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Abstract

Let G be a locally compact group. We shall study the Banach algebras which are the group
algebra L1(G) and the measure algebra M(G) on G, concentrating on their second dual algebras.
As a preliminary we shall study the second dual C0(Ω)′′ of the C∗-algebra C0(Ω) for a locally

compact space Ω, recognizing this space as C(eΩ), where eΩ is the hyper-Stonean envelope of Ω.
We shall study the C∗-algebraBb(Ω) of bounded Borel functions on Ω, and we shall determine

the exact cardinality of a variety of subsets of eΩ that are associated with Bb(Ω).
We shall identify the second duals of the measure algebra (M(G), ?) and the group algebra

(L1(G), ?) as the Banach algebras (M( eG),2) and (M(Φ),2), respectively, where 2 denotes the

first Arens product and eG and Φ are certain compact spaces, and we shall then describe many of
the properties of these two algebras. In particular, we shall show that the hyper-Stonean envelopeeG determines the locally compact group G. We shall also show that ( eG,2) is a semigroup if and
only if G is discrete, and we shall discuss in considerable detail the product of point masses in
M( eG). Some important special cases will be considered.

We shall show that the spectrum of the C∗-algebra L∞(G) is determining for the left topo-
logical centre of L1(G)′′, and we shall discuss the topological centre of the algebra (M(G)′′,2).
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1. Introduction

Our aim in this memoir is to study the Banach algebras which are the second dual
algebras (M(G)′′,2) and (L1(G)′′,2) of the measure algebra (M(G), ?) and the group
algebra (L1(G), ?), respectively, of a locally compact group G. Here 2 denotes the (first)
Arens product on the second dual space A′′ of a Banach algebra A. We are particularly
interested in the case where the group G is not discrete; the discrete case was studied in
our earlier memoir [17]. Thus we must discuss in some depth a compact space G̃ which
we call the hyper-Stonean envelope of a locally compact group G, and also the subspace Φ
of G̃, where Φ is the character space, or spectrum, of the C∗-algebra L∞(G). The space
G̃ is analogous to the semigroup (βS,2) which is the Stone–Čech compactification of
a semigroup S (see [17]), and we shall discuss the ‘semigroup-like’ properties of (G̃,2);
however, we shall prove that (G̃,2) is actually only a semigroup in the special case where
G is discrete.

As a preliminary to our discussion of G̃ we shall develop the theory of the hyper-
Stonean envelope Ω̃ of a locally compact space Ω; in our approach, Ω̃ is the character
space of the second dual C0(Ω)′′ of C0(Ω). Many of these results are known, and indeed
they go back to the seminal paper of Dixmier [24] of 1951. However we cast the material
in a different context, and prove some new results that we shall require later.

The present chapter contains a review of some notation that we shall use and background
material involving Banach spaces, Banach algebras, and their second duals. A summary
of our results and some acknowledgements are given at the end of this chapter.

Basic notation. We shall use the following notation.
The rational, real, and complex fields are Q, R, and C, respectively. We denote the

set of integers by Z, and set Z+ = {n ∈ Z : n ≥ 0} and N = {n ∈ Z : n > 0}; for n ∈ N,
we set Z+

n = {0, . . . , n} and Nn = {1, . . . , n}. Further,

T = {z ∈ C : |z| = 1} and I = [0, 1] ⊂ R.

However, for p ∈ N, we set
Zp = {0, 1, . . . , p− 1};

this set is a group with respect to addition modulo p. Further, we set

Dp = Zℵ0
p = {ε = (εj : j ∈ N) : εj ∈ Zp (j ∈ N)}.

The set Dp is a group with respect to the coordinatewise operations.
The cardinality of a set S is denoted by |S|; the first infinite cardinal is ℵ0; the first

uncountable cardinal is ℵ1; the cardinality of the continuum is denoted by c, so that
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c = 2ℵ0 , and the continuum hypothesis (CH) is the assertion that ℵ1 = c; the generalized
continuum hypothesis (GCH) implies that 2c = 2ℵ1 = ℵ2 and that 22c

= ℵ3.
The characteristic function of a subset S of a set is denoted by χS ; the function

constantly equal to 1 on a set S is also denoted by 1S or 1. The symmetric difference of
two subsets S and T of a given set is denoted by S 4 T .

Let E be a linear space (always taken to be over the complex field C), and let S be
a subset of E. The convex hull of S is 〈S〉, and the linear span of S is linS. The set of
extreme points of a convex subset S of E is denoted by exS.

Algebras and modules. Let A be an algebra, which is always taken to be linear and
associative. The following notation is as in [13].

The identity of A (if it exists) is eA; the algebra formed by adjoining an identity to a
non-unital algebra A is denoted by A#, and A# = A when A has an identity. The centre
of A is Z(A). For a subset S of A, we set

S[2] = {ab : a, b ∈ S} and S2 = linS[2].

A character on A is a homomorphism from A onto the field C; the character space of A
is the collection of characters on A, and it is denoted by ΦA. For a ∈ A, we define

La : b 7→ ab, Ra : b 7→ ba, A→ A.

Suppose that B is a subalgebra of A and that I is an ideal in A. Then the product in
B × I is given by

(b1, x1)(b2, x2) = (b1b2, b1x2 + x1b2 + x1x2) (b1, b2 ∈ B, x1, x2 ∈ I);

in this case A is a semidirect product of B and I, written A = B n I.
Let E be an A-bimodule, so that E is a linear space and there are bilinear maps

(a, x) 7→ a · x, (a, x) 7→ x · a, A× E → E,

such that a · (b · x) = ab · x, (x · b) · a = x · ba, and a · (x · b) = (a · x) · b for a, b ∈ A and
x ∈ E. In this case, set

A · E = {a · x : a ∈ A, x ∈ E}, AE = linA · E,

and similarly for E · A and EA. Suppose that A has an identity eA. Then the bimodule
E is unital if eA · x = x · eA = x (x ∈ E). In general, an A-bimodule E is neo-unital if
A · E = E ·A = A.

For details on bimodules, see [13, §1.4].

Banach spaces. Throughout our terminology and notations for Banach spaces and
algebras will be in accord with those in [13], where further details may be found. We
recall some notation.

Let E be a Banach space. The closed unit ball in E is E[1]. The dual space and second
dual space of E are denoted by E′ and E′′, respectively; we write 〈x, λ〉 for the action
of λ ∈ E′ on x ∈ E and 〈M, λ〉 for the action of M ∈ E′′ on λ ∈ E′, etc.; the weak-∗
topology on E′ is σ(E′, E), so that (E′[1], σ(E′, E)) is always compact; we set

〈κE(x), λ〉 = 〈x, λ〉 (x ∈ E, λ ∈ E′),
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so defining the canonical embedding κE : E → E′′, and we set

〈M, κE′(λ)〉 = 〈M, λ〉 (λ ∈ E′, M ∈ E′′),

so defining the canonical embedding κE′ : E′ → E′′′. Of course, κE(E[1]) is σ(E′′, E′)-
dense in E′′[1] and

〈κE(x), κE′(λ)〉 = 〈x, λ〉 (x ∈ E, λ ∈ E′).

We shall often identify E with κE(E), and regard it as a ‖ · ‖-closed subspace of E′′.
We first recall some standard results of functional analysis that will be used more

than once.

Proposition 1.1. Let E be a non-zero Banach space.

(i) The space (E′[1], σ(E′, E)) is metrizable if and only if (E, ‖ · ‖) is separable.
(ii) The following are equivalent conditions on an element M ∈ E′′:

(a) M ∈ E;
(b) M is continuous on (E′, σ(E′, E));
(c) M is continuous on (E′[1], σ(E′, E)).

(iii) Suppose that |E| = κ. Then |E′| ≤ 2κ.

Proof. For (i) and (ii), see [26, Theorems V.5.1, V.5.6], for example. For (iii), we have
|E′| ≤ |CE | = cκ = 2κ.

The elements M of E′′ which satisfy the equivalent conditions of clause (ii) above are
the normal elements of E′′.

Let E and F be normed spaces. Then we write B(E,F ) for the space of bounded linear
operators from E to F ; this space is taken with the operator norm. A map T : E → F

is a linear homeomorphism if T is a bijection and if T ∈ B(E,F ) and T−1 ∈ B(F,E).
The spaces E and F are linearly homeomorphic if there is a linear homeomorphism from
E to F , and E and F are isometrically isomorphic if there is a linear isometry from E

onto F ; in the latter case, we write E ∼= F .
Let X be a linear subspace of a Banach space E. Then

X◦ = {λ ∈ E′ : λ |X = 0},

so that X ′ is isometrically isomorphic to E′/X◦.

Banach algebras. Let A be a Banach algebra. We recall that all characters on A are
continuous, and that ΦA is a locally compact subspace of the unit ball (A′[1], σ(A′, A))
of A′. In the case where A has an identity eA, we have

ΦA ⊂ {λ ∈ A′ : 〈eA, λ〉 = ‖λ‖ = 1},

and ΦA is compact.
A bounded approximate identity in A is a bounded net (eα) in A such that

lim
α
aeα = lim

α
eαa = a (a ∈ A).
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The theory of Banach A-bimodules is given in [13]. Indeed, a Banach A-bimodule is
an A-bimodule E which is a Banach space and such that

max{‖a · x‖, ‖x · a‖} ≤ ‖a‖ ‖x‖ (a ∈ A, x ∈ E).

For example, A is a Banach A-bimodule over itself. Let E be a Banach A-bimodule. Then
the dual space E′ is also a Banach A-bimodule for the operations defined by

〈x, a · λ〉 = 〈x · a, λ〉, 〈x, λ · a〉 = 〈a · x, λ〉 (a ∈ A, x ∈ E, λ ∈ E′).

In particular, A′ is the dual module of A, and lin(A · A′) is a closed submodule of A′.
Further, the second dual A′′ is a Banach A-bimodule. A Banach A-bimodule E is essential
if

AE = EA = E.

We shall use the following result, which is a version of Cohen’s factorization theorem [13,
Corollary 2.9.31].

Proposition 1.2. Let A be a Banach algebra with a bounded approximate identity, and
let E be an essential Banach A-bimodule. Then E is neo-unital. In particular, A = A[2],
and A ·A′ ·A is a closed submodule of A′.

A Banach algebra A is said to be a dual Banach algebra if there is a closed A-
submodule E of A′ such that E′ = A as a Banach space; in this case, E is a predual
of A. It is easy to see that a Banach space E is a predual of A in this sense if and only
if E′ = A and multiplication in A is separately σ(A,E)-continuous. For example, each
von Neumann algebra is a dual Banach algebra [102, Examples 4.4.2(c)]. For further
details, see [16, Chapter 2] and [102, §4.4]; for recent accounts of dual Banach algebras,
see [19, 20].

We shall refer briefly to the very extensive theory of amenable Banach algebras; for
the general theory of these algebras, see [13, 59, 102], and for characterizations involving
the algebras that we shall be concerned with, see [17].

Arens products and topological centres. Let A be a Banach algebra. Then there are
two natural products on the second dual A′′ of A; they are called the Arens products, and
are denoted by 2 and 3, respectively. They were introduced by Arens [2], and studied
in [10]; for further discussions of these products, see [13, 16, 17], for example.

We recall briefly the definitions. As above, A′ and A′′ are Banach A-bimodules. For
λ ∈ A′ and M ∈ A′′, define λ ·M ∈ A′ and M · λ ∈ A′ by

〈a, λ ·M〉 = 〈M, a · λ〉, 〈a, M · λ〉 = 〈M, λ · a〉 (a ∈ A).

For M,N ∈ A′′, define

〈M 2 N, λ〉 = 〈M, N · λ〉, 〈M 3 N, λ〉 = 〈N, λ ·M〉 (λ ∈ A′).

Theorem 1.3. Let A be a Banach algebra. Then (A′′,2) and (A′′,3) are Banach algebras
containing A as a closed subalgebra.

The Arens products 2 and 3 are determined by the following formulae, where all
limits are taken in the weak-∗ topology σ(A′′, A′) of A′′. Let M,N ∈ A′′, and take nets
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(aα) and (bβ) in A such that M = limα aα and N = limβ bβ . Then

M 2 N = lim
α

lim
β
aαbβ , M 3 N = lim

β
lim
α
aαbβ . (1.1)

The two maps M 7→ M 2 N and M 7→ N 3 M are weak-∗ continuous on A′′ for each
N ∈ A′′.

We shall use the following equation. Let A be a Banach algebra, let a ∈ A, and let
ϕ ∈ ΦA. Then clearly a · ϕ = 〈a, ϕ〉ϕ. Thus, taking weak-∗ limits, we see that

M · ϕ = 〈M, ϕ〉ϕ (M ∈ A′′, ϕ ∈ ΦA). (1.2)

Proposition 1.4.

(i) Let A and B be Banach algebras, and suppose that θ : A → B is a continuous ho-
momorphism. Then the map θ′′ : (A′′,2)→ (B′′,2) is a continuous homomorphism
with range contained in the σ(B′′, B′)-closure of θ(A).

(ii) Let A be a Banach algebra, and let E be a Banach A-bimodule. Then E′′ is a Banach
(A′′,2)-module in a natural way.

(iii) Let A be a Banach algebra, let E and F be Banach A-bimodules, and then take
T : E → F to be a continuous A-bimodule homomorphism. Then T ′′ : E′′ → F ′′ is
a continuous (A′′,2)-bimodule homomorphism.

Proof. These are contained in [13, §2.6], or follow directly from results there; in particular,
see Theorem 2.6.15 and equation (2.6.26) of [13].

Let A be a dual Banach algebra with predual E, where E regarded as a subset of A′,
so that E◦ = {M ∈ A′′ : M |E = 0}. Then

(A′′,2) = An E◦ (1.3)

as a semidirect product [16, Theorem 2.15].

Definition 1.5. Let A be a Banach algebra. Then the left and right topological centres
of A′′ are

Z
(`)
t (A′′) = {M ∈ A′′ : M 2 N = M 3 N (N ∈ A′′)},

Z
(r)
t (A′′) = {M ∈ A′′ : N 2 M = N 3 M (N ∈ A′′)},

respectively. The topological centre is Zt(A′′) = Z
(`)
t (A′′) ∩ Z

(r)
t (A′′).

We also recall that

Z
(`)
t (A′′) = {M ∈ A′′ : LM : N 7→ M 2 N is weak-∗ continuous on A′′},

Z
(r)
t (A′′) = {M ∈ A′′ : RM : N 7→ N 3 M is weak-∗ continuous on A′′}.

In the case where A is commutative, we have

M 3 N = N 2 M (M,N ∈ A′′),
and so Z

(`)
t (A′′) and Z

(r)
t (A′′) are each just the (algebraic) centre Z(A′′) of the algebra

(A′′,2).

Proposition 1.6. Let A be a Banach algebra. Then A ⊂ Zt(A′′) = Z
(`)
t (A′′)∩Z

(r)
t (A′′).

The following definitions were given in [16]. Further, many examples showing the
possibilities that can occur were given in [16, Chapter 4].
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Definition 1.7. Let A be a Banach algebra. Then A is Arens regular if

Z
(`)
t (A′′) = Z

(r)
t A′′) = A′′,

left strongly Arens irregular if
Z

(`)
t (A′′) = A,

right strongly Arens irregular if
Z

(r)
t (A′′) = A,

and strongly Arens irregular if it is both left and right strongly Arens irregular.

A closed subalgebra and a quotient algebra of an Arens regular Banach algebra are
themselves Arens regular.

Definition 1.8. Let A be a left strongly Arens irregular Banach algebra. Then a subset
V of A′′ is determining for the left topological centre of A′′ if M ∈ A whenever

M 2 N = M 3 N (N ∈ V ).

Thus A′′ is determining for the left topological centre whenever A is left strongly
Arens irregular, and possibly smaller subsets of A′′ have this property.

The above definition was first given in [17, Definition 12.4]; care is required because
this term has been used in a slightly different sense elsewhere.

Let S be a semigroup, and let `1(S) be the corresponding semigroup algebra. In [17],
it is shown that, in the case where S belongs to an interesting class of semigroups which
is strictly larger than the class of cancellative semigroups, certain subsets V of βS of
cardinality 2 are determining for the left topological centre of `1(S)′′; for strong versions
of this and other related results, see [7] and [31]. There are some related results for
subsemigroups of the real line in [14, Chapter 9]. We shall address similar questions in
Chapter 9.

Introverted subspaces. We recall the definition of introverted subspaces of the dual
module A′ of a Banach algebra A. Our definition is slightly more general than the one in
[16, Definition 5.1] in that now we do not require X to be closed in A′.

Definition 1.9. Let A be a Banach algebra, and let X be a left (respectively, right) A-
submodule of A′. Then X is left-introverted (respectively, right-introverted) if M · λ ∈ X
(respectively, λ · M ∈ X) whenever λ ∈ X and M ∈ A′′; a sub-bimodule X of A′ is
introverted if it is both left- and right-introverted.

Let X be a faithful, left-introverted subspace of A′. Then X is also a left-introverted
subspace of A′, and X◦ is a weak-∗ closed ideal in (A′′,2): this is proved in [16, Theorem
5.4(ii)], but was actually given earlier in [83, Theorem 3.2]. Thus A′′/X◦ is a quotient
Banach algebra; the product in this algebra is again denoted by 2. Since X ′ = A′′/X◦ as
a Banach space, we may regard (X ′,2) as a Banach algebra; the formula for the product
in X ′ is

〈M 2 N, λ〉 = 〈M, N · λ〉 (λ ∈ X).

Definition 1.10. Let A be a Banach algebra. For λ ∈ A′, set

K(λ) = {a · λ : a ∈ A[1]}. (1.4)
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The element λ is [weakly ] almost periodic if the map

a 7→ a · λ, A→ A′,

is [weakly] compact.

ThusK(λ) is a convex subset ofA′. We takeK(λ) to be the closure ofK(λ) in (A′, ‖·‖);
by Mazur’s theorem, K(λ) is also equal to the closure of K(λ) in (A′, σ(A′, A′′)). It is
always true that the closure of K(λ) in (A′, σ(A′, A)) is

K(λ)
σ(A′,A)

= {M · λ : M ∈ A′′[1]},

and of course K(λ) ⊂ K(λ)
σ(A′,A)

. Thus λ is almost periodic if and only if K(λ) is
compact in (A′, ‖ · ‖), and weakly almost periodic if and only if K(λ) is compact in
(A′, σ(A′, A′′)).

Definition 1.11. Let A be a Banach algebra. Then the Banach spaces of almost periodic
and weakly almost periodic functionals on A are denoted by

AP(A) and WAP(A),

respectively.

Thus AP(A) ⊂ WAP(A), and it is easily seen that both AP(A) and WAP(A) are
Banach A-submodules of A′. By [93] (see [16, Proposition 3.11]), λ ∈ WAP(A) if and
only if

〈M 2 N, λ〉 = 〈M 3 N, λ〉 (M,N ∈ A′′),

and so λ ∈WAP(A) if and only if

lim
m

lim
n
〈ambn, λ〉 = lim

n
lim
m
〈ambn, λ〉

whenever (am) and (bn) are bounded sequences in A and both iterated limits exist.
The following result, from [93], is also contained in [16, Theorem 3.14, Proposition

5.7].

Proposition 1.12. Let A be a Banach algebra. Then A is Arens regular if and only if
WAP(A) = A′.

We consider the relation between the space WAP(A) and the two sets A′ · A and
A ·A′.

First, as in [16, Example 4.9(i)], let A be a non-zero Banach algebra with A2 = {0}.
Then A is Arens regular, and so WAP(A) = A′, but A′ · A = A · A′ = {0}, and so
A′A ( WAP(A). Second, let A = `1(G) for an infinite group G, as described below. Then
we shall see that WAP(A) = WAP(G), the space of weakly almost periodic functions on
G, whereas, in this case, A′ ·A = A′ = `∞(G), and so WAP(A) ( A′ ·A.

Now suppose that A has a bounded approximate identity. Clause (i) of the following
result is contained in [16, Propositions 2.20 and 3.12], following [71, Proposition 3.3];
clause (ii) is part of [80, Theorem 3.6].

Proposition 1.13. Let A be a Banach algebra with a bounded approximate identity.
Then:
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(i) AP(A) and WAP(A) are neo-unital Banach A-bimodules, with

AP(A) ⊂WAP(A) ⊂ (A′ ·A) ∪ (A ·A′);

(ii) WAP(A) = A′ ·A if and only if A ·A′′ ⊂ Z
(`)
t (A′′).

For a further discussion of AP(A) and WAP(A), see [16, 25, 83].
We shall also use the following propositions. The first is exactly [75, Lemma 1.2];

clause (ii) was given earlier in [83, Theorem 3.1].

Proposition 1.14. Let A be a Banach algebra, and let X be a left A-submodule of A′.
Then X is left-introverted if and only if

K(λ)
σ(A′,A)

⊂ X

for each λ ∈ X. Further, suppose that X is an A-submodule of A′. Then:

(i) X is introverted whenever X is weak-∗ closed;
(ii) X is introverted whenever X ⊂WAP(A).

In particular, in the case where A is Arens regular, each ‖ · ‖-closed, A-submodule of
A′ is introverted, and so (X ′,2) is a Banach algebra.

Proposition 1.15. Let A be a Banach algebra, and let X be a left-introverted subspace
of A′. Then the following are equivalent conditions on X:

(a) X ⊂ AP(A);
(b) the product

(M,N) 7→ M 2 N, X ′[1] ×X
′
[1] → X ′[1],

is jointly continuous with respect to the weak-∗ topology σ(X ′, X) on X ′.

Proof. (a)⇒(b). Let (Mα) and (Nβ) be nets in X ′[1] converging in the weak-∗ topology
to M and N in X ′[1], respectively. By taking norm-preserving extensions, we may suppose
that all these elements belong to A′′[1].

Let λ ∈ X, so that λ ∈ AP(A) by (a), and hence the set K(λ) is relatively compact
in the Banach space (A′, ‖ · ‖). The identity map

(K(λ), ‖ · ‖)→ (K(λ), σ(A′, A))

is a continuous map from a compact space onto a Hausdorff space, and so the topologies
σ(A′, A) and ‖ · ‖ agree on K(λ) and

K(λ) = {M · λ : M ∈ X ′[1]}.

The net (Nβ ·λ) converges to N ·λ in (A′, σ(A′, A)), and so (Nβ ·λ) converges to N ·λ
in (A′, ‖ · ‖). Hence

|〈Mα 2 Nβ , λ〉 − 〈M 2 N, λ〉|
≤ |〈Mα 2 Nβ , λ〉 − 〈Mα 2 N, λ〉|+ |〈Mα 2 N, λ〉 − 〈M 2 N, λ〉|
≤ ‖Nβ · λ−N · λ‖+ |〈Mα, N · λ〉 − 〈M, N · λ〉|,

and so
lim

(α,β)
〈Mα 2 Nβ , λ〉 = 〈M 2 N, λ〉,
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where the limit is taken over the product directed set. This holds for each λ ∈ X, and so
(b) follows.

(b)⇒(a). Let λ ∈ X[1], and consider the map

ρλ : M→ M · λ, (X ′[1], σ(X ′, X)) 7→ (X[1], σ(X,X ′)).

We claim that ρλ is continuous. Indeed, let (Mα) converge to M in (X ′[1], σ(X ′, X)), and
take N ∈ X ′. Then 〈N, ρλ(Mα)〉 = 〈N 2 Mα, λ〉 → 〈N 2 M, λ〉 = 〈N, ρλ(M)〉, giving the
claim. (At this point, we are using only the separate continuity of the product.) It follows
that ρλ(X ′[1]), the weak-∗ closure of K(λ), is weakly compact in the space X, and hence
in A′.

Let (Mα) be a net in X ′[1]. Then (Mα · λ) is a net in K(λ); by passing to a subnet, we
may suppose that Mα → M in (X ′, σ(X ′, X)) for some M ∈ X ′[1] and that Mα ·λ→ M ·λ
in (A, σ(A,A′)).

We next claim that Mα · λ→ M · λ in (A, ‖ · ‖). Assume towards a contradiction that
this is not the case. Then, by passing to a subnet, we may suppose that there exists ε > 0
such that ‖Mα · λ−M · λ‖ > ε for each α. For each α, choose Nα ∈ X ′[1] such that

|〈Mα · λ−M · λ, Nα〉| > ε.

Again by passing to a subnet, if necessary, we may suppose that the net (Nα) converges
to N in (X ′, σ(X ′, X)). Now we have

ε < |〈Mα · λ−M · λ, Nα〉|
≤ |〈Nα 2 Mα, λ〉 − 〈N 2 M, λ〉|+ |〈N 2 M, λ〉 − 〈Nα 2 M, λ〉|.

But the limit of both terms on the right-hand side is 0 by (b), and so we obtain the
required contradiction. Thus the claim holds.

The claim implies that K(λ) is compact in (A, ‖ · ‖), and hence that λ ∈ AP(A),
giving (a).

Let I be a closed ideal in a Banach algebra A, with the embedding ι : I → A. Then
ι′ : A′ → I ′ is a continuous surjection which is an A-bimodule homomorphism. Let X be
a ‖ · ‖-closed A-submodule of A′. Then Y := ι′(X) is a Banach A-submodule of I ′. We
use the above notation in the following proposition.

Proposition 1.16. Suppose that X is introverted in A′. Then Y is introverted in I ′,
and there is a continuous A-bimodule monomorphism

τ : Y ′ = I ′′/Y ◦ → X ′ = A′′/X◦.

Further, τ : (Y ′,2)→ (X ′,2) is a continuous embedding identifying Y ′ as a closed ideal
in X ′.

Suppose that ι′ : X → Y is an injection. Then τ : Y ′ → X ′ is a surjection, and so Y
is introverted in I ′ if and only if X is introverted in A′.

Proof. To show that Y is left-introverted in I ′, we apply Proposition 1.14.
Let λ ∈ ι′(X), and let Kλ be the closure of {a · λ : a ∈ I[1]} in the topology σ(I ′, I).

Let (aα) be a net in I[1] such that aα · λ → µ in (I ′, σ(I ′, I)). Then there exist λ̃ ∈ X
and µ̃ ∈ A′ such that ι′(λ̃) = λ and ι′(µ̃) = µ. By passing to a subnet, we may suppose
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that aα · λ̃ → µ̃ in (A′, σ(A′, A)). Since λ̃ ∈ X and X is left-introverted in A′, it follows
from Proposition 1.14 that µ̃ ∈ X, and so µ ∈ ι′(X). Thus Kλ ⊂ Y , and so ι′(X) is
left-introverted in I ′, again by Proposition 1.14. Hence Y is left-introverted in I ′.

Similarly, Y is right-introverted in I ′, and so Y is introverted in I ′.
The existence of the specified map τ is clear. By Proposition 1.4, the map

ι′′ : (I ′′,2)→ (A′′,2)

is a continuous injection, and it follows easily that τ : (Y ′,2)→ (X ′,2) is a continuous
embedding.

Certainly (I ′′,2) is a closed ideal in (A′′,2), and so (Y ′,2) is a closed ideal in (X ′,2).
It is also clear that X is introverted in A′ whenever Y is introverted in I ′ in the case
where τ : Y ′ → X ′ is a surjection.

We recall the standard result that every C∗-algebra A is Arens regular, and that its
second dual (A′′,2) is also a C∗-algebra; for an identification of (A′′,2) using universal
representations, see [13, Theorem 3.2.36]. In the present work, we wish to avoid using the
representation theory of C∗-algebras, and to give direct proofs.

We have obtained the following result, using Proposition 1.14(ii).

Proposition 1.17. Let A be a C∗-algebra, and let X be a Banach A-submodule of A′.
Then X is introverted, X◦ is a weak-∗ closed ideal in the C∗-algebra (A′′,2), and (X ′,2)
is a C∗-algebra.

Lau algebras. It will be seen that the main examples that we shall consider later are
examples of ‘Lau algebras’; we introduce these algebras here in an abstract manner.

Definition 1.18. A Lau algebra is a pair (A,M), where:

(i) A is a Banach algebra and M is a C∗-algebra which is isometrically isomorphic to
A′ as a Banach space;

(ii) the identity of M is a character on A.

In this case, M is a von Neumann algebra; every von Neumann algebra has an identity.
It is a standard fact [112, Corollary III.3.9] that there is a unique (as a Banach space, up
to isometric isomorphism) predual M∗ of each von Neumann algebra M ; thus A = M∗
as a Banach space. Further, the product in M is separately continuous when M has
the σ(M,A)-topology (see [104, Theorem 1.7.8]). Thus M is a dual Banach algebra,
and A is a Banach M -submodule of A′′. For µ ∈ M , define continuous linear operators
Lµ, Rµ : A→ A by

〈Lµa, ν〉 = 〈a, µ · ν〉, 〈Rµa, ν〉 = 〈a, ν · µ〉 (a ∈ A, ν ∈M). (1.5)

(In fact, for each a ∈ A, the elements Lµa and Rµa are defined as members of A′′, but
they are continuous on (M,σ(M,A)) because the product in M is separately σ(M,A)-
continuous, and so they belong to A by Proposition 1.1(ii).)

We shall usually write A′ for M and regard A itself as a Lau algebra; we shall denote
the identity of A′ by e. The class of Lau algebras was introduced in [70], where they were
called ‘F -algebras’; they were renamed as ‘Lau algebras’ in [92].
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Examples of Lau algebras include the group algebra and the measure algebra of a
locally compact group G (see Chapter 6), the Fourier algebra A(G) and the Fourier–
Stieltjes algebra B(G) of a locally compact group G (see [30]), the measure algebra M(S)
of a locally compact semitopological semigroup S (see [39]), the convolution measure
algebras studied by Taylor [114], the ‘L-algebras’ considered by McKilligan and White
[83], the predual of a Hopf–von Neumann algebra [111], and the algebras L1(K) (in the
case where K has a ‘left Haar measure’) and M(K) of a locally compact hypergroup K

[27, 100, 107] or of semi-convos [57].

Definition 1.19. Let A be a Lau algebra. A closed subspace X of A′ is a left- (respec-
tively, right-) introverted C∗-subalgebra of A′ if:

(i) X is a C∗-subalgebra of A′;
(ii) X is a left-introverted (respectively, right-introverted) A-submodule of A′.

The space X is an introverted C∗-subalgebra if it is both left- and right-introverted.

In particular, A′ itself is an introverted C∗-subalgebra.
Let A be a Lau algebra, so that A′ is a C∗-algebra. We denote by P(A) the cone

of elements of A which act as positive linear functionals on A′. The set of elements
p ∈ P(A) with 〈p, e〉 = 1 is denoted by P1(A). It is shown in [70] and [92] that P1(A) is
a subsemigroup of (A, ·). Note that (A′′,2) is also a Lau algebra.

Definition 1.20. Let A be a Lau algebra. Let X be a left-introverted C∗-subalgebra
of A′. A topological left-invariant mean on X is an element m ∈ P1(A′′) such that

〈m, x · p〉 = 〈m, x〉 (x ∈ X, p ∈ P1(A)).

Let X be an introverted C∗-subalgebra of A′. Then a topological invariant mean on X is
an element m ∈ P1(A′′) such that

〈m, x · p〉 = 〈m, p · x〉 = 〈m, x〉 (x ∈ X, p ∈ P1(A)).

The algebra A is left-amenable if, for each Banach A-bimodule E such that

a · x = 〈a, e〉x (a ∈ A, x ∈ E),

every bounded derivation from A into E′ is inner.

The following result is [70, Theorem 4.1] and [92, Propsition 3.5].

Proposition 1.21. Let A be a Lau algebra. Then A is left-amenable if and only if A′

has a topological left-invariant mean.

There is a similar definition of a right-amenable Lau algebra A and a topological right-
invariant mean. Now suppose that M1 and M2 are topological left- and right-invariant
means, respectively. Then M1 2 M2 is both a topological left- and right-invariant mean
on A′.

Let S be a semigroup. Then the semigroup algebra `1(S) has been intensively studied
recently; see [17, 18], for example. Clearly `1(S) is a Lau algebra (where `1(S)′ = `∞(S),
with the pointwise product). It is shown in [70, Corollary 4.2] that `1(S) is left-amenable
if and only if S is left-amenable as a semigroup. However `1(S) need not be amenable
even when S is abelian. For example, a necessary condition for this is that S2 = S: this
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follows from [13, Theorem 2.8.63] because `1(S) is not essential whenever S2 ( S, in the
terminology of the reference. In particular, (`1(N), ?) is not weakly amenable.

For further studies of Lau algebras, see [71, 81, 84, 92].

Summary. In Chapter 2, we shall give further background involving topological spaces,
continuous functions, and measures. In particular, we shall define in Definition 2.6 the
class of hyper-Stonean spaces, and we shall characterize these spaces in Theorem 2.9 and
Proposition 2.17.

In Chapter 3, we shall first discuss the second dual algebra of the commutative C∗-
algebra C0(Ω), which is the algebra of all continuous functions that vanish at infinity on
a locally compact space Ω. This second dual space has the form C(Ω̃) for a certain hyper-
Stonean space Ω̃, called the hyper-Stonean envelope of Ω in Definition 3.2. The second
dual space of M(Ω), the Banach space of all complex-valued, regular Borel measures on Ω,
is identified with M(Ω̃). We shall also discuss Bb(Ω), the C∗-algebra of all bounded Borel
functions on Ω; we shall regard Bb(Ω) as a C∗-subalgebra of C(Ω̃).

Let Ω be a non-empty, locally compact space. In Chapter 4, we shall discuss subspaces
of M(Ω) which are modules over the algebra C0(Ω). We shall also discuss further the
hyper-Stonean space Ω̃, and explain that we cannot, in general, recover Ω from Ω̃.

A particularly important case for us is that in which Ω is an uncountable, compact,
and metrizable space (such as Ω = I). Indeed, it will be shown in Theorem 4.16 that
there is a unique hyper-Stonean space X which is the hyper-Stonean envelope of each
such space; we shall give a topological characterization of this space X. We shall calculate
the cardinalities of various subsets of X in this case. We shall also discuss the character
space Φb of Bb(Ω), and we shall calculate the cardinalities of various subsets of Ω̃ which
are defined in terms of the algebra Bb(Ω).

In Chapter 5, we shall recall the definitions and some basic properties of the measure
algebra M(G) and the group algebra L1(G) of a locally compact group G, and develop the
properties of the hyper-Stonean envelope G̃ of G. We shall also consider some introverted
subspaces of dual spaces; these will include LUC (G) and the spaces AP(G) and WAP(G)
of almost periodic and weakly almost periodic functions on G; we shall discuss the relation
of these spaces to the more mysterious C∗-algebras AP(M(G)) and WAP(M(G)). We
shall also discuss Taylor’s structure semigroup of a locally compact abelian group and the
more abstract notion of the structure semigroup of the Lau algebras that were introduced
in Chapter 1.

We shall continue in Chapter 6 with the proofs of some formulae that will be required
later for products in the Banach algebra (M(G̃),2). Our proofs will frequently use the
fact that points of G̃ can be identified with certain ultrafilters.

The main theorem of Chapter 7 is Theorem 7.9, which shows that we can recover a
locally compact group G from knowledge of the hyper-Stonean envelope G̃; this answers
a question raised in [34]. The special case where G is compact was resolved earlier by
Ghahramani and McClure in [35].

Let G be a locally compact group. In Chapter 8, we shall investigate whether or not
(G̃,2) is a semigroup. Indeed, we shall prove in Theorem 8.16 that (G̃,2) is a semigroup
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only in the special case where G is discrete. In the case where G is not discrete, we
shall study in considerable detail the products of two point masses in (M(G̃),2), show-
ing that this product must be a point mass in certain cases and that there are always
two points in G̃ such that their product is a continuous measure. In many groups G,
including the circle group (T, ·), the space G̃ contains two point masses whose product is
neither discrete nor continuous. As important special groups we shall consider T and the
groups Dp.

In the final chapter, Chapter 9, we shall consider the topological centres of L1(G)′′

and M(G)′′ in the case where G is a non-discrete, locally compact group, concentrat-
ing on the case where G is compact. We shall essentially show in Corollary 9.5 that
the spectrum Φ of L∞(G) is determining for the left topological centre of L1(G)′′; this
gives a strong form of the known result that L1(G) is always strongly Arens irregu-
lar. We do not know which subsets of Φ are determining for the left topological centre
of L1(G)′′.

In Chapter 9, we shall also attack the question of whether or not the measure algebra
M(G) is always strongly Arens irregular; this question was raised by Lau in [72] and
Ghahramani and Lau in [34]. Unfortunately we are not able to resolve this point, but
we do give some partial results. [Added in proof: an announcement in May, 2009, by
V. Losert, M. Neufang, J. Pachl, and J. Steprāns states that M(G) is strongly Arens
irregular for each locally compact group; see [82].]

Our memoir concludes with a list of problems that we believe to be both open and
interesting.
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2. Locally compact spaces, continuous functions, and measures

Locally compact spaces. Let (X, τ) be a topological space. The interior, closure, and
frontier (or boundary) of a subset S of X are denoted by intS, by S or S

τ
, and by ∂S or

∂XS, respectively; the family of open neighbourhoods of a point x ∈ X is denoted by Nx.
A Gδ-set is a countable intersection of open sets. The space X with the discrete topology
is denoted by Xd. A subset S of X is meagre if S =

⋃
Sn, where intSn = ∅ (n ∈ N).

A Hausdorff topological space X is extremely disconnected if the closure of every open
set is itself open; this is equivalent to requiring that U ∩ V = ∅ for every pair {U, V } of
open sets with U ∩ V = ∅. A topological space is second countable if its topology has
a countable base. A locally compact, second countable topological space is metrizable.
The weight , w(X), of X is the minimum cardinal of a base for the topology. Clearly
|X| ≤ 2w(X) whenever X is Hausdorff.

Let (Ω, τ) be a non-empty, locally compact space. (Our convention is that each locally
compact space is Hausdorff, and that a hypothesised compact space is non-empty.) The
one-point compactification of Ω is Ω∞ = Ω ∪ {∞} (and Ω∞ = Ω when Ω is compact).
Further, βΩ is the Stone–Čech compactification of Ω and Ω∗ = βΩ\Ω is the growth of Ω
[17, 37, 52, 117]. In particular, N∗ = βN\N. Compact, extremely disconnected topological
spaces are also called Stonean spaces. In particular, each non-empty, open subset of a
Stonean space contains a non-empty, clopen subset.

For example, a compact space X is Stonean if and only if it is a retract of a space
βD for some discrete space D. We shall use Gleason’s theorem [38] (see [3, Theorems
7.4, 7.14], [106, Theorem 25.5.1], or [117, §10.51]) that a compact space X is extremely
disconnected if and only if it is projective, in the sense that it is projective in the cat-
egory of compact spaces. We shall also use the following standard fact: for each dense
subspace U of a Stonean space Ω, each bounded, continuous function on U can be ex-
tended to a continuous function on Ω, and so βU = Ω (see [24] and [112, Corollary
III.1.8]).

For substantial accounts of Stone–Čech and other compactifications of topological
spaces and semigroups, see [52, 117].

A topological space is an F -space if, for each real-valued, continuous function f on X,
the sets {x ∈ X : f(x) > 0} and {x ∈ X : f(x) < 0} have disjoint closures. Thus every
extremely disconnected space is an F -space. For characterizations of F -spaces, see [13,
Proposition 4.2.18(ii)] and [37, §14.25]. By [37, 14N(5)], every infinite, compact F -space
contains a homeomorphic copy of βN.

For the following basic result, see [52, Theorem 3.58] and [117, Proposition 3.21].

[18]
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Proposition 2.1. Let D be an infinite, discrete space with |D| = κ. Then |βD| = 22κ .
In particular, |Ω| ≥ |βN| = |N∗| = 2c for each infinite Stonean space Ω. Further, we have
w(βN) = w(N∗) = c.

Let X be a topological space. Then IX denotes the family of subsets of X which are
both compact and open, so that IX is a family of subsets of X which is closed under
finite unions and intersections; in the case where Ω is a compact space, IΩ is the family
of clopen sets. A compact space Ω satisfies CCC, the countable chain condition, if each
pairwise disjoint family of non-empty, open subsets in IΩ is countable.

We now recall the definition of certain specific compact topological spaces that will
be used later.

Let p ∈ N with p ≥ 2. We recall that Zp = {0, . . . , p − 1}, taken with the discrete
topology. Let κ be an infinite cardinal. Then the Cantor cube of weight κ is the product
space Zκp (with the product topology). The space Zκp is compact, totally disconnected,
and perfect. In particular, we set

Dp = Zℵ0
p ,

so that Dp is a metrizable space with |Dp| = c. Every compact, totally disconnected,
perfect, metrizable space is homeomorphic to D2. For each k ∈ N, take τ1, . . . , τk < κ

with τ1 < τ2 < · · · < τk, and then set F = {τ1, . . . , τk}, so that |F | = k. Now take
α = (α1, . . . , αk) ∈ Zkp, and define

UF,α = {(ετ ) ∈ Zκp : ετi = αi (i ∈ Nk)}, (2.1)

so that UF,α is a clopen subset of Zκp ; the sets UF,α are called the basic clopen subsets of
Zκp . These sets form a base of cardinality κ for the topology of Zκp , and so w(Zκp) = κ;
also each clopen set is a finite, pairwise disjoint union of these basic clopen sets. Thus we
have

|Zκp | = 2κ, |IZκp | = w(Zκp) = κ. (2.2)

Each x ∈ I has a ternary expansion as

x =
∞∑
n=1

εn(x)
3n

,

where εn(x) ∈ Z+
3 . (We agree to resolve ambiguity by requiring that no expansion is equal

to 2 eventually; since the points with an ambiguous expansion form a countable set, and
we shall be considering continuous measures on I when this expansion is relevant, the
ambiguous points will, in any case, have measure 0.) The space D2 is homeomorphic to
the Cantor subset K of R by the map

(εn) 7→ 2
∞∑
n=1

εn
3n
, D2 → K. (2.3)

Borel sets. The σ-algebra generated by a family S0 of subsets of a set S is denoted by
σ(S0); it can be represented as ⋃

{Sα : α < ω1},
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where S1 consists of the complements of the sets in S0 and Sα consists of all countable
unions of sets in

⋃
{Sβ : β < α} for odd ordinals α > 1 and of all countable intersections

of sets in this family for even ordinals α > 0. Hence |σ(S0)| ≤ 2|S0|; in the case where
|S0| ≥ c, we have |σ(S0)| = |S0|.

Let (X, τ) be a Hausdorff topological space. Then BX is the family of all Borel subsets
of X, so that BX is the σ-algebra generated by τ . Certainly IX ⊂ BX . We record the
following well-known facts about the σ-algebra BX .

Let X2 be a subspace (with the relative topology) of a Hausdorff space X1. Then, by
[11, Lemma 7.2.2], we have

BX2 = {B ∩X2 : B ∈ BX1}.

Let X1 and X2 be Hausdorff topological spaces. A map η : X1 → X2 is a Borel map
if

η−1(U) ∈ BX1 (U ∈ BX2).

Let B1 and B2 be Borel subsets of X1 and X2, respectively. Then a Borel isomorphism
from B1 to B2 is a bijection η : B1 → B2 such that both η and η−1 are Borel maps; B1

and B2 are Borel isomorphic if there exists such a Borel isomorphism. By [11, Lemma
7.2.1], each continuous map η : X1 → X2 is a Borel map.

Proposition 2.2.

(i) Let Ω be an uncountable, compact, metrizable space. Then, for each uncountable set
B ∈ BΩ, we have w(Ω) = ℵ0, and |Ω| = |B| = c.

(ii) Let B1 and B2 be Borel subsets of two compact, metrizable spaces with |B1| = |B2|.
Then B1 and B2 are Borel isomorphic.

(iii) Let B be an uncountable Borel subset of a compact, metrizable space. Then B con-
tains c pairwise disjoint sets, each homeomorphic to D2. In particular, B contains
an uncountable, compact space.

(iv) Let Ω be an uncountable, compact, metrizable space. Then |BΩ| = c.

Proof. (i) & (ii) Each compact, metrizable space is complete [29, Theorem 4.3.28] and
separable [29, Theorem 4.1.18], and so is a Polish space. A metrizable space has a count-
able base (i.e., is second countable) if and only if it is separable [29, Theorem 4.1.16].
Clauses (i) and (ii) now follow from [11, Theorem 8.3.6].

(iii) By [11, Corollary 8.2.14], B contains a subset that is homeomorphic to the set D2,
and so it suffices to prove the result for the space D2 itself. Clearly there is a continuous
bijection θ : D2 → D2 ×D2. For each α ∈ D2, we set Fα = θ−1({α} ×D2), so that Fα
is a compact subset of D2 homeomorphic to D2. The family {Fα : α ∈ D2} is pairwise
disjoint, and so has the required properties.

(iv) By (iii), |BΩ| ≥ c. By (i), w(Ω) = ℵ0. Since each open set is a countable union
of basic open sets, BΩ is the σ-algebra generated by the basic open sets, and hence
|BΩ| ≤ 2ℵ0 = c. Hence |BΩ| = c.

Clause (ii), above, is a form of the Borel isomorphism theorem. For example, it follows
from (ii) that D2 and T are Borel isomorphic.
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Continuous functions. Let Ω be a non-empty, locally compact space. Then Cb(Ω)
denotes the space of bounded, continuous, complex-valued functions on Ω, and C0(Ω)
denotes the subspace of all functions in Cb(Ω) which vanish at infinity, so that Cb(Ω)
and C0(Ω) are commutative C∗-algebras for the pointwise product of functions and the
uniform norm | · |Ω on Ω; the latter norm is defined by

|f |Ω = sup{|f(x)| : x ∈ Ω} (f ∈ Cb(Ω))

(see [13, 17] for details).
Of course, Cb(Ω) is isometrically isomorphic as a C∗-algebra to C(βΩ) (see [37]), and

we shall identify these spaces. In particular,

`∞(Ω) ∼= C(βΩd).

We shall often set E = C0(Ω). The space of real-valued functions in E is ER = C0(Ω)R.
We shall use the natural ordering on ER: for λ ∈ ER, we have

λ ≥ 0 if λ(x) ≥ 0 (x ∈ Ω);

the positive cone of E is denoted by E+ = C0(Ω)+. Then (ER,≤) is a Banach lattice in a
standard sense. Further, E itself is a (complex) Banach lattice. We recall that a Banach
lattice such as (ER,≤) is Dedekind complete if every subset which is bounded above has
a supremum.

For early discussions of the Banach space C0(Ω), see [3, 106]; for background on
Banach lattices, with particular reference to the Banach lattice C0(Ω)R, see [60, §3.4]
and [65]. The Banach algebra C0(Ω) is discussed at some length in [13, §4.2].

Proposition 2.3. Let Ω be a compact space.

(i) The space (C(Ω), | · |Ω) is separable if and only if Ω is metrizable.
(ii) Suppose that Ω is metrizable and infinite. Then |C(Ω)| = c.

Proof. (i) is [1, Theorem 4.1.3], for example. For (ii), the space Ω is separable, and so
|C(Ω)| = cℵ0 = c.

In the case where Ω is compact, 1Ω is the identity of C(Ω); in the general locally
compact case, C0(Ω) has a bounded approximate identity. The idempotents of C0(Ω) are
the characteristic functions of the sets in IΩ, and we regard IΩ as a subset of C0(Ω).

Let Ω be a non-empty, locally compact space. The evaluation functional on E = C0(Ω)
at a point x ∈ Ω is

εx : λ 7→ λ(x), E → C,

so that εx ∈ E′; we also identify ε∞ with the zero linear functional on E. We can regard
Ω∞ as a subset of E′ by identifying x ∈ Ω∞ with εx ∈ E′.

We now recall some well-known and standard facts about continuous mappings be-
tween compact spaces and algebras of continuous functions.

Let Ω1 and Ω2 be two compact spaces. First, let η : Ω1 → Ω2 be a continuous map,
and define

η◦ : λ 7→ λ ◦ η, C(Ω2)→ C(Ω1). (2.4)
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Then η◦ is a continuous ∗-homomorphism with ‖η◦‖ = 1. Further, η◦ is an injection/a
surjection if and only if η is a surjection/an injection, respectively.

Conversely, let θ : C(Ω2)→ C(Ω1) be a ∗-homomorphism. Then θ is continuous with
‖θ‖ = 1, and there exists a continuous map η : Ω1 → Ω2 with θ = η◦; indeed, we have
η = θ′ |Ω1.

We shall use the standard Banach–Stone theorem; see [1, Theorem 4.1.5] and [12,
Theorem VI.2.1], for example. For clause (ii) below, see also [60, Corollary 3.4.8].

Theorem 2.4. Let Ω1 and Ω2 be two compact spaces.

(i) Suppose that T : C(Ω1) → C(Ω2) is an isometric linear isomorphism. Then there
are a homeomorphism η : Ω2 → Ω1 and θ ∈ C(Ω2) such that |θ(y)| = 1 (y ∈ Ω2)
and

(Tλ)(y) = θ(y)(λ ◦ η)(y) (y ∈ Ω2, λ ∈ C(Ω1)).

(ii) Suppose that T : C(Ω1) → C(Ω2) is an isometric linear isomorphism such that
T (1) = 1. Then T is an isomorphism of C∗-algebras.

(iii) The commutative C∗-algebras C(Ω1) and C(Ω2) are isomorphic as C∗-algebras if
and only if Ω1 and Ω2 are homeomorphic as topological spaces.

Let Ω be a compact space, and let A be a uniformly closed subalgebra of C(Ω) such
that A contains the constant function 1Ω and such that, for each x ∈ Ω, there exists
λ ∈ A with λ(x) 6= 0. We say that A separates the points of Ω if, for each x, y ∈ Ω
with x 6= y, there exists λ ∈ A with λ(x) 6= λ(y). For x, y ∈ Ω, set x ∼A y or x ∼ y if
λ(x) = λ(y) (λ ∈ A), so that ∼A is an equivalence relation on Ω, and set

[x] = {y ∈ Ω : y ∼A x} (x ∈ Ω).

Then {[x] : x ∈ Ω} is a partition of Ω into closed subsets; we may identify the character
space of A with the compact space Ω/∼A which is the quotient space of Ω by the relation
∼A, and then identify A with C(Ω/∼A).

Let F be a closed subspace of Ω. Then we remark that

[F ] :=
⋃
{[x] : x ∈ Ω}

is closed in Ω. For let (xα) be a net in [F ] such that xα → x0 in Ω. For each α, there exists
yα ∈ F with yα ∼A xα. By passing to a subnet, we may suppose that (yα) converges to
y0 in F . Clearly x0 ∼A y0, and so x0 ∈ [F ]. Thus [F ] is closed.

There are many statements that are equivalent to the fact that a compact space is
extremely disconnected; we collect some of these in the following theorem.

Theorem 2.5. Let Ω be a compact space. Then the following statements about Ω are
equivalent:

(a) Ω is extremely disconnected, and so Ω is Stonean;
(b) Ω is projective in the category of compact spaces;
(c) the Banach lattice C(Ω)R is Dedekind complete;
(d) C(Ω) is injective in the category of commutative C∗-algebras and continuous ∗-homo-

morphisms;
(e) C(Ω) is injective in the category of Banach spaces and contractive linear maps.
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Proof. The equivalence of (a) and (b) is Gleason’s theorem [38], and the equivalence with
(d) is also in [38]. The equivalence of (a) and (c) is given in [13, Proposition 4.2.29] and
[112, Proposition III.1.7]), and the equivalence of (a), (c), and (e) is given in [1, §4.3].

For a short and attractive direct exposition of all these equivalences, see [43, Theorem
2.4].

Definition 2.6. Let Ω be a compact space. Then Ω is hyper-Stonean if C(Ω) is isomet-
rically isomorphic to the dual space of another Banach space.

Thus Ω is hyper-Stonean if C(Ω) is a von Neumann algebra [13, Definition 3.2.35].
A Banach space F such that F ′ = C(Ω) is a predual of C(Ω). In this case, the predual of
C(Ω) is unique and is denoted by C(Ω)∗; this space defines the canonical weak-∗ topology
σ(C(Ω), C(Ω)∗) on C(Ω). We shall identify this predual shortly.

By [13, Proposition 4.2.29(ii)], a hyper-Stonean space is Stonean. The seminal work
on hyper-Stonean spaces is the classical paper of Dixmier [24].

For example, C(βN) = `∞ is isometrically the dual of `1, and so βN is a hyper-Stonean
space. Note that the closed subspace N∗ of βN is not extremely disconnected [37, Exercise
6W], and so the compact space N∗ is not Stonean.

Measures. Let Ω be a non-empty, locally compact space. We shall consider ‘measures’
on Ω; these are the complex-valued, regular Borel measures defined on the σ-algebra BΩ,
and they form the Banach space M(Ω) in a standard way, so that

‖µ‖ = |µ|(Ω) (µ ∈M(Ω)).

The sets of real-valued and positive measures in M(Ω) are denoted by M(Ω)R and
M(Ω)+, respectively. A measure µ in M(Ω)+ with ‖µ‖ = 1 is a probability measure; the
collection of probability measures on Ω is denoted by P (Ω), so that P (Ω) is the state
space of the C∗-algebra C0(Ω).

The support of a measure µ on Ω is denoted by suppµ.
Let Ω be a non-empty, locally compact space, and let µ, ν ∈ M(Ω). Then we write

µ� ν if µ is absolutely continuous with respect to |ν|, and µ ⊥ ν if µ and ν are mutually
singular. We recall that µ ⊥ ν if and only if

‖µ+ ν‖ = ‖µ− ν‖ = ‖µ‖+ ‖ν‖. (2.5)

The dual space of E = C0(Ω) is E′, and this space is identified with M(Ω); the duality
is

〈λ, µ〉 =
∫

Ω

λ dµ (λ ∈ C0(Ω), µ ∈M(Ω)).

Certainly M(Ω) is a Banach E-module. The dual module action λ ·µ of λ ∈ E on µ ∈ E′
is just the usual product λµ; in particular, when Ω is compact, 1Ω · µ = µ. The space
M(Ω)R is again a Banach lattice in an obvious way; it is the dual lattice to (ER,≤).
Again we regard M(Ω) as a (complex) Banach lattice.

The subspaces of M(Ω) consisting of the discrete and continuous measures are Md(Ω)
and Mc(Ω), respectively. Let µ ∈M(Ω). Then the discrete and continuous parts of µ are
denoted by µd and µc, respectively; we have µ = µd + µc with ‖µ‖ = ‖µd‖ + ‖µc‖, and
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thus we have a decomposition of Banach spaces

E′ = M(Ω) = Md(Ω)⊕1 Mc(Ω).

We shall identify Md(Ω) with `1(Ω). In the case where Ω is an uncountable, compact,
metrizable space, Mc(Ω) 6= {0}. (In fact, we have M(Ω) = Md(Ω) if and only if the
topological space Ω is scattered, in the sense that each non-empty subset A of Ω contains
a point that is isolated in A [76].)

We have
E′′ = M(Ω)′ ∼= C(βΩd)⊕1 Mc(Ω)′.

In particular, there is an embedding

jd : `∞(Ω)→ C(βΩd) = M(Ωd)′. (2.6)

Particular measures in P (Ω) ∩Md(Ω) are the point masses δx, defined for x ∈ Ω; we
shall sometimes regard Ω as a subset of P (Ω) by identifying x ∈ Ω with δx. In the above
identification of E′ with M(Ω), we are identifying εx with δx for each x ∈ Ω. It is easy to
see that the extreme points of the unit ball M(Ω)[1] are those measures of the form ζδx,
where ζ ∈ T and x ∈ Ω, and so we can identify Ω with exP (Ω).

Let Ω be a non-empty, locally compact space, and let µ ∈M(Ω) and B ∈ BΩ. Then

(µ |B)(C) = µ(B ∩ C) (C ∈ BΩ),

so that µ |B ∈M(Ω); if µ ∈M(Ω)+ and µ(B) 6= 0, then we set

µB =
µ |B
µ(B)

, (2.7)

so that µB ∈M(Ω)[1].
We shall require the following well-known lemma.

Lemma 2.7. Let Ω be a locally compact space, let Q be a countable, dense subset of Ω, and
let µ ∈Mc(Ω)+. Then Ω contains a dense Gδ-subset D such that Q ⊂ D and µ(D) = 0.

Proof. Set Q = {xn : n ∈ N}. Since µ is continuous, it follows that, for each k, n ∈ N,
there is an open neighbourhood Uk,n of xn such that µ(Uk,n) < 1/2nk. Set

Uk =
⋃
{Uk,n : n ∈ N} (k ∈ N).

Then each Uk is an open subset of Ω with µ(Uk) < 1/k. The set D :=
⋂
Uk is a Gδ-subset

of Ω; it is dense because it contains {xn : n ∈ N}, and clearly µ(D) = 0.

The following concept originates in [24]; see also [3] and [112, Definition III.1.10], for
example.

Definition 2.8. Let Ω be a non-empty, locally compact space. A measure µ ∈ M(Ω)
is normal if µ is order-continuous, in the sense that 〈fα, µ〉 → 0 for each decreasing net
(fα : α ∈ A) in (C(Ω)R,≤) such that the infimum (in C(Ω)R) of the family {fα : α ∈ A}
is 0.

The set of normal measures on Ω is denoted by N(Ω); it is easy to see that a measure
µ ∈M(Ω) is normal if and only if |µ| is normal [3, Lemma 8.3] and that N(Ω) is a closed
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linear subspace of M(Ω) [3, Theorem 8.8]. In the case where Ω is Stonean, the support
of a normal measure is a clopen subspace of Ω [3, Theorem 8.6].

We now record the following theorem, taken from [3, Theorem 8.19], [24], and [112,
Definition III.1.14 and Theorem III.1.18]; it shows that several different definitions of
‘hyper-Stonean’ in the literature are equivalent.

Theorem 2.9. Let Ω be a Stonean space. Then the following are equivalent:

(a) Ω is hyper-Stonean;
(b) for each λ ∈ C(Ω)+ with λ 6= 0, there exists µ ∈ N(Ω)+ with 〈λ, µ〉 6= 0;
(c) the union of the supports of the normal measures is dense in Ω;
(d) there is a locally compact space Γ and a positive measure ν on Γ such that C(Ω) is

C∗-isomorphic to L∞(Γ, ν).

It is clear from the above that a clopen subspace of a hyper-Stonean space is hyper-
Stonean.

We now characterize normal measures on Ω.

Definition 2.10. Let Ω be a non-empty, locally compact space. Then KΩ denotes the
family of compact subsets K of Ω for which intK = ∅.

The next result was essentially proved by Dixmier in the seminal paper [24, Proposi-
tion 1, §2]. The equivalence of (a) and (b) is [112, Proposition III.1.11].

Theorem 2.11. Let Ω be a Stonean space, and let µ ∈ M(Ω)+. Then the following
conditions on µ are equivalent:

(a) µ is a normal measure on Ω;
(b) µ(K) = 0 (K ∈ KΩ).

In the case where Ω is hyper-Stonean, the conditions are also equivalent to:

(c) µ ∈ C(Ω)∗.

Thus the unique predual C(Ω)∗ of C(Ω) is N(Ω). It follows that a measure µ ∈MR(Ω)
is order-continuous on CR(Ω) if and only if it is weak-∗ continuous.

Note that our theorem implies that the restriction of a measure in N(Ω)+ to a Borel
subset of Ω also belongs to N(Ω)+.

In fact, a more general result is well-known. Indeed, by [60, Definition 7.1.11], a
state µ on a von Neumann algebra R is normal if it is order-continuous, in the sense
that µ(aα) → µ(a) for each increasing net (aα) in R with least upper bound a; by [60,
Theorem 7.1.12], a state on R is normal if and only if it is weak-operator continuous on
R[1] (and several other equivalences are given in this reference); by [60, Theorem 7.4.2],
the weak-∗ topology on R[1] coincides with the weak-operator topology on R[1], and the
predual R∗ of R is just the space of normal states. Thus clauses (a) and (c) in the above
theorem are equivalent in a wider context.

Definition 2.12. Let F be a family of positive measures on a non-empty, locally compact
space Ω. Then F is singular if any two distinct measures in F are mutually singular.
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The collection of such singular families on Ω is ordered by inclusion. It is clear from
Zorn’s lemma that the collection has a maximal member that contains any specific sin-
gular family; this is a maximal singular family . We may suppose that such a maximal
singular family contains all the measures that are point masses and that all other mem-
bers are continuous measures, so that, in the case where Ω is discrete, a maximal singular
family consists just of the point masses. We shall also refer to a maximal singular family
of continuous measures in an obvious sense.

We shall see in Proposition 4.10, below, that any two such maximal singular families
of continuous measures have the same cardinality.

Proposition 2.13. Let Ω be an uncountable, compact, metrizable space. Then

|M(Ω)| = c.

Further, there is a maximal singular family of measures in M(Ω)+ that consists of exactly
c point masses and c continuous measures.

Proof. By Proposition 2.2(i), the topology of Ω has a countable base, say B; we may
suppose that this base is closed under finite unions. Each open set in Ω is a countable,
increasing union of members of B, and so each µ ∈ M(Ω) is determined by its values
on B. Hence |M(Ω)| ≤ c.

Let {Fα : α ∈ D2} be a family of pairwise disjoint subsets of Ω, with each set Fα
homeomorphic to D2; such a family is constructed in Proposition 2.2(iii). For each α,
there is a continuous measure µα with suppµα = Fα. Let F0 be the family consisting of
all the point masses and all the measures µα, so that F0 is a singular family of measures,
and let F be a maximal singular family containing F0. By Proposition 2.2(i), |Ω| = c, and
so F contains exactly c point masses. Since F contains each measure µα, F contains at
least c continuous measures, and so |M(Ω)| ≥ c. Since |M(Ω)| ≤ c, the family F contains
at most c continuous measures.

Again let Ω be a non-empty, locally compact space, and let µ be a fixed continuous
positive measure on Ω (so that it is not necessarily the case that µ ∈ M(Ω) because we
allow the possibility that µ(Ω) =∞). Then Mac(Ω, µ) and Ms(Ω, µ) denote the subspaces
of M(Ω) consisting of measures which are absolutely continuous and singular (and non-
discrete) with respect to µ, respectively, and we have an `1-Banach space decomposition

M(Ω) = `1(Ω)⊕1 Mac(Ω, µ)⊕1 Ms(Ω, µ).

In the case where the measure µ is σ-finite or is the left Haar measure on a locally com-
pact group, we may identify Mac(Ω, µ) with L1(Ω, µ) via the Radon–Nikodým theorem,
and so, in the case where µ is continuous, we have

M(Ω) = `1(Ω)⊕1 L
1(Ω, µ)⊕1 Ms(Ω, µ). (2.8)

Let µ ∈ M(Ω). Then, in the above cases, the dual of the Banach space L1(Ω, µ) is
the space L∞(Ω, µ). This space is a commutative, unital C∗-algebra with respect to the
pointwise operations, and thus its character space is a compact space.

Definition 2.14. Let Ω be a non-empty, locally compact space, and let µ be a positive
measure on Ω. Then the character space of L∞(Ω, µ) is denoted by Φµ.
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Thus L∞(Ω, µ) is isometrically ∗-isomorphic to C(Φµ); the map that implements this
isomorphism is the Gel’fand transform

Gµ : L∞(Ω, µ)→ C(Φµ).

The space Φµ is hyper-Stonean. Clearly, the second dual L1(Ω, µ)′′ of L1(Ω, µ) is the dual
space C(Φµ)′ = M(Φµ).

Let F = {νi : i ∈ I} be a maximal singular family of positive measures on Ω. In the
case where νi ∈M(Ω), we may suppose that ‖νi‖ = 1 for each i ∈ I; the character space
of L∞(Ω, νi) is denoted by Φi. Clearly, each measure ν ∈ M(Ω) can be written in the
form

ν =
∑
i∈I

fiνi,

where fi ∈ L1(Ω, νi) (i ∈ I) and ‖ν‖ =
∑
i∈I ‖fi‖1, and so

M(Ω) =
⊕

1
{L1(Ω, νi) : i ∈ I}.

Thus
M(Ω)′ =

⊕
∞
{L∞(Ω, νi) : i ∈ I} =

⊕
∞
{C(Φi) : i ∈ I}. (2.9)

Boolean algebras. We recall some basic facts about Boolean algebras. For background,
see [33].

Let B be a Boolean algebra. Then B is complete if every non-empty subset S of B
has a supremum, denoted by

∨
S, and an infimum, denoted by

∧
S. For example, the

family of all clopen subsets of a topological space X is a Boolean algebra with respect
to the Boolean operations ∪ and ∩; this Boolean algebra is complete if and only if X is
extremely disconnected.

Let B be a Boolean algebra. An ultrafilter p on B is a subset of B which is maximal
with respect to the property that b1 ∧ · · · ∧ bn 6= 0 whenever b1, . . . , bn ∈ p. The family of
ultrafilters on B is the Stone space of B, denoted by S(B); a topology on S(B) is defined
by taking the sets

{p ∈ S(B) : b ∈ p}

for b ∈ B as a base of the open sets of S(B). In this way S(B) is a totally disconnected
compact space; it is extremely disconnected if and only if B is complete as a Boolean
algebra, and in this case it is a Stonean space. Conversely, let Ω be a totally disconnected
compact space. Then Ω is the Stone space of the Boolean algebra IΩ.

Let Ω be a non-empty, locally compact space, and let µ be a positive measure on Ω.
Then Nµ is the family of sets B ∈ BΩ with µ(B) = 0, and we define

Bµ = BΩ/Nµ;

clearly, Bµ is a complete Boolean algebra, and so its Stone space S(Bµ) is extremely
disconnected.

Let B ∈ BΩ. Then χB (or, more precisely, the equivalence class [χB ]) is an idempotent
in L∞(Ω, µ), and so Gµ(χB) is an idempotent in C(Φµ); we set

KB ∩ Φµ = {ϕ ∈ Φµ : Gµ(χB)(ϕ) = 1}, (2.10)
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so that
{KB ∩ Φµ : B ∈ BΩ} = IΦµ .

In particular, suppose that B ∈ BΩ and µ(B) = 0. Then KB ∩ Φµ = ∅.
Clearly, S(Bµ) is homeomorphic to the space Φµ. Indeed, first let p be an ultrafilter

in Bµ. Then ⋂
{KB ∩ Φµ : B ∈ p}

is a singleton in Φµ, and so we can regard p as a point of Φµ. Conversely, each element
ϕ ∈ Φµ defines the ultrafilter in BΩ which is the equivalence class corresponding to the
family

{B ∈ BΩ : ϕ(χB) = 1}.

This family is directed by reverse inclusion, and so defines a net; we write ‘limB→ϕ’ for
convergence along this net. Thus we see that the corresponding net{

µB =
µ |B
µ(B)

: B → ϕ

}
in L∞(Ω, µ)[1] converges weak-∗ to δϕ in M(Φµ); this net is called the canonical net that
converges to δϕ. Specifically, for each λ ∈ L∞(Ω, µ), we have

lim
B→ϕ
〈λ, µB〉 = lim

B→ϕ

1
µ(B)

∫
B

λ dµ = Gµ(λ)(ϕ). (2.11)

It is clear that, for each x ∈ Ω∞ such that µ(U) > 0 for each U ∈ Nx, there exists
ϕ ∈ Φµ such that Nx ⊂ ϕ. In particular, for each x ∈ suppµ, there exists ϕ ∈ Φµ with
Nx ⊂ ϕ. It is also clear that, for each ϕ ∈ Φµ, there exists a unique point x ∈ suppµ∪{∞}
with Nx ⊂ ϕ. Thus we can define a map

πµ : ϕ 7→ x, Φµ → Ω∞, (2.12)

and so |Φµ| ≥ | suppµ|. We see from the definition of the topology on the Stone space
Φµ that πµ is continuous.

Proposition 2.15. Let Ω be a non-empty, locally compact space, and let µ be a positive
measure on Ω such that suppµ = Ω and |Bµ| = κ for an infinite cardinal κ.

(i) Each non-empty, clopen subset of Φµ has the form KB ∩Φµ for some B ∈ BΩ \Nµ,
and the family

{KB ∩ Φµ : B ∈ BΩ \Nµ}

is a base for the topology of Φµ.
(ii) w(Φµ) = κ and |Ω| ≤ |Φµ| = 2κ.
(iii) Φµ satisfies CCC.
(iv) Φµ has no isolated points if and only if µ is continuous.

Proof. (i) & (ii) These are clear from our earlier remarks.
(iii) Let {Ui : i ∈ I} be a pairwise disjoint family of non-empty, open subsets of Φµ. For

each i ∈ I, choose a non-empty, clopen set Ki ⊂ Ui. Then there exists Bi ∈ BΩ \Nµ with
KBi ∩Φµ = Ki. The family {Bi : i ∈ I} ⊂ BΩ is pairwise disjoint, and µ(Bi) > 0 (i ∈ I).
Thus I is countable.
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(iv) Suppose that µ is not continuous, so that there exists x ∈ Ω with µ({x}) > 0.
Then ϕ := {B ∈ BΩ : x ∈ B} is an ultrafilter in S(Bµ), and clearly ϕ is an isolated
point of Φµ.

Suppose that ϕ is an isolated point of Φµ. Then there exists B ∈ BΩ with µ(B) > 0
such that {ψ ∈ Φµ : B ∈ ψ} = {ϕ}. Since µ is regular, we may suppose that B is
compact. Thus there is a unique point x ∈ B such that µ(U ∩ B) = µ(B) (U ∈ Nx).
Clearly µ({x}) = µ(B) > 0, and so µ is not continuous.

Example 2.16. Take p ≥ 2, and let Ω = Zκp be the Cantor cube of weight κ described
above, where κ is an infinite cardinal. Let mp be the measure that gives the value 1/p
to each point of Zp, and let m be the corresponding product measure on Zκp . Then
m ∈Mc(Ω)+, ‖m‖ = 1, and suppm = Ω.

By (2.2), |Ω| = 2κ and w(Ω) = |IΩ| = κ, and so |Bm| ≥ κ.
Now suppose that κ ≥ c. Since |IΩ| ≥ c, we have |σ(IΩ)| = κ. Let B ∈ BΩ. The space

Ω is totally disconnected and m is regular, and so, for each ε > 0, there exists Cε ∈ IΩ

such that m(B 4 Cε) < ε. It follows that there exists C ∈ σ(IΩ) with m(B 4 C) = 0,
and hence m(B) = m(C). Thus |Bm| ≤ κ, and so |Bm| = κ.

By Proposition 2.15(ii), w(Φm) = κ and so |Φm| = 2κ. (That |Φm| ≤ 2κ also follows
because each character on L∞(Ω, µ) is determined by its values on the characteristic
functions of Borel sets of Ω.)

The following result characterizes the sets Φµ of Definition 2.14.

Proposition 2.17. Let X be a hyper-Stonean space. Then the following conditions on
X are equivalent:

(a) X satisfies CCC;
(b) X is homeomorphic to a space Φµ for some positive measure µ on a non-empty,

locally compact space;
(c) there exists µ ∈ N(X) with ‖µ‖ = 1 and suppµ = X such that X is homeomorphic

to Φµ.

Proof. Trivially (c)⇒(b); we have shown that (b) ⇒ (a).
(a)⇒(c). We have remarked that each normal measure on X has clopen support.
Take N to be a family of normal measures in P (X) such that N is maximal subject

to the condition that the supports of the measures in the family are pairwise disjoint;
certainly such a maximal family exists. By hypothesis, N is countable, and so can be
enumerated as (µn). Define µ =

∑∞
n=1 µn/2

n. Then µ is a normal measure with ‖µ‖ = 1
and suppµ = X.

We shall show that Φµ is homeomorphic to X. To see this, let θ be the canonical map
from BX onto Bµ, so that θ is a Boolean epimorphism. We claim that

θ |IX : IX → Bµ

is an isomorphism of Boolean algebras. Clearly θ |IX is a Boolean monomorphism. Now
take B ∈ BX . Then there is a sequence (Kn) of compact subsets of B with µ(B) = µ(U),
where U =

⋃
{Kn : n ∈ N}, an open set in X. We have U ∈ IX . For each n ∈ N, we have

µ(Kn) = µ(intKn), and so we may suppose that Kn = intKn, and thus that Kn ∈ IX .
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Further, U \ U ∈ KX , and so µ(U \ U) = 0 by Theorem 2.11. Thus µ(U) = µ(B). This
shows that θ |IX is a surjection onto Bµ.

We have shown that IX and Bµ are isomorphic Boolean algebras, and so their
respective Stone spaces are homeomorphic; these Stone spaces are X and Φµ, respec-
tively.

Let Ω be a non-empty, locally compact space, and let µ be a positive measure on Ω.
Then the pair (Bµ, µ) is termed a measure algebra by Halmos in [45, p. 167]; however,
we shall call it a measure Boolean algebra to avoid possible confusion with a later usage
of the term ‘measure algebra’. The special case in which Ω = I and µ is the Lebesgue
measure on I is called the measure Boolean algebra of the unit interval ; the corresponding
space Φµ is called the hyper-Stonean space of the unit interval in [32, A7H].

Definition 2.18. The hyper-Stonean space of the unit interval is denoted by H.

Thus H is the character space of the C∗-algebra L∞(I,m).
Let Ω1 and Ω1 be two non-empty, locally compact spaces, and let µ1 and µ2 be

positive measures on Ω1 and Ω2, respectively. An isomorphism between the measure
Boolean algebras (Bµ1 , µ1) and (Bµ2 , µ2) is a map η : Bµ1 → Bµ2 which is a Boolean
algebra isomorphism and µ2(η(B)) = µ1(B) for each B ∈ BΩ1 ; the two measure Boolean
algebras (Bµ1 , µ1) and (Bµ2 , µ2) are isomorphic if there is such an isomorphism between
them. In this latter case, the spaces L1(Ω1, µ1) and L1(Ω2, µ2) are isomorphic as Banach
lattices.

A measure ring (Bµ, µ) is separable in the sense of [45, p. 168] if the space (BΩ, ρ) is
a separable metric space for the metric ρ, defined by setting

ρ(B,C) = µ(B 4 C) = ‖χB − χC‖1 (B,C ∈ BΩ).

This is the case if and only if the Banach space (L1(Ω, µ), ‖·‖1) is separable. The measure
Boolean algebra of a compact, metrizable space Ω is separable because w(Ω) = ℵ0.

We shall require a famous isomorphism theorem; a proof involving just measures is
given in [45, §41, Theorem C], and a proof involving von Neumann algebras is given in
[112, Theorem III.1.22].

Theorem 2.19. Let Ω be a non-empty, locally compact space, and let µ ∈ Mc(Ω)+ be
such that ‖µ‖ = 1 and such that the Banach space (L1(Ω, µ), ‖ · ‖1) is separable. Then
the measure Boolean algebra (Bµ, µ) is isomorphic to the measure Boolean algebra of the
unit interval, and the Banach spaces L1(Ω, µ) and L1(I,m) are isometrically isomorphic
as Banach lattices.

In particular, in the case where Ω is uncountable, locally compact, and second count-
able, there exists a measure µ ∈ Mc(Ω)+ such that the spaces L1(Ω, µ) and L1(I,m) are
isometrically isomorphic as Banach lattices.

Corollary 2.20. Let Ω1 and Ω2 be two locally compact and second countable spaces,
and suppose that µ1 ∈ Mc(Ω1)+ and µ2 ∈ Mc(Ω2)+, with µ1, µ2 6= 0. Then the compact
spaces Φµ1 and Φµ2 are homeomorphic.
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Corollary 2.21. Let Ω be an uncountable, compact, metrizable space. Let µ ∈Mc(Ω)+

with µ 6= 0. Then |Φµ| = 2c and w(Φµ) = c. In particular,

|H| = 2c and w(H) = c.

Proof. By Proposition 2.2(iv), |BΩ| = c, and so |Bµ| ≤ c. By Proposition 2.15(ii), we
have |Φµ| ≤ 2c and w(Φµ) ≤ c.

Since Φµ is Stonean and infinite, it contains a copy of βN, and so w(Φµ) ≥ w(βN) = c

by Proposition 2.1. Thus |Φµ| = 2c and w(Φµ) = c.
We give a direct proof of the fact that |Φµ| ≥ 2c. By Corollary 2.20, it suffices to

suppose that Ω = I and that µ is Lebesgue measure on I. For n ∈ N, set Fn = [t2n+1, t2n],
where (tn) is a sequence in I such that tn ↘ 0. For each S ⊂ N, set BS =

⋃
{Fn : n ∈ S},

and, for each p ∈ N∗, set
Cp =

⋂
{KBS : S ∈ p}.

Then Cp is a non-empty, closed subset of Φµ, and Cp ∩ Cq = ∅ whenever p and q are
distinct points of N∗. By Proposition 2.1, |N∗| = 2c, and so it follows that |Φµ| ≥ 2c.

Thus, with GCH, we have |H| = ℵ2 and w(H) = ℵ1.

Corollary 2.22. The space H is a topological space X with the following properties:

(i) X is a hyper-Stonean space;
(ii) X has no isolated points;
(iii) X satisfies CCC;
(iv) the space (C(X)[1], σ(C(X), N(X))) is metrizable.

Conversely, each topological space X satisfying (i)–(iv) is homeomorphic to H.
Further, |X| = 2c and w(X) = c for each such space X.

Proof. We have seen that H satisfies clauses (i)–(iii). The space H satisfies (iv) because
the Banach space F := (L1(I,m), ‖ ·‖1) is separable (where m is Lebesgue measure on I),
and so (F ′[1], σ(F ′, F )) is metrizable by Proposition 1.1(i); here, F ′ = L∞(I,m) ∼= C(H).

Conversely, suppose that X is a topological space satisfying clauses (i)–(iv). By Prop-
osition 2.17, X is homeomorphic to a space Φµ for some µ ∈ N(X) with ‖µ‖ = 1
and suppµ = X. By (ii) and Proposition 2.15, µ is a continuous measure. By (iv) and
Proposition 1.1(i), (L1(Ω, µ), ‖ · ‖1) is separable, and so, by Theorem 2.19, L1(Ω, µ) is
isomorphic as a Banach lattice to L1(I,m). Thus C(X) and C(H) are isomorphic as
Banach lattices, and hence as C∗-algebras, whence X and H are homeomorphic.

We note that clause (iv) of the above characterization of H is necessary: there is a
compact space Ω and µ ∈ Mc(Ω)+ such that X = Φµ is a hyper-Stonean space with
no isolated points, X satisfies CCC, |X| = 2c and w(X) = c, but (iv) fails. Indeed,
set Ω = Zc

2, the Cantor cube of weight c, let m be the corresponding product measure
described above, and set X = Φm. Since m is continuous, Φm has no isolated points and
Φm satisfies CCC. As in Example 2.16, we have

w(Φm) = |Bm| = c and |Φm| = 2c.

However, for each τ < c, set Bτ = {ε ∈ Ω : ετ = 1}, so that Bτ ∈ IΩ. Clearly we have
m(Bτ1 4 Bτ2) = 1/2 whenever τ1, τ2 < c with τ1 6= τ2, and so the measure Boolean
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algebra (Bm,m) is not separable; equivalently, the space (C(X)[1], σ(C(X), N(X))) is
not metrizable.

We can give a condition that is apparently weaker than clause (iv) of the above
corollary, but is actually equivalent to it.

Proposition 2.23. Let X be a topological space that satisfies clauses (i)–(iii) above. Then
X satisfies (iv) if and only if each subspace of C(X)[1] which is discrete in the weak-∗
topology is countable.

Proof. Suppose that X satisfies (iv). Then certainly each weak-∗ discrete subset of
C(X)[1] is countable.

For the converse, suppose that each weak-∗ discrete subset of C(X)[1] is countable.
By Proposition 2.17, there are a compact space Ω and a positive measure µ ∈M(Ω)+

such that X = Φµ. Assume towards a contradiction that there is an uncountable family
(Bα) in BΩ \Nµ and δ > 0 such that ρ(Bα, Bβ) > δ whenever α 6= β. The characteristic
function of Bα is χα.

We claim that, for each α, it is not the case that χα is in the ‖ · ‖1-closed convex
hull of {χβ : β 6= α}. Indeed, let n ∈ N and t1, . . . , tn ∈ I with

∑n
i=1 ti = 1, and set

λ =
∑n
i=1 tiχβi , where βi 6= α (i ∈ Nn). We have

χα − λ =
n∑
i=1

ti(χα − χβi) =
n∑
i=1

ti(χα\βi − χβi\α),

and so

‖χα − λ‖1 =
n∑
i=1

ti(µ(Bα \Bβi) + µ(Bβi \Bα)) =
n∑
i=1

ti‖χα − χβi‖1 > δ,

where ‖ · ‖1 is the norm in L1(Ω, µ). The claim follows.
Now regard the family (χα) as a subspace of L∞(Ω, µ) = C(Φµ). For each α, there is a

linear functional M on L∞(Ω, µ) such that M is continuous with respect to the seminorm
‖ · ‖1 on L∞(Ω, µ) and such that

〈χα, M〉 < inf{〈χβ , M〉 : β 6= α}.
The linear functional λ 7→ 〈λ, µ〉 is order-continuous on C(Φµ)R, and so M is order-
continuous on C(Φµ)R. Thus M is a normal measure on Φµ; by Theorem 2.11, M is weak-∗
continuous on C(Φµ), and so χα does not belong to the weak-∗ closure of {χβ : β 6= α}.

It follows that (χα) is an uncountable weak-∗ discrete subset of C(X)[1]. This is a
contradiction, and so the measure Boolean algebra (Bµ, µ) is separable. Thus X satisfies
(iv).



3. Specific second dual algebras

In this chapter, we shall begin our study of the second duals of the Banach algebras C0(Ω)
and M(Ω) for a locally compact space Ω. We shall also introduce Bb(Ω), the C∗-algebra
of bounded Borel functions on Ω.

Second duals of algebras of continuous functions. Let Ω be a non-empty, locally
compact space, and again set E = C0(Ω). Since E is a commutative C∗-algebra, E is
Arens regular, and E′′ is also a commutative C∗-algebra, with just one Arens product,
which we denote by juxtaposition. Thus

〈λ, Λ · µ〉 = 〈Λ, µ · λ〉 (λ ∈ E, µ ∈ E′, Λ ∈ E′′)

and
〈Λ1Λ2, µ〉 = 〈Λ1, Λ2 · µ〉 (Λ1,Λ2 ∈ E′′, µ ∈ E′).

Since E has a bounded approximate identity, E′′ (with this Arens product) has an iden-
tity, and so E′′ is isometrically isomorphic to C(Ω̃) for a certain compact space Ω̃. As in
[112, III.2.3], C(Ω̃) is the enveloping von Neumann algebra of E.

Definition 3.1. Let Ω be a non-empty, locally compact space. Then the character space
of the commutative C∗-algebra C0(Ω)′′ is denoted by Ω̃.

The general proof that a C∗-algebra is Arens regular and that its second dual is also
a C∗-algebra involves a considerable theory of C∗-algebras; we note that a direct proof
that C0(Ω)′′ is isometrically isomorphic to C(Ω̃) for a compact space Ω̃ is given in [105,
§4].

We regard C0(Ω) as a closed subalgebra of C(Ω̃) via the map κE ; when Ω is not
compact, we identify C(Ω∞) with the closed subalgebra

{z1 + λ : z ∈ C, λ ∈ C0(Ω)}

of C(Ω̃). Clearly (E′′)R is a Banach lattice and κE : ER → (E′′)R is isotonic.
The topology on the space Ω̃ is called σ, so that σ is the weak-∗ topology σ(E′′′, E′′)

restricted to Ω̃. Since E′′ is certainly a dual space, (Ω̃, σ) is hyper-Stonean.

Definition 3.2. Let Ω be a non-empty, locally compact space. Then the corresponding
space Ω̃ is the hyper-Stonean envelope of Ω.

The term ‘hyper-Stonean cover’ is used for our ‘hyper-Stonean envelope’ in [125],
where some references to earlier works are given. In [125], there is a characterization of
Ω̃ in terms of certain ‘Kelley ideals’.

[33]
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Let ϕ ∈ Ω̃. Then εϕ ∈ E′′′, and εϕ |C0(Ω) is a character on E or 0, say π(εϕ) = επ(ϕ)

for a point π(ϕ) ∈ Ω∞. The map

π : (Ω̃, σ)→ (Ω∞, τ)

is a continuous surjection.
We remark that a cover of a compact space Ω is a pair (X, f), where X is a compact

space and f : X → Ω is a continuous surjection. Thus (Ω̃, π) is a cover of Ω. The cover
(X, f) is said to be essential [43, Definition 2.10] if, for each compact space Y and each
continuous function h : Y → X with f(h(Y )) = Ω, necessarily h(Y ) = X, and the
cover (X, f) is projective if it is essential and X is a projective (equivalently, extremely
disconnected) space. As in [43, Theorem 2.16], we see that each closed subset X of Ω̃
that is minimal with respect to the property that π(X) = Ω is a projective cover of Ω;
such a cover is unique up to a homeomorphism that commutes with the covering map π.
In this case, C(X) is the so-called injective envelope of C(Ω).

Definition 3.3. Let Ω be a non-empty, locally compact space, and let x ∈ Ω∞. Then

Ω{x} = π−1({x})

is the fibre of Ω at x.

Each fibre Ω{x} is a closed subspace of (Ω̃, σ), and clearly we have

Ω̃ =
⋃
{Ω{x} : x ∈ Ω∞}.

We shall see in Example 3.16 below that a fibre Ω{x} is not necessarily open.
Let Λ ∈ E′′ and µ ∈ E′. Then we claim that

supp(Λ · µ) ⊂ suppµ. (3.1)

Indeed, let λ ∈ C0(Ω) with suppλ ⊂ Ω \ suppµ. Then clearly λµ = 0, and so we have
〈λ, Λ · µ〉 = 〈Λ, λµ〉 = 0. Thus the claim follows.

There is a natural embedding ι of Ω into Ω̃. Indeed, let x ∈ Ω. Then

ε′′x : Λ 7→ 〈Λ, εx〉, E′′ → C,

is a character on E′′ extending εx; the second dual ε′′x is given by a point of Ω̃, say by ι(x).
Clearly ι : Ω→ Ω̃ is an injection and π ◦ ι is the identity on Ω. The map ι−1 : ι(Ω)→ Ω
is continuous, and so τ ⊂ σ |Ω. We now identify x with ι(x), and regard Ω as a subset
(but not a topological subspace) of Ω̃. For x ∈ Ω, we identify εx with δx ∈ M(Ω). For
a subset U of Ω, we denote by U the closure of U in (Ω̃, σ), and we set U∗ = U \ U . In
particular, Ω is the closure of Ω in (Ω̃, σ).

Let x ∈ Ω. Then the map

Λx : µ 7→ µ({x}), M(Ω)→ C,

belongs to M(Ω)′ = E′′ = C(Ω̃). For y ∈ Ω, we have

ε′′y(Λx) = 〈Λx, εy〉 = 〈Λx, δy〉,

and so Λ |Ω = χ{x}. This shows that (Ω, σ) is a discrete space. We shall see below that
Ω is open in the hyper-Stonean envelope (Ω̃, σ).
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Let x ∈ Ω. In the case where x is isolated in Ω, set Y = Ω\{x}. Then E = C0(Y )⊕Cδx,
and so E′′ = C(Ỹ )⊕ Cδx. Clearly π(Ỹ ) = Y , and so Ω{x} = {x}.

Proposition 3.4. Let Ω be a non-empty, locally compact space. Then κE(C0(Ω)) con-
sists of the functions Λ ∈ C(Ω̃, σ) such that Λ |Ω{x} is constant for each x ∈ Ω∞ and
Λ |Ω{∞} = 0.

Proof. Take λ ∈ E = C0(Ω). For each x ∈ Ω∞, we see that κE(λ) |Ω{x} takes the constant
value λ(x) and that κE(λ) |Ω{∞} = 0.

Now suppose that Λ ∈ C(Ω̃) and that Λ is constant on each set Ω{x}. We claim that
λ := Λ |Ω ∈ C(Ω, τ). For let (xα) be a net in Ω with limit x0 ∈ Ω with respect to the
topology τ . Since (Ω̃, σ) is compact, we may suppose by passing to a subnet that there
exists ϕ0 ∈ Ω̃ such that xα → ϕ0 in (Ω̃, σ). Since π : (Ω̃, σ) → (Ω, τ) is continuous,
xα → π(ϕ0) in (Ω, τ), and so π(ϕ0) = x0. Thus λ(xα) = Λ(xα) → Λ(ϕ0) = λ(x0). It
follows that λ ∈ C(Ω). By the same argument, λ ∈ C0(Ω) in the case where Λ |Ω{∞} = 0.
Clearly κE(λ) = Λ, and so the result follows.

Corollary 3.5. Let Ω be a non-empty, locally compact space. Then π−1(Ω) is a dense,
open subspace of Ω̃.

We shall see in Example 3.16 below that, in general, there is no continuous projection
of C(Ω̃) onto C(Ω).

The following result is a slightly more general version of [56, Lemma 2.3]. We say that
an element λ ∈ L∞(Ω) is continuous at x ∈ Ω if the equivalence class of λ contains a
function which is continuous at x.

Proposition 3.6. Let Ω be a non-empty, locally compact space, and take µ to be a
positive measure on Ω. Suppose that there exists V ∈ Nx such that µ(U) > 0 for each
non-empty, open subset U of Ω with U ⊂ V . Let λ ∈ L∞(Ω, µ), and suppose that Gµ(λ)
is constant on Φµ ∩ Ω{x}. Then λ is continuous at x.

Proof. We note that the set Φµ ∩ Ω{x} is not empty because it contains each weak-∗
accumulation point of the net {µB : B ∈ Nx}.

We may suppose that λ is real-valued. Assume towards a contradiction that λ is not
continuous at x. Then there exist α, β ∈ R with α < β such that, setting

A = {x ∈ V : λ(x) < α}, B = {x ∈ V : λ(x) > β},

we have A ∩ B = ∅ and both A and B meet each neighbourhood of x in a non-empty,
open set; by hypothesis, each such intersection has strictly positive µ-measure, and so
{A} ∪Nx and {B} ∪Nx are contained in ultrafilters ϕ,ψ ∈ Φµ ∩Ω{x}, respectively, with
ϕ 6= ψ. We have Gµ(λ)(ϕ) ≤ α and Gµ(λ)(ψ) ≥ β, a contradiction of the fact that Gµ(λ)
is constant on Φµ ∩ Ω{x}.

Thus λ is continuous at x.

Second duals of spaces of measures. Let Ω be a non-empty, locally compact space,
and again set E = C0(Ω). The dual space of E′′ = C(Ω̃) is E′′′ = M(Ω̃). We denote by
κ = κE′ the canonical mapping of E′ into E′′′, and sometimes identify µ ∈ M(Ω) with
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κ(µ) ∈M(Ω̃). Thus we have

〈Λ, µ〉 =
∫

eΩ Λ dµ (Λ ∈ C(Ω̃), µ ∈M(Ω)). (3.2)

There is a continuous projection π : E′′′ → E′ which is the dual of the injection
κE : E → E′′, and which is defined by

〈λ, π(M)〉 = 〈κE(λ), M〉 (λ ∈ E, M ∈ E′′′),

and so we also have a map

π = κ′E : M(Ω̃)→M(Ω). (3.3)

The map π |Ω̃ : Ω̃→ Ω coincides with the previously-defined map π. Further,

M(Ω̃) = M(Ω)⊕1 E
◦,

where
E◦ = {M ∈M(Ω̃) : M |κE(E) = 0} = kerπ.

For a compact subset K of Ω, we write K ≺ λ whenever λ ∈ C0(Ω) with λ(Ω) ⊂ I
and λ |K = 1. In the case where M ∈M(Ω̃)+ and K is a compact subset of Ω, we have

π(M)(K) = inf
{∫

Ω

λ d(π(M)) : K ≺ λ
}

= inf
{∫

eΩ κE(λ) dM : K ≺ λ
}

= inf
{∫

eΩ Λ dM : π−1(K) ≺ Λ
}

= M(π−1(K)),

and so
π(M)(B) = M(π−1(B)) (M ∈M(Ω̃), B ∈ BΩ). (3.4)

It follows that E◦ is the weak-∗ closed linear span of measures of the form δϕ− δψ, where
ϕ,ψ are two points of Ω̃ in the same fibre. It also follows that

‖M‖ = M(Ω̃) = π(M)(Ω) = ‖π(M)‖ (M ∈ M(Ω̃)+). (3.5)

We shall use the following theorem.

Theorem 3.7. Let Ω1 and Ω2 be two compact spaces, and suppose that there is a Banach
lattice isomorphism T : M(Ω1)→M(Ω2). Then the dual map

T ′ : C(Ω̃2)→ C(Ω̃1)

is a Banach lattice isomorphism and a unital ∗-isomorphism, and Ω̃1 and Ω̃2 are homeo-
morphic.

Proof. Certainly T ′ : C(Ω̃2)→ C(Ω̃1) is a Banach lattice isomorphism such that T ′ maps
the identity function on Ω̃2 to the identity function on Ω̃1. By Theorem 2.4(ii), T ′ is a
unital ∗-isomorphism. The map T ′′ |Ω̃2 : Ω̃2 → Ω̃1 is a homeomorphism.

Let Ω be a non-empty, locally compact space. Then of course the predual C(Ω̃)∗ of
C(Ω̃) is κ(M(Ω)), and so we may extend Theorem 2.11 to obtain the following charac-
terization of κ(M(Ω)).
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Theorem 3.8. Let Ω be a non-empty, locally compact space, and let M ∈M(Ω̃)+. Then
the following conditions on M are equivalent:

(a) M ∈ κ(M(Ω));
(b) M is weak-∗ continuous as a linear functional on C(Ω̃);
(c) M is a normal measure;
(d) M(K) = 0 (K ∈ KeΩ).

Bounded Borel functions. We now define a further important C∗-algebra.

Definition 3.9. Let Ω be a non-empty, locally compact space. Then Bb(Ω) denotes the
space of bounded Borel functions on Ω.

Clearly (Bb(Ω), | · |Ω) is a unital C∗-subalgebra of (`∞(Ω), | · |Ω) with Cb(Ω) ⊂ Bb(Ω).
It is also clear that the space

lin{χB : B ∈ BΩ}

is a | · |Ω-dense linear subspace of Bb(Ω).
Indeed, Bb(Ω) is a well-known Banach algebra. This algebra is closely related to the

algebra of Baire functions, which can be defined by a transfinite recursion through the
Baire classes. The Baire functions of order 0 are the functions in Cb(Ω). Given a definition
of the Baire class of order β for each β < α, the class of order α is the space of bounded
functions on Ω which are pointwise limits of sequences of functions in the union of the
earlier classes; the construction terminates at α = ω1. The Baire functions on Ω are the
members of this final class. Each Baire class is itself a Banach algebra which is a closed
subalgebra of Bb(Ω). In the case where the space Ω is (locally compact and) second
countable, the algebra of Baire functions is equal to Bb(Ω) [50, (11.46)]; in particular,
this is true for Ω = R with the usual topology.

Definition 3.10. The character space of the unital C∗-algebra (Bb(Ω), | · |Ω) is denoted
by Φb.

Proposition 3.11. Let Ω be an infinite, compact metrizable space. Then |Bb(Ω)| = c

and |Φb| = 2c.

Proof. By Proposition 2.3(ii), |C(Ω)| = c. Thus each Baire class of order less than ω1

has cardinality c, and so the algebra of Baire functions on Ω has cardinality c. Since the
latter algebra is equal to Bb(Ω), we have |Bb(Ω)| = c.

We have |Φb| ≤ |Bb(Ω)′| = 2c. Let D be a countable subset of Ω. Then `∞(D) is
a closed C∗-subalgebra of Bb(Ω) and the character space of `∞(D) is βD, which, by
Proposition 2.1, has cardinality 2c. Thus |Φb| ≥ 2c. Hence |Φb| = 2c.

Definition 3.12. Let Ω be a non-empty, locally compact space. For λ ∈ Bb(Ω), define
κE(λ) on E′ = M(Ω) by

〈κE(λ), µ〉 =
∫

Ω

λ dµ (µ ∈M(Ω)). (3.6)

We see immediately that κE(λ) ∈M(Ω)′ = C(Ω̃) and that we have κE(λ) |Ω = λ for
λ ∈ Bb(Ω).
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Let λ ∈ Bb(Ω) and µ ∈M(Ω). Then κE(λ) · µ is the measure λµ.
Now take λ1, λ2 ∈ Bb(Ω) and µ ∈M(Ω). Then

〈κE(λ1)κE(λ2), µ〉 = 〈κE(λ1), κE(λ2) · µ〉 = 〈κE(λ1), λ2µ〉

=
∫

Ω

λ1λ2 dµ = 〈κE(λ1λ2), µ〉,

and so κE(λ1λ2) = κE(λ1)κE(λ2). It follows from Corollary 3.5 that κE(1Ω) = 1eΩ, and
so the map

κE : Bb(Ω)→ C(Ω̃)

is a unital, isometric ∗-isomorphism identifying Bb(Ω) as a closed, self-adjoint subalgebra
of C(Ω̃) containing the identity function, and it extends the previously defined map κE .

The algebra κE(Bb(Ω)) is a uniformly closed C∗-subalgebra of C(Ω̃). In the case
where there is a non-Borel set in Ω, it cannot be that κE(Bb(Ω)) separates the points
of Ω̃. For, if this were so, we would have κE(Bb(Ω)) = C(Ω̃) by the Stone–Weierstrass
theorem. However Bb(Ω)R is not a complete lattice (the family of characteristic functions
of finite subsets of a non-Borel subset of Ω, ordered by inclusion, is an increasing net in
Bb(Ω) that does not have a supremum), but C(Ω̃)R is a complete lattice.

The character space Φb is the compact space Ω̃/∼, where

ϕ ∼ ψ if κE(λ)(ϕ) = κE(λ)(ψ) (λ ∈ Bb(Ω)).

Since lin{χB : B ∈ BΩ} is dense in Bb(Ω), it follows that

ϕ ∼ ψ if and only if κE(χB)(ϕ) = κE(χB)(ψ) (B ∈ BΩ).

Definition 3.13. Let Ω be a non-empty, locally compact space, and take ϕ,ψ ∈ Ω̃. Then
ϕ and ψ are Borel equivalent if ϕ ∼ ψ.

The equivalence class under the relation ∼ that contains ϕ is denoted by [ϕ]. Clearly
we have [ϕ] ⊂ Ω{x} for ϕ ∈ Ω̃, where x = π(ϕ). Since C(Φb)R is not a complete lattice,
Φb is not a Stonean space. We shall make further remarks about the equivalence classes
[ϕ] and the space Φb in Chapter 4.

For each B ∈ BΩ, the function κE(χB) is an idempotent in C(Ω̃), and so κE(χB) is
the characteristic function of a clopen subset, say KB , of Ω̃.

Definition 3.14. Let Ω be a non-empty, locally compact space, and let B ∈ BΩ. Then

KB = {ϕ ∈ Ω̃ : κE(χB)(ϕ) = 1}.

Thus
κE(χB) = χKB (B ∈ BΩ). (3.7)

Clearly κE(χB) |Ω = χB , and so KB ∩ Ω = B, whence B ⊂ KB . Let B,C ∈ BΩ. Then

χB∩C = χB · χC and χB∪C = χB + χC − χB · χC ,

and so
KB ∩KC = KB∩C and KB ∪KC = KB∪C .

In particular, if B ∩ C = ∅, then B ∩ C = ∅. Suppose that B ∈ BΩ and that x ∈ Ω.
Then 〈κE(χB), δx〉 is 1 or 0 according as x ∈ B or x 6∈ B. Thus the map B 7→ KB is an
injection. We shall use the following immediate proposition later.
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Proposition 3.15. Let Ω be a non-empty, locally compact space, and let ϕ,ψ ∈ Ω̃. Then
ϕ ∼ ψ if and only if

ϕ ∈ KB ⇔ ψ ∈ KB

for each B ∈ BΩ.

Note that the family {KB : B ∈ BΩ} is not a base for the topology of Ω̃.
Let B ∈ BΩ and µ ∈M(Ω). Then κ(µ) ∈M(Ω̃), and

κ(µ)(KB) = 〈χKB , κ(µ)〉 = 〈χB , µ〉 = µ(B). (3.8)

Let {Bn : n ∈ N} be a family in BΩ, and set B =
⋃
n∈N Bn, so that B ∈ BΩ. The

following example shows that, in general, it is not true that KB =
⋃
n∈N KBn .

Example 3.16. In the special case where Ω = S is a discrete space, we have E = c0(S)
and Ω̃ = βS, the Stone–Čech compactification of S, and hence E′′ = C(βS). Further,

Bb(S) = `∞(S) = E′′.

The above map π takes S∗ to the point ∞ of Ω∞. The fibre S{∞} is not open in βS.
Let S = N. Then we see that, for each n ∈ N, we have K{n} = {n} and KN = βN,

whereas
⋃
n∈N K{n} = N. Note that, by Phillips’ Lemma [1, §2.5], there is no continuous

projection of C(βN) = `∞ onto c0.

Proposition 3.17. Let Ω be a non-empty, locally compact space, and let {Bn : n ∈ N}
be a family in BΩ. Set B =

⋃
n∈N Bn. Then

KB \
⋃
{KBn : n ∈ N} ∈ KΩ, (3.9)

and so KB =
⋃
{KBn : n ∈ N}.

Proof. Set K = KB \
⋃
n∈N KBn .

Each set KBn is clopen, and so K is a closed subset of Ω̃. Hence K is compact in Ω̃.
To show that intK = ∅, we may suppose that Bn ⊂ Bn+1 (n ∈ N). For each measure

µ ∈ M(Ω)+, we have µ(Bn) → µ(B) by the monotone convergence theorem, and so, by
(3.8), κ(µ)(KBn)→ κ(µ)(KB) as n→∞.

Assume towards a contradiction that intK 6= ∅. Since the space Ω̃ is extremely dis-
connected, there is a non-empty, clopen subset W of Ω̃ with W ⊂ K; we have χW ∈ E′′.
It follows that W ⊂ KB \KBn (n ∈ N), and so, for each µ ∈M(Ω)+, we have

0 ≤ κ(µ)(W ) ≤ κ(µ)(KB \KBn) = κ(µ)(KB)− κ(µ)(KBn)→ 0

as n→∞. Thus
〈χW , µ〉 = 〈χW , κ(µ)〉 = κ(µ)(W ) = 0.

This holds for each µ ∈ M(Ω)+, and hence for each µ ∈ M(Ω), and so χW = 0 in
E′′ = C(Ω̃). Hence W = ∅, and this is the required contradiction.

Let x ∈ Ω. What is the set K{x}? It is easy to see that

{x} ⊂ K{x} ⊂ Ω{x}.

We claim that K{x} ∩Ω = {x}. For this, we may suppose that x is not isolated in Ω, for
otherwise the claim follows trivially. Now take ϕ ∈ Ω\{x}. There is a net (xα : α ∈ A) in
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Ω with xα → ϕ in (Ω̃, σ). The set {α ∈ A : xα = x} cannot be cofinal in the directed set A
(or otherwise ϕ = x), and so we may suppose that (xα) ⊂ Ω\{x}. Since κE(χ{x}) ∈ C(Ω̃)
and κE(χ{x})(xα) = 0 for each α, we have κE(χ{x})(ϕ) = 0. Thus ϕ 6∈ K{x}. This shows
that K{x} ∩ Ω = {x}, as claimed. We shall see later that K{x} = {x}.

Proposition 3.18. Let Ω be a non-empty, locally compact space. Then

π(KB) = B
τ

and KB ⊃ π−1(intB)

for each B ∈ B.

Proof. Clearly B ⊂ π(KB), and so B
τ ⊂ π(KB).

For the converse, suppose that x ∈ Ω \ Bτ . Then there exists λ ∈ C0(Ω)R with
λ |B = 1 and λ(x) = 0. We have χB ≤ λ in ER, and so κE(χB) ≤ κE(λ) in (E′′)R. The
function κE(λ) takes the constant value 0 on the fibre Ω{x}, and so KB ∩Ω{x} = ∅. Thus
x 6∈ π(KB). This shows that π(KB) = B

τ
.

Set U = intB, and take x ∈ U . Then there exists λ ∈ C0(Ω)R such that λ(x) = 1 and
λ ≤ χU in ER, and so κE(λ) ≤ κE(χU ) in (E′′)R. The function κE(λ) takes the constant
value 1 on the fibre Ω{x}, and so KB ⊃ Ω{x}.

A bounded linear operator. Let Ω1 and Ω2 be two compact spaces, and suppose that
η : Ω1 → Ω2 is a continuous map. Then we have defined a continuous ∗-homomorphism

θ = η◦ : C(Ω2)→ C(Ω1).

We now have the dual map
θ′ : M(Ω1)→M(Ω2);

the map θ′ is a homomorphism of Banach lattices, and it is an isometric isomorphism
whenever η is a homeomorphism. More generally, let Ω1 and Ω2 be two non-empty, locally
compact spaces, and let η : Ω1 → Ω2 be a continuous map. Then (cf. (2.4)) the continuous
∗-homomorphism

η◦ : λ 7→ λ ◦ η, C0(Ω2)→ Cb(Ω1), (3.10)

may not have its range contained in C0(Ω1). However, suppose that η : Ω1 → Ω2 is a
Borel map, so that λ ◦ η ∈ Bb(Ω1), and, for each µ ∈M(Ω1), set

ν(λ) =
∫

Ω1

(λ ◦ η) dµ (λ ∈ C0(Ω2)).

It is clear that ν is a bounded linear functional on C0(Ω2), and so we may regard ν as a
measure on Ω2; we set

η (µ) = ν (µ ∈M(Ω1)),

so that η : M(Ω1)→M(Ω2) is a bounded linear operator with ‖η‖ = 1 such that∫
Ω2

λ dη(µ) =
∫

Ω1

(λ ◦ η) dµ (λ ∈ C0(Ω2), µ ∈M(Ω1)). (3.11)

It follows that
η (µ)(B) = µ(η−1(B)) (B ∈ BΩ2 , µ ∈M(Ω1)). (3.12)

In particular, η(δx) = δη(x) (x ∈ Ω1), so that η|Ω1 = η.
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Suppose that µ1, µ2 ∈ M(Ω1)+ with µ1 � µ2. Then η (µ1), η (µ2) ∈ M(Ω2)+, and it
is clear from (3.12) that we have η (µ1)� η (µ2). It follows that

η (L1(Ω1, µ)) ⊂ L1(Ω2, η (µ)). (3.13)

We shall make further remarks about the maps η and η ′ in the next chapter.
Conversely, suppose that T : M(Ω1) → M(Ω2) is an isometric Banach lattice iso-

morphism. Then T | exP (Ω1) is a bijection from Ω1 to Ω2, and so |Ω1| = |Ω2|.
Proposition 3.19. Let Ω1 and Ω2 be two non-empty, locally compact spaces, and let
η : Ω1 → Ω2 be a Borel map. Suppose that η is an injection. Then

‖η (µ)‖ = ‖µ‖ (µ ∈M(Ω1)).

In particular, η : M(Ω1)→M(Ω2) is an injection.

Proof. Take µ ∈M(Ω1) with ‖µ‖ = 1, say µ = µ1−µ2 + i(µ3−µ4), where µj ∈M(Ω1)+

for j = 1, 2, 3, 4. Set νj = η (µj) ∈M(Ω2)+ for j = 1, 2, 3, 4, and set

ν = η (µ) = ν1 − ν2 + i(ν3 − ν4).

Take ε > 0. For j = 1, 2, 3, 4, there exist Borel sets Bj in Ω2 such that νj(B) ≥ 0 for each
Borel subset B of Bj and

4∑
j=1

νj(Bj) > ‖ν‖ − ε.

Set Cj = η−1(Bj), a Borel set in Ω1, so that µj(Cj) = νj(Bj).
Since η is an injection, the sets C1, C2, C3, C4 are pairwise disjoint, and so

‖µ‖ ≥
4∑
j=1

µj(Cj) =
4∑
j=1

νj(Bj) > ‖ν‖ − ε.

This holds for each ε > 0, and so ‖µ‖ = ‖ν‖.
Corollary 3.20. Let Ω1 and Ω2 be two uncountable, compact, metrizable spaces. Then
the spaces M(Ω1) and M(Ω2) are isometrically isomorphic as Banach spaces and lattices.

Proof. By Proposition 2.2(ii), there is a map η : Ω1 → Ω2 which is a Borel isomor-
phism. As above, we define η : M(Ω1)→ M(Ω2). By Proposition 3.19, η is an isometric
isomorphism of Banach spaces. Clearly η preserves the lattice operations.

However η is not necessarily a surjection even when η is a continuous surjection: for
a counter-example, let Ω1 = Id and Ω2 = I, and take η to be the identity map. We shall
give an example for which η is a surjection in Proposition 5.2(i). In the case where Ω1 is
compact and η is a surjection, η is obviously a surjection.



4. The topological structure of Ω̃

Submodules of M(Ω) and clopen subspaces of Ω̃. Let Ω be a non-empty, locally
compact space, and again set E = C0(Ω). We are identifying M(Ω) as the dual module
E′ of E.

Let X be a Banach E-submodule of M(Ω), and let jX : X → M(Ω) denote the
injection. By Proposition 1.17, X◦ is a weak-∗ closed ideal in C(Ω̃), and so the hull of
X◦ is a closed subset, say L, of Ω̃. The ideal X◦ has a bounded approximate identity, say
(Λα), in X◦[1]; since C(Ω̃)[1] is weak-∗ compact and X◦ is weak-∗ closed, (Λα) has a limit,
say Λ, in X◦[1]. Certainly Λ(ϕ) = 1 (ϕ ∈ L), and so Λ = χL. This shows that L is a clopen

subset of Ω̃. Set Ω̃X = Ω̃ \ L, so that Ω̃X is also a clopen subset of Ω̃. Clearly we can
identify X ′ with the commutative C∗-algebra C(Ω̃X), and so Ω̃X is the character space
of X ′. In this way, j′X is just the restriction map from C(Ω̃) to C(Ω̃X); in particular,
j′X(1eΩ) is the characteristic function of Ω̃X .

Conversely, let L be a clopen subset of Ω̃, so that χL ∈ C(Ω̃), and define

XL = {χL · µ : µ ∈M(Ω)}.
ThenXL is a ‖·‖-closed E-submodule ofM(Ω), and clearly Ω̃XL = L. We have established
the following result; it is essentially a special case of [112, Theorem III.2.7]. The collections
of ‖ · ‖-closed submodules of M(Ω) and of clopen subsets of Ω̃ are both ordered by
inclusion.

Proposition 4.1. Let Ω be a non-empty, locally compact space. Then the above corres-
pondence is an isotonic bijection between the collections of ‖ · ‖-closed submodules of
M(Ω) and of clopen subsets of the hyper-Stonean envelope Ω̃.

Further, for each Banach submodule X of M(Ω), there is a unique Banach submodule
Y of M(Ω) such that M(Ω) = X ⊕ Y .

Corollary 4.2. Let Ω be a non-empty, locally compact space, and let ϕ ∈ Ω̃. Then ϕ is
an isolated point of Ω̃ if and only if ϕ ∈ Ω.

Proof. Let x ∈ Ω. Then X = Cδx is a one-dimensional submodule of M(Ω), and so Ω̃X
is a singleton. Since εx ∈ X ′, we have Ω̃X = {x}, and so x is an isolated point in Ω̃.

Conversely, suppose that ϕ is an isolated point in Ω̃, and let X be the submodule
of M(Ω) corresponding to the clopen subset {ϕ} of Ω̃. Then the space X ′ = C({ϕ})
is one-dimensional, and so X is one-dimensional. Let µ ∈ X \ {0}. Assume towards a
contradiction that suppµ contains two distinct points x and y, and take λ ∈ C(Ω) with
λ(x) = 1 and λ(y) = 0. Then λµ ∈ X, but λµ /∈ Cµ, a contradiction. Thus suppµ = {x}
for some x ∈ Ω, and hence µ = δx and ϕ = x.

[42]
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Recovery of Ω from Ω̃. Let Ω be a non-empty, locally compact space. Corollary 4.2
shows that we can recover the set Ω from the hyper-Stonean envelope Ω̃; indeed, Ω was
identified with the set of isolated points of Ω̃. Thus, if Ω1 and Ω2 are locally compact
spaces such that Ω̃1 and Ω̃2 are homeomorphic, then necessarily we have |Ω1| = |Ω2|.
However, we shall now show that we cannot recover the topology τ on a compact space
Ω from its hyper-Stonean envelope; indeed, we cannot even recover C(Ω) as a Banach
space, even when we restrict ourselves to countable, compact spaces.

For example, set Ω = N. Then Ω̃ is the space βN, and so Ω̃ is homeomorphic to βN.
Now let (Ω, τ) be any countable, locally compact space, and take x ∈ Ω. Since ι(x) is

an isolated point in Ω̃, we may say that δx ∈ C(Ω̃); further δx · δy = 0 whenever x, y ∈ Ω
with x 6= y, and δx · δx = δx whenever x ∈ Ω. Set L = lin{δx : x ∈ Ω} ⊂ C(Ω̃). Then
the product of two elements of L is determined independently of the topology τ . We
claim that L is weak-∗ dense in C(Ω̃). Indeed, assume towards a contradiction that L
is not weak-∗ dense in C(Ω̃). Then there exists a non-zero, weak-∗ continuous element
µ ∈ M(Ω̃) such that µ |L = 0. By Proposition 1.1(ii), it follows that µ ∈ M(Ω). But
M(Ω) = `1(Ω) because Ω is countable, and 〈δx, µ〉 = 0 (x ∈ Ω), whence µ = 0, the
required contradiction. Hence L is weak-∗ dense in C(Ω̃), and so the structure of C(Ω̃)
is determined as a Banach algebra independently of the topology τ . We have established
the following result.

Theorem 4.3. Let (Ω, τ) be a countable, locally compact space. Then Ω̃ is homeomorphic
to βN with its usual topology.

It is certainly not the case that any two countable, compact spaces are homeomorphic.
For example, consider the compact spaces ω+ 1, 2 ·ω+ 1, and ωω + 1, where ω is the first
infinite ordinal, and the spaces are taken with the order topology; these three spaces are
countable and compact, but no two of them are mutually homeomorphic. In particular,
there are three distinct topologies on each infinite, countable set rendering it a compact
space. (In fact, there are at least ℵ1 such topologies.) The two Banach spaces C(ω+1) and
C(2 ·ω+1) are linearly homeomorphic, but the Banach spaces C(ω+1) and C(ωω+1) are
not linearly homeomorphic. For these remarks on Banach spaces, see [106, Notes 2.5.14],
for example.

Partitions of Ω̃. Let Ω be a non-empty, locally compact space.
We denote by

jd : Md(Ω)→M(Ω) and jc : Mc(Ω)→M(Ω)

the natural injections. Clearly Md(Ω) and Mc(Ω) are both closed E-submodules of M(Ω),
and jd and jc are E-module homomorphisms. We recall that Md(Ω) is σ(E′, E)-dense in
M(Ω). Thus, by Propositions 1.17 and 4.1, C(Ω̃) is the direct sum of two closed ideals,

j′d(C(Ω̃)) = Md(Ω)′ = `∞(Ω) and j′c(C(Ω̃)) = Mc(Ω)′.

The character spaces of these two ideals are denoted by Ω̃d and Ω̃c, respectively, so that
{Ω̃d, Ω̃c} is partition of Ω̃ into clopen sets. We have Ω ⊂ Ω̃d. Take Λ ∈ C(Ω̃) with
Λ |Ω = 0. Then Λ |Md(Ω) = 0, and so ϕ(Λ) = 0 (ϕ ∈ Ω̃d). Thus Ω is dense in Ω̃d, and
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hence Ω = Ω̃d. Clearly Ω̃d can be identified with βΩd, the Stone–Čech compactification
of Ω with the discrete topology. We now say that

{Ω, Ω̃c} = {βΩd, Ω̃c}

is a partition of Ω̃ into clopen sets.
Let λ ∈ Bb(Ω) and µ ∈M(Ω). It is clear that

〈κE(λ) |Ω̃d, µ〉 = 〈κE(λ), µd〉, 〈κE(λ) |Ω̃c, µ〉 = 〈κE(λ), µc〉.

Thus κE(λ) |Ω̃d = jd(λ); we caution that κE(λ) = jd(λ) for each λ ∈ Bb(Ω) only if Ω is
discrete.

For each x ∈ Ω, we have 〈κE(χ{x}), µc〉 = 0, and so κE(χ{x}) = κE(χ{x}) |Ω̃d and
K{x} ⊂ Ω. Hence we can now see that K{x} = {x}; this again shows that the set {x} is
open in (Ω̃, σ) for each x ∈ Ω, and so Ω is open in Ω̃. In particular, κE(χ{x}) = χ{x}, and
so the equivalence class [x] is just the singleton {x}.

Let µ be a continuous positive measure on Ω such that µ is either σ-finite or the left
Haar measure on a locally compact group. Then, as in (2.8),

M(Ω) = `1(Ω)⊕1 L
1(Ω, µ)⊕1 Ms(Ω, µ).

Each of the three spaces Md(Ω, µ), Mac(Ω, µ), and Ms(Ω, µ) is a closed, complemented
E-submodule of M(Ω), and so is an introverted space; we obtain a further partition of Ω̃
into three corresponding clopen subsets. In this case, we have

M(Ω)′ = `∞(Ω)⊕1 L
∞(Ω, µ)⊕1 Ms(Ω, µ)′.

The character space of the C∗-algebra L∞(Ω, µ) has already been called Φµ; the character
space of Ms(Ω, µ)′ is denoted by Φs,µ, and so we have a partition

{βΩd,Φµ,Φs,µ}

of Ω̃ into clopen subsets; thus

C(Ω̃) = C(βΩd)⊕∞ C(Φµ)⊕∞ C(Φs,µ).

Let Ω be a non-empty, locally compact space, and let µ be a positive measure on Ω.
We recall that the map πµ : Φµ → suppµ ∪ {∞} was defined in equation (2.12).

Proposition 4.4. Let Ω be a non-empty, locally compact space, and let µ be a positive
measure on Ω. Then:

(i) π|Φµ = πµ;
(ii) suppµ ⊂ π(Φµ) ⊂ (suppµ) ∪ {∞}.

Proof. (i) Take ϕ ∈ Φµ, and set π(ϕ) = x ∈ Ω∞. For each U ∈ Nx, there is an element
λ ∈ C0(Ω)# and V ∈ Nx with λ(y) = 1 (y ∈ V ) and 0 ≤ λ ≤ χU . It follows that

ϕ(κE(χU )) ≥ ϕ(κE(λ)) = Gµ(λ)(ϕ) = lim
B→ϕ

1
µ(B)

∫
B

λ dµ

by (2.11). In the above limit, we may suppose that B ⊂ V , and so ϕ(κE(χU )) ≥ 1 = εx(λ).
This shows that U ∈ ϕ, and hence we have Nx ⊂ ϕ. By the definition of x, we have
πµ(ϕ) = x, and so πµ(ϕ) = π(ϕ).

(ii) We know that π(Φµ) ⊂ (suppµ) ∪ {∞}.
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Now set U = Ω \ suppµ; we may suppose that U 6= ∅. By Proposition 3.18, we have
KU ⊃ π−1(U). Also µ(U) = 0, and so KU ∩ Φµ = ∅. Thus π−1(U) ∩ Φµ = ∅, and so
π(Φµ) ∩ U = ∅. This shows that suppµ ⊂ π(Φµ).

Again let µ be a positive measure on Ω. Take Λ ∈ C(Ω̃) = M(Ω)′, and set

Λµ = Λ |L1(Ω, µ) ∈ L∞(Ω, µ).

Then, following our identifications, we have

Gµ(Λµ) = Λ |Φµ. (4.1)

It follows that the notation KB ∩ Φµ for B ∈ BΩ is consistent with that used earlier in
(2.10).

We identify L1(Ω, µ)′′ with M(Φµ). It follows from Theorem 3.8 that the canonical
image of L1(Ω, µ) in M(Φµ) is given by

L1(Ω, µ) = {M ∈M(Φµ) : M(K) = 0 (K ∈ KΦµ)}. (4.2)

Let µ, ν ∈M(Ω)+. Then it is clear that Φµ ⊂ Φν if and only if µ� ν, that Φµ∩Φν = ∅
if and only if µ ⊥ ν, that Φµ+ν = Φµ ∪ Φν , and that Φµ∧ν = Φµ ∩ Φν . These remarks
are also contained in [40, §4]. Let (µn) be a sequence of measures in M(Ω)+, and set
µ =

∑∞
n=1 µn/2

n. Then µ ∈M(Ω)+, and

Φµ =
⋃
{Φµn : n ∈ N}. (4.3)

As in Definition 3.9, we have an embedding κE : Bb(Ω)→ C(Ω̃). Let µ be a positive
measure on Ω. Then we have a restriction map

ρµ : C(Ω̃)→ C(Φµ).

On the other hand, there is a quotient map

qµ : Bb(Ω)→ L∞(Ω, µ),

formed by identifying λ ∈ Bb(Ω) with its equivalence class in L∞(Ω, µ). (In fact, every
equivalence class in L∞(Ω, µ) contains a representative in the second Baire class; see [65,
(4.1.3)].) We have

〈qµ(λ), f〉 =
∫

Ω

fλdµ = 〈κE(λ), fµ〉 (f ∈ L1(Ω, µ)).

Hence, by (4.1), we have

Gµ(qµ(λ)) = ρµ(κE(λ)) (λ ∈ Bb(Ω)),

whence Gµ ◦ qµ = ρµ ◦ κE ; this shows that the diagram

Bb(Ω)

qµ
����

// κE // C(Ω̃)

ρµ
����

L∞(Ω, µ) // Gµ // // C(Φµ)

is commutative, and that κE(Bb(Ω)) |Φµ = C(Φµ).



46 H. G. Dales, A. T.-M. Lau, and D. Strauss

Definition 4.5. Let Ω be a non-empty, locally compact space. Then

UΩ =
⋃
{Φµ : µ ∈M(Ω)+}.

Clearly a point ϕ ∈ UΩ belongs to Φµ if and only if ϕ(λ) = 0 for each λ ∈ Bb(Ω) such
that ∫

Ω

|λ|dµ = 0.

In the case where Ω is discrete, the corresponding set UΩ is the set of ultrafilters on Ω
that contain a countable set; for example, UN = βN.

Proposition 4.6. Let Ω be a non-empty, locally compact space. Then UΩ is a dense, open
subset of Ω̃ and βUΩ = Ω̃. Further, the space κE(Bb(Ω)) separates the points of UΩ.

Proof. Clearly UΩ is an open subset of Ω̃.
To show that UΩ is dense in Ω̃, let Λ ∈ C(Ω̃) be such that Λ |UΩ = 0. Then, for each

µ ∈ M(Ω)+, we see that Λ |Φµ, regarded as a linear functional on L1(Ω, µ), is zero, and
so Λ = 0. This implies that UΩ is dense in Ω̃. Thus βUΩ = Ω̃.

Now take ϕ,ψ ∈ UΩ with ϕ 6= ψ. Since Φµ+ν = Φµ ∪ Φν (µ, ν ∈ M(Ω)+), we may
suppose that there exists µ ∈ M(Ω)+ such that ϕ,ψ ∈ Φµ. Further, since the map
ρµ ◦ κE : Bb(Ω)→ C(Φµ) is an epimorphism, κE(Bb(Ω)) separates ϕ and ψ.

Corollary 4.7. Let Ω be a non-empty, locally compact space, let x ∈ Ω, and let N ∈ Nx.
Then each ψ ∈ π−1(N) is in the weak-∗ closure of the set

{µC : µ ∈M(Ω)+, C ∈ Bµ, C ⊂ N}.

Proof. Let ψ ∈ Ω{x}. By Proposition 4.6, it suffices to suppose that ψ ∈ π−1(N) ∩ UΩ,
and hence that ψ ∈ Φµ for some µ ∈M(Ω)+. Thus the result now follows from equation
(2.11).

Suppose that Ω is not scattered. Then it is not true that the family {KB∩UΩ : B ∈ B}
forms a base for the topology of UΩ. For take µ ∈M(Ω)+ such that Φµ∩Ω = ∅. It cannot
be that Φµ contains a set of the form KB ∩UΩ because KB ∩UΩ ∩Ω = KB ∩Ω = B for
any non-empty B ∈ B.

Let F = {νi : i ∈ I} be a maximal singular family of positive measures on Ω, as
in Chapter 2. The corresponding clopen subsets of Ω̃ are then called Φi. It follows from
(2.9) that

C(Ω̃) = M(Ω)′ =
⊕
∞
{C(Φi) : i ∈ I}.

Proposition 4.8. Let Ω be a non-empty, locally compact space, and let F = {νi : i ∈ I}
be a maximal singular family of positive measures on Ω. Then the family {Φi : i ∈ I} is
pairwise disjoint, and UF :=

⋃
{Ωi : i ∈ I} is a dense, open subset of Ω̃ with βUF = Ω̃.

Proof. This is essentially the same as the proof of Proposition 4.6.

In the case where Ω is discrete, so that F is the collection of point masses, we have
UF = Ω ⊂ βΩ.



Second duals of measure algebras 47

Proposition 4.9. Let Ω be a non-empty, locally compact space.

(i) Let ϕ ∈ Ω̃. Then ϕ ∈ UΩ if and only if ϕ has a basis of clopen neighbourhoods such
that each set in the basis satisfies CCC on clopen subsets.

(ii) Let L be a clopen subset of Ω̃ that satisfies CCC on clopen subsets. Then there is a
measure µ ∈M(Ω)+ such that L = Φµ.

Proof. Let F = {νi : i ∈ I} be a maximal singular family of measures in M(Ω)+, and let
Φi be as above for i ∈ I; we may suppose that ‖νi‖ = 1 (i ∈ I).

(i) Suppose that ϕ ∈ Φµ, where µ ∈ M(Ω)+. Then ϕ has a neighbourhood basis of
clopen sets, and each set in this basis satisfies CCC on clopen subsets by Proposition
2.15(iii).

Suppose that ϕ 6∈ UΩ, and let V be a clopen neighbourhood of ϕ. By equation (4.3),
the set {i ∈ I : V ∩ Φi 6= ∅} is not countable, and so V does not satisfy CCC on clopen
subsets.

(ii) Clearly {Φi ∩ L : i ∈ I} is a pairwise disjoint family of clopen subsets, and so, by
hypothesis, there is a countable subset J of I such that Φi∩L 6= ∅ if and only if i ∈ J . Set

V =
⋃
{Φi ∩ L : i ∈ J} and F = V .

Then V is open in L, and F is a clopen subset of L because L is a Stonean space. The
set L \ F is a clopen subset of Ω̃ such that (L \ F ) ∩ Φi = ∅ (i ∈ I). By Proposition 4.8,⋃
{Φi : i ∈ I} is dense in Ω̃, and so L \ F = ∅. By (4.3), there exists µ ∈ M(Ω)+ such

that L = Φµ.

Proposition 4.10. Let Ω be a non-empty, locally compact space, and let Fc and Gc be
two maximal singular families of positive, continuous measures on Ω. Then |Fc| = |Gc|.

Proof. Suppose that Fc = {µi : i ∈ I} and Gc = {νj : j ∈ J}, where µi, νj ∈ Mc(Ω)+.
We claim that |I| = |J |.

We may suppose that I and J are infinite.
Assume towards a contradiction that |I| < |J |. For each i ∈ I, consider the set

Hi = {j ∈ J : Φνj ∩ Φµi 6= ∅}.
By Proposition 2.15(iii), Φµi satisfies CCC, and so it follows that |Hi| ≤ ℵ0. Also we
have

⋃
{Hi : i ∈ I} = J because Fc is a maximal family. Thus |J | ≤ ℵ0 · |I| = |I|, a

contradiction.
We conclude that |I| = |J |.

A homomorphism. Let Ω1 and Ω2 be two non-empty, locally compact spaces, and then
take η : Ω1 → Ω2 to be a continuous map; we have defined in (3.11) the bounded linear
operator η ′′ : M(Ω1)→M(Ω2) by the formula∫

Ω2

λ dη(µ) =
∫

Ω1

(λ ◦ η) dµ (λ ∈ C0(Ω2), µ ∈M(Ω1)). (4.4)

We now have bounded linear operators

η ′ : C(Ω̃2)→ C(Ω̃1) and η ′′ : M(Ω̃1)→M(Ω̃2).

In the case where Ω1 and Ω2 are compact spaces, we have η ′ = θ′′, where θ = η◦, and so
η ′ : C(Ω̃2)→ C(Ω̃1) is a continuous ∗-homomorphism. It does not seem to be immediate
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that η ′ is a homomorphism in the general case; we shall now prove this. We are grateful
to Colin Graham for an active discussion on this result.

Equation (4.4) holds for λ ∈ C0(Ω2); we first note that it also holds for λ ∈ Bb(Ω2).
Note that λ ◦ η ∈ Bb(Ω1), regarded as a subset of C(Ω̃1), whenever λ ∈ Bb(Ω2), and so
〈λ ◦ η, µ〉 and (λ ◦ η) · µ are defined.

Let µ ∈ M(Ω1), and set ν = η(µ). Consider λ ∈ Bb(Ω2). There is a sequence (λk) in
C0(Ω2) such that |λk|Ω2 ≤ |λ|Ω2 (k ∈ N) and such that λk → λ (p.p. ν) on Ω2. Thus

|λk ◦ η|Ω1 ≤ |λ|Ω2 (k ∈ N)

and λk ◦ η → λ ◦ η (p.p. µ) on Ω1. (If the first convergence fails on the set B, where
ν(B) = 0, then the second convergence holds off the set η−1(B), and µ(η−1(B)) = 0 by
(3.12).) Equation (4.4) holds whenever λ is replaced by λk; it follows from the dominated
convergence theorem that (4.4) holds for our λ ∈ Bb(Ω2).

Theorem 4.11. Let Ω1 and Ω2 be two non-empty, locally compact spaces, and consider
a continuous map η : Ω1 → Ω2. Then the map η ′ : C(Ω̃2) → C(Ω̃1) is a continuous
∗-homomorphism. Further, η ′(C(Φη(µ))) ⊂ C(Φµ) for each µ ∈M(Ω1)+.

Proof. Take µ ∈M(Ω1). Clearly

〈η ′(λ), µ〉 = 〈λ, η (µ)〉 = 〈λ ◦ η, µ〉 (µ ∈M(Ω1), λ ∈ C0(Ω2))

by the above remark, and so η ′(λ) = λ ◦ η ∈ C(Ω̃1) for all λ ∈ C0(Ω2).
Let λ ∈ Bb(Ω2) and µ ∈M(Ω1). We first claim that

η (η ′(λ) · µ) = η ((λ ◦ η) · µ) = λ · η (µ). (4.5)

Indeed, for all λ1 ∈ C0(Ω2), we have

〈λ1, η ((λ ◦ η) · µ)〉 =
∫

Ω2

(λ1 ◦ η)(λ ◦ η) dµ =
∫

Ω2

(λ1λ ◦ η) dµ

= 〈λ1λ, η (µ)〉 = 〈λ1, λ · η (µ)〉,

giving (4.5).
We recall that we write Λν for Λ|L1(Ω2, ν) when Λ ∈ C(Ω̃2), so that Λν is regarded

as an element of Bb(Ω2); we shall write Λ1,ν for (Λ1)ν , etc.
Now take µ ∈M(Ω1)+, and set ν = η(µ). Let Λ1,Λ2 ∈ C(Ω̃2). Then we have

〈η ′(Λ1Λ2), µ〉 = 〈Λ1Λ2, ν〉 = 〈(Λ1Λ2)ν , ν〉 = 〈Λ1,νΛ2,ν , ν〉
= 〈Λ1,ν , Λ2,ν · ν〉 = 〈Λ1,ν , η (η ′(Λ2,ν) · µ)〉

by (4.5). Also, we have

〈η ′(Λ1)η ′(Λ2), µ〉 = 〈η ′(Λ1), η ′(Λ2) · µ〉 = 〈Λ1, η (η ′(Λ2) · µ)〉.

Since L1(Ω1, µ) is an introverted subspace of M(Ω1), we know that η ′(Λ2)·µ ∈ L1(Ω1, µ);
it now follows from (3.13) that η (η ′(Λ2) · µ) belongs to L1(Ω2, ν), and so

〈Λ1, η (η ′(Λ2) · µ)〉 = 〈Λ1,ν , η (η ′(Λ2) · µ)〉.

Since η ′(Λ1)η ′(Λ2) = η ′(Λ2)η ′(Λ1), we obtain

〈η ′(Λ1)η ′(Λ2), µ〉 = 〈Λ1,ν , η (η ′(Λ2,ν) · µ)〉.
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Thus 〈η ′(Λ1Λ2), µ〉 = 〈η ′(Λ1)η ′(Λ2), µ〉. The above equality holds for all µ ∈ M(Ω1),
and so we conclude that

η ′(Λ1Λ2) = η ′(Λ1)η ′(Λ2) (Λ1,Λ2 ∈ C(Ω̃2)),

and hence that η ′ is a homomorphism; clearly it is ∗-homomorphism.
It is clear from (3.13) that η ′(C(Φη(µ))) ⊂ C(Φµ) for each µ ∈M(Ω1)+.

Corollary 4.12. Let Ω1 and Ω2 be two non-empty, locally compact spaces, and let
η : Ω1 → Ω2 be a continuous map. Then η ′′(Ω̃1) ⊂ Ω̃2 and the map

η̃ := η ′′ |Ω̃1 : Ω̃1 → Ω̃2 (4.6)

is a continuous map with η ′ = (η̃ )◦ such that η̃ extends η and such that η̃(Φµ) ⊂ Φη(µ)

for each µ ∈M(Ω1)+.
Further:

(i) the map η̃ is injective whenever η : Ω1 → Ω2 is injective, and in this case we have
η ′′(M(Ω̃1)) ⊂M(η̃ (Ω̃1)) and η ′′(Mc(Ω̃1)) ⊂Mc(η̃ (Ω̃1));

(ii) the map η̃ is surjective whenever η : M(Ω1)→M(Ω2) is surjective, and in this case
(η ′′)−1(Mc(Ω̃2)) ⊂Mc(η̃ (Ω̃1)) and η̃(Φµ) = Φη(µ) for each µ ∈M(Ω1)+.

Proof. It is immediate from the theorem that η̃ : Ω̃1 → Ω̃2 has the specified proper-
ties. Further, we see that the map η̃ is injective/surjective if and only if η ′′ is inject-
ive/surjective if and only if η is injective/surjective.

(i) By Proposition 3.19, η is injective whenever η is injective, and this implies that η′′

is injective, and hence η̃ is injective.
(ii) Since η : M(Ω1)→M(Ω2) is surjective, the C∗-homomorphism

η ′ : C(Ω̃2)→ C(Ω̃1)

is injective, and so we may regard C(Ω̃2) as a closed C∗-subalgebra of C(Ω̃1). Thus points
of Ω̃2 correspond to closed subsets of Ω̃1, and so each such point is the image of a point
in Ω̃1.

The space Φb. Let Ω be an infinite, locally compact space.
The character space Φb of Bb(Ω) is the Stone space of the Boolean algebra BΩ, and

so is totally disconnected. In fact BΩ is σ-complete, and so Φb is basically disconnected ,
in the sense that every cozero set in Φb has an open closure [37, Exercise 1H]. It follows
from Proposition 2.1 that |Φb| ≥ 2c.

Let B(Ω) be the quotient of Bb(Ω) by the closed linear subspace consisting of the
functions which are zero outside a meagre subspace of Ω. Then B(Ω) is a commutative
C∗-algebra, and so has the form C(T ) for a certain Stonean space T , formed by identifying
points of the character space of Bb(Ω); since B(Ω) is a complete Boolean algebra, T
is extremely disconnected [112, Theorem III.1.25]. We remark that B(Ω) is called the
Dixmier algebra of Ω. It is proved in [24] that every Stonean space arises as the character
space of such an algebra; in the case where Ω is compact, the character space of B(Ω) is
homeomorphic to the projective cover of Ω, and so B(Ω) is (isometrically isomorphic to)
the injective envelope of C(Ω).
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Since Bb(Ω) is a C∗-subalgebra of `∞(Ω), we can identify Φb as a quotient of βΩd.
For ϕ ∈ Ω̃, let [ϕ] be the closed subset of Ω̃ defined above. The following obvious remark
will be strengthened later.

Proposition 4.13. Let Ω be a non-empty, locally compact space, and let ϕ ∈ Ω̃. Then
[ϕ]∩ βΩd is a non-empty, closed subset of βΩd, and these sets partition βΩd. Indeed, for
ϕ = x ∈ Ω, we have [x] = {x}, and for ϕ /∈ Ω, the set [ϕ] ∩ βΩd is a non-empty, closed
subset of Ω∗d = βΩd \ Ω.

It follows that Ω is dense in Φb. By Proposition 4.6, the sets [ϕ] and [ψ] are disjoint
whenever ϕ,ψ ∈ UΩ with ϕ 6= ψ. Thus we have described a continuous surjection

η : ϕ 7→ [ϕ] ∩ βΩd, Ω̃→ Φb; (4.7)

the map η |UΩ is an injection of UΩ onto a dense subset of Φb.
The restriction map η |βΩd : βΩd → Φb is also a continuous surjection.

Proposition 4.14. Let Ω be a non-empty, locally compact space.

(i) There is a C∗-monomorphism κE : `∞(Ω)→ C(Ω̃) that extends the above embedding
κE : Bb(Ω)→ C(Ω̃).

(ii) There is a retraction from Ω̃ onto βΩd.

Proof. (i) Since Ω̃ is Stonean, it follows from Theorem 2.5 that C(Ω̃) is injective in the
category of commutative C∗-algebras and continuous ∗-homomorphisms, and so there is
a C∗-homomorphism

θ : `∞(Ω)→ C(Ω̃)

that extends κE : Bb(Ω)→ C(Ω̃).
Let I = ker θ, a closed ideal in C(βΩd). There is a closed subspace F of βΩd such

that I = {λ ∈ C(βΩd) : λ|F = 0}. It cannot be that there exists x ∈ Ω \F , for otherwise
θ(δx) = κE(δx) = 0, which is not the case. Thus Ω ⊂ F , and so F = βΩd and I = {0},
showing that θ is a monomorphism.

(ii) The map θ′ : Ω̃→ βΩd is a continuous map. Let x ∈ Ω, and set y = θ′(x) ∈ βΩd.
Then

εy(δx) = (εx ◦ θ)(δx) = (εx ◦ κE)(δx) = 1,

and so y = x. Thus θ′ is the identity map on Ω, and hence is the identity map on βΩd.
This shows that θ′ : Ω̃→ βΩd is a retraction.

We note that the map κE : `∞(Ω) → C(Ω̃) is not a unique extension of the map
κE : Bb(Ω)→ C(Ω̃), although κE(λ)|Ω̃d is uniquely specified for each λ ∈ `∞(Ω).

The image κE(`∞(Ω)) is a closed subalgebra of C(Ω̃), and so it separates at least as
many pairs of points of Ω̃ as Bb(Ω) does. For example, κE(`∞(Ω)) separates all pairs of
points in the space βΩd. We wonder whether, given two points ϕ,ψ ∈ Ω̃, there is such an
embedding κE such that κE(`∞(Ω)) separates ϕ and ψ.

Metrizable spaces. We now consider an uncountable, compact, metrizable space Ω,
and summarize our results in this setting.
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Note that each uncountable, second countable, locally compact space (such as R) has
a one-point compactification that is metrizable, and so the results of this section apply
to such spaces, with very slight changes of wording.

Proposition 4.15. Let Ω1 and Ω2 be two uncountable, compact, metrizable spaces. Then
the Banach spaces M(Ω1) and M(Ω2) are isometrically isomorphic.

Proof. This follows easily from Proposition 2.2, which states that Ω1 and Ω2 are Borel
isomorphic.

Let Ω be an uncountable, compact, metrizable space. Then there is a maximal singular
family Fc = {µi : i ∈ I} of continuous measures in Mc(Ω)+ such that |Fc| = c; such a
family is exhibited in Proposition 2.13. Then Ω̃ contains the following clopen subsets: βΩd
and the sets Φi for i ∈ I, and all these sets are pairwise disjoint. It follows from Proposition
2.15(iii) that the sets Φi all satisfy CCC on clopen subsets, and from Proposition 4.8 that
βU = Ω̃, where U = Ω ∪

⋃
{Φi : i ∈ I} is a dense, open subset of Ω̃.

Theorem 4.16. Let Ω be an uncountable, compact, metrizable space. Then the hyper-
Stonean envelope X = Ω̃ has the following properties:

(i) X is a hyper-Stonean space;
(ii) the set S of isolated points of X has cardinality c, the closure Y of S in X is a

clopen subspace of X, and Y is homeomorphic to βSd;
(iii) X\Y contains a pairwise disjoint family F of c clopen subspaces, each homeomorphic

to H;
(iv) the union UF of the sets of F is dense in X \ Y and is such that βUF = X \ Y .

Further, any two spaces X1 and X2 satisfying the clauses (i)–(iv) are mutually homeo-
morphic.

Proof. We have shown that X = Ω̃ satisfies clauses (i)–(iv).
Let X1 and X2 be two spaces satisfying clauses (i)–(iv). The sets of isolated points of

X1 and X2 are S1 and S2, respectively. Since |S1| = |S2|, there is a bijection from S1 to S2,
and this extends to a homeomorphism from βS1 to βS2, and so the respective closures
Y1 and Y2 of S1 and S2 in X1 and X2 are clopen subsets of X1 and X2, respectively, such
that Y1 and Y2 are homeomorphic.

Let the families specified in (iii) corresponding to X1 and X2 be F1 and F2, respect-
ively, listed as (H1,τ : τ < c) and (H2,τ : τ < c). For each τ < c, there is a homeomorphism
from H1,τ onto H2,τ , and hence there is a homeomorphism from UF1 onto UF2 . Since
βUFi = Xi \Yi for i = 1, 2, this homeomorphism extends to a homeomorphism of X1 \Y1

onto X2 \ Y2.

Thus there is a unique space X that is the hyper-Stonean envelope of all uncount-
able, compact, metrizable spaces. We shall obtain some further properties of this space
involving the calculations of some cardinalities.

Theorem 4.17. Let Ω be an uncountable, compact, metrizable space, and set X = Ω̃.
Then:



52 H. G. Dales, A. T.-M. Lau, and D. Strauss

(i) |C(X)| = 2c and |X| = 22c

;
(ii) |UΩ| = 2c and w(UΩ) = c;
(iii) |Ω̃c \ UΩ| = 22c

.

Proof. (i) Certainly, we have |X| ≥ |βΩd|. By Proposition 2.2(i), we have |Ω| = c, and so
|βΩd| = 22c

by Proposition 2.1. By Proposition 2.13, |M(Ω)| = c, and so, by Proposition
1.1(iii), we have |C(X)| ≤ 2c and |X| ≤ |C(X)′| ≤ 22c

. Finally, |C(X)| ≥ |`∞(Ωd)| = 2c.
We obtain (i) by combining the above inequalities.

(ii) For each µ ∈ Mc(Ω)+ such that µ 6= 0, we have |Φµ| = 2c and w(Φµ) = c

by Corollary 2.21. For each µ ∈ Md(Ω)+, we also have |Φµ| ≤ |βN| = 2c and hence
w(Φµ) ≤ w(βN) = c. For general µ ∈M(Ω)+, we have Φµ = Φµc ∪Φµd , and so |Φµ| ≤ 2c

and w(Φµ) ≤ w(βN) ≤ c. By Proposition 2.13, we have |M(Ω)| = c, and so it follows that
|UΩ| = 2c and w(Φµ) = c.

(iii) Consider a maximal singular family Fc of continuous measures, as in Proposition
4.8, so that {Φi : i ∈ I} is a pairwise disjoint family, now of cardinality c.

Let A be the algebra of all functions on UF :=
⋃
{Ωi : i ∈ I} that are constant on each

set Φi. Each function in A has a continuous extension to Ω̃c, and so we may regard A as a
closed subalgebra of C(Ω̃c). The character space ΦA of A is a quotient of Ω̃c. However it is
clear that we can identify ΦA with βI. By Proposition 2.1, |βI| = 22c

, and so |Ω̃c| ≥ 22c

.
Since |X| = 22c

, we have |Ω̃c| = 22c

. Since |UΩ| = 2c, we have |Ω̃c \ UΩ| = 22c

.

Thus, with GCH, we have |X| = ℵ3, but |UΩ| = ℵ2.
We know that the set UΩ =

⋃
{Φµ : µ ∈ M(Ω)+} is a proper subset of Ω̃. However,

for each µ ∈M(Ω)+, set
[Φµ] :=

⋃
{[ϕ] : ϕ ∈ Φµ}.

By an earlier remark on p. 22, [Φµ] is a closed subset of Ω̃. It seemed possible that the
subset

⋃
{[Φµ] : µ ∈ M(Ω)+} would be equal to the whole of Ω̃. However Theorems

4.19 and 4.24 below show that this is far from the case whenever Ω is an uncountable,
compact, metrizable space.

We shall also need the following definitions from [52, Definitions 3.13 and 3.60].
Let D be a set, and let κ be an infinite cardinal. Then a κ-uniform ultrafilter on D

is an ultrafilter U on D such that each set in U has cardinality at least κ. Let A be a
family of subsets of D. Then A has the κ-uniform finite intersection property if each
finite subfamily of A has an intersection of cardinality at least κ. Theorem 3.62 of [52] is
the following.

Theorem 4.18. Let D be an infinite set of cardinality κ, and let A be a family of at most
κ subsets of D such that A has the κ-uniform finite intersection property. Then there are
at least 22κ κ-uniform ultrafilters on D that contain A.

Theorem 4.19. Let Ω be an uncountable, compact, metrizable space. Then

|βΩd \ [UΩ]| = 22c

.

Proof. First, choose a countable, dense subset of Ω, say

Q = {qm : m ∈ N}.
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Consider the family of Gδ-subsets B of Ω such that B ⊃ Q; each such B is a Borel
set. It follows from the Baire category theorem that B is uncountable, and so |B| = c by
Proposition 2.2(i). The family F of all such sets B is a filter of Borel subsets of Ω and
also |F| = c, and so, by Theorem 4.18, there are 22c

c-uniform ultrafilters U on Ω with
F ⊂ U . We identify these ultrafilters with points ψ of βΩd.

Let ψ be such an ultrafilter. We claim that, for each µ ∈M(Ω)+, there exists B ∈ BΩ

with B ∈ ψ and such that µ(B) = 0.
First, suppose that µ ∈Md(Ω)+, and set

C = suppµ and B = Ω \ C.

Since C is countable and ψ is a c-uniform ultrafilter, it is not true that C ∈ ψ. Thus B
is a Borel set, B ∈ ψ, and µ(B) = 0.

Second, suppose that µ ∈ Mc(Ω)+. By Lemma 2.7, there is a Gδ-subset B of Ω
containing Q, and so again B ∈ F ⊂ ψ with µ(B) = 0.

Now let µ ∈ M(Ω)+. There exist µ1 ∈ Md(Ω)+ and µ2 ∈ Mc(Ω)+ with µ = µ1 + µ2.
Take subsets B1, B2 ∈ BΩ such that B1, B2 ∈ ψ and µ1(B1) = µ2(B2) = 0, and set
B = B1 ∩B2, so that B ∈ BΩ with B ∈ ψ and µ(B) = 0.

For each ϕ ∈ Φµ, we have κE(χB)(ϕ) = 0, whereas κE(χB)(ψ) = 1 because B ∈ ψ.
This shows that ψ 6∈ [Φµ].

Thus |βΩd \ [UΩ]| = 22c

.

We now seek to make some calculations of the cardinality of the sets [ϕ] for ϕ ∈ Ω̃.
We shall first associate with each such ϕ a certain filter of Borel sets.

Definition 4.20. Let Ω be a non-empty, locally compact space, and take ϕ ∈ Ω̃. Then

Gϕ = {B ∈ BΩ : ϕ ∈ KB}.

Clearly Gϕ is a subset of BΩ that is closed under finite intersections. In the case where
Ω is compact and metrizable, |Gϕ| ≤ c.

Recall from Proposition 2.2(i) that, for each B ∈ BΩ, either B is countable or |B| = c.
We begin with a preliminary lemma and corollary.
Let Ω be an uncountable, compact, metrizable space. As above, we take

Fc = {µi ∈Mc(Ω)+ : i ∈ I}

to be a maximal singular family of continuous measures in Mc(Ω)+, so that, by Prop-
osition 2.13, |Fc| = c. For each B ∈ BΩ, we set

JB = {i ∈ I : KB ∩ Φi 6= ∅}.

Lemma 4.21. Let Ω be an uncountable, compact, metrizable space, and let B ∈ BΩ with
B uncountable. Then:

(i) |JB | = c;
(ii) KB ∩ (Ω̃c \ UΩ) 6= ∅.

Proof. (i) By Proposition 2.2(iii), the set B contains an uncountable, compact subset,
say C. We claim that the family

{µi|C : i ∈ JB}
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is a maximal singular family of continuous measures in Mc(C)+. Indeed, all pairs of
distinct elements of this family are mutually singular. Suppose that ν ∈Mc(C)+ is such
that ν ⊥ (µi|C) for each i ∈ JB . Then ν ⊥ µi for each i ∈ I, and so ν = 0. This gives the
claim.

By Proposition 4.10, |JB | = c.
(ii) Assume towards a contradiction that KB ∩ Ω̃c ⊂ UΩ. Then

KB ⊂
⋃
{Φµ : µ ∈Mc(Ω)+}.

Since KB is compact, since each Φµ is open, and since {Φµ : µ ∈Mc(Ω)+} is closed under
finite unions, there exists µ ∈Mc(Ω)+ such that KB ⊂ Φµ. By (i), {i ∈ I : Φµ∩Φi 6= ∅} is
uncountable. But this contradicts the fact that Φµ satisfies CCC. Thus KB ∩ Ω̃c 6⊂ UΩ.

Corollary 4.22. Let Ω be an uncountable, compact, metrizable space, and take

ϕ ∈ Ω̃c ∪ (βΩd \ UΩ).

Then there exists ψ ∈ Ω̃c \ UΩ such that ψ ∼ ϕ.

Proof. Since ϕ ∈ Ω̃c ∪ (βΩd \ UΩ), each B ∈ Gϕ is uncountable. The set KB ∩ (Ω̃c \ UΩ)
is closed in the compact space Ω̃c ∩ UΩ, and so, by Lemma 4.21, this set is not empty.
Thus ⋂

{KB ∩ (Ω̃c \ UΩ) : B ∈ Gϕ} 6= ∅;

choose ψ in the set on the left. Then ψ ∈ Ω̃c \UΩ and ψ ∈ KB whenever ϕ ∈ KB , and so
ψ ∼ ϕ.

Theorem 4.23. Let Ω be an uncountable, compact, metrizable space, and let ϕ ∈ Ω̃.

(i) Suppose that there exists B ∈ Gϕ such that B is countable. Then [ϕ] = {ϕ}, and so
|[ϕ]| = 1.

(ii) Suppose that each B ∈ Gϕ is uncountable. Then

|[ϕ] ∩ βΩd| = 22c

.

(iii) Suppose that ϕ ∈ Ω̃c. Then
|[ϕ] ∩ Ω̃c| = 22c

.

Proof. (i) Suppose that ψ ∈ [ϕ]. Since χB ∈ Bb(Ω) and ϕ ∈ KχD = βD ⊂ βΩd, necess-
arily ψ ∈ βD. Since `∞(B) ⊂ Bb(Ω) and the functions in `∞(B) separate the points of
βB, it follows that ψ = ϕ.

(ii) We first note that |Gϕ| ≤ c and that each member of Gϕ has cardinality c. Since Gϕ
is closed under finite intersections, it is clear that |Gϕ| has the c-uniform finite intersection
property. By Theorem 4.18, we have

|{ψ ∈ βΩd : ψ ⊃ Gϕ}| = 22c

.

However, for each ψ ⊃ Gϕ and each B ∈ Gϕ, we have ψ ∈ KB , and so ψ ∼ ϕ. It follows
that |[ϕ] ∩ βΩd| = 22c

.
(iii) First, we consider the case where ϕ ∈ Ω̃c \ UΩ. Again consider the above family

Fc, so that {Φi : i ∈ I} is a pairwise disjoint family of cardinality c of subsets of Ω̃.
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For each B ∈ Gϕ, define JB as above. By Lemma 4.21(i), |JB | = c. Certainly

|{JB : B ∈ Gϕ}| ≤ |BΩ| = c

by Proposition 2.2(iv). Thus, by Theorem 4.18, there are 22c

ultrafilters U on I each
containing {JB : B ∈ Gϕ}.

For each such ultrafilter U and each B ∈ Gϕ, define

C(U , B) =
⋂
U∈U

{⋃
i∈U

KB ∩ Φi
}

and C(U) =
⋂
{C(U , B) : B ∈ Gϕ}.

Since each set
⋃
i∈U KB ∩ Φi is a non-empty, closed subset of the compact space Ω̃c, it

follows that C(U) 6= ∅ for each such U . Suppose that U1 and U2 are distinct ultrafilters
on I containing {JB : B ∈ Gϕ} and that B1, B2 ∈ Gϕ. Then C(U1, B1) ∩ C(U2, B2) = ∅,
and so C(U1) ∩ C(U2) = ∅. Thus there are 22c

sets of the form C(U) and the family of
these sets is pairwise disjoint.

Let U be an ultrafilter on I containing {JB : B ∈ Gϕ}, and let ψ ∈ C(U). For each
B ∈ Gϕ, we have ψ ∈ C(U , B) ⊂ KB , and so ψ ∼ ϕ.

We have shown that |[ϕ] ∩ Ω̃c| = 22c

for this element ϕ.
Second, we consider the case where ϕ ∈ Ω̃c ∩ UΩ. By Corollary 4.22, there exists

ψ ∈ Ω̃c \ UΩ such that ψ ∼ ϕ. Thus, we have

|[ϕ] ∩ Ω̃c| = |[ψ] ∩ Ω̃c| = 22c

,

as required.

Theorem 4.24. Let Ω be an uncountable, compact, metrizable space. Then

|[UΩ]| = |[UΩ] ∩ Ω̃c| = |Ω̃c \ [UΩ]| = 22c

.

Proof. Take ϕ ∈ Ω̃c ∩ UΩ. By Theorem 4.23(ii), |[ϕ]| = 22c

. Since [ϕ] ⊂ [UΩ], we have
|[UΩ]| = 22c

. Similarly, the fact that |[UΩ] ∩ Ω̃c| = 22c

follows from Theorem 4.23(iii).
By Theorem 4.19, there exists ϕ ∈ βΩd \ [UΩ]. By Corollary 4.22, there exists an

element ψ ∈ Ω̃c \UΩ such that ψ ∼ ϕ. Since ϕ 6∈ [UΩ], we have [ψ]∩UΩ = ∅. By Theorem
4.20, |[ψ]| = 22c

. Thus |Ω̃c \ [UΩ]| = 22c

.

Thus, with GCH, we have |Ω̃| = |[UΩ]| = ℵ3, but |UΩ| = ℵ2.
Of course, it is not the case that any two uncountable, compact, metrizable spaces Ω1

and Ω2 are homeomorphic. However, by Milyutin’s theorem [1, Theorem 4.4.8], C(Ω1)
and C(Ω2) are isomorphic as Banach spaces. Thus it seems possible that C(Ω1) and
C(Ω2) are isomorphic as Banach spaces whenever the hyper-Stonean envelope of each of
Ω1 and Ω2 is the above space X. However, this is not the case, as the following example
shows.

Example 4.25. There is a compact, uncountable, non-metrizable space Ω such that the
hyper-Stonean envelope Ω̃ is homeomorphic to Ĩ.

Let Ω = I × {0, 1} as a set, and identify I with the subset I× {0} of Ω. Let Ω be
ordered lexicographically, and then assign the interval topology to Ω, so that a base of
open sets for the topology on Ω is formed by sets of the form

U = ((a, i), (b, j)),
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where a, b ∈ I and i, j ∈ {0, 1} and where either a < b or a = b, i = 0, and j = 1; the
relative topology from Ω on I coincides with the Sorgenfrey topology [29, Example 1.2.2],
which is generated by intervals of the form (a, b]. The space Ω is compact, but it is not
metrizable because the Sorgenfrey topology on I is not metrizable.

Clearly I and Ω have the same cardinality, so the spaces Md(I) and Md(Ω) of discrete
measures can be identified. Hence the topological spaces βId and βΩd are homeomorphic.

We claim that it is also true that the spaces Mc(I) and Mc(Ω) of continuous measures
can be identified. To see this, first consider an open interval U in Ω of the above form,
and set V = (a, b)× {0, 1} ⊂ Ω (with V = ∅ when a ≥ b). We note that V ⊃ U and that
|V \ U | ≤ 2, so that the symmetric difference U 4 V is always finite. Now consider the
family F of subsets E of Ω which have the property that E4 (B×{0, 1}) is countable for
some Borel subset B of I. The family F is a σ-algebra, and F contains all open intervals
in Ω. It is easy to see that each open subset of Ω is a countable union of open intervals,
and so F contains all open sets in Ω. Hence F contains all Borel subsets of Ω, so that, in
fact, F = BΩ. Let µ ∈Mc(Ω), and define Tµ ∈Mc(I) by

(Tµ)(B) = µ(B × {0, 1}) (B ∈ BI),

so that T : Mc(Ω)→Mc(I) is a linear isometry. For each ν ∈Mc(I), define

µ(E) = ν(B) (E ∈ BΩ),

where B ∈ BI is such that E∆(B × {0, 1}) is countable. Then µ(E) is well-defined,
µ ∈ Mc(Ω), and Tµ = ν. Thus T is a surjection. It follows that the spaces Φµ, which is
a clopen subspace of Ω̃, and ΦTµ, which is a clopen subspace of Ĩ, are homeomorphic.

A maximal singular family of positive measures on Ω consists of c discrete measures
and c continuous measures, and so it follows from our basic construction that Ω̃ and Ĩ
are homeomorphic.

It cannot be that C(Ω) is linearly homeomorphic to C(I), or else C(Ω) would be
separable and Ω would be metrizable by a remark on page 21.

The above example gives rise to an interesting phenomenon, which we now describe.

Example 4.26. Our Example 4.25 leads to examples of two compact, uncountable spaces,
Ω1 and Ω2, with Ω1 metrizable and Ω2 non-metrizable, such that the two Banach spaces
defined to be E1 := C(Ω1) and E2 := C(Ω2) have the property that E′1 and E′2 are
isometrically isomorphic, but are such that E1 is separable, but E2 is non-separable.

Indeed, we take Ω1 to be the closed unit interval I and Ω2 to be the space constructed
in Example 4.25. Then C(Ω1)′ and C(Ω2)′ are each isometrically isomorphic to N (̃I). For
a non-empty, compact space Y , the Banach space C(Y ) is separable if and only if the
space Y is metrizable. Thus C(Ω1) is separable, but C(Ω2) is not separable.

A stronger example is given in [99, Proposition 5.5]: there is a non-separable compact
space K such that C(K)′ is isometrically isomorphic to C(I)′.

C(X) as a bidual space. Let X be a hyper-Stonean space. It is natural to ask when X
is the hyper-Stonean envelope of some compact space Ω. Our conjecture is the following.

Suppose that C(X) is isometrically the second dual space of a Banach space. Then
there is a locally compact space Ω such that X = Ω̃.
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We note that it does not follow from the fact that F is a Banach space such that
F ′′ = C(X) for a compact space X that F has the form C0(Ω) for some locally compact
space Ω. For example, it is shown in [4] that there is a Banach space F such that F ′

is isometrically linearly isomorphic to `1, so that F ′′ ∼= C(βN), but such that F is not
isomorphic to any complemented subspace of a space of the form C(K); the space F is
not isomorphic to any Banach lattice. However this does not give a counter-example to
our conjecture. For further study of preduals of `1(Z), see [23].

The following result proves a special case of this conjecture.

Proposition 4.27. Let X be a hyper-Stonean space. Suppose that there is a Banach
lattice F such that F ′′ is isometrically isomorphic to C(X) as a Banach lattice. Then
there is a compact space Ω such that X = Ω̃.

Proof. The dual of F is the Banach lattice N(X) of normal measures on X, and this is
an L-space. By [106, Theorem 27.1.1], F is an M -space. By a theorem of Kakutani ([61],
[106, §13.3]), an M -space is equal to C0(Ω) as a Banach lattice for some locally compact
space Ω. Since F ′′ is Banach lattice isomorphic to C(X), there is an isometric isomorphism
from C(Ω̃) onto C(X). By the Banach–Stone Theorem 2.4(i), X is homeomorphic to Ω̃.

A further special case of the conjecture, that in which C(X) is isometrically the second
dual space of a separable Banach space, has been resolved by Lacey in a striking manner:
indeed, the two cases that we are considering are the only two cases.

First, let X be an infinite compact space for which C(X) is isometrically the second
dual space of a Banach space. Then the space N(X) of normal measures on X is itself the
dual of a Banach space, say N(X) = F ′. Since N(X) has the form L1(µ) for a measure
µ, this says that ‘F is a L1-predual space’, in the terminology of [67, §22]. We denote
by exX the set of extreme points of the closed unit ball N(X)[1]. It is easy to see that
points of exX are exactly the point masses at the isolated points of X, and so we can
identify exX with this set of isolated points. It follows from the Krein–Milman theorem
that exX is infinite. (In the case where C(X) = C0(Ω)′′ for a locally compact space Ω,
we can, by Corollary 4.2, identify Ω as a set with the isolated points of X, and hence
with exN(X)[1].)

Example 4.28. The compact space X := Ĩ \ βId has no isolated points, and so X is a
hyper-Stonean space such that C(X) is not the second dual of any Banach space.

The following theorem is an immediate consequence of a theorem of Lacey [67,
§22, Theorem 5]; it was first proved in [66], and a slightly stronger theorem of Hess
is proved by a shorter proof in [46]. We are indebted to Frederick Dashiell and Thomas
Schlumprecht for a discussion of the literature on this question.

Theorem 4.29. Let X be an infinite compact space for which C(X) is isometrically the
second dual space of a separable Banach space. Then exX is infinite. Further, there are
only two possibilities for the space X (up to homeomorphism): either

(i) exX is countable, X = βN, and C(X) = c′′0 ; or
(ii) exX is uncountable, X = Ĩ, and C(X) = C(I)′′.
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The analogous question in the isomorphic (not isometric) theory of Banach spaces
was resolved in a similar way by Stegall [110]; for related work, see [44].

A historical remark. Let Ω be a compact space. Then in fact the hyper-Stonean
envelope Ω̃ was already constructed in the PhD thesis of the third author, written more
than 50 years ago [89] (see also [90, 91]) ! Let L be an Archimedean vector lattice, and
choose a family (ei) in L+ that is maximal with respect to the property that ei ∧ ej = 0
whenever i 6= j. For each i, there is a space Ui of ‘ultrafilters’ such that{

x ∈ L : |x| =
∨
{|x| ∧ nei : n ∈ N}

}
can be represented by a space of continuous functions on Ui with values in R∪{−∞,∞},
each function taking values in R save on a nowhere dense subset of Ui. The space Ui is
Stonean for each i if and only if L is complete. Form the disjoint union U of the sets Ui,
giving U the topology such that each Ui is clopen in U , and set X = βU . Then there is
a representation of L as a space of functions on X. In the special case where L = M(Ω),
we obtain a representation of this form, with X = Ω̃ such that a measure µ ∈ M(Ω)R
is represented by a continuous function µ̂ : X → {−∞} ∪ R ∪ {∞}. Further, for each
λ ∈ Bb(Ω) and µ ∈M(Ω), we have∫

Ω

λ dµ = κE(λ) · µ̂.

Essentially the same representation of C(Ω̃) = M(Ω)′ as ours is given by Gordon in
[40, §6] and by Wong in [123], extending a theorem of Šrĕıder [109]. We now recover these
results from our remarks above.

Let Ω be a non-empty, locally compact space, and form the hyper-Stonean envelope Ω̃.
We adopt the above notation involving F ; further, we write Gi for the Gel’fand transform
Gνi for each i ∈ I. We take Λ ∈ C(Ω̃) = M(Ω)′. For each i ∈ I, we set Λi = Λ |L1(Ω, νi),
so that, by (4.1), we have Gi(Λi) = Λ |Φi. The family (Λi : i ∈ I), which represents Λ, is
a generalized function in the sense of [123].

We now consider the famous memoir [114] of J. L. Taylor. In [114, §2.4], the compact
spaces Ω̃ and Φµ (for µ ∈ M(Ω)+) are termed the ‘standard domains’ of the L-spaces
M(Ω) and L1(Ω, µ). The canonical embedding κ : M(Ω) → M(Ω̃) is the ‘standard
representation’ of M(Ω); for each µ ∈M(Ω)+, the map

f 7→ κ(f)|Φµ, L1(Ω, µ)→M(Φµ),
is the ‘standard representation’ of L1(Ω, µ).

The second dual space of C0(Ω) has been widely studied. For example, see [106, §27.2].
An early paper of Kaplan is [63], which mainly studies ER = C0(Ω)R, (E′)R, and (E′′)R
as Banach lattices. The study is continued in [64] and further papers of Kaplan; for a
comprehensive account of this work, see [65].

Now here are some remarks of Gordon from [40, §5]. Our space UΩ is called Y in
[40, §5]. The family of all subsets of UΩ of the form Φµ forms a basis of open sets for
a topology, called the δ-topology in [40]; clearly this topology agrees with the relative
topology from (Ω̃, σ) on each Φµ. A subset K of UΩ has the form Φµ for some µ ∈M(Ω)+

if and only if K is open and compact in the δ-topology of UΩ.



5. Locally compact groups

Topological semigroups . Before beginning this chapter, we wish to recall quickly some
basic facts about topological semigroups that we shall use.

Let S be a semigroup, with the product of two elements denoted by juxtaposition.
For t ∈ S, we set

Lt : s 7→ ts, Rt : s 7→ st, S → S.

For subsets A and B of S, set AB = {st : s ∈ A, t ∈ B}. A non-empty subset I of S is a
left ideal in S if SI ⊂ I and a right ideal if IS ⊂ I; I is an ideal if it is both a left and
a right ideal in S. A minimum ideal in S is an ideal which is minimum in the family of
all ideals in S when this family is ordered by inclusion. A minimum ideal of S is unique
if it exists; it is denoted by K(S), and is often called the kernel of S.

A semigroup S which is also a topological space is a right topological semigroup if the
map Rt is continuous on S for each t ∈ S, and a semitopological semigroup (respectively,
a topological semigroup) if the product map

(s, t) 7→ st, S × S → S,

is separately continuous (respectively, continuous). A group G is a topological group if it
is a topological semigroup and the map

s 7→ s−1, S → S,

is continuous. In the case where S is (locally) compact as a topological space, we say
that S is a (locally) compact, right topological semigroup or a (locally) compact topo-
logical semigroup, or a (locally) compact group, respectively. For an extensive account of
topological semigroups, see [52]; see also [5] and [17, Definition 3.24].

For example, let T be a semigroup. Then, for each s ∈ T , the map Ls has an extension
to a continuous map Ls : βT → βT . For each u ∈ βT , define s 2 u = Ls(u). Next, the
map Ru : s 7→ s 2 u, T → βT, has an extension to a continuous map Ru : βT → βT for
u ∈ βT . Define

u 2 v = Rv(u) (u, v ∈ βT ).

Then S = (βT,2) is a compact, right topological semigroup.
There is a major structure theorem for compact, right topological semigroups (and

for more general semigroups); see [17, Theorem 3.25] and [52]. We state the (small) part
of this theorem that we shall use.

[59]
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Theorem 5.1. Let S be a compact, right topological semigroup. Then the minimum ideal
K(S) exists. Further, the families of minimal left ideals and of minimal right ideals of S
form partitions of K(S); in particular, L ∩K(S) 6= ∅ for each left ideal L of S.

The measure algebra of a locally compact group. Our next step is to take G to
be a locally compact group, with left Haar measure denoted by m or mG. We apply the
theory of earlier chapters, with G replacing Ω. The topology on G is again denoted by τ ;
the identity of G is e or eG, and we again set E = C0(G).

For example, we have introduced the Cantor cube Zκp of weight κ; here p ≥ 2 and
κ is an infinite cardinal. The space Zκp is a totally disconnected, perfect compact space.
The set Zp is a finite group with respect to addition modulo p, and Zκp is a group with
respect to the coordinatewise operations, denoted by +. Clearly (Zκp ,+) is a compact
group. In Example 2.16, we described a measure m on Zκp ; this is easily seen to be the
Haar measure on Zκp .

We now define the group algebra (L1(G), ?) and the measure algebra M = (M(G), ?)
of a locally compact group G; for details, see [48], [49], and [13, §3.3]. Indeed, for measures
µ, ν ∈M(G), we set

(µ ? ν)(B) =
∫
G

µ(Bs−1) dν(s) (B ∈ BG),

so that µ ? ν ∈ M(G); the measure µ ? ν is also defined as an element of C0(G)′ by the
formula

〈λ, µ ? ν〉 =
∫
G

∫
G

λ(st) dµ(s) dν(t) (λ ∈ C0(G)).

Then (M(G), ?, ‖ · ‖) is a Banach algebra, called the measure algebra of G. This algebra
has an identity δeG ; the algebra is commutative if and only if G is abelian.

Let µ, ν ∈M(G)+. Then µ ? ν ∈M(G)+, and ‖µ ? ν‖ = ‖µ‖‖ν‖.
For f, g ∈ L1(G), identified with the measures f dm and g dm, respectively, we have

(f ? g)(t) =
∫
G

f(s)g(s−1t) dm(s) (t ∈ G).

The measure algebra (M(G), ?) is always semisimple [13, Theorem 3.3.36]. The sub-
spaces Mc(G) and L1(G), identified with Mac(G), are closed ideals in M(G), and `1(G)
is a closed subalgebra of M(G), so that

M(G) = `1(G)nMc(G) = `1(G)⊕1 L
1(G)⊕1 Ms(G).

In the case where G is compact, mG ∈ M(G)+; in this case, we normalize mG so that
mG(G) = 1.

The group algebra L1(G) will often be denoted just by A; by Wendel’s theorem, the
multiplier algebra of A is the measure algebra M = (M(G), ?) [13, Theorem 3.3.40],
and we regard A as a closed ideal in M . The point masses in M have the form δs for
s ∈ G. The Banach algebra A has a bounded approximate identity, for example, the net
{χU/m(U) : u ∈ U}, where U is the family of compact neighbourhoods of eG, directed
by reverse inclusion, is a bounded approximate identity.
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For a function f on G, we set f̌(s) = f(s−1) (s ∈ G). The module operations in the
space L∞(G) = L1(G)′ = A′ are given by

f · λ = (f̌/∆) ? λ, λ · f = λ ? f̌ (f ∈ A, λ ∈ A′),

where ∆ is the modular function of G.
Let H be a closed subgroup of G, so that H is also a locally compact group, with left

Haar measure mH . We regard mH as a measure on G by setting

mH(B) = mH(B ∩H) (B ∈ BG).

Let G be a locally compact group. The map

µ 7→ µ(G) = 〈µ, 1〉, M(G)→ C,

is a character on M(G), called the augmentation character . (This may be the only char-
acter on M(G).) In the case where G is compact, we clearly have mG ∈M(G)+ and

µ ? mG = mG ? µ = 〈µ, 1〉mG (µ ∈M(G)). (5.1)

In particular, mG ? mG = mG. Further, each ν ∈M(G) such that

µ ? ν = ν ? µ = 〈µ, 1〉ν (µ ∈M(G))

is a left-invariant measure on G, and so has the form ζmG for some ζ ∈ C (using the
argument in [13, Proposition 3.3.53]).

Let G be a locally compact group, and let N be a closed, normal subgroup of G. Then
H := G/N is a locally compact group for the quotient topology, and the quotient map
η : G → H is a continuous, open map which is a group epimorphism; see [48, §5] and
[95, §3.1]. The induced map

η : M(G)→M(H)

was defined in equation (3.12), and η̃ = η ′′ |G : G → H was defined in (4.6). Here we
write ΦG and ΦH for the character spaces of L∞(G,mG) and L∞(H,mH), respectively.

Proposition 5.2.

(i) Let G and H be locally compact groups, and let η : G → H be a continuous, open
epimorphism. Then the induced map η : (M(G), ?) → (M(H), ?) is a continuous
epimorphism.

(ii) Let G and H be compact groups, and let η : G → H be a continuous epimorphism.
Then

η(mG) = mH , η̃(G̃) = H̃, and η̃(ΦG) = ΦH .

Proof. (i) Let N = η−1({eH}), the kernel of η. By [48, (5.27)], we have H = G/N as a
locally compact group. It follows from (3.11) that η is exactly the map described in [95,
(8.2.12)]. Thus the result is [95, Proposition 8.2.8].

(ii) By (5.1) and (i),

δx ? η(mG) = η(mG) ? δx = η(mG) (x ∈ H),

and so η(mG) = mH . By Corollary 4.12(ii), η̃(G̃) = H̃ and hence η̃(ΦmG) = Φη(mG).
Thus η̃(ΦG) = ΦH .
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We state the following closely related result; it is immediate from Proposition 3.19.
A similar result is given as [55, Proposition 2.1(i)], where it is stated for abelian groups.
For a general theory of the embeddings of group algebras, culminating in Cohen’s idem-
potent theorem, see [101, Chapter 4].

Proposition 5.3. Let G and H be locally compact groups, and let η : G → H be a
Borel monomorphism. Then the induced map η : (M(G), ?)→ (M(H), ?) is an isometric
injection.

The hyper-Stonean envelope of G. Let G be a locally compact group. Then the
hyper-Stonean envelope of the space G is denoted by G̃. As before, the canonical projec-
tion is π : G̃ → G∞, the dual space of M(G) is C0(G)′′ = C(G̃), and the second dual
space is M(G̃) = M(G)′′. Here M(G)′ is a commutative C∗-algebra, and its identity, the
constant function 1, when regarded as a functional on M(G), is just the augmentation
character. Thus M(G) is a Lau algebra in the sense of Chapter 1. We have noted that the
dual space L∞(G) of the group algebra L1(G) is a C∗-algebra, and again the constant
function 1, when regarded as a functional on L1(G) is just the augmentation character
restricted to L1(G), and so L1(G) is also a Lau algebra. Here 2 and 3 are the Arens
products from page 8.

Definition 5.4. Let G be a locally compact group. Then (M(G̃),2) and (M(G̃),3)
are the unital Banach algebras formed by identifying M(G̃) with the Banach algebras
(M(G)′′,2) and (M(G)′′,3).

The space E = C0(G) is a ‖ · ‖-closed subspace of M(G)′ = C(G̃). For µ ∈M(G) and
λ ∈ C0(G), we have

(λ · µ)(t) =
∫
G

λ(ts) dµ(s), (µ · λ)(t) =
∫
G

λ(st) dµ(s) (t ∈ G),

and so C0(G) is a submodule of M(G)′. Thus M(G) is a dual Banach algebra [102,
Exercise 4.4.1], and hence

M(G̃) = M(G)′′ = M(G)n E◦, (5.2)

where we are identifying M(G) with κ(M(G)). In particular, the map

π = κ′E : (M(G̃),2)→ (M(G), ?) (5.3)

is a continuous epimorphism, as in [56, Theorem 3.3].
Take M,N ∈M(G̃)+. Then M 2 N ∈M(G̃)+, and

‖M 2 N‖ = (M 2 N)(G̃) = π(M 2 N)(G) = (π(M) ? π(N))(G)

= π(M)(G)π(N)(G) = M(G̃)N(G̃) = ‖M‖ ‖N‖

by (3.5). In particular, let ϕ,ψ ∈ G̃. Then δϕ 2 δψ ∈ M(G̃)+, and ‖δϕ 2 δψ‖ = 1, where
we write δϕ 2 δψ for δϕ 2 δψ.

Proposition 5.5. Let G be a locally compact group. Then the following conditions on
M ∈M(G̃) are equivalent:
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(a) M is invertible in (M(G̃),2) with ‖M‖ = ‖M−1‖ = 1;
(b) there exists s ∈ G and ζ ∈ T such that M = ζδs.

Proof. This is [34, Theorem 3.5].

Let B be a Borel subset of G. Then we have defined the subset KB of G̃ in Chapter 1.
It is clear that

δs 2 χKB = χKBs−1 (s ∈ G).

For example, let G be a discrete group. Then M(G) = `1(G) and G̃ is identified with
βG. For a general locally compact group G, we have βGd = G and (βGd,2) is a compact,
right topological semigroup which is a subsemigroup of (M(βGd),2).

Let G be a compact group. Then it follows immediately from (5.1) by taking weak-∗
limits that

M 2mG = mG 2 M = 〈M, 1〉mG (M ∈M(G̃)). (5.4)

Proposition 5.6. Let G be a compact group. Suppose that N ∈ M(G̃) satisfies the
equations

M 2 N = N 2 M = 〈M, 1〉N (M ∈M(G̃)) (5.5)

and
N 2 N = N. (5.6)

Then N = mG or N = 0.

Proof. Since N satisfies (5.5), necessarily

mG 2 N = N 2mG = N.

By (5.4), we have N 2 mG = 〈N, 1〉mG, and so N = ζmG, where ζ = 〈N, 1〉. By (5.6),
ζ2 = ζ, and so ζ = 0 or ζ = 1, giving the result.

We now apply the theory of Chapters 3 and 4, with G for Ω and m as left Haar
measure on G.

Proposition 5.7. Let G be a locally compact group, let X be a Banach C0(G)-submodule
of M(G), and denote the character space of the commutative C∗-algebra X ′ by ΦX . Then
ΦX is a clopen subset of G̃.

Suppose further that X is a subalgebra (respectively, ideal) of the Banach algebra
(M(G), ?). Then

(X ′′,2) = (M(ΦX),2)

is a closed subalgebra (respectively, ideal) of (M(G̃),2).

Proof. Since X is a Banach E-submodule of M(G), it follows from Proposition 1.17 that
(X ′,2) is a commutative C∗-algebra. By Proposition 4.1, ΦX is a clopen subset of G̃
and we can identify X ′ with C(ΦX). Hence we can identify X ′′ as a Banach space with
M(ΦX).

If X is a subalgebra or ideal of (M(G), ?), the Banach algebra (X ′′,2) is a closed
subalgebra or ideal, respectively, of (M(G̃),2).

Definition 5.8. Let G be a locally compact group. Then Φ, G̃c, and G̃d are the character
spaces of L∞(G), Mc(G)′, and `∞(G), respectively.
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Thus Φ, G̃c, and G̃d = G are clopen subsets of G̃.

Corollary 5.9. Let G be a locally compact group. Then

(L∞(G)′,2) = (M(Φ),2) and (Mc(G)′′,2) = (M(G̃c),2)

are closed ideals and (`∞(G)′,2) = (M(G),2) is a closed subalgebra of (M(G̃),2).

We note that, in the special case where G is compact, L1(G) is an ideal in (M(Φ),2)
[118] and hence in (M(G̃),2) [35, Lemma 4].

Introverted subspaces. Let G be a locally compact group. Since L1(G) and M(G)
are Lau algebras, we have definitions of introverted C∗-subalgebras X of L∞(G) and of
M(G)′, and also of topologically invariant means on X. For example, a closed subspace
X of L∞(G) is an introverted C∗-subalgebra if X is a C∗-subalgebra of L∞(G) and X

is an introverted L1(G)-submodule of L∞(G). A topologically invariant mean on X is an
element m ∈ L∞(G)′ such that ‖m‖ = 〈1,m〉 = 1 and

〈m, λ · µ〉 = 〈m, µ · λ〉 = 〈m, λ〉 (λ ∈ X, µ ∈ P(L1(G))).

The following result is given in [71, Corollary 4.3]; it also uses Johnson’s famous
theorem [59], [13, Theorem 5.6.42] on the amenability of L1(G).

Theorem 5.10. Let G be a locally compact group. Then the following are equivalent:

(a) G is amenable;
(b) L1(G) is amenable;
(c) L1(G) is left-amenable;
(d) M(G) is left-amenable.

We also record the following theorem of Dales, Ghahramani, and Helemskii [15].

Theorem 5.11. Let G be a locally compact group. Then M(G) is amenable if and only
if G is discrete and amenable.

In the present case, an introverted C∗-subalgebra X of L∞(G) or of M(G)′ is com-
mutative. The character space of such a commutative C∗-algebra X is denoted by ΦX ;
it is formed by identifying points of Φ, the character space of L∞(G). As in Chapter 1,
(X ′,2) is a Banach algebra; it is identified with (M(ΦX),2). The quotient map

RX : Λ 7→ Λ|C0(G), (X ′,2)→ (M(G), ?),

is a continuous epimorphism.
In the case where X ⊂ Cb(G), define θµ ∈ X ′ for µ ∈M(G) by

〈θµ, λ〉 =
∫
G

λ(s) dµ(s) (λ ∈ X).

Then θ : (M(G), ?)→ (M(ΦX),2) is an isometric embedding and

M(ΦX) = θ(M(G))n C0(G)◦;

we regard M(G) as a closed subalgebra of M(ΦX). We also regard ΦX as a compact
subset of M(ΦX), and so we see that (ΦX ,2) is a compact, right topological semigroup
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[52, Theorem 21.43]. Thus we have quotient maps

qG : (M(G̃),2)→ (M(ΦX),2) and qG : G̃→ ΦX ; (5.7)

both of the maps qG : G̃ → ΦX and qG : Φ → ΦX are continuous epimorphisms. There
is a natural embedding of G in ΦX , and so we can regard G as a dense, open subspace
of ΦX .

For a discussion of the above objects, see [5, §4.4], [17, Chapter 5], [52, Chapter 21],
and [75].

The space LUC (G). Let G be a locally compact group. Then LUC (G) denotes the
closed subspace of Cb(G) consisting of the left uniformly continuous functions on G:
these are the functions λ ∈ Cb(G) such that the map

t 7→ λ · t, G→ Cb(G),

is continuous, where (λ · t)(s) = λ(ts) (s, t ∈ G). We set

Z = LUC (G),

so that 1 ∈ Z ⊂ Cb(G). The canonical embedding κE : Z → C(G̃) identifies Z as a unital
C∗-subalgebra ofC(G̃). [In [48],Z is the space of right uniformly continuous functions onG.]

Let λ ∈ L∞(G). Then λ is in the equivalence class of a function in LUC (G) if and
only if the map

t 7→ λ · t, G→ L∞(G),

is continuous, and so the space Z is a left-introverted C∗-subalgebra of L∞(G) = C(Φ);
for these results, see [123, Lemma 6.2] and [16, Proposition 7.15]. Since the map Λ 7→ Λ|Φ
from κE(Z) onto κE(Z)|Φ is an injection, the space Z is clearly also a left-introverted
C∗-subalgebra of M(G)′ = C(G̃). We note that Z is also a left-introverted C∗-subalgebra
of `∞(G) = L1(Gd), and the two respective products on Z coincide [16, Proposition 7.20].

The character space ΦZ of Z is formed by identifying points of G̃ that are not sepa-
rated by κE(Z). (For x ∈ G, the equivalence classes in G̃ are just the fibres G{x}.) The
space ΦZ is denoted by γu(G) = LU C(G) in [52, Example 21.5.6] and by GLC in [5].

We shall use the following theorem; it is [52, Exercise 21.5.3].

Theorem 5.12. Let G be a locally compact group, and let A and B be subsets of G such
that A ∩ UB = ∅ for some U ∈ NeG . Then A ∩B = ∅ in ΦZ .

The spaces AP(G) and WAP(G). Let G be a locally compact group. For λ ∈ L∞(G),
set

LO(λ) = {λ · δt : t ∈ G}, RO(λ) = {δt · λ : t ∈ G},

so that LO(λ) and RO(λ) are the left-orbit and right-orbit of λ, respectively. Then λ is
almost periodic if the set LO(λ) (equivalently, RO(λ)) is relatively compact in the ‖ · ‖-
topology on L∞(G) and weakly almost periodic if the set LO(λ) (equivalently, RO(λ))
is relatively compact in the weak topology on L∞(G); the spaces of almost periodic and
weakly almost periodic functions on G are denoted by AP(G) and WAP(G), respectively.
For the equivalence of the ‘left’ and ‘right’ versions of these definitions, see [5, pp. 130,
139].
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The spaces AP(G) and WAP(G) are introverted C∗-subalgebras of L∞(G). Further,
by [5, p. 138], C0(G) ⊂ AP(G) if and only if G is compact.

Recall that AP(A) and WAP(A) for a Banach algebra A were defined in Definition
1.11. We have

AP(G) = AP(L1(G)) and WAP(G) = WAP(L1(G)).

The first proof of this is due to Wong, in the sense that it is an immediate consequence of
[122, Lemma 6.3]; see also [69, Corollary 4.2(b)] and [28, 115]. It also follows from [122,
Lemma 6.3] that WAP(G) ⊂ LUC (G), and so

AP(G) ⊂WAP(G) ⊂ LUC (G) ⊂ Cb(G) ⊂ L∞(G)

and C0(G) ⊂WAP(G).
It follows from Proposition 1.14 that AP(M(G)) and WAP(M(G)) are introverted

subspaces of M(G)′, and hence of L∞(G). However it was not clear that AP(M(G)) and
WAP(M(G)) are C∗-algebras; in fact, this has been proved recently by Daws in a striking
paper [21]. For further related work, see [22] and [103].

Theorem 5.13. Let G be a locally compact abelian group. Then both AP(M(G)) and
WAP(M(G)) are introverted C∗-subalgebras of M(G)′.

We also have the following result, which is surely well-known.

Theorem 5.14. Let G be a locally compact group. Then:

(i) WAP(G) ⊂WAP(M(G));
(ii) AP(G) ⊂ AP(M(G));

(iii) the space WAP(G) is an introverted C∗-subalgebra of M(G)′.

Proof. Set M = M(G) and σ = σ(M ′,M ′′).
(i) Let λ0 ∈WAP(G), so that λ0 ∈ Cb(G) ⊂M ′. The set RO(λ0) is relatively compact

in σ(C(Φ),M(Φ)), and hence in σ. Let K be the σ-closed convex hull of RO(λ0). By the
Krein–Šmulian theorem [13, Theorem A.3.29], K is compact in (C(G̃), σ).

Let p be the product topology on CG. Then (K, p) is Hausdorff and (K,σ) is compact.
But p ≤ σ, and so p and σ agree on K.

Let µ ∈ M(G)[1]. We regard µ as an element of Cb(G)′, and then take a norm-
preserving extension of µ to be an element of the Banach space `∞(G) = C(βGd). The
unit ball `1(G)[1] is weak-∗ dense in C(βGd)[1], and so there is a net (µα) in Md(G)[1]

such that 〈µα, λ〉 → 〈µα, λ〉 for each λ ∈ Cb(G). Hence

(µα · λ)(t) = 〈µα, λ · δt〉 → 〈µ, λ · δt〉 = (µ · λ)(t) (t ∈ G).

This shows that µα · λ → µ · λ in (K, p), and hence in (K,σ). Since RO(λ0) ⊂ K and
(K,σ) is compact, it follows that {µ · λ : µ ∈M(G)[1]} ⊂ K. This implies that K(λ), as
defined in (1.4), is compact in (M ′, σ), showing that λ0 ∈WAP(M(G)).

(ii) This is similar.
(iii) The argument in (i) shows that µ · λ ∈ WAP(G) whenever λ ∈ WAP(G) and

µ ∈M(G), and so WAP(G) is a Banach left M(G)-submodule of the dual module M(G)′.
Similarly, WAP(G) is a Banach right M(G)-submodule of M(G)′, and clearly WAP(G)
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is a Banach M(G)-sub-bimodule of M(G)′. By (i), we have

WAP(G) ⊂WAP(M(G)),

and so, by Proposition 1.14(ii), WAP(G) is introverted in M(G)′. Certainly WAP(G) is
a C∗-subalgebra of M(G)′ with C0(G) ⊂ WAP(G), and so WAP(G) is an introverted
C∗-subalgebra of M(G)′.

Proposition 5.15. Let G be a locally compact group, and take λ ∈ `∞(G). Then we
have κE(λ) |Ω̃d ∈WAP(M(G)) if and only if λ ∈WAP(Gd).

Proof. For λ ∈ `∞(G), set Tλ = κE(λ)|G̃d (so that Tλ is uniquely defined in C(G̃)).
Let λ ∈ `∞(G). For µ, ν ∈M(G), we have

〈ν, µ·Tλ〉 = 〈µ?ν, j′d(κE(λ))〉 = 〈(µ?ν)d, j′d(κE(λ))〉 = 〈µd?νd, j′d(κE(λ))〉 = 〈νd, µd·λ〉,

where the last two dualities are `1-`∞-dualities. Thus K(Tλ) in C(G̃) is equal to K(λ)
in `∞(G), and so these two sets are weakly compact in the appropriate space if and only
if the other has the same property.

The result follows.

Since WAP(M(G)) contains WAP(Gd), which includes C0(Gd) as a subspace, we
see that WAP(G) = WAP(M(G)) if and only if G is discrete. It seems that the spaces
AP(M(G)) and WAP(M(G)) are not well understood in the case where G is not discrete.

Let G be a locally compact group. It is interesting to ask when WAP(M(G)) has a
topological invariant mean; we have the following partial result.

Proposition 5.16. Let G be a locally compact group. Suppose that G is discrete or
amenable. Then WAP(M(G)) has a topological invariant mean.

Proof. This is immediate in the case where G is discrete.
Now suppose that G is amenable. Then, by Proposition 5.10, M(G) is a left-amenable

Banach algebra, and so, by Proposition 1.21, M(G)′ has a topological left-invariant mean.
Similarly, M(G)′ has a topological right-invariant mean, and hence a M(G)′ has a topo-
logical invariant mean. The restriction of this mean to WAP(M(G)) is a topological
invariant mean on WAP(M(G)).

The structure semigroup of G. The structure semigroup of a locally compact abelian
group G was introduced by J. L. Taylor in [113] and discussed in some detail by Taylor
in [114, Chapters 3, 4]; the work is also described in the text [41, §5.1] of Graham
and McGehee. This structure semigroup has been used by Brown [6] and by Chow and
White [9]; an important early paper of Hewitt and Kakutani is [47].

We shall present what appears to be a somewhat more direct and abstract approach
to the definition and the results. The definition is also applicable to non-abelian groups,
but the semigroup may be trivial in the non-abelian case.

Definition 5.17. Let G be a locally compact group. The character space of the Banach
algebra M(G) is ΦM(G) = ΦM .

Let Λ ∈ ΦM . Then Λ is an element of M(G)′ = C(G̃) with |Λ| eG = 1, and so ΦM is a
subset of C(G̃)[1]; in particular, ΦM inherits a product from C(G̃)[1]. A key fact is that
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ΦM is closed under complex conjugation and this product, so that ΦM is a ∗-semigroup.
This follows from results in [109]; an explicit, simple proof is given in [94]; a result that
applies when the group G is replaced by an arbitrary locally compact abelian semigroup
with separately continuous product is given in [9] and [96, Theorem (4.1)].

The constant function 1 on G̃, regarded as a continuous linear functional on M(G),
is exactly the augmentation character on M(G), and so we may say that 1 ∈ ΦM .

Suppose that the locally compact group G is abelian. Then the set of elements Λ
of C(G̃)[1] with the property that |Λ(ϕ)| = 1 (ϕ ∈ G̃) is just the canonical image of
Γ := Ĝ, the dual group of G [114, Corollary p. 36]. Let ϕ,ψ ∈ G̃ with ϕ 6= ψ. There
exists M ∈ CR(G̃) with M(ϕ) = 0 and M(ψ) = 1, and then exp(iM) ∈ Γ and also
exp(iM)(ϕ) 6= exp(iM)(ψ). Thus Γ separates the points of G̃. By the Stone–Weierstrass
theorem, lin Γ is | · | eG-dense in C(G̃).

Definition 5.18. Let G be a locally compact group. Then XG is the | · | eG-closure of
lin ΦM in C(G̃).

Thus XG is a unital C∗-subalgebra of C(G̃).
Let µ ∈M(G) and γ ∈ ΦM . Then

(µ · γ)(ν) = γ(µ ? ν) = γ(µ)γ(ν) (ν ∈M(G)),

and so µ · γ = γ(µ)γ. It follows that XG is an M(G)-submodule of M(G)′. In fact, each
element of lin ΦM has finite-dimensional range as an operator on M(G)′, and so

XG ⊂ AP(G) ⊂ AP(M(G)) ⊂WAP(M(G)) ⊂M(G)′ = C(G̃).

In the case where the group G is compact, we have

AP(G) = WAP(G) = C(G);

see [101].

Proposition 5.19. Let G be a locally compact group. Then XG is an introverted subspace
of M(G)′, and (X ′G,2) = (X ′G,3) is a Banach algebra.

Proof. This follows immediately from Proposition 1.14(ii).

The following definition was first given by Taylor; see [113, 114].

Definition 5.20. Let G be a non-discrete, locally compact group. Then the character
space of XG is denoted by S(G) and called the structure semigroup of M(G).

Suppose that G is a (discrete) abelian group. Then S(G) is the Bohr compactification
of G; the space (S(G),2) is a compact group.

The justification for the term ‘semigroup’ will come in Proposition 5.21 below. Set
X = XG. We see that S(G) ⊂ X ′[1]; as usual, S(G) is given the relative σ(X ′, X)-topology.
The quotient map

qG : (M(G̃),2)→ (X ′,2)

is a continuous homomorphism that induces a continuous homeomorphism of G̃ onto
S(G). The space S(G) inherits the multiplication 2 from (X ′[1],2).

The following result is a theorem of Rennison [96, Theorem (5.2)]; we shall obtain it
in a more general context in the next section.
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Proposition 5.21. Let G be a locally compact abelian group. Then (S(G),2) is a com-
pact, abelian topological semigroup.

In [96, Theorem (5.4)], the semi-characters on S(G) are identified with the Gel’fand
transforms of elements of ΦM(G), and in [96, Theorem (6.5)] it is shown that the semigroup
(S(G),2) is exactly the structure semigroup of M(G) which was defined by Taylor [114]
in a more complicated manner. In [83, Theorem 5.2], McKilligan and White consider the
situation where M(G) is replaced by a general ‘L-algebra’ A; A′ is again a commutative
C∗-algebra, and XG is replaced by a general introverted subspace X of A′ such that
1 ∈ X ⊂WAP(A); they give a necessary and sufficient condition for the character space
of X to be a subsemigroup of X ′[1] with respect to the relative Arens product 2.

For further study of the structure semigroup, see [114], [41, §5.1], and §4, Chapitre
IV, of the substantial text [53].

The structure semigroup for Lau algebras. The notion of a Lau algebra was recalled
in Chapter 1.

Let A be a commutative Lau algebra, with character space ΦA, so that ΦA ⊂ A′,
where (A′, ·) is a C∗-algebra (not necessarily commutative); the identity of A′ is e. Recall
from equation (1.5) the definitions of Lµa,Rµa ∈ A for a ∈ A and µ ∈ A′.

Further suppose that T is a subset of A′ such that T is a subsemigroup of (A′, ·), and
let T have the relative σ(A′, A)-topology from A′. Then T is a semitopological semigroup
because the product in A′ is separately σ(A′, A)-continuous. For each a ∈ A, define

â : ϕ 7→ ϕ(a), T → C,

and set
B(T ) = {â : a ∈ A}.

Then B(T ) is a subalgebra of Cb(T ). Clearly the map a 7→ â, A→ B(T ), is a homomor-
phism, and it is an injection if and only if linT is σ(A′, A)-dense in A′.

Now let λ ∈ A′ and f ∈ B(T ). Define

(`ϕf)(ψ) = f(ϕ · ψ) (ϕ,ψ ∈ T ),

so that
L̂ϕa(ψ) = 〈a, ϕ · ψ〉 = (`ϕf)(ψ) (ψ ∈ T ),

and hence L̂ϕa = `ϕf whenever f = â. We now suppose throughout that linT is σ(A′, A)-
dense in A′, so that, for each f ∈ B(T ), there is a unique a ∈ A with f = â. In the case
where A has an identity u, we have Lϕu = u (ϕ ∈ T ). Define

λ`(f)(ϕ) = 〈Lϕa, λ〉 = 〈a, ϕ · λ〉 = 〈Rλa, ϕ〉 (ϕ ∈ T ),

so that λ`(f) ∈ Cb(T ). Indeed, λ`f = R̂λa ∈ B(T ).
Let a, b ∈ A and ϕ,ψ ∈ T , so that ϕ · ψ ∈ T ⊂ ΦA ∪ {0}. Then

〈Rϕ(ab), ψ〉 = 〈ab, ϕ · ψ〉 = 〈a, ϕ · ψ〉〈b, ϕ · ψ〉
= 〈Rϕa, ψ〉〈Rϕb, ψ〉 = 〈(Rϕa)(Rϕb), ψ〉,

and so
Rϕ(ab) = (Rϕa)(Rϕb) ∈ A. (5.8)
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Proposition 5.22. Let A be a commutative Lau algebra, and let T be a subsemigroup of
ΦA ∪ {0} such that e ∈ T and linT is σ(A′, A)-dense in A′. Let λ ∈ A′. Then Lλ is an
automorphism on A = B(T ) if and only if λ ∈ ΦA ∪ {0}.

Proof. Suppose that λ ∈ ΦA ∪ {0}. We have noted that Lλ is a bounded linear operator
on A. Let a, b ∈ A. For each ϕ ∈ T , we have

〈Lλ(ab), ϕ〉 = 〈Rϕ(ab), λ〉 by (1.5)

= 〈(Rϕa)(Rϕb), λ〉 by (5.8)

= 〈Rϕa, λ〉〈Rϕb, λ〉 because λ ∈ ΦA ∪ {0}
= 〈Lλa, ϕ〉〈Lλb, ϕ〉
= 〈(Lλa)(Lλb), ϕ〉 because ϕ ∈ ΦA ∪ {0}.

Thus Lλ(ab) = (Lλa)(Lλb), and so Lλ is an automorphism on A.
Conversely, suppose that Lλ is an automorphism on A. We have

〈ab, λ〉 = 〈Lλ(ab), e〉 = 〈Lλa, e〉〈Lλb, e〉 = 〈a, λ〉〈b, λ〉,

and so λ ∈ ΦA ∪ {0}.

A subsemigroup of (A′, ·) is a ∗-semigroup if it is closed under the involution on A′.

Proposition 5.23. Let A be a commutative Lau algebra. Then the following are equiv-
alent:

(a) A is semisimple and ΦA ∪ {0} is a ∗-semigroup with respect to the product and
involution on A′;

(b) there is a ∗-subsemigroup T of A′ with e ∈ T ⊂ ΦA ∪{0} such that linT is σ(A′, A)-
dense in A′.

Proof. (a)⇒(b) Set T = ΦA ∪ {0}. Clearly e ∈ T and T is a ∗-subsemigroup T of A′.
Assume towards a contradiction that there exists λ ∈ A′ with λ not in the σ(A′, A)-
closure of linT . Then there exists a ∈ A such that 〈a, λ〉 = 1 and 〈a, ϕ〉 = 0 (ϕ ∈ ΦA),
so that â = 0. Since A is semisimple, a = 0, a contradiction. Thus linT is σ(A′, A)-dense
in A′.

(b)⇒(a) Suppose that a ∈ A with â = 0. Since T ⊂ ΦA ∪ {0} and linT is σ(A′, A)-
dense in A′, it follows that 〈a, λ〉 = 0 (λ ∈ A′), and so a = 0. Thus A is semisimple.

Let ϕ,ψ ∈ ΦA ∪ {0}. For each a, b ∈ A, we have

〈ab, ϕ · ψ〉 = 〈Lϕ(ab), ψ〉 = 〈(Lϕa)(Lϕb), ψ〉 by Proposition 5.22

= 〈Lϕa, ψ〉〈Lϕb, ψ〉 = 〈a, ϕ · ψ〉〈b, ϕ · ψ〉,

and so ϕ · ψ ∈ ΦA ∪ {0}. It follows that ΦA ∪ {0} is a semigroup in A′; clearly ΦA ∪ {0}
is a ∗-semigroup.

An example given in [74, Corollary 3.8] exhibits a commutative, semisimple Lau al-
gebra such that ΦA ∪ {0} is a ∗-semigroup, but ΦA itself is not a semigroup.

Definition 5.24. Let A be a commutative Lau algebra such that (A′, ·) is commutative.
Then XA is the ‖ · ‖-closure of lin ΦA in A′.
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ThusXA is a commutative, unital C∗-subalgebra of A′. As before,XA is an introverted
subspace of A′, and so (X ′A,2) is a Banach algebra for the product 2 inherited from
(A′,2). Also as before, we have XA ⊂ AP(A) ⊂WAP(A).

In general, AP(A) and WAP(A) need not be subalgebras of the C∗-algebra A′. For
example, let K be a hypergroup with a left Haar measure (see [57, 100]). Then the
hypergroup algebra A = L1(K) is a Lau algebra. Since A has a bounded approximate
identity [57, 100], it follows from Proposition 1.2 that A · A′ · A = A · A′ is a closed
linear subspace of A′, and hence WAP(A) ⊂ A ·A′ ⊂ Cb(K) [107, Lemma 2]. Let AP(K)
and WAP(K) denote the spaces of elements λ ∈ Cb(K) such that {`xλ : x ∈ K} is
relatively compact in the norm and weak topologies, respectively, of Cb(K). Then, by
[108, Remark 2.4(i)], we have AP(K) = AP(A) and WAP(K) = WAP(A). However
there is an example in [68] of a hypergroup K such that AP(K) is not a subalgebra of
Cb(K), and in [121] there is an example of a hypergroup K such that neither AP(K) nor
WAP(K) is an algebra. Thus it follows that, in general, neither AP(A) nor WAP(A) is
a subalgebra of A′.

As we have remarked, Daws [21] has proved that AP(M(G)) and WAP(M(G)) are
C∗-algebras when G is a locally compact group. It remains an interesting open question
whether AP(A) and WAP(A) are necessarily C∗-subalgebras of A′ when A′ is a Hopf–
von Neumann algebra, not necessarily commutative. This problem has been studied by
Chou when A is the Fourier algebra A(G) of a locally compact group [8]; see also [103].

Definition 5.25. Let A be a commutative Lau algebra such that (A′, ·) is commutative.
Then the character space of XA is denoted by S(A); it is the structure semigroup of A.

Thus the definition of S(A) generalizes that of S(G) in the case where G is a locally
compact abelian group, in which case A = M(G) is a commutative Lau algebra and
A′ = C(G̃) is a commutative von Neumann algebra.

Theorem 5.26. Let A be a commutative Lau algebra such that (A′, ·) is commutative.
Suppose that there is a ∗-subsemigroup T of A′ with e ∈ T ⊂ ΦA ∪ {0} such that linT is
σ(A′, A)-dense in A′. Then (S(A),2) is a compact, abelian topological semigroup.

Proof. The space S(A) is compact because XA is a unital, commutative C∗-algebra.
By (1.2), M · ϕ = 〈M, ϕ〉ϕ (M ∈ A′′, ϕ ∈ ΦA). Thus

〈s 2 t, ϕ〉 = 〈s, t · ϕ〉 = 〈s, ϕ〉〈t, ϕ〉 (s, t ∈ S(A), ϕ ∈ ΦA).

Let ϕ,ψ ∈ ΦM . Then ϕ · ψ ∈ ΦA ∪ {0} by Proposition 5.23, and so

〈s 2 t, ϕ · ψ〉 = 〈s, ϕ · ψ〉〈t, ϕ · ψ〉 = 〈s, ϕ〉〈s, ψ〉〈t, ϕ〉〈t, ψ〉 = 〈s 2 t, ϕ〉〈s 2 t, ψ〉.

Thus s 2 t ∈ S(A) because lin ΦA is dense in XA, and so (S(G),2) is a semigroup.
That (S(A),2) is a compact, topological semigroup follows from Proposition 1.15.

Corollary 5.27. Let G be a locally compact abelian group. Then (S(G),2) is a compact,
abelian topological semigroup.

Proof. Let A = M(G) and T = Γ, the dual group of G. Then A and T satisfy the
conditions in the above theorem.
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Submodules of M(G)′′. Let G be a locally compact group. A closed subspace F of
M(G̃) is translation-invariant if

s · Λ · t ∈ F (s, t ∈ G, Λ ∈ F ).

Again set E = C0(G) and A = L1(G,mG). Let

D = `1(G)

denote the subspace of M consisting of the discrete measures, so that D is a closed
subalgebra of M , and let Ms = Ms(G) denote the space of (non-discrete) singular mea-
sures on G, so that Ms is a closed linear subspace of M . It was first shown by Hewitt
and Zuckerman [51] that, for every non-discrete, locally compact abelian group, there
is a probability measure µ ∈ Ms(G) such that µ ? µ ∈ L1(G), and so Ms(G) is not a
subalgebra of (M(G), ?). As in (2.8), we have

M = A⊕1 D ⊕1 Ms = D nMc

as a direct `1-sum of Banach spaces; each of A, D, Mc, and Ms is a translation-invariant
E-submodule of M . It follows that

M ′′ = A′′ ⊕D′′ ⊕M ′′s = D′′ nM ′′c ,

where each of A′′, D′′, and M ′′s is a translation-invariant E-submodule of M ′′. Further,
A′′ and M ′′c are closed ideals in (M ′′,2) and D′′ is a closed subalgebra (M ′′,2). We
note that the weak-∗ topologies on the spaces A′′, D′′, and M ′′s are just the appropriate
relative weak-∗ topology from M ′′. The canonical embedding is now

κ = κM : M →M ′′ = M(G̃).

Set A = A⊕D. Then A is a closed subalgebra of (M,?) and

A = D nA = `1(G)n L1(G) and A′′ = D′′ nA′′.

For details of the remarks concerning the Banach algebra M(G), see [13, §3.3] and
[48, (19.20) and (19.26)].

As we have stated, L1(G,mG) is a closed ideal of M(G). Now take µ ∈ M(Ω)+. In
general, L1(G,µ) is not a subalgebra of M(G), but there may be singular measures µ for
which this is true; for example, this is the case if µ = mH is the left Haar measure on a
closed, non-open subgroup H of G.

Recall that the character space of L∞(G) = L∞(G,mG) = A′ is denoted just by Φ.
Of course, Φ is a clopen subset of G̃, and π(Φ) = G. Thus we may suppose that the
family {Ωi : i ∈ I} of subsets of G̃ described in Proposition 4.8 contains the singletons
{x} for x ∈ G and the compact space Φ. The space Φ is the topic of the paper [78], where
it is called the spectrum of L∞(G). For x ∈ G, we set

Φ{x} = G̃{x} ∩ Φ = {ϕ ∈ Φ : π(ϕ) = x}.

Let µ ∈M(G)+ and x ∈ G, and set ν = δx ? µ. Then it is clear that

Φν = δx ? Φµ := {δx ? δψ : ψ ∈ Φµ}.

Proposition 5.28. Let G be a locally compact group, and suppose that µ ∈ Ms(G)+.
Then Φµ ∩ (δx ? Φµ) = ∅ for almost all x ∈ (G,mG).
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Proof. By [41, Corollary 8.3.3], {x ∈ G : δx ? µ 6⊥ µ} is a Borel set, say B, such that
mG(B) = 0. (The result in [41] is stated for abelian groups, but the proof of this result
applies also to general, non-abelian groups.) Thus, for x ∈ G \ B, we have δx ? µ ⊥ µ,
and so Φµ ∩ (δx ? Φµ) = ∅.

In the case where G is compact, infinite, and metrizable, the space Φ is homeomorphic
to H, the hyper-Stonean space of the unit interval.

We have noted in Corollary 5.9 that (M(Φ),2) is a closed ideal in (M(G̃),2). In
particular, for each ϕ ∈ Φ, we have the map

Lϕ : M 7→ δϕ 2 M, M(G̃)→M(Φ). (5.9)

The compact spaces corresponding to A, D, Ms, and M are denoted by Φ, ΦD = βGd,
Φs, and G̃, respectively. (In fact they are the character spaces of the C∗-algebras A′,
D′ = `∞(G), M ′s, and M ′, respectively.) We have shown that

{Φ, βGd,Φs}
is a partition of G̃ into clopen subsets and that G = βGd. It follows from our remarks
that

M(G)′′ = M(G̃) = M(Φ)⊕1 M(βGd)⊕1 M(Φs)

as a Banach space, that M(Φ) is a closed ideal in (M(G̃),2), and that M(βGd) and A′′

are closed subalgebras in (M(G̃),2).

Proposition 5.29. Let G be a locally compact group. Then A = `1(G)nL1(G) is strongly
Arens irregular.

Proof. This follows from [17, Proposition 2.25].



6. Formulae for products

In this chapter, we shall establish some formulae for products in the algebra (M(G̃),2)
that we shall require. Our method is based on the use of ultrafilters.

Let G be a locally compact group. We shall use the following notation. First, take a
positive measure µ ∈M(G)+ and B ∈ BG with µ(B) 6= 0. We recall that we are setting
µB = (µ|B)/µ(B). Fix L ∈ BG. Then we now make the following definition of a function
λµ,B :

λµ,B(t) :=
µ(B ∩ Lt−1)

µ(B)
= µB(Lt−1) (t ∈ G). (6.1)

Thus

λµ,B(t) =
∫
B

χLt−1(s) dµB(s) (t ∈ G). (6.2)

Then λµ,B is a function on G that belongs to Bb(G).
We also recall that UG =

⋃
{Φµ : µ ∈M(G)+}, as in Definition 4.5.

Proposition 6.1. Let G be a locally compact group.

(i) Let µ, ν ∈M(G). Then

〈κE(λ), µ ? ν〉 =
∫
G

∫
G

λ(st) dµ(s) dν(t) (λ ∈ Bb(G)). (6.3)

(ii) Let ϕ,ψ ∈ G̃ with ϕ ∈ Φµ and ψ ∈ Φν , where µ, ν ∈M(G)+. Then

〈κE(λ), δϕ 2 δψ〉 = lim
B→ϕ

lim
C→ψ

∫
B

∫
C

λ(st) dµB(s) dνC(t) (6.4)

for each λ ∈ Bb(G).
(iii) Let ϕ ∈ Φµ, where µ ∈ M(G)+, and let L ∈ BG. Suppose that ψ ∈ G has the form

ψ = limα sα, where (sα) is a net in G. Then

〈χKL , δϕ 2 δψ〉 = lim
B→ϕ

lim
α

(µB ? δsα)(L). (6.5)

(iv) For each ϕ ∈ UG, each ν ∈M(G)+, each L ∈ BG, and each B ∈ BG with ν(B) > 0,
we have

(νB 2 δϕ)(KL) = 〈κE(λν,B), δϕ〉. (6.6)

Proof. (i) Let λ ∈ Bb(Ω). By (3.6), we have

〈κE(λ), µ ? ν〉 =
∫
G

λ d(µ ? ν).

[74]
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By a standard theorem [48, Theorem (19.10)],∫
G

λ d(µ ? ν) =
∫
G

∫
G

λ(st) dµ(s) dν(t);

this theorem applies because λ ∈ L1(G, |µ| ? |ν|). The result follows.
(ii) For each Λ ∈ C(G̃), we have

〈Λ, δϕ 2 δψ〉 = lim
B→ϕ

lim
C→ψ
〈Λ, µB ? µC〉

by (1.1). In particular,

〈κE(λ), δϕ 2 δψ〉 = lim
B→ϕ

lim
C→ψ
〈κE(λ), µB ? µC〉 (λ ∈ Bb(G)).

The result now follows from (i).
(iii) It follows from (i) that

〈κE(λ), δϕ 2 δψ〉 = lim
B→ϕ

lim
α

∫
B

λ(ssα) dµB(s) (λ ∈ Bb(G)).

Apply this with λ = χL ∈ Bb(G), so that κE(λ) = χKL in C(G̃). We also have∫
L

χL(ssα) dµB(s) =
∫
B

χLs−1
α

(s) dµB(s) = λµ,B(sα)

by (6.1), and so (6.5) follows.
(iv) Take µ ∈M(G)+ and C ∈ BG with µ(C) > 0. Then we have

(νB ? µC)(L) =
∫
G

∫
G

χL(st)χB(s)χC(t) dνB(s) dµC(t)

=
∫
G

λν,B(t)χC(t) dµC(t) = 〈κE(λν,B), µC〉.

By Corollary 4.7, we can take the limits limC→ψ to see that (6.6) holds.

The following result extends a theorem of Işik, Pym, and Ülger [56, Theorem 3.2]
(with a different proof); see also Corollary 6.4. We recall that π : (M(G̃),2)→ (M(G), ?),
defined in (3.3) is a continuous epimorphism; cf. (5.3); we shall often write ϕ 2 ψ and
ϕ � ψ for δϕ 2 δψ and δϕ 3 δψ, respectively.

Proposition 6.2. Let G be a locally compact group. Then:

(i) ϕ 2 ψ = ϕ ∈ Φ ⊂ G̃ and ψ � ϕ = ϕ ∈ Φ ⊂ G̃ for each ϕ ∈ Φ and ψ ∈ G̃{e};
(ii) in the case where the group G is compact,

M 2 N = M 2 π(N), N 3 M = π(N) 3 M (M ∈M(Φ), N ∈M(G̃)).

Proof. (i) First, we fix ψ ∈ G̃{e} and a set B ∈ BG such that 0 < m(B) < ∞, where
m = mG.

For each ε > 0 and each A ∈ BG with m(A) <∞, there exists N ∈ Ne such that

m(At−1 \A) < εm(B) (t ∈ N).
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For each µ ∈M(G)+ and C ∈ BG with µ(C) > 0, we have∫
B

∫
C

χA(st) dmB(s) dµC(t) =
∫
B

∫
C

χAt−1(s) dmB(s) dµC(t)

≤
∫
B

χA(s) dmB(s) +
∫
C

m(At−1 \A)
m(B)

dµC(t).

Thus, in the case where C ⊂ N , it follows from (6.3) that

〈χA, mB ? µC〉 ≤ 〈χA, mB〉+ ε. (6.7)

By Corollary 4.7, we can take the limits limC→ψ to see that

〈κE(χA),mB 2 δψ〉 ≤ 〈κE(χA),mB〉+ ε.

This holds for each ε > 0, and so

〈κE(χA),mB 2 δψ〉 ≤ 〈κE(χA),mB〉.

However, this inequality also holds if A be replaced by G \A, and so

〈κE(χA),mB 2 δψ〉 = 〈κE(χA),mB〉.

It follows that
〈κE(λ),mB 2 δψ〉 = 〈κE(λ),mB〉 (λ ∈ Bb(Ω)).

Since mB ∈ M(Φ) and κE(Bb(G)) |Φ = C(Φ), we have mB 2 δψ = mB . Finally, we take
the limits limB→ϕ to see that ϕ 2 ψ = ϕ ∈ Φ ⊂ G̃.

Similarly, δψ � δϕ = δϕ.
(ii) We return to the above formula mB 2 δψ = mB , which holds for each ψ ∈ G̃{e}

and B ∈ BG with m(B) > 0.
Now suppose that ψ ∈ G̃. Since G is compact, there exists s ∈ G with π(ψ) = s. Then

ψ 2 s−1 ∈ G̃{e}, and so mB 2 δψ 2 s−1 = mB , whence

mB 2 ψ = mB ? s = mB ? π(ψ).

This formula extends to give mB2N = mB2π(N) for each N which is a linear combination
of point masses in M(G̃), and then, by taking weak-∗ limits, for each N ∈M(G̃).

We now take limits limB→ϕ to establish that ϕ 2 N = ϕ 2 π(N) for each ϕ ∈ Φ and
N ∈ M(G̃), and then take linear combinations of point masses in Φ and further weak-∗
limits to see that

M 2 N = M 2 π(N) (M ∈M(Φ), N ∈M(G̃));

this last step is valid because the map RN is weak-∗ continuous on (M(G̃),2).
Similarly, N 3 M = π(N) 3 M (M ∈M(Φ),N ∈M(G̃)).

It follows in particular that ϕ 2 ψ = ϕ (ϕ,ψ ∈ Φ{e}), and so (Φ{e},2) is a left-zero
semigroup, as in [56, Theorem 3.2].

Corollary 6.3. Let G be a locally compact group, let M ∈ M(Φ), and let ψ ∈ G̃{e}.
Then M 2 δψ = δψ � M = M.

The above result in the case where ψ ∈ Φ{e} says that the element δψ is a mixed
identity for M(Φ) = L1(G)′′ in the sense of [13, Definition 2.6.21].
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Corollary 6.4. Let G be a locally compact group, and let ϕ ∈ G̃. Then the following
are equivalent:

(a) ϕ ∈ G̃{e};
(b) ψ 2 ϕ = ψ (ψ ∈ Φ);
(c) ψ0 2 ϕ = ψ0 for some ψ0 ∈ Φ{e}.

Proof. That (a)⇒(b) is part of Corollary 6.3, and (b)⇒(c) is trivial. Suppose that (c)
holds. Then, by (5.3), π(ψ0) ? π(ϕ) = π(ψ0) in M(G). But π(ψ0) = δe, and so π(ϕ) = δe,
giving (a).

The following result, which characterizes M(Φ) as a subset of M(G̃), will be important
later.

Theorem 6.5. Let G be a locally compact group, and suppose that M ∈M(G̃). Then the
following conditions on M are equivalent:

(a) M ∈M(Φ);
(b) M 2 δϕ = M for all ϕ ∈ G̃{e};
(c) there exists ϕ ∈ Φ{e} such that M 2 δϕ = M.

Proof. That (a)⇒(b) is part of Corollary 6.3, and the proof of (b)⇒(c) is trivial. Since
M(Φ) is an ideal in (M(G̃),2), we have (c)⇒(a).

Definition 6.6. Let G be a locally compact group. For an element µ ∈M(G)+, set

Aµ = {A ∈ BG : µ(∂A) = 0}.

Lemma 6.7. Let G be a locally compact group, let µ ∈M(G)+, let A ∈ Aµ, and let ε > 0.

(i) There exists N ∈ Ne with µ(At−1 \A) < ε and µ(t−1A \A) < ε for each t ∈ N .
(ii) Let B ∈ BG with µ(B) > 0 and ν ∈ M(G)+ \ {0}. Then there exists N ∈ Ne such

that
|〈χA, µB ? νC〉 − 〈χA, µB〉| < ε (6.8)

and
|〈χA, νC ? µB〉 − 〈χA, µB〉| < ε (6.9)

whenever C ∈ BG with C ⊂ N and ν(C) > 0.

Proof. (i) Since µ(∂A) = 0, there is an open set U with ∂A ⊂ U and µ(U) < ε. Set
V = U ∪ intA, so that V is an open set in G. We have V ⊃ ∂A∪ intA = A, and so there
is a symmetric set N ∈ Ne such that AN ∪NA ⊂ V . In this case

(AN ∪NA) \A ⊂ V \A ⊂ V \ intA ⊂ U,

and so µ((AN ∪NA) \A) < ε. The result follows.
(ii) Essentially as in the proof of (6.7), but using the estimate on µ from clause (i),

we see that 〈χA, µB ? νC〉 ≤ 〈χA, µB〉+ ε whenever C ∈ BG with C ⊂ N and ν(C) > 0.
Again this leads to (6.8). Similarly, we see that (6.9) holds.

Lemma 6.8. Let G be a locally compact group, let µ ∈M(G)+, and let A ∈ Aµ. Then

〈χKA , δϕ 2 δψ〉 = 〈χKA , δψ � δϕ〉 = 〈χKA , δϕ〉 (6.10)

for each ϕ ∈ Φµ and ψ ∈ G̃{e}.
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Proof. We consider (6.8) and (6.9), and first take the limit limC→ψ and then the limit
limB→ϕ to see that

|〈χKA , δϕ 2 δψ〉 − 〈χKA , δϕ〉| ≤ ε and |〈χKA , δψ � δϕ〉 − 〈χKA , δϕ〉| ≤ ε.

However these two inequalities hold for each ε > 0, and so the result follows.

Theorem 6.9. Let G be a locally compact group, and let A ∈ BG.

(i) Let M ∈M(KA \K∂A) and ψ ∈ G̃{e}. Then

〈χKA , M 2 δψ〉 = 〈χKA , M〉. (6.11)

(ii) Let M ∈M(G̃{e}) with 〈M, 1〉 = 1, and let ϕ ∈ G̃{e} \K∂A. Then

〈χKA , M � δϕ〉 = 〈χKA , δϕ〉. (6.12)

Proof. (i) First take M = δϕ, where ϕ ∈ KA \K∂A.
Let (ϕα) be a net in UG with limα ϕα = ϕ. Since ϕ /∈ K∂A, we may suppose that

ϕα /∈ K∂A, and hence that ∂A /∈ ϕα and G \ ∂A ∈ ϕα, for each α. Fix α, and choose
µα ∈M(Ω)+ such that ϕα ∈ Φµα ; we may suppose that µα(∂A) = 0 because ϕα ∈ Φνα ,
where να = µα |(G \ ∂A), and we can replace µα by να, if necessary.

For each α, we apply Lemma 6.8, with ϕ replaced by ϕα, to see that

〈χKA , δϕα 2 δψ〉 = 〈χKA , δϕα〉.

By taking limits in α, it follows that

〈χKA , δϕ 2 δψ〉 = 〈χKA , δϕ〉.

Thus the result holds in this special case.
Now, by taking linear combinations of point masses of the form δϕ and then weak-∗

limits, we see that equation (6.11) holds for each M ∈M(KA \K∂A).
(ii) For each ψ ∈ G̃{e} and each µ ∈ M(G)+ such that A ∈ Aµ, it follows from (6.9)

and Corollary 4.7 that

|〈χKA , δψ � µB〉 − 〈χKA , µB〉| ≤ ε.

This inequality holds for each ε > 0, and so

〈χKA , δψ � µB〉 = 〈χKA , µB〉.

Since M ∈ M(G̃{e}) and 〈M, 1〉 = 1, we see that M is the weak-∗ limit of linear
combinations of measures of the form

∑
j αjδψj such that each ψj ∈ G̃{e} and

∑
j αj = 1.

It follows that

〈χKA , M � µB〉 = lim
∑
j

αj〈χKA , δψj � µB〉 = 〈χKA , µB〉.

Now let (ϕα) be a net in UG with limα ϕα = ϕ. Since ϕ /∈ K∂A, we may suppose that
G \ ∂A ∈ ϕα for each α. Fix α, and choose µα ∈ M(Ω)+ such that ϕα ∈ Φµα ; we may
suppose that µα(∂A) = 0. Thus δϕ is in the closure of the set {µC : A ∈ Aµ, C ∈ Bµ},
and so (6.12) follows.

Let ϕ,ψ ∈ G̃. We recall that ϕ ∼ ψ if κE(λ)(ϕ) = κE(λ)(ψ) for each λ ∈ Bb(Ω)). We
now slightly extend this notation.
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Definition 6.10. Let G be a locally compact group, and take elements M,N ∈ M(G̃).
Then

M ∼ N if 〈κE(λ), M〉 = 〈κE(λ), N〉 (λ ∈ Bb(Ω)).

We say that M and N are Borel equivalent if M ∼ N.

Theorem 6.11. Let G be a locally compact group, and let ϕ,ψ ∈ G̃ be such that ϕ ∼ ψ.
Then M 2 ϕ ∼ M 2 ψ and ϕ �M ∼ ψ �M for each M ∈M(G̃).

Proof. First suppose that ϕ,ψ ∈ UG. For each ν ∈ M(G)+, each L ∈ BG, and each
B ∈ BG, we have

(νB 2 δϕ)(KL) = 〈κE(λν,B), δϕ〉 and (νB 2 δψ)(KL) = 〈κE(λν,B), δψ〉
by (6.6). By taking suitable limits, we see that these equations also hold when ϕ,ψ ∈ G̃.

Since ϕ ∼ ψ, we see that 〈κE(λν,B), δϕ〉 = 〈κE(λν,B), δψ〉, and so

(νB 2 δϕ)(KL) = (νB 2 δψ)(KL).

Again by taking limits over a canonical net, we see that

(δθ 2 δϕ)(KL) = (δθ 2 δψ)(KL) (θ ∈ G̃).

Finally, taking linear combinations of the point masses δθ and further weak-∗ limits, we
see that

(M 2 δϕ)(KL) = (M 2 δψ)(KL) (M ∈M(G̃)).

Thus
〈κE(χL), M〉 = 〈κE(χL), N〉.

The above equation holds for each L ∈ BG, and this is sufficient to imply that
M 2 ϕ ∼ M 2 ψ.

Similarly ϕ �M ∼ ψ �M for each M ∈M(G̃).

In Example 8.20, below, we shall see that there exist ϕ,ψ ∈ G̃ with ϕ ∼ ψ and θ ∈ G̃
such that ϕ 2 θ � ψ 2 θ.



7. The recovery of G from G̃

Introduction. Let G and H be locally compact groups, and consider the compact spaces
G̃ and H̃ and the Banach spaces M(G̃) and M(H̃). Then we have seen in Chapter 3
that we cannot recover the locally compact spaces G and H from the information that
we are given. Indeed, by Theorem 4.3, the space Ω̃ is homeomorphic to βN whenever
(Ω, τ) is a countable, locally compact space, and, by Theorem 4.16, there is a unique (up
to homeomorphism) hyper-Stonean envelope for all uncountable, compact, metrizable
spaces.

We now ask whether the fact that Banach algebras (M(G̃),2) and (M(H̃),2) are the
‘same’ entails that G ∼ H, in the sense that there is a homeomorphic group isomorphism
from G onto H.

We first note that we must interpret the word ‘same’ in the previous paragraph
to mean that there is an isometric isomorphism from (M(G̃),2) onto (M(H̃),2). For
let G be the dihedral group of order eight and let H be the quaternion group. Then
(M(G̃),2) = (`1(G), ?) is isomorphic to (M(H̃),2) = (`1(H), ?), but it is not true that
G ∼ H [88, §1.9.1].

The character spaces of the C∗-algebras L∞(G) and L∞(H) are denoted by ΦG
and ΦH , respectively, in this chapter.

History. We recall some brief history of these questions. Let G and H be locally compact
groups. The first result is Wendel’s theorem ([119], [88, §1.9.13]), which we state explicitly.

Theorem 7.1. Let G and H be locally compact groups. Then there is an isometric iso-
morphism from L1(G) onto L1(H) if and only if G ∼ H.

In fact, by a theorem of Kalton and Wood [62], we have G ∼ H whenever there is an
isomorphism from L1(G) onto L1(H) with norm less than

√
2.

It was proved by Johnson [58] that G ∼ H if and only if there is an isometric isomor-
phism from M(G) onto M(H); see also Rigelhof [98].

It was further proved in [77] that G ∼ H whenever there is an isometric isomorphism
θ from (LUC (G)′,2) onto (LUC (H)′,2); in this case, θ maps M(G) onto M(H) and
L1(G) onto L1(H) [36]. We state a related result from [36, Theorem 3.1(c)] that we shall
require. (Earlier partial results are listed in [36].)

Theorem 7.2. Let G and H be locally compact groups, and let

θ : (L1(G)′′,2)→ (L1(H)′′,2)

be an isometric isomorphism. Then θ maps L1(G) onto L1(H), and so G ∼ H.

[80]
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The question whether G ∼ H when there is an isometric isomorphism from (M(G̃),2)
onto (M(H̃),2) was specifically raised by Ghahramani and Lau in [34, Problem 2, p. 184].
Our aim in the present chapter is to resolve this question affirmatively. We think that
some of the results obtained en route to this are of independent interest.

The result in the case where G and H are both abelian and have non-measurable car-
dinal was given by Neufang in [87, Corollary 3.7]. [Added in proof: By [82], the condition
on cardinality is not required.]

An isomorphism. We shall first note that the groups G and H are isomorphic when
(M(G̃),2) and (M(H̃),2) are isometrically isomorphic as Banach algebras; the difficulty
is to show that this isomorphism from G to H is also a homeomorphism. The following
result is [34, Corollary 3.6].

Proposition 7.3. Let G and H be locally compact groups, and let

θ : (M(G̃),2)→ (M(H̃),2)

be an isometric isomorphism. Then, for each ϕ ∈ G̃, there exists θ(ϕ) ∈ H̃ and ζϕ ∈ T
such that θ(δϕ) = ζϕδθ(ϕ). Further, for each s ∈ G, we have θ(s) ∈ H, and θ : G→ H is
an isomorphism.

Proof. For each ϕ ∈ G̃, the element δϕ is an extreme point of M(G̃)[1], and so, since θ
is isometric, θ(δϕ) is an extreme point of M(H̃)[1]. Hence θ(δϕ) has the form ζϕδθ(ϕ) for
some θ(ϕ) ∈ H̃ and ζϕ ∈ T. We thus obtain a map

θ : ϕ 7→ θ(ϕ), G̃→ H̃;

since θ is a bijection, we see that this new map is also a bijection.
Take s ∈ G. Then δs has inverse δs−1 in (M(G̃),2), and so θ(δs) has inverse θ(δs−1)

in (M(H̃),2); further, ‖θ(δs)‖ = ‖θ(δs−1)‖ = 1. By Proposition 5.5, θ(δs) ∈ H. It
follows that θ(G) = H and hence that θ : G → H is an isomorphism (as is the map
s 7→ ζs, G→ T).

The case of compact groups. The following partial answer to our question was first
proved by Ghahramani and McClure in [35]; our proof is similar to, but perhaps a little
shorter than, their proof.

Theorem 7.4. Let G and H be compact groups. Suppose that there is an isometric
isomorphism from (M(G̃),2) onto (M(H̃),2). Then G ∼ H.

Proof. The normalized Haar measures on G and H are mG and mH , respectively.
First, let θ : (M(G̃),2)→ (M(H̃),2) be an isomorphism, and set

N = θ(mG) ∈M(H̃).

It follows from (5.4) that N satisfies (5.5) and (5.6) (with respect to the group H), and so,
by Proposition 5.6, N = mH or N = 0. Since θ is an injection, N 6= 0. We conclude that
θ(mG) = mH . We now identify elements of L1(G) and L1(H) with the corresponding
elements in M(G̃) and M(H̃), respectively, so that we can say that θ(1G) = 1H .
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It follows from (2.5) that a linear isometry θ from M(G̃) to M(H̃) has the property
that θ(M1) ⊥ θ(M2) in M(H̃) whenever M1 ⊥ M2 in M(G̃).

Now let θ : (M(G̃),2) → (M(H̃),2) be an isometric isomorphism. Take B ∈ BG,
and set C = G\B. Then 1G = χB+χC , with χB ⊥ χC , and so 1H = θ(χB)+θ(χC), with
θ(χB) ⊥ θ(χC). Hence θ(χB) and θ(χC), as elements of M(H̃), must be the restrictions
of κ(mH) = 1H = χΦH to two disjoint Borel subsets of H̃. Thus θ(χB) and θ(χC) are
positive, normal measures on H̃, and so we may regard them as elements of M(H). We
now see that θ(χB) and θ(χC) are the restrictions of 1H to two disjoint Borel subsets
of H. In particular, θ(χB) ∈ L1(H).

It follows that θ(f) ∈ L1(H) for each f ∈ L1(G).
Since θ : (M(G̃),2) → (M(H̃),2) is an isometric isomorphism, it follows that the

map θ : (L1(G), ?) → (L1(H), ?) is an isometric isomorphism. By Wendel’s theorem,
Theorem 7.1, G ∼ H.

We can easily extend Theorem 7.4 slightly at this stage at the cost of borrowing a
result of Neufang from our Chapter 9.

Proposition 7.5. Let G be a compact group, and let H be a locally compact group
with non-measurable cardinal. Suppose that there is an isometric isomorphism from the
Banach algebra (M(G̃),2) onto (M(H̃),2). Then G ∼ H.

Proof. We shall obtain a contradiction from the assumption that H is non-compact; by
Theorem 7.4, this is sufficient for the result.

We have mG ∈ M(G) ⊂ M(G̃); set M = θ(mG) ∈ M(H̃), so that ‖M‖ = 1. We see
that M 2 N = N 2 M (N ∈ M(H̃)), and so, by Proposition 1.7, M ∈ Z

(`)
t (M(H̃)). Since

H is non-compact with non-measurable cardinal, it follows from a theorem of Neufang
which is our Theorem 9.6 that M ∈M(H), say M = µ.

Take t ∈ H. By Proposition 7.3, there exist s ∈ G and ζ ∈ T with ζθ(δs) = δt. Since
mG ? δs = mG, we have

µ ? δt = ζµ. (7.1)

Let K be a compact subset of H. Since H is not compact, there is a sequence (tn)
in H such that the sets Ktn for n ∈ N are pairwise disjoint. It follows from (7.1) that
|µ|(Ktk) = |µ|(K) for each k ∈ N, and so

n|µ|(K) =
n∑
k=1

|µ|(Ktn) = |µ|
(⋃
{Ktk : k ∈ Nn}

)
≤ |µ|(H) = ‖µ‖ (n ∈ N).

Thus |µ|(K) = 0. This holds for each compact subset K of H, and so |µ| = 0, a contra-
diction of the fact that ‖µ‖ = 1.

Thus H is compact, as required.

Suppose that G and H are locally compact, abelian groups with non-measurable
cardinal, and that there is an isometric isomorphism from (M(G̃),2) onto (M(H̃),2).
Then it also follows from Neufang’s theorem, as remarked in [34], that G ∼ H. [Added
in proof: By [82], the condition on cardinality in Proposition 7.5 and this remark is not
required.]
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The general case. We now turn to the general case, in which it may be that neither G
nor H is compact.

Let H be a locally compact group. Recall from Chapter 5 that Z = LUC (H) is
the left-introverted C∗-subalgebra of M(H)′ = C(H̃) consisting of the left uniformly
continuous functions on H, so that (Z ′,2) is a Banach algebra and (ΦZ ,2) is a compact,
right topological semigroup containing H as a dense open subspace. As in (5.7), we have
a continuous surjection qH : H̃ → ΦZ .

Let G and H be locally compact groups, and let θ : (M(G̃),2) → (M(H̃),2) be an
isometric isomorphism. We adopt the notation given in Proposition 7.3, and again set
Z = LUC (H). Take ϕ ∈ G̃{eG}. Then θ(ϕ) ∈ H̃ and qH(θ(ϕ)) ∈ ΦZ ; we define

u = qH(θ(ϕ)).

Let M ∈M(ΦG). Then it follows from Theorem 6.5 that M 2 δϕ = M, and so

qH(θ(M)) 2 u = qH(θ(M)) (M ∈M(ΦG)). (7.2)

The following result is crucial for our proof.

Lemma 7.6. We have u = eH , and θ(ϕ) ∈ H̃{eH}.

Proof. This result is trivial if H is compact, and so we may suppose that H is not
compact.

We shall first consider the special case in which ϕ ∈ ΦG; our immediate aim is to
prove that u ∈ H in this case.

We assume towards a contradiction that u ∈ ΦZ \H. Let κ be the smallest cardinal
such that u is in the closure in ΦZ of the union of κ compact subsets of H (so that κ ≥ ω),
and choose a sequence (Kα : α < κ) of compact subsets of H such that

u ∈
⋃
{Kα : α < κ}.

We also choose a symmetric, compact neighbourhood U of eH .
Clearly there is a strictly increasing sequence (Cα : α < κ) of symmetric subsets of

H such that the following properties hold:

(i) U ⊂ C0 and Kα ⊂ Cα (α < κ);
(ii) the set Cα is compact when α < ω, and Cα is the union of at most |α| compact

subsets of H when ω ≤ α < κ;
(iii) C2

α ⊂ Cα+1 (α < κ);
(iv) Cα )

⋃
{Cβ : β < α} (α < κ).

It follows from (ii) and the fact that κ is the smallest cardinal with certain properties
that u 6∈ Cα for any α < κ.

We now set H0 =
⋃
{Cα : α < κ}. Since each Cα is symmetric and CαCβ ⊂ C(α∨β)+1,

we see that H0 is a subgroup of H. The closure of H0 in ΦZ is denoted by H0, so that
u ∈ H0 and H0 is a subsemigroup of (ΦZ ,2). It follows that H0 is itself a compact,
right topological semigroup. (In fact, we can identify H0 with the character space of
LUC (H0).)

By Corollary 5.9, M(ΦG) is a closed ideal in (M(G̃),2), and so θ(M(ΦG)) is a closed
ideal in (M(H̃),2). We define
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J = qH(θ(M(ΦG))) ⊂ ΦZ .

We claim that J ∩ H0 is an ideal in the semigroup (H0,2). First note that u ∈ J
because ϕ ∈ ΦG, and so J ∩H0 6= ∅. Now take x ∈ J ∩H0 and y ∈ H0, say x = qH(θ(M))
for some M ∈ M(ΦG) and y = qH(ψ) for some ψ ∈ H̃. By Proposition 7.3, there exists
ϕ ∈ G̃ and ζ ∈ T such that ψ = ζθ(ϕ). But now

x 2 y = qH(θ(M)) 2 qH(ζδθ(ϕ)) = qH(ζθ(M) 2 δθ(ϕ)) ∈ J,
and also x 2 y ∈ H0, and so x 2 y ∈ J ∩H0. Similarly, y 2 x ∈ J ∩H0, and so J ∩H0 is
an ideal in H0, as claimed.

Since (H0,2) is a compact, right topological semigroup, it follows from Theorem 5.1
that H0 has a minimum ideal, K(H0). Clearly K(H0) ⊂ J ∩H0. Now (7.2) yields

x 2 u = x (x ∈ K(H0) ⊂ J). (7.3)

For each s ∈ H0, define

f(s) = min{α < κ : s ∈ Cα}.

Suppose that s, t ∈ H0 are such that f(s) < f(t). Then f(st) ∈ {f(t), f(t) + 1}
whenever f(t) is a limit ordinal or 0 and f(st) ∈ {f(t)− 1, f(t), f(t) + 1} otherwise.

Each ordinal α has the form α = λ(α) + n(α), where λ(α) is a limit ordinal or 0, and
n(α) ∈ N.

For k ∈ Z8, we define

Dk = {s ∈ H0 : n(f(s)) ≡ k (mod 8)},
so that {D1, . . . , D8} is a partition of H0 and D1 ∪ · · · ∪D8 = H0. For each k ∈ Z8 and
each α < κ, the set Dk \ Cα is infinite by (iv) above. Thus, for each k ∈ Z8, the family

{(Dk \ Cα) : α < κ}
of closed subsets of the compact space H0 has the finite intersection property, and so we
may choose

yk ∈
⋂
{(Dk \ Cα) : α < κ}.

For k ∈ Z8, we further define

Fk = {st ∈ H0 : t ∈ Dk, s ∈ H0 with f(s) < f(t)}.
Then, for each k ∈ Z8, we have

Fk ⊂ Dk−1 ∪Dk ∪Dk+1 and UFk ⊂ Dk−2 ∪Dk−1 ∪Dk ∪Dk+1 ∪Dk+2,

where the subscripts are calculated in Z8. It follows that Fk∩UF` = ∅ whenever k = `+4,
and so, by Theorem 5.12, we have

F k ∩ F ` = ∅ whenever ` = k + 4 in Z8. (7.4)

For each x ∈ H0 and k ∈ Z8, we can write

x 2 yk = lim
s→x

lim
t→yk
{st : s ∈ H0, t ∈ Dk \ Cf(s)}.

Since f(t) > f(s) for t ∈ H \ Cf(s) and since Ryk is continuous on H0, it follows that

H0 2 yk ⊂ F k.
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By Theorem 5.1, the left ideal H0 2 yk of H0 has a non-empty intersection with the
minimum ideal K(H0) of H0, and so there exists an element xk ∈ F k ∩K(H0).

There exists k0 ∈ Z8 such that u ∈ Dk0 . For each x ∈ K(H0), we can write

x 2 u = lim
s→x

lim
t→u
{st : s ∈ H0, t ∈ Dk \ Cf(s)} ;

this holds because u 6∈ Cα for any α < κ. It follows that

x = x 2 u ∈ F k0 (x ∈ K(H0)), (7.5)

where we are using (7.3).
We take `0 = k0 + 4 (in Z8), so that x`0 ∈ F `0 ∩K(H0). But x`0 ∈ F k0 by (7.5). This

is a contradiction of (7.4).
We conclude that u ∈ H in the special case in which ϕ ∈ ΦG.
Now consider the more general case in which ϕ ∈ G̃{eG}. We choose ψ ∈ (ΦG){eG},

so that ψ 2 ϕ = ψ in G̃. Set v = qH(θ(ψ)) ∈ ΦZ . By the special case that we have just
proved, v ∈ H. But v 2 u = v in (ΦZ ,2), and so, acting on the left with v−1, we see that
u = eH , as required. It follows that θ(ϕ) ∈ H̃{eH}.

Let G and H be locally compact groups, as in the theorem, but now suppose further
that H is σ-compact and non-compact. Then the above proof can be considerably simpli-
fied. Indeed, in this case, the sequence (Cn : n < ω) is any strictly increasing sequence of
compact subspaces of H such that U ⊂ C0 and

⋃
n<ω Cn = H, and we can take H0 = H.

Thus the argument used in the above proof shows the following; it would be interesting
to know if the result is still true when H is not necessarily σ-compact.

Proposition 7.7. Let H be a locally compact group which is σ-compact and non-compact.
Then, for each u ∈ ΦZ \H, there is a left ideal L of (ΦZ ,2) such that (ΦZ2u)∩L = ∅.

We obtain the following consequence of the above lemma.

Proposition 7.8. Let G and H be locally compact groups, and let

θ : (M(G̃),2)→ (M(H̃),2)

be an isometric isomorphism. Then θ induces a bijection θ : G̃{eG} → H̃{eH} and an
isometric isomorphism θ : (M(ΦG),2)→ (M(ΦH),2).

Proof. It is clear from Lemma 7.6 that θ : G̃{eG} → H̃{eH} is a bijection.
Take M ∈ M(ΦG), and set N = θ(M) ∈ M(H̃). Choose an element ϕ ∈ (ΦH){eH}.

Then there exists ψ ∈ G̃{eG} such that θ(ψ) = ϕ. By Theorem 6.5, (a)⇒(b), M 2 δψ = M
in (M(G̃),2), and so we see that N 2 δϕ = N in (M(H̃),2). By Theorem 6.5, (c)⇒(a),
we have N ∈ M(ΦH). Thus θ(M(ΦG)) ⊂ M(ΦH). We conclude that θ is an isometric
isomorphism from (M(ΦG),2) onto (M(ΦH),2).

Theorem 7.9. Let G and H be locally compact groups, and suppose that there is an
isometric isomorphism from (M(G̃),2) onto (M(H̃),2). Then G ∼ H.

Proof. By Proposition 7.8, there is an isometric isomorphism from (M(ΦG),2) onto
(M(ΦH),2). By Theorem 7.2, G ∼ H.



8. The compact space G̃

Introduction. Let G be a locally compact group. We now enquire whether or not (G̃,2)
is a semigroup. Specifically, we take ϕ,ψ ∈ G̃, so that δϕ 2 δψ is a measure on G̃; we say
that ϕ2ψ ∈ G̃ if δϕ 2δψ is a point mass in G̃; in the contrary case, we say that ϕ2ψ /∈ G̃.

Definition 8.1. Let G be a locally compact group. Then a subset S of G̃ is a semigroup
if ϕ 2 ψ ∈ S whenever ϕ,ψ ∈ S.

In particular, we shall consider whether or not G̃ itself is a semigroup. More generally,
let S and T be subsets of G̃. We shall consider, first, whether or not ϕ 2 ψ ∈ G̃ for each
ϕ ∈ S and ψ ∈ T , and, second, if so, the subset of G̃ to which ϕ 2 ψ belongs. Indeed, we
shall say that

S 2 T ⊂ U

if ϕ 2 ψ is point mass in U for each ϕ ∈ S and ψ ∈ T .
For example, recall that, in the case where the group G is discrete, so that G̃ = βG, it

is certainly the case that (βG,2) is a semigroup; indeed, it is a compact, right topological
semigroup. This semigroup has been extensively discussed [17, 52]. Thus, for a general
locally compact group G, the subset G = βGd of (G̃,2) is always a semigroup. Also,
the following result follows easily from Proposition 6.2(ii); recall that Φ is the character
space of L∞(G).

Proposition 8.2. Let G be a compact group. Then Φ2G̃ ⊂ Φ, and, in particular, (Φ,2)
is a semigroup.

Indeed, we have noted in Corollary 6.3 that (Φ{e},2) is a left-zero semigroup.
The above proposition does not extend to all locally compact groups G. Indeed, it is

shown in [78, Corollary 4.4] that (Φ,2) is a semigroup if and only if G is either compact
or discrete; we state this result in the following form.

Proposition 8.3. Let G be a non-discrete, locally compact group that is not compact.
Then (G̃,2) is not a semigroup.

One of our aims is to prove that (G̃,2) is not a semigroup for each non-discrete,
locally compact group. The above proposition shows that it would be sufficient to restrict
considerations to infinite, compact groups G. However we shall prove the result for general
non-discrete, locally compact groups without appealing to Proposition 8.3; one reason for
this is that we shall find different elements ϕ,ψ ∈ G̃ such that ϕ2ψ /∈ G̃ from those that
arise in Proposition 8.3.

Here is another obvious remark. As before, we set E = C0(G).

[86]
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Proposition 8.4. Let G be a locally compact group. Then

G2 G̃ ⊂ G̃ and G̃2G ⊂ G̃.

Proof. Let s ∈ G. First take λ ∈ E. Then we recall that λ · s ∈ E is defined by the
equation (λ · s)(t) = λ(st) (t ∈ G). For λ1, λ2 ∈ E, we have λ1λ2 · s = (λ1 · s)(λ2 · s),
and so

〈λ1λ2, s ? ϕ〉 = 〈λ1, s ? ϕ〉〈λ2, s ? ϕ〉 (ϕ ∈ G̃).

Now take Λ1,Λ2 ∈ C(G̃). Taking weak-∗ limits, we see that

〈Λ1Λ2, s ? ϕ〉 = 〈Λ1, s ? ϕ〉〈Λ2, s ? ϕ〉 (ϕ ∈ G̃),

and so Λ1Λ2 · s = (Λ1 · s)(Λ2 · s). Thus

〈Λ1Λ2, s · ϕ〉 = 〈Λ1Λ2 · s, ϕ〉 = 〈Λ1 · s, ϕ〉〈Λ2 · s, ϕ〉 (Λ1,Λ2 ∈ C(G̃), ϕ ∈ G̃),

and so s · ϕ ∈ G̃. Similarly, ϕ · s ∈ G̃. We have shown that G2 G̃ ⊂ G̃ and G̃2G ⊂ G̃.
Since multiplication on the right is continuous on (M(G̃),2), it also follows that

G2 G̃ ⊂ G̃.

However multiplication on the left is not continuous on (M(G̃),2), and so we cannot
say that G̃2G ⊂ G̃. Indeed, this is not true in general, as we shall see below.

In fact, since D′, A′, and M ′s are translation-invariant subspaces of the space M ′, we
see that G2G ⊂ G, that G2 Φ ⊂ Φ, and that G2 Φs ⊂ Φs.

Proposition 8.5. Let G be a compact group, and let

A = `1(G)n L1(G).

Then (A′′,2) = (M(βGd∪Φ),2), and (βGd∪Φ,2) is a subsemigroup of (M(βGd∪Φ),2).

Proof. Set S = βGd∪Φ. By the standard result, (βGd,2) is a semigroup, and so we have
βGd 2 βGd ⊂ βGd; by Proposition 8.2, Φ 2 S ⊂ Φ; by Proposition 8.4, βGd 2 Φ ⊂ Φ.
Thus S 2 S ⊂ S.

Relation between groups. As a preliminary to our main investigations, we consider
the relation between the statements that (G̃,2) and (H̃,2) are semigroups when G and
H are related groups.

Let G and H be locally compact groups, and let η : G → H be a continuous map
that is also a group homomorphism; as in Chapter 2, we can define a continuous linear
operator η : M(G) → M(H) with ‖η‖ = 1 and η(δs) = δη(s) (s ∈ G). Let µ, ν ∈ M(G).
For each λ ∈ C0(H), we have

〈λ, η(µ ? ν)〉 =
∫
G

∫
G

(λ ◦ η)(st) dµ(s) dν(t)

=
∫
G

∫
G

λ(η(s)η(t)) dµ(s) dν(t)

=
∫
H

∫
H

λ(uv) dη(µ)(u) dη(ν)(v) = 〈λ, η(µ) ? η(ν)〉.
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It follows that η(µ ? ν) = η(µ) ? η(ν), and so the map η : (M(G), ?) → (M(H), ?) is a
continuous homomorphism. Hence

η ′′ : (M(G̃),2 )→ (M(H̃),2)

is a continuous homomorphism with ‖η ′′‖ = 1. Further, as in equation (4.6) of Corollary
4.12, we can define a continuous map η̃ : G̃→ H̃.

Proposition 8.6. Let G and H be locally compact groups, and let η : G → H be a
continuous homomorphism.

(i) Suppose that η is an injection and that (G̃,2) is not a semigroup. Then (H̃,2) is
not a semigroup.

(ii) Suppose that η is an open surjection and that (H̃,2) is not a semigroup. Then (G̃,2)
is not a semigroup.

Proof. (i) By Corollary 4.12(i), η̃ : G̃→ H̃ is an injection.
There exist ϕ,ψ ∈ G̃ such that δϕ 2 δψ ∈M(G̃) \ G̃. We have η̃(ϕ), η̃(ψ) ∈ H̃, and

δeη(ϕ) 2 δeη(ψ) = η ′′(δϕ 2 δψ) ∈M(H̃).

Further, ‖δϕ 2 δψ‖ = 1, and so η ′′(δϕ 2 δψ) 6= 0 because η ′′ is an injection.
Assume towards a contradiction that η ′′(ϕ 2 ψ) ∈ H̃. Then η ′′(ϕ 2 ψ) ∈ η̃ (G̃), for

otherwise η̃ (ϕ 2 ψ) = 0, and so ϕ 2 ψ ∈ G̃ because η̃ is an injection, a contradiction.
Thus it follows that η ′′(ϕ 2 ψ) 6∈ H̃, and so (H̃,2) is not a semigroup.
(ii) Since η is an open surjection, Proposition 5.2(i) shows that η : M(G) → M(H)

is a surjection. By Corollary 4.12(ii), the map η̃ : G̃ → H̃ is a surjection. It follows that
there exist ϕ,ψ ∈ G̃ such that η̃(ϕ) 2 η̃(ψ) /∈ H̃.

Assume towards a contradiction that ϕ 2ψ ∈ G̃. Then η̃(ϕ 2 ψ) = η̃(ϕ) 2 η̃(ψ) ∈ H̃, a
contradiction. This shows that (G̃,2) is not a semigroup.

Specific compact groups. We shall now show that the inclusion G̃ 2 G ⊂ G̃ often
fails; we shall establish a strong form of this result in the special cases where G is the
circle group T or a compact, totally disconnected group, and then generalize the result
to arbitrary locally compact groups.

We shall first introduce some preliminary notation.
We shall identify T with R/Z, and use numbers θ in the interval [0, 1) to represent the

point exp(2πiθ) in T. Haar measure mT on T gives the measure m on [0, 1). The fibre in
T̃ above the identity element of the group T is T̃{0}. As before, Dp is the compact group
Zℵ0
p . We regard D2 as a closed subset of Dp for each p ≥ 2; however note that D2 is not

a subgroup of Dp whenever p ≥ 3. We also regard D2 as a subset of T, as follows.

Definition 8.7. For ε = (εj) ∈ D2, define

ζ(ε) =
∞∑
j=1

εj
3j
∈ T,

and set L = ζ(D2).

Thus L is the set of numbers whose ternary expansion contains only 0’s and 1’s; it is a
Cantor set with {0, 1/2} ⊂ L ⊂ [0, 1/2] ⊂ T. The map ζ : D2 → L is a homeomorphism.
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Let µ ∈M(I) be defined by

µ(B) = mD2(B ∩ L) (B ∈ BI), (8.1)

where now mD2 is Haar measure on D2, identified with L, so that µ is a fixed, positive
singular measure on I with suppµ = L.

For X ∈ BL, r ∈ N, and j ∈ {0, 1}, set

πr,j(X) = {x ∈ X : εr(x) = j}.

Then we note that (πr,0(X)− 3−r)∩L = ∅, so that µ(πr,0(X)− 3−r) = 0, and then that
µ(πr,1(X) − 3−r) = µ(πr,1(X)) because the map x 7→ x − 3−r applied to πr,1(X) just
corresponds to a translation in D2.

Let X,Y ∈ BL and r ∈ N. Then we have

(X − 3−r)4 (Y − 3−r) = (X 4 Y )− 3−r,

and so

µ((X − 3−r)4 (Y − 3−r)) = µ(πr,1(X 4 Y )− 3−r) = µ(πr,1(X 4 Y )).

It follows that
µ((X − 3−r)4 (Y − 3−r)) ≤ µ(X 4 Y ). (8.2)

We shall also consider the groups of p-adic integers, where p is a prime (and p ≥ 2);
this group is described in [48, §10]. Following [48], we denote the group by ∆p, and regard
an element of ∆p as a sequence in Zℵ0

p ; for r ∈ Z+, the element (δr,n : n ∈ Z+) is denoted
by ur. We note that ∆p is monothetic, with generator u1.

Theorem 8.8. Let G be either the circle group T or (R,+) or the compact group Dp or
the group ∆p of p-adic integers, where p is a prime. Then there exist µ ∈ Ms(G)+ and
ψ ∈ G∗d such that:

(i) ϕ 2 ψ 6∈ G̃ for each ϕ ∈ Φµ;
(ii) |(M 2 δψ)(Φµ)| ≤ 1/2 for each M ∈M(Φµ)[1].

Proof. (i) We give the proof first in the case where G = T or G = R.
We have defined µ ∈Ms(I)+ in (8.1), and we can regard µ as an element of Ms(G)+.
For r ∈ N, the element 3−r ∈ L. Now take x =

∑∞
j=1 εj/3

j ∈ L. For each r ≥ 2, we
have x+ 3−r ∈ L if and only if εr = 0.

Fix ε > 0. Then we claim that, for each B ∈ BL with µ(B) > 0, there exists rε ∈ N
such that ∣∣∣∣µ(B ∩ (L− 3−r))− 1

2
µ(B)

∣∣∣∣ < εµ(B) (r > rε). (8.3)

To see this, first suppose that B ⊂ L is a basic clopen subset of the form UF,α, as in
(2.1) above. Then

B ∩ (L− 3−r) = {ε ∈ UF,α : εr = 0},

and so, for each r > maxF , we have

µ(B ∩ (L− 3−r)) =
1

2k+1
=

1
2
µ(B),
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giving (8.3) in this case. Since each clopen subset of L is a finite union of pairwise disjoint,
basic clopen sets, our claim holds for each non-empty, clopen set B ∈ BL.

For an arbitrary B ∈ BL with µ(B) > 0, there is an open and closed subset V of L
such that µ(B 4 V ) < εµ(B). It follows from (8.2) that

µ((B − 3−r)4 (V − 3−r)) < εµ(B),

and so our claim holds for this set B. This establishes the general claim.
It follows from (8.3) that

lim
r→∞

(µB ? δ3−r )(L) = lim
r→∞

µ(B ∩ (L− 3−r))
µ(B)

=
1
2

for each B ∈ BG with µ(B) > 0.
Now take ϕ ∈ Φµ and ψ ∈ G∗d to be any accumulation point of the set {3−r : r ∈ N}.

By equation (6.5) in Proposition 6.1(iii), we have 〈χKL , δϕ 2 δψ〉 = 1/2, and so δϕ 2 δψ is
not a point mass, whence ϕ 2 ψ 6∈ G̃.

The case where G is either Dp or ∆p for some p ≥ 3 is essentially the same: we embed
D2 in ∆p, as before, and note that the sum of two elements of D2 in ∆p is just the same
as their sum in Dp.

Suppose that G = D2, and again set L = ζ(D2) ⊂ I and take µ to be Haar measure
on D2, as in (8.1), with µ transferred to L. For each n ∈ N, set

An = {(εr) ∈ L+ u2n+1 : ε2n = 0} and sn = u2n + u2n+1,

and set A =
⋃
{An : n ∈ N}. Then we see that

L ∩ (A− sn) = {(εr) ∈ L : ε2n = 1} (n ∈ N).

For each clopen subset B of L, we have

µ(B ∩ (A− sn)) =
1
2
µ(B)

for each sufficiently large n ∈ N. Now let ϕ ∈ Φµ, and take ψ to be any accumulation
point of the set {sn : n ∈ N}. It follows essentially as before that 〈χKL , δϕ 2 δψ〉 = 1/2,
and so δϕ 2 δψ is not a point mass.

The final case in which G = ∆2 is essentially the same.
(ii) Clearly Φµ ⊂ KL, and so

0 ≤ (δϕ 2 δψ)(Φµ) ≤ 1
2

(ϕ ∈ Φµ).

Since M(Φµ)[1] is the weak-∗ closure of the convex hull of the measures δϕ for ϕ ∈ Φµ,
we have |(M 2 δψ)(Φµ)〉| ≤ 1/2 for each M ∈M(Φµ)[1], as required.

Corollary 8.9. Let G = T. Then Φs 2G 6⊂ G̃, and (G̃,2) is not a semigroup.

We shall now show that Φs2Φ 6⊂ G̃ and that Φs2Φs 6⊂ G̃; we shall first work with the
key group T. We again require some preliminary notation. We recall that we are writing
Zn for the set {0, 1, 2, . . . , n− 1}.

We fix a sequence (rn) in N such that 4 ≤ rn < rn+1 (n ∈ N) and
∞∑
n=1

1
rn

<∞. (8.4)
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Next we define a new sequence (dn : n ∈ Z+) by requiring that d0 = 1 and that
dn = rndn−1 (n ∈ N). Each x ∈ [0, 1) has a expression in the form

x =
∞∑
n=1

εn(x)
dn

, where εn(x) ∈ Zrn (n ∈ N),

where we note that
∞∑
n=1

rn − 1
dn

= 1.

(The expression for x is unique provided that we exclude the case where εn(x) = rn − 1
eventually; this ambiguity involves only countably many points of [0, 1).)

Let x, y ∈ [0, 1) and n ∈ N. Then we see that

εn(x+ y) = εn(x) + εn(y)

provided that εn(x) + εn(y) < rn − 1, for, in this case, there is no ‘carrying of decimals’.
We now define three subsets L0, L1, L2 of [0, 1).
The set L0 consists of those elements x ∈ [0, 1) such that

εn(x) ∈ {0, 1} (n ∈ N).

Thus L0 is a Borel subset of [0, 1) with m(L0) = 0. We can identify L0 as a topological
space with a dense subset of D2, and we again denote by µ the positive measure on [0, 1)
that corresponds to the Haar measure on D2, as in (8.1), so that µ(L0) = 1 and µ is
singular with respect to m. We fix ϕ to be any element of Φµ, so that ϕ ∈ Φs.

The set L1 consists of those elements x ∈ [0, 1) such that

εn(x) 6∈ {2, rn − 1} (n ∈ N).

Thus L1 is a compact subset of [0, 1) with

m(L1) =
∞∏
n=1

(1− 2
rn

),

and so m(L1) > 0 by (8.4).
The set L2 consists of those elements x ∈ [0, 1) such that

εn(x) 6∈ {2, rn − 2, rn − 1} (n ∈ N)

and εn(x) = 1 for exactly one value of n ∈ N, say for n = nx. Thus L0 ⊂ L2 ⊂ L1 and
L2 is a countable union of Borel subsets of [0, 1), and hence is a Borel subset of T. We
observe that m(L2 ∩ U) > 0 for each neighbourhood U of 0 in [0, 1), and so there is a
point ψ ∈ Φ ∩ T̃{0} such that L2 belongs to the ultrafilter ψ.

The key step in our construction is contained in the following lemma, which uses the
above notation.

Lemma 8.10. We have (δϕ 2 δψ)(KL1) = 1/2.

Proof. We first consider a basic clopen subset B of L0 of the form

B = {x ∈ L0 : εi(x) = ui (i ∈ Nk)},

where k ∈ N and u1, . . . , uk ∈ Z2. We then choose a Borel subset C of L2 such that, for
each t ∈ C, we have εi(t) = 0 (i ∈ Nk).
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We first fix t ∈ C, and consider µ((L1−t)∩B). Indeed, take x ∈ L1, and set αi = εi(x)
and βi = εi(t) for i ∈ N. We claim that x−t ∈ B if and only if the following two conditions
hold:

(1) αi = ui (i ∈ Nk); (2) αi − βi ∈ {0, 1} (i ∈ N).
To see this, first suppose that (1) and (2) hold, and set

y =
∞∑
i=1

αi − βi
di

.

Then y ∈ B because βi = 0 (i ∈ Nk), and x = y + t because

αi = (αi − βi) + βi < ri − 1 (i ∈ N).

Thus x− t ∈ B. Conversely, suppose that y := x− t ∈ B. Then (1) holds. Since t ∈ L1,
we have βi + εi(y) ≤ ri − 1 (i ∈ N), and so αi = βi + εi(y) (i ∈ N), and this implies that
αi − βi ∈ {0, 1} (i ∈ N), giving (2). This establishes the claim.

Next set n = nt, so that n > k and βn = 1. Suppose that x− t ∈ B. Then αn ∈ {1, 2}
by (2). But we know that αn 6= 2 because x ∈ L1, and so αn = 1. For each i ∈ N with
i > k and with i 6= n, we can choose x ∈ L1 with εi(x) = βi, and we can also choose
y ∈ L1 with εi(y) = 1 + βi; we can make these choices independently of any of the other
coordinates of x or y, respectively. Thus we see that

(L1 − t) ∩B = {z ∈ B : εn(z) = 0}.

This implies that

µ((L1 − t) ∩B) =
1
2
µ(B) (t ∈ C). (8.5)

Since each clopen subset is the union of a finite, pairwise disjoint family of basic open
sets, equation (8.5) easily extends to arbitrary clopen subsets B of L0.

Essentially as before, we see that, given ε > 0, there is a neighbourhood U of 0 in
[0, 1) such that ∣∣∣∣µ((L1 − t) ∩B)− 1

2
µ(B)

∣∣∣∣ < εµ(B) (t ∈ C)

for each C ∈ ψ such that C ⊂ L2 ∩ U .
Recall that

(µB ? mC)(L1) =
1

µ(B)m(C)

∫
C

µ((L1 − t) ∩B) dm(t)

whenever B,C are Borel sets with µ(B),m(C) > 0. Thus∣∣∣∣(µB ? mC)(L1)− 1
2

∣∣∣∣ < ε

for each C ∈ ψ such that C ⊂ L2 ∩ U .
We again take limits along the ultrafilters, first letting C → ψ, and then letting

B → ϕ, to see that (δϕ 2 δψ)(KL1) = 1/2, as required.

We now give an analogous result for compact, totally disconnected groups.
We first describe a class of sequential pro-finite groups; our groups are certain pro-

jective limits of finite groups. Indeed, each such group has the following form. For each
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n ∈ N, let Gn be a finite group of cardinality |Gn|, with identity denoted by en. Sup-
pose that there are group homomorphisms θn,m : Gn → Gm, defined whenever m,n ∈ N
and m ≤ n, such that θm,m is the identity on Gm for each m ∈ N, and such that
θp,n ◦ θn,m = θp,m whenever m ≤ n ≤ p. Then the group G is the projective limit of this
system. Thus, as a group,

G =
{

(xn) ∈
∞∏
n=1

Gn : θn,m(xn) = xm (m ≤ n)
}
,

and G has the relative product topology from
∏∞
n=1Gn. These groups are examples of

pro-finite groups; general pro-finite groups replace the set N by more general directed sets.
These groups are discussed in [88, §12.3] and [120]. A pro-finite group G is sequential if
and only if eG is a countable intersection of open, normal subgroups [120, Proposition
4.1.3]. Let G be a compact, totally disconnected group. Then it follows from [48, §8] that
G has a quotient that is a sequential pro-finite group.

Let G be an infinite, sequential pro-finite group, with the above representation. The
Haar measure on G is denoted by m. We set

Kn = ker θn,n−1 (n ≥ 2),

By relabelling the groups, we may suppose that

|Gn+1| > 22n|Gn| (n ∈ N),

so that |Kn| > 22(n−1) (n ≥ 2).
We begin by defining a continuous homomorphism from the group D2 into G. Indeed,

we shall first define by induction on n ∈ N an element ζ(ε) in the group Gn for each
ε = (ε1, . . . , εn) ∈ Zn2 with ε1 = 0. In the case where n = 1 and ε is the singleton 0, we
set ζ(ε) = e1 ∈ G1. Now suppose that n ≥ 2, and assume that ζ(ε) = aε has been defined
in Gm for each ε ∈ Zm2 whenever m < n. For each ε ∈ Zn−1

2 , choose distinct elements
aε
_0 and aε

_1 in Gn such that

θn,n−1(aε_0) = θn,n−1(aε_1) = aε.

Further, in the case where ε = (0, . . . , 0) ∈ Zn2 , we insist that aε_0 = en; this is compatible
with the previous instruction. This completes the inductive definition. Next, for ε ∈ D2,
we define ζ(ε) to be the unique sequence aε in G such that

(aε)�n = ζ(ε�n) (n ∈ N).

It is clear that ζ : D2 → G is a well-defined, continuous embedding.
The set L0 is defined to be the image ζ(D2) of D2 in G, so that L0 is a compact subset

of G. The measure on L0 that corresponds to Haar measure on D2 is again denoted by µ,
so that µ(L0) = 1 and µ is singular with respect to m. We fix ϕ to be any element of Φµ,
so that ϕ ∈ Φs.

For each n ∈ N, we define

An = {aε : ε ∈ Zn2 , ε1 = 0}, Bn = {aε : ε ∈ Zn2 , ε1 = εn = 0},

so that Bn ⊂ An ⊂ L0, and then, for n ≥ 2, choose cn ∈ Kn \ A−1
n An; the latter is
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possible because |An| = 2n−1 and |Kn| > 22(n−1) for each n ≥ 2. We note in particular
that cn 6= en.

We next define
L1 = {(xn) ∈ G : xn 6∈ Bncn (n ≥ 2)}.

Clearly L1 is a Borel subset of G.
Further, for each m ≥ 2, we define

L2,m = {x = (xn) ∈ G : xm = cm}.

We observe that, for each (xn) ∈ L2,m and each r ∈ N with r 6= m, necessarily xr 6= cr;
this holds because θm,r(xm) = er (r < m) and θr,m(cr) = em 6= cm (r > m). Thus m is
the unique element n ∈ N such that xn = cn, say m = nx.

Finally, we define
L2 =

⋃
{L2,m : m ∈ N},

so that L2 is a Borel subset of G. We observe that m(L2∩U) > 0 for each neighbourhood
U of 0 in G, and so there is a point ψ ∈ Φ{e} such that L2 belongs to the ultrafilter ψ.

The following lemma is essentially the same as Lemma 8.10.

Lemma 8.11. We have (δϕ 2 δψ)(KL1) = 1/2.

Proof. Let B be a basic clopen subset of L0 consisting of the elements (xn) ∈ L0 such
that xi = ui (i ∈ Nk) for some k ∈ N and u1, . . . , uk ∈ Z2, and let C be the subset of L2

consisting of the elements (xn) ∈ L2 with xi = ei (i ∈ Nk).
Fix t = (tn) ∈ C, and let x ∈ L1. We claim that xt−1 ∈ B if and only if the following

two conditions hold: (1) xi = ui (i ∈ Nk); (2) xic−1
i ∈ Ai \ Bi (i ∈ N). This is a slight

variation of the earlier argument.
Thus we see that

L1t
−1 ∩B = {(bn) ∈ B : bnt 6∈ Bnt},

which implies that

µ(L1t
−1 ∩B) =

1
2
µ(B) (t ∈ C);

again this equation easily extends to arbitrary clopen subsets B of L0.
The remainder of the proof is as before.

We have established the following theorem.

Theorem 8.12. Let G be T or a sequential pro-finite group. Then there exist µ ∈Ms(G)+

and ψ ∈ Φ such that ϕ 2 ψ 6∈ G̃ for each ϕ ∈ Φµ.

An inspection of the above proofs shows that the only property of the measure m that
was used is that m(L2 ∩ U) > 0 for each neighbourhood U of 0 in [0, 1); there are many
singular measures ν ∈Ms(G)+ such that ν(L2 ∩U) > 0 for each such neighbourhood U .
Thus we also obtain the following theorem.

Theorem 8.13. Let G be T or a sequential pro-finite group. Then there exist µ ∈Ms(G)+

and ψ ∈ Φs such that ϕ 2 ψ 6∈ G̃ for each ϕ ∈ Φµ.
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We shall discuss below a version of the above results for more general groups.
The following table summarizes the inclusions that we have established at least for

the compact groups specified in the above theorems. Let R, S, and T be subsets of
G̃, with R in the left-hand column and S in the top row. The conclusion ‘⊂ T ’ im-
plies that, for each ϕ ∈ R and ψ ∈ S, it follows that ϕ 2 ψ ∈ G̃, and, further, that
ϕ 2 ψ ∈ T . The conclusion ‘ 6⊂ G̃’ implies that there exist ϕ ∈ R and ψ ∈ S such that
ϕ 2 ψ 6∈ G̃.

2 βGd Φ Φs

βGd ⊂ βGd ⊂ Φ ⊂ Φs

Φ ⊂ Φ ⊂ Φ ⊂ Φ

Φs 6⊂ eG 6⊂ eG 6⊂ eG
General groups. Let C be the class of all non-discrete, locally compact groups G such
that (G̃,2) is not a semigroup. Our aim is to show that C is the class of all non-discrete,
locally compact groups. (We recall that it is already known for all non-discrete, locally
compact groups which are not compact that (G̃,2) is not a semigroup, but we shall not
use this result.)

We first reduce to the case of non-discrete, locally compact abelian groups. The follow-
ing result may be well known; we are indebted to George Willis for some of the references
in the proof.

Theorem 8.14. Every non-discrete, locally compact group has a closed subgroup which
is a non-discrete, locally compact abelian subgroup.

Proof. Let G be a non-discrete, locally compact group, and let the component of the
identity of G be G0.

Suppose first that G0 = {eG}, the identity of G. By [48, Theorems (7.3) and (7.7)],
G is totally disconnected and contains an infinite, compact subgroup. By a very deep
theorem of Zelmanov [126], each infinite compact group contains an infinite (and hence
non-discrete), compact abelian subgroup.

Next suppose that G0 6= {eG}. Then G0 has a compact normal subgroup, say K, such
that G0/K is a Lie group [85, §4.6].

If K is infinite, then again K contains an infinite, compact abelian subgroup.
If K is finite, then G0 itself is a Lie group, and so G0 contains a 1-parameter subgroup

(isomorphic to R or T) [85, §4.2].
Thus in each case G contains a closed subgroup which is a non-discrete, locally com-

pact abelian subgroup.

We now call in aid a structure theorem for non-discrete, locally compact abelian
groups; the theorem is implied by [41, Theorem 6.8.4], which is called a ‘standard theo-
rem’. For a prime number p, the group ∆p is the group of p-adic integers, as is explained
on [41, p. 191], and Dp = (Zp)∞ in the notation of [41].



96 H. G. Dales, A. T.-M. Lau, and D. Strauss

Theorem 8.15. Let B be the class of all locally compact abelian groups G such that:

(i) R,T ∈ B;
(ii) ∆p, Dp ∈ B for all prime numbers p;
(iii) G ∈ B whenever G is a locally compact abelian group such that G contains as a

subgroup a member of B;
(iv) G ∈ B whenever G is a locally compact abelian group such that G has a quotient

that is a member of B.

Then B contains all non-discrete, locally compact abelian groups.

Thus we can conclude with the following theorem.

Theorem 8.16. Let G be a non-discrete, locally compact group. Then (G̃,2) is not a
semigroup.

Proof. By Theorem 8.14 and Proposition 8.6, it suffices to prove that (G̃,2) is not a
semigroup for each non-discrete, locally compact abelian group G.

Let B be the class of all non-discrete, locally compact abelian groups G such that
(G̃,2) is not a semigroup. Then we see that the class B satisfies all the clauses of Theorem
8.15; indeed we have shown in Theorem 8.8 that B satisfies clauses (i) and (ii), and in
Proposition 8.6 that B satisfies clauses (iii) and (iv) of Theorem 8.15. Thus B is the class
of all non-discrete, locally compact abelian groups.

This completes the proof of the theorem.

A similar extension of Theorem 8.12 can be given.

Theorem 8.17. Let G be a compact group. Suppose that there is a continuous epi-
morphism from G onto either T or a sequential pro-finite group. Then there exist ϕ ∈ G̃
and ψ ∈ Φ such that ϕ 2 ψ 6∈ G̃.

Proof. Let H be either T or a sequential pro-finite group. Then, by Theorem 8.12, there
exist elements ϕ1 ∈ H̃ and ψ1 ∈ ΦH such that ϕ1 2 ψ1 6∈ H̃. By Proposition 5.2(ii),
η̃(G̃) = H̃, and η̃(ΦG) = ΦH , and so there exist elements ϕ ∈ G̃ and ψ ∈ ΦG such that
η̃(ϕ) = ϕ1 and η̃(ψ) = ψ1. Since η̃(δϕ 2 δψ) = δϕ1 2 δψ1 , we have ϕ 2 ψ 6∈ G̃.

In particular, the above theorem applies to each group of the form G ×H, where G
is an infinite, compact, totally disconnected group, and to each non-trivial, connected,
solvable group.

Further calculations on products. Within the proof of Theorem 8.8, we showed that
there are a measure µ ∈ Ms(T)+ and elements ψ ∈ T∗d such that, for each ϕ ∈ Φµ, the
measure δϕ2δψ ∈M(T̃) satisfies 〈χKL , δϕ2δψ〉 = 1/2, and hence is not a point mass. We
now gain further information about measures similar to δϕ 2 δψ. (We restrict attention
to the group T; similar remarks apply to other groups.)

In the next theorem, µ and ψ are fixed as above; the measure µ ∈Ms(T)+ was defined
in (8.1).
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Theorem 8.18. For each ϕ ∈ Φµ, there is a non-zero, continuous measure M ∈Mc(T̃)+

such that

δϕ 2 δψ =
1
2
δϕ + M.

In particular, the measure δϕ 2 δψ is neither continuous nor discrete.

Proof. This proof comes in two parts, which together establish the theorem, and in fact
give slightly more information. The space L was specified in Definition 8.7.

(1) We shall show first that the restriction of δϕ 2 δψ to the set KL is δϕ/2.
Recall from (2.1) that the basic clopen subsets of L have the form

UF,α = {(εn) ∈ L : εni = αi (i ∈ Nk)}

for fixed F = {n1, . . . , nk} and α = (α1, . . . , αk) ∈ Zk2 , and that each clopen set is a finite
union of pairwise disjoint, basic, clopen subsets of L.

We first make the following claim. Let U and V be clopen subsets of L with U ⊂ V .
Then there exists r0 ∈ N such that

µ(U ∩ (V − 3−r)) =
1
2
µ(U) (r > r0). (8.6)

First suppose that U and V are basic clopen subsets, say U = UG,β and V = UF,α,
where F ⊂ G, α ∈ Z|F |2 , β ∈ Z|G|2 , and β |F = α, so that it is indeed true that U ⊂ V .
Take r > maxG, and define γ on G ∪ {r} by requiring that γ |G = β and γr = 0. Then
U ∩ (V − 3−r) = UG∪{r},γ . Thus

µ(U ∩ (V − 3−r)) = µ(UG∪{r},γ) =
(

1
2

)|G|+1

=
1
2
µ(U). (8.7)

For the general case, take clopen sets U, V ⊂ L with U ⊂ V . Then there exist a finite sub-
set F of N and elements α1, . . . , αm, β1, . . . , βn in Z|F |2 such that α1, . . . , αm are distinct
and β1, . . . , βn are distinct and

U =
m⋃
i=1

U(F, αi) and V =
n⋃
j=1

U(F, βj)

(and each union is composed of pairwise disjoint sets). By (8.7), there exists r0 ∈ N such
that r0 > maxF and

µ(Uαi ∩ Uβj ∩ (Uβj − 3−r)) =
1
2
µ(Uαi ∩ Uβj ) (r > r0, i ∈ Nm, j ∈ Nn),

where we are writing Uαi for U(F, αi), etc. Now

V ∩ (V − 3−r) =
n⋃
j=1

Uβj ∩ (Uβj − 3−r) (r > r0)

because Uβi ∩ (Uβj − 3−r) = ∅ whenever r > r0 and i, j ∈ Nn with i 6= j, and so

µ(U ∩ V ∩ (V − 3−r)) =
1
2
µ(U ∩ V ) (r > r0).

Since U ∩ V = U , our first claim (8.6) holds.
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Our second claim is the following. Let B,C ∈ BL with B ⊂ C and µ(B) > 0. Then,
for each ε > 0, there exists rε ∈ N such that∣∣∣∣µ(B ∩ (C − 3−r))− 1

2
µ(B)

∣∣∣∣ < εµ(B) (r > rε). (8.8)

To see that this holds, first take clopen subsets U and V in L such that

µ(B 4 U) <
1
2
εµ(B) and µ(C 4 V ) <

1
2
εµ(B).

Set W = U ∩ V . Then
µ(B 4W ) < εµ(B)

because B 4W ⊂ (B 4 U) ∪ (C \ V ) ⊂ (B 4 U) ∪ (C 4 V ), and so

|µ(W )− µ(B)| < εµ(B). (8.9)

It follows from our first claim that there exists rε ∈ N such that

µ(W ∩ (V − 3−r)) =
1
2
µ(W ) (r > rε). (8.10)

Now fix r > rε. As in the proof of Theorem 8.8, we have

µ((C − 3−r)4 (V − 3−r)) <
1
2
εµ(B) (r > rε). (8.11)

It follows from (8.9) and (8.10) that∣∣∣∣µ(B ∩ (V − 3−r))− 1
2
µ(B)

∣∣∣∣ < 1
2
εµ(B) (r > rε),

and then from (8.11) it follows that our second claim, (8.8), holds.
Now suppose that C ∈ ϕ. For each B ∈ ϕ such that B ⊂ C and µ(B) > 0 and for

each ε > 0, we have seen that there exists rε ∈ N such that∣∣∣∣(µB ? δ3−r )(C)− 1
2

∣∣∣∣ =
∣∣∣∣µ(B ∩ (C − 3−r))

µ(B)
− 1

2

∣∣∣∣ < ε (r > rε).

We take limits as a subnet of the point masses δ3−r converges to δψ, and then take limits
limB→ϕ; by (6.5), we have

〈χKC , δϕ 2 δψ〉 =
1
2
.

Thus (δϕ 2 δψ)(KC) = 1/2. We already know that (δϕ 2 δψ)(KL) = 1/2, and so

(δϕ 2 δψ)(KL\C) = 0 (C ∈ ϕ).

Thus the restriction of δϕ 2 δψ to the set KL is δϕ/2, and so part (1) is proved.
(2) We shall show now that the restriction of δϕ 2 δψ to the set T̃ \KL = KT\L is a

continuous measure (it is positive and has mass 1/2).
First, recall that each x ∈ I has a ternary expansion of the form x =

∑∞
n=1 εn(x)/3n,

where εn(x) ∈ Z+
3 . For each n ∈ N, set

Cn = {x ∈ I : εn(x) = 2, εr(x) ∈ {0, 1} (r ∈ N \ {n})},
so that each Cn is a closed subset of I with Cn ∩ L = ∅ and the sets Cn are pairwise
disjoint, and then set

C =
∞⋃
n=1

Cn,

so that C ∈ BT and C ∩ L = ∅.
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We first claim that supp(δϕ 2 δψ) ⊂ KL∪C . Indeed, suppose that x ∈ T \ (L ∪ C).
Then it is easily checked that x− 3−r ∈ T \ L for each r ∈ N, and so

(µB ? δ3−r )(L ∪ C) = 0

for each B ∈ BL with µ(B) > 0. Thus

(δϕ 2 δψ)(T̃ \KL∪C) = lim
B→ϕ

lim
r→∞

(µB ? δ3−r )(L ∪ C) = 0,

giving the claim.
For each A ∈ BC , we have

(δϕ 2 δψ)(KA) = 〈χKA , δϕ 2 δψ〉 = lim
B→ϕ

lim
n→∞

µB((A ∩ Cn)− 3−n).

Fix k ∈ N, and enumerate the set Zk2 as {α1, . . . , α2k}. For each i ∈ N2k and each
n ∈ N, define

Ai,n = {x ∈ Cn : εm+n = αim (m ∈ Nk)},

so that Ai,n is a closed subset of Cn and {A1,n, . . . , A2k,n} is a partition of Cn. Now, for
each i ∈ N2k , define

Ai =
∞⋃
n=1

Ai,n,

so that each Ai ∈ BC and {A1, . . . , A2k} is a partition of C. We shall show that

(δϕ 2 δψ)(KAi) =
1

2k+1
(i ∈ N2k); (8.12)

from this we see that each singleton in KT\L has mass at most 1/2k with respect to the
measure δϕ 2 δψ. Since this is true for each k ∈ N, it will follow that (δϕ 2 δψ)|KT\L is a
continuous measure, as required.

Fix i ∈ N2k . We first observe that, for every basic open subset U of L, there exists
r0 ∈ N such that

µ(U ∩ ((Ai ∩ Cr)− 3−r)) =
1

2k+1
µ(U) (r > r0).

This statement extends to all clopen subsets U of L because each such set is the union
of a pairwise disjoint family of basic open sets. Now take ε > 0. For each B ∈ BL with
µ(B) > 0, there is a clopen subset U of L with µ(B 4 U) < εµ(B), and then, as before,

|µ(U ∩ ((Ai ∩ Cr)− 3−r))− µ(B ∩ ((Ai ∩ Cr)− 3−r))| < εµ(B)

for each r ∈ N. Thus
1

2k+1
(1− ε) < µB((Ai ∩ Cr)− 3−r) <

1
2k+1

(1 + ε) (r > r0).

By taking limits in the usual way, we see that (8.12) follows.
This completes the proof.

In comparison, we note that, for each ϕ ∈ T and ψ ∈ T, the measure δϕ � δψ = δψ 2 δϕ
is a point mass, and so ϕ � ψ ∈ T̃; this is a consequence of Proposition 8.4.

Corollary 8.19. Let µ be as above. Then δϕ /∈ Z
(`)
t (M(T̃)) for each ϕ ∈ Φµ.

A stronger result than the above will be proved in Theorem 9.8.
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Example 8.20. We give an example to show that there is a compact group G and
elements ϕ,ψ, θ ∈ G̃ with ϕ ∼ ψ, but such that

ϕ 2 θ � ψ 2 θ;

this contrasts with Theorem 6.11.
We take G = T. As in Theorem 8.18, there exist ϕ ∈ Φ, θ ∈ T̃, and L ∈ BT such that

(δϕ 2 δθ)(KL) = 1/2. By Proposition 4.13, there exists ψ ∈ βTd such that ψ ∼ ϕ. Now
ψ2θ ∈ T̃, and so δψ2δθ is point mass. Thus (δψ2δθ)(KL) ∈ {0, 1}. Hence δψ2δθ � δϕ2δθ.

We shall now show that the product of two point masses in M(T̃) might be a contin-
uous measure on T̃.

Let G be a locally compact group. For n ∈ N and M ∈ M(G̃), we write M2n for the
nth power of M in the algebra (M(G̃),2). For ψ in the semigroup (G,2), the nth power
of ψ in the semigroup is ψ2n, so that δ2n

ψ is the point mass at ψ2n. The set {ψ2n : n ∈ N}
of points in G has an accumulation point, say ξ, and then δξ is a weak-∗ accumulation
point of the set {δ2n

ψ : n ∈ N} in M(G̃)[1].
We let L, µ, ϕ, and ψ have the same meaning as above.

Theorem 8.21. Let µ ∈ Ms(T)+ be as specified. Then there is an element ξ ∈ T such
that, for each ϕ ∈ Φµ, the measure δϕ 2 δξ belongs to Mc(T̃)+.

Proof. The element ξ ∈ T is taken to be any accumulation point of the set {ψ2n : n ∈ N},
which was specified above.

Let ϕ ∈ Φµ. The proof that δϕ 2 δξ is a continuous measure on T̃ is similar to that of
Theorem 8.18; it comes in three parts.

(1) We shall show first that the restriction of δϕ 2 δξ to the set KL is 0.
We claim the following. Let B,C ∈ BL with B ⊂ C and µ(B) > 0. Then, for each

ε > 0, there exists rε ∈ N such that∣∣∣∣µ(B ∩ (C − (3−r1 + · · ·+ 3−rn)))− 1
2n
µ(B)

∣∣∣∣ < εµ(B) (8.13)

whenever rn > · · · > r2 > r1 > rε. This is proved by a slight variation of the proof of the
corresponding claim in Theorem 8.18.

Let B ∈ ϕ with B ⊂ L and µ(B) > 0, and take ε > 0. For each n ∈ N, we have seen
that there exists rε ∈ N such that∣∣∣∣(µB ? δ3−r1 ? · · · ? δ3−rn )(L)− 1

2n

∣∣∣∣ < ε

whenever rn > · · · > r1 > rε. We take limits successively over rn, . . . , r1 as subnets of
the point masses δ3−r converge to δψ to see that∣∣∣∣(µB 2 δψ)2n

(
KL −

1
2n

)∣∣∣∣ ≤ ε,
using (3.8). We next take limits over a subnet of (ψ2n) to see that

〈χKL , µB 2 δξ〉 = (µB 2 δξ)(KL) ≤ ε.

Finally, we take limits limB→ϕ to see that (δϕ 2 δξ)(KL) ≤ ε. Since this holds for each
ε > 0, we have (δϕ 2 δξ)(KL) = 0, as required.
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(2) There is a Borel subset C of T such that (δϕ 2 δψ) |KT\(L∪C) = 0.

Let F denote the family of non-empty, finite subsets of the set {rn : n ∈ N} that was
specified above. For each F ∈ F , we take mF to be the maximum of F in N, we set

xF =
∑
{3−r : r ∈ F} ∈ T,

and we define
CF := {x ∈ T : εr(x) = 2 if and only if r ∈ F} ⊂ T,

so that CF is a closed subset of T and the sets CF are pairwise disjoint. Now set

X = {xF : F ∈ F} and C =
⋃
{CF : F ∈ F}.

Since F is countable, C ∈ BT. Further, for each t ∈ T and x ∈ X such that t − x ∈ L,
we see easily that εr(t− x) = εr(t) for each r ∈ N \ F , and so t ∈ L ∪ C. It follows that,
for each B ∈ BT with µ(B) > 0 and each x ∈ X, we have

(µB ? δx)(T \ (L ∪ C)) = 0.

Thus (δϕ 2 δξ) |KT\(L∪C) = 0, establishing (2).

(3) The restriction of δϕ 2 δψ to KC is continuous.

We fix k ∈ N. Let B be a non-empty, clopen subset of L. Then there exists m ≥ 2
such that B is specified by the first m coordinates in the ternary expansion of a point
of T.

Let α ∈ Zk3 . For each F ∈ F , define

Aα,F = {t ∈ CF : εmF+m(t) = αm (m ∈ Nk)},

so that Aα,F is a closed subset of CF and {Aα,F : α ∈ Zk3} is a partition of CF . Next
define

Aα =
⋃
{Aα,F : F ∈ F},

so that each Aα ∈ BT and {Aα : α ∈ Zk3} is a partition of C into 3k subsets.
Now suppose that G ∈ F and that G is such that minG > rm ≥ m. Let F ∈ F . For

each t ∈ CF , the point t−xG can only be in L if F ⊂ G. This shows that L∩(CF−xG) = ∅
whenever F ∈ F with F 6⊂ G. Now suppose that F ⊂ G, so that

rn ≥ minF ≥ minG > rm,

where n ∈ N is such that mF = rn. Thus n > m. The set

{3−r1 + · · ·+ 3−rn+1 : rn+1 − rn > k}

belongs to ψ2n, and so we may suppose that rn+1 − rn > k. This implies that

G ∩ {rn + 1, . . . , rn + k} = ∅, (8.14)

and so, for each α ∈ Zk3 , we have

L ∩ ((Aα ∩ CF )− xG) ⊂ Aα,F .

In addition, for each t ∈ CF , the element t−xG is in L only if we have εr(t) = 1 (r ∈ G\F ),
and then εr(t− xG) = 1 (r ∈ F ) and εr(t− xG) = 0 (r ∈ G \F ). It follows that, for each
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t ∈ Aα ∩ CF , the element t− xG is in L only if εr(t) takes specified values on G and on
the set {rn + 1, . . . , rn + k}; now (8.14) implies that

µ(B ∩ ((Aα ∩ CF )− xG) ≤ 2−k2−|G|µ(B).

Since the number of subsets F of G is 2|G|, it follows that

µ(B ∩ (Aα − xG)) = µ(B ∩ ((Aα ∩ C)− xG)) ≤ 2−kµ(B).

We have shown that, for each k ∈ N, for each non-empty, clopen set B ∈ BL, for each
x ∈ X, and each α ∈ Zk3 , we have (µB ? δx)(Aα) ≤ 2k. As in the proof of Theorem 8.18,
we now see that, for each k ∈ N, for each B ∈ BT with µ(B) > 0, each ε > 0, and each
α ∈ Zk3 , there exists m ∈ N such that

(µB ? δx)(Aα) ≤ 2−k + ε

whenever x = xG for some G ∈ F for which minG > m. As in part (1), we can take
limits as x → ξ through a suitable net, and then take the limit limB→ϕ to see that, for
each A of the form Aα, we have

(δϕ 2 δξ)(KA) ≤ 2−k + ε

for each k ∈ N and each ε > 0. Since {Aα : α ∈ Zk3} is a partition of C, it follows that
each point in C has measure at most 2−k + ε. This is true for each k ∈ N and ε > 0, and
so each point in C has measure 0. Thus (δϕ 2 δξ) |KC is a continuous measure.

It follows from (1), (2), and (3) that δϕ 2 δξ is a continuous measure on T̃.

We now obtain information about groups other than T. The same proof implies that
any locally compact group G which contains a copy of T as a subgroup or which can be
mapped onto T by a continuous, open epimorphism has the property that G̃ contains two
point masses whose box product is a continuous measure on G̃.

The arguments given above also apply to the groups R, ∆p, and Dp for each prime p;
with the aid of the details given in Proposition 8.6, we can prove the following theorem
by essentially the arguments used to establish Theorem 8.16.

Theorem 8.22. Let G be a non-discrete, locally compact group. Then there exist ϕ, ξ ∈ G̃
such that δϕ 2 δξ is a continuous measure on G̃.

We do not know whether or not the product of two point masses can be a finite sum
of point masses, without being a point mass.

We conclude this chapter with a weaker result than Theorem 8.16; however in this
case the proof is considerably shorter.

It may be that there is a topology τ on G such that τG ≤ τ ≤ d, such that τ 6= τG and
τ 6= d, where d is the discrete topology, and such that (G, τ) is a locally compact group.
In this case, we denote the character space of the commutative C∗-algebra L∞(G, τ) by
Φ(τ). Such a phenomenon does not happen when G = T, for example; see [97]. However,
in the case where G = G1 × G2, where G1 and G2 are compact, infinite groups, the
topology formed by taking the product of the given topology on G1 and the discrete
topology on G2 has the specified properties. This question is related to that of the ‘spine’
of the algebra M(G); see [54, 55].
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Proposition 8.23. Let (G, τG) be a locally compact group, and suppose that τ is a top-
ology on G such that τ ⊃ τG and (G, τ) is a locally compact group. Then:

(i) L1(G, τ) embeds isometrically in M(G) as a closed subalgebra;
(ii) there is a continuous C0(G)-module epimorphism

P : M(G)→ L1(G, τ)

which is the identity on L1(G, τ);
(iii) the map P ′′ : (M(G̃),2) → (M(Ω(τ)),2) is a continuous E′′-module epimorphism

which is the identity on M(Ω(τ)).

Proof. (i) This is immediate from Proposition 3.19.
(ii) Let mτ denote left Haar measure on (G, τ). We denote by C the family of τ -

compact subsets K of G such that mτ (K) > 0. For K ∈ C, set

VK = {µ ∈M(G) : |µ|(K) = 0}.
Next, set

MC,τ =
⋂
{VK : K ∈ C}.

Let K ∈ C and t ∈ G. Then the set Kt−1 is τ -compact and

mτ (Kt−1) = mτ (K)∆(t−1) > 0,

where ∆ is the modular function on G, and so Kt−1 ∈ C. Similarly, t−1K ∈ C.
We claim that MC,τ is a closed ideal in M(G). Indeed, take µ ∈MC,τ and ν ∈M(G);

we shall show that µ ? ν, ν ? µ ∈ MC,τ . Clearly we may suppose that µ, ν ≥ 0. Then, for
each K ∈ C, we have

(µ ? ν)(K) =
∫
G

µ(Kt−1) dν(t) = 0

because µ(Kt−1) = 0, and so µ ? ν ∈MC,τ . Similarly, ν ? µ ∈MC,τ .
Let µ ∈ M(G). By the Lebesgue decomposition theorem, there exist µa ∈ L1(G, τ)

and µs ∈M(G) with µs ⊥ mτ such that µ = µa +µs. Clearly µs ∈MC,τ , and so we have
M(G) = L1(G, τ)nMC,τ ; this implies that (ii) holds.

(iii) This follows from (ii) and Proposition 1.4(iii).

The following result is a special case of Theorem 8.16.

Theorem 8.24. Let (G, τG) be a locally compact group, and suppose that τ is a non-
discrete topology on G such that τ ) τG and (G, τ) is a locally compact group. Then
(G̃,2) is not a semigroup.

Proof. The topological space (G, τ) is neither compact nor discrete, and so, by [78],
(Φ(τ),2) is not a semigroup. It follows from Proposition 8.23 that (G̃,2) is not a semi-
group.

Corollary 8.25. Let G1 and G2 be infinite, compact groups, and set G = G1 × G2.
Then (G̃,2) is not a semigroup.



9. Topological centres

In this chapter we shall seek to determine the topological centres of the Banach algebras
(L1(G)′′,2) and (M(G)′′,2), and also which subsets of the spaces L1(G)′′ and M(G)′′

are determining for the left topological centres, where G is a locally compact group.

The character space of L∞(G). Let G be a locally compact group, and again set
A = L1(G). We have denoted by Φ the character space of L∞(G). It was first proved by
Young in [124] that A is not Arens regular, the case where G is abelian having been settled
by Civin and Yood in [10]; see also [115, 116] and [13, Theorems 2.9.39, 3.3.28]. It was
proved by Işık, Pym, and Ülger in [56] that, in the case where G is compact, (Φ,2) is a
semigroup and that A is strongly Arens irregular. It also follows from [56, Theorem 3.4]
that each element of the semigroup (Φ,2) is right cancellable. The main result was
eventually established when Lau and Losert proved in [73] that A is strongly Arens
irregular for each locally compact group G. Finally Neufang [86] gave a shorter proof of
a stronger (see below) version of the result.

We shall now prove that certain subsets of A′′ are determining for the left topological
centre of A′′; after giving the statement of our result in Corollary 9.5, we shall compare
our result with earlier theorems.

We shall use the following proposition.
The character space ΦZ of the C∗-algebra Z = LUC (G) was described in Chapter 5;

as before, we regard G as a subset of ΦZ . Recall that we have a continuous surjection
qG : Φ→ ΦZ . For a subset T of G, we temporarily denote by T ∗ the growth of T in ΦZ ,
so that T ∗ = T \G ⊂ ΦZ .

Proposition 9.1. Let G be a locally compact, non-compact group, and set Z = LUC (G).
Take U ∈ Ne. Then there exist an infinite cardinal κ, a sequence (tα : α < κ) in G such
that the family

{Utα : α < κ}

of subsets of G is pairwise disjoint, and elements a, b ∈ T ∗ (where T = {tα : α < κ}) with
the following property: each M ∈M(ΦZ) such that LM |T : T →M(ΦZ) is continuous at
both a and b belongs to M(G).

Proof. This is a result that is shown within the proof of [17, Theorem 12.22] (but is not
stated explicitly there).

We fix the objects constructed in the above proposition.

[104]
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Since the family {Utα : α < κ} is pairwise disjoint, we can identify T with βT . For
each α < κ, choose ϕα ∈ Φ such that qG(ϕα) = π(ϕα) = tα, and define

ρ : tα 7→ ϕα, T → Φ.

Then ρ has a continuous extension ρ : T → Φ; we set K = ρ(T ) ⊂ Φ. Clearly, (qG |K) ◦ ρ
is the identity map on T . Now we choose elements ϕa, ϕb ∈ K such that qG(ϕa) = a and
qG(ϕb) = b.

Proposition 9.2. Let G be a locally compact, non-compact group, and let M ∈M(Φ) be
such that LM : Φ 7→M(Φ) is continuous at the two points ϕa and ϕb. Then π(M) ∈M(G).

Proof. Let (si) be a net in T such that si → a in ΦZ . Then we have ρ(si) → ϕa in Φ,
and so M 2 ρ(si) → M 2 ϕa in M(Φ) because the map LM is continuous at a. Hence
π(M) 2 si → π(M) 2 a in ΦZ . This shows that Lπ(M) is continuous at a. Similarly, Lπ(M)

is continuous at b. It follows from Proposition 9.1 that π(M) ∈M(G).

Proposition 9.3. Let G be a locally compact group. Let ν ∈M(G) be such that

λ · ν ∈ C(G)

for each λ ∈ L∞(G). Then ν ∈ L1(G).

Proof. This is a slight modification of [49, Theorem (35.13)], which gives the result in
the case where G is compact.

We continue to set A = L1(G), A′′ = M(Φ), and Z = LUC (G).

Theorem 9.4. Let G be a locally compact group. Let M ∈M(Φ) be such that

M 2 δϕ = M � δϕ (ϕ ∈ Φ{e}),

and, in the case where G is not compact, M 2 δϕ = M � δϕ for ϕ ∈ {ϕa, ϕb}. Then
M ∈ L1(G).

Proof. In the case where G is not compact, we have π(M) ∈ M(G) by Proposition 9.2.
In the case where G is compact, we have Z = C(G), and π(M) ∈ Z ′ = M(G).

Take λ ∈ A′ = L∞(G). For each g ∈ A, we have

〈π(M) · λ, g〉 = 〈λ, g ? π(M)〉 = 〈λ · g, π(M)〉 = 〈λ · g, M〉

because λ · g ∈ Z. However 〈λ · g, M〉 = 〈M · λ, g〉 by definition, and so π(M) · λ = M · λ
in A′.

Let ϕ ∈ Φ{e}. Since δϕ is a mixed identity for M(Φ), we have M 2 δϕ = δϕ �M = M.
Since M 2 δϕ = M � δϕ, we have M � δϕ = M. Thus, for each λ ∈ A′, we have

〈λ · π(M), δϕ〉 = 〈λ ·M, δϕ〉 = 〈λ, M � δϕ〉 = 〈λ, M〉.

This shows that the function λ · π(M) is constant on the fibre Φ{e}. By Proposition 3.6,
λ · π(M) is continuous at e. Similarly, λ · π(M) is continuous at each point of G. By
Proposition 9.3, π(M) ∈ L1(G), say π(M) = f ∈ L1(G). It follows that M · λ = f · λ, and
so

〈λ, M〉 = 〈λ, δϕ 2 M〉 = 〈M · λ, δϕ〉 = 〈f · λ, δϕ〉 = 〈λ, f〉.

This holds for each λ ∈ A′, and so M = f ∈ L1(G).
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Corollary 9.5.

(i) Let G be a compact group. Then Φ{e} is determining for the left topological centre of
L1(G)′′.

(ii) Let G be a locally compact, non-compact group. Then there exist ϕa, ϕb ∈ Φ such that

Φ{e} ∪ {ϕa, ϕb}

is determining for the left topological centre of L1(G)′′.

We now compare our result to some earlier theorems.
First suppose that G is compact. Then the proof in [56] that, in this case, L1(G) is

strongly Arens irregular actually shows that the family of right identities in (M(Φ),2)
is determining for the left topological centre of L1(G)′′. In fact, by Corollary 6.3, the
element δϕ is a right identity in the algebra (M(Φ),2) for each ϕ ∈ Φ{e}, and so our
result is slightly stronger.

Second, suppose that G is a locally compact, non-compact group. Then a set which is
determining for the left topological centre of L1(G)′′ is specified in [86, Theorem 1.1]: one
can choose any subset S of Φ such that qG(S) = ΦZ . Such a set S is neither smaller nor
larger than our set Φ{e} ∪ {ϕa, ϕb}. A further paper of Filali and Salmi [31] establishes
in an attractive way that L1(G) is strongly Arens irregular, and unifies this result with
several related results.

After the above was written, we received (in May, 2009) the very impressive paper [7]
of Budak, Işik, and Pym that proves a much stronger result in the non-compact case in
their Theorem 1.2(iii), namely that, for a locally compact, non-compact group G, there
are just two points ϕa, ϕb ∈ Φ with the property that {ϕa, ϕb} is determining for the left
topological centre of (L1(G)′′,2). This result does not apply to compact groups, such
as T.

Let G be a compact group (such as T). Could it be that a smaller set than Φ{e} is
sufficient to determine the topological centre of L1(G)? In fact, at least in the case where
G has a basis of c open sets, there are at most c clopen subsets of the fibre Φ{e}. Choose
a point in the fibre for each such set, thus obtaining a dense subset of the fibre. The
continuity argument in Proposition 3.6 still works by using just these points, so we only
need c points in the fibre for the above result, whereas the fibre has cardinality at least 2c.
The main question is: Is there always a finite or countable set S of points in Φ{e} such
that S is determining for the left topological centre of L1(G)? We are not able to decide
this.

The topological centre of the measure algebra. We now turn to the topological
centre question for M(G).

The question whether or notM(G) is strongly Arens irregular was raised by Lau in [72,
Problem 11, p. 89] and Ghahramani and Lau in [34, Problem 1, p. 184]. The question was
solved in the case where G is non-compact and with non-measurable cardinal by Neufang
in [87, Theorem 3.5]. In fact the following theorem is proved (but not explicitly stated in
our form) in [87, Theorem 3.5].
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Theorem 9.6 (Neufang). Let G be a locally compact, non-compact group with non-
measurable cardinal. Suppose that M ∈ M(G̃) is such that M 2 δϕ = M � δϕ for each
ϕ ∈ βGd. Then M ∈M(G). In particular, M(G) is strongly Arens irregular.

Thus we can concentrate on the case where G is a compact group; our investigations
have focused to no avail on the special case in which G is the unit circle T. We shall
obtain a partial result.

We shall require the following preliminary result.

Proposition 9.7. Let G be a compact, infinite, metrizable group. Then there exist an
element µ ∈ M(G)+ and four sets A1, A2, A3, A4 in Aµ with µ(A ∩ N) > 0 for each
N ∈ Ne and A ∈ {A1, A2, A3, A4}, such that⋃

{KAj \K∂Aj : j = 1, 2, 3, 4} ⊃ G̃{e} \ {e}, (9.1)

and such that
KA1 ∩KA3 = KA2 ∩KA4 = {e}. (9.2)

Proof. Choose µ ∈ Mc(G)+ with the property that µ(N) > 0 for each N ∈ Ne (for
example, Haar measure m has this property).

The metric on G is denoted by d; for each r ∈ R+, we set

Sr = {s ∈ G : d(s, e) = r} and Br = {s ∈ G : d(s, e) < r},

so that Sr and Br are the sphere and open ball, respectively, in G of radius r around e.
Since {r ∈ R+ : µ(Sr) > 0} is a countable set, there is a sequence (rn) in R+ with

rn ↘ 0 such that µ(Srn) = 0 and µ(Brn+1) < µ(Brn) for each n ∈ N. We note that⋃
{Sr2n : n ∈ N} ∩

⋃
{Sr2n−1 : n ∈ N} = {e}. (9.3)

For n ∈ N, set Un = Brn \Brn+1 , so that each Un belongs to Aµ and µ(Un) > 0, and
then set

Aj =
⋃
{U4n+j : n ∈ Z+} (j = 1, 2, 3, 4).

so that each Aj belongs to Aµ and is such that µ(Aj ∩N) > 0 for each N ∈ Ne. It follows
from (9.3) that

⋂
{∂Aj : j = 1, 2, 3, 4} = {e}, and so we have⋃
j=1,2,3,4

(Aj \ ∂Aj) =
⋃
n∈N

Un \
⋂

j=1,2,3,4

∂Aj = Br1 \ {e},

which gives (9.1). Clearly A1 ∩A3 = A2 ∩A4 = {e}, and this gives (9.2).

Theorem 9.8. Let G be a compact, infinite, metrizable group. Then there exist four
points ψ1, ψ2, ψ3, ψ4 ∈ G̃{e} with the property that the only measures M ∈ M(G̃{e})+

such that
M 2 δψj = M � δψj (j = 1, 2, 3, 4) (9.4)

have the form M = ζδe for some ζ ∈ C.

Proof. We shall actually suppose further that M ∈ M(G̃{e})+ is such that M({e}) = 0,
and shall show that M = 0; this is sufficient for the result.
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Let µ ∈ M(G)+, and take the four sets A1, A2, A3, A4 to be as specified in Proposi-
tion 9.7. For j = 1, 2, 3, 4, we have µ(Aj ∩N) > 0 for each N ∈ Ne, and so there exists
ψj ∈ G̃{e} ∩ Φµ such that Aj ∈ ψj .

By (9.1), it suffices to prove that M(KA \K∂A) = 0 for each A ∈ {A1, A2, A3, A4}; we
fix such a set A, and replace the measure M by the restriction M |(KA \K∂A). By (9.2),
there exists B ∈ {A1, A2, A3, A4} with KA ∩ KB = ∅; the element of {ψ1, ψ2, ψ3, ψ4}
corresponding to B is ψ.

To obtain a contradiction, we may suppose that we have M(KA) 6= 0, and hence that
〈M, 1〉 > 0; by replacing M by M/〈M, 1〉, we may suppose that 〈M, 1〉 = 1. It follows
from (6.11) in Theorem 6.9 that

〈χKA , M 2 δψ〉 = 〈χKA , M〉 = M(KA).

Since ψ ∈ G̃{e} \KA and 〈M, 1〉 = 1, it follows from (6.12) that

〈χKA , M � δψ〉 = 〈χKA , δψ〉,
and so 〈χKA , M � δψ〉 = 0 because ψ 6∈ KA.

Since M � δψ = M 2 δψ, we have M(KA) = 0.

We note that, in the special case where the group G is totally disconnected, two points
ψ1, ψ2 suffice for the above argument to apply.

We now consider the case where G might not be metrizable.

Theorem 9.9. Let G be a compact, infinite group. Then the only measure M ∈M(G̃{e})+

such that M 2 δψ = M � δψ for each ψ ∈ G̃{e} has the form M = ζδe for some ζ ∈ C.

Proof. For each U ∈ Ne, there is a closed, normal subgroup N of G such that N ⊂ U and
H := G/N is a compact, infinite, metrizable group [48, Theorem (8.7)]. The quotient map
is η : G → H, and there is an induced continuous homomorphism η : M(G) → M(H).
We have η(M)2δψ = η(M)�δψ for each ψ ∈ H̃{e}, and so, by Theorem 9.8, η(M) ∈ CδeH .
It follows that supp M ⊂ U .

However this holds for each U ∈ Ne, and so supp M = {eG}, as required.

Clearly the above results are unsatisfactory, in that they leave open the question that
motivated our work.

In fact, the question of the strong Arens irregularity of M(G) has been resolved by
V. Losert, M. Neufang, J. Pachl, and J. Steprāns with their exciting proof [82] of the
following result.

Theorem 9.10. Let G be a locally compact group. Then M(G) is strongly Arens irregu-
lar.



10. Open problems

We list here some problems that we believe are open.

1. Let X be a compact space such that C(X) is isometrically isomorphic to the second
dual space of a Banach space. Is it necessarily true that there is a locally compact
space Ω such that X = Ω̃? Which hyper-Stonean spaces X are such that C(X) = F ′′

for some Banach space F? For some partial results, see Proposition 4.27 and Theorem
4.29.

2. Let A be a commutative Lau algebra such that A′ is a commutative von Neumann
algebra. We have

XA ⊂ AP(A) ⊂WAP(A) ⊂ A′.
When are AP(A) and WAP(A) C∗-subalgebras of A′? When does XA = AP(A)? In
particular, let G be a locally compact group, so that

XG ⊂ AP(G) ⊂ AP(M(G)) ⊂WAP(M(G)) ⊂M(G)′ = C(G̃).

Now AP(M(G)) and WAP(M(G)) are C∗-subalgebras of the space M(G)′ [21]. When
is it true that AP(G) = AP(M(G))? Does this imply that G is discrete? It is shown
in [103] that the method of Daws in [21] does not extend directly to all such cases.

3. Let G be a locally compact group. Do WAP(M(G)) or AP(M(G)) always have a
topological invariant mean. If so, is it unique?

4. Suppose that G and H are locally compact groups and that (WAP(M(G))′,2) and
(WAP(M(H))′,2) are isometrically isomorphic. Are G and H then isomorphic?

5. Let G be a locally compact group. Can we find two points ϕ and ψ in G̃ such that
δϕ 2 δψ is not a point mass, but such that it is a finite sum of point masses in M(G̃)?

6. Let G be a compact group. We have shown in Corollary 9.5(i) that Φ{e} is determining
for the left topological centre of (L1(G)′′,2). Is there a finite or countable subset V
of Φ{e} such that V is so determining?

7. Let G be a compact group. Is G̃ determining for the left topological centre of M(G)′′?
If so, is there a ‘small’ subset of G̃ that is so determining?

8. Let G be a locally compact, non-compact group. Is there a ‘small’ subset of G̃ that is
determining for the left topological centre of M(G)′′?

[109]
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[25] J. Duncan and A. Ülger, Almost periodic functionals on Banach algebras, Rocky Moun-

tain J. Math. 22 (1992), 837–848.

[26] N. Dunford and J. T. Schwartz, Linear Operators Part I: General Theory, Interscience,

New York, 1958.

[27] C. F. Dunkl and D. E. Ramirez, The measure algebra of a locally compact hypergroup,

Trans. Amer. Math. Soc. 179 (1973), 331–348.

[28] C. F. Dunkl and D. E. Ramirez, Weakly almost periodic functionals on the Fourier alge-

bra, Trans. Amer. Math. Soc. 185 (1973), 501–514.

[29] R. Engelking, General Topology, Monografie Mat. 60, Polish Sci. Publ., Warszawa, 1977.
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â, 69

Bb(G), 74
B(G), 15
B(T ), 70
B(Ω), 49
B n I, 6
Bb(Ω), 37
βN, 18, 23, 43
βΩ, 18
B(E,F ), 7
BX , 20
BΩ, 24, 27
Bµ, 27
BG, 74

Cb(Ω), C0(Ω), 21
C0(Ω)R, 22
C(Ω)∗, 23
C(Ω̃), 33
C(Ω̃)∗, 36
C(G̃), 62
CCC, 19, 28, 29, 47
c, 5

Dp, 5, 19, 88, 95, 102

4, 6, 61
∆p, 90, 96, 102
δx, 24
δϕ 2 δψ, 62

E′, E′′, 6
E[1], 6
E ∼= F , 7
exP (Ω), 24
εx, 21
η, 50, 87
η◦, 22, 40
η, 40, 41, 48, 61, 87
η ′, η ′′, 47, 88
η̃, 49, 61, 88

[F ], 22
f̌ , 61
[Φµ], 52
ϕ 2 ψ, ϕ � ψ, 75
ϕ ∼ ψ, 38, 79
[ϕ], 38
Φ, 64, 73, 86, 104
ΦA, 6
ΦG, 80
ΦM , 67
ΦX , 63, 64
ΦZ , 65, 104
Φµ, 27, 29, 44
Φb, 37, 49
Φs,µ, 44
ΦD, Φs 73
Φ{x}, 72

[119]



120 Index of symbols

G̃, 62
G̃c, G̃d, 63
Gµ, 27, 45
Gϕ, 53
G ∼ H, 80

H, 31, 51, 73

I, 5
IX , 19
IΩ, 27

JB , 53
jd, jc, 43

K ≺ λ, 36
K(S), 60
K(λ), 10
KB , 27, 38, 63
KΩ, 25
κE , 7, 38, 46

L, 88
LO(λ), 65
LUC (G), 65, 104
L1(Ω, µ), 27
L1(G), `1(G), 60
L∞(Ω, µ), 27
`∞(Ω), 50
`1(S), 10
La, 6
Lt, Rt, 59
Lµ, 14
`ϕf , 69
λ · t, 65
λµ,B , 74
limB→ϕ, 28
linS, 6

M(S), 15
M(Ω), M(Ω)R, M(Ω)+, 23
Md(Ω), Mc(Ω), 23
Mac(Ω, µ), Ms(Ω, µ), 26
M(Ω̃), 35
M(G), Mc(G), Ms(G), Mac(G), 60
M(Φµ), 27

(M(G̃),2), 62, 81
(M(ΦX),2), 63
mG, 61
µd, µc, 23
µ� ν, µ ⊥ ν, 23
µ ? ν, 61, 74
µB , 24, 74
M ∼ N, 79

N(Ω), 24
N, Nn, 5
N∗, 23
Nx, 18
Nµ, 27

Ω∞, βΩ, Ω∗, 18
Ω{x}, 34
Ω̃, 33, 34, 42
Ω̃d, Ω̃c, 43

P (Ω), 23
P(A), P1(A), 15
π, 34, 36, 62, 75

qG, 65, 68, 104

RO(λ), 65
Ra, 6
Rµ, 14
ρµ, qµ, 45

S(A), 71
S(B), 27
S(G), 69
S(Bµ), 27
S 2 T ⊂ U , 86
s 2 u, u 2 v, 59
S[2], 6
〈S〉, 6
exS, 6
S, intS, ∂S, 18
σ(E′, E), 6
suppµ, 23

T ∗, 104
T, 5



Index of symbols 121

UG, 74
UΩ, 46, 52, 55
UF , 46

WAP(A), 11, 12, 109
WAP(G), 65
WAP(M(G)), 66, 109
w(X), 18

X◦, 7
XA, 71
XG, 68
XL, 42
x ∼A y, [x], 22
χS , 6

Z, Z+, Z+
n , Zp, 5

Zκp , 19, 60

Z(A), 6
Z(A′′), Z

(`)
t (A′′), Z

(r)
t (A′′), Zt(A′′), 9


	Introduction
	Locally compact spaces
	Specific second dual algebras
	The topological structure of "055D
	Locally compact groups
	Formulae for products
	The recovery of G from G"0365G
	The compact space G"0365G
	Topological centres
	Open problems
	References
	Index of terms
	Index of symbols

