1. Introduction

Generally speaking, almost all the continuous-time stochastic process models consist of
some combination of the following:

a) diffusion,
b) deterministic motion,
¢) random jumps.

We consider random dynamical systems with randomly chosen jumps acting on a
given Polish space (Y, ). Thus, our model is a mixture of deterministic motions and
random jumps. In other words, it is an example of a non-diffusion model.

The aim of this paper is to study stochastic processes whose paths follow determin-
istic dynamics between random times, jump times, at which they change their position
randomly. Hence, we analyse stochastic processes in which randomness appears at times
to < tp < tg < ---. We assume that a point xg € Y moves according to one of the trans-
formations IT; : Ry X Y — Y from some set {IIy,...,IIxy}. The motion of the process is
governed by the equation X (¢) = II;(¢, xo) until the first jump time ¢;. Then we choose
a transformation ¢, : Y — Y from some set {q1,...,¢x} and define z1 = ¢5(IL;(¢1, z0)),
therefore g5 can be called a jump. The process restarts from that new point 21 and con-
tinues as before. This gives the stochastic process {X (¢)};>¢ with jump times {t1,%2,...}
and post jump positions {x1,za,...}. The probability determining the frequency with
which the maps II; and the jumps ¢, are chosen is described by a matrix of probabilities
[pij]%zl, pij 1 Y — [0,1] and probability vectors [p,]% , , P, : Y — [0, 1], respectively.

We are interested in the evolution of distributions of these random dynamical systems.
We formulate criteria for stability and the existence of an invariant measure for such
systems.

In the case of non-diffusion models, the first significant steps towards producing gen-
eral models were taken by Cox [3], Gnedenko and Kovalenko [11]. The last two authors
introduced a class of models called piecewise-linear Markov processes to provide a unified
treatment of problems arising in queueing theory.

There is a substantial literature devoted to the problem of stability and of the existence
of an invariant measure for Markov processes [37]. Different classes of Markov processes
have been studied therein, for example random dynamical systems based on skew product
flows [1]. Our model is not such a system. It is similar to the so-called piecewise-
deterministic Markov process introduced by Davis [4]. There are some stability results
for such a system based on the theory of Meyn and Tweedie [37]. However, the method
of proving the existence of an invariant measure used by Meyn and Tweedie is not well
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adapted to general Polish spaces. In fact, it is difficult to ensure that the process under
consideration satisfies all the ergodic properties on a compact set. On the other hand,
the assumption of compactness is restrictive if we want to apply our model in physics
and biology. Then the phase space is usually one of the function spaces and it is difficult
to ensure that the ergodic properties hold on some compact set.

Our work is based on the theory of concentrating Markov operators on a Polish space
(see [44]).

The system under study takes into consideration some very important and widely
studied cases, namely dynamical systems generated by learning systems [2, 22, 23, 35],
Poisson driven stochastic differential equations [10, 17, 34, 48, 49|, iterated function sys-
tems with an infinite family of transformations [30, 50, 51|, random evolutions [12, 42],
randomly controlled dynamical systems [41] and irreducible Markov systems [52]. A large
range of applications of such models, both in physics and biology, is worth mentioning
here: the shot noise, the photo conductive detectors, the growth of the size of structural
populations, the motion of relativistic particles, both fermions and bosons, and many oth-
ers (see [8, 18, 24, 28]). On the other hand, it should be noted that most Markov chains ap-
pear in statistical physics and may be represented as iterated function systems (see [25]).
Recently, iterated function systems have been used in studying invariant measures for the
Wazewska partial differential equation which describes the process of the reproduction
of red blood cells [32, 33|. Similar nonlinear first-order partial differential equations fre-
quently appear in hydrodynamics [43]. So called irreducible Markov systems introduced
by Werner (see [52]) are used for the computer modelling of various stochastic processes.

The outline of the paper is as follows. In Section 2 we set out notation and terminology.
Section 3 is divided into two parts. Section 3.1 contains basic facts from the theory of
Markov operators. In Section 3.2 we recall criteria for the existence of an invariant
measure and for asymptotic stability on Polish spaces. These criteria are essential in the
proofs of our results.

The main section of this paper is Section 4. Section 4.1 contains the description of our
random dynamical systems. In Section 4.2 we consider discrete-time random dynamical
systems with jumps on Polish spaces and show that a Markov operator describing the
dynamics of such systems is asymptotically stable. In Section 4.3 we give sufficient con-
ditions for asymptotic stability of a semigroup generated by the continuous-time random
dynamical system in cases where the choice of jumps does not depend on a position in
which it happens.

Section 5 is devoted to dimensions of measures. The lower pointwise dimension of an
invariant measure for the semigroup of Markov operators generated by the continuous-
time random dynamical system is estimated in Section 5.1. In Section 5.2 we give an upper
bound for the concentration dimension of an invariant measure for the Markov operator
describing the evolution of measures from jump to jump. Relationships between invariant
measures of discrete and continuous-time random dynamical systems, and between their
concentration dimensions are considered in Section 5.3. The results of Section 5 are
used to evaluate the dimensions of invariant measures for dynamical systems generated
by learning systems (Section 6.1) and Poisson driven stochastic differential equations
(Section 6.4).
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Finally, in Section 6 we apply our results to establish existence of an invariant measure
and asymptotic stability of particular Markov operators. In Section 6.1 we study iterated
function systems and show that the well known results proved by Barnsley and coauthors
[2, 35] are a simple application of our criterion for asymptotic stability. Our next concern
is the behavior of irreducible Markov systems which are an extension of iterated function
systems with place dependent probabilities. Such systems on a locally compact space
have been considered by Werner [52]. The irreducible Markov system is a particular
example of a random dynamical system with randomly chosen jumps. However, we want
to point out that the system may not satisfy the essential assumption put forward in the
theorems of Section 4. This assumption can be replaced by contractiveness, which is more
easily verifiable. Contractiveness has been considered in [52]. In Section 6.2 we extend
Werner’s result to the case of complete separable metric spaces. Section 6.3 is devoted
to the mathematical theory of the cell cycle. In Section 6.4 we illustrate the usefulness
of our criteria for asymptotic stability of a continuous-time random dynamical system by
considering randomly connected Poisson driven stochastic differential equations.

The results of this paper are related to our papers [13-17, 19-21]. Criteria for asymp-
totic stability for discrete-time random dynamical systems without jumps, when Y is
locally compact, are formulated in [13]. For Polish spaces these criteria are general-
ized in [20]. The results of Section 4.2 have been proved in [15]. In [19] we consider
a continuous-time random dynamical system on Polish spaces, but also without jumps.
Relationships between concentration dimensions of invariant measures of discrete and
continuous time random dynamical systems are considered in [14] for the simpler case
when { P!}, is a semigroup generated by the Poisson driven differential equation on R.
Poisson driven differential equations on R¢ are studied in [14] and [17]. Some estimates
of dimensions of invariant measures are formulated in [16].

2. Preliminaries

2.1. Basic notions. Let (Y, 0) be a Polish space, i.e. a separable, complete metric
space. We denote by B(x,r) the open ball with center at  and radius r. For any set
A CY, clA, diam, A, and 14 stand for the closure, diameter, and indicator function
of A, respectively.

We denote by B(Y') the o-algebra of Borel subsets of Y, by M = M(Y) the family of
all finite Borel measures on Y, and by M, the space of all finite signed Borel measures
on Y. We write M; = M;(Y) for the family of all 4 € M such that u(Y) = 1. The
elements of My are called distributions.

As usual, B(Y') denotes the space of all bounded Borel measurable functions f: Y — R
and C(Y) the subspace of all continuous functions. Both spaces are considered with the
supremum norm || - ||o. For f € B(Y) and p € M, we write

(fom) = | (@) p(dz).
Y
We introduce in M, the Fortet-Mourier norm || - ||, (see [6, 7, 9]) given by

il = sup{[{f, )| : f € Fp}  for p e M,
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where F, is the set of all f € C(Y) such that |f(z)] <1 and |f(z) — f(y)| < o(x,y) for
T,yeY.
We say that a sequence {fin }n>1, ptn, € M, converges weakly to a measure p € M if

lim (f, 1) = {fp)  for every f € O(Y).

It is well known (see [6]) that the convergence in the Fortet—-Mourier norm || - |, is
equivalent to the weak convergence.
We introduce the class ® of functions ¢ : Ry — R satisfying the following conditions:
(i) ¢ is continuous and ¢(0) = 0;
(ii) ¢ is nondecreasing and concave, i.e.

Zak‘p(yk) < w(Zakyk), where o > 0, Zak =1;
k=1 k=1 k=1

(iii) (x) > 0 for £ > 0 and lim, o p(x) = .

We denote by @y the family of all functions satisfying (i) and (ii). A necessary and
sufficient condition for a concave function ¢ to be subadditive on (0, 0o) is that ¢(0+) > 0.
From this result we immediately obtain the triangle inequality for g, = ¢ o 0. Thus for
every ¢ € ® the function g, is again a metric on Y. For notational convenience we
write 7, and || - ||, instead of F,_ and |- ||, respectively.

In our considerations an important role is played by the inequality

(2.1.1) w(t) + (at) < p(t) for t >0,

where w € @ is a given function and a € [0, 1).

The inequality may be studied by classical methods of the theory of functional equa-
tions (see [27]). Lasota and Yorke [35] precisely discuss the cases for which (2.1.1) has a
solution belonging to ® and prove the following;:

PROPOSITION 2.1.1. Assume that a function w € ®q satisfies the Dini condition

(2.1.2) S#

Let a € [0,1). Then inequality (2.1.1) admits a solution in ®.

dt < oo  for some € > 0.

We say that a vector (p1,...,pn), where p; : Y — [0,1], is a probability vector if

N
Zpl(ac) =1 forzeY.
i=1

Analogously a matrix [p;;]; ;, where p;; : Y — [0,1] for ¢,5 € {1,..., N}, is a probability
matric if

N
Zpij(x) =1 forzeYandie{l,...,N}.
j=1

2.2. Dimensions of measures. For A CY, s> 0 and § > 0 we define

H3(A) = inf » (diam, E;)*,

=1
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where the infimum is taken over all countable covers {E;} of A such that diam, E; < 4.
Then

M (A) = lim H5(4)

defines the Hausdorff s-dimensional measure. The Hausdorff dimension of A is defined
by the formula
dimpy A = sup{s > 0: H*(4) > 0}.

(Here we assume that sup () = 0.)
The Hausdorff dimension of y € M is defined by the formula

dimy p = inf{dimyg A: A € B(Y) and p(A4) = 1}.
For a given u € M we define the lower pointwise dimension of y at x € Y by

dyu(x) = lim in bg‘ﬁ(f’m

(here log0 = —o0) and the Lévy concentration function Q,, : (0,00) — Ry by (see [36])
Q. (r) =sup{p(B(z,r)) :x €Y} forr>0.

Further, for a measure y € M; we define the lower and upper concentration dimensions
of u by the formulas

1 — 1
dim; p = liminf M and dimy g = limsup M.
r—0 logr r—0 logr

If dim; p = dimy, g then this common value, denoted by dimp, u, is called the concentra-
tion dimension (the generalized Rényi dimension) of 1 (see [32, 33]).

The Hausdorff dimension and the concentration dimension are closely related to each
other as is shown in the next results proved in [32]:

PROPOSITION 2.2.1. Let € My and A € B(Y) be such that u(A) > 0. Then
dimg A > dim; p.
PROPOSITION 2.2.2. Let A CY be a nonempty compact set. Then
dimg A = supdim; pu,

where the supremum is taken over all yu € My such that suppu C A.

3. Properties of Markov operators

3.1. Markov operators. An operator P: M — M is called a Markov operator if
P(Aipi1 4 Aopr2) = A Ppy + Ao Ppy  for Ay, A € Ry and g, pp € M
and
Pu(Y)=p() forpue M.

It is easy to prove that every Markov operator can be extended to a linear operator on
the space My of all signed measures.
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A linear operator U : B(Y) — B(Y) is called dual to P if
(3.1.1) (Uf,p) =(f,Pp) for fe B(Y)and € M.
Setting u = ¢, the point (Dirac) measure supported at z, in (3.1.1) we obtain
(3.1.2) Uf(x) ={(f,Pd;) for feB(Y)andzecV.
From (3.1.2) it follows immediately that U is a linear operator satisfying
Uf>0 for f>0, feB(Y),
(3.1.3) Uly =1y,
Uf, |0 for f, | 0, f,, € B(Y).
Conditions (3.1.1)—(3.1.3) allow one to reverse the roles of P and U. Namely, given U
satisfying (3.1.3) we may define a Markov operator P : M — M by setting
(3.1.4) Pu(A) = (Uly,p) for Ae B(Y) and p € M.

Assume now that P and U are given. If f: Y — R is a Borel measurable function, not
necessarily bounded, we may define U f by

Uf(x) = lim Ufy(),

where {f,, }»>1 is an increasing sequence of bounded Borel measurable functions converg-
ing pointwise to f. From the Lebesgue monotone convergence theorem it follows that U f
satisfies (3.1.1).
A Markov operator P is called a Markov—Feller operator if it has a dual operator U
such that
UfeCy) forfeCy).

A Markov operator P is called nonexpansive if

[Py = Ppzlle < [lpa — palle  for pua, pe € M.

REMARK 3.1.1. Let P be a Markov operator and U its dual. If U(F,) C F,, then P is
nonexpansive.

A measure p, is called invariant (or stationary) with respect to P if Pu, = ..
A Markov operator P is called asymptotically stable if there exists a stationary measure
s € My such that

(3.1.5) lim ||P"p — ps]|p =0 for every p € Mj.
n—oo

Obviously a measure pu, satisfying the above condition is unique.
When an invariant measure exists, condition (3.1.5) is equivalent to a more symmetric
relation

(3.1.6) nh_)n;o [|[P"u1 — P"usll, =0 for pq, uo € Mj.

A sequence {fiy }n>1 (ftn € My) of distributions is called tight if for every € > 0 there
exists a compact set K C Y such that p,(K) > 1 — ¢ for every n € N.

We say that a Markov operator P : M — M is tight if for every p € M; the sequence
{P"1}n>1 is tight.
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A family {P*};>¢ of Markov operators is called a semigroup if P'*¢ = P'P* for all
t,s € Ry and P is the identity operator on M.
Let {P'};>0 be given. We denote by {T"},-, the semigroup dual to {P'},., i.e.

(T'f,pu) = (f, P'p) for f € B(Y), p€ My.

A measure p, € M is called invariant (or stationary) for the Markov semigroup {P*};>
if P'p,. = p for t > 0. The Markov semigroup {P"};>¢ is called asymptotically stable if
there exists a stationary measure p, such that

lim [Py — pall, =0 for p e M.
t—oo

3.2. Criteria for asymptotic stability. In this section we present known criteria for
the existence of an invariant measure and for asymptotic stability of Markov operators
on the space of Borel measures on a Polish space Y.

First results concerning the existence of invariant measures were proved for com-
pact spaces (|23]). The classical proof goes as follows. One defines a positive invariant
functional on the space of all continuous functions. By the Riesz theorem it may be rep-
resented by a measure. Since the functional is invariant, one concludes that the measure
is also invariant. This scheme works smoothly when Y is a compact space. Lasota and
Yorke [35] managed to extend it to the case when Y is locally compact and o-compact.
Their result on the existence of an invariant measure is similar in spirit to Komorowski’s
theorem [26], however, only Markov operators acting on absolutely continuous measures
are considered in [26]. The approach in [35] was partially based on the idea of the lower
bound function developed for Markov operators acting on L'-space (see [31]). The au-
thors introduced the class of so-called concentrating Markov operators and showed that
every operator from this class admits an invariant measure. Furthermore, assuming that
a concentrating Markov operator does not increase a distance between two measures,
they showed that it must be asymptotically stable (see [35]). In order to state the result,
some notation is needed.

We say that a metric ¢ is equivalent to g if the classes of bounded sets and convergent
sequences in the spaces (Y, 9) and (Y, ) coincide. Obviously, if (Y, ) is a Polish space
and p, ¢ are equivalent, then the space (Y, ) is still a Polish space.

A Markov operator P : M — M is called essentially nonexpansive if there exists a
metric § equivalent to ¢ such that P is nonexpansive with respect to the norm || - ||, i.e.

An operator P is called concentrating if for every € > 0 there exist a set A € B(Y)
with diam, A < ¢ and a number 6 > 0 such that

(3.2.2) liminf P"u(A) > 6  for p e M.
n—oo

lo < llpa — palls  for pa, po € M.

ProPOSITION 3.2.1. If P is an essentially nonerpansive and concentrating Markov op-
erator then P is asymptotically stable.

The proof can be found in [44] in the case when Y is a Polish space.
It should be noted that the definition of asymptotic stability consists of two almost
independent statements: the existence of an invariant measure p, and the convergence
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condition (3.1.6). It turns out that even if the set A in condition (3.2.2) depends on the
choice of initial measures, then the proof in Lasota and Yorke [35] carries over to a Polish
space and leads to the following result:

PROPOSITION 3.2.2. Let P be a nonexpansive Markov operator. Assume that P satisfies
the lower bound condition: for every € > 0 there is a number A > 0 such that for every
p1, 2 € My there exist A € B(Y) with diam,A < e and ng € N for which

(3.2.3) P™u,(A)> A fori=1,2.
Then
Jim ([P = Pl , = 0 for p, 2 € M.

In the setting of Polish spaces it might be difficult or even impossible to prove that
a given Markov operator is concentrating. We now describe results concerning asymp-
totic stability of Markov operators on infinite-dimensional spaces obtained by Szarek [44]
and based on the concept of tightness and the well known Prokhorov theorem. He
introduced the class of globally and semi-concentrating Markov operators and gave con-
ditions ensuring the existence of an invariant measure for nonexpansive Markov oper-
ators. It is important to emphasize that the nonexpansiveness is crucial in these con-
siderations: Szarek [47] constructed an example which shows that it cannot be omit-
ted.

We denote by C.(Y), ¢ > 0, (C. for abbreviation) the family of all closed sets C for
which there exists a finite set {z1,...,2,} CY such that C C |J;_, B(zi,¢).

An operator P is called semi-concentrating if for every € > 0 there exist C' € C.(Y)
and € > 0 such that

(3.2.4) liminf P"u(C) > 6 for p e M.

n—oo

REMARK 3.2.1. A concentrating Markov operator is semi-concentrating.
For 1 € My we consider the limit set
(3.2.5)  L(p) ={v € M; : there exists {ny} C {n} such that kli_)n;o | P — v, =0}
and
(3.2.6) LMy) = ] Lw).
HEM,

The following results are proved in [46]:

PROPOSITION 3.2.3. Let P be a nonexpansive and semi-concentrating Markov operator.
Then

(a) P has an invariant measure;

(b) L(p) # 0 for arbitrary pu € My;

(c) L(Mq) is tight.

Let A € B(Y). We say that a measure y1 € M is concentrated on A if u(Y \ A) = 0.
We denote by M3! the set of all probability measures concentrated on A.
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An operator P is called globally concentrating if for every ¢ > 0 and every bounded
Borel set A there exist a bounded Borel set B and a number ng € N such that
P'u(B)>1—¢ forn>mngand uec M.
A continuous function V : Y — [0, 00) is called a Lyapunov function if

lim V(z)=o0
o(x,z9)—00

for some zp € Y.
PROPOSITION 3.2.4. Let P be a Markov operator and U its dual. Assume that there
ezists a Lyapunov function V', bounded on bounded sets, such that
UV(z)<daV(z)+b forze,

where a,b € Ry and a < 1. Then P is globally concentrating.

Moreover, for every € > 0 there exists a bounded Borel set B C'Y such that

linnli@ng"u(B) >1—¢ forpe Mj.

Define

(3.2.7) E(P)={e>0: Hinf liminf P"(A) > 0 for some A € C.(Y)}.

eM; n—oo

REMARK 3.2.2. If a Markov operator P is globally concentrating, then £(P) # 0.
REMARK 3.2.3. If inf £(P) = 0, then P is semi-concentrating.
By Proposition 3.2.2 and 3.2.3 we obtain:

THEOREM 3.2.1. A nonezxpansive, semi-concentrating Markov operator satisfying a lower
bound condition (3.2.3) is asymptotically stable.

4. Random dynamical systems with jumps

4.1. Introduction. Let (Y,0) be a Polish space, Ry = [0,00) and [ = {1,..., N},
S={1,...,K}, where N and K are given positive integers.
Let II; : Ry XY — Y, ¢ € I, be a finite sequence of semidynamical systems, i.e.

IL;(0,z) =2 foriel,zeY

and
(s 4+ t,z) = (s, (¢, x)) fors,teRy, i€l and x €Y.

We are given probability vectors p; : Y — [0,1],i € I, p,: Y — [0,1], s € S, a matrix
of probabilities [p;;]; jer, pij : Y — [0,1], 4,5 € I, and a family of continuous functions
gs:Y =Y, s€S. We denote the entire system by (I, ¢, p).

Finally, let (2,3, P) be a probability space and {¢,},,>0 be an increasing sequence of
random variables ¢,, : Q — R, with ¢ty = 0 and such that the increments At,, = t,, —t,,—1,
n € N, are independent and have the same density g(t) = Ae >, ¢ > 0.

The action of randomly chosen dynamical systems, with randomly chosen jumps, at
random moments ¢ corresponding to the system (II, ¢, p) can be roughly described as
follows.
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We choose an initial point g € Y and randomly select a transformation II; from the
set {II;,..., Ty} in such a way that the probability of choosing II; is equal to p;(z¢),
and we define

X(t) =1,(t,xg) for 0 <t <.
Next, at the random time ¢, at the point II;(¢1,z¢) we choose a jump g5 from the set
{q1,-..,qx} with probability p,(IL;(¢1,20)). Then we define
w1 = qs(ILi(t1, o))
After that we choose II;; with probability p;;, (z1), define
X(t) =10, (t—t1,21) fort; <t<ty

and at the point II;, (t2 —t1, 1) we choose g, with probability p, (II;, (t2—t1,21)). Then
we define

x9 = s, (IL;, (t2 — t1,21)).

Finally, given x,,, n > 2, we choose II; | in such a way that the probability of choosing
I1;, is equal to p;,_,4, (x,) and we define

X(t) =10, (t — tp,z,) fort, <t <tpi1.

At the point II; (At,41,2,) we choose g, with probability p, (II;, (Atpy1,2,)). Then

in

we define
Tn+1 = (s, (Hin (Atn—i-l; mn))

We obtain a piecewise-deterministic trajectory for {X(¢)};>¢ with jump times
{t1,t2,...} and post jump locations {z1,za,...}.

We may reformulate the above considerations as follows: Let {£,},>0 and {1, }»,>1 be
sequences of random variables, &, : @ — [ and 7, : Q@ — S and let {y,},>1 be auxiliary
random variables, y,, : Q@ — Y, such that

P(&o = i|xo = x) = pi(x),

(4.]..].) .
P(fn =k | Tp =2 and §n71 = Z) — pik(iC),

and

(4 1 2) Yn = an—l(tn —tn-1,Tn-1),

Pl = slyn =y) =D,(y)

forn>1,z,ycY, kjiclTands€S.

Assume that {&,},>0 and {n,},>0 are independent of {¢,},>0 and that for every
n € N the variables n1,...,7,-1, &1,-..,&,—1 are also independent.

Given an initial random variable &, the sequence of the random variables {z,, }n>0,
Ty 2 — Y is given by
(4.1.3) Ty =Gy, Mg, (tn —th—1,2n—1)) forn=1,2,...
and the stochastic process {X (¢)}1>0, X(t) : Q@ — Y, is given by

(4.1.4) X(t) =T, (t—tp 1,2 1) fort,  <t<t, n=12...
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It is easy to see that {X(¢)};>0 and {z,}n>0 are not Markov processes. In order
to use the theory of Markov operators we must redefine the processes {X(¢)};>0 and
{Zn}n>0 in such a way that the redefined processes become Markov.

For this purpose, consider the space Y x I endowed with the metric ¢ given by

(4.1.5) o((2,1), (5, 9)) = o(x,y) + 0c(i,j) fora,yeY,ijel,
where
. c ifi#j,
(4.1.6) et ={0 07
0 ifi=y

and the constant ¢ will be chosen later on. Now define a stochastic process {£(¢)}i>0,
E(t): Q— I, by
) =&—1 forty 1 <t<t,,n=12...

Then the stochastic process {(X (¢),£(t))}e>0, (X (¢),£(t)) : @ — Y x I has the required
Markov property.

In many applications we are mostly interested in values of the process X (¢) at the
switching points ¢,. Therefore, we will also study the stochastic discrete process (post
jump locations) {(zn,&n) }n>0 » (Tn, &) : @ =Y x I. Clearly {(z,,&n)}n>0 is a Markov
process too.

4.2. Discrete-time random dynamical systems. Let (Y| - |) be a separable
Banach space. In this section we consider the stochastic process {(n, &) }n>0 , (Tn,&n) :
Q2 — Y x I, defined by (4.1.1)—(4.1.3) with the help of the system (II,q,p). We are
interested in the evolution of distributions corresponding to this discrete-time random
dynamical system. In order to get the existence of invariant measures or asymptotic
results, it is necessary to put some restrictions on the system (II, ¢, p). We will need the
following assumptions:

The transformations II; : Ry xY - Y, i€ lTandgs: Y — Y, s € S, are continuous
and there exists x, € Y such that

(4.2.1) S e Mqs (T4 (1, 24)) — gs(w4)||dt <00 forj€1,s€8S.
Ry

The functions p,, s € S, and p;j, ¢,j € I, satisfy the following conditions:

Z|p13 ng )|§1/)1(||x—y||) for x’yGKiGL
jel

D 1ps(@) = B(W)| < Yalllz —yl))  for z,y €Y,
seS

where the functions 11,1 € ®¢ satisfy the Dini condition (2.1.2).
We also assume that for the system (I, g, p) there are three constants L > 1, « € R
and L, > 0 such that

(4.2.2)

(4.2.3) pr WL (¢, 2) — T (t,y)|| < Le* ||z —y|| foraz,yeY,iel, t>0
jel
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and
(12.4) S5 @)05@) = sl < Lyllz —yll fora,y € V.
seS
Further, there exists iy € I such that
(4.2.5) inf{p;i,(z):iel, x €Y} >0.

To begin our study of the stochastic process {(zn,&,)}n>0 consider the sequence of
distributions

i, (A) =P((xy,&,) € A)  for Ae B(Y xI),n>0.
It is easy to see that there exists a Markov—Feller operator P : M — M such that
Hny1 = Pr, forn>0.
The operator P is given by the formula

(4.26) Pu(A)=>"3" | [ Ae™1alqu(I;(t, 2)), 5)pis (), (1T (t, ) dt ps(dv, di)

JEI s€SYXI 0

and its dual operator U by

o0
(4.2.7) Uf(r,i) =Y > | Xe™ f(as (1 (t, 2)), 5)pss ()5, (T (¢, 7)) dt,
JEI s€S 0
where A is the intensity of the Poisson process which governs the increment At, of
the random variables {t, },,>0. The operator P given by (4.2.6) is called the transition
operator for this system.
The first result ensures the existence of an invariant distribution for the transition
operator P.

THEOREM 4.2.1. Assume that the system (IL, p, q) satisfies conditions (4.2.1)—(4.2.4). If
(4.2.8) LL,+a/X<1,
then the operator P defined by (4.2.6) has an invariant measure.

The proof of Theorem 4.2.1 is based on Proposition 3.2.3. Therefore we have to show
that the operator P is essentially nonexpansive and semi-concentrating. These properties
are interesting in their own right and will be stated separately in the next two lemmas.

LEMMA 4.2.1. Assume that the system (I, q,p) satisfies conditions (4.2.2)—(4.2.4) and
(4.2.8). Then the operator P given by (4.2.6) is essentially nonexpansive.

Proof. Let 11,15 € ® be given by condition (4.2.2). Define ¢ : R, — R by
— AL
7/1(t)1/11()+1/12( t> for t > 0.

It is evident that 1) € ®y and it satisfies the hypotheses of Proposition 2.1.1, thus there
exists ¢ € @ such that
ALL,

(4.2.9) P(t) + ¢(at) < () fort>0 with a= Yo

< 1.
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Since ¢ € ® we may choose ¢ € R such that ¢(c) > 2. Consider the metric 9 (see (4.1.5))
with this choice of ¢, i.e.

@(($7Z)7 (ya])) = ||l‘ - y” + QC(ZM]) for T,y € K Za] €l
Fix f € F,. To complete the proof it is enough to show that
(4.2.10) \Uf(z,i) = Uf(y,j)l < ele(x,),(y, 7)) for (x,),(y,j) € Y x I,

where the operator U is given by (4.2.7). Since 0.(i,j) = ¢ for i # j, p(c) > 2, and
|f| <1, condition (4.2.10) is satisfied for i # j. On the other hand, for i = j,

U f(,4) = Uf(y, )|
<SS AT Mg (Tt 2)), 5) = Flas(T (8 ), ) pi ()5, (T (1, @) dt

jel seS 0

+ Z Z S Ae~ )\t|P1j (HJ (ta .’E)) — Dij (y)ps (HJ (ta y))| dt
0

jel seS

<3O aeMolas (T, 7)) — g0 (T (¢, ) [Dpis ()5, (T (¢, 2)) dt

je€l s€S 0

+ ZZ Ae” M|ng ng( )|ﬁs(Hj(tv$)) dt

jeI s€S 0
£S5 | e My () BT (1, 2)) — B, (I 2, )
JjEI s€S 0
Using consecutively (4.2.3), (4.2.4), the Jensen inequality, (4.2.2), and (4.2.9), we obtain
\Uf(x,i) = Uf(y,i)l
(oo}
< (0 § AT LI (k) T (8 )llpis (@) d

jer o

+ > Ipij(x) = pis (y) |+Z§A6 i () (|1 (t, ) — I (¢, y))) dt

Jjel JEI 0
T N AL
< p(§ e LaLe o = yldr) + n(le =) + v ( 2 o~ o)
0
< plallz —yll) + ¥(lz —yl) < ez —yl). =
LEMMA 4.2.2. Assume that the system (II,q,p) satisfies conditions (4.2.1)—(4.2.4)
and (4.2.8). Then the operator P given by (4.2.6) is semi-concentrating.
Proof. Define

V(z,i) =||z|| for (z,4) €Y x 1.
Let us first show that there exist a,b € Ry, a < 1, such that
(4.2.11) UV (z,i) <aV(x,i)+b for (z,i) €Y x I.
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By (4.2.7) and the definition of V', we have

)< Y3 a0t @) — qo(T (¢ 2.)) | e piy ()P, (T (¢, @) dt

jE€l s€S 0

3020V llas((t @) — gs (@) [IAe ™ pyj ()b, (I (¢, 2)) dt

j€EI s€8 §
+ 35§ llaa (@)l re ™ pij (2)p, (1L (¢, ) dt,
jeEI s€S 0

where z, is given by condition (4.2.1). Further, using (4.2.1), (4.2.3) and (4.2.4) we
obtain

AL,L ~
UV (i) < S22 o = 2| +5 < allz] +b,

where
" AL,L
=
S A (1L (t,2.)) — quea) [ de+ 3 lgs(a),
je[ SES 0 s€9
b= b-i-aHx*”'

From (4.2.1) and the fact that the sets I and S are finite, it follows that b is finite.
Since a < 1, the proof of (4.2.11) is complete. By Proposition 3.2.4, we conclude that
there exists a bounded set A C Y x [ such that

inf liminf P"u(A) >0
peEM1 n—oo

which implies that £(P), given by (3.2.7), is not empty.

We now claim that inf £(P) = 0.

Suppose, contrary to our claim, that & = inf £(P) > 0. We consider two cases: o < 0
and « > 0, where « is given by condition (4.2.3).

CaAse I: @ < 0. We may choose zg € Y and r > 0 such that

(4.2.12) inf liminf P"u(B(z,r) x I) > 0.
HEM1 n—oo

Fix t, > 0 such that
e =drLL,e <&

c.=J) U UBams ), ) x ).

JET telt, 2t,] sES
Observe that C. € C.. According to (4.2.6), for arbitrary u € M; we have
(4.2.13)  P"Mu(C.)
=35 1 Ve (aamm;t 2)), 5)Ae™pij (2)5, (11, 2)) di P pu(de, di).
0

JEI seSYxI

and set
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For x € B(zg,r) and ¢ > t, we define
J(@,t) ={j € I+ |I;(t, ) — (¢, 20) || < 2Le™ ||z — 2o},
S(x,t,j) ={s €S llgs(IL;(t, 2)) — qs(IL;(£, 20)) | < 2Lq||11; (2, 2) — IL; (2, 20)][}-

Since

> pij(z)=1 foriel and > P(I;(t,x) =1 forjel,
jerI ses

from (4.2.3) and (4.2.4) we obtain
1 1
Z pij(x) > 3 fori e I, and Z P (1L (¢, x)) > 3
jE€J(x,t) s€S(x,t,j)
Let z € B(zo,r) and ¢ € [ts, 2t,]. Then for every j € J(z,t) and s € S(z,t, ;) we have
lgs (TL (¢, 2)) — qs (1L (¢, 20)) || < 2Lg||TL; (¢, 2) — T (£, 20) || < 4LLge™ ||z — 20| < e,
which gives (¢s(IL;(t,x)),j) € Ce. Thus from (4.2.13) it follows that

2t

P> LU ST 3T A Mpu()p, (T (¢, 7)) dt P p(de, di)

B(z0,r) X1 ta €T () sES(x,,5)

1
> Ze*”*(l e M) PP u(B(z0,7) x I).

From (4.2.12) and the last inequality, we conclude that
inf liminf P"u(C.) > 0,

HEM; n—oo
which contradicts the fact that £ = inf £(P) and completes the proof in the first case.
Case II: a > 0. By (4.2.8) we have LL, < 1. Choose 7,4, ¢, > 0 such that
(1+n)(1+8)LLye™ < 1.
Finally, choose ¢ > € such that
e=(1+n)(1+8)LLe e <E.
By the definition of £(P) there exists A € C., such that
(4.2.14) B = inf liminf P"pu(A) > 0.

MeMl n—oo

Without loss of generality we can assume that
(4.2.15) A= U (21,€0) X I).

We now define

=U U UU 11 (t, 21)), €) x I).

JET t€[0,t,] s€S k=1

Fix 4 € M;. From (4.2.14) and (4.2.15) it follows that there exists k(n) € {1,...,m}
such that

(4.2.16) P"u(B(zkny,€0) x I) > B/m.
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For 2 € B(zp(n),€) and t < t, we define
J(@,t) = {j eI |1t x) = ;(t, 2m) || < (1+0)Le® [z — zin)ll}
S(x,t,5) ={s€ 8 [lgs(IL;(t, 2)) — s (TL; (£, 2 () )| < (L+1) Ll [TL; (¢, 2) — L (¢, 2|1 }-
Analysis similar to the first case shows that
1 . _ n

A Z pij(x) = 155 fori eI, Z A p,(IL; (¢, ) = Ty

jE€J(x,t) s€S(z,t,7)
Fix € B(zpn),€0) and t < t,. Set J; = J(x,t). Let j € J;. Then for every s € 51 =
S(z,t,j) we have

llgs (L3 (¢, @) — qs(TL; (£, 21 (n))) |

Le||z — zim) |
(1+n)Ly(1 +)Le®*ep = &.
Thus (¢s(IL; (¢, x)),j) € Ce and

P> SZZM "pij ()P, (1L (t, ) dt P" pu(da, di)

B(zk(n),e0)xI 0 jE€EJ1 s€51

> sy (P B G an) < D

Combining this with (4.2.16) gives

lim inf P u(Ce) > (14—177)7(1ﬂ+6)m (1—e™),

but p € M; was arbitrary and ¢ < &, which is impossible. =
The next result gives sufficient conditions for asymptotic stability:

THEOREM 4.2.2. Under the hypotheses of Theorem 4.2.1, suppose that moreover condi-
tion (4.2.5) is satisfied and for o given in (4.2.3) one of the following holds:

(i) a < 0 and there exists sy € S such that
4.2.1 inf p
(4.2.17) Inf p,,(z) >0,
(ii) @ > 0 and for every s € S,
4.2.18 inf p .
( ) nf p.(z) >0
Then the operator P given by (4.2.6) is asymptotically stable.

Proof. By Theorem 4.2.1 the operator P admits an invariant measure. By virtue of
Theorem 3.2.1 it is sufficient to show that for given € > 0 there exists # > 0 such that
for any two measures uq, o € My, there exist a Borel measurable set A C Y x I with
diamﬁw A < £ and an integer 7 such that

Pup(A) >0 for k=1,2.

By Proposition 3.2.3 the set £(M) is tight. Thus there exists a compact set F C Y x I

such that
w(F)>4/5 for every p € L(M7).

We consider two cases: o < 0 and o > 0.
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CASE I: o < 0. Set

7= inf P, (@) and o= inf pi(),

where s is such that (4.2.17) holds and 4 is given by condition (4.2.5). Obviously v > 0
and o > 0. Let € > 0 be fixed. Choose ¢, € R, such that

LL
(4.2.19) 224 gots diamg F < <,
oy 2
where L, L, are given by conditions (4.2.3) and (4.2.4), respectively. Define
Fy ={z €Y :(z,i) € F for some i € I}.

Clearly Fy is a compact subset of Y.
Sincegs : Y - Y,se S, and II; : Ry xY — Y, i € I, are continuous, there exists
t > t, such that

(4.2.20)  |lgs(ILi(t, 2)) — qs(IL; (¢4, 2))|| <e/8 forallie I, se S, x € Fy,te€ [t,t)].
Now for z € Fy we set

(4.2.21) O(z) ={z € Fy : ||gs(ILi(t«, 2)) — ¢s(IL; (4, 2))|| < e/8 for s € S, i € I'}.
Let z1,..., 2m, € Fy be such that I C G, where

G = LJ(O(Z[) X I).
=1

Note that G is an open subset of Y x I. Let uy, o € M be arbitrary. Set u = (u1+p2)/2.
Since L(p) # @ (see Proposition 3.2.3), there exists a subsequence {n;} of {n} and a
measure v € L(p) such that P"yu — v (weakly). Since v(G) > 4/5, the Aleksandrov
theorem implies
likminf P u(G) > v(G) > 4/5.
It follows that there exists ng € N such that
Prou(G) = (P iy (G) + Ppa(G)) /2 > 3/4

and consequently P uy(G) > 1/2 for k = 1,2. Therefore there exist l1,l2 € {1,...,mp}
and 71,72 € I such that

(4.2.22) P™ur(Ve) > 1/(2moN)  for k=1,2,

where

Vi =0(z,) x {ir}, k=1,2.
From (4.2.3) and (4.2.5) it follows that
L
(4'2'23) ||Hio (t*7 le) - Hio (t*7 le)” < ; et ||le — Ry ”

Set
'LUl = Hio(t*azl1)7 w2 = Hio(t*7zl2)7

where i is given by condition (4.2.5). Moreover, from condition (4.2.4) it follows that

L
(4.2.24) qso (w1) — gs, (w2) || < 7‘1 w1 — wa].
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By (4.2.19), (4.2.23) and (4.2.24) we have

aty

Rl — le” <

l\Dlm

150 (w1) = gso (w2) | < % lwy —ws| < % e
Define
A = (B(gsy(w1),e/4) U B(gs, (w2),e/4)) x {io}

and observe that diamg A <e.
For € O(z;,) and t € [t,, ], using (4.2.20) and (4.2.21), we have

HqSo (Hio (t’ ,T)) — sg (wl)” < ”qso (Hio(t7m)) — sg (Hlo(t*7x))||
+ 110 (Tig (£, ) — oo (i (4, 21,))[| < €/8 + /8 = /4.
This gives
(4.2.25) (qso (T, (1, 2)), f0) € A for @ € Oz1,), £ € [t2,7].

Similarly,
(gso (IL;, (¢, )),i0) € A for x € O(z1,), t € [ts, t].

By (4.2.5), (4.2.6), (4.2.22) and (4.2.25) we have

Pt (A)=>"3" | §1A (qs(T1;(t, 2)), ) Ae opi; ()P, (L (£, ) dt P g (dax, di)

jel s€SYxI 0

t
> | 1400 (T (), i0) Ae ™ pisy (2B, (TLiy (£, ) dt P iy (d, di) > 0,

Vi s

where 0 = yo(e M+ —e ) /(2mN) and k = 1,2. Since the constant § does not depend
on py for kK = 1,2, the proof in the first case is complete.

CASE II: @ > 0. We introduce some further notations. Namely, for s € S™, i € I" and
TR} (ie. s=(s1,...,8,), T=(71,...,7p) and i = (iy,...,ip)), We set

Qs = (s, ©° "+ °(s,,

(as o L) (7, 2) = qs, (1L, (T, qs,,_, (T, (1, - - -, i, (71, 2))))),

dr =dr ---dr,, ds=ds;---ds,
Next, for n > 2, consider the probabilities P, : Y x I"*1 x Rifl x §"~1 — [0,1] and
Pp:Y xI" xR} x S™ — [0,1] given by

Py 8,81,y b1y Gny Tly ey Tr—1s 81y -+ s Sn—1)
= Piiy ()Piyiy (45, (Wi, (71, @))) - .-+ pi, i, ((@s 0 1) (7, @)

and
Pl i1,y 1yhny Tly ey T s Trs ST+ s Sn_1, Sn)
By (T, (74,2 (T (72, Gy (T, (71, 2) -+ B, (T, (7,15 0 T, ),
where s = (81,...,80-1), T = (71, -, Tn—1), 1= (i1, ..., in—1).

Since o > 0, condition (4.2.8) implies that L, < 1. Let n € N be such that
(4.2.26) Ly - diamg F' < ¢/2.
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By continuity and compactness there exists § > 0 such that
(4.2.27) [(qs o IL) (7, 2) — qs(z)[| < /8
for everyi€ I™, s € S™, 7 € [0,6]" and x € Fy, where
Fy ={x €Y :(x,i) € F for some i € I}.
Given z € Y, define
(4.2.28) O(z) ={z € Fy : ||as(z) —qs(2)|| < e/8 for s € S"}.

Clearly, O(z) is an open neighborhood of z. Let z1,..., 2y, € Fy be such that F C G

where
mo

G =|]JO(z) x I).

=1

Let py,p2 € My. Set = (u1 + p2)/2. Since L(u) # O (see Proposition 3.2.3) there
exists a subsequence {ny} of {n} and a measure v € L(p) such that P™p — v (weakly).
As in Case I there exist ng € N, ly,l5 € {1,...,mg} and 41, i3 € I such that

(4.2.29) Py (Vi) > 1/(2moN)  for k=1,2,
where
Vi =0(z,) x {ir}, k=12
Set Z; = 7, and Zp = z;,. By (4.2.4) there exists so ¢ € S such that
9s0.0(21) = @s0.0(Z2) [l < LgllZ1 — 22|

Next, for gy, ,(%1) and gs, ,(22) we choose so 1 € S such that

Hqso,l(qso,o(zl)) - qs0,1(qso,0 (22))|l < Lq”qso,o (21) ~ Gso,0 (22)”

and so on. Thus there exists so = (s0,0,.-.,S0,n—1) € S™ such that
(4.2.30) las, (21) — as, (Z2)[| < Lg[[Z1 — Z2]|.
Define

A = (B(as,(%1),€/4) U B(as,(%2),£/4)) x {io},

where iy is given by condition (4.2.5). From (4.2.26) and (4.2.30) it follows that
diamg A < e. Forz € O(%), 1 = 1,2,i € I" and 7 € [0,0]", by (4.2.27), (4.2.28),

we have
[(as, o 1) (7, 2) — as, (20)[] < [[(as, o i)(7, @) — qso (@) ]| + llas, (2) — as, (20) ]| < /4.
This gives

((dsy o i) (T, 2),99) € A forz € O(%),ie I 1=1,2and T €[0,4]".
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Combining this with (4.2.5), (4.2.6), and (4.2.29), we obtain
Pt (A=Y V0 > 1aacommy)(r,2),5n)

J=(1sdn ) €I Y XT R 8=(51,...,8,) €S

: PN('Ta iaja TlyeeesTn—15,51y--+, Sn—l) . fn(xaja Tvs)Aei)\(Tl+m+Tn) dr P"O,uk(das, dZ)

> (qo) || e I (g, 0 0, ) (7, 2), i) d PO (d, di)

Vi [0,8]™
: n (0)" (1 — e )"
> (”ya)”(é)\e” dT) P™u,(Ve) > 2o N for k=1,2,
where ig = (ig,...,%) € I",
= f = inf
7= me%/nseSpS( z), o meY elp”[’( z),

and consequently the right-hand side does not depend on puy for k =1,2. =

We conclude this section with a result describing the asymptotic behavior of distri-
butions of the process {x,,},>0 on the space (Y, - ||). Let i be the distribution of the
initial random vector zy and i, the distribution of z,, , i.e.

(4.2.31) in(A) =Pz, € A) for Ac B(Y)and n > 1.

THEOREM 4.2.3. Under the hypotheses of Theorem 4.2.2, there exists a measure iy €
M1(Y) such that for every [ the sequence {fin}n>1 giwen by (4.2.31) converges weakly
to 1. Furthermore, if the initial vector xq is distributed according to [ig, that is,

P(zo € A) = pio(A)  for A€ B(Y),
then fin(A) = fig(A) for A€ B(Y) and n > 1.

Proof. By Theorem 4.2.2 the operator P given by (4.2.6) is asymptotically stable. Thus
there exists an invariant measure pg € M; (Y x I) such that

(4232 Jim (77 = (Fopo) for F e OV x 1),

where fi,,, | = Pfi,, n=1,2,.... For every function f € C(Y) we define the sequence of
functions fj Y xI — R, jel, by the formula

_ ) f(z) fori=j,
fj (:1771) = { . .
0 for i # j.
It is evident that f; € C(Y x I) for every j € I. From (4.2.32) it follows that
Tim >N Fi( i) m,(de,di) =0 | (i) po(da, di)

Jel'yxI JEI Y xI
and consequently
Tim 3 f@) (e x {5}) = D | 1) polda x {5}).
Jjely jely
Since i, is the distribution of (x,,&,), from (4.2.31) we have

fin(A) = P(z,, € A) = P((2n, &) € Ax ) =T, (Ax I) for A€ B(Y).



Invariant measures for random dynamical systems 25

Taking

po(A) = po(A x I)  for Ae B(Y),
we obtain

lim (f,fin) = {f.Fi0) for f € C(Y),
as required. Furthermore,

Fin(A) = T (A x I) = P"io(A x I) = pio(A x I) = fig(A)  for A€ BY). m

4.3. Continuous-time random dynamical systems. In this section we study the
asymptotic behavior of the distributions of stochastic processes {(X(t),£(t))}i>0 and
{X(t)}+>0, where the choice of a jump does not depend on the position in which it
takes place. We additionally replace S = {1,..., K} with a compact space. In [19]
the authors considered continuous-time dynamical systems on Polish spaces, but without
jumps.

Let (Y,]| - ||) be a separable Banach space and © be a compact metric space. Let
{nn}n>0 be a sequence of identically distributed random elements n, : & — 0, n € N.
We assume that {7, }n>0 is independent of {t,},>0 and we denote by v the distribution
of n, ie. v(A) =P(n, (A),n €N, A€ B(O).

Let ¢: Y x © — Y be a continuous transformation such that

(431) HQ(‘Ta ) - Q(ya ')HLl(V) < Lqu - y” for all T,y € Y
with a constant L, > 0, and
(4.3.2) &= {1l9(0,0)] v(dh) < oo,

©

In the remainder of this section we require, as in Section 4.2, that II; : Ry xY — Y,
i € I, are continuous semidynamical systems, [p;|;cs is a probability vector, [p;;]; jer is a
probability matrix, (4.2.2) and (4.2.3) hold, the latter with the constants L, « such that

(4.3.3) LLg+a/A < 1,

where L, is now given in (4.3.1) and A is the intensity of the Poisson process which
governs the increment At,, of the random variables {t,},>¢. Finally, instead of (4.2.5)
we assume that

(4.3.4) o=1inf{p;;(x):4,j€l, x €Y} >0.

In this section we study the stochastic process {(X(¢),&(t))}i>0, (X(t),€(2))
Q —Y x I, given by

(X(t),f(t)) = (an_l(t — tnfl,xnfl),fnfl) for tho1 <t< tn, N = 1,2, ey

where
Tn = q(H§n71(tn - tnflaxnfl)vnn)a

P(& =i|xz0 = x) = pi(z),
P&, =k|xz, =2,&—1=1) =pi(z) forn=12 ...
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The semigroup {P'};>o generated by this process is given by

(4.3.5) (P'u, fy = (u, T f) for f € C(Y xI), u€ My and t >0,
where
(4.3.6) T'f(z,i) = E(f(X(8),£(t))(z,n))  for f € C(Y xI).

(E denotes the mathematical expectation on (2, %, P).)

THEOREM 4.3.1. Assume that the system (II, q,p) satisfies conditions (4.3.1) (4.3.4) and
that there exists a constant 3 > 0 such that

(4.3.7) ITL(t,z) —z|| < Bt foriel, t>0,z€Y.
Then the semigroup {P'};>¢ given by (4.3.5), (4.3.6) is asymptotically stable.

The proof of Theorem 4.3.1 is quite long and will be presented later on in this section.
We now proceed with the following observation:

REMARK 4.3.1. Note that if O is equal to the finite set S = {1,..., K} with the discrete
topology then by setting ¢s(z) = ¢(z,s) and D () = v({s}), z € Y,s € ©, the system
(I1, ¢, p) under consideration corresponds to the one in Section 4.2 with the probability
vector P, independent of z. Condition (4.2.4) is then equivalent to (4.3.1), the second
inequality in (4.2.2) is trivially satisfied, and (4.2.1) follows from (4.3.1) and (4.3.7).

We next show that condition (4.3.3) in Theorem 4.3.1 is essential.

EXAMPLE 4.3.1. Let I = © = {1} and II(t,x) = z, ¢(z,1) = —z for z € Y and ¢ > 0.
Then L =1, Ly =1and a =0, so

LL;+a/X=1.
For arbitrary initial 29 we obtain x,, = —x,,_1 for every n € N. By (4.1.4) we obtain
X({t)=zp_1 forty,_1 <t<t,.
Thus the semigroup {P*};>( generated by this process is not asymptotically stable.

Several lemmas are needed for the proof of Theorem 4.3.1. The general idea of the
proof is as follows. First, we show that the semigroup {P*};>¢ is nonexpansive. Second,
we prove that for some ¢, > 0 the Markov operator P! is semi-concentrating. Finally,
we show that the operator P! satisfies a lower bound condition, which by Theorem 3.2.1
implies that the semigroup {P'};> is asymptotically stable.

We start with some useful notation. For m € N consider the function IIL,
Y xI" xR} x ©" — Y defined by the recurrent formula

Hl(z7i7 S1, 91) = q(Hi(SlaI)701);

(4.3.8) _
Hn(x,i,il,‘ .. ,Z'nfl,sl, .. ~,8n,91,« .. ,Gn)

= q(Hi",1(5n5 Hn—l(xa ivila s 7in—27 S1y+--58n—1, 917 e 7071—1))7 977,)
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Next consider the transition probabilities P, : ¥ x "1 x R% x ©" — [0, 1] given by
Pr(@,i,01, -y in, 815y Sny 015+, 00)
= pii, (i (2,3,81,01)) oo piy i (T (@,0,51, 1,815+ s Sy 015+ -5 0))
and the functions ¢, : Y x ©” — Y given by
q(z) =2, q(x,01)=q(x,01),
Gn(x,01,...,00-1,0,) = q(gn-1(x,01,...,0,-1),0n).

REMARK 4.3.2. Observe that for every n € N, s1,...,5, € R,z € Y i,i1,...,041 € 1
and 61,...,0,41 € © we have

(4.3.9)

Pn+1(l‘,l7i1, e 7Z'n+1,517 ey 5n+1791; .. .,0n+1)

= Pn(ﬁl(l‘,i781,01),i1, .. .,in+1, S92, .. .7Sn+1,02, N 70n+1)pii1 (ﬁl(l‘,i751,91))

and

(4310) Hn-‘rl('raiaila vy lny 1, '7Sn+1;015 .. -79n+1)
= 1L, (Tl (2,4, 51,01), 015 - - - 0y 52, -+ -5 Sng1s 02, -+, On1)-

Finally, given a function f : Y x I — R we consider the function f, : Y x I><]R7_~L_Jrl —R
defined by

(4311) fn($7i781,...78n+1)

N
= SS Z f(H,»"(an,ﬁn(x,i,il,...,in_l,sl,...,sn,91,...,9n)),in)

) O i1, nsin=1
——

Py 8, 81,y STy e e ey Sny 01,00, 0n) v(dO) .. v(dO)y).
By Remark 4.3.2 we have

(4312) fn+1($7i,81,.. .7Sn+2)

N
= S Z Diiq (ﬁl(SC, i, S1, 91)) . fn(ﬁl(:c, i, S1, 01), il, S92y ..y Sn+2) I/(dal)
Qii=1
For the convenience of the reader sometimes we will write f,(z,4,s) instead of
fn(w,i,81,...,5,41) where s = (s1,...,5,41) and analogously I, (z,1,s,0) instead of
IL, (2,41, - - yin, S15- -5 Sny 015+ -.,0,) where i = (i1,...,4,), s = (S1,...,5,) and 0 =
(91, c ,Hn)

We begin with some technical estimates:

LEMMA 4.3.1. Assume that conditions (4.3.1), (4.3.3) and (4.3.4) are satisfied. Let ¢ €
and [ € F,. Then for everyn € N, i €I, z,y €Y and s1,...,5,41 € Ry we have

(4313) |fn(l', Gy S1yenes 8n+1) - fn(ya Gy 81y, Sn+1)|

Ln+1
<y (LZ

n k
@l s TS LL oS TS
et ) B B e ) ]

g g
k=1
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Proof. We first show that for every n e N, i€ I, xz,y € Y and s1,...,5,41 € Ry,
(4314) |fn(l', By S1yen ey 8n+1) - fn(ya Gy 81y, Sn+1)|

< o((LgL)" et Fon ) (s, ) — Mi(s1,9)]))
Y (L LA et et I (s, @) — (1, y) ) + 91 (Lgl|Ti(s1, @) — Wa(s1, 9)).
k=2
(Here we assume that for n < 2 the sum )_;'_, ... is equal to zero.)

The proof is by induction on n. Let x,y € Y,7 € I and s1,...,5,+1 € Ry be fixed.
Set,

uy = I (s1,2) and y; =IL;(s1,9).

First we consider the case of n =1. Combining (4.2.2), (4.2.3) and (4.3.1), (4.3.8), (4.3.11),
Jensen’s inequality and the fact that |f| < 1, we obtain

|f1(-’1},i781782) - fl(yai781782)|

IA

N
1A (52, g, 64)), 1) = (T, (52, 9(y1, 61), )| - Py (a(ur, 61)) v(dby)

ei1=1

+| Z [P (a1, 61)) = pis, (a(yr, 61))| w(d6h)

0i1=1
N

D eI, (s2, g, 61)) = T, (52, a(wr, 00) i, (a(ua, 1)) v(d6y)

0i=1

+ {nlllatun,00) — q(wr. 00)]) v(d6)
€]

P(LLqe™ Jur — yll) + 1 (Lqllur — wl])-

Suppose now that inequality (4.3.14) holds for some k > 1. By virtue of (4.3.11), (4.3.12)
and Remark 4.3.2 we have

IN

[fes1(@yd, 51,00 skq2) = S (s 515 Ska2)|
N
< S > piiy (Ma(w 4, 51, 00) | fo(Ta (2,4, 51, 61), 81, 82, -, Sky2)
O11=1

— fr (1 (y, 4, 81, 601), 01, S2, - -, Skg2)| v(dbr)

N
+ S D iy (T (, 4, 51, 64)) = iy (T (y, 4, 51, 61)) | w(d6).
®i1=1

Further, by (4.3.1), the induction hypothesis, (4.2.2), (4.2.3), and Jensen’s inequality we
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obtain
|fk+1($7i»31a oy Sht2) = Jerr (Y50, 51, Sk2)|
S Zpul ’LL1,91
ei1=1
X @((LoL)Fe st Hoet2) [T, (s, q(ur, 1)) = TLiy (52, a1, 01) ) w(d6:)
S Z pul u1701
©11=1
k
X D (LEL e et )| (59, un, 61)) — T, (s2, (91, 01)) ) v(d6h)
j=2
SZPm (u1,01))¢1(Lg [T, (52, (w1, 01)) — i, (52, 4(y1, 01))[]) v(dbh)
Oi1=1
+ { a(lla(ur, 01) — g, 01)]) v(d6r)
S
< {o(mfrksteotattonea) | guy, 1) — gy, 01)|) v(db1)
e

k
| S (L LI ) g ur, 01) — q(yn,00)]) w(dh)

0 j=2

+ {1 (LoLe®™ lq(ur, 01) — qlyr, 00)]) v(d01) + 91 (Lgllua — 3 )
S

P((LoL) e attonsa)|yy — g )

k+1

+ Y (LD ) luy — ) + 1 (Lo lus — 1)),
=2

which completes the proof of (4.3.14). Since
s = sall = IMLiCs1, ) — T, ) < = el — ],
we obtain (4.3.13). m
We can now prove the following:

LEMMA 4.3.2. If conditions (4.3.1), (4.3.3) and (4.3.4) hold, then there exists t, > 0 such
that for every t > t, the operator Pt given by (4.3.5), (4.3.6) is essentially nonexpansive.

Proof. By virtue of (4.3.3), we can choose t, > 0 such that

£ e—(k—a—ALLq)t*
g

o = < 1.
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Moreover, let 1) : Ry — R be defined by

PN (ﬂ eMlLLqﬂ*t) if <0,

—_ ag

Y(t) = )

Py (— eat*t) if a > 0.
ag

Since 1) € @ and satisfies the hypotheses of Proposition 2.1.1, there exists ¢ € ® such
that

(4.3.15) P(t) + p(rot) < p(t) for t > 0.

Analogously to the proof of Lemma 4.2.1, choose ¢ > 0 such that p(c) > 2 and consider
the corresponding metric p.

Recall that || - ||, is the Fortet-Mourier norm in M, given by

[l = sup{[(f, )] : f € Fol,

where F, is the set of functions such that |f| < 1 and

[f(@,2) = f(y,5)] <0 ((2,9), (y,4)) = ¢(@((2,), (y,4)))

forx,yeY,i,jel.

We will prove that P** is nonexpansive with respect to the norm ||-||,,. For n € NU{0}
we set

Qn =0 (te) ={w € Q:ty(w) <ty and 41 (w) > ti}

Obviously, P(U;— Qs (ts)) = 1 and Q,(¢,) N Qp(t) =0 for n #m. Let f:Y x I - R
be a bounded continuous function and let x € Y and ¢ € I be given. We write A,, =
(Atq,...,At,), where At,, =t,, — t,—1. A simple calculation shows that

(43.16)  E(f((X(t),&(t))(20))) N
= e M F(i(t,2),0) + >\ ful@ i, An(w), b — tn(w)) P(dw).

n=1¢Q

n

Fix an f € F,. Evidently |T"* f| < 1, so we have to prove that
(4.3.17) T f(z,0) = T" f(y,§)| < 0,((2,9), (y.5)) fora,yeY andi,jel

Since o.(i,7) = ¢ for i # j and p(c) > 2, condition (4.3.17) is satisfied for ¢ # j. Now,
let ¢+ = j. We have

T f(@,i) = T™ f(y, )| < E(FX (), €0 @) — FIX (E), €E)) w,)])

S efx\t*

0\ Ui An ()t = tn(w) = fa(y, i, A (W), b — (W) P(dw).

n=1Q

n
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From this and (4.3.13) we obtain

(4.318) [T f(w,i) = T™ f(y,4)] < e p(||Li(ts, ) — i(ts, y))

30 o (B e - y||)+§jw< B e —g) | i
a,

If « < 0, then we can assume, without loss of generality, that LL, > 1. Thus we

o)

- 00 )\t* n LnLn+1 N n L. L J
D I (B e ) D S C PR )
n=1 ’ j=l1

<o(Levcrsran e ) Fey (jft_*)lz!wl(“f” E)

n=1
< @(rollz = yl) + ¢ (llz - yl)

Suppose now that & > 0. Then LL, < 1 and by (4.3.18) we have

obtain

L
T f(z,3) — T™ f(y,4)| < e_’\t*ga(— et
o

T f 1) — T f(,0)] < plrolla — yl) + e S (W )) wl( - y||)

< @(rollz = yll) + ¥ (= — yl)-

From the last inequality and the choice of ¢ it follows that

" f(2,1) = T f(y, )] < @(llz = yl)).

Consequently, for every f € F, and t > t, we have

T f(,9) = T f(y. )| < ol —yl)),

n=1

as required. m

Denote by v™ the measure on ©" generated by v (i.e. " =v®---®v). We need one
more technical estimate:

LEMMA 4.3.3. If conditions (4.3.1), (4.3.2), and (4.3.7) hold, then for every n € N,

(4.3.19) S T, (0,4, 51, -, 80, 0)[| v (dO) < L B(s1 + -+ + sp) +neL)
en
for s1,...,8, € Ry,i€ I", where L, = max{1,L,} and ¢ is given by (4.3.2).

Proof. For simplicity we use the notation iy = (i,iy,...,i,_1) € I* and sy = (s1,...,5k)
S Rﬁ_. Observe that
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Voo I (0,in 80,01, 00 w(d6y) - ()

] ©
——

n

Z S S ||qk: n— k(oain—k7sn—k7917~ . ~;9n—k);9n—k+la .. 7971)
k=00

H/—’

n

- qk+1(ﬁn—k—1(07 in—k—17 Sp—k—1, 017 ety en—k—l); Gn—k e )071)” V(del) e

4Vl 1 (0000,4,51,01), 02, - 00) = (0,061,602, 0,)] w(d6y) ...

Gl (C]
——

n

4V 10n0,01,02,. . 0,) | w(dby) . v(dby,).

] ©
——

n

y (4.3.1), (4.3.7), (4.3.8) and (4.3.9) we obtain

B
S ce S ||qk(ﬁn7k(0, i’n,fkas’n,fkv 91; 027 s 79n7k)7 9n7k+1, ce 7971)
(S]

(C]
——

n

- Qk+1(ﬁn—k—l(07 in—k—lv Sp—k—1, 017 ) en—k—l); en—k s ;en)” V(del) v

< LEBsyp fork=0,1,...,n—2

and

v(db,)
v(db,)

v(db,)

VooV llana (T (0,4,51,601),0, ., 00) = gn (0,601, 0,) || w(d61) .. (dB,) < L7 Bs1.
©

(C]
——

n

Moreover, since L, > 1 we have

VooV llan (0,00, 00) 1 w(d6y) . v(dfy) < nelp™,

] ©
~——

n

which completes the proof of (4.3.19). m

LEMMA 4.3.4. Let the assumptions of Theorem 4.3.1 hold. Let t, > 0 be such that

(4.3.20) L ——a-ar,nye _ g
g

Then the Markov operator Pt given by (4.3.5), (4.3.6) is globally concentrating.

Proof. Set
V(z,i)=||z|| forzeY andiel.

By Proposition 3.2.4 it is enough to show that there exist constants a,b € Ry, a < 1,

such that
TV (z,i) <aV(x,i)+b forzeY, icl
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According to (4.3.16) we have

TV (x,i) = e MV (IL(t,, z), +Z | Vil i, An(w), b — tn(w)) P(dw),
n= IQ
where V,, is the function defined by formula (4.3.11) with f replaced by V, A,, and Q,
are defined in Lemma 4.3.2. Thus

TV (x,i) <e i(te, ) — I;(ts, 0)|| + €

*[ITL; (2., 0) ]
+3 g S ST, (e — ta(w), (2,05, Ay (w), 0))
n=1Q, eriel"~1i,el
— 1L, (te — tn (), I1,(0,4,1, Ay (W), 0))] - Pr(z,i,i,in, Ay (w), 8) v"(d6) P(dw)
+30 1 3 = (@), (0,11, An(w), 0)]
n=1Q, enicln—1i,€l
<Py, i, Ap(w), 0) v (dO) P(dw).
By (4.2.3), (4.3.1) (4.3.4), (4.3.7) and Lemma 4.3.3 we have

TV (2,i) < e” A~ O‘)t*—||ﬂr;|| +e Mgt —I—Z S #eat*HxHP(dw)
n=1¢qQ,
Z | (8( W) + BLM, (w) + 1Lt ™Y P(dw).
n=1q,

Thus I
TV (x,i) < Z e~ (A-am
o

e MR (34 2¢).

Setting a = %e’(A’o‘f)‘LqL)t* and b = t*e’)‘(lfzq)t*(ﬁ + Aé) completes the proof. m
As a consequence of Lemma 4.3.4 and Remark 3.2.2 we have the following:

COROLLARY 4.3.1. If the assumptions of Lemma 4.3.4 hold, then E(P'*) given by (3.2.7)
18 nonempty.

LEMMA 4.3.5. Under the hypotheses of Theorem 4.3.1 the operator P! is semi-concen-
trating.

Proof. We choose t, such that (4.3.20) is satisfied. Set P = P'-. By Corollary 4.3.1 we
have £(P) # . Suppose that, contrary to our claim, & = inf £(P) > 0. Let « be given by
condition (4.2.3). Similarly to the proof of Theorem 4.2.2, we consider two cases: a < 0
and o > 0.

Case I: o < 0. Without loss of generality we can assume that LL, > 1. Then from
(4.3.20) it follows that

et < 1.

Thus we can choose g3 > & such that

aty

L ~
eE=—e€e Tegg<E.
o
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By Corollary 4.3.1 there exists {z1,...,2,} CY such that

m
(4.3.21) inf liminf P" M( U B(zg,e0) % I) > 0.

eM n— 00
H 1 k1
Set,

C. = (B(I0;(t4, 2x), €) x I)

=
C:=

w?r‘

1

1
) and (4.3.4) it follows that for every x € B(zy, o),

J

and observe that C. € C.. From (4.2.
ke{l,...,m} and j € I we have

h

Tty ) = Tt 2 [| < = €

which gives (II;(t4, x), j) € C.. Obviously, from (4.3.16), we have

Pu(C2) = (1o, Pu)y = (T 1, py = | B(le (X (4),€(t.)) du
Y x1I

| et (it ), i) plde, di) = e p
Ui Blzrco)x] k
for p € M;. From (4.3.21), we obtain

inf liminf P"u(C.) > 0.
peEM1 n—oo

x—zk|| =&,

Cs

Y

Bz, 20) x 1)
1

Since ¢ < &, this contradicts the fact that £ = inf 5(15) and completes the proof in the
first case.

Casi II: o > 0. Then by (4.3.3) we have LL, < 1. Choose positive constants g, 7, d
and t, such that g > &, § < ¢, and

e = (1+n)LLye"" (0 + 260) < &,
where (3 is given by condition (4.3.7). Set Q = Pt+. By the definition of E(ﬁ) there exists

A € C,, such that

k= inf liminf P"u(A) > 0.
HEM1 n—oo

Without loss of generality we can assume that

N ny

A= U U (zik,€0) x {i}) for some z;, € Y.

i=1k=1

For any given i € I and k € {1,...,n;} define

zk - U U U B t - T, Q(Hi(T, Zik),e))ag) X {]}

j=17€[0,6) €O
Define
©p = O(z, 1)
={0 € ©: |lq(Ili(7,2),0) — q(ILi(7, zix ), O) || < (1 + ) Lg|[TLi(7, ) — ILi (7, zar) ||}
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From (4.3.1) it follows that

Oy > ———.
V( 0)*1—1—77

Further, from (4.2.3) it follows that for every x € B(z;x, o) and 7 < § there exist j € T
(depending on x and 7) and 6 € O such that

1L (8. — 7, q(ILi(7, @), 0)) — IL;(E. — 7, q(ILi(7, 2ir,), 0)) |
< Le®®=7||g(I(7, 2), 0) — q(Ii (7, 2i1), 0) || < (14 1) LLge™®* =D ||IL;(7, ) — ILi(7, 241
Since

1L (7, ) — I (7, zaw) || < L7, @) — 2f| + [l — zinl| + [[TLs(7, 2ir) — zixl| < €0 + 267,
we obtain
L (B =7, (Ui (7, ), 0)) 11, (£ —7, g(ILi(7, 2x), 0)) | < (14m) LLe T+~ (60 +287) < &
which implies
I (8 — 7, q(ILi(7, %), 0)) x {j} € Vir.
Let p € M; be arbitrary. We have
Qu(Vir) = | [ 1w, (X (E.),6(.)) dPdp.

Y xIQ
Set,
Qs ={weQ:t1(w) <dand t, < ta2(w)}.
By the Fubini theorem we have
QuVi) = | | 1 (X(E).€()) dudP
Qs B(zik,e0)x{i}
= S S Fi(x,i, Aty e — 1) dP p(de, di),
B(zik,e0) x {1} Qs

where

fl(l' 51752 SZPU 517 )59))1Vk(H (SQaQ(Hi(Slvx)ae))’j) I/(d@)

©Jj=1
forzeY,iel, s1,s2 € Ry. Consequently,

QuVik) = ou(B(zik, €0) x {i})P(2s).

By a standard calculation we obtain

5 0o
P(Qs) = A [dsy | eMot)dsy >0,
0 Z*—Sl

Without loss of generality we can assume that
ti/t. =1 €N
Then it is evident that
ﬁ""'l,u = Qﬁ"QT_l,u for p € My, n e N.
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Observe that for every p € M; and m € N there exist i,, € I and k,,, € {1,...,n;_}
such that

(4.3.22) P (Vi p ) = QP (Vi k) = o P (B2, k.., €0) X {im })P(Q25)
> koP(Q2s)/(2Ny),

where
N
p=Q 'y and Ny= an
1=1
Now define
N Uz
c=UUv
i=1k=1

Observe that there exists € € (e,gp) such that C' € Cs(Y x I). Moreover, from (4.3.22)
it follows that for arbitrary p € M; and m € N we have

P™H(C) > koP(Qs5)/(2N),
which contradicts the definition of € and completes the proof. m

Proof of Theorem 4.3.1. By Lemma 4.3.2 there exists ¢, > 0, satisfying condition (4.3.20),
such that the operator P?s is essentially nonexpansive. Moreover, for every ¢ > ¢, the
operator P! is nonexpansive in the same norm as P?+. By Lemma, 4.3.5 for every t > ¢,
the operator P! is semi-concentrating.

If & < 0, then we may choose t, > 0 such that not only (4.3.20) is satisfied but also

Lol e < 1.
o

If & > 0, then we choose £, such that (4.3.20) is satisfied. Set P = P and T = T'*.

By Proposition 3.2.3 there exists y, € My such that Ppu, = p,. Moreover £ (1) # 0
for every p € M and the set £L(M;) is tight.

We claim that P is asymptotically stable. By Theorem 3.2.1 it is sufficient to show that
P satisfies condition (3.2.3). Since £(M) is tight there exists a compact set FF CY x [
such that

w(F)>4/5 for every p € L(My).

Define
Fy ={z €Y :(z,i) € F for some i € I}.

We give the proof of the lower bound condition separately in the two cases: a < 0 and
a > 0.

CAse I: a < 0. Set
L,L
ro = —— e < 1.
o

Let ¢ be the solution of (4.3.15). Fix &1 > 0. We can find £ > 0 such that ¢(g) < &;.
Let m > 2 be such that
2r* diamg F' < /3.
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Fix i1, ...,0m € I, set i = (i1,...,4m—1) and t, = (t«,...,t.). Now for z € Fy we set
N
O(z)=f{xe: m
T, (£, Ton—1(q(2, 61), 1, £, 0)) = Ty, (£, o1 (a (2, 61), i, £, 0)) | < /9
for 6, €0©,0 c @™ 1},

Let z1,..., 2m, € Fy be such that F' C G, where

G = UD(O(Zl) x I).
=1

Note that G is an open subset of Y x I. Let u1, ua € M be arbitrary. Set p = (u1+p2)/2.
Since L(u) # 0 (see Proposition 3.2.3) there exists a subsequence {n;} of {n} and a
measure v € L(p) such that P"y — v (weakly). Since v(G) > 4/5, the Aleksandrov
theorem implies

likminf P (@) > v(G) > 4/5.
From this, it follows that there exists m € N such that

_ P (G) + Py (@)

P"u(G) 5

3
> VRl
!
and consequently

P up(G) >1/2  for k=1,2.

Therefore there exist l1,l € {1,...,mo} and j1,ja € I such that

~ 1
Py (Og) >
pr(Or) > ST

where O1 = O(zy,) X {j1},02 = O(z1,) x {j2}-
From the definition of II,, and conditions (4.2.3), (4.3.1) and (4.3.4), we have

S ||H’Lm (t*,ﬁmfl(Q(zll,el), i;t*a 027 v 79m))
em

for k =1,2,

- Him (t*7ﬁmfl(q(zlz7 91)3 i7t*7927 ey 0m))|| V(dal) e V(dem)

L,L m
< (—) )

g

From the last inequality it follows that v™(©¢) > 1/2, where
(4323) @0 = @O(i,t*,zll,zb)

= {91, .. .,0m S @ N ||Him(t*7ﬁm—1(q(zl1791)7i;t*;927 e 79m))

. L L [e3 "
Tl 0 a0 0.8 e B O < 2(F25 €)1

Since O™ is compact and the functions ¢ and II; are continuous there are 6;,,...,6;,

€ ©p and a neighborhood B(8;,) of 6;, = (0;,,...,0;, ) such that v™(0;,) > 0, where



38 K. Horbacz

@l* = B(Gl*) N Oy and
(4.3.24)  ||TL;,, (ts, 1 (q(m, 01),1, ts, 02, . .., 01))

- H’im (t*vﬁm—l(Q(xveh)a i’t*’ 0127 s 79l7n))|| < 6/9
for x € Fy and (61,...,0,) € O,

Moreover, from (4.3.23) we have

||Him (t*,ﬁm_l(q(le ) 9l1)7 i7 t*7 0!2; ceey glm))

- Him (t*’ Hmfl(Q(le’ell), it 9127 KRR olm))”
L,L "

< 2(Leo‘t*> llzi, — 21,1 < 2rg* diamz F < &/3.

o
Now define A = A; U Ay, where
A = BIL;,, (te, Wyn1(q(21,,,01,),1, 64, 01,)),€/3) X {in,} for k=1,2.
Then
diamg A = diamgeg A < p(diamg A) < ¢(e) < 1.

By continuity of II;, ¢ and (4.3.10) there exists > 0 such that

(4325) ||Him(5m+17 Hm(l‘, i, i, 6, 91, ey Hm))fﬂzm(t*, ﬁm_l(q(:c, 01)7 i, t*, 92, ey Hm)) H

= ||Him(6m+l7Hm(:E7i7i76>915 .. 70m)) - Him(t*;ﬁm(xai7iao7t*7917 e 79m))|| S E/9

for arbitrary (z,i) € F,8 = (61,...,0m),01 € (0,n),02,...,0ms1 € (t+ — N, tx + 1) and
(91;---79m) € 0y,. Set

Q, = {w € 0: Aty (w) < n, Atg(w), ..., Aty (w) € (t* - mL t*>, tmg1(w) > mt*}.
Let ng = +m, A, = (Aty,...Aty,), and fi = ﬁﬁ,uk. We have
Prop(A) = | T4z, d)ju(da, di) = | BE(La, (X (mt.), €(mt.)) o.0)) fox(de, di)

Y xI Y xI

> )| 1w (0, mts = 10 (@), T (@, G B, A (@), 0)), i)
Or . Oy,

X P (X, Jiy 1, A (w), 0) v™(dO) P(dw) fig (dz, di)
> o™ | || 1 (T, (it — £ (@), T (2, G 5, A (), 0)), i) 1™ (d6) P(dw) fig (daz, di)
Or Q2. 0y,

for k =1,2. By (4.3.24) and (4.3.25) we obtain

(Him (mt* - tm(w)v Hm(wvjk, i, Am(w)v 0)); im) € Ay
for arbitrary w € Q., (z,4) € O and 6 € ©;,. Thus

m

2m0N

Py (A) > v"(O,)P(Q,)  for k=1,2.

Consequently, the operator P satisfies the lower bound condition.
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CasE II: o > 0. In this case condition (4.3.3) implies that L, < 1. Let m € N be such
that
(4.3.26) L - diamg F < £/2.
By continuity and compactness of © and Fy there exists § € (0,2(168m)~!) such that
(4.3.27) L, (x,1,8,0) — gm(x,0)| < /32
for every i € I'™ s € (0,0]™, 8 € @™, x € Fy. Given 0 € O™ we define

(4.3.28) V(0)=1{0c 0™ :|gn(z,0) — qn(z,0)| < /32 for every x € Fy}.

Clearly, V(g) is an open neighborhood of 6. Since ©™ is compact, there exists a finite
family V; =V(0,), j =1,...,m, such that ©™ = U;nzl V. Set

J={je{l,...,m}:v"(V;) >0}

and

(4.3.29) 9= rjn&l}l v"™(V;) > 0.

Given x € Y define

(4.3.30) O(x) ={z€Y :||gm(x,0;) — gn(z,0,)| <e/32 for j € J}.

Clearly, O(x) is an open neighborhood of . Let z1, ..., zm, € Fy be such that F' C G,
where G is defined by

G = @(O(ZZ) x I).
=1

Let p1,pu2 € My be arbitrary. As in the first case there exist m = 7(u1, u2),l1,le €
{1,...,mo}, j1,J2 € I such that

P (O(e1,) x (i) = o

From condition (4.3.1) it follows that there exists a subset @y = O¢(z,, 21,) of O™ such
that v™(®g) > 0 and

(4.3.31) 1Gm (21,5, 0) — Gm (215, O)|| < L' ||21, — 21,]] ~ for every 6 € ©.

Since @¢ has a positive measure, there exists jo € J such that ®g N Vg # (), where
Vo =V(0,,). Choose 8y € @y N Vy, iy, € I and define
Ay = B(gm(2,,00),6/4) x {im} for k=1,2
and A = A1 @] AQ.
From (4.3.26) and (4.3.31) it follows that diamg A < e. For 8 € Vy, i € m-t
s € [0,0]™ and z € O(z,,), k = 1,2, we have, by (4.3.27)—(4.3.30),
||ﬁm(xajk‘a i,S, 9) 7Qm(zlk500)” < Hﬁm('rajkv i7S7 0) - qm(xv 0)”
+ ||qm(x’ 0) _qm(m’ 0]0)” + qu(m’ 0jo) _qm(’zlk’ 0.70)”
+ [lgm (21,5 050) — gm (21,5 00)[| < /8
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and by (4.3.19) we obtain for every ¢ > 0,
(4'3'32) ”Him (ta ﬁm(xa Jks i7 S, 0)) - qm(zlk ) 00)”

< Bt + My (2, ks 1,8, 0) — g (21, 00) || < Bt + /8.
Fix t such that

— €
d<t<d
<T<d+ s
and set
Qe ={weQ: Atj(w)<dfori=1,...,m and tpyi1(w) > mi}.
Let ng = 4+ m and jip = Jgﬁ,uk. Fix i1,...,9m—1 € I, set i = (i1,...,4m—1) and

A, = (Aty,. .., Aty,). We have

Propp(A) = | T™1a(,0) fin(de, di) = | EQa, (X(mE),& (M) (2,1))) i (d, di)
Y xI Y x1I

1§ i, mf — 1 (0), T (31,4, A (@), 0)), i)
O(z1, )% {jr} 2« Vo

v

X P (2,4,1, A (w), 0) v™(dO) P(dw) fur (dz, di)

o™ | || (T, (= 6 (@), T (2,5, A (), ), i)
O(z1,)x{jr} @« Vo
x V"™ (dO) P(dw) fig(dx,di) for k =1,2.
Keeping in mind that § < 5(166m)_1 by (4.3.32) we obtain

(IL;,, (mt — ty, (W), I (2, Jiy 1y Ay (W), 0)), 1) € Ag
for arbitrary w € Q,,z € O(z;,) and 8 € Vy, k = 1,2. Thus
s
moN

which completes the proof of the lower bound condition.

P (A) > 5 IP(Q)  for k=1,2,
Now, let i, be the invariant distribution of P**. Then for ¢t € R, we have
P (P'py) = P'(P" pu) = P pua.

Since pu, is the unique invariant measure for the operator P, we have P'u, = u,. On
the other hand, using nonexpansiveness of {P'},., we obtain

Jim ([P — gl = lim [[P'p— P'pallp < Hm [[(P*)"0 = pall =0
—00 t—oo n— 00

for arbitrary u € My (Y x I). However, the metrics ¢ and ¢ o g define the same space
of continuous functions C(Y x I) and the weak convergence of a sequence of measures in
the space (Y x I,9) and (Y x I,po0p) is the same. This proves that {P'};>( given by
(4.3.5), (4.3.6) is asymptotically stable also in (Y x I,7). =

Let fi be the distribution of the initial random vector zy. We denote by Q'fi the
distribution of X (¢) on the initial space (Y,| -||), i-e.

(4.3.33) Q'i(A) =P(X(t) € A) for A€ B(Y),t>0.
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From the last theorem we may easily deduce, as in Theorem 4.2.3, a corresponding
asymptotic result for the family {Q*};>o.

THEOREM 4.3.2. Let the assumptions of Theorem 4.3.1 hold. Then there erists a distri-
bution 1, € My such that for every u € My the family {Q'u}i>0 given by (4.3.33) is
weakly convergent to [i.

5. Dimensions of invariant measures of random
dynamical systems with jumps

Dimensions of invariant sets are the most important characteristics of dynamical systems.
Hausdorff dimension, introduced in 1919, is a notion of size useful for distinguishing be-
tween sets of Lebesgue measure zero. The notion has been widely investigated and used,
e.g. in the theory of dynamical systems, where many interesting invariant sets are null
in the sense of Lebesgue. Unfortunately, in many cases a straightforward calculation of
the Hausdorff dimension is very difficult. This prompted researchers to introduce other
characteristics [40], such as capacity dimension, pointwise dimension, correlation dimen-
sion, concentration dimension, etc. Using the notion of the Lévy concentration function
Lasota and Myjak [32] introduced the concentration dimension (the generalized Rényi
dimension) and by use of it they calculated some bounds of the concentration dimension
of fractals and semifractals. It is worth noting that the concentration dimension is useful
in studying the Hausdorff dimension of measures and sets [32, 40].

In this section we provide estimates for the lower pointwise dimension and the concen-
tration dimension of invariant measures of random dynamical systems with jumps. The
results of this section are related to papers [16, 38] and [45]. In [38], [45] Szarek consid-
ered the capacity and the lower pointwise dimension of invariant measures corresponding
to Poisson driven stochastic differential equations. Some estimates of dimensions of in-
variant measures are formulated in [16].

Throughout this section we assume additionally that IT; : R xY — Y, i € I, are
dynamical systems.

5.1. The lower pointwise dimension of an invariant measure. To estimate
the lower pointwise dimension of an invariant measure for the semigroup {P'};>o given
by (4.3.5), (4.3.6) we need additional assumptions concerning the transformations
IL:RxY —-Y,iel

We assume that for every j € I there exists a constant [; € (0, 1] such that

(5.1.1) I (t,2) ~ T ()| = Gl —yll - for ayy € Y
and for every x € Y and j € I there exist §; > 0 and ¢, ; > 0 such that
(5.1.2) ITL;(t, x) — z|| > ¢ it for 0 <t <.

As in Section 4 we require that there exist constants I > 1 and a € R such that

(5.1.3) Y pi W)t 2) — (4 y)ll < Le* |z —y|  forz,yeY,iel t>0.
jel
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THEOREM 5.1.1. Let p. be an invariant measure for the semigroup {P'};>0 given by
(4.3.5), (4.3.6). Assume that II; : RxY — Y, i € I, satisfy conditions (5.1.1)—(5.1.3). If

(5.1.4) o= Ie;nf pij(x) >0,
then lox'3
dps(x,1) > o8 for (z,i) €Y x I.
log 3 + log s

We start with the following technical observation:

LEMMA 5.1.1. Assume that p. is an invariant measure for the semigroup {P'};>o given
by (4.3.5), (4.3.6). Then

pa(A) = e | 1At 2),0) pa(da, di) - for A€ BY x I,
Y xI
Proof. Fix A€ B(Y x I) and t > 0. We have

(5.15)  pu(A) = Pua(A) = (U 1a ) = | EQA(X(®),60)(00) pe(de, di).
Y xI

Fix (z,i) € Y x I and observe that
E(LA((X (), €) @.) = | La((X (1), 6(1)) (0. (@) P(dew)

Q
> | A1), 60)) oy () Pl),
Qo (t)
where Qo(t) = {w e Q:t <ty (w)}.
Since (X (£),&(t))(z,1)(w) = (Li(t,z),1) for w € Qo(t) and P(Q(t)) = e~ *, we obtain
EQQaA((X(t),8(t)(2,5))) > € ~AM14(I0(t, x), ). Combining this with (5.1. ) completes the
proof. m

Proof of Theorem 5.1.1. We consider two cases: a > 0 and a < 0.

CAsEl: > 0. Let T € Y and k € I be fixed. Choose ¢ > 0 such that
In(1 L
(5.1.6) ro = W <6

and choose 1 > 0 such that
1—e o<y,
Set
minj lj 6 1 logﬁ
— = Y S = .
3(L/o+¢) (3—2n)(1—n) log 0
Since o min; [; < L, we have s < 1.
We will show that there exists C' > 0 such that
(5.1.7) w«(B((Z, k),r)) < Cr®

for every r > 0. Set

0 —

2L(L/o + €)e*™

0'657]97”0(111111]' lj)s

M =




Invariant measures for random dynamical systems 43

and
(5.1.8) C = max{(0r9) %, Aron~t, M/ (A=),
Obviously, condition (5.1.7) holds for all > ry. Define

ry = inf{F > 0 : p.(B((T, k), 7)) < Cr® for r > 7}.
Observe that
(5.1.9) re < M7V

We claim that r, = 0. Suppose, contrary to our claim, that r, > 0 and choose
T
e (zapea]
such that

(5.1.10) w«(B((Z, k),rmjinlj)) > C’(rmjinlj)s.
Define
2o =1k(=1,2), =1 =1L( )
where ¢ = ro(rmin; /;)®. Further, let
B, = B((Z,k),(L/o +¢)r), Bs= B((20,k),7), Bs=B((#1,k),(L/o+¢e)r).
Now, let (y,%) € Bs. Then, from (5.1.3), (5.1.4), and the definition of ry, we have

- L L L
M) -3l < 2 ey = ol < Zevrr < (£ e
o o o
Therefore Ba C {(y,¢) : (IL;(¢,y),7) € By}. This shows, by Lemma 5.1.1, that

(5:111)  pa(Br) = e | 1, (IG(F,y), 1) pa(dy, di) > e 1 (Ba) > (1= )1 (Ba).
Y xI

Analogously, we obtain

(5.1.12) 1e(Bs) > (1~ nyua(Bo).
Since o < L, by (5.1.2), we have

21 — 7| = |T(F,7) — T|| > czul > %e_c‘”’cf,kf.
From the fact that ¢ < ¢ and conditions (5.1.2), (5.1.3), it follows that
(5.1.13) 1T — 20| > % e ey 1f > % e=m0cz 1.
Since

< Jcik?"o(minjlj)s 1/(1—s)
2L(L/U+E)ea7“o

and ¢ = ro(rmin, [;)®, we obtain
lz1 = Z|| > 2(L/o +¢e)r, ||T— 20l >2(L/o+e)r.
Thus B, By, Bs are mutually disjoint and
By UByUB;3 C B((Z,k),3(L/o + &)r).
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Set By = B((Z, k), rmin; ;). We are now going to verify that

(5.1.14) f1+(B2) > (1 = n)p.(By).
Suppose that
(5.1.15) 1.(B) < (1= n)ua (Ba).

Since (Il (t,y), k) ¢ By for (y,k) ¢ Ba, we have
pa(Ba) < e | 1, (T(F,y), i) pra(dy, di) +1 — e < e p(Bo) +1— e
Y xI
< ps(Ba)+1— e M,
From the last inequality and (5.1.15) it follows immediately that
L—e M Xt X
pe(Br) € ——— < 22 = 20 (ring)®,
n n n J

Consequently, by the choice of C, we obtain

pi=(Bs) < C(rmini;)®,
J

which contradicts (5.1.10) and completes the proof of (5.1.14).
Next, from (5.1.11), (5.1.12) and (5.1.14) it follows that

s (B((T, k), 3(L/o +¢€)r)) = (3 — 2n)px(Bz) > (3 — 20)(1 — n)p(Ba),
thus
px(B((7, k), 3(L/o +¢€)r))
B—2n1—n) '
By the last inequality and the fact that 3(Lo~! + &)r > r. we have
CB3(L/jo+¢e)r)®  (3(L/o+¢€))*C(rmin;l;)*

px(Bg) <

(Ba) < B-2p)(1—n)  (min;)*B-2n)(1—n)
Since
(M) = (3-2n)(1 ),
min; [;
we obtain

e(Ba) < Clrminty)*,
J
which contradicts (5.1.10). Thus r, = 0 and
we(B((Z, k),r)) < Cr® forr>0.

From the last statement it follows that du. (T, k) > s. Letting e — 0 and 1y — 0 completes
the proof in the first case.

CASE IT: a < 0. The proof goes as in Case I. We only indicate the main differences.
Let T €Y and k € I be fixed. Choose 0 < ¢ < d; and use rg = ¢,

czmax{l Mo( 2L(L/o+g)) >s/<ls>}

(Org)s” n ocz kro(ming 1;)°
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instead of (5.1.6) and (5.1.8). The other constants remain the same. Then

< ocg kTo(ming I;)° 1/(1—s)
- 2L(L/o +¢) .

We have

21 = || = [Tk (2, %) = Z|| = cazpt > 7 cant,

o

L
c _ 7 -_oO -

|Z — 2ol > 7 et > fcikt.

The rest of the proof goes as in Case I. m

5.2. The upper bound for the concentration dimension of an invariant mea-
sure. To prove the main results of this section we need the following lemma due to
Lasota and Myjak [32]:

LEMMA 5.2.1. Let the numbers a; € [0,1] and b; € (0,1) for i € J be given (here J is an
arbitrary set of indices). Let p be a probability measure. Assume that for some rg > 0
the Lévy concentration function Q,, satisfies the condition

Qu(r) > Slelg a;Qu(r/b;)  forr e (0,r0).

Then |
T . 0g a;
dimy, p < inf .
L =325 log b;
THEOREM 5.2.1. Let the assumptions of Theorem 4.2.1 hold and let pg be the unique
invariant measure with respect to the operator P given by (4.2.6). In addition, assume

that

2.1 = i y
(5.2.1) o=_ o  pi(z)>0,
5.2.2 = inf P 0
(5.2.2) ot xeg}sesps(w) >0,
and I
My =" <1.
oy
Then )
og o7y
_— h <0,
log LL, —log o7y when @ =
dimp, o < N
1 1— M>Me
inf i Galt T ) when a > 0.
Meé(Mo,1) log =57

Proof. Let T €Y, k €1 and s € S be fixed. From (4.2.3), (4.2.4), (5.2.1) and (5.2.2) we
have

L LL
llgs Mk (,2)) — qs(@)[| < 7‘1 [Tk (t,2) — 7| < U—WQ ez — T (=, 7).
Therefore

{x Y :(z,k) € B((Hk(—t,z),k) LZZ“>}

C{z Y : (g5(x(t, 2)), k) € B((qs(7), k),7)}-
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Since pyg is invariant, (4.2.6) shows that

MO(B((QS (5)7 k)> 7’)) > oy S S 1B((qS (Z),k),r) (CIS (Hk (t7 .’I,‘)), k))\e_)\t dt Ho (d.’lﬁ, d’L)
0 YxI
T - roy Y
> — —_— .
2o o (B0 7725 ) e ar
This implies
T rovy
—At
(5.2.3) ()27 | @ (LL>A dt.

We now consider two cases: o < 0 and « > 0. Suppose first that o < 0. Then

Quo( roy )ZQMO<TUW> fort >0 and r > 0.

LL et LL,
Consequently,
roy
Quo (1) = 07vQy, (L—Lq> for r > 0.

From this and Lemma 5.2.1 we obtain

- log oy

d < or’

Lo = log LL, —log oy

Suppose now that o > 0. Choose M such that LLq(J’y)71 < M < 1. Then from (5.2.3)
we obtain

t
roYy _t Mroy -\t
> —— A dt > — (1 —
QP‘O (T) = U’Y(S)QI—LO <LLqeat> € - U’YQ#O < LLq )( € )7

where £ = —(In M)a~!. From this and Lemma 5.2.1 we obtain
los(o (1 — M)

LL, ’
oyM

dimp, pp <

log

which completes the proof, since M € (Mj, 1) was arbitrary. m

5.3. Relationship between discrete and continuous-time random dynamical

systems. Since the Markov process {(X(¢),£&(t))}i>0 is defined with the help of the

Markov chain {(2,&,)}n>0, it is natural to try to relate an invariant measure for the

transition operator P, corresponding to the change of measures from jump to jump, to an

invariant measure for the semigroup {P*};>( generated by the process {(X(¢),£(t)) }+>o-
In this section we assume that

0=5={1,...,K} and p,(z)=v({s}) forzeY, seS.

Then the results of Sections 4.2 and 4.3 hold.
We assume additionally that the first inequality in (4.2.2) is satisfied with ¢y (¢) = 4,
t > 0, for some constant 4.
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By the definition of the process {(X (¢),£(t))}+>0 and properties of Poisson processes
we have

P{X(h),€(h)(z.i) = (We(ey) (B — 1, ey ) Wi (81, 2))), €(81)) 110,11 (81)
+ (i (h, @), 8) Lpo0y (t1)} = 1 — Ky B®

for some positive constant k1. Since f € C(Y x I) is bounded and t; has the density
distribution function \e~**, we obtain

(531) Thf(z,i)=>_ ZS —t,qs(T(t, 2))), )pi; (g5 (T (¢, 7)) )P, Ae N dt

jeI seS 0
+ f(IL(h, ), i)e ™™ + eq(h),
where |e1(h)| < ||f|lok1h?.

In order to formulate the main result of this section we introduce two operators

H,G: M{ — My by the formulas
Hu(A) =Y | 1algs(w), k)B, p(dz, dk),

sES YxI

oo

Gu(A) =>" | V1a((t, @), i)prs(z) re N dt p(dw, dk)  for A€ B(Y x I).
i€l YXI 0

In this section we give a one-to-one correspondence between the set of P-invariant

measures and the set of invariant measures for { P'};>¢. Similar results have been proved
by Davis [4, Proposition 34.36]. They have also been studied in [13, 14, 34].

THEOREM 5.3.1. Let the assumptions of Theorem 4.3.1 hold. If uy € M is an invariant
measure for the Markov operator P given by (4.2.6), then p. = Gpug is an invariant
measure for the Markov semigroup {P'};>¢ given by (4.3.5), (4.3.6).

On the other hand, if pue € My satisfies Ptu* = s for t > 0, then po = Hu, is an
inwvariant measure for the Markov operator P.

Proof. Denote by {S*};>¢ the semigroup of operators corresponding to the system II; :
Ry xY =Y, iel ie.
Stf(l‘,l) = f(Hz(th)aZ) for f € aL(Y X 1)7 (.T,Z) ey x Ia
where C',(Y x I) denotes the closure of the space of all bounded Lipschitzean functions
with the supremum norm | - ||o.
We denote by {T"};>( the semigroup of operators given by
T'f=T'f for feCL(Y xI).

Following the main ideas of the proof of Lemma 4.3.2 we obtain T Cr(Y xI) —
Cp(Y x I). By (4.2.3), (4.3.4), and (4.3.7) it follows that S* : O(Y x I) — Cp(Y x I)
is a continuous semigroup.

Let Ap be the infinitesimal generator of the semigroup {5"}i>0 with the domain

D(Ay) = {f e Op(Y x1I): hI?([)l (Stf ) exmtq}
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Since the semigroup {S*};>¢ is a continuous semigroup of contractions, D(Ay) is dense
in C(Y x I). Denote by B the infinitesimal generator for the semigroup {I"%};>0. By
(5.3.1) we have

(5.3.2) Bf=Agf = Af+2QWf for f € D(B),

where @ : C(Y xI) - C(Y xI)and W : C(Y x I) — C(Y x I) are bounded linear
operators given by the formulas

Qf(x,i) = flas(x),0)p, for f € C(Y x I)and (z,i) €Y x I,
ses
Wf(z,i) = flx,j)pij(x) for feC(Y xI)and (z,i) €Y x I.
jeI
The domains D(B) and D(Ag) are identical.
Let us now assume that po is an invariant measure for P and let p,. = Gpg. Since

(5.3.3)

RO\ Ag)f(w,i) = | e S f(w,i)dt  for f € Cp(Y x I) and (z,i) €V x I,
0
from (4.2.7) and (5.3.3) we obtain

Uf = A\WR(\, Ao)Qf for fe Tr(Y x I).

Since
AWR(N, Ag) f,u) = (f,Gu)  for f e Cp(Y xI), p € My
and
(Uf,p)y=(f,Pu)y for feCY xI), p€ My,
we have

(fsx) = (f, Gro) = (AWR(X, Ao) f, o) = (AWR(A, Ao) f, Pro) = AUWR(X, Ao) f, o)
= (ANQW R\, Ao)f, Go) = AQWR(N, Ao) fo i) for f € Cr(Y x I).
Thus
(fs 1) = AQWR(N, Ao) f, ) for f € Cp(Y x I).
Substituting f = (Al — Ag)g gives
(M = Ao)g, pu) = (AQW g, ) for g € D(Ay),
which according to (5.3.2) reduces to
(Bg,ps) =0 for g € D(B) = D(Ao).
Now, since T5h € D(B) for h € D(B) and

t
T'h—h=\BT*hds for he D(B),
0

we obtain

(T*h —h,pu) =0 for h e D(B), t>0.
Since D(B) = D(Ay) is dense in C(Y x I) and T*h = T*h for h € C(Y x I) we have
(Th, p) = (h,pi)  for h € CL(Y x 1)), t > 0.
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The last condition is equivalent to
(h, P'p,) = (h, ) for h € Cp(Y x I).

From the Aleksandrov theorem it follows that Pfu, = ., for ¢ > 0, which is the desired
conclusion.

Next, we show that if 4, is an invariant measure of the semigroup {P'};>o then
to = Hyp, is an invariant measure of the operator P. From P'u, = pu. it follows that

(T'g — g, ) =0 forge C(Y xI),t>0.
Thus B

(T'g — g, 1) =0 for g€ Cp(Y xI),t>0.

Since B is the infinitesimal generator of the semigroup {Tvt}tzo, we obtain
(Bg, px) =0 for g € D(B).
According to (5.3.2) this equality may be rewritten in the form
(M= Ao)g, i) = (ANQWg, i) for g € D(B) = D(A).
Substituting g = R(X, Ag)f gives
() = QQW RN, Ag)f 1) for f € Tp(Y x I,

which implies
= (AWR(\ A0)Qf, o) = (Uf, o) for feCY x1I).

This, by the Aleksandrov theorem, forces pg = Pug. =

We now use Theorem 5.3.1 to compare the concentration dimensions of an invariant
measure for the semigroup { P*};>( and of an invariant measure for the transition operator
P describing the change of distributions from jump to jump. A similar problem for the
simpler case when {P'},>( is a semigroup generated by a Poisson driven differential
equation is considered in [14] and [34].

Assume that the hypotheses of Theorem 4.3.1 are satisfied. Let pg € M be the
invariant measure for the Markov operator P given by (4.2.6) and let p. € M; be the

invariant measure for the Markov semigroup {P*};>( given by (4.3.5), (4.3.6).
Define

(5.3.4) Lo = inf inf {W Lz A y}

THEOREM 5.3.2. Assume that Lo > 0. Then
(5.3.5) dim; pe < dim; o and dimg p. < dimg, po.
Proof. Let T €Y and k € I be fixed. From (5.3.4) it follows that
dinmg{(2,)  (02(x),§) € B(®K),r)} < 2L
for every s € S and 0 < r < ¢, where ¢ = (4, j) for i # j. By the definition of Q,,_,
(536) e {(23) = (04(2),1) € BUEK), 1)) < Qu. (2L ).
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Theorem 5.3.1 gives pg = H ., where
Hu(A) = Z S 1a(gs(x), 9D, p(dx,di) for pe My, Ae B(Y x I).

sES YxI
Thus

po(B((®,k),r)) = S Lp(@ k), (as(2), 0)Ds s (dx, di).
SES Y xI

From (5.3.6) we have
po(B((T,k),) < Qu.(2rLg™).
Consequently,
Quo (7“) < Qu* (27«[,61),
which implies (5.3.5). m
To obtain a lower bound for dim; u. we need a more restrictive assumption concerning

the transformations II; : RxY — Y, i € I. Namely, we assume that there exist constants
B €Rand ¢; >0, i € I, such that

(5.3.7) 0L (t, ) — (¢, y)|| > cie Pz —y|| fort>0,z,y €Y andie I.

THEOREM 5.3.3. Let II, : RxY — Y, i € I, satisfy condition (5.3.7). If A > Bdim; uo
then

(5.3.8) dim; p. > dim; po.

Proof. Let T € Y and k € I be fixed. Fix h < dim; yo such that A > gh. From the
definition of dim; g it follows that there exists ro € (0,¢), where ¢ = o.(i, ) for ¢ # j,
such that

(5.3.9) Quo(r) <M for r € (0,70).

By Theorem 5.3.1 we have u, = Gpug, where

o0

GuA) =>" | V1405t 2), j)pij () re ™ dt p(d, di)  for A € B(Y x T),
JEl Y XI O
and consequently
s (B( =V V Ls@nn ([t 2), k)Ae N pa (@) dt po(da, di),
0YxI

by the fact that r < r¢g < c. Set

oj =sup{pi;(z) : (z,i) €Y x I}.

Then we obtain
i (B((Z, k), 7)) < oy S po({(z, i) : (I (t,2), k) € B((T, k), 7)})re~ dt.
0

By (5.3.7) we have
{z: (Uy(t,x), k) € B(T, k),7)} C Bi(~t,),rc; 'e).
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Thus
s (B((Z, k), 7)) < ok N S Quo (Tc,?leﬁt))\e*” dt.
0
Let

r < min{rg, ro mkin Ck}-

Consider first the case of 3 > 0 and define T'(r) = 8~ In(rgckr™!). Then

T(T‘) o0
we(B(ZT, k), 7)) < O'kN( S Qo (rey P Ne ™ dt + S Qi (re; P Ae ™ dt).
0 T(r)

Since rc;leﬁt < 1o for t € (0,7(r)), we can use inequality (5.3.9) to get an upper bound

= AN 9k h —AT
(B((@,k),r) < | 5 Ne M),
(B 0.0) < (72 25 )"+ ouive
Since r < roc, and A\ > Bh, we obtain
(5.3.10) 1 (B(T, k), 7)) < CrPh for r < min{rg, rg mkin ek},
where
AN Ok N (7]

c

= N—Gh m?x (ck)h + %mkax —(ck)h'

Since inequality (5.3.10) is satisfied for every (Z,k) € Y x I, by the definition of Q,, (r)
we obtain

(5.3.11) Q.. (r) < Crh.
When 3 < 0 the calculations are even simpler and (5.3.11) holds with
N
c A max —

TX=PBh k(e
From inequality (5.3.11) it follows that

dimy, p, > h.
Passing to the limit as A — dim; po we obtain (5.3.8). =

REMARK 5.3.1. Let the hypotheses of Theorem 4.3.1 hold. Assuming that II;
R xY — Y, € I, satisfy the following condition: there exist constants ¢; > 0, ¢ € I,
such that

T (t, z) — TL(t,y)|| > cille —yl| fort >0, z,ye€Y andiel,
Theorems 5.3.2 and 5.3.3 can be restated as:

If Ly > 0 then dim; p, = dim; po.
6. Applications

Randomly chosen dynamical systems with randomly chosen jumps described in this paper
generalize many important and widely studied random systems, for example dynamical



52 K. Horbacz

systems generated by learning systems, by Poisson driven stochastic differential equa-
tions, iterated function systems with an infinite family of transformations, and irreducible
Markov systems.

In this section we show how our results may be applied to ensure the existence of an
invariant measure and asymptotic stability of corresponding Markov operators for some
of these particular systems. We also use the results of Section 5 to obtain estimates for
dimensions of invariant measures for dynamical systems generated by learning systems
and Poisson driven stochastic differential equations.

6.1. Iterated function systems. Let (Y,||-||) be a separable Banach space. An
iterated function system (IFS) consists of a sequence of continuous transformations

s Y =Y, s=1,....K,

and a probability vector
DY — 0,1, s=1,...,K.

Such a system is briefly denoted by (¢,P)x = (¢1,.-.,49K,D1,---,Px). The action of an
IFS can be roughly described as follows. We choose an initial point g and we randomly
select from the set S = {1,..., K} an integer sy in such a way that the probability of
choosing it is P, (z0). If s is drawn, we define 21 = ¢4, (o). Having 2, we select s; in
such a way that the probability of choosing it is P, (z1). Now we define 25 = g5, (1) and
o on.

This system is quite often called a learning system. The system “learns” because in a
new position x,, it uses a new strategy P(x,,) for choosing the next step.

In [2] Barnsley et al. considered the evolution of distributions due to the action of ran-
domly chosen transformations, so called iterated function systems with place dependent
probabilities, and provided sufficient conditions for the existence of an invariant measure
and for stability. In [35] Lasota and Yorke generalized those results.

It is evident that IFS is a particular example of a random dynamical system
with randomly chosen jumps. Consider a dynamical system of the form I = {1} and
II;(t,z) = « for x € Y, t € Ry. Moreover assume that p;(z) = 1 and p1;(z) = 1 for
x €Y. Then we obtain an IFS (¢,D) k.

Denoting by fi,,, n € N, the distribution of x,,, i.e., fi,,(A) =P(z, € A) for A € B(Y)

we define P as the transition operator such that ji,11 = Pfi, for n € N. The transition

operator corresponding to the learning system (¢,p)k is given by

(6.1.1) Pu(A) =3~ | 1a(gs(@)py(@) pldz)  for A€ B(Y), p € My(Y).

seSy
From Theorems 4.2.2 and 4.2.3 we immediately obtain the following result, due to Barns-
ley et al. [2] (see also [35]):

THEOREM 6.1.1. Let (¢,D)k be an iterated function system satisfying the following con-
ditions:

(i) for the probability vector P, the Dini condition holds and
(6.1.2) ig}f/ﬁs(x) >0 forsels,
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(ii) the transformations q; : Y — 'Y are continuous and satisfy (4.2.4) with L, < 1.
Then the operator P given by (6.1.1) is asymptotically stable.
Examples 6.1.1 and 6.1.2 are taken from [29] and [31]:

EXAMPLE 6.1.1. The asymptotic behavior of a learning system heavily depends on the
properties of the functions p,. First of all, they must be strictly positive. Consider, for
example, the system (g,P)s acting on the space Y = [0, 1] with the following transforma-
tions:
() =0, qz)=1, p(z)=1-—xz, Dy(x)==z forzel0,1].

These assumptions imply that for g = 0 we have 21 = ¢;(z¢) = 0 with probability one
and further by induction z,, = 0 with probability one for every n > 0. Analogously, if
xo = 1 then also x,, = 1 with probability one for every n > 0. Thus in the first case
in({0}) = 1 and in the second fi,,({0}) = 0 for all n. This shows that the system is not
asymptotically stable.

Our theorems imply the weak convergence, but the stationary measure pg may be
singular and in this case the convergence cannot be strong:

EXAMPLE 6.1.2. Let Y = R, ¢1(z) = z and g2(x) = 0 for z € R. Evidently for every
probability vector (pi,p2) with p1 < 1 condition (4.2.4) is satisfied. Thus for every
€ M1(Y) the sequence {P"u},>1 given by (6.1.1) converges weakly to 1o = do.

From the proof of Theorem 5.2.1 we immediately obtain the following result, due to
Lasota and Myjak [32]:

THEOREM 6.1.2. Let (q,P)k be an iterated function system having an invariant measure
o € My. Assume that the transformations qs : Y — Y, s € S, satisfy the Lipschitz
condition

las(x) = as(W)| < Lollz =yl for z,y €Y
with Ly <1 and let

v = Ps(x) > 0.

inf
€Y, seS
Then
log ~y
log L,

dimp, pg <

6.2. Irreducible Markov systems. Werner [52] extended iterated function systems
with place dependent probabilities to much more general systems, namely, graph directed
constructions on locally compact spaces with an open partition.

Barnsley et al. [2] and Werner [52] studied the problem of the existence of an invariant
measure from the probabilistic point of view. In this section we aim to show that Werner’s
result may be studied by employing the methods used in Section 4.2. In this way, we
also extend Werner’s results from a locally compact space to the more general case of a
complete separable metric space.

Let (Y, o) be a complete and separable metric space and let Y7,..., Yy be a partition
of Y into nonempty open subsets. For each i € I = {1,..., N}, let

Wily - WiN, 2 Yy = Y
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be a family of Borel measurable maps such that for each j € {1,..., N;}, N; € I, there
exists n € I such that w;;(Y;) C Y,,. Furthermore, for each ¢ € I, let

Pity -5 PiN, © Yi — [0,1]
be a family of positive Borel measurable probability functions, that is, p;; > 0 for all j
and E;V:H pij(z) =1for all z € Y;.
We call I the set of vertices, and the subsets Yi,..., Yy the vertex sets. Further, we

call

E={(in;):i€{l,...,N}, n; €{1,...,N;}}
the set of edges and we write
De ' =Pin and we:=wy, fore:=(i,n) € E.

For an edge e € E we denote by i(e) the initial vertex of e, that is, i(e) = j if and only if
e = (j, k) for some k € {1,...,N;}. The terminal vertez t(e) for e = (j,n) € E is equal
to k if and only if w.(Y;) C Yj.

The quadruple G = (I, E, i, t) is called a directed multigraph or digraph. A sequence
(finite or infinite) (...,e_1,€eq,e1,...) of edges is called a path if t(e;) = i(er41) for all k.

A Markov system (Yi(e),we,pe)eeE is called irreducible if its directed multigraph is
irreducible, that is, there is a path from any vertex to any other.

An irreducible Markov system is said to have a period d if the set of vertices can be
partitioned into d nonempty subsets Ji,...,Jg such that

i(e) eJ;, = t(e) S Ji+1
for all e € F (with i + 1 taken mod d), and d is the largest number with this property.
An irreducible Markov system with period 1 is called aperiodic.
To define a Markov operator on B(Y') associated with the Markov system under
consideration we extend p;; onto the whole space Y by zero; the maps w;; are extended

arbitrarily.
We define the Markov operator P on M by

(6.2.1) Pu(A) = S Ulg(x)p(dz) for Ae B(Y) and p € My,
Y
where U is the dual operator on B(Y') given by
(6.2.2) Uf:Zpefowe for f € B(Y).
eck

We say that a system (Yi(e),we,pe)eeE is globally concentrating, semi-concentrating
or asymptotically stable when the Markov operator P given by (6.2.1), (6.2.2) has the
corresponding property.

Recall that a function f : Y — R is called Dini-continuous if the associated modulus
of continuity ¥, given by

U(r) = sup{[f(2) = f(y)| : e(z,y) <7, 2,y €Y},
satisfies the Dini condition (2.1.1).
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We will assume that the Markov system (Yj(), We, Pe) 18 contractive, i.e., there exists
0 < L < 1 such that

(6.2.3) Zpe(w)g(we(x), we(y)) < Lo(z,y) forallz,y €Y; and i€ I.
eckE

We call the constant L an average contracting rate of the Markov system.

The Markov system (Yj(c), We, pe)eck is a particular example of the following random
dynamical system with randomly chosen jumps. Consider the space Y = Uf;l(Yi x {i})
where Y; NY; = 0,4 # j, S = {1,...,max; N;} and II;(7, (z,7)) = (z,7) for x € Y,
t=1,...,N and 7 € R;. Set

q»(x z) _ { (w”(x),t((z,j))) for _j = 1, .. .,‘Z\fi7
I arbitrary otherwise
and '
B, (1) = {pij(z) for j f-l, oo NG,
0 otherwise
forz €Y, i=1,...,N. In this way we obtain a system (II, ¢, p).

We point out that condition (6.2.3) does not guarantee that inequality (4.2.4) is
satisfied for all x,y € )7, hence a contractive Markov system (Yj(c), We, pe)ecp may not
satisfy the hypotheses of Theorem 4.2.2.

EXAMPLE 6.2.1. Consider Y C R? with norm ||(z,y)|1 = |z| + |y| for (x,y) € R%. Let
Y1 = [0,1] x [0,1], Y2 = [3/2,2] x [0,2] and Y3 = [0,1] x [3/2,2]. Consider the maps
wiy Y] — Yo, wip Yy — Y3, w3y 1 Y3 — Yo, w3z 1 Y3 — Y7 and wa; : Y2 — Y] given by

wll(‘xay): (%x_‘_%aQy)a W12(-T,y): (m7%y+%)7

’(Ugl(l',y): (y,_%ﬁf‘f'%), w32($7y): (x7%y_%)a

wo1 (T,y) = (%y’ 7%‘T + %)7
with the corresponding probability functions

pir=ilvi, pr2=3ly,, psi=32ly,, ps2=3ly,, P21 =ly,.

An easy calculation shows that they define a contractive Markov system with an average

contracting rate % on Y1,Y5, Y3 and this system does not satisfy condition (4.2.4).

Our main results concerning irreducible Markov systems defined on Polish spaces are
the following:

THEOREM 6.2.1. Let (Yj(e), We,pe)ecr be a contractive Markov system such that each
pe|Yi(e) 18 Dini continuous. Then the system has an invariant measure. Moreover the set
L(p) is nonempty for p € My and the set L(M;) is tight.

THEOREM 6.2.2. Let (Yj(e), We,Pe)ecr be an irreducible contractive Markov system such

that pely,., is Dini continuous and there exists § > 0 such that pcly,,, > ¢ for all e € E.

(e)
If, in addition, the system is aperiodic, then it is asymptotically stable.

We have divided the proofs of Theorems 6.2.1 and 6.2.2 into a sequence of lemmas.

LEMMA 6.2.1. Suppose that (Yj(e), We,pe)ecr is a contractive Markov system. Then
(Yi(e) We, Pe)ecE is globally concentrating. Moreover for every & > 0 there exists a
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bounded Borel set B C'Y such that
liminf P"u(B) > 1—¢  for all p € M.

n—oo

Proof. By Proposition 3.2.4 it is enough to show that there exists a Lyapunov function V/,
bounded on bounded sets, such that

(6.2.4) UV(z)<aV(z)+b forzel,

where a, b are nonnegative constants and a < 1. Choose y; € Y; for ¢ € I. Set V(z) =
Q(£C7y1) for x €Y. Let 0 < L < 1 be the average contracting rate as in (6.2.3). Then

=Y pe(x)o(we(x), 1)

eckE

< Zpe ) we(yl(e))) + Q(we(yi(e))v yl))
eckE

< LQ(J:7 yi(e)) + Z pe(m)g(we(yi(e))’ yl)

eckE
< Lo(z,y1) + Lr?g;w(yj,yl) + eg;}g@(we(yj),yl) for z € Y.

Hence (6.2.4) holds with a = L and
b=L - oY), 1)
max o(y;, y1) + max o(we(y;),y1). =

From now on we will assume that p., e € E, is Dini continuous and let ¥, be its
modulus of continuity. Set ¥ = ) U.. From Proposition 2.1.1 it follows that there
exists p € @ satisfying

eck

U(r)+@(L7) < p(r) forT>0.

We denote by F,, the family of all continuous functions f : ¥ — R such that |f(z)| <1
and [f(z) — f(y)| < ¢(&(z,y)) for all 2,y € Y, with

_ o(x,y) ifz,yeY; foriel,
(z,y) = _
max(c, o(x,y)) otherwise,

where ¢ > 0 is such that ¢(c¢) > 2. It is obvious that ¢ is a metric on Y equivalent to g.

LEMMA 6.2.2. Under the hypotheses of Theorem 6.2.1 the operator P given by (6.2.1),
(6.2.2) is essentially nonexpansive.

Proof. Fix f € F,. We have
\Uf(x)| = Zpe ex))‘SZpe(m)zl for z € Y.
Further, from (6.2.3) it follows that
Uf(@) = US )] = | pelw) flwe(@) - Zpe@)f(we(y))
< Z|pe(z) |+Zpe N f(we(x)) — fwe(y))|

< \I/(Q(J),y)) + Zpe € QO Q(we(m)vwe(y)))
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for z,y € Y;, i € I. Since @ is concave and nondecreasing,

U f(x) = Uf ()] < ¥lelz, ) + ¢(Lo(z,y)) < ¢lo(z,y)) = ¢(a(z,y))
forz,y eV, 1€l
If £ and y are in different Y;, then |Uf(z) — U f(y)| < 2 < p(c¢) < ¢(o(z,y)), which
completes the proof. m

LEMMA 6.2.3. Under the hypotheses of Theorem 6.2.1 the Markov system (Yj(c), We, Pe)ecE
18 semi-concentrating.

Proof. Lemma 6.2.1 shows that there exists a bounded Borel set B C Y such that
liminf P"u(B) > 1/2  for all u € M.

Without loss of generality we may assume that B; = BNY; # 0 for i € I. Fix ¢ > 0.

Choose an integer m € N such that L™ diamz B < €. Further, let 7 > 0 be such that
(I4+n)™L™diams B < e.

For any ¢ € I, fix y; € B; and define C C Y by

c=U U Blw, o oww).e).

i=ley,...,emER

Now (6.2.3) implies that for every y € Y; there exists I, C E™ such that

o(We,, 0+ 0we, (Yi), We,, 0 0we, (y)) < (L+1)"L™o(yi,y)
for (e1,...,en) € I, and

m
n
> PP (1) P (we, 0 owe ) > ()
1+
(e1,-sem)€Ely
Observe that for every y € B; and (e, ..., en) € I, we have w,, o---owe, (y) € C. Set
a = (n(1+n)~1)™/2. By induction and the definition of C for each n € N we obtain

Pty > | 3T e(we, oo we, (1)pe, (v)
B(e1,...,em)€EIy

Py (Wey, 1 0+ 0 Wey (y)) P p(dy) = (#) P'u(B)  for p e My

and consequently
liminf P"u(C) >« for p € My,

n—oo

which completes the proof. m

Proof of Theorem 6.2.1. From Lemmas 6.2.2 and 6.2.3 it follows that P is essentially
nonexpansive and semi-concentrating. A simple application of Proposition 3.2.3 finishes
the proof. m

For the proof of Theorem 6.2.2 we need to know more about properties of irreducible
digraphs.

For every j € I we denote by I(j) the smallest number, say k, such that there is a
path (e1,...,ex) with i(e;) = j and t(e) = j.
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A path ¢ = (eq,...,e,,) is called a cycle if i(e;) = t(e,,). Further, a cycle is called
simple if it does not contain any other cycle. Let I(c) denote the length of ¢, i.e., I(c) = m
ifc=(e1,...,em).

We denote by [k1,...,ky] the greatest common divisor of kq,...,ky € N.

Finally, C = {cy,..., ¢y, } denotes the set of all simple cycles in (Yj), We,Pe)ecE-

REMARK 6.2.1. Observe that an irreducible aperiodic Markov system (Yj(.), We, Pe)cecE
satisfies

li(cy), ..., l(car)] = L.

LEMMA 6.2.4. If an irreducible Markov system is aperiodic, then for every k,l € I there
existmeN and (e1,...,em), (€1,...,6m) such thati(er) =k, i(€1) =1 and t(en) =t(éy).
Proof. Fixk,l € I.Let (e},..., e’;) and (e}, ..., eé) be paths in (I, E, i, t) starting from k,
I, respectively and containing all successive cycles from C. Assume that t(ef) = t(eé). If
p = ¢, then the proof is complete. Now, assume that p > ¢. Since [I(c1),...,l(cp)] = 1,
there exist integers my, ..., mys such that

M
> mil(ei) =p—q.
=1

Let J C {1,..., M} be such that m; < 0 for j € J and m; >0 for j € {1,...,M}\ J.
Adding to (e, ..., e’;) the cycle composed of the cycles c; taken m; times for j € J, and
similarly adding to (e}, ..., efz) the cycle composed of the cycles c; taken m; times for
je{l,...,M}\ J, we finish the proof of the lemma.

Proof of Theorem 6.2.2. From Theorem 6.2.1 it follows that P admits an invariant prob-
ability measure. In view of Lemma 6.2.3, from Theorem 3.2.1 it follows that to finish the
proof of stability it remains to show that for every ¢ > 0 there is a § > 0 such that for
every i1, 2 € My there exist a bounded Borel set A C Y with diamz, A <eand n € N
satisfying

(6.2.5) P'u;(A)>p3 fori=1,2.
Fix ¢ > 0. According to Theorem 6.2.1 there is a compact set Ky C Y such that
i(Ko) >4/5 forall i € L(M7).
By the Aleksandrov theorem there exists a sequence {my,},>1 such that for each open

set G with Ky C G,
liminf P™"u;(G) > 1/2  for i =1, 2.

n—oo
Consequently, there exist k,! € I and a subsequence {m,,},>1 of {my},>1 such that

. - 1
liminf P™*py(G1) > 1/2N  and  liminf P™" us(Ga) > —

for arbitrary open neighborhoods Gy, G of K, = Ko NY},, K; = Ko N'Y], respectively.
By Lemma 6.2.4 we choose m € N such that for &k, € I there exist paths (€1,...,€n),
(é1,...,6ém) satisfying i(e1) = k, i(é1) = [ and t(e,,) = t(é,,) and m < m. Let Fj, =
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wg, ©---0wg (Ki) and F; = ws, o---owg (K;). Set Fy = Fj, U F; and observe that
Fy C th(*

€m

)- It is easily seen that

~ 1 1 -

and every open neighborhood G of Fy.
Choose an integer n € N such that

L™ - diam; Fy < ¢/3.
For x € Fy and (ey,...,e,) € E™ be such that i(e;) = t(e,,) we define
Oersen) (@) = {y € Yagz, )  0lwe, 0+ 0w, (2),we, 0 -+ 0 wey (1) < &/3},
O, = ﬂ0(61,~--,en)($) for x € Fy,

where the intersection is taken over all paths (ey,...,e,) in the digraph (Yj(), we, pe)
starting from t(e,,). Since Fy is a compact set, there exists so > 1 such that
S0
Fy C U Oyl.
i=1

Set G = Ui2,0,,. We claim that (6.2.5) holds with 3 = 6"T™ /(2N (). Indeed, by (6.2.6)
there exists M € N such that

~ 1 _
PMA™ L (G) > == 0™ fori=1,2,

2N
therefore there exist O; = O,, and O, = O, such that
1 _
PM+m i i 5771
1i(0:) > 5 Nag O

thus, by (6.2.3) and the definition of O; and Os, we can find a path (ef,...,e,) such
that the set

A =wer 00w (O1) Uwer 0+ 0wer (O2)
satisfies diamg, A < &, which implies
PM(A) 2| pey () (e (9)) e, (wer,_, 0+ 0 wieg (1)

O;

n4+m

X 1a(wer 00wy, () PMH" i (dy) >

Z INso =0 fori=1,2. =

6.3. Mathematical theory of the cell cycle. We consider the infinite family of
transformations Sy : Y — Y given by

Se(x) = q(II(t,z)) fort>0,2 €Y,

where IT : Ry XY — Y is a semidynamical system and ¢ : ¥ — Y is a continuous
function. Let {t,},>0 be a sequence of nonnegative random variables such that the
increments At, = t, — t,_1 are independent and have the same density distribution
function g(t) = Ae™ ™, t > 0. Set

(6.3.1) Tpi1 = Sae, (xn) forn=0,1,....
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Equation (6.3.1) defines an iterated function system with an infinite number of trans-
formations. At each step the new transformation is selected according to the density
distribution function \e*t.

Equations similar to (6.3.1) are discussed in the mathematical theory of the cell cycle
[5, 29, 30, 50, 51]. For example, in [29] Lasota considered the following model:

Let Y = R? The values ti,to,... denote the birth times and x,, represents the
distribution of substances of cells just before mitosis in the nth generation. Thus it is
natural to assume that ¢(z) = x/2, since after mitosis each daughter cell obtains exactly
half of the components of the mother cell.

Assume that II, which describes the evolution of the amounts of real chemicals, sat-
isfies

(6.3.2) ITI(t,z) — (L, y)|| < e[|z —y|| forz,yc RY teR,
for some a > 0 and there exists z, € R? such that

(6.3.3) sup ||[TI(¢, z.) || < oo.
>0

Further, we assume that
(6.3.4) a/\<1/2.

It is reasonable to think that the behavior of (6.3.1) can be described by the sequence
of distributions

(6.3.5) fin(A) =P(z, € A) forn=1,2,..., Ac B(R?).

By Theorem 4.2.3 it follows that the sequence {fi,}n>1 given by (6.3.5) converges
weakly to a unique fig.

This fact allows one to obtain some information concerning the behavior of x,, (for
example by using some ergodic theorems). Moreover, using the Aleksandrov theorem for
the weak convergence, there is some biological consequence of the weak convergence of ji,,
to fig- In the space of dynamical systems (6.3.1) satisfying conditions (6.3.2) (6.3.4) most
of the systems have a singular stationary measure fig. This fact may have an important
biological consequence: with high probability x,, belongs to a small set. This means that
the composition of substances (at birth) is not arbitrary and the cell is highly structured.

6.4. Randomly connected differential equations with Poisson-type perturba-
tions. In this section we shall study stochastic differential equations driven by jump-
type processes. They are typically of the form

(6.4.1) dX () = a(X(£), £(t)) dt + | (X (1), 6) Ny (dt,d6)  for t >0
(C]

with the initial condition

(6.4.2) X(0) = o,

where {X () }1>0 is a stochastic process with values in a separable Banach space (Y, || -]|)
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or more explicitly

(6.4.3) X(t) = o+ {a(X(5),€(5)) ds + | | b(X (5-),0) Ny (ds, dB)  for t >0
0 0e

with probability one. Here N, is a Poisson random counting measure, {{(¢)}:>0 is a
stochastic process with values in a finite set I = {1,..., N}, the solution {X(¢)}:>0
has values in Y and is right-continuous with left-hand limits, i.e. X(t) = X(t+) =
lim,_;+ X (s) for all t > 0, and the left-hand limits X (t—) = lim,_;— X (s) exist and are
finite for all ¢ > 0 (equalities here mean equalities with probability one).

In order to get existence and uniqueness of solutions to equation (6.4.3), it is necessary
to put some restrictions on the objects a, b, &, and N,. In our study we make the following
assumptions:

On a probability space (€2, X, P) there is a sequence {t,, },>o of random variables such
that the variables At,, = ¢, — t,_1, where ty = 0, are nonnegative, independent, and
identically distributed with density g(t) = Ae=*! for ¢ > 0.

Let {n,}nen be a sequence of independent identically distributed random elements
with values in a compact metric space O; their distribution will be denoted by v. We
assume that the sequences {t, }n>0 and {9, }n>0 are independent, which implies that the
mapping w — p(w) = (tn(w), Mn(w))n>0 defines a stationary Poisson point process. Then
for every measurable set Z C © the random variable

Np((0,¢] x Z) = #{i : (ti,m:) € Z}
is Poisson distributed with parameter Atv(Z). N, is called a Poisson random counting

measure.

The coefficient a : Y x I — Y, I = {1,..., N}, is Lipschitz continuous with respect
to the first variable.

We define ¢g: Y x © — Y by
q(z,0) =z +b(x,0) forxzeY, 60O

and assume that ¢ is continuous.

Finally, suppose that [p;;]; jer, pi; : ¥ — [0,1] is a probability matrix and [p;]ier,
p; + Y —[0,1] is a probability vector.

For every i € I, denote by v;(t) = II;(¢,x) the solution of the unperturbed Cauchy
problem

(6.4.4) vi(t) = a(vi(t),i) and v;(0)=z, x€Y.

Consider a sequence {z,, } ,>0 of random variables z,, : 2 — Y and a stochastic process
{&(t) }i>0, &(t) : @ — I (describing random switching at random times ¢,,), such that
Ty = Q(Hé(tn_l)(tn —ln—1,Tn-1),Mn);
P(£(0) = k|xo = x) = pr(x),
P&(tn) = s|an =y, §(tn-1) =) = pis(y)  forn=1,2,...,
E(t) =¢&(tp—1) fortp_1 <t<t,,n=12 ...

(6.4.5)
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The solution of (6.4.3) is now given by
(6.4.6) X(t) =g, H(t—tn-1,2p-1) fort, 1 <t<ty,,n=12,....

For any = € Y we write X (t), to denote the solution of problem (6.4.1), (6.4.2) with
o= 2.

We are interested in the evolution of distributions of the stochastic process { X (¢) }1>o.
It is described with the help of the family {Q}:>¢, given by

(6.4.7) Q'i(A) = P(X(t) € A) = | P(X (1), € A) Ji(dz) for A B(Y),
Y

where /1 is the distribution of the initial vector . The stochastic process {(X (¢),£(t)) be>o,
(X(t),&(t) : Q@ = Y x I, is a Markov process and it generates the semigroup {T"};>¢
defined by

th(SC, Z) = E(f((X(t)ag(t))(w,z))) for f S C(Y X I)a
with the corresponding semigroup of Markov operators {P'};>o, P*: M; — M;, satis-
fying
(6.4.8) (P'u, f) = (u, T'f) for f € B(Y xI), p € My and t > 0.

As an immediate consequence of Theorems 4.3.1 and 4.3.2 we obtain the following
result, which is an extension of the main theorem of [17]:

THEOREM 6.4.1. Assume that conditions (4.3.1)—(4.3.4) and (4.3.7) are satisfied. Then
the semigroup {P'};>0 given by (6.4.8) is asymptotically stable and there exists a measure
fsx € My such that for every p € My the family {Q'u}i>o0 given by (6.4.7) is weakly
convergent to [i

REMARK 6.4.1. In the case when the coefficient a : R? x I — R< does not depend on the
second variable, we obtain the stochastic equation considered by Traple [49], Szarek and
Wedrychowicz [48].

In many applications we are mostly interested in values of the solution X (¢) at the
switching points t,. Setting
I, (A) =P((X(tn),&(ty)) € A)  for Ae B(Y x I),
we obtain 1, ,; = P, n € N, where P is given by
(6.4.9) Pu(A) =31 | | Ae™1a(a(W;(t,2),0), 5)pis () dt dv(6) dp(x, i)
JET O Y XIR,

for Ae B(Y x I) and p € M;.
We now consider the Poisson driven stochastic differential equation on a separable
Banach space (Y, || - ||) of the form

(6.4.10) dX(t) =a(X(t))dt+b(X(t))dp fort>0
with the initial condition

(6.4.11) X(0) = o,
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where a,b:Y — Y are Lipschitz continuous transformations, {p(¢)};>¢ is a Poisson pro-
cess and the initial condition x( is a random variable on §2 with values in Y, independent

of {p(t)}+>o0-
This is a particular example of equation (6.4.3) where © = I = {1}, ¢(z,1) = gq(z) =
x + b(x), and II; (¢, x) = TI(¢, x) is the unique solution of the Cauchy problem

(6.4.12) u'(t) = a(u(t)) fort >0,
with the initial condition
u(0) = .
From Theorems 4.3.1 and 5.1.1 we obtain the following result, which is similar in

spirit to the main result in [38].

THEOREM 6.4.2. Let 11 be the solution of the unperturbed system (6.4.12). Assume that
there exist positive constants o and L, such that

(6.4.13) o —yll < IM(t,2) - Ty < etz —yll forz,ye Y, 20,
(6.4.14) la(x) — q)Il < Lqllz — yll

and

(6.4.15) Ly < exp(—a/)).

Ifa:Y — Y is bounded, then the unique invariant measure 11, of the semigroup P* given
by (6.4.8) satisfies
du«(z)>1 forxeY.

To obtain the upper bound for dimy, . we need a more restrictive assumption con-
cerning ¢ : ¥ — Y. We assume that there exist positive constants L, and Ly such
that

(6.4.16) Lolla =yl < lg(a) — a)]| < Lyle -yl fora,y € Y.
From Theorems 5.2.1 and 5.3.2 we obtain:

THEOREM 6.4.3. Let II be the solution of (6.4.12) and suppose q : Y — Y satisfies
condition (6.4.16). If there exists a positive constant « satisfying condition (6.4.15) such
that

(6.4.17) IN(t,2) Tty < ez —y|  for 2,y € Y, ¢ >0,
then

—— — In(l —e™!)
di » < di ST
HIL e = CHRL H0 = InL,+ a/X

where i, and po are the invariant measures of the semigroup {P'};>¢ given by (6.4.8)
and the operator P given by (6.4.9), respectively.
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