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Abstract

In modern science, efficient numerical treatment of high-dimensional problems becomes more
and more important. A fundamental insight of the theory of information-based complexity (IBC
for short) is that the computational hardness of a problem cannot be described properly only by
the rate of convergence. There exist problems for which an exponential number of information
operations is needed in order to reduce the initial error, although there are algorithms which
provide an arbitrarily large rate of convergence. Problems that yield this exponential dependence
are said to suffer from the curse of dimensionality. While analyzing numerical problems it turns
out that we can often vanquish this curse by exploiting additional structural properties. The
aim of this paper is to present several approaches of this type. Moreover, a detailed introduction
to the field of IBC is given.
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Preface

In modern science, efficient numerical treatment of high-dimensional problems becomes

more and more important. A fundamental insight of the theory of information-based

complexity (IBC for short) is that the computational hardness of a problem cannot be

described properly only by the rate of convergence. An impressive example that illustrates

this fact was given recently by Novak and Woźniakowski [NW09]. They studied a problem

for which an exponential number of information operations is needed in order to reduce

the initial error, although there exist algorithms which provide an arbitrarily large rate

of convergence. Problems that yield this exponential dependence are said to suffer from

the curse of dimensionality. While analyzing numerical problems it turns out that we can

often vanquish this curse by exploiting additional structural properties. The aim of this

paper is to present several approaches of this type.

A numerical problem S is given by a sequence of compact linear operators Sd acting

between normed spaces Fd and Gd, where d ∈ N. In general we seek for algorithms An,d
that approximate Sd while using at most n ∈ N0 pieces of information on the input

elements f ∈ Fd. The quality of this approximation is measured by the so-called worst

case error

∆wor(An,d;Sd) = sup
‖f |Fd‖≤1

‖Sd(f)−An,d(f) | Gd‖,

which we try to minimize. Problems based on tensor product structures, as well as linear

algorithms that are easy to implement, are of particular interest. The minimal number of

information operations needed to solve the given problem S to within a threshold ε > 0

is called information complexity :

n(ε, d;Sd) = min {n ∈ N0 | ∃An,d : ∆wor(An,d;Sd) ≤ ε} , ε > 0, d ∈ N.

If this quantity grows exponentially fast with the dimension d then S suffers from the

curse of dimensionality. In the case where n(ε, d;Sd) is exponential neither in d nor in ε−1,

the problem S is said to be weakly tractable. A special case is described by the notion of

polynomial tractability, for which the information complexity needs to be bounded from

above by a polynomial in d and ε−1, i.e.

n(ε, d;Sd) ≤ C ε−p dq for some C, p > 0, q ≥ 0 and all ε ∈ (0, 1], d ∈ N.

If the latter inequality is valid even for q = 0 then S is called strongly polynomially

tractable.

Next we present the three approaches to exploit structural properties we study in this

paper and we briefly summarize our main complexity results.

[6]
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A rather simple class of problems S is given by the set of all compact linear operators

between tensor products of Hilbert spaces. Especially the complexity of tensor product

problems Sd =
⊗d

k=1 S1 : Hd → Gd, induced by some operator S1 : H1 → G1, is well-

understood. It depends on the non-increasingly ordered sequence λ = (λm)m∈N of the

squares of the singular values of the underlying operator S1. In particular, it is well-known

that S = (Sd)d∈N is not polynomially tractable if we have λ1 ≥ 1 and λ2 > 0. Actually,

we are faced with the curse of dimensionality if λ1 is strictly larger than 1 and λ2 > 0,

or if λ1 ≥ λ2 = 1 (cf. Theorem 2.11).

A first approach to modify such a problem is to scale the inner products of the source

spaces Hd, d ∈ N. We set

〈·, ·〉Fd =
1

sd
〈·, ·〉Hd for some sd > 0 and all d ∈ N

and investigate the complexity of the problem operators Sd interpreted as mappings

between the Hilbert spaces Fd and Gd, d ∈ N. The resulting problem, scaled by factors

from the sequence s = (sd)d∈N, is then denoted by S(s) = (Sd,sd : Fd → Gd)d∈N. We study

the worst case setting with respect to the absolute error criterion and prove

Theorem 1. With the above notation and assuming that λ2 > 0, the following assertions

are equivalent:

(I) S(s) is strongly polynomially tractable.

(II) S(s) is polynomially tractable.

(III) There exists τ ∈ (0,∞) such that λ ∈ `τ and supd∈N sd‖λ | `τ‖d <∞.

(IV) There exists % ∈ (0,∞) such that λ ∈ `% and lim supd→∞ s
1/d
d < 1/λ1.

If one (and hence all) of these conditions applies then the exponent of strong polynomial

tractability is given by p∗ = inf{2τ | τ fulfills condition (III)}.

We refer to Theorem 3.2 in Section 3.2.1. It is remarkable that similar to unscaled

problems, polynomial tractability of the problem S(s) already implies strong polynomial

tractability, despite the fact that we can choose the sequence of scaling factors (sd)d∈N
completely arbitrary.

The feature that S(s) is weakly tractable (which is less restrictive than polynomial

tractability) and the curse of dimensionality can be characterized, provided that we

additionally assume a certain asymptotic behavior of the initial error εinit
d =

√
sdλd1

(see Theorem 3.7 in Section 3.2.2).

Theorem 2. We study the scaled tensor product problem S(s) = (Sd,sd)d∈N in the worst

case setting with respect to the absolute error criterion and assume λ2 > 0.

• Let ln εinit
d /∈ o(d) as d→∞. Then we have the curse of dimensionality.

• Let εinit
d ∈ Θ(dα) as d→∞, for some α ≥ 0.

◦ If λ1 = λ2 then S(s) suffers from the curse of dimensionality.

◦ In the case λ1 > λ2 the problem S(s) is weakly tractable if and only if λn is

o(ln−2(1+α) n) as n→∞.
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• Let εinit
d → 0 as d → ∞. Then we are never faced with the curse of dimensionality.

Furthermore, S(s) is weakly tractable if and only if

(i) λ1 = λ2 and λn ∈ o(ln−2 n) as n→∞, and εinit
d ∈ o(1/d) as d→∞, or

(ii) λ1 > λ2 and λn ∈ o(ln−2 n) as n→∞.

Here the parameter α that controls the polynomial growth of the initial error is of

particular interest. In the case where λ1 > λ2 it directly enters the characterization of

weak tractability. Moreover, condition εinit
d ∈ o(1/d) as d → ∞ in the third part of the

theorem is quite surprising. Since for unscaled problems the initial error can only grow or

decline exponentially, or it equals one in any dimension, these phenomena cannot occur

in the classical theory, i.e. when sd = 1 for all d ∈ N.

Another approach to overcome the curse of dimensionality is related to problems

defined between function spaces. Here we can make use of some a priori knowledge about

the influence of certain (groups of) variables on the functions in the source space, in

order to approximate them efficiently. To this end, we endow these spaces with weighted

norms. During the last years especially problems on function spaces that yield a Hilbert

space structure, equipped with so-called product weights, attracted a lot of attention.

Problems where the source and/or target spaces are allowed to be more general Banach

spaces were studied less frequently within the IBC community.

Among other things, in this paper we consider the uniform approximation problem

App = (Appd : F γd → L∞([0, 1]d))d∈N with Appd(f) = f for d ∈ N

defined on certain classes of smooth functions

F γd = {f : [0, 1]d → R | f ∈ C∞([0, 1]d) with ‖f | F γd ‖ <∞}

which are endowed with the weighted norms

‖f | F γd ‖ = sup
α∈Nd0

1

γα
‖Dαf | L∞([0, 1]d)‖.

Here for every α ∈ Nd0, d ∈ N, the product weights γα =
∏d
j=1(γd,j)

αj are constructed

from a uniformly bounded sequence Cγ ≥ γd,1 ≥ · · · ≥ γd,d > 0 of so-called generator

weights. It turns out that the complexity of the approximation problem depends on certain

summability properties of these generators which also play an important role when dealing

with problems on product-weighted Hilbert spaces. We define the quantities

p(γ) = inf
{
κ > 0

∣∣∣ lim sup
d→∞

d∑
j=1

(γd,j)
κ <∞

}
,

q(γ) = inf

{
κ > 0

∣∣∣∣ lim sup
d→∞

d∑
j=1

(γd,j)
κ

ln(d+ 1)
<∞

}
,

and prove the following

Theorem 3. For the worst case setting with respect to the absolute error criterion we

have:
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• If the problem App is polynomially tractable then q(γ) ≤ 1. Moreover, strong polynomial

tractability implies p(γ) ≤ 1.

• If q(γ) < 1 or even p(γ) < 1 then App is polynomially tractable or even strongly

polynomially tractable, respectively.

In fact, we prove these necessary and sufficient criteria for a whole scale of weighted

Banach spaces that fulfill certain embedding conditions (see Propositions 4.6 and 4.7 for

details). The source space F γd as defined above appears as a special case within this scale.

On the other hand, it generalizes a space considered by Novak and Woźniakowski [NW09].

In addition, we prove that the sufficient conditions q(γ) < 1 and p(γ) < 1 are also

necessary for (strong) polynomial tractability of the L∞-approximation problem defined

on a certain unanchored Sobolev space Hγd (cf. Theorem 4.18).

Weak tractability and the curse of dimensionality can be characterized as follows.

Theorem 4. For App = (Appd)d∈N the following assertions are equivalent:

(i) The problem is weakly tractable.

(ii) The curse of dimensionality is not present.

(iii) For all κ > 0 we have limd→∞
1
d

∑d
j=1 (γd,j)

κ
= 0.

(iv) There exists κ ∈ (0, 1) such that limd→∞
1
d

∑d
j=1 (γd,j)

κ
= 0.

This immediately follows from our Theorem 4.9, in which we discuss a more general

situation. Note that the implication (ii)⇒(i) is not trivial. Moreover, condition (iv) is

typical for problems defined on Hilbert spaces equipped with product weights.

Finally, our third approach to vanquish the curse is based on exploiting certain sym-

metry properties of the elements in the source space. For this purpose we again consider

tensor product problems S = (Sd : Hd → Gd)d∈N between Hilbert spaces. But now we

restrict them to suitable subspaces which solely consist of (anti)symmetric elements. We

illustrate this concept by considering the special case of problems defined between func-

tion spaces.

For d ∈ N and I ⊆ {1, . . . , d} let SI denote the collection of all permutations π of the

coordinate set {1, . . . , d} that leave the complement Ic = {1, . . . , d} \ I of I fixed. Then

a real-valued function f ∈ Hd = H1 ⊗ · · · ⊗H1 on [0, 1]d is called I-symmetric if

f(x) = f(π(x)) for every x ∈ [0, 1]d and all π ∈ SI .

In contrast, f is called I-antisymmetric if f(x) = (−1)|π|f(π(x)) for every x and π. In

what follows we denote the corresponding linear subspaces of Hd that exclusively contain

symmetric or antisymmetric functions by SI(Hd) and AI(Hd), respectively. In particular,

antisymmetric functions, i.e. functions that change their sign when we exchange the vari-

ables xi and xj , i, j ∈ I, turned out to be of some practical interest; see, e.g., Section 5.4.2.

For the restriction of a given tensor product problem S = (Sd : Hd → Gd)d∈N to the sub-

spaces PId(Hd), d ∈ N, we write SI = (Sd,Id)d∈N. Here the kind of symmetry P ∈ {S,A},
as well as a sequence (Id)d∈N of subsets of the coordinates, are assumed to be fixed.

Since for d ∈ N the operators Sd,Id can be interpreted as a composition of Sd with

suitable orthogonal projections, there exists a close relation of the singular values of Sd
to the corresponding singular values of the restricted operators Sd,Id . These numbers
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essentially determine the minimal worst case error of the problem SI . This knowledge

furthermore allows the construction of an optimal (linear) algorithm that realizes this

error (cf. Theorem 5.4).

Consequently, we can conclude assertions that relate the information complexity of SI
to the squares of the singular values of S1 and to the number of (anti)symmetry conditions

we impose. For the sake of simplicity we restrict ourselves again to the absolute error

criterion and start by discussing the case of symmetric problems (see Theorem 5.10).

Theorem 5 (Polynomial tractability, P = S). Let S1 : H1 → G1 denote a compact linear

operator between Hilbert spaces and let λ = (λm)m∈N be the sequence of eigenvalues of

W1 = S†1S1 with non-increasing ordering. Assume λ2 > 0 and for d > 1 let ∅ 6= Id ⊆
{1, . . . , d} be fixed. We consider the restriction SI = (Sd,Id)d∈N of the tensor product

problem S = (Sd : Hd → Gd)d∈N to the Id-symmetric subspaces SId(Hd) ⊂ Hd, d ∈ N.

Then SI is strongly polynomially tractable if and only if λ ∈ `τ for some τ ∈ (0,∞) and

• λ1 < 1, or

• 1 = λ1 > λ2 and d−#Id ∈ O(1) as d→∞.

Moreover, provided that λ1 ≤ 1, the problem is polynomially tractable if and only if λ ∈ `τ
for some τ ∈ (0,∞) and

• λ1 < 1, or

• λ1 = 1 and d−#Id ∈ O(ln d) as d→∞.

The problem of finding conditions which are sufficient for polynomial tractability in

the case λ1 > 1 remains open. However, our results show that the conditions λ ∈ `τ and

d−#Id ∈ O(ln d) are necessary in this situation, too. In conclusion, we see that imposing

sufficiently many additional symmetry assumptions, we can avoid the curse of dimension-

ality which we are faced with e.g. in the case λ1 = λ2 = 1; see also Theorem 2.11.

The complexity analysis of antisymmetric problems is more demanding. On the other

hand, it turns out that here even weaker conditions are sufficient to conclude polynomial

tractability and thus to vanquish the curse. One of the reasons is the structure of the

initial error which is more complicated in this case. Similar to Theorem 5.16 in Section 5.3

we can summarize the main results on the complexity as follows:

Theorem 6 (Polynomial tractability, P = A). Let S1 : H1 → G1 denote a compact linear

operator between Hilbert spaces and let λ = (λm)m∈N be the sequence of eigenvalues of

W1 = S†1S1 with non-increasing ordering. Assume λ2 > 0 and for d > 1 let ∅ 6= Id ⊆
{1, . . . , d} be fixed. We consider the restriction SI = (Sd,Id)d∈N of the tensor product

problem S = (Sd : Hd → Gd)d∈N to the Id-antisymmetric subspaces AId(Hd) ⊂ Hd, d ∈ N.

Then for the case λ1 < 1 the following statements are equivalent:

• SI is strongly polynomially tractable.

• SI is polynomially tractable.

• There exists a constant τ ∈ (0,∞) such that λ ∈ `τ .

Moreover, the same equivalences hold true if λ1 ≥ 1 and the number of antisymmetric

coordinates #Id grows linearly with the dimension d.
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Clearly, these assertions show that antisymmetric tensor product problems are sig-

nificantly easier than their symmetric counterparts, which on their part possess a lower

information complexity than entire tensor product problems, as long as we impose enough

(anti)symmetry conditions. On the other hand, there exist quite natural examples which

show that even fully antisymmetric problems are not necessarily trivial or polynomially

tractable in general. For details we refer the reader to Section 5.4.1.

Let us briefly explain the structure of the present paper. In the first chapter we settle

some notational conventions and define the abstract problem we are faced with in IBC.

Furthermore, the cost model we are going to use is introduced and we recall the formal

definitions of several complexity categories.

In Chapter 2 we discuss special classes of numerical problems, as well as elemen-

tary tools that we need to handle them. In particular, we give a detailed introduc-

tion to the singular value decomposition (SVD) of compact operators between Hilbert

spaces. In many cases it forms the basis for the construction of optimal algorithms.

Hence it is of fundamental importance for the rest of our work. In addition, we dis-

cuss tensor product structures in Hilbert spaces and recall some well-known complex-

ity assertions for problems related to this concept. Finally, we briefly introduce so-

called reproducing kernel Hilbert spaces (RKHSs) and collect some of their proper-

ties.

In the first two sections of the third chapter we derive characterizations of the dif-

ferent types of tractability of scaled tensor product problems between Hilbert spaces we

presented in Theorems 1 and 2 above. Moreover, from them we derive a complete char-

acterization for the normalized error criterion in Section 3.2.3. It turns out that here the

scaling factors become irrelevant. Apart from formulas of the optimal algorithm and its

worst case error, we additionally show that these new assertions generalize the known

theory in a quite natural way. We conclude this chapter by the application of the results

obtained to two simple examples.

Chapter 4 deals with problems on function spaces endowed with weighted norms. Here

we explain the concept of weighted spaces in full detail and illustrate it using the exam-

ple of an unanchored Sobolev Hγd space equipped with product weights. For the uniform

approximation problem on this space we present an algorithm A∗n,d that satisfies suit-

able upper error bounds. Together with corresponding lower bounds, which we prove for

spaces of low-degree polynomials, the application of simple embedding arguments then

leads us to complexity assertions for a whole scale of product-weighted Banach spaces.

In particular, these assertions cover the results for the space F γd stated in Theorems 3

and 4. Finally, the last section of the fourth chapter, Section 4.4, presents some general-

izations of the techniques developed before. Among other things, we show how to handle

Lp-approximation problems, where 1 ≤ p <∞, defined on suitable spaces. Moreover, we

show that the algorithm A∗n,d is essentially optimal for L∞-approximation on Hγd . For the

proof we make use of arguments due to Kuo, Wasilkowski and Woźniakowski [KWW08]

that relate the uniform approximation problem in the worst case setting, defined on quite

general reproducing kernel Hilbert spaces, to a certain average case L2-approximation

problem.
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Some of the results presented in Chapter 4 were already published in [Wei12b]. How-

ever, we were able to partially improve them. We explicitly emphasize generalizations

and new results at appropriate points.

Finally, Chapter 5 is devoted to problems with (anti)symmetry conditions. We start

with the definition of (anti)symmetry in Hilbert function spaces. In particular, we focus

on tensor product structures and deduce fundamental properties of the respective projec-

tions and subspaces. At the end of Section 5.1 we use these properties to generalize the

notion of (anti)symmetry to tensor products of abstract Hilbert spaces. Afterwards we

define (anti)symmetric numerical problems SI = (Sd,Id)d∈N by the restriction of a given

tensor product problem S = (Sd)d∈N to the subspaces of (anti)symmetric elements in the

source spaces. We prove the commutativity of the operators Sd with certain projections

and deduce formulas for optimal algorithms and their worst case errors. In Section 5.3

we then discuss the complexity of (anti)symmetric numerical problems. We distinguish

between symmetric and antisymmetric problems, as well as between the absolute and the

normalized error criterions. Here we in particular derive the proofs of Theorems 5 and 6.

The chapter is concluded by a section devoted to several applications. On the one hand,

we use simple examples to show that the additional knowledge about (anti)symmetry

conditions can dramatically reduce information complexity. On the other hand, we also

discuss more advanced problems that play a role in computational practice. To this end,

we illustrate the application of this new theory to the approximation problem of so-

called wavefunctions that arise in certain models of quantum mechanics and theoretical

chemistry.

A major part of the results proven in Chapter 5 was published in [Wei12a]. However,

at some points we use different proof techniques that allow slight generalizations.

The symbols and are used to indicate the end of remarks and examples, and of

proofs, respectively.



1. Preliminaries

Apart from introducing some notational conventions, the aim of this chapter is to define

the general objects of interest in information-based complexity. We give an abstract for-

mulation of the general problem in Section 1.2. Afterwards, in Section 1.3, we introduce

some classes of algorithms and discuss the cost model we are going to use in this paper.

Finally, in Section 1.4, we recall the notions of tractability, as well as the definition of

the curse of dimensionality.

1.1. Basic notation. As usual, we denote by N the natural numbers, and N0 = N∪{0}
are all non-negative integers. Moreover, R denotes the real line and Rd (d ∈ N) is the

collection of all points x = (x1, . . . , xd) in the d-dimensional Euclidean space. Given a

real number y > 0, the symbol byc means the largest n ∈ N0 such that n ≤ y, and we

define dye to be the smallest number m ∈ N with y ≤ m. The value of the Riemann zeta

function at some z > 1 is denoted by ζ(z) =
∑∞
n=1 n

−z.

If k = (k1, . . . , kd) ∈ Nd0 is a multi-index then |k| =
∑d
i=1 ki stands for its length.

Furthermore, we use the common notation xk = xk11 · . . . · x
kd
d . For α ∈ Nd0 partial

derivatives of d-variate functions are denoted by Dα, i.e.

Dαf =
∂|α|f

∂xα1
1 · · · ∂x

αd
d

.

Derivatives of univariate functions g are indicated by g′, g′′, . . . , g(n), respectively. For real

numbers a < b half-open intervals are denoted by [a, b), and [a, b]d stands for the Cartesian

product×d
i=1[a, b] = [a, b]× . . .× [a, b]. If x ∈ Rd belongs to [a, b]d then the value of the

characteristic (or indicator) function χ[a,b]d(x) of this set equals 1. Otherwise we define

χ[a,b]d(x) = 0. Similarly the Kronecker delta function δi,j is one if i and j coincide and

δi,j = 0 otherwise.

We assume that the reader has a fundamental knowledge in measure theory and

probability theory as can be found, e.g., in the textbooks of Bauer [Bau01, Bau96]. We

write λd for the Lebesgue measure in Rd and use the symbols P and E for probabilities

and expectations, respectively. We use #I to denote the cardinality of a finite set I. As

usual, the sum over an empty index set I is to be interpreted as zero, whereas empty

products equal 1 by definition.

We also assume that the reader is familiar with the basic concepts in functional anal-

ysis such as, e.g., complete normed spaces (Banach spaces), weak derivatives or tensor

products. For a comprehensive introduction we refer to the textbooks of Triebel [Tri92]

and Yosida [Yos80]. The norm in some space F is denoted by ‖· | F‖. We write Br(F ) =

[13]



14 1. Preliminaries

{f ∈ F | ‖f | F‖ ≤ r} for closed balls of radius r ≥ 0 centered at 0 in normed spaces F .

Moreover, we use ∂M for the boundary and int(M) for the interior of a set M . Further-

more, B(F ) = B1(F ) = int(B1(F )) ∪ ∂B1(F ) denotes the unit ball in F . For the class

of all bounded linear operators between normed spaces F and G we write L(F,G). The

subset of all compact operators is denoted by K(F,G). We say a space F is (continu-

ously) embedded into another space G with norm C if the operator norm of id : F → G,

f 7→ id(f) = f , equals C ∈ [0,∞). In this case we write F ↪→ G and ‖id | L(F,G)‖ = C.

We use 〈·, ·〉H for the inner product in a Hilbert space H. Moreover, we write M⊥ for

the orthogonal complement of a linear subspace M ⊂ H and we use ⊕ to denote the

orthogonal sum with respect to 〈·, ·〉H .

If (X , a, µ) is an arbitrary measure space and 0 < p ≤ ∞ then we use Lp(X , a, µ)

to denote the classical Lebesgue spaces. Hence, if p < ∞ then we deal with the set of

(equivalence classes of) µ-measurable functions f : X → R for which the norm (1)

‖f | Lp(X , a, µ)‖ =

(∫
X
|f(x)|p dµ(x)

)1/p

is finite. Moreover, L∞(X , a, µ) is the space (of classes) of µ-essentially bounded functions

on X , furnished with the norm

‖f | L∞(X , a, µ)‖ = ess sup
x∈X

|f(x)|.

As usual, two functions are identified if they coincide µ-almost everywhere on X , and we

do not distinguish between functions and their equivalence classes. The following special

cases are of particular interest for us.

For a Borel measurable subset X = Ω ⊂ Rd, the Borel sigma-algebra a = Σ = Σ(Ω),

and µ = λd we use the shorthand Lp(Ω) = Lp(Ω,Σ, λ
d). If µ is not the Lebesgue measure,

but is absolutely continuous with respect to λd, and if % = dµ/dλd describes a probability

density function that is strictly positive (λd-a.e.) on Ω, then we write L%p(Ω). On the other

hand, for a discrete measure space (Γ, b, ν) on some set Γ with ν({i}) = 1 for each i ∈ Γ

we write `p(Γ) = Lp(Γ, b, ν) and we abbreviate the notation to `p if Γ = N. Keep in mind

that in this case the norms simplify to

‖λ | `p‖ =

{
(
∑∞
m=1 |λm|p)

1/p
if 0 < p <∞,

supm∈N |λm| if p =∞,

where λ = (λm)m∈N is any real-valued sequence such that the above norm is finite.

Finally, we make use of the Bachmann–Landau notation for asymptotic growth rates.

That is, for real-valued functions f and g defined on some subset of the real line we write

f(x) ∈ O(g(x)) as x→ a if there exists a universal constant M > 0 such that

|f(x)| ≤M |g(x)|

for all x sufficiently close to a. If g is non-zero (at least in a neighborhood of a) then this

(1) Actually, in the case 0 < p < 1 the given formula only provides a quasi-norm, i.e. then
we need an additional constant k > 1 for the triangle inequality. Since this does not play any
role in our applications we do not emphasize this difference in what follows.
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definition equivalently reads

lim sup
x→a

∣∣∣∣f(x)

g(x)

∣∣∣∣ <∞.
If we have f(x) ∈ O(g(x)) and simultaneously g(x) ∈ O(f(x)) as x → a, then we write

f(x) ∈ Θ(g(x)), x → a. Moreover, we say that f(x) ∈ o(g(x)) as x → a if for any δ > 0

there exists a neighborhood U of a such that

|f(x)| ≤ δ|g(x)|

for all x ∈ U . Again for non-vanishing g this property can be reformulated as

lim
x→a

∣∣∣∣f(x)

g(x)

∣∣∣∣ = 0.

All these three notations will be used in particular for sequences (fd)d∈N (interpreted as

special classes of functions), where we have a =∞.

1.2. General problem. In numerous applications in physics, chemistry, finance, eco-

nomics, and computer science we are faced with very high-dimensional continuous prob-

lems which can almost never be solved analytically. Therefore we search for algorithms

which approximate the unknown solutions numerically to within a threshold ε > 0.

In general, such a problem is given by a non-trivial solution operator

S : F̃ → G, (1.1)

mapping a problem element f from a subset F̃ of some normed space F onto its solu-

tion S(f) in some (other) target space G. Often, but not always, F̃ is assumed to be the

unit ball B(F) in some Banach space F of multivariate functions f : Ωd ⊂ Rd → R. For

the domain of definition Ωd, usually the unit cube [0, 1]d is taken. Since the dependence

on d will play a crucial role in this paper, we concentrate on whole sequences S = (Sd)d∈N
of solution operators, where every

Sd : F̃d → Gd, d ∈ N, (1.2)

is of the form (1.1).

Typically, F̃d is an infinite-dimensional subset of the source space Fd and thus we

cannot input f ∈ F̃d directly into the computer. Instead we assume that the input for

our algorithms A consists of finitely many cleverly chosen pieces of information which

hopefully describe f as well as possible. In Section 1.3 we define different kinds of infor-

mation operations which lead us to different classes Ad of algorithms. For now assume

Ad : F̃d → Gd is a fixed element in some class Ad.
The local error ∆loc(f ;Ad, Sd) of a given algorithm Ad ∈ Ad applied to a problem el-

ement f ∈ F̃d is defined as the difference of the exact solution Sd(f) and the approximate

solution Ad(f), measured in the norm of the target space Gd, i.e.

∆loc(f ;Ad, Sd) = ‖Sd(f)−Ad(f) | Gd‖.

Based on this definition there are several ways to quantify the quality of Ad.
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In the worst case setting this is done in terms of the maximal local error of the

algorithm among all possible inputs f ∈ F̃d. Hence, we define by

∆wor(Ad;Sd : F̃d → Gd) = sup
f∈F̃d

∆loc(f ;Ad, Sd)

the worst case error of the algorithm Ad for the problem Sd : F̃d → Gd. On the other

hand, sometimes it is useful to measure the average performance of a given algorithm on

the input set F̃d. This corresponds to the so-called average case setting. Here we need to

assume in addition that F̃d is equipped with a probability measure µd. The term

∆avg(Ad;Sd : F̃d → Gd) =

(∫
F̃d

∆loc(f ;Ad, Sd)
2 dµd(f)

)1/2

then denotes the average case error of Ad (2). Since the worst case setting seems to

be much more important we will mainly deal with worst case errors. However, for some

problems there exist close relations to the average case setting. One such example will be

presented in Section 4.4.2. For the sake of completeness we stress that there exist even

more settings which are subject to current research; we mention the probabilistic and the

randomized setting and refer to [NW08, Section 3.2] for an extensive discussion.

In numerical analysis, a major assumption is that information is expensive. Therefore

we are interested in algorithms which solve a given problem within a tolerance ε while

using as few pieces of information on the inputs as possible. This property can be captured

by the concept of the nth minimal error

esett(n, d;Sd : F̃d → Gd) = inf
An,d∈And

∆sett(An,d;Sd : F̃d → Gd)

for sett ∈ {wor, avg}, d ∈ N, and n ∈ N0, where the infimum is taken over all algorithms

in the class

And = {A ∈ Ad | A uses at most n information operations on the input}.

Consequently, the initial error

εinit,sett
d = esett(0, d;Sd : F̃d → Gd), d ∈ N,

describes the smallest error we can achieve without using any information on the input in

a given setting sett ∈ {wor, avg}. We will see in Section 2.2 that under mild assumptions

this initial error can be attained by the zero algorithm, i.e. by A0,d ≡ 0 ∈ Gd.
If there is no danger of confusion we abbreviate the above notations and simply

write ∆sett(Ad;Sd) and esett(n, d;Sd), where sett is an element of {wor, avg}, or even

only ∆(Ad) and e(n, d), respectively. Moreover, in Chapters 4 and 5 it seems to be

useful to stress the source spaces Fd the problem elements come from, rather than

the operator Sd. There we slightly abuse notation and write ewor(n, d;Fd) instead of

ewor(n, d;Sd : B(Fd)→ Gd).
The main goal in the classical theory is to find sharp bounds on the nth minimal error

in terms of the amount of information operations. In fact, there is a huge literature where

(2) In fact, µd is defined on the Borel sets of F̃d and we need to claim ∆loc( · ;Ad, Sd) to
be a measurable function, but these are only formal issues. See, e.g., [NW08, p. 129] for further
details.
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the existence of constants cd, Cd > 0 and pd, Pd > 0 was proven such that estimates of

the type
1

cd
n−pd ≤ e(n, d) ≤ Cdn−Pd for all n ∈ N

hold for certain problems S in a given setting (3). Back then, the respective researchers

did not pay much attention to the constants cd and Cd involved. These numbers can be

arbitrarily large and in some cases their dependence on d is completely unknown. Instead

the attention was focused on the so-called rate (or order) of convergence, i.e. on proofs

which yield pd = Pd. Often this rate tends to zero as d → ∞. Therefore such bounds

are not meaningful at all for large d. Thus, usually the parameter d was assumed to be

a fixed (and reasonably small) constant in this approach. Since we also want to work in

huge dimensions, a more careful error analysis is needed.

1.3. Algorithms and a cost model. For fixed n, d ∈ N an algorithm An,d ∈ And is

modeled as a mapping ϕn : Rn → Gd and a function Nn : F̃d → Rn such that An,d =

ϕn ◦Nn. For the sake of completeness in the case n = 0 we simply assign a constant value

c ∈ Gd to every element f ∈ F̃ , i.e. A0,d ≡ c, in order to model an algorithm that does

not depend on the input at all. If n > 0 then the information map Nn is given by

Nn(f) = (L1(f), . . . , Ln(f)) , f ∈ F̃d, (1.3)

where Lj ∈ Λ. Here we distinguish certain classes of information operations Λ. In one

case we assume that we are allowed to compute arbitrary continuous linear functionals

on the inputs f . Then Λ = Λall coincides with F∗d , the dual space of Fd. If we deal with

problem operators Sd defined on function spaces F̃d then often only function evaluations

are permitted, i.e. Lj(f) = f(t(j)) for a certain fixed t(j) ∈ Ωd in the domain of definition

of f . In this case Λ = Λstd is called standard information. If function evaluation is

continuous for all t ∈ Ωd we have Λstd ⊂ Λall. In particular this is the case when dealing

with problems defined on reproducing kernel Hilbert spaces (RKHS) (see Section 2.5).

If Lj depends continuously on f but is not necessarily linear then the respective class

is denoted by Λcont. Note that in this case also Nn is continuous and we obviously have

Λall ⊂ Λcont.

Furthermore, we distinguish between adaptive and non-adaptive algorithms. The lat-

ter case is described above in formula (1.3), where Lj does not depend on the previously

computed values L1(f), . . . , Lj−1(f). In contrast, we also discuss algorithms of the form

An,d = ϕn ◦Nn with

Nn(f) = (L1(f), L2(f ; y1), . . . , Ln(f ; y1, . . . , yn−1)) , f ∈ F̃d, (1.4)

where y1 = L1(f) and yj = Lj(f ; y1, . . . , yj−1) for j = 2, . . . , n. If Nn is adaptive we

restrict ourselves to the case where Lj depends linearly on f , e.g. Lj( · ; y1, . . . , yj−1)

is in Λall. Note that in any case Nn is either continuous, or constructed out of linear

information operations (which may be combined adaptively). Moreover, in all cases of

information maps, the mapping ϕn can be chosen arbitrarily.

(3) In many cases those estimates hold modulo logn to some power which usually depends
linearly on d. For simplicity we omit these factors because they are not crucial for the following
argument.
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For upper error bounds small classes of algorithms are most important. The smallest

such class is the family of linear, non-adaptive algorithms of the form

An,d(f) =

n∑
j=1

Lj(f)gj (1.5)

with some gj ∈ Gd and Lj ∈ Λall or even Lj ∈ Λstd. We denote this set of algorithms

by An,lind (Λ), where Λ = Λall or Λ = Λstd, respectively. On the other hand, it is rea-

sonable to prove lower error bounds for preferably large classes of algorithms. The most

general families consist of algorithms An,d = ϕn ◦Nn, where ϕn is completely arbitrary

and Nn uses either non-adaptive continuous or adaptive linear information. We denote

the respective classes by An,cont
d and An,adapt

d .

One of the most fundamental assumptions in IBC is that we can perform (exact) ba-

sic arithmetic operations on elements of the target space Gd, as well as on real numbers,

with unit cost. Formally this means that we work with the real number model, in contrast

to the bit number model, which is used in some other fields of computational science

(see, e.g., [NW08, Section 4.1.3]). Moreover, we assume that information operations on

the input are given by certain black box computations which are sometimes called oracle

calls. Typically the computational costs for information operations are much higher than

for simple arithmetic operations since the computation of a function value or a linear

functional may require billions of such operations. If we assume that every oracle call has

a fixed cost C � 1 then the total cost of computing the output of an algorithm is pro-

portional to the number of needed information operations (4). Therefore it is reasonable

to study not only the nth minimal error of a given problem but also the inverse quantity

which we call information complexity :

nsett
abs (ε, d;Sd : F̃d → Gd) = min{n ∈ N0 | ∃A ∈ And such that ∆sett(A) ≤ ε}

= min{n ∈ N0 | esett(n, d) ≤ ε},

where d ∈ N, ε > 0 and sett ∈ {wor, avg}. That is, we look at the amount of oracle calls

needed to compute an ε-approximation in dimension d. Hence, due to our assumptions

this information complexity roughly equals the total complexity of a given problem and

therefore describes its computational hardness. For a detailed discussion of algorithms

and their costs, as well as the relations of information complexity and total complexity,

we refer the reader to Section 4.1 in [NW08].

Finally we want to mention that the above definition addresses the absolute error

criterion. In contrast we will also consider the normalized error criterion where we seek

for the minimal number of information operations needed to improve the initial error by

some factor ε′ > 0. We denote the corresponding information complexity by

nsett
norm(ε′, d;Sd : F̃d → Gd) = nsett

abs (ε′εinit
d , d;Sd : F̃d → Gd), sett ∈ {wor, avg}.

Obviously the two notions coincide if the problem under consideration is well-scaled,

that is, εinit
d = 1. Otherwise the problem may be significantly harder with respect to

(4) There also exist approaches in which the cost of an oracle call depends on the parameters
of the problem. Those attempts stress that the computational effort for function evaluations
increases with the number of (active) variables. See, e.g., [KSWW10a] for details.
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the normalized error criterion, e.g. if εinit
d is exponentially small in d. Of course also the

converse situation is conceivable. However, note that both the information complexities

are always non-increasing in the first argument and we have

nsett
norm(1, d;Sd : F̃d → Gd) = nsett

abs (εinit
d , d;Sd : F̃d → Gd) = 0 (1.6)

for all d ∈ N due to the definition of the initial error.

Again we will use shorthands such as nabs(ε, d;Sd) or even n(ε, d) to simplify notation.

1.4. Notions of tractability. As already indicated we strongly believe that it is not

sufficient to study only the rate of convergence, i.e. the dependence of n(ε, d) on ε, to

properly describe the computational hardness of a given problem. We also need to incor-

porate the dependence on the parameter d. Keep in mind that the following definitions

equally refer to both, the absolute and the normalized, error criteria. Therefore we simply

write n(ε, d) instead of nabs(ε, d) or nnorm(ε, d) for the information complexity.

When dealing with multivariate problems we often observe the so-called curse of di-

mensionality, which goes back to Bellman in the late 1950s (cf. [Bel57]). Given a concrete

setting, a problem is said to suffer from the curse of dimensionality if the corresponding

information complexity n(ε, d) increases exponentially with the dimension d. That is, for

at least one ε > 0 there exist positive constants C and γ which are independent of the

dimension such that

n(ε, d) ≥ C(1 + γ)d

for infinitely many d ∈ N. More generally, if n(ε, d) depends exponentially on d or ε−1

then the problem is called intractable (5). Otherwise we have tractability, which goes back

to Woźniakowski in the early 1990s (see [Woź94a, Woź94b]). At that time a problem was

called tractable if its complexity depends at most polynomially on ε−1 and d. Today this

is just one case in a whole hierarchy of notions of tractability. We describe these classes

starting with the weakest notion.

If a problem is not intractable then we have weak tractability, which can be equivalently

expressed by

lim
ε−1+d→∞

lnn(ε, d)

ε−1 + d
= 0

(see [GW08, NW08]). Here the limit is taken with respect to all two-dimensional se-

quences ((εk, dk))k∈N ⊂ (0, 1]× N such that εk < εinit
dk

and ε−1
k + dk → ∞ as k → ∞. In

particular, the latter restriction ensures that n(ε, d) ≥ 1. Furthermore, we want to stress

that weak tractability implies the absence of the curse of dimensionality, but in general the

converse is not true. Recently a slightly stronger notion called uniform weak tractability

has been suggested. We will not follow this line of research and refer the reader to [Sie13].

(5) Formally that means that there exist universal constants γ,C > 0, as well as sequences

(εk)k∈N and (dk)k∈N with εk ∈ (0, 1] and dk ∈ N for all k ∈ N, such that ε−1
k + dk → ∞ as

k →∞, and n(εk, dk) ≥ C(1 + γ)ε
−1
k

+dk for every k ∈ N. Note that this definition includes the
curse as a special case, where εk ≡ ε0.
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Since there are many ways to measure the lack of exponential dependence, the abstract

notion of generalized (or T -) tractability was introduced (see [GW07, GW09] and [NW08,

Chapter 8]). Here the essence is to describe the behavior of the information complexity

in terms of a multiple of some power of a so-called tractability function T depending on

ε−1 and d. Without going into details we mention that the following classes can be seen

as special cases in this general framework.

For the sake of completeness we also introduce the notion of quasi-polynomial tractabil-

ity, which was developed quite recently. A problem is called quasi-polynomially tractable

if there are universal constants C, t > 0 such that

n(ε, d) ≤ C exp(t(1 + ln ε−1)(1 + ln d))

for every ε ∈ (0, 1] and d ∈ N. Note that for fixed ε or d this upper bound behaves

polynomially in the other argument, which somehow justifies the name of this class of

problems. For details see [GW11] and [NW12].

Finally, the most important and until now most studied type of tractability is called

polynomial tractability. We say that a problem is polynomially tractable if there exist

absolute constants C, p > 0 and q ≥ 0 such that we can bound the information complexity

by

n(ε, d) ≤ Cε−pd q for all d ∈ N, ε ∈ (0, 1]. (1.7)

If this last inequality holds with q = 0, i.e. if we have no dependence on the dimension

at all, then the problem is called strongly polynomially tractable. In this case the smallest

possible constant p in (1.7) is denoted by p∗. It is called the exponent of strong polynomial

tractability.

If, in contrast, there do not exist constants C, p and q which fulfill (1.7) then the

problem is said to be polynomially intractable.

Observe that (1.6) shows that, as long as the absolute error criterion is concerned, it is

enough to consider ε ∈
(
0,min

{
εinit
d , 1

}]
instead of ε ∈ (0, 1] in all the above definitions.



2. Properties and tools for special problem classes

This chapter deals with basic properties of certain classes of problems and algorithms.

We state simple consequences obtained from fundamental assumptions on the opera-

tors under consideration. Furthermore, we present more or less classical tools used in

the framework of information-based complexity to acquire tractability results in a quite

general context.

In detail, we begin with a simple lower error bound in a very general setting which will

be used on several occasions later on. In Section 2.2 we then show that for our purposes

it is reasonable to concentrate mainly on compact problems and linear, non-adaptive

algorithms. Moreover, there we derive a formula for the initial error of the problems we

are interested in. Afterwards, in Section 2.3, we turn to the important class of problems

defined between Hilbert spaces. We recall well-known tools such as the singular value

decomposition, conclude optimal algorithms, and characterize several types of tractability

of such problems. In Section 2.4 we restrict ourselves further and assume an additional

tensor product structure which will play an important role throughout the rest of this

paper. Finally we conclude this chapter with the discussion of so-called reproducing kernel

Hilbert spaces.

The main references for the functional-analytic background needed in this part, as

well as for the theory of s-numbers (or n-widths, respectively), are the monographs of

Pinkus [Pin85] and Pietsch [Pie87, Pie07]. For a detailed discussion of applications to

tractability questions we refer again to Novak and Woźniakowski [NW08, NW10, NW12]

and to Mathé [Mat90].

2.1. Lower bounds on linear subspaces. For the purpose of this chapter it is enough

to study the worst case setting. In addition, we will only focus on the case where all the

problem elements lie in some centered ball of the respective source space. In this section

we present quite a general method to obtain lower bounds on the nth minimal error with

respect to a wide class of algorithms. In contrast to the rest of this paper (where we will

restrict ourselves basically to linear and compact problems) we present a result that holds

for any homogeneous operator S between linear normed spaces F and G over the field of

real numbers. That is, we first only assume that S(α · f) = α · S(f) for every f ∈ F and

all α ∈ R.

We start by proving the following (modified) assertion of Borsuk and Ulam for linear

normed spaces:

[21]
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Lemma 2.1 (Borsuk–Ulam). Let V be a linear normed space over R with 0 < dimV = s

< ∞ and let N : V → Rn be a continuous mapping for some 0 ≤ n < s. Then for all

r ≥ 0 there exists an element f∗ ∈ V with ‖f∗ | V ‖ = r such that N(f∗) = N(−f∗).

Proof. Obviously, the cases n = 0, i.e. N ≡ 0, and r = 0 are trivial. Hence, let n ∈ N
and r > 0. Since dimV = s we find an isomorphism T : V → Rs such that T and

T−1 are linear and bounded. Hence, for every r > 0 the set Ωr = T (int(Br(V ))) is an

open, bounded and symmetric subset of Rs which contains zero. Moreover, the function

g = N ◦ T−1 : ∂Ωr → Rn is continuous. From the theorem of Borsuk–Ulam (cf. Deim-

ling [Dei85, Corollary 4.2]) we deduce the existence of some x∗∈ ∂Ωr with g(x∗) = g(−x∗).
The claim now follows by taking f∗ = T−1x∗.

With this result in hand, we can prove a generalization of Lemma 1 in [Wei12b].

Proposition 2.2. Suppose S is a homogeneous operator between linear normed spaces

F and G. Further assume that V ⊂ F is a linear subspace with dimension s ∈ N and that

there exists a constant a ≥ 0 such that

a‖f | F‖ ≤ ‖S(f) | G‖ for all f ∈ V. (2.1)

Then for every 0 ≤ n < s, any algorithm An ∈ An,cont ∪ An,adapt, and all r ≥ 0,

∆wor(An;S : Br(F)→ G) = sup
f∈Br(F)

‖S(f)−An(f) | G‖ ≥ ar. (2.2)

In particular, the nth minimal worst case error (within the unit ball B(F) of F) satisfies

ewor(n;S : B(F)→ G) ≥ a for all n < s.

Proof. It is well-known that for An = ϕn ◦ Nn ∈ An,cont ∪ An,adapt with n < s there

exists f∗ ∈ V such that Nn(f∗) = Nn(−f∗) and ‖f∗ | F‖ = r.

Without loss of generality let us again assume n ∈ N and r > 0 to avoid trivial-

ity. Then, for An ∈ An,cont, the existence of f∗ is a simple consequence of Lemma 2.1

since in this case Nn is continuous by definition. On the other hand, if An ∈ An,adapt

then the proof can be obtained by arguments from linear algebra. We follow Werschulz

and Woźniakowski [WW09, Theorem 3.1] and search for a non-zero g ∈ V such that

Nn(g) = 0, i.e.
L1(g) = 0,

L2(g; 0) = 0,
...

Ln(g; 0, . . . , 0) = 0.

(2.3)

Since dimV = s every g ∈ V can be represented uniquely as a linear combination g =∑s
m=1 cmbm of at most s linearly independent basis elements bm of V . Due to the imposed

linearity of Lj( · ; 0, . . . , 0), j = 1, . . . , n, system (2.3) can be reformulated as a system of

n homogeneous linear equations in the s>n unknowns c= (cm)sm=1 ∈Rs. Consequently,

it possesses a non-trivial solution c∗ = (c∗m)sm=1, which implies the existence of some

g∗ ∈ V \ {0} with Nn(g∗) = 0. Since with Lj also Nn is linear, we can easily construct

f∗ out of g∗.
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Anyway, every such f∗ satisfies An(f∗) = An(−f∗). Using the norm properties in the

target space G and the homogeneity of S we obtain (2.2):

∆wor(An;S : Br(F)→ G) ≥ max {‖S(±f∗)−An(±f∗) | G‖}
= max {‖S(f∗)±An(f∗) | G‖}
≥ 1

2 (‖S(f∗) +An(f∗) | G‖+ ‖S(f∗)−An(f∗) | G‖)
≥ 1

2‖2S(f∗) | G‖ ≥ a‖f∗ | F‖ = ar.

The remaining implication for the nth minimal error finally follows from the case r = 1

by taking the infimum over all An ∈ An,cont ∪ An,adapt.

At this point we stress that the case r 6= 1 in (2.2) might be useful only if we deal

with non-homogeneous (and thus non-linear) algorithms An. Otherwise we clearly have

∆wor(An;S : Br(F)→ G) = r∆wor(An;S : B(F)→ G)

for all r ≥ 0 provided that S : F → G is homogeneous. The importance of (2.2) for r 6= 1

will be made clear in Section 4.3.2 when we deal with embeddings P ↪→ F . There we

obtain a lower bound for the worst case error of S on B(F) out of a lower bound on

Br(P) using r = ‖id | L(P,F)‖−1.

2.2. Linearity and compactness. In what follows we will exclusively consider linear

continuous problems S = (Sd)d∈N. That is, we assume that every solution operator Sd
given by (1.2) is the restriction of a bounded linear mapping between some Banach spaces

defined over the field of real numbers (6). If we assume that the set of problem elements F̃d
is some ball Br(Fd), r > 0, in the source space then conversely every bounded mapping Sd
that acts linearly on this set (7) can be uniquely extended to a continuous linear operator

S̃d on the whole space Fd, i.e. S̃d ∈ L(Fd,Gd). From this point of view Sd and S̃d can be

identified with each other and thus we use the symbol Sd for both.

At first glance the linearity assumption seems to be very restrictive. On the other hand,

the two most important problems, namely approximation and integration, are indeed of

this type. Moreover, the linear case is much better understood than the non-linear one;

an overwhelming percentage of work on IBC was done in this setting. For the sake of

completeness we also mention so-called quasilinear problems and refer to [WW07] and

[NW12, Chapter 28].

Since we are interested in algorithms which are easy (and cheap) to implement, we pay

special attention to the family of linear and non-adaptive algorithms An,lind (Λ) (see (1.5)).

It is well-known that this choice is reasonable for many classes of problems, since it

can be shown that under mild assumptions optimal algorithms are indeed linear and

non-adaptive. General assertions of this type can be found in Traub, Wasilkowski and

(6) In fact, for most of the following results completeness is not needed. Many of them even
remain valid (at least up to constants) using only quasi-norms or p-norms, but for simplicity we
restrict ourselves to the case of Banach spaces. Finally, for the ease of notation, we only consider
spaces over R.

(7) That means Sd(α · f + β · g) equals α · Sd(f) + β · Sd(g) for every convex combination

α · f + β · g of elements f, g ∈ F̃d.
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Woźniakowski [TWW88], as well as in Novak and Woźniakowski [NW08, Section 4.2]. We

do not present these results explicitly, since for the problems we are interested in, our

assertions already imply such optimality statements.

Furthermore, we focus on information maps which are linear and continuous, i.e.

Λ ⊆ Λall. Observe that then An,d ∈ L(Fd,Gd) and rank(An,d) ≤ n. Moreover, for F̃d =

B(Fd) we obtain

∆wor(An,d;Sd) = ∆wor(An,d;Sd : F̃d → Gd) = ‖Sd −An,d | L(Fd,Gd)‖.

It seems natural to ask when problems of this type are solvable at all. We say a

problem S = (Sd)d∈N is solvable if for any fixed d ∈ N there exists a sequence of algorithms

An,d ∈ An,lind (Λall) such that their worst case errors ∆wor(An,d;Sd) tend to zero as n→∞.

Hence, Sd needs to be an element of FR(Fd,Gd), the closure of the finite rank operators

in L(Fd,Gd), which is a subset of K(Fd,Gd). Therefore solvable problems are necessarily

compact so that we can restrict ourselves in the following to Sd ∈ K(Fd,Gd). Due to the

celebrated result of Enflo [Enf73], the converse is not true in this generality. Indeed, there

are compact problems which are not solvable since there exist Banach spaces Gd which

do not have the so-called approximation property. However, the following (incomplete)

list shows that in the cases we are interested in every compact problem is solvable:

Proposition 2.3. Let S = (Sd)d∈N with Sd ∈ K(Fd,Gd) for all d ∈ N. Then S is solvable

if for every d ∈ N one of the following conditions applies:

• the source space Fd is a Hilbert space, or

• the target space Gd is a Hilbert space, or

• the target space Gd is L∞(X , a, µ) for an arbitrary measure space (X , a, µ).

Proof. Let d ∈ N. Given all the above restrictions we note that if we consider the

class An,lind (Λall) then the numbers ewor(n, d;Sd), n ∈ N0, per definition equal the lin-

ear n-widths (or approximation numbers) δn(Sd) as defined in [Pin85, Definition 7.3].

Up to an index shift these numbers form an s-scale (8) in the sense of Pietsch [Pie07,

Section 6.2]. Other important s-scales are the Gelfand numbers cn(Sd) and the Kol-

mogorov numbers dn(Sd). Without going into details we mention that for any compact

operator Sd ∈ K(Fd,Gd) both these sequences tend to zero as n → ∞ (see [Pin85,

Propositions 7.4 and 7.1]). Hence, to prove solvability it suffices to show that δn(Sd) ≤
max {cn(Sd), dn(Sd)} for all n ∈ N. Indeed, if Fd is a Hilbert space then δn(Sd) = cn(Sd).

Furthermore, δn(Sd) = dn(Sd) if Gd is a Hilbert space (see, e.g., [Pin85, p. 33]). Finally

Proposition 8.13 in [Pin85] shows that the second last equality remains valid if the target

space Gd enjoys the so-called (metric) extension property. It is known that in particular

L∞(X , a, µ) has this property (see, e.g., König [Kön86, 1.c.2]).

We stress that in Proposition 2.3 we do not need to assume that the Hilbert spaces

are separable.

Let us conclude this section with a proposition which shows that the zero algorithm

A0 ≡ 0 is the optimal choice among all approximations to a given operator S ∈ L(F ,G)

(8) Note that for historical reasons there is some notational confusion concerning s-numbers
and n-widths. See, e.g., [Pie07, p. 336] for details.
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that do not use any information on the input f ∈ F . Here F and G can be arbitrary

normed spaces.

Proposition 2.4. For S ∈ L(F ,G) and A0 = 0 ∈ L(F ,G) we have

ewor(0;S : B(F)→ G) = ∆wor(A0;S : B(F)→ G) = ‖S | L(F ,G)‖.

Consequently, the zero algorithm is optimal for S within the class A0,cont ∪ A0,adapt and

the initial worst case error εinit,wor of S is given by its operator norm.

Proof. Obviously the second equality is true by the definition of ∆wor. Moreover, the

linear algorithm A0 ≡ 0 is included in every class of algorithms we defined in Section 1.3.

This implies in particular ewor(0;S) ≤ ∆wor(A0) = ‖S | L(F ,G)‖.
To show the converse inequality, recall that every algorithm A that does not use

any information on the input necessarily takes the form A(f) ≡ g for some g ∈ G.

A calculation similar to that in the proof of Proposition 2.2 yields

‖S(f) | G‖ ≤ max {‖S(f)− g | G‖, ‖S(−f)− g | G‖}

for every f ∈ F . Taking the supremum over f ∈ B(F) now shows that

‖S | L(F ,G)‖ ≤ ∆wor(A),

which implies the desired result since A was chosen arbitrarily.

We note in passing that the last step in the above proof crucially depends on the fact

that the unit ball F̃ = B(F) is symmetric in the sense that f ∈ F̃ implies −f ∈ F̃ .

2.3. General Hilbert space problems. In this section we describe the singular value

decomposition (SVD), which turns out to be the main tool when dealing with problems

where both the source and the target spaces are Hilbert spaces. We prove well-known for-

mulas for optimal linear algorithms using continuous linear functionals and calculate their

worst case errors. Afterwards, we use the assertions obtained to give characterizations of

(strong) polynomial tractability for these problems.

2.3.1. Singular value decomposition. Given any compact operator T ∈ K(F ,G)

acting between real Hilbert spaces F and G we define its adjoint operator T † : G → F in

the usual way by

〈Tf, g〉G =
〈
f, T †g

〉
F for all f ∈ F , g ∈ G. (2.4)

Of course, T † is always unique and well-defined. For details we refer the reader to

Yosida [Yos80, VII.2]. If F = G and T † = T , then we say that T is self-adjoint. From

Schauder’s theorem we know that T † ∈ K(G,F) if and only if T ∈ K(F ,G) (see e.g.

[Pin85, p. 31]). Hence, it is easily seen that also

W = T †T : F → F

defines a compact operator. Moreover, W is obviously self-adjoint and positive, i.e.

〈Wf, f〉F ≥ 0 for every f ∈ F . It is well-known that then all the eigenvalues λm = λm(W )

of W are necessarily real and non-negative. Following Pinkus [Pin85, p. 64] we denote

the sum of the algebraic multiplicities of the non-zero eigenvalues of W by v = v(W ).

Note that Riesz–Schauder theory proves that there are at most countably many non-zero
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eigenvalues. They are uniformly bounded, each has a finite multiplicity and there are

no accumulation points but (possibly) zero (see, e.g., [Yos80, X.5, Theorem 2]). Observe

further that in any case v ≤ dimF ∈ N ∪ {∞}. Let us write these eigenvalues in non-

increasing ordering subscripted by indices from the set M = {m ∈ N | m < v + 1}:

λ1 ≥ · · · ≥ λm ≥ · · · > 0. (2.5)

Without loss of generality we will always assume the existence of at least one non-

trivial eigenvalue, i.e. we exclude the operator T ≡ 0, which ensures that M 6= ∅. We

denote the corresponding (mutually orthonormal) eigenvectors of W by φm, m ∈M, and

refer to {(λm, φm) | m ∈M} as the set of non-trivial eigenpairs of W . Consequently, for

i, j ∈M, by (2.4) we have

〈Tφi, Tφj〉G =
〈
φi, T

†Tφj
〉
F = 〈φi,Wφj〉F = 〈φi, λj φj〉F = δi,j · λj . (2.6)

If we extend the possibly finite eigenvalue sequence (λm)vm=1 by taking λm = 0 for all

m > v then clearly λ = (λm)m∈N forms a null sequence. Again following Pinkus, we call

the square root σ = σ(T ) of λ = λ(W ),

σm =
√
λm, m ∈ N,

the sequence of singular values of T . The importance of this bunch of definitions comes

from the following assertion.

Theorem 2.5 (Singular value decomposition). Let F and G be arbitrary Hilbert spaces

and T ∈ K(F ,G). Then, with the above notations,

T =

v∑
m=1

〈 · , φm〉F Tφm. (2.7)

Proof. A detailed proof can be found in the monograph of König [Kön86, 1.b.3]. It is

mainly based on the so-called polar decomposition of continuous linear operators and

Riesz–Schauder theory. Actually, the proof deals with complex Hilbert spaces but it lit-

erally transfers to the real case. Moreover, only the existence of an orthonormal sequence

(ψm)vm=1 in G is shown such that pointwise,

Tf =

v∑
m=1

σm 〈f, φm〉F ψm, f ∈ F .

However, setting f = φk for k ∈M together with the mutual orthonormality of (φm)vm=1

immediately implies σkψk = Tφk for any k. The claimed identity in K(F ,G) finally

follows from Bessel’s inequality.

Remark 2.6. Note that again the Hilbert spaces F and G do not need to be separable.

Nevertheless the image of F under T is indeed separable, because it is spanned by at most

countably many elements Tφm ∈ G. Since the elements of the set Φ = {φm ∈ F | m ∈M}
are mutually orthonormal we can extend Φ to an orthonormal basis (ONB) E of F .

Then (2.7) shows that kerT = Φ⊥. Remember that we are only interested in the approx-

imation of the image of T . Hence, we can without loss of generality assume that E = Φ.

In other words, even though F may be non-separable, in general we can restrict ourselves
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to the separable case in what follows. We only need to replace F by Φ, the closure of the

orthonormal eigenelements of W = T †T under 〈·, ·〉F .

2.3.2. Optimal algorithm. Observe that by (2.7) we obtained a representation of any

operator T ∈ K(F ,G) as the limit of related finite rank operators. Therefore we are able

to construct nth optimal linear algorithms which only use information from Λall. This is

stated in the following corollary which can be found (slightly modified) as Corollary 4.12

in [NW08].

Corollary 2.7. For d ∈ N assume Fd and Gd are arbitrary Hilbert spaces. Further let

S = (Sd)d∈N denote a compact problem acting between these spaces, i.e. Sd ∈ K(Fd,Gd)
for every d. Then for all d ∈ N and n ∈ N0 the algorithm A∗n,d ∈ A

n,lin
d (Λall) given by

A∗n,d : Fd → Gd, f 7→ A∗n,d(f) =

min{n,v(Wd)}∑
m=1

〈f, φd,m〉Fd Sdφd,m,

for Sd is optimal in the class An,cont
d ∪ An,adapt

d and we have

ewor(n, d;Sd) = ∆wor(A∗n,d;Sd) = σd,n+1 =
√
λd,n+1. (2.8)

Here for d ∈ N the singular values (σd,m)m∈N, as well as the eigenvectors (φd,m)
v(Wd)
m=1 ,

are constructed from Wd = S†dSd as explained above.

Proof. Recall that ∆wor(A∗n,d;Sd) equals ‖Sd − A∗n,d | L(Fd,Gd)‖ for any fixed d ∈ N
and n ∈ N0. Without loss of generality we can assume n < v = v(Wd) since otherwise

A∗n,d = Sd due to (2.7). This would imply (2.8) because σd,m = 0 for all m > v.

Let M ∈ N with n+1 ≤M ≤ v and fix f ∈ B(Fd). Then, by (2.6), the non-increasing

ordering of (λm)vm=1, and Bessel’s inequality,∥∥∥ M∑
m=n+1

〈f, φd,m〉Fd Sdφd,m
∣∣∣ Gd∥∥∥2

=

M∑
m=n+1

〈f, φd,m〉2Fd λd,m ≤ λd,n+1

v∑
m=1

〈f, φd,m〉2Fd

≤ λd,n+1‖f | Fd‖2 ≤ σ2
d,n+1.

The particular choice f = φd,n+1 shows that the estimates are sharp. Anyway, we obtain

‖Sd −A∗n,d | L(Fd,Gd)‖ ≤ σd,n+1, which proves

ewor(n, d;Sd) ≤ ∆wor(A∗n,d;Sd) ≤ σd,n+1.

To show the converse, i.e. ewor(n, d;Sd) ≥ σd,n+1 for n ∈ N0 and d ∈ N, we use

Parseval’s identity on V = span {φd,m | m ≤ n+ 1} ⊂ Fd together with the linearity

of Sd to obtain

‖Sdf | Gd‖2 =

n+1∑
m=1

〈f, φd,m〉2Fd λd,m ≥ λd,n+1

n+1∑
m=1

〈f, φd,m〉2Fd = σ2
d,n+1‖f | Fd‖2

for all f ∈ V . The claim now follows from the application of Proposition 2.2 with a =

σd,n+1. Moreover, Proposition 2.2 also shows that we cannot reduce the error by taking

algorithms An,d ∈ (An,cont
d ∪ An,adapt

d ) \ An,lind .
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Note that (2.8) together with Proposition 2.4 implies in particular that for d ∈ N the

initial worst case error of Sd is

εinit,wor
d = ‖Sd | L(Fd,Gd)‖ = σd,1 =

√
λd,1.

2.3.3. Polynomial tractability. As an immediate consequence of (2.8) we can calculate

the information complexity of Hilbert space problems in the worst case setting (with

respect to the class An,lind (Λall)) for every d ∈ N and ε > 0 by

nwor
abs (ε, d) = min {n ∈ N0 | σd,n+1 ≤ ε} = #

{
n ∈ N | λd,n > ε2

}
(2.9)

for the absolute error criterion, and by

nwor
norm(ε, d) = #{n ∈ N | λd,n/λd,1 > ε2} (2.10)

for the normalized error criterion. This observation leads to the following refinement of

Theorem 5.1 in Novak and Woźniakowski [NW08], which can also be found in [Wei11].

It gives necessary and sufficient conditions for (strong) polynomial tractability in terms

of summability properties of the sequences (λd,m)m∈N.

Theorem 2.8. Assume S is a problem as in Corollary 2.7 and consider the absolute

error criterion in the worst case setting.

• If S is polynomially tractable with the constants C, p > 0 and q ≥ 0 then for all τ > p/2

we have

Cτ = sup
d∈N

1

dr

( ∞∑
i=f(d)

λτd,i

)1/τ

<∞, (2.11)

where r = 2q/p and f : N → N with f(d) = d(1 + C) dqe. In this case Cτ ≤
C2/p · ζ(2τ/p)1/τ .

• If (2.11) is satisfied for some parameters r ≥ 0, τ > 0 and a function f : N → N
such that f(d) = dC(min

{
εinit
d , 1

}
)−p dqe, where C > 0 and p, q ≥ 0, then the

problem S is polynomially tractable. In detail, we have the bound nwor
abs (ε, d) ≤

(C + Cττ ) ε−max{p,2τ} dmax{q,rτ} for any ε ∈ (0, 1] and every d ∈ N.

Proof. If the problem is polynomially tractable then there exist constants C, p > 0 and

q ≥ 0 such that for all d ∈ N and ε ∈ (0, 1],

n(ε, d) = nwor
abs (ε, d) ≤ Cε−pdq.

Formula (2.9) and the non-increasing ordering of (λd,i)i∈N therefore imply

λd,bCε−pdqc+1 ≤ λd,n(ε,d)+1 ≤ ε2, ε ∈ (0, 1].

If we set i = bCε−pdqc + 1 and vary ε in (0, 1] then i takes the values bC dqc + 1,

bC dqc+ 2, and so forth. On the other hand, we have i ≤ Cε−pdq + 1, which is equivalent

to ε2 ≤ (Cdq/(i − 1))2/p if i ≥ 2. For all i ≥ f(d) = d(1 + C)dqe we indeed have i ≥ 2,

and consequently

λd,i ≤ λd,n(ε,d)+1 ≤ ε2 ≤
(
Cdq

i− 1

)2/p

.
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Choosing τ > p/2 > 0 we conclude that

∞∑
i=f(d)

λτd,i ≤
∞∑

i=f(d)

(
Cdq

i− 1

)2τ/p

= (Cdq)2τ/p
∞∑

i=f(d)−1

1

i2τ/p
≤
(
C2/pd2q/p

)τ
ζ

(
2τ

p

)
for every d ∈ N. In other words, we have shown (2.11) with r = 2q/p, as well as the

estimate on Cτ .

Conversely, assume that for some r ≥ 0 and τ > 0 estimate (2.11) holds with

f(d) =
⌈
C(min

{
εinit
d , 1

}
)−pdq

⌉
, where C > 0 and p, q ≥ 0.

That is, we assume 0 < Cτ < ∞. For n ≥ f(d) the ordering of (λd,i)i∈N implies∑n
i=f(d) λ

τ
d,i ≥ λτd,n(n− f(d) + 1). Hence, for every d ∈ N and n ≥ f(d),

λd,n(n− f(d) + 1)1/τ ≤
( n∑
i=f(d)

λτd,i

)1/τ

≤
( ∞∑
i=f(d)

λτd,i

)1/τ

≤ Cτ dr,

or respectively, λd,n+1 ≤ Cτ d
r((n + 1) − f(d) + 1)−1/τ , for all n ≥ f(d) − 1. Note that

for ε ∈ (0,min
{
εinit
d , 1

}
] we have Cτ d

r((n+ 1)− f(d) + 1)−1/τ ≤ ε2 if and only if

n ≥ n∗ =

⌈(
Cτ d

r

ε2

)τ⌉
+ f(d)− 2.

In particular, λd,n+1 ≤ ε2 at least for n ≥ max {n∗, f(d)− 1}. In other words, for every

d ∈ N and all ε ∈ (0,min
{
εinit
d , 1

}
],

nwor
abs (ε, d) ≤ max {n∗, f(d)− 1} ≤ f(d)− 1 +

(
Cτ d

r

ε2

)τ
≤ C (min

{
εinit
d , 1

}
)−p dq + Cττ ε

−2τ drτ ≤ (C + Cττ ) ε−max{p,2τ} dmax{q,rτ}.

Thus, the problem is polynomially tractable since nwor
abs (ε, d) = 0 for ε ≥ εinit

d .

Let us add some comments on this result. Theorem 2.8 clearly provides a characteri-

zation of (strong) polynomial tractability. In comparison to Theorem 5.1 in [NW08] our

result has the essential advantage that the estimates incorporate the initial error εinit
d .

Hence if εinit
d is sufficiently small then we can deduce polynomial tractability while ignor-

ing a larger set of eigenvalues in the summation (2.11).

Observe that the first statement does not cover any assertion about the initial error

itself, since f(d) ≥ 2. Thus it might happen that we have (strong) polynomial tractability

with respect to the absolute error criterion, though the largest eigenvalue λd,1 = (εinit
d )2

tends to infinity faster than any polynomial. To give an example, for d ∈ N we consider

the sequences (λd,m)m∈N defined by

λd,1 = e2d and λd,m =
1

m
for m ≥ 2.

Here, obviously, the initial error grows to infinity exponentially fast, but nevertheless the

second point of Theorem 2.8 shows that S is strongly polynomially tractable since (2.11)

holds with r = p = q = 0, and C = τ = 2.

Next we present an analogue of Theorem 2.8 for the normalized error criterion. Again

a slightly modified statement can be found in [NW08, Theorem 5.2].
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Theorem 2.9. Assume S is as in Corollary 2.7 and consider the normalized error cri-

terion in the worst case setting.

• If S is polynomially tractable with the constants C, p > 0 and q ≥ 0 then for all τ > p/2

we have

Cτ = sup
d∈N

1

dr

( ∞∑
i=f(d)

(
λd,i
λd,1

)τ)1/τ

<∞, (2.12)

where r = 2q/p and f : N → N with f(d) ≡ 1. In this case the bound Cτ ≤
21/τ (1 + C)2/pζ(2τ/p)1/τ holds for any such τ .

• If (2.11) is satisfied for some parameters r ≥ 0, τ > 0 and a function f : N → N
such that f(d) = dCdqe, where C > 0 and q ≥ 0, then the problem S is polynomially

tractable. If so, then nwor
norm(ε, d) ≤ (C+Cττ ) ε−2τ dmax{q,rτ} for any ε ∈ (0, 1] and every

d ∈ N.

Proof. By the strong relation between the absolute and the normalized error criteria,

i.e. nwor
norm(ε, d) = nwor

abs (ε
√
λd,1, d) for ε ∈ (0, 1] and d ∈ N, we note that Theorem 2.9

can be shown using essentially the same arguments as in the proof of Theorem 2.8.

Indeed, if we replace λd,i by λd,i/λd,1 for i ∈ N we obtain a scaled problem T with ini-

tial error εinit
d = 1. Now the information complexity of T (with respect to the absolute

error criterion) equals the information complexity of S with respect to normalized er-

rors (9). Following the lines of the proof of Theorem 2.8 this shows the second point of

Theorem 2.9, where we set p = 0. Moreover, for any τ > p/2 and d ∈ N we conclude

that
∞∑

i=d(1+C)dqe

(
λd,i
λd,1

)τ
≤ (C2/pd2q/p)τ ζ

(
2τ

p

)
≤ (1 + C)2τ/p ζ

(
2τ

p

)
dq·2τ/p,

provided that S is polynomially tractable with constants C, p > 0 and q ≥ 0. Further-

more, for any d ∈ N we have

d(1+C)dqe−1∑
i=1

(
λd,i
λd,1

)τ
≤ d(1 + C)dqe − 1 ≤ (1 + C) dq ≤ (1 + C)2τ/p ζ

(
2τ

p

)
dq·2τ/p

since λd,i ≤ λd,1, 2τ/p > 1, and ζ(2τ/p) > 1. Consequently, setting r = 2q/p and

combining both the previous estimates leads to

1

dr

( ∞∑
i=1

(
λd,i
λd,1

)τ)1/τ

≤ 21/τ (1 + C)2/p ζ

(
2τ

p

)1/τ

for d ∈ N,

which shows (2.12), as well as the claimed bound on Cτ .

Obviously Theorem 2.9 again provides a characterization of (strong) polynomial trac-

tability of a given compact Hilbert space problem S = (Sd)d∈N in terms of summability

properties of the eigenvalue sequence (λd,i)i∈N of Wd = S†dSd.

(9) For details we refer to the proof of Theorem 2.12.
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2.4. Tensor product problems. In the previous section we investigated tractability

properties of compact Hilbert space problems S = (Sd)d∈N without assuming any relation

between subsequent problem operators Sd. Next we want to consider problems S where

every Sd is generated out of one single (univariate) operator S1 via a d-fold tensor product

construction.

2.4.1. Definition and simple properties. We need to recall the concept of tensor

product Hilbert spaces. To this end, we use the approach of Kadison and Ringrose [KR83,

Section 2.6]. For a comprehensive introduction to more general tensor products in func-

tional analysis we refer to the first chapter of Light and Cheney [LC85] and to Section

1.3 in Hansen [Han10].

Without going into detail, we note that given a finite number of arbitrary Hilbert

spaces H(k) with inner products 〈·, ·〉H(k) , k = 1, . . . , d, the tensor product space

Hd =

d⊗
k=1

H(k) = H(1) ⊗ · · · ⊗H(d)

can be identified (10) with the closure of the algebraic tensor product Hd,0, with respect

to a (reasonable cross) norm which is induced by a certain inner product 〈·, ·〉Hd,0 . Keep in

mind that the algebraic tensor product is defined as the quotient of the free vector space,

i.e. the set of all finite linear combinations of formal objects f =
⊗d

k=1 fk with fk ∈ H(k),

which we call simple (or pure) tensors, by a suitable linear subspace (11). Moreover, the

inner product on the algebraic tensor product Hd,0 just mentioned is defined by〈 d⊗
k=1

fk,

d⊗
k=1

gk

〉
Hd,0

=

d∏
k=1

〈fk, gk〉H(k) for fk, gk ∈ H(k).

By means of continuous (multi)linear extension this functional uniquely determines the

inner product 〈·, ·〉Hd on Hd. As usual we denote the corresponding norm by ‖· | Hd‖.
Due to the tensor product structure, many useful properties such as completeness and

separability of the underlying spaces H(k) are transferred directly to Hd provided that

all the H(k) share them. In particular, it is well-known how to construct an orthonormal

basis (ONB) of the tensor product space given an ONB

E(k) = {e(k)
i ∈ H(k) | i ∈ I(k)}

in each H(k), k = 1, . . . , d. Here every I(k) denotes a (possibly uncountable) abstract

index set. Then the set of all d-fold simple tensors given by

Ed =
{
ed,j =

d⊗
k=1

e
(k)
jk

∣∣∣ j = (j1, . . . , jd) ∈ Id =
d×
k=1

I(k)
}

is the desired ONB in Hd (see [KR83, Theorem 2.6.4]).

For the applications we have in mind we will focus on the special case where all the

building blocks H(k), k = 1, . . . , d, of Hd coincide. In what follows we therefore assume

(10) Note that this association is unique up to some isometric isomorphism.
(11) To abbreviate the notation we do not distinguish between simple tensors and their

equivalence classes in what follows.
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H(k) ≡ H1 for some Hilbert space H1. The respective ONB of H1 will be denoted by

E1 = {ei ∈ H1 | i ∈ I1}. Then the above formula for Ed simplifies to

Ed =
{
ed,j =

d⊗
k=1

ejk

∣∣∣ j = (j1, . . . , jd) ∈ Id = (I1)d
}
. (2.13)

We are ready to introduce the tensor product problem operators Sd, d ≥ 1, we are

interested in. Let S1 : F1 → G1 be a compact linear operator between arbitrary Hilbert

spaces F1 and G1. For d ≥ 2 we assume Fd = Hd is the d-fold tensor product space of

H(k) = H1 = F1, k = 1, . . . , d, as explained above. Analogously, we construct the space

Gd =
⊗d

k=1 G1 out of d copies of G1. Now Proposition 2.6.12 of [KR83] implies that there

exists a uniquely defined linear operator Sd =
⊗d

k=1 S1 : Fd → Gd such that

Sd

( d⊗
k=1

fk

)
=

d⊗
k=1

S1fk, fk ∈ F1,

and we have ‖Sd | L(Fd,Gd)‖ = ‖S1 | L(F1,G1)‖d < ∞ for any fixed d ∈ N. In detail,

we define the bounded linear operator S̃d : Ed → Gd such that for all j ∈ Id we have

S̃d(ed,j) = S̃d(
⊗d

k=1 ejk) =
⊗d

k=1 S1(ejk) ∈ Gd. Then Sd is assumed to be the uniquely

defined continuous linear extension of S̃d from Ed to Fd. By the compactness of S1 it

is easy to check that the problem operator Sd is not only bounded but even compact.

Moreover, a linear extension argument shows that the adjoint operator S†d is the d-fold

tensor product of S†1, i.e. S†d =
⊗d

k=1 S
†
1, and hence

Wd = S†dSd =
( d⊗
k=1

S†1

)( d⊗
k=1

S1

)
=

d⊗
k=1

S†1S1 =

d⊗
k=1

W1 (2.14)

(cf. [KR83, p. 146]).

2.4.2. Eigenpairs and the optimal algorithm. From Section 2.3 we know that for d

in N the optimal algorithm, as well as the (information) complexity, crucially depend

on the singular value decomposition of Sd. Hence, we have to calculate the eigenpairs

(λd,i, φd,i) of the tensor product operator Wd obtained in (2.14). We follow [NW08, Sec-

tion 5.2] and claim that these eigenpairs are given by (tensor) products of the non-trivial

eigenpairs (λm, φm), m ∈ M1 = {m ∈ N | m < v(W1) + 1}, of the univariate operator

W1 = S†1S1 (see (2.5)). This is the subject of the following assertion.

Proposition 2.10. For d ∈ N the non-trivial eigenpairs of the operator Wd = S†dSd are

given by {(λ̃d,m, φ̃d,m) |m = (m1, . . . ,md) ∈Md = (M1)d}, where

λ̃d,m =

d∏
k=1

λmk and φ̃d,m =

d⊗
k=1

φmk . (2.15)

Proof. Obviously, all the φ̃d,m’s are mutually orthonormal in Fd, i.e.

〈φ̃d,i, φ̃d,j〉Fd =

d∏
k=1

〈φik , φjk〉F1
=

d∏
k=1

δik,jk = δi,j , i, j ∈Md.
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Furthermore,

Wdφ̃d,m =
( d⊗
k=1

W1

)( d⊗
k=1

φmk

)
=

d⊗
k=1

(W1φmk)

=

d⊗
k=1

(λmkφmk) =

d∏
k=1

λmk ·
d⊗
k=1

φmk = λ̃d,mφ̃d,m

shows that φ̃d,m, m ∈Md, is indeed an eigenelement with respect to the strictly positive

eigenvalue λ̃d,m of Wd.

Assume for a moment there exists an eigenpair (µ, η) of Wd with µ 6= 0 which cannot

be represented by (2.15). Then, by the assertions in the previous section, η is orthogonal

to any other eigenelement φ̃d,m, m ∈ Md. Remember that Φ1 = {φm ∈ F1 | m ∈ M1}
can be extended to an orthonormal basis E1 = {em | m ∈ I1} of F1 (see Remark 2.6)

which can be used to construct an ONB Ed = {ed,j | j ∈ Id = (I1)d} of Fd given

by (2.13). Therefore η can be represented as

η =
∑
j∈Id

〈η, ed,j〉Fd ed,j =
∑
j∈Md

〈η, φ̃d,j〉Fd φ̃d,j +
∑

j∈Id\Md

〈η, ed,j〉Fd ed,j

=
∑

j∈Id\Md

〈η, ed,j〉Fd ed,j ,

where each sum consists of at most countably many non-vanishing summands and con-

verges unconditionally. Now the boundedness of Sd implies

Sdη =
∑

j∈Id\Md

〈η, ed,j〉Fd Sded,j = 0,

since each tensor product Sded,j =
⊗d

k=1(S1ejk), j ∈Id \Md, includes at least one factor

S1ejk with jk /∈ M1. These factors vanish because the set {S1em = S1φm | m ∈ M1} is

an ONB of the image of S1 in G1. Hence, Wdη = S†d(Sdη) = 0, which contradicts our as-

sumption. In other words, (2.15) completely describes the eigenpairs of Wd, as claimed.

Again this proof justifies the restriction to separable spaces F1 (and hence also Fd)
in what follows (see Remark 2.6). Thus we can assume that the set of univariate eigen-

elements Φ1 already is an ONB in F1, i.e. that Φ1 = E1, and consequently Φd =

{φ̃d,m |m ∈Md} is an ONB in Fd.
To unify our notation we rearrange the eigenpairs obtained according to the non-

increasing ordering of the eigenvalues. To this end, note that #Md = (#M1)d, i.e. we

have v(Wd) = v(W1)d strictly positive eigenvalues in dimension d. Therefore we define a

sequence of bijections ψ = ψd : {i ∈ N | i < v(W1)d + 1} →Md such that

λd,i = λ̃d,ψ(i) ≥ λ̃d,ψ(i+1) for all 1 ≤ i < v(W1)d + 1.

Consequently, the corresponding eigenelements are denoted by φd,i = φ̃d,ψ(i). Similar to

the definitions in Section 2.3.1 we extend the (possibly finite) sequence of eigenvalues by

λd,i = 0 for i > v(W1)d. Observe that the largest eigenvalue in dimension d is given by

λd,1 = λd1

and thus the initial error is εinit
d = λ

d/2
1 .
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In virtue of Proposition 2.10, the optimal algorithm A∗n,d for linear tensor product

problems S = (Sd)d∈N can be deduced using Corollary 2.7. For d ∈ N and n ∈ N0 it reads

A∗n,d : Fd → Gd, f 7→ A∗n,d(f) =

min{n,v(Wd)}∑
i=1

〈f, φd,i〉Fd Sdφd,i, (2.16)

and its worst case error can be expressed in terms of the sequence λ = (λm)m∈N. More

precisely, we have ewor(n, d;Sd) = ∆wor(A∗n,d;Sd) =
√
λd,n+1. We are ready to charac-

terize tractability of such problems in the next subsection.

2.4.3. Complexity. We begin by analyzing the information complexity with respect to

the absolute error criterion. Let S1 : F1 → G1 denote a compact linear operator between

arbitrary Hilbert spaces F1 and G1 and let S = (Sd)d∈N be the sequence of d-fold tensor

product problems defined in Section 2.4.1. As before, the non-increasing sequence of non-

negative eigenvalues of the univariate operatorW1 = S†1S1 is denoted by λ = (λm)m∈N. At

this point we stress that it is reasonable to assume that λ2 > 0. Otherwise for every d ∈ N
there would be only at most one non-vanishing d-dimensional eigenvalue of Wd = S†dSd.

Hence the problem Sd would be trivial since then nwor
abs (ε, d) ≤ 1 for all ε > 0. Note that

λ2 > 0 also implies λ1 > 0 so that S1 and Sd are not the zero operator.

We now present an assertion which is mainly based on Theorem 5.5 in Novak and

Woźniakowski [NW08]. The missing sufficient condition for weak tractability was later

given by Papageorgiou and Petras [PP09]. Although the results of these authors only refer

to linear tensor product problems defined between Hilbert function spaces they remain

valid in our more general setting.

Theorem 2.11. Consider the problem S = (Sd)d∈N as described before. We study the

absolute error criterion in the worst case setting.

• Let λ1 > 1. Then S suffers from the curse of dimensionality.

• Let λ1 = 1. Then

◦ S is polynomially intractable. In particular, if λ2 = 1 then S suffers from the curse

of dimensionality.

◦ S is weakly tractable if and only if λ2 < 1 and λn ∈ o(ln−2 n) as n→∞ (12).

• Let λ1 < 1. Then

◦ S never suffers from the curse of dimensionality.

◦ S is weakly tractable if and only if λn ∈ o(ln−2 n) as n→∞.

◦ S is polynomially tractable if and only if it is strongly polynomially tractable. More-

over, this holds if and only if there exists some τ ∈ (0,∞) such that λ ∈ `τ and the

exponent of strong polynomial tractability is given by

p∗ = inf
{

2τ
∣∣∣ ∞∑
m=1

λτm ≤ 1
}
.

For the sake of completeness we mention that Theorem 5.5 in [NW08] includes some

additional lower bounds on the information complexity in the case λ1 ≥ 1. For poly-

(12) To avoid possible confusions, here and in what follows, lnα n means (lnn)α where α ∈ R.
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nomial (in)tractability the main idea of the proof is to apply Theorem 2.8 and to use

the product structure of the sequences (λd,i)i∈N involved which are essentially given by

Proposition 2.10. We will not provide an explicit proof here. Instead the interested reader

is referred to Example 3.9 where we deduce all assertions stated in Theorem 2.11 from a

generalized result for scaled tensor product problems. To get these more general assertions

we will exactly follow the sketch of proof just mentioned.

Many authors in IBC use phrases like “(unweighted) tensor product problems are

intractable”. In this regard they refer to the following theorem for the normalized error

criterion, which is essentially based on Theorem 5.6 of [NW08], as well as on [PP09]. From

our point of view it is just a simple consequence of the assertions for absolute errors.

Theorem 2.12. Consider the problem S = (Sd)d∈N as described above. We study the

normalized error criterion in the worst case setting.

• Let λ1 = λ2. Then S suffers from the curse of dimensionality.

• Let λ1 > λ2. Then

◦ S is weakly tractable if and only if λn ∈ o(ln−2 n) as n→∞.

◦ S is polynomially intractable.

Since the subsequent proof technique is typical in this field of research, we include the

proof of Theorem 2.12 in full detail.

Proof. Assume we have already proven Theorem 2.11. Given the problem S = (Sd)d∈N,

constructed out of S1 : F1 → G1, as well as the associated sequence (λm)m∈N, we define

a new operator T1 : F1 → G1 by f 7→ T1f = (1/
√
λ1 )S1f . Clearly, T1 is a linear and

compact mapping between Hilbert spaces, and

〈T1f, g〉G1 =
1√
λ1

〈S1f, g〉G1 =
1√
λ1

〈f, S†1g〉F1
=

〈
f,

(
1√
λ1

S†1

)
g

〉
F1

for f ∈ F1 and g ∈ G1. Hence, T †1 = (1/
√
λ1 )S†1 and the (extended) eigenvalue sequence

of V1 = W1(T ) = T †1T1 = (1/λ1)S†1S1 = (1/λ1)W1(S) is given by µ = (µm)m∈N, where

µm = λm/λ1 for m ∈ N. For details, see also the arguments used in Section 3.1. Anyway,

using the mapping T1, we can construct the tensor product problem T = (Td)d∈N by the

usual procedure. Now (2.15) in Proposition 2.10 shows that the corresponding eigenvalues

of Vd = Wd(T ) = Td
†Td are given by

µ̃d,m =

d∏
k=1

µmk =
1

λd1

d∏
k=1

λmk =
1

λd,1
λ̃d,m, m = (m1, . . . ,md) ∈Md,

such that µd,i = (1/λd,1)λd,i for i ∈ N. This implies that the information complexity of S

with respect to the normalized error criterion coincides with the absolute information

complexity of the (scaled) problem T , i.e.

nnorm(ε′, d;Sd) = #{n ∈ N0 | λd,n/λd,1 > (ε′)2} = #{n ∈ N0 | µd,n > (ε′)2}
= nabs(ε

′, d;Td)

for all ε′ ∈ (0, 1] and each d ∈ N. Since µ1 = 1 ≥ µ2 > 0 we are allowed to apply

Theorem 2.11 for T . Finally the observations that µ2 = 1 if and only if λ1 = λ2, as well
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as that µn ∈ o(ln−2 n) (as n → ∞) if and only if λ = (λn)n∈N belongs to this class,

complete the proof.

2.5. Reproducing kernel Hilbert spaces. When we deal with problems defined on

Hilbert function spaces H, a special kind of Hilbert spaces is of particular interest. The

reason is that in practice often only function evaluations rather than information obtained

by arbitrary linear functionals are permitted. In order to compare the power of these

classes of information operations (Λstd vs. Λall) from a theoretical point of view, it seems

useful to investigate conditions which ensure that point evaluation functionals

Ly : H → R, f 7→ Ly(f) = f(y),

for all y in the domain of definition Ω of f ∈ H, belong to the class Λall. Clearly Ly is

always linear so it is enough to ask whether it is also continuous (or bounded, respectively)

in f . It turns out that, as long as we restrict ourselves to Hilbert spaces, this property

can be characterized by the existence of a so-called reproducing kernel K. If so, then the

space H is referred to as a reproducing kernel Hilbert space (RKHS for short) and we

write H = H(K). In the present section we collect some basic properties of this concept

which we will need later on in Section 4.1.2. The presentation given here is based on

the famous paper of Aronszajn [Aro50], as well as the textbook of Wahba [Wah90] (13).

Standard examples of RKHSs, such as Korobov spaces and Sobolev spaces of dominating

mixed smoothness, can be found in [NW08, Appendix A].

2.5.1. Definition and properties. A (real) Hilbert space H of functions f : Ω → R,

equipped with inner product 〈·, ·〉H , is said to be a reproducing kernel Hilbert space if

there exists a function K : Ω× Ω→ R such that

• for all fixed y ∈ Ω the function Ky = K(·, y) belongs to H, and

• for every f ∈ H and all y ∈ Ω,

Ly(f) = f(y) = 〈f,Ky〉H = 〈f,K(·, y)〉H . (2.17)

Formula (2.17) is known as the reproducing property. Together with the first point it

obviously implies the boundedness of point evaluations on H = H(K). The converse, i.e.

the existence (and uniqueness) of the reproducing kernel K, is a simple consequence of

the Riesz representation theorem (see [Tri92, p. 90] or [Yos80, III.6]). Unfortunately the

proof of this theorem is non-constructive and therefore it does not provide an explicit

method to find the representer Ky = K(·, y) of Ly. In fact, given a specific RKHS H(K)

it seems to be a challenging problem to deduce a closed form of its reproducing kernel K.

However, as long as we restrict ourselves to separable RKHSs, it is easy to prove that K

is given by

K(x, y) =
∑
m∈I

em(x) em(y), x, y ∈ Ω, (2.18)

where {em : Ω → R | m ∈ I} denotes an arbitrary orthonormal basis of H(K). Further-

more we know that every reproducing kernel K is positive definite. That is, for all n ∈ N

(13) For the ease of notation (and in contrast to the above mentioned references) we restrict
ourselves to spaces over R. Once more the theory can be transferred almost literally to C.
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and any sequence x = (xm)nm=1 ∈ Ωn the quadratic form

QK;x(ξ1, . . . , ξn) =

n∑
i,j=1

K(xi, xj) ξi ξj , ξ = (ξm)nm=1 ∈ Rn, (2.19)

is a non-negative function of ξ. In particular,

K(x, x) ≥ 0 and K(x, y) = K(y, x), for all x, y ∈ Ω.

Conversely, Moore showed that every positive definite function K in the above sense

uniquely determines a RKHS H admitting K as its reproducing kernel; see [Aro50].

Again it turned out to be a hard problem to determine a suitable representation of H

(and its inner product) for a given function K.

Besides further fascinating properties, we want to focus on products of kernel func-

tions. To this end, for d ∈ N let K(k), k = 1, . . . , d, denote a finite number of reproducing

kernels defined on the sets Ω(k) × Ω(k), respectively. Then we may consider the tensor

product

Kd =

d⊗
k=1

K(k) :
( d×
k=1

Ω(k)
)
×
( d×
k=1

Ω(k)
)
→ R, Kd(x,y) =

d∏
k=1

K(k)(xk, yk),

where we set x = (x1, . . . , xd) and y = (y1, . . . , yd) with xk, yk ∈ Ω(k). On the other

hand, each kernel K(k) induces a uniquely defined RKHS H(K(k)) which in turn implies

the existence of one (and only one) tensor product space Hd =
⊗d

k=1H(K(k)) using the

arguments presented in Section 2.4. Now it can be checked that Hd itself is a RKHS and

its kernel is given by Kd, i.e.

Hd = H(Kd) =

d⊗
k=1

H(K(k)). (2.20)

The proof of this assertion can be obtained inductively by adding one factor in every

step. Then it remains to show that the resulting quadratic forms (2.19) are non-negative

again, which can be done using a classical result due to Schur.

Note that the whole theory works for arbitrary point sets Ω; this turned out to be

useful in the context of so-called support vector machines, which are instances of the

more general class of kernel methods. However, in IBC special choices such as Ω =

Ω1 = [0, 1] (or Ω = R) are of particular interest. For multivariate problems the stan-

dard choice is Ω = Ωd = Ωd1, which perfectly fits the tensor product construction ex-

plained before. In this respect the univariate kernels K(k), k = 1, . . . , d, are often taken

as weighted instances K
γd,k
1 of some underlying kernel K1. A prominent example is given

by K
γd,k
1 (x, y) = 1 + γd,k min {x, y}, which leads to an anchored Sobolev space H̃γd re-

lated to the Wiener sheet measure (see, e.g., [KWW08, Section 8] or [Wei12b]). Another

example of this type will be discussed in detail within Section 4.1.2.

Finally we mention that the concept of RKHSs was generalized recently to the class

of so-called reproducing kernel Banach spaces (RKBSs). For a brief introduction to this

topic we refer to Zhang and Zhang [ZZ13].

2.5.2. Examples: Integration and approximation problems. Let us conclude the

presentation with some examples which show that the knowledge about the existence of
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a reproducing kernel can be exploited to obtain complexity assertions for the classical

problems of integration and approximation.

Example 2.13 (Worst case error of QMC rules). For d ∈ N suppose H(Kd) is a RKHS

of real-valued functions f defined on some Borel measurable subset Ωd of Rd. Consider

the solution operator of the integration problem

Int%dd : B(H(Kd))→ R, f 7→ Int%dd f =

∫
Ωd

f(x) %d(x) dλd(x),

where %d denotes a probability density function on Ωd. Let us additionally assume that

the function

hd =

∫
Ωd

Kd(·,x)%d(x) dλd(x)

is well-defined and belongs to H(Kd). Then it is easy to see that hd is the representer of

the linear functional Int%dd , i.e. that Int%dd f = 〈f, hd〉H(Kd) <∞ for all f ∈ H(Kd). Since

allowing arbitrary linear functionals to approximate the value of the integral would make

the problem trivial we consider cubature rules of the form

An,df =

n∑
i=1

ai f(x(i)), n ∈ N0,

defined by a priori chosen sample points x(i) ∈ Ωd and some weights ai ∈ R, i = 1, . . . , n.

Due to (2.17) the linear operator An,d possesses a representer in the space H(Kd) as well.

Consequently, its worst case error can be computed exactly in terms of the reproducing

kernel and the parameters (ai)
n
i=1 and (x(i))ni=1:

∆wor
(
An,d; Int%dd : B(H(Kd))→ R

)2
= sup

f∈B(H(Kd))

|(Int%dd −An,d) (f)|2 =
∥∥∥hd − n∑

i=1

aiKd(·,x(i))
∣∣∣ H(Kd)

∥∥∥2

=

∫
Ω2
d

Kd(x,y) %d(x) %d(y) dλ2d(x,y)− 2

n∑
i=1

ai

∫
Ωd

Kd(x,x
(i)) %d(x) dλd(x)

+

n∑
i,j=1

ai aj Kd(x
(i),x(j)).

Choosing special weights ai (such as ai ≡ 1/n), as well as specific sample points x(i)

(e.g. points from a so-called integration lattice), we end up with well-studied classes of

cubature rules which are known as quasi-Monte Carlo (QMC) methods and lattice rules,

respectively. The common feature of those integration schemes is that their complexity

analysis is mainly based on the presented worst case error formula and thus on the

properties of the reproducing kernel Kd. Moreover, the above expression for ∆wor(An,d)

plays an important role in discrepancy theory.

Various kinds of integration problems are studied in Novak and Woźniakowski [NW10].

For the recent state of the art in discrepancy theory and QMC methods we refer the reader

to the monograph of Dick and Pillichshammer [DP10], as well as to the survey article of
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Dick, Kuo and Sloan [DKS13] and the references therein. An introduction to lattice rules

can also be found in the textbook of Sloan and Joe [SJ94].

Our second example shows the relation of reproducing kernels and the singular values

for certain approximation operators.

Example 2.14 (Weighted L2-approximation). For d ∈ N let H(Kd) be a separable and

infinite-dimensional RKHS which is compactly embedded into L%d2 (Ωd). Here %d again

denotes some probability density on Ωd ⊆ Rd. Then we may study the approximation

problem

App%dd : B(H(Kd))→ L%d2 (Ωd), f 7→ App%dd f = f, (2.21)

in the worst case setting. Since both the source and target spaces are Hilbert spaces we

can use the theory developed in Section 2.3 to obtain complexity results with respect

to the class Λall. Therefore we need to analyze the eigenvalues of the compact operator

W %d
d = (App%dd )

†
App%dd . Using the reproducing property (2.17) and the symmetry of Kd

we conclude that

(W %d
d f) (x) = 〈(App%dd )†App%dd f,Kd(·,x)〉H(Kd) = 〈App%dd f,App%dd Kd(·,x)〉

L
%d
2 (Ωd)

=

∫
Ωd

f(y)Kd(x,y) %d(y) dλd(y)

for all f ∈ H(Kd) and any x ∈ Ωd. Hence, W %d
d takes the form of a weighted integral oper-

ator against the kernel Kd(·,y) and its non-trivial eigenpairs {(λd,%d,i, φd,%d,i) | i ∈Md}
can be found by solving integral equations. Formula (2.18) yields

Kd(x,x) =
∑
i∈Md

φd,%d,i(x)2 <∞

for every x ∈ Ωd because we know that {φd,%d,i | i ∈ Md} forms an ONB in H(Kd).

Since φd,%d,i ∈ L%d2 (Ωd) and ‖φd,%d,i | L
%d
2 (Ωd)‖2 = λd,%d,i for all i ∈ Md, it easily follows

that

traceW %d
d =

∑
i∈Md

λd,%d,i =
∑
i∈Md

‖φd,%d,i | L
%d
2 (Ωd)‖2

=

∫
Ωd

Kd(x,x) %d(x) dλd(x). (2.22)

Note that this trace may be finite or infinite depending on the values of Kd on the

diagonal {(x,x) | x ∈ Ωd}. It turns out that an infinite trace implies that there is, in

general, no (non-trivial) relation of the power of Λall and Λstd for the given approximation

problem. In contrast, it is known that for finite traces there exist close relations of these

classes of information operations. In particular, it is possible to derive bounds on the

rate of convergence for Λstd from corresponding bounds for Λall. For details we refer to

[NW12, Chapter 26].

Finally we note that the finite trace property of W %d
d immediately implies that

λd,%d,i ∈ O(i−1) as i → ∞. Hence, if we deal with linear information, we can deduce

that ewor(n, d; App%dd ) ∈ O(n−1/2), n→∞, directly from an integrability property of the

kernel Kd.
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In the last example we present a useful relation of reproducing kernels and average

case approximation problems.

Example 2.15 (Average case approximation). For d ∈ N assume %d is some probability

density function on Ωd = [0, 1]d and let Kd : Ωd × Ωd → R denote a reproducing kernel

such that the mapping x 7→ Kd(x,x) belongs to L%d1 (Ωd). That is, suppose (2.22) is finite.

Furthermore, let Fd denote a separable Banach space of real-valued functions on Ωd which

is continuously embedded into L%d2 (Ωd) and for which function evaluations are continuous.

We equip Fd with a zero-mean Gaussian measure µd such that its correlation operator

Cµd : F∗d → Fd applied to point evaluation functionals Lx can be expressed in terms

of Kd:

Kd(x,y) = Lx(CµdLy) =

∫
Fd
f(x) f(y) dµd(f) for all x,y ∈ Ωd.

We stress that this is always possible for a suitable choice of Fd and that our assump-

tions imply a continuous embedding of the RKHS H(Kd) (induced by Kd) into Fd.
Consequently, also App%dd : H(Kd) → L%d2 (Ωd) is bounded, i.e. continuous (see (2.21)).

For details and concrete examples the reader is referred to [NW08, Appendix B], [NW10,

Section 13.2], and [NW12, Section 24.1].

As in the previous example we want to look for good approximations An,df to input

functions f in the norm of L%d2 (Ωd). This time we measure the average performance of

the algorithm An,d with respect to µd, i.e. we try to minimize

∆avg (An,d; id%dd : Fd → L%d2 (Ωd)) =

(∫
Fd
‖f −An,df | L%d2 (Ωd)‖2 dµd(f)

)1/2

.

Observe that νd = µd ◦ (id%dd )
−1

defines a Gaussian measure on the subset id%dd (Fd)
of L%d2 (Ωd). Now it can be checked that the corresponding covariance operator

C%dνd : id%dd (Fd)→ L%d2 (Ωd)

of the measure νd is given by

f 7→ (C%dνd f)(·) =

∫
Ωd

f(y)Kd(·,y) %d(y) dλd(y).

This operator is self-adjoint, compact and has a finite trace due to the integrability

assumption on Kd. Consequently, there exists a countable set of non-trivial eigenpairs

(λd,%d,i, ηd,%d,i) where the eigenfunctions ηd,%d,i are mutually orthogonal (and normalized)

with respect to the L%d2 (Ωd)-norm (see also Hickernell and Woźniakowski [HW00]).

Once more it turns out that the optimal algorithm A∗n,d in this setting is given by

the orthogonal projection of the input function onto the subspace spanned by the eigen-

functions ηd,%d,i which correspond to the n largest eigenvalues λd,%d,i. In contrast to the

worst case setting the nth minimal average case error is

eavg(n, d; id%dd : Fd → L%d2 (Ωd)) =
( ∞∑
i=n+1

λd,%d,i

)1/2

, n ∈ N0, d ∈ N,

if we assume a non-increasing ordering of the sequence (λd,%d,i)
∞
i=1 (14). Based on the

(14) For the ease of notation we assumed here that all the eigenvalues are strictly positive.
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above error formula it is possible to obtain characterizations of several types of tractability

similar to the assertions given in Section 2.4.3 (see, e.g., [NW08, Chapter 6]).

We complete the discussion with the observation that the sets of (non-trivial) eigen-

pairs (λd,%d,i, ηd,%d,i) of the operators C%dνd as defined above and W %d
d from Example 2.14

coincide, since C%dνd only takes values in H(Kd). To be precise, we note that Kd(x,y) =

Kd(y,x) equals (App%dd Kd(·,x))(y) for each fixed x and λd-almost every y ∈ Ωd. Hence

the chain of equations

(C%dνd f)(x) =

∫
Ωd

f(y) (App%dd Kd(·,x))(y) %d(y) dλd(y) = 〈f,App%dd Kd(·,x)〉
L
%d
2 (Ωd)

= 〈(App%dd )†f,Kd(·,x)〉H(Kd) = ((App%dd )†f)(x)

holds true for every f ∈ id%dd (Fd) ⊂ L%d2 (Ωd) and λd-almost all x ∈ Ωd (15). Clearly

(App%dd )† maps into H(Kd) per definition. Thus, for every eigenfunction η ∈ id%dd (F)

of C%dνd , i.e.

λ η = C%dνd η = (App%dd )†η, λd-a.e. on Ωd, (2.23)

we can find a representer η ∈ H(Kd) with η = η in the sense of L%d2 (Ωd), such that

the equalities in (2.23) hold pointwise on the whole set Ωd and therefore also in the

norm of H(Kd). Now it is easy to check that (λ, η) is indeed an eigenpair of W %d
d =

(App%dd )†App%dd , normalized with respect to the L%d2 (Ωd)-norm. Conversely, every eigen-

pair (λ, η) of the operator W %d
d obviously fulfills λ η = C%dνd η interpreted in L%d2 (Ωd).

In conclusion we see that the knowledge of these eigenpairs implies complexity asser-

tions for both approximation problems in the respective (quite different) settings.

(15) Note that C
%d
νd f ∈ L

%d
2 (Ωd), i.e. it is uniquely defined on Ωd up to a set of measure zero.
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The present chapter deals with a generalization of tensor product problems S = (Sd)d∈N
between Hilbert spaces in the sense of Section 2.4. We introduce additional scaling fac-

tors sd to the norm of the source spaces Fd and analyze their influence on the squared

singular values λd,sd,i of the new problem operators Sd,sd . Using the techniques from

Section 2.4.2 we conclude optimal algorithms for these modified problems at the end of

Section 3.1. Afterwards, in Section 3.2, we investigate tractability properties of this class

of problems with respect to the worst case setting. Finally we present some applications

of our results in Section 3.3.

3.1. Definitions, eigenpairs and the optimal algorithm. Let H1 and G1 be arbi-

trary Hilbert spaces with inner products 〈·, ·〉H1
and 〈·, ·〉G1 , respectively. Further assume

S1 ∈ K(H1,G1) is a compact linear operator between these spaces. Following the con-

structions given in Section 2.4.1 for any d ∈ N there exist uniquely defined d-fold tensor

product spaces of H1 and G1. Let us denote these spaces by Hd = H1 ⊗ · · · ⊗ H1 and

Gd = G1 ⊗ · · · ⊗ G1, respectively. Finally we define S = (Sd)d∈N to be the sequence of

multivariate tensor product operators constructed from S1.

In contrast to Section 2.4 we now adapt the source spaces of our multivariate problem

by introducing an additional positive sequence of scaling factors s = (sd)d∈N. That is, for

every d ∈ N we define Fd to be Hilbert space Hd equipped with the inner product

〈·, ·〉Fd =
1

sd
〈·, ·〉Hd , where sd > 0. (3.1)

Obviously Fd algebraically coincides with Hd whereas the norms (induced by the respec-

tive inner products) are equivalent. Accordingly, the operators Sd are still well-defined for

any d ∈ N when we replace Hd by Fd. On the other hand the approximability properties

of S crucially depend on the norms used, since we need to consider the whole unit ball

F̃d = B(Fd) when dealing with the worst case setting. So let us denote the modified

problem by S(s) = (Sd,sd : Fd → Gd)d∈N.

From Section 2.3 we know that for the nth optimal algorithms for S(s) we need to study

the eigenpairs of Wd,sd = S†d,sdSd,sd . Although Sd,sd equals Sd (as a mapping) we cannot

claim that Wd,sd = Wd since S†d,sd does not necessarily coincide with Sd
†. Nevertheless,

there exists a strong relation. The following proposition extends Proposition 2.10 to the

case of scaled problems in the above mentioned sense. Keep in mind that the eigenpairs

of the univariate (unscaled) operator W1 = S†1S1 are given by {(λm, em) | m ∈ M1},
where M1 = {m ∈ N | m < v(W1) + 1} and 0 < λm+1 ≤ λm for all m < v(W1).

[42]
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Proposition 3.1. For d ∈ N the non-trivial eigenpairs of Wd,sd = S†d,sdSd,sd are given

by {(λ̃d,sd,m, φ̃d,sd,m) |m ∈Md = (M1)d}, where

λ̃d,sd,m = sd λ̃d,m = sd

d∏
k=1

λmk and φ̃d,sd,m =
√
sd φ̃d,m =

√
sd

d⊗
k=1

φmk . (3.2)

Proof. Since Sd,sdf = Sdf for every f ∈ Fd (or Hd, respectively) we have

〈Sd,sdf, g〉Gd = 〈Sdf, g〉Gd = 〈f, S†dg〉Hd = sd〈f, S†dg〉Fd = 〈f, (sdS†d)g〉Fd
for all f ∈ Fd and g ∈ Gd. Thus, (2.4) and the uniqueness of the adjoint operator (16)

imply that S†d,sd = sd · S†d pointwise, and consequently Wd,sd equals sdWd as a mapping.

Hence, from Proposition 2.10 and the linearity of Wd we conclude that (3.2) indeed are

eigenpairs of Wd,sd . Due to the factor
√
sd and the relation (3.1) the eigenelements φ̃d,sd,m

are properly normalized in Fd.
It remains to show that there cannot exist eigenpairs other than (3.2). This can be

seen using arguments similar to those in the second part of the proof of Proposition 2.10.

To this end, note that by (3.1) the inner product in Fd equals zero if and only if the

elements under consideration are orthogonal in Hd.

Given Proposition 3.1, the rest of this section is straightforward. Namely, we can use

the bijections ψ = ψd from Section 2.4.2 to define the non-increasing sequences (λd,sd,i)i∈N
by

λd,sd,i =

{
λ̃d,sd,ψ(i) if 1 ≤ i < v(W1)d + 1,

0 otherwise,

for every d ∈ N. The corresponding reordered eigenelements are denoted by φd,sd,i with

1 ≤ i < v(W1)d + 1. Moreover, we again use Corollary 2.7 to see that for any d ∈ N the

nth optimal algorithm for Sd,sd , n ∈ N0, is given by

A∗n,d,sd : Fd → Gd, f 7→ A∗n,d,sd(f) =

min{n,v(W1)d}∑
i=1

〈f, φd,sd,i〉Fd Sd,sdφd,sd,i.

It realizes the nth minimal worst case error in dimension d, which equals

ewor(n, d;Sd,sd) = ∆wor(A∗n,d,sd ;Sd,sd) =
√
λd,sd,n+1. (3.3)

In particular, the case n = 0, i.e. the initial error

εinit
d =

√
λd,sd,1 =

√
sdλd1,

will play an important role in what follows.

3.2. Complexity. As in Section 2.4, we proceed with the analysis of the information

complexity of scaled tensor product problems S(s) = (Sd,sd)d∈N in the worst case set-

ting. We first take a look at necessary and sufficient conditions for (strong) polynomial

tractability with respect to absolute errors. Afterwards, in Section 3.2.2, we complete

(16) Note that, clearly, Sd,sd is compact if and only if Sd is compact.
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these assertions and investigate conditions for weak tractability and the curse of dimen-

sionality. Finally we will see in Section 3.2.3 that the improvements obtained by scaling

are completely cancelled when we turn to the normalized error criterion.

As usual λ = (λm)m∈N denotes the (extended) sequence of squared singular values

of the underlying operator S1 : H1 → G1. To avoid triviality we assume that λ2 > 0

throughout the rest of this section. The reason for this assumption is explicitly stated in

Section 2.4.3.

3.2.1. Polynomial tractability. The next statement is originally based on Theorem 3.1

of Woźniakowski [Woź94b], which provided the underlying idea for [NW08, Theorem 5.5].

We extend the results stated there to the case of scaled problems.

Theorem 3.2. Let S(s) = (Sd,sd)d∈N denote a scaled tensor product problem in the sense

of Section 3.1. Assume λ2 > 0 and consider the worst case setting with respect to the

absolute error criterion. Then the following assertions are equivalent:

(I) S(s) is strongly polynomially tractable.

(II) S(s) is polynomially tractable.

(III) There exists τ ∈ (0,∞) such that λ ∈ `τ and supd∈N sd‖λ | `τ‖d <∞.
(IV) There exists % ∈ (0,∞) such that λ ∈ `% and lim supd→∞ s

1/d
d < 1/λ1.

If one (and hence all) of these conditions applies then the exponent of strong polynomial

tractability is given by

p∗ = inf{2τ | τ fulfills condition (III)}.

Proof. Step 1. Since (I) clearly implies (II) we start by proving (II)⇒(III). Therefore let

S(s) be polynomially tractable with the constants C, p > 0 and q ≥ 0. Then Theorem 2.8

shows, for all % > p/2, that

0 < C% = sup
d∈N

1

d2q/p

( ∞∑
i=d(1+C) dqe

(λd,sd,i)
%
)1/%

<∞.

Because of λd,sd,i = sd λd,i for any d, i ∈ N due to (3.2), this in particular implies that

s1(
∑∞
m=d1+Ce λ

%
m)1/% ≤ C% is finite and hence λ = (λm)m∈N ∈ `%. Moreover, we have

∞∑
i=1

(λd,i)
%

= ‖λ | `%‖% d, as well as

d(1+C) dqe−1∑
i=1

(λd,i)
% ≤ λ% d1 (1 + C) dq,

and therefore

‖λ | `%‖% d − λ% d1 (1 + C) dq ≤
(
C% d

2q/p

sd

)%
for all d ∈ N. (3.4)

Now let τ > % and assume that (III) is violated for this τ . Then supd∈N sd‖λ | `τ‖d
is infinite since λ ∈ `% and `% ↪→ `τ with ‖λ | `τ‖ < ‖λ | `%‖. That means, for any

C0 ∈ (0,∞) there necessarily exists a sequence (dk)k∈N ⊂ N such that for every k ∈ N,

C0 ≤ sdk‖λ | `τ‖dk = sdk‖λ | `%‖dk/(t%,τ )dk ,

where we set t%,τ = ‖λ | `%‖/‖λ | `τ‖ > 1. Hence, at least for all k larger than a certain

k0 ∈ N, we conclude that C0 ≤ sdk‖λ | `%‖dk/d
2q/p
k . In particular, we can choose C0 > C%
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such that 0 < C1 = C%/C0 < 1. Therefore (3.4) implies

‖λ | `%‖% dk − λ% dk1 (1 + C) dqk ≤ C
%
1 ‖λ | `%‖% dk , k ≥ k0,

which leads to(
1 +

(
λ2

λ1

)%)dk
≤
( ∞∑
m=1

(
λm
λ1

)%)dk
=
‖λ | `%‖% dk

λ% dk1

≤ C2 d
q
k

for all k ≥ k0 and some C2 = (1 + C)/(1 − C%1 ) > 0. Since λ2 > 0 and % > 0 this is a

contradiction and thus we have proven (III) for every τ > p/2. Note that this also shows

that

inf{2τ | τ fulfills condition (III)} ≤ p∗.
Step 2. Next we show that (I) follows from (III). Let τ > 0 be given such that (III)

holds true and set p = q = r = 0, as well as C = 1. Then, with

f(d) = dC(min
{
sd λ

d
1, 1
}

)−p/2dqe = 1,

we have

Cτ = sup
d∈N

1

dr

( ∞∑
i=f(d)

(λd,sd,i)
τ
)1/τ

= sup
d∈N

sd‖λ | `τ‖d <∞.

Once more we apply Theorem 2.8 to obtain

nwor
abs (ε, d;Sd,sd) ≤ (1 + Cττ ) ε−2τ for all ε(0, 1] and every d ∈ N.

Thus S(s) is strongly polynomially tractable and

p∗ ≤ inf{2τ | τ fulfills condition (III)}.
Step 3. The implication (III)⇒(IV) can be seen as follows. Assume (III) is valid for

some 0 < τ <∞ and set % = τ . Then, clearly, λ ∈ `%. If we now assume (IV) is violated

then for any δ > 0 there exists a sequence (dk)k∈N ⊂ N such that for all k,

s
1/dk
dk
≥ 1/(λ1 + δ).

Hence, sdk‖λ | `τ‖dk ≥ (‖λ | `τ‖/(λ1 + δ))dk tends to infinity (as k → ∞) if we take δ

small enough so that λ1 + δ < ‖λ | `τ‖. Since τ ∈ (0,∞) and

λ1 < (λτ1 + λτ2)1/τ ≤ ‖λ | `τ‖ <∞
there is some ατ ∈ (0,∞) such that ‖λ | `τ‖ = λ1 +ατ . Choosing e.g. δ = ατ/2 gives the

needed contradiction.

Step 4. Finally we have to show that also (IV)⇒(III). Therefore assume that we have

(IV) for some % ∈ (0,∞). Then there exist constants d0 ∈ N and δ > 0 such that

s
1/d
d ≤ 1/(λ1 + δ) for all d ≥ d0.

Furthermore note that the function N(τ) = ‖λ | `τ‖ is strictly decreasing and contin-

uous on the interval [%,∞] and that N(%) > λ1 = N(∞) because of the ordering of

λ = (λm)m∈N. Hence there exists some τ ∈ [%,∞) such that N(τ) ≤ λ1 + δ/2, say. Thus,

λ ∈ `τ and for every d ≥ d0 we obtain

sd‖λ | `τ‖d ≤
(
λ1 + δ/2

λ1 + δ

)d
≤ 1.

Since the term on the left is also finite for any d = 1, . . . , d0 this completes the proof.
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Observe that Theorem 3.2 is not very surprising. Indeed, the second assertion in

condition (IV) is equivalent to the fact that the dth root of the initial error εinit
d is

asymptotically strictly less than 1. Hence if S1 : H1 → G1 (and thus also the sequence λ)

is given then we need to select scaling factors sd so that εinit
d → 0, d → ∞, in order to

obtain polynomial tractability. More advanced illustrations will be given in Section 3.3.

3.2.2. Weak tractability and the curse. To formulate necessary and sufficient con-

ditions for weak tractability with respect to the worst case setting and the absolute error

criterion we need some additional notation. Therefore let S(s) = (Sd,sd)d∈N denote a

scaled tensor product problem between Hilbert spaces as explained in Section 3.1 and

assume λ2 > 0. Then for fixed d ∈ N and 0 < ε < εinit
d = s

1/2
d λ

d/2
1 formula (3.3) implies

n(ε, d) = min{n ∈ N0 | λd,sd,n+1 ≤ ε2} = #{j ∈ Nd | sdλj1 · . . . · λjd > ε2}

= #

{
j ∈ Nd

∣∣∣∣ λj1λ1
· . . . · λjd

λ1
>

(
ε

εinit
d

)2}
. (3.5)

By counting the number of indices equal to one we conclude that

n(ε, d) = 1 +

d∑
k=1

(
d

k

)
#

{
j = (j1, . . . , jk) ∈ (N \ {1})k

∣∣∣∣ k∏
l=1

λjl
λ1

>

(
ε

εinit
d

)2}
.

Now we distinguish two cases. First assume that λ1 = λ2. Then, obviously, each of the

sets in the above equality contains at least one element. Otherwise, in the case λ1 > λ2,

some of those k-dimensional sets might be empty if k is larger than some kd(ε). The

reason is that λ1 > λ2 ≥ λm for m ≥ 2 implies that every factor in
∏k
l=1 λjl/λ1 is strictly

smaller than 1. In detail, (ε/εinit
d )2 ≥ (λ2/λ1)

k
is equivalent to

k > kd(ε) =

⌈
1

ln(λ1/λ2)
ln

(
εinit
d

ε

)2
⌉
− 1.

Hence, denoting ad(ε) = min {d, kd(ε)} we have

n(ε, d) = 1 +

ad(ε)∑
k=1

(
d

k

)
#

{
j ∈ (N \ {1})k

∣∣∣∣ k∏
l=1

λjl
λ1

>

(
ε

εinit
d

)2}
(3.6)

for d ∈ N and 0 < ε < εinit
d . If λ1 = λ2 then the same equality remains true when we

formally set kd(ε) =∞, i.e. ad(ε) = d. Moreover, for d ∈ N we have ad(ε) = 0 if and only

if ε ≥ (λ2/λ1)
1/2

εinit
d . If so, then we obtain n(ε, d) = 1 as long as ε < εinit

d and n(ε, d) = 0

otherwise.

Finally the following statement relates the decay properties of the univariate se-

quence of the squared singular values λ with the growth behavior of the information

complexity n(ε, d) = nwor
abs (ε, d;Sd,sd). It generalizes an assertion given in Novak and

Woźniakowski [NW08, p. 178].

Lemma 3.3. Let S(s) and λ = (λm)m∈N be as before. Then, for all β ≥ 1,

λn ∈ o(ln−2β n) as n→∞ if and only if lnn(tβ , 1) ∈ o (1/t) as t→ 0.

Proof. Assume β ≥ 1 is fixed and let t ∈ (0, (s1λ2)1/(2β)). Then (3.5) yields, for d = 1,

n = n(tβ , 1) = min{n ∈ N0 | s1λn+1 ≤ t2β} ≥ 2.
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Thus we have s1λn(tβ ,1)+1 ≤ t2β < s1λn(tβ ,1) and ln2β n ≥ 1/4β · ln2β(n+ 1). Combining

both these estimates we conclude that

s1

4β
λn(tβ ,1)+1

ln−2β(n(tβ , 1) + 1)
≤
(

lnn(tβ , 1)

t−1

)2β

< s1

λn(tβ ,1)

ln−2β n(tβ , 1)
.

Since the one-dimensional information complexity n(ε, 1) is an increasing function in 1/ε,

taking the limit for t→ 0 proves the claim.

Now we are well-prepared to present necessary conditions for weak tractability based

on the representation of the information complexity given in (3.6).

Proposition 3.4. Weak tractability of S(s) implies

lim
ε−1+d→∞

ln
∑ad(ε)
k=0

(
d
k

)
ε−1 + d

= 0 and lim
ε−1+d→∞

lnn(εinit
1 ε/εinit

d , 1)

ε−1 + d
= 0. (3.7)

If so, then λn ∈ o(ln−2 n) as n→∞. Furthermore,

ln εinit
d ∈ o(d) as d→∞, (3.8)

since otherwise S(s) suffers from the curse of dimensionality. If, in addition, λ1 = λ2

then we need limd→∞ εinit
d = 0 to avoid the curse. Moreover, in this case weak tractability

even yields

εinit
d ∈ o(1/d) as d→∞. (3.9)

Proof. Step 1. We start by proving the necessity of the first limit condition in (3.7) and

study its consequences. For this purpose, recall that by the definition of ad(ε) all the sets

in (3.6) contain at least one element. Consequently, for general λ1 ≥ λ2 we have

n(ε, d) ≥ 1 +

ad(ε)∑
k=1

(
d

k

)
=

ad(ε)∑
k=0

(
d

k

)
for d ∈ N and 0 < ε < εinit

d . (3.10)

Now assume the existence of a subsequence (dl)l∈N ⊂ N such that εinit
dl

grows at least

exponentially in dl for l → ∞. That is, we assume that condition (3.8) is violated.

Moreover, fix ε = ε0 ∈ (0, inf{εinit
dl
| l ∈ N}). Then for any l ∈ N and some α ∈ (0, 1/2)

the term adl(ε0) is bounded from below by bαdlc. Accordingly, (3.10) implies n(ε0, dl) ≥(
dl
bαdlc

)
for all l ∈ N. Using similar calculations to those in [NW08, p. 178] we see that

this lower bound grows exponentially in dl. This proves the curse of dimensionality for

the scaled problem S(s) and thus contradicts weak tractability.

If we assume in addition that λ1 = λ2 then, as already noticed, ad(ε) equals d because

kd(ε) = ∞. Thus we obtain
∑ad(ε)
k=0

(
d
k

)
= 2d in this case. Therefore the existence of a

sequence (dl)l∈N such that εinit
dl

is larger than some C > 0 for all l ∈ N would again imply

the curse of dimensionality since then we could fix ε = ε0 = C/2, say. Moreover ad(ε) = d

shows that the first part of (3.7) equivalently reads

lim
ε−1+d→∞

d

ε−1 + d
= 0. (3.11)

Observe that in any case the term d/(ε−1 + d) is equivalent to the minimum of 1 and ε d
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(up to some absolute constants). Hence, (3.11) holds true if and only if

lim
ε−1+d→∞

ε d = 0,

which in turn is equivalent to εinit
d ∈ o(1/d) for d → ∞. To see this last equivalence,

remember that due to Section 1.4 the domain of the sequences ((εk, dk))k∈N for the limit

ε−1 + d→∞ is restricted per definition to those for which εk < εinit
dk

.

Step 2. We turn to the proof of the second part of (3.7). Again we distinguish the

cases λ1 = λ2 and λ1 > λ2. For the latter case keep in mind that ad(ε) ≥ 1 if and only if

ε < εinit
d (λ2/λ1)1/2. If so, then (3.6) shows that

n(ε, d) ≥ 1 +

(
d

1

)
#

{
j ≥ 2

∣∣∣∣ λjλ1
>

(
ε

εinit
d

)2}
= 1 + d#{j ≥ 2 | s1λj > (εinit

1 ε/εinit
d )2} ≥ n(εinit

1 ε/εinit
d , 1).

On the other hand, if ε ∈ [εinit
d (λ2/λ1)1/2, εinit

d ) then n(εinit
1 ε/εinit

d , 1) is no larger than

n(εinit
1 (λ2/λ1)1/2, 1), which is an absolute, positive constant. Thus, as claimed in (3.7),

we conclude that

0 ≤ lnn(εinit
1 ε/εinit

d , 1)

ε−1 + d
≤ max

{
lnn(ε, d)

ε−1 + d
,

lnn(εinit
1 (λ2/λ1)1/2, 1)

ε−1 + d

}
→ 0 (3.12)

for ε−1 + d tending to infinity in the above sense. In the case λ1 = λ2 we have ad(ε) = d,

which is trivially bounded from below by 1 for any ε ∈ (0, εinit
d ). The assertion now follows

using the same arguments as in the first part of the previous case. To complete the proof

it remains to show that λn ∈ o(ln−2 n) as n→∞. Let us consider the case d = dk ≡ 1 in

(3.12). Then we obtain

0 ≤ lnn(ε, 1)

ε−1
≤ 2

lnn(εinit
1 ε/εinit

1 , 1)

ε−1 + 1
→ 0 as ε−1 →∞.

In other words, weak tractability yields lnn(ε, 1) ∈ o(ε−1), which is equivalent to the

claimed assertion by Lemma 3.3.

Let us add some comments on the above necessary conditions.

Remark 3.5. First of all note that from (3.7) we concluded (3.8), which is equivalent

to the fact that lim supd→∞ s
1/d
d ≤ 1/λ1. Aside from that, (3.7) also implies another

condition which we will need later on:

lim
ε−1+d→∞

lnn(εinit
1 (ε/εinit

d )1/2, 1)

ε−1 + d
= 0.

Concluding, we stress that the second part of (3.7) already indicates a certain trade-off

between the decay of the sequence (λn)n∈N and the growth of the initial error εinit
d . Indeed,

if (λn)n∈N decreases almost logarithmically then n(t, 1) increases subexponentially as t

tends to zero. Consequently, (3.7) can be fulfilled only if εinit
d is polynomially bounded

in d. On the other hand, if the (squares of the) singular values tend to zero like the inverse

of some polynomial, say, then n(t, 1) grows polynomially in 1/t and hence it is enough to

assume that the initial error is subexponentially bounded in d to fulfill (3.7).
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We complement the necessary conditions in Proposition 3.4 by the following sufficient

conditions for weak tractability of scaled tensor product problems S(s) = (Sd,sd)d∈N. For

the proof we essentially follow the arguments of Papageorgiou and Petras [PP09] for the

unscaled case, which are based on estimates from Woźniakowski [Woź94b].

Proposition 3.6. Let S(s) and ad(ε) be as before and assume λ2 > 0. If condition (3.7)

from Proposition 3.4 holds true and if

lim
ε−1+d→∞

ad(ε) lnn(εinit
1 (ε/εinit

d )1/2, 1)

ε−1 + d
= 0 (3.13)

then S(s) is weakly tractable.

Proof. Given d ∈ N and ε ∈ (0, (λ2/λ1)
1/2

εinit
d ) consider the representation (3.6) and

keep in mind that for larger ε the information complexity n(ε, d) is trivially bounded

by 1 because then ad(ε) = 0. For every k ∈ {1, . . . , ad(ε)} we have

#

{
j ∈ (N \ {1})k

∣∣∣∣ k∏
l=1

λjl
λ1

>

(
ε

εinit
d

)2}
≤ #

{
j ∈ Nad(ε)

∣∣∣∣ ad(ε)∏
l=1

λjl
λ1

>

(
ε

εinit
d

)2}
since λm/λ1 ≤ 1 for all m ∈ N. Hence we concentrate on all the multi-indices j =

(j1, . . . , jad(ε)) that fulfill
ad(ε)∏
l=1

λjl
λ1

>

(
ε

εinit
d

)2

. (3.14)

Clearly the largest possible index j
(1)
max which can appear in those j ∈ Nad(ε) is bounded

because the sequence (λn)n∈N tends to zero as n→∞. Indeed, using the arguments given

in [PP09] we conclude that

j(1)
max ≤ min

{
n ∈ N0

∣∣∣∣ s1λn+1 ≤
(
εinit

1

ε

εinit
d

)2}
= n

(
εinit

1

ε

εinit
d

, 1

)
.

More generally, in [PP09] it was noticed that, using the same reasoning, we can bound

the ith largest index j
(i)
max in (3.14) by

j(i)
max ≤ n(εinit

1 (ε/εinit
d )1/i, 1).

We use this estimate for i = 1 and 2 to obtain the upper bound

ad(ε)n(εinit
1 ε/εinit

d , 1)n(εinit
1 (ε/εinit

d )1/2, 1)ad(ε)−1

for #{j ∈ Nad(ε) | j fulfills (3.14)}. Note that due to ε < εinit
d both the univariate

complexities in the above bound need to be at least 1. Therefore we can extend the

estimate by adding an additional factor n(εinit
1 (ε/εinit

d )1/2, 1) and replacing ad(ε) by d. In

summary we have

n(ε, d) ≤ dn(εinit
1 ε/εinit

d , 1)n(εinit
1 (ε/εinit

d )1/2, 1)ad(ε)

ad(ε)∑
k=0

(
d

k

)
(3.15)

for each d ∈ N and all ε ∈ (0, (λ2/λ1)
1/2

εinit
d ). Because n(ε, d) = 1 if ε belongs to

[(λ2/λ1)
1/2

εinit
d , εinit

d ), the estimate (3.15) remains valid for every ε ∈ (0, εinit
d ). Proceeding



50 3. Problems on Hilbert spaces with scaled norms

as in [PP09] we take the logarithm and divide by ε−1 + d to conclude that

lnn(ε, d)

ε−1 + d
≤ ln d

ε−1 + d
+

lnn(εinit
1 ε/εinit

d , 1)

ε−1 + d

+
ad(ε) lnn(εinit

1 (ε/εinit
d )1/2, 1)

ε−1 + d
+

∑ad(ε)
k=0

(
d
k

)
ε−1 + d

.

For weak tractability it suffices to show that each of these fractions tends to zero as

ε−1 + d→∞. Obviously, for the first one this is true without any further conditions. For

the second and fourth fractions the assertion follows from (3.7). Finally the third fraction

tends to zero due to the additional condition (3.13) we imposed for this proposition.

To illustrate our results the following theorem considers several cases of the behavior

of the initial error εinit
d .

Theorem 3.7. Let S(s) = (Sd,sd)d∈N denote a scaled tensor product problem in the sense

of Section 3.1. Assume that λ2 > 0 and consider the worst case setting with respect to

the absolute error criterion.

• Let ln εinit
d /∈ o(d) as d→∞. Then S(s) suffers from the curse of dimensionality.

• Let εinit
d ∈ Θ(dα) as d→∞ for some α ≥ 0.

◦ If λ1 = λ2 then S(s) suffers from the curse of dimensionality.

◦ In the case λ1 > λ2 the problem S(s) is weakly tractable if and only if

λn ∈ o(ln−2(1+α) n) as n→∞. (3.16)

• Let εinit
d → 0 as d → ∞. Then we never have the curse of dimensionality. Moreover,

S(s) is weakly tractable if and only if

(i) λ1 = λ2 and λn ∈ o(ln−2 n) as n→∞, and εinit
d ∈ o(1/d) as d→∞, or

(ii) λ1 > λ2 and λn ∈ o(ln−2 n) as n→∞.

Proof. Step 1. In this first step we handle the assertions concerning the curse of dimen-

sionality. From the proof of Proposition 3.4 we know that S(s) suffers from the curse

either if ln εinit
d /∈ o(d), or if λ1 = λ2 and limd→∞ εinit

d 6= 0. Of course the latter condition

is fulfilled particularly if the initial error grows polynomially with the dimension d, i.e.

if εinit
d ∈ Θ(dα) for some α ≥ 0. Furthermore the fact that we cannot have the curse of

dimensionality as long as εinit
d tends to zero is clear from the definition.

Step 2. Next we show that weak tractability implies (3.16). Note that εinit
d ∈ Θ(dα)

implies the existence of some c > 0 such that εinit
d ≥ c dα for all d ∈ N. Moreover there is

some d0 ∈ N such that 1/c < d1+α for every d larger than d0. Setting ε = 1/d now yields

ε

εinit
d

≤ 1

c

1

d1+α
< 1 for all d ≥ d0

and ε−1 + d = 2d → ∞ as d → ∞. Hence, the sequence ((1/d, d))d≥d0 is admissible for

the second limit condition of (3.7). On the other hand,

lnn(εinit
1 ε/εinit

d , 1)

ε−1 + d
≥ c′

2

lnn((c′/d)1+α, 1)

(c′/d)−1
≥ 0
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where we set c′ = (ε1/c)
1/(1+α). Thus weak tractability implies lnn(t1+α, 1) ∈ o (1/t) as

t→ 0. Now the assertion follows from Lemma 3.3.

Step 3. For polynomial initial errors it remains to prove the converse implication,

namely that (3.16) is also sufficient for weak tractability provided that λ1 > λ2. To this

end, we first show that for all d ∈ N, every ε ∈ (0, εinit
d ), and for some C > 0, we have

εinit
d /ε ≤ C(ε−1 + d)1+α. (3.17)

To see this, we notice that εinit
d ∈ Θ(dα) implies the existence of some C > 0 such that

εinit
d ≤ Cdα for all d ∈ N. If α = 0 then (3.17) is obvious. For α > 0 we apply Young’s

inequality (17) to obtain εinit
d /ε ≤ C(d1+α + (ε−1)1+α). Now (3.17) follows from the

relation ‖· | `1+α‖ ≤ ‖· | `1‖, α ≥ 0, for (two-dimensional) sequence spaces.

We want to deduce weak tractability from Proposition 3.6. Hence we have to check

the limit conditions in (3.7) and (3.13). In what follows we abbreviate

t = t(ε, d) = ε−1 + d.

Given (3.17), as well as the definition of ad(ε) before (3.6), it is easy to see that

ad(ε) ∈ O(ln t) as t→∞.

In particular, ad(ε) < bbtc /2c if t is sufficiently large. Moreover, note that d < t implies(
d
k

)
≤
(btc
k

)
for all k ∈ {0, 1, . . . , ad(ε)} such that

( btc
ad(ε)

)
is an upper bound for each of

those binomial coefficients
(
d
k

)
. Consequently,

ln

ad(ε)∑
k=0

(
d

k

)
≤ ln

(
(ad(ε) + 1)

(
btc
ad(ε)

))
≤ ln(2 ad(ε) (e btc)ad(ε))

≤ ln 2 + ln ad(ε) + ad(ε)(1 + ln t) ∈ O(ln2 t) ⊆ o(t)

for t → ∞. In other words, the first part of 3.7 is fulfilled. Also the second condition

in (3.7) can be shown easily using (3.17). Indeed, by the assumption in (3.16) (or its

equivalent reformulation in Lemma 3.3) we conclude that

lnn(εinit
1 ε/εinit

d , 1)

ε−1 + d
≤ lnn(εinit

1 C (ε−1 + d)−(1+α), 1)

ε−1 + d
=

1

C ′
lnn((C ′/t)1+α, 1)

(C ′/t)−1
,

which tends to zero as ε−1 + d (and therefore also t/C ′) approaches infinity. Finally,

ad(ε) lnn(εinit
1 (ε/εinit

d )1/2, 1) ≤ ad(ε) lnn

((
C ′′

ε−1 + d

)(1+α)/2

, 1

)
∈ O(ln t)O(t1/2) ⊆ o(t)

for t = ε−1 +d→∞. Hence we have shown (3.13). Now an application of Proposition 3.6

completes the proof for the case of polynomial initial errors.

Step 4. In this last step we consider the case of initial errors which tend to zero

for d tending to infinity. We already know from Proposition 3.4 that λn ∈ o(ln−2 n) as

n → ∞ (or equivalently lnn(t, 1) ∈ o(1/t) as t → 0) is necessary for weak tractability,

(17) Recall that Young’s inequality states that a, b ≥ 0 and p, q > 1 with 1/p+ 1/q = 1 yield
ab ≤ ap/p+ bq/q. We use this assertion for a = dα, b = ε−1 and p = 1 + 1/α, q = 1 + α.
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independently of the relation of the (squares of the) two largest singular values λ1 and λ2

to each other. Moreover Proposition 3.4 states that εinit
d ∈ o(1/d) as d→∞ is a necessary

condition when we additionally assume λ1 = λ2. It remains to show that these conditions

are also sufficient for weak tractability in the particular situations.

If λ1 > λ2 then we can exactly follow the lines of Step 3 with α = 0 in order to

conclude the assertion. Hence we are left with the case λ1 = λ2. As in the previous

step, we want to apply Proposition 3.6 and thus we need to check the conditions in (3.7)

and (3.13). Setting

u = u(ε, d) =
d

ε−1 + d
(3.18)

we note that (by (3.11) in the proof of Proposition 3.4) u tends to zero as ε−1 + d→∞.

This follows from εinit
d ∈ o(1/d) as d → ∞, and, on the other hand, it implies the first

condition in (3.7) because
∑ad(ε)
k=0

(
d
k

)
equals 2d. Since, in particular, εinit

d ≤ C for some

C > 0, we have C ′ = C/εinit
1 > 0 and thus we obtain

lnn(εinit
1 ε/εinit

d , 1)

ε−1 + d
≤ lnn(εinit

1 /Cε, 1)

ε−1 + d
≤ C ′

lnn
(
(C ′(ε−1 + d))−1, 1

)
C ′(ε−1 + d)

→ 0

as ε−1 + d → ∞, due to lnn(t, 1) ∈ o(1/t) as t → 0. In other words, we have shown

the second condition in (3.7). To see that (3.13) holds true as well, we once more use

εinit
d ∈ o(1/d) ⊆ O(1/d), together with Young’s inequality, to conclude that(

εinit
d

ε

)1/2

≤ C1
1

d
d1/2

(
1

ε

)1/2

≤ C1

2

ε−1 + d

d

with some C1 > 0. Hence, using (3.18) we have εinit
1 (ε/εinit

d )1/2 ≥ C2 u and therefore

d lnn(εinit
1 (ε/εinit

d )1/2, 1)

ε−1 + d
≤ 1

C2
(C2 u) lnn(C2 u, 1)→ 0 as ε−1 + d→∞,

because then C2 u = C2 u(ε, d) tends to zero. Since ad(ε) = d this yields (3.13) and we

deduce weak tractability from Proposition 3.6.

Before we turn to normalized errors we stress that Theorem 3.7 contains at least two

surprising results. Firstly, we can have weak tractability even if the initial error of S(s)

grows with the dimension. Hence, although the performance of the zero algorithm gets

steadily worse for d→∞ we are not necessarily faced with the curse of dimensionality. In

contrast, remember that we need decreasing initial errors in order to obtain polynomial

tractability. Secondly, it seems to be quite surprising that also in the case λ1 = λ2 we

can break the curse by imposing only moderate additional conditions on the scaling
sequence s. Indeed, it is enough to guarantee that εinit

d =
√
sdλd1 ∈ o(1/d) for d→∞.

3.2.3. Normalized errors. We complete our studies of the complexity of scaled prob-

lems S(s) = (Sd,sd)d∈N by investigating tractability properties with respect to the nor-

malized error criterion. This can be done by analyzing the information complexity of a

related problem with respect to absolute errors.

Let λ = (λn)n∈N and s = (sd)d∈N be fixed and define a tensor product problem T =

(Td : Hd → Gd)d∈N from the building blocks T1 = ((1/
√
λ1 )S1) : H1 → G1 as described in
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the proof of Theorem 2.12. Then the extended sequence of squared singular values of Td,

based on the univariate sequence µ = (µm)m∈N = (λm/λ1)m∈N, reads

(µd,1,i)i∈N = (µd,i)i∈N =

(
λd,i
λd,1

)
i∈N

=

(
λd,sd,i
sd λd,1

)
i∈N

=

(
λd,sd,i
(εinit
d )2

)
i∈N

.

Here the second subscript in µd,1,i indicates that T can be seen as a trivially scaled tensor

product problem. Furthermore, εinit
d =

√
sd λd1 denotes the initial error of Sd,sd . Thus,

from (3.5) applied to T and S(s) we conclude that

nwor
abs (ε, d;Td) = min

{
n ∈ N0 | µd,1,n+1 ≤ ε2

}
= min

{
n ∈ N0 | λd,sd,n+1 ≤ (εεinit

d )2
}

= nwor
abs (εεinit

d , d;Sd,sd). (3.19)

By definition this also equals nwor
norm(ε, d;Sd,sd), i.e. the information complexity of Sd,sd

with respect to the normalized error criterion. Based on this relation, we can use our

results from the previous subsections to prove

Theorem 3.8. Let S(s) = (Sd,sd)d∈N denote a scaled tensor product problem in the sense

of Section 3.1. Assume λ2 > 0 and consider the worst case setting with respect to the

normalized error criterion.

• Let λ1 = λ2. Then S(s) suffers from the curse of dimensionality.

• Let λ1 > λ2. Then S(s) is not polynomially tractable. Moreover, in this case S(s) is

weakly tractable if and only if λn ∈ o(ln−2 n) as n→∞.

Proof. Note that for all d ∈ N the initial error of Td is 1 since µ1, as well as the scaling

parameters, equal 1. Thus, obviously, condition (IV) in Theorem 3.2 is violated and there-

fore T is polynomially intractable with respect to the absolute error criterion. Moreover,

the second point of Theorem 3.7 with α = 0 shows that T suffers from the curse of dimen-

sionality if µ1 = µ2. Otherwise, i.e. if µ1 > µ2, the problem T is weakly tractable if and

only if µn ∈ o(ln−2 n) as n→∞. Since we set µm = λm/λ1, m ∈ N, all these conditions

on µ = (µm)m∈N are fulfilled if and only if the corresponding assertions hold true for the

sequence λ = (λm)m∈N. Equation (3.19) finally shows that every complexity assertion for

T with respect to absolute errors is equivalent to the corresponding statement for S(s)

and the normalized error criterion. This simple observation completes the proof.

In conclusion, the scaling sequence s = (sd)d∈N does not have any influence on the

complexity of S(s), as long as we consider normalized errors. So the advantages of scaling

are completely ruled out in this setting.

3.3. Examples. In this last part of Chapter 3 we briefly discuss two applications of

the complexity results obtained in the previous section. We start by proving that our

assertions reproduce the known facts for unscaled tensor product problems studied in

Theorems 2.11 and 2.12.

Example 3.9 (Unscaled problems). Let S(s) = (Sd,sd)d∈N denote a tensor product prob-

lem between Hilbert spaces in the sense of Section 3.1 where all the scaling factors sd
equal 1. As usual we assume λ2 > 0 and consider the worst case setting. Then for every

d ∈ N the operators Sd,sd coincide with Sd as defined in Section 2.4.1. Since we already
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saw that for the normalized error criterion the conditions stated in Theorem 3.8 exactly

match the assertions of Theorem 2.12, it remains to consider the absolute error criterion.

Here εinit
d is given by λ

d/2
1 . Hence there are three scenarios for the behavior of the initial

error depending on the largest squared singular value λ1 of the underlying operator S1.

From Theorem 3.2 we know that strong polynomial tractability and polynomial

tractability are equivalent; see (I) and (II), respectively. Moreover, condition (IV) shows

that this holds if and only if λ1 < 1 and λ = (λm)m∈N ∈ `τ for some τ ∈ (0,∞). In this

case the exponent of strong polynomial tractability is given by

p∗ = inf
{

2τ
∣∣∣ sup
d∈N
‖λ | `τ‖d <∞

}
= inf

{
2τ
∣∣∣ ( ∞∑

m=1

(λm)τ
)1/τ

≤ 1
}
.

In turn, λ1 ≥ 1 yields polynomial intractability. More precisely, if λ1 > 1 then the initial

error grows exponentially in d and S = S(s) suffers from the curse of dimensionality due

to the first point of Theorem 3.7. Setting α = 0 the second point of the latter theorem

describes the case of constant initial errors, which corresponds to the case λ1 = 1 in the

unscaled situation. In detail, if λ2 = λ1 = 1 then we are faced with the curse again. In

contrast, if λ2 < 1 then we have weak tractability if and only if

λn ∈ o(ln−2 n) as n→∞. (3.20)

Finally the initial error tends to zero exponentially fast if λ1 < 1. The last point of

Theorem 3.7 thus shows that in this case the curse of dimensionality is not possible and

that (3.20) is necessary and sufficient for weak tractability.

Altogether these results exactly match the conditions stated in Theorem 2.11. Hence,

scaled tensor product problems indeed yield a generalization.

So let us turn to a more advanced application. To this end, recall the definition of

Sd,sd : Fd → Gd in Section 3.1. There we constructed the source spaces Fd by scaling the

norm in the tensor product space Hd = H1 ⊗ · · · ⊗H1. Alternatively we can think of Fd
as the successively taken tensor product of some building blocks H(k), k = 1, . . . , d, in

the sense of Section 2.4.1, where we define H(k) to be the univariate space H1 scaled by

some factor s(k) > 0. That is, let

〈·, ·〉H(k) =
1

s(k)
〈·, ·〉H1 .

Then the scaling factor sd in dimension d is given by
∏d
k=1 s

(k) > 0. The following example

illustrates how the behavior of the generator sequence (s(k))k∈N affects the complexity

of S(s).

Example 3.10. Because scaling has no influence on assertions for normalized errors we

restrict ourselves to the absolute error criterion in what follows. For simplicity we further

assume that λ1 > λ2 > 0 and that the generator sequence is non-increasing, i.e.

s(1) ≥ · · · ≥ s(k) ≥ · · · > 0, k ∈ N.

Then Theorem 3.2 states that S(s) is strongly polynomially tractable if and only if the

geometric mean of the first d elements s(k) is asymptotically strictly smaller than 1/λ1,

provided that λ ∈ `τ for some τ > 0. This holds iff at most finitely many of these
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generators are bounded from below by 1/λ1. Moreover, from Remark 3.5 we know that

we need

lim sup
d→∞

s
1/d
d = lim sup

d→∞

( d∏
k=1

s(k)
)1/d

≤ 1

λ1

in order to obtain weak tractability. Therefore let the generators be given by

s(k) =
1

λ1
(1 + δk), k ∈ N,

with a non-increasing null sequence (δk)k∈N and note that then some elementary calcu-

lations yield

exp

(
c

2

d∑
k=1

δk

)
≤ εinit

d ≤ exp

(
1

2

d∑
k=1

δk

)
, d ∈ N,

where c = ln(1 + δ1)/δ1 ≤ 1. Furthermore this observation shows that εinit
d ∈ Θ(dα) as

d→∞, for some α ≥ 0, implies that

L = lim
d→∞

1

ln d

d∑
k=1

δk ∈ 2α

[
1,

1

c

]
.

Conversely, from the existence of L it follows that for any δ > 0 there is some d0 = d0(δ)

such that

εinit
d ∈ [dα1 , dα2 ] for all d ≥ d0,

where α1 = cL/2− δ and α2 = L/2 + δ. Hence, if L is sufficiently small then the initial

error εinit
d behaves like a polynomial of small degree and thus a quite slow decay of the

sequence (λn)n∈N is enough to derive weak tractability using Theorem 3.7.
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In [NW09] it is shown that the approximation problem defined on C∞([0, 1]d) is in-

tractable. In fact, Novak and Woźniakowski considered the linear space Fd of all real-

valued infinitely differentiable functions f defined on the unit cube [0, 1]d in d dimensions

for which the norm

‖f | Fd‖ = sup
α∈Nd0

‖Dαf | L∞([0, 1]d)‖ (4.1)

of f ∈ Fd is finite. In this case the (uniform) approximation problem is given by the

sequence of solution operators S = (Sd)d∈N,

Sd = idd : F̃d → L∞([0, 1]d), f 7→ idd(f) = f, d ∈ N, (4.2)

defined on the unit ball F̃d = B(Fd) of Fd. The authors studied this problem in the

worst case setting using algorithms from the classes An,cont
d and An,adapt

d as defined in

Section 1.3.

The initial error of this problem is given by εinit
d = ewor(0, d; idd) = 1, the norm of

the embedding Fd ↪→ L∞, since A0,d ≡ 0 is a valid choice of an algorithm which does not

use any information on f ; see Proposition 2.4. This means that the problem is well-scaled

such that there is no difference in studying the absolute or the normalized error criterion.

Now [NW09, Theorem 1] implies that the nth minimal worst case error of L∞-approxi-

mation defined on Fd satisfies

ewor(n, d; idd) = 1 for all n = 0, 1, . . . , 2bd/2c − 1. (4.3)

Therefore, for all d ∈ N and every ε ∈ (0, 1), the information complexity is bounded from
below by

nwor(ε, d; idd) ≥ 2bd/2c.

Hence the problem suffers from the curse of dimensionality; in particular it is intractable.

One possibility of avoiding this exponential dependence on d, i.e. to break the curse, is

to shrink the function space Fd by introducing weights.

In the present chapter we follow this idea. We show that turning to spaces equipped

with product weights can dramatically improve the tractability behavior of certain prob-

lems such as uniform approximation. In Section 4.1 we formally introduce the concept of

weighted spaces by considering the examples of weighted Banach spaces of smooth func-

tions and of weighted reproducing kernel Hilbert spaces. Upper error bounds for uniform

approximation in the latter class of spaces are then studied in Section 4.2. Afterwards, in

Section 4.3, we show how to use those bounds for the L∞-approximation problem defined

on scales of smooth functions. Moreover we prove corresponding lower bounds on the

[56]
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information complexity which enable us to give necessary and sufficient conditions for

several kinds of tractability in terms of the used weights. Most of the results stated in

this chapter are published in [Wei12b].

4.1. The concept of weighted spaces. The idea to introduce weights directly into

the norm of the function space appeared for the first time in a paper of Sloan and

Woźniakowski in 1998; see [SW98]. They studied the integration problem defined over

some Sobolev Hilbert space, equipped with so-called product weights, to explain the over-

whelming success of QMC integration rules. Thenceforth weighted problems attracted a

lot of attention.

For example it turned out that tractability of approximation of linear compact oper-

ators between Hilbert spaces can be fully characterized in terms of the weights and the

singular values of the operators if we use information operations from the class Λall. The

proof of this kind of assertions is once again based on the singular value decomposition;

see Section 2.3. One such result is given in Section 4.4 below.

But first let us illustrate the concept of weighted spaces by modifying the space Fd
we introduced before.

4.1.1. Weighted Banach spaces of smooth functions. A closer look at the norm

given in (4.1) shows that for f ∈ B(Fd) we have

‖Dαf | L∞([0, 1]d)‖ ≤ 1 for all α ∈ Nd0. (4.4)

Hence every derivative is equally important. In order to shrink the space, for each α ∈ Nd0
we replace the right-hand side of inequality (4.4) by a non-negative weight γα. For α with

|α| = 1 this means that we control the importance of every single variable. So, the norm

in the weighted space F γd is now given by

‖f | F γd ‖ = sup
α∈N0

1

γα
‖Dαf | L∞([0, 1]d)‖, (4.5)

where we demand Dαf to be equal to zero if γα = 0. It is clear from the construction

that we indeed shrink the space if all γα are chosen strictly less than one.

Since this approach is quite general we restrict ourselves to so-called product weights

(with uniformly bounded generators) in what follows. Thus we assume that for every

d ∈ N there exists an ordered and uniformly bounded sequence

Cγ ≥ γd,1 ≥ · · · ≥ γd,d ≥ 0.

Then for d ∈ N the product weight sequence γ = (γα)α∈Nd0
is given by

γα =

d∏
j=1

(γd,j)
αj , α ∈ Nd0. (4.6)

Note that the influence of xj on f is now controlled by the so-called generator weight γd,j .

Since γd,j = 0 for some j ∈ {1, . . . , d} implies that f does not depend on xj , . . . , xd we

assume that γd,d > 0 for the rest of this chapter. Moreover observe that the ordering of

γd,j does not restrict generality. Later on we will see that tractability of our problem will

only depend on summability properties of the generator weights.
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Among other things, we show in Section 4.3.3 that for the L∞-approximation problem

defined on the Banach spaces F γd with the norm given above and generator weights

γd,j ≡ γ(j) ∈ Θ
(
j−β

)
we have

• intractability for β = 0,

• weak tractability but no polynomial tractability for 0 < β < 1,

• strong polynomial tractability for 1 < β.

Furthermore, we prove that for β = 1 the problem is not strongly polynomially tractable.

4.1.2. Weighted Hilbert spaces and weighted RKHS. Let us briefly discuss the

idea of weighted norms in the case of Hilbert (function) spaces, before we turn to weighted

RKHSs. Our approach is based on a generalization of the so-called ANOVA (18) de-

composition of d-variate functions f , where d is an arbitrarily large integer. For the

ease of presentation we follow the lines of [NW08, Section 5.3.1]. Thus, we focus our

attention on Hilbert function spaces constructed from tensor products and equipped

with some assumptions that can be significantly relaxed. For further information on

more general settings the interested reader is referred to [KSWW10b] and the references

therein.

Given a d-fold tensor product space Hd = H1 ⊗ · · · ⊗ H1, d ∈ N, as well as an

orthonormal basis {ei | i ∈ N} of the underlying univariate Hilbert space (19) H1 that

contains the constant function e1 ≡ 1, it is easy to see that every f ∈ Hd can be

represented as
f =

∑
u⊆{1,...,d}

fu.

In this decomposition the (formally d-variate) functions fu solely depend on the vari-

ables xj with index j ∈ u. The main advantage of this kind of representation is that

for fixed f the collection of all fu, u ⊆ {1, . . . , d}, can be taken mutually orthogonal

with respect to the inner product 〈·, ·〉Hd in Hd. Therefore the norm of f ∈ Hd can be

expressed by

‖f | Hd‖2 =
∑

u⊆{1,...,d}

‖fu | Hd‖2 =
∑

u⊆{1,...,d}

‖fu,1 | H|u|‖2,

where fu,1 equals fu interpreted as an element of the |u|-fold tensor product space H|u|
of the closed subspace

H ′1 =
{
h ∈ H1 | 〈h, e1〉H1

= 0
}
⊂ H1

with itself. That is, in the unweighted situation the contribution of each fu to the norm

of f ∈ Hd is the same.

Now suppose that we have some additional a priori knowledge about the importance of

some (groups of) variables in dimension d. This can be modeled by assigning positive (20)

(18) analysis of variance.
(19) We assume H1 to be separable and infinite-dimensional in order to keep the notation as

short as possible.
(20) Also zero weights are possible but for reasons of simplification we do not discuss this

more complicated situation in the present brief introduction to weighted Hilbert spaces.
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weights γd,u to each of the 2d subsets u of {1, . . . , d}. We denote the collection of these

weights by γ(d) = {γd,u | u ⊆ {1, . . . , d}}. Then it can be verified that

〈f, g〉γ(d) =
∑

u⊆{1,...,d}

1

γd,u
〈fu, gu〉Hd =

∑
u⊆{1,...,d}

1

γd,u
〈fu,1, gu,1〉H|u| (4.7)

defines an inner product on the tensor product space Hd which implies an equivalent norm

depending on γ(d). The Hilbert space Hd furnished with this new inner product will be

denoted by H
γ(d)
d . At this point we need to stress the fact that for general weights γ(d)

these spaces are no longer tensor product spaces, although their construction is based on

Hd = H1⊗· · ·⊗H1 and H|u|, respectively. To overcome this problem we restrict ourselves

to the case of product weights in the following. Thus we assume

γd,u =
∏
k∈u

γd,k (4.8)

for some positive γd,k, k = 1, . . . , d, and every u ⊆ {1, . . . , d}. Then it can be checked

that indeed H
γ(d)
d is again a tensor product space. For a study of other types of weights

such as finite-order, finite-diameter, order-dependent or the recently developed POD (21)

weights we refer to Novak and Woźniakowski [NW08, Section 5.3.2] and to Kuo, Schwab

and Sloan [KSS11].

In the last decade it turned out that weighted norms provide a powerful tool to van-

quish the curse of dimensionality that we are often faced with. Since the H
γ(d)
d ’s are

still Hilbert spaces the complexity analysis of the weighted problems Sγ(d) = (S
γ(d)
d :

B(H
γ(d)
d )→ Gd)d∈N is again based on the singular value decomposition presented in Sec-

tion 2.3.1; at least in the cases where the target spaces Gd are also Hilbert spaces. Fortu-

nately, the introduced weights enter the spectrum of the operator W
γ(d)
d = (S

γ(d)
d )†S

γ(d)
d

in a straightforward way. Therefore in many cases tractability properties of S can be fully

characterized in terms of the singular values and the introduced weights.

For our purposes weighted Hilbert spaces that possess a reproducing kernel are of par-

ticular interest. Typical examples of such weighted RKHSs are the following unanchored

Sobolev spaces endowed with product weights which will play an important role in our

further argumentation; see also Sloan and Woźniakowski [SW02]. Instead of applying the

presented approach which is based on decompositions we use the common procedure and

define them directly.

Example 4.1 (Unanchored Sobolev spaces Hγd). As usual we start with the definition for

d = 1 and γ > 0. Then the space Hγ1 is nothing but the Sobolev space of all absolutely

continuous real-valued functions f defined on the unit interval [0, 1] whose first deriva-

tive (22) f ′ belongs to the space L2([0, 1]). The difference from the classical Sobolev space

is the inner product, which here depends on the parameter γ:

〈f, g〉Hγ1 = 〈f, g〉L2([0,1]) + γ−1 〈f ′, g′〉L2([0,1])

=

∫ 1

0

f(x) g(x) dλ1(x) + γ−1

∫ 1

0

f ′(x) g′(x) dλ1(x), f, g ∈ Hγ1 . (4.9)

(21) product and order-dependent.
(22) In the weak or distributional sense.
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For the sake of completeness we define the space H0
1 as the limit of Hγ1 for γ → 0.

Consequently, the derivatives of f ∈ H0
1 need to vanish λ1-almost everywhere on [0, 1],

which implies that the space H0
1 only consists of constant functions. This coincides with

the common convention 0/0 = 0.

Note that the univariate space Hγ1 algebraically coincides with its anchored analogue

H̃γ1 where the term 〈f, g〉L2([0,1]) in (4.9) is replaced by f(a)g(a) for some anchor point

a ∈ [0, 1]. For details we refer to [SW02] and [Wei12b]. Finally we mention that for positive

parameters γ all these definitions imply equivalent norms on the classical Sobolev space

W 1
2 ([0, 1]).

Once more the d-variate spaces Hγd for d > 1 are defined by a tensor product con-

struction similar to that in Section 2.4.1. We set Hγd =
⊗d

k=1H
γd,k
1 , where now γ denotes

a (subset of a) product weight sequence (γα)α∈{0,1}d induced by some generator weights

γd,k, k = 1, . . . , d; see (4.6). Remember that at the beginning of this chapter we assumed

γd,d > 0 for all d ∈ N. That is, we avoid taking the trivial spaces H0
1 as factors in the

definition of Hγd .

How does the inner product of Hγd look like? Following the lines of Section 2.4.1 it is

uniquely determined by the coordinatewise inner products of the factors of simple tensors

f =
⊗d

k=1 fk and g =
⊗d

k=1 gk, where fk, gk ∈ H
γd,k
1 for k = 1, . . . , d. Consequently,

〈f, g〉Hγd =

d∏
k=1

〈fk, gk〉Hγd,k1
=

d∏
k=1

(
〈fk, gk〉L2([0,1]) +

1

γd,k
〈f ′k, g′k〉L2([0,1])

)
=

∑
u⊆{1,...,d}

∏
k∈u

1

γd,k

∏
k∈u

〈f ′k, g′k〉L2([0,1])

∏
j∈{1,...,d}\u

〈fj , gj〉L2([0,1])

=
∑

u⊆{1,...,d}

∏
k∈u

1

γd,k

∫
[0,1]d

∏
k∈u

f ′k(xk) g′k(xk)
∏

j∈{1,...,d}\u

fj(xj) gj(xj) dλd(x)

=
∑

u⊆{1,...,d}

1

γd,u

∫
[0,1]d

∂|u|f

∂xu
(x)

∂|u|g

∂xu
(x) dλd(x),

where we used (4.8) and the shorthand notation ∂|u|/∂xu for
∏
k∈u ∂/∂xk. Note that

this representation resembles (4.7) from the general approach to weighted Hilbert spaces

introduced at the beginning of this subsection. For our purposes it is more convenient to

rewrite the subsets u ⊆ {1, . . . , d} in terms of multi-indices α = (α1, . . . , αd) ∈ {0, 1}d.
In detail, we set αk = 1 if k ∈ u and αk = 0 otherwise. Then we can express the norm of

any f ∈ Hγd by

‖f | Hγd‖
2 =

∑
α∈{0,1}d

1

γα

∫
[0,1]d

|Dαf(x)|2 dλd(x) (4.10)

since then γu = γα. The inner products of the multivariate anchored spaces, H̃γd , can be

found by a similar reasoning; see [Wei12b, p. 67] for the final result.

It is known (cf. Micchelli and Wahba [MW81]) that the univariate spaces Hγ1 are

reproducing kernel Hilbert spaces for any γ > 0. Consequently, this property is transferred
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to the multivariate tensor product space. To stress this fact we write H(Kγ
d ) for Hγd in

what follows. Equation (5) in [WW09] now states that the reproducing kernel

Kγ
d : [0, 1]d × [0, 1]d → R

in dimension d ≥ 1 is given by (23)

Kγ
d (x,y) =

d∏
k=1

√
γd,k

sinh(
√
γd,k)

cosh(
√
γd,k (1−max {xk, yk})) cosh(

√
γd,k min {xk, yk}),

x,y ∈ [0, 1]d. For d = 1 this kernel formula follows from Thomas–Agnan [Tho96, Corol-

lary 2] whereas the higher-dimensional generalization for product weights γ results from

the tensor product structure; see (2.20) in Section 2.5. In particular we note that Kγ
d is

continuous (and thus also bounded) along its diagonal

{(x,y) ∈ [0, 1]2d | x = y}.

Moreover, from [WW09, Lemma 4.1] we know that for γ > 0 the set

E1(γ) = {e1,γ,i : [0, 1]→ R | i ∈ N}

with e1,γ,1 ≡ 1 and

e1,γ,i(x) = cos(π(i− 1)x)

√
2γ

γ + π2(i− 1)2
, x ∈ [0, 1], i ≥ 2,

is an orthonormal basis in the univariate space H(Kγ
1 ). Applying the arguments from

Section 2.4.1 this leads to an ONB Ed(γ) of H(Kγ
d ) =

⊗d
k=1H(K

γd,k
1 ) that consists of

the tensor product functions

ẽd,γ,m =

d⊗
k=1

e1,γd,k,mk , m = (m1, . . . ,md) ∈ Nd. (4.11)

For a direct proof of this result we refer to [NW08, Appendix A.2.1] (24) and to [WW09,

Lemma 4.2]. Actually, these proofs show a little more, namely that the functions ẽd,γ,m
together with

λ̃d,γ,m =

d∏
k=1

λ1,γd,k,mk =

d∏
k=1

γd,k
γd,k + π2(mk − 1)2

, m ∈ Nd, (4.12)

describe the full set of eigenpairs {(λ̃d,γ,m, ẽd,γ,m) |m ∈ Nd} of the operator W γ
d =

(Sγd )
†
Sγd where Sγd : Hγd ↪→ L2([0, 1]d) denotes the solution operator of the L2-approxi-

mation problem on Hγd = H(Kγ
d ).

4.2. Uniform approximation in reproducing kernel Hilbert spaces. The main re-

sult of this section is based on a paper of Kuo, Wasilkowski and Woźniakowski [KWW08].

In contrast to the presentation given in [Wei12b] we decided to apply this result to the

case of unanchored Sobolev space introduced in Section 4.1.2 instead of the anchored

analogue studied in [KWW08]. This opens up the opportunity to explain the underlying

(23) Here sinh and cosh denote the hyperbolic sine and cosine functions, respectively.
(24) Note the missing factor 1/2 in [NW08, p. 351, line 5].
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ideas without literally repeating the proof given in [KWW08] while obtaining a result

which is (according to our knowledge) not published elsewhere so far.

We start with an upper error bound which remains valid for any reproducing kernel

Hilbert space H(Kd) of real-valued functions f on [0, 1]d with

ess sup
x∈[0,1]d

Kd(x,x) <∞. (4.13)

This condition guarantees that H(Kd) is continuously embedded into L∞([0, 1]d) since

the reproducing property (2.17), together with the Hahn–Banach theorem (cf. [Yos80,

IV.6, Cor.2]), implies that ‖idd |L(H(Kd),L∞([0, 1]d))‖ is given by

sup
f∈B(H(Kd))

‖f | L∞([0, 1]d)‖ = ess sup
x∈[0,1]d

sup
f∈B(H(Kd))

|f(x)|

= ess sup
x∈[0,1]d

sup
f∈B(H(Kd))

| 〈f,Kd(·,x)〉H(Kd) |

= ess sup
x∈[0,1]d

Kd(x,x)1/2.

Now the upper bound reads as follows:

Proposition 4.2. For d ∈ N consider a RKHS H(Kd), where Kd fulfills (4.13), i.e.

H(Kd) ↪→ L∞([0, 1]d). Furthermore, suppose Ξ = {ξj : [0, 1]d → R | j ∈ N} is some

orthonormal basis of H(Kd) and let n ∈ N0. Then the algorithm AΞ
n,d ∈ A

n,lin
d (Λall)

given by

f 7→ AΞ
n,df =

n∑
j=1

〈f, ξj〉H(Kd) ξj(·)

for uniform approximation on H(Kd) fulfills

∆wor
(
AΞ
n,d; idd : B(H(Kd))→ L∞([0, 1]d)

)
≤
∥∥∥ ∞∑
j=n+1

ξj(·)2
∣∣∣ L∞([0, 1]d)

∥∥∥1/2

. (4.14)

Proof. Since Ξ builds an ONB we may represent any f ∈ H(Kd) by its basis expansion,

f =
∑∞
j=1 〈f, ξj〉H(Kd) ξj . Therefore Parseval’s identity implies

∣∣f(x)−AΞ
n,df(x)

∣∣ =
∣∣(f −AΞ

n,df)(x)
∣∣ =

∣∣∣ ∞∑
j=n+1

〈f, ξj〉H(Kd) ξj(x)
∣∣∣

=
∣∣∣〈f, ∞∑

j=n+1

ξj(x) ξj

〉
H(Kd)

∣∣∣,
which can be estimated from above using the Cauchy–Schwarz inequality. Thus∣∣f(x)−AΞ

n,df(x)
∣∣ ≤ ‖f | H(Kd)‖

∥∥∥ ∞∑
j=n+1

ξj(x) ξj

∣∣∣ H(Kd)
∥∥∥

= ‖f | H(Kd)‖
( ∞∑
j=n+1

ξj(x)2
)1/2

(4.15)
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for every f ∈ H(Kd) and all fixed x ∈ [0, 1]d. Taking the (essential) supremum with

respect to x in the d-dimensional unit cube and the supremum over all f ∈ B(H(Kd))

gives the desired result.

We note in passing that we can easily prove more than we stated in the last assertion.

In what follows we only need the upper error bound given above, so that we restrict

ourselves to some brief comments on further results in the next remark.

Remark 4.3. For fixed x ∈ [0, 1]d we see that the function f∗ = C
∑∞
j=n+1 ξj(x) ξj

with C > 0 gives equality in (4.15). Of course, we can choose the constant C such that

‖f∗ | H(Kd)‖ = 1 provided that x is not a common root of ξj for all j > n. Hence, the

upper bound in (4.14) is sharp.

Moreover, [KWW08, Theorem 2] shows that the nth minimal worst case error for

L∞-approximation on H(Kd) is given by

ewor(n, d; idd : B(H(Kd))→ L∞([0, 1]d)) = inf
Ξ={ξj |j∈N}

∥∥∥ ∞∑
j=n+1

ξj(·)2
∣∣∣ L∞([0, 1]d)

∥∥∥1/2

,

where the infimum is taken with respect to all orthonormal bases Ξ ⊂ H(Kd). Thus,

any clever choice of the basis Ξ in Proposition 4.2 leads to algorithms AΞ
n,d with almost

optimal worst case errors.

Next we apply Proposition 4.2 to the weighted unanchored Sobolev spaces Hγd intro-

duced in Section 4.1.2 using the basis Ξ = Ed(γ) given in (4.11). Since the ordering of the

basis functions ξ ∈ Ξ is essential for our application we rearrange them non-increasingly

with respect to their L∞-norm:

‖ξj | L∞([0, 1]d)‖ ≥ ‖ξj+1 | L∞([0, 1]d)‖ for all j ∈ N. (4.16)

We obtain an estimate which resembles the corresponding result for the anchored case

studied in [Wei12b, Proposition 2].

Corollary 4.4. For n ∈ N0 and d ∈ N there exists an algorithm A∗n,d ∈ A
n,lin
d (Λall) for

uniform approximation on Hγd such that for every τ ∈ (1/2, 1),

∆wor(A∗n,d; idd : B(Hγd)→ L∞([0, 1]d)) < aτ exp
(
bτ

d∑
k=1

(γd,k)τ
)
n−(1−τ)/(2τ),

where the constants aτ , bτ > 0 are independent of γ, n, and d.

Proof. To keep the notation as short as possible we abbreviate the L∞-norm in d dimen-

sions, ‖· | L∞([0, 1]d)‖, by ‖ · ‖d within this proof.

Following our plan we fix n ∈ N0, as well as d ∈ N, and take A∗n,d = AΞ
n,d defined in

Proposition 4.2 with Ξ = Ed(γ) as above. From (4.11) we conclude for d = 1 and any

γ > 0 that

‖e2
1,γ,1‖1 = 1 and ‖e2

1,γ,i‖1 =
2γ

γ + π2(i− 1)2
<

2 γ

π2
(i− 1)−2, i ≥ 2.
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Moreover, for every simple tensor f =
⊗d

k=1 fk ∈ H(Kγ
d ) we clearly have

‖f‖d =

d∏
k=1

‖fk‖1 and f(x)2 =

d∏
k=1

fk(xk)2, x ∈ [0, 1]d.

Consequently, for any j ∈ N and all τ ∈ (1/2,∞) the ordering of Ξ given in (4.16) implies

j‖ξ2
j ‖τd ≤

∞∑
m=1

‖ξ2
m‖τd =

∑
m∈Nd

‖ẽ2
d,γ,m‖τd =

d∏
k=1

∞∑
i=1

‖e2
1,γd,k,i

‖τ1

=

d∏
k=1

(
1 +

∞∑
i=2

‖e2
1,γd,k,i

‖τ1
)
<

d∏
k=1

(
1 +

(
2 γd,k
π2

)τ ∞∑
i=2

(i− 1)−2τ

)

=

d∏
k=1

(
1 + cτγ

τ
d,k

)
,

where we set cτ = (2/π2)τ ζ(2τ). Hence, if τ ∈ (1/2, 1) then∥∥∥ ∞∑
j=n+1

ξ2
j

∥∥∥
d
≤

∞∑
j=n+1

‖ξ2
j ‖d <

∞∑
j=n+1

j−1/τ
( d∏
k=1

(
1 + cτγ

τ
d,k

))1/τ

<∞.

Since the first factor is no larger than
∫∞
n
x−1/τ dλ1(x) = (τ/(1 − τ))n−(1−τ)/τ and the

second factor can be bounded by exp((cτ/τ) ·
∑d
k=1(γd,k)τ ) we conclude that∥∥∥ ∞∑

j=n+1

ξj(·)2
∣∣∣ L∞([0, 1]d)

∥∥∥1/2

< aτ exp
(
bτ

d∑
k=1

(γd,k)τ
)
n−(1−τ)/(2τ)

with aτ =
√
τ/(1− τ) and bτ = cτ/(2τ) = (2/π2)τ ζ(2τ)/(2τ). Now the claim follows

from (4.14) in Proposition 4.2.

4.3. Uniform approximation in Banach spaces of smooth functions. Our de-

rivation of necessary and sufficient conditions for various kinds of tractability for the

L∞-approximation problem defined on the weighted spaces F γd introduced in Section 4.1.1

is based on simple embedding arguments. To present them, we consider a whole scale of

Banach spaces Fγd (of which F γd is a special case). Then we first study lower bounds on

the nth minimal error on a space Pγd ↪→ Fγd which consists of d-variate polynomials of

low degree. Afterwards, in Section 4.3.2, we use the results for Hγd ←↩ F
γ
d from Section 4.2

to deduce corresponding upper bounds. Finally we discuss a couple of concrete examples

in Section 4.3.3.

4.3.1. Lower bounds for spaces of low-degree polynomials. Following the lines

of [Wei12b, Section 4] we use Proposition 2.2 to obtain a lower bound for the L∞-

approximation error for the space

Pγd = span
{
pi : [0, 1]d → R, pi(x) = xi =

d∏
j=1

(xj)
ij
∣∣∣ i = (i1, . . . , id) ∈ {0, 1}d

}



4.3. Uniform approximation in Banach spaces of smooth functions 65

of all real-valued d-variate polynomials of degree at most one in each coordinate direction,

defined on the unit cube [0, 1]d. We equip this linear space with the weighted norm

‖f | Pγd ‖ = max
α∈{0,1}d

1

γα
‖Dαf | L∞([0, 1]d)‖, f ∈ Pγd , (4.17)

similar to (4.5), where γ is a product weight sequence as described in (4.6), and study

the worst case setting.

Theorem 4.5. For d ∈ N and n ∈ N0 assume An,d ∈ An,cont
d ∪An,adapt

d to be an arbitrary

algorithm for the uniform approximation problem defined on Pγd . Then

∆wor(An,d; idd : Br(Pγd )→ L∞([0, 1]d)) ≥ r for all r ≥ 0

provided that n < 2s, where s = s(γ, d) ∈ {0, 1, . . . , d} is some integer such that

s >
1

2 + Cγ

( d∑
j=1

γd,j − 2
)
. (4.18)

Proof. The proof of this lower error bound consists of several steps. First we fix d ∈ N
and construct a partition of the set of coordinates {1, . . . , d} into s+1 parts which we will

need later and with s = s(γ, d) satisfying (4.18). In a second step we define a special linear

subspace V ⊆ Pγd with dimV = 2s. Step 3 then shows that V satisfies the assumptions

of Proposition 2.2. The proof is completed in Step 4.

Step 1. For k ∈ {0, . . . , d} let us define inductively m0 = 0 and

mk = inf
{
t ∈ N

∣∣∣ mk−1 < t ≤ d, with 2 ≤
t∑

j=mk−1+1

γd,j

}
with the usual convention inf ∅ =∞. Note that the infimum coincides with the minimum

in the finite case, since then mk ∈ N. Moreover we set

s = max {k ∈ {0, . . . , d} | mk <∞} .

We let Ik = {mk−1 + 1,mk−1 + 2, . . . ,mk} for k = 1, . . . , s. This gives a unique disjoint

partition of the set

{1, . . . , d} =
( s⋃
k=1

Ik

)
∪ {ms + 1, . . . , d},

and mk denotes the last element of the block Ik. For all k = 1, . . . , s we conclude that

2 ≤
∑
j∈Ik

γd,j < 2 + γd,mk ≤ 2 + Cγ ,

where Cγ is the uniform upper bound for γd,j ; see Section 4.1.1. Finally, summation of

those inequalities gives

d∑
j=1

γd,j <

s∑
k=1

∑
j∈Ik

γd,j + 2 < (2 + Cγ)s+ 2,

and (4.18) follows immediately.
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If s = 0 then we can stop at this point since the initial error is 1 as the norm of the

embedding Pγd ↪→ L∞ (cf. Proposition 2.4) and the remaining assertion is trivial. Hence,

from now on we can assume that s > 0 and thus ms ≥ 1.

Step 2. To apply Proposition 2.2 we have to construct a linear subspace V of F = Pγd
such that condition (2.1) holds for the target space G = L∞([0, 1]d), the embedding

operator S = idd, and a = 1. Subsequently, we restrict ourselves to the subset

F̂ = {f ∈ F | f depends only on x1, . . . , xms}

of F , since we can interpret F̂ as the space Pγms by a simple isometric isomorphism.

We are ready to construct a suitable space V using the partition from Step 1. We

define V as the span of all functions gi : [0, 1]ms → R, i = (i1, . . . , is) ∈ {0, 1}s, of the

form

gi(x) =

s∏
k=1

(∑
j∈Ik

γd,jxj

)ik
, x ∈ X = [0, 1]ms .

Clearly, V is a linear subspace of Pγms and with the interpretation above it is also a linear

subspace of F . Moreover it is easy to see that we have by construction

‖g | F‖ = ‖g | Pγms‖ and ‖g | L∞(X)‖ = ‖g | L∞([0, 1]d)‖ for g ∈ V.

Finally we note that dimV = #{0, 1}s = 2s. It remains to show that this subspace is the

right choice to prove the claim using Proposition 2.2.

Step 3. The proof of condition (2.1) needed, i.e.,

‖g | Pγms‖ ≤ ‖g | L∞(X)‖ for all g ∈ V,

is a little bit technical. By the special structure of the functions g ∈ V , the left-hand

side reduces to max{γ−1
α ‖Dαg | L∞(X)‖ | α ∈ M}, where the maximum is taken over

all multi-indices α in the set

M =
{
α ∈ {0, 1}ms

∣∣∣ ∑
j∈Ik

αj ≤ 1 for all k = 1, . . . , s
}
.

This is simply because for α /∈ M we have Dαg ≡ 0, and then the inequality is trivial.

To simplify the notation let us define

T : {0, 1}ms → Ns0, α 7→ T (α) = σ = (σ1, . . . , σs),

where

σk =
∑
j∈Ik

αj for k = 1, . . . , s.

Note that T (M) = {0, 1}s. Moreover, for every g =
∑
i∈{0,1}s ci gi(·) ∈ V we define a

function

hg : Z =
s×

k=1

[
0,
∑
j∈Ik

γd,j

]
→ R, z 7→ hg(z) =

∑
i∈{0,1}s

ci

s∏
k=1

zikk =
∑

i∈{0,1}s
ci z

i.

Hence, hg(z) = g(x) under the transformation x 7→ z such that

zk =
∑
j∈Ik

γd,jxj for every k = 1, . . . , s and every x ∈ X.
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The span, W , of all functions h : Z → R with this structure is a linear space, too.

Furthermore, elementary calculations yield

(Dαx g) (x) =
(ms∏
j=1

(γd,j)
αj
)

(DT (α)
z hg)(z) (4.19)

for all g ∈ V , α ∈ M and x ∈ X. Here the x and z in Dαx and D
T (α)
z indicate differen-

tiation with respect to x and z, respectively. Since the mapping x 7→ z is surjective we

obtain ‖Dαg | L∞(X)‖ = γα‖DT (α)hg | L∞(Z)‖ by the form of γ given in (4.6). Thus,

max
α∈M

1

γα
‖Dαg | L∞(X)‖ = max

σ∈{0,1}s
‖Dσhg | L∞(Z)‖.

Observe that (4.19) with α = 0 yields in particular ‖g | L∞(X)‖ = ‖hg | L∞(Z)‖.
Therefore the claim reduces to

max
σ∈{0,1}s

‖Dσhg | L∞(Z)‖ ≤ ‖hg | L∞(Z)‖ for every g ∈ V.

We show this estimate for every h ∈W , i.e.,

‖Dσh | L∞(Z)‖ ≤ ‖h | L∞(Z)‖ for all σ ∈ {0, 1}s. (4.20)

We start with the special case of one derivative. That is, we first consider σ = ek for

a certain k ∈ {1, . . . , s}. Since h is affine in each coordinate we can represent it as

h(z) = a(z(k))zk + b(z(k))

with functions a and b which only depend on z(k) = (z1, . . . , zk−1, zk+1, . . . , zs). Hence

we have (Dekh)(z) = a(z(k)) and we need to show that

|a(z(k))| ≤ max
{
|b(z(k))|,

∣∣∣a(z(k))
∑
j∈Ik

γd,j + b(z(k))
∣∣∣}. (4.21)

Obviously this is true for every z ∈ Z with a(z(k)) = 0. For a(z(k)) 6= 0 we can divide by∣∣a(z(k))
∣∣ to get

1 ≤ max
{
|t| ,
∣∣∣∑
j∈Ik

γd,j − t
∣∣∣}

if we set t = −b(z(k))/a(z(k)). The last maximum is minimal if both of its entries coincide.

This is for t = 1
2

∑
j∈Ik γd,j . Consequently, we need to ensure that

2 ≤
∑
j∈Ik

γd,j

to obtain (4.21) for all admissible z ∈ Z. But this is true for every k ∈ {1, . . . , s} by

definition of the sets Ik in Step 1. Thus we have shown (4.20) for the special case σ = ek
for all k ∈ {1, . . . , s}.

Inequality (4.20) also holds true for every σ ∈ {0, 1}s by an easy inductive argu-

ment on the cardinality of |σ|. Indeed, if |σ| ≥ 2 then σ = σ′ + ek with |σ′| =

|σ| − 1. We now need to estimate ‖Dσ′+ekh | L∞(Z)‖. Since (Dekh)(z) = a(z(k)) has

the same structure as the function h itself, we see that ‖Dσ′+ekh | L∞(Z)‖ equals

‖Dσ′a(z(k)) | L∞(Z)‖ and the proof of (4.20) is then completed by the inductive step.
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Step 4. Collecting the previous equalities and estimates we obtain

‖g | Pγd ‖ = ‖g | Pγms‖ = max
α∈{0,1}ms
T (α)∈{0,1}s

1

γα
‖Dαg | L∞(X)‖ = max

σ∈{0,1}s
‖Dσhg | L∞(Z)‖

≤ ‖hg | L∞(Z)‖ = ‖g | L∞(X)‖ = ‖g | L∞([0, 1]d)‖

for every g ∈ V , where V is a linear subspace of F = Pγd with dimV = 2s. Therefore

Proposition 2.2 with a = 1 yields that for n < dimV the worst case error

∆wor(An,d; idd : Br(Pγd )→ L∞([0, 1]d))

of any algorithm An,d from the class An,cont
d ∪An,adapt

d is lower bounded by r, the radius

of the centered ball Br(Pγd ).

4.3.2. Complexity results via embeddings. Keeping in mind the assertions shown

in the previous sections, we are ready to give conditions for tractability of the uniform

approximation problem

App = (Appd)d∈N, Appd : B(Fγd )→ L∞([0, 1]d), Appd(f) = idd(f) = f.

We suppose that (Fγd )d∈N is a sequence of Banach spaces of real-valued functions f defined

on the unit cube [0, 1]d. We further assume that this sequence depends on product weights

γ = (γα)α∈Nd0 and fulfills one of the following simple assumptions:

(A4.1) Pγd ↪→ F
γ
d with norm

C1,d ≤ cdq1 for all d ∈ N

and some absolute constants c, q1 ≥ 0,

(A4.2) Fγd ↪→ H
γ
d with norm

C2,d ≤ a exp
(
b

d∑
j=1

(γd,j)
t
)

for all d ∈ N (4.22)

and some absolute constants a > 0, b ≥ 0, as well as a parameter t ∈ (0, 1]

independent of d and γ.

Here the spaces Pγd and Hγd = H(Kγ
d ) are defined as in Sections 4.1.2 and 4.3.1, respec-

tively.

To simplify the notation we use the commonly known definitions of the so-called

sum exponents (25) for the product weight sequence γ = (γα)α∈Nd0 , d ∈ N, induced by

uniformly bounded generator weights 0 < γd,j ≤ Cγ , j = 1, . . . , d; see (4.6). We set

p(γ) = inf
{
κ ≥ 0

∣∣∣ Pκ(γ) = lim sup
d→∞

d∑
j=1

(γd,j)
κ <∞

}
,

q(γ) = inf

{
κ ≥ 0

∣∣∣∣ Qκ(γ) = lim sup
d→∞

∑d
j=1(γd,j)

κ

ln(d+ 1)
<∞

}
,

with the usual convention that inf ∅ =∞.

(25) Note that some authors use the name decay for 1/p(·).
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The following necessary conditions for (strong) polynomial tractability slightly gen-

eralize Theorem 2 of [Wei12b].

Proposition 4.6 (Necessary conditions). Assume that (A4.1) holds true for some non-

negative q1. Consider L∞-approximation over (Fγd )d∈N in the worst case setting with

respect to the class of algorithms An,cont
d ∪ An,adapt

d and the absolute error criterion.

Then

nwor(ε, d; Appd) >
1

2
· 2∧

(
1

2 + Cγ

d∑
j=1

γd,j

)
(4.23)

for all d ∈ N and every ε ∈ (0, C−1
1,d). Hence

• if the problem App is polynomially tractable then q(γ) ≤ 1;

• if q1 = 0 and the problem is strongly polynomially tractable then p(γ) ≤ 1.

Proof. Let d ∈ N. Due to (A4.1), every algorithm An,d ∈ An,cont
d ∪ An,adapt

d for L∞-

approximation defined on F γ
d also applies to the embedded space Pγd . Furthermore the

embedding constant C1,d implies that the ball Br(Pγd ) of radius r = C−1
1,d in Pγd is com-

pletely contained in the unit ball B(F γ
d ) of F γ

d . Therefore,

∆wor(An,d; Appd : B(F γ
d )→ L∞([0, 1]d)) ≥ ∆wor(An,d|Pγd ; idd : Br(Pγd )→ L∞([0, 1]d)).

From Theorem 4.5 we see that the latter quantity is lower bounded by r = C−1
1,d provided

that n < 2s, where s = s(γ, d) ∈ {0, . . . , d} satisfies (4.18). Since this lower bound holds

for any such An,d it remains valid for the nth minimal error, i.e.

ewor(n, d; Appd) ≥ C−1
1,d for all n < 2s.

Hence we obtain nwor(ε, d; Appd) ≥ 2s for all d ∈ N and every ε ∈ (0, C−1
1,d), which implies

(4.23) using (4.18).

Now suppose the problem App = (Appd)d∈N is polynomially tractable. Then there

are constants C, p > 0 and q2 ≥ 0 such that

nwor(ε, d; Appd) ≤ C ε−p dq2 for all d ∈ N and ε ∈ (0, 1].

For any given d ∈ N we can take, say, ε = ε(d) = 1
2 min{1, C−1

1,d} to conclude

2∧
(

1

2 + Cγ

d∑
j=1

γd,j

)
< C ′ max{1, Cp1,d} d

q2 (4.24)

for some C ′ > 0 independent of d. If we now assume that C1,d ∈ O(dq1) then the

right-hand side of the last inequality belongs to O(dpq1+q2) as d → ∞. Provided that

max {q1, q2} > 0 this is equivalent to the boundedness of
∑d
j=1 γd,j/ln(d+ 1) so that we

arrive at q(γ) ≤ 1, as claimed.

Finally, the case of strong polynomial tractability can be treated similarly by setting

q1 = q2 = 0 in the above bounds. Then we deduce that
∑d
j=1 γd,j is uniformly bounded

in d, which implies p(γ) ≤ 1.

Of course, the conditions q(γ) ≤ 1 and p(γ) ≤ 1 are also necessary for polynomial

and strong polynomial tractability with respect to smaller classes of algorithms such as,

e.g., An,lind (Λall).
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Observe that one of the improvements compared to [Wei12b, Theorem 2] is the pos-

sibility of choosing the uniform upper bound for the generator weights, Cγ , different

from 1. Moreover, now we have weaker conditions on the embedding constant C1,d. For

the application we have in mind we will see that there is still C1,d = 1. But we note in

passing that the conclusions stated for (strong) polynomial tractability are only special

instances of the more general bound (4.24), which we will not investigate further.

Next we assume (A4.2) and show that slightly stronger conditions on the product

weights γ than in Proposition 4.6 are sufficient for polynomial and strong polynomial

tractability, respectively. This is stated in the next assertion which can be found as

Theorem 3 in [Wei12b].

Proposition 4.7 (Sufficient conditions). Suppose that assumption (A4.2) holds true for

some t ∈ (0, 1]. Consider L∞-approximation over (F γ
d )d∈N in the worst case setting with

respect to the class of linear algorithms An,lind (Λall) and the absolute error criterion. Then

• q(γ) < t implies polynomial tractability,

• p(γ) < t implies strong polynomial tractability.

Proof. Due to (A4.2), the restriction of the algorithm A∗n,d in Corollary 4.4 from Hγd
to F γ

d is admissible for L∞-approximation over F γ
d . Furthermore, due to the linearity

of A∗n,d we have

‖f −A∗n,df | L∞([0, 1]d)‖ ≤ ∆wor(A∗n,d; idd : B(Hγd)→ L∞([0, 1]d))‖f | Hγd‖
≤ ∆wor(A∗n,d; idd : B(Hγd)→ L∞([0, 1]d))C2,d‖f | F γ

d ‖

for all f ∈ F γ
d . Therefore we can estimate the nth minimal error by

ewor(n, d; Appd) ≤ ∆wor
(
A∗n,d

∣∣
F γd

; Appd : B(F γ
d )→ L∞([0, 1]d)

)
≤ C2,d∆

wor(A∗n,d; idd : B(Hγd)→ L∞([0, 1]d))

≤ aaτ exp
(
b

d∑
j=1

(γd,j)
t

+ bτ

d∑
j=1

(γd,j)
τ
)
n−(1−τ)/(2τ),

where τ is an arbitrary number from (1/2, 1). Choosing n such that the right-hand side is

not greater than a given ε ∈ (0, 1], we obtain an estimate for the information complexity

with respect to the class of linear algorithms,

nwor(ε, d; Appd) ≤ c1ε−2τ/(1−τ) exp
(
c2

d∑
j=1

(γd,j)
t

+ c3

d∑
j=1

(γd,j)
τ
)
, (4.25)

where the non-negative constants c1, c2, c3 only depend on τ , a and b.

Suppose that q(γ) < t. Then Qκ(γ) is finite for every κ > q(γ). Taking κ = t we

obtain ∑d
j=1 (γd,j)

t

ln(d+ 1)
ln(d+ 1) ≤ (Qt(γ) + δ) ln(d+ 1) = ln(d+ 1)Qt(γ)+δ

for every δ > 0 whenever d is larger than a certain dδ ∈ N. This means that the fac-

tor exp(c2
∑d
j=1(γd,j)

t) in (4.25) is polynomially dependent on d. On the other hand,

we can choose τ ∈ (max {q(γ), 1/2} , 1) such that Qτ (γ) is finite and thus the factor
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exp(c3
∑d
j=1(γd,j)

τ ) in (4.25) is polynomially dependent on d as well. So, for this value

of τ we can rewrite (4.25) as

nwor(ε, d; Appd) ∈ O(ε−2τ/(1−τ)(d+ 1)c4),

with c4, as well as the implied factor in the O-notation, independent of d and ε, which

means that the problem is polynomially tractable, as claimed.

Finally suppose that p(γ) < t. Then the sums
∑d
j=1(γd,j)

t and
∑d
j=1(γd,j)

τ for τ ∈
(max{p(γ), 1/2}, 1) are both uniformly bounded in d. Consequently, (4.25) yields strong

polynomial tractability.

The conditions in Proposition 4.7 are obviously also sufficient if we consider larger

classes of algorithms such as, e.g., An,cont
d ∪An,adapt

d . Moreover note that the proof given
above also provides explicit upper bounds for the exponents of tractability.

In the following remark we briefly discuss the different roles of assumptions (A4.1)

and (A4.2).

Remark 4.8. Assumption (A4.1) is used to find a lower bound on the information com-

plexity for the space F γ
d as long as the space Pγd is continuously embedded in F γ

d with

an embedding constant which grows at most polynomially with the dimension d. Such

an embedding can be shown for several different classes of functions.

In contrast, assumption (A4.2) is used to find an upper bound on the information

complexity for the space F γ
d as long as it is continuously embedded in the unanchored

weighted Sobolev space Hγd = H(Kγ
d ) with an embedding constant depending exponen-

tially on the sum of some power of the generators γd,j of the product weights γ. This

considerably restricts the choice of F γ
d . We need this assumption in order to use the lin-

ear algorithm A∗n,d defined on the space Hγd and the error bound given in Corollary 4.4.

Obviously, we can replace Hγd in (A4.2) by any other space which contains at least Pγd
and for which we know a linear algorithm using n linear functionals whose worst case

error is polynomial in n−1 with an explicit dependence on the product weights γ.

Now we show that assumptions (A4.1) and (A4.2) allow us to characterize weak

tractability and the curse of dimensionality.

Theorem 4.9 (Weak tractability and the curse of dimensionality). Suppose that for a

sequence (F γ
d )d∈N of Banach spaces equipped with product weights γ assumptions (A4.1)

and (A4.2) hold true with some parameter t ∈ (0, 1]. Consider the L∞-approximation

problem App in the worst case setting and with respect to the absolute error criterion.

Then the following statements are equivalent:

(i) The problem is weakly tractable with respect to the class An,lind (Λall).

(ii) The problem is weakly tractable with respect to the class An,cont
d ∪ An,adapt

d .

(iii) There is no curse of dimensionality for the class An,lind (Λall).

(iv) There is no curse of dimensionality for the class An,cont
d ∪ An,adapt

d .

(v) For all κ > 0 we have limd→∞
1
d

∑d
j=1 (γd,j)

κ
= 0.

(vi) There exists κ ∈ (0, t) such that limd→∞
1
d

∑d
j=1 (γd,j)

κ
= 0.
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Proof. We start by showing that (vi) implies (i), i.e.,

lim
ε−1+d→∞

lnnwor(ε, d; Appd)

ε−1 + d
= 0,

where the information complexity is taken with respect to the class An,lind (Λall) of linear

algorithms that use continuous linear functionals. By the arguments used in the proof of

Proposition 4.7 we obtain estimate (4.25) for all ε in (0, 1], as well as for every d ∈ N, and

all τ ∈ (1/2, 1), due to assumption (A4.2). Clearly, for κ ∈ (0, t) as in the hypothesis and

t ∈ (0, 1] as in the embedding condition, we find τ ∈ (1/2, 1) such that κ < min {t, τ}.
So, since γd,j ≤ Cγ , we can estimate

d∑
j=1

(γd,j)
s = Csγ

d∑
j=1

(
γd,j
Cγ

)s
≤ Cs−κγ

d∑
j=1

(γd,j)
κ ≤ C

d∑
j=1

(γd,j)
κ,

where s equals either t or τ , and C = max {1, Cγ}. Therefore the right-hand side of (4.25)

can be estimated from above and thus

lnnwor(ε, d; Appd)

ε−1 + d
≤ ln c1
ε−1 + d

+
2τ

1− τ
ln ε−1

ε−1 + d
+ C max {c2, c3}

∑d
j=1(γd,j)

κ

ε−1 + d
,

which tends to zero when ε−1 + d→∞, as claimed.

Clearly, (i)⇒(ii)⇒(iv) and (i)⇒(iii)⇒(iv). Moreover, the implication from (v) to (vi)

is obvious. Hence, it only remains to show that (iv)⇒(v).

From (A4.1) we have estimate (4.23). Then the absence of the curse of dimensionality

implies

lim
d→∞

1

d

d∑
j=1

γd,j = 0.

Now Jensen’s inequality yields

1

d

d∑
j=1

γd,j ≥
(

1

d

d∑
j=1

(γd,j)
κ

)1/κ

for 0 < κ ≤ 1,

because f(y) = yκ is a concave function for y > 0. This shows

lim
d→∞

1

d

d∑
j=1

(γd,j)
κ

= 0 for all 0 < κ ≤ 1.

Finally, for every κ ≥ 1 we can estimate γd,j ≥ C1−κ
γ (γd,j)

κ
since γd,j ≤ Cγ for j =

1, . . . , d. Therefore limd→∞ d−1
∑d
j=1(γd,j)

κ = 0 also holds true for κ > 1, and the proof

of Theorem 4.9 is complete.

4.3.3. Conclusions and applications. In this last part of Section 4.3 we give some

examples to illustrate the complexity results obtained. To this end, we only have to prove

the corresponding embeddings, i.e. we need to verify assumption (A4.1) and/or (A4.2)

from the beginning of Section 4.3.2.

Example 4.10 (Limiting cases Pγd and Hγd). To begin with, we check the case where

F γ
d = Pγd for every d ∈ N. Then (A4.1) obviously holds with C1,d = 1, i.e. c = 1 and
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q1 = 0. To prove (A4.2), note that the algebraical inclusion F γ
d ⊂ H

γ
d is trivial by the

definition of Hγd = H(Kγ
d ) given in Section 4.1.2. For f ∈ F γ

d = Pγd we calculate

‖f | Hγd‖
2 ≤

∑
α∈{0,1}d

1

γα

∫
[0,1]d

‖Dαf | L∞([0, 1]d)‖2 dλd(x) ≤ ‖f | F γ
d ‖

2
∑

α∈{0,1}d
γα

using (4.10), as well as (4.17). Hence the norm of the embedding F γ
d ↪→ Hγd is bounded

by ( ∑
α∈{0,1}d

γα

)1/2

=
( d∏
j=1

(1 + γd,j)
)1/2

≤ exp

(
1

2

d∑
j=1

γd,j

)
.

So, with a = 1, b = 1/2, and t = 1, assumption (A4.2) is fulfilled as well, and we can

apply the assertions stated in Section 4.3.2 for the spaces F γ
d = Pγd , d ∈ N.

We now turn to the case F γ
d = Hγd . Unfortunately, the above estimate indicates

that (A4.1) may not hold for F γ
d = Hγd with C1,d ∈ O(dq1) without imposing additional

conditions on the product weights γ. Nevertheless, in this case assumption (A4.2) is

trivially true with C2,d = 1, i.e., a = 1, b = 0, and t = 1. Therefore we can apply

Proposition 4.7 for this space. Thus the problem is polynomially tractable if q(γ) < 1,

and we have strong polynomial tractability if p(γ) < 1. It can be shown that these

conditions are also necessary (see Section 4.4).

Next we discuss a more advanced sequence of Banach function spaces.

Example 4.11 (C(1,...,1)). For every d ∈ N consider the space

F γ
d = {f : [0, 1]d → R | f ∈ C(1,...,1)([0, 1]d), where ‖f | F γ

d ‖ <∞}

of functions which are once continuously differentiable in every coordinate direction,

where

‖f | F γ
d ‖ = max

α∈{0,1}d
1

γα
‖Dαf | L∞([0, 1]d)‖.

Since Pγd is a linear subset of F γ
d and, due to (4.17), the norm ‖· | Pγd ‖ is simply the

restriction of ‖· | F γ
d ‖ we have Pγd ↪→ F

γ
d with an embedding factor C1,d = 1 and hence

(A4.1) holds true. For the norm C2,d of the embedding F γ
d ↪→ Hγd , the same estimates hold

exactly as in the previous example and, moreover, the set inclusion is obvious. Therefore

also assumption (A4.2) is fulfilled and we can apply the propositions and theorem of

Section 4.3.2 to the sequence (F γ
d )d∈N.

Our last example F γ
d = F γd , for all d ∈ N, finally shows that even very high smoothness

does not improve the conditions for tractability.

Example 4.12 (C∞). For d ∈ N and product weights γ let

F γ
d = F γd = {f : [0, 1]d → R | f ∈ C∞([0, 1]d) with ‖f | F γd ‖ <∞},

where the norm is given by (4.5). Obviously, Pγd ⊂ C∞, because functions from Pγd are

at most linear in each coordinate. This moreover implies that Dαf ≡ 0 for all α in

Nd0 \ {0, 1}d. Therefore, once again we have

‖f | Pγd ‖ = max
α∈{0,1}d

1

γα
‖Dαf | L∞([0, 1]d)‖ = ‖f | F γ

d ‖ for all f ∈ Pγd .
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Together this yields Pγd ↪→ F γ
d with an embedding constant C1,d = 1 for all d ∈ N. In

addition, also (A4.2) can be verified as in the examples above. So, even infinite smooth-

ness leads to the same conditions for tractability and the curse of dimensionality as

before.

Note that in Example 4.12 we do not need to claim a product structure for the weights

according to multi-indices α ∈ Nd0 \{0, 1}d. Furthermore, the space F γd is a generalization

of the space Fd studied in [NW09]. For γα ≡ 1 we reproduce the intractability result

stated there because then F γd equals Fd for each d ∈ N.

In conclusion we discuss the tractability behavior of uniform approximation defined

on one of the spaces F γ
d above using a special class of product weights γ which are

independent of the dimension d. That is, for the generator weights we claim that

γd,j ≡ γ(j) ∈ Θ(j−β) for some β ≥ 0 (4.26)

and all j and d ∈ N. The polynomial behavior of γ(j) imposed is a typical example in

the theory of product weights. Clearly, p(γ) is finite if and only if β > 0, and if so then

p(γ) = 1/β. For details see [NW08, Section 5.3.4].

If β = 0 then the L∞-approximation problem App = (Appd)d∈N is intractable (more

precisely it suffers from the curse of dimensionality) due to Theorem 4.9(v), since then

d−1
∑d
j=1 γd,j does not tend to 0. For β ∈ (0, 1) an easy computation yields q(γ) > 1. So,

using Proposition 4.6 we conclude polynomial intractability in this case. On the other

hand, we have for all δ and κ with 0 < δ < κ ≤ 1,∑d
j=1 j

−κ

d
=

∑d
j=1 j

−κdκ−(1+δ)

dκ−δ
≤
∑d
j=1 j

−(1+δ)

dκ−δ
→ 0 for d→∞

and if κ > 1 then the leftmost fraction obviously tends to zero, too. Hence condition (vi)

of Theorem 4.9 holds and the problem is weakly tractable for all β > 0.

For β = 1 we use inequality (4.23) from Proposition 4.6 and estimate

d∑
j=1

γd,j ≥ c ln(d+ 1)

for some positive c. Therefore, for all ε ∈ (0, 1) the information complexity n(ε, d; Appd)

is lower bounded polynomially in d ∈ N. This proves that strong polynomial tractability

does not hold for β = 1. Moreover, it is easy to show that in this case the sufficient

condition q(γ) < 1 for polynomial tractability is not fulfilled. So, we do not know whether

polynomial tractability holds or not.

Finally, consider β > 1 in (4.26). Then we easily see that p(γ) = 1/β < 1 = t. Thus

Proposition 4.7 provides strong polynomial tractability in this situation.

In summary, we proved all the assertions claimed at the end of Section 4.1.1.

4.4. Possible extensions and further results. Note that the main result of this

chapter, the lower bound given in Theorem 4.5, can be easily transferred from [0, 1]d to

more general domains Ωd ⊂ Rd. Indeed, the case Ωd = [c1, c2]d, where c1 < c2, can be

immediately obtained using the techniques presented above. It turns out that in this case
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we have to modify estimate (4.18) by a constant which depends only on the length of the

interval [c1, c2]. Consequently, the general tractability behavior does not change.

Another extension of the results obtained is possible if we consider Lp-norms (with

1 ≤ p < ∞) instead of the L∞-norm. In Section 4.4.1 we briefly discuss these norms for

the unweighted case. Then the modifications for the weighted case are obvious and thus

we leave it for the interested reader. In passing we correct a small mistake of [NW09].

Finally, in Section 4.4.2, we show that the algorithm studied in Corollary 4.4 is es-

sentially optimal for the uniform approximation problem on the unanchored weighted

Sobolev space H(Kγ
d ) defined in Example 4.1.

4.4.1. Lp-approximation. As in [Wei12b, Section 7] we follow Novak and Woźniakowski

[NW09] and define the spaces

Fd,p =
{
f ∈ C∞([c1, c2]d)

∣∣∣ ‖f | Fd,p‖ = sup
α∈Nd0

‖Dαf | Lp([c1, c2]d)‖ <∞
}

for 1 ≤ p < ∞ and d ∈ N, where we assume that l = c2 − c1 > 0. In what follows we

want to approximate f ∈ Fd,p in the norm of Lp. That is, we modify (4.2) and consider

the problem Sp = (Spd)d∈N given by

Spd = idpd : B(Fd,p)→ Lp([c1, c2]d), f 7→ idpd(f) = f.

Hence we analyze the nth minimal worst case error

ewor
p (n, d; idpd) = inf

An,d
sup

f∈B(Fd,p)

‖f −An,d(f) | Lp([c1, c2]d)‖,

which now depends on the additional integrability parameter p. Observe that, without

loss of generality, we can restrict ourselves to the case [c1, c2] = [0, l].

In order to derive a lower bound analogue to (4.3) and Theorem 4.5, i.e.,

ewor
p (n, d; idpd) ≥ 1 for n < 2s,

we once again use Proposition 2.2 with F = Fd,p and G = Lp([0, l]
d) (26). The authors of

[NW09] suggest to use the subspace V
(k)
d ⊂ Fd,p defined as

V
(k)
d = span

{
gi : [0, l]d → R, x 7→ gi(x) =

s∏
j=1

( jk∑
m=(j−1)k+1

xm

)ij ∣∣∣ i ∈ {0, 1}s},
where s = bd/kc and k ∈ N is such that kl ≥ 2(p+ 1)1/p. Hence, if l < 2(p+ 1)1/p then

we have to use blocks of variables with size k > 1 in order to guarantee (2.1), that is, to

fulfill the condition

‖g | Fd,p‖ ≤ ‖g | Lp([0, l]d)‖ for all g ∈ V (k)
d . (4.27)

Therefore Novak and Woźniakowski defined k =
⌈
2(p+ 1)1/p/l

⌉
, but this is too small as

the following example shows.

Example 4.13. For d ≥ 4 take l = 1, i.e. [c1, c2]d = [0, 1]d, and p = 1. Then k = 4 should

be a proper choice, but for g∗(x) = (x1 + x2 + x3 + x4) − 2 it can be checked (using a

(26) Note that it is sufficient to restrict ourselves to the case r = 1 since now we do not need
to take care of embedding constants as in the proof of Proposition 4.6.
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computer algebra system) that

‖g∗ | L1([0, 1]d)‖ =
7

15
< 1 =

∥∥∥∥∂g∗∂x1
| L1([0, 1]d)

∥∥∥∥.
This obviously contradicts (4.27).

For an exhaustive proof that a slightly larger choice of k ∈ N suffices to obtain the

desired intractability result we need to show the following technical lemma first. Its proof

is based on some well-known arguments from Banach space geometry.

Lemma 4.14. Let p ∈ [1,∞) and k ∈ N. Then

Ik,p =

∫
[−1/2,1/2]k

∣∣∣ k∑
m=1

zm

∣∣∣p dλk(z) ≥ Cpkp/2 (4.28)

with some Cp ≥ 1/[(2
√

2)p(1 + p)] independent of k.

Proof. For k = 1 we easily calculate I1,p = 1/[2p(1+p)]. Hence, without loss of generality

we can assume k ≥ 2 in what follows.

To abbreviate the notation, let us define

f = fk : Rk → R, z = (z1, . . . , zk) 7→ f(z) =

k∑
m=1

zm, (4.29)

for any fixed k ≥ 2. Moreover, for given vectors z,y ∈ Rk, let 〈z,y〉 denote the inner

product
∑k
m=1 zmym in Rk. In the special case y = ξ = (1/

√
k)(1, . . . ,1) ∈ Sk−1 we have

〈z, ξ〉 = t for a given t ∈ R if and only if f(z) = t
√
k. Furthermore note that every y

in the k-dimensional unit sphere Sk−1 ⊂ Rk uniquely defines a hyperplane y⊥ = {z ∈
Rk | 〈z,y〉 = 0} perpendicular to y which contains zero. Therefore, for y = ξ and every

t ∈ [0,∞), the set

Ht = ξ⊥ + tξ = {z ∈ Rk | 〈z, ξ〉 = t}

describes a parallel shifted hyperplane in Rk with distance t to the origin. Using Fubini’s

theorem, this leads to the following representation:

Ik,p =

∫
[−1/2,1/2]k

|f(z)|p dλk(z) = 2

∫
[−1/2,1/2]k

〈z,ξ〉≥0

f(z)p dλk(z)

= 2kp/2
∫ ∞

0

tp
(∫

[−1/2,1/2]k∩Ht
1 dλk(z)

)
dλ1(t).

Now we see that the inner integral gives the (k − 1)-dimensional volume

v(t) = λk−1([−1/2, 1/2]k ∩ Ht)

of the parallel section of the unit cube with the hyperplanes defined above. By Ball’s

famous theorem we know that v(0) ≤
√

2 independently of k; see, e.g., Chapter 7 in the

monograph of Koldobsky [Kol05]. Moreover taking H0 = ξ⊥ provides a central hyperplane

section of the unit cube. From this observation we conclude that∫ ∞
0

v(t) dλ1(t) =
1

2
λk([−1/2, 1/2]k) =

1

2
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by the symmetry of [−1/2, 1/2]k with respect to H0. In addition, by Brunn’s theorem (cf.

[Kol05, Theorem 2.3]), the function v is non-negative and non-increasing on [0,∞). Thus

v is related to the distribution function of a certain non-negative real-valued random

variable X up to some normalizing factor, i.e. v(t) = v(0)P({X ≥ t}). Using Hölder’s

inequality (27) we obtain E(X1+p) ≥ (EX)1+p and, respectively,

Ik,p = kp/2 · 2
∫ ∞

0

tp v(t) dλ1(t) ≥ kp/2 2

v(0)p (1 + p)

(∫ ∞
0

v(t) dλ1(t)

)1+p

by integration by parts.

In summary we have shown (4.28) and hence the proof is complete.

Now the intractability result mentioned at the beginning of this section reads as

follows:

Proposition 4.15. Let 1 ≤ p <∞ and l > 0. Moreover, choose k ∈ N such that

k ≥ κp,l = d8(p+ 1)2/p/l2e. (4.30)

Then condition (4.27) holds for V
(k)
d ⊂ Fd,p. Therefore the Lp-approximation problem

Sp = (idpd : Fd,p → Lp([0, l]
d))d∈N suffers from the curse of dimensionality since

ewor
p (n, d; idpd) ≥ 1 for all n < 2bd/kc

and every d ∈ N.

Proof. Due to the structure of the functions g from V
(k)
d , it suffices to show that

‖Dαg | Lp([0, l]ks)‖ ≤ ‖g | Lp([0, l]ks)‖ for all g ∈ V (k)
d and every α ∈M(k)

d ,

where the set of multi-indices M(k)
d is defined by

M(k)
d =

{
α = (α1, . . . , αks) ∈ {0, 1}ks

∣∣∣ ∑
m∈Ij

αm ≤ 1 for all j = 1, . . . , s
}

and Ij = {(j − 1)k + 1, . . . , jk}. Observe that M(k)
d depends on d via s = bd/kc. Similar

to the proof of Theorem 4.5, we only need to consider the case α = et ∈ {0, 1}ks with

t ∈ Ij . The rest then follows by induction.

Given t ∈ Ij for some j ∈ {1, . . . , s} we can represent every fixed g ∈ V (k)
d , as well

as its partial derivative Detg, by some functions a, b : [0, l]k(s−1) → R (depending on g

and j) such that

g(x) = a(x̃)

k∑
m=1

ym + b(x̃) and (Detg)(x) = a(x̃), x ∈ [0, l]ks.

Here we split the ks-dimensional vector x = (xI1 , . . . ,xIj−1
,y,xIj+1

, . . . ,xIs) into x̃ =

(xI1 , . . . ,xIj−1
,xIj+1

, . . . ,xIs) ∈ [0, l]k(s−1) and y = (y1, . . . , yk) ∈ [0, l]k, where xIj de-

notes the k-dimensional block of components xm in x with coordinates m ∈ Ij . Using this

(27) See also [Kol05, Lemma 7.5].
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representation we can rewrite the inequality ‖Detg | Lp([0, l]ks)‖ ≤ ‖g | Lp([0, l]ks)‖ as∫
[0,l]k(s−1)

∫
[0,l]k
|a(x̃)|p dλk(y) dλk(s−1)(x̃)

≤
∫

[0,l]k(s−1)

∫
[0,l]k

∣∣∣a(x̃)

k∑
m=1

ym + b(x̃)
∣∣∣p dλk(y) dλk(s−1)(x̃)

so that it is enough to prove a pointwise estimate of the inner integrals for (λk(s−1)-almost

every) fixed x̃ ∈ [0, l]k(s−1) with a = a(x̃) 6= 0. A simple calculation yields∫
[0,l]k

∣∣∣a k∑
m=1

ym + b
∣∣∣p dλk(y) = lp+k

∫
[−1/2,1/2]k

∣∣∣a k∑
m=1

zm + b′
∣∣∣p dλk(z)

for some constant b′ ∈ R that depends on b = b(x̃). Note that the right-hand side of the

last equality is minimized for b′ = 0. Therefore we can estimate the left-hand side from

below by∫
[0,l]k

∣∣∣a k∑
m=1

ym + b
∣∣∣p dλk(y) ≥ |a|p lp+k

∫
[−1/2,1/2]k

∣∣∣ k∑
m=1

zm

∣∣∣p dλk(z)

=

∫
[0,l]k
|a|p dλk(y) lp

∫
[−1/2,1/2]k

∣∣∣ k∑
m=1

zm

∣∣∣p dλk(z).

To complete the proof we are left with showing that our choice of k ≥ κp,l, with κp,l
given in (4.30), implies that∫

[−1/2,1/2]k

∣∣∣ k∑
m=1

zm

∣∣∣p dλk(z) ≥ l−p; (4.31)

but this easily follows from Lemma 4.14 above.

Actually, using other proof methods we can slightly improve the lower bound for Cp
in Lemma 4.14 and thus also κp,l in formula (4.30) of Proposition 4.15. This is the subject

of our final remark in this subsection:

Remark 4.16. Let Y = (Y1, . . . , Yk) denote a random vector of k ∈ N independent

copies of some uniformly [−1/2, 1/2]-distributed random variable Y0. Then Ik,p can be

interpreted as the pth absolute moment E(|fk(Y )|p) of fk(Y ), where fk is again given

by (4.29). In the case of even p = 2N , N ∈ N, this can be calculated exactly using the

multinomial theorem. For k,N ∈ N we obtain

Ik,2N = E(|fk(Y )|2N ) = 2−2N
∑

j=(j1,...,jk)∈Nk0
j1+···+jk=N

(
2N

2j1, . . . , 2jk

) k∏
m=1

1

2jm + 1
,

where we used the independence of the Ym’s and the fact that

E(Y n0 ) =

∫ 1/2

−1/2

yn dλ1(y) =

{
0 if n = 2j + 1,

(2j + 1)−1 · 2−2j if n = 2j,

with j ∈ N0. In particular, we conclude that

Ik,2 =
1

22 · 3
k and Ik,4 =

1

48
k

(
k − 2

5

)
≥ 1

24 · 5
k2.
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Since Ik,p = ‖fk | Lp([−1/2, 1/2]k)‖p we can use the monotonicity of the Lebesgue

spaces in order to estimate Cp for the remaining powers p. For k ∈ N and 1 ≤ q ≤ p <∞
we obtain Ik,p ≥ (Ik,q)

p/q ≥ (Cq)
p/q kp/2, i.e. Cp ≥ (Cq)

p/q, provided that Ik,q ≥ Cq kq/2.

Consequently, we can take

k ≥

{⌈
12/l2

⌉
if 2 ≤ p < 4,⌈

4
√

5/l2
⌉

if 4 ≤ p

to fulfill (4.31) in the proof of Proposition 4.15. This clearly improves the bound k ≥ κp,l
in (4.30).

Nevertheless, we want to stress that also with these improvements the lower bounds

on k are not sharp since we know from [NW09] that in the limit case p = ∞ we can

take k = d2/le. On the other hand, Hoeffding’s inequality implies the existence of some

universal constants C ′p such that Ik,p ≤ C ′p kp/2 for all p ∈ [1,∞) and every k ∈ N. Thus

the estimates on the integrals Ik,p are of the right order in k, so that we need other proof

techniques to obtain a better dependence of k on l = c2 − c1.

4.4.2. Uniform approximation in the weighted Sobolev space. To show that the

linear algorithm A∗n,d studied in Corollary 4.4 is essentially optimal for L∞-approximation

on the unanchored Sobolev space Hγd = H(Kγ
d ) in the worst case setting, we study

(weighted) L2-approximation on a related Banach space Fd in the average case setting

(see Example 2.15 for details). The relation of these two problems is given by the assertion

below which follows from [KWW08, Theorem 1].

Proposition 4.17. For d ∈ N let H(Kd) denote a RKHS induced by a kernel Kd :

[0, 1]d × [0, 1]d → R that satisfies (4.13) (28). Moreover, define the set of non-vanishing

probability density functions % on the unit cube by

Dd =

{
% : [0, 1]d → [0,∞)

∣∣∣∣ ∫
[0,1]d

%(x) dλd(x) = 1 and % > 0 (λd-a.e.)

}
.

Then, for every n ∈ N0 and all d ∈ N,

ewor
(
n, d; idd : B(H(Kd))→ L∞([0, 1]d)

)
≥ sup
%∈Dd

eavg(n, d; id%d : Fd → L%2([0, 1]d)).

Here the nth minimal errors are taken with respect to all algorithms from the class

An,lind (Λall).

In particular, it follows that the (nth minimal) worst case error for L∞-approximation

on the unit ball of the Sobolev space Hγd is lower bounded by the average case error

of unweighted L2-approximation on the corresponding Banach space. That is, we set

Kd = Kγ
d and % = χ[0,1]d ∈ Dd in the following.

In turn we have (strong) polynomial tractability for the uniform approximation prob-

lem with respect to the worst case setting only if the average case L2-approximation

is polynomially tractable, as long as we consider the absolute error criterion. Due to

(28) Note that (4.13) clearly implies that
∫
[0,1]d

Kd(x,x) %(x) dλd(x) is finite for every prob-

ability density function % on [0, 1]d.
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[NW08, Theorem 6.1] we know that the latter holds true if and only if there exist a

positive constant c1, non-negative q1, q2 and τ ∈ (0, 1) such that

c2 = sup
d∈N

1

dq2

( ∞∑
i=dc1 dq1e

(λd,i)
τ
)1/τ

<∞,

where (λd,i)
∞
i=1 denotes the sequence of eigenvalues of the correlation operator Cνd with

respect to a non-increasing ordering. Moreover we have strong polynomial tractability if

and only if this holds with q1 = q2 = 0.

By the observation at the end of Example 2.15 it suffices to consider the eigenvalues

of W γ
d = (Sγd )

†
Sγd : Hγd → H

γ
d , where the operator Sγd describes the embedding Hγd ↪→

L2([0, 1]d). Recall that these eigenvalues are given by{
λ̃d,γ,m =

d∏
k=1

λ1,γd,k,mk =

d∏
k=1

γd,k
γd,k + π2 (mk − 1)2

∣∣∣∣m = (m1, . . . ,md) ∈ Nd
}

(see (4.12) at the end of Example 4.1). Thus we only need to reorder this set appropriately

using a rearrangement ψd : N→ Nd such that

λd,i = λ̃d,γ,ψd(i) ≥ λ̃d,γ,ψd(i+1) for all i ∈ N.

Given d ∈ N, τ ∈ (0, 1), as well as c1 > 0, and q1 ≥ 0 we estimate

∞∑
i=dc1 dq1e

(λd,i)
τ =

∑
m∈Nd

(λ̃d,γ,m)τ −
dc1 dq1e−1∑

i=1

(λd,i)
τ

≥
d∏
k=1

∑
m∈N

(λ1,γd,k,m)τ − (λd,1)τ (dc1 dq1e − 1)

≥
d∏
k=1

(
1 +

∞∑
m=2

(
γd,k

γd,k + π2(m− 1)2

)τ)
− c1 dq1 ,

since λd,1 = λ̃d,γ,(1,...,1) =
∏d
k=1 λd,γd,k,1 = 1. Due to the boundedness of the generator

weights γd,k ≤ Cγ for every k ∈ {1, . . . , d}, we can further estimate the sum by
∞∑
m=2

(
γd,k

γd,k + π2(m− 1)2

)τ
≥ γτd,k

∞∑
i=1

(C ′γ)τ

i2τ
= γτd,k (C ′γ)τ ζ(2τ),

where we set C ′γ = (Cγ + π2)−1. Because ln(1 + y) ≥ y/(1 + y) for all y ≥ 0 we conclude

that for k = 1, . . . , d and some positive C depending on Cγ and τ we have

ln(1 + γτd,k (C ′γ)τ ζ(2τ)) ≥
(C ′γ)τ ζ(2τ)

1 + γτd,k (C ′γ)τ ζ(2τ)
γτd,k ≥ Cγτd,k.

Consequently,
∞∑

i=dc1 dq1e

(λd,i)
τ ≥

d∏
k=1

exp(Cγτd,k)− c1 dq1 = exp
(
C

d∑
k=1

γτd,k

)
− c1 dq1 .

Therefore, polynomial tractability implies q(γ) < 1, and strong polynomial tractabil-

ity is possible only if p(γ) < 1. Here p and q describe the sum exponents of the product

weight sequence γ = (γα)α∈Nd0 , d ∈ N, defined at the beginning of Section 4.3.2.
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Together with Proposition 4.7 this finally proves

Theorem 4.18. Consider the uniform approximation problem defined on the sequence

(Hγd)d∈N of unanchored Sobolev spaces, where the product weight sequence γ is constructed

from a uniformly bounded generator sequence Cγ ≥ γd,1 ≥ · · · ≥ γd,d, d ∈ N. We study

this problem in the worst case setting and with respect to the absolute error criterion.

Then we have

• polynomial tractability if and only if q(γ) < 1, and

• strong polynomial tractability if and only if p(γ) < 1.



5. Problems on Hilbert spaces with (anti)symmetry conditions

In this last chapter we describe an essentially new kind of a priori knowledge which can

help to overcome the curse of dimensionality. As in Section 2.4, we study compact linear

problems S = (Sd)d∈N defined between tensor products of Hilbert spaces but now we re-

strict our attention to problem elements which fulfill certain (anti)symmetry conditions.

After investigating some basic properties of the related subspaces of (anti)symmetric

problem elements in Section 5.1 we construct a linear algorithm that uses finitely many

continuous linear functionals and show an explicit formula for its worst case error in terms

of the eigenvalues λ = (λm)m∈N of the operator W1 = S†1S1. Moreover, in Section 5.2 we

show that this algorithm is optimal with respect to a wide class of algorithms. Next we

clarify the influence of different (anti)symmetry conditions on the complexity, compared

to the case for the classical unrestricted problem studied in Section 2.4.3. In particular, in

Section 5.3 we give necessary and sufficient conditions for (strong) polynomial tractabil-

ity of (anti)symmetric problems. Apart from the absolute error criterion we deal with

normalized errors as well. Finally, in Section 5.4, we discuss several applications. Sec-

tion 5.4.2 in particular indicates how to apply our results to the approximation problem

for wavefunctions. For applications of symmetry conditions to integration problems we

refer to [Wei14].

Most of the results stated in this chapter are already published in [Wei11] and

[Wei12a]. At some points we improve the known results and/or proof techniques slightly.

In particular, the results presented also hold for problems defined on finite-dimensional

or on non-separable source spaces.

5.1. Basic definitions related to (anti)symmetry. The aim of this section is to

introduce the notion of (anti)symmetry in Hilbert spaces. In order to illustrate this con-

cept we mainly deal with function spaces. For this purpose in Section 5.1.1 we start by

defining (anti)symmetry properties for functions which will lead us to orthogonal pro-

jections, mapping the whole space onto its subspace of (anti)symmetric functions. In

Section 5.1.2 it will turn out that these projections applied to a given basis of a tensor

product Hilbert function space lead us to handsome formulas for orthonormal bases of

the subspaces. Finally we generalize our approach and define (anti)symmetry conditions

for arbitrary tensor product Hilbert spaces based on the results deduced for function

spaces. Section 5.1.3 is devoted to this generalization.

5.1.1. Hilbert function spaces. Following Hamaekers [Ham09, Section 2.5] we use

a general approach to (anti)symmetric functions which can also be found in [Wei12a].

[82]
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Let H be a (possibly non-separable) Hilbert space of real-valued multivariate functions f

defined on some domain Ω in Rd, where we assume d ≥ 2 to be fixed. Furthermore, take

an arbitrary non-empty subset of coordinates I ⊆ {1, . . . , d}. For every such subset we

define the set

SI =
{
π : {1, . . . , d} → {1, . . . , d}

∣∣ π bijective and π|{1,...,d}\I = id
}

(5.1)

of all permutations on {1, . . . , d} that leave the complement of I fixed. To abbreviate the

notation we identify π ∈ SI with the corresponding permutation π′ on Rd,

π′ : Rd → Rd, x = (x1, . . . , xd) 7→ π′(x) = (xπ(1), . . . , xπ(d)).

For an appropriate definition of partial (anti)symmetry of functions f ∈ H we need

the following simple assumptions. Given any π ∈ SI we assume that

(A5.1) x ∈ Ω implies π(x) ∈ Ω,

(A5.2) f ∈ H implies f(π(·)) ∈ H, and

(A5.3) there exists cπ ≥ 0 (independent of f) such that ‖f(π(·)) | H‖ ≤ cπ‖f | H‖.

A function f ∈ H is called partially symmetric with respect to I (or I-symmetric for

short) if any permutation π ∈ SI applied to the argument x does not affect the value

of f . Hence,

f(x) = f(π(x)) for all x ∈ Ω and every π ∈ SI . (5.2)

Moreover, we call a function f ∈ H partially antisymmetric with respect to I (or I-anti-

symmetric) if f changes its sign on exchanging the variables xi and xj with each other,

where i, j ∈ I. That is,

f(x) = (−1)|π|f(π(x)) for all x ∈ Ω and every π ∈ SI , (5.3)

where |π| denotes the inversion number of the permutation π. The term (−1)|π| therefore

coincides with the sign, or parity, of π and is equal to the determinant of the associated

permutation matrix. In the case #I = 1 we do not claim any (anti)symmetry, since then

the set SI = {id} is trivial. For I = {1, . . . , d} functions f which satisfy (5.2) or (5.3),

respectively, are called fully (anti)symmetric.

Note that, in particular, formula (5.3) implies that the value f(x) of I-antisymmetric

functions f equals zero if xi = xj with i 6= j and i, j ∈ I. For I-symmetric functions

such an implication does not hold. Therefore the (partial) antisymmetry property is a

somewhat more restrictive condition than the (partial) symmetry property with respect

to the same subset I. As we will see in Section 5.3 this will affect our complexity estimates

as well.

Next we define the so-called symmetrizer SH
I and antisymmetrizer AHI on H with

respect to the subset I by

SH
I : H → H, f 7→ SH

I (f) =
1

#SI

∑
π∈SI

f(π(·)),

AHI : H → H, f 7→ AHI (f) =
1

#SI

∑
π∈SI

(−1)|π|f(π(·)).
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If there is no danger of confusion we use the notation SI and AI instead of SH
I and AHI , re-

spectively. The following lemma collects some basic properties. It generalizes Lemma 10.1

in Zeiser [Zei10].

Lemma 5.1. For ∅ 6= I ⊆ {1, . . . , d} both the mappings PI ∈ {SI ,AI} define bounded lin-

ear operators on the Hilbert space H with P 2
I = PI . Thus, SI and AI provide projections

of H onto the closed linear subspaces

SI(H) = {f ∈ H | f satisfies (5.2)} and AI(H) = {f ∈ H | f satisfies (5.3)} (5.4)

of all partially (anti)symmetric functions with respect to I in H, respectively. If, in ad-

dition,

〈f(π(·)), g(π(·))〉H = 〈f, g〉H for all f, g ∈ H and every π ∈ SI (5.5)

then the operators are self-adjoint and hence the projections are orthogonal. Consequently,

H = SI(H)⊕ (SI(H))⊥ = AI(H)⊕ (AI(H))⊥. (5.6)

Proof. Obviously PI ∈ {SI ,AI} is well-defined due to the assumptions (A5.1) and (A5.2).

Linearity follows directly from the definition and, using (A5.3), we see that the operator

norm of PI is bounded by max {cπ | π ∈ SI}.
To show that the operators are idempotent, i.e. that P 2

I = PI , we first prove that AI(f)

satisfies (5.3) for every f ∈ H. Therefore, we use the representation

(AI(f))(π(·)) =
1

#SI

∑
σ∈SI

(−1)|σ|f(σ(π(·))) =
1

#SI

∑
λ∈SI

(−1)|λ|+|π|f(λ(·))

= (−1)|π|(AI(f))(·)

for every fixed π ∈ SI . Here we imposed λ = σ ◦ π ∈ SI and used the fact that

|λ ◦ π−1| = |λ|+ |π−1| = |λ|+ |π|.

Hence we have shown AI(H) ⊆ {f ∈ H | f satisfies (5.3)}. In a second step, it is easy

to check that for every function g ∈ H which satisfies (5.3) we have AI(g) = g. Thus,

{f ∈ H | f satisfies (5.3)} ⊆ AI(H) and AI is a projector onto AI(H). Since the same

arguments also apply to the symmetrizer SI , this shows (5.4), as well as P 2
I = PI for

PI ∈ {SI ,AI}.
To prove the self-adjointness of PI we need to show that for f and g in H we have

〈PIf, g〉H = 〈f, PIg〉H . To this end, note that (5.5) is equivalent to

〈f(π(·)), g〉H = 〈f, g(σ(·))〉H , f, g ∈ H, π ∈ SI ,

where we set σ = π−1 and used (A5.2). Now the assertion claimed follows from the

bilinearity of the inner product 〈·, ·〉H . Moreover, orthogonality and the decompositions

stated in (5.6) are simple consequences.

We note in passing that (5.5) already implies (A5.3). Furthermore, the notion of

partially (anti)symmetric functions can be easily extended to more than one subset I.

Indeed, consider two non-empty subsets of coordinates I, J ⊂ {1, . . . , d} with I ∩ J = ∅.
Then we call a function f ∈ H multiply partially (anti)symmetric with respect to I and
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J if f satisfies (5.2), or (5.3), respectively, for I and J . Since I and J are disjoint, we

observe that π ◦ σ = σ ◦ π for all π ∈ SI and σ ∈ SJ . Hence the linear projections

PI ∈ {SI ,AI} and PJ ∈ {SJ ,AJ} commute on H. That is, we have PI ◦ PJ = PJ ◦ PI .
Further extensions to more than two disjoint subsets of coordinates are possible. We will

restrict ourselves to the case of at most two coordinate subsets, because in particular

wavefunctions can be modeled as functions which are antisymmetric with respect to I

and J = Ic, where Ic denotes the complement of I in {1, . . . , d}; see, e.g., Section 5.4.2.

5.1.2. Tensor products of Hilbert function spaces. In the previous subsection

the function space H was a somewhat abstract Hilbert space of d-variate real-valued

functions. Indeed, for the definition of (anti)symmetry we do not need to claim any

product structure. On the other hand, it is motivated by applications to consider tensor

product function spaces; see, e.g., Section 3.6 in Yserentant [Yse10]. In detail, it is well-

known that so-called spaces of dominated mixed smoothness, e.g. W
(1,...,1)
2 (R3d), can be

represented as certain tensor products; see Section 1.4.2 in Hansen [Han10].

Anyway, let us take into account such a structure, i.e. let us assume that

H = Hd = H1 ⊗ · · · ⊗H1 (d ≥ 2 times),

where H1 is a suitable Hilbert space of functions f : D → R; see also the constructions

given in Section 2.4.1. There it is stated that we can construct an orthonormal basis Ed
of Hd from a given ONB E1 of H1; see (2.13). Since now we deal with function spaces,

the d-fold simple tensors in Ed are d-variate functions ed,j : Dd → R. More precisely, they

are given by

ed,j(x) =

d∏
l=1

ejl(xl), where x = (x1, . . . , xd) ∈ Dd and j ∈ Id = (I1)d,

provided that E1 = {em : D → R | m ∈ I1} denotes the underlying ONB in H1. To

exploit this representation we start with a simple observation.

Let d ∈ N. Moreover assume j ∈ Id and x ∈ Dd, as well as a non-empty subset I of

{1, . . . , d}, to be arbitrarily fixed. If we define σ = π−1 ∈ SI then

ed,j(π(x)) =

d∏
l=1

ejl(xπ(l)) =

d∏
l=1

ejσ(l)(xl) = ed,σ(j)(x). (5.7)

For simplicity, once again we identified π(j) = π(j1, . . . , jd) with (jπ(1), . . . , jπ(d)) for

j ∈ Id = (I1)d. Since x ∈ Dd was arbitrary and |π| = |π−1| = |σ| we obtain

SIed,j =
1

#SI

∑
σ∈SI

ed,σ(j) and AIed,j =
1

#SI

∑
σ∈SI

(−1)|σ|ed,σ(j) (5.8)

for all j ∈ Id. Besides this, (5.7) can be used to verify that (5.5) in Lemma 5.1 always

holds true for (unweighted) tensor products of Hilbert function spaces.

Note that in general, i.e. for arbitrary j ∈ Id and σ ∈ SI , the tensor products ed,σ(j)

and ed,j do not coincide, because taking the tensor product is not commutative in general.

Therefore SI is not simply the identity on the set of basis functions Ed = {ed,j | j ∈ Id}.
On the other hand, we see that for different j ∈ Id many of the functions SIed,j coincide.

Of course the same holds true for AIed,j , at least up to a factor of −1.
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We will see in the following that for PI ∈ {SI ,AI} a linearly independent subset of all

projections {PIed,j | j ∈ Id} equipped with suitable normalizing constants can be used

as an ONB of the linear subspace PI(Hd) of I-(anti)symmetric functions in Hd. For the

application we have in mind, we need this result only in the case where the underlying

space H1 is separable. Without loss of generality, we can thus assume that (29)

I1 =M1 = {m ∈ N | m < dimH1 + 1}

and consequently Id = Md = (M1)d ⊆ Nd. Clearly, in the most interesting case the

set Id equals Nd.
To formalize the assertion, we need a further definition. For fixed d ≥ 2 and I ⊆

{1, . . . , d}, let us introduce a function

MI = MI,d : Nd → {0, . . . ,#I}#I

which counts how often different indices occur in a given multi-index j ∈ Nd among

the subset I of coordinates, ordered with respect to their rate. To give an example let

d = 7 and I = {1, . . . , 6}. Then MI,7 applied to j = (12, 4, 4, 12, 6, 4, 4) ∈ N7 gives the

(#I = 6)-dimensional vector MI,7(j) = (3, 2, 1, 0, 0, 0), because j contains the number

“4” three times among the coordinates j1, . . . , j6, “12” two times, and so on. Since in this

example there are only three different numbers involved, the fourth to sixth coordinates

of MI,7(j) equal zero. Obviously, MI is invariant under all permutations π ∈ SI of the

argument. Thus,

MI(j) = MI(π(j)) for all j ∈ Nd and π ∈ SI .

In addition, since MI(j) is again a multi-index, we see that |MI(j)| = #I and MI(j)!

are well-defined for every j ∈ Nd. With this tool prepared, we are ready to prove

Lemma 5.2. Assume Ed = {ed,j | j ∈ Md} is a given orthonormal tensor product basis

in the space Hd and let ∅ 6= I = {i1, . . . , i#I} ⊆ {1, . . . , d}. Moreover, for PI ∈ {SI ,AI}
define the functions ξj : Dd → R by

ξj =

√
#SI
MI(j)!

PI(ed,j) for j ∈Md.

Then the set Ξd = {ξk | k ∈ ∇d} is an orthonormal basis of the partially (anti)symmetric

subspace PI(Hd), where ∇d is given by

∇d =

{
{k ∈Md | ki1 ≤ · · · ≤ ki#I} if PI = SI ,

{k ∈Md | ki1 < · · · < ki#I} if PI = AI .
(5.9)

Proof. To abbreviate the notation, we suppress the index Hd on the inner products 〈·, ·〉Hd
in this proof.

(29) Note that also the case of abstract, countable index sets I1 can be reduced to this form
by the application of some simple isomorphism.
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Step 1. We start by proving orthonormality. Therefore let us recall (5.8) and remem-

ber that now Id =Md. For PI = AI and j,k ∈ ∇d easy calculations yield

〈ξj , ξk〉 =
#SI√

MI(j)! ·MI(k)!
〈AI(ed,j),AI(ed,k)〉

=
1

#SI
√
MI(j)! ·MI(k)!

∑
π,σ∈SI

(−1)|π|+|σ|
〈
ed,π(j), ed,σ(k)

〉
.

Of course, up to the factor controlling the sign, the same is true for the case PI = SI .

Now assume that there exists l ∈ {1, . . . , d} such that jl 6= kl. Then the ordering of

j,k ∈ ∇d implies that π(j) 6= σ(k) for all σ, π ∈ SI , since π and σ leave the coordinates

l ∈ Ic fixed. Hence, we conclude that π(j) = σ(k) only if j = k.

At this point we have to distinguish the antisymmetric and the symmetric cases.

For PI = AI the only way to deduce π(j) = σ(k) is to assume j = k and π = σ.

Furthermore we see that in the antisymmetric case we have MI(j)! = 1 for all j ∈ ∇d,
because then all coordinates jl, where l ∈ I, differ. Therefore, in this case the last inner

product coincides with δj,kδπ,σ because of the mutual orthonormality of the elements

from Ed = {ed,j | j ∈Md}. Hence we arrive at

〈ξj , ξk〉 =
1

#SI

∑
π∈SI

(−1)2|π|δj,k = δj,k for all j,k ∈ ∇d,

as claimed.

So, let us consider the case PI = SI and j = k ∈ ∇d, since we already saw that other-

wise 〈ξj , ξk〉 equals zero. Then for fixed σ ∈ SI there are MI(j)! different permutations

π ∈ SI such that π(j) = σ(j). This leads to

〈ξj , ξj〉 =
1

#SI ·MI(j)!

∑
σ∈SI

MI(j)! = 1

and completes the proof of orthonormality.

Step 2. It remains to show that the span of Ξd = {ξk | k ∈ ∇d} is dense in PI(Hd)

for PI ∈ {SI ,AI}. Note that every multi-index j ∈Md can be represented by a uniquely

defined multi-index k ∈ ∇d and exactly MI(k)! different permutations π ∈ SI such that

j = π(k). Assume that f ∈ AI(Hd), i.e. f ∈ Hd satisfies (5.3). Then (5.7) together

with (5.5) yields

〈f, ed,j〉 = (−1)|π|
〈
f, ed,π(j)

〉
for all j ∈Md and π ∈ SI . (5.10)

Now expanding f with respect to the basis functions in Ed ⊂ Hd gives

f =
∑
j∈Md

〈f, ed,j〉 ed,j =
∑
k∈∇d

∑
π∈SI

〈
f, ed,π(k)

〉
ed,π(k)

MI(k)!

=
∑
k∈∇d

1

MI(k)!

∑
π∈SI

(−1)|π| 〈f, ed,k〉 ed,π(k)

=
∑
k∈∇d

√
#SI
MI(k)!

〈f, ed,k〉

√
#SI
MI(k)!

AI(ed,k),
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where we used (5.8) for the last equality. Furthermore, due to the self-adjointness of AI ,

we have 〈f, ed,k〉 = 〈AIf, ed,k〉 = 〈f,AIed,k〉, so that finally f ∈ AI(Hd) possesses the

representation

f =
∑
k∈∇d

〈f, ξk〉 ξk

since ξk =
√

#SI/MI(k)! AI(ed,k) per definition. This proves the assertion for PI = AI .

The remaining case PI = SI can be treated in the same way.

Observe that in the antisymmetric case the definition of ξj for j ∈ ∇d simplifies,

since then MI(j)! = 1 for all j ∈ ∇d. Moreover we see that in this case ∇d is trivial

if d > #M1. Hence we should assume that dimH1 is infinite in order to work with

antisymmetric tensor products for arbitrarily many building blocks. We note in passing

that the square of the normalizing factor, #SI/MI(j)!, coincides with the multinomial

coefficient
(|MI(j)|
MI(j)

)
which is quite natural due to combinatorial issues. Furthermore, in

the special case I = {1, . . . ,#I} we have

PI(Hd) = PI

(⊗
m∈I

H1

)
⊗
(⊗
m/∈I

H1

)
.

That is, we can consider the subspace of I-(anti)symmetric functions f ∈ Hd as the tensor

product of the set of all fully (anti)symmetric #I-variate functions with the (d − #I)-

fold tensor product of H1. If #I = 1, i.e. if we do not claim any (anti)symmetry, then

PI(Hd) = Hd and thus we have∇d =Md, as well as Ξd = Ed. Modifications in connection

with multiple partially (anti)symmetric functions are obvious.

5.1.3. Arbitrary tensor product Hilbert spaces. Up to now we exclusively dealt

with Hilbert function spaces. However, the proofs of Lemmas 5.1 and 5.2 yield that there

are only a few key arguments in connection with (anti)symmetry such that we can cut

out this restriction. We briefly sketch the points which need to be changed.

Starting from the very beginning we have to adapt the definition of I-(anti)symmetry

due to (5.2) and (5.3) in Section 5.1.1. Of course it is sufficient to define this property

at first only for basis elements. Therefore, if Ed = {ed,k | k ∈ (I1)d = Id} denotes a

tensor product ONB of Hd and ∅ 6= I ⊆ {1, . . . , d} is given then we call an element

ed,k =
⊗d

l=1 ekl partially symmetric with respect to I (briefly I-symmetric) if

ed,k = ed,π(k) for all π ∈ SI ,

where SI and π(k) = (kπ(1), . . . , kπ(d)) ∈ Id are defined as before. Analogously, we define

I-antisymmetry with an additional factor (−1)|π|. Finally, an arbitrary element in Hd

is called I-(anti)symmetric if in its basis expansion every element with non-vanishing

coefficient possesses this property (30).

Next, the antisymmetrizer AI is given as the uniquely defined continuous extension

of the linear mapping

ÃI : Ed → Hd, ed,k 7→
1

#SI

∑
π∈SI

(−1)|π|ed,π(k), (5.11)

(30) Even in the non-separable case any such expansion only has countably many terms.
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from Ed to Hd. Again the symmetrizer SI is given in a similar way. Hence, in the general

setting we define the mappings using formula (5.8) which we derived for the special case

of function spaces. Note that the triangle inequality yields ‖PI‖ ≤ 1 for PI ∈ {SI ,AI}.
Once more we denote the sets of all I-(anti)symmetric elements of Hd by PI(Hd),

where PI ∈ {SI ,AI}. Observe that this can be justified since the operators PI again

provide orthogonal projections onto closed linear subspaces. That is, a generalization of

Lemma 5.1 remains valid also in the more general case of tensor products of arbitrary

Hilbert spaces which we consider here. This can be shown using (5.11) and its analogue

for SI , as well as with the help of some simple extension arguments. Moreover, also the

proof of Lemma 5.2 can be adapted to the generalized setting. Indeed, the only difference

is the conclusion of formula (5.10) in Step 2. Now, for arbitrary Hilbert spaces, this simply

follows from our definitions. Then the rest of the proof transfers literally.

Finally, without going into details, we stress the point that further generalizations are

possible. Here we can think of tensor products of arbitrary Hilbert spaces with multiple

partial (anti)symmetry conditions or of scaled tensor products in the sense of Chapter 3.

Since the corresponding calculations are straightforward we leave them to the reader.

5.2. Optimal algorithms for (anti)symmetric problems. Keeping the definitions

and assertions from Section 5.1 in mind, we are ready to study algorithms for linear

problems defined on (anti)symmetric subsets of tensor product Hilbert spaces.

Let Sd : Hd → Gd denote a tensor product problem in the sense of Section 2.4. It

is constructed from a compact linear operator S1 : H1 → G1 between arbitrary Hilbert

spaces H1 and G1 via a tensor product construction; see Section 2.4.1. Hence, let Hd =

H1⊗ · · · ⊗H1 in what follows and refer to the problem of approximating S = (Sd)d∈N as

the entire d-variate problem. Note that we completely solved this problem in Section 2.4.

In detail, the nth optimal algorithm A∗n,d, given by (2.16), was related to a certain subset

{ed,j = φ̃d,j | j ∈Md} of a tensor product ONB.

In contrast, now we are interested in the approximation of the restriction

Sd,Id = Sd
∣∣
PId (Hd)

: PId(Hd)→ Gd

of Sd to some (anti)symmetric subspace PId(Hd) as defined in Section 5.1.3, where PId ∈
{SId ,AId} and ∅ 6= Id ⊆ {1, . . . , d} for d ∈ N. We refer to SI = (Sd,Id)d∈N as the

I-(anti)symmetric problem. Using the notation from Section 1.2 we thus have Fd =

PId(Hd), and consequently F̃d = B(PId(Hd)).

Due to (5.10) it is quite clear that A∗n,d cannot be optimal in this restricted set-

ting since it calculates redundant pieces of information. Hence we need to go beyond this

naive attempt to solve I-(anti)symmetric problems efficiently. On the other hand, PId(Hd)

equipped with the inner product of Hd, 〈·, ·〉Hd is again a Hilbert space. Therefore we ba-

sically know how to construct an optimal algorithm; see Section 2.3.2. If #Id = 1 then our

new algorithm should resemble A∗n,d, because then we do not claim any (anti)symmetry

and thus we deal with the entire tensor product problem.

Before we state the main assertion of this section we present an auxiliary result which

shows that any optimal algorithm A∗ for Sd,Id needs to preserve the (anti)symmetry
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properties of its domain of definition. The following proposition generalizes Lemma 10.2

in Zeiser [Zei10] where this assertion was shown for the approximation problem, that is,

for Sd,Id = id: PId(Hd)→ Gd.

Proposition 5.3. Let d > 1 and ∅ 6= I ⊆ {1, . . . , d} be arbitrarily fixed. Furthermore,

for X ∈ {H,G} let PXI denote the (anti)symmetrizer PI ∈ {SI ,AI} on Xd with respect

to I. Then

(Sd ◦ PHI )(g) = (PGI ◦ Sd)(g) for any g ∈ Hd. (5.12)

Moreover, for all A : PHI (Hd)→ Gd and every f ∈ PHI (Hd),

‖Sd,If −Af | Gd‖2 = ‖Sd,If − PGI (Af) | Gd‖2 + ‖Af − PGI (Af) | Gd‖2. (5.13)

Hence an optimal algorithm A∗ for Sd,I preserves (anti)symmetry, i.e.

A∗f ∈ PGI (Gd) for all f ∈ PHI (Hd).

Proof. First we show that the tensor product operator Sd and the (anti)symmetrizer PI
commute on Hd, i.e. (5.12) holds. In a second step we deduce (5.13). The (anti)symmetry

of A∗f for an optimal algorithm A∗ then follows immediately.

Step 1. Assume Ed = {ed,j | j ∈ Id} to be an arbitrary tensor product ONB of Hd,

as defined in (2.13). Then, for fixed j ∈ Id, formula (5.11) and the structure of Sd =

S1 ⊗ · · · ⊗ S1 yield, in the case PI = AI ,

Sd(A
H
I (ed,j)) = Sd

(
1

#SI

∑
π∈SI

(−1)|π|
d⊗
l=1

ejπ(l)

)

=
1

#SI

∑
π∈SI

(−1)|π|
d⊗
l=1

S1(ejπ(l)
) = AGI (Sd(ed,j)).

Obviously the same is true for PI = SI . Hence, (5.12) holds at least on the set of

basis elements Ed of Hd. Because of the representation g =
∑
j∈Id 〈g, ed,j〉Hd ed,j of

g ∈ Hd, as well as the linearity and boundedness of the operators PHI , PGI and Sd, we

can extend the relation (5.12) from Ed to the whole space Hd.

Step 2. Now let f ∈ PHI (Hd) and let Af denote an arbitrary approximation to Sd,If .

Then Sd,If = Sd(P
H
I f) = PGI (Sdf), due to Step 1. Using the fact that PGI provides an

orthogonal projection onto PGI (Gd) (see (5.6)) we obtain (5.13), i.e.

‖Sd,If −Af | Gd‖2 =
∥∥PGI (Sdf)− [PGI (Af) + (idG −PGI )(Af)]

∣∣ Gd∥∥2

= ‖PGI (Sdf −Af) | Gd‖2 +
∥∥(idG −PGI )(Af)

∣∣ Gd∥∥2

= ‖Sd,If − PGI (Af) | Gd‖2 +
∥∥Af − PGI (Af)

∣∣ Gd∥∥2
,

as claimed.

Apart from this qualitative assertion, we are interested in an explicit formula for

the optimal algorithm, as well as in sharp error bounds. To get those, let d ∈ N and

∅ 6= Id = {i1, . . . , i#I} ⊆ {1, . . . , d}, as well as P ∈ {S,A}. Furthermore, consider the

singular value decomposition of S1 : H1 → G1. That is, let {(λm, φm) | m ∈ M1} denote

the non-trivial eigenpairs of W1 = S†1S1; see Section 2.3.1. Due to Proposition 2.10
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in Section 2.4.2, we know that for d > 1 the (tensor) product eigenpairs {(λ̃d,m, φ̃d,m) |
m ∈Md} of Wd = S†dSd are given by (2.15). Moreover, Ed = Φd = {φ̃d,m |m ∈Md} is

a tensor product ONB in Hd. Hence, we can apply Lemma 5.2 to ed,j = φ̃d,j , j ∈Md, in

order to obtain an orthonormal basis Ξd = {ξ̃k | k ∈ ∇d} of the partially (anti)symmetric

subspaces PId(Hd). More precisely, for k ∈ ∇d we define

ξ̃k =

√
#SI
MI(k)!

PId

( d⊗
l=1

φkl

)
∈ PI(Hd) and λ̃d,k =

d∏
l=1

λkl > 0, (5.14)

where ∇d is given by (5.9). Similar to the approach in Section 2.4.2, let

ψ = ψd : {i ∈ N | i < #∇d + 1} → ∇d

denote a bijection which provides a non-increasing ordering of {λ̃d,k | k ∈ ∇d}, and put

λd,i = λ̃d,ψ(i), as well as ξd,i = ξ̃ψ(i) for i < #∇d + 1. Finally, if #∇d is finite then we

extend the sequence of λ’s by setting λd,i = 0 for i > #∇d.
Given this bunch of notations we are well-prepared to prove our main theorem of

this section. For every d ∈ N it provides a linear algorithm A′n,d which uses at most n

continuous linear functionals on the input to approximate the solution operator Sd,Id of a

given Id-(anti)symmetric tensor product problem between Hilbert spaces. Since the worst

case error of this algorithm coincides with the nth minimal error of the problem, A′n,d is

optimal in this setting; thus it cannot be improved by any other algorithm from the class

An,cont
d ∪ An,adapt

d ; see Section 1.3. The assertion reads as follows.

Theorem 5.4. Assume that SI = (Sd,Id)d∈N is the linear tensor product problem S

restricted to the Id-(anti)symmetric subspaces PId(Hd) of the d-fold tensor product spa-

ces Hd. Then for every d ∈ N,

{(λd,i, ξd,i) | 1 ≤ i < #∇d + 1} = {(λ̃d,k, ξ̃k) | k ∈ ∇d} (5.15)

is the set of eigenpairs of Wd,Id = S†d,IdSd,Id : PId(Hd)→ PId(Hd). Thus, for every n∈N0

and all d ∈ N, the linear algorithm A′n,d : PId(Hd)→ PId(Gd) given by

A′n,df =

min{n,#∇d}∑
i=1

〈f, ξd,i〉Hd Sdξd,i, (5.16)

is nth optimal for Sd,Id with respect to the worst case setting. Furthermore we have

ewor(n, d;PId(Hd)) = ∆wor(A′n,d;PId(Hd)) =
√
λd,n+1. (5.17)

Proof. Since SI is a compact problem between Hilbert spaces it is enough to prove that for

d ∈ N the eigenpairs of Wd,Id = S†d,IdSd,Id are given by (5.15). The remaining assertions

then follow from Corollary 2.7. Indeed, we only need to show that Wd,Id ξ̃k = λ̃d,kξ̃k for

every k ∈ ∇d because we already know that the set Ξd = {ξ̃k | k ∈ ∇d} builds an ONB

in PId(Hd). Hence there cannot be more than these eigenpairs.

To prove the claim, observe that from the first part of Proposition 5.3 it follows that

Sd,Id = Sd ◦ PHId = PGId ◦ Sd, which implies Sd,Id : PHId (Hd)→ PGId(Gd).
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Moreover, due to the self-adjointness of the projectors (see Lemma 5.1), it is easily seen

that this yields

S†d,Id = PHId ◦ S
†
d = S†d ◦ P

G
Id

so that S†d,Id : PGId(Gd)→ PHId (Hd).

Consequently, we have

Wd,Id P
H
Id

= (PHId S
†
d)(Sd P

H
Id

)PHId = PHId (S†dP
G
Id

)Sd = PHId (S†dSd) = PHId Wd,

because of (PXId )2 = PXId , whereX ∈ {H,G}. Since for every j ∈Md the simple tensor φ̃d,j

is an eigenelement of Wd with respect to the eigenvalue λ̃d,j , we conclude that

Wd,Id(PHId φ̃d,j) = λ̃d,j(P
H
Id
φ̃d,j)

from the linearity of PHId . In particular, this is true for every j = k ∈ ∇d ⊆Md. But now

we note that ξ̃k equals PHId φ̃d,k, at least up to some normalizing constant. Hence, using

linearity once again, we have proven the assertion.

We conclude this section by adding some final remarks on the above theorem.

Remark 5.5. Obviously, our former result for the entire tensor product problem S =

(Sd : Hd → Gd)d∈N in Section 2.4.2 is covered by Theorem 5.4 as well. We simply have

to choose Id such that #Id = 1 for every d ∈ N and obtain A′n,d = A∗n,d. As in this

case, the worst case error can be attained by the element ξd,n+1 provided that n < #∇d.
Otherwise it trivially equals zero.

It should be clear to the reader how to generalize the results of this section to the

case of multiple partially (anti)symmetric problems where we claim (anti)symmetry with

respect to more than one subset of coordinates I. Recall that this definition is given at

the end of Section 5.1.1.

Finally we want to mention that we decided to give a different proof of Theorem 5.4

than those in [Wei11] and [Wei12a]. The reason is that the usage of the self-adjointness

of the projections PId seems to be more elegant than again repeating the arguments used

for Corollary 2.7 in Section 2.3.2. Furthermore, now we can handle also problems defined

on non-separable or on finite-dimensional source spaces Hd. Thus we slightly generalized

our old results.

5.3. Complexity of (anti)symmetric problems. Encouraged by the exact formula

for the nth minimal worst case error in Theorem 5.4 the intention of the present section

is to investigate the information complexity of (anti)symmetric tensor product problems.

We restrict our attention to the study of polynomial and strong polynomial tractability

in what follows. The aim is to find necessary and sufficient conditions for these properties

in terms of the univariate sequence λ = (λm)m∈N and the number of (anti)symmetry

conditions we impose. From the definition of ∇d in (5.9) it is quite clear that antisym-

metric problems are significantly easier than their symmetric counterparts. Therefore,

after proving some general assertions, we handle these cases separately in order to obtain

sharp conditions. Moreover, we distinguish between the absolute and the normalized error

criterions.
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Let us fix the basic notation for this section. As before, assume SI = (Sd,Id)d∈N
denotes a tensor product problem S = (Sd : Hd → Gd)d∈N, restricted to some sequence

of (anti)symmetric subspaces PId(Hd), where PId ∈ {SId ,AId}, of the tensor product

Hilbert spaces Hd = H1 ⊗ · · · ⊗ Hd, d ∈ N. Here for every d ∈ N the elements are

(anti)symmetric with respect to the non-empty subset Id ⊆ {1, . . . , d} of coordinates.

The cardinality of those subsets will be denoted by ad = #Id and we set bd = d − ad
for the number of coordinates without (anti)symmetry conditions. Finally, for d ∈ N the

non-increasingly ordered eigenvalues λd,i = λ̃d,ψ(i), i ∈ N, are given by (5.14) and (5.15).

They are constructed out of the squared singular values λ = (λm)m∈N of the underlying

solution operator S1 : H1 → G1.

As an immediate consequence of (5.17) we see that the initial error of approximat-

ing Sd,Id on the unit ball F̃d = B(PId(Hd)) is given by

εinit
d = ewor(0, d;PId(Hd)) =

√
λd,1 =


√
λd1 if PId = SId ,√
λbd1 · λ1 · . . . · λad if PId = AId .

Clearly, we need to assume that this initial error is strictly positive for any reasonably

large d ∈ N because otherwise we have (strong) polynomial tractability by default. In

particular, if the number of antisymmetric coordinates ad grows with the dimension

then this condition implies that the whole sequence of univariate eigenvalues λ need to

be strictly positive. Moreover, similar to the entire tensor product problems studied in

Section 2.4.3, we always assume that λ2 > 0 in order to avoid triviality. Consequently,

we have #M1 ≥ 2.

Now we are ready to present a first general condition which is necessary for (strong)

polynomial tractability of both symmetric and antisymmetric problems as long as we

deal with the absolute error criterion. It is independent of the concrete choice of the

(anti)symmetry conditions we impose.

Lemma 5.6 (General necessary conditions, absolute errors). Let PId ∈ {SId ,AId} and

consider SI = (Sd,Id)d∈N as defined above, where Id is arbitrarily fixed for every d ∈ N.

Then the fact that SI is polynomially tractable with the constants C, p > 0 and q ≥ 0

implies that λ = (λm)m∈N ∈ `τ for all τ > p/2. Moreover, for any such τ and all d ∈ N,

1

(λd,1)τ

∑
k∈∇d

(λ̃d,k)τ ≤ (1 + C) dq + C2τ/p ζ

(
2τ

p

)(
d2q/p

λd,1

)τ
.

Proof. From Theorem 2.8 we know that for any τ > p/2 and r = 2q/p polynomial

tractability yields

sup
d∈N

1

dr

( ∞∑
i=f(d)

(λd,i)
τ
)1/τ

<∞, (5.18)

where the function f : N→ N is given by f(d) = d(1 + C) dqe. This in particular implies

that the sum in brackets converges for every fixed d ∈ N. Therefore, in particular for d = 1

the tail series
∑∞
i=f(1)(λ1,i)

τ =
∑∞
m=d1+Ce(λm)τ needs to be finite, which is possible only

if λ = (λm)m∈N ∈ `τ .
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So, let us turn to the second assertion. Obviously (5.18) implies the existence of some

constant C1 > 0 such that
∞∑

i=f(d)

(λd,i)
τ ≤ C1d

rτ for all d ∈ N.

Indeed, Theorem 2.8 implies that we can take C1 = C2τ/pζ(2τ/p). Due to the ordering

of (λd,i)i∈N the rest of the sum can also be bounded easily for any d ∈ N by

f(d)−1∑
i=1

(λd,i)
τ ≤ (λd,1)τ (f(d)− 1).

Since
∑
k∈∇d(λ̃d,k)τ =

∑∞
i=1(λd,i)

τ , it remains to show that f(d) − 1 ≤ (1 + C)dq for

every d ∈ N, which is also obvious due to the definition of f .

5.3.1. Symmetric problems (absolute errors). Apart from the general assertion

λ ∈ `τ , we focus our attention on further necessary conditions for (strong) polynomial

tractability in the symmetric setting. The following proposition yields a slight improve-

ment compared to the corresponding assertion stated in [Wei12a] which can be obtained

without using essentially new ideas.

Proposition 5.7 (Necessary conditions, symmetric case). Let SI = (Sd,Id)d∈N be the

problem considered in Lemma 5.6 and set PId = SId . Moreover, assume λ1 ≥ 1.

• If SI is polynomially tractable then bd ∈ O(ln d) as d→∞.

• If SI is strongly polynomially tractable then bd ∈ O(1) as d→∞, and λ1 = 1 > λ2.

Proof. Assume λ1 ≥ 1 and let τ be given by Lemma 5.6. Then, independently of the

amount of symmetry conditions, we have λd,1 = λd1 ≥ 1 and there exist absolute constants

r ≥ 0 and C > 1 such that

1

(λ1)τd

∑
k∈∇d

(λ̃d,k)τ ≤ C dr, d ∈ N, (5.19)

due to Lemma 5.6. In the case of strong polynomial tractability we even have r = 0. For

d ≥ 2 we use the product structure of λ̃d,k, k ∈ ∇d, provided by (5.14). That is, we split

the sum with respect to the coordinates with and without symmetry conditions. Hence,∑
k=(h,j)∈∇d

λ̃τd,k =
∑

j∈(M1)bd

λ̃τbd,j
∑

h∈(M1)ad

h1≤···≤had

λ̃τad,h =
(#M1∑
m=1

λτm

)bd ∑
h∈Mad

h1≤···≤had

λ̃τad,h (5.20)

for d = ad + bd ≥ 2, which leads to(#M1∑
m=1

(
λm
λ1

)τ)bd ∑
h∈Mad

h1≤···≤had

ad∏
l=1

(
λhl
λ1

)τ
≤ C dr.

In any case the second sum in the above inequality is bounded from below by 1. Thus,

using #M1 ≥ 2 we conclude that (1 + λτ2/λ
τ
1)bd ≤ (

∑#M1

m=1 λτm/λ
τ
1)bd is polynomially
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bounded from above. Since we always assume λ2 > 0 this leads to the bounds we claimed

for bd.

It remains to show the assertions on the two largest univariate eigenvalues in the case

of strong polynomial tractability. To this end, assume for a moment that λ1 > 1. Then,

as λ2 > 0, there exists some K ∈ N0 such that λ2 ≥ (1/λ1)K . Now it is easy to see that

(independently of the number of symmetry conditions) there are at least 1+bd/(K + 1)c
different k ∈ ∇d such that λ̃d,k ≥ 1. Namely, for l = 0, . . . , bd/(K + 1)c we can take the

first d − l coordinates of k ∈ ∇d equal to one. To the remaining coordinates we assign

the value two and obtain

λ̃d,k = λd−l1 λl2 ≥ λKl1 λl2 ≥ 1.

In other words, we have λd,1+bd/(K+1)c ≥ 1. On the other hand, strong polynomial

tractability implies
∑∞
i=d1+Ce λ

τ
d,i ≤ C1 for some absolute constants τ, C,C1 > 0 and

all d ∈ N (see (5.18)). Consequently, for every d ≥ d0 = (2 + C)(K + 1) we obtain

1 + bd/(K + 1)c ≥ d1 + Ce and thus

C1 ≥
∞∑

i=d1+Ce

λτd,i ≥
1+bd/(K+1)c∑
i=d1+Ce

λτd,i ≥ λτd,1+bd/(K+1)c(2 + bd/(K + 1)c − d1 + Ce)

≥ d

K + 1
− (1 + C).

Obviously this is a contradiction and we conclude that λ1 = 1. Finally, we need to show

that necessarily λ2 < 1. Assuming λ1 = λ2 = 1 leads to K = 0 in the discussion above

and hence we obtain the same contradiction as before. Therefore the proof is complete.

Note in passing that independently of the number of symmetry conditions the infor-

mation complexity nwor
abs (ε, d;Sd,Id : B(SId(Hd)) → Gd) grows at least linearly in d if we

assume λ1 ≥ 1 and λ2 > 0.

We continue the analysis of I-symmetric problems with respect to the absolute error

criterion by proving that the necessary conditions we stated are also sufficient for (strong)

polynomial tractability. For this purpose we need a rather technical preliminary lemma.

For the convenience of the reader we include a full proof that uses only elementary

induction arguments.

Lemma 5.8. Let (µm)m∈N be a non-increasing sequence of non-negative real numbers with

µ1 > 0 and set µs,k =
∏s
l=1 µkl for k ∈ Ns and s ∈ N. Then, for all V ∈ N0 and every

d ∈ N, ∑
k∈Nd

1≤k1≤···≤kd

µd,k ≤ (µ1)d dV
(

1 + V +

d∑
L=1

(µ1)−L
∑

j(L)∈NL

V+2≤j(L)
1 ≤···≤j(L)

L

µL,j(L)

)
. (5.21)

Proof. Step 1. By induction on s we first prove that for every fixed m ∈ N,∑
k∈Ns

m≤k1≤···≤ks

µs,k = (µm)s +

s∑
l=1

(µm)s−l
∑
j(l)∈Nl

m+1≤j(l)1 ≤···≤j
(l)
l

µl,j(l) for all s ∈ N. (5.22)
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Easy calculations show that this holds at least for the initial step s = 1. Therefore, assume

the assertion (5.22) is true for some s ∈ N. Then∑
k∈Ns+1

m≤k1≤···≤ks+1

µs+1,k =

∞∑
k1=m

µk1
∑
h∈Ns

k1≤h1≤···≤hs

µs,h

= µm
∑
h∈Ns

m≤h1≤···≤hs

µs,h +
∑

k∈Ns+1

m+1≤k1≤···≤ks+1

µs+1,k.

Now, by inserting the induction hypothesis for the first sum and renaming k to j(s+1) in

the remaining sum, we conclude that
∑
k∈Ns+1,m≤k1≤···≤ks+1

µs+1,k equals

(µm)s+1 +

s∑
l=1

(µm)s+1−l
∑
j(l)∈Nl

m+1≤j(l)1 ≤···≤j
(l)
l

µl,j(l) +
∑

j(s+1)∈Ns+1

m+1≤j(s+1)
1 ≤···≤j(s+1)

s+1

µs+1,j(s+1) .

Hence (5.22) holds for s+ 1 as well, and the induction is complete.

Step 2. Here we prove (5.21) via another induction on V ∈ N0. Therefore, let d ∈ N
be arbitrarily fixed. The initial step, V = 0, corresponds to (5.22) for s = d and m = 1.

Thus assume (5.21) is valid for some fixed V ∈ N0. Then, by using (5.22) for s = L and

m = V + 2, we see that the right-hand side of (5.21) equals

(µ1)d dV
(

1 + V +

d∑
L=1

(µ1)−L
(

(µV+2)L +

L∑
l=1

(µV+2)L−l
∑
j(l)∈Nl

(V+2)+1≤j(l)1 ≤···≤j
(l)
l

µl,j(l)
))
.

Now we estimate 1 + V by d (1 + V ), take advantage of the non-increasing ordering of

(µm)m∈N, and extend the inner sum from L to d in order to obtain∑
k∈Nd

1≤k1≤···≤kd

µd,k ≤ (µ1)d dV+1
(

1 + (V + 1) +

d∑
l=1

(µ1)−l
∑
j(l)∈Nl

(V+1)+2≤j(l)1 ≤···≤j
(l)
l

µl,j(l)
)
.

Since this estimate corresponds to (5.21) for V + 1 the claim is proven.

Now the sufficient conditions read as follows.

Proposition 5.9 (Sufficient conditions, symmetric case). Let PId = SId , assume SI is

the problem considered in Lemma 5.6, and let λ = (λm)m∈N ∈ `τ0 for some τ0 ∈ (0,∞).

• If λ1 < 1 then SI is strongly polynomially tractable.

• If λ1 = 1 > λ2 and bd ∈ O(1) then SI is strongly polynomially tractable.

• If λ1 = 1 and bd ∈ O(ln d) as d→∞ then SI is polynomially tractable.

Proof. Step 1. We start the proof by exploiting the property λ ∈ `τ0 ; namely we use the

ordering of (λm)m∈N to conclude that

mλτ0m ≤ λ
τ0
1 + · · ·+ λτ0m <

∞∑
i=1

λτ0i = ‖λ | `τ0‖τ0 <∞ for any m ∈ N.



5.3. Complexity of (anti)symmetric problems 97

Hence, there exists some Cτ0 > 0 such that λm is bounded from above by Cτ0m
−r for

every r ≤ 1/τ0. Therefore there is some index such that for every larger m ∈ N we have

λm < 1. We denote the smallest such index by m0. Similar to the calculations of Novak

and Woźniakowski [NW08, p. 180] this leads to

∞∑
m=m0

λτm ≤ (p+ 1)λτm0
+ Cττ0

∫ ∞
m0+p

x−τr dλ1(x) = (p+ 1)λτm0
+

Cττ0
τr − 1

1

(m0 + p)τr−1

for every p ∈ N0 and all τ such that τr > 1. In particular, with r = 1/τ0 we obtain for

all τ > τ0 and any p ∈ N0 the estimate

∞∑
m=m0

(λm)τ ≤ (p+ 1) (λm0
)τ +

1/τ

1/τ0 − 1/τ

(
C

1/(1/τ0−1/τ)
τ0

m0 + p

)τ(1/τ0−1/τ)

.

Note that for a given δ > 0 there exists some constant τ1 ≥ τ0 such that for all τ > τ1 we

have 1/(1/τ0 − 1/τ) ∈ (τ0, τ0 + δ). Hence, if p ∈ N0 is sufficiently large then we conclude

that for all τ > τ1,

∞∑
m=m0

(λm)τ ≤ (p+ 1) (λm0
)τ +

τ0 + δ

τ1

(
C1

m0 + p

)τ/(τ0+δ)

,

where we set C1 = max{1, Cτ0+δ
τ0 } < m0 + p. Finally, since λm0

< 1, both summands

tend to zero as τ →∞. In particular, there exist τ > τ1 ≥ τ0 such that
∞∑

m=m0

(λm)τ ≤ 1

2
.

Step 2. Now all the assertions stated can be seen using the second point of Theo-

rem 2.8. Indeed, for polynomial tractability it is sufficient to show that∑
k∈∇d

(λ̃d,k)τ =

∞∑
i=1

(λd,i)
τ ≤ C drτ for all d ∈ N (5.23)

and some C, τ > 0, as well as some r ≥ 0. If this even holds for r = 0 we obtain strong

polynomial tractability.

In the case λ1 < 1 we can estimate the sum on the left of (5.23) from above by

(
∑∞
m=1 λ

τ
m)d since clearly ∇d ⊆ Md ⊆ Nd. Using Step 1 with m0 = 1 we conclude that∑

k∈∇d(λ̃d,k)τ ≤ 2−d for some large τ > τ0. Hence the problem is strongly polynomially

tractable in this case.

For the proof of the remaining points we assume that λ1 = 1. In any case we have∑
k∈∇1

(λ̃1,k)τ ≤
∞∑
m=1

(λm)τ0 = ‖λ | `τ0‖τ0 <∞

for all τ ≥ τ0 because λ ∈ `τ0 . Therefore we can assume d ≥ 2 in the following. Recall

that we can split the first sum in (5.23) with respect to the coordinates with and without

symmetry conditions. That is, for d = ad + bd ≥ 2 we use (5.20).

If λ2 < 1 and bd is universally bounded then the first factor in this splitting can be

bounded by a constant and the second factor can be estimated using Lemma 5.8 with
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V = 0, d replaced by ad, and µ replaced by λτ (31). Consequently, for any τ ≥ τ0,∑
h∈Mad

h1≤···≤had

(λ̃ad,h)τ ≤ 1 +

ad∑
L=1

∑
j(L)∈NL

2≤j(L)
1 ≤···≤j(L)

L

(λ̃L,j(L))τ ≤ 1 +

ad∑
L=1

( ∞∑
m=2

λτm

)L
. (5.24)

Now, with the help of Step 1 and the properties of geometric series, we see that if τ is

large enough then (5.24) can be estimated further by 1 +
∑∞
L=1 2−L = 2. In summary

also
∑
k∈∇d(λ̃d,k)τ is universally bounded in this case and therefore the problem SI is

strongly polynomially tractable.

To prove the last point we argue in the same manner. Here the assumption that bd
belongs to O(ln d) as d → ∞ implies that the first factor in the splitting (5.20) is poly-

nomially bounded in d. For the second factor we again apply Lemma 5.8, but in this

case we set V = m0 − 2, where m0 denotes the first index m ∈ N such that λm < 1.

Keep in mind that this index is at least two because of λ1 = 1. On the other hand, it is

finite, since λ ∈ `τ0 . Therefore, by the same arguments as above, the second factor in the

splitting (5.20) is polynomially bounded in d, too. All in all, this proves (5.23) and thus

SI is polynomially tractable in this case.

We summarize the results obtained for I-symmetric tensor product problems SI =

(Sd,Id)d∈N in the following theorem.

Theorem 5.10 (Tractability of symmetric problems, absolute errors). Let S1 : H1 → G1

denote a compact linear operator between two Hilbert spaces and let λ = (λm)m∈N be the

sequence of eigenvalues of W1 = S†1S1 with respect to a non-increasing ordering. More-

over, for d > 1 let ∅ 6= Id ⊆ {1, . . . , d} and let SI = (Sd,Id)d∈N be the linear tensor

product problem S = (Sd)d∈N restricted to the Id-symmetric subspaces SId(Hd) of the

d-fold tensor product spaces Hd. Consider the worst case setting with respect to the ab-

solute error criterion and let λ2 > 0. Then SI is strongly polynomially tractable if and

only if λ ∈ `τ for some τ ∈ (0,∞) and

• λ1 < 1, or

• 1 = λ1 > λ2 and (d−#Id) ∈ O(1) as d→∞.

Moreover, provided that λ1 ≤ 1 the problem is polynomially tractable if and only if λ ∈ `τ
for some τ ∈ (0,∞) and

• λ1 < 1, or

• λ1 = 1 and (d−#Id) ∈ O(ln d) as d→∞.

Note that we do not have sufficient conditions for polynomial tractability in the case

when λ1 > 1. We only know that d−#Id ∈O(ln d) as d→∞ is necessary in this situation.

Anyway, we completely characterized strong polynomial tractability of symmetric prob-

lems. In this respect we improved the results known from [Wei12a]. Moreover, we have

shown that the results hold for finite-dimensional and for non-separable source spaces H1

as well.

(31) Observe that this choice implies in particular that µm = 0 for any m > #M1.
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Before we turn to the complexity of antisymmetric problems we briefly focus on the

normalized error criterion for the I-symmetric setting in the next subsection.

5.3.2. Symmetric problems (normalized errors). Due to (2.10) and (5.14) the

information complexity of I-symmetric problems SI = (Sd,Id)d∈N in the worst case setting

with respect to the normalized error criterion is given by

nwor
norm(ε′, d;SId(Hd)) = #

{
k ∈ ∇d

∣∣∣∣ λ̃d,kλd,1
=

d∏
l=1

λkl
λ1

> (ε′)2

}
for ε′ ∈ (0, 1) and d ∈ N, since we have (εinit

d )2 = λd,1 = λd1 for any kind of symmetric

problem. In contrast, for the absolute error, criterion (2.9) yields

nwor
abs (ε, d;SId(Hd)) = #

{
k ∈ ∇d

∣∣∣ λ̃d,k =

d∏
l=1

λkl > ε2
}
,

where ε > 0 and d ∈ N. Hence, using the ideas stated in the proof of Theorem 2.12 it

suffices to study a scaled tensor product problem Td : SId(Hd)→ Gd with respect to the

absolute error criterion in order to obtain tractability results for SI in the normalized

situation. To this end, recall that the squared singular values of T1 equal µ = (µm)m∈N
with µm = λm/λ1 such that we always have µ1 = 1. Furthermore, we obviously have

µ ∈ `τ if and only if λ ∈ `τ . This leads to the following theorem.

Theorem 5.11 (Tractability of symmetric problems, normalized errors). Consider the

situation of Theorem 5.10. We study the worst case setting with respect to the normalized

error criterion. Then SI = (Sd,Id)d∈N is strongly polynomially tractable if and only if

λ ∈ `τ for some τ ∈ (0,∞), λ1 > λ2, d−#Id ∈ O(1) as d→∞.

Moreover, the problem SI is polynomially tractable if and only if

λ ∈ `τ for some τ ∈ (0,∞) and d−#Id ∈ O(ln d) as d→∞.

5.3.3. Antisymmetric problems (absolute errors). We start with sufficient con-

ditions for (strong) polynomial tractability which slightly improve the results stated

in [Wei12a, Proposition 5].

Proposition 5.12 (Sufficient conditions, antisymmetric case). Let PId = AId , let SI =

(Sd,Id)d∈N be the problem considered in Lemma 5.6, and let λ = (λm)m∈N ∈ `τ0 for some

τ0 ∈ (0,∞).

• If λ1 < 1 then SI is strongly polynomially tractable, independent of the number of

antisymmetry conditions.

• If λ1 ≥ 1 and if there exist constants τ ≥ τ0, d0 ∈ N, as well as C ≥ 1, and q ≥ 0 such

that the number of antisymmetric coordinates ad in dimension d satisfies

ln(ad!)

d
+

ln(Cdq)

d
≥ ln(‖λ | `τ‖τ ) for all d ≥ d0 (5.25)

then the problem SI is polynomially tractable. If this even holds for q = 0 then we

obtain strong polynomial tractability.
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Proof. Just as for the symmetric setting, the proof of these sufficient conditions is based

on the second point of Theorem 2.8. We show that under the given assumptions for some

τ ≥ τ0 the whole sum of the eigenvalues∑
k∈∇d

(λ̃d,k)τ =

∞∑
i=1

(λd,i)
τ (5.26)

is universally bounded, or polynomially bounded in d, respectively. Note that since we

deal with the case PId = AId now, the set ∇d is given by the second line in (5.9).

Moreover observe that for d = 1 there is no antisymmetry condition at all. That is, we

have ∇1 = M1 ⊆ N and the sums in (5.26) equal ‖λ | `τ‖τ ≤ ‖λ | `τ0‖τ in this case.

Therefore, due to the hypothesis λ ∈ `τ0 , the term for d = 1 is finite.

Hence, let d ≥ 2 be arbitrarily fixed. Without loss of generality we may reorder the

set of coordinates so that Id = {i1, . . . , iad} = {1, . . . , ad}. That means we assume partial

antisymmetry with respect to the first ad coordinates. For s ∈ N with s ≥ d let us define

cubes of multi-indices

Qd,s = {1, . . . , s}d.

Furthermore, let Uad,s = {j ∈ Qad,s | j1 < · · · < jad} denote the ad-dimensional projec-

tion of Qd,s which reflects the antisymmetry conditions we assume. With this notation

we obtain ∑
k∈∇d

(λ̃d,k)τ = lim
s→∞

∑
k∈∇d∩Qd,s

(λ̃d,k)τ ,

where the set of multi-indices under consideration ∇d ∩ Qd,s can be represented as a

subset of Uad,s × Qbd,s. We will assume bd = d − ad > 0 in what follows to ensure that

this splitting is non-trivial. By the product structure of λ̃d,k, k ∈ ∇d, this implies∑
k=(j,i)∈∇d∩Qd,s

(λ̃d,k)τ ≤
( ∑
j∈Uad,s

ad∏
l=1

λτjl

)( ∑
i∈Qbd,s

bd∏
l=1

λτil

)
. (5.27)

Since the sequence λ = (λm)m∈N is an element of `τ0 ↪→ `τ , we can easily estimate the

second factor for every s ≥ d from above by∑
i∈Qbd,s

bd∏
l=1

λτil =

bd∏
l=1

s∑
m=1

λτm =
( s∑
m=1

λτm

)bd
≤
( ∞∑
m=1

λτm

)(1/τ)bdτ

= ‖λ | `τ‖bdτ . (5.28)

To handle the first term we need an additional argument. Note that due to the structure

of Uad,s we have∑
j∈Qad,s

ad∏
l=1

λτjl =
∑

j∈Qad,s
∃k,m: jk=jm

ad∏
l=1

λτjl + ad!
∑

j∈Uad,s

ad∏
l=1

λτjl ≥ ad!
∑

j∈Uad,s

ad∏
l=1

λτjl .

Consequently, using the same arguments as in (5.28), this yields the upper bound

‖λ | `τ‖adτ/(ad!)

for the first factor in (5.27). Once again this bound does not depend on s ≥ d. Hence,
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due to d = ad + bd, we conclude that∑
k∈∇d

(λ̃d,k)τ = lim
s→∞

∑
k∈∇d∩Qd,s

(λ̃d,k)τ ≤ 1

ad!
‖λ | `τ‖τd for every d ∈ N

and any choice of AId . Of course, for every d < d0 this upper bound is trivially less than

an absolute constant. Thus, to prove the second assertion of Proposition 5.12 it is enough

to show that
1

ad!
‖λ | `τ‖τd ≤ C dq for all d ≥ d0,

as well as for some C ≥ 1 and some q ≥ 0. But this is equivalent to our hypothesis

stated in (5.25). Hence the condition (5.25) implies (strong) polynomial tractability of SI ,

independently of the value of λ1.

Note that now it suffices to show that λ1 < 1 already yields (5.25) with q = 0 and

C = 1 in order to complete the proof. To see this, observe that (due to Step 1 in the proof

of Proposition 5.9) we know that there exists some τ > τ0 such that ‖λ | `τ‖τ =
∑∞
m=1 λ

τ
m

is strictly less than 1. Thus the right-hand side of (5.25) is negative in this case, whereas

the left-hand side is non-negative for every choice of ad.

Let us briefly comment on the above result. Clearly, for any q ≥ 0 the term ln(C dq)/d

in (5.25) tends to zero as d → ∞. Hence there is not much difference in the sufficient

conditions we stated for strong polynomial and for polynomial tractability. Moreover, we

mention that Theorem 2.8 allows us to omit the f(d)− 1 largest eigenvalues λd,i, where

f(d) may grow polynomially in (εinit
d )−1 with d, but we did not use this fact in the above

proof.

The next example investigates how fast ad needs to grow with the dimension d in

order to fulfill condition (5.25).

Example 5.13. For any d ∈ N and some γ > 0 let

ad =

⌈
d

ln dγ

⌉
. (5.29)

Then Stirling’s formula provides ad ln(ad/e) ≤ ln(ad!) < ln ad − ad + ad ln ad if d (and

hence also ad) is sufficiently large. Consequently,

ln(ad!)

d
≥ ad ln(ad/e)

d
≥ 1

γ

ln
(
d · 1

eγ ln d

)
ln d

=
1

γ

(
1− ln(eγ ln d)

ln d

)
↗ 1

γ

as d→∞. On the other hand, we have ad/d ≤ 1/(γ ln d) + 1/d and thus

ln(ad!)

d
<

ln ad − ad
d

+

(
1

γ ln d
+

1

d

)
ln ad =

2 ln ad − ad
d

+
1

γ

ln ad
ln d

≤ 1

γ
.

So we see that γ in (5.29) needs to be strictly smaller than ln−1(‖λ | `τ‖τ ) in order to

fulfill (5.25) with q = 0. In particular, it follows that assumptions like ad = ddβe with

β < 1 are not sufficient to imply tractability using the second point of Proposition 5.12.
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Now we turn to necessary conditions. As in the symmetric setting Lemma 5.6 shows

that λ ∈ `τ is needed for polynomial tractability. In addition, we will see that we need a

condition similar to (5.25), particularly if we deal with slowly decreasing eigenvalues λ.

Proposition 5.14 (Necessary conditions, antisymmetric case). Let PId = AId and as-

sume SI = (Sd,Id)d∈N is the problem considered in Lemma 5.6. Furthermore, let SI
be polynomially tractable with constants C, p > 0 and q ≥ 0. Then, as d → ∞, the

initial error εinit
d tends to zero faster than the inverse of any polynomial. Moreover,

λ = (λm)m∈N ∈ `τ for every τ > p/2 and there exist d∗ ∈ N and C2 ≥ 1 such that

1

d

ad∑
m=1

ln
‖λ | `τ‖τ

λτm
+

ln(C2 d
2qτ/p)

d
≥ ln(‖λ | `τ‖τ ) for all d ≥ d∗. (5.30)

Thus we have either λ1 < 1 or limd→∞ ad =∞.

Proof. Step 1. For the whole proof assume τ > p/2 is fixed. Then Lemma 5.6 shows that

λ ∈ `τ . As in (5.20) for the symmetric case, we can split the sum of the eigenvalues so

that for all d ∈ N,∑
k∈∇d

(λ̃d,k)τ =
(#M1∑
m=1

λτm

)bd ∑
j∈Mad

j1<···<jad

(λ̃ad,j)
τ ≥ ‖λ | `τ‖τbd · λτ1 · . . . · λτad .

Hence Lemma 5.6 together with the fact that λd,1 = λbd1 · λ1 · . . . · λad gives(
‖λ | `τ‖τ

λτ1

)bd
≤ (1 + C) dq + C2τ/p ζ

(
2τ

p

)(
d2q/p

λd,1

)τ
. (5.31)

We will use this inequality to deduce all the assertions stated in Proposition 5.14.

Step 2. Here we prove the limit property for the initial error εinit
d =

√
λd,1, i.e. we

show that for every fixed polynomial P > 0,

λd,1 · P(d)→ 0 as d→∞. (5.32)

Since λd,1 ≤ λbd1 λ
ad
1 = λd1 we can restrict ourselves to the non-trivial case λ1 ≥ 1 in the

following. Assume that there exists a subsequence (dk)k∈N of natural numbers, as well

as some constant C0 > 0, such that λdk,1P(dk) is bounded from below by C0 for every

k ∈ N. Then for every d = dk the right-hand side of (5.31) is bounded from above by some

other polynomial P1(dk) > 0. On the other hand, due to the general condition λ2 > 0,

the term ‖λ | `τ‖τ/λτ1 is strictly larger than one. Thus it follows that there exists some

C1 > 0 such that

bdk ≤ C1 ln dk for every k ∈ N.

Therefore adk = dk − bdk → ∞ as k → ∞. Moreover, the assumed boundedness of

λdk,1P(dk) leads to

C0 P(dk)−1 ≤ λdk,1 ≤ λ
C1 ln dk
1 · λ1 · . . . · λadk = dC1 lnλ1

k · λ1 · . . . · λadk
since λ1 ≥ 1. In the first step of the proof of Proposition 5.9 we saw that λ ∈ `τ yields

the existence of some Cτ > 0 such that λm ≤ Cτm
−1/τ for every m ∈ N. Indeed, this
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holds for Cτ = ‖λ | `τ‖ > 1. Hence λτ1 · . . . · λτadk ≤ C
τadk
τ (adk !)−1, which gives

(adk/e)
adk ≤ adk ! ≤ (Cττ )adk P2(dk) for all k ∈ N

and some other polynomial P2 > 0. If k is sufficiently large then we conclude that

adk ≤ adk ln
adk
eCττ

≤ lnP2(dk),

since adk → ∞ implies adk/(eC
τ
τ ) ≥ e for k ≥ k0. Therefore the number of antisym-

metric coordinates ad needs to be logarithmically bounded from above for every d from

the sequence (dk)k≥k0 . Because bdk was also found to be logarithmically bounded this

contradicts dk = adk + bdk . Consequently, the hypothesis λdk,1P(dk) ≥ C0 > 0 cannot be

true for any subsequence (dk)k. In other words, (5.32) holds.

Step 3. Next we show (5.30). From Step 2 we know that there exists d∗ ∈ N such that

1/λd,1 ≥ 1 for all d ≥ d∗. Hence, (5.31) together with τ > p/2 implies(
‖λ | `τ‖τ

λτ1

)bd
≤ C2

(
d2q/p

λd,1

)τ
=

C2 d
2qτ/p

λτbd1 · λτ1 · . . . · λτad
for d ≥ d∗,

where we set C2 = 1 + C + C2τ/pζ(2τ/p). Therefore we obtain

C2 d
2qτ/p

ad∏
k=1

‖λ | `τ‖τ

λτk
≥ ‖λ | `τ‖τd

for all d ≥ d∗, which is equivalent to the estimate (5.30) we claimed.

Step 4. It remains to show that λ1 ≥ 1 implies that limd→∞ ad is infinite. To this

end, note that every summand in (5.30) is strictly positive. If we assume for a moment

the existence of a subsequence (dk)k∈N such that adk is bounded for every k ∈ N then

the left-hand side of (5.30) is less than some positive constant divided by dk. Hence it

tends to zero as k →∞. On the other hand, the right-hand side of (5.30) is strictly larger

than some positive constant, since λ1 ≥ 1 and λ2 > 0. This contradiction completes the

proof.

As mentioned before, there are examples such that the sufficient condition (5.25)

from Proposition 5.12 is also necessary (up to some constant factor) in order to conclude

polynomial tractability in the antisymmetric setting. Now we are ready to give such an

example.

Example 5.15. Consider the situation of Lemma 5.6 for PId = AId and assume the prob-

lem SI is polynomially tractable. In addition, for a fixed τ ∈ (0,∞), let λ = (λm)m∈N ∈ `τ
with λ1 ≥ 1 and assume the existence of some m0 ∈ N such that

λm ≥
‖λ | `τ‖
mα/τ

for all m > m0 and some α > 1. (5.33)

Then we claim that there exist constants d̄ ∈ N, C ≥ 1, and r ≥ 0 such that

α
ln(ad!)

d
+

ln(Cdr)

d
≥ ln(‖λ | `τ‖τ ) for all d ≥ d̄. (5.34)
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Recall that due to Proposition 5.12, for the degree of antisymmetry ad, it was suffi-

cient to assume (5.34) with α = 1 in order to conclude (strong) polynomial tractability

(see (5.25)). Moreover, keep in mind that we know from Example 5.13 that ln(ad!)/d

tends to 1/γ if we assume that ad is given by (5.29). Hence in the present example

we have strong polynomial tractability if γ < ln−1(‖λ | `τ‖τ ), whereas the problem is

polynomially intractable if γ > α/ln(‖λ | `τ‖τ ).

Before we prove the assertion it might be useful to give a concrete example where

(5.33) holds true. Therefore set λm = 1/m2, τ = m0 = 1, and α = 3. Then it is easy to

check that ‖λ | `τ‖ = ζ(2) = π2/6, and we obviously have λ1 = 1.

To verify (5.34) we can use Proposition 5.14 and, in particular, inequality (5.30). Since

λ1 ≥ 1 we know that limd ad = ∞, i.e. ad > m0 for every d larger than some d1 ∈ N.

Furthermore, note that (5.33) is equivalent to

ln
‖λ | `τ‖τ

λτm
≤ α lnm for all m > m0.

Hence if d ≥ d1 then we can estimate the sum in (5.30) from above by

1

d

ad∑
m=1

ln
‖λ | `τ‖τ

λτm
≤ m0

d
ln
‖λ | `τ‖τ

λτm0

+
α

d

ad∑
m=m0+1

lnm ≤ Cλ
d

+ α
ln(ad!)

d
.

Obviously, for d larger than some d2 ∈ N the term Cλ+ln(C2 d
2qτ/p) is less than ln(C dr),

where C ≥ 1 and r ≥ 0. Here r = 0 if and only if q = 0 in (5.14), i.e. if the problem

is strongly polynomially tractable. Consequently, we can derive (5.34) from (5.30) by

choosing d̄ = max {d1, d2, d
∗}.

Although there remains a small gap between the necessary and the sufficient condi-

tions for the absolute error criterion, the most important cases of antisymmetric tensor

product problems are covered by our results. Let us summarize the main facts.

Theorem 5.16 (Tractability of antisymmetric problems, absolute errors). Let S1 :

H1 → G1 denote a compact linear operator between two Hilbert spaces and let λ =

(λm)m∈N be the sequence of eigenvalues of W1 = S†1S1 with non-increasing ordering.

Moreover, for d > 1 let ∅ 6= Id ⊆ {1, . . . , d} and assume SI = (Sd,Id)d∈N is the linear

tensor product problem S = (Sd)d∈N restricted to the Id-antisymmetric subspaces AId(Hd)

of the d-fold tensor product spaces Hd. Consider the worst case setting with respect to the

absolute error criterion and let λ2 > 0. Then for the case λ1 < 1 the following statements

are equivalent:

• SI is strongly polynomially tractable.

• SI is polynomially tractable.

• There exists a constant τ ∈ (0,∞) such that λ ∈ `τ .

Moreover, the same equivalences hold true if λ1 ≥ 1 and #Id grows linearly with d.

At this point we mention that for fully antisymmetric problems, i.e. #Id = ad = d,

an explicit formula for the information complexity with respect to the absolute error

criterion is known. Furthermore, simple examples can be constructed which show that
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we cannot expect the same nice tractability behavior if we deal with normalized errors.

For further details the interested reader is referred to [Wei11, Proposition 8].

5.3.4. Antisymmetric problems (normalized errors). Up to now every complex-

ity assertion in this chapter was mainly based on Theorem 2.8, which dealt with the

general situation of arbitrary compact linear operators between Hilbert spaces and with

the absolute error criterion. While investigating tractability properties of I-symmetric

problems with respect to the normalized error criterion, we were able to use assertions

from the absolute error setting. Since for I-antisymmetric problems the structure of the

initial error is more complicated, this approach will not work again. Therefore we recall

Theorem 2.9 as a replacement of Theorem 2.8 for the normalized setting. Based on this

we can give the following necessary conditions for (strong) polynomial tractability.

Proposition 5.17 (Necessary conditions, antisymmetric case). Let SI = (Sd,Id)d∈N de-

note an I-antisymmetric problem as defined at the beginning of Section 5.3 and consider

the worst case setting with respect to normalized errors. Then the fact that SI is poly-

nomially tractable with constants C, p > 0 and q ≥ 0 implies that λ = (λm)m∈N ∈ `τ
for all τ > p/2. Moreover, as d → ∞, εinit

d tends to zero faster than the inverse of any

polynomial and bd ∈ O(ln d) as d → ∞. Thus limd→∞ ad/d = 1. In addition, if SI is

strongly polynomially tractable then bd ∈ O(1) as d→∞.

Proof. From Theorem 2.9 it follows that there is some C1 > 0 such that

1

(λd,1)τ

∑
k∈∇d

(λ̃d,k)τ =

∞∑
i=1

(
λd,i
λd,1

)τ
≤ C1d

2τq/p for every d ∈ N (5.35)

and all τ > p/2. Once more the index set ∇d is given as in (5.9). Indeed, Theorem 2.9

shows that it is sufficient to take C1 = 2 (1+C)2τ/p ζ(2τ/p). As in the proof of Lemma 5.6

it suffices to consider the case d = 1 in (5.35) to see that λ ∈ `τ is necessary for polynomial

tractability. Moreover, as in Step 1 of the proof of Proposition 5.14, it follows that(
‖λ | `τ‖τ

λτ1

)bd
≤ C1 d

2τq/p, d ∈ N, (5.36)

since λd,1 = λbd1 ·λ1 · . . . ·λad . Due to the general assertion λ2 > 0 we have ‖λ | `τ‖τ > λτ1 ,

and thus polynomial tractability of SI implies bd ≤ C2 ln d for some C2 ≥ 0, i.e. bd is

O(ln d) as d→∞. Therefore we obviously have

1 ≥ ad
d

= 1− bd
ln d

ln d

d
≥ 1− C2

ln d

d
→ 1, d→∞.

The proof that strong polynomial tractability leads to bd ∈ O(1) as d → ∞ can be ob-

tained using (5.36) with the same arguments as before and q = 0. Finally we need to show

the assertion concerning εinit
d . Here we refer to Step 2 in the proof of Proposition 5.14.

5.4. Applications. This last section is devoted to applications of the theory developed

previously. In Section 5.4.1 we follow the introduction of [Wei12a] and illustrate the power

of additional (anti)symmetry conditions on linear tensor product problems by using sim-

ple toy examples. Afterwards, in Section 5.4.2, we direct our attention to more advanced

problems which we are faced with in practice. There we briefly introduce wavefunctions



106 5. Problems on Hilbert spaces with (anti)symmetry conditions

and show how our results allow one to handle the approximation problem for such classes

of functions.

5.4.1. Toy examples. The aim of the following simple examples is to show that ex-

ploiting an a priori knowledge about (anti)symmetries of a given tensor product problem

can help to obtain tractability, but it does not make the problem trivial in general.

Let S = (Sd : Hd → Gd)d∈N denote a tensor product problem between Hilbert spaces.

Remember that by Section 2.4 for complexity studies it suffices to specify the singular

values of the univariate operator S1. To simplify the presentation we slightly abuse the

notation and denote the information complexity of the entire problem S by nent(ε, d).

We want to compare this quantity with the respective information complexities of the

restrictions of S to the fully symmetric and the fully antisymmetric subspaces of (Hd)d∈N.

These numbers will be denoted by nsym(ε, d) and nasy(ε, d), respectively.

Clearly, our results show that in any case (as long as we deal with the worst case

setting and the absolute error criterion)

nasy(ε, d) ≤ nsym(ε, d) ≤ nent(ε, d) for every ε > 0 and all d ∈ N,

where for d = 1 the terms coincide, since then we do not claim any (anti)symmetry. To

see that additional (anti)symmetry conditions may reduce the information complexity

dramatically, consider the following three examples.

Example 5.18. Let us have a look at the simple case of a linear operator S1 with singular

values σ such that λ1 = λ2 = 1 and λj = 0 for j ≥ 3. Then the information complexity

of the entire tensor product problem can be shown to be

nent(ε, d) = 2d for all d ∈ N and ε < 1.

Hence the problem suffers from the curse of dimensionality and is therefore intractable.

On the other hand, our results show that in the fully symmetric setting we have

polynomial tractability, because

nsym(ε, d) = d+ 1 for all d ∈ N and ε < 1.

Moreover, it can be proved that in this case the complexity of the fully antisymmetric

problem decreases with increasing dimension d and finally the problem even gets trivial.

In detail, we have

nasy(ε, d) = max {3− d, 0} for all d ∈ N and ε < 1,

which yields strong polynomial tractability.

Example 5.19. Next let us consider a more challenging problem, where λ1 = · · · = λm
= 1 and λj = 0 for every j > m ≥ 2. For m = 2 this obviously coincides with the

example studied above, but letting m increase may tell us more about the structure of

(anti)symmetric tensor product problems. In this situation it is easy to check that for

every d ∈ N and all ε < 1,

nent(ε, d) = md and nasy(ε, d) =

{(
m
d

)
, d ≤ m,

0, d > m.
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Since
(
m
d

)
≥ 2d−1 for d ≤ bm/2c, this means that for large m the complexity in the

antisymmetric case increases exponentially fast with d up to a certain maximum. Beyond

this point it falls back to zero.

The information complexity in the symmetric setting is much harder to calculate for

this case. However, it can be seen that we have polynomial tractability, but nsym(ε, d)

needs to grow at least linearly with d so that the symmetric problem cannot be strongly

polynomially tractable, whereas this holds in the antisymmetric setting. The entire prob-

lem again suffers from the curse of dimensionality.

Example 5.20. For a last illustrative example consider the case λ1 = 1 and λj+1 = j−β

for some β ≥ 0 and all j ∈ N. That means, we have the two largest singular values σ1 = σ2

of S1 equal to one. The remaining series decays like the inverse of some polynomial. If

β = 0 then the operator S1 is not compact, since the sequence λ = (λm)m∈N does not

tend to zero; hence all the information complexities are infinite in this case.

For β > 0, any δ > 0, and some C > 0 we have

nent(ε, d) ≥ 2d, nsym(ε, d) ≥ d+ 1, and nasy(ε, d) ≤ Cε−(2/β+δ),

for all ε < 1 as well as every d ∈ N. Thus, again for the entire problem we observe

the curse, whereas the antisymmetric problem is strongly polynomially tractable. Once

more, the symmetric problem can be shown to be polynomially tractable. Note that in

this example the antisymmetric case is not trivial, because all λj are strictly positive.

If we replace j−β by log−1(j + 1) in this example we obtain (polynomial) intractability

even in the antisymmetric setting.

5.4.2. Wavefunctions. During the last few decades there has been considerable inter-

est in finding approximations of so-called wavefunctions, e.g., solutions of the electronic

Schrödinger equation. Due to the Pauli principle of quantum physics only functions with

certain (anti)symmetry properties are of physical interest. For a more detailed view see,

e.g., Hamaekers [Ham09], Yserentant [Yse10], or Zeiser [Zei10]. Furthermore, for a com-

prehensive introduction to the topic, as well as a historical survey, we refer the reader to

Hunziker and Sigal [HS00] and Reed and Simon [RS78].

In particular, the notion of multiple partial antisymmetry with respect to two sets

of coordinates is useful for describing wavefunctions Ψ. In computational chemistry such

functions occur as models which describe quantum states of certain physical d-particle

systems. Formally, these functions depend on d blocks of variables yi = (x(i), s(i)), for

i = 1, . . . , d, which represent the spacial coordinates x(i) = (x
(i)
1 , x

(i)
2 , x

(i)
3 ) ∈ R3 and

certain additional intrinsic parameters s(i) ∈ C of each particle yi within the system.

Hence, rearranging the arguments so that x = (x(1), . . . ,x(d)) and s = (s(1), . . . , s(d))

yields

Ψ: (R3)d × Cd → R, (x, s) 7→ Ψ(x, s).

In the case of systems of electrons one of the most important parameters is called spin and

it can take only two values, i.e., s(i) ∈ C = {−1/2,+1/2}. Due to the Pauli principle the

only wavefunctions Ψ that are physically admissible are those which are antisymmetric
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in the sense that for I ⊆ {1, . . . , d} and Ic = {1, . . . , d} \ I,

Ψ(π(x), π(s)) = (−1)|π|Ψ(x, s) for all π ∈ SI ∪ SIc .

Thus Ψ changes its sign if we interchange any particles yi and yj which possess the

same spin, i.e. s(i) = s(j). So the set of particles, and therefore also the set of spacial

coordinates, naturally split into two groups I+ and I−. In detail, for wavefunctions of

d particles yi we can (without loss of generality) assume that the first #I+ indices i

belong to the group of positive spin, whereas the rest of the particles have negative spin,

that is, I+ = {1, . . . ,#I+} and I− = Ic+ = {#I+ + 1, . . . , d}.
In physics it is well-known that some problems, e.g., the electronic Schrödinger equa-

tion, which involve (general) wavefunctions can be reduced to a bunch of similar problems,

where each of them only acts on functions Ψs from a certain Hilbert space Fd = Fd(s).
That is,

Ψs = Ψ(·, s) ∈ Fd ⊂ {f : (R3)d → R}

with a given fixed spin configuration s ∈ Cd. Of course every possible spin configuration s

corresponds to exactly one choice I+ ⊆ {1, . . . , d} of indices. Moreover, it is known

that Fd is a Hilbert space with a tensor product structure. Therefore we can model

wavefunctions as elements of certain classes of smoothness, e.g., Fd ⊂ Hd = H1⊗· · ·⊗H1

= W
(1,...,1)
2 ((R3)d), as Yserentant [Yse10] recently did, and incorporate spin properties

by using projections of the type A = AI+ ◦AI− , as defined in Section 5.1.1. In particular,

Lemma 5.2 then yields

Fd = A(Hd) = AI+(H#I+)⊗ AI−(H#I−),

and the system of all

ξk =
√

#SI+#SI− A(ek), k ∈ ∇d,

with

∇d = {k = (i, j) ∈ N#I+× N#I− | i1 < · · · < i#I+ and j1 < · · · < j#I−}

is an orthonormal basis of Fd = A(Hd), where the set {em | m ∈ Nd} is once again

assumed to be an orthonormal tensor product basis of Hd = H1 ⊗ · · · ⊗H1 constructed

with the help of {em | m ∈ N}, an arbitrary orthonormal basis of H1.

Note that in the previous sections the underlying Hilbert space H1 always consists

of univariate functions. In contrast, wavefunctions of one particle depend on at least

three (spacial) variables, but we want to stress that this is just a formal issue. Anyway,

our approach radically decreases the degrees of freedom and improves the solvability of

certain problems S = (Sd)d∈N like the approximation problem, i.e. Sd = id: Hd → Gd for

every d ∈ N, considered in connection with the electronic Schrödinger equation.

Theorem 5.4 provides an algorithm which is optimal for the Gd-approximation of

d-particle wavefunctions in Fd with respect to all linear algorithms that use at most

n continuous linear functionals. Therefore we only need to choose the right ONB

{em = φm | m ∈ N} of H1 which coincides with the eigenfunctions of the univariate

operator W1 = S†1S1. Moreover, the error can be calculated exactly in terms of the

eigenvalues λ = (λm)m∈N of W1.
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Furthermore it is possible to prove a modification of Theorem 5.16 for problems

dealing with wavefunctions. In fact, for the above mentioned approximation problem,

polynomial tractability, as well as strong polynomial tractability, is equivalent to the fact

that the sequence λ of the squared singular values of the univariate problem belongs

to some `τ -space if we consider the absolute error criterion. The reason is that all the

assertions in Section 5.3.3 can be easily extended to the multiple partially antisymmetric

case. In detail, if we denote the number of antisymmetric coordinates x(i) within each

antisymmetry group I
(m)
d ⊆ {1, . . . , d} by ad,m with m = 1, . . . ,M then the constraint

ad + bd = d extends to

ad,1 + · · ·+ ad,M + bd = d.

Here bd again denotes the number of coordinates without any antisymmetry condition.

In conclusion, the sufficient condition (5.25) in Proposition 5.12 transfers to

1

d

M∑
m=1

ln(ad,m!) ≥ ‖λ | `τ‖τ for all d ≥ d0,

which is always satisfied in the case of wavefunctions, since thenM = 2 and the cardinality

ad,m of at least one of the groups of the same spin needs to grow linearly with the

dimension d.
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