Introduction

One of the most important problems of modern analysis is to construct a functional
calculus of several noncommuting operators. This problem goes back to von Neumann
[65] and has its origin in mathematical foundations of quantum mechanics. Functions of
noncommuting variables also appear naturally in the theory of partial differential and
pseudodifferential operators and in some problems of algebra, geometry, and mathemat-
ical physics; see, e.g., [63] and references therein.

A possible way to define the value of a function f at an n-tuple (a4, ..., a,) of linear
operators is provided by the so-called ordered representation method [53] that was in-
troduced by Feynman and developed by Maslov [49] (see also related papers [41, 42] by
Litvinov). An essential difference of this method with the single-variable case is that the
assignment f — f(aq,...,a,) is no longer an algebra homomorphism. Another approach
to the functional calculus problem is based on the philosophy of noncommutative geom-
etry: we may change the concept of function itself and replace the commutative algebra
of functions by some noncommutative algebra.

In a coordinate-free language, a tuple of noncommuting linear operators on a Banach
space F is a representation of some finitely generated associative algebra, A, that can
be viewed as an “algebra of polynomial functions on a noncommutative space”. There-
fore a noncommutative analogue of the classical (i.e., single-variable) functional calculus
problem can be formulated as follows: Is it possible to extend the given representation
A — B(F) to some larger algebra B containing A? Depending on their properties, such
algebras B can be considered as noncommutative versions of algebras of holomorphic
functions, smooth functions, continuous functions, Borel functions, etc. Note that this
problem also makes sense when A is not a subalgebra of B; it is sufficient that a homo-
morphism A — B be fixed.

The notion of spectrum plays a key role in the functional calculus problem. To give a
simple example, recall that a bounded operator T on a Banach space F has a holomorphic
functional calculus on an open set U C C (i.e., the homomorphism C[t] — Z(E), t — T,
extends to a continuous homomorphism from the algebra ¢'(U) of holomorphic functions
to B(E)) if and only if U contains the spectrum of T. It is therefore natural to look
for a reasonable analogue of the notion of spectrum for several (possibly noncommuting)
operators. A general approach to this problem was suggested by J. L. Taylor [75]. If
m: A — HB(F) is a representation of an algebra A on a Banach space F, then the spectrum
o(m, A) is a part of a suitably chosen set (a “structure space”) {24 of (isomorphism classes
of) locally convex A-modules, and F € {24 does not belong to o(m, A) if and only if
Tor’}(F, E) = 0 for all n > 0. (Here Tor?; denotes the nth derived functor of the projective
tensor product; see [26, 74] and Section 1 below.) For example, in the case A = C[t]
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one can take (24 to be the set of all 1-dimensional A-modules. This set is naturally
parametrized by points of the complex plane, and the Taylor spectrum, o (7, A), coincides
with the usual spectrum, o(7T), of the operator T = 7(¢). In the same manner, if A =
Clt1,...,ty], then o(m, A) is a subset of C". In this case, the representations of A are
in bijective correspondence with the n-tuples of commuting operators, and o(w, A) is
what is now called the Taylor joint spectrum of the n-tuple (Ty,...,T,), T; = 7(t;). In
his famous papers [72]-[75], Taylor established a number of remarkable properties of the
joint spectrum and constructed a multivariable version of an analytic functional calculus.
For a modern treatment of this theory, see [15].

The definition of o(m, A) suggested by Taylor depends not only on the image of the
representation 7: A — %(F) (i.e., not only on the given n-tuple of operators), but also
on the algebra A. Therefore, if 7 can be extended to a representation o of a larger
algebra B D A, then one cannot expect that o(w, A) = o(p, B) in general. On the other
hand, the equality still holds in many important cases (e.g., in the above-mentioned case
A =CJt], B= 0(U)). Therefore it seems natural to consider only those algebras B D A
which have the property that if some representation © of A extends to a representation
o of B, then o(m, A) = o(p, B). More generally, if A is not a subalgebra of B, but a
homomorphism 6: A — B is given, then it is natural to require that (7, A) = 8* (o (0, B))
where 0*: {25 — (24 denotes the pullback along 6.

Taylor [75] introduced an appropriate class of algebra homomorphisms satisfying the
above requirement and called them localizations. Roughly speaking, a topological alge-
bra homomorphism A — B is a localization if it identifies the category of topological
B-modules with a full subcategory of the category of topological A-modules, and if the
homological relations between B-modules do not change when the modules are considered
as A-modules. Since Taylor’s objective was to construct a holomorphic functional calculus
of several commuting operators, he considered mainly the case where A = C[ty,...,t,],
the polynomial algebra endowed with the finest locally convex topology. Taylor has proved
that the canonical homomorphism of C[t1, ..., t,] to €(U), the Fréchet algebra of holo-
morphic functions on an open set U C C", is a localization provided U is a domain of
holomorphy. He has also shown that the canonical homomorphisms of C[ty,...,¢,] to the
algebra C*° (V') of smooth functions (where V' C R™ is an open set) and to the algebra
&' (R™) of compactly supported distributions are localizations.

Thus the polynomial algebra C[ty, ..., t,] has a rich supply of localizations. Motivated
by this example, Taylor suggested a general scheme for constructing a noncommutative
functional calculus, a scheme where the notion of localization plays a fundamental role.
The first step of this scheme is as follows. Suppose A is a fixed finitely generated algebra
(the “base algebra”) endowed with the finest locally convex topology. The problem is to
construct a sufficiently large family of localizations of A with values in some topological
algebras having a richer structure. Having constructed such a family, one can hope to
develop a reasonable spectral theory for representations of A.

As was said above, Taylor defined localizations in the topological algebra setting. In
pure algebra, a notion analogous to that of localization was introduced by W. Geigle and
H. Lenzing [18] under the name “homological epimorphism”. This notion turned out to
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be useful in the representation theory of finite-dimensional algebras (see [9]). Recently,
A. Neeman and A. Ranicki [54] applied homological epimorphisms to some problems of
algebraic K-theory. They use a different terminology; namely, in the case where §: A — B
is a homological epimorphism, Neeman and Ranicki say that B is stably flat over A,
while the word “localization” is used by them in a different (ring-theoretical rather than
homological) sense (). We adopt both the languages here and use the phrases “0: A — B
is a localization” (in Taylor’s sense) and “B is stably flat over A” as synonyms. The
reason is that the word “localization” is used in modern mathematics in many different
senses, and the terminology of [75] is not the most common one. On the other hand, it is
convenient to use Taylor’s terminology when it is necessary to emphasize the role of the
homomorphism 6.

Taylor [75] has pointed out that a possible candidate for an algebra B which often
seems to be stably flat over A is its Arens—Michael envelope A (the completed l.m.c. en-
velope, in the terminology of [75]), which is defined as the completion of A with respect
to the family of all submultiplicative seminorms on A. From the viewpoint of operator
theory, an important property of A (which uniquely characterizes A within the class of
Arens—Michael algebras) is that A and A have the same set of continuous Banach space
representations. If A = C[ty,...,t,], then A is isomorphic to the algebra & (C™) of entire
functions (and hence is stably flat over A). Thus the Arens—Michael envelope of a non-
commutative finitely generated algebra can be viewed as an “algebra of noncommutative
entire functions”.

Apart from the polynomial algebra, Taylor [75, 76| has also studied localizations of
the free algebra F),, on n generators. In partlcular he proved that the canonlcal homo-
morphism of F), to its Arens—Michael envelope F is a localization (i.e., F is stably flat
over F,,). Some results on localizations of F;, were also obtained by Lumlnet [45].

Another important class of noncommutative algebras considered by Taylor is that
of universal enveloping algebras. Let g be a complex Lie algebra and U(g) its universal
enveloping algebra. Taylor [75] proved that if g is semisimple, then U (g), the Arens—
Michael envelope of U(g), fails to be stably flat over U(g), in contrast to the abelian case.
We generalized this result in [64] by showing that U(g) is not stably flat over U (g) unless
g is solvable. On the other hand, Dosiev [12] has recently proved that U (g) is stably flat
over U(g) provided g is metabelian (i.e., [g, [g, g]] = 0). A natural conjecture is that U (g)
is stably flat over U(g) for each solvable (or, at least, for each nilpotent) Lie algebra g,
but this question is still open.

In this paper we consider some “standard” locally convex algebras H that contain
U(g) as a dense subalgebra, and we study the question of whether or not they are stably
flat over U(g). Specifically, we concentrate on the following algebras:

e H=0U (g), the Arens—Michael envelope of U(g);
e H=U(g).4, Goodman’s weighted completion of U(g) [19, 20];
e H = F(g), Rashevskii’s hyperenveloping algebra [67];

(!) Recently localizations were independently introduced by R. Meyer [51] within the frame-
work of bornological algebras.
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e H = &/(@G), Litvinov’s algebra of analytic functionals on the corresponding con-
nected, simply connected complex Lie group G [39, 40, 42].

We generalize the above-mentioned result of Dosiev and show that U (g) is stably flat
over U(g) provided g admits a positive grading. The weighted completion U(g)_ » is
shown to be stably flat over U(g) for each nilpotent Lie algebra g and each entire weight
sequence ./ (for terminology, see [20] and Section 7 below). We also prove that Ra-
shevskii’s hyperenveloping algebra §(g) is stably flat over U(g) for every Lie algebra g.
Finally, o/ (G) turns out to be stably flat over U(g) if and only if g is solvable.

A common feature of the above algebras H D U(g) is that they are well-behaved
topological Hopf algebras [1, 43]. This means that they are Hopf algebras in the tensor
category of complete locally convex spaces equipped with the projective tensor product
®, and that their underlying locally convex spaces are either nuclear Fréchet spaces
or nuclear (DF)-spaces. The category of well-behaved topological Hopf algebras has a
number of remarkable properties (see [1, 43]); in particular, it is anti-equivalent to itself
via the strong duality functor. To answer the question of whether or not a morphism
U(g) — H in this category is a localization, we propose a general method that applies to
all of the above-mentioned algebras H. This method is based on the following observation.
Let g be a Lie algebra, and let V.(g) = C.(g,U(g)) denote the Koszul resolution of the
trivial g-module C. The classical fact that the augmented complex 0 — C «— V.(g) is exact
is traditionally proved by introducing an appropriate filtration on this complex and then
by using an induction or a spectral sequence argument (see, e.g., [6, Chap. XIII, Theorem
7.1] or [24, Chap. II, Lemme 2.2]). However, if g a finite-dimensional Lie algebra over C,
it is possible to give another proof using the fact that the (topological) dual of U(g) is
isomorphic to the Fréchet algebra C[[z1, ..., 2,]] of formal power series. The main point
is that the complex dual to V.(g) turns out to be isomorphic to the (formal) de Rham
complex of C[[z1, ..., z,]]. By the Poincaré lemma, the latter complex (augmented by the
unit map C — C[[z1,...,2,]]) splits as a complex of topological vector spaces. Taking
the topological dual, we conclude that 0 < C « V.(g) is exact.

The advantage of this proof is that it carries over to topological algebras more general
than U(g). This suggests the following approach to the above-mentioned localization
problem for U(g). Given a well-behaved topological Hopf algebra H and a morphism
0:U(g) — H, we can view H as a right g-module via 6. Using a version of the Cartan—
Eilenberg “inverse process” (see [6, Chap. X]), we prove that 6 is a localization if and
only if the standard complex C.(g, H) augmented by the counit map H — C splits as a
complex of topological vector spaces. Due to the reflexivity of the algebras involved, this
happens precisely when the dual complex 0 — C — C"(g, H') splits. Suppose now that
H is cocommutative; then the dual algebra, H’, is commutative. Under some additional
conditions on H, the latter complex turns out to be isomorphic to the de Rham complex
of A = H'.In this situation we say that A is g-parallelizable. Thus the problem of whether
or not # is a localization reduces to the question of whether or not the augmented de
Rham complex 0 — C — §2(A) splits. A sufficient condition for this to be true is that A
be contractible in the sense of Chen [7]. Therefore in order to prove that §: U(g) — H is
a localization it is sufficient to show that H' is g-parallelizable and contractible.



Completions of universal enveloping algebras 9

It should be noted that the above method is inspired by the following result due to
Taylor [75]. Suppose that g is the complexification of the Lie algebra of a real Lie group G.
Then U(g) is canonically embedded into &’'(G), the algebra of compactly supported
distributions on G. Taylor proved that this embedding is a localization if and only if the de
Rham cohomology of G vanishes. The method described above is in fact a generalization
of Taylor’s proof.

This paper is organized as follows. In Section 1 we recall some basic facts from topo-
logical homology (i.e., the homology theory for locally convex algebras [26]). We also
discuss “continuous versions” of some concepts from pure algebra such as DG algebras,
Kahler differentials and de Rham cohomology. Section 2 is devoted to a version of the
Cartan—FEilenberg inverse process for topological Hopf algebras. As a byproduct, we de-
scribe the Hochschild cohomology groups of the algebras ¢*(G) (where G is a discrete
group) and &/(G) (where G is a real Lie group) in terms of the bounded and continuous
cohomology groups of G. As another application, we show that a Banach Hopf algebra
with invertible antipode is amenable precisely when it is left amenable in the sense of
Lau [37]. In Section 3 we discuss the notion of localization for topological algebras and in-
troduce related concepts of weak localization and strong transversality. The latter notion
is a somewhat stronger version of a transversality condition for Fréchet modules that was
introduced in [70] and has proved to be extremely useful in complex analytic geometry
and operator theory [32, 70, 15, 10]. Using results of the previous section, we show that
for Hopf ®-algebras with invertible antipode the notions of localization and weak localiza-
tion coincide. In Section 4 we recall some portions of Chen’s algebraic homotopy theory
[7] in the topological algebra framework, and apply this theory to localizations of U(g)
within the category of well-behaved cocommutative Hopf ®-algebras. Given a morphism
0: U(g) — H in this category such that Im 6 is dense in H, we show that 0 is a localization
provided H’ is g-parallelizable and contractible. In Section 5 we concentrate on nilpotent
Lie algebras and show that the dual of a well-behaved Hopf ®-algebra H containing U (g)
is g-parallelizable provided H is contained in the formal power series completion [U(g)]
of U(g). In Section 6 we discuss some general properties of Arens—Michael envelopes and
describe the Arens—Michael envelopes of graded algebras as certain vector-valued K&the
spaces. As a corollary, we show that the dual of the Arens—Michael envelope of U(g)
is g-parallelizable provided g admits a positive grading. Next we introduce a notion of
contractible Lie algebra. By definition, a Lie algebra g is contractible if there is a smooth
path in the set of all endomorphisms of g connecting the zero endomorphism and the
identity endomorphism of g. We show that if g is contractible, then U’ (g), the dual of the
Arens—Michael envelope of U(g), is contractible in the sense of Chen. This result is then
used to prove that the Arens—Michael envelope of U(g) is stably flat over U(g) for each
positively graded g. As a byproduct, we show that the injective homological dimension
of each nonzero ﬁ(g)-@—module is equal to the dimension of g. In Sections 7 and 8 we
prove the above-mentioned results on the stable flatness of weighted completions of U(g),
hyperenveloping algebras, and algebras of analytic functionals. Finally, in Section 9 we
explain how the completions of U(g) considered above are related to one another, and
formulate some open problems.
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REMARK. A. Dosiev has kindly informed the author that he proved the stable flatness of
the Arens—Michael envelope U (g) over U(g) under the condition that g is a nilpotent
Lie algebra with normal growth [13]. Roughly speaking, g has normal growth if for each
embedding of g into a Banach algebra, norms of powers of elements from [g, g] decrease
sufficiently rapidly. The class of Lie algebras with normal growth contains all metabelian
Lie algebras, but it is not clear how this class is related to that of positively graded Lie
algebras.

Acknowledgments. The author is grateful to A. Ya. Helemskii and A. Dosiev for valu-
able discussions, and to G. L. Litvinov and W. Crawley-Boevey for helpful comments.

1. Preliminaries

We shall work over the complex numbers C. All associative algebras are assumed to be
unital.

1.1. Topological algebras and modules. In this subsection we recall some basic
notions from topological homology (homology theory for topological algebras). For more
details, see [26], [28], and [74].

We refer to [69] and [77] for general facts on topological vector spaces. Given topologi-
cal vector spaces E and F, we denote by .Z(E, F') the space of all linear continuous maps
from E to F. We endow Z(E, F') with the topology of uniform convergence on bounded
subsets of F. Unless otherwise specified, £’ = Z(F,C) denotes the strong dual of E.
The completion of E is denoted by E~. If E and F are locally convex spaces (l.c.s.’s),
then F ® F stands for their completed projective tensor product.

By a topological algebra we mean a topological vector space A together with the
structure of an associative algebra such that the multiplication map A x A — A is
separately continuous. A complete, Hausdorff, locally convex topological algebra with
jointly continuous multiplication is called a ®-algebra (see [74, 26]). If A is a ®-algebra,
then the multiplication Ax A — A extends to a continuous linear map from the projective
tensor product A® A to A. In other words, a ®-algebra is just an algebra in the tensor
category (LCS, ®) of complete l.c.s.’s (cf. Section 2 below).

Recall that a seminorm ||-|| on an algebra A is called submultiplicative if ||abl| < ||a|| |||
for all a,b € A. A ®-algebra A is called an Arens—Michael algebra (or a locally m-convex
algebra) if its topology can be defined by a family of submultiplicative seminorms (see
[62, 27]). In particular, any Banach algebra is an Arens—Michael algebra. By a Fréchet
algebra we mean a metrizable (not necessarily locally m-convex) ®-algebra.

Each associative C-algebra A becomes a topological algebra with respect to the finest
locally convex topology. We denote the resulting topological algebra by Ag. If A has
countable dimension as a vector space, then A is a ®-algebra [1]- In particular, this
condition is satisfied whenever A is finitely generated.

A left ®-module over a ®-algebra A (a left A-®-module for short) is a complete
Hausdorff locally convex space X together with the structure of a left unital A-module
such that the map A x X — X, (a,z) — a -z, is jointly continuous. As above, this
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means that X is a left A-module in (LCS, ®). Given two left A-&-modules X and Y, an
A-module morphism is a continuous linear map ¢: X — Y such that ¢(a-x) = a-p(zx) for
alla € A, x € X. The vector space of all A-module morphisms from X to Y is denoted
by ah(X,Y).

Right A-®-modules, A-®-bimodules, and their morphisms are defined similarly. As
in pure algebra, A-®-bimodules can be regarded as either left or right ®-modules over
the algebra A¢ = A® A°P, where A°P stands for the algebra opposite to A. Given two
right A-®-modules (respectively, A-®-bimodules) X and Y, we use the notation h 4(X,Y")
(respectively, 4h4(X,Y)) to denote the corresponding space of morphisms. The resulting
module categories are denoted by A-mod, mod-A, and A-mod-A, respectively.

If§: A — B is a ®-algebra homomorphism (i-e., a unital continuous homomorphism),
then each left (resp. right) B-®-module X can be considered as a left (resp. right) A-®-
module via . Sometimes we will denote the resulting A-@-module by ¢ X (resp. Xg).

If A is a commutative ®-algebra, then an A-®-bimodule X is symmetricifa-z = z-a
for all a € A, x € X. As usual, we identify left modules, right modules, and symmetric
bimodules over a commutative algebra and call them just “modules”.

Let A be a ®-algebra and M an A-®-bimodule. Recall that a continuous linear map
D: A — M is a derivation if D(ab) = Da-b+a- Db for all a,b € A. Denote by Der(A, M)
the set of all continuous derivations from A to M. We also set Der A = Der(A, A). If A is
commutative, we may speak about derivations of A with coefficients in left A-®-modules
by identifying left modules with symmetric bimodules (see above).

If X is a right A-®-module and Y is a left A-®-module, then their A-module tensor
product X ®, Y is defined to be the completion of the quotient (X ® Y)/N, where N C
X ®Y is the closed linear span of all elements of the form 2 - a®@y —r®a-y (v € X,
y €Y, ac A)(}). As in pure algebra, the A-module tensor product can be characterized
by a certain universal property (see [26] for details).

A morphism o: X — Y of left A-®-modules is said to be an admissible epimorphism
if there exists a continuous linear map 7: ¥ — X such that o7 = 1y, ie., if ¢ is a
retraction when considered in the category of topological vector spaces. Similarly, a mor-
phism s: X — Y is an admissible monomorphism if it is a coretraction in the category
of topological vector spaces. Finally, a morphism ¢: X — Y is admaissible if it has a
factorization ¢ = 30 with s an admissible monomorphism and ¢ an admissible epimor-
phism. Geometrically, this means that the kernel and the image of ¢ are complemented
subspaces of X and Y, respectively, and ¢ is an open map of X onto its image. A chain
complex X, = (X,,,d,) of left A-®-modules is called admissible if it splits as a complex
of topological vector spaces. Equivalently, X, is admissible if it is exact, and all the d,,’s
are admissible morphisms.

REMARK 1.1. It can easily be checked that the category A-mod together with the class of
admissible monomorphisms and epimorphisms satisfies the axioms of exact category (see

(*) To avoid confusion, we note that this definition of X ®4Y (due to Rieffel [68] and
Helemskii [26]) is different from that given by Kiehl and Verdier [32] and Taylor [74] (and used
also in [70] and [15]). More precisely, X ® 4 Y is the completion of the Kiehl-Verdier—Taylor
tensor product.
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[66] and [31]), so that the main constructions of abstract homological algebra (derived
categories, “total” derived functors, etc.) make sense in this setting. However, we shall
not use such a general approach here.

An A-module P € A-mod is called projective if for each admissible epimorphism
X — Y in A-mod the induced map sh(P, X) — sh(P,Y) is surjective. Dually, an A-
module @ € A-mod is called injective if for each admissible monomorphism X — Y
in A-mod the induced map Ah(Y,Q) — 4h(X, Q) is surjective. For each £ € LCS
the projective tensor product ' = A® E has a natural structure of a left A-®-module
with operation defined by a - (b ® ) = ab ® x. Such modules are called free. In view of
the natural isomorphism sh(A® E,Y) = Z(E,Y), Y € A-mod, each free module is
projective. This implies that the category A-mod has enough projectives, i.e., for each
X € A-mod there exists an admissible epimorphism P — X with P projective. To see
this, it suffices to set P = A® X and to define AQX — X by a®x — a- .

REMARK 1.2. If A is a Banach algebra, then the category A-mod has enough injectives
as well, i.e., each X € A-mod can be embedded into an injective A-&-module via an
admissible monomorphism [26]. However, if A is nonnormable, then A-mod may fail to
have nonzero injective objects [61, 62]; see also Corollary 6.21 below.

Given a left A-®@-module X , a resolution of X is a chain complex P, = (P,,dy)n>0
of left A-®-modules together with a morphism ¢: Py — X such that the augmented
sequence

d dn
0<—X<3P0<—°-~-<—Pn<—Pn+1<—---

is admissible. A projective resolution is a resolution in which all the P;’s are projective
®-modules. Since A-mod has enough projectives, it follows that each A-®-module has a
projective resolution. Therefore one can define the derived functors Ext and Tor following
the general patterns of relative homological algebra (see [26]). Namely, take a projective
resolution P, of an A-module X € A-mod and set

Ext’y (X,Y) =H"(4h(P,,Y))
for each Y € A-mod. (Here “H™” stands for the nth cohomology space.) Similarly,
Tor’ (Y, X) = H, (Y ®4 P.)

for each Y € mod-A. Of course, Ext’j(X,Y) and Tor? (Y, X) do not depend on the
particular choice of the resolution P, and have the usual functorial properties (see [26]
for details).

A projective bimodule resolution of A is a projective resolution of A in A-mod-A.

If M € A-mod-A, then the nth Hochschild cohomology (resp. homology) of A with co-
efficients in M is defined as " (A, M) = Ext'y. (A, M) (vesp. 7, (A, M) = Tor2 (M, A)).

A left A-®-module X has projective homological dimension < n if X has a projective
resolution P, such that P; = 0 for all i > n. The least such integer n is denoted by dh4 X
and is called the projective homological dimension of X. Equivalently,

dhy X = min{n : Ext}"(X,Y) = 0 VY € A-mod}.

If no such n exists, one sets dhy X = oco.
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The injective homological dimension of X € A-mod is
inj.dh, X = min{n : Ext;" (Y, X) = 0 VY € A-mod}.

If A is a Banach algebra, then inj.dh 4 X can also be defined as the length of the shortest
injective resolution of X (cf. Remark 1.2 above).

An A-®-module X is projective (resp. injective) if and only if dhy X =0 (resp.
inj.dh, X =0).

The left global dimension of A is

dg A =sup{dhs X : X € A-mod}.

Similarly, one can define homological dimension for right A-®-modules and for A-®-
bimodules. The homological dimension of A considered as an A-&-bimodule is called the
homological bidimension of A and is denoted by db A. For every ®-algebra A we have
dg A < dbA.

1.2. Kahler differentials. Recall some facts about Kéhler differentials and de Rham
cohomology for commutative ®-algebras. Most of this material is well known in the purely
algebraic case (see, e.g., [23] or [36]). For the ®-case, see [59], [48].

Let A be a commutative ®-algebra. A pair (£2'A4,d,) consisting of an A-&-module
2' A and a derivation d4: A — 2' A is called the module of Kdhler differentials if for each
A-®-module M and for each derivation D: A — M there exists a unique A-®-module
morphism ¢: 2'A — M such that the following diagram is commutative:

ds 2YA
A/ [
[
\
RPN

The derivation d4 is called the universal derivation of A.

Obviously, there is a natural isomorphism 4h(2'A, M) =2 Der(A, M) defined by the
rule ¢ > d 4. In other words, 2! A represents the functor M + Der(A, M). Hence 2! A
is unique up to a ®-module isomorphism.

The module of Kéhler differentials can be constructed explicitly as follows. Let I be
the kernel of the product map A® A — A. Set 2'A = (I/12)~ and define dy: A — 2'A
by daa = (a®1—1®a)+ I2 Then (£2'A,d4) is the module of Kihler differentials for A
(see, e.g., [59, Appendix B] or [23, §20] for the algebraic case).

If A = C°°(M) is the Fréchet algebra of smooth functions on a manifold M, then 2! A
is canonically isomorphic to the module of differential 1-forms on M (cf. [59]). A similar
result holds for algebras of holomorphic functions on Stein manifolds. Since we could not
find this fact in the literature, we give a complete proof below.

Let (V,Ov) be a complex space. Consider the diagonal map A: V — V x V, and
denote by .# C Oy xy the ideal sheaf of the subspace A(V) C V x V. Recall ([22]; cf.
also [25]) that the sheaf of 1-differentials of V is defined as 21, = A*(.#/.#2). There is a
canonical morphism of sheaves d: 0y — (2, defined locally as da = (a®1—1®a)+ ff’ -
for each a € Oy, x € V. If V is a complex manifold, then {2, coincides with the usual
cotangent sheaf of V, the space of global sections 2!'(V) = I'(V, (2{,) is the space of
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holomorphic differential 1-forms on V, and the map dy : &(V) — £2(V) induced by d is
precisely the exterior (de Rham) derivative.

We need some facts on Stein modules [17]. Let (V, 0y ) be a Stein space. For each
coherent analytic sheaf % on V the space of global sections .# (V) = I'(V, %) has a
canonical locally convex topology making it into a Fréchet &'(V')-module. Modules of this
form are called Stein modules. Denote by Coh(V) the category of coherent sheaves of & -
modules and by St(V) C &(V)-mod the category of Stein ¢(V)-modules. The functor
of global sections I': Coh(V) — St(V) is exact (Cartan’s Theorem B) and fully faithful
[17]. Hence I" is an equivalence of Coh(V) and St(V). If .#,9 € Coh(V), and at least
one of them is locally free, then there is a canonical isomorphism % (V) @X\)@(V) G(V) =
(F @6, 9)(V) (see [70] or [15, 4.2.4]). If F = I'(V,.%) is a Stein module and G C F is
a closed submodule, then G is also a Stein module, i.e., G = I'(V,¥) for some coherent
subsheaf ¢ C .#. In particular, each closed ideal J C €(V') has the form J = I'(V, #)
for some coherent sheaf of ideals ¢ C Oy . In this case, J2 = I'(V, _#2) (see [17]).

LeMMA 1.1. Let (V, Oy) be a Stein space. Then the 0(V)-&-module 2*(0(V)) of Kihler

differentials is canonically isomorphic to 21 (V) = I'(V,§2{,). Under this identification,
dy: O(V) — Q2Y(V) becomes a universal derivation.

Proof. Set V2 =V x V, and let I = I'(V2,.#) C O(V?) be the ideal of all functions
vanishing on A(V). Identifying ¢(V?) with (V)& 0(V), we see that I becomes the
kernel of the product map &(V)® @(V) — ¢(V). Consider the commutative diagram

| T(V2,.0) == (V2,7 [.57) —— Q(V)
o) — j
x] ! [/T2 ——= Y (O6(V))

Here D(a) =a®1—1®a for all a € O(V), q is the quotient map, and ¢ is induced
by the sheaf quotient map .# — .#/.#2. Note also that 2'(0(V)) = I/I2 since I is a
Fréchet space. Obviously, dy = ¢D, and dg(yv) = qD. Since V is a Stein space, we see
that j is an isomorphism (see the remarks preceding the statement of the lemma). The
rest is clear. m

In some important cases the module of K&hler differentials is free and finitely gener-
ated. The next lemma gives a simple sufficient condition for this.

LEMMA 1.2. Suppose there exist x1,...,x, € A and 01, ...,0, € Der A such that the x;’s
generate a dense subalgebra of A, and that 0;(x;) = 0;; for eachi,j. Then = (01,...,0n):
A — A" is a universal derivation. In particular, 2' A is isomorphic to A™.

Proof. Let D: A — M be a derivation. Denote by (u1,...,u,) the standard basis in A™
(i-e., u; = (0,...,1,...,0) with 1 in the ith coordinate, 0 elsewhere). We have 0(x;) = u;
for each i = 1,...,n. Define an A-®-module morphism ¢: A" — M by o(u;) = D(x;)
for i = 1,...,n. Then (¢9)(x;) = D(z;) for each i. Since x1,...,z, generate a dense
subalgebra of A, we conclude that @9 = D. On the other hand, since A" is generated (as
an A-module) by Im 0, ¢ is a unique A-module morphism with the above property. m
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1.3. DG ®-algebras and de Rham cohomology. By a graded ®-algebra we mean a
sequence &/ = {A"}, ez, of complete l.c.s.’s together with continuous linear mappings

AP ® A1 — APTY (a,b) — ab,

satisfying the usual associativity conditions. In particular, A° is a ®-algebra, and each A"
is an A% ®-bimodule. We will always assume that <7 is unital, i.e., that A° is unital and
each A" is a unital A°-bimodule. A graded ®-algebra <7 is said to be graded commutative
if ab = (—1)P%ba for each a € AP, b € A4. If &/ is graded commutative, then A° is
commutative in the usual sense, and all the A°-®-bimodules A" are symmetric.

Morphisms of graded ®-algebras are defined in an obvious way.

If o7 is a graded ®-algebra, then A = P, A™ is a topological algebra with respect
to the locally convex direct sum topology. If, in addition, each A™ is finite-dimensional,
then the topology on A is the finest locally convex topology, so that A is a ®-algebra (see
Subsection 1.1). In this case we will often identify </ and A and say that A =, A" is
a graded algebra.

Let A be a commutative (ungraded) ®-algebra. Given an A-®-module M and n € N,
we can define the nth exterior power of M as in the purely algebraic case. Namely,
consider the antisymmetrization map ay: Q4 M — @ ¥ M defined by

1
(1) an (w1 ®@an) = — Y €(0) Tem1(1) @ @ Tg-1(n)
T oE€S,

It is easy to see that a,; is an A-®-module morphism and that a?\/[ = ay,. Hence Ima,,
is a direct A-@-module summand of @ %M. We set A’y M = Imays (or, equivalently,
N4 M = @5 M/Keray), and call the resulting A-®-module the nth exterior power
of M. As usual, for each z1,...,2, € M we denote the element ap/(z; @ --+ ® x,)
of AWM by x1 A--- ANy

For each p,q € Z we have a continuous bilinear map

/A\ﬁM X /A\gM — /A\£+QM, (z,y) mzAy=alzr®y)

(here we set /A\B‘M — A and use the canonical identifications A@4 X = X @44 = X ).
As in the purely algeliraic case, the above maps make \ , M = {A\J M :p € Z,} into a
graded commutative ®-algebra called the exterior algebra of M.

Now let 7 be a graded commutative ®-algebra. For each n € N we have an A°-&®-
module morphism

(2) /A\A%A1—>A", LA ANQp — A1 Q.
The ®-algebra < is called exterior if (2) is an isomorphism for each n € N (cf. [36]). In
other words, & is exterior if the canonical morphism A 40 A' — & is a graded ®-algebra

isomorphism. It is easy to see that a morphism ¢: &7 — % of graded exterior ®-algebras
is an isomorphism if and only if it is an isomorphism in degrees 0 and 1.

ExampLE 1.1. Let (V,0y) be a Stein space, and let % be a locally free sheaf of Oy -
modules. Set A = (V) and F = .# (V). We have an obvious sheaf-theoretic version of
the antisymmetrization map (1):

®%V 'g. ai) ®’2’V g
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By definition, Ymags = /\gv Z. Since the functor I" of global sections takes tensor
products over Oy to projective tensor products over A (see above), we deduce that the
morphism I'(V,az) of Stein A-modules coincides with ap: @Z F— @Z F. Since I' is
exact, we conclude that /A\ZF =Imap = I'(V,mag) = ['(V,\,, #). Thus we have
an isomorphism of graded ®-algebras 7\ A=V, \g, 7).

By a differential graded ®-algebra (a DG ®-algebra for short) we mean a graded
®-algebra o together with a sequence {dP: AP — APTL : p € Z,} of continuous lin-
ear maps such that d?T1dP = 0 for all p (so that &/ becomes a cochain complex), and
that dP*49(ab) = dP(a)b + (—1)Pad?(b) for each a € AP, b € A?. In particular, d° is
a derivation of A° with values in A'. We say that a DG &-algebra is graded commu-
tative (exterior, etc.) if it has this property when considered as a graded ®-algebra.
Morphisms of DG ®-algebras are morphisms of graded ®-algebras commuting with dif-
ferentials.

Let £2' A be the module of Kéhler differentials of a commutative ®-algebra A. Then
the exterior algebra A ,(£2'A) has a unique structure of DG ®-algebra such that the
mapping d’: A — A coincides with the universal derivation da (cf. [3, 36]). The
resulting DG ®-algebra is denoted by 2(A) and is called the algebra of differential forms
of A. The cohomology groups of 2(A) are called the de Rham cohomology groups of A
and are denoted by Hpp (A).

The algebra of differential forms has the following universal property (cf. [36]): For
each graded commutative DG ®-algebra A and each ®-algebra morphism 1: A — B°
there exists a unique DG ®-algebra morphism ¢: 2(A) — B such that ©° = 1. In
particular, each morphism 1: A — B of ®-algebras uniquely extends to a morphism
¥, 2(A) — 2(B) of DG ®-algebras. Thus the assignment A — (2(A) is a functor
from the category of commutative ®-algebras to the category of graded commutative DG
®-algebras.

PROPOSITION 1.3. Let V' be a Stein manifold. Then the topological cohomology groups
H{,,(V,C) coincide with the de Rham cohomology groups Hpi(O(V')) of the Fréchet
algebra O(V).

Proof. For each n denote by (27, the sheaf of holomorphic differential n-forms on V. By
the Poincaré lemma and Cartan’s Theorem B, the de Rham complex

0—>(C—>ﬁv—>!2‘1/—>9‘2/—>---

is an acyclic resolution of the constant sheaf C. Therefore the cohomology groups of
$2(V) = I'(V, §2,) coincide with the topological cohomology groups H{},,(V,C). On the
other hand, the embedding (V) — £2(V) uniquely extends to a DG ®-algebra morphism
2(0(V)) — (V) that is an isomorphism in degrees 0 and 1 (see Lemma 1.1). Since both
the algebras are exterior (see Example 1.1), we conclude that 2(0(V)) — 2(V) is a DG
®-algebra isomorphism. The rest is clear. m

1.4. Lie algebra actions. Throughout the paper, by a Lie algebra we always mean a
finite-dimensional complex Lie algebra.
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Let g be a Lie algebra and M a right g-module. For each n € Z, set Cy,(g, M) =
M @ A" g. The boundary mappings d,,: C,11(g, M) — C,, (g, M) are defined by

dn(m®X1 /AR /\Xn+1)
n+1
= Z(—l)“lm-Xi@)Xl/\-~-/\X¢/\~~~/\Xn+1
=1

+ Y (FD)TIme X X AKX A AX A AXG A A X
1<i<j<n+1
(Here, as usual, the notation X; indicates that X, is omitted.) The spaces C,,(g, M)
together with the mappings d,, form a chain complex denoted by C'(g, M). The homology
groups of this complex are called the homology groups of g with coefficients in M and are
denoted by He(g, M).

Now let U(g) be the universal enveloping algebra of g. We consider U(g) as a right
g-module with respect to the right regular representation given by (a, X) — aX. The cor-
responding chain complex V.(g) = C.(g, U(g)) augmented by the counit map e: U(g) — C
is exact (see [6, Chap. XIII]). Since all the d,,’s are morphisms of left U(g)-modules in
this case, it follows that V.(g) is a free resolution of the trivial g-module C in the category
of left U(g)-modules (the Koszul resolution). If M is a right g-module, then C.(g, M) is
isomorphic to the tensor product M ®y(q) V.(g). Therefore HY(g, M) = Tor!® (M, C)
for each n € Z;..

Dually, if M is a left g-module, then the space C™(g, M) of n-cochains is defined as
Homg¢ (A" g, M). Thus n-cochains are just alternating multilinear maps of n variables
from g with values in M. The coboundary mappings d": C"(g, M) — C"*1(g, M) are
defined by

df(Xa Ao A Xpga)
n+1
=D (D)X fX A A A A Xg)
i=1
+ Y CDTAXL XA X A AKX A AXG A A X ).
1<i<j<n+1
The spaces C"(g, M) together with the mappings d" form a cochain complex denoted by
C'(g, M) (the Chevalley-Filenberg complez). The cohomology groups of this complex are
called the cohomology groups of g with coefficients in M and are denoted by H (g, M).
As in the case of homology groups, we have H{, (g, M) = Ext4)(C, M) for each n € Z,..

REMARK 1.3. Recall that each right g-module M can also be viewed as a left g-module
with respect to the action X -m =—m-X (m € M, X € g), and vice versa, so that the
categories of left g-modules and of right g-modules are isomorphic. Thus one can speak
about the complex C.(g, M) (resp. C"(g, M)) in the case where M is a left (resp. right)
g-module.

By a right g-@-module we mean a complete Hausdorff l.c.s. M together with the
structure of a right g-module such that the map M — M, m — m - X, is continuous for
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each X € g. If we endow g with the usual topology of a finite-dimensional vector space,
then the above condition means precisely that the map M &g — M, m®@ X — m- X, is
continuous. Similarly, one can speak about left g-®-modules. If M is a right (resp. left)
g-&-module, then the strong dual, M’, becomes a left (resp. right) g-®-module via the
action (m, X -m’) = (m- X, m’') (resp. (m' - X,m) = (m/, X -m)) for m € M, m' € M’,
X eg.

REMARK 1.4. If we endow U(g) with the finest locally convex topology, then each g-®-
module M becomes a topological U(g)-module. Note, however, that M need not be an
U(g)-®-module, i.e., the action U(g) x M — M need not be jointly continuous.

If M is a right (resp. left) g-®-module, then the obvious identifications M @ \" g =
M® A" g and Home(A\" g, M) = Z(\" g, M) enable us to consider C.(g, M) (resp.
C"(g, M)) as a complex in LCS. If M is a right (resp. left) g-®-module, then the complex
C'(g,M’) (resp. C.(g, M")) is isomorphic to the strong dual of C.(g, M) (resp. C"(g, M)).
This readily follows from the canonical isomorphisms .Z(A\" g, M) = (A" g)' ® M.

Let A be a ®-algebra together with the structure of a left g-®-module. Suppose that
for each X € g the map A — A, a — X - a, is a derivation. In this case we say that g
acts on A by derivations. The complex C"(g, A) has then a structure of DG ®-algebra
(cf. [14]). The multiplication on C'(g, A) comes from the identification of C"(g, A) with
the tensor product of algebras A g* ® A. In particular, if A is commutative, then C (g, A4)
is isomorphic (as a graded ®-algebra) to the exterior algebra A , C'(g, A).

2. The inverse process for Hopf ®-algebras

In this section we describe a version of the Cartan-Eilenberg “inverse process”
([6, Chap. X]) adapted to the Hopf &-algebra case. Originally, Cartan and Eilenberg
applied the inverse process to the study of homological dimensions of group algebras
and universal enveloping algebras. Subsequently some generalizations were obtained for
cocommutative [33] and commutative [38] Hopf algebras. Though we believe that the al-
gebraic versions of the results below are known, we could not find them in the literature
in a form suitable for our purposes. That is why we give complete proofs.

For convenience of the reader, we recall some algebraic definitions (see [47] for details).
Let C be a monoidal category, i.e., a category equipped with a bifunctor ®: C x C — C,
a neutral object I, and natural isomorphisms

axyz: (XY)Z-XoY®Z), Ix:IeX-—-X, rx:X®I-X

satisfying certain coherence (constraint) conditions (see, e.g., [46]). Without loss of gen-
erality (by MacLane’s coherence theorem [46, Theorem 15.1]), we may assume that C is
strict, so that all associativity and unit isomorphisms are identities. An algebra in C is an
object A together with morphisms pu: A® A — A (multiplication) and n: I — A (unit)
such that the diagrams
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ARASA™ A Aoa4  ToA" 4 A0A 22 AsT

ARA A

are commutative. For example, if C = LCS is the category of complete locally convex
spaces over C, and ® = ® is the bifunctor of the completed projective tensor product,
then we obtain the definition of ®-algebra given in Subsection 1.1. If (A, u4,714) and
(B, up,np) are algebras in C, then a morphism ¢: A — B is an algebra homomorphism
if oua = pp(p ® ¢) and Yna =np.

Dually, a coalgebra in C is an object C together with morphisms A: C — C®C
(comultiplication) and £: C' — I (counit) such that the diagrams

Cococ2Ccec 1008 cec®onl

lc®AT TA 3 TA/
A le o Tc

CeC c

are commutative.

The monoidal category C is braided if it is equipped with a natural isomorphism
cxy: X®Y — Y ® X satisfying the relations
(cx,z®1ly)(Ix ®cyz) =cxovz, (ly®cxz)lexy ®1lz)=cxyoz.

In this case, the tensor product of any two algebras A, B in C is an algebra with multi-
plication and unit defined as the compositions

A@B@A®B 2224918 4o Ao Be B 25, Ag B,

I rr=lr Il na @nB A® B.

A bialgebra in C is an object H equipped with the algebra and the coalgebra structures
such that A: H - H® H and ¢: H — [ are algebra homomorphisms. Finally, a Hopf
algebra in C is a bialgebra H together with a morphism S: H — H (antipode) such that
the diagram

HoH<2—H-—2~HoH

S®1Hl nfl llH@)S

HoH-—t>H<' HeoH

is commutative.

LEMMA 2.1. Let H be a Hopf algebra in a braided monoidal category C, and let @,V :
H® H — H®H be given by

P=pelg)(lgedl), ¥V=welg)(lgeSely)(ly®A).
Then @ = W1,
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Proof. The relation ®¥ = 1 5 g follows from the commutative diagram

@
4 R
1A nR1
ﬁ HeoH HoH®H HeoH N
pn®1 pnR1R1 pR1
1
HoHoH 2 HoHoHoH 2> HoHoH
i 1®S®1 10S®1®1 rg®1l
A
HoHoH 2 HeoHoHo H 1@n®1
19A 19A®1
\H®H HoH®H HeI®H-/
1IRA 1®e®1
N )
101"
Similarly, the commutative diagram
@
4 Yy
1IRA pR1
~ H®H ———>H@HOH ———>HgH~
1A 1Q1QA 19A
A 1
HoHoH Y HoHoHo H" " HoHoH
115" 1®1RS5S®1 1®5®1 w
pR1R1
1®e®1 HIHRH®RH —H®H®H
1Qp®1 n®1
1
NHeloH HeoHoH 12 ~H®H
N )
11"

shows that V@ =1 gpy. »

Let A be an algebra in C. Recall that a left A-module is an object M together with a
morphism ppr: A® M — M such that the diagrams

#A@ M

ARARM ——= A M I®M L AQM
1A®,UIMl luM \ lﬂM
In
AoM " M M

are commutative. Again, in the case (C,®) = (LCS,®) we obtain the definition of ®-
module given in Subsection 1.1. If (M, pup) and (N,pn) are left A-modules, then a
morphism ¢: M — N in C is an A-module morphism if ouy = pn(la ® ¢). Right
A-modules and their morphisms are defined similarly.
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Now let C be a braided monoidal category, and let H be a Hopf algebra in C. Then
H ® H has two natural structures of right H-module. The first one is given by the action
of H on the right factor, and the second one arises from the algebra homomorphism
A: H — H®H. Thus we obtain the right H-modules (H® H,u") and (H ® H, u?)
with the actions u", u?: (H ® H)® H — (H @ H) given, respectively, by

o (HeH)oH "5 Ho(He H) 2245 He H,
pA(Heo Hyo H 2252 (He H) o (H o H) “2%% H o H.

To simplify notation, we shall often write H(™ to denote the n-fold tensor power
H®---®H.

LEMMA 2.2. The morphism &: (H® H, ") — (H® H, u?) defined in Lemma 2.1 is an
isomorphism of right H-modules.

Proof. By Lemma 2.1, ¢ is an isomorphism in C. To prove that @ is a right H-module
morphism, it is enough to consider the following commutative diagram:

PRy
r Y
A 1 1
HoHe HX 2 geoHeoHo H 2 b o o~
QAR Lo @4 tr @4
HE®L (3)
W=1lg®un HHOHRHRH —HQHQH®H |u*
1a®p g (2) o (2)
H®H1H—M>H®H®H%H®H<—/
N ) .
D

Let H°P denote the algebra opposite to H, i.e., ugor = ppcy,m, and let H® =
H®HP. Then S: H— H°? and E = (15 ® S)A: H — H¢ are algebra homomorphisms
[47]. Hence H® becomes a right H-module via E. We denote this module by H§,.

LEMMA 2.3. If H has invertible antipode, then the right H-modules (H ® H, ") and H§
are isomorphic.

Proof. Since S is an isomorphism in C, it follows that 1y ® S: H® H — H® H°? = H¢
is an algebra isomorphism. Hence Hg, = (H ® H, p?) as right H-modules. Now it remains
to apply Lemma 2.2. m

From now on, let (C,®) = (LCS, @) be the category of complete locally convex spaces
over C. By a Hopf ®-algebra we mean a Hopf algebra in LCS (cf. also [43, 1, 60]). Given
a Hopf ®-algebra H, we consider C as a left H-module via the counit map ¢: H — C.
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LEMMA 2.4. Let H be a Hopf ®-algebra with invertible antipode. There exists an isomor-
phism of left H¢-®-modules

(3) 0: Ho®pC— H, u®1— plu).
Proof. Consider the bilinear map
R: H*xC— H, (u,\)— Au(u).

To prove that (3) is a well-defined linear map, we have to show that

(4) R((a®b)-c,\) = Ra®b,c-\)

for each a,b,c € H and each A € C. To this end, note first that

(5) wE =pu(lyg ® S)A = ne.

Since y: H¢ — H is a left H°-module morphism, we see that

(6) R((a®b)-¢c,\) = Au((a @ b)E(c)) = Aap(E(c))b = e(c) Aab.
On the other hand,

(7 R(a®b,c-A) = R(a®b,e(c)\) = e(c) Aab.

Comparing (6) and (7), we obtain (4), as required. Hence ¢ is a well-defined, continuous
linear map. Evidently, ¢ is also a left H°-module morphism.
To construct the inverse of ¢, consider the map

Y:H— H,®pC, a— (a®1)® 1.
Clearly, ¢9 = 1. Thus it remains to prove that o =1 HE @y © which is equivalent to
(8) u®l=(pu)el)®1

for each u € H°.
Take the map &: H® H — H ® H defined in Lemma 2.1, and set

P =(1geS)P: (HRH,u") — HE.
By Lemmas 2.2 and 2.3, ¢’ is an isomorphism of right H-&-modules. We have
P(eol)=1geS) (pely)(ly® A)a®1)

=(1g®S)(pelg)(a®1lol)=(1geS) (a®l)=ax1

and hence
P (a@b)=F(a®@1-b) =P (a®1)E(D) = (a®1)E(D).

Since ¢’ is bijective, it is enough to check (8) with u = (a ® 1)E(b). Using (5) and the
fact that p is a left H°-module morphism, we see that

u(w) = p((a @ VE®)) = ap(E®)) = e(b)a.
Hence the right-hand side of (8) is
(uw) @) @l=cb)(ax1l)®1,
while the left-hand side of (8) is
ul=(NEb)®l=(a®1)@b-1=¢cb)(a®1)® 1.

Therefore (8) is satisfied, and so ¢ = ¢~!. Hence ¢ is an isomorphism, as required. m
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THEOREM 2.5. Let H be a Hopf ®-algebra with invertible antipode, and let
0—~C«—P,

be a projective resolution of C in H-mod. Then the tensor product complex

(9) 0 H < H;®rC«— H;®u P,

s a projective bimodule resolution of H.

Proof. By Lemma 2.3, Hf, is a free right H -®-module. Hence the augmented complex
(9) is admissible. To complete the proof, it remains to apply Lemma 2.4.

Let H be a Hopf ®-algebra and M an H-®-bimodule (i.e., a left H®-module). We
may consider M as a left H-®-module via E: H — H¢. Similarly, by considering M as
a right H¢-®-module, we obtain a right H-&-module structure on M. The resulting left
(resp. right) H-®-module will be denoted by pM (resp. Mg).

COROLLARY 2.6. Let H be a Hopf @-algebra with invertible antipode. Then for each
M € H-mod-H there exist natural isomorphisms

H"(H, M) = Ext}y(C, g M), #,(H,M) = Tor (Mg, C).
Proof. Let P, be a projective resolution of C in H-mod. In view of Theorem 2.5, we
have
A" (H,M) =H"(gh(Hg®py Po, M)) 2 H"(gh(Ps, gM)) = Ext};(C, pM).
Similarly,
A (H, M) = H, (M &pe Hy O g Po) = H,, (Mg &5 P.) = Tor (Mg, C). m
COROLLARY 2.7. Let H be a Hopf @-algebra with invertible antipode. Then dhy C =
dgH =db H.

The following two examples are “continuous versions” of Cartan—FEilenberg’s result on
the Hochschild cohomology of group algebras (|6, Chap. X, §6]).

EXAMPLE 2.1. Let G be a discrete group. The Banach algebra ¢!(G) has a canonical
Hopf ®-algebra structure uniquely determined by
Abg) =0,®05, ()= _fla). SFl9)=Fflg™").
geG

(Here ¢4 denotes the function which is 1 at g € G and 0 elsewhere.) Using the bar reso-
lution of C in ¢'(G)-mod (see [26]), it is easy to check that Extji ¢y (C, X) is isomorphic
to H'(G,X), the nth bounded cohomology group of G with coefficients in X ([56]; cf.
also [30]). Thus we obtain the following

COROLLARY 2.8. Let G be a discrete group and M a Banach (*(G)-bimodule. Denote by
gM the left G-module obtained from M by setting gm = 64 -m - 6,1 (g € G, m € M).
Then there exist canonical isomorphisms

A (NG), M) = H (G, gM).

EXAMPLE 2.2. Let G be a real Lie group. The convolution algebra &”’(G) of compactly
supported distributions on G is a Hopf ®-algebra in a natural way (see, e.g., [42, 1]; cf.
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also Section 8 below). Let X be a left &”(G)-®-module. As in the previous example, it
can easily be checked that Ext, ¢ (C, X) is isomorphic to H' (G, X ), the nth continuous
(or, equivalently, differentiable) cohomology group of G with coefficients in X (cf. [24,
Chap. III, Prop. 1.5]). Thus we obtain the following

COROLLARY 2.9. Let G be a real Lie group and M an &'(G)-®-bimodule. Denote by M
the left G-module obtained from M by setting gm = 6y -m -04-1 (9 € G, m € M). Then
there exist canonical isomorphisms

H(E(G), M) = HM(G, pM).

C

We end this section with an application of the above results to left amenability in
the sense of Lau [37]. Recall that a Banach algebra A is said to be amenable [30] if
A (A, X*) = 0 for each Banach A-bimodule X, i.e., if every derivation from A to X* is
inner. Suppose A is endowed with an augmentation €4 (i.e., a continuous homomorphism
A — C). Then A is said to be left amenable [37] if for each Banach A-bimodule X such
that a-x =ca(a)x for all a € A, x € X, every derivation from A to X* is inner.

In the next lemma, we consider C as a left Banach A-module via €¢4: A — C.

LEMMA 2.10. Let A be an augmented Banach algebra. Then A is left amenable if and
only if ExtY(C,Y*) = 0 for each right Banach A-module Y .

Proof. Obviously, the A-bimodules in the definition of left amenability are precisely those
of the form X = C®Y where Y € mod-A. Hence X* = Z(C,Y*) (see [26, 11.5.21]),
and so S (A, X*) = Ext! (C,Y*) (see [26, IT1.4.12]). The rest is clear. m

PROPOSITION 2.11. Let H be a Banach Hopf algebra (i.e., a Hopf ®-algebra whose un-
derlying locally convex space is a Banach space) with invertible antipode. Then H is left
amenable if and only if H is amenable.

Proof. The “if” part is clear. Conversely, assume H is left amenable, and let X be a
Banach H-bimodule. By Corollary 2.6, we have 7' (H, X*) = Ext};(C, 5(X*)). On the
other hand, it is immediate that 5 (X*) = (Xg)*. Now the result follows from the previous
lemma. =

3. Localizations and weak localizations

Let A be a Fréchet algebra, X € mod-A, and Y € A-mod. Then X and Y are said to be
transversal over A (notation: X 14 Y) if Tory (X,Y) is Hausdorff, and Tor’ (X, Y) =0
for all n > 0. This notion was introduced in [70] and has proved to be extremely useful in
complex analytic geometry and operator theory [32, 70, 15, 10]. We shall need a somewhat
stronger condition of transversality type.

PROPOSITION 3.1. Let A be a ®-algebra, X € mod-A, and Y € A-mod. The following
conditions are equivalent:

(i) There ezists a projective resolution

(10) 0— X «— P,
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of X in mod-A such that the tensored complex
(11) 06— XY — P,@,Y
is admissible.

(i)’ For each projective resolution (10) of X in mod-A the complex (11) is admis-
sible.
(ii) There exists a projective resolution

(12) 0=Y < Q.
of Y in A-mod such that the tensored complex
(13) 0= XP4Y « X34 Q.
is admisstble.

(ii)" For each projective resolution (12) of Y in A-mod the complex (13) is admis-
sible.

Proof. The equivalences (i)<(i)’ and (ii)<(ii)’ readily follow from the fact that any two
projective resolutions of a @-module are homotopy equivalent (see [26]).

Let us prove that (i)<(ii). Choose a projective resolution
(14) 0+ A« L,
of A in A-mod-A. Then the complexes
0 X —X®aLe, 0Y —LyBaY

are projective resolutions of X € mod-A and Y € A-mod, respectively. Since (i)< (i)’
and (ii)<(ii)’, we see that both (i) and (ii) are equivalent to the admissibility of the
complex

0~ X®aY — X®4La®@aY.

Therefore (i)<(ii). m

DEFINITION 3.1. We say that X € mod-A and Y € A-mod are strongly transversal
over A if they satisfy the conditions of Proposition 3.1. In this case, we write X L, Y.

REMARK 3.1. Suppose that A is a Fréchet algebra. If we require that (11) or (13) be
only exact (but not necessarily admissible), then we come to the usual definition of
transversality (see the beginning of this section).

PROPOSITION 3.2. Let 0: A— B be a homomorphism of ®-algebras. Suppose that the map
(15) B@ABHB7 b1®bgl—>b1b2,
is a topological isomorphism. Then the following conditions are equivalent:

(i) BLsB;

(i) BL, M for each M € B-mod;
(iii) M L, B for each M € mod-B;
(iv) B¢ L, A
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Proof. (ii)=(i) and (iii)=-(i): are clear. To prove the remaining implications, take a pro-
jective bimodule resolution (14) of A in A-mod-A, and note that

(16) 0— B« L,®4B

is a projective resolution of B € A-mod.

(i)=(iv). If (i) holds, then the complex
(17) 0—B®aB— B®aLe®aB
is admissible. On the other hand, the latter complex is isomorphic to

0« B°®@4c A« B*® e L,

and we obtain (iv).

(iv)=(iii). If (iv) holds, then the complex (17) is admissible. Since B&4 B = B is
projective in B-mod, we see that (17) splits in B-mod. Hence M ®p (17) is admissible.

On the other hand, M ®p (17) is isomorphic to M &4 (16), and we obtain (iii).
The implication (iv)==(ii) is proved similarly. m

REMARK 3.2. It is easy to see that (1)< (iv) without the additional assumption that (15)
is an isomorphism.

The following basic notion was introduced by Taylor [75]; cf. also [18] for a purely
algebraic version.

DEFINITION 3.2. A homomorphism #: A — B of ®-algebras is a localization (1) if it
satisfies the conditions of Proposition 3.2. In this case, we say (following [54]) that B is
stably flat over A.

REMARK 3.3. Using condition (iv) of Proposition 3.2, we see that 8: A — B is a lo-
calization if and only if the functor B @A( ) ®4 B: A-mod-A — B-mod-B takes some
(= every) projective bimodule resolution of A to a projective bimodule resolution of B.
This is exactly the definition given by Taylor [75]. It can be shown that 6 is a localization
if and only if the (total) derived functor of 6* : B-mod — A-mod is a fully faithful func-
tor between the bounded derived categories of B-mod and A-mod, respectively. In the
purely algebraic context, this was proved in [18]. For the case of topological (respectively,
bornological) algebras, see [65] (respectively, [51]).

PROPOSITION 3.3. Suppose that 0: A — B is a localization. Then for each M € B-mod
the canonical map B&a M — M, b@ x — b -z, is an isomorphism.

Proof. Apply the functor (-)®p M to (15). =

A useful property of localizations is that they “do not change homological relations
between modules”. In particular, if A — B is a localization, then J#?(B, M) = s#P(A, M)
and (B, M) = #,(A, M) for each B-®-bimodule M (see [75, Prop. 1.4 and 1.7]). The
next proposition is a combination of this fact with the Cartan—Eilenberg inverse process
[6, XIIL5.1].

(*) In Taylor’s paper [75], such homomorphisms are called absolute localizations, whereas
the term “localization” is used for a somewhat wider class of homomorphisms.
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PROPOSITION 3.4. Let g be a finite-dimensional Lie algebra, and let U(g) be its universal
enveloping algebra endowed with the finest locally convex topology. Suppose that §: U(g) —
B is a localization. For each M € B-mod-B denote by g M (resp. Mg) the left (resp.,
right) g-module obtained from M by setting X -m = 0(X)-m—m-0(X) (resp., m- X =
m-0(X)—0(X)-m) for X € g, m € M. Then there exist vector space isomorphisms

%p(BvM) %Hgie(ga EM)? %(BvM) gZ;Ier)Jie(gaj\4E) (pGZ)
For later reference, we note the following

PRropPoOSITION 3.5 ([75]). Let A 9B C e ®-algebra homomorphisms. Suppose 0 is a
localization. Then X is a localization if and only if \0 is a localization.

By an augmented &-algebra we mean a ®-algebra A together with a homomorphism
£4: A — C. Homomorphisms of augmented &-algebras are defined in an obvious way.
Given an augmented ®-algebra A, we consider C as an A-module via € 4.

DEFINITION 3.3. A homomorphism 0: A — B of augmented ®-algebras is a weak local-
ization if B L 4 C and if the map

(18) BaC—C, b e,
is a topological isomorphism.
Setting M = C in Proposition 3.3, we get the following.
PROPOSITION 3.6. Each localization of augmented @-algebras is a weak localization.

In the case of Hopf ®-algebras with invertible antipodes, the converse is also true. To
see this, let us first observe that if #: U — H is a homomorphism of Hopf ®-algebras,
then the homomorphisms Ey0: U — H¢ and (8 ® 0)Ey: U — H® coincide. Indeed,

00)Ey =020)(1y @ Su)Av = (0@ 60Sy)Ay = (0 @ Spb)Ay
=(1lg®Sy)0®0)Ay =1y ® Sy)Anb = Eyo.

Hence any of the above homomorphisms can be used to make H¢ into a right U-&-module.

It also follows from the above that the canonical isomorphisms
(19) Hp, ®n Ho— H®, 2 ®hw aEp(h),
Hfgo®ue U, — H®, z@w— z(0®0)(w),

are isomorphisms in mod-U.

PROPOSITION 3.7. Let 0: U — H be a homomorphism of Hopf ®-algebras with invertible
antipodes. Then 0 is a localization if and only if it is a weak localization.

Proof. The “only if” part readily follows from Proposition 3.6. If § is a weak localization,
then the map H ®y C — C, h® X — £(h)), is an isomorphism. Combining this fact with
Lemma 2.4 and (19), we obtain a chain of isomorphisms
H&yH 5 HOyU®y H 5 Higy @y U =5 Higy @y Ug, &y C
5 H®yC 5 Hy &y H®yC -~ Hy, &5 C =5 H.
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It is easy to check that the composition of the above isomorphisms takes each hy ® ho €
H @)U H to hihe € H. Thus we have shown that the canonical map H QA@U H — His an
isomorphism.

Now let P, be a projective resolution of C in U-mod, and let P, denote the augmented
complex Py — C — 0. By Theorem 2.5, the complex Q. = Ug,, ®Qu P, is a projective
bimodule resolution of U. In order to prove that € is a localization, it remains to show that
the augmented tensor product complex H @y Qo &y H = H 650 Que Q. is admissible.

Since 0 is a weak localization, we see that L, = H ®y P, is a projective resolution
of H®y C = C in H-mod. Using again Theorem 2.5, we conclude that Hg, Qu Lo is a
projective bimodule resolution of H. In particular, the augmented complex Hf, ®p Lo
is admissible. Now it follows from (19) that

HE'H @H Eo = HEH @HH®UFO =~ H¢ @U po = H98®9 @UG UEU @Upo = HS@Q @Uﬁ Qr
Therefore Hgg ®ue Qe is admissible, as required. =
We end this section with the following simple observation.

LEMMA 3.8. Let §: A — B be a homomorphism of ®-algebras (resp. of augmented ®-
algebras) with dense range. Then 6 is a localization (resp. weak localization) if and only
if B¢ L 4. B (resp. B_L,C).

Proof. Since Im#@ is dense in B, the map X ®4Y — XQpY, 1 Q4 y — zQpy, is a
topological isomorphism for each X € mod-B and each Y € B-mod. In particular, (15)
(resp. (18)) is a topological isomorphism. The rest is clear. m

4. Localizations of U(g) and duality

Following [1] (cf. also [43]), we say that a Hopf ®-algebra is well-behaved if its underlying
locally convex space is either a nuclear Fréchet space or a nuclear (DF)-space. Recall (see,
e.g., [21]) that the strong dual of a nuclear Fréchet space is a complete nuclear (DF)-space,
and vice versa. Moreover, if E is either a nuclear Fréchet space or a complete nuclear (DF)-
space, then there is a canonical topological isomorphism E’® E’ = (E ® E)'. Therefore
for each well-behaved Hopf ®-algebra H the strong dual, H’, is also a well-behaved Hopf
®-algebra in a natural way. More precisely, the multiplication (resp. comultiplication) on
H' is the dual of the comultiplication (resp. multiplication) on H, the antipode of H’ is
the dual of that of H, etc. Note that H is commutative (resp. cocommutative) if and only
if H' is cocommutative (resp. commutative). For example, if G is a real Lie group, then
the algebra C°°(G) of smooth functions is a nuclear commutative Fréchet Hopf algebra,
and its dual is the Hopf algebra &'(G) of compactly supported distributions. For later
reference, recall that the comultiplication, the counit, and the antipode of C*°(G) are
given, respectively, by
(20) (Af)(@,y) = flay), e(f) = fle), (SF(x)=f(z™").
Here we identify C°(G) ® C*®(G) with C>°(G x G) (see, e.g., [21, Chap. II, §3, no. 3).
Another important example is U(g), the universal enveloping algebra of a finite-
dimensional Lie algebra g. If we endow U(g) with the finest locally convex topology,
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then it becomes a cocommutative nuclear (DF) Hopf ®-algebra. Recall that the comul-
tiplication, the counit, and the antipode of U(g) are uniquely determined by

AX)=X®1+10X, X)=0, S(X)=-X (Xeq).

The strong dual of U(g) is topologically isomorphic to the Fréchet algebra of formal
power series C|[[z1,...,2,]] with the topology of convergence of each coefficient (cf. [11,
Prop. 2.7.5] and [77, Theorem 22.1]; cf. also Lemma 5.1 below).

Many other examples of well-behaved Hopf &®-algebras can be found in [42], [43], [44],
[1], and [60].

Let g be a Lie algebra. Suppose we are given a Hopf ®-algebra homomorphism of
U(g) to a well-behaved Hopf ®-algebra H. In this section we formulate some conditions
on the dual algebra, H’', that are sufficient for H to be stably flat over U(g).

4.1. Homotopy of commutative ®-algebras. In this subsection we briefly discuss a
continuous version of the notion of homotopy between morphisms of commutative alge-
bras. This notion was introduced by Chen [7] in the purely algebraic case. All the defini-
tions and the results in this subsection are straightforward adaptations of [7] to the ®-case.
Throughout this subsection, all ®-algebras are assumed to be commutative.

DEFINITION 4.1 (cf. [7], [8]). A ®-algebra C is called ezact if it has at least one nonzero
augmentation C' — C, and if there exists a derivation 0: C' — N to some C-®-module
N such that the sequence 5

0-C1%CcSN—0
splits in LCS. A derivation 0 with the above property is called split exzact.

Basic examples of exact algebras are the algebra of smooth functions C*°(I) on an
interval I C R, the algebra &'(U) of holomorphic functions on a simply connected domain
U C C, the algebra C[[z]] of formal power series, the polynomial algebra C[z] (with the
finest locally convex topology), etc. In each of the above examples, the usual derivation
d/dz: A — A is split exact.

DEFINITION 4.2 (cf. [7]). Two morphisms ¢, ¢1: A — B of commutative @-algebras are
said to be homotopic if there exists an exact algebra C, a morphism ¢: A — C'® B and
two augmentations €g,e1: C — C such that

pi=(®1p)® (1=0,1).

For instance, if X and Y are smooth manifolds and fj, f1: X — Y are smooth homo-
topic mappings, then the induced morphisms f§, f{': C*°(Y) — C*°(X) are homotopic
in the above sense. To see this, it suffices to set C' = C'*°[0, 1] and to reverse the arrows
in the usual definition of a (smooth) homotopy between fy and fi.

Two ®-algebras A, B are called homotopy equivalent if there exist morphisms :
A — B and ¢: B — A such that 1y is homotopic to 14 and ¢ is homotopic to 15.
A ®-algebra is said to be contractible (1) if it is homotopy equivalent to C. Equivalently,

(*) We use the word “contractible” following Chen [7]; it should be noted, however, that the
notion of “contractible algebra” has a completely different meaning in the cohomology theory of
locally convex algebras (see, e.g., [26]).
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A is contractible iff there exist an exact algebra C, a morphism &: A — C'® A, and
augmentations gg,e1: C — Candey: A — Csuchthat (6;®14) P =14 and (g9®14) P =
naea- For example, the algebra of smooth functions on a contractible smooth manifold
is contractible. It is also easy to prove that the polynomial algebra C[zy,...,z2,], the
algebra of formal power series C[[z1, ..., 2z,]], the algebra of entire functions &(C") etc.
are contractible.

THEOREM 4.1 ([7]). If two morphisms o, 01: A — B of commutative ®-algebras are
homotopic, then the induced morphisms o «, 1..: 2(A) — 2(B) are chain homotopic
(as morphisms of complezes in LCS).

We omit the proof, because it is an obvious modification of the proof from [7] to the
®-case.

COROLLARY 4.2. If A is a contractible @-algebra, then the augmented de Rham complex
0 — C ™ Q(A) splits in LCS.

4.2. Lie algebra actions and parallelizability
DEFINITION 4.3. Let A be a commutative ®-algebra, and let g be a Lie algebra acting
on A by derivations. We say that A is g-parallelizable if the derivation
d’:A— Clg, A), a— (X Xa),
is universal, i.e., if (C'(g, A), d") is the module of Kéhler differentials for A.

PROPOSITION 4.3. An algebra A is g-parallelizable if and only if the identity map of A
extends to a DG ®-algebra isomorphism between C" (g, A) and 2(A).

Proof. The “if” part is clear. To prove the converse, recall that the universal property of
2(A) yields a unique DG ®-algebra morphism ¢: £2(A) — C"(g, A) such that ¢° = 14.
If A is g-parallelizable, then o': 21A — C'(g, A) is an isomorphism. Since both 2(A)
and C"(g, A) are exterior, we conclude that ¢ is an isomorphism (see Subsection 1.3). m

Now suppose that H is a well-behaved cocommutative Hopf ®-algebra, g is a Lie
algebra, and 0: U(g) — H is a Hopf ®-algebra homomorphism. We consider H as a right
g-®-module via 6 by setting z - X = x6(X) for each z € H, X € g. The strong dual
space, H', is then a left g-®-module in a natural way (see Subsection 1.4). Namely, the
action of g on H' is given by
(21) (X -a,z) =(a,20(X)) (a€H', X €g,xeH).

It is easily checked that g acts on H' by derivations. Indeed, for each a,b € H', X € g,
x € H we obtain
(22) (X -ab,x) = {(ab,z0(X)) = (a ® b, A(z0(X))) = (a ® b, A(x) A(6(X)))
— (@@ b, Alx) - 0 6(A(X))) = (0@ b, A@) (0(X) © 1 + 12 (X))).
For each 1,22 € H we have
(a®b, (1 @x2)(0(X)®1)) = (a®b,210(X) ® x2)
= (Xa,z1){b,x2) = (Xa®b,x1 @ x3).
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Therefore (a ® b,u(A(X) ® 1)) = (Xa ® b,u) for each u € H® H. Similarly, (a ® b,
u(1260(X))) = (a®Xb, u) for each u € H & H. Setting u = A(x) and substituting in (22),
we see that

(X -ab,z) =(Xa®b+a® Xb,A(z)) = (Xa-b+a- Xb,x).

Hence g acts on H' by derivations.
In what follows, we say that the action defined by (21) is determined by 0. We shall
sometimes refer to 6 explicitly by writing X -y a instead of X - a or Xa.

THEOREM 4.4. Let g be a Lie algebra, and let H be a well-behaved cocommutative Hopf
®-algebra. Suppose 0: U(g) — H is a Hopf ®-algebra homomorphism with dense range.
Assume that H' is g-parallelizable (with respect to the action determined by 0) and con-
tractible. Then 0 is a localization.

Proof. Since H is cocommutative, we have S? = 1y (for a categorical proof of this
classical fact, see [71, Chap. 9]). In particular, S is invertible. In view of Proposition 3.7,
it suffices to show that 6 is a weak localization. Set U = U(g), and consider the Koszul
resolution

0—C <L V()

of the trivial g-module C (see Subsection 1.4). Clearly, the chain complexes H @y V.(g)
and C.(g, H) are isomorphic. Due to Lemma 3.8, we need only check that the augmented
complex

0—C<&E Cog H)

splits in LCS. Since the above complex consists of reflexive spaces, it splits if and only
if the dual complex
0—C =5 C (g, H)

splits. Now it remains to apply Corollary 4.2 and Proposition 4.3. =

5. Power series envelopes of U(g)

Our next task is to show that the strong dual algebras of some locally convex completions
of U(g) (for g nilpotent) are indeed g-parallelizable. To this end, recall some facts on the
“formal power series completion” [U(g)] of U(g) (see [19]).

Let g be a nilpotent Lie algebra and let I C U(g) be the ideal generated by g. Recall
that the quotient algebra U(g)/I™ is finite-dimensional for each n (see, e.g., [11, 2.5.1]).
Endow each U(g)/I™ with the usual locally convex topology of a finite-dimensional vector
space, and set [U(g)] = limU(g)/I". Clearly, [U(g)] is a nuclear Fréchet—Arens-Michael
algebra. We have a canonical homomorphism

(23) 0:U(g) - [U(@), @t
Since g is nilpotent, it follows that (1), I" = {0} (see, e.g., [29, XIV.4.1]), so that (23)

is injective. For notational convenience, we shall often write U instead of U(g) and [U]
instead of [U(g)], and we shall identify U with its canonical image in [U].
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It is easy to show that [U(g)] has a natural structure of Hopf ®-algebra such that
(23) is a Hopf algebra homomorphism. Indeed, let K = I U + U®I C URU be the
augmentation ideal of U ® U. Evidently, we have A(I) C K, so A(I™) C K™ for each n.
Therefore we obtain an algebra homomorphism

(24) [U) = lmU/I" — lim (U@ U)/K", o+1" Alz) + K"

Since U ®U is isomorphic to U(g x g), and since g X g is nilpotent together with g,
it follows that dim (U®U)/K™ < oo for each n. Hence we can endow lim (U®U)/K"
with a locally convex topology in the same way as we did for [U]. Thus (24) becomes a
®-algebra homomorphism.

For each n denote by 7,,: U — U/I"™ the quotient map, and set

Tn =Tn @Tn: URQU — (U/I™") @ (U/I™).
We clearly have
K" = Z I'el,
i+j=n

and so K" C Ker m,. Hence there exists a homomorphism

~

UeU)/K* — (U/I)&(U/I"),  y+ K™ m(y).

Taking the inverse limit and using the fact that the projective tensor product commutes
with reduced inverse limits [35, 41.6], we obtain a homomorphism

lim (U@ U)/K" — [U] & [U].

(This is even an isomorphism, since Kerm, C K™ for each n.) Composing with (24), we
get a ®-algebra homomorphism

[A]: [U] = U] & [U].
It is easy to check that [A] extends A in the sense that the diagram

=N

A e

U URU

is commutative. Since 6 has dense range, the coassociativity of [A] readily follows from
that of A.

Arguing as above, it is easy to construct an antipode [S]: [U] — [U] and a counit
[€]: [U] — C in such a way that [U] becomes a Hopf &-algebra and 6: U — [U] becomes
a Hopf ®-algebra homomorphism.

A somewhat more explicit construction of [U] was suggested by Goodman [19]. Fix a
positive filtration .# on g, i.e., a decreasing chain of subspaces

g=012002D D@ Dg1=0, [8i0;5] C Gisy-

The smallest ¢ such that g1 = 0 is called the length of the filtration.
An example of a positive filtration is the lower central series of g defined inductively

by On+1 = [gagn}
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Given X € g, X # 0, the .7 -weight of X is defined by w(X) = max{n : X € g,}.
A basis (e;) of g is called an .7 -basis if w(e;) < w(e;41) for all ¢, and g, = span{e; :
w(e;) > n} for all n. Given an .%-basis (e;), we set w; = w(e;) for each i. For each
multi-index o = (a1,...,an) € ZY (N = dimg), set |a| = >, a; and w(a) = 3, wia,.
By the Poincaré-Birkhoff-Witt theorem, the elements e® = e{" --- e} form a basis of
U(g). For each n, set

(25) Jn = span{e® : w(a) > n} C U(g).
Then we have
(26) U(g):J():)IileJz:)"', JiJjCJH_j,

so that {J, } is a decreasing filtration on U(g) satisfying (,, J,, = {0}. In particular, each
Jp, is an ideal of U(g). Goodman [19] defines [U(g)]s as the completion of U(g) with
respect to the topology determined by the filtration {J,,}. Thus we have an algebraic
isomorphism [U(g)]# = im U(g)/Jn.

If we endow each U(g)/J, with the usual topology of a finite-dimensional vector
space, then it is easily seen that [U(g)].# is isomorphic (as a topological algebra) to the
algebra [U(g)] introduced above. Indeed, setting C' = max w;, we see that w(a) < C|«|
for each o € Zf, and so Jo, C I" for each n. On the other hand, we have I" = JJ" C J,
for each n. Therefore the filtrations {.J,} and {I"} are equivalent, and so the algebras
[U(g)]# and [U(g)] are isomorphic.

As a locally convex space, [U(g)] is isomorphic to the space of all formal power series
x = ), cqe” endowed with the topology of convergence of each coefficient (cf. [19]).
More precisely, the topology on [U(g)] can be generated by the sequence of seminorms
{l| " lln : n € Z4} defined by

[zlln = > leal foreach z = coe* € [U].
w(a)<n o
For each multi-index o € Z% set e, = e*/al. Then Ale,) = Yty Ca ®eg (see
[11, 2.7.2]), and the same relation clearly holds for [A].

LEMMA 5.1. The mapping »: [U]' — C|z1,..., z2n] defined by the rule
(27) [ Z flea)z®

is an algebra isomorphism. Moreover, i is a topological isomorphism with respect to the
strong topology on (U] and the finest l.c. topology on Clz1,...,zyN].

Proof. The continuity of f implies that there exists n € Z such that f(e,) = 0 whenever
w(a) > n. Hence the sum on the right-hand side of (27) is finite, and s is well defined.
Since the e,’s generate a dense subspace of [U], we see that s is injective. Conversely,
for every polynomial p = )" Aq2® the mapping f: [U] — C, f(>, cata) =D, Cata, is
a continuous linear functional on [U] satisfying »(f) = p. Hence s is bijective. A direct
computation (see [11, 2.7.5]) shows that s is an algebra homomorphism. Finally, since
the topology on the strong dual of a countable inverse limit of finite-dimensional spaces
is the finest l.c. topology (see, e.g., [77, Theorem 22.1]), we see that s is a topological
isomorphism. m
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DEFINITION 5.1. Let g be a nilpotent Lie algebra. By a power series envelope of U(g) we
mean a Hopf ®-algebra H together with Hopf ®-algebra homomorphisms 6, : U(g) — H
and 6o: H — [U(g)] such that both 6; and 6, are injective with dense ranges, and the
composition

01 0
U(g) — H = [U(g)]
coincides with the canonical homomorphism 6 defined by (23).

REMARK 5.1. Since @ is injective with dense range, the conditions “6; is injective” and
“@ has dense range” are satisfied automatically. Note also that, since U(g) is cocommu-
tative and #; has dense range, H is also cocommutative. For the same reason, S? = 1y
in H.

It is immediate from the definition that the “smallest” power series envelope of U(g)
is U(g) itself, and the “largest” one is [U(g)].

THEOREM 5.2. Let g be a nilpotent Lie algebra, and let H be a well-behaved power series
envelope of U(g). Then H' is g-parallelizable.

Proof. Fix a positive filtration .% on g, and choose an %-basis (¢;) of g. Using Lemma
5.1, we may identify [U]" and C[z1,...,2n]. For each i = 1,..., N set x; = 05(z;) € H'.
Since 6, is injective, it follows that Im 6/, is dense in H' with respect to the weak* topology
o(H', H). Using the semireflexivity of H, we see that Im 6} is dense in H’ with respect
to the strong topology as well. Hence z1, ..., 2y generate a dense subalgebra of H'.

Set A = H’', and consider the free A-module A with the standard A-basis (u;),
i.e., u; = (0,...,1,...,0) with 1 in the ith coordinate, 0 elsewhere. Denote by (e’) C g*
the basis dual to (e;) (ie., e’(e;) = d;; for all i, j). Identifying the A-modules C'(g, A)
and A®g*, we see that the elements v; = 1® ¢’ (i = 1,...,N) form an A-basis of
Cl(g, A).

Now consider the A-module morphism ¢: AN — Cl(g, A) taking each u; to d°(z;).
Let (¢;;) be the matrix of ¢ with respect to the bases (u;) and (v;), respectively. Applying
the identity p(u;) = >, pi;v; to e;, we see that

pij = (uj)(es) = d°(5)(e:) = e; - ;.
Given a € H’, denote by @ the restriction of a to U(g) (i.e., @ = 0 (a)). Then for each
y € U(g) we have

(28) (@ijry) = (pij. 1 (y)) = (ei - 25,01 (y)) = (z;,01(yes)) = (Tj,yeq).

We claim that the matrix (y;;) is upper triangular with 1’s on the main diagonal. Indeed,
using (26), we see that ye; € J,, for each y € U(g); moreover, ye; € Jy, 1 for each
y € I = Jy. On the other hand, it is immediate from (27) that Z; = z;|y(g) vanishes on
Jw;+1- Hence (T, ye;) = 0 for all ¢ > j and all y € U(g), (Ts,ye;) = 0 for all y € I, and
(Ti,ei) = 1. Together with (28), this gives B,; = 0 for each i > j, and @;; = 1. Finally,
since Im #; is dense in H, it follows that 6] is injective, and so the latter relations hold
with @,; replaced by ¢;;. Therefore the matrix of ¢ has the required form, so that ¢ is
an isomorphism.
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For each i =1,..., N, let p;: AN — A be the projection on the ith direct summand.
Evidently, 9; = p;¢o~'d° is a derivation of A. It is immediate from the definition of ¢ that
0i(xj) = pi(u;j) = &;; for each 7, j. Hence the conditions of Lemma 1.2 are satisfied, and
s0 0 = (01,...,0n): A — AV is a universal derivation. Since ¢ is an isomorphism, we
conclude that d° = 0 is a universal derivation as well, and so A is g-parallelizable. m

Combining the above theorem with Theorem 4.4, we obtain the following.

COROLLARY 5.3. Let g be a nilpotent Lie algebra, and let H be a well-behaved power
series envelope of U(g) such that H' is contractible. Then H is stably flat over U(g).

COROLLARY 5.4. For each nilpotent Lie algebra g, [U(g)] is stably flat over U(g).

Proof. By Lemma 5.1, the algebra dual to [U(g)] is isomorphic to C[zy, ..., zy] and hence
is contractible. Now it remains to apply Corollary 5.3. =

6. Arens—Michael envelopes of universal enveloping algebras

In this section we prove that for each positively graded, finite-dimensional Lie algebra g
the Arens-Michael envelope of U(g) is stably flat over U(g). First we recall some facts
on Arens—Michael envelopes.

6.1. Arens—Michael envelopes. Arens—Michael envelopes of topological algebras (un-
der a different name) were introduced by Taylor ([74, Definition 5.1]). Here we follow the
terminology of Helemskii’s book [27].

DEFINITION 6.1 ([27, Chap. V]). Let A be a topological algebra. A pair (/Al, L4) consisting
of an Arens—Michael algebra A and a continuous homomorphism ¢4: A — A is called the
Arens—Michael envelope of A if for each Arens—Michael algebra B and for each continuous
homomorphism ¢: A — B there exists a unique continuous homomorphism @: A— B
making the following diagram commutative:

|6

A--*>B
LAT /
©
A
In the above situation, we say that ¢ extends ¢ (though ¢4 is not injective in general;

see Remark 6.2 below).

REMARK 6.1. In the above definition, it suffices to consider only homomorphisms with
values in Banach algebras. This is immediate from the fact that each Arens—Michael
algebra is an inverse limit of Banach algebras (see, e.g., [27, Chap. V]).

Clearly, the Arens—Michael envelope is unique in the sense that if (ﬁ, ta) and (A,74)
are Arens-Michael envelopes of A, then there exists a unique isomorphism j: A — A of
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topological algebras such that the following diagram is commutative:

—~ 7 _
A7~ - 1
A

Recall (see [74] and [27, Chap. V]) that the Arens—Michael envelope of a topological
algebra A always exists and can be obtained as the completion of A with respect to the
family of all continuous submultiplicative seminorms on A. This implies, in particular,
that t4: A — A has dense range. It is easy to see that the correspondence A — Ais
a functor from the category TA of topological algebras to the category AM of Arens—
Michael algebras. In what follows, we call it the Arens—Michael functor. Clearly, the
Arens—Michael functor is the left adjoint to the forgetful functor from AM to TA.

If A is not equipped with a topology, then by an Arens—Michael envelope of A we
mean the Arens—Michael envelope of the finest locally convex algebra A (see Section 1).

Here are two basic examples due to Taylor [75].

EXAMPLE 6.1. The Arens-Michael envelope of the polynomial algebra C|zy,...,z,] is
the algebra of entire functions ¢/(C") endowed with the compact-open topology.

EXAMPLE 6.2. Let F), be the free C-algebra on n generators (i, ...,(,. Given a k-tuple
a = (a1,...,qr) of integers from [1,n], we set (4, = (o, -+ Ca,, € Fr and | = k. Tt is
convenient to agree that the identity of F;, corresponds to the tuple of length zero (k = 0).
The algebra %, of “free power series” consists of all formal expressions a = ) AaCa
satisfying the condition

lalle = Z Aal0l®l < 00 forall 0 < g < cc.

The system of seminorms {| - ||, : 0 < ¢ < 0o} makes .%,, into a Fréchet—Arens-Michael
algebra. Evidently, F), is a subalgebra of .%,,. Taylor [75] proved that %, is the Arens—
Michael envelope of F,,. Note that in the case n = 1 we have F; = C[z] and .%; = 0/(C).

REMARK 6.2. It should be noted that the Arens—Michael envelope can be trivial even
in very simple cases. For example, let A be the Weyl algebra, i.e., the algebra with two
generators p, ¢ subject to the relation [p,q] = 1. It is a standard exercise from spectral
theory (see, e.g., [27, Prop. 2.1.21]) to show that A has no nonzero submultiplicative
seminorms. Hence A = 0.

Another example of this kind is given in [27, Chap. V].

REMARK 6.3. If g is a finite-dimensional Lie algebra, then (in contrast to the previous
example) the homomorphism ¢4y : U(g) — U (g) is injective. This readily follows from
the fact that finite-dimensional representations (and, a fortiori, Banach space represen-
tations) of g separate the points of U(g) (see, e.g., [11, 2.5.7]).

The next proposition shows that the Arens—Michael functor commutes with quotients.

PROPOSITION 6.1. Let A be a topological algebra and I a two-sided ideal of A. Denote
by J the closure of ta(I) in A. Then J is a two-sided ideal of A, and the homomorphism
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A/l — E/J induced by 14: A — A extends to a topological algebra isomorphism

AJT == (A)1)
Proof. Since ¢4 has dense range, we see that J is indeed an ideal of E, and so (2 /)™
an Arens-Michael algebra. Consider the homomorphism 7: A/ — (A\ /J)~ taking each
a+1e€ A/l tota(a)+ J. We claim that ((E/J)N,Z) is the Arens—Michael envelope of
A/I. Indeed, each homomorphism ¢ from A/I to an Arens—Michael algebra C' deter-
mines a homomorphism : A — C vanishing on I. Each such homomorphism extends
to a homomorphism 15 : A — C that vanishes on J and hence gives a homomorphism
p: (ﬁ/ J)~ — C. It is now elementary to check that @z = ¢. The uniqueness of @ is
immediate from the fact that 7 has dense range. m

Since each separated quotient of a Fréchet space is complete, we obtain the following

COROLLARY 6.2. Under the conditions of Proposition 6.1, assume that A is a Fréchet
algebra. Then A/I AllJ.

COROLLARY 6.3. If A is a finitely generated algebra, then ;1\5 is a nuclear Fréchet algebra.

Proof. Since A is finitely generated it is isomorphic to a quotlent of the free algebra F),
for some n. By Corollary 6.2, A is isomorphic to a quotlent of F = Z, (see Example
6.2). Since .%, is a nuclear Fréchet space [45], so is A. m

Another useful property of the Arens—Michael functor is that it commutes with pro-
jective tensor products.

PROPOSITION 6.4. Let A, B be ®-algebras. Then there exists a topological algebra iso-
morphism PR PPN
(AR B 2 A®B.

Proof. Set + = 14 @ 1g: A®B — A®B. Clearly, ¢ is a continuous homomorphism.
Suppose ¢: A®B — C is a homomorphism to some Arens-Michael algebra C. Then
p1: A= C, p1(a) = p(a®1), and p3: B — C, p3(b) = (1 ® b), extend to continuous
homomorphlsms o1: A — Cand & P2 B C,i.e., we have p114 = ¢1 and @ Palp = Pa. Let
p: A® B — C be the linear continuous map assoc1ated to the bilinear map Ax B — C,
(a,b) — @1(a)p2(b). Evidently, we have @t = ¢. Since ¢ has dense range, we conclude
that @ is an algebra homomorphism. For the same reason, ¢ is a unique homomorphism

extending ¢. Hence (/T ® B, 1) is the Arens—Michael envelope of A® B. =

PROPOSITION 6.5. Let A be a topological algebra. Then (A°P)~ = Acp.

Proof. It suffices to use the 1-1 correspondence between continuous homomorphisms
A°P — B and continuous homomorphisms A — B°P. m

COROLLARY 6.6. Let A be a ®-algebra. Then (A°)™ = (A)e.

The next proposition shows that the Arens—Michael functor can also be considered as
a functor from the category HTA 5 of Hopf ®-algebras to the category HAMg of Hopf
®-algebras that are Arens-Michael algebras.

PROPOSITION 6.7. Let H be a Hopf® algebra. Then there exists a unique Hopf ®-algebra
structure on H such that . g: H— H becomes a Hopf ®-algebra homomorphism. More-
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over, if L is both a Hopf ®-algebra and an Arens—Michael algebra, and ¢: H — L is a
Hopf ®-algebra homomorphism, then so is 3: H — L.

Proof. To obtain Ap, €5, and Sp, it suffices to apply the Arens-Michael functor to
Ap, g, and Sp, respectively, and to use Propositions 6.4 and 6.5. The Hopf algebra
axioms (such as the coassociativity of A 7 etc.) are then readily verified by applying the
Arens—Michael functor to the appropriate commutative diagrams involving H.

To prove that { respects comultiplication, it is enough to show that (P ® @)Aziy =

Apprg. We have
(P@0)Agin = (@) (tn ®ir)An = (p @ p)Ax = App = Arpiy.

A similar argument shows that ¢S; = S and €,$ = €. Hence ¢ is a Hopf ®-algebra
homomorphism. =

EXAMPLE 6.3. Let g be a finite-dimensional Lie algebra and U (g) the universal enveloping
algebra of g. Then it follows from Proposition 6.7 and Corollary 6.3 that U (g) is a
well-behaved (see the beginning of Section 4) Hopf &-algebra. Denote by t4: g — U (9)
the restriction of (74 to g. Then it is easy to see that U (g) is characterized by the
following universal property: for each Arens—Michael algebra A and each Lie algebra
homomorphism ¢: g — A there exists a unique ®-algebra homomorphism - ﬁ(g) — A
such that 1y = . In particular, for each Lie algebra homomorphism f: g — b there
exists a unique ®-algebra homomorphism ﬁ(f) ﬁ(g) — ﬁ(h) such that ﬁ(f)bg =ty f.
Moreover, Proposition 6.7 implies that U (f) is in fact a Hopf ®-algebra homomorphism
(cf. [5, Chap. II, §1, no. 4]).

6.2. Arens—Michael envelopes of filtered and graded algebras. In this subsection
we describe Arens—Michael envelopes of locally finite graded algebras. As a corollary, we
show that the Arens—Michael envelope of the universal enveloping algebra of a nilpotent
Lie algebra g is a power series envelope (see Definition 5.1) provided g admits a positive
grading.

Recall that a decreasing filtration on an algebra A is a chain of linear subspaces

A=A4D A1 DAy D+ satisfying A;A; C Aiqj.

The filtration is called separated if [, A, = {0} and is said to be of finite type if
dim A, /A,4+1 < oo for all n. In what follows, all filtrations are assumed to have these
properties.

As in Section 5, we endow each A/A, with the usual locally convex topology of a
finite-dimensional vector space, and set [A] = lim A [An.

The following proposition is immediate from the definition of [A].

PROPOSITION 6.8. For each n € Z4 let V,, be a linear complement of Ap4+1 in A,. Fiz a
norm on each V,,. Then, as a locally convex space, [A] is isomorphic to the space of all
formal series {a = ), v; : v; € V;} endowed with the family of seminorms {||-||, : n € Z}

defined by
n
llalln :ZHUZH for eacha:Zvi.
i=0 i
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Since each A/A,, is a finite-dimensional (hence Banach) algebra, we see that [A] is an
Arens—Michael algebra. Therefore the canonical homomorphism

(29) 0: A— [A]7 €T = (l‘ + An)nEZJra

uniquely extends to a homomorphism

(30) 0: A—[A], bua=0.

PROPOSITION 6.9. Let A be an algebra. Suppose that A admits a decreasing, separated
filtration of finite type. Then the canonical homomorphism 14: A — A is injective. In
other words, submultiplicative seminorms separate the points of A.

Proof. The condition (,, A,, = {0} implies that 6 is injective. Since § = o A, we conclude
that ¢4 is also injective. m

Our next task is to show that §: A — [A] is also injective provided the filtration on
A comes from a grading.

Let A = @p,,~,A" be a graded algebra (see Subsection 1.3). We assume that A is
locally finite, i.e., that dim A" < oo for each n. Setting A, = ®D,-, A’, we obtain a
decreasing, separated filtration of finite type on A. B

The following is a direct consequence of Proposition 6.8.

PROPOSITION 6.10. Let A = @, ., A" be a locally finite graded algebra. Then, as a
®-algebra, [A] is isomorphic to the direct product [, A™ endowed with the multiplication

(31) (ai) - (bj) = (cx), = Z a;b;.
itj=Fk
In order to describe the Arens—Michael envelope of A as a certain “power series al-
gebra”; it will be convenient to use “vector-valued Kéthe spaces”, which are more or less
straightforward generalizations of classical Kothe spaces (see, e.g., [61]).
Let E = {E; : i € N} be a countable family of Hausdorff locally convex spaces. For
each i denote by M(E;) the set of all continuous seminorms on F;.

DEFINITION 6.2. An E-power set is a family P of functions p: N — J, (E;) such that
pi = p(i) € N(E;) for each ¢, and such that the following conditions are satisfied:
(1) for each i € N the family of seminorms {p; : p € P} generate the original topology
on Ej;
(2) for each p,q € P there exists r € P such that r;(x) > max{p;(x), g;(z)} for each
i € N and each z € E;.

DEFINITION 6.3. Given a family F = {E; : i € N} of Hausdorff l.c.s.’s and an E-power
set P, define the vector-valued Kdthe space A\(P, E) by

AP,E) = {x = (@) e [[Bi: ey = pilzs) <00 Vp e P}.
REMARK 6.4. If F; = C for each 7, then we come to the classical notion of Kéthe sequence

space.

Evidently, A(P, E) is a Hausdorff locally convex space with respect to the family of
seminorms {|| - ||, : p € P}.
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PROPOSITION 6.11. (P, E) is complete iff all the E;’s are complete.

We omit the proof, because it is a straightforward modification of the classical fact
that ¢! is complete.

Now let A = @p,,~, A" be a locally finite graded algebra. As usual, we endow each
A" with the usual topology of a finite-dimensional vector space.

DEFINITION 6.4. A graded submultiplicative seminorm on A is a function p: N —
U,, M(A™) such that p, = p(n) € N(A") for all n € Z, and that p;;(ab) < pi(a)p;(b)
for alli,j € Z, and alla € A, b€ AJ.

If p is a graded submultiplicative seminorm on A, then the associated seminorm
|- [lp: A — Ry defined by |lal, = >, pi(a;) for each a = Y, a;, a; € A, is submulti-
plicative in the usual sense. Therefore graded submultiplicative seminorms on A are in
1-1 correspondence with submultiplicative seminorms || - | on A satisfying the condition
lall =3, |lai|| for each a = 3, a;, a; € A

Denote by P the collection of all graded submultiplicative seminorms on A.
LEMMA 6.12. P is an A-power set.

Proof. To check condition (1) of Definition 6.2, it suffices to show that for each n there
exists p € P such that p, is a norm on A". Fix a submultiplicative norm on the finite-
dimensional algebra A/A, 11, denote by 7,41: A — A/A, 11 the quotient map, and set
pi(a) = ||[Tns1(a)|| for each i € Z, and each a € A*. Evidently, p is a graded submulti-
plicative seminorm on A. Since || - || is a norm on A/A,, 14, and since A" NKer 7,41 = {0},
we conclude that p,, is a norm on A".

Given p,q € P, the function r = max{p, ¢} (i.e., ri(a) = max{p;(a), g;(a)} for each
a € A and each i € Z) clearly belongs to P. Hence condition (2) of Definition 6.2 is
also satisfied, so that P is an A-power set. m

THEOREM 6.13. Let A =@, ., A" be a locally finite graded algebra, and let P be the set
of all graded submultiplicative seminorms on A. Denote by 14 the canonical embedding of
A into \(P, A) that is the identity on each A™. Then \(P, A) is a subalgebra of [],, A",
and (A(P, A),t4) is the Arens—Michael envelope of A.

Proof. Given a = (a;) and b = (b;) in A(P, A), we must show that the element ¢ = ab €
[1,, A™ defined by (31) belongs to A(P, A). For each p € P we have

S peler) )0 prlaib) >0 pilapi(by) = piai) Y p;(b;) = llallp|bll,-

k kE itj=k k it+j=k i j
Hence ab € A(P, A), and ||abl|, < ||a|lp||b|lp- This implies, in particular, that A\(P, A) is
an Arens—Michael algebra, and ¢4 is an algebra homomorphism.

Now let ¢: A — B be a homomorphism to some Arens—Michael algebra B. Fix a
submultiplicative seminorm ||- || on B, and define p: Z — (J,, M(A™) by pi(a;) = ||e(as)]|
for each i € Z, and each a; € A'. Evidently, p is a graded submultiplicative seminorm on
A, and |l¢(a)| < ||ta(a)||p for each a € A. This implies that ¢ is continuous with respect
to the topology induced on A from A\(P, A). Since A is dense in A\(P, A), we see that there
exists a unique continuous homomorphism @: A\(P, A) — B extending ¢. Hence A(P, A)
is the Arens—Michael envelope of A. m
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COROLLARY 6.14. Let A= P,,-, A" be a locally finite graded algebra, and let §: A — [A]
be the canonical homomorphism (29). Then the induced homomorphism 6: A — [A] (see
(30)) is injective.

Proof. If we identify [A] with [], A" via Proposition 6.10 and A with A(P, A) via Theo-
rem 6.13, then § becomes the natural inclusion of A(P, A) into [[, A™. =

Now let g = @flzl g" be a positively graded, finite-dimensional Lie algebra. As in
the case of associative algebras (see above), we may define a filtration .# = {g,} on g
by setting g, = @,~,, 9°- It is easy to show that the universal enveloping algebra U (g)
has a grading U(g) = @, -, U(g)" such that the associated filtration on U(g) coincides
with (25). Indeed, let T'g Dbe the tensor algebra of g, and let L be the two-sided ideal
of T'g generated by elements of the form z ® y — y ® x — [z,y], x,y € g. Then we have
U(g) = Tg/L. If g is graded, then we can define a grading on T'g by

(Te)"= P "2 2g¢"
i1t tig=n
Thus T'g becomes a locally finite graded algebra, and L becomes a graded ideal of T'g.
Therefore U(g) = T'g/L is also a locally finite graded algebra. We have
U@"= >,  g'-g"
i tig=n

Choose an %-basis (e;) of g consisting of homogeneous elements, and set
V" = span{e® : w(a) = n}.

By the Poincaré-Birkhoff-Witt theorem, we have U(g) = €,, V". On the other hand, it
is clear that V" C U(g)". Since U(g) = @,,U(g)", we conclude that V" = U(g)™ for
all n. Hence the associated filtration of U(g) has the form

Ulg)n = D U(@)™ = spanfe” : w(a) = n} = J,

m>n

(see (25)).
Now Proposition 6.7, Example 6.3, and Corollary 6.14 imply the following.

PROPOSITION 6.15. Let g be a positively graded Lie algebra. Then ﬁ(g) together with the
homomorphisms vy g): U(g) — U(g) and 0: U(g) — [U(g)] is a power series envelope

of U(g).

6.3. The contractibility of U/’ (g). Let g be a positively graded Lie algebra. In order
to prove that ﬁ(g) is stably flat over U(g), it now remains to show that the strong dual,
U'(g), of U(g) is a contractible -algebra (see Corollary 5.3). To this end, it will be
convenient to use the following Lie algebra version of contractibility.

DEFINITION 6.5. We say that a finite-dimensional Lie algebra g is contractible if there
exists a smooth mapping h: [0,1] x g — g such that
(i) for each ¢t € [0,1] the map h;: g — g, ht(X) = h(t, X), is a Lie algebra homo-
morphism;

(i) ho = 0 and hy = 1.
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EXAMPLE 6.4. Each positively graded Lie algebra g = g1 & - - - & g¢ is contractible. To
see this, it suffices to set h,(X) = t"X for each X € g,, and each t € [0,1].

EXAMPLE 6.5. Let g be the 2-dimensional Lie algebra with basis X, Y and commutation
relation [X,Y] =Y. Take a function f € C°°(R) such that f(¢) = 0 for each ¢t < 0 and
f(t) =1foreach ¢t > 1, and define h;: g — g by h(X) = f(2¢)X and h(Y) = f(2t—1)Y.
It is easy to check that h; satisfies the conditions of Definition 6.5, and so g is contractible.

REMARK 6.5. It is easy to prove that each contractible Lie algebra is solvable. Indeed,
suppose that g is not solvable, and consider the Levi decomposition g =t @ [ (vt = rad g,
[ is a semisimple subalgebra, [ # 0). It is clear that a semidirect summand (i.e., a retract
in the category of Lie algebras) of a contractible Lie algebra is contractible. Thus it
suffices to show that [ is not contractible. Since [ is a direct sum of simple algebras,
we need only prove that a simple Lie algebra is not contractible. Assume towards a
contradiction that g is both simple and contractible, and let h;: g — g be a contracting
homotopy from Definition 6.5. Since g is simple, each h; is either 0 or an automorphism.
Replacing, if necessary, the segment [0, 1] by [to, 1] where ty = max{t : hy = 0}, we may
assume that h; is an automorphism for all ¢ > 0. Let B(:,-) denote the Killing form
on g. By Cartan’s criterion, B is nondegenerate. Since h; is an automorphism, we have
B(hy(X),h(Y)) = B(X,Y) for all X,Y € g and all ¢ > 0. Letting ¢t — 0, we obtain
B = 0, which is a contradiction.

REMARK 6.6. It should be noted that not every nilpotent Lie algebra is contractible. For
example, let g be the 7-dimensional Lie algebra with basis X1, ..., X7 and commutation
relations

(X1, Xi]=Xip1 (1=2,...,6),
(X2, X3] = — X6, [X3,Xu] = X7, [Xo, Xy = [Xo, X5] = - X7

(see [16]). Let {h; : t € [0,1]} be a continuous family of endomorphisms of g, and let
(hij(t)) be the matrix of h; with respect to the basis Xi,..., X7. A routine calculation
shows that if hyi(tg) # 0 and hoo(tg) # 0 at some point tg, then h;;(tg) = 1 for all
i =1,...,7. This clearly implies that g is not contractible.

Our next goal is to prove that the contractibility of g implies that of U’ (g). We need
some facts on topological vector spaces. Most of them are standard and can be easily
deduced from [69] and [21].

Let E, F, and G be locally convex spaces (l.c.s.’s). Consider the vector space
B(E x F,G) of all separately continuous bilinear mappings from E x F to G. We
endow this space with the topology of bibounded convergence (i.e., the topology of uniform
convergence on direct products of bounded sets). There is a natural mapping

(32) Z(E,Z4(F,G)) —B(E X F,G)
defined by the rule ¢ — ((z,y) — ©(z)(y)). Obviously, this mapping is topologically
injective (i.e., is a homeomorphism onto its image). A bilinear map ¢: E x F — G

belongs to the image of the mapping (32) iff for each 0-neighborhood U C G and each
bounded set B C F there exists a 0-neighborhood V' C E such that #(V x B) C U. Such
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bilinear maps are usually called F'-hypocontinuous. If E is barrelled, then each separately
continuous map of E X F to G is F-hypocontinuous (see [69, I111.5.2]), so the mapping
(32) is surjective in this case. Therefore, for each barrelled l.c.s. E and arbitrary l.c.s.’s
F and G we have a topological isomorphism

(33) LB, Z(F,G)) =~ B(E x F,G).
Recall also (see [21, Chapitre II, Théoréme 6] or [69, IV.9.4]) that for each complete

barrelled nuclear l.c.s. E and each complete l.c.s. F there erists a natural topological
isomorphism

(34) E®F — Z(E',F)
defined by x @ y — (2’ — (z,2')y).

LEMMA 6.16. Let E be either a nuclear Fréchet space or a complete nuclear (DF')-space,
and let F' be a complete nuclear barrelled l.c.s. Then for each complete l.c.s. G there exists
a topological isomorphism

(35) LB FEGC) ™ 2(F,E'6G)
taking each u: E — F®G to v: F' — E'® G such that
(36) (v(y),z®2) = (u(z),y ®2)

foreachx € E, yy € F', 2/ € G'.

Proof. Applying (34) and (33), we obtain topological isomorphisms

(37) Z(B,FRG)=Z(E,Z(F,G)=B(Ex F',G)=B(F' x E,G).

Since F' is complete and nuclear, it is semireflexive [69, IV.5], and hence F” is barrelled
(see [69, IV.5.5]). Further, the assumptions on E imply that E is reflexive, and E’ is
barrelled and nuclear [21]. Using again (33) and (34), we see that

(38) B(F' x E,G)= Z(F',2(E,G) = ZL(F,Z(E" Q)= Z(F,E'®G).
Combining (37) and (38), we obtain the required isomorphism (35). Relation (36) is then

readily verified. m

Recall that for each smooth manifold M and each complete l.c.s. X there exists a
topological isomorphism C*°(M)® X = C*°(M, X) taking an elementary tensor f ® x
to the function ¢t — f(t)z (see [21, Chap. II, §3, no. 3|). Applying the previous lemma to
G = C*°(M), we obtain the following.

COROLLARY 6.17. Let E and F be locally convex spaces satisfying the conditions of
Lemma 6.16, and let M be a smooth manifold. Then there exists a topological isomorphism

LB, C%(M, F)) = Z(F,C(M, B')
taking each u: E — C*°(M,F) tov: F' — C*°(M,E'") such that
() (), 7) = (o u(@)(D)
foreachx e E,y € F',te€ M.

THEOREM 6.18. Let g be a contractible, finite-dimensional Lie algebra. Then (7'(9) is
contractible as a commutative @-algebra.
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Proof. Set I = [0,1] and suppose that h: [ X g — g is a smooth map satisfying the
conditions of Definition 6.5. Note that the space C*°(I,g) is a Lie algebra with respect
to the pointwise multiplication. It is readily seen that the map

F:g—C=(L,g), F(X)(t) =h(tX),

is a Lie algebra homomorphism. Using the universal property of U=0U (g) (see Example
6.3) and the obvious fact that C*°(I,U) is an Arens-Michael algebra, we obtain a unique
continuous homomorphism ¥: U — C*°(I,U) that fits into the commutative diagram

~

LET COC(LLQ)

For each t € I define y: U -0 by ¥i(x) = ¥(x)(t). Evidently, 1 is an algebra
homomorphism. Using the above diagram, it is readily seen that ¢, extends h; in the
sense that ¢ty = tghs. Hence ¢y = ﬁ(ht) (see Example 6.3), and so 1, is a Hopf &-
algebra homomorphism. Since ; = 15 and ho = 0, we see that 1 = 15 and o = ngeg.

Now set A = U’ and let : A — C>(I, A) be the map corresponding to ¥ under the
isomorphism

Z(U,0%(1,0)) = L(A,C*(1, A))
(see Corollary 6.17). For each a € A, t € I, and x € U we have

(@(a)(t),z) = (a, () (1)) = {a,Pr(x)) = (a 091, x).
Hence ®(a)(t) = a o ;. In other words, for each ¢ € I the map ¢;: A — A defined by

¢i(a) = D(a)(t) is the dual of 1. Since 1, is a &@-coalgebra homomorphism, we conclude
that ¢; is a ®-algebra homomorphism. Hence so is @. Note also that ¢; = 14 and
vo = (Npep)’ = naca. -

Now it is easy to check that #: A — C*°(I, A) = C*°(I) ® A yields a homotopy be-
tween 14 and nae4 (see Definition 4.2). Indeed, consider the augmentations ¢;: C*°(I) —
C, €;(f) = f(i) (i =0,1). Then for each a € A we have

((e0 @ 14) @)(a) = (a)(0) = po(a) = (naca)(a),
((e1 ®14)®)(a) = D(a)(1) = p1(a) = a.

Hence (g9 ® 14) @ = naca, and (61 ® 14) @ = 14. Therefore 14 is homotopic to 7€ 4,
i.e., A is contractible. m

Now, applying Corollary 5.3, Proposition 6.15, and Theorem 6.18, we obtain the
following.

THEOREM 6.19. Let g be a finite-dimensional, positively graded Lie algebra. Then ﬁ(g)
is stably flat over U(g).

We end this section with an application of the above theorem to computing injective
homological dimensions of U(g)-modules. To this end, we need a formula of “Poincaré
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duality” type. Let g be a Lie algebra of dimension n. Recall (see, e.g., [34, 6.10]) that for
each left g-module V' there exist vector space isomorphisms
Hfio(9,V) = Hy (6, V@ (A" 9)") (D).

If g is nilpotent, then it is easily seen that the action of g on A" g is trivial. (To see this, it
suffices to take a basis (e;) of g with the property that [e;, ;] € span{ey : k¥ > max{i,j}}
and to observe that each e; acts on e; A -+ A e, trivially.) Therefore the above formula
takes the form

H{o(9,V) = Hy (V) (p € Z).
Combining this with Proposition 3.4, we obtain the following.

COROLLARY 6.20. Let g be a finite-dimensional, positively graded Lie algebra, and let
n = dimg. Then for each M € U(g)-mod-U(g) there exist vector space isomorphisms

AP(U(g), M) = A, ,(U(g),M) (peZ).
COROLLARY 6.21. Let g be a finite-dimensional, positively graded Lie algebra. Then
(i) inj.dhgy, M = dimg for each M € ﬁ(g)—mod, M # 0;

U(g)
(i) dhﬁ(g) M = dimg for each Banach M € U(g)-mod, M # 0.

In particular, there are no nonzero injective U (9) -®-modules.

Proof. This is an immediate consequence of [62, Theorem 2.1], [63, Corollary 4.1.3], and
Corollary 6.20. =

7. Weighted completions of universal enveloping algebras

In this section we describe one more class of Fréchet Hopf algebras that are stably flat
completions of universal enveloping algebras. These algebras were introduced by Good-
man in [19] and [20]. Each of them is a power series envelope of U(g) (see Definition 5.1)
and consists of power series = € [U] subject to certain growth conditions.

Recall some definitions and notation from [19] and [20]. Let g be a nilpotent Lie
algebra, and let N = dimg. Choose a positive filtration .# on g, and fix an .#-basis
(e;) for g (see Section 5). A sequence .# = {M, : a € Z}'} of positive numbers is an
F -weight sequence if My = 1 and M, < M,Mp whenever w(y) > w(a) + w(F). Given
an .%-weight sequence .#, consider the space

U9 = {o = cac” € [U]: flall, = Y lealalMar™) < o0 r > 0}.

Clearly, U(g).x is a Fréchet space with respect to the topology defined by the family of
seminorms {|| - || : > 0}. Using the Grothendieck—Pietsch criterion (see, e.g., [61]), it
is easy to see that U(g).» is nuclear. Goodman [19] proved that U(g) 4 is a subalgebra
of [U], and that the multiplication in U(g) 4 is (jointly) continuous with respect to the
above topology. Note, however, that U(g)_» need not be an Arens-Michael algebra.

ExXAMPLE 7.1. Let g be an abelian Lie algebra endowed with the trivial filtration %
(ie., #1 = g and .F» = 0), and let M, = |a|~1®l. Then it is easy to see that U(g). 4 is
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isomorphic to the algebra ¢(C) of entire functions on C. Indeed, &(C") is topologized
by the family of seminorms || - || (r > 0) defined by || f||. = >, |ca|r®! for each f(2) =
3o Caz® € O(CN). We clearly have a! < |a|l®l for each a € Z%. On the other hand, the
Cauchy estimates applied to the entire function z +— exp(>_, z;) imply that |a|l*l < Clolal
for some constant C' > 0. Since w(a) = |al in this case, we obtain || f|[}. ;o < [If[l» < [If[|
for all polynomials f and all » > 0. Hence the families of seminorms || - || and || - ||. are
equivalent, and so U(g).» and ¢(C") are isomorphic.

EXAMPLE 7.2. Let g be an abelian Lie algebra endowed with the trivial filtration, and
let M, = 1 for all a. Then U(g)_4 is isomorphic to the algebra of entire functions on C¥
of exponential order < 1 and minimal type (cf. [67]).

An % -weight sequence .# is entire [20] if it satisfies the following two conditions:

ZMarw(a) < oo forallr>a0,
o
(39) sup {Aw(”‘)/“’(ﬁ)Mﬁl/w(ﬁ)Mojl/w(a)} < oo for some A > 0.
a,B#0
For instance, the weight sequence of Example 7.1 is entire [20], while that of Example 7.2
is not entire.

If # is an entire .%#-weight sequence, then the dual of U(g) , admits an explicit
description as a certain function algebra [20]. Namely, let G be the connected, simply
connected complex Lie group corresponding to g. Since g is nilpotent, the exponential
map exp: g — G is biholomorphic. The homogeneous norm on G is defined by

lg] = max |t;|*/*¢ for each g = exp( E tiei) eqG.
3 .
K2

Given z € C, define a linear map d,: g — g by d.(e;) = z%"e;. We use the same symbol §,
to denote the corresponding holomorphic self-map of G satisfying §, oexp = expod,. It is
immediate that 61 = 1, dp(g) = e for all g € G (here e is the identity of G), 0,0, = 0.,
d;1=14,-1 for each 2 # 0, and |5.g| = |2 |g| for each z € C, g € G.

Given an entire .%-weight sequence .#, define a weight function W, on G by

Wa(g) =Y Malg[* .

Condition (39) implies that W, is finite on G. For example, if g is abelian and M, =
la| 71l (see Example 7.1), then W, satisfies the estimate

(40) exp(N|g|/C) < W.4(g) < exp(N|gl).

Given r > 0, consider the space

Ap(G)= {f € 0(G): N.(f) = Sgg% < oo}.

Evidently, A_z»(G) is a Banach space with respect to the norm N,.. Note that W 4 (d59) <
W4 (8-g) whenever 0 < s < r. This implies that A 4 s(G) C A4 ,(G) for each s < r,
and N, (f) < Ns(f) for each f € A_y s(G). Therefore we may consider the locally convex

space
Aa(G) =lim A ,(G).
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Goodman [20] proved that A_4(G) is a subalgebra of &(G) (under pointwise multiplica-
tion), and that the multiplication is jointly continuous with respect to the inductive limit
topology on A_4(G).

For example, if g is abelian and M,, = |a|~!*! (Example 7.1), then it follows from (40)
that A _4(G) is the algebra of entire functions on G = g of exponential order < 1.

Denote by Z(G) the algebra of polynomial functions on G (i.e., of functions f such
that f oexp is a polynomial on g). This is a dense subalgebra of A 4 (G) (see [20]). Using
the identification Z(G)® £(G) = (G x G), one can show that Z(G) has a Hopf
algebra structure given by (20) (cf. [19, Prop. 2.1]). The algebra U(g) acts on #(G) via
left-invariant differential operators, and this leads to a canonical Hopf algebra pairing
U(g) x #(G) — C defined by (a, f) = (af)(e) for a € U(g), f € Z(G) (cf. [29, XVL3]).
Goodman [20] proved that this pairing extends to a pairing U(g).» X A.#(G) — C and
defines a topological isomorphism between U(g)., and the strong dual space of A_4(G).
Since U(g).# is a nuclear Fréchet space, it follows that the multiplication on A _4(G)
yields (by duality) a comultiplication U(g)., — U(g).x ® U(g).4 that extends the co-
multiplication of U(g). Similarly, the multiplication on U(g). 4 yields a comultiplication
Ay(G) — A4(G)® A 4(G) that extends the comultiplication of Z2(G). It is also easy
to see that the antipode and the counit of U(g) (resp. &(G)) extend by continuity to
U(g).« (resp. A4(G)), so that U(g).4 (resp. A_4(G)) becomes a Hopf &-algebra con-
taining U(g) (resp. Z(@G)) as a dense Hopf subalgebra. Thus U(g).» and A_4(G) are
well-behaved Hopf &-algebras dual to each other.

The above properties of U(g)_» imply the following.

PROPOSITION 7.1. Let g be a nilpotent Lie algebra with a positive filtration %, and let
A be an entire F -weight sequence. Then U(g)_ 4 is a well-behaved power series envelope

of U(g)-

PROPOSITION 7.2. A _4(G) is contractible.

Proof. Given a function f: G — C and z € C, define f,: G — C by f.(9) = f(6.9)-
Using the obvious identity W4 (5.9) = W.4(|.g), we obtain

L ) R ()
() Nl =300 57 g = S W (0,6 h) o W aty )

for each r > 0 and each z # 0. Therefore for each f € A 4(G) we have f, € A 4(G),
and the mapping A 4(G) — A_4(G), f — f., is continuous. Note also that f; = f and
Jfo=f(e)l for each f € A 4(G).

For each f € #(G), the function (z,9) — f.(g) is clearly a polynomial on C x G.
Therefore we have an algebra homomorphism

Bo: P(G) — P(C, P(Q) = P(CxG), Polf)(z)= .

We use the same symbol & to denote the composition of the above homomorphism with
the canonical embedding Z(C, Z(G)) — O(C, A 4(G)).

We claim that @ is continuous with respect to the topology on £((G) inherited from
A_#(G) and the compact-open topology on &(C, A_4(G)). Indeed, let ||-|| be a continuous
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seminorm on A_4(G) and let R > 0. Then the rule
[ullr = sup{[lu(z)]| : |2 < R}

defines a continuous seminorm on &(C, A_4(G)). Furthermore, the compact-open topol-
ogy on O(C, A 4(QG)) is generated by all seminorms of this form. Therefore to prove the
continuity of @, we have to show that for each continuous seminorm || - || on A 4(G) and
each R > 0 the seminorm f +— ||®g(f)||r is continuous on H(G). Since || -| is continuous
on A _4(G), we see that for each r > 0 there exists C' > 0 such that || f|| < CN,g(f)
for all f € Az, r(G). Now let f be in &(G). Using (41) and the fact that N, < N,
whenever s < r, we obtain

[@o(f)llr = sup [[f:|| <C sup Nyr(f.) =C sup NrR|z|*1(f) = CN,(f).
|z|<R |z|<R 0<|z|<R

This means that the seminorm f — ||®o(f)| g is continuous on Z(G) with respect to
the topology inherited from A_y(G). Therefore @ is continuous. Since #(G) is dense in
A4 (G) (ct. [20]), we see that @ extends to a continuous homomorphism

D: Ay(G) — O(C,A4(G) =2 O(C)B A 4(G).

Let e: A 4(G) — C, f — f(e), denote the counit of A _4(G). We claim that & is
a homotopy between 14 ,(z) and ne (see Definition 4.2). Indeed, for each z € C the
mappings f — f. and f — &(f)(z) from A_4(G) to itself are continuous, and they
coincide on #(G). Hence ¢(f)(z) = f, foreach f € A_4(G) and each z € C. In particular,

&(f)(1) = f and &(f)(0) = f(e)1 = (ne)(f)- In other words,
(E1014 )P =144, (0®1a,@)P =1k,
where the augmentations ¢;: ¢(C) — C (k = 0,1) are defined by e,(f) = f(k). Since

0(C) is an exact algebra, we conclude that 1, , () is homotopic to ne, and so A_4(G)
is contractible. m

Now Proposition 7.1, Proposition 7.2, and Corollary 5.3 imply the following.

THEOREM 7.3. Let g be a nilpotent Lie algebra with a positive filtration .7, and let A
be an entire & -weight sequence. Then U(g).4 is stably flat over U(g).

8. Algebras of analytic functionals and hyperenveloping algebras

Let g be a Lie algebra, and let G denote the corresponding connected, simply connected
complex Lie group. In this section we prove that the hyperenveloping algebra F(g) (see
[67]) is always stably flat over U(g). We also show that <7 (G), the algebra of analytic
functionals (see [42]), is stably flat over U(g) if and only if g is solvable.

First recall some definitions. Let G be a complex Lie group. The Fréchet algebra
0(G) of holomorphic functions on G has a canonical structure of Hopf &-algebra given
by (20). Since €(G) is nuclear, the strong dual space, @(G)’, is a Hopf ®-algebra and, in
addition, a nuclear (DF)-space. It is denoted by <7 (G) and is called the algebra of analytic
functionals on G (see [42]). The product of «, 5 € &/ (G) is called the convolution and is
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denoted by « * 8. By definition, we have (o x 3, f) = (a« ® 8, Af) for each o, 3 € &(G)
and each f € 0(G).

Consider the algebra &, of germs of holomorphic functions at the identity e € G.
We endow O, with its usual inductive limit topology, i.e., O, = hl)n O (U), where U runs
through the collection of all neighborhoods of e. Relative to this topology, &, becomes a
nuclear, complete (DF)-space (see [21, Chap. II, §2, no. 3]). Moreover, the multiplication
in O, is jointly continuous, so that @, is a ®-algebra.

By localizing (20) at the identity, we obtain a Hopf ®-algebra structure on &, (cf. [44,
4.2] and [57, 3.2.3]). More exactly, take a neighborhood U of e, choose a neighborhood
V' > e such that V2 C U, and consider the map

Apy: O(U) = OV xV)=o(V)8O(V), (Auvf)(z,y) = flzy).
Composing with the restriction map &(V)® 0(V) — 0, ® 0, and taking the direct limit
over U 3 e, we obtain a comultiplication A: &, — 0, & 0,. The counit and the antipode
are defined similarly using (20). Since all Lie groups with the same Lie algebra are locally
isomorphic, the Hopf algebra structure on &, depends only on g.

By definition, the hyperenveloping algebra F(g) is the strong dual algebra of &,. (Note
that the original definition of §(g) given by Rashevskii in [67] was different; we follow
the approach suggested by Litvinov [42, 44].) Since O, is a nuclear (DF)-space, §(g) is a
nuclear Fréchet space.

Let m, be the ideal of &, consisting of all germs vanishing at e. Consider the formal
completion ﬁ\e = lin O./m?. We endow each quotient &,/m? with the standard topol-

ogy of a finite-dimensional vector space, so that ﬁA becomes a nuclear Fréchet algebra.
Moreover, the comultiplication and the a,ntlpode of O, extend to 0, (cf. [57, 3.2.3]), so
that &, has a canonical structure of Hopf ®-algebra.

There is a natural Hopf algebra pairing between U(g) and @’Ae defined as follows (for
details, see [57, 3.2]). For each X € g, let X denote the corresponding left-invariant
vector field on G. For each open set U C G we use the same symbol X to denote
the corresponding derivation of &'(U). Taking the direct limit over U > e, we see that
X determines a derivation of O. which we also denote by X. It is easy to see that
X (m?) € m?»~! for each n, so that X extends to a derivation of ﬁAe (again denoted
by X ). The resulting map g — Der ﬁe, X = X , yields an algebra homomorphism
0: U(g) — Endc 0,. Thus U(g) acts on 0, via“formal left- -invariant differential operators”
(cf. Section 7). The canonical pairing between U(g) and 0, defined by (a, f) = [o(a)f](e)
for each a € U(yg), f € ﬁe gives an algebraic isomorphism between ﬁ and the algebraic
dual of U(g) [57, 3.2.3]. If we endow U(g) with the finest locally convex topology, then
56 becomes the topological dual of U(g), and the strong dual topology on 56 coincides
with the inverse limit topology introduced above (cf. the beginning of Section 4).

The restriction maps

0(G) — 6, — 0.

are obviously Hopf ®-algebra homomorphisms. Taking the dual maps, we obtain Hopf
®-algebra homomorphisms

(42) U(g) > (g) — (Q).
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Note that &, — €, is always injective with dense range, so that U(g) — §(g) has the
same property. The restriction map &(G) — 0, is injective provided G is connected, and
has dense range provided G is a Stein group. Therefore for each connected Stein group
(in particular, for each connected, simply connected complex Lie group) both the maps
in (42) are injective with dense ranges (cf. [42]).

Let 7: U(g) — &/(G) denote the composition of the above maps. It follows from
the definition of the duality between U(g) and &, that (r(X),f) = (Xf)(e) for all
X €g, f € OG). It is also easy to see that for each X € g the action of X on
#(G)' = 0(G) determined by 7 (see Subsection 4.2) coincides with the derivation X.
Indeed, given x € G, denote by §, € o7 (G) the functional which is evaluation at x. Then
foreach X € g, f € 0(G), and © € G we have

(X T f)(.i?) = <X - f 5z> = <f7 6zT(X)>

d ~
:<Af,6I®T(X)>:E flzexptX) = (X f)(2),
t=0
ie, X f= )Z'f, as required.
Similarly, for each X € g the action of X onﬁ(g)’ = U, determined by the canonical
homomorphism A: U(g) — F(g) coincides with X. Indeed, given f € &, denote by f the
canonical image of f in O,; then for each X € g and each a € U(g) we have

(X x f,A(@) = (£, MaX)) = (F,aX) = [o(aX)](e)
= [o(a) X f(e) = (X f)", a) = (X[, A(a)).
Since Im A is dense in §(g), this implies X - f = X f, as required.

PROPOSITION 8.1. Let G be a Stein group with Lie algebra g. Then O(G) is g-parallelizable.

Proof. By Lemma 1.1, we may identify the &(G)-module 2'(0(G)) of Kéhler differentials
with the module 2!(G) of holomorphic 1-forms on G in such a way that the exterior (de
Rham) derivative d: 0(G) — 2'(G) becomes a universal derivation. Denote by Vect(G)
the Lie algebra of holomorphic vector fields on G. In what follows, we identify g with
the Lie subalgebra of Vect(G) consisting of left-invariant vector fields. Each w € 2'(G)
can be viewed as an (G)-module morphism Vect(G) — €(G). Hence the rule w — wlg
determines a linear map p: 2'(G) — C'(g, 0(G)) which is easily seen to be an O(G)-
module morphism. Evidently, o(df)(X) = X f for each X € g, f € O(G), i.e., od = d°.
It remains to show that ¢ is an isomorphism.

Given w € g*, denote by @ € 2!(G) the corresponding left-invariant 1-form on G.
Let v: Cl(g, 0(G)) — 21 (G) be the unique 0 (G)-module morphism taking each w®1 €
Cl(g,0(@G)) to @. Recall that for each w € g* the value of the left-invariant form @ at a
left-invariant vector field X is the constant function equal to (w, X) (see, e.g., [78, 3.12]).
This means precisely that &|g = w ® 1, and so vy = 1o (g,6(a))-

Let wy,...,w, be abasis of g*. Then &y (x), ..., w,(x) is clearly a basis of the cotangent
space, TG, for each z € G. Hence the forms &y, ...,o, generate 2'(G) as an O(G)-
module. This implies, in particular, that v is surjective. Since 1) = 1, we see that ¢ and
1) are inverse to one another. This completes the proof. m
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Combining this with Propositions 1.3 and 4.3, we obtain the following well-known
fact.

COROLLARY 8.2. Let G be a Stein group with Lie algebra g. Then HP(g,0(G)) =
H{, (G, C) for each p.

The following result is an analytic version of [75, Prop. 7.2].

THEOREM 8.3. Let g be a Lie algebra, and let G be the corresponding connected, simply
connected complex Lie group. Then o/ (G) is stably flat over U(g) if and only if g is
solvable.

Proof. Suppose that g is solvable. Then G is also solvable and so is biholomorphic with C"
(see, e.g., [5, Chap. ITI, §9, no. 6]). Hence &(G) = ¢(C") is a contractible ®-algebra (cf.
Subsection 4.1). On the other hand, &(G) is g-parallelizable by Proposition 8.1. It remains
to apply Theorem 4.4.

Now suppose that g is not solvable. Consider the Levi decomposition g =t @ [ (v =
rad g, [ is a semisimple subalgebra, [ # 0). Let R and L be the corresponding analytic
subgroups of GG. Since G is simply connected, it is isomorphic to the semidirect product
R x L (see, e.g., [58, Chap. 6]). Since L is semisimple, we have H{y (L,C) # 0 for
m = dim L (see, e.g., [50, Lemme 5]). Therefore H{ (G,C) # 0. On the other hand,

top
Hip,(G,C) = H™ (g, 0(G)) by Corollary 8.2, and so the augmented standard complex

0—-C—Ci(g0G))

is not exact. Using the reflexivity argument (cf. the proof of Theorem 4.4), we see that
the dual complex

0=C—C(g,4(G))

does not split in LCS. Therefore U(g) — </(G) is not a localization, i.e., & (G) is not
stably flat over U(g). m

We now turn to the hyperenveloping algebra §(g). Recall that a commutative algebra
is called local if it has a unique maximal ideal. By a local ®-algebra we mean a commutative
®-algebra A which is local in the above sense and such that the maximal ideal of A is
closed and has codimension 1. For example, &, is a local ®-algebra with maximal ideal
me = {f € O.: f(e) =0} (see above), and the same is true of 0..

We need the following simple lemma.

LEMMA 8.4. Let A be an algebra, I C A a left ideal, and E a finite-dimensional vector
space. Then for each T € Homg¢(E, A) the following conditions are equivalent:

(i) T € I-Homc(E, A);
(i) ImT C I.

Proof. The implication (i)=-(ii) is clear. To prove the converse, take a basis (e;) of E,
and let (e') be the dual basis of E*. Identifying Homc(E, A) and E* ® A, we see that
T=>, e' ® a;, where a; = T(e;) € I. Setting T; = ¢’ ® 1, we obtain T = >l €
I-Homc(E, A), as required. m
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LEMMA 8.5. Let A be a local ®-algebra with mazimal ideal m, and let g be a Lie algebra
acting on A by derivations. Suppose there exists a linear map x: g* — A such that

(i) Im x generates a dense subalgebra of A;
(ii) X - x(w) = (w,X)1 mod m for each X € g and each w € g*.

Then A is g-parallelizable.

Proof. We proceed in much the same way as in the proof of Theorem 5.2. Consider the
A-module morphism ¢: A®g* — C'(g, A) uniquely determined by 1 ® w — d°(x(w)).
Our objective is to prove that ¢ is an isomorphism. To this end, note that, since A is
local and both A® g* and C!(g, A) are free and finitely generated, we need only prove
that the induced map

(43) P ARg /m-A®g" — C'(g,4)/m-C'(g, A)

is a vector space isomorphism (see [2, Chap. II, §3, no. 2]).

Since m is closed and has codimension 1, there exists a continuous homomorphism
e: A — C such that m = Kere. Hence we can identify A®g*/m - A®g* and g* via the
map

(44) a: gt -5 ARg/m- ARy, w—1lQuw+m-ARg"

The inverse map is given by a @ w + m- A® g* — e(a)w.
Next consider the map

(45) B: Clg,A)/m-C*g,A) — g*, T+m-Clg,A) s eT.

Lemma 8.4 implies that 3 is well defined and bijective. Indeed, the map taking each
weEg tow®1l+m-Cl(g, A) is readily seen to be an inverse of 3.

It is now easy to see that the map ¥ defined by (43) corresponds to the identity
mapping of g* under the identifications (44) and (45). Indeed, for each w € g* we have
(pa)(w) = d°(x(w)) + m- C(g, A), and hence

((Bpa)(w), X) = e(d®(x(@))X) = e(X - x(w)) = e((w, X)1) = (w, X)
for every X € g. Therefore 5pa = 14+, and so @ is an isomorphism. By the above remarks,
so is .

Now define a derivation d: A — A®g* by d = ¢~ 'd°. Note that d(x(w)) = 1 ®@w
for each w € g*. Choose a basis (e;) of g, and let (e’) be the dual basis of g*. We may
identify A® g* and A™ (n = dim g) via the map

P (ag, ... an) EA"HZai®eieA®g*.

Let 9 = ¢~'d = (01,...,0,): A — A™ be the derivation corresponding to d under the
above identification. Since d(x(e’)) = 1 ® ¢’ for each j, it follows that 9;(x(e’)) = &,
for each i,j. Thus the elements z; = x(e') € A and the derivations 9; € Der A satisfy
the conditions of Lemma 1.2. Therefore 9 is a universal derivation. Since both ¢ and
are isomorphisms, we conclude that d° = ¢d = 10 is a universal derivation as well, i.e.,
A is g-parallelizable. m

THEOREM 8.6. Let g be a Lie algebra. Then §(g) is stably flat over U(g).
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Proof. By Theorem 4.4, it is sufficient to check that &, is contractible and g-paralleliz-
able.

To prove the contractibility of O, it suffices to do this for the algebra &, of holo-
morphic germs at the origin 0 € C". For each r > 0 denote by D]’ the polydisc in C" of
radius 7, i.e.,

D={z=(z1,...,2n) €C" : |zg| <rVi=1,...,n}.
Consider the homomorphism
@,.: O(D}) — O(D3) @ O(Dy)y) = 0(Dy % Dyfjs), (D) (2,0) = f(2w).
Let ;: 0(D3) — C (k= 0,1) be given by £.(f) = f(k). We clearly have

(46) [(e0 @ (@, f)(w) = f(0), (&1 @ 1)(@rf)(w) = f(w).

Composing &, with the restriction map &(D}) ® ¢(D ) = O (D3) ® O and taking next
the direct limit over D,. > 0, we obtain a homomorphism &: €y — ¢(D}) & 0. Relations
(46) imply that (¢0 ® 15,) @ = neg, and (1 @ 1g,) P = 1g,, where €45,: 0y — C is the
evaluation at 0. Since &(D3) is an exact algebra, we see that @ is a homotopy between
14, and neg,, and so O is contractible.

We now turn to the g-parallelizability of &.. Since the exponential map is biholomor-
phic in a neighborhood of 0 € g, it follows that for each w € g* there exists a unique
function f,, holomorphic in a neighborhood of e € G such that f,(exp&) = w(£) for all
sufficiently small £ € g. Consider the map x: g* — O, taking each w € g* to the germ
of f, at e.

We claim that x satisfies the conditions of Lemma 8.5. To prove this, fix a basis (e;)

of g, and let z',..., 2™ be the corresponding canonical coordinates of the first kind on a
suitable neighborhood of e € G. Recall that they are defined by the rule 27 (exp Y, t'e;) =
t/ for all j =1,...,n. For each w € g* we have

folexpdotler) =S wlent', ie, fo=> wle)n
Therefore Im y consists of all germs of linear functions in !, z". Since polynomials
inz!',..., 2™ form a dense subalgebra of &,, we conclude that condition (i) of Lemma 8.5
is satisfied.

Finally, for each X € g and each w € g* we have

(X - x(@)(e) = (Xfu)(e) = 2

g JelexptX) =w(X).

t=0

Thus we see that condition (ii) of Lemma 8.5 is also satisfied. Hence &, is g-parallelizable.
Now the result follows from Theorem 4.4. m

REMARK 8.1. A similar argument applied to the local algebra A = 0, shows that A is
contractible and g-parallelizable. Hence the standard cochain complex 0 — C — C"(g, A)
splits in LCS. Taking the topological dual, we recover the classical fact that the Koszul
complex 0 — C «— V(g) is exact.
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9. Relations between various completions of U(g)

In this final section, we explain how the completions of U(g) considered above are related
to one another, and formulate some open problems.

Let g be a nilpotent Lie algebra, and let G be the corresponding connected, simply
connected complex Lie group. Choose a positive filtration .% on g, and let .# be an entire
F-weight sequence (see Section 7). The algebra A_4(G) is a subalgebra of (G), and it
is easy to see that the inclusion map A _4(G) — €(G) is continuous. Indeed, given r > 0
and a compact set K C G, let C = sup,cx W (d,9). Then for each f € A 4 .(G) we

fave £(9)]
- g
Il = sup (o)) < € sup B < o)

Hence the inclusion of A 4(G) into O(G) is continuous.

Consider the Hopf algebra Z2(G) of polynomial functions on G. This is a Hopf ®-
algebra with respect to the finest locally convex topology. We have a chain of canonical
inclusion /restriction maps

(47) P(G) — Ag(G) — O(G) — O — O,

which are obviously Hopf ®-algebra homomorphisms. To examine the dual of this chain,
choose an %-basis ey, ...,ey of g, and recall that there is a duality (-,-),. between the
formal completion [U(g)] of U(g) and the polynomial algebra C[z1,...,zy]| defined by
{a, ), = % )(a) forall a € [U(g)], ¢ € Clz1,...,2n] (see Lemma 5.1). Thus the dual
of the inclusion map i: U(g)., — [U(g)] can be viewed as a &-algebra homomorphism
from C[z1,...,2n] to A #(G). For each u € U(g). and each ¢ € Clz1, ..., 2n] we have

(u, ' () = (i(w), ),
where the brackets (-,-) on the left-hand side denote the duality between U(g). » and
Au(G).

We claim that ¢’: C[z1,...,25] — A #(G) becomes the canonical inclusion of Z(G)
into A 4(G) if we identify C[z,...,2zy] with &(G) using the canonical coordinates of
the second kind. Indeed, for each a € Z% and each ¢ € 0(G) we have (in the standard
multi-index notation)

(48) (e, 9) = [e"¢](e) = DIy(0)
with respect to the canonical coordinates of the second kind (see [42, Lemma 7.2]). On
the other hand, it follows from (27) that (e“, ¢),. = D2¢(0) for each ¢ € C[z1,...,2n] =
P (G). Together with (48), this gives (e“, ¢),. = (%, ¢), and so (e*,i'(v)) = (i(e%), ).
= (e®, ), = (%, ¢) for each a € Z¥ . This implies that i'(p) = ¢ for each ¢ € 2(G),
which proves the claim.

Thus the sequence dual to (47) has the form

(49) U(g) — §(g) — o (G) = Ulg).e — [U(g)]-

All the maps here are injective Hopf ®-algebra homomorphisms with dense ranges. Com-
bining Theorems 8.6, 8.3, 7.3, Corollary 5.4, and Proposition 3.5, we see that all the
morphisms in (49) are localizations.
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PROPOSITION 9.1. Let G be a connected, simply connected complex Lie group with Lie
algebra g, and let 7: U(g) — </ (G) be the canonical homomorphism (see (42)). Then there
exists a unique Hopf ®-algebra homomorphism j: o/ (G) — ﬁ(g) such that vy = jorT.
In other words, the canonical morphism iy gy : U(g) — (A](g) factors through </ (G).

Proof. Given a Banach algebra A and a homomorphism ¢: U(g) — A, we shall construct
a continuous homomorphism @: &7 (G) — A such that the diagram

A (G) 2 A
(50) T /

_ ) Ulg)
1s commutative.

For each a € A denote by L,: A — A the left multiplication by a. Consider the
representation

mo: g — ZL(A), m(X)=Lyx)-

Since G is simply connected, 7y determines a holomorphic representation 7: G — GL(A)
such that expomy = 7 o exp (see, e.g., [6, Chap. III, §6, no. 1]). For each € A and
each y € A, let 7, ,, € O(G) denote the corresponding matrix element of 7 defined by
Tzy(9) = (y,7(g)z). By [42, Prop. 3.5], 7 uniquely extends to a continuous representation
7 o (G) — Z(A) such that (y, 7(a)x) = (¢/,7yy) forall ¢’ € & (G), x € A, yc A'.

Consider the map e1: £(A) — A, £1(T) = T(1), and define g: &/(G) — A by
@ = ;7. We claim that P makes diagram (50) commutative. Indeed, for each X € g and
each y € A’ we have

(,27(X)) = (g7 (T(X))1) = (T(X),m1,) = (X71)(e)

d d d
i tzom,y(exp ) o t=O<y,7r(exp )1) o t=0<y,expﬂo( )1)
d
= (y, exptp(X)) = (y, p(X)),
t=0

i.e.,, Pr = ¢. Hence diagram (50) is commutative. Since Im 7 is dense in &/(G), we
conclude that P is an algebra homomorphism. For the same reason, ¥ is a unique linear
continuous map making (50) commutative.

The above construction can easily be extended to the case where A is an Arens—
Michael algebra. Indeed, we have A = lim{A,,o}} for some inverse system {A,,o}}
of Banach algebras. For each v, let 0,: A — A, denote the canonical map. Given a
homomorphism ¢: U(g) — A, we can extend the homomorphism o,¢: U(g) — A, to
a homomorphism @,: &/(G) — A, satisfying $,7 = o,¢. Since such an extension is
1/1\nique, we clearly have o), = ©, whenever u - v. Setting p = liin@/, we obtain a
®-algebra homomorphism making (50) commutative.

Now set A = U(g) and ¢ = L) U(g) — U(g). Then the above construction yields
a unique ®-algebra homomorphism j = @: &(G) — ﬁ(g) satisfying j7 = 1y (q). Since
Im 7 is dense in .«7(G), and since i/(q) is a Hopf ®-algebra homomorphism, we conclude
that so is j. This completes the proof. m
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The above theorem implies that for each nilpotent Lie algebra g the chain of inclusions
(49) can be completed as follows:

U(9).«
(51) Ulg) 5(9) (G)

— T~
[U(g)]
T~

U(sg)

The following summarizes the main results of the previous sections.

THEOREM 9.2. Suppose g is a positively graded Lie algebra, G is the corresponding con-
nected, simply connected complex Lie group, and .4 is an entire weight sequence on g.
Then all the arrows in (51) are Hopf ®-algebra localizations.

We end this section with some open problems.

Problem 1. Is the canonical map U(g) — U (g) a localization for every nilpotent Lie
algebra g7

By Proposition 3.5, we can replace U(g) in the above problem by either §(g) or &/ (G)
(assuming that G is connected and simply connected).

Problem 2. Let g be a nilpotent Lie algebra.

(1) Is the canonical homomorphism 9: U (g) — [U(g)] injective?
(2) Is the algebra U’(g) contractible?

A positive answer to Problem 2 would imply a positive solution of Problem 1 (see
Corollary 5.3).

REMARK 9.1. The diagram dual to (51) has the form
A (G)

. — ~_
6. ~— 0.~ 0(G) P(G)
T e

T U(g)

Recall that all the maps here (except 6 and j') are the usual set-theoretic inclusions/
restrictions of function algebras. Slnce j and 9 have dense ranges, it follows that 9’ and J
are injective. Hence the algebra U’ (g) can be viewed as a certain algebra of holomorphic
functions on G containing the polynomials. Thus question (1) of Problem 2 has a positive
solution if and only if the polynomials are dense in U "(g).
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