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Abstract

Given a group X we study the algebraic structure of the compact right-topological semigroup
λ(X) consisting of all maximal linked systems onX. This semigroup contains the semigroup β(X)
of ultrafilters as a closed subsemigroup. We construct a faithful representation of the semigroup
λ(X) in the semigroup P(X)P(X) of all self-maps of the power-set P(X) and show that the image
of λ(X) in P(X)P(X) coincides with the semigroup Endλ(P(X)) of all functions f : P(X)→ P(X)
that are equivariant, monotone and symmetric in the sense that f(X \ A) = X \ f(A) for all
A ⊂ X. Using this representation we describe the minimal ideal K(λ(X)) and minimal left ideals
of the superextension λ(X) of a twinic group X. A group X is called twinic if it admits a left-
invariant ideal I ⊂ P(X) such that xA =I yA for all subsets A ⊂ X and points x, y ∈ X with
xA ⊂I X \ A ⊂I yA. The class of twinic groups includes all amenable groups and all groups
with periodic commutators but does not include the free group F2 with two generators.

We prove that for any twinic group X, there is a cardinal m such that all minimal left ideals
of λ(X) are algebraically isomorphic to

2m ×
Y

1≤k≤∞

C
q(X,C2k )

2k ×
Y

3≤k≤∞

Q
q(X,C2k )

2k

for some cardinals q(X,C2k ) and q(X,Q2k ), k ∈ N ∪ {∞}. Here C2k is the cyclic group of
order 2k, C2∞ is the quasicyclic 2-group and Q2k , k ∈ N ∪ {∞}, are the groups of generalized
quaternions. If the group X is abelian, then q(X,Q2k ) = 0 for all k and q(X,C2k ) is the number
of subgroups H ⊂ X with quotient X/H isomorphic to C2k .

If X is an abelian group (admitting no epimorphism onto C2∞), then each minimal left
ideal of the superextension λ(X) is algebraically (and topologically) isomorphic to the productQ

1≤k≤∞(C2k × 22k−1−k)q(X,C2k ) where the cube 22k−1−k (equal to 2ω if k = ∞) is endowed
with the left zero multiplication. For an abelian group X, all minimal left ideals of λ(X) are
metrizable if and only if X has finite ranks r0(X) and r2(X) and admits no homomorphism onto
the group C2∞ ⊕ C2∞ .

Applying this result to the group Z of integers, we prove that each minimal left ideal of λ(Z)
is topologically isomorphic to 2ω ×

Q∞
k=1 C2k . Consequently, all subgroups in the minimal ideal

K(λ(Z)) of λ(Z) are profinite abelian groups. On the other hand, the superextension λ(Z) contains
an isomorphic topological copy of each second countable profinite topological semigroup. This
results contrasts with the famous Zelenyuk Theorem saying that the semigroup β(Z) contains
no finite subgroups. At the end of the paper we describe the structure of minimal left ideals of
finite groups X of order |X| ≤ 15.

2010 Mathematics Subject Classification: 20M30, 20M12, 22A15, 22A25, 54D35.
Key words and phrases: compact right-topological semigroup, superextension of a group, semi-

group of maximal linked systems, faithful representation, minimal ideal, minimal left ideal,
minimal idempotent, wreath product, twinic group, twin set.
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1. Introduction

After discovering a topological proof of Hindman’s theorem [10] (see [12, p. 102], [11]),
topological methods have become a standard tool in the modern combinatorics of numbers
(see [12], [18]). The crucial point is that any semigroup operation defined on a discrete
space X can be extended to a right-topological semigroup operation on β(X), the Stone–
Čech compactification of X. The extension of the operation from X to β(X) can be
defined by the simple formula

A ◦ B = {A ⊂ X : {x ∈ X : x−1A ∈ B} ∈ A}. (1.1)

The Stone–Čech compactification β(X) of X is a subspace of the double power-set
P2(X) = P(P(X)), which can be identified with the Cantor discontinuum {0, 1}P(X) and
endowed with the compact Hausdorff topology of the Tikhonov product. It turns out that
the formula (1.1) applied to arbitrary families A,B ∈ P2(X) of subsets of a group X still
defines a binary operation ◦ : P2(X)× P2(X)→ P2(X) that turns the double power-set
P2(X) into a compact Hausdorff right-topological semigroup that contains β(X) as a
closed subsemigroup.

The semigroup β(X) lies in a slightly larger subsemigroup λ(X) ⊂ P2(X) consisting
of all maximal linked systems on X. We recall that a family L of subsets of X is

• linked if any sets A,B ∈ L have non-empty intersection A ∩B 6= ∅;
• maximal linked if L coincides with each linked system L′ on X that contains L.

The space λ(X) is well-known in General and Categorial Topology as the superextension
of X (see [15], [22]).

The thorough study of algebraic properties of the superextensions of groups was
started in [4] and continued in [2] and [3]. In particular, in [3] we proved that the minimal
left ideals of the superextension λ(Z) are metrizable topological semigroups. In this paper
we shall extend this result to the superextensions λ(X) of all finitely-generated abelian
groups X.

The results obtained in this paper completely reveal the topological and algebraic
structure of the minimal ideal and minimal left ideals of the superextension λ(X) of a
twinic group X. A group X is defined to be twinic if it admits a left-invariant ideal I of
subsets of X such that for any subset A ⊂ X with xA ⊂I X \A ⊂I yA for some x, y ∈ X
we have xA =I yA. Here the symbol A ⊂I B means that A \B ∈ I and A =I B means
that A ⊂I B and B ⊂I A. In Section 6 we shall prove that the class of twinic groups
contains all amenable groups and all groups with periodic commutators (in particular,
all torsion groups), but does not contain the free group F2 with two generators.

[5]



6 T. Banakh and V. Gavrylkiv

We need to recall the notation for some standard 2-groups. We denote by Q8 the
group of quaternions. It is a multiplicative subgroup {1, i, j, k,−1,−i,−j,−k} of the real
algebra H of quaternions (which contains the field C of complex numbers as a subalgebra).

For every k ∈ ω let C2k = {z ∈ C : z2k

= 1} be the cyclic group of order 2k. The
multiplicative subgroup Q2k ⊂ H generated by the union C2k−1 ∪Q8 is called the group
of generalized quaternions. The union C2∞ =

⋃∞
k=1 C2k is called the quasicyclic 2-group

and the union Q2∞ =
⋃∞
k=3Q2k is called the infinite group of generalized quaternions.

By Theorem 8.1, a group G is isomorphic to C2n or Q2n for some n ∈ N ∪ {∞} if and
only if G is a 2-group with a unique 2-element subgroup.

The following theorem describing the structure of minimal left ideals of the superex-
tesions of twinic groups can be derived from Theorem 18.11 and Proposition 19.1:

Theorem 1.1. For each twinic group X there are cardinals q(X,C2k), q(X,Q2k), k ∈
N ∪ {∞}, such that

(1) each minimal left ideal of λ(X) is algebraically isomorphic to

Z ×
∏

1≤k≤∞

C
q(X,C2k )

2k ×
∏

3≤k≤∞

Q
q(X,Q2k )

2k

for some semigroup Z of left zeros;
(2) each maximal subgroup of the minimal ideal of λ(X) is algebraically isomorphic to∏

1≤k≤∞

C
q(X,C2k )

2k ×
∏

3≤k≤∞

Q
q(X,Q2k )

2k .

(3) If q(X,C2∞) = q(X,Q2∞) = 0, then each maximal subgroup of the minimal ideal of
λ(X) is topologically isomorphic to the compact topological group∏

1≤k<∞

C
q(X,C2k )

2k ×
∏

3≤k<∞

Q
q(X,Q2k )

2k .

If the group X is abelian, then

(4) q(X,Q2k) = 0 for every k ∈ N ∪ {∞} while q(X,C2k) is equal to the number of
subgroups H ⊂ X such that the quotient group X/H is isomorphic to C2k ;

(5) for every k ∈ N,

q(X,C2k) =
|hom(X,C2k)| − |hom(X,C2k−1)|

2k−1
,

where hom(X,C2k) is the group of homomorphisms from X into C2k .

2. Right-topological semigroups

In this section we recall some information from [12] related to right-topological semi-
groups. By definition, a right-topological semigroup is a topological space S endowed with
a semigroup operation ∗ : S×S → S such that for every a ∈ S the right shift ra : S → S,
ra : x 7→ x ∗ a, is continuous. If the semigroup operation ∗ : S × S → S is (separately)
continuous, then (S, ∗) is a (semi-)topological semigroup. A typical example of a right-
topological semigroup is the semigroup XX of all self-maps of a topological space X
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endowed with the Tikhonov product topology and the binary operation of composition
of functions.

From now on, S is a compact Hausdorff right-topological semigroup. We shall recall
some known information concerning ideals in S (see [12]).

A non-empty subset I of S is called a left (resp. right) ideal if SI ⊂ I (resp. IS ⊂ I).
If I is both a left and right ideal in S, then I is called an ideal in S. Observe that for
every x ∈ S the set SxS = {sxt : s, t ∈ S} (resp. Sx = {sx : s ∈ S}, xS = {xs : s ∈ S})
is an ideal (resp. left ideal, right ideal) in S. Such an ideal is called principal. An ideal
I ⊂ S is called minimal if any ideal of S that lies in I coincides with I. By analogy we
define minimal left and right ideals of S. It is easy to see that each minimal left (resp.
right) ideal I is principal. Moreover, I = Sx (resp. I = xS) for each x ∈ I. This simple
observation implies that each minimal left ideal in S, being principal, is closed in S. By
[12, 2.6], each left ideal in S contains a minimal left ideal. The union K(S) of all minimal
left ideals of S coincides with the minimal ideal of S, [12, 2.8].

All minimal left ideals of S are mutually homeomorphic and all maximal groups of
the minimal ideal K(S) are algebraically isomorphic. Moreover, if two maximal groups lie
in the same minimal right ideal, then they are topologically isomorphic.

We shall need the following known fact (see [12, Theorem 2.11(c)]).

Proposition 2.1. For any two minimal left ideals A,B of a compact right-topological
semigroup S and any point b ∈ B the right shift rb : A → B, rb : x 7→ xb, is a homeo-
morphism.

This proposition implies the following corollary (see [3, Lemma 1.1]).

Corollary 2.2. If a homomorphism h : S → S′ between two compact right-topological
semigroups is injective on some minimal left ideal of S, then h is injective on each minimal
left ideal of S.

An element z of a semigroup S is called a right zero (resp. a left zero) in S if xz = z

(resp. zx = z) for all x ∈ S. It is clear that z ∈ S is a right (left) zero in S if and only if
the singleton {z} is a left (right) ideal in S.

An element e ∈ S is called an idempotent if ee = e. By Ellis’s Theorem [12, 2.5], the
set E(S) of idempotents of any compact right-topological semigroup is not empty. For
every idempotent e the set

He = {x ∈ S : ∃x−1 ∈ S (xx−1x = x, x−1xx−1 = x−1, xx−1 = e = x−1x)}

is the largest subgroup of S containing e.
By [12, 1.48], for an idempotent e ∈ E(S) the following conditions are equivalent:

• e ∈ K(S);
• K(S) = SeS;
• Se is a minimal left ideal in S;
• eS is a minimal right ideal in S;
• eSe is a subgroup of S.

An idempotent e satisfying the above equivalent conditions will be called a minimal
idempotent in S. By [12, 1.64], for any minimal idempotent e ∈ S the set E(Se) = E(S)∩Se
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of idempotents of the minimal left ideal Se is a semigroup of left zeros, which means
that xy = x for all x, y ∈ E(Se). By the Rees–Suschkewitsch Structure Theorem (see
[12, 1.64]) the map

ϕ : E(Se)× He → Se, ϕ : (x, y) 7→ xy,

is an algebraic isomorphism of the corresponding semigroups. If the minimal left ideal Se
is a topological semigroup, then ϕ is a topological isomorphism.

Now we see that all the information on the algebraic (and sometimes topological)
structure of the minimal left ideal Se is encoded in the properties of the left zero semigroup
E(Se) and the maximal group He.

3. Acts and their endomorphism monoids

In this section we survey the information on acts that will be widely used in this paper to
describe the algebraic structure of minimal left ideals of the superextensions of groups.

Following the terminology of [13] by an act we understand a set X endowed with a
left action · : H ×X → X of a group H called the structure group of the act. The action
should satisfy two axioms: 1x = x and g(hx) = (gh)x for all x ∈ X and g, h ∈ H. Acts
with the structure group H will be called H-acts or H-spaces.

An act X is called free if the stabilizer Fix(x) = {h ∈ H : hx = x} of each point
x ∈ X is trivial. For a point x ∈ X we denote by [x] = {hx : h ∈ H} its orbit and by
[X] = {[x] : x ∈ X} the orbit space of the act X. More generally, for each subset A ⊂ X
we put [A] = {[a] : a ∈ A}.

A function f : X → Y between two H-acts is called equivariant if f(hx) = hf(x) for
all x ∈ X and h ∈ H. A function f : X → Y is called an isomorphism of the H-acts X
and Y if it is bijective and equivariant. An equivariant self-map f : X → X is called an
endomorphism of the H-act X. If f is bijective, then f is an automorphism of X.

The set End(X) of endomorphisms of an H-act X, endowed with the operation of
composition of functions, is a monoid called the endomorphism monoid of X.

Each free H-act X is isomorphic to the product H × [X] endowed with the action
h · (x, y) = (hx, y). For such an act the semigroup End(X) is isomorphic to the wreath
product H o [X][X] of the group H and the semigroup [X][X] of all self-maps of the orbit
space [X].

The wreath product H o AA of a group H and the semigroup AA of self-maps of a
set A is defined as the semidirect product HA o AA of the A-th power of H with AA,
endowed with the semigroup operation (h, f) ∗ (h′, f ′) = (h′′, f ′′) where f ′′ = f ◦ f ′
and h′′(α) = h(f ′(α)) · h′(α) for α ∈ A. For any subsemigroup S ⊂ AA the subset
H o S = {(h, f) ∈ HA o AA : f ∈ S} is called the wreath product of H and S. If both H
and S are groups, then their wreath product H o S is a group.

Observe that the maximal subgroup of AA containing the identity self-map of A
coincides with the group SA of all bijective functions f : A→ A.

Theorem 3.1. Let H be a group and X be a free H-act. Then

(1) the semigroup End(X) is isomorphic to the wreath product H o [X][X];
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(2) the minimal ideal K(End(X)) of End(X) coincides with the set {f ∈ End(X) : ∀x ∈
f(X) f(X) ⊂ [x]};

(3) each minimal left ideal of End(X) is isomorphic to H × [X] where [X] is endowed
with the left zero multiplication;

(4) for each idempotent f ∈ End(X) the maximal subgroup Hf ⊂ End(X) is isomorphic
to H o S[f(X)];

(5) for each minimal idempotent f ∈ K(End(X)) the maximal group Hf = f ·End(X) · f
is isomorphic to H.

Proof. 1. Let π : X → [X], π : x 7→ [x], denote the orbit map and s : [X] → X be a
section of π, which means that π ◦ s([x]) = [x] for all [x] ∈ [X].

Observe that each equivariant map f : X → X induces a well-defined map [f ] :
[X] → [X], [f ] : [x] 7→ [f(x)], of the orbit spaces. Since the action of H on X is free,
for every orbit [x] ∈ [X] we can find a unique point fH([x]) ∈ H such that f ◦ s([x]) =
(fH([x]))−1 · s([f(x)]).

We claim that the map

Ψ : End(X)→ H o [X][X], Ψ : f 7→ (fH , [f ]),

is a semigroup isomorphism.
First we check that the map Ψ is a homomorphism. Pick any two equivariant functions

f, g ∈ End(X) and consider their images Ψ(f) = (fH , [f ]) and Ψ(g) = (gH , [g]) in
H o [X][X]. Consider also the composition f ◦ g and its image Ψ(f ◦g) = ((f ◦ g)H , [f ◦ g]).
We claim that

((f ◦ g)H , [f ◦ g]) = (fH , [f ]) ∗ (gH , [g]) = ((fH ◦ [g]) · gH , [f ] ◦ [g]).

The equality [f ◦ g] = [f ] ◦ [g] is clear. To prove that (f ◦ g)H = (fH ◦ [g]) · gH , take any
orbit [x] ∈ [X]. It follows from the definition of (f ◦ g)H([x]) that

((f ◦ g)H([x]))−1 · s([f ◦ g(x)]) = (f ◦ g) ◦ s([x]) = f(g ◦ s([x]))

= f((gH([x]))−1 · s([g(x)])) = (gH([x]))−1 · f ◦ s([g(x)])

= (gH([x]))−1 · (fH([g(x)]))−1 · s([f ◦ g(x)])

= (fH ◦ [g]([x]) · gH([x]))−1 · s([f ◦ g(x)]),

which implies the desired equality (f ◦ g)H = (fH ◦ [g]) · gH .
Next, we show that the homomorphism Ψ is injective. Given two equivariant functions

f, g ∈ End(X) with (fH , [f ]) = Ψ(f) = Ψ(g) = (gH , [g]), we need to show that f = g.
Observe that for every orbit [x] ∈ [X] we get

f(s([x])) = (fH([x]))−1 · s ◦ [f ]([x])) = (gH([x]))−1 · s ◦ [g]([x]) = g(s([x])).

Now for each x ∈ X we can find a unique h ∈ H with x = h · s([x]) and apply the
equivariance of the functions f, g to conclude that

f(x) = f(h · s([x])) = h · f(s([x])) = h · g(s([x])) = g(h · s([x])) = g(x).

Finally, we show that Ψ is surjective. Given any pair (h, g) ∈ H o[X][X] = H [X]×[X][X],
we define an equivariant function f ∈ End(X) with (h, g) = (fH , [f ]) as follows. Given
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any x ∈ X find a unique y ∈ H with x = y · s([x]) and let

f(x) = y · h([x])−1 · s(g([x])).

This formula determines a well-defined equivariant function f : X → X with Ψ(f) =
(h, g). Therefore, Ψ : End(X)→ H o [X][X] is a semigroup isomorphism.

2. Observe that the set I = {f ∈ End(X) : {[f(x)] : x ∈ X} is a singleton} is a (non-
empty) ideal in End(X). To show that I is the minimal ideal of the semigroup End(X),
we need to check that I lies in any ideal J ⊂ End(X). Take any functions f ∈ I and
g ∈ J . Find an orbit [x] ∈ [X] such that [f(z)] = [x] for all z ∈ X. Since the restriction
g|[x] : [x] → [g(x)] is bijective and equivariant, so is its inverse (g|[x])−1 : [g(x)] → [x].
Extend this equivariant map to any equivariant map h : X → X. Then

f = h ◦ g ◦ f ∈ End(X) ◦ g ◦ End(X) ⊂ J .

3. Take any idempotent f ∈ K(End(X)) and consider the minimal left ideal End(X)·f .
Fix any point z ∈ f(X) and observe that f([x]) = [z] for all x ∈ X according to the
preceding item. It follows that the set Z = f−1(z) meets each orbit [x], x ∈ X, in a single
point. So, we can define a unique section s : [X] → Z ⊂ X of the orbit map X → [X]
such that f ◦ s([X]) = {z}.

To each equivariant map g ∈ End(X) assign a unique element gH ∈ H such that
g(x) = g−1

H · s([g(x)]). It is easy to check that the map

Φ : End(X) · f → H × [X], Φ : g 7→ (gH , [g]([x])),

is a semigroup homomorphism where the orbit space [X] is endowed with the left zero
multiplication.

4. Take any idempotent f ∈ End(X) and consider the surjective semigroup homo-
morphism pr : End(X) → [X][X], pr : g 7→ [g]. It follows that [f ] is an idempotent
of the semigroup [X][X] and the image pr(Hf ) of the maximal group Hf is a subgroup
of [X][X]. It is easy to see that the maximal subgroup H[f ] of the idempotent [f ] in
[X][X] coincides with S[f(X)] · [f ]. The preimage pr−1(H[f ]) of the maximal subgroup
H[f ] = S[f(X)] · f is isomorphic to the wreath product H oH[f ] and hence is a group. Now
the maximality of Hf guarantees that Hf = pr−1(H[f ]) and hence Hf is isomorphic to
H o S[f(X)].

5. If f ∈ K(End(X)) is a minimal idempotent, then the set [f(X)] = {[f(x)] :
x ∈ X} is a singleton by the second item. By the preceding item the maximal group
Hf is isomorphic to H o S[f(X)], which is isomorphic to the group H since [f(X)] is a
singleton.

For each group X the power-set P(X) will be considered as an X-act endowed with
the left action

· : X × P(X)→ P(X), · : (x,A) 7→ xA = {xa : a ∈ A},

of the group X. This X-act P(X) and its endomorphism monoid End(P(X)) will play a
crucial role in our considerations.
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4. The function representation of the semigroup P2(X)

In this section given a group X we construct a topological isomorphism

Φ : P2(X)→ End(P(X))

called the function representation of the semigroup P2(X) in the endomorphism monoid
of the X-act P(X). We recall that the double power-set P2(X) = P(P(X)) of the group
X is endowed with the binary operation

A ◦ B = {A ⊂ X : {x ∈ X : x−1A ∈ B} ∈ A}.
The isomorphism Φ assigns to each family A of subsets of X the function

ΦA : P(X)→ P(X), ΦA : A 7→ {x ∈ X : x−1A ∈ A},
called the function representation of A.

In the following theorem by e we denote the neutral element of the group X.

Theorem 4.1. For any group X the map Φ : P2(X) → End(P(X)) is a topological
isomorphism with inverse Φ−1 : ϕ 7→ {A ⊂ X : e ∈ ϕ(A)}.
Proof. First observe that for any family A ∈ P2(X) the function ΦA is equivariant,
because

ΦA(xA) = {y ∈ X : y−1xA ∈ A} = {xz ∈ X : z−1A ∈ A} = xΦA(A)

for any x ∈ X and A ⊂ X. Thus the map Φ : P2(X)→ End(P(X)) is well-defined.
To prove that Φ is a semigroup homomorphism, take two families X ,Y ∈ P2(X) and

let Z = X ◦ Y. We need to check that ΦZ(A) = ΦX ◦ ΦY(A) for every A ⊂ X. Observe
that

ΦZ(A) = {z ∈ X : z−1A ∈ Z} = {z ∈ X : {x ∈ X : x−1z−1A ∈ Y} ∈ X}
= {z ∈ X : ΦY(z−1A) ∈ X} = {z ∈ X : z−1ΦY(A) ∈ X}
= ΦX (ΦY(A)) = ΦX ◦ ΦY(A).

To see that the map Φ is injective, take any two distinct families A,B ∈ P2(X).
Without loss of generality, A \ B contains some set A ⊂ X. It follows that e ∈ ΦA(A)
but e /∈ ΦB(A) and hence ΦA 6= ΦB.

To see that the map Φ is surjective, take any equivariant function ϕ : P(X)→ P(X)
and consider the family A = {A ⊂ X : e ∈ ϕ(A)}. It follows that for every A ∈ P(X),

ΦA(A) = {x ∈ X : x−1A ∈ A} = {x ∈ X : e ∈ ϕ(x−1A)}
= {x ∈ X : e ∈ x−1ϕ(A)} = {x ∈ X : x ∈ ϕ(A)} = ϕ(A).

To prove that Φ : P2(X) → End(P(X)) ⊂ P(X)P(X) is continuous we first define
a convenient subbase of the topology on the spaces P(X) and P(X)P(X). The product
topology of P(X) is generated by the subbase consisting of the sets

x+ = {A ⊂ X : x ∈ A} and x− = {A ⊂ X : x /∈ A}
where x ∈ X. On the other hand, the product topology on P(X)P(X) is generated by the
subbase consisting of the sets

〈x,A〉+ = {f ∈ P(X)P(X) : x ∈ f(A)} and 〈x,A〉− = {f ∈ P(X)P(X) : x /∈ f(A)}
where A ∈ P(X) and x ∈ X.
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Now observe that the preimage

Φ−1(〈x,A〉+) = {A ∈ P2(X) : x ∈ ΦA(A)} = {A ∈ P2(X) : x−1A ∈ A}

is open in P2(X). The same is true for the preimage

Φ−1(〈x,A〉−) = {A ∈ P2(X) : x /∈ ΦA(A)} = {A ∈ P2(X) : x−1A /∈ A}.

Since the spaces P2(X) ∼= {0, 1}P(X) and End(P(X)) ⊂ P(X)P(X) are compact and
Hausdorff, the continuity of the map Φ implies the continuity of its inverse Φ−1. Con-
sequently, Φ : P2(X) → End(P(X)) is a topological isomorphism of compact right-
topological semigroups.

Remark 4.2. The function representations ΦA of some familiesA ⊂ P(X) have transpar-
ent topological interpretations. For example, if A is the filter of neighborhoods of the iden-
tity element e of a left-topological group X and A⊥ = {B ⊂ X : ∀A ∈ A (B ∩ A 6= ∅)},
then for any subset B ⊂ X the set ΦA(B) coincides with the interior of the set B while
ΦA⊥(B) with the closure of B in X!

Theorem 4.1 has a strategical importance because it allows us to translate (usually
difficult) problems concerning the structure of the semigroup P2(X) to (usually more
tractable) problems about the endomorphism monoid End(P(X)). In particular, Theo-
rem 4.1 implies “for free” that the binary operation on P2(X) is associative and right-
topological and hence P2(X) is indeed a compact right-topological semigroup. Now let
us investigate the interplay between the properties of a family A ∈ P2(X) and those of
its function representation ΦA.

Let us define a family A ⊂ P(X) to be

• monotone if for any subsets A ⊂ B ⊂ X the inclusion A ∈ A implies B ∈ A;
• left-invariant if for any A ∈ A and x ∈ X we get xA ∈ A.

Correspondingly, a function ϕ : P(X)→ P(X) is called

• monotone if ϕ(A) ⊂ ϕ(B) for any subsets A ⊂ B ⊂ X;
• symmetric if ϕ(X \A) = X \ ϕ(A) for every A ⊂ X.

Proposition 4.3. For an equivariant function ϕ ∈ End(P(X)) the family Φ−1(ϕ) =
{A ⊂ X : e ∈ ϕ(A)} is

(1) monotone if and only if ϕ is monotone;
(2) left-invariant if and only if ϕ(P(X)) ⊂ {∅, X};
(3) maximal linked if and only if ϕ is monotone and symmetric.

Proof. Let A = Φ−1(ϕ).
1. If ϕ is monotone, then for any sets A ⊂ B with A ∈ A we get e ∈ ϕ(A) ⊂ ϕ(B)

and hence B ∈ A, which means that the family A is monotone.
Now assume conversely that the family A is monotone and take any sets A ⊂ B ⊂ X.

Note that for any x ∈ X with xA ∈ A we get xB ∈ A. Then

ϕ(A) = {x ∈ X : x−1A ∈ A} ⊂ {x ∈ X : x−1B ∈ A} = ϕ(B),

witnessing that the function ϕ is monotone.



Algebra in the superextensions of twinic groups 13

2. If the family A is left-invariant, then for each A ∈ A we get ϕ(A) = {x ∈ X :
x−1A ∈ A} = X and for each A /∈ A we get ϕ(A) = {x ∈ X : x−1A ∈ A} = ∅.

Now assume conversely that ϕ(P(X)) ⊂ {∅, X}. Then for each A ∈ A we get e ∈
ϕ(A) = X and then for each x ∈ X, the equivariance of ϕ guarantees that ϕ(xA) =
xϕ(A) = xX = X 3 e and thus xA ∈ A, witnessing that the family A is invariant.

3. Assume that the family A is maximal linked. By the maximality, A is monotone.
Consequently, its function representation ϕ is monotone. The maximal linked property
of A guarantees that for any subset A ⊂ X we get (A ∈ A)⇔ (X \A /∈ A). Then

ϕ(X \A) = {x ∈ X : x−1(X \A) ∈ A} = {x ∈ X : X \ x−1A ∈ A}
= {x ∈ X : x−1A /∈ A} = X \ {x ∈ X : x−1A ∈ A} = X \ ϕ(A),

which means that the function ϕ is symmetric.
Now assuming that the function ϕ is monotone and symmetric, we shall show that

the family A = Φ−1(ϕ) is maximal linked. The statement (1) guarantees that A is
monotone. Assuming that A is not linked, we could find two disjoint sets A,B ∈ A. Since
A is monotone, we can assume that B = X \ A. Then e ∈ ϕ(A) ∩ ϕ(X \ A), which is
impossible as ϕ(X \A) = X \ϕ(A). Thus A is linked. To show that A is maximal linked,
it suffices to check that for each subset A ⊂ X either A or X \ A belongs to A. Since
ϕ(X \ A) = X \ ϕ(A), either ϕ(A) or ϕ(X \ A) contains the neutral element e of the
group X. In the first case A ∈ A and in the second case X \A ∈ A.

Let us recall that the aim of this paper is the description of the structure of minimal
left ideals of the superextension λ(X) of a group X. Instead of the semigroup λ(X) it
will be more convenient to consider its isomorphic copy

Endλ(P(X)) = Φ(λ(X)) ⊂ End(P(X))

called the function representation of λ(X).
Proposition 4.3 implies

Corollary 4.4. The function representation Endλ(P(X)) of λ(X) consists of equivari-
ant monotone symmetric functions ϕ : P(X)→ P(X).

In order to describe the structure of minimal left ideals of the semigroup Endλ(P(X))
we shall look for a relatively small subfamily F ⊂ P(X) such that the restriction operator

RF : Endλ(P(X))→ P(X)F, RF : ϕ 7→ ϕ|F,

is injective on each minimal left ideal of the semigroup Endλ(P(X)).
Then the composition

ΦF = RF ◦ Φ : λ(X)→ P(X)F

will be injective on each minimal left ideal of the semigroup λ(X). By Proposition 2.2, a
homomorphism between semigroups is injective on each minimal left ideal if it is injective
on some minimal left ideal. Such a special minimal left ideal of the semigroup λ(X) will
be found in the left ideal of the form λI(X) for a suitable left-invariant ideal I of subsets
of the group X.
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A family I of subsets of X is called an ideal on X if

• X /∈ I;
• A ∪B ∈ I for any A,B ∈ I;
• for any A ∈ I and B ⊂ A we get B ∈ I.

Such an ideal I is called left-invariant (resp. right-invariant) if xA ∈ I (resp. Ax ∈ I)
for all A ∈ I and x ∈ X. An ideal I will be called invariant if it is both left-invariant
and right-invariant.

The smallest ideal on X is the trivial ideal {∅} containing only the empty set. The
smallest non-trivial left-invariant ideal on an infinite group X is the ideal [X]<ω of finite
subsets ofX. This ideal is invariant. From now on we shall assume that I is a left-invariant
ideal on a group X.

For subsets A,B ⊂ X we write

• A ⊂I B if A \B ∈ I;
• A =I B if A ⊂I B and B ⊂I A.

The definition of the ideal I implies that =I is an equivalence relation on P(X). For a
subset A ⊂ X its equivalence class ¯̄AI = {B ⊂ X : B =I A} is called the I-saturation
of A.

A family A of subsets of X is defined to be I-saturated if ¯̄AI ⊂ A for any A ∈ A. Let
us observe that a monotone family A ⊂ P(X) is I-saturated if and only if for any A ∈ A
and B ∈ I we get A \B ∈ A.

Correspondingly, a function ϕ : P(X) → P(X) is called I-saturated if ϕ(A) = ϕ(B)
for any subsets A =I B of X.

Proposition 4.5. A family A ⊂ P(X) is I-saturated if and only if its function repre-
sentation ΦA : P(X)→ P(X) is I-saturated.

Proof. Assume that A is I-saturated and take two subsets A =I B of X. We need to
show that ΦA(A) = ΦA(B). The left-invariance of the ideal I implies that for every
x ∈ X we get xA =I xB and hence (xA ∈ A) ⇔ (xB ∈ A). Then

ΦA(A) = {x ∈ X : x−1A ∈ A} = {x ∈ X : x−1B ∈ A} = ΦA(B).

Now assume conversely that the function representation ΦA is I-saturated and take
any subsets A =I B with A ∈ A. Then e ∈ ΦA(A) = ΦA(B), which implies that B ∈ A.

For a left-invariant ideal I on a group X let λI(X) ⊂ λ(X) be the subspace of I-
saturated maximal linked systems on X and EndIλ(P(X)) ⊂ Endλ(P(X)) be the subspace
consisting of I-saturated monotone symmetric endomorphisms of the X-act P(X). It is
clear that for any functions f, g : P(X) → P(X) the composition f ◦ g is I-saturated
provided so is the function g. This trivial remark and Lemma 4.7 below imply:

Proposition 4.6. For any ideal I the function representation Φ : λI(X)→ EndIλ(P(X))
is a topological isomorphism between the closed left ideals λI(X) and EndIλ(P(X)) of the
semigroups λ(X) and Endλ(P(X)), respectively.

The following lemma (combined with Zorn’s Lemma) implies that the sets λI(X) and
EndIλ(P(X)) are not empty.
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Lemma 4.7. Each maximal I-saturated linked system L on X is maximal linked.

Proof. We need to show that each set A ⊂ X that meets all sets L ∈ L belongs to L.
We claim that A /∈ I. Otherwise, taking any subset L ∈ L, we get L \A =I L and hence
L \ A belongs to L, which is not possible as L \ A misses the set A. Since A /∈ I, the
I-saturated family ¯̄AI is linked.

We claim that the I-saturated family ¯̄AI ∪ L is linked. Assuming the opposite, we
would find two disjoint sets A′ ∈ ¯̄AI and L ∈ L. Then L ∩ A =I L ∩ A′ = ∅ and hence
the set L \A =I L belongs to L, which is not possible as this set misses A.

Now we see that the family ¯̄AI ∪ L, being I-saturated and linked, coincides with the
maximal I-saturated linked system L. Then A ∈ ¯̄AI ∪ L = L.

Given a subfamily F ⊂ P(X) consider the restriction operator

RF : P(X)P(X) → P(X)F, RF : f 7→ f |F,

and let Endλ(F) = RF(Endλ(P(X))) and EndIλ(F) = RF(EndIλ(P(X))) for a left-invariant
ideal I on X. The space Endλ(F) is compact and Hausdorff as a continuous image of a
compact Hausdorff space.

A subfamily F ⊂ P(X) is called λ-invariant if ΦL(F) ⊂ F for each maximal linked
system L ∈ λ(X). By Corollary 4.4, F is λ-invariant if and only if f(F) ⊂ F for each
equivariant monotone symmetric function f : P(X)→ P(X).

If a family F ⊂ P(X) is λ-invariant, then the space Endλ(F) ⊂ FF is a compact right-
topological semigroup with respect to the operation of composition of functions and the
restriction operator RF : Endλ(P(X)) → Endλ(F) is a surjective continuous semigroup
homomorphism. In this case the composition

ΦF = RF ◦ Φ : λ(X)→ Endλ(F)

is also a surjective continuous semigroup homomorphism and EndIλ(F) = ΦF(λI(X)) is a
left ideal in the semigroup Endλ(F).

In the following proposition we characterize functions that belong to the space
EndIλ(F) for an I-saturated left-invariant symmetric subfamily F ⊂ P(X). A family
F ⊂ P(X) is called symmetric if for each set A ∈ F the complement X \A is in F.

Theorem 4.8. For a left-invariant ideal I on a group X and an I-saturated symmetric
left-invariant family F ⊂ P(X), a function ϕ : F→ P(X) belongs to EndIλ(F) if and only
if ϕ is equivariant, symmetric, monotone, and I-saturated.

Proof. The “only if” part follows immediately from Corollary 4.4. To prove the “if” part,
fix any equivariant monotone symmetric I-saturated function ϕ : F→ P(X) and consider
the families

Lϕ = {x−1A : A ∈ F, x ∈ ϕ(A)} and ¯̄LIϕ =
⋃
A∈L

¯̄AI .

We claim that the family ¯̄LIϕ is linked. Assuming the converse, we could find two sets
A,B ∈ F and two points x ∈ ϕ(A) and y ∈ ϕ(B) such that x−1A ∩ y−1B ∈ I. Then
yx−1A ⊂I X\B and hence yx−1A ⊂ (X\B)∪C for some set C ∈ I. Since F is symmetric
and I-saturated, the set (X \B)∪C =I X \B belongs to the family F. Applying to the
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chain of the inclusions
yx−1A ⊂ (X \B) ∪ C =I X \B

the equivariant monotone symmetric I-saturated function ϕ, we get the chain

yx−1ϕ(A) ⊂ ϕ((X \B) ∪ C) = ϕ(X \B) = X \ ϕ(B).

Then x−1ϕ(A) ⊂ X \ y−1ϕ(B), which is not possible because the neutral element e of
the group X belongs to x−1ϕ(A) ∩ y−1ϕ(B).

Enlarge the I-saturated linked family ¯̄LIϕ to a maximal I-saturated linked family L,
which is maximal linked by Lemma 4.7 and thus L ∈ λI(X). We claim that ΦL|F = ϕ.
Indeed, take any set A ∈ F and observe that

ϕ(A) ⊂ {x ∈ X : x−1A ∈ Lϕ} ⊂ {x ∈ X : x−1A ∈ L} = ΦL(A).

To prove the reverse inclusion, observe that for any x ∈ X \ ϕ(A) = ϕ(X \ A) we get
x−1(X \A) = X \ x−1A ∈ Lϕ ⊂ L. Since L is linked, x−1A /∈ L and hence x /∈ ΦL(A).

Corollary 4.9. For a symmetric left-invariant family F ⊂ P(X), a function ϕ : F →
P(X) belongs to Endλ(F) if and only if ϕ is equivariant, symmetric, and monotone.

5. Twin and I-twin subsets of groups

In this section we start studying very interesting objects called twin sets. For an abelian
(more generally, twinic) group X the twin subsets of X form a subfamily T ⊂ P(X) for
which the function representation ΦT : λ(X)→ Endλ(T) is injective on each minimal left
ideal of the superextension λ(X). The machinery related to twin sets will be developed
in Sections 5–15, after which we shall return to studying minimal (left) ideals of the
semigroups λ(X) and End(X).

For a subset A of a group X consider the following three subsets of X:

Fix(A) = {x ∈ X : xA = A},
Fix−(A) = {x ∈ X : xA = X \A},
Fix±(A) = Fix(A) ∪ Fix−(A).

Definition 5.1. A subset A ⊂ X is defined to be

• twin if xA = X \A for some x ∈ X;
• pretwin if xA ⊂ X \A ⊂ yA for some points x, y ∈ X.

The families of twin and pretwin subsets of X will be denoted by T and pT, respectively.

Observe that a set A ⊂ X is twin if and only if Fix−(A) is not empty.
The notion of a twin set has an obvious “ideal” version. For a left-invariant ideal I of

subsets of a group X, and a subset A ⊂ X, consider the following subsets of X:

I-Fix(A) = {x ∈ X : xA =I A},
I-Fix−(A) = {x ∈ X : xA =I X \A},
I-Fix±(A) = I-Fix(A) ∪ I-Fix−(A).
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Definition 5.2. A subset A ⊂ X is defined to be

• I-twin if xA =I X \A for some x ∈ X;
• I-pretwin if xA ⊂I X \A ⊂I yA for some points x, y ∈ X.

The families of I-twin and I-pretwin subsets of X will be denoted by TI and pTI ,
respectively.

It is clear that T{∅} = T and pT{∅} = pT.

Proposition 5.3. For each subset A ⊂ X the set I-Fix±(A) is a subgroup in X. The
set A is I-twin if and only if I-Fix(A) is a normal subgroup of index 2 in I-Fix±(A).

Proof. If the set A is not I-twin, then I-Fix−(A) = ∅ and then I-Fix±(A) = I-Fix(A) =
{x ∈ X : xA =I A} is a subgroup of X by the transitivity and left-invariance of the
equivalence relation =I .

So, we assume that A is I-twin, which means that I-Fix−(A) 6= ∅. To show that
I-Fix±(A) is a subgroup in X, take any two points x, y ∈ I-Fix±(A). We claim that
xy−1 ∈ I-Fix±(A).

This is clear if x, y ∈ I-Fix(A) ⊂ I-Fix±(A). If x ∈ I-Fix(A) and y ∈ I-Fix−(A), then
xA =I A, yA =I X \ A and thus A =I X \ y−1A, which implies y−1A =I X \ A. Then
xy−1A =I x(X \A) = X \xA =I X \A, which means that xy−1 ∈ I-Fix−(A) ⊂ Fix±(A).

If x, y ∈ I-Fix−(A), then xA =I X \A, y−1A =I X \A. This implies that xy−1A =I
x(X \A) =I X \ xA =I X \ (X \A) =I A and consequently xy−1 ∈ I-Fix(A).

To show that I-Fix(A) is a subgroup of index 2 in Fix±(A), fix any element g ∈
I-Fix−(A). Then for every x ∈ I-Fix(A) we get gxA =I gA =I X \ A and thus
gx ∈ I-Fix−(A). This yields I-Fix−(A) = g(I-Fix(A)), which means that the subgroup
I-Fix(A) has index 2 in the group I-Fix±(A).

The following proposition shows that the family TI of I-twin sets of a group X is
left-invariant.

Proposition 5.4. For any I-twin set A ⊂ X and any x ∈ X the set xA is I-twin and
I-Fix−(xA) = x(I-Fix−(A))x−1.

Proof. To see that xA is an I-twin set, take any z ∈ I-Fix−(A) and observe that

X \ xA = x(X \A) =I xzA = xzx−1xA,

which means that xzx−1 ∈ I-Fix−(xA) for every z ∈ I-Fix−(A). Hence I-Fix−(xA) =
x(I-Fix−(A))x−1.

The preceding proposition implies that the family TI of I-twin subsets of X can be
considered as an X-act with respect to the left action

· : X × TI → TI , · : (x,A) 7→ xA,

of the group X. We denote by [A] = {xA : x ∈ X} the orbit of a I-twin set A ∈ TI and
by [TI ] = {[A] : A ∈ TI} the orbit space. If I = {∅} is a trivial ideal, then we write [T]
instead of [TI ].
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6. Twinic groups

A left-invariant ideal I on a group X is called twinic if for any subset A ⊂ X and points
x, y ∈ X with xA ⊂I X \A ⊂I yA we get A =I B. In this case the families pTI and TI

coincide.
A group X is defined to be twinic if it admits a twinic ideal I. It is clear that in

a twinic group X the intersection II of all twinic ideals is the smallest twinic ideal in
X called the twinic ideal of X. The structure of the twinic ideal II can be described as
follows.

Let II0 = {∅} and for each n ∈ ω let IIn+1 be the ideal generated by all sets of the
form yA\xA where xA ⊂IIn X\A ⊂IIn yA for some A ⊂ X and x, y ∈ X. By induction it
is easy to check that IIn ⊂ IIn+1 ⊂ I is an invariant ideal and hence II =

⋃
n∈ω IIn ⊂ I

is a well-defined (smallest) twinic ideal on X. This ideal II is invariant.
In fact, the above constructive definition of the additive invariant family II is valid

for each group X. However, II is an ideal if and only if the group X is twinic.
We shall say that a group X has trivial twinic ideal if the trivial ideal I = {∅} is

twinic. This happens if and only if for any subset A ⊂ X with xA ⊂ X \A ⊂ yA we get
xA = X \A = yA. In this case the twinic ideal II of X is trivial.

The class of twinic groups is sufficiently wide. In particular, it contains all amenable
groups. Let us recall that a group X is called amenable if it admits a Banach measure
µ : P(X) → [0, 1], which is a left-invariant probability measure defined on the family of
all subsets of P(X). In this case the family

Nµ = {A ⊂ X : µ(A) = 0}

is a left-invariant ideal in X. It is well-known that the class of amenable groups contains
all abelian groups and is closed with respect to many operations over groups (see [17]).

A subset A of an amenable group X is called absolutely null if µ(A) = 0 for each
Banach measure µ on X. The family N of all absolutely null subsets is an ideal on X.
This ideal coincides with the intersection N =

⋂
µNµ where µ runs over all Banach

measures of X.

Theorem 6.1. Each amenable group X is twinic. The twinic ideal II of X lies in the
ideal N of absolute null subsets of X.

Proof. It suffices to check that the ideal N is twinic. Take any set A ⊂ X such that
xA ⊂N X \A ⊂N yA for some x, y ∈ X. We need to show that µ(yA \ xA) = 0 for each
Banach measure µ on X. It follows from xA ⊂N X \A ⊂N yA and the invariance of the
Banach measure µ that

µ(A) = µ(xA) ≤ µ(X \A) ≤ µ(yA) = µ(A)

and hence µ(yA \ xA) = µ(A)− µ(A) = 0.

Next, we show that the class of twinic groups also contains some non-amenable groups.
The simplest example is the Burnside group B(n,m) for n ≥ 2 and odd m ≥ 665. We
recall that the Burnside group B(n,m) is generated by n elements and one relation
xm = 1. Adian [1] proved that for n ≥ 2 and any odd m ≥ 665 the Burnside group
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B(n,m) is not amenable (see also [16] for a stronger version of this result). The following
theorem implies that each Burnside group, being a torsion group, is twinic. Moreover, its
twinic ideal II is trivial!

Theorem 6.2. A group X has trivial twinic ideal II = {∅} if and only if the product ab
of any elements a, b ∈ X belongs to the subsemigroup of X generated by the set b± · a±
where a± = {a, a−1}.
Proof. To prove the “if” part, assume that II 6= {∅}. Then IIn+1 6= {∅} = IIn for some
n ∈ ω and we can find a subset A ⊂ X and points a, b ∈ X such that a−1A ⊂ X \A ⊂ bA
but a−1A 6= bA. Consider the subsemigroup Fix⊂(A) = {x ∈ X : xA ⊂ A} ⊂ X and
observe that b−1a−1 ∈ Fix⊂(A). The inclusion a−1A ⊂ X \ A implies a−1A ∩ A = ∅,
which is equivalent to A ∩ aA = ∅ and yields aA ⊂ X \A ⊂ bA. Then b−1a ∈ Fix⊂(A).

Now consider the chain of equivalences

X \A ⊂ bA ⇔ A ∪ bA = X ⇔ b−1A ∪A = X ⇔ X \A ⊂ b−1A

and combine the last inclusion with aA ∪ a−1A ⊂ X \ A to obtain ba, ba−1 ∈ Fix⊂(A).
Now we see that the subsemigroup S of X generated by the set {1, ba, ba−1, b−1a, b−1a−1}
lies in Fix⊂(A). Observe that b−1a−1A ( A implies abA 6⊂ A, ab /∈ Fix⊂(A) ⊃ S, and
finally ab /∈ S. This completes the proof of the “if” part.

To prove the “only if” part, assume that the group X contains elements a, b whose
product ab does not belong to the subsemigroup generated by b±a± where a± = {a, a−1}
and b± = {b, b−1}. Then ab also does not belong to the subsemigroup S generated by
{1} ∪ b±a±. Observe that a±S = S−1a± and b±S−1 = Sb±.

We claim that
S ∩ a±S = ∅ and S ∩ Sb± = ∅. (6.1)

Assuming that S ∩ a±S 6= ∅ we would find a point s ∈ S such that as ∈ S or a−1s ∈ S.
If as ∈ S, then bs−1 = b(as)−1a ∈ bS−1a ⊂ Sb±a ⊂ S and hence b = bs−1s ∈ S · S ⊂ S.
Then a± = b(b−1a±) ⊂ S · S ⊂ S, b± = (b±a)a−1 ∈ S · S ⊂ S and finally ab ∈ S · S ⊂ S,
which contradicts ab /∈ S. By analogy we can treat the case a−1s ∈ S and also prove that
S ∩ Sb± = ∅.

Consider the family P of all pairs (A,B) of disjoint subsets of X such that

(a) a±A ⊂ B and b±B ⊂ A;
(b) S−1B ⊂ B;
(c) 1 ∈ A, ab ∈ B.

The family P is partially ordered by the relation (A,B) ≤ (A′, B′) defined by A ⊂ A′

and B ⊂ B′.
We claim that the pair (A0, B0) = (S ∪Sb±ab, S−1a± ∪S−1ab) belongs to P. Indeed,

a±A0 = a±S ∪ a±Sb±ab ⊂ S−1a± ∪ S−1a±b±ab ⊂ S−1a± ∪ S−1ab ⊂ B0.

By analogy we check that b±B0 ⊂ A0. Items (b), (c) trivially follow from the definition
of A0 and B0. It remains to check that the sets A0 and B0 are disjoint.

This will follow as soon as we check that

(d) S ∩ S−1a± = ∅;
(e) S ∩ S−1ab = ∅;
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(f) Sb±ab ∩ S−1a± = ∅;
(g) Sb±ab ∩ S−1ab = ∅.

Items (d) and (g) follow from (6.1). Item (e) follows from ab /∈ S · S = S. By the same
reason, we get (f), which is equivalent to ab /∈ b±S−1 ·S−1a± = b±S−1a± = Sb±a± ⊂ S.

Thus the partially ordered set P is not empty and we can apply Zorn’s Lemma to
find a maximal pair (A,B) ≥ (A0, B0) in P. We claim that A ∪ B = X. Assuming the
converse, we could take any point x ∈ X \(A∪B) and put A′ = A∪Sx, B′ = B∪a±Sx. It
is clear that a±A′ ⊂ B′ and b±B′ ⊂ A′, S−1B′ = S−1B ∪ S−1a±Sx ⊂ B ∪ a±SSx = B′,
1 ∈ A ⊂ A′ and ab ∈ B ⊂ B′.

Now we see that the inclusion (A′, B′) ∈ P will follow as soon as we check that
A′ ∩ B′ = ∅. The choice of x /∈ B = S−1B guarantees that Sx ∩ B = ∅. Assuming that
a±Sx∩A 6= ∅, we would conclude that x ∈ S−1a±A ⊂ S−1B ⊂ B, which contradicts the
choice of x. Finally, the sets Sx and a±Sx are disjoint because of the property (6.1) of S.
Thus we obtain a contradiction: (A′, B′) ∈ P is strictly greater than the maximal pair
(A,B). This contradiction shows thatX = A∪B and consequently aA ⊂ X\A = B ⊂ bA,
which means that the set A is pretwin and so bA\aA ∈ II1 ⊂ II. Since 1 ∈ A\ b−1a−1A,
we conclude that bA \ a−1A 3 b is not empty and thus II 6= {∅}.

We recall that a group X is periodic (or a torsion group) if each element x ∈ X has
finite order (which means that xn = e for some n ∈ N). We shall say that a group X

has periodic commutators if for any x, y ∈ G the commutator [x, y] = xyx−1y−1 has
finite order in X. It is interesting to note that this condition is strictly weaker than
the requirement for X to have periodic commutator subgroup X ′ (we recall that the
commutator subgroupX ′ coincides with the set of finite products of commutators; see [6]).

Proposition 6.3. Each group X with periodic commutators has trivial twinic ideal
II = {∅}.

Proof. Since X has periodic commutators, for any points x, y ∈ X there is a number
n ∈ N such that

xyx−1y−1 = (yxy−1x−1)−1 = (yxy−1x−1)n

and thus xy = (yxy−1x−1)n · yx belongs to the semigroup generated by the set y± · x±.
Applying Theorem 6.2, we conclude that the group X has trivial twinic ideal II = {∅}.

We recall that a groupG is called abelian-by-finite (resp. finite-by-abelian) ifG contains
a normal abelian (resp. finite) subgroup H ⊂ G with finite (resp. abelian) quotient G/H.
Observe that each finite-by-abelian group has periodic commutators and hence has trivial
twinic ideal II.

In contrast, any abelian-by-finite group, being amenable, is twinic but its twinic ideal
II need not be trivial. The simplest counterexample is the isometry group Iso(Z) of the
group Z of integers endowed with the Euclidean metric.

Example 6.4. The abelian-by-finite group X = Iso(Z) is twinic. Its twinic ideal II
coincides with the ideal [X]<ω of all finite subsets of X.

Proof. Let a : x 7→ x + 1 be the translation and b : x 7→ −x be the inversion of the
group Z. It is easy to see that the elements a, b generate the isometry group X = Iso(Z)
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and satisfy the relations b2 = 1 and bab−1 = a−1. Let Z = {an : n ∈ Z} be the cyclic
subgroup ofX generated by the translation a. This subgroup Z has index 2 inX = Z∪Zb.

First we show that the ideal I = [X]<ω of finite subsets of X is twinic. Let A ⊂ X be
a subset with xA ⊂I X \A ⊂I yA for some x, y ∈ X. We need to show that yA =I xA.

We consider three cases.
(1) x, y ∈ Z. In this case the elements x, y commute. The I-inclusion xA ⊂I yA

implies y−1xA ⊂I A. We claim that y−1xA ⊃I A. Observe that the I-inclusion xA ⊂I
X \A is equivalent to xA ∩A ∈ I and to A ∩ x−1A ∈ I, which implies x−1A ⊂I X \A.
By analogy, X \ A ⊂I yA is equivalent to yA ∪ A =I X and to A ∪ y−1A =I X, which
implies X \A ⊂I y−1A. Then x−1A ⊂I X \A ⊂I y−1A implies yx−1A ⊂I A and by the
left-invariance of I, A ⊂I xy−1A = y−1xA (we recall that the elements x, y−1 commute).
Therefore, y−1xA =I A and hence xA =I yA.

(2) x ∈ Z and y ∈ X \ Z. Repeating the argument from the preceding case, we can
show that xA ⊂I X \A implies x−1A ⊂I X \A. Then we get the chain of I-inclusions

xA ⊂I X \A ⊂I yA ⊂I y(X \ xA) = yx(X \A) ⊂I yxyA =I xA,

where the last I-equality follows from case (1) since x, yxy ∈ Z. Now we see that
xA =I yA.

(3) x /∈ Z. Then xA ⊂I X \A ⊂I yA implies

x−1bA = bxb−1bA = bxA ⊂I X \ bA ⊂I byA = y−1bA.

Since x−1b ∈ Z, cases (1), (2) imply the I-equality x−1bA =I y−1bA. Shifting this
equality by b, we see that xA = bx−1bA =I by−1bA = yA.

This completes the proof of the twinic property of the ideal I = [X]<ω. Then
II ⊂ [X]<ω. Since [X]<ω is the smallest non-trivial left-invariant ideal on X, the equality
II = [X]<ω will follow as soon as we find a non-empty set in the ideal II.

For this consider the subset A = {an+1, ba−n : n ≥ 0} ⊂ X and observe that
X \ A = {a−n, ban+1 : n ≥ 0} = bA, witnessing that A ∈ T. Observe also that
aA = {an+2, aba−n : n ≥ 0} = {an+2, ba−n−1 : n ≥ 0} ( A and thus baA ( X \ A = bA.
Then ∅ 6= baA \ bA ∈ II1 ⊂ II witnesses that the twinic ideal II is not trivial.

Next, we present an (expected) example of a group which is not twinic.

Example 6.5. The free group F2 with two generators is not twinic.

Proof. Assume that the group X = F2 is twinic and let II be the twinic ideal of F2. Let
a, b be the generators of the free group F2. Each element w ∈ F2 can be represented by a
word in the alphabet {a, a−1, b, b−1}. The word of the smallest length representing w is
called the irreducible representation of w. The irreducible word representing the neutral
element of F2 is the empty word. Let A (resp. B) be the set of words whose irreducible
representations start with a or a−1 (resp. b or b−1). Consider the subset

C =
{
a2nw : w ∈ B ∪ {e}, n ∈ Z

}
⊂ F2

and observe that abaC ⊂ X \ C = aC. Then aC \ abaC ∈ II1 by the definition of the
subideal II1 ⊂ II. Observe that a3baC ⊂ aC \ abaC and thus a3baC ∈ II1. Then also
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C ∈ II1 and X \C = aC ∈ II1 by the left-invariance of II1. By the additivity of II1, we
finally get X = C ∪ (X \ C) ∈ II1 ⊂ II, which is the desired contradiction.

Next, we prove some permanence properties of the class of twinic groups.

Proposition 6.6. Let f : X → Y be a surjective group homomorphism. If the group X
is twinic, then so is the group Y .

Proof. Let II be the twinic ideal of X. It is easy to see that I = {B ⊂ Y : f−1(B) ∈ II}
is a left-invariant ideal on the group Y . We claim that it is twinic. Given any subset
A ⊂ Y with xA ⊂I Y \ A ⊂I yA for some x, y ∈ Y , let B = f−1(A) and observe
that x′B ⊂II X \ B ⊂II y′B for some points x′ ∈ f−1(x) and y′ ∈ f−1(y). The twinic
property of the twinic ideal II guarantees that f−1(yA \ xA) = y′B \ x′B ∈ II, which
implies yA \ xA ∈ I and hence xA =I Y \A =I yA.

Problem 6.7. Is a subgroup of a twinic group twinic? Is the product of two twinic groups
twinic?

For groups with trivial twinic ideal the first part of this problem has an affirmative
solution, which follows from the characterization Theorem 6.2.

Proposition 6.8.

(1) The class of groups with trivial twinic ideal is closed with respect to taking subgroups
and quotient groups.

(2) A group X has trivial twinic ideal if and only if any 2-generated subgroup of X has
trivial twinic ideal.

7. 2-Cogroups

It follows from Proposition 5.3 that for a twin subset A of a group X the stabilizer Fix(A)
of A is completely determined by the subset Fix−(A) because Fix(A) = x · Fix−(A) for
each x ∈ Fix−(A). Therefore, the subset Fix−(A) carries all the information about the
pair (Fix±(A),Fix(A)). The sets Fix−(A) are particular cases of so-called 2-cogroups
defined as follows.

Definition 7.1. A subset K of a group X is called a 2-cogroup if for every x ∈ K the
shift xK = Kx is a subgroup of X, disjoint from K.

By the index of a 2-cogroup K in X we understand the cardinality |X/K| of the set
X/K = {Kx : x ∈ X}.

2-cogroups can be characterized as follows.

Proposition 7.2. A subset K of a group X is a 2-cogroup in X if and only if there is a
(unique) subgroup H± of X and a subgroup H ⊂ H± of index 2 such that K = H± \H
and H = K ·K.

Proof. If K is a 2-cogroup, then for every x ∈ K the shift H = xK = Kx is a
subgroup of X disjoint from K. It follows that K = x−1H = Hx−1. Since x−1 ∈
x−1H = K, the shift x−1K = Kx−1 is a subgroup of X according to the definition
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of a 2-cogroup. Consequently, x−1Kx−1K = x−1K, which implies Kx−1K = K and
Hx−1x−1Hx−1 = Kx−1K = K = Hx−1. This implies x−2 ∈ H and x2 ∈ H. Conse-
quently, xH = x−1x2H = x−1H = K = Hx−1 = Hx2x−1 = Hx.

Now we are able to show that H± = H ∪K is a group. Indeed,

(H ∪K) · (H ∪K)−1 ⊂ HH−1 ∪HK−1 ∪KH−1 ∪KK−1

⊂ H ∪HHx ∪ xHH ∪Hx−1xH = H ∪K ∪K ∪H = H±.

Since K = Hx = xH, the subgroup H = K ·K has index 2 in H±. The uniqueness of the
pair (H±, H) follows from the fact that H = K ·K and H± = KK ∪K. This completes
the proof of the “only if” part.

To prove the “if” part, assume that H± is a subgroup of X and H ⊂ H± is a subgroup
of index 2 such that K = H± \H. Then for every x ∈ K the shift xK = Kx = H is a
subgroup of X disjoint from K. This means that K is a 2-cogroup.

Proposition 7.2 implies that for each 2-cogroup K ⊂ X the set K± = K ∪KK is a
subgroup of X and KK is a subgroup of index 2 in K±.

We shall denote by K the family of all 2-cogroups in X. It is partially ordered by the
inclusion relation ⊂ and is considered as an X-act endowed with the conjugating action

· : X ×K → K, · : (x,K) 7→ xKx−1,

of the group X. For each 2-cogroup K ∈ K let Stab(K) = {x ∈ X : xKx−1 = K} be the
stabilizer of K and [K] = {xKx−1 : x ∈ X} be the orbit of K. Let [K] = {[K] : K ∈ K}
denote the orbit space of K under the action of the group X.

A cogroup K ∈ K is called normal if xKx−1 = K for all x ∈ X. This is equivalent to
saying that Stab(K) = X.

Since for each twin subset A ⊂ X the set Fix−(A) is a 2-cogroup, the function

Fix− : T→ K, Fix− : A 7→ Fix−(A),

is well-defined and equivariant according to Proposition 5.4. A similar equivariant func-
tion

I-Fix− : TI → K, I-Fix− : A 7→ I-Fix−(A),

can be defined for any left-invariant ideal I on a group X.
Let K̂ denote the set of maximal elements of the partially ordered set (K,⊂). The

following proposition implies that K̂ lies in the image Fix−(T) and is cofinal in K.

Proposition 7.3.

(1) For any linearly ordered family C ⊂ K of 2-cogroups in X the union
⋃
C is a 2-cogroup

in X.
(2) Each 2-cogroup K ∈ K lies in a maximal 2-cogroup K̂ ∈ K̂.
(3) For each maximal 2-cogroup K ∈ K̂ there is a twin subset A ∈ T with K = Fix−(A).

Proof. 1. Let C ⊂ K be a linearly ordered family of 2-cogroups of X. Since each 2-cogroup
C ∈ C is disjoint from the group C ·C and C = C ·C ·C, we see that the union K =

⋃
C is

disjoint from the union
⋃
C∈C C ·C = K ·K andK =

⋃
C∈C C =

⋃
C∈C C ·C ·C = K ·K ·K,

witnessing that K is a 2-cogroup.
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2. Since each chain in K is upper bounded, Zorn’s Lemma guarantees that each 2-
cogroup of X lies in a maximal 2-cogroup.

3. Given a maximal 2-cogroupK ∈ K̂, consider the subgroupsK·K andK± = K∪KK
of X and choose a subset S ⊂ G meeting each coset K±x, x ∈ X, in a single point.
Consider the set A = KK · S and note that X \ A = KS = xA for each x ∈ K, which
means that K ⊂ Fix−(A). The maximality of K guarantees that K = Fix−(A).

It should be mentioned that in general Fix−(T) 6= K.

Example 7.4. For any twin subset A in the 4-element group X = C2 ⊕ C2 the group
Fix(A) is not trivial. Consequently, each singleton {a} ⊂ X \{e} is a 2-cogroup that does
not belong to the image Fix−(T).

A left-invariant subfamily F ⊂ T is called

• K̂-covering if K̂ ⊂ Fix−(F) (this means that for each maximal 2-cogroup K ∈ K̂ there
is a twin set A ∈ F with Fix−(A) = K);

• minimal K̂-covering if F coincides with each left-invariant K̂-covering subfamily of F.

Proposition 7.3(3) implies that the family

T̂ = {A ∈ T : Fix−(A) ∈ K̂}

is K̂-covering.

Proposition 7.5. For any function f ∈ Endλ(P(X)) the family f(T̂) is K̂-covering.

Proof. The equivariance of the function f and the left-invariance of the family T̂ imply
the left-invariance of the family f(T̂). To see that f(T̂) is K̂-covering, fix any maximal 2-
cogroup K ∈ K̂ and using Proposition 7.3, find a twin set A ⊂ X with Fix−(A) = K. We
claim that Fix−(f(A)) = Fix−(A) = K. By Corollary 4.4, the function f is equivariant
and symmetric. Then for every x ∈ Fix−(A), applying f to the equality xA = X \A, we
obtain

x f(A) = f(xA) = f(X \A) = X \ f(A),

which means that x ∈ Fix−(f(A)) and thus Fix−(A) ⊂ Fix−(f(A)). Now the maximality
of the 2-cogroup Fix−(A) guarantees that Fix−(f(A)) = Fix−(A).

Remark 7.6. In Theorem 17.1 we shall show that for a twinic group X and a function
f ∈ K

(
Endλ(P(X))

)
from the minimal ideal of Endλ(P(X)) the family f(T̂) is minimal

K̂-covering.

For each 2-cogroup K ⊂ X consider the families

TK = {A ∈ T : Fix−(A) = K} and T[K] = {A ∈ T : ∃x ∈ X with Fix−(xA) = K}.

The following proposition describing the structure of minimal K̂-covering families can be
easily derived from the definitions.

Proposition 7.7. A left-invariant subfamily F ⊂ T̂ is minimal K̂-covering if and only
if for each K ∈ K̂ there is a set A ∈ F such that F ∩ T[K] = [A].
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8. The characteristic group H(K) of a 2-cogroup K

In this section we introduce an important notion of the characteristic group H(K) of a
2-cogroup K in a group X and reveal the algebraic structure of the characteristic groups
of maximal 2-cogroups.

Observe that for each 2-cogroup K ⊂ X its stabilizer Stab(K) = {x ∈ X : xKx−1

= K} containsKK as a normal subgroup. So, we can consider the quotient group H(K) =
Stab(K)/KK called the characteristic group of the 2-cogroup K. Characteristic groups
will play a crucial role for description of the structure of maximal subgroups of the
minimal ideal of the semigroup λ(X).

Observe that for a normal 2-cogroup K ∈ K the characteristic group H(K) is equal
to the quotient group X/KK.

The characteristic group H(K) of each maximal 2-cogroup K ⊂ X has a remarkable
algebraic property: it is a 2-group with a unique 2-element subgroup. Such finite groups
were classified in [20, 5.3.6].

Let us recall that a group G is called a 2-group if the order of each element of G is a
power of 2. Let us recall some standard examples of 2-groups.

We denote by Q8 = {1, i, j, k,−1,−i,−j,−k} the group of quaternions. It is a multi-
plicative subgroup of the real algebra H of quaternions. The algebra H contains the field
C of complex numbers as a subalgebra. For each n ∈ ω let

C2n = {z ∈ C : z2n

= 1}
be the cyclic group of order 2n. The multiplicative subgroup Q2n ⊂ H generated by the
set C2n−1∪Q8 is called the group of generalized quaternions (see [19, §5.3]). The subgroup
C2n−1 has index 2 in Q2n and each element of Q2n \C2n−1 has order 4. According to our
definition, Q2n = Q8 for n ≤ 3. For n ≥ 3 the group Q2n has the presentation

〈x, y | x2 = y2n−2
, x4 = 1, xyx−1 = y−1〉.

The unions
C2∞ =

⋃
n∈ω

C2n and Q2∞ =
⋃
n∈ω

Q2n

are called the quasicyclic 2-group and the infinite group of generalized quaternions, re-
spectively.

Theorem 8.1. A group G is isomorphic to C2n or Q2n for some 1 ≤ n ≤ ∞ if and only
if G is a 2-group with a unique element of order 2.

Proof. The “only if” part is trivial. To prove the “if” part, assume that G is a 2-group
with a unique element of order 2. Denote this element by −1 and let 1 be the neutral
element of G. If the group G is finite, then by Theorem 5.3.6 of [19], G is isomorphic to
C2n or Q2n for some n ∈ N. So, we assume that G is infinite.

Since −1 is a unique element of order 2, the cyclic subgroup {−1, 1} is the maximal
2-elementary subgroup of G (we recall that a group is 2-elementary if it can be written
as the direct sum of 2-element cyclic groups). Now Theorem 2 of [21] implies that the
group G contains a normal abelian subgroup H of finite index. Since G is infinite, so is
the subgroup H. Let H̃ be a maximal subgroup of G that contains H.



26 T. Banakh and V. Gavrylkiv

We claim that H = H̃ and H is isomorphic to the quasicyclic 2-group C2∞ . Since H is
a 2-group, the unique element −1 of the group G belongs to H. Let f : {−1, 1} → C2 be
the unique isomorphism. Since the group C2∞ is injective, by Baer’s Theorem [19, 4.1.2],
the homomorphism f : {−1, 1} → C2 ⊂ C2∞ extends to a homomorphism f̄ : H̃ → C2∞ .
We claim that f̄ is an isomorphism. Indeed, the kernel f̄−1(1) of f̄ is trivial since it is a 2-
group and contains no element of order 2. So, f̄ is injective and then f̄(H̃) coincides with
C2∞ , being an infinite subgroup of C2∞ . For the same reason, f̄(H) = C2∞ . Consequently,
H = H̃ is isomorphic to C2∞ .

If G = H, then G is isomorphic to C2∞ . So, it remains to consider the case of non-
abelian group G 6= H.

Claim 8.2. For every a ∈ H and b ∈ G \H we get b2 = −1 and bab−1 = a−1.

Proof. The maximality of the abelian subgroup H implies that bx 6= xb for some element
of H. Since H is quasicyclic, we can assume that the element x has order ≥ 8 and a

belongs to the cyclic subgroup generated 〈x〉.
Using the fact that the maximal abelian subgroup H has finite index in G, one can

show that the group G is locally finite. Consequently, the subgroup F = 〈b, x〉 generated
by the set {b, x} is finite. By Theorem 5.3.6 of [19], this subgroup is isomorphic to Q2n

for some n ≥ 4. Analyzing the properties of the group Q2n we see that b2 = −1 and
byb−1 = y−1 for all y ∈ 〈x〉. In particular, bab−1 = a−1.

Next, we show that the subgroup H has index 2 in G. This will follow as soon as
we show that for each x, y ∈ G \ H we get xy ∈ H. Observe that for every a ∈ H we
get xyay−1x−1 = xa−1x−1 = a, which means that xy commutes with each element of
H and hence xy ∈ H by the maximality of H. Now take any elements b ∈ G \ H and
q ∈ Q2∞ \ C2∞ . Extend the isomorphism f̄ : H → C2∞ to a map f̃ : G → Q2∞ letting
f̃(bh) = q ·f̄(h) for h ∈ H. Claim 8.2 implies that f̃ is a well-defined isomorphism between
G = H ∪ bH and Q2∞ .

Theorem 8.3. For each maximal 2-cogroup K ∈ K̂ in a group X the characteristic group
H(K) = Stab(K)/KK is isomorphic either to C2n or to Q2n for some 1 ≤ n ≤ ∞.

Proof. This theorem will follow from Theorem 8.1 as soon as we check that H(K) is a
2-group with a unique element of order 2.

Let q : Stab(K) → H(K) be the quotient homomorphism. Take any element x ∈ K
and consider its image d = q(x). Since K = xKK, the image q(K) = {d} is a singleton.
Taking into account that x /∈ KK and x2 ∈ KK, we see that the element d has order 2
in H(K). We claim that any other element a of order 2 in H(K) is equal to d. Assume
towards a contradiction that some element a 6= d of H(K) has order 2.

Let C± be the subgroup of H(K) generated by the elements a, d, and C be the cyclic
subgroup generated by the product ad. We claim that d /∈ C. Assuming conversely that
d ∈ C, we conclude that d = (ad)n for some n ∈ Z. Then a = add = ad(ad)n = (ad)n+1 ∈
C and consequently a = d (because cyclic groups contain at most one element of order 2).
Therefore d /∈ C. It is clear that C± = C ∪ dC, which means that the subgroup C has
index 2 in C±.
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Consider the subgroups H± = q−1(C±), H = q−1(C) and observe that the 2-cogroup
H± \H is strictly larger than K, which contradicts K ∈ K̂.

Since d is a unique element of order 2 in H(K), the cyclic subgroup D = {d, d2}
generated by d is normal in H(K). Consequently, for each non-trivial subgroup G ⊂ H(K)
the product D · G = G · D is a subgroup in H(K). Now we see that G must contain d.
Otherwise, dG would be a 2-cogroup in H(K) and its preimage q−1(dG) would be a 2-
cogroup in X that contains the 2-cogroup K as a proper subset, which is impossible as
K is a maximal 2-cogroup in X.

Therefore each non-trivial subgroup of H(K) contains d. This implies that each ele-
ment x ∈ H(K) has finite order which is a power of 2, witnessing that H(K) is a 2-group
with a single element of order 2.

9. Twin-generated topologies on groups

In this section we study so-called twin-generated topologies on groups. The information
obtained in this section will be used in Section 20 to study the topological structure of
maximal subgroups of the minimal ideal of the superextension λ(X).

Given a twin subset A of a group X consider the topology τA on X generated by
the subbase consisting of the right shifts Ax, x ∈ X. In the following proposition by the
weight of a topological space we understand the smallest cardinality of a subbase of its
topology.

Proposition 9.1.

(1) The topology τA turns X into a right-topological group.
(2) If Ax = xA for all x ∈ Fix−(A), then the topology τA is zero-dimensional.
(3) The topology τA is T1 if and only if the intersection

⋂
x∈AAx

−1 is a singleton.
(4) The weight of the space (X, τA) does not exceed the index of the subgroup Fix(A−1)

in X.

Proof. 1. It is clear that the topology τA is right-invariant.
2. If Ax = xA for all x ∈ Fix−(A), then the set X \ A is open in the topology τA

because X \ A = xA = Ax for any x ∈ Fix−(A). Consequently, A is an open-and-closed
subbasic set. Now we see that the space (X, τA) has a base consisting of open-and-closed
subsets, which means that it is zero-dimensional.

3. If the topology τA is T1, then the intersection
⋂
a∈AAa

−1 of all open neighborhoods
of the neutral element e of X consists of the single point e. Assuming conversely that⋂
a∈AAa

−1 = {e}, for any two distinct points x, y ∈ X we can find a shift Aa−1, a ∈ A,
that contains e but not yx−1. Then the shift Aa−1x is an open subset of (X, τ) that
contains x but not y, witnessing that the space (X, τA) is T1.

4. To estimate the weight of the space (X, τA), choose a subset S ⊂ X meeting each
coset xFix(A−1), x ∈ X, in a single point (here Fix(A−1) = {x ∈ X : xA−1 = A−1}).
Then the set S−1 meets each coset Fix(A)x, x ∈ X, in a single point. It is easy to see that
the family {Ax : x ∈ S−1} forms a subbase of the topology of τ and hence the weight of
(X, τ) does not exceed |X/Fix(A−1)|.
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Definition 9.2. A topology τ on a group X will be called twin-generated if τ is equal
to the topology τA generated by some twin subset A ⊂ X, i.e., τ is generated by the
subbase {Ax : x ∈ X}.

Because of Theorem 8.3, we shall be especially interested in twin-generated topologies
on the quasicyclic group C2∞ and the infinite quaternion group Q2∞ . First we consider
some examples.

Example 9.3. In the circle T = {z ∈ C : |z| = 1} consider the twin subset Cx = {eiϕ :
0 ≤ ϕ < π}.

(1) For each z ∈ T \ C2∞ the twin set C2∞ ∩ zCx generates the Euclidean topology
on C2∞ .

(2) For each z ∈ C2∞ the twin set C2∞ ∩zCx generates the Sorgenfrey topology on C2∞ .
This topology turns C2∞ into a paratopological group with discontinuous inversion.

A similar situation holds for the group Q2∞ . Its closure in the algebra H of quaternions
coincides with the multiplicative subgroup T ∪ Tj of H, where j ∈ Q8 \ C is one of non-
complex quaternion units.

Example 9.4. In the group T ∪ Tj ⊂ H consider the twin subset Qx = Cx ∪ Cx j.

(1) For each z ∈ T \ C2∞ the twin set Q2∞ ∩ zQx generates the Euclidean topology
on Q2∞ .

(2) For each z ∈ C2∞ the twin set Q2∞∩zQx generates the Sorgenfrey topology on Q2∞ .
This topology turns Q2∞ into a right-topological group with discontinuous inverse
and discontinuous left shifts lx : Q2∞ → Q2∞ for x ∈ Q2∞ \ C2∞ .

In the following proposition we denote by τE the Euclidean topology on C2∞ .

Theorem 9.5. Each metrizable right-invariant topology τ ⊃ τE on the group C2∞ (or
Q2∞) is twin-generated.

Proof. First we consider the case of the group C2∞ . Let

E0 = C2∞ ∩ {eiϕ : −π/3 < ϕ < 2π/3}

be the twin subset generating the Euclidean topology τE on C2∞ and put

En = C2∞ ∩ {eiϕ : |ϕ| < 3−n−1π} for n ≥ 1.

For every n ∈ N let ϕn =
∑n
k=1 π/4

n and observe that ϕ∞ =
∑∞
k=1 π/4

n = π/3.
Let τ ⊃ τE be any metrizable right-invariant topology on C2∞ . The metrizable space

(C2∞ , τ) is countable and hence zero-dimensional. Since τ ⊃ τE , there exists a neighbor-
hood base {Un}∞n=1 ⊂ τ at the unit 1 such that each set Un is closed and open in τ and
Un ⊂ En for all n ∈ N.

The interested reader can check that the twin subset

A =
(
E0 \

∞⋃
n=1

eiϕnEn

)
∪
∞⋃
n=1

eiϕnUn ∪
∞⋃
n=1

(ei(π+ϕn)En \ Un)

generates the topology τ .
Next, assume that τ ⊃ τE is a right-invariant topology on the group Q2∞ . This group

can be written as Q2∞ = C2∞ ∪ C2∞j, where j ∈ Q8 \ C is a non-complex quaternion
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unit. Since C2∞ ∈ τE ⊂ τ , the subgroup C2∞ is open in Q2∞ . By the preceding item,
the topology τ ∩ P(C2∞) on the group C2∞ is generated by a twin set A ⊂ C2∞ \ {eiϕ :
ϕ ∈ (2π/3, π) ∪ (4π/3, 5π/3)}. A simple geometric argument shows that the topology τ
is generated by the twin subset A ∪Aj of Q2∞ .

Problem 9.6. Are all metrizable right-invariant topologies on C2∞ and Q2∞ twin-gener-
ated?

10. The characteristic group H(A) of a twin subset A

In this section, given a twin subset A ∈ T of a group X we introduce a twin-generated
topology on the characteristic group H(K) of the 2-cogroup K = Fix−(A).

Consider the intersection B = A ∩ Stab(K) = B · KK and the image A′ = qA(B)
of the set B under the quotient homomorphism qA : Stab(K)→ H(K) = Stab(K)/KK.
We claim that A′ is a twin subset of H(K).

Indeed, for every x ∈ Fix−(A) = K ⊂ Stab(K) we get X \A = xA, and consequently
Stab(K) \B = xB and H(A) \A′ = zA′ where z ∈ qA(x).

Now it is legal to endow the group H(K) with the topology τA′ generated by the twin
subset A′. This topology is generated by the subbase {A′x : x ∈ H(K)}. By Proposi-
tion 9.1 the topology τA′ turns the characteristic group H(K) into a right-topological
group, which will be called the characteristic group of A and will be denoted by H(A).
By Proposition 9.1, the characteristic group H(A) is a T1-space and its weight does not
exceed the cardinality of H(A).

The reader should be conscious of the fact that for two twin subsets A,B ∈ T with
Fix−(A) = Fix−(B) the characteristic group H(A) and H(B) are algebraically isomorphic
but topologically they can be distinct: see Examples 9.3 and 9.4.

11. Characterizing functions that belong to EndIλ(F)

In this section for a twinic ideal I on a group X and a left-invariant subfamily F ⊂ T̂ we
characterize functions f : F → P(X) that belong to the space EndIλ(F). We recall that
EndIλ(F) is the projection of EndIλ(P(X)) onto the face P(X)F.

Theorem 11.1. For a left-invariant twinic ideal I on a group X and a left-invariant
subfamily F ⊂ T a function ϕ : F → P(X) belongs to the space EndIλ(F) if and only if ϕ
is equivariant, I-saturated, and Fix−(A) ⊂ Fix−(ϕ(A)) for all A ∈ F.

Proof. To prove the “only if” part, take any function ϕ ∈ EndIλ(F) and find a function ψ ∈
EndIλ(P(X)) such that ϕ = ψ|F. By Theorem 4.8, the function ψ is equivariant, monotone,
symmetric, and I-saturated. Consequently, its restriction ϕ = ψ|F is equivariant and I-
saturated. Now fix any subset A ∈ F and take any point x ∈ Fix−(A). The left-invariance
of F guarantees that X \A = xA ∈ F, which means that the family F is symmetric.

Applying the equivariant symmetric function ψ to the equality xA = X \A, we get
xϕ(A) = xψ(A) = ψ(xA) = ψ(X \A) = X \ ψ(A) = X \ ϕ(A)

and thus x ∈ Fix−(ϕ(A)) and Fix−(A) ⊂ Fix−(ϕ(A)).
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To prove the “if” part, fix any equivariant I-saturated function ϕ : F → P(X) such
that Fix−(A) ⊂ Fix−(ϕ(A)). In order to apply Theorem 4.8, we need to extend the
function ϕ to some symmetric I-saturated family. This can be done as follows.

Consider the I-saturation ¯̄FI =
⋃
A∈F

¯̄AI of F. Next, extend the function ϕ to the
function ϕ̄ : ¯̄F→ F assigning to each set B ∈ ¯̄FI the set ϕ(A) where A ∈ F∩ ¯̄BI . Since ϕ
is I-saturated, the extension ϕ̄ of ϕ is well-defined and I-saturated. The equivariance of
ϕ implies the equivariance of its extension ϕ̄.

Let us check that the function ϕ̄ : ¯̄FI → F is symmetric and monotone.
To see that ϕ̄ is symmetric, take any set B ∈ ¯̄FI and find a set A ∈ F ∩ ¯̄BI . Fix

any point x ∈ Fix−(A). By our hypothesis x ∈ Fix−(A) ⊂ Fix−(ϕ(A)). It follows from
A =I B that X \A =I X \B and hence

ϕ̄(X \B) = ϕ(X \A) = ϕ(xA) = xϕ(A) = X \ ϕ(A) = X \ ϕ̄(B),

which means that the function ϕ̄ is symmetric.
The monotonicity of ϕ̄ will follow as soon as we check that ϕ(A) = ϕ(B) for any

sets A,B ∈ F with A ⊂I B. Pick points a ∈ Fix−(A), b ∈ Fix−(B). Since the ideal I is
twinic, the chain of I-inclusions bB = X \B ⊂I X \A = aA ⊂I aB implies the chain of
I-equalities bB =I X \B =I X \A = aA =I aB, which yields A =I B and ϕ(A) = ϕ(B)
as ϕ is I-saturated.

Therefore ϕ̄ : ¯̄FI → F is a left-invariant symmetric monotone I-saturated function
defined on a I-saturated left-invariant symmetric family ¯̄FI . By Theorem 4.8, ϕ̄ belongs
to EndIλ(¯̄FI) and then its restriction ϕ = ϕ̄|F belongs to EndIλ(F).

Let us recall that T̂ = {A ⊂ X : Fix−(A) ∈ K̂}.

Corollary 11.2. For a left-invariant twinic ideal I on a group X the space EndIλ(T̂)
consists of all equivariant I-saturated functions ϕ : T̂ → T̂ such that Fix−(ϕ(A)) =
Fix−(A) for all A ∈ T̂.

A similar characterization holds for functions that belong to the space EndIλ(TK) for
K ∈ K̂ (let us observe that Theorem 4.8 is not applicable to the family TK because it is
not left-invariant). A function ϕ : TK → TK is Stab(K)-equivariant if ϕ(xA) = xϕ(A)
for all A ∈ TK and x ∈ Stab(K).

Proposition 11.3. For any maximal 2-cogroup K ⊂ X and a left-invariant twinic ideal
I on a group X a function ϕ : TK → TK belongs to the space EndIλ(TK) if and only if
ϕ is Stab(K)-equivariant and I-saturated.

Proof. The “only if” part follows from Theorem 4.8. To prove the “if part”, assume that
a function ϕ : TK → TK is Stab(K)-invariant and I-saturated. For any A ∈ TK and
x ∈ K = Fix−(A) = Fix−(ϕ(A)) we get ϕ(X \ A) = ϕ(xA) = xϕ(A) = X \ ϕ(A), which
means that the function ϕ is symmetric.

Now consider the families

Lϕ = {x−1A : A ∈ F, x ∈ ϕ(A)} and ¯̄LIϕ =
⋃

A∈Lϕ

¯̄AI .
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We claim that the family ¯̄LIϕ is linked. Assuming the opposite, we could find two sets
A,B ∈ F and two points x ∈ ϕ(A) and y ∈ ϕ(B) such that x−1A ∩ y−1B ∈ I. Then
yx−1A ⊂I X \B. Let us show that the point c = yx−1 belongs to the subgroup Stab(K)
of X. Given any point z ∈ K, we need to prove that c−1zc ∈ K. Taking into account
that z ∈ K = Fix−(B) = Fix−(A), we see that cA ⊂I X \B implies that

cA ⊂I X \B = zB ⊂I zc(X \A) = zczA.

Since the ideal I is twinic, we get cA =I X \ B =I zczA, which implies c−1zcz ∈
I-Fix(A). The maximality of the 2-cogroup K = Fix−(A) ⊂ I-Fix−(A) guarantees that
I-Fix−(A) = K and I-Fix(A) = I-Fix−(A) · I-Fix−(A) = KK. Therefore c−1zcz ∈ KK
and c−1zc ∈ KKz−1 = K. Now we see that yx−1 = c ∈ Stab(K). So it is legitimate to
apply the Stab(K)-invariant I-saturated function ϕ to the I-equality yx−1A =I X \ B
and obtain yx−1ϕ(A) = ϕ(X \B) = X \ ϕ(B). Then x−1ϕ(A) ⊂ X \ y−1ϕ(B), which is
not possible because the neutral element e of the group X belongs to x−1ϕ(A)∩y−1ϕ(B).
Further we continue as in the proof of Theorem 4.8.

12. The H(K)-act TK of a maximal 2-cogroup K

In this section, given a maximal 2-cogroup K in a group X we study the structure of the
subspace

TK = {A ∈ P(X) : Fix−(A) = K} ⊂ P(X)

of the compact Hausdorff space P(X). The latter space is naturally homeomorphic to
the Cantor discontinuum 2X where the ordinal 2 = {0, 1} is endowed with the discrete
topology.

Proposition 12.1. For any 2-cogroup K ⊂ X the subspace TK of P(X) is homeomor-
phic to the Cantor discontinuum 2X/K

±
where X/K± = {K±x : x ∈ X}.

Proof. Choose any subset S ⊂ X that meets each coset K±x, x ∈ X, in a single point,
and consider the bijective function Ψ : P(S) → TK assigning to each subset A ⊂ S

the twin set TA = KKA ∪ K(S \ A). Let us show that the function Ψ is continuous.
The subbase of the topology of TK consists of the sets 〈x〉+ = {B ∈ TK : x ∈ B}
and 〈x〉− = {B ∈ TK : x /∈ B} where x ∈ X. Observe that for every z ∈ K we get
〈x〉− = {B ∈ TK : x ∈ X \B = zB} = 〈z−1x〉+, which means that the sets 〈x〉+, x ∈ X,
form a subbase of the topology of TK .

Now the continuity of the map Ψ will follow as soon as we check that for every
x ∈ X the set Ψ−1(〈x〉+) = {A ∈ P(S) : x ∈ TA} is open in P(S). Fix any subset
A ∈ Ψ−1(〈x〉+) and let s be the unique point of the intersection S ∩K±x. Consider the
open neighborhood O(A) = {A′ ∈ P(S) : A′ ∩{s} = A∩{s}} of A in the space P(S). We
claim that O(A) ⊂ Ψ−1(〈x〉+). Fix any A′ ∈ O(A) and consider two cases:

(i) If s ∈ A, then s ∈ A′ and x ∈ TA ∩K±s = KKs ⊂ TA′ .
(ii) If s ∈ S \A, then s ∈ S \A′ and x ∈ TA ∩K±s = Ks ⊂ K(S \A′) ⊂ TA′ .
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In both cases Ψ(A′) = TA′ ∈ 〈x〉+. Now we see that Ψ : P(S)→ TK , being a continuous
bijective map defined on the compact Hausdorff space P(S), is a homeomorphism. It
remains to observe that P(S) is homeomorphic to 2X/K

±
.

Let us observe that in general the subfamily TK ⊂ P(X) is not left-invariant. Indeed,
for any A ∈ TK and x ∈ X the shift xA belongs to TK if and only if K = Fix−(xA) =
xFix−(A)x−1 = xKx−1 if and only if x ∈ Stab(K). Thus the family TK can be considered
as an act endowed with the left action of the group Stab(K).

For any twin set A ∈ TK its stabilizer Fix(A) = {x ∈ X : xA = A} is equal to
Fix−(A) ·Fix−(A) = KK and hence is a normal subgroup of Stab(K). This implies that
the characteristic group H(K) = Stab(K)/KK acts freely on the space TK . Therefore,
we can (and will) consider the space TK as a free H(K)-act. For each set A ∈ TK we
denote by

bAc = [A] ∩ TK = {xA : x ∈ Stab(K)} = {hA : h ∈ H(K)}

the orbit of A in TK and by [TK ] = {bAc : A ∈ TK} the orbit space of the H(K)-act TK ,
endowed with the quotient topology. By Theorem 3.1, the H(K)-act TK is isomorphic to
[TK ]×H(K). In some cases the isomorphism between the H(K)-acts TK and [TK ]×H(K)
is topological.

Proposition 12.2. The orbit space [TK ] is a T1-space if and only if the characteristic
group H(K) is finite. In this case [TK ] is a compact Hausdorff space and the orbit map
q : TK → [TK ] has a continuous section s : [TK ] → TK , which implies that TK is
homeomorphic to the product [TK ]×H(K) where the (finite) group H(K) is endowed with
the discrete topology.

Proof. By Theorem 8.3, the characteristic group H(K) is at most countable. Since TK is
a free H(K)-act, each orbit bAc, A ∈ TK , has cardinality |bAc| = |H(K)| and hence is
at most countable. Note that the orbit bAc admits a transitive action of the group H(K)
and hence is topologically homogeneous.

If [TK ] is a T1-space, then each orbit bAc, A ∈ TK , is closed in the compact Hausdorff
space TK . Now the Baire theorem implies that bAc has an isolated point and is discrete
(being topologically homogeneous). Taking into account that bAc is compact and discrete,
we conclude that it is finite. Consequently, |H(K)| = |bAc| < ℵ0.

Now assume that the characteristic group H(K) is finite. Let q : TK → [TK ] denote
the orbit map. To show that the orbit space [TK ] is Hausdorff, pick two distinct orbits
bAc and bBc. Since H(K) is finite and xA 6= yB for any x, y ∈ H(K), we can find two
neighborhoods O(A) and O(B) of A,B in TK such that xO(A) ∩ yO(B) = ∅ for all
x, y ∈ H(K). Then O(bAc) =

⋃
x∈H(K) xO(A) and O(bBc) =

⋃
y∈H(K) yO(B) are two

disjoint open H(K)-invariant subsets in TK . Their images q(O(bAc)) and q(O(bBc)) are
disjoint open neighborhoods of bAc, bBc in [TK ], which means that the orbit space [TK ]
is Hausdorff. This space is compact and zero-dimensional as the image of the compact
zero-dimensional space TK under the open continuous map q : TK → [TK ].

Using the zero-dimensionality of [TK ] and the finiteness of H(K) it is easy to construct
a continuous section s : [TK ] → TK of the map q and prove that TK is homeomorphic
to H(K)× [TK ].
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Let us recall that a subfamily F ⊂ P(X) is λ-invariant if f(F) ⊂ F for any equivariant
symmetric monotone function f : P(X) → P(X). For a λ-invariant subfamily F ⊂ P(X)
the projection

Endλ(F) = {f |F : f ∈ Endλ(P(X))}

is a subsemigroup of the semigroup FF of all self-mappings of F.

Proposition 12.3. For any maximal 2-cogroup K ⊂ X the family TK is λ-invariant
and hence Endλ(TK) is a compact right-topological semigroup.

Proof. Given any function f ∈ Endλ(P(X)) and a set A ∈ TK we need to show that
f(A) ∈ TK . By Corollary 4.4, the function f is equivariant and symmetric. Then for any
x ∈ K = Fix−(A) we get xA = X \A and hence xϕ(A) = ϕ(xA) = ϕ(X \A) = X \ϕ(A),
which means that x ∈ Fix−(ϕ(A)) and K ⊂ Fix−(ϕ(A)). The maximality of the 2-
cogroup K guarantees that K = Fix−(ϕ(A)) and thus ϕ(A) ∈ TK . So, the family TK is
λ-invariant.

13. I-incomparable and I-independent families

Let I be a left-invariant ideal on a group X. A family F ⊂ P(X) is called

• I-incomparable if ∀A,B ∈ F (A ⊂I B ⇒ A =I B);
• I-independent if ∀A,B ∈ F (A =I B ⇒ A = B).

Proposition 13.1. A left-invariant ideal I on a group X is twinic if and only if the
family pTI of I-pretwin sets is I-incomparable.

Proof. First assume that the family pTI is I-incomparable. To show that the ideal I
is twinic, take any subset A ⊂ X with xA ⊂I X \ A ⊂I yA for some x, y ∈ X. Then
A ∈ pTI and also xA, yA ∈ pTI . Since xA ⊂I yA, the I-incomparability of the family
pTI implies that xA =I yA and then xA =I X \ A =I yA, which means that the ideal
I is twinic.

Now assume conversely that I is twinic and take two I-pretwin sets A ⊂I B. Since
the sets A,B are I-pretwin, there are elements x, y ∈ X such that xB ⊂I X \ B and
X \A ⊂I yA. Taking into account that

xB ⊂I X \B ⊂I X \A ⊂I yA ⊂I yB,

and I is twinic, we conclude that X \B =I X \A and hence A =I B.

Corollary 13.2. For each twinic left-invariant ideal I on a group X the family T of
twin sets is I-incomparable.

Proposition 13.3. For a left-invariant ideal I on a group X the family T̂ is I-independ-
ent if and only if I ∩ K̂ = ∅.

Proof. To prove the “only if” part, assume that the ideal I contains some maximal 2-
cogroup K ∈ K̂. Since I is left-invariant, for each x ∈ K, KK = xK ∈ I and hence
K± = K ∪KK ∈ I.
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Choose a subset S ⊂ X that contains the neutral element e of the group X and meets
each coset K±x, x ∈ X, in a single point. Then A = KKS and B = KK(S \ {e}) ∪K
are two distinct twin sets with K ⊂ Fix−(A) ∩ Fix−(B). By the maximality of K, K =
Fix−(A) = Fix−(B) and hence A,B ∈ T̂. Since the symmetric difference A 4 B =
KK ∪ K = K± is in I, we get A =I B, which means that the family T̂ fails to be
I-independent.

To prove the “if” part, assume that the family T̂ is not I-independent and find two
subsets A,B ∈ T̂ such that A 6= B but A =I B. The 2-cogroup Fix−(A) of A is maximal
and hence coincides with the 2-cogroup I-Fix−(A) ⊃ Fix−(A). For the same reason,
Fix−(B) = I-Fix−(B). The I-equality A =I B implies I-Fix−(A) = I-Fix−(B). Denote
the maximal 2-cogroup Fix−(A) = I-Fix−(A) = I-Fix−(B) = Fix−(B) by K. Then
Fix(A) = Fix−(A) · Fix−(A) = KK = Fix(B) and hence A = KKA and B = KKB.
Now we see that the symmetric difference A 4 B = KKA 4 KKB contains a subset
KKx for some x ∈ X. Then for any y ∈ K, we get Kyx = KKx ⊂ A4B ∈ I and hence
Kyx ∈ I. Finally observe that the set K ′ = x−1y−1Kyx is a maximal 2-cogroup and by
the left-invariance of the ideal I, K ′ = x−1y−1Kyx ∈ I. So, K̂ ∩ I 6= ∅.

Proposition 13.4. A subfamily F ⊂ P(X) is I-independent for any left-invariant ideal
I on X if for each set A ∈ F the subgroup Fix(A) has finite index in X.

Proof. Assume that A,B ∈ F are two subsets with A =I B for some left-invariant
ideal I. Since the subgroups Fix(A) and Fix(B) have finite indices in X, their intersection
Fix(A) ∩ Fix(B) also has finite index in X and contains a normal subgroup H ⊂ X of
finite index in X (see [14, I.Ex.9(a)]). Then X = FH for some finite subset F ⊂ X.
Assuming that A 6= B, we can find a point x ∈ A4 B and conclude that xH = Hx ⊂
HA4 HB = A4 B ∈ I and X = FH ∈ I by the left-invariance of the ideal I. This
contradiction completes the proof.

Proposition 13.5. Each minimal K̂-covering subfamily T̃ ⊂ T̂ is I-independent.

Proof. Fix any two sets A,B ∈ T̃ with A =I B. Repeating the argument from the proof of
Proposition 13.3, we can prove that I-Fix−(A) = Fix−(A) = I-Fix−(B) = Fix−(B) = K

for some maximal 2-cogroup K ∈ K̂. Since the family T̃ 3 A,B is minimal K̂-covering,
the sets A,B lie in the same orbit and hence A = xB for some x ∈ X. It follows from
B =I A = xB that x ∈ I-Fix(B) = Fix(B) and thus A = xB = B.

14. The endomorphism monoid End(TK) of the H(K)-act TK

For any maximal 2-cogroup K in a group X the compact right-topological semigroup
Endλ(TK) is a subsemigroup of the endomorphism monoid End(TK) of the free H(K)-act
TK . The endomorphism monoid End(TK) is the space of all (not necessarily continuous)
functions f : TK → TK that are equivariant in the sense that f(xA) = xf(A) for all
A ∈ TK and x ∈ Stab(K). It is easy to check that End(TK) is a closed subsemigroup of
the compact Hausdorff right-topological semigroup TTK

K of all self-maps of the compact
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Hausdorff space TK . So, End(TK) is a compact Hausdorff right-topological semigroup
that contains Endλ(TK) as a closed subsemigroup.

If I is a left-invariant ideal on the group X, then the left ideal EndIλ(TK) of Endλ(TK)
lies in the left ideal EndI(TK) ⊂ End(TK) consisting of all equivariant functions f :
TK → TK which are I-saturated in the sense that f(A) = f(B) for all A,B ∈ TK with
A =I B.

In the following theorem we describe some algebraic and topological properties of the
endomorphism monoid End(TK).

Theorem 14.1. Let K be a maximal 2-cogroup in a group X. Then:

(1) EndI(TK) = EndIλ(TK) ⊂ Endλ(TK) ⊂ End(TK) for any twinic ideal I on X;
(2) EndI(TK) = End(TK) for any left-invariant ideal I on X such that I ∩ K̂ = ∅;
(3) the semigroup End(TK) is algebraically isomorphic to the wreath product

H(K) o [TK ][TK ];
(4) for each idempotent f ∈ End(TK) the maximal subgroup Hf ⊂ End(TK) containing

f is isomorphic to H(K) o S[f(TK)];
(5) the minimal ideal K(End(TK)) = {f ∈ End(TK) : ∀A ∈ f(TK), f(TK) ⊂ bAc};
(6) each minimal left ideal of the semigroup End(TK) is algebraically isomorphic to

H(K)× [TK ] where the orbit space [TK ] is endowed with the left zero multiplication;
(7) each maximal subgroup of the minimal ideal K(End(TK)) is algebraically isomorphic

to H(K);
(8) each minimal left ideal of the semigroup End(TK) is homeomorphic to TK ;
(9) for each minimal idempotent f ∈ K(End(TK)) the maximal subgroup

Hf = f ◦ End(TK) ◦ f is topologically isomorphic to the twin-generated group H(A)
where A ∈ f(TK).

Proof. 1, 2. The first statement follows from Proposition 11.3 and the second one from
Proposition 13.3.

3–7. Since TK is a free H(K)-act, the (algebraic) statements (3)–(7) follow from
Theorem 3.1.

8. Given a minimal idempotent f ∈ End(TK), we need to prove that the minimal left
ideal Lf = End(TK) ◦ f is homeomorphic to TK ⊂ P(X). For this fix any set B ∈ f(TK)
and observe that f(TK) ⊂ bBc according to the statement (5). We claim that the map

Ψ : Lf → TK , Ψ : g 7→ g(B),

is a homeomorphism. The definition of the topology (of pointwise convergence) on
End(TK) implies that the map Ψ is continuous.

Next, we show that the map Ψ is bijective. To show that Ψ is injective, fix any
two distinct functions g, h ∈ Lf and find a set A ∈ TK such that g(A) 6= h(A). Since
f(TK) ⊂ bBc, there is x ∈ X such that f(A) = xB. Then

xg(B) = g(xB) = gf(A) = g(A) 6= h(A) = hf(A) = h(xB) = xh(B)

and hence Ψ(g) = g(B) 6= h(B) = Ψ(h). To show that Ψ is surjective, take any subset
C ∈ TK and choose any equivariant map ϕ : [B] → [C] such that ϕ(B) = C. Then
the function g = ϕ ◦ f belongs to Lf and has image Ψ(g) = g(B) = C, witnessing
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that Ψ is surjective. Since Lf is compact, the bijective continuous map Ψ : Lf → TK
is a homeomorphism. By Proposition 12.1, the space TK is homeomorphic to the cube
2X/K

±
.

9. Given a minimal idempotent f ∈ End(TK) we shall show that the maximal sub-
group Hf = f ◦End(TK) ◦ f is topologically isomorphic to the characteristic group H(A)
of any twin set A ∈ f(TK).

We recall that H(A) is the characteristic group H(K) of the 2-cogroup K = Fix−(A),
endowed with the topology generated by the twin set q(A∩Stab(K)) where q : Stab(K)→
H(K) = Stab(K)/KK is the quotient homomorphism.

We define a topological isomorphism ΘA : Hf → H(A) in the following way. Since f
is a minimal idempotent, g(A) = fgf(A) ∈ f(TK) ⊂ bAc. So we can find x ∈ Stab(K)
with fgf(A) = x−1A. Now define ΘA(g) as the image q(x) = xKK = KKx of x under
the quotient homomorphism q : Stab(K)→ H(K) = H(A).

It remains to prove that ΘA : Hf → H(A) is a well-defined topological isomorphism
of right-topological groups.

First we check that ΘA is well-defined, that is, ΘA(g) = q(x) does not depend on
the choice of the point x. Indeed, for any other point y ∈ X with g(A) = y−1A we get
x−1A = y−1A and thus yx−1 ∈ Fix(A) = K · K where K = Fix−(A). Consequently,
q(x) = KKx = KKy = q(y).

Next, we prove that ΘA is a group homomorphism. Given two functions g, h ∈ Hf ,
find elements xg, xh ∈ Fix(A) such that h(A) = x−1

h A and g(A) = x−1
g A. It follows

that g ◦ h(A) = g(x−1
h A) = x−1

h g(A) = x−1
h x−1

g A = (xgxh)−1A, which implies that
ΘA(g ◦ h) = xgxhKK = ΘA(g) ·ΘA(h).

Now, we calculate the kernel of the homomorphism ΘA. Take any function g ∈ Hf
with ΘA(g) = e, which means that g(A) = fgf(A) = A. Then for every A′ ∈ TK we
can find x ∈ X with f(A′) = xA and conclude that g(A′) = fgf(A′) = fg(xA) =
xfg(A) = xfgf(A) = xA = f(A′), witnessing that g = fgf = f . This means that the
homomorphism ΘA is one-to-one.

To see that ΘA is onto, first observe that each element of the characteristic group
H(A) can be written as [y] = yKK = KKy ∈ H(K) for some y ∈ Stab(K). Given such
an element [y] ∈ H(A), consider the equivariant function s[y] : bAc → bAc, s[y] : zA 7→
zy−1A = zy−1KKA. Let us show that this function is well-defined. Indeed, for each
point u ∈ X with zA = uA, we get u−1z ∈ Fix(A) and hence yu−1zy−1 ∈ yFix(A)y−1 =
yKKy−1 = KK = Fix(A). Then yu−1zy−1A = A and hence zy−1A = uy−1A.

It follows from s[y]◦f = f◦s[y]◦f that the function s[y]◦f belongs to the maximal group
Hf . Since s[y] ◦ f(A) = s[y](A) = y−1A, the image ΘA(s[y] ◦ f) = [y]. So, ΘA(Hf ) = H(A)
and ΘA : Hf → H(A) is an algebraic isomorphism.

It remains to prove that this isomorphism is topological. Observe that for every [y] ∈
H(A) we get s[y] ◦ f(A) = s[y](A) = y−1KKA = y−1A. Consequently, x ∈ s[y] ◦ f(A) iff
x ∈ y−1A iff y ∈ Ax−1.

To see that the map ΘA : Hf → H(A) is continuous, take any subbasic open set

Ux = {[y] ∈ H(A) : y ∈ Ax−1}, x ∈ Stab(K),

in H(A) and observe that Θ−1
A (Ux) = {s[y] ◦ f : [y] ∈ Ux} = {s[y] ◦ f : y ∈ Ax−1} =
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{s[y] ◦ f : x ∈ s[y] ◦ f(A)} is a subbasic open set in H(f). To see that the inverse map
Θ−1
A : H(A)→ Hf is continuous, take any subbasic open set Vx,T = {g ∈ H(f) : x ∈ g(T )}

where x ∈ X and T ∈ TK . It follows that f(T ) = xTA for some xT ∈ X. Then

ΘA(Vx,T ) = {[y] ∈ H(A) : x ∈ s[y] ◦ f(T )} = {[y] ∈ H(A) : x ∈ s[y](xTA)}
= {[y] ∈ H(A) : x−1

T x ∈ s[y](A)} = {[y] ∈ H(A) : y ∈ Ax−1xT }

is a subbasic open set in H(A).

In the following proposition we calculate the cardinalities of the objects appearing in
Theorem 14.1. We shall say that a cardinal n ≥ 1 divides a cardinal m ≥ 1 if there is a
cardinal k such that m = k × n. The smallest such k is denoted by m/n.

Proposition 14.2. If K ∈ K̂ is a maximal 2-cogroup in a group X, then

(1) |TK | = 2|X/K
±|;

(2) |H(K)| ∈ {2k : k ∈ N} ∪ {ℵ0} and |H(K)| divides the index |X/K| of K in X;
(3) |[TK ]| = |TK |/|H(K)| = 2|X/K

±|/|H(K)|;
(4) |H(K)| = |X/K| if the 2-cogroup K is normal in X.

Proof. Choose any subset S ⊂ X that meets each coset K±x, x ∈ X, of the group
K± = K ∪KK in a single point. It is clear that |S| = |X/K±|.

1. The equality |TK | = 2|X/K
±| follows from Proposition 12.1.

2. By Theorem 8.3, |H(K)| ∈ {2n : n ∈ N} ∪ {ℵ0}. Since Stab(K) is a subgroup of X,
|H(K)| = |Stab(K)/KK| divides |X/KK| = |X/K|.

3. Since TK is a free H(K)-act, |[TK ]| = |TK |/|H(K)|. This equality is clear if H(K)
is finite. If H(K) is infinite, then |H(K)| = ℵ0 and the index |X/K±| of the group K± in
X is infinite. In this case |TK | = 2|X/K

±| > ℵ0 and thus |[TK ]| = 2|X/K
±|/ℵ0 = 2|X/K

±|.
4. If the 2-cogroup K is normal in X, then Stab(K) = X and H(K) = X/KK. In

this case |H(K)| = |X/KK| = |X/K|.

By Theorem 14.1(6), for any maximal 2-cogroup K ⊂ X each minimal left ideal of the
semigroup End(TK) is algebraically isomorphic to H(K)× [TK ]. It turns out that in some
cases this isomorphism is topological. We recall that the orbit space [TK ] = TK/H(K) is
endowed with the quotient topology. By Proposition 12.2, the orbit space [TK ] is compact
and Hausdorff if and only if the characteristic group H(K) is finite.

Since TK is a compact Hausdorff space, the Tikhonov power TTK

K is a compact Haus-
dorff right topological semigroup (endowed with the operation of composition of func-
tions). This semigroup contains the subsemigroup C(TK ,TK) consisting of all continuous
maps f : TK → TK . It is easy to check that the semigroup C(TK ,TK) is semitopological.

We recall that a right-topological semigroup S is called semitopological if the semi-
group operation S × S → S is separately continuous. If the semigroup operation is
continuous, then S is called a topological semigroup.

Theorem 14.3. Let K be a maximal 2-cogroup in a group X. For a minimal idempotent
f in the semigroup End(TK) and its minimal left ideal Lf = End(TK) ◦ f the following
conditions are equivalent:
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(1) Lf is a topological semigroup;
(2) Lf is topologically isomorphic to the topological semigroup [TK ] × H(K) where the

orbit space [TK ] is endowed with the left zero multiplication;
(3) Lf is a semitopological semigroup;
(4) the left shift lf : Lf → Lf , lf : g 7→ f ◦ g, is continuous;
(5) f is continuous;
(6) Lf ⊂ C(TK ,TK);
(7) H(K) is finite and the idempotent band E(Lf ) of Lf is compact.

Proof. The implications (2)⇒(1)⇒(3)⇒(4) are trivial.
(4)⇒(5) Assume that the left shift lf : Lf → Lf is continuous. We need to check that

f is continuous. First we show that for any set B ∈ f(TK) the preimage Z = f−1(B) is
closed in TK . Assume that f−1(B) is not closed and find a point A0 ∈ Z \ Z. It follows
that the set B0 = f(A0) is not equal to B. Let ϕ : bBc → bA0c be a unique equivariant
function such that ϕ(B) = A0. Then the function g0 = ϕ ◦ f belongs to the minimal left
ideal Lf . Observe that f ◦ g0(B) = f(A0) = B0 6= B. Since the left shift lf is continuous,
for the neighborhood O(f ◦ g0) = {h ∈ Lf : h(B) 6= B} of f ◦ g0 = lf (g0) there is a
neighborhood O(g0) ⊂ Lf such that f ◦ g ⊂ O(f ◦ g0) for every g ∈ O(g0). It follows from
the equivariance of g0 = g0◦f and the definition of the topology (of pointwise convergence)
on Lf ⊂ TTK

K that the point g0(B) = A0 of TK has a neighborhood O(A0) ⊂ TK such that
each function g ∈ Lf with g(B) ∈ O(A0) belongs to the neighborhood O(g0). Since A0 is
a limit point of the set Z, there is a set A ∈ O(A0) ∩ Z. For this set find an equivariant
function g = g ◦ f such that g(B) = A. Then g ∈ O(g0) and hence f ◦ g(B) 6= B, which
contradicts g(B) = A ∈ f−1(B). This contradiction proves that all preimages f−1(B),
B ∈ f(TK), are closed in TK .

Next, we show that each orbit bAc, A ∈ TK , is discrete. Assume that some orbit bAc
is not discrete and consider its closure bAc in the compact Hausdorff space TK . The orbit
bAc has no isolated points, being non-discrete and topologically homogeneous. Fix any
B ∈ f(TK). By Theorems 3.1(2) and 8.3, |f(TK)| = |bBc| = |H(K)| ≤ ℵ0. Thus we can
write the compact space bAc as a countable union

bAc =
⋃

B∈f(TK)

f−1(B) ∩ bAc

of closed subsets. By Baire’s Theorem, for some B ∈ f(TK) the set bAc ∩ f−1(B) has
non-empty interior in bAc. Since the orbit bAc has no isolated points, the intersection
bAc ∩ f−1(B) is infinite, which is not possible as f is equivariant.

Finally, we show that for every B ∈ f(TK) the preimage f−1(B) is open in Lf .
Assuming the opposite, we can find a point A0 ∈ f−1(B) that lies in the closure of the
set TK \ f−1(B). Choose any equivariant function g0 ∈ Lf such that g0(B) = A0 and
observe that f ◦ g0(B) = B.

Since the orbit bBc of B is discrete, we can find an open neighborhood O(B) ⊂
TK of B such that O(B) ∩ bBc = {B}. This neighborhood determines a neighborhood
O(f ◦ g0) = {g ∈ Lf : g(B) ∈ O(B)} of the function f ◦ g0 in Lf ⊂ TTK

K . Since the left
shift lf : Lf → Lf is continuous, the function g0 has a neighborhood O(g0) ⊂ Lf such
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that lf (O(g0)) ⊂ O(f ◦ g0). By the definition of the topology (of pointwise convergence)
on Lf , there is a neighborhood O(g0(B)) ⊂ TK such that each function g ∈ Lf with
g(B) ∈ O(g0(B)) belongs to O(g0). By the choice of the point A0 = g0(B), there is a
set A ∈ O(g0(B)) \ f−1(B). For this set choose an equivariant function g ∈ Lf such that
g(B) = A. This function g belongs to O(g0) and thus f ◦ g ∈ O(f ◦ g0), which means that
f ◦ g(B) = B. But this contradicts g(B) = A /∈ f−1(B).

Thus for each B ∈ f(TK) the preimage f−1(B) is open in TK , which implies that the
function f : TK → TK is continuous.

(5)⇒(6) Assume that f is continuous. Then for any B ∈ TK the orbit bBc = f(TK) is
compact (as a continuous image of the compact space TK). Being a compact topologically
homogeneous space of cardinality |bBc| ≤ |H(K)| ≤ ℵ0, the orbit bBc = f(TK) is finite.
Then for each g ∈ Lf the restriction g|bBc is continuous and hence g = g◦f is continuous
as the composition of two continuous maps f and g|bBc.

(6)⇒(7) Assume that Lf ⊂ C(TK ,TK). Then f is continuous. Repeating the argu-
ment from the preceding item, we can show that the characteristic group H(K) is finite.
By the continuity of f , for every B ∈ TK the preimage f−1(B) is closed in TK . In the
following claim E(Lf ) stands for the idempotent band of the semigroup Lf .

Claim 14.4. E(Lf ) = {g ∈ Lf : f ◦ g(B) = B}.

Proof. If g ∈ Lf is an idempotent, then for the unique point C ∈ g(TK)∩ f−1(B) we get
C = g(C) and then B = f(C) = fg(C) = fgf(C) = fg(B).

Now assume conversely that g ∈ Lf with fg(B) = B. Let C = g(B) ∈ g(TK). Then
g(C) = gf(C) = gfg(B) = g(B) = C. For every A ∈ TK we can find x ∈ X such that
g(A) = xC and so gg(A) = g(xC) = xg(C) = xC = g(A), which means that g is an
idempotent.

Since the set f−1(B) ⊂ TK is closed and the evaluation map

cB : Lf → TK , cB : g 7→ g(B),

is continuous, the preimage c−1
B (f−1(B)) is closed in Lf . By Claim 14.4, this preimage is

equal to the idempotent band E(Lf ) of the semigroup Lf .
(7)⇒(2) Assume that the group H(K) is finite and the idempotent band E(Lf ) is

compact. By Proposition 12.2, the orbit space [TK ] is compact, Hausdorff and zero-
dimensional, and the quotient map q : TK → [TK ] is continuous and open.

We claim that for every B ∈ f(TK) the preimage f−1(B) ⊂ TK is compact. Since the
idempotent band E(Lf ) is compact and the evaluation map cB : Lf → TK , cB : g 7→ g(B),
is continuous, the image cB(E(Lf )) is compact. By Claim 14.4, cB(E(Lf )) ⊂ f−1(B). To
show the reverse inclusion, fix any subset A ∈ f−1(B) and choose any equivariant map
ϕ : bBc → bAc such that ϕ(B) = A. Then the map g = ϕ ◦ f belongs to Lf and is an
idempotent by Claim 14.4. Since A = g(B), we see that f−1(B) ⊂ cB(E(Lf )) and hence
f−1(B) = cB(E(Lf )) is compact.

Fix any set B ∈ f(TK). Since |f(TK)| = |bBc| = |H(K)| < ℵ0, the preimage

Z = f−1(B) = TK \
⋃

B 6=A∈bBc

f−1(A)
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is open-and-closed in TK . Since the compact space Z meets each orbit bAc, A ∈ TK ,
in a single point, the restriction q|Z : Z → [TK ], being continuous and bijective, is a
homeomorphism. So, it suffices to prove that Lf is topologically isomorphic to Z ×H(K)
where the space Z is endowed with the left zero multiplication. Define an isomorphism
Φ : Z ×H(K)→ Lf assigning to each pair (Z, x) ∈ Z ×H(K) the function gZ,x ◦ f where
gZ,x : bBc → bZc is the unique equivariant function such that gZ,x(B) = x−1Z. It is easy
to check that Φ is a topological isomorphism between Z × H(K) and Lf .

In the following proposition we prove the existence of continuous or discontinuous
minimal idempotents in the semigroup End(TK). Let us recall that for a left-invariant
ideal I on a group X we denote by EndI(TK) the left ideal in End(TK) consisting of all
equivariant I-saturated functions.

Proposition 14.5. Let I be a left-invariant ideal on a group X and assume that a
maximal 2-cogroup K ⊂ X has finite characteristic group H(K). Then the semigroup
EndI(TK) contains:

(1) a continuous minimal idempotent if Kx /∈ I for all x ∈ X;
(2) no continuous function if Kx ∈ I for all x ∈ X;
(3) no discontinuous function (which is a minimal idempotent) if (and only if) for each

A ∈ TK the set ¯̄AI ∩ TK is open in TK .

Proof. By Proposition 12.2, the orbit space [TK ] is compact, Hausdorff, and zero-dimen-
sional, and the orbit map q : TK → [TK ] has a continuous section s : [TK ]→ TK . Then
Z = s([TK ]) is a closed subset of TK that meets each orbit bAc, A ∈ TK , in a single
point. Pick any B ∈ Z and define a continuous minimal idempotent f : TK → TK letting
f(xZ) = xB for each x ∈ H(K) and Z ∈ Z.

1. Assuming that Kx /∈ I for all x ∈ X, we shall show that the function f is I-
saturated and hence belongs to EndI(TK). Given any sets A,B ∈ TK with A =I B,
we need to show that f(A) = f(B). We shall prove more: A = B. Assume that A 6= B

and pick x ∈ A4 B. Since KKA = Fix(A)A = A and KKB = Fix(B)B = B, we get
KKx ∈ A4B ∈ I and so for every y ∈ K, we get Kyx = KKx ∈ I, which contradicts
our assumption.

2. Now assume that Kx ∈ I for all x ∈ X. We shall prove that no function g ∈
EndI(TK) is continuous. For this we show that for each A ∈ TK the set ¯̄AI ∩TK is dense
in TK . Given any set C ∈ TK and a neighborhood O(C) of C in TK , we need to find
a set B ∈ O(C) such that B =I A. By the definition of the topology on TK ⊂ P(X),
there is a finite subset F ⊂ X such that O(C) ⊃ {B ∈ TK : B ∩ F = C ∩ F}. Now we
see that the set B = (A \K±F ) ∪ (K±F ∩ C) ∈ TK belongs to the neighborhood O(C)
and B =I A because A4 B ⊂ K±F ∈ I. Assuming that some I-saturated equivariant
function g : TK → TK is continuous, we conclude that the preimage g−1(f(A)) ⊃
¯̄AI ∩ TK coincides with TK , being a closed dense subset of TK . So, g is constant. Since
the action of the (non-trivial) group H(K) on TK is free, the constant map g cannot be
equivariant.

3. If for every A ∈ TK the set ¯̄AI∩TK is open in TK , then each I-saturated function is
locally constant and hence continuous. So, EndI(TK) contains no discontinuous function.
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Now assuming that for some A ∈ TK the set A = ¯̄AI ∩ TK is not open in TK , we
shall construct a discontinuous minimal idempotent f ∈ EndI(TK). Take any minimal
idempotent f ∈ EndI(TK). If f is discontinuous, we are done. So assume that f is
continuous and fix B ∈ f(TK). By Theorem 14.1(5), f(TK) = bBc is finite. So, Z =
f−1(f(B)) is open-and-closed in TK . Take any x ∈ Stab(K) \ KK and consider the
subset Z ′ = (Z \ A) ∪ xA which is not compact as A is not open in Z. Then the I-
saturated minimal idempotent g : TK → TK defined by g(xZ) = xB for x ∈ H(K) and
Z ∈ Z ′ is discontinuous (because g−1(B) = Z ′ is not closed in TK).

Corollary 14.6. For a maximal 2-cogroup K ⊂ X and a left-invariant ideal I on X

the following conditions are equivalent:

(1) each minimal left ideal of EndI(TK) is a topological semigroup;
(2) each minimal left ideal of EndI(TK) is a semitopological semigroup;
(3) for each A ∈ TK the set ¯̄AI ∩ TK is open in TK .

If the ideal I is right-invariant, then conditions (1)–(3) are equivalent to

(4) K has finite index in X;
(5) the semigroup End(TK) is finite.

Proof. The equivalence (1)⇔(2)⇔(3) follows from Theorem 14.3 and Proposition 14.5.
Now assume that the left-invariant ideal I is right-invariant.
(3)⇒(4) Assume that for each A ∈ TK the set ¯̄AI ∩TK is open in TK . Then it is also

closed in TK being the complement of the union of the open subsets ¯̄BI∩TK for B 6=I A.
By Proposition 14.5, Kx /∈ I for some x ∈ X. Since the ideal I is right-invariant, Kx /∈ I
for all x ∈ X. We claim that the set ¯̄AI ∩ TK = {A}. Assuming that ¯̄AI ∩ TK contains
a set B distinct from A, we can find a point x ∈ A4B. Since Fix(A) = KK = Fix(B),
we get KKx ⊂ KKA4KKB = A4 B ∈ I and thus for any point z ∈ K, we arrive
at the absurd conclusion Kzx = KKx ∈ I. Since the singleton ¯̄AI ∩ TK = {A} is open
in the space TK , which is homeomorphic to 2X/K

±
, the index of the group K± in X is

finite and so is the index of K in X.
The implications (4)⇒(5)⇒(1) are trivial.

15. The semigroup Endλ(TK)

In the preceding section we studied the continuity of the semigroup operation on minimal
left ideals of the semigroup End(TK). In this section we shall be interested in the conti-
nuity of the semigroup operation on the semigroup Endλ(TK) ⊂ End(TK). This will be
done in a more general context of upper subfamilies F ⊂ T. We define a family F ⊂ T to
be upper if for any twin set A ∈ F and a twin subset B ⊂ X with Fix−(A) ⊂ Fix−(B),
we have B ∈ F.

Let us remark that T̂ is an upper subfamily of T while TK is a minimal upper subfamily
of T for every K ∈ K̂.
Proposition 15.1. Each upper subfamily F ⊂ T is symmetric and λ-invariant. Conse-
quently, Endλ(F) is a compact right-topological semigroup.
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Proof. To prove that F ⊂ T is symmetric, given any set A ∈ F choose a point x ∈ Fix−(A).
By Proposition 5.4, Fix−(xA) = xFix−(A)x−1 = Fix−(A) and hence X \A = xA ∈ F.

To see that F is λ-invariant, we need to show that ϕ(F) ⊂ F for any function ϕ ∈
Endλ(P(X)). By Corollary 4.4, the function f is symmetric and left-invariant. Then for
each A ∈ F and x ∈ Fix−(A) we get xϕ(A) = ϕ(xA) = ϕ(X \ A) = X \ ϕ(A) and
hence x ∈ Fix−(ϕ(A)). Since Fix−(A) ⊂ Fix−(ϕ(A)), the set ϕ(A) belongs to F by the
definition of an upper family.

Theorem 15.2. For an upper subfamily F ⊂ T the following conditions are equivalent:

(1) Endλ(F) is a topological semigroup;
(2) Endλ(F) is a semitopological semigroup;
(3) for each twin set A ∈ F the subgroup Fix(A) has finite index in X.

Proof. (3)⇒(1) Assume that for each twin set A ∈ F the stabilizer Fix(A) has finite
index in X. To show that the semigroup operation ◦ : Endλ(F)× Endλ(F)→ Endλ(F) is
continuous, fix any two functions f, g ∈ Endλ(F) and a neighborhood O(f ◦ g) of their
composition. We should show that the functions f, g have neighborhoods O(f), O(g) ⊂
Endλ(F) such that O(f) ◦ O(g) ⊂ O(f ◦ g). We lose no generality assuming that the
neighborhood O(f ◦ g) is of subbasic form:

O(f ◦ g) = {h ∈ Endλ(F) : x ∈ h(A)}

for some x ∈ X and some twin set A ∈ F. Let B = g(A). It follows from f ◦ g ∈ O(f ◦ g)
that x ∈ f ◦ g(A) = f(B). Let O(f) = {h ∈ Endλ(F) : x ∈ h(B)}.

The definition of O(g) is a bit more complicated. By our hypothesis, the stabilizer
Fix(A) has finite index in X. Let S ⊂ X be a (finite) subset meeting each coset Fix(A) z,
z ∈ X, in a single point. Consider the following open neighborhood of g in Endλ(F):

O(g) = {g′ ∈ Endλ(F) : ∀s ∈ S (s ∈ B ⇔ s ∈ g′(A))}.

We claim that O(f) ◦ O(g) ⊂ O(f ◦ g). Indeed, take any functions f ′ ∈ O(f) and g′ ∈
O(g). By Theorem 11.1, Fix−(A) ⊂ Fix−(g′(A)) and hence Fix(A) ⊂ Fix(g′(A)). Then
g′(A) = Fix(A) · (S ∩ g′(A)) = Fix(A) · (S ∩ B) = B and thus x ∈ f ′(B) = f ′ ◦ g′(A),
witnessing that f ′ ◦ g′ ∈ O(f ◦ g).

The implication (1)⇒(2) is trivial.
(2)⇒(3) Assume that X contains a twin subset T0 ∈ F whose stabilizer Fix(T0) has

infinite index in X. Then the subgroup H = Fix±(T0) also has infinite index in X. By
Theorem 15.5 of [18], X 6= FHF for any finite subset F ⊂ X.

Lemma 15.3. There are countable sets A,B ⊂ X such that

(1) xB ∩ yB = ∅ for any distinct x, y ∈ A;
(2) |AB ∩Hz| ≤ 1 for all z ∈ X;
(3) e ∈ A, AB ∩H = ∅.

Proof. Let a0 = e and B<0 = {e}. Inductively we shall construct sequences A = {an :
n ∈ ω} and B = {bn : n ∈ ω} such that

• bn /∈ A−1
≤nHA≤nB<n where A≤n = {ai : i ≤ n} and B<n = {e} ∪ {bi : i < n};

• an+1 /∈ HA≤nB≤nB−1
≤n.
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Since X 6= FHF for any finite subset F ⊂ X, the choice of the points bn and an+1 at
the n-th step is always possible. It is easy to check that the sets A,B satisfy conditions
(1)–(3) of the lemma.

The properties (2), (3) of the set AB allows us to enlarge AB to a subset S that
contains the neutral element of X and meets each coset Hz, z ∈ X, in a single point.
Observe that each subset E ⊂ S generates a twin subset

TE = Fix(T0) · E ∪ Fix−(T0) · (S \ E)

of X such that Fix−(T0) ⊂ Fix−(TE) and hence TE ∈ F.

Lemma 15.4. There is a free ultrafilter B on X and a family of subsets {Ua : a ∈ A} ⊂ B
such that

(1)
⋃
a∈A Ua ⊂ B;

(2) the set U =
⋃
a∈A aUa has the property B 6⊂ x−1U ∪ y−1U for every x, y ∈ A;

(3) for every V ∈ B the set {a ∈ A : aV ⊂ U} is finite.

Proof. Let A = {an : n ∈ ω} and B be the sets constructed in Lemma 15.3. For every
n ∈ ω put A≤n = {ai : i ≤ n}. Let B<0 = {e} and inductively, for every n ∈ ω choose an
element bn ∈ B so that

bn /∈ A−1
≤n
A≤nB<n where B<n = {bi : i < n}.

For every n ∈ ω let B≥n = {bi : i ≥ n}. Let also B2ω = {b2n : n ∈ ω}.
Let us show that for any distinct numbers n,m the intersection anB≥n ∩ amB≥m is

empty. Otherwise there would exist two numbers i ≥ n and j ≥ m such that anbi = ambj .
It follows from an 6= am that i 6= j. We lose no generality assuming that j > i. Then
anbi = ambj implies that

bj = a−1
m anbi ∈ A−1

≤jA≤jB<j ,

which contradicts the choice of bj .
Let B ∈ β(X) be any free ultrafilter such that B2ω ∈ B and B is not a P-point in

β(X) \X. To get such an ultrafilter, take B to be a cluster point of any countable subset
of β(B2ω) \ B2ω ⊂ β(X). Using the fact that B fails to be a P-point, we can take a
decreasing sequence of subsets {Vn : n ∈ ω} ⊂ B of B2ω having no pseudointersection
in B. The latter means that for every V ∈ B the almost inclusion V ⊂∗ Vn (which means
that V \ Vn is finite) holds only for finitely many numbers n.

For every a = an ∈ A let Ua = Vn ∩B≥n. We claim that the ultrafilter B, the family
(Ua)a∈A, and the set U =

⋃
a∈A aUa =

⋃
n∈ω an(Vn ∩ B≥n) satisfy the requirements of

the lemma.
First, we check that B 6⊂ a−1

n U ∪ a−1
m U for all n ≤ m. Take any odd number k > m.

We claim that bk /∈ a−1
n U ∪ a−1

m U . Otherwise, bk ∈ a−1
n ai(Vi ∩B≥i)∪ a−1

m ai(Vi ∩B≥i) for
some i ∈ ω and hence bk = a−1

n aibj or bk = a−1
m aibj for some even j ≥ i. If k > j, then

both the equalities are forbidden by the choice of bk /∈ A−1
≤kA≤kB<k ⊃ {a−1

n aibj , a
−1
m aibj}.

If k < j, then those equalities are forbidden by the choice of bj /∈ A−1
≤jA≤jB<j ⊃

{a−1
i anbk, a

−1
i ambk}. Therefore, B 6⊂ a−1

n U ∪ a−1
m U .
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Next, given an arbitrary V ∈ B we show that the set A′ = {a ∈ A : aV ⊂ U} is
finite. By the choice of the sequence (Vn), the set F = {an : V ∩B2ω ⊂∗ Vn} is finite. We
claim that A′ ⊂ F . Indeed, take any an ∈ A′. It follows from anV ⊂ U =

⋃
a∈A aBa and

anB ∩
⋂
i 6=n aiB = ∅ that

an(V ∩B2ω) ⊂∗ an(Vn ∩B≥n) ⊂ anVn

and hence an ∈ F .

Let A be any free ultrafilter on X containing the set A and observe that U =⋃
a∈A a(Vn ∩ B≥n) ∈ A ◦ B. Let α = ΦF(A) and β = ΦF(B) be the function representa-

tions of the ultrafilters A and B, respectively. We claim that the left shift lα : Endλ(F)→
Endλ(F), lα : f 7→ α ◦ f , is discontinuous at β. Since U ⊂ AB ⊂ S, we can consider the
twin set

T = Fix(T0) · U ∪ Fix−(T0) · (S \ U)

and observe that T ∈ A ◦ B. Consequently, α ◦ β(T ) = {x ∈ G : x−1T ∈ A ◦ B} contains
the neutral element, which implies that O(α ◦ β) = {f ∈ Endλ(F) : e ∈ f(T )} is a
neighborhood of lα(β) = α ◦ β in Endλ(F).

Assuming that lα is continuous at β, we can find a neighborhood O(β) ⊂ Endλ(F) of
β such that lα(O(β)) ⊂ O(α ◦ β). Since F is left-invariant, we can assume that O(β) is of
the basic form:

O(β) =
{
f ∈ Endλ(F) : e ∈

n⋂
i=1

f(Ti)
}

for some twin sets T1, . . . , Tn ∈ F. It follows from β ∈ O(β) that e ∈ β(Ti) and thus Ti ∈ B
for every i ≤ n. According to Lemma 15.4(3), the set F = {a ∈ A : B ∩

⋂n
i=1 Ti ⊂ a−1U}

is finite.
We claim that the family L = {T1, . . . , Tn, X \ x−1T : x ∈ A \ F} is linked. This will

follow as soon as we check that

(i) Ti ∩ (X \ x−1T ) 6= ∅ for any i ≤ n and x ∈ A \ F ;
(ii) (X \ x−1T ) ∩ (X \ y−1T ) 6= ∅ for all x, y ∈ A.

Item (i) is equivalent to Ti 6⊂ x−1T for x ∈ A \ F . Assuming that Ti ⊂ x−1T , we will
consecutively get xTi ⊂ T , S ∩xTi ⊂ S ∩T = U , and finally B ∩Ti ⊂ x−1S ∩Ti ⊂ x−1U ,
which contradicts x /∈ F .

Item (ii) is equivalent to x−1T∪y−1T 6= X for x, y ∈ A. Assume that x−1T∪y−1T = X

for some x, y ∈ A. It follows from xB ⊂ S that xB ∩ T = xB ∩ U and thus B ∩ x−1T =
B ∩ x−1U . Similarly, B ∩ y−1T = B ∩ y−1U . Consequently,

B = B ∩X = B ∩ (x−1T ∪ y−1T ) = B ∩ (x−1U ∪ y−1U) 6= B

by Lemma 15.4(2). This contradiction completes the proof that L is linked.
Being linked, the family L can be enlarged to a maximal linked system C ∈ λ(X). It

follows from T1, . . . , Tn ∈ L ⊂ C that the twin representation γ = ΦF(C) belongs to the
neighborhood O(β), and consequently α ◦ γ ∈ O(α ◦ β), which means that T ∈ A ◦ C.
The latter is equivalent to A′ = {x ∈ X : x−1T ∈ C} ∈ A. On the other hand, X \ A′ =
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{x ∈ X : X \ x−1T ∈ C} contains the set A \ F ∈ A and thus X \ A′ ∈ A, which is a
contradiction.

Theorem 15.5. If the group X is twinic, then for an upper subfamily F ⊂ T the following
conditions are equivalent:

(1) Endλ(F) is metrizable;
(2) Endλ(F) is a metrizable topological semigroup;
(3) F is at most countable.

Proof. We shall prove the implications (3)⇒(2)⇒(1)⇒(3).
(3)⇒(2) Assume that the family F is at most countable. We claim that for each twin

subset T ∈ F the 2-cogroup K = Fix−(T ) has finite index in X. Otherwise, the subgroup
K± = KK ∪K also has infinite index on X and then |F| ≥ |TK | = 2|X/K

±| ≥ 2ω > ℵ0.
So, Fix(T ) has finite index in X and the implication (3)⇒(1) of Theorem 15.2 guaran-

tees that Endλ(F) is a topological semigroup. Now we show that this semigroup is metriz-
able. First observe that for every T ∈ F the set Endλ({T}) = {ϕ|{T} : ϕ ∈ Endλ(P(X))}
has finite cardinality

|Endλ({T})| = |{ϕ(T ) : ϕ ∈ Endλ(P(X))}| ≤ |{A ∈ T : Fix(A) ⊃ Fix(T )}|.

Since the family F is countable, the space Endλ(F) ⊂
∏
T∈F Endλ({T}) is metrizable,

being a subspace of the countable product of finite discrete spaces.
The implication (2)⇒(1) is trivial.
(1)⇒(3) Assuming that the family F is not countable, we shall show that the space

Endλ(F) is not metrizable. We consider two cases.
(a) For some twin set T ∈ F the stabilizer Fix(T ) has infinite index. Then we can find

an infinite set S ⊂ X that intersects each coset Fix±(T )x, x ∈ X, in a single point. As
we already know, for each subset E ⊂ S the set

TE = Fix(T ) · E ∪ Fix−(T ) · (S \ E)

belongs to the family F. Now take any two distinct ultrafilters U ,V ∈ β(S) ⊂ β(X)
and consider their function representations fU = ΦF(U) and fV = ΦF(V). Since U 6= V,
there is a subset E ⊂ S such that E ∈ U \ V. It follows that TE ∈ U and TS\E ∈ V,
which implies TE /∈ V and hence e ∈ fU (TE) \ fV(TE). This means that fU 6= fV and
consequently, |Endλ(F)| ≥ |β(S)| ≥ 2c, which implies that the compact space Endλ(F) is
not metrizable (because each metrizable compact space has cardinality ≤ c).

(b) For each T ∈ F the subgroup Fix(T ) has finite index in X. Then each set T ∈ F has
finite orbit [T ] = {xT : x ∈ X}. Consider the smallest left-invariant family F̄ =

⋃
T∈F[T ]

that contains F. By Proposition 13.4, the family F̄ is {∅}-independent. Since each orbit
[T ], T ∈ F̄, is finite and F is uncountable, the orbit space [F̄] = {[T ] : T ∈ F} is also
uncountable. It follows from Theorem 11.1 that the space Endλ(F̄) is homeomorphic to the
product

∏
[T ]∈[F̄] Endλ([T ]) where each space Endλ([T ]) contains at least two equivariant

functions: the identity i : [T ]→ [T ] and the antipodal α : [T ]→ [T ], α : A 7→ X \A. Since
the orbit space [F̄] is uncountable, the product

∏
[T ]∈[F̄] Endλ([T ]) is non-metrizable and

so is its topological copy Endλ(F̄).
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It remains to observe that the restriction map R : Endλ(F̄)→ Endλ(F) is injective and
thus a homeomorphism. Indeed, given two distinct equivariant functions f, g ∈ Endλ(F),
we can find a set A ∈ F̄ with f(A) 6= g(A). Since [A] ∩ F 6= ∅, there is x ∈ X such that
xA ∈ F. Then f(xA) = xf(A) 6= xg(A) = g(xA) and thus f |F 6= g|F.

The following proposition characterizes groups containing only countably many twin
subsets. Following [4], we define a group X to be odd if each x ∈ X has odd order.

Proposition 15.6. The family T of twin subsets of a group X is at most countable if
and only if each subgroup of infinite index in X is odd.

Proof. Assume that each subgroup of infinite index in X is odd. We claim that for every
A ∈ T the subgroup Fix(A) has finite index in X. Take any point c ∈ Fix−(A) and
consider the cyclic subgroup cZ = {cn : n ∈ Z} generated by c. The subgroup cZ has
finite index in X, being non-odd. Since c2Z = {c2n : n ∈ Z} ⊂ Fix(A), we conclude that
Fix(A) also has finite index in X.

Next, we show that the family {Fix(A) : A ∈ T} is at most countable. This is trivially
true if T = ∅. If T 6= ∅, then we can take any A ∈ T and choose a point c ∈ Fix−(A).
The cyclic subgroup cZ generated by c is not odd and hence has finite index in X.
Consequently, the group X is at most countable. Now it remains to check that for every
x ∈ X the set Tx = {A ∈ T : x ∈ Fix−(A)} is finite. If the set Tx is not empty, then the
cyclic subgroup xZ generated by x is not odd and hence has finite index in X. Consider
the subgroup x2Z of index 2 in xZ. It is clear that x2Z ⊂ Fix(A). Let S ⊂ X be a
finite set containing the neutral element of X and meeting each coset x2Zz, z ∈ X, in
a single point. It follows from x2Z ⊂ Fix(A) that A = x2Z · (S ∩ A) and consequently
|Tx| ≤ 2|S| <∞.

Now assume that some subgroup H of infinite index in X is not odd. Then H contains
an element c ∈ H such that the sets c2Z = {c2n : n ∈ Z} and c2Z+1 = {c2n+1 : n ∈ Z} are
disjoint. Their union coincides with the cyclic subgroup cZ of H generated by c. Find a
set S ⊂ X that intersects each coset cZx, x ∈ X, in a single point. Since c2Z has infinite
index in X, the set S is infinite. Now observe that for every E ⊂ S the union

TE = c2Z · E ∪ c2Z+1 · (S \ E)

is a twin set with c ∈ Fix−(TE). Consequently, T ⊃ {TE : E ⊂ S} has cardinality

|T| ≥ |{TE : E ⊂ S}| ≥ |2S | ≥ c > ℵ0.

Now we shall apply the above results to the minimal upper subfamilies TK with
K ∈ K̂. By Theorem 14.1(1), for a maximal 2-cogroup K in a group X minimal left
ideals of End(TK) are metrizable if and only if |X/K| ≤ ℵ0. The metrizability of the
whole semigroup End(TK) is equivalent to |X/K| < ℵ0.

Theorem 15.7. For a maximal 2-cogroup K of a twinic group X the following conditions
are equivalent:

(1) Endλ(TK) is metrizable;
(2) Endλ(TK) is a semitopological semigroup;
(3) Endλ(TK) is a finite semigroup;
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(4) Endλ(TK) is isomorphic to C2k omm or Q2k omm for some 1 ≤ k ≤ m <∞;
(5) K has finite index in X.

Proof. The implications (1)⇒(2)⇒(5) follow from Theorems 15.5 and 15.2.
(5)⇒(4) Assume that K has finite index in X. Then the characteristic group H(K) of

K is finite and hence is isomorphic to C2k or Q2k for some k ∈ N (see Theorem 8.3). Also
the set TK is finite and so is the orbit space [TK ]. By Theorem 14.1(3), the semigroup
Endλ(TK) is isomorphic to H(K) o [TK ][TK ] and the latter semigroup is isomorphic to
C2k omm or Q2k omm for m = |[TK ]|.

The implications (4)⇒(3)⇒(1) are trivial.

16. Constructing nice idempotents in the semigroup Endλ(P(X))

In this section we prove the existence of some special idempotents in the semigroup
Endλ(P(X)). These idempotents will help us to describe the structure of the minimal
ideals of the semigroups Endλ(P(X)) and λ(X) in Theorems 17.1 and Corollary 17.2.

In this section we assume that I is a left-invariant ideal in a group X. We recall
that pTI and TI denote the families of I-pretwin and I-twin subsets of X, respectively.
A function f : F → P(X) defined on a subfamily F ⊂ P(X) is called I-saturated if
f(A) = f(B) for any sets A =I B in F.

Proposition 16.1. There is an idempotent eI ∈ Endλ(P(X)) such that

• eI(P(X) \ pTI) ⊂ {∅, X};
• eI |pTI = id|pTI ;
• the function eI restricted to P(X) \ pTI is I-saturated.

Proof. Consider the family
↔
NI2 (X) ⊂ P2(X) of left-invariant I-saturated linked systems

on X, partially ordered by the inclusion relation. This set is not empty because it contains
the invariant I-saturated linked system {X \A : A ∈ I}. By Zorn’s Lemma, the partially

ordered set
↔
NI2 (X) contains a maximal element L, which is a maximal invariant I-

saturated linked system on the group X. By the maximality, the system L is monotone.
Now consider the family

L⊥ = {A ⊂ X : ∀L ∈ L (A ∩ L 6= ∅)}.

Claim 16.2. L⊥ \ L ⊂ pTI .

Proof. Fix any set A ∈ L⊥ \L. First we check that xA∩A ∈ I for some x ∈ X. Assuming
the contrary, we would conclude that the family A = {A′ ⊂ X : ∃x ∈ X (A′ =I xA)} is
invariant, I-saturated and linked, and so is the union A∪L, which is not possible by the
maximality of L. So, there is x ∈ X with xA∩A ∈ I, which is equivalent to xA ⊂I X \A.

Next, we find y ∈ X such that A ∪ yA =I X, which is equivalent to X \ A ⊂I yA.
Assuming that no such y exists, we conclude that for any x, y ∈ X we have xA ∪ yA
6=I X. Then (X \ xA) ∩ (X \ yA) = X \ (xA ∪ yA) /∈ I, which means that the family
B = {B ⊂ X : ∃x ∈ X (B =I X \ xA)} is invariant I-saturated and linked. We claim
that X \ A ∈ L⊥. Assuming otherwise, we would conclude that X \ A misses some set
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L ∈ L. Then L ⊂ A and hence A ∈ L, which is not the case. Thus X \A ∈ L⊥. Since L is
invariant and I-saturated, B ⊂ L⊥, and consequently the union B∪L, being an invariant
I-saturated linked system, coincides with L. Then X \A ∈ L, which contradicts A ∈ L⊥.
This contradiction shows that X \A ⊂I yA for some y ∈ X.

Since xA ⊂I X \A ⊂I yA, the set A is I-pretwin.

Consider the function representation ΦL : P(X) → P(X) of L. By Propositions 4.3
and 4.5, the function ΦL is equivariant, monotone, I-saturated, and ΦL(P(X)) ⊂ {∅, X}.

It is clear that the function eI : P(X)→ P(X) defined by

eI(A) =

{
A if A ∈ pTI ,

ΦL(A) otherwise

has properties (1)–(3) of Proposition 16.1. It is also clear that eI = eI ◦ eI is an idempo-
tent.

We claim that eI ∈ Endλ(P(X)). By Corollary 4.4, we need to check that eI is equiv-
ariant, monotone and symmetric. The equivariance of eI follows from the equivariance
of the maps ΦL and id.

To show that eI is monotone, take any two subsets A ⊂ B of X and consider four
cases.

1) If A,B /∈ pTI , then eI(A) = ΦL(A) ⊂ ΦL(B) = eI(B) by the monotonicity of the
function representation ΦL of the monotone family L.

2) If A,B ∈ pTI , then eI(A) = A ⊂ B = eI(B).
3) A ∈ pTI and B /∈ pTI . We claim that B ∈ L. Assuming that B /∈ L and applying

Claim 16.2, we get B /∈ L⊥. Then B does not intersect some set L ∈ L and then A∩L = ∅.
It follows that the set X \ A ⊃ L belongs to the maximal invariant I-saturated linked
system and so does the set yA ⊃I X\A for some y ∈ X (which exists as A ∈ pTI). By the
left-invariance of L, we get A ∈ L, which contradicts X \A ∈ L and the linkedness of L.
This contradiction proves that B ∈ L. In this case eI(A) = A ⊂ X = ΦL(B) = eI(B).

4) A /∈ pTI and B ∈ pTI . In this case we prove that A /∈ L. Assuming that A ∈ L,
we get B ∈ L. Since B ∈ pTI , there is a point x ∈ X with xB ⊂I X \ B. Since L is
left-invariant, monotone and I-saturated, we conclude that X \B ∈ L, which contradicts
B ∈ L. Thus A /∈ L and eI(A) = ΦL(A) = ∅ ⊂ eI(B).

Finally, we show that the function eI is symmetric. If A ∈ pTI , then X \ A ∈ pTI

and then eI(X \A) = X \A = X \ eI(A).
Next, assume that A /∈ pTI . If A ∈ L, then X \A /∈ L by the linkedness of L. In this

case eI(X \A) = ∅ = X \X = X \ eI(A).
If A /∈ L, then by Claim 16.2, A /∈ L⊥ and thus A is disjoint from some set L ∈ L,

which implies that X \A ∈ L. Then eI(X \A) = ΦL(X \A) = X = X \∅ = X \ΦL(A) =
X \ eI(A).

Our second special idempotent depends on a subfamily T̃ of the family

T̂ = {A ∈ T : Fix−(A) ∈ K̂}

of twin sets with maximal 2-cogroup.
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Theorem 16.3. If the ideal I is twinic, then for any I-independent K̂-covering subfamily
T̃ ⊂ T̂ there is an idempotent eeT ∈ EndIλ(P(X)) such that

(1) eeT(P(X) \ TI) ⊂ {∅, X};
(2) eeT(TI) = T̃;
(3) eeT|{∅, X} ∪ T̃ = id.

Proof. Let eI : P(X) → {∅, X} ∪ pTI be the idempotent from Proposition 16.1. Since
the ideal I is twinic, pTI = TI . The idempotent eeT will be defined as the composition
eeT = ϕ ◦ eI where ϕ : {∅, X} ∪ TI → {∅, X} ∪ T̃ is an equivariant I-saturated function
such that

(1) ϕ ◦ ϕ = ϕ;
(2) ϕ|{∅, X} ∪ T̃ = id;
(3) ϕ(TI) ⊂ T̃;
(4) I-Fix−(A) ⊂ Fix−(ϕ(A)) for all A ∈ TI .

To construct such a function ϕ, consider the family F of all possible functions ϕ : Dϕ →
{∅, X} ∪ T̃ such that

(a) {∅, X} ∪ T̃ ⊂ Dϕ ⊂ {∅, X} ∪ TI ;
(b) the set Dϕ is left-invariant;
(c) ϕ is equivariant and I-saturated;
(d) ϕ|{∅, X} ∪ T̃ = id;
(e) I-Fix−(A) ⊂ Fix−(ϕ(A)) for all A ∈ Dϕ.

The family F is partially ordered by the relation ϕ ≤ ψ defined by ψ|Dϕ = ϕ.
The set F is not empty because it contains the identity function id of {∅, X} ∪ T̃,

which is I-saturated because of the I-independence of the family T̃. By Zorn’s Lemma,
F contains a maximal element ϕ : Dϕ → {∅, X} ∪ T̃. We claim that Dϕ = {∅, X} ∪ TI .
Assuming otherwise, fix a set A ∈ TI \Dϕ and define a family Dψ = Dϕ ∪{xA : x ∈ X}.
Next, we shall extend ϕ to a function ψ : Dψ → {∅, X} ∪ T̃. We consider two cases.

1) Assume that A =I B for some B ∈ Dϕ. Then also xA =I xB for all x ∈ X. In
this case we define the function ψ : Dψ → {∅, X} ∪ T̃ assigning to each set C ∈ Dψ the
set ϕ(D) where D ∈ Dϕ is any set with D =I C. It can be shown that the function
ψ : Dψ → {∅, X} ∪ T̃ belongs to the family F , which contradicts the maximality of ϕ.

2) Assume that A 6=I B for all B ∈ Dϕ. By Proposition 7.3, the 2-cogroup I-Fix−(A)
lies in a maximal 2-cogroup K ∈ K̂. Since T̃ is K̂-covering, there is a twin set B ∈ T̃ such
that Fix−(B) = K. In this case define the function ψ : Dψ → T̂ by the formula

ψ(C) =

{
ϕ(C) if C ∈ Dϕ,

xB if C =I xA for some x ∈ X.

If xA =I yA for some x, y ∈ X, then y−1x ∈ I-Fix−(A) ⊂ K = Fix−(B) and thus
xB = yB, which means that ψ is well-defined and I-saturated. Also it is clear that ψ is
equivariant and hence belongs to F , which is forbidden by the maximality of ϕ.

Thus the maximal function ϕ is defined on Dϕ = {∅, X} ∪ TI and we can put eeT =
ϕ ◦ eI where eI : P(X)→ {∅, X} ∪ pTI = {∅, X} ∪ TI is the idempotent constructed in
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Proposition 16.1. It follows from the properties of the functions ϕ and eI that the function
eeT is equivariant and I-saturated. Since the ideal I is twinic, the family TI = pTI is I-
incomparable (by Proposition 13.1) and hence the monotonicity of the function ϕ follows
automatically from its being I-saturated. Then eeT is monotone as the composition of two
monotone functions. By Corollary 4.4, eeT ∈ Endλ(P(X)).

Theorem 16.3 and Proposition 13.5 imply:

Corollary 16.4. If the ideal I is twinic, then for each minimal K̂-covering family T̃ ⊂ T̂

there is an idempotent eeT ∈ EndIλ(P(X)) such that

(1) eeT(P(X) \ TI) ⊂ {∅, X};
(2) eeT(TI) = T̃;
(3) eeT|{∅, X} ∪ T̃ = id.

17. The minimal ideal of the semigroups λ(X) and Endλ(P(X))

In this section we apply Corollary 16.4 to describe the structure of the minimal ideals of
the semigroups λ(X) and Endλ(P(X)).

Theorem 17.1. For a twinic group X a function f ∈ Endλ(P(X)) belongs to the mini-
mal ideal K(Endλ(P(X))) of the semigroup Endλ(P (X)) if and only if the following two
conditions hold:

(1) the family f(T̂) is minimal K̂-covering;
(2) f(P(X)) ⊂ {∅, X} ∪ f(T̂).

Proof. Let T̃ ⊂ T̂ be a minimal K̂-covering left-invariant family and eeT ∈ Endλ(P(X))
be an idempotent satisfying conditions (1)–(3) of Corollary 16.4. By Propositions 13.1
and 13.5, the family T̃ is I-incomparable and I-independent for any twinic ideal I on X.

To prove the “if” part of the theorem, assume that f satisfies conditions (1) and (2).
To show that f belongs to the minimal ideal K(Endλ(P(X))), it suffices for each g ∈
Endλ(P(X)) to find h ∈ Endλ(P(X)) such that h ◦ g ◦ f = f .

The minimality and left-invariance of the K̂-covering subfamily f(T̂) imply that the
equivariant function ψ = eeT ◦ g|{∅, X} ∪ f(T̂) : {∅, X} ∪ f(T̂) → {∅, X} ∪ T̃ is bijective.
So, we can consider the inverse function ψ−1 : {∅, X} ∪ T̃ → {∅, X} ∪ f(T̂) such that
ψ−1 ◦ ψ = id|{∅, X} ∪ f(T̂). This function is equivariant, symmetric, and monotone
because so is ψ and the family T̃ is I-incomparable and I-independent.

Then the function ϕ = ψ−1 ◦ eeT : P(X) → {∅, X} ∪ f(T̂) is well-defined and belongs
to EndIλ(P(X)) by Corollary 4.4. Since

(ϕ ◦ eeT) ◦ g ◦ f = ψ−1 ◦ eeT ◦ eeT ◦ g ◦ f = ψ−1 ◦ eeT ◦ g ◦ f = ψ−1 ◦ ψ ◦ f = f,

the function f belongs to the minimal ideal of the semigroup Endλ(P(X)).
To prove the “only if” part, take any f ∈ K(Endλ(P(X))) and for the idempotent

eeT ∈ Endλ(P(X)) find g ∈ Endλ(P(X)) such that f = g ◦ eeT ◦ f . Now the properties (1)
and (2) of f follow from the corresponding properties of eeT.
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Since the superextension λ(X) of a group X is topologically isomorphic to the semi-
group Endλ(P(X)), Theorem 17.1 implies the following description of the minimal ideal
K(λ(X)) of λ(X).

Corollary 17.2. For a twinic group X a maximal linked system L ∈ λ(X) belongs
to the minimal ideal K(λ(X)) of the superextension λ(X) if and only if its function
representation ΦL satisfies two conditions:

(1) the family ΦL(T̂) is minimal K̂-covering;
(2) ΦL(P(X)) ⊂ {∅, X} ∪ ΦL(T̂).

18. Minimal left ideals of superextensions of twinic groups

Having elaborated the necessary tools in Sections 5–17, we now return to describing the
structure of minimal left ideals of the superextension λ(X) of a twinic group X. In this
section we assume that X is a group.

Our first aim is to show that if the group X is twinic, then the restriction operator
RbT : Endλ(P(X)) → Endλ(T̂) is injective on all minimal left ideals of the semigroup
Endλ(P(X)). Since T̂ =

⋃
K∈bK TK , Proposition 12.3 implies that the family T̂ is λ-

invariant and hence Endλ(T̂) is a compact right-topological semigroup. For each left-
invariant ideal I on the group X the semigroup Endλ(T̂) contains a left ideal EndIλ(T̂)
consisting of all left-invariant monotone I-saturated functions (see Theorem 4.8). If I is
a twinic ideal with I ∩ K̂ = ∅, then the family T̂ is I-independent (see Proposition 13.3)
and hence EndIλ(T̂) = Endλ(T̂).

Proposition 18.1. If the group X is twinic, then the restriction operator

RbT : Endλ(P(X))→ Endλ(T̂), RbT : f 7→ f |T̂,

is injective on each minimal left ideal of the semigroup Endλ(P(X)). If II ∩ K̂ = ∅,
then for some idempotent ebT ∈ EndIIλ (P(X)) the restriction RbT|Endλ(P(X)) ◦ ebT is a
topological isomorphism between the principal left ideal Endλ(P(X)) ◦ ebT and Endλ(T̂).

Proof. Let T̃ ⊂ T̂ be any minimal K-covering left-invariant subfamily. By Proposi-
tions 13.5, the family T̃ is I-independent. By Theorem 16.3, there is an idempotent
eeT ∈ EndIλ(P(X)) such that eeT(P(X) \ TI) ⊂ {∅, X} and eeT(TI) = T̃ ⊂ T̂. The latter
property of eeT implies that the restriction operator RbT is injective on the principal left
ideal Endλ(P(X)) ◦ eeT, and consequently it is injective on each minimal left ideal of the
semigroup Endλ(P(X)) according to Proposition 2.2.

If II ∩ K̂ = ∅, then by Proposition 13.3 the family T̂ is II-independent and we can
repeat the above argument for the idempotent ebT.

Now let us look at the structure of the semigroup Endλ(T̂). Observe that T̂ =⋃
[K]∈[ bK] T[K], where T[K] = {A ⊂ X : Fix−(A) ∈ [K]}, [K̂] = {[K] : K ∈ K̂} and

[K] = {xKx−1 : x ∈ X} for K ∈ K̂.
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It follows that the restriction operators RT[K] : Endλ(T̂) → Endλ(T[K]), [K] ∈ [K̂],
compose an injective semigroup homomorphism

RT[ bK]
: Endλ(T̂)→

∏
[K]∈[ bK]

Endλ(T[K]), RT[ bK]
: ϕ 7→ (ϕ|T[K])[K]∈[ bK].

Theorem 11.1 implies

Lemma 18.2. For any twinic ideal I on the group X we get

R[ bK](EndIλ(T̂)) =
∏

[K]∈[ eK]

EndIλ(T[K]).

Next, we study the structure of the semigroups EndIλ(T[K]) for [K] ∈ [K̂].

Lemma 18.3. For any maximal 2-cogroup K ∈ K̂ the restriction map

RTK
: Endλ(T[K])→ Endλ(TK), RTK

: ϕ 7→ ϕ|TK ,

is a topological isomorphism.

Proof. By the compactness of Endλ(T[K]) it suffices to check that the restriction op-
erator RTK

: EndIλ(T[K]) → EndIλ(TK) is one-to-one. Given two distinct functions
f, g ∈ EndIλ(T[K]) find a twin set A ∈ T[K] such that f(A) 6= g(A). Since Fix−(A) ∈ [K],
there is x ∈ X such that Fix−(xA) = xFix−(A)x−1 = K. By Proposition 5.4, xA ∈ TK
and f(xA) = xf(A) 6= xg(A) = g(xA), witnessing that f |TK 6= g|TK .

A subfamily K̃ ⊂ K̂ is called a [K̂]-selector if K̃ has one-point intersection with each
orbit [K] = {xKx−1 : x ∈ X}, K ∈ K̂. In the following theorems we assume that K̃ ⊂ K̂
is a [K̂]-selector.

All the preceding discussion culminates in the following theorem, which can be con-
sidered as the main result of this paper.

Theorem 18.4. Given a [K̂]-selector K̃ ⊂ K̂, consider the operator

ReK : Endλ(P(X))→
∏
K∈eK

End(TK), ReK : f 7→ (f |TK)K∈eK.
If I is a left-invariant twinic ideal on X, then

(1) ReK(EndIλ(P(X))) =
∏
K∈eK EndI(TK);

(2) the operator ReK maps isomorphically each minimal left ideal of the semigroup
Endλ(P(X)) onto some minimal left ideal of the semigroup

∏
K∈eK End(TK);

(3) if I ∩ K̂ = ∅, then for some idempotent ê ∈ EndIλ(P(X)) and the principal left ideal
Lê = Endλ(P(X)) ◦ ê the restriction

ReK|Lê : Lê →
∏
K∈eK

End(TK)

is a topological isomorphism.

Proof. Write the operator ReK as the composition ReK = R
bTeK ◦RbT of two operators:

RbT : Endλ(P(X))→ Endλ(T̂), RbT : f 7→ f |T̂,



Algebra in the superextensions of twinic groups 53

and
R

bTeK : Endλ(T̂)→
∏
K∈eK

Endλ(TK), R
bTeK : f 7→ (f |TK)K∈eK.

By Lemma 18.3, the operator RbTeK is injective.
1. It follows from Lemmas 18.2 and 18.3 that

ReK(EndIλ(P(X))) = R
bTeK(EndIλ(T̂)) =

∏
K∈eK

EndI(TK).

2. To prove the second item, fix any function f ∈ K(Endλ(P(X))) and consider the
minimal left ideal Lf = Endλ(P(X)) ◦ f . We need to show that ReK(Lf ) is a minimal left
ideal in

∏
K∈eK End(TK).

For this pick any function g ∈ K(EndIλ(P(X))) and consider the minimal left ideal
Lg = Endλ(P(X)) ◦ g = EndIλ(P(X)) ◦ g.

By Proposition 18.1, the operator RbT : Endλ(P(X)) → Endλ(T̂) is injective on each
minimal left ideal. Consequently, the operator ReK = R

bTeK ◦ RbT is also injective on each
minimal left ideal of the semigroup Endλ(P(X)). In particular, ReK is injective on the
minimal left ideals Lf and Lg. Since Lg is a minimal left ideal of the semigroup EndIλ(P(X))
its image RbT(Lg) is a minimal left ideal of the semigroup EndIλ(T̂). By Lemmas 18.2
and 18.3, RbTeK maps isomorphically the semigroup EndIλ(T̂) onto

∏
K∈eK EndI(TK), the

image ReK(Lg) is a minimal left ideal of the semigroup
∏
K∈eK EndI(TK). Since the latter

semigroup is a left ideal in
∏
K∈eK End(TK), the image ReK(Lg) remains a minimal left

ideal of the semigroup
∏
K∈eK End(TK). This minimal left ideal is equal to the product∏

K∈eK LgK
where gK = g|TK and LgK

= End(TK) ◦ gK . By the compactness of Lg, the
operator ReK maps isomorphically the minimal left ideal Lg onto the minimal left ideal∏
K∈eK LgK

of the semigroup
∏
K∈eK End(TK).

Now let us look at the minimal left ideal Lf . By Proposition 2.1, the right shift
rf : Lg → Lf , rf : h 7→ h◦f , is a homeomorphism. So, there is a function γ ∈ Endλ(P(X))
such that f = γ ◦ g ◦ f .

For every K ∈ K̃ consider the restrictions fK = f |TK and γK = γ|TK , which belong
to the semigroup End(TK). It follows from f = γ ◦ g ◦ f that fK = γK ◦ gK ◦ fK . Since
gK ∈ K(End(TK)), we conclude that fK also belongs to the minimal ideal K(End(TK)).

Then LfK
= End(TK) ◦ fK and LgK

= End(TK) ◦ gK are minimal left ideals in
End(TK). By Proposition 2.1, the right shift rfK

: LgK
→ LfK

, rfK
: h 7→ h ◦ fK , is a

homeomorphism. The homeomorphisms rfK
, K ∈ K̃, compose a homeomorphism

rf eK :
∏
K∈eK

LgK
→
∏
K∈eK

LfK
, rf eK : (hK)K∈eK 7→ (hK ◦ fK)K∈eK.

Now consider the commutative diagram

Lf
R eK|Lf //

∏
K∈eK LfK

Lg

rf

OO

R eK|Lg //
∏
K∈eK LgK

rf eK
OO
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Since rf , rf eK , and ReK|Lg are homeomorphisms, so is ReK|Lf . Consequently, the operator
ReK maps isomorphically the minimal left ideal Lf = Endλ(P(X)) ◦ f onto the minimal
left ideal

∏
K∈eK LfK

=
∏
K∈eK End(TK) ◦ (f |TK) of the semigroup

∏
K∈eK End(TK).

3. Assume that I ∩ K̂ = ∅. In this case EndI(T̂) = End(T̂) by Proposition 13.3.
By Proposition 18.1, for some idempotent ê ∈ EndIλ(P(X)) the operator RbTeT maps iso-

morphically the principal left ideal Lê = Endλ(P(X)) ◦ ê onto EndIλ(T̂) = Endλ(T̂).
By Lemma 18.2, the operator RbTeK : EndIλ(T̂) →

∏
K∈eK EndI(TK) =

∏
K∈eK End(TK)

is an isomorphism. So, ReK maps isomorphically the principal left ideal Lê onto∏
K∈eK End(TK).

Since the function representation Φ : λ(X) → Endλ(P(X)), Φ : L 7→ ΦL, is a topo-
logical isomorphism, the preceding theorem implies:

Corollary 18.5. Given a [K̂]-selector K̃ ⊂ K̂, consider the continuous semigroup ho-
momorphism

Φ eK : λ(X)→
∏
K∈eK

End(TK), Φ eK : L 7→ (ΦL|TK)K∈eK.
If the group X is twinic, then

(1) Φ eK(EndIIλ (P(X))) =
∏
K∈eK EndII(TK);

(2) the homomorphism Φ eK maps isomorphically each minimal left ideal of the semigroup
λ(X) onto some minimal left ideal of the semigroup

∏
K∈eK End(TK);

(3) if II ∩ K̂ = ∅, then for some idempotent E ∈ λII(X) and the principal left ideal
LE = λ(X) ◦ E the restriction

Φ eK|LE : LE →
∏
K∈eK

End(TK)

is a topological isomorphism.

Corollary 18.6. If the group X is twinic, then each minimal left ideal of λ(X) is
topologically isomorphic to a minimal left ideal of

∏
K∈eK End(TK) and each minimal left

ideal of
∏
K∈eK EndII(TK) is topologically isomorphic to a minimal left ideal of λII(X).

Proof. Corollary 18.5(2) implies that each minimal left ideal of λ(X) is topologically
isomorphic to a minimal left ideal of

∏
K∈eK End(TK). Now assume that L is a minimal

left ideal of the semigroup
∏
K∈eK EndII(TK). It follows from Corollary 18.5(1) that the

preimage Φ−1eK (L) is a left ideal in λII(X) and hence a left ideal in λ(X). This left ideal
contains some minimal left ideal Lλ whose image Φ eK coincides with L (being a left ideal
in L). By Corollary 18.5(2), the map Φ eK|Lλ : Lλ → L is injective and by the compactness
of Lλ is a topological isomorphism.

Theorem 18.7. Let X be a twinic group, K̃ ⊂ K̂ be a [K̂]-selector, and E ∈ λ(X) be a
minimal idempotent.

(1) The maximal subgroup HE = E ◦ λ(X) ◦ E has the following properties:

(a) HE is algebraically isomorphic to
∏
K∈eK H(K);
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(b) HE is topologically isomorphic to
∏
K∈eK H(AK) for any twin sets AK ∈ ΦE(TK),

K ∈ K̃;
(c) HE is a compact topological group if and only if H(K) is finite for every K ∈ K̂.

(2) The minimal left ideal LE = λ(X) ◦ E has the following properties:

(d) LE is topologically isomorphic to the minimal left ideal
∏
∈eK End(TK)◦ (ΦE |TK);

(e) LE is homeomorphic to
∏
K∈eK TK , which is homeomorphic to the Cantor discon-

tinuum
∏
K∈eK 2X/K

±
;

(f) LE is algebraically isomorphic to
∏
K∈eK H(K)× [TK ] where the orbit space [TK ]

of the H(K)-act TK is endowed with the left zero multiplication;
(g) LE is a topological semigroup iff LE is a semitopological semigroup iff each restric-

tion ΦE |TK , K ∈ K̃, is a continuous function iff the maximal subgroup HE and
the idempotent band E(LE) of LE are compact iff LE is topologically isomorphic
to
∏
K∈eK H(K)× [TK ].

Proof. Let ΦE ∈ Endλ(P(X)) be the function representation of the minimal idempotent
E ∈ K(λ(X)). For every K ∈ K̃ let fK = ΦE |TK and LfK

= End(TK) ◦ fK be the
principal left ideal in End(TK), generated by the function fK . By Corollary 18.5, the
minimal left ideal LE is topologically isomorphic to a minimal left ideal of the semigroup∏
K∈eK End(TK). This minimal ideal contains (fK)K∈eK and hence is equal to the product∏
K∈eK LfK

. This proves statement (d) of the theorem. Now all the other statements follow
from Theorems 14.1 and 14.3.

Theorem 18.7(b) is completed by the following theorem.

Theorem 18.8. Let K̃ ⊂ K̂ be a [K̂]-selector. If the group X is twinic, then for any twin
sets AK ∈ TK , K ∈ K̃, the minimal ideal K(λ(X)) of λ(X) contains a maximal subgroup
HE , which is topologically isomorphic to

∏
K∈eK H(AK).

Proof. In the semigroup
∏
K∈eK K(EndII(TK)) choose a sequence of functions (fK)K∈eK

such that fK(TK) ⊂ bAKc for allK ∈ K̃. This can be done in the following way. For every
K ∈ K̃ first choose any minimal idempotent gK ∈ K(EndII(TK)). By Theorem 14.1(5),
gK(TK) ⊂ bBKc for some twin set B ∈ TK . Since TK is a free H(K)-act, we can choose
an equivariant function ϕ : bBKc → bAKc. Then the composition fK = ϕ ◦ gK is II-
saturated and has the required property: fK(TK) ⊂ bAKc.

Consider the minimal left ideal Lf eK =
∏
K∈eK End(TK) ◦ fK and let L = Φ−1eK (L) ⊂

λ(X). By Corollary 18.5(1), Φ eK(L) = Lf eK . Now let K(L) be the minimal ideal of the left
ideal L. The image Φ eK(K(L)), being a left ideal in Lf eK , coincides with Lf eK . So, we can find
a maximal linked system L ∈ K(L) such that Φ eK(L) = (fK)K∈eK. By Theorem 18.7(b),
the maximal group HL is topologically isomorphic to

∏
K∈eK H(AK).

Proposition 18.9. If X is a twinic group, then each minimal left ideal of λ(X) is a
topological semigroup if and only if each maximal 2-cogroup K ⊂ X has finite index
in X.

Proof. Let K̃ ⊂ K̂ be a [K̂]-selector. If each maximal 2-cogroup K ⊂ X has finite index
in X, then the set TK is finite and hence the semigroup End(TK) is finite. Consequently,
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K∈eK End(TK) is a compact topological semigroup and so is each minimal left ideal of

this semigroup. By Corollary 18.5(2), each minimal left ideal of the semigroup λ(X) is a
topological semigroup.

If some maximal 2-cogroup in X has infinite index, then Corollary 14.6 implies that
some minimal left ideal in

∏
K∈eK EndII(TK) is not a topological semigroup. By Corol-

lary 18.6, some minimal left ideal in λII(X) is not a topological semigroup.

Proposition 18.10. For a twinic group X with II ∩ K̂ = ∅ the following conditions are
equivalent:

(1) some minimal left ideal of λ(X) is a topological semigroup;
(2) each maximal subgroup of λ(X) is a topological group;
(3) some maximal subgroup of λ(X) is compact;
(4) the characteristic group H(K) is finite for each maximal 2-cogroup K ⊂ X.

Proof. (1)⇒(3) If some minimal left ideal of λ(X) is a (necessarily compact) topological
semigroup, then each maximal subgroup of this minimal ideal is a compact topological
group.

(3)⇒(4) If some maximal subgroup of K(λ(X)) is compact, then by Theorem 18.7(c),
each characteristic group H(K), K ∈ K̂, is finite.

(4)⇒(1) If each characteristic group H(K), K ∈ K̂, is finite, then Proposition 14.5(1)
and Theorem 14.3 guarantee that the semigroup

∏
K∈eK EndII(TK) contains a minimal

left ideal, which is a topological semigroup. By Corollary 18.6, this minimal left ideal is
topologically isomorphic to some minimal left ideal of λ(X).

(4)⇒(3) If each characteristic group H(K), K ∈ K̂, is finite, then Theorem 18.7(c)
guarantees that each maximal subgroup of K(λ(X)) is a compact topological group.

(3)⇒(4) Assume that for some maximal 2-cogroup K∞ ∈ K̂ the characteristic group
H(K∞) is infinite. Replacing K∞ by a conjugate cogroup, we can assume that K∞ ∈ K̃.
By Theorem 8.3, the group H(K∞) is isomorphic to C2∞ or Q2∞ . In both cases, by
Theorems 9.5, there is a twin set A∞ ∈ TK∞ whose characteristic group H(A∞) is not
a topological group. Choose a minimal idempotent feK = (fK)K∈eK ∈ ∏K∈eK EndII(TK)
such that fK∞(TK∞) ⊂ bAc. For every K ∈ K̃ choose any twin set AK ∈ fK(TK) so that
AK = A∞ if K = K∞.

By Corollary 18.6, there is a minimal idempotent E ∈ λII(X) such that Φ eK(E) =
feK. By Theorem 18.7(b), the maximal subgroup HE = λ(X) ◦ E ◦ λ(X) is topologi-
cally isomorphic to

∏
K∈eK H(AK). This subgroup is not a topological group as it contains

an isomorphic copy of the right-topological group H(A∞), which is not a topological
group.

Now let us write Corollary 18.5 and Theorem 18.7 in a form more convenient for
calculations.

For every group G ∈ {C2k , Q2k : k ∈ N∪{∞}} denote by q(X,G) the number of orbits
[K] ∈ [K̂] such that for some (equivalently, every) 2-cogroup K ∈ [K] the characteristic
group H(K) is isomorphic to G.
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Theorem 18.11. For each twinic group X there is a cardinal m such that

(1) each minimal left ideal of λ(X) is algebraically isomorphic to the semigroup

2m ×
∏

1≤k≤∞

C
q(X,C2k )

2k ×
∏

3≤k≤∞

Q
q(X,Q2k )

2k

where the Cantor discontinuum 2m is endowed with the left zero multiplication;
(2) if q(X,C2∞) = q(X,Q2∞) = 0 and II ∩ K̂ = ∅, then some minimal left ideal of λ(X)

is topologically isomorphic to the compact topological semigroup

2m ×
∏

1≤k<∞

C
q(X,C2k )

2k ×
∏

3≤k<∞

Q
q(X,Q2k )

2k ;

(3) each maximal subgroup of the minimal ideal K(λ(X)) of λ(X) is algebraically iso-
morphic to the group ∏

1≤k≤∞

C
q(X,C2k )

2k ×
∏

3≤k≤∞

Q
q(X,Q2k )

2k ;

(4) if q(X,C2∞) = q(X,Q2∞) = 0, then each maximal subgroup of the minimal ideal
K(λ(X)) of λ(X) is topologically isomorphic to the compact topological group∏

1≤k<∞

C
q(X,C2k )

2k ×
∏

3≤k<∞

Q
q(X,Q2k )

2k .

Proof. 1. Fix any [K̂]-selection K̃ ⊂ K̂. For every K ∈ K̃ put mK = |X/K±| = {K±x :
x ∈ X} if the index of K in X is infinite and mK = 2|X/K

±|/|H(K)| otherwise. It follows
that |[TK ]| = |TK |/|H(K)| = 2mK and [TK ] is homeomorphic to the Cantor cube 2mK

if the characteristic group H(K) is finite. Let m =
∑
K∈eKmK .

By Theorem 18.7(f), any minimal left ideal L of λ(X) is algebraically isomorphic to
the semigroup

∏
K∈eK H(K)× [TK ], where the orbit spaces [TK ] are endowed with the left

zero multiplication. By Theorem 8.3, for every K ∈ K̃ the characteristic group H(K) is
isomorphic to C2k or Q2k for some k ∈ N∪{∞}. According to the definition, for k ∈ {1, 2}
the group Q2k is isomorphic to the quaternion group Q8. By the definition of q(X,G),
for any group G ∈ {C2k , Q2k : k ∈ N ∪ {∞}} we get q(X,G) = {K ∈ K̃ : H(K) ∼= G}
where ∼= denotes (semi)group isomorphism.

Now we see that

L ∼=
∏
K∈eK

H(K)× [TK ] ∼=
∏
K∈eK

H(K)× 2mK ∼=
∏

1≤k≤∞

C
q(X,C2k )

2k ×
∏

3≤k≤∞

Q
q(X,Q2k )

2k × 2m.

2. If q(X,C2∞) = q(X,Q2∞) = 0, then for every K ∈ K̃ the characteristic group
H(K) is finite and the orbit space [TK ] is a zero-dimensional compact Hausdorff space.
In this case TK is homeomorphic to [TK ] × H(K). If K has finite index in X, then TK
has cardinality 2mK and hence is homeomorphic to the finite cube 2mK . If K has infinite
index in X, then TK is homeomorphic to 2mK by Proposition 12.1. It follows from the
topological equivalence of TK and [TK ] × H(K) that [TK ] is a retract of the Cantor
cube TK and each point of [TK ] has character mK . Now Shchepin’s characterization of
Cantor’s cubes [20] implies that the space [TK ] is homeomorphic to the Cantor cube 2mK .
Then

∏
K∈eK[TK ] is homeomorphic to the Cantor cube 2m =

∏
K∈eK 2mK .
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If II ∩ K̂ = ∅, then for every K ∈ K̃ the endomorphism monoid EndII(TK) contains a
continuous minimal idempotent fK according to Proposition 14.5(1). By Theorem 14.3,
the minimal left ideal LfK

= EndII(TK) ◦ fK is topologically isomorphic to the com-
pact topological semigroup H(K) × [TK ] where the space [TK ] is endowed with the left
zero multiplication. By (the proof of) Corollary 18.6, the minimal idempotent K(λ(X))
contains a maximal linked system E such that the minimal left ideal LE = λ(X) ◦ E
is topologically isomorphic to the minimal left ideal

∏
K∈eK LfK

, which is topologically
isomorphic to the compact topological semigroups∏

K∈eK
H(K)× [TK ] and

∏
1≤k<∞

C
q(X,C2k )

2k ×
∏

3≤k<∞

Q
q(X,Q2k )

2k × 2m.

3. By Theorem 18.7(b) each maximal subgroup H of K(λ(X)) is topologically iso-
morphic to the right-topological group G =

∏
K∈eK H(AK) for some twin sets AK ∈ TK ,

K ∈ K̃. The latter right-topological group is algebraically isomorphic to the group∏
1≤k≤∞

C
q(X,C2k )

2k ×
∏

3≤k≤∞

Q
q(X,Q2k )

2k .

4. If q(X,C2∞) = q(X,Q2∞) = 0, then all characteristic groups H(K), K ∈ K̃, are
finite and then the group G is topologically isomorphic to the compact topological group∏

1≤k<∞

C
q(X,C2k )

2k ×
∏

3≤k<∞

Q
q(X,Q2k )

2k .

19. The structure of the superextensions of abelian groups

In this section we consider the structure of the superextension of abelian groups. In this
case some results of the preceding section can be simplified. In this section we assume
that X is an abelian group. By Theorem 6.2, X is twinic and has trivial twinic ideal
II = {∅}. Let us recall that for a group G we denote by q(X,G) the number of orbits [K],
K ∈ K̂, such that for each K ∈ [K] the characteristic group H(K) is isomorphic to the
group G. It is clear that q(X,Q2k) = 0 for all k ∈ N ∪ {∞}. On the other hand, the
numbers q(X,C2k) can be easily calculated using the following proposition.

Proposition 19.1. If X is an abelian group, then for every k ∈ N ∪ {∞} the cardinal
q(X,C2k) is equal to the number of subgroups H ⊂ X such that the quotient group X/H
is isomorphic to C2k . If k ∈ N, then

q(X,C2k) =
|hom(X,C2k)| − |hom(X,C2k−1)|

2k−1
,

where hom(X,C2k
) is the group of all homomorphisms from X to C2k .

Proof. Since each maximal 2-cogroup K ⊂ X is normal, each orbit [K] ∈ [K̂] consists
of a single maximal 2-cogroup. Consequently, q(X,H) is equal to the number of maxi-
mal 2-cogroups K ⊂ X whose characteristic group H(K) = Stab(K)/KK = X/KK is
isomorphic to H. In other words, q(X,H) equals to the cardinality of the set

K̂H = {K ∈ K̂ : X/KK ∼= H},

where ∼= stands for group isomorphism.
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Let GH be the set of all subgroups G ⊂ X such that the quotient group X/G is
isomorphic to H. The proposition will be proved as soon as we check that the function

f : K̂H → GH , f : K 7→ KK,

is bijective.
To show that f is injective, take any two maximal 2-cogroups K,C with KK =

f(K) = f(C) = CC. The quotient group X/KK = X/CC, being isomorphic to H,
contains a unique element of order 2. Since K and C are cosets of order 2 in X/KK =
X/CC, we conclude that K = C.

To show that f is surjective, take any subgroup G ∈ GH . The quotient group X/G is
isomorphic to H and thus contains a unique element K of order 2. This element K is a
maximal 2-cogroup such that f(K) = KK = G.

To prove the second part of the proposition, observe that for a subgroup H ⊂ X the
quotient group X/H is isomorphic to C2k if and only if H coincides with the kernel of
some epimorphism f : X → C2k . Observe that two epimorphisms f, g : X → C2k have
the same kernel if and only if g = α ◦ f for some automorphism α of the group C2k . The
group C2k has exactly 2k−1 automorphisms determined by the image of the generator
a = eiπ2−k+1

of C2k in the 2-cogroup aC2k−1 . A homomorphism h : X → C2k is an
epimorphism if and only if h(X) 6⊂ C2k−1 . Consequently,

q(X,C2k) =
|hom(X,C2k) \ hom(X,C2k−1)|

2k−1
.

Theorem 19.2. If X is an abelian group, then

(1) each maximal subgroup of the minimal ideal K(λ(X)) is algebraically isomorphic to∏
1≤k≤∞ C

q(X,C2k )

2k ;
(2) each minimal left ideal of λ(X) is homeomorphic to the Cantor cube (2ω)q(X,C2∞ ) ×∏

1≤k<∞(22k−1
)q(X,C2k ) and is algebraically isomorphic to the semigroup∏

1≤k≤∞

(C2k × Zk)q(X,C2k )

where the cube Zk = 22k−1−k (equal to 2ω if k = ∞) is endowed with the left zero
multiplication;

(3) the semigroup λ(X) contains a principal left ideal, which is algebraically isomorphic
to the semigroup ∏

1≤k≤∞

(C2k o ZZk

k )q(X,C2k ).

Proof. Since X is abelian, each 2-cogroup K ∈ K̂ is normal in X and hence has one-
element orbit [K] = {xKx−1 : x ∈ X}. Then the family K̂ is a unique [K̂]-selector. Since
Stab(K) = X, the characteristic group H(K) = Stab(X)/KK is equal to the quotient
group X/KK and is abelian. By Theorem 8.3, H(K) is isomorphic to the (quasi)cyclic
2-group C2n for some n ∈ N ∪ {∞}. Consequently, K̂ =

⋃
1≤n≤∞ K̂n where K̂n is the

subset of K̂ that consists of all maximal 2-cogroups K whose characteristic group H(K) =
X/KK is isomorphic to the group C2k . By the definition of the numbers q(X,G), we get
q(X,C2n) = |K̂n| for all n ∈ N ∪ {∞}.
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1. By Theorem 18.7(a), each maximal subgroup of K(λ(X)) is algebraically isomorphic
to
∏
K∈bK H(K) and the latter group is isomorphic to∏

1≤n≤∞

C
|bKn|
2n =

∏
1≤n≤∞

C
q(X,C2n )
2n .

2. By Theorem 18.7(f), each minimal left ideal of λ(X) is algebraically isomorphic
to
∏
K∈bK(H(K) × [TK ]) where the orbit spaces [TK ] are endowed with the left zero

multiplication. Let Z∞ = 2ω and Zn = 22n−1−n for every n ∈ N. The cubes Zn, n ∈
N ∪ {∞}, are endowed with the left zero multiplication. We claim that |[TK ]| = |Zn| for
each n ∈ N ∪ {∞}. If n is finite, then |X/K±| = 1

2 |X/KK| =
1
2 |H(K)| = 2n−1 and

|[TK ]| = |TK |
|H(K)|

=
2X/K

±

2n
= 22n−1−n = |Zn|.

If n is infinite, then the quotient group H(K) = X/KK is isomorphic to C2∞ and then
|X/K±| = ω. By Proposition 12.1, the space TK is homeomorphic to the Cantor cube 2ω

and hence has the cardinality of the continuum. Since the group H(K) is countable, the
orbit space [TK ] also has cardinality continuum and hence |[TK ]| = |2ω| = |Z∞|. Now we
see that

∏
K∈bK(H(K)× [TK ]) is algebraically isomorphic to

∏
1≤k≤∞(C2k ×Zk)q(X,C2k ).

3. Since X has trivial twinic ideal, II ∩ K̂ = ∅ and by Corollary 18.5(c) and The-
orem 14.1(3), the semigroup λ(X) contains a principal left ideal that is algebraically
isomorphic to the semigroup

∏
K∈bK H(K) o [TK ][TK ], which is algebraically isomorphic to∏

1≤k≤∞(C2k o ZZk

k )q(X,C2k ).

The following theorem characterizes the groupsX for which the algebraic isomorphism
in Theorem 19.2 are topological.

Theorem 19.3. For an abelian group X the following conditions are equivalent :

(1) the group X admits no homomorphism onto the quasicyclic 2-group C2∞ ;
(2) each maximal subgroup in the minimal ideal K(λ(X)) of λ(X) is topologically iso-

morphic to the compact topological group
∏
k∈N C

q(X,C2k )

2k ;
(3) each maximal subgroup in K(λ(X)) is a topological group;
(4) some maximal subgroup of K(λ(X)) is compact;
(5) each minimal left ideal of λ(X) is topologically isomorphic to the compact topological

semigroup ∏
k∈N

(C2k × Zk)q(X,C2k )

where the finite cube Zk = 22k−1−k is endowed with the left zero multiplication;
(6) λ(X) contains a principal left ideal which is topologically isomorphic to the compact

topological semigroup ∏
k∈N

(C2k o ZZk

k )q(X,C2k ).

Proof. Let the subfamilies K̂n ⊂ K̂ and the Cantor cubes Zn = 22n−1−n, n ∈ N ∪ {∞},
be defined as in the proof of Theorem 19.2. Then q(X,C2n) = |K̂n|.
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(1)⇒(5, 6) If X admits no homomorphism onto C2∞ , then q(X,C2∞) = 0 and K̂∞
= ∅. In this case K̂ =

⋃
n∈N K̂n. For every n ∈ N and K ∈ K̂n the characteristic group

H(K) is isomorphic to C2n and the orbit space [TK ] is homeomorphic to the cube Zk. By
Theorem 14.1(3), the monoid End(TK) is (topologically) isomorphic to H(K) o [TK ][TK ]

and the latter semigroup is topologically isomorphic to C2n o Z Zn
n .

By Theorem 18.7(g), each minimal left ideal of λ(X) is topologically isomorphic to∏
K∈bK

H(K)× [TK ] =
∏
n∈N

∏
K∈bKn

H(K)× [TK ]

and the latter semigroup is topologically isomorphic to the compact topological semigroup∏
k∈N

(C2k × Zk)q(X,C2k ).

By Corollary 18.5(3) and Theorem 14.1(3), the semigroup λ(X) contains a prin-
cipal left ideal that is topologically isomorphic to the compact topological semigroup∏
K∈eK H(K) o [TK ][TK ] =

∏
n∈N

∏
K∈bKn

H(K) o [TK ][TK ], which is topologically isomor-
phic to the compact topological semigroup∏

k∈N
(C2k o ZZk

k )q(X,C2k ).

The implications (5)⇒(2)⇒(3) are trivial.
(3)⇒(1) If the group X admits a homomorphism onto C2∞ , then the family K̂ con-

tains a 2-cogroup K∞ whose characteristic group H(K∞) is isomorphic to C2∞ . It fol-
lows from Example 9.3(2) that for some twin set AK∞ ∈ TK∞ the twin-generated group
H(AK∞) is not a topological group. Now choose a sequence (AK)K∈bK ∈∏K∈bK TK of twin
sets such that AK = AK∞ if K = K∞. Then the right-topological group

∏
K∈bK H(AK)

is not a topological group. By Corollary 18.6, this right-topological group is topologi-
cally isomorphic to some maximal subgroup of the minimal ideal K(λ(X)). So, K(λ(X))
contains a maximal subgroup which is not a topological group.

(6)⇒(4) If λ(X) contains a left ideal which is a topological semigroup, then λ(X)
contains a minimal left ideal which is a topological semigroup. Any maximal subgroup of
this minimal left ideal is a compact topological group.

(4)⇒(1) IfK(λ(X)) contains a compact maximal subgroup, then by Theorem 18.7(c),
each characteristic group H(K), K ∈ K̂, is finite and hence q(X,C2∞) = 0.

Finally, we shall characterize abelian groups whose superextension contains metrizable
minimal left ideals. The characterization involves the notions of free rank and 2-rank (see
[7, §16] or [19, §4.2]).

Let us recall that a subset A 63 e of an abelian group G with neutral element e
is called independent if for any disjoint subsets B,C ⊂ A the subgroups 〈B〉 and 〈C〉
generated by B,C intersect in the trivial subgroup. The cardinality of a maximal inde-
pendent subset A ⊂ G that consists of elements of infinite order (resp. of order that is
a power of 2) is called the free rank (resp. the 2-rank) of G and is denoted by r0(G)
(resp. r2(G)).
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Theorem 19.4. For an abelian group X the following conditions are equivalent:

(1) each minimal left ideal of λ(X) is metrizable;
(2) the family K̂ of maximal 2-cogroups is at most countable;
(3) the group X admits no epimorphism onto the group C2∞ ⊕ C2∞ and X has finite

ranks r0(X) and r2(X).

Proof. (1)⇔(2) By Theorem 19.2(2), each minimal left ideal is homeomorphic to the
cube

(2ω)q(X,C2∞ ) ×
∏

1≤k<∞

(22k−1
)q(X,C2k ),

which is metrizable if and only if |K̂| =
∑

1≤k≤∞ q(X,C2k) ≤ ℵ0.
For the proof of the equivalence (2)⇔(3) we need two lemmas. We define a group G

to be K̂-countable if the family of maximal 2-cogroups in G is at most countable.

Lemma 19.5. Each subgroup and each quotient group of a K̂-countable group is K̂-
countable.

Proof. Assume that a group G is K̂-countable. To prove that any subgroup H ⊂ G is
K̂-countable, observe that by Proposition 7.3(2), each 2-cogroup K ⊂ H can be enlarged
to a maximal 2-cogroup K̄ in G. The maximality of K in H guarantees that K = K̄ ∩H.
This implies that the number of maximal 2-cogroups in H does not exceed the number
of maximal 2-cogroups in G.

To prove that any quotient group G/H of G by a normal subgroup H ⊂ G is K̂-
countable, observe that for each maximal 2-cogroup K ⊂ G/H the preimage q−1(K)
under the quotient homomorphism q : G → G/H is a maximal 2-cogroup in G. This
implies that the number of maximal 2-cogroups in G/H does not exceed the number of
maximal 2-cogroups of G.

For a group G with neutral element e and a set A we denote by

⊕AG = {(xα)α∈A ∈ GA : |{α ∈ A : xα 6= e}| < ℵ0}

the direct sum of |A| many copies of G.

Lemma 19.6. The groups ⊕ωC2, ⊕ωZ and C2∞ × C2∞ are not K̂-countable.

Proof. Observe that for any abelian group X the number q(X,C2) is equal to the number
of subgroups having index 2 and is equal to the number of non-trivial homomorphisms
h : X → C2.

Each (non-empty) subset A ⊂ ω determines a (non-trivial) homomorphism

hA : ⊕ωC2 → C2, hA : (xi)i∈ω 7→
∏
i∈A

xi.

For any distinct subsets A,B ⊂ ω the homomorphisms hA and hB are distinct. Conse-
quently, for the group X = ⊕ωC2, the family K̂ of maximal 2-cogroups has cardinality
|K̂| ≥ hom(X,C2) = 2ω and hence this group is not K̂-countable.

Since ⊕ωC2 is a quotient group of ⊕ωZ, the latter group is not K̂-countable.
Finally, we show that X = C2∞ × C2∞ is not K̂-countable. It is well-known (see [7,

§43]) that the quasicyclic group C2∞ has uncountable automorphism group Aut(C2∞).
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For any automorphism h : C2∞ → C2∞ its graph Γh = {(x, h(x)) : x ∈ C2∞} is a
subgroup of X = C2∞ × C2∞ such that the quotient group X/Γh is isomorphic to C2∞ .
Consequently, q(X,C2∞) ≥ Auth(C2∞) > ℵ0 and hence X is not K̂-countable.

Now we are able to prove the equivalence (2)⇔(3) of Theorem 19.4. The implication
(2)⇒(3) follows from Lemmas 19.5 and 19.6.

To prove the implication (3)⇒(2), assume that an abelian group X has finite free
rank and 2-rank, and X admits no homomorphism onto the group C2∞ ⊕ C2∞ . By
Proposition 19.1, the cardinality of the set K̂ of maximal 2-cogroups in X is equal to
the cardinality of the family H of subgroups H ⊂ X such that the quotient group X/H
is isomorphic to C2k for some 1 ≤ k ≤ ∞. So, it suffices to prove that |H| ≤ ℵ0.

Consider the subgroup Xodd ⊂ X consisting of the elements of odd order. Since X
has finite free rank and 2-rank, so does the quotient group X/Xodd. The quotient group
Y = X/Xodd is at most countable (because it contains no elements of odd order and has
finite free rank and 2-rank). Let q : X → Y be the quotient homomorphism.

LetM be the family of maximal independent subsets consisting of elements of infinite
order in the group Y = X/Xodd. Since the free rank of Y is finite, each (independent)
set M ∈M is finite and henceM is at most countable.

For each M ∈ M consider the free abelian subgroup 〈M〉 ⊂ Y generated by M . Let
GM = Y/〈M〉 be the quotient group and qM : Y → GM be the quotient homomorphism.
The maximality of M implies that GM is a torsion group. Since the free rank and the
2-rank of Y are finite, GM has finite 2-rank. The group GM is the direct sum GM =
OM ⊕ DM of the subgroup OM of elements of odd order and the maximal 2-subgroup
DM ⊂ GM . Let pM : GM → DM = GM/OM be the quotient homomorphism.

We claim that the group DM has at most countably many subgroups. Since DM is
a quotient group of X and X admits no homomorphism onto the group C2

2∞ , the group
DM also admits no homomorphism onto C2

2∞ . Two cases are possible.
1) The group DM contains no subgroup isomorphic to C2∞ . In this case Prüfer’s

Theorem 17.2 of [7] guarantees that DM is a direct sum of cyclic 2-groups. Since DM

has finite 2-rank, it is finite, being a finite sum of cyclic 2-groups. Thus DM has finitely
many subgroups.

2) The group DM contains a subgroup D ⊂M isomorphic to C2∞ . Being divisible, the
subgroup D is complemented in DM , which means that DM = D⊕F for some subgroup
F ⊂ DM . Since DM admits no homomorphism onto C2

2∞ , the subgroup F contains
no subgroup isomorphic to C2∞ and hence is finite by the preceding case. Taking into
account that the quasicyclic 2-group D has countably many subgroups, we conclude that
the group DM = D ⊕ F also has countably many subgroups.

In both cases the family DM of subgroups of DM is at most countable. Then the
family HM = {(pM ◦ qM ◦ q)−1(H) : H ∈ DM} is also at most countable. It remains to
check that H ⊂

⋃
M∈MHM .

Fix any subgroup H ∈ H. By the definition of H, the quotient group X/H is a 2-
group, which implies Xodd ⊂ H. Then H = q−1(HY ) where HY = q(H). Let M be
a maximal independent subset of HY that consists of elements of infinite order. Since
Y/HY = X/H is a torsion group, the set M is maximal in Y and hence belongs toM. It
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follows that 〈M〉 ⊂ HY and hence HY = q−1
M (HM ) where HM = qM (HY ) ⊂ GM . Since

GM/HM = Y/HY = X/H is a 2-group, the subgroup HM contains the subgroup OM of
elements of odd order in GM . Then HM = p−1

M (GM ) where GM = pM (HM ) ⊂ DM . Since
GM ∈ DM , the group H = (pM ◦ qM ◦ q)−1(GM ) belongs to the family HM ⊂ H.

20. Compact reflexions of groups

In this section X is an arbitrary group. Till this moment our strategy in describing the
minimal left ideals of the semigroups λ(X) consisted in finding a relatively small subfamily
F ⊂ P(X) such that the function representation ΦF : λ(X)→ Endλ(F) is injective on all
minimal left ideals of λ(X). Now we shall simplify the group X keeping the minimal left
ideals of λ(X) unchanged.

We shall describe three such simplifying procedures. One of them is the factorization
of X by the subgroup

Odd =
⋂
K∈bK

KK.

Here we assume that Odd = X if the set K̂ is empty.
The following proposition explains the choice of the notation for the subgroup Odd.

We recall that a group G is called odd if each element of G has odd order.

Proposition 20.1. Odd is the largest normal odd subgroup of X. If X is abelian, then
Odd coincides with the set of all elements having odd order in X.

Proof. The normality of the subgroup Odd =
⋂
K∈bKKK follows from the fact that

xKx−1 ∈ K̂ for every K ∈ K̂ and x ∈ X. Next, we show that the group Odd is odd.
Assuming the contrary, we could find an element a ∈ Odd such that the sets a2Z = {a2n :
n ∈ Z} and a2Z+1 = {a2n+1 : n ∈ Z} are disjoint. Then the 2-cogroup a2Z+1 of X can
be enlarged to a maximal 2-cogroup K ∈ K̂. It follows that a ∈ K ⊂ X \KK and thus
a /∈ Odd, which is a contradiction.

It remains to prove that Odd contains any normal odd subgroup H ⊂ X. It suffices
to check that for every maximal 2-cogroup K ∈ K̂ the subgroup H ⊂ X lies in the
group KK. Let K± = K ∪KK. Since the subgroup H is normal in X, the sets KKH =
HKK and K±H = HK± are subgroups. We claim that the sets KH = HK and
KKH = HKK are disjoint. Assuming that KH ∩ KKH 6= ∅, we can find x ∈ K

such that x ∈ KKH. Since KK = xK, there are z ∈ K and h ∈ H such that x = xzh.
Then z = h−1 ∈ K ∩ H. Now consider the cyclic subgroup z2Z = {z2n : n ∈ Z}. Since
z ∈ K, the subgroup z2Z does not intersect the set z2Z+1 = {z2n+1 : n ∈ Z}. On the other
hand, since H is odd, there is an n ∈ Z with z2n+1 = z0 ∈ z2Z+1∩z2Z. This contradiction
shows that KH and KKH are disjoint. Consequently, the subgroup KKH has index 2
in the group K±H and hence KH = K±H \KKH is a 2-cogroup in X containing H.
The maximality of K in K guarantees that K = KH and hence H ⊂ KK.

The quotient homomorphism qodd : X → X/Odd generates a continuous semigroup
homomorphism λ(qodd) : λ(X)→ λ(X/Odd).
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The following theorem was proved in [3, 3.3].

Theorem 20.2. The homomorphism λ(qodd) : λ(X) → λ(X/Odd) is injective on each
minimal left ideal of λ(X).

Next, we define two compact topological groups called the first and second profinite
reflexions of the group X. To define the first profinite reflexion, consider the family N of
all normal subgroups of X with finite index in X. For each subgroup H ∈ N consider the
quotient homomorphism qH : X → X/H. The diagonal product of those homomorphisms
determines the homomorphism q : X →

∏
H∈N X/H of X into the compact topological

group
∏
H∈N X/H. The closure of the image q(X) in

∏
H∈N X/H is denoted by X̄ and

is called the profinite reflexion of X.
The second profinite reflexion X̄2 is defined in a similar way using the subfamily

N2 =
{ ⋂
x∈X

xKKx−1 : K ∈ K̂, |X/K| < ℵ0

}
of N . The quotient homomorphisms qH : X → X/H, H ∈ N2, compose a homomorphism
q2 : X →

∏
H∈N2

X/H. The closure of the image q2(X) in
∏
H∈N2

X/H is denoted by X̄2

and is called the second profinite reflexion of X. Since Ker(q2) =
⋂
N2 ⊃

⋂
K∈bKKK ⊃

Odd, the homomorphism q2 : X → X̄2 factorizes through the group X/Odd in the sense
that there is a unique homomorphism qeven : X/Odd→ X̄2 such that q2 = qeven ◦ qodd.

Thus we get the following commutative diagram:

X
qodd //

q2

""FF
FF

FF
FF

F

q

��

X/Odd

qeven

��
X̄

pr // X̄2

Applying to this diagram the functor λ of superextension we get the diagram

λ(X)
λ(qodd)//

λ(q2)

%%KKKKKKKKKK

λ(q)

��

λ(X/Odd)

λ(qeven)

��
λ(X̄)

λ(pr) // λ(X̄2)

In this diagram λ(X̄) and λ(X̄2) are the superextensions of the compact topological
groups X̄ and X̄2. We recall that the superextension λ(K) of a compact Hausdorff space
K is the closed subspace of the second exponent exp(exp(K)) that consists of the maximal
linked systems of closed subsets of K (see [22, §2.1.3]).

Theorem 20.3. If each maximal 2-cogroup K of a twinic group X has finite index in X,
then the homomorphism λ(q2) : λ(X) → λ(X̄2) is injective on each minimal left ideal
of λ(X).

Proof. The injectivity of the homomorphism λ(q2) on a minimal left ideal L of λ(X) will
follow as soon as for any distinct maximal linked systems A,B ∈ L we find a subgroup
H ∈ N2 such that λqH(A) 6= λqH(B). Fix any [K̂]-selector K̃ ⊂ K̂.
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By Corollary 18.5, the homomorphism ΦeT : λ(X) →
∏
K∈eK Endλ(TK), ΦeT : L 7→

(ΦL|TK)K∈eK, is injective on the minimal left ideal L. Consequently, ΦA|TK 6= ΦB|TK
for some K ∈ K̃ and we can find a set T ∈ TK such that ΦA(T ) 6= ΦB(T ).

Since the 2-cogroupK has finite index inX, the normal subgroupH=
⋂
x∈X xKKx

−1

has finite index in X and belongs to the family N2. Consider the finite quotient group
X/H and let qH : X → X/H be the quotient homomorphism. Since H ⊂ KK, the set
T = KKT coincides with the preimage q−1

H (T ′) of some twin set T ′ ∈ X/H. This fact
can be used to show that λqH(A) 6= λqH(B).

Remark 20.4. For each finite abelian group X the group X/Odd is a 2-group. For non-
commutative groups this is not always true: for the group X = A4 of even permutations
of the set 4 = {0, 1, 2, 3} the group X/Odd coincides with X (see Section 21.5). Also
X/Odd coincides with X for any simple group.

21. Some examples

Now we consider the superextensions of some concrete groups.

21.1. The infinite cyclic group Z. In order to compare the algebraic properties of
the semigroups λ(Z) and β(Z) let us recall a deep result of E. Zelenyuk [23] (see also [12,
§7.1]) who proved that each finite subgroup in the subsemigroup β(Z) ⊂ λ(Z) is trivial.
It turns out that the semigroup λ(Z) has a totally different property.

Theorem 21.1.

(1) The semigroup λ(Z) contains a principal left ideal topologically isomorphic to∏∞
k=1 C2k o ZZk

k where Zk = 22k−1−k.
(2) Each minimal left ideal of λ(Z) is topologically isomorphic to 2ω ×

∏∞
k=1 C2k where

the Cantor cube 2ω is endowed with the left zero multiplication.
(3) Each maximal group of the minimal ideal K(λ(Z)) is topologically isomorphic to∏∞

k=1 C2k .
(4) The semigroup λ(Z) contains a topologically isomorphic copy of each second countable

profinite topological semigroup.

Proof. The group Z is abelian and hence has trivial twinic ideal according to Theorem 6.2.
It is easy to see that q(Z, C2k) = 1 for all k ∈ N, while q(Z, C2∞) = 0.

1. By Theorem 19.3(6), the semigroup λ(Z) contains a principal left ideal that is
topologically isomorphic to

∏∞
k=1 C2k o ZZk

k where Zk = 22k−1−k.
2. By Theorem 19.3(5), each minimal left ideal L of λ(Z) is topologically isomorphic to∏∞

k=1 C2k×Zk where each cube Zk = 22k−1−k is endowed with the left zero multiplication.
It is easy to see that the left zero semigroup

∏∞
k=1 Zk is topologically isomorphic to the

Cantor cube 2ω endowed with the left zero multiplication. Consequently, L is topologically
isomorphic to 2ω ×

∏∞
k=1 C2k .

3. The preceding item implies that each maximal group of the minimal ideal K(λ(Z))
is topologically isomorphic to

∏∞
k=1 C2k .
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4. The fourth item follows from the first item and the following well-known fact (see
[5, I.1.3]).

Lemma 21.2. Each semigroup S is algebraically isomorphic to a subsemigroup of the
semigroup AA of all self-maps of a set A of cardinality |A| ≥ |S1| where S1 is S with
attached unit.

21.2. The (quasi)cyclic 2-groups C2n . For a cyclic 2-group X = C2n ,

q(X,C2k) =

{
1 if k ≤ n,
0 otherwise.

Applying Theorem 19.3 we get:

Theorem 21.3. For every n ∈ N,

(1) the semigroup λ(C2n) contains a principal left ideal isomorphic to
∏n
k=1 C2k o ZZk

k

where Zk = 22k−1−k;
(2) each minimal left ideal of λ(C2n) is isomorphic to

∏n
k=1 C2k × Zk where each cube

Zk = 22k−1−k is endowed with the left zero multiplication;
(3) each maximal group of the minimal ideal K(λ(C2n)) is isomorphic to

∏n
k=1 C2k ;

(4) the semigroup λ(C2n) contains an isomorphic copy of each semigroup S of cardinality
|S| < 22n−1−n.

The superextension λ(C2∞) has even more interesting properties.

Theorem 21.4.

(1) Minimal left ideals of the semigroup λ(C2∞) are not topological semigroups.
(2) Each minimal left ideal of λ(C2∞) is homeomorphic to the Cantor cube 2ω and is

algebraically isomorphic to c × (C2∞)ω where the cardinal c = 2ℵ0 is endowed with
the left zero multiplication.

(3) The semigroup λ(C2∞) contains a principal left ideal which is algebraically isomorphic
to (C2∞ o cc)ω.

(4) λ(C2∞) contains an isomorphic copy of each semigroup of cardinality ≤ c.
(5) Each maximal subgroup of the minimal ideal K(λ(C2∞)) of λ(C2∞) is algebraically

isomorphic to (C2∞)ω.
(6) Each maximal subgroup of the minimal ideal K(λ(C2∞)) is topologically isomorphic

to the countable product
∏∞
n=1(C2∞ , τn) of quasicyclic 2-groups endowed with twin-

generated topologies.
(7) For any twin-generated topologies τn, n ∈ N, on C2∞ the right-topological group∏∞

n=1(C2∞ , τn) is topologically isomorphic to a maximal subgroup of K(λ(C2∞)).

Proof. Since each proper subgroup of C2∞ is finite, the family K̂ of maximal 2-cogroups is
countable and hence can be enumerated as K̂ = {Kn : n ∈ ω}. Each maximal 2-cogroup
K ∈ K̂ has infinite index and its characteristic group H(K) is isomorphic to C2∞ .

1. The equivalence (1)⇔(2) of Theorem 19.3 implies that no minimal left ideal of
λ(C2∞) is a topological semigroup.

2, 3, 5. The statements (2), (3) and (5) follow from Theorem 19.2.
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4. The fourth item follows from the third one because each semigroup S of cardinality
|S| ≤ c embeds into the semigroup cc according to Lemma 21.2.

6. By Theorem 18.7(b), each maximal subgroup G in the minimal ideal K(λ(C2∞)) is
topologically isomorphic to the product

∏
K∈bK H(AK) of the structure groups of suitable

twin subsets AK ∈ TK = T[K], K ∈ K̂. For each maximal 2-cogroup K ∈ K̂ the structure
group H(AK) is just C2∞ endowed with a twin-generated topology.

7. Now assume conversely that τn, n ∈ N, are twin-generated topologies on the qua-
sicyclic group C2∞ . For every n ∈ N find a twin subset An ∈ TKn

whose structure
group H(An) is topologically isomorphic to (C2∞ , τn). By Theorem 18.8, the product∏∞
n=1 H(An) is topologically isomorphic to some maximal subgroup of K(λ(C2∞)).

Remark 21.5. Theorems 21.4(7) and 9.5 imply that among maximal subgroups of the
minimal ideal of λ(C2∞) are:

• Raikov complete topological groups;
• incomplete totally bounded topological groups;
• paratopological groups which are not topological groups;
• semitopological groups which are not paratopological groups.

21.3. The groups Q2n of generalized quaternions. We start with the quaternion
group Q8 = {±1,±i,±j,±k}. It contains three cyclic subgroups of order 4 corresponding
to 4-element maximal 2-cogroups: K1 = Q8 \ 〈i〉, K2 = Q8 \ 〈j〉, K3 = Q8 \ 〈k〉. The
characteristic groups of those 2-cogroups are isomorphic to C2. The trivial subgroup
of Q8 corresponds to the maximal 2-cogroup K0 = {−1} whose characteristic group
coincides with Q8. By Proposition 14.2, we get

|[TK0 ]| = |TK0 |
|H(K0)|

=
2|X/K

±
0 |

|Q8|
= 2

and |[TKi ]| = 1 for i ∈ {1, 2, 3}. By Theorem 18.7(2), each minimal left ideal of the
semigroup λ(Q8) is isomorphic to

(Q8 × 2)× (C2 × 1)3 = 2×Q8 × C3
2 .

Next, given any finite number n ≥ 3 we consider the generalized quaternion group
Q2n+1 . Maximal 2-cogroups in Q2n+1 are of the following form:

K0 = {−1}, K1 = Q2n+1 \ C2n and Kk,x = {1, x} · (C2k \ C2k−1)

for 2 ≤ k ≤ n and x ∈ Q2n+1 \ C2n . It follows that H(K0) = Q2n+1 , H(K1) = C2 and
H(Kk,x) = C2. Also

|[TK0 ]| = |TK0 |
|H(K0)|

=
2|Q2n+1/K

±
0 |

|Q2n+1 |
=

22n

2n+1
= 22n−n−1,

|[TK1 ]| = |TK1 |
|H(K1)|

=
2|Q2n+1/K

±
1 |

|C2|
=

21

2
= 1,

|[TKk,x
]| =

|TKk,x
|

|H(Kk,x)|
=

2|Q2n+1/K
±
k,x|

|C2|
=

22n+1/2k+1

2
= 22n−k−1.
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It is easy to check that two 2-cogroups Kk,x and Kk,y are conjugate if and only if
xy−1 ∈ C2n−1 . Taking any elements x, y ∈ Q2n+1 \ C2n with xy−1 /∈ C2n , we conclude
that the family

K̃ = {K0,Kk,x,Kk,y : 2 ≤ k ≤ n}

is a [K̂]-selector. Applying Theorems 18.7, 14.1(3) and Corollary 18.5(3), we get:

Theorem 21.6. Let n ≥ 2 be a finite number. Then

(1) each minimal left ideal of the semigroup λ(Q2n+1) is isomorphic to

Q2n+1 × 22n−n−1 × C2 ×
n∏
k=2

(C2 × 22n−k−1)2,

where the cubes 22n−n−1 and 22n−k−1 are endowed with the left zero multiplication;
(2) each maximal subgroup of the minimal ideal K(λ(Q2n+1)) is isomorphic to Q2n+1 ×

C2n−1
2 .

The infinite group Q2∞ of generalized quaternions has a similar structure. This group
contains the following maximal 2-cogroups:

K0 = {−1}, K1 = Q2∞ \ C2∞ , and Kk,x = {1, x} · C2k \ C2k−1

where k ≥ 2 and x ∈ Q2∞ \ C2∞ . For these 2-cogroups we get

H(K0) = Q2∞ , H(K1) = C2, and H(Kk,x) = C2

and
|[TK0 ]| = c, |[TK1 ]| = 1, and |[TKk,x

]| = c.

Any two 2-cogroups Kk,x, Kk,y are conjugate. Then for any b ∈ Q2∞ \ C2∞ the family
K̃ = {K0,Kk,b : k ∈ N} is a [K̂]-selector. By analogy with Theorem 21.4 we can prove:

Theorem 21.7. For the group Q2∞ ,

(1) minimal left ideals of the semigroup λ(C2∞) are not topological semigroups;
(2) each minimal left ideal of the semigroup λ(Q2∞) is homeomorphic to the Cantor cube

and is algebraically isomorphic to

Q2∞ × Cω2 × c,

where the cardinal c is endowed with the left zero multiplication;
(3) the semigroup λ(Q2∞) contains a principal ideal isomorphic to

(Q2∞ o cc)× C2 × (C2 o cc)ω;

(4) λ(Q2∞) contains an isomorphic copy of each semigroup of cardinality ≤ c;
(5) each maximal subgroup of the minimal ideal K(λ(Q2∞)) is topologically isomorphic

to (Q2∞ , τ)× Cω2 where τ is a twin-generated topology on Q2∞ ;
(6) for any twin-generated topology τ on Q2∞ the right-topological group (Q2∞ , τ)× Cω2

is topologically isomorphic to a maximal subgroup of K(λ(Q2∞)).

Remark 21.8. Theorems 21.7(6) and 9.5 imply that among maximal subgroups of the
minimal ideal of λ(Q2∞) are:
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• Raikov complete topological groups,
• incomplete totally bounded topological groups,
• right-topological groups which are not left-topological groups,
• semitopological groups which are not paratopological groups.

21.4. The dihedral 2-groups D2n . By the dihedral group D2n of even order 2n we
understand any group with presentation

〈a, b | an = b2 = 1, bab−1 = a−1〉.

It can be realized as the group of symmetries of a regular n-gon. So, D2n is a subgroup
of the orthogonal group O(2). The group D2n contains the cyclic subgroup Cn = 〈a〉 of
index 2. The subgroup of all elements of odd order is normal in D2n and hence coin-
cides with the maximal normal odd subgroup Odd. By Theorem 20.2, the superextension
λ(D2n) is isomorphic to the superextension λ(D2n/Odd) of the quotient group D2n/Odd.
The latter group is isomorphic to the dihedral group D2k where 2k is the maximal power
of 2 that divides 2n. Therefore it suffices to consider the superextensions of the dihedral
2-groups D2k .

By the infinite dihedral 2-group we understand the union

D2∞ =
⋃
k∈N

D2k ⊂ O(2).

It contains the quasicyclic 2-group C2∞ as a normal subgroup of index 2.
Now we analyze the structure of the superextension λ(D2n) for finite n ≥ 1. Maximal

2-cogroups in D2n are of the following form:

K0 = D2n \ C2n−1 and Kk,x = {1, x} · (C2k \ C2k−1)

where 1 ≤ k < n and x ∈ K0 = D2n \C2n−1 . The characteristic groups of these maximal
2-cogroups are isomorphic to the 2-element cyclic group C2. Also

|[TK0 ]| = 1 and |[TKk,x
]| = |2

D2n/K±k,x |
|H(K)|

= 22n−k−1

for all 1 ≤ k < n and x ∈ K0.
Let b ∈ D2n \C2n−1 and a be the generator of the cyclic subgroup C2n−1 ⊂ D2n . One

can check that two 2-cogroups Kk,x and Kk,y are conjugate if and only if x−1y ∈ C2n−2 .
Therefore the family

K̃ = {K0,Kk,b,Kk,ab : 1 ≤ k < n}

is a [K̂]-selector.
Applying Theorems 18.7, 14.1 and Corollary 18.5(3), we get

Theorem 21.9. For every n ∈ N,

(1) the semigroup λ(D2n) contains a principal left ideal isomorphic to
C2 ×

∏n−1
k=1(C2 o ZZk

k )2 where Zk = 22n−k−1;
(2) each minimal left ideal of λ(D2n) is isomorphic to C2 ×

∏n
k=1(C2 × Zk)2 where the

cubes Zp are endowed with the left zero multiplication;
(3) each maximal group of the minimal ideal K(λ(D2n+1)) is isomorphic to C2n−1

2 ;
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(4) the semigroup λ(D2n+1) contains an isomorphic copy of each semigroup S of cardi-
nality |S| < 22n−1−1.

The superextension of the infinite dihedral 2-group D2∞ has quite interesting prop-
erties. All maximal subgroups of the minimal ideal K(λ(D2∞)) are compact topological
groups. On the other hand, in the semigroup λ(D2∞) there are minimal left ideals which
are (or are not) topological semigroups.

Theorem 21.10. For the group D2∞

(1) each minimal left ideal of the semigroup λ(D2∞) is homeomorphic to the Cantor cube
2ω and is algebraically isomorphic to the compact topological semigroup Cω2 ×2ω where
the Cantor cube 2ω is endowed with the left zero multiplication;

(2) each maximal subgroup of the minimal ideal K(λ(D2∞)) is topologically isomorphic
to the compact topological group Cω2 ;

(3) λ(D2∞) contains a minimal left ideal which is topologically isomorphic to the compact
topological semigroup Cω2 × 2ω;

(4) λ(D2∞) contains a minimal left ideal which is not a semitopological semigroup;
(5) the semigroup λ(D2∞) contains a principal ideal isomorphic to C2 × (C2 o cc)ω;
(6) λ(D2∞) contains an isomorphic copy of each semigroup of cardinality ≤ c.

Proof. First note that by Theorem 6.2 the torsion group X = D2∞ is twinic and has
trivial twinic ideal.

Maximal 2-cogroups in D2∞ are of the following form:

K0 = D2∞ \ C2∞ and Kk,x = {1, x} · (C2k \ C2k−1)

where k ∈ N and x ∈ K0. The characteristic groups of these maximal 2-cogroups are
isomorphic to the 2-element cyclic group C2. Consequently, for any twin set A ∈ T̂ its
characteristic group H(A) is topologically isomorphic to C2. Observe that

|[TK0 ]| = 1 and |[TKk,x
]| = 2ω

for all k ∈ N and x ∈ K0. Since the characteristic group H(Kk,x) = C2 is finite, the
orbit space [TKp,x ] is a compact Hausdorff space, homeomorphic to the Cantor cube 2ω.
One can check that any two 2-cogroups Kk,x and Kk,y are conjugate. Therefore for any
b ∈ D2∞ \ C2∞ the family K̃ = {K0,Kk,b : k ∈ N} is a [K̂]-selector.

1. By Theorem 18.7(e) and Proposition 12.1, each minimal left ideal of λ(X) is homeo-
morphic to the product

∏
K∈eK TK , which is homeomorphic to 2X/K

±
0 ×

∏
k∈N 2X/K

±
k,b .

The latter space is homeomorphic to the Cantor cube 2ω.
By Theorem 18.7(e), each minimal left ideal of λ(X) is algebraically isomorphic to∏

K∈eK H(K)× [TK ] and the latter semigroup is isomorphic to Cω2 × 2ω where the Cantor
cube 2ω is endowed with the left zero multiplication.

2. Since each characteristic group H(A), A ∈ T̂, is topologically isomorphic to C2,
applying Theorem 18.7(b), we conclude that each maximal subgroup in K(λ(X)) is topo-
logically isomorphic to the compact topological group Cω2 .

3. Since each characteristic group H(K), K ∈ K̂, is finite (being isomorphic to C2),
Proposition 18.10 implies that some minimal left ideal of λ(X) is a topological semigroup
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which is topologically isomorphic to the compact topological semigroup∏
K∈eK

H(K)× [TK ] = H(K0)× [TK0 ]×
∏
k∈N

(H(Kk,b)× [TKk,b
])

by Theorem 18.7(g). The latter topological semigroup is topologically isomorphic to
Cω2 × 2ω.

4. Since the maximal 2-cogroups Kk,b, k ∈ N, have infinite index in D2∞ , Proposi-
tion 18.9 implies that the semigroup λ(D2∞) contains a minimal left ideal which is not a
semitopological semigroup.

5. By Corollary 18.5(3) and Theorem 14.1(3), the semigroup λ(D2∞) contains a prin-
cipal left ideal that is algebraically isomorphic to the semigroup

∏
K∈eK(H(K) o [TK ][TK ]),

which is isomorphic to C2 × (C2 o cc)ω.
6. By the preceding item, λ(D2∞) contains a subsemigroup isomorphic to the semi-

group cc of all self-mappings of the continuum c. By Lemma 21.2, the latter semigroup
contains an isomorphic copy of each semigroup of cardinality ≤ c.

21.5. Superextensions of finite groups of order < 16. Theorem 19.3 and Proposi-
tion 19.1 give us an algorithmic way of calculating the minimal left ideals of the superex-
tensions of finitely-generated abelian groups. For non-abelian groups the situation is a
bit more complicated. In this section we shall describe the minimal left ideals of finite
groups X of order |X| < 16.

In fact, Theorem 20.2 helps us to reduce the problem to studying superextensions of
groups X/Odd. The group X/Odd is trivial if the order of X is odd. So, it suffices to
check non-abelian groups of even order. If X is a 2-group, then the subgroup Odd of X
is trivial and hence X/Odd = X. Also the subgroup Odd is trivial for simple groups.

The table below describes the structure of minimal left ideals of the superextensions
of groups X = X/Odd of order |X| ≤ 15. In this table E stands for a minimal idempotent
of λ(X) which generates the principal left ideal λ(X)◦E and lies in the maximal subgroup
H(E) = E ◦ λ(X) ◦ E . Below, the cubes 2n are considered as semigroups of left zeros.

X |E(λ(X) ◦ E)| E ◦ λ(X) ◦ E λ(X) ◦ E
C2 1 C2 C2

C4 1 C2 × C4 C2 × C4

C2
2 1 C3

2 C3
2

C3
2 1 C7

2 C7
2

C2 ⊕ C4 1 C2
2 × C2

4 C3
2 × C2

4

C8 2 C2 × C4 × C8 2× C2 × C4 × C8

D8 2 C5
2 22 × C5

2

Q8 2 C3
2 ×Q8 2× C3

2 ×Q8

A4 26 C3
2 26 × C3

2

For abelian groups the entries of this table are calculated with the help of Theo-
rem 19.3 and Proposition 19.1. Let us illustrate this by the example of the group C2⊕C4.
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By Proposition 19.1, for the group X = C2 ⊕ C4 we get

• q(X,C2) = |hom(X,C2)| − |hom(X,C1)| = 2 · 2− 1 = 3;
• q(X,C4) = 1

2 (|hom(X,C4)| − |hom(X,C2)|) = 1
2 (2 · 4− 2 · 2) = 2;

• q(X,C2k) = 0 for k > 2.

Then each minimal left ideal of λ(C2 ⊕ C4) is isomorphic to

(C2 × 221−1−1)q(X,C2) × (C4 × 222−1−2)q(X,C4) = (C2 × 20)3 × (C4 × 20)2 = C3
2 × C2

4 .

Next, we consider the non-abelian groups. In fact, the groups Q8 and D8 have been
treated in Theorems 21.6 and 21.9. So, it remains to consider the alternating group A4.

This group has order 12, contains a normal subgroup isomorphic to C2 × C2 and
contains no subgroup of order 6. This implies that all 2-cogroups of A4 lie in C2 × C2,
and consequently A4 contains three maximal 2-cogroups. Each maximal 2-cogroup K ⊂
A4 contains two elements and has characteristic group H(K) isomorphic to C2. Since
|X/K±| = 3, Proposition 14.2 guarantees that |[TK ]| = 2|X/K

±|/|H(K)| = 23−1 = 22.
Applying Theorem 18.7, we see that each minimal left ideal of the semigroup λ(A4) is
isomorphic to (C2 × 22)3 = 26 × C3

2 .

22. Some open problems

Problem 22.1. Describe the structure of (minimal left ideals of) superextensions of the
simple groups An for n ≥ 5.

Problem 22.2. Describe the structure of (minimal left ideals of) superextensions of the
finite groups of order 16.

Since the free group F2 with two generators is not twinic, the results obtained in this
paper cannot be applied to this group.

Problem 22.3. What can be said about the structure of the superextension λ(F2) of
the free group F2?

Problem 22.4. Investigate the permanence properties of the class of twinic groups. Is
this class closed under taking subgroups? products?
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