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Abstract

Let X be a space. A space Y is called an extension of X if Y contains X as a dense subspace.
For an extension Y of X the subspace Y\ X of Y is called the remainder of Y. Two extensions of
X are said to be equivalent if there is a homeomorphism between them which fixes X pointwise.
For two (equivalence classes of) extensions Y and Y’ of X let Y < Y” if there is a continuous
mapping of Y’ into Y which fixes X pointwise. Let P be a topological property. An extension Y’
of X is called a P-extension of X if it has P. If P is compactness then P-extensions are called
compactifications.

The aim of this article is to introduce and study classes of extensions (which we call
compactification-like P-extensions, where P is a topological property subject to some mild re-
quirements) which resemble the classes of compactifications of locally compact spaces. We for-
mally define compactification-like P-extensions and derive some of their basic properties, and in
the case when the remainders are countable, we characterize spaces having such extensions. We
then consider the classes of compactification-like P-extensions as partially ordered sets. This con-
sideration leads to some interesting results which characterize compactification-like P-extensions
of a space among all its Tychonoff P-extensions with compact remainder. Furthermore, we study
the relations between the order-structure of classes of compactification-like P-extensions of a Ty-
chonoff space X and the topology of a certain subspace of its outgrowth X \ X. We conclude
with some applications, including an answer to an old question of S. Mréowka and J. H. Tsai:
For what pairs of topological properties P and Q is it true that every locally-P space with Q
has a one-point extension with both P and Q7 An open question is raised.
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1. Introduction

Let X be a space. A space Y is called an extension of X if Y contains X as a dense
subspace. If Y is an extension of X then the subspace Y \ X of Y is called the remainder
of Y. Two extensions of X are said to be equivalent if there exists a homeomorphism
between them which fixes X pointwise. This defines an equivalence relation on the class
of all extensions of X. The equivalence classes will be identified with individuals when
this causes no confusion. For two (equivalence classes of) extensions Y and Y’ of X we let
Y <Y’ if there exists a continuous mapping of Y/ into Y which fixes X pointwise. The
relation < defines a partial order on the set of all (equivalence classes of) extensions of X
(see Section 4.1 of [29] for more details). Let P be a topological property. An extension
Y of X is called a P-extension of X if it has P. If P is compactness then P-extensions
are called compactifications. The aim of this article is to introduce and study classes
of extensions (which we call compactification-like P-extensions where P is a topological
property) which look like the classes of compactifications of locally compact spaces. These
are, for a Tychonoff space X:

e The class of minimal P-extensions of X, consisting of those Tychonoff P-extensions
Y of X with compact remainder such that Y is minimal (with respect to the sub-
space relation C) among all Tychonoff P-extensions of X with compact remainder. (In
other words, one cannot construct any other Tychonoff P-extension of X with compact
remainder by deleting points from the space Y'.)

e The class of optimal P-extensions of X, consisting of those Tychonoff P-extensions
Y of X with compact remainder such that the topology of YV is maximal (with re-
spect to the inclusion relation C) among all topologies on Y which turn Y into a
Tychonoff P-extension of X with compact remainder and Y is minimal (with respect
to the subspace relation C) among all Tychonoff P-extensions of X with compact re-
mainder. (In other words, one cannot construct any other Tychonoff P-extension of X
with compact remainder either by adding sets to the topology of Y or deleting points
from Y.)

Here the topological property P is subject to some mild restrictions and will include
most of the important covering properties (such as compactness, the Lindelof property,
countable compactness, paracompactness and metacompactness) as special cases.

This article is organized as follows:

In Chapter 2 we give the formal definitions of compactification-like P-extensions and
we derive some of their basic properties.

5]
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In Chapter 3 we consider the case when the extensions have countable remainders
and characterize those Tychonoff spaces which have a compactification-like P-extension
with countable remainder.

In Chapter 4 we consider the classes of compactification-like P-extensions of a Ty-
chonoff space X as partially ordered sets. Besides the standard partial order < we consider
two other partial orders <inj and <guj. These considerations lead to some interesting re-
sults which characterize compactification-like P-extensions of X among all Tychonoff
P-extensions of X with compact remainder. Furthermore, we study the relationships be-
tween the order-structure of classes of compactification-like P-extensions of X (partially
ordered with <) and the topology of a certain subspaces of its outgrowth X \ X. We
conclude this chapter with a result which characterizes the largest (with respect to <)
compactification-like P-extension of X. This largest element, which we explicitly intro-
duce as a subspace of the Stone-Cech compactification 3X of X, turns out to be even
the largest among all Tychonoff P-extensions of X with compact remainder.

In Chapter 5 we give some applications of our study. These applications include the
relations between compactification-like P-extensions and tight P-extensions with com-
pact remainder (a tight P-extension of a space X is a Tychonoff P-extension of X which
does not contain properly any other P-extension of X as a subspace) and an answer to an
old question of S. Mréwka and J. H. Tsai in [28]: For what pairs of topological properties
P and Q is it true that every (Tychonoff) locally-P (non-P) space with Q has a one-point
(Tychonoff) extension with both P and Q7

We conclude with an open question which naturally arises in connection with our
study.

We now review some of the terminology, notation and well known results which will
be used in the sequel. Our definitions mainly come from the standard text [5] (thus in
particular, compact spaces are Hausdorff, perfect mappings are continuous with Hausdorff
domains, etc.). Other useful sources are [§], [29] and [40].

The letters R, T and N denote the real line, the closed unit interval and the set of all
positive integers, respectively. By w and ) we denote the first infinite ordinal and the
first uncountable ordinal, respectively, and by Ry and N; we denote their cardinalities.
The cardinality of a set A is denoted by card(A). For a subset A of a space X we let
cly A, intx A and bdx A denote the closure, the interior and the boundary of A in X,
respectively. A subset of a space is said to be clopen if it is simultaneously closed and
open. A zero-set of a space X is a set of the form Z(f) = f~1(0) for some continuous
f X — L. Any set of the form X \ Z, where Z is a zero-set of a space X, is called a
cozero-set of X. We denote the set of all zero-sets of X by Z(X) and the set of all cozero-
sets of X by Coz(X). For a Tychonoff space X the Stone-Cech compactification of X is
the largest (with respect to the partial order <) compactification of X and is denoted
by 8X. The Stone-Cech compactification of a Tychonoff X is characterized among the
compactifications of X by either of the following properties:

e Every continuous mapping from X to a compact space is continuously extendible over
6X.
e Every continuous mapping from X to I is continuously extendible over 3X.
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e For every Z,S € Z(X) such that ZN S = 0 we have
clgx ZNelgx S = 0.
e For every Z,5 € Z(X) we have
clgx(ZNS) =clgx ZNclgx S.

A continuous mapping f : X — Y is called perfect if X is a Hausdorff space, f is
closed (not necessarily surjective) and continuous and any fiber f~1(y), where y € Y, is
a compact subset of X. A topological property P is said to be invariant under perfect
mappings (inverse invariant under perfect mappings, respectively) if for any perfect sur-
jective mapping f : X — Y the space Y (X, respectively) has P provided that X (Y,
respectively) has P. A topological property P is called perfect if it is both invariant and
inverse invariant under perfect mappings. A topological property P is said to be heredi-
tary with respect to closed subsets (hereditary with respect to open subsets, respectively)
if any closed (open, respectively) subset of a space with P also has P. A topological
property P is called finitely additive if whenever X = X; @ --- ® X, and each X; has P
then X also has P. Let P be a topological property. A space X is called locally-P if each
x € X has an open neighborhood U in X whose closure clx U has P. Note that if X is
a regular (Hausdorff) space and P is closed hereditary, then X is locally-P if and only
if each point x of X has a local base consisting of open neighborhoods U of z such that
clx U has P.

2. Compactification-like P-extensions

In this chapter we give definitions and derive some basic results which will be used
throughout.

DEFINITION 2.1. Let X be a space, let P be a topological property and let Y be a
Tychonoff P-extension of X with compact remainder.

The extension Y of X is called minimal if Y is minimal (with respect to the subspace
relation C) among all Tychonoff P-extensions of X with compact remainder, that is, Y’
does not contain properly any other Tychonoff P-extension of X with compact remainder.
In other words, one cannot obtain any other Tychonoff P-extension of X with compact
remainder by deleting points from the space Y.

The extension Y of X is called optimal if the topology of YV is maximal (with respect
to the inclusion relation C) among all topologies on Y which turn Y into a Tychonoff P-
extension of X with compact remainder, and Y is minimal (with respect to the subspace
relation C) among all Tychonoff P-extensions of X with compact remainder. In other
words, one cannot obtain any other Tychonoff P-extension of X with compact remainder
either by adding sets to the topology of Y or deleting points from Y.

We refer to either minimal P-extensions or optimal P-extensions as compactification-
like P-extensions.

NOTATION 2.2. Let X be a space and let P be a topological property. Denote by & (X) the
set of all Tychonoff extensions of X with compact remainder and denote by either &7 (X)
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or &p(X) the set of all elements of &(X) which have P. Also, let .#p(X) and Op(X)
denote the set of all minimal P-extensions of X and the set of all optimal P-extensions
of X, respectively, and if Q is a topological property, let

65 (X) = 62(X)Np(X), MF(X)=EUX)NMp(X), OF(X)=E%AX)NOp(X).

Note that by the definitions
O3 (X) C M3 (X).

REMARK. Topological properties P considered in this article are assumed to be non-
empty, that is, it is assumed that there exists at least one space with P. This in particular
implies that for a clopen hereditary topological property P the empty set has P, or, if a
space is non-P then it is non-empty as well.

The following subspace of X will play a crucial role in our study.
DEFINITION 2.3. For a Tychonoff space X and a topological property P define
ApX = J{intsx clpx Z: Z € Z(X) has P}.

Note that any topological property which is hereditary with respect to clopen subsets
and inverse invariant under perfect mappings is hereditary with respect to closed subsets
of Hausdorff spaces (see Theorem 3.7.29 of [5]). This simple fact will be used in a number
of places throughout.

LEMMA 2.4. Let X be a Tychonoff space and let P be a clopen hereditary finitely additive
perfect topological property. Then for any subset A of X if clgx A C ApX then clx A
has P.

Proof. By the compactness of clgx A and the definition of ApX we have

Clﬁx A g U inth Cng Z2 g Cng 7
i=1
where each Z4,...,7Z, € Z(X) has P and Z = Z; U---UZ,. Since P is finitely additive
and invariant under perfect mappings and Z is the finite union of its closed subspaces Z;,
each having P, it follows that Z has P (see Theorem 3.7.22 of [3]). Now since clx A C Z
the set clx A has P, as it is closed in Z.

LEMMA 2.5. Let P be a topological property which is clopen hereditary and inverse in-
variant under perfect mappings and let f : X — Y be a perfect mapping. Then if Y is
locally-P and Hausdorff then X is locally-P.

Proof. First note that f[X] is locally-P. To show this let y € f[X]. Since Y is locally-P
there exists an open neighborhood V of y in Y such that cly V has P. Now V N f[X] is
an open neighborhood of y in f[X], the image f[X] is closed in Y (as f is perfect and
thus closed) and

cyxy (VN FIX]) = ely (VN £IX]) N FIX] C ey V.

Therefore clyx)(V N f[X]) has P, as it is closed in cly V. Since f : X — f[X] is perfect
and surjective we may assume in the statement of the lemma that f is moreover surjective.
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Let « € X. There exists an open neighborhood W of f(z) in Y such that cly W has P.
Since

FIf ey We f ely W] — cly W

is perfect and surjective and P is inverse invariant under perfect mappings, f~![cly W]
has P. Now f~![W] is an open neighborhood of z in X, and since clx f~1[W] C
ft[cly W] and the latter has P, its closed subset clx f~[W] also has P. =

A topological property P is said to satisfy Mrowka’s condition (W) if it satisfies the
following: If X is a Tychonoff space in which there exists a point p with an open base
% for X at p such that X \ B has P for any B € %, then X has P (see [25]). If P is a
topological property which is closed hereditary and productive then Mréwka’s condition
(W) is equivalent to the following condition: If a Tychonoff space X is the union of a
compact space and a space with P then X has P (see [I7]). In [25] S. Mréwka showed
that if P is a topological property which is closed hereditary, finitely additive with respect
to closed subsets (that is, whenever a space is the union of a finite number of its closed
subsets each having P, then it has P) and invariant under continuous mappings then any
Tychonoff locally-P space can be embedded as an open subspace in a Tychonoff space
with P if and only if Mréwka’s condition (W) holds.

In this article we will be dealing with certain classes of topological properties. For
convenience, we make the following definition.

DEFINITION 2.6. Let P be a topological property. Then P is said to be a compactness-
like topological property if P is a clopen hereditary finitely additive perfect topological
property which satisfies Mréwka’s condition (W). If Q also is a topological property, then
we say that P and Q is a pair of compactness-like topological properties (here the order
of P and Q is important) if P is a compactness-like topological property and Q is a
clopen hereditary topological property which is inverse invariant under perfect mappings
and satisfies Mréwka’s condition (W). (Examples of pairs of compactness-like topological

properties are given in Example )

LEMMA 2.7. Let P be a topological property which is inverse invariant under perfect
mappings and satisfies Mréwka’s condition (W). If X is a Tychonoff space in which there
exists a compact subset A with an open base B for X at A such that X \ B has P for
any B € B, then X has P.

Proof. If A = ) then the conclusion holds trivially, as in this case § € %. Suppose
that A is non-empty. Let T be the space obtained from X by contracting the set A
to a point p and let ¢ : X — T denote the corresponding quotient mapping. Note
that since A is compact, T is Tychonoff. Now {¢[B] : B € £} is an open base for T'
at p such that T\ ¢[B] = X \ B has P for any B € Z. Since P satisfies Mréwka’s
condition (W), the space T, and thus its inverse image X under the perfect surjective
mapping ¢, has P. =

Note that if A is a dense subset of a space X and U is an open subset of X then
clx U = clx(U N A) and thus U C intx clx (U N A). In particular, if X is a Tychonoff
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space, f: X — I is continuous and r € (0,1) then

ft [[0,7‘)} Cintgx clgx (f_1 [[077’)] N X).

We use such simple observations frequently in the future.

A Hausdorff space is called zero-dimensional if the set of all its clopen subsets con-
stitutes an open base for it. A Tychonoff space is called strongly zero-dimensional if its
Stone-Cech compactification is zero-dimensional. For a regular space X let (EX,kx)
denote the absolute of X (see Theorem 6.6(e) of [29] or Problem 6.3.20 of [5]). The space
EX is (extremely disconnected and) zero-dimensional (thus strongly zero-dimensional;
see Theorem 6.4 of [29]) and kx : EX — X is a perfect (irreducible) surjective mapping.

The following lemma is quite fundamental in our study. We state and prove it in its
general form for future reference.

LEMMA 2.8. Let P and Q be a pair of compactness-like topological properties. Let X and
Y be Tychonoff spaces such that'Y has Q, let f : X — Y be a perfect surjective mapping,
let T € &(Y), let T be a compactification of T and let ¢ : BX — oT be the continuous
extension of f. The following are equivalent:

(1) T e &3(Y).
(2) X is locally-P and BX \ A\pX C ¢~ [T\ Y].
Proof. (1) implies (2). Since P is hereditary with respect to closed subsets of Hausdorff
spaces, the space Y, having a P-extension with compact remainder, is locally-P and
therefore so is X by Lemma Next, we show that 3X \ApX C ¢~ [T\ Y]. Suppose to
the contrary that there exists an z € 3X \ A\pX such that z ¢ ¢~ {T\Y]. Let g : X — I
be continuous with g(z) = 0 and g[¢~ [T\ Y]] C {1} and let Z = g—1[[0, 1/2]]. We verify
that ZN X € 2(X) has P. Since Z N ¢~ [T\ Y] = 0 we have

o21 C o[BX N ¢TI\ Y]] = 6[¢7 [T\ (T\Y)]] CaT\(T\Y)

and thus S = ¢[Z]NT C Y. Therefore S has P, as it is closed in T', because Z is compact.
Since f|f~1[S] : f71[S] — S is perfect and surjective and P is inverse invariant under
perfect mappings, f~![S] has P. Thus

ZnX CfHflznXx]] cfelznXInY] C fHelZ)NT] = f1[S),
which implies that Z N X has P, as it is closed in f~![S]. Now
x € 971 HO, 1/2)] - intgx ClﬁX (g71 HO, 1/2” ﬂX) = inth Clgx(ZﬂX) CApX,

which is a contradiction, as ¢ ApX.
(2) ¢mplies (1). Suppose moreover that X is strongly zero-dimensional. Let

B ={T\ flclx f [T\ ¢[U]]] : U is clopen in BX and ¢ [T\ Y] C U}.

We verify that & is an open base for T at T'\ 'Y such that 7'\ B has both P and Q for
any B € 2. By Lemma [2.7) this will imply that 7" has P and Q. Let U be a clopen subset
of BX such that ¢~1[T\ Y] C U. Consider

B=T\ flcx f7'[T\ ¢[U]]] € 2.
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Since ¢ is surjective (as its image contains Y = f[X] = ¢[X] and Y is dense in T') we
have T\ Y = ¢[¢ [T\ Y]] C ¢[U] and thus T'\ ¢[U] C Y. Since

FHTN U] C o T\ olU]] C ¢~ [aT \ 9[U]] = BX \ ¢~ [¢[U]] € BX\U
we have clx f~T \ ¢[U]] € BX \ U, which yields
T\ B = flelx [T\ ¢[U]]] = ¢clx f~ [T\ o[U]]]
COBX\U]Co[BX\ o T\ Y]] =¢[p7 [aT \ (T\Y)]] CaT\(T\Y).
Therefore since U is clopen in X the set ¢[3X \ U] is compact and thus clyr (T \ B) C
¢[BX \ U]. By the above this implies that

A (T\ B)N (T\Y) = dlor(T\ B) N (T\ V) = )
and therefore since f is closed,
cdp(T\B)=cly(T\B)=T\ B.

This shows that each B € £ is open in T. Obviously, each B € £ contains T\ Y. Next,
we show that each open neighborhood W of T'\'Y in a1 contains an element of Z. Since
X is strongly zero-dimensional, 3X is zero-dimensional. Now since ¢~[W] is an open
neighborhood of the compact set ¢~[T"\ Y] in BX there exists a clopen subset U of 3X
such that ¢~1[T\ Y] CU C ¢~ 1[W] (see Theorem 6.2.4 of [5]). Note that

B=T\ flex fT [T\ [U]]] ST\ f1f[T\ ¢[U]]]
=T\ (T\¢[U]) ColU] C ¢[o~'[W]] CW

and that B € Z. This shows that % is an open base for T at T'\ Y. Now let B € #.
Then T\ B = flelx [T\ #[U]]] for some clopen subset U of 8X containing ¢~ 1[T\ Y].
Since f is closed, T\ B is closed in Y, and since by our assumption Y has Q and Q
is hereditary with respect to closed subsets of Hausdorff spaces, T\ B has Q. Also, as
argued above f~1[T \ ¢[U]] € X \ U, which implies that

cax fTHT\G[U]] CBX\U CBX\ ¢ T\Y]C ApX.

By Lemma 2.4 the set C' = clx f~![T \ ¢[U]] has P. Now f|C : C — f[C] is perfect
(as C is closed in X) and surjective, and P is invariant under perfect mappings, thus
T\ B = f[C] has P. This shows that (1) holds in this case.

We now turn to the general case in which X is an arbitrary Tychonoff space. Let
(EX,k) denote the absolute of X. By our assumption X is locally-P, and since k :
EX — X is perfect, by Lemma the space EX is locally-P. Let K : BEX — X
be the continuous extension of k. Then ¢ K : BEX — o1 continuously extends fk and
therefore by the above, to show that 1" € éOPQ (Y') we only need to verify that

BEX\ ApEX C (¢K)~'[T\Y].

But by our assumption 83X \ ApX C ¢~[T\ Y]. Thus as we will see it suffices to show
that K1 [ApX] C \pEX. Let t € K~ '[ApX]. Let U be an open neighborhood of K(t)
in BX such that clgx U C ApX. Let h : X — I be continuous with h(K(t)) = 0 and
R[BX \ U] C {1}. Let

Z=h7'[0,1/2]] N X € Z(X).
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Then since
Cng Z C Clgx(UﬂX) = Clgx UCM\X,

by Lemma the set Z has P and therefore its inverse image k~'[Z] € Z°(EX) under
the perfect surjective mapping k|k=1[Z] : k=1[Z] — Z has P. By the definition of \p EX
we have intggpx clgpx k71[Z] € Ap EX. By Theorem 3.7.16 of [5] (or Theorem 1.8(i) of
[29]) and since K|EX = k is perfect, K[BEX \ EX] C X \ X. But K is surjective, as
its image contains X = k[EX]| = K[EX], and thus K[BEX \ EX] = X \ X. We have

EZ) =k~ [RTh[[0,1/2]] n X] = K~ [A71[[0,1/2]] N X]
=K '[n7t[[0,1/2)]]n KM [X] =K '[n7'[[0,1/2]] | N EX
and therefore
te K-'[n71[0,1/2)]] C clgpx K1 [h1[[0,1/2)]]

= clgpx (K" [A7'[[0,1/2)]] N EX)

Cclgpx (K~ [h7'[0,1/2]]] N EX) = clgpx k™ '[Z],
which yields ¢ € intggx clgex k~'[Z] and thus t € Ap EX. This shows that K~ 1[ApX] C
ApEX. Now

BEX\ A\pEX C BEX \ K~ '[\pX]
TBX\ApX] C Ko T\ Y]] = (oK) T\ Y],

which shows (1). m

The list of topological properties P and Q satisfying the assumption of Lemma is
quite long and includes most of the important covering properties (see Example [2.16)).

REMARK. Lemma (and thus its consequences) remains valid if one omits Q from its
statement. This is because one can replace Q by regularity (note that by Theorem 3.7.23 of
[5] regularity is inverse invariant under perfect mappings and satisfies Mréwka’s condition
(W) vacuously) and observes that for this specific choice of Q the phrases “Tychonoff
space with Q7 and “P and Q is a pair of compactness-like topological properties” can
be replaced by “Tychonoff space” and “P is a compactness-like topological property”,
respectively.

REMARK. Lemma is stronger than what we normally need, as we generally apply it
in the special case when Y = X, f =idx and o = ST. Lemma[2.8]is quite fundamental
in our study and it is interesting to know whether the requirement “P satisfies Mrowka’s
condition (W)” (implicit in the definition of the compactness-like topological property P)
can be omitted from its statement. In Example we give an example of a Tychonoff
space X, a topological property P which does not satisfy Mréwka’s condition (W) and
a Tychonoff extension of X with compact remainder, for which the conclusion of (the
special case of) Lemma does not hold.

We will make frequent use of the following well known result sometimes without
explicitly referring to it. The proof is included here for the sake of completeness.

LEMMA 2.9. Let X be a Tychonoff space and let Y be a Tychonoff extension of X with
the compact remainder Y \ X = {p; : i € I} where p;’s are bijectively indexed. Let
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¢ : BX — BY be the continuous extension of idx. Let T be the space obtained from BX
by contracting any fiber ¢~ (p;) where i € I to a point a;. Then T = BY (identifying
each a; with p;) and ¢ = q where q : BX — T is the quotient mapping.

Proof. We first show that T is a compactification of Y. To show that T is Hausdorff let
s,t € T be distinct elements. Consider the following cases:

CASE 1. Suppose that s,t € T'\ {a; : i € I}. Then s,t € 3X \ ¢~ }[V \ X] and thus there
exist disjoint open neighborhoods U and V of s and ¢ in 58X, respectively, each
disjoint from ¢~ ![Y \ X]. The sets ¢[U] and ¢[V] are disjoint open neighborhoods
of s and t in T, respectively.

CASE 2. Suppose that s = a; for some i € I andt € T\{a; : i € I'}. Then ¢~ 1[Y\ X]isa
compact subset of X not containing ¢ and thus there exist disjoint open subsets U
and V of BX such that ¢~ 1[Y \ X] CU and t € V. Now ¢[U] and ¢[V] are disjoint
open neighborhoods of s and ¢ in T', respectively. The case when s € T\ {a; : ¢ € I}
and ¢t = a; for some j € I is analogous.

CASE 3. Suppose that s = a; and ¢t = a; for some ¢,j € I. Let U; and U; be disjoint
open neighborhoods of p; and p; in BY, respectively. Then since ¢~ [g[¢™! [Uk]]] =
¢~ 1[Uy] where k = i,j are open subsets of X and ¢~1(py) C ¢~ [Uy] the sets
ql¢~t{Ug]] where k = i, j are disjoint open neighborhoods of s and ¢ in T, respec-
tively.

This shows that T is Hausdorff and therefore it is compact, as it is a continuous image
of BX. Note that Y is a subspace of T'. To show this, first note that since §Y is also a com-
pactification of X, as X is dense in Y and thus in Y, and ¢|X = idx, by Theorem 3.5.7 of
[5] we have ¢[3X \ X] = BY \ X. Now if W is open in 8Y, since ¢~ [q[¢ 7' [W]]] = ¢~ [W]
is open in BX the set q[¢~1[W]] is open in T, and therefore W NY = ¢[¢p 1 [W]]NY is
open in Y as a subspace of T'. For the converse, note that if W is an open subset of T' then
WYy = (BY\¢[BX \q¢ 'W]])nY
and therefore (since ¢[3X \ ¢~ [W]] is compact and thus closed in 3Y) the set W NY is
open in Y in its original topology. Clearly, Y is dense in 7" and therefore 7" is a compact-
ification of Y. To show that T" = Y it suffices to verify that any continuous f : Y — I
can be continuously extended over T'. Indeed, consider the continuous mapping
g=fq:S=XU¢ 'Y\ X] =1L

Note that since X C S C X we have S = X (see Corollary 3.6.9 of [3]). Let
g : BX — I be the continuous extension of g. Define F': T — I such that F(z) = gg(x)
for any € X \ ¢ [Y \ X] and F(p;) = f(p;) for any i € I. Then F|Y = f and since
Fq = g is continuous, F' is continuous. This shows that 7" = Y. Note that this also
implies that ¢ = ¢, as ¢,q : fX — BY are continuous and ¢|X =idx =¢|X. u

The following simple observation will be of frequent use in the future, sometimes with
no explicit reference.

LEMMA 2.10. Let X be a Tychonoff space and let P be a clopen hereditary topological

property which is inverse invariant under perfect mappings. Then X C Ap X if and only
if X is locally-P.
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Proof. Suppose that X is locally-P. Let z € X and let U be an open neighborhood of x in
X whose closure clx U has P. Let f : X — I be continuous with f(z) =0 and f[X\U] C
{1} and let f5: BX — I be the continuous extension of f. Let Z = f~1[[0,1/2]] € Z(X).
Then Z C U and thus Z has P, as it is closed in clx U. Now

z € f5'[[0,1/2)] Cintgx clgx f71[[0,1/2]] = intpx clgx Z C ApX
and therefore X C ApX. For the converse suppose that X C ApX. Let x € X. Then
x € ApX and therefore x € intgx clgx S for some S € Z(X) which has P. Let V =

(intgx clgx S) N X. Then V is an open neighborhood of = in X. Since V' C S the set
clx V has P, as it is closed in S. Thus X is locally-P.

Our next theorem gives characterizations of the elements of //ZPQ(X ). Compare with
its dual result on @3 (X) (Theorem [2.15)).

THEOREM 2.11. Let P and Q be a pair of compactness-like topological properties. Let X
be a Tychonoff space with Q and let Y € é”pQ(X) The following are equivalent:

(1) Y e #3(X).

(2) For any p € Y \ X the set ¢~(p) \ \pX is non-empty where ¢ : 3X — BY is the
continuous extension of idy.

(3) For any open subset V of Y such that clx (V N X) has P we have VN (Y \ X) = 0.

(4) For any T € éaPQ(X) and any continuous f : T — Y such that f|X = idx, the
mapping [ is surjective.

(5) For any T € E5(X) such that Y < T there exists a continuous surjective f : T —Y
such that f|X =idx.

Proof. Let ¢ : X — (Y be the continuous extension of idx.
(1) implies (2). Consider the subspace
T=XU{peY\X:¢ '(p)\ \pX # 0}
of Y. We show that T'\ X = ¢[8X \ \pX]. First note that by Lemma we have
BX\ApX C ¢~ [V \ X] and that X is locally-P. Now if t € X \ ApX then ¢(t) =p €
Y \ X and thus ¢~1(p) \ ApX is non-empty, as it contains t. Therefore ¢(t) =p € T'\ X.
This shows that ¢[BX \ApX] C T\ X. To show the reverse inclusion note that if p € T\ X

then there exists some t € ¢~ 1(p) \ ApX C X \ ApX and thus p = ¢(t) € ¢[BX \ \pX].
This shows that T' € &(X). Now since

67N T\ X] =7 [#[BX \ ApX]] 2 BX \ ApX
by Lemma it follows that T' € &p(X). By the minimality of ¥ we have T'=Y and in
particular T\ X =Y \ X.
(2) implies (1). Let T € &p(X) be such that T C Y. By (the remark following)
Lemma we have 3X \ A\pX C ¢~ 1[T'\ X]. Now if there exists some p € Y \ T then

¢~ )\ ApX C o~ (p) N7 T\ X] =0,
which contradicts (2). Thus T =Y. This shows the minimality of Y.

(2) implies (3). To show (3) let V be an open subset of Y such that V N (Y \ X) is
non-empty. We need to show that clx (V' N X) is non-P. Let V =W NY where W is an
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open subset of 3Y. Let p € VN (Y \ X). Let g : Y — I be continuous with g(p) = 0
and g[fY \ W] C {1} and let
Z=(g¢)"'[[0,1/2]] N X € Z(X).

Note that

= (9¢)"'[[0,1/2]]nX = ¢ ' [g7"'[[0,1/2]]]NX =g ' [[0,1/2]]NX CWNX =VNX.
Thus if clx (V' N X) has P then its closed subset Z also has P. Now
¢~ '(p) C o7 g [0,1/2)]] = (96) 7 [[0,1/2)]

- inth Cl@X ((g¢)71 [[0, 1/2]} n X) = inth Cng Z C )\pX,

contradicting (2). Therefore clx(V N X) is non-P.

(3) implies (2). Suppose to the contrary that ¢~1(p) \ ApX = () for some p € Y\ X.
Then p ¢ ¢[BX \ A\pX]. Let W be an open neighborhood of p in 3Y such that clgy W N
d[BX \ ApX] = 0. We have
¢~ elgy W\ApX C ¢~ Hclgy WINg ' [¢[BX\ApX]] = ¢! [clgy WNB[BX\ApX]] =0
and thus

cax(WNX)=clgx (¢ ' [W]NX) =clgx ¢ ' [W] C ¢ 'clgy W] C ApX.

Lemma implies that clx (W N X) has P. Now V = W NY is an open neighborhood
of pin Y such that clx (VN X) = clx(W N X) has P, contradicting (3).

(2) implies (4). Let T € &S(X) and let f : T — Y be continuous with f|X =
idx. Let fg : BT — BY and ¢ : BX — BT be the continuous extensions of f and
idx, respectively. Then since fzt)|X = ¢|X we have fgyp = ¢. Lemma implies that
BX\ ApX C 7T\ X]. Also, for any p € Y \ X, since ¢~1(p) \ ApX is non-empty,
POl () 3o X). T

YAX C|J{o[¢7 () \ MpX] :pe Y\ X} C g[BX \ ApX]
= falv[BX\ )\PXH C folv[v [T\ X]]] € folT\ X] = fIT\ X] C f[T].
Since f|X = idx this shows that Y C f[T], that is, f is surjective. That (4) implies (5)
is trivial.
(5) implies (2). Consider the subspace T = X U ¢[3X \ ApX] of 3Y. By Lemma [2.§
we have BX \ ApX C ¢7'[Y \ X] and X is locally-P. Thus

T=XUg[BX\ApX]CXUg[¢p ' [Y\X]]C XUV \X)=Y.
By Lemma [2.10| we have X C ApX. Now T'\ X = ¢[BX \ ApX] is compact, and since
ST\ X] = 7 [B[BX \ ApX]] 2 BX \ Ap X,

by Lemma [2.8it follows that T € &5 (X). It is clear that Y < T, as T C Y. By (5) there
exists a continuous surjective f : T'— Y such that f|X = idx. But f|X =idr |X, which
yields f = idr and therefore Y = f[T] = T. Now it is clear that for any

pPEY\X =T\ X = ¢[BX \ ApX]
the set ¢~ 1(p) \ ApX is non-empty. m
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REMARK. Theorem fails if one omits the requirement “P satisfies Mrowka’s con-
dition (W)” (implicit in the definition of the compactness-like topological property P)
from its statement (see Example [2.16)).

In the next theorem we give characterizations of the elements of ﬁg(X ). We need to
prove a few lemmas first.

NOTATION 2.12. Let X be a Tychonoff space and let Y be a Tychonoff extension of X.
Let ¢ : BX — BY be the (unique) continuous mapping which extends idx. Denote

Fx(Y)={¢""(p):pe Y\ X}.
We may write . (Y) instead of #x(Y) when no confusion arises.

In [20] the author associated to each compactification aX of a Tychonoff space X a
set (called the B-family of aX)

Foa=1{1"(p) :peaX\ X}
where f, : 8X — aX is the continuous extension of idx. It is then shown that for any
compactifications a; X and asX of a Tychonoff space X we have a; X < asX if and

only if each set in .%,, is a subset of a set in .%,,. This provides the motivation for the
statement of the next lemma.

LEMMA 2.13. Let X be a Tychonoff space and let Y1,Ys € &(X). The following are
equivalent:

(1) Y1 <Ya.
(2) Any element of F(Y2) is contained in an element of F(Y7).

Proof. Let ¢; : X — BY; for i = 1,2 be the continuous extension of idx.

(1) implies (2). By definition there exists a continuous f : Yo — Y7 such that f|X =
idyx. Let fg : 8Y2 — BY; be the continuous extension of f. The continuous mappings
fapa, 91+ BX — BY7 coincide with idy on X and thus are identical. Also, since X is
dense in BY;, as it is dense in Y; for ¢ = 1,2 the space BY; is a compactification of X.
Therefore since fg|X = idx, by Theorem 3.5.7 of [5] we have f3[8Y>\ X] = Y1\ X. Now
let Fy € Z(Ys). Then Fy = ¢, ' (p) for some p € Y» \ X. By the above f5(p) € BY1 \ X
and thus f(p) € Y1\ X, as fs(p) = f(p). Let Fy = ¢7*(f(p)) € F(Y1). Then

Fy=¢7"(p) C o3 [f5' (fs(0)] = (fad2) " (fs(p) = &1 (f3(p)) = ¢1 " (f(p)) = F1.

(2) implies (1). We define f : Yo — Y; as follows. If t € Y5\ X then ¢, *(t) € .#(Y2) and
thus by our assumption ¢, ' (t) C ¢7 ' (s) for some (unique, as ¢ is surjective) s € Y7\ X.
Define f(t) = s in this case. If t € X define f(¢t) = ¢t. We show that f is continuous;
this will show that Y7 < Y5. By Lemma [2.9 the space 8Y> is the quotient space of 53X
obtained by contracting each ¢, !(p) where p € Y5\ X to a point and ¢5 is the quotient
mapping. Thus in particular Y; is the quotient space of X U, '[Y5\ X] with the quotient
mapping

G2l (X Uy ' [Yo\ X]) : X Uy ' [Ya\ X] — Ya.
Therefore to show that f is continuous it suffices to show that foo|(X U ¢y ' [Ya \ X]) is
continuous. We show this by verifying that f¢o(t) = ¢1(t) for any t € X U ¢5 [V \ X].
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This obviously holds if t € X. If t € ¢5'[Va \ X] then ¢o(t) € Yo\ X. Let s € Y7 \ X
be such that ¢5 ' (¢a(t)) € ¢7'(s). Then feo(t) = s. But since t € ¢, ' (¢po(t)) we have
t € ¢7 " (s) and thus ¢1(t) = s. Therefore f¢o(t) = ¢1(t) also in this case. m

LEMMA 2.14. Let X be a Tychonoff space and let P be a clopen hereditary topological
property which is inverse invariant under perfect mappings. Suppose that Z C C where
Z e #(X), CeCoz(X) and clx C has P. Then clgx Z C ApX.

Proof. The zero-sets Z and X \ C of X, being disjoint, are completely separated in X.
Let f : X — I be continuous with f[Z] C {0} and f[X\C] C {1} and let fg: 5X — I be
the continuous extension of f. Let S = f~1[[0,1/2]] € 2°(X). Then S C C and therefore
S has P, as it is closed in clx C. We have

clax Z C Z(f) C f5[[0,1/2)] C intgx clax f71[[0,1/2] = intpx clgx S C ApX. u
In the following theorem we characterize the elements of ﬁg(X ).

THEOREM 2.15. Let P and Q be a pair of compactness-like topological properties. Let X

be a Tychonoff space with Q and let Y € @%Q(X) The following are equivalent:

(1) Y € O5(X).

(2) ¢~V \ X] = BX \ A\pX where ¢ : BX — BY is the continuous extension of idx.

(3) For any Z € Z(X) such that Z C C for some C € Coz(X) such that clx C' has P
we have cly Z N (Y \ X) = 0.

(4) For any T € <§’PQ(X) and any continuous injective f : T — 'Y such that f|X = idx,
the mapping f is a homeomorphism.

(5) Forany T € E2(X) if Y < T then T € M5 (X).

Proof. Let ¢ : X — BY be the continuous extension of idx.

(1) émplies (2). By Theoremthe set = 1(p)\\pX is non-empty for any p € Y\ X.
Let S be the space obtained from 3X by contracting each ¢~1(p)\ Ap X where p € Y\ X
to a point s, with the quotient mapping ¢ : BX — S. Note that S is a continuous image
of BX. Therefore to prove that S is compact it suffices to show that it is Hausdorff.
Suppose that s,z € S are distinct. Consider the following cases:

CASE 1. Suppose that s,z € ApX. Since s and z can be separated in Ap X by disjoint
open subsets and Ap X is open in X they can also be separated in S.

CASE 2. Suppose that s € ApX and z € ¢[BX \ ApX]. Let U and V be disjoint open
neighborhoods of s and X \ ApX in BX, respectively. Then ¢[U] and ¢[V] are
disjoint open subsets of S separating s and z.

CASE 3. Suppose that s,z € ¢[8X \ ApX]. Let

s=q[o7 )\ }pX] and z=q[¢"'(y)\ \pX]
for some p,y € Y\ X. Let U and V be disjoint open neighborhoods of p and y
in BY, respectively. Then ¢[¢~1[U]] and ¢[¢~1[V]] are disjoint open subsets of S
separating s and z.
Define f : S — BY by f(x) = pif z € q[¢~!(p)] for some p € Y \ X, and f(z) = =
otherwise. Note that this makes sense by the construction of Y and the representation
of ¢ given in Lemma [2.9] By the definition of f we have fq = ¢ and therefore f is
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continuous. Consider the subspace T'= X Uq[8X \ ApX] of S. Note that by Lemmam
we have X C ApX. Thus T contains X as a dense subspace. It is also clear that X, and
therefore 7, is dense in S. Since X \ ApX C ¢~ [T\ X] and X is locally-P, as &p(X)
is non-empty, by Lemma we have T € 5739(X ). Now f|T : T — Y is a continuous
bijective mapping such that f|X = idx. Thus by the maximality of the topology of Y we
have T =Y (identifying each s, with p where p € Y \ X). Now S is a compactification
of Y and therefore there exists a continuous g : Y — S such that g|Y = idy. Since
fglY = idy it follows that fg = idgy. On the other hand ¢gf|Y = idy, which yields
gf = idg and thus g = f~1. Now as noted before fq = ¢, and therefore for any p € Y\ X
we have

o) = (fO ' =¢ [/ )] =a " (9) =47 ) = ¢~ (p) \ M X.
Thus ¢~ 1(p) C BX \ A\pX for any p € Y \ X and therefore [V \ X] C X \ ApX. But
by Lemma we have 3X \ ApX C ¢~ '[Y \ X], which shows equality.

(2) implies (4). Let T € £F(X) and let f : T — Y be a continuous injective mapping
which fixes X pointwise. Let fgz : 87 — (Y and ¢ : BX — BT be the continuous
extensions of f and idx, respectively. Since fg)|X =idx = ¢|X we have fzh = ¢. Also
FIT\X] C Y\ X. To show this, suppose to the contrary that f(t) € X for some ¢t € T\ X.
Let U and V be disjoint open neighborhoods of f(t) and ¢ in T, respectively. Since Y\ X
is compact, X is open in Y and thus U N X, being open in X, is an open neighborhood
of f(t) in Y. Let W be an open neighborhood of ¢ in T such that f[W] C U N X. Since
W NV is open in T and non-empty, ast € WNV and X is dense in T', the set WNV NX
is non-empty. But if z € W NV N X then z = f(x) € U, which is a contradiction, as
unv=40.

CramM 1. Ift € T\ X and y = f(t) then v =1(t) C ¢~ (y).

Proof of the claim. We have y = f(t) = f3(t) and thus ¢ € f5(y). Therefore
V) SUTH )] = (fe)THy) = 07 (W)

CramM 2. Ift €T\ X andy = f(t) then v (t) = ¢ (y).

Proof of the claim. By Claim 1, ¥ ~(t) € ¢~ (y). Let z € ¢~ !(y). By Lemma we
have 83X \ ApX C ¢~ [T\ X]. Thus since

o' (y) oY\ X] =X\ X

T\X]. Let ¢(2) =t e T\ X and let ¥/ = f(¢') € Y \ X. By the
first claim ¥~ 1(#') C ¢~ 1( ") and therefore z € ¢~1(y'). Thus ¢~ 1(y) N ¢~ 1(y’) is non-
empty and f(¢ ) =y =19y = f(t'). But f is injective and therefore ¢t = t/, which yields
z € (') = 1~ 1(t). This shows that ¢~1(y) C ¥~1(¢), which together with the above
proves the clalm.

CLAM 3. {1 (t) :t € T\ X} ={¢'(y):y € Y\ X}.

Wehavezew H

Proof of the claim. By Claim 2 it suffices to show that for any y € Y \ X we have
¢ (y) = (t) forsome t € T\ X. Let y € Y \ X and z € 3X be such that ¢(z) =
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By Lemmawe have 83X \ ApX C ¢~1[T\ X] and thus, since
¢~Hy) STV N\ X] = X\ ApX
it follows that z € v} [T\ X]. Let t = ¢(z2) € T\ X. Then 2z € ¢~ 1(y) Ny~1(¢). If

y' = f(t) then by Claim 2, ¥~ 1(¢) = ¢~ 1(y). Thus ¢~ (y) N ¢~ 1(y’) is non-empty and
therefore y = y'. Thus ¢~ !(y) = ¢~ (y’) = ¥»~1(¢), which proves the claim.

By Lemma[2.9] the spaces 3Y and 3T are respectively obtained from 3X by contract-
ing the sets ¢~ (y) where y € Y \ X and ¢~1(t) where t € T\ X to points, and ¢ and
are the corresponding quotient mappings. Thus by Claim 3, ¢ = 1 and therefore

Y:XUqb[U{qS’l(y):yEY\X}} :Xu@y[U{w*l(t);teT\X}} ~T

This shows Y and T are equivalent extensions of X. Let g : Y — T be a homeomorphism
such that g|X = idx. Then the continuous mapping fg: Y — Y coincides with idy on
the dense subset X of Y. This (since Y is Hausdorff) implies that fg = idy and thus
f =g~ ! is a homeomorphism.

(4) implies (1). Let Y’ be the set Y equipped with a topology which is finer than
the topology of Y and turns it into an element of & (X) = &2(X). Since f : V' — Y
defined by f(y') = ¢ for any ¢’ € Y is continuous and injective, by our assumption it is
a homeomorphism. This shows that the topology of Y is maximal among the topologies
which turn Y into an element of &p(X). Next, suppose that T' € &p(X) is such that
T C Y. Since the inclusion mapping f : T — Y defined by f(t) =t for any t € T is
continuous and injective, by our assumption it is a homeomorphism. But this implies
that T =Y, which proves the minimality of Y among the elements of &p(X).

(2) implies (3). Let Z € Z(X) be such that Z C C for some C € Coz(X) such that
clx C has P. By Lemma 2.14 we have clgx Z C ApX. Let U be an open neighborhood
of X \ ApX in BX which misses clgx Z. Now (by the construction of Y and the
representation of ¢ given in Lemma the set ¢[U] is an open neighborhood of p € Y\ X
in Y which misses Z. Therefore

dy ZN (Y \ X) =clgy ZN (Y \ X) = 0.

(3) implies (2). By Lemmawe have BX \ ApX C ¢~ [V \ X]. To show the reverse
inclusion suppose to the contrary that t € Ap X for some t € ¢~1[Y \ X]. Note that A\p X
is open in BX. Let U be an open neighborhood of ¢ in X such that clgx U C ApX. Let
f: BX — T be continuous with f(¢t) =0 and f[8X \ U] C {1}. Define

Z=f0,1/3]]nX and C=f""0,1/2)] NX.
Then Z € Z(X), C € Coz(X) and Z C C. Also, since clgx(UNX) =clgx U C A\pX,
by Lemma the set clx (U N X) has P. Therefore, since
C=f"0,1/2]nX CUNX,

the set clx C has P, as it is closed in clx (U N X). By our assumption this implies that
cy ZN (Y \ X) = 0. But ¢(t) € Y\ X and thus ¢(t) ¢ clgy Z. Let V be an open
neighborhood of ¢(¢) in BY such that V' N Z = ). Now since

¢ VIne ' Z]=¢7' VN Z] =0
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it follows that
o V]Nclsx Z C ¢ HV]Neclgx ¢ 1[Z] = 0.

Thus ¢ ¢ clgx Z, which is a contradiction, as
te fH0,1/3)] Cclax (F71[[0,1/3]] N X) = clgx Z.

(2) implies (5). Let T € 57,9(X) be such that Y < T. Let f : T — Y continuously
extend idx. Arguing as in (2)=(4) we have f[T'\ X] C Y \ X. Let f3 : 5T — 8Y and
¥ : BX — BT be the continuous extensions of f and idx, respectively. Then ¢ = fg1, as
they coincide with idx on X. To show that T € //ZPQ(X), by Theorem it suffices to
verify that ¢ ~1(p) \ ApX is non-empty for any p € T\ X. Let p € T\ X. Then

O p) ST F5 (Fe)] = (fa) T (fa(p) = 67 (fa(p) = 07 (F(p) S o [V \ X].

Now since ¢~ 1[Y \ X] = BX \ ApX and ¢ is surjective, »=1(p) \ \pX = ¥~ 1(p) is
non-empty.

(5) implies (2). Note that (5) in particular implies that Y € .#p(X). Thus by Theo-
rem the set ¢~ 1(p) \ ApX is non-empty for any p € Y\ X. Since by Lemma we
have X \ ApX C ¢~ '[Y \ X] and X is locally-P, to show (2) it suffices to verify that
¢71Y \ X] C BX \ ApX. Suppose to the contrary that ¢=1(p') N Ap X is non-empty for
some p’ € Y\ X. Let t' € ¢~ 1(p') N ApX. Let Z be the quotient space of 3X obtained by
contracting each (non-empty) subset ¢~!(p) \ ApX where p € Y \ X to a point z, with
the quotient mapping ¢ : X — Z. Then as in (1)=(2) one can verify that Z is compact.
Consider the subspace

T=q[XU(BX\ApX)U{t'}]
of Z. Then T is a Tychonoff extension of X with the compact remainder
T\ X =q[(BX\ ApX)U{t'}].

Note that T is dense in Z and therefore Z is a compactification of T'. Let f : 8T — Z and
1 : X — BT be the continuous extensions of idr and id x, respectively. Since f¢ : B X —
Z agrees with ¢ on X we have f1 = ¢. By Lemma and since BX \ ApX C ¢~ [T\ X]
(and X is locally-P) it follows that T € &5(X). We verify that Y < T} our assumption
will then imply that T € //pQ(X ), from which we will derive a contradiction. By Lemma
to show that Y < T it suffices to verify that each ¢~1(¢) where ¢ € T'\ X is contained
in ¢~!(p) for some p € Y\ X. Let t € T'\ X. Note that by Theorem 3.5.7 of [5] (and
since f|T = idr and Z is a compactification of T') we have f[3T \ T] = Z \ T and thus
f~1(t) = {t}. Therefore

YT =T TN )] = (fe) TN ) = a7 (@)

and thus by the definition of Z it follows that 1 ~1(t) C ¢~ !(p) for some p € Y\ X. This
shows that Y < T. Consider the subspace 77 = T \ {#'} of T. Then T” is a Tychonoff
extension of X with the compact remainder 77\ X = ¢[8X \ ApX]. By Lemma and
since BX \ A\pX C ¢ ![T"\ X] (and X is locally-P) it follows that 7" € &2 (X). But this
contradicts the minimality of T, as 1" is properly contained in T". =
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REMARK. Theorem fails if one omits the requirement “P satisfies Mrowka’s con-
dition (W)” (implicit in the definition of the compactness-like topological property P)
from its statement (see Example below).

In the following we provide examples of pairs P and Q of compactness-like topological
properties. The topological properties P and Q assumed in the statement of Lemma [2.8
(and thus in the statements of all its corollaries which constitute the main results of this
article) are required to be a pair of compactness-like topological properties.

EXAMPLE 2.16. Let «, 6, x and p be infinite cardinals and let X be a Hausdorff space.
For a collection &7 of subsets of X and an x € X let

Oz, o) =card({A € & : x € A}).

For more details on the following definitions see [1]], [33] and [38]. The space X is called (2)
wu-Lindelof ((3) [0, k]-compact, respectively) if every open cover of X (of cardinality < &,
respectively) has a subcover of cardinality < p (< 6, respectively). The space X is called
(4) paracompact, (5) metacompact, (7) subparacompact, (11) para-Lindeldf, (12) meta-
Lindeldf, (14) screenable, (15) o-metacompact, (9) o-para-Lindeldfif every open cover of X
has a (4) locally finite open, (5)" point-finite open, (7)" o-locally finite closed, (11)" locally
countable open, (12)" point-countable open, (14)" o-disjoint open, (15) o-point-finite
open, (9)" o-locally countable open refinement. The space X is called (16) weakly 6-
refinable, (8) 6-refinable (or submetacompact), (17) weakly 60-refinable, (13) d6-refinable
(or submeta-Lindeldf) if every open cover of X has an open refinement ¥ = (J{¥;, :
n € N} such that for any z € X there exists some n € N with (16)' 0 < O(z, ¥,,) < Ny,
(8) 0 < O(z,¥,) < Vg and each ¥, covers X, (17) 0 < O(x,7;) < Ng, (13)' 0 <
O(z, 7,,) < Xy and each ¥}, covers X. The space X is called (10) a-bounded if any subset
of X of cardinality < « has compact closure in X. Moreover, let (1) be compactness and
(6) be countable paracompactness.

Let P = regularity + (i) where ¢ = 1,...,10 and Q = regularity + (i) where i =
1,...,17. Then P and Q is a pair of compactness-like topological properties. That Q
is hereditary with respect to clopen subsets follows from Theorem 7.1 of [I]. Also, by
(a modification of) Theorem 3.7.24 and Exercise 5.2.G of [5] and Theorem 5.9 of [I] it
follows that Q is inverse invariant under perfect mappings. (For the case of a-boundedness
note that for a perfect surjective f : X — Y, when Y is a-bounded, if A C X has
cardinality < « then card(f[A]) < a and thus cly f[A] is compact. But since

AC A C f ey fIA]]

and the latter is compact (as f is perfect), its closed subset cly A is also compact, that
is, X is a-bounded.) Next, we verify that Q satisfies Mréwka’s condition (W). We prove
this for the cases when Q is paracompactness and subparacompactness. The remaining
cases can be proved analogously.

Let Q be paracompactness (subparacompactness, respectively). Let X be a Tychonoff
space, let p € X and let & be an open base for X at p such that X \ B is paracompact
(subparacompact, respectively) for any B € %. Let % be an open cover of X. Let
peEBCcly BCUwhereU € % and B € #A. Then ¥ ={V\B:V € %} is an open
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cover of X \ B. Thus there exists a locally finite open (in X \ B) refinement # of ¥ (a
o-locally finite closed (in X \ B) refinement % of ¥, respectively). Now if

o ={X\cxB:Wew}U{U}

(o = # U{clx B}, respectively) then & is a locally finite open refinement of % (& is a
o-locally finite closed refinement of %, respectively). Thus X is paracompact (subpara-
compact, respectively).

Note that a-boundedness satisfies Mréwka’s condition (W) by Theorem 3.1 of [16].
That P is finitely additive and invariant under perfect mappings follow from Theorems
5.1, 5.5, 7.3 and 7.4 of [I] and Exercises 5.2.B and 5.2.G of [5]. Theorem 3.1 of [16]
provides a few more examples of topological properties satisfying (W). Among them we
mention realcompactness and Dieudonné completeness which are hereditary with respect
to clopen subsets and inverse invariant under perfect mappings (with Tychonoff domains);
see Theorems 3.11.4 and 3.11.14 and Problem 8.5.13 of [5]. That Dieudonné completeness
is inverse invariant under perfect mappings is well known; it can also be proved by
using the fact that a Tychonoff space X is Dieudonné complete if and only if for any
p € BX \ X there exists a paracompact subset T of X such that X C T C X \ {p}
(see Problem 8.5.13 of [B]) and that paracompactness is inverse invariant under perfect
mappings.

In addition to the above topological properties the list of topological properties sat-
isfying (W) includes: screenability, N-compactness [27], almost realcompactness [7] and
zero-dimensionality (see [I6] and [I7] for details).

In the following we give an example of a topological property P which does not
satisfy (W). At the same time we show that the requirement “P satisfies Mréwka’s
condition (W)” (implicit in the definition of the compactness-like topological property P)
cannot be omitted from the statements of Lemma 2.8 and Theorems and upon
them the rest of this article rely.

ExXaMPLE 2.17. Let X be a locally compact paracompact non-o-compact space. Then
X can be represented as

X=px (2.1)

iel

for some index set I, where each X; is o-compact and non-compact (see Theorem
5.1.27 and Exercise 3.8.C of [5]). Assume the representation given in (2.1). Let P be
o-compactness. Obviously, P is clopen hereditary, finitely additive and perfect. We show
that P does not satisfy Mréwka’s condition (W). Note that with the above notation

ApX = U { clgx ( U Xi> :JC1is countable}.
icJ

Also, note that since X is non-o-compact, 5X \ Ap X is non-empty. Contract the compact
subset BX \ ApX of X to a point p to obtain a space T and denote by ¢ : 5X — T the
quotient mapping. Note that T is compact (as it is a Hausdorff continuous image of 5X)
and contains X as a dense subspace. Consider the subspace Y = X U {p} of T. We show
that for any open neighborhood V of p in Y the set Y \ V' is o-compact while Y itself is
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not o-compact. Let V' be an open neighborhood of p in Y. Let V’ be an open subset of
T such that V' NY = V. Then since p € V' we have

BX\MpX =q (p) Cq ' [V']

and thus X \ ¢7![V'] € ApX. Therefore by compactness
BX\ g V'] C clﬁx( U Xi) U---U c1BX< U Xi) - clﬁX(U XZ->
i€y i€Jm =
where m € N, each Jy,...,J,, C I is countable and J =J, U---U J,,. Now
Y\V=0BX\¢'V))nxc|JX:
ieJ

being closed in the latter (o-compact) set is o-compact. To show that Y is not o-compact

suppose the contrary and let Y = |J)~ | K,, where K,, is compact for any n € N. Let
p € K; where j € N. Then

BX\ApX =q ' (p) C q ' [K)]
and thus K,, = ¢ '[K,] C ApX for any j # n € N. Arguing as above for any j #n € N

we have
K, Celax (|J Xi)
i€H,
where H,, C I is countable, but (since K,, C X) this implies that K,, C UieHn X;. Let
H=%,_, Ha. Then

fj K, c |J X (2.2)

j#n=1 ieH

Choose some u € I\ H. (This is possible, as H is countable and I is uncountable,
because by our assumption X is non-c-compact and X;’s are o-compact.) Since by our
assumption X, is non-compact, clgx X, \ X, is non-empty. Let ¢ € clgx X, \ Xy C ApX.
Then ¢t € T\ ' Y. We show that ¢ € cly K, contradicting the compactness of K;. Let W
be an open neighborhood of t = ¢(t) in T. Then ¢~![W] is an open neighborhood of ¢ in
BX and therefore X,, N g~ [W] is non-empty. Let z € X,, N ¢~ 1[W]. Note that

XUEX \pX) =g ) = [ | K]
n=1
= q”{ G Kn} Ug K] = [j K, Uq K.
jn=1 j#n=1

By and since X, NJ;cy Xi = 0 we have = ¢ U;:énzl K, and thus by the above
r € ¢ '[K;]. Therefore x = g(z) € W N K; and thus W N K; is non-empty. This
shows that ¢ € cly K;. Therefore Y is not o-compact. Thus for this specific choice of P
Mréwka’s condition (W) fails. By Lemma we have T = BY and if ¢ : X — BY is
the continuous extension of idx then ¢ = ¢. Also, by the above Y does not have P while
¢71Y \ X] = BX \ ApX. Therefore in the statements of Lemma and Theorems m
and the requirement “P satisfies Mréwka’s condition (W)” cannot be omitted.
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3. Compactification-like P-extensions with countable remainder

It is a well known result of P. Alexandroff that every locally compact non-compact space
has a compactification with one-point remainder, called the one-point compactification
or the Alexandroff compactification of X. One can consider P-extensions with one-point
remainder (see [9], [12], [13], [14] and [I5] for some recent results) or more generally,
P-extensions with countable remainder for various topological properties P. Below, after
some definitions we state some known results which motivated our study in this chapter.

DEFINITION 3.1. Let n € N. An extension with n-point (countable, respectively) remain-
der is called an n-point (a countable-point, respectively) extension. Similar definitions
apply for compactifications.

Countable-point compactifications are also called Ng-point compactifications or count-
able compactifications. Throughout this article countable means countable and infinite.

NoTATION 3.2. For a Tychonoff space X the set of all compactifications of X is denoted
by #(X).

In [18] K. D. Magill Jr. gave the following characterization of those spaces which have
an n-point compactification and thus generalized the well known result of P. Alexandroff.

THEOREM 3.3 (Magill [18]). Let X be a locally compact space and let n € N. The following
are equivalent:

(1) A (X) contains an element with n-point remainder.
(2) X =KUUU---UU,, where K,Uy,...,U, are pairwise disjoint, each Uy, ..., Uy, is
open in X and K UU; is non-compact for anyi=1,...,n.

Also, in a separate article [19], Magill characterized those spaces having a countable-
point compactification with compact remainder. Recall that a space X is called totally
disconnected if all (connected) components in X are one-point sets.

THEOREM 3.4 (Magill [T9]). Let X be a locally compact space. The following are equiva-
lent:

(1) 2 (X) contains an element with countable remainder.

(2) A (X) contains an element with n-point remainder for any n € N.

(3) A (X) contains an element with infinite totally disconnected remainder.
(4) BX\ X has an infinite number of (connected) components.

Magill’s studies were continued by various authors (see e.g. [2], [39] and [I1] among
others). In [II] T. Kimura generalized Magill’s result of [I§] (Theorem and gave
the following characterization of spaces having a countable-point compactification with
compact remainder.

THEOREM 3.5 (Kimura [11]). Let X be a locally compact space. The following are equiv-
alent:

(1) 2 (X) contains an element with countable remainder.
(2) There exists a bijectively indexed collection {U, : n € N} of pairwise disjoint open
subsets of X with compact boundary and non-compact closure.
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In [23] J. R. McCartney generalized Magill’s result still further. To state McCartney’s
result, we need some preliminaries.

Let A be an infinite compact countable space. As in [22] we define the successive
derived sets A(©) of A for any ¢ < Q by A®) = A ACHD = (AQ)) and

A© — ﬂ{A(”) ‘n<(}

whenever ¢ is a limit ordinal. Then A(©)’s form a decreasing sequence of compact subsets
of A. Note that if for some ¢ < Q the set A% is infinite then A\ AC+D is also infinite,
as otherwise, since

A — (A(C) \A(CH)) U AL,

the set AT will be a compact non-empty space without isolated points and therefore
A+ C A will be uncountable. Since

U{A(C) VACHD e <l c A

and A is countable there exists some A\ < Q such that A®) \ AC+D = (). Suppose that
X is the least with this property. Then by the above A®) is finite and thus it is empty.
Note that A is not a limit ordinal, as otherwise, by definition A®) is non-empty, as it is
the intersection of a collection of compact non-empty subsets with the finite intersection
property. Let A\ = o+ 1. Then A(“) is non-empty and since (A(®)) = AX) = (), it is finite.
We say that an infinite compact countable space A is of type (o,n), where o < £ and
n € N, if card(A(®)) = n. From the above discussion it is clear that the type of A exists
and is uniquely determined.

THEOREM 3.6 (McCartney [23]). Let X be a locally compact space and let 0 < o < Q.
The following are equivalent:

(1) A (X) contains an element with countable remainder of type (o, 1).
(2) There exists o family {%: : ¢ < o} of infinite collections of pairwise disjoint open
subsets of X with compact boundary satisfying the following:

(a) For any ( < o, U € U and finite W C \J{%, : n < (} the set clx U\UW is
non-compact.

(b) For any distinct {,n <o, U € % and V € U, there exists a finite W C \J{% :
& < (} such that either

cx U\ (VUU”//) or (clx Uneclx V)\ |7

18 compact.

(c) For any ( <n <o and U € U, there exists an infinite ¥ C U such that for
any V € ¥ there exists a finite W C |\ J{% : & < (} such that clx V\(UUU¥)
18 compact.

It is worth mentioning that the general problem of characterizing spaces with a
countable-point compactification remains open. (See [10], also [3], for a characterization
of metrizable spaces having such compactifications.)

Our aim in this chapter is to generalize the above results to compactification-like P-
extensions. Note that part (2) of the lemma below generalizes Magill’s theorem in [19]
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(Theorem provided that one replaces P and Q, respectively, by compactness and
regularity, and note that for these specific choices of P and Q and a locally compact
space X we have Ap. X = X and the two notions “Y is a minimal P-extension of X with
Q” and “Y is a compactification of X” coincide.

LEMMA 3.7. Let P and Q be a pair of compactness-like topological properties. Let X be
a Tychonoff space with Q.

(1) Let n € N. The following are equivalent:

(a) A (X) contains an element with n-point remainder.

(b) GR(X) contains an element with n-point remainder.

(¢) X is locally-P and BX \ ApX contains n pairwise disjoint non-empty clopen
subsets.

(d) X is locally-P and BX \ A\pX has at least n (connected) components.

(2) The following are equivalent:

(a) ///pQ(X) contains an element with countable remainder.

(b) OF(X) contains an element with countable remainder.

(¢) X is locally-P and BX \ ApX contains an infinite number of pairwise disjoint
non-empty clopen subsets.

(d) X is locally-P and BX \ApX has an infinite number of (connected) components.

(3) Let 0 < 0 < Q and let n € N. The following are equivalent:

(a) ///7,Q(X) contains an element with countable remainder of type (o,n).
b) ﬁg(X) contains an element with countable remainder of type (o,n).

(
(c) X is locally-P and there exists a family {F¢ : ¢ < o} of collections of pairwise
disjoint non-empty clopen subset of X \ ApX satisfying the following:

(i) For any ¢ < o, card(#) = Ry and card(J4;) = n.
(ii) For any ( <o and H € A7 we have
H\| G e Ay :n< #0.
(ili) For any ¢ <n <o, H € 7 and G € 4, either
HCGU| {Fes:6<(} or HNGC| JF et &< ()
(iv) For any ¢ <n <o and H € J, the set
{Fes:FcruJice#:c<)}
is infinite.
Proof. (1). It is clear that (1.c) implies (1.d) and that (1.b) implies (1.a).
(L.a) implies (1.c). Consider some Y € .#5(X) with an n-point remainder ¥ \ X =
{p1,...,pn}. Let ¢ : BX — BY be the continuous extension of idx. Let Vi,...,V,, be

pairwise disjoint open neighborhoods of p1,...,p, in 3Y, respectively. By Lemma 2.8 we
have BX \ ApX C ¢~V \ X] and X is locally-P. Let i = 1,...,n. Then

o[0T Vi \ ApX] C 9[BX \ ApX] C o[ [Y \ X]] C Y\ X
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and therefore
Plo ' VII\ ApX] NV S (YA X)NV; = {pi}.
This gives
¢ VAN AP X C o7 [o[o7 VI \ ApX]] No~! V]
= ¢~ oo VII\ M X] N Vi] C o7 (pi),
which implies that
VI AR X =67 (i) \ AP X. (3.1)

Let H; denote the set in (3.1). Then H; is clopen in 8X \ ApX and it is non-empty, as
otherwise

BX\ApX Co Y\ X\ o™ () =7 {(Y \ X))\ {pi}] =07 [(Y \ {pi}) \ X],
which by Lemma implies that the subspace Y \ {p;} of Y has P, contradicting the
minimality of Y. That H;’s are pairwise disjoint follows from their definitions.

(1.d) implies (1.b). Let Cy,...,C, be n distinct components of 5X \ ApX. Then
arguing as in the proof of Theorem 2.1 of [19] and since in compact spaces components
and quasi-components coincide, each component is the intersection of all clopen subsets
containing it (see Theorem 6.1.23 of [5]). Since

Oy C (BX\ ApX)\ O C
k=2

with the latter an open subset of 83X \ ApX, by the compactness of X \ A\pX, there
exists a clopen subset Hy of 3X \ ApX such that

Cy CHy C (BX\ X pX)\ | Ci
k=2
Suppose inductively that for some j = 1,...,n — 1 the pairwise disjoint clopen subsets
Hy,...,H; of BX \ ApX are defined in such a way that

Ci € H; C (BX \ ApX)\ (UHku U Ci)
k=i+1

for any i = 1,...,j. Note that Cj11 N H; =0 when i = 1,...,j. Thus

Cit1 C (BX\ApX)\ (UHkU U Ck)

k=j+2
Let Hj 41 be a clopen subset of 3X \ ApX such that

Cj1 C Hipr C (BX \ ApX) ( U Hy U U Ck)
k=j+2
By Lemma we have X C ApX. Let T be the quotient space of X obtained by
contracting the compact subsets
n—1

Hy, ..., Hy_1,(BX\ MpX)\ | Hx
k=1
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of BX \ X to points p1,...,Dn, respectively. Then T is Tychonoff and contains X as a
dense subspace. Consider the subspace Y = X U {py,...,pn} of T. By Lemma we
have Y € éi,,Q(X ). Since T is a compactification of Y there exists a continuous mapping
v : BY — T such that 4]V = idy. Let ¢ : X — BY be the continuous extension of
idx. Then since y|X = idx = ¢|X we have v = ¢. By Theorem 3.5.7 of [5] we have
Y[BY \Y]=T\Y. Thus

O p) =7t [771(2%)] = () (i) =q ' (pi)
for any ¢ = 1,...,n. Therefore

PTHY N\ X] = ¢ Y\ X] = BX \ ApX,

which by Theorem implies that Y € Op(X).

(2). Tt is clear that (2.b) implies (2.a).

(2.a) implies (2.d). Consider some Y € .#5(X) with countable remainder. Let ¢ :
08X — BY be the continuous extension of idx. By Lemma we have SX \ \pX C
¢71[Y'\ X] and X is locally-P. Let n € N and consider some distinct elements py,...,p, €
Y \ X. Define a continuous f : 5Y — [1,n] such that f(p;) = for any ¢ = 1,...,n. Since
f[Y \ X] is countable we can find some real numbers 71, ...,7,4+1 such that

r<l<rg<2<---<rp,<n<rpy1 and r; ¢ f[Y\X]foranyi=1,...,n+ 1L
Let i = 1,...,n. Define B; = f~[(r;,7+1)]. Then

Joiml =0 [UB] 267\ X] 255\ X,

Now ¢~ 1[B;] \ ApX is non-empty, as B; is non-empty and by Theorem the set
#~1(p) \ \pX is non-empty for any p € Y \ X. Thus ¢~ '[B;] \ A\pX, where i = 1,...,n,
are n pairwise disjoint non-empty open (and therefore clopen, as their union is X \ Ap X)
subsets of X \ ApX, which implies that 3X \ ApX has at least n components. Since n
is arbitrary the result follows.

(2.d) implies (2.c). Let C' and D be distinct components of X \ ApX. Let U be open
in BX \ ApX and such that C C U and DNU = (. Then arguing as in (1.d)=(1.b)
and since U is an open subset of X \ ApX containing C' there exists a clopen subset
V of BX \ ApX such that C C V C U. Define H; to be either of the (non-empty) sets
V oor (X \ ApX) \ V which misses an infinite number of components of 5X \ A\pX.
Now inductively suppose that Hy, ..., H, are defined such that H;’s are pairwise disjoint
non-empty clopen subsets of X \ A\pX and H; U---U H,, misses an infinite number of
components of 53X \ ApX. Let E and F be distinct components of X \ ApX missing
HyU---UH,, and let W be open in 3X \ApX and such that E C W and FNW = (). Then
since W\ (Hy U---U H,,) is an open neighborhood of F in X \ A\p X, arguing as above
there exists a non-empty clopen subset H,, 1 of 3X \ ApX such that H, 1 N H; = for
any ¢ = 1,...,n, and it misses an infinite number of components of X \ ApX contained
in (BX\ ApX)\ (HLU---UH,). The sequence Hy, Ha, ... consists of pairwise disjoint
non-empty clopen subsets of X \ ApX.

(2.¢) implies (2.b). Suppose that X is locally-P and there exists a bijectively indexed
sequence Hi, Ho,... of pairwise disjoint non-empty clopen subsets of 85X \ A\pX. By
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Lemma we have X C ApX. Let T be the space obtained from X by contracting
the sets

oo
(BX\ApX)\ | Hy, Hz, Hs, ...
k=2
into points p1,pe, ..., respectively, with the quotient mapping ¢ : X — T. Then T is
compact, since as we show it is Hausdorff (and a continuous image of SX). Suppose that
xz,y € T are distinct elements. We consider the following three cases:

CASE 1. Suppose that z,y € ApX. Since x and y can be separated by disjoint open
subsets in ApX and ApX is open in SX they can also be separated by disjoint
open subsets in T'.

CASE 2. Suppose that x € ApX and y = p; for some j € N. Let P and @ be disjoint
open neighborhoods of x and X \ ApX in X, respectively. Then ¢[P] and ¢[Q)]
are disjoint open subsets of T separating x and y. The case when x = p; for some
i € Nand y € ApX is analogous.

CASE 3. Suppose that x = p; and y = p; for some ¢,7 € N. Then either i > 2 or j > 2,
say j > 2. Let P and @ be disjoint open neighborhoods of (X \ ApX)\ H; and H;
in BX, respectively. Then ¢[P] and ¢[Q)] are disjoint open subsets of T" separating
r and y.

Note that T contains X as a dense subspace. Consider the subspace Y = X U{p1,p2,...}
of T. Then Y is a countable-point extension of X with the compact remainder Y\ X =
q[BX \ ApX]. Now since T is a compactification of Y and ¢71[Y \ X] = X \ A\p X, by
Lemma we have Y € £’§(X ). To complete the proof we only need to verify that Y is
optimal. But this follows by an argument similar to the one in (1.d)=-(1.b).

(3). Tt is clear that (3.b) implies (3.a).

(3.a) implies (3.c). Consider some Y € .5 (X) with countable remainder of type
(o,n). For any ¢ < o let

(YAX)ON Y \NX) D = {pf i€ Je}

where p;’s are bijectively indexed. Note that if ( < ¢ then card(J;) = N, as otherwise
(Y \ X)© is finite and thus, since

(Y\AX)@ v\ x0)H = (v \ X)),
it follows that (Y \ X)) = (), contradicting card((Y \ X)(?)) = n > 0. Also
card(J,) = card((Y\ X))\ (Y X)(U+1)) = card((Y"\ X)(U)) =n.

Let Jo =N for any ¢ < o and J, = {1,...,n}. For any ( < o and i € J; there exists an
open neighborhood VZ—C of p? in BY such that Vf Ny \x)© = {pf} Indeed, we prove
the following.

CLAIM. For any ¢ < o there exists a collection {Wf 11 € J¢} of open subsets of BY such
that Wf Ny \X)© = {pf} for any i € J: and Wf N ch =0 for any distinct i,j € J;.

Proof of the claim. Let ( < 0. We inductively define Wf’s for any i € J¢. Let Wf be an
open neighborhood of p% in BY such that clgy Wf C Vf. For an m € N suppose that
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the open subsets Wf ,..., W& of BY are defined such that Wf N Wj( = () for any distinct
i,7=1,...,m and that
i—1
Pt e WE Celgy W CVEN clgy ( U Wj()
j=1
for any ¢ =1,...,m. Since
WENYAX© CVEN Y\ X0)© = {pf)
this implies that W¢ N (Y \ X)© = {p¢} for any i = 1,...,m; also note that pan ¢
clgy Wf. Thus Vniﬂ \ clﬂy(Wf U---UWS) is an open neighborhood of pan in BY.
Define Wﬁlﬂ to be an open neighborhood of pfnﬂ in BY such that

clgy W1$1+1 - Véﬂ \ clgy ( U Wf)-

j=1
The case when ( = o is analogous.
Let ¢ < o and i € J;. Let f¢ : BY — I be continuous with f¢(p$) = 0 and f[5Y \
W) C {1} and let 75 € (0,1) \ f¢[Y\ X], which exists, as Y \ X is countable. Denote
Ci = (o], Di = () 7H0rf)] and Hf =67 CT\ ApX
where ¢ : X — BY is the continuous extension of idx. For any ¢ < o let
M ={HS :ieJe}
We verify that the collection {7 : { < o} has the desired properties. First note that for
any ¢ < o and any distinct 4, j € J we have
HYNHS C o O N g OS] C o WEIN g W] = ¢~ W nWE] = 0.
By definition Hf’s are open in S8X \ ApX. We show that Hf’s are closed in SX \ ApX
and non-empty. Let ( < o and ¢ € J;. Note that by the choice of rg we have
)N\ X) =0
and thus
CN(Y\X)=Dn(Y\ X). (3.2)
Therefore
¢ CiINT YV A\X] = ¢ [CEN(Y\X)] = ¢ ' [DEN(Y\X)] = ¢! [Df]Ne~ [V \ X].

By Lemma [2.§ we have 53X \A\pX C ¢~'[Y'\ X] (and X is locally-P), which by the above
yields
Hf = ¢~ [CS]\ MpX = ¢~ [DS]\ ApX. (3.3)
This shows that Hf is closed in X \ ApX. Next, suppose to the contrary that Hf = 0.
Consider the subspace
V' =XU((Y\X)\C)
of Y. Then Y” is an extension of X and Y’ \ X is compact, as it is closed in Y\ X. Also

¢ YINX] = [(Y\X)\CF] = 67 [V \ X]\ 671 [CF] 2 BX \ Ap X.
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Thus by Lemma we have Y’ € é‘)PQ(X ). Note that Y is properly contained in Y, as

pg ¢ Y, because f; (pf) = 0 and thus pg € C’f. But this contradicts the minimality of Y.

This shows that each %, where ( < o, is a collection of pairwise disjoint non-empty

clopen subsets of 5X \ ApX. Also, (3.c.i) holds, as card(#7) = card(J¢) for any ¢ < o.
We now verify (3.c.ii). Let ( < o and H € J#. Suppose to the contrary that

H\| G e A :n<y =0
Let H = Hf for some ¢ € J¢. Since Hf is compact, as it is closed in X \ ApX, there

exists some Hf; € A, withi; € Jo; and (5 < ¢, where j =1,...,k and k € N, such that
Hf C Hfll u---u ka’“ Consider the subspace

k
Y'=XU((Y\X)\ (c\ | )DS
(001 51U t)
of Y. Using we have

k k k
o7t e U DY \ e X = (67 CEIN U 07 IDI) \ A X = HE\ | HY =0
Jj=1 j=1 j=1
and thus

oY\ X] = ¢! [(Y\X)\(Cf\o DC)] = ¢ Y\ X]\$~! [05\0 ng} D BX\ApX.

Note that Y’ \ X is compact, as it is closed in Y \ X, and therefore by Lemma we
have Y’/ € <§’7,Q(X ). We show that Y’ is properly contained in Y. This contradicts the
minimality of Y and proves (3.c.ii). Indeed, we verify that pf ¢ Y’. By the definition of
ff we have pg € C’f. Also, for any j = 1,...,k we have pg ¢ Df;, as otherwise since
ij - Wf]] it follows that pf € Wf]] But since ¢; < ¢ and thus (; + 1 < ¢ we have

ple (W \X)© v\ )G = (v \ X))

and therefore Wéj, being an open neighborhood of pg in BY, has an infinite intersection
with (Y \ X)(%), contradicting the definition of ijj .

Next, we show (3.c.iii). Suppose that ( <n <o, H € % and G € J¢,. Let H = Hf
and G = HJ77 for some ¢ € Je and j € J,,. We have the following cases:

CASE 1. Suppose that pg € C;’. First note that each p € Y \ X is of the form pi for
some { < o and k € Je. To show this let a < Q be the least ordinal such that
p ¢ (YV\ X)), Such an « exists, as (Y \ X)) = (), and it is necessarily not a
limit ordinal, as otherwise

pe({IY\X)®:¢<a} =\ X).

Let € be such that a = € + 1. Then p € (Y \ X)© \ (V' \ X)E+D and thus p = p§
for some k € J¢. Since Df C Wf, by an argument similar to the one in (3.c.ii), for
any pi € Df where k£ € Je we have £ < ¢ and if £ = ( then pi = pg, as by the
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definition of W¢ we have W& N (Y \ X)(© = {p$}. Therefore in this case
(DS\NCHN(Y\X)C{p}:&<Cand ke Je} € J{CF € < Cand k€ Je},

which (since 8X \ ApX C ¢~ 1[Y \ X]) implies that
He \ H] = (¢7' D]\ ¢ [C]]) \ Ap X

C ((¢ DI\ ¢ CT) N Y\ X)) \ Ap X

CJ{o HCI\ApX e <Cand ke Jeh = J{H; : £ <Cand ke Je}.
Thus

Hf CHIU|J{F e A6 <}

and (3.c.iii) holds in this case.
CASE 2. Suppose that pf ¢ C?. Arguing as in Case 1 we have

DENCIN(Y\X)C{p}:&<Cand ke Je} € J{CF €< Cand k€ ).
Therefore
H{ 0 H] = (67" D71 N ¢~ [C]]) \ ApX
= (o7 DTN [CTIN T YV \ X]) \ ApX
CJ{o MO\ MpX e <Cand ke Jeh = J{H; : € <Cand ke Je}.
Thus (3.c.iii) holds in this case as well.
Finally, we verify (3.c.iv). Suppose that ( < n < o and H € J7,. Let H = HJ77 for
some j € J,. We first verify that
C;.’ N ((y \ X)(C) \ (Y X)(<+1))
is infinite. Suppose it is finite. Since
/
pj e (YA X) € (V\ X)) = ((v\ X)©)
and C7 is an open neighborhood of pJ in BY the set
CIO A X)9 = (] n (VA X) DN\ X)) u (e ny\ X))
is infinite. But then since by (3.2)) we have
+1) _ +1
CIn(Y\ X)) =DIn (v X)cHh

the latter set is an infinite compact space without isolated points and therefore uncount-
able. This contradiction shows that pf € C;] for an infinite number of ¢ € J.. But if

pg € C] for some i € J¢, arguing as in Case 1 of (3.c.iii) we have
HY CHIU| {G e - € < ().

This shows (3.c.iv).

(3.c) implies (3.b). Consider a family {4 : ( < o} of collections of pairwise disjoint
non-empty clopen subsets of GX \ A\pX satisfying (3.c.i)—(3.c.iv). For any ¢ < o let
M = {Hf i € Je} where Hf’s are bijectively indexed. Note that if (¢, %) # (7, j), where
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¢,;n<o,i€Jeand j€ Jy, then Hf # HJ. This is clear if ( = 7, and if { < 7 then it
follows from (3.c.ii), as

0#H\| G e A:&<ny CHI\Hj.

Similarly for n < (. Before we proceed with the main proof we prove the following
generalized version of (3.c.iv).

CrLamM. For any C,m,...,nk <n < o, where k is a non-negative integer (1, ...,k may
not be distinct) H € 4, and H; € 7, for anyi=1,...,k, the set

{Fejﬁ:Fg(H\OHi)UU{Ge%%:£<C}} (3.4)

i=1

s infinite.

Proof of the claim. If k = 0 then the claim is simply (3.c.iv). Assume that k& > 0. We
use transfinite induction on 7. Suppose that n = 1, k € N, (,m,...,m < n, H € J&
and H; € s, for any ¢ = 1,...,k. Then (,m1,...,m = 0. By (3.c.iv) the set F =
{F € s : F C H} is infinite. Now since the elements of .#7 are pairwise disjoint, each
Fe ZF\{Hy,...,H} misses H; for any i = 1,...,k, and thus F C H\ (H; U---U Hy).
Therefore holds for n = 1. Now inductively suppose that holds for any & < 7.
Let {,n1,...,m <n < o, where k € N, H € J¢, and H; € 52, for any i =1,...,k. We
may assume that 7y,...,m—-1 <m = -+ =1n; for some | € N with [ < k. Let

%:{Keffg:Kg(H\OHi)UU{Ge%:£<C}}.

We consider the following cases:

CASE 1. Suppose that n, < ¢. Since ¢ < 7, by (3.c.iv) the set
F={Fes:FcHUJ(Ge M <}

is infinite. Now for any F' € % we have

k
PN J{Ge:c<ycH\JGet:c<yCH\|JH,
i=1
and thus F € J# . Therefore in this case .% C ¥ and thus J# is infinite.
CASE 2. Suppose that 7 = ¢. By (3.c.iv) the set

9:{Fe%:F§HUU{GE%Z§<C}}

is infinite. Let F' € #\{Hx,..., Hy}. Then each H; € J¢,, = 5 where i =1,... .,k
is disjoint from F' € J¢;. On the other hand, since n; < ( forany ¢ =1,...,1 -1

we have
-1

F\{Ge st :£<CCH\|JH;,
i=1
which combined with the above gives F' € J¢. Therefore & \ {H;,...,Hy} C &
and thus .# is infinite.



34 M. R. Koushesh

CASE 3. Suppose that 7 > ¢. Since n < 1, by (3.c.iv) the set
fz{Le%k :LgHuU{Gleg:qu}}
is infinite. Choose some L € £\ {H,,...,Hy}. Then
LQHUU{GE%%:&<T];€}

and thus by compactness L € HU G U---UGy,, where G; € J,, & < n for any
1 =1,...,m and m € N. Now since

<7£17"'7£m7n17"'777l—1 <Nk <n

by our induction assumption the set
y:{Feﬁi«;Fg (L\(GGiUZUHi»UU{Ge%’g:£<§}}
is infinite. If F € . then -
A\ J{Gest:e<ycr ( QGiuqui) - (L\QGi) \ZQHZ- c H\lqﬂ

which together with the fact that L € J7, is disjoint from H; € J#,, = J£, for
any i =1,...,k, gives

k
P\ JlGe ¢ <3 cH\|JH.:
i=1
This shows that F' € # . Therefore % C % and thus ¢ is infinite in this case as
well.

This proves the claim.
We now return to the main proof. Fix some k € J,,. For any ( < o and ¢ € J; define
P = HO\| J(H € # 1€ < ¢}
if (¢,1) # (0,k), and
Pf = (BX\XpX)\|J{H € # : € <o and H # HY}
if (¢,1) = (0,k).

CLAIM. The collection {Pf ¢ < oandi € Jc} ois bijectively indexed and partitions
BX \ ApX into pairwise disjoint non-empty subsets.

Proof of the claim. We first show that
H{Pf:¢<oandie Ji}=BX\ pX. (3.5)

Let x € X\ \pX. If z ¢ Hf for any ( < o and i € J¢, then clearly € P7. In the other
case there exists some ( < ¢ such that = € Hf for some i € J¢. Let ¢ be the least with
this property. If ({,i) # (o, k), then by definition it is clear that x € Pf. If (¢,4) = (0,k)
then again x € Pf, as the elements of J# are pairwise disjoint and = ¢ H for any H € /2,
with < ¢. This shows . Next, we show that Pf NP/ = whenever ¢,n < o,i € Jg,
j € Jy and (¢,7) # (n, 7). First suppose that ({,4), (n,j) # (o,k). If ( = n then clearly
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PSNP!C H{NH! =0.1f ¢ <7 then Pf NP C Hy NP = 0. Similarly for n < ¢. Next,

suppose that ((,i) = (o, k). Then Pf NP C Pf N HJ = 0. Similarly for (n,7) = (o, k).

Finally, we verify that Pf’s are non-empty. Let ¢ < o and i € J.. If ((,4) # (0, k) then

Pf is non-empty by (3.c.ii). If (¢,4) = (o, k), then again using (3.c.ii) we have
0#HNJUH € A€ <} C P

The fact that Pf’s are bijectively indexed is now immediate.

Now let T" be the space obtained from SX by contracting each Pf where ( < o and
i € J¢ to a point pg and denote by g : X — T the corresponding quotient mapping. By
Lemma we have X C ApX. Consider the subspace

Y=XU{pt:¢(<oandielJ}

of T'. In the remainder of the proof we show that Y & ﬁg(X) and that the remainder of
Y is of type (o,n). We first show that T is Hausdorff. Let s,t € T be distinct. Consider
the following cases:

CASE 1. Suppose that s,t € T\ {plC :¢ <oandi€ J:}. Then s,t € ApX. Now since
ApX is open in X and s and ¢ can be separated in Ap X by disjoint open subsets
they can also be separated by disjoint open subsets in 7T'.

CASE 2. Suppose that s € T'\ {pf :(<ocandié€ J} and t = p for some n < o and
j € Jy. Then s € ApX. Now if U and V are disjoint open subsets of X containing
s and BX \ ApX, respectively, then ¢[U] and ¢[V] are disjoint open neighborhoods
of s and t in T, respectively.

CASE 3. Suppose that s = pf and t = p? for some ¢,n < o, i € J- and j € J,;. Without
any loss of generality we may assume that ¢ < 5 and (¢,4) # (o, k). Since Hf is
clopen in X \ A\pX the sets Hf and (BX \ ApX) \HlC are compact open subsets
of BX \ MpX. Let U and V be disjoint open subsets of §X such that

Hf =UN(BX\ApX) and (ﬂX\)\'pX)\HiC =V N(EX\pX).
CLAIM. For any { <o andl € J¢ if Pf N Hf is non-empty then Pf C Hf

Proof of the claim. Suppose that Pf N Hf is non-empty for some £ <o and [ € Je.
This implies that (£,1) # (o, k), as we are assuming that (¢,4) # (o, k), and thus
by definition P N HE = (). Therefore

pr=H\| J{H € #, 0 < ¢}

Note that ¢ < & implies that Pf N Hf = () and thus £ < (. If ¢ = £, then since
Pf N Hf - Hf N Hf, the last set is non-empty and therefore Pf - Hf = Hf If
¢ > &, then by (3.c.iii) we have either

Hf CH U {H € A :a <&} or HynHf C|J{H € Ho:a <&}
The latter case leads to a contradiction, as Pf N Hf C Hf N Hf and
PfﬂU{HG%ﬂaza<f}=@.

The former case gives Pf C Hf, which proves the claim.
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From the claim it follows that ¢~![¢[U]] = U and ¢~ '[¢[V]] = V. Thus ¢[U] and
q[V] are open subsets of T and they are disjoint. It is also clear that pf € q[U], as
PZ.C - Hf C U. It remains to show that p;’ € ¢[V]. Note that by our assumption

¢ < n. To show that P;’ N Hf = () we consider the following cases:

CASE 3.A. Suppose that ¢ = n and (1,5) # (0,k). Then since pg =+ p;? we have
i # j and therefore P]' N H C Hln HS =0.

CASE 3.B. Suppose that ( =5 and (1, j) = (o, k). By our assumption ({, ) # (o, k)
or equivalently H f # HY. Therefore P;] NnH f = () by the definition of Pj".

CASE 3.C. Suppose that ( < n and (1, 7) # (0, k). By the definition of Pf we have
P C H!\ Hf and thus P/ N Hf = 0.

CASE 3.D. Suppose that { < n and (n,7) = (0,k). Then Pf N Hf = () by the
definition of P/

Thus in each case P} N H = (). Therefore Pl C (BX\ M\pX) \ H* C V and thus
p; € q[V].

This shows that T" is Hausdorff and therefore compact, being a continuous image of 5X.
It is easy to see that T' contains X as a dense subspace, and thus since X CY C T, it
follows that T is a compactification of Y and that Y is a Tychonoff extension of X. Also
Y\ X = ¢[6X \ ApX] is compact. From these by Lemma we have Y € 5739(X) Now
by Theorem and an argument similar to the one in (1.d)=(1.b) it follows that Y €
Op(X). It thus remains to show that Y\ X is of type (o,n), that is, card((Y'\ X)(?)) = n.
Indeed, we prove the following.

CLAIM. For any ¢ < o we have
YAX)O = {7 (<y<oandje Ty} (3.6)

Proof of the claim. The proof is by transfinite induction on (. Note that (3.6]) clearly
holds when ¢ = 0, as by definition (Y \ X)(® =Y\ X. Suppose that 0 < o < ¢ and that
(3.6) holds for any ¢ < a. We show that (3.6)) holds for a as well. Consider the following

cases:

CASE 1. Suppose that « is a successor ordinal. Let a« = v 4 1. Then by our induction
assumption

(Y\X)(”*):{p;-’:vgngaandjeJn}. (3.7)

Let p € (Y \ X)(® where n < ¢ and j € J,. Since (Y \ X)) C (Y \ X)), by
we have v < 7. We show that v # 7. Suppose the contrary. Clearly n < o,
as 7 = o implies that ¢ = v < a. Let U be an open subset of §X such that
H} =UnN(BX\ ApX). Then as in the proof of the previous claim, Pf C H} for
any £ < o and | € J¢ such that Pf N H} is non-empty. Thus ¢ '[q[U]] = U and
therefore ¢[U] is open in T'. Since (1, j) # (o, k), by definition P/ C H} C U. Thus
q[U] is an open neighborhood of p in T" and therefore g[U] N (Y"\ X)) is infinite.
Choose some s € ¢[U] N (Y \ X)) such that s # P}, pf- Then by we have
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5= pf for some v < £ < o and [ € J¢. Since pl{ € q|U] the set Pf ﬁH;-’ is non-empty

and thus Pf C H;7 Consider the following cases:

CASE 1.A. Suppose that £ > 7. Then since we are assuming that v = n, by the
definition of Pf we have Pf = Pf N H;] = (), which is a contradiction.

CASE 1.B. Suppose that & = . Then nn = v = £ and therefore, since by the choice
of s we have pf # pj, it follows that Pf = Pf NHJ C ng N H} = 0, which is
again a contradiction.

Thus in each case we are led to a contradiction, which shows that v < n or a =

v+ 1 < n. Therefore

(Y \ X)) C{pj:a<n<oandjcJ,}. (3.8)
Next, we show that the reverse inclusion holds in (3.8). Consider an element p
where o <7 <o and j € J,,. Let V be an open neighborhood of p;»’ in T. We show
that VN (Y \ X)) is infinite, which proves that
4 «@
pj € (YAX)D) =¥\ X)) = (v \ X)),
First note that
H Cq ' VIU| J{H € # - ¢ <n}. (3.9)

This readily follows from the definition of P} in the case when (1,j) # (o,k). If
otherwise (1, j) = (o, k), note that by the definition of P}’ we have

HI\| {He A :¢<ny C P Cq'[V]
From ([3.9) and by compactness there exist §; < n and k; € Je, where i =1,...,m
and m € N such that m
Ui -1 i
H] Cq VUl Hy
i=1

By the first claim and since v,&q, ..., &, < 7 the set
7 ={Fesnrc(m\JHg)uUice % ¢ <t}
i=1

is infinite. Now for any H;' € .# where [ € J,, since (v,1) # (0,k), as vy < a < o,
we have m
Py =H\|J{G et ¢ <y cH]\|JH Cq'V]
i=1

and thus p] € V. Therefore V N (Y \ X)) is infinite. This shows that

! (07

pj € (Y \AX)P) = (¥ \ X)),
which proves the reverse inclusion in (3.8]).
CASE 2. Suppose that « is a limit ordinal. We have

(Y \ X)) = ﬂ v\ x)™
<o
= ﬂ{p?:vgngoandjeJn}:{p;:agngaandjeJn}.
<o
This completes the inductive proof of the claim.
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In particular, we have shown that card((Y \ X)(?)) = card(J,) = n. Thus Y\ X is of
type (o,n). m
REMARK. Note that in Lemma [3.7 above part (3) implies (2), but since the proof for (3)
is quite long, a separate proof is given for (2).

The characterization given in Lemma is external (to X). Our next theorem is
dual to Lemma and gives an internal characterization of those spaces which have a
compactification-like P-extension with finite remainder, countable remainder and count-
able remainder of type (o,n). But we first need a few more lemmas.

LEMMA 3.8. Let X be a Tychonoff space and let P be a clopen hereditary finitely additive
perfect topological property. Then for any subset A of X if clgx A C ApX then clx A C
Z C C for some Z € Z(X) and C € Coz(X) such that clx C has P.

Proof. The sets clgx A and X \ ApX are disjoint closed subsets of 5X and thus they
are completely separated in X . Let f : X — I be continuous with flclgx A] C {0} and
FIBX \ ApX] C {1} Let

Z=f10,1/3]]NnX € Z(X) and C= f'[[0,1/2)] N X € Coz(X).
Then clx A C Z C C and since
clgx C = clgx (f7'[0,1/2)] N X) = clgx f[0,1/2)] € f7'[[0,1/2]] C ApX
by Lemma [2.4] the set clx C has P. m

LEMMA 3.9. Let X be a Tychonoff space and let A be an infinite compact countable subset
of X. Then there exists a bijectively indexed collection {V,, : n € N} of pairwise disjoint
open subsets of X such that V,, N A is compact and non-empty for any n € N.

Proof. We inductively define a sequence V;, Vs, ... of pairwise disjoint open subsets of
X such that V,, N A is compact and non-empty, A \ clx (V3 U---UV,,) is infinite and
VioNA =clxV,NA for any n € N. Let a,b € A be distinct and let f : X — I
be continuous with f(a) = 0 and f(b) = 1. Since f[A] is countable there exists some
r € (0,1)\ f[A]. Either f=1[[0,7)] N A or f=1[(r,1]] N A, say the latter, is infinite. Let
Vi = f7Y[0,7)]. Since Vi N A = f~[0,7]] N A is closed in A, it is compact, and thus
since

fHe ) X\ 0, r]] € X \ex
the set A\ clx V4 is infinite and
VinA=f'o,r]]nA=cxVinA.

Suppose that for some n € N the pairwise disjoint open subsets Vi,...,V, of X are
defined such that A\ clx (V3 U---UV,) is infinite, V; N A is compact and non-empty and
ViNnA=clx V;NAfori=1,...,n. Choose some distinct ¢,d € A\ clx (V1 U---UV,) and
let g : X — I be continuous with g(c¢) = 0 and g(d) = 1. Choose some s € (0,1) \ g[A4].

Then at least one of
n n

(9_1[[0,5)] \ch(U VZ)) NA and (g_l[(s’ 1]} \ClX(U V;)) nA

i=1 i=1
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say the latter, is infinite. Define
Vn+1 = g_l [[0, S)] \ ClX (U V;)
i=1

Then Vi, ..., V,41 are pairwise disjoint and since cly V,, 11 C g71[[0, s]] we have

(g_1 [(5.1]] \dX(Q V)) NACA\cly (@11/)

Therefore A\ clx (V3 U---UV,41) is infinite. By the choice of V;’s we have

A\CJVi:A\OClXVi-

=1 i=1

Therefore

clx Vo1 NAC (971 ([0, s]] \ 0 %) NA= (A\ O m) ng[[0, )]

= (A\ LnJch Vi> Ng~'[[0,s]] = (A\ LnJ clx Vi) Ng~'[[0,9)]

i=1

n
= (g_l [[0,3)] \ U cly V;) NA=V,.1NA,
i=1
which implies that V,,11 N A = clx V41 N A is compact, as it is closed in the compact
set A. This completes the inductive step. m

Let X be a Tychonoff space and let aX be a compactification of X. For an open
subset U of X, the extension of U to aX is defined to be

Exax U = aX \ clax (X \ U).

If vX denotes the Freudenthal compactification of a rim-compact space X (a space which
has a base consisting of open subsets with compact boundary) then for any open subset
U of X we have cl,x U\ X = Exyx U\ X (see [34], as mentioned in [II]). Using this, in
[11] the author defined an appropriate upper semicontinuous decomposition of vX and
then proved that a locally compact space X has a countable-point compactification if
and only if it has a pairwise disjoint sequence {U,, : n € N} of open subsets each with
compact boundary and non-compact closure. Here we only deal with extensions in SX.
Also, we use the simplified notation ExxU instead of ExgxU. The following lemma is
well known (see Lemma 7.1.13 of [5] or Lemma 3.1 of [37]).

LEMMA 3.10. Let X be a Tychonoff space and let U and V' be open subsets of X. Then

(1) X NExx U =U and thus ClngXXUzclﬁX U.
(2) Exx(UNV)=Exx UNExx V.

The following lemma was proved by E. G. Skljarenko [32] and rediscovered by E. K. van
Douwen [37].
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LEMMA 3.11 (Skljarenko [32] and van Douwen [37]). Let X be a Tychonoff space and let
U be an open subset of X. Then

bng EXX U= ClﬁX bdX U.

LEMMA 3.12. Let X be a Tychonoff space and let P be a clopen hereditary topological
property which is inverse invariant under perfect mappings. Let U be an open subset of

X such that bdx U C Z C C where Z € Z(X), C € Coz(X) and clx C has P. Then
Clng\)\'pX:EXXU\)\'pX.

Proof. By Lemma we have clgx Z C ApX. The result then follows, as by Lem-
mas [3.10] and B.11] we have

ClﬁxU = ClﬁxEXXU:EXXUUbdﬁX Exx U = EXXUUCI,QX bdx U
and clgx bdx U Cclgx Z. =

In [23] J. R. McCartney characterized those spaces which have a compactification
with compact countable remainder of type (o, n) (Theorem [3.6)). Indeed, in the proof, for
a given space X which satisfies the properties of Theorem the author formed a new
set Y by adjoining a set of points to X and then constructed a topology on Y that turned
it into a compactification of X with the desired properties. The proof given in Theorem
3.13((3) below can be applied to give an alternative proof to this theorem of McCartney
in [23] (Theorem [3.6). Also, note that parts (1.d) and (2.d) below generalize and give
alternative proofs for the theorems of K. D. Magill Jr. and T. Kimura in [I8] and [I1],
respectively (Theorems and respectively). One should simply replace P and Q,
respectively, by compactness and regularity and note that, for any compact subset A of
a locally compact space X there exists a continuous f : X — I such that f[A] C {0}, and
that f~1[[0,r]] is compact for any r € (0,1).

THEOREM 3.13. Let P and Q be a pair of compactness-like topological properties. Let X
be a Tychonoff space with Q.

(1) Let n € N. The following are equivalent:

(a) S (X) contains an element with n-point remainder.

(b) OF(X) contains an element with n-point remainder.

(¢) X is locally-P and X = KUU, U---UU, where K,Uy,..., U, are pairwise
disjoint, each Uy, ..., U, is open in X with non-P closure and bdx K C Z C C
for some Z € Z(X) and C € Coz(X) such that clx C has P.

(d) X islocally-P and X = UUZ U---UZ, whereU, Zy,...,Z, are pairwise disjoint,
clx U has P and each Zy,...,Z, € Z(X) is non-P.

(2) The following are equivalent:

(a) A (X) contains an element with countable remainder.

(b) OF(X) contains an element with countable remainder.

(¢) X is locally-P and there exists a bijectively indexed collection {U, : n € N} of
pairwise disjoint open subsets of X, each with non-P closure and such that for
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any n € N there exist some Z,, € Z(X) and C,, € Coz(X) such that clx C,, has
P and bdx U, C Z,, C C,.

(d) X is locally-P and there exists a bijectively indexed collection {Z,, : n € N} of
non-P zero-sets of X such that X = Z1 O Zy O --- and such that for any n € N
there exist non-P sets S, € Z(X) and K,, C X such that Z, \ Zn+1 = Sn UK,
where K, C T, C C, for some T, € Z(X) and C,, € Coz(X) such that clx C,,
has P.

(3) Let 0 < 0 < Q and let n € N. The following are equivalent:

(a) //ZPQ(X) contains an element with countable remainder of type (o,n).
(b) OF(X) contains an element with countable remainder of type (a,n).

(¢ 1s locally-P and there exists a family : ¢ < o} of collections of pairwise
X is locally-P and th family {%; - ¢ f coll f
disjoint non-empty open subset of X satisfying the following:

(1) For any ¢ < o, card(%;) = No and card(%,) = n.
(ii) For any ¢ < o and U € %; there exist some Z € Z(X) and C € Coz(X)
such that clx C has P and bdx U C Z C C.
(ili) For any ¢ <o, U € % and finite ¥V C \J{%, :n < (} the set clx U\ UV
s non-P.
(iv) Forany ¢ <n<o,U € % andV € %, there exist some Z € Z(X) such
that Z has P and a finite V" C | J{% : £ < ¢} such that either

chU\(VUU”I/) CZ or (x Undcx )\ |7 € 2

(v) For any ( < n < o and U € U, there exists an infinite ¥V C U such
that for any V € ¥ there exist some Z € Z(X) which has P and a finite
W C\H U € < () such that clx V\ (UUUW#) C Z.
Proof. (1). By Lemma [3.7]it follows that (1.a) and (1.b) are equivalent.

(1L.a) implies (1.c). Consider some Y € .#5(X) with an n-point remainder ¥\ X =
{p1,...,pn} Let Vi,...,V, be pairwise disjoint open neighborhoods of py,...,p, in Y,
respectively. Let ¢ : 6X — BY denote the continuous extension of idx. Let i = 1,...,n.
Let f; : BX — I be continuous with

filo7 (p)] € {0} and f;[BX\ o '[Vi]] C{1}.
Let
Ui=f7'00,1/2]nX and K=X\|JU.
i=1
Then X = KUU; U---UU, and since U; C ¢~1[V;] (and V;’s are pairwise disjoint) the

sets K, U, ...,U, are pairwise disjoint. To show that clx U; has P suppose the contrary.
Let

S=f7'0,1/3]] N X € Z(X).
Then S has P, as it is closed in clx U;. Therefore
¢~ (pi) C f7[[0,1/3)] Cintgy clgx (f;'[[0,1/3]] N X) = intgx clgx S C ApX.
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By Lemma the space X is locally-P and 3X \ ApX C ¢ ![Y \ X]. Now again by
Lemma and since by the above

BX\ApX C o Y \X]\ ¢ (pi) = ¢ (YN X)\ {pi}] = o7 [(Y \ {pi}) \ X],
the extension Y \ {p;} of X has P. This contradicts the minimality of Y. Let

Z=Xn O f11/2) € Z(X) and C=Xn O £71(1/3,2/3)] € Coz(X).

i=1 i=1
Arguing as in the proof of Lemma [3.7] ((1.a)=>(1.c)) we have

oL (i) \ ApX = ¢ Vi) \ ApX.
Therefore by the definition of f; we have

n

cgx C C [ f7H[1/3,2/3]) € (67 Vil \ ¢ (01)) € ApX,

i=1 i=1
which by Lemma [2.4] implies that clx C' has P. Finally

bdx K =clx KNeclx(X\K)C XN (n] /20 n Y £, 1/2]]

=1

—xnJN s 200 o) c xnlJ s a2,

1

©
Il
A
<.
|
-
-
I

which implies that bdx K C Z C C.

(1.c) implies (1.d). First note that since Un,...,U, are pairwise disjoint and open,
for any distinct ¢, j = 1,...,n we have bdx U; NU; = 0. Let ¢ = 1,...,n. Then

bdx U; ©(X\U)N () (X\U) =X\ |JU; =K,
i#j=1 j=1

which combined with bdx U; C clx U; C clx(X \ K) gives bdx U; C bdx K. By
Lemma, this implies that clgx U; \ ApX = Exx U; \ ApX; let H; denote the last
set. By Lemma the set H; is non-empty, as by our assumption clx U; is non-P. Let
fi : BX — I be continuous with

fori=1,...,n—1 and

n—1 n—1

S| BX\ X\ | Hi| € {0} and fu| | elax Ui < {1},

i=1 i=1
Let
Zi=f7M0,1/2]nX € Z(X) and U=X\|]JZ.
i=1
By the definition of f; we have Z; C Exx U; for any ¢ = 1,...,n — 1. Now since Exx U;’s
are pairwise disjoint (as U;’s are; see Lemma [3.10)) Z;’s are pairwise disjoint when i =
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1,...,n — 1, and therefore when i =1,...,n, as

n—1

Zn 0 | clpx Ui =0

i=1
and Z; Cclgx U; forany i =1,...,n — 1, as Exx U; C clgx U; (see Lemma [3.10)). Since
U=x\Jr'[0,1/2] cpx\(J£7[0,1/2)] € ApX
i=1

i=1
we have clgx U € Ap X, and thus by Lemma 2.4it follows that clx U has P. To complete
the proof we need to verify that Z; is non-P. But this follows easily, as otherwise

H; C fi_l “0, 1/2)] Cintgx ClﬁX (f [[O 1/2]] ) intgx CIBX Z; CTApX,

which contradicts the fact H; is non-empty.

(1.d) implies (1.a). For any i =1,...,n let f; : X — I be continuous with

stz oy ad p[Uzo U 4] cm

k=1 k=i+1

and let F; : BX — I be the continuous extension of f;.
CramM. Letr € (0,1) and leti,j =1,...,n be distinct. Then
clgx fi_l [[0, r]] Nclgx fj_l [[0, r]] C MpX.
Proof of the claim. Let r < s < 1. By the definition of f;’s and since Z; N Z; = () we have
S=ft0s]] nft0,s]] € (ZiuU)N(Z;UU) C U
If k=14,j then
clax fi '[[0,7]] € FH[0,0]] € FH[0,9)] € imtax clax fi [0, 5]
and therefore

cgx fiH[0,7]] Nelgx f;7H[[0,7]] € intgx clax f;71[[0, s]] Nintgx clgx f;[[0, 5]

= intgx (clax £ [[0,s] N Cl,@x £i7H10. 1))

= intgx clgx (f; [0, 5]] N [[O,s]]) = intgx clgx S.
Note that S € Z(X) has P, as it is closed in clx U, and thus intgx clgx S C ApX.

CramM. Letr € (0,1). Then
N 1
ClﬁX(ﬂ £ I, 1]]) C ApX.
i=1

Proof of the claim. Let 0 <t < r and let



44 M. R. Koushesh

n n n n

clax (V474 1)) € (VB (0] € () F (1] € (intax elox £ [[11]

= intc (Y elgx £ [[1,1]]) = intax clox () £7[i5.1)])
=1 =1
=intgx clgx T.

Now since
n n

Tzﬁfgl[[t,u] c&x\z)ycx\|Jz=U

i=1 i=1
and clx U has P, its closed subset T" has P, and therefore intgx clgx T" C ApX.

Now let r € (0,1) be fixed. Note that

BX\ApX = (clﬁX (L_nj £, r]]) Uclpx (ﬁ £ 1]])) \ApX

i=1
and thus by the above claim

BX\ApX = ClﬁX(U o [[Wﬂ) \ApX = U (clax f7H[0,7]] \ Ap X).

By the first claim it now follows that SX \ ApX is the union of n of its pairwise disjoint
closed (and thus clopen) subsets which are also non-empty, as Z; C f; '[[0,7]] for any
i=1,...,n, and therefore since Z; is non-P, using Lemma we have

(Z) 75 CIBX Zi \ )\pX - ClﬁX f;l UO, ’I“]] \ )\pX.

(2) (2.a) implies (2.c). Consider some Y € .#5(X) with countable remainder. By
Lemma there exists a bijectively indexed collection {V,, : n € N} of pairwise disjoint
open subsets of Y such that B, = V,, N (Y \ X) is compact and non-empty for any
n € N. Let n € N. Let f,, : 8X — I be continuous with

falo7'[Bal] €{0} and [, [BX\ ¢ ' [V,]] € {1}
where ¢ : 3X — (Y is the continuous extension of idx and define U,, = f,,71[[0,1/2)]NX.
Then U,,’s are pairwise disjoint open subsets of X. Also, clx U, is non-P, as otherwise,
arguing as in (l.a)=(1.c) we have f,[[0,1/3)] € ApX. Consider the subspace Y’ =
Y \ B, of Y. By Lemma [2.§] we have 83X \ ApX C ¢~ '[Y \ X] and X is locally-P. Since
6 1[B,] C £, 1[0,1/3)] we have
T YN\X] = ¢ {(Y\B)\X] = 7 {(Y\X)\B,] = 67 [Y\X]\¢7[B,] 2 BX\ApX.

Now since Y’ \ X = (Y \ X) \ V,, is compact, Lemma [2.§ implies that Y’ has P, contra-
dicting the minimality of Y. Note that

bdx Un = clx Un Nelx (X \Up) € £ [[0,1/2]] 0 £ [[1/2, 1] 0 X = £, (1/2) N X.
Therefore if
Zn=f112)NX € Z(X) and C,= f;"[(1/3,2/3)] N X € Coz(X)
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then bdx U, C Z, C C,. Since BX \ A\pX C ¢~ }[Y \ X], arguing as in the proof of
Lemma [3.7 ((1.a)=(1.c)), we have

¢_1[Bn] \ ApX = ¢_1[Vn] \ ApX
and thus by the definition of f,, it follows that

clax Cn C fr M ][1/3,2/3]] S o7 V] \ ¢! [By] € ApX.

By Lemma this implies that clx C,, has P.

(2.c) implies (2.a). Let {U, : n € N} satisfy the assumption of the theorem. Let
n € N. By Lemmawe have clgx Up \ A\pX = Exx U, \ ApX; let H,, denote the last
set. Note that H, is clopen in SX \ ApX and that H,’s are pairwise disjoint, as U,’s
are (see Lemma . Also, H,, is non-empty, as otherwise clgx U, C ApX, which by
Lemma [2:4] implies that clx U,, has P, contradicting our assumption.

(2.a) implies (2.d). By Lemma the space X is locally-P and there exists a bi-
jectively indexed sequence Hy, Hs,... of pairwise disjoint non-empty clopen subsets of
BX\ ApX. Let n € N. Let f,, : BX — I be continuous with

fal(BX\ApX)\ Hy] C{0} and f,[H,] C {1}
and let

ﬂ [0,1/2]] N X € Z(BX)

with the empty intersection interpreted as SX. Clearly X = Z; O Z5 O ---. Note that

n—1 - n—1
Hy € (BX \XpX)\ |J Hi C ﬂ (BX\APX)\H) € () £71[0,1/2)]. (3.10)
To show that Z,, is non-P, suppose the contrary. Then
_ﬁfi—l[[o, 1/2)] C ﬂ intgy clax (f;'[[0,1/2] N X)
=1 =1 .
= intx () elax (£7"[[0,1/2)] N X))
i=1

n—1

= intgx Clgx(ﬂ fi_l [[O, 1/2]] N X) = intgx CIBX Zn CApX
=1

and therefore H,, C ApX, which is a contradiction, as H,, C X \ ApX is non-empty.
Now

n—1 n

2\ Zur = (£ [01/2] 0 X)\ () £ [0.1/2] 0 x)

=1 i=1

n—1
= (Bx\ £ 10, 1/21])) 0 () £ [0, 1/2)]
i=1
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n—1

a2, n () £ 0172 n X

=1

n—1

= (f;l[(1/2’2/3)j| Uf'r:l [[2/37 IH) N ﬂ fi_l[[ov 1/2]] NX=K,US,

i=1

where

K= f,'[(1/3,2/3)] ﬂ [[0,1/2]]

i=1
n—1

Sn = ft[[2/3.1]] ﬂ [[0,1/2]] N

Then S, € Z(X) and K,, CT,, C Cp, where
T, = f;'[[1/2,2/3]]NX € Z(X) and C,= f,;'[(1/3,3/4)] N X € Coz(X).

Since
clox Cn = clax (f7 '[(1/3,3/49)] N X) € f1[[1/3,3/4]] € MpX

by Lemma-the set clx C,, has P. If S,, has P, then using (3.10)) and arguing as above,
H, C f,71(2/3,1]] ﬂ £7H10,1/2)] C intgx clgx Sn € ApX

which as we argued above is a contradlctlon. Thus S, is non-P. Finally, note that as
argued above H,, C clgx Sy, and therefore S,, is non-empty. This implies that Z, \ Z,+1
is non-empty and thus Z,,’s are bijectively indexed.

(2.d) implies (2.a). Let n € N. Then

n—1 n—1
X=21=J(Z\Z1)UZ, = | J(SiuE) U Z,
i=1 i=1
and thus
n—1
BX = U (ClﬁX S; U Clﬁx Kl) U C]ﬁX L.
i=1
By Lemma we have clgx K; C clgx T; € ApX for any ¢ € N. Therefore
n—1
BX\MpX = | (clpx Si \ M X) U (clpx Zn \ ApX).
i=1
Since Si,...,S5,-1,Z, € Z(X) are pairwise disjoint, their closures in X also are pair-

wise disjoint. Thus by the above X \ ApX is the union of n of its pairwise disjoint
non-empty (as Si,...,S,—1, Z, are non-P; see Lemma closed (and therefore clopen)
subsets. Lemma now completes the proof.

(3). The equivalence of (3.a) and (3.b) follows from Lemma

(3.a) implies (3.c). By Lemma [3.7] the space X is locally-P and there exists a family
{H#: : ¢ < o} of collections of pairwise disjoint non-empty clopen subsets of X \ ApX
satisfying conditions (3.c.i)—(3.c.iv) of Lomma For any ¢ < o let ¢ = {Hf rie e}
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be bijectively indexed. Let J, = N for any ( < o and J, = {1,...,n}. Also, forany ( <o
and i € J¢ let Ag be an open subset of X such that Hf = Ag \ ApX.

CLAIM. For any ¢ < o there exists a collection {I/ViC 11 € Je} of pairwise disjoint open
subsets of BX such that Wf \ ApX = Hf for any i € Je.

Proof of the claim. Let ¢ < 0. We inductively define Wf’s fori € J¢. Let ch be an open
subset of BX such that Ht C W} C clgx Wi C AS. For an m € N, suppose inductively
that the open subsets Wf ..., WS of BX are defined in such a way that

i1
H C WS Clgx WE C AS\ ClﬁX(U WJ‘C)
=1

for any i = 1,..., m. Note that an_H Neclgx Wf —( for any i =1,...,m. Let W}, ma1 be
an open subset of §X such that

an+1 < ngﬂ C clgx Wgﬂrl < AfnJrl \ clpx ( U WjC)'
j=1

Similarly for the case when ¢ = o.

Let ¢ <o and i € J¢. Since W is an open neighborhoods of the compact (and thus

7

closed) subset Hf of BX, there exists a continuous ff : BX — T with
fSHS)C {0} and  ff[BX\ W] C {1},
Define
Uy = (£2)7'[[0,1/2)] n X

Let % = {UlC 14 € Jo} for any ¢ < 0. We verify that the family {%; : { < o} satisfies
(3.c.i)—(3.c.v). Let ( < o. Let i € J¢. Since

Hy € (f5)7H00.1/2)] € elax (£)7[10,1/2)] = elox ()71 [[0,1/2)] N X) = clx Uf
and H f is non-empty, Uf is non-empty. Also, for any distinct ¢, j € J¢ we have Uf N ch C
Wf N WJ-C = (. Thus the collection % = {UZ< i € J¢} is bijectively indexed and consists

of pairwise disjoint non-empty open subsets of X. Note that (3.c.i) holds trivially.
To show (3.c.ii) note that for any ¢ < o and i € J; we have

bdx Uy = clx Uf Nelx (X \UF) € (f)7H[[0,1/2)] 0 (£9) 7 [[1/2,1]] n X € (f5) 1 (1/2).

Thus
clyx bdx US \ ApX C (£6)71(1/2)\ ApX C (WE\ HS)\ ApX =0,

which by Lemma shows (3.c.ii).
Next, we verify (3.c.ii). Let ¢ < 0, U € % and ¥ C | U{%, : n < ¢} be finite.
Suppose to the contrary that clx U \ |J7 has P. Let U = Uf for some i € J; and
={U}",..., U™}, where m is a non-negative integer, and 7, < ¢ and ji € J,, for
any k=1,...,m. Let
- ((ff) [0, 173\ \J ()~ [[o, 1/2)]) NX e Z(X).

k=1
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By the above (f¢)~1[[0,1/3]] N X C clx US. Thus S C clx U \ [J7 and then S, being
closed in the last set, has P. This implies that

HE\ (W < (£9)71[[0,1/3)] \ U (f7)7H[0,1/2]] Cintgx clgx S C ApX.
k=1 k=1
Therefore

Hf\U{Ge%,:n<C}ng\OH;”“—(HC\UW”’”) N (BX \ ApX) =0,
k=1

which contradicts (3.c.ii) of Lemma [3.7} Thus (3.c.iii) holds.
To show (3.c.iv)let ( <n<o,U € % and V € %,. Then U = Ui( and V = U} for

some i € Je and j € J,. By (3.c.iii) of Lemma [3.7| we have either

Hf CHJU|J{F e A £ <} (3.11)
or

HENH] C| J{F et ¢<(} (3.12)
We consider the following cases. For simplicity of notation let » = 1/2. Note that by the
definition of ff for any ¢ < o and i € J: we have

C ()OI A X S ()07 \ Ap X C Wi\ ApX = H;
and therefore
MO\ A X = (F)7H0.1)] \ Ap X = H.

CAsE 1. If lj holds then by compactness Hf C H;’ U H,fi U---u H,f’:”, where m is a
non-negative integer, § < ¢ and k; € J¢, for any I =1,...,m. We have

clax (el U\ (070 U2)) € 19 0. () o] uUJ ) 10,0
and thus . - .
clax (ch v\ (U7 ulJus)) \aex c BE (1] U U Hi) = 0.

I=1 =1
Now by Lemma [3.8] it follows that

clef\(UyuCJUf;) czcc
=1

for some Z € Z(X) and C € Coz(X), where cly C, and therefore Z, has P, as it
is closed in clx C. Thus (3.c.iv) holds in this case.

CASE 2. If lj holds then by compactness Hf N H;7 C H,fi U---u H,E:"n, where m is a
non-negative integer, { < ¢ and k; € J¢, for any I =1,...,m. We have

ax ((elx Ufnelx UNJ UF) € (9 [0, ()~ o U U !
=1 =1
and thus

clox ((c1X Ut nex UNN U,f;) \ApX C (HENHN)\ | JHE =
=1 =1

Now as in the previous case (3.c.iv) follows.
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Finally, we verify (3.c.v). Let { <n <o and U € %,. Then U = U;] for some j € J,.
By (3.c.iv) of Lemma there exists an infinite J C J¢ such that

Hy CHIU|J{G et 6 <}

for any ¢ € J. Now an argument similar to the one above shows that

m
ax U\ (7 uJust) c 2
=1
for some Z € Z°(X) which has P, some non-negative integer m, some & < ¢ and some
k; € Je, where I =1,...,m. Thus (3.c.v) holds.

(3.c) implies (3.a). To prove (3.a) we verify condition (3.c) of Lemma [3.7] Suppose
that X is locally-P and there exists a family {%; : ( < o} of collections of pairwise
disjoint non-empty open subsets of X satisfying (3.c.i)—(3.c.v). For any ( < o let % =
{US :i € J¢} be bijectively indexed. Then card(J) = R if ¢ < o, and card(J,) = n. Let
¢ <o and i € J¢. Define

Hf = Clgx Uf \ )\pX.

By Lemma and (3.c.ii) we have H® = Exx U \ ApX, which shows that H® is
clopen in SX \ ApX. Also, Hf is non-empty, as otherwise clgx Uf C Mp X, which by
Lemma H implies that clx Uf has P, contradicting (3.c.iii). Since Hf C Exx Uf and
Uf ’s are pairwise disjoint, by Lemma the sets H. f are also pairwise disjoint. For any
(<L olet % = {HlC 1 € J¢}, which is bijectively indexed, as Hf’s are non-empty, and
for any distinct ¢, j € J: we have Hf n HJC = (). We verify that the family {% : ( < o}
has the desired properties. Condition (3.c.i) of Lemma holds trivially.

To prove condition (3.c.ii) of Lemma let H € s for some ¢ < o, and suppose to
the contrary that

H\| J{Ge A :n<h =0

Then H = Hf for some i € J:. By compactness Hf C H!U---UH"™, where m € N,
m < ¢ and k; € Jy, for any [ =1,...,m. We have

m m
clax (elx US\ (J UIE) € elax UF\ ([ Bxx U]
=1 =1

and therefore
clsx (c1X v\ U;g;) \ApX C HE\ | H = 0.
1=1 1=1
. s ¢ m . Nm 3 e . . eee
Lemmanow implies that clx Uy \ (U} U---UU™) has P. But this contradicts (3.c.ii).
Next, we show condition (3.c.iii) of Lemma Suppose that ( < n < o, H € 5%

and G € J¢,. Let H = Hf and G = HJ where i € J¢ and j € J,,. By (3.c.iv) there exist
a finite ¥ C | {% : { < ¢} and a Z € Z(X) such that Z has P, and either

cly US\ (U;’ uJ 7/) cz (3.13)
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or

(cdx U nelx UN\ 7 ¢ 2. (3.14)

Let ¥ = {U,fll, ey U,ﬁ:’;}, where m is a non-negative integer, & < ¢ and k; € J¢, for any
I=1,...,m. We consider the following cases:

Casg 1. If (3.13)) holds then

b 5 e 5 st <170 07)
=1
and thus

Exx US\ (clﬁx Ur U clsx U,§;) C intgx clgx Z C ApX.
=1
From this it follows that

HCGU|JH CGU| J{F et <

I=1
CasE 2. If (3.14)) holds then using Lemma we have
Exx Uf NExx U} C clgx (Exx Uf N Exx U))

— clgx Exx (US NUY) = clgx (US NUT) C clgyx (U Us U Z)
=1
and thus

(Exx Uf NExx UM\ | clox Uy C intgx clgx Z € ApX,
=1
which yields
HnGc|JHy c| J{Fert:c< ()
=1

This shows condition (3.c.iii) of Lemma in either case.

Finally, to show (3.c.iv) of Lemma suppose that ( < < o and H € J7,. Let
H = H;7 for some j € J,. By (3.c.v) there exists an infinite J C J; such that for any
i € J there exist a Z € Z(X) such that Z has P and a finite # C (J{% : £ < (} such
that clx UE \ (U] UU#) C Z. Arguing as above we obtain

Hf CHU| J{F e &< ()
Thus
{Fes:Fonu|J{ee #:¢< )

is infinite. m
The following generalizes a theorem of K. D. Magill Jr. in [I9] (Theorem [3.4]).

COROLLARY 3.14. Let P and Q be a pair of compactness-like topological properties. Let
X be a Tychonoff space with Q. The following are equivalent:
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(1) A (X) contains an element with n-point remainder (equivalently, O3 (X) contains
an element with n-point remainder) for any n € N.

(2) M (X) contains an element with countable remainder (equivalently, 05 (X) con-
tains an element with countable remainder).

Proof. This follows from Lemma and the observation that 83X \ ApX has an infinite
number of components if and only if it has at least n components for any n € N. m

THEOREM 3.15. Let P and Q be a pair of compactness-like topological properties. Let X
be a Tychonoff space.

(1) Letn € N. If X has a perfect image Y with Q such that 45 (Y) (05 (Y), respectively)
contains an element with n-point remainder, then so does X.

(2) If X has a perfect image Y with Q such that 45 (Y) (05 (Y), respectively) contains
an element with countable remainder, then so does X.

(3) Let 0 < o < Q and let n € N. If X has a perfect image Y with Q such that A5 (Y)
(OF(Y), respectively) contains an element with countable remainder of type (o,n),
then so does X.

Proof. We prove the theorem in the case of minimal extensions. From this and Theo-
rem the result will then follow in the case of optimal extensions as well.

(1). Suppose that f: X — Y is a perfect surjective mapping such that Y has Q (thus
X also has Q, as Q is inverse invariant under perfect mappings) and that //ZPQ(Y) contains
an element with n-point remainder where n € N. Note that Y (having a Tychonoff
extension) is Tychonoff and thus by Theorem the space Y is locally-P and ¥V =
KuU,U---UU,, where K,U,...,U, are pairwise disjoint, each Uy, ..., U, is open in
Y with non-P closure and bdy K C Z C C for some Z € Z(Y) and C € Coz(Y) such
that cly C has P. Then

1=1
and fUK], f1UL], ..., fYU,] are pairwise disjoint. We show that the closure of each
open subset f~L[U1],..., f~[U,] of X is non-P. Suppose to the contrary that clx f~*[U;]
has P for some i = 1,...,n. Now since

flely f7HUi = elx fHU] — flelx fHU]]

is a perfect surjective mapping and P is invariant under perfect mappings, flclx f~1[U;]]
has P. Since f is surjective we have

Ui = f[f'[U]] € flelx £7UI])
and since f is closed, it follows that cly U; C flclx f~1[U;]] and thus cly U;, being closed
in the latter, has . But this is a contradiction. Also,
bdy f7HK] =clx fTK]Nelx (X \ fTHK]) =clx fTHE]Nelx f7HY\ K]
C ey KJn fely (Y \ K)]
=fely Knely(Y\K)] = f'bdy K] C f7'[Z] C f[C]



52 M. R. Koushesh

and f~1[Z] € Z(X) and f~'[C] € Coz(X). Note that since the mapping
fIf ey O] : f cly O] — cly C

is perfect and surjective (since f is surjective), the set cly C' has P, and (since P is
inverse invariant under perfect mappings) the set f~![cly C], and thus its closed subset
clx f71[C], has P. Finally, Lemma[2.5[implies that X is locally-P. Thus the result follows
from Theorem B.13

(2). This is analogous to part (1) using the characterization given in Theorem

(3). Suppose that f: X — Y is a perfect surjective mapping such that ¥ has Q and
that .#5(Y) contains an element with countable remainder of type (o, n). Note that as
in part (1) it follows that X has Q and Y is Tychonoff. By Theorem the space Y
is locally-P and there exists a family {% : ¢ < o} of collections of pairwise disjoint
non-empty open subsets of Y satisfying conditions (3.c.i)—(3.c.v) of that theorem. For
any ( <o let o = {f"'{U]: U € %}. Then each @, where ( < o, consists of pairwise
disjoint non-empty (since f is surjective) open subsets of X. We verify that {7 : ( <o}
satisfies conditions (3.c.i)—(3.c.v) of Theorem [3.13] Condition (3.c.i) holds trivially: since
[ is surjective, each 27 with ¢ < o is bijectively indexed and thus card (%) = card(%)
for any ¢ < o. Condition (3.c.ii) follows by an argument similar to part (1) and the
fact that {%; : ( < o} satisfies a similar condition. To show condition (3.c.iii) suppose
to the contrary that for some ¢ < o, U € % and finite ¥ C (J{%, : n < (} the set
clx f7HU]\ f71UJ 7] has P. Since f is closed and surjective we have

cy UN{J7 Sy O\ U7
C flex s [Un VU] <[ o U]

But the latter has P, as P is invariant under perfect mappings, thus its closed subset
cly U\ U7 has P, which is a contradiction. To show condition (3.c.iv) suppose that
(<n<o,U€andV €%, Since {%; : ( < o} satisfies a similar condition, there
exist a Z € Z(Y') which has P, and a finite ¥ C |J{% : { < {} such that either

clyU\(VUU“//) CZ or (dyUnecyV)\|J7 C2

Since f|f~[Z] : f71[Z] — Z is perfect and surjective (since f is surjective) and P is
inverse invariant under perfect mappings, f~1[Z] € 2°(X) has P. In the first case

e 0N (W10 [U7]) € sty U1 (5o (U7 ]) € £
and in the second case
(cx S )N elx VA S U Y]
C (el U] £ ey VA £ U 7] €

The proof for condition (3.c.v) is analogous. Note that by Lemma the space X is
locally-P. The result now follows. =
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4. Compactification-like P-extensions as partially ordered sets

In this chapter we consider classes of compactification-like P-extensions of a Tychonoff
space X as partially ordered sets. We define two partial orders <jnj and <quj (besides <
itself) on the set of all extensions of X. These partial orders behave nicely when restricted
to classes of compactification-like P-extensions of X and their introduction leads to some
interesting results which characterize compactification-like P-extensions of X among all
Tychonoff P-extensions of X with compact remainder. We continue with the study of
relationships between the order-structure of classes of compactification-like P-extensions
of X (partially ordered with <) and the topology of the subspace X \ ApX of its
outgrowth X \ X. This generalizes a well known result of K. D. Magill Jr. in [20] which
relates the order-structure of the set of all compactifications of a locally compact space X
and the topology of 5X\ X. We conclude this chapter with a result which characterizes the
largest (with respect to <) compactification-like P-extension of X. This largest element
(which we explicitly introduce as a subspace of the Stone-Cech compactification X of
X) turns out to be also the largest among all Tychonoff P-extensions of X with compact
remainder.
We start with the following definition.

DEFINITION 4.1. Let X be a space and let Y and Y’ be extensions of X. We write
Y <in; Y’ if there exists a continuous injective f : Y’ — Y such that f|X = idx.

The relation <jy; defines a partial order on the set of all extensions of a space X. The
following lemma (see also Lemma is a counterpart of Lemma

LEMMA 4.2. Let X be a Tychonoff space and let Y1,Ys € &p(X) be such that Y1 < Ys.
The following are equivalent:
(1) Y1 <ipj Ya.
(2) Any element of F (Y1) contains at most one element of F(Y2).
Proof. Let ¢; : BX — BY; where i = 1,2, be the continuous extension of idx. Since
Y7 <Y; there exists a continuous f : Yo — Y7 such that f|X =idx. Let f5: fY2 — Y1
be the continuous extension of f. As shown in the proof of Lemmal[2.13|we have fz¢o = ¢1
and f[Yz\ X] C Vi \ X.

(1) implies (2). Suppose that f : Y5 — Y7 introduced above is moreover injective. Let
p€Y;\ X and let p; € Yo\ X, where i = 1,2, be such that ¢; *(p;) C ¢7*(p). Choose
some s; € ¢y *(p;) for any i = 1,2 (such s;’s exist, as ¢o is surjective). Then

F(1) = fa(p1) = fa(¢2(s1)) = d1(s1) = p = d1(s2) = fa(P2(s2)) = fa(p2) = f(p2),

which implies that p; = py. Thus ¢5 *(p1) = ¢35 ' (p2).

(2) implies (1). We show that the mapping f : Yo — Y] introduced above is injective.
Let p; € Yo\ X, where @ = 1,2, be such that f(p1) = f(p2) and let p € Y7 \ X denote
their common value. Note that

by (pi) S o3 [FH )] S 02 5 (0)] = (Fad2) " (p) = 61 ' (p)
for any i = 1,2, which by (2) implies that ¢, *(p1) = ¢5 *(p2) and therefore p; = py. m
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NOTATION 4.3. Let R be a relation on a set X and let Y C X. Denote
RlY ={(y,z) eR:y€Y}.

In the next result we give an order-theoretic characterization of ﬁg(X ). (Compare
with its dual result Theorem [4.8/on .5 (X).) Recall that a subset A of a partially ordered
set (X, <) is said to be cofinal if for any x € X there exists some a € A with z < a.

THEOREM 4.4. Let P and Q be a pair of compactness-like topological properties. Let X
be a Tychonoff space with Q. Then

(1) 02(X) ={Y :Y is mazimal in (5’739()(), <inj) }-

(2) OF(X) is the smallest cofinal subset of (EF(X), <inj)-

(3) OF(X) is the unique cofinal subset of (6’739()(), <inj) on which the two relations <iy;
and = coincide.

(4) OF(X) is the largest subset & of EF(X) such that

(Snil) € = (4.1)

Proof. (2). To show that 03 (X) is cofinal in &5 (X) with respect to <inj let Y € £5(X).
Let ¢ : BX — BY be the continuous extension of idx. By Lemma [2.8] the space X is
locally-P and 3X \ ApX C ¢~ [V \ X]. Also, by Lemma we have X C ApX. Let

P={peY\X:6 " (p)\ \oX £0}.

Form the quotient space T of 3X by contracting each subset ¢~!(p) \ ApX where p € P
to a point ¢, and denote by ¢ : X — T the quotient mapping. Arguing as in the
proof of Theorem [2.15] ((1)=>(2)) shows that 7" is compact. Consider the subspace Z =
XUgq[BX\ApX] of T. Then Z is a Tychonoff extension of X with the compact remainder
Z\ X = ¢q[BX \ ApX]. Note that T is a compactification of Z. Let ¢ : X — Z and f :
087 — T be the continuous extensions of idx and idz, respectively. Since the continuous
mapping f1 : X — T coincides with ¢ on X we have fi) = ¢. By Lemma [2.8] and
Theorem m to show that Z € 03 (X) it suffices to show that ¥ ~1[Z\ X] = BX \ \pX.
But this follows, as by Theorem 3.5.7 of [5] (and since 5Z and T are compactifications
of Z and f is continuous with f|Z =idz) we have f[Z\ Z] =T \ Z and therefore

VTHZNX] =y [fTHZNX]] = (F0) T2\ X] = ¢ [Z\ X] = BX \ ApX.
Note that for any p € P (and again, since f[8Z\ Z] =T \ Z) we have

w_l(tp) = w_l [f_l(tp)] = (fw)_l(tp) = q_l(tp) - ¢_1(p) \ ApX.

Define g : Z — Y by ¢(t,) = p when p € P and g(z) = x when z € X. By the proof
of Lemma ((2)=(1)) (note that ¢p=1(t,) C ¢~!(p) for any p € P) the mapping g is
continuous, and by its definition, it is moreover injective. Thus Y <;,; Z. This shows the
cofinality of 03 (X) in &5 (X) with respect to <ip;.

To complete the proof we need to show that ﬁg(X ) is contained in every subset
& of a?’PQ(X) cofinal with respect to <jyj. Indeed, let Z € ﬁ%(X). Then Z <iu; S for
some S € .. We show that S and Z are equivalent extensions of X. To show this, by
Lemma [2.13]it suffices to verify that .Z(S) = #(Z). Let ¢ : 3X — 3Z and ¢ : X — (S
be the continuous extensions of idx. By Theorem we have ¢ 1[Z\ X] = BX \ A\pX.
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Now since Z < S (as Z <iy; S) by Lemma for any s € S\ X we have o~ 1(s) C¢~1(2)
for some z € Z\ X. Therefore ¢ ~![S\ X] C SX \ ApX and thus since by Lemma [2.§ we
have BX \ ApX C ¢~ L[S\ X] it follows that p~1[S\ X] = BX \ ApX. Now let s’ € S\ X.
Then by Lemma (and since Z < S) we have p~1(s) C 1~1(2’) for some 2’ € Z\ X.
Suppose that o~ 1(s") # ¥ ~1(2’). There exists some s” € S\ X such that s” # s’ and
e 1(s")Nyp~L(2") is non-empty. Thus p~1(s”) C »~1(2'). But by Lemmathis implies
that p=1(s") = p~1(s’), which is a contradiction, as s” # s’ (and ¢ is surjective). This
shows that ¢ ~1(s') = ¢ ~1(2’). Therefore .7 (S) C .#(Z). To show the reverse inclusion
note that for any z € Z \ X, since ¥~(2) C BX \ ApX the set 1=1(2) N ¢~1(s) is
non-empty for some s € S\ X, and thus v~1(2) = p71(s), as Z(S) C Z(Z) (and
the elements of .%(Z) are pairwise disjoint). Therefore .7 (Z) C .#(S), which shows the
equality in the latter. By Lemma [2.13] we have S < Z and Z < S, which implies that Z
and S are equivalent. Thus Z € .#. This shows that ﬁ%(X ) C 7.

(1). By Theorem any element of ﬁg(X) is maximal in éaPQ(X) with respect to
<inj- The converse follows from part (2), because if ¥ € gg(X ) is maximal with respect
t0 <inj then Y <jy; T for some T' € 05 (X), which yields Y = T and thus Y € 03(X).

(3). Note that by (2) the set ﬁg(X) is cofinal in é"PQ(X) with respect to <jnj. Also,
by (1) the relations <;,; and = coincide on ﬁg(X ). Now let & be a subset of 5739(X )
cofinal with respect to <j,; and such that <j,; and = coincide on &. Let S € &. By the
cofinality of ﬁg(X) (with respect to <inj) we have S <;,; T for some T € O (X), and
by the cofinality of & we have T' <;,; Z for some Z € &. Then S <;,; Z and thus (since
S,Z € &) we have S = Z. Therefore S = T, which implies that S € ﬁ’g(X). This shows
that & C 03(X). Note that by (2) we have also €5 (X) C &, which proves equality.

(4). By part (1) the set ﬁg(X) satisfies . Now let & be a subset of éopQ(X) which
satisfies . Let S € &. By part (2) the set ﬁg(X) is cofinal in @%Q(X) with respect
to <inj. Therefore there exists some T € ﬁg(X) such that S <jn; T. By we have
S =T, which implies that S € 63(X). Thus & C 02(X). m

DEFINITION 4.5. Let X be a space and let Y and Y’ be extensions of X. Welet Y <q,j Y’
if there exists a continuous surjective f : Y’ — Y such that f|X =idx.

The relation <q. defines a partial order on the set of all extensions of a space X.

LEMMA 4.6. Let X be a Tychonoff space and let Y1,Yy € &p(X) be such that Y1 < Y.
The following are equivalent:

(1) Yl Ssurj }/2
(2) Any element of F (Y1) contains at least one element of F(Y3).

Proof. Let ¢; : X — BY;, where ¢ = 1,2, be the continuous extension of idx. Since
Y1 <Y there exists a continuous f : Y5 — Y7 such that f|X =idx. Let fg: Y2 — 8Y;
be the continuous extension of f. As shown in the proof of Lemma 2.12 of [I4] we have
Jado = ¢1 and f[Ya\ X] C Y1\ X.

(1) implies (2). Suppose that f : Yo — Y7 introduced above is moreover surjective.
Let p; € Y1\ X and let ps € Y5\ X be such that f(p2) = p1. Then

¢y ' (p2) € ¢y [FHp1)] C ot [f5 (01)] = (o)~ (p1) = ¢7 ' (p1)-
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(2) implies (1). We show that f : Y2 — Y7 is surjective. Let p; € Y1\ X. Let pa € Y2\ X
be such that ¢5 ' (p2) € ¢ (p1). Choose an s € ¢5 ' (pa) (¢ is surjective). Then since

s€ gy () = (fad2) (o) = 03" [f5 ' (p1)]

we have ps = ¢(s) € fﬁ_l(pl)7 which implies that f(p2) = fa(p2) =p1. =

LEMMA 4.7. Let P and Q be a pair of compactness-like topological properties. Let X be
a Tychonoff space with Q. Let Y € M5 (X) and let T € E(X) be such that T <qu; Y.
Then T € M5 (X).
Proof. Let F € #(T). By Lemma[4.6] there exists G € .Z(Y) such that G C F. By Theo-
rem the set G\ ApX is non-empty and thus F'\ Ap X is non-empty. By Theorem 2.11]
the result follows. m

In the next result we give an order-theoretic characterization of .Z5 (X).

THEOREM 4.8. Let P and Q be a pair of compactness-like topological properties. Let X
be a Tychonoff space with Q. Then

(1) //ZPQ(X) is the largest cofinal subset of (5739()(), <) on which the relations < and
<surj coincide.

(2) //lé(X) is the largest subset of (6”7,9(X), <gurj) in which ﬁg(X) is cofinal.
My (X

(3) (X) is the largest subset & of éaPQ(X) such that
(§|@p) - gsurj' (42)
(4) A (X) is the smallest cofinal subset & of (65 (X), <) such that
(580X)  6) N Suug) € 6 % 680X, 3

Proof. (1). First we show that .#(X) is cofinal in &5 (X) with respect to <. Let Y €
@@PQ (X). Let ¢ : X — BY be the continuous extension of idx. Consider the subspace
T=XU{peY\X:¢ 'p)\ \pX # 0}

of Y. We show that T € //ZPQ(X ) and Y < T. Obviously, T is a Tychonofl extension
of X. By Lemma we have 83X \ A\pX C ¢~ [V \ X] (and X is locally-P) and thus
T\ X = ¢[BX \ \pX] is compact. Also, since SY is a compactification of T" and by the
definition of T we have 3X \ A\pX C ¢~ 1[T \ X], again by Lemma [2.8| it follows that T
has both P and Q. Let v : X — BT and f : BT — (Y be the continuous extensions of
idx and idp, respectively. The continuous mappings f and ¢ agree on X, and therefore

they are identical. Since 8Y is a compactification of T (and f|T = idy), by Theorem
3.5.7 of [B] we have f[3T \ T] = 8Y \ T. Thus

Vi) =0T T )] = (Fe) T ) = 07 ()
forany pe T\ X. Lemma then yields Y < T. By the definition of T' we have

PP\ AP X =67 (p) \ Ap X # 0
for any p € T'\ X, which by Theorem implies that T' € //PQ(X)
By Theorem the relations < and <guj coincide on ///PQ(X ). Now let & be a
subset of éoPQ(X ) cofinal with respect to < and such that < and <g,; coincide on &.
Let S € &. By Theorem 2) the set 03(X) is cofinal in &5 (X) with respect to <.
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Therefore there exists T € ﬁg(X ) with S < T. By the cofinality of & with respect to
< there exists Z € & with T < Z. Then S < Z and thus (since S,Z € &) by our
assumption S <qu;j Z. But by Theorem m (since T < Z) we have Z € ///739 (X), which
by Lemmayields S € M5 (X). Thus & C M5 (X).

(2). By the definitions we have O3 (X) C .5 (X). Also, if Y € .43 (X) then by The-
orem 2) we have Y < T for some T € ﬁg(X) and thus Y <y, T by Theorem m
This shows the cofinality of €3 (X) in .5 (X). Now let & be a subset of & (X) in which
ﬁ% (X) is cofinal with respect to <guj. Let S € &. By cofinality there exists Z € ﬁg(X)
with S <quj Z. By Lemma we have S € //lg(X) Thus & C ///7,Q(X)

(3). By Theorem Le) the set & = .5 (X) satisfies . Now let & be a subset
of £5(X) which satisfies . Let S € &. By (1) the set .5 (X) is cofinal in &£5(X)
with respect to <. Therefore there exists Y € %7,9()() with § < Y. Thus S <quj Y by
. By Lemma it follows that S € .#5(X). Therefore & C /5 (X).

(4). By (1) the set .5 (X) is cofinal in &5 (X) with respect to <. Also, by Lemma
the set & = /5 (X) satisfies . Now let & be a subset of &5 (X) cofinal with respect
to < and satisfying (4.3). Let Y € ///E(X). By the cofinality of & we have Y < S for
some S € &. By Theorem M(l.e) we have Y <quj S and thus by it follows that
Y € &. Therefore #5(X)C &. m

Recall that a partially ordered set (L, <) is called a lattice if together with any pair of
elements a,b € L it contains their least upper bound a Vb and their greatest lower bound
a A'b. Our next purpose is to generalize the following result of K. D. Magill Jr. of [20],
which relates the order-structure of the lattice of compactifications of a locally compact
space X to the topology of the outgrowth X \ X. (The theorem has been generalized in
various directions; see [24] for a different proof; see [31] for generalizations to non-locally
compact spaces; see [42] and [4] for a zero-dimensional version, and [30] for extension to
mappings.) Our results here will relate the order-structure of classes of compactification-
like P-extensions of a Tychonoff space X to the topology of the subspace X \ ApX
of BX.

THEOREM 4.9 (Magill [20]). Let X and Y be locally compact non-compact spaces. The
following are equivalent:
(1) (A(X),<) and (H(Y),<) are order-isomorphic.
(2) BX\ X and BY \'Y are homeomorphic.
REMARK. The above theorem fails if the spaces under consideration are not locally com-
pact (see [39]).

The following simple observation will be used quite often in the future (sometimes

without explicit reference).

LEMMA 4.10. Let X be a Tychonoff locally-P space where P is a clopen hereditary finitely
additive perfect topological property. Then X is non-P if and only if A\p X is non-compact
if and only if A\pX # X.

Proof. If X has P then by the definition of Ap X (and since obviously X € 2°(X)) we have
BX =intgx clgx X C ApX. Thus ApX = 3X is compact. Note that if Ap X is compact,
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then since X C ApX (as X is locally-P; see Lemma [2.10) we have clgx X C A\pX.
Therefore by Lemma [2.4] the space X has P. =

Recall that if (A, <) and (B, <) are partially ordered sets, a mapping f : A — B
is said to be an order-homomorphism if for any ¢,d € A we have f(c¢) < f(d) whenever
¢ < d. An order-homomorphism f : A — B is called an order-isomorphism if it is bijective
and f~!: B — A is also an order-homomorphism. Two partially ordered sets (4, <) and
(B, <) are said to be order-isomorphic (denoted by (A, <) = (B, <)) if there exists an
order-isomorphism between them.

LEMMA 4.11. Let P and Q be a pair of compactness-like topological properties. Let X be
a Tychonoff locally-P non-P space with Q. Then

(68(X),<) = (# (ApX), < ).
Proof. LetY € ﬁg(X ). Let ¢ : BX — BY be the continuous extension of id x. Recall that
BY is the quotient space of 3X obtained by contracting each ¢~!(p), where p € Y \ X,
to a point, with ¢ as the corresponding quotient mapping (see Lemma. By Theorem
we have ¢71[Y \ X] = X \ ApX and thus we may assume that \p X C BY. Also,

X is dense in Y, as X is dense in Y and by Lemma we have X C ApX. Therefore
ApX is dense in BY and thus Y is a compactification of ApX. Define

by
oY) =Y

for any Y € ﬁg(X ). By the above © is well defined. We verify that © is an order-
isomorphism.

CLAIM. © is an order-homomorphism.

Proof of the claim. Let Y7 < Y5 where Y7,Y5 € ﬁg(X). By definition there exists a
continuous f : Yy — Y such that f|X = idx. Let fz : 5Y2 — BY; be the continuous
extension of f. By the above 3Y; € # (ApX) for any i = 1,2. Then f3|ApX =idy,x, as
they both coincide with idx on X and thus by definition ©(Y7) = 8Y; < Y2 = O(Y3).

CLAIM. O is surjective.

Proof of the claim. Let T € J# (ApX). Consider the subspace Y = X U (T'\ ApX) of T
We verify that Y € ﬁg(X) and that ©(Y) = T. Note that X is dense in T and therefore
X is dense in Y, as X is dense in ApX and ApX is dense in T. By definition Ap X is
an open subset of BX and thus it is locally compact. Also, X C ApX and therefore
Y\ X = T\ MpX is compact. This shows that ¥ € &(X). Also, SApX = (X, as
X CApX C BX. Let g : X — T be the continuous extension of idy, x. By Theorem
3.5.7 of [B] we have g[8X \ A\pX] =T\ ApX. Thus

BX\ApX C g [gIBX \ApX]] = g7 [T\ ApX] = g7 ' [V \ X].

Since X is locally-P, by Lemma we have Y € éopQ(X ). To show that Y is optimal
let Z € Z(X) be such that Z C C for some C € Coz(X) such that cly C has P. By
Lemma we have clgx Z C ApX. Therefore since Z = g[Z] C g[clgx Z] and the latter
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is compact, cly Z C g[clgx Z]. Since glclgx Z] C g[ApX] = ApX we have clp Z C A\pX
and thus
ClyZﬁ(Y\X) - CITZQ(T\/\pX) = 0.

Theorem now implies that Y € ﬁg(X). Let ¢ : BX — BY be the continuous
extension of idx. By Theorem we have ¢~1[Y \ X] = BX \ ApX, which implies
that ¢|ApX = idy,x. (Recall the construction of 8Y and the representation of ¢ given
in Lemma ) Let h : BY — T be the continuous extension of idy. The continuous
mapping h¢ : BX — T is such that h¢|X = idx = ¢g|X and therefore h¢p = g. Thus (and
since ¢p|ApX = idy,x) we have h|ApX = g|ApX = idy, x and therefore, since h|Y = idy
and Y U ApX = BY it follows that h = idgy. In particular, idgy = h : BY — T is
continuous and it is surjective (as its image contains X and X is dense in T') and thus,
since BY is compact, it is a homeomorphism. Therefore T'= Y = O(Y).

CLAIM. For any Y1,Y> € O8(X) if ©(Y1) < O(Yz2) then Y1 < Ys.

Proof of the claim. Let ©(Y1) < ©(Yz) for some Yi,Ys € O5(X). Since fY; < 3Ya, by
definition there exists a continuous ! : Y, — £Y7 such that {|Ap X = idy, x. By Theorem
3.5.7 of [5] we have I[3Y5 \ ApX]| = 8Y1 \ ApX. Note that ¥; \ X = Y; \ ApX for any
1 =1,2. To see this, observe that if ¢; : X — [Y; where i = 1,2, denotes the continuous
extension of idx then (Y; is the quotient space of X obtained by contracting the fibers
¢;(p) where p € Y; \ X to points with the quotient mapping ¢;, and by Theorem m
we have (b;l[Yi\X] = BX \ ApX. Therefore I[Y2\ X] =Y \ X. Thus [|Y2 : Y5 — Y7 and
obviously it continuously extends idx. Therefore by definition Y7 < Y5.

The third claim implies that © is injective and that ©~! is an order-homomorphism.
This shows that © is an order-isomorphism. m

Recall that a partially ordered set (L, <) is called a complete upper semilattice (com-
plete lower semilattice, respectively) if for any non-empty subset A of L the least upper
bound \/ A (the greatest lower bound A A, respectively) exists in L. A partially ordered
set (L, <) is called a complete lattice if it is both a complete upper semilattice and a
complete lower semilattice. It is well known that for any Tychonoff X the set # (X) of
its all compactifications, partially ordered with <, is a complete upper semilattice, and
it is a complete lattice if and only if X is locally compact (see Propositions 4.2(a) and
4.3(e) of [29]). The following corollary of Lemma is now immediate.

COROLLARY 4.12. Let P and Q be a pair of compactness-like topological properties. Let
X be a Tychonoff locally-P non-P space with Q. Then (08(X),<) is a complete lattice.

The following theorem relates the order-structure of the set of optimal P-extensions
of a Tychonoff locally-P space X and the topology of the subspace X \ A\pX of 5X.
This generalizes K. D. Magill Jr.’s theorem [20), Theorem provided that one replaces
P and Q, respectively, by compactness and regularity, and notes that for these specific
choices of P and Q and a locally compact space X we have ApX = X and ﬁg(X )
=X (X).

THEOREM 4.13. Let P and Q be a pair of compactness-like topological properties. Let X
and 'Y be Tychonoff locally-P non-P spaces with Q. The following are equivalent:
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(1) (OF(X),<) and (OR(Y),<) are order-isomorphic.
(2) BX \ ApX and BY \ A\pY are homeomorphic.

Proof. Note that ApX is locally compact, as it is open in X, and by Lemma
(since X is non-P) it is non-compact. Also, since X is locally-P, by Lemma we
have X C ApX and thus (since ApX C X) we have SApX = SX. Similar statements
hold for Y. By Theorem [5.1] the partially ordered sets # (ApX) and # (ApY’) are order-
isomorphic if and only if SApX \ ApX (= X \ ApX) and SApY \ ApY (= Y \ A\pY)
are homeomorphic. Now Lemma shows the equivalence of (1) and (2). =

Our next purpose is to state and prove a result for minimal P-extensions which is
analogous to (1)=-(2) in Theorem [£.13] As we will see, there is no counterpart for (2)=>(1)
in Theorem in the case of minimal P-extensions. This will be shown by means of
an example. (This is the first place in this article where the duality between minimal
P-extensions and optimal P-extensions disappears.) The example, however, is long and
quite technical, and requires several lemmas. The reader who is not interested in the

construction of the example may skip Lemmas [£.21] [£.22] [4.26] [£.28], [£.29] [£.30], [4.31], £.33
and and replace Lemma by Lemma in the proof of Theorem [£.36] ((1)=(2)).

The following lemma is a counterpart of Lemma 4 in [20].

LEMMA 4.14. Let P and Q be a pair of compactness-like topological properties. Let X be
a Tychonoff locally-P non-P space with Q. For ann € N, let K1,..., K, be n pairwise
disjoint compact subsets of BX \ X such that K;\ApX is non-empty for any i =1,...,n.
Then there exists a unique Y in .45 (X) such that

Z(Y) = {{p} p € (BX \ ApX)\ U Ki} U{K,...,Kn). (4.4)

Proof. Let T be the space obtained from 8X by contracting the sets K1, ..., K, to points
D1, -- -, Pn, respectively, and denote by ¢ : 5X — T the quotient mapping. Since K;’s are
compact, T' is Hausdorff and thus compact, being a continuous image of 5X. Consider
the subspace

Y:q[XU(ﬂX\)\pX)ULnJKl}

=1

of T. Then Y is a Tychonoff extension of X with the compact remainder
Y\ X :q[(ﬂX\)\pX)U UK}
i=1

Note that T is a compactification of Y and thus Y € é"PQ(X ) by Lemma Also, by
Lemma if ¢ : BX — BY continuously extends idx, then BY coincides with the
quotient space of 8X obtained by contracting each fiber ¢~1(p) where p € Y \ X to
a point, that is, Y = T. This shows . The fact that Y € ///7;9()() follows from
Theorem 2.111

For the uniqueness part, let Y/ € .#3(X) be such that F(Y’) = F(Y). Let 1 :
BX — BY’ be the continuous extension of idx. By Lemma we have Y’ = T and
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1 = q. Thus
Y =q XU(ﬂX\/\pX)UUKl} ~Y.

i=1
NoTATION 4.15. Let P and Q be a pair of compactness-like topological properties. Let
X be a Tychonoff locally-P non-P space with Q. Let n € N and let Kq,...,K, ben
pairwise disjoint compact subsets of 5X \ X such that K; \ ApX is non-empty for any
i=1,...,n. Denote by ex(K1,...,K,) the unique element of .Z5(X) such that

F(ex (K, ..., K,)) = {{p} e (X \ e X)\ Ki} U{Ky,... Ky},

The next lemma is a counterpart of Lemma 6 in [20].

LEMMA 4.16. Let P and Q be a pair of compactness-like topological properties. Let X be
a Tychonoff locally-P non-P space with Q. Let K;, where i = 1,2, be a compact subset
of BX \ X such that K; \ A\pX is non-empty. Then

(1) €X(K1) A ex(Kg) = eX(Kl,Kg) if KiN Ky = 0.
(2) 6x(K1) A ex(Kg) = eX(Kl UKQ) if K1N Ky # 0.

Here A is the operation in M5 (X).

Proof. This follows from Lemma m In (2) note that if Y € .#5(X) is such that
Y <ex(Kj;) for any i = 1,2, then by Lemmawe have K; C F; for some F; € Z(Y).
But by our assumption K7 N K5 is non-empty and thus F; N F5 is non-empty, which
implies that F; = Fy. Therefore K1 U Ko C F} and thus again by Lemma it follows
that Y < ex(Kl UKQ) u

Let (X, <) be a partially ordered set with the largest element u. An element a € X
is called an anti-atom in X if a # w and there exists no x € X with a < z < u.
The following lemma is a counterpart of Lemma 9 in [20].

LEMMA 4.17. Let P and Q be a pair of compactness-like topological properties. Let X be
a Tychonoff locally-P non-P space with Q. The following are equivalent:

(1) Y is an anti-atom in ///PQ(X)

(2) Y =ex({a,b}) for some distinct a,b € BX\X such that either a ¢ A\pX orb ¢ A\pX.
Proof. Note that ///7,@ (X) has the largest element (p X = X U (8X \ ApX). To show this
first note that by Lemma[2.10] we have X C ApX. Thus (pX is a Tychonoff extension of
X which (since ApX is open in 8X) has a compact remainder. Since X C (pX C X we
have ¢(pX = X (see Corollary 3.6.9 of [5]). It follows from Lemma (withY = X,
f=1dx, T = (pX, oI = X and ¢ = idgx) that (pX has both P and Q and from
Theorem that (pX € J/L,?(X ). That (pX is the largest element of ,//ZPQ(X ) now
follows from Theorem 2.11] and Lemma 213

That (2) implies (1) is trivial.

(1) implies (2). Suppose that Y is an anti-atom in .5 (X). We show that except
for a 2-element set the rest of the sets in #(Y) are singletons; the uniqueness part
of Lemma will then imply (2). Suppose to the contrary that there exist distinct
Fi,Fy € Z(Y) such that card(F;) > 2 for any i = 1, 2. By Theorem [2.11|the set F; \ ApX
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is non-empty for any ¢ = 1,2; choose distinct a;,b; € F; such that a; ¢ ApX. Then
ex({a;, b;}), where i = 1,2, are distinct elements of //lﬁ(X) and Y < ex({a;,b;}), which
contradicts (1). Thus there is at most one set in % (Y") which is not a singleton, and since
Y # (pX, there is at least one such set. Let F' € % (Y') be such that card(F) > 2. Suppose
that card(F) > 2. By Theorem the set '\ ApX is non-empty. Let a € F \ ApX
and let b, c € F be distinct elements distinct from a. Then ex ({a,b}) and ex ({a,c}) are
distinct elements of .5 (X) and Y < ex({a,b}) and Y < ex({a, c}). This contradiction
proves that card(F) =2. m

DEFINITION 4.18. Let P and Q be a pair of compactness-like topological properties.
Let X be a Tychonoff locally-P non-P space with Q. An anti-atom Y = ex({a,b}) of
///739()() is said to be of type (I) if {a,b} N ApX is non-empty; otherwise, Y is said to be
of type (I1).

The purpose of the next two lemmas is to give an order-theoretic characterization of
anti-atoms of type (I) (and thus anti-atoms of type (II) as well) in .Z5(X).

LEMMA 4.19. Let P and Q be a pair of compactness-like topological properties. Let X be
a Tychonoff locally-P non-P space with Q such that card(ApX \ X) > 2. Then

(1) card(BX \ ApX) = 1 if and only if for any pair of distinct anti-atoms Y and Y' in
ME(X) we have

card({T : T is an anti-atom in ME(X) and Y NY' < T}) =2.

(2) card(BX \ A\pX) =2 if and only if there exists an anti-atom'Y in M5 (X) such that
for any anti-atom Y’ in ///3(X) with Y' #Y we have

card({T : T is an anti-atom in ME(X) and Y NY' < T}) =3.

(3) card(BX \ ApX) > 3 if and only if there exist some anti-atoms Y, Y’ and Y" in
ME(X) such that

card({T : T is an anti-atom in M (X) and Y NY' NY" < T}) =6.
Here A is the operation in //ZPQ(X).

Proof. Since X is locally-P, by Lemma[2.10] we have X C Ap X, and since X is moreover
non-P, by Lemma the set SX \ ApX is non-empty.
(1). Suppose that card(8X \ ApX) = 1. Let X \ ApX = {a}.
Let Y and Y’ be distinct anti-atoms in .#5(X). Then by Lemma we have
Y =ex({a,b}) and Y'=ex({a,c})

for some b, c € ApX \ X. By Lemmas and the elements b and ¢ are distinct. By
Lemma [£.16] we have

Y AY' =ex({a,b}) Nex({a,c}) = ex ({a,b,c}).

Using Lemmas [2.13] [£.14] and [£.17] it now follows that there are only two anti-atoms T
in /5 (X) with Y AY” < T, namely,

ex({a,b}) and ex({a,c}).
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To show the converse, suppose that card(SX \ ApX) # 1. Choose distinct a,b €
BX \ ApX and ¢ € A\pX \ X. By Lemma the elements

Y =ex({a,b}), Y' =ex({a,c}) and Y" =ex({b,c})
are anti-atoms in ///PQ(X ) and by Lemmas and they are distinct. By Lemma
[4.16] we have
Y AY' =ex ({a,b}) Nex({a,c}) =ex({a,b,c})
and if T is either Y, Y’ or Y” then by Lemmas [2.13| [4.14| and 4.17| we have Y AY' < T.
(2). Suppose that card(8X \ ApX) = 2. Let X \ \pX = {a, b}.
Let Y = ex({a,b}). Then by Lemma the element Y is an anti-atom in .3 (X).
Now let Y’ be an anti-atom in .35 (X) with Y’ # Y. By Lemma we have Y’/ =

ex ({c,d}) for some distinct ¢,d € X \ X with either ¢ ¢ ApX or d ¢ \pX. Without
any loss of generality we may assume that ¢ ¢ ApX and ¢ = a. By Lemma we have

Y AY' =ex({a,b}) Nex ({a,d}) = ex ({a,b,c}).
Now using Lemmas [2.13] [£.14] and [£.17]if T is either

ex({a,b}), ex({a,d}) or ex({b,d}) (4.5)
then T is an anti-atom in J/IPQ (X)and Y AY’ < T, and conversely any anti-atom T in
///PQ(X) with Y A Y’ < T is of the above form. By Lemmas and the elements
in are distinct.

To show the converse, suppose that card(8X \ ApX) # 2. Either card(8X \ A\pX) =1
or card(8X \ ApX) > 3. Consider the following cases:

CASE 1. Suppose that card(SX \ ApX) = 1. Let 8X \ A\pX = {a}. Let Y be an anti-
atom in .Z5(X). By Lemmawe have Y = ex({a,b}) for some b € ApX \ X.
Let ¢ € ApX \ X be distinct from b. (Such a ¢ exists, as we are assuming that
card(ApX \ X) > 2.) Let Y’ = ex({a,c}). Then by Lemma [4.17] the element Y’
is an anti-atom in .Z5 (X) and by Lemmas M and |4.14] we have Y’ # Y. By
Lemma [£.16 we have

Y AY' =ex({a,b}) Nex({a,c}) = ex ({a,b,c}).

Now using Lemmas [2.13} [4.14) and |4.17] it follows that the anti-atoms T in .Z5(X)
with Y AY' <T are exactly ex({a,b}) and ex({a,c}).

CASE 2. Suppose that card(8X \ ApX) > 3. Let Y be an anti-atom in .Z3(X). By
Lemma we have Y = ex({a,b}) for some distinct a,b € fX \ X with either
a ¢ ApX orb¢ ApX. Choose ¢c € X \ ApX and d € ApX \ X such that neither
c ¢ {a,b} nor d ¢ {a,b}. (Again, we are using the fact that card(Ap X\ X) > 2.) Let
Y’ = ex({e,d}). Then by Lemma the element Y’ is an anti-atom in .Z5 (X)
and by Lemmas and we have Y/ # Y. By Lemma we have

Y AY' =ex({a,b}) Aex({c,d}) = ex ({a, b}, {c,d}).

Now as above the anti-atoms 7" in ///PQ(X) with Y AY’ < T are exactly ex ({a, b})
and ex ({c,d}).
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Thus in either case for a given anti-atom Y in .5 (X) we can find an anti-atom Y in
M (X) distinet from Y with at most two anti-atoms T in .Z5 (X) with Y AY’ < T.
(3). Suppose that card(8X \ ApX) > 3.
Choose distinct a,b,c € X \ ApX and d € ApX \ X. By Lemma the elements
Y =ex({a,b}), Y =ex({b,c}) and Y" =ex({cd})
are anti-atoms in //ZPQ (X). By Lemma we have
YAY'AY" =ex({a,b}) Aex({b,c}) Nex ({c,d})
=ex({a,b.c}) Nex ({c,d}) = ex({a,b,c,d})
and therefore, using Lemmas [2.13], [£.14] and [.17] it follows that there are six anti-atoms
T in 45(X) with Y AY’ AY"” < T, namely,
ex ({a,b}),ex({a,c}),ex ({a,d}),ex ({b,c}),ex ({b,d}) and ex ({c,d}).

To show the converse, suppose that card(X \ ApX) < 2. Consider the following
cases:

CASE 1. Suppose that card(6X \ A\pX) = 1. Let X \ A\pX = {a}. Let Y, Y’ and V"
be anti-atoms in .#(X). By Lemma we have
Y =ex({a,b}),Y =ex({a,c}) and Y" =ex({a,d})
for some b, ¢, d € ApX \ X. Using Lemma we have
YAY'AY" =ex({a,b}) Nex({a,c}) Nex ({a,d})
=ex({a,b,c}) Nex ({a,d}) = ex ({a,b,c,d})
and therefore, using Lemmas [2.13] [f.14) and [£.17] it follows that the only anti-atoms
T in ///PQ(X) with Y AY' AY” < T are ex({a,b}),ex({a,c}) and ex ({a, d}).
CASE 2. Suppose that card(BX \ ApX) = 2. Let X \ \pX = {a,b}. Let Y, Y' and Y
be anti-atoms in //ZPQ(X ). Consider the following cases:
CASE 2.A. Suppose that ex({a,b}) ¢ {Y,Y’,Y"}. Consider the following cases:
CASE 2.A.1. Suppose that

Y =ex({c,d}), Y =ex({c,e}) and Y"=ex({c, [})
where c is either a or b and d,e, f € ApX \ X. By Lemmawe have
YAY' ANY" =ex({c,d}) Nex({c,e}) Nex({c, [})
= eX({c,d,e}) A ex({c,f}) = ex({c, d,e,f})

and therefore, again using Lemmas [2.13] [4.14] and 4.17] it follows that
the only anti-atoms 7' in . (X) with Y AY' AY” < T are ex({c,d}),

ex({c,e}) and ex({c, f}).
CASE 2.A.11. Suppose that either

Y =ex({a,d}), Y =ex({a,e}) and Y" =ex({b,f})

or

Y =ex({b,d}), Y =ex({be}) and YY" =ex({a, f})
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where d, e, f € ApX \ X. Without any loss of generality we may assume
that the first of the above cases occurs. Suppose that f ¢ {d,e}. Then by
Lemma [.T6] we have

YAY'AY" =ex({a,d}) ANex ({a,e}) Aex ({b, f})
=ex({a,d,e}) Nex({b, f}) = ex ({a,d, e}, {b, f})
and therefore as above it then follows that the anti-atoms 7' in .5 (X)
with Y AY' AY” < T are exactly ex({a,d}), ex({a,e}) and ex ({b, f}).
Now suppose that f € {d,e}, say f = d. Then by Lemma we have
YAY'AY" =ex({a,d}) Aex ({a,e}) Aex ({b, f})
=ex({a,d,e}) Nex ({b,d}) = ex({a,b,d, e})

and therefore as above it follows that the anti-atoms 7" in .#(X) such
that Y AY' AY” < T are exactly ex({a,b}), ex({a,d}), ex({a,e}),
ex({b,d}) and ex ({b,e}).

CASE 2.B. Suppose that ex({a,b}) € {Y,Y',Y"}, say Y = ex({a,b}). Consider

the following cases:

CASE 2.B.I. Suppose that Y’ = ex({¢,d}) and Y" = ex({c,e}) where c is
either a or b, say ¢ = a, and d,e € ApX \ X. Then by Lemma we
have

YAY' ' ANY" =ex({a,b}) Aex({a,d}) Aex({a,e})
=ex({a,b,d}) Nex({a,e}) = ex({a,b,d,e})
and therefore using Lemmas [2.13] [f.14] and [£.17] it follows that the anti-
atoms T in .5 (X) such that Y AY' AY"” < T are exactly ex({a,b}),
€X({a, d})v 6X({aa 6}), 6X({b, d}) and 6X({b7 6})
CASE 2.B.1I. Suppose that Y' = ex({a,d}) and Y = ex({b,e}) where d, e €
ApX \ X. Then by Lemma we have
Y AY' AY" =ex({a,b}) Aex({a,d}) Aex ({b,e})
=ex ({a,b,d}) Nex ({b,e}) = ex({a,b,d,e})
and therefore as above it follows that the anti-atoms 7' in .#(X) such
that Y AY' AY"” < T are exactly ex({a,b}), ex({a,d}), ex({a,e}),
ex({b,d}) and ex ({b,e}).

Thus in either case for any given anti-atoms Y, Y" and Y of //ZPQ (X) there are at most
five anti-atoms 7" in A (X) with Y AY' AY” <T. m

LEMMA 4.20. Let P and Q be a pair of compactness-like topological properties. Let X be
a Tychonoff locally-P non-P space with Q such that card(ApX \ X) > 2.

(1) Suppose that card(X \ A\pX) = 1. Then any anti-atom of ///PQ(X) is of type (I).
(2) Suppose that card(BX \ ApX) = 2. Then an anti-atom Y of M5 (X) is of type (I) if

and only if there exists an anti-atom Y’ of //lpg(X) such that
card({T : T is an anti-atom in //ZPQ(X) and Y NY' < T}) =2.
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(3) Suppose that card(BX \ ApX) > 3. Then an anti-atom Y of M5 (X) is of type (I) if
and only if there exists an anti-atom Y’ of %7)9 (X) with Y' #Y such that for any
anti-atom Y" of M5 (X) we have

card({T : T is an anti-atom in M (X) and Y NY' NY" < T}) <5.
Here A is the operation in ,///PQ(X).

Proof. By Lemmas and we have X C ApX and that 8X \ ApX is non-empty.

(1). This is obvious.

(2). Suppose that card(8X \ ApX) = 2. Let BX \ \pX = {a,b}. Suppose that Y is an
anti-atom in ///PQ(X) of type (I). Then Y = ex({c, e}) where c¢ is either a or b, say ¢ = a,
and e € ApX \ X. Choose some d € Ap X \ X such that d # e. (Such a d exists, as we are
assuming that card(ApX \ X) > 2.) Then by Lemma the element Y’ = ex ({b,d})
is an anti-atom in ///PQ(X). By Lemma we have

YAY' =ex({a,e}) Nex ({b,d}) = ex({a, e}, {b,d})

X
and thus the anti-atoms 7' in .Z5(X) with Y AY’ < T are exactly ex({a,e}) and
ex ({b,d}) which by Lemmas and are distinct.

To show the converse, suppose that an anti-atom Y of ///PQ(X ) is not of type (I).
Then necessarily Y = ex({a,b}). Let Y’ be an anti-atom of .5 (X). If Y/ =Y then the
only anti-atom 7" of ///PQ(X) with Y =Y AY’ < T isY itself. Suppose that V' # Y.
Using Lemmas [2.13} |4.14] and [4.17| we have Y’ = ex ({c, e}), where c is either a or b, say
c=a,and e € \pX \ X. By Lemmawe have

YAY' =ex({a,b}) Aex({a,e}) =ex({a,b,e})

and therefore, again using Lemmas [2.13], .14 and [£.17] there are exactly three anti-atoms
T of M5 (X) with Y AY" < T, namely, ex({a,b}), ex({a,e}) and ex({b,e}). Thus in
either case the number of anti-atoms 7' in .Z5 (X) with Y A Y’ < T is not 2.

(3). Suppose that card(6X \ ApX) > 3. Suppose that YV is an anti-atom in ///7,Q(X)
of type (I). By Lemma we have Y = ex({a,b}) for some distinct a,b € X \ X
such that either a ¢ ApX or b ¢ ApX. Choose some ¢ € ApX \ X distinct from b (this
is possible as we are assuming that card(ApX \ X) > 2) and let Y’ = ex({a, c}). Then
Y’ is an anti-atom in ///7,Q(X) by Lemma and Y’ # Y by Lemmas and
Let Y be an anti-atom in //ZPQ(X) By Lemma we have Y = ex({d,e}) where
d,e € BX \ X are distinct and either d ¢ ApX or e ¢ ApX. Consider the following

cases:

CasE 1. Suppose that {a,b,c} N{d, e} = 0. By Lemma [4.16] we have
YAY'AY" =ex({a,b}) Aex({a,c}) Nex ({d,e})
=ex({a,b,c}) Nex({d,e}) = ex({a,b,c},{d,e})

and therefore using Lemmas [2.13] [4.14) and [4.17] the anti-atoms T in .#35(X) such
that Y AY' AY"” < T are exactly ex({a,b}), ex({a,c}) and ex({d, e}).
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CASE 2. Suppose that {a,b,c} N{d,e} # 0. By Lemma we have
Y AY' AY" =ex({a,b}) Aex({a,c}) Nex ({d,e})
=ex({a,b,c}) Nex({d,e}) =ex({a,b,c,d,e}).
Consider the following cases:

CASE 2.A. Suppose that a € {d, e}, say a = d. Consider the following cases:

CASE 2.A.1. Suppose that {d,e} N ApX = (). Now using Lemmas
and the anti-atoms 7T in .Z5 (X) with Y AY’' AY" < T are exactly
eX({a'7 b})7 eX({a, C}), eX({av e}), ex({b, 6}) and eX({Cﬂ 6})

CASE 2.A.11. Suppose that {d,e} N ApX # (). Then necessarily e € Ap X and
therefore as above the anti-atoms 7' in . (X) such that Y AY/AY” < T
are exactly ex ({a,b}), ex({a,c}) and ex ({a, e}).

CASE 2.B. Suppose that a ¢ {d,e}. Then {b,c} N{d, e} is non-empty. Without any
loss of generality we may assume that ¢ = d. This implies that e ¢ ApX
and therefore again using Lemmas 2.13] [£.14] and [£.17] the anti-atoms 7" in
ME(X) with Y AY' AY" < T are exactly ex ({a,b}), ex({a,c}), ex({a,e}),
ex({b,e}) and ex({c, e}).

Thus for this choice of Y, for any anti-atom Y of . (X) the number of anti-atoms T
of #F(X) with Y AY' AY” < T is at most 5.

To show the converse, suppose that an anti-atom Y of .Z5 (X) is not of type (I). Then
Y = ex({a,b}) for some distinct a,b € X \ \pX. Let Y’ be an anti-atom in .5 (X)
distinct from Y. By Lemma[d.17| we have Y’ = ex ({c, d}) for some distinct ¢,d € SX \ X
with either ¢ ¢ ApX or d ¢ ApX. Consider the following cases:

Caske 1. Suppose that {a,b} N {c,d} = 0. Let Y = ex({b,c}). By Lemma the
element Y is an anti-atom in .Z5 (X). By Lemma we have
YAY'AY" =ex({a,b}) Aex({c,d}) Nex ({b,c})
=ex({a,b}) Nex({b,c,d}) = ex({a,b,c,d})
and therefore using Lemmas [2.13] [£.14] and [£.17] there are exactly six anti-atoms T°
in .5 (X) such that Y AY' AY” < T, namely, ex({a,b}), ex({a,c}), ex({a,d}),
ex({b,c}), ex({b,d}) and ex({c, d}).
CASE 2. Suppose that {a,b} N{c,d} # 0. Without any loss of generality we may assume
that b = c. Consider the following cases:
CASE 2.A. Suppose that d ¢ ApX. Choose some e € Ap X \ X. (This is possible as
we are assuming that card(Ap X \ X) > 2.)
CASE 2.B. Suppose that d € ApX. Choose some e € fX \ Ap X distinct from both
a and b. (This is possible as we are assuming that card(SX \ ApX) > 3.)

Now let Y = ex({a,e}). By Lemma the element Y is an anti-atom in
AMF(X). By Lemma we have

YAY'AY" =ex({a,b}) Nex({b,d}) Nex ({a,e})
=ex({a,b,d}) Nex({a,e}) = ex({a,b,d, e})
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and therefore as above there are exactly six anti-atoms 7' in %g(X ) such that
YAY' AY” < T, namely, ex({a,b}), ex({a,d}), ex({a,e}), ex({b,d}), ex({b,e})
and ex ({d, e}).

Thus in either case for a given anti-atom Y” of .Z5 (X) distinct from Y there is an anti-
atom Y” in .4 (X)) with exactly six anti-atoms T in .25 (X ) such that YAY'AY” < T. u

The following lemma together with Lemmas and [£.20] above gives an order-
theoretic characterization of one-point extensions in ///PQ(X ).

LEMMA 4.21. Let P and Q be a pair of compactness-like topological properties. Let X
be a Tychonoff locally-P non-P space with Q and let Y € //ZPQ(X) The following are
equivalent:

(1) Y is a one-point extension of X.
(2) Y < T for any anti-atom T of MS(X) of type (II).

Proof. Let ¢ : X — Y be the continuous extension of idx. By Lemma [2.8| we have
BX\ApX C ¢ [V \ X]. Also, Lemmas and imply that X C ApX and that
BX \ ApX is non-empty.

(1) implies (2). Note that .Z(Y) = {¢~![Y"\ X]}. Let T be an anti-atom in .5 (X)
of type (II). Then Y = ex({a,b}) for some distinct a,b € X \ ApX. Since {a,b} C
¢~V \ X] it follows from Lemmas and [£.14] that Y < T

(2) implies (1). Note that Y \ X is non-empty, as 8X \ \pX C ¢~ '[Y \ X] and
BX \ ApX is non-empty. Suppose that card(Y \ X) > 2. Let F,G € .#(Y) be distinct.
By Theorem both F'\ ApX and G \ A\pX are non-empty. Let a € F'\ ApX and
b€ G\ ApX. Then T = ex({a,b}) is an anti-atom in .Z5 (X) of type (II), while Y £ 7.
This shows that Y\ X is a one-point set. =

The following lemma is well known. It is included here for the sake of completeness.

LEMMA 4.22. Let X be a Tychonoff space. Then for any compact non-empty subset C' of
BX\ X there exists a unique one-point Tychonoff extension Y of X with C = ¢~[Y'\ X],
where ¢ : BX — BY is the continuous extension of idx .

Proof. Let Z be the quotient space of 5X obtained by contracting C' to a point p with
the quotient mapping q : X — Z. Note that Z is compact, being a Hausdorff continuous
image of SX. Consider the subspace Y = X U{p} of Z. Then Y is a one-point Tychonoff
extension of X. We show that Z = Y and ¢ = ¢ where ¢ : X — (Y is the continuous
extension of idx. Note that Z is a compactification of Y, as it contains Y as a dense
subspace. Thus to show that Z = BY it suffices to verify that any continuous h: Y — I
is continuously extendable over Z. Indeed, let G : 3X — I be the continuous extension
of hg(XUC): XUC — I. (Note that (X UC) = X, as X C X UC C gBX; see
Corollary 3.6.9 of [5].) Define H : T — I such that H|(6X UC) = G|(6X U C) and
H(p) = h(p). Then H|Y = h, and since Hqg = G is continuous, H is continuous. This
shows that Z = Y. That q = ¢ follows easily, as they are both continuous and coincide
with idx on the dense subset X of 5X. We have

C=q¢'(p)=¢'V\X]=¢"'[Y\X].
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For the uniqueness part, note that if T is also a one-point Tychonoff extension of X such
that C = T \ X], where v : 3X — BT is the continuous extension of idx, then
F(T)={C} =%#(Y) and thus T =Y by Lemma "

NOTATION 4.23. For a Tychonoff space X and a compact non-empty subset C' of X \ X
denote by ec X the unique one-point Tychonoff extension Y of X with C' = ¢~1[Y \ X],
where ¢ : X — [Y is the continuous extension of idx.

NoOTATION 4.24. Let P and Q be a pair of compactness-like topological properties. Let
X be a Tychonoff locally-P non-P space with Q. Denote

M3 =ecX
where C' = X \ \pX.
REMARK. In Notation the set C = X \ ApX is a compact subset of X \ X and
it is non-empty; see Lemma [£.10] Therefore the above definition of ecX makes sense.
In the following we associate to any element Y in .#S(X) a certain one-point ex-
tension Yy in ///PQ(X) This will be used in Lemma
characterize the locally compact elements of .Z5 (X).

when we order-theoretically

NOTATION 4.25. Let P and Q be a pair of compactness-like topological properties. Let
X be a Tychonoff locally-P non-P space with Q and let Y € .#(X). Denote

YU = ecX
where C' = ¢~ [Y \ X] and ¢ : X — BY is the continuous extension of idy.

REMARK. The definition in Notation [4.25] makes sense, as C is a compact subset of
BX \ X and since by Lemma we have BX \ \pX C ¢~ [V \ X], it is non-empty (as
B8X \ ApX is non-empty; see Lemma [4.10)).

The following lemma together with Lemmas [£.19] [£.20] and [.21] gives an order-
theoretic characterization of the element Yy we already associated to any Y in ///PQ(X ).

LEMMA 4.26. Let P and Q be a pair of compactness-like topological properties. Let X be
a Tychonoff locally-P non-P space with Q and let Y € //lg(X). Then Yy is the largest
T e //17,9()() satisfying the following:

(1) T is a one-point extension of X.
(2) T <Y’ for any anti-atom Y' of #5(X) of type (I) such that Y <Y".

Proof. Let ¢ : BX — BY and ¢y : X — BYy denote the continuous extensions of
idx. By Lemma we have ¢~[Y \ X]| = ¢;'[Yur \ X] and thus Yy € .#F(X) by
Lemma and Theorem as BX \ \pX C ¢~ '[Y \ X] and by Lemma the set
BX \ ApX is non-empty. Obviously, Y satisfies (1). To show that Yy satisfies (2), let Y’
be an anti-atom of .5 (X) of type (I) such that Y < Y”. Let Y’ = ex({a,b}). Then by
Lemmas[2.13]and [{.14] we have {a,b} C F for some F € .Z(Y). Since F' C ¢~ '[Y"\ X] we
have {a,b} C ¢;;'[Yir \ X] and therefore, again by Lemmas and it follows that
Yy <Y’. Now we show that Yy is the largest element of ///7,9 (X) satisfying (1)—(2). Let
(1)~(2) hold for some T € .45 (X). Let ¢ : X — BT be the continuous extension of idx.
To show that T < Yy, by Lomma it suffices to show that ¢y [V \ X] C T\ X].
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Let ¢ € ¢;'[Yrr \ X]. Suppose that ¢ € BX \ ApX. Then obviously ¢ € ¢ ~}[T\ X], as
BX\ApX C 71T\ X] by Lemma Now suppose that ¢ € ApX. Since ¢ € ¢~ L[V \ X]
there exists G € .#(Y) such that ¢ € G. By Theorem [2.11] the set G\ ApX is non-empty.
Let d € G\ ApX. Then Y’ = ex({c,d}) is an anti-atom in .Z5 (X) of type (I) which by
Lemmas and is such that Y < Y”’. Thus by our assumption T < Y”. Therefore
again using Lemmas[2.13|and[4.14]it follows that {¢,d} C ¢~ }[T\ X]. Thus ¢ € ¢ }[T\ X]
in this case as well. Hence (b(_]l[YU \ X] C 47T\ X], which completes the proof. =

In the following we define, and then order-theoretically characterize, certain elements
of ///PQ(X ). This will have an application in the order-theoretic characterization of locally
compact elements of .Z5 (X) given in Lemma m

DEFINITION 4.27. Let P and Q be a pair of compactness-like topological properties. Let
X be a Tychonoff locally-P non-P space with Q. An element Y € //ZPQ(X ) is called
almost optimal provided that Ap X N ¢~V \ X] is compact, where ¢ : 3X — 3Y is the
continuous extension of id x.

LEMMA 4.28. Let P and Q be a pair of compactness-like topological properties. Let X be
a Tychonoff locally-P non-P space with Q. Let {Y; : i € I} C ///7,Q(X) be a non-empty
collection of one-point extensions of X. Then

1) The least upper bound \/,.,Y; exists in ML(X).
icl P
2) If Y =\V..,; Y, thenY is a one-point extension of X and
i€l

TYAX] = (6 X
el
where ¢ : BX — BY and ¢; : BX — BY; for any i € I denote the continuous
extensions of idx .

Here V is the operation in ,///PQ(X).
Proof. Let ¢; : X — Y for any i € I be the continuous extension of idx. Let

c=¢:"
iel

Then C is compact, as it is closed in X, and obviously C' C X \ X, as ¢;|X = idx
for any ¢ € T (and I is non-empty). By Lemma we have BX \ ApX C ¢, '[V; \ X]
for any ¢ € I. Therefore 65X \ ApX C C, which implies that C is non-empty, as by
Lemma the set BX \ ApX is non-empty. Let Y = ecX. Then Y is a one-point
Tychonoff extension of X and Y € .#5(X) by Lemma and Theorem since if
¢ : BX — PBY denotes the continuous extensions of idx, then using Lemma [£.22] we have
BX\ApX CC =¢ [V \X]. By Lemmait is obvious that Y; <Y for any i € I, as

LY\ X] = C C ¢; '[Y; \ X]. We only need to show that ¥ < Y” for any Y’ € 5 (X)
which satisfies Y; < Y’ for any i € I. Indeed, let F' € .#(Y”"). By Lemma we have
F C ¢;7'[Y;\ X] for any i € I and thus

FC(e i\ X]=C=0"'[V\ X].
iel

Therefore Y <Y’ again by Lemma [2.13] m
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The following lemma together with Lemmas [£.19] [.20] and [£.21] gives an order-
theoretic characterization of almost optimal elements of .#5 (X). Recall that a Tychonoff
space X is locally compact if and only if it is open in X (see Theorem 3.5.8 of [5]). We
use this well known fact in the proof of the following lemma.

LEMMA 4.29. Let P and Q be a pair of compactness-like topological properties. Let X be
a locally compact locally-P non-P space with @ and letY € J/ZPQ(X) The following are
equivalent:

(1) Y is almost optimal.

(2) For any collection {Y; : i € I} C ///Q( ) of one-point extensions of X such that
Yu v \/ZGIY = MZX we have Yy V \/ = MZ for some k € N and some
11 Jip € 1.

Here V is the operation in M5 (X).

Proof. Let ¢ : X — BY and ¢y : X — BYy denote the continuous extensions of idx.
By Lemma [4.22] we have ¢~ 1[Y \ X] = o7, [Yr \ X].

(1) implies (2). Suppose that Ap XNe¢p~L[Y\ X] is compact. Let {Y; : i € I} C //19( )
be a collection of one-point extensions of X with Yy v/, Y; = MX By Lemmas
and we have

¢y Yo \ X]n ()6, '[Yi\ X] = BX \ ApX
il
where ¢; : BX — (Y; for any ¢ € I denotes the continuous extension of idx. Now
ApX N Y\ XN (o' Vi \ X] = ApX ngy Yo \ XN [ )¢; ' [Yi\ X] =0
i€l el
and therefore by the compactness of Ap X N ¢~1[Y \ X] it follows that

k
AMpX No Y \ X]N ﬁ Vi, \ X] =0
for some k € N and some iy,...,i; € I. This 1mphes that
k
-1 -1
YA\X]n () 65 [¥;, \ X] € X\ ApX.
j=1

But by Lemma [2.§ we have X \ ApX C ¢ '[Y' \ X] and SX \ ApX C ¢; '[V; \ X] for
any ¢ € I. Thus from the above
k k
o' D \ X0 () 63! [Yi, \ X] = 67 VA X] 0 () 01 [V, \ X] = BX \ Ap X,
Jj=1 j=1
Lemma now implies that Yy v \/f=1 Y, = M3,

(2) implies (1). First note that X C ApX (see Lemma [2.10)) and X \ ApX is non-
empty (see Lemma|4.10)). To show (1) we have to verify that Ap X N¢~1[Y"\ X] is compact.
Note that ApX N¢~1[Y \ X] C A\pX \ X, as obviously ¢71[Y \ X] C 8X \ X, because
#|X = idx. Let {U; : i € I} be an open cover of ApX N ¢~ L[Y \ X] in ApX \ X. Note
that each U;, where ¢ € I, is open in 8X \ X, as U; is open in ApX \ X and the latter
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is open in BX \ X, because A\pX is open in SX. Let C; = (X \ X) \ U; where i € I.
Then C; is closed in X \ X and thus compact, as SX \ X is compact (because X is
locally compact), and it is non-empty, as it contains SX \ ApX. Let ¥; = e, X and let
¢i : BX — BY; denote the continuous extension of idx. By Lemma [£.22| we have

Y\ X] =G = (BX\ X)\ U (4.6)
We have
YA\ XIN( o W\ X = Y\ XN [()((BX\ X)\ 1))
el el
g (x\ 0\ )
iel
Co Y\ XN ((BX\X)\ (ApX No~'[Y \ X]))
C X\ ApX

and therefore
¢y Yo\ XIN (e 'Y\ X]=¢ 'Y\ XIN[)¢; ' [Vi\ X] = BX \ \pX
i€l iel
as by Lemma [2.8 we have BX \ Ap X C ¢~ [V \ X] and BX \ ApX C ¢; Yy; \ X] for any
i € I. Lemmat.28 now implies that Yy V\/,.; Y; = M3 , which yields YU\/\/] Y, = MK

i€l
for some k € N and some iy, ...,i; € I. Again, using Lemma [£.2§ we have
k
YA\ XTN () 60 Y\ X =65 Yo \ XN ﬂ¢ = BX\ \pX
j=1

and thus by (4.6)) it follows that

)=

k
S (Ex A\ JO) =T XN () ((8X\ X)\ UL
k
Y\ XN ﬂ ¢, [V, \ X] = BX \ ApX.
Therefore

X N Y\ XT0 (X \ X0\ J U,) =0,

j=1
which implies that
ApXNne Y\ X]C (U,
Jj=1
That is ApX N¢~1[Y \ X] is compact. m

LEMMA 4.30. Let X be a locally compact space and let Y € &(X). The following are
equivalent:

(1) Y is locally compact.
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(2) ¢~ LY \ X] is open in BX \ X, where ¢ : BX — BY is the continuous extension of
idx.
Proof. Recall that by Lemma the space BY is the quotient space of X obtained
by contracting each ¢~!(p) where p € Y \ X to a point, with the continuous extension
¢ : BX — BY of idx as the quotient mapping.
(1) implies (2). Note that Y is open in 3Y and thus ¢~ ![Y] is open in 3X. Therefore
o Y\ X] =67 YN (BX\ X)
is open in X \ X.
(2) implies (1). Let U be an open subset of X such that ¢~V \ X] = UN(BX\ X).
Since X is locally compact, it is open in SX. Thus U U X is open in X and therefore
Y = ¢[U U X] is open in SY. This shows that Y is locally compact. m

The following lemma together with Lemmas [£.19] [{.20] {.21] [£.26] and [£.29] gives an
order-theoretic characterization of locally compact elements of j/PQ(X )-

LEMMA 4.31. Let P and Q be a pair of compactness-like topological properties. Let X be
a locally compact locally-P non-P space with Q and let'Y € //ZPQ(X) The following are
equivalent:

(1) Y is locally compact.
(2) There exists an almost optimal one-point extension Y' € M (X) such that for any
anti-atom T of ///7,9()() of type (1), either Yy <T orY' <T, but not both.

Proof. Let ¢ : BX — BY and ¢y : BX — [Yy denote the continuous extensions of id x.
By Lemmas|[2.§ and[£.22 we have X \ApX C ¢~ ![Y'\ X] and ¢~ [Y'\ X] = ¢5;" [Yir \ X].
Also, by Lemmas and we have X C ApX and X \ ApX is non-empty.

(1) implies (2). By Lemma@the set »~1[Y \ X] is open in 8X \ X. Let

C=((BX\X)\ o[V \ X]) U(BX \ ApX).

Then C' C X \ X is compact, being the union of two compact subspaces, and it is
obviously non-empty, as it contains SX \ ApX. Let Y’ = ec X. Then Y is a Tychonoff
one-point extension of X and by Lemma if ¢ : BX — BY' denotes the continuous
extension of idy then ¢ ~![Y’\ X] = C. Therefore by Lemma and Theorem we
have Y’ € //IPQ(X), as BX \ ApX C C. Also, Y’ is almost optimal, as

ApX 1Y\ X] = ApX NC = (BX\ X)\ 671 ¥ \ X]

is compact. (Note that (BX \ X)\ ¢7'[Y \ X] C MpX, as BX \ A\pX C ¢~ [V \ X].)
Now consider an anti-atom 7' of .5 (X) of type (I). Then T = ex({a,b}) for some
a € X\ ApX and b € ApX \ X. Consider the following cases:

CasE 1. Suppose that b € ¢~ 1[Y \ X]. Then a € ¢ [V \ X], as a € 3X \ ApX and thus
{a,b} € ¢5' Y \ X]. Lemmas and now imply that Yy < T.

CASE 2. Suppose that b ¢ ¢~[Y \ X]. Then necessarily b € C = ¢~ [Y’"\ X]. But
also a € 7Y\ X], as a € BX \ ApX and X \ A\pX C ¢~ L[Y"\ X]. Thus
{a,b} C Y’ \ X]. Again Lemmas and imply that Y’ < T.
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Obviously, Yiy < T and Y’ < T cannot hold simultaneously, as then {a,b} C ¢y [V \ X]
and {a,b} C ¢~1[Y’\ X]. But b € ¥ ![Y"\ X] = C implies, by the choice of b, that
be (BX\X)\ ¢ L[V \ X], which is not possible, as b € ¢~ 1[Y \ X].

(2) implies (1). Let ¢ : X — BY” denote the continuous extension of id x. By Lemma
to prove that Y is locally compact it suffices to show that ¢~1[Y \ X] is open in
BX \ X. We show this by verifying that

BX\NX)\ ¢ Y\ X] = ApX Ny~ Y\ X]. (4.7)
Choose some a € X \ A\pX. Let b € (BX \ X)\ ¢~ [V \ X] and suppose to the contrary
that b ¢ ¢~ '[Y'\ X]. Let T = ex({a,b}). Then T is an anti-atom in .Z3(X) of type (I),
and by Lemmasandneither Yy < T nor Y’ < T, as neither {a,b} C ¢~ 1Y\ X]
nor {a,b} C¢~1[Y’\ X]. This is a contradiction. Therefore

(BX\X)\ o7 Y\ X] CApX Ny~ Y\ X]. (4.8)

To show the reverse inclusion in (4.8)), let ¢ € Ap X N¢y~![Y”\ X]. Suppose to the contrary
that ¢ ¢ (BX\X)\ ¢ [V \ X], or equivalently that ¢ € ¢7[Y'\ X], as ¢ € 3X \ X, because
ce Y HY'\ X] and ¢~ 1[Y"\ X] C BX \ X, since 9| X =idx. Let 7" = ex({a, c}). Then
T" is an anti-atom in .Z5 (X) of type (I) and by Lemmas andboth Yy <T' and
Y’ < T, as both {a,c} C ¢~ [Y \ X] and {a,c} C 9~'[Y"\ X], because by Lemma [2.§
we have X \ A\pX C ¢ Y\ X] and X\ \pX C ¢~ 1[Y'\ X] and a € 8X \ \pX. This
contradicts our assumption and proves . Now since Ap X N~ LY\ X] is compact,
as Y’ is almost optimal, (83X \ X)\ ¢~1[Y \ X] is compact and thus closed in 83X \ X.
Equivalently, $~1[Y'\ X] is open in 3X\ X, as ¢~} [Y\ X] C BX\ X, because ¢|X = idx. =

The following lemma together with Lemmas [£.19] and [4:20] gives an order-theoretic
characterization of optimal elements of //ZPQ(X ).

LEMMA 4.32. Let P and Q be a pair of compactness-like topological properties. Let X
be a Tychonoff locally-P non-P space with Q and let Y € //ZPQ(X) The following are
equivalent:

(1) Y € 05(X).
(2) There eists no anti-atom T in M5 (X) of type (I) with Y < T.

Proof. Let ¢ : X — BY denote the continuous extension of idx.

(1) implies (2). Let T be an anti-atom in .S (X) such that Y < T. Let T =
ex({a,b}) where a,b € X \ X are distinct such that either a ¢ ApX or b ¢ A\pX.
By Lemmas [2.13| and [4.14] we have {a,b} C F for some F € Z(Y). But F C ¢~ '[Y'\ X]
and ¢~ [V \ X] = X \ ApX by Theorem Thus {a,b} C BX \ ApX, which shows
that T is of type (II).

(2) implies (1). By Theorem m to show (1) it suffices to show that ¢~1[Y \ X] =
BX \ ApX. Suppose otherwise. By Lemma we have X \ A\pX C ¢!V \ X]. Thus
¢ HY\X] € BX\ApX. Choose b € ¢ [Y'\ X] such that b ¢ X\ pX. Then b € ¢~ *(p)
for some p € Y\ X. By Theorem the set ¢~ !(p) \ ApX is non-empty. Choose an
a € ¢7(p)\A\pX. Note that a,b € 83X\ X, asa,b € ¢~ [Y\ X] and ¢|X = idx. Consider
the anti-atom T' = ex ({a, b}) of ///7,Q(X) Then T is of type (I), and since {a,b} C ¢~*(p),
by Lemmas [2.13] and [£.14] we have Y < T'. This is a contradiction. =
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The following is an immediate corollary of our previous lemmas.

LEMMA 4.33. Let P and Q be a pair of compactness-like topological properties. Let X
and 'Y be Tychonoff locally-P non-P spaces with Q such that card(ApX \ X) > 2 and
card(ApY \Y) > 2. Let

O: (MF(X),<) = (MR(Y), <)
be an order-isomorphism. Let T € M5 (X). Then
(1) If T is an anti-atom in M3 (X) (an anti-atom in A (X) of type (1), an anti-atom
in MF(X) of type (I1), respectively), then so is O(T).
(2) If T is optimal, then so is ©(T).
(3) If T is a one-point extension, then so is ©(T).

Suppose that X and Y are moreover locally compact. Then

(4) If T is almost optimal, then so is O(T).
(5) If T is locally compact, then so is O(T).

Proof. This follows from the previous lemmas, as Lemmas and imply (1), part
(1) and Lemma imply (2), part (1) and Lemma imply (3), part (3) and Lemma

imply (4), and finally parts (1), (3), (4) and Lemma [4.31] imply (5), noting that by
Lemma (and parts (1) and (3)) we have ©(Sy) = (©(S))y for any S € ///pQ(X) "

LEMMA 4.34. Let P and Q be a pair of compactness-like topological properties. Let X
be a Tychonoff locally-P non-P space with Q. Let T = ex({a,b}) be an anti-atom in
ME(X) of type (I) where a ¢ ApX and b € \pX. Let T' = ex({c,d}) be an anti-atom
n J/IPQ(X) of type (1) such that T # T'. The following are equivalent:

(1) b ¢ {c,d}.
(2) card({T" : T" is an anti-atom in MF(X) and TAT < T"}) = 2.

Proof. (1) implies (2). Consider the following cases:
CASE 1. Suppose that a € {c, d}, say a = ¢. By Lemma we have
TAT =ex({a,b}) Nex({a,d}) = ex ({a,b,d}).

Now using Lemmas 2.13} [4.14{and |4.17| there are only two anti-atoms 7" in .#5(X)
with T AT <T”, namely ex({a,b}) and ex({a,d}).
CASE 2. Suppose that a ¢ {c,d}. Again by Lemma we have

TAT =ex ({a, b}) ANex ({c, d}) =ex ({a, b}, {c, d})

and thus as above there are only 2 anti-atoms 7" in .#5(X) with TAT' < T",
namely ex ({a,b}) and ex ({c,d}).

Therefore (2) holds in either case.

(2) implies (1). Suppose to the contrary that b € {c,d}, say b = c. Note that using
Lemmas [2.13] [4.14] and |4.17) it follows that a # d, as T # T, and thus there are exactly
three anti-atoms 7" in ///PQ(X) with T AT < T”, namely ex({a,b}),ex({a,d}) and
ex ({b,d}). This is a contradiction. m
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The following lemma gives an internal (to X) characterization of spaces X with
card(ApX \ X) > 2. This assumption has been used before in several statements.

LEMMA 4.35. Let X be a Tychonoff space and let P be a clopen hereditary finitely additive
perfect topological property. The following are equivalent:

(1) card(ApX \ X) > 2.
(2) There exist a pair of disjoint non-compact zero-sets of X each contained in a cozero-
set of X whose closure (in X ) has P.

Proof. (1) implies (2). Let z; € ApX \ X where ¢ = 1,2 be distinct and let U; be an
open neighborhood of z; in Ap X (and therefore in X, as ApX is open in 3X) such that
U1NUy = 0. Let f; : X — I be continuous with f(z;) =0 and f;[8X \ U;] C {1} and let

Zi=f710,1/3]]NnX € Z(X) and C;=f;'[0,1/2)] N X € Coz(X).
Note that Z; C f;[[0,1/3]] € U; and thus Z; N Z = (). Also, since
zi € £ 10,1/3)] C intgx clgx (f71[[0,1/3]] N X) C clgx (£ '[[0,1/3]] N X) = clgx Z;
the set clgx Z; \ X is non-empty and therefore Z; is non-compact. Then
clgx C; = clax (£ 1[0,1/2)] N X) = clgx ;7 '[[0,1/2)] € £, 1[[0,1/2]] CU; € ApX
and thus by Lemma [2.4] the closure clx C; has P.
(2) implies (1). Let Z; € Z(X) be non-compact with Z; C C; where C; € Coz(X)

and cly C; has P and Z; N Z, = (). By Lemma we have clgx Z; C ApX. Since Z; is
non-compact, clgx Z; \ X is non-empty. Also

Clgx Z1 N ClﬁX Zy = Clgx(Zl n Zg) = 0.
Therefore card(Ap X \ X) > 2. un

THEOREM 4.36. Let P and Q be a pair of compactness-like topological properties. Let X
and Y be Tychonoff locally-P non-P spaces with Q such that each space contains a pair
of disjoint non-compact zero-sets each contained in a cozero-set whose closure has P.
Consider the following:

(1) (///7>Q(X),§) and (//ZPQ(Y),S) are order-isomorphic.
(2) BX\ ApX and BY \ A\pY are homeomorphic.

Then (1) implies (2), while (2) does not necessarily imply (1).

Proof. By Lemma we have card(ApX \ X) > 2 and card(ApY \ Y) > 2. To show
that (1) implies (2) let

O: (MF(X), <) — (ME(Y), <)
denote an order—isomorphism By Lemma we have ©(02(X)) C 03(Y). Now, since
L (A (Y), < ) (5 (X),<)

is also an order-isomorphism, again, using Lemma [4.33| we have ©~1(&. Q( )) C ﬁg(X ),
or equivalently, O5(Y) C @(ﬁg( )). Therefore O(O5 (X)) = g ) Thus

Ol0p(X): (0p(X),<) — (ﬁg( ), <)
is an order-isomorphism. By Theorem [£.13] this now implies (2).
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Next, by means of an example, we show that (2) does not necessarily imply (1). Let

X=No@Rr and Y=PR:

i<Q i<Q
where R; for any ¢ < € is the subspace [0, 00) of R. Let P be the Lindelof property and let
Q be regularity. Then P and Q is a pair of compactness-like topological properties (see
Example and X and Y are locally compact non-Lindel6f spaces each containing a
pair of disjoint non-compact clopen Lindelof subsets. (Just consider R; and R; for some
distinct i, j < 2 as the desired pair.) Note that

ApX =clgx NU U { clgx (U Ri) :JJC[0,9) is countable} (4.9)
ieJ
and
ApY = U { clgy (U R; ) J C0,9Q)is countable}7 (4.10)
since, for example, in the first case, for any Lindelof Z € 2°(X) we have
ZCNU|J R
ied
for some countable J C [0,€2), and conversely, if J C [0,€) is countable then
S=NuUlJ R
ieJ

is a clopen Lindelof subset of X, and thus clgx S = intgy clgx S € ApX. (Note that
a clopen subset of a Tychonoff space has a clopen closure in its Stone-Cech compact-
ification; see Corollary 3.6.5 of [5].) We now verify that X \ ApX and SY \ A\pY are
homeomorphic. Since X contains Y as a closed subspace (and it is normal) the spaces
clgx Y and BY are equivalent compactifications of Y (see Corollary 3.6.8 of [5]). Therefore
for any countable J C [0,€2) we have

clﬁy(UR) = clietyy v) (UR) —CIBX(UR)OCIBXY—ClﬁX(UR>

icJ
Thus by (4.10) we have

ApY = U{ClﬁX(U R) J C[0,9) is countable}. (4.11)
icJ

Then by (4.9) we have
ApX =clgx NUApY

and also, since X =NUY,
BX =clgx(NUY) =clgx NUclgx ¥ = clgx NU Y.
Note that for any countable J C [0,2) we have
clox Nl (|J Ri) =0
icJ
R; are disjoint zero-sets (in fact clopen subsets) of X. Therefore by ,
clgx NN ApY = 0.

as Nand (J;,
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Also
CngNﬂ,BY = ClﬁxNﬂcngY = 0.

It now follows that
BX\ ApX = (Cng NUgBY)\ (C]ﬁX NUApY) = 8Y \ A\pY.

This shows (2). Next, we show that the partially ordered sets .3 (X) and 5 (Y) are
not order-isomorphic. But first, we need to prove the following.

CLAIM. Let D be a non-empty clopen subset of BY \'Y. Then clgy R; \Y C D for some
i< Q.

Proof of the claim. Let g : BY \'Y — I be continuous with
g[D] € {0} and g¢[(BY\Y)\D] C {1}.

Since Y is locally compact, Y \ Y is closed in (the normal space) 8Y and thus by the
Tietze-Urysohn Theorem g = G|(8Y \ Y') for some continuous G : Y — I. Let

V=G"0,1/2)] nY.
Then V is an open subset of Y. Since

GH[0,1/2)] \ Y € elay GH[0,1/2)] \ Y = clay (G71[[0,1/2)] nY) \ Y
C G 'o,1/2]]\Y

and
G7'[0,1/2)]\ Y =g¢7"'[0,1/2)] =D =g '[[0,1/2]] = G~"[[0,1/2]] \ Y

it follows that
D =clgy (G7H[0,1/2)] NY)\ Y =clgy V\ Y.

Also, bdy V' is compact, as
bdy V =cly V\V C (G7'[[0,1/2]] nY)\ (G7'[[0,1/2)] nY)
= (G7'[[0,1/2]] \ G '[[0,1/2)]) nY
=G H1/2)nY C G (1/2),
which implies that
clgy bdy V\Y CGH1/2)\ Y =g 1(1/2) = 0.

Therefore clgy bdy V C Y and thus bdy V = clgy bdy VNY = clgy bdy V is compact,
as it is closed in BY. Let

H={i<Q:bdy VAR #0}.

Note that H is finite, as bdy V is compact. To prove the claim suppose to the contrary
that clgy R; \'Y € D for any i < Q. Then

clgy Ri \Y =clgy R; \ R; = BR; \ R;
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as clgy R; and SR, are equivalent compactifications of R;, because R; is closed in Y (and
Y is normal), and therefore since SR; \ R; is connected (see Problem 6L of []]), we have
clgy RiND = (Clﬁy RA\Y)ND= 0 (4.12)
for any i < Q. Now let ¢ < Q be such that V N R; is non-empty. If bdg, (VN R;) = 0 then
V N R; is clopen in R;, and since R; is connected, VN R; = R;, that is, R; C V. But then
@#ﬂRZ\RZ :ClgyRi\Y C CllgyV\Y:D,
which by (4.12)) cannot be true. Thus
bdy VN R; = bdg,(VNR;) # 0,
that is, i € H. Therefore V' C | J,.; Ri. Now
D= ClgyV\Y Ceclgy V C Clgy(U RZ‘) = U clgy R,
icH icH
which again contradicts (4.12]), as D is non-empty. This proves the claim.
Now we prove that .5 (X) and //ZPQ(Y) are not order-isomorphic. Suppose the con-
trary and let
O: (ME(X), <) = (AF(Y),<)
denote an order-isomorphism. Let
C=(BX\X)\clgxN.

Then C' is a clopen non-empty subset of X \ X. (Note that SX \ X is closed in X, as
X is locally compact, and clgx N is clopen in 38X, as N is clopen in X.) Let T' = ec X.
Then T is a one-point Tychonoff extension of X, which by Lemmas and is
locally compact. By Lemmas [2.8| and and Theorem we have T' € .45 (X). Let
S = ©(T). Then by Lemma the element S is a one-point locally compact extension
of Y. Denote by v : BY — 35 the continuous extension of idy. Then D = ¢~1(S\Y) is
clopen in fY \' Y by Lemma and obviously D # Y \ 'Y, as S is not the smallest
element in .5 (Y), because T is not the smallest element in .5 (X), since C' # BX \ X.
By the above claim, clgy R; \'Y C (8Y \ Y) \ D for some ¢ < €. Choose some distinct
b',c € clgy R; \'Y (which exist, as by the above clgy R; \' Y = BR; \ R;) and choose
a’ € BY \ ApY (which exists, as Y is non-Lindelof; see Lemma . Let

S =ey({d,V}) and S"=ey({d,})
and let
T'=0"'5) and T"=071(5").

By Lemma both 7" and 7" are anti-atoms in .#5(X) of type (I), as S’ and S” are
anti-atoms in .Z5 (Y) of type (I). Let

T =ex({a,b}) and T" =ex({c,d})

where b,d € ApX. Note that b’ ¢ {a’,c'}, which by Lemma yields b ¢ {c,d}. We
have neither T' < T" nor T' < T"”, as neither

OT)=S<S5=06(T") nor O(T)=S5<S5"=06(T")
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because b, ¢’ ¢ D; see Lemmas and Thus again by Lemmas and
neither {a,b} C C nor {c,d} C C, which implies that b,d ¢ C, or b,d € clgx N, as
a,c € X\ ApX C C. But, since clgx N\ N is zero-dimensional, there exists a clopen
subset E of X \ X containing b, but not d, such that it contains X \ ApX. This by
Lemmas and corresponds to a one-point locally compact element of //ZPQ(X ),
namely, eg X . By Lemma[4.33|the element © (e X) is a one-point locally compact element
in A5 (Y). Now if Fy (O(epX)) = {G}, then by Lemma@the set G is a clopen subset
of BY' \ 'Y, and neither

clgy R, \Y CG mnor (clgy R;\Y)NG =1

as b € G and ¢ ¢ G, because {a/,b'} C G and {d',¢'} € G, since O(egX) < S" and
O(epX) £ 5", as

epX <ONS) =T and epX £O071(S")=T"

because {a,b} C E and {c,d} ¢ F, again by Lemmas|2.13 |4.14|and |4.22| This contradicts
the fact that clgy R; \' Y is connected. m

In the final result of this chapter we introduces the largest (with respect to the partial
order <) compactification-like P-extension of a Tychonoff space X. This largest element
(also introduced in the proof of Lemma turns out to be a familiar subspace of the
Stone-Cech compactification of X. We formally define this element and prove some of its
properties which characterize it among all P-extensions of X with compact remainder.

THEOREM 4.37. Let P and Q be a pair of compactness-like topological properties. Let X
be a Tychonoff locally-P non-P space with Q. Consider the subspace
(pX = X U(BX \ \pX)
of BX. Then
(1) ¢pX is the largest element (with respect to <) of either £5(X), M5 (X) or OF(X).
(2) For anyY € 5’7,9 (X)) consider the following properties:
(a) For any S,Z € Z(X) where SNZ C C for some C € Coz(X) such that clx C
has P, we have cly SNcly Z C X.
(b) Y satisfies the following:
(i) For any S,Z € Z(X) we have
cy(SNZ)\ X = (cly Sncly Z)\ X.
(ii) For any Z € Z(X) where Z C C for some C € Coz(X) such that clx C has
P, we have cly Z C X.
Then (p X is characterized in cg’PQ(X) by either of the above properties.

Proof. (1). By Lemma we have X C ApX. Thus (pX is a Tychonoff extension of
X with the compact remainder (pX \ X = X \ ApX. Since X C (pX C X we have
B¢pX = BX (see Corollary 3.6.9 of [5]). Therefore by Lemma (with f = idx and
¢ = idgx) we have (pX € &2(X) and by Theorem it follows that (pX € OF(X)
and thus (pX € ///PQ(X). Now let Y € éaPQ(X) and let ¢ : X — BY be the continuous
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extension of idx. By Lemma [2.8| we have SX \ ApX C ¢~ ![Y \ X]. Therefore

PlCpX] = o[ X U(BX\ ApX)] = ¢[X]U[BX \ MpX]
= XUBX\ WpX]CXUG[p ' [Y\X]] CXUY\X)=Y

and thus ¢|(pX : (pX — Y. Since the latter fixes X pointwise this shows that ¥ < (p X.
Therefore Y is the largest element of &5 (X).

(2). Let Y = (pX. We show that Y satisfies (2.a) and (2.b). To show (2.a) suppose
that S, Z € Z(X) are such that SNZ C C for some C' € Coz(X) such that clx C has P.
Then by Lemma [2.14] we have clgx (SN Z) C ApX and thus

ClySﬂClyZ:dﬁXsﬂclﬁXzﬁY:Clgx(SﬂZ)ﬂY CApXNY CX.
To show (2.b) note that for any S, Z € 2 (X) we have
Cly(SﬂZ) = Clgx(SﬂZ)ﬁY = clngﬂcngZﬂY =cly Sncly Z.

Therefore (2.b.i) holds. Note that since (2.a) holds, (2.b.ii) holds as well.

Now suppose that some Y € &5(X) satisfies (2.a). Let ¢ : X — BY be the contin-
uous extension of idy. Recall the construction of Y and the representation of ¢ given
in Lemma Note that (2.a) in particular implies that cly Z N (Y \ X) = 0 for any
Z € Z(X) such that Z C C for some C € Coz(X) such that clx C' has P. Thus by
Theorem We have Y € 0p(X) and therefore ¢~1[Y\ X]| = X \ ApX. We show that
for any p € Y \ X the set ¢—1(p) consists of a single point, which implies that Y = (p X.
Suppose to the contrary that for some p € Y\ X there exist distinct a,b € ¢~1(p). Let
f: BX — I be continuous with f(a) =0 and f(b) = 1. Let

S=f0,1/3]NnX and Z=f"[[2/3,1]]NX.

Then S, Z € Z(X) and SNZ = (). Thus (and since X is a non-empty Tychonoff locally-P
space, and P is hereditary with respect to closed subsets of Hausdorff spaces and thus
containing some C' € Coz(X) such that clx C has P) by our assumption cly SNcly Z C X.
We show that p € cly S Ncly Z; this contradiction proves that Y = (pX. Let V be an
open neighborhood of p in Y and let the open subset V' of 3Y be such that V =V'NY.
Then ¢~ 1[V']N £71[[0,1/3)] and ¢~ [V'] N f~1[(2/3,1]] are open neighborhoods of a and
b in BX, respectively, and therefore have non-empty intersection with X. Note that

o VINFTH0,1/3)]nX C SNV and ¢ [VINfTH(2/3,1]]nX CZNnV.

Thus p € cly S Ncly Z. Finally, we show that (2.b) implies (2.a). This together with
the above proves the theorem. Suppose that (2.b) holds. Let S, Z € Z(X) be such that
SNZ C C for some C € Coz(X) such that clx C has P. Then by (2.b.ii) we have
cly (SN Z) C X. Therefore using (2.b.i) we have

(ClySﬁClyZ)\X:Cly(SmZ)\X:(B

and thuscly SNcely ZC X. m
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5. Applications

5.1. Tight P-extensions. In [20] K. D. Magill Jr. proved the following theorem relating
the order-structure of the set of all compactifications of a locally compact space X to the
topology of SX \ X. Recall that order-isomorphic lattices are called lattice-isomorphic.

THEOREM 5.1 (Magill [20]). Let X and Y be locally compact non-compact spaces. The
following are equivalent:

(1) (£ (X),<) and (H(Y), <) are lattice-isomorphic.
(2) BX\ X and BY \'Y are homeomorphic.

The idea of generalizing the above result led J. Mack, M. Rayburn and R. G. Woods
[T7] to introduce and study a new class of extensions. We state some definitions and
results from [I7] below. The reader may find it useful to compare these results with those
we have already obtained in the previous chapter.

Let X be a Tychonoff space and let P be a topological property. A Tychonoff P-
extension of X is called tight if it does not contain properly any other P-extension of X.
Now let P be a topological property which is closed hereditary, productive and is such
that if a Tychonoff space is the union of a compact space and a space with P then it
has P. Let X be a Tychonoff space. Define the P-reflection vp X of X by

vpX = {T:T has P and X C T C BX}.

If P is compactness then ypX = X and if P is realcompactness then yp X = vX (the
Hewitt realcompactification of X). Also, ypX has P by Corollary 2.4 of [I7]. Denote
by Z(X) the set of all tight P-extensions of X. As remarked in [I7], for a Tychonoff
locally-P non-P space X there is the largest one-point extension X* in Z(X). Let
PX)={TeP(X): X" <T}
and for any T € 2*(X), if fr : BX — BT denotes the continuous extension of idx, let
THEOREM 5.2 (Mack, Rayburn and Woods [IT]). Let X and Y be Tychonoff locally-P
non-P spaces. If (2*(X), <) and (Z*(Y), <) are lattice-isomorphic then vpX \ X and
Y \'Y are homeomorphic.

The following main result of [17] generalizes Magill’s theorem [20, Theorem [5.1].

THEOREM 5.3 (Mack, Rayburn and Woods [I7]). Let X and Y be Tychonoff locally-
P non-P spaces and suppose that *(X) = P*(X) and 2*(Y) = P*(Y). Suppose
moreover that ypX \ X and vpY \'Y are C*-embedded in vpX and vpY, respectively.
The following are equivalent:

(1) (*(X),<) and (2*(Y), <) are lattice-isomorphic.
(2) v X\ X and vpY \'Y are homeomorphic.
The topological properties considered in [I7] are all assumed to be productive while

the topological properties we have considered are hardly productive. (As shown in Ex-
ample [2.16] specific examples of compactness-like topological properties are mostly cov-
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ering properties which are normally not expected to be productive.) However, there are
topological properties which satisfy the two sets of requirements. We need to know the
relation between the classes of compactification-like P-extensions of a Tychonoff space X
and the class of its tight P-extensions with compact remainder; in particular, we need to
know if these two coincide. In this section we apply some of our previous results to obtain
analogous results in the context of tight P-extensions with compact countable remainder.
Also, we give examples to show that the concepts of “tight P-extension with compact re-
mainder”, “minimal P-extension” and “optimal P-extension” in general do not coincide.

We start with the following result which together with Lemma 3.7 and Theorem [3.13
characterizes spaces having a tight P-extension with compact countable remainder. Note
that by definitions, the notions of “n-point minimal P-extension” and “n-point tight P-
extension” coincide for any n € N. Thus Lemma [3.7] and Theorem [3.13] also characterize
spaces with an n-point tight P-extension.

THEOREM 5.4. Let P and Q be a pair of compactness-like topological properties. Let X
be a Tychonoff space with Q. The following are equivalent:

(1) X has a countable-point minimal P-extension with Q.
(2) X has a countable-point optimal P-extension with Q.
(3) X has a countable-point tight P-extension with compact remainder with Q.

Proof. The equivalence of (1) and (2) follows from Theorem

(1) implies (3). By Lemma 2.c) the space X is locally-P and X \ ApX contains
an infinite bijectively indexed sequence Hi, Hs, ... of pairwise disjoint non-empty clopen
subsets. Let p;’s, T', ¢ and Y be as in Lemma[3.7) ((2.c)=>(2.b)). Then Y is a countable-
point Tychonoff P-extension of X with compact remainder with Q. We show that Y is
also a tight P-extension. Suppose to the contrary that there exists a P-extension Y’ of X
properly contained in Y. Choose p,, € Y\Y’ for n € N. The sets H,, and (X \ \pX)\ Hy,
are closed in 8X, as they are closed in X \ ApX. Let f, : X — I be continuous with

FalHa] ©{0} and £ [(BX \ ApX) \ Ha] < {1}.
When n = 1 note that p; is obtained by contracting a set containing H;. The set
Zn=f7[0,1/2]] N X =q[f;[[0,1/2]]] NY' € Z(X)
has P, as it is closed in Y. Therefore
H, C f710,1/2)] Cintgx clgx (£ 1[0,1/2]] N X) = intax clax Zn C ApX,

which is a contradiction. This shows that Y is also a tight P-extension. That (3) implies
(1) is trivial and follows from definitions. m

The following is a counterpart for Corollary Thus it too (besides Corollary [3.14))
may be considered as a generalization of Magill’s theorem [19, Theorem .

THEOREM 5.5. Let P and Q be a pair of compactness-like topological properties. Let X
be a Tychonoff space with Q. The following are equivalent:

(1) X has an n-point tight P-extension with Q for any n € N.
(2) X has a countable-point tight P-extension with compact remainder with Q.
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Proof. As noted before, the notions of “n-point minimal P-extension” and “n-point tight
P-extension” coincide for any n € N. The result now follows from Theorems and
b4 =

THEOREM 5.6. Let P and Q be a pair of compactness-like topological properties. Let X
be a Tychonoff space.

(1) Let n € N. If X has a perfect image with Q which has an n-point tight P-extension
with Q, then so does X.

(2) If X has a perfect image with Q which has a countable-point tight P-extension with
compact remainder with Q, then so does X.

Proof. This follows from Theorems and n

In the following we give examples of a topological property P and Tychonoff spaces
X for which the notion of “tight P-extension with compact remainder” differs from both
“minimal P-extension” and “optimal P-extension”. For convenience, for a space X and
a topological property P, denote by Zp(X) the set of all tight P-extensions of X with
compact remainder. Observe that by definition 7p(X) C .#p(X).

EXAMPLE 5.7. Let P be Rp-boundedness (see Example for the definition) and let
X = D(Xy) (the discrete space of cardinality R;). Note that P is closed hereditary, pro-
ductive, finitely additive, perfect and satisfies Mréwka’s condition (W) (thus by Corollary
2.6 of [17], if a Tychonoff space is the union of a compact space and a space with P, then
it has P). Then A\pX = X, as any Np-bounded Z € Z(X) is finite. Therefore
Op(X) = Mp(X) = H(X)
where as before # (X)) is the set of all compactifications of X. In [41] it is shown that
X = U{CIBX A: A C X is countable}.

Now vpX is a P-extension of X (as ypX always has P; see Corollary 2.4 of [I7]) and
obviously it is contained properly in SX. Therefore X € Op(X), while 8X ¢ Tp(X).

EXAMPLE 5.8. Let P be Rg-boundedness and let X = [0,Q)\ {w}. Note that X is locally
compact; denote by X* the one-point compactification of X. Then X* € Ip(X), as the
only extension of X contained properly in X* is X itself, which does not have P, because
w ¢ X. Now let ¢ : X — X* be the continuous extension of idx. Then

671X\ X] = BX\ X £ BX \ ApX (5.1)
as ApX \ X is non-empty. To show the latter simply let Z = (w, ) and observe that Z
is clopen in X (thus a zero-set in X) and it has P. Since Z is non-compact,

@#ClﬁxZ\X :inthngZ\X Q )\pX\X
Now by Theorem from (5.1)) it follows that X* ¢ Op(X).

5.2. On a question of S. Mréwka and J. H. Tsai. Let X and E be Hausdorff spaces.
The space X is said to be E-completely reqular if X is homeomorphic to a subspace of a
product E“ for some cardinal « (see [6] and [26]). In [28] (see also [36]) the authors proved
that for a topological property P which is regular-closed hereditary, finitely additive with
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respect to closed subsets (that is, if a Hausdorff space is the finite union of its closed
subsets with P, then it has P) and satisfy Mréwka’s condition (W), every E-completely
regular (where FE is regular and subject to some restrictions) locally-P space has a one-
point E-completely regular P-extension (see [2I] for related results). The authors then
posed the following more general question: For what pairs of topological properties P
and Q is it true that every locally-P space with Q has a one-point extension with both
P and Q% Indeed, the systematic study of this sort of question dates back to the times
when P. Alexandroff proved that every locally compact (Hausdorff) non-compact space
has a one-point compact (Hausdorff) extension (thus answering the above question in
the case when P is compactness and Q is the property of being Hausdorff). Since then
the question has been considered by various authors for specific choices of P and Q. The
following corollary of Lemma [2.8] provides an answer to the above question of S. Mréwka
and J. H. Tsai (see also Theorem 4.1 of [16] for a related result).

THEOREM 5.9. Let P be a compactness-like topological property. Let Q be a topological
property which is either

e clopen hereditary, inverse invariant under perfect mappings and satisfying Mrowka’s
condition (W), or
e strong zero-dimensionality.

Let X be a Tychonoff non-P space with Q. The following are equivalent:

(1) X is locally-P.
(2) X has a one-point Tychonoff extension with both P and Q.

Proof. That (2) implies (1) is obvious.

(1) implies (2). By Lemmal[2.10]we have X C ApX. Let T be the space obtained from
BX by contracting the compact subset 83X \ ApX to a point p (note that X \ ApX is
non-empty by Lemma [4.10). Then T is Tychonoff. Consider the subspace Y = X U {p}
of T

CASE 1. Suppose that Q is hereditary with respect to clopen subsets, inverse invariant
under perfect mappings and satisfies (W). Lemma then implies that Y is a
one-point Tychonoff extension of X with both P and Q.

CASE 2. Suppose that Q is strong zero-dimensionality. By Lemma (with Q being
regularity in its statement) the space Y is a one-point Tychonoff P-extension of X.
We verify that Y is strongly zero-dimensional. Note that 7" is a compactification
of Y. Let ¢ : X — BY and v : fY — T be the continuous extensions of idx and
idy, respectively. Since v¢ : BX — T agrees with ¢ on X we have y¢ = ¢. Since
T is a compactification of Y (and 4|Y = idy), by Theorem 3.5.7 of [5] we have
YBY\Y]=T\Y. Thus v~ '(p) = {p} and

o 'p) =0 [y ()] = (1) (p) = ¢ (p) = BX \ ApX.
By Lemma we have Y =T and ¢ = ¢. Using zero-dimensionality of X it is
easy to verify that BY is zero-dimensional, that is, Y is strongly zero-dimensional.

Therefore (2) holds in either case. m
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6. Question

We conclude with a question which naturally arose in connection with our study.

QUESTION 6.1. Let X be a space, let P be a topological property and let Y be a Tychonoff
P-extension of X with compact remainder. The extension Y of X is called mazimal if
the topology of Y is maximal (with respect to inclusion) among all topologies which turn
Y into a Tychonoff P-extension of X with compact remainder. Thus Y is an optimal
P-extension of X if it is both a minimal and a maximal P-extension of X. Now to what
extent and how the results of this article can be rephrased in order to remain valid in the
new context?
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