
Introduction

Generalizing a characterization of σ-compact spaces Σ and σ due to J. Mogilski ([Mo]

and corrections in [CDM]), M. Bestvina and J. Mogilski introduced in [BM] the notion

of absorbing set for a class C of separable metrizable spaces. Though absorbing sets are

defined as subsets of s-manifolds (s is the pseudointerior of the Hilbert cube Q), they

have a characterization independent of any embedding into an s-manifold, the princi-

pal ingredient of this characterization being the condition of strong universality (whose

definition is recalled in Section 1).

The notion of absorbing set turns out to be extremely important in infinite-dimensional

topology. On the one hand, because of its generality, Bestvina and Mogilski constructed

absorbing sets for all Borel classes, but many other classes also admit absorbing sets, for

example, the projective classes and the small Borel classes. Moreover, many spaces are

strongly universal for the class of their closed subspaces which allows one to prove gene-

ral theorems like the following [BC1]: Let X be a regular countable space and let Cp(X)

(resp. C∗p(X)) denote the space of continuous (resp. bounded continuous) real functions

on X, endowed with the topology of pointwise convergence; then C∗p(X) is homeomorphic

to Cp(X)× σ. On the other hand, the characterization of absorbing sets is applicable to

spaces that either have no natural completion or are “wildly” embedded in their natural

completions (as, for example, the hyperspace of arcs in the plane, see [Ca3]). A reader

who wishes to appreciate the extent and variety of applications of the notion of absorbing

set may consult the survey [Ca7].

If Ω1, Ω2 are two C-absorbing sets in s, then for every open cover U of s there

is a homeomorphism between Ω1 and Ω2, U-close to the identity map of Ω1. Let us

remark that in general, there may be no autohomeomorphism of s mapping Ω1 onto Ω2
(the first example of this sort was given in [Ca1]). The situation seemed to be different

for embeddings of absorbing sets into the Hilbert cube: for every class C possessing a

C-absorbing set, only one (up to homeomorphism) pair (Q,X), where X is a copy of a

C-absorbing set such that Q \ X is locally homotopy negligible in Q (such subsets X

will be called homotopy dense in Q) was known. Moreover, this pair (Q,X) could be

characterized by strong universality properties for pairs, as could the different known

pairs (s,X), where X is a C-absorbing homotopy dense set in s.

The following questions, which are the motivation for this paper, then appear natu-

rally: 1) What is the number of topologically distinct pairs (M,X), where M is Q or s

and X is a homotopy dense copy of a C-absorbing set in M? 2) Could pairs (M,X) of

this type always be characterized by properties of strong universality for pairs?
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The most complicated part in the proofs of the strong C-universality of a space X

is often to show that every space C from the class C admits a closed embedding into

X, i.e., to verify the simple C-universality of X. Suppose X is contained in a space M

and C is contained in a compactum K. If there exists an embedding ϕ of K into M

such that ϕ−1(X) = C, then the restriction of ϕ onto C is a closed embedding of C into

X. Whenever such a ϕ exists, its construction is generally much simpler than a direct

construction of a closed embedding of C into X.

Given a pair (M,X), a class C of spaces, and a class K of compacta, we will show

in Section 2 that under some conditions on (M,X), C, and K, the C-universality of X is

equivalent to the (K, C)-universality of the pair (M,X) (the latter means that for every

pair (K,C), where K ∈ K and C ∈ C, there exists an embedding ϕ : K → M with

ϕ−1(X) = C). Applications of this equivalence are numerous, see [Ca6], [Ca8], [Ca9],

[BC1], [BC2].

Let (M,X) be a pair, where M is an ANR and X is a homotopy dense subset of M .

In Section 3 we show that if X has SDAP (the strong discrete approximation property,

used by H. Toruńczyk to characterize the s-manifolds [To2]), then for every pair (K,C)

the strong (K,C)-universality of the pair (M,X) implies the strong C-universality of X.

As in the case of simple universality, this result has a reciprocal: under some conditions

the strong C-universality of X implies the strong (M0 ∩ C, C)-universality or even the

strong (M0, C)-universality of the pair (M,X) (M0 is the class of compacta).

These relations between strong universalities of spaces and pairs are used in Section 5

to prove Addition, Deleting, and Negligibility Theorems for absorbing spaces, which re-

semble well known properties of s- or Σ-manifolds. As an example we mention here the

following result that is a particular case of Theorem 5.9: Let Π2n be the absolute retract,

absorbing for the projective class P2n (n ∈ N). If A ⊂ Π2n is a subset of the class P2n−1,

then Π2n \A is homeomorphic to Π2n.

We shall need a general technique supplying us with homotopy dense copies of ab-

sorbing spaces in s. This technique, developed in Section 6, gives also a new method for

constructing absorbing sets. Let C be a space. Embed C as a closed linearly independent

subset into a pre-Hilbert space H (this is always possible) and let L(C) denote the linear

span of C in H. Then (see [Ca4]) L(C) is an absorbing set for the smallest topological

class containing C and [0, 1] and satisfying the following conditions:

(1) every closed subspace of a space C from C belongs to the class C;

(2) if C,C ′ ∈ C, then C × C ′ ∈ C.

According to [Ca4], the space L(C) is homeomorphic to its square. Slightly modifying

the construction of the space L(C), we assign to each space C an absolute retract Ω(C),

absorbing for the smallest topological class C containing C and satisfying the conditions

(1) and

(3) if C ∈ C, then C × [0, 1] ∈ C.

New phenomena appear here: in general Ω(C) admits no compatible structure of

topological group or of convex set; Ω(C) may not be homeomorphic to its square. We
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will give an example of a compactum C such that Ω(C) does not admit structures of a

topological group or a convex set, and all powers Ω(C)n, n ∈ N, are topologically distinct.

Let C be a class of spaces for which there exists a C-absorbing absolute retract Ω.

Having developed the necessary tools, we finally come in Section 7 to the problem of to-

pological classification of pairs (s,X) and (Q,X), where X is a homotopy dense copy of Ω

in s or Q. If all elements of C are σ-compact, it is easy to see that for any homotopy dense

copy X of Ω in Q (resp. in s), the pair (Q,X) (resp. (s,X)) is strongly (M0, C)-universal

(resp. strongly (M1, C)-universal (M1 is the class of Polish spaces)). This implies that

the pair (Q,X) (resp. (s,X)) is unique up to homeomorphism. For embeddings into s, the

situation changes, whenever C contains non-sigma-compact spaces. Suppose C is stable

under multiplication by [0, 1] and contains the space ωω of irrationals. Then, denoting by

F0(M,X) the class of pairs (F, F ∩X), where F is a closed subset of M we have:

(1) s contains two homotopy dense copies X1, X2 of Ω such that (a) for i = 1, 2 the

pair (s,Xi) is strongly F0(s,Xi)-universal, (b) X1 is contained in a countable union of

elements ofM0 ∩ C, but X2 is not contained in such a union.

We will show in Theorem 7.4 that under some hypotheses on C, there exists up to

homeomorphism a unique pair (s,X), where X is a homotopy dense copy of Ω, contained

in a σ-compact subset of s.

(2) s contains continuum many homotopy dense copies Eα, α ∈ c, of Ω such that

(a) for every α ∈ c the pair (s, Eα) is not strongly F0(s, Eα)-universal; (b) (s, Eα) 6∼=
(s, Eβ) if α 6= β (here the symbol ∼= means “homeomorphic to”).

If, in addition, C contains the classM1 then

(3) s contains continuum many homotopy dense copies Fα, α ∈ c, of Ω such that

(a) each (s, Fα) is strongly F0(s, Fα)-universal; (b) (s, Fα) 6∼= (s, Fβ), provided α 6= β.

Observe the difference between the families (2) and (3): if α 6= β, then F0(s, Fα) 6=

F0(s, Fβ), but the pairs (s, Fα) are homogeneous in the sense that for any x, y ∈ Fα
there is an autohomeomorphism h of (s, Fα) such that h(x) = y. On the other hand,

F0(s, Eα) = F0(s, Eβ) for any α, β, but the pairs (s, Eα) are not homogeneous (though

the spaces Eα are).

The case of pairs (Q,X) is much more curious. The situation depends on the intersec-

tionM0 ∩C. If the class C satisfies the hypotheses of Theorem 4.1 and contains the class

M0, then there is a unique (up to homeomorphism) pair (Q,X), where X is a homotopy

dense copy of Ω. On the other hand, if C satisfies the hypotheses of Theorem 4.1 but fails

to containM0, then

(1′) Q contains two homotopy dense copies X1, X2 of Ω such that (a) for i = 1, 2 the

pair (Q,Xi) is strongly F0(Q,Xi)-universal, (b) X1 is contained in a countable union of

elements ofM0 ∩ C, but X2 is not contained in such a union.

Here again, the pair (Q,X1), under some conditions on C, is still unique up to hom-

eomorphism.

(2′) Q contains continuum many homotopy dense copies Eα, α ∈ c, of Ω such that (a)

(Q,Eα) is not strongly F0(Q,Eα)-universal for α ∈ c; (b) (Q,Eα) 6∼= (Q,Eβ) if α 6= β.
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Finally, if C contains no strongly infinite-dimensional compactum, then

(3′) Q contains continuum many homotopy dense copies Fα, α ∈ c, of Ω such that

(a) for every α ∈ c the pair (Q,Fα) is strongly F0(Q,Fα)-universal; (b) (Q,Fα) 6∼= (Q,Fβ)

if α 6= β.

1. Preliminaries

All spaces considered in this paper are metrizable and separable, all maps are continuous.

Let us recall the main model spaces of infinite-dimensional topology: the Hilbert cube

Q = [−1, 1]ω, its pseudointerior s = (−1, 1)ω which is homeomorphic to the separable

Hilbert space l2 [Mi, §6.6], the radial interior Σ = {(ti) ∈ Q | supi∈N
|ti| < 1} of Q, which

is known to be homeomorphic to the pseudo-boundary Q \ s of Q, and the subspace

σ = {(ti) ∈ s | ti = 0 for almost all i} ⊂ s ⊂ Q. As usual, ω is the set of all non-negative

integers {0, 1, 2, . . .}, N = ω \ {0}; 2ω is the Cantor set, I stands for the segment [0,1],

and ∂Ik is the boundary of the finite-dimensional cube Ik.

By cov(X) we denote the collection of all open covers of a spaceX. We say that a cover

U of X refines a cover V (denoted by U ≺ V ) if for every U ∈ U there exists V ∈ V with

U ⊂ V . For a cover U ∈ cov(X) and A ⊂ X let St(A,U) =
⋃
{U ∈ U | A ∩ U 6= ∅} and

StU = {St(U,U) | U ∈ U}. Two maps f, g : Y → X are defined to be U-close (denoted

by (f, g) ≺ U) if for every y ∈ Y there is U ∈ U with {f(y), g(y)} ⊂ U . Let X be a space

endowed with a metric d. For a cover U ∈ cov(X) let mesh(U) = sup{diam(U) | U ∈ U}.

By O(x, ε) we denote the open ε-ball around x ∈ X.

Further the sentence “a map f : X → Y can be approximated by a map f : X → Y

with a certain property” will mean that for every open cover U of Y there is a map f

possessing this property and U-close to f .

We define a subset X of a space Y to be homotopy dense if there is a homotopy

h : Y × [0, 1] → Y such that h(Y × (0, 1]) ⊂ X and h(y, 0) = y for all y ∈ Y . A subset

A ⊂ Y is called homotopy negligible if X \ A is homotopy dense in X. An embedding

e : X → Y is called homotopy dense if e(X) is a homotopy dense set in Y .

One can show that if Z ⊂ Y is a homotopy dense set in Y and Y ⊂ X is homotopy

dense in X then the set Z ⊂ X is homotopy dense in X. According to [To1, 2.4] a

subset A of an ANR-space X is homotopy negligible if and only if it is locally homotopy

negligible (i.e. every map f : Ik → X of a finite-dimensional cube with f(∂Ik) ∩ A = ∅

can be approximated by a map f : Ik → X such that f |∂Ik = f |∂Ik and f(Ik)∩A = ∅).

It is well known that every dense convex set C ⊂ X is homotopy dense, whenever X is

a subset of a locally convex linear metric space. We say that a map f : X → Y is closed

over a subset A ⊂ Y if for each a ∈ A and each neighborhood U of f−1(a) (which may

be empty) there exists a neighborhood V of a such that f−1(V ) ⊂ U .

A space X is defined to have the strong discrete approximation property (briefly

SDAP) if any map f :
⊕
n∈N

In → X can be approximated by a map sending {In}n∈N to

a discrete collection in X. The strong discrete approximation property plays a crucial role

in characterizing manifolds modeled on the pseudo-interior s = (−1, 1)ω of the Hilbert
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cube: a space X is an s-manifold if and only if X is a Polish ANR satisfying SDAP [To2].

On the other hand, X is an ANR satisfying SDAP if and only if X admits a homotopy

dense embedding into an s-manifold [Ba1]. This characterization implies the following fact

(cf. [Bo]): if X is an ANR satisfying SDAP then every open subspace in X has SDAP too.

Indeed, by [Ba1], X admits a homotopy dense embedding X ⊂ M into an s-manifold.

Then for every open set U ⊂ X, letting Ũ ⊂M be an open set with Ũ ∩X = U , we see

that U is a homotopy dense set in the s-manifold Ũ . Again applying [Ba1], we conclude

that U satisfies SDAP.

The following proposition characterizes SDAP.

1.1. Proposition. Let X be an ANR. The following conditions are equivalent :

(1) X has SDAP ;

(2) every map f :
⊕
n∈N

In → X can be approximated by a map sending {In}n∈N

onto a locally finite family in X;

(3) for every space F and every locally finite collection {Fi}i∈I of subsets in F every

map f : F → X can be approximated by a map sending {Fi}i∈I onto a locally finite

collection in X.

Proof. The implication (3)⇒(2) is trivial, and the implication (2)⇒(1) is in [Cu, p. 203]

(see also [Ba1, Lemma 4]). For the proof of (1)⇒(3) we need the following lemma proved

in [Ba1].

1.2. Lemma. If {Fi}i∈I is a locally finite collection of subsets of a space X then there

exists a cover U ∈ cov(X) such that the collection {St(Fi,U)}i∈I is locally finite in X.

We proceed to prove (1)⇒(3). Fix U ∈ cov(X) and f : F → X. By [Ba1], there

exists an s-manifold M̃ containing X as a homotopy dense set. For any U ∈ U fix

an open set Ũ ⊂ M̃ with Ũ ∩ X = U , and consider the open set M =
⋃
U∈U Ũ in

M̃ and the cover Ũ = {Ũ | U ∈ U} of M . Notice that X ⊂ M ⊂ M̃ and M is an

s-manifold. By Lavrentiev’s Theorem [En], there are a Polish space F ′ containing F

and a map f ′ : F ′ → M extending f . Since {Fi}i∈I is locally finite in F , there is an

open neighborhood F̃ of F in F ′ such that {Fi}i∈I is locally finite in F̃ . Let finally

f̃ = f ′|F̃ : F̃ →M . Let V ∈ cov(M) be such that StV ≺ Ũ . According to [To2], there is a

closed embedding e : F̃ →M such that (f̃ , e) ≺ V . Then {e(Fi)}i∈I is locally finite inM .

By Lemma 1.2, there is W ∈ cov(M) such that W ≺ V and {St(e(Fi),W)}i∈I is locally

finite in M . Using the homotopy density of X in M , find f : F → X with (f, e|F ) ≺ W .

It is easy to verify that (f, f) ≺ U and {f(Fi)}i∈I is locally finite in X.

A subset A ⊂ X is defined to be a (strong) Z-set in X if A is closed in X and if for

every cover U ∈ cov(X) there is a map f : X → X such that (f, id) ≺ U and f(X)∩A = ∅

(ClX(f(X)) ∩ A = ∅ in the case of strong Z-sets). It is well known that a closed subset

A of an ANR-space X is a Z-set in X iff A is homotopy negligible and iff every map

f : Q→ X of the Hilbert cube can be approximated by maps whose range misses A. One

should keep in mind that every strong Z-set is a Z-set, but that the converse is not true

(see [BBMW]). However, if X ∈ANR satisfies SDAP then every Z-set in X is a strong

Z-set [BM, 1.7]. We will sometimes use the following simple fact: for a homotopy dense
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subset X ⊂ Y , a closed subset A ⊂ Y is a Z-set in Y if and only if A ∩X is a Z-set in

X. Very often we will use the following result from [BM, 1.1]: if f : C → X is a map into

an ANR such that the restriction f |B : B → X of f to a closed subset B ⊂ C is a closed

embedding with f(B) being a strong Z-set in X, then for every open cover U ∈ cov(X)

there is a map f ′ : C → X such that (f ′, f) ≺ U , f ′|B = f |B, f ′(C \B) ∩ f(B) = ∅ and

f ′ is closed over f(B).

An embedding f : A → X is defined to be a Z-embedding provided f(A) is a Z-set

in X. A (strong) Zσ-space is, by definition, a space which is a countable union of its

(strong) Z-sets. According to [BM, §1], an ANR is a strong Zσ-space if and only if it is

a Zσ-space satisfying SDAP.

Now we recall the definition of the absolute Borel classes Mα and Aα, α < ω1. For

every space X define the classes Aα(X), Mα(X), where α is a countable ordinal, as

follows. Let A0(X) denote the class of all open subsets in X and letM0(X) = {A ⊂ X |

X \A ∈ A0(X)}. Assuming that for a countable ordinal α the classesMξ(X) and Aξ(X)

have been defined for all ordinals ξ < α, let Aα(X) = {A ⊂ X | A =
⋃
n=1An, An ∈⋃

ξ<αMξ(X) for all n} andMα(X) = {A ⊂ X | X\A ∈ Aα(X)}. A space A is defined to

belong to the absolute Borel class Aα (resp.Mα), provided e(A) ∈ Aα(X) (resp. e(A) ∈

Mα(X)) for every embedding e : A→ X. In particular,M0 is the class of compacta,M1
is the class of Polish spaces and A1 is the class of σ-compacta. By Pn, n ≥ 0, we denote the

projective classes. Recall that P0 is the class of all Borel spaces. The classes Pn for n ≥ 1

are defined inductively: P2n−1 is the class of all continuous metrizable images of spaces

from P2n−2; and P2n consists of complements in Polish spaces of spaces from P2n−1.

Let C be a class of spaces. Define the class σC as follows. A space X belongs to σC

provided it can be written as a countable union X =
⋃
n∈N

Xn of closed subsets such

that for every n ∈ N, Xn admits a closed embedding into a space C ∈ C. For a class D of

spaces and a space X let D(X) = {D ⊂ X | there is a compactum K ⊃ X and a subspace

D̃ ∈ D of K such that D̃ ∩X = D}. Notice thatM0(X) (resp.M1(X)) coincides with

the family of closed (resp. Gδ-) subsets of X.

A class C of spaces is called

(1) topological if for every C ∈ C and every homeomorphism h : C → D it follows

that D ∈ C;

(2) local if a space X belongs to C when each point x ∈ X has a neighborhood U ∈ C;

(3) compactification-admitting if for every C ∈ C there is a compactum K ∈ C conta-

ining C;

(4) T -stable, where T is a space, if C × T ∈ C for every C ∈ C;

(5) D-hereditary , where D is a class of spaces, if for every C ∈ C we have D(C) ⊂ C;

(6) closed-additive if X ∈ C whenever X = X1 ∪ X2 is the union of two subspaces

X1, X2 ∈ C one of which is closed in X;

(7) D-additive, where D is a class of spaces, if X ∈ C whenever X = C ∪ D, where

C ∈ C and D ∈ D;

(8) weakly D-additive, where D is a class of spaces, provided for every compactum

K ∈ C and subsets D,C ⊂ K, if D ∈ D and C ∈ C then D ∪ C ∈ C.
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For M0-hereditary classes of spaces we will use the commonly used term “a closed-

hereditary class”. We distinguish the collection M0(X) of closed subsets of a space X

and the topological class F0(X) of spaces homeomorphic to closed subspaces of X.

Given a class C of spaces let C(c.d.) (resp. C(s.c.d.)) denote the subclass of C consisting

of all countable-dimensional (resp. strongly countable-dimensional) spaces from the class

C. For a countable ordinal α let also C(α) (resp. C[α]) be the subclass of C consisting of

all spaces C ∈ C with indC < α (resp. indC ≤ α).

A space X is defined to be C-universal , where C is a class of spaces, if for every C ∈ C

there is a closed embedding e : C → X.

Let X, C be two spaces. X is defined to be strongly C-universal if for every cover

U ∈ cov(X), closed subset B ⊂ C and map f : C → X whose restriction f |B : B → X is

a Z-embedding, there is a Z-embedding f : C → X such that f |B = f |B and (f, f) ≺ U .

According to [BM, 1.7 and 2.2], an ANR-spaceX satisfying SDAP is strongly C-universal,

provided for open sets U ⊂ X and V ⊂ C every map f : V → U can be approximated

by Z-embeddings.

A space X is defined to be strongly C-universal , where C is a class of spaces, if X

is strongly C-universal for every C ∈ C. We define a space X to be strongly universal

provided X is strongly F0(X)-universal.

By a pair (X,Y ) we will always understand a couple of spaces with Y ⊂ X. For classes

K, C of spaces by (K, C) we denote the class of pairs (K,C) with C ∋ C ⊂ K ∈ K.

A pair (X,Y ) is defined to be strongly (K,C)-universal if, given a cover U ∈ cov(X)

and a map f : K → X whose restriction f |B : B → X onto a given closed subset B ⊂ K

is a Z-embedding with (f |B)−1(Y ) = B ∩ C, there exists a Z-embedding f : K → X

such that (f, f) ≺ U , f |B = f |B and f−1(Y ) = C. Notice that a pair (X,Y ) is strongly

(K,C)-universal if and only if the pair (X,X \ Y ) is strongly (K,K \ C)-universal.

For a pair (X,Y ), let M0(X,Y ) = {(F, F ∩ Y ) | F ∈ M0(X)} and let F0(X,Y ) be

the class of pairs homeomorphic to couples from the classM0(X,Y ).

Let ~C be a class of pairs. A pair (X,Y ) is defined to be ~C-universal provided for every

couple (K,C) ∈ ~C there is a closed embedding e : K → X such that e−1(Y ) = C. A pair

(X,Y ) is defined to be strongly ~C-universal , provided it is strongly (K,C)-universal for

every pair (K,C) ∈ ~C. We define a pair (X,Y ) to be strongly universal , provided it is

strongly F0(X,Y )-universal.

Notice that a space X is strongly C-universal if and only if the pair (X, ∅) is strongly

(C, ∅)-universal.

Now we establish some important properties of strongly universal spaces and pairs.

1.3. Lemma. Let C ⊂ K and X ⊂M be two pairs of spaces with M being an ANR. If the

pair (M,X) is strongly (K,C)-universal then, for every open subset U ⊂ M and every

closed subset F ⊂ K, the pair (U,U ∩X) is strongly (F, F ∩ C)-universal.

Proof. Repeating the arguments from the proof of Proposition 2.1 of [BM], we can show

that Lemma 1.3 holds if the open set U is contractible in M (just use the fact that any

map from F into U extends to a map from K into M).
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Using the fact that any open subset U of the ANR-space M admits a cover by open

sets contractible in M and repeating the arguments from the proof of Proposition 2.7 of

[BM] show that Lemma 1.3 is valid for any open set U in M .

This lemma and [BGM, 6.1] imply

1.4. Lemma. Let (M,X), (K,C) be two pairs , whereM is an ANR and K is compact , and

let Y be a homotopy dense subset of M . If the pair (Y, Y ∩X) is strongly (K,C)-universal

then so is the pair (M,X).

For a space X we denote by SU(X) the class of all spaces C such that the space X

is strongly C-universal. The class SU(X) has the following properties:

1.5. Proposition. Let X be an ANR.

(1) the class SU(X) is topological and closed-hereditary ;

(2) if every Z-set in X is a strong Z-set , then the class SU(X) is closed-additive;

(3) if X satisfies SDAP then the class SU(X) is local ;

(4) if X is a strong Zσ-space then SU(X) = σ-SU(X).

Proof. The statement (1) follows from Lemma 1.3. The proofs of the second and the

third statements depend on the following

1.6. Lemma. Let X be a strongly C-universal ANR and C a space that can be expressed

as C =
⋃
n≥0 Cn, where C0 = ∅ and each Cn ∈ C is a closed subset of X with Cn ⊂ Cn+1.

Suppose f : C → X is a map such that the collection {f(C \ Cn)}n≥0 is locally finite

in X. Then for every cover U ∈ cov(X) there exists a Z-embedding f : C → X such that

(f, f) ≺ U .

Proof. Fix U ∈ cov(X). By Lemma 1.2, there is V0 ∈ cov(X) such that the collection

{St(f(C \Cn),V0)}n≥0 is locally finite in X. Pick a sequence {Vn}n≥1 ⊂ cov(X) so that

StVn ≺ Vn−1 and meshVn < 2
−n for every n ∈ N. Let f0 = f and for every n ≥ 1, using

strong Cn-universality of X, construct inductively a map fn : C → X such that

fn|Cn : Cn → X is a Z-embedding, fn|Cn−1 = fn−1|Cn−1, (fn, fn−1) ≺ Vn.

Then the limit map f = limn→∞ fn : C → X is V0-close to f0 = f , and hence, the

collection {f(C \ Cn)}n≥0 is locally finite in X. It follows from the construction that f

is injective and f |Cn : Cn → X is a Z-embedding for every n ∈ N. Thus f(C) is a local

Z-set in X and, being closed, is a Z-set in X.

This lemma implies the following useful

1.7. Proposition. Let f : C → X be a map of a space C into a strongly C-universal

ANR X. For every open set U ⊂ X and every cover U ∈ cov(U) there is a Z-embedding

g : f−1(U)→ U such that (g, f |f−1(U)) ≺ U .

Now we prove the second statement of 1.5. Suppose that every Z-set in X is strong

and C is a space that can be expressed as C = C1 ∪ C2, where C1, C2 ∈ SU(X) and C1
is closed in C. To show that X is strongly C-universal, fix U ∈ cov(X), a closed subset

B ⊂ C, and a map f : C → X that restricts to a Z-embedding on B. According to [BM,

1.1], we may assume that f(C \B) ∩ f(B) = ∅ and f is closed over f(B).
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Let V ∈ cov(X) be such that St2 V ≺ U . Since X is an ANR, there is W ∈ cov(X)

such that every map f1 : C1 ∪ B → X with (f1, f |C1 ∪ B) ≺ W extends to a map

f1 : C → X, V-close to f .

By 1.7, there is a Z-embedding g : C1 \ B → X \ f(B) such that (g, f |C1 \ B) ≺ W

and d(g(c), f(c)) < 1
2d(f(c), f(B)) for each c ∈ C1 \ B. Then the map f1 : C1 ∪ B → X

defined by

f1(c) =

{
f(c) if c ∈ B,
g(c) if c ∈ C1 \B,

is a Z-embedding W-close to f |C1 ∪ B. Extend f1 to a map f1 : C → X such that

(f1, f) ≺ V . By [BM, 1.1], we can find a map f̃1 : C → X such that (f̃1, f1) ≺ V ,

f̃1|C1∪B = f1|C1∪B, f̃1(C \(C1∪B))∩f1(C1∪B) = ∅ and f̃1 is closed over f̃1(C1∪B).

Using Proposition 1.7, find a Z-embedding h : C2 \ (C1 ∪ B) → X \ f̃1(C1 ∪ B)

such that (h, f̃1|C2 \ (C1 ∪ B)) ≺ V and d(h(c), f̃1(c)) <
1
2d(f̃1(c), f̃1(C1 ∪ B)) for each

c ∈ C2 \ (C1 ∪B). Then the map f : C → X defined by the formula

f(c) =

{
f̃1(c) if c ∈ C1 ∪B,
h(c) if c ∈ C2 \ (C1 ∪B),

is a Z-embedding U-close to f and extending f |B. The second statement of the proposi-

tion is proved.

To prove the third statement, suppose X has SDAP and C is a space such that each

point c ∈ C has a neighborhood U ∈ SU(X). Fix a cover U ∈ cov(X), a closed set

B ⊂ C, and a map f : C → X that restricts to a Z-embedding on B. By [BM, 1.7],

each Z-set in X is a strong Z-set. Thus, according to [BM, 1.1], we may assume that

f(C \ B) ∩ f(B) = ∅ and f is closed over f(B). Let C ′ = C \ B and V ∈ cov(X \ f(B))

be such that StV ≺ U and StV ≺ {B(x, d(x, f(B))/2) | x ∈ X \ f(B)}.

By the first statement of the theorem, the class SU(X) is closed-hereditary. Using

this and the fact that each point c ∈ C has a neighborhood U ∈ SU(X), pick a countable

collection {Fn}n∈N of closed subsets of C such that C
′ =
⋃
n∈N
IntFn and each Fn ∈

SU(X). Let Cn = F1 ∪ . . . ∪ Fn, n ∈ N. By the second statement of the theorem,

each Cn ∈ SU(X). Notice also that the collection {C
′ \ Cn}n∈N is locally finite in C

′.

Since X \ f(B), being an open subspace of X, satisfies SDAP, by 1.1, there is a map

f ′ : C ′ → X \ f(B) such that (f ′, f ′|C ′) ≺ V and the collection {f ′(C ′ \ Cn)}n∈N is

locally finite in X \ f(B). Using 1.6, find a Z-embedding f̃ : C ′ → X \ f(B) such that

(f̃ , f ′) ≺ V . Then the map f : C → X defined by the formula

f(c) =

{
f(c) if c ∈ C,

f̃(c) if c ∈ C \B,

is a Z-embedding U-close to f and extending f |B. Thus the third statement of 1.5 is

proved.

Finally, the statement (4) results from [BM, 1.7, 2.3] and the statements (1), (2).

A space X is defined to be C-absorbing if X ∈ σC is a strongly C-universal ANR

satisfying SDAP and X is a Zσ-space. It is easy to see that every open subspace of a

C-absorbing space is C-absorbing too.
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Absorbing spaces are of great importance because of the following theorem proven in

[BM].

1.8. Theorem (Classification by homotopy type). Let C be a class of spaces and

let X,Y be two C-absorbing spaces. X and Y are homeomorphic if and only if they are

homotopically equivalent. Moreover , if both X and Y are homotopy dense subspaces of an

s-manifold M , then for every open cover U of M there is a homeomorphism h : X → Y ,

U-close to the identity map of X.

Notice that by Proposition 1.5, every C-absorbing space is strongly universal. The-

refore, we can give a meaning to the term “absorbing space”: a space X is defined to

be absorbing provided X is a strongly universal ANR which is a strong Zσ-space. Then

Theorem 1.8 can be reformulated as follows: two absorbing spaces X and X ′ are home-

omorphic if and only if they are homotopy equivalent and each of them embeds into the

other as a closed subset.

Now let us state some important results concerning strongly universal pairs. For a

class of pairs ~C define the class σ~C as follows. A pair (X,Y ) belongs to σ~C provided

Y ⊂ X and X =
⋃
n∈N

Xn, where for every n ∈ N, Xn is a closed subset in X such that

(Xn, Xn ∩ Y ) ∈
⋃
(K,C)∈~C F0(K,C).

A pair (M,X) is defined to be ~C-absorbing provided it is strongly ~C-universal and

there is a Zσ-set Z ⊂ M such that (Z,X) ∈ σ~C. We will say that a pair (M,X) is

absorbing provided it is F0(M,X)-absorbing.

1.9. Theorem ([Ca2], [DMM]). Let ~C be a class of pairs , M = Q or M = s, and

(M,X), (M,X ′) two ~C-absorbing pairs. Then for every cover U ∈ cov(M) and every

closed set B ⊂M with B ∩X = B ∩X ′ there is a homeomorphism h :M →M such that

(h, id) ≺ U , h|B = id |B and h−1(X) = X ′.

The following lemma generalizes [BGM, 9.5] and can be proved by the same technique.

1.10. Lemma. Let M be an ANR and (M,X) be a strongly ~C-universal pair. Then for

every strong Z-set A ⊂ M and every subset C ⊂ A the pair (M,X ∪ C) is strongly
~C-universal.

1.11. Proposition. Let M = Q or M = s. Every ~C-absorbing pair (M,X) is F0(M,X)-

absorbing.

Proof. To prove the proposition, we have to verify the strong M0(M,X)-universality

of (M,X). For this, fix a pair (F, F ∩ X), where F is a closed subset in M , a cover

U ∈ cov(M), a closed subset B ⊂ F , and a map f : F → M such that the restriction

f |B : B →M is a Z-embedding with (f |B)−1(X) = B ∩X.

By the definition of a ~C-absorbing pair, there is a Zσ-set Z ⊂M such that (Z,X) ∈ σ~C.

Let V ∈ cov(M) be a cover with StV ≺ U . By [Mi, 6.2.2], there is a Z-embedding

f ′ : F → M such that (f ′, f) ≺ V , f ′|B = f |B and f ′(F \ B) ∩ Z = ∅. By Lemma

1.10, the pair (M,X ∪ f ′(F ∩ X)) is strongly ~C-universal. Moreover, it is easy to see

that Z ∪ f ′(F ∩ Z) is a Zσ-set in M such that (Z ∪ f
′(F ∩ Z), X ∪ f ′(F ∩ X)) ∈ σ~C.

Then by Theorem 1.9, there is a homeomorphism h : M → M such that (h, id) ≺ V ,
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h|f(B) = id |f(B) and h−1(X) = X ∪ f ′(F ∩X). Letting f = h ◦ f ′ : F →M we see that

(f, f) ≺ StV ≺ U , f |B = f |B and f−1(X) = F ∩X, i.e. f is the required Z-embedding.

The following lemma characterizes the strong universality of pairs and can be proved

by arguments of [BM, 2.2].

1.12. Lemma. Let M be an ANR satisfying SDAP and X ⊂ M . The pair (M,X) is

strongly (K,C)-universal if and only if for every open sets U ⊂M and V ⊂ K any map

f : V → U can be approximated by a Z-embedding f : V → U such that f−1(U ∩X) =

V ∩ C.

Next, we have a counterpart of Proposition 2.6 of [BM].

1.13. Lemma. Suppose Y is an ANR and (M,X) is a strongly (K,C)-universal pair ,

where M is an ANR such that every Z-set in M × Y is a strong Z-set. Then the pair

(M × Y,X × Y ) is strongly (K,C)-universal.

Proof. Fix a cover U ∈ cov(M ×Y ), a closed subset B ⊂ K, and a map f : K →M ×Y

such that f |B : B →M × Y is a Z-embedding with (f |B)−1(X × Y ) = B ∩ C. Suppose

that each Z-set inM×Y is a strong Z-set. Then, according to [BM, 1.1], we may assume

that f(K \B) ∩ f(B) = ∅ and f is closed over f(B).

Fix metrics dM and dY on M and Y respectively, and consider on M × Y the metric

d defined by
d((x, y), (x′, y′)) = max{dM (x, x

′), dY (y, y
′)}.

Let ε : M × Y → (0, 1] be a function such that {B(x, ε(x))}x∈M×Y ≺ U , and define a

map δ :M × Y → [0, 1] by letting

δ(x) = 12 min{ε(x), d(x, f(B))}.

Let K0 = ∅ and Kn = (δ ◦ f)
−1([2−n, 1]) for n ≥ 1. Evidently, each Kn is closed in K

and K \ B =
⋃
n≥0Kn. Denote by pM : M × Y → M , pY : M × Y → Y the natural

projections. Using the strong (K,C)-universality of (M,X), construct inductively a map

g : K \B →M such that for every n ∈ N the following conditions are satisfied:

• g|Kn : Kn →M is a Z-embedding with (g|Kn)
−1(X) = Kn ∩ C and

• dM (g(x), pM ◦ f(x)) < 2
−n for any x ∈ Kn \Kn−1.

Then the map f : K →M × Y defined by the formula

f(x) =

{
f(x) if x ∈ B,
(g(x), pY ◦ f(x)) if x ∈ K \B,

is a Z-embedding extending f |B and U-close to f .

2. On universal spaces and universal pairs

In this section we will establish some elementary but important properties of universal

spaces and universal pairs. Obviously if a pair (M,X) is (M0 ∩ C, C)-universal, where C

is a compactification-admitting class, then the space X is C-universal. It turns out that

in some cases the converse statement is also true.
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2.1. Theorem. Let X be a C-universal space for a 2ω-stable weakly A1-additive class C.

Then for every Polish space M ⊃ X the pair (M,X) is (M0 ∩ C, C)-universal.

Proof. Fix a pair (K,C) ∈ (M0 ∩ C, C). Let A ∈ A1 \M1 be any dense subspace in the

Cantor set 2ω, and consider the subset K × A ∪ C × 2ω ⊂ K × 2ω. Since the class C is

2ω-stable and weakly A1-additive, K ×A ∪C × 2
ω ∈ C. Let f : K ×A ∪C × 2ω → X be

a closed embedding. By Lavrentiev’s Theorem, f extends to an embedding f : G → M

of some Gδ-set G ⊂ K × 2
ω containing K ×A ∪ C × 2ω. By [En, 3.7.16],

(1) f−1(X) = K ×A ∪ C × 2ω.

Notice that the complement K × 2ω \ G is σ-compact and its projection B onto 2ω

is a σ-compactum lying in 2ω \ A. Since A ∈ A1 \M1, we have 2
ω \ A ∈ M1 \ A1, and

hence, B 6= 2ω \A, i.e., there exists a point

(2) t ∈ 2ω \ (A ∪B).

Then K × {t} ⊂ G. Define the embedding e : K → M by e(k) = f(k, t), k ∈ K, and

note that by (1) and (2), e−1(X) = C.

For classes C which are ωω-stable and A1(s.c.d.)-additive we can prove more.

2.2. Theorem. Let C be a topological A1(s.c.d.)-additive ω
ω-stable class of spaces and

M be a Polish space. A subspace X ⊂M is C-universal if and only if the pair (M,X) is

(M0, C)-universal.

Proof. The “if” part is trivial. To prove the “only if” part it suffices, for every subset

C ∈ C of the Hilbert cube Q = [0, 1]ω, to construct an embedding g : Q → M with

g−1(X) = C.

For this, consider the following combination of the Cantor cube 2ω = {−1, 1}ω and

the Hilbert cube Q:

K = ({−1} ∪ [0, 1])ω.

Let r : K → 2ω denote the retraction induced by the natural retraction {−1} ∪ [0, 1] →

{−1, 1}. In the Cantor set 2ω, consider the subset 2ωf = {(ti) ∈ 2
ω : ti = 1 for finitely

many i} and let Kf = r
−1(2ωf ).

For every t = (ti)i∈ω ∈ K \ Kf let n0(t) < n1(t) < . . . be the enumeration of the

infinite set N(t) = {i ∈ ω : ti ∈ [0, 1]} and let h(t) = (h(t)i)i∈ω be the point in Q defined

by h(t)i = tni(t) for i ∈ ω.

It is easy to see that the map h : K \Kf → Q is continuous and that moreover, the

map

H = (r, h) : K \Kf → (2
ω \ 2ωf )×Q

is a homeomorphism.

Since the class C is topological and ωω-stable, we get (2ω \ 2ωf ) × C ∈ C and

H−1((2ω \ 2ωf )× C) ∈ C. Next, by the A1(s.c.d.)-additivity of C, the set

C ′ = Kf ∪H
−1((2ω \ 2ωf )× C)

belongs to the class C. Since the space X is C-universal, there is a closed embedding

e : C ′ → X. By Lavrentiev’s Theorem, it can be extended to an embedding e : G → M
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of some Gδ-subset G ⊂ K such that e−1(X) = C ′. The set K \ G is σ-compact and so

is its image r(K \ G) ⊂ 2ω. Next, r(K \ G) ∩ 2ωf = ∅ because r
−1(2ωf ) = Kf ⊂ G. By

Baire Theorem, there is a t ∈ 2ω \ (2ωf ∪ r(K \G)). Then the map g : Q→M defined by

g(q) = e ◦H−1(t, q) is the required embedding of Q into M with g−1(X) = C.

In the light of Theorems 2.1 and 2.2 it is natural to ask if the Polish space M can be

replaced by a space more complex in Borel respect. Let us remark that this is in general

not possible since for the class C = A1 the space Σ is A1-universal but the pair (Σ,Σ)

is not (M0,A1)-universal. Nevertheless, for more complex classes C it turns out to be

possible to replace the space M ∈M1 in Theorems 2.1 and 2.2 by spaces from the class

σ-M1 or even the class P2n.

We define a space X to be everywhere C-universal, where C is a space, if for every

non-empty open set U ⊂ X there exists a closed embedding e : C → X with e(C) ⊂ U .

Recall that a space X is a Baire space provided it contains no open sets of the first Baire

category.

2.3. Theorem. Let C be a 2ω-stable weakly A1-additive class such that for every C ∈ C

there exists an everywhere C-universal Baire space C̃ ∈ C. Then for every embedding

X ⊂M of a C-universal space X into a spaceM ∈ σ-M1, the pair (M,X) is (M0∩C, C)-

universal.

Proof. Fix a pair (K,C) ∈ (M0 ∩ C, C). Let A ∈ A1 \ M1 be any dense subspace in

the Cantor set 2ω, and consider the subset Y = K × A ∪ C × 2ω ⊂ K × 2ω. By our

assumptions, there exists an everywhere Y -universal Baire space Ỹ ∈ C. Since the space

X is C-universal, there is a closed embedding Ỹ ⊂ X. Write M =
⋃
n∈N

Mn, where each

Mn is a closed complete-metrizable subset inM . Since Ỹ is a Baire space, there is an open

set U ⊂ Ỹ such that U ⊂ Mn for some n ∈ N. Let Y ⊂ Ỹ be a closed embedding with

Y ⊂ U . Proceeding as in the proof of Theorem 2.1, we obtain that the pair (Mn,Mn∩X)

is (K,C)-universal. This implies (K,C)-universality of (M,X).

Similar arguments yield

2.4. Theorem. Let C be an ωω-stable A1(s.c.d.)-additive topological class such that for

every C ∈ C, there exists an everywhere C-universal Baire space C̃ ∈ C. Then for every

embedding X ⊂M of a C-universal space X into a space M ∈ σ-M1, the pair (M,X) is

(M0, C)-universal.

Let us remark that for α ≥ 2 the Borel classes Mα, Aα as well as the projective

classes Pn, n ≥ 0, satisfy the conditions of Theorems 2.3 and 2.4. This results from the

following

2.5. Proposition. If C is an M1[0]-additive class with C = σC, then for every space

C ∈ C there exists an everywhere C-universal Baire space C̃ ∈ C.

Proof. Fix any C ∈ C. It is easy to construct a closed embedding of C into a space X

such that C is nowhere dense in X and the complement N = X \ C is homeomorphic

to the discrete space ω. Fix any point ∗ ∈ N and let W (N, ∗) = {(yi)i∈ω ∈ N
ω : yi = ∗

for all but finitely many i} ⊂ Xω. Evidently, the set W (N, ∗) is countable. For every
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y = (yi)i∈ω ∈W (N, ∗) let |y| = min{n ∈ ω : yi = ∗ for all i ≥ n} and

C(y) = {(xi)i∈ω ∈ X | xi = yi for i 6= |y| and x|y| ∈ C}.

Evidently, C(y) is a closed subset of Xω, homeomorphic to C and thus C(y) ∈ C. Finally,

consider the subspace

C̃ = Nω ∪
⋃

y∈W (N,∗)

C(y).

The space C̃ is Baire since it contains the Polish space Nω as a dense subset. Since each

C(y) ∈ C is closed in C̃, we get
⋃
y∈W (N,∗) C(y) ∈ σC = C. Because N

ω ∈M1[0] and the

class C isM1[0]-additive, we get C̃ ∈ C. It is easy to see that the space C̃ is everywhere

C-universal.

Letting A ⊂ 2ω be a dense subspace of the class P2n−1 \ P2n (such a set A exists,

according to [Ke, 37.7]), and repeating the arguments of the proof of Theorem 2.1, one

can prove

2.6. Theorem. Let n ∈ N, let C be a 2ω-stable weakly P2n−1-additive class of spaces , and

X be a C-universal space. Then for every space M ∈ P2n containing X, the pair (M,X)

is (M0 ∩ C, C)-universal.

Now we derive some corollaries from the theorems proved above.

2.7.Corollary. Suppose that a topological class C of spaces either is 2ω-stable weakly A1-

additive and compactification-admitting or is ωω-stable and A1(s.c.d.)-additive. A space

X is C-universal if and only if X contains a C-universal Gδ-subset.

Proof. The “only if” part is trivial. Assume that G is a C-universal Gδ-subspace of X.

Let M be any completion of X and G̃ ⊂M be a Gδ-set such that G̃ ∩X = G.

Now consider two cases.

1) The class C is 2ω-stable weakly A1-additive and compactification-admitting. Then

by Theorem 2.1, the pair (G̃,G) is (M0 ∩ C, C)-universal. Since G̃ ∩X = G, this yields

that the pair (M,X) is (M0∩C, C)-universal. Since the class C admits compactifications,

we see that X is C-universal.

2) The class C is ωω-stable and A1(s.c.d.)-additive. Then Theorem 2.2 implies that

the pair (G̃,G) is (M0, C)-universal. Since G̃ ∩X = G, this yields that the pair (M,X)

is (M0, C)-universal and the space X is C-universal.

Repeating the above arguments and applying Theorems 2.3, 2.4, 2.6, one can prove

2.8. Corollary. Suppose that a topological class C of spaces is 2ω-stable weakly A1-

additive and compactification-admitting or C is ωω-stable and A1(s.c.d.)-additive. Suppose

that for every space C ∈ C there exists an everywhere C-universal Baire space C̃ ∈ C.

Then a space X is C-universal if and only if X contains a C-universal subset G ∈ σ-

M1(X).

2.9. Corollary. Let n ∈ N, and let C be a 2ω-stable weakly P2n−1-additive compacti-

fication-admitting class of spaces. A space X is C-universal if and only if X contains a

C-universal subspace Y ∈ P2n(X).
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2.10. Theorem. Let X be a C-universal space, where C is an ωω-stable class of spaces.

Then for every σ-compact set A ⊂ X and every A′ ⊂ A the space X \A′ is C-universal.

Proof. Fix a space X ∈ C and a σ-compact set A ⊂ X. Since the class C is ωω-stable,

C × ωω ∈ C. Let e : C × ωω → X be a closed embedding. Then the set e−1(A) ⊂ C × ωω

is σ-compact, and its projection pr(e−1(A)) onto ωω is σ-compact. Since ωω 6∈ A1, there

is t ∈ ωω \ pr(e−1(A)). Define i : C → X by i(c) = e(c, t), c ∈ C. Obviously, the map i is

a closed embedding with i(C) ∩A = ∅.

2.11. Theorem. Let C be a 2ω-stableM1-hereditary topological class of spaces and X be a

C-universal space. Suppose that either C is A1(s.c.d.)-additive or C is weakly A1-additive

and compactification-admitting. Then, for every Fσ-set A ⊂ X belonging to the class

σ-M1, and every A
′ ⊂ A, the space X \A′ is C-universal.

Proof. Let X be a C-universal space, A ∈ σ-M1 an Fσ-set in X, and A
′ ⊂ A. We

claim that there is a completion M of X such that A is an Fσ-set in M . Let X be any

completion of X. Since A ∈ σ-M1 is an Fσ-set in X, it can be written as A =
⋃∞
n=1An,

where each An ∈ M1 is closed in X. For every n ∈ N let An be the closure of An in X.

Since An is closed in X, An \An ⊂ X \X. Moreover, An \An is an Fσ-set in X, because

An is a Gδ-set in An. Then M = X \
⋃∞
n=1(An \An) is a Gδ-set in X containing X, and

A is an Fσ-set in M .

If C is A1(s.c.d.)-additive then by Theorem 2.2, the pair (M,X) is (M0, C)-universal.

Fix any space C ∈ C. We have to find a closed embedding C → X \ A′. Choose any

compactum K ⊃ C and let P ∈ M1 \ A1 be any subset in 2
ω. Since the class C is

2ω-stable andM1-hereditary, (K × 2
ω, C ×P ) ∈ (M0, C). Then, by (M0, C)-universality

of (M,X), there exists an embedding e : K × 2ω →M such that e−1(X) = C ×P . Since

A ⊂ X is an Fσ-set in M , its preimage e
−1(A) ⊂ e−1(X) = C × P is σ-compact, and

the projection pr(e−1(A)) of A onto 2ω is a σ-compactum in P . Since P 6∈ A1, there is

t ∈ P \ pr(e−1(A)). It is easily verified that the map i : C → X defined by i(c) = e(c, t),

c ∈ C, is a closed embedding with i(C) ∩A′ = ∅.

In the case of a weakly A1-additive compactification-admitting class C we may apply

Theorem 2.1 to see that the pair (M,X) is (M0∩C, C)-universal. Since the class C admits

compactifications we may find a compactum K ∈ C with K ⊃ C. Continuing as in the

preceding case, we will produce the required embedding C →֒ X.

Replacing the space ωω ∈ M1 \ A1 in the proof of 2.10 by any 0-dimensional space

P ∈ P2n \ P2n−1 (such a space exists according to [Ke, 37.7]), one can prove

2.12. Theorem. Let n ∈ N, C be a 2ω-stable P2n-hereditary class of spaces, and let X be

a C-universal space. Then for every subset A ∈ P2n−1 in X and every A
′ ⊂ A the space

X \A′ is C-universal.

2.13.Remark. It follows from [LSR] (see also [Ke, 28.19]) that for every countable ordinal

α ≥ 2 and Borel spaces X ⊂ M , if X 6∈ Aα(M) then the pair (M,X) is (M0[0],Mα)-

universal. This implies that for every embedding of a BorelMα[0]-universal space X into

a space M ∈ Aα, the pair (M,X) is (M0[0],Mα)-universal.

In the light of this result it is natural to ask
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2.14.Question. Assume that a space X contains an Aα-universal subspace Y ∈Mα(X).

Is X Aα-universal? The same question with Aα andMα interchanged.

3. Strong universality for pairs implies strong
universality for spaces

3.1. Theorem. Let M be an ANR and X be a homotopy dense subspace in M such that

X has SDAP. Then for any pair (K,C) the strong (K,C)-universality of the pair (M,X)

implies the strong C-universality of the space X.

Proof. Suppose that (M,X) is a strongly (K,C)-universal pair. SDAP of X implies

that each Z-set in X is a strong Z-set, see [BM, 1.7]. Repeating the arguments of the

proof of Proposition 2.2 of [BM], we see that to prove the strong C-universality of X, it

suffices for given open subsets C
◦

⊂ C, X
◦

⊂ X, cover U ∈ cov(X
◦

), and map f : C
◦

→ X
◦

to find a Z-embedding f : C
◦

→ X
◦

which is U-close to f .

Since X has SDAP, so does its open subspace X
◦

. Let V ∈ cov(X
◦

) be a cover with

St2 V = St(StV) ≺ U . Using Exercise 1 of [Wa], we may find a map f ′ : K
◦

→ X
◦

of an

open neighborhood K
◦

of C
◦

in K such that (f ′|C
◦

, f) ≺ V . Write K
◦

=
⋃∞
n=1Kn, where

each Kn ⊂ intKn+1 ⊂ K
◦

is a closed subset in K, and K0 = ∅. By Proposition 1.1, there

is a map f0 : K
◦

→ X
◦

such that (f0, f
′) ≺ V and the collection {f0(Kn+1 \ intKn−1)}n∈N

is locally finite in X
◦

. Using Lemma 1.2, find a cover W ∈ cov(X
◦

) such that StW ≺ V

and the collection {St(f0(Kn+1 \ intKn−1), StW)}n∈N is locally finite in X
◦

.

For every W ∈ W find an open set W̃ in M such that W̃ ∩X =W and consider the

open set M
◦

=
⋃
W∈W W̃ in M and the cover W̃ = {W̃ | W ∈ W} of M

◦

. Notice that

M
◦

∩X = X
◦

and X
◦

is homotopy dense in M
◦

.

Using Lemma 1.3, construct inductively a sequence of maps fn : K
◦

→ M
◦

, n ∈ N,

satisfying the following conditions:

fn|Kn−1 ∪ (K
◦

\ intKn+1) = fn−1|Kn−1 ∪ (K
◦

\ intKn+1), (fn, fn−1) ≺ W̃ ,

fn|Kn : Kn →M
◦

is a Z-embedding with (fn|Kn)
−1(X) = Kn ∩ C

◦

.

Let finally f̃ = limn→∞ fn : K
◦

→ M
◦

and f = f̃ |C
◦

: C
◦

→ X
◦

. We claim that

the map f is a Z-embedding with (f, f) ≺ U . Indeed, noting that (f̃ , f0) ≺ St W̃ ,

we obtain, for any n ∈ N, f(C
◦

∩ (Kn+1 \ intKn−1)) ⊂ St(f0(Kn+1 \ intKn−1), StW).

Hence, the collection {f(C
◦

∩ (Kn+1 \ intKn−1))}n∈N is locally finite in X
◦

. By construc-

tion, for every n ∈ N, f̃ |Kn = fn|Kn is a Z-embedding. Since X
◦

⊂ M
◦

is homotopy

dense, f(Kn ∩ C
◦

) = f̃(Kn) ∩ X
◦

is a Z-set in X
◦

. Consequently, for every n ∈ N, the

restriction f |(Kn+1 \ intKn−1) ∩ C
◦

is a Z-embedding. Then f : C
◦

→ X
◦

is a closed

embedding and f(C
◦

), being a local Z-set in X
◦

, is a Z-set in X
◦

. Thus the map f is a

Z-embedding.

The second condition, namely (f, f) ≺ U , easily follows from (f, f0) ≺ StV , (f, f0) ≺

StW , StW ≺ StV , and St2 V ≺ U .
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4. Strong universality for spaces implies
strong universality for pairs

In this section we reverse Theorem 3.1 by proving “strongly universal” counterparts of

the results of §2.

4.1. Theorem. Let M be a Polish ANR and X a homotopy dense subset in M . If the

space X is strongly universal for a 2ω-stable weakly A1-additive class C then the pair

(M,X) is strongly (M0 ∩ C, C)-universal.

Proof. To prove the strong (M0 ∩ C, C)-universality of (M,X) fix a pair (K,C) ∈

(M0 ∩ C, C), a closed subset B ⊂ K, a cover U ∈ cov(M) and a map f : K → M whose

restriction f |B : B →M is a Z-embedding with (f |B)−1(X) = B ∩ C.

Since f(B) is a Z-set in M and X is homotopy dense in M , replacing if necessary,

f by a near map,we can assume without loss of generality that f(K \ B) ⊂ X \ f(B).

Fix any metric d on M and let V ∈ cov(M \ f(B)) be such that V ≺ U and V ≺

{O(x, d(x, f(B))/2) | x ∈M \f(B)}. Let A ∈ A1\M1 be any dense set in 2
ω and consider

the subspaces C ′ = C×2ω∪(K\B)×A and C ′′ = (C\B)×2ω∪(K\B)×A inK×2ω. Since

the class C is 2ω-stable and weakly A1-additive, C
′ ∈ C. Denote by prK : K × 2

ω → K

the natural projection and consider the map f ′ = f ◦ prK |C
′ : C ′ → X. Notice that

(f ′)−1(X \ f(B)) = C ′′. By Proposition 1.7, there is a Z-embedding g : C ′′ → X \ f(B)

such that

(1) (g, f ′|C ′′) ≺ V .

Since g(C ′′) is a Z-set in X\f(B), ClM (g(C
′′)) is a Z-set inM . By Lavrentiev’s Theorem,

the embedding g extends to an embedding g : G → M \ f(B) of some Gδ-set G ⊂

(K \B)× 2ω densely containing C ′′. By [En, 3.7.16],

(2) g−1(X \ f(B)) = C ′′.

Moreover, because of (1), without loss of generality, we can suppose that

(3) (g, f ◦ prK |G) ≺ V ≺ U .

Note that the complement ((K \ B) × 2ω) \ G is σ-compact and its projection P =

pr((K \ B) × 2ω \ G) onto 2ω is a σ-compactum in 2ω \ A 6∈ A1. Then there is a point

t ∈ 2ω \ (A∪P ). Notice that (K \B)×{t} ⊂ G and define the map f̃ : K \B →M \f(B)

letting f̃(k) = g(k, t) for k ∈ K \ B. By (2) and (3) we have f̃−1(X \ f(B)) = C \ B

and (f̃ , f |K \ B) ≺ U . Letting finally f : K → M be defined by f |B = f |B and

f |K\B = f̃ |K\B, we obtain a closed embedding f such that f−1(X) = C and (f, f) ≺ U .

To see that f(K) is a Z-set in M , notice that f(K) ⊂ f(B) ∪ClM (g(C
′′)) lies in the

union of two Z-sets in M .

4.2. Theorem. Let M be a Polish ANR and X be a homotopy dense subset in M .

If the space X is strongly C-universal for a 2ω-stable M1-hereditary A1(s.c.d.)-additive

topological class C, then the pair (M,X) is strongly (M0, C)-universal.

Proof. To prove the strong (M0, C)-universality of the pair (M,X) we have to verify

its strong (K,C)-universality for each pair (K,C) ∈ (M0, C). So, fix any pair (K,C) ∈



22 T. Banakh and R. Cauty

(M0, C). We can assume the compactum K to be a subset of the Hilbert cube Q. Accor-

ding to Lemma 1.3, the strong (K,C)-universality of the pair (M,X) will follow as soon

as we show that the pair (M,X) is strongly (Q,C)-universal. To verify this, fix a closed

subset B ⊂ Q, U ∈ cov(M), and f : Q → M such that f |B : B → M is a Z-embedding

with (f |B)−1(X) = B ∩ C.

As in 4.1 we may assume that f(Q \ B) ⊂ X \ f(B). Fix any metric d on M and let

V ∈ cov(M \ f(B)) be such that V ≺ U and V ≺ {O(x, d(x, f(B))/2) | x ∈ M \ f(B)}.

To prove the strong (Q,C)-universality of (M,X), it suffices to construct an injective

continuous map f̃ : Q \ B → M \ f(B) such that (f̃ , f) ≺ V , f̃−1(X) = C \ B and

f̃(Q \B) is a Z-set in M \ f(B). Let V ′ ∈ cov(M \ f(B)) be a cover with StV ′ ≺ V .

Next, we follow the notations from the proof of 2.2 where the homeomorphism H =

(r, h) : K \ Kf → (2
ω \ 2ωf ) × Q was constructed. Denote by prQ : (2

ω \ 2ωf ) × Q → Q

the natural projection and consider the map f ◦ prQ ◦H : K \ Kf → X ∪ f(B). Let

Y = H−1((2ω\2ωf )×(Q\B)). Evidently, Y is open inK\Kf and f◦prQ ◦H(Y ) ⊂ X\f(B).

By Ex.1 of [Wa], one may find a map α : U → X \ f(B) of an open neighborhood U of Y

in K such that (α|Y, f ◦prQ ◦H|Y ) ≺ V . Now set C
′ = (U∩Kf )∪H

−1((2ω\2ωf )×(C\B)).

Since the class C is 2ω-stable andM1-hereditary, we see that (2
ω \ 2ωf )× (C \B), being a

Gδ-set in 2
ω×C, belongs to the class C. Next, U∩Kf is σ-compact and strongly countable-

dimensional. Then by A1(s.c.d.)-additivity of C, we get C
′ ∈ C. Since the space X \ f(B)

is strongly C-universal, see [BM, 2.1], there is a Z-embedding g : C ′ → X \f(B) such that

(g, α|C ′) ≺ V . Then the closure Cl(g(C ′)) of g(C ′) in M \ f(B) is a Z-set in M \ f(B)

(here we use the homotopy density of X \ f(B) in M \ f(B)). By Lavrentiev’s Theorem,

g extends to an embedding g : G→M \ f(B) of some Gδ-set G ⊂ U containing C
′ as a

dense subset. Then by [En, 3.7.16], g−1(X \ f(B)) = C ′. Moreover, since (g, α|C ′) ≺ V ,

we may suppose that (g, α|G) ≺ V . Note that the complement U \G is σ-compact. Then

its image r(U \G) under the retraction r : K → {−1, 1}ω is σ-compact too. Next, since

(Kf ∩U) ⊂ G, we get U ∩ r
−1(2ωf ) ⊂ G and thus r(U \G)∩ 2

ω
f = ∅. By Baire’s Theorem,

there is a t0 ∈ 2
ω \ (2ωf ∪ r(U \ G)). Since H

−1({t0} × (Q \ B)) ⊂ Y ⊂ U , we get

H−1({t0} × (Q \ B)) ⊂ G. This allows us to consider the map f̃ : Q \ B → M \ f(B)

defined for any q ∈ Q \B by f̃(q) = g ◦H−1(t0, q). Analogously to 4.1, it can be proved

that (f̃ , f) ≺ St(V ′) ≺ V and f̃−1(X \f(B)) = C \B. Since f̃(Q\B) ⊂ g(G)∪Cl(g(G′)),

we conclude that f̃(Q \B) is a Z-set in M \ f(B).

Replacing in the proof of Theorem 4.1 the set A ∈ A1 \ M1 by any dense subset

A ⊂ 2ω of the class P2n−1 \ P2n, one can prove

4.3. Theorem. Let n ∈ N and let C be a 2ω-stable weakly P2n−1-additive class of spaces.

For every absolute neighborhood retract M ∈ P2n and every homotopy dense strongly

C-universal subspace X of M , the pair (M,X) is strongly (M0 ∩ C, C)-universal.

Theorems 4.1, 4.2, 4.3 and 3.1 immediately imply

4.4. Theorem. Let C be a 2ω-stable weakly A1-additive compactification-admitting class

of spaces , M a Polish ANR and X ⊂ M a homotopy dense subspace satisfying SDAP.

The space X is strongly C-universal if and only if the pair (M,X) is strongly (M0∩C, C)-

universal.
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4.5. Theorem. Let C be a 2ω-stable M1-hereditary A1(s.c.d.)-additive class of spaces ,

M a Polish ANR and X ⊂ M a homotopy dense subspace satisfying SDAP. The space

X is strongly C-universal if and only if the pair (M,X) is strongly (M0, C)-universal.

4.6. Theorem. Let n ∈ N and C be a 2ω-stable weakly P2n−1-additive compactification-

admitting class of spaces , M ∈ P2n an ANR and X ⊂ M a homotopy dense subspace

satisfying SDAP. The space X is strongly C-universal if and only if the pair (M,X) is

strongly (M0 ∩ C, C)-universal.

5. Enlarging, Deleting, and Strong Negligibility Theorems
for strongly universal spaces

In this section we apply the results of §§3,4 to generalize certain well known theorems

about Σ- and s-manifolds onto strongly universal and absorbing spaces.

A. Enlarging Theorems

5.1. Theorem. Let C be a 2ω-stable weakly A1-additive compactification-admitting class

of spaces. An ANR X satisfying SDAP is strongly C-universal if and only if it contains a

strongly C-universal homotopy dense Gδ-subspace G ⊂ X.

5.2. Theorem. Let C be a 2ω-stable M1-hereditary A1(s.c.d.)-additive topological class

of spaces. An ANR X satisfying SDAP is strongly C-universal if and only if X contains

a strongly C-universal homotopy dense Gδ-subspace G ⊂ X.

5.3. Theorem. Let n ∈ N and let C be a 2ω-stable weakly P2n−1-additive compactifi-

cation-admitting class of spaces. An ANR X satisfying SDAP is strongly C-universal if

and only if it contains a strongly C-universal homotopy dense subspace G ∈ P2n(X).

Proof. Because of similarity, we will prove only Theorem 5.3. The “only if” part is

trivial. Assume that G ∈ P2n(X) is a strongly C-universal homotopy dense subspace

in X. Let cX be a compactification of X and P ∈ P2n be a subspace in cX such that

G = P ∩X. According to [To1], there exists a Gδ-set X̃ ⊂ cX such that X̃ ∈ANR and X

is homotopy dense in X̃. Since G̃ = P ∩X̃ ∈ P2n, and G is homotopy dense in G̃ ⊂ X̃, by

Theorem 4.6, the pair (G̃,G) is strongly (M0∩C, C)-universal. Since G̃ is homotopy dense

in X̃ and G̃ ∩X = G, by Lemma 1.4, the pair (X̃,X) is strongly (M0 ∩ C, C)-universal.

Applying finally Theorem 3.1, we see that the space X is strongly C-universal.

B. Deleting Theorems. Let us prove firstly the following

5.4. Lemma. Let C, D be two topological closed-hereditary classes of spaces. Suppose that

there is a space C such that

(1) C is not a countable union of (closed) subspaces belonging to the class D;

(2) In × C ∈ C for every n ∈ N;

(3) a subset D ⊂ C belongs to the class D, whenever there exists a (perfect) surjective

map f : D′ → D, where D′ ∈ D.



24 T. Banakh and R. Cauty

Then for a strongly C-universal ANR X any (Fσ-)subset F ∈ σD in X is homotopy

negligible.

Proof. Let F ∈ σD be an (Fσ-)set inX. SinceX is an ANR, to prove that F is homotopy

negligible, it suffices to verify that F is locally homotopy negligible. Let f : In → X be

a map with f(∂In) ∩ F = ∅, and U ∈ cov(X) be a cover. Write In \ ∂In =
⋃
k∈N

Ak,

where A1 ⊂ intA2 ⊂ . . . is a tower of compacta. Using the strong C × I
n-universality of

X, one can construct a map f ′ : In ×C → X such that (f ′, f ◦ prIn) ≺ U , f
′|∂In ×C =

f ◦ prIn |∂I
n × C and for every k ∈ N the restriction f ′|Ak × C : Ak × C → X is a

Z-embedding.

Then F ′ = (f ′)−1(F ) is an (Fσ-)set in (I
n \ ∂In)× C and F ′ ∈ σD. Thus F ′ can be

written as F ′ =
⋃∞
i=1 Fi, where each Fi ∈ D is (closed) in I

n × C. Since the projection

prC : I
n × C → C is a perfect map we see that each prC(Fi) is (closed) in C and by the

condition (3) prC(Fi) ∈ D. By the condition (1), C 6= prC(F
′) =
⋃∞
i=1 prC(Fi). Hence,

there is a point c0 ∈ C \ prC(F
′). It is easily seen that the map f : In → X defined

by f(t) = f ′(t, c0), t ∈ I
n, has the following properties: f |∂In = f |∂In, (f, f) ≺ U and

f(In) ∩ F = ∅. Thus F is homotopy negligible in X.

It is known that if D is one of the classes Mα, Aα, α < ω1, or Pn, n ∈ N, then

any perfect image f(D) of a space D ∈ D belongs to the class D [SR]. Hence, the above

classes satisfy the “perfect” variant of the condition (3) of the previous lemma.

5.5. Theorem. Let X be a strongly C-universal ANR satisfying SDAP , where C ⊃ {In |

n ∈ N} is an ωω-stable class of spaces. Then for every σ-compact set A ⊂ X and every

A′ ⊂ A,

(1) A is homotopy negligible in X;

(2) X \A′ is strongly C-universal.

Proof. Fix a σ-compact set A ⊂ X and A′ ⊂ A. The statement (1) obviously follows

from Lemma 5.4 (just let C = ωω and D =M0).

To prove that the space X \ A′ is strongly C-universal, fix a cover U ∈ cov(X \ A′),

a space C ∈ C, a closed subset B ⊂ C, and a map f : C → X \ A′ whose restriction

f |B : B → X \A′ is a Z-embedding.

For every U ∈ U find an open set Ũ ⊂ X with Ũ ∩X \A′ = U . Evidently, W =
⋃
{Ũ |

U ∈ U} is an open set in X, containing X \ A′, and Ũ = {Ũ | U ∈ U} is an open cover

of W . Let W ∈ cov(W ) be such that StW ≺ Ũ . Since the set X \ A′ is homotopy dense

in X and X has SDAP, every Z-set in X \A′ is a strong Z-set. By [BM, 1.1], there is a

map f ′ : C → X \A′ such that (f ′, f) ≺ W , f ′|B = f |B, f ′(C \B) ∩ f(B) = ∅ and f ′ is

closed over f(B). Let f(B) be the closure of f(B) in W , and let W ′ ∈ cov(W \ f(B)) be

such that W ′ ≺ W and W ′ ≺ {Od(x, d(x, f(B))/2) | x ∈ W \ f(B)} (here d stands for a

metric of X).

Denote by prC : C×ω
ω → C the natural projection and consider the map g = f ′◦prC :

C × ωω → X \ A′ ⊂ W . By Lemma 1.3, the open subspace W ⊂ X is strongly C × ωω-

universal. Then by Proposition 1.7, there is a Z-embedding g′ : (C \B)×ωω →W \f(B)

such that (g′, g|(C \B)× ωω) ≺ W ′. Notice that (g′)−1(A) ⊂ (C \B)× ωω is σ-compact

and so is its projection P = prωω ((g
′)−1(A)) onto ωω. Pick t ∈ ωω \ P and define
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f : C → X \A′ by

f(c) =

{
f(c) if c ∈ B,
g′(c, t) if c ∈ C \B.

One can easily verify that f is a Z-embedding such that f |B = f |B and (f, f) ≺ U .

Replacing the space ωω by any zero-dimensional space in P2n \ P2n−1 and repeating

the above arguments, one can prove

5.6. Theorem. Let n ∈ N and let C ⊃ {Ik | k ∈ N} be a 2ω-stable P2n-hereditary class of

spaces and X a strongly universal ANR satisfying SDAP. Then for every set A ∈ P2n−1
in X and every A′ ⊂ A,

(1) A is homotopy negligible in X;

(2) X \A′ is strongly C-universal.

5.7. Theorem. Let C be a 2ω-stable A1(s.c.d.)-additive M1-hereditary topological class

of spaces and X a strongly C-universal ANR. For every Fσ-set A ∈ σ-M1 in X and

every A′ ⊂ A,

(1) A is homotopy negligible in X;

(2) X \A′ is strongly C-universal.

Proof. Let A ∈ σ-M1 be an Fσ-subset in X and A
′ ⊂ A. As in the proof of Theorem

2.11, embed X into a Polish ANR X̃ so that X is homotopy dense in X̃ and A is an

Fσ-subset in X̃. By Theorem 4.2, the pair (X̃,X) is strongly (M0, C)-universal.

We are going to show that the pair (X̃,X \A′) is strongly (M0, C)-universal. For this,

fix a cover U ∈ cov(X̃), a pair (K,C) ∈ (M0, C), a closed subset B ⊂ K and a map

f : K → X̃ whose restriction f |B : B → X̃ is a Z-embedding with (f |B)−1(X \ A′) =

B ∩ C. Since f(B) is a Z-set in X̃, without loss of generality, f(K \B) ∩ f(B) = ∅. Let

M ∈M1\A1 be any dense subset in 2
ω. Since the class C is 2ω-stable andM1-hereditary,

(K × 2ω, C ×M) ∈ (M0, C). Denote by prK : K × 2
ω → K the projection and consider

the map g = f ◦ prK : K × 2
ω → X̃. Using the strong (M0, C)-universality of the

pair (X̃,X) and repeating the arguments of the proof of Lemma 1.6, one can construct

a map g′ : K × 2ω → X̃ such that g′|B × 2ω = f ◦ prK |B × 2
ω, (g′, f ◦ prK) ≺ U ,

g′((K \ B) × 2ω) ∩ g′(B × 2ω) = ∅ and g′|(K \ B) × 2ω : (K \ B) × 2ω → X̃ \ f(B) is a

Z-embedding with (g′|(K \B)× 2ω)−1(X) = (C \B)×M .

Since A ⊂ X is an Fσ-set in X̃, the set (g
′|(K \ B) × 2ω)−1(A) ⊂ (C \ B) ×M is

σ-compact. Then its projection P onto M is also σ-compact. Since M 6∈ A1, there is

t ∈ M \ P . Define the map f : K → X̃ by f(k) = g′(k, t), k ∈ K, and notice that f is

a Z-embedding such that f |B = f |B, (f, f) ≺ U and f−1(X \ A′) = C. Hence the pair

(X̃,X \A′) is strongly (M0, C)-universal.

Since the space X is strongly A1(s.c.d.)-universal, it satisfies SDAP. Next, since {I
n |

n ∈ N} ⊂ A1(s.c.d.) ⊂ C, the strong (M0, C)-universality of (X̃,X \A
′) implies that the

set X\A′ has homotopy negligible complement in X̃ (see [BGM, 4.3]) and consequently in

X. This implies that X \A′ satisfies SDAP (recall that X has SDAP). Then, by Theorem

3.1, the space X \A′ is strongly C-universal.
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C. Strong Negligibility Theorems. Following [BP, p. 132] we say that a subsetX ⊂M

is strongly negligible if for every open set U ⊂ M and every cover U ∈ cov(U) there is a

homeomorphism h : U → U \X, U-close to the identity.

5.8. Theorem. Suppose C ⊃ {In | n ∈ N} is a 2ω-stable M1-hereditary class of spaces

and Ω is a C-absorbing space. Then every σ-compact subset A ⊂ Ω is strongly negligible

in Ω.

Proof. Suppose A is a σ-compact subset in Ω. Since every open subspace of Ω is C-

absorbing, to prove the theorem, it suffices to show that for every cover U ∈ cov(Ω) there

is a homeomorphism h : Ω → Ω \A, U-close to the identity.

Fix a cover U ∈ cov(Ω). According to [Ba1], Ω can be embedded into an s-manifoldM

as a homotopy dense subset. Replacing, if necessary, M by a suitable open neighborhood

of Ω in M , we may assume that there is a cover Ũ ∈ cov(M) such that U = {U ∩ Ω |

U ∈ Ũ}. Using Theorem 5.5 and the M1-heredity of C, one can prove that Ω \ A is

a C-absorbing homotopy dense subspace of M . Then Theorem 1.8 supplies us with a

homeomorphism h : Ω → Ω \A, U-close to id |Ω.

The following two theorems can be proved analogously, using Theorems 5.6 and 5.7.

5.9. Theorem. Let n ∈ N and let Ω be a C-absorbing space for a 2ω-stable P2n-hereditary

class C ⊃ {In | n ∈ N}. Then every subset A ⊂ Ω of class P2n−1 is strongly negligible

in Ω.

5.10. Theorem. Let C be a 2ω-stable A1(s.c.d.)-additive M1-hereditary class of spaces

and Ω a C-absorbing space. Every Fσ-subset A ∈ σ-M1 in Ω is strongly negligible in Ω.

In light of Theorem 5.9 the following question arises naturally:

5.11. Question. Let Ω be an absorbing space for the Borel classMα (resp. Aα), α < ω1.

Is every subset A ⊂ Ω of class Aα (resp.Mα) strongly negligible in Ω?

6. Existence of absorbing spaces

The main result of this section states that for a closed-hereditary [0, 1]-stable class C, a

C-absorbing AR exists if and only if the class σC contains a C-universal space. Till now

this result was known under an additional assumption that the class C is multiplicative,

i.e. X × Y ∈ C whenever X,Y ∈ C. The arguments are as follows. Given a space C, we

may consider C as a subset of a linearly independent compactum in l2. Then by [Ca4],

the linear hull L(C) of C in l2 is an absorbing space for the class
⋃
n∈N
F0(C

n× In), the

smallest [0, 1]-stable closed-hereditary multiplicative class containing C. In the particular

case when C ∈ σC is a C-universal space, where C is a [0, 1]-stable multiplicative class,

the construction of L(C) just supplies us with a C-absorbing AR.

Now we consider a minor modification of this construction that will allow us to build

absorbing AR’s for [0, 1]-stable classes which are not necessarily multiplicative.

Given a space C, fix a space C̃ containing C as a closed subset such that D = C̃ \ C

is a countable dense set in C̃. Embed C̃ into a linearly independent compact subset of l2
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and consider the space

Ω(C) = {tx+ y | t ∈ [0, 1], x ∈ C, y ∈ spanD}

which is dense in L(C̃).

6.1. Theorem. Ω(C) is an absorbing AR for the class
⋃
n∈N
F0(C × I

n).

The class
⋃
n∈N
F0(C × I

n) is the smallest [0, 1]-stable closed-hereditary class con-

taining C. As we will see later, the powers Ω(C)n are absorbing AR’s too, but they can

be topologically distinct. We will construct a compactum C such that the powers Ω(C)n

are pairwise not homeomorphic. For this compactum, the absorbing space Ω(C) supports

neither a topological group structure nor the structure of a convex set in a topological

vector space, and hence Ω(C) is a counterexample to Question 4.9 of [DM]. Note that

the first example of an absorbing space supporting no topological group structure, the

absorbing AR for the class M1[ω0] of Polish spaces of transfinite dimension ≤ ω0, was

constructed by M. Zarichnyi [Za] by a completely different method.

Theorem 6.1 immediately implies the following characterization.

6.2. Theorem. Let C be a [0, 1]-stable class of spaces. There exists a C-absorbing AR if

and only if the class σC contains a C-universal space.

For the proof of Theorem 6.1 we need to recall some notions. Given a subset X of a

linear space L, we set Ker(X) = {x ∈ X | [x, y] ⊂ X for every y ∈ X} denote the kernel

of X. It is well known that Ker(X) is a convex (possibly empty) set in L.

Let L be a linear space and A,B ⊂ L be two subsets in L. Denote by spanA the linear

span of A and by π : L → L/span(A) the corresponding quotient map. We say that the

set A has infinite codimension in B if the set π(B) is algebraically infinite-dimensional

(i.e. there is an infinite linearly independent subset C ⊂ π(B)). Recall that a subset B

of a linear topological space L is called bounded if for every neighborhood U ⊂ L of the

origin there is n ∈ N with B ⊂ n · U .

6.3. Proposition. Let L be a locally convex linear metric space, L0 a linear subspace in

L, and let X ⊂ L be a set such that Ker(X) ∩ L0 is dense in X. Suppose A ⊂ X is a

bounded closed set in L of infinite codimension in Ker(X)∩L0. Then the pair (X,X∩L0)

is strongly (A,A ∩ L0)-universal.

Proof. To verify that the pair (X,X ∩ L0) is strongly (A,A ∩ L0)-universal, fix a cover

U ∈ cov(X), a closed subset B ⊂ A, and a map f : A → X such that f |B : B → X is a

Z-embedding with (f |B)−1(L0) = B ∩ L0.

Let L denote the completion of L with respect to any invariant metric d and let X

be the closure of X in L. Since the convex set Ker(X) is dense in X, the closure X of

X is convex and X is homotopy dense in X. According to [DT], X is either a Q- or an

s-manifold, hence every Z-set in X is a strong Z-set. The same is true for X because of

the homotopical density of X in X. Thus f(B) is a strong Z-set in X. Then by [BM,

1.1], without loss of generality, we can assume that f(A \B) ∩ f(B) = ∅ and f is closed

over f(B).

Let A′ = A \ B, X ′ = X \ f(B), and U ′ ∈ cov(X ′) be such that StU ′ ≺ U and

StU ′ ≺ {O(x, d(x, f(B))/2) | x ∈ X ′}. Since X ′ is homotopy dense in X \f(B) which is a



28 T. Banakh and R. Cauty

Q- or an s-manifold, there exists p : X ′ → X ′ such that (p, id) ≺ U ′ and F = ClX′(p(X
′))

is locally compact. Indeed, in case X ′ is a Q-manifold that is trivial (just take p = id). If

X ′ is an s-manifold then we may find a countable locally finite simplicial complex K and

two maps X ′
α
→ K

β
→ X ′ such that (β ◦α, id) ≺ V for some V ∈ cov(X ′) with St(V) ≺ U ′

(this follows from the fact that X ′ ∈ANR). Next, applying the strongM1-universality of

the s-manifold X ′, we may approximate the map β by a closed embedding β′ : K → X ′

such that (β′, β) ≺ V . Then β′(K) is a closed locally compact subset in X ′ and thus the

map p = β′ ◦ α : X ′ → X ′ is as required.

Using the infinite codimension of A in Ker(X) ∩ L0, find a countable dense subset

S ⊂ Ker(X) ∩ L0 such that span(A) ∩ span(S) = {0} and span(S ∪ A) has infinite

codimension in Ker(X) ∩ L0. Let x0 ∈ Ker(X) ∩ L0 \ span(S ∪A) be any point. The set

convS, being convex and dense, is homotopy dense in X.

Replacing, if necessary, p by a near map, without loss of generality, we may assume

that F ⊂ convS ⊂ Ker(X). Since F ⊂ X ′ is closed and locally compact, there is a locally

finite cover W ∈ cov(X ′), W ≺ U ′, such that for every W ∈ W the intersection W ∩F is

compact.

Using the continuity of linear operations and the boundedness of A find a continuous

function ε : F → (0, 1] such that every x ∈ F ⊂ Ker(X) has a neighborhood W ∈ W

such that (1− ε(x))x+ ε(x)2 x0 +
ε(x)
2 A ⊂W .

Define a map f ′ : A′ → X ′ by the formula

(1) f ′(a) = (1− ε ◦ p ◦ f(a)) p ◦ f(a) +
ε ◦ p ◦ f(a)

2
x0 +

ε ◦ p ◦ f(a)

2
a, a ∈ A′.

Let us show that f ′ is a Z-embedding such that (f ′, p ◦ f |A′) ≺ W and (f ′)−1(L0) =

A′ ∩ L0. In fact, the last two properties easily follow from the definition of f
′, and our

task now is to show that f ′ is a Z-embedding. By the choice of x0 and S, the equality

f ′(a) = f ′(a′), where a, a′ ∈ A′, implies ε ◦ p ◦ f(a) = ε ◦ p ◦ f(a′) and a = a′, i.e., the

map f ′ is injective.

To show that f ′ is a closed embedding, it now suffices to verify that f ′ : A′ → X ′

is perfect. Fix a compactum K ⊂ X ′. To show that K− = (f ′)−1(K) ⊂ A′ is compact,

notice first that the set K− is closed not only in A′ but also in A (this follows from

(f |A′, f ′) ≺ U ′ and the closedness of f over f(B)). Since (f ′, p ◦ f |A′) ≺ W , we have p ◦

f(K−) ⊂ St(K,W). By the choice ofW , the setM = ClX(St(K,W))∩F is compact. Let

ε0 = min{ε(x) | x ∈M} and observe that the set D = [1, 2/ε0](K−[0, 1]M−[0, 1]x0) ⊂ L

is compact.

It follows from (1) that for every a ∈ K−,

a =
2

ε ◦ p ◦ f(a)

(
f ′(a)− (1− ε ◦ p ◦ f(a)) p ◦ f(a)−

ε ◦ p ◦ f(a)

2
x0

)
∈ D.

Thus K− ⊂ D is compact.

By the choice of S and x0, and by the definition of f
′, the set f ′(A′) ⊂ span(A ∪ S ∪

{x0}) has infinite codimension in Ker(X). By standard arguments (see e.g. [Ba2]), one

can show that f ′(A′) is a Z-set in X ′.

Letting finally f |B = f |B and f |A \ B = f ′, we define a Z-embedding f : A → X
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such that f |B = f |B, (f, f) ≺ U , and f−1(L0) = A ∩ L0. Thus (X,X ∩ L0) is strongly

(A,A ∩ L0)-universal.

Proof of 6.1. Recall that C is closed in C̃ ⊂ l2, D = C̃ \C is a countable dense set in C̃,

and the closure K̃ of C̃ in l2 is a linearly independent compactum. Let K = C ⊂ K̃ be

the closure of C, and notice that K ∩D = ∅.

We will show firstly that Ω(C) ∈ σC, where C =
⋃
n∈N
F0(C × I

n). Write D =

{dn}n∈N and remark that spanD =
⋃
n∈N

Dn, where Dn = n · conv{±d1, . . . ,±dn} is

homeomorphic to In for each n ∈ N.

By the definition of Ω(C), we have

(2) Ω(C) =
⋃

n∈N

Dn ∪
⋃

n∈N

([1/n, 1] · C +Dn).

Since K̃ ⊃ K∪D is a linearly independent compactum, the map in : K× [1/n, 1]×Dn →

l2, in : (k, t, d) 7→ t · k+ d, is injective, and consequently, it is an embedding. Notice that

([1/n, 1]·K+Dn)∩Ω(C) = [1/n, 1]·C+Dn = in(C×[1/n, 1]×Dn). Hence, [1/n, 1]·C+Dn
is a closed subset in Ω(C), homeomorphic to C×[1/n, 1]×Dn ∼= C×I

n+1. Since Dn ∼= I
n

are closed in Ω(C), this and (2) yield Ω(C) ∈ σC.

Since Ω(C) is homotopy dense in the σ-compact pre-Hilbert space span K̃, Ω(C) is a

strong Zσ-space and Ω(C) is an AR.

To show that the space Ω(C) is strongly C-universal, we will apply Proposition 6.3.

Notice that for every n ∈ N the set C + Dn is closed and bounded in L = span C̃,

and has infinite codimension in spanD. Since the kernel of Ω(C) contains the dense

in L set spanD, Proposition 6.3 is applicable and thus the space Ω(C) is strongly

(C +Dn)-universal. As C + Dn is homeomorphic to C × In, by 1.5 we get Ω(C) is

strongly F0(C × I
n)-universal for every n ∈ N. Thus Ω(C) is a C-absorbing AR.

6.4. Theorem. If C1 ∼= C1 × [0, 1] and C2 ∼= C2 × [0, 1] are two absorbing spaces then

their product C1 × C2 is an absorbing space.

Proof. We first consider the case when both C1 and C2 are AR’s. Fix i ∈ {1, 2}. Since

Ci ∼= Ci×[0, 1], the class F0(Ci) is [0, 1]-stable. Then the space Ω(Ci) is F0(Ci)-absorbing

and thus homeomorphic to Ci according to Theorem 1.8. Applying Proposition 6.3, we

may prove that the product Ω(C1)×Ω(C2) is strongly C1×C2-universal. Using this fact,

we may easily deduce that C1 × C2 is an absorbing space.

In the general case (Ci may be non-contractible), Ci is homeomorphic to an open

subset Ui ⊂ Ω(Ci). This can be proved as follows. The space Ci, being an ANR, is

homotopy equivalent to a locally finite simplicial complex K. By the Open Embedding

Theorem for s-manifolds, K × s, being an s-manifolds, is homeomorphic to an open

subset U ⊂ s. By the construction, Ω(Ci) is a homotopy dense set in s. Then U ∩Ω(Ci)

is an F0(Ci)-absorbing space homotopy equivalent to Ci. Finally, applying Theorem 1.8,

we conclude that Ci is homeomorphic to the open subset U ∩ Ω(Ci) in Ω(Ci). Since

Ω(Ci) ∼= Ω(Ci) × [0, 1], i = 1, 2, are absorbing AR’s, it follows from the first case that

Ω(C1) × Ω(C2) is an absorbing space. Then C1 × C2, being homeomorphic to the open

subspace U1 × U2 of Ω(C1)×Ω(C2), is an absorbing space too.
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6.5. Corollary. If a space Ω ∼= Ω × [0, 1] is absorbing , then so is Ωn for every n ∈ N.

6.6. Question. Is Corollary 6.5 valid without the assumption Ω ∼= Ω × [0, 1]?

We shall say that a map ∗ : X×Y → Z is a cancellative operation if for every x, x′ ∈ X

and y, y′ ∈ Y , x ∗ y = x ∗ y′ implies y = y′ and x ∗ y = x′ ∗ y implies x = x′. Notice

that spaces X supporting group or convex structures admit a continuous cancellative

operation ∗ : X ×X → X (in the convex case set x ∗ y = 12x+
1
2y).

6.7. Theorem. There exists a compactum C such that

(1) Ω(C) does not admit any continuous cancellative operation Ω(C)×Ω(C)→ Ω(C)

(hence Ω(C) does not support neither convex nor topological group structures);

(2) for every n 6= m Ω(C)n is not homeomorphic to Ω(C)m.

Proof. We will make use of Cook’s continuum [Co]. This is a hereditarily indecomposable

continuum M such that every map A → M of a subcontinuum A ⊂ M is either the

identity or constant.

Let Ci, i ∈ N, be pairwise disjoint subcontinua of M , and let C =
∏
i∈N

Ci. Let us

show that the absorbing space Ω(C) satisfies the conditions (1) and (2).

To prove (1) assume that Ω(C) admits a continuous cancellative operation Ω(C) ×

Ω(C)→ Ω(C). Since C embeds into Ω(C), this implies the existence of a continuous map

ϕ : C × C → Ω(C) such that for every c ∈ C the restrictions ϕ|C × {c} and ϕ|{c} × C

are injective. Since Ω(C) ∈ σC, where C =
⋃
n∈N
F0(C × I

n), Baire’s Theorem implies

the existence of an open set U ⊂ C × C such that ϕ(U) embeds into C × In for some

n ∈ N. Denote by π1 : C × I
n → C and π2 : C × I

n → In the natural projections.

Fix (c, c′) ∈ U ⊂ C × C such that ci 6= c′i for every i ∈ N, where c = (ci)
∞
i=1 and

c′ = (c′i)
∞
i=1. For every i ∈ N pick disjoint continua Bi, B

′
i ⊂ Ci such that ci ∈ Bi, c

′
i ∈ B

′
i

and
∏∞
i=1Bi×

∏∞
i=1B

′
i ⊂ U . Let Y =

∏∞
i=1Bi, Yi =

∏
j 6=iBj and identify Y with Bi×Yi.

For y ∈ Yi define ϕ
i
y : Bi → Ci by ϕ

i
y(b) = pi ◦ π1 ◦ ϕ((b, y), c

′), b ∈ Bi (here pi : C → Ci
denote the coordinate projections).

Claim 1. The map ϕiy does not depend on the choice of y and is either a constant or the

identity embedding id |Bi.

Indeed, because of the choice of the continuum M , ϕiy is either a constant or the

identity embedding id |Bi. Since Yi is connected, this yields that either ϕ
i
y = id |Bi for all

y ∈ Yi, or ϕ
i
y is a constant for all y. In the second case, if ϕ

i
y depended on y, one could

find two points y, y′ ∈ Yi differing in one coordinate only (say i0) such that ϕ
i
y 6= ϕiy′ .

Represent Yi as the product Yi = Bi0×
∏
j 6=i,i0

Bj and write y = (yi0 , y) and y
′ = (y′i0 , y).

Fix any d ∈ Bi. The map ψ : Bi0 → Ci defined by ψ(b) = pi ◦ π1 ◦ϕ((d, b, y), c
′), b ∈ Bi0 ,

is not constant because ψ(yi0) = ϕiy(d) 6= ϕiy′(d) = ψ(y′i0). On the other hand, since

i0 6= i, Bi0 ∩ Ci = ∅, therefore every map Bi0 → Ci ⊂M must be constant.

Our claim shows that the map π1 ◦ ϕ|Y × {c
′} can be written as π1 ◦ ϕ(y, c

′) =

(ϕi(yi))i∈N, where ϕi = ϕ
i
y is either the identity or a constant. Let I0 denote the set of

indices i for which ϕi are constant. The set I0 is finite. Indeed, fixing any b ∈
∏
i 6∈I0

Bi
we see that π1 ◦ ϕ|

∏
i∈I0

Bi × {b} × {c
′} is constant. Since ϕ|C × {c′} is injective, π2 ◦
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ϕ|
∏
i∈I0

Bi×{b}×{c
′} must be injective. Hence the dimension of

∏
i∈I0

Bi is not greater

than n, and consequently, |I0| ≤ n.

Therefore, pi ◦ π1 ◦ϕ(c, c
′) = ci for all but finitely many i. By a symmetric reasoning,

we can prove that pi ◦ π1 ◦ ϕ(c, c
′) = c′i for almost all i. Hence ci = c

′
i for almost all i’s,

but this contradicts the choice of c = (ci) and c
′ = (c′i).

For the proof of the property (2), it suffices to show that there is no continuous

injection CM → Ω(C)N if M > N . Assume the converse. Since Ω(C) ∈ σC, Baire’s

Theorem yields an open set U ⊂ CM such that U embeds into CN × Iq for some q ∈ N.

The set U being open in CM = (
∏∞
i=1 Ci)

M contains a topological copy of the product

(
∏∞
j=r C

j)M for some r ∈ N. Write (
∏∞
j=r Cj)

M =
∏M
m=1

∏∞
j=r Cm,j , where Cm,j =

Cj , and C
N =

∏N
n=1

∏∞
i=1 Cn,i, where Cn,i = Ci, and let ϕ denote the embedding of

(
∏∞
j=r Cj)

M into CN × Iq = (
∏N
n=1

∏∞
i=1 Cn,i)× I

q.

Denote by π1 : C
N×Iq → CN , π2 : C

N×Iq → Iq, pn,i :
∏N
n=1

∏∞
i=1 Cn,i → Cn,i = Ci

and ̺m,j :
∏M
m=1

∏∞
j=r Cm,j → Cm,j = Cj the corresponding projections.

Claim 2. For every (n, i) ∈ {1, . . . , N} × N the map pn,i ◦ π1 ◦ ϕ is either constant or

coincides with the projection ̺m,i for some m ∈ {1, . . . ,M}.

Assume that pn,i ◦ π1 ◦ ϕ is not constant. Then we can find two points y, y
′ ∈∏M

m=1

∏∞
j=r Cm,j differing by one coordinate only (say by the (m, j)-coordinate) such

that pn,i ◦ π1 ◦ ϕ(y) 6= pn,i ◦ π1 ◦ ϕ(y
′). Write

∏M
m=1

∏∞
j=r Cm,j = Cm,j × Z. For every

z ∈ Z define the map ψz : Cm,j = Cj → Ci = Cn,i by ψz(c) = pn,i ◦ π1 ◦ ϕ(c, z). By the

properties of Cook’s continuum M and by the connectedness of Z either ψz is constant

for all z ∈ Z or ψz = id |Cj for all z ∈ Z. Notice that the first case is impossible since

writing y = (c, z), y′ = (c′, z) we have ψz(c) = pn,i ◦ π1 ◦ϕ(y) 6= pn,i ◦ π1 ◦ϕ(y
′) = ψz(c

′).

Therefore pn,i ◦ π1 ◦ ϕ = ̺m,j . Notice also that in this case necessarily j = i.

Denote by I0 the set of all pairs (m, j) for which there is an n ∈ {1, . . . , N} with

pn,j ◦ π1 ◦ ϕ = ̺m,j . Since N < M , the set I1 = ({r, r + 1, . . .} × {1, . . . ,M}) \ I0 is

infinite. Fixing any point z ∈
∏
(m,j)∈I0

Cm,j we find that the restriction of π1 ◦ ϕ to

B =
∏
(m,j)∈I1

Cm,j × {z} is constant. Thus π2 ◦ ϕ|B : B → Iq is injective, which is

impossible because B is infinite-dimensional.

7. On embeddings of absorbing spaces

Throughout the section, C is a closed-hereditary [0, 1]-stable topological class of spaces

and Ω is a C-absorbing absolute retract. We are concerned with the topological classifi-

cation of pairs (M,X), where M = Q or M = s, and X is a homotopy dense topological

copy of Ω inM . The case C ⊂ A1 is not so interesting because, as one can easily see, there

is a unique (up to homeomorphism) such pair (M,X) (this fact holds for all subclasses

C of A1, not necessarily [0, 1]-stable). To begin, let us remark that there always exists a

homotopy dense embedding of Ω into s with image in a σ-compact subset of s.
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7.1. Theorem. There exists a homotopy dense embedding Ω ⊂ s such that Ω lies in a

σ-compact subset A ⊂ s and the pairs (s,Ω) and (Q,Ω) are strongly universal. Moreover ,

if the class C admits compactifications then we can assume that A ∈ (M0 ∩ C)σ.

We will derive this theorem from the following

7.2. Lemma. Let K be a Polish space and C ⊂ K. Let ~C =
⋃
n∈N
F0(K × I

n, C × In).

There is a Zσ-subset A ⊂ l
2 with dense kernel , and a subset Ω ⊂ A such that (A,Ω) ∈ ~Cσ

and the pairs (A,Ω) and (l2, Ω) are strongly ~C-universal.

Proof. We will repeat arguments of the proof of Theorem 6.1. Let K̃ be a Polish space

containing K as a closed subset with D = K̃ \K being a countable discrete dense subset

in K̃. According to [BP], there is an embedding K̃ ⊂ l2 such that K̃ is a closed bounded

linearly independent set with dense span K̃ in l2. Consider the sets

A = {tx+ y | t ∈ [0, 1], x ∈ K, y ∈ spanD},

Ω = {tx+ y | t ∈ [0, 1], x ∈ C, y ∈ spanD}.

Let L = l2 and L0 = span(C ∪ D). It is easy to see that Ker(A) ∩ L0 ⊃ spanD is

dense in A, and Ω = A ∩ L0.

WriteD = {dn}n∈N and fix an n ∈ N. Since the set K̃ ⊃ D is linearly independent, the

set Dn = conv{±d1, . . . ,±dn} ⊂ l
2 is homeomorphic to In, and the map hn : K ×Dn →

K +Dn, hn : (k, d) 7→ k + d, is injective. Moreover, using the closedness of K in l2, one

can show that the map hn is a homeomorphism onto the closed set K +Dn ⊂ l
2. Notice

that (K + Dn) ∩ L0 = C + Dn. Since K + Dn has infinite codimension in spanD, by

6.3, the pair (A,Ω) is strongly (K + Dn, C + Dn)-universal. By the same reason, the

pair (l2, Ω) is strongly (K +Dn, C +Dn)-universal. Since the pair (K +Dn, C +Dn) is

homeomorphic to (K × In, C × In), we see that the pairs (A,Ω) and (l2, Ω) are strongly
~C-universal.

The rest of the statements of the lemma ((A,Ω) ∈ σ~C and A is a Zσ-subset in l
2) can

be easily derived from the definition of A and Ω and the known fact stating that for a

closed subset F ⊂ l2 and compacta G ⊂ l2 and H ⊂ R \ {0} the map F × G ×H → l2

sending a triple (f, g, h) onto h · f + g ∈ l2 is perfect.

Proof of Theorem 7.1. Let Ω be a C-absorbing AR for a [0, 1]-stable class C. Write

Ω =
⋃
n∈N

Cn, where Cn ∈ C, n ∈ N, are closed subsets in Ω. If the class C admits

compactification, find for every n ∈ N a compactum Kn ∈ C with Cn ⊂ Kn, in the

other case let Kn be any compactum with Cn ⊂ Kn. Let K = ⊔n∈NKn, C = ⊔n∈NCn
be topological sums of Kn’s and Cn’s, respectively, and ~C =

⋃
n∈N
F0(K × I

n, C × In).

By Lemma 7.2, there is a Zσ-set A ⊂ l2 and a subset Ω′ ⊂ A such that (A,Ω′) ∈ σ~C

and the pair (l2, Ω′) is strongly ~C-universal. It is easily seen that Ω′ ∈ σC (just use

[0, 1]-stability of C). Since (Kn, Cn) ∈ ~C, the strong ~C-universality of (l2, Ω′) and The-

orem 3.1 imply the strong C-universality of Ω′. Since Ω′ is a homotopy dense subset

contained in a σ-compact set A ⊂ l2, Ω′ is a Zσ-space, and Ω
′ ∈ AR. Then Proposi-

tion 1.5 implies that Ω′ is strongly
⋃
n∈N

Cn-universal. Since every space from C embeds

as a closed subset into
⋃
n∈N

Cn = Ω, we see that the space Ω′ is strongly C-universal.

Hence Ω′ is a C-absorbing AR which, by Theorem 1.8, is homeomorphic to Ω. Identifying
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Ω with Ω′ and l2 with s ⊂ Q, we obtain the required homotopy dense embedding Ω ⊂ s.

Notice that Lemma 1.4, and the strong ~C-universality of the pair (s,Ω) imply the strong
~C0-universality of (Q,Ω), where ~C0 = {(B,D) ∈ ~C | B ∈M0}. Observe also that because

of the equality σ-~C0 = σ-~C, we have (A,Ω) ∈ σ-~C0. By Proposition 1.11, the pairs (Q,Ω)

and (s,Ω) are strongly universal.

If the class C admits compactifications, by the choice of the compacta Kn, A ∈

(M0 ∩ C)σ.

If C admits compactifications and is weakly A1-additive, then for M = Q or M = s

there is a unique (up to homeomorphism) pair (M,X), where X is a homotopy dense

copy of Ω contained in a subset A ∈ (M0 ∩ C)σ.

7.3. Theorem. Suppose that the class C is weakly A1-additive and admits compactifi-

cations. Let M be either a Q-manifold or an s-manifold. For i = 1, 2, let Xi ⊂ M

be a C-absorbing homotopy dense subspace of M such that Xi ⊂ Ai ⊂ M for some

Ai ∈ (M0 ∩ C)σ. Then (M,X1) ∼= (M,X2).

A similar result holds also if the class C isM1-hereditary and A1(s.c.d.)-additive.

7.4. Theorem. Suppose the class C is M1-hereditary and A1(s.c.d.)-additive. Let M

be either a Q-manifold or an s-manifold. For i = 1, 2, let Xi ⊂ M be a C-absorbing

homotopy dense subspace of M such that Xi ⊂ Ai ⊂ M for some σ-compact Ai. Then

(M,X1) ∼= (M,X2).

These theorems follow in an obvious way from Theorems 4.1, 4.2 and 1.9. Note also

that the condition of [0, 1]-stability of the class C in Theorem 7.3, 7.4 can be replaced by

the 2ω-stability of C.

If the class C contains the space ωω of irrationals, then there are topologically distinct

homotopy dense embeddings of Ω into s.

7.5. Theorem. (1) If ωω ∈ C, then s contains two homotopy dense copies E0, E1 of Ω

such that (a) each (s, Ei) is strongly universal , and (b) (s, E0) 6∼= (s, E1).

(2) If M1 ⊂ C then s contains continuum many homotopy dense copies Eα, α ∈ c,

of Ω such that (a) each (s, Eα) is strongly universal and (b) (s, Eα) 6∼= (s, Eβ) if α 6= β.

Proof. Let K be any compactification of Ω.

(1) Applying Lemma 7.2 to the pairs (K,Ω) and (K ⊔ ωω, Ω ⊔ ωω) we construct

strongly universal pairs (l2, E0) and (l
2, E1) such that E0 is contained in a σ-compact

subset of s, while E1 contains a copy of ω
ω closed in l2 and hence E1 is contained in no

σ-compact subset of l2. Thus (s, E0) 6∼= (s, E1).

(2) According to [Ma], Cook’s continuum contains a family {Mα | α ∈ c} of pairwise

disjoint nondegenerate continua. For every α ∈ c fix a point aα ∈ Mα and let Xα =

Mα \ {aα}. Then every continuous function of Xα into Xβ is constant, whenever α 6= β.

Applying Lemma 7.2 to the Polish space Kα = K ⊔X
ω
α and its subspace Cα = Ω ⊔X

ω
α

we get a strongly universal pair (l2, Eα) such that Eα ⊂ Aα for some Zσ-set Aα ⊂ l2

with (Aα, Eα) ∈ σ-~Cα, where ~Cα =
⋃∞
n=1 F0(Kα× I

n, Cα× I
n). It follows from the proof

of Theorem 7.1 that Eα is homeomorphic to Ω.
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Let α 6= β. To show (l2, Eα) 6∼= (l
2, Eβ) suppose the converse. Then Eβ contains a

copy of Xωα closed in l
2 and hence also in Aβ. Since X

ω
α is complete, we may use Baire’s

Theorem to conclude that there are an n ∈ N and an open set U ⊂ Xωα such that U is

homeomorphic to a closed subset of Kβ × I
n = (K × In) ⊔ (Xωβ × I

n). But U contains a

closed copy of Xωα which, being connected, is homeomorphic to a closed subset of K× I
n

or of Xωβ × I
n. The first case is impossible because K× In is compact but Xωα is not, and

the second case also leads to the absurd conclusion that the infinite-dimensional space

Xωα embeds into I
n.

Under the hypotheses of Theorem 7.5(1), there also exist homotopy dense embeddings

Ω ⊂ s which are not strongly universal.

7.6. Theorem. Suppose that s contains two copies E0, E1 of Ω such that (a) each (s, Ei)

is strongly universal and (b) (s, E0) 6∼= (s, E1). Then s contains continuum many homo-

topy dense copies of Fα, α ∈ c, of Ω such that

(i) each (s, Fα) is not strongly universal ;

(ii) (s, Fα) 6∼= (s, Fβ) if α 6= β.

Proof. Since C is [0, 1]-stable, Ω can be obtained by the construction of Theorem 6.1,

hence it contains a homotopy dense copy of σ (the set spanD). According to [BP], if σ1,

σ2 are two homotopy dense copies of σ in s, then (s, σ1) ∼= (s, σ2) (see also Theorem 7.3)

which allows us to suppose that σ ⊂ E0 ∩E1. Let

T = [0,∞)× {0} ∪
( ⋃

n∈N

{n} × [0, 1]
)
⊂ R

2.

Since T is a Polish AR, the product T × s is homeomorphic to s and we will construct

the Fα’s as subsets of T × s.

For every function α : N→ {0, 1} consider the following subset of T × s:

Fα =
∞⋃

n=1

(2n− 2, 2n− 1)× {0} × E0 ∪ (2n− 1, 2n)× {0} × E1 ∪ {n} × [0, 1]× Eα(n).

Then Fα contains the homotopy dense subset (T \{(0, 0)})×σ of T ×s. Consequently,

Fα is an AR, and to see that Fα ∼= Ω, it is enough to show that each point of Fα has

a neighborhood homeomorphic to Ω. The points for which that is not obvious have a

neighborhood homeomorphic to a subset of the type

U = (−1, 1)× {0} × Ei ∪ {0} × (0, 1)× Ej ,

where i = 0 or 1 and j = 1 − i. Since {(0, 0)} × Ei is a strong Z-set in {(0, 0)} × Ei ∪

{0} × (0, 1)× Ej , this union is a C-absorbing AR. Then according to [BM, 3.2], there is

a homeomorphism h of {(0, 0)} × Ei ∪ {0} × (0, 1)× Ej onto {0} × [0, 1)× Ei such that

h|{(0, 0)} × Ei = id. Then id∪h is a homeomorphism of U onto
(
(−1, 1) × {0} ∪ {0} ×

[0, 1)
)
× Ei ∼= Ω.

Let α, β : N→ {0, 1} and let h be a homeomorphism of (T × s, Fα) onto (T × s, Fβ).

Using the fact that every point of s has a neighborhood U such that (U,U ∩Ei) ∼= (s, Ei)

(i = 0, 1) it is easy to see that the points of N × {0} × s are the only ones having no

neighborhood V such that (V, V ∩Fα) is homeomorphic to one of the pairs (s, Ei), i = 0, 1.
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Consequently, h(N× {0} × s) = N × {0} × s. Since (T \ {(n, 0)})× s has 3 components

containing respectively 0, n − 1, and an infinity of components of N × {0} × s, we get

h({(n, 0)}× s) = {(n, 0)}× s for each n ∈ N. Examining the component (the components

if n = 1) of (T \ {(n, 0)})× s disjoint from N×{0}× s, we conclude α(n) = β(n) for each

n ∈ N. Thus α = β.

If (T × s, Fα) were strongly universal then for every x, y ∈ Fα there would exist an

autohomeomorphism of (T × s, Fα) sending x onto y (for the construction of such an

autohomeomorphism, see the proof of Theorem 2.1 in [Ca2]). The foregoing arguments

show us that this is impossible.

The case of embeddings intoQ is more curious. First, let us note the following corollary

of Theorems 7.3 and 7.4.

7.7. Theorem. Suppose that either C is A1-additive and C ⊃M0 or that C is A1(s .c.d .)-

additive and M1-hereditary. If X1, X2 are two homotopy dense copies of Ω in Q then

the pairs (Q,X1) and (Q,X2) are homeomorphic.

The following two theorems show us the necessity of the conditions on C.

7.8. Theorem. Suppose that C admits compactifications and contains the space ωω.

(1) If Q 6∈ C, then Q contains two homotopy dense copies E0, E1 of Ω such that

(a) (Q,Ei) is strongly universal , (b) Q \ E0 6∼= Q \ E1.

(2) If C contains no strongly infinite-dimensional compactum then Q contains con-

tinuum many homotopy dense copies {Eα | α ∈ A} of Ω such that (a) each (Q,Eα) is

strongly universal , (b) Q \ Eα 6∼= Q \ Eβ if α 6= β.

Proof. Write Ω =
⋃∞
n=1 Cn, where Cn ∈ C is a closed subset of Ω. For every n ∈

N, fix a compactification Kn ∈ C of Cn. To each continuum X let us assign a copy

E(X) ⊂ Q of Ω as follows. Let X̃ be a compactum containing X so that N(X) =

X̃ \X is countable, discrete, and dense in X̃. Applying Lemma 7.2 to the Polish space

M̃(X) = X̃ω ⊔
(⊔
n∈N

Kn
)
and its subspace C(X) = N(X)ω ⊔

(⊔
n∈N

Cn
)
, we obtain a

pair (A(X), E(X)) with E(X) ⊂ A(X) ⊂ s ⊂ Q. It follows from 7.2, 1.4, and 1.11 that

(Q,E(X)) is strongly universal. Since N(X)ω ∼= ωω ∈ C, the arguments of Theorem 7.1

show that E(X) ∼= Ω.

Claim. If Q \ E(X) ∼= Q \ E(X ′) then either Xω ∈ C or Xω ∈ F0((X
′)ω × In) for

some n.

Suppose that h is a homeomorphism of Q \ E(X) onto Q \ E(X ′). According to

Lavrentiev’s Theorem, h extends to a homeomorphism h : G → G′ between Gδ-sets

of Q. According to the construction of E(X), Q contains a copy of X̃ω such that X̃ω ∩

E(X) = N(X)ω. Then X̃ω \G is a σ-compact subspace of N(X)ω. Let us show that G

contains a compactum H such that (H,H \E(X)) ∼= (X̃ω, X̃ω \N(X)ω). For that, fix a

homeomorphism ψ : X̃ω → (X̃ω)2 such that ψ−1((N(X)ω)2) = N(X)ω. Since ψ(X̃ω \G)

is σ-compact and N(X)ω is not, there is t ∈ N(X)ω such that {t}×X̃ω ⊂ ψ(X̃ω∩G). One

can readily verify that H = ψ−1({t} × X̃ω) ⊂ X̃ω ∩ G has the desired properties. Then

for h|H : H → G′ we have (h|H)−1(E(X ′)) = N(X)ω, where X̃ω is identified with H.

Since E(X ′) ⊂ A(X ′), Baire’s Theorem helps us to find an integer n and an open set
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U ⊂ N(X)ω such that h(U) is contained in Km × I
n (m ∈ N) or in (X̃ ′)ω × In. Since U

has non-empty interior in X̃ω, U contains a copy of Xω which embeds in Km × I
n ∈ C

or in (X̃ ′)ω × In. In the latter case, because of the connectedness of X, Xω embeds into

{pt} × In ∈ C or into (X ′)ω × In.

Now to prove the statement (1) of Theorem 7.8, it suffices to take E0 = E({pt})

and E1 = E(Q) (remark that E0 is just the copy of Ω supplied by the second part of

Theorem 7.1).

To prove (2), it suffices to set Eα = E(Xα), where {Xα | α ∈ c} is a family of

continuum many pairwise disjoint nondegenerate subcontinua of the Cook continuum.

The simplest example of a class C containingM0 and such that σC is not A1-additive,

is the classM1 of all Polish spaces.

7.9. Theorem. Q contains a family {Eα | α ∈ c} of continuum many homotopy dense

copies of theM1-absorbing spaces s× σ such that

(a) each (Q,Eα) is strongly universal ;

(b) Q \ Eα 6∼= Q \Eβ if α 6= β.

Proof. Let us consider any family {Ωα | α ∈ c} consisting of continuum many pairwise

non-homeomorphic Cα-absorbing absolute retracts Ωα, where Cα ⊂ A1 are [0, 1]-stable

classes (one can take the family of pre-Hilbert σ-compact spaces constructed in [Ca4]).

We may assume each Ωα to be a homotopy dense subset of Q. Then by [Cu], Q \Ωα is

homeomorphic to s and Eα = (Q \ Ωα) × σ is a copy of s × σ in Q× Q ∼= Q. Since Ωα
is absorbing for the class Cα ⊂ A1, the pair (Q,Ωα) is strongly (M0, σCα)-universal and

thus (Q,Q \Ωα) is strongly universal for the class of pairs ~Cα = {(K,C) | (K,K \ C) ∈

(M0, σCα)}, and so is the pair (Q× σ, (Q \Ωα)× σ). Since (Q× σ, (Q \Ωα)× σ) ∈ σ~Cα,

Proposition 1.11 implies that (Q×Q, (Q \Ωα)× σ) is strongly universal.

Finally, (b) results from the following lemma.

7.10. Lemma. Let C′, C′′ be closed-hereditary [0, 1]-stable classes and let Ω′, Ω′′ ⊂ Q be

C′- and C′′-absorbing spaces , respectively. If the complements of (Q \ Ω′) × σ and of

(Q \Ω′′)× σ in Q×Q are homeomorphic, then Ω′ ∼= Ω′′.

Proof. It suffices to prove that if the complements are homeomorphic then each of the

spaces Ω′, Ω′′ admits a closed embedding into the other. Since Ω′ ∈ F0(Q × Q \ (Q \

Ω′) × σ), there is a closed embedding f : Ω′ → Q × Q \ (Q \ Ω′′) × σ. By Lavrentiev’s

Theorem, there is a complete space X ⊃ Ω′ and a continuous function f : X → Q × Q

extending f . We may assume Ω′ to be dense in X. Then f(X \ Ω′) ⊂ (Q \ Ω′′) × σ.

Write σ =
⋃∞
n=1 I

n. Since Ω′ is of the first Baire category, X \Ω′ is a Baire space, dense

in X. Consequently, there exists n ∈ N such that the interior U of f−1((Q \ Ω′′) × In)

relatively X \ Ω′ is not empty. Since X \ Ω′ is dense in X, the interior V of U in X is

not empty. The strong universality of Ω′ guarantees that V ∩ Ω′ contains a copy A of

Ω′ closed in Ω′. Then f |A is a closed embedding of A into Q × Q \ (Q \ Ω′′) × σ. By

continuity, f(A) ⊂ f(U) ⊂ Q× In. Because Q× In \ ((Q \ Ω′′)× σ) = Ω′′ × In, we see

that Ω′ ∼= A is homeomorphic to a closed subspace of Ω′′ × In. Since C2 is [0, 1]-stable,

Ω′′ × In ∼= Ω′′, and thus Ω′ ∈ F0(Ω
′′). Analogously, Ω′′ ∈ F0(Ω

′).
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Theorem 7.6 has its counterpart for embeddings into Q.

7.11. Theorem. Suppose Q contains two copies E0, E1 of Ω such that (a) each (Q,Ei)

is strongly universal and (b) (Q,E0) 6∼= (Q,E1). Then Q contains continuum many ho-

motopy dense copies {Fα, α ∈ c} of Ω such that

(i) (Q,Fα) is not strongly universal ;

(ii) (Q,Fα) 6∼= (Q,Fβ) if α 6= β.

For the proof it suffices to repeat the proof of Theorem 7.6 replacing T by its one-point

compactification T̂ which is an AR and thus T̂ ×Q ∼= Q.

It is interesting to notice that in spite of the fact that the pairs (s, Eα), (s, Fα)

constructed in 7.5 and 7.6 are pairwise distinct, it may happen that all the complements

s \Eα, s \ Fα are nevertheless homeomorphic.

7.12. Theorem. Suppose C is a 2ω-stable A1-additive class of spaces , Ω a C-absorbing

homotopy dense subspace in Q and G a homotopy dense Gδ-subset in Q. Then for every

homotopy dense embedding e : Ω → G the complement G\e(Ω) is homeomorphic to Q\Ω.

Proof. By Theorem 4.1, the pair (G, e(Ω)) is strongly (M0, C)-universal, and by Lemma

1.4, so is the pair (Q, (Q\G)∪e(Ω)). Since the class C is A1-additive, (Q\G)∪e(Ω) ∈ σC.

Notice also that (Q\G)∪e(Ω) is contained in a Zσ-set in Q. Thus the pair (Q, (Q\G)

∪ e(Ω)) is (M0, C)-absorbing. The same arguments show us that the pair (Q,Ω) is

(M0, C)-absorbing too. By Theorem 1.9, these pairs are homeomorphic and consequently,

Q \ ((Q \G) ∪ e(Ω)) = G \ e(Ω) is homeomorphic to Q \Ω.

Finally let us state an open problem connected with the results of this section.

7.13. Problem. Let X be a homotopy dense Fσ-subset of s homeomorphic to s× σ.

Is the pair (s,X) homeomorphic to (s× s, s× σ)?
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