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Abstract

Given a group X we study the algebraic structure of the compact right-topological semigroup
A(X) consisting of all maximal linked systems on X . This semigroup contains the semigroup 8(X)
of ultrafilters as a closed subsemigroup. We construct a faithful representation of the semigroup
A(X) in the semigroup P(X)P) of all self-maps of the power-set P(X) and show that the image
of A(X) in P(X)P™) coincides with the semigroup Endy (P(X)) of all functions f : P(X) — P(X)
that are equivariant, monotone and symmetric in the sense that f(X \ A) = X \ f(A) for all
A C X. Using this representation we describe the minimal ideal K(A(X)) and minimal left ideals
of the superextension A(X) of a twinic group X. A group X is called twinic if it admits a left-
invariant ideal Z C P(X) such that xA =z yA for all subsets A C X and points z,y € X with
A Cz X \ A Cz yA. The class of twinic groups includes all amenable groups and all groups
with periodic commutators but does not include the free group F» with two generators.

We prove that for any twinic group X, there is a cardinal m such that all minimal left ideals
of A(X) are algebraically isomorphic to

om o H C;]}iX,Czk) % H QgiX,Czk)
1<k<oo 3<k<oo
for some cardinals ¢(X,Cyx) and ¢(X,Qux), & € NU {oo}. Here C,i is the cyclic group of
order 2%, Cas is the quasicyclic 2-group and Qur, k € NU {00}, are the groups of generalized
quaternions. If the group X is abelian, then q(X, Q4x) = 0 for all k and ¢(X, Cyx ) is the number
of subgroups H C X with quotient X/H isomorphic to Cyx.

If X is an abelian group (admitting no epimorphism onto Cae), then each minimal left
ideal of the superextension A(X) is algebraically (and topologically) isomorphic to the product
[T crcon(Cor x 22k71*k)q(x’c2’“) where the cube 22° ' —* (equal to 2¢ if k = c0) is endowed
with the left zero multiplication. For an abelian group X, all minimal left ideals of A(X) are
metrizable if and only if X has finite ranks ro(X) and r2(X) and admits no homomorphism onto
the group Cace @ Caco.

Applying this result to the group Z of integers, we prove that each minimal left ideal of A\(Z)
is topologically isomorphic to 2* x []r~; Cox. Consequently, all subgroups in the minimal ideal
K(A\(Z)) of A\(Z) are profinite abelian groups. On the other hand, the superextension A\(Z) contains
an isomorphic topological copy of each second countable profinite topological semigroup. This
results contrasts with the famous Zelenyuk Theorem saying that the semigroup B(Z) contains
no finite subgroups. At the end of the paper we describe the structure of minimal left ideals of
finite groups X of order | X| < 15.

2010 Mathematics Subject Classification: 20M30, 20M12, 22A15, 22A25, 54D35.

Key words and phrases: compact right-topological semigroup, superextension of a group, semi-
group of maximal linked systems, faithful representation, minimal ideal, minimal left ideal,
minimal idempotent, wreath product, twinic group, twin set.

Received 6.5.2010; revised version 27.9.2010.
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1. Introduction

After discovering a topological proof of Hindman’s theorem [10] (see [12} p. 102], [I1]),
topological methods have become a standard tool in the modern combinatorics of numbers
(see [12], [I8]). The crucial point is that any semigroup operation defined on a discrete
space X can be extended to a right-topological semigroup operation on 5(X), the Stone—
Cech compactification of X. The extension of the operation from X to §(X) can be
defined by the simple formula

AoB={AcCX:{zreX a2 'AcB}c A} (1.1)

The Stone—Cech compactification B(X) of X is a subspace of the double power-set
P2(X) = P(P(X)), which can be identified with the Cantor discontinuum {0, 1}”*) and
endowed with the compact Hausdorff topology of the Tikhonov product. It turns out that
the formula applied to arbitrary families A, B € P?(X) of subsets of a group X still
defines a binary operation o : P?(X) x P?(X) — P2(X) that turns the double power-set
P2(X) into a compact Hausdorff right-topological semigroup that contains 3(X) as a
closed subsemigroup.

The semigroup 3(X) lies in a slightly larger subsemigroup A(X) C P?(X) consisting
of all maximal linked systems on X. We recall that a family £ of subsets of X is

e linked if any sets A, B € £ have non-empty intersection A N B # (;
e mazimal linked if £ coincides with each linked system £’ on X that contains L.

The space A(X) is well-known in General and Categorial Topology as the superextension
of X (see [15], [22]).

The thorough study of algebraic properties of the superextensions of groups was
started in [4] and continued in [2] and [3]. In particular, in [3] we proved that the minimal
left ideals of the superextension A(Z) are metrizable topological semigroups. In this paper
we shall extend this result to the superextensions A(X) of all finitely-generated abelian
groups X.

The results obtained in this paper completely reveal the topological and algebraic
structure of the minimal ideal and minimal left ideals of the superextension A(X) of a
twinic group X. A group X is defined to be twinic if it admits a left-invariant ideal Z of
subsets of X such that for any subset A C X with zA Cz X\ A Cz yA for some z,y € X
we have A =7 yA. Here the symbol A Cz B means that A\ B € Z and A =7 B means
that A Cz B and B Cz A. In Section [6] we shall prove that the class of twinic groups
contains all amenable groups and all groups with periodic commutators (in particular,
all torsion groups), but does not contain the free group F» with two generators.

(5]



6 T. Banakh and V. Gavrylkiv

We need to recall the notation for some standard 2-groups. We denote by Qg the
group of quaternions. It is a multiplicative subgroup {1, 4, j, k, —1, —i, —j, —k} of the real
algebra H of quaternions (which contains the field C of complex numbers as a subalgebra).

For every k € w let Cor = {2 € C : 22 = 1} be the cyclic group of order 2¥. The
multiplicative subgroup Qox C H generated by the union Cyr-1 U Qg is called the group
of generalized quaternions. The union Co~ = |Ji—, Cox is called the quasicyclic 2-group
and the union Qo= = Jpo 3 Qor is called the infinite group of generalized quaternions.
By Theorem a group G is isomorphic to Can or Qaon for some n € NU {oo} if and
only if G is a 2-group with a unique 2-element subgroup.

The following theorem describing the structure of minimal left ideals of the superex-
tesions of twinic groups can be derived from Theorem and Proposition [T9.1}

THEOREM 1.1. For each twinic group X there are cardinals ¢(X,Cor), ¢(X,Qqr), k €
NU {oo}, such that

(1) each minimal left ideal of A\(X) is algebraically isomorphic to
e [ O [T Qe
1<k<oo 3<k<oo
for some semigroup Z of left zeros;
(2) each mazximal subgroup of the minimal ideal of \(X) is algebraically isomorphic to

X,Cl, X,Quk
H C;’,E 2k) % H Qg}(c sz).
1<k<oo 3<k<oo
q(X,Co) = q(X,Q2x) = 0, then each mazimal subgroup of the minimal ideal o
3) If (X, C X,Q 0, th h imal sub f the minimal ideal of
MX) is topologically isomorphic to the compact topological group
X,C. X,Qok
H C;;S 2k) % H Qgi ng).
1<k<o0 3<k<oo
If the group X is abelian, then
q(X, Qo) = or every k € N U {oco} while q¢(X,Cor) is equal to the number o
4) q(X,Q 0 f ke N hile q(X, C ‘ l h ber of
subgroups H C X such that the quotient group X/H is isomorphic to Co;
(5) for every k € N,

hom(X, Cyr)| — |hom (X, Cor-1
4%, ) = B o)~ hom(X.Cy )]

where hom(X, Cor) is the group of homomorphisms from X into Cox.

2. Right-topological semigroups

In this section we recall some information from [I2] related to right-topological semi-
groups. By definition, a right-topological semigroup is a topological space S endowed with
a semigroup operation * : .S X S — S such that for every a € S the right shift r, : S — S,
Tq @ T T x a, is continuous. If the semigroup operation * : S x S — S is (separately)
continuous, then (S, x) is a (semi-)topological semigroup. A typical example of a right-
topological semigroup is the semigroup X¥ of all self-maps of a topological space X
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endowed with the Tikhonov product topology and the binary operation of composition
of functions.

From now on, S is a compact Hausdorff right-topological semigroup. We shall recall
some known information concerning ideals in S (see [12]).

A non-empty subset I of S is called a left (resp. right) ideal if ST C I (resp. IS C I).
If I is both a left and right ideal in .S, then I is called an ¢deal in S. Observe that for
every x € S the set SzS = {szt : s,t € S} (vesp. Sz ={szx:s€ S}, 2S5 ={xs:s€S})
is an ideal (resp. left ideal, right ideal) in S. Such an ideal is called principal. An ideal
I C S is called minimal if any ideal of S that lies in I coincides with I. By analogy we
define minimal left and right ideals of S. It is easy to see that each minimal left (resp.
right) ideal I is principal. Moreover, I = Sz (resp. I = x.5) for each € I. This simple
observation implies that each minimal left ideal in S, being principal, is closed in S. By
[12, 2.6], each left ideal in S contains a minimal left ideal. The union K(.S) of all minimal
left ideals of S coincides with the minimal ideal of S, [12] 2.8].

All minimal left ideals of S are mutually homeomorphic and all maximal groups of
the minimal ideal K(S) are algebraically isomorphic. Moreover, if two maximal groups lie
in the same minimal right ideal, then they are topologically isomorphic.

We shall need the following known fact (see [I2, Theorem 2.11(c)]).

PROPOSITION 2.1. For any two minimal left ideals A, B of a compact right-topological
semigroup S and any point b € B the right shift r, : A — B, ry : x — xb, is a homeo-
morphism.

This proposition implies the following corollary (see [3| Lemma 1.1]).

COROLLARY 2.2. If a homomorphism h : S — S’ between two compact right-topological
semigroups is injective on some minimal left ideal of S, then h is injective on each minimal

left ideal of S.

An element z of a semigroup S is called a right zero (resp. a left zero) in S if zz = 2
(resp. zx = z) for all z € S. It is clear that z € S is a right (left) zero in S if and only if
the singleton {z} is a left (right) ideal in S.

An element e € S is called an idempotent if ee = e. By Ellis’s Theorem [12} 2.5], the
set E(S) of idempotents of any compact right-topological semigroup is not empty. For
every idempotent e the set

Ho={zxeS:3x7'ecs (zolaz=a ooz =27t 22t =e=0""12)}

is the largest subgroup of S' containing e.
By [12], 1.48], for an idempotent e € E(S) the following conditions are equivalent:

o c € K(9);
o K(S) = SeS;

e Se is a minimal left ideal in S

e ¢S is a minimal right ideal in S;

e cSe is a subgroup of S.

An idempotent e satisfying the above equivalent conditions will be called a minimal
idempotent in S. By [12], 1.64], for any minimal idempotent e € S the set E(Se) = E(S)NSe
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of idempotents of the minimal left ideal Se is a semigroup of left zeros, which means
that zy = x for all z,y € E(Se). By the Rees—Suschkewitsch Structure Theorem (see
[12, 1.64]) the map

v :E(Se) x H. — Se, ¢ (z,y) — ay,

is an algebraic isomorphism of the corresponding semigroups. If the minimal left ideal Se
is a topological semigroup, then ¢ is a topological isomorphism.

Now we see that all the information on the algebraic (and sometimes topological)
structure of the minimal left ideal Se is encoded in the properties of the left zero semigroup
E(Se) and the maximal group He.

3. Acts and their endomorphism monoids

In this section we survey the information on acts that will be widely used in this paper to
describe the algebraic structure of minimal left ideals of the superextensions of groups.

Following the terminology of [I3] by an act we understand a set X endowed with a
left action - : H x X — X of a group H called the structure group of the act. The action
should satisfy two axioms: 1z = x and g(hz) = (gh)z for all z € X and g,h € H. Acts
with the structure group H will be called H-acts or H-spaces.

An act X is called free if the stabilizer Fix(x) = {h € H : hx = x} of each point
x € X is trivial. For a point € X we denote by [z] = {hx : h € H} its orbit and by
[X] = {[z] : € X} the orbit space of the act X. More generally, for each subset A C X
we put [A] = {[a] : a € A}.

A function f: X — Y between two H-acts is called equivariant if f(hxz) = hf(x) for
allz € X and h € H. A function f: X — Y is called an isomorphism of the H-acts X
and Y if it is bijective and equivariant. An equivariant self-map f : X — X is called an
endomorphism of the H-act X. If f is bijective, then f is an automorphism of X.

The set End(X) of endomorphisms of an H-act X, endowed with the operation of
composition of functions, is a monoid called the endomorphism monoid of X.

Each free H-act X is isomorphic to the product H x [X] endowed with the action
h-(x,y) = (hz,y). For such an act the semigroup End(X) is isomorphic to the wreath
product H ¢ [X]X] of the group H and the semigroup [X]X] of all self-maps of the orbit
space [X].

The wreath product H ! A* of a group H and the semigroup A4 of self-maps of a
set A is defined as the semidirect product H4 x A4 of the A-th power of H with A4,
endowed with the semigroup operation (h, f) = (b, f') = (h”, f”) where f”" = fo f'
and (o) = h(f'()) - W'(c) for o € A. For any subsemigroup S C A4 the subset
H1S={(h,f) € HA x A% . f € S} is called the wreath product of H and S. If both H
and S are groups, then their wreath product H S is a group.

Observe that the maximal subgroup of A4 containing the identity self-map of A
coincides with the group S4 of all bijective functions f: A — A.

THEOREM 3.1. Let H be a group and X be a free H-act. Then
(1) the semigroup End(X) is isomorphic to the wreath product H ! [ X]|X];
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(2) the minimal ideal K(End(X)) of End(X) coincides with the set {f € End(X) : Va €
FX) F(X) © [a]};

(3) each minimal left ideal of End(X) is isomorphic to H x [X] where [X] is endowed
with the left zero multiplication;

(4) for each idempotent f € End(X) the mazimal subgroup Hy C End(X) is isomorphic
to H 1Sy

(5) for each minimal idempotent f € K(End(X)) the mazimal group Hy = f-End(X) - f
is isomorphic to H.

Proof. 1. Let m : X — [X], m :  — [z], denote the orbit map and s : [X] — X be a
section of 7, which means that o s([z]) = [z] for all [z] € [X].

Observe that each equivariant map f : X — X induces a well-defined map [f] :
[X] — [X], [f] : [x] — [f(x)], of the orbit spaces. Since the action of H on X is free,
for every orbit [x] € [X] we can find a unique point fg([z]) € H such that f o s([z]) =

(fu (=)~ - s([f (@)

We claim that the map
U :End(X) — H [ X)X 0 f e (Fu, [f)]),

is a semigroup isomorphism.

First we check that the map V¥ is a homomorphism. Pick any two equivariant functions
f,9 € End(X) and consider their images U(f) = (fu,[f]) and ¥(9) = (9m,[g]) in
H[X]™X]. Consider also the composition fog and its image ¥(fog) = ((fog)u,[fog]).
We claim that

((feg)u,[fogl) = (fu,[f]) * (9, 19]) = ((fu o l9]) - gu [f] o [g])-

The equality [f o g] = [f] o [g] is clear. To prove that (f o g)y = (fu o [g]) - gu, take any
orbit [z] € [X]. It follows from the definition of (f o g) g ([x]) that

(fog)u([2]) ™" s([f o g(x)]) = (f 0 g) o s([x]) = f(g o s([a])
= f((gu([2])) ™" - s(lg(@)]) = (gu([2D)) ™" - F o s(lg(=)])
= (gu([2)) ™" - (fu(lg@D) ™" - s(Lf o g(2)])
= (fu o lgl([2]) - gu ([21)) " - s([f 0 g(2))),

which implies the desired equality (fog)m = (fu olg]) - gu-

8

Next, we show that the homomorphism W is injective. Given two equivariant functions
fyg € End(X) with (fu,[f]) = U(f) = ¥(9) = (9u,[g]), we need to show that f = g.
Observe that for every orbit [z] € [X] we get

Fs(l) = (fa (@)™ - s o [f1([2]) = (ga((2]) ™" - s o [g]([2]) = g(s([=]))-

Now for each z € X we can find a unique h € H with x = h - s([z]) and apply the
equivariance of the functions f, g to conclude that

f(@) = f(h-s([2])) = b f(s([2])) = h-g(s([2])) = g(h - s([2])) = g(x).

Finally, we show that W is surjective. Given any pair (h, g) € H[X]|X] = HIXIx[X]X)
we define an equivariant function f € End(X) with (h,g) = (fu,[f]) as follows. Given
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any z € X find a unique y € H with = y - s([z]) and let
fl@)=y-h(z)™" - s(g([x])).

This formula determines a well-defined equivariant function f : X — X with U(f) =
(h,g). Therefore, ¥ : End(X) — H [X]X] is a semigroup isomorphism.

2. Observe that the set Z = {f € End(X) : {[f(x)] : « € X} is a singleton} is a (non-
empty) ideal in End(X). To show that Z is the minimal ideal of the semigroup End(X),
we need to check that 7 lies in any ideal J C End(X). Take any functions f € Z and
g € J. Find an orbit [z] € [X] such that [f(z)] = [z] for all z € X. Since the restriction
gllx] : [#] — [g(x)] is bijective and equivariant, so is its inverse (g|[z])~* : [g(z)] — [z].
Extend this equivariant map to any equivariant map h : X — X. Then

f=hogofeEnd(X)ogoEnd(X)CJ.

3. Take any idempotent f € K(End(X)) and consider the minimal left ideal End(X)- f.
Fix any point z € f(X) and observe that f([z]) = [2] for all x € X according to the
preceding item. It follows that the set Z = f~1(2) meets each orbit [z], x € X, in a single
point. So, we can define a unique section s : [X] — Z C X of the orbit map X — [X]
such that f o s([X]) = {z}.

To each equivariant map g € End(X) assign a unique element gy € H such that
g(z) = g5 - s([g(z)]). Tt is easy to check that the map

®:End(X) f— Hx[X], ®:g9~ (9u,lg)([z])),

is a semigroup homomorphism where the orbit space [X] is endowed with the left zero
multiplication.

4. Take any idempotent f € End(X) and consider the surjective semigroup homo-
morphism pr : End(X) — [X]X], pr : g ~ [g]. Tt follows that [f] is an idempotent
of the semigroup [X]¥] and the image pr(Hs) of the maximal group H; is a subgroup
of [X]™]. Tt is easy to see that the maximal subgroup Hi of the idempotent [f] in
[X]X] coincides with S(y(x)) - [f]. The preimage pr=!(H[;) of the maximal subgroup
His) = Sip(x)) - f is isomorphic to the wreath product H ! H and hence is a group. Now
the maximality of Hy guarantees that Hy = pr='(H;) and hence Hy is isomorphic to
HSip(x)-

5. If f € K(End(X)) is a minimal idempotent, then the set [f(X)] = {[f(z)] :
x € X} is a singleton by the second item. By the preceding item the maximal group
Hj is isomorphic to H ¢ Siy(x)), which is isomorphic to the group H since [f(X)] is a
singleton. m

For each group X the power-set P(X) will be considered as an X-act endowed with
the left action

X xPX)—=PX), -:(zA)—zA={za:ac A},

of the group X. This X-act P(X) and its endomorphism monoid End(P(X)) will play a
crucial role in our considerations.
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4. The function representation of the semigroup P?(X)

In this section given a group X we construct a topological isomorphism
® : P?(X) — End(P(X))
called the function representation of the semigroup P?(X) in the endomorphism monoid
of the X-act P(X). We recall that the double power-set P?(X) = P(P(X)) of the group
X is endowed with the binary operation
AoB={ACX:{reX 27 'AcB}c A}
The isomorphism & assigns to each family A of subsets of X the function

Py :P(X)—=P(X), O :A—{recX:27'Ac A},
called the function representation of A.

In the following theorem by e we denote the neutral element of the group X.
THEOREM 4.1. For any group X the map ® : P?(X) — End(P(X)) is a topological
isomorphism with inverse @1 : p— {AC X :e € p(A)}.

Proof. First observe that for any family A € P?(X) the function ®4 is equivariant,
because

Pu(zA)={ye Xy lzAc A} ={zzc X:27'Ac A} = 2D (A)
for any x € X and A C X. Thus the map ® : P?(X) — End(P(X)) is well-defined.

To prove that @ is a semigroup homomorphism, take two families X', € P?(X) and
let Z =X o). We need to check that ®z(A) = P o Py (A) for every A C X. Observe
that Pz(A)={reX:z7'AeZ}={zeX: {zeX a2 Ac Y} e X}

={2€X:Py(z7tA) e X} ={2€X:27'Dy(A) € X}
=Py (Py(A)) = Py o Py (A).

To see that the map ® is injective, take any two distinct families A,B € P?(X).
Without loss of generality, A \ B contains some set A C X. It follows that e € ® 4(A)
but e ¢ ®(A) and hence ¢ 4 # Pp.

To see that the map ® is surjective, take any equivariant function ¢ : P(X) — P(X)
and consider the family A ={A C X : e € p(A)}. It follows that for every A € P(X),

Pp(A)={zeX: v 'Ac Ay ={reX:ecplztA)}
={reX:ecatp(A)={recX:xcpAd)}=qpA).

To prove that ® : P2(X) — End(P(X)) C P(X)P() is continuous we first define
a convenient subbase of the topology on the spaces P(X) and P(X)P™). The product
topology of P(X) is generated by the subbase consisting of the sets

rT={ACcX:z€A} and 2~ ={ACX:z¢ A}
where z € X. On the other hand, the product topology on P(X)P(X) is generated by the
subbase consisting of the sets

(0, A)F ={f e P(X)"™ 1w e f(A)} and (2, 4)” ={f € P(X)"™) ¢ f(A)}
where A € P(X) and z € X.
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Now observe that the preimage
O (z, AT)={AcP)(X):2 € P (A)}={AcP?)(X): 2 tAc A}
is open in P?(X). The same is true for the preimage
O (2, AV ) ={AcP}X):xg D4(A)} ={AcP}X):x'A¢ A}

Since the spaces P?(X) = {0,1}*X) and End(P(X)) ¢ P(X)PX) are compact and
Hausdorff, the continuity of the map ® implies the continuity of its inverse ®~'. Con-
sequently, ® : P?(X) — End(P(X)) is a topological isomorphism of compact right-
topological semigroups. m

REMARK 4.2. The function representations ® 4 of some families A C P(X) have transpar-
ent topological interpretations. For example, if A is the filter of neighborhoods of the iden-
tity element e of a left-topological group X and At = {BC X :VA€ A (BNA#0)},
then for any subset B C X the set ® 4(B) coincides with the interior of the set B while
® 4. (B) with the closure of B in X!

Theorem has a strategical importance because it allows us to translate (usually
difficult) problems concerning the structure of the semigroup P?(X) to (usually more
tractable) problems about the endomorphism monoid End(P(X)). In particular, Theo-
rem implies “for free” that the binary operation on P?(X) is associative and right-
topological and hence P?(X) is indeed a compact right-topological semigroup. Now let
us investigate the interplay between the properties of a family A € P?(X) and those of
its function representation @ 4.

Let us define a family A C P(X) to be

e monotone if for any subsets A C B C X the inclusion A € A implies B € A;
e left-invariant if for any A € A and x € X we get zA € A.

Correspondingly, a function ¢ : P(X) — P(X) is called
e monotone if ¢(A) C ¢(B) for any subsets A C B C X;
o symmetric if (X \ A) = X \ p(A) for every A C X.
PROPOSITION 4.3. For an equivariant function ¢ € End(P(X)) the family ®~1(p) =
{ACcX:ecp(Ad)}is
(1) monotone if and only if ¢ is monotone;
(2) left-invariant if and only if o(P(X)) C {0, X };
(3) mazimal linked if and only if ¢ is monotone and symmetric.
Proof. Let A= ® 1(p).

1. If ¢ is monotone, then for any sets A C B with A € A we get e € p(A) C p(B)
and hence B € A, which means that the family 4 is monotone.

Now assume conversely that the family A is monotone and take any sets A C B C X.
Note that for any x € X with A € A we get xB € A. Then

pA)={zec X :v7'Ac Ay c{reX 27 'Bec A} = ¢(B),

witnessing that the function ¢ is monotone.
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2. If the family A is left-invariant, then for each A € A we get p(A) = {x € X :
1A € A} = X and for each A ¢ A we get p(A) ={r e X:a71Ac A} =0.

Now assume conversely that ¢(P(X)) C {0, X}. Then for each A € A we get e €
¢(A) = X and then for each z € X, the equivariance of ¢ guarantees that p(zA) =
xp(A) =X = X 2 e and thus A € A, witnessing that the family A is invariant.

3. Assume that the family A is maximal linked. By the maximality, .4 is monotone.

Consequently, its function representation ¢ is monotone. The maximal linked property
of A guarantees that for any subset A C X we get (A€ A) & (X \ A¢ A). Then

pX\A)={reX:z'(X\ADecA={zecX :X\z'Ac A}
={zeX: o' A¢d A =X\{zecX a7 'Ac A = X\ p(4),

which means that the function ¢ is symmetric.

Now assuming that the function ¢ is monotone and symmetric, we shall show that
the family A = ®71(p) is maximal linked. The statement (1) guarantees that A is
monotone. Assuming that A is not linked, we could find two disjoint sets A, B € A. Since
A is monotone, we can assume that B = X \ A. Then e € ¢(A) N (X \ A), which is
impossible as (X \ A) = X \ ¢(A). Thus A is linked. To show that A is maximal linked,
it suffices to check that for each subset A C X either A or X \ A belongs to A. Since
(X \A) = X\ ¢(A), either ¢(A) or (X \ A) contains the neutral element e of the
group X. In the first case A € A and in the second case X \ A€ A. n

Let us recall that the aim of this paper is the description of the structure of minimal
left ideals of the superextension A(X) of a group X. Instead of the semigroup A(X) it
will be more convenient to consider its isomorphic copy

Endy (P(X)) = ®(A(X)) C End(P(X))
called the function representation of \(X).
Proposition implies
COROLLARY 4.4. The function representation Endy(P(X)) of AM(X) consists of equivari-

ant monotone symmetric functions ¢ : P(X) — P(X).

In order to describe the structure of minimal left ideals of the semigroup End (P (X))
we shall look for a relatively small subfamily F C P(X) such that the restriction operator

Re : Endy(P(X)) = P(X)F,  Re:p— ofF,

is injective on each minimal left ideal of the semigroup Endy (P(X)).
Then the composition

P =Rro®: \(X)— P(X)F

will be injective on each minimal left ideal of the semigroup A\(X). By Proposition a
homomorphism between semigroups is injective on each minimal left ideal if it is injective
on some minimal left ideal. Such a special minimal left ideal of the semigroup A(X) will
be found in the left ideal of the form AZ(X) for a suitable left-invariant ideal Z of subsets
of the group X.
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A family 7 of subsets of X is called an ideal on X if
o X ¢ 7,
e AUB €T forany A, B € T;
e forany A€ Z and B C A we get BeZ.

Such an ideal T is called left-invariant (rvesp. right-invariant) if xA € T (resp. Az € T)
for all A € Z and = € X. An ideal Z will be called invariant if it is both left-invariant
and right-invariant.

The smallest ideal on X is the trivial ideal {(}} containing only the empty set. The
smallest non-trivial left-invariant ideal on an infinite group X is the ideal [X]<“ of finite
subsets of X. This ideal is invariant. From now on we shall assume that 7 is a left-invariant
ideal on a group X.

For subsets A, B C X we write

e AC;Bif A\BeT;
e A=7 Bif ACy Band B Ct A.

The definition of the ideal 7 implies that =7 is an equivalence relation on P(X). For a
subset A C X its equivalence class A7 = {B C X : B =7 A} is called the Z-saturation
of A.

A family A of subsets of X is defined to be Z-saturated if AT C A for any A € A. Let
us observe that a monotone family .4 C P(X) is Z-saturated if and only if for any A € A
and Be€Z weget A\ B e A

Correspondingly, a function ¢ : P(X) — P(X) is called Z-saturated if p(A) = ¢(B)
for any subsets A =7 B of X.

PROPOSITION 4.5. A family A C P(X) is I-saturated if and only if its function repre-
sentation ® 4 : P(X) — P(X) is I-saturated.

Proof. Assume that A is Z-saturated and take two subsets A =7 B of X. We need to
show that ®4(A) = ®4(B). The left-invariance of the ideal Z implies that for every
x € X we get A =7 B and hence (zA € A) & (2B € A). Then

PpA)={reX: a7 'Ac Al ={re X :27'Bec A} = d4(B).

Now assume conversely that the function representation ® 4 is Z-saturated and take
any subsets A =7 B with A € A. Thene € ® 4(A) = ® 4(B), which implies that B € A. m

For a left-invariant ideal Z on a group X let A (X) C A(X) be the subspace of Z-
saturated maximal linked systems on X and End% (P(X)) € Endy(P(X)) be the subspace
consisting of Z-saturated monotone symmetric endomorphisms of the X-act P(X). It is
clear that for any functions f,g : P(X) — P(X) the composition f o g is Z-saturated
provided so is the function g. This trivial remark and Lemma [£.7] below imply:

PROPOSITION 4.6. For any ideal T the function representation ® : AT(X) — End% (P(X))
is a topological isomorphism between the closed left ideals N¥(X) and End% (P(X)) of the
semigroups A(X) and Endy(P(X)), respectively.

The following lemma (combined with Zorn’s Lemma) implies that the sets A\Z(X) and
End} (P(X)) are not empty.
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LEMMA 4.7. Each mazimal Z-saturated linked system L on X is mazimal linked.

Proof. We need to show that each set A C X that meets all sets L € £ belongs to L.
We claim that A ¢ Z. Otherwise, taking any subset L € £, we get L\ A =7 L and hence
L\ A belongs to £, which is not possible as L \ A misses the set A. Since A ¢ Z, the
I-saturated family A7 is linked.

We claim that the Z-saturated family AT U £ is linked. Assuming the opposite, we
would find two disjoint sets A’ € A and L € £. Then LN A =7 LN A’ = () and hence
the set L \ A =1 L belongs to £, which is not possible as this set misses A.

Now we see that the family AT U L, being Z-saturated and linked, coincides with the
maximal Z-saturated linked system £. Then Ac AZUL=L. m

Given a subfamily F C P(X) consider the restriction operator
Re : P(X)P®) - P(X)F,  Re:fe fIF,

and let Endy (F) = Re(Endy(P(X))) and End (F) = Re(End% (P(X))) for a left-invariant
ideal Z on X. The space Endy(F) is compact and Hausdorff as a continuous image of a
compact Hausdorff space.

A subfamily F C P(X) is called A-invariant if ®,-(F) C F for each maximal linked
system £ € A\(X). By Corollary F is A-invariant if and only if f(F) C F for each
equivariant monotone symmetric function f : P(X) — P(X).

If a family F C P(X) is A-invariant, then the space Endy(F) C FF is a compact right-
topological semigroup with respect to the operation of composition of functions and the
restriction operator Rr : Endy(P(X)) — Endy(F) is a surjective continuous semigroup
homomorphism. In this case the composition

®F = Rr o ® : A\(X) — End,(F)

is also a surjective continuous semigroup homomorphism and End? (F) = (A (X)) is a
left ideal in the semigroup End,(F).

In the following proposition we characterize functions that belong to the space
End{(F) for an Z-saturated left-invariant symmetric subfamily F ¢ P(X). A family
F C P(X) is called symmetric if for each set A € F the complement X \ A is in F.

THEOREM 4.8. For a left-invariant ideal Z on a group X and an Z-saturated symmetric
left-invariant family F C P(X), a function ¢ : F — P(X) belongs to Endf(F) if and only
if ¢ is equivariant, symmetric, monotone, and I-saturated.

Proof. The “only if” part follows immediately from Corollary £:4] To prove the “if” part,
fix any equivariant monotone symmetric Z-saturated function ¢ : F — P(X) and consider
the families
Lo={a"A:AcF, zecp(Ad)} and LL=|] A"
AeL

We claim that the family Ei is linked. Assuming the converse, we could find two sets
A,B € F and two points z € ¢(A) and y € ¢(B) such that 7' ANy~!B € Z. Then
yr~1A Cz X\ B and hence yz='A C (X \ B)UC for some set C' € Z. Since F is symmetric
and Z-saturated, the set (X \ B)UC =z X \ B belongs to the family F. Applying to the
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chain of the inclusions
yr'AC (X\B)UC =7 X\B

the equivariant monotone symmetric Z-saturated function ¢, we get the chain

yz = p(A) C (X \ B)UC) = (X \ B) = X \ ¢(B).
Then 27 1¢(A) C X \ y~'p(B), which is not possible because the neutral element e of
the group X belongs to = 1p(A) Ny Lp(B).

Enlarge the Z-saturated linked family £Z to a maximal Z-saturated linked family £,
which is maximal linked by Lemma and thus £ € AZ(X). We claim that ®,|F = ¢.
Indeed, take any set A € F and observe that

pA)c{zeX a7 Ace L} Cc{ze X a7t Ac L} =D (A).
To prove the reverse inclusion, observe that for any z € X \ p(A4) = p(X \ A) we get
Y X \A)=X\ztAe L, C L. Since L is linked, 7' A ¢ £ and hence z ¢ ®,(A). m

COROLLARY 4.9. For a symmetric left-invariant family F C P(X), a function ¢ : F —
P(X) belongs to Endy(F) if and only if ¢ is equivariant, symmetric, and monotone.

5. Twin and Z-twin subsets of groups

In this section we start studying very interesting objects called twin sets. For an abelian
(more generally, twinic) group X the twin subsets of X form a subfamily T C P(X) for
which the function representation ®1 : A(X) — End(T) is injective on each minimal left
ideal of the superextension A\(X). The machinery related to twin sets will be developed
in Sections [pH15| after which we shall return to studying minimal (left) ideals of the
semigroups A(X) and End(X).
For a subset A of a group X consider the following three subsets of X:

Fix(A) ={r € X : A = A},

Fix (A)={reX:2A=X\ A},

Fix® (A) = Fix(A) U Fix~ (A).
DEFINITION 5.1. A subset A C X is defined to be
o twinif tA = X \ A for some z € X;
e pretwin if tA C X \ A C yA for some points z,y € X.

The families of twin and pretwin subsets of X will be denoted by T and pT, respectively.

Observe that a set A C X is twin if and only if Fix™ (A4) is not empty.
The notion of a twin set has an obvious “ideal” version. For a left-invariant ideal Z of
subsets of a group X, and a subset A C X, consider the following subsets of X:

I-Fix(A) ={x € X : zA =1 A},
I-Fix (A)={zre X:2A =7 X\ A},
T-Fix*(A) = I-Fix(A) U Z-Fix_ (A).
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DEFINITION 5.2. A subset A C X is defined to be

o Z-twin if A =7 X \ A for some z € X
o T-pretwin if tA Cz X \ A Cz yA for some points z,y € X.

The families of Z-twin and Z-pretwin subsets of X will be denoted by TZ and pTZ,
respectively.

It is clear that T{? = T and pT{m} =pT.

PROPOSITION 5.3. For each subset A C X the set T-Fix™(A) is a subgroup in X. The
set A is I-twin if and only if T-Fix(A) is a normal subgroup of index 2 in T-Fixt(A).

Proof. If the set A is not Z-twin, then Z-Fix~ (4) = 0 and then Z-Fix*(A) = Z-Fix(A4) =
{r € X : zA =7 A} is a subgroup of X by the transitivity and left-invariance of the
equivalence relation =z.

So, we assume that A is Z-twin, which means that Z-Fix~ (A) # (. To show that
I—Fixi(A) is a subgroup in X, take any two points z,y € I—Fixi(A). We claim that
xy~te I—Fixi(A).

This is clear if 2,y € Z-Fix(A) C Z-FixT (A). If 2 € Z-Fix(A) and y € Z-Fix~ (A), then
rA =7 A, yA =7 X\ A and thus A =7 X \ y'A, which implies y='4 =7 X \ A. Then
2y tA =7 2(X\A) = X\zA =7 X\ A, which means that zy~! € Z-Fix~ (A) C Fix©(A).

If 2,y € Z-Fix " (A), then vA =7 X \ A, y~'A =7 X \ A. This implies that 2y =14 =1
(X \A) =z X\zA=7 X\ (X\ A) =7 A and consequently zy~! € Z-Fix(A).

To show that Z-Fix(A) is a subgroup of index 2 in FixT(A), fix any element g €
Z-Fix™ (A). Then for every © € I-Fix(A) we get grA =7 gA =7 X \ A and thus
gz € I-Fix™ (A). This yields Z-Fix~ (A) = g(Z-Fix(A4)), which means that the subgroup
7-Fix(A) has index 2 in the group Z-Fix®(A). m

The following proposition shows that the family TZ of Z-twin sets of a group X is
left-invariant.

PROPOSITION 5.4. For any Z-twin set A C X and any x € X the set xA is T-twin and
I-Fix (zA) = x(Z-Fix (A))z~1.

Proof. To see that zA is an Z-twin set, take any z € Z-Fix™ (A) and observe that
X\2zA=2(X\A) =7 124 = vza" ' 2A,
which means that zzz~! € Z-Fix™ (zA) for every z € Z-Fix™ (A). Hence Z-Fix ™ (zA) =
2(Z-Fix (A))z"1. =
The preceding proposition implies that the family TZ of Z-twin subsets of X can be
considered as an X-act with respect to the left action

X xTESTE (2, A) - zA,
of the group X. We denote by [A] = {xA : ¥ € X} the orbit of a Z-twin set A € TZ and

by [TZ] = {[A] : A € T} the orbit space. If Z = {0} is a trivial ideal, then we write [T]
instead of [TZ].
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6. Twinic groups

A left-invariant ideal Z on a group X is called twinic if for any subset A C X and points
xz,y € X with A Cz X\ A Cz yA we get A =7 B. In this case the families pTZ and TZ
coincide.

A group X is defined to be twinic if it admits a twinic ideal Z. It is clear that in
a twinic group X the intersection ZZ of all twinic ideals is the smallest twinic ideal in
X called the twinic ideal of X. The structure of the twinic ideal ZZ can be described as
follows.

Let ZZy = {0} and for each n € w let 7,41 be the ideal generated by all sets of the
form yA\zA where zA Cz, X\ A Cg, yA for some A C X and z,y € X. By induction it
is easy to check that 7Z,, C ZZ,,41 C 7 is an invariant ideal and hence Z =, . Z,, CZ
is a well-defined (smallest) twinic ideal on X. This ideal ZZ is invariant.

necw

In fact, the above constructive definition of the additive invariant family ZZ is valid
for each group X. However, ZZ is an ideal if and only if the group X is twinic.

We shall say that a group X has trivial twinic ideal if the trivial ideal Z = {0} is
twinic. This happens if and only if for any subset A C X with zA C X \ A C yA we get
zA =X\ A=yA. In this case the twinic ideal ZZ of X is trivial.

The class of twinic groups is sufficiently wide. In particular, it contains all amenable
groups. Let us recall that a group X is called amenable if it admits a Banach measure
w: P(X) — [0,1], which is a left-invariant probability measure defined on the family of
all subsets of P(X). In this case the family

N, ={ACX:u(A) =0}

is a left-invariant ideal in X. It is well-known that the class of amenable groups contains
all abelian groups and is closed with respect to many operations over groups (see [17]).

A subset A of an amenable group X is called absolutely null if u(A) = 0 for each
Banach measure p on X. The family A of all absolutely null subsets is an ideal on X.
This ideal coincides with the intersection N* = (0, N}, where p runs over all Banach
measures of X.

THEOREM 6.1. Each amenable group X is twinic. The twinic ideal ZL of X lies in the
ideal N of absolute null subsets of X.

Proof. Tt suffices to check that the ideal A is twinic. Take any set A C X such that
xA Cpn X\ A Cp yA for some x,y € X. We need to show that pu(yA\ zA) = 0 for each
Banach measure p on X. It follows from xA Cpn X \ A Cur yA and the invariance of the
Banach measure p that

n(A) = p(xzd) < (X \ A) < p(yA) = p(A)
and hence p(yA\ zA) = p(A) —p(4) =0. =
Next, we show that the class of twinic groups also contains some non-amenable groups.
The simplest example is the Burnside group B(n,m) for n > 2 and odd m > 665. We

recall that the Burnside group B(n,m) is generated by n elements and one relation
2™ = 1. Adian [I] proved that for n > 2 and any odd m > 665 the Burnside group
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B(n,m) is not amenable (see also [I6] for a stronger version of this result). The following
theorem implies that each Burnside group, being a torsion group, is twinic. Moreover, its
twinic ideal ZZ is trivial!

THEOREM 6.2. A group X has trivial twinic ideal Z = {0} if and only if the product ab
of any elements a,b € X belongs to the subsemigroup of X generated by the set b* - a™
where a* = {a,a™'}.

Proof. To prove the “if” part, assume that ZZ # {@}. Then Z,,+1 # {0} = ZL,, for some

n € w and we can find a subset A C X and points a,b € X such that a™*A C X\ A C bA

but a=tA # bA. Consider the subsemigroup Fixc(A4) = {z € X : zA C A} C X and

observe that b='a=! € Fixc(A). The inclusion a7 !4 C X \ A implies a P AN A = 0,

which is equivalent to AN aA = and yields aA C X \ A C bA. Then b~ ta € Fixc (A).
Now consider the chain of equivalences

X\AChA & AUVA=X & b 'AUA=X & X\AcCb'A

and combine the last inclusion with aAUa 14 C X \ A to obtain ba,ba™! € Fixc(A).
Now we see that the subsemigroup S of X generated by the set {1,ba,ba=t, b= a,b"ta"1}
lies in Fixc(A). Observe that b='a™'A C A implies abA ¢ A, ab ¢ Fixc(A) D S, and
finally ab ¢ S. This completes the proof of the “if” part.

To prove the “only if” part, assume that the group X contains elements a,b whose
product ab does not, belong to the subsemigroup generated by b*a* where a* = {a,a™'}
and b* = {b,b"'}. Then ab also does not belong to the subsemigroup S generated by
{1} UbTa®™. Observe that a*S = S~la* and bS5~ = Sb*.

We claim that

SNa*S=0 and SnNSH*=0. (6.1)
Assuming that S N atS # () we would find a point s € S such that as € S or a='s € S.
If as € S, then bs~! = b(as)"la € bS~'a C Sb*a C S and hence b=bs"!s€ S-S C S.
Then a* = b(b~tat) C S-S C S, b* = (b*a)a™! € S-S C S and finallyabe S-S C S,
which contradicts ab ¢ S. By analogy we can treat the case a~'s € S and also prove that
S NSyt =0.

Consider the family P of all pairs (A4, B) of disjoint subsets of X such that

(a) a*A C B and b*B C A4;

(b) S7'B C B;

(¢c) 1€ A, abe B.

The family P is partially ordered by the relation (A, B) < (A’, B’) defined by A C A’

and B C B'.
We claim that the pair (Ag, By) = (SUSb*ab, S~'a* U S~1ab) belongs to P. Indeed,

at Ay =aTSUaTSbtab c S~taT U S taTbtab ¢ STlat U ST ab C By.
By analogy we check that b*By C Ay. Items (b), (c) trivially follow from the definition

of Ag and By. It remains to check that the sets Ag and By are disjoint.
This will follow as soon as we check that

(d) SNS~tat =10
(e) SNnS~tab =10,
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(f) SbtabnS—'a* = 0;
(g) SbTabn S~tab=.

Items (d) and (g) follow from (6.1)). Item (e) follows from ab ¢ S-S = S. By the same
reason, we get (f), which is equivalent to ab ¢ b*S~1. S la* = bS5~ 1a* = Sb*a® C S.

Thus the partially ordered set P is not empty and we can apply Zorn’s Lemma to
find a maximal pair (A4, B) > (Ag, By) in P. We claim that AU B = X. Assuming the
converse, we could take any point z € X\ (AUB) and put A’ = AUSx, B’ = BuatSz. It
is clear that a* A’ ¢ B’ and b*B' c A’, S~ 'B' = S~ 'BUS 'a*Sz ¢ BUa*SSz = B/,
le Ac A andabe BC B'.

Now we see that the inclusion (A’,B’) € P will follow as soon as we check that
A'"N B" = (). The choice of z ¢ B = S~!B guarantees that Sz N B = (). Assuming that
atSzrNA # 0, we would conclude that z € S~'a* A C S™'B C B, which contradicts the
choice of . Finally, the sets S and a® Sz are disjoint because of the property of S.
Thus we obtain a contradiction: (A’, B’) € P is strictly greater than the maximal pair
(A, B). This contradiction shows that X = AUB and consequently aA C X\ A = B C bA,
which means that the set A is pretwin and so bA\aA € ZZ; C ZZ. Since 1 € A\ b ta "1 A4,
we conclude that bA\ a=1A > b is not empty and thus Z # {0}. m

We recall that a group X is periodic (or a torsion group) if each element x € X has
finite order (which means that ™ = e for some n € N). We shall say that a group X
has periodic commutators if for any x,y € G the commutator [z,y] = zyz~ly~! has
finite order in X. It is interesting to note that this condition is strictly weaker than
the requirement for X to have periodic commutator subgroup X’ (we recall that the
commutator subgroup X’ coincides with the set of finite products of commutators; see [6]).

PROPOSITION 6.3. Each group X with periodic commutators has trivial twinic ideal

T ={0}.

Proof. Since X has periodic commutators, for any points xz,y € X there is a number

n € N such that
1

zye~ty ™t = (yey e T = (yay”
and thus zy = (yry~'z~1)" - yx belongs to the semigroup generated by the set y* - z7.
Applying Theorem [6.2] we conclude that the group X has trivial twinic ideal Z = {0}. m

1x—1)n

We recall that a group G is called abelian-by-finite (resp. finite-by-abelian) if G contains
a normal abelian (resp. finite) subgroup H C G with finite (resp. abelian) quotient G/H.
Observe that each finite-by-abelian group has periodic commutators and hence has trivial
twinic ideal 7Z.

In contrast, any abelian-by-finite group, being amenable, is twinic but its twinic ideal
TI need not be trivial. The simplest counterexample is the isometry group Iso(Z) of the
group Z of integers endowed with the Euclidean metric.

ExXAMPLE 6.4. The abelian-by-finite group X = Iso(Z) is twinic. Its twinic ideal ZZ
coincides with the ideal [X]<“ of all finite subsets of X.

Proof. Let a : © — x + 1 be the translation and b : z — —xz be the inversion of the
group Z. It is easy to see that the elements a,b generate the isometry group X = Iso(Z)
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and satisfy the relations b2 = 1 and bab™! = a™'. Let Z = {a" : n € Z} be the cyclic
subgroup of X generated by the translation a. This subgroup Z has index 2in X = ZUZb.

First we show that the ideal Z = [X]<“ of finite subsets of X is twinic. Let A C X be
a subset with xA Cz X \ A Cz yA for some z,y € X. We need to show that yA =7 xA.

We consider three cases.

(1) x,y € Z. In this case the elements x,y commute. The Z-inclusion A Cz yA
implies y~'xA Cz A. We claim that y~'2A D7 A. Observe that the Z-inclusion zA Cz
X \ A is equivalent to tAN A € Z and to ANz~ A € Z, which implies 271 A C7 X \ A.
By analogy, X \ A C1 yA is equivalent to yAU A =7 X and to AUy *A =7 X, which
implies X \ A C7 y~'A. Then 27'A Cz X\ A Cz y 1A implies yr='A Cz A and by the
left-invariance of Z, A Cz xy~*A = y~ 12 A (we recall that the elements x,y~! commute).
Therefore, y~12A =7 A and hence zA =7 yA.

(2) x € Z and y € X \ Z. Repeating the argument from the preceding case, we can
show that zA Cz X \ A implies 2714 Cz X \ A. Then we get the chain of Z-inclusions

2ACz X\ACzyA Czy(X \zA) =yx(X \ A) Cz yryA =1 zA,

where the last Z-equality follows from case (1) since z,yzy € Z. Now we see that
A =1 yA.
(3) x ¢ Z. Then zA Cz X \ A Cz yA implies

2 A = bab 1A = brA Cz X \ bA Cz byA = y~1bA.

Since x7'b € Z, cases (1), (2) imply the Z-equality x='bA =7 y~'bA. Shifting this
equality by b, we see that x4 = bz ~1bA =7 by 'bA = yA.

This completes the proof of the twinic property of the ideal Z = [X]<“. Then
T C [X]<%. Since [X]<% is the smallest non-trivial left-invariant ideal on X, the equality
I = [X]<“ will follow as soon as we find a non-empty set in the ideal ZZ.

For this consider the subset A = {a"™',ba™™ : n > 0} C X and observe that
X\ A = {a ™ ba"*! : n > 0} = bA, witnessing that A € T. Observe also that
aA={a""2 aba™" :n >0} = {a""2,ba "1 :n >0} C A and thus baAd C X \ A = bA.
Then @ # baA\ bA € IL; C L witnesses that the twinic ideal ZZ is not trivial. m

Next, we present an (expected) example of a group which is not twinic.
EXAMPLE 6.5. The free group F» with two generators is not twinic.

Proof. Assume that the group X = F5 is twinic and let ZZ be the twinic ideal of F5. Let
a, b be the generators of the free group F5. Each element w € F5 can be represented by a
word in the alphabet {a,a™1,b,b71}. The word of the smallest length representing w is
called the irreducible representation of w. The irreducible word representing the neutral
element of Fy is the empty word. Let A (resp. B) be the set of words whose irreducible

representations start with a or a=! (resp. b or b~!). Consider the subset

C={a"w:weBU{e}, n€Z} CF

and observe that abaC C X \ C = aC. Then aC \ abaC € TI; by the definition of the
subideal ZZ; C ZZ. Observe that a3baC C aC \ abaC' and thus a®baC € TZ,. Then also
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C €7, and X \ C = aC € II; by the left-invariance of ZZ;. By the additivity of ZZ;, we
finally get X = C U (X \ C) € Z1 C ZZ, which is the desired contradiction. m

Next, we prove some permanence properties of the class of twinic groups.

PROPOSITION 6.6. Let f : X — Y be a surjective group homomorphism. If the group X
is twinic, then so is the group Y.

Proof. Let ZZ be the twinic ideal of X. It is easy to see that Z = {B C Y : f~}(B) € I}
is a left-invariant ideal on the group Y. We claim that it is twinic. Given any subset
A CY with zA Cz Y\ A Cz yA for some z,y € Y, let B = f~1(A) and observe
that 2'B Cz X \ B Cz y'B for some points 2’ € f~!(z) and y' € f~1(y). The twinic
property of the twinic ideal ZZ guarantees that f~1(yA\ zA) = v'B \ /B € I, which
implies yA\ xA € 7 and hence ztA=7 Y \ A=z yA. n

PROBLEM 6.7. Is a subgroup of a twinic group twinic? Is the product of two twinic groups
twinic?

For groups with trivial twinic ideal the first part of this problem has an affirmative
solution, which follows from the characterization Theorem [6.2}

PROPOSITION 6.8.

(1) The class of groups with trivial twinic ideal is closed with respect to taking subgroups
and quotient groups.

(2) A group X has trivial twinic ideal if and only if any 2-generated subgroup of X has
trivial twinic ideal.

7. 2-Cogroups

It follows from Propositionthat for a twin subset A of a group X the stabilizer Fix(A)
of A is completely determined by the subset Fix™ (A4) because Fix(A) = x - Fix™ (A) for
each x € Fix™ (A). Therefore, the subset Fix™ (A) carries all the information about the
pair (FixT(A),Fix(A)). The sets Fix (A) are particular cases of so-called 2-cogroups
defined as follows.

DEFINITION 7.1. A subset K of a group X is called a 2-cogroup if for every = € K the
shift K = Kx is a subgroup of X, disjoint from K.

By the index of a 2-cogroup K in X we understand the cardinality |X/K| of the set
X/K={Kz:2 € X}.

2-cogroups can be characterized as follows.
PROPOSITION 7.2. A subset K of a group X is a 2-cogroup in X if and only if there is a

(unique) subgroup H* of X and a subgroup H C HT of index 2 such that K = H* \ H
and H=K - K.

Proof. If K is a 2-cogroup, then for every z € K the shift H = 2K = Kz is a
subgroup of X disjoint from K. It follows that K = x~'!H = Hz~!. Since 27! €
7 !H = K, the shift x 'K = Kx~! is a subgroup of X according to the definition
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of a 2-cogroup. Consequently, 'Kz 'K = 'K, which implies Kz 'K = K and
Hrx 'z 'Hx ' = Kz 'K = K = Hz~!. This implies =2 € H and z?> € H. Conse-
quently, tH =z '2?H =2 'H =K = Hx ' = Hz?z~' = Hz.
Now we are able to show that H*+ = H U K is a group. Indeed,
(HUK)- (HUK)'cHH'UHK *UKH 'UKK™!
CHUHHzUzsHHUHz 'sH=HUKUKUH = H*.

Since K = Hx = xH, the subgroup H = K - K has index 2 in H*. The uniqueness of the
pair (H*, H) follows from the fact that H = K - K and H* = KK U K. This completes
the proof of the “only if” part.

To prove the “if” part, assume that H* is a subgroup of X and H C H? is a subgroup
of index 2 such that K = H* \ H. Then for every € K the shift zK = Kz = H is a
subgroup of X disjoint from K. This means that K is a 2-cogroup. m

Proposition implies that for each 2-cogroup K C X the set K* = K UKK is a
subgroup of X and KK is a subgroup of index 2 in K+,

We shall denote by K the family of all 2-cogroups in X. It is partially ordered by the
inclusion relation C and is considered as an X-act endowed with the conjugating action

X xK-=K, (2, K)— oKz

of the group X. For each 2-cogroup K € K let Stab(K) = {z € X : tKz~! = K} be the
stabilizer of K and [K] = {zKz~!: 2 € X} be the orbit of K. Let [K] = {[K]: K € K}
denote the orbit space of I under the action of the group X.

A cogroup K € K is called normal if tKz=! = K for all z € X. This is equivalent to
saying that Stab(K) = X.

Since for each twin subset A C X the set Fix™ (A4) is a 2-cogroup, the function

Fix : T— K, Fix : A~ Fix (A),
is well-defined and equivariant according to Proposition A similar equivariant func-
tion
I-Fix : Tf - K, Z-Fix : A I-Fix (A),

can be defined for any left-invariant ideal Z on a group X.

Let K denote the set of maximal elements of the partially ordered set (K, C). The
following proposition implies that K lies in the image Fix™ (T) and is cofinal in K.

PROPOSITION 7.3.

(1) For any linearly ordered family C C K of 2-cogroups in X the union |JC is a 2-cogroup
mn X.

(2) Each 2-cogroup K € K lies in a mazimal 2-cogroup Kek.

(3) For each mazimal 2-cogroup K € KC there is a twin subset A € T with K = Fix~ (A).

Proof. 1. Let C C K be a linearly ordered family of 2-cogroups of X. Since each 2-cogroup
C € C is disjoint from the group C'-C and C' = C-C'-C, we see that the union K = |JC is
disjoint from the union Joco C-C = K-K and K = e C = Upe C-C-C = K-K-K,
witnessing that K is a 2-cogroup.
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2. Since each chain in K is upper bounded, Zorn’s Lemma guarantees that each 2-
cogroup of X lies in a maximal 2-cogroup.

3. Given a maximal 2-cogroup K € I/C\, consider the subgroups K-K and K* = KUKK
of X and choose a subset S C G meeting each coset Kz, 2 € X, in a single point.
Consider the set A = KK - S and note that X \ A = KS = zA for each « € K, which
means that K C Fix™ (A). The maximality of K guarantees that K = Fix™ (A). m

It should be mentioned that in general Fix™ (T) # K.

EXAMPLE 7.4. For any twin subset A in the 4-element group X = Cy & Cy the group
Fix(A) is not trivial. Consequently, each singleton {a} C X\ {e} is a 2-cogroup that does
not belong to the image Fix™ (T).

A left-invariant subfamily F C T is called

o K-covering if K C Fix™ (F) (this means that for each maximal 2-cogroup K € K there

is a twin set A € F with Fix™ (4) = K);
e minimal K-covering if F coincides with each left-invariant IC-covering subfamily of F.
Proposition 3) implies that the family

T={AcT:Fix (4) ek}

is I/C\—covering.
PROPOSITION 7.5. For any function f € Endy(P(X)) the family f('T') is IE—covem'ng.
Proof. The equivariance of the function f and the left-invariance of the family T imply
the left-invariance of the family f(T). To see that f(T) is K-covering, fix any maximal 2-
cogroup K € K and using Proposition find a twin set A C X with Fix™ (A) = K. We
claim that Fix™ (f(A4)) = Fix™ (A) = K. By Corollary the function f is equivariant

and symmetric. Then for every = € Fix™ (A), applying f to the equality A = X \ A, we
obtain

x f(A) = fzd) = (X \A) = X\ f(A),
which means that « € Fix™ (f(A)) and thus Fix™ (4) C Fix™ (f(A)). Now the maximality
of the 2-cogroup Fix™ (A) guarantees that Fix™ (f(A)) = Fix™ (A4). =

REMARK 7.6. In Theorem we shall show that for a twinic group X and a function
f € K(End,(P(X))) from the minimal ideal of Endx(P(X)) the family f(T) is minimal

KC-covering.
For each 2-cogroup K C X consider the families

T ={AecT:Fix (A) =K} and T ={A€cT:3xec X with Fix™(zA) = K}.

The following proposition describing the structure of minimal IC—covering families can be
easily derived from the definitions.

PROPOSITION 7.7. A left-invariant subfamily F C T is minimal I%—covering if and only
if for each K € K there is a set A € F such that F N T gy = [A].
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8. The characteristic group H(K) of a 2-cogroup K

In this section we introduce an important notion of the characteristic group H(K) of a
2-cogroup K in a group X and reveal the algebraic structure of the characteristic groups
of maximal 2-cogroups.

Observe that for each 2-cogroup K C X its stabilizer Stab(K) = {z € X : 2Kz}
= K} contains K K as a normal subgroup. So, we can consider the quotient group H(K) =
Stab(K)/KK called the characteristic group of the 2-cogroup K. Characteristic groups
will play a crucial role for description of the structure of maximal subgroups of the
minimal ideal of the semigroup A(X).

Observe that for a normal 2-cogroup K € K the characteristic group H(K) is equal
to the quotient group X/KK.

The characteristic group H(K) of each maximal 2-cogroup K C X has a remarkable
algebraic property: it is a 2-group with a unique 2-element subgroup. Such finite groups
were classified in [20, 5.3.6].

Let us recall that a group G is called a 2-group if the order of each element of G is a
power of 2. Let us recall some standard examples of 2-groups.

We denote by Qs = {1,i,j,k, —1,—i,—j, —k} the group of quaternions. It is a multi-
plicative subgroup of the real algebra H of quaternions. The algebra H contains the field
C of complex numbers as a subalgebra. For each n € w let

CQnZ{ZE(CZZQn:l}

be the cyclic group of order 2. The multiplicative subgroup Q2» C H generated by the
set Can—1UQsg is called the group of generalized quaternions (see [19] §5.3]). The subgroup
Cyn-1 has index 2 in QQo» and each element of Q2n \ Con—1 has order 4. According to our
definition, Q2n = Qg for n < 3. For n > 3 the group 2~ has the presentation

2 1

(ry|2?=y*" a2t =1, aya"t =y~ ).

The unions
Czoo = U an and ngo = U QQn
new ncw
are called the quasicyclic 2-group and the infinite group of generalized quaternions, re-
spectively.

THEOREM 8.1. A group G is isomorphic to Con or Qaon for some 1 < n < oo if and only
if G is a 2-group with a unique element of order 2.

Proof. The “only if” part is trivial. To prove the “if” part, assume that G is a 2-group
with a unique element of order 2. Denote this element by —1 and let 1 be the neutral
element of G. If the group G is finite, then by Theorem 5.3.6 of [I9], G is isomorphic to
Con or Qon for some n € N. So, we assume that G is infinite.

Since —1 is a unique element of order 2, the cyclic subgroup {—1,1} is the maximal
2-elementary subgroup of G (we recall that a group is 2-elementary if it can be written
as the direct sum of 2-element cyclic groups). Now Theorem 2 of [2I] implies that the
group G contains a normal abelian subgroup H of finite index. Since G is infinite, so is
the subgroup H. Let H be a maximal subgroup of G that contains H.
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We claim that H = H and H is isomorphic to the quasicyclic 2-group Che. Since H is
a 2-group, the unique element —1 of the group G belongs to H. Let f: {—1,1} — C3 be
the unique isomorphism. Since the group Cae is injective, by Baer’s Theorem [19] 4.1.2],
the homomorphism f : {—1,1} — Cy C Oy extends to a homomorphism f : H — Chee.
We claim that f is an isomorphism. Indeed, the kernel f~1(1) of f is trivial since it is a 2-
group and contains no element of order 2. So, f is injective and then f(H) coincides with
Coe, being an infinite subgroup of Cye. For the same reason, f(H) = Cy~. Consequently,
H = H is isomorphic to Ca.

If G = H, then G is isomorphic to Cs=~. So, it remains to consider the case of non-
abelian group G # H.

CLAIM 8.2. For everya € H and b € G\ H we get b*> = —1 and bab~! = a~ 1.

Proof. The maximality of the abelian subgroup H implies that bz # b for some element
of H. Since H is quasicyclic, we can assume that the element x has order > 8 and a
belongs to the cyclic subgroup generated (z).

Using the fact that the maximal abelian subgroup H has finite index in G, one can
show that the group G is locally finite. Consequently, the subgroup F' = (b, z) generated
by the set {b,x} is finite. By Theorem 5.3.6 of [19], this subgroup is isomorphic to Qan
for some n > 4. Analyzing the properties of the group Q2» we see that v> = —1 and

byb~! =y~ for all y € (x). In particular, bab~! =a~!. u

Next, we show that the subgroup H has index 2 in G. This will follow as soon as
we show that for each z,y € G\ H we get xy € H. Observe that for every a € H we
get xyay 'z™! = za"'x~! = @, which means that xy commutes with each element of
H and hence zy € H by the maximality of H. Now take any elements b € G\ H and
q € Q2 \ Oz. Extend the isomorphism f : H — Che to a map f: G — Q2 letting
f(bh) = q-f(h) for h € H. Claim[8.2/implies that f is a well-defined isomorphism between
G=HUbH and Q2<. =

THEOREM 8.3. For each maximal 2-cogroup K € Kina group X the characteristic group
H(K) = Stab(K)/KK s isomorphic either to Con or to Qan for some 1 < n < oo.

Proof. This theorem will follow from Theorem as soon as we check that H(K) is a
2-group with a unique element of order 2.

Let ¢ : Stab(K) — H(K) be the quotient homomorphism. Take any element 2z € K
and consider its image d = ¢(z). Since K = ¢ K K, the image ¢(K) = {d} is a singleton.
Taking into account that » ¢ KK and 2? € KK, we see that the element d has order 2
in H(K). We claim that any other element a of order 2 in H(K) is equal to d. Assume
towards a contradiction that some element a # d of H(K) has order 2.

Let C* be the subgroup of H(K) generated by the elements a,d, and C be the cyclic
subgroup generated by the product ad. We claim that d ¢ C. Assuming conversely that
d € C, we conclude that d = (ad)" for some n € Z. Then a = add = ad(ad)" = (ad)"™* €
C and consequently a = d (because cyclic groups contain at most one element of order 2).
Therefore d ¢ C. It is clear that C* = C U dC, which means that the subgroup C' has
index 2 in C*.
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Consider the subgroups H* = ¢~ 1(C*), H = ¢~ (C) and observe that the 2-cogroup
H*\ H is strictly larger than K, which contradicts K € K.

Since d is a unique element of order 2 in H(K), the cyclic subgroup D = {d,d?}
generated by d is normal in H(K). Consequently, for each non-trivial subgroup G C H(K)
the product D -G = G - D is a subgroup in H(K). Now we see that G must contain d.
Otherwise, dG would be a 2-cogroup in H(K) and its preimage ¢~!(dG) would be a 2-
cogroup in X that contains the 2-cogroup K as a proper subset, which is impossible as
K is a maximal 2-cogroup in X.

Therefore each non-trivial subgroup of H(K) contains d. This implies that each ele-
ment x € H(K) has finite order which is a power of 2, witnessing that H(K) is a 2-group
with a single element of order 2. m

9. Twin-generated topologies on groups

In this section we study so-called twin-generated topologies on groups. The information
obtained in this section will be used in Section [20] to study the topological structure of
maximal subgroups of the minimal ideal of the superextension A(X).

Given a twin subset A of a group X consider the topology 74 on X generated by
the subbase consisting of the right shifts Az, x € X. In the following proposition by the
weight of a topological space we understand the smallest cardinality of a subbase of its
topology.

PRrROPOSITION 9.1.

(1) The topology Ta turns X into a right-topological group.

(2) If Ax =z A for all x € Fix (A), then the topology T4 is zero-dimensional.

(3) The topology T4 is Ty if and only if the intersection (|, 4, Az™' is a singleton.

(4) The weight of the space (X,Ta) does not exceed the index of the subgroup Fix(A™1)
mn X.

Proof. 1. It is clear that the topology 74 is right-invariant.

2. If Az = xA for all © € Fix™ (A), then the set X \ A is open in the topology 74
because X \ A = zA = Az for any = € Fix™ (A). Consequently, A is an open-and-closed
subbasic set. Now we see that the space (X, 74) has a base consisting of open-and-closed
subsets, which means that it is zero-dimensional.

3. If the topology 74 is T4, then the intersection ) Aa~! of all open neighborhoods

a€A
of the neutral element e of X consists of the single goint e. Assuming conversely that
Naca Aa~t = {e}, for any two distinct points 2,y € X we can find a shift Aa™!, a € A,
that contains e but not yz~!. Then the shift Aea='z is an open subset of (X,7) that
contains x but not y, witnessing that the space (X, 74) is T7.

4. To estimate the weight of the space (X, 74), choose a subset S C X meeting each
coset 2Fix(A™1), # € X, in a single point (here Fix(A™!) = {z € X : 24~ = A~1}).
Then the set S~! meets each coset Fix(A4)z, x € X, in a single point. It is easy to see that
the family {Az : x € S~!} forms a subbase of the topology of 7 and hence the weight of
(X, 7) does not exceed | X/Fix(A™1)|. m
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DEFINITION 9.2. A topology 7 on a group X will be called twin-generated if 7 is equal
to the topology 74 generated by some twin subset A C X, i.e., 7 is generated by the
subbase {Az : z € X}.

Because of Theorem [8.3] we shall be especially interested in twin-generated topologies
on the quasicyclic group Cy~ and the infinite quaternion group Q2. First we consider
some examples.

ExAMPLE 9.3. In the circle T = {z € C : |z| = 1} consider the twin subset C~ = {€’* :
0<p<m}

(1) For each z € T\ Ca~ the twin set Ca~ N zC,~ generates the Euclidean topology
on Cooo.

(2) For each z € Cae the twin set Cy NzC~ generates the Sorgenfrey topology on Cos.
This topology turns Co~ into a paratopological group with discontinuous inversion.

A similar situation holds for the group Q2. Its closure in the algebra H of quaternions
coincides with the multiplicative subgroup T U Tj of H, where j € Qg \ C is one of non-
complex quaternion units.

EXAMPLE 9.4. In the group T U Tj C H consider the twin subset Q~ = C~ U CA j.

(1) For each z € T \ Ca» the twin set Q20 N zQ,~ generates the Euclidean topology
on Qoco.

(2) For each z € Ca~ the twin set Qa0 N2Q~ generates the Sorgenfrey topology on Qac.
This topology turns Q2 into a right-topological group with discontinuous inverse
and discontinuous left shifts I, : Qax — Qax for & € Qs \ Caeo.

In the following proposition we denote by 75 the Euclidean topology on Caso.

THEOREM 9.5. Each metrizable right-invariant topology 7 O 7 on the group Cas (or
Q2= ) is twin-generated.

Proof. First we consider the case of the group Cy~. Let
Ey = Coe N{e"?: —1/3 < ¢ < 27/3}
be the twin subset generating the Euclidean topology 75 on Co~ and put
B, = Cox N{e¥ :|p| <37 t1} forn>1.

For every n € N let ¢, = > ;_, /4" and observe that poo = > po, 7/4" = 7/3.

Let 7 D 7p be any metrizable right-invariant topology on Cy~. The metrizable space
(Coee, 7) is countable and hence zero-dimensional. Since T D 7, there exists a neighbor-
hood base {U,,}22; C 7 at the unit 1 such that each set U, is closed and open in 7 and
U, C E, for all n € N.

The interested reader can check that the twin subset

o0 oo o0
A= (EO\ U ewEn) Ul e U, u | (@ BN\ T
n=1 n=1 n=1
generates the topology 7.
Next, assume that 7 D 7 is a right-invariant topology on the group Q2. This group
can be written as Qo = Coe U Caj, where j € Qg \ C is a non-complex quaternion
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unit. Since Co~ € T C T, the subgroup Cs is open in Q2~. By the preceding item,
the topology 7 N P(Ca=) on the group Co is generated by a twin set A C Cas \ {€!¥ :
v € (2m/3,7) U (47/3,57/3)}. A simple geometric argument shows that the topology 7
is generated by the twin subset A U Aj of Qo~. =

PROBLEM 9.6. Are all metrizable right-invariant topologies on Co~ and Qo twin-gener-
ated?

10. The characteristic group H(A) of a twin subset A

In this section, given a twin subset A € T of a group X we introduce a twin-generated
topology on the characteristic group H(K) of the 2-cogroup K = Fix™ (A).

Consider the intersection B = A N Stab(K) = B - KK and the image A’ = ga(B)
of the set B under the quotient homomorphism g4 : Stab(K) — H(K) = Stab(K)/KK.
We claim that A’ is a twin subset of H(K).

Indeed, for every x € Fix™ (A) = K C Stab(K) we get X \ A = 2 A, and consequently
Stab(K)\ B = zB and H(A) \ A" = zA’ where z € qa(z).

Now it is legal to endow the group H(K) with the topology 74/ generated by the twin
subset A’. This topology is generated by the subbase {A’z : x € H(K)}. By Proposi-
tion the topology 74/ turns the characteristic group H(K) into a right-topological
group, which will be called the characteristic group of A and will be denoted by H(A).
By Proposition the characteristic group H(A) is a Tj-space and its weight does not
exceed the cardinality of H(A).

The reader should be conscious of the fact that for two twin subsets A, B € T with
Fix™ (A) = Fix™ (B) the characteristic group H(A) and H(B) are algebraically isomorphic
but topologically they can be distinct: see Examples [0.3] and [9.4]

11. Characterizing functions that belong to End}(F)

In this section for a twinic ideal Z on a group X and a left-invariant subfamily F C T we
characterize functions f : F — P(X) that belong to the space End%(F). We recall that
End3 (F) is the projection of End% (P(X)) onto the face P(X)F.

THEOREM 11.1. For a left-invariant twinic ideal T on a group X and a left-invariant
subfamily F C T a function ¢ : F — P(X) belongs to the space End%(F) if and only if ¢
is equivariant, T-saturated, and Fix (A) C Fix™ (p(A)) for all A € F.

Proof. To prove the “only if” part, take any function ¢ € Endf(F) and find a function ¢ €
End} (P(X)) such that ¢ = |F. By Theorem the function 1 is equivariant, monotone,
symmetric, and Z-saturated. Consequently, its restriction ¢ = 9|F is equivariant and Z-
saturated. Now fix any subset A € F and take any point z € Fix™ (A4). The left-invariance
of F guarantees that X \ A = zA € F, which means that the family F is symmetric.
Applying the equivariant symmetric function v to the equality xA = X \ A, we get
2 o(4) = 29(4) = v(ed) = $(X | A) = X\ ¥(A4) = X\ p(A)
and thus = € Fix™ (p(A4)) and Fix™ (4) C Fix™ (¢(A)).
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To prove the “if” part, fix any equivariant Z-saturated function ¢ : F — P(X) such
that Fix™(A) C Fix™ (p(A)). In order to apply Theorem [4.8) we need to extend the
function ¢ to some symmetric Z-saturated family. This can be done as follows.

Consider the Z-saturation FZ = Uacr AT of F. Next, extend the function ¢ to the
function @ : F — F assigning to each set B € FZ the set p(A) where A € Fn BZ. Since ¢
is Z-saturated, the extension @ of ¢ is well-defined and Z-saturated. The equivariance of
 implies the equivariance of its extension @.

Let us check that the function ¢ : FZ - Fis symmetric and monotone.

To see that ¢ is symmetric, take any set B € FZ and find a set A € FN BZ. Fix
any point z € Fix™ (A). By our hypothesis « € Fix™ (4) C Fix™ (¢(A)). It follows from
A =1 B that X\ A=z X\ B and hence

P(X\ B) = p(X\ 4) = p(zA) = 2p(A) = X \ p(4) = X\ p(B),
which means that the function ¢ is symmetric.

The monotonicity of @ will follow as soon as we check that ¢(A) = ¢(B) for any
sets A,B € F with A Cz B. Pick points a € Fix™ (A4), b € Fix™ (B). Since the ideal 7 is
twinic, the chain of Z-inclusions bB = X \ B Cz X \ A = aA Cz aB implies the chain of
Z-equalities bB =7 X\ B =17 X\ A = aA =7 aB, which yields A =7 B and ¢(A) = ¢(B)
as ¢ is Z-saturated.

Therefore @ : FZ — F is a left-invariant symmetric monotone Z-saturated function

defined on a Z-saturated left-invariant symmetric family FZ. By Theorem [4.8, @ belongs
to End} (F%) and then its restriction ¢ = @|F belongs to Ends (F). m

Let us recall that T = {A C X : Fix (A4) € K}.

COROLLARY 11.2. For a left-invariant twinic ideal T on a group X the space Endf(:l\')
consists of all equivariant T-saturated functions ¢ : T — T such that Fix (¢(A)) =
Fix™ (A) for all A€ T.

A similar characterization holds for functions that belong to the space End% (Tg) for
Kek (let us observe that Theorem is not applicable to the family Ty because it is
not left-invariant). A function ¢ : Tg — Tk is Stab(K)-equivariant if p(xA) = xp(A)
for all A € Tk and x € Stab(K).

PROPOSITION 11.3. For any mazximal 2-cogroup K C X and a left-invariant twinic ideal
Z on a group X a function ¢ : Tg — Tg belongs to the space Endf(TK) if and only if
¢ 1s Stab(K)-equivariant and T-saturated.

Proof. The “only if” part follows from Theorem [£.8] To prove the “if part”, assume that
a function ¢ : Tg — Tk is Stab(K)-invariant and Z-saturated. For any A € Tx and
x € K =Fix™ (A) = Fix™ (p(4)) we get (X \ 4) = p(zA) = zp(4) = X \ ¢(A), which
means that the function ¢ is symmetric.
Now consider the families
L,={r7'A: AcF,z€p(A)} and Ei = U AT,
AeL,
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We claim that the family Ei is linked. Assuming the opposite, we could find two sets
A,B € F and two points z € ¢(A) and y € ¢(B) such that 7' ANy~!B € Z. Then
yr~1A Cz X\ B. Let us show that the point ¢ = yz~! belongs to the subgroup Stab(K)
of X. Given any point z € K, we need to prove that ¢ 'zc € K. Taking into account
that z € K = Fix™ (B) = Fix (A), we see that cA Cz X \ B implies that

cACz X\ B=2BCg zc(X\ A) = zczA.

Since the ideal 7 is twinic, we get cA =7 X \ B =71 zczA, which implies ¢ lzcz €

Z-Fix(A). The maximality of the 2-cogroup K = Fix™ (A) C Z-Fix™ (A) guarantees that
I-Fix (A) = K and Z-Fix(A) = Z-Fix (A) - Z-Fix~ (A) = KK. Therefore ¢ *zcz € KK
and ¢ lzc € KKz7! = K. Now we see that yz=! = ¢ € Stab(K). So it is legitimate to
apply the Stab(K)-invariant Z-saturated function ¢ to the Z-equality yz='A =7 X \ B
and obtain yz~tp(A4) = p(X \ B) = X \ ¢(B). Then 2 1p(A) C X \ y~tp(B), which is
not possible because the neutral element e of the group X belongs to = 1p(A)Ny~Lo(B).
Further we continue as in the proof of Theorem [{.8 =

12. The H(K)-act Tx of a maximal 2-cogroup K

In this section, given a maximal 2-cogroup K in a group X we study the structure of the
subspace
Tk ={AeP(X):Fix (A) = K} C P(X)

of the compact Hausdorff space P(X). The latter space is naturally homeomorphic to
the Cantor discontinuum 2% where the ordinal 2 = {0,1} is endowed with the discrete
topology.

PROPOSITION 12.1. For any 2-cogroup K C X the subspace Tk of P(X) is homeomor-
phic to the Cantor discontinuum 2X/5 where X/K* ={K*z:r € X}.

Proof. Choose any subset S C X that meets each coset K¥z, z € X, in a single point,
and consider the bijective function ¥ : P(S) — Tk assigning to each subset A C S
the twin set Ty = KKA U K(S\ A). Let us show that the function ¥ is continuous.
The subbase of the topology of T consists of the sets ()T = {B € Tg : x € B}
and (z) = {B € Tk : © ¢ B} where © € X. Observe that for every z € K we get
()" ={B €Tk :z€ X\ B=2zB}=(2"')", which means that the sets (z)*, z € X,
form a subbase of the topology of Tg.

Now the continuity of the map ¥ will follow as soon as we check that for every
r € X the set U=1((2)*) = {A € P(S) : * € Ta} is open in P(S). Fix any subset
A€ U~1({x)*") and let s be the unique point of the intersection S N K*z. Consider the
open neighborhood O(A) = {4’ € P(S) : A’N{s} = AN{s}} of A in the space P(S). We
claim that O(A) ¢ ¥=1((z)*). Fix any A’ € O(A) and consider two cases:

(i) fse A thense€ A andx € TANK*s = KKs C Tar.
(ii) f s€ S\ A, thens€ S\ A andz € TaNK*s=Ks C K(S\ A") C Ta.
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In both cases U(A’) = T € (z)*. Now we see that ¥ : P(S) — Tg, being a continuous
bijective map defined on the compact Hausdorff space P(S), is a homeomorphism. It

remains to observe that P(S) is homeomorphic to 2X/% Cm

Let us observe that in general the subfamily Tx C P(X) is not left-invariant. Indeed,
for any A € Tk and z € X the shift ©A belongs to Tk if and only if K = Fix™ (zA) =
2Fix~ (A)z=! = x K2z~ ! if and only if € Stab(K). Thus the family T g can be considered
as an act endowed with the left action of the group Stab(K).

For any twin set A € Tk its stabilizer Fix(4) = {z € X : 24 = A} is equal to
Fix™ (A) - Fix™ (A) = KK and hence is a normal subgroup of Stab(K). This implies that
the characteristic group H(K) = Stab(K)/KK acts freely on the space Tg. Therefore,
we can (and will) consider the space Tk as a free H(K)-act. For each set A € Tx we
denote by

A =[AlNTkg ={zA:z € Stab(K)} = {hA: h € H(K)}

the orbit of A in Tx and by [Tx] = {|A] : A € Tk} the orbit space of the H(K)-act Tg,
endowed with the quotient topology. By Theorem the H(K)-act T is isomorphic to
[Tx]xH(K). In some cases the isomorphism between the H(K)-acts T and [T k] x H(K)
is topological.

PROPOSITION 12.2. The orbit space [Tk| is a Ti-space if and only if the characteristic
group H(K) is finite. In this case [Tk] is a compact Hausdorff space and the orbit map
q : Tk — [Tk] has a continuous section s : [Tx| — T, which implies that Tk is
homeomorphic to the product [T k] x H(K) where the (finite) group H(K) is endowed with
the discrete topology.

Proof. By Theorem the characteristic group H(K) is at most countable. Since Tk is
a free H(K)-act, each orbit |A], A € Tk, has cardinality ||A]|| = |H(K)| and hence is
at most countable. Note that the orbit | A] admits a transitive action of the group H(K)
and hence is topologically homogeneous.

If [Tk] is a Th-space, then each orbit |A], A € Tk, is closed in the compact Hausdorff
space Tg. Now the Baire theorem implies that | A| has an isolated point and is discrete
(being topologically homogeneous). Taking into account that | A] is compact and discrete,
we conclude that it is finite. Consequently, |H(K)| = || A4]| < Ro.

Now assume that the characteristic group H(K) is finite. Let ¢ : T — [T k] denote
the orbit map. To show that the orbit space [T k] is Hausdorff, pick two distinct orbits
|A] and |B]. Since H(K) is finite and A # yB for any z,y € H(K), we can find two
neighborhoods O(A) and O(B) of A, B in Tk such that zO(A4) NyO(B) = § for all
z,y € H(K). Then O([A]) = U,enr) 2O(A) and O(|B]) = U,enx) vO(B) are two
disjoint open H(K)-invariant subsets in Tg. Their images ¢(O(|A])) and ¢(O(|B])) are
disjoint open neighborhoods of |A], | B] in [T k], which means that the orbit space [T ]
is Hausdorff. This space is compact and zero-dimensional as the image of the compact
zero-dimensional space T under the open continuous map g : T — [Tk].

Using the zero-dimensionality of [T x| and the finiteness of H(K) it is easy to construct
a continuous section s : [Tg] — Tk of the map ¢ and prove that Tg is homeomorphic
to HK) x [Tk]. =
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Let us recall that a subfamily F C P(X) is A-invariant if f(F) C F for any equivariant
symmetric monotone function f : P(X) — P(X). For a A-invariant subfamily F C P(X)
the projection

End,(F) = {f|F : f € End\(P(X))}

is a subsemigroup of the semigroup FF of all self-mappings of F.

PRrROPOSITION 12.3. For any maximal 2-cogroup K C X the family Tg is A-invariant
and hence End (T k) is a compact right-topological semigroup.

Proof. Given any function f € End)(P(X)) and a set A € Tk we need to show that
f(A) € Tk. By Corollary the function f is equivariant and symmetric. Then for any
x € K =Fix™ (A) we get A = X\ A and hence zp(A4) = p(zA) = p(X\A) = X\ p(4),
which means that * € Fix (¢(A)) and K C Fix (¢(A)). The maximality of the 2-
cogroup K guarantees that K = Fix (¢(A4)) and thus ¢(A4) € Tgk. So, the family T is
A-invariant. m

13. Z-incomparable and Z-independent families

Let 7 be a left-invariant ideal on a group X. A family F C P(X) is called

o T-incomparable if VA,B € F (A Cz B= A=z B);
o Z-independent if VA,B € F (A=7 B= A= B).

PrOPOSITION 13.1. A left-invariant ideal T on a group X is twinic if and only if the
family pTE of T-pretwin sets is I-incomparable.

Proof. First assume that the family pT? is Z-incomparable. To show that the ideal Z
is twinic, take any subset A C X with zA Cz X \ A Cz yA for some z,y € X. Then
A € pT? and also zA, yA € pTZ. Since zA C7 yA, the Z-incomparability of the family
pT? implies that zA =7 yA and then zA =7 X \ A =7 yA, which means that the ideal
7 is twinic.

Now assume conversely that 7 is twinic and take two Z-pretwin sets A Cz B. Since
the sets A, B are Z-pretwin, there are elements x,y € X such that B Cz X \ B and
X \ A Cz yA. Taking into account that

B CIX\B CIX\ACIyACIyB,
and 7 is twinic, we conclude that X \ B =7 X \ A and hence A =7 B. n

COROLLARY 13.2. For each twinic left-invariant ideal Z on a group X the family T of
twin sets is T-incomparable.

PROPOSITION 13.3. For a left-invariant ideal T on a group X the family T is Z-independ-
ent if and only if TN K = (.

Proof. To prove the “only if” part, assume that the ideal Z contains some maximal 2-
cogroup K € K. Since 7 is left-invariant, for each x € K, KK = K € 7 and hence
K*=KUKKc1T.
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Choose a subset S C X that contains the neutral element e of the group X and meets
each coset K*x, x € X, in a single point. Then A = KKS and B = KK (S \ {e}) UK
are two distinct twin sets with K C Fix™ (A) N Fix™ (B). By the maximality of K, K =
Fix~ (A) = Fix™ (B) and hence A, B € T. Since the symmetric difference A A B =
KKUK = K* is in 7, we get A =7 B, which means that the family T fails to be
Z-independent.

To prove the “if” part, assume that the family T is not Z-independent and find two
subsets A, B € T such that A # B but A =7 B. The 2-cogroup Fix~ (A) of A is maximal
and hence coincides with the 2-cogroup Z-Fix™ (A) D Fix™ (A). For the same reason,
Fix™ (B) = Z-Fix™ (B). The Z-equality A =7 B implies Z-Fix™ (4) = Z-Fix™ (B). Denote
the maximal 2-cogroup Fix (A) = Z-Fix (A) = Z-Fix (B) = Fix (B) by K. Then
Fix(A4) = Fix (A) - Fix (A) = KK = Fix(B) and hence A = KKA and B = KKB.
Now we see that the symmetric difference A A B = KKA A KKB contains a subset
KKz for some z € X. Then for any y € K, we get Kyr = KKx C A/A B € T and hence
Kyx € . Finally observe that the set K’ = x~ 'y ! Ky is a maximal 2-cogroup and by
the left-invariance of the ideal Z, K’ = 2~ 'y~ !Kyx € Z. So, Knz #0. =

PROPOSITION 13.4. A subfamily F C P(X) is Z-independent for any left-invariant ideal
Z on X if for each set A € F the subgroup Fix(A) has finite index in X.

Proof. Assume that A, B € F are two subsets with A =7 B for some left-invariant
ideal Z. Since the subgroups Fix(A) and Fix(B) have finite indices in X, their intersection
Fix(A) N Fix(B) also has finite index in X and contains a normal subgroup H C X of
finite index in X (see [14, .LEx.9(a)]). Then X = FH for some finite subset F C X.
Assuming that A # B, we can find a point x € A A B and conclude that tH = Hz C
HANHB=AABE&cTand X = FH € T by the left-invariance of the ideal Z. This
contradiction completes the proof. m

ProOPOSITION 13.5. Each minimal Ia—covering subfamily TCTis Z-independent.

Proof. Fix any two sets A, B € T with A =7 B. Repeating the argument from the proof of
Proposition we can prove that Z-Fix™ (A) = Fix (A) = Z-Fix (B) =Fix (B) = K
for some maximal 2-cogroup K € K. Since the family T5 A, B is minimal I%—covelring7
the sets A, B lie in the same orbit and hence A = xB for some x € X. It follows from
B =7 A =1B that « € Z-Fix(B) = Fix(B) and thus A=zB =B. u

14. The endomorphism monoid End(Tg) of the H(K)-act Ty

For any maximal 2-cogroup K in a group X the compact right-topological semigroup
End) (Tg) is a subsemigroup of the endomorphism monoid End(T ) of the free H(K)-act
T k. The endomorphism monoid End(T g) is the space of all (not necessarily continuous)
functions f : Txg — Tk that are equivariant in the sense that f(zxA) = zf(A) for all
A € Tk and x € Stab(K). It is easy to check that End(Tg) is a closed subsemigroup of
the compact Hausdorff right-topological semigroup TI{‘ of all self-maps of the compact
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Hausdorff space Tg. So, End(Tk) is a compact Hausdorff right-topological semigroup
that contains Endy(Tx) as a closed subsemigroup.

If 7 is a left-invariant ideal on the group X, then the left ideal End% (Tx) of Endy(Tx)
lies in the left ideal End*(Tx) C End(Tx) consisting of all equivariant functions f :
Tx — T which are Z-saturated in the sense that f(A4) = f(B) for all A, B € Tk with
A=z B.

In the following theorem we describe some algebraic and topological properties of the
endomorphism monoid End(Tg).

THEOREM 14.1. Let K be a mazimal 2-cogroup in a group X. Then:

(1) End®(Tx) = Endi(Tx) C Endy(Tx) C End(Tx) for any twinic ideal T on X;

(2) End®(Tg) = End(Tk) for any left-invariant ideal T on X such that T N K =0;

(3) the semigroup End(T ) is algebraically isomorphic to the wreath product
HU) 2 [T ] T

(4) for each idempotent f € End(Tk) the mazimal subgroup Hy C End(Tx) containing
[ is isomorphic to H(K) US[f(T,0)

(5) the minimal ideal K(End(Tg)) = {f € End(Tk) : VA € f(Tk), f(Tk) C |Al};

(6) each minimal left ideal of the semigroup End(Tg) is algebraically isomorphic to
H(K) x [Tk] where the orbit space [T k] is endowed with the left zero multiplication;

(7) each mazimal subgroup of the minimal ideal K(End(T i) is algebraically isomorphic
to H(K);

(8) each minimal left ideal of the semigroup End(T k) is homeomorphic to T ;

(9) for each minimal idempotent f € K(End(Tg)) the mazimal subgroup
Hf = foEnd(Tk) o f is topologically isomorphic to the twin-generated group H(A)
where A € f(Tk).

Proof. 1, 2. The first statement follows from Proposition [[1.3] and the second one from
Proposition [13.3]

3-7. Since Tk is a free H(K)-act, the (algebraic) statements (3)—(7) follow from
Theorem [3.11

8. Given a minimal idempotent f € End(Tg), we need to prove that the minimal left
ideal Ly = End(Tg) o f is homeomorphic to Tx C P(X). For this fix any set B € f(Txk)
and observe that f(Tx) C |B] according to the statement (5). We claim that the map

U:Lly =Tk, T:g~—g(B),

is a homeomorphism. The definition of the topology (of pointwise convergence) on
End(Tg) implies that the map ¥ is continuous.

Next, we show that the map ¥ is bijective. To show that ¥ is injective, fix any

two distinct functions g,h € Ly and find a set A € Tx such that g(A) # h(A). Since
f(Tk) C |B], there is € X such that f(A) = zB. Then

29(B) = g(@B) = gf(A) = g(A) # h(4) = hf(4) = h(zB) = sh(B)
and hence ¥(g) = g(B) # h(B) = U(h). To show that ¥ is surjective, take any subset

C € Tk and choose any equivariant map ¢ : [B] — [C] such that ¢(B) = C. Then
the function g = ¢ o f belongs to L; and has image ¥(g) = ¢g(B) = C, witnessing
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that W is surjective. Since Ly is compact, the bijective continuous map ¥ : Ly — Tg
is a hfmeomorphism. By Proposition the space Tg is homeomorphic to the cube
X/ K=

9. Given a minimal idempotent f € End(Tg) we shall show that the maximal sub-
group Hy = foEnd(Tg) o f is topologically isomorphic to the characteristic group H(A)
of any twin set A € f(Tg).

We recall that H(A) is the characteristic group H(K') of the 2-cogroup K = Fix™ (A),
endowed with the topology generated by the twin set g(ANStab(K)) where ¢ : Stab(K) —
H(K) = Stab(K)/KK is the quotient homomorphism.

We define a topological isomorphism ©4 : Hy — H(A) in the following way. Since f
is a minimal idempotent, g(A) = fgf(A4) € f(Tk) C |A]. So we can find z € Stab(K)
with fgf(A) = 271 A. Now define © 4(g) as the image q(z) = 2tKK = KKz of x under
the quotient homomorphism ¢ : Stab(K) — H(K) = H(A).

It remains to prove that ©4 : Hy — H(A) is a well-defined topological isomorphism
of right-topological groups.

First we check that © 4 is well-defined, that is, ® 4(g) = ¢(x) does not depend on
the choice of the point z. Indeed, for any other point y € X with g(A4) = y~ 1A we get
r7!A = y7'A and thus yz=! € Fix(4) = K - K where K = Fix (A). Consequently,
q(x) = KKz = KKy = q(y).

Next, we prove that © 4 is a group homomorphism. Given two functions g,h € Hy,
find elements x,,z, € Fix(A) such that h(A) = z,'A and g(A) = x; A Tt follows
that g o h(A) = g(z;'A) = z;'g(A) = x,:lxg_lA = (xgzp) ' A, which implies that
@A(g o h) = J:gxhKK = @A(g) : @A(h)

Now, we calculate the kernel of the homomorphism © 4. Take any function g € Hy
with ©4(g) = e, which means that g(A) = fgf(A) = A. Then for every A’ € Tx we
can find z € X with f(4’) = zA and conclude that g(4") = fgf(4") = fg(zA) =
xfg(A) = xfgf(A) = zA = f(A’), witnessing that ¢ = fgf = f. This means that the
homomorphism © 4 is one-to-one.

To see that © 4 is onto, first observe that each element of the characteristic group
H(A) can be written as [y] = yKK = KKy € H(K) for some y € Stab(K). Given such
an element [y] € H(A), consider the equivariant function sp, : [A] — [A], s : 24 —
2y 'A = 2y 'K KA. Let us show that this function is well-defined. Indeed, for each
point u € X with 24 = uA, we get u='z € Fix(A4) and hence yu~'zy~! € yFix(A)y~! =
yKKy ' = KK = Fix(A). Then yu~'zy~'A = A and hence zy 1A = uy 1 A.

It follows from sy o f = fosp,jof that the function sp, o f belongs to the maximal group
Hy. Since spy) 0 f(A) = sp(A) =y~ A, the image © 4 (s 0 f) = [y]- So, ©a(Hy) = H(A)
and ©4 : Hy — H(A) is an algebraic isomorphism.

It remains to prove that this isomorphism is topological. Observe that for every [y] €
H(A) we get sp,) o f(A) = sp(A) =y ' KKA =y 'A. Consequently, © € s, o f(A) iff
ey tAiffy € Az~

To see that the map ©4 : Hy — H(A) is continuous, take any subbasic open set

Us={[y] €H(A) :y € Az}, =z € Stab(K),
in H(A) and observe that ©;'(U,) = {syjo f : [y] € Us} = {spjof 1y € Az7'} =
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{syof:x e sy of(A)}is asubbasic open set in H(f). To see that the inverse map
@;‘1 : H(A) — Hy is continuous, take any subbasic openset V, = {g € H(f) : z € ¢(T)}
where z € X and T € Tg. It follows that f(T) = zp A for some z7 € X. Then

Oa(Vair) = {Iy] € H(A4) : 3 € sy 0 F(T)} = {Iy] € H(A) : 3 € sy (a7 A)}
= {ly] € H(A) s a7'w € 51 (A)} = {ly] € H(A) : y € Az a7}
is a subbasic open set in H(A). »

In the following proposition we calculate the cardinalities of the objects appearing in
Theorem We shall say that a cardinal n > 1 divides a cardinal m > 1 if there is a
cardinal k such that m = k x n. The smallest such k is denoted by m/n.

ProrosITION 14.2. If K € K is a mazimal 2-cogroup in a group X, then

(1) [Tx| = 2/K7,

(2) [H(K)| € {2* : k e N} U {Ro} and |H(K)| divides the index | X/K| of K in X;
+

3) |[Txll = [Txl/[HE)| = 25571/ H(K)|;

(4) |[H(K)| = |X/K]| if the 2-cogroup K is normal in X.

Proof. Choose any subset S C X that meets each coset K*z, x € X, of the group
K* = K UKK in a single point. It is clear that |S| = | X/K=|.

1. The equality |Tx| = 2IX/K= follows from Proposition

2. By Theorem [8.3] [H(K)| € {2" : n € N} U{R¢}. Since Stab(K) is a subgroup of X,
IH(K)| = |Stab(K)/K K| divides | X/KK| = |X/K|.

3. Since Tk is a free H(K)-act, |[Tx]| = |Tk|/|H(K)|. This equality is clear if H(K)
is finite. If H(K) is infinite, then |H(K)L: Ro and the index |X/K®| of the group K in
X is infinite. In this case |Tx| = 2X/K71 > Ry and thus |[Tx]| = 2|X/Ki|/N0 = IX/KF|,

4. If the 2-cogroup K is normal in X, then Stab(K) = X and H(K) = X/KK. In
this case |H(K)| = |X/KK| = |X/K|. n

By Theorem (6), for any maximal 2-cogroup K C X each minimal left ideal of the
semigroup End(T k) is algebraically isomorphic to H(K) x [T k]. It turns out that in some
cases this isomorphism is topological. We recall that the orbit space [Tx] = Tx/H(K) is
endowed with the quotient topology. By Proposition the orbit space [T k] is compact
and Hausdorfl if and only if the characteristic group H(K) is finite.

Since Tk is a compact Hausdorff space, the Tikhonov power TTI_(K is a compact Haus-
dorff right topological semigroup (endowed with the operation of composition of func-
tions). This semigroup contains the subsemigroup C(T g, Tk ) consisting of all continuous
maps f: Tg — Tk. It is easy to check that the semigroup C(Tg, Tk) is semitopological.

We recall that a right-topological semigroup S is called semitopological if the semi-
group operation S x S — S is separately continuous. If the semigroup operation is
continuous, then S is called a topological semigroup.

THEOREM 14.3. Let K be a mazimal 2-cogroup in a group X. For a minimal idempotent
f in the semigroup End(Tg) and its minimal left ideal Ly = End(Tg) o f the following
conditions are equivalent:
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(1) Ly is a topological semigroup;
(2) Ly is topologically isomorphic to the topological semigroup [Tx] x H(K) where the
orbit space [Tk is endowed with the left zero multiplication;

(3) Ly is a semitopological semigroup;

(4) the left shift iy : Ly — Ly, ly: g fog, is continuous;

(5) f is continuous;

(6) Lf C C(TK,TK);

(7) H(K) is finite and the idempotent band E(Ly) of Ly is compact.

Proof. The implications (2)=(1)=-(3)=-(4) are trivial.

(4)=(5) Assume that the left shift [; : Ly — Ly is continuous. We need to check that
f is continuous. First we show that for any set B € f(Tx) the preimage Z = f~1(B) is
closed in Tx. Assume that f~!(B) is not closed and find a point Ag € Z \ Z. It follows
that the set By = f(Ap) is not equal to B. Let ¢ : | B] — | Ag| be a unique equivariant
function such that ¢(B) = Ag. Then the function gy = ¢ o f belongs to the minimal left
ideal L¢. Observe that f o go(B) = f(Ao) = By # B. Since the left shift {; is continuous,
for the neighborhood O(f o go) = {h € Ly : h(B) # B} of fo gy = lt(go) there is a
neighborhood O(gg) C L¢ such that fog C O(fogo) for every g € O(go). It follows from
the equivariance of go = ggof and the definition of the topology (of pointwise convergence)
onl;C T}K that the point go(B) = A of Tk has a neighborhood O(Ag) C Tk such that
each function g € L; with g(B) € O(Ayp) belongs to the neighborhood O(g). Since Ay is
a limit point of the set Z, there is a set A € O(A4p) N Z. For this set find an equivariant
function g = g o f such that g(B) = A. Then g € O(gp) and hence f o g(B) # B, which
contradicts g(B) = A € f~1(B). This contradiction proves that all preimages f~*(B),
B e f(Tk), are closed in Tg.

Next, we show that each orbit |A|, A € Tk, is discrete. Assume that some orbit | A]
is not discrete and consider its closure | A] in the compact Hausdorff space T . The orbit
| A] has no isolated points, being non-discrete and topologically homogeneous. Fix any

B € f(Tk). By Theorems 2) and B3] |f(Tk)| = ||B]| = |H(K)| < Ro. Thus we can

write the compact space | A| as a countable union

A= U r'’nl4l
Bef(Tk)

of closed subsets. By Baire’s Theorem, for some B € f(Tg) the set |[A] N f~(B) has
non-empty interior in [A]. Since the orbit | A] has no isolated points, the intersection
|A] N f~1(B) is infinite, which is not possible as f is equivariant.

Finally, we show that for every B € f(Tk) the preimage f~!(B) is open in L;.
Assuming the opposite, we can find a point Ay € f~1(B) that lies in the closure of the
set Ti \ f71(B). Choose any equivariant function gy € Ly such that go(B) = Ay and
observe that f o go(B) = B.

Since the orbit |B| of B is discrete, we can find an open neighborhood O(B) C
Tk of B such that O(B) N |B| = {B}. This neighborhood determines a neighborhood
O(fogo) ={g €Ly : g(B) € O(B)} of the function f o gy in Ly C T1X. Since the left
shift Iy : Ly — Ly is continuous, the function gy has a neighborhood O(gg) C L; such
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that 1;(O(go)) C O(f o go). By the definition of the topology (of pointwise convergence)
on Ly, there is a neighborhood O(go(B)) C Tk such that each function g € L; with
g(B) € O(go(B)) belongs to O(go). By the choice of the point Ay = go(B), there is a
set A € O(go(B)) \ f~(B). For this set choose an equivariant function g € L such that
g(B) = A. This function g belongs to O(gg) and thus fog € O(f ogg), which means that
fog(B) = B. But this contradicts g(B) = A ¢ f~1(B).

Thus for each B € f(Tg) the preimage f~!(B) is open in T, which implies that the
function f : Txg — Tk is continuous.

(5)=(6) Assume that f is continuous. Then for any B € Tk the orbit |B] = f(Tgk) is
compact (as a continuous image of the compact space T ). Being a compact topologically
homogeneous space of cardinality || B]| < |[H(K)| < Yo, the orbit |B] = f(Tk) is finite.
Then for each g € Ly the restriction g|| B| is continuous and hence g = go f is continuous
as the composition of two continuous maps f and g||B].

(6)=(7) Assume that Ly C C(Tg, Tk). Then f is continuous. Repeating the argu-
ment from the preceding item, we can show that the characteristic group H(K) is finite.
By the continuity of f, for every B € Ty the preimage f~1(B) is closed in Tg. In the
following claim E(L;) stands for the idempotent band of the semigroup L.

CramM 14.4. E(Ly) ={g €Ly : fog(B)= B}.

Proof. 1f g € Ly is an idempotent, then for the unique point C' € g(Tx) N f~(B) we get
C' =g(C) and then B = f(C) = fg(C) = fgf(C) = fg(B).

Now assume conversely that g € Ly with fg(B) = B. Let C = g(B) € ¢g(Tk). Then
g(C) = gf(C) = gfg(B) = g(B) = C. For every A € Tx we can find x € X such that
g(A) = zC and so gg(A) = g(zC) = zg(C) = 2C = g(A), which means that ¢ is an
idempotent. m

Since the set f~1(B) C Tk is closed and the evaluation map
cg:Lly =Tk, cp:g—g(B),

is continuous, the preimage c'(f~*(B)) is closed in L. By Claim this preimage is
equal to the idempotent band E(Lf) of the semigroup Ly.

(7)=(2) Assume that the group H(K) is finite and the idempotent band E(Ly) is
compact. By Proposition the orbit space [Tk] is compact, Hausdorff and zero-
dimensional, and the quotient map ¢ : Tx — [T k] is continuous and open.

We claim that for every B € f(Tg) the preimage f~1(B) C Tk is compact. Since the
idempotent band E(Ly) is compact and the evaluation map cg : Ly — Tk, cp : g — g(B),
is continuous, the image cg(E(Ly)) is compact. By Claim cp(E(Ly)) C f7Y(B). To
show the reverse inclusion, fix any subset A € f~!(B) and choose any equivariant map
¢ : |B] — |A] such that ¢(B) = A. Then the map g = ¢ o f belongs to Ly and is an
idempotent by Claim Since A = g(B), we see that f~!'(B) C c¢g(E(Ly)) and hence
f~YB) = cp(E(Ly)) is compact.

Fix any set B € f(Tk). Since |f(Tk)| = || B]| = [H(K)| < Yo, the preimage

z='B) =T\ U '@

B#Ag|B]
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is open-and-closed in Tg. Since the compact space Z meets each orbit |A], A € Tk,
in a single point, the restriction ¢|Z : Z — [T k], being continuous and bijective, is a
homeomorphism. So, it suffices to prove that L is topologically isomorphic to Z x H(K)
where the space Z is endowed with the left zero multiplication. Define an isomorphism
®: Z x H(K) — Ly assigning to each pair (Z,z) € Z x H(K) the function gz , o f where
9z 1 |B] — | Z] is the unique equivariant function such that gz ,(B) = 27! Z. It is easy
to check that @ is a topological isomorphism between Z x H(K) and L;. m

In the following proposition we prove the existence of continuous or discontinuous
minimal idempotents in the semigroup End(Tg). Let us recall that for a left-invariant
ideal Z on a group X we denote by End” (T x) the left ideal in End(T ) consisting of all
equivariant Z-saturated functions.

PROPOSITION 14.5. Let T be a left-invariant ideal on a group X and assume that a
mazimal 2-cogroup K C X has finite characteristic group H(K). Then the semigroup
End%(Tx) contains:

(1) a continuous minimal idempotent if Kx ¢ T for all x € X;

(2) no continuous function if Kz € T for all x € X;

(3) no discontinuous function (which is a minimal idempotent) if (and only if) for each
A€ Tk the set AL NTg is open in Tk.

Proof. By Proposition the orbit space [T k] is compact, Hausdorff, and zero-dimen-
sional, and the orbit map ¢ : Tx — [Tk]| has a continuous section s : [Tg] — Tx. Then
Z = s([Tk]) is a closed subset of Tg that meets each orbit |A], A € Tk, in a single
point. Pick any B € Z and define a continuous minimal idempotent f : T — T letting
f(zZ) = xB for each x € H(K) and Z € Z.

1. Assuming that Kz ¢ T for all x € X, we shall show that the function f is Z-
saturated and hence belongs to End” (Tk). Given any sets A, B € Tx with A =7 B,
we need to show that f(A) = f(B). We shall prove more: A = B. Assume that A # B
and pick © € A A B. Since KKA = Fix(A)A = A and KKB = Fix(B)B = B, we get
KKz e AN B €7 and so for every y € K, we get Kyx = KKx € T, which contradicts
our assumption.

2. Now assume that Kz € Z for all + € X. We shall prove that no function g €
EndI(TK) is continuous. For this we show that for each A € Ty the set AZN Ty is dense
in Tg. Given any set C € Tk and a neighborhood O(C) of C in Tk, we need to find
a set B € O(C) such that B =7 A. By the definition of the topology on Tx C P(X),
there is a finite subset F C X such that O(C) D {B € Tx : BN F = C N F}. Now we
see that the set B = (A\ KTF)U (K*F N C) € Tk belongs to the neighborhood O(C)
and B =7 A because A A B C K*F € Z. Assuming that some Z-saturated equivariant
function g : Tg — Tg is continuous, we conclude that the preimage g Y f(4) D
AT N Tg coincides with Tx, being a closed dense subset of Tx. So, g is constant. Since
the action of the (non-trivial) group H(K) on T is free, the constant map g cannot be
equivariant.

3. If for every A € Tk the set ATNTg is open in T g, then each Z-saturated function is
locally constant and hence continuous. So, End* (T ) contains no discontinuous function.
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Now assuming that for some A € Tg the set A = AT n Txk is not open in Tk, we
shall construct a discontinuous minimal idempotent f € End®(Tg). Take any minimal
idempotent f € End*(Tg). If f is discontinuous, we are done. So assume that f is
continuous and fix B € f(Tg). By Theorem 5), f(Tg) = |B] is finite. So, Z =
F7L(f(B)) is open-and-closed in Tg. Take any x € Stab(K) \ KK and consider the
subset 2’ = (Z \ A) UxA which is not compact as A is not open in Z. Then the Z-
saturated minimal idempotent g : T — Tx defined by g(zZ) = zB for z € H(K) and
Z € Z' is discontinuous (because g~!(B) = Z’ is not closed in Tg). m

COROLLARY 14.6. For a maximal 2-cogroup K C X and a left-invariant ideal T on X
the following conditions are equivalent:

(1) each minimal left ideal of End* (Tg) is a topological semigroup;
(2) each minimal left ideal of_EndI(TK) is a semitopological semigroup;
(3) for each A € Ty the set AL N Ty is open in Tk.

If the ideal T is right-invariant, then conditions (1)—(3) are equivalent to

(4) K has finite index in X;
(5) the semigroup End(T k) is finite.

Proof. The equivalence (1)< (2)<(3) follows from Theorem and Proposition [14.5]

Now assume that the left-invariant ideal Z is right-invariant.

(3)=(4) Assume that for cach A € T the set AZNT is open in Tx. Then it is also
closed in T being the complement of the union of the open subsets BZNTyg for B #7 A.
By Proposition Kz ¢ T for some x € X. Since the ideal Z is right-invariant, Kz ¢ 7
for all x € X. We claim that the set A7 N Tx = {A}. Assuming that AT N T contains
a set B distinct from A, we can find a point 2 € A A B. Since Fix(A) = KK = Fix(B),
we get KKr C KKAA KKB = AA B € 7 and thus for any point z € K, we arrive
at the absurd conclusion Kzx = KKx € Z. Since the singleton A7 N Tx = {A} is open
in the space Tx, which is homeomorphic to 2%/ i, the index of the group K+ in X is
finite and so is the index of K in X.

The implications (4)=-(5)=(1) are trivial. m

15. The semigroup End,(Tk)

In the preceding section we studied the continuity of the semigroup operation on minimal
left ideals of the semigroup End(T k). In this section we shall be interested in the conti-
nuity of the semigroup operation on the semigroup Endy(Tx) C End(Tg). This will be
done in a more general context of upper subfamilies F C T. We define a family F C T to
be upper if for any twin set A € F and a twin subset B C X with Fix™ (4) C Fix™ (B),
we have B € F.

Let us remark that T is an upper subfamily of T while T g is a minimal upper subfamily
of T for every K € K.

PRrROPOSITION 15.1. Fach upper subfamily F C T is symmetric and A-invariant. Conse-
quently, Endy(F) is a compact right-topological semigroup.
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Proof. To prove that F C T is symmetric, given any set A € F choose a point x € Fix™ (A).
By Proposition Fix~ (zA) = 2 Fix (A)x~! = Fix (A) and hence X \ A = xA € F.

To see that F is A-invariant, we need to show that ¢(F) C F for any function ¢ €
End, (P(X)). By Corollary the function f is symmetric and left-invariant. Then for
each A € F and z € Fix™ (A) we get zp(A) = p(zd) = o(X \ 4) = X \ ¢(A) and
hence z € Fix™ (¢(A)). Since Fix™ (A) C Fix™ (¢(A)), the set p(A) belongs to F by the
definition of an upper family. m

THEOREM 15.2. For an upper subfamily F C T the following conditions are equivalent:

(1) End(F) is a topological semigroup;
(2) End(F) is a semitopological semigroup;
(3) for each twin set A € F the subgroup Fix(A) has finite indez in X.

Proof. (3)=-(1) Assume that for each twin set A € F the stabilizer Fix(A) has finite
index in X. To show that the semigroup operation o : Endy(F) x Endy(F) — End(F) is
continuous, fix any two functions f,g € End,(F) and a neighborhood O(f o g) of their
composition. We should show that the functions f, g have neighborhoods O(f),O(g) C
Endy (F) such that O(f) o O(g) C O(f o g). We lose no generality assuming that the
neighborhood O(f o g) is of subbasic form:

O(fog)={h€End\(F):z e h(A)}
for some x € X and some twin set A € F. Let B = g(A). It follows from fog € O(fog)
that z € fog(A) = f(B). Let O(f) = {h € End,(F) : z € h(B)}.
The definition of O(g) is a bit more complicated. By our hypothesis, the stabilizer

Fix(A) has finite index in X. Let S C X be a (finite) subset meeting each coset Fix(A) z,
z € X, in a single point. Consider the following open neighborhood of g in End) (F):

O(g) ={¢ €End\(F):Vs€S (se B &seg(A4)}.

We claim that O(f) o O(g) C O(f o g). Indeed, take any functions f' € O(f) and ¢’ €
O(g). By Theorem Fix™ (A) C Fix™ (¢’(A4)) and hence Fix(A) C Fix(¢’'(A)). Then
g'(A) = Fix(4) - (SN g¢'(4)) = Fix(A) - (SN B) = B and thus = € f'(B) = [’ o ¢'(4),
witnessing that f o g’ € O(f o g).

The implication (1)=-(2) is trivial.

(2)=(3) Assume that X contains a twin subset Ty € F whose stabilizer Fix(7p) has
infinite index in X. Then the subgroup H = Fixi(TO) also has infinite index in X. By
Theorem 15.5 of [I8], X # FHF for any finite subset F' C X.

LEMMA 15.3. There are countable sets A, B C X such that

(1) aBNyB =0 for any distinct z,y € A;

(2) |ABNHz| <1 forallze X;

(3) ec A, ABNH = 0.

Proof. Let ag = e and By = {e}. Inductively we shall construct sequences A = {a,, :
n € w} and B = {b, : n € w} such that

o b, ¢ A;LHASHB@l where A<, ={a; : i <n} and B., = {e}U{b; : i <n};

a1 ¢ HA<,B<, B,



Algebra in the superextensions of twinic groups 43

Since X # FHF for any finite subset F' C X, the choice of the points b,, and a,1 at
the n-th step is always possible. It is easy to check that the sets A, B satisfy conditions
(1)—(3) of the lemma. m

The properties (2), (3) of the set AB allows us to enlarge AB to a subset S that
contains the neutral element of X and meets each coset Hz, z € X, in a single point.
Observe that each subset £ C S generates a twin subset

Tp = Fix(Tp) - EUFix~(Tp) - (S \ E)
of X such that Fix™ (Tp) C Fix™ (Tx) and hence Tg € F.

LEMMA 15.4. There is a free ultrafilter B on X and a family of subsets {U, : a € A} C B
such that

(1) Usea Ua C B;
(2) the set U =J,cn aUq has the property B ¢ = 'U Uy ‘U for every x,y € A;
(3) for every V € B the set {a € A:aV C U} is finite.

Proof. Let A = {a, : n € w} and B be the sets constructed in Lemma For every
n € w put A<, = {a; : i <n}. Let B<o = {e} and inductively, for every n € w choose an
element b, € B so that

b, ¢ A;iASnB<n where B., = {b; :i < n}.

For every n € w let B>, = {b; : ¢ > n}. Let also By, = {bay, : n € w}.

Let us show that for any distinct numbers n, m the intersection a, B>, N G B>y, is
empty. Otherwise there would exist two numbers ¢ > n and j > m such that a,b; = a,,b;.
It follows from a, # a., that i # j. We lose no generality assuming that j > 4. Then
anb; = a,,b; implies that

bj = afnlanbi S A;;A§j3<j,

which contradicts the choice of b;.

Let B € B(X) be any free ultrafilter such that Ba, € B and B is not a P-point in
B(X)\ X. To get such an ultrafilter, take B to be a cluster point of any countable subset
of B(Bay) \ Ba, C B(X). Using the fact that B fails to be a P-point, we can take a
decreasing sequence of subsets {V;, : n € w} C B of By, having no pseudointersection
in B. The latter means that for every V' € B the almost inclusion V' C* V;, (which means
that V'\ V,, is finite) holds only for finitely many numbers n.

For every a = a,, € A let U, = V,, N B>,,. We claim that the ultrafilter B, the family
(Ua)aca, and the set U = (J,c 4 aUa = U, e, @n(Va N Bxy,) satisfy the requirements of
the lemma.

First, we check that B ¢ a,,'U Ua,,'U for all n < m. Take any odd number k > m.
We claim that by, ¢ a,'U Ua,,'U. Otherwise, by, € a,'a;(Vi N B>;) Ua;ta;(V; N Bs;) for
some i € w and hence by = a,,'a;b; or by = a,,'a;b; for some even j > i. If k > j, then
both the equalities are forbidden by the choice of by, ¢ AZ; A<k B<x D {a; a;b;, a;, a;b;}.
If £ < j, then those equalities are forbidden by the choice of b; ¢ A;}Angq‘ D
{a; *anbr,a;  a,nby}. Therefore, B ¢ a;'U Ua;,'U.

m
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Next, given an arbitrary V € B we show that the set A’ = {a € A : aV C U} is
finite. By the choice of the sequence (V4,), the set F = {a, : VN By, C* V,,} is finite. We
claim that A" C F'. Indeed, take any a,, € A". It follows from a,V C U = |J, 4 aBa and
anB NNy, aiB = (0 that

an(V N Bay,) C* an(V, N Bsy) C ayV,
and hence a,, € F'. =

Let A be any free ultrafilter on X containing the set A and observe that U =
Usen a(Va N B>y) € Ao B. Let a = ®¢(A) and 3 = ®¢(B) be the function representa-
tions of the ultrafilters A and B, respectively. We claim that the left shift I, : Endy(F) —
Endy(F), Iy : f — ao f, is discontinuous at (. Since U C AB C S, we can consider the
twin set

T =Fix(Ty) - UUFix™ (Tp) - (S\ U)

and observe that T' € A o B. Consequently, o 8(T) = {x € G : 27T € Ao B} contains
the neutral element, which implies that O(a o 8) = {f € Endy(F) : e € f(T)} is a
neighborhood of I, (8) = a0 § in End, (F).

Assuming that [, is continuous at 3, we can find a neighborhood O(8) C End(F) of
B such that 1,(O(8)) C O(ao ). Since F is left-invariant, we can assume that O(g8) is of
the basic form:

0(8) = { 1 € Endy(F) eeﬂf )}

for some twin sets T4, ..., T;, € F. It follows from 3 € O(3) that e € 8(T;) and thus T; € B
for every i < n. According to Lemma 3),theset F={a€e A: BNN,_,T; Ca U}
is finite.

We claim that the family £ = {Ty,...,T,,, X \ 2 'T : x € A\ F} is linked. This will
follow as soon as we check that

(i) T;N(X\27'T) # 0 for any i <n and x € A\ F;
(i) (X \z7 )N (X \y IT) # 0 for all 2,y € A.

Item (i) is equivalent to T; ¢ 2~ !T for z € A\ F. Assuming that T; C 71T, we will
consecutively get 2T; C T, SNaT; C SNT = U, and finally BNT; C z~'SNT; C 2~ 'U,
which contradicts x ¢ F.

Item (ii) is equivalent to 2 =T Uy T # X for x,y € A. Assume that 2~ 1TUy 1T = X
for some z,y € A. It follows from B C S that tBNT = 2BNU and thus BNz~ 'T =
BNz~ tU. Similarly, BNy T = BNy U. Consequently,

B:BﬂX:Bm@”TunU:Bn@”UUMQD¢B

by Lemma 2). This contradiction completes the proof that £ is linked.

Being hnked, the family £ can be enlarged to a maximal linked system C € A(X). It
follows from Ti,...,T, € L C C that the twin representation v = ®¢(C) belongs to the
neighborhood O(3), and consequently a0y € O(« o (3), which means that T € Ao C.
The latter is equivalent to A’ = {z € X : 7 !T € C} € A. On the other hand, X \ A’ =
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{x € X : X\ 27T € C} contains the set A\ F € A and thus X \ A’ € A, which is a
contradiction. m

THEOREM 15.5. If the group X is twinic, then for an upper subfamily F C T the following
conditions are equivalent:

(1) Endy(F) is metrizable;
(2) End\(F) is a metrizable topological semigroup;
(3) F is at most countable.

Proof. We shall prove the implications (3)=(2)=(1)=(3).

(3)=(2) Assume that the family F is at most countable. We claim that for each twin
subset T' € F the 2-cogroup K = Fix™ (T') has finite index in X. Otherwise, the subgroup
K* = KK UK also has infinite index on X and then |F| > |Tg| = 2IX/KF| > 9w 5 Ny,

So, Fix(T) has finite index in X and the implication (3)=-(1) of Theorem [[5.2] guaran-
tees that End, (F) is a topological semigroup. Now we show that this semigroup is metriz-
able. First observe that for every T' € F the set Endy({T'}) = {¢|{T} : ¢ € End\(P(X))}
has finite cardinality

[Endx({TH] = {e(T) : ¢ € Endx(P(X))}| < [{A € T : Fix(4) 2 Fix(T)}|.

Since the family F is countable, the space Endx(F) C [[;cp Enda({T'}) is metrizable,
being a subspace of the countable product of finite discrete spaces.

The implication (2)=-(1) is trivial.

(1)=(3) Assuming that the family F is not countable, we shall show that the space
End, (F) is not metrizable. We consider two cases.

(a) For some twin set T' € F the stabilizer Fix(T") has infinite index. Then we can find
an infinite set S C X that intersects each coset Fixi(T)x, x € X, in a single point. As
we already know, for each subset £ C S the set

T = Fix(T) - EUFix (T) - (S \ E)

belongs to the family F. Now take any two distinct ultrafilters U,V € §(S) C B(X)
and consider their function representations fi; = ®r(U) and fy = ®p(V). Since U # V,
there is a subset £ C S such that E € ¢ \ V. It follows that Tp € U and Tg\p € V,
which implies T ¢ V and hence e € fi;(Tg) \ fv(TE). This means that fi; # fy and
consequently, |Endy (F)| > |8(S)| > 2¢, which implies that the compact space End, (F) is
not metrizable (because each metrizable compact space has cardinality < c).

(b) For each T' € F the subgroup Fix(T') has finite index in X. Then each set T' € F has
finite orbit [T] = {27 : © € X}. Consider the smallest left-invariant family F = {J;c¢[T]
that contains F. By Proposition m the family F is {()}-independent. Since each orbit
[T], T € F, is finite and F is uncountable, the orbit space [F] = {[T] : T € F} is also
uncountable. It follows from Theoremthat the space End, (F) is homeomorphic to the
product []i7c i End([T]) where each space End,([T7]) contains at least two equivariant
functions: the identity i : [T] — [T] and the antipodal o : [T] — [T], @ : A — X \ A. Since
the orbit space [F] is uncountable, the product [1r1e Enda([T7]) is non-metrizable and
so is its topological copy End(F).
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It remains to observe that the restriction map R : Endy(F) — End,(F) is injective and
thus a homeomorphism. Indeed, given two distinct equivariant functions f, g € End, (F),
we can find a set A € F with f(A) # g(A). Since [A] NF # (), there is € X such that
xA € F. Then f(xA) = xf(A) # xg9(A) = g(zA) and thus f|F #g|F. m

The following proposition characterizes groups containing only countably many twin
subsets. Following [4], we define a group X to be odd if each 2 € X has odd order.

PRrROPOSITION 15.6. The family T of twin subsets of a group X is at most countable if
and only if each subgroup of infinite index in X is odd.

Proof. Assume that each subgroup of infinite index in X is odd. We claim that for every
A € T the subgroup Fix(A) has finite index in X. Take any point ¢ € Fix (A) and
consider the cyclic subgroup ¢ = {c" : n € Z} generated by c. The subgroup c” has
finite index in X, being non-odd. Since ¢*2 = {¢®" : n € Z} C Fix(A), we conclude that
Fix(A) also has finite index in X.

Next, we show that the family {Fix(A) : A € T} is at most countable. This is trivially
true if T = (. If T # (), then we can take any A € T and choose a point ¢ € Fix™ (4).
The cyclic subgroup ¢* generated by ¢ is not odd and hence has finite index in X.
Consequently, the group X is at most countable. Now it remains to check that for every
x € X theset T, ={A € T:x e Fix (A)} is finite. If the set T, is not empty, then the
cyclic subgroup % generated by x is not odd and hence has finite index in X. Consider
the subgroup 2?2 of index 2 in zZ. It is clear that 22 C Fix(A). Let S C X be a
finite set containing the neutral element of X and meeting each coset 2%z, z € X, in
a single point. It follows from %% C Fix(A) that A = 2?2 - (S N A) and consequently
IT.| <218 < 0.

Now assume that some subgroup H of infinite index in X is not odd. Then H contains
an element ¢ € H such that the sets ¢?* = {¢*" : n € Z} and c?2*! = {¢?"F! . n € Z} are
disjoint. Their union coincides with the cyclic subgroup ¢ of H generated by c. Find a
set S C X that intersects each coset ¢z, x € X, in a single point. Since ¢*# has infinite
index in X, the set S is infinite. Now observe that for every F C S the union

Tg =2 - Eud?tl . (S\ E)
is a twin set with ¢ € Fix™ (Tg). Consequently, T D {Tg : E C S} has cardinality
IT|>{Te:ECS}>12%>c¢>Np. m

Now we shall apply the above results to the minimal upper subfamilies Tx with
K € K. By Theorem M(l)7 for a maximal 2-cogroup K in a group X minimal left
ideals of End(Tg) are metrizable if and only if |X/K| < Ng. The metrizability of the
whole semigroup End(T ) is equivalent to | X/K| < Ro.

THEOREM 15.7. For a mazimal 2-cogroup K of a twinic group X the following conditions

are equivalent:

(1) Endx(T k) is metrizable;
(2) Endx(Tx) is a semitopological semigroup;
(3) Endx(Tx) is a finite semigroup;
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(4) Endx(Tg) is isomorphic to Cor 1 m™ or Qor 1 m™ for some 1 < k < m < oo;
(5) K has finite indez in X.

Proof. The implications (1)=(2)=-(5) follow from Theorems and

(5)=(4) Assume that K has finite index in X. Then the characteristic group H(K) of
K is finite and hence is isomorphic to Car or Qg for some k € N (see Theorem . Also
the set Tk is finite and so is the orbit space [Tg|. By Theorem M(?)), the semigroup
Endy(Tg) is isomorphic to H(K) ¢ [Tx][T%! and the latter semigroup is isomorphic to
Cor Im™ or Qqr 1 m™ for m = |[Tk]|.

The implications (4)=(3)=-(1) are trivial. m

16. Constructing nice idempotents in the semigroup End,(P(X))

In this section we prove the existence of some special idempotents in the semigroup
Endy(P(X)). These idempotents will help us to describe the structure of the minimal
ideals of the semigroups Endy(P(X)) and A(X) in Theorems and Corollary

In this section we assume that 7 is a left-invariant ideal in a group X. We recall
that pTI and T7 denote the families of Z-pretwin and Z-twin subsets of X, respectively.
A function f : F — P(X) defined on a subfamily F C P(X) is called Z-saturated if
f(A) = f(B) for any sets A =7 B in F.

PROPOSITION 16.1. There is an idempotent ex € Endy(P(X)) such that

o ez(P(X)\pT") C {0, X};
o ez|pT? =id|pT*;
e the function er restricted to P(X)\ pT* is T-saturated.

Proof. Consider the family N2 (X) C P?(X) of left-invariant Z-saturated linked systems
on X, partially ordered by the inclusion relation. This set is not empty because it contains
the invariant Z-saturated linked system {X \ A : A € T}. By Zorn’s Lemma, the partially

ordered set N%(X) contains a maximal element £, which is a maximal invariant Z-
saturated linked system on the group X. By the maximality, the system £ is monotone.
Now consider the family

Lr={ACX:VLeL (ANL#0)}.
CLAIM 16.2. LY\ £ C pTE,

Proof. Fix any set A € £\ L. First we check that zANA € T for some 2 € X. Assuming
the contrary, we would conclude that the family A ={A' C X :Jx € X (A" =z zA)} is
invariant, Z-saturated and linked, and so is the union AU L, which is not possible by the
maximality of £. So, there is z € X with AN A € Z, which is equivalent to A Cz X'\ A.

Next, we find y € X such that AU yA =z X, which is equivalent to X \ A Cz yA.
Assuming that no such y exists, we conclude that for any z,y € X we have xA UyA
#7 X. Then (X \ zA)N (X \yA) = X\ (tAUyA) ¢ Z, which means that the family
B={BCX:3ze X (B=7 X\zA)} is invariant Z-saturated and linked. We claim
that X \ A € £*. Assuming otherwise, we would conclude that X \ A misses some set
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L€ L. Then L C A and hence A € £, which is not the case. Thus X \ A € L. Since L is
invariant and Z-saturated, B C £+, and consequently the union BU £, being an invariant
ZT-saturated linked system, coincides with £. Then X \ A € £, which contradicts A € L.
This contradiction shows that X \ A Cz yA for some y € X.

Since zA Cz X \ A Cz yA, the set A is Z-pretwin. =

Consider the function representation &, : P(X) — P(X) of £. By Propositions
and the function ® is equivariant, monotone, Z-saturated, and ®.(P(X)) C {0, X }.
It is clear that the function ez : P(X) — P(X) defined by

) A if AepT?,
e =
* ®r(A) otherwise

has properties (1)—(3) of Proposition It is also clear that ez = ez o ez is an idempo-
tent.

We claim that ez € Endy(P(X)). By Corollary [.4] we need to check that ez is equiv-
ariant, monotone and symmetric. The equivariance of ez follows from the equivariance
of the maps &, and id.

To show that ez is monotone, take any two subsets A C B of X and consider four
cases.

1) If A, B ¢ pT%, then ez(A) = ®(A) C &,(B) = ez(B) by the monotonicity of the
function representation @, of the monotone family L.

2) If A, B € pTZ, then ez(A) = A C B = ez(B).

3) Ae pT? and B ¢ pTZ. We claim that B € £. Assuming that B ¢ L and applying
Claim we get B ¢ £1. Then B does not intersect some set L € £ and then ANL = (.
It follows that the set X \ A D L belongs to the maximal invariant Z-saturated linked
system and so does the set yA D7 X'\ A for some y € X (which exists as A € pTI). By the
left-invariance of £, we get A € £, which contradicts X \ A € £ and the linkedness of L.
This contradiction proves that B € L. In this case ez(A) = A C X = &,(B) = ez(B).

4) A ¢ pTZ and B € pTZ. In this case we prove that A ¢ L. Assuming that A € L,
we get B € L. Since B € pTZ, there is a point € X with 2B cz X \ B. Since L is
left-invariant, monotone and Z-saturated, we conclude that X \ B € £, which contradicts
Be L. Thus A ¢ L and ez(A4) = ®£(4) =0 C ez(B).

Finally, we show that the function ez is symmetric. If A € pT%, then X \ A € pT*
and then ez(X \ A) = X \ A= X\ ez(A4).

Next, assume that A ¢ pTZ. If A € £, then X \ A ¢ L by the linkedness of L. In this
case ez (X \A) =0 =X\ X =X \ez(4).

If A¢ L, then by Claim A ¢ £+ and thus A is disjoint from some set L € L,
which implies that X\ A € £. Then ez(X\A) = P, (X\A) =X =X\0=X\P.(A) =
X\ez(A). m

Our second special idempotent depends on a subfamily T of the family
T={AeT:Fix (A) €k}

of twin sets with maximal 2-cogroup.
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THEOREM 16.3. If the ideal T is twinic, then for any Z-independent K- covering subfamily
T C T there is an idempotent es € EndI( (X)) such that

(1) es(P(X)\TF) C {0, X};
(2) ex (T =T:
(3) ex[{0,X}UT =id.

Proof. Let ez : P(X) — {0, X} U pTZ be the idempotent from Proposition Since
the ideal 7 is twinic, pTZ = TZ. The idempotent ez will be defined as the composmon
ez = poez where ¢ : {0, X} UT? — {0, X} U T is an equivariant Z-saturated function
such that

(1) pop=1¢; _
(2) {0, X}UT =id;
(3) p(TH) CT;

(4) I-Fix~ (A) C Fix~ (¢(A)) for all A € TZ.

To construct such a function ¢, consider the family F of all possible functions ¢ : D, —
{0, X} UT such that

(a) {0,X}UT c D, cC{0X}UT%
(b) the set D, is left-invariant;

(¢c) ¢ is equivariant and Z-saturated;

(d) @l{0, X}UT =id;

(e) Z-Fix™ (A) C Fix™ (¢(A)) for all A € D,,.

The family F is partially ordered by the relation ¢ < 4 defined by ¥|D, =

The set F is not empty because it contains the identity function id of {@, X} U 'T',
which is Z-saturated because of the Z-independence of the family T. By Zorn’s Lemma,
F contains a maximal element ¢ : D, — {0, X} U T. We claim that D, ={0,X}uT~
Assuming otherwise, fix a set A € T2\ D,, and define a family D, = D,U{zA:z € X}.
Next, we shall extend ¢ to a function ¢ : Dy, — {0, X} U T. We consider two cases.

1) Assume that A =7 B for some B € D,. Then also A =7 B for all z € X. In
this case we define the function ¢ : Dy, — {0, X} U T assigning to each set C € Dy, the
set ¢(D) where D € D, is any set with D =7 C. It can be shown that the function
YDy —{0,X}U T belongs to the family F, which contradicts the maximality of .

2) Assume that A #7 B for all B € D,. By Proposition the 2-cogroup Z-Fix™ (A)
lies in a maximal 2-cogroup K € K. Since T is I%—covering7 there is a twin set B € T such
that Fix~ (B) = K. In this case define the function ¢ : Dy — T by the formula

p(C) if C e Dy,
w(e) =1 ’
zB if C =7 xA for some x € X.

If zA =7 yA for some z,y € X, then y~'a € I-Fix (A) C K = Fix (B) and thus
xB = yB, which means that v is well-defined and Z-saturated. Also it is clear that v is
equivariant and hence belongs to F, which is forbidden by the maximality of .

Thus the maximal function ¢ is defined on D, = {0, X} U TZ and we can put es =
@ o ez where ez : P(X) — {0, X} UpT? = {§, X} UTZ is the idempotent constructed in
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Proposition[I6.1} It follows from the properties of the functions ¢ and ez that the function
ez is equivariant and I—saturated Since the ideal Z is twinic, the family TZ = pT7 is Z-
1ncomparab1e (by Proposmon and hence the monotonicity of the function ¢ follows
automatically from its being I—saturated Then e is monotone as the composition of two
monotone functions. By Corollary [£.4 ez € End(P(X)). =

Theorem and Proposition imply:

COROLLARY 16.4. If the ideal T is twinic, then for each minimal l%—covem’ng family TcT
there is an idempotent es € End} (P(X)) such that

(1) es(P(X)\TF) C {0, X};
(2) ex(TH) =T,
(3) ex[{0, X}UT =id.

17. The minimal ideal of the semigroups A\(X) and End,(P(X))

In this section we apply Corollary to describe the structure of the minimal ideals of
the semigroups A(X) and Endy (P(X)).

THEOREM 17.1. For a twinic group X a function f € Endy(P(X)) belongs to the mini-
mal ideal K(Endx(P(X))) of the semigroup Endy(P(X)) if and only if the following two
conditions hold:

(1) the family f(T) is minimal K-covering;

(2) f(P(X)) {0, X}U f(T)

Proof. Let T C T be a minimal K-covering left-invariant family and ez € Endy(P(X))
be an idempotent satisfying conditions (1)-(3) of Corollary [16.4] By Propositions [13.]]
and. 5 the family T is Z-incomparable and Z-independent for any twinic ideal Z on X.

To prove the “if” part of the theorem, assume that f satisfies conditions (1) and (2).
To show that f belongs to the minimal ideal K(Endy(P(X))), it suffices for each g €
Endy(P(X)) to find h € Endy(P(X)) such that hogo f = f.

The minimality and left-invariance of the K- covering subfamlly f ( ) imply that the
equivariant function ¢ = ez o g|{), X} U FM) {0, X} U £(T) — {0, X} UT is bijective.
So, we can consider the inverse function = : {0, X} UT — {0, X} U f(?) such that
Pploy = id{0, X} U f ('T') This function is equivariant, symmetric, and monotone
because so is ¢ and the family T is Z-incomparable and Z-independent.

Then the function ¢ = 1/1’1 oes : P(X) = {0, X} U f(T) is well-defined and belongs
to End? (P(X)) by Corollary 4.4 Since

(poe)ogof =y oefoefogof:woefogof=wowof=f,
the function f belongs to the minimal ideal of the semigroup Endy(P(X)).

To prove the “only if” part, take any f € K(Endy(P(X))) and for the idempotent
ez € Endy(P(X)) find g € End)(P(X)) such that f = goesz o f. Now the properties (1)
and (2) of f follow from the corresponding properties of ez. m
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Since the superextension A(X) of a group X is topologically isomorphic to the semi-
group End,(P(X)), Theorem implies the following description of the minimal ideal
K(A(X)) of M(X).

COROLLARY 17.2. For a twinic group X a maximal linked system L € A(X) belongs
to the minimal ideal K(A(X)) of the superextension A(X) if and only if its function
representation @, satisfies two conditions:

(1) the family & (T) is minimal K-covering;
(2) ©£(P(X)) C {0, X}UdL(T).

18. Minimal left ideals of superextensions of twinic groups

Having elaborated the necessary tools in Sections FHI7, we now return to describing the
structure of minimal left ideals of the superextension A\(X) of a twinic group X. In this
section we assume that X is a group.

Our first aim is to show that if the group X is twinic, then the restriction operator
Rs : Endy(P(X)) — End,(T) is injective on all minimal left ideals of the semigroup
End(P(X)). Since T = Uxer Tk, Proposition m implies that the family T is A-
invariant and hence EndA('T') is a compact right- topologlcal semigroup. For each left-
invariant ideal Z on the group X the semigroup Endy (T) contains a left ideal End} (T)
consisting of all left-invariant monotone Z- saturated functions (see Theorem . If7Zis
a twinic ideal with 7N K = V) then the family Tis I- independent (see Proposition
and hence EndI(T) = End)\(T).

PROPOSITION 18.1. If the group X is twinic, then the restriction operator
Rz : Endy(P(X)) — EndA(T), Rs: fw f[T,
is injective on each minimal left ideal of the semigroup Endy(P(X)). If ZZ N K =0,

then for some idempotent es € EndZ (P(X)) the restriction Rz|End)\(P(X)) o ez is a
topological isomorphism between the principal left ideal Endy(P(X)) o ez and EndA('T').

Proof. Let T CTbe any minimal C-covering left-invariant subfamily. By Proposi-
tions the family T is Z-independent. By Theorem m there is an idempotent
es € End% (P(X)) such that ez(P(X)\ T) C {0, X} and e3(T%) = T C T. The latter
property of ez implies that the restriction operator Rs is injective on the principal left
ideal Endx(P(X)) o es, and consequently it is injective on each minimal left ideal of the
semigroup End, (P(X)) according to Proposition

FTZNK = (), then by Proposition m the family T is II-independent and we can
repeat the above argument for the idempotent e;. m

Now let us look at the structure of the semigroup End,\("T'). Observe that T =
U[K}G[E]T[K]’ where Tix) = {A C X : Fix (A) € [K]}, [K] = {[K] : K € K} and
[K] = {zKz~': 2z € X} for K € K.
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~

It follows that the restriction operators R, : End,(T) — Endx(Tik), [K] € [K],
compose an injective semigroup homomorphism
Ry - Endy(T) — HA End(Tx)), Rro o= (@|T[K])[K]e[f<]'
[K]€[K]
Theorem implies

LEMMA 18.2. For any twinic ideal Z on the group X we get

Rigy(Endi(T) = ][ End}(Tix).
[KIeIR]

Next, we study the structure of the semigroups End% (Tix) for [K] € K].

LEMMA 18.3. For any mazimal 2-cogroup K € K the restriction map
Rt Endx(Tix)) — Enda(Tk), Rty o= o|Tk,
is a topological isomorphism.

Proof. By the compactness of Endy(T(g)) it suffices to check that the restriction op-
erator Rt : Endf(T[K]) — End%(Tg) is one-to-one. Given two distinct functions
f,9 € Endj(T|x)) find a twin set A € T such that f(A) # g(A). Since Fix (4) € [K],
there is z € X such that Fix™ (zA) = 2 Fix " (A)2~! = K. By Proposition xAe Tk
and f(zA) = zf(A) # zg(A) = g(xA), witnessing that f|Tx #¢g|Tk. u

A subfamily K C K is called a [IE -selector if K has one-point intersection with each
orbit [K] = {zKz~':2z € X}, K € K. In the following theorems we assume that X C K

~

is a [K]-selector.
All the preceding discussion culminates in the following theorem, which can be con-
sidered as the main result of this paper.

THEOREM 18.4. Given a [l%]—selector K c l%, consider the operator
R :Endy(P(X)) — [] End(Tk), Rg:f (fITk)ger
Kek

If T is a left-invariant twinic ideal on X, then
(1) Rg(End}(P(X))) = [Ixcx End”(Tk);
(2) the operator Rg maps isomorphically each minimal left ideal of the semigroup

Endy(P(X)) onto some minimal left ideal of the semigroup [[ e End(Tk);
(3) if INK =0, then for some idempotent é € End% (P(X)) and the principal left ideal

Le = Endy(P(X)) o é the restriction

R’E“_é L — H End(Tgk)
Kek

18 a topological isomorphism.

Proof. Write the operator R as the composition Rg = R% o R= of two operators:

Rs : Endy(P(X)) — EndA(T), Rs:f— f|T,
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and
RL :Endy(T) — [ Endi(Tx).  RL: [ (fITx)ger
Kekk
By Lemma the operator R% is injective.

1. Tt follows from Lemmas [I8.2] and [[8.3] that

Re(EndZ(P(X))) = RL (EndI = [] End*(Tk).
Kek

2. To prove the second item, fix any function f € K(End,(P(X))) and consider the
minimal left ideal Ly = Endx(P(X)) o f. We need to show that Rg(Ly) is a minimal left
ideal in HKGIE End(TK)

For this pick any function g € K(End%(P(X))) and consider the minimal left ideal
Ly = Endy(P(X)) 0 g = EndX(P(X)) 0 g.

By Proposition the operator R : Endy(P(X)) — Endy (T) is injective on each
minimal left ideal. Consequently, the operator Rg = RE o Rs is also injective on each
minimal left ideal of the semigroup Endy(P(X)). In particular, Rz is injective on the
minimal left ideals L and L. Since L4 is a minimal left ideal of the semigroup End} (P(X
its 1mage Rz(Ly) is a minimal left ideal of the semigroup EndZ(T). By Lemmasﬁ

and RT maps isomorphically the semigroup EndA (T) onto [[xcx End? (Tk), the

image Rg (L, ) is a minimal left ideal of the semigroup [], & End” (Tg). Since the latter
semigroup is a left ideal in [], .z End(Tk), the image Rg(Ly) remains a minimal left
ideal of the semigroup [] .z End(Tx). This minimal left ideal is equal to the product
HKe)E Ly, where gx = g|Tk and Ly, = End(Tk) o gx. By the compactness of Ly, the
operator R maps isomorphically the minimal left ideal L, onto the minimal left ideal
[Ixci Lox of the semigroup [, g End(Tk).

Now let us look at the minimal left ideal L;. By Proposition the right shift
ry:Lg — Ly, rg: h— hof,is a homeomorphism. So, there is a function v € End(P(X))
such that f =~yogo f.

For every K € K consider the restrictions fx = f|Tk and vk = v| Tk, which belong
to the semigroup End(Tk). It follows from f =y ogo f that fx = vk o gk o fi. Since
gk € K(End(Tk)), we conclude that fx also belongs to the minimal ideal K(End(Tg)).

Then Ly, = End(Tg) o fx and Ly, = End(Tk) o gk are minimal left ideals in
End(Tg). By Proposition the right shift r¢, @ L
homeomorphism. The homeomorphisms r¢,, K € IE, compose a homeomorphism

Tt H LgK*) H LfK7 Tf}%:(hK)KEE’—)(hKOfK)Ke}Z'
Kek Kek

g — Lfxs T th—= ho fg,is a

Now consider the commutative diagram

RlLy
Ly —[xer Lix

TfT Trf;%
RglLg

L 4> HKG)C LgK
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Since 7¢, rf., and Rg|L,y are homeomorphisms, so is Rg|Ls. Consequently, the operator
Rg maps isomorphically the minimal left ideal Ly = Endx(P(X)) o f onto the minimal
left ideal [[,cg Ly = [[xcie End(Tk) o (f|Tk) of the semigroup [[ 5z End(Tx).

3. Assume that Z N K = 0. In this case End”(T) = End(T) by Proposition m
By Proposition for some idempotent é € End%(P(X)) the operator R; maps iso-
morphically the principal left ideal L; = End,(P(X)) o é onto Endf(?) = EndA('T').

By Lemma [18.2) the operator R% : Endf(?) = [lker End%(Tg) = [[xei End(Tk)
is an isomorphism. So, Rg maps isomorphically the principal left ideal L onto
[[xecg End(Tk). =

Since the function representation ® : A(X) — Endy(P(X)), ® : £ +— P, is a topo-
logical isomorphism, the preceding theorem implies:

COROLLARY 18.5. Given a [l%]—selector K c K, consider the continuous semigroup ho-
momorphism

e AX) = [ Bnd(Tk),  ®g:L (PLlTk) geg
Kek
If the group X 1is twinic, then
(1) @ (Endy (P(X))) = [1xcr End” (Tx):
(2) the homomorphism ® maps isomorphically each minimal left ideal of the semigroup
A(X) onto some minimal left ideal of the semigroup [ g End(Tk);

3) if Zn K= 0, then for some idempotent & € XNZ(X) and the principal left ideal

Le = A(X) o & the restriction

q))%“_g : Lg — H End(TK)
Kek

s a topological isomorphism.
COROLLARY 18.6. If the group X is twinic, then each minimal left ideal of M(X) is
topologically isomorphic to a minimal left ideal of HKEE End(Tg) and each minimal left
ideal of [[ ke End® (Tx) is topologically isomorphic to a minimal left ideal of N (X).
Proof. Corollary [18.5(2) implies that each minimal left ideal of A(X) is topologically
isomorphic to a minimal left ideal of HKeIE End(Tg). Now assume that L is a minimal
left ideal of the semigroup [], . % End” (Tg). It follows from Corollary (1) that the
preimage @%%L) is a left ideal in AZ(X) and hence a left ideal in A(X). This left ideal
contains some minimal left ideal Ly whose image ®& coincides with L (being a left ideal

in L). By Corollary [18.5(2), the map ®z|Ly : Ly — L is injective and by the compactness
of Ly is a topological isomorphism. m

THEOREM 18.7. Let X be a twinic group, K C K be a [K]-selector, and & € MN(X) be a
minimal idempotent.

(1) The mazximal subgroup He = € o A(X) o € has the following properties:
(a) He is algebraically isomorphic to [ ;o H(K);
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(b) He is topologically isomorphic to [ ] cg H(AK) for any twin sets A € ®¢(Tk),
Kek;
(¢) Hg is a compact topological group if and only if H(K) is finite for every K € K.
(2) The minimal left ideal Le = A\(X) o € has the following properties:

(d) Lg is topologically isomorphic to the minimal left ideal [ [z End(Tx)o (Pe|Tk);

(e) Lg is homeomorphic to [ [ .z Tk, which is homeomorphic to the Cantor discon-
tinuum [ [ 5 QX/K* .

(f) Le is algebraically isomorphic to [ ] H(K) % [Tk] where the orbit space [T k]
of the H(K)-act Tk is endowed with the left zero multiplication;

(g) Lg is a topological semigroup iff Lg is a semitopological semigroup iff each restric-
tion O¢|Tk, K € /E, is a continuous function iff the mazximal subgroup He and
the idempotent band E(Lg) of Le are compact iff Lg is topologically isomorphic
to [ e HIK) x [Tk].

Proof. Let ®¢ € End(P(X)) be the function representation of the minimal idempotent
£ € K(A(X)). For every K € K let fx = ®¢|Tx and Lf, = End(Tk) o fx be the
principal left ideal in End(Tg), generated by the function fx. By Corollary the
minimal left ideal L¢ is topologically isomorphic to a minimal left ideal of the semigroup
IIx R End(T g ). This minimal ideal contains (fx ) < and hence is equal to the product

[Ixci Lri- This proves statement (d) of the theorem. Now all the other statements follow
from Theorems [4.1] and (4.3

Theorem b) is completed by the following theorem.

THEOREM 18.8. Letﬁ cK bea [I%]—selector, If the group X is twinic, then for any twin
sets Ag € Tk, K € K, the minimal ideal K(A(X)) of A(X) contains a mazimal subgroup
He, which is topologically isomorphic to [ e H(AK).

Proof. In the semigroup [, & K(End”(Tx)) choose a sequence of functions (fK) ke
such that fx(Tx) C |Ak] for all K € K. This can be done in the following way. For every
K € K first choose any minimal idempotent gx € K(EndZ(Tg)). By Theorem m5),
9k (Tr) C | Bk for some twin set B € Tg. Since Tk is a free H(K)-act, we can choose
an equivariant function ¢ : |Bg| — |Ak|. Then the composition fx = ¢ o gk is Z-
saturated and has the required property: fx(Tx) C |Ak].

Consider the minimal left ideal L. = [[, g End(Tk) o fx and let L = q)l%l(L) C
A(X). By Corollary 1), (L) = Lse. Now let K(L) be the minimal ideal of the left
ideal L. The image ®5(K(L)), being a left ideal in Ly, coincides with L. So, we can find
a maximal linked system £ € K(L) such that ®x(L) = (fx) g By Theorem (b),
the maximal group H is topologically isomorphic to [, i H(Ak). =

PROPOSITION 18.9. If X is a twinic group, then each minimal left ideal of A(X) is a
topological semigroup if and only if each maximal 2-cogroup K C X has finite index
mn X.

Proof. Let K C K be a [K]-selector. If each maximal 2-cogroup K C X has finite index
in X, then the set T is finite and hence the semigroup End(T k) is finite. Consequently,
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[Ixci End(Tg) is a compact topological semigroup and so is each minimal left ideal of
this semigroup. By Corollary [I8.5{2), each minimal left ideal of the semigroup \(X) is a
topological semigroup.

If some maximal 2-cogroup in X has infinite index, then Corollary [I4.6] implies that
some minimal left ideal in [], % EndZ (Tk) is not a topological semigroup. By Corol-
lary some minimal left ideal in AZ (X) is not a topological semigroup. m

PRrOPOSITION 18.10. For a twinic group X with 1L N K =0 the following conditions are
equivalent:

(1) some minimal left ideal of A\(X) is a topological semigroup;

(2) each mazimal subgroup of A\(X) is a topological group;

(3) some mazimal subgroup of \(X) is compact;

(4) the characteristic group H(K) is finite for each mazimal 2-cogroup K C X.

Proof. (1)=-(3) If some minimal left ideal of A(X) is a (necessarily compact) topological
semigroup, then each maximal subgroup of this minimal ideal is a compact topological
group.

(3)=(4) If some maximal subgroup of K(A(X)) is compact, then by Theorem [18.7(c),
each characteristic group H(K), K € l%, is finite.

(4)=(1) If each characteristic group H(K), K € K, is finite, then Proposition 1)
and Theorem guarantee that the semigroup [ & EndZ(Tg) contains a minimal
left ideal, which is a topological semigroup. By Corollary [I8.6] this minimal left ideal is
topologically isomorphic to some minimal left ideal of A\(X).

(4)=(3) If each characteristic group H(K), K € K, is finite, then Theorem c)
guarantees that each maximal subgroup of K(A(X)) is a compact topological group.

(3)=(4) Assume that for some maximal 2-cogroup K € K the characteristic group
H(K ) is infinite. Replacing K, by a conjugate cogroup, we can assume that K., € K.
By Theorem the group H(K ) is isomorphic to Coe or Q. In both cases, by
Theorems there is a twin set A € Tk, whose characteristic group H(A) is not
a topological group. Choose a minimal idemNpotent e = (&) ker € lker EndZ(Tg)
such that fx__(Tx_. ) C |A]. For every K € K choose any twin set Ax € fx(Tx) so that
Ag = Ao f K = K.

By Corollary there is a minimal idempotent & € AZ(X) such that ®x(€) =
[z By Theorem b), the maximal subgroup Hg = A(X) o £ o A(X) is topologi-
cally isomorphic to [ .z H(AK). This subgroup is not a topological group as it contains
an isomorphic copy of the right-topological group H(A.,), which is not a topological
group. m

Now let us write Corollary and Theorem in a form more convenient for
calculations.

For every group G € {Cor, Qqr : k € NU{oc0}} denote by ¢(X, G) the number of orbits
[K] € [K] such that for some (equivalently, every) 2-cogroup K € [K] the characteristic
group H(K) is isomorphic to G.
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THEOREM 18.11. For each twinic group X there is a cardinal m such that

(1) each minimal left ideal of AN(X) is algebraically isomorphic to the semigroup
27n ~ H X C2k) H QZI(CX)Q2IC)
1<k<oco 3<k<o0
where the Cantor discontinuum 2™ is endowed with the left zero multiplication;
(2) if ¢(X,Cox) = q(X,Q2%) =0 and Z NK =0, then some minimal left ideal of \(X)
1s topologically isomorphic to the compact topological semigroup
m X,C X
2 x [ e I it
1<k<oo 3<k<oo

(3) each mazximal subgroup of the minimal ideal K(A(X)) of M(X) is algebraically iso-

X,C, X,Q5k

1<k<oo 3<k<oo

(4) if ¢(X,Cax) = q(X,Qa) = 0, then each maximal subgroup of the minimal ideal
K(A(X)) of A(X) is topologically isomorphic to the compact topological group
[ e I a

1<k<oo 3<k<oo
Proof. 1. Fix any [IC] selection K C K. For every K € K put myg = | X/K*| = {K*z :
x € X} if the index of K in X is infinite and mg = 9IX/K* |/|H(K)| otherwise. It follows
that |[Tk]| = |Tk|/|H(K)| = 2™% and [Tk] is homeomorphic to the Cantor cube 2™¥
if the characteristic group H(K) is finite. Let m = 3 & mxk.

By Theorem f), any minimal left ideal L of A(X) is algebraically isomorphic to
the semigroup [[ ..z H(K) x [T k], where the orbit spaces [T x| are endowed with the left
zero multiplication. By Theorem [8.3] for every K € K the characteristic group H(K) is
isomorphic to Cyx or Qqx for some k: € NU{oo}. According to the definition, for k € {1,2}
the group Qqx is isomorphic to the quaternion group Qs. By the definition of ¢(X, G),
for any group G € {Cor, Qor : k € NU {o0}} we get ¢(X,G) = {K € K : H(K) = G}
where 2 denotes (semi)group isomorphism.

morphic to the group

Now we see that

L T HE) x [Ti] = [ HE) x 2 = T ¢« T @i «

Kek Kek 1<k<oo 3<k<oo

2. If ¢(X,Cy%) = q(X,Q2~) = 0, then for every K € K the characteristic group
H(K) is finite and the orbit space [Tk] is a zero-dimensional compact Hausdorff space.
In this case Tg is homeomorphic to [Tx]| x H(K). If K has finite index in X, then Tg
has cardinality 2”*% and hence is homeomorphic to the finite cube 2™¥. If K has infinite
index in X, then Ty is homeomorphic to 2™ by Proposition It follows from the
topological equivalence of Tk and [Tg| x H(K) that [Tk] is a retract of the Cantor
cube Tg and each point of [T k] has character my. Now Shchepin’s characterization of
Cantor’s cubes [20] implies that the space [T k] is homeomorphic to the Cantor cube 2.
Then ], 5[Tk] is homeomorphic to the Cantor cube 2™ = [] o 2™%.
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If ZNK = 0, then for every K € K the endomorphism monoid End” (T ) contains a
continuous minimal idempotent fx according to Proposition [[4.5[1). By Theorem [14.3]
the minimal left ideal Ly, = End”(Tx) o fx is topologically isomorphic to the com-
pact topological semigroup H(K) x [Tx] where the space [Tx] is endowed with the left
zero multiplication. By (the proof of) Corollary the minimal idempotent K(A(X))
contains a maximal linked system & such that the minimal left ideal Lg = A(X) o &
is topologically isomorphic to the minimal left ideal [], .z Lf., which is topologically
isomorphic to the compact topological semigroups

H H(K) x [Tx] and H X Czk) H Qq(X Qak)
KeRk 1<k<oo 3<k<o0

3. By Theorem [18.7(b) each maximal subgroup H of K(A(X)) is topologically iso-
morphic to the right-topological group G = [] .z H(Ak) for some twin sets Ax € Tk,
K € K. The latter right-topological group is algebraically isomorphic to the group

IEE
1<k<o0 3<k<oo

4. If ¢(X,Ca=) = q(X,Q2=) = 0, then all characteristic groups H(K), K € K, are
finite and then the group G is topologically isomorphic to the compact topological group

H X C2k) H Qq(X sz

1<k<o0 3<k<oo

19. The structure of the superextensions of abelian groups

In this section we consider the structure of the superextension of abelian groups. In this
case some results of the preceding section can be simplified. In this section we assume
that X is an abelian group. By Theorem [6.2] X is twinic and has trivial twinic ideal
I = {0}. Let us recall that for a group G we denote by ¢(X, G) the number of orbits [K],
K € K, such that for each K € [K] the characteristic group H(K) is isomorphic to the
group G. It is clear that ¢(X,Q2x) = 0 for all £ € NU {co}. On the other hand, the
numbers ¢(X, Cor) can be easily calculated using the following proposition.

ProOPOSITION 19.1. If X is an abelian group, then for every k € N U {oo} the cardinal
q(X, Cor) is equal to the number of subgroups H C X such that the quotient group X/H
is isomorphic to Cor. If k € N, then
\hom(X, Czk)| — |h0m(X, 02k71)|

2k—1 ’

q(X7 02’“) =
where hom (X, Cs,) is the group of all homomorphisms from X to Cox.

Proof. Since each maximal 2-cogroup K C X is normal, each orbit [K] € [K] consists
of a single maximal 2-cogroup. Consequently, ¢(X, H) is equal to the number of maxi-
mal 2-cogroups K C X whose characteristic group H(K) = Stab(K)/KK = X/KK is
isomorphic to H. In other words, (X, H) equals to the cardinality of the set
Ky={Kek:X/KK =~ HY},

where 2 stands for group isomorphism.
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Let Gy be the set of all subgroups G C X such that the quotient group X/G is
isomorphic to H. The proposition will be proved as soon as we check that the function
f:IEHHgH, f:K— KK,

is bijective.

To show that f is injective, take any two maximal 2-cogroups K,C with KK =
f(K) = f(C) = CC. The quotient group X/KK = X/CC, being isomorphic to H,
contains a unique element of order 2. Since K and C are cosets of order 2 in X/KK =
X/CC, we conclude that K = C.

To show that f is surjective, take any subgroup G € Gg. The quotient group X/G is
isomorphic to H and thus contains a unique element K of order 2. This element K is a
maximal 2-cogroup such that f(K) = KK = G.

To prove the second part of the proposition, observe that for a subgroup H C X the
quotient group X/H is isomorphic to Cyx if and only if H coincides with the kernel of
some epimorphism f : X — Cy.. Observe that two epimorphisms f,g : X — Cyr have
the same kernel if and only if g = a0 f for some automorphism « of the group Cyx. The
group Cyr has exactly 2¥~! automorphisms determined by the image of the generator
a = em " of Cyr in the 2-cogroup aCgr-1. A homomorphism h : X — Cyr is an
epimorphism if and only if A(X) ¢ Car-1. Consequently,
|h0m(X, CQk) \ hom(X, 021«—1)|

ok—1

Q(Xa 02"") =

THEOREM 19.2. If X is an abelian group, then

(1) each mazimal subgroup of the minimal ideal K(A(X)) is algebraically isomorphic to
Oq(chgk)
2k

’

[li<i<o
(2) each minimal left ideal of N(X) is homeomorphic to the Cantor cube (2)1(X:C2>) x
H1§k<oo(22k_l)Q(X’Czk) and 1s algebraically isomorphic to the semigroup

I (Cor x 2,)05Ca0)

1<k<oco

where the cube Zj, = 92"k (equal to 2 if k = 00) is endowed with the left zero
multiplication;
(3) the semigroup A(X) contains a principal left ideal, which is algebraically isomorphic
to the semigroup
[T (Corrzfryrxcan),

1<k<oco

Proof. Since X is abelian, each 2-cogroup K € K is normal in X and hence has one-
element orbit [K] = {#Kz~' : z € X}. Then the family K is a unique [I/C\]—selector. Since
Stab(K) = X, the characteristic group H(K) = Stab(X)/KK is equal to the quotient
group X/KK and is abelian. By Theorem H(K) is isomorphic to the (quasi)cyclic
2-group Con for some n € N U {oo}. Consequently, K= Uicn<oo K, where K, is the
subset of K that consists of all maximal 2-cogroups K whose characteristic group H(K) =
X /KK is isomorphic to the group Cyx. By the definition of the numbers ¢(X, G), we get
4(X,Cyn) = |Kp for all n € NU {oo}.
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1. By Theorem a), each maximal subgroup of K(A(X)) is algebraically isomorphic
to [[ e H(K) and the latter group is isomorphic to

[[ o= [T caee,
1<n<o0 1<n<o0

2. By Theorem [18.7(f), each minimal left ideal of A(X) is algebraically isomorphic
to [[ep(H(K) x [Tk]) where the orbit spaces [Tx] are endowed with the left zero
multiplication. Let Z,, = 2“ and Z,, = 22" =1 for every n € N. The cubes Z,, n €
NU {oo}, are endowed with the left zero multiplication. We claim that |[T k]| = |Z,| for
each n € NU {oo}. If n is finite, then |X/K*| = | X/KK| = i|H(K)| =2""! and

Tl 27 i,
Tl = s = 2 =2 2

If n is infinite, then the quotient group H(K) = X/KK is isomorphic to Cy~ and then
| X/K*| = w. By Proposition the space T g is homeomorphic to the Cantor cube 2¢
and hence has the cardinality of the continuum. Since the group H(K) is countable, the
orbit space [T k] also has cardinality continuum and hence |[Tg]|| = |2¢| = | Zs|- Now we
see that [ [ e(H(K) x [Tk]) is algebraically isomorphic to [, .« (Cor x Z3)1XCan),

3. Since X has trivial twinic ideal, Z N K =  and by Corollary (c) and The-
orem 3), the semigroup A(X) contains a principal left ideal that is algebraically
isomorphic to the semigroup [], g H(K) [T x]T<], which is algebraically isomorphic to
[T <rcoo(Cor 1 Zi7F)90XCor). m

The following theorem characterizes the groups X for which the algebraic isomorphism
in Theorem [19.2] are topological.

THEOREM 19.3. For an abelian group X the following conditions are equivalent:

(1) the group X admits no homomorphism onto the quasicyclic 2-group Cas ;
(2) each mazimal subgroup in the minimal ideal K(\(X)) of M(X) is topologically iso-
morphic to the compact topological group [, cy C’;I,EX’CZk);
(3) each mazimal subgroup in K(A(X)) is a topological group;
(4) some maximal subgroup of K(A\(X)) is compact;
(5) each minimal left ideal of \(X) is topologically isomorphic to the compact topological
semigroup
T (Cor x zy)1X:Car)
keN

where the finite cube Zy, = 227" =k s endowed with the left zero multiplication;
(6) AM(X) contains a principal left ideal which is topologically isomorphic to the compact
topological semigroup
[ (Ca 2 200,
keN

Proof. Let the subfamilies K,, C K and the Cantor cubes Z, = 22" ~" n € NU {oo},
be defined as in the proof of Theorem Then ¢(X, Con) = |IC,,].
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(1)=(5, 6) If X admits no homomorphism onto Ca=, then ¢(X,Cs~) = 0 and IEOO
= (). In this case K = Unen l%n For every n € N and K € l%n the characteristic group
H(K) is isomorphic to Con and the orbit space [T k] is homeomorphic to the cube Z. By
Theorem M(B), the monoid End(Tg) is (topologically) isomorphic to H(K) 1 [T g]Tx]
and the latter semigroup is topologically isomorphic to Can ! Z,%n.

By Theorem g), each minimal left ideal of A\(X) is topologically isomorphic to

[T HE) < [Tx] =] T HUE) < [Tx]

Kek neNgeid,

and the latter semigroup is topologically isomorphic to the compact topological semigroup

T](Cor x 2,)005Ce0).
keN

By Corollary 3) and Theorem 3), the semigroup A(X) contains a prin-
cipal left ideal that is topologically isomorphic to the compact topological semigroup
[Txer HIE) T]T=l = TT,en [ker, HE)? [Tx]IT=], which is topologically isomor-
phic to the compact topological semigroup

[T (Car1 2005w
keN

The implications (5)=-(2)=(3) are trivial.

(3)=(1) If the group X admits a homomorphism onto Cy-, then the family K con-
tains a 2-cogroup K., whose characteristic group H(K,) is isomorphic to Cae. It fol-
lows from Example 2) that for some twin set Ax__ € Tg_ the twin-generated group
H(AKk., ) is not a topological group. Now choose a sequence (Ax) ¢ € [ e Tx of twin
sets such that Ax = Ak, if K = K. Then the right-topological group [], .z H(Axk)
is not a topological group. By Corollary this right-topological group is topologi-
cally isomorphic to some maximal subgroup of the minimal ideal K(A(X)). So, K(A(X))
contains a maximal subgroup which is not a topological group.

(6)=(4) If A(X) contains a left ideal which is a topological semigroup, then A(X)
contains a minimal left ideal which is a topological semigroup. Any maximal subgroup of
this minimal left ideal is a compact topological group.

(4)=(1) If K(\(X)) contains a compact maximal subgroup, then by Theorem [18.7(c),
each characteristic group H(K), K € IE, is finite and hence ¢(X,Cox) =0. m

Finally, we shall characterize abelian groups whose superextension contains metrizable
minimal left ideals. The characterization involves the notions of free rank and 2-rank (see
[7, §16] or |19, §4.2]).

Let us recall that a subset A # e of an abelian group G with neutral element e
is called independent if for any disjoint subsets B,C' C A the subgroups (B) and (C)
generated by B, C intersect in the trivial subgroup. The cardinality of a maximal inde-
pendent subset A C G that consists of elements of infinite order (resp. of order that is
a power of 2) is called the free rank (resp. the 2-rank) of G and is denoted by 7o(G)
(resp. r2(G)).
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THEOREM 19.4. For an abelian group X the following conditions are equivalent:

(1) each minimal left ideal of AN(X) is metrizable;

(2) the family K of maximal 2-cogroups is at most countable;

(3) the group X admits no epimorphism onto the group Cox @ Cax and X has finite
ranks ro(X) and ro(X).

Proof. (1)<(2) By Theorem ), each minimal left ideal is homeomorphic to the
cube
(2)(X.Ca) o H (22" 1)a(X.Car)

1<k<oc0

which is metrizable if and only if |K| = Y, <, q(X, Car) < Ry.
For the proof of the equivalence (2)<(3) we need two lemmas. We define a group G
to be K-countable if the family of maximal 2-cogroups in G is at most countable.

LEMMA 19.5. Fach subgroup and each quotient group of a K-countable group 1s K-
countable.

Proof. Assume that a group G is K-countable. To prove that any subgroup H C G is
E—countable, observe that by Proposition (2), each 2-cogroup K C H can be enlarged
to a maximal 2-cogroup K in G. The maximality of K in H guarantees that K = K N H.
This implies that the number of maximal 2-cogroups in H does not exceed the number
of maximal 2-cogroups in G.

To prove that any quotient group G/H of G by a normal subgroup H C G is K-
countable, observe that for each maximal 2-cogroup K C G/H the preimage ¢~ '(K)
under the quotient homomorphism ¢ : G — G/H is a maximal 2-cogroup in G. This
implies that the number of maximal 2-cogroups in G/H does not exceed the number of
maximal 2-cogroups of G. m

For a group G with neutral element e and a set A we denote by
DG = {(Ta)aca € G : [{a € A:xy # e} <N}
the direct sum of |A| many copies of G.
LEMMA 19.6. The groups &“Cq, ®*“Z and Cy~ X Cy are not K-countable.

Proof. Observe that for any abelian group X the number ¢(X, Cs) is equal to the number
of subgroups having index 2 and is equal to the number of non-trivial homomorphisms
h: X — Cs.

Each (non-empty) subset A C w determines a (non-trivial) homomorphism

hy : 65“)02 — CQ, ha: (xi)iEw — Hxi.
€A

For any distinct subsets A, B C w the homomorphisms h4 and hp are distinct. Conse-
quently, for the group X = @“ (s, the family K of maximal 2-cogroups has cardinality
K| > hom(X, C,) = 2¢ and hence this group is not K-countable.

Since ®“ (5 is a quotient group of B“Z, the latter group is not K-countable.

Finally, we show that X = Che x Cy is not K-countable. It is well-known (see [7,
§43]) that the quasicyclic group Ca~ has uncountable automorphism group Aut(Cae).
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For any automorphism h : Csee — Cae its graph T'p, = {(z,h(x)) : © € Ca=} is a
subgroup of X = Cy» x (3~ such that the quotient group X/T', is isomorphic to Cae.
Consequently, ¢(X, Ca~) > Auth(Cas) > Xy and hence X is not K-countable. m

Now we are able to prove the equivalence (2)<>(3) of Theorem The implication
(2)=(3) follows from Lemmas and

To prove the implication (3)=-(2), assume that an abelian group X has finite free
rank and 2-rank, and X admits no homomorphism onto the group Cie @ Cos. By
Proposition the cardinality of the set K of maximal 2-cogroups in X is equal to
the cardinality of the family H of subgroups H C X such that the quotient group X/H
is isomorphic to Cyr for some 1 < k < co. So, it suffices to prove that |H| < Ry.

Consider the subgroup X,qq C X consisting of the elements of odd order. Since X
has finite free rank and 2-rank, so does the quotient group X/X,qq. The quotient group
Y = X/X,aqq is at most countable (because it contains no elements of odd order and has
finite free rank and 2-rank). Let ¢ : X — Y be the quotient homomorphism.

Let M be the family of maximal independent subsets consisting of elements of infinite
order in the group Y = X/X,qq. Since the free rank of Y is finite, each (independent)
set M € M is finite and hence M is at most countable.

For each M € M consider the free abelian subgroup (M) C Y generated by M. Let
Gy =Y/{M) be the quotient group and ¢ps : Y — Gy be the quotient homomorphism.
The maximality of M implies that Gj; is a torsion group. Since the free rank and the
2-rank of Y are finite, Gj; has finite 2-rank. The group G); is the direct sum Gy =
On @ Dy of the subgroup O of elements of odd order and the maximal 2-subgroup
Dy C Gy Let py: Gy — Day = Gy /Opr be the quotient homomorphism.

We claim that the group Dj; has at most countably many subgroups. Since D) is
a quotient group of X and X admits no homomorphism onto the group C2.., the group
Dy also admits no homomorphism onto C%... Two cases are possible.

1) The group Dj; contains no subgroup isomorphic to Ca~. In this case Priifer’s
Theorem 17.2 of [7] guarantees that Dy, is a direct sum of cyclic 2-groups. Since Dy
has finite 2-rank, it is finite, being a finite sum of cyclic 2-groups. Thus Dj; has finitely
many subgroups.

2) The group D), contains a subgroup D C M isomorphic to Ca~. Being divisible, the
subgroup D is complemented in D);, which means that Dy, = D & F for some subgroup
F C Dyy. Since Dj; admits no homomorphism onto C2., the subgroup F contains
no subgroup isomorphic to C~ and hence is finite by the preceding case. Taking into
account that the quasicyclic 2-group D has countably many subgroups, we conclude that
the group Dj; = D @ F also has countably many subgroups.

In both cases the family Dj; of subgroups of D), is at most countable. Then the
family Hy = {(pamr o qur 0 q) " (H) : H € Dy} is also at most countable. It remains to
check that H C (Jy;en Har-

Fix any subgroup H € H. By the definition of H, the quotient group X/H is a 2-
group, which implies Xoqq C H. Then H = ¢ '(Hy) where Hy = q(H). Let M be
a maximal independent subset of Hy that consists of elements of infinite order. Since
Y/Hy = X/H is a torsion group, the set M is maximal in Y and hence belongs to M. It



64 T. Banakh and V. Gavrylkiv

follows that (M) C Hy and hence Hy = q&l(HM) where Hpy = qpr(Hy) C G- Since
Gy /Hy =Y/Hy = X/H is a 2-group, the subgroup Hj; contains the subgroup Oy of
elements of odd order in G ;. Then Hy; = p&l(GM) where Gy = pry(Hpr) C Dyy. Since
G € Dy, the group H = (par o qar © ¢)~1(Gar) belongs to the family Hy C H. =

20. Compact reflexions of groups

In this section X is an arbitrary group. Till this moment our strategy in describing the
minimal left ideals of the semigroups A(X) consisted in finding a relatively small subfamily
F C P(X) such that the function representation ®f : A(X) — End, (F) is injective on all
minimal left ideals of A(X). Now we shall simplify the group X keeping the minimal left
ideals of A\(X) unchanged.

We shall describe three such simplifying procedures. One of them is the factorization
of X by the subgroup

Odd = (] KK.
Kek

Here we assume that Odd = X if the set K is empty.
The following proposition explains the choice of the notation for the subgroup Odd.
We recall that a group G is called odd if each element of G has odd order.

ProroSITION 20.1. Odd is the largest normal odd subgroup of X. If X is abelian, then
0dd coincides with the set of all elements having odd order in X.

Proof. The normality of the subgroup Odd = ) xeie KK follows from the fact that
zKz~! € K for every K € K and z € X. Next, we show that the group Odd is odd.
Assuming the contrary, we could find an element a € Odd such that the sets a?? = {a" :
n € Z} and a?**! = {a®"*! : n € Z} are disjoint. Then the 2-cogroup a?”*! of X can
be enlarged to a maximal 2-cogroup K € K. It follows that a € K C X \ KK and thus
a ¢ Odd, which is a contradiction.

It remains to prove that Odd contains any normal odd subgroup H C X. It suffices
to check that for every maximal 2-cogroup K € K the subgroup H C X lies in the
group KK. Let K* = K UKK. Since the subgroup H is normal in X, the sets K KH =
HKK and K*H = HK® are subgroups. We claim that the sets KH = HK and
KKH = HKK are disjoint. Assuming that KH N KKH # 0, we can find x € K
such that x € KK H. Since KK = xK, there are z € K and h € H such that z = zzh.
Then z = h~! € K N H. Now consider the cyclic subgroup 2% = {22" : n € Z}. Since
z € K, the subgroup 222 does not intersect the set 222t = {227+1 : n € Z}. On the other
hand, since H is odd, there is an n € Z with z2"*! = 20 € 222¥1 1222 This contradiction
shows that KH and KK H are disjoint. Consequently, the subgroup K K H has index 2
in the group K*H and hence KH = K*H \ KKH is a 2-cogroup in X containing H.
The maximality of K in I guarantees that K = K H and hence H C KK. n

The quotient homomorphism goqq : X — X/Odd generates a continuous semigroup
homomorphism A(geda) : A(X) — A(X/0dd).
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The following theorem was proved in [3] 3.3].

THEOREM 20.2. The homomorphism A(qoad) : A(X) — A(X/0dd) is injective on each
minimal left ideal of A\(X).

Next, we define two compact topological groups called the first and second profinite
reflexions of the group X. To define the first profinite reflexion, consider the family A of
all normal subgroups of X with finite index in X. For each subgroup H € N consider the
quotient homomorphism ¢y : X — X/H. The diagonal product of those homomorphisms
determines the homomorphism ¢ : X — ]\ X/H of X into the compact topol9gica1
group [[ e X/H. The closure of the image q(X) in [[ ;¢\ X/H is denoted by X and
is called the profinite reflexion of X.

The second profinite reflexion X5 is defined in a similar way using the subfamily

Ny = { N eKKa™: K €K, [X/K| < NO}
rxeX
of N. The quotient homomorphisms qg : X — X/H, H € N3, compose a homomorphism
g2+ X — [l gen, X/H. The closure of the image g2(X) in [[ ;7 X/H is denoted by X5
and is called the second profinite reflexion of X . Since Ker(ge) = (N2 D Ngepg KK D
0dd, the homomorphism ¢y : X — X factorizes through the group X/0Odd in the sense
that there is a unique homomorphism geyen : X/Odd — X5 such that g2 = Geven © Godd-
Thus we get the following commutative diagram:

X 2 x/0dd

-

X——X

Applying to this diagram the functor A of superextension we get the diagram

AX) 229y (¥ /0dd)
(g2
lmN qum)
_ A(pr) _

In this diagram A(X) and A(X,) are the superextensions of the compact topological
groups X and X,. We recall that the superextension A(K) of a compact Hausdorff space
K is the closed subspace of the second exponent exp(exp(K)) that consists of the maximal
linked systems of closed subsets of K (see [22, §2.1.3]).

THEOREM 20.3. If each mazimal 2-cogroup K of a twinic group X has finite index in X,
then the homomorphism A(qz) : M(X) — M(Xa) is injective on each minimal left ideal

of M(X).

Proof. The injectivity of the homomorphism A(g2) on a minimal left ideal L of A\(X) will
follow as soon as for any distinct maximal linked systems :fl, B € L we find a subgroup
H € N such that Agy (A) # Agu (B). Fix any [K]-selector K C K.
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By Corollary the homomorphism @3 : AM(X) — [[cgEnda(Tk), @3 : £ —
(q)dTK)Kefé’ is injective on the minimal left ideal L. Consequently, ®4|Tx # ®p|Tk
for some K € K and we can find a set T € Tg such that ®4(T) # ®5(T).

Since the 2-cogroup K has finite index in X, the normal subgroup H =,y KKz !
has finite index in X and belongs to the family A5. Consider the finite quotient group
X/H and let qi : X — X/H be the quotient homomorphism. Since H C KK, the set
T = KKT coincides with the preimage ;' (") of some twin set 7' € X/H. This fact
can be used to show that Aqy (A) # Agu(B). =

REMARK 20.4. For each finite abelian group X the group X/0dd is a 2-group. For non-
commutative groups this is not always true: for the group X = A4 of even permutations
of the set 4 = {0,1,2,3} the group X/Odd coincides with X (see Section RL.F). Also
X/0dd coincides with X for any simple group.

21. Some examples

Now we consider the superextensions of some concrete groups.

21.1. The infinite cyclic group Z. In order to compare the algebraic properties of
the semigroups A(Z) and 3(Z) let us recall a deep result of E. Zelenyuk [23] (see also [12]
§7.1]) who proved that each finite subgroup in the subsemigroup 8(Z) C A\(Z) is trivial.
It turns out that the semigroup A(Z) has a totally different property.

THEOREM 21.1.

(1) The semigroup A(Z) contains a principal left ideal topologically isomorphic to
122, Cax 2 Z2% where Zy, = 22" —F.

(2) Each minimal left ideal of N(Z) is topologically isomorphic to 2% x [[;—, Cor where
the Cantor cube 2 is endowed with the left zero multiplication.

(3) Each mazimal group of the minimal ideal K(A(Z)) is topologically isomorphic to
I, Cor.

(4) The semigroup A(Z) contains a topologically isomorphic copy of each second countable
profinite topological semigroup.

Proof. The group Z is abelian and hence has trivial twinic ideal according to Theorem[6.2]
It is easy to see that ¢(Z,Cyr) = 1 for all k € N, while ¢(Z, Ca) = 0.

1. By Theorem [19.3(6), the semigroup A(Z) contains a principal left ideal that is
topologically isomorphic to []po; Cox 2 ZkZ’“ where Zj = 92"k,

2. By Theorem 5), each minimal left ideal L of A\(Z) is topologically isomorphic to
[172, Cor X Z), where each cube Z;, = 22"7' =k ig endowed with the left zero multiplication.
It is easy to see that the left zero semigroup [];—, Zj is topologically isomorphic to the
Cantor cube 2 endowed with the left zero multiplication. Consequently, L is topologically
isomorphic to 2¢ x []pZ; Cax.

3. The preceding item implies that each maximal group of the minimal ideal K(A(Z))
is topologically isomorphic to []y~; Cox.
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4. The fourth item follows from the first item and the following well-known fact (see
B 1.1.3]). m

LEMMA 21.2. Each semigroup S is algebraically isomorphic to a subsemigroup of the
semigroup A% of all self-maps of a set A of cardinality |A| > |S*| where S is S with
attached unit.

21.2. The (quasi)cyclic 2-groups Cy-». For a cyclic 2-group X = Con,

1 ifk<n,

0 otherwise.

q(XacQ’“) = {

Applying Theorem [19.3] we get:
THEOREM 21.3. For everyn € N,

(1) the semigmupk)\gC’gn) contains a principal left ideal isomorphic to [[,_, Cor ZZkZ’“
where Z, = 22—k,

(2) each minimal left ideal of A(Can) is isomorphic to [[,_, Cor X Zi, where each cube
Zy, = 927" =k s endowed with the left zero multiplication;

(3) each mazimal group of the minimal ideal K(A(Can)) is isomorphic to TTj_; Cor;

(4) the semigroup A\(Can) contains an isomorphic copy of each semigroup S of cardinality

n—1

|S| < 22" .

The superextension A\(Ca=) has even more interesting properties.
THEOREM 21.4.

(1) Minimal left ideals of the semigroup A(Ca) are not topological semigroups.

(2) Each minimal left ideal of A(Cas) is homeomorphic to the Cantor cube 2% and is
algebraically isomorphic to ¢ x (Cys)* where the cardinal ¢ = 2% is endowed with
the left zero multiplication.

(3) The semigroup A(Cae) contains a principal left ideal which is algebraically isomorphic
to (Cgoo ch)w,

(4) A(Ca) contains an isomorphic copy of each semigroup of cardinality < c.

(5) Each maximal subgroup of the minimal ideal K(A(Cax)) of MCax) is algebraically
isomorphic to (Cas)¥.

(6) Each mazimal subgroup of the minimal ideal K(A(Cax)) is topologically isomorphic
to the countable product [, (Cas,Ty) of quasicyclic 2-groups endowed with twin-
generated topologies.

(7) For any twin-generated topologies 1,, n € N, on Ca~ the right-topological group
[1,2,(Co,7y,) is topologically isomorphic to a mazimal subgroup of K(A(Cas)).
Proof. Since each proper subgroup of Co is finite, the family K of maximal 2-cogroups is
countable and hence can be enumerated as K = {K, : n € w}. Each maximal 2-cogroup

K € K has infinite index and its characteristic group H(K) is isomorphic to Cae.

1. The equivalence (1)<(2) of Theorem implies that no minimal left ideal of

A(Ca) is a topological semigroup.

2, 3, 5. The statements (2), (3) and (5) follow from Theorem [19.2]
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4. The fourth item follows from the third one because each semigroup S of cardinality
S| < ¢ embeds into the semigroup ¢ according to Lemma [21.2]

6. By Theorem [I8.7(b), each maximal subgroup G in the minimal ideal K(A(Ca)) is
topologically isomorphic to the product [], e H(Ax) of the structure groups of suitable
twin subsets Ax € T = Tig), K € K. For each maximal 2-cogroup K € K the structure
group H(Ag) is just Cae endowed with a twin-generated topology.

7. Now assume conversely that 7,,, n € N, are twin-generated topologies on the qua-
sicyclic group Cae. For every n € N find a twin subset A,, € Tk, whose structure
group H(A4,) is topologically isomorphic to (Cy~,7,). By Theorem the product
[1,2, H(A,) is topologically isomorphic to some maximal subgroup of K(A(Ca)). =

REMARK 21.5. Theorems 7) and imply that among maximal subgroups of the
minimal ideal of A\(Co) are:

e Raikov complete topological groups;
e incomplete totally bounded topological groups;
e paratopological groups which are not topological groups;
e semitopological groups which are not paratopological groups.
21.3. The groups @~ of generalized quaternions. We start with the quaternion
group Qs = {£1, i, £j, £k}. It contains three cyclic subgroups of order 4 corresponding
to 4-element maximal 2-cogroups: K1 = Qg \ (i), Ko = Qs \ {(j), K3 = Qs \ (k). The
characteristic groups of those 2-cogroups are isomorphic to Cy. The trivial subgroup
of Qs corresponds to the maximal 2-cogroup Ky = {—1} whose characteristic group
coincides with Qg. By Proposition [T4.2] we get
X/KF
Tooll = kel 2250
[H(Ko)| |Qs|
and |[Tk,]| = 1 for i € {1,2,3}. By Theorem ), each minimal left ideal of the
semigroup A(Qs) is isomorphic to

(Qs x 2) x (Ca x 1)> =2 x Qs x C3.

Next, given any finite number n > 3 we consider the generalized quaternion group
Q2n+1. Maximal 2-cogroups in Qqn+1 are of the following form:

KO = {—1}, K1 = Q2n+1 \an and Kk,w = {1,33} . (02k \CQk—l)

for 2 <k <nand z € Qant+r \ Can. It follows that H(Ky) = Qan+1, H(K;) = Cy and
H(Ky ;) = Cy. Also

(T = Tl 2Ot ey
HEo)| Q] 27

) = ALl 22
I A

(T = STl _ 20 I

RES] |Ca] 2
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It is easy to check that two 2-cogroups K} , and K}, are conjugate if and only if
xy~1 € Cyn-1. Taking any elements x,y € Qont1 \ Can with 2y~! ¢ Cyn, we conclude
that the family

K={Ko,Kys, Kpy:2<k<n}

is a [K]—selector. Applying Theorems 3) and Corollary 3), we get:

THEOREM 21.6. Let n > 2 be a finite number. Then

(1) each minimal left ideal of the semigroup A(Qan+1) is isomorphic to

n

2M _p—1 27L—k_1 2

Qont1 x2° 7" ><C’2><H(Cg><2 )%,
k=2

where the cubes 22"~ and 22" "1 are endowed with the left zero multiplication;

(2) each mazimal subgroup of the minimal ideal K(A(Qgn+1)) is isomorphic to Qon+1 X
cynt.

The infinite group Q2 of generalized quaternions has a similar structure. This group
contains the following maximal 2-cogroups:

Ko={-1}, Ki;=Q2=\Cs~, and Ky, ={l,z} Co \ Cor
where k > 2 and © € Q2= \ Ca. For these 2-cogroups we get
H(Ky) = Qoe, H(K1)=0C and H(Kyz)=0Cs
and
Troll = ¢, [[Tr, ]I =1, and [Tk, ]| =c¢.
Any two 2-cogroups Ky 5, Ky, are conjugate. Then for any b € Qo \ Ca the family
K= {Ko,Krp:keN}isa [I%]—selector. By analogy with Theorem we can prove:
THEOREM 21.7. For the group Qs

(1) minimal left ideals of the semigroup A(Ca=) are not topological semigroups;
(2) each minimal left ideal of the semigroup A\(Qa) is homeomorphic to the Cantor cube
and is algebraically isomorphic to

200 X CF X ¢,
2

where the cardinal ¢ is endowed with the left zero multiplication;
(3) the semigroup A(Qae) contains a principal ideal isomorphic to

(Qax 1¢f) x Cy x (C21¢)%;
(4) MQax) contains an isomorphic copy of each semigroup of cardinality < ¢;
(5) each mazimal subgroup of the minimal ideal K(A(Qa)) is topologically isomorphic
to (Q2,7) X C§ where T is a twin-generated topology on Qo ;
(6) for any twin-generated topology T on Qas the right-topological group (Qae,T) X C¥
is topologically isomorphic to a mazimal subgroup of K(A(Qa)).
REMARK 21.8. Theorems 6) and [9.5] imply that among maximal subgroups of the
minimal ideal of A\(Q2) are:
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e Raikov complete topological groups,

e incomplete totally bounded topological groups,

e right-topological groups which are not left-topological groups,
e semitopological groups which are not paratopological groups.

21.4. The dihedral 2-groups Ds». By the dihedral group Do, of even order 2n we
understand any group with presentation

(a,b|a™ =b* =1, bab~ " =a™1).

It can be realized as the group of symmetries of a regular n-gon. So, Ds,, is a subgroup
of the orthogonal group O(2). The group Ds, contains the cyclic subgroup C,, = (a) of
index 2. The subgroup of all elements of odd order is normal in D, and hence coin-
cides with the maximal normal odd subgroup Odd. By Theorem the superextension
A(Day,) is isomorphic to the superextension A\(Da,/Odd) of the quotient group Da,, /Odd.
The latter group is isomorphic to the dihedral group Dyr where 2* is the maximal power
of 2 that divides 2n. Therefore it suffices to consider the superextensions of the dihedral
2-groups Dy .

By the infinite dihedral 2-group we understand the union

Dy = | J Doe € O(2).
keN

It contains the quasicyclic 2-group Co~ as a normal subgroup of index 2.

Now we analyze the structure of the superextension A(Dagr) for finite n > 1. Maximal
2-cogroups in Dan are of the following form:

KO S D2n \an—l and Kk,z = {171'} . (CQk \021%1)

where 1 <k <n and « € Ky = Dan \ Cn—1. The characteristic groups of these maximal
2-cogroups are isomorphic to the 2-element cyclic group Cs. Also
|2D2n/K’“i‘”| an—k_1
Trli=1 and ([T, )= S
forall1 <k <nandzxz € K.

Let b € Dan \ Cyn-1 and a be the generator of the cyclic subgroup Con-1 C Dan. One
can check that two 2-cogroups Ky, , and Ky, are conjugate if and only if 27!y € Cyn-2.
Therefore the family

K = {Ko, Kip, Kiap 1 1 < k < n}

is a [K]-selector.
Applying Theorems and Corollary 3), we get

THEOREM 21.9. For every n € N,

(1) the semigroup A(Dan) contains a principal left ideal isomorphic to
Cy X HZ;%(CQ ) Z,CZ’“)2 where Z;, = 22n7k_1;

(2) each minimal left ideal of A(Dan) is isomorphic to Cy x [[;_,(Ca x Zi)* where the
cubes Z,, are endowed with the left zero multiplication;

(3) each mazimal group of the minimal ideal K(A(Dgn+1)) is isomorphic to C3"~*;
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(4) the semigroup X(Dan+1) contains an isomorphic copy of each semigroup S of cardi-
nality |S) < 22" 1,

The superextension of the infinite dihedral 2-group D2~ has quite interesting prop-
erties. All maximal subgroups of the minimal ideal K(A(D3)) are compact topological
groups. On the other hand, in the semigroup A(Da) there are minimal left ideals which
are (or are not) topological semigroups.

THEOREM 21.10. For the group Do

(1) each minimal left ideal of the semigroup A(Das) is homeomorphic to the Cantor cube
2¢ and is algebraically isomorphic to the compact topological semigroup C§ x 2% where
the Cantor cube 2% is endowed with the left zero multiplication;

(2) each mazimal subgroup of the minimal ideal K(A(Das)) is topologically isomorphic
to the compact topological group C§ ;

(3) A(Da) contains a minimal left ideal which is topologically isomorphic to the compact
topological semigroup C§ x 2%;

(4) AM(D2) contains a minimal left ideal which is not a semitopological semigroup;

(5) the semigroup A(Da) contains a principal ideal isomorphic to Cy x (Co 1 ¢)¥;

(6) A(D2=) contains an isomorphic copy of each semigroup of cardinality < c.

Proof. First note that by Theorem [6.2] the torsion group X = Dy« is twinic and has
trivial twinic ideal.
Maximal 2-cogroups in D are of the following form:

K() = Dgoo \0200 and Kk’a; = {1, fE} . (02k \CQk—l)

where £ € N and = € K. The characteristic groups of these maximal 2-cogroups are
isomorphic to the 2-element cyclic group Cs. Consequently, for any twin set A € T its
characteristic group H(A) is topologically isomorphic to Cs. Observe that

[Tl =1 and |[[Tk, ]| =2

for all k € N and = € Kj. Since the characteristic group H(K} ) = C» is finite, the
orbit space [Tk, ] is a compact Hausdorff space, homeomorphic to the Cantor cube 2¢.
One can check that any two 2-cogroups Ky, and K}, are conjugate. Therefore for any
b € Dy \ Cyee the family K = {Ko, Ky p: k € N} is a [K]-selector.

1. By Theorem [18.7|(e) and Proposition [12.1} each minimal left ideal of A(X) is homeo-
morphic to the product [], .z Tk, which is homeomorphic to OX/KY [lren QX/K’fb.
The latter space is homeomorphic to the Cantor cube 2.

By Theorem e), each minimal left ideal of A\(X) is algebraically isomorphic to
[Ixecr HUK) x [Tk] and the latter semigroup is isomorphic to C§’ x 2 where the Cantor
cube 2¢ is endowed with the left zero multiplication.

2. Since each characteristic group H(A), A € :I:, is topologically isomorphic to Cj,
applying Theorem b)7 we conclude that each maximal subgroup in K(A(X)) is topo-
logically isomorphic to the compact topological group C¥ .

3. Since each characteristic group H(K), K € I%, is finite (being isomorphic to Cs),
Proposition implies that some minimal left ideal of A(X) is a topological semigroup
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which is topologically isomorphic to the compact topological semigroup

[T HK) x [Tk] = H(Ko) x [Tr,) x JT(HExb) x [Txy,))

Kek keN
by Theorem ). The latter topological semigroup is topologically isomorphic to
C§ x 2%,

4. Since the maximal 2-cogroups Kjp, k£ € N, have infinite index in Dje, Proposi-
tion implies that the semigroup A\(Da) contains a minimal left ideal which is not a
semitopological semigroup.

5. By Corollary 3) and Theorem 3)7 the semigroup A(Da) contains a prin-
cipal left ideal that is algebraically isomorphic to the semigroup [ (H(K)[T w7,
which is isomorphic to Cy x (Ca 2 ¢)¥.

6. By the preceding item, A(Da=) contains a subsemigroup isomorphic to the semi-
group ¢ of all self-mappings of the continuum ¢. By Lemma the latter semigroup
contains an isomorphic copy of each semigroup of cardinality < c. m

21.5. Superextensions of finite groups of order < 16. Theorem [19.3 and Proposi-
tion give us an algorithmic way of calculating the minimal left ideals of the superex-
tensions of finitely-generated abelian groups. For non-abelian groups the situation is a
bit more complicated. In this section we shall describe the minimal left ideals of finite
groups X of order |X| < 16.

In fact, Theorem [20.2] helps us to reduce the problem to studying superextensions of
groups X/Odd. The group X/Odd is trivial if the order of X is odd. So, it suffices to
check non-abelian groups of even order. If X is a 2-group, then the subgroup Odd of X
is trivial and hence X/0Odd = X. Also the subgroup Odd is trivial for simple groups.

The table below describes the structure of minimal left ideals of the superextensions
of groups X = X/0dd of order |X| < 15. In this table £ stands for a minimal idempotent
of A(X) which generates the principal left ideal A(X)o£& and lies in the maximal subgroup
H(E) =& o A(X) o &. Below, the cubes 2" are considered as semigroups of left zeros.

X [EAMX)0&)| | EoA(X)o& AX)o &
02 1 02 C12
04 1 02 X C4 02 X C4
C3 1 C3 Cc3
cs 1 C3 o
Crd Cy 1 C2 xC? C3 x C2
Os 2 CzXC4><Cg 2><CQXO4><CS
Dy 2 Ccs 22 x C3
Qs 2 C3 % Qs 2% C3 x Qs
Ay 26 Cc3 26 x C3

For abelian groups the entries of this table are calculated with the help of Theo-
rem and Proposition[I9.1] Let us illustrate this by the example of the group Co @ Cj.
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By Proposition for the group X = Cy ® Oy we get
e ¢(X,C5) = hom(X,Cs)| — |hom(X,C1)|=2-2—-1=3;
e ¢(X,Cy4) = 3(lhom(X, Cy)| — [hom(X,Cs)|) = 2(2-4—2-2) = 2;
e ¢(X,Cor) =0 for k > 2.

Then each minimal left ideal of A(Cy @ Cy) is isomorphic to
(O x 22 1)aXC2) o (0 x 22717 2)aN0D) = (0 x 20)3 x (O x 2°)2 = CF x O3

Next, we consider the non-abelian groups. In fact, the groups Qs and Dg have been
treated in Theorems and So, it remains to consider the alternating group Aj.

This group has order 12, contains a normal subgroup isomorphic to Cy x Cy and
contains no subgroup of order 6. This implies that all 2-cogroups of A4 lie in Cy x Cs,
and consequently A4 contains three maximal 2-cogroups. Each maximal 2-cogroup K C
Ay contains two elements and has characteristic group H(K) isomorphic to Cs. Since
|X/K*| = 3, Proposition guarantees that |[Tx]| = 2X/K51/|H(K)| = 28-1 = 22,
Applying Theorem we see that each minimal left ideal of the semigroup A(Ay) is
isomorphic to (Cq x 22)3 = 26 x C3.

22. Some open problems

PROBLEM 22.1. Describe the structure of (minimal left ideals of) superextensions of the
simple groups A,, for n > 5.

PROBLEM 22.2. Describe the structure of (minimal left ideals of) superextensions of the
finite groups of order 16.

Since the free group Fy with two generators is not twinic, the results obtained in this
paper cannot be applied to this group.

PROBLEM 22.3. What can be said about the structure of the superextension A(F3) of
the free group F5?

PROBLEM 22.4. Investigate the permanence properties of the class of twinic groups. Is
this class closed under taking subgroups? products?
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