
1. Introduction

This paper can be considered as the final effort of the authors to better understand some

basic properties of disjointness preserving operators (d.p.o.) on vector lattices. It is the

last (but, we hope, not the least) in the series of articles [3]–[10], and it is closely related

to and inspired by the work of other mathematicians [14]–[33], to cite only a few.

To explain what we mean by the “basic properties” let us recall that a (linear) operator

T : X → Y between vector lattices is disjointness preserving if the following implication

is true:
x1, x2 ∈ X, x1 ⊥ x2 ⇒ Tx1 ⊥ Tx2.

Even a superficial look at the articles mentioned above allows one to see that all of

them are somehow connected with the following three problems concerning the disjoint-

ness preserving operators.

Problem A. Suppose that a disjointness preserving operator T : X → Y is injective.

Under what additional conditions on X, Y and T is the inverse operator T−1 : TX → X

also disjointness preserving, i.e., when

x1 ⊥ x2 ⇔ Tx1 ⊥ Tx2 ?

Problem B. Under what conditions on X, Y and on a disjointness preserving operator

T : X → Y are the vector lattices X and Y order isomorphic?

Problem C. Under what conditions on X, Y and T is the operator T regular?

At this point the following question seems unavoidable by any alert reader: If all three

problems above have already been studied why do we need to return to them again? Here

is a brief answer. First of all we would like to point out that, as was shown by the authors,

without any additional assumptions all these problems have negative solutions. On the

other hand, under some very general conditions (many of which will be reproduced later)

these problems do have affirmative solutions. However, for many important classes of

vector lattices the situation has remained unclear so far. And the purpose of this work is

to cover as much of these classes as possible, so that the above three basic problems will

be solved for the most common classes of vector lattices.

It should also be pointed out that we do not claim that the above three problems

exhaust the list of interesting questions about disjointness preserving operators. Plenty of

work (including some by the authors) has been done on the multiplicative representation

of disjointness preserving operators, their spectral properties, on polar decomposition of

regular disjointness preserving operators, et cetera.

Problems A–C are, of course, closely related. For example, if T is a regular injection

then T−1 : TX → Y automatically preserves disjointness, and if T is a regular bijection

[5]
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thenX and Y are automatically order isomorphic. These implications follow from the well

known criterion of regularity of disjointness preserving operators (see Theorem 2.3.2).

We do not attempt here to present the history of the work done on the above problems

and refer the reader to [5]. The structure of the present paper is as follows.

In Section 2 the reader will find most of the non-standard (and part of the standard)

definitions and notations, some well known and some auxiliary results used throughout

the paper.

In Section 3 we completely describe (Theorem 3.1.1) the vector lattices such that any

d.p.o. from them to any other vector lattice is regular. In Theorem 3.2.1 we consider

a wider class UI of vector lattices such that for any injective d.p.o. T : X → Y the

inverse operator T−1 : TX → X also preserves disjointness. We obtain a necessary and

a sufficient condition (with a small gap between them) for the inclusion X ∈ UI.

The main results of Section 4 are Theorems 4.0.1 and 4.0.2. These theorems serve as

some of our principal technical tools in the next sections but they are also of independent

interest and allow us to describe (Corollary 4.0.4) a large class of d-rigid and super d-rigid

domains (Definition 2.3.5).

Section 5 is the central one in this paper. For a large class of domains which we

call “weakly c0-complete” and which contains, in particular, the class of all relatively

uniformly complete domains, we describe conditions under which every bijective d.p.o.

is a d-isomorphism and conditions under which every d-isomorphism is regular. There

is a gap between our necessary and sufficient conditions due to the well known and

unsolved problem: If X is a laterally σ-complete vector lattice and d -dimX > 1 (see

Definition 2.4.1), does there exist a non-regular band preserving projection P : X → X ?

The above-mentioned gap disappears when the domain X has either the countable

sup property or the projection property. We discuss these cases in detail in Section 6. In

particular, we obtain complete answers to Problems A–C for the important case when

the domain X is relatively uniformly complete and the range Y has the countable sup

property (Theorem 6.2.3).

Section 7 contains further discussion of the Huijsmans–de Pagter–Koldunov theorem.

We use de Pagter’s techniques and techniques developed in [5] to weaken the conditions

imposed in the original HPK-theorem. We also prove in Theorem 7.2.6 that the conclusion

of the HPK-theorem remains true when the range Y is a vector lattice with a topology de-

fined by a countable family of lattice seminorms. Theorem 7.3.1 deals with the case when

the domain X satisfies the Luxemburg condition and the range Y is relatively uniformly

complete. It improves considerably our previous result in this direction—Theorem 9.3

in [5].

Finally in Section 8 we apply our results to the vector lattices of continuous functions

on completely regular (Tikhonov) topological spaces.

2. Basic definitions, notations, and auxiliary results

For general information concerning vector lattices and their functional representations

the reader is referred to [41], [31], and [42].
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All vector lattices considered in this paper are assumed to be Archimedean and are

considered over the field R of real numbers or C of complex numbers.

2.1. Krein–Kakutani representation and related properties of vector lattices.

Let X be a vector lattice and x ∈ X. Let Ix be the principal ideal generated by x in X. By

the Krein–Kakutani representation theorem there is a unique (up to a homeomorphism)

Hausdorff compact space Kx such that Ix is order isomorphic to a vector sublattice of

C(Kx) which separates points of Kx and contains constant functions (actually an order

isomorphism can be chosen in such a way that x maps to the function 1).

There are many useful connections between global properties of the vector lattice

X and “local” properties of the principal ideals Ix, x ∈ X (in particular these “local”

properties involve topological properties of the spaces Kx). One of the most detailed

descriptions of these connections can be found in [37]. We will need some of them.

Let us recall the following definitions.

2.1.1. Definition. A vector lattice X is called relatively uniformly complete (briefly X

is ru-complete or X ∈ (RUC)) if for any x ∈ X the principal ideal Ix is order isomorphic

to C(Kx).

2.1.2. Definition. Let X be a vector lattice and let x, u ∈ X. The element u is called a

component of x if x− u ⊥ u.

2.1.3. Definition. We will say that a vector lattice X is weak-Freudenthal [29], briefly

X ∈ (WF), if for any x ∈ X and for any u ∈ Ix the element u can be approximated by

finite linear combinations of components of x in the norm of C(Kx).

2.1.4. Definition. We will say that a vector latticeX has a cofinal family of components ,

briefly X ∈ (CFC), if for any x ∈ X and any band U ⊂ X such that x 6⊥ U there is a

non-zero component u of x such that u ∈ U .

2.1.5. Definition. We say that a vector lattice X has the countable sup property , briefly

X ∈ (CSP), if any order bounded set of pairwise disjoint non-zero elements in X is at

most countable.

The proofs of the statements in the next proposition can be found for example in [37].

2.1.6. Proposition. Let X be a vector lattice. Then:

(1) X has the projection property if and only if for any x ∈ X the space Kx is

extremally disconnected (Stonean).

(2) X is Dedekind complete if and only if X is ru-complete and has the projection

property.

(3) If for any x the space Kx is basically disconnected (quasi-Stonean) then X has the

principal projection property. The converse is in general false (see Remark 2.1.7).

(4) If X is ru-complete then it has the principal projection property if and only if for

any x the space Kx is basically disconnected.

(5) X ∈ (WF) if and only if for any x ∈ X the space Kx is zero-dimensional (or,

which for compact spaces is the same, totally disconnected).
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(6) X ∈ (CFC) if and only if for any x ∈ X the space Kx has a π-base of clopen sub-

sets (each non-empty open subset ofKx contains a non-empty subset clopen in X).

(7) X ∈ (CSP) if and only if for any x ∈ X the Krein–Kakutani space Kx satisfies

the countable chain condition (briefly Kx ∈ (ccc)), i.e. any family of non-empty

pairwise disjoint open subsets of Kx is at most countable.

2.1.7. Remark. To see that the converse to Proposition 2.1.6(3) is in general false it is

enough to consider a zero-dimensional compact space K which is not basically discon-

nected (e.g. the standard Cantor set) and to take as X the vector lattice of all finite linear

combinations of characteristic functions of clopen subsets of K. The vector lattice X be-

longs to the class of vector lattices with a remarkable property which will be discussed

in Subsection 3.1.

2.2. Vector lattices with some degree of lateral completeness. Let us first recall

some standard definitions.

2.2.1. Definition.

(1) A vector lattice X is called laterally complete if for any family {xα} ⊂ X of

pairwise disjoint positive elements its supremum exists in X.

(2) A vector lattice X is called conditionally laterally complete if for any order

bounded family {xα} ⊂ X of pairwise disjoint positive elements its supremum

exists in X.

(3) A vector latticeX is called laterally σ-complete if for any countable family {xα} ⊂

X of pairwise disjoint positive elements its supremum exists in X.

(4) A vector lattice X is called conditionally laterally σ-complete if for any order

bounded countable family {xα} ⊂ X of pairwise disjoint positive elements its

supremum exists in X.

2.2.2. Theorem (Veksler–Gĕıler [40], Huijsmans–Wickstead [26], Bernau [19]).

(1) Each conditionally laterally complete vector lattice has the projection property.

(1′) Each conditionally laterally σ-complete vector lattice has the principal projection

property.

(2) A laterally complete band in a vector lattice is a projection band.

(2′) A principal laterally σ-complete band in a vector lattice is a projection band.

2.2.3. Remark.

(1) A relatively uniformly complete vector lattice X is conditionally laterally com-

plete if and only if it has the projection property [40]. But, as Example 2.2.4

shows, in general the projection property does not imply conditional lateral com-

pleteness.

(2) The condition X l ∈ (CSP), where X l is the lateral completion of X, means

exactly that any set of pairwise disjoint elements in X is at most countable.

Clearly X l ∈ (CSP) if X ∈ (CSP) and X has a weak unit. As the example of the

vector lattice c00 of all finite sequences shows, the converse to this statement is

in general false.
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(3) For vector lattices from (CSP) the notions of conditional lateral completeness

and conditional lateral σ-completeness coincide.

(4) In general a laterally σ-complete vector lattice X ∈ (CSP) need not be laterally

complete but any principal band in it is laterally complete.

2.2.4. Example. Let K be an infinite extremally disconnected compact space. Let X be

a subset of C(K) defined in the following way: f ∈ X if and only if for any positive real

number α the set |f |(K) ∩ [α,∞) is finite.

The vector lattice X has the projection property because it contains the characteristic

functions of all clopen subsets of K. Nevertheless we can see at once that X is not

conditionally laterally complete. (It might be worth noticing that X is a c0-complete

vector sublattice, see Definition 2.2.5 below, and also a subalgebra of C(K).)

In many instances when we work with disjointness preserving operators on vector

lattices it is enough instead of ru-completeness to assume only some weaker condition,

a kind of “lateral ru-completeness”—a possibility to add some series of pairwise disjoint

elements. We now introduce the corresponding definitions.

2.2.5. Definition. Let X be a vector lattice. We will say that:

• X ∈ (LC0) if for any order bounded countable family {un} of pairwise disjoint

elements in X and for any sequence of positive scalars εn such that εn → 0 as

n→ ∞ the element
∑∞
n=1 ⊕εnun exists in X (1).

• X ∈ (LC1) if for any principal band U = {u}dd inX there is a sequence of positive

scalars εn depending only on u and such that for any order bounded countable

family {un} of pairwise disjoint elements in U the element
∑∞
n=1 ⊕εnun exists

in X.

• X ∈ (LC2) if for any positive u ∈ X there is a sequence of positive scalars εn
depending only on u and such that for any countable family {un} of pairwise

disjoint elements in the interval [0, u] the element
∑∞
n=1 ⊕εnun exists in X.

• X ∈ (LC3) if for any fixed order bounded sequence un of non-zero, positive,

pairwise disjoint elements in X there is a family of positive scalars εn such that

vn ≤ εnun ⇒
∞∑

n=1

⊕vn ∈ X.

• X ∈ (LC4) if for any order bounded countable family {un} of pairwise disjoint

elements in X there is sequence of positive scalars εn such that the element∑∞
n=1 ⊕δnun exists in X for any sequence {δn} with 0 ≤ δn ≤ εn.

2.2.6. Proposition.

(RUC) ( (LC0) ( (LC1) ( (LC2) ( (LC3) ( (LC4).

Proof. All that requires proving is that the inclusions are proper.

(1) Let X be the vector sublattice of C[0, 1] defined as follows. A function f from

C[0, 1] is in X iff there is a countable family of intervals (an, bn) ⊂ (0, 1) such that their

(1) This means, as usual, that sup
n

εnun exists in X.
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union is dense in (0, 1) and f coincides with a linear function on each (an, bn). Then

X ∈ (LC0) but X 6∈ (RUC).

(2) Let c be the vector lattice of all convergent sequences and X be the linear hull in

c of l1 and the constant function 1. Then it is easy to see that X is a vector sublattice

of c and that X ∈ (LC1) \ (LC0).

(3) To construct a vector lattice X such that X ∈ (LC2) \ (LC1) let us consider a

system of positive scalars An(α) where n ∈ N and α ∈ (0, 1) with the following properties:

• ∀α ∈ (0, 1) An(α) ↑ ∞.

• For any sequence of positive scalars εn, εn ↓ 0, we can find an α such that

An(α)εn ↑ ∞.

For any α ∈ (0, 1) we define a Lesbegue-measurable function fα on [0, 1] in the following

way. Let nα be the smallest positive integer such that [α− 1/nα, α+ 1/nα] ⊂ (0, 1). Let

fα ≡ 0 on [0, 1] \ [α− 1/nα, α+ 1/nα] and let fα ≡ An−nα+1(α) on [α− 1/n, α+ 1/n] \

[α− 1/(n+ 1), α+ 1/(n+ 1)] for any n ≥ nα.

Let X be the smallest vector sublattice of L0(0, 1) (the space of all Lesbegue-measur-

able functions on (0, 1)) which contains L∞(0, 1) and every function fα, α ∈ (0, 1). In

other words x ∈ X if and only if there are g ∈ L∞(0, 1) and α1, . . . , αn such that

|x| ≤ |g| +
∑n
i=1 |fαi

|. It is easy to see that X ∈ (LC2) \ (LC1).

(4) Let α ↔ {δαn
} be a one-to-one correspondence between (0, 1) and the set of

all sequences of real numbers which decrease to 0. Let D be (0, 1) considered with the

discrete topology and let Dα = {dα1
, . . . , dαn

, . . .}, α ∈ (0, 1), be countable pairwise

disjoint subsets of D such that
⋃
αDα = D. Let Y be the vector sublattice of l∞(D)

given by

Y =
{
y ∈ l∞(D) :

∑

α

∞∑

n=1

|y(dαn
)|/δαn

<∞
}
.

Let X be the linear hull of the constant function 1 and Y . Then X is a vector sublattice

of l∞(D) and it is not difficult to see that X ∈ (LC3) \ (LC2).

(5) Let X be a vector sublattice of C[0, 1] consisting of all functions of bounded

variation on [0, 1]. Then X ∈ (LC4) \ (LC3) .

The next proposition will be used in Section 6.

2.2.7. Proposition. Let X be a vector lattice with the principal projection property.

Assume additionally that X ∈ (CSP) ∩ (LC4). Then every principal band in X has the

projection property.

Proof. Let U = {u}dd be a principal band in X. It is enough to prove that any band V

in X such that V ⊂ U is a principal band. By Zorn’s lemma there is a system {vα} of

pairwise disjoint elements such that 0 ≤ vα ≤ |u| and the system of bands {vα}
dd is full

in V . Because X ∈ (CSP) the system {vα} is at most countable. Because X ∈ (LC4) there

are scalars εn such that the element v =
∑

n⊕εnvn exists in X. Clearly V = {v}dd.

2.2.8. Remark. Without the assumption that X ∈ (LC4) the statement of Proposi-

tion 2.2.7 is in general false. A counterexample is provided by the vector lattice c00.
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The condition (LC3) is strong enough to guarantee the validity of our main results

in Section 5. That is not the case if we assume only (LC4). For this reason we introduce

the following definition.

2.2.9. Definition. We will sometimes refer to the vector lattices from (LC0) as c0-

complete vector lattices and to those from (LC3) as weakly c0-complete vector lattices.

2.3. Disjointness preserving operators

2.3.1. Definition.

(1) Let X,Y be vector lattices and T : X → Y be a linear operator. The operator T

is called disjointness preserving (briefly d.p.o.) if for any x, z ∈ X we have

x ⊥ z ⇒ Tx ⊥ Tz.

(2) Let Z be a vector lattice and X be a vector sublattice of Z. A linear operator

T : X → Z is called band preserving (b.p.o.) if for any x ∈ X and z ∈ Z we have

x ⊥ z ⇒ Tx ⊥ z.

(3) Let X,Y be vector lattices and T : X → Y be a bijective disjointness preserving

operator. The operator T is called a d-isomorphism if for any x, z ∈ X we have

x ⊥ z ⇔ Tx ⊥ Tz,

in other words if the inverse operator T−1 also preserves disjointness.

We will need a characterization of regular disjointness preserving operators. The proof

of the next result can be found in [2, Theorem 3.3] or in [25, Proposition 1.2].

2.3.2. Theorem. Let X,Y be vector lattices and T : X → Y be a disjointness preserving

operator. The following conditions are equivalent :

(1) T is regular.

(2) T is order bounded.

(3) For any u, v ∈ X such that |u| ≤ |v| we have |Tu| ≤ |Tv|.

2.3.3. Corollary. Let X,Y be vector lattices and T : X → Y be an injective regular

d.p.o. Then
x ⊥ z ⇔ Tx ⊥ Tz.

Proof. Let Tx ⊥ Tz. Let u = |x| ∧ |z|. By Theorem 2.3.2, |Tu| ≤ |Tx| and |Tu| ≤ |Tz|,

whence Tu = 0 and because T is injective u = 0.

If an injective operator T is a d.p.o. but the inverse T−1 : TX → X fails to preserve

disjointness we can at least measure the degree of this failure. To this end let us recall

the definition of d-splitting number d(T ) introduced in [5].

2.3.4. Definition ([5, Definition 10.1]). Let T : X → Y be a disjointness preserving

operator between vector lattices. We will write that d(T ) = d(T,X, Y ) ≤ n for some

n ∈ N if from the fact that
m∧

i=1

|xi| > 0, where xi ∈ X and Txi ⊥ Txj for i 6= j,

it follows that m ≤ n. We will write that d(T ) = n if d(T ) ≤ n and d(T ) � n− 1.
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We now introduce two classes of vector lattices which will be of main interest to us

in this paper.

2.3.5. Definition.

(1) A vector lattice X is called d-rigid if for any vector lattice Y and for any bijective

d.p.o. T : X → Y the inverse operator T−1 preserves disjointness.

(2) A vector lattice X is called super d-rigid if any bijective operator T from X onto

an arbitrary vector lattice Y is regular.

2.3.6. Remark. By Corollary 2.3.3 any super d-rigid vector lattice is d-rigid.

2.4. d-dimension and d-independence. The characterization of d-rigid and super

d-rigid vector lattices obtained in this paper involves the notions of d-dimension and d-

independence of elements of a vector lattice. For a more general discussion of d-dimension

and the related notion of d-bases we refer the reader to [4] and [9].

2.4.1. Definition. We say that a vector lattice X has d-dimension 1, briefly d -dimX

= 1, if for any two elements x, z ∈ X such that |z| ≤ |x| the element z is a semicomponent

of x [4, Definition 4.7], or in more detail there is a system {(Uγ , cγ)}γ∈Γ where Uγ is a

band in X and cγ is a scalar such that

Uγ1 ⊥ Uγ2 if γ1 6= γ2, z ∈
{⋃

γ

Uγ

}dd
, z − cγx ⊥ Uγ ∀γ ∈ Γ.

Let us recall [5, Definition 11.1] that a vector lattice X is called essentially one-

dimensional if for any two non-disjoint elements x, z ∈ X there are non-zero components

u, v of x and z respectively and a scalar c such that v = cu. We can now make a trivial

but useful observation.

2.4.2. Proposition. For a vector lattice X the following two statements are equivalent :

(1) X is essentially one-dimensional.

(2) X ∈ (CFC) and d-dimX = 1.

Vector lattices of d-dimension 1 will be of particular importance to us but we will

also need the general concept of finite d-dimension:

2.4.3. Definition. Let X be a vector lattice.

(1) We will say that d -dimX ≤ n if for any system x1, . . . , xn+1 of non-zero elements

in X such that 0 ≤ x1 ≤ · · · ≤ xn+1 we can find a system {Uα} of bands which is

full (2) in U = {x1}
dd and scalars c1,α, . . . , cn+1,α such that

∑n+1
j=1 |cj,α| > 0 and

∑n+1
j=1 cj,αxj ⊥ Uα for all α.

(2) We will say that d -dimX = n if d -dimX ≤ n and the statement d -dimX ≤ n−1

is false.

(3) We will say that d -dimX = ∞ if the statement d -dimX ≤ n is false for any

n ∈ N.

We will also use the notion of d-independence in arbitrary vector lattices [4, Defini-

tion 4.1]:

(2) A system {Vα} of bands is called full in the band V if {
⋃

α
Vα}

dd = V .
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2.4.4. Definition. A system {xγ}γ∈Γ of elements in a vector lattice X is called d-inde-

pendent if for every band B in X, every finite set {γ1, . . . , γn} ⊆ Γ , and every finite set

{c1, . . . , cn} of non-zero scalars the following implication holds:

if

n∑

j=1

cjxγj
⊥ B, then xγj

⊥ B for each j = 1, . . . , n.

We omit the routine and simple proof of the next proposition.

2.4.5. Proposition. Let X ∈ (CFC). A system {xγ}γ∈Γ is d-independent iff for every

finite set {γ1, . . . , γn} ⊆ Γ every system uγ1 , . . . , uγn
where uγi

is a non-zero component

of xγi
is linearly independent.

The following definition was introduced in [4, Definition 4.9]

2.4.6. Definition. We will say that a vector lattice X satisfies condition (∗) if for every

band B in X and every x /∈ Bd there exists a semicomponent of x in B.

2.4.7. Proposition. Let X be a vector lattice.

(1) If there are d-independent elements x1, . . . , xn+1 in a vector lattice X such that

|x1| ≤ . . . ≤ |xn+1| then d-dimX > n.

(2) Conversely, if X satisfies condition (∗) and d-dimX > n then there are d-

independent elements x1, . . . , xn+1 in X such that |x1| ≤ . . . ≤ |xn+1|.

Proof. The first statement is obvious and the second follows from Proposition 4.10

in [4].

2.4.8. Remark.

(1) Every vector lattice with the countable sup property satisfies condition (∗) [4,

Theorem 4.11] and in particular the statement in part (2) of Proposition 2.4.7 is

true for such vector lattices.

(2) We do not know if condition (∗) in Proposition 2.4.7(2) is necessary but without

any conditions on X the statement fails to be true. K. P. Hart [24] constructed

an example of a connected F -space K such that not every function from C(K) is

essentially constant (see Definition 2.4.10 below). It means in particular that any

two non-disjoint elements from C(K) are d-dependent but d -dimC(K) > 1.

Proposition 2.4.7 yields immediately the following “external” characterization of vec-

tor lattices of finite d-dimension.

2.4.9. Proposition. Let X be a vector lattice, X l be its lateral completion, and let n ∈ N.

Then
d-dimX = n ⇔ d-dimX l = n.

The condition d -dimX = 1 plays an important role in this paper; it will appear in

the statements of many of our main results. For this reason we want to discuss it here in

more detail.

The class of functions described in the next definition was probably first introduced

in [18]. Because of the lack of commonly accepted terminology we call these functions

“essentially constant”.
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2.4.10. Definition. Let Ω be a topological space. We will say that a function f ∈ C(Ω)

is essentially constant and will write f ∈ EC(Ω) if there are a family {Oα} of disjoint

open subsets of Ω and scalars cα such that f ≡ cα on Oα and the union of the sets Oα
is dense in Ω.

Let X be an ru-complete vector lattice. It follows immediately from Definition 2.4.1

that d -dimX = 1 if and only if for every x ∈ X we have C(Kx) = EC(Kx).

Therefore let us recall what is known about compact spaces with the property C(K) =

EC(K).

Clearly, a sufficient condition for EC(K) = C(K) is that the set of P -points [21, 4L]

(in particular, of isolated points) is dense in K. The best known example of a compact

space with no isolated points but a dense set of P -points is (assuming the continuum

hypothesis) βN \ N [21, 6V]. The existence of extremally disconnected compact spaces

with no isolated points but a dense set of P -points is equivalent to the existence of Ulam’s

cardinals [35, p. 507].

The property C(βN \N) = EC(βN \N) remains valid even without assuming the CH

because every non-empty Gδ set in βN \ N has non-empty interior [21, 6S].

A. Gutman [22] was probably the first to construct an extremally disconnected com-

pact space Q without P -points and such that C(Q) = EC(Q). It was proved in [32,

Example 2.9] that the absolute of βN \ N has this property. Finally, the existence of an

extremally disconnected compact space Q with the countable chain property and such

that C(Q) = EC(Q) is equivalent to the existence of a Suslin line [17, Remark 1.7].

2.5. Condition ⋔

2.5.1. Definition ([5, Definition 4.3]). Let T : X → Y be a d.p.o. We say that T

satisfies condition ⋔ or that T ∈ (⋔) if for each band B in X and for any y ∈ Y we have

Ty ⊥ TB ⇒ y ⊥ B.

There are examples of bijective d.p.o. which are not in (⋔) (see also Example 3.2.2)

but this cannot happen if the domain X has a cofinal family of components.

2.5.2. Proposition. Let X,Y be vector lattices, let X ∈ (CFC), and let T : X → Y be

an injective d.p.o. Then T ∈ (⋔).

Proof. Assume to the contrary that there are a band B ⊂ X and an x ∈ X such that

Tx ⊥ TB but x 6⊥ B. Because X ∈ (CFC) the element x has a non-zero component

u ∈ B. Then Tu is a non-zero component of Tx and Tu ∈ TB, a contradiction.

2.5.3. Remark. It was proved in [6] that a bijective d.p.o. T : X → Y satisfies ⋔ iff

for any principal band B in X its image TB is a band in Y . In connection with this we

want to notice that an operator from (⋔) is halfway between an arbitrary bijective d.p.o.

and a d-isomorphism, and while a d-isomorphism induces an isomorphism of Boolean

algebras of bands B(X) and B(Y ), to an operator from (⋔) corresponds, in general, only

an endomorphism of these algebras. Examples of bijective d.p.o. satisfying ⋔ but failing

to be d-isomorphisms are quite common [5, Section 13].
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Nevertheless, as was shown in [5, 6] and as will be shown in the present paper, in

many important cases we can prove that a bijective d.p.o. from (⋔) is a d-isomorphism.

The following two lemmas were proved in [6, Lemmas 3.5 and 5.3].

2.5.4. Lemma. Let X,Y be vector lattices and let T : X → Y be a bijective disjointness

preserving operator satisfying condition ⋔. Suppose that there are a, b ∈ X such that

a ∧ b > 0 and |Ta| ∧ |Tb| = 0 (that is, the inverse operator T−1 does not preserve

disjointness). Then there are components a1, a2 of a and components b1, b2 of b such that

a = a1 ⊕ a2, b = b1 ⊕ b2, a ∨ b = a1 ⊕ b1 and a ∧ b = a2 ⊕ b2.

2.5.5. Lemma. Let T : X → Y be a disjointness preserving injection such that T ∈ (⋔)

and the inverse operator T−1 does not preserve disjointness. Then we can find positive

elements a, b ∈ X such that

(i) Ta ⊥ Tb,

(ii) for each ε > 0 there exist linear combinations sε and tε of components of a and

b, respectively, such that |sε − b| ≤ εa and |tε − a| ≤ εb.

The proof of Lemma 2.5.5 in [6, Lemma 5.3] shows that the following more detailed

version of this lemma is true.

2.5.6. Lemma. Let T : X → Y be a disjointness preserving injection such that T ∈ (⋔)

and the inverse operator T−1 does not preserve disjointness. Let u, v be elements in X

such that |u| ∧ |v| > 0 but Tu ⊥ Tv. Then we can find positive elements a, b ∈ X such

that

(i) a is a multiple of some component of u and b is a multiple of some component

of v,

(ii) Ta ⊥ Tb, while a ≤ b ≤ 2a,

(iii) for each ε > 0 there exist linear combinations sε and tε of components of a and b,

respectively, such that |sε − b| ≤ εa and |tε − a| ≤ εb.

Moreover, if we assume that |v| ≤ C|u| for some positive scalar C then v can be uniformly

approximated by linear combinations of components of u.

2.5.7. Lemma. Let T : X → Y be a bijective d.p.o. such that T ∈ (⋔) and T−1 does not

preserve disjointness. Then we can find non-zero elements a, b ∈ X such that 0 ≤ a ≤

b ≤ 2a, Ta ⊥ Tb, and the elements Ta and Tb are either both positive, or both negative,

or one of them is positive and one negative.

Proof. Let c, d ∈ X+, c∧d 6= 0, and Tc ⊥ Td. Let e1 = (T−1(Tc)+)+, e2 = (T−1(Tc)+)−,

e3 = (T−1(Tc)−)+, and e4 = (T−1(Tc)−)−. Substituting d for c we similarly define

elements f1, f2, f3, f4. It is plain to see that Tei ⊥ Tfj for 1 ≤ i ≤ j ≤ 4 and that there

are indices i0, j0 such that ei0 6⊥ fj0 . Applying Lemma 2.5.6 to the elements ei0 and fj0
we obtain the desired result.

In the case when the splitting number d(T ) is more than 2 we can refine the statement

of Lemma 2.5.7.
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2.5.8. Lemma. Let T : X → Y be a bijective d.p.o. such that T ∈ (⋔) and d(T ) > 2. Then

there are non-zero a, b ∈ X such that 0 ≤ a ≤ b ≤ 2a, Ta ⊥ Tb, and either Ta, Tb ≥ 0 or

Ta, Tb ≤ 0.

Proof. Because d(T ) > 2 there are non-negative elements u1, u2, u3 in X such that u1 ∧

u2 ∧ u3 6= 0 and the elements Tu1, Tu2, Tu3 are pairwise disjoint in Y . As in the proof

of Lemma 2.5.7 we can see that

ui = ui,1 − ui,2 + ui,3 − ui,4, i = 1, 2, 3,

where all the elements ui,j are non-negative, Tui,1, Tui,2 ∈ Y+, and Tui,3, Tui,4 ∈ Y−.

We claim that among these 12 elements there are at least two which are not disjoint

but their T -images are disjoint and of the same sign. Indeed, otherwise we would have

ui,j ⊥ um,n for all the indices i, j,m, n such that 1 ≤ i < m ≤ 3 and either 1 ≤ j ≤ n ≤ 2

or 3 ≤ j ≤ n ≤ 4. This immediately brings a contradiction with our assumption that

u1 ∧ u2 ∧ u3 6= 0.

After the existence of two such elements is established it remains to apply Lemma 2.5.6

to them.

We will need two more simple technical lemmas.

2.5.9. Lemma. Let T : X → Y be a bijective d.p.o., let T ∈ (⋔), and assume that there

are non-zero elements a, b, c ∈ X such that Ta ⊥ Tb and Ta ⊥ Tc. Then Ta ⊥ T (b ∧ c)

and Ta ⊥ T (b ∨ c).

Proof. Let d = b ∧ c and U = {d}dd. Let y = |Ta| ∧ |Td|. The condition T ∈ (⋔) implies

that y ∈ TU . Clearly there are two bands U1, U2 ⊂ U such that the system {U1, U2} is

full in U , d− b ⊥ U1 and d− c ⊥ U2. Then Td− Tb ⊥ TU1 and because Ta ⊥ Tb we see

that y ⊥ TU1. Similarly we obtain y ⊥ TU2. But T ∈ (⋔) and therefore the system of

bands TU1, TU2 is full in the band TU , whence y ⊥ TU , and therefore y = 0.

The second statement can be verified in a similar way.

2.5.10. Lemma. Let T : X → Y be a bijective d.p.o. and let T ∈ (⋔).

(1) Let a, b be elements of X such that a, b ≥ 0 and Ta, Tb ≥ 0. Then T (a ∧ b) ≥ 0.

(2) Let a, b be elements of X such that a, b ≥ 0, Ta ≥ 0, and Tb ≤ 0. Then a∧b = c⊕d

where c is a component of a and d is a component of b.

Proof. Let U = {a ∧ b}dd, U1 = {(a− a ∧ b )+}
dd ∩ U , U2 = {(b − a ∧ b )+}

dd ∩ U , and

U3 = U ∩Ud1 ∩U
d
2 . Then (a∧b−b) ⊥ U1 and (a∧b−b) ⊥ U3, whence T (a∧b)−Tb ⊥ TU1

and T (a ∧ b) − Tb ⊥ TU3. Similarly, because a ∧ b− a ⊥ U2 and a ∧ b− a ⊥ U3 we have

T (a∧b)−Ta ⊥ TU2 and T (a∧b)−Ta ⊥ TU3. The system of bands U1, U2, U3 is obviously

full in U and because T ∈ (⋔) the system of bands TU1, TU2, TU3 is full in the band TU .

(1) Because Ta ≥ 0 and T (a ∧ b) − Ta ⊥ TU2 we have (T (a ∧ b))− ⊥ TU2. Simi-

larly, because Tb ≥ 0 we obtain (T (a ∧ b))− ⊥ TU1 and (T (a ∧ b))− ⊥ TU3. Therefore

(T (a∧b))−⊥TU ; but (T (a∧b))−∈TU because TU is a band in Y , whence (T (a∧b))−=0.

(2) First notice that because Ta ≥ 0 and Tb ≤ 0 we have (T (a ∧ b))+ ⊥ TU3 and

(T (a∧ b))− ⊥ TU3. Therefore T (a∧ b) ⊥ TU3 and because T ∈ (⋔) we have (a∧ b) ⊥ U3,

whence U3 = 0. Now we see that T (a ∧ b)+ ∈ TU2 and T (a ∧ b)− ∈ TU1, whence
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d = T−1(T (a ∧ b)+) ∈ U2 and c = T−1(T (a ∧ b)−) ∈ U1. It remains to notice that

a ∧ b = c + d and that by definition of U1 and U2, c is a component of a and d is a

component of b.

The next lemma shows that operators from (⋔) are what we can say “laterally con-

tinuous” and will be used extensively later in this paper.

2.5.11. Lemma. Let X,Y be vector lattices, let T : X → Y be a disjointness preserving

bijection, and let T ∈ (⋔). Let {xn ∈ X} be a countable family of pairwise disjoint

elements. Then:

(1) If the element x =
∑

n⊕xn exists in X (3) then Tx =
∑

n⊕Txn.

(2) If the element y =
∑
n⊕Txn exists in Y then T−1y =

∑
n⊕xn.

Proof. (1) For any n the element xn is a component of x, whence the element Txn is a

component of Tx. To prove that Tx =
∑

n⊕Txn it is enough to show that if y ∈ Y +

and y ⊥ Txn for any n then y ⊥ Tx.

Fix any y ∈ Y+ as above and consider the element y ∧ |Tx|. Since T is a bijection

there is u = T−1(y ∧ |Tx|) ∈ X. Let us denote by Bn the band generated by xn, and

note that the pairwise disjoint bands Bn are full in the band B = {x}dd. Since T satisfies

(⋔), T sends bands to bands ([6, Proposition 3.2]) and hence TB is a band in Y . Clearly

y ∧ |Tx| ∈ TB, and so u ∈ B.

Fix any index n. For each z ∈ Bn we have z ⊥ (x−xn), and hence Tz ⊥ T (x−xn) =

Tx⊖Txn. This plainly implies that Tz ⊥ Tu = y∧|Tx| since y is disjoint from each Txn.

That is, TBn ⊥ Tu. By the definition of (⋔) we can conclude that u ⊥ Bn. This is true

for each n, and therefore necessarily u = 0 since the bands Bn are full in B. Thus

y∧|Tx| = Tu = 0. This means that y is disjoint from Tx, and the proof of (1) is finished.

(2) Fix any index n. Then y− Txn ⊥ TBn where Bn = {xn}
dd, and because T ∈ (⋔)

we have T−1y − xn ⊥ Bn, whence xn is a component of T−1y. Let z ∈ X be such that

z ⊥ xn for all n. Then Tz ⊥ TBn for all n and therefore Tz ⊥ {y}dd. Again by the

definition of (⋔) we have z ⊥ {T−1y}dd, whence z ⊥ T−1y and we are done.

2.6. The Luxemburg condition. Many results valid for the normed vector lattices do

not actually require the whole power of the norm and depend on much weaker conditions

that are needed just to stay away from the laterally complete vector lattices. Two such

conditions, (∆L) and (∆P), were introduced by Luxemburg [30] and de Pagter [34], re-

spectively; and they were used in [5] on several occasions. The former and some of its

modifications will be the subject of this section.

We start with the definition given in [5, Definition 2.9].

2.6.1. Definition. We say that a vector lattice X satisfies:

(1) de Pagter condition (∆P) if for each sequence {xn} ⊂ X with pairwise disjoint

non-zero elements, there exists a sequence {λn} of scalars such that the sequence

{λnxn} is not order bounded in X.

(3) This means, as usual, that the elements x+ = sup
n

x+
n and x− = sup

n
x−n exist in X

and that x = x+ − x−.
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(2) Luxemburg condition (∆L) if for any non-zero x ∈ X+ we can find pairwise disjoint

components xn of x and positive scalars λn such that the sequence {λnxn} is not

order bounded in X.

Notice that without loss of generality we can assume in the above definition that

the elements x, xn and scalars λn are positive. Definition 2.6.1(2) (originally introduced

in [30, p. 170] for Dedekind σ-complete vector lattices) is useful for atomless vector lattices

only (4). For a vector lattice X that does not have the principal projection property this

definition has a shortcoming even ifX has no atoms. To explain this shortcoming, consider

the vector lattice C[0, 1] and take any x ∈ C[0, 1] that is strictly positive. For such an x the

set of components C(x) is trivial and, therefore, there simply does not exist a non-trivial

(infinite) sequence of pairwise disjoint components of x. For this formal reason, we have

to say that C[0, 1] does not satisfy (∆L). At the same time, for any x ∈ C[0, 1] that

has a sequence {xn} of pairwise disjoint non-zero components we can certainly produce

weights λn such that the sequence {λnxn} is not order bounded in C[0, 1]. And precisely

the elements with infinite sets of components are of importance. The next definition takes

this into consideration and rectifies the situation.

2.6.2. Definition. A vector lattice X satisfies the modified Luxemburg condition (∆m
L )

if for each x ∈ X whose set C(x) is infinite there are pairwise disjoint xn ∈ C(x) and

scalars λn such that the sequence {λnxn} is not order bounded in X.

If a vector lattice X does not have quasi-atoms, i.e., each non-zero element x in X has

infinitely many components, then Definitions 2.6.1 and 2.6.2 are equivalent. In general,

however, condition (∆L) is stronger than (∆m
L ), but in most situations, even when these

two conditions are not equivalent, exactly the latter condition is needed.

The requirement in Definition 2.6.2 that we have to deal with the components of

elements is also rather restrictive (for the same reason as explained above that some

elements may not have non-trivial components); and the next definition describes a larger

class of vector lattices.

Let us say that an element x of a vector lattice X is infinite-dimensional if the

principal ideal X(x) generated by x is infinite-dimensional, or equivalently, if x cannot

be represented as a finite sum of atoms in X.

2.6.3. Definition. We will say that a vector lattice X satisfies the weak Luxemburg

condition (∆w
L ) if for each infinite-dimensional u ∈ X the principal ideal X(u) contains

a disjoint sequence which is not order bounded in X.

2.6.4. Proposition. Let X be a vector lattice. Assume one of the following two condi-

tions.

(1) X is weak Freudenthal (see Definition 2.1.3).

(2) X has the countable sup property (Definition 2.1.5) and a cofinal family of com-

ponents (Definition 2.1.4).

Then the conditions X ∈ (∆m
L ) and X ∈ (∆w

L ) are equivalent.

(4) Because for any atom a ∈ X the set C(a) is trivial, and hence condition (∆L) fails
automatically for such a.
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Proof. It is obvious that condition (∆m
L ) implies (∆w

L ) without any extra assumptions

about the vector lattice. Only the implication (∆w
L )⇒(∆m

L ) is non-trivial.

(1) X ∈ (WF). Take an arbitrary u ∈ X with infinite set C(u) of components and

assume, contrary to what we claim, that for any pairwise disjoint components un of u and

for any scalars λn the sequence {λnun} is order bounded in X. This implies immediately

that if {vn} is a sequence whose terms are pairwise disjoint and each vn is a linear

combination of pairwise disjoint components of u, then {vn} is also order bounded in X.

We will show that this contradicts our hypothesis that X satisfies (∆w
L ).

Fix an arbitrary disjoint sequence {zn} in X(u). Because X satisfies (WF) we can

find elements vn ∈ X such that each vn is a finite linear combination of components of

u, vn ∈ {zn}
dd, and

(1) |vn − zn| < u.

Consider now the sequence {vn−zn}. In view of (1) this sequence is order bounded by

the element u and also has pairwise disjoint terms. At the same time, since the elements vn
are pairwise disjoint and each vn is a linear combination of pairwise disjoint components

of u, as we noted above, our hypothesis that X fails condition (∆m
L ) implies that the

sequence {vn} is order bounded. This clearly implies that the sequence {zn} is also order

bounded, a contradiction.

(2) X ∈ (CFC)∩(CSP). Let u ∈ X and let un be pairwise disjoint positive elements in

X(u) such that the sequence {un} is not order bounded inX. BecauseX ∈ (CFC)∩(CSP)

for any n ∈ N we can find pairwise disjoint positive elements uk,n, k ∈ N, and positive

scalars λk,n such that

• uk,n is a component of u,

• {uk,n}
dd ⊂ {u}dd, k ∈ N,

• the system of bands {uk,n}
dd, k ∈ N, is full in the band {un}

dd,

• (λn,kun,k − un)− ⊥ {un,k}
dd, k, n ∈ N.

Then clearly the system {λn,kun,k} is not order bounded in X.

2.6.5. Remark. We do not know whether the statement of Proposition 2.6.4 remains

true if we assume only that X has a cofinal family of components, or even that X has

a cofinal family of projection bands. However, as the following example shows, without

some conditions related to the existence of band projections, the statement becomes false

even if the vector lattice X is ru-complete.

2.6.6. Example. There exists an ru-complete vector lattice X that satisfies condition

(∆w
L ) but does not satisfy condition (∆m

L ).

Proof. Let K = Q× [0, 1], where Q is an arbitrary σ-Stonean (= basically disconnected

compact) space without isolated points.

Consider the vector lattice X of all functions on K that are continuous on K except,

maybe, on a set N × [0, 1], where N is a nowhere dense subset of Q depending on x ∈ X.

It is not difficult to see that the vector lattice X is ru-complete and does not satisfy

condition (∆m
L ). One can take the constantly one function for an element violating (∆m

L ).

Nevertheless, clearly, X ∈ (∆w
L ).
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The introduced conditions (∆w
L ) and even (∆m

L ) are much weaker than the de Pagter

condition (∆P). Here is an appropriate example.

2.6.7. Example. There exists an ru-complete vector lattice X that satisfies condition

(∆m
L ) but does not satisfy condition (∆P).

Proof. For each n ∈ N let Xn be an arbitrary atomless Banach lattice, and hence

each Xn satisfies (∆m
L ). Consider the vector lattice X consisting of all sequences x =

(x1, . . . , xn, . . .), where xn ∈ Xn. The order and linear operations in X are coordinate-

wise. We claim that X has the required properties. It is obvious that X is ru-complete.

(Moreover, X is Dedekind complete if each Xn is, in particular in this case X satisfies

(∆w
L ).)

Fix an arbitrary zn ∈ Xn and consider the sequence xn = (0, . . . , 0, zn, 0, . . .) in X.

For any scalars λn the element x = (λ1z1, . . . , λnzn, . . .) belongs to X, and consequently

the sequence {λnxn} is order bounded in X. That is, X does not satisfy (∆P).

Finally, let us verify that the vector lattice X satisfies (∆m
L ). Take any non-zero x =

(x1, . . . , xn, . . .) ∈ X. At least one of the coordinates of x, say xn, is non-zero. Therefore,

since Xn is atomless, we can find a disjoint sequence {yk} of non-trivial components of xn.

Consequently, for large enough scalars λk the sequence {λkyk} is not order bounded inXn.

This implies that X satisfies (∆m
L ).

Our next lemma is a simple technical result that will be used later on.

2.6.8. Lemma. Let X be a vector lattice and for some x ∈ X let the principal ideal Xx

have the principal projection property. Then each positive element u ∈ B = {x}dd can be

represented as a supremum of a disjoint sequence in Xx.

Proof. For each n ∈ N consider the element (nx − u)+, which is obviously in Xx. Since

Xx has the principal projection property, there exists the band projection Pn on the band

(nx−u)+. Let un = Pn(u∧nx). We omit a straightforward verification that the elements

um − um−1, where u0 = 0, are pairwise disjoint and their supremum equals u.

Now we are ready to prove an important theorem characterizing the vector lattices

with condition (∆w
L ). A part of this theorem was stated without proof in [5, Proposi-

tion 15.1]. For Dedekind complete vector lattices this was proved in [5, Proposition 14.4].

The fact is crucial for many results proved in [5, Section 15], as well as for some of our

results below.

2.6.9. Theorem. Let X ∈ (LC1). The following conditions are equivalent:

(a) X satisfies condition (∆w
L ).

(b) X does not contain any infinite-dimensional laterally σ-complete projection band.

Proof. The implication (a)⇒(b) is trivial. Indeed, if X contains a non-trivial laterally

σ-complete projection band, then certainly X cannot satisfy (∆w
L ). This implication does

not require that X ∈ (LC1).

To prove the converse suppose, contrary to what we claim, that X /∈ (∆w
L ). This

means that there exists an infinite-dimensional element x ∈ X+ such that

(∗) each disjoint sequence {xn} in Xx is order bounded in X.
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We will establish a contradiction to (b) by showing that the principal band B = {x}dd

is a laterally σ-complete projection band.

We begin by verifying that (∗) implies the following property (formally much stronger

than (∗))

(∗∗) each disjoint sequence {zn} in Xx has a supremum in X.

Consider a sequence of scalars εn ց 0 and a sequence {zn} of disjoint positive elements

in Xx. In view of (∗) the sequence {ε−1
n zn} is order bounded in X by some element z.

BecauseX ∈ (LC1) we can choose the scalars εn in such a way that the element
∑∞
n=1 ⊕zn

exists in X.

Property (∗∗) clearly implies that Xx is conditionally laterally σ-complete. In par-

ticular, Xx has the principal projection property and, hence, satisfies the hypotheses of

Lemma 2.6.8.

Next we will show that the band B = {x}dd is laterally σ-complete. Take any disjoint

sequence {un} in B+. By Lemma 2.6.8 for each n there exists a disjoint sequence {unk}k
in Xx such that un = supk unk.

Consider the set {unk : n, k ∈ N}. This is a disjoint sequence in Xx and hence by (∗∗)

there exists u = sup{unk : n, k ∈ N} ∈ X. But obviously

u = sup{unk : n, k ∈ N} = sup
n

sup
k

unk = sup
n
un,

that is, B is indeed laterally σ-complete.

2.6.10. Corollary. An ru-complete vector lattice X satisfies condition (∆w
L ) if and only

if X does not contain an infinite-dimensional universally σ-complete projection band.

If instead of disjoint sequences we consider arbitrary disjoint sets, then the following

modification of Corollary 2.6.10 is true. The proof is similar and is omitted.

2.6.11. Theorem. Let X be an ru-complete vector lattice. The following conditions are

equivalent :

(a′) For each infinite-dimensional u ∈ X the principal ideal Xu contains a disjoint

set that is not order bounded in X.

(b′) X does not contain any infinite-dimensional universally complete projection band.

It is natural to ask whether or not the assumption that X ∈ (LC1) is essential in

Theorem 2.6.9, that is, if (b) implies (a) in general vector lattices. We do not know

whether the assumption X ∈ (LC1) can be replaced by X ∈ (LC3) or even by X ∈ (LC2)

but the next example shows that without any assumption of this kind the answer is

negative, even if we require additionally that X satisfies (WF), or even that X has the

projection property.

2.6.12. Example. There exists a vector lattice X that has the projection property and

satisfies (b) but does not satisfy (a), that is, X does not contain any (infinite-dimensional)

laterally σ-complete projection band but, nevertheless, X fails (∆w
L ).

Proof. Let Y = L∞[0, 1]. According to [5, Corollary 13.6] there exists a vector sublattice

X of the vector lattice L0[0, 1] and a d-isomorphism T from X onto Y such that T is not

regular. We claim that the vector lattice X provides a desired counterexample.
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Since the projection property is preserved by d-isomorphisms and since, obviously, Y

has the projection property, we can conclude that the vector lattice X has the projection

property and, in particular, X ∈ (WF).

Let us verify next thatX cannot satisfy (∆m
L ). Indeed, otherwise by Corollary 5.3.2 (5)

the d-isomorphism T would be regular contrary to our choice of T . Therefore, by Propo-

sition 2.6.4, X cannot satisfy (∆w
L ) either.

Finally, X cannot have an infinite-dimensional laterally σ-complete band, because

otherwise the vector lattice Y would, since each d-isomorphism preserves such bands.

3. d-universal domains

The title of this section is explained by the contents of its two subsections.

3.1. Domains on which each disjointness preserving operator is regular. The

main result of this subsection is the following theorem.

3.1.1. Theorem. For a vector lattice X the following conditions are equivalent :

(1) Each disjointness preserving operator T : X → Y into an arbitrary vector lattice

Y is regular.

(2) Each disjointness preserving operator T : X → X is regular.

(3) Each injective disjointness preserving operator T : X → Y into an arbitrary

vector lattice Y is regular.

(4) For any x, z ∈ X such that |z| ≤ |x| the element z is a finite linear combination

of components of x.

(5) For any x ∈ X the Krein–Kakutani space Kx is zero-dimensional and the princi-

pal ideal Ix is order isomorphic to the vector lattice of all finite-valued continuous

functions on Kx.

Proof. The implications (1)⇒(2) and (1)⇒(3) are trivial.

(2)⇒(4). Assume (2) and assume to the contrary that there are x, z ∈ X+ such that

z ≤ x but z is not a finite linear combination of components of x. Let Q be the Stone

space of X; then X can be identified with a vector sublattice of C∞(Q) in such a way

that x is identified with the characteristic function of a clopen subset E of Q. Because z

cannot be represented as a finite linear combination of components of x there is a point

q ∈ E such that on any open neighborhood of q the function z is not constant. Let J be

the ideal in X defined as J = {u ∈ X : u ≡ 0 on some open neighborhood of q}. Let Ẋ

be the factor X/J . The elements ẋ and ż are linearly independent in Ẋ and therefore

there is a linear functional F on Ẋ such that F (ẋ) = 0 and F (ż) = 1. Let G be a linear

functional on X defined as G(u) = F (u̇). Finally, let T be a linear operator from X to X

defined as Tu = G(u)x. The operator T preserves disjointness. Indeed, if u, v ∈ X and

u ⊥ v then at least one of the functions u and v is equal to 0 in some open neighborhood

of q because Q is extremally disconnected. But the operator T is not regular because it

obviously does not satisfy condition (3) in Theorem 2.3.2.

(5) A reference “forward”, but the proof of Corollary 5.3.2 does not depend on Ex-
ample 2.6.12.
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(3)⇒(4). Let T be the operator constructed in the previous step of the proof and let

us define an operator S : X → X⊕X as Su = (Tu, u). Then S is an injective disjointness

preserving operator but it is not regular.

The implication (4)⇒(1) follows immediately from Theorem 2.3.2.

Finally, the equivalence (4)⇔(5) follows from the fact that if we represent the principal

ideal Ix as a vector sublattice of C(Kx) then the functions from Ix separate the points

of Kx and if x is represented as the function 1 then the characteristic function of any

clopen subset of Kx is in Ix.

We want to emphasize an important special case of Theorem 3.1.1:

3.1.2. Corollary. Let X ∈ (LC4) (see Definition 2.2.5). Then the following conditions

are equivalent :

(1) Every d.p.o. T : X → Y into an arbitrary vector lattice Y is regular.

(2) Every d.p.o. T : X → X is regular.

(3) Every injective d.p.o. from X into an arbitrary vector lattice Y is regular.

(4) Every element in X is a finite sum of atoms.

(5) There is a set Γ such that the vector lattice X is order isomorphic to the vector

lattice c00(Γ ) of all functions on Γ which take a non-zero value only on a finite

subset of Γ . In particular we see that X is a relatively uniformly complete vector

lattice.

The next question connected with Theorem 3.1.1 remains open.

3.1.3. Problem. Are conditions (1)–(5) in Theorem 3.1.1 equivalent to (2′) below?

(2′) Every injective d.p.o. T : X → X is regular.

Or, in other words, the problem is to describe the class of all vector lattices such that

every injective d.p.o. from such a lattice into itself is regular.

3.1.4. Remark. The proof of Theorem 3.1.1 shows that if a vector lattice X satisfies

the additional condition that for some vector lattice Z the vector lattice X ⊕ Z is order

isomorphic to a vector sublattice of X then condition (2′) is equivalent to conditions

(1)–(5).

In particular, Banach lattices like lp, Lp(0, 1), or C[0, 1] provide examples where there

exists an injective non-regular d.p.o. from the vector lattice into itself. Notice that by

the Huijsmans–de Pagter–Koldunov theorem [25, 28] for any such endomorphism T on a

Banach lattice we have x ⊥ z ⇔ Tx ⊥ Tz.

3.2. Domains on which x ⊥ z ⇔ Tx ⊥ Tz for each injective disjointness pre-

serving operator T . Here we discuss a wider class of domains, namely the class of

all vector lattices X such that for an arbitrary vector lattice Y and an injective d.p.o.

T : X → Y we have

x ⊥ z ⇔ Tx ⊥ Tz.

Let us denote this class of vector lattices as UI.
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3.2.1. Theorem. Let X be a vector lattice. Then:

(1) X ∈ UI ⇒ d-dimX = 1.

(2) If we additionally assume that X ∈ (CFC) then

X ∈ UI ⇔ d-dimX = 1.

Proof. (1) Assume that d -dimX > 1. By Proposition 2.4.9 there are x, z ∈ X, |z| ≤ |x|,

and a band B ⊂ X such that PBx and PBz are d-independent in Xu.

Without loss of generality we can assume that for any u ∈ X and for any band

V ⊂ X such that u 6⊥ V there is a non-zero semicomponent (see Definition 2.4.1) v of u

such that v ∈ V . Indeed, otherwise [8, Theorem 4.2] there is a band preserving injective

operator T : X → Xu such that the inverse operator T−1 : TX → X does not preserve

disjointness.

Let a be a non-zero semicomponent of z in B and let b be a non-zero semicomponent

of x in {a}dd. Then clearly a 6⊥ b and a and b are d-independent. The proof of Theorem

13.8 in [5] shows that there are a vector lattice Y and a disjointness preserving bijection

T : Xu → Y such that Ta ⊥ Tb. The restriction S = T |X : X → Y is an injective d.p.o.

and Sa ⊥ Sb though a 6⊥ b.

(2) The implication

(X ∈ (CFC) and d -dimX = 1) ⇒ X ∈ UI

is exactly the statement of Theorem 11.2 from [5].

As the following example shows, the assumption X ∈ (CFC) in part (2) of the state-

ment of Theorem 3.2.1 cannot be dropped.

3.2.2. Example. Let C⋆[0, 1] be the Banach dual of C[0, 1] identified as usual with the

Banach space of all finite regular Borel measures on [0, 1]. Let Y be the band of all

singular (with respect to the Lebesgue measure) continuous measures in C⋆[0, 1]. We

define a linear operator S : Y → C[0, 1] in the following way:

Sµ(t) = µ([0, t]), µ ∈ Y, t ∈ [0, 1].

Notice that S is injective. Let X = SY . Then X consists of all functions of bounded

variation on [0, 1] such that the union of the intervals where such a function is constant

has Lebesgue measure 1.

It is immediate to see that X is a vector sublattice of C[0, 1] and that d -dimX = 1.

Let T : X → Y be the inverse of S. Then T is a bijective d.p.o. but its inverse S does

not preserve disjointness. Moreover, we can see directly or from Theorem 4.13 in [6] that

T 6∈ (⋔).

In connection with Theorem 3.2.1 and Example 3.2.2 the following problem naturally

arises.

3.2.3. Problem. Describe the class UI.

Let us mention two more specific subproblems of Problem 3.2.3:

(1) Let X = EC(0, 1) be the vector lattice of all essentially constant continuous

functions on [0, 1] (the union of the intervals of constancy of such a function is

dense in [0, 1]). This vector lattice is d-rigid [10, Corollary 4.4] but we do not

know if it belongs to the class UI.
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(2) Let K be a connected compact Hausdorff space such that EC(K) = C(K). An ex-

ample of such a space is provided by βR+\R+, which is a connected F -space such

that any Gδ subset of it has non-empty interior (see [21, Section 14.27] and [23,

p. 320]). For a different example see [17, Example 3.9]. Then d -dimC(K) = 1 but

we do not even know whether C(K) is d-rigid.

4. d-rigid vector lattices. General case

The main result of this section is the following theorem.

4.0.1. Theorem. I. Let X,Y be vector lattices and T : X → Y be a disjointness preserving

bijection such that T ∈ (⋔) and the inverse T−1 does not preserve disjointness. Then there

is a positive a ∈ X for which:

(1) The Krein–Kakutani space K = Ka is zero-dimensional.

(2) There is a family {Kα}α∈[0,1] of clopen subsets of K such that :

• K0 = ∅ and K1 = K.

• Kα ( Kβ for 0 ≤ α < β ≤ 1.

• Aα = Kα\
⋃
β<αKβ and Bα = (

⋂
β>αKβ)\Kα are nowhere dense in K.

II. Conversely, if there is a zero-dimensional compact spaceK and a family {Kα}α∈[0,1]

of its clopen subsets with the properties listed in I(2), then there are vector lattices X,Y

and a disjointness preserving bijection T : X → Y such that X is a vector sublattice of

C(K), X separates points of K and contains the constant functions, T ∈ (⋔), and T−1

does not preserve disjointness.

Proof. I(1). Let a, b ∈ X be as in the statement of Lemma 2.5.7. Without loss of generality

we can assume that Ta ≥ 0. We will identify a with the function 1 on Ka, and elements

of the principal ideal Ia with the corresponding functions from C(Ka). For any point

t ∈ Ka let C(t) be the connected component of t. We have to prove that for any t the set

C(t) is a singleton. Assume to the contrary that there are p, q ∈ Ka such that p 6= q and

q ∈ C(p). Let u, v be elements of Ia such that

• u ≡ v ≡ a in some open neighborhood of p,

• supp v ⊂ {t : u(t) = 1},

• q 6∈ supp u.

First let us notice that because Ta ⊥ Tb and Ta−Tu ⊥ Tv we have |Tb|∧|Tu|∧|Tv| = 0.

Let w = (T−1(|Tu| ∧ |Tv|) ∧ a) ∨ (−a). Then w ∈ Ia and, by Lemma 2.5.9, Tb ⊥ Tw.

We claim that w ≡ a in some open neighborhood of p. Indeed, let W be a regularly

open neighborhood of p such that v ≡ a on W . Let ũ be the band in Ia of all functions

with support in W and let U = {Ũ}dd be the corresponding band in X. Then v− a ⊥ U

and u− a ⊥ U , whence Tu− Ta ⊥ TU and Tv − Ta ⊥ TU . Because Ta ≥ 0 we see that

|Tu| − Ta ⊥ TU and |Tv| − Ta ⊥ TU , whence (|Tu| ∧ |Tv|) − Ta ⊥ TU . Recalling that

T ∈ (⋔) we obtain T−1(|Tu| ∧ |Tv|) − a ⊥ U and it follows from the definition of w that

w − a ⊥ U , whence our claim is proved.
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Next let us notice that because v ∈ {u}dd and T{u}dd is a band in Y we have

T−1(|Tu| ∧ |Tv|) ∈ {u}dd, whence w ∈ {u}dd and w(q) = 0. By Lemma 2.5.6, w can be

uniformly approximated by linear combinations of components of b. But that is impossible

because C(p) is a connected subset of Ka, b ≡ b(p) on C(p), w(p) = 1, and w(q) = 0.

I(2). The set b(Ka) is a closed subset of R and it does not have isolated points. Indeed,

if t were an isolated point in b(Ka) then E = b−1(t) would be a clopen non-empty subset

of Ka and b ≡ t on E. That clearly contradicts the assumption that Ta ⊥ Tb. Therefore

card(b(Ka)) = c. Let γ ∈ b(Ka) and min b(Ka) < γ ≤ max b(Ka). Consider u = b ∧ αa.

By Lemma 2.5.4, u = u1 ⊕ u2 where u1 is a component of b. Let Eγ = supp u1; then Eγ
is a clopen non-empty subset of Ka. Let Emin b(Ka) = ∅. Finally, let us take Kα = Eψ(α)

where ψ is a one-to-one map of [0, 1] onto b(Ka).

II. It was proved in [8, Proof of Theorem 5.8] that
⋃
α∈[0,1]

(
Aα ∪Bα

)
= K and that

the function f defined as f(t) = α if t ∈ Aα ∪ Bα is a well defined continuous function

on K. Let us consider the following three vector subspaces of C(K):

•X1, the set of all finite linear combinations of components of the constant function 1;

• X2, the set of all finite linear combinations of components of the function f ;

• X, the linear hull of X1 and X2.

Obviously X1 and X2 are vector sublattices of C(K), and it is not difficult to see from

the definition of f and the properties of the sets Kα that X is also a vector sublattice of

C(K). Let us define band preserving projections P and Q on X in the following way. If

x ∈ X and x ≡ c1 + df on a clopen subset E of K then Px ≡ c1 on E and Qx ≡ df

on E. The operator P ⊕ Q : X → X1 ⊕X2 is a bijective d.p.o. but its inverse does not

preserve disjointness.

4.0.2. Theorem. Let X,Y be vector lattices and T : X → Y be a d-isomorphism. Assume

that T is not regular. Then there is a ∈ X such that the Krein–Kakutani compact space

Ka satisfies conditions I(1, 2) of Theorem 4.0.1.

Proof. Because the operator T is not regular there are elements x, y ∈ X such that

0 ≤ x ≤ y but (|Tx|−|Ty|)+ 6= 0. It follows easily from the fact that T is a d-isomorphism

that z = T−1((|Tx|−|Ty|)+) ∈ Iy. We identify z with a function from C(Ky). Let t ∈ Ky,

|z(t)| > 0, and 0 < x(t) < y(t).

We claim that the point t has a base of clopen neighborhoods. To prove this let U, V ,

and W be open neighborhoods of t such that min(|z(s)|, x(s), y(s)−x(s)) > 0 for s ∈ clU ,

clV ⊂ U , and clW ⊂ V . Let u, v be elements of Iy such that

• supp u ⊂ U and 0 ≤ u ≤ y,

• u ≡ y on V ,

• supp v ⊂ V and 0 ≤ v ≤ x,

• v ≡ x on W .

Let w = T−1(|Tu| ∨ |Tv|). Because T is a d-isomorphism we see that

• for any k ∈ Ky either |w(s)| = x(s) or |w(s)| = y(s),

• |w(s)| ≡ x(s) on W ,

• |w(s)| ≡ y(s) on V \ supp v.
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Recalling that x(s) < y(s) on clU we deduce that there is a clopen neighborhood Z of t

such that Z ⊂ U and our claim is proved.

It follows immediately from what we have just shown that without loss of generality

we can assume that the compact space Ky is zero-dimensional and that 0 ≤ x ≤ y but

|Ty| ≤ |Tx|. We identify |Tx| with the constant function 1 on K|Tx|, and |Ty| with a

function from C(K|Tx|). We can see immediately that the set E = |Ty|(K|Tx|) does not

have isolated points. Let minE < α < maxE, vα = 1
α
|Ty|∧ |Tx|, and uα = T−1vα. Then

|uα| = wα + zα where wα and zα are non-zero components of 1
α
|y| and |x|, respectively.

Clearly, supp zα is a clopen subset of Kx and we can finish the proof exactly like the one

of Theorem 4.0.1.

4.0.3. Corollary. Let K be a compact Hausdorff space and X be a vector subspace of

C(K) such that X separates points of K and contains the constant functions. Let Y be a

vector lattice and T : X → Y be a bijective d.p.o. such that T ∈ (⋔). Assume additionally

that K is either locally connected or metrizable. Then the operator T is regular and the

vector lattices X and Y are order isomorphic.

4.0.4. Corollary. Let K be a compact Hausdorff space with a π-base of clopen subsets.

Assume additionally that either

(1) no clopen subset of K is zero-dimensional, or

(2) K is metrizable.

Let X be a vector sublattice of C(K) that separates points of K. Then X is super d-rigid.

4.0.5. Remark. Comparing Theorem 2.3.2 and Corollary 2.3.3 with Theorem 5.8 and

Corollary 5.9 in [8], which provide the same results in the case of arbitrary band preserv-

ing operators, one feels that all of these results should follow from some more general

statement.

4.0.6. Remark. The vector lattice X described in the proof of part II of Theorem 4.0.1

has the principal projection property, and this fact gives rise to the question whether every

vector lattice which is not d-rigid has a band with the principal projection property. The

answer is negative: the vector lattice X described in Example 5.15 in [8] is not d-rigid

and no band in it has the principal projection property. Moreover X ∈ (LC4).

5. Weakly c0-complete domains

5.1. The main results. Let us remind the reader that by Definition 2.2.9 weakly

c0-complete vector lattices are exactly the lattices from the class (LC3) introduced in

Definition 2.2.5.

The results of this section can be divided into three groups.

I. When is a bijective d.p.o. T ∈ (⋔) a d-isomorphism? When is the domain X

d-rigid?

5.1.1. Theorem. Let X ∈ (LC3).

(1) Assume that for every conditionally laterally σ-complete projection band U in X

we have d-dimU = 1. Then for every vector lattice Y and for every bijective
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d.p.o. T : X → Y,

T ∈ (⋔) ⇒ T is a d-isomorphism.

(2) Assume that X contains a conditionally laterally complete projection band U such

that d-dimU > 1. Then there exist a vector lattice Y and a bijective d.p.o. T :

X → Y such that T ∈ (⋔) but T−1 does not preserve disjointness.

Recalling that on a vector lattice with a cofinal family of components every injective

d.p.o. satisfies condition ⋔ we immediately get the following corollary.

5.1.2. Corollary. Let X ∈ (CFC) ∩ (LC3).

(1) Assume that for every conditionally laterally σ-complete projection band U in X

we have d-dimU = 1. Then X is d-rigid.

(2) Assume that X contains a conditionally laterally complete projection band U such

that d-dimU > 1. Then X is not d-rigid.

5.1.3. Theorem. Let X,Y be vector lattices and X ∈ (LC3).

(1) Let T : X → Y be a bijective d.p.o. and let T ∈ (⋔). Assume that T−1 does not

preserve disjointness and that one of the following additional conditions holds :

(a) d(T ) > 2,

(b) Y ∈ (LC3).

Then X contains a laterally σ-complete band.

(2) Assume that X contains a laterally complete band U such that d-dimU ≥ n ≥ 2.

Then there are a vector lattice Y ∈ (LC3) and a bijective d.p.o. T such that

T ∈ (⋔) and d(T ) = n. Moreover, if d-dimU = ∞ the operator T can be chosen

in such a way that d(T ) = ∞.

II. When is a d-isomorphism regular?

5.1.4. Theorem. Let X be a vector lattice and let X ∈ (LC3).

(1) Assume that for any projection band U in X with the principal projection property

we have d-dimU = 1. Then every d-isomorphism T : X → Y where Y is an

arbitrary vector lattice is regular. In particular every vector lattice d-isomorphic

to X is also order isomorphic to it.

(2) Assume that X contains a projection band U with the projection property and that

d-dimU > 1. Then there are a vector lattice Y and a d-isomorphism T : X → Y

such that T is not regular.

5.1.5. Theorem.

(1) Let X,Y be vector lattices from the class (LC3). Assume that for every laterally σ-

complete band U in X (or in Y ) we have d-dimU = 1. Then every d-isomorphism

T : X → Y is regular and X and Y are order isomorphic.

(2) Let X be a vector lattice. Assume that X contains a laterally complete band U

such that d-dimU > 1. Then there is a d-isomorphism T : X → X such that T

is not regular.
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5.1.6. Corollary. Let X be a vector lattice such that X ∈ (LC3) and for any laterally

σ-complete band U ⊂ X, d-dimU = 1. Let P : X → X be a band preserving projection.

Then P is regular and therefore a band projection.

Proof. I + P is a d-isomorphism of X onto itself and it is regular by Theorem 5.1.5.

From Corollary 5.1.6 and Theorem 8.5 in [5] we immediately obtain

5.1.7. Corollary. Let X ∈ (LC3) and let Y have a cofinal family of projection bands

(i.e. for any non-zero band U ⊂ X there is a non-zero V ⊂ U such that V is a projection

band in X). Let T : X → Y be a bijective d.p.o. Then T is a d-isomorphism.

III. When is every bijective d.p.o. T ∈ (⋔) regular? When is the domain X

super d-rigid?

Combining the results from I and II we obtain the following theorem.

5.1.8. Theorem. Let X be a vector lattice and let X ∈ (LC3). Assume that for every

projection band U in X with the principal projection property we have d-dimU = 1. Let

Y be a vector lattice, T : X → Y be a bijective d.p.o., and let T ∈ (⋔). Then T is regular.

If we assume additionally that X ∈ (CFC) then X is super d-rigid.

IV. Comments and remarks

In all the results stated above we see a gap between necessary and sufficient conditions

for a vector lattice to be d-rigid, super d-rigid, et cetera. The necessary conditions involve

the absence of non-trivial projection bands which are laterally complete, conditionally

laterally complete, or just have the projection property. In the sufficient conditions we

have to require the absence of non-trivial projection bands which are laterally σ-complete,

conditionally laterally σ-complete, or have the principal projection property. This gap

would be filled if we could answer the following question in the affirmative.

5.1.9. Problem. Let X be a laterally σ-complete vector lattice and let d -dimX > 1. Is

there a non-regular band preserving projection P on X? (6)

For two important classes of vector lattices:

• vector lattices with the projection property, in particular Dedekind complete vector

lattices,

• vector lattices with the countable sup property,

the gap is automatically filled in and the results become exact. We will state them ex-

plicitly in Section 6.

The statement of part (2) of Theorem 5.1.3 can be complemented in the following

way. Let U be a laterally complete vector lattice. There is a band V ⊂ U with a d-basis

(see e.g. [4, Definition 4.6]) {xγ : γ ∈ Γ} where each xγ is a weak unit in V . This was

proved in [5, Theorem 6.4] for universally complete vector lattices but the proof remains

unchanged for laterally complete ones.

(6) Recent discussions of this question with J. van Mill and A. W. Wickstead made the
second author believe that the answer to Problem 5.1.9 should be negative.
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5.1.10. Proposition. There are a vector lattice Y and a bijective d.p.o. T : U → Y such

that the elements Txγ , γ ∈ Γ , are pairwise disjoint.

5.2. Proofs of Theorems 5.1.1 and 5.1.3. We will divide the proofs into several steps-

lemmas.

5.2.1. Lemma. Let X,Y be vector lattices, X ∈ (LC3), and T : X → Y be a bijective

d.p.o. Assume that T ∈ (⋔) and that T−1 does not preserve disjointness. Then X con-

tains a conditionally laterally σ-complete principal projection band U = {a}dd such that

d-dimU > 1 and the Krein–Kakutani space Ka is basically disconnected.

Proof. By Theorem 4.0.1 there are non-zero elements a, b ∈ X such that 0 ≤ a ≤ b ≤ 2a,

Ta ⊥ Tb, and the spaceKa is zero-dimensional. Moreover, by Lemma 2.5.7 we can assume

without loss of generality that either

(1) Ta ≥ 0 and Tb ≥ 0, or

(2) Ta ≥ 0 and Tb ≤ 0.

Let us start with case (1). In this case we will prove that the band U = {a}dd is not

only conditionally laterally σ-complete but even laterally σ-complete and therefore, by

Theorem 2.2.2, a projection band in X. Let un, n ∈ N, be a sequence of pairwise disjoint

positive elements in U . We have to prove that the element u =
∑∞

n=1 ⊕un exists in U . For

any m ∈ N let un,m = un ∧ma. Then un,m ∈ Ia and we can consider open subsets of Ka,

On,m = {t ∈ Ka : m− 1 < un,m(t) < m}.

Clearly the sets On,m are pairwise disjoint (some of them might be empty). Recalling that

the space Ka is zero-dimensional we see that for each n,m ∈ N we can find clopen subsets

En,m,k, k ∈ N, of the set On,m such that
⋃∞
k=1En,m,k = On,m. Let {εn,m,k : n,m, k ∈ N}

be a set of positive scalars such that εn,m,k → 0 as n + m + k → ∞. Because the

sets En,m,k are zero-dimensional we can find non-negative elements an,m,k and bn,m,k
such that an,m,k and bn,m,k are finite linear combinations of components of aχn,m,k and

bχn,m,k, respectively, and

(∗) |an,m,k − un,mχEn,m,k
| + |bn,m,k − un,mχEn,m,k

| ≤ εn,m,kχEn,m,k
.

Because X ∈ (LC3) we can choose the scalars εn,m,k in such a way that the element

v =
∑
n,m,k∈N

⊕(an,m,k − bn,m,k) exists in X. By Lemma 2.5.11,

Tv =
∑

n,m,k∈N

⊕(T (an,m,k) − T (bn,m,k)).

Recalling that Ta ⊥ Tb and that Ta, Tb ≥ 0 we see that

|Tv| =
∑

n,m,k∈N

⊕(T (an,m,k) + T (bn,m,k)).

Applying again Lemma 2.5.11 we obtain

T−1(|Tv|) =
∑

n,m,k∈N

⊕(an,m,k + bn,m,k).

Therefore the element
∑
n,m,k∈N

⊕an,m,k exists in X. Taking into consideration the in-

equality (∗) we see that u =
∑∞
n=1 ⊕un exists in X.
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Let us now consider case (2). We will divide the proof that X contains a non-trivial

conditionally laterally σ-complete projection band into several steps.

(2a) Let {ai : i ∈ N} be a countable set of pairwise disjoint components of a. We claim

that the element
∑∞
n=1 ⊕ai exists in X. Because X ∈ (LC3) and Ka is zero-dimensional

we can find non-negative elements bi ∈ X such that for each i, bi is a finite linear

combination of components of b and the element c =
∑∞
i=1 ⊕(bi − ai) exists in X. By

Lemma 2.5.11, Tc =
∑∞
i=1 ⊕(Tbi−Tai) and because Ta ⊥ Tb, Tc =

∑∞
i=1 ⊕(Tbi⊖Tai).

Let d = a+ c. Then

Td = Ta+
∞∑

i=1

⊕Tbi −
∞∑

i=1

⊕Tai.

Because Tai is a component of Ta for each i and because Ta ≥ 0 and Tb ≤ 0 we see that

(Td)− =
∑∞
i=1 ⊕Tbi. By Lemma 2.5.11, again,

T−1((Td)−) =
∞∑

i=1

⊕bi,

whence
∑∞
i=1 ⊕ai exists in X.

(2b) In this step we want to prove that for any countable set {ai : i ∈ N} of compo-

nents of a and for any scalars λi, i ∈ N, such that 0 ≤ λi ≤ 1, the element
∑∞

i=1 ⊕λiai
exists in X. As in the previous step we can find elements bi such that bi is a finite linear

combination of components of b and the elements
∑∞

i=1 ⊕(bi−ai) and
∑∞
i=1 ⊕λi(bi−ai)

exist in X. By step (2a) the element
∑∞
i=1 ⊕(ai + bi) exists in X, whence

u =
∞∑

i=1

⊕

(
1 + λi

2
ai +

1 − λi
2

bi

)

also exists in X. Let w = T−1(|Tu|). Recalling that Ta ⊥ Tb, Ta ≥ 0, and Tb ≤ 0 and

applying Lemma 2.5.11 we see that

w =

∞∑

i=1

⊕

(
1 + λi

2
ai −

1 − λi
2

bi

)
.

It remains to notice that

z =
∞∑

i=1

⊕
1 − λi

2
(ai − bi)

exists in X and that w − z =
∑∞
i=1 ⊕λiai.

(2c) We will now prove that if un, n ∈ N, are pairwise disjoint elements of X and

0 ≤ un ≤ a then
∑∞
n=1 ⊕un exists in X. Indeed, we can find numbers m(n) ∈ N, pairwise

disjoint components an,i of a, n ∈ N, 1 ≤ i ≤ m(n), and scalars λn,i such that 0 ≤ λn,i ≤ 1

and the element
∞∑

n=1

⊕
(
un −

m(n)∑

i=1

λn,ian,i

)

exists inX. But
∑∞
n=1

∑m(n)
i=1 ⊕λn,ian,i exists inX by step (2b), whence our claim follows.

(2d) In this step we will prove that the band U = {a}dd is conditionally laterally

σ-complete. Assume that elements un ∈ U are pairwise disjoint and 0 ≤ un ≤ u where

u ∈ U . Let vn = u ∧ na, w1 = v1, and wn = vn ⊖ vn−1 for n ≥ 2. Then wn are pairwise

disjoint elements in Ia. Approximating wn by finite linear combinations of components

of a or b and recalling that X ∈ (LC3) and T ∈ (⋔) we can easily construct elements ã
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and b̃ in X such that u ≤ ã ≤ b̃ ≤ 2ã and T ã ⊥ T b̃. Now we see that
∑∞

n=1 ⊕un exists in

X by step (2c) applied to the ideal Iã instead of Ia.

(2e) The fact that the space Ka is basically disconnected follows immediately from

step (2d). Indeed, if O is a cozero set in Ka then O =
⋃∞
n=1 Fn where Fn are clopen

disjoint subsets of Ka. The element
∑∞
n=1 ⊕χFn

a exists in Ia, whence O is clopen in Ka.

(2f) It remains to prove that U is a projection band in X (7). Notice that because

T ∈ (⋔) the set TU is a band in Y . Let x be a positive element in X. For any natural

n let xn = x ∧ na. Then because the space Ka is basically disconnected, xn = un ⊕ vn
where un is a component of x and vn is a component of na. Clearly un is a component

of un+1. Let wn = un+1 ⊖ un. Without loss of generality we can assume that wn 6= 0 for

every n. Let εn be positive scalars such that εn ց 0 as n→ ∞. Let an and bn be linear

combinations of components of a and b, respectively, such that

{an}
dd = {bn}

dd ⊆ {wn}
dd, |an − wn| ≤ εna, |bn − wn| ≤ εna.

Because X ∈ (LC3) we can choose the scalars εn in such a way that the elements u =

x+
∑
n⊕(an − wn) and v = x+

∑
n⊕(bn − wn) exist in X.

Let J be the principal ideal in Y generated by the element y = |Tu| + |Tv|. From

the definition of u and v, from Lemma 2.5.11, and from the fact that Ta ⊥ Tb it follows

easily that Tx ∈ J . By the Krein–Kakutani theorem the ideal J is order isomorphic to

a norm dense sublattice of some C(K) where K is a compact Hausdorff space and the

isomorphism can be chosen in such a way that the image of y is the function 1. We will

identify the elements of J with the corresponding continuous functions on K.

The intersection TU ∩ J is a band in J ; let O be the regularly (canonically) open

subset of K corresponding to this band. Clearly u− v ∈ U , whence Tu− Tv ∈ TU , and

therefore the functions Tu, Tv coincide on K \O. In particular we see that if t ∈ K \O

then both these functions take at this point either the value 1/2 or −1/2.

We claim that Tu ≥ 0 on O. Indeed, from the definition of u we see that there are

bands Um ⊂ U and non-negative scalars γm such that {
⋃
m Um}dd = U and u−γma ⊥ Um.

Then Tu − γmTa ⊥ TUm and because T ∈ (⋔) we have {
⋃
m TUm}dd = TU ; it remains

to recall that Ta ≥ 0.

Similarly we conclude that Tv ≤ 0 on O and now it is plain to see that the set O is

clopen in K. Therefore Tx = y1 ⊕ y2 where y1 ∈ TU and y2 ⊥ TU . Because T ∈ (⋔)

we conclude that x = T−1y1 ⊕ T−1y2 where T−1y1 ∈ U and T−1y2 ∈ Ud. But x was an

arbitrary element from X+ and therefore U is a projection band in X.

5.2.2. Lemma. Under the assumptions of Lemma 5.2.1 assume additionally that the split-

ting number d(T ) is at least 3. Then the vector lattice X contains a non-trivial laterally

σ-complete band U and d-dimU ≥ 3.

Proof. This follows immediately from Lemma 2.5.8, the first part of the proof of Lem-

ma 5.2.1, and the obvious fact that if V is a vector lattice with a cofinal family of

components, d -dimV ≤ n, and T : V →W is an injective d.p.o., then d(T ) ≤ n.

(7) This does not follow automatically from step (2d). There is an example of a vector lattice
X containing a non-trivial Dedekind complete band U such that no band V ⊂ U is a projection
band in X (A. I. Veksler, private communication).
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5.2.3. Lemma. Under the assumptions of Lemma 5.2.1 assume additionally that Y ∈

(LC3). Then the vector lattice X contains a laterally σ-complete projection band.

Proof. It follows from Lemma 5.2.1 and from the first part of its proof that without loss of

generality we can assume that there are non-zero elements a, b ∈ X such that a ≤ b ≤ 2a,

the band U = {a}dd is a conditionally laterally σ-complete projection band in X, Ta ≥ 0,

Tb ≤ 0, and the compact space Ka is basically disconnected. Let Un, n ∈ N, be pairwise

disjoint non-zero projection bands in U . Let un,k, k ∈ N, be pairwise disjoint non-zero

elements in Un. Because X ∈ (LC3) there are elements an,k, bn,k ∈ X such that an,k and

bn,k are finite linear combinations of components ofa and b,{an,k}
dd = {bn,k}

dd = {un,k}
dd,

and the elements
∑
n,k ⊕(an,k−un,k) and

∑
n,k ⊕(an,k−bn,k) exist inU . By Lemma 2.5.11

the element
∑∞
n∈N

∑∞
k∈N

(Tan,k⊕Tbn,k) exists inY . BecauseY ∈ (LC3)we canfindpositive

scalars εn, n ∈ N, such that the element

y =
∑

n∈N

⊕εn
∑

k∈N

Tan,k

exists in Y . Applying again Lemma 2.5.11 we see that the element

T−1y =
∑

n∈N

⊕εn
∑

k∈N

an,k

exists in U . Because the band U is conditionally laterally σ-complete the element∑
k∈N

⊕a1,k exists in U1, whence the element
∑

k∈N
⊕u1,k also exists in U1 and therefore

the band U1 is laterally σ-complete.

5.2.4. Lemma. Let X be a vector lattice. Assume that X contains a conditionally laterally

complete projection band U such that d-dimU > 1. Then there are a vector lattice Y and

a bijective d.p.o. T such that T ∈ (⋔) but T−1 does not preserve disjointness.

Proof. Because the band U has the projection property and d -dimU > 1 we can find

two d-independent elements a, b ∈ U such that {a}dd = {b}dd. Let V = {a}dd and let V l

be the lateral completion of V (V l can be identified with the intersection of all laterally

complete vector sublattices of V u, the universal completion of V , which contain V ). It

follows from [4, Theorem 3.2] that there is a band preserving projection P : V l → V l

such that Pa = a and Pb = 0. We define a d.p.o. S : V → V l⊕V l by Sx = (Px, Px−x).

Being conditionally laterally complete V is an ideal in V l and therefore the arguments

from the proof of Theorem 13.14 in [5] can be repeated to show that Z = SV is a vector

sublattice of V l⊕V l. Let W = V d, Y = Z⊕W , and T = S⊕IW where IW is the identity

operator on W . Clearly T is a bijective d.p.o. from X to Y and T ∈ (⋔), but d(T ) = 2.

5.2.5. Lemma. Let X be a vector lattice. Assume that X ∈ (LC3) and X contains a

laterally complete band U such that d-dimU ≥ n ≥ 2. Then there are a vector lattice

Y ∈ (LC3) and a bijective d.p.o. T such that T ∈ (⋔) and d(T ) = n. Moreover, if

d-dimU = ∞ the operator T can be chosen in such a way that d(T ) = ∞.

Proof. The conditions of this lemma guarantee that there are a projection band V ⊂U and

d-independent elements v1, . . . , vn∈V such that each vi is a weak unit in V . By Theorem 3.2

in [4] there are band preserving projections Pi : V → V such that Pivi = vi, Pivj = 0

if i 6= j, PiV is a laterally complete vector sublattice of V , and the following implication
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holds: Pix = 0, i = 1, . . . n,⇒ x = 0. Let W = V d and let T : X →W ⊕P1V ⊕ · · · ⊕PnV

be the operator IW ⊕ P1 ⊕ · · · ⊕ Pn. Then T is a bijective d.p.o., T ∈ (⋔), and d(T ) = n.

If d -dimU = ∞ we can find pairwise disjoint bands Vn ⊂ V , vector lattices Yn and

bijective d.p.o. Tn : Vn → Yn such that d(Tn) = n. Because U is laterally complete

V =
∑∞
n=1 ⊕Vn is a projection band in X. If we take W = V d and T = IW ⊕

∑∞
n=1 Tn

then d(T ) = ∞.

5.3. Proofs of Theorems 5.1.4 and 5.1.5

5.3.1. Lemma. Let X ∈ (LC3), Y be a vector lattice, and T : X → Y be a d-isomorphism.

Assume that T is not regular. Then there is a principal band V = {v}dd in Y such that for

any sequence vn of pairwise disjoint elements in the interval [0, v] and for any sequence

λn of positive scalars there are elements zn ∈ V such that

• {zn}
dd = {vn}

dd,

• zn ≥ λnvn,

• the element z =
∑
n⊕zn exists in Y .

Proof. By Theorem 5.1 in [5] and by Theorem 4.0.2 there are positive elements

x, xn ∈ X, positive scalars δn, and a positive non-zero element v ∈ Y such that the

compact space Kx is zero-dimensional, δn ↓ 0, xn ≤ δnx, and |Txn| ≥ v, n ∈ N.

Let V = {v}dd and let λn, vn be as in the statement of the lemma. Let un =

|T−1(λnvn)|. Because the space Kx is zero-dimensional, for any n ∈ N we can find com-

ponents un,k, k ∈ N, of un and positive scalars µn,k such that supk un,k = un and (un,k−

µn,kx)− ⊥ un,k. The last condition guarantees that there are components xn,k of x such

that {xn,k}
dd = {un,k}

dd. Because X ∈ (LC3) there are positive scalars εn,k such that if

0 ≤ wn,k ≤ εn,kx and wn,k ∈ {un,k}
dd then the element

∑
n∈N

∑
k∈N

⊕wn,k exists in X.

Let us consider elements xn,k such that λnxn,k ≤ εn,kx and |Txn,k| ≥ v,

n, k ∈ N. Then the element s =
∑∞
n=1

∑∞
k=1 ⊕un,k ∧ λnxn,k exists in X. Recall that

for a disjointness preserving operator T we have (see [33])

|T (a ∧ b)| ≥ |Ta| ∧ |Tb|

for any a, b ∈ X. Let sn =
∑∞
k=1 ⊕un,k ∧ λnxn,k. Then

|Tsn| =
∞∑

k=1

⊕|T (un,k ∧ λnxn,k)| ≥
∞∑

k=1

⊕|Tun,k| ∧ λnv =
( ∞∑

k=1

⊕|Tun,k|
)
∧ λnv

= |Tun| ∧ λnv = λnvn ∧ λnv = λnvn.

It remains to take zn = |Tsn|; then z =
∑∞
n=1 ⊕zn = |Ts| exists in Y .

5.3.2. Corollary. Let X ∈ (LC3), Y ∈ (∆L
w) and let T : X → Y be a d-isomorphism.

Then the operator T is regular and the vector lattices X and Y are order isomorphic.

5.3.3. Lemma. Let X ∈ (LC3) and Y be an arbitrary vector lattice. Let T : X → Y be a

d-isomorphism. Assume that T is not regular. Then X contains a projection band U with

the principal projection property and such that d-dimU > 1.

Proof. Let V = {v}dd be a band in Y with the properties from the statement of

Lemma 5.3.1. Let w ∈ V , W = {w}dd, and let y ∈ Y +. Let z = |w| ∧ v ∧ y. Then
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{z}dd = W ∩ {y}dd. We represent the principal ideal Y (y) as a norm dense sublat-

tice in C(Ky) by identifying y with the function 1 ∈ C(Ky). For any natural n let

En = {t ∈ Ky : 1/(n+ 1) ≤ z(t) ≤ 1/n}. Because Y (y) is norm-dense in C(Ky) we can

find a sequence of elements zn such that

• zn ≤ z,

• zn(t) = z(t) for t ∈ En,

• supp zn ⊆ En−1 ∪ En ∪En+1, assuming that E0 = ∅.

Clearly for any two natural p and q such that p 6= q we have z2p−1 ⊥ z2q−1 and z2p ⊥ z2q.

The properties of the band V guarantee that we can find elements wn ∈ Y such that

• {wn}
dd = {zn}

dd,

• wn ≥ (n+ 1)zn,

• the elements w(1) =
∑∞

p=1 ⊕w2p−1 and w(2) =
∑∞

p=1 ⊕w2p exist in Y .

The element yW = (w(1) + w(2)) ∧ y is a component of y and clearly yW ∈ W and

y − yW ∈ W d. Thus we have just proved that V is a projection band in Y with the

principal projection property. Because T is a d-isomorphism U = T−1V is a projection

band in X and U has the principal projection property.

It remains to notice that d -dimU > 1 because otherwise the operator T |U would be

regular, which is not the case.

5.3.4. Lemma. Let X be a vector lattice. Assume that X contains a projection band

U with projection property and d-dimU > 1. Then there are a vector lattice Y and a

d-isomorphism T : X → Y such that T is not regular.

Proof. Without loss of generality we can assume that U = {a}dd = {b}dd where a, b are

d-independent elements in X. Let Uu be the universal completion of U . Then there is a

band preserving projection P : Uu → Uu such that Pa = a and Pb = 0. In particular the

operator P is not regular. Then S = IU + P , where IU is the identity operator on Uu, is

a non-regular d-isomorphism of Uu onto itself. The set SU is a vector sublattice of Uu

because U has the projection property and therefore is component-wise closed in Uu. It

remains to take V = Ud, Y = V ⊕ SU , and T = IV ⊕ S : X → Y .

5.3.5. Lemma. Let X,Y ∈ (LC3) and T : X → Y be a d-isomorphism. Assume that T is

not regular. Then X contains a laterally σ-complete band.

Proof. Let V = {v}dd be as in Lemma 5.3.1. The proof of Lemma 5.3.1 shows that for

any sequence vn of positive pairwise disjoint elements in V we can find pairwise disjoint

elements un ∈ X with the properties

• the element z =
∑∞
n=1 ⊕zn exists in X for any sequence {zn} ⊂ X such that

0 ≤ zn ≤ un,

• wn = |Tun| ≥ vn.

Let u =
∑∞
n=1 ⊕un. The element w = |Tu| =

∑
n⊕wn exists in Y . Because Y ∈ (LC3)

there are positive scalars δn such that if yn is a sequence of pairwise disjoint elements

from the interval [0, w] and yn ≤ δnwn then the element
∑
n⊕yn exists in Y .
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Because V has the projection property, for any n there are components wn,j , j =

1, . . . ,m(n), of wn and scalars λn,j , 0 ≤ λn,j ≤ 1, such that

∣∣∣vn −

m(n)∑

j=1

⊕λn,jwn,j

∣∣∣ ≤ δnw.

Let w̃n =
∑m(n)
j=1 ⊕λn,jwn,j . Then

T−1w̃n =

m(n)∑

j=1

⊕λn,jT
−1wn,j ;

and because T−1wn,j is a component of un the element
∑
n⊕T

−1w̃n exists in X. There-

fore the element
∑
n⊕w̃n exists in Y , whence

∑
n⊕vn exists in Y and the band V is

laterally σ-complete. It remains to notice that under the conditions of this lemma the

domain X and the range Y can be interchanged.

5.3.6. Lemma. Let X be a vector lattice and let U be a laterally complete band in X such

that d-dimU > 1. Then there is a non-regular d-isomorphism T : X → X.

Proof. As was first proved in [33] (see also [5]) there is a non-regular band preserving

projection P : U → U . Then S = I + P is a d-isomorphism of U onto U . Recall that U

is a projection band in X. Let V = Ud and T = IV ⊕ S. Then T is as required.

6. Weakly c0-complete domains with the projection property

or with the countable sup property

6.1. The general case. In the next remark we combine some simple properties of vec-

tor lattices with the countable sup property.

6.1.1. Remark.

(1) As already noticed a vector lattice X has the countable sup property if and only

if for any x ∈ X the Krein–Kakutani space Kx satisfies the countable chain

condition, Kx ∈ (ccc), i.e. any family of non-empty pairwise disjoint open subsets

of Kx is at most countable.

(2) The condition X l ∈ (CSP), where X l is the lateral completion of X, means

exactly that any set of pairwise disjoint elements in X is at most countable.

Clearly X l ∈ (CSP) iff X ∈ (CSP) and X has a weak unit.

(3) Clearly, for vector lattices from (CSP) the notions of conditional lateral complete-

ness and conditional lateral σ-completeness coincide.

(4) In general a laterally σ-complete vector lattice X ∈ (CSP) need not be laterally

complete but any principal band in it is laterally complete.

(5) In general if X ∈ (CSP) and X has the principal projection property it might

not have the projection property even if it has a weak unit. Take for example

a zero-dimensional infinite compact space K and the vector lattice of all real-

valued functions continuous on K and taking only a finite number of values. But

if we assume additionally that X ∈ (LC4) then any principal band in X has the

projection property by Proposition 2.2.7.
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From the results of Section 5 and from Remark 6.1.1 we immediately obtain the

following two results.

6.1.2. Theorem. Let X be a weakly c0-complete vector lattice. Assume additionally that

either

• X has the countable sup property, or

• any principal band in X has the projection property.

Then the following statements are equivalent.

(1) Any bijective d.p.o. T : X → Y such that T ∈ (⋔) is a d-isomorphism.

(2) For any conditionally laterally complete projection band U in X we have d-dimU

= 1.

If we assume additionally that X ∈ (CFC) then conditions (1) and (2) above are equiva-

lent to

(3) The vector lattice X is d-rigid.

6.1.3. Theorem. Assume the conditions of Theorem 6.1.2. Then the following statements

are equivalent:

(1) For any bijective d.p.o. T : X → Y such that T ∈ (⋔) we have d(T ) ≤ 2.

(2) For any laterally complete band U in X, d-dimU ≤ 2.

6.1.4. Theorem. Assume the conditions of Theorem 6.1.2. Then the following statements

are equivalent.

(1) Any d-isomorphism T : X → Y is regular.

(2) For any projection band U in X with the projection property we have d-dimU = 1.

If we assume additionally that X ∈ (CFC) then the conditions above are equivalent to

(3) X is super d-rigid.

6.1.5. Theorem. Assume the conditions of Theorem 6.1.2. The following statements are

equivalent :

(1) Any bijective d.p.o. T : X → Y where Y ∈ (LC1) is a d-isomorphism.

(2) Any d-isomorphism T : X → Y where Y ∈ (LC2) is regular.

(3) For any laterally complete band U in X, d-dimU = 1.

In the case of vector lattices with the countable sup property we can say more than

is stated in Theorem 6.1.5. Let us first recall that for any d.p.o. T : X → Y there is a

maximal ideal RT ⊂ X such that the restriction T |RT is regular [34].

6.1.6. Lemma. Let T : X → Y be a bijective d.p.o. and let T ∈ (⋔). Then the ideal RT

is a band in X.

Proof. It is enough to prove that for any net xα of positive elements in RT such that

x = supα xα exists in X and for any z ∈ [0, x] we have |Tz| ≤ |Tx|. For any α let Vα =

{(2xα−x)+}
dd. Then {Vα} is a full system of bands in {RT }

dd and (|Tx|−|Tz|)− ⊥ TVα
for any α. But T ∈ (⋔), whence the system {TVα} of bands is full in {TRT }

dd and

therefore (|Tx| − |Tz|)− = 0.
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6.1.7. Remark. De Pagter proved in [34] that for any band preserving operator T : X →

X the ideal RT is a band in X. It would be interesting to fully describe the class of all

d.p.o. for which RT is a band.

6.1.8. Theorem. Let X ∈ (LC3) and T : X → Y be a d-isomorphism. Assume addition-

ally that X ∈ (CSP). Then
X = RT ⊕AT

where AT is the band of anti-regularity for T . If we assume additionally that Y ∈ (LC2)

then for each z ∈ AT the band {z}dd is laterally complete.

Proof. I. Assume first that there is a positive weak unit u in X. The ideal RT is a band in

X by Lemma 6.1.6. Let AT = {RT }
d. If AT = ∅ there is nothing to prove. Otherwise there

are [33] an x ∈ [0, u], scalars εn ց 0, elements xn ≤ εnx and a non-zero v ∈ Y+ such that

|Txn| ≥ v.Moreover theproofofTheorem5.1 in [5] showsthatwecantakev = (|Tz|−|Tx|)+
where z is any element fromX such that 0 ≤ z ≤ x but (|Tz|− |Tx|)+ 6= 0. From the proof

of Lemma 5.3.1 we see that V = {v}dd is a projection band in Y and therefore U = T−1V

is a projection band in X. Let x1 = PUx, z1 = PUz, and v1 = v where PU is the band

projection on U . Then 0 ≤ z1 ≤ x1 and |Tz1| − |Tx1| = v1.

Because X has the countable sup property we can find pairwise disjoint non-zero

elements xn ∈ [0, u] and elements zn ∈ [0, xn] such that vn = |Tzn| − |Txn| ≥ 0 and the

system of bands Un = T−1{vn}
dd is full in AT . Because X ∈ (LC3) we can find scalars

εn ց 0 such that the elements x =
∑∞
n=1 ⊕ εnxn and z =

∑∞
n=1 ⊕ εnzn exist in X.

Then 0 ≤ z ≤ x and v̄ = |Tz| − |Tx| =
∑∞

n=1 ⊕ εnvn. By Lemma 5.3.1, V = {v̄}dd is a

projection band in Y , whence AT = T−1V is a projection band in X.

II. The general case follows easily from the one already considered. Indeed, if z ∈ X

let Z = {z}dd and let S = T |Z. By part I, Z = RS ⊕ AS and obviously RS = RT ∩ Z

and AS = AT ∩ Z. Therefore z = z1 ⊕ z2 where z1 ∈ RT and z2 ∈ AT .

III. Finally, if Y ∈ (LC3) we apply Lemma 5.3.5.

6.2. Dedekind complete domains. Relatively uniformly complete domains with

the countable sup property. The class of ru-complete vector lattices is particularly

important and the statements of our main results become simpler because every ru-

complete vector lattice with the projection property is Dedekind complete and every

laterally complete ru-complete vector lattice is universally complete [38, 39]. Moreover, if

a Dedekind complete vector lattice has d-dimension greater than one then its d-dimension

is infinite [5, Theorem 6.8].

More importantly, in this case we can prove (see Theorem 6.2.3) that if Y u ∈ (CSP)

then any bijective d.p.o. from X to Y is in (⋔).

The next theorem follows from our previous results.

6.2.1. Theorem. Let X be either a Dedekind complete vector lattice or an ru-complete

vector lattice with the countable sup property.

I. The following conditions are equivalent :

• X is d-rigid.

• X is super d-rigid.
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• For any Dedekind complete projection band U ⊂ X, d-dimU = 1.

• Any d-isomorphism T : X → Y is regular.

II. The following conditions are equivalent :

• For any bijective d.p.o. T : X → Y we have d(T ) ≤ 2.

• Any bijective d.p.o. T : X → Y, where Y is an ru-complete vector lattice, is

regular and therefore a d-isomorphism.

• For any universally complete band U ⊂ X, d-dimU = 1.

Our next result shows that Problem B has a positive solution for ru-complete vector

lattices with the countable sup property.

6.2.2. Theorem. Let X be either a Dedekind complete vector lattice or an ru-complete

vector lattice with the countable sup property. Let Y be an ru-complete vector lattice

and let T : X → Y be a d-isomorphism. Then the vector lattices X and Y are order

isomorphic.

Proof. If X is a Dedekind complete vector lattice our statement is exactly Theorem 14.18

in [5]. If X is ru-complete and X ∈ (CSP) then it follows immediately from Theorem 6.1.8

that the band AT is Dedekind complete and it remains to apply Theorem 14.18 from [5].

6.2.3. Theorem. Let X be an ru-complete vector lattice, let Y be a vector lattice such

that any family of non-zero pairwise disjoint elements in Y has cardinality less than 2ℵ0 ,

and let T : X → Y be an injective d.p.o. Then T ∈ (⋔).

Proof. Assume to the contrary that T 6∈ (⋔). Then there are a band U ⊆ X and an

element x ∈ X such that Tx ⊥ TU but x 6⊥ U . Let I = Ix be the principal ideal in X

generated by x. We will identify I with C(Kx); as usual, x will be identified with the

function 1. The set U ∩ Ix is a band in C(Kx); let O be the canonically (regularly) open

subset of Kx corresponding to this band. Recall that Kx ∈ (ccc). In what follows we

repeat (up to notation) the arguments employed in [36, proof of part IV of Proposition

on page 130].

Let p, q ∈ O, p 6= q and let h ∈ C(K) with supph ⊂ O, h(p) = 0, h(q) = 1, and

h(K) ⊆ [0, 1]. Let H ⊂ [0, 1] be a Cantor set; then H =
⋃
γ∈Γ Hγ where Hγ are disjoint

Cantor sets and card(Γ ) = 2ℵ0 . Let ϕγ be the Cantor function associated with Hγ . For all

γ ∈ Γ\∆, where∆ ⊂ Γ and card(∆) < 2ℵ0 , the set h−1(Hγ) has empty interior. Therefore

for any such γ the function fγ = ϕγ ◦ h is an essentially constant non-zero function from

C(K) and Ω(fγ) ⊇ h−1([0, 1] \Hγ) where Ω(f) = {t ∈ K : f is constant in some open

neigborhood of t}. Therefore if γ1, γ2 ∈ Γ \∆ and γ1 6= γ2 then Ω(fγ1) ∪Ω(fγ2) = K.

We claim that T (fγ1x) ⊥ T (fγ2x). To prove this consider z ∈ Ix. Then we can find

elements zi ∈ Ix, 1 ≤ i ≤ n, such that z =
∑n
i=1 zi and for each i either fγ1 ≡ ci on

supp zi or fγ2 ≡ ci on supp zi where ci, 1 ≤ i ≤ n are some scalars. Fix i and let for

definiteness fγ1 ≡ ci on supp zi. Then (fγ1x − cix) ⊥ zi and because Tx ⊥ Tzi we see

that Tfγ1x ⊥ Tzi. Similarly, if fγ2 ≡ cj on supp zj then Tfγ2x ⊥ Tzj . Therefore

y = |Tfγ1x| ∧ |Tfγ2x| ⊥ z.
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But z is an arbitrary element of Ix, whence y ⊥ TIx. In particular y ⊥ Tfγk
x, k = 1, 2,

whence y = 0.

We have obtained a family of pairwise disjoint elements in Y of cardinality 2ℵ0 , in

contradiction with our assumption that Y u ∈ (CSP).

7. Huijsmans–de Pagter–Koldunov theorem

The Huijsmans–de Pagter–Koldunov theorem (briefly HPK-theorem)—one of the main

results in the circle of problems we are discussing—states the following.

7.0.1. Theorem ([25, 28]). Let X be an ru-complete vector lattice and Y be a normed

vector lattice. Let T : X → Y be an injective d.p.o. Then x ⊥ z ⇔ Tx ⊥ Tz. Moreover,

if T is a bijection then it is regular.

In this section we will discuss two questions:

(1) To what extent can the conditions on X and Y in Theorem 7.0.1 be weakened?

(2) Under what conditions can we interchange X and Y in Theorem 7.0.1? More

precisely, if we assume that Y is ru-complete, what should be the conditions on

X for the result to be true?

This section is divided into three subsections. The first one contains direct generaliza-

tions of the HPK-theorem based principally on de Pagter’s technique. In the second one

we consider the case when the topology on the range Y is defined by a countable family

of lattice seminorms. Finally in the third one we consider the case when the domain X

satisfies the weak Luxemburg condition (∆w
L ) and the range Y is an ru-complete vector

lattice.

7.1. The HPK-theorem. Some improvements. Here we will prove that the state-

ments of Theorem 8 in [34] and Theorems 5.2 and 5.3 in [5] remain true if instead of

considering a relatively uniformly complete domain X we require only that X ∈ (LC3).

7.1.1. Theorem. Let X,Y be vector lattices, X ∈ (LC3), and Y ∈ (∆P). Let T : X → Y

be a d.p.o. Then RT , the maximal ideal of regularity of T, is order dense in X.

Proof. It is enough to prove that for any x ∈ X the ideal RT ∩ Ix is order dense in Ix.

The last statement follows from Lemma 7.1.2, which we will also use later.

7.1.2. Lemma. Let X be an order dense vector sublattice of some C(K). Assume addi-

tionally that 1 ∈ X and X ∈ (LC3). Let Y ∈ (∆P) and T : X → Y be a d.p.o. Let

Z = {k ∈ K : x(k) = 0 for all x ∈ RT }. Then the set Z is at most finite.

Proof. If Z were infinite we would be able to find disjoint regularly open sets On ⊂ K,

n = 1, 2, . . . , such that On ∩ Z 6= ∅. Let Bn be the band in X corresponding to the

set On. The operator T : Bn → Y cannot be regular because this would contradict

the maximality of RT . By the McPolin–Wickstead theorem [33] for any n we can find

elements x
(n)
m ∈ Bn such that ‖x

(n)
m ‖C(K) ց 0 as m→ ∞, and |Tx

(n)
m | ≥ yn ∈ Y+, yn 6= 0.
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Let εn, λn be positive scalars. For any n choose m(n) in such a way that ‖x
(n)
m(n)‖ ≤

εn/λn. Because X ∈ (LC3) we can choose the scalars εn in such a way that the element

x =
∑∞
n=1 ⊕λnxm(n) exists in X. Then |Tx| ≥ |Txm(n)|λn ≥ λn|yn|, in contradiction

with our assumption that Y ∈ (∆P).

7.1.3. Theorem. Let T : X → Y be a d.p.o. Assume that RT is order dense in X. Then

either the kernel ker(T ) of T contains a non-trivial ideal, or T is injective.

Proof. Let u be a non-zero positive element in X such that Tu = 0. Because RT is order

dense in X we can find a positive v ∈ RT such that (v − u)+ 6= 0. Let w = u ∧ v and

let z ∈ J = Iw ∩ {(v − u)+}
dd. Then (u− w) ⊥ z, whence (Tu− Tw) ⊥ Tz and because

Tu = 0 we have Tw ⊥ Tz. But z ∈ Iw and the restriction T |Iw is regular, whence Tz = 0

and therefore J ⊂ ker(T ).

7.1.4. Theorem. Let T : X → Y be an injective d.p.o. such that the ideal RT is order

dense in X. Then
x ⊥ z ⇔ Tx ⊥ Tz.

Proof. Assume contrary to our claim that there are u, v ∈ X+ such that u ∧ v 6= 0 but

Tu ⊥ Tv. Let w = u + v and let S : Iw → Y be the restriction of T to the principal

ideal Iw. We identify Iw with an order dense vector sublattice of C(K), where K = Kw

is the corresponding Krein–Kakutani space, and we identify w with the function 1. Our

assumptions guarantee that the set Z = {k ∈ K : x(k) = 0 for all x ∈ RS} is nowhere

dense in K. Let O = {t ∈ K : (u ∧ v)(t) > 0}. We can find non-empty open subsets U, V

of O and positive elements ũ, ṽ ∈ Iw such that U ⊂ V , V ∩ Z = ∅, supp(ũ + ṽ) ⊂ V ,

ũ ≡ u on U , and ṽ ≡ v on U . Let z be a non-zero element of Iw such that supp z ⊂ U

and 0 ≤ z ≤ u ∧ v. Then u− ũ ⊥ z, whence Su− Sũ ⊥ Sz and similarly Sv − Sṽ ⊥ Sz.

But Su ⊥ Sv, whence

(∗) |Sũ| ∧ |Sṽ| ⊥ Sz.

On the other hand the restriction of the operator S on the principal ideal Iũ+ṽ is regular

and therefore by Theorem 2.3.2,

(∗∗) |Sz| ≤ |Sũ| ∧ |Sṽ|.

It follows immediately from (∗) and (∗∗) that Sz = 0, in contradiction with the injectivity

of S.

The operator T from Theorem 7.1.4 might be non-regular even if X and Y are Ba-

nach lattices (see Remark 3.1.4). But under an additional assumption we can prove its

regularity.

7.1.5. Theorem. Let T : X → Y be a d.p.o. such that the ideal RT is order dense

in X. Assume that for any full in X system of bands {Uα} the system {{TUα}
dd} is full

in {TX}dd. Then the operator T is regular.

Proof. Let u, v ∈ X and 0 ≤ u ≤ v. Let I = Iv and K be the Krein–Kakutani space of

the ideal I. The assumption that RT is order dense in X implies that there is a family

{uγ , vγ}γ∈Γ of elements of I with the following properties:
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• 0 ≤ uγ ≤ vγ ≤ v.

• uγ ≡ u and vγ ≡ v on some non-empty regularly open set Oγ ⊂ K.

•
⋃
γ∈Γ Oγ is dense in K.

• Ivγ
⊂ RT .

Let Bγ be the band in X defined as Bγ = {z ∈ I : supp z ⊂ Oγ}
dd. Then u − uγ ⊥ Bγ

and v − vγ ⊥ Bγ , whence Tu − Tuγ ⊥ TBγ and Tv − Tvγ ⊥ TBγ . On the other hand,

by Theorem 2.3.2, |Tuγ | ≤ |Tvγ | and therefore (|Tv| − |Tu|)− ⊥ TBγ . Our assumptions

imply that the system of bands {TBγ}
dd is full in {TI}dd. Therefore (|Tv| − |Tu|)− = 0

and T is regular by Theorem 2.3.2.

7.1.6. Corollary. Let T : X → Y be a bijective d.p.o. such that the ideal RT is order

dense in X. Then T is regular.

7.1.7. Corollary. Let X,Y be vector lattices, X ∈ (LC3), and Y ∈ (∆P). Let T :

X → Y be a d.p.o. Assume that ker(T ) does not contain any non-trivial ideal. Then T

is injective and

x ⊥ z ⇔ Tx ⊥ Tz.

Moreover, if T is a bijection then T is regular.

7.2. The case when the range Y is countably normed. Let us recall the following

7.2.1. Definition. A vector lattice X is called countably normed if there is a countable

system of lattice semi-norms pn on X such that pn ≤ pn+1 and, for any x ∈ X,

∀n pn(x) = 0 ⇒ x = 0.

7.2.2. Lemma. Let K be a compact Hausdorff space and X be an order dense vector

sublattice of C(K) such that 1 ∈ X and X ∈ (LC2). Let Y be a countably normed vector

lattice, and T : X → Y be an injective d.p.o. Assume also that there are u, v ∈ X+ such

that u ∧ v 6= 0 but Tu ⊥ Tv. Let O = {k ∈ K : (u ∧ v)(k) > 0}. Then the set O is

separable and therefore clO is a metrizable compact space.

Proof. For any n ∈ N the set Jn = {y ∈ Y : pn(y) = 0} is an ideal in Y and the factor

Yn = Y/Jn is a normed vector lattice with the norm pn. For any x ∈ X let Tnx = ˙Txn
where ˙Txn is the class of Tx in the factor Yn. Then Tn : X → Yn is a well defined linear

operator but of course it might be non-injective. Let In = RTn
be the maximal ideal

of regularity of Tn and let Zn = {k ∈ K : x(k) = 0 for all x ∈ In}. By Lemma 7.1.2

the set Zn is at most finite. Moreover the proof of Theorem 7.1.4 shows that if z ∈ X,

supp z ⊂ O and supp z ∩ Zn = ∅ then Tnz = 0.

We claim that the set Z =
⋃
n∈N

Zn is dense in O. Indeed, otherwise we can find a

non-zero z ∈ X such that for any n ∈ N we have Tnz = 0, whence pn(Tz) = 0 for all

n ∈ N and Tz = 0 in contradiction with the injectivity of T .

7.2.3. Corollary. Let X be a vector lattice with the principal projection property. Let

Y be a countably normed vector lattice and let T : X → Y be an injective d.p.o. Then

x ⊥ z ⇔ Tx ⊥ Tz.
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Proof. Assume to the contrary that there are u, v ∈ X+ such that u ∧ v 6= 0 but Tu ⊥

Tv. Consider the restriction of T to the main ideal Xu+v. Let K be the corresponding

Krein–Kakutani space. The subset supp(u ∧ v) of K does not have isolated points, and

because Xu+v has the principal projection property this subset cannot be metrizable, in

contradiction with Lemma 7.2.2.

We will need a simple lemma which is probably well known.

7.2.4. Lemma. Let K be compact space, Z be a countable subset of K and V be a non-

empty open subset of K. Then there is a non-zero function f ∈ C(K) such that supp f ⊂

V and for any z ∈ Z there is an open neighborhood V (z) such that f is constant on V (z).

Proof. Let g ∈ C(K) be a non-zero function such that 0 ≤ g ≤ 1 and supp g ⊂ V .

Then g(Z) is a countable subset of [0, 1] and we can find a function ϕ ∈ C[0, 1] such

that ϕ(0) = 0, ϕ(Z) 6= {0}, and for any z ∈ Z the function ϕ is constant on some open

interval which contains g(z). The function ϕ ◦ g is as required.

7.2.5. Lemma. Let K be a compact Hausdorff space, X = C(K), and let Y be a countably

normed vector lattice. Let T : X → Y be a disjointness preserving injection. Then T ∈ (⋔).

Proof. If T 6∈ (⋔) then there are a regularly open set V ⊂ K and a function f ∈ C(K)

such that f > 0 on V but for any z ∈ C(K) such that supp z ⊂ V we have Tf ⊥ Tv.

For any n ∈ N let the vector lattice Yn, the operator Tn : X → Yn and the set Zn ⊂ K

be defined as in the proof of Lemma 7.2.2. Recall that by Lemma 7.1.2 for any n ∈ N the

set Zn is at most finite, whence Z =
⋃
n∈N

Zn is no more than countable. Lemma 7.2.4

guarantees that there is a non-zero g ∈ C(K) such that 0 ≤ g ≤ 1, supp g ⊂ V , and

for any z ∈ Z the function g is constant on some open neighborhood of z. The function

h = gf is not zero. We are going to prove that Th = 0 in contradiction with the injectivity

of T , and to do this we have to show that pn(Th) = 0 for any n ∈ N.

Let us fix some n ∈ N. If Zn = ∅ then the operator Tn is regular and because h ≤ f

and Tnh ⊥ Tnf we have Tnh = 0, which means exactly that pn(Th) = 0.

Therefore we can assume that Zn = {z1, . . . , zm}. Let Vi, i = 1, . . . ,m, be pairwise

disjoint open neighborhoods of zi, and ci, i = 1, . . . ,m, be scalars such that g ≡ ci on Vi.

Then we can find functions hi, i = 1, . . . ,m, with the following properties:

• supphi ⊂ Vi,

• 0 ≤ hi ≤ h,

• hi ≡ h on some open neighborhood of zi.

Let h̃ =
∑m
j=1 hj . For any j ∈ {1, . . . ,m} we have (cif − h) ⊥ hi, whence (ciTf − Th) ⊥

Thi. But Tf ⊥ Th, therefore Th ⊥ Thi, i ∈ {1, . . . ,m}, whence Th ⊥ T h̃, which of

course implies that

(∗) Tnh ⊥ Tnh̃.

On the other hand, h− h̃ ≡ 0 on some open neighborhood of Zn, whence (see the proof

of Theorem 7.1.4)

(∗∗) Tn(h− h̃) = 0.

Together (∗) and (∗∗) imply that Tnh = 0 and we are done.
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We are ready to prove the main result of this subsection.

7.2.6. Theorem. Let X be an ru-complete vector lattice and Y be a countably normed

vector lattice. Let T : X → Y be a disjointness preserving bijection. Then the inverse

operator T−1 : Y → X also preserves disjointness. Moreover the operator T is regular

and the vector lattices X and Y are order isomorphic.

Proof. By Lemma 7.2.5 the restriction of T to any principal ideal in X satisfies ⋔ and

therefore T ∈ (⋔) . If T−1 does not preserve disjointness then by Theorem 5.1.1, X

contains a Dedekind σ-complete projection band U such that the operator T−1 : TU → U

does not preserve disjointness. This contradicts Corollary 7.2.3.

We have just proved that T is a d-isomorphism. If T were not regular then by Theo-

rem 5.1.4 and Lemma 5.3.1 the domain X would contain a Dedekind σ-complete projec-

tion band U with the following property:

• For any order bounded sequence un of pairwise disjoint elements in U and for any

scalars λn the sequence λnTun is order bounded in Y .

Clearly we can assume that U is a principal atomless band and therefore it is order

isomorphic to an ideal I in C∞(K) where K is a basically disconnected compact space

without isolated points. We will identify U and I. Let e be a positive weak unit in U . For

any n ∈ N let us say that a point k ∈ K is in the set On if there is a clopen neighborhood

V of k such that suppu ⊂ V ⇒ pn(Tu) = 0 for any u ∈ [0, e]. Obviously On is an open

subset of K.

Let Fn = K \ On. We claim that the set Fn is at most finite. Indeed, otherwise we

could find an order bounded sequence um of pairwise disjoint elements in U such that

pn(Tum) > 0 for any m ∈ N. Let λm be positive scalars such that λmpn(Tum) → ∞ as

m→ ∞. The sequence λmTum is order bounded in Y , whence there is a y ∈ Y such that

λm|Tum| ≤ |y| for any m ∈ N. But then pn(y) = ∞, a contradiction.

The set F =
⋃∞
n=1 Fn must be dense in K. Otherwise we would find a non-zero u ∈ U

such that pn(Tu) = 0 for any n ∈ N; but this is impossible because K is a basically

disconnected compact space without isolated points.

7.3. Range-domain interchange in the HPK-theorem

7.3.1. Theorem. Let T : X → Y be a disjointness preserving bijection, and let the

following conditions hold :

(1) the vector lattice X satisfies condition (∆w
L ),

(2) the vector lattice Y is ru-complete,

(3) the operator T satisfies condition ⋔.

Then the inverse operator T−1 is also disjointness preserving and, hence, T is a d-

isomorphism. Furthermore, the operators T and T−1 are regular, and the vector lattices

X and Y are order isomorphic.

Proof. Assume, contrary to our claim, that there are u, v ∈ X such that u ∧ v > 0

and Tu ⊥ Tv. In view of Theorem 4.0.1 we can assume without loss of generality that

u ≤ v ≤ 2u and that the Krein–Kakutani space Ku is zero-dimensional. Moreover by
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Lemma 2.5.7 we can assume that Tu ≥ 0. Fix a decreasing sequence {un} such that

un → v in the C(Ku)-norm, where each un is a linear combination of components of u.

Since each un is a linear combination of non-negative components of u, the image Tun
is a linear combination of non-negative components of Tu, and so obviously Tun ⊥ Tv.

The condition that {un} is C(Ku)-Cauchy in X implies easily that the sequence {Tun}

is C(KTu)-Cauchy in Y and, therefore, there exists some y ∈ Y such that Tun → y.

Clearly y ⊥ Tv.

Let w = T−1y and consider the pair v, w in X. As noted above, the images Tv and

y = Tw are disjoint. Let us verify that the elements v, w themselves cannot be disjoint.

Indeed, let B be the band generated by u, that is, B = {u}dd. Since T satisfies condition

⋔ the image TB is a band in Y [6, Proposition 3.2], and clearly Tu ∈ TB. Therefore,

{Tu}dd ⊆ TB. Recall now that y is the C(KTu)-limit of some linear combinations of

components of Tu, and so y is contained in the band {Tu}dd. This implies that w ∈ B.

Since v has the same width as u we conclude that w 6⊥ v.

By Theorem 4.0.1 we can find non-zero components ṽ and w̃ of v and w, respectively,

such that ṽ ≤ w̃ ≤ 2ṽ and |ṽ − w̃| ≥ cṽ, where c is some positive constant.

The compact space Kṽ cannot have isolated points (this would contradict T ṽ ⊥

Tw̃) and therefore we can find an infinite sequence {vk} of non-zero pairwise disjoint

components of ṽ. Let wk = w ∧ 2vk; then for any k we have {vk}
dd = {wk}

dd and

|vk − wk| ≥ cvk.

For each k let un,k = un ∧ vk and note that the sequence {un,k}n converges in the

C(Ku)-norm to vk. Therefore, the sequence {Tun,k}k converges in the C(KTu)-norm to

some yk, which is clearly a component of y.

For each k the element un,k is a component of un so that Tun,k is a component of Tun,

and it is plain to see now that T−1yk = wk. Let us fix some positive scalars λk. For any

k we can find a positive integer nk such that

|Tunk,k − yk| ≤
1

kλk
|y|, |unk,k − vk| ≤

1

2
|wk − vk|.

Since Y is ru-complete, the element y0 =
∑
k λk(Tunk,k − yk) exists in Y . Let x0 =

T−1y0. Then the assumption T ∈ (⋔) implies that for each k we have

|x0| ≥ λk|unk,m − wk| ≥
1

2
λk|vk − wk| ≥

c

2
λmvk.

Recall now that {vk} is an arbitrary disjoint sequence of non-zero components of

ṽ, and therefore the last inequality shows that X 6∈ (∆m
L ). But the space Kṽ is zero-

dimensional and Proposition 2.6.4 implies that X 6∈ (∆w
L ), in contradiction with our

assumption.

As soon as we know that T is a d-isomorphism, Corollary 5.3.2 implies that T is

regular. Finally, it remains to notice that by Theorem 4.12 in [5] the regularity of a

d-isomorphism T implies that T−1 is also regular and that X is order isomorphic to Y .

7.3.2. Remark. Example 3.2.2 shows that the assumption T ∈ (⋔) in Theorem 7.3.1

cannot be dropped. Indeed, in that example X is a normed lattice, Y is a Banach lattice,

and T : X → Y is a bijective d.p.o. which is not a d-isomorphism.
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8. Applications to spaces of continuous functions

In this section we apply our previous results to the important case when either the

domain X, or the range Y , or both are vector lattices of continuous functions on a

Tikhonov (completely regular) topological space.

We refer the reader to [14, 20] and to [6, Section 4] for a more complete discussion of

related problems and more extensive bibliography.

For the reader’s convenience let us notice that according to the terminology introduced

in [14] a bijective d.p.o. T : C(Ω1) → C(Ω2), where Ω1 and Ω2 are Tikhonov spaces, is

called a separating map and if T is a d-isomorphism it is called a biseparating map.

The following important result was proved in [15].

8.0.1. Theorem ([15]). Let Ω1, Ω2 be Tikhonov spaces and T : C(Ω1) → C(Ω2) be a

d-isomorphism. Then there are a homeomorphism ϕ of vΩ1 onto vΩ2, where vΩ1 and

vΩ2 are realcompactifications ([21, Section 8.4]) of Ω1 and Ω2, respectively, and a non-

vanishing function w ∈ C(Ω2) such that

Tf = w(f ◦ ϕ), f ∈ C(Ω1).

A generalization of Theorem 8.0.1 to the case of Φ-algebras was obtained in [20].

(see also [14] and [27]). Let us also remind the reader that a representation of a regular

d.p.o. as a weighted composition on absolutes (or Stone spaces) of X and Y is always

possible [1, 2].

We will need the following result.

8.0.2. Theorem ([20, Theorem 5.5]). Let Ω be a Tikhonov space. Then for every Dedekind

σ-complete band U in C(Ω) we have d-dimU = 1.

Our next two results follow immediately from Corollary 5.1.2 and Theorems 5.1.4,

5.1.5, and 8.0.2.

8.0.3. Theorem. Let Ω be a Tikhonov space with a π-base of clopen subsets. Then:

(1) For any ru-complete vector lattice Y (8) and for any bijective d.p.o. T : C(Ω) → Y

the operator T is a regular d-isomorphism.

(2) If Y is an arbitrary vector lattice and T : C(Ω) → Y is a bijective d.p.o. then

d(T ) ≤ 2 (see Definition 2.3.4).

(3) If we additionally assume that any clopen basically disconnected subset E in Ω

is ”Specker” (i.e. every continuous function on E is essentially constant, Defi-

nition 2.4.10) then C(Ω) is super d-rigid, i.e. for any vector lattice Y and any

bijective d.p.o. T : C(Ω) → Y the operator T is a regular d-isomorphism.

8.0.4. Theorem. Let Ω be a Tikhonov space, Y be an ru-complete vector lattice, and

T : C(Ω) → Y be a d-isomorphism. Then T is regular and Y is order isomorphic to C(Ω).

The next theorem follows from Theorem 6.2.3.

8.0.5. Theorem. Let Ω1 and Ω2 be Tikhonov spaces, and assume that any family of

pairwise disjoint open subsets of Ω2 has cardinality less than 2ℵ0 . Then any bijective

d.p.o. T : X → Y is a regular d-isomorphism.

(8) In particular for Y = C(Γ ) where Γ is a Tikhonov space.
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Finally, from Theorem 7.2.6 we obtain

8.0.6. Theorem. Let Ω1 and Ω2 be Tikhonov spaces, and assume that the space Ω2 is

σ-compact. Then every bijective d.p.o. T : X → Y is a regular d-isomorphism.

8.0.7. Problem. Can we drop either the condition that Ω has a π-base of clopen subsets

in Theorem 8.0.3 or the condition on Ω2 in Theorem 8.0.5?

The only case known to us when the answer to Problem 8.0.7 is positive is the one

when Ω1 = [0, 1] (see [10]).

We want to mention a special case of Problem 8.0.7 which, we think, might be crucial

to solving the general problem.

8.0.8. Problem. Let Ω1 = [0, 1] × [0, 1] and Ω2 be an arbitrary Tikhonov space. Is any

bijective d.p.o. T : C(Ω1) → C(Ω2) a d-isomorphism?
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