Summary

Our work is divided into five chapters. In Chapter I we introduce necessary notions and
we present the most important facts that we shall use. We also present our main results.
Chapter I covers the following topics:

e holomorphically contractible families of functions and pseudometrics, their basic
properties, product property, Lempert Theorem, notion of geodesic, problem of finding
effective formulas for invariant functions and pseudometrics and geodesics, completeness
with respect to holomorphically contractible distances, its application in the study of the
relation between norm balls and Carathéodory balls;

e pluricomplex Green function with a logarithmic pole as an example of a holomor-
phically contractible family of functions, problem of its symmetry, pluricomplex Green
function with many poles as a natural generalization of the Green function with one pole;

e Bergman distance, Bergman completeness.

Chapter II is devoted to the problem of completeness with respect to Carathéodory,
Kobayashi and Bergman distances in a class of pseudoconvex Reinhardt domains. First
we recall well known geometric properties of pseudoconvex Reinhardt domains (Sec-
tion 2.1). In Section 2.2 we deal with properties of real convex cones, objects closely
related to pseudoconvex Reinhardt domains. Section 2.3 is devoted to the study of al-
gebraic mappings, especially those inducing proper and biholomorphic mappings of C?
(Theorem 2.3.1). A special role in our study will be played by quasi-elementary Rein-
hardt domains (Section 2.4). Before we study completeness we give a precise description
of hyperbolic (in different sense) pseudoconvex Reinhardt domains (Theorem 2.5.1). The
solution of the problem which hyperbolic pseudoconvex Reinhardt domains are Kobay-
ashi (respectively, Carathéodory) complete, is given in Theorem 2.6.5 (respectively, The-
orem 2.6.6). Additionally, the problem when the Carathéodory distance tends to infinity
as one variable is fixed and the other tends to a boundary point not lying on axis in
bounded pseudoconvex Reinhardt domains is discussed (Theorem 2.6.1, Corollary 2.6.2,
and Example 2.6.4). In contrast to the Carathéodory and Kobayashi distances no cha-
racterization of Bergman completeness is known. Nevertheless, it is known in dimen-
sion 2 (Corollary 2.7.4). Some partial results are given in Proposition 2.7.2 (a sufficient
condition for not being Bergman complete) and Theorem 2.7.3 (a sufficient condition
for Bergman completeness). A relation between good boundary behavior of the Green
function and Bergman completeness in the class of bounded pseudoconvex Reinhardt
domains (Lemma 2.8.2 and Proposition 2.8.5) and in planar domains (Corollary 2.8.8) is
considered.
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In Chapter III we find formulas for holomorphically contractible functions and pseu-
dometrics in the class of elementary Reinhardt domains (Sections 3.1-3.5) and for the
pluricomplex Green function of the unit ball with two poles (with equal weights) (Sec-
tion 3.6). First we recall known formulas (Theorem 3.1). Then we present formulas for
elementary Reinhardt domains not contained in C? (Theorem 3.1.1). The proof of the
theorem is contained in Sections 3.2-3.4. For elementary Reinhardt domains lying in C?
the proof of the formulas (Theorem 3.5.1) is much simpler. Theorem 3.6.1 gives a formula
for the pluricomplex Green function of the unit ball with two poles of equal weights. The
key role in the proof of the formula is played by Theorem 3.6.2 showing how the pluri-
complex Green function with many poles behaves under proper holomorphic mappings.

In Chapter IV we deal with symmetry of the Green function. First we entirely solve
the problem in the class of complex ellipsoids (Theorem 4.1.1). In Section 4.2 some kind
of “infinitesimal” symmetry in the class of bounded hyperconvex domains is described
(Corollary 4.2.4). This property is a consequence of regularity properties of the Azukawa
pseudometric (Theorems 4.2.1 and 4.2.2, and Corollary 4.2.3). The results on regularity
properties of the Azukawa pseudometric cannot be extended to the class of bounded
pseudoconvex domains (Example 4.2.10). In Section 4.3 we discuss the problem of non-
symmetry of the Green function in pseudoconvex complete Reinhardt domains whose
boundary contains some “exponential line”. It turns out that in such domains the Green
function is extremely nonsymmetric (Propositions 4.3.1 and 4.3.2, and Remark 4.3.3).

In Chapter V we consider the problem which Carathéodory balls are simultaneously
norm balls in the class of convex ellipsoids. The ideas used in this chapter have been used
lately in the study of the same problem for a wider class of domains.

Most of the properties that we use may be found in the following books: [Kob 70],
[Kli 91], [Jar-Pfl 93], and [Kob 98]. If some result that we use is not quoted explicitly it
may be found in one of these books.

Some of the results contained in the work may be found in the following papers:
[Zwo 96], [Edi-Zwo 98], [Pfl-Zwo 98], [Zwo 97|, [Zwo 98a], [Zwo 98b], [Zwo 98c]|, and
[Zwo 99].
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I. Introduction

1.1. (Holomorphically) contractible families of functions and pseudometrics.
Let us denote by E the unit disc in C (). Put

AL — Ao
A, Ag) = |————1|, A, EE,
m(1 2) ’1_)\1)\2 1, A2
| X|
X)) = —— FE, X .
(A X) Y AN€E, XeC

We call m the Mdbius distance. We define the following Poincaré distance:
p := tanh ™' (m).

In what follows both functions (m and p) will be used. In general, the objects defined
with the help of m will be more handy in calculations, whereas the ones defined with the
help of p will be more regular.

Let us recall:

THEOREM 1.1.1 (Schwarz—Pick Lemma). Let f € O(E, E). Then

(a) p(f(A1), fF(A2)) < p(A1, A2), A1, A € E;
(b) Y f/(N) <v(N1),  AeE.

Moreover, if in (a) equality holds for some Ay # Ay or in (b) equality holds for some
X € E then the inequalities in (a) and (b) become equalities.

It would be nice if we could find an analogue of the function m (and ) for which
some version of the Schwarz—Pick Lemma would also be satisfied in other domains.

In the twenties Carathéodory defined for an arbitrary domain (?) D in C" the following
function (see [Car 27]):

ep(w, z) = sup{p(f(w), f(2)): f € O(D,E)}, w,z€ D.

Note that cp = p and cq(F(w), F(2)) < cp(w, z) for any F € O(D,G), w,z € D. We
call ¢p the Carathéodory pseudodistance (*) of D.

1Y For convenience we list some standard notation in the section “List of symbols”.

()

() Unless otherwise stated by D (and G) we shall always mean a domain in C".

(3) We say that a function d : X x X — [0,00) is a pseudodistance (X is a nonempty set)
if (i) d(z,z) =0, z € X; (i) d is symmetric (i.e. d(z,y) = d(y,z), z,y € X); (iii) d satisfies the
triangle inequality (i.e. d(z,y) < d(z, z) + d(z,y), z,y,2z € X).
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In the sixties, S. Kobayashi defined the following pseudodistance (see [Kob 67],
[Kob 70]):

kp := the largest pseudodistance not exceeding ED,

where
Ep(w,z) = 1inf{p(A1, \2) : there is f € O(F, D) with f(A\) = w, f(A2) =z},

w,z € D (%). Tt is immediate that kg = p and kg(F(w), F(2)) < kp(w,z) for any
FeO(D,G), w,z € D. We call kp the Kobayashi pseudodistance of D.

The above considerations lead us to definition of (holomorphically) contractible family
of functions.

We say that d := (dp) D domainincr, Where dp : Dx D — [0, 00), is a (holomorphically)
contractible family of functions if

(1.1.1) dp = p;
(1.1.2) de(F(w), F(2)) <dp(w,z) forany F € O(D,G), w,z € D.

The property (1.1.2) says that holomorphic mappings are contractions with respect to the
functions dp and dg. One may interpret the inequality (1.1.2) as a generalized Schwarz—
Pick Lemma. The property (1.1.1) plays a uniformization role.

It is easy to see that if F': D — G is biholomorphic then dg(F'(w), F(z)) = dp(w, z),
w,z € D.

Obviously, both the Carathéodory and the Kobayashi pseudodistances form holomor-
phically invariant families of functions. The functions kp also form a holomorphically
contractible family of functions. We call the function kp the Lempert function of D.

In view of the Schwarz—Pick Lemma, the Carathéodory pseudodistance (respectively,
Lempert function) is the “smallest” (respectively, the “largest”) among all holomorphi-
cally contractible families of functions. Therefore, we have

¢p < kp < kp.

One may define many other holomorphically contractible families of functions. Below we
define only one of them, which will be of special importance for us.

For w,z € D we define the pluricomplez Green function (with a logarithmic pole at
w) (see [Kli 85]):

gp(w, z) = sup{u(z)}

where the supremum is taken over all u € PSH(D) (%), u < 0, such that u( - ) —log || - —wl||
is bounded from above.

Put gp := exp gp. Then one may check that the family

(tanh* ! (gD ) ) D domain in C™

forms a holomorphically contractible family of functions.

(4) One may verify that the infimum in the definition of ED is taken over a nonempty set.

(°) By PSH(D) we denote the set of plurisubharmonic functions on D; we allow the plurisub-
harmonic function to be equal identically to —oco. By SH(D) we denote the set of subharmonic
functions.
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In what follows, while considering the holomorphically contractible families of func-
tions d, it will be often more convenient to use the functions d}, := tanhdp, which, in
the case of the unit disc, correspond to the function m (instead of p). When we want
to underline that both d}, and dp may be used we write dg) (%).

In the Schwarz—Pick Lemma two kinds of inequalities have been given. The first one
involving the Poincaré distance and the other involving the function . Generalizing the
property (b) of the Schwarz—Pick Lemma, in a similar way as we did it while generalizing
(a), we arrive at the definition of a (holomorphically) contractible family of pseudometrics.

A family 6 := (6p) D domain incr, Where 6p : D x C™ — [0,00) is a pseudometric (7),
is a holomorphically contractible family of pseudometrics if
(1.1.3) 0B =7;

(1.1.4) dq(F(w); F'(w)X) < ép(w; X) for any F € O(D,G), w e D, X € C".

As previously the property (1.1.4) says that holomorphic mappings are contractions with
respect to pseudometrics dp and dg.

Below we give some examples of holomorphically invariant families of pseudometrics:

o the Carathéodory—Reiffen pseudometric (see [Rei 65]):
Yo (w; X) = sup{y(p(w); ¢'(w)X) : ¢ € O(D, E) };
o the Kobayashi—-Royden pseudometric (see [Roy 71]):
kp(w; X) :==inf{y(\;a) : Jp € O(E, D),3Ja € C, p(\) = z,a¢’(\) = X };
o the Azukawa pseudometric (see [Azu 86)):

[7} X
Ap(w; X) := limsup gp(w,w+AX)

, weD, XeC™
0#£A—0 Al

In view of the Schwarz—Pick Lemma ~ (respectively, k) is the “smallest” (respectively, the
“largest”) among all holomorphically contractible families of pseudometrics. Therefore,
we have

vp < Ap < kp.
Other examples of holomorphically contractible functions are Mobius functions of or-
der k (k > 2). Their infinitesimal versions form holomorphically contractible families of
pseudometrics (for definitions see [Jar-Pfl 91c]).
Among many elementary properties let us recall the ones concerning continuity:

e ¢p,kp,vp are continuous (see e.g. [Jar-Pfl 93]), whereas
e kp,gp,kp, Ap are upper semicontinuous (see e.g. [Jar-Pfl 93], [Jar-Pfl 95b)).

The following simple result combined with the existence of balanced pseudoconvex
domains with discontinuous Minkowski functions shows that one cannot hope to have
better continuity properties of the four latter functions:

(6) This does not apply to the Green function.
(") A function ép : D x C" — [0,00) is called a pseudometric if 6p(z;AX) = |A|6p(z; X)
for any (2; X) € D xC", A e C.
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PROPOSITION 1.1.2. Let D = Dy, := {h(z) < 1} be a balanced pseudoconvex domain and
let h be its Minkowski function. Then

kp(0;X) = Ap(0; X) = h(X), X eC",
k5(0,2) = Gp(0,2) = h(z), ze€D.

It is easy to prove that logch,(w,-), w € D, is a plurisubharmonic function.

It turns out that all the discussed contractible families of functions and pseudometrics
are continuous with respect to increasing sequences of domains. More precisely, for any
sequence of domains {D;}52; C C", D; C Dji1, D = U;)i1 D; we have (see e.g. [Jar-
Pfl 93], [Azu 86], [Azu 87)):

(1.1.5) dp; —dp, dp;, —dp asj— o,

where d = ¢, g,k or k and & =~,A or K.
It is well known (see [Kob 70] and [Jar-Pfl 93]) that if 7 : D — G is a holomorphic
covering (D and G are domains in C"), w, z € G, n(w) = w, #’ (W)X =Y then

(1.1.6) ko(w, 2) = inf{kp(@,%)}, ke(w,z) = inf{kp(@,3)},
(1.1.7) ke(w;Y) = kp(w; X),

where the infimum in both cases of (1.1.6) is taken over all Z € D such that 7(2) = z.

The last result together with the Uniformization Theorem gives kp = kp for any
domain D in C. Therefore, the simplest possible example of the inequality kp # kp may
be found in dimension 2. And this is really the case: for ¢ > 0 small enough the Lempert
function of the domain {z € C2 : |21 23| < €} N E? does not satisfy the triangle inequality
(see [Lem 81]).

The problem whether the infimum in (1.1.6) is always attained was posed in [Kob 70]
(in the case of the Kobayashi pseudodistance) and in [Jar-Pfl 93] (in the case of the
Lempert function). Note that in dimension one the infimum may always be replaced with
minimum (use the Uniformization Theorem).

In Chapter III we provide an example giving a negative answer to this question ba-
sed on elementary Reinhardt domains of irrational type not containing the origin (and,
therefore, we solve the problem posed above).

More precisely, any elementary Reinhardt domain of irrational type with negative
exponents gives us that kind of example.

There is a close relation between the Carathéodory—Reiffen pseudometric and the
Carathéodory pseudodistance given by the formula

*
o (w; X) = lim M

)
w1 —w -—
w1 Awa, W1 ,W2 —W, 7“1”}71”3“ —X ||U)1 w2H

weD, [X[[=1 XeC"

An analogous result, but only in the class of bounded taut (®) domains, holds for the
Lempert function and the Kobayashi—-Royden pseudometric

() A domain D C C" is taut if for any sequence {¢,}52; C O(E, D) either ¢, diverges
locally uniformly (i.e. for any compact sets K C E, L C D, ¢, (K) N L = for v large enough)
or it has a subsequence converging to a mapping g € O(FE, D) (see [Wu 67]).
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PROPOSITION 1.1.3 (see [Pang 94]). Let D be a bounded taut domain. Then

%g) (w17 U)Q)

kp(w; X) = lim weD, | X|=1, X eC".

b
w1 FWwa, Wi, W —W, Tw;—wa —X 1 2

We prove an analogous result for the Azukawa pseudometric and the Green function
in the class of domains containing, among others, bounded hyperconvex domains.

THEOREM 1.1.4 (cf. Corollary 4.2.3). Let D be a bounded hyperconvexr domain. Then

Ap(w; X) = lim gp(ws, wp)
’ wiFwa, wy wa—w, =z [[wy — wa”

weD, [X[|=1 XeC

We also give an example of a bounded pseudoconvex domain in C? for which the formula
above does not hold and, additionally, we cannot replace “limsup” in the definition of
the Azukawa pseudometric with “lim” (see Ezample 4.2.10) (°).

In view of the Removable Singularity Theorems the following properties hold:

(1.1.8) (9p)|(D\P)x(D\P) = 9p\P, (AD)|(D\P)xC» = AD\P)
(1.1.9) (ep)|(D\B)x(D\B) = ¢D\B>  (YD)|(D\B)xC" = YD\B>
where P is a relatively closed pluripolar subset of D and B is a proper analytic subset
of D.
Combining (1.1.6)—(1.1.9), the Removable Singularity Theorems, and the Uniformi-
zation Theorem we get
ep = kp =0, yp=kp=0, D=C,C,,
ctvfoay = 9cv{o,1y =0, key(oay (A, A2) >0, A # A € C\ {0, 1},
Yev{o,1y = Acvio,1y =0, Kevpo,13(A1) >0, A€ C\ {0, 1},

1.2. Product property. A family of holomorphically contractible functions d has the
product property if for any domains D1, D and for any points (w1, ws), (21, 22) € D1 X Dy
we have

(1.2.1) lexD2((w17w2)7 (21, Zg)) = l’IlaX{dD1 (w17 2:1), dDQ(UJQ, Zg)}

Similarly, a family of holomorphically contractible pseudometrics § has the product pro-
perty if for any domains Dy, Do and for any points (wq,ws) € Dy X Dsy, (X1,X3) €
C"t x C™ we have

(1.2.2) 0Dy x D, (w1, w2); (X1, X2)) = max{dp, (w1; X1), dp, (w2; X2)}.

Because of contractivity of projections, the inequalities “>” in (1.2.1) and (1.2.2) are
always fulfilled.

It is easy to verify that the Kobayashi pseudodistance and the Kobayashi—-Royden
pseudometric have product property (see e.g. [Jar-Pfl 93]).

(%) In dimension 1 the formula from Theorem 1.1.4 holds for any domain (see Corol-
lary 4.2.11).
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The problem whether the Carathéodory pseudodistance (and the Carathéodory—Reif-
fen pseudometric) has the product property turned out to be more difficult. The complete
(positive) solution of the problem can be found in [Jar-Pfl 89c¢].

The problem whether the Green function (and the Azukawa pseudometric) has the
product property has remained unsolved until recently. The final (positive) solution of the
problem for all domains was given by A. Edigarian in [Edi 97b]. The proof of A. Edigarian,
in contrast to earlier partial solutions of the problem (see [Jar-Pfl 91c], [Jar-Pfl 95b]) does
not make use of the definition of the Green function given by us (the supremum of some
subclass of plurisubharmonic functions) but makes use of an alternate (but equivalent)
definition of the pluricomplex Green function, employing analytic disks (see [Pol-Sch 89],
[Pol 93] and [Edi 97a]). In what follows, we shall quote and use this alternate definition.

It is worth noting that there are holomorphically contractible families of functions and
pseudometrics for which the product property fails to hold (see [Jar-Pfl 93], [Jar-Pfl 91¢]).

1.3. Various notions of geodesics. Lempert Theorem. A mapping ¢ € O(E, D) is
called a kp-geodesic for (z; X), X # 0, if p(A) = z, ap/(A) = X and y(\; @) = kp(z; X)
for some A € E, a € C. N

A mapping ¢ € (’)(E,Q) is called a kp-geodesic for (w,z), w # z, if (A1) = w,
©(A2) = z and p(A1, A2) = kp(w, z) for some A\, Ay € E (19). B

If it does not lead to misunderstanding we shall briefly write xp- or kp-geodesics.

If D is a taut domain then for any w # z, w,z € D (respegtively7 for any (w; X) €
D x C", X #0) there is a kp-geodesic for (w, z) (respectively, kp-geodesic for (w; X)).

Similarly, we could define yp- and cp-geodesics; but because of the following pro-
perty (following easily from the Schwarz—Pick Lemma) we shall introduce a notion of a
(complex) geodesic (see [Ves 81]):
PROPOSITION 1.3.1 (see [Ves 81]). Let ¢ € O(E,D). Let w,z € D, w # z, X € C",
X # 0. Assume that one of the following conditions holds:

(i) e(A\) = w, ap'(\°) = X and v(\%; ) = yp(w; X) for some \° € E, a € C;

(ii) e(A) = w, (A9) = z and p(\}, \)) = cp(w, 2) for some NI, \J € E.
Then

0 (p(N);¢' (V) = £p(0(N); ' (A) = v(A; 1)
cp(p(M), 9(A2)) = kp(p(A1),0(A2)) = p(A1, A2)  for any A, Ay, Az € E.
A mapping ¢ € O(E, D) is called a (complex) geodesic (in D) if

cp(p(M), p(A2)) = p(A1, A2)
for any A\, Ao € E.
In view of Proposition 1.3.1 any complex geodesic is a ED— (respectively, kp-) geodesic
for (p(A1),©(A2)) (respectively, (¢(A); ¢’ (A))). The converse implication does not hold in
general (11). Nevertheless, in the class of convex domains it is always the case. It follows

(10) In other words, ED— and kp-geodesics are mappings for which the infimum in the
definition of kp and kp is attained.
(11) The simplest example of that kind may be found for D := F\.
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from the most spectacular result in the theory of holomorphically invariant functions and
pseudometrics, namely, the Lempert Theorem.

THEOREM 1.3.2 (Lempert Theorem—see [Lem 81], [Lem 84]). If D is a convex domain,
then

%D:cD and Kp ="p.

Moreover, if D is additionally bounded, then for any pair (w,z) € D x D, w # z
(respectively, (w; X) € D x C*, X # 0), there exists a complex geodesic ¢ such that
w,z € p(E) (respectively, ¢(A) = w and ap'(\) = X for some X\ € E, a € C). If,
additionally, D is strongly convex then the geodesics are unique up to an automorphism
of E (1?).

The results of Lempert contain also additional pieces of information on possibility of
the extension of complex geodesics onto F as well as regularity properties of the invariant
functions and pseudometrics (regularity of the functions depends on the regularity of the
domain).

It is easy to see that for any complex geodesic (ED—, kp-geodesic) its image cannot
be a relatively compact subset of the domain (it must touch the boundary). Even more,
for a wide class of bounded domains the radial limit must lie almost everywhere in the
boundary of the domain (for details see e.g. [Lem 81], [Lem 84|, [Edi 95] and [Pang 93]).

The problem of finding explicit formulas for complex geodesics (or kp-, Ep—geodesics)
is, in general, very difficult. Among the very few examples (except for several trivial
ones (1)) for which the formulas for complex geodesics are known completely are convex
complex ellipsoids (see [Jar-Pfl-Zei 93] and [Jar-Pfl 95a]); without the assumption of
convexity only necessary forms of xp- and kp-geodesics are known (see [Edi 95]).

A domain

Ei,...,pn) i={2€C": |z1|2p2 +...—|—|zn\2p" <1}, p1,e.oypn >0, n>1,

is called a complex ellipsoid.
Observe that £(p) is convex iff p1,...,p, > 1/2.

THEOREM 1.3.3. Let £(p) be a complex ellipsoid.

1 (see [Jar-Pfl-Zei 93] and [Jar-Pfl 95a]). If £(p) is convex then a nonconstant mapping
¢ : E — C"™ is a complex geodesic in E(p) if and only if ¢ may be given in the following
form:

(13.1) o= o (722) (3 “‘“)1/”,

l—aj)\ 1 —agA

(12) Instead of strong convex domains the same theorem also holds for so called strongly
linearly convex domains (see [Lem 84]). Unique up to an automorphism of F means that if ¢
and 1 are two complex geodesics for some pair (w, z), w # z (or for some pair (w; X), X # 0),
then there is an automorphism a of the unit disk such that ¢ = % o a. Uniqueness of complex
geodesics may be proven for a class of strictly convex bounded domains (see [Din 89]).

(13) These trivial examples include the unit ball and the polydisk.
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where r; € {0,1}, aj € C, for j =1,...,n, ay € E, a; € E for j such that r; = 1,
o € E for j such that r; =0, and the following relations hold:

n n

a0 = laj|™ay, 1+ ool =" la;|*7 (1+|a;]?).

j=1 j=1

The branches of roots are taken so that 1'/Pi = 1. Moreover, geodesics for a given pair
are unique up to an automorphism of the unit disc (14).

2 (see [Edi 95]). In the general case (i.e. without the assumption of convezity) any
ke (py-geodesic @ for some (2; X), X # 0 (and any ke (p)-geodesic for some (w, z), w # z)
must be of the same form as in the first case.

In the nonconvex case neither the uniqueness nor the sufficiency as in the convex case
of the theorem holds (see [Pfl-Zwo 96]).

The formulas from Theorem 1.3.3 have found many applications. They have been used
to describe the automorphism group of convex complex ellipsoids (see [Zwo 95a]). They
have also been used to find the formulas for the Kobayashi—-Royden metric for ellipsoids
E(1,m) (see BFKKMP 92] if m > 1/2 and [Pfl-Zwo 96] if 0 < m < 1/2).

In what follows we shall use the formulas from Theorem 1.3.3 while calculating the
Green function of the unit ball with two poles (see Section 3.6) and while considering
the problem of symmetry of Green function for complex ellipsoids (see Section 4.1). We
shall also use Theorem 1.3.3 in the study of the relation between Carathéodory balls and
norm balls in convex ellipsoids.

The technique of %D—geodesics will be helpful while calculating the Lempert function
for elementary Reinhardt domains (see Sections 3.2 and 3.3).

1.4. Effective formulas for invariant functions. Invariant functions (and pseudome-
trics) are also objects for which effective formulas are very difficult to find. First, note that
because invariant functions and pseudometrics are preserved under biholomorphic map-
pings we may easily find (because of Proposition 1.1.2) formulas for invariant functions
for the polydisk E™ and the unit ball B,, (remember that the automorphism groups of E™
and B, are transitive). Among other domains for which all the formulas are known are
E. (1°), the annulus (here all functions that we defined are different; see e.g. [Jar-Pfl 93]).

As already mentioned, with the help of complex geodesics (or kp-geodesics) one can
find effective formulas for the Kobayashi—-Royden metric for the ellipsoid £(1,m) (see
[BFKKMP 92| for m > 1/2 and [Pfl-Zwo 96] for 0 < m < 1/2).

In Chapter III we find invariant functions and pseudometrics for all elementary
Reinhardt domains (see [Pil-Zwo 98], [Zwo 98a] and [Zwo 99]).

(1) If £(p) is strictly convex (i.e. pj = 1/2 for at most one j) then the uniqueness of geodesics
follows from the general theory (see [Din 89]).

(**) Because of (1.1.8) and (1.1.9) the only problem in this case is with sz, and EE* =kg,,
but in order to find the formulas it is sufficient to use (1.1.6) and (1.1.7).
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For a = (a1,...,a,) € R?, n > 1, define the following elementary Reinhardt domains:

Dy :={2€C": |z]|* ... |z,| <1, if a; <0 then z; # 0}.

We say that « is of rational type if there are t > 0, 8 = (01,...,03,) € Z7 such that
«a = tf3; otherwise, we say that « is of irrational type. Note that if « is of rational type
then we may assume that all a;’s are relatively prime integers. We also define

Dy:={2€Dy:21...2, #0}.
For o € Z7, r € N we set

F(z) = 2% =2 . 20,

1 9B+ +8n pa (z)
Fo ()X = X5,
() 2 G 020"

Brt..ABn=r - Oz

where X € C*, 2 € C*, and if o; < 0 then z; # 0.
Note that the domain D,, is always unbounded, Reinhardt, and pseudoconvex but
not convex.

The formulas for the Carathéodory pseudodistance and the Carathéodory—Reiffen
pseudometric as well as for the Green function for elementary Reinhardt domains of the
rational type have been known for a long time (see [Jar-Pfl 93]).

THEOREM 1.4.1 (Theorem 3.1; see [Jar-Pfl 93)). If a € Z7, where «o;’s are relatively
prime, then

Do (w,

D, (w,

(

D, (w;
where r = r(w) is the order of vanishing of the function F*( - ) — F*(w) at w. If « is
of irrational type, then

cp, (w,z) =0,
Yo, (w; X) =0, (w,z) € Dy X Dq, (w; X) € D, x C".

= p(w®, 2%),

m(wa )l/r

Y(w®; (F) (w) X)),

(Y(w™; Fey (w) X))V, (w,2) € Do X Dy, (w; X) € Do x C",

2)
z) =
X)
X) =

Below we present formulas in the remaining cases. We present the formulas for the
Green function (and for the Azukawa pseudometric) in the irrational case and for the
Lempert function, Kobayashi pseudodistance and Kobayashi—-Royden pseudometric for
all elementary Reinhardt domains.

We can assume that aq,...,q; <0, aj41,...,0, >0,1€{0,...,n}.

THEOREM 1.4.2 (Theorem 3.1.1) Assume that 0 <1 < n. Let (w,z) € Do X Dy, (w; X) €
D, xC" Set J :={j € {1,...,n} : = 0} = {j1,..-,jr} (*6). Define ay41 =
min{ay1,...,0,}.

(*6) Obviously, J C {l+1,...,n}.



16 W. Zwonek

1. Assume that o € Z} with oy ’s relatively prime. Then
~ 3 (03 1/541 1 (03 1/541 1 > m
Fp (w0, 2) = {mm{p«zlv )V, ()8} if w, 2 € D,
p(0, |22}/ ttan)) if T #0,
. (w, 2) = min{p((w®) /55, (27) /30 ),
where the minima are taken over all possible roots. In the infinitesimal case we have
. s 1N ajX;
v (wa)l/m+17 (wa)l/aHl - J J) ij — @7
KD, (w; X) = ( 41 ; W
(Jn | o |G, 0 XG5 [y | )t bea) g 7 g,
2. Assume that o is of irrational type. Then

o, (1,2) = {p<<lwl|f“ [ mYE (2] [V i w0,z € D,
S V(N (P PRE DR ) T #0:

n N\ /a4 n o) VG
ko (w,2) =p((TThesl™) " (TTz%) ),
j=1 j=1

i, (w.2) =1 if T=0
o (J21]®0 ... 2| @)V (@i ttas) if 7 £ ()

)

In the infinitesimal case we have
n 1/@41 n Va1 <~ o, X,
v ( |wA‘aj) ,( |w,|04j) _ #) if 7=0,
#p, (w; X) = < ]1;[1 ’ 31;[1 ’ ALt 2 w;
(| X |29, % g | )V (anetn) if J#0;

v J 0 if J =0,
Ap, (w3 X) = {(|w1|°‘1 X X | )Y@t i T )

THEOREM 1.4.3 (Theorem 3.5.1). Assume that | =n. Then

1. If « is of rational type then

- n X
o (0,2) = hp, (10.2) = ki, (0, )., (i) = g, (w50t 3 220 ).

2. If « is of irrational type then

kp, (w,z) = kp, (w,2) = kg (

W | [z ),

n

[ 32 %),
wj

Jj=1

QAn

kp,(w; X) = kg, <|w1|a1 T

In the formulas above writing a1 ...b;, ...bj, ...a, we always mean the expression

Jk
composed of n factors, n — k (out of n) numbers a; (with a;,,...,a;, deleted) and k
numbers b; (bj,,...,b;,).

The formulas from Theorem 1.4.2 may seem incomplete (they do not cover the case
w € Ea, z & Ea); nevertheless, because of the symmetry of the relevant functions (not

the Green function) they do cover the other cases.
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The proof of Theorem 1.4.3 is quite simple and short, whereas that of Theorem 1.4.2 is
long and tedious and is based on formulas (1.1.6) and (1.1.7) and the Kronecker Theorem
(in the irrational case).

As already mentioned, elementary Reinhardt domains of irrational type with | = n
give us a negative answer to the question posed by S. Kobayashi about the possibility of
replacing the infimum with minimum in (1.1.6).

Some other new formulas for other classes of Reinhardt domains (but only for the
Green function, the Azukawa pseudometric, Carathéodory pseudodistance, and the Ca-
rathéodory—Reiffen pseudometric) have been found recently (see [Jar-Pfl 99]).

1.5. Finite compactness and completeness with respect to invariant distances.
We say that a domain D is d-hyperbolic (d = ¢, k or k) if dp(w, z) > 0 whenever w # z.
It is trivial that any bounded domain is d-hyperbolic. We say that D is Brody hyperbolic
if every holomorphic mapping f : C — D is constant. It is trivial that

c-hyperbolic = k-hyperbolic = E—hyperbolic = Brody hyperbolic.

In the case when the above mentioned functions are distances it is natural to introduce
the notion of completeness. More precisely, assume that D is d-hyperbolic (d = ¢ or k);
then we say that a domain D is d-complete if any dp-Cauchy sequence {z}52, C D is
convergent to some z° € D with respect to the standard topology in D.

Another, closely related notion may also be introduced. Namely, we say that a d-
hyperbolic domain D is d-finitely compact if for any w € D, r > 0 we have By, (w,r) CC
D (d equals ¢ or k). It is easy to see that for a d-hyperbolic domain D the following
implications hold:

d-finite compact = d-complete,
c-complete = k-complete, c-finite compact = k-finite compact.

Moreover, k-completeness implies k-finite compactness (compare [Rin 61]). The problem
whether an analogous implication holds for the Carathéodory distance is not solved.

All strongly pseudoconvex domains are c-finitely compact (use the existence of peak
functions—see e.g. [Kra 92]). There is an example of a bounded balanced pseudocon-
vex domain with the continuous Minkowski function, which is not k-complete (see
[Jar-Pfl 91b]). On the other hand any k-complete domain must be taut. In the com-
plex plane any taut domain is k-complete.

In Chapter II we deal with finite compactness and completeness of pseudoconvex
Reinhardt domains. First we have to characterize the notion of hyperbolicity in this class
of domains. It turns out that for such domains all the notions of hyperbolicity considered
coincide and are trivial in the following sense: the domains are biholomorphic to bounded
domains (see [Zwo 99]).

Recall that a domain D C C” is called Reinhardt if (Mz1,...,An2,) € D for all
z2=1(z1,...,2,) € D and \1,..., A\, € OF. If, additionally, (A121,...,A\n2,) € D for any
A1, ..., Ay € E then we say that D is complete.

Let us define

log D := {x e R" : (**,...,€"") € D}.
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THEOREM 1.5.1 (cf. Theorem 2.5.1). Assume that D is a Reinhardt pseudoconvex domain
in C™. Then the following conditions are equivalent:

(i) D is c-hyperbolic;
(ii) D is k-hyperbolic;
(iii) D is Brody hyperbolic;
(iv) D is biholomorphic to a bounded Reinhardt domain.

We give a full description of Kobayashi completeness and Carathéodory completeness
in hyperbolic pseudoconvex Reinhardt domains.

THEOREM 1.5.2 (Theorem 2.6.5). Let D be a hyperbolic (in the sense of any condition
from Theorem 1.5.1) pseudoconvex Reinhardt domain. Then D is k-finitely compact (in
particular, D is Kobayashi complete).

THEOREM 1.5.3 (Theorem 2.6.6). Let D be a hyperbolic pseudoconvex Reinhardt domain.
Then the following conditions are equivalent:

(i) D is c-finitely compact;
(ii) D is c-complete;
(iii) D is bounded and for any j € {1,...,n},

(1.5.1) if DNV # 0 then DNV # 0.

It was P. Pflug who started the investigation of completeness of Reinhardt domains.
It was proved in [Pfl 84] that all bounded pseudoconvex complete Reinhardt domains are
c-finitely compact. Next, in [Fu 94], S. Fu proved Theorem 1.5.2 for bounded domains by
using the methods from [Pfl 84] and applying the localization principle for the Kobayashi
distance. In view of Theorem 1.5.1 this result extends immediately to hyperbolic domains.

As far as Theorem 1.5.3 is concerned, the implication (iii)=-(i) comes from [Fu 94].
We prove the remaining implication (ii)=-(iii).

It turns out that in the class of hyperbolic pseudoconvex Reinhardt domains k-comple-
teness is equivalent to tautness, whereas c-completeness is equivalent to hyperconve-
zity (17) (see Corollaries 2.6.10 and 2.6.11).

Although bounded pseudoconvex Reinhardt domains not satisfying the condition
(1.5.1) are not c-finitely compact it is often the case that the Carathéodory distance
tends to infinity when one point is fixed and the other one tends to a boundary point not
lying on an axis (see Proposition 2.6.1). In particular, it is always the case in C2:

PROPOSITION 1.5.4 (see Corollary 2.6.2). If D is a bounded pseudoconver Reinhardt
domain in C2, then for any 2° € 9D NC? and for any w € D we have cp(w,z) — 0o as
z tends to 2°.

(1) A domain D C C" is hyperconvex if there is a plurisubharmonic continuous negative
function u defined on D such that {u < ¢} CC D for any ¢ < 0. This definition differs from
the standard one, where additionally the boundedness of the domain is required (see [Ste 75]).
In view of our definition the biholomorphic image of a hyperconvex domain is hyperconvex.
Any bounded hyperconvex domain is taut. Any taut domain is pseudoconvex. The converse
implications do not hold.



Theory of invariant functions 19

In higher dimensions there are examples of domains for which this does not hold (see
Example 2.6.4).

1.6. Pluricomplex Green function with a logarithmic pole. First, let us recall
some well known properties of the pluricomplex Green function (see [Dem 87], [Kli 85]
and [Kli 91]):

THEOREM 1.6.1. (i) For any w € D, gp(w,-) € PSH(D, [-00,0)). Moreover, gp(w, z)
—log ||lw — z|| is bounded from above;

(i) gp(w,-) is the largest plurisubharmonic function not exceeding logE]*j(w, s

(iii) if D is a bounded hyperconvex domain, then gp is continuous and gp(w,z) — 0
as z — 0D, w € D;

(iv) if D is a bounded domain then gp(w,-) is a maximal function on D\ {w} (18).

As to the property (iii) let us mention that despite much effort we have not been
able to prove the point convergence of gp(z,w) to 0 as z tends to D (when D is
a bounded hyperconvex domain). Note that this holds for c-finitely compact domains
(e.g. pseudoconvex Reinhardt domains fulfilling (1.5.1)). The problem was dealt with in
[Com 98] and [Carl-Ceg-Wik 98], where some kinds of convergence were proven. In any
case for any bounded hyperconvex domain we have (see [Blo-Pfl 98], [Her 99])

Vol({gp(w,-) < —1}) — 0 as w tends to dD.

The above convergence plays an important role in the study of Bergman completeness
(for a more detailed discussion see Section 1.8).

In contrast to other contractible functions the Green function is not, in general, sym-
metric. The first example of a very regular domain (strongly pseudoconvex with real
analytic boundary) without symmetric Green function comes from [Bed-Dem 88]. Note
that for a domain D C C the Green function is symmetric (see e.g. [Ran 95]). We see
from the Lempert Theorem that for D convex the Green function is symmetric, too.

In Chapter IV we prove that in a reasonable class of domains (containing bounded
hyperconvex domains) some kind of “infinitesimal” symmetry holds for the Green func-
tion.

THEOREM 1.6.2 (cf. Corollary 4.2.4). Let D be a bounded hyperconvexr domain in C™.
Then

im (9p(w',w") — gp(w”,w')) = 0.
’LU’,'UJ”—VLU,'LU/#’LUH

On the other hand we can find very regular domains (smooth, bounded, complete
Reinhardt and pseudoconvex; see Remark 4.3.3) and sequences z¥ — 9D such that

gp(w,z,), g¢gp(z,,w)—0 and lim M =00

v—oc gp(w, z)

In other words, the Green function is in that case (globally) extremely unsymmetric.

(*®) A plurisubharmonic function u : D — R is called mazimal if for any open relatively
compact subset G of D and for any function v plurisubharmonic on G and upper semicontinuous
on G the inequality v < v on 0G implies v < u on G.
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The “global” symmetry of the Green function is completely characterized for complex
ellipsoids.

THEOREM 1.6.3 (cf. Theorem 4.1.1). Let E(p) be a complex ellipsoid. Then the Green
Junction ggpy is symmetric iff E(p) is convex.

Some other partial results also suggest that more generally (e.g. in the class of com-
plete bounded pseudoconvex Reinhardt domains) the symmetry of the Green function is
equivalent to the convexity of the domain (for a discussion of this subject see Section 4.3).

1.7. The Green function with many poles. Analytic disks and the Green func-
tion. Let D be a domain in C™. Let ) # P C D be a finite set and let v : P — (0, 00).
We define the pluricomplexr Green function with poles in P with weights v as follows
(see [Lel 89]):

9p(P;v; z) = sup{u(z)},
where the supremum is taken over all v € PSH(D), v < 0, such that u(-) —v(p) log || - —p||
is bounded from above near p for all p € P.

Note that when #P = 1 and v = 1 then gp is the pluricomplex Green function with
a logarithmic pole.

It is well known that gp(P;v;-) is a negative plurisubharmonic function. Recall that
if D is bounded, then gp(P;v;-) is maximal on D\ P; if D is a bounded hyperconvex
domain, then gp(P,v, ) is a continuous function, which extends continuously to 0 on the
boundary; compare Theorem 1.6.1(iii) (see [Dem 87] and [Lel 89]).

It turns out that an equivalent definition using analytic disks is possible. Namely, the
following equality has been obtained in [Lar-Sig 98] (for the Green function with one pole
this equality may be found in [Edi 97a] and [Pol 93]):

THEOREM 1.7.1. The following equality holds:
(1.7.1)  gp(P;v;2)
=inf{gr(¢" ' (P)NE,7,0), p € O(E,D), ¢(0)=20<#(ENe ' (P)) < oo}
= inf{gp(p” (P)N E,7,\), ¢ € O(E, D), p(\) = 2, 0 < #(EN¢~(P)) < oo},
where () := ordx(p — ©(A)) - v(p(N)), A € o H(P) (*).

The above formula has turned out to be useful for proving the product property for
the Green function (with one pole).

It turns out that the Green function with many poles exhibits some kind of invariance
with respect to proper holomorphic mappings. Namely, let 7 : D — D be a proper
holomorphic mapping and let P be a set of poles in D such that 7= (P)N{det 7’ = 0} = 0.
Define 7(q) := v(n(q)), ¢ € n~1(P).

The theorem below can be found in [Lar-Sig 98]; we give an alternate proof (cf.
[Edi-Zwo 98]).

(19) We know that gg(P,v,\) = ZpeP v(p)ge(p, A). In the case of one pole, (1.7.1) can
be read as follows: gp(p,2) = inf{ng(A):p ordy(¢ — (M) log|A| : ¢ € O(E, D), ¢(0) = 2,
0 < #¢ ™ (p) < oo}
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THEOREM 1.7.2 (see Theorem 3.6.2). Under the above assumptions, for any w € 5,

95(m N (P); 7y w) = gp(Pivim(w)).
Except for dimension one (?°) practically no formulas for the Green function with
many poles have been known so far. We give the formula for the unit ball with two poles
with equal weights. The key role in establishing it will be played by Theorem 1.7.2, which
enables us to reduce the problem to calculating the Green function of the convex complex
ellipsoid £(1,1/2) with one pole, and then using Theorem 1.3.3.

In case v = 1 we write gp(P;-) := gp(P;v;-).
THEOREM 1.7.3 (Theorem 3.6.1). Let 0 < p <1 and (21, 22) € By. Then

98, ((0,p), (0, =p); (21, 22))

1 (1=p*)(A = |21 = |22*) .

“log (1 - > |29 —

5108 ok i plar| > |22 - ),

1 (1-p*)(1 - |Z1|2—|22|2)> ‘

—log(1-— if plz1| > |22 + pl,
_)3 g( 17 poal? f plzi] = |22 +pl

11 2(1 — p?Rez3)|z1]2 + [p? — p?|21)? — 2312 + VA

— 10,

9 8 o1 — p2222

if plz1] < min{|ze — pl, |22 + pl},

where I := —4|z1|*(p? Tm 23)% +-4]21|*(1—p* Re 23) [p* —p?|21|* = 23 |+ [p* —p? |21 | = 25|

Another proof of Theorem 1.7.3 comes from [Com 97|, where an entirely different
approach to the problem was applied.

Recall that even in the case of the bidisk E? the complete formula for the Green
function with two poles with equal weights is not known.

It is easy to see that the following upper and lower bounds hold (see [Lel 89]):

(1.7.2) min{v(p)gp(p,z) : p € P} > gp(P;v;2) > Z v(p)gp(p,z), =z € D.
peEP

Set (see [Lel 89])

ED,P,v) = {Z €D:gp(Piviz) = > v(p)gn(p, Z)}-

Clearly, P C £(D, P,v). Lelong asked whether the set £(D, P,v) had nonempty interior
at least for D two-dimensional. The answer is negative even in the case of the bidisk
(see [Carl 95]).

We give a precise description of this set for the unit ball.

COROLLARY 1.7.4 (Corollary 3.6.8). Let P C B,,, #P > 2, n > 2. Then £(B,, P,v) =
PU(LNB,), where L is the complex straight line containing P (L = 0 if such a line
does not ezxist).

(?%) In this case it is easy to see that gp(P;v;2) = ZpEP v(p)gp (p, 2).
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1.8. The Bergman distance. Bergman completeness. For 0 < p < co put
LY (D) := O(D) N LP(D).

For any domain D we may find an orthonormal basis {¢;},cs of L? (D) (#J < Rg). Then
we define
Kp():= Y lg;()P, zeD.
=
We call Kp the Bergman kernel of D. For domains such that for any z € D there is
f € L?(D) with f(z) # 0 (for example for D bounded) we have

Kp(2) = sup{|f(2)]/Ifl72p) : f € Li(D), f # 0}.
One may check that if D is such that Kp(z) > 0, z € D, then log Kp is a smooth
plurisubharmonic function. In this case we define

n

2 1/2
Bp(z; X) ::(42 EH%QZ(Z)XJ»X;O , zeD, XeC",
J,k=1
and we see that Op is a pseudometric called the Bergman pseudometric.
For w,z € D we put
bp(w,z) :=inf{Lg, (o)}

where the infimum is taken over piecewise C! curves a : [0,1] — D joining w and z and
Lg, (o) := S(l) Bp(a(t); o’ (t)) dt. We call bp the Bergman pseudodistance of D.

Obviously, the Bergman pseudodistance is not defined for all domains. In the class of
bounded domains (where it is always defined) it does not have the contractivity property
(see [Ber 36]). Nevertheless, the Bergman distance (as well as the Bergman metric) is
invariant with respect to biholomorphic mappings. More precisely, for any biholomorphic
mapping F : D — G (D,G cC C™) we have

bo(F(w), F(2)) = bp(w,2), Bg(F(w);F'(w)X)=p8p(w;X), w,z€ D, XeC"
We will consider only bounded domains.

As in the case of invariant pseudodistances we may define Bergman completeness. A
bounded domain D is called Bergman complete (or b-complete) if any bp-Cauchy sequence
is convergent to some point in D with respect to the standard topology of D.

Any bounded b-complete domain is pseudoconvex (see [Bre 55]). The converse impli-
cation fails to hold. The problem of b-completeness has a long history. Let us list only
some classes of domains which are b-complete:

e bounded C'-pseudoconvex domains (see e.g. [Ohs 81]);

e bounded pseudoconvex balanced domains with the continuous Minkowski function
(see [Jar-Pfl 89b]);

e bounded hyperconvex domains (see [Blo-Pfl 98], [Her 99]).

The last class of domains contains the two preceding ones (see [Ker-Ros 91]). It turns
out that there are nonhyperconvex domains which are b-complete (see [Chen 98] and
[Her 99]). The example of the latter paper helped us find a class of bounded pseudoconvex
Reinhardt domains which are b-complete although they are not hyperconvex.

Before we formulate the results we have to introduce some notations.
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For a pseudoconvex Reinhardt domain D C C", a € log D we define
€(D):={veR":a+Riv ClogD},
(D) = {v € €(D) : (expla + Byv)) € D},
¢'(D) :=¢(D)\ &(D), H := H(D):=Span(¢(D)) C R™.

It is easy to see that the set €(D) (as well as €(D) and €/(D)) does not depend on the
choice of a.

Let v!,...,v" € H be a maximal linearly independent subset of vectors from Z". Put
Hy := Hy(D) := Span{v!,...,v"}.

PROPOSITION 1.8.1 (Proposition 2.7.2). Let D be a bounded pseudoconver Reinhardt
domain. If €' (D)NQ" # @ then D is not Bergman complete.

THEOREM 1.8.2 (Theorem 2.7.3). Let D be a bounded pseudoconver Reinhardt domain.
If HiNn&(D) = {0} then D is Bergman complete.

Although in general we do not have a precise description of b-complete pseudoconvex
Reinhardt domains (it may happen that €(D) N Q™ = () and H; N &(D) # {0}) in
dimension 2 the problem is entirely solved.

THEOREM 1.8.3 (Corollary 2.7.4). For a bounded pseudoconvex Reinhardt domain D in
C? the following two conditions are equivalent:

(i) D is Bergman complete,

(i) ¢/(D) N Q" = 0.

In any case a number of Bergman complete and not hyperconvex pseudoconvex
bounded Reinhardt domains is given by the above results (2!). It would be interesting to
know whether Theorem 1.8.3 generalizes to higher dimensions. If this generalization fails
to hold, the question what the right description of Bergman complete bounded Reinhardt
domains is, seems to be interesting.

A relation between good boundary behavior of the Green function (understood as
the convergence to 0 of volumes of sublevel sets of the Green function as the pole
tends to the boundary) and Bergman completeness has been discovered by S. Chen and
G. Herbort (see Theorem 2.8.1). It turns out that these two properties are equivalent on
bounded pseudoconvex Reinhardt domains in C2:

PROPOSITION 1.8.4 (Proposition 2.8.5). Let D be a bounded pseudoconver Reinhardt
domain in C2. Then the following conditions are equivalent:

(i) D is Bergman complete,
(ii) for any 6 > 0, Vol({gp(p, ) < —=6}) — 0 as p — 8D,
(iii) for any z € DN C2 we have gp(p,z) — 0 as p — OD.

(?) The simplest possible example is D := {z € E%: 2] < |22 < 2|zl|a}7 where « is a

positive irrational number.
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Also in higher dimensions a similar relation seems probable (compare Lemma 2.8.2).
Nevertheless, it is not the case for all domains. We find an example of a bounded Bergman
complete domain in € such that the condition (ii) of Proposition 1.8.4 is not satisfied (for
any 0 > 0)—see Corollary 2.8.8.

1.9. Carathéodory balls and norm balls. For 0 < r < 1 recall the definition of
Carathéodory balls with center at w € D and radius r:

Ber (w,r) :={2 € D : cp(w,2) <r}.

Under the additional assumption that D is a bounded balanced domain with the Min-
kowski function h we define for s > 0, w € D the following ball, which in the case when
D is bounded may be called a norm ball:

Bp(w,s) :={z € C": h(w — z) < s}.

These balls are closely related to the natural geometry of the domain. For bounded
balanced convex domains let us consider the following problem: Which Carathéodory
balls are also norm balls (with respect to the norm of the domain considered)?

Note that any Carathéodory ball with center at 0 is a norm ball (use Proposition 1.1.2).
Are there any other Carathéodory balls which are norm balls? An example of the unit
disk E shows that it may happen that all Carathéodory balls are norm balls. On the
other hand in higher dimensions the only Carathéodory balls in the unit ball which are
simultaneously norm balls (in this case norm balls are precisely the Euclidean balls) are
the ones centered at the origin (see [Rud 80]).

As we shall see the latter phenomenon is more common.

Making use of the form of complex geodesics in convex ellipsoids (Theorem 1.3.3) we
shall give a sketch of the following result (see [Zwo 96]):

THEOREM 1.9.1 (Theorem 5.1). Let £(p) be a convex ellipsoid. Then if p1,...,pn # 1 or
p1=...=Dpy =1 then a Carathéodory ball with center at w is a norm ball iff w = 0. If
n=2 p=1/2 ps =1, then any ball Bcz(p)((o,wg),r) is a norm ball.

The partial results of Theorem 1.9.1 may be found in [Sch 93], [Sre 95], [Zwo 95b],
and [Sch-Sre 96]. As already mentioned, a description of complex geodesics plays a key
role in the proof of the theorem. In particular, they enable us to reduce the problem
to dimension two. By a good choice of geodesics we get much information about the
structure of Carathéodory balls.

A generalization of Theorem 1.9.1 has been found recently (see [Vis 99]); namely,
making use of the description of complex geodesics, a similar result is proven for a wider
class of domains. Moreover, it is proven that in some class of domains (containing convex
ellipsoids), the only Carathéodory balls with center different from the origin which are
norm balls, are the ones with center at w (and the domain is necessarily an ellipsoid),
where w is such that there is exactly one j with p; =1, w; # 0 and p;, = 1/2, wy, = 0 for
k # j. This result may be seen as a complement of the results obtained in Theorem 1.9.1.
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I1. Pseudoconvex Reinhardt domains—completeness

In this chapter we consider pseudoconvex Reinhardt domains. First, we recall basic no-
tions and results in Section 2.1 and prove some results on convex cones and their relations
with pseudoconvex Reinhardt domains in Section 2.2. Next, we study algebraic mappings
(as proper mappings introduced in a natural way) and closely related quasi-elementary
Reinhardt domains (Sections 2.3 and 2.4). In Section 2.5 we give a precise description
of hyperbolic pseudoconvex Reinhardt domains (Theorem 2.5.1), which is necessary for
the study of the Carathéodory and Kobayashi completeness of pseudoconvex Reinhardt
domains (see Theorems 2.6.5 and 2.6.6). In Section 2.7 the problem which bounded pseu-
doconvex Reinhardt domains are Bergman complete is considered; in dimension two we
give a precise description of such domains, in higher dimensions we get partial solutions.
In Section 2.8 we study the relation between the convergence to zero of the volume of
sublevel sets of the Green function as the pole tends to the boundary, and the Bergman
completeness of the domain. Since in the class of bounded hyperconvex domains both
conditions mentioned above hold, we are mainly interested in nonhyperconvex bounded
domains. In the class of bounded pseudoconvex Reinhardt domains these two phenomena
seem to be closely related (see e.g. Proposition 2.8.5 and Lemma 2.8.2) whereas for planar
domains they are different (see Corollary 2.8.8).

2.1. Geometry of pseudoconvex Reinhardt domains. For a point z € C} we put
log|z| := (log|z1], - . ., log |zx]).

There is a one-to-one correspondence between Reinhardt domains in C} and domains
in R™ given by

{Reinhardt domains in C?} 5 D + log D € {domains in R"}.

There is a similarity between Reinhardt domains and tube domains. For a domain w C R"
we define a tube domain T,, (over w):

T, ={z+iy:z€wyecR"} =w+iR".

Then the mapping w — T, gives a one-to-one correspondence between domains in R”
and tube domains in C™.
Set

Vi={2€C":2,=0}, j=1,...,n;
Vi=V;,n...0V,,, where I ={ji,....5}, 1<ji <...<jp<n.
The following two results are well known.

PROPOSITION 2.1.1 (see [Vla 66], [Jak-Jar 98]). Let D be a Reinhardt domain. Then D
is pseudoconvez if and only if log D is convex and for any j € {1,...,n},

(2.1.1) if DNV;#0 and (2/,25,2") € D then (2/,)\z;,2") € D for any \ € E.

PROPOSITION 2.1.2 (see [Kra 92], [Vla 66]). For a domain w C R™ the following three
conditions are equivalent:
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® W IS conver;
o T, is conver;
e T, is pseudoconvex.

Note that for a Reinhardt domain D C C} we may define
T Tiogp D 2z — (exp(21),...,exp(z,)) € D.

This is a holomorphic covering of D. Therefore, in view of Propositions 2.1.1 and 2.1.2,
formulas 1.1.6 and the Lempert Theorem we have

LEMMA 2.1.3. Let D C C} be a pseudoconver Reinhardt domain. Then kp = kp. In
particular, kp is continuous.

From (2.1.1) we get the following result. Assume that D is a pseudoconvex Reinhardt
domain and D NV, # ) for some j € {1,...,n}. Then for the mapping

WjIDBZH (Zl,...,Zj,1,0,2j+1,...,2n) Gij

we have m;(D) = D NV;. In particular, 7;(D) is a pseudoconvex Reinhardt domain in
Cn~! (after trivial identification). We may go further and formulate the following result.

Assume that DN Vr # 0, I = {j1,...,jr}, 1 < j1 < ... < jx < n, k < n. Define
(71(2)); := 0if j € I and z; otherwise. Then 7;(D) = DNV; and 7;(D) is a pseudoconvex
Reinhardt domain in C*~%.

2.2. Convex cones and pseudoconvex Reinhardt domains. We have already seen
that in the study of pseudoconvex Reinhardt domains in C™ convex domains in R™ may
play an important role. It turns out that while considering different classes of holomorphic
functions a special role is played by cones associated with the logarithmic image of the
domain.

We say that C C R™ is a cone with vertex at a if for any v € C we have a+t(v—a) € C
whenever t > 0. If we do not specify the vertex of a cone, then we shall mean a cone with
vertex at 0.

For a convex domain 2 C R™ and a point a € 2 set

¢(2,a):={veR" :a+RvC N}
It is easy to see that €(£2,a) is a closed convex cone (with vertex at 0). Notice that
€(2,a) = U C = the largest cone contained in 2 — a.
C+aC$2,C acone

Moreover, €(£2,a) = €(£2,b) for any a,b € 2. Therefore, we may define €(£2) := €(£2,a)
for some (any) a € £2.

Note that if a € 2 then a + €(£2) C 2. If 0 € 2 then €(2) = h=1(0), where h is the
Minkowski function of 2. It is also easy to see that

¢(2) = {0} if and only if 2 CCR™

Domains {2 not containing affine lines will play a key role. The following three conditions
are equivalent:
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e (2 contains no affine line;
e €(£2) contains no affine line;
e v, —veECR)=0v=0.

For a pseudoconvex Reinhardt domain D C C" we define ¢(D) := &(log D) (??) (32).
LEMMA 2.2.1. Let D be a pseudoconver Reinhardt domain. Let o € Z™, p € (0,00). Then

e 2% € LY(D) if and only if ((p/2)a+ 1,v) <0 for any v € €(D), v # 0,
o if {a,v) <0 for any v € €(D), v # 0, then z* € H*(D); on the other hand,
o if z* € H>®(D) then (a,v) <0 for any v € €(D).

PROOF. Assume that a = (1,...,1) € D. First, we prove the following

CLAM. Assume that €(D) # {0}. Then for any € > 0 there is a cone T such that
(log D) \ T is bounded and if v € T, ||v|| = 1 then there exists w € €(D) such that
lwl]] =1 and ||jv —w]|| < e.

PROOF. Let h be the Minkowski function of log D. log D is convex, so h is continuous.
Recall that h=1(0) = &(D). From the continuity of h we see that for any ¢ > 0 there
is ¢ > 0 such that {w € R" : h(w) < ¢, ||w|| =1} C {w € R : ||w|| = 1 and there is
ve (D), v =1, lw—wv| <e}.

Now take T' to be the smallest cone containing {w € R™ : h(w) < 4, ||w|| = 1}. Note
that (log D)\ T is bounded. If this were not the case, then there would be z, — oo such
that =, € (log D)\ T, so h(z,) < 1, consequently h(x,/||z,|) < 1/||zv|, so z, € T for v
large enough—a contradiction. m

If €(D) = {0} then the result of Lemma 2.2.1 is trivial. Assume that €(D) # {0}. Fix
an a € Z" such that z* € L} (D). Let v € €(D), v # 0. We may assume that |v,| = 1.
There is an open bounded set U C R"~! such that 0 € Ux {0} and U x {0} +R v C log D.
We have

oo > S [z%|P = S |z%|P = (2m)" S X P/DatL) oy day,
D DNCn log D
> (2m)" S ( S e2(p/2ot1.2) go dxn,l) dx, = M S e2en((p/2)ot1,0) o
0 Ux{0}+z,v 0

from which we get the desired inequality ((p/2)a + 1,v) < 0.

Assume now that ((p/2)a+ 1,v) < 0 for any v € €(D), v # 0. Then there is some
6 > 0 such that {((p/2)a+ 1,v) < —4 for any v € €(D), ||v|| = 1. Now using the above
Claim we get the existence of a cone T satisfying

(p/2)a+1,0) < =6/2, veT, || =1

(?2) Note that in contrast to Section 1.8 we change the definition of the set €(D) a little.
We do this because in this form it will be easier to formulate and prove some auxiliary results;
however, the results from Section 1.8 also remain true for this new definition as we shall see in
Section 2.7.

(%%) By H**(D) we denote the set of all bounded holomorphic functions on D.
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or
(/2 +1,0) < (=62, veT,
It follows from the description of T ((log D) \ T is bounded) that
S e2(P/2)e41.2) 0 < 50 if and only if ‘ 2(P/2)at1.2) gy < 0.
log D T

We estimate the last expression:

S eX(P/Dat1.2) g0 < S el gp < S e el gr < oo,

T T -

which finishes the proof of the first part of the lemma.
Similar estimates lead us in the second case to the inequality

(a,v) < (=0/2)|vll, veT,
or {a,v) < 0 on T and consequently (a,v) < M < oo on logD, from which we get
boundedness of z* on D.
The last claim of the lemma is a straightforward consequence of the definition
of €(D). m
LEMMA 2.2.2. Let £2 C R" be a convexr domain containing no affine lines. Then there are
linearly independent A',..., A" € Z" and C € R™ such that

Qc{zeR": (2, A)<Cj, j=1,....,n} = [ | H(A,C)) = H(A,C).
j=1
PRrROOF. Taking any supporting hyperplane H of {2 and any point v lying on the other
side of H than {2 (we may assume that v = 0) we may define the following domain:

Q:={tw:we N, t>0}.

Then 2 is the smallest open convex cone (with vertex at 0) containing 2. It is easy to
verify that {2 contains no straight line. Therefore, to finish the proof of the lemma it is
sufficient to prove it for cones. This, however, follows from Lemma 6 in [Jar-Pfl 85] (*4). =

LEMMA 2.2.3. Let C be a closed conver cone containing no affine lines. Then there are
vectors vy, ...,v, € R™ such that

C\W}C{ﬁé@wzg>0}

PROOF. It follows from Lemma 6 in [Jar-Pfl 85] (see the proof of Lemma 2.2.2) that there
are linearly independent vectors wy, ..., w, € R™ such that

Cc m{x e R": (z,w;) < 0}.
j=1
Put w:=wy + ...+ wy. Then C C {x € R™: (z,w) < 0}. Moreover, if z € C and (z,w)
=0 then (z,w;) =0, j=1,...,n, so x = 0. Therefore, C'\ {0} C {z € R" : (z,w) < 0}.

(**) Lemma (see [Jar-Pfl 85]). Let C be an open cone in R™ containing no affine line. Then
there is a nonempty open set U C R such that for any v € U, C is contained in {z € R" :
(z,v) < 0}.
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Note that C N {z € R™ : (z,w) = —1} is bounded. Indeed, suppose this does not hold.
Then there is a sequence {z”} C C such that ||z¥]] — oo and (2", w) = —1. Choosing, if
necessary, a subsequence we have z”/||z”| — 0. Clearly, 2° € C and (2%, w) = 0. But
|z°]| = 1, a contradiction.

There are linearly independent vectors vy, ...,v, € {x € R" : (z,w) = —1} such that

Cn{zeR": (z,w)=—-1} C{tiv1+ ...+ tpvn i t1,...,tn >0, t1 +...+t, =1},
which finishes the proof. m

LEMMA 2.24. Let {z}2, C £ (2 is a conver domain in R"), ||2¥] — oo,
2V /||z”|| — 2° as v — oo, where || - || is some norm on R™. Then x2° € €(£2).
PROOF. This easily follows from the properties of €(£2). m
LEMMA 2.2.5. Let {2 be a convexr domain and let o € R™ be such that

(a,v) <0, ve€?), v#0.
Then for any M € R the (convex) set {t € 2: {a,t) > M} is bounded.

PROOF. Suppose that there is a sequence {t¥}52; C {2 such that ||t”|| — oo as v tends
to infinity and («a,t”) > M, v =1,2,... Therefore,

(2.2.1) (. /171y = M/t

Choosing, if necessary, a subsequence we may assume that t*/|[tV| — t°. We have

t0 € €(2) (use Lemma 2.2.4), and clearly, |[t°|| = 1. Letting v — oo in (2.2.1) we
get (a, %) > 0, a contradiction. m

LEMMA 2.2.6. Let {2 be a conver domain in R™ y € 0 and let L,L, : R" — R,
v=12, ..., be linear functionals such that

(2.2.6.) L(y) =b, 2 C{L <b}, 2N{L=0b} is bounded and
vL,(z) —vL(z) -0, xze€R"

Then
sup(vL,(z) —vb) = 0 as v — oo.
z€N
PROOF. Substituting x := y we see that the lower limit of the sequence considered is

at least 0. Note that vL, — vL tends locally uniformly to 0. Therefore, L, tends locally
uniformly to L. Suppose that there are a sequence {2"}52; C 2 and £ > 0 such that
vL,(z") > vb+ ¢ for v large enough (we take a subsequence of {L,}52, if necessary).
From the local uniform convergence we get ||z”|| — co. Then
(2.2.3) Ly<x_> S vhte

[zl )~ viav]|
for v large enough. Consequently, taking a subsequence we get zV/||z”| — 2° € €(£2)
(use additionally Lemma 2.2.4). From the uniform convergence of L” to L on the unit
sphere and (2.2.3) we get

0< lim L,,(x—u> = lim L(m—y) — L(2°).
v=oe D\ flav][) o vmee [l
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Consequently, L(y+t2®) = b+tL(2°) > b, t e Ry. But y+Ry2° C 2,50 L(y+tz°) = b
for any t € R,.. Since the set y+R_ 20 C 2 is unbounded, this contradicts the assumption
(2.2.2). =

Define p;(z) :=z;, z € R*, j=1,...,n.
LEMMA 2.2.7. Let 2 C R™ be an unbounded conver domain. Assume that
(2.2.4) supp,;(2) <oo, j=1,...,n.
Then for any a € (2 there are an open set U with a € U and v € R™ \ {0} such that
U+RyvC 2.

PrOOF. Condition (2.2.4) gives us €({2) C R™. Unboundedness of {2 implies that
¢(£2) # {0}. Simple properties of convexity give us the existence of an open set U as
desired. m

2.3. Algebraic mappings. For o € Z", z € C" such that z; # 0 if a; < 0 we define
@i= 2z ... z% . Consider matrices A := (Ai)j:17,__,m7k:1,__,,n € Z™*" with rank A = m
(?%) such that every row consists of elements which are relatively prime.

For A = (Ai)j:17.__,m,k 1,..n € Z™*", we define

Da(z) =24 = (zAl,...,zAm),

z

where z € C™ is such that 24’ is well defined for any j = 1,...,m (A7 denotes the jth row
of the matrix A). Then &4 € O(C?,C™) for all A € Z™*" . For A € Z™*", B € ZF*™
the following property holds:
(z4)B = B4,

Consequently, @gody = Ppa.

Let A € Z™*" be invertible. Then obviously A=! € Q"*" (here A~! denotes the
inverse). Define

A = (|det A|)AL.

From the definition we have AV € Z"n*",

For a proper holomorphic mapping F' : D1 — Dy (D and Dy are domains in C™)
denote by p(F') the multiplicity of the mapping F' (for definition see e.g. [Rud 80]).

In the theorem below we shall see how the algebraic properties of the matrix A
correspond to the properness property of the mapping @ 4.

THEOREM 2.3.1. Let A € Z"*™. Then

(i) the mapping @4 : C* — C? is proper iff det A # 0,
(ii) if det A # 0 then u(P4) = |det A| (in particular, @4 : C?* — C? is biholomorphic
iff |det Al =1).

PRrROOF. (i) The mapping
log @ 4(x) := (log [(@a(2))1l;- - ., 1og [(Pa(2))nl),

(*®) In particular, m < n.
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where z is any point such that log|z;| = zj, « = (21,...,2,), is well defined and
log®4 = A. The properness of @, implies that A is surjective. This gives det A # 0.
Conversely, assume that det A # 0. Note that
@Ainv e} @A = @AinvA = ¢(|detA\)In'
The last mapping is proper, which implies that so are @ ginv and @ 4.
(ii) By the Gauss elimination process there are By, ..., B,,C € Z™*" such that
B,...BiA=C,

where all B;’s are of the form ED, where D is a matrix with at most n nonzero elements
and B (as well as C) is a triangular matrix. We easily get w(@p;) = |det Bj| and u(Pc) =
|det C'|. This together with elementary properties of the determinant and the multiplicity
of proper mappings under compositions implies that u(®4) = |det A|. »

REMARK 2.3.2. From the proof of Theorem 2.3.1 we get a little more. Namely, if det A#0
then &4 : C? — C7? is a holomorphic covering. In particular, det®’y(z) # 0 for
all z € C}.

We are interested mainly in matrices (and the corresponding mappings) A € Z"*"
such that one of the following conditions is satisfied:

(2.3.1) A~1 € Z™™ (which implies that |det A| = 1, A™ = +£A71),
3. et .
2.3.2 det A #0

Under the assumption (2.3.1) the mapping @4 is biholomorphic on C? and the inverse
mapping is given by the formula 45;11|C:; =P 1.

2.4. Quasi-elementary Reinhardt domains. Following [Jar-Pfl 88] and [Jar-Pfl 93]
we define for a Reinhardt domain D in C" the following sets:

S:=8D)={ae€Z":2*€ H*(D)}, B:=B(D):=5\(5+59),

Let again A := (Ai)j:17.__,m7k:1’__,,n € Z™*™ be such that rank A = m and every row
consists of elements which are relatively prime. For a positive integer r consider the
following condition:

(2.4.1) for any x € Q™ (zA €Z™ = rx € Z™).
We define
r(A) :=min{r € Z, r > 0:(2.4.1) holds}.

With A € Z™*™ (or even more generally A € R™*™) with rank A = m and C' € R™ we
associate the following quasi-elementary Reinhardt domain:

G = G(A,C) = G(A,C)N...NG(A™,Cy)

AZL < eCj }'

= ﬂ{z € C": (2, # 0 if A] <0) and |21\A{...\zn
j=1

Note that log G is a convex cone with vertex C'; moreover, if n = m and det A # 0 then
logG = H(A,C) (compare Lemma 2.2.2).
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Below we list two lemmas concerning the above defined sets, whose proofs go along the
same lines as those for complete Reinhardt domains (see [Jar-Pfl 93], Lemma 2.7.1 and
Lemma 2.7.6) with the only difference that instead of Taylor series we consider Laurent
series.

LEMMA 2.4.1. Let D be a Reinhardt domain. Let f € H>® (D). Then
f(z) = Z aqz®, z€D.

a€S(D)
LEMMA 2.4.2. For A € R™*" with rank A =m and C € R™ we have
S(G(A,C)=Z"N (R A +... + R, A™).
Moreover, if A € Z™ ™ then (*9)
S(G(A,C)=Z"N(Q A +... +Q A™),
B(G(A,C) cZ"n((QN[0,1)A" + ...+ (QN[0,1))A™)u{A', ..., A™}.
In the remaining part of Section 2.4 we restrict ourselves to A € Z™*".
In view of Lemma 2.4.2 we know that for A € Z™*™ (with rank A = m) we have

P P}
(2.4.2) B(G(A,C)){—}A1+...+7f"Am:j1,...,N},
qq qm

where pi,qi €Zy (j=1,...,N,k=1,...,m) and the pairs pi,qi are relatively prime
(for fixed k and j).

Note that
(2.4.3) s(A) =1 iff B(G(A,C))={A',...,A™}.
LEMMA 2.4.3. For A € Z™*"™,
r(A) = s(4).
PROOF. Any element from B(G(A, C)) is of the form (see (2.4.2))

J j
(p—l_ p—’ﬁ)A ez,
a; am
From the definition of r(A) all q;?’s must divide r(A). Hence s(A) divides r(A).

In view of Lemma 2.4.2 any 3 € S(G(A,C)) equals tA for some ¢t € Q7. From the
definitions of s(A) and B(G(4,C)), and Lemma 2.4.2 we know that

(2.4.4) s(A)t € Z™ forany B =tAcZ", tcQT.
Take now any x € Q™ with xA € Z™. We have
TA = uA + vA,

(%6) Actually, from the considerations in [Jar-Pfl 93] we have the equality S(G(A,C)) =
Z"N(Ry A +.. 4R A™), s0 any element from S(G(A, C')) is of the form tA, where t € (R4)™.
We may assume that the matrix A := (Ai)j,kzl,.“,m is invertible (rank A = m). Since tA € Z™,
we get ¢ € (A)~H(Z™) c Q™, which gives the desired formula.
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where u; = z; — [z;] > 0, v; = [z;] € Z, j = 1,...,m ([z] denotes the largest integer
smaller than or equal to z). Obviously, uA € Z", so in view of (2.4.4), s(A)u € Z™, and
then s(A)xz € Z™. This gives s(A) > r(A), which completes the proof. m

From now on we only consider the case m = n.

LEMMA 2.4.4. Let A € Z™*™ with det A # 0. Then r(A) divides det A and det A divides
r(A)".
PRrROOF. Note that (A71)7A € Z" j=1,...,n,s0 r(A)(A )Y € Z", j =1,...,n. This
implies that r(A)A™1 € Z"*". Consequently,
r(A)" = det(r(A)A™1) det A.

Both factors on the right hand side are integers, which finishes the proof of the second
property.

To prove the first property suppose that r(A) does not divide det A. In other words
there is a prime number p occurring k times in the prime factorization of r(A) and
occurring ! times in the prime factorization of det A, I < k. Put

N 3 r:= plr(A)/pF < r(A).
There is y € Z" such that y = xA, ro ¢ Z" and r(A)x = p*~'rz € Z". So there is j such
that z; = a/b, a, b are relatively prime integers, p!*t1 divides b. Note that in
~ det A

rei=r

r
r=—det A(yA™!
p p (yA™)
the last vector is from Z" but p'*! does not divide 7, so 7x; & Z, a contradiction. m
As a conclusion from Lemma 2.4.4 we get
REMARK 2.4.5. (a) |det A| =1 iff r(A) = 1.
(b) If det A = py ... pg, where all p;’s are pairwise different primes then r(A) = |det AJ.
EXAMPLE 2.4.6. In general, we do not have the equality r(A) = |det A]: if
1 1 -1
A=|1 -1 1
-1 1 1

)

then |det A| = 4 whereas r(A) = 2.

COROLLARY 2.4.7. For A € 7™ (with rank A = n) we have B(G(A,C)) =
{AL ... A"} iff |det A] = 1.

PROOF. Use (2.4.3), Lemma 2.4.3 and Remark 2.4.5. m

Let us finish this section with another estimate of the number of elements of
B(G(A,C)).

COROLLARY 2.4.8. Let A € Z"*™ with det A # 0. Then
n < #B(G(A,C)) < |det A| — 1 +n.

PROOF. It is easy to see that pu(P4) = u(P4r) = k if and only if there are k different
points AY,...,\¥ € (OE)™ such that @4+ (M) = (1,...,1), j = 1,...,k (see Theorem
2.3.1). Therefore, one may easily verify that there are exactly k — 1 vectors t!,... t*=1 €
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[0,1)" \ {(0,...,0)} such that #/A € Z". This together with Lemma 2.4.2 finishes the
proof. m

Following the ideas of the proof of Corollary 2.4.8 we can obtain the essential part of
Corollary 2.4.7 without the use of results of Section 2.4. Since the only result from the
present section that we need in the next section is Corollary 2.4.7, this means that the
proofs of forthcoming results (especially, Theorem 2.5.1) may be a little simplified. Below
we formulate and prove that result.

COROLLARY 24.7". Let A € Z™*", det A # 0. Then the existence of t € [0,1)™ \
{(0,...,0)} such that tA € Z"™ is equivalent to |det A| > 1.

PrOOF. The condition |det A| = |det AT| > 1 is equivalent to the existence of A\ €
(OE)™ \ {(1,...,1)} such that ®,7(A) = (1,...,1) (use Theorem 2.3.1). But the last is
equivalent to the existence of t € [0,1)™ \ {(0,...,0)} such that tA € Z". =

2.5. Hyperbolicity of pseudoconvex Reinhardt domains. Our aim in this section
is the following characterization of pseudoconvex Reinhardt domains:

THEOREM 2.5.1. Assume that D is a pseudoconvex Reinhardt domain in C™. Then the
following conditions are equivalent:
(i) D is c-hyperbolic;
(ii) D is k-hyperbolic;
(iii) D is Brody hyperbolic;
(iv) (a) log D contains no affine lines and
(b) DNVj is either empty or c-hyperbolic (viewed as a domain in C"~1);
(v) there are matrices A € Z"*™ with |det A| =1 and C € R™ such that:
(a) D C G(A,C);
(b) DNVj is either empty or c-hyperbolic (thought as a domain in C"~1);

(vi) D is algebraically biholomorphic to a bounded Reinhardt domain (7).

For n =1 the condition (iv)(b) (and (v)(b)) is understood to be always fulfilled.

In view of Theorem 2.5.1 all notions of hyperbolicity considered coincide in the class
of pseudoconvex Reinhardt domains, so the notion hyperbolic without any prefix is well
defined in this class of domains.

LEMMA 2.5.2. LetNA € Z™*" with det A # 0 and C € R™. Then there are B € Z™*™,
|det B| = 1, and C € R™ such that

G(A,C) C G(B,C).
PRrOOF. Using induction it is sufficient to prove that if [det A| > 1 then there are A e zr<n
and C' € R™ such that 0 < |det A|] < |det A] and G(A,C) C G(4,C).

(?7) In other words there is A € Z"*™, |det A] = 1, such that & 4(D) is bounded and (®A)|D
is a biholomorphism onto the image.
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In view of Corollary 2.4.7 there is 3 € B(G(A,C)), 8 # Al, 1 =1,...,n. In view of
Lemma 2.4.2, 3 =t;A' +...+¢,A", t; € [0,1) and for some [ (say [ = 1), t; # 0. Put
p
~ A2 ~
A= . 5 Cll:t101+...+tn0n, OjZZOj, j=27,n
ATL
It follows from the definition that G(A,C) C G(A, C). Note that

0 < |det A| = ¢|det A < |det A,

which finishes the proof. m

REMARK 2.5.3. From the proof of Lemma 2.5.2 we get the following result. Let Al € (Z"),
consist of relatively prime numbers. Then there are A2,..., A™ € Z" such that the matrix
A formed by the rows A7 satisfies |det A| = 1. In fact, assuming that A is one of possible
complements of A! with the smallest positive absolute value of the determinant we put
C = (0,...,0) and (under the assumption that |det A| > 1) we may apply the reasoning
from the proof of Lemma 2.5.2. We only have to show that we can define a new matrix
A (from the reasoning above) so that the row A! does not change; the condition that Al
consists of relatively prime integers implies that there are ¢1,...,¢, > 0 and t; > 0 for

some j > 1 such that ;A" + ... 4+ ¢, A" € Z"™, which gives the desired result.

Proof of Theorem 2.5.1. The proof is by induction. The case n = 1 is trivial. Let n > 2.
The implications (i)=-(ii) and (ii)=-(iii) are trivial.

(iii)=-(iv). Note that (iv)(b) follows from applying the theorem in dimension n — 1.
From the Brody hyperbolicity of D we conclude that log D contains no affine line (other-
wise, there is a mapping C 3 A — (exp(c1 + aqA),...,exp(e, + apA)) € D, where
aj,c;€R, j=1,...,n, (a1,...,05) #(0,...,0)).

(iv)=(v). Use Lemmas 2.2.2 and 2.5.2.

(v)=(vi). It is sufficient to prove the following: there is A € Z"*™ such that

(2.5.1) @4 is well defined on D, $4(D) is bounded, ($4)|p is biholomorphic onto the
image.

If D C C? then &4 (where A is as in (v)(a)) maps biholomorphically D onto a
bounded Reinhardt domain.

Now consider the other case. We may assume that D NV, # 0. We claim that it is
sufficient to verify the assertion for D satisfying

(2.5.2) VoND#0, {z;€C:zeD}isbounded, j=1,...,n—1

To make the desired reduction put D := D N V,,. (v)(b) implies that D is c-hyperbolic
(in C"~1), so applying the inductive assumption we find A € Z("=*("=1) such that
(2.5.1) is satisfied with A, D replaced with A, D. Now define
A0
B := 7",
o e
The mapping ¢ maps biholomorphically D onto a domain satisfying (2.5.2).
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So assume that D satisfies (2.5.2). We may assume that
(2.5.3) VinD#£0, j=1,....k, V;nD=0, j=k+1,... n—1,

where 0 < k < n — 1 (remember that V,, N D # (). Put D = Vin...nVy,nND. D is
not empty. There is o € S(D) such that a = (0,...,0, i1, ., an), an # 0 (in the
case k = 0 this follows from the assumption (v)(a), if & > 0 then use the inductive
assumption to see that D is c-hyperbolic and identify an element from Z" ¥ with one
from {0}* x Z"*). But DNV, # 0, so a, > 0. Note that, in view of (2.5.2), ej € S(D),
j=k+1,...,n—1,s0

n—1
~ 1 Oéj j ~
a —;na+ Z <{n] +1—)eJES(D)CS(D)
j=k+1
Now put
. I,—1 0
A= {O oo 0 Qg1 .. Qpea 1]'

The matrix A has all the required properties (remember (2.5.3)). m

2.6. Carathéodory and Kobayashi completeness of pseudoconvex Reinhardt
domains. The first result below (Proposition 2.6.1) is an attempt to generalize the cor-
responding result for bounded pseudoconvex complete Reinhardt domains from [Pfl 84].
Although in many cases the Carathéodory distance for bounded pseudoconvex Reinhardt
domains blows up to infinity as one of the points goes to the boundary (not lying on the
axis), this is not always the case; a counterexample is given in Example 2.6.4.

Before we formulate the result let us make some preparations. For a bounded pseu-
doconvex Reinhardt domain D and a point z° € 9D N C" we may find a supporting
hyperplane for the convex domain log D at [log z°|. In other words there are £ € R\ {0}
and b > 0 such that

(2.6.1) logD C {x € R": (2,¢) < logh} and (log|z°|, &) = logb.

Now let s = s(&,D) be the largest number of Q-linearly independent elements in
{&1,...,&}. Clearly, 1 < s < n.

PROPOSITION 2.6.1. Let D be a bounded pseudoconvex Reinhardt domain, z° € 9D NC™.
Assume that one of the following conditions is satisfied (the notations are as above):

(i) s=1 or s=n,

(i) log D N{z € R™ : (&, z) = log b} is bounded.

Then for any w € D we have cp(z,w) — oo as z — 2.

PROOF. Let us consider the second case. In view of the Dirichlet pigeon-hole theorem
(see e.g. [Har-Wri 78]) for any € > 0 there are ¢1,...,qn,p € Z, p > 0 such that

(262) qj—pfj =& € (—6,8), 7=1...,n.

Moreover, as € tends to 0 then p may be chosen to tend to infinity. Define L(z) := (&, ),
Ly(z) = (1/p){(q1,---,qn),x), x € R™. In view of Lemma 2.2.6 we see that for any § > 0
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we have
(2.6.3) sup pL,(z) < plogb+ o
z€log D
for those (large enough) p whose existence is guaranteed by (2.6.2) for sufficiently small .
Define f(z) := 2{"...20"/(bPe’), z € C? (g; and p are as in (2.6.2) with some small &
such that (2.6.3) is satisfied). Then |f(z)| < 1, z € DN C?. The same inequality extends
onto D. For any z € CI' we have

ey = (Bl

Notice that if w € DNC? is fixed then as § tends to 0 so does |f(w)| (because of (2.6.1)
and the convergence of p to infinity and ¢ to 0). On the other hand for z close to 2" we
may make | f(z)| arbitrarily close to 1 (we choose ¢ even closer to 0 and then we choose z
close to 2°). This gives the desired convergence for w € D N C?. The triangle inequality
finishes the proof for all w € D.

En

, zeDNC

&n >p S

ed

Now we consider the first case. If s = 1 then we may assume that (£1,...,&,) € (Z")..
Taking f(z) := 28* ... 25" /b, z € C", we have f(DNC?) C E and |f(2)] — 1 as z — 2°.
Extending f to D and using the contractivity of ¢ we finish the proof in this case.

In case s = n we may assume that the set {&;,...,&,} is Z-linearly independent
(multiply all {; with some positive t) and, additionally, D C E™.

In view of the multidimensional Kronecker Theorem (see e.g. [Har-Wri 78]) for any
€ > 0 there are p,q; €Z, j =1,...,n, p > 0, such that

(2.6.4) 0<—p&+gi<e, j=1,...,n

Moreover, p chosen above tends to infinity as € tends to 0.
For € > 0 we define
9 qn
ozt 2k
f(Z) T bp )
where p,g;, j =1,...,n, are chosen as in (2.6.4). Note that in view of (2.6.1), (2.6.4) and
the fact that z; € E we get

ze DNCY,

L PAIEAY:
265 o) < = Bl
Obviously, f extends holomorphically onto D and the estimate in (2.6.5) remains true
on D. As earlier, taking £ small enough (and consequently p large enough) we may make
| f(w)| arbitrarily small for fixed w € DNC? (see (2.6.1) and (2.6.5)). Therefore, to finish
the proof it is sufficient to show that |f(z)| may be chosen to be arbitrarily close to 1
when z € D is close to z°.

<1, zeDnNC™

In view of (2.6.4) we have

()] = [l =il (I =D T [=51)"

br - bp ’
Consider now z close to 2°. Taking ¢ > 0 sufficiently small we may make (IL=1 1ziD°
arbitrarily close to 1. Moreover, taking z even closer to 2° we may make (ITj=1 Iz |55 /b)P
arbitrarily close to 1 (see (2.6.1)). This finishes the proof. m

ze€ DNCL.
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COROLLARY 2.6.2. If D is a bounded pseudoconvex Reinhardt domain in C? then for any

20 € D N C2 and for any w € D we have cp(w, z) — oo as z — 2Y.

PRrROOF. Note that s =1 or s = 2 = n and then use Proposition 2.6.1. =

One may ask whether the convergence as given by Proposition 2.6.1 holds for any
20 € 9D N C" (as it holds for n = 2). Below we shall see that there are examples of
bounded pseudoconvex Reinhardt domains for which this convergence fails to hold.

LEMMA 2.6.3. Let D := G(A,0), where A € R*™ with rank A = n is such that (RA') N
= {0} and there are A\, € Q, k =1,...,n, such that

n n
ZAkAlchOa Z)‘kAi>O7 j=2,...,n,
k=1 k=1

Then for any w € CI' such that |wA1| =1, |wAj| <1,j=2,...,n, we have

limsupcp(a, z) < oo for any a € D.
zZ—w

PrOOF. We may assume that Aq, ..., A, € Z. By the triangle inequality it is sufficient to
prove the lemma for a = 0. We know that (see [Jar-Pfl 93])

cp(0,2) =sup{|z*|/]|z%||p : 2* € H®(D), a #0}, z¢€ D.
Since [|2%||p > 1, we have
(2.6.6) log cp (0, z) < sup{(log|z|,a) : 2% € H*(D), a # 0}.

We know that (see Lemma 2.4.2)
{0 €N": 2% € H®(D)} = {thAf > o} AN".
=1
Suppose that the lemma does not hold. Then in view of (2.6.6) there is z € R™ such that

(A',z) =0, (A%,x) <0, j =2,...,n, and there are t¥ > 0, t{ + ...+t > 0, 2" € R"
such that (A7, 2¥) <0, 2" w2, j=1,...,n,v=1,2,..., 3" t”AJEZ"and

J=17J
Zt;(Aj,x”>:<Zt?Aj,x”>—>0 as v — 00.
j=1 j=1
As (AV,z) < 0,5 = 2,...,n, (AL, 2¥) < 0 we have tY — 0, j = 2,...,n. Since

> th Al e 7", we know that

étv(ZAkAa) Dk(ztw)

Therefore, the convergence t7 — 0,7 =2,...,n, and the assumptions of the lemma show
that for v large enough 7 =0, j = 2,...,n, which implies that ¢y > 0. Consequently, for
v large enough, ty Al € Z™ with t¥ > 0, a contradiction. m
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EXAMPLE 2.6.4. Matrices A satisfying the assumption of Lemma 2.6.3 do exist. For
instance

a+1
A= 2 ,
1

OO =
O~ Q

where « is a positive irrational number.

The intersection of a domain as in Lemma 2.6.3 with C} may be mapped with the
help of an algebraic biholomorphism onto a bounded domain (see Theorem 2.5.1). This
gives us an example of a bounded pseudoconvex Reinhardt domain (already in C2) such
that limsup,_,,, ¢p(a, z) < oo for any a € D and for some w € 9D NCZ.

To visualize an example consider A as above. Then the mapping

éa]+1z:[))a]+3 2 )

2 (212 , 2025, 23

maps biholomorphically the domain G(4,0) N C? into a bounded domain
{z€Cl: 2l |2 <1, fzllz2| Yz < 1),

Let us start the study of completeness with respect to different distances. As already
mentioned it was P. Pflug who proved that all bounded pseudoconvex complete Reinhardt
domains are c-finitely compact (and consequently, both ¢- and k-complete). Next, S. Fu
extended the result on k-completeness to the class of bounded pseudoconvex Reinhardt
domains (see [Fu 94]). By Theorem 2.5.1 we may replace boundedness with hyperbolicity.
Therefore, we have:

THEOREM 2.6.5. Let D be a hyperbolic pseudoconver Reinhardt domain. Then D is k-
finitely compact (in particular, D is Kobayashi complete).

On the other hand, for the Carathéodory completeness we prove:

THEOREM 2.6.6. Let D be a hyperbolic pseudoconver Reinhardt domain. Then the follo-
wing conditions are equivalent:

(i) D is c-finitely compact;

(ii) D is c-complete;

(iii) D is bounded and for any j € {1,...,n},
(2.6.7) if DNV; #0 then DNV; # 0.

The geometric condition (2.6.7) (*®) comes from [Fu 94], where (iii)=-(i) is proved
with methods from [Pfl 84]. The proof of (ii)=-(iii) comes from [Zwo 98b].

Note that the notions of c-completeness and c-finite compactness coincide on domains
in C; it is not known whether the same remains true in higher dimensions (see e.g.
[Jar-Pfl 93]).

In the proof of Theorem 2.6.6 we need the following characterization:

PROPOSITION 2.6.7. Let D be a hyperbolic pseudoconver Reinhardt domain. Then the
following conditions are equivalent:

(28) This condition may be described as follows: if the closure of the domain intersects some
axis then so does the domain itself.
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(i) D is algebraically equivalent to an unbounded domain;
(ii) D is algebraically equivalent to a bounded domain D such that

(2.6.8) there is j € {1,....n} with DAV; # 0 and DNV, = 0.
PROOF. (ii)=-(i). The mapping
D>z (21,0, 2j—1,1/%5, 2j41, .. ., 2p) €C"
is well defined on D and maps biholomorphically D onto an unbounded domain.
(i)=(ii). We may assume that D is unbounded. Let ®4 be a biholomorphism of a

bounded domain D onto D (see Theorem 2.5.1(vi)). We show that D has the desired
property. Since D is bounded it is sufficient to show that there is j € {1,...,n} such that

DNV;#0 and DNV, =0
Suppose this does not hold. Then we may assume that for some k, 0 < k < n:
DNV;#0, j=1,....k and DNV;=0, j=k+1,....n
The above conditions imply that
A >0, j=1,....k r=1,...,n,

and there is M > 0 such that for any z € D, |zj| > M, j =k+1,...,n (here we also
need boundedness of D).

This yields that (remember that D is bounded) HzATHf) < 0o, r =1,...,n, which
implies that D is bounded, a contradiction. m
Proof of Theorem 2.6.6. The implication (i)=-(ii) is trivial. The implication (iii)=-(i)
comes from [Fu 94]. Therefore, we only need to prove (ii)=-(iii).

Suppose that (iii) does not hold. Then, in view of Proposition 2.6.7, we may assume,
using an algebraic biholomorphism if necessary, that D is a bounded domain such that
for some j € {1,...,n}, DNV; #0 and DNV, = 0.

We may assume that there are 1 < k <[ < n such that

DNV;#0 and DNV, =0, j=1,...,k,
DNV;=0, j=k+1,...,1, DNV;#0, j=1+1,...,n.
We may reduce our considerations to the case | = n. In fact, put D:=Dn Vigin...NV,.
Clearly, D is also c-complete. Then, after identification, D c C!, DN Vi=0,7=1,...,1,
and D N V;, =0, j = k+1,...,1. Moreover, using the description of pseudoconvex
Reinhardt domains (see Proposition 2.1.1), one may easily verify that D N V; # 0,
j=1,... k.

We assume that D is bounded and
(2.6.9) DcC!, DNV;#0, j=1,....k, DNV;=0, j=k+1,...,n,
where 1 < k <n.

We may assume that (1,...,1) € D. Applying Lemma 2.2.7 to 2 := logD and
a:=(0,...,0) we see that there is v € R” \ {0} and a neighborhood U of a such that

r+tv€elogD forany xzeU,t>0.
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In view of (2.6.9) we lose no generality assuming that v = (v1,...,v;,0,...,0), where
v; <0and 1 < <k (I fixed). Put o := —v;, j = 1,...,1. We may also assume that
a1 = 1. Then

(e"* exp(t), e™ exp(taa), ..., " exp(tay), e ..., e*") e D fort<0,xz€U.

In particular,

(exp(N), po exp(Aaz), pus exp(Aas), . .., mexp(Aay),1,...,1) € D
for A € Hy (where Hg :={ReA< R} CC,0< R < 00), p; €P:={e < |u| <e} CC,
j=2,...,1,and € > 0 is suitably small.

For (A, g, ..., ) € Hr x P! we define

Pr(A pas - pu) == (exp(A), p2 exp(Aaz), ps exp(Aas), ..., mexp(Aay)) € c'.
Put G := ®r(Hp x P'=1). We have Gr C Gp if R < R’ and Ukcoo GrR = Goo-

Since G is a pseudoconvex Reinhardt domain lying in CL, we know from Lemma 2.1.3
that kg, is continuous (for 0 < R < o0).

Note that Go x {1}"~! € D and (0,...,0,1,...,1) € D; therefore, to complete the
proof it is sufficient to find for a given sequence {a, }52; with a, >0 and > >~ a, < 00
a sequence {z”}>2; C Gy with z¥ — 0 and

log czo(z”,z"ﬂ) < gg, (2%, 2" <loga,.
For 0 < R < oo put
Ur:Gp > z— (exp(R)z1,exp(aaR)zs, ..., exp(qR)z) € Gg.
Note that ¥ is a biholomorphism.
Define ¢r(A) :=Pr(A\, 1,...,1), A € Hi. Notice that

kG (Poo(—1),90(A)) =0, Ae€C.
The continuity of ng implies
EGOO (Poo(—1),2) =0 for any z € s (C)

(the closure above is taken in G ). Now Dini’s Lemma implies that for any v there is
R, > 0 ({R,}2,; may be assumed to be strictly increasing and tend to infinity) such
that

%ERV (po(—1),2) < a, for any exp(—2) < |z1] < exp(—1), z € po(C),
which implies
E&RV (po(—1),00(N)) <a, forany A € C with —2 <Re\ < —1.
Applying the biholomorphism ng we get
(2.6.10) k&, (po(—1—Ry), po(N)) <a, for any A € C with ~2— R, < ReA < -1-R,.

Now define u(A) := gg,(po(—1 — R,),v0(N)), A € Hy. Clearly, u € SH(Hp), v < 0. In
view of (2.6.10) we have u(\) < loga, for -2 — R, < ReA < —1 — R,,, from which, in
view of the extended maximum principle (see e.g. [Ran 95]), we conclude that

96, (po(=1 — Ry),p0(A)) = u(N) <loga, forany A € C with ReA < —1 — R,.
To finish the proof it is sufficient to define z¥ := po(—1 — R,). =
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REMARK 2.6.8. Note that if there is « € R- Q% (« is from the proof of Theorem 2.6.6),
e.g. when [ = 1, then we may assume that o € Zﬂr and the proof of Theorem 2.6.6 is
much simpler. Actually, define ¢ : E, — D as follows:

P(A) = (A, A% T ).
Take any cg,-Cauchy sequence {\, }52; such that A, — 0. Then
95. (A Au) 2 gp (M), () = log cp (0(A), (M),

from which we conclude the desired result.

The example {z € E? : $]21]|* < |22] < |21]*}, where a > 0 is irrational, shows that
we have to consider the case when the o cannot be assumed to be chosen from Z!, so it
seems that the proof cannot be essentially simplified.

REMARK 2.6.9. From the proof of Theorem 2.6.6 we can conclude that conditions (i)—(iii)
are equivalent to

for any zp € D, gp(z0,2) — 0, as z — D U {oo0}
(writing z — 0o we mean ||z|| — o0).

As simple conclusions from Theorems 2.6.5 and 2.6.6 we get a characterization of
hyperconvex and taut Reinhardt domains. We say that a domain D C C" is hypercon-
vex if there exists a continuous, negative, plurisubharmonic function v on D such that
{u < —e} CcC D for any € > 0 (note that in contrast to other authors we allow hypercon-
vex domains to be unbounded—see [Ste 75]).

First, recall that any taut domain is E—hyperbolic and any k-complete domain is taut;
therefore, in view of Theorem 2.6.5 we get:

COROLLARY 2.6.10. For a pseudoconvex Reinhardt domain the following conditions are
equivalent:

(i) D is algebraically equivalent to a bounded domain;
(ii) D is taut.

COROLLARY 2.6.11. Let D be a pseudoconvexr Reinhardt domain. Then the following
conditions are equivalent:

(i) D is bounded and for any j € {1,...,n},
if DNV # 0 then DNV; # {;
(ii) D is hyperconvez.

PrOOF. (ii)=(i). Let D = {u < 0}, where w is from the definition of a hyperconvex
domain. We first prove that D is hyperbolic. If it were not, then in view of The-
orem 2.5.1(iii) there would exist a nonconstant holomorphic mapping ¢ : C — D. Then
ujpc) = C for some C' < 0 but ¢(C) is not bounded, which contradicts the fact that
{u < C/2} is relatively compact.

Since for any bounded hyperconvex domain G and zg € G, gg(z0,2) — 0 as z — 0G,
(see Theorem 1.6.1(iii)), we complete the proof by making use of Remark 2.6.9.
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(i)=(i). Fix zo € D. Put u(z) := logc}, (20, 2), 2 € D. We know that u € PSH(D)
N C(D). On the other hand c-finite compactness of D (see Theorem 2.6.6) implies that
{u<—e}ccDforanye>0. m

The problem of characterizing bounded hyperconvex Reinhardt domains was also
dealt with in [Carl-Ceg-Wik 98].

REMARK 2.6.12. A simpler, direct proof of Corollary 2.6.11 was presented to the author
by Professor P. Pflug. Namely, in view of the proof of Theorem 2.6.6, it is sufficient to
disprove the hyperconvexity of Gy (as in the proof of Theorem 2.6.6). We can proceed
as follows. Let u be an exhausting function from the definition of hyperconvex domain.
Define v(z) := sup{u(z1e®,..., ze"), 0; € R}. It is easy to see that v is an exhausting
function from the definition of the hyperconvexity and, additionally, we have v(z) =
v(]z1], ..., ]z). Therefore, the function E, 3 A — v(|A], [A|?2,...,|\|*) is subharmonic
and bounded from above by 0; hence, it can be continued subharmonically onto E but
because of hyperconvexity the value at 0 would have to be 0, which is only possible for a
constant function, a contradiction.

2.7. Bergman completeness of bounded Reinhardt domains. In the proofs of
Bergman completeness, an important role is played by the Kobayashi Criterion.

THEOREM 2.7.1 (see [Kob 62]). Let D be a bounded domain. If there is a subspace € C
L3 (D) with €& = L3(D) such that for any f € & and for any 2° € 0D we have

(KC) FOVEDE) =0 asz— 20

then D is Bergman complete.

Let D be a pseudoconvex Reinhardt domain, a € log D. Let us recall the definition
&(D) :={v € R" : a + Ryv C log D} (recall that &(D) is well defined, i.e. it does not
depend on the choice of a € log D).

If D is bounded then €(D) C R™. For a € log D (note that a is from log D and not
from log D as it was in the case of the definition of &(D)) put

¢(D) :={v e ¢(D): (exp(a + Ryv)) C D}, € (D):=¢(D)\ D).

Note that the definition of €(D) (and, consequently, that of €’(D)) does not depend on
the choice of a € log D (exactly as in the case of €(D)). This follows easily from the
properties of pseudoconvex Reinhardt domains (see Proposition 2.1.1 and remarks at the
end of Section 2.1).

Let us introduce some additional notations. Given a pseudoconvex Reinhardt domain
D put H := Span €(D). Let {v!,...,v"} C H be a maximal set of linearly independent
vectors such that v!,... 0" € Z". Let Hy := Span{v!,...,v"} (H; := {0} if r = 0). This

definition of H; does not depend on the choice of v!,..., v".

If D is a pseudoconvex Reinhardt domain then the system
{2112%|L2(py s v € Z", 2% € L(D)}

is an orthonormal basis of L? (D).
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Our two main results concerning b-completeness are:

PROPOSITION 2.7.2. Let D be a bounded pseudoconvexr Reinhardt domain. If & (D)NQ™ #
0 then D is not Bergman complete.

THEOREM 2.7.3. Let D be a bounded pseudoconvex Reinhardt domain such that Hy N
¢€(D) ={0}. Then D is Bergman complete.

In particular, we get the following description of Bergman complete bounded Rein-
hardt domains in C2.

COROLLARY 2.7.4. For a bounded pseudoconvex Reinhardt domain D in C? the following
two conditions are equivalent:

(i) D is Bergman complete,

(ii) € (D)NQ?* = 0.
Proof of Proposition 2.7.2. We assume that a € log D from the definition of €(D) is
(0,...,0). Take v € €'(D)NQ"™. We may assume that v € Z" and vy, ..., v, are relatively
prime.

It is sufficient to show that the Bergman length Lg, of the curve (¢7"1,...,t" "),
0 <t < 1, is finite.

Let @(A) := (A7",..., A7), A € E,. Clearly, ¢ € O(E,, D). Put u(\) := Kp(p(X)).
Then we have (use Lemma 2.2.1)

o0
W= Y a0 = Y b,
a€Zm:(a+1,v)<0 J=jo
where b;, # 0 (note that jo > (1,v) and it is possible that many of a,’s in the formula
above vanish).
Note that

9% log u(\) 9? = y
Z(eN\); ' (N) = — = —(1 b A2 %0,
B¢ (V) = =5 mm(og];fo AP )

The last expression tends to some constant C' € R, which finishes the proof. m

Below we are only interested in bounded pseudoconvex Reinhardt domains.
Consider the following subspace:
o := Span{z® : 2 € L3 (D)}.
We know that £y = L2 (D). In order to verify the property (KC) at some 2° for & it is
sufficient to show that it holds for all 2* € L3 (D).
LEMMA 2.7.5. Let D be a bounded pseudoconvexr Reinhardt domain in C*. Fix 2° € 8D
satisfying
forany j € {1,....n}, if 20 =0 then DOV; #0

(this condition is satisfied if , for instance, 20 € C?). Then the condition (KC) is satisfied
at 2% (for the subspace &).

PROOF. For any « € Z" such that 2* € Lj (D) we have a; > 0 if 2) = 0. Therefore, it
is sufficient to show that Kp(z) — oo as z — 2%. Let I := {j : 2§ = 0}. We may assume
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that I ={1,...,s}. We easily see that s < n. Then D C C* x m;(D) (we identify 7;(D)
with a subset of C"~%, if s = 0 then 77 := id). Note that the assumptions of the criterion
from [Pfl 75] (%) are satisfied for the domain D (and consequently also for D), where D
is a bounded pseudoconvex Reinhardt domain in C*~*, /(D) C D, 7;(z°) € dD and
dD is C? near 7;(2°), which finishes the proof. The existence of such D follows from the
convexity of log77(D) and the fact that 77(2°) € Or;(D)NC?~*. u

In the proof of Theorem 2.7.2 we need the following lemma:

LEMMA 2.7.6. Let H be a k-dimensional vector subspace of R™ (1 < k < n) such that
HNQ"={0}. Let {v',...,v*} be a vector basis of H. Then the set

{((a,vl), A (a,vk>) e}
is dense in RF.

PROOF. It is easy to see that there is a vector subspace H > H of dimension n — 1 such
that H N Q™ = {0}. Therefore, we can assume that k =n — 1.
Moreover, we lose no generality assuming that for the matrix

1 n—1
_ (% cee Vg
V.= . e .
1 n—1
Un—1 Un—1

we have det V # 0.
For j = 1,...,n — 1 we find #/ € R"! such that V#/ = ¢/ € R*1. Put wf =
Ptk i =1,...,n — 1. We have w] = §;, 5,1 = 1,...,n — 1. Clearly, w/ € H,
j=1,...,n— 1. By assumption the set {w},... w?~'} is Z-linearly independent. Then
in view of the multidimensional Kronecker Theorem the set

n—1
n

{(anwy, = [anwy], ..., apw —[anwp™) s € 2}

is dense in [0,1)""!. But (o, w’) = a; + a,wl; therefore,

(2.7.1) {({e, 0, .. (e, w™™1)) s a € Z"}  is dense in R
Put T := [t!,...,t"" 1] € R®=DX(=1 We have det T # 0. We also have
[wh,. .. w" ] = [, 0" T
Consequently,

(o, vty . (a0 ™) = (o, wh), . {, w™ I TH
which, in view of (2.7.1), finishes the proof. m

For points from the boundary not lying on the axis the Kobayashi condition (for &)
is always satisfied (see Lemma 2.7.5), so the whole difficulty in the proof of the Bergman
completeness (with the help of the Kobayashi Criterion) of a domain reduces to the proof
of the Kobayashi condition for those points from the boundary which lie in C™ \ C?.

The next result gives sufficient conditions for this property.

(*%) Theorem (see [PAl 75]). Let D be a bounded pseudoconvex domain in C" and let
2% € AD. Suppose that there exist r € (0,1], @ > 1 and a sequence {z”}5%; C C"\ D such
that limy— e 2° = 2° and DN B(z¥,7||z* — 2°||*) = 0. Then lim, o Kp(z) = oco.
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PROPOSITION 2.7.7. Let D be a bounded pseudoconvexr Reinhardt domain, let & be as
above and let 2° € D N (C™\ C?). Assume that one of the conditions is satisfied:

(i) there is j € {1,...,n} such that 2} =0 and v; =0 for any v € €(D);
(ii) H; n&(D) = {0}.

Then D satisfies (KC) at 2° for &.

PROOF. Because D ¢ C? we know that €(D) # {0}. First, we consider case (i). Assume
that j = 1. Fix a € Z™ such that (o« + 1,v) < 0 for any v € €(D), v # 0 (i.e. 2* €
L3 (D), use Lemma 2.2.1). Note that (« —e; + 1,v) = (a + 1,v) <0, v € @( ), v # 0.
Consequently, 221 € L} (D) (see Lemma 2.2.1). Therefore, we have

2] 2% - 12~ L2 ()
Kp(z) ~ |z

= |27 2 (py|21 -

And the last number tends to 0 as z tends to 20, which finishes this case.
In case (ii) our aim will be to find for a given o € Z" with 2* € L?(D) (in other
words (a+ 1,v) <0 for any v € €(D), v # 0) an & € Z" such that

(2.7.2) (a+1,v) < (@+1,v) <0
for any v € €(D), v # 0.

Assume that this can be done. Then we claim that (KC) is satisfied at z°. In fact,
then (o — a,v) < 0 for any v € €(D), v # 0. Therefore,

(¢ —a,v) <=5 <0

for any v € €(D), ||v|| = 1. Assume that z? = 0. There is N € N such that (o« — & —
1/Nej,v) < 0 for any v € €(D), ||v]| = 1. Consequently, the same holds for any v € €(D),
v # 0. Therefore, zN(@=8)=¢1 ¢ [°°(D) (use Lemma 2.2.1). And, finally (remember that
2% € L?(D), see (2.7.2)), we have

o< Il
KD(Z)

The last number tends to 0 as z tends to 2°.

< Hza||L2(D)|Za7&| = ||Za||L2(D)(|ZN(afa)7el||Zl|)1/N-

So we need to prove (2.7.2). First, we show the existence of a subspace Hy of H and
some basis {vy41,...,vs} of Hy such that Hy + Hy = H, Hy N Hy = {0} and

S
(2.7.3)  €(D)\ {0} C {thvj ity oty > 0}, (a+1,0;) <0, j=r+1,....s
j=1

LEMMA 2.7.8. Let V and W be two subspaces of U (U is a subspace of R™) such that
V4+W =U and VNW = {0}. Let C be a closed, convex cone (with vertex at 0) such that

CNV ={0}, Span(C) = U and C contains no straight line. Assume that {vy,..., v} is
a basis of V. Then there is a basis {vgt1,...,v} of W such that

l
C\{O} - {thvj:tk+1,...,tl >0}
j=1
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PROOF. Denote by 7 := 7y, the projection of U onto W in direction V.

First, we prove that 7(C') is a closed, convex cone containing no line. The only difficulty
is with the proof of the nonexistence of straight lines in n(C). Assuming the contrary
we easily get the existence of w # 0 such that w, —w € w(C). Consequently, there are
up = v +w,us = vy —w € C, vy,v9 € V. But then v; + vy € C NV = {0}, from which
we get v1 = —v9, S0 u; = —ug # 0, a contradiction.

Now let I be an isometry of W onto R'=*. Then I(7(C)) is a closed, convex cone not
containing straight lines. From Lemma 2.2.3 we get the existence of linearly independent
vectors wg41, - .., w; such that

I(x(C) {0}c{ Z tow;  t >o}

j=k+1
which easily finishes the proof with v; := I (w;), j=k+1,...,l. m

Put Hy := {v € H : (a + 1,v) = 0}. It is easy to verify that dim H, = s — 1. Note
also that €(D)N{v € H : {(a + 1,v) = —1} is bounded (use Lemma 2.2.4).

If Hl 4 HQ then we define H2 to be a complement of H ﬂHz in Hz (i.e. H2+H1ﬂH2
Hg, HyNH NHy = {0}). In view of Lemma 2.7.8 there are vectors {1, ..., Us } spanning
f]g such that

(D \{O}C{Zt v + Z ti0; T+1,...,ts>0}.

j=r+1
Obviously, (« +1,7;) = 0, j = r+1,...,s. Adding to v; some small enough vector
w € H with (o + 1,w) < 0 we get linearly independent vectors {v,y1,...,vs} spanning
H; satisfying (2.7.3).
If H C HQ, H, # H2 then we define HQ to be a complement of H; in H2 There
is v € H such that (a« + 1,v) = —1 and (Rv + Hy) N &€(D) = {0}. We clearly have
Hy + H2 + Rv = H. In view of Lemma 2.7.8 (applied to H; + Rv and HQ) we have the

existence of vectors {U,y2,...,0s} C HQ such that
¢(D)\ {0} c {Zt vj + tv + Z iU tray .ot >0}.
j=r+2

Since €(D)\{0} C Hy+(0,00)v = Hy+Hjy+(0, 00)v, adding to vectors Vj,j=r+2,...,5,
some small tv (¢ > 0) and putting v,41 := v we finish the proof as in the preceding case.
If H = ﬁg then we put Hs := Rug, where v; is a vector such that (a4 1,vs) = —1.
Let us prove that for ,41,...,ds > 0 (to be chosen later) we can find § € Z" such
that
(B,vj) =0, j=1,...,r
—0; < (B,vj) <0, j=r+1,...,s
Let A € Z"*™ be a linear isomorphism of R™ such that A(e; ) =v;,j=1,...,r. We want
to have (8, Ae;) = (A*fB,e;) = 0,50 (A*3); =0,j=1,...,7r. Put B = A*ﬁ. Note that
A~1v; are linearly independent in A~ Hy, j =7+ 1,...,s, and A~ Hy N (R" x Q")
= {0}. It is easy to see that the vectors ((A~'vj)pq1,.... (A7 0;),), 4 =7+ 1,...,s,
are linearly independent. Therefore, we get 5 e 7", @ =0,7 =1,...,r, such that

(2.7.4)
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—|det Ald; < (3, |det AJA ;) = |det A|(B,v;) <0, j=r+1,...,s (see Lemma 2.7.6).
This finishes the proof of (2.7.4c).

There is a constant M < oo such that for any ||v]| =1, v € €(D), v = ijl tjv;, we
have |t;| < M, j=1,...,s. Put @ :== a— § ( is as above, in particular we have (2.7.4)).
Then

<&+ 1,’U> = <a+ 177)> - <677)> = <a+ 17U> - Z tj<,8,’l}j>,
j=r+1

v=730_1tjv; € D), vl =1.

In view of (2.7.3) and (2.7.4), t; > 0 and (B,v;) < 0, j = r+1,...,s, so the last
expression is larger than (o + 1,v).

There is § > 0 such that (« + 1,v) < —0 for any v € €(D), ||v|]| = 1. Therefore,
choosing small enough ¢; we easily get (v + 1,v) < 0 for any v € €(D), ||[v|| = 1, which
finishes the proof of (2.7.2). m

Proof of Theorem 2.7.3. The condition (KC) is satisfied for 2% € C? N 9D (use Lem-
ma 2.7.5). For 2% € gD N (C"\ C7) it is satisfied by Proposition 2.7.7(ii). Then the
assumptions of Theorem 2.7.1 are satisfied for & at every 2° € 9D. m

Proof of Corollary 2.7.4. The implication (i)=-(ii) follows immediately from Proposition
2.7.2. For the proof of (ii)=(i) consider three cases.

Casg (I): dim H = 2. The condition ¢'(D) N Q? = () easily implies that €(D) = R?;
moreover, D is complete. Then it is sufficient to use Lemma 2.7.5 and Theorem 2.7.1.

Cask (I1): dim H = 0, so ¢(D) = {0} or D cC C2. Use Lemma 2.7.5 and Theorem 2.7.1.

CasE (III): dim H = 1. The condition €'(D)NQ? = §) implies that ¢'(D) = ¢(D)\ {0} =
R_(1,t) \ {0}, where ¢ > 0 is irrational or €(D) = ¢(D) = R_e; (j =1orj=2).
In the first case use Theorem 2.7.3. In the second case if 0 € 9D then use Lemma
2.7.5, Proposition 2.7.7(i), and Theorem 2.7.1, if 0 ¢ 9D then use Lemma 2.7.5 and
Theorem 2.7.1. m

REMARK 2.7.9. In case n = 2 the proof of Proposition 2.7.7 (and consequently Corollary
2.7.4) is much simpler. In fact, if we exclude case (i) from Proposition 2.7.7 then €(D) =
R4 (—1,—t), where t > 0 is irrational. Then the proof of Proposition 2.7.7 boils down to
the proof of (2.7.2), so to the existence of & € Z? such that (a+ 1,(—1,—t)) < (@ +1,
(—1,—t)) < 0, which follows directly from the one-dimensional Kronecker Theorem.

REMARK 2.7.10. The example from [Her 99] (D := {z € E. x E : |z2|*exp(1/|21|?)
< 1}) is a special case of a bounded pseudoconvex Reinhardt domain such that €(D) =
{0} x (=00, 0]. Our proof that this domain is Bergman complete is much simpler than
that in [Her 99]. This is so because in this case Proposition 2.7.7 (for 2% = 0) boils down
to the proof of the very simple case (i).

REMARK 2.7.11. The results of Chapter II (concerning completeness) may be summarized
as follows (for bounded domains).
All bounded pseudoconvex Reinhardt domains are Kobayashi complete.
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The Carathéodory complete bounded pseudoconvex Reinhardt domains are exactly
those fulfilling (2.6.7).

The class of Bergman complete bounded pseudoconvex Reinhardt domains is different
from both classes above (3°). The fact that this class does not include all bounded pseu-
doconvex Reinhardt domains was well known (see for example the Hartogs triangle). The
fact that except for domains satisfying (2.6.7) we have other Bergman complete bounded
Reinhardt domains is, to some extent, surprising.

EXAMPLE 2.7.12. As the simplest examples of Bergman complete Reinhardt domains
which do not satisfy (2.6.7), we give the following class of domains. They will be contained
in C7; therefore, their construction boils down to the construction of a convex domain in
R™. Let v1,...,vx € R™ be linearly independent vectors spanning a subspace H satisfying
HnNnQ"={0} (k>1). Let {v1,...,v,} be a basis of R™. Define

k n
log D := Z(O, 00)v; + Z (aj,b;)vj,
j=1

j=k+1

where —0o < a; < bj < co. Then €(D) = ZEZI[O,OO)’U]', H, = {0}.

2.8. Boundary behavior of the Green function and Bergman completeness. In
the proof of Bergman completeness of hyperconvex domains (see [Blo-Pfl 98] and [Her 99])
the key role is played by the boundary behavior of the Green function. More precisely,
good boundary behavior of the Green function implies Bergman completeness.

THEOREM 2.8.1 (see [Her 99]). Let D be a bounded pseudoconvexr domain in C™. Then
there exists a constant C > 0 (depending only on the diameter of D) such that for any

f€L2D), f#£0, and for any w € D we have

Fw)? _ :
PRGN f[2 av.
Kp(w) {gD<w,S><—1}

Therefore, to prove Bergman completeness of some domain, it seems reasonable to
examine the behavior of sublevel sets {gp(w, ) < —d}, where § > 0 and w tends to the
boundary. We do this below for bounded pseudoconvex Reinhardt domains and we show
that in this class convergence of the volume of sublevel sets to 0 is very closely related
to Bergman completeness. In particular, our results show that in dimension two these
two properties are equivalent. On the other hand we find (in dimension 1) examples of
domains which are Bergman complete but for which the above volume does not converge
to 0, which shows that in some sense the theory of L,gl functions (represented by Bergman
completeness) is different from the pluripotential theory (represented by the convergence
of the relevant volumes to 0).

The idea of the proofs of the forthcoming results comes from Z. Blocki (personal
communication). His idea was applied to the example of G. Herbort (see [Her 99]). With
the help of results of the preceding section we may put the result in some more general

(3%) Any bounded c-complete domain is b-complete (see e.g. [Jar-Pfl 93]).
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setting of many bounded pseudoconvex Reinhardt domains. And although a complete
answer is not known, we can give it in the two-dimensional case.

LEMMA 2.8.2. Let D C E™" N C?} be a bounded pseudoconvex Reinhardt domain such that
{0} =9DN(C™\CY) (in particular, €(D)\ {0} C (—o0,0)™). Let || - || be some norm on
R™. Assume that for any p € D, gp(p,z) — 0 as z tends to a boundary point different
from 0 and for any 0 < &1 < g there is a € Z™ such that
(2.8.1) —02 < (a,v) < =61, v e D), || =1.
Then for any z € D we have gp(p,z) — 0 as p — 0.
PROOF. Take o € Z™ such that (o, v) < 0 for v € €(D), v # 0. Let 0 < §; < d2 be such
that

(a,v) € (=02,—01), veD), [v]=1
Then z* € H*®(D) (use Lemma 2.2.1). We claim that
(2.8.2) £ —0 asD>3&—0.

In fact, there is N € N such that (o —e1/N,v) <0, v € €(D), |Jv] =1, so
0< |€a| — |£Noz—el‘1/N|§e1|l/N

and because 2V*~¢1 € H°(D) (use once more Lemma 2.2.1) the last expression tends
to 0 as & tends to 0.
Put M, = ||2%||cc < o0. Take p € D (close to 0). For £ € D, [£*| = 2[p®|, we have
7|
> log —.

9p(p,¢) 2 log 5
Put C(a,p) = sup{>_7_, log|¢;| : € € D,[§%] = 2[p*[} € (—00,0) (for p close to 0,
remember (2.8.2)). We claim that for £ € D such that [£%] > 2|p*|,
po]  Xjoiloglé]
2.8.3 >1 .
(2.8.3) 9p(p,€) 2 log 577 Clap)
In fact, it is sufficient to see that the second factor on the right hand side is > 1 for
|€%] = 2|p®|, £ € D (which is immediate) and then to make use of maximality of gp(p,-)
on the domain {{ € D : |[£¥] > 2|p®[} (we know that lim, zgp(p,§) = 0 for £ € D,

|€2| > 2|p®|, because £ € C”, by Lemma 2.2.5).
Now we let p — 0. Our aim is to estimate from above the expression ( log %) /C(a,p)

as p — 0. In other words we want to find the upper limit of the expression
—(o, t) + log(2M,)

inf{>>7_, |s;j| : s € log D, (a,s) =log2+ (o, 1)}

as t € log D and ||¢|| — oo. Note that in view of Lemma 2.2.4 we have

limsup — (—(a, ¢/[t]) + log(2Ma)/||t]]) < d.
¢l — o0, telog D

(2.8.4)

On the other hand the lower limit of the denominator (divided by |¢]|) is not smaller
than

liminf it (Ghsl/I¢] : s € log D, {a,s) = log2 + {a 1)},
[It]|— o0, telog D
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where C' > 0 depends only on the norm || - ||. Take sequences {t*} C log D with ||| — oo
and {s”} C log D such that («, s) = log2+ («,t”). We may assume that " /|[t"| — t° €
€(D) (use Lemma 2.2.4). Therefore,

(285) i (o, /[ l) = lim (o, /)" ]) = (1) € (=52, 1),

from which we see that ||s”|| — co. Consequently, s¥/||s”| — s° € €(D) (choosing, if
necessary, a subsequence), so {(a, s*/||s*|]) — («a, %) € (=, —61), which combined with
(2.8.5) gives lim, .o [|s”||/[[t[] > 61/02 and the upper limit of (2.8.4) is not larger than
35/(Cé1).

Fix £ € D. Taking §; = 1/(v+1), 62 = 1/v, choosing « for these §; and J5 and letting
p— 0 we get

- v+ 1
> —a— ] .
lim inf g5 (p, &) > = ;bg &1, §eD
Letting v — oo we finish the proof. =

REMARK 2.8.3. Tt follows from the proof of Proposition 2.7.7(ii) that the assumption on
the existence of o in Lemma 2.8.2 is satisfied if H; = {0} (notation as in Section 2.7). In
fact, in view of Lemma 2.2.3,

¢(D)\ {0} C {itjvj Lt > 0},

where {v1,...,v,} is a basis of R” complementing some basis of H, = H = Span €(D).
Proceeding as in the proof of (2.7.4) we get existence of o € Z" such that (a,v;)
€ (=02, —01), j = 1,...,s. Taking | 327_, tju;ll := 3°7_, [t;] on R™ we get (a,v) €

(—d2, —01) for any v € €(D), ||v|| = 1.
As earlier, in the two-dimensional case the proof of Lemma 2.8.2 is much easier.

LEMMA 2.8.4. Let D be a bounded pseudoconvex Reinhardt domain in C? such that D N
(C x {0}) = B, x {0} and €(D) =R, (0,—1). Then for any z € D NC2 we have

gp(p,z) — 0 as p tends to 0.

PROOF. We may assume that D = {z € E X E : |z2| < 0(]z1])}, where ¢ : [0,1) — [0, 1],
o(r)=0iff r =0, and

(2.8.6)  for any A > 0 there is B € R such that log o(e') < At + B for any t € (—o0, 0).

Take p € D close to 0. Then for |£1| = 2|p1| we have gp(p, &) > log(|p1|/2). We claim

that
9p(p,§) = log ] logl&o]
— 7 2 logo(2lpi])
for any £ € D such that |£1] > 2|p1|. The second factor above is at least 1 for £ € D with
&1] = 2|p1|, additionally, gp(p,&) — 0 if € — € € dD \ {0} € C2 (use Corollary 2.6.2).
Now applying the maximality of the function gp(p,-) on {{ € D : |&1]| > 2|p1|} we get

the desired inequality (®!).

(31) To apply maximality we have to proceed a little delicately here. First, we have to shrink
a little the domain in which we consider the inequality (in particular, we delete {€&2 =0} ND)
and then after some standard approximation procedure we get the desired property.
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Put v(t) := logo(e'), —oo < t < 0. To finish the proof it is sufficient to show

that % — 0 as t tends to —oco. In view of (2.8.6) we see that for any A > 0,

liminf; o v(t)/t > A, so lim;_, o, v(t)/t = oo, consequently,
t—log2 t+log2

t o t+log2 v(t+log2)

PROPOSITION 2.8.5. Let D be a bounded pseudoconver Reinhardt domain in C%. Then
the following conditions are equivalent:

(i) D is Bergman complete,
(ii) for any 6 >0, Vol({gp(p,:) < —=6}) — 0 as p — 9D,
(iii) for any z € DN C? we have gp(p,z) — 0 as p — OD.

PRrROOF. (iii)=-(ii) is trivial. (ii)=(i) follows from Theorem 2.8.1. So we are left with
(i)=-(iii). In view of Corollary 2.7.4 either D satisfies (2.6.7) and then the result follows
from Theorem 2.6.6 or €(D) = R, (—1,—t), t > 0, t is irrational and then D C C2,
dD N (C?\ C?) = {0} and the result follows from Corollary 2.6.2, Lemma 2.8.2 and
Remark 2.8.3 or D is as in Lemma 2.8.4 (up to dilatations and permutation of coordinates)
and then we use Lemma 2.8.4 and Corollary 2.6.2 and the contractivity of the Green
function for the points (e?,0). =

REMARK 2.8.6. By the considerations above, if D C C? is such that €(D) =
Ry (—1,—t), where t > 0 is irrational, then for any z € 9D, gp(p,z) — 0 as p — 9D.
Note that D is not hyperconvex in this case (for 2° € 9D we have gp(p,z) — 0 as z — 2°
iff 20 #0).

Now we deal with the relation between hyperconvexity of the domain and convergence
of sublevel sets when the pole tends to the boundary in dimension one. The situation here
is completely different from the case of pseudoconvex Reinhardt domains. In particular,
there are domains which are Bergman complete but such that the relevant volume does
not converge to 0.

Let D be a domain in C such that 9D is not polar (if D is unbounded then co € 9D
in the usual sense).

Recall that there is a polar set F' C D such that for some (any) A € D we have for
any & € 0D,

(2.8.7) élinél gp(M &) =0 iff & ¢ F.
—S0
Moreover, for any A € D we have
2.8.8 liminf gp (A, &) > —oc.
(2.8.8) im inf g5 (A, £) > —oo
Belonging to the set F' is a local property. We can assume that co & F'.
PROPOSITION 2.8.7. For any & € F there is a sequence {152, C D, & — (o, such that

(2.8.9) klim 9p(&k, A) = limsup gp (€x, A) < 0 for any A € D;

k—oo

and for any M > 0 there are ko and an open set () # U such that
(2.8.10) Uc{AeD:gp(&, ) <—M} forany k> k.
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PROOF. Fix A\g € D. We deduce from (2.8.7) that there is a sequence {{;}72, C D such
that &, — & and

(2.8.11) 90 (ks Ao) = gp (Mo, &) — a < 0.

Clearly, o > —oo (use (2.8.8)).

Recall that gp (&, -) is a harmonic function on D\{{x}, gp(&k,-) <Oon D,k =1,2,...
Therefore, applying a Montel type theorem for harmonic functions (see e.g. [Ran 95]) we
get gp(&k,-) — —oo (which is impossible by (2.8.11)) or (choosing a subsequence if
necessary )

(2.8.12) gp(&k, ) tends locally uniformly on D to a harmonic function h.

Clearly, h(Ao) = o, h <0, so h < 0. This gives (2.8.9).

Consider any (small enough) open connected neighborhoods Vi CC V, of &. Then
DUV is a domain with nonpolar boundary. Note that gp(&x, ) > gpuv, (&, ) on D, so
h(-) > gpuv, (&0, ). In connection with (2.8.8) applied to DU V; (A :=&p) this gives

(2.8.13)  for any small neighborhood V of & there is C' < oo such that h > —C

on D\V
and
(2.8.14) lim h(€) =0 for any £ € D\ F.
§—=¢
We claim that
(2.8.15) liminf h(§) = —oc.

£§—¢%o
Suppose not. Then for some neighborhood V' of &y, hjynp > —2M, where V is chosen
so small that (2.8.13) is satisfied. Then h is bounded. The extended maximum principle
implies that h = 0 (remember (2.8.14)), a contradiction.
From (2.8.15) we get for any M > 0 an open relatively compact subset U # 0 of D
such that U C {\ € D : h(\) < —2M}, which finishes the proof (use (2.8.12)). m

Proposition 2.8.7 shows that in dimension one Bergman completeness and convergence
to 0 of the volume of sublevel sets of the Green function as the pole tends to the boundary
are two different phenomena.

COROLLARY 2.8.8. There are a bounded domain D C C and & € 0D such that D is
Bergman complete and for any M > 0, Vol({gp(§,:) < —M?}) does not tend to 0 as

§ — &o-
PROOF. Use [Chen 98] and Proposition 2.8.7. u
The domain claimed to exist in Corollary 2.8.8 is any bounded domain in C which is

Bergman complete but not hyperconvex. For an example recall that the following domain
has this property (see [Ohs 93], [Chen 98], the set F' = {0}):

D:=E\ | B2, 2-k¢k>+D),
k=1
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II1. Effective formulas in Reinhardt domains

In general it is very difficult to find effective formulas for invariant functions. Here we
present formulas for a special subclass of quasi-elementary Reinhardt domains, so-called
elementary Reinhardt domains. Additionally, in Section 3.6, we also find formulas for the
Green function with two poles of equal weights of the unit ball.

For a = (a1,...,a,) € RY, n > 1, we set

D, = G(a,0) = {z € C" : |z1]|** ... |2, | < 1, if a; < 0 then z; # 0}.

We say that « is of rational type if there are t > 0, 8 = (01,...,83,) € Z™ such that
a = tf. We say that « is of irrational type if « is not of rational type. Note that if « is
of rational type we my assume that all a;;’s are relatively prime integers. We also define

D, ={2€Dy:21...2, #0}.
For a € Z™, r € N we set

F(z) = 2% =2{" ... 20m,

Z 1 851+...+,37LF<1(Z) 5
Bit. T B=r Gl Gl 32151 .90

where z, X € C" and if o; < 0 then z; # 0.

Note that the domain D, is always unbounded, Reinhardt, and pseudoconvex but
not convex. Because of the product properties of the functions considered we can assume
that a € RY.

The formulas for the Carathéodory pseudodistance and Carathéodory—Reiffen pseu-
dometric as well as for the Green function for elementary Reinhardt domains of the
rational type have been known for a long time (see [Jar-Pfl 93]) (32).

)

THEOREM 3.1. If a € Z7}, where a;’s are relatively prime, then:

cp, (w,z) = p(w*, z%),
gp,(w,z) = m(wa,za)l/r,
VD, (w; X) = y(w; (F*)(w) X),
Ap, (w; X) = (v(w®; Fgy(w) X))V, (w,2) € Doy X Do, (w, X) € Do x C*,
where r is the order of vanishing of the function F*(-)— F*(w) at w. If « is of irrational
type, then

cp,(w,2) =0, ~vp, (w;X)=0, (w,z) e DxD, (w,X)eDxC".

We extend Theorem 3.1 to other invariant functions and pseudometrics and we find
the remaining formulas for the Green function (and the Azukawa pseudometric) in the
irrational case.

(32) The results from [Jar-Pfl 93] were stated only for o € N?; nevertheless, the general
case follows immediately. Assume that a1,...,0; < 0, aj41,...,an > 0. The mapping z —

(1/z1,...,1/2, 2141, - - . , 2n) maps biholomorphically D onto a domain D(*alx~'~x*al’0¢z+17~~xan)

N (CL x C"~!). Making use of (1.1.8) and (1.1.9) we reduce the problem to the case a € NZ.
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We assume in this chapter that

a1, ,00 <0, o1,.--,0, >0, wherel € {0,...,n}.

3.1. Elementary Reinhardt domains with [ < n. First we deal with elementary
Reinhardt domains not contained in C7, in other words such that | < n. For clarity we
formulate the results separately for the rational and the irrational case. The case | = 0
was done in [Pfl-Zwo 98]. The general case goes exactly along the same lines.

THEOREM 3.1.1. Assume that | < n. Let (w,z) € Dy X Dq, (w;X) € Dy x C*. Let
J={e{l,....n}w; =0} ={j1,...,Jk} (®*). Let also qi41 := min{ayy1,...,an}.
1. Assume that o € Z} with o;’s relatively prime. Then
T (0,2) = {min{p((waw&m, (2)1/3)}if w, 2 € D,
’ p(0, |21/ (Cnttan) if J#0,
kp, (w, 2) = min{p((w®)!/+1, (z)/Sn)}

where the minima are taken over all possible roots. In the infinitesimal case we have
n
7<(wa>1/&1+1,(wa)l/al+1~1 Zanj) if J =10,
kp, (w; X) = N+l 5 Wy
(| [ X, [21 | X |29 o)t bes)gf T 20,

2. Assume that « is of irrational type. Then

o P((lwi | Jw, |2 )Y Et (|21 | Lz [0m) Y S41) i w, 2 € Da,
kp,(w,z) =
PO, (|21]0 .. [z ) M/ (@it ) if J#0.

n N\ et n o 1/a41
koo (w,2) =p((TThwsl) ™ (T 1) ),
j=1 j=1

Gp.(w,2) =1 A
Pl (lza]@r .. fzg|om) VY abetan) gf 7 £

In the infinitesimal case we have

n 1/@141 n /a1
7<(H|wj|aj) 7<H\wj|aj>
kp, (w; X) = j=1 j=1
(Jn |t o ]G, 0 X [ fwg )V Cateand i 7 2,

0 if J =0,
Ap (w; X) = _ v ‘ v .
Da ) { (Jwp|*r . X %9 | X, | % ...|wn|a")1/(°‘n+--~+°‘1k) if J#0.

= o; X _ _
Z o ) if J=0,

o
415

The proof is tedious and long. The details are in Sections 3.2-3.4. The remaining case
[ = n, which is much simpler, will be considered in Section 3.5.

(33) Clearly, 7 C {l+1,...,n}.
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3.2. Auxiliary results. For z € C" put
T, :={(e"z1,...,e"%2,): 0; € R}.
Note that T, is a group with multiplication defined as follows:
(e912,... e z,)0 (eié1 Zly.ens eig"zn) = (ei(91+§1)21, e ei(e""'é”)zn).
Define T, ., to be the subgroup of T, generated by the set
{(eilin/a)2lamy, o ei@in/an)Zkamy g e {1, . n), k.. k, € Z).

If o is of rational type, then T}, , is finite; more precisely, if we assume that o € Z} and
aj’s are relatively prime, then

T,o={(c121,...,6n2n) : g?j =1}

However, if « is of irrational type, then the one-dimensional version of Kronecker Theorem

gives
(3.2.1) Tho=T..
For pu € E, we define
P, : C" 1o (A, dam) o (e e@ndnt e adt | gmn1dnoty @ D
Put

V, = @M((C"_l), weE, Vo:={2€Dy:2z...2, =0}.
Note that (J,cp Vi = Da-
REMARK 3.2.1. Let y € E,. Assume w, z € V,, and X € C” satisfy Z?Zl(anj/wj) = 0.
Then
Ega(w,z) =0, kp,(w;X)=0.
In fact, w = @,(N), 2 = ®,(7) for some A,y € C"!, so
kp, (w.z) = kb, (B,(X), Pu(7)) < gnoa (A7) = 0.
For the second equality note that assuming ®,(\) = w we have

n—1
@L()\)(Y) = |, w1Y1, ..., 0pWp_ 1Yy 1, — Z ozjwan] , Ye cr 1,
j=1
One may easily verify that
/ n—1 n S anj
j=1
Note that
0= kca-1(AY) > kp, (Pu(N), 8, (N)Y), YeC,
which finishes the proof.
In the proof of Lemma 3.2.2 below we replace F in the definition of the Lempert
function with H := {z +iy: 1 >z > —1}(3).

(34) And then we replace p with EH =kp.
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LEMMA 3.2.2. Fiz w,z € D,. Take any z € T, . Then for any ¢ € O(E,D,) such
that @(A1) = w, e(A2) = 2z, A1 # A2 there is ¢ € O(E, D,) such that (A1) = w and
©(A2) = z. Consequently,

%Ea (w,z) = %Ba (w,2) foranyzZ €T, q.

PRrOOF. Take any mapping ¢ € O(H, D,,) with ¢(0) = w, ¢(it) =z, t > 0.
Define (for k,, € Z fixed)

FrHIA (01(N), o pna(N), e Mg, (V) etnm1ZnmM (@t (X)) € D
We have
P00y =w, @(it) = (21,..., 20 1, On-t/an)2knTy

We may replace «,,—1 above with any other «; and 2, with eHai/an)2knm 5 and we may
continue the procedure with the next components z; varying, which finishes the proof. m

REMARK 3.2.3. From the proof of Lemma 3.2.2 we also have the following property:
Fix a € Z? with «;’s relatively prime and 0 < §; < m(A1,A2) < Jy < 1. Take

any ¢ € O(E,C") with ¢(E) CC C and choose z € C} such that z;7 = 77 ()2),

for j = 1,...,n. Then there is ¥ € O(E,C"™) such that 1Z(E) cc Cr () = 12()\1),

¥(A2) = z and
PO () = (V) (V) A€ E,
m|ville < 1¢jlle < M|ville, j=1,....n,
where m, M > 0 depend only on §; and «.

LEMMA 3.2.4. Fiz L}, L3 CC E, Ly CC C, and o € R?. Assume that there is § > 0 such
that for any A1 € L1, Ao € L? we have m(\1, \2) > 6. Then there is Ly C K CC C, such
that for any 21,22 € Lo and any Ay € L1, Ay € L? there isp € O(E, C,.) with ¥ ()\;) = z;,
7i=1,2, and (E) C K. Moreover, there is K cc C, such that for any z1,...,2, € Lo,
Wi, ..., W, € Lo, k <n with
lz1|* . |zn % =1
there are functions ¢; € O(E,C,) with ¢;(E) C K,j=1,...,n,
L) pgr(\) =€’ N€EE,
’(ﬂj()\l):Zj7 j=1,...,n7 wj()\g):wj7 jZl,...,k’.
PROOF. For the first part it is sufficient to consider L} = {\1}, L? = {)\o} with
m(A1, A2) = 0. The general case is then obtained by composing the functions with auto-
morphisms of E and the dilatation RA, where 0 < R < 1, since the images of new
functions are contained in those of the original ones.
Define

L:=exp '(Ly) N (R x [0,27)) cC C.
Now put
K :={exp(h(N)): A€ E, h(A) =aX+b, a,b € C, h(\1) =721, h(\2) =22, 21,22 € L}.

Observe that K CC C,. The mappings we are looking for are exp oh, where h appears in
the definition of K.
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For the second part of the lemma we set w; for j = k+1,...,n—1 to be any number
from L, and we take mappings ¥1,...,%,_1 as in the first part. Define

ei§
ORI IR

where the branches of powers are chosen arbitrarily and 6 € R is such that V(A1) =2, m

Y (A) ==

LEMMA 3.2.5. Let L1, L%, Lo, § be as in Lemma 3.2.4. Fiz « € Z", where o ’s are relatively
prime. Then there is K CC C, such that for any ¢; € O(E,C,), j =1,...,n, with

itedpt =1, A€E,
and j(\1),v;(N2) € Lo, where Ay € L{, Ay € L3 there are {/ij € O(E,C,) such that

PO o =1, A€ E,

D) =900), U;(e) =), Yi(E)CK, j=1,...n

PROOF. Put z; := 9;(\1), w; := ¢;(A2), j = 1,...,n. From Lemma 3.2.4 there are Jj,
j=1,...,n—1, as desired. Put

~ 1

¢n()\) = o T 1 l/a

(W A) - (W) e

We choose the branch of the power 1/a, so that J,LQ\l) = zn, nOte also that @Zg" (A2)
= wy". From Remark 3.2.3 we may change ¢ := (1,...,%,) so that all the desired
properties are preserved and, additionally, ¥, (A2) = w,,. =

Now we present a lemma which is a weaker infinitesimal version of Lemma 3.2.4.

LEMMA 3.2.6. Let w € C,, X € C and A\ € E. Then there is 1 € O(F,C,) such that

¢()\1) =w, ’t/]l()\l) = X

Moreover, for wiy,...,w, € Ci Xi,...,X; € C (k < n) and o € RZ, where
[wi | - |wy | =1, there are ¢; € O(E,C,), j =1,...,n, such that

wj()\l):wj7 j=1,...,n, ’(/J;»()\ﬁ:Xj, j:L...,k,
AN =€ NeEE.

PROOF. The first part is similar to the proof of Lemma 3.2.4 (note that we do not demand
so much about the mapping ¢ as in Lemma 3.2.4). The mapping we are looking for is of
the form exp(aA + b).

For the second part let X; (j =k+1,...,n— 1) be any complex number. Take 1; as
in the first part (for j =1,...,n — 1) with w replaced with w; and X replaced with Xj.
Put

ew

(W A) - S (A)) e

where the branches of powers are chosen arbitrarily and 6 € R is such that V(A1) = w,. =

wn()\) =

Now we are able to give formulas for the Lempert function and the Kobayashi—-Royden
metric for special points.
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LEMMA 3.2.7. Fizw € Vy. Let z € D, and X € C", aq,...,00 <0, agy1,..., 0, > 0.
Then

EBa(w,Z)=:Ozﬂ“l..lznr%qlﬂajf%~+am>7
kD, (w; X) = (Jwi|* . | X, (%9 X [ %% - |wn|an)1/(aj1+..‘+ajk),
where J :={j e {1,...,n} :w; =0} ={j1,...,jr}-
Proor. We may assume that
Wpft1=-..=wWp =0, wy,...,wp—p #0, n—Fk>1L

We prove both equalities simultaneously.

First we consider the case z € D, (respectively, X; #0 for all j =n—k+1,...,n).
Take any ¢ € O(E,D,) such that »(0) = w, ¢(t) = z (respectively, p(0) = w, t¢'(0)
= X) for some ¢ > 0. We have

QD(A) = (¢1(/\)a---71/)n—k()‘)7)\¢n—k+1()\)a-~-7>\1/)n(>\))7 7% € O(E,C), .]: 1,...,7’1.

Put .
= [

We know that log v € SH(E) and u < 1 on F, so the maximum principle for subharmonic
functions implies that u < 1 on E. In particular, u(t) < 1 (respectively, u(0) < 1), so

. ) —k .
H?:l |Z.j|aj H"’]’L:n*k%‘rl |X]‘a7 H:’;:l |’l,Uj|aJ < 1)
= )

tOn—kt1t.tan tOn—kt1t.tan

<1 <respectively,

which gives

n 1
t= ([T lzle)
j=1
n n—~k
(respectively, t> ( H | X;]% H |w; l"‘]) EE M").
j=n—k+1 Jj=1
Therefore,
n 1
Bpuw:2) 2 (T 1) ™7
n n— 1
(respectively, kp, (w; X) > ( H | X ;| H |wj|o‘f) anfﬂﬁmﬂn).
j=n_ k41 =1

To get equality put

m 1
= (M)
Jj=1
n

(respectively, t:= ( H | X ;| H |w; |aj)m)

j=n—k+1



60 W. Zwonek

and consider the mapping

SD(A) = (1/11()\% B 7wn—k()‘)’ )‘wn—k—i-l()\)a sy Awn(A)), A€ Ea
where ¢; € O(E,C,), j=1,...,n, H?zl ¥j(A\)% = e on E and

’l,/)j(t):Zj/t, j=n—k+1,...,n, wj(t):zj, ji=1,...,n—Fk;
¥;(0) = wj, j=1,...,n—k (see Lemma 3.2.4),
(respectively,

P (0)=X,/t, j=n—k+1,...,n, ¥;(0)=w,;, j=1,...,n—k,
UH0) = X;/t, j=1,....,n—Fk,
see Lemma 3.2.6).
Then ¢ € O(E, D,), ¢(0) = w, ¢(t) = z (respectively, t¢’(0) = X), which finishes
this case.
We are left with the case z € Vj (respectively, Xj=0forsomen—-Fk+1<j5< n).
If there is j such that w; = z; = 0 (respectively, w; = X; = 0), then the mapping (note
that j > [+ 1)

CxC" "t o (21,0025 20) = (21544 4,0,.00, 2,) € Dy
gives
0=kt ot ((Wi,. 1By, wn), (21, 5 2)) = K (w, 2),
(respectively,
0= ficz;lxcn,l,l((wl, ey Wy, Wh); (X17...,Xj7...,Xn)) > kp, (w; X)).

Therefore, only the Lempert function remains and then we may assume that for all j
we have |w;| + |z;| > 0.

For fixed 1 > 8 > 0 define the mapping ¢ := (1, ..., ) as follows (the first and the
second case below may occur only if j > 14 1):

A— .
ﬁ%(k) if w; =0,

(N =4 A+ .
() ﬁ%(;\) if z; =0,

¥i(A) if wjz; # 0,
where ¢; € O(E,C,), H?:l ;A% =€ on E and p(3) = w, ¢(—B) = 2 (the values
of ¢;(B) and ¢;(—p) are prescribed only if w;z; # 0; for those j for which w;z; = 0
only one of the values ¢;(5) and 9;(—/0) is prescribed; more precisely, take j; such that
zj, =0, and define 1;, (—f3) so that |1 (=B)|*" ... |¥n(—=05)|*" = 1; there is ja such that
wj, = 0, so ©;,(B) has no fixed value—that is why we can use Lemma 3.2.4). Note also
that ¢ € O(E, D,,). As 3 > 0 may be chosen arbitrarily small this completes the proof. m

Next, we prove a formula for the Lempert function for the domain D(; . ;). Following
the ideas from [Jar-Pfl-Zei 93] and [Pfl-Zwo 96] we extend the formulas to the general
case using what could be called transport of geodesics. Roughly speaking, the idea is
to transport the formulas from simpler domains to more complex ones with the help of
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“good” mappings. In [Jar-Pfl-Zei 93] and [Pfl-Zwo 96] the Euclidean ball was a model
domain. In our case it is the domain Dy, . 1).

Ez(l (w,2) = m(wy ... Wy, 21 ... 20) ",
where k := max{#{j : z; =0}, 1}.
PROOF. The first part and the case z € V}) are consequences of Lemma 3.2.7.
Consider the case w,z € 15(1,“,71). We assume that wq...w, # 21 ...z, (otherwise
use Remark 3.2.1).
Consider the mapping (see Lemma 3.2.4)

e(A) = (1(A); -+ a1 (A), e N (V)
where
A=W W, A2 i=21... 2,
¥; € O(B,C.), j=1,....n, ¥1(N)...¥n(N\)=¢", X€E,
vi(M) =w;, Yi(Ae) =2, j=1,....,.n—1
(using Lemma 3.2.4 we may even assume that ¢;(E) C K CC C,, j =1,...,n; compare

Remark 3.2.9).
Note that

p e O(EaD(l,...,l))a e(A) =w, ¢A) =z
Combining this with the contractivity property of the Lempert function we have
m(wy ... Wy, 21 - .. 2n) > 7573(17..‘,1)(“% z2) >m(wy ... Wy, 21 .. 2n)-

This completes the proof. m

REMARK 3.2.9. From the proof of Lemma 3.2.8 we see that for any w, z € IN)(LMI) with

AAAAA

with ¥1(A) ... 1, (A) = 1 and ¢;(E) CC C,.

The domains D,,, although very regular, do not have a property which is crucial in
the theory of holomorphically invariant functions: they are not taut. Therefore, we have
no guarantee that they admit EDa—geodesics. However, as Lemma 3.2.10 will show, they
do admit them at least in the rational case and for points which are “separated” by the
Lempert function. The existence of geodesics will play a great role in the proof of the
formula for the Lempert function in the rational case.

LeEMMA 3.2.10. Assume that o € Z7} and o;’s are relatively prime, ay,...,a; < 0,
Qpg1y .- 0n > 0,1 < n. Let w,z € Do, with w® % 2. Then there is a Epa-geodesic
@ for (w,z) such that p; = Bjv;, j = 1,...,n, where Bj is a Blaschke product (up to
a constant) j = 1,...,n, B; is constant for j = 1,...,01 and 7" ... 5" =1 on E.
Moreover, 9;(E) cCC,, j=1,...,n.
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PrOOF. We know that ¢ := E}BQ (w, z) > m(w®, z%) > 0; consequently, there are mappings
k) = (gp(lk), .. .,@%k)), k=1,2,..., such that
o®) e O(E,Dy), ¢®(0)=w, o™ (tp) =2 wherety >ty —t>0.
We have
M =BWy®™ =1 n,
where B](k) is a Blaschke product and w](-k) € O(E,C,) (B](k) is constant for j =1,...,1).

Put o) .= (1/)5»]@))?:1. There are two possibilities (due to the maximum principle for
subharmonic functions—remember the pseudoconvexity of D,,):

(3.2.2) YM(E) C D,,

(3.2.3) YF(E) C OD,.

Below we prove that we may restrict our attention to a case which is a generalization
of (3.2.3).

Take any k such that (3.2.2) is satisfied. First, notice that the mapping 7:2;(’@) =
((wﬁk))al/“’”“'a"‘, e (w%k))"‘"”al'“‘""') is in O(E, D(y,... 1)) From Remark 3.2.9 there is
k ,,-geodesic for (™) (0), 9 ®) (£4)) of the form

)i (B0 B 0 2 ;. 0.
where z%k) .0 =1 on E, such that p®(0) = p®(0) and u® (Ryty) = »® (),
Or € E, R, < 1.
Coming back to the domain D, we see that instead of considering ¢*) with the
property (3.2.2) we may consider the mapping (note that |ai...an|/e; € Z and
log ... ap|/am € N)

PE ) = (B () () leranlles (R

because ) € O(E, D,,), 3 (0) = w and g*)(t;,) = 2.
Therefore we may assume that (irrespective of which case we consider, (3.2.2) or
(3.2.3))

o) =By, =1 n,

where (wgk))al . .(w,(lk))a" =1, |Bj(-k)\ <1,j=1,...,n (although Bj(-k)’s need no longer
be Blaschke products) and |Bj(-k)| =1,5=1,...,L

Choosing a subsequence if necessary, we may assume that for all j = 1,...,n the
sequence {B](-k)},;“;l converges locally uniformly on E. Keeping in mind that cp(k)(O) =w
and @) (1) = z we see that there is K cC C, such that z/JJ(-k)(E) C K for any j, k
(we may apply Lemma 3.2.5 because Ly := {¢§k)(tk),w§-k)(0)}j7k cc C,, which follows
from convergence and boundedness of {B](k)}zc’zl, the fact that wjz; #0, 7 =1,...,n,

and (wgk))‘“ . (w,(Lk))a" = 1), and then choosing a subsequence if necessary we deduce
that ¢*) converges to a mapping ¢ € O(E, D,) with ¢(F) cC C" and ¢;(F) ccC C,
j=1,...,1, such that ¢(0) = w and ¢(t) = 2. The maximum principle for subharmonic
functions implies that ¢(F) C D,. The mapping ¢ is a %Da—geodesic for (w, z).
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Take the representation of (:

w; =Bv;, j=1,...,n,
where B; is a Blaschke product (up to a constant), B; is constant for j =1,...,1.
Consider two cases. In case 97 ... ¢9n = e¢'? we may assume that Y;(F) Cc K CccC,
for some K by Lemma 3.2.5 (and then we may assume that e = 1).
If 7' ... 4% is not constant on E, then Ve O(E,D,...1)) (zzj = w;‘j/‘al'“a"‘) and

such that (M) = $(\1), $(A2) = $(A2) and (E) CC D1y N (CL x C*1) (see
Remark 3.2.9) and taking () := (B; (A)zﬁ‘fl'“a"l/a" (A))j=1 we get a mapping such that
P(A1) = (A1), P(A2) = p(A2) and §(E) CC D, a contradiction. By Remark 3.2.9 there

_._.,1)—geodesic w for (A1), ¥(A2)) = (p(A1), u(A2)), where 91 ...9, = 1 and
¥;(E)’s are relatively compact in C, (¢; are nonvanishing parts of the factorization of
K, pj does not vanish for j = 1,...,n — 1). Taking now (Bj()\)(/Lj()\))ml“'a"‘/o‘f)?:1
instead of ¢ we get the desired property. m

3.3. Proof of Theorem 3.1.1 in the rational case. We start with the Lempert
function, which is basic in the calculation of other functions.

We begin with a formula for the Mobius function, which seems to be known; never-
theless, we were not able to find any references in the literature.

LEMMA 3.3.1. Fiz § > 1. Then for any A\ € (0,1), A2 € E we have
m(A}, A5) < m(A1, A2),
where A € (0,1) and the power N} is appropriately chosen.
PROOF. Let A2 = |A2]exp(if), 8 € [—m, 7). We claim that there are k,l € Z such that
(%) 00+ 2km) + 2lw € [—m, ), |0+ 2kmw + 2l /5| < |6).

In fact, if § € Q, then the result follows from the one-dimensional Kronecker Theorem
(density of {6kmodZ : k € Z} in [0,1)). If 6 = p/q, where p and q are relatively prime,
p > q > 1 we easily get the desired property choosing k, [ € Z such that 0+2kmw+2lqm/p €
[=7/p,7/p) C [=m, 7).

Since m(A1, A2) > m(A1, [A2| exp(i(0 + 2kw + 2i7/§)) (use (x) and simple geometric
properties of the Mdbius distance), in order to finish the proof it is sufficient to show for
t € (0,1] the following inequality (put r = A{, s = [Xo|®, t = 1/8 and §(0 + 2k7) + 27 in
place of 6):

m(r, sexp(if)) < m(r', s' exp(ith)), r,s€ (0,1), 0 € [-m,7).
Therefore, we shall finish the proof if we show that for any fixed 6 € [0, 7) the function

r2t 4 52t — 2rtst cos(th)
t,0):= , te€(0,1],
1(t,9) 1+ 7r2ts2t — 2rtst cos(th) (0.1]
is decreasing with respect to t.
First, we check this for § = 0. This follows from a straightforward (but a little tedious)

calculation of the derivative.
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Let

where
01(t) =72 4 52— 2rtst (b)) i= 1+ r20s% — 2rtst (¢, 0) = 2r!st (1 — cos(h)).
By the monotonicity of f(¢,0) we get

() P1()p2(t) — @1 (t)ps(t) < 0.

Our aim is to show that

(1(8) + 912, 0)) (p2(t) + U(£,0)) — (p1(t) + P(£,0)) (03(t) + 9i(t,0)) < 0,

which will follow if we prove that (use (*x))
(£, 0) (D1 (t) — 05(t)) + Yi(£,0) (w2 (t) — 1 (t)) < 0.
The last inequality is equivalent to
2rtst (1 — cos(th))[2r?* log r + 25*" log s — 2r?*s* log(rs)]
+ 2rtstlog(rs)(1 — cos(t0)) + Osin(t0)](1 + r?ts?* — 2 — s%) <0
or
(1 — cos(t0))[(1 + r*)(1 — s*") logr + (1 + s**)(1 — r*") log 5]
+ 0sin(t0)(1 — r2)(1 — s*") <0
and then

1 2t 1 2t
(k) (1 — cos(th)) (11——:% logr + 11_—2275 log s) + @sin(th) < 0.

It is easy to check that the function
1+ u?

is increasing. The left hand side of (*x*x) is not larger than
. 1+ v .
2(1 — cos(t9)) ulg?— (1—7u2t log u> + Osin(th).

Using the ’Hospital rule we see that the last limit equals —1/t. Therefore, it is sufficient
to show that

%2(1 — cos(t0)) + Osin(t0) <0
for any t € (0,1], 8 € [0, 7]. Fix ¢ and denote the left hand side by g(6). It is easy to see
that
g'(0) = —sin(t0) + td cos(th) <0, 6 € [0,7],
which finishes the proof because g(0) =0. m

Proof of the formula for EE(, in the rational case. The case wi ... w, = 0 is a consequence
of Lemma 3.2.7. The case w, z € ﬁa, w® = z® follows from Remark 3.2.1. We are left with
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the case w,z € Dgy, w® # 2°. By Lemma 3.2.10 there is a kp,_-geodesic ¢ € O(E, Dy)
for (w, z) = (p(A1), ©(A2)) such that

cpj:ijja j:]-,"'ana
where Bj; is a Blaschke product (up to a constant |¢;| = 1), ¥;(E) ¢ K CcC C,,
1. Y8 =1 and Bj is constant for j =1,...,1.

Therefore, p(E) cC C! x C"~!. Consequently, p(E) is contained in some smooth
bounded pseudoconvex Reinhardt domain G C D, which arises frc~)m the domain D, by
“cutting the ends” and “smoothing the corners”. Therefore, ¢ is a kg-geodesic for (w, z).
Using the results of [Edi 95] (3°) we find that there are h; € H*(E,C), j = 1,...,n, and
0: OF — (0,00) such that (f*(\) denotes the nontangential limit of f at A\, A € OF)

1 * * * .

th Ne;(A) = o(Majl(¢* (M), j=1,...,n, for almost all A € OF
(we easily exclude the case (¢*(A))* = 0 for A from some subset of JF with nonzero
Lebesgue measure: use the Identity Principle for functions from Hardy spaces, see e.g.
[Dur 70], [Gar 81]). Using the result of Gentili (see [Gen 87] (3¢)) we deduce that for
some b; € R,, j=1,...,n, € E,

@J(A)h]()‘):bj(l_B)‘)()‘_ﬁ)ﬂ j:]-a"'vnv AEEa

where b;/a; = by /oy, j,k =1,...,n. Consequently, we may take
A—pB\"
B0 =o(r=5) - lel=1

where r; € {0,1} and not all 7;’s are 0. We may assume that § = 0 (we then change only
A1 and Ag).

Now we come back to the domain D,. We may assume (permuting the coordinates
I+1,...,nif necessary) that 11 = ... =rypy =0and riygy1=... =71, =1 (0< k <
n—1—1). We want to have for some Ai, Ay € E' (we may assume that ¢; = 1—if necessary
we change w and z with the help of rotations of suitable components, so the Lempert
function does not change)

Ale()\l):wj, ]:l—i—k—i—l,,n, wj(Al):wja jzl,,l+l€,
/\21)&]‘()\2):2]‘, j=l+k+1,... n, ’L/)j()\g):Zj, j=1,...)l+k.
Taking the o;th power and multiplying the equalities we get

)\Oéz+k+1+m+04n = w® )\Oéz+k+1+m+04n —
1 - ’ 2 - .

The formulas above describe all possibilities which may yield candidates for the realization
of the Lempert function. Now for all possible A1, A5 as above we find mappings which
map A; and Ay to w and z. Note that there are mappings ¢; € O(E,C,),j=1,...,n—1,

(3®) Theorem (see [Edi 95]). Let D = {u < 0}, u € PSH(G) N CY(G), where D CC G,
OD = {u = 0}. Let ¢ be a kp-geodesic. Then there are p € L(9E), o > 0 and hj € H*(E),
j=1,...,n such that (1/A)h;(A) = o(N)(9u/0z;)(¢" (X)), for almost all A € OF, j =1,...,n.

(36) Theorem (see [Gen 87]). Let f € H*(E) be such that (1/X)f*(A\) > 0 for almost all
X\ € OFE. Then there are b > 0, 8 € E such that p(A\) =b(1 — BA\) (A=), A € E.
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such that (see Lemma 3.2.4)

) _ ’U}j _U}j - _
QZ)J()\l) - (wa)l/(al+k+1+~~+an) - )\1’ J _l+k+1vvn 17
i (A2) = 5 =8 j=ltk+1,.n—1,

J

(z2) 1/ (@prrtodan) )y’
wj()\l):wj, jzl,...,l—I—k,
wj()\g):Zj, j=1,...)l+k.

Define also
1

QAn—1 ’ )\ E.
(22 (N) .. .pom (V)Y €

an()\) =

Put

P(A) = (Y1 (A)s -+ s ik (N, Mok 1(A), - -+, A ().

The (1/ay,)th power in the definition of ), is chosen so that ¢,()\) = w;, and we
know that p%™(A2) = 23". One may also easily verify that (A1) = w and ¢;(A\2) = z;,
j =1,...,n — 1, which, however, in view of Lemma 3.2.2 shows that there is also a
mapping ¢ € O(E, D) such that g(A1) = w, ¢(A2) = z. Thus we have proved that

kp, (w,z) = min{m(A, Aa) : A, Ay € B, AT 7T — o NGt — ay

where the minimum is taken over all nonempty subsets {j1,...,7s} C {{+1,...,n}. Now
Lemma 3.3.1 finishes the proof (we may assume that w; >0,j=1,...,n). =

Proof of the formula for kp,_, in the rational case. In view of the formula for the Lempert
function, the definition of the Kobayashi pseudodistance and its continuity finish the
proof. m

It remains to compute the Kobayashi-Royden pseudometric xp_, . We do that by
defining an operator which connects kp,_ to the Kobayashi pseudodistance.
Following M. Jarnicki and P. Pflug (see [Jar-Pfl 93]), for a domain D C C™ we define

kY (w,w+ AX
Dkp(w; X) := limsup M

, weD, XeC™
A#£0, A0 RY

This function differs from that in [Jar-Pfl 93], but is no larger, so the inequality below,
which is crucial for our considerations, remains true:

(3.3.1) Dkp(w; X) <kp(w; X), weD, XeC"

LEMMA 3.3.2. Let o € Z7}

* )

where o;’s are relatively prime, and define oy =
min{ay1,...,a,}. Then

Dkp, (w; X) = 7(( ﬁ \wj|aj)1/&l+17 (ﬁ |wj|%‘)1/apr1
i=1 e

forw € Do and X € C".

n
Z XJ>
[O7EN | = wy

PRrROOF. We may assume that w; > 0, j = 1,...,n, and o, = q;41. Using the formula
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for kp, ~we get

" (w; + AX) e — [T, w
(3.3.2) Dkp, (w; X) = limsup L (g ) w7 ,
ATOAE0 LTI (wy + AXj)%‘/%l‘[w;*j/o‘" A

Applying the Taylor formula we get for A close to 0 (if w; = 0 then «;/a,, > 1)

o o Jam Qi afom AX )
(wj + AX;) ]/n:w;u/a Jriw]%/a w_ijrEj()\), ji=1,...,n,

where €;(A)/A — 0 as A — 0. Substituting this in (3.3.2) we get
" w Ve A S s X aw;
o (01 ) = Himsup 15 ISy 00 |
A#£0, A—0 (1 =TTy [wy[es/om)[A|

which equals the desired value. m

Proof of the formula for kp,_, in the rational case. If J # (), then in view of Lemma 3.2.7
we are done. The case 2?21 a;X;/w; = 0 follows from Remark 3.2.1.

Take w € D,. We may assume that w; >0, j =1,...,n and o, = q41. Below, for
X € C" with Z?:1 a; X;/wj # 0 we construct ¢ € O(E, D) such that

e(\) =w, to'(\) =X,

where \; = (w'... w2 )V > 0, t = (W ... won) /o >iey @ Xj/(anwy). This
finishes the proof by Lemma 3.3.2 and (3.3.1).
Define

)
(W (N - () e )

QO(A) = (djl()‘)v s v¢n71()‘)7
where (see Lemma 3.2.6)

We choose the (1/a;,)th power so that ¢, (A1) = wy; after elementary computation we
get tpl (A1) = X,,, which finishes the proof. m

3.4. Proof of Theorem 3.1.1 in the irrational case. As in the rational case we start
with the proof of the formula for the Lempert function. First, we make use of special
properties of domains of irrational type.

LEMMA 3.4.1. Let « be of irrational type. Then for any w,z € D,
kp (w,z) =k}, (0,2), @€T,, el
PrOOF. It is enough to prove that
%E& (w,z) = E}Ba (w,z) whenever zZ € T,.
Assume that
(3.4.1) Ep (w,21) <k, (w, %) =€
for some 21,29 € T,. Then in view of Lemma 3.2.2,

(3.4.2) Ky (w,2) =¢
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for all Z € T3, o. Because of (3.2.1) we have 21 € T, = T3, = ng,a. Together with
(3.4.1) and (3.4.2), the last statement contradicts the upper semicontinuity of the Lempert
function. m

Here is an immediate corollary:
COROLLARY 3.4.2. Let « be of irrational type. Then for any z € Dy,
%Ea(z,i) =0 forany zeT,.

Proof of the formula for EDQ in the irrational case. The case J # () is covered by Lemma
3.2.7. Consider now the remaining case. In view of Lemma 3.4.1 we have

kb, (w,2) = kb, ((lwil,- s [wn]), (21]s- - [2a])-

Choose a sequence {a(®}2°  C (Q,)" such that

agk), . 7al(k) <0, ozl(i)l, ... ,a;k) >0 and o — a.
By Theorem 3.1.1 in the rational case, if z,y € R} N D ) then
(343) Fp . (@.9)
— (@ yymingalalPy el ey /mingad, el

We may assume that min{eyy1,...,@,} = o, and min{al(_]i)l, ce a%k)} = o First we
prove that

K, (w,2) = m((wi|* . fwg| ) (2] 2] ) ).
Indeed, otherwise there is p € O(E, D,) such that p(\1) = (Jwi],...,|w.]), p(A2) =
(‘Zl|7 AR |Zn|) and

m(Ar, A2) < m((Jwi | fwg ) (2] 7z ) ).
We may choose k so large that ¢(E) C D &) and

oa® k) k) ol® k) ak)
m(Ar, A2) < m((wr ] [* )T (2|1 [z )T,

which contradicts (3.4.3).
To get equality consider the mapping p(A) = (Y1 (N), ..., YUn—1(A), AMpp(N)), where
(see Lemma 3.2.4)
G €O(E,C,), j=1,....n—1,
A= (Jwr | wg )Y >0, Mg = (|21 .. |z ]Y) YO > 0;
Vi(A1) = lwsl, ¥;(A2) =1z], j=1,....n—1L

Define also 1

(1 (A) -7 (A) o

The a,th root is chosen so that ¢,(A;) = |w,|. One may also easily check from the
form of 1;’s in the proof of Lemma 3.2.4 that then ¢, (A2) > 0, so ¢n(A2) = |2,|. This
completes the proof. m

A€ E.

Y (A) =

Just as in the rational case we have:
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Proof of the formula for kp, in the irrational case. The continuity of the Kobayashi
pseudodistance as well as the definition of the Kobayashi pseudodistance and the formula
for the Lempert function finish the proof. m

Having the formula for the Lempert function we get

Proof of the formula for gp,_, in the irrational case. Because of (1.1.8) we can assume that
l=0.

CASE I: J = (). Corollary 3.4.2 implies that
gp, (w,z) = —oo for any z € Ty,.

The maximum principle for plurisubharmonic functions (applied to gp_ (w,-)) implies
that

gp, (w,z) = —oo for any z with |z;| < |wj|,
which means that gp_ (w,-) equals —oo on a set with nonempty interior (wy ...w, # 0)
but gp, (w,-) is plurisubharmonic, so it must vanish on D,,.

Casg II: 7 # (. This case is a consequence of Lemma 3.2.7, the inequality g < E*,
the definition of the Green function and the fact that (21| ... |z,|* )"/ (it Fei) ig
logarithmically plurisubharmonic on D,,. =

Proof of the formula for Ap,, in the irrational case. The result follows from the formula
for the Green function and the definition of the Azukawa pseudometric. m

Now, we complete the proof by showing the formula for kp_ .

LEMMA 3.4.3. Let « be of irrational type, qyy1 := min{ay41,...,a, . Then
n o\ /8 i W\ a1 LIy ¢
o, (wiX) =7 ( ([T fwl) ™" (TLl) ™" 213 450
i=1 i=1 (07AN} =1 w;

forweﬁa and X € C".

PROOF. We may assume that o, = @;+1. The formula for the Kobayashi pseudodistance
gives

w4 AX |/ T |/ an
(3.4.4) Dkp, (w; X) = limsup |HJ—1L| ’ i : | 7‘ .
220,20 |1 = TTjy Jwy + AX[oa/an T Jws|ea/en |- |A
Therefore, applying the Taylor formula we get, for A close to 0 (note that if w; = 0 then
Oéj/Oén Z 1)v
A AX
w; + )\Xj|aj/0¢n _ |wj|(lj/(ln + Z_J|wj|aj/an (Re <w_3)) +e;(N), j=1,...,n,

j
where €;/X — 0 as A — 0. Substituting this in (3.4.4) we get
n . a n a; X;
. ITj—i (Jws|*) e Re (A7 2257))
Dkp, (w; X) = limsup — 5o /a 1
A#0,A—0 (1- Hj:l |wj[2@3/en)[Al

which equals the desired value. m
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Proof of the formula for kp_ in the irrational case. If J # 0, then, by Lemma 3.2.7, we
are done. Also the case Z;l:l a; X;/w; = 0 follows from Remark 3.2.1. Below we deal
with the remaining cases.

Take w € D,,. We may assume that w; > 0,5 =1,...,nand a,, = min{ay41,..., o, }.
Below, for X € C" with >-"_, a; X;/w; # 0 we construct ¢ € O(E, D,) such that

M) =w, to'(\)=X,

where A\p == (wi' . wgm)Von >0, ¢ = (w L wg )Y 3T X/ (anw;). This
finishes the proof by Lemma 3.4.3 and (3.3.1).

Define
A

( ?I(A)--wﬁ"il(k))l/“")’

P00 = (11, a0
where (see Lemma 3.2.6)

We choose the (1/ay,)th power so that ¢, (A1) = w,. After an elementary computation
we get tp] (A1) = X, which finishes the proof. m

3.5. Elementary Reinhardt domains with [ = n. In this section we deal with the
case | = n (equivalently, D, C C). Because of (1.1.8) and (1.1.9) we restrict atten-
tion to the Lempert function, the Kobayashi pseudodistance and the Kobayashi—-Royden
pseudometric.

THEOREM 3.5.1. Assume that | =n, w,z € D,, X € C".

1. If « is of rational type then

n

~ X
kp,(w,z) =kp,(w,2) = kg, (w*, 2%), kp, (w;X)=kKpg, (wa;wa Z e J).

wj

j=1
2. If « is of irrational type then
kp, (w,z) = kp, (w,z) = kg, (

"o X
kp, (w; X) = kg, (|u}1|°‘1 oo wn | w2 w7 Z #)

wj

Qn
’

w|* . |wy

z1|% . zn

an)
)

j=1
Proor. By Proposition 2.1.3 we know that EDO( = kp,, . Define

U C" P x B3 (A, M)
1
— (exp(an)\l), oy explanAn—1), . exp(—(ag A1 + ... + anl)\nl))) € D,.
The mapping ¥ is a holomorphic covering. Note that ¥(\) = w iff

1
Aj = — log |w;| + L(Argwj +2lm), j=1,...,n—1,
ap, ap,
1 Ry,
o = wnllwd™ w1 ]*=1) 1/ exp (a—n(Z(Argwj + 21j7r)0<j)>,

where ly,...,l,—1 € Z. Applying (1.1.6) and the product property of k we get
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kp,(w,z)
i n—1
—inflk -1 I [ L —1/an _ A iy
O e e T e > e ).
i n—1
27 (2] |z |2 ) T O exp (-a— > (Argz; + 2lj7r)aj>> }
where the infimum is taken over all I4,...,l,_1 € Z.

In the rational case the last expression equals kg, (w®, z%) (37).

In the irrational case the last infimum equals, by the Kronecker Theorem,
Ep, ((Jwi|® ... Jwa|®) = (J20|* .. |2,]|@) =1/ @). The last expression equals the de-
sired value (%).

For the Kobayashi-Royden pseudometric we have ¥/(\)Y = X iff

n—1
opw;Y; =X5, j=1,...,n—1, ((Zoz;\Y]>+ )exp( Zaj ): s

j=1
from which we get (use (1.1.7))

_ wy | |wy |0 )TV e CS o X
kp, (W X) = kp, <(|w1°‘1...|wn|a") l/a",(| d [ ’ j)

Qn

—

j=

The last number equals the desired value (39). m

REMARK 3.5.2. In case 0 < [ < n we may get the formulas for the Lempert function,
the Kobayashi pseudodistance and the Kobayashi-Royden pseudometric similarly to the
proof of Theorem 3.5.1 reducing the problem to lower dimensional elementary Reinhardt
domains with [ = 0. Namely, we may define the following holomorphic covering:

®:C' X Diayyoan) 2 (A1, eo s An)
— (exp(anA1), .., exp(anA), Nit1, -y An—1, Apexp(— (a1 A1 + ... + ) € D,

REMARK 3.5.3. From the proof of Theorem 3.5.1 we see that in the case [ = n and «
of irrational type the infimum in the formula (1.1.6) need not be attained (the covering
mapping is ¥). Similarly using the mapping @ (from Remark 3.5.2) in a more general
case 0 < | < n we may find examples of that kind. These examples answer (negatively)
the question posed by S. Kobayashi (see [Kob 70]) about the existence of minimum in
the formula (1.1.6).

To visualize these examples take « of irrational type with [ = n. Assume that «,, = —1.
Consider the holomorphic covering ¥ as in the proof of Theorem 3.5.1. Take w € D,NR"
and z € D, such that z; =w;, j=1,...,n—1, |2,| = w,. We know that kp_(w, z) = 0.
The infimum would be attained if there were l1,...,l,,—1 € Z such that (Argz,)/(27) +

(37) From the formula for kg, (see [Jar-Pfl 93]) we have kg, (wt, zt) = kg, (w,2), w,z € Ex,
t € Ni. Put ¢t := —a.
(38) If z,y € (0,1), t > 0 then from the formula for kg, we have kg, (zt,yt) = kg, (z,y); we
apply this for ¢t := —an,.
(39) By the formula for kg, (see [Jar-Pfl 93]), kg, (x;1) = kg, (2! tz!™1) for any t > 0,
€ (0,1). Put t := —an.
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Z?;ll lja; € Z. This need not hold: it is sufficient to take z, such that (Argz,)/(27)
does not belong to the Q-linear subspace of R spanned by {1, a1,...,,_1}.

3.6. The pluricomplex Green function of the unit ball with two poles. The last
example of new effective formulas is the formula for the pluricomplex Green function with
many poles of the unit ball. It may sound incredible but except for the one dimensional
case no effective formulas for the Green function with (at least) two poles have been
known. We deal with the most natural case i.e. the unit ball in C? with two poles of
equal weights.

THEOREM 3.6.1. Let 0 < p <1 and (z1,22) € Ba. Then

9B, ((0,])), (07 *p); (Zla 22))

1 (1=p*)(A = |21 = |2 :
-1 1-— > _
5 og( 1= pal? if plza| > |22 —pl,
1 (1=p*)(A = |z - |22|2)> :
—log [1— 1 21| = |22 +p|,
=42 g( |1+ pzo? J plarl 2 [z + 2l
110 2(1 —p?Rez2)|z1)? + |p? — p?|=1 ]2 — 232 + VA
108 3~ 3P
if plzi| < min{|z2 — p|, |22 + p|},

where A\ = —4]21|*(p? Tm 23)2 +4|21|? (1 —p? Re 23) |p? — p?|21 |2 — 23|+ |p? — p?|21 |2 — 23| *.

The formulas above entirely solve the problem for the Green function with two poles
with equal weights because of the transitivity of the automorphism group of B,. Moreover,
because three points lie in one plane the formulas above actually give effective formulas
for the Green function with two poles with equal weights in B,, for any n > 2.

A decisive role in the proof of Theorem 3.6.1 is played by a theorem which shows how
the Green function behaves under proper holomorphic mappings. Before we formulate
that result let us recall some notations.

Let 7: D — D be a proper holomorphic mapping (with multiplicity m) and let P be
a set of poles in D but such that 7=1(P) N {det 7’ = 0} = . Define v(q) := v(n(q)) for
any g € 7~ 1(P).

Recall that gp(P;-) denotes the pluricomplex Green function with poles at P with
all weights equal to 1.

We formulate a theorem which may be found in [Lar-Sig 98]; we give another proof
below.

THEOREM 3.6.2. Under the above assumptions and notations, for any w € D the following
formula holds:

95 (P); v w) = gp(P;v;w(w)).

The most natural proper holomorphic mappings from the unit ball in dimension at
least two are

(217,,_72'”)»—)(zfl,...,zﬁn), p; €N
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These mappings lead us to the problem of calculating the Green function of the (convex)
ellipsoid £(1,1/2) because in view of Theorem 3.6.2,
9B, ((0,]7)7 (05 _p)7 (Zla Z2)> = 95(1,1/2)((07]72)7 (Zla Zg))a

so the proof of Theorem 3.6.1 reduces to finding the formula for the Green function with
one pole (with weight 1) of the complex ellipsoid £(1,1/2). The most tedious part of our
paper is devoted to the proof of that formula.

THEOREM 3.6.3. Let (0,t), (z1,22) € £(1,1/2),t > 0. Then
9e(1,1/2)((0,1), (21, 22))

1 1—t)(1—|z]? -
—log (1 — ( J ‘Z11| 5 |z2|)) if t1/2]z] > \Z;/z —t1/2,
2 |1—t1/2z2/ 2

110 2(1 —tRez)|212 + |t — t|21)? — 22> + VO
98 o1 — t2s)2
where A = —4|z[*(tIm 20)% + 4|21 |2(1 — tRezo)|t — t|z1|? — 22| + |t — t]|21|* — 22]*,
(0,1), (21, 22) € £(1,1/2) (writing \/? for X € C\ {0} we mean u such that u?> = X and
Argpi € [-7/2,7/2)).
The formula from Theorem 3.6.1 has been obtained independently, with other me-
thods, in [Com 97].
Proof of Theorem 3.6.2. Take any u € PSH(D, [—00,0)) such that

(3.6.1) u(z) < v(pj)logllz — psll + M

if 12z < |25/% - 1172,

for z near p; and some M € R. Put @ := wom, n '(p;) = {p;,..., 7'} We have
u € PSH(E, [-00,0)) and because 7 is locally biholomorphic near pf for all possible 7, k
there is M € R such that

u(Z) < v(p;)log ||z — pll| + M
for Zz near pé?. This proves the inequality “>”.

To prove the opposite inequality take any u € PSH(E, [—00,0)) as in the definition
of the Green function gz (7' (P); ;). Then define

u(z) == max{u(z) : m(2) =z}, z€D.

By Proposition 2.9.26 in [Kli 91], u is plurisubharmonic and < 0. We may easily verify
that v fulfills the condition as in (3.6.1). This completes the proof. m

By Theorem 1.3.3 applied to the ellipsoid £(1,1/2), any complex geodesic ¢ passing
through (0,¢) and (21, 29) (with ¢ > 0) is such that either 5 *(0) = 0 or #¢; *(0) = 1.
Our first aim is to decide for which pairs of points the complex geodesic joining these
points is of the first type and for which of the second type. Although we shall need this
only for £(1,1/2) it is no more difficult for arbitrary ellipsoids £(1,m) (with m > 1/2);
therefore, we show it in this general case.

Let 23 = |22]e?, where 0 € [—7, 7). Let ¢ = (¢1,92) : E — £(1,m) be the (unique
up to an automorphism of F) geodesic joining (0,t) to (21, 22).
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LEMMA 3.6.4. The following conditions are equivalent:

(i) |ml| < 7/2 and |z1[t™ > ||zo|m €™ —t™|;
(ii) @2 has no roots.
PRrROOF. (ii)=(i). The formulas for geodesics from Theorem 1.3.3 imply that there is a
geodesic ¢ : E — By joining (0,t™) to (z1, 25"
chosen so that ¢ and z; are in the image of (ﬁ;?
parts of complex lines lying in Bs, therefore, the lack of roots of o implies that

) such that @o has no roots and 2 is
™ The graphs of geodesics in By are the

[t 21| > |z5" — 17|
or equivalently
(3.6.2) > o] = (/0™ — 1.
Since 2§ = |zo|me!(M0+m2kT) for some k € Z, we deduce from (3.6.2) that there is an
l € Z such that
(3.6.3) |m (6 + 2km) — 2ir| < /2.

We know that @2 passes through ¢ and 23" and its (1/m)th power ((ﬁ%/m = (9) passes

through t and z5. Therefore,

(3.6.4) (tm™)Ym = (tm)/mei2sm/m) - for some s € Z and s/m € Z.
The interval [t", z5*] lies in the image of $3, so continuity of the argument implies that
(Zgn)l/m _ |22|e(i/m)(m9+m2kﬂ'72l7r+25ﬂ') _ |22|€i(9+57—;l27r)’

which is to equal |zz|e?. But that implies (s —[)/m € Z, so in view of (3.6.4) we have
(3.6.5) l/m € Z.
On the other hand, property (3.6.3) implies

|60 + 2km — 2l /m| < w/(2m) <,

which in view of (3.6.5) gives k = [/m, so |mf| < 7/2 and 25" = |zp|™e™™,

(1)=(ii). Put 22" := |29|™e™™?. (i) implies that for (0,t™), (21, 25") € By there is a
complex geodesic @ such that @, has no roots and @; = ¢;. Take V™ := ((pl,fﬁé/m)
such that (™)V/™ = t. We get (25")V/™ = |z]e™¥/™ = 2z,. So $'/™ = ¢ and this

completes the proof. m
Now we make some comments relating to Lemma 3.6.4 in the case m = 1/2.

REMARK 3.6.5. If ¢ is a complex geodesic in £(1,1/2) joining (0,%) to (21, z2) such that
2 has no zeros, then (1, cpé/Q) is a complex geodesic in By joining (0,¢'/2) to (21, 25/2)
(see Theorem 1.3.3), where the root z;/ % is chosen so that (as follows from the reasoning

in Lemma 3.6.4)
(3.6.6) Arg 25/2 € [-n/2,7/2).

Therefore, it is convenient to assume that the square root of a complex number is always
chosen so that (3.6.6) is satisfied.
Keeping this in mind we may reformulate Lemma 3.6.4 in the case m = 1/2 as follows:
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LEMMA 3.6.6. The following conditions are equivalent:

(1) #1/2]2] 2 [11/2 = 5,77

(ii) @9 has no roots.
Proof of Theorem 3.6.3. 1t is easy to verify that if ¢ = 0 or (0,¢) = (21, 22), then the
formulas hold. Assume that ¢ > 0 and (0,%) # (21, 22). In the first case, i.e. the geodesic
joining (0,%) to (21, 22) is such that yo has no zeros, the formula follows from the fact
that (¢1, Lpé/Q) is a geodesic in By and from Remark 3.6.5. Applying the formula for the
Green function in the unit ball, we get the desired result.

Consider now the remaining case. We may assume that z; > 0. Let ¢ be a complex
geodesic such that

(3.6.7) ©(0) = (0,t), (1) =(21,22), 7€ FE\{0}.

In this case @9 has a zero. From the formulas in Theorem 1.3.3 and (3.6.7), we get

a7 as(T — a2)(1 — @a1)
3.6.8 =0, - =t — _
( ) aq 3 (1018 %) 3 1_ aoT 21, (1 — 607')2 22,
(3.6.9) o = |ag|aa, 1+ |agl? = |ar]? + |ag|(1 + |az]?).

We may additionally assume that as < 0. Then as > 0 and oy = —t. Consequently, using
(3.6.8) and (3.6.9) we get

2121 + t7]?
2

Far(14i2yag), LTt m)/e)

6.1 1+t =
(36.10) 1+ (1 +1t7)?

The second equality is equivalent to
ag(14+t2/a3) = (z(1 +t7)%) /7 — t(1 /7 + 7).
Substituting this in (3.6.10), we get

|21 2|1 + t7]2 B
= —

(I+¢r)(t+7) 29(1 +t7)2,
or
T(t —tlz1)? — 22) = |7 (tz — 1) + | 21|
Taking modules and squaring we get
IT[41 — tzo|* — |72(2|21]2(1 — tRe zp) + |t — t|21]> — 22)?) + |21 |* = 0.
We are interested in a solution |7| > 0. There are at most two such |7|’s. Their number
depends on the sign of
A(z1,22) = 4|21 (1 — tRe 22)% + 4(1 — t Re 20) |21 |* |t — t]21|* — 2o
+ |t — t‘2’1|2 — ZQ|4 — 4‘1 — t22‘2‘21|4
= — 4z |*(tTm 22)? + 4|21 2(1 — tRe 20)|t — t]21]* — 20]® + |t — t|21|* — 22|*.
Now fix ¢ > 0 and consider all (21, 22) # (0,t) for which @2 has a root. We see that is
a domain and, moreover, after tedious calculations, A(z1,22) = (|t — 22]® — t2|21]%)? +
4]21|?(1—t2)|t—22—t|21|?|?, which is > 0 for all (21, z2) under consideration. Consequently,
because of the continuity of the Green function with one pole (fixed) for the domain
£(1,1/2), the Green function is given by the desired formula if only it is given by that
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formula for at least one possible point (21, z2) (here we need the continuity of the Green
function with one pole in £(1,1/2)). One may easily check that this is the case for
(21,22) = (0,0). m

Proof of Theorem 3.6.1. The theorem is a simple consequence of Remark 3.6.5, Lem-
ma 3.6.6, Theorems 3.6.2 and 3.6.3. =m

Let us close this section with some remarks on a set which to some extent tells us how
close the relation is between the Green function with many poles and the Green function
with one pole.

Below we deal with the upper and lower bound from the following formula (see
[Lel 89]):

(3.6.11) min{v(p)gp(p, 2) : p € P} > gp(P;v;z) > Z v(p)gp(p,z), z¢€ D.
peEP
We consider the case of the lower bound. Consider the sets (see [Lel 89])
E(D,Pv)i={z € D:gp(Piviz) = 3 vp)an(p.2) }-
peP
Clearly, P C £(D, P,v).
LEMMA 3.6.7. Let D and P be as above. Then for any p,v: P — (0,00),
E(D,P,v)=&E(D,P,pu).

PRrOOF. Take z € £(D,P,v), z ¢ P. In view of (3.6.11) we may assume that gp(p, z)
> —oo. Fix € > 0 so small that

(3612)  min{ 3 v(p)gn(p.2):0#Q C P,Q# P}

PEQ
> > v(p)gn(p, ) + min{v(p)/u(p) : p € P}ﬁ
peEP
Because of (1.7.1) there is ¢ € O(E, D) such that ©(0) = z, o' (P) N E # () and
(3.6.13)  gu(e ' (P)NE;%;0) < Y v(p)gp(p, 2) + min{v(p)/u(p) : p € Ple/#P.
peEP
First, in view of (3.6.11), (3.6.12) and Theorem 1.7.1 we get ¢~ '(p) N E # () for any

p € P. The left hand side in (3 6.13) equals

o WlogA=>0 Y #(M)log|)|

AeE,«MA)eP PEP \CE, cp()\) =p
= ZgE OE I/wil( )ﬂE;O)-
peP

Each summand in the last expression is at least v(p)gp(p,z), which gives, in view
of (3.6.13),

v(p _ ~ - )
NEP;QE(‘P Hp) N E, B (pyne: 0) = gr(¢ ™ (0) N E; Vp1()ne;: 0)
v(p)

) ip€E P}e/#P, pE P,

v(p)gp(p, =) + min {
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SO

9e(0™ (0) N B3 -1 (p)ne; 0) < u(p)gn(p, 2) + ¢ /#P.
Summing over p with p=1(p) N E # () we get (See (3.6.11))

> u®)gp(p:2) < gp(Prp,2) < > p(p)gn(p, 2) + &,
peP peEP

and, consequently, z € £(D, P, j1). =
Let us recall (see [Edi-Zwo 98] and [Com 97]):
PROPOSITION 3.6.8. Let #P > 2 and v = const. Then
EB,; P;v)=(LNB,)UP,
where L is the complex line containing P and L = () if such a line does not ewist.
As an immediate corollary from Proposition 3.6.8 and Lemma 3.6.7 we get

COROLLARY 3.6.9. Let P C B,,, #P > 2, n > 2. Then £B,, P,v) = PU(LNB,), where
L is the complex straight line containing P (L = 0 if such a line does not exist).

IV. Symmetry of the pluricomplex Green function

The Green function of a plane domain is symmetric (see e.g. [Ran 95]). In view of the
Lempert Theorem it is also the case for convex domains. Nevertheless, there are examples
of very regular domains for which the symmetry of the Green function fails to hold (see
e.g. [Bed-Dem 88]). There are, however, no general results describing when the Green
function is symmetric. In this chapter we deal with this problem. For pseudoconvex
complete Reinhardt domains we give some partial results. For complex ellipsoids we show
that the symmetry of the Green function is equivalent to the convexity of the ellipsoid
(see Theorem 4.1.1). For the proof of this result the formulas from Theorem 1.3.3 are
helpful. To confirm the conjecture that in the whole class of bounded pseudoconvex
complete Reinhardt domains the same equivalence holds (between the symmetry of the
Green function and the convexity of the domain) we disprove the symmetry of the Green
function in pseudoconvex complete Reinhardt domains having some analytic disk in the
boundary (see Proposition 4.3.1). In the same section we show that the Green function
for these domains may be “extremely” nonsymmetric. In contrast to this result in Section
4.2 we give some kind of “infinitesimal” symmetry of the Green function in some class of
domains (including bounded hyperconvex domains) for points lying close to each other
(see Corollary 4.2.4). In connection with this result we prove that in the same class of
domains “lim sup” in the definition of the Azukawa pseudometric may be replaced with
“lim” (Theorem 4.2.2). Additionally, we prove a result on continuity of the Azukawa
pseudometric (Theorem 4.2.1).

4.1. Symmetry of the Green function of complex ellipsoids. As mentioned earlier,
we completely solve the problem of symmetry of the Green function in the class of complex
ellipsoids.
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THEOREM 4.1.1. For a complex ellipsoid E(p) the following conditions are equivalent:

(i) for any b € OE(p), A1, A2 € E we have Eg(p)(Alb, A2b) = m(Aq, A2),
(ii) for any b € 0E(p), A € E we have ge()(Ab,0) = gg(,)(0, Ab),
(iii) ge(p) is symmetric,
(iv) £(p) convex.

REMARK 4.1.2. Theorem 4.1.1 shows that the symmetry of the Green function is a rare
phenomenon. Nonconvex ellipsoids turn out to be examples of very “regular” domains
failing to have the symmetry property for the pluricomplex Green function (for other
examples see e.g. [Bed-Dem 88], [Pol 93], and [Jar-Pfl 93]). Moreover, our result and the
methods used in the proof suggest that in the class of bounded pseudoconvex complete
Reinhardt domains, or even, in the class of bounded pseudoconvex balanced domains,
the symmetry of the Green function is equivalent to the convexity of the domain.

First, we prove the following lemma, which is part of Exercise 8.1, page 290 in [Jar-
Pfl 93];

LEMMA 4.1.3. Let D be a domain in C*. Let ¢ € O(E,D). Assume that for some
)\07>\1 S E7 >\0 # )\17
(4.1.1) 9p(p(Ao); p(A1)) = m (Ao, Ar)-
Then for any X € E,
PRrOOF. Define N
aA) =222 NeE.

1—XoA
We obviously have a o a = idg. Let w : E 3 X — gp(p(Xo), p(a(X))) € [0,1). Clearly,
u(0) = 0, logu € SH(E). Moreover,

u(A) < kp (M), (a(N))) < m(Ao, a(N) = m(0,3) = ||

So

v(A) :==logu(X) —log|A\| € SH(E) and v <0.
But, in view of (4.1.1) and the definition of u, v(a(A1)) = 0, so the maximum principle
implies that v = 0, and u(\) = |\| for A € E. Finally,

9p(#(20); £(A) = gp (¢ (ho); p(a(a(X)))) = u(a(N)) = [a(N)] = m(Ao, A). =

COROLLARY 4.1.4. Let D be a bounded pseudoconvex balanced domain in C™, b € 0D,
Ao € E, A\g # 0. Then the following conditions are equivalent:

(1) gD()‘Ob7 0) = 99(07 )\Ob)7
(ii) gp(Aob, Ab) = k35 (Aob, Ab) = m( Ao, A) for any A € E.
Proor. This follows from gp(0, Aob) = %E(O,)\ob) = |Aol|, the inequality gp < 7%’{) and

Lemma 4.1.3. =

Before the proof of the main theorem let us collect some auxiliary results, which are
similar to that in [Pfl-Zwo 96] (Lemmas 8 and 11) but are adapted to our situation.
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LEMMA 4.1.5. Let ¢ : E — E(p) be a %g(p) -geodesic for (p(A1), p(A2)). Assume that
©i(A) = Bj(NY;(A), ¢ #0, j=1,...,n,

where ¥; never vanishes on E and Bj is a Blaschke product (if ¢; never vanishes, then
B;:=1). Let 1 < k <n and tiy1,...,tn be positive natural numbers. Put g; = p;,
j=1,...,kand q; :=t;p;, j =k+1,...,n. Define
) = =(p1(A), ..o, 0(A), Y1 (A)y o, Y (N),
) =1, k() (a0 (@ (W) V), A€ E.
Then
e if 1 is not constant, then n is a Eg(p)—geodesic for (n(A1),n(A2)),
e if p is not constant, then u is a Eg(q)—geodesic for (A1), p(A2)).

ProOOF. By Theorem 1.3.3 each B; has at most one zero and ¢ extends continuously
to E. We have hon()\) < 1 for A € E (h(z) := 2?21 |z;|?Pi, z € C™). The maximum
principle for subharmonic functions implies that n(E) C £(p) or n(E) C E(p).

If n were not a %g(p)—geodesic, then there would exist 77 € O(E,&(p)) such that
A(E) CC £(p) and (A1) = n(A), 7(Ae) = n(Ae). But setting

M= (s, ks Brp1Te+1, - - -, Bnlln)

we find that 7(E) CC E(p) and (M) = (A1) and 7(A2) = ¢(A2), contrary to the fact
that ¢ is a kg(,)-geodesic.

With the second part of the lemma we proceed similarly. Clearly u(E) C E(q). If p
were not a kg (q)-geodesic, then there would exist 1 € O(E, £(q)) such that (E£) CC £(q)
and fi(A1) = p(A1), p(A2) = p(A2). But setting

~

o= (ﬁlv s 7/jk7 AR (/jk+1)tk+17' ) (ﬁn)tn)a

we see that [i(E) CC €(p) and (A1) = n(A1) and pi(A2) = n(A2), contradicting the fact
that 1 is a kg(,)-geodesic. =

Lemma 4.1.5 may be proved without the use of the results of [Edi 95] (i.e. the formulas
from Theorem 1.3.3). But in that case we have to proceed a little more delicately. For
the details consult the proof of Lemma 8 in [Pfl-Zwo 96].

Below we present a special two-dimensional version of a result, which, to some extent,
is analogous to Lemma 11 in [Pfl-Zwo 96].

LEMMA 4.1.6. Let (2,0), (2,w) be distinct elements of £(p) C C2. Then

N ul
kg(p)((za0)7 (Zaw>) = (1 _ |Z‘2p1)1/(2p2)

and the mapping

E 3 XN (2, (1—[2]*)V/22))) € £(p)
is a %g(p)—geodesic for ((2,0), (z,w)).
PROOF. Take any holomorphic mapping ¢ : E — £(p) such that ¢(0) = (z,0) and ¥ (t) =
(2,w), t > 0. We may assume that 1 is continuous on E. Write 19(A) = (¢1 (), A¥tha (X)),
where 05(0) # 0, k > 1. Put ¢ := (¢1,13). Clearly |1 (A)[2P" + [1h2(N)[22 < 1 for A € OE,
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s0 |1h1(A)|2* + |¢ha(N)|?2 < 1 for A € JE. The maximum principle for subharmonic

functions implies N
[P+ [ (V)PP <1, AeE.

In particular, putting A := ¢, we have
o 4 2y
t2p2k -
So we obtain
|w]

k
P22 ey

This completes the proof. m

In connection with the last lemma observe that for any (z,u), (z,v) € £(p) C C?,

~, U v
ke (2, 0), (2,v)) < m<(1 — |2[2p) 1/ G@e2) " (1 — |Z|2p1)1/(2p2>>'

It turns out that the sharp inequality above has far reaching consequences.

LEMMA 4.1.7. Let (z,u), (z,v) € E(p) C C%. Assume that

~. U v

kg(p)((z,u)? (Z,U)) < m((l o ‘Z|2p1)1/(2p2) ) (1 _ |Z|2p1)l/(2p2) > :
Then there are b € 0E(p) and A1, A2 € E such that
(4.1.2) KE (py (M1b, A2b) < m(A1, o).
PROOF. Define

b= (b1, bo) = (2, (1 — |2[*P1)/ P2y € O (p).

If we had equality in (4.1.2) for any A1, A2 € E, then the mapping £ 5 A = b € E(p)
would be a kg p)-geodesic for any pair of points from the image. But due to Lemma 4.1.5,

so is the mapping (b1, bo\) = (2,b2\). This, however, contradicts the assumption of the
lemma. =

Proof of Theorem 4.1.1. It is enough to prove the theorem in dimension two because by
the contractivity of kp we have Ez‘(m,pz) = Ez(p)|(g(p17p2)><{0}n—2)2.

By Proposition 1.1.2, Lempert Theorem, Corollary 4.1.4, and Lemma 4.1.7 it is suf-
ficient to find, for any nonconvex ellipsoid £(p), points (z, u), (z,v) € £(p) such that

~. U v
(4.1.3) kg(p)((&u)’ (z,v)) < m<(1 )@ (1= |z2p1)1/(21’2))’
We consider two cases:
CasE (I): p1,p2 < 1/2. For t1,t2 € (0,1) define, on E,
P(A)

t 1/(2p1) " t 1/(2p2) N
= 11—t A)/P 14 taA) /P2 ).
(((t2+t1)(1+t1t2)) ( 1Y) ’ <(t2+t1)(1+t1t2)> 1+ 03) )

Notice that ¢ is exactly of one of the forms from Theorem 1.3.3 (with

t i 1/(2pj)
o
J (tz + tl)(l + tltg) ’

J=1,2, a1 =t1, ag = —ta, a9 = 0). One may easily verify that ¢(E) C E(p).
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The numbers ¢; and ¢ and consequently ¢ will be fixed later. Our aim is to find ¢

(or equivalently t1,t5), Ay = 2 + iy € E, Ao = A\; (with 2,5 > 0) such that
(4.1.4) p1(M) = p1(A2) =t 2,

(4.1.5) w:i=pa(M) = p(ho) =7, Arg(pa(M)) = Arg(\1) € (0,7/2),
(4.1.6) [ul > Al

CREEER

In fact, assuming that the conditions (4.1.4)—(4.1.6) are satisfied, by elementary properties
of m and the definition of k*, we have (remember \; = \3)

u v
m((l — |z|2P1) 1/ (2p2)" (1 — |Z|2p1>1/(2p2)> > m(A1, Az)

> kg ) (9 (M), 0(02) = kg ((2,0), (2,0)),
which gives (4.1.3) and finishes the proof (in Case (I)).
To get properties (4.1.4) and (4.1.5) it is enough to have

1 L1y

4.1.7 — arct =
( ) o arctg 7— Py

y 1 toy
418 te L — ~ arct — ae(0,1/2)),
(1.1.8) et L = Lonctg T2 (=0 e (0,7/2)
which gives
(4.1.9) y=xtga =:asz,

y—xtg(pea) z(tga —tg(paa)) x’

t

(4.1.11) t = o) @

r(tga+tg(pim)) oz
Let us recall the restrictions imposed on the numbers involved:

x+iyeE, x,y>0, t;,t2€(0,1), aec(0,7/2).

Therefore, in particular, < 1/4/1 + tg? a.
We impose on ty the condition to < 1. Substituting z = 1/+4/1 + tg? a in (4.1.10) we

have
tg(pa)V1+tg”a _tgsVi+t tg® a
tga — tg(p2ar) tga—tg g
since py < 1/2. This implies that for z < 1/4/1 + tg2 a close enough, t; given by (4.1.10)
is smaller than 1.
But we also want t; < 1. Utilizing formula (4.1.11), after substituting as previously

r=1/y/1+tg? a we have

th(plw) tga < tga + 2tg(pim).

:]_7

The last inequality is satisfied for a > 0 small enough, so for @ > 0 small enough t; < 1

for x < 1/4/1 + tg% a close enough.

We have proved so far the existence of z,y,t1,ts such that (4.1.7) and (4.1.8) are
satisfied (with @ > 0 small enough). In other words, to complete that case it is sufficient
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to prove that (4.1.6) holds for o > 0 small enough, and = < 1/4/1 + tg% a close enough.
More precisely, we want to show that (see (4.1.4)—(4.1.6))

(a1 + 22)® + 83y°)
(1- _(t1+t2)t(21+t_1t2) (1 —t12)2 + t3y2))
which is equivalent to (use (4.1.9)—(4.1.11))

> (2 + )P,

ajla
a1((1+ a2)* + a3a3) > & (1 + a3)> (<a1 +az) (1 " x) —az((1—ar)’ + >>

Equivalently,
0 > 2272 (1 + a2)P* (a1 + 2a1a2 — a3ay — aaqa?)
+ 22272(1 4 a2)P2ayas(ay + az) — a1 ((1 + a)? + a2a?) =: p(x).

Our aim is to prove that if « is sufficiently small then for x < 1/4/1 + a3 close enough,
the above inequality holds.

One may easily verify that 1(1/y/1 + a3) = 0. It is sufficient to show that

1
w’(i) >0
V1+a3
if a is small enough. But this is equivalent to
p2(ar + 2a1as — adas — alagal) + (p2 — 1)ajas(ar + az)(1 4 a3) > 0,
or
2., 22 2
p2((1+a2)” + aza3) > az(a1 + a2)(1 + a3).

Substituting the formulas (4.1.9)—(4.1.11) we get

tg® o tg? atg?(p2a)
b2 ( (tga —tg(p2))?  (tga — tg(pza))2>
tg(p2ar) tg a(tg(p2a) + tg(pim))

tga — tg(paa) (tga + tg(pin))(tg o — tg(pee)) (1+tg”a)

or equivalently
by 18 1+ tg?(paar) _ tg(pec) + tg(pim)
1+tga  tg(paa) tga + tg(p1m)

and, finally,

Ble) := p2sin(20)(tg a + tg(p17m)) — sin(2p2av) (tg(p20) + tg(p1m)) > 0.
Note that (0 < py < 1/2)
B(0) = B'(0) =0, B"(0) =4p2(1 —p2) >0,
which implies that 8(«) > 0 for @ > 0 small enough. This completes the proof.
CaAsE (II): p; < 1/2 < po. There is an n € N (n > 2) such that ¢ := (1/n)ps < 1/2

(g1 := p1). Then by the proof of Case (I) there are (z,u), (2,v) € E(q) such that (see
(4.1.3))

~ U v
(4.1.12) ke ((z,u), (2,0)) < m((l TRy /eR) (1= |22q1)1/(2q2)).
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Let ¢ be a %g(q)—geodesic for ((z,u), (z,v)) with ¢(A1) = (z,u) and p(A2) = (z,v) and let
Bs be the Blaschke product associated with ¢o. We have ¢1 # z (this is a consequence
of the Schwarz—Pick Lemma). By Lemma 4.1.5,

() = <s01()\), (gig;)l/n> \€E,

is a %g(p)—geodesic for (u(A1), p(A2)) :== ((2,u), (z,0)). It is enough to show that

~ ~ ~ u v
(4.1.13) ke ((2,1), (2,0)) < m<(1 T g |z|2P1)1/(2P2)>‘
Consider the mapping
b E 3 XA (2, A(1— [2]P)V/CP)) € £(p).

If (4.1.13) did not hold, then we would have equality there. Then v is a kg -geodesic
for ((z,u),(2,0)) = (¥(X3),9(A1)) with some A3z, Ay € E. Consequently, the map-
ping ¥(A (z, ( 2(A))"Ba()\)) is a kg(q) -geodesic for ((z,u), (z,v)) (because Y(Ag) =

) =
e(A1) = (z,u), (A1) = o(X2) = (2,0), m(A1, A2) = m(Xs, Ag) and ¢ is a kg(q)—geodesic
for ((z,u), (z,v))). This, however, contradicts the fact that no such geodesic has constant
first component (remember (4.1.13) and apply the Schwarz—Pick Lemma)—one may alter-
natively exclude that case using the description of geodesics from Theorem 1.3.3; namely,
no geodesic has components with more than one zero (counted with multiplicities), which
happens here. This finishes Case (II) and the proof of Theorem 4.1.1. m

4.2. Infinitesimal symmetry of the Green function. We restrict ourselves to the
problem of symmetry of the Green function for points close to each other. This turns
out to be closely related to the problem of continuity of the Green function (that is the
reason why all results in this chapter may be applied in bounded hyperconvex domains).
We also examine in this connection the problem when “limsup” in the definition of the
Azukawa pseudometric may be replaced with “lim”. It turns out that this is always the
case when D is a bounded hyperconvex domain. On the other hand one cannot extend
this result to the class of bounded pseudoconvex domains (see Example 4.2.10). Some
results on continuity of the Azukawa pseudometric are also given. The results in this
section come from [Zwo 98c].

Below we list the main results of this section.

For fixed w € D we often consider the following number:

:= lim inf .
“(w) = Imjafan(v, )
It is easy to see that for any bounded D we have e(w) > —oo for any w € D. As we shall

see later if e(w) > —oo then gp(w, z) > —oo for any z € D, z # w.
Our aim is to prove the continuity of the Azukawa pseudometric.

THEOREM 4.2.1. Let D be a domain such that e(w) > —oo for any w € D and gp is a
continuous function. Then Ap is a continuous function (on D x C™).

Note that bounded hyperconvex domains fulfill the assumptions of Theorem 4.2.1 (as
well as the assumptions of all theorems from this section)—see Theorem 1.6.1.
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In many cases we can replace “lim sup” in the definition of the Azukawa pseudometric
with “lim” as the next result shows.

THEOREM 4.2.2. Let w € D, where D is a domain in C"™ such that gp(w,-) is continuous
and e(w) > —oo. Then

Ap(w; X) = Tim 200 A oy pn

0#£A—0 By ’
Let us underline once more that we cannot generalize Theorem 4.2.2 to all domains—
a counterexample, given in Example 4.2.10, is a bounded pseudoconvex domain in C2.
However, for many domains a sharper version of Theorem 4.2.2 remains true.

COROLLARY 4.2.3. Let D be a domain such that gp is continuous and e(w) > —oo for
any w € D. Then for any w € D, X € C" with || X| =1,

~ ! 1
Ap(w; X) = lim 7gp(w,w )

’ ” / il
1 oaplt ’ o w —w ||'lU —w
w!, w’ —w, w Fw', Ta’ w0 —X

As a conclusion of the above results it turns out that the Green function is “almost”
symmetri