subspace of EN with ι(E) ⊂ F , and E is a multi-topological
linear space with respect to (F, τ), where (F, τ) has B as a local base. Further, each set
Bε is convex and bounded.

Proof. It is clear that F is a linear subspace of EN; by Lemma 2.14, ι(E) ⊂ F .
We shall show that B is a local base at 0 in F . Given ε > 0, we have Bε/2+Bε/2 ⊂ Bε.

Given ε1, ε2 > 0, we have Bε ⊂ Bε1 ∩ Bε2 for ε = min{ε1, ε2}. Given ε > 0 and x ∈ Bε,
we have Supx < ε, and then x+Bη ⊂ Bε for η = ε− Supx. Thus B is a local base at 0
in F , and so B defines a topology τ such that (F, τ) is a topological linear space. Since⋂
{Bε : ε > 0} = {0}, the topology τ is Hausdorff.

It is clear that Axioms (T1), (T2), and (T4) are satisfied. Suppose that x ∈ Bε, where
ε > 0, and take k1, . . . , kn ∈ N. Then

‖((xq x)k1 , . . . , (xq x)kn)‖n = ‖(xj1 , . . . , xjm)‖m
for some m ∈ Nn and j1, . . . , jm ∈ N by (A1) and (A4), and so we have x q x ∈ Bε; the
converse is immediate, and so (T3) is satisfied. Thus each Bε is a basic set in F .

Clearly each set Bε is convex and bounded.

Definition 5.7. The topology τ defined on F in the above theorem is that specified by
the multi-normed space ((En, ‖ · ‖n) : n ∈ N).

In the future, we shall regard (F, τ) as the space specified by a multi-normed space
((En, ‖·‖n) : n ∈ N) without explicit mention. We now interpret the concept of ‘multi-null
sequence’ in the above situation.

Theorem 5.8. Let ((En, ‖ · ‖n) : n∈N) be a multi-normed space. Take (xi)∈EN. Then
(xi) is a multi-null sequence in E if and only if, for each ε>0, there exists n0∈N such that

sup
k∈N
‖(xn+1, . . . , xn+k)‖k < ε (n ≥ n0).

Proof. This is again immediate.
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Let (xi) be a sequence in E with Limi→∞ xi = x. It follows that

lim
n→∞

sup
k∈N
‖(xn+1, . . . , xn+k)‖k = ‖x‖. (5.3)

Example 5.9. Let (αi) be a fixed element of CN, and set

xi = αiδi (i ∈ N).

(i) Let E be one of the Banach spaces `p (for p ≥ 1) or c0, and take (‖ · ‖min
n : n ∈ N)

to be the minimum multi-norm on {En : n ∈ N}. Then it follows immediately that (xi)
is a multi-null sequence in E if and only if limi→∞ αi = 0, i.e., if and only if (αi) ∈ c0.
This is independent of the choice of the space E.

(ii) Let E = `p (where p ≥ 1), and let (‖ · ‖[p]n : n ∈ N) be the standard p-multi-norm
based on {En : n ∈ N}. Then it follows from (4.15) that (xi) is a multi-null sequence in
E if and only if

lim
n→∞

( ∞∑
i=n

|αi|p
)1/p

= 0,

i.e., if and only if (αi) ∈ `p.
(iii) We now see, by comparing examples (i) and (ii), that the multi-null sequences in

a multi-normed space based on a Banach space E depend on the multi-norm that we are
considering.

Proposition 5.10. Let ((En, ‖·‖n) : n ∈ N) be a multi-normed space. Then the following
are equivalent:

(a) each null sequence in (E, ‖ · ‖) is a multi-null sequence;
(b) the multi-norm (‖ · ‖n : n ∈ N) is equivalent to the minimum multi-norm;
(c) there is a topology σ on E such that the multi-null sequences are precisely the con-

vergent sequences in (E, σ).

Proof. Here (ϕn(E) : n ∈ N) is the rate of growth sequence for the multi-normed space
((En, ‖ · ‖n) : n ∈ N).

(a)⇒(b) Assume towards a contradiction that lim supn→∞ ϕn(E) = ∞. Then, for
each n ∈ N, there exists mn ∈ N such that ϕmn(E) > n, and so there exist x1,n, . . . , xmn,n
∈ E[1/n] with ‖(x1,n, . . . , xmn,n)‖mn ≥ 1. The sequence

(x1,1, . . . , xm1,1, x1,2, . . . , xm2,2, . . . , x1,n, . . . , xmn,n, . . . )

is a null sequence in (E, ‖ · ‖), but it is not a multi-null sequence. This is a contradiction
of (a). Thus (ϕn(E) : n ∈ N) is bounded, and so, by Proposition 3.4, (‖ · ‖n : n ∈ N) is
equivalent to the minimum multi-norm.

(b)⇒(a) Suppose that sup{ϕn(E) : n ∈ N} ≤ C. Then

‖(xn+1, . . . , xn+k)‖k ≤ C max{‖xn+1‖, . . . , ‖xn+k‖} (n, k ∈ N),

and so each null sequence in (E, ‖ · ‖) is a multi-null sequence.
(a)⇒(c) This is trivial.
(c)⇒(a) Assume towards a contradiction that (a) fails. Then there is a null sequence

(xi) in (E, ‖ · ‖) such that (xi) is not a multi-null sequence. By (c), (xi) is not convergent
in (E, σ), and so there is a σ-neighbourhood U of 0 in E and a subsequence (xij ) of (xi)
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such that xij 6∈ U (j ∈ N). There is a subsequence (yn) of (xij ) with ‖yn‖ ≤ 1/n2 (n ∈ N),
and then (yn) is a multi-null sequence in E. However yn 6∈ U (n ∈ N), and so (yn) is not
convergent in (E, σ), a contradiction of (c).

Let ((En, ‖ · ‖n) : n ∈ N) be a multi-normed space such that E is finite-dimensional.
Then it follows from Proposition 3.7 that the equivalent conditions of the above prop-
osition are satisfied.

Let K be a compact space. Then the multi-null sequences in C(K) for the lattice
multi-norm based on C(K) are just the usual null sequences.

Recall that a topological linear space E is a locally convex space if and only if there is
a local base consisting of convex sets. By [65, Theorem 1.14(b)], each neighbourhood of
zero in such a space contains a balanced, convex neighbourhood of 0. The following result
shows that the topology of a locally convex space is determined by a class of multi-null
sequences.

Proposition 5.11. Let E be a locally convex space.

(i) Let V be a convex, balanced neighbourhood of 0 in E. Then V N is a basic subset
of EN.

(ii) Let B be the family of sets in EN of the form V N, where V is a convex, balanced
neighbourhood of 0 in E. Then there is a topology τ on E such that EN is a multi-
topological linear space with respect to (E, τ), and (E, τ) has B as a local base.

Proof. (i) This is immediate.
(ii) It is clear that the specified family B is a local base at 0 for E consisting of basic

sets. There is a unique topology τ on E such that (E, τ) is topological linear space and B

is a local base for τ at 0. The topology τ is Hausdorff because
⋂
{B : B ∈ B} = {0}.

Thus EN is a multi-topological linear space with respect to (E, τ).

We now seek a version for multi-topological linear spaces of Kolmogorov’s theorem for
topological linear spaces: this states that a topological linear space E is normable if and
only if 0 has a convex, bounded neighbourhood [65, Theorem 1.39].

Theorem 5.12. Let E be a multi-topological linear space with respect to (F, τ). Then the
topology τ is specified by a multi-normed space if and only if there is a basic set which is
a convex, bounded neighbourhood of 0 in F .

Proof. Suppose that τ is specified by a multi-normed space. Then each set Bε given above
is a basic subset of F which is a convex, bounded neighbourhood of 0.

Conversely, suppose that B is a basic subset of F which is a convex, bounded neigh-
bourhood of 0 in F . By [65, Theorem 1.14(b)], we may suppose that B is balanced.

Let n ∈ N, and take x1, . . . , xn ∈ E so that (x1, . . . , xn, 0, . . . ) ∈ F . We define

‖(x1, . . . , xn)‖n = pB((x1, . . . , xn, 0, . . . )) (x1, . . . , xn ∈ E),

where pB is the Minkowski functional of B. Clearly ‖ · ‖n is a seminorm on En. Suppose
that (x1, . . . , xn, 0, . . . ) 6= 0 in F . Since (F, τ) is a Hausdorff space, there is a neighbour-
hood V of 0 in F such that (x1, . . . , xn, 0, . . . ) 6∈ V . Since B is bounded, there exists
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α > 0 such that B ⊂ βV (β > α). Since x 6∈ (1/β)B (β > α), we have

pB((x1, . . . , xn, 0, . . . )) > 1/α > 0.

Thus ‖ · ‖n is a norm on En.
Set ‖x‖ = ‖x‖1 (x ∈ E). Then (E, ‖ · ‖) is a normed space.
We shall now show that ((En, ‖ · ‖n) : n ∈ N) is a multi-normed space.
It is immediate that Axioms (A1), (A2), and (A3) are satisfied. Let x1, . . . , xn ∈ E.

By Proposition 5.2(vi), (x1, . . . , xn, 0, . . . ) ∈ B if and only if (x1, . . . , xn, xn, 0, . . . ) ∈ B,
and so Axiom (A4) is satisfied.

Consider the family B = {αB : α > 0}. By [65, Theorem 1.15(c)], B is a local base
for the topological linear space (F, τ). Let σ be the topology on F defined by the multi-
norms (‖ · ‖n : n ∈ N) as in Theorem 5.6, and take x ∈ B. Then, by (T4), PNn(x) ∈ B
(n ∈ N), and so, by (5.1), Supx ≤ 1, whence τ ⊂ σ. Let x ∈ F with Supx < 1. Then
x ∈ B, and so σ ⊂ τ . Thus τ = σ. It also follows that F =

⋃
{αB : α > 0}, and so, by

(T4), F is exactly the space specified in (5.2) in terms of the multi-norms.
This completes the proof.

Let ((En, ‖ · ‖n) : n ∈ N) be a multi-normed space. We have seen in Proposition 5.10
that multi-null sequences in E are the null sequences for a topology on E only in special
cases. We generalize this remark.

Proposition 5.13. Let E be a multi-topological linear space with respect to (F, τ), and
suppose that τ has a countable base of neighbourhoods of 0 in F . Then either the multi-
null sequences in E are exactly the null sequences in (E, τE), or there is no topology σ

on E such that the multi-null sequences in E are exactly the null sequences in (E, σ).

Proof. We first note the following. Let (Un) be a countable base at 0 for the topology τ
on F . Then there is a countable base (Vn) at 0 for the topology τ on F such that

Vn ⊃ Vn+1 + Vn+2 + · · ·+ Vn+k (n, k ∈ N).

Indeed set V1 = U1, and inductively choose Vn to be a neighbourhood of 0 in (F, τ) such
that Vn+1 ⊂ (Un+1 ∩ Vn) and Vn+1 + Vn+1 ⊂ Vn for each n ∈ N.

We next note that each null sequence (xi) in (E, τE) has a subsequence (xik) which
is multi-null. Indeed we choose the sequence (ik : k ∈ N) inductively so that, for each
k ∈ N, we have ik+1 > ik and (xik , 0, 0, . . . ) ∈ Vk. That (xik) is a multi-null sequence
follows from Axiom (T4).

The result now follows essentially as before.

5.2.3. Multi-null sequences and order-convergence. Let E be a Banach lattice, as
in §1.3, and let (xn) be a sequence in E. Recall that (xn) is order-null if and only if there
is a sequence (un) in E+ such that un ↓ 0 and |xn| ≤ un (n ∈ N). The lattice multi-norm
on {En : n ∈ N} was defined for each n ∈ N in Definition 4.41 by the formula

‖(x1, . . . , xn)‖Ln = ‖ |x1| ∨ · · · ∨ |xn| ‖ (x1, . . . , xn ∈ E).

We shall consider multi-null sequences with respect to this multi-norm.

Theorem 5.14. Let E be a Banach lattice. Then each multi-null sequence in E is order-
null in E.
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Proof. Let (xn) be a multi-null sequence in E. Then, for each k ∈ N, there exists nk ∈ N
such that

‖ |xnk | ∨ |xnk+1| ∨ · · · ∨ |xn| ‖ < 2−k (n ≥ nk);

we may suppose that the sequence (nk : k ∈ N) is strictly increasing. Set

Ik = {nk, . . . , nk+1 − 1} ⊂ N (k ∈ N),

and, for k ∈ N, define

yk = |xnk | ∨ |xnk+1| ∨ · · · ∨ |xnk+1−1|,
so that ‖yk‖ ≤ 2−k and the series

∑∞
k=n yk is convergent in E for each n ∈ N. Set

un =
∞∑
j=k

yj for each n ∈ Ik.

For n ∈ Ik, we have |xn| ≤ yk ≤ un. Also, 0 ≤ un+1 ≤ un (n ∈ N). Suppose that u ∈ E
with 0 ≤ u ≤ un (n ∈ N). Then 0 ≤ ‖u‖ ≤ ‖un‖ ≤ 2−k+1 (n ≥ nk), and so u = 0 and
un ↓ 0. This implies that (xn) is an order-null sequence in E.

We wish to determine when the converse of the above theorem holds.

Theorem 5.15. Let (E, ‖ · ‖) be a Banach lattice. Then each order-null sequence in E is
multi-null in E if and only if the norm is σ-order-continuous.

Proof. Suppose that each order-null sequence is multi-null, and let (xn) be a sequence in
E with xn ↓ 0. Then (xn) is order-null, and hence multi-null. Certainly this implies that
‖xn‖ ↓ 0, and so the norm is σ-order-continuous.

Conversely, suppose that the norm is σ-order-continuous, and let (xn) be an order-null
sequence. Then there exists a sequence (un) in E+ with |xn| ≤ un (n ∈ N) and un ↓ 0.
By hypothesis, we have ‖un‖ ↓ 0, and now

‖ |xn| ∨ · · · ∨ |xn+k| ‖k ≤ ‖un ∨ · · · ∨ un+k‖ = ‖un‖ (n, k ∈ N),

so that limn→∞ supk∈N ‖ |xn| ∨ · · · ∨ |xn+k| ‖k = 0. Hence (xn) is multi-null.

For example, multi-null and order-null sequences coincide in each Banach lattice Lp(Ω)
for p ≥ 1 (when this space has the lattice multi-norm, which, by Example 4.47, is equal
to the standard p-multi-norm) based on Lp(Ω) and on the space C([0, ω1]) (when this
space has the minimum multi-norm).



6. Multi-bounded sets and multi-bounded operators

The theory of Banach spaces gains great strength from the facts that, for each Banach
spaces E and F , a linear operator from E to F is continuous if and only if it is bounded,
and that the collection of all bounded linear operators from E to F is itself a Banach
space. Our aim in this chapter is to establish analogous results for multi-normed spaces.

6.1. Definitions and basic properties. We first define multi-bounded sets in multi-
topological linear spaces (which were defined in Definition 5.1).

6.1.1. Multi-bounded sets

Definition 6.1. Let E be a multi-topological linear space with respect to (F, τ). A subset
B of E is multi-bounded if BN is a bounded set in the topological linear space (F, τ).

We denote the family of multi-bounded sets in E by MB(E), suppressing in the
notation the role of F .

Let B,C ∈ MB(E) and α, β ∈ C. Then it is immediate from the definition that
B ∪ C,αB + βC ∈ MB(E); each compact set is multi-bounded; the absolutely convex
hull of a multi-bounded set is multi-bounded.

Proposition 6.2. Let ((En, ‖ · ‖n) : n ∈ N) be a multi-normed space, and let B be a
subset of E. Then B is multi-bounded in E if and only if

sup{‖(x1, . . . , xn)‖n : x1, . . . , xn ∈ B, n ∈ N} <∞.

Proof. This is immediate from our earlier results.

Corollary 6.3. Let E be a normed space, and consider two multi-norms based on E

such that the multi-norms are equivalent. Then the families of multi-bounded sets with
respect to the two multi-norms are equal.

Definition 6.4. Let ((En, ‖·‖n) : n ∈ N) be a multi-normed space, and let B ∈MB(E).
Then

cB = sup{‖(x1, . . . , xn)‖n : x1, . . . , xn ∈ B, n ∈ N};

cB is the multi-bound of a multi-bounded set B.

Proposition 6.5. Let ((En, ‖ · ‖n) : n ∈ N) be a multi-normed space.

(i) A finite subset B = {x1, . . . , xk} in E is multi-bounded, with cB = ‖(x1, . . . , xk)‖k.
(ii) Suppose that B ⊂ E is multi-bounded. Then C := aco(B) is multi-bounded, with

cC = cB.

[113]
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Proof. (i) This is immediate from Lemma 2.15.
(ii) Take y1, . . . , ym ∈ C. Then clearly there exist n ∈ N, a = (αij) ∈ Mm,n, and

x = (x1, . . . , xn) ∈ B such that
n∑
j=1

|αij | ≤ 1 and yi =
n∑
j=1

αijxj

for i ∈ Nm. By (1.15), ‖a : `∞n → `∞m‖ ≤ 1, and so, by Theorem 2.35, (a)⇒(c), we have
‖(y1, . . . , ym)‖m = ‖a · x‖m ≤ ‖x‖n ≤ cB , and so cC ≤ cB . Thus cC = cB .

Let ((En, ‖ · ‖n) : n ∈ N) be a multi-normed space, and let (xn) be a sequence in E.
Then we see that the set {xn : n ∈ N} is multi-bounded if and only if

sup
n∈N
‖(x1, . . . , xn)‖n = lim

n→∞
‖(x1, . . . , xn)‖n <∞;

in this case, (xn) is a multi-bounded sequence. It follows from (5.3) that each multi-
convergent sequence in E is multi-bounded.

6.1.2. Multi-bounded sets for lattice multi-norms. Let E be a Banach lattice. The
lattice multi-norm (‖ · ‖Ln : n ∈ N) based on E was defined in Definition 4.43.

Proposition 6.6. Let E be a Banach lattice. Then each order-bounded subset of E is
multi-bounded with respect to the lattice multi-norm.

Proof. Suppose that B is order-bounded in E, so that there exists y ∈ E+ such that
|x| ≤ y (x ∈ B). Let n ∈ N, and choose x1, . . . , xn ∈ B; define

x = |x1| ∨ · · · ∨ |xn|,

so that x ≤ y. Then ‖(x1, . . . , xn)‖Ln = ‖x‖ ≤ ‖y‖. Thus we see that B ∈ MB(E) (with
cB ≤ ‖y‖).

Proposition 6.7. Let E be a Banach lattice. For each pairwise-disjoint, multi-bounded
sequence (xi) in E and each null sequence (αi), the series

∑∞
i=1 αixi converges in E.

Proof. Set c = sup{‖ |x1| ∨ · · · ∨ |xn| ‖ : n ∈ N}. For each ε > 0, take i0 ∈ N such that
|αi| < ε (i ≥ i0). Now take m,n ∈ N with i0 ≤ m < n. Then, using equation (1.26), we
have ∥∥∥ n∑

i=m

αixi

∥∥∥ = ‖ |αm| |xm| ∨ · · · ∨ |αn| |xn| ‖ ≤ εc,

and so ( n∑
i=1

αixi : n ∈ N
)

is Cauchy, and hence convergent, in E.

A ‘monotonically bounded Banach lattice’ was defined in Definition 1.22(i).

Theorem 6.8. Let E be a monotonically bounded Banach lattice. Then a subset of E is
order-bounded if and only if it is multi-bounded.

Proof. It follows from Proposition 6.6 that we must show just that a multi-bounded set
in E is order-bounded.
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Let B be a multi-bounded subset of E, and let F = Pf (B), the family of finite subsets
of B, so that F is a directed set when ordered by inclusion. For each F ∈ F , set

yF = max{|x| : x ∈ F}.

Then {yF : F ∈ F} is an increasing net in ER. Since B is multi-bounded, the net
{yF : F ∈ F} is bounded in (E, ‖ · ‖), and so, since E is monotonically bounded, there
exists y ∈ E with yF ≤ y (F ∈ F). Thus y is an upper bound for B, and so B is
order-bounded.

In particular, take E = C(K), where K is a compact space, and let {En : n ∈ N}
have the minimum multi-norm, which is the lattice multi-norm from the Banach lattice E.
Then the multi-bounded sets and the order-bounded sets coincide, and these are just the
‖ · ‖-bounded subsets of E. On the other hand, let B = {en : n ∈ N} ⊂ c0. Then B is
multi-bounded, but not order-bounded, in c0.

Now let E = Lp(Ω), where Ω is a measure space and p ≥ 1, and let the family
{En : n ∈ N} have the standard p-multi-norm, which, as we noted in Example 4.47, is
the lattice multi-norm from the Banach lattice E. Then the multi-bounded sets and the
order-bounded sets coincide.

Further, letK be a compact space. Then again the multi-bounded sets for the standard
1-multi-norm based on M(K) and the order-bounded sets of M(K) coincide; this follows
from Theorem 4.31.

6.1.3. Multi-bounded operators. The above notion of a multi-bounded set leads
immediately to the definition of a multi-bounded operator.

Definition 6.9. Let E and F be multi-topological linear spaces, and let T ∈ L(E,F ).
Then T is a multi-bounded operator if

T (B) ∈MB(F ) (B ∈MB(E)).

The collection of multi-bounded linear maps from E to F is denoted by M(E,F ). We
writeM(E) forM(E,E) in the case where E and F are equal as multi-topological linear
spaces.

Proposition 6.10. Let E, F , and G be multi-topological linear spaces. Then:

(i) M(E,F ) is a linear subspace of L(E,F );
(ii) T ◦ S ∈M(E,G) whenever S ∈M(E,F ) and T ∈M(F,G).

Proof. This is immediate from a remark above.

Proposition 6.11. Let ((En, ‖ · ‖n) : n ∈ N) and ((Fn, ‖ · ‖n) : n ∈ N) be two multi-
normed spaces, and let T ∈M(E,F ). Then

sup{cT (B) : B ∈MB(E) with cB ≤ 1} <∞.

Proof. Assume towards a contradiction that the specified supremum is infinite. Then, for
each n ∈ N, there exists Bn ∈ MB(E) such that cBn ≤ 1/n2, but cT (Bn) > n, and there
exist x1,n, . . . , xkn,n ∈ Bn such that ‖(x1,n, . . . , xkn,n)‖kn < 1/n2 and

‖(Tx1,n, . . . , Txkn,n)‖kn > n. (6.1)
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Consider the subset

B := {x1,1, . . . , xk1,1, x1,2, . . . , xk2,2, . . . , x1,n, . . . , xkn,n, . . . }

of E. Set Kn =
∑n
i=1 ki for n ∈ N. For each y1, . . . , ym ∈ B, there exists n ∈ N such that

{y1, . . . , ym} ⊂ {x1,1, . . . , xk1,1, x1,2, . . . , xk2,2, . . . , x1,n, . . . , xkn,n},

and so, by Lemmas 2.15 and 2.10,

‖(y1, . . . , ym)‖m ≤ ‖(x1,1, . . . , xk1,1, x1,2, . . . , xk2,2, . . . , x1,n, . . . , xkn,n)‖Kn

≤
n∑
j=1

‖(x1,j , . . . , xkj ,j)‖kj ≤
n∑
j=1

1
j2

<∞.

This shows that B ∈MB(E). Thus there exists M > 0 such that

‖(Ty1, . . . , T ym)‖m ≤M (y1, . . . , ym ∈ B, m ∈ N).

But this contradicts (6.1).
Thus the result holds.

The above proposition shows that the following definition of ‖T‖mb always gives a
number in R+.

Definition 6.12. Let ((En, ‖·‖n) : n ∈ N) and ((Fn, ‖·‖n) : n ∈ N) be two multi-normed
spaces, and let T ∈M(E,F ). Then

‖T‖mb = sup{cT (B) : B ∈MB(E) with cB ≤ 1}.

The map T is a multi-contraction if ‖T‖mb ≤ 1, and T is a multi-isometry if T is
an isometry onto a closed subspace T (E) of F and if, further, T ∈ M(E, T (E)) and
T−1 ∈M(T (E), E) are both multi-contractions.

Let ((En, ‖ · ‖n) : n ∈ N) and ((Fn, ‖ · ‖n) : n ∈ N) be two multi-normed spaces, and
let T ∈M(E,F ). Then it is immediately clear that T ∈ B(E,F ) and that ‖T‖ ≤ ‖T‖mb.
More generally, for each n ∈ N, we have

‖(Tx1, . . . , Txn)‖n ≤ ‖T‖mb‖(x1, . . . , xn)‖n (x1, . . . , xn ∈ E). (6.2)

Indeed, for n ∈ N, set

pn(T ) = sup{‖(Tx1, . . . , Txn)‖n : ‖(x1, . . . , xn)‖n ≤ 1}.

Then (pn(T ) : n ∈ N) is an increasing sequence with

‖T‖mb = lim
n→∞

pn(T ).

Explicitly, we have

‖T‖mb = sup
n

sup
{
‖(Tx1, . . . , Txn)‖n
‖(x1, . . . , xn)‖n

: (x1, . . . , xn) 6= 0
}
<∞, (6.3)

and so T is multi-bounded if and only if ‖T‖mb = supn∈N ‖T (n)‖ <∞, where T (n) is the
nth amplification of T .

We have noted in Theorem 2.42 that multi-norms correspond to c0-norms on c0 ⊗E.
Now take T ∈ B(E,F ). Then T is multi-bounded if and only if Ic0 ⊗ T is bounded
as a map from c0 ⊗ E to c0 ⊗ F (when these spaces have the c0-norms corresponding
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to the respective multi-norms), and then ‖T‖mb = ‖Ic0 ⊗ T‖. Thus our multi-bounded
operators are the same as the ‘opérateurs réguliers’ of [53, Définition 3.2]. For further
details, see [19].

6.1.4. Multi-continuous operators. We shall now show that the multi-bounded oper-
ators on multi-normed spaces are exactly the ‘multi-continuous’ ones, mirroring the fact
that an operator on a normed space is continuous if and only if it is bounded.

Definition 6.13. Let E1 and E2 be multi-topological linear spaces with respect to
(F1, τ1) and (F2, τ2), respectively. Then T ∈ L(E1, E2) is multi-continuous if (Txi) is
a multi-null sequence in E2 whenever (xi) is a multi-null sequence in E1.

The following result is taken from [17], where some applications are given.

Theorem 6.14. Let ((En, ‖ · ‖n) : n ∈ N) and ((Fn, ‖ · ‖n) : n ∈ N) be two multi-
normed spaces. Then a linear map from E to F is multi-continuous if and only if it is
multi-bounded.

Proof. Suppose that T ∈ L(E,F ) is multi-bounded, and let (xi) be a multi-null sequence
in E. Then, by Theorem 5.8, for each ε > 0, there exists n0 ∈ N such that

sup
k∈N
‖(xn+1, . . . , xn+k)‖k < ε (n ≥ n0).

But now
sup
k∈N
‖(Txn+1, . . . , Txn+k)‖k ≤ ‖T‖mbε (n ≥ n0),

and so, by Theorem 5.8 again, (Txi) is a multi-null sequence in F . Thus T is multi-
continuous.

Suppose that T ∈ L(E,F ) is not multi-bounded. Then there exists a subset B of E
such that B is multi-bounded in E, but T (B) is not multi-bounded in F . For each n ∈ N,
there exist x1,n, . . . , xkn,n ∈ B such that

‖(x1,n, . . . , xkn,n)‖kn <
1
n2

and ‖(Tx1,n, . . . , Txkn,n)‖kn > 1.

We may suppose that kn ≥ n for each n ∈ N. Consider the sequence

y = (x1,1, . . . , xk1,1, x1,2, . . . , xk2,2, . . . , x1,n, . . . , xkn,n, . . . ).

We claim that y is a multi-null sequence in E. Indeed, take ε > 0. Then there exists
j ∈ N such that

∑∞
i=j 1/i2 < ε, and then

‖(x1,j , . . . , xkj ,j , . . . , x1,j+n, . . . , xkj+n,j+n)‖kj+···+kj+n ≤ ε (n ∈ N),

giving the claim. However (Tyi) is clearly not a multi-null sequence in F . Thus T is not
multi-continuous.

6.2. The space M(E,F )

6.2.1. The normed space M(E,F ). We shall recognize M(E,F ) as a normed space
of operators.

Let E and F be normed spaces. Recall that the spaces F(E,F ) and N (E,F ) of
finite-rank and nuclear operators were defined in Chapter 1, §1.2.1.
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Theorem 6.15. Let ((En, ‖ · ‖n) : n ∈ N) and ((Fn, ‖ · ‖n) : n ∈ N) be multi-normed
spaces, with F a Banach space. Then

(M(E,F ), ‖ · ‖mb)

is a Banach space. Further:

(i) y0 ⊗ λ0 ∈M(E,F ) with ‖y0 ⊗ λ0‖mb = ‖y0‖ ‖λ0‖ = ‖y0 ⊗ λ0‖ for each λ0 ∈ E′ and
y0 ∈ F ;

(ii) N (E,F ) ⊂M(E,F ), and the natural embedding is a contraction.

Proof. It is immediate that (M(E,F ), ‖ · ‖mb) is a normed space.
Let (Tk) be a Cauchy sequence in (M(E,F ), ‖ · ‖mb). Then there exists T ∈ B(E,F )

such that ‖Tk − T‖ → 0 as k → ∞. Take ε > 0. Then there exists k0 ∈ N such that
‖Tj − Tk‖mb < ε (j, k ≥ k0). It follows from equation (6.3) that T − Tk ∈ M(E,F )
and ‖T − Tk‖mb ≤ ε for each j ≥ k0. Thus Tk → T with respect to ‖ · ‖mb, and so
(M(E,F ), ‖ · ‖mb) is a Banach space.

(i) Let λ0 ∈ E′ and y0 ∈ F , and set T = y0 ⊗ λ0. For each n ∈ N and x1, . . . , xn ∈ E,
we have

‖(Tx1, . . . , Txn)‖n ≤ max{|〈xj , λ0〉| : j ∈ Nn}‖(y0, . . . , y0)‖n
≤ ‖y0‖ ‖λ0‖max{‖xj‖ : j ∈ Nn}
≤ ‖y0‖ ‖λ0‖ ‖(x1, . . . , xn)‖n,

and so
‖y0 ⊗ λ0‖ ≤ ‖y0 ⊗ λ0‖mb ≤ ‖y0‖ ‖λ0‖ = ‖y0 ⊗ λ0‖.

It follows that y0 ⊗ λ0 ∈ M(E,F ) with ‖y0 ⊗ λ0‖mb = ‖y0 ⊗ λ0‖, and hence we have
F(E,F ) ⊂M(E,F ).

(ii) Let T ∈ N (E,F ). Then clearly T ∈ M(E,F ) with ‖T‖mb ≤ ν(T ), so that the
natural embedding is a contraction.

We shall see in Example 6.25, below, that the ‘minimum’ case for which we have
N (E,F ) =M(E,F ) can occur.

Theorem 6.16. Let ((En, ‖ ·‖n) : n ∈ N) be a multi-normed space. Then (M(E), ‖ ·‖mb)
is a unital Banach operator algebra.

The following result was pointed out by Matt Daws; the result is also essentially
contained in [53, Remarque, p. 20].

Theorem 6.17. Let ((En, ‖ · ‖n) : n ∈ N) and ((Fn, ‖ · ‖n) : n ∈ N) be two multi-normed
spaces. Suppose that the multi-norm based on F is the minimum multi-norm, or that the
multi-norm based on E is the maximum multi-norm. Then

M(E,F ) = B(E,F ) and ‖T‖mb = ‖T‖ (T ∈ B(E,F )).

Proof. First, suppose that the multi-norm based on F is the minimum multi-norm. We
take T ∈ B(E,F ) and B ∈MB(E). Since

‖(Tx1, . . . , Txn)‖n = max
i∈Nn

‖Txi‖ (n ∈ N),
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it is clear that cT (B) ≤ ‖T‖cB . It follows that T ∈M(E,F ) and that ‖T‖mb ≤ ‖T‖. But
always ‖T‖ ≤ ‖T‖mb, and so we have ‖T‖ = ‖T‖mb, as required.

Second, suppose that the multi-norm based on E is the maximum multi-norm. We
take T ∈ B(E,F )[1], and define

|||(x1, . . . , xn)|||n = max{‖(x1, . . . , xn)‖n, ‖(Tx1, . . . , Txn)‖n}

for x1, . . . , xn ∈ E. It is easy to check that ((En, ||| · |||n) : n ∈ N) is a multi-normed space
and that

|||x||| = max{‖x‖, ‖Tx‖} = ‖x‖ (x ∈ E).

Since the multi-norm based on E is the maximum multi-norm, it follows that

‖(Tx1, . . . , Txn)‖n ≤ ‖(x1, . . . , xn)‖n (x1, . . . , xn ∈ E)

for each n ∈ N, and so T ∈ M(E,F ) with ‖T‖mb ≤ 1. This shows that we have
M(E,F ) = B(E,F ), and also that ‖T‖mb = ‖T‖ for each T ∈ B(E,F ).

6.2.2. A multi-norm based on M(E,F ). We shall now see that there is a natural
multi-normed structure based on M(E,F ).

Definition 6.18. Let ((En, ‖·‖n) : n ∈ N) and ((Fn, ‖·‖n) : n ∈ N) be two multi-normed
spaces, and let n ∈ N and T1, . . . , Tn ∈M(E,F ). Then

‖(T1, . . . , Tn)‖mbn = sup{cT1(B)∪···∪Tn(B) : B ∈MB(E) with cB ≤ 1}.

Let T ∈ M(E,F ). Then, by the definition, ‖T‖mb1 is exactly ‖T‖mb. We have a
somewhat more explicit formula for ‖(T1, . . . , Tn)‖mbn .

Proposition 6.19. Let ((En, ‖ · ‖n) : n ∈ N) and ((Fn, ‖ · ‖n) : n ∈ N) be two multi-
normed spaces, and let n ∈ N and T1, . . . , Tn ∈M(E,F ). Then

‖(T1, . . . , Tn)‖mbn = sup ‖(Tixj : i ∈ Nn, j ∈ Nk)‖nk, (6.4)

where the supremum is taken over x1, . . . , xk ∈ E with ‖(x1, . . . , xk)‖k ≤ 1.

Proof. Denote the left- and right-hand sides of (6.4) by a and b, respectively.
Take x1, . . . , xk ∈ E with ‖(x1, . . . , xk)‖k ≤ 1, and set B = {x1, . . . , xk}. Then cB ≤ 1

and {Tixj : i ∈ Nn, j ∈ Nk} ⊂ T1(B) ∪ · · · ∪ Tn(B). Since cT1(B)∪···∪Tn(B) ≤ a, we have
‖(Tixj : i ∈ Nn, j ∈ Nk)‖nk ≤ a. Hence b ≤ a.

Take ε > 0. Then there exists a set B in E such that cB ≤ 1 and

cT1(B)∪···∪Tn(B) ≥ a− ε,

and there exist k1, . . . , kn ∈ N and x1,i, . . . , xki,i ∈ B for i ∈ Nn such that

‖(Tixr,i : r ∈ Nki , i ∈ Nn)‖k > cT1(B)∪···∪Tn(B) − ε,

where k = k1 + · · ·+ kn. Let x1, . . . , xk be a listing of the elements xr,i. By Lemma 2.15,

‖(Tixj : i ∈ Nn, j ∈ Nk)‖nk ≥ ‖(Tixr,i : r ∈ Nki , i ∈ Nn)‖k,

and so b > a− 2ε. This holds true for each ε > 0, and so b ≥ a.

Theorem 6.20. Let ((En, ‖ · ‖n) : n ∈ N) and ((Fn, ‖ · ‖n) : n ∈ N) be two multi-normed
spaces. Then ‖ · ‖mbn is a norm on the linear space M(E,F )n, and

((M(E,F )n, ‖ · ‖mbn ) : n ∈ N)
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is a multi-normed space with ‖T‖mb1 = ‖T‖mb; it is a multi-Banach space in the case
where F is a Banach space.

Proof. This now follows easily.

Definition 6.21. The multi-norm (‖ · ‖mbn : n ∈ N) is the multi-bounded multi-norm
based on M(E,F ).

Theorem 6.22. Let ((En, ‖ · ‖n) : n ∈ N) and ((Fn, ‖ · ‖n) : n ∈ N) be two multi-
normed spaces, with E 6= {0}. Then the multi-bounded multi-norm based on M(E,F )
is the minimum multi-norm if and only if the multi-norm based on F is the minimum
multi-norm.

Proof. Suppose that the multi-norm based on F is the minimum multi-norm.
Let n ∈ N and T1, . . . , Tn ∈ B(E,F ). For k ∈ N, take x1, . . . , xk ∈ E such that

‖(x1, . . . , xk)‖k ≤ 1. Then ‖xj‖ ≤ 1 (j ∈ Nk), and so ‖Tixj‖ ≤ ‖Ti‖ (i ∈ Nn, j ∈ Nk). It
follows from (6.4) that

‖(T1, . . . , Tn)‖mbn ≤ max
i∈Nn

‖Ti‖.

By Theorem 6.17, ‖Ti‖mb = ‖Ti‖ (i ∈ Nn), and hence (‖ · ‖mbn : n ∈ N) is the minimum
multi-norm based on M(E,F ).

Conversely, suppose that

‖(T1, . . . , Tn)‖mbn = max
i∈Nn

‖Ti‖

whenever T1, . . . , Tn ∈ B(E,F ) and n ∈ N. Fix n ∈ N, and take y1, . . . , yn ∈ F . Since
E 6= {0}, there exist x0 ∈ E and λ0 ∈ E′ with ‖x0‖ = ‖λ0‖ = 〈x0, λ0〉 = 1. For i ∈ Nn
define Ti = yi ⊗ λ0, so that Ti ∈ M(E,F ) and ‖Ti‖mb = ‖Ti‖ = ‖yi‖ (i ∈ Nn) by
Theorem 6.15(i). From (6.4),

‖(T1x1, . . . , Tnxn)‖n ≤ ‖(T1, . . . , Tn)‖mbn .

Hence

‖(y1, . . . , yn)‖n ≤ max
i∈Nn

‖Ti‖ = max
i∈Nn

‖yi‖ = ‖(y1, . . . , yn)‖min
n .

It follows that (‖ · ‖n : n ∈ N) ≤ (‖ · ‖min
n : n ∈ N), and so (‖ · ‖n : n ∈ N) is the minimum

multi-norm based on F .

Corollary 6.23. Let ((En, ‖·‖n) : n ∈ N) and ((Fn, ‖·‖n) : n ∈ N) be two multi-normed
spaces, with F a finite-dimensional space. Then the multi-bounded multi-norm based on
M(E,F ) is equivalent to the minimum multi-norm.

Proof. By Proposition 3.7, the multi-bounded multi-norm is equivalent to the minimum
multi-norm based on F , and so this follows by a slight variation of the above proof.

In particular, we see thatM(E,C) = E′, and so the multi-bounded multi-norm based
on M(E,C) is just the minimum multi-normed space ((E′)n, ‖ · ‖min

n : n ∈ N). We shall
discuss in Chapter 7 a different way of constructing multi-norms based on dual spaces.
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6.3. Examples. We give some specific examples of the Banach spacesM(E,F ) and the
Banach algebras M(E).

6.3.1. Algebras of operators. Let E and F be normed spaces. The linear space of
compact operators on a normed space E is denoted by K(E), as in §1.2.1.

In the first example, we shall show that it may be that K(E) 6⊂ M(E), and hence
that M(E) ( B(E).

Example 6.24. Let H be the Hilbert space `2(N), with the standard 2-multi-norm
(‖ · ‖[2]

n : n ∈ N) based on H of Definition 4.21. As before, (δn : n ∈ N) is the standard
basis of H; the inner product in H is denoted by [ · , · ].

Consider the system of vectors (xsr : r ∈ Ns, s ∈ N) in H defined as follows: xsr(k) = 0
except when k ∈ {2s−1, . . . , 2s − 1}; at the 2s−1 numbers k in the set {2s−1, . . . , 2s − 1},
xsr(k) = ±1/

√
2s−1, the values ±1 being chosen so that [xsr1 , x

s
r2 ] = 0 when r1, r2 ∈ Ns

and r1 6= r2. Such a choice is clearly possible. Then

S := {xsr : r ∈ Ns, s ∈ N}
is an orthonormal set in H. Order the set S as (yn) by using the lexicographic order on
the pairs (s, r) (so that y1 = x1

1, y2 = x2
1, y3 = x2

2, y4 = x3
1, etc.).

Let (αi) ∈ `∞. We define an operator T by setting

Txsr = αsδn when xsr = yn;

clearly T extends by linearity and continuity to become an operator in B(H). It is also
clear that, in the case where (αi) ∈ c0, we have T ∈ K(H).

For k ∈ N, set Nk =
∑k
i=1 i = k(k + 1)/2. We see that ‖(y1, y2, . . . , yNk)‖[2]

Nk
=
√
k.

However

‖(Ty1, T y2, . . . , T yNk)‖[2]
Nk

= ‖(α1δ1, α2δ2, α2δ3, α3δ4, . . . , αkδNk)‖[2]
Nk

=
( k∑
i=1

i|αi|2
)1/2

.

Now take γ ∈ (0, 1/2), and set αi = i−γ (i ∈ N), so that (αi) ∈ c0 and T ∈ K(H). Then
k∑
i=1

i|αi|2 =
k∑
i=1

i1−2γ ≥
∫ k

1

t1−2γ dt ≥ 1
2− 2γ

(k2−2γ − 1).

Thus ‖(Ty1, T y2, . . . , T yNk)‖Nk
‖(y1, y2, . . . , yNk)‖Nk

≥ ck(1−2γ)/2

for a constant c > 0. Since γ < 1/2, we have T 6∈ M(H). Thus K(H) 6⊂ M(H). In
particular, M(H) ( B(H). However M(H) 6⊂ K(H) because IH ∈M(H).

Now consider the Hilbert multi-norm (‖ · ‖Hn : n ∈ N) based on H. By Theorem 4.20,
the Hilbert multi-norm is equivalent to the maximum multi-norm (‖ ·‖max

n : n ∈ N) based
on H, and so it follows from Theorem 6.17 that M(H) = B(H) in this case.

Example 6.25. In this example, we shall show that the inclusion N (E,F ) ⊂ M(E,F )
given in Theorem 6.15(ii) is best possible.

One might guess that a form of Banach’s isomorphism theorem would hold for multi-
bounded operators. This would assert that T−1 ∈M(F,E) whenever both

((En, ‖ · ‖n) : n ∈ N) and ((Fn, ‖ · ‖n) : n ∈ N)
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are multi-normed spaces, T ∈M(E,F ), and T is a bijection. However we shall show that
this is not the case; this will also be shown, in stronger form, in Examples 6.30 and 6.39,
below.

Let E = `1. Then ((En, ‖·‖[1]
n ) : n ∈ N) is a multi-normed space, where we are writing

(‖ · ‖[1]
n : n ∈ N) for the standard 1-multi-norm of Definition 4.21. In this case,

‖(δ1, . . . , δn)‖[1]
n = n (n ∈ N),

as in (4.15). By Example 4.47, (‖ · ‖[1]
n : n ∈ N) coincides with the lattice multi-norm

(‖ · ‖Ln : n ∈ N) on the Banach lattice E. However, also let F = `1, and consider the
minimum multi-norm (‖ · ‖min

n : n ∈ N) based on F , so that

‖(δ1, . . . , δn)‖min
n = 1 (n ∈ N).

Since ‖ · ‖min
n ≤ ‖ · ‖[1]

n (n ∈ N), the identity map IE on E, regarded as map from E to F
belongs to M(E,F ) (and IE is a multi-contraction). However the above two equations
show that I−1

E : F → E is not multi-bounded.
Indeed, by Theorem 6.17, M(E,F ) = B(E,F ) and, by Theorem 6.22, the multi-

bounded multi-norm based on M(E,F ) is the minimum multi-norm.
We shall now identify M(F,E). Take T ∈M(F,E). The unit ball F[1] of F is multi-

bounded, and so T (F[1]) is multi-bounded in E. Since the Banach lattice `1 is mono-
tonically bounded, it follows from Theorem 6.8 that T (F[1]) is order-bounded in `1, and
so there exists x = (xi) ∈ `1 with

|(Ty)i| ≤ xi (i ∈ N)

for each y ∈ F[1]; further,
∑∞
i=1 xi ≥ ‖T‖mb. Take i ∈ N, let πi : z 7→ ziδi be the rank-one

operator on `1, and set Ti = πi ◦ T = (δi ⊗ T ′)(δi). For each y ∈ F[1], we have

|〈y, T ′(δi)〉| = |〈Ty, δi〉| = |(Ty)i| ≤ xi,

and so ‖T ′(δi)‖ ≤ xi, whence ν(Ti) = ‖T ′(δi)‖ ‖δi‖ ≤ xi. Clearly, we have T =
∑∞
i=1 Ti,

and hence ν(T ) ≤
∑∞
i=1 xi <∞. Thus T ∈ N (F,E).

In summary, in this case we have

M(E,F ) = B(E,F ) and M(F,E) = N (F,E).

6.3.2. Partition multi-norms. We present an example that was suggested by Michael
Elliott.

Take p ≥ 1, and consider `p = `p(N); the norm on `p is denoted by ‖ · ‖.

Definition 6.26. For each partition Π of N and n ∈ N, set

‖(f1, . . . , fn)‖Πn =
(∑{

max
k∈Nn

‖fk | P‖p : P ∈ Π
})1/p

(f1, . . . , fn ∈ `p).

It is easy to check that ‖ · ‖Πn is a norm on (`p)n for each n ∈ N and that

(((`p)n, ‖ · ‖Πn ) : n ∈ N)

is a multi-normed space.
By taking Π to be the singleton {N}, we see that we obtain the minimum multi-norm

(‖ · ‖min
n : n ∈ N) as an example; by taking Π to be the collection of singletons {n} in N,

we obtain the lattice multi-norm (‖ · ‖Ln : n ∈ N) based on `p.
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Definition 6.27. For each partition Π of N, the above multi-norm (‖ · ‖Πn : n ∈ N) is the
partition multi-norm based on `p.

For σ ∈ SN and S ⊂ N, we set σ(S) = {σ(n) : n ∈ S}, and we define

Tσ : f 7→ f ◦ σ, `p → `p,

so that Tσ : `p → `p is an isometry.
Let Π be a partition of N, and take σ ∈ SN. Define the sets

Πσ(P ) = {Q ∈ Π : σ(Q) ∩ P 6= ∅} and Π−1
σ (P ) = {Q ∈ Π : σ(P ) ∩Q 6= ∅}

for each P ∈ Π, so that Π−1
σ (P ) = Πσ−1(P ) and σ(P ) is contained in the pairwise-disjoint

union of the family Π−1
σ (P ) of subsets of N.

Lemma 6.28. Let Π be a partition of N, and take σ ∈ SN. Then

‖(Tσf) | P‖ ≤
(∑

{‖f | Q‖p : Q ∈ Π−1
σ (P )}

)1/p

(f ∈ `p, P ∈ Π).

Proof. Take f ∈ `p. Then

‖(Tσf) | P‖p =
∑
n∈P
|f(σ(n))|p ≤

∑{∑
m∈Q

|f(m)|p : Q ∈ Π−1
σ (P )

}
=
∑
{‖f | Q‖p : Q ∈ Π−1

σ (P )},

giving the stated result.

Let Π be a partition of N, and take σ ∈ SN. Then we define

mσ = sup{|Πσ(P )| : P ∈ Π},

so that mσ ∈ N ∪ {∞}.

Theorem 6.29. Let Π be a partition of N, and consider the multi-norm (‖ · ‖Πn : n ∈ N)
based on `p, where p ≥ 1. Take σ ∈ SN. Then Tσ : `p → `p is multi-bounded with respect
to this multi-norm if and only if mσ <∞; in this latter case, ‖T‖mb = m

1/p
σ .

Proof. Suppose that mσ <∞. Take n ∈ N and f1, . . . , fn ∈ `p. Then(
‖(Tσf1, . . . , Tσfn)‖Πn

)p =
∑
P∈Π

max
k∈Nn

‖(Tσfk) | P‖p

≤
∑
P∈Π

max
k∈Nn

∑
Q∈Π−1

σ (P )

‖fk | Q‖p by Lemma 6.28

≤
∑
P∈Π

∑
Q∈Π−1

σ (P )

max
k∈Nn

‖fk | Q‖p

=
∑
Q∈Π

∑
P∈Πσ(Q)

max
k∈Nn

‖fk | Q‖p

≤
∑
Q∈Π

|Πσ(Q)|max
k∈Nn

‖fk | Q‖p

≤ mσ

(
‖(f1, . . . , fn)‖Πn

)p
,

and so Tσ ∈M(`p) with ‖T‖mb ≤ m1/p
σ .
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We continue to suppose that mσ < ∞, say k = mσ ∈ N. Then there exists P ∈ Π
and k pairwise-disjoint sets Q1, . . . , Qk ∈ Πσ(P ). For each j ∈ Nk, choose nj ∈ Qj with
σ(nj) ∈ P , and set fj = δσ(nj). Then

‖(f1, . . . , fk)‖Πk = max
j∈Nk

‖fj | P‖ = 1

and Tσfj = δnj , so that ‖(Tσfj) | Qj‖ = 1 and ‖(Tσfj) | Q‖ = 0 for Q ∈ Π with Q 6= Qj .
Thus ‖(Tσf1, . . . , Tσfn)‖Πn = k1/p.

It follows that ‖T‖mb = m
1/p
σ in the case where mσ <∞.

In the case where we have mσ = ∞, the argument of the last paragraph shows
that, for each k ∈ N, there exist f1, . . . , fk ∈ `p such that ‖(f1, . . . , fk)‖Πk = 1 and
‖(Tσf1, . . . , Tσfk)‖Πk = k1/p, and so T is not multi-bounded.

The next example shows a failure of the ‘Banach isomorphism theorem for multi-
normed spaces’ in the special case where the two multi-norms are equal.

Example 6.30. Let Π be a partition of N into infinitely many infinite subsets, say
P1, P2, . . . , where the sets Pj are distinct. Take

Q0 = P1 ∪ P3 ∪ P5 ∪ · · · and Qj = P2j (j ∈ N),

so that {Q0, Q1, Q2, . . . } is also a partition of N into infinite sets. For each k ∈ N, let
σk : Pk → Qk−1 be a bijection, and define σ ∈ SN by setting σ(n) = σk(n) when n ∈ Pk.

Consider the partition multi-norm (‖ · ‖Πn : n ∈ N) based on `1, and set T = Tσ in
the above notation. For each Pi ∈ Π, we have Πσ(Pi) = {Pi}, and so |Πσ(Pi)| = 1. By
Theorem 6.29, T ∈ M(`1) with ‖T‖mb = 1. On the other hand, T−1 = Tσ−1 ∈ B(`1),
and

Πσ−1(P1) = {Pj : Q0 ∩ Pj 6= ∅} = {P1, P3, P5, . . . },

an infinite set, so that T−1 is not multi-bounded.

6.4. Multi-bounded operators on Banach lattices. Our next aim is to identify
the space M(E,F ) of multi-bounded operators in the case where E and F are Banach
lattices. Throughout this section, we are taking the lattice multi-norms (‖ · ‖Ln : n ∈ N) of
Definition 4.43 as the multi-norms on both of the families {En : n ∈ N} and {Fn : n ∈ N}.

6.4.1. Multi-bounded and order-bounded operators. Let E and F be Banach
lattices. Recall that the space Bb(E,F ) of order-bounded operators from E to F and the
norm ‖T‖b of T ∈ Bb(E,F ) were defined in §1.3.4. In this subsection, we shall compare
Bb(E,F ) with M(E,F ).

Theorem 6.31. Let E and F be Banach lattices. Then each order-bounded operator T
from E to F is multi-bounded, and ‖T‖mb ≤ ‖T‖b.

Proof. Let T ∈ Bb(E,F ), and suppose that B ∈ MB(E). Now take x1, . . . , xn ∈ B, and
set v = |x1| ∨ · · · ∨ |xn|, so that ‖v‖ ≤ cB . For each x ∈ ∆v and ε > 0, there exists w ∈ F
such that

|Tx| ≤ w and ‖w‖ < ‖T‖b‖v‖+ ε.



6.4. Multi-bounded operators on Banach lattices 125

For i ∈ Nn, we have |Txi| ≤ w, and so |Tx1| ∨ · · · ∨ |Txn| ≤ w. Thus

‖(Tx1, . . . , Txn)‖Ln = ‖ |Tx1| ∨ · · · ∨ |Txn| ‖ ≤ ‖w‖ < ‖T‖bcB + ε.

This holds true for each ε > 0, and so T ∈ Bb(E,F ) with cT (B) ≤ ‖T‖bcB . Thus
T ∈M(E,F ) with ‖T‖mb ≤ ‖T‖b, as claimed.

Corollary 6.32. Let E and F be Banach lattices, and let T ∈ B(E,F )+. Then

‖T‖r = ‖T‖b = ‖T‖mb = ‖T‖.

Proof. Always ‖T‖ ≤ ‖T‖mb. By the theorem, ‖T‖mb ≤ ‖T‖b. But ‖T‖b = ‖T‖r = ‖T‖
for positive operators T by (1.29).

The present formulation of the following result is due to Michael Elliott.

Theorem 6.33. Let E and F be Banach lattices.

(i) Suppose that F is monotonically bounded. Then Bb(E,F ) = M(E,F ) and ‖ · ‖mb
and ‖ · ‖b are equivalent on Bb(E,F ).

(ii) Suppose that F has the weak Nakano property. Then ‖ · ‖mb and ‖ · ‖b are equivalent
on Bb(E,F ), with equality of norms when F has the Nakano property.

(iii) Suppose that F is monotonically bounded and has the Nakano property. Then

Bb(E,F ) =M(E,F ) and ‖T‖mb = ‖T‖b (T ∈ Bb(E,F )).

(iv) Suppose that F is monotonically bounded and Dedekind complete. Then

Br(E,F ) = Bb(E,F ) =M(E,F )

and ‖ · ‖mb and ‖ · ‖r are equivalent on Br(E,F ), with equality of norms when F has
the Nakano property.

Proof. Let T ∈ B(E,F ). Suppose that T ∈ Bb(E,F ). Then it follows from Theorem 6.31
that T ∈M(E,F ) with ‖T‖mb ≤ ‖T‖b.

(i) Suppose that T ∈M(E,F ), and take an order-bounded subset B of E. By Prop-
osition 6.6, B ∈ MB(E), and so T (B) ∈ MB(F ). Since F is monotonically bounded,
it follows from Theorem 6.8 that T (B) is order-bounded, and so T ∈ Bb(E,F ). Thus
M(E,F ) = Bb(E,F ). Since (M(E,F ), ‖ · ‖mb) and (Bb(E,F ), ‖ · ‖b) are Banach spaces
with their norms dominating the operator norm, the equivalence of the norms follows
from the closed graph theorem.

(ii) Suppose that T ∈ Bb(E,F ). Fix ε > 0, and take v ∈ E+
[1].

The set B := ∆v is order-bounded, and so B ∈MB(E) with cB ≤ 1, as in Proposition
6.6. Take F = Pf (T (B)), and set yS =

∨
{|y| : y ∈ S} for S ∈ F . Then {yS : S ∈ F} is

an increasing net in F+ such that ‖yS‖ ≤ ‖T‖mb (S ∈ F).
The set T (B) is order-bounded, and so {yS : S ∈ F} is order-bounded. Take ε > 0.

Since F has the weak Nakano property, there exist K ≥ 1 and u ∈ FR such that

yS ≤ u (S ∈ F) and ‖u‖ ≤ K sup
S∈F
‖yS‖+ ε ≤ K‖T‖mb + ε.

It follows that ‖T‖b ≤ K‖T‖mb + ε.
This holds true for each ε > 0, and so ‖T‖b ≤ K‖T‖mb. The result follows.
(iii) This follows immediately from (i) and (ii).
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(iv) By Theorem 1.31, Bb(E,F ) = Br(E,F ) and ‖T‖r = ‖T‖b for each T ∈ Bb(E,F ),
and so the result follows from (i) and (iii).

Corollary 6.34. Let E be a Banach lattices, and let F = Lp(Ω) for a measure space Ω
and p ≥ 1. Then Br(E,F ) = Bb(E,F ) =M(E,F ) and

‖T‖mb = ‖T‖r = ‖T‖b = ‖ |T | ‖ (T ∈ Br(E,F )).

Proof. The hypotheses on F in Theorem 6.33(iv) are satisfied by every monotonically
complete Banach lattice with order-continuous norm, and hence by the lattices Lp(Ω).

In the case where E = F = Lp(Ω), p > 1, and Lp(Ω) is infinite-dimensional, it follows
from Theorem 1.30(iii) thatM(E,F ) is not dense in B(E,F ). We are grateful to Anthony
Wickstead for the following remarks. First, let p, q ∈ [1,∞]. Then Br(`p, `q) 6= B(`p, `q)
whenever either p > 1 or q <∞, and so, in the latter case,M(`p, `q) 6= B(`p, `q). Second,
suppose that 1 ≤ q < p <∞. Then it follows from Pitt’s theorem [6, Theorem 2.1.4] that
K(`p, `q) = B(`p, `q), and so M(`p, `q) ( K(`p, `q) in this case.

The following easy example shows that ‘monotonically bounded’ is not redundant in
Theorem 6.33, (i), (iii), and (iv).

Example 6.35. Take E = c = c0 ⊕ C1, where 1 = (1, 1, . . . ), and F = c0. Then F is
Dedekind complete and has the Nakano property, but it is not monotonically bounded. By
Theorem 4.54(ii), the lattice multi-norm on the AM -space F is the minimum multi-norm,
and so, by Theorem 6.17, we haveM(E,F ) = B(E,F ) and ‖T‖mb = ‖T‖ (T ∈ B(E,F )).

Consider the map
T : α+ z1 7→ α, E → F.

Then T ∈ B(E,F ) with ‖T‖ = 2, but T is not order-bounded. For set αn =
∑∞
i=n δi ∈ E,

so that {αn : n ∈ N} is order-bounded. However, |T (αn)| =
∑n−1
i=1 δi ∈ E, so that the set

{Tαn : n ∈ N} is not order-bounded in F .

The following example, also due to Michael Elliott, shows that ‘has the weak Nakano
property’ is not redundant in Theorem 6.33(ii), even when F is Dedekind complete.

Let (Rn) denote the sequence of Rademacher functions on I. Thus

R1 = χ[0,1/2] − χ(1/2,1], R2 = χ[0,1/4] − χ(1/4,1/2] + χ(1/2,3/4] − χ(3/4,1],

etc.; we regard these functionals as elements of the dual space L∞(I) of L1(I).
We claim that, for each f ∈ L1(I), the sequence (〈f, Rn〉 : n ∈ N) is a null sequence.

Indeed, first suppose that f = χ[a,b] for 0 ≤ a ≤ b ≤ 1. Then |〈f, Rn〉| ≤ 1/2n−1 (n ∈ N),
so that the claim holds in this case. Hence it holds for each simple function f , and
then for each f ∈ L1(I) because the simple functions are dense in L1(I). It follows from
Proposition 6.7 that

∞∑
n=1

|〈f, Rn〉|yn

is convergent in E for each pairwise-disjoint, multi-bounded sequence (yn) in a Banach
lattice.
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Lemma 6.36. Let E be the Banach lattice L1(I), and let F be any Banach lattice. Suppose
that (yn) is a pairwise-disjoint, multi-bounded sequence in F+, and define

T : f 7→
∞∑
n=1

〈f, Rn〉yn, E → F.

Then T ∈M(E,F ) with ‖T‖mb ≤ ‖(yn)‖mb.

Proof. Note that, using (1.26), we have

‖y1 + · · ·+ yn‖ = ‖y1 ∨ · · · ∨ yn‖ = ‖(y1, . . . , yn)‖Ln (n ∈ N),

and so
‖(yn)‖mb = sup{‖y1 + · · ·+ yn‖ : n ∈ N}.

Let B ∈ MB(E) with cB ≤ 1, so that B ⊂ E[1], and take {z1, . . . , zk} to be a finite
subset of T (B). For each j ∈ Nk, choose fj ∈ B with Tfj = zj , and then, for n ∈ N,
define the numbers

sn = |〈f1, Rn〉| ∨ · · · ∨ |〈fk, Rn〉|, tn = |〈f1, Rn〉|+ · · ·+ |〈fk, Rn〉|.

Fix ε > 0. For each j ∈ Nk, there exists i ∈ N such that∥∥∥ ∞∑
n=i

|〈fj , Rn〉|yn
∥∥∥ < ε

k
(j ∈ Nk),

and so ∥∥∥ ∞∑
n=i

snyn

∥∥∥ ≤ ∥∥∥ ∞∑
n=i

tnyn

∥∥∥ < ε.

However, |z1| ∨ · · · ∨ |zk| = |Tf1| ∨ · · · ∨ |Tfk| =
∑∞
n=1 snyn, and so

‖ |z1| ∨ · · · ∨ |zk| ‖ ≤
∥∥∥ i−1∑
n=1

yn

∥∥∥+ ε = ‖(y1, . . . , yi−1)‖Li−1 + ε ≤ ‖(yn)‖mb + ε.

Thus
‖(z1, . . . , zk)‖Lk ≤ sup{‖y1 + · · ·+ yn‖ : n ∈ N}+ ε.

This holds true for each ε > 0, and so

‖(z1, . . . , zk)‖Lk ≤ sup{‖y1 + · · ·+ yn‖ : n ∈ N}.

Hence the result follows.

Theorem 6.37. Let E be the Banach lattice L1(I), and let F be any Dedekind complete
lattice. Then F has the weak σ-Nakano property if and only if ‖·‖mb is equivalent to ‖·‖r
on Br(E,F ).

Proof. Recall from Theorem 1.31 that Br(E,F ) = Bb(E,F ) and that ‖T‖b = ‖T‖r for
T ∈ Br(E,F ). Thus, when F has the weak Nakano property, the norms ‖ · ‖mb and ‖ · ‖r
are equivalent on Br(E,F ) by Theorem 6.33(ii); since E is separable, a trivial variation
of the argument shows this when F has just the weak σ-Nakano property.

Conversely, suppose that K ≥ 1 with ‖T‖r ≤ K‖T‖mb (T ∈ Br(E,F )).
Let (xn) be an increasing, order-bounded sequence in ER. Since F is Dedekind com-

plete, the set {xn : n ∈ N} has a supremum, say y.
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Define y1 = x1 and yn = xn − xn−1 for n ≥ 2, so that (yn) is pairwise-disjoint and
y1+· · ·+yn = xn (n ∈ N). The sequence (yn) is order-bounded, and so, by Proposition 6.6,
(yn) is multi-bounded. Thus Lemma 6.36 applies to the sequence (yn) and the operator
T defined in that lemma. The operator T is bounded above by the positive operator

S : f 7→ 〈f, 1〉y, E → F,

and so T ∈ Br(E,F ); clearly S = |T |, so that ‖T‖r = ‖S‖ = ‖y‖.
By Lemma 6.36, T ∈M(E,F ) with ‖T‖mb ≤ supn∈N ‖xn‖. It follows that

‖y‖ ≤ K sup
n∈N
‖xn‖,

and so F has the weak σ-Nakano property.

An example of a Dedekind complete Banach lattice without the weak σ-Nakano prop-
erty was given in Example 1.24.

We now note that, even in the case where E is a monotonically complete lattice with
the Nakano property, it is not necessarily the case that every compact operator on E is
multi-bounded.

Example 6.38. Let n ∈ N. Essentially as in [7, Example 16.6], there is Tn ∈ M2n(C)
with ‖Tn‖ = 1 and ‖ |Tn| ‖ = 2n/2 (where Cn has the Euclidean norm). Let E be the
`2-sum of the spaces (Cn, ‖ · ‖2) (not the c0-sum given in [7]). Then E is a KB-space, and
so satisfies the conditions on F in Theorem 6.33(iv). Let

T ((xn)) = (2−n/3Tnxn) ((xn) ∈ E).

Then, as in [7], T ∈ K(E), but T is not regular. Thus T ∈ K(E) \M(E).
As remarked in [7, Example 16.6], a compact operator need not have a modulus, and

a compact operator can have a modulus that is not compact (see also [4]).

In Examples 6.25 and 6.30, we showed that the multi-bounded version of Banach’s
isomorphism theorem might fail. We now give another example of this failure; it applies
even in the special case when we consider one Banach lattice and the lattice multi-norm.

Example 6.39. Let E be the Banach lattice L2(T), and consider the lattice multi-norm
based on E. By Corollary 6.34, Br(E) =M(E).

As in Example 1.34, there exists T ∈ K(E) ∩ Br(E) with σo(T ) ) σ(T ); choose
z ∈ σo(T ) \ σ(T ). Then zIE − T ∈ M(E) and zIE − T is invertible in B(E), so that
zIE − T : E → E is a linear isomorphism. However, zIE − T is not invertible in the
Banach algebra M(E).

We now enquire when we have M(E,F ) = B(E,F ).

Theorem 6.40. Let E and F be Banach lattices. Suppose that either E is an AL-space
or that F is an AM -space. Then M(E,F ) = B(E,F ) and ‖T‖mb = ‖T‖ (T ∈ B(E,F )).

Proof. In the two cases, by Theorem 4.54, the lattice multi-norms based on E and F

are the maximum and minimum multi-norms, respectively. The result now follows from
Theorem 6.17.
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Corollary 6.41. Let E and F be Banach lattices. Suppose that F is a Dedekind com-
plete AM -space with an order-unit. Then

Br(E,F ) = Bb(E,F ) =M(E,F ) = B(E,F )

and ‖T‖r = ‖T‖b = ‖T‖mb = ‖T‖ (T ∈ B(E,F ).

Proof. This follows from Theorems 6.33(iv) and 6.40, where we note that an AM -space
with an order-unit is monotonically bounded and has the Nakano property whenever it
is Dedekind complete.

6.4.2. The multi-bounded multi-norm. We shall now extend Theorem 6.33 by con-
sidering the multi-bounded multi-norm (‖ · ‖mbn : n ∈ N). We shall show that, for all
Banach lattices E and suitable Banach lattices F , the multi-norm based on M(E,F ) is
not greater than the lattice multi-norm, with equality when E is the space `1. However,
an example will show that these multi-norms are not necessarily equivalent when E = `p

for p > 1.
We first note the following formula. Let E and F be Banach lattices, and take

T1, . . . , Tn ∈M(E,F ). Then it follows from (6.4) that

‖(T1, . . . , Tn)‖mbn = sup
{∥∥∥∨{|Tixj | : i ∈ Nn, j ∈ Nk}

∥∥∥}, (6.5)

where the supremum is taken over all x1, . . . , xk ∈ E with ‖ |x1| ∨ · · · ∨ |xk| ‖ ≤ 1.
Recall from Theorem 6.33(iv) that Br(E,F ) = Bb(E,F ) =M(E,F ), with equality of

norms, whenever F is Dedekind complete, monotonically bounded, and has the Nakano
property, and so M(E,F ) is a Banach lattice with respect to the lattice multi-norm
(‖ · ‖Ln : n ∈ N) in this case.

Theorem 6.42. Let E and F be Banach lattices such that F is Dedekind complete,
monotonically bounded, and has the Nakano property. Let T1, . . . , Tn ∈M(E,F ). Then

‖(T1, . . . , Tn)‖mbn ≤ ‖ |T1| ∨ · · · ∨ |Tn| ‖ = ‖(T1, . . . , Tn)‖Ln . (6.6)

Proof. We set T = |T1| ∨ · · · ∨ |Tn|. Take x1, . . . , xk ∈ E and set x = |x1| ∨ · · · ∨ |xk|, so
that ‖x‖ ≤ 1. Since |xj | ≤ x (j ∈ Nk) and |Ti| ≤ T (i ∈ Nn), it follows from Theorem
1.31 that

|Tixj | ≤ |Ti|(|xj |) ≤ |Ti|(x) ≤ Tx (i ∈ Nn, j ∈ Nk),

and so ∥∥∥∨{|Tixj | : i ∈ Nn, j ∈ Nk}
∥∥∥ ≤ ‖Tx‖ ≤ ‖T‖.

By (6.5), ‖(T1, . . . , Tn)‖mbn ≤ ‖T‖, as required.

Theorem 6.43. Let E be the Banach lattice `1, and suppose that F is a Dedekind com-
plete, monotonically bounded Banach lattice with the Nakano property. Take n ∈ N and
T1, . . . , Tn ∈M(E,F ). Then

‖(T1, . . . , Tn)‖mbn = ‖ |T1| ∨ · · · ∨ |Tn| ‖. (6.7)

Proof. Set T = |T1| ∨ · · · ∨ |Tn| ∈ B(E,F )+. By Theorem 6.42, ‖(T1, . . . , Tn)‖mbn ≤ ‖T‖;
we must prove the opposite inequality.
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We know that ‖T‖ = supi∈N ‖T (δi)‖. Take i ∈ N. Then the only way that we can write
δi as f1 + · · · + fn, where f1, . . . , fn ∈ (`1)+ is to take fj = αjδi, where α1, . . . , αn ∈ I
and α1 + · · ·+ αn = 1. In this case,

|T1|(f1) + · · ·+ |Tn|(fn) = α1|T1|(δi) + · · ·+ αn|Tn|(δi) ≤ |T1|(δi) ∨ · · · ∨ |Tn|(δi)
using Proposition 1.18(v), and so T (δi) = |T1|(δi)∨ · · · ∨ |Tn|(δi) by (1.30). Thus we have
‖T‖ = supi∈N ‖ |T1|(δi) ∨ · · · ∨ |Tn|(δi)‖. However, by (6.5),

‖(T1, . . . , Tn)‖mbn ≥ ‖ |T1|(δi) ∨ · · · ∨ |Tn|(δi) ‖ (i ∈ N),

and so ‖T‖ ≤ ‖(T1, . . . , Tn)‖mbn , as required.

Theorem 6.44. Let E be an AM -space, and let F be an AL-space. Then the lattice
multi-norm on Bb(E,F ) is the maximum multi-norm.

Proof. By [7, Exercise 15.3, p. 263], the Banach lattice Bb(E,F ) is an AL-space. Thus
the result follows from Theorem 4.54(i).

Example 6.45. We take E = `p and F = `q, where p, q ≥ 1. For n ∈ N, set

en =
n∑
j=1

δj = (1, . . . , 1, 0, . . . ).

For j ∈ Nn, we define Tj : (αi) 7→ αjen, E → F , so that Tj ≥ 0 and

‖Tj‖ = ‖en‖`q = n1/q.

Set T = T1 ∨ · · · ∨ Tn. Then, using (1.30), we see that

T (en) ≥
n∑
j=1

Tj(δj) = nen,

and so ‖T‖ ≥ n · n1/q−1/p = n1+1/q−1/p.
Now take x1, . . . , xk ∈ E with ‖ |x1| ∨ · · · ∨ |xk| ‖ ≤ 1. Then each component of

each xj has modulus at most 1, and so |Tixj | ≤ en for i ∈ Nn and j ∈ Nk. By (6.5),
‖(T1, . . . , Tn)‖mbn ≤ ‖en‖`q = n1/q, and so

‖T‖ = ‖(T1, . . . , Tn)‖Ln ≥ n1−1/p‖(T1, . . . , Tn)‖mbn .

This shows that the multi-norms (‖ · ‖mbn : n ∈ N) and (‖ · ‖Ln : n ∈ N) based on
Bb(E,F ) are not equivalent whenever p > 1.

6.5. Extensions of multi-norms. In this section, we shall show how to take various
extensions of multi-norms.

6.5.1. Definitions. Let ((En, ‖ · ‖n) : n ∈ N) be a multi-normed space, and let F be a
fixed family in B(E)[1] such that IE ∈ F . Then we can define a multi-norm structure on
{En : n ∈ N} by using F : indeed, for n ∈ N and x1, . . . , xn ∈ E, set

|||(x1, . . . , xn)|||n = sup{‖(Tx1, . . . , Txn)‖n : T ∈ F}. (6.8)

We see that ((En, ||| · |||n) : n ∈ N) is a multi-normed space and that

|||x|||n ≥ ‖x‖n (x ∈ En, n ∈ N);

it is the extension of the given multi-norm by F .
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In particular, let us take F to be the family B(E)[1] or the family of all isometric
isomorphisms on E. The multi-normed structure that we obtain is the balanced extension
or isometric extension, respectively.

Definition 6.46. A multi-normed space ((En, ‖ · ‖n) : n ∈ N) is:

(i) balanced if ‖T‖mb = ‖T‖ (T ∈ B(E));
(ii) isometric if ‖T‖mb = 1 for each isometric isomorphism T ∈ B(E).

Thus ((En, ‖ · ‖n) : n ∈ N) is balanced if and only if (M(E), ‖ · ‖mb) is isometrically
isomorphic to (B(E), ‖ · ‖); since ‖T‖ ≤ ‖T‖mb (T ∈M(E)), this holds if and only if, for
each T ∈ B(E) and n ∈ N, we have

‖(Tx1, . . . , Txn)‖n ≤ ‖T‖ ‖(x1, . . . , xn)‖n (x1, . . . , xn ∈ E).

Clearly a balanced multi-norm is isometric, and the balanced or isometric extension
of a multi-norm is balanced or isometric, respectively.

6.5.2. Examples of balanced multi-normed spaces

Example 6.47. Let E be any normed space, and let

(‖ · ‖min
n : n ∈ N) and (‖ · ‖max

n : n ∈ N)

be the minimum and maximum multi-norms on the family {En : n ∈ N}, respectively.
Then it follows from Theorem 6.17 that both these multi-normed spaces are balanced.

Example 6.48. Let E be a normed space, and take 1 ≤ p ≤ q < ∞. Consider the
(p, q)-multi-norm (‖ · ‖(p,q)n : n ∈ N) based on E. Take n ∈ N.

For each T ∈ B(E)[1], we have ‖T ′‖ ≤ 1, and so, by (3.3),

µp,n(T ′λ1, . . . , T
′λn) ≤ µp,n(λ1, . . . , λn) ((λ1, . . . , λn) ∈ (E′)n).

Let (x1, . . . , xn) ∈ En. Since |〈Txi, λi〉| = |〈xi, T ′λi〉| (i ∈ Nn), it follows from (4.1) that
‖(Tx1, . . . , Txn)‖(p,q)n ≤ ‖(x1, . . . , xn)‖(p,q)n . Thus ((En, ‖ · ‖(p,q)n ) : n ∈ N) is a balanced
multi-normed space.

The following result is a special case of [19, Proposition 7.3].

Theorem 6.49. Let (Ω, µ) be a measure space, and suppose that 1 ≤ p ≤ q < ∞ and
Lp(Ω, µ) is infinite-dimensional. Then the balanced extension of the standard q-multi-
norm based on Lp(Ω, µ) is the (p, q)-multi-norm.

6.5.3. Examples of isometric multi-normed spaces. We now consider when some
examples of multi-normed spaces are isometric.

Theorem 6.50. Let (Ω, µ) be a measure space, and and suppose that 1 ≤ p ≤ q < ∞
with p 6= 2. Then the standard q-multi-norm based on Lp(Ω, µ) is isometric.

Proof. Let U be an isometric isomorphism on Lp(Ω, µ). Since p 6= 2, U has the form of
(1.20), where σ is a regular set isomorphism on Ω and∫

σ(X)

|h|p dµ2 = µ1(X)

for each measurable subset X of Ω.
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For n ∈ N, let X = (X1, . . . , Xn) be an ordered partition of Ω, and define

Yj = σ−1(Xj) (j ∈ Nn).

Then clearly Y = (Y1, . . . , Yn) is an ordered partition of Ω. For each j ∈ Nn and a
measurable subset X of Ω, we have∫

Xj

|UχX |p =
∫

Ω

χXj |h|pχσ(X) =
∫

Ω

|h|pχσ(X∩Yj)

=
∫

Ω

|UχX∩Yj |p =
∫

Ω

χX∩Yj =
∫
Yj

χX ,

and so
∫
Xj
|Uf |p =

∫
Yj
|f |p for all f ∈ Lp(Ω, µ). Take f1, . . . , fn ∈ Lp(Ω, µ). Then

rX((Uf1, . . . , Ufn)) = rY((f1, . . . , fn)).
It follows from the definition in (4.7) that

‖(Uf1, . . . , Ufn)‖[q]n = ‖(f1, . . . , fn)‖[q]n ,
and hence we obtain an isometric multi-norm.

Example 6.51. In this example, we shall show that the constraint that p 6= 2 in Theorem
6.50 is necessary.

Set H = `2, and consider Example 6.24. In that example, we obtained an orthonormal
subset S = {xsr : r ∈ Ns, s ∈ N} of H. As before, enumerate S as a sequence (yn), and
now choose a sequence T = (zn) in H such that S ∪ T is an orthonormal basis of H.
Define a bounded linear operator U ∈ B(H) by requiring that

Uyn = δ2n, Uzn = δ2n−1 (n ∈ N).

Clearly, U is an isometric isomorphism on H.
Consider the standard 2-multi-norm on {Hn : n ∈ N}. As in Example 6.24 (in the

elementary case where αi = 1 (i ∈ N)), U is not even a multi-bounded map with respect
to this multi-norm.
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In this final chapter, we shall discuss a notion of orthogonality in multi-normed spaces;
we are seeking a theory of orthogonality involving multi-norms that extends the classical
notions of orthogonality in Hilbert spaces and Banach lattices to more general Banach
spaces. These ideas will be used to define the multi-dual of a multi-normed space; our
motivation is to try to establish a satisfactory duality theory for general multi-normed
spaces.

A ‘test question’ for our approach is the following. Let E = Lp(Ω), where Ω is a
measure space and 1 < p < ∞, and let {En : n ∈ N} have the standard p-multi-
norm (‖ · ‖[p]n : n ∈ N) of Definition 4.21. Let q be the conjugate index to p, and set
F = E′ = Lq(Ω). Then we expect that the ‘multi-dual’ of the multi-normed space
((En, ‖ · ‖[p]n ) : n ∈ N) should be ((Fn, ‖ · ‖[q]n ) : n ∈ N), and hence that

((En, ‖ · ‖[p]n ) : n ∈ N)

is ‘multi-reflexive’. We also expect that the ‘multi-dual’ of the lattice multi-norm on the
multi-normed space ((En, ‖ · ‖Ln) : n ∈ N), where E is a Banach lattice, will be the lattice
multi-norm on {(E′)n : n ∈ N}. We should formulate the notion of ‘multi-dual’ to achieve
these aims. This seems to be not completely straightforward.

In this chapter, we consider Banach spaces over only the complex field.

7.1. Decompositions. We recall that the notion of a direct sum decomposition of a
Banach space was given §1.2.3; this included the notion of a ‘closed family of decompo-
sitions’.

7.1.1. Hermitian decompositions of a normed space. The first decomposition that
we consider is essentially known, and does not involve multi-norms.

Definition 7.1. Let E = E1 ⊕ · · · ⊕ Ek be a direct sum decomposition of a normed
space (E, ‖ · ‖). Then the decomposition is hermitian if

‖ζ1x1 + · · ·+ ζkxk‖ ≤ ‖x1 + · · ·+ xk‖ (7.1)

whenever ζ1, . . . , ζk ∈ D and x1 ∈ E1, . . . , xk ∈ Ek.

In particular, we see that ‖ζ1x1 + · · ·+ ζkxk‖ = ‖x1 + · · ·+ xk‖ when ζ1, . . . , ζk ∈ T
and x1 ∈ E1, . . . , xk ∈ Ek. Further, it follows from a simple remark on page 68 that this
condition implies that the decomposition is hermitian.

The reason for the above terminology (suggested by [44]) is the following. Suppose
that E = F ⊕G is a decomposition. Then the decomposition is hermitian if and only if

[133]
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‖ζx+ y‖ = ‖x+ y‖ (x ∈ F, y ∈ G, ζ ∈ T). Let P : E → F be the projection. Then

exp(iθP )(x+ y) = eiθx+ y (x ∈ F, y ∈ G, θ ∈ R),

and so the decomposition is hermitian if and only if P is a hermitian operator.
We see that trivial decompositions are hermitian. For example, let us identify Cn as

C⊕· · ·⊕C, and suppose that ‖·‖ is a norm on Cn. Then this decomposition is a hermitian
decomposition of (Cn, ‖ · ‖) if and only if ‖ · ‖ is a lattice norm on Cn.

A decomposition E = F ⊕G of a Banach space E is said to be an M -decomposition if
‖y+z‖ = max{‖y‖, ‖z‖} and an L-decomposition if ‖y+z‖ = ‖y‖+‖z‖ for all y ∈ F and
z ∈ G; in these cases, F and G are M - and L-summands, respectively. Clearly, M - and
L- decompositions are hermitian. See [34] for a discussion of M - and L- decompositions.

There have been many generalized versions of ‘orthogonality’ in the theory of normed
linear spaces; our concept of a hermitian decomposition E = F ⊕G implies that we have
‖x − y‖ = ‖x + y‖ for each x ∈ F and y ∈ G; thus x and y are ‘isosceles orthogonal’ in
the sense of [38, Definition 2.1]. Indeed, ‖x− ky‖ = ‖x+ ky‖ for each x ∈ F , y ∈ G, and
k ∈ C, and so x and y are ‘orthogonal’ in the sense of the early paper [62]. See also the
notion of h-summand in [32].

Definition 7.2. Let (E, ‖ · ‖) be a normed space. Then the family of all hermitian
decompositions of E is Kherm.

It is clear that Kherm is a closed family of direct sum decompositions. Let (E, ‖ · ‖)
be a normed space, and consider a family K of hermitian decompositions of E. Then the
smallest closed family L of hermitian decompositions of E such that L contains K is the
hermitian closed family generated by K.

Example 7.3. Let B be the subset of C2 which is the absolutely convex hull of the set
consisting of the three points (1, 0), (0, 1), and (2, 2). Then B is the closed unit ball of a
norm, say ‖ · ‖, on C2. Then the obvious direct sum decomposition

C2 = (C× {0})⊕ ({0} × C)

is not a hermitian decomposition of (C2, ‖ · ‖). Indeed, ‖(2, 2)‖ = 1, but ‖(2, 0)‖ = 2.

Example 7.4. Let E = `p2, where p ≥ 1. Then E = (C×{0})⊕ ({0}×C) is a hermitian
decomposition.

We consider which other non-trivial direct sum decompositions of E are hermitian.
Indeed, for α ∈ C, set Eα = {(z, w) ∈ C2 : w = αz}. Then E = Eα⊕Eβ whenever α 6= β,
and every such decomposition has this form for some α, β ∈ C with α 6= β, say α 6= 0.
Take x1 = (1, α) ∈ Eα and x2 = (ζ, βζ) ∈ Eβ , where ζ ∈ C. Then ‖x1 + x2‖ = ‖x1 − x2‖
only if

|1 + ζ|p + |α+ βζ|p = |1− ζ|p + |α− βζ|p (ζ ∈ C). (7.2)

Thus β 6= 0. In the case where −β/α 6∈ R+, there exists ζ ∈ T with <ζ > 0 and
<(βζ/α) > 0, and then |1 + ζ| > |1− ζ| and |α+ βζ| > |α− βζ|, a contradiction of (7.2).
Thus we have β = −αr for some r > 0. For t ∈ R with |t| < min{r, 1}, we have

(1 + t)p − (1− t)p = |α|p((1 + rt)p − (1− rt)p). (7.3)
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Suppose that p 6= 1, 2. Then, by equating the first and third derivatives at t = 0 of
both sides of (7.3), we see that |α|pr = |α|pr3 = 1, and so r = |α| = 1, say α = eiθ, and
then β = −eiθ.

Suppose that p = 1. Then, from (7.3), |α|r = 1, and so, from (7.2),

|ζ + 1| − |ζ − 1| = |ζ + 1/r| − |ζ − 1/r| (ζ ∈ C).

By taking ζ = 1 + i, we see that this is only possible when r = 1, and again we have
α = eiθ, and then β = −eiθ.

Thus, for p 6= 2, we obtain a hermitian decomposition only if α = eiθ and β = −eiθ

for some θ ∈ [0, 2π). But finally take x1 = (1, eiθ) and x2 = (1,−eiθ). Then

‖x1 + x2‖ = 2p 6= 2 · 2p/2 = ‖x1 + ix2‖,

and so there is no hermitian decomposition of this form.
Thus the only hermitian decompositions of E = `p2 for p ≥ 1 and p 6= 2 are

E = (C× {0})⊕ ({0} × C) and E = ({0} × C)⊕ (C× {0}).

A similar argument shows that this is also true for E = `∞2 .
Suppose that p = 2. Then, from (7.2), <(ζ) = −<(αβζ) for all ζ ∈ C, and so there exist

θ ∈ [0, 2π) and r > 0 with α = reiθ and β = −eiθ/r. Each decomposition corresponding
to such a choice of α and β is hermitian.

More general results about hermitian decompositions of `p follow from Theorem 1.15
and [30, Theorem 5.2.13].

Let E = E1 ⊕ · · · ⊕Ek be a hermitian decomposition of a normed space E. Then the
maps Pj are continuous, and ‖Pj‖ = 1 when Ej 6= {0} (even in the case where (E, ‖ ·‖) is
not necessarily complete), and the maps P ′j : E′j → E′ are isometric embeddings. Again,
E′ = E′1 ⊕ · · · ⊕ E′k.

Proposition 7.5. Let E = E1 ⊕ · · · ⊕ Ek be a hermitian decomposition of a normed
space (E, ‖ · ‖). Then the decomposition E′ = E′1 ⊕ · · · ⊕ E′k is also hermitian.

Proof. Let ζ1, . . . , ζk ∈ D and λi ∈ E′i (i ∈ Nk). Then

‖ζ1λ1 + · · ·+ ζkλk‖ = sup
x∈E[1]

|〈x, ζ1λ1〉+ · · ·+ 〈x, ζkλk〉|

= sup
x∈E[1]

|〈ζ1P1x, λ1〉+ · · ·+ 〈ζkPkx, λk〉|

= sup
x∈E[1]

|〈ζ1P1x+ · · ·+ ζkPkx, λ1 + · · ·+ λk〉|.

But
‖ζ1P1x+ · · ·+ ζkPkx‖ ≤ ‖P1x+ · · ·+ Pkx‖ = ‖x‖ ≤ 1 (x ∈ E[1]),

and it follows that ‖ζ1λ1 + · · ·+ ζkλk‖ ≤ ‖λ1 + · · ·+ λk‖, giving the result.

The above result also follows from [13, §9, Corollary 6(ii)], where it is stated that
P ′ ∈ B(E′) is hermitian if and only if P ∈ B(E) is hermitian.
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Proposition 7.6. Let (E, ‖ · ‖) be a normed space, and let k ∈ N. Suppose that E has
two hermitian decompositions

E = E1 ⊕ · · · ⊕ Ek = F1 ⊕ · · · ⊕ Fk.

For j ∈ Nk, let Qj : E → Fj be the natural projections. Then

‖Q1x1 + · · ·+Qkxk‖ ≤ ‖x1 + · · ·+ xk‖ (x1 ∈ E1, . . . , xk ∈ Ek). (7.4)

Proof. Set ζ = exp(2πi/k). Then we note that

Q` =
1
k

k∑
i=1

k∑
j=1

ζj(i−`)Qi (` ∈ Nk).

Take xi ∈ Ei (i ∈ Nk). Then

‖Q1x1 + · · ·+Qkxk‖ =
1
k

∥∥∥ k∑
`=1

k∑
i=1

k∑
j=1

ζj(i−`)Qix`

∥∥∥
≤ 1
k

k∑
j=1

∥∥∥ k∑
i=1

k∑
`=1

ζj(i−`)Qix`

∥∥∥
=

1
k

k∑
j=1

∥∥∥( k∑
i=1

ζjiQi

)( k∑
`=1

ζ−j`x`

)∥∥∥
=

1
k

k∑
j=1

∥∥∥ k∑
`=1

ζ−j`xl

∥∥∥
because the decomposition E = F1 ⊕ · · · ⊕ Fk is hermitian, and so

‖Q1x1 + · · ·+Qkxk‖ ≤
1
k

k∑
j=1

∥∥∥ k∑
`=1

ζ−j`x`

∥∥∥ = ‖x1 + · · ·+ xk‖

because the decomposition E = E1 ⊕ · · · ⊕ Ek is hermitian. Thus (7.4) follows.

We now give some examples of hermitian decompositions of particular Banach spaces.

Theorem 7.7. Let K be a compact space, and let C(K) = E1 ⊕ · · · ⊕Ek be a hermitian
decomposition. Then there exist clopen subspaces K1, . . . ,Kk of K such that Ej = C(Kj)
(j ∈ Nk). In particular, in the case where K is connected, there are no non-trivial her-
mitian decompositions of C(K).

Proof. Take j ∈ Nk, and let Pj be the projection of C(K) onto Ej , so that Pj is a hemitian
operator. By Theorem 1.14, there exists hj ∈ CR(K) with Pjf = hjf (f ∈ C(K)). Since
Pj = P 2

j , we have hj = h2
j in C(K), and so hj is the characteristic function of a subset,

say Kj , of K. Clearly, Kj is clopen and Ej = C(Kj).

Proposition 7.8. Take p ∈ [1,∞] with p 6= 2, and let `p = E1⊕ · · ·⊕Ek be a hermitian
decomposition. Then there exist subsets S1, . . . , Sk of N such that Ej = `p(Sj) (j ∈ Nk).

Proof. This follows similarly, now using Theorem 1.15.
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7.1.2. Small decompositions of multi-normed spaces. We now turn to decompo-
sitions of normed spaces E with respect to multi-norms based on E.

Definition 7.9. Let ((En, ‖ · ‖n) : n ∈ N) be a multi-normed space, let k ∈ N,and let
E = E1⊕ · · · ⊕Ek be a direct sum decomposition of E. Then the decomposition is small
(with respect to the multi-norm) if

‖P1x1 + · · ·+ Pkxk‖ ≤ ‖(x1, . . . , xk)‖k (x1, . . . , xk ∈ E).

We shall see in Example 7.25 that the notion of a small decomposition of a normed
space E depends on the multi-norm ((En, ‖ · ‖n) : n ∈ N), and is not intrinsic to the
normed space E.

Clearly ‖Pj‖ ≤ 1 (j ∈ Nn) for each such small decomposition.

Proposition 7.10. Let ((En, ‖ · ‖n) : n ∈ N) be a multi-normed space, and suppose that
E = E1 ⊕ · · · ⊕ Ek is a small decomposition of E. Then the decomposition is hermitian.
Further,

‖(x1, . . . , xk)‖k = ‖x1 + · · ·+ xk‖ (x1 ∈ E1, . . . , xk ∈ Ek). (7.5)

Proof. Take ζ1, . . . , ζk ∈ D and x1 ∈ E1, . . . , xk ∈ Ek, and then set x = x1 + · · · + xk.
Clearly Pjx = xj (j ∈ Nk), and so

‖ζ1x1 + · · ·+ ζ1x1‖ = ‖P1(ζ1x) + · · ·+ Pk(ζkx)‖ ≤ ‖(ζ1x, . . . , ζkx)‖k
≤ ‖(x, . . . , x)‖k = ‖x‖ = ‖x1 + · · ·+ xk‖,

and so the decomposition is hermitian.
Now take x1 ∈ E1, . . . , xk ∈ Ek, and set ζ = exp(2πi/k). Then

‖x1 + · · ·+ xk‖ = ‖P1x1 + · · ·+ Pkxk‖ ≤ ‖(x1, . . . , xk)‖k

≤ 1
k

k∑
j=1

∥∥∥ k∑
m=1

ζjmxm

∥∥∥ by Proposition 2.17

≤ max
j∈Nk

∥∥∥ k∑
m=1

ζjmxm

∥∥∥ ≤ ‖x1 + · · ·+ xk‖,

which gives the equality (7.5).

Example 7.11. Let E = `p(N), where p ≥ 1, and consider the lattice multi-norm based
on E, namely (‖ · ‖Ln : n ∈ N); by Example 4.47, this is the standard p-multi-norm on E.

For k ∈ N, take (S1, . . . , Sk) to be an ordered partition of N, and set Ei = `p(Si) for
i ∈ Nk). Then it is clear that E = E1⊕ · · · ⊕Ek is a small decomposition with respect to
the lattice multi-norm because

‖f1 | S1 + · · ·+ fk | S1‖ ≤ ‖ |f1| ∨ · · · ∨ |fk| ‖ = ‖(f1, . . . , fk)‖Lk
for all f1, . . . , fk ∈ E. The collection of all such decompositions is a closed family.

The following remark will be generalized later, in Theorem 7.40.

Proposition 7.12. Let (E, ‖ · ‖) be a normed space, and suppose that E = E1 ⊕E2 is a
hermitian decomposition of E. For x1, x2 ∈ E, set

‖(x1, x2)‖2 = max{‖x1‖, ‖x2‖, ‖P1x1 + P2x2‖, ‖P1x2 + P2x1‖}.
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Then (‖·‖, ‖·‖2) is a multi-norm of level 2 on {E,E2}, and the direct sum decomposition
E = E1 ⊕ E2 is small with respect to this multi-norm.

Proof. It is clear that ‖ · ‖2 is a norm on E2 and that ‖ · ‖2 satisfies (A1); ‖ · ‖2 satisfies
(A2) because the decomposition is hermitian.

Let x ∈ E. Then ‖(x, 0)‖2 = ‖x‖ because ‖P1‖, ‖P2‖ ≤ 1, so that (A3) holds, and
‖(x, x)‖2 = ‖x‖ because P1x + P2x = x, so that (A4) holds. Thus (‖ · ‖, ‖ · ‖2) is a
multi-norm of level 2 on {E,E2}.

Clearly the decomposition E = E1 ⊕ E2 is small with respect to the multi-norm
(‖ · ‖, ‖ · ‖2).

Definition 7.13. Let ((En, ‖ · ‖n) : n ∈ N) be a multi-normed space. Then the family
of all small decompositions of E is Ksmall.

Proposition 7.14. Let ((En, ‖ · ‖n) : n ∈ N) be a multi-normed space. Then Ksmall is a
closed family of direct sum decompositions.

Proof. Clearly, Axiom (C1) of Definition 1.7 is satisfied, and (C3) is trivially satisfied.
Take k ≥ 3, and let E = E1⊕· · ·⊕Ek be a small decomposition. Take x, x3, . . . , xk ∈ E.

Then the projection of x with kernel E3⊕ · · · ⊕Ek onto the space E1⊕E2 is P1x+P2x,
and so

‖(P1x+ P2x) + P3x3 + · · ·+ Pkxk‖ ≤ ‖(x, x, x3, . . . , xk)‖k = ‖(x, x3, . . . , xk)‖k−1.

Hence E = (E1 ⊕E2)⊕E3 ⊕ · · · ⊕Ek is a small decomposition of E, and so Axiom (C2)
is satisfied.

Thus Ksmall is a closed family.

7.1.3. Orthogonal decompositions of multi-normed spaces. We now move to con-
sideration of orthogonal decompositions of multi-normed spaces. It will be seen later that
such decompositions generalize various classical notions of orthogonality.

Let E be a linear space. We recall that a ‘coagulation’ of an element (x1, . . . , xn) ∈ En
was defined on page 10.

Definition 7.15. Let ((En, ‖ · ‖n) : n ∈ N) be a multi-normed space, let k ∈ N, and let
E = {E1, . . . , Ek} be family of closed subspaces of E. Then {E1, . . . , Ek} is an orthog-
onal family in E if, for each x1 ∈ E1, . . . , xk ∈ Ek and each coagulation (y1, . . . , yj) of
(x1, . . . , xk), we have

‖(y1, . . . , yj)‖j = ‖(x1, . . . , xk)‖k.

A subset {x1, . . . , xk} of E is orthogonal if the family {Cx1, . . . ,Cxk} of subspaces is an
orthogonal family.

Again, the notion of an orthogonal family depends on the multi-norm structure; it is
not intrinsic to the normed space E. The definition depends on only the set {E1, . . . , Ek},
and not on the ordering of the spaces E1, . . . , Ek.

For example, a trivial direct sum decomposition of E is orthogonal for any multi-
normed space ((En, ‖ · ‖n) : n ∈ N); this follows from the basic Axiom (A3).

Let {E1, . . . , Ek} be an orthogonal family of subspaces of E. Then certainly

‖(x1, . . . , xk)‖k = ‖x1 + · · ·+ xk‖ (x1 ∈ E1, . . . , xk ∈ Ek). (7.6)



7.1. Decompositions 139

Indeed, suppose that xi ∈ Ei (i ∈ Nk). Then

‖(x1, . . . , xk)‖k = ‖ζ1x1 + · · ·+ ζkxk‖ (ζ1, . . . , ζk ∈ T). (7.7)

Lemma 7.16. Let ((En, ‖ · ‖n) : n ∈ N) be a multi-normed space, let k ∈ N, and let
{E1, . . . , Ek} be an orthogonal family in E. Then:

(i) for i, j ∈ Nk with i 6= j, we have Ei ∩ Ej = {0};
(ii) {E1 ⊕ E2, E3, . . . , Ek} is an orthogonal family in E (whenever k ≥ 3);
(iii) for j ∈ Nk such that Ej 6= {0}, the norm of the projection from (E1⊕ · · · ⊕Ek, ‖ · ‖)

onto (Ej , ‖ · ‖) is 1.

Proof. These are immediate.

Definition 7.17. Let ((En, ‖ · ‖n) : n ∈ N) be a multi-normed space, let k ∈ N, and let
E = E1⊕ · · · ⊕Ek be a direct sum decomposition. Then the decomposition is orthogonal
(with respect to the multi-norm of E) if {E1, . . . , Ek} is an orthogonal family.

We make the following remark, without proof.
Let ((En, ‖ · ‖n) : n ∈ N) be a multi-normed space, and let K be a closed family of

hermitian decompositions of E. Suppose that, for each decomposition E = E1⊕ · · · ⊕Ek
in K, we have

‖(x1, . . . , xk)‖k ≥ ‖x1 + · · ·+ xk‖ (x1 ∈ E1, . . . , xk ∈ Ek).

Then each decomposition in K is orthogonal.

Definition 7.18. Let ((En, ‖ · ‖n) : n ∈ N) be a multi-normed space. Then the family
of all orthogonal decompositions of E is Korth.

Proposition 7.19. Let ((En, ‖ · ‖n) : n ∈ N) be a multi-normed space. Then Korth is a
closed family of direct sum decompositions.

Proof. Clearly trivial direct sum decompositions of E are orthogonal, and so this follows
from Lemma 7.16.

Theorem 7.20. Let ((En, ‖ · ‖n) : n ∈ N) be a multi-normed space. Then:

(i) each orthogonal decomposition of E is hermitian;
(ii) each small decomposition of E is orthogonal.

Proof. (i) This is immediate from (7.7).
(ii) Let E = E1 ⊕ · · · ⊕ Ek be a small decomposition of E, and then take elements

x1 ∈ E1, . . . , xk ∈ Ek. Suppose that (y1, . . . , yj) is a coagulation of (x1, . . . , xk), and let
{Sj : j ∈ Nk} be a partition of Nn such that

yj =
∑
{xi : i ∈ Sj} (j ∈ Nk).

Set Fj =
⊕
{Ei : i ∈ Sj} (j ∈ Nk). Then E = F1⊕· · ·⊕Fj is a direct sum decomposition

of E, and, by Proposition 7.14, it is a small decomposition of E. By (7.5), we have
‖(y1, . . . , yj)‖j = ‖y1 + · · · + yj‖ and ‖(x1, . . . , xk)‖k = ‖x1 + · · · + xk‖. But clearly
‖y1 + · · · + yj‖ = ‖x1 + · · · + xk‖, and so ‖(y1, . . . , yj)‖j = ‖(x1, . . . , xk)‖k. Thus the
decomposition is orthogonal.
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Question. Let (‖·‖n : n ∈ N) be multi-norm based on a Banach space E. We regret that
we do not know whether every orthogonal decomposition with respect to this multi-norm
is necessarily small. If this is not true in general, one could seek classes of multi-norms
or of Banach spaces E for which it is true.

Proposition 7.21. Let E be a Banach space. Then every orthogonal decomposition of
E with respect to the minimum multi-norm is small with respect to this multi-norm.

Proof. Take k ∈ N, and let E = E1 ⊕ · · · ⊕ Ek be an orthogonal, and hence hermitian,
decomposition of E. Then ‖Pj‖ ≤ 1 (j ∈ Nk).

Take x1, . . . , xk ∈ E. Since the decomposition is orthogonal, we have

‖P1x1 + · · ·+ Pkxk‖ = ‖(P1x1, . . . , Pkxk)‖min
k ,

and so
‖P1x1 + · · ·+ Pkxk‖ ≤ max{‖xj‖ : j ∈ Nn} = ‖(x1, . . . , xk)‖min

k .

Hence the decomposition is small.

Proposition 7.22. Let ((En, ‖·‖n) : n ∈ N) be a multi-normed space. Let k ∈ N, and let
E = E1 ⊕ · · · ⊕ Ek be an orthogonal decomposition of E, with corresponding projections
P1, . . . , Pk. Take λ1, . . . , λk ∈ E′. Then

sup
{∣∣∣ k∑

i=1

〈Pix, λi〉
∣∣∣ : x ∈ E[1]

}
= sup

{∣∣∣ k∑
i=1

〈xi, λi〉
∣∣∣ : xi ∈ Ei, ‖(x1, . . . , xk)‖k ≤ 1

}
.

Proof. Let the left-hand and right-hand sides of the above equation be A and B, respec-
tively.

Take x ∈ E[1]. Then Pix ∈ Ei (i ∈ Nk), and so

‖(P1x, . . . , Pkx)‖k = ‖P1x+ · · ·+ Pkx‖ = ‖x‖ ≤ 1.

Thus |
∑k
i=1〈Pix, λi〉| ≤ B, and so A ≤ B.

Take elements xi ∈ Ei (i ∈ Nk) with ‖(x1, . . . , xk)‖k ≤ 1, and set x = x1 + · · · + xk.
Then, by equation (7.6), x ∈ E[1], and Pix = xi (i ∈ Nk). Thus |

∑k
i=1〈xi, λi〉| ≤ A, and

so B ≤ A.
The result follows.

Proposition 7.23. Let ((En, ‖ · ‖n) : n ∈ N) and ((Fn, ‖ · ‖n) : n ∈ N) be multi-normed
spaces, let k ∈ N, and let E = E1 ⊕ · · · ⊕Ek be an orthogonal decomposition of E. Then

‖(Tx1, . . . , Txk)‖k ≤ ‖T‖ ‖(x1, . . . , xk)‖k (7.8)

for x1 ∈ E1, . . . , xk ∈ Ek and T ∈ B(E,F ).

Proof. Take xj ∈ Ej for each j ∈ Nk. By Proposition 2.17,

‖(Tx1, . . . , Txk)‖k ≤
1
k

k∑
j=1

∥∥∥ k∑
m=1

ζjmTxm

∥∥∥,
where ζ = exp(2πi/k). However,∥∥∥ k∑

m=1

ζjmTxm

∥∥∥ ≤ ‖T‖ ∥∥∥ k∑
m=1

ζjmxm

∥∥∥ = ‖T‖ ‖(x1, . . . , xk)‖k

for each j ∈ Nk by (7.7), and now (7.8) follows.
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7.1.4. Elementary examples. We give four elementary examples involving hermitian,
small, and orthogonal decompositions; further examples will be given later.

Example 7.24. Let E = `p2, where p ∈ [1,∞]; the norm on E is ‖ · ‖. Set E1 = C× {0}
and E2 = {0}×C, so that E = E1⊕E2 is a hermitian decomposition for each p ∈ [1,∞].

Let (‖ · ‖, ‖ · ‖min
2 ) be the minimum multi-norm of level 2 on {E,E2}.

First, suppose that p <∞, and take x1 = (1, 0) and x2 = (0, 1), so that x1 ∈ E1 and
x2 ∈ E2. Then ‖x1 + x2‖ = ‖(1, 1)‖ = 21/p, whereas

‖(x1, x2)‖min
2 = max{‖x1‖, ‖x2‖} = 1;

since 21/p > 1, the decomposition is not orthogonal. We conclude that there are hermitian
decompositions that are not orthogonal with respect to a particular multi-norm.

Second, suppose that p = ∞, and let (‖ · ‖, ‖ · ‖2) be any multi-norm of level 2 on
{E,E2}. Take x1 = (z1, w1) and x2 = (z2, w2) in E. Then

‖P1x1 + P2x2‖ = max{|z1|, |w2|},

whereas

‖(x1, x2)‖2 ≥ ‖(x1, x2)‖min
2 = max{|z1|, |z2|, |w1|, |w2|} ≥ ‖P1x1 + P2x2‖,

and so the decomposition is small.

Example 7.25. Let B be the subset of C2 which is the absolutely convex hull of the set
consisting of the three points x1 = (1, 0), x2 = (0, 1), and x1 +x2 = (1, 1). Then B is the
closed unit ball of a norm, say ‖ · ‖, on C2. Again set E1 = C×{0} and E2 = {0}×C, so
that E = E1⊕E2. We have x1 ∈ E1 and x2 ∈ E2. Also ‖x1 +x2‖ = 1, but ‖x1−x2‖ = 2,
and so the decomposition is not hermitian.

Let (‖ · ‖n : n ∈ N) be any multi-norm based on E. Then, by Theorem 7.20(i), the
decomposition E = E1⊕E2 is not orthogonal with respect to this multi-norm because it
is not hermitian.

Next set F1 = {(z, z) : z ∈ C} and F2 = {(z,−z) : z ∈ C}. Then E = F1 ⊕ F2 is a
direct sum decomposition; say the projections onto F1 and F2 are Q1 and Q2, respectively.
Simple geometrical considerations show that this decomposition is hermitian.

Let (‖ · ‖, ‖ · ‖min
2 ) be the minimum multi-norm of level 2 on {E,E2}, and now take

x1 = (1, 1) ∈ F1 and x2 = (1/2,−1/2) ∈ F2, so that we have ‖x1‖ = ‖x2‖ = 1 and
‖(x1, x2)‖min

2 = 1. Further,

‖x1 + x2‖ =
∥∥∥∥(3

2
,

1
2

)∥∥∥∥ > 1.

Thus the decomposition E = F1 ⊕ F2 is not orthogonal with respect to the minimum
multi-norm. Again we see that there are hermitian decompositions that are not orthogonal
with respect to a particular multi-norm.

As in Proposition 7.12, there is a multi-norm of level 2 on {E,E2} with respect to
which the decomposition E = F1 ⊕ F2 is small.

Example 7.26. This example shows that we cannot determine the orthogonality of a set
just by looking at pairs of elements in the set.
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Let E be the space C4, with the norm ‖ · ‖ given by

‖(z1, . . . , z4)‖ = max{|z1|, . . . , |z4|} (z1, . . . , z4 ∈ C),

so that E = `∞4 . Then ((En, ‖ · ‖n) : n ∈ N) is a multi-normed space for the minimum
multi-norm.

Set f1 = (1, 0, 0, 1/2), f2 = (0, 1, 0, 1/2), and f3 = (0, 0, 1, 1/2). It is immediate that
‖f1‖ = ‖f2‖ = ‖f3‖ = 1.

We claim that {f1, f2} is orthogonal. Indeed take ζ1, ζ2 ∈ C. Then we see that
‖(f1, f2)‖2 = max{|ζ1|, |ζ2|} and

‖ζ1f1 + ζ2f2‖ = max{|ζ1|, |ζ2|, |(ζ1 + ζ2)/2|} = max{|ζ1|, |ζ2|},

as required. Similarly, {f1, f3} and {f2, f3} are orthogonal. However, we calculate that
f1 + f2 + f3 = (1, 1, 1, 3/2), so that

‖f1 + f2 + f3‖ = 3/2 > 1 = ‖(f1, f2, f3)‖3.

Thus {f1, f2, f3} is not orthogonal.

Example 7.27. Let E = C(I), with the uniform norm | · |I, and consider the minimum
multi-norm based on E. We ask when {f1, f2} is orthogonal. This is certainly the case
whenever f1 and f2 have disjoint supports. However this may occur in other cases.

For example, define a function f1 ∈ E by requiring that f1(0) = 1, that f1(1) = 0,
that f1(t0) = 1/2 for some t0 ∈ (0, 1), and that f1 be linear on [0, t0] and [t0, 1], and then
set f2(t) = f1(1− t) (t ∈ I). Then it is easy to see that {f1, f2} is orthogonal if and only
if t0 ≥ 1/2.

Let K be a compact space, and let f ∈ C(K) be such that f(K) = I. Then {f, 1− f}
is an orthogonal set.

7.1.5. Decompositions of the spaces C(K). Throughout this subsection, K is a
non-empty, compact space.

Proposition 7.28. Let (‖ · ‖n : n ∈ N) be any multi-norm based on C(K), and suppose
that {K1, . . . ,Kk} is a partition of K into clopen subspaces. Then the decomposition
C(K) = C(K1)⊕ · · · ⊕ C(Kk) is small with respect to this multi-norm.

Proof. We write Pj : f 7→ f | Kj for j ∈ Nn. Let f1, . . . , fk ∈ C(K). Then

|P1f1 + · · ·+ Pkfk|K = max{|Pjfj |K : j ∈ Nk} ≤ max{|fj |K : j ∈ Nk}
= ‖(f1, . . . , fk)‖min

k ≤ ‖(f1, . . . , fk)‖k,

and so the decomposition is small.

The following theorem gives more information about decompositions of the space
C(K). Recall from Theorem 4.54(ii) that the lattice multi-norm based on C(K) is just
the minimum multi-norm.

Theorem 7.29. Let C(K) = E1 ⊕ · · · ⊕Ek be a direct sum decomposition of C(K), and
let (‖ · ‖n : n ∈ N) be a multi-norm based on C(K). Then the following are equivalent:

(a) Ej = C(Kj) (j ∈ Nk) for some partition {K1, . . . ,Kk} of K into clopen subspaces;
(b) the decomposition is small with respect to the lattice multi-norm;
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(c) the decomposition is orthogonal with respect to the lattice multi-norm;
(d) the decomposition is hermitian.

Proof. (a)⇒(b) This follows from Proposition 7.28.
(b)⇒(c)⇒(d) This follows from Theorem 7.20.
(d)⇒(a) This follows from Theorem 7.7.

7.1.6. Decompositions of Hilbert spaces. Let H be a Hilbert space. Recall that the
Hilbert multi-norm (‖·‖Hn : n ∈ N) based on H was defined in Definition 4.16; orthogonal
decompositions of H were defined in Chapter 1, §2.6. We again denote the inner product
on H by [ · , · ].

Theorem 7.30. Let H be a Hilbert space, and let H = H1 ⊕ · · · ⊕ Hk be a direct sum
decomposition of H. Then the following are equivalent:

(a) the decomposition is orthogonal;
(b) the decomposition is small with respect to the Hilbert multi-norm;
(c) the decomposition is orthogonal with respect to the Hilbert multi-norm;
(d) the decomposition is hermitian.

Proof. (a)⇒(b)⇒(c)⇒(d) These are immediate from the definition of the Hilbert multi-
norm and Theorem 7.20.

(d)⇒(a) First, let H = H1 ⊕H2 be a hermitian decomposition, with H1, H2 6= {0}.
We choose x1 ∈ H1 and x2 ∈ H2 with ‖x1‖ = ‖x2‖ = 1, and set ζ = [x1, x2], so that
|ζ| ≤ 1. We shall show that ζ = 0, and hence deduce that H = H1 ⊕H2 is an orthogonal
decomposition.

We may suppose that ζ ≤ 0. Write y = x1 − ζx2, so that [x2, y] = 0. Then

1 + ‖y‖2 = ‖y − x2‖2 = ‖x1 − (1 + ζ)x2‖2 ≤ ‖x1 + x2‖2

because |1 + ζ| ≤ 1 and the decomposition is hermitian, and so

1 + ‖y‖2 ≤ ‖(1 + ζ)x2 + y‖2 = (1 + ζ)2 + ‖y‖2.

Thus ζ = 0, giving the claim.
The general case follows by induction.

7.1.7. Decompositions of lattices. Let E be a Banach lattice. We recall that a direct
sum decomposition E = E1 ⊕ · · · ⊕ Ek is a band decomposition, written

E = E1 ⊕⊥ · · · ⊕⊥ Ek,

if each of E1, . . . , Ek is a band, and that ‖Pj‖ ≤ 1 (j ∈ Nk) in this case.

Theorem 7.31. Let E be a Banach lattice. Then every band decomposition of E is small
with respect to the lattice multi-norm.

Proof. Suppose that E = E1 ⊕⊥ · · · ⊕⊥ Ek is a band decomposition, and take elements
x1, . . . , xk ∈ E. Then

‖P1x1 + · · ·+ Pkxk‖ = ‖ |P1x1| ∨ · · · ∨ |Pkxk| ‖ ≤ ‖ |x1| ∨ · · · ∨ |xk| ‖

by (1.23), and so ‖P1x1 + · · ·+Pkxk‖ ≤ ‖(x1, . . . , xk)‖Lk . Thus the decomposition is small
with respect to the lattice multi-norm.
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Thus every band decomposition of a Banach lattice is orthogonal with respect to the
lattice multi-norm. We enquire whether the converse to this statement holds. For example,
take K to be a non-empty, locally compact space, and suppose that M(K) = E ⊕ F is
an orthogonal decomposition with respect to the lattice multi-norm. Then it follows from
remarks on page 35 that this is a band decomposition, and so the converse holds in this
case; further, M(K) = Md(K)⊕Mc(K) is an example of such a decomposition.

First we note that the above converse need not hold in the case when E is a real
Banach lattice, as the following example shows.

Example 7.32. Consider the space E = R2, with the `1-norm, so that E is a Banach
lattice. Set

E1 = {(x, x) : x ∈ R}, E2 = {(x,−x) : x ∈ R}.
Then E = E1 ⊕ E2 is a direct sum decomposition. We note that, for x, y ∈ R, so that
(x, x) ∈ E1 and (y,−y) ∈ E2, we have

‖ |(x, x)| ∧ |(y,−y)| ‖ = ‖(|x|, |x|) ∧ (|y|, |y|)‖ = 2 max{|x|, |y|} (7.9)

and
‖(x, x) + (y,−y)‖ = |x+ y|+ |x− y| = 2 max{|x|, |y|}. (7.10)

Hence E = E1⊕E2 is an orthogonal decomposition with respect to the lattice multi-norm.
However, it is not true that |(x, x)|∧|(y,−y)| = 0 for each x, y ∈ R, and so E = E1⊕E2

is not a band decomposition.

However this leaves open the converse for (complex) Banach lattices. We are very
grateful to the late Professor Nigel Kalton for responding to a question by proving the
converse in this case; see [44, Theorem 4.2].

Theorem 7.33. Let E = E1 ⊕ · · · ⊕ Ek be a direct sum decomposition of a Banach
lattice E. Suppose that

‖x1 + · · ·+ xk‖ = ‖ |x1| ∨ · · · ∨ |xk| ‖ (xj ∈ Ej , j ∈ Nk).

Then the decomposition is a band decomposition.

The following theorem is now a consequence of Theorems 7.20(ii), 7.31, and 7.33.

Theorem 7.34. Let E = E1 ⊕ · · · ⊕ Ek be a direct sum decomposition of a Banach
lattice E. Then the following are equivalent:

(a) the decomposition is orthogonal with respect to the lattice multi-norm;
(b) the decomposition is small with respect to the lattice multi-norm;
(c) the decomposition is a band decomposition.

It is not true that every hermitian decomposition of a Banach lattice is a band de-
composition. For let X = `22, and set

E = {(z, z) : z ∈ C} and F = {(w,−w) : w ∈ C},
so that X = E ⊕ F . For x = (z, z) ∈ E and y = (w,−w) ∈ F , we have

‖x+ eiθy‖2 = 2(|z|2 + |w|2) (θ ∈ [0, 2π)),

and so the decomposition is hermitian. However it is not a band decomposition.
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In fact, in [44, Theorems 5.4 and 5.5], Kalton proved the following stronger and
considerably deeper result.

Theorem 7.35. Let E = F ⊕G be a direct sum decomposition of a Banach lattice E.

(i) Suppose that the decomposition is hermitian. Then

‖x+ y‖ = ‖(|x|2 + |y|2)1/2‖ (x ∈ F, y ∈ G).

(ii) Suppose that, for some p ∈ [1,∞) with p 6= 2, we have

‖x+ y‖ = ‖(|x|p + |y|p)1/p‖ (x ∈ F, y ∈ G).

Then the decomposition is a band decomposition.

7.1.8. Decompositions of Lp-spaces. We have seen that Theorem 7.33 does not ex-
tend to all real Banach lattices E. However, by an argument due to Hung Le Pham, it
does extend to certain real Banach lattices

We first make a remark. Take p ≥ 1. Then we have the inequality
1
2

(|z + w|p + |z − w|p) ≥ |z|p (z, w ∈ C). (7.11)

Now suppose that |z| ≥ |w|. In the case where p > 1, equality holds in the above if and
only if w = 0; in the case where p = 1, equality holds in the above if and only if z = αw

for some α ∈ R.

Proposition 7.36. Let (Ω, µ) be a measure space, and take E to be Lp(Ω, µ) or LpR(Ω, µ),
where p > 1, or L1(Ω, µ). Suppose that E = F ⊕G is an orthogonal decomposition with
respect to the lattice multi-norm. Then E = F ⊕G is a band decomposition.

Proof. Take f ∈ F and g ∈ G, and set A = {x ∈ Ω : |f(x)| ≥ |g(x)|} and B = Ω \ A, so
that A and B are Borel measurable subsets of Ω. Since the decomposition is orthogonal,
we have

‖ |f | ∨ |g| ‖ = ‖f + g‖ = ‖f − g‖,

and so

‖ |f | ∨ |g| ‖p =
1
2
‖f + g‖p +

1
2
‖f − g‖p

=
1
2

∫
Ω

(|f + g|p + |f − g|p) dµ

=
(∫

A

+
∫
B

)
1
2

(
|f + g|p + |f − g|p

)
dµ

≥
∫
A

|f |p dµ+
∫
B

|g|p dµ by (7.11)

= ‖ |f | ∨ |g| ‖p.

In the case where p > 1, it follows that g = 0 almost everywhere on A and f = 0 almost
everywhere on B, and so |f | ∧ |g| = 0.

Now suppose that E = L1(Ω, µ). Then g(x) = α(x)f(x) for almost all x ∈ A, where
α(x) ∈ R (x ∈ A). By repeating the argument with g replaced by ig (which does not
change the sets A and B), we see that ig(x) = β(x)f(x) for almost all x ∈ A, where



146 7. Orthogonality and duality

β(x) ∈ R (x ∈ A). Thus again g = 0 almost everywhere on A and f = 0 almost
everywhere on B.

Let Ω be a σ-finite measure space, and take p ≥ 1. Then Lp(Ω) has a weak order unit,
say e. Suppose that Lp(Ω) = E1 ⊕ · · · ⊕Ek is a band decomposition, with corresponding
projections P1, . . . , Pk. Set vj = Pje (j ∈ Nn). Then, as remarked on page 31, each Pvj
is just multiplication of elements of Lp(Ω) by the characteristic function of a measurable
set, say Sj ; since we have Pj = Pvj , the range Ej of Pj is just Lp(Sj). Thus each band
decomposition of Lp(Ω) has the form Lp(S1) ⊕ · · · ⊕ Lp(Sk) for a measurable partition
{S1, . . . , Sk} of Ω. This may not be true when Ω is not σ-finite. However the following
result applies even when S is not countable.

Corollary 7.37. Let S be a non-empty set, and take p ≥ 1. Suppose that

`p(S) = E1 ⊕ · · · ⊕ Ek
is an orthogonal decomposition with respect to the standard p-multi-norm. Then there is
a partition {S1, . . . , Sk} of S such that Ej = `p(Sj) (j ∈ Nk).

Proof. By Example 4.47, the standard p-multi-norm is the lattice multi-norm.
The result follows from Proposition 7.8 and Theorem 7.20(i), and also by an easy

direct version of the above argument.

Corollary 7.38. Let S be a non-empty set, and suppose that 1 ≤ p < q. Then there are
no non-trivial decompositions of `p(S) which are orthogonal with respect to the standard
q-multi-norm.

Proof. Suppose that `p(S) = F ⊕G is an orthogonal decomposition with respect to the
standard q-multi-norm. For f ∈ F and g ∈ G, we have

‖ |f | ∨ |g| ‖ = ‖(f, g)‖[p]2 ≥ ‖(f, g)‖[q]2 = ‖f + g‖ = ‖f − g‖,

and so, by the argument in Proposition 7.36, ‖ |f | ∨ |g| ‖ = ‖(f, g)‖[q]2 . Thus the decom-
position is also orthogonal with respect to the standard p-multi-norm. By Corollary 7.37,
there are subset SF and SG of S with F = `p(SF ) and G = `p(SG).

Assume towards a contradiction that both SF and SG are non-empty, and take s ∈ SF
and t ∈ SG. Then

21/p = ‖δs + δt‖ = ‖(δs, δt)‖[q]2 ≤ 21/q,

a contradiction because q > p. Thus the decomposition is trivial.

7.2. Multi-norms generated by closed families. We now discuss multi-norms that
are generated by various closed families of direct sum decompositions of Banach spaces;
this will lead to a theory of ‘multi-duals’ of multi-normed spaces.

7.2.1. Generation of multi-norms

Definition 7.39. Let (E, ‖ · ‖) be a normed space, and consider a closed family K of
hermitian decompositions of E. For n ∈ N and x1, . . . , xn ∈ E, set

‖(x1, . . . , xn)‖Kn = sup{‖P1x1 + · · ·+ Pnxn‖ : E = E1 ⊕ · · · ⊕ En},

where the supremum is taken over all decompositions in K of length n.
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Theorem 7.40. Let (E, ‖·‖) be a normed space, and let K be a closed family of hermitian
decompositions of E. Then ((En, ‖ ·‖Kn ) : n ∈ N) is a multi-normed space, and each direct
sum decomposition in K is small with respect to this multi-norm.

Proof. Let n ∈ N. Then it is clear that ‖ · ‖n is a seminorm on En. By considering the
trivial decompositions in K, we see that

‖(x1, . . . , xn)‖n ≥ max{‖x1‖, . . . , ‖xn‖} (x1, . . . , xn ∈ E),

and so ‖ · ‖n is a norm on En.
It is now easy to see that ((En, ‖ · ‖Kn ) : n ∈ N) is a multi-normed space; Axioms

(A1), (A3), and (A4) hold because the family K is closed, and (A2) holds because all the
decompositions in the family K are hermitian.

Take a decomposition E = E1 ⊕ · · · ⊕ En in the family K, and take x1, . . . , xn ∈ En.
Then ‖P1x1 + · · · + Pnxn‖ ≤ ‖(x1, . . . , xn)‖Kn , and so the decomposition is small with
respect to the multi-norm.

Definition 7.41. Let (E, ‖ · ‖) be a normed space, and let K be a closed family of
hermitian decompositions of E. Then the multi-norm generated by K is the multi-norm
(‖ · ‖Kn : n ∈ N).

Example 7.42. Let K be the family of all trivial decompositions of a Banach space E.
Then the multi-norm generated by K is the minimum multi-norm.

We now consider when the multi-norm generated by Kherm is the maximum multi-
norm.

Example 7.43. (i) Let K be an infinite, connected compact space. By Theorem 7.29, the
only decompositions of C(K) in Kherm are trivial, and so the multi-norm generated by
Kherm is the minimum multi-norm. By Corollary 3.59 (or Theorem 3.56), the minimum
multi-norm is not equivalent to the maximum multi-norm.

(ii) Let E = `p with p 6= 2. By Proposition 7.8, each hermitian decomposition of E
has the form E = `p(S1) ⊕ · · · ⊕ `p(Sk), where k ∈ N and {S1, . . . , Sk} is a partition
of N. Thus the family Kherm generates the standard p-multi-norm (‖ · ‖[p]n : n ∈ N). By
Corollary 4.28, this multi-norm is equivalent to the maximum multi-norm if and only if
p = 1 (with equality of multi-norms when p = 1).

(iii) Let H be a Hilbert space. The Hilbert multi-norm (‖ · ‖Hn : n ∈ N) based on H

was defined in Definition 4.16. It was shown in Theorem 7.30 that the following closed
families are equal: (a) the family of all orthogonal decompositions; (b) Ksmall; (c) Korth;
(d) Kherm. Let these families be called K. Then it is clear from the definition of the Hilbert
multi-norm that (‖ · ‖Kn : n ∈ N) = (‖ · ‖Hn : n ∈ N).

As we remarked on page 87, the Hilbert multi-norm is equivalent to the maximum
multi-norm, but is not equal to it, whenever dimH is sufficiently large.

Let (E, ‖ · ‖) be a normed space, and let K and L be two closed families of hermitian
decompositions of E with K ⊂ L. Then clearly

‖(x1, . . . , xn)‖Kn ≤ ‖(x1, . . . , xn)‖Ln (x1, . . . , xn ∈ E, n ∈ N),
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and so (‖ · ‖Kn : n ∈ N) ≤ (‖ · ‖Ln : n ∈ N) with respect to the ordering of EE given in
Definition 2.24.

The next example shows that two different families of decompositions may generate
the same multi-norm.

Example 7.44. Let K be a compact space, and consider the lattice multi-norm based
on C(K); this is just the minimum multi-norm based on C(K).

Let K be the family of trivial decompositions of C(K), and let L be the family of
decompositions of the form C(K1)⊕· · ·⊕C(Kk), where {K1, . . . ,Kk} is a partition of K
into clopen subsets. By Theorem 7.29, L = Ksmall = Korth = Kherm. Thus K ⊂ L, and
K 6= L as soon as K is not connected. However the multi-norm generated by both K and
L is the lattice multi-norm based on C(K).

7.2.2. Orthogonality with respect to families

Definition 7.45. Let ((En, ‖ · ‖n) : n ∈ N) be a multi-normed space, and let K be
a closed family of small decompositions of E. Then the multi-norm is orthogonal with
respect to K if

‖(x1, . . . , xn)‖n = ‖(x1, . . . , xn)‖Kn (7.12)

for each n ∈ N and x1, . . . , xn ∈ E. The multi-norm is orthogonal if it is orthogonal with
respect to Ksmall.

Thus, in this case, the given multi-norm (‖ · ‖n : n ∈ N) is the multi-norm generated
by K.

Of course, it is automatically the case that

‖(x1, . . . , xn)‖Kn ≤ ‖(x1, . . . , xn)‖n (x1, . . . , xn ∈ E, n ∈ N).

We see that a multi-norm (‖ · ‖n : n ∈ N) based on a normed space E is orthogonal
if and only if, for each n ∈ N, each x1, . . . , xn ∈ E, and each ε > 0, there is a direct sum
decomposition E = E1 ⊕ · · · ⊕ En of E such that

‖(x1, . . . , xn)‖n − ε ≤ ‖P1x1 + · · ·+ Pnxn‖ ≤ ‖(x1, . . . , xn)‖n.

For example, it follows from Example 7.43(iii) that the Hilbert multi-norm based on
a Hilbert space is orthogonal, and from Example 7.44 that the lattice multi-norm based
on C(K) is orthogonal. However, Example 7.50, below, will give an example of a lattice
multi-norm that is not orthogonal.

7.2.3. Orthogonality and Banach lattices. Let E be a Banach lattice, and let K be
the family of all band decompositions of E. Clearly K is a closed family of decompositions
that are small with respect to the lattice multi-norm.

Theorem 7.46. Let E a Banach lattice which is either an AM -space or σ-Dedekind
complete. Then the lattice multi-norm based on E is orthogonal with respect to the family
of band decompositions of E, and hence is the multi-norm generated by the band decom-
positions.

Proof. We must show that, for each n ∈ N and x1, . . . , xn ∈ E, we have

‖ |x1| ∨ · · · ∨ |xn| ‖ = sup ‖P1x1 + · · ·+ Pnxn‖, (7.13)
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where the supremum is taken over the band decompositions of length n. It is sufficient
to suppose that x1, . . . , xn ∈ E+, and we do this. By (1.24), it is sufficient to prove that

x ≤ sup{P1x1 + · · ·+ Pnxn} (7.14)

and that the supremum on the right is attained, where x = x1 ∨ · · · ∨ xn.
In the case where E is an AM -space, the result follows by a slight variation of the

argument in Example 7.44.
Now we consider the case where E is σ-Dedekind complete.
First suppose that n = 2, and set

y = (x1 − x2)+ and z = −(x1 − x2)−,

and let By be the band generated by y. By Proposition 1.20(ii) (which applies because E
is σ-Dedekind complete), E = By ⊥ B⊥y ; the projections onto By and B⊥y are Py and Qy,
respectively, say. We have y = Py(x1 − x2) and z = −Qy(x1 − x2), and so

Py(x1 ∨ x2) = Py(x2) + Py((x1 − x2) ∨ 0) = Py(x2) + (Py(x1 − x2)) ∨ 0) = Py(x2) + y.

It follows that Py(x1 ∨ x2) = Pyx1 ∨Pyx2 ≥ Pyx2, and so Py(x1 ∨ x2) = Pyx1. Similarly,
Qy(x1 ∨ x2) = Qyx2. Thus x1 ∨ x2 = Pyx1 + Qyx2. This establishes the result in the
special case where n = 2.

The general case follows easily by induction.

Corollary 7.47. Let E be a σ-Dedekind complete Banach lattice. Then the lattice multi-
norm based on E is the multi-norm generated by the family of all band decompositions
of E.

Corollary 7.48. Take p ≥ 1. Then the multi-norm generated by the family of all de-
compositions of `p as `p(S1)⊕ · · · ⊕ `p(Sk), where {S1, . . . , Sk} is a partition of N, is the
standard p-multi-norm.

Proof. By Theorem 7.34 and Corollary 7.37, the specified family is the family of all band
decompositions of `p. By Corollary 7.47, this family generates the lattice multi-norm; by
Example 4.47, this is the standard p-multi-norm.

Corollary 7.49. Let E be a Banach lattice with no non-trivial band decompositions.
Then the lattice multi-norm based on E is orthogonal with respect to the family of band
decompositions of E if and only if E is an AM -space.

Proof. We must show that E is an AM -space whenever the lattice multi-norm is orthog-
onal with respect to the family K of band decompositions of E.

Take x, y ∈ E+. Since there are only the two trivial band decompositions of length 2,
we have

‖x ∨ y‖ = ‖(x, y)‖L2 = ‖(x, y)‖K2 = ‖(x, 0)‖L2 ∨ ‖(0, y)‖L2 = ‖x‖ ∨ ‖y‖.

By (1.37), this shows that E is an AM -space.

Example 7.50. Consider the Banach space C(I) with the norm ‖ · ‖ specified by

‖f‖ = |f |I + |f(0)| (f ∈ C(I)).
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Then (C(I), ‖ ·‖) is a Banach lattice with no non-trivial band decompositions. However it
is not an AM -space (take f = 1/2 and g = Z, so that ‖f‖ = ‖g‖ = 1 but ‖f ∨ g‖ = 3/2),
and so, by Corollary 7.49, the lattice multi-norm is not orthogonal with respect to the
family of band decompositions.

7.3. Multi-norms on dual spaces. We now consider how to form the ‘multi-dual’ of
a multi-normed space.

Let ((En, ‖ · ‖n) : n ∈ N) be a multi-normed space. It is tempting to regard M(E,C)
as the ‘multi-dual’ of this space. However recall that M(E,C) = E′ when we regard C
as having its unique multi-norm structure, and that, as a multi-normed space, M(E,C)
has just the minimum multi-norm. Thus the approach of using this multi-normed space
as a ‘multi-dual’ is not satisfactory.

A second temptation is to look at the family (((E′)n, ‖ · ‖′n) : n ∈ N) for a multi-
normed space ((En, ‖ · ‖n) : n ∈ N), where ‖ · ‖′n is the dual of the norm ‖ · ‖n. But
this is an even worse failure: (‖ · ‖′n : n ∈ N) is a dual multi-norm, not a multi-norm, on
{(E′)n : n ∈ N}.

We shall give a different approach, using the notion of orthogonal decompositions. We
continue to use the notation of earlier sections.

7.3.1. The multi-dual space. Here we define our concept of a multi-dual space.
Let (E, ‖ · ‖) be a normed space, and let K be a closed family of hermitian decomp-

ositions of E. As in Definition 7.41, K generates a multi-norm (‖ · ‖Kn : n ∈ N) based
on E. We shall now define a multi-norm on {(E′)n : n ∈ N} in terms of K. Recall
that the dual K′ of a closed family K of direct sum decompositions of E was defined in
Definition 1.9.

Definition 7.51. Let (E, ‖ · ‖) be a normed space, and let K be a closed family of
hermitian decompositions of E. Then the multi-norm based on E′ which is generated
by K′ is the multi-dual multi-norm to the multi-norm (‖ · ‖Kn : n ∈ N); it is denoted by

(‖ · ‖†n,K : n ∈ N).

The multi-normed space (((E′)n, ‖ · ‖†n,K) : n ∈ N) is the multi-dual space (with respect
to K).

Let K be a closed family of hermitian decompositions of E. By Proposition 7.5, each
member of K′ is a hermitian decomposition of E′, and so (‖ · ‖†n,K : n ∈ N) is indeed a
multi-norm based on E′ by Theorem 7.40. It is an orthogonal multi-norm.

For each n ∈ N and λ1, . . . , λn ∈ E′, we have

‖(λ1, . . . , λn)‖†n,K = sup ‖P ′1λ1 + · · ·+ P ′nλn‖ = sup ‖λ1 ◦ P1 + · · ·+ λn ◦ Pn‖,

where the supremum is taken over all the decompositions E = E1⊕· · ·⊕En in the closed
family K.

Definition 7.52. Let (‖ · ‖n : n ∈ N) be an orthogonal multi-norm based on a normed
space E. Then the multi-dual multi-norm based on E′ is the multi-norm generated by the
family (Ksmall)′.
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In the above case, the multi-dual multi-norm is itself orthogonal, and so we generate
multi-norms based on all the successive dual spaces of E.

Proposition 7.53. Let ((En, ‖ · ‖n) : n ∈ N) be a multi-normed space, and let K be a
closed family of orthogonal decompositions (with respect to the multi-norm) of E. Take
λ1, . . . , λn ∈ E′. Then

‖(λ1, . . . , λn)‖†n,K = sup
K

sup
{∣∣∣ n∑

i=1

〈xi, λi〉
∣∣∣ : xi ∈ Ei, ‖(x1, . . . , xn)‖n ≤ 1

}
,

where the first supremum is taken over all decompositions E = E1 ⊕ · · · ⊕ En in K.
Each direct sum decomposition in K′ is small with respect to the multi-dual multi-norm

(‖ · ‖†n,K : n ∈ N).

Proof. This follows from Proposition 7.22.

Example 7.54. Let K be the family of trivial decompositions of a normed space E, so
that the multi-norm generated by K is the minimum multi-norm based on E. Then K′
is the the family of trivial decompositions of E′, and the multi-dual multi-norm is the
minimum multi-norm based on E′.

Example 7.55. Let K be a compact space, and consider the lattice multi-norm based
on C(K). Let K be the family of trivial decompositions of C(K), and let

L = Ksmall = Korth = Kherm

be as in Example 7.44. Then both K and L generate the lattice multi-norm based on
C(K). However K′ is the family of trivial decompositions of C(K)′ = M(K), and so the
multi-dual multi-norm (‖ · ‖†n,K : n ∈ N) is the minimum multi-norm based on M(K),
whereas the multi-dual multi-norm (‖ · ‖†n,L : n ∈ N) is a strictly larger multi-norm based
on M(K) as soon as K is not connected. Indeed, in the case where K is a Stonean space,
or, equivalently, when C(K) is Dedekind complete, it follows from Proposition 4.32 that
(‖ · ‖†n,L : n ∈ N) is the standard 1-multi-norm based on M(K); by Proposition 4.31, this
is the lattice multi-norm, and, by Theorem 4.54(i), it is the maximum multi-norm.

Example 7.56. Take p ≥ 1, and let E = `p. We again consider the standard p-multi-
norm, (‖·‖[p]n : n ∈ N), based on E. By Example 4.47, this is the lattice multi-norm based
on E.

Let K be the family of decompositions of the form

`p(S1)⊕ · · · ⊕ `p(Sn),

where {S1, . . . , Sn} is a partition of N. By Theorem 7.34 and Corollary 7.37, we have
K = Ksmall = Korth. Then it is clear that K generates the standard p-multi-norm on E,
and so this multi-norm is orthogonal with respect to K.

Suppose that p > 1. The conjugate index to p is q; set F = `q. Clearly, K′ is the family
of decompositions of the form `q(S1)⊕· · ·⊕`q(Sk), where {S1, . . . , Sk} is a partition of N.
Thus K′ generates the standard q-multi-norm on E′. This shows that the multi-dual of
(((`p)n, ‖ · ‖[p]n ) : n ∈ N) (with respect to K) is (((`q)n, ‖ · ‖[q]n ) : n ∈ N), a fact that was
one of the aims of our theory.
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Example 7.57. Let H be a Hilbert space. Let K be the family of orthogonal decomp-
ositions of H; by Theorem 7.30, K = Ksmall = Korth = Kherm. It is clear from the
definition of the Hilbert multi-norm in (4.5) that the multi-norm generated by K is the
Hilbert multi-norm, and that this multi-norm is orthogonal. It is immediate that the
multi-dual of ((Hn, ‖ · ‖Hn ) : n ∈ N) (with respect to K) is itself.

Let E be a Banach lattice, and let K be the family of band decompositions of E. By
Theorem 7.34, K = Ksmall = Korth. We shall consider the multi-normed space

((En, ‖ · ‖Ln) : n ∈ N),

where ((‖ · ‖Ln) : n ∈ N) is the lattice multi-norm, and suppose that this multi-norm is
generated by the family K. We would like to know when the multi-dual (with respect
to K) of this multi-Banach space is ((En, ‖ · ‖Ln) : n ∈ N), where (‖ · ‖Ln : n ∈ N) is now
the lattice multi-norm on E′. It follows from Example 7.55 that this is not always the
case. However we have the following theorem.

Theorem 7.58. Let E be a Dedekind complete Banach lattice. Then the lattice multi-
norm based on E is generated by the family K of band decompositions, and the multi-dual
with respect to K is the lattice multi-norm based on E′.

Proof. It follows from Corollary 7.47 that lattice multi-norms based on E and E′ are
generated by K and by the family, say L, of band decompositions of E′, respectively.

We shall show that the lattice multi-norm based on E′ is also generated by K′. Take
n ∈ N and λ1, . . . , λn ∈ E′. Then certainly

‖(λ1, . . . , λn)‖†n,K ≤ ‖(λ1, . . . , λn)‖Ln .

We shall show the reverse inequality. We prove the result in the case where n = 2; the
general case follows by induction.

Thus take ε > 0, and let E′ = F1 ⊕⊥ F2 be a band decomposition of E′ such that

‖Q1λ1 +Q2λ2‖ > ‖(λ1, λ2)‖L2 − ε,

where Qi is the projection on Fi. Thus there exist µ1, µ2 ∈ E′ such that |µi| ≤ |λi| for
i = 1, 2 and µ1 ⊥ µ2 and such that

‖µ1 + µ2‖ > ‖(λ1, λ2)‖L2 − ε.

For i = 1, 2, define Xi = {x ∈ E : 〈|x|, |µi|〉 = 0}. Then X1 and X2 are bands in E, and
so, by Proposition 1.20(i), they are principal bands. Set E1 = X⊥1 and E2 = X⊥2 , so that
E1 ⊥ E2. It is clear that µ1 ∈ E′1 and µ2 ∈ E′2. By enlarging E1 and E2, if necessary, we
may suppose that E1 ⊕ E2 = E, and so E = E1 ⊕⊥ E2 is a band decomposition of E.
Thus the decomposition E′ = E′1 ⊕⊥ E′2 belongs to K′. It follows that

‖(λ1, λ2)‖†n,K > ‖(λ1, λ2)‖L2 − ε.

This holds true for each ε > 0, and so the result follows.

7.3.2. Second dual spaces. Let (E, ‖ · ‖) be a normed space, and let K be a closed
family of hermitian decompositions of E. Then K and K′ generate multi-norms on the
two families {En : n ∈ N} and {(E′)n : n ∈ N}, respectively. Similarly, the closed
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family K′′ of hermitian decompositions of E′′ generates a multi-norm (‖ · ‖††n,K : n ∈ N)
on {(E′′)n : n ∈ N}.

The following result can be regarded as a multi-normed form of the Hahn–Banach
theorem.

Theorem 7.59. Let ((En, ‖ · ‖n) : n ∈ N) be a multi-normed space, let K be a closed
family of small decompositions of E, and consider the multi-norm

(‖ · ‖††n,K : n ∈ N)

based on E′′. Then the canonical embedding of E into E′′ gives a multi-isometry if and
only if the multi-normed space ((En, ‖ · ‖n) : n ∈ N) is orthogonal with respect to the
family K.

Proof. Let x1, . . . , xk ∈ E. Then

‖(x1, . . . , xk)‖††k,K = sup ‖P ′′1 x1 + · · ·+ P ′′k xk‖,
where the supremum is taken over all projections P1, . . . , Pk that arise from decomp-
ositions in K. Since P ′′i xi = Pixi for xi ∈ Ei and i ∈ Nn, it follows that the canonical
embedding is a multi-isometry if and only if the multi-normed space ((En, ‖ ·‖n) : n ∈ N)
is orthogonal with respect to the family K.

Definition 7.60. Let ((En, ‖ · ‖n) : n ∈ N) be a multi-normed space, let K be a closed
family of small decompositions of E. Then the space ((En, ‖·‖n) : n ∈ N) is multi-reflexive
with respect to K if the canonical embedding of E into E′′ (when the multi-norm based
on E′′ is taken to be (‖ · ‖††n,K : n ∈ N)) is a multi-isometry that is a surjection.

Thus ((En, ‖ · ‖n) : n ∈ N) is multi-reflexive with respect to K if and only if E is
a reflexive Banach space and ((En, ‖ · ‖n) : n ∈ N) is orthogonal with respect to the
family K.

Example 7.61. Let E be a Banach lattice such that E is reflexive as a Banach space.
Then E is Dedekind complete, and so, by Theorem 7.46, the lattice multi-norm is orth-
ogonal with respect to the family K of band decompositions, and so the space E is
multi-reflexive with respect to K.

Example 7.62. Take p > 1, and let E = Lp(Ω, µ) for a measure space (Ω, µ), with the
standard p-multi-norm. Then ((En, ‖ · ‖n) : n ∈ N) is multi-reflexive with respect to the
family of all band decompositions of E.
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band decomposition, 26, 29
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M -, L-, 134

small, 137

dimension, 8
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isomorphic, 13
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Banach–Stone, 22
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representation for multi-normed spaces,
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Ruan, 57
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