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CHAPTER 1

Holomorphically invariant objects

1.1. Holomorphically contractible families of functions

Let us begin with the following definition of a holomorphically contractible family (cf.
[J-P 1993, §4.1]).
DEFINITION 1.1.1. A family (d¢)¢g of functions dg : G x G — Ry (), where G runs over
all domains G C C™ (with arbitrary n € N), is said to be holomorphically contractible if
the following two conditions are satisfied:

(A) for the unit disc £ C C we have

z—a
, a,z€F

1—az

dE(CL, Z) = mE(a’ Z) —

(the function mp : E x E — [0,1) is called the Mébius distance),
(B) for any domains G C C", D C C™, every holomorphic mapping F': G — D is a
contraction with respect to dg and dp, i.e.

(1.1.1) dp(F(a),F(z)) <dg(a,z), a,z€Q@.

Notice that there is also another version of the definition of the holomorphically
invariant family in which the normalization condition (A) is replaced by the condition

(A) dg = pg, where
11 1+mg

LR gy

is the Poincaré distance.

Both definitions are obviously equivalent in the sense that (dg )¢ satisfies (A, B) iff the
family (tanh™' dg)q satisfies (A’, B). In our opinion the normalization condition (A) is
more handy in calculations.

The following contractible families seem to be the most important.

e Mébius pseudodistance:

cgla,z) := sup{mg(f(a), f(2)): f € O(G, E)}
= sup{|f(2)| : f € O(G, E), f(a) =0}, (a,2) € G xG;

the function c¢¢ := tanh™! c¢, is called the Carathéodory pseudodistance.
M Ay ={x€Ad:z2>0} (ACR), AT = (A;1)", eg. Ry = [0,+00), Zy = {0,1,...},
nZL.
+5 &+

(6]



1.1. Holomorphically contractible families of functions 7

e Higher order Mébius function:
m(Gk)(a,z) =sup{|f(z)|"*: f e O(G,E),ord, f >k}, (a,2) e GxG, keN,
where ord, f denotes the order of zero of f at a.
e Pluricomplex Green function:
ga(a,z) :==sup{u(z) : u: G — [0,1),logu € PSH(G),

ElC’:C’(u,a)>O vwEG : U(IU) < OHUJ - ClH}, (CL,Z) €GxG,
where PSH(G) denotes the family of all functions plurisubharmonic on G (and || ||
is the Euclidean norm in C") (?).

e Lempert function:

ki(a, 2) == inf{mg(\, p) : \,p € E, Jocom,a) s p(N) = a, o(u) = 2}
= inf{p € [0,1): Jocom,c) : ¢(0) = a, o(p) = 2z}, (a,2) € G xG.
It is well known that
¢t =mg <mG’ < ge <k,

and for any holomorphically contractible family (d¢)s we have
(1.1.2) ¢t < dg < kg,
i.e. the Mobius family is minimal and the Lempert family is maximal.

Put k¢ := tanh™* kZ. The pseudodistance

kg :=sup{d:d: G x G — R, is a pseudodistance with d < Eg}

is called the Kobayashi pseudodistance; cf. [J-P 1993, Ch. 3]|. Observe that (kg )¢ satisfies
(A, B).

Notice that one can consider conditions weaker than (B), for instance:

(B’) condition (1.1.1) holds for every injective holomorphic mapping F' : G — D;
(B”) condition (1.1.1) holds for every biholomorphic mapping F : G — D.

For example:
e The family (H(,)g of Hahn functions
H¢(a, z) := inf{mp(\, 1) : Jpcom,q) : ¢ is injective, o(A) = a, p(p) = 2}
=inf{p € [0,1): Iocom,q) : ¢ is injective, p(0) = a, p(u) = 2z}, (a,2) € G x G,

satisfies (A, B). Obviously, k% < HZ.
e The family (bg)c of Bergman pseudodistances (see §3.5) satisfies (A, B”).

REMARK 1.1.2. The notion of the holomorphically contractible family (dg)g (Definition
1.1.1) may be extended to the case where G runs through all connected complex man-
ifolds, complex analytic sets, or even complex spaces. In particular, one can define the
Mobius pseudodistance c},, the Lempert function 7%}*\/[ (defined to be 1 for pairs of points

(?) The function gg : G x G — [0,1) is upper semicontinuous (cf. [Jar-Pfl 1995b]). For
relations between the pluricomplex and classical Green functions in the unit ball see [Car 1997].
For a different pluricomplex Green function see [Ceg 1995], [Edi-Zwo 1998a).
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for which there is no analytic disc passing through them), and the Kobayashi pseudodis-
tance kjs for an arbitrary connected complex analytic set M. The following elementary
example points out some new problems appearing in this case.

Let M := {(z,w) € E? : 22 = w3} be the Neil parabola. M is a connected one-
dimensional analytic subset of £? with Reg M = M, = M \ {(0,0)} (®). The set M has
a global bijective holomorphic parametrization

E>X25 (A% 0% e M.

e The mapping ¢ := p~! is holomorphic on M, and continuous on M. Note that
q(z,w) = z/w, (z,w) € M., q(0,0) = 0.
e The mapping q|ys, : M. — E. is biholomorphic. Thus
C}kw* ((a’ b)’ (zv w)) = mEg, (q(a’ b)» q(z, w)) = mE(q(a7 b)7 q(Z’ w))>
kir ((a.0), (z,w)) = kg, (a(a, ), q(z,w)),  (a,b), (z,w) € M.
e For any ¢ € O(E, M) there exists a v € O(E, E) such that ¢ = po. Hence
E}‘V[((a,b), (z,w)) =mpg(q(a,b),q(z,w)), (a,b),(z,w) € M.

e For any f € O(M,E) the holomorphic function h := fop : E — E satisfies
h'(0) = 0. Conversely, for any h € O(F, E) with h'(0) = 0 the function f :=hogq
is holomorphic on M. Hence
ey ((a,b), (z,w)) = sup{|h(q(z,w))| : h € O(E, E), h(q(a,b)) =0, h'(0) = 0},

(a,b),(z,w) € M.

It is a little surprising that, despite the elementary description, | 7 | an effective formula
for ¢}, is not known. One can prove that for any \g € E,, we have

sup{|h| : h € O(E, E), h(\o) = 0, 1/ (0) = 0}

= sup{|B| : B is a Blaschke product of order < 3, B(\o) = 0, B’(0) = 0}.

1.2. Holomorphically contractible families of pseudometrics

Parallel to the category of holomorphically contractible families of functions (in the sense
of Definition 1.1.1) one studies holomorphically contractible families of pseudometrics
(cf. [J-P 1993, §4.1]).

DEFINITION 1.2.1. A family (§¢)g of C-pseudometrics 6 : G x C* — R, G C C™,
da(a; A X) = |Ndg(a; X), a€eG,XeC" NeC,

where G runs over all domains G C C", is said to be holomorphically contractible if the
following two conditions are satisfied:

X
(A) dp(a; X) = yp(a; X) = % a€ B, XeC,

(®) Reg M denotes the set of all regular points of M, wheras A, := A\ {0} (A Cc C"),
A} = (A", eg. Ey, Cy, (Z)+, CL.
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(B) for any domains G C C", D C C™ and for every holomorphic mapping F': G — D
we have

(1.2.3) dp(F(a); F'(a)(X)) < b6g(a; X), (a,X)e G xC".

The following holomorphically contractible families of pseudometrics correspond to
the holomorphically contractible families of functions from §1.1.

o Carathéodory—Reiffen pseudometric:
ve(a; X) i= sup{|f'(a)(X)| : f € O(G, E), f(a) =0}, (a.X) € xC

we have

1
3 X li X LTI Y
'YG(a; ) C. BH)\n—>O |)\| (a atA ) 22 —a ||Z — Z”H,
(0, X) € G x C", | X]| = 1.

e Higher order Reiffen pseudometric:
. 1 1/k
i x) = s { | 79 @)

: feO(G,E),ord, f > k},
(a,X) e GxC" keN;
we have

"), 1 m® n
Ve (a; X) = CBIJLOW (a,a+AX), (a,X)€GxC"

and if G is biholomorphic to a bounded domain, then
(k) (1 u
Y a; X) = lim mg (¢, 27)

"
2,2 —a ||Z —Z H
o

(a,X) € G xC", ||X] = 1.

o Azukawa pseudometric:

Ag(a; X) := limsup —

gg(a a+2X), (a,X)eGxC™
(C*B)\—>O‘ |

if G is a bounded hyperconvex domain, then

Y
Agla:X) = 1m  96ELED e xen X =1

/ 1"
22" —a ||Z -z ||
'—z

(cf. [Zwo 2000c, Corollary 4.4]).
o Kobayashi-Royden pseudometric:

sg(a; X) :=inf{a > 0:J,come) : 0(0) =a, ap’(0) = X}, (a,X)eGxC™
if G is taut, then

1 n
ne(a; X) = Clalg\naom cgla,a+2X), (a,X)eGxC

(cf. [Pan 1994]).
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It is well known that vg = 78 ) < 'yg ) < Ag < »g. Moreover, for any holomorphically
contractible family of pseudometrics (dg)g we have v < 0 < s for any G. Notice
that (cf. [J-P 1993], [Jar-Pfl 1995b]):

e 7 is Lipschitz continuous;

° 'ng) is upper semicontinuous; if yg(a; X) > 0, (a,X) € G x (C™),, then vg) is

continuous (cf. [Nik 2000]); in particular, if G is bounded, then 78@ ) is continuous;

e A is upper semicontinuous;

e 3 is upper semicontinuous; if G is taut, then s is continuous.

Similarly to the case of contractible functions, one can consider conditions weaker
than (B), for example:

(B’) condition (1.2.3) holds for every injective holomorphic mapping F' : G — D;

(B”) condition (1.2.3) holds for every biholomorphic mapping F : G — D.

For example:
e The family (hg)g of Hahn pseudometrics
ha(a; X) :==inf{a > 0: J,cowr,q) : ¢ is injective, p(0) = a, ay'(0) = X},
(a,X) € GxC",
satisfies (A, B’). Obviously, ¢ < hg.
e The families of Wu and Bergman pseudometrics satisfy (A, B”) (see §§1.2.6, 3.5).

REMARK 1.2.2. (a) If G C C, then kj, = H}, iff »¢ = he iff G is simply connected.
(b) ki = H{, and g = hg for any domain G C C" with n > 3 (cf. [Ove 1995]).
(c) Let Dy, Dy C C be domains. Then (cf. [JarW 2000], [JarW 2001]):
o if at least one of the domains D1, D is simply connected or biholomorphic to
Cs, then hp,xp, = »p,xp, and H}, , p = kz,lxDQ;

e otherwise hp,xp, # #p,xp, and H}, . p # Kk} . p,; see also [Choi 1998].

1.2.1. Inner pseudodistances. For a domain G C C" let D(G) be the family of all
pseudodistances g : G x G — R, such that

Vaeea Imrso: 0(z,w) < M|z —w|, =z,wée€B(a,r)CGqG,

where B(a, r) denotes the Euclidean ball with center at a and radius r. Notice that for any
holomorphically contractible family of pseudodistances (dg)e (with the normalization
condition (A) or (A’)), we have dg € D(G) for any G. Let F be one of the following
three families of curves in C™:

e F;, := the family of all curves,
e F, := the family of all rectifiable curves (in the Euclidean sense),
e F;. := the family of all piecewise C'-curves.

For any ¢ € D(G) we define the inner pseudodistance for o with respect to the family F:
o7 (a,2) == inf{L,(a):a:[0,1] = G, a(0) =a, a(l) =z, a € F}, (a,2) € G x G,
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where L,(«) is the p-length of c:
N
Ly(a) == sup{ ola(tj—1),at;):0=tg<t1 <---<ty=1, N arbitrary}.
j=1
Note that:
» 0" €D(G),
o 0" >0,
o L,7(a) = L,(a) for any o € F,
. (gg)]: = Q}— for F C G,
[ ]
[ ]

(") =0,
o” = (tanh )7
We put:

e o' := g7 (cf. [Rin 1961]),
o o' := 0% (cf. [J-P 1993]),
e o' := g%ic (cf. [Ven 1989)).
Note that o < o™ < o' < ¢%. We say that o is inner if o = ¢ (in particular, o = o' =
o' = 0%°); see also [Bar 1995].
In particular, we introduce the inner Carathéodory pseudodistance (c)c. It is known
that:
e ci, = c& for any G
o ¢ =cl, = ¢l if G is biholomorphic to a bounded domain or G C C!; notice that
in the general case the equality cigf = cév remains still open;
e ¢! # ¢; for instance c4 # ¢4 if A C C is an annulus (cf. [J-P 1993, Example 2.5.7],
see also [Jar-Pfl 1993a]);
* My =pp =P
On the other hand, the Kobayashi pseudodistance is obviously inner, i.e. kg = kI =
ki, = k% for any G (cf. [J-P 1993, Proposition 3.3.1]).
If (d¢)¢ is a holomorphically contractible family of pseudodistances (with the normal-
ization condition (A) or (A’)), then the families (d) ¢, (d4)a, (d%)a are holomorphically
contractible with the normalization condition (A’).

1.2.2. Integrated forms. The idea of inner pseudodistances is strictly connected with
the idea of integrated forms from differential geometry. More precisely, for a domain
G C C™, let M(G,K) (K € {R,C}) denote the space of all K-pseudometrics

n:GxC" =Ry, nla;tX)=tln(e; X), (a,X)eGxC" tekK, (%)
such that

Vaea Inmr>o0 i n(2 X) < M| X, z€B(a,r)CG, X €C"

(*) Notice that so far we have used only C-pseudometrics (cf. Definition 1.2.1).
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If n € M(G,K) is Borel measurable (e.g. € {yg,yg),Ag,%G}), then we define the
integrated form of n:

(§m)(a,2) :=inf{Ly(a) : a:[0,1] = G, a(0) =a, (1) = 2, « € Fie}, a,z€G,

where L, () is the 7-length of a:

Ly(a) = {n(a(®); o/ (t) dt.
0

One can easily prove that {7 € D(G) and ({7)"® = {7, i.e. {7 is always inner.

1.2.3. Buseman pseudometric. Let h: C" — R, be such that:

e h(AX) = |M\h(X), X eC", A €C,
e there exists a constant M > 0 for which h(X) < M| X]||, X € C".

Define the Buseman seminorm for h:

~

h :=sup{q : q is a C-seminorm, ¢ < h};

note that & is a C-seminorm (in particular, % is continuous) and h < h (cf. [J-P 1993,

§4.3]).
If n € M(G,C) (cf. §1.2.2), then we define the Buseman pseudometric associated to n:

n(a; X) = (n(a; )N(X), (a,X)€GxC"

(cf. [J-P 1993, §4.3]). In particular, we define the Kobayashi—Buseman pseudometric 5¢.
Recall that:

e if 7 is upper semicontinuous, then so is 7;
e if (0¢)¢ is a holomorphically contractible family of pseudometrics, then so is (0¢)¢-

REMARK 1.2.3. (a) One can easily prove that if 7 is a continuous metric (n(a; X) > 0,
(a,X) € G x (C"),), then so is 7] (cf. the proof of Proposition 1.2.13(a)).

(b) The following example (due to W. Jarnicki) shows that if  is a continuous pseudo-
metric, then 7) need not be continuous. Let 7 : C2 x C? — R, n(z; X) := max{0, | Xa| —
llz]| | X1]}. Then 7 is a continuous pseudometric. Observe that 7(0; X) = | X2| = 7(0; X)
and 7)(z;-) = 0 for z # 0 (in particular, 7 is not continuous). Indeed, for z # 0 we have
7(z; (X1,0)) < n(2;(X1,0)) =0 and

1(z; (0, X2)) <7(z; (0,2X2))

<0z (Xo/ 2], X2)) + 0z (= X2/[|2]], X2))
< n(z; (Xo/ 2], X2)

)+ 0z (=X2/2], X2)) = 0.
1.2.4. Derivatives. It is natural to conjecture that

(x) for any ¢ € D(G) (cf. §1.2.1) there exists a Borel measurable pseudometric 7 =
n(e) € M(G,K) such that ¢ = {7 and if (dg)c is a holomorphically con-
tractible family of pseudodistances, then (1(dg))¢ is a contractible family of K-
pseudometrics.
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REMARK 1.2.4. (a) Recall that kg = { s = {2, where 3 is the Kobayashi-Buseman
pseudometric (§1.2.3); cf. [Ven 1996] for a generalization of the formula k¢ = s to the
case of analytic spaces. Thus, we can take 1(kg) := ¢ or n(kg) = »q.

(b) Notice that in general s is not determined by k¢; there exists a pseudoconvex
Hartogs domain G C C? such that kg = 0 and s # 0 (cf. [J-P 1993, Example 3.5.10]).

(c) It is known that the problem () has a positive solution in the category of so-called
C'-pseudodistances, i.e. those pseudodistances ¢ € D(G) for which the limit

(Do)(a; X) = c*i%o ﬁ o(z,z+ AY)
Y—X

exists for all (a, X) € G x C" and the function
G xC" >3 (a,X)— (Do)(a; X)

is continuous. If p is a C'-pseudodistance, then

Do X)= g L5

i (a,X) e GxC" | X||=1;
o' = ¢ = (Do), o' is a C'-pseudodistance, and Do’ = Do (cf. [J-P 1993, Proposi-
tion 4.3.9]).

In particular, since cg is a C'-pseudodistance, we have n(cg) = n(ch) = -

(d) M. Kobayashi proved in [KobM 2000] that if G is taut, then kg is a C'-pseudo-
distance.

In the case K = C the problem (x) seems to be open (cf. [J-P 1993, remark after
Theorem 4.3.10]). Surprisingly, in the case K = R, (*) has the following complete solution.
For ¢ € D(G) define

1
(Do)(a; X) :=limsup — o(a,a +tX), (a,X) e GxC"
R.2t—0 ‘t|
cf. [Ven 1989]. We say that Dy is the weak derivative of o. One can prove that:
e Do € M(G,R), Dy is Borel measurable.

1

(Do)(a; X) = limsup mg(a,athY), (a,X) e GxC",
R.2t—0
Vo
. o\a,z n
Oo)(eX) = tmswp £25 (@x)eGxCn x| =1

T—_— —
lz—all

e L,(a) = Lp,(a) for any piecewise C'-curve o : [0,1] — G. In particular, ¢ =
§(Do).

e If (dg)¢ is a holomorphically contractible family of pseudodistances, then (Ddg)a
is a holomorphically contractible family of R-pseudometrics.

° S(Dkg) = kq.
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1.2.5. Complex geodesics. Recall that a holomorphic mapping ¢ : E — G (G is
a domain in C") is called a complez geodesic if c&(p(N), p(N")) = mg(N,\’) for any
N, N e E.

Let (dg)c be a holomorphically contractible family of functions. Fix a domain
G C C" and let 2{, 2] € G, z{ # z]. We say that ¢ € O(F,G) is a dg-geodesic for
(24, 2) if there exist A\, \[j € E such that z{ = ¢(X\}), 20 = ©(\)), and dg(2), ) =
me(A,Ay). If ¢ is a dg-geodesic for (2, z2(), then dg(z),z)) = Eg(zé,z{)’) Obvi-
ously, any complex geodesic is a cj;,-geodesic for (2, z;y) with arbitrary z(, zj € ¢(E),
zH # 2.

Let (6g)c be a holomorphically contractible family of pseudometrics. Let zp € G,
Xo € C?. We say that ¢ € O(F,G) is a dg-geodesic for (zo, Xo) if there exist A\ € E,
ag € C such that zp = ¢(N\g), Xo = ap¥’'(No), and dg(20; Xo) = YE(Ao;p). If ¢ is a
da-geodesic for (zg, Xo), then d¢(z0; Xo) = 2 (z0; Xo).

ProposITION 1.2.5 ([J-P 1993, Proposition 8.1.3]). For a mapping ¢ € O(E,QG) the
following conditions are equivalent:

(1) Ingagem g ca(@(Ag), (X)) = me(Xo, Ag), i-e. ¢ is a complex ci;-geodesic
Jor (p(X0), #(A5));
(i) Varrer s cg(eN), (X)) =me (N, X'), i.e. ¢ is a complex geodesic;
(iii) Yaer : va(p(A); @' (N) = vr(N; 1), ie. ¢ is a complex yg-geodesic for any pair
((A), ©"(A);
(iv) Broer  16(E00); ' (M) = 8(\oi 1), ie. ¢ is a comples YG-geodesic for
((X0), ¢ (X0))-
Consequently, any complex c(,- or yg-geodesic ¢ is a complex geodesic. Moreover, ¢ is
injective, proper, and regular. In particular, o(FE) is a 1-dimensional complex submani-

fold of G.

PROPOSITION 1.2.6 ([J-P 1993, Proposition 8.1.5]). Let G C C™ be a taut domain. Then
the following conditions are equivalent:
(i) & = kg and v = ¢ (°);
(i) ¢ = k&;
(iii) for any 2,z € G, 2z, # =/, there exist p € O(E,G) and f € O(G, E) such that
20,2 € @(E) and f o ¢ =idg;
(iv) for any zy,z, € G there exist a holomorphic embedding ¢ : E — G and a
holomorphic retraction r : G — ¢(E) such that z{), 2z € p(E).
Moreover, any holomorphic mapping ¢ : E — G satisfying (iii) or (iv) is a complex
geodesic. Conversely, for any complex geodesic ¢ there exists [ (resp. r) such that (iii)
(resp. (iv)) is satisfied.

Recently, Proposition 1.2.5 was generalized in the following way in [EHHM 2003,
Corollary 9].

(°) For example, G is a convex domain (cf. Lempert Theorem 8.2.1 in [J-P 1993]).
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PROPOSITION 1.2.7. A holomorphic mapping ¢ : E — G (G is a domain in C") is
a complez geodesic iff there exist \),\] € E, X # X\, such that c5(o(\), p(N})) =
pE( 67 >‘/O/)

Proof. (Here we present a direct proof independent of [EHHM 2003].) Using a suitable
automorphism of E, we may assume that A\[j = 0 and \] =: t; € (0,1). Recall that
p% = pp. Hence, for any ¢ € [0,to], we have

pE(0,t0) = pr(0,t) + pr(t, to)
> cg((0), (1)) + cge(t), ¢(to)) > c((0), (to)) = pE(0, to).

Consequently, ¢ (¢(0),¢(t)) = pr(0,t) for any t € [0,t0]. Let tx \, 0 be such that
p(tr) — ©(0)

lle(tr) — £ (0)]]

(observe that Xy = ¢’(0)/l¢’(0)] if ©'(0) # 0). Recall that Dcl, = vg. We get
0.t i (0(0), ot
1= p(0:1) = Jim P i GO o g0) x4 (0))

Hence ¢'(0) # 0 and 1 = v¢(¢(0); ¢'(0)), which, by Proposition 1.2.5, implies that ¢ is
a complex geodesic. m

— Xp € 8IB3,L

REMARK 1.2.8. (a) Complex geodesics were recently studied by many authors. For
instance:

e in [Jar-Pfl 1995a] for convex complez ellipsoids
E, = {(zl,...,zn) eCm: Y |zPm < 1},
j=1
p= (pl,“'apn)vpj 2 1/27]: 1>,Tl(n2 2)7 (6)

e in [Zwo 1997] to prove the following result showing that in the category of complex
ellipsoids the symmetry of the pluripolar Green function gg, is a very rare phenom-
enon:

THEOREM. For a complez ellipsoid E, the following conditions are equivalent:
() k[E ()\11), )\21)) :pE()\l,AQ), be G]Ep, )\1,)\2 S E,
(i) g ()\b, 0) = gg,(0,Ab), b € OE,, X € Ej
(iii) gg, is symmetric;
(iv) E
e in [Vis 1999a], [Vis 1999b], [Vis 1999c¢]| for some classes of convex Reinhardt do-

mains;
e in [Pfl-You 2003] for the so-called minimal ball
M, :={z=(21,...,20) EC": ||2|> + |22 + -+ 22| < 1}
(which will be studied in §3.1).

D S CONVET,

(6) Observe that E(; .. 1) coincides with the open unit Euclidean ball B,,. Moreover, E, is
convex if and only if p; > 1/2, 7 =1,...,n (cf. [J-P 1993, §8.4]).
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(b) Consider the following general problem: Given a bounded convex balanced domain
G C C" (n > 2) with Minkowski function hg (7), find conditions on a,b € G and 7, R €
(0,1) under which the Carathéodory ball B (a,r) := {z € G : ¢(a,2) < r} coincides
with the norm ball By, (b, R) := {z € C" : hg(z — b) < R} (®). Since ¢(0,-) = ha(-),
we always have
B, (0,7) = B (0,7), 7€ (0,1).

In the case where

n
G=Epa:= {(zl, ooy zn) € C™ 2021 P 22|72 + Z |2;|?P7 < 1},
j=1
p= (pla"'apn) ER?;(); « 207 (9)
the problem was studied in:

[Sch 1993] (the case n =2, « =0, p; = p2 = 1),

[Sre 1995], [Zwo 1995] (the case a =0, p1 = --- =p, = 1),
[Sch-Sre 1996] (the case = 0,1 <p; =---=p, € N),
[Zwo 1996], [Zwo 2000b] (the case oo = 0),

[Vis 1999a] (the general case).

The methods introduced by W. Zwonek and developed by B. Visintin are based on
complex geodesics. The most general result is the following theorem from [Vis 1999a].

THEOREM. Assume that o > 0 and p € RY are such that E, o is convezx. Then
BCFEp,a (a,r) = Bhﬁp,a (b,R)

for some a,b € Ep o, a #0, R € (0,1) iffa =0, {j € {1,...,n} : a; # 0} = {4jo},
Pj, =1, and p; = 1/2 for all j # jo.
REMARK 1.2.9. Let G C C™ be a domain and let (29, Xp) € G x C". Recall that a
mapping ¢ € O(E, G) is called a »g-geodesic for (zg, Xg) if there are Ay € F and oy € C
such that (M) = 2o and s (20; Xo) = Ye(Ao; ao) (see Chapter VIII in [J-P 1993]). If
G is taut, then for any pair (29, Xo) € G x C" there is a »xg-geodesic for (zg, Xp). If G
is even convex, then any »g-geodesic is a complex geodesic.

Now let G = E,, where p = (p1,...,pn) with p; > 0. Observe that E, is not neces-
sarily convex. Fix a pair (20, Xo) € E, x (C").. Then any s, -geodesic ¢ for (20, Xo),
where ¢; #0, j =1,...,n, is necessarily of the following form (see [Pfl-Zwo 1996]):

1—a@;A\1/pj
1.2.4 (A) = B;(A a-ij) i—1....m,
(1.2.4 e = B0 (a3 =23) ",
(") Observe the difference between the Hahn pseudometric hg : G x C" — R, and the
Minkowski function hg : C* — Ry ; since the Hahn pseudometric will not be used in what
follows, no confusion will arise. Notice also that under our assumptions h¢ is a complex norm.
(%) Recall that in the case of the unit disc we have
a(l—r*) r(1—laf*)
1—72al?” 1 —r2|a|?

BmE(a,r):B< ) ac B, re(01)

(Y Aso :={z € A:z >0} (A CR), A% := (A>0)", e.g. Rsp, RZ,. Observe that
E,o=E,.
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where B; is a Blaschke product and the complex numbers a;, o; satisfy
0ea;cC,,o€E,j=1,...,n,0 €L,
o 1+ aol* =377 la;[P(1 + |ey?),
o ap =37 |ajPay.
Moreover, if p; > 1/2, then B; =1 or Bj(\) = (A — o) /(1 — @;A) with |o;] < 1.
Additionally, if a; € E for all j =1,...,n, then either B; =1 or B;(\) = (A —«a;)/
(I—ajA) foralj=1,...,n.
Using this result, the Kobayashi metric for the non-convex domain E ), 0 < m
< 1/2, is obtained. First observe that the mappings
z1—a e?(1—|a]?)V/ M)z,

1—az’ — (1—az)¥/m™

E(l,m) ER A ( > € E(l,m)7 a€FE, 0 eR,

are automorphisms. Therefore, to find s, , , it suffices to calculate s, . ((0,b);-),
b > 0. The easy part is given by the following formulas:

e xi, . ((0,0); X) = hg, ,,(X), where hg,  denotes the Minkowski function of
E(Lm)’ X e (C2;

o i, ((0,b); X) = [ Xo|/(1=b%), b>0, X1 = 0;

o x5, ((0,0); X) = |X1[/(1—b*™)"/2, b >0, X, =0.

To discuss the remaining case (b > 0 and, without loss of generality, X = (X;,1) € C?),

we put
2
v:=v(m,b,X) = <b|X1> .
m

Moreover, in the case v < 1/4m(1 —m) set
2m?v

t:=t(m,b,X):= :
1+2m(m—1v+/1+4m(m—1)v

Observe that then the function
£2m _ t£2m—2 _ (1 _ t)me, € c ]R,
has exactly one zero = z(m, b, X) in the interval (0,1). Now we are able to give the
remaining formulas.
THEOREM. Let m € (0,1/2), b > 0, X = (X1,1) € C?, v = v(bym,X), and v =
z(b,m, X) if v <1/4m(1 —m). Then:
o if v <1, then

m x2m71
253,y ((0,0); X) = b (1—m)a?™ + ma?m—2 — p2m = av);
o if v>1/4m(1 —m), then
m /(1 —b2™)v + b2
%]E(l,m) ((O,b),X) = 7 \/( ) = %Q(V);

b 1—p2m
o if 1l <v<1/4m(1 —m), then

HE(1,m) ((07 b); X) = min{%l(y)7 %2(1/)}'
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The minimum in the last formula is equal to 1 (v) for v < vy and equal to »3(v) for
v > 1y, where

tO I,gm _ b2m
vy 1= 3 to = om—2 39 5
(to(L —m) +m) xg —b2m

and x is the only solution in the interval (0,1) of the following equation:
M2 (1 —2m + 2m2 + b7™) + €2 (1 4 (1 — 2m)b°™)
+EMT2 (14 (2m — 1)HP™) — (1 —m)*E"™ —mPgm 2 — b = 0.
It turns out that there is a mapping ¢ € O(E,E(y ,,,)) of the form (1.2.4) which is not

a s, ., -geodesic for ((0),¢’(0)). Moreover, for some b > 0 such that (0,b) € G the
function s, ((0,0); (-, 1)) is not differentiable on C.

1.2.6. Wu pseudometric. The Wu pseudometric has been introduced by H. Wu in
[Wu 1993] (and [Wu]). Its various properties have been studied in [Che-Kim 1996],
[Che-Kim 1997], [Kim 1998], [Che-Kim 2003, [Jar-PAl 2005], [Juc 2002].

Following [Jar-Pfl 2005], let us formulate the definition of the Wu pseudometric in an
abstract setting. Let h : C" — Ry be a C-seminorm. Put:

I=1I(h):={XeC":h(X)<1} (Iis convex),

V=V(h):={XeC":h(X)=0} CI(V is a vector subspace of C"),

U = U(h) := the orthogonal complement of V' with respect to the standard Hermitian

scalar product (z,w) := Y7, zw; in C",
Ip:=1INU, hg:=h|y (hpisanormon U, [ =1, + V).

For any pseudo-Hermitian scalar product s : C* x C* — C (19), let

:(X) = vs(X,X), XeC" E(s):={XeC":q(X)<1}.
Consider the family F of all pseudo-Hermitian scalar products s : C"* x C" — C such
that I C E(s), equivalently, ¢ < h. In particular,
VCI:[0+VCE<S):E(80)+V,

where s := s|yxu (note that E(sg) = E(s)NU). Let Vol(sg) denote the volume of E(sg)
with respect to the Lebesgue measure of U. Since Ij is bounded, there exists an s € F
with Vol(sg) < +00. Observe that for any basis e = (e1,...,e,,) of U (m := dimc U) we
have

C(e)
Vol(sg) = :
ol(so) det S
where C(e) > 0 is a constant (independent of s) and S = S(s¢) denotes the matrix
representation of sy in the basis e, i.e. S, := s(ej,ex), j, k = 1,...,m. In particular, if

U=C"x{0}"™ and e = (ey,...,€n) is the canonical basis, then C(e) = Az, (B),
where Ay, denotes the Lebesgue measure in C™. We are interested in finding an s € F
for which Vol(sp) is minimal, equivalently, det S(sp) is maximal.

(*°) That is: s(-,w) : C™ — C is C-linear for any w € C"; s(z,w) = s(w, z) for any z,w € C™;
s(z,z) > 0 for any z € C" (if s(z, z) > 0 for any z € (C")., then s is a Hermitian scalar product).
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Observe that, if s has the above property with respect to h (i.e. the volume of E(s)
is minjmal), then, for any C-linear isomorphism L : C" — C", the scalar product
C" x C" 3 (X,Y) F s(L(X), L(Y)) e C
has the analogous property with respect to ho L. In particular, this permits us to reduce
the situation to the case where U = C™ x {0}" ™ and next to assume that m = n (by
restricting all the above objects to C™ ~ C™ x {0}"~™).

LEMMA 1.2.10. There exists ezactly one element s" € F such that
Vol(sf) = min{Vol(sg) : s € F} < 4o0.

Proof ([Wu|, [Wu 1993]). We may assume U(h) = C". First we prove that the set F is
compact. It is clear that F is closed. To prove that F is bounded, observe that

‘S(ijek” < \/ S(Gjaej)s(ekaek) = QS(ej)qs(ek) < h(ej)h(ek), s € f& j7k = 1; cey N,

where ey,...,e, is the canonical basis in C". Consequently, the entries of the matrix
S(s) are bounded (by a constant independent of s).
Recall that
_ AQn(Bn)

Vol(s) = qetS(3)

Now, using compactness of F, we see that there exists an s” € F such that
Vol(s") = min{Vol(s) : s € F} < +oc.

It remains to show that s” is uniquely determined. Suppose that s’,s"” € F, s’ # s”, are
both minimal and let S’, S” denote the matrix representation of s, s”, respectively. We
know that p := det S" = det S” is maximal (with respect to any basis (e1,...,ey,)) in the
class F. Take a basis e, ..., e, such that the matrix A := §”(S’)~! is diagonal and let
di,...,d, be the diagonal elements. Note that 1 = det A = d; - - - d,, and that for at least
one j € {1,...,n} we have d; # 1. Put s := 3(s' + s”). Then s € F. Let S = S(s) be
the matrix representation of s. We have
5y

det S = 2% det(S" +5") = Qin det(I,, + A)det S’ =

> \dydy =
this is a contradiction (I,, denotes the unit matrix). m
Put 5" := m - s" (m := dimU(h)), Wh := gsn (Wh(X) = /ms"(X,X), X € C").
Obviously, Wh < /mh and Wh = /mh iff h = ¢, for some pseudo-Hermitian scalar

product s. For instance, W|| || = v/n]| ||, where || || is the Euclidean norm in C". Moreover,
W(Wh) = /mWh.

REMARK 1.2.11. Assume that U(h) = C". Let L : C* — C" be a C-linear isomorphism
such that |det L| = 1 and h o L = h. Then Vol(s") = Vol(L(s")) and hence s" = L(s"),
ie s"(X,Y) =s"(L(X),L(Y)), X,Y € C".
PROPOSITION 1.2.12. (a) h < Wh < \/mh.

(b) If h(X) = max{hl(Xl), hQ(XQ)}, X = (X17X2) eCm x Cn2, then

FMX,Y) =8M(X0, V) +5"2(Xe, Ya), X =(X1,X2),Y =(Y1,Y,) € C™ x C™=.
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In particular,
Wh(X) = (Whi(X1))? + (Wha(X2))$)Y2, X = (X1, Xy) € C™ x C"=.

Proof ([Wu], [Wu 1993]). (a) Using a suitable C-linear isomorphism we may reduce the
situation to the case where:

o U=0C",

s"(X,Y) = (X,Y), X,Y € C",
e min{||X|: h(X)=1} = || X[ =a >0, X. =(0,...,0,a) € 0I; in particular, since
I is a balanced convex domain, I C {(X’, X,,) € (Cm Lx C: | X < al.
We only need to show that a > 1/y/n. Suppose that a < 1/y/n and let 0 < b < 1 be
such that a? + b = 1. Put ¢ := a/b. Note that (n — 1)c? < 1. Let L : C* — C" be the
C-linear isomorphism
LX) =(cvn—-1X",X,), X=(X,X,)eC"!xC.
Obviously, s"°L™" = L=1(s"), so
Vol(s"F ") = Ay, (By)|det L|? = Aoy (By,)(ev/m — 1)2 1.

On the other hand, L(I) C B(ay/n) C C™. Indeed, for X = (X', X,,) we have

ILX))? = (n = DX + [ Xn]? = (n = DX |* + (1 = (n = 1)) | X, |

<(n-1D+1—(n—-1c*a®>=a*+ (1 —a®)(n—1)(a®/b*) = na® < 1.
Consequently, Vol(sh"Lfl) < Ay, (B,,)(ay/n)?". Thus, using the above inequality, we get
(avn —1/b)>=V < (ay/n)?".
Put f(t):=t(1—-t)""% 0<t<1. Then
1 1 n—1
2 2 2\n—1
=a2(1- > (1- = =fQ1
fa) ==y = 2 (1o 1) =g,

a contradiction (because f is strictly increasing in the interval [0,1/n] and a? < 1/n).

(b) We may assume that U(h;) = C", j =1,2. Put

m h n2 h
$«(X,Y) = "X, Y1) + s"?(Xs,Ys),
(X,Y) o (X1, 1) o (X2, Y2)
X = (X17X2)7Y = (Y17Y2> e C™ x C™.
We only need to prove that det S(s") = det S(s,) (all matrix representations are taken
in the canonical bases of C"* and C"2, respectively). Let s := s". Since

I(h) = I(hy) x I(hs) C E(sy),

we get det S(s) > det S(sx).
Let L : C™" x C™ — C™ x C™ be the isomorphism L(X;, Xs) := (X1, —X32). Then
hoL = h and, consequently, s = L(s) (Remark 1.2.11), i.e

s(X,Y)=s(L(X),L(Y)), X, YeC xC.
Hence s((X1, X2),(Y1,Y2)) =01if (X2 =0and Y3 =0) or (X; =0 and Y2 = 0). Indeed,
5((X1,0),(0,Y2)) = s(L(X1,0), L(0, Y2)) = 5((X1,0), (0, —Y2))

(L
= 5((X1,0),=(0,Y2)) = —s((X1,0),(0,Y2)).
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Consequently,
S(X,Y) = Sl(Xl,Yl) + SQ(XQ,YQ), X = (Xl,XQ),Y = (Yl,YQ) e C™ x (Cn2,

where s; is a Hermitian scalar product in C", j = 1,2. It is clear that I(h;) C E(s;),
j =1,2. Let ¢; < 1 be the minimal number such that I(h;) C E(Cj_QSj),j =1,2. Assume
that X € 9I(h;) is such that s;(X?, X9) = ¢3, j = 1,2. In particular, ¢,(X?, XJ) <1,
so c7 +c2 < 1. We have
det S(s") > ¢; 7™ det S(s;), j=1,2,
and, therefore,
det S(s) = det S(s1) det S(s2) < 2™ 3" det S(s") det S(s"2)
<A™ (1 = )2 det S(s™) det S (s"2)

S( e > ( 12 ) det S(s") det S(s"2) = det S(s.),

ny + ng n1 + ng

since the maximum of the function f(¢) = t" (1 —¢)", 0 <t < 1, is attained at ¢t =

n1/(n1 + 77,2). ]
For a domain G C C™ and n € M(G, C) (cf. §1.2.1), we define the Wu pseudometric
(Wn)(a; X) == (Win(a; ))(X),  (a,X) € GxC,

where 7] is the Buseman pseudometric associated to n (cf. §1.2.3). Observe that Wn €
M(G,C).

Recall that a Borel measurable metric € M(G,C) is said to be complete if any
Sn—Cauchy sequence is convergent to a point from G (cf. [J-P 1993, §7.3]).

PropoSITION 1.2.13. (a) If n € M(G, C) is a continuous metric, then so is Wn (cf. Ez-
ample 1.2.15).
(b) If n € M(G,C) is a continuous complete metric, then so is Wr.
(¢) If (0¢)c is a holomorphically contractible family of pseudometrics, then:

e for any biholomorphic mapping F': G — D, G, D C C", we have
(Wop)(F(2); F'(2)(X)) = (Wig)(z X), (2, X) €GxC™
e for any holomorphic mapping F : G — D, G C C™, D C C"2, we have
(Wop)(F(2); F'(2)(X)) < vn2(Wog) (2 X), (2, X) € GxC™,

but, for example, the family (Wg)g is not holomorphically contractible (cf.
Ezample 1.2.14).

In the case n = ¢, the above properties (a)—(c) were formulated (without proof) in
[Wu], [Wu 1993].

Proof. (a) Fix a point zy € G C C". Let s, := s73"), 2 € G. We are going to show that
55 — 8, as z — 2p. By our assumptions, there exist r > 0, ¢ > 0 such that

n(z; X) > c||X|l, z€B(z,r)CG, X eC".
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In particular, the sets
L ={XeC": (X)) <1}, z¢eDB(z,r),
are contained in the ball B(C) with C := 1/c. Moreover,
7 X) — 720 X)| < 9()IX[, X e,
where ¢(z) — 0 when z — zy. Hence
(1+Cp(2) ', C I, C (1+Cp(2)I., z€B(z,r),
and, consequently,
oy e €O+ ORGEIEG) =B+ 0 %s.)
L. C (1+Cp(2)E(s,,) =E((1+Cp(2)) 2s,,), 2z € B(z0,7).

Hence,

Vol(s,,) < Vol((1 + Cp(2))?s,) = (1 + Cp(2))?" Vol(s.),

Vol(s,) < Vol((1+ Cp(2)) 2s.,) = (1 + Cp(2))?" Vol(s,,), 2z € B(zo,7).
Thus Vol(s,) — Vol(s,,) as z — zo.

Take a sequence z, — zo. Since
‘Szu(ejﬂ ek)' S n(le ej)n(ZV7 ek)? j7 k = ]-7 e 7TL, Ve Na

we may assume that s, — s., where s, is a pseudo-Hermitian scalar product. We
already know that Vol(s.) = Vol(s,,). Moreover, by (1.2.5), I, C E(s.). Consequently,
the uniqueness of s, implies that s, = s,.

(b) Recall that {n = {7 (cf. [J-P 1993, Proposition 4.3.5(b)]). By (a), Wy is a
continuous metric. In particular, the distance S(Wn) is well defined. By Proposition
1.2.12(a) we get

§7 < §(wn),
which directly implies the required result.

(c) Recall that the family (dg)¢ is holomorphically contractible (cf. §1.2.3). If F is
biholomorphic, then the result is obvious because for any z € G, the mapping F’(z) is a
C-linear isomorphism and dp(F(2); F'(2)(X)) = dg(z; X), X € C™.

In the general case, using Proposition 1.2.12(a), we get

(Wop)(F(2); F'(2)(X)) < 2 d0p(F(2); F'(2)(X))
< Vnzda(z X) < vz (Wog) (2 X),  (2,X)€GxC™. u
EXAMPLE 1.2.14. Let G. := {(21,22) € By : |21] < €}, 0 < ¢ < 1/v/2. Recall that
s, (0; X) = || X and s, (0; X) = max{||X||, | X1]/e}, X = (X1, X2). Then
X, [ Xaf?
g2 1—¢e2’

(Waeg,)(0; (X1, Xo)) = X = (X1,X,y) € C%

In particular,
1

V1—¢?

Consequently, the family (Ws¢s)¢ is not contractible with respect to inclusions.

(Wseg,)(05(0,1)) = V2 > = (Wi, )(0;(0,1)).
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We point out that Proposition 1.2.13(a) gives us the continuity of Wr only in the case
where 7 is a continuous metric. The following Example 1.2.15 shows that if 7 is only upper
semicontinuous, then W7 need not be upper semicontinuous. We do not know whether
Wn is upper semicontinuous in the case where 7 is a continuous pseudometric. Observe
that the upper semicontinuity (or at least Borel measurability) of Wr appears in a natural
way when one defines S(Wn) In the case where = s, the upper semicontinuity of
Wi is claimed for instance in [Wu 1993] (Theorem 1), [Che-Kim 1996] (Proposition 2),
[Juc 2002] (Theorem 0), but so far there is no proof.

Let n € {'yg€ ), Ag, »#c}. Is Wr upper semicontinuous?

EXAMPLE 1.2.15. There is an upper semicontinuous metric 7 such that W7 is not upper
semicontinuous.

Indeed, let 7 : By x €2 — R, 5z X) == | X]|| for = # 0, and 5(0; X) := max{|| X[
|X1|/e}, X = (X1,Xs) € C? (¢ > 0 small). Then (Wn)(z;X) = v2||X]|| for z # 0,
and (by Example 1.2.14) {X € C? : (Wn)(0; X) < 1} ¢ B(1/+/2), so Wy is not upper
semicontinuous.

ExXAMPLE 1.2.16. There exists a bounded domain G C C? such that Wi« is not contin-
uous (see Proposition 2 in [Che-Kim 1996], where such a continuity is claimed).
Indeed, let D C C? be a domain such that (cf. [J-P 1993, Example 3.5.10]):

e there exists a dense subset M C C such that (M x C) U (C x {0}) C D;

o »xp(%(0,1)) =0, z€ A:=M x C;

e there exists a point z° € D\ A such that s»p(2%; X) > ¢[| X||, X € C?, where ¢ > 0
is a constant.

For R > 0let Dp := {2z = (21,22) € D : |z; = 29| < R, j = 1,2}. It is known that
»%pp \ #p as R /" +o0o. Observe that 2° € Dy and

1D (2% X) > 2p(2% X) > || X, X eC%
Hence, by Proposition 1.2.12(a), (Wscp,)(2% X) > ¢/|X||, X € C2. In particular,
(Wp,)(2%(0,1)) > c.
Fix a sequence M > z, — z). Note that {2} x (23 + RE) C Dpg, which implies that
spp((2,29);(0,1)) < 1/R, k= 1,2,.... In particular,
(Wep ) (21, 23); (0,1)) < V25, (21, 29); (0,1)) < V2/R,  k=1,2,....
Now it is clear that if R > 1/2/c, then

llicrgiup(W%DR)((%Zg); (0,1)) < V2/R < ¢ < (Wsep,,)(%(0,1)),

which shows that for G := Dpg the pseudometric Wizg is not continuous.
REMARK 1.2.17. We point out the role played in the definition of W by the factor \/m.
Put Wh := gen, Wn(a; X) = (Wij(a;-))(X), (a,X) € GxC". Let D C C*and D > z, —
zo € D be such that:

e »p(zk;-) is not a metric (in particular, m(k) := dim U (3p(zx;-)) < 1, k € N),

e p(z0;-) is a metric (take, for instance, the domain D from Example 1.2.16).
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Put G:= D x E C C3. Then
1

(o) (21,005 (0,1)) = 570G (0,1), (0, 1)) = oSy 2 % keN,
W 2 . _ #a((20,0); _ 1 _ 1
(Waea)?((20,0); (0,1)) = s (=0:9:)((0,1),(0,1)) = G5

and, therefore, W« is not upper semicontinuous at ((20,0),(0,1)) (the example is due
to W. Jarnicki).

REMARK 1.2.18. The Wu metric in complex ellipsoids E(; ,,,y was studied in [Che-Kim
1996] (m > 1/2) and [Che-Kim 1997] (0 < m < 1/2). In a recent paper [Che-Kim 2003]
the same authors proved the following two results.

Let G := B, NU, where U is open in C". Then there exists a neighborhood V of
0G N IB,, such that Wig = Wi, in VNG.

Let p = (p1,...,pn) € N*, p; > 2, 5 =1,...,n. Then any strongly pseudoconvex
point a € OE, has a neighborhood V' such that Wi, is a Kdhler metric with constant
negative curvature in V NE,.

1.2.7. Regularity of contractible pseudodistances and pseudometrics. Let us
mention a few new results related to different regularity properties of contractible objects.

e Let (G;)72, be a sequence of domains in C" such that G 1 CC G; and ﬂj‘;l Gj
= G, where G is a domain in C”. It is an open question to find conditions under which
cg, — cg or kg, — kg. M. Kobayashi in [KobM 2002] proved the following two results:

(a) If G is strongly pseudoconvex, then cg, — cg locally uniformly.

(b) If G is a bounded domain such that every point b € OG admits a weak peak
function (i.e. a function f holomorphic in a neighborhood of G such that f(b) = 1
and |f| < 1 on G), then kg, — kg locally uniformly.

e The behavior of the Bergman, Carathéodory, and Kobayashi metrics on a smooth
bounded pseudoconvex domain G C C™ near a boundary point of finite type, where the
Levi form of OG has at least n — 2 positive eigenvalues, was studied in [Cho 1995].

The behavior of the Kobayashi metric near boundary points of exponentially flat
infinite type in bounded domains in C? was studied in [Lee 2001].

Lower and upper non-tangential bounds for the Carathéodory metric of a smooth
bounded pseudoconvex domain G C C™ near an h-extendible boundary point (a boundary
point is said to be h-extendible if its Catlin multitype coincides with its D’Angelo type)
were proved in [Nik 1997] and [Nik 1999].

Some localization theorems for contractible functions and metrics were proved in
[Nik 2002].

e Let G be a strongly pseudoconvex balanced domain with C* (resp. real-analytic)
boundary. Then there is an open neighborhood U = U(0) C G such that »g is C*®
(resp. real analytic) on U x (C"), (cf. [Pan 1993]).

e Let Dy, :=E(1 ) X (C?), C C* m > 0. It was proved in [Ma 1995] that:
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(a) Ky € C%(D,,) for m > 1;
(b) g, ,, is piecewise C* on D,, and s, ,, & C*(Dy,) for m > 3/2.
e Let G,D C C" be domains and let a € G, b € D. We say that a holomorphic
mapping F' : G — D with F(a) = b is Carathéodory extremal if
|det F'(a)| = sup{|det &'(a)| : & € O(G, D), ¢(a) = b}.

In the cases:

G=Bu, D=FEppa=b=0
G=FEpyp, D=B,,a=b=0,

where
k
Eppp i= {z €T x - x C™ 3 ||z |?P < 1},
j=1

m:(ml,...,mk)eNk,ml—i—---—l—mk:n,p:(pl,...,pk)ERQO,

the Carathéodory extremal mappings are characterized in [Ma 1997].

1.3. Effective formulas for elementary Reinhardt domains
For o = (a1, ...,a,) € RY? and ¢ € R put
Doei={2€C": |z|™ - |2,|" < e®and (Vjeqi,..n) :@j <0 = 2; #0)}, Do := Dap;

D, . is called an elementary Reinhardt domain. We say that D, . is of rational type if
o € R-Z". The domain D, . is of #rrational type if it is not of rational type. Without
loss of generality we may assume that a;,...,a; < 0 and agy1,...,a, > 0 for some
ke€{0,...,n}. If £ < n, then we put t;, := min{ag41,...,a,}. Let

Vo ={(z1,...,20) €C": 21 -+ 2, = 0}.

For a € Z™ and r € N, put &(z) := 2z,

1
Diy(a)(X) = Y 3 DP®(a)XP, a€D,, X €C".
BEZY, |Bl=r
To simplify notation, for z € D, write [2%| := |z1]|** - - - |2, |*» (observe that this notation

agrees with the standard one if o € Z™).
The following effective formulas for holomorphically contractible functions and pseu-
dometrics on D, are known.

THEOREM 1.3.1 ([J-P 1993, §4.4], [PA-Zwo 1998], [Zwo 1999a], [Zwo 2000a]). Let a =
(a1, «.-y an) € Dy. Assume that a;---as # 0, agp1 = -+ = a, = 0 for some s €
{k+1,....,n}. Putr:=as1+ - +ap,ifs<n,andr:=1if s=n. For z € D, and
X € C" consider the following four cases.
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(1) k < n, D, is of rational type (we may assume that o € Z"™ and ay,...,o, are
relatively prime). Then:

¢p,(a,2) =mp(a®,z%),
b, (a,2) = (mp(a®, z)"",
kD&(a,Z) = min{pE(CvaQ) : C17C2 S Ev a® = Ikv 2% = gk}7

it min{pE(<17C2):C17C2€E7 aa:<{k72a: ;k}a S:n72€V07
kD“(a7Z) - al|l/r
pE(Oa |Z | )7 s < n,

"X
X)) = o, o 3
YD, (a; X) 7E<a ;a ;:1 w )

Ap, (a; X) = (v8(a®; Dy (@) (X)),

1 e a; X;
a1/t (,a\1/tg g o
E a yla e - | s=n,
spy(a;X) =14 (( 77 (e%) tk; a; >
(Jar]ot -+ |as|® | Xoqpa]| @t - | Xn )Y, s < n.

(2) k <n, D, is of wrrational type (we may assume that t;, = 1). Then:

cE&Em%)QE7 leN,
0, s=n,

a,z) =
982 = a5 <,

kp,(a;2) = pe(|a®], z%]),

7 pE(|aa|7|za|)’ SZTL,Z¢VO,
kDa(a’Z) = a|l/r
pe(0,[z%|V7), s<mn,

A X 0 =
a; X) =
D ) {(a1|0‘1~~~|a5 @ | Xy g |t X o) s <o
n
a; X,

e (o 30 222, o

(Jaa|® - |as|® | Xopr [+t - | X |27, s <.
(3) k =mn, D, is of rational type (we may assume that o € Z"™ and ay,..., o, are

relatively prime). Then:
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(4) k=mn, D, is of irrational type. Then:
cp. _m%):g =0, [eN,

kD(y(a’ Z) = kD(x(a’ Z) = kE*( aa‘v ‘Zal)’

Vp. =75, =Ap, =0, l€N,

o, (0 ) = .l |aa|ZO‘JX )

aj

Moreover, if « € N” and oy, ..., q, are relatwely prime, then

m$) (a,2) = (mp(a®, z2) /O (11

’Yg) (a;X) _ (WE(aa;@(r)(a)(X)))l/’“ ’tf’f’ divides l, I e N.
“ 0, otherwise,

REMARK 1.3.2. The formulas in Theorem 1.3.1 led W. Zwonek [Zwo 1998] to a negative
answer to a question posed by S. Kobayashi (cf. Remark 3.3.8(b) in [J-P 1993]). Let
(a1,...,ap1,—1) € R", a; < 0, such that D, is of irrational type. Then the mapping

YO X By = Doy 21,y 20) = (77 e T e @b G )

is a holomorphic covering. Fix points z € D, and w := (z1,...,2n-1, |2n|) € Dy. Then,
by the formula of S. Kobayashi (see Theorem 3.3.7 in [J-P 1993]), the product property
for the Kobayashi pseudodistance, and Theorem 1.3.1, we have

. ‘Zl|a1 ...‘Znil‘an—l 'nil
0=kp, (w,z)= L inf kg, exp (z Z arg(zj)aj>,
j=1

yeosln—1€Z ‘Zn|
|z1[* - - [z | =
o exp <z Z(arg(zj) + 2lj7r)aj)> }
j=1
Assuming that the infimum is attained implies that there are [y, ...,l,_1 € Z such that

arg(z,) ”Z‘l
n
T + 2 ZjOéj c 7.

This is, in general, impossible. Just take a z, in such a way that (arg(z,))/27 does not
belong to the Q-linear subspace of R which is spanned by 1, a1, ...,a,_1. Recall that R
is infinite-dimensional as a Q-vector space.

REMARK 1.3.3. The Wu pseudometric for D,, (with « € R?) was investigated by P. Jucha
in [Juc 2002]. He proved that

Vnxp, (a; X) if #J(a)
0 if #J(a)
where J(a) :={j € {l,...,n}:a; =0}, a € D,.

S n
(W%Da)(a;X)Z{ =5 (a,X) € D, x C",

(") [2] =

inf{m €Z:m > z}.
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REMARK 1.3.4. (a) Observe that if « € N, oy, ..., «, are relatively prime, and ¢ty = 1,
then

¢p, =tanhkp <gp,, tanhkp #gp,. VD, < D, VD, E *D.-
(b) For a domain G C C™ define the following relation R:
aRb: & kg(a,b) =0, a,beQG.

In [Kob 1976], S. Kobayashi asked whether the quotient G/R always has a complex
structure. From Theorem 1.3.1 we see that if D, is of irrational type with £ = 0, then
D,/R =~ [0,1). This gives a simple example of a very regular domain for which the
answer to the above question is “No”.

1.4. The converse to the Lempert theorem

First recall the fundamental Lempert theorem saying that if a domain G C C" is strongly
linearly convex, then cf, = %g (cf. [J-P 1993, Miscellanea CJ; recall that any strongly con-
vex domain is strongly linearly convex). Notice that if for a domain G C C" we have
G = Eg, then, by (1.1.2), all holomorphically contractible families coincide on G. More-
over, if G is taut and c};, = 755, then v¢ = »¢ (cf. Proposition 1.2.6) and, consequently,
all holomorphically contractible families of pseudometrics coincide on G.

Note that in the case of convex domains G C C"”, the equality c;, = %2‘; may be also
proved using functional analysis methods; cf. [Mey 1997].

Let £,, be the class of all domains G C C" with ¢}, = EE It is clear that L,
is invariant under biholomorphic mappings. Moreover, if a domain G C C" may be
ezhausted by domains from L, (i.e. G = J;c; Gi, G; € L,,, i € I, and for any compact
K € G there exists an iy € [ with K C G;,), then G € L,,.

Indeed, we only need to prove that

dg =inf{dg, i€}, de{c* k*}.
Write G = |J,—, G}, where G}, € G is a domain with G}, C G}, ;, k € N. For k € N let

i(k) € I be such that G} C Gy). Then dg; "\, dg (cf. [J-P 1993, Propositions 2.5.1(a),
3.3.5(a)]). Hence

dg < inf{dGi NS I} < inf{dci(k) ke N} < mf{d% 1k e N} =dg.
For example, if G = |J,—, Gk with Gy C Gyy1, Gy € L, k € N, then G € £,,. In

particular, any convex domain belongs to £,,.
For more than 20 years the following conjecture was open.

Any bounded pseudoconvex domain G € L,, may be ezhausted by domains biholomor-
phic to convex domains (12).

For instance, it is unknown whether the strongly linearly convex domain
G={zeC":|z|* + (Re(2?))? < 1}

(*?) Observe that there are unbounded pseudoconvex domains G' € L, which cannot be
exhausted by convex domains, e.g. G = C. (cg, = k¢, =0).
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may be exhausted by domains biholomorphic to convex domains; even more, it is not
known whether G is biholomorphic to a convex domain (cf. [J-P 1993, Example C.3]).

The first counterexample was recently constructed in a series of papers by J. Agler,
C. Costara, and N. J. Young [Agl-You 2001], [Agl-You 2004], [Cos 2004a], [Cos 2003],
[Cos 2004b], also [Ham-Seg 2003], when they investigated the 2 x 2-spectral Nevanlinna—
Pick problem. Let

7TZ(C2—>(C27 7T()\1,)\2) = (/\1—1-)\2,)\1)\2),
Gy = 7T(E2) = {()\1 + /\2,)\1)\2) t AL, A € E}, 09 = W((@E)Q) - 8@2,
Ag:={(\MAN):AEEY,  Xy:=n(A5) ={(2\, %) : X € B},

ha(A);:lA_;a‘;, a€ E, \eC\{1/a},
Fu(s,p) = %, a e E, (s,p) € (C\ {2/a}) x C.

Note that 7 is proper, 7|g2 : E? — Gy is proper, and 7|g2\ 4, : E?\ Ay — Gy \ X
is a holomorphic covering. The domain Gy is called the symmetrized bidisc. One can
prove (cf. Lemma 1.4.2) that |s| < 2 and |F,| < 1 on G; and that (Remark 1.4.5) G, is
hyperconvex.

THEOREM 1.4.1 (13). We have

€6, ((s1,71), (s2,2)) = K&, (51, p1), (52.p2))
= max{mg(F,(s1,p1), F.(s2,p2)) : z € E}
= max{mg(F,(s1,p1), F:(s2,p2)) : 2 € OE}, (s1,p1), ($2,02) € Ga.
Moreover, Gy cannot be ecxhausted by domains biholomorphic to conver domains.
The proof will be given after auxiliary lemmas.
LEMMA 1.4.2 ([Agl-You 2004]). For (s,p) € C?, the following conditions are equivalent:

(1) (Sap) S GQ;

(i) [s —spl+ |p|* < 1;

(iii) [s| <2, s —sp| +[p|* < 1
)

2zp — — —
(iv ;p °| < 1, z € E (i.e. |Fy(s,p)| <1, z € E);
— 28
W—% _
(v)‘Qp ZS<1,Z€E;

(vi) 2|s —3p| + |s% — 4p| + |s]? < 4.
In particular, F, € O(Gs, E) (a € E).
Proof. Observe that (s, p) € G iff both roots of the polynomial f(z) = 22 — sz +p belong

to E. By the Cohn criterion (cf. [Rah-Sch 2002]), f~1(0) C E iff [p| < 1 and the root of
the polynomial

(*®) Special thanks are due to C. Costara and N. J. Young for sending us their preprints,
without which this section would never have been written.
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9(2) 1= 2 (f(2) = p TR = (1~ o)z — (s — p3)
belongs to E. Thus (i)« (ii).

The equivalence (iv)<(v) follows from the maximum principle:

22p — — 22p —
max o 1z € Fj =max o 2z € 0F
2— 28 2— 28
2 —% —z _
= max b= 23 :2 € OF } = max 2p — =5 c b5,
2—zs 2—zs

Observe that (iv) with z = 0 gives |s| < 2 and, moreover,

2 2 2 _
max{ iz € 5‘E} max{4|p + sl 4 Re(zp5) 1z € 5‘E}.

44 |s|2 — 4Re(zs)
Thus (iv)=-(iii)=(ii)=(iv).
Observe that for |s| < 2 the mapping £ > z — F,(s,p) maps E onto B(a,r) C C with
a:=2(3p—s)/(4—|s?), r = (|s*> — 4p|)/(4 — |s|?). We have B(a,r) C E iff |a| +r < 1.
Thus (vi)<(iv). =

2p —Zs

LEMMA 1.4.3 ([Agl-You 2004]). For (s,p) € C?, the following conditions are equivalent:

(i) (s,p) € Gy;
(i) [s| <2, |s—3p| + [p* < 1;

| 22D — o
(iif) ‘ 5 s <1,zeE (M)
. 2p — Zs _
(1v)‘228 <1l,zeE (¥

Notice that the condition |s—3p|+|p|? < 1 does not imply that (s, p) € G (e.g. (s,p) =
(5/2,1)).
Proof. Using Lemma 1.4.2 we see that (i)=(ii). Moreover, (ii)<(iii)< (iv). It remains to
observe that if (ii) is satisfied and s # ps, then (ts,p) € Go, 0 < ¢ < 1. If (ii) is satisfied
and s = ps, then (t5,t%p) € G2, 0 <t < 1. m
COROLLARY 1.4.4. For (s,p) € C2, the following conditions are equivalent:

(1) (S,p) € 02;

(ii) s =3p, |p| =1, and |s| < 2.
In particular, |F,| =1 on o9 for a € OE (19).
REMARK 1.4.5. Let

o(s,p) := max{max{|\i|,|Xa|} : (A1, Xo) € 7 (s,p)}, (s,p) € C°

(**) Notice that if (s,p) € Gz and |s| = 2, then (s,p) = (21,7?) for some n € OF and,
consequently, (2zp — s)/(2 — zs) = —n, which implies that the function z — (2zp — s)/(2 — zs)
has no essential singularities.

(**) As above, notice that if (s, p) = (2,n?) for some n € OF, then (2p — Zs)/(2 — 75) = n?
and, consequently, the function z — (2p — Zs)/(2 — zs) has no essential singularities.

(*®) Notice that for (s,p) € 02, |s| < 2, we have F,(s,p) = ap(2 — a@3)/(2 — as).
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Then p is a continuous plurisubharmonic function such that
o(As, \?p) = [No(s,p), (s,p) € C%, A €C,
and
Gy = {(s,p) €C?: po(s,p) <1}, Gy ={(s,p) €C%: o(s,p) < 1}.
In particular, G is hyperconvex.

The maximum principle for plurisubharmonic functions gives the following result.

LEMMA 1.4.6. Let ¢ : E — C? be a continuous mapping, holomorphic in E, such that
©(OE) C Gy. Then ¢(E) C Ga. If p(E)N Gy # 0, then p(E) C Go. If o(E) NGy = 0,
then ¢(E) C 0Ga.

REMARK 1.4.7. If f € O(E?) is symmetric, then the relation F(7(\1, \2)) = f(A1, A2) de-
fines a function F' € O(Gz). In particular, if h € O(E, E), then the relation Hy (7 (A1, A2))
= w(h(A\1), h(A2)) defines a holomorphic mapping Hj, : Go — Gy with Hp(Xy) C Y.
Observe that if h € Aut(E), then Hy, € Aut(Gy), H;, ' = Hy-1, Hy(X2) = 2o, and
Hp(0o2) = 02. In particular, if h(A) := 7\ for some 7 € OF, then we get the “rotation”
R‘r(s?p) = Hh(svp) - (TS,sz).
REMARK 1.4.8. For any point (s, po) = (2a,a?) € Xy we get Hy, (s0,p0) = (0,0).
LEMMA 1.4.9. o9 is the Shilov (and Bergman) boundary of Ga.

Proof. Tt is clear that the modulus of any function f € C(G2)NO(G>) attains its maximum
on oo. We have to prove that oy is minimal. First observe that the function fy(s,p) :=
s+ 2 is a peak function at (2,1) € 09. Take any other point (s, po) = T(AY,A9) € os.
The case A} = AJ reduces (via a rotation R.) to the previous one. Thus assume that
AY £ 9. We are going to find a Blaschke product B of order 2 such that

(A€ dFE:B(\) =1} = {A\},\3}.

Suppose for a moment that such a B is already constructed. Then fy o Hp is a peak
function for (sg, po).

We turn to the construction of B. Using a rotation we may reduce the proof to the
case A = \J. Then, using the fact that the mapping (—1,1) 3 a — 2a/(1 + a2) € (—1,1)

is bijective, we see that there exists an a € (—1, 1) such that h,(A}) = —h,(A}). Finally,
we take B := 7h2 with 7 € OF such that 7h2(\)) = 1. =

LEMMA 1.4.10. The domain Gy cannot be exhausted by domains biholomorphic to convex
domains.

Proof. This is a generalization of the proof of [Cos 2004a] due to A. Edigarian [Edi 2003a].
First observe that G is not convex: for example, (2,1), (2i,—1) € Gg, but (1+1,0) & Go.
Consequently, G» is also not convex.

Suppose that Go = J,¢;
domain and for any compact K &€ Gy there exists an ip € [ with K C G;,. For any
0 < e <1 take an i = i(¢) € I such that {(s,p) € C?: o(s,p) <1 —¢} C Gy and let
fe = (9e, he) : Gy — D. be a biholomorphic mapping onto a convex domain D, C C"
with £.(0,0) = (0,0) and £.(0,0) = I,.

G;, where each domain G; is biholomorphic to a convex
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Take arbitrary two points (s1,p1), (s2,p2) € C? and put

C = max{o(s1,p1), 0(s2,p2)}.
Our aim is to prove that o(¢t(s1,p1) + (1 — t)(s2,p2)) < C, t € [0,1], which in particular
shows that Gs is convex, a contradiction.
Observe that for |\ < (1 —¢)/C we have g(As;, \?p;) = [N o(s;j,p;) <1—g,j=1,2.
Consequently, for any ¢ € [0, 1], the mapping ¢. ; : B((1 —¢)/C) — Ga,
Pet(A) = (Ve (V) Xe (V) = f (e (As1, A1) + (1= 1) fe(As2, Apa)),
is well defined. We have ¢. +(0) = (0,0) and

YL 4(0) =tsy + (1 —t)sa,  xL4(0)=0

and
1 1 02h,
3 Xlgl,t(o) =tp1+ (1 —t)p2 + pt(l —t)(s1 — 52)2, where ji. = 3 a2 (0,0).
Define &, ; : B((1 —¢)/C) — C? by
& ()\) L { (>‘_1¢E7t(>‘)7 >‘_2X87t(>‘))7 A 7é 07
ST Uty + (1= t)sa, tpy + (1 — )pa + pet(1 — £)(s1 — 52)2), A =0.
Then &, ; is holomorphic and, by the maximum principle, we get
1 C
0(9::(0)) < limsup max (P (N)) = limsup —max p(pe:(N)) < ,
s—(1—e)/C |AI=s s—(1—e)/C S IA\|=s 1-¢
that is,
C
o(tsy + (L —t)sz,tpy + (1 = t)p2 + pet(L — t)(s1 — 52)%) < T

We only need to prove that u. — 0.
Taking t = 1/2 we get

2 2 4 “1-¢

For o € OF, take (s1,p1) := 7(a,—1) = (a — 1,—a), (s2,p2) = 7(a,1) = (o + 1, ).
Then C' =1 and

1 1 1 C
9( (s1452), = (1 +p2) + — pe(s51 — 82)2) <

oo, pie) < 1:3.
Hence ((1 —¢)a, (1 —)%u.) € Gy and so, by Lemma 1.4.3,
(1-8)a—(1—e)2u.(l—e)al+ (1 —e)*|ul* <1, a€dE.
It follows that
(1 =)+ (1 —e)’lpe| + (1 —&)*|pef* < 1
and, finally, |p.| <e/((1—¢)3) — 0. m
LEMMA 1.4.11 ([Cos 2003], [Cos 2004b]). Let ¢ : E — Gy be a mapping of the form

" ctom=(3.2),
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where Py, P, S are polynomials of degree < 2 with PyY(0)NE = 0. Assume that
©(OF) C o2 and (&) = (2n,1°) for some &,n € OE. Then h := F;o0 ¢ € Aut(E). In
particular, if o’ := @(X'), a” := p(\'), then
mp(N,X") =mp(h(XN), (")) = mp(Fy(a'), F(a"))

<max{mg(F.(a"),F.(d")): z € OFE}

< max{mg(F.(a'), F.(a")) : z € E} < cg,(d',a")

< kg, (@ a") = kg, (p(X), p(V") < mp(V, ).
Consequently, the formulas from Theorem 1.4.1 hold for all (s1,p1), (s2,p2) € @(F), and
p 18 a complex geodesic.
Proof. Put
2P —S 2P - 3§
2- ﬁS 2P — ﬁg
First observe that h(E) C E and h(OFE) C OFE. It is clear that h is a rational function

of degree < 2. Notice that 2i7P(n) — S(n) = 0 = 2P(n) — 75(n). Consequently, h is a
rational function of degree < 1 and, therefore, h must be an automorphism of the unit

h::Fﬁocp:

disc. m

LEMMA 1.4.12. If p satisfies the assumptions of Lemma 1.4.11, then for any g € Aut(E),
the mapping v := Hy o ¢ satisfies the same assumptions.

Proof. The only problem is to check that ¢ has the form (1.4.6). Let g = T7h, for some
T €0F,a€ E. Fix a A and let p(A\) = (S(A), P(A)) = m(#1, 22). Then
Y(A) = 7(9(21), 9(22)) = (T(ha(21) + ha(22)), T2h(21)h(z2))
_{ (14 |al?)(z1 + 22) — 2a2122 — 2a R a(z1 + z2) + a?
1 —a(z + 22) + @221 29 ol —a(z +oz) @220 )

Consequently,

(1+a*)S —2aP —2a , P—aS+a?
b=\ — —2 ) T — —2
1—-aS+aP 1-aS+a°P
B ( (1+1a?)S — 2aP — 2aP, 2 P—aS+a2PO>
Py —aS +a*P 7 Py —aS +a@*P
Proof of Theorem 1.4.1. We already know (Lemma 1.4.10) that G2 cannot be exhausted
by domains biholomorphic to convex domains.

STEP 1. First consider the case s; = sy = 0. Consider the embedding £ 3> A + (0, )
€ G4 and the projection G2 > (s,p) TR p € E. Then

mg(p1,p2) = max{mg(zp1, zp2) : 2 € OE} = max{mg(zp1, 2p2) : z € E}
=mp(F(0,p1), F(0,p2)) < g, ((0,p1), (0, p2))
< kg, ((0.p1), (0,p2)) = k&, (0(p1), ¢ (p2)) < m(p1,p2),

which completes the proof.
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STEP 2. Assume that s; =0, sy # 0. Let tp € (0,1) be defined by the formula
2py — Z — 2py — &
to := max{mE<p1,pQZ$2> :zGE}mE<p1, P2 552),

2 — 259 2 —&sq

where £ € E. Our aim is to construct a mapping ¢ : £ — G, satisfying all the assump-
tions of Lemma 1.4.11 such that ¢(t9) = (0, p2), ©(0) = (s2,p2).
First, we prove that

< to, z€eF,

and so £ € OE. Indeed, let L : C — C, L(2) := p1z —Z. Then L is an R-linear
isomorphism. In particular, if D := L(FE), then 0D = L(OF). Observe that

to = max{|®(L(2))| : 2 € E} = max{|®(w)| : w € D},
where
2(p2 — p1) + saw
2(1 = p1Py) + Sow
Note that @ # const. Now, the required result follows easily from the maximum principle.

In particular, mg(p1,p2) < to.
Using the automorphism R., we may reduce the problem to the case { = 1.

D(w) :=

STEP 3. Put
2py — s
ag = F1(52,p2) = % € FE
— s
and let h € Aut(E) be such that h(tg) = p1, h(0) = ap. Let 7 € OF be such that
h(r)=1.

There exists a Blaschke product P of order 2 such that P(ty) = p1, P(0) = p2, and
P(7) = 1. Indeed, first observe that it suffices to find a Blaschke product @ of order 2
with Q(to) = hp, (p1) =: P}, Q0) =0, and Q(7) = hyp,(1) =: 7’ € OF (having such a @
we put P :=h_,, 0 Q).

We have Q(\) = Ag(\), where g € Aut(E) is such that g(to) = p/to =: a € E (recall
that tg > mg(p1,p2) = |p}|) and g(7) = 7//7 =: 7/ € JE. Define

g:=h_g0(( hy),
where ¢ := ho(7")hyy (7). Then g(to) = h_q(0) = a and g(7) = h_o(¢ - hyy (1)) = 7.
STEP 4. Define
P—h
= 2— = P .
S T ¢=(5P)

First observe that ¢ has the form (1.4.6). Indeed, let P = P /Py. The only problem is to
show that S = S/P, with S being a polynomial of degree < 2. Let h = h/hg. Then

Pho — hP,
—o 0770

Po(ho — h)
Since h(7) = P(r) = 1, the polynomial Phy — hP, is divisible by h — h.
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Observe that:

o plto) = (), (o) = (2252020 ) = 0) = (o1

P2 — (2p2 — 52)/(2 — s2) 2)

o 6(0) = (500), PO) = (22522 pa) = (2

1 —ag 1—(2p2 — $2)/(2 = s2)
= (s2,p2);
_2P-S 2P-2(P-h)/(1—h)
Chev =T T ey a—h
e on OF we get
- P—h 1—-P/h
P=2—"_P=2 =8
o 1-h 1-1/h s

We have

,_2P-5 _2P-§
- 2-85  9p,—§

Note that deg(2P — S) = 2 or deg(2P, — S) = 2. Thus the polynomials 2P — S, 2P, — S
must have a common zero, say z. We have 2P(zg) = S(z0) = 2Py(20). Thus P(z) = 1,
which implies that zo € OF and S(z) = 2.

Put C := max{|S(\)| : A € OFE} (we already know that C > 2). Define ¢y :=
(25/C, P). Then v satisfies all the assumptions of Lemma 1.4.11 and, consequently,
Theorem 1.4.1 holds for points from ¢(E). In particular, there exists an 7 € E such that

to = mp (7p 2Tpa — 2s9/C —mp(p 2py — 1289 /C
0= EPY Ty s, /O B\ e Tasy /0 )

Hence, C' < 2 and finally C' = 2. Consequently, ¢ = v, which completes the proof of the
theorem in the case s; = 0.

STeP 5. Now let (s1,p1), (s2,p2) € G2 be arbitrary. Suppose that s; = A} + \J with
A2, A\J € E. One can easily prove that there exists an automorphism g € Aut(E) such
that g(A\Y) + g(A\3) = 0. Then H,(s1,p1) = (0,p}). Put (sh,ph) := Ha(s2,p2). We have
the following two cases:

e s, = 0. We already know that the mapping ¢ = (0, h) with suitable h € Aut(E)
(h(to) = pi, to := mg(pi,ph), h(0) = ph) is a complex geodesic for (0,p}) and (0, p}). By
an argument as in the proof of Lemma 1.4.12, we easily conclude that if g~! = 7h,, then

—2ah —2a 5 h+ a? —
::H — = 2 —
?ﬁ g-10¢Y (T 1+62h T 1+a2h> (ﬁq+57q)a
where
] 2a ) 9 A
ﬁ =T W S E, q =T h,a2 ohe ut(E)

For any a € OF we have

2¢—a(Bg+p3) 2-af q—ap/2-ap) _

o = — = — = A .
Foot =0 et ) 2T 0B 1—ad@rapy S AP
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Hence
to = mg(ga(to); 4a(0)) = me(Fa(¥(to)), Fa(¥(0)))
2p1 —Zs1 2pa —Zs2 )\
Smax{ ( R 2—232>'266E}
= max{mg(F.(s1,p1), F.(s2,p2)) : z € OE}
< max{mp(F.(s1,p1), Fz(s2,p2)) : 2 € E}

< ¢k, ((51.11), (52.12)) < K&, ((51.11), (52.12)) = k&, (¥(to), ¥(0)) < to.

e s, # 0. We know that there exists a mapping ¢ : E — G2 as in Lemma 1.4.11
such that H,(s;,p;) € ¢(E), j = 1,2. It remains to observe that, by Lemma 1.4.12, the
mapping H,-1 o ¢ also satisfies all the assumptions of Lemma 1.4.11. m

COROLLARY 1.4.13.

g, ((51,p1), (52,12)) = kg, ((51,p1), (52,P2))

_ max{ (s1p2 — P152)22 + 2(p1 — p2)z + 52 — 51
(p132 — 81)22 + 2(1 = p1Py)2 + 51P5 — 52

In particular,

¢, ((0,0), (s,p)) = k5,((0,0), (5,p))
= max{|F.(s,p)| : z € OE} =

ZG@E}7 (s1,p1), (52,p2) € Go.

2|5 — 5p| +|s” — 4p|
4—|s? ’

(S,p) S G2-

THEOREM 1.4.14 ([Jar-Pfl 2004], [Cos 2004b]).
Aut(Gy) = {Hy, : h € Aut(E)}. (1)
A characterization of Aut(Gz) is also announced in [Agl-You 2004].

Proof. STEP 1. First observe that Aut(Gs) does not act transitively on G,. Otherwise, by
the Cartan classification theorem (cf. [Akh 1990], [Fuk 1965]), G2 would be biholomorphic
to By or E?, which is, by Theorem 1.4.1, impossible (%)

STEP 2. Next observe that F(X;) = Y5 for every F' € Aut(Gz). Indeed, let V :=
{F(0,0) : F € Aut(G2)}. By W. Kaups’ theorem, V is a connected complex submanifold
of Gy (cf. [Kau 1970]). We already know that s C V (Remark 1.4.8). Since Aut(G3)
does not act transitively, we have V' & Go. Thus V = 3.

Take a point (sg, po) = Hr(0,0) € X5 with h € Aut(E) (Remark 1.4.8 again). Then
for every F' € Aut(Gy), we get F(so,po) = (F o H,)(0,0) € V = Xs.

STEP 3. By Remark 1.4.8, we only need to show that every automorphism F' € Aut(Gs)
with F(0,0) = (0,0) is equal to a “rotation” R,. Fix such an F = (S, P).

(*") See Remark 1.4.17 for a more general result.

(*®) Instead of invoking Theorem 1.4.1, one can also argue as follows: In the case G2 ~ Bs we
use the Remmert—Stein theorem (cf. [Nar 1971, p. 71|) saying that there is no proper holomorphic
mapping E? — B,. In the case Go ~ E? we use the characterization of proper holomorphic
mappings F : B> — E? (cf. [Nar 1971, p. 76]), saying that any such mapping has the form
F(z1,22) = (Fi(21), F2(22)) up to a permutation of variables.



1.4. The converse to the Lempert theorem 37

First observe that F|x, € Aut(Xs). Hence the mapping
1
E3 X (20, )2) = F(2\,\?) — 3 pry(F(2\, M) € E

must be a rotation, i.e. F(2X,A?) = (2a\,a?)?) for some a € JE. Taking Ry, o F
instead of F', we may assume that o« = 1. In particular, F’(0,0) [(2)] = [3} and, therefore,
F'(0,0) = [§5]-

For 7 € OE put G; := F~'o Ry, o F o R; € Aut(G;). Obviously, G,(0,0) = (0,0).
Moreover, G/-(0,0) = [1 %"V ]. Let G7 : Gy — G, be the nth iterate of G,. We have
(G1)(0,0) = [} "b(Tl_l) |. Using the Cauchy inequalities, we get

|nb(T —1)| < const, mneN,redE,
which implies that b = 0, i.e. F’(0,0) is diagonal.

STEP 4. We have G/ (0,0) = I,. Hence, by the Cartan theorem (cf. [Nar 1971, p. 66]),
G, =id. Consequently, R, o FF = Fo R, i.e.

(S(s,p), 72P(s,p)) = (S(rs,7%p), P(15,7%p)),  (s,p) € Ga, T € OE.

Hence F(s,p) = (s,p + Cs?). Since F(2\,A?) = (2, \?), we have (2, A% +4C\?) =
(2X, A?), which immediately implies that C' = 0, i.e. F =id. m

From Theorem 1.4.1 we know that for any two points (s1,p1), (s2,p2) € G there
exists a complex geodesic ¢ with (s1,p1), (S2,p2) € p(E) (cf. §1.2.5). Moreover, there
exists an o € JF such that F,, o ¢ € Aut(E). We have the following characterization of
complex geodesics in Go (cf. [Pfl-Zwo 2004]).

THEOREM 1.4.15. Let ¢ = (S, P) : E — Go. Then:

(a) If #(p(E)N Xy) > 2, then ¢ is a complex geodesic iff p(A\) = (—2X,A2?) (A € E)
mod Aut(E). In particular, if ¢ is a complex geodesic, then p(E) = Y.

(b) If #(p(E)NXy) = 1, then ¢ is a complex geodesic iff p(\) = n(B(vV')\), B(—V\))
(A € E) mod Aut(E), where B is a Blaschke product of order < 2 with B(0) = 0.

(¢) If (E)N Xy =0, then ¢ is a complex geodesic iff v = w(h1,ha), where hy, hy €
Aut(E) are such that hy — ho has no zero in E.

In particular, any complex geodesic ¢ : E — Go extends holomorphically to E and
»(OF) C o3.

A concrete description of all complex geodesics in G is also announced in
[Agl-You 2004].

Proof. (a) Let o(\) := (=2, A\2), A € E. Then ¢(E) = Y,. Consequently, by Lemma
1.4.11, ¢ is a complex geodesic.

Now, let ¢ : E — Gy be a complex geodesic with (&) = (2u, u?) € Xy (&, € E).
Taking ¢ o h_¢ instead of ¢, we may assume that { = 0. Taking H},, o ¢ instead of ¢, we
may assume that y = 0, i.e. ¢(0,0) = (0,0). By Theorem 1.4.1, there exists an o € OF
such that F, 0 p = (2aP — S)/(2 —aS) =: h € Aut(E). Taking R, o ¢ instead of ¢
we may assume that a = 1. Observe that h must be a rotation and, therefore, we may
also assume that h =1id, i.e. (2P —S5)/(2—5) =1id. Thus S(A) = 2(P(\) — ) /(1 = A),
A€ E.
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Let 1 € E, be such that ¢(n) € 5. Then S?(n) = 4P(n), i.e.
Pl — p\ 2
(F0=1) g

L—=n

Hence P(n) = n? and so S(n) = —27. The Schwarz lemma implies that S(\) = —2),
A € E, and finally, P(\) = A2, A € E.

(b) Let ¢(\) := 7(B(VA), B(—V/A)), A € E, where B is a Blaschke product of order
< 2 with B(0) = 0.

In the case B(A\) = T\, A € E (1 € 9E), we get p(\) = (0,—72)\), A € E. Conse-
quently, F, o ¢ € Aut(F) for any a € OF (cf. Step 5 of the proof of Theorem 1.4.1).

In the case B(\) = 7Ahy(N\), A€ E (1 € OE, b € E), we get ¢(JE) C 02 and

2 2
©(\) = (27)\1 _@ 72N A‘f; ) A€ E.
1-b6 A 1-b6 A

To apply Lemma 1.4.11, we only need to observe that (&) = (2u, u?) for some &, u € OF.
The case b = 0 is obvious. In the case b # 0 take ¢ := b/b. Then (&) = (27¢, 72€2).

Now, let ¢ : E — G2 be a complex geodesic with #(p(E) N X3) = 1. Then, as
in (a), we may assume that ©(0,0) = (0,0), (2P —S)/(2—S) = id. Observe that
A(N) := S2(\) —4P()\) £ 0 for A € E,. Write A(\) = AFA()), where A(X) # 0, A € E.

Define
BO\) = %(S(V) + )\’“\/Z()\Q)), A€ E.
Then

52(A2) —4P(A\?) = A(N?) = A2 A(N?) = 4B%(\) —4B(A\)S(A\?) + S%(\?), A€ E,

which implies that
B(A)S(A\?) — B%(\) = P(\?) = B(=\)S(\?) — B?(=)\)
and, consequently,
(B(N) = B(=X)(S(A\*) = (B(\) + B(=X)) =0, A€ E.
We have the following two cases:

(i) S(A\?) = B(\) + B(=\), A € E. Then
P(X\?) = B(A)S(A\?) — B*(\) = B(A\)(B(\) + B(—\)) — B*(\) = B(A)B(—)), A€E.
Hence ¢(\) = 7(B(V/A), B(—V\)), A € E.

Fix a tg € (0,1). Let (so,p0) := @(t3) = ©(B(to), B(—to)) = 7(A\}, \9). Suppose that
there exists a function f € O(FE, E) such that f(0) = 0, f(to) = X}, f(~to) = A9,
and f(E) € E. Put ¢ :== n(f,f) : E — Gy and observe that ¥(0) = (0,0) and
¥ (t%) = (s0,po). Hence 1) would be a complex geodesic with 1)(E) € G3, a contradiction.

Thus, the function B solves an extremal problem of 2-type in the sense of [Edi 1995].

Consequently, B must be a Blaschke product of order < 2.
(if) B(A\) = B(—A), A € E. Then there exists a function B; € O(E, E) such that

BO\) = Bi(\2) = %(S(V) + A’u/ﬁ(v)), A€ E.
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Using the same argument, we reduce the proof to the case where there exists a By €

O(E, E) such that
By(\?) = %(S(V) - A’H/AN(A?)), Ae E.

Hence ¢ = 7(By, Bs). Since (2P — S)/(2 — S) = id, we get
2B1(A)Ba(A) = (Bi(A) + B2(A)) = A2 = (Bi(A) + B2(1))), A€ E,

which gives —(B(0) + B5(0)) = 2. Consequently, by the Schwarz lemma, B;(\) =
By()\) = =\, and finally ¢(\) = (=2A,\?), A € E. Thus, A = 0, a contradiction.

(c) Let ¢ := 7w(hy, ha), where hy, hy € Aut(FE) are such that hy; — hs has no zero in E.
Observe that ¢ satisfies (1.4.6) and p(9F) C 02. To use Lemma 1.4.11 we only need to
check that ¢(&) = (2n,1?) for some &,1 € OF, i.e. hi(€) = ho(&) for some ¢ € OF. Let
h; = Tjha, (1; € OF, aj € E), j = 1,2. Then we have to find a root z = £ of the equation

T1(z —a1)(1 —G2z) — (2 —a2)(l —a12) = Ay + Ajz+ Ag=0

with ‘€| = 1. We have AQ = —T109 +7’261, AO = —T1a1 + T2Q2. Observe that ‘A2| = |A0|
Since the equation h; — ho = 0 has no roots in F, we get As # 0. Let 21,22 be the
roots of the above equation. We have |z1],|22] > 1 and |z120| = |Ao/A2] = 1. Thus
1] = J22] = 1.

Now, let ¢ : E — G2 be a complex geodesic with ¢(E)N Yy = (). Then there exists a
holomorphic mapping 9 : E — E? with m 0 = ¢. Consequently, 1 must be a complex
geodesic (mp(XN, ') = cg, (0(N),o(\") < cp((N),¥(X")) < me(N,)\")). Hence,
1 = (h1, he), where hy,hy € O(E,E) and at least one of them is an automorphism.
Assume that h; € Aut(E).

Fix a ty € (0,1) and suppose that mg(ha(0), ha(to)) < to. Let

0= mE(hg(O), hg(to))/to S (0, ].)
There exists a g € Aut(E) such that g(0) = h2(0), g(oto) = ha(to). Put f(N) := g(o)),
A € E. Then f(0) = ha(0), f(to) = ha(to), and f(E) € E. Put x = (x1,x2) := 7(ha, f).
Then x(0) = ¢(0) and x(t9) = ¢(top). Thus x is also a complex geodesic. Notice that
by the Rouché theorem the function h; — f has a zero in E. Hence x(E) N Xy # 0.
In particular, in view of (a) and (b), x(OF) C o03. On the other hand x2 = hif,

a contradiction.
Consequently, mg(h2(0), ha(tg)) = to, and therefore, hy € Aut(FE). m

REMARK 1.4.16. With the help of Theorem 1.4.1, the Carathéodory and Kobayashi pseu-
dodistances and the Lempert function were calculated for the following unbounded bal-
anced domain

2y ={AeC(2x2):1(A) <1},
where r(a) denotes the spectral radius of A; cf. [Cos 2004b].
REMARK 1.4.17. Let n > 3 and let 7, : C™ — C",

Tn(Aly .oy Ap) == ( Z Ajy ”.)\jk)kzl,.. "

1< < <jr<n B
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Observe that m,, 7,
symmetrized n-disc.
Recently, in [Edi-Zwo 2004], A. Edigarian and W. Zwonek proved the following result.

gn are proper. Put G,, := m,(E™). The domain G, is called the

THEOREM. Any proper holomorphic mapping F : G, — G,, is of the form
F(mp(M, - \) = mn(B(A1), -, B(An)),
where B is a finite Blaschke product. In particular,
Aut(G,) = {Hp : h € Aut(E)},
where Hy(mp(A1, ..., An)) = mn(h(A1), ..., h(An)).

It is an open question whether:

g, = kg, ie. Gp € Ly

G,, cannot be exhausted by domains biholomorphic to convex domains.

Moreover, one can conjecture that for any proper mapping F' : C* — C" the domain
G := F(E™) belongs to L,,.

1.5. Generalized holomorphically contractible families

Observe that the Mobius and Lempert functions are obviously symmetric (cf; is even
a pseudodistance). The higher Mgbius functions and the Green function are in general
not symmetric (cf. [J-P 1993, §4.2]). Their definitions distinguish one point (pole) at
which we impose growth conditions. From that point of view it is natural to investigate
objects with more general growth conditions. For instance, the Green function gz may
be generalized as follows.

DEFINITION 1.5.1. Let G C C" be a domain and let p : G — Ry be a function. Define
9c(p, z) :==sup{u(z) : u: G — [0,1), logu € PSH(G),
Vae Jo—c(uay>0 Ywea 1 u(w) < Cllw —alP}, 2 € G. (1)

The function gg(p,-) is called the generalized pluricomplex Green function with poles
(weights, pole function) p.

We have g¢(0,-) = 1. Observe that if the set |p| := {z € G : p(z) > 0} is not
pluripolar, then g¢(p,-) = 0. Obviously, g¢(p, z) = 0 for every z € |p|.

In the case where p = x4 = the characteristic function of a set A C G, we put
9c(A,-) := ga(xa,). Obviously, ga({a},:) = ga(a,-), a € G. In the case where the set
|p| is finite, the function g (p,-) was introduced by P. Lelong in [Lel 1989)].

The definition of the generalized Green function may be formally extended to the case
where p : G — [0, +00]. We put gg(p, -) := 0 if there exists a zp € G with p(zp) = +o0.

The generalized pluricomplex Green function was recently studied by many authors,
e.g. [Car-Wie 2003], [Com 2000], [Edi 2002], [Edi-Zwo 1998b], [Jar-Jar-Pfl 2003],
[Lar-Sig 1998b].

(*?) Here and in what follows, 0° := 1. Observe that the condition is trivially satisfied at all
points a € G with p(a) = 0. The growth condition may be equivalently formulated as follows:

Yacp(ay>o 3c,rs0 s u(w) < Cllw —alP',  w e B(a,r) C G.
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Using similar ideas, one can generalize the Mobius function.
DEFINITION 1.5.2. Let G C C" be a domain and let p : G — Z be a function. Define
ma(p, z) :=sup{|f(z)| : f € O(G,E), ord, f > p(a),a € G}, z€G.
The function mq(p,-) is called the generalized Mébius function with weights p.

We have m(0,-) = 1. Notice that if the set |p| is not thin, then mg(p,) = 0. As
before, the definition may be formally extended to the case where p: G — Z, U {+00};
ma(p,-) := 0 if there exists a zo € G with p(z9) = +o0o. Similarly to the case of
the generalized Green function, we put mg(4,-) = ma(xa, ) (A C G), ma(a,-) =
ma({a},-) (a € G) (*).

Obviously, ma(a,-) = c§(a,-), a € G. More generally, mg(kx{q},") = [m(éf) (a,)]".
It is clear that mg(p,-) < ga(p, ) (for any function p : G — Z; U {400}). Properties of
g (p,-) and mg(p, ) will be presented in §1.6.

The above generalizations lead us to the following definition.

DEFINITION 1.5.3. A family (d¢g )¢ of functions dg : Rf xG — Ry, where RE denotes the
family of all functions p : G — R, is said to be a generalized holomorphically contractible
family (g.h.c.f.) if the following three conditions are satisfied:

(E) HaeE[mE(a7 Z)]p(a) < dE(pv Z) < infaGE[mE(aﬂ Z)}p(a)v (p7 Z) € RE x E (21)a
(H) for any F € O(G,D) and q : D — R, we have

dp(q,F(z)) <dg(go F,z), z€G,
(M)  for any p,q: G — Ry, if p < g, then dg(q,-) < dc(p, ).

If in the above definition one considers only integer-valued weights (as in the case of the
generalized Mébius function), then we get the definition of a generalized holomorphically
contractible family with integer-valued weights.

Put dg(4, ) :=da(xa,) (A CG), dg(a,-) :=da({a},") (a € G).

One can prove that the generalized Green and Mobius functions are g.h.c.f. in the
sense of the above definition; cf. §1.6. In the context of the inequalities (1.1.2), it is
natural to ask whether there exist minimal and maximal g.h.c.f. Put

ag(p.2) = s { [T [mele f)FPPU 0 fe0(GE)} (2)
REF(G)

—sup{ [] Iupwrt ) f e 0(G,B), f(2) =0},
nef(G@)
dB(p, 2) = k& (p, z) :=inf{ [k (a, 2)]P@ : a € G}
= inf{|u|PPW) : o e O(E,Q), p(0) =2z, pc E}, zeG.
(*°) In the case of the unit disc this definition of mg coincides with the previous one from
Definition 1.1.1.

(*"Y For h: A — [0,1], we put [loca(a) :=infpca, gB<co [[ocp P(a)-
(*2) Note that the product is 0 if sup p(f ' (uo0)) = 400 for a po € f(G).
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We have dg™(0,-) = dg**(0,:) = 1. Observe that dg™(kx{a},") = [c&(a,-)]* and
dg*(kx{a},-) = [k&(a,)]*. Moreover, for § # A C G we get

agn(A,z) =swp{ ] muu f(2): f € OG, E)}
HEF(A)

>sup{|f(2)] : f € O(G,E), fla=0} =mg(4,2), z€G. (*¥)

We extend formally the definitions of %" (p, ) and d%**(p, -) to the case where p : G —
[0, +oo]; 2™ (p,-) = dB™(p, ) := 0 if there exists a 29 € G with p(z) = +oo.

Directly from the definitions it follows that the systems (d%")g, (d5*¥)g satisfy (E)
and (M) of Definition 1.5.3.

PROPOSITION 1.5.4 ([Jar-Jar-Pfl 2003]). The systems (d&5")c and (d%*) are g.h.c.f.
Moreover, for any g.h.c.f. (dg)c (with integer-valued weights) we have

g™ (p,-) < dg(p,-) < dE™(p,-)
for any functionp: G — Ry (p: G — Z,). In particular,
g™ (p,-) < ga(p,-) < dg™(p, )
for any function p: G — Ry and
dg™(p,") < ma(p,-) < ga(p,) < dg™(p,-) (**)

for any functionp : G — Z,..
Consequently, d5"(A, ) = mg(A,-), AC G.

The function d%™™ (resp. d%**) may be considered as a generalization of the M&bius
function ¢, (resp. Lempert function k(). The properties of &3 and d&** will be pre-
sented in §1.8.

Proof. STEP 1. If (dg)¢ satisfies (H) and
(EY)  dp(p.)) < dg™(p,A) = inf{[mp(u, )PV : pe B}, (p,A) €RY x B,

then dg < di3®™* for any G. The same remains true in the category of g.h.c.f. with
integer-valued weights. Indeed,

de(p.2) < inf{dp(po¢,0): ¢ € O(E,G), p(0) = 2)

Eh
< inf{|puPP) o e O(E,G), ¢(0) = z, p € E}

— d3%(p,2), (p,2) €RY x G.

(?®) Proposition 1.5.4 states that in fact dZ™(A,) = ma(A,-).
(**) Notice that in general d=™(p,-) < ma(p,-) < ga(p, ) < d&**(p, -); cf. Examples 1.7.19,
ES ES ES

1.7.20.
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STEP 2. The system (dE**)¢ is a g.h.c.f. Indeed, to prove (H) let ' : G — D be
holomorphic and let g : D — R;. Then
dp™(q, F(2)) = inf{ [k (b, F())]*" : b € D}
< inf{[kp (F(a), F(2))]"" ) s a € G}

< inf{[k&(a, 2)]2F @) g € G} = A8 (qo F,z), z€G.
STEP 3. If (dg)¢ satisfies (H), (M), and
(E7) H[ (L, NPW <dgp(p,)), (p,)\) € RY x E,
neEE

then d%™ < dg for any G. The same remains true in the category of g.h.c.f. with
integer-valued weights. Indeed,

(M)
de(p.2) > sup{da(gof.2): f € O(G.E), q € RE, f(z) =0, p < qo f}
D cup(ds(a,0): f € O(C, E), g € RE, f(2) =0, p < qo f}

(E7)
> sup { [T lul"") : f € O(G, E), g € RE, f(2) =0, p<qo f}

HEE

>S“p{ [ ke o0 feo@, B, f(Z):O}
HESF(G)
— 45" (p,2), (p,2) €RY xG.

STEP 4. The system (d%")s is a g.h.c.f. Indeed, to prove (H) let F : G — D be
holomorphic and let g : D — R,. Then

a5, P() =sw { [] [ns(ug(FE)»as ) g e 0D, E)}

neg(D)

f=goF —1

< s { [T s fEP»@0Y 00 f e oG, E)
HEF(G)

:dglin(qu,Z), ze€G. m

1.6. Properties of the generalized Md&bius and Green functions

Directly from Definitions 1.5.1 and 1.5.2 we get the following elementary properties of
the generalized M6bius and Green functions (cf. [Jar-Jar-Pfl 2003]).

REMARK 1.6.1. (a) mg(kp,-) > [ma(p,-)]*, k € N (*); ga(kp,-) = [9a(p,-)]*, k > 0.

(b) If p < gq, then mg(p,) > mea(q,-) and ga(p,-) > gc(q,-), i.e. both systems
(ma)a, (9¢)g satisfy condition (M) from Definition 1.5.3. In particular, if A C B C G,
then mg (A, ) > mg(B,-) and gg(4, ) > ga(B,-).

(*®) Notice that in general mq(kp,-) Z [ma(p,-)]*; for instance, if P C C is an annulus,
then mp(kX{a},) Z [mp(a,-)]", k > 2; cf. [J-P 1993, Proposition 5.5].
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(c) ma(p,-)ma(q,-) < ma(p+q,-) <min{mea(p,-), ma(q,-)},
96(p,)9c(q,") < ga(p +q,-) < min{ga(p,-), 9a(q,)}-

In particular,
mG(p7 ) < gG(p7 ) < 328[96;((1’ ')]p(a) < ;22[%5(a7 .)]p(a) = drélax(pa )
If |p| is finite, then

ma(p,) = [] ma(a, )P, galp,) > 1] loala, )P
a€|p| a€|pl
(cf. Proposition 1.6.5(a)).
(d) ga(p.2) = sup{u(2) s u: G — [0,1), logu € PSH(G), u < infeec(ga(a, )P},
z €.
(e) Let G ¢ C*, D C C™ be domains and let F' : G — D be holomorphic. Then for
any function g : D — Z (resp. ¢ : D — R ) we have

mD(an(z)) < mG(qFaZ) < mG(qOFa 2)7
gD(qu(Z))SgG(qFaz)ggG(quvz)a Z€G7

where
qr(a) :=q(F(a))ord,(F — F(a)), a€G. (%)

Thus both systems (m¢g)e and (gg)¢ satisfy condition (H) from Definition 1.5.3. In
particular,

mp(B,F(2)) <mg(FYB),2), gp(B,F(2) <ga(FY(B),2), BcD,zecg.

(f) logmeg(p,-) € C(G) N PSH(G), logga(p,-) € PSH(G) (we can argue as in the
one-pole case; cf. [J-P 1993, Proposition 4.2.11, Lemma 4.2.3]).

(g) If p £ 0, then for any zg € G there exists an extremal function for mq(p, 2o),
i.e. a function f,, € O(G, E) with ord, f,, > p(a), a € G, and ma(p, z0) = | [, (20)|-

(h) If Gy, /" G and py, /" p, then mg, (Py,") \ ma(p,-), 9, (Pk,") \ gc(p;-)- In-
deed, the case of the generalized M&bius function follows from a Montel argument (based
on (g)). In the case of the generalized Green function first recall that g¢, (a, ) \, 9¢(a, ),
a € G; cf. [J-P 1993, Proposition 4.2.7(a)]. Let ux := gg, (Py, ). Then logu, € PSH(Gy)
(by (f)) and gg(p, ) < ugs+1 < ug on Gy, (by (b) and (e)). Let u := limy_, oo ur. Obvi-
ously, u > gg(p,-) and logu € PSH(G). Moreover, since uy, < [ga, (a,)]P*®, a € Gy,
we easily conclude that u < [gg(a,)|P?), a € G. Hence, by (d), u = g5 (p, -).

(i) Let P C G be a relatively closed pluripolar set such that p = 0 on P. Then
ge\p(P,*) = ga(p,-) on G \ P (cf. [J-P 1993, Proposition 4.2.7(c)]).

PROPOSITION 1.6.2 ([Jar-Jar-Pfl 2003]). g (p, ) = inf{gc(q,-) : ¢ < p, #|q| < +o0}.
Proof. Let u :=inf{gc(q,-) : ¢ < p, #|g| < +oo}. Obviously u > ga(p, ). To prove the

opposite inequality we only need to show that logw is plurisubharmonic. Observe that

(?®) Observe that in the case where F' = const = b we have q = +oco if g(b) > 0 and
qgr =0if g(b) =0.
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gc(max{qq,...,qn},") < min{ga(qy,),.-.,9c(qy, )} Thus we only need the general
result given below.

LEMMA 1.6.3. Let (v;)iea C PSH(S2) (2 C C™) be such that for any i1,...,ix € A
there exists an ig € A such that v;, < min{v;,,...,viy}. Then v :=inf;c4v; € PSH(S2).

Proof. 1t suffices to consider the case n = 1. Take a disc B(a,r) € 2, € > 0, and a
continuous function w € C(9B(a,r)) such that w > v on IB(a,r). We want to show that

2m

v(a) < — S w(a+re'?)dh +e.

2 5
For any point b € 9B(a,r) there exists an i = i(b) € A such that v;(b) < w(b) +¢. Hence
there exists an open arc I = I(b) C IB(a,r) with b € I such that v;(\) < w(\) + ¢,
A € I. By a compactness argument, we find by,...,by € 9B(a,r) such that 0B(a,r) =

U;.Vzl I(b;). By assumption, there exists an ig € A such that v;, < min{v,s,),...,Vipy)}-
Then
1 2m . 1 2m 4
v(a) < v (a) < o (SJ vy (a +re'?) dh < Dy S w(a+re)df+¢c. m

PROPOSITION 1.6.4. For any function p : G — Z4 we get

ma(p,-) = inf{mg(q,"): q: G — Zy, q < p, #|q| < +o0}.
Proof. The case where |p| is finite is trivial. The case where the set |p| is countable
follows from Remark 1.6.1(h). In the general case let A, := {a € G : p(a) = k} and let
By, be a countable (or finite) dense subset of Ay, k € Z. Put B := J;—, Bk, p' :=p-XB-
Then p’ < p, the set |p’| is at most countable, and ma(p, ) = mag(p’, ). Consequently,
the problem reduces to the countable case. m

PROPOSITION 1.6.5. (a)

mG(p7 ) 2 H [mG(a’ ')]p(a)a gG(pv ) > H [gG(a7 .)]p(a).
acG acG

(b) If G CC, then
ga(p,2) = [[loc(a, 2)]P™,  zea.
aeG
In particular,
d§in(p7 Z) = mE(pa Z) = gE(pa Z) = H [mE(aa Z)]p(a)a z€ L.
aclE
Notice that the formula in (b) is not true for G C C", n > 2; cf. Example 1.7.17.

Proof. (a) Use Remark 1.6.1(c) and Propositions 1.6.2, 1.6.4.
(b) By Proposition 1.6.2 we may assume that the set |p| is finite. Let

U= H [QG(av ')]p(a)‘
a€lp|

By (a) we only need to show that g (p, -) < u. Now, by Remark 1.6.1(h), we may assume
that G € C is regular with respect to the Dirichlet problem. Then the function logu
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is subharmonic on G and harmonic on G \ |p|. The function v := log ga(p, ) — logu
is locally bounded from above in G and limsup, . v(z) < 0, ¢ € 9G. Consequently,
v extends to a subharmonic function on G and, by the maximum principle, v <0 on G,
ie. go(p,)) <uonG.nm

PROPOSITION 1.6.6 ([Edi-Zwo 1998b], [Lar-Sig 1998b]). Let G,D C C™ be domains and
let F: G — D be a proper holomorphic mapping.

(a) Let q: D — R,. Assume that det F'(a) # 0, a € F~'(|q|). Then

90(q, F(2)) = 96(qr,2) = ga(go F,z), z€G.
In particular, if B C D is such that det F'(a) # 0, a € F~(B), then
gp(B,F(2)) = go(F~'(B),z), z€G.
(b) Assume that D is convex. Then for any point b € D such that det F'(a) # 0,
a € F71(b), we have
mp(b, F(2)) = mg(F~(b),2), =z¢€G.
Notice that (a) may be false if det F/(a) = 0 for some a € F~!(|q|) (cf. Example
1.7.4). Moreover, (b) need not be true if D is not convex (cf. Example 1.7.7).

For the behavior of the pluricomplex Green function under coverings see [Azu 1995],
[Azu 1996].

Proof. (a) We only need to show gp(gq, F'(2)) > ga(qo F, z), z € G; cf. Remark 1.6.1(e).
Put S:={z€ G :det F'(z) =0}, X := F(S5). It is well known that
Flenr-1(x) G\F'(X)—-D\X
is a holomorphic covering. Let N denote its multiplicity. Let u : G — [0,1) be a
logarithmically plurisubharmonic function such that
u(z) < C(a)||z — a||9F@D) . 4 2€G.
Define
v(w) :=max{u(z): z € F*(w)}, weD.
Since F' is proper, logv € PSH(D) (cf. [Kli 1991, Proposition 2.9.26]). Take a b € D
with g(b) > 0 (recall that b ¢ X) and let F~(b) = {a1,...,an} (a; # ay for j # k).
There exist open neighborhoods Uy,...,Un,V of ai,...,an,b, respectively, such that
Fly, : Uy — V is biholomorphic, j = 1,...,N. Let g; := (Fly,)"", j = 1,...,N.
Shrinking the neighborhoods if necessary, we may assume that there is a constant M > 0
such that [|g;(w) — a;|| < M||lw —b||, w € V. Then, for w € V, we get
v(w) =max{uog;(w):j=1,...,N}

< max{Clay)lgs (w) — ;|97 j = 1,..., N}

<max{C(a;):j=1,..., N}MI®|w — p|9®).
Consequently, gp(g,-) > v and, therefore, gp(q, F(z)) > v(F(z)) > u(z), z € G, which
gives the required inequality.
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(b) By Remark 1.6.1(e) we only need to check the inequality “>". Since D is convex,
the Lempert theorem implies that mp(b,-) = gp(b,-) (cf. [J-P 1993, Theorem 8.2.1]).
Hence, by (a) we get

mp(b, F(2)) = gp(b, F(2)) = ga(F1(b),2) > mg(F~*(b),2), 2€G. m

1.7. Examples
ExAMPLE 1.7.1 ([Car-Ceg-Wik 1999]). Let
T :={(21,22) € Ex X E : |22] < |21|}
be the Hartogs triangle. Let p : T'— R. Consider the biholomorphism
E. X E > (z,22) iR (z1,2120) € T.
The set E? \ (E, x E) is pluripolar. Hence, by Remark 1.6.1(e, i),
gr(p, F(2)) = gp.xp(Po F,2) = gu2(p',2), 2€ E.xE,
where p’ :==po Fon E, x E and p' := 0 on {0} x E. In particular,
gr(a,z) = max{mg(a1,21), mg(az/a1,z2/z1)}, a=(a1,a2), 2= (21,22) € T.
ExAMPLE 1.7.2. For any non-empty sets Aj,..., A, C E we have
mpen (A1 X -+ X Ay, 2)
=ggn(A; X -+ X Ap,2) = max{mg(Ai,21),....,mg(4n, zn)}
:max{ H mg(aj,zj):j= 1,...,n}, z=(21,...,2n) € E™.
a; €A,
In particular, for any non-empty set A C £ we have
mpn (A x {0}, 2) = gpn (A x {0}, 2)
=max{mg(A, z1), |z|,...,|znl}, 2=1(21,...,2n) EE"

(cf. Example 1.7.17). Indeed, by Propositions 1.6.2, 1.6.4 we may assume that A;,..., A,
are finite. Let

A—a .
F}()\)ZHm, )\EE‘7]:1,...7'I’L7
acA;

be the corresponding Blaschke products. The mapping
E"3 (21, ,20) & (Fi(21), ..., Fu(zn)) € E”

is proper. Moreover, det F'(z) = F{(z1)---F!(z,) # 0 for z € A} x --- x A,,. Conse-
quently, by Proposition 1.6.6,

mpn(Ar X -+ X Ay, 2) =gpn (A1 X -+ X Ay, 2)
= gpn (0, F(2)) = max{|F;(z;)| : j =1,...,n}
=max{mg(A1,21),...,me(An,2n)}, 2z2=(21,...,2n) € E™.
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ExAMPLE 1.7.3. Recall that for p = (p1,...,pn) € R%, (n > 2), we put

E, := {(zl,...,zn) eC": Z 2P < 1}.

j=1
Fix (v1,...,v,) € N". The mapping
Bu 3 (21, 520) & (2400, 200) € Btyun, 1/
is proper. Let (a1, ...,a,) € B, be such that a]V-j_l #0,7=1,...,n, and let
A:=FYF(a)) = {(c101,...,6nan) 1 e; € V1,5=1,...,n}.
Then, by Proposition 1.6.6,

98, (4, 2) = IEB(1/0y,.. 1 vm) (F(a), F(2)), =z€By;

roughly speaking, the multi-pole pluricomplex Green function for the Euclidean ball is
expressed by the standard one-pole pluricomplex Green function for an ellipsoid.

Notice that for some special cases the function gg,,, .  (F(a),F(-)) may be ef-
fectively calculated. For example, let n =2, 17 =1, vo =2, a = (0, ) (s € (0,1)). Then
A =1{(0,-5),(0,s)} and

9B, ({(O’ _8)7 (Ov 5)}7 (Zlv ZQ)) = 9E(1,1/2) ((0’ 32)7 (Zla Z%))

1—s2)(1—|z)2 — |z)?)\ /2 :
1—s2)(1— |z — 222\ V2 i
2(1 = 5 Re 23) a2 o+ |52 — 2]z — % 4 VA /2
31— 223
if s|z1| < min{|z2 — 3|, |22 + |},
where
A= 4|z [*(s* Im 22)% + 4|21 2 (1 — s Re 22)|s? — 52|21 |> — 222 + |s% — 82|z | — 22|%;

cf. [Edi-Zwo 1998b] (see also [Com 2000] for a different approach). We would like to point
out that even | ? | for the case |p| = {a1,a2}, p(a1) # p(as), a formula for gg, (p,-) is not

known.

EXAMPLE 1.74. Let By 3 (21, 22) & (21,23) € E(1,1/2), @ := (0,0). Then det F'(0) = 0
and gg, (0, ) Z [gE, , 2, (0, F(-))]° for any s > 0. Indeed,
gBQ((()?O)? (21722)) = h]B2(Z1,Zg) =V |21|2 + ‘ZQ|27

22| + V4|21 + |2
gE(111/2> ((Oa 0)7 (217 22)) = h]E(l,1/2) (21’ 22) =

where hp is the Minkowski function. In particular, for small ¢ > 0, we get
9B, ((07 0), (t7 t)) = t\/iv JE(1,1/2) ((07 0)7 (t, t2)) ~t,

which implies the required result.
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ExAMPLE 1.7.5 ([JarW 2004]). Let p = (p1,...,pn) € RZ,, E:=E,. Put
A=Agp ={z2€B:2---2, =0}, k=1,....,n

Our aim is to find effective formulae for mg(Ag k, ) and gr(Ag i, 2), where z= (21, ..., zn)
€ E. It is clear that we may assume that

prlz [P < < e PEL (3T)
Put

s := - rs(2) =1- Z 12177, cs(2) == 715(2)/qs, s=1,...,k (rp = 1),
j=s+1

d = d(z) :=max{s € {1,...,k} : 2p|2|P* < cs(2)}, (*)

4 B d % 1/2p; o d o 11/, |21 -+ 24|
Re(A, 2) '_H|Zj| ca(2) (qd H( ;) )(17271 PEAT

j=1 j=1 J=d+1

A z)=gr(A,z) =Rg(A,z2)ifp; >1/2, j=d+1,.
A (A4,2) = R(Az)fork—ln—Q,p2>1/2
mg(A, z) 7é gr(A, z) if there exists a jo € {k+1,...,n} with p;, <1/2,
|z1] # 0 small enough, I =1,...,k, jo,
z1=0,l=k+1,...,50—1,jo+1,...,m
(e) mr(A,z) = gr(A4,z) = Rg(A,z) for k =n =2, py < py, and either ps > 1/2 or
8p1 + 4p2(1 — pa) > 1.
It is an open question whether mg(A,z) = gr(A,2) = Re(4,z) if p; > 1/2, j
k+1,...,n (with arbitrary n and k).

Proof of (a) STEP 1. We have mEn(AEn’k,C) = gE"(AE",IwC) = |C1"'<k|a ¢
E"™, where Agny = {¢ € E™ : (1---(, = 0}. Indeed, it is clear that |(1--- (gl
mpn(Apn k,¢) < ggn(Agnk,¢). It remains to prove that u(¢) := gpn(Apn i, ()
|1+ Ck|, ¢ € E™. We proceed by induction on k (with arbitrary n and logarithmically
plurisubharmonic function v : E™ — [0,1) such that u(¢) < C(a)||¢ — all, a € Agn k,
CeE™).

For k£ = 1 the inequality follows from the Schwarz type lemma for logarithmically
subharmonic functions u(+, (s, ..., ().

For k > 1 we first apply the case k = 1 and get u((1,...,(n) < |C1], ¢ € E™. Next we
apply the inductive assumption to the functions «((1,)/|¢1], (1 € E..

INIA M

STEP 2. Consider the mapping
1/2p1 1/2pa
ca(z calz
dB(Cl,n-,Cd)'—’(Cl(#) ,-~-;<d<£> ,zd+1,...,zn>€E.
D1 2pq
Using the holomorphic contractivity and Step 1, we get mg(A4, z) < gg(4, z) < Rg(4, 2).

(*") In particular, if py = - - - = py, then the condition simply means that |z;| < --- < |zx].
(28) Observe that zgq41 -« - 25 # 0.
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STEP 3. We have gg(A, z) > Rg(A, z). Indeed, we may assume that z; - - - zg # 0. First
consider the case d = k = n. Put f(() := ¢} [[_, ¢;(2p;)'/?Pi, ¢ € E. Observe that
|f(2)| = Re(A, 2) and

n .|2p; n
Ol < q<&) <1, CeE ()

qd

Thus gr(A, z) > mg(A,z) > Re(A4, 2).

Now assume that d < n. Put E' :=E(,,., . ,.). Observe that we only need to find a
logarithmically plurisubharmonic function v : E' — [0, 1), v # 0, such that

e v(¢') <Gl ¢ = (Cagas -5 Cn) €EEL G =d+1,...,k (39,

e the mapping E' 5 (' — v(¢’)rd*(¢’) € Ry attains its maximum for ¢ = (2441, ...,

zn) (%)

Indeed, suppose that such a v is already constructed and let M be the maximal value of
the function E' 5 ¢’ — v(¢)rd*(¢'). Put

Em

u(©) =5 (T Il 2 )o(c). €= (CorerG) = (Grre )

Il
-

J

Then logu € PSH(E) and u(¢) < C(a)|¢;| < C(a)||¢ — al| for any ¢ € E and a € A with
a; =0, where j € {1,...,k}. Moreover, for ( € E we have

qa d |2p; \ 44 d 12p; \ 94
g (> 25=11G1°P , 1 (205=1 1G] NI
< - = | = .
Q) < B (ZELE) o) = g (ZE ) e <
Consequently, v : E — [0,1) and, therefore,

g5(4,2) 2 u(2) = 5 Re(d, 2ol ) () = Ra(4, 2).

STEP 4 (Construction of the function v). We may assume that z441,...,2, > 0. For
a = (Qgt1y--,0n) € Rﬁ*d define
k n
va(@) = ( TT 1) (( IT Ie1)-
j=d+1 Jj=k+1

Obviously v : E' — [0,1), logv € PSH(E'), and v({') < ||, ¢' € B, j=d+1,...,k. It
is enough to find an « such that the function E' "R 3 ¢/ +£% v, (#')r% (') attains its
maximum at ¢’ = z’. In particular,
Ia s ,
—((2')=0 =d+1,...
at] (Z ) ) j + ) )n
Hence

(*°) We have used the following elementary inequality:

d
WA\ > 5= wj
wy 1 I j=1"J
||aJ<( = ) , Qly...,aq > 0, wi,...,wq > 0.

Z] 1 Wy
(3%) Notice that this condltlon is empty if d = k.
Y ra(C) =1 = X7 a1 1G I
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2pj

Z .
0=1+0a; —2pjqqa —2—, j=d+1,... k,
Q; Pjdd ra(2)) J +
2P
Ozaj72qudW7 j:k+17"'an7
which gives formulas for ag41,...,a,. To prove that there are no other points like this,
rewrite the above equations in the form
2p;
2pjqaz;’
/ J J .
rg(z') = —————, =d+1,...,k,
(') 1+a; J
2p;
2pjqaz;’
re(z) =" j=k+1,...,n.
Qj
The left side is decreasing in any of the variables z441,..., 2z, while the right sides are

increasing. Thus, at most one common zero is allowed.
It remains to check whether o; > 0, j = d+ 1,...,n. Obviously, o; > 0, j =
k+1,...,n. In the remaining cases, using the definition of the number d, we have
2pjqaz;” —ra(2)
AR E)
d
Proof of (b). By the proof of (a), we only have to check whether mg(A, z) > Rg(a,z)
in the case where d < n. First observe that it is sufficient to find a function h € O(E’),
h # 0, such that:

° h(c/) :Oide-l—l"'Ck:O,
e the function E' 5" |h(¢’)|rd?(¢") € R, attains its maximum for (' = (2441, ..., 2n).

>0, g=d+1,...)k. =

Indeed, suppose that such an & is already constructed and let M be the maximal value
of the function E’ 5 ¢’ — |h({’)[rd*(¢"). Put

~:ﬁ . ) \1/2p; !
7€) =5 (TT @) )¢, ¢ <E.
j=1

Obviously f(¢) = 0 for ( € A. Similarly to (a) we prove that |f| < 1 and |f(z)
Rr(A,z). Thus mg(A4, z) > |f(2)| = Re(4, 2).

To construct h assume that 2411, ..., 2, > 0 and define
k n
ha(¢') = ( 11 Cje"‘j@)( 11 ea"@),
j=d+1 j=k+1
where a = (agt1,...,an) € err*d. It is enough to find an « such that the function
E' NRY 3t = ho(t')ri(t) attains its maximum at ¢ = (2441, ...,2,). Considering
partial derivatives results in the following equations:
1 21)_7'71
0= —+4a; —2piqq -2 ., j=d+1,... k,
2 j Pjidd Td(Z/) J
2pj—1
z; )
Ozaijqudrd(Z/), j=k+1,...,n.

We continue as in the proof of (a). =
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Proof of (c). Assertion (c) follows directly from (b). m

Proof of (d). STEP 1. Suppose that mg(A4, z) = Rg(A, z). Let f € O(E, E) be such that
fla=0and |f(2)| = Re(A, z) (cf. [Jar-Jar-Pfl 2003, Property 2.5]). Put

N adf / / /
h(§)~—m(074)7 ( ek

We have h(¢') =0 if (441 -+t = 0. For ¢’ € E’ consider the mapping

o "\ 1/2p1 1/2pa
45 (e, .., 6q) - <§1<CC;;<1)> e E <C2§f)) ,c’) cE

Applying the Schwarz lemma to the mapping f o s, ' € E, we get

d

@l <af (TLen ™ ). ¢ e, e —qd(H o).

j=1 =1

Thus we have constructed a mapping h as in the proof of (b) (consequently, the equality
mg(A, z) = Rg(A4, z) is equivalent to the existence of the mapping h).

STEP 2. For any p € (0,1) and ¢ > 0 there exists ¢ = ¢(p,q) € (0,1) such that for any
function f € O(FE) if the function £ > X — [f(A)[(1 — |A|P)? attains its maximum at
Ao # 0, then |M\g| > c. Indeed, let

1
p(t) = A=y €[0,1).
Observe that there exists a b € (0,1) such that ¢ is strictly concave on [0, ). Moreover,
m PO =) _
t—0+ t

Consequently, there exists a ¢ € (0,b) such that
b
p(0) + — ((c) = 0(0)) > (b) +2.

Suppose that f € O(E) is such that the function E 5 X — |f(\)|/¢(|\|) attains its
maximum at Ao # 0 with [Ag| < ¢. We may assume that |f(\g)| = ¢(]Ag|). Consider the
function

0.5 5 FO)] + 3 1£0%) — F(O)].

From ¢(0) = |£(0)] < ¢(0) =1, ¥(]Ao|) > ©(]M\o]), and the convexity condition we get

v() = 170)] + f| 7o)~ £0)

> ¢(0) + W [2([Aol) = ()] = (0) + g |p(c) = (0)] > p(b) + 2.

The Schwarz lemma and the maximum principle imply that there exists a A\, € E with
|As| = b and
7~ FO)]  1f0) ~ F(O)
| A] - Aol '




1.7. Examples 53

This means that

[FD 21 (M) = FO = [£(O)] = [£0)] + [ f(As) — £(O)] = 2[£(0)]
>(b) — 2[f(0)] > »(b) +2 = 2[£(0)| = ¢(b) = @(|A]),
a contradiction.

STEP 3. We may assume that py+1 < 1/2. Assume that 0 < |z;| <¢e,j=1,...,k+1,
2j=0,j=k+2,...,n, with 0 < & < ¢(2pg+1,qr). Observe that d(z) = k provided ¢ is
small enough. Let h be as in Step 1. Then the mapping

E 3 X |[h()0,...,0)[(1 — [\?Prr1)t
attains its maximum at A\ = 21, which contradicts Step 2. m

Proof of (e). See [JarW 2004]. =
EXAMPLE 1.7.6. Let P = P(R):={2€ C:1/R< |2| < R} (R>1). Put ¢:=1/R? and

let
[12, (1 - (2/a)¢®)(1 — (a/2)¢*")
[[2 (1= azg®~1)(1 = (1/az)q® 1)’
fla,2) = fr(a,2) = (1—2/a)ll(a,z), 1/R<a<R,z€P.
Using the same methods as in the proof of Proposition 5.5 in [J-P 1993|, one can prove
that for any function p : P — Z, such that |p| = {a1,...,an} is finite, if a; = |a;]e™,
laj| = R'™%%,s; € (0,1), j =1,..., N, then we get

I(a,z) = IIg(a,z) =

—|z])

‘Rzlg H|f |a_]| € Z<P7Z)| Z€P7

mp(p, z)

where

o L=LU(p):=[s1+ - +sn],

b= b(p) — R1—2(l—(sl+...+sN))’

e f(R,):=
EXAMPLE 1.7.7. If D is not convex, then Proposition 1.6.6(b) need not be true. Indeed,
let P(R), IIg, and fr be as Example 1.7.6. Consider F : P(R) — P(R?), F(z) := 22,
and suppose that mp(p2)(1,2%) = mpry({—1,+1},2), 2 € P(R), R > 1. Then, using
Example 1.7.6, we get

fre(1,—|2%)

R |[fre(1,2°)] = R ||fR(1 2)fr(1,—2)|, z€ P(R).
Consequently,
RT | (L |2 g2 (1, = [2*)[(1 = 2*) [T g2 (1, 2)| = |(1 = 2)ITR(1, 2)(1 + 2) T R(1, —2)],
and hence
ﬁ (14 |2>) T2 (1, —|2|*) [T g2 (1, 2%)| = |ITr(1, 2)[TR(1,—2)|, =z € P(R),

a contradiction (at least for large R) (take z = 1 and then let R — +00).
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REMARK 1.7.8. Let G C C" and assume that p: G — R, |p| = {a1,...,an}. Directly

min

from the definition of the function d}'" we get the following estimate:

4 (p, 2) = sup { [Tlm (g, fN"PE) s €N, s ois € By iy # e (G 7 ),

j=1
BiU---UB,=p|, BiNBy =0 (j #k), 3rcow@.p) : flB, = 1), j = 13"'a3}
< sup { TTlma(By, 2P0 5 €N, BLU--U B, = pl, B; N By =0(i # )}
j=1
=:1dg(p,z), z€G.
Recall that in the case where p = x4 we have d%"(x4,') = mg(4A,-) = ds(xa,")
(cf. Proposition 1.5.4).
In particular, if N =2, |p| = {a, b}, « = p(a) > p(b) = (3, then we get
g™ (axtay + Bx1py, 2) < max{[ma(a, 2)]*[ma (b, 2))°, Ima({a, b}, 2)]%}
= dg(ax{ay + Bxqey,2), 2€G.
Notice that in general d&™(ax(a} + Bx(p},) # dg(axia} + BX{e},-). In fact, let
G = P be an annulus as in Example 1.7.6. Take 1/R < a,b < R, a # b, ab # 1,
P = 2X{a} t X{b}- We are going to show that there exists a 2 € P such that
[mp(av Z)Fmp(b’ Z) > [mP({a7 b}7 Z)]27
dp™ (p, 2) < [mp(a, 2)’mp(b, 2)
= max{[mP(aa Z)}QmP(ba Z)v [mP({aa b}v Z)]2} - le(pa Z)

First observe that there are points z (near b) such that
[mp(a, 2)]*mp (b, z) > [mp({a, b}, 2).

For, using the effective formula from Example 1.7.6, we have:

£Q /el f(a’z)|>2f<1/b7—|z|>

[mp(a,2)]*mp (b, 2) = (

mp({a.b), 2) = (wv(a,zmb, z)) ,

with ¢ = ¢(a,b) and ¢ = {(a,b) as in Example 1.7.6. Consequently, we only need to find
a z € P\ {a,b} such that

f(l/a,IZI))Qf(l/b’IZI) (f(c,|»2|)>2
> £ (b, 2)].
< Rlz| Rlz| (Rlz])*

Observe that at z = b the right hand side of the above formula is zero while the left hand
side is strictly positive. Thus, by continuity, we can easily find the required z, say z.

Let ¢ € O(P, E) be an extremal function for '3 (p, 29) (Proposition 1.8.4). We may
assume that p(a) = 0. There are two cases:

(a) ¢(b) = 0. Then d™(p, 20) = |(20)|* < [mp({a, b}, 20)]* < dpp(p, 20).
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(b) ©(b) # 0. Then d™(p, z0) = | (20)Pme(p(b), ¢(20)) < [mp(a, z0)]*mp(b, 20) =
d'o(p, z0). The equality dB™(p,20) = d’p(p,z0) would imply that ¢ is simultaneously
extremal for mp(a, zg) and mp(b, zp). Using Robinson’s lemma ([J-P 1993, Lemma 5.6]),
we know that such extremal functions are uniquely determined up to rotations. Hence

) _ e~ %o i b, —e~¢0
eifa Wf(awz) = e Wf

where ¢ € arg 2o, a contradiction (the two sides have different zeros).

p(z) = (b, 2),

EXAMPLE 1.7.9 ([Jar-Pfl 1999a]). Let F' be a primitive polynomial of n complex vari-
ables, i.e. F' € P(C™) is a polynomial which cannot be represented in the form F = fo(Q,
where f is a polynomial of one complex variable of degree > 2 and Q € P(C"). Notice
that a monomial 2z (a = (a1, ...,a,) € N") is primitive iff the numbers ay, ..., a, are
relatively prime.

One can prove (cf. [Cyg 1992]) that there exists a finite set S C C such that for any
beC\S:

e the fiber F/~1(b) is connected,

e ['(a) #0 for a € F~1(b).

Thus, if b € S, then the fiber F'~1(b) is a connected (n—1)-dimensional algebraic manifold.
In particular, for any b ¢ S, the fiber F~!(b) has the plurisubharmonic Liouville property,
i.e. any plurisubharmonic function u : F~1(b) — [~00,0) is constant (cf. [Jar-Pfl 1999a,
Proposition 6]).

Put r(a) := ord,(F — F(a)). Let D C C be a domain. Put G := F~!(D). Then
G is a domain. Indeed, since the set F'~!(S) is thin, it suffices to prove that the set
Gy := F71(D\ S) is connected. Suppose Gy = U; U Uy, where Uy, Uy are non-empty
disjoint open sets. Put B; := {w € D\ S: F~!(w) C U,}, j = 1,2. Since the fibers over
points from D \ S are connected, we conclude that By, By are disjoint and B; = F(U;),
j = 1,2. In particular, B; is open, non-empty, and D \ S = By U Bs, a contradiction.

(a) Let p : G — R, be such that |p| is finite. Then

(1.7.7) ga(p,z) = gp(p"', F(2)), z€G,

where

In particular,
ga(a,2) = [gp(F(a), F(2))]'/",  a,z€@.

(b) Let p : G — Z, be such that |p| is finite. Then
(178) mG(p7 Z) = mD(plaF(Z))a z €@,

where

~—

p'(b) = max{ﬁ’((—;ﬂ caclpl mFl(b)}, beD.
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In particular,
ma(kx{a},2) = mp(K'x{F(a)}, F(2)), a,z€G, keN,
where k' := [k/r(a)].
Indeed, in both cases the inequalities “>" follow from Remark 1.6.1(e).

To prove the opposite inequality in (a), take a logarithmically plurisubharmonic func-
tion u : G — [0,1) such that

u(z) < Ca)||z — a||P, a,z€G.
For any b € D\ S, the function u|p-1(;) is constant. Consequently, there exists a
logarithmically subharmonic function @ : D\ S — [0,1) such that v = wo F on G\
F~1(S). The function @ extends to a logarithmically subharmonic function on D (the

extended function will be denoted by the same symbol ). By the identity principle for
plurisubharmonic functions we get u = w o F' in G. We want to show that

(1.7.9) u(w) < const(b)|w — b|pF(b), b,w € D;

then u < gp(p”,-) and hence u = o F < gp(p”, F), which gives the required inequality.
Fix a b € D with p'(b) > 0, and let a € F~1(b) be such that p(a) > 0. Observe that
there exist € > 0, § > 0, and M > 0 such that B(b,e) C D and

vaB(b,a) 3z(w)EIB%(a,ﬁ) : F(Z(’LU)) =w, ||Z(’U)) - a’HT(a) < M|’LU - b|
Indeed, let X € C", || X|| = 1, be such that ordy(¢ —b) = r(a), where ¢()) := F(a+AX).
Then |p(\) — b > (1/M)|N["® for [A\| < & (where M > 0, § > 0) and ¢ is open.
Consequently, o(B(5)) D B(b,e) for some € > 0. Thus for any w € B(b, ) there exists a
A(w) € B(d) such that z(w) := a + A(w)X satisfies all the required conditions.
Consequently,
U(w) = u(z(w)) < C(a)]|z(w) — al|PY < C(a) MPO/m @]y — p|Pl@)/r(@) 4y e B(b, ).

Since the set of all a € F~!(b) with p(a) > 0 is finite, we get (1.7.9).

In the situation of (b) let f € O(G, E) be such that ord, f > p(a), a € G. For
any b€ D\ S the function f| F1() must be constant. Hence there exists a function
f € O(D\ S, E) such that f = fo F. Using the Riemann removable singularity theorem,
we extend f holomorphically to the whole D. Take b € D and a € F~ 1(a) such that
p(a) > 0. Then, using the same argument as in (a), we get

[F(w)] = If (z(w))] < const[|z(w) — a]]****/ < const|z(w) — a[P) < |w — bP/"()

for w in a neighborhood of b. Consequently, ordbf > p'(b), b € G, and, therefore,

/()] = IJ(F()| < mp(p', F(2)), = € G
The case where F'(z) = z* and D = F was studied in [J-P 1993, §4.4] (one pole), and
[Edi-Zwo 1999] (many poles).

Are formulas (1.7.7), (1.7.8) true for arbitrary p
In the special case where F(z) = z* we get the following example.

ExAMPLE 1.7.10. Let o = (a1,...,0p) € N, G := {z € C" : |2%| < 1}. Assume that
aq,...,ap are relatively prime. Then for any function p : G — R, (resp. p: G — Z,)
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such that |p| is finite, the following formulae are true:

gG(paZ) = mE(pzaaza)ﬂ mG(p7 Z) = mE(plaza)a z € Ga

where
p* (b) == sup {% ta€ G, a = b}, (*?)
p'(b) := supHI:((Zﬂ ca€G,a” = b}, beE.

Example 1.7.9 may be extended in the following way.
EXAMPLE 1.7.11 ([Jar-Pfl 1999a, Theorem 1]). Let
aj = (aj1,...,a50) €(ZY)s, j=1,....m<n—-1m2>2,

be such that rank A = m, where A := [a;]. Assume that AZ" = Z™ (3%). Let F =
(Fy,...,Fy): C" — C™ be given by the formula

Fi(z):==2%, j=1,...,m.

Define

G=FYE™) ={zeC": [2%|<1,j=1,...,m}.
Let p: G — Ry (resp. p: G — Z,) be such that |p| is finite and for any a € |p| we have
rank F’(a) = m (in particular, 7(a) = 1). Then
(1.7.10)  ga(p,2) = gen(p", F(2)), ma(p,2) =mpn(p" F(2)) z€G, (*)
where

p"(b) :=max{p(a):a € [p|nF~'(b)}, beE™
In particular, if p = x(,}, then

gc(a, z) = ggm (F(a), F(2)), mg(a,z) =mgm(F(a),F(2)), z€Qaq.

Indeed, put Vp := {w = (wy,...,wy) € C™ : wy---w,, = 0} and observe that for
any w € E™ \ V the fiber V,, := F~!(w) is connected (*°). For (the proof is due to
W. Zwonek), let w = (u1e2™1 ... u,,e?"%n). Take arbitrary two points a,b € F~!(w),
a = (rie®™er L r,e? ien) b = (51271 5,e¥ ). We have F(r) = F(s) = u,

Ap = § mod Z™, Ap = 0 mod Z™. We have to find a curve v : [0,1] — F~!(w) such
that v(0) = a, v(1) = b. Write
1) = (RO R, (p)emiort o)

where R : [0,1] — R’ is continuous, o : [0,1] — R™ is such that the mapping ¢ —
(e2mior®) . e2mion(t)) is continuous, F(R(t)) = u, Ao(t) = 0 mod Z™, t € [0,1], R(0) =
r, R(1) = s, 0(0) = 0 mod Z", 0(1) = ¢ — ¢ mod Z".

(32) Observe that r(a) = 1if a1 ...an # 0, and r(a) = the sum of those a; for which a; = 0
ifa1~-~an =0.

(3%) One can prove that AZ™ = Z™ iff the greatest common divisor of all determinants of
m X m submatrices of A equals 1.

(3*) Notice that the formula (1.7.10) may not be true if rank F’(a) < m — 1; ¢f. Example
1.7.13.

(3%) In fact, one can prove that V,, is connected iff AZ™ = Z™.
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Note that the set {x € R} : F(x) = u} is connected. Hence we can easily find an R
with the required properties. To find a ¢ it would be sufficient to know that the set

T:={zxeR": Ax € Z™}/mod Z"

is connected. Since AZ™ = Z™, we get T = {x € R" : Az = 0}/mod Z", which directly
implies that 7' is connected (because A~!(0) is connected).

The inequalities “>” in (1.7.10) follow from Remark 1.6.1(e).

For the proof of “<” in the case of a generalized Green function, let v : G — [0,1)
be such that logu € PSH(G) and u(z) < C(a)||z — a||P®) for any a,z € G. For any
w € E™\ Vj, since V,, is a connected algebraic set, the function u|y,, is constant. Hence
there exists a logarithmically plurisubharmonic function v : E™ \ Vj — [0,1) such that
u=voF on G\ F~(Vy). By the Riemann type extension theorem for plurisubharmonic
functions, v extends to a logarithmically plurisubharmonic function on E™. By the
identity principle for plurisubharmonic functions we get u = v o F' in G.

Fix a b € E™ with p’(b) > 0 and let a € F~1(b) be such that p(a) > 0. By our
assumption (rank F’(a) = m) there exists an m-dimensional vector subspace L C C"
such that the mapping L > z v> F(a + z) is biholomorphic in a neighborhood of 0 € L.
Then ||g(z) —b|| = (1/M)||z||, z € LNB(4) (for some M, > 0) and g(LNB(d)) D B(b, &)
(cf. Example 1.7.9). Hence, for any w € B(b,¢) there exists a z(w) € L N B(J) such that
F(a+ z(w)) = w. Finally,

o(w) = v(Fla + =(w))) = ula + =(w))
< C(a)||z(w)[[P) < Cla)M|lg(z(w)) = b|[P@ = Cla)M |w - b|P',
and, consequently, v(w) < C(b)||lw — b||P"®, b,w € E™. Hence
u(z) = v(F(2)) < gem (0", F(2)), z€G,

which implies that go(p, 2) < gg= (p*, F(2)), z € G.
In the case of the generalized M&bius function we use an analogous argument (as in
Example 1.7.9).

REMARK 1.7.12. Example 1.7.11 may be extended to more general mappings F' and do-
mains G. The condition rank F'(a)=m, a € |p|, may also be weakened; cf. [Jar-Pfl 1999a].

The cases which are not covered by Example 1.7.11 are in general much more difficult
(even when p = x(.3)-

ExAMPLE 1.7.13 ([Jar-Pfl 1999a, Proposition 3]). Let o; = (aj1,...,0,) € (Z7)s,
J=1,....mm>2 A:= o,

G;:{ze(cnZ|Zaj|<].,j:]-7'~'7m}' (36)

Fix an a € G with a® =0, j = 1,...,m. Assume that a = (ay,...,0as,0,...,0) with
a;--as#0and 1 <s<n-—1. Put

(3®) We do not assume that m < n — 1, rank A = m, AZ" = Z™.
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B
A= ogp] j=1,m :
k=s+1,...,n 5m
Notice that r; := ord, 2% = |8;| > 0, j = 1,...,m. Then the following conditions are

equivalent:

(i) rank A = rank A;
(ii) ga(a,z) = max{|z29|/75 : j =1,...,m}, z € G; (*7)
(iil) ga(a,z) = sup{|z®|"/" :a € (Z4)", |€¥| < 1 for € € G, r = ord, &% > 0}, 2 € G

(iv) ga(a, (2, A2")) = |Nga(a,2), z= (¢',2") € G C C* x C"%, A€ E;

v) limsup,_, Lyt a,(2',602")) < 400, (2/,2") € G C C* x C"~3,
6—0+ MG

Indeed, to prove (i)=-(ii), let
L(z) == ga(a,z), R(z):=max{[z% Y :j=1,...,m}, zeG.

The inequality L > R follows from the definition of gg. To prove that L < R it suffices
to show that L(z) < R(z) for any z € Gy := G N ((C,)® x C"~%).
By (i), for any k = 1,..., s, the system of equations

Qg s+1Ts+1 +ee Ajnln = —Qj L, J= 1...,m,

has a rational solution (Qst+1,k/ttk, - - - @n i/ k) With Qsy1k, ..., Quni € Z, uy € N. Put
Qrr:=prand Qr:=0,5,k=1,...,s, 7 #k. Then

(1711) ajlel’k+~-~+aj’nQn7k :07 j: ].7...7WL7 k':].,...,s.

Let Qj :=(Qj1,...,Qjs) €Z°, j=1,...,n. Define & : (C,)* x C"* — (C,)* x C"~*,

B(&,n) o= (§9, ... €9, 69y, &% y) = (€1, € €9 €9 ),
(5777) = (51; e agsa My -- 777n—s) € ((C*)S X (Cnis'

Observe that @ is surjective. Indeed, for z = (21,...,2,) € (C,)®* x C" %, take an
arbitrary ¢; € (z;)Y/#, j=1,...,s, and define 1 := 25, /E@+, j=1,...,n — s.
If z = §(&,n), then by (1.7.11) we get

(1.7.12) 2% = (@it Qupli — pfi =1 m.

Let D := {n € C"* : |n%| < 1,j = 1,...,m}. Using (1.7.12) we get the equality
P((C,)° x D) = Go. Fix a & € (C,)® such that a = $(&,0). Then, for any z = &(&,n) €
Go, we have

gG(a7 Z) = gG(@(&% 0)) @(57 77))
< g(c.)sxp((0,0),(&,m)) = gp(0,m) = hp(n)
= max{|n% Y7 . j=1,...,m} = max{|z¥ |V . j=1,...,m}.

The implications (ii)=-(iii)=-(iv)=-(v) are trivial.

(®") Note that (ii) gives an effective formula for gc(a, ).
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(v)=(i). Suppose that rank A < rank A. We may assume that

fe%) B1
2<t:=rankA=rank [ : |, v7rank|:@| <t
Qi B
Then there exist ¢1,...,¢; € Z such that ¢;81 + -+ ¢, = 0 and |e1]| + -+ - + |e] > 0.
To simplify notation, assume that ¢1,...,cy >0, cyy1,...,¢¢ <0 forsome 1 <u <t—1.
Let
d = acla1+-.~+CtOLt’ ri=c1m + e+ CuTu = 7(Cu+17"u+1 + 4 Ctrt),
geront e teuon o= (CutrQuprtteion)
z) = z€G.

Observe that f € O(G,E), ord, f > r+ 1, and f # 0 (because a1, ...,a; are linearly
independent). Fixa b= (b/,0") € G C C* x C"* with f(b) # 0. Notice that f(b',00") =
0" f(b), 0 < 6 < 1. Thus we get

1 ! v '
5 (@, (0, 061)) = 5 £, 06| = D ) ) s o,

a contradiction.

ExamMpPLE 1.7.14. Let n =3, m =2, ag := (1,1,0), ag :=(1,0,1), F(z) = (2122, 2123),
G ={(21,22,23) € C? : |2120] < 1, |2123] < 1}.

Observe that:

erank A = 2, AZ3 =72,
er(a)=1iff a #0,

e 7(0) =2, and

e rank F'(a) = 2 iff a; # 0.

(a) It is well known that
96(0,2) = ha(z) = max{|z1 2|2, |2125|"%}, z€eQG.
Moreover, one can prove (see (c)) that
me” (0.2) = g6(0, 2) = max{|z1 2l V/2, |21/}, peN,
mgl’ﬂ)(o, 2) = max{|z 25| T/ CPHD) |4 20| GHD/ @AY ez e G
(b) By Example 1.7.11, if a; # 0, then
m&(a,2) = gala, 2) = mp: (F(a), F(2))
= max{mg(aias, 2122), mg(aras, 2123)}, 2z€G,keN.
(c) By Example 1.7.13, if a3 # 0, then
mG”((0,0,05). 2) = 96((0,0,03), 2) = max{|z1 o[ /%, |12}, z€G.peN.

Moreover,

mgm_l) (0,0,a3), 2)

= maX{|le2 ‘ (P+1)/(2p+1)

) |(2122)p2123|1/(2p+1)7 |le3‘}7 KAS G7 pe Z+'
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Indeed, the inequality “>” is obvious. Thus we have to show that
(1.7.13) L(z) :=m&P™((0,0,a3), 2)
< max{|zy 20| P/ CPHY) (21 20)P 21 25|V PPFY) |21 25} =: R(2).

The inequality is clearly true if z; = 0 (because {0} x C? C G). Take z = (z1,22,23) € G
with z; # 0. Then

| 2125 |(PH1)/ (2P H1) if |20] > |23,
R(z) = { [(z122)P 2123/ CPHYf [2023] < [z0] < |23,
|21 23] if |29 < |2122].
Using standard arguments, we reduce the proof of (1.7.13) to the cases where |z2| = |21 23|
or |za| = |z3].
If |25 = |2123|, then we have L(z) < gg(a,2) = |z123] = R(2).
If |z2| = |23|, then
(1.7.14) L(2) < ga(a, z) = |z129] /2.

Take an arbitrary f € O(G, E) with ord, f > 2p+ 1. We know that f(z) = f(z122, 2123),
where f € O(E? E) (cf. Example 1.7.11). Inequality (1.7.14) shows that

IFO PN < APTY2, Ne B, 0eR.

Hence
[FOL PN < IMPT, ANeE, 0eR,

and therefore, if |22| = |23/, then
L(2) < |z122| T/ EPHD = R(2).

(d) Similar formulae hold at points (0, a,0) with ay # 0.
(e) In the case asaz # 0, by Example 1.7.13, we already know that

9c((0, az, as3), 2) § max{|z1 22,2123}, z€G.
One can prove that

(k)

a3z129 — A22123
gG((O’a27a3)az) > mg (a,z) § InaX{|z1z2|, |le3‘7 T

[k/21/k
, cd@q.
|as| + las] } :

It seems that effective formulae for mgf)((O,ag,ag), -) and g5((0,as2,as), ) are not

known.

Let us mention that necessarily

mgc)((O7 ag,a3), (€21, e 2o, € 23)) = mgf)((O7 as,as), z),
9c((0, a9, a3), (€21, 2y, 23)) = g ((0, az,a3),2), z€G, p,h €R,
and
mi)(a,2) = g6((0, a2, a3), 2) = max{|z12a], |212]}, 2 € G {azs — a2z = 0},

As in the one-pole case (cf. [J-P 1993, Proposition 4.2.7(h)]), the generalized Green
function may be characterized in terms of the Monge—Ampére operator (dd€-)™.
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THEOREM 1.7.15 ([Lel 1989]). Let G C C" be a bounded hyperconvex domain. Assume
that the set |p| is finite. Then the function u := gg(p,-) is a unique solution of the
following problem:

u € C(G,[0,1]), logu € PSH(G),

u=1 ondG,

Vaelpl o0 Vzea : u(2) < C(a)l|z — alP™),
(ddlogu)” =0 in G\ |p|. (%)

The proof is beyond the scope of this article.

REMARK 1.7.16. (a) Recall that even in the case of the single pole, the Green function
gc is not symmetric. Thus one can for instance ask whether for a bounded hyperconvex
domain G C C™ we have lim,_,; gg(a, z) = 1 for arbitrary b € G and z € G. The ques-
tion is also interesting from the point of view of the boundary behavior of the Bergman
function.

D. Coman [Com 1998] proved that if G is a bounded domain with a plurisubharmonic
peak function ¢ at a point b € G (i.e. 0 € PSH(G) NC(G), o(b) = 0, and o(z) < 0,
z € G\ {b}) such that o is Hélder continuous at b, and

e {2102

_ 1
cz2€G, r<|z-0b<1/2;, =0( loglog— |, r—0,
log |z — b] r

then lim, ., inf.cx go(a,z) = 1 for any compact K € G \ {b}. In particular, the result
is true in the case where G is a pseudoconvex domain with smooth boundary and b is of
finite type.

G. Herbort [Her 2000] proved that if G is a bounded hyperconvex domain with a
Hoélder continuous bounded plurisubharmonic exhaustion function, then for any K € G
and b € 9G we have lim,_; inf.cx g(a,z) = 1. In particular, the result holds if G is a
bounded pseudoconvex domain with C? boundary.

(b) Let G be a bounded strictly hyperconver domain, i.e. there exist a domain U C C™,
G € U, and a function p € PSH(U)NC(U) such that G = {z € U : p(z) < 0}. S. Nivoche
[Niv 1994], [Niv 1995], [Niv 2000] proved that in this case, for every a € G, we have

ga(a,z) = lim m(cf)(a, z) = sup m(éf)(a, z), z € @G,
k=00 keN

Ag(a;X) = lim ~8) (a; X) = supri) (@; X), X €C"\ P,
k—+oo keN
where P C C™ is pluripolar; in fact, P = () as was shown by N. Nikolov [Nik 2000].
Observe that for an elementary Reinhardt domain D,, of irrational type all the m(gi ’s

vanish and m%ﬁ # gp,; cf. Theorem 1.3.1.
(c) In the case n = 1 the above result was generalized by N. Nikolov and W. Zwonek
in [Nik-Zwo 2004a, Theorem 2]. They proved that if G C C is a domain for which the

(%) Recall that for a locally bounded function v € PSH (D) (D C C™) we have (dd°v)™ =0
iff v is mazimal, i.e. for any domain Dy € D and for any function vo € PSH(Do) upper
semicontinuous on Dy, if vo < v on 9Dy, then vo < v in Do; cf. [J-P 1993, Appendix, §MA].
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set of one-point connected components of C \ G is polar, then
gG:supm(Gk), AG:supwg).
kEN kEN

Moreover, they gave an example of a hyperconvex domain G C C for which the above
equalities do not hold.

(d) Recently E. A. Poletsky [Pol 2002] proved the following important theorem. Let
G C C™ be a bounded strictly hyperconvex domain and let u be a negative plurisubhar-
monic function on G with zero boundary values, i.e. liminf, . u(z) =0, ( € 0G. Then
there exist functions p, : G — R, |p,| finite, £k = 1,2, ..., such that log go(p), ) — u
in L!'(G). Moreover, if u is continuous and v € Co((—0o0, 0]), then

[ (u(2)(dd log gy )" — | b(u(z)) (ddw)".

G G
EXAMPLE 1.7.17 ([Car-Wie 2003]). Let p : E™ — R, be such that

Ip| = {a1,...,an} C E x {0} 1.
Put a; = (¢;,0,...,0), kj :=p(a;), j =1,...,N, and assume that &y > --- > ky. Then

gEn p7 Huk‘_kJJrl 7 zZ € En7
where ky41 := 0 and
u;(z) : = max{mg(ci,21) - -mg(c;, 21), 22|, ..., |2nl}
:maX{mE({Ch...,Cj},Zl),‘2’2|,...,|Zn|}

:mEn({al,...,aj},z), jzl,,N

Moreover, if k1, ..., kxy € N, then mgn(p,-) = gg= (P, -)-

The result extends easily to the case where |p| = {ai,...,an} C E x {c}"! C
E x E™ 1. Observe that if k; = --- = ky = 1, then the above formula coincides with
that from Example 1.7.2.

Indeed, let u := H;V:l u?j_kj+1. Notice that « is continuous on E™, logu is plurisub-
harmonic, and v = 1 on J(E™). Take 1 < s < N and z = (21,...,2,) in a small
neighborhood of as;. Then for j =s,..., N we get

u;j(z) < max{const |21 — ¢s|,|22],.. ., |2n|} < const ||z — a]|.
Consequently,
N
) < constHu ”1 <c0nstH |2 — as||/® ~Fi+1 = const ||z — asl*:.
j=s

Thus ggn(p,-) > u. To prove the opposite inequality we consider first the case n = 2.
By Theorem 1.7.15, we only need to verify that the function logu is maximal on E? \
{a1,...,an}. Fix a point b = (by,by) € E%\ {ai1,...,an}. Observe that the functions
logu;(z), j=1,...,N, are maximal on E?\ {a1,...,an} (cf. [Kli 1991, Example 3.1.2]).
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It is clear that there exists at most one jo € {1,..., N} such that
m(c1, br) -+ -m(cjo, br) = [bal-

Consequently, all the functions logu; with j # jo are pluriharmonic near b. Since logu =

Z;v 1(kj — kiy1) log uj, we easily conclude that log v is maximal near b.

Now, consider the general case n > 3. Take a point
b= (bl,...,bn) S E"\{al,...,aN}

and let max{|bz|,...,|bn|} = |bs,|- If bs, = 0 (i.e. by = --- = b, = 0), then consider the
mapping E > A KN (A\,0,...,0) € E™ and use Remark 1.6.1(e):
N
9 (p,b) = g (p, F(b1)) < gu(po F,bi) = [[[mae(e;, b))+ = u(b).
j=1

If bs, # 0, then let ¢, := bs/bSO € E,s=2,...,n. Consider the mapping

5 (A6 Ak, ) € B
Using Remark 1.6.1(e) and the case n = 2, we get

g~ (p,b) = gen (P, F'(b1,bs,))
N
< gp2(po F, (b, bs H [max{mpg(c1,b1) - m(cj,br), b |} 7541 = wu(b).

ExampLE 1.7.18. Using Proposmo .6.6 and Theorem 1.4.1 we get
(1.7.15)  gp=({(a,b), (b,a)}, (z,w)) = C?E;z ((a+b,ab), (z + w, zw))

:maX{mE(Qaab—(a—i—b) 2azw—(z+w)) :ae@E},

2—ala+b) " 2-alz+w)
(a,b), (z,w) € E*, a #b.
Notice that the above case is not covered by Example 1.7.17.

For any points (a1, b;), (az,b2) € E? with mg(a1,as) = mg(by,by) > 0 there exists
an h € Aut(E) such that h(a;) = by, h(az) = b1, and consequently, formula (1.7.15) may
be easily extended to such pairs of points.

In the case where 0 < mg(ai,a2) # mg(b1,b2) > 0, an effective formula for
gp2({(a1,b1), (az,bs)},-) is still unknown.

Recall that by the Lempert theorem, if G C C" is convex, then cf, = E*G and, conse-
quently, all holomorphically contractible families coincide on G. The following example
shows that this is not true in the category of generalized holomorphically contractible
families.

EXAMPLE 1.7.19 (due to W. Zwonek). Let
D= {(z,w) € C*: 2| + |w| < 1}, A :={(t, V1), (t,—V1)}, 0<t< 1.

Then
mp(At, (0,0)) < gp(A4s, (0,0)) < dp* (A, (0,0))

for small ¢.
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Indeed, let G := {(z,w) € C?: |z|+/[w] < 1} and let F : D — G, F(z,w) := (z,w?).
Note that F' is proper and locally biholomorphic in a neighborhood of A;. Moreover, A; =
F~1(t,t). Using Proposition 1.6.6, we conclude that gp (A, (0,0)) = ga((t,1), (0,0)).

Observe that mp(As, (0,0)) = ma((t,t),(0,0)). In fact, the inequality “>” follows
from (H) (applied to F'). The opposite inequality may be proved as follows. Let f €
O(D, E) be such that f|4, = 0. Define

flzw) == L(f(z,vw) + f(z,—Vw)), (z,w) € G.
Note that f is well defined, \f | <L, f (t t) =0, f is continuous, and f is holomorphic on
DN {w # 0}. In particular, f is holomorphic on D. Consequently, |f(0,0)| = |f(0,0)| <
ma((t,1),(0,0)).
Suppose that mp(A4s,,(0,0)) = gp(As,, (0,0)) for a sequence t; \, 0. Then
96 ((tk, tk), (0,0)) = gD(Atk7 (0,0)) = mD(Atk7 (0,0)) = mea((tk, tx), (0,0))
SgG((tkatk)v(OaO))7 k:172a

Thus ma((tk, tx),(0,0)) = go((tk,tx),(0,0)), &k = 1,2,.... Consequently, using
[J-P 1993, §2.5], and [Zwo 2000c, Corollary 4.4], (cf. §1.2), we conclude that

where v¢ (resp. Ag) denotes the Carathéodory—Reiffen (resp. Azukawa) metric of G
(cf. §1.2). Hence, by Propositions 4.2.7 and 2.2.1(d) from [J-P 1993], using the fact that
D is the convex envelope of G, we get

2= hp(1,1) = 76 ((0,0); (1, 1)) = A((0,0); (1, 1)) = he(1,1) = —2

o )

a contradiction.
To see the inequality gp (A, (0,0)) < dB** (A, (0,0)), we may argue as follows. We
know (cf. [Zwo 2000c, Corollary 4.5] (*°) ) that

gD(At7 (03 0)) = gg((t, t)7 (0, 0)) ~ gG((07 0), (t7 t)) = hG(t’ t) =
for small ¢ > 0. On the other hand,
dB™(Ar, (0,0)) = min{kp (£, V), (0,0)), kp (¢, V1), (0,0))}
= min{hp(t,—Vt), hp(t,Vt)} =t + V1.

2t

S

It remains to observe that
2t

<t4+ Vit

S

for small ¢t > 0.

(3°) Recall that hp (resp. h) denotes the Minkowski function for D (resp. G).
(“) Let G C C™ be a bounded hyperconvex domain. Then

22" —a ga (2", 2')
2l

=1, a€eq.
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EXAMPLE 1.7.20. Let G = E2, a_ := (—1/2,0), as = (1/2,0), b := (0,1/3), p :=
2Xa_ + Xa,. Then d3(p,b) < d).(p,b) < mpz(p,b), where d}(p,-) is defined in
Remark 1.7.8. Recall that d'2i" (A, ) = mp2(A4,-) (A C E?) (Proposition 1.5.4).

Indeed, by Example 1.7.17,

N [=
W=
—
Il
N [=
W=
I
[N

mpz(p,b) = uy(b)uz(b) = max {%, %} max{% .
On the other hand,
52 (p,0) = max{[mpg: (a_,b)]*mpg:(ay,b), [mp2({a_, a1 },b)]*}
— e { [manc(}, 1)) max {3, 3}, e ({3, 1} x (0),5)])

= mac {1, [max {4 -, 4)]%) = &

1.8. Properties of d%™ and d%**
REMARK 1.8.1. If D C C™ is a Liouville domain (i.e. O(D, E) ~ E), then

min

Gxp(p, (z,w)) =dg™(p',2), (2,w) € G xD,
where p'(z) := sup{p(z,w) : w € D}, z € G.

PROPOSITION 1.8.2. (a) The functions d2™(p,-) and d2**(p,-) are upper semicontinu-
ous.

(b) If p: G — Z, then d&™(p,-) € C(G).

Proof. (a) The case of d3**(p,-) is obvious. To prove the upper semicontinuity of
d®n(p,-), fix a 29 € G and suppose that d%"(p,z;) — a > 3 > d&®(p,z) for a
sequence z; — zo. Take functions f;, € O(G,E), k € N, such that fi(zx) = 0 and
Huefk(c) |M\S“Pp(f§1(“)) — «. By a Montel argument we may assume that f; — fo locally
. . . . su —1
uniformly in G with fo € O(G, E), fo(z0) = 0. Since [[ ¢, ) |1 ppifo (W) < 3 we can
find a finite set A C G such that fo|4 is injective and [, , [fo(a)|P® < B. Consequently,
[Toca lfe(a)P < B and fy|4 is injective for k > 1. Finally, [Lero |M|S“pp(f§1(“))
< B, k> 1, a contradiction.

(b) In view of (a), it suffices to prove that for every f € O(G, E) the function us(z) :=
Hﬂef(c)[mE(u,f(z))]supp(f_l(“)), z € G, is continuous on G. Observe that us(z) =
infar{] ] eprlme(n, f(2)]F W}, where M runs over all finite sets M C f(|p|) such that
kf(p) :=supp(f~1(n)) < +o0, p € M. Thus uy = infp{|has|}, where hy € O(G, E).
Consequently, since the family (has)s is equicontinuous, the function uy is continuous
onG. m

EXAMPLE 1.8.3. Let p: Ex C — Ry, p(1/k, k) :=1/k* k=2,3,..., and p(z,w) := 0
otherwise. Notice that |p| is discrete. Then by Remark 1.8.1,

o0

Bliep, (2,w) = A" (0, 2) = [[Ime(1/k,2)]'/",  (z,w) e ExC.
k=2

In particular, &2 (p, -) is discontinuous at (0,w) € E x C\ |p|.
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PROPOSITION 1.8.4. If #|p| < +oo, then for any zo € G there exists an extremal function
for d&"(p, 20), i.e. a function f,, € O(G, E) with f.,(20) =0 and

su ~1 min
[T Jerert= = ag (p. ).
HE 2o (G)

Proof. Fix a 29 € G and let fi, € O(G, E), fr(20) = 0, be such that

api= [ |ulerUe ) — o= dgn(p, z).
HEfK(G)

Let Ay C |p| be such that f|a, is injective, fi(Ax) = fr(|p|), and

p(a) =supp(f, ' (fr(a)), a€ A

Thus ap = [],ca, |fe(a)[P®. We may assume that A, = B is independent of k and
for any a € B the fiber B, := f, '(fx(a)) N |p| is also independent of k. Moreover, we
may assume that f; — fo locally uniformly in G. Then fy € O(G, E), fo(20) = 0, and
[Tocp | fo(a)P@ = a. Observe that fo(B) = fo(|p|). Let By C B be such that fo|p, is
injective and fo(By) = fo(B). We have

a > H ‘N|supp(f(;1(u)) _ H |u‘supp(f[;1(u)) _ H |f0(a)|max{p(b):beB,fo(b)zfo(a)}
refo(lpl) e fo(Bo) a€By

> T 1@ = a. =

a€EB
PROPOSITION 1.8.5. log d%™(p,-) € PSH(G).

Proof. By virtue of Proposition 1.8.2(a), we only need to show that for any f € O(G, E)
the function uy(z) == [],c ) [mE(u,f(z))]S“Pp(ffl(“)), z € G, is log-plurisubharmonic
on G. The proof of Proposition 1.8.2 shows that u;y = infys vas, where vy, is a log-
plurisubharmonic function given by the formula vy (2) == [],cps[me(u, f( 2)))¥s ) and
M runs over a family of finite sets. Observe that vy, un, < min{va,, vag}. It remains
to apply Lemma 1.6.3. m

ProposITION 1.8.6. If Gy, /G and p,, /' p, then
ICI;;icn(pk? Z) \ dglin(pv Z)’ Iélzx(pkv Z) \ dglax(pa Z)v z€G.

Proof. By (H) and (M) (Definition 1.5.3) the sequence is monotone and for the limit
function u we have u > d%"(p, -) (resp. u > d%**(p,)). Fix a 29 € G.

In the case of the minimal family suppose that u(z9) > o > d%"(p,z). Let fx €
O(Gr, E) be such that fj,(z0) =0 and [[,c, q,) |M\SuPpk(f;1(“)) — u(zp). By a Montel
argument we may assume that fr; — fp locally uniformly in G with f; € O(G, E),
fo(z0) = 0. Since [],c ) \u|5”pp(f(;1(“)) < «, we can find a finite set A C G such that
fla is injective and [ ], 4 |fo(a)|P(®) < a. Consequently, [loca | fe(a)|P(®) < a and fi|a
is injective for k£ > 1. Finally, Huefk(Gk) |u|suppk(f1:1(“)) < a, k> 1, a contradiction.

In the case of the maximal family for any a € G and € > 0 there exists a k(a,e) € N
such that zp,a € Gy, %&k (a,20) < %&(a7zo) + ¢, and pi(a) > p(a) — ¢ for k > k(a,é€).
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Hence

inf dmax — inf Tk pi(a)
1 G Py 0) = | uf kG, (@, 20)]

< inéirlf{[%é(a,zo) +e]Pr@ 0 <e <1, k> E(a,e)}
a€c

< igéinf{[%*g(a,zo) +e]P@72 0 < e < 1} = dB™(p, ). =
a

EXAMPLE 1.8.7. Let G := {2z € C" : |2*| < 1}, where a = (a1, ..., a,) € N™ is such that
aq,...,o, are relatively prime. Then

4" (p, 2) = A" (p',2%) = [] (20", z€6,
HeEE
where p'(\) = sup{p(a) : a®* = A}, A€ E.
Indeed, it is known (cf. Example 1.7.9) that any function f € O(G, E) has the form
f=foF, where F(z):= 2z and f € O(E,E). Thus

azp,z)=swp{ [ sl FFE)PPPET0D.: fe o, B}
HEF(F(G))

=sup{ T Mos(u FEE)I 0D Je 0B, B)} = dg™(p, F(2).
nef(E)

1.9. Relative extremal function

DEFINITION 1.9.1. Let G C C" be a domain. For A C G the relative extremal function
of A in G is given by the formula (cf. [Kli 1991, §4.5])

wa,q =sup{u € PSH(G) :u <0, uls < —1}.
Let w} ; denote the upper semicontinuous regularization of wy ¢-.

REMARK 1.9.2. Let F': G — D be a holomorphic mapping and let A C G, B C D be
such that F'(A) C B. Then

wp,p(F(2) Swac(z), z€G.

THEOREM 1.9.3 ([Edi 2001]). Let G C C" be a domain, let p: G — Ry be such that the
set #|p| is finite. Fiz an R > 0 so small that

e B(a, RY/P()) € G for any a € |p|,
e B(a, RV/P)) N B(b, RMPO®)) = () for any a,b € |p|, a # b.

Let Ay := e p Bla, r1/P@)) 0 < r < R. Then
(log (R/7))wa,.c \ 1loggc(p,-) when r\ 0.

Proof. Let
v, = (log (R/7))wa,a, 0<r<R.

STEP 1. We have v,, <v,, for 0 < r; < ry. Indeed, fix 0 < r; < r2 < R and define
Uy, (log (R/r1))wa,, ¢

v log (R/72) log (R/r2)
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Then v € PSH(G) and u < 0. It suffices to show that « < —1 on A,,. Fix an a € |p|.
Let k := p(a). Take a z € B(a, ré/k). Then (cf. [K1i 1991, Lemma 4.5.8]):

) < (log (B/71))wg (o 174y B(a,mrv(2)  log (R/ry) (10g+ (llz — all/RY¥) _1) <1
= log (R/r2) log (R/r2) log (Rl/k/r}/k) T
Let
v = Tll)r(l;l+ Uy = Tli)r(r){‘r(log (R/T‘))WA,.,G-

Note that v € PSH(G).

STEP 2. We have v, > logga(p,-), 0 < r < R. In particular, v > log g¢(p, ). Indeed,
fix 0 < r < R and let
o 0gge(p, )
" log(R/r)
Then u, € PSH(G) and u, < 0. Fix a € |p| and z € B(a,r'/*) (k := p(a)). Then
ur() < OB Ist@mmy (0:2) _ Klog (|2 — all/RV*)
log (R/r) log (R/r)
Thus v, < wa, -

< -1

STEP 3. We have v < logga(p,-). Indeed, it suffices to check the growth of v near
every point a € |p|. Fix an a € |p| and let z € B(a, RY/*), 2 # a (k := p(a)). Let
0 <r <|z—al*. Then
v(z) — klog ||z — al| < (log (R/r))wa, c(z) — klog|lz —al
< (log (R/7))ws(a,r1/v), B(a,r1/x)(2) — klog ||z —al
_ log™ (||z — a||/R'*)
= (log(R/T))< ) —1) —klogl|z —al

< —logR. =

1.10. Analytic discs method

From some general point of view the invariant objects we have studied so far may be
divided into three groups:

(a) objects related to certain extremal problems concerning holomorphic mappings

f:G— E,eg. ci(a,z), ma(a,z), va(a; X), vg)(a;X), me(p, z), A3 (p, 2);

(b) objects related to certain extremal problems concerning logarithmically plurisub-

harmonic functions u : G — [0, 1), e.g. ga(a, 2), Ag(a; X), ga(p, 2);
(c) objects related to certain extremal problems concerning analytic discs ¢ : E — G,
e.g. kg(a,z), H*(a, 2), »a(a; X), ha(a; X), kg(p, 2).

In the late eighties E. A. Poletsky invented and partially developed a general method
which reduces in some sense problems of type (b) to (c). This method found various
important applications, due mainly to A. Edigarian (cf. [Edi 2002] and the references
given there) and E. A. Poletsky (cf. [Pol 1991], [Pol 1993], [Edi-Pol 1997]); see for instance
§1.12. In the present section we are mainly inspired by the exposition of the analytic disc
theory presented in [Lar-Sig 1998b] and [Edi 2002].
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DEFINITION 1.10.1. Let G C C™ be a domain. By a disc functional (on G) we mean any
function

Z:0(E,G)—R

The envelope of a disc functional = : O(E,G) — R is the function €= : G — R defined
by the formula

E=(z) =inf{Z(p): p € O(E,G), p(0) =2}, z€G.

DEFINITION 1.10.2. The following four types of disc functionals play an important role
in complex analysis:

e Poisson functional:
Elgoi(go) =5 S p(@(ew)) d97 2 S O(Ev G)7

where p : G — [~00,00) is an upper semicontinuous function (*!).
e Green functional:

El.(9) = > ple(\)log|Al, € O(E,G),p:G—Ry. (*?)
AEE,

e Lelong functional:
EP(p) = > ple(N)ordx(p — e(\)log |, € O(E,G),p:G—Ry.
AEE,
e Lempert functional:

EP (@) == inf{p(p(N))log | : A€ E.}, ¢ €O(E,G),p:G— Ry.

L ER L =Esp EP. =Eop

Lem - Slem "

[1]

Put €7, = Ezp , ER, = Exz
<

REMARK 1.10.3. (a) 57, . < =7 ., and, consequently, E7 | < ER < EP .

(b) Let = € {EGre,_fel,_Lem} Then =(y) is well defined for ¢ € O(E, G). More-
over, £z(z) = inf{Z(p) : ¢ € O(E,G), p(0) = 2z}, z € G. Indeed, for ¢ € O(E,G)
let 0. () := @(r)), |A\| < 1/r, 0 < r < 1. Then ¢, € O(E,G), ¢.(0) = ¢(0), and
Z(p) = infocr<1 Z(pr)-

(c) If F: G — D is holomorphic, then Z90 F = Z9°F = € {Zp.i, Eare, SELem ), and
9,0 F < 55F, where (= o F)(p) = Z(F o), ¢ € O(E, G).

(d) Let F : G — D be holomorphic and let = : O(E, D) — R be a disc functional
on D. Then the mapping ZoF' is a disc functional on G and EzoF < Ez,p. If, moreover,
F' is a covering, then £z o F' = E=z,r. Indeed, we only need to observe that if F' is a
covering, then for any disc v € O(E, D) with 1(0) = F(z) there exists a ¢ € O(E,G)
such that p(0) = z and F o p = 1.

] [1]

(*!) The Poisson functional may be defined for more general functions p — see [Edi 2002].
(") X f) = inf 3 ) (F: A= [-00,0]).
CA XcB

A€EA
#B<+oo
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(z) = log %g(p, z) = log dB**(p, 2), z € G (cf. §1.5).
In particular, the function kg(p,-) is upper semicontinuous. Moreover, if B(a,r) C G,
then for any z € B(a,r) we get

(e) Observe that kg (p, z) := EP

Lem

o T T Z—a
Fa(p. ) < log Ry (a. ) < p(@) 05 R (@ 2) = pla)log -1
= p(a)log||z — al| — p(a)log .
(f) In the case where p = x(,} we have:
- 1 _ =
Epoi(p) = 5-Ale YMa)nNoE), ZPi(p)= Y,  orda(p—a)log|A,
Aep~1(a)NE,
El.lo)= D log|A,  EP .(p) =inf{log|A: A€ o7 (a) N E.},

A€p~1(a)NE,
where A denotes the Lebesgue measure on OF (A(OF) = 2).

1.10.1. Poisson functional. For any upper semicontinuous function p : G — [—00, c0)
let

Pp(G) :={ue PSH(G) : u<p}, ©a(p,z):=sup{u(z):ue Pp(G)}.
The function Og(p, -) is called the generalized relative extremal function with weights p.
Observe that Wg(p, ) € Pp(G). Moreover, wy,¢ = Ug(—Xu,-) for any open set U C G,
where wy ¢ is the relative extremal function (Definition 1.9.1).

REMARK 1.10.4. (a) EB, < p.

(b) If p, \, p, then =Pk \ =P . and EPE N\, EP .
PROPOSITION 1.10.5. For any upper semicontinuous function p : G — [—00, 00) we have
ba(p,-) < &R .. Consequently, if EX . € PSH(G), then EP, € Pp(G) and O (p,-) =
SZF)’oi'

Proof. For u € Pp(G) and ¢ € O(E,G) we have

u(p(0) < 5 [ ulp(e”) do < o | plete) 0 = 2 (0)-

LEMMA 1.10.6. The function E} ; is upper semicontinuous on G.

Proof. By Remark 1.10.4(b), we may assume that p : G — R is continuous. Fix a zp € G
and suppose that €P (20) < A. Then there exists a ¢y € O(E, G) such that ¢,(0) = 2o
and =% (¢9) < A. Take 0 < r < dist(¢o(E), dG). Then for z € B(29,7) we get
27
- 1 i
ERi(2) < Fhoilpo +2 = 20) = 5 | plpo(e”) +2 — 20) db.
0

It is clear that the function
27

B(zp,7) 2 2 — Py § p(po(e?) + 2 — 2y) db

is continuous and smaller than A at z = zy. Consequently, there exists 0 < § < r such
that B .(2) < A, 2 € B(20,6). m
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THEOREM 1.10.7. For any upper semicontinuous function p : G — [—00,00) we have
&P € PSH(G). Consequently, by Proposition 1.10.5,

2

; 1 i0 ) gyl _
IM{ggpww>mwweaEwam4
= &2..(2) =Ba(p, z) =sup{u(z) € PSH(G) :u <p}, z€G.
In particular, if U C G is open, then

wu,c(2) = Wa(—xv,2) = €2xw (2)
1 2m _
=inf { - | —xw(p(e”)db : ¢ € O(F.C). o(0) = 2
0

= fsup{%/l({ﬁ COE :p(6) cU}):pc OE,G), ¢(0) = z}, z € G.

A class of complex manifolds G for which the above result is true was presented
in [Lar-Sig 1998b]. The case where G is an arbitrary complex manifold was proved in
[Ros 2003], [Edi 2003].

Proof. By Remark 1.10.4, we may assume that p : G — R is continuous. Let ug := €% ..
By Lemma 1.10.6 we only need to show that
27

uo(p(0)) < o { uo(p(e™)dt, ¢ € OF,G).
0

Fix a ¢g € O(E,G). Tt suffices to prove that for any ¢ > 0 there exists a € O(E,G)
such that ¢(0) = ¢(0) and

2m
(1.10.16) EPi(@) < % S uo(po(e)) dt + ¢.

0
Fix an ¢ > 0. The proof will be divided into four steps (Lemmas 1.10.8-1.10.11).

LEMMA 1.10.8. There ezist r > 1 and ¢ € C*°(U, x OE,G), where U, :=B(r) C C, such
that:

(i) ¢('a€) € O(Ea G)a S 8Ea
(ll) @(0,5) = 300( ), £ € OF,
(iif)
2 27
(1.10.17) | SE(@(, ™) dt < | uoole™)) dt + <.
0 0

Proof. Since ug is upper semicontinuous (Lemma 1.10.6), there exists a v € C(G,R) with
v > ug such that

2 2
ngaw»ﬁs§wwmw»ﬁ+g

For any &, € OF there exist ¢ € O(E,G), 0 < § < dist(p(E), dG), an open arc I C OF,
and 7 > 1 such that:
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e & €1, ¢(0) = ¢o (&),
* Shoile+2—wo(éo)) <v(2) +e/4, z € B(po(&), 9),
® ©9(§) € B(po(&0),9), £ € 1,
o @(U; x I) € G, where $o(A, &) := ¢(A) + ¢0(&) — po(o)-
By a compactness argument we find a finite covering 0F = UZJ,\’il 1,, r > 1, and functions
&, eC®U, xI,,G),v=1,..., Ny, such that:

§) e O(E,Q), ¢ € 1,

(
(0,8) = ¢o(£), € € L,
(U, xI)@G,

SR (Pu(-,€)) <v(po(é))+e/4, €, v=1,...,Ny.

Let K be the closure of the set po(OF) U UNO ®,(U, x I,) and let C > 0 be such that
C > max{v(z) : z € K}. There exist disjoint closed arcs J, C I,, v € A C {1,..., Ny},

such that
a(oe\U %) < 55

vEA

v

o
o,
o,
°

We may assume that A = {1,..., N} for some N < Nj. Fix open disjoint arcs K, with
J,CK,Cl,,v=1,...,N, and let p € C>(JF,[0,1]) be such that o = 1 on UJVV:1 Jy
and supp o C UIVV=1 K,. Now we define @ : U, x OF — G by the formula
000, = { PONO BT KK

eo(8), (X&) € Up x OB\ U, Kv).
It is clear that & is well defined, ¢ € C*°(U, x 0E,GQ), &(U, x OF) C K, and P satisfies
(i) and (ii). It remains to check (iii). Let .J, := {t € [0,27): e* € J,}, v =1,...,N. We
have

27 N N
— i —_ E ol 3e
J Za(@Cear < | ZRu@uede+ £ <3 §oleoledt+
0 v=1 7, v=1 ~+ 7,
27 27
< [ vlpoe™)dt+ 5 < § uo(po(c™)) dt +c. m
0 0

LEMMA 1.10.9. There exists 1 < s < r such that for any j > 1 there exist an open
annulus A; D OF and &; € O(Us x A;,G) with:
(i) ¢; — @ uniformly on Us x OF,
(ii) there exist 1 < s; < s and kj € N, k; > j, such that the mapping (X, §) —
®;(AER9,€) eatends to a mapping ¥; € O(Us, x Uy, G),
(iii) ¥;(0,€) = @o(&), & € Us,.
Proof. Let

2

J

1 . 0Ny i

Bi(\ €)== po(&) + D <% | (@(\, ) — go(e®))e d@)g’“, (A €) € Uy x (Uy)..
k=—j 0

Observe that the second term is the jth partial sum of the Fourier series of the function

&= DN E) — po(&); also, @; is holomorphic and @;(0,£) = ¢o(§), £ € (Uy)«. Moreover,
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forany 1 <t <r, ®; — @ uniformly on U; x OF. Indeed, it follows directly from Fourier
series theory that @;(\,-) — @(), ) uniformly on OF for any A € U,. Thus we only need
to show that the series

jo%e) 27

> (55 1O e = pale e ap )
0

k=—o0
converges uniformly on U; x JF. Using integration by parts, we obtain

2m

, o i 1
I J@0.e) o) < g

2
(B, e) — o).

keZ,, (\E) eU x OE,

which implies the required convergence.

Fix 1 <t < r. It follows that ¢,(U; x OE) € G for j > jo. Hence, one can find an
open annulus A; D OF such that ¢;(U; x 4;) C G, j > jo.

For any ¢ € ( )« the mapping @, (-, &) —@o(&) has a zero at A = 0. For any A € U, the
mapping ®;(A, ) — o has a pole of order < j at { = 0. Consequently, for any k£ > j the
mapping (A, ) — ®;(AEF, €) extends holomorphically to E x E. It remains to check (ii).
Recall that @;(0,-) = ¢o. Hence there exists §; > 0 such that @;(Us; x E) C G. Since
®;(Uy x Aj) C G, j = jo, we can find 0 < p; < 1 such that &;(E x (E\U,,)) C G,
J > jo. Now, let k; > j be so large that g?j < §j. Then ¥;(\,€) := &,;(\F,¢) € G,
()"5) GEXEaijO- u

LEMMA 1.10.10. There exist 1 < s <1 and ¥ € O(Us x Us, G) such that:
(1) W(ng) = 900(5)7 § e Us,

(ii)
2 27
(1.10.18) | SB@(, ) dt < | 2B (0(, ™)) dt + .
0 0

Proof. Let &;, ¥; be as in Lemma 1.10.9. Then, for j > j(¢) we have

27 27 27 27 27
— 7 1 7 ; 7 1 7 7
§ 2= | (0 § o0 coya ) ai=g | |,
0 0 0 0 0
1 27 21 27
<o \ | p(@(e”, e")dodt+e= | 2B (0(,e")dt+c. u
0 0 0

LEMMA 1.10.11. There ezists a 0y € R such that if we put
P(N) = g, (N) :== ("N, N), A€ Us,

then

(1.10.19) ER4(@) < 5= | ZB () at.
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Proof. We have

27 27 27 21
|\ p@(e? etyydodt = | | p@(ee”,e))dtdo.
0 0 0 0

Consequently, there exists a 6y € R such that
27
S p(gj(eiegeit’ eit)) dt
0

27 21

S S p(U(ee™, et)) dt df
00
21 21 2m

J VP ")y dodt = — | Zp (") dr. m
00 0
Now, using (1.10.19), (1.10.18), and (1.10.17) gives (1.10.16). m

1

Elgoi((p%) = %

o
- (2m)?

The following result is a direct corollary of the definition of the function wy ¢ and
Theorem 1.10.7.

ProposITION 1.10.12. Let F : G — D be a holomorphic covering, let V C D be open,
and let U :== F~Y(V). Then wy.po F = wy.
Proof. The inequality “<” follows from Remark 1.9.2. The opposite inequality follows
from Theorem 1.10.7 and Remark 1.10.3(c, d):

WG = Eony = Ecnyor = €

~Poi ~Poi

=& _xwoF=wypoF. u

=XV
Zpgi oF =Poi

1.10.2. Green, Lelong, and Lempert functionals. For any function p : G — R,
let
Gp(G) == {u € PSH(G) : u <0, Vace Io(uayer Veea  u(z) < pla)logllz —all + C(a)}-
Observe that log g (p, z) = sup{u(z) : u € Gp(G)}, z € G (cf. Definition 1.5.1).
PROPOSITION 1.10.13. log gi(p,-) < EF,. Consequently,

o for = e {Z8,., =T, 5P} if €= € PSH(G), then E= € Gp(G) and

logga(p,) = €=,
o if & iz € PSH(G) (**), then & i .y € Gp(G) and

Sr%c(p,-) < IOggG(pa ) < 8Zﬁel'

~Poi

Proof. Take ¢ € O(E,G), u € Gp(G), and a finite set B C E. N ¢ !(|p|). We are
going to prove that u(p(0)) < >\ .5 P(¢(N))ordx(w — ©(A))log |A|, which implies that
u(¢(0)) < EP (¢) and, consequently, log gG(p7 ) < EP .. Let

v(é) = = > plp(V) ordr(p — p(N) log mp (A, €).

AeB

(*3) Recall that ke (p, -) = log k& (p, -).
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Then v € SH(U, \ B) for some r > 1 and v = uop < 0 on E. Moreover, one can easily
check that v is locally bounded from above in U,.. Hence v extends subharmonically to U,
and, by the maximum principle, v < 0 on E. In particular, v(0) < 0, which gives the
required inequality. =

ProposITION 1.10.14. EF = &P .

Proof. We have to prove that
L(z) = inf { 3 plp(N) orda(p — p(\) log Al : ¢ € O(E, G), (0) = =}

AEE,
hﬁ{;;p@QDMgM:¢€O@iG%ﬂmZ}Jﬂ@, el

The inequality “L < R” is obvious. Fix a z € G and an arbitrary constant C' > L(z). We
want to show that C' > R(z). Since C' > L(z), there exist ¢ € O(E,G), »(0) = z, and a
finite set B C E, N~ !(|p|) such that

> p(p(N)) orda (e — o(A) log |A| < C.

AEB
Write B = {b1,...,bn}, a; := o(bj), r(j) := ordy, (¥ —a;), j = 1,..., N. Consider the
family of all systems c of pairwise different points ¢;, € E, j=1,...,N, k=1,...,7(j),

such that c;1---¢j ;) = b;(j), j=1,...,N. Define polynomials
Qc,p,,u()\) = H ()\_cj,k)a V= 17~-~77‘(M)7
j=1,...,N
k=1,...,r(j)
(3:k)#(p,v)

(1)
Cy b,V A
R

, LN, MeC.
2 Qe (cn)

Observe that
edegP.; <r(l)+---+r(N)—-1,
o P i(cyy)=0if p# jand P, ;(c;.) =1,
.Pc,1+"'+Pc,NEI-

Define

Notice that . € (9( ,C™), vc(0) = ¢(0) = 2, and @.(cjx) = a; forall j =1,...,N,
k=1,...,7(j). Moreover,

N r(j)
ZZpaJ log|cj k| = Zpaj ) log |b;| < C.
j=1k=1
It remains to observe that ¢.(E) C G provided that cj, ~ bj, j = 1,...,N, k =

1,...,7(j). =
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THEOREM 1.10.15. If |p| is finite, then € ; ., = €7, . Consequently, by Theorem

—Poi

1.10.7, €Y, € PSH(G) and, therefore, by Propositions 1.10.13 and 1.10.14,
& k() — IOggG(p7 ) SLel 8gre'

=Poi
Moreover, by Proposition 1.6.2, for arbitrary p : G — R we get the following Poletsky
formula:
IOggG(pa ) = 8fel = g‘gre'
The Poletsky formula and the main ideas of the proof are due to E. A. Poletsky
(cf. [Pol-Sha 1989], [Pol 1991], [Pol 1993]). The first complete proof was given by A. Edi-
garian in [Edi 1997b]. We follow A. Edigarian’s exposition.

Proof. We may assume that p # 0. By Proposition 1.10.13 we only need to show that
er, <& hao- Fix a ¢y € O(E,G) and € > 0. It suffices to find a ¢ € O(E, G) such

that (,5(0) apo( ) and
27

E2u(®) < o | Rolp.oo(e) dt +<.
0

The existence of ¢ will follow from a sequence of lemmas (Lemmas 1.10.16-1.10.20).
LEMMA 1.10.16. There exist:

el <s<r,

e »cC®(U, x0FE,G),

e N eN,

eaj,...,ay € |p|,
®01,---,0N ecoo(aEaC*>,
e disjoint closed arcs Jy,...,JJy C OF

such that:

(i) 2(-¢) € O(E,G), 9(0,&) = po(§), & € IE,

(ii) if |ou(§)| < s, then |o,(§)] > s, p # v, and P(0,(£),§) = ay,
(iii) o, (&) <1,€é€J,,v=1,....N, AQE\U_, J,) <¢,
(iv) 0u(§) # (é)féaE,V#u,

(v) 27eraxV 1,...n{p(a,) maxsg log|aAl,|} <e/2,

() T, pla,) 527 log o ()] dt < 527 Res(p. o)) dt +<.

Proof. Let ug := kG (p,-). Since wg is upper semicontinuous, there exists a v € C(G,R)
with v > ug such that

27 27
(S) v(po(e™)) dt < (S) uo(o(e™)) dt + %

For any &, € OF there exist ¢ € O(E,G), A\g € E., § > 0, an open arc I C 0F, and
r > 1 such that:

e & €1, p(0) = po(&o), p(Ao) =: a € |pl,
e p(a)log|Ag| < v(z) +¢/8, z € B(¢o(&o),d) C G,



78 1. HOLOMORPHICALLY INVARIANT OBJECTS

® p(A) + (1= A/ A0)(z —¢o(&0)) € G, (A, 2) € Ur x B(go(0), 6),

® ©o(§) € B(vo(éo),9), € €1,

o Oo(Ur x I) € G, where $o(A, &) := p(A) + (1 = A/A0)(¢0(§) — ©0(o))-
By a compactness argument we find a covering OF = UIZ,VL I,, r > 1, functions @, €
C>®U, xI,,G),v=1,..., Ny, and points A,..., Ay, € E, such that:

L4 451/(76) € O(E, G)a §el,

i 451/(075) = (»00(5)5 g € Iuv

e b, (N, &) =a, €lp|, €1,

e d,(U. x1,) €GqG,

i p(au) log |>\u‘ < U(Qﬁo(f)) + 5/87 §el,,v=1,...,No.
Replacing @, by the function (\, &) — &, (e \, &) with suitable 6, ~ 0, we may assume
that the points Ay,..., Ay, have different arguments.

Fix 1 < s < so < r with 2rNymax, =1, n, P(a,)logsy < £/8. Let K be the closure
of the set

No
@O(BE) U U QSV(UT X L,)

v=1

and let C' > 0 be such that

C > 27Ny max p(a,)[log |\, || + max{v(z) : z € K}.
v=l1,...,Ng
There exist disjoint closed arcs J, C I, v € A C {1,..., Ny}, such that

€
A(aE V) =
U )< T
vEA
We may assume that A = {1,..., N} for some N < Nj. Fix open disjoint arcs K, with
J,CK,Cl,,v=1,...,N, and let p € C>*(JF,[0,1]) be such that o = 1 on Uf,v:l Ju
and supp o C UIVV=1 K,. We define @ : U, x OF — G by the formula

B, (0N €), (A €U, x K,
o(€), (\€) €U, x OB\ U, K,).

It is clear that @ is well defined, & € C*(U, x OF,G), and & satisfies (i).

Let K, = {¢"? : 0 € (o, )}, J = {€ : 0 € [y,,0,]} with o, <7, < 3, < B,. We
may assume that o increases on (ay,,7,) and decreases on (6,,3,). Then the set J), :=
{£ € K, |A\|/o(§) < s}isaclosed arc with J, C J/, C K,.. Take a 0, € C*°(0E,Rsg\,)
with

° 0,(§) =A/0(§), £ € J,,

o s <|ou(§)| <s0, £ €KL\,

o |0,(&)|=s0, £ €OFE\ K,.

Then (ii)—(v) are satisfied. It remains to check (vi). Let .J, := {6 € [0,27) : e € J,},
v=1,...,N. We have

20,¢):= {
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N 27 N

N
it £ t £
> p(a) §logloy(e)|dt <Y pla,) | log|A, | dt + <> | )i+
v=1 0 v=1 j,, v=1 j,,
27 c 27
ngwdﬁDﬁ+§§SM@deDﬁ+a-
0 0

LEMMA 1.10.17. There exists a jo € N such that for any j > jo there exist 1 < s; < s,
v; € O(U,; x Us;,G), and 7,5 € O(Us, \Ul/sj), v=1,...,N, such that:

(i) ¥;(0,8) = o(§), € € Us;,

(ii) |Tuj| — |0y| uniformly on OF,
(iii) @ ﬁw()O—amieU%\mﬁ with |7,,;(€)] < s;,
(iv) |n () <1, 6€d,,v=1,...,N.

Proof. Recall that for any £ € F the numbers 0,01(§),...,on(§) are pairwise different.
Let P : C x FE — C be defined by the formula

N N
PO\ &) = @O(f)H :UflTl +Z Aay, HJ)\—Ul(f)

observe that P(-,£) is the Lagrange interpolation polynomial with P(0,£) = ¢o(§),
P(o,(£),¢) = ay, v = 1,...,N. We will prove that there exists a function ¢, €
C>°(Us x 9U) such that

P(A, &) = PN+ A =01(§) - (A= on(§)Po(A,§), (A €) € Us x OF.

Indeed, the only problem is to check that @, is C*° near a point (0,(&),&n) with
lov(§0)| < s. Then |0,(&)| > s for  # v, and there exists a neighborhood V' of &
such that |0, ()] < s, |o,(§)] > s, u # v, for £ € V. Observe that

BN E) = ay + (A= 0, (E)BNE), PNE) =a,+(A—0,(€)PNE), (N eU,xV,

where @ and P are C*° mappings. Hence

2o(0.) = @) - POO) [ 1—n

e Ju(fy

and, consequently, &, € C*°(U, x V). Notice that ®¢(0,:) = 0.
Let &y ; and 0, ; be the jth partial sums of the Fourier series of &y and o,, respectively,

(A& eUs xV,

i.e.
7 1 27
By (N €)=Y (2ﬂ_§ @o(A,e“)e‘”ktdt)gk,
k=—j 0
7 1 27
a6 = Y (27r S o, (e)e Kt dt>§k
k=—j 0

for (A, &) € Us x Cy; cf. the proof of Lemma 1.10.9. One can easily show that @ ; — ®g
and 0, ; — 0, uniformly on U; x OF for any 1 <t < s. Define
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N

Pi(06) = po(@) [T 2228 4 3 )‘au I A

i1 —01,5(§) e 1%; l ,l#%g ) —01;(8)

P;(X,€) = Pi(A ) + (A —015(8)) - (A = 0w ()P0, (A €)-

Then

° @O,j € O(Us X (C*),

o for any A € U the function @ ;(}, ) has a pole of order < j at { =0,

o for any £ € C, the function @ ;(-, ) has a zero at A =0,

e &; — & uniformly on U; x 0F, 1 <t <,

e &@; is holomorphic on Uy X 0F, 1 <t <s, j > 1,

e for any A € U, the function @; (), -) has a pole of order < j at { =0, j > 1.
Suppose that j > 1 is such that 0, ;(§) # 0, £ € OE. In particular, the set 7, ; =
E,N0,}(0) is finite. Observe that &; € O(U, x (E. \ Z;)), where Z; = U}, Z,
Put B; := B;;---By,, where B, ; denotes the Blaschke product for Z,; with the
zeros counted with multiplicities (**). For every ¢ € C, \ Z; with |0, ;(£)| < s, we get
®;(0,,5(€),€) = ay. For any k > j:

e the mapping @, (), &) := &, (\FB;(€),€) is holomorphic on E x E, and

e the mapping o, ;4 (¢) = 0,,;(£)/(€*B;(£)) is meromorphic in C. and zero-free

holomorphic in FE,.
Moreover, @, 1.(c,;£(€),€) = a, for all £ € (Us), such that |0, ; ,(£)¥B;(€)| < s. Using
the same method as in the proof of Lemma 1.10.9, we get the required result with

Ti(N, &) = Pk, (N, €) = Bj(AER B (€),€),  70(€) = 00, (€) = 0,,5(6)/ (€% B (€)),
where k; > j is sufficiently large (and 1 <s; < s, s; = 1). m
Taking in Lemma 1.10.17 a j > 1 gives the following result.

LEMMA 1.10.18. There ezist 1 < t < s, ¥ € O(U; x Uy, G), 7, € O(U; \ Uy, C.),
v=1,...,N, such that:

(i) ¥(0,8) = ¢o(&), & € Ut
(i) |m(& )|<1 £edy,
(i) (7,(€),€) = ay, & € (U)- with |r,(€)] < t, v =1,..., N,
(iv) 2nNmax, =1 n{p(a,) maxsglog|m,|} < e/2,
(v) Yoo play) SO log|r(e)]dt <3N pla,) §o" log [0, (¢')] dt + e.
LEMMA 1.10.19. There exist ng € OF, k, ¢ > 0, and 0 < o < 1 such that the functions

) o\ +ec/k
F&) =", €),  F(Am) L sy
satisfy
2 N 27
RErAeeal dt < Z S log |7, ()] dt + €.
0 '

(**) That is, the function o, ;/B,,; extends to a zero-free holomorphic function on E..
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Proof. Since 7,,(£) # 0, £ € Uy \ Uy ¢, there exists ¢ > 1 such that

ne ° —1,(§)
1_ 7',,(5)776_0 < log |Tu(€)| +

where M := Zl],vzl p(ay). Let
v =ep (357 ). A€C {1y
observe that ¥(E) = E,, ¢(0E \ {—1}) = OF. Define

W) -1
S ra TR

we have |p,(A\n,8)] =1, (\n,&) € (OF \ {—1}) x OF x J,. Moreover, ¢,(t;n,&) —
—7,(€§) when t — —17. Thus ¢, (-;7,£) is an inner function with non-zero radial limits.
Consequently, by Proposition 1.12.2; ¢, (:;7,€) is a Blaschke product. Moreover, since
Y'(X) # 0, the zeros of ¢, (+; 1, ) are simple and, by the implicit mapping theorem, for any
point (Ao, 1o, §o) with ¢, (Ao; o, &) = 0, there exists a holomorphic function h = hx, ¢,
defined in a neighborhood V; of (1o, &) such that h(no, &) = Ao and ¢, (h(n,£);n,£) =0,
(n,&) € Vo. Observe that

5 —
m, 776E,§€8E,V—1,...,N7

(1.10.20)  log ‘

(A,m,8) € (C\{=1}) X OE x Jy;

i A’ (A)
nY(A) = 1,(§)

618()\0 ,’r‘)

h(n,&) = A,

2mi
where B()\o,7) is so small that A = )\ is the only zero of ¢, (-;70,&0) in B(Ag, 7). Let
(Av1)i2, be the zeros of ¢, (-;10,&) in E.. Since ¢, (-;1m0,&0) is a Blaschke product, we
get

ne ¢ —1,(§

1—71,(§)ne—c

I (0510, &0)| = ’

Hence, using (1.10.20), we conclude that there exist L € N and ¢ > 1 such that

‘vl|
lo log |7,
;1 0g = = < log]|T (60)I+2M

Consequently,

| Av,1,M0 60(77 §)|
log "”— <1 ,
Z og |7, (€)] + 50
for (n,£) in a neighborhood of (19, &)-
Using a compactness argument we see that there exist L € N and p > 1 such that for

any point (1,&) € OE x J, there exist A\, 1(n,&),..., A\,(n,§) such that
v (n,€);n,§) =0, 1=1,....L,

and
L

Avi(n,
Zlog—‘ ’l(gn )l <log|r (&) + 537

M
1=1
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Let p
At+e ¢ A—1
Ni=———— =14+ (1—e " AeC\ {—e“*},
B = S S (e e e (e
Observe that 1, — 1 locally uniformly in £ and

FLogun() = 3 ()
locally uniformly in E. Consequently, w’,g — 1) locally uniformly in F.

Fix 1 < ¢ty < 1/p and let V,, be a neighborhood of J, such that |7,(§)| < 1, £ € V.
Let kg € N be such that (o)) € Vi, (A, &) € Uy, x Jy, k > ko. Hence, by (iii) of
Lemma 1.10.18, we get

W(Tu(gdjk(QA))vg/wk(Q/\)) = Qy, ()\76) € Uto X Jua k > kO-
Recall that
bk (o) — 1 (i (eN)) — n(eA) — 7, (€)

uniformly with respect to (\,n,¢) € Uy, X OF x J,,. Hence, by the Hurwitz theorem, for
k > 1, there are zeros A, (1, &) of the function A — 7Yk (oA) — 7, (€4 (oN)) which are
so close to A\, ;(n,§) that

L

g
EI%WMWQKbQMW+ﬁT (n,§) € O x J,,.
=1

Observe that
W(an(QAV,l,k(nyf))7£¢k(9)\u,l,k(na§))) = Gy, (77’5) € OF x JV; E>1.

Hence
N

EPa(A = T (), € (eN) < D plan) log 7 ()] + .

-1
v N

(n,6) € Q= [ J(OF x J,).
v=1
Consider the diffeomorphism H : (OE)? — (0F)? given by H(n,¢) = (n¢%,&). Let
S := H(Q). Then A(S) = A(Q) > 2n(2m — ) (because the modulus of the Jacobian of
H is equal to 1). Consequently, there exists an 1y € OF such that A(R) > 27 — ¢, where
R:={¢€dE: (n,&) € S}. We have

2

EP (O (0(En (M), € () Z pla,)log|n, ()| +5, €€k

Finally, by Lemma 1.10.18, we conclude that

27 N 27
} S2u(h = W0 (e uoN)" v (0N)) dh < 3 _pla S log r, (¢)] dt +¢,
0 =1
which implies directly the required result. m
A-1 A—1

45 : — 1 _ ,—c/k —
(%) JHim _kLogn(d) = lim k(1 —e™") = —ny = e 37
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LEmMA 1.10.20. There exists a 0y € R such that the mapping
(&) == f(F(e™¢,¢€))

satisfies
(1.10.21) EP (p) < 1 | SPLFFC ™)) dt.

Proof. First we will prove that for any ¢ € O(E,G) we have

(1.10.22) EP.(p) = [ (og A Av, (V) dAs(N),
where ) "
vp(N) = 5= > ple(bh) ordy(p — @(B)) logmp(b, ), A€ Uy,

beEB,
B, = {b€ E. : p(p(b) >0} = E. Ny~ (pl)
(for some r > 1). Observe that B, is discrete and v, € SH(U,). To prove (1.10.22) we
use the Riesz representation formula:
27
| (log [A]) Av, (\)dAa(A) = 270, (0) = | vy (e™) dB
E 0
=Y p(p(b) ordy(p — p(b)) log[b] = ZF, ().

beB,

Next we are going to show that for any function h € O(F) with h(E) C E we have
(1.10.23) Avgon = A(vy 0 h) in E,
with A_ := 0. If ¢ = const or h = const or h(E) N B, = (), then (1.10.23) is obviously
true. Assume that ¢ # const and h # const and h(E) N B, # 0. It is clear that v,op,
and v, o h are harmonic on E \ h~'(B,) and, consequently, Av,o, = A(v, 0 h) = 0 on
E\ h™Y(By,).

Take b € B, and ¢ € h~1(b). Write h(\) = (A — ¢)™g()\), where g € O(E) and
g(c) # 0. Then

0 0 h(N) = o= P(p(B)) ords(p — p(B))m o |A — c] +u(),

where u is harmonic near c¢. Thus
A(vg o h) = p(p(b)) ords (¢ — ¢ (b))mbe
= p(p(h(c))) ordc(p o h — @ o h(c))de = Avgon
in a neighborhood of ¢. Applying (1.10.23) to ¢ := f and h := F(-,§), we get

(1.10.24) EPL(F(F() = | (0g]A) Avgop(.&)(N) dAs(N)
E

= [ (og |\ Ax(vs 0 F(X,€)) dAs(N).
E
Now we need the following auxiliary result.
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LeEMMA 1.10.21. Let w € PSH(U, x U,.) (r > 1) and let we(€) := w(e?¢,€). Then there
exists a 0y € R such that
2m
1 )
Jtog I\ Awg, (V) dds(3) < o | (([og AN ANw(r, ) dAa (V) db.
E 0 E
Proof. The Riesz representation formula gives
2w
1 1 ) ,
w(0,0) = wy(0) = o~ | (log |\ Awy(A) dAs(A) + 5= | w(e @), ) dt.
27 > 2 5

Hence
27 2T 27

27w(0,0) = % §) (}Xs(log|)\|)Aw9(A) dAg(/\)) o + % § ( (SJ w(eiw“),e”)dt) d.

On the other hand, using the Riesz representation formula for the functions w(0,-) and
w(-,e), we get

27 2m
2mw(0,0) = S(loglA\)Aw(o,A) dAy(N) + S w(0, ) do < g w(0, ¢ do
E o 5
2 o
= X <% S(log|/\|)A)\w()\7ei9) dAs(N) + % S w(e“7ei9) dt> do.
0 E 5
Consequently,
| (Jaoganaws(x) az(n) as < § ((§ogA)aw(o, A das(n)) o,
0 E 0 VB

which implies the required result. m
Applying Lemma 1.10.21 to (1.10.24) gives (1.10.21). m
This finishes the proof of Theorem 1.10.15. =

REMARK 1.10.22. (a) There is a counterpart of the Poletsky formula from Theorem
1.10.15 for the Azukawa pseudometric A (cf. §1.2). Recently, N. Nikolov and W. Zwonek
[Nik-Zwo 2004a, Theorem 1] proved that for any domain G C C™ we have

Ap =Tg =T},
where
To(a; X) := inf{L,(a)/|t| : ¢ € O(E,G), p(0) = a, 9"V (0) = kltX, k := ordo(¢ — a)},
I4(a; X) == inf{Ly(a)/|t| : ¢ € O(E, G), (0) = a, ¢'(0) = tX, ordo(p — a) = 1},

L,(a): [T erde =exp(E (9)), (*)  (a,X) € G xC™
Aep~1(a)NE,

(b) Let G C C™ be a domain and let a,z9 € G, 29 # a, Xo € C?. Follow-
ing [Nik-Zwo 2004a], we say that a mapping ¢ € O(E,G) is gg-extremal for (a,zp)

(**) TIseg - -- == 1. See Remark 1.10.3(f) for the definition of Elﬁl‘l} (o).
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(vesp. Ag-extremal for (a, X)) if a, 20 € ¢(E), ¢(0) = 2, and log gc(a, 20) = =" ()
(resp. »(0) = a, ¥ (0) = tk! Xy, k := ordo(p — a), and Ag(a; Xo) = L,(a)/|t|) up to an
automorphism of E (i.e. we are allowed to replace ¢ by ¢ o h, where h € Aut(E)). It fol-
lows from Proposition 3 in [Nik-Zwo 2004a] that for ¢ € O(E,G), ¢ # const, a € ¢(E),
the following conditions are equivalent:

(i) ¢ is gg-extremal for a pair (a, zg) with a # 2y € p(F);

(ii) ¢ is gg-extremal for any pair (a, z) with a # z € p(E);

(iii) ¢ is Ag-extremal for any pair (a, p*)(\)) with A\ € ¢~1(a), k := ordx (¢ — a).
Moreover, if G C C is such that G is not polar, then a mapping ¢ € O(E,G), a € p(E),
 # const, is gg-extremal for some (a, o) (a # zp € @(E)) iff p = w01, where 7 : E — G
is a universal covering, ¢ € O(E, E), and the function hy o) = (¢ — \)/(1 — X)) is a
Blaschke product for any A € 7~ 1(a).

1.11. Coman conjecture

DEFINITION 1.11.1. Let G be a domain in C" and let p : G — R;. Define the Coman
function

da(p2) =t { TT 1P : (na)acip © 2.

a€lp|
peom.a) 9(0) = 2 @) =a,a€lpl}, € G

we put dg(p,2) := 1 if the defining family is empty. We put dg(A4,:) = dg(xa,")
(A C @), dgla,-) :=dc({a},-) (a € G).
REMARK 1.11.2. (a) Directly from Proposition 1.10.13 it follows that g (p, ) < dc(p, ).

(b) Obviously, d¢(a,-) = k&(a,-) (a € G).

(©) [Taejp|lme(a, NP = gp(p,-) = 6p(p,-) (for any p: E — R,). Indeed, we only
need to prove that dg(p,) < Hae‘p‘[mE(a,-)]p(“). Fix a zo € E and let ¢ := h_,,,
where h,(z2) := (z —a)/(1 —@z) (a,z € E). Let p, := ¢ '(a), a € |p|. Then ¢(0) = 2o,
Plp) = 0, 0 € [ply and TLycip 1alP® = Ty 0P = [Ty I, )

(d) Let F : G — D be a holomorphic mapping and let ¢ : D — R, be such that
#F~1(b) =1 for any b € |q| (e.g. F is bijective). Then

5D(an(Z))SdG(qOF7Z)7 z€G.
Indeed,

5p(g F(2)) = it { T] 1l 3ycoqs,p) : $(0) = F(2), () = b, b € |q|}
belq|

<int{ ] 1al®"@: Gocome : 0(0) = 2 o) = a,a € F ()}
a€F~1(|ql)

The Coman conjecture says that gg(p,-) = da(p, ) for any convex bounded domain
G and function p with #|p| < 400 (cf. [Com 2000]). The conjecture was motivated by
the Lempert theorem and Remark 1.11.2(b).
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D. Coman proved that his conjecture is true in the case where G = Bs is the unit ball
in C?, |p| = {a1, a2}, and p(a;1) = p(az) (cf. [Com 2000]).

ExaMPLE 1.11.3. The first counterexample was given by M. Carlehed and J. Wiegerinck
in [Car-Wie 2003]: G = E? C C?, |p| = {a1,a2} C E x {0}, p(a1) # p(az).
Let c1,c2,d € By, 1 # c2, |erca| < |d| < e, Paj1 i= 2X(c,.,0) + X(e2,0)- Then
gE2 (p2,17 (Oa d)) < 6E2 (p2,17 (Oa d))
Indeed, by Example 1.7.17,

9p2(P2,1,2) = [max{mp(c1, 21), 22| H[max{mp(c1, 21)me(c, 21), |22]}).

Hence, by Example 1.7.2, if p; ; = X(c,,0) + X(cs,0), then

982 (P21, 2) = [92((c1,0), 2)][952 (P11, 2)]
< [0p2((c1,0), 2)[0p2 (P11, 2)]
[Inf{[A] : Jpeco(m,p2) : 9(0) = 2, ©(A) = (c1,0)}]
x [inf{[A1A2| : Fpeo(r,E2) 1 9(0) = 2, p(A1) = (c1,0), p(A2) = (c2,0)}]
nf{|A\{ e : Jpeo(m.z2) : 9(0) = 2, (A1) = (c1,0), p(A2) = (c2,0)}
=0p2(P2,1: 2)-
Suppose that gg2(py 1, (0,d)) = dg2(py 1, (0,d)). Then there exist ¢, € O(E, E?) and
Av1s Av2 € By such that ¢, (0) = (0,d), ¢, (A1) = (¢1,0), ¢u(Av2) = (c2,0), and

A 12| = [max{mgp(c1,0), |d]}][max{mg(c1, 0)mp(cz, 0), d]}] = |erd].

IN

Using a Montel argument we easily conclude that there are the following three situations:

(a) There exist ¥1,92 € O(E,E) and (1,(2 € E such that 91(0) = 0, 2(0) = d,

P1(C1) = c1,y ¥2(C1) = 0, Y1(C2) = coy P2((2) = 0, and \C12@| = [c1d|. Then, by the
Schwarz lemma,

[ (V)] < A, |¢2(A)|<‘A—<1 A=

1A 1-0A
Hence |c1| < [C1], |d| < [¢1¢2| and, consequently, |c;| = |¢i] and |d| = [1(2]. Thus
[th1(A)] = |A|. Tt follows that |ca| = |(2| and |d| = |(1(2| = |c1¢2], a contradiction.

(b) There exist ¢1,12 € O(E,E) and (; € E such that ¢,(0) = 0, 12(0) = d,
1(C1) = 1, ¥2(¢1) = 0, and |[¢?| = |c1d|. Then, by the Schwarz lemma,

ANEE.

A —
< W el <| 2555 ae s
)
Hence |c1| < |C1], |d| < |¢1] and, consequently, |¢i| = |¢1] = |d|, a contradiction.

(c) There exist ¢1,12 € O(E,E) and (2 € E such that ¢;(0) = 0, 2(0) = d,
¥1((2) = ¢2, ¥2(¢2) = 0, and |(3| = |c1d|- Then, by the Schwarz lemma,

A
(V)] < ]1 f
2

Hence |c1d| = |C2| = |12(0)] > |d|, a contradiction.

A€ E.
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ExAamMPLE 1.11.4. Recently, P. J. Thomas and N. V. Trao [Tho-Tra 2003] (see also
[Die-Tra 2003]) found a counterexample with G = E?, p = xgxc, #B = #C = 2.
Let a € (0,1), a®? < v < a, A. := {—a,a} x {—¢,€}, € € (0,1). Then there exists a
small € > 0 such that gg2(Ac, (0,7)) < dg2(Ae, (0,7)). Indeed, first recall that
Yyt+e vy—¢

A, (0,7)) = 2

gE2( 6)(77)) max{a, ].+E'71_5'7}

(cf. Example 1.7.2). Suppose that there exists a sequence g; \, 0 such that
gE2 (Askv (077)) =0p2 (AEM (077))7 k=1,2,.

We may assume that gp=(Ac,,(0,7)) = a?, k € N. Let ¢, : E — E? and &,T €FE
(0,7 € {—1,1}) be such that

¢1(0) = (0,7), @k(fgfq)—) = (0a, Te), H ‘5 | —a?

o,re{—1,1}

By a Montel argument we may assume that ¢, — ¢ € O(E, E?) locally uniformly in £
and 5((,@ — &, € E with ¢(0) = (0,v) and ¢(&,.,) = (0a,0) for (o,7) € J, where

J:={(o,7) € {-1,1} : &, - € E}.

IT 1&-1= ]I

(ovm)ed (oy)e{-1,1}

Observe that

a-,

in particular, J # 0.

It is clear that &, . # &, for (o,7),(0’,7") € J with ¢ # ¢’. Put

T:={&,:(o,7) € J}.

Let or =: (fr,9x), ¢ =t (f,9). We have |g(2)| < [[¢erme(£, 2), 2 € E. In particular,
v = 19(0)] < [Teer €] Consequently, if #T = #.J, then v < a? < a®/2, a contradiction.
From now on assume that #71 < #J. It suffices to consider the following four cases:

(a) #T =1, #J =2 J= {(717 *1)7 (*]-a 1)}5 5—1,—1 = 5—1,1 =: 5—1-

(b) #T = 2’ #J =3 J= {(_17 _1)7 <_1a 1), <1a _1)}’ 571,1 = €71,1 = 571-

(C) #T =3, #J =4 J = {(717 71)3 (717 1)3 (17 *1)a (17 1)}? 5—1,—1 = 6—1,1 =&,

§1,-1 F &1
(d) #T = 27 #'] =4 J= {(_17_1)a (_17 1)a (17_1)5 (17 1)}7 5—1,—1 = 5—1,1 = 6—17
51,—1 = 51,1 =:&1.

Put fy :=heeo f = (f —ca)/(1 —oaf).

If (0,7) € J, then f,(¢,,) = 0. Hence |f,(z)| < mg(§s.r,2), 2 € E. In particular,
a=|fs(0)] < ‘ga,‘r|'

If (0,-1),(0,1) € J and &, 1 # €51, then | f,(2)| < mg(&—1,2)MmE(§s1, 2), 2 € E.
In particular, a = |f»(0)| < &5 —1&01]-

If (0,-1),(0,1) € J and &,—1 = &51 =: &5, then f/(&;) = 0 (if f'(&,) # 0, then by
the Hurwitz theorem, for large k, the equation fi(z) = Ua has exactly one solution in
a neighborhood of £, which is false since fj (&5 (k )) = oa, f T F gf,’“f, and §((,k7) — &).
We have f,(¢,) = fL(&) = 0. Hence |f,(2)] < [mge(&, )]2, z € E. In particular,
a=|fs(0)] < ‘50‘2'
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Consequently:

In case (a) we get a® = |£_1|?> > a, which is a contradiction.

In case (b) we get a® = |¢2,&1,—1| > a - a. Hence [2,| = |&1,—1| = a. Since |g(z)| <
mp(§1,2)mp(,-1,2), 2 € B, we have v = [g(0)| < {161, 1| = a'/?
contradiction.

In case (c) we get a? = €2, _1&11] > a - a. Hence |€2,] = |£1,_1&1.1] = a. Since
l9(2)] < mp(€-1,2)mp(&1,-1,2)mEe(€,1, 2), 2 € E, we have v = [g(0)] < [{-1&1,-1&11] =
a'/? . a, which is a contradiction.

In case (d) we get a? = [€2,£2| > a - a. Hence |€2 | = |¢}| = a and, consequently, by
the Schwarz lemma, hyq 0 f = f, = ozghgo, where |a,| = 1, 0 € {—1,1}, which implies
that f = ha(a_1h7_ ) = h_a(a1hf ). In particular, —a = f(§-1) = h_a(a1hZ (§-1)) and
a=f(&)= ha(aqhgfl(&)- Then

- a, which is a

2a
1+a2 = *Oélhgl (€-1) = a—1h§,1(§1)~
Recall that —ca = f,(0) = a,&2. Hence
2 1, 1,
1tz & hg, (1) = e, he_, (&1)-

Put ¢ :=¢_1/&. Note that [¢| =1 and ¢ # 1. We have
2 [(t—-1\? [1/t—1\?
1+a2 \l1—-at) \l1—ajt)’
which is a contradiction.

ExXAMPLE 1.11.5. Let D, A; be as in Example 1.7.19. Taking ¢()\) := (\?/4,)/2), we
easily see that 0p (A, (0,0)) < 4t <t ++/t = dB>*(A4,(0,0)), 0 <t < 1.
We do not know whether gp(A¢, (0,0)) < dp(A¢, (0,0)) for small ¢ > 0.

1.12. Product property
1.12.1. Product property for relative extremal function

THEOREM 1.12.1 ([Edi-Pol 1997], [Edi 2002]). Let G; C C™ be a domain, A; C G,
j=1,2. Assume that Ay, As are open or Ay, As are compact. Then

WA, x Ag,G1 xGs (21, 22) = max{wa, q, (21), wa,.q,(22)},  (21,22) € G1 x Go.
Moreover, if G1, G2 are bounded, then for arbitrary subsets Ay C G1, Ay C G2 we have
Wi, x As.G1x G, (21, 22) = max{w}y, ¢, (21), Wi, g, (22)},  (21,22) € G1 X Ga.

We need a few auxiliary results.

PROPOSITION 1.12.2 ([Nos 1960, Chapter III]). Let ¢ € O(E, E) be an inner function,
@ # const. Assume that ¢ is not a Blaschke product. Then there exists a ( € OF such

that ¢*(C) = 0 ().

(*7) ©*(¢) = limy—1 ¢ (rC).
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ProPOSITION 1.12.3 ([Nos 1960, Chapter II]). Let ¢ € H™(E) and let A C C be a
compact polar set. Assume that there exists a set I C OF of positive measure such that
©*(¢) € A, ¢ € 1. Then ¢ = const.

LEMMA 1.12.4. Let A C E be a compact polar set and let m : E — E \ A be a universal
covering. Then 7 is an inner function. Moreover, if 0 ¢ A, then 7 is a Blaschke product.

Proof. Obviously 7*(¢) € AU OFE for each ( € OF such that 7*({) exists. Hence, by
Proposition 1.12.3, we conclude that 7*(¢) € OF for almost all ¢ € OF and, consequently,
7 is an inner function. Now, if 0 ¢ A, then Proposition 1.12.2 implies that 7 is a Blaschke
product. =

REMARK 1.12.5. Let B be a finite Blaschke product and let ¢ € O(FE, E). Then ¢ is an
inner function iff B o ¢ is inner.

LEMMA 1.12.6 (Léwner theorem, [Edi 2002]). Let ¢ € O(E, E) be an inner function such
that ©(0) = 0. Then for any open set I C OF we have A((p*)~1(I)) = A(I) (8).

Proof. We may assume that [ is an arc. Put J := (p*)~1(I) (observe that J is measur-
able). Consider the following holomorphic functions:

27
1 _
ur(2) = o= | P(z.0)xa(e”) db,
0
1 27
uy(z) == Py S P(Z,G)Xj(eze) dd, z¢€F,
0

U:=uropy—uy,

where P(z,60) denotes the Poisson kernel. Let A denote the set of all { € OF such
that:

(¢) does not exist, or

£(C) exists but u*(¢) # x1(¢), or

©*(¢) does not exist, or

©*(C) exists and ¢*(¢) € OI (here OI denotes the boundary of I in OF).

Note that A is of zero measure (use Proposition 1.12.3). Observe that u*(¢) =0 on J\ A.
Moreover, u*(¢) <0 on (OE \ J) \ A. Thus u* < 0 almost everywhere on JE and hence
u < 0. In particular, u(0) = (1/27)(A(I) — A(J)) <O0.

Applying the same argument to the arc OF \ I shows that A(OF \ I) < A(OE\ J),
which finishes the proof. =

LeEMMA 1.12.7 ([Edi 2002]). Let (I;)_, C OF be a family of disjoint open arcs, let
I := U§:1 I, and let o := A(I). Then for every ¢ > 0 there exists a finite Blaschke

product B such that:
e B(0) =0,
e B'(2) #0 for = € B71(0),
e B7U(J.) C I, where J. = {e? : 0< 0 < a—e}.

"
UJ
u

(*®) Recall that A denotes the Lebesgue measure on OE.
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Proof. We may assume that a < 27. Let I; = {¢ : 0, < 0 < 02}, 7 = 1,...,k,
Jo = {e? : 0 < § < a}. Define
H?:l(z _ eiegyj) _ ol H;f:l(z _ eiel,j)
[Tz (2 = %) = T (2 = %)
One can prove ([Edi 2002, the proof of Lemma 4.8]) that By is a finite Blaschke product
Suppose that

Bo(Z) =

o [z—a; \™
po) - 11 (725)
; J

J=1

Take a closed arc jo C Jp such that A(%) > a—¢. Then for different points a; 1, ..., a;j m;,

sufficiently close to aj, such that a; € {a;1,...,a;m,}, if
~ N M a
_ ez‘r J,l
ITIT (s
j=1li=1

then Bo(OE \ I) C OE \ Jy. Finally, we put B(z) := B(ei?z) (with suitable 0). =
PROPOSITION 1.12.8 (cf. [Lev-Pol 1999]). Let G C C" be a domain and let A C G. Then
wa,e =sup{wyg: ACU CG, U open}.

In particular, if A is compact, then for any neighborhood basis (U;)2, of A with G D
Ujy1 C Uj, we have
wAVG = hm ij,G-
J]—00

Proof. Let u € PSH(G), u <0,u < —1on A. Fix 0 < e < 1 and define
Us={z€G:u<—-1+¢}
Then u/(1 —¢) < wy, . Consequently,
u<(1—¢)sup{wy,x : A CU, U open}.
Taking ¢ — 0, we get the required result. =

PROPOSITION 1.12.9 (cf. [Bto 2000]). Let G C C™ be a bounded domain and let A C G.
Put A. :=={2 € G:w}j g(2) <—1+¢},0<e<1. Then

*

. Wel
1—¢
Consequently, wa..c / wh g ase \, 0.

Proof. Put N := {2 € G 1 wac(z) <wjg(2)} and Q := A\ N. It is well known (see
e.g. Theorem 4.7.6 in [Kli 1991]) that V is pluripolar and wg, o = w} & (cf. [Jar-Pfl 2000,
Lemma 3.5.3]). We have w),; = wj s = wae = —1 on Q. Hence Q@ C A. and
Wig = wWhe = wa.,e. Put u:=wj g/(1—¢). Note that u € PSH(G), u < 0, and
u<—1on A.. Hence,u <wy_g. =

<wa,c <wig
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Proof of Theorem 1.12.1. For the proof of the inequality “>” it suffices to consider the
projections pr; : Gi X Go — Gj, j = 1,2, and use Remark 1.6.1(e). We turn to the
opposite inequality. First assume that A;, Ay are open. Put u; = —x4, and us = —x4,.
Let (21, 22) € G1 x G4 be fixed and let 8 € R be such that

max{wa, ¢, (21),wWa,,@, (22)} < 6.

By Theorem 1.10.7 there are ¢, € O(E,G;), j = 1,2, such that ¢1(0) = 21, p2(0) = 2,

and

127\'

5= Juilpse®ao <8, =12
0

Note that gpfl(Al) N OF is an open set in 0F. So, we may choose a finite set of disjoint
open arcs I},...,I}, C ¢;*(A;) NOF such that A(I') > —273 where I' = J7_, I}.

stm Jj=17J
Similarly we choose I3, ..., I? with I = Ule I?. By Lemma 1.12.7 we may find Blaschke
products By, By and a closed arc I C OF with A(I) > —2n3 such that By *(I) C I' and
By Y(I) c I*.

Let A be the union of the sets of critical values of B; and B,. Note that 0 is not in
A. Let 7 be a holomorphic universal covering of E'\ A by E with 7(0) = 0. Observe that
7 is inner (Lemma 1.12.4). If I= 7~ 1(I), then according to Lemma 1.12.6, A(f) = A(I).
There are liftings 11,12 : E — E of m such that 7 = By o ¢y = By o1y and 1,(0) =
12(0) = 0. By Remark 1.12.5, 11,19 are inner. Also non-tangential boundary values of
11 and 9 on fbelong to I' and I?, respectively. Put ¢; = @1 041 and 3 = g 0 s
Then ,
o | mancfus (1(e)), wn @)} a0 < A < g
0

2w
By Fatou’s theorem the same inequality holds if we replace ¢;(2), j = 1,2, with ©;(rz),
where r < 1 is sufficiently close to 1. Hence, wa, x4,.G,xa,(#1,22) < B. Since 8 was
arbitrary, we get the assertion.
The case where Ay, A, are compact follows from Proposition 1.12.8.
We turn to the second part of the theorem. First note that for any (21, 22) € G1 X G2
we have

< WA, xAy,G1 x Gy (21, 22)

S _wjh,Gl (Zl)wjaQ,GQ (Z2)

Indeed, we only need to prove the second inequality. Let u € PSH(G1 x Ga), u < 0,
u<—1on A; x Ay. Then

(1.12.25) max{wa, @, (21), wa,.c,(22)}

u('vz2) < —WA,,G2 (Z2)wA1,G1(')’ 22 € Ag, U(Zl, ) < —WA;,Gy (Zl)wAmGQ(')’ 21 €Ay

Take a z1 € Gi. If wa, ¢, (21) = 0, then u(z1,-) < 0 = —wa, ¢, (21)wa,,c,(-). If
wa,,G,(z1) # 0, then let v := u(z1,-)/(—wa,.c¢,(21)). Then v € PSH(G3), v < 0, and
v < —1on Ay. Hence v < way, g,-

Fix an € > 0. Then by (1.12.25),

WA xAs.Grx G (21, 22) < —(1—€)%  on (A1) x (A2)..



92 1. HOLOMORPHICALLY INVARIANT OBJECTS

Hence
Wi xAy.01xo(71,22) S —(1 =€) on (A1) x (A2)e.

It follows that on G; x Gs,

2
(1 - 5) wzl X A2,G1XG2 = wz‘Al)EX(AZ)E7GI X Ga < wzl X A2,G1XGa*
Thus, using the first part of the theorem and Proposition 1.12.9, we get
th X As,G1xXGo (Zla 22) = ;E% W(A1)ex(A2)e,G1 XGo (Zl’ 22)
= lim max{w(a,)..¢,(21), ©(a,)..65(22)}
= max{w}, g, (21), WZQ7G2(22)}, (21,22) € G1 X G3.
REMARK 1.12.10. Using the analytic discs method F. Larusson, P. Lassere, and R. Si-
gurdsson proved in [Lar-Las-Sig 1998a] the following result.

THEOREM. Let G C C" be a convex domain and let A C G be an open or compact convex
set. Then for any o € [—1,0) the level set {z € G : wa,g(z) < a} is convez.

1.12.2. Product property for the generalized Green function. Proposition 1.6.2
and Theorems 1.10.15, 1.12.1 imply the following product property for the generalized
Green function (cf. [Edi 2001]).

THEOREM 1.12.11. For any domains G, C C™, Gy C G™ and for any sets A1 C Gy,
Ay C Go, the pluricomplex Green function with many poles has the product property:

96, xGs (A1 X Ag, (21, 22)) = max{ga, (A1, 21), 9a,(A2,22)},  (21,22) € G1 x Ga.

In particular,

gGleZ((a1;a2)7 (21,22)) = maX{gc;l(ath), ng(a2,Z2>}> (ahaz)’ (21722) € G1 x Gs.

A different proof, using Poletsky’s methods, was given by A. Edigarian in [Edi 1999].

The case of the pluricomplex Green function with one pole has been solved in
[Edi 1997a]; some particular cases have been solved previously (using different methods
based on the Monge-Ampére operator):

e the case where both G; and G5 are domains of holomorphy—in [J-P 1993, Theorem
9.8],

e the case where at least one of the domains G, G5 is a domain of holomorphy—in
[Jar-Pfl 1995b].

REMARK 1.12.12. One could try to generalize the above product property to arbitrary
pole functions p; : G; — Ry with maxg, p; = 1, j = 1,2. For instance, one could
conjecture that

9G1xG> (p7 (Zla 22)) = ma‘X{gGl (p17 Zl)a 9G, (an 22)}7 (217 22) S Gl X GQa
where p(aq,az) := min{p, (a1), py(az)}. Unfortunately, such a formula is false. Take for
instance G1 = G2 = E, p; = X{0} + 3X{c}> P2 := X{o}» Where 0 < ¢ < 1. Observe that
P = X{(0,0} T %X{(C,O)}' Hence, by Example 1.7.17, we get

92 (P (21, 22)) = (max{|z1], |z2|} max{|z1lm(z1, ), |22[})'/2.
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In particular, if z; = ¢, 23 = ¢?, then
922(p, (¢, %)) = 2.
On the other hand,
max{gp(py,c), g5 (Ps, ¢*)} = ¢*.

REMARK 1.12.13. Example 1.11.4 shows that, in general, the Coman function does not
have the product property. Indeed, let B, C, and  be as in the example. Then, by
Remark 1.11.2(c), we have

Op2 (B x C, (07 7)) > 9E? (B x C, (07 7))
= max{gE (Ba O)’ gE(C7 7)} = max{(;E (Ba O)’ 5E(Ca 7)}

PROPOSITION 1.12.14 ([Die-Tra 2003|). For any domains G C C", D C C™, the follow-
ing conditions are equivalent:

(i) for any finite set A C G, and for any point b € D we have
daxp(A x {b}, (z,w)) = max{dg(4, z), ép(b,w)}, (z,w) € G x D;
(ii) dp(b,w) = gp(b,w), bw € D.
Proof. (i)=-(ii). By Theorem 1.10.15 we have
_ (N)
gD(baw)_I%/réfI‘\I(sD (b,IU), UJED,

where

N
35" (b,w) = inf{H\uy\ SHLs e N € B g # g,
Jpeom.py V() =b, j=1,...,N, 1(0) :w}, w e D.

By Remark 1.11.2(a), it suffices to show that dp(b,) < 6§3N)(b, -) (for every N).
Fix N e N, wg € D, and € > 0. Let p1,...,uny € E and ¢» € O(F, D) be such

that Hj 7é My ’(/}(:uj) = ba .7 = 1a---aNa ’(/}(O) = Wo, and H;V:1 |:uj| < 6(DN)(ba wO) + e.
Take an arbitrary ¢ € O(E, G) such that ¢(u;) # p(pr). Put A = {o(p1),...,o(un)}s
20 := (0). Then

5D(b, wo) < max{ég(A Zo) 5D(b ’wo)} = (SGX[)(A X {b}7 (Z(),’LU()))
<H|MJ|<5 (b,wp) +

Letting ¢ — 0 we conclude the proof.
(ii)=-(i). Directly from the definition we get the inequality

dc(4,2) <dgxp(A x {b},(z,w)), (z,w)eGxD.
Moreover, by Remark 1.11.2(a) and Theorem 1.12.11,

5D(b7 w) = gD(b,w) < max{gg(A,z), gD(bv w)} = ngD(A X {b}v (va))
<dexp(A x{b}, (z,w)), (z,w)€eGxD.
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Thus
daxp(A X {b}, (z,w)) > max{dg(4, 2),p(b,w)}, (z,w) e G x D.

Let A= {a1,...,an}. Fix (20,wp) € G x D and € > 0. To prove the inequality

daxp(A x {b}, (20, w0)) < max{dc(A, 20), p(b,wo)},
we may assume that max{dg (A, 20), 0p(b,wp)}+¢& < 1. Consider the following two cases:

(a) dp(b,wo) < da(A, zp). Then take py,...,uny € E and ¢ € O(E,G) such that
©(0) = 2o, o(ij) =aj,j=1,...,N, and H;\le i < 0c (A, 20) + €.

We may assume that p; # 0, 7 = 1,..., N. Indeed, suppose that p; ---un—1 # 0,
and py = 0. Then we may replace ¢ by ¢ := ¢ o B, where B(z) := z(z —¢)/(1 — ez),
z € E. Observe that B(E) = E, so there exist fi1,...,un-1 € E. with B(n;) =
ki, j =1,...,N — 1. Hence ¢(j1;) = a;, j =1,...,N =1, ¢(e) = ¢(0) = 2o, and
w1 py el <e.

We may also assume that dp (b, wg) < HjV=1 |tej]. Indeed, if 6p(b, wy) = H;V=1 e,
then we may replace ¢ by ¢(z) := ¢(tz), z € E, and p; by p;/t, j = 1,...,N, with
suitable 0 <t < 1,¢t~ 1.

Take n € E and ¢ € O(E, D) such that ¥(0) = wop, ¥(n) = b, and |n| < H;V 1 1l
Define « := H;V:l(—uj) € E,t:=—-n/a € E, Y(z):=¢(z), 2z € E, B := HN:1 Py
xX:E—GxD,yx:= (@,QZohaoB)

We have x(0) = (2(0), %(ha(B(0)))) = (20, %(ha(@))) = (20,(0)) = (20,%(0)) =
(20,w0). Moreover, x(11;) = ((15), ¥ (ha(B(11)))) = (a;,9(ha(0))) =
(aj,¥(n)) = (a;,b), j=1,...,N. Hence

N
5G><D(A X {b} Zo,wo H p,j| < 5G A Zo) E.

(b) 6¢(A, z0) < dp(b,wp). Then take n € F and ¢ € O(FE, D) such that ¢(0) = wy,
¥(n) = b, and |n| < dp(b,wy) + €/2. Take u1,...,uny € E and p € O(F,G) such that
©(0) = 29, p(p;) =aj,j=1,...,N, and H;VZI |pj| < 0p(b,wo) + €/2. Using the same
argument as in (a), we may assume that p; #0, j=1,...,N.

LEMMA 1.12.15. Let pt1,...,un € B, o 1= H;V:1 lj|. Assume that o < B < ot/(+1)
with k € N. For t € [0,1], put fi(2) := 2((z —t)/(1 —t2))*, 2 € E. Then there ez-
ist t € [0,1] and fi1,...,in € E such that fi(f;) = py, j = 1,..., N, and H;VZI |15
= ﬂ

Proof (due to W. Zwonek (*)). Observe that f,(E) = E. Hence, for any j € {1,..., N}
there exists a i; € F such that fi(ii;) = p;. Let &;(¢) := min{|g;| : fi(;) = 1},
@ =& ---Py. We have $(0) = o/t > 3 &(1) = a < . We only need to show that
each function @; is continuous.

(*°) The original proof in [Die-Tra 2003] contains an essential gap.
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Fixaj e {l,...,N} and let &;(¢t) = |u;(¢)], t € [0,1]. Suppose that [0,1] > t; — t¢
and |11 (ts)] < m < @;(ty). Then, without loss of generality, /1;(t;) — fi; € E. Therefore,
fro(B5) = pj, 1.e. D;(to) < m, a contradiction. So, P, is lower semicontinuous.

On the other hand, by the Hurwitz theorem, for any € > 0, the equation f; (2) = y;
must have a solution in the disc B(f1;(to), €), provided s > 1. Hence &;(ts) < @;(to) +¢,
s> 1, and finally lims_,4 o @;(ts) < P;(to). m

Using Lemma 1.12.15 with 3 := §p (b, wp) + £/2, we may modify ¢ and pq,...,ux in
such a way that || < vazl || < 0p(b,wo) + . Now we continue as in (a). m

REMARK 1.12.16. Lemma 1.12.15 was improved by N. Nikolov, namely:

Let p1,...,un € B, a = vazl leil, @« < B < 1. Fort € [0,1], put fi(z) =
z2(z—t)/(1—tz), z € E. Then there exist t € [0,1] and fi1,...,0in € E such that
ft(ﬁj) = Hj, j=1...,N, and vazl |ﬁ]| =0

Indeed, the case where 3 < o'/ reduces to the proof of Lemma 1.12.15 (with k = 1).
If B > a'/?, then put ¥;(t) := max{|f;| : fi(fi;) = p;}, ¥ := ¥;---¥y. Observe
that ¥(0) = o!/2. Similarly to Lemma 1.12.15 we prove that ¥, is continuous on [0, 1).
Moreover, ¥;(t) - 1 whent —1,j=1,...,N.

REMARK 1.12.17. Recently, N. Nikolov and W. Zwonek have extended Theorem 1.12.14
in the following way:

THEOREM. Let D C C" and G C C™ be domains and let z € D, w,b € G, A C D. Then
max{0p (A, 2), I (b,w)} < dpxa(A x {b}, (z,w)) < max{dp(A4, 2), 0 (b, w)},

where
1¥ (b, w) : mf{Hm DN CE, S0 :
©(0) = w, p(Aj) =b, #{k : \p = A\j} <ordy, (9 —b), j = 17---7N}7 N eN,
I& (b, w) == inf{ ﬁ IAjl 2 (Aj)521 C B, Jpeom,a)
j=1

0(0) = w, p(A;) = b, #{k : A, = A;} <ordy, (p—b), 5 = 1,2,... }
Moreover, for any N € NU {oo} the equality
dpxa(A x {b}, (z,w)) = max{dp(A,z), oc(b,w)}
holds for any A C D with #A = N if and only if 5c (b, w) = I (b, w).
They have also proved the following result.

THEOREM. Let A,B C E, #A = #B = 2, and z,w € E be such that dg(A,2) =
0p(B,w). Then

0r(A, z) = min{dp(C, (z,w)) : C C Ax B}
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if and only if there is an h € Aut(E) with h(z) = w and h(A) = B. Consequently, if
¢ € E\ A, then there exist uncountably many £ € E for which

5E(A’C) = 6E(Ba€) < min{6E2(07 (C,g)) :C CAXx B} < 6E2(A x B, (C7§))

and, therefore,

9E2 (A x B, (Cag)) < 6E2(A x B, (C?f))
(¢f. Ezample 1.11.4).

1.12.3. Product property for 2" and d%**. The case of the generalized Green func-
tion suggests that the product property might hold for other generalized holomorphically
contractible families (dg)g, i-e.

(P) dexp(A x B, (z,w)) = max{dg(A4,z2), dp(B,w)}, (z,w)€ G x D,

for any domains G C C*, D C C™ and for any sets ) # A C G, ) # B C D. Notice that
the inequality “>" follows from (H) applied to the projections G x D — G, G x D — D.

The definition applies to the standard holomorphically contractible families and means
that

dGXD((aab), (Zaw)) - max{dc(a,z), dD(baw)}7 (a7b)7 (va) €GxD.

Recall that the standard (non-generalized) families (Eé)g, (¢&)as (9¢)c have the product
property; cf. [J-P 1993, Ch. 9], see also [Mey 1997] (for a proof of the product property
for the Mdbius functions based on functional analysis methods) and [Jar-Pfl 1999b] (for
the case of complex spaces). Moreover, it is known that the higher order M&bius functions
(m%)¢ with k > 2 fail the product property; cf. [J-P 1993, Ch. 9.

PROPOSITION 1.12.18. The system (d®*)c has the product property.

Proof. Fix (20,wp) € G x D and ¢ > 0. Let (a,b) € A x B be such that kG(a 20) <
AR (A, zo) +e, K (b, wo) < dE* (B, wp)+e. Then using the product property for (kG)
we get

dE (A x B, (20,0)) < ke p((a,b), (20, wn)) = max{k(a, 20), kp (b, wo)}
< max{dz™ (A4, zp), dp™(B,wp)} +¢. m

We do not know whether the system (d‘é‘i“)g has the product property. So far
we were able to handle ([Jar-Jar-Pfl 2003]) only the case where #B = 1: see Proposition
1.12.20 (cf. also [Die-Tra 2003]). Recall that d3'"(A,-) = mg(4, ) (Proposition 1.5.4).

PROPOSITION 1.12.19. Assume that for any n € N, the system (mq)¢ has the following
special product property:

(PO) |W(z,w)| < (gf% |WD maX{mG(sz)a mD(Baw)}v (Zaw) €Gx Da

where G, D C C™ are balls with respect to arbitrary C-norms, A C D, B C G are finite
and non-empty, ¥(z,w) := Z?:l zjwj, and ¥|sxp = 0. Then the system (mg)c has the
product property (P) in full generality. Moreover, if (Py) holds with #B = 1, then (P)
holds with #B = 1.



1.12. Product property 97

Proof (cf. [J-P 1993, the proof of Theorem 9.5]). Fix arbitrary domains G C C", D C C™,
non-empty sets A C G, B C G, and (z9,wp) € G x D. We have to prove that for any
F € O(G x D, E) with F|saxp = 0 the following inequality is true:

|F(Z07w0)| < max{mG(Aa ZO)? mD(Ba ’U)o)}
By Remark 1.6.1(h), we may assume that A, B are finite.

Let (G,)224, (D)2, be sequences of relatively compact subdomains of G and D,
respectively, such that AU{z} C G, /' G, BU{wy} C D, /" D. By Remark 1.6.1(h),
it suffices to show that

|F(20,wp)| < max{mg, (A4, 20), mp,(B,wy)}, v >1.

Fix a vy € N and let G’ := G,,, D' := D,,. It is well known that F may be
approximated locally uniformly in G x D by functions of the form

N,
(1.12.26) Fy(z,w) =Y fou(2)gsp(w), (z,w) € G x D,

where f, , € O(G), gs,, € O(D), s > 1, p=1,..., N,. Notice that F; — 0 uniformly on
A x B. Using the Lagrange interpolation formula, we find polynomials P, : C* xC™ — C
such that Ps|axp = Fs|laxp and P; — 0 locally umformly in C" x C™. The functions
F, := F, — P,, s > 1, also have the form (1.12.26) and F, — F locally uniformly in
G x D. Hence, without loss of generality, we may assume that Fi|axp =0, s > 1. Let
ms := max{l, |Fs||¢'xp’} and Fs := Fs/ms, s > 1. Note that ms; — 1 and, therefore,
F; — F uniformly on G’ x D’. Consequently, we may assume that F;(G’' x D') € E,
s> 1.

It is enough to prove that

|Fs(20, wo)| < max{mg(A,z20), mp(B,wy)}, s>1.
Fix an s = so € N and let N := Ny, fu. = fsour Gu = Gsop» 4 = 1,...,N. Let
f=",..,fn):G—C"and g:=(g1,...,9n) : D — CVN. Put
K = {g = (51,'“;51\/) € (CN : |§#| < ||flLHG’ﬂ n= 17"'7N7 |LD(€,Q(’UJ))‘ < 13 w e D/}

It is clear that K is an absolutely convex compact subset of CV with f(G’) C K. Let

L:= {77: (7717"')771\7) € (CN : |77N‘ < ”g}J«HD’a H= 17~-~aN7 |W(§an)‘ < 1? € € K}

Then again L is an absolutely convex compact subset of C, and, moreover, g(D’) C L.
Let (W,)52, (resp. (V,)22,) be a sequence of absolutely convex bounded domains

in CV such that W,,; € W, and W, \, K (resp. V,.1 € V, and V, \, L). Put
M, = ||¥||lw,xv,, 0 € N. By (Pg) and by the holomorphic contractibility applied to the
mappings f: G' — W,, g: D' — V,, we have

| Fsy (20, wo)| = ¥ (f(20), 9(wo))|
< Mo max{mw, (f(A), f(z0)), mv, (9(B), g(wo))}
< My max{ma: (f~1(f(A)), 20), mp (g~ (9(B)),wo)}
< M, max{mg (A, z0), mp: (B, wp)}.

Letting 0 — +00 we get the required result. =
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PROPOSITION 1.12.20. The system (mq) ¢ has the product property (P) whenever #B=1,
i.e. for any domains G C C", D C C™, for any set A C G, and for any point b € D we
have

maxp(A x {b}, (z,w)) = max{mg(4, z), mp(b,w)}, (z,w) € G x D.

Proof. By Proposition 1.12.19, we only need to check (P) in the case where D is a
bounded convex domain, A is finite, and B = {b}. Fix (z9,wp) € Gx D. Let ¢ : E — D
be a holomorphic mapping such that ¢(0) = b and ¢(mp(b,wp)) = wo (cf. [J-P 1993,
Ch. 8]). Consider the mapping F : G x E — G x D, F(z,\) := (z,¢()\)). Then

maxp(A x {b}, (20, w0)) < maxp(A x {0}, (20, me (b wo)))-
Consequently, it suffices to show that
(1.12.27) maxe(A x {0}, (20, A)) <max{mag(4,20), |\|}, X€E.

The case where mg(A, 29) = 0 is elementary: foran f € O(Gx FE, E) with f[4x 0} =0
we have f(zp,0) = 0 and hence |f(z0,A)| < |A|, A € E (by the Schwarz lemma).

Thus, we may assume that r := mg(A4, 29) > 0. First observe that it suffices to prove
(1.12.27) only on the circle |A\| = r. Indeed, if the inequality holds on that circle, then by
the maximum principle for subharmonic functions (applied to the function mgxg(A X
{0}, (20,))) it holds for all |A| < r. In the annulus {r < |A| < 1} we apply the maximum
principle to the subharmonic function A — |A\|"'maxr(A x {0}, (20, A)).

Now fix a A\g € E with [Ag| = 7. Let f be an extremal function for mg(A, zp) with
fla =0and f(z9) = Ao- Consider F': G — G x E, F(z) := (z, f(#)). Then

maxe(A x {0}, (20, A0)) < ma (A, z9) = max{mg (4, 20), | o},

which completes the proof. =



CHAPTER 2

Hyperbolicity and completeness

2.1. c¢-hyperbolicity versus c-hyperbolicity

Recall that a domain G C C™ is called ¢, -hyperbolic (or briefly ¢'-hyperbolic), respectively
cc-hyperbolic (briefly c-hyperbolic), if %, respectively cg, is a true distance on G. In view
of the inequality cg < ¢, if G is cg-hyperbolic, then it is ci,-hyperbolic. If G is bounded,
then cg is a distance. In the general case, the following result due to J.-P. Vigué (cf.
[Vig 1996]) gives a characterization of c%,-hyperbolicity.

THEOREM 2.1.1. Let G C C" be a domain. Then the following properties are equivalent:
(i) G is ci,-hyperbolic;
(ii) there is no non-constant C'-curve a : [0,1] — G such that vo(a;a’) = 05

(iii) for any point a € G there exists a neighborhood U = U(a) C G such that
ca(a,2) #0, z€ U\ {a}.

Proof. (i)=-(ii). Suppose the contrary, namely, that there exists a C'-curve o : [0,1] — G
such that

Yolasa) =0,  a'(tg) #0 foraty€|0,1].

Obviously, for any 0 < ¢ < ¢ < 1 we then have ¢ (a(t'), a(t")) = 0. Since o/(tg) # 0
there are two different points a(t'), a(t”) showing that G is not c‘-hyperbolic. Contra-
diction.

(ii)=-(iil). We proceed by assuming the contrary. So let a € G be a point such that
there exists a sequence of points (27);eny C G\ {a}, 27 — a, such that cg(a,2?) = 0,
j € N. We have to find a C!-curve which does have the property stated in (ii).

Observe that A := {z € G : cg(a,z) =0} ={z € G : f(a) = f(2), f € OG,E)}
is an analytic subset of G. In view of the existence of the points z/ € A\ {a} tending
to a, the dimension of the analytic set A in a is at least 1. Therefore, there is a C'-curve
a : [0,1] — Reg A such that o # 0. On the other hand, since this curve lies in A, we
have vg(a; ') = 0, a contradiction.

(iii)=(i). Fix a,b € G, a # b, and choose a neighborhood U = U(a) C G according to
(iii). Moreover, let V =V (a) € U, b € V. Obviously, 0 < cg(a, 2), z € U\{a}. Applying
the continuity of cg there is a C' > 0 such that cg(a,-)|sy > C. Thus for any C'-curve
a: 0,1 — G, a(0) = a, a(l) = b, there is a ty € (0,1) with a(tg) € 9V; therefore,
L.(a) > cg(a,a(ty)) + cala(ty),b) > C > 0. Hence, ci(a,b) > C > 0. m

Moreover, there is the following general relation between yg-hyperbolicity and local
c-hyperbolicity.

[99]
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PROPOSITION 2.1.2. Any domain G C C™ that is yg-hyperbolic (i.e. ya¢(z; X) > 0, z € G,
X € C"\ {0}) is locally c-hyperbolic (i.e. for any a € G there exists a neighborhood
U =U(a) C G such that cg is a distance on U). In particular, G is c¢'-hyperbolic.

Proof. Fix an a € G and suppose that 2/, w/ — a, 27 # w’, cq(z/,w?) =0, =1,2,....
We may assume that (27 — w?)/|2/ — w’|| — Xo € OB,,. Then

ca(7,w?)

)

; Xo) = 1i , - =
Tele Xo) = =

a contradiction (cf. §1.2). m

Observe that the result is true for any C'-pseudodistance (cf. §1.2.4).
REMARK 2.1.3. It seems to be unknown whether c-hyperbolicity implies y-hyperbo-

licity.

EXAMPLE 2.1.4. There is a domain G C C? which is not cg-hyperbolic and not vg-
hyperbolic, but nevertheless c.,-hyperbolic (see [Vig 1996]). This G is constructed via an
example of a 1-dimensional complex space and then applying the Remmert embedding
theorem. We omit the details here.

REMARK 2.1.5. Notice that Example 2.1.4 is not explicitly given. So |7 | it is interesting
to find an effective example of that type; moreover, the question whether such an example
is possible in C? is still open.

2.2. Hyperbolicity for Reinhardt domains

Before we discuss the different notions of hyperbolicity in the case of pseudoconvex Rein-
hardt domains, we recall the effective formulas for the Kobayashi pseudodistance on
elementary Reinhardt domains (cf. Theorem 1.3.1). Let

Vii={2€C:2;,=0}, j=1,...,n

Moreover, for a matrix A = (A7);=1. n k=1,..n € Z(n x n), we denote by A’ its jth
row. Put
By Cr—Cr, B(z) = (Y, A7),

THEOREM 2.2.1 ([Zwo 1999a]). Let G be a pseudoconvex Reinhardt domain in C™. Then
the following properties are equivalent:
(i) G is cg-hyperbolic;
(i) G is ke -hyperbolic;
(iii) G is Brody-hyperbolic (i.e. O(C,G) = C);
(iii’) log G (1) contains no affine lines, and either V;NG =0 or V;NG is c-hyperbolic
as a domain in C"™ 1, j =1,..., n;
(iv) there exist A = (Ai)jzl,”_,nyk:l,_,,n € Z(n x n), rank A = n, and a vector
C=(Cy,...,Cp) € R™ such that

(M) logG :={z € R™: (e"1,...,e"™) € G}.
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e GCGAC0) = Dpic, NN Dyn g,
e either V;NG =0 or V;NG is c-hyperbolic as a domain in C"~1, j =1,...,n;
(iv') there exist A € Z(n x n), |det A| =1, and a vector C € R™ such that
e GCG(ACQ) (cf (iv)),
e either V;NG =0 or V; NG is c-hyperbolic as a domain in C"~1, j =1,...,n;
(v) G is algebraically equivalent to a bounded domain (i.e. there is a matriz A €
Z(n x n) such that ¢4 is defined on G and gives a biholomorphic mapping from

G to the bounded domain ®4(QG));
(vi) G is kg-complete.

In what follows, a domain of the type G(A,C) (cf. (iv) in Theorem 2.2.1) will be
briefly called a quasi-elementary Reinhardt domain.
To prove Theorem 2.2.1 we need the following lemmas.

LEMMA 2.2.2 ([Zwo 1999a]). Let G(A,C) be as in Theorem 2.2.1. Then:

(a) there is a matrizag € Z(n x n), |det A| = 1, and a vector C € R™ such that

G(A,C) C G(A,C);

(b) caa,cy(z,w) >0 for any points z,w € G(A,C)NCY, z # w.
Proof. Fix a matrix A and a vector C' as in Lemma 2.2.2.
STEP 1. To prove (a) it suffices to construct a sequence of quasi-elementary Rein-
hardt domains Gy := G(A,C) C --- C Gy such that |detG;| < |det G;_1|, where
det G(A, C) := det A.

Assume that G; has already been constructed. Let G; = G(B,D) with a matrix
B € Z(n x n), |det B| > 1, and a vector D € R™. In the case when |det B| > 1 we
describe how to get G 1.

Put

S(Gj) i={aeZ": 2 e H™(G;)},  B(G;) = 8(G)) \ (S(G;) + S(Gj)).
It is known (cf. [J-P 1993, Lemma 2.7.6]) that
B:=B(G(B,D))cZ"Nn(Qn[0,1)B' +---+Qn[0,1)B") U{B*,...,B"}.

Cramm. B¢ {B',...,B"}.

Assume the contrary, i.e. B C {B!,..., B"}. Define

r(B) :=min{r e N:if z € Q", 2B € Z", then rz € Z"}.

Observe that BB € Z(nxn), i.e. all the rows of B~ are special vectors in the definition
of the number 7(B). So 7(B)B~! € Z(n x n), from which r(B)" = det(r(B)B™'B) =
det(r(B)B~!) det(B) follows. Therefore, if r(B) = 1 then |det B| = 1, which gives the
contradiction.

So it remains to prove that r(B) = 1. Take an arbitrary z € Q" with B € Z". We

have to show that = € Z". In fact: we write B = uB + vB, where u = (u1,...,uy),
uj =2 — [z;] > 0and v = (v1,...,v), vj = [z;] € Z, j = 1,...,n (here [z] denotes
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the largest integer smaller than or equal to x). Obviously, uB € Z". Applying the above
description of S, it follows that uB = w3 B! + -+ + u,B" € S (recall that B’ is the
jth row of B). By the assumption, uB is an entire linear combination of the vectors
Bl,..., B™; in particular (recall that the B’’s are linearly independent), u € Z". Hence,
x=u+v€eZ" ie. r(B) =1, as required.

Therefore, there is a 3 € B\ {B!,...,B"} such that 8 = t;B! + --- + t,B" with
t; €[0,1) and one of the ¢;’s is positive. We may assume that ¢; > 0. We denote by B
the matrix whose rows B’ are given by B! := 3, BJ := BJ, j = 2,...,n. Moreover, with
Cy = 2?21 t;C; and éj =Cj,j=2,...,n, we put

Gjt1 = G(B,C), where C := (Cy,...,Ch).
Then |det B| = t;|det B| < |det B| and G; C Gj41. Hence, (a) is verified.
STEP 2. Recall that for a matrix A € Z(n x n) the mapping
By:Ch—C, Dalz) = (24, A", zeC,

is proper iff det A # 0, and that in this case its multiplicity is given by |det A|. In
particular, the mapping & 3, A of (a), is a biholomorphic mapping from C to itself.
Now fix two different points z, w € G(A,C)NC?. Then

CG(A,C) (va) > C@(A’é) (va) = cG(ﬁ)é)m({jg (Za w) = Cgn (W(Z), W(w)) >0,
where W(z) := (6,(2) /e, ..., 8, (2)/eCn) with &5 =: (By,...,B,). =

LEMMA 2.2.3. Let 2 C R" be a convex domain containing no straight lines. Then there
are linearly independent vectors A',..., A" € Z" and a C € R™ such that

QC{zeR": (x,A7)<Cj, j=1,...,n}.
Proof. See [Vla 1993]. =

Proof of Theorem 2.2.1. First, observe that the implications (i)=-(ii)=-(iii) are obvious
and that (iv)=(iv’) is true due to Lemma 2.2.2.

The remaining proof uses induction on the dimension n. Obviously, the theorem is
true in the case n = 1. Now, let n > 2.

(iii)=-(iii’). The first condition is an obvious consequence of (iii). The second one
follows from the induction process.

(iii")=-(iv). Note that the second condition in (iv) follows by applying the theorem in
the case n — 1. From (iii) we see that log G does not contain straight lines. Therefore,
we immediately get (iv) from Lemma 2.2.3.

(iv')=(i). Take z,w € G, z # w.

CAsE 1. If both points belong to C?, then, in view of Lemma 2.2.2, we have

*
ca(z,w) > cga,o)(z,w) > 0.
CASE 2. Let z € C?, w ¢ C?. Without loss of generality we may assume that w =

(wi, ..., wg,0,...,0) with wy ---wy, # 0. Then k <nand AJ >0, j=1,...,n, s =
k+1,...,n. Since rank A =n we find a j € {1,...,n} and an r € {k+1,...,n} such
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that A7 > 0. Thus w?’ = 0 # 24’. Therefore,
ca(z,w) > cqrai c;)(z,w) > cD(zAj,wAj) >0, where D:=¢e%E.

CASE 3. Let z,w ¢ C?. We may assume that z; = 0 and 2o # ws. Consequently,
m2...n(G) (%) is c-hyperbolic and 72, ,(2) # 72, n(w). Therefore,

ca(z,w) 2 cry ey (T2, n(2), M2, n(w)) > 0.
Hence G is c-hyperbolic.

(iv')=(v). By (iv') we know that there is a matrix A € Z(n x n), |det A|] = 1,
and a vector C € R" with G C G(A,C). Moreover, the mapping ¢4 : C* — C7,
Da(z) = (zAl, ...,2z4"), is biholomorphic.

Therefore, if the domain G is contained in C?, then ¢4 : G — ®4(G) is a biholomor-
phic mapping and @ 4(G) is bounded.

The remaining case is done by induction. Obviously, the case n = 1 is clear. So we
may assume that n > 2 and, without loss of generality, that V,, N G # 0.

CrAIM. It suffices to prove (v) under the additional assumption that

(2.2.1) VoNG # 0 and 7;(G) is bounded, j=1...,n— 1.

In fact, put G:=GNV,. By assumption, Gisa c-hyperbolic pseudoconvex Reinhardt
domain in C"~!. By the induction hypothesis there exists a matrix A e Z((n—1)x(n—1))
such that @ 3 is defined on G, b5 (G) is bounded, and & ; G D5 (G) is biholomorphic.
Put

B= [’g (1)] € Z(n x n).

Then &5 satisfies condition (2.2.1), and so the claim has been verified.

For the remaining part of the proof of (v) we may now assume that (2.2.1) holds true.
Without loss of generality assume further that
VinG#0, j=1,....,k, V,nG=0, j=k+1,...,n—1
Put G := ViN---NV4yNG. ThenGisa (non-empty) c-hyperbolic pseudoconvex Reinhardt
domain. Hence there is o = (0, ...,0, Qpp1,..., ) € S(G), o, # 0. The fact that G N
Vi, # () implies o, > 0. Moreover, by (2.2.1), it is clear that e; := (0,...,0,1,0,...,0) €
S(G) (1 at the jth position) j =k+1,...,n—1. Thus

:_a+ Z ([ ] 1—a—)eJeS(G)C8(G).

j=k+1 n
Define
I,_1 0
A= ~ ~ .
|:0 e 0 (0775 I Ay —1 ].:|

Then A has all the required properties. Hence condition (v) is proved.

(v)=(vi). By assumption we may assume that G is a bounded pseudoconvex Rein-
hardt domain. Fix a point w € G. To verify that G is k-complete we only have to
disprove the existence of a sequence (27);eny C G such that (kg(w,2?)),en is bounded,
but 2/ — 20 € G as j — oc.

) iy, (21, 20) 1= (Zig, o, 24y, )-
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Cask 2 € C?. We may assume that 2° = (1,...,1). It is clear that there is an o € R",
a # 0, such that G C D,, where D, denotes the elementary Reinhardt domain for «.
Moreover, we may assume that o; #0,j =1,..., %, and ap41 = ... @, = 0, where £ > 1.
So we get
(22.2)  Ekg(w,2?) > kp, (w,2%)

= max{kp, (@0, %), kenr(Wks1,.-.,Wn), (ziH, e 2N} = kp. (w0,7),
where & := (a1,...,ay), @:= (wy,...,wg), 2 = (2],...,2]).

Observe that the sequence (27);cn converges to the boundary point z° of D5. Then,
applying Theorem 1.3.1, we see that the sequence in (2.2.2) tends to infinity.

Cask 20 ¢ C'. Assume that 29 # 0 for j = 1,...,k with a suitable k, 0 < k < n, and
Zjy1 =+ = 25 = 0. We have to discuss two subcases:

(a) There is an s € {k + 1,...,n} such that GNV; = (. Then

ka(w, 27) > kﬂs(g)(ws,zg).

Here, 7,(G) is a plane Reinhardt domain not containing the origin, but 0 € 9n4(G).
Therefore, the right side tends to infinity.

(b) All the intersections G NV}, j = k+1,...,n, are non-empty. Obviously, k£ > 0,
otherwise 20 = 0 € G, a contradiction. Hence

kg (w, 27) > kg (w1, ... wi), (21, ...,21)),

where G := m;._(G). Since (29,...,2Y) € G and G is a Reinhardt domain of the first
case, the right side again tends to infinity.

Hence, the Kobayashi completeness of G has been verified.

It remains to mention that (vi) trivially implies (iv). m

REMARK 2.2.4. Observe that Theorem 2.2.1 shows that all notions of hyperbolicity co-
incide in the class of pseudoconvex Reinhardt domains. That is why we will often speak
only of hyperbolic pseudoconvexr Reinhardt domains. Moreover, in that class “hyperbolic”
and “Kobayashi-complete” are the same notions.

REMARK 2.2.5. The pseudoconvex Reinhardt domain
D := {z € C*: max{|z122|, |21 23], | 22|, |23|} < 1}

is not k-hyperbolic since C x {0} x {0} C D; in particular, D is not c-hyperbolic. Let
D := D\ (C x {0} x {0}). Then D is c-hyperbolic (the functions z1zy, 2123, 2o, and
z3 separate the points of 5) Observe that D is the envelope of holomorphy of 5,
ie. D= H(f)) Hence, in general, c-hyperbolicity of a Reinhardt domain and its envelope
of holomorphy may be different.

But in the two-dimensional case, there is the following positive result [Die-Hai 2003].

THEOREM 2.2.6. Let G C C? be a c-hyperbolic Reinhardt domain. Then its envelope of
holomorphy H(G) is c-hyperbolic.
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Proof. Recall that the envelope of holomorphy H(D) of a Reinhardt domain D C C? has
the following properties:

e H(D)cCCZ,

e log H(D) = conv(log D).
Put G, := GNC2. Then G, is a Reinhardt domain. Assume that log H(G.) contains an

affine line ¢. Fix a point zg € log G \ ¢. Denote by ¢’ the line passing through x, which
is parallel to £. Then ¢’ C log H(G,). Let

V= {(alt + by, ast + bg) it e R},
where a1, as,b1,bs € R and a? + a3 # 0. Hence
A= {(eMATh ea2A b2y N € C} € H(G.).

Using Liouville’s theorem and the fact that G is c-hyperbolic, we get AN G = () or
¢ Nlog G = (), a contradiction.

Assume now that log H(G) contains an affine line. As in the previous step, this leads
to a non-trivial entire map ¢ : C — H(G) N C?. Recall that H(G.) = H(G) N CY (see
Theorem 2.5.9 in [Jar-Pfl 2000]). Hence, H(G.) contains an affine line, a contradiction.

Without loss of generality, assume finally that H(G)N V> # (. Denote this intersection
by G’ ¢ C. Suppose that G’ is not c-hyperbolic. Then either G' = C or G’ = C,.
Therefore, either A; := C x {0} C H(G) or Ay := C, x {0} C H(G). In view of the
c-hyperbolicity of GG, we conclude that 4, N G = @ or that A; NG = (). Therefore,
G NVy =, a contradiction. Thus Theorem 2.2.1 implies that H(G) is c-hyperbolic. m

We conclude this section with the following result which will be useful later.

PROPOSITION 2.2.7 ([Zwo 2000al]). Let G C C™ be a hyperbolic pseudoconvex Reinhardt
domain. Then the following conditions are equivalent:

(i) G is algebraically equivalent to an unbounded Reinhardt domain;
(ii) G is algebraically equivalent to a bounded Reinhardt domain D for which there is
a jo, 1 < jo < n, such that DNV, # 0, but DNV;, = 0.

Proof. (i)=-(ii). We may assume that G is an unbounded hyperbolic pseudoconvex
Reinhardt domain. By Theorem 2.2.1, there are a bounded Reinhardt domain D and
a biholomorphic mapping #4 : D — G (here we use the notation from Theorem 2.2.1).
Suppose that D satisfies the following condition:

ifDNV;#0then DNV; £0, j=1,...,n.
Without loss of generality, we may assume that there is a k € {0,1,...,n} such that
(2.2.3) DnV;#0, j=1,....k, DNV;=0, j=k+1,...,n.
Now, let A = (A;)T:L,“’n)jzl,,_,’n € Z(n x n). Then AT >0,j=1,...;k, r=1,...,n.
Moreover, using (2.2.3) and the fact that D is bounded, we find a positive M such that
|zjl > M, zeD, k+1<j<n.

Hence, sup{|z*"| : 2 € D} < oo, r = 1,...,n, which implies that G is bounded, a

contradiction.
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(ii)=(i). Observe that the mapping

1
D3>z <21,...,Zj01,7

,ZjOJrl, e 72,’,1)
Jo

maps D biholomorphically onto an unbounded pseudoconvex Reinhardt domain D. Thus
D is algebraically equivalent to D and so is G. m

2.3. Hyperbolicities for balanced domains

Recall that any balanced domain is k-hyperbolic if and only if it is bounded (cf. Theorem
7.1.2 in [Jar-Pfl 1999a]).

EXAMPLE 2.3.1 ([Azu 1983], see also [J-P 1993, Example 7.1.4]). Observe that there is
an unbounded pseudoconvex balanced domain G C C? that is Brody-hyperbolic. To be
more concrete G is defined as

G:={ze€C?:h(z) <1},
where
h(z) := { |2a|e®(=1/22) if 25 #£0,

1
p(A) = max{log Al — log
o o W ||;k2 p

A—l‘}, reC.

Recently, S.-H. Park [Par 2003| has shown that G is almost k-hyperbolic, i.e. %G(z, w) >0,
whenever z; # wy or (21 = w1 # 0 and z2 # w3). It is still unclear whether

kc((0, 22), (0,ws)) > 0 for 25 # wo.
Nevertheless, there is the following result (cf. [Par 2003]).

PROPOSITION 2.3.2. For any n > 3 there exists a pseudoconvex balanced domain G C C"
such that

e G is Brody-hyperbolic,
e (G is not kg-hyperbolic.

Proof. Obviously, it suffices to construct such an example G in C2. Then, in the general
case, G x E"3 will do the job in C™.
Solet n =3. Put rj:= ¢/, 55 := 1/(ri +75), t; :=/j/sj, €5 := 27771, and n); := t;s;,

j € N. Then
is-zl is-logi>ig-logl>—oo.
P iTy P J 77j 7‘7‘:1 J t

For j € N define

Qj(z) == z120 — 55(23 — 22)(23 — 222), 2= (21,22,23) € C3.

Put
G:={2€C®:h(z) <1} with h(z):=max{|z1],|2]/2, ho(2)},
where
| 2:()|” S Q;(#
ho(z) =] 775, ) ZGXP(Zgjlog| 775‘ )>.

j=1 j=1
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We claim that G is a pseudoconvex balanced domain that is Brody-hyperbolic, but not
k-hyperbolic.

STEP 1. h is absolutely homogeneous and positive definite. Indeed, it suffices to discuss
ho. Fix z € C? and A € C. Then

ZEJ log ——— |Q] ng log(|A]%) + ZEJ log ——— ‘QJ =log || + Zej log === 1€,(2)] )‘

Jj=1 i
Hence, ho()\z) = \)\|h0( ).
Assume now that h( ) =0. Then z; = 20 =0 = hy(z ) which implies that

Q;(0,0,z

—00 = Zs lo g‘ J 3) 25] log —1og(|23| ),
j=1

from which we obtain z3 = 0. Hence, h is pos1t1ve definite.

STEP 2. hy € PSH(C?) (in particular, G is pseudoconvex). Indeed, fix a positive R and
let z € (RE)3. Then |Q;(z)| < (1 +6)R?. Recall that n; — co. Therefore, there is a jr
such that

Qi()l/n; <1, z€(RE)® j> jr
So it follows that hg € PSH((RE)?3) for arbitrary R. Hence, hy € PSH(C?).

STEP 3. G is not E-hyperbolic. Indeed, let
©; €O(C,C%), ¢;j(\):=(s;MA—1),,A+1), jeN
Observe that Q; o p; =0 on C, j € N. Therefore, p;(\) € G if |\| < r;. In particular,
ka((0,1,1),(0,1,2)) = ka(p;(0),¢5(1)) < ke(0,1/r;) == 0

meaning that G is not E-hyperbolic.

STEP 4. G is Brody-hyperbolic. Indeed, let f = (f1, fo, f3) € O(C,G). In view of the
form of G, f; is bounded and so f; =: a;, j = 1,2. Suppose that f3 is not constant.
Then, by Picard’s theorem, we have C \ {w} C f3(C) for a suitable w € C. Hence,
h(ai,az2,-) < 1 on C\ {w}. Using Liouville’s theorem for subharmonic functions, we
conclude that ho(a1, as,-) = const. Note that ho(a1, a2, A) =0 if Q;(a1, a2, A) =0 for at
least one j. Therefore, ho(aq,as, ) = 0.

To get a contradiction we discuss different cases of a1, as.

CASE az = 0. Then Q;(ay,0, )\) = —s;A%, j € N. Therefore,

oo

0,1)]
log ho(ay,0,1) Za log lQJ a, 25] log

Jj=1
a contradiction.

CASE ay # 0, a; = 0. Then Q;(0, 0,2,0) = —2sja§, jeN. Therefore,
log ho(0, as, 0) ZEJ 10g — —|—log (2]az|?) ZEJ > —00,

j=1 j=1
a contradiction.
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CASE ajas # 0. Then
log ho(a1, az, az) Z«% la 1A2| > —00,

a contradiction.
Hence, G is Brody-hyperbolic. m

REMARK 2.3.3. It remains an open question whether such an example exists in C2.

2.4. Hyperbolicities for Hartogs type domains

Let G C C™ be an arbitrary domain. A domain D = D(G) C G x C™ is called a
Hartogs domain over G with m-dimensional balanced fibers if for any z € G the fiber
D, :={w e C™: (z,w) € D} is a non-empty balanced domain in C™. Recall that for
such a D there exists exactly one upper semicontinuous function H : G x C™ — [0, c0),
H(z, ) =|NH(z,w), z€ G, weC™, X\ eC, such that
Dy=D={(z,w) e GxC™: H(z,w) < 1}.

Conversely, any such H leads to a Hartogs domain over G with m-dimensional balanced
fibers.

Recall that D = Dy is pseudoconvex if and only if G is pseudoconvex and log H €
PSH(G x C™).

Then we have the following hyperbolicity criterion (cf. [DDT-Tho 1998|, see also
[DDT-PVD 2000]).

THEOREM 2.4.1. Let D = Dy C G x C™ be a Hartogs domain over G C C"™ with m-
dimensional balanced fibers. If D is k-hyperbolic, then G is k-hyperbolic and, for any
compact set K C G, the function log H is bounded from below on K x JB,,

Proof. If D is k-hyperbolic then kg(2',2") > kp((2’,0),(2”,0)) > 0 for all 2/,2" € G,
2" # 2”. Hence G is k-hyperbolic.

Assume now that there are two sequences (27);en C G with limz? =: 20 € G and
(w?)jen C OB, with limw’ =: w® € dB,, such that lim; .. H(2/,w’) = 0. We may
assume that (27,w’) € D, j € N. Then ¢; € O(C,G x C™), ¢;(A) := (27, \w’), maps
R;E into D for a suitable sequence (R;) ey with R; — 0o as j — oco. Therefore,

kD((Zja 0)7 (Zj7 ’U)j)) = k‘D(ng(O)7 @](1)) < kE(O7 1/1%_]) - Oa
hence, kp((2°,0), (2°,w°)) = 0, a contradiction. m
REMARK 2.4.2. It seems unknown whether the converse of Theorem 2.4.1 also
holds. Nevertheless, the following special case is true (cf. [DDT-Tho 1998]).

PROPOSITION 2.4.3. Let G := E and u : E — [—00,00) be upper semicontinuous. Put
H(z,w) = |w|e™®) and D := Dy. Assume that u is locally bounded from below. Then
D 1is k-hyperbolic.
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Proof. By Theorem 7.2.2 in [J-P 1993], it suffices to show that the Kobayashi-Royden
pseudometric is locally positive definite, i.e. for any point py = (20, wo) € D there exist
a neighborhood U = U(pg) C D and a positive number C' such that sp(p; X) > C|| X]|,
pelU, X € C2

First, observe that

g(r):=—inf{u(N\): A€ E, |\ <7} <o0, re€(0,1).

Now, let s € (0,1) and fix (29, wg) € D, |20] < s, and X € C?\ {0}. Let f € O(E,D)
with f(0) = (20, wp) and af’(0) = X for a € C,. By the Schwarz lemma, we see that
IFO) <1 =z < 1.

Put 7o := (14 2s)/(2+ s). Applying the Schwarz lemma, it follows that, if |f1(\)]
> 7y, then

Al >
A T2 A | Z T 1RO To] = T —7ole0] = 2

Put 2 :={\ € E: |fi(\)] < 70}. Then sup,|fs| < e9() and B;(0,1/2) C £2. Thus,
|£2(0)] < 2e9(0). Then

o] > max {1y, A2l Vs Loy B4l
= 7 9e9(ro) | — \/E > ¢ 9(70)

Since f was arbitrarily chosen we get

20 — f1(N) ‘> |f1 (V)] = |20l = o — |20

.
»p((z,w); X) > Emm{ 5 gm)}| I, (z,w)eD,|z<s.
Hence, D is k-hyperbolic. m

REMARK 2.4.4. In Remark 2.2.5 we mentioned that, if a Reinhardt domain in C2 is c-
hyperbolic, then so is its envelope of holomorphy. In the class of Hartogs domains and the
case of k-hyperbolicity, such a conclusion is false even in dimension 2 (cf. [Die-Hai 2003]).

Let w : [0,1) — (—o0,0) be a continuous function satisfying lim; ~ ¢(t) = —co. Put
u(z1) := ¢(|z1]). Then the domain

D:={z€ ExC:|zn|<e =)}
is k-hyperbolic (see Proposition 2.4.3). Recall that
H(D)={z€ ExC:|z|<e =)}
where u is the largest subharmonic minorant of w. By the maximum principle for sub-

harmonic functions, it is clear that @ = —oco. Therefore, H(D) = E x C, which is not
k-hyperbolic.

REMARK 2.4.5. So far, we discussed hyperbolicity. We close this part by a remark on
the opposite situation. There is the following result due to E. Fornaess and N. Sibony
[For-Sib 1981]: Let D C C? be a domain which can be monotonically exhausted by
domains D;, where each D; is biholomorphically equivalent to By. If sp # 0, then D
is biholomorphically equivalent either to B, or to £ x C. Observe that B (0,j) / C2,
»c2 = 0, but, obviously, C? is biholomorphic neither to B, nor to E x C.

It turns out that there is a domain D C C*, n > 2, D; / D, each D; biholomorphi-
cally equivalent to B,,, such that
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e »xp =0,
o Jucpsnir) D ={z¢€C":u(z) <0} and u|p # const; in particular, D is
not biholomorphic to C™.
Domains of that type are called short C"’s (see [For 2004]). An example is obtained
in the following way: Let d € N, d > 2, and n > 0. Denote by Autg, the set of all
polynomial automorphisms @ of C" of the form
B(2) = D(21,. .., 20) = (28 + Pi(2), Pa(2), ..., Pu(2)),

where degP; < d—1, j = 1,...,n, and where each coefficient of the polynomials P;
has modulus at most 7. Choosing sufficiently good sequences a; \, 0, a; € (0,1), and
F; € Autg,, where n; := a;f, j € N, we define

D:{ZECn:klim Fko---oFl(z):O}.

2.5. c-completeness for Reinhardt domains

In this chapter Carathéodory completeness for Reinhardt domains will be discussed.
Recall that a domain G C C" is called cg-complete (briefly, c-complete) (respectively,
cg-finitely compact (briefly, c-finitely compact)) if ¢ is a distance and if any cg-Cauchy
sequence converges to a point in G (in the standard topology) (respectively, if cq is a
distance and if any cg-ball with a finite radius is a relatively compact subset of G).
Moreover, recall that any cg-complete domain G is pseudoconvex.

THEOREM 2.5.1. Let G C C" be a pseudoconvex Reinhardt domain. Then the following
conditions are equivalent:

(i) G is cg-finitely compact;

(ii) G is cg-complete;
(ili) there is no sequence (2,),en C G with Y oo | gc(2y, 2u+1) < 00;
(iv) G is bounded and satisfies the following Fu condition:

(2.5.4) ifGNV; #£0, then GNV; # 0,
where Vj := {2z € C" : z; = 0}.
This result is due W. Zwonek ([Zwo 2000a], see also [Zwo 2000b]); earlier partial

results can be found in [Pl 1984] (see also [J-P 1993]) and [Fu 1994].
For the proof of Theorem 2.5.1 we shall need the following three lemmas.

LEMMA 2.5.2 ([Zwo 2000a]). Let G C C} be a pseudoconvex Reinhardt domain. Then
kg = ka. In particular, the Lempert function kg is continuous on G X G.

Proof. Observe that T':= log G is a convex domain in R" and that the mapping
T+iR" 3 2% (e*1,...,e"") e G
is a holomorphic covering. Therefore, for z,w € G we have
kg (z,w) = inf{kpymn (Z,@) : Z,@ € T + iR™ with &(2) = z, &(¥) =
= inf{kryirn (Z,0) : Z,w € T 4+ iR™ with ¢(2) = z, &(w) =

Here we have used the theorem of Lempert. m
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LEMMA 2.5.3. Let 2 C R" be a unbounded convexr domain which is contained in
XY_1(—00, R) for a certain number R. Then, for any point a € (2, there exist a vec-
tor v € R™ \ {0} and a neighborhood V =V (a) C 2 such that V + R v C (2.

Proof. Take without loos of generality the point ¢ = 0. Then the continuity of the
Minkowski function i of {2 and the assumptions on (2 lead to a vector v on the unit
sphere with h(v) = 0. Obviously, v € R™ \ {0} and Ryv C (2. Finally, using the
convexity of {2, we see that for any open ball V' C {2 with center a the following inclusion
holds: V 4+ Riv C 2. n

LEMMA 2.5.4 ([Hay-Ken 1976]). Let H := {A € C: ReA < 0}, b < 0, and M < 0.
Moreover, let w € SH(H), u < 0, and u(A\) < M for all X\ with ReA =0b. Then u < M
on {\ € C Re A < b}.

Now we are in a position to proceed with the proof of the above theorem.

Proof of Theorem 2.5.1. Observe that the implications (i)=-(ii)=-(iii) are obvious. More-
over, (iv)=-(i) follows along the same lines as Theorem 7.4.6 in [J-P 1993].

Therefore, we need to prove (iii)=-(iv) only. Suppose that this implication is false.
Then, by Proposition 2.2.7, we may assume that GG is bounded and does not satisfy the
Fu condition (2.5.4). Moreover, without loss of generality we only have to deal with the
following situation:

GNV;#0but GNV; =0, j=1,....,k, 1<k<n,
GﬂVj:@, i=k+1,...,n,

In fact, if G NV} # (), then one can pass to the intersection of G' with those coordinate
axes.

Hence G C C?. We may also assume that (1,...,1) € G. Observe that logG is
convex, bounded in all positive directions, unbounded in the first k& negative directions,
and bounded in the remaining negative directions. Thus, in view of Lemma 2.5.3 we
find a small ball V = V(0) C logG with center 0 and a vector v € R™ \ {0} such that
V+Riv ClogG. It is clear that v; =0, j = k+1,...,n. Without loss of generality, we

may assume that v; < 0, j =1,...,], where | < k, vy = -1, and vi41 = --- = v, = 0.
Hence,

(ere ! e™2e!2 . e"re!™) e G, t>0,x€V.
Then, with o := —v, we have an € > 0 such that

(e)‘,,uge)“”,...,/ue)“”,l,...,l) €G, MNeH, e <|u|l<e,j=2,...,L
Put
A= {(pay. ) €CEre™ <y < e, j=2,...,1},
Hr:={AeC:ReA<R},R>0,
P:CxA—=CL D\ p) = (e e, . .., mer).
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It is clear that #(Hg x A) =: Dr C C., R > 0, is a pseudoconvex Reinhardt domain
with Dr / D := ®(C x A) € C! as R — oo. Therefore,

kp_(#(—1,1...,1),®(\,1,...,1)) < ke(=1,A) =0, AeC.

By virtue of Lemma 2.5.3, %Dm (#(-1,1,...,1),2) = 0 for all z € Dy N M, where
M :=&(Cx{(1,...,1)}).

Observe that Do x {(1,...,1)} C G, but (0,...,0,1,...,1) € G. Now choose positive
numbers a;, j € N, with >27°, a; < oo. It suffices to find points 27 € Dy, j € N, with

lim; o z{ = 0 such that
gG((Zja ]-a ceey ]-)a (ZjJrl, ]-7 ey 1)) S ng(Zj;ZjJrl) S aja ] S N

Applying the fact that Z:D = is continuous on G'r x GR, the theorem of Dini, and the
equality

lim kp,(®(—1,1,...,1),2) = kp_ (#(—1,1,...,1),2) =0,

— 00

2€ D N®C x {(1,...,1)}), e 2 < |z| <et,
we conclude that this convergence is uniform. Hence we have a sequence (R;);jen with
lim;_,o R; = oo such that

kp, (#(~1,1,...,1),8(\,1,...,1)) <aj, —2<ReA< L
J

Observe that the mapping ¥g : Dy — Dg, ¥(2) := (efz1, z0e®2f ... ze*R) is biholo-
morphic. Therefore,
Ep (#(~1—Rj,1...,1),8(\1,...,1)) <a;, —2-R;<ReA<-1-Rj.
Define
uj(A) :=loggp,(P(-1—-R;,1,...,1),®(\1,...,1)), A€ Hy.

Observe that u; € SH(Hp). By Lemma 2.5.4 it follows that u;(\) < loga; whenever
Re X < —1 — R;. Therefore, we may take 27 := &(—1 — R;,1,...,1) as the desired point
sequence. m

REMARK 2.5.5. Obviously, any cg-finitely compact domain G is cg-complete. We point
out that the converse (due to N. Sibony and M. A. Selby) is also known for domains in
the plane (see [J-P 1993, Theorem 7.4.7]). | 7 | Whether the two notions of c-completeness
coincide for all bounded domains is still unknown. We only mention that there is a

one-dimensional complex space X that is cx-complete but not cx-finitely compact (see
[Jar-Pfl-Vig 1993]).

REMARK 2.5.6. Let G C C? be a bounded pseudoconvex Reinhardt domain, a € G, and
20 € G N C2. Then cg(a,z) — oo as z — 20 (see [Zwo 2000b]). So the part of G not
lying on a coordinate axis is cg-infinitely far away from any point of G.

We point out that this phenomenon does not occur in higher dimensions.

EXAMPLE 2.5.7 (cf. [Zwo 2000b]). Let o > 0 be an irrational number. Put

G:={z¢ C3: |21] |22|a\23|a+1 <1, |z2] 23] < 1, |z3] < 1}.
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Then G is a pseudoconvex Reinhardt domain. Fixing points z° € GNC2 and w € C?
with |wy| [we|®|z3|2t =1, |we| ~Hws|? < 1, and |ws| < 1, we get

limsup cg(2°,2) < cc.

Goz—w
Moreover, the biholomorphic map

P:GNC - C3,  &(z):= (zlzéa]+lz£a]+3, 2923, 23),
has as its image a bounded pseudoconvex Reinhardt G* domain contained in
{2 €C2: 2| <1, 2] <1, |21] |z2|* 717 257 < 1}

In the class of Reinhardt domains we have the following characterization of hypercon-
vexity (cf. [Zwo 2000a] and [Car-Ceg-Wik 1999)]).

THEOREM 2.5.8. Let G C C" be a pseudoconvexr Reinhardt domain. Then the following
conditions are equivalent:

(i) G is hyperconver;
(ii) G is bounded and satisfies the Fu condition.

Proof. The implication (ii)=-(i) follows directly from Theorem 2.5.1(i). To prove the
converse, suppose that G does not satisfy the conditions in (ii). According to Proposition
2.2.7, we may assume that GG is bounded and does not satisfy the Fu condition. Hence,
without loss of generality, we may assume that G = D, (compare the proof of Theorem
2.5.1), i.e.

G :={((, 20", ..., pnC) €C" : (€ Ey, pu; €C,e7 % < pj| <€, j=2,...,n},

where g >0, a; >0, j=2,...,n.
Let u € PSH(G)NC(G), u < 0, be such that {z € G : u(z) < —¢} € G for any ¢ > 0.
Define
v(z) = sup{u(z1e’, ..., 2,e") . 0; € R}.
Obviously, v is an exhausting function of G with v(z) = v(|#1],...,|2n|). Therefore, the

function

E. 3 X—=o(|A], MY, ..., [A]*)

is subharmonic and bounded from above by 0. Hence it can be continued as a function
v* € SH(E). Then, because of the hyperconvexity of G, it follows that v*(0) = 0 implying
that v = 0, a contradiction. m

Recall that the Carathéodory distance is not inner. So, in general, we have c¢ < ci,
cg # ciy (cf. §1.2.1). Moreover, it is known that ¢, = {1¢ = S’yg) < S’yg), ke N.
Thus,

cg-complete = ci,-complete = Sfyg )_complete, k € N.

(A domain G is called dg-complete (briefly, §-complete) if d¢ is a distance and any dg-
Cauchy sequence in G converges to a point in G, § € {c', S’y(k), k € N}. See [J-P 1993]
for more details.) In fact the following holds (see [Zwo 2001b], [Zap 2003]).

THEOREM 2.5.9. Let G C C™ be a bounded pseudoconvexr Reinhardt domain. Then the
following properties are equivalent:
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(i) G is cg-complete;
(ii) G is c-complete;
(i) G is S’yg)—complete, keN;
(iv) there is a k € N such that G is Swg ) complete.
In order to be able to prove Theorem 2.5.9, we first recall a fact on multi-dimensional

Vandermonde determinants (for example, see [Sic 1962]), namely:
Let X, :=(s,...,s) €C" (3), s € N, and Ny := #{a € Z : |a| < k}, k € N. Then

(2.5.5) det((X{)1<s< i, Jaj<k) # 0.
Using this fact we get the following

LEMMA 2.5.10. Let P(z) = Zl<|ﬂ|<k bpzP, z € C", be a polynomial in C". Then there

yiaulE

C C™ such that

J

ZZCJSZﬁlpﬂ JS’ zeC

Jj=1ls=1 |B|=34

where
2) = Hpg,j(z), pp,i(2) =zj(z;—1)---(z; —B;+1), z={(21,...,2,) €C"

Proof. The proof is by induction on k € N. The case k = 1 is obvious. So we may assume
that the assertion holds for a & € N. Now take a polynomial P(z) = 3, 5<x41 02",
z € C", and write

Z bﬁzB—I— Z bg(z —p/g Z bgpﬁ zeC".
1<|BI<k |Bl=k+1 |Bl=k+1

Observe that the first two terms are of degree less than or equal to k. The third may be

written as (k ) b
+ 1)! 1bs
Z bgpp(z) = Z T P(2) 1
|8l=k+1 |8l=k+1 Al (k+1)!
Using (255), we find (CS)1SSSNk+1 c C and (X5>1§3SN,C+1 C C™ such that
_Blog =

G ZX 18] =k +1.

Hence, Lemma 2.5.10 has been proved. m

Proof of Theorem 2.5.9. It remains to prove (iv)=-(i). We may assume that n > 2.

Suppose that G does not satisfy the Fu condition, but is Svg )-complete for a suitable k.

According to the proof of Theorem 2.5.1, we may assume that G C C? and that
log G = {0} x (logd, —logd)" ' + R-qgv,

where 6 € (0,1), v € (—00,0)", and v; = —1. Put v := —

(*) Notice that here X is a vector and not the sth coordinate of a vector.
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Observe that a monomial 2z (« € Z™) is bounded on G if and only if (a, ) > 0. Put
x:(0,1) =G, x(t):=@",. ... t).

For a fixed t € (0,1), we are going to estimate ’y( )( #); xX'(t))-
Fix an f € O(G, E), ordy ) f > k. Then, using Laurent expansion, we get

(2mi)n gatt

[Cil=ri,e s [Cnl=rn

= E oz, where a, =

is independent of r = (rq,...,7r,) € GNRZ,. Note that

1
(2.5.6) lan| < " for any r € G.
From (2.5.6) it follows that a, = 0 if («,7) < 0. Therefore,
flz)= Z agz®, z€G.
a€Z™:(a,7) 20

Taking r; < 1 in (2.5.6) arbitrarily large and r; arbitrarily close to § (or to §71), j =
2,...,n, we obtain

|aa| < glazl+-+lan|

Taking derivatives we have

(S)( ( ))(Xlt'h—k/s“_.,Xnt’vn—k/5> — Z (aa Z ﬂl pg )Xﬂt< a,y)— k>
(a,y) >0 |Bl=s
SGN, X = (Xla”-,Xn) GCn,

S'

Since ord, ;) f > k, it follows that

(2.5.7) > aattn kzﬁ'pﬁ )X’ =0, 0<s<k XeC"

(@7)>0 |8]=s
Moreover,

1
(258) /M@K Z (o, y) el =+

’ '< a,y)>0

1 a
tog D aat Z 5  (pala) — a®).
(@7)>0 |8I=k

Applying Lemma 2.5.10 and (2.5.7) shows that the second term in (2.5.8) vanishes. Hence,
we have

ST D) =5 3 aalan) ek,

" {,) 20

In view of the above estimate, we obtain

YE (x (1)) X (1)) < L\/_ ST gllaaltetlanh g ypllem/m=1 e (0,1).

a€Z™:{o,y)>0
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It remains to show that L’Y(k) (Xl(0,1/2]) is finite, which would give the desired contra-
G
diction. We have the following estimate:

1/2
Ly (oasz) < § 76" (0 (1)) d
O

1/2
< Z §laz|++lan])/k S (a7 )t /B =1 gy
\/_ —%o 0
k
_ Z slezl++lan|)/k
- (o) /k
\/_ ay)>
— _kk Z slazl++lan])/k 3y < 1>/k
\/H QA2 EL a1 €Z:a1>— (o’ ') 2t
k 1
A (|4 +lanl)/k
= i > 9 A CEADIE
where o/ := (ag,..., ), ¥ := (¥2,...,7n). Obviously, the last number is finite, which

finishes the proof. m

REMARK 2.5.11. Observe that in the case 7 € Q™ the above proof may be essentially
simplified. Namely, the punctured unit disc can then be embedded into G. So the
non—S yg’c )—completeness of G follows immediately from that of F,.

REMARK 2.5.12. Let G C C™ be an arbitrary domain and A C G be finite. In generaliza-
tion of the notion of cg-finite compactness we say that G is mg (A, -)-finitely compact if
for any R > 0 the set {z € G : mg(A4, z) < R} is relatively compact in G. Obviously, any
mg(A, -)-finitely compact domain is cg-finitely compact. | ? | Is there a geometrical char-
acterization for mg(A,-)-finite compactness in the class of all pseudoconvex Reinhardt
domains as in Theorem 2.5.1

2.6. c-completeness for complete circular domains

Let G C C™ be a bounded pseudoconvex balanced (:= complete circular) domain. Then
there is an h = hg € PSH(C") with h(Az) = |Ah(z) (A € C, z € C™) such that

G=G,={2€C":h(z) <1}

and, since G is pseudoconvex, logh € PSH(C") (see Chapter 1).

It is known (due to work of T. Barth) that & is continuous whenever G is kg-complete.
In dimensions larger than 2 the converse statement becomes false; in fact there is a
counterexample due to Jarnicki-Pflug ([J-P 1993, Theorem 7.5.7]). In particular, this
example is not c-complete.

It is still open which conditions on h may imply that G = G}, is c-complete.
Moreover, in dimension 2, so far it is not known whether the continuity of /4 implies the
Kobayashi completeness or even the Carathéodory completeness.
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2.7. Sfyg )-completeness for Zalcman domains

First, we introduce the class of domains we wish to study. Let (a;);en and (r;);en be
sequences of positive real numbers such that:

° 2T’j<a]‘,j€N,

e a; \,0asj— oo,

* B(aj,r;) C E, B(aj,r;) NB(ak,r) =0, j # k.
Then G := E, \ U B(aj,r;) is called a Zalcman type domain.

The main result here is the following one due to P. Zapalowski (see [Zap 2002] and
[Zap 2004]).

THEOREM 2.7.1. For any k € N there ezists a Zalcman type domain G which is S’yg)—

complete, but not Svém)—complete, whenever m < k < [.

REMARK 2.7.2. It seems to be an open problem whether for different k,I € N,
k < I, there exists a Zalcman type domain G, which is S'ygc )—complete, but not 878)'
complete. | ? | Note that for [ = sk, s € N, this is impossible because Swgc ) < S*yg k)

Before giving the proof of Theorem 2.7.1 we mention the following sufficient condition
for a Zaleman type domain not to be {~(*)-complete.

PROPOSITION 2.7.3. Let G C C be a Zalcman type domain (as above) and let k € N,
€ (0,1), and ¢ > 0. Assume that

(2.7.9) & #1) <t e (-1,0).

Then G is not S’yg)—complete for any 1l > k.

Proof. Fix 1 € N, [ > k, and a point ¢t € (—1,0). Take an f € O(G, E), f(t) = f'(t) =
o= fED@) = 0, with (v (£1))! = (1)L £ O (¢)]. We define

F@)/(z=0)F if 2 #4,
9(z) = .
0, if z=1.
Then g is holomorphic with

k!
Moreover, by the maximum principle, we have
lglle < dist(t, 0G) ",
Therefore, h := gdist(t,0G)!~* € O(G, E) and we obtain
1 dist (¢, 0G
(27.10) GG = L @) = LLEIDTE oy

st(t,06) My <”< 1)
Finally, the assumed inequality (2.7.9) implies the following estimate:
ck/l|t|7ak/l

@) (4.
76 (41) < TRl

’
— c/|t|7a ,
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where ¢/ := ¢*/! and o/ := (ak + (I — k))/l < 1. Then integrating along the segment

(—=1/2,0) shows that G is not S'yg)—complete. "

Consequently, to find examples as claimed in Theorem 2.7.1 we should try to deal

with situations where the boundary behavior of vg ) is of the type

(1) < edist(-, 0G) " log dist(-, IG)|
with some o > 1, ¢ > 0.

LEMMA 2.74. Let G C C be a Zalcman type domain and k € N. Then there exists a
C > 0 such that

Proof. Choose numbers a; € (0,a;) and 7; € (a;, 1) such that
B(as,rs) C B(a;,75), s>7, B(@;,7)NB(aj,r;) = 0.
Put

J
G, ::E\( a;,7;) UEGS,TS>
s=1

Then G; is a (j + 2)-connected domain with G; C G, j € N. Then, for a sufficiently
small positive £; (we may assume that ¢, — 0 as j — c0), we have

J
Gje, = (1= )E N (B(@, 75+ ;) U | Blas, s +¢5)) € Gy,

s=1
By the Cauchy integral formula, we see that
k! f(¢
e = | A e B

2mi — z)k+1 2mi
I¢l=1~e; (€=2) [¢=a;]|=Fj+e;

J

s=1 I¢—as|=rste;

Let z € (—1/2,0). Then z € (—1/2,a; —7; —g; — 2F+Y/F; +¢;) and 2z < —¢; for all
sufficiently large j. Hence we obtain

2m 2m
| — e | T .
< k! 1—¢ b+ k! Tj + €

(k) > : - : dt
ERNQIE 27 §) |(1—¢gj)et — z|k+1 27 (S) |(7; +¢&j)ert +a; — z|k+1

7 27

k! Ts + €5
— . dt
+ Z § (rs +€5)eit + ag — 2[F+1

1—¢ T+ Ej J rs +€
< k! J J J s J
hS ((1/2 —gj)kt1 + ( 2(k+12/—77j T gj)kt1 + ; (1/2(as — z — £;))F 1
Observe that here the assumption 2r; < a;, j € N, is used to estimate the third term.
Since £; — 0, we finally arrive at the following inequality:
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7 <>|<M(ﬁ+h%¢*+2“l§2 kﬂ)

Recall that 7; — 0 as j — oco. Therefore, letting j — 0o, we obtain

I <n<m“(u§:a_wﬂ>.

s=1

LEMMA 2.7.5. For every k € N there are a k € N and a Zaleman type domain G such
that
(a) limsup (§75")(=1/28712) < oo, 1 <m <k,
(—1,0)22—0

: O] —
(b) GSZHLO(SVG J(w,z) =00, we G, k<L

Observe that Lemma 2.7.5 immediately implies Theorem 2.7.1:

Proof of Theorem 2.7.1. Fix a k € N and take the Zalcman type domain from Lemma

2.7.5. Let m € N, 1 < m < k. As a direct consequence of (a) and the fact that the

)

Svém)-completeness is equivalent to the S*yg" -finite compactness we see that GG is not

S ’y(Gm)-complete.
It remains to see that G is Swg)—complete for I > k. So let us fix such an [, a point

w € G, and a boundary point 2° € 9G. We have to show that limz_,zo(S'yg))(w, z) = 0.
CASE 1. If 2 = 0, then using (b) we are done.

CASE 2. If |2°] = 1, it follows that

. ) : (l)
ILIIle(S’yG Nw, z) > ZILIilO(SWE w,z) = lim cg(w,z) = oco.

zZ—Zz

Cask 3. If 2° € 0B(a, ;) for some j, then

lim ( S’yG w,z) > lim cg(w, 2) > Im cpg,, ) (W, 2)

z—20 z—20 z—29

r; 7 . T T
hm CE, J = lim cg J = 00,
z—20 w—a; z—a; z—29 w—a; z—a;

since |rj/(z —a;)| > 1lasz— 2" m

What remains is:

Proof of Lemma 2.7.5. Let k € N, aj := 277, and ry; := 279j7%~1, j € N. Since

2
hm () oLy
D) mwm et
we may choose a k € N such that (s/(s —1))2/¥2 < 1, s > k. Put

G = E, \ U B(aj, 7k ;).
izk

Obviously, Gy, is a Zalcman type domain.



120 2. HYPERBOLICITY AND COMPLETENESS

To prove (a) it suffices to verify the following inequality:

(m) . ¢ 1 /9k—1
(2.7.11)  Fecry>0 g, (351) < 2 Clog(—2)) 0 D/m z€[-1/2"7,0), m < k.
In fact, let z € [—1/2E_1,0). Then there exist a unique N € N, N >k, and a b € (1,2]
such that z = —b/2". Therefore,
N N

N .
Tk "y _ N 2
(2.7.12) Z m < ot Z R
~ (a; — a; i
j=k j=k j=k
oNm . 1 9Nm
S w2l s 1
Nk+ = 1— 6 Nk+
00 o] ) N(m+1)
TRy Th.j 2
(2.7.13) Z 2y < Z (—z)m+1 Z 97 At Lpmt1
_]=N j=N J

2N(m+1) > 1 oNm+1
< 9N Nk+1 2 < Nk+1 -
=0

(The second inequality in (2.7.12) follows easily from the observation that there is a

positive § < 1 such that
2(571)m 9sm

(s — 1)k+1 < 531c+17

for s >k, m < k.) We put ¢:=1/(1 — §). Using (2.7.12) and (2.7.13) we get

> Tk (€ + 2)2k(log 2)F12Nm o
; (aj —z)m+t = bm (log(2m/b))F+1 7 (—2)™ (= log(—2))k+1

In view of Lemma 2.7.4, we obtain

Ch < 20C,
(=2)™(=log(=2))*1 ) = (=2)™(—log(—2))*+1’
which finally proves (2.7.11). (Note that we may take C' = k!2F+1 > ml2m+l m < k;

thus the constant C' = C(k) from Lemma 2.7.4 works for all m, m < k.)
To prove (b) we claim that

£ ()] < 0(1 ; f € 0(.E),

1
|Z| < ~772, ZGGk

l C
(2.7.14) Visk Je=c(k,1)>0 ’Yéi (z1) = oF

~ |zllog(1/]2])”
Assume for a while that (2.7.14) is correct. Fixanl € N, I > k, and a w € G;. Take a
z € Gy, |2| < 1/2%7% and a C'-curve a : [0, 1] — G, connecting z with w. Then we have

ta to

'@ldt 4a(t)] dt

@ o c
o0l > ) TeTos 11D > ol og1/Ta@D

0

ta

2 ¢ S %(_bgbg(l/la(tﬂ)) dt = C(loglog S

— loglog QE_Q) )
! B
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where t, = sup{t € [0,1] : |a(7)] < 1/2E‘2, 0 < 7 < t}. Since the curve o was an
arbitrary one connecting z and w in Gy, it follows that

S’ygi (w, z) > c(loglog(1/|z]) — loglog 2E_2) %0

Hence, (b) is verified. B
What remains is the proof of (2.7.14). Fix a z € G NB(0,1/2*2). Then we have to
find an f € O(Gy, E) satisfying the following conditions:

o f(z)=f(2) =...f17V(x) =0,
o |fU(2)] > ¢/(]z|log(1/|z]))!, where ¢ is independent of z.

Again we write z as z = be? /2 with N € N, b € (1,2], and 6 € [0,27). Observe that
N >k —1. Put

(2.7.15) FO) = ape,; (27N =N T 42V B N € Gy,
where ap 90 ;=1 and ap9,1,...,%.0,1-1,0p0 € C depend only on b and 6 and are such
that (obviously f € O(Gy)) f(2) =--- = fl=V(z) = 0.

We proceed under the assumption that we have already chosen f as in (2.7.15). Then

beif\ 7t
J (2N+]+1 o 2N>

oN+j+1 I+1
< 2]+1b619>

9J I+1
Bupo = ZO‘”3< 2J+1bew> :

Moreover, assume that |B; ;9| > B; > 0, where B; is independent of b and 6. Then

Navogl | ontr [+1
flla, < 42 Br,0| < o
Il §: fousal ¥ty <0 EL

= a(l + 12NN + D < e2NV(N - 1R < 2NNV - 1)

_ 2(N+1)(l+1)|Bl b 0|’

where

where o = max{|a 0|, |Bp,0|} and ¢ depends only on k and . Put g := f/|flla, €
O(Gy, E). Then

O o1 oNt 2N log 2 ! ¢
19" (2)] = >a > 7
¢(N —1)! b(log 2" —log b) (Iz[log(1/]2]))"
where ¢; and ¢ are constants that only depend on k.
In order to finish the proof of Lemma 2.7.5 we need the following lemma.

LEMMA 2.7.6. For an | € N there are positive numbers o and B; such that for every
z = be? )2V, where b € [1,2), 6 € [0,27], and N > k — 1, there exist complex numbers
apej, J=1,...,0 =1, and By ¢ such that
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e max{|apg;|, [Bool: j=1,...,0—1, b and 0 as above}| < a,
o min{|By 0| : b€ [1,2], 0 €[0,27]} > By,

o f(z)=f(2) == flV(2) =0 (for f see (2.7.15)).
Proof. Let f be a function as in (2.7.15) with unknown numbers a9 ;. Then the condition
f'(z) == f=V(2) = 0 gives the following system of  — 1 equations:
-1 gN+j+1 s+1
ZS!(W) ope; =0, s=1,...,1—-1,

§=0
which is equivalent to
-1

2j s+1 1 s+1
(2.7.16) Zs! (1—2j+1bei9> Qpg,j = — (1_M) , s=1,...,1—-1

To simplify further discussions we put

2J
Observe that |40 ;| € [1/8,1] and that Ay, # Ape,. for p # v. Now we can rewrite
(2.7.16) in the form

Apgj = j=0,...,1—1.

-1
s+1 _ s+1 _
E Ab,@,jabxed = _Ab,G,O’ S = 1, e .,l - 1.
j=1
We conclude that

-1
2
|det[A; 5ot 0-1] = ‘ 11 Ab,e,j’ IT lson—Aspul>e>0,
j=1 1<p<v<k
where ¢ is independent of b and 0. Hence the claimed choice of the a9 5, 7 =1,...,1—1,
is always possible. Next, we put

-1
Bro = — E App,jabp,j-
i=0

For an upper estimate, observe that

-1

|ﬂbyg‘ < Z |Ab’9’jab,97j\ < lmax{|ab,9’j| 27 =0,...,0— 1}.

j=0
Therefore it suffices to estimate the ay g ;’s. Recall that |4, ;5T € [2731],5 =
0,...,0—1,s=1,...,1—1,b € [1,2], and 6 € [0,27]. Applying Cramer’s formula
and the continuity of the det-function, we see there is a number & > 0 such that all the
lo,0,] < .

Finally, the lower estimate remains. Since |B;; ¢/ is continuous with respect to (b,6)

it suffices to show that B; ;¢ # 0, or equivalently,

-1

141 A IAS!
E :Ab,e,jabﬁu # Ab,e,O'
=1
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Suppose that this is false. Then the oy g ;’s satisfy the following ! equations:
-1
Z Ai;}jab,e,j = —Az;g}o, S = 1, ey l,
j=1

implying that Ayg0/Abe; =1, j =1,...,1 — 1. But this is impossible. Thus also the
lower estimate has been proved. =

This finishes the proof of Lemma 2.7.5. m

2.8. Kobayashi completeness and smoothly bounded pseudoconvex domains

It is well known that there is a bounded pseudoconvex domain G (due to N. Sibony) with
a C*°-boundary except of one point that is not kg-complete (see [J-P 1993, Theorem
7.5.9]). On the other hand, for a smoothly bounded pseudoconvex domain G it is still
an open question whether it is kg-complete.

Let D C C” be a smoothly bounded pseudoconvex domain and let zy5 € D. Then
there is a neighborhood U = U(zy) and a function r € C*°(U, R) such that

DNU={z€U:r(z) <0}

and gradr(z) # 0, z € U. Moreover, let V(z¢) be the set of all germs of non-constant
holomorphic mappings ¢ : Cy — C™ with 1(0) = zy. According to d’Angelo, the domain
D is said to be of finite type at zg if

OI‘do(’l" o ’$)

7(D, z9) := sup{ orde ¥ RUNS V(zo)} < 0.

The domain D is said to be of finite type if D is of finite type at all of its boundary points.
The following result is due to [Bed-For 1978] (see also [For-Sib 1989], [For-McN 1994]).

THEOREM 2.8.1. Let D C C? be a bounded pseudoconver domain. Assume that D is of
finite type. Then any boundary point a € D is a peak point with respect to C(D)NO(D),
i.e. there exists an f € C(D) N O(D) such that f(a) =1 and |f(2)| < 1, z € D\ {a}.

In particular, we have

COROLLARY 2.8.2. Any bounded pseudoconver domain with a smooth boundary, which
is of finite type, is c-complete.
Observe that to conclude that a domain is c-complete, a weaker condition is already

sufficient; namely we have (see [J-P 1993]):

Let D C C" be a c-hyperbolic domain. Then the following two conditions are equiva-
lent:
(i) D is c-finitely compact;
(ii) for any zo € D and for any sequence (z;); C D without accumulation points in D,
there is an f € O(D, E) with f(z0) =0 and sup{|f(z;)| : j € N} = 1.
It is an open problem whether all bounded pseudoconvex domains of finite type
are k-complete or even c-complete.
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2.9. Kobayashi completeness and unbounded domains

Let D C C" be an arbitrary domain and let a € 0D. The point a is called a local
holomorphic peak point of D if there is a neighborhood U = U(a) such that a is a peak
point with respect to C(U N D)NO(U N D). When D is unbounded, we say that D has a
local holomorphic peak point at infinity if there is an » > 0 and an f € C(D \ B(0,7), E)N
O(D\ B(0,7), E) such that lim,_,, f(z) = 1.

Recall that a bounded domain is locally k-complete iff it is k-complete (see [J-P 1993,
Theorem 7.5.5]). For an unbounded domain we have the following result (see [Gau 1999]).

THEOREM 2.9.1. Let D C C" be an unbounded domain. Assume that D has a local
holomorphic peak point at any point of 0D U {oco}. Then D is k-complete.

EXAMPLE 2.9.2. Put
D :={z€C?:u(2):= |21 + |2|?) < 1}.

Obviously, {0} x C € D. Thus, D is not k-hyperbolic. On the other hand, since u is
strongly psh, any a € 0D is a local holomorphic peak point. So this example shows that
the condition at infinity in Theorem 2.9.1 is in some sense necessary.

The proof of Theorem 2.9.1 is based on the following lemma.

LEMMA 2.9.3. Let D C C" be an arbitrary domain and let a € C™ U {oo} be a bound-
ary point of D. Assume that a is a local holomorphic peak point of D. Then for any
neighborhood U = U(a) there ezists a neighborhood V.= V(a) C U such that for any
¢ € O(E,D), ¢(0) € V, one has p(A\) € U, || < 1/2.

Proof. We give the proof only for a = co (the finite case is similar). Without loss of
generality, let U = U(co) := C" \ B(0, 0). By assumption, there is an r > 0 and an
f€C(D\B(0,r), E)nO(D\B(0,r), E) such that limp_, _ f(z) = 1. We may assume
that r = . Put u(z) :=log|f(2)], 2 € D\ B(0,r). Then

u € C(D\B(0,r),[~00,0) NPSH(D\ B(0,7)), _lim wu(z)=0.

D>z—o0

Fix numbers 7/, 7", r < 7’ < r”, such that
sup{u(z) : 2 € DNIB(0,r")} =:¢' <0, f(2)#0, ||z]| >,
inf{u(z) : 2 € DNOB(0,r")} = " > ¢.

We define 4 : D — (—00,0) by

u(2), if 2] = 7",
u(z) := < max{u(z), (¢ +c")/2}, ifr <|z| <r”,
(¢ +")/2, if |z]] <.

Obviously, u is a global negative psh peak function at co, i.e. U is a negative continuous
function on D, psh on D, such that limp_,_ __4(z) = 0.
Fix a v € C(E, D) N O(E, D). Observe that o1 € C(E) N SH(E). Let a < 0. Put

E(,a):= {0 € [0,2n] : Go(e”?) > 2a}.
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Assume that o < @ o )(0). Then

27
a<ho(0) < € S To(e?)do
2T 5

1 N .
<5 | douwdi< % (271 — A (E (¥, ).
0,27\ E(w,0)
Hence,
(2.9.17) A (B, 0)) > .

Put v(z) := log (|f(z) —1]/2), 2 € D. Then v € C(D \ B(0,r)) N PSH(D \ B(0,r)).
Choose an € > 0 such that

sup{(u +ev)(z) : 2 € DNIB(0,7")} =: ¢} <0,
inf{(u+ev)(z): 2 € DNIB(0,r")} =: ¢} > .
Define 7 : D — (—o0,0) by

(u+ev)(2), if [|z]] = 7",
v(z) := ¢ max{(u+ev)(2),(c] +cf)/2}, i <|z| <r”,
(ch +¢1)/2, if [[2f] <.

Then ¥ € C(D) N PSH(D), v < 0, and limp_, 0(z) = —oo. (Such a function is
sometimes called a global psh antipeak function at cc.)
Let 1) be as above. Applying the Poisson integral representation, we get

2918)  Tou <= | Toue® N gy L G <]
.J. (0] —_— o] —_— —_— o] —.
Y = )TN e T = e J PR =2

Now, choose L > 0 such that
U :={2€D:9(z) < -L/6} CC"\B(0,7).
Then there is an oy > 0 such that
Vi={2€D:7(z)>—-ap} C{z€D:u(z) > —2ap} C{z€D:9(z) < —L}.
Now let ¢ € O(E, D) be such that ¢(0) € V. Obviously, we may also assume that
v € C(E,D). Applying (2.9.17) and (2.9.18) we have, for A € E, |\| < 1/2,

~ 1 ~ i 1 m i
1J0<,0()\)§6—7TSUng(ee)dHSG—7r S Doy(e?)ds < —
0 E(p,a0)

ie. p(\)eU'. m

Lty (E(pan)) _ L
6m - 6’

COROLLARY 2.9.4. Let D C C" and a be as in Lemma 2.9.3. Let U = Ul(a) be any
neighborhood of a. Then there exists a neighborhood V = V(a) C U such that for any
connected component V' of DNV the following inequality is true:

2xp(2;X) > sy (2;X), 2€V XeC™
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REMARK 2.9.5. Observe that in Lemma 2.9.3 only the existence of a local psh peak
function and a local psh antipeak function was needed. Other localization results for
unbounded domains may be found in [Nik 2002].

Proof of Theorem 2.9.1. STEP 1. We prove that D is k-hyperbolic if D has a local
holomorphic peak point at infinity. Assume this is not the case. Then there exist zg € D,
(z); C D with z; — 2y, and X; € C™ with ||X,|| = 1 such that »xp(z;; X;) < 1/j,j €N
(see Theorem 7.2.2 in [J-P 1993]). Therefore, we find functions ¢; € O(E, D) such that
©j(0) = z; and [|¢}(0)[| > j, j € N. By the Cauchy inequalities, we may further assume
that there is a sequence (\;); € 1E, A\; — 0, such that [[¢;();)]| — oco.

Put ¢; := @jo(—hy,;). Then ¢; € O(E, D) with ¢;(A;) = z; and [|¢;(0)|| — oco. Put
R := 2|zo|| + 1. Then there is an R’ > R for which Lemma 2.9.3 can be used. Since
l&,;(0)|| > R’ for large j, we deduce that ||@;(A;)|| > R for these j, which contradicts the
fact that z; — 2.

STEP 2. Here we prove that D is k-complete. Assume the contrary. Then there are a
point zy € D and a sequence (z;); C D such that A :=sup{kp(20,2;):j € N} < oo and
either z; — 2z* € 0D or z; — oo. Again we discuss only the second case. The first is
similar.

Let f € C(D\B(0,7),E)NnO(D \ B(0,7), E) be the local holomorphic peak function
at infinity. Choose C!-curves a; : [0,1] — D with

1
j(0) =z0, aj(1) =z, |sp(a;();af(®)dt < A+1.
0
According to Corollary 2.9.4, we find an R > max{||zo||, v} such that for any connected
component U of DN (C™\ B(0, R)) the following is true: 2scp(z; X) > s (2; X), z € U,
X € C™. Moreover, observe that |f| < C < 1 on DN JB(0, R).

We may assume that all ||z;|| > R. Fix an j, put t; := sup{t € [0,1] : ||a;(¢)|| < R},
and let U; denote that connected component of (C™\ B(0, R)) N D containing «;((t;,1]).
Then

1 1 1
2\ sp (0 (1); (1)) dt > | se, (0 (0); 0 (0)) dt > | e (f 0 0 (1); (f 0 ) (1)) dt
0 t t;
> min{ke(f(z,), ) : ]\ < €} —— ox,

a contradiction. m
REMARK 2.9.6. The domain (see [Par 2003])
D :={(z,w) € C3 x C: |z12923] < 1,0 < |w]| < e~ max{lzil=1,2:3}}

is k-complete, but there is no local psh peak function at infinity; in particular, there is
no local holomorphic peak function at infinity.

Indeed, D is a pseudoconvex Reinhardt domain which is Brody-hyperbolic. Hence,
it is k-complete (see Theorem 2.2.1). Assume now that there exists a local psh peak
function at co. Hence there is an R > 1 and a ¢ € C(D \ B(0, R)) N PSH(D \ B(0, R)),
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¢ <0, such that limp, . ¢(2,w) =0. Fix an a € C with [a| = 2R and define
D, :={2€ C?:2R|z125| < 1},  wuu(2) := max{|z1|,|22|,|a|}, 2z €& D,.

Moreover, put
2:={(z,)) €Dy x C: |A| < e U},

Finally, define ¢, : 2 — [—00,00) as pu(z,A) := ©(z,a,\). Then ¢, € PSH() and
©0a(+,0) € PSH(D,). By the Liouville theorem, there is a 1 € SH((1/2R)E) such that
va(z,0) = ¥(2122), 2 € D,. So, applying the Oka theorem, we get

1 1
=1 3 _— =1 S _ = < 0.
¥(0) = lim supz/)<2Rt) lim sup @, <t, YiTER 0) <o

R3t—o0 R3t—o0

In the case when C' = 0, the maximum principle would imply that ¢» = 0 on (1/2R)FE
and thus ¢(-,a,0) = 0 on D,, which contradicts the assumption ¢ < 0. Hence, C' < 0.
Now choose a tg > 2|a| such that for all ¢ > ¢g,

1 1 3
li — = — Zc.
o#&nlo‘p(t’ 2Rt2’a’)\) Pa (t’ 2Rt2’0> <1 ¢

So, for ¢t > tg, there is an £; > t such that
© a e °t.
"2Rt27 27’

Now observe that max{t,1/2Rt? |a|} = t, t > tg, and &, — oo if t — oco. Therefore, we
may choose a sequence ((t;,1/2Rt?,a,);)); C DN (R? x {a} x C) such that ty < t; — oo
and |\;| < e"%/. Hence, we have

J—00

1 C
0= hm @(t]’,m,a,)\j> < Z,
J

a contradiction.

The above example shows that the conditions in Theorem 2.9.1 are too strong. Ob-
serve that any finite boundary point z, is obviously a local psh antipeak point (take
simply log (||z — 20||/R) for a large R).

Does Theorem 2.9.1 remain true if one only assumes that any boundary point
admits a local psh peak and antipeak function

In this context observe that there exists a smoothly bounded pseudoconvex domain
D c C? such that each boundary point of D is a global psh peak point, but some
boundary point is not a local holomorphic peak point (see [Yu 1997]).

EXAMPLE 2.9.7. Theorem 2.9.1 has been used in [Gau 1999] to prove the following re-
sults.

(a) Let P be a real-valued subharmonic polynomial on C without harmonic terms.
Then

D :={(z,w) e CxC:Rew+ P(z) < 0}

is k-complete.
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(b) Let P be a real-valued convex polynomial on C", P(0) = grad P(0) = 0, without
harmonic terms, such that the set {z € C® : P(z) = 0} does not contain a
non-trivial analytic set. Then

D :={(z,w) e C" x C: Rew + P(z) < 0}

is a convex k-complete domain (4).

(*) See also Theorem 7.1.8 in [J-P 1993] for the following characterization of k-complete
convex domains: A conver domain G is k-complete iff G contains no complex lines iff G is
biholomorphic to a bounded convex domain.



CHAPTER 3

Bergman metric

3.1. The Bergman kernel

In this chapter we will discuss a metric on domains which is invariant under biholomorphic
mappings, namely the Bergman metric. To do so we have to first recall the Bergman
kernel function and the Bergman kernel.

Let G C C" be a domain. We denote by L?(G) the Hilbert space of all square
integrable functions on G which are holomorphic; it is a closed subspace of L?(G). The key

tool in this chapter is the following extension theorem due to T. Ohsawa and K. Takegoshi
[Ohs-Tak 1987].

THEOREM 3.1.1. Let D be a bounded pseudoconver domain in C™ and H an affine sub-
space of C™. Then there is a positive constant C, which depends only on the diameter
of D and on n, such that for any f € L3(D N H) there is an F € L3(D) such that
Flpau = f and |F|z2py < Cllfll2(Dnm)-

Moreover, we recall the following one-dimensional result (see [Lin 1977], [Che 2000])
which will be used subsequently.

THEOREM 3.1.2. Let D C C be a bounded domain, zy € D, and f € L3(D). Then for
any € > 0 there exist a neighborhood U = U (zy) and a function g € L2 (D UU) such that
If _9||L§(D) < ¢. In particular, the subspace of all functions in L% (D), bounded near 2,
is dense in L} (D).

In [Che 2000], complete Kaehler metrics were used to solve a corresponding O-problem
in order to find g. Here we give a proof which is based on Berndtsson’s solution of a 0-
problem (see [Pfl 2000]).

Proof. We may assume that zp = 0 € 9D and that D C E. Fix f € L}(D) and

a sufficiently small ¢ € (0,1/2). Put ¢(z) := —log(log(1/|z])), z # 0. Observe that
€ C>*(C,)NSH(C,) and
2 B 62¢ B

(log |2[*)72[2|7% > 0.

9y
0z
Moreover, let x € C*°(R, [0,1]),

- 0207
1 ift<1—log2
={, /
0 ift>1,
be such that |x/| < 3.

[129]
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Finally, we define o.(z) := x(—¢(z) — log(log(1/¢)) + 1), z € C,.. Observe that
0:(2) = 0if 0 < |z| < e, and o.(2) = 1 if |2| > \/e. Then « := 9(o.f) is a C® 0O-
closed (0,1)-form on D, := D UB(0,¢). Now we wish to apply the following theorem of
Berndtsson.

THEOREM ([Ber 1996]). Let 2 C C™ be a bounded pseudoconver domain. Let .7 €
PSH($2), 1) strongly psh, be such that for any X € C",
azjﬁzk

2
—zX

2)X; X >

on 2. Let 6 € (0,1) and o = Zj:1 a;jdz; be a O-closed (0,1)-form. Then there exists a
solution u € L2, _(£2) of Ou = « such that

4 LA
2 _—p+ov ko= —p+oy
§2|u| e Ny, (2) < 75(1—5)25 Y Witagae Y dAg, (2),

Q24k=1
where (Y7*) denotes the inverse matriz of (9%1/0z;0%y).

Take ¢ := (1/2)1) and § := 1/2. Then there exists a function u., du. = « on D, \ {0},
such that

_ 4 o _
20— t0Y g4 < P8 1A
} e 2(2) < S5y S 024 /0207 2(2)
D:\{0} D:\{0}
=16 | WPIPdA(2).

z€D,e<|z|<e

Then the function f. := u. — o. f belongs to L2(D. \ {0}) and
1 = fellzz oy < (X = 0e) fllzz oy + 16011 fll L2 (DrB(0,vE)) < CllflILz(DrE0.v2)) = 05

where C is a general positive constant. It remains to note that f. € O(D,) (use Laurent
series), which finishes the proof. =

We note that under suitable assumptions this result can be generalized to higher
dimensions (see [Blo 2002]).

Observe that the point evaluation functional L?(G) 3 f — f(w) (w € G) is continu-
ous. Therefore, there is a uniquely defined function K¢ (-,w) € LZ(G) such that

fw) =\ f(2)Ka(zw)dA(z),  f€Li(g)weG.
G

The function Kg is the Bergman kernel function for G. Recall that K can be given
with the help of a complete orthonormal system (¢;);en C L, where N C N; namely

w) = Z 0i(2)p;(w), zweG.
JEN
REMARK 3.1.3. Recall that there are domains Gy C C? for which dim L?(Gy) = k
[Wig 1984]. It is unknown whether dim L3 (G) = o if G € C", n > 1, is a pseudo-
convex domain with L (G) # {0}.
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The function K¢ is holomorphic in z and antiholomorphic in w; moreover, we have
Kg(z,w) = Kg(w, 2), z,w € G. If & : G — D is a biholomorphic mapping between the
domains D and G, then

Kp(®(2),P(w))det @' (z) det &' (w) = Kg(z,w), z,w € G.

Moreover, there is a transformation law even for proper holomorphic mappings due to
S. Bell (see [J-P 1993, Theorem 6.1.8]).

THEOREM 3.1.4. Let F: G — D be a proper holomorphic mapping of order m between
the bounded domains G,D C C". Let u := det F’ and denote by ®1,...,P,, the local
inverses of F' defined on D' := D\ {F(z): z € G, u(z) = 0}. Put Uy, := det®). Then

ZKg(z,¢k(w))Uk(w) =u(2)Kp(F(z),w), ze€G,welDl.
k=1

The function kg (z) := Kg(z,2) (1), 2 € G, is called the Bergman kernel of G. If
L%(G) # {0}, then k¢ is also given as
(=)

k —
cle) = { 172

Observe that kp|g < kg whenever G C D.
For the Bergman kernel there is the following localization result (see [J-P 1993, The-
orem 6.3.5]).

fe Lﬁ(G)\{O}}.

THEOREM 3.1.5. Let D; C C", j = 1,2, be two bounded pseudoconvex domains and let
z0 € O0D1. Assume that there is a neighborhood U = U(zy) of zp such that D; NU =
DyNU. Then there exist positive numbers m, M and a neighborhood V' =V (zq) such that

mkp, (2) < kp,(z) < Mkp,(z), z€VNDs.

In general, it is not easy to find explicit formulas for the Bergman kernel function.
In most of the known examples the formulas are obtained using an explicit complete
orthonormal system (¢;); € L2(G).

EXAMPLE 3.1.6 (see Examples 6.1.5 and 6.1.6 in [J-P 1993]). (a) For the Euclidean ball
B,, we have

I
Kg, (z,w) = 7:_L—n(l — (z,w))_("+1), z,w € B,.

(b) Let E™ be the n-dimensional polydisc. Then
1 n
Kgn =— [ -zmw;)™? € E".
o (2, w) — ]1;[1( Zjw;) =, zw
(c) Put D, :={z € C?: |z1|? + |22|*? < 1}, p > 0. Then
P+ D1 = 21w1)P + (p— 1)20w5
((1 — lel)p — ZQEQ)S

Observe (by a simple calculation) that K p, has no zeros on Ds x Ds.

1
Kp,(z,w) = F(l—zlwl)p_Q . Zw € Dy,

(*) Observe that the symbol kp(-) is a function on D, while the Kobayashi pseudodistance
kp(-, -) is defined on D x D; we hope no confusion arises.
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(d) Recently, using Theorem 3.1.4, the following formula for the Bergman kernel
function of G,, has been found in [Edi-Zwo 2004] (see Remark 1.4.17 for a definition
of G,,):
det[(1 — Aj7i) *li<jksn _ Fo(z,0)

mdet 7! (A)det 7/, (n) T 15 e (1= Nj7ag)?
A€ E"\{C€E": detm,({) =0} =E"\{( € E":(; =( for some j # k},

where 7, : C" — C",

(A1, An) = ( Z A .”)\jk)k:17...,n

1<ji<<jr<n

Kg, (ﬂ—n()‘)v ﬂ-n(:u)) = Kg,, (Zv w) =

(G, =, (E™)). In particular,

Fy(z,w
Koo (maN). malp)) = Koy (20) = 200 3 e g2,
T ij 1( AjH)?
where
Fo(z,w) := 2 — z1wy + 220ws2,
and
F3(z,w
Koy (ma(N) ) = Koy () = 20Dy e,
T ij 1( AjHg)?
where

F3(z,w) := 6 —4z1w; — 220w9 + 2sz2 + 2z0w? — 321 20w3 — 3z3Ww1wy + 1523ws3
— 2129w W9 — 22123Wi w3 + 221z3w§ + 22§w1w3 — dzoz3wows3 + 6z§w§.

It is easily seen that K, has no zeros on G2 X Go: use simply the description of Aut(Gs)
(Theorem 1.4.14) to reduce the discussion to the case uos = 0. What remains as an
open question is whether K¢, with n > 3 has zeros.

EXAMPLE 3.1.7 ([D’Ang 1994]). Generalizing Example 3.1.6(c), let
D:={¢=(zw) €C" x C™: ||z|* + w|* < 1}
with p € (0,00). Then we have the following formula for its Bergman kernel:
I € el ) Inaas

00 = 2 ey =y (=GP

J=0

where the constants c¢; depend on k, n, m, and p. Even more, they can be explicitly
calculated.

Other examples and methods to proceed may be found in [Boa-Fu-Str 1999] (see also
[Boa 2000]).

3.1.1. Deflation. Fix a bounded domain D C C" which is given as
D={zeU:yp() <1},
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where o € C(U, [0, 00)) for a suitable open neighborhood U of D. Put
Gri={(2,0) € D x C : p(2) + [¢[/ P9 < 13,
Ga:={(2,0) € D x C?: p(2) + (1|*? + |G/ < 1},
where p, g are positive real numbers. Then we have the following deflation identity:
I (p+1)I'(g+1)
I'(p+q+1)
In fact, the identity (D) holds because both sides represent the unique reproducing
kernel for the Hilbert space L (D, m(1—¢)P*4) (2). To be more precise, fix an h € L2 (D).

Then h can also be thought to belong to L2(G;), j = 1,2. Therefore, by the reproducing
property of the Bergman kernel function, we see that

h(z) = | h(w)Ka,((2,0), (,()) dA(w,C).
G1

(D) 7Kg, ((2,0), (w,0)) = Ke,((2,0,0), (w,0,0)), zweD.

Observe that the fiber over a point w € D is a disc of radius (1 —¢(w))PT9/2, Therefore,
applying the mean value property for harmonic functions leads to
h(z) = | hw)(1 = ()" 7Kg, (2,0), (,0)) dA(w).
D
Hence, K¢, (+,0), (+,0)) is the reproducing kernel for L2 (D, n(1 — p)P*9).
A similar reasoning leads to the same conclusion for the right side of (D), which finally
proves the deflation identity.

EXAMPLE 3.1.8. Let for instance G := {z € C? : |z| + |22|'/? < 1}. Suppose we knew
the formula for K¢(z,w) (see Example 3.2.1). Now, let D = F and p = ¢ = 2. Applying
the deflation method from above, for G* := {z € C? : |21] + |22| + |23] < 1} we get

2
TKG((2,0), (w,0) = 57 Ko+ ((2,0,0), (@,0,0)),  zwe E.
Observe that if K ((z,0),(w,0)) = 0 for certain points z,w € E, then we also have
Kg+((2,0,0), (w,0,0)) = 0.

Most of the domains for which an explicit formula for their Bergman kernel is known
are Reinhardt domains. Here we describe the Bergman kernel function of a domain that
is not biholomorphically equivalent to a Reinhardt domain. Define

N(z):=+/|z]|?+|ze2], z€C",
where z ® w := (2, W) = 2wy + - -+ + 2 w,. Recall that N/v/2 is the smallest C-norm
dominated by || - || which coincides with the Euclidean norm on R™ (cf. [Hah-Pfl 1988]).
The N-ball M, is called the minimal ball, i.e.

M: =M, :={z€C": N(z) < 1}.

Observe that M,, can be thought of as a model for domains with non-smooth boundary.

(*) Recall that, if 1 is a non-negative measurable function, then LZ(D,%) := {f € O(D) :
§, [/IP¥dAs, < oo}
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For n = 2, a formula for its Bergman kernel function can be found in [J-P 1993]. The
general case is contained in [Oel-Pfl-You 1997] and [Men-You 1999].
THEOREM 3.1.9. The Bergman kernel function of M is given by the formula
1 Eyo! () XY @nX — (0 - 2))(X° ~ V)
n(n+ 1) Az, (M) (X2 -Y)rt! ’

where z,w € M, X = X(z,w) :=1—(z,w), and Y =Y (z,w) := (z e z)(w e w).

Kyp(z,w) =

Proof. The main ideas of the proof are:
1) to establish a formula for the Bergman kernel function of the “domain”
R:={zcC"™\{0}:|z]| <1, zez =0},
2) to use the proper mapping 7 : & — M\ {0}, 7(Z, 2,41) := Z, to get a formula for
the Bergman kernel function of M.

Now, we present the proof in more detail. First, observe that the following n-form on
Cntl:

n+1 ;
_ 1)+t —~
a(z) = E (=1) dzi Ao ANdzy AN ANdzpg
2
=1

induces by restriction an SO(n + 1)-invariant holomorphic n-form « on the complex
manifold § := {z € C"*'\ {0} : z ¢ 2 = 0}. Put
wz) V1, oy Vapo1) = a(z) ANa(2)(z,Vi,..., Vap—1), 2z €K,

where (V1,...,Va,_1) € T.(OR). Observe that w is a volume form on T, (0R). Since a A&
is SO(n + 1)-invariant, so is w. Hence the measure on 98 induced by w is proportional to
the unique O(n + 1,R)-invariant measure p on 08 with p(0R) = 1. Put w(0R) := SR w.

Exploiting the definition of the form «, the following statement may be proved: For
any C°°-function f on $) we have
(3.1.1) | F(z)a(2) Aalz) =w(@8) | 273 | £(10) du(¢) dt,

9 0 o8

provided the integrals make sense.

Moreover, using spherical harmonics, one obtains the following result:

k —\k _ (ze )" n+1
(31.2) 8§ﬁ<z w)'(§o ) dulw) = o, zER EECM
where '
N(k.n) = (2k + nki;)ikl; n—1)!
Next, let f € O(K) be a homogeneous polynomial of degree k. Fix z € K. Then
(3.1.3) F(2) = C(k,n) | (2, w)* f(w)a(w) A alw),

R
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where
22k+n—-1)(n+k—1)!
w(0R)(n — 1)lk!

C(k,n) =

In fact, using (3.1.1) we have
1
Jzw)* Fw)a(w) A afw) = w(@8) |22 dt | (2,0)" f (w) dia(w)
£ 0 a8
Recall that f is a linear combination of a finite number of polynomials of the form
z s (ze&)k € € S™. So, it remains to apply (3.1.2) to get the claim (3.1.3).
In order to be able to continue, we prove the following

LeEmMMA 3.1.10. Let f € O(R). Then there are homogeneous polynomials fi. of degree k,

k € Ny, such that
=Y ful2), z€8
k=0

and the convergence is uniform on compact subsets of R.

Proof. Observe that A := {0} U R is an analytic subset of B = B,, ;1. It is clear that 0
is the only singularity of A; it is a normal singularity for n > 2. Hence A is a normal
complex space and the function f extends holomorphically to a function f € O(A).
Applying Cartan’s Theorem B we find an f € O(B) for which f| A = f. Therefore there
are homogeneous polynomials f; of degree k such that f ( ) = D peo [1(2), 2 € B, and
the convergence is locally uniform. m

Denote by L?(f) the space of all measurable functions on { satisfying

a(z)rnalz) \?
Hf||L2(ﬁ) = <S |f(Z)|2 (_1)i(1i\1)/g()2i)n) < 00,
£

and let L?(R) := L?(&) N O(K). Then we have the following formula for the Bergman
kernel function of the space LZ(R):

LEMMA 3.1.11. The Bergman kernel function is given by

2(—1)"(+1)/2(24)n (n—1) N 2n(z, w))
w(9R) (1= (z,w))"*tt (1= (z,w))" !
Proof. Fix z € . Then, applying Lemma 3.1.10 and (3.1.3), we obtain

Kg(z,w) = ), z,w € R.

(3.1.4) F2) =" fe(2) = > Clk,n) V{2, w0)* fr(w)a(w) A a(w)
k=0 k=0 R

a(w) A o(w)
(DR

= SKﬁ(sz)f(w)

£
Exploiting the last formula leads to the statement in Lemma 3.1.11. m

To summarize, we have finished the first step of the proof of Theorem 3.1.9. Now we
continue with the second one.
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Let m: R — M\ {0}, 7(Z, 2n+1) == %, 2 = (2, 2n+1) € R Then 7 is a proper map of
degree 2. Its branching locus is called W; let V := m(W). Denote the local inverses of 7
by ¢ and . They are given for z € M\ V by

p(z) = (z,ivzez2), P(2)=(z,—ivVzez).

Then a calculation leads to the following description of the pull-back of @ under ¢ and v
on M\ V:

6.15) w(a):i\/m(—l) dzi A - Ndzy,
o " . on+1 n

Let Pg denote the Bergman projection on £ and Py the Bergman projection on M.
Then we have the following relation.

LEMMA 3.1.12. Let f € L?(M). Then
PR(X'foﬂ')(z):Zn-‘rlPM(f)(ﬂ-(Z))v z € R,

where x(2) := zp41, 2 € R.

Now applying Lemma 3.1.12, we find a way to express the Bergman kernel function
of M in terms of the Bergman kernel function for K.

LEMMA 3.1.13. Let ¢ and ¢ be the local inverses as above. Then
Kalz,¢(w) | Ka(z v(w))
Pnt1(w) Vi1 (w)
Proof. Fix aw € M\V and choose an r > 0 such that w+rE™ € M\ V. In view of Remark

6.1.4 in [J-P 1993], we may find a C°°-function u : C"* — [0, 00), suppu C w + rE™, such
that

zn+1KM(7r(z)7w):(n+1)2( > z€R weM\V.

Fw) =\ f()u(z)dAsn(2),  f e OM).

Therefore,
K+, w) = Pu(u).
From Lemma 3.1.12 it follows that
Znt1Ku(m(2),w) = 2pp1Pu(u)(n(2)) = Pa(x -uwom)(z)

a(¢) A a(Q)
(_1)n(n+1)/2(2i)n

= S §n+1u o ﬁ(C)Kﬁ(zv C)

]
) o), Kalevt)Y
=+l M\V ( Ont1(n) Yny1(n) > 2n )

o (Eae) | EsGuw)) .
(n+ 1y < @nﬂ(??) Uny1(n) )’ ©

Hence the lemma is proved. =
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Now we are in a position to finish the proof of Theorem 3.1.9. According to Lemma
3.1.11, we have Kg(z,w) = Ch(z ¢ w), where

_2(20)(—1)nintD)/2 _ on nt1
¢= w(aﬁ) ’ h(t) T (1 _ t)nJrl - (1 — t)"” teC.
Hence,
(3.1.6) Ka(p(2), p(w)) = Ch(z), Ka(p(2),v(w)) = Ch(y),
where

v:=(zw)+t, y:=(zw)—t, t:=pn1(2)pns1(w).
In view of Lemma 3.1.13, we get

Ku(z,w) = C(n + 1)2<h($)‘h(y)>.

t
Using the abbreviation r := 1 — (z, w), we can rewrite the expression in brackets as

h@)—hly) _, (r+H" = (= (r+0)" — (= 1)"

@="" e T T ey

[n/2] [(n—1)/2]
271 n+ 1 _2k 2]@ n -+ 1 n —92k—1.,2k
=—2 noehE —2 " ",
©= e kzzo (% + 1)7" Z-a)n Z ok+1)"

n 777,72]4 n+1
2%k+1) 2k+1\2k+1)’

we proceed with our calculations to get
[n/2]
Q = T2 t2 ntl Z <2k,+ > n— 1*2kt2k(2nr o (TL . 2]{3)(T’2 . tQ))’

which immediately leads to the formula in Theorem 3.1.9. =

EXAMPLE 3.1.14 (see Example 6.1.9 in [J-P 1993]). By Theorem 3.1.9, the biholomorphic
mapping
1
— (21 429,21 —i29) € Go :={2 € C?: |z1]| 4+ |2| < 1
7 (21 +iz2,21 —iz2) € Go :={ 21| + |z2| < 1}
leads to the following formula for the Bergman kernel function of the domain Gs:
2 3(1- (2, w))2(1 + (2, w)) + 421 2001 W2 (5 — 3(z, w))
2 ((1 — <Z,U}>)2 — 42122@1@2)3

My 3 (#1,22) —

KGQ(Z7U)): ; Zaw€G2~

™

Observe that this formula may also be derived from the one in Example 3.1.6(c) using
the proper holomorphic mapping Do 3 z +— (27, 23) € G5 and Bell’s transformation.
Fix points z,w € G and write, for abbreviation, &; := z;w;. Then \/|&1|+/|&2| < 1,

and so 4|¢1&| < (1 —|&1] — |€2])?. Therefore, the numerator in the formula above admits
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the following estimate:

3(1 — {z,w))2(14 (2, w)) + 421 20w W2 (5 — 3(z, w)) = 3(1 — & — &) (1 — (é1 — &)%) + 8616
>3(1—[&] = &)1 — |& — &[*) — 201 — |&] - &)
> 3(1 — |G| = [€))* (1 + |6 — &) — 2(1 — [&] = [&)® > (1~ [&] — |&])?

Hence, the Bergman kernel function K¢, has no zeros on Gy x Ga.

REMARK 3.1.15. In [You 2002] an explicit formula for the Bergman kernel function is
given even for a more general domain 2, which could be thought of as some interpolation
between the minimal balls and the Euclidean balls. Here, we only describe (2. Fix d € N
and two d-tuples m = (my,...,mq) € N¢ and n = (n4,...,ng) € N% Moreover, let
a=(ai,...,aq) € [1,00)%. Then the domain 2 = 24, is given as

d
0= {Z = (Z(1),...,Z(d) € C(my x 1) x - x Clmg x ng) : 3 | Z(Z < 1},
j=1
where C(p X ¢) denotes the space of all (p x ¢)-matrices with complex entries, and where

p q q 1/2
0= (D2 (D el + Yo%) M= Gindiztiprmt € Co < a).
j=1 k=1 k=1

Observe that for d = 1 = a = m and n; = n the domain (24, ,,  is just the minimal ball
M c C™.

3.2. The Lu Qi-Keng problem

For quite a while it was a question (posed by Lu Qi-Keng [LQK 1966]) whether the
Bergman kernel function of a simply connected domain G C C", n > 2, has no zeros.
Such a domain is called a Lu Qi-Keng domain. A first example of a simply connected
domain of holomorphy which is not a Lu Qi-Keng domain was given by H. P. Boas
[Boa 1986] (see also [Skw 1980]). In fact, it turned out that the domains of holomorphy
which are not Lu Qi-Keng form a nowhere dense set in a suitable topology. For a more
detailed discussion of this topic see [Boa 1996] (also [Boa 2000]).

EXAMPLE 3.2.1. Let D = D, = {z € C? : 2|2 + |22|?/? < 1}, p a positive integer, be
the third example of 3.1.6. Then there is the proper holomorphic mapping
F:Dy— Gpi={2€C?: || +|2¥P <1}, F(z1,2) = (2%, 2).

Using Bell’s transformation law (see Theorem 3.1.4), we obtain

Ke, ((21,0), (w1,0))221 = (Kp((21,0), (vwi,0)) — Kp((21,0), (—v/w1,0)))

whenever z; € E, w, € E\ {0}.
Now, applying Example 3.1.6(c), it follows that
+1 e N —pe
Ke,((21,0), (w?,0))22 = 2p_ (1= 21w1) P2 = (14 z1701) P72).
Then, if z; # 0, the kernel function K¢, ((2f,0)(w?,0)) has a zero iff (1 + z)P*? =
(1- x)p+2 where  := z;w;. Observe that A — (1 + \)/(1 — \) maps E biholomorphically
to the right half-plane. Hence, ((1 + A)/(1 — X))P*2? = 1 has a non-zero solution iff p > 2.

\/_
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We point out that also K¢, ((0, 22), (0,w2)) has zeros.

ExAMPLE 3.2.2. Next, we study domains of the following type:

Qo = {(z,w) €T xC™: > [z + > il < 1},
j=1 k=1
where n € N and m € Nj.
First, let n = 1 and m € Ny. Then, using Bell’s transformation for the proper
holomorphic mapping F : By — 21 ,, F(2) := (2%, 22,...,2), where k := m + 1, we get

KQl,m((Z%7 2250 v ey Zk)? (U}%,’wg, ce 7wk))
k! 1 1
= — _ < 9 3 S ]B 9 07
Tz, ((1 — G w)FT T (L zmn - <z,w>>k+1> B am 2
where Z := (29,...,2) and W := (wa,...,wg). In the case m+2 > 4, a similar reasoning

gives z1,w; € E, such that Ko, , ((21,0,...,0), (w},0,...,0)) = 0. If m+2 < 4, an easy
calculation shows that Ky, , has no zeros on (21 ,, X {21 ,,. Hence, the Bergman kernel
function of (2; ,, has a zero iff m +2 > 4.

Finally, using the above result for n = 1, induction over n, and the deflation method,
we are led to the following result:

The Bergman kernel function of §2,, , has zeros iff 2n+m > 4 (). In particular, the
convex domain {2, 9, n > 3, is not Lu Qi-Keng.

So far it is not known whether there is a convex domain in C? which is not a Lu

Qi-Keng domain.
Let n,k € N, m € Ny, and a € (0,1]. Put

1/2k
Noi(z) = ( 3 o2 () a%a%(z)) , zeC"xC™,
€1, ent1€{+1,—1}
where ac, o, (2) = 201 €|z +eni1 2051 [2ng[* and a(z) = Z?ilm |z;|?. More-
over, put
Qagesnm = {2 € C"™ 2 Ny gi(2) < 1}

The following result is due to Nguyén Viét Anh [Vié 2000].

THEOREM 3.2.3. The domain §2, j n.m is strongly convez, algebraic (*), complete Rein-
hardt. Moreover, if 2n — m > 4, then there is a positive integer M = M (a,n,m) such
that for all K > M the domain {24 n.m s not a Lu Qi-Keng domain. In particular, for
m = 0 there are strongly convex algebraic complete Reinhardt domains in C", n > 3,
which are not Lu Qi-Keng.

What are effective values for the number M (a,n,m)
To prove Theorem 3.2.3, we need the following lemma.

() Recall Example 3.1.14.
(*) Here “algebraic” means that the domain is the sublevel set of a real polynomial.
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LEMMA 3.2.4. Suppose f; : R? — R is a convex function, j =1,...,p. Then fork € N
the function
o(z) == Z (e1fi(z) + - +epfp(2)?*,  z€RY,
€1,..,6p€{—1,+1}
is also converz.

Proof. Fix z,w € R9. Then
2k
0(2) + o(w) f1(z) + fi(w) fo(2) + fp(w)
#2 Z 617+---+€pf .
Now recall the following formula:

> (2K)103" - 0"

Z (e1b1 »bp) . (2k1)!- - - (2kp)!

€1,.,6p€{—1,+1} k14 +kp=
Plugging it into the first expression we get
k k
o) olw) , 3 2°(2k)! (fl(z) +f1(w))2 (fp(z) +fp(w))2 g

- l... |
2 bty (2R (2! 2 5

In view of the positivity and convexity of the functions f; the last inequality gives (o(z)+
o(w))/2 > o((z 4+ w)/2), i.e. o is a convex function. m
Proof of Theorem 3.2.3. Put
o(z) = > aZf e (2) Fa®ra?(z) — 1.
€1yees€nt+1€{—1,+1}

Then g is the defining function of the domain 2 = (2, 1 m. Using the above expansion,
we see that o is a polynomial with positive coefficients in |21, ..., |z,]* and 377" | [204
Hence, (2 is an algebraic complete Reinhardt domain with a smooth boundary. Moreover,
by Lemma 3.2.4, (2 is strongly convex.

Observe that {2 C (2, ,,, where (2, ,, is the domain from Example 3.2.2, and that
Ng.i < Ng; when [ < k. Moreover,

n m
klin;o Nop(z) = Z |z + Z lZntk®s 2 € pome
j=1 k=1

It remains to apply Ramadanov’s theorem (see [J-P 1993, Theorem 6.1.15]), Example
3.2.2, and the Hurwitz theorem. m

ExAMPLE 3.2.5. We also mention that the minimal ball M C C", n > 4, is not Lu Qi-
Keng [Pfl-You 1998]. This is proved by exploiting the explicit formula given in Theorem
3.1.9. In fact, let first n > 5. Put
2(n? — 1)t
(n—1)2—(n+1)22"
Observe that f(0) = 27 and f(1/2) < 0 (here we need the condition n > 5); so f(tp) =0
for a certain tg € (0,1/2). Therefore
1—ito "™ n—1+ito(n+1)
(l—l—itO) n—1—itg(n+1)

2t
f:R—=R, f(t) := —(n+ 1) arctan T + 27 — arctan
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Put 2o := /ito(1,0,...,0),wg := /—ite(0,1,0,...,0) € C". A simple calculation gives
N(z9) = N(wp) = tg < 1/2; thus, zp, wy € M. Then, in view of Theorem 3.1.9,
1 ST (50) (it0)® (n + 2 + (n = 24)(itn)?)
n(n + 1) Az, (M) (1 = (itg)?)nt+t '
Computing the binomial expression leads to
(n— 1+ (n+ 1)ite)(1 +itg)" ™ — (n — 1 — (n + 1)itg)(1 — itg)"?
n(n + 1) Ag, (M)2ito(1 — (itg)2)n+!
Let now n = 4. Consider the function
g:R—R, g(s):=—28s*+50s> — 105> — 155 + 5.

Then ¢(0) = 5 and ¢g(2/5) < 0. Therefore, there exists an sg € (0,2/5) with g(sg) = 0.
Put
—3 -
2= % (i + Vi, —i +4,0,0),  wp = y (i — Vi, —i —/4,0,0).
Then N(zp) = N(wo) < 1/2, i.e. zp,wo € M. By a little calculation we deduce from the
formula in Theorem 3.1.9 that

Ky(z0,wo) =

KM(Z(),U}O) = =0.

B 9(s0) -
Kin(20,0) = 5 31— a0 T~

Hence, the Bergman kernel function vanishes at (2o, wo).

It is an open question whether the three-dimensional minimal ball is a Lu Qi-Keng
domain. | ? | For further open problems see also [Boa 2000]. Other examples of domains
that are not Lu Qi-Keng may be found in [Die-Her 1999], [Eng 2000], and [Che 2002].

We close this section by discussing consequences of the following result.

THEOREM 3.2.6 ([Eng 1997], [Eng 2000], [Che 2002]). Let D C C™ be a bounded pseu-
doconvex domain, ¢ > 0 a positive function on D, —logy € PSH(D), such that
1/¢ € L. (D) fails to have a sesqui-holomorphic extension near a point z2° € D (i.e. there
is no function f : V. xV — C, V C D a neighborhood of z°, such that f is holomorphic in
the first coordinates and antiholomorphic in the latter, f(z,z) = 1/p(z) for all z € V).
Let U = U(2°) C D be a neighborhood. Then there is an my € N such that the Bergman

kernel function Ko, ((-,0),(-,0)) of
Qm = {(z,w) € D x C™ : |w||® < ¢(2)}
has a zero in U x U, m > my.
Proof. The proof is based on an extension theorem for L2-functions (see [Ohs 2001]) and

a description of the Bergman kernel with weights due to E. Ligocka (see [Lig 1989]).
Applying the first result we are led (°) to the following formula:

D(z)’
where Kz denotes the reproducing kernel function of the Hilbert space L2 (D, ®*). (Ob-
serve that in the case ¢ =1 this is just the classical Bergman kernel function.)

(3.2.7) Jim Kgn (2, z)/k = z €D,

(°) We omit that proof.
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Then there is an my such that Kgm has zeros on U x U, m > my. Otherwise, we
may assume that U is simply connected and that all the functions K4+ have no zeros
on U x U. Next we choose a sesqui-holomorphic branch of K;{f on U x U. Since the
function 1/® is locally bounded, using (3.2.7) we see that the sequence (Kgx(z,2)/*) is
locally bounded on U. Therefore, applying | Kk (2, w)|? < Kgnr (2, 2) Kgr (w, w), z,w € U,
shows that (Kgr) is locally bounded on U x U. Hence, it converges locally uniformly to
a sesqui-holomorphic function L on U x U with L(z,z) = 1/®(z), z € U, a contradiction.

It remains to recall Ligocka’s formula:
G+ m)!

Kﬂm((zvt)v(wﬂs)) = Z j'ﬂ'm

Jj=0

Komii(z,w)(t,8),  (2,t), (w,8) € 2.

Thus we have |
Ko, ((2,0), (w,0)) = - Kgn(z,w), 2w € D.
T

Therefore, in view of the above claim, it follows that there is an my such that for any
m > my the function K ((-,0),(-,0)) has zeroson U x U. m

We should mention that the original formulation in [Che 2002] is much stronger than
the one given here. Applying Theorem 3.2.6 for certain complex ellipsoids we obtain the
following consequences.

COROLLARY 3.2.7 ([Che 2002]). (a) For any k > 1, not an even integer, there ezists an
m =m(k) € N such that

Q2= ={(z,w) € ExC™: |z]F + ||w|* < 1}
is not Lu Qi-Keng.
(b) For any k € N there exists a natural number m = m(k) such that, if
Q=0 :={(z,w) € Ex C™: |z|*+1/2 1 ||y < 1},
(2%, w%) :=(0,0,...,—1) € 69,

then 12 is convex with a C*-boundary and there are sequences

(o wf))ye (o)) © 2, Jim (5, w) = lim () = (),

such that Ko((2},w}),(z],w})) = 0, j € N. In particular, the set {(z,w) €
2 x 2:Ko(z,w) =0} accumulates at ((2°,w°), (2°,w?)).

Proof. (a) Take D = E and ¢(2) := 1 —|z|*, 2 € E. Then —logy € SH(E) and 1/¢p is
not real-analytic at 0. So it cannot be extended to a sesqui-holomorphic function near 0.
Hence, by Theorem 3.2.6, there is a neighborhood U = U(0) and an m = m(k) € N such
that K, ((-,0),(-,0)) has at least one zero in U x U.

(b) Fix a k. In view of part (a), there is an m = m(k) such that K has a zero at a
point ((2',w’), (", w")) € 2 x 2. Put

D= {Ce ™ [G|HHV2 4 3G + Re G < 0.
j=2

Observe that

20~ (

42/(2k+1) 2C2 2Cm Cm+1 + 1)
(Cm+1 - 1)4/(2k+1) ’ C"H—l -1 Cm-i-l -1 Cm-‘rl -1



3.2. The Lu Qi-Keng problem 143

defines a biholomorphic map from D to (2. Moreover, for any positive ¢,

Fo(¢) = (¥ C*N ¢ Ve, VEm, ECmar)
is a biholomorphic mapping from D to D. Therefore,
Ko(@oF. o0 (2 w), o F.0od (2", w") =0, &>0.
It remains to mention that lim. .o ® o F. o @~ (', w’) = lim. .o ® o F. 0o ® (2", w") =

(2% w’). m

It would be interesting to find in the situation of Corollary 3.2.7 concrete numbers
m = m(k).

So far, we saw that some of the domains E, C C" are not Lu Qi-Keng, some of them
are. Describe all the vectors p = (p1,...,pyn) for which the Bergman kernel function
of E, is zero-free.

REMARK 3.2.8. Recall that in the situation of Corollary 3.2.7(b) we have
lim kq(z) = lim Kg(z,2) = 00

(apply Theorem 6.1.17 of [J-P 1993]). Therefore, Corollary 3.2.7(b) shows that K, does
not continuously extend as a map {2 x 2 — C. | ?|It is unknown whether this negative

phenomenon also occurs for C*°-smooth convex domains.

In addition to Remark 3.2.8 we recall that the Bergman kernel function Kp, D C C”
a smooth bounded strictly pseudoconvex domain, can be smoothly extended to D x D\
V(0D), where V(9D) := {(z,2) : z € D} (see [Ker 1972]). This result was generalized
by Bell and Boas (see [Bel 1986], [Boa 1987]) to the following statements:

(a) Let D C C™ be a smoothly bounded pseudoconvex domain. Let I'1, 5 C 9D be
two open disjoint subsets of the boundary consisting of points of finite type (in
the sense of D’Angelo). Then Kp extends smoothly to (DU I1) x (DU I5).

(b) Let D be as in (a) and assume that D satisfies condition (R) (°). If I, I are
disjoint open subsets of 9D and I consists of points of finite type, then Kp
extends smoothly to (DU I1) x (DU I3).

There was the question whether a similar extension phenomenon might be possible
for any smoothly bounded pseudoconvex domain. That this is not true was shown by
So-Chin Chen [Chen 1996].

THEOREM 3.2.9. Let D C C" be a smoothly bounded pseudoconvexr domain, n > 2.

Suppose that its boundary contains a non-trivial complex variety V. Then Kp cannot be
continuously extended to D x D\ V(9D).

Proof. Take a regular point 2" € V and denote by n the outward unit normal at 2°. Then
the smoothness assumption gives an €3 > 0 such that

w—enc D, e¢c(0,&),wedDNB(=°e).

5) A bounded domain is said to satisfy condition (R) if the Bergman projection L*(D) —
L2(D) sends C>(D) N L?(D) to C*°(D) N O(D).
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Moreover, we choose a holomorphic disc in V, i.e. a holomorphic embedding ¢ : £ — V,
with ¢(0) = 2" and (E) C VNB(2%, &).
Now assume that Kp € C(D x D\ V(9D)). Then
S [Kp(2%, (V)] < oo
Applying Theorem 6.1.17 of [J-P 1993] and the maximum principle leads to
sup [Kp (2%, (V)| = lim sup |Kp(2® —en,p(}) - en)
[A=1/2 OA1=1/2

> lim Kp(2° —en, 2% —en) = oo,
e—0

a contradiction. m

EXAMPLE 3.2.10 ([Chen 1996]). Fix a smooth real-valued function r : R — R with the
following properties:

(i) r(¢)=0if t <0,

(@) r(t) >1ift > 1,

(il) »”(¢) > 1007/ (¢) for all ¢,

(iv) »"(t) > 0if t > 0,

(v) r'(t) > 100, if »(t) > 1/2.
For s > 1 put

2:= 0, :={2€C?:p(2) <0}, where 0(2):= 0s(2) := |21]* = 1+ 7r(|z2|* — 5?).
Then {2, is a smoothly bounded pseudoconvex domain in C?, it is convex and satisfies
condition (R), and it is strictly pseudoconvex everywhere except on the set

{z€C?:|21|=1,0< |2] < s} CON.

Obviously, this set contains non-trivial analytic varieties. So {2 is an example of a domain
treated in Theorem 3.2.9.

3.3. Bergman exhaustiveness

In the study of the Bergman kernel it is important to know its boundary behavior. We
define

DEFINITION 3.3.1. Let D C C" be a domain and 2° € 9D. We say that D is Bergman
ezhaustive at 2° (for short, b-exhaustive at 2°) if limps._,,0 kp(z) = co. Moreover, if D
is b-exhaustive at any of its boundary points, then D is called b-exhaustive.

Obviously, any b-exhaustive domain is pseudoconvex. There are a lot of general
results giving sufficient conditions for a pseudoconvex domain to be b-exhaustive at a
boundary point. Besides Theorem 6.1.17 in [J-P 1993] the most general is the following
one that relates b-exhaustiveness to the boundary behavior of certain level sets of the
Green function. For an arbitrary domain D C C™ and a point z € D we define

A, :=A,(D):={weD:loggp(zw) < -1}
Then:
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THEOREM 3.3.2. Let D be a bounded pseudoconvexr domain in C™ and zy € 0D. Assume
that
lim Ay, (A.(D)) =0.

z2—20

Then D is b-erhaustive at zg.
Theorem 3.3.2 is a simple consequence of the following result ([Che 1999], [Her 1999)]).

THEOREM 3.3.3. For any n € N there exists a positive number C,, such that for every
bounded pseudoconvex domain D C C",
2
IO ¢, | 1f(@)? ddsu(w), e LE(D), z € D.
kp(2) i
Proof. Let D be a bounded pseudoconvex domain in C", 25 € D, and fix an f € L3(D),
f#0. Put
D, :={z € D :dist(z,0D) > t}, 0<t< 1 sufficiently small.
Moreover, let 11 € C>(C™ R) be a non-negative polyradial symmetric function with
Scn ¥(z) dAgn(2) = 1 and supp ¥y C B, (0,1); put 1 (z) := t=2"1(2/t), 2 € C*, t > 0.
On D; we define
p1(2) = 20Vi(2) + exp(Vi(2) + 2%, o(2) = 2n10g gp (20, ) + gp(20, ),
where V; := loggp(zo,-) * ;. Finally, we choose a x € C*(R,[0,1]) with x(¢) = 1 if
t<-2,x(t)=0ift > —1, and |x/| < 2.
We define the following d-closed (0, 1)-form a; on D;:
ap:=0(xoVi- f) =X (V) fOVi.
Observe that oy is a smooth form whose support is contained in the set {—2 <V, < —1}.
Moreover, ¢; > —4n on supp a;. Therefore, SDt log|2e=%t d Ay, < oco.
For the Levi form of ¢; we have the following estimate:
Loz X) > OV (2)X)? > e 2|V/(2)X]?, zesuppay, X € C".
Let @ denote the inverse matrix of the coefficient matrix of £. Then, if z € supp oy, we
have
> Qial()an (2)aw(z) exp(—pi(2) < Y (Vi()PIf()2e ) < aet 2|1 (z).
Gok=1
Therefore, by Lemma 4.4.1 in [H6r 1979], there exists a solution u; € C*(D;) of the
equation Ou; = oy with the estimate
X lug| e ™%t dAg, < 4e*™H? X |f|? dAg,.

Dy supp ot

Put
uze~?t/2  on Dy,
Uy =
0 on D\ D;.
Then the family (v;); belongs to L?(D) and satisfies the following uniform estimate:
Vo2 dAgy < 42 | |£]2 Ay,
D Az
(observe that suppay C {-2 <V, < -1} C A4,,).

o]
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By the Alaoglu-Bourbaki theorem, we may find a function v € L?(D) satisfying
| [v]? dAa, < 4642 | |£]2 dAs,.

D A,
Put v := ve®/2. Then
(3.3.8) V [ul? dds, < e [vf? dds, < 4™ | |£]2 dAs,.
D A.

0

Using distributional derivatives, we find an f € O(D) such that

f=xologgp(z0,) —u
almost everywhere on D. Moreover, tzike a neighborhood U C D of zy such that
loggp(z0,-) - f < =3 on U. Then f — f = u almost everywhere on U. By (3.3.8) it
follows that

S |f — ﬂQeﬂa dAs, < 0.

U

Observe that e” is not locally integrable near zo; hence f(zo) = f(0).
Summarizing, we have found an f € L2 (D) with f(z0) = f(20) and

172 (py < (1+4e*™+3) { | ]2 dAa,.

Az,

Consequently,

| f (20)]?
kp(z0)

< HJ?”QL;"](D) < (14 4e* 1) S |fI? dAgy,

Az

which finishes the proof. =

Proof of Theorem 3.3.2. By Theorem 3.3.3 we know that there is a constant C,, > 0 such
that
1

k’D(Z)

< Cn S dAZn(w) < OnAZn(AZ(D)) —0
Az

Therefore, kp(z) — 00 as z — 2. =

Moreover, combining Theorem 3.3.2 and a result due to Blocki we have the following
(see also [Ohs 1993]):

THEOREM 3.3.4. For a bounded hyperconvex domain D C C™ (i.e. there is a negative
u € PSH(D) such that the sublevel sets {z € D : u(z) < —e}, € > 0, are relatively
compact in D), Aoy (A,(D)) — 0 as z — 8D. In particular, any hyperconver domain is
b-ezhaustive.

Proof. According to [Bto 1996], there is a function u € C(D) N PSH(D) with

ulgp =0 and (dd°u)™ > Ag,.
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Applying results from [Blo 1993], for a point zy € 0D we get
S (=loggp(z,w))" dAg, (w) < klim S (—max{loggp(z,-), —k})"(ddu)"™
D *D
< 2t ()] —— 0,

zZ—2(
where the last inequality is due to Demailly (see [Dem 1987]).

Finally, in view of Theorem 3.3.3, we get

<, | ddan(w) < Cu {(~loggn (2 w))" dAdsn (w) — 0.
Fo(2) A.(D) D e

Since z is arbitrary, it follows that kp(2) — oo as z — 9D, i.e. D is b-exhaustive. m

EXAMPLE 3.3.5. (1) There is a large class of bounded pseudoconvex domains which are
hyperconvex, namely:

THEOREM 3.3.6 ([Ker-Ros 1981]|, [Dem 1987]). Any bounded pseudoconvex domain
D C C" with Lipschitz boundary is hyperconvez. In particular, if D has C'-boundary,
then it is hyperconvezx.

(2) Hyperconvexity is even a local property:

THEOREM 3.3.7 ([Ker-Ros 1981]). Suppose that D is a bounded domain in C" such that
every zg € 0D has a neighborhood U = U(zg) for which D NU is hyperconvez. Then D
itself is hyperconvez.

(3) Put D := {z € C?: |z1| < |22] < 1}. Then D is b-exhaustive but not hypercon-
vex. (For other examples of this type see also Theorems 3.3.8 and 3.3.9 and Example
3.3.23.) For D even more is true: there is a sequence (zj); C D tending to 0 such that
Aon (A2, (D))k 7 0.

For Reinhardt domains in C? we have (see [Zwo 2001a]) the following general result
for the pole boundary behavior of the Green function:

THEOREM 3.3.8. Let D C C? be a bounded pseudoconver Reinhardt domain such that
DN (C, x {0}) = E. x {0}. Moreover, suppose that for a 2° € D,

{v e R?: (log|2Y],log|28]) + Ryv C log D} = R, (0, —1).
Then

gp(z,w) P, 0, weDNC., and therefore, As,(A.(D)) ey 0

In particular, D is b-exhaustive at the origin but not hyperconvex.

Proof. We may assume that D = {z € E? : |23] < o(|z1])}, where o : [0,1) — [0, 1],
o(r)=01iff r =0 and
Vaso dBer : log ,Q(et) <At+ B, te-—-R,.
Take a z € D close to 0. Then for w € D with |w;| = 2|z1| we have
|21 —wn| _ |z
> Pt I 1
gD(Z)w)—gE(Zl’wl)— |1_21m1| — 2
Now we claim that
1
(3.3.9) log gp(z,w) > log [21] _log]ws|

—_— w € D, |lw| > 2|z1].
2 10g@(2|21|)’ 3| 1|— ‘ 1|
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If |wi| = 2|z1| then (3.3.9) is true since the second factor is larger than or equal to 1.
Moreover, by Remark 2.5.6, cp(z,w) — oo whenever w — w*, w* € 9D N C2. In
particular, gp(z,w) — 1 as w — w*. Therefore, the maximality of the Green function
implies inequality (3.3.9).
It remains to show that the right side of (3.3.9) tends to 0 if z tends to 0. In fact, the
right side can be written with ¢ = log|z1| < 0 and v(t) := log o(e?) as
t — log 2 log || = t — log 2 og |ws| t + log 2 — )
v(t + log 2) t + log2 v(t+1log2) '
According to our assumption, for any A > 0 we have liminf, , ., v(¢t)/t > A. In par-
ticular, since A is arbitrary, lim;, o, v(t)/t = co. Therefore, lim;—,_, f(t) = 0, which
finishes the proof. =

A Reinhardt domain satisfying the conditions of Theorem 3.3.8 is given, for example,
by D :={z € E, x E : || < e~'/I71}. Hence, D is b-exhaustive but not hyperconvex.
For circular domains we have the following result:

THEOREM 3.3.9 ([Jar-Pfl-Zwo 2000]). Any bounded pseudoconvex balanced domain is b-
ezhaustive.

Proof. Let D = D}, = {z € C" : h(z) < 1} be a bounded pseudoconvex balanced domain.
Fix a boundary point zg and let M be an arbitrary positive number. Put H := Cz.
Then, by the theorem of Ohsawa (see Theorem 3.1.1), we have kpnm(z) < Ckp(z),
z € DN H, where C is a suitable positive number. Since D N H is a plane disc, there
isan s € (0,1) such that M < kpng(sz0). Using the continuity of kp leads to an open
neighborhood U = U(zp) C D \ {0} such that kp(z) > M, z € U.

Now fix a z € U and define u, : (1/h(2))E — R, u.(A\) := kp(Az). This function is
subharmonic and radial, so u|(,1/s(.)) is increasing. Therefore, M < u.(1) < u.(\) =
kp(Az), 1 <|A| < 1/h(z). Obviously,

V=Vem:={:2€U, XeC, |N>1}
is an open neighborhood of zy. Since M is arbitrary, we have

liminf kp(z) = oo,
D>z—zg

proving the theorem. m

In the case of a bounded pseudoconvex balanced domain with a continuous Minkowski
function, Theorem 3.3.9 was proved in [Jar-Pfl 1989] (see Theorem 7.6.7 in [J-P 1993]).

Observe that any bounded hyperconvex balanced domain is taut and therefore its
Minkowski function A is continuous. Obviously, there are a lot of bounded balanced
pseudoconvex domains with a non-continuous Minkowski function. Moreover, we mention
that there exists a bounded pseudoconvex balanced domain D which is not fat (i.e. int D #
D); see Example 3.1.12 in [J-P 1993].

Describe all bounded pseudoconvex circular domains D (i.e. V.cp ger : €2 € D)

which are b-exhaustive.

EXAMPLE 3.3.10. Let D C C™ be a bounded domain, and H : D x C™ — [0, 00) such
that log H € PSH(D x C™), H(z,\w) = |A\|H(z,w), (z,w) € D x C™ and X € C. Put
Gp :={(z,w) € DxC™: H(z,w) < 1}.
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Notice that Gp is a Hartogs domain with m-dimensional fibers. Assume that Gp is
bounded and pseudoconvex. Then we have the following result:

THEOREM 3.3.11. Let Gp be bounded pseudoconvez as above and let (zo,wo) € IGp.
Assume that one of the following conditions is satisfied:
(a) z0 € D,
(b) zo € 0D and limDBZ_)ZO kD(Z) = 00,
(c) there is a neighborhood U = U ((z9,wy)) such that
UNGp C {(z,w) € C" x C™ : |w|| < ||z — 20]|°}
for some 6 > 0.

Then imeg 5 (2, w)—(20,w0) kap ((2,w)) = 00. In particular, if D is b-exhaustive, then so
18 GD.

For a proof see [Jar-Pfl-Zwo 2000].

ExampLE 3.3.12. The following example shows that Theorem 3.3.11 is far from being
optimal. Fix sequences (a;) en C (0,1) and (n;)jen C N with lim;_,o, a; = 0and n; > j.
Put

n;
Ey:=E\{a;:j=1,...,k}, Z(2|A—ag) :
Observe that u,(0) < 0. Define E, := E \ ({0} U{a; : j € N}). Then the se-
quence (ug)g is locally bounded from above on E,, and globally bounded from be-
low; moreover, it is an increasing sequence of subharmonic functions. It turns out that
w = limg o0 ux € SH(E) and lim(_; )5, u(x) < 0. Finally, we define the following
bounded pseudoconvex Hartogs domain with one-dimensional fibers:

Gp. ={(z,w) € Es x C: |w| < e )},

Obviously, the point (0,0) € OGg_, does not satisfy any of the conditions in Theorem
3.3.11. Nevertheless, a correct choice of the n;’s may show that G'g_ satisfies the cone
condition of the Theorem in [J-P 1993] at (0,0). Therefore,

kap_((z,w)) = o0 as Gg, > (z,w) — (0,0).
The discussion of the other boundary points with the help of Theorem 3.3.11 and Theorem
6.1.17 of [J-P 1993] even proves that Gg__ is b-exhaustive. Try to give a complete

description of those bounded pseudoconvex Hartogs domains with m-dimensional fibers
that are b-exhaustive.

In the complex plane there is even a full characterization of bounded domains which
are b-exhaustive in terms of potential theory (see [Zwo 2002]). To be able to present this
result we recall a few facts from the classical plane potential theory.

3.3.1. A short course in plane potential theory. (See [Ran 1995].) Let K C C be
compact and P(K) := {u : 1 a probability measure of K}. For u € P(K),

pu(V) = {log |\ = ¢ldu(¢), AecC,
K
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is the logarithmic potential of ;1. Recall that p, € SH(C) and that p,|c\x is a harmonic
function. To any such a p one associates its energy
() ==\ pu(N) du(N) = | [ log |\ = ¢| du(\) du(0).
K KK
A probability Borel measure v € P(K) is called the equilibrium measure of K if I(v) =
sup,ep (k) {(1). It is known that the equilibrium measure exists and is unique if K is
not a polar set; then we write vx. Moreover, the logarithmic capacity of any set M C C
is given by
cap(M) := exp(sup{I(n) : K C M compact, u € P(K)}).

If M = K is compact and not polar then cap(K) = e!(*x). Moreover, if M is any Borel
set then: M is polar iff cap(M) = 0.

For further applications we collect a few well known properties of the logarithmic
capacity:

(1) If My C My then cap(M;) < cap(Ma).

(2) If My € My C M3 C --- are Borel sets then cap(UJ;—, M;) = lim;_. cap(M;).

(3) If K1 D Ky D K3 D --- are compact sets, then cap K, — cap((,—; Kx) as

k — o0
(4) If M = U;VZI M;, M; Borel sets with diam M < d, N € NU {co}, then
1 v 1 .
logd — logcap M — = log d — log cap M;’
(4') If M = {Ji_, M;, M; Borel sets with dist(M;, M) > d > 0, k # j, N € NU{oo},
then

N 1

IS S ) —
log™(d/cap M) ~ log" (d/ cap M)’

j=1
(5) THEOREM OF FROSTMAN. Let K C C be a non-polar compact subset and vk its
equilibrium measure. Then p,,. > logcap K on C and p,, = logcap K on K\ F,
F C 0K a suitable polar F,-set. Moreover, p,,(z) = logcap K for z € 0K,
whenever z is reqular for the Dirichlet problem for the unbounded component of
C\ K.
(6) capB(z,7) = cap(9dB(z,r)) = r and cap K = cap(0K) < diam K for any compact
set K C C.

For a compact set in the complex plane we introduce its Cauchy transform.

DEFINITION 3.3.13. Let K C C be compact. The function fx : C\ K — C defined by

d
S vic(€) if K is not polar,
Ik (Z) =N K z -
0 if K is polar,

is called the Cauchy transform of K. (Recall that vk is the equilibrium measure of K.)
Obviously, fx € O(C\ K) and fx|p € L(D) for any bounded domain D C C\ K.

LEMMA 3.3.14 ([Zwo 2002]). For a ¢ € (0,1/2) there exist positive numbers C1,Cs such
that for any pair of disjoint compact sets K,L C oF and any domain D C pE\ (K U L)
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the following inequalities hold:

(3.3.10) [(frs fr)r2pyl < C2 — Crlogdist(K, L),

(3.3.11) I£5 1172 (py < C2 — C1log(cap K).

Proof. Obviously, both inequalities are true for any constants C'; when K or L is a polar

set. So we may assume that neither set is polar.
Applying the Fubini theorem, we get the inequality

S X dvi (Q) X dvr,(n) d/lg(z)’

[(frs fr)r2(py| =

px 276 3 270
1
< ———— dAy(2) dv dv .
_;S(§ S z—(lz —1] 2(2) dvi(n) dvi (¢)
oFE
Now we discuss the inner integral.
Take (,n € oFE, ( # 1. Then
S d/lg(z) < S dAQ(Z) _ S dAQ(Z)
S=dle=nl = FE=C=ml ~ 3 FlE-1
- _ddAs(2) S dAg(z)
ENAEIEE EERS
0)E (1/1¢=nl)E\(1/20)E

Observe that the first term on the right hand side is finite and independent of 7 and (.
For the second summand we proceed as follows:

1/1¢=n)) 27

S dAs(2) ”CS "')QS dr b
T — 0
aie—mnmapar AT, g Tored]
1/1c—n] 2x

1/20 O

1/CS71| Cr dr
1

14 g n e2i0 dr df
r r2(1—e®/r)| r

<

< _Cl log |< - 77|»
1/20
where (] is independent of ¢, . Consequently,
S dAQ(Z)

=z

52(72 —-(7110g|C —'U|7 C7U € Ql?a C 7é m,

where C, (5 are positive constants.
Coming back to the beginning, we obtain

[(frs fr)rzpyl < C2 = Cy S SlogIC —n|dvk dvy,
KL

which ends the proof. m

The main notion here will be the following potential-theoretic function.
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DEFINITION 3.3.15. Let D C C be a bounded domain. Define ap : D — (—o0, o] by
1/2 1/2

ap(2) = S dr dr

o ®E D) ) S log(ean @)\ D))

REMARK 3.3.16. We denote by A (z) the annulus with center z and radii 1/2%+1,1/2%,
ie.
Ap(2) = {w e C: 128 < |Jw — 2| < 1/2F}.

Then for a bounded domain D C C there is an alternative description of ap:

1 e 22k 22k

52 <8 Z

8 £~ —log cap(Ax(z)\ D) —logcap(Ax(z) \ D)’
To get the lower estimate one only has to use the monoton1c1ty of cap, whereas the upper
estimate is based on property (4) of cap.

Moreover, ap is semicontinuous from below on D and continuous on D; here use

properties (4) and (6) of cap and Fatou’s lemma, respectively the Lebesgue theorem.

z€D.

<OéD

REMARK 3.3.17. For a point zg = z¢ + iyg € C we define the annuli with respect to the
maximum norm, i.e. Zk(zo) = {z=x2+iy € C: 12" <max{|z—x0|, l[y—yo|} < 1/2%},
where k € N. Moreover, let B(a,r) := {z = 2 + iy € C : max{|z — Real, |y — Imal|} < r},
where a € C and r > 0. Then we may define a notion similar to ap, namely

1/2

ap(z) == dr , zeD.

o —r3log cap( (z,7)\ D)
We only note that ap and ap are comparable and that for the new functions inequalities
like the ones in Remark 3.3.16 hold.

It turns out that, in general, the function ap is not continuous on D (see the next
Example 3.3.18).

ExXAMPLE 3.3.18 ([Zwo 2002]). Now fix n € N and put

~ J .k ) 3
M, :=A,0)N - — 4], |k =0,...,2" — 1.
O { 57+ g < il 4 }

Then M,, has I, := (21“’3 -1)2 - (2”3 — 1)? elements. We denote them by 2,1, k =
1,...,1,. We define the following plane domain'

D :=B(0,1/4)\ (U U (Zsos T u{()})

n=2k=1

Here the radii r,, > 0 are chosen such that — log(cap(B(0,7,,)) = n2220(147%) 5 > 2. Ob-
serve that the distance between two different z,, ;’s is equal to d,, := 1/ onon® Therefore,
_p292n+2n?

dy — 21 > dyy — 2capB(0, 1) > dy — 2¢

1 1 2 1
2 dn = 2n222n+2n3 = onon? (1 - n22"+"3) =2 ntign® ~ 0

Hence two different “balls” have a distance at least b,,.
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In the next step we estimate ap(0):

o 922n
ap(0) < C
SRED Py ALY
oo 1 oo 3 [eS)
n 22n 22n22+2n 1
= 01 55919213 = 401 — < 00.
Z; log cap(B (21, 7)) ; n?2202%” ; n?

Therefore, ap(0) < co
To see that ap is not continuous at 0 take an arbitrary point z € A, (0). Then

n"—1 22(n+j)

o —log cap(Anﬂ»(z) \ D)

22(n+3)
=G ), I s
j=1 log = + log 2t tn

211417 cap(A,4j(2) \ D)
To continue with the estimate we note that there exists a C's > 0 such that
#{k=1,.. Ly B(zng ) C Apyj(2)} > C3220° =D j =1, n?—1.
Moreover, applying properties (4) and (4') of cap we obtain

n 2+42n3
~1 < Z i < 22 2n+2nd 242n
—logeap(Ani;(2) \ D) ~ 21 —logcap(B(znp,mm)) "2 -2
and
2(n3—j
11 - 032<1J> T
log™ > = log™ =
2n+121% cap(An 45\ D) 2n+121% cap(B(0,7,,))

Now, observing that 22(1+n+n°) max{cap(ﬁ(o,r7l)),cap(/~1n+j(z) \D)} < 1ifn > ng for
a suitable ng € N, we deduce for n > ng that

3_1 .
_ " 922(n+j)
j=1 2log

21+n+n? cap(gnﬂ-(z) \ D)
=1 52(ntj)92(n’ —j) 3 _
> 0203 Z 2 2 —C n 1

00.
= 9 n292n2+2n3 172 —e

Hence limps,_oap(z) =limps,_.oap(z) = co.
Finally, we formulate the main result.

THEOREM 3.3.19 ([Zwo 2002]). Let D C C be a bounded domain, zy € OD. Then the
following properties are equivalent:

(i) D is b-ezhaustive at z (i.e. imps,_.,, kp(z) = 00);
(ii) lmps,—z, ap(z) = co.

Proof. For the whole proof we may assume that D C %E and 2o =0 € 9D.
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(ii)=-(i). Assume that the statement in (i) is not true. Then there exists a sequence
(zx)keny € D N B(0,1/8) with limg_.oc 2z = 0 and supgeykp(2i) =0 M < oo. Put
KF = A,(2x)\ D, n > 2, k € N. Since z;, € D there is an N; € N such that K} = () for
all k > Nj. Observe that necessarily N, — oo as k — oco. By assumption (see Remark
3.3.16) we know that

Ni

1 22n
gap(zk) < Sk = Z
n=2

—logcap KF k—oo >
Put
KF = KFn{ze4re? i 7 >0, —71/3+(j—1)21/3 <0 < 7/3+(j—1)2n/3}, j=1,2,3.

n,j

By property (4) of cap, we have
3

log —logcap K = Z — log cap K

j=1
Choose j(n, k) such that cap Kk < capK k) and put [N(k ng(n K- Then

Ni

1
gskgni:;

22n

—logcap Kk k—oc

Define
dvy,
| 2O g cap ik 40, _
fag(z) =4 2, 7€ 2 e C\ K,
0 if cap K = 0,

where v, = vz, and 6, such that arg(z, — e''+() € [—7/3,7/3] for all ¢ € KF
Then
dv, ~ dv, n
[ fk (21| zRe( | ﬁ) > Gy | Lkl 5 oo,

Iz —etna 3z — (|
; ;

where C~'3, ('3 are positive constants.
There are two cases to be discussed. First, assume that there are a subsequence of
(2x), denoted again by (z1), and a sequence (ny); C N with ny < Ny, k € N, such that

2277«k
(3.3.12) lim ————— = .
k—oo —log cap Kk,

Put fi, := f, k. Then, by Lemma 3.3.14, we have
ka”iﬁ(p) <Cy—-C4 logcapKk

ng*

Therefore, taking (3.3.12) into account, it follows that limy_,o kp(2zx) = 00, a contradic-
tion.
Now suppose that there is a positive constant C such that
22n
< Cy, keN,n=2,3,...,N.

—log cap K
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Put cg . = cap IN(S, fren == fzr- We are going to choose complex numbers ay , with
akn frn(zK) > 0 such that if

Ny
fr = Z Ak, frns
n=2

then (| fx(2x)|)x is unbounded whereas (|| fx||z2(p))x remains bounded by a positive con-
stant C'. In that situation we have

2
1
M > kp(z) > W 5 | (20)1%,
FIL2 (D)

a contradiction.
First observe the following inequalities (see Lemma 3.3.14):

2Re(fim, fron) 2oy < WwanllZ2 oy + I fknll72(py < 2C2 = Crlog(crmenn),

when |n —m| <1, and
1 1 1 1
]'Og 2m+1 - 2m+2 10g 2n+1 - 2n+2

‘2R‘e<fk,mv fk,n>L121(D)| S 202 + 201 max

)

S 202 + C5mna
when |n —m| > 2. Put ay, := 0 if cap f(k,n = 0. Then
Ni Nk
1fillF2m) < Co D larnl(~logern) +Co Y lanal larmlnm
n=1 n,m=2, |n—m|>2
N Ny 2
< Cr(D lannP(=Togern) + (Y- nlaral) ).
n=2 n=2
Let |ak,n| :== —(2"/log ¢k n)bk n, where the numbers by ,, > 0 will be fixed later. Then
N Ny, gn
|fk(zk)| = Z ak,nfk,n(zk) > Cs Z m bk,nQn
n=2 n=2 n

So we have to look for numbers by, ,, such that |f;(zx)| — oo as k — oo, but

Ny, n Ny, n 2
(3313) il <Cr (X o )+ (3 by,
Ly(D) = = - logcym = e 2n —logcym

remains bounded.

Put vy, = —2*"/logck ., k € N. Recall that S, = 22[22 Vgn — 00 as k — oo,
Vkn < C4, k €N, and Ny — 0o as k — oo. So we may find sequences (ny ;)7~,, where
ngo = 1, Ng.q. = Nk, and g — 0o as kK — oo, such that

l 1 .
Vk,77«k,j+1+'”+yk>nk,j+1 >1, §<m, ]:O,---7Qkflal>nk7j+l~
Now we take
1 .
bk,nk‘j“l’l:...:bk,nj*—l = 5 ]:0,...,qk—1.

(.7 + 1)(Vk7nj+1 +eee Vk,nk,prl)
We finally see that |fi(zx)] — oo as k — oo and that (||fxl/z2(p))s remains bounded
(compare (3.3.13)). So this part of the proof is complete.
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(i)=(ii). Suppose that there is a sequence (zx)r C D, 2z — 0 as k — oo, such that,
for a suitable positive number M, ap(z;) < M for all k. Then

& 22n
< 8M.
n; —logcap(A,(zx) \ D) —

In particular, if ¢, := cap(An(2x) \ D) then logcy ,, < —22"/8M, k,n € N, n > 2, and
therefore we may find an ng € N such that logcg, +1 < —(n 4+ 1)log2 — 1, n > ng,
keN. Let z € A, (2x), 1 <n < ng. Then

1 1 1 1 1

5 T gmrs 2 Al lal 2 2l 2 [z =zl = sl 2 50 — 5o = g
when |z;,| < 1/2"0* ie. for any k > ko, ko suitably chosen. Choose a domain D’ D D
with D’ N B(0,1/2%"0) = D' N B(0,1/2%") such that A,(z) \ D' =0, 1 < n < ny,
k > ko. Applying the localization result (cf. Theorem 3.1.5) for the Bergman kernel, we
still know that limy_,o kp/(2) = oo.

Now, fix a k > ko. Recall that there is an ny > 2n¢ such that B(z,1/2™) C D'.
We exhaust D' by a sequence of domains D} € D’ with real-analytic boundaries such
that S0, —2%" /log cap(A,(2,) \ D)) < 8M, d(As(z,) \ D)) = 0B(21,1/4), K, =
An(zr) \ D} is either empty or non-polar, and any boundary point of IN(n, if K, £ (), is
a regular point with respect to the unbounded component of its complement. So Frost-
man’s theorem (see Theorem 3.3.4 in [Ran 1995]) together with the continuity principle
for logarithmic potentials (see Theorem 3.1.3 in [Ran 1995]) implies that the logarithmic
potential p,, := Pug, if n > 3 and IN(n # ), is continuous on C. For an n > 3 such that
K, =0 put p, := —oo.

For n > 3 choose xn € C*°(R, [0,1]) such that x,, = 0 if K,, = 0, and

nlt) = { 1 ift <logcap K, +1/2,
0 ift>—(n+1)log2—-1/2,
and |x;,(t)] < —2/M; logcap K, where M is a suitable positive number. For n > 3
define f,, := fz and @, = xn o pn. Note that if K,, # () then p,(2) > —(n + 1)log2,
2 ¢ Ap_1(2)UA(20) UApi1(2), and that p, € C>°(C\ K,). So ¢, is a smooth function
with support in A,,_1(zx) U A, (2k) U Apg1(2k) such that ‘p”|1~<n =1 and
W)= 2Tule) 22 K
For n = 2 we put p2(z) :=log|z| and take a x2 € C*°(R, [0, 1]) such that
0 ift<—log8ort>—log2,
xa(t Z{

1 if ¢t is near —log4,

and |x5] < 2/log4. Again, let po := X2 0 pa and put f> := 1. Then

922 ] < Ll

1 ~
— <——— ze€-FE\K,,n>2.
0z — M5 log cap K, 2

Finally, we define
© :=sup{p, :n > 2}
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Note that the supremum is taken over at most three functions. ¢ is a Lipschitz function
satisfying ¢|sp = 1 and ¢ = 0 in a neighborhood of z.
Now let f € LZ(D’). Then the Cauchy formula and the Green formula lead to
1 A) dA 1 A) dA 1 0
Sf() :_S(fso)() ‘—Sf()wd/b()

|f ()l = o2 A — 2 27 A — 2k T
oD; aD; D

Applying various versions of the Schwarz inequalities and Lemma 3.3.14 finally gives

fel< Yo | |f(A)|(|fn—1({>l
n=2

A, (zk)\f(n - log cap Kn—l

- log cap I~( —logcap K, 1

anA”%'
< My Z ||f||L2 (z)\Kp) ((_ log cap f{'nfl)2

1/2
Ll fasalld ) /
(—logcap Kn)? — (—logcap Kpn1)?

12 / & 22n 1/2 —
<M5(Z||fHL2A(zk\K)) () < Vil
n=2

log cap K,

where the constant on the right side is independent of k. This estimate is true for all
sufficiently large k. Therefore, (kp/(zx))x is bounded, a contradiction. m

REMARK 3.3.20. There are similar considerations to those in Theorem 3.3.19 for the
so-called point evaluation. To be more precise, let zg € 9D, where D C C is a bounded
domain. Recall that V := {f € LZ(D) : f is holomorphic in D U {z}} is dense in
L2(D) (cf. Theorem 3.1.2). Therefore, we may define the evaluation functional on V/,
ie. &, :V — C, &,,(f) = f(20). The point z; is called a bounded evaluation point
for L2(D) if @, extends to a continuous functional on L?(D). There is the following
description of such points [Hed 1972]:

THEOREM. Let D and zy be as above. Then ap(zp) = oo iff z¢ is not a bounded evalua-
tion point for L2(D).

Observe that if zy is not a bounded evaluation point then D is b-exhaustive at zj.
Nevertheless, the converse statement is false (see Example 3.3.18).

REMARK 3.3.21. For a bounded domain D C C there are analogous notions like the
Bergman kernel taking derivatives into account, namely the nth Bergman kernel

K3 (2) o= sup{If™M ()P« f € LD\ O}, Il 2py =1}, n€No, z€ D,

Observe that kp = k‘(g). Moreover, one has the following potential-theoretic function:

1/2 dr

z) = (S) r2n+3(—log cap(B(z,7) \ D))’

(n)(

ap z € D, n € Ny.
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Observe that ap = ag).

[Pfl-Zwo 2003]):
THEOREM. Letn € Ny and d > 1. Then there is a C > 0 such that

There is the following relation between these notions (see

e for any domain D C C with diam D < d,
CalV(z) <kM(2), zeD;
e for any domain D C C with 1/d < diam D < d,
£ (2) < Cmax{1, o\ (2)(log o\ (2))?},  z€ D.
. Let D Cc C be a domain and zg € 9D. Is it true that limps,_,., k:gl)(z) = 00

implies that limps,—,,, aD =00 .

With the help of the above theorem there is a complete description of those Zalcman
domains which are b-exhaustive at each boundary point.
COROLLARY 3.3.22 ([Juc 2004]). Let

oo

D= B\ (U Bl ) U {0})

k=1
be a Zalcman domain (7), where x3, > w41 > 0, limp oo 2 = 0, 75 > 0 with B(xy,ry)
C E, B(zg,ri) NB(xj,7r;) =0, k,j > 1, k # j. Assume that
Jo.e(0,1) Jose@1,1) 0 O1 < appr/aKp <O, keN.
Then D is b-ezhaustive iff D is b-ezhaustive at 0 iff > po, (—1/2% logry) = oo iff ap(0)
= 00.
Observe that special cases were treated also in [Ohs 1993] and [Che 1999]. Moreover,

we mention that the domains D in Corollary 3.3.22 are fat domains, but not all of them
are b-exhaustive (for another example see [Jar-Pfl-Zwo 2000]).

Proof. First, observe that for every boundary point 2y except the origin we have

li k =
pim, kp(2) = oo

(use Theorem 6.1.17 of [J-P 1993)).
Obviously, B(zg11 — 7rs1/2,7%+1) C B(0,0) \ D, 6 € (zx+1,7x)- Then

T

dr — dr
O)ZZ S —r3log cap(B(0,7) \ D) - Z S —r?log (rr+1/2)

k=11 k=ko x4
-1 - —1
> Z = Tht1) oo (1rei/2) >C Z 7 Tloer
k—ko xy,10g (re+1/2) h—ho k1108 k41

where C' is a constant. Observe that for the last inequality the assumption on the
centers x; was used.

Now, the divergence of the series in the corollary implies that ap(0) = co. In view of
the lower semicontinuity of the function ap it follows that limps, .o ap(z) = co.

(") Observe that we use here a slightly more general notion than the one of a Zalcman type
domain in Section 2.7.
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On the other hand we have

o dr
ar(®)= (le +;x§+l)—r3logcap< B((0,)\ D)

x T —1 J 1
<o Iy o sara) puS
k=1 k+1 j= 0g

1gr]k i

1 J @g(J—k) 0 1
<Ci+C ——
Z 2 =t 3;95?10@“]-’

Ty k=1 J

<Ci+ 0 Z 10_
j=1

where C'y > 0 and C3, C5 > 0 are suitable numbers. Observe that the last three inequal-
ities follow from the assumptions on the centers x.

If the series in the corollary does converge, then ap(0) < co. Moreover, directly from
the definition we see that ap restricted to the interval (—1/4,0] is increasing. Hence
limsupgs ..o ap(z) < ap(0) < co. So, the corollary is proved. =

ExampLE 3.3.23. We discuss the particular case of a Zalcman domain, namely x; :=
(1/2)% and 7, := (1/2)*N(*), where N, € N, k > 2. Then we have
22k

D is b-exhaustive iff ’;2 W =

On the other hand, following Ohsawa [Ohs 1993] we have

o0
D is hyperconvex iff Z 1/N(k) = 0.
k=2
So we see that there are plenty of Zalcman domains which are not hyperconvex but,
nevertheless, they are b-exhaustive.

3.4. L?-domains of holomorphy

The boundary behavior of the Bergman kernel may be used to give a complete description
of L?-domains of holomorphy (®). The precise result is the following.

THEOREM 3.4.1 ([Pfl-Zwo 2002]). For a bounded domain D C C" the following condi-
tions are equivalent:

(i) D is an L?-domain of holomorphy;
(ii) limsupps, .., kp(z) = oo for every boundary point zy € OD.

REMARK 3.4.2. There is also the following more geometric condition which is equivalent
o (i) of Theorem 3.4.1:

(iii) for any boundary point zy € D and for any open neighborhood U = U(zy) the
set U \ D is not pluripolar (°).

(%) Recall that a domain D C C" is an L?-domain of holomorphy if for any pair of open
sets Uy, Uz C C" with ) £ Uy C DN Uy # Us, Uz connected, there is an f € Lﬁ(G) such that
flu, # Flu, for any F € O(Us).

(°) Recall that a set P C C" is called pluripolar if there is a u € PSH(C"), u # —oo, such
that P C u™!(—00).
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Proof of Theorem 8.4.1. The case n = 1 may be found in [Con 1995]. So we will always
assume that n > 2.

(i))=(i). Suppose that G is not an L?-domain of holomorphy. Then there are con-
centric polydiscs P &€ P satisfying P C D, 3P N oD =# (), and P ¢ D such that for any
function g € L2(D) there exists a § € H>®(P) with §|p = g|p.

Let a be the center of P and let L be an arbitrary complex line through a. Then
Lﬁﬁ\D:: K is a polar set (in L).

Indeed, suppose that K is not polar. Fix a compact non-polar subset K’ C K. Then,
according to Theorem 9.5 in [Con 1995], there is a non-trivial function f € LZ(L\ K’)
which has no holomorphic extension to L. Since K/ N D = (), Theorem 3.1.1 guarantees
the existence of a function F € L2(D) with F|;np = f|np. Hence, we find F' € O(P)
such that F |p = F|p. In particular, F| 1.np €xtends f to the whole of L, a contradiction.

So LN PN D is connected (). Since L is arbitrary, D N P is connected. Therefore,
for any function g € L2 (D) there exists a unique holomorphic extension g € H>(P) with
9l pnp = 9l pnp- Consider the linear space

A:={(9,9) : g € L}(D)} C L{(D) x H>(P)
equipped with the norm ||(g,9)| := llgllz2(p) + 9]l (55)- Then A is a Banach space.
Observe that A 5 (g,9) — g € L3(D) is a one-to-one, surjective, continuous, linear
mapping. Hence, in view of the Banach open mapping theorem, its inverse map is also
continuous, i.e. there is a C' > 0 such that

19: DIl < Cligllzzpy, 9 € LE(D).
In particular, \|§\\Hm(ﬁ) < Cllgllzz(py- So we are led to the following estimate:

~ 2 ~
sup{kp(z) : z € DN P} sup{% tze€DNP,0#ge Lﬁ(D)} < C2
HgH Li(D)
In particular, limsup,_,,, kp(z) < C? for a point w € P N ID # ) (recall that such a
point exists), a contradiction.
Before we are able to start the proof of (i)=-(ii) we need some auxiliary results.

LEMMA 3.4.3. Let G C C be a bounded domain and let a € O0G. Assume that
limsupgs,_, ka(z) < co. Then there is a neighborhood U = U(a) such that U \ G
is polar.

Proof. Suppose that Lemma 3.4.3 is not true. First we claim that for any r > 0 the
intersection By (a,7) NOG is not polar. Otherwise, there is an rg > 0 such that B (a, )N
OG is polar. Observe that B;(a,r9/4) \ G is not polar. Therefore, there exists a by €
By (a,m9/4) \ G. Choose a point b € By(a,79/4) N G. Since B;(a,r9) N G is polar,
there exists an s € (0,79/2) such that OB (by,s) N OG = 0, IB;(by,s) N G # 0, and
0B1(bg, s) C By(a,ro). Hence, 9B;(bo, s) C G. Therefore, for any z € 9B (bo, s), one has
[bo, 2] NG # B. Then, by Theorem 5.1.7 in [Arm-Gar 2001], 8B (o, s) is a polar set, a
contradiction.

(*°) Recall that for a plane domain G and a relatively closed polar subset M C G the open
set G\ M is connected.
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Hence, there is a sequence (a;); C 0G, a; — a, where all the points a; are regular
boundary points of G. Suppose for a moment that we knew that limgs,—p kg(z) = oo
for a regular boundary point b of G. Then limsupgs,_,, kg(2) = oo, which obviously
contradicts the assumption of Lemma 3.4.3.

It remains to prove the following claim: Let b € OG be a regular point. Then
ka(z) — oo when G 3 z — b.

Here we will use the following relation of the Bergman kernel and the Azukawa metric
given in [Ohs 1995|: there is a C' > 0 such that

kg(Z) > CAg(Z; 1), z €@.
Define G, := {z € G : logga(p,z) < —1}, p € G, and r(p) := diamG,. Then, using
[Zwo 2000c], we get

e
AG(pa 1) = eAGp (p7 1) > eAIBl(p,'r‘(p))(pa 1) = @ — as p — b.

So it remains to show that r(p) — 0 when p — b. Suppose this is not true. Then we find
an ¢ > 0 and sequences G > p; — band G > z; — 2* € G such that Ipj — 2| > € and
log gc(pj, zj) < —1, 7 € N. Choose a small disc V around z* with b ¢ V. Then we have
9c(pj, 25) > 9&(pj, 25), where G := GUYV. Now, observe that 9&j,-) = 9&(-,p;) and
that log g=(pj,-) — 0 pointwise. Since log g5 (p;,-) are harmonic functions, the Vitali
theorem implies that log gx(p;,-) tends uniformly to 0 on some small neighborhood of
z*, contradicting the fact that log go(p;,7;) < —1 for all j. m

LEMMA 3.4.4. Let D C C*, n > 2, be a domain and let 0 < r < t. For any 2’ € C"!
define
D, :={z, €EtE: (¢ 2,) € D} = tE\ K(%).

Assume that K(0') is polar and that there is a neighborhood V' of 0’ such that for almost
all 2/ € V the set K(2') is also polar. Then there is a neighborhood V' C V of 0’ such
that for any f € L2 (D) there ezists an f € O(V' x rE) with f = f on DN (V' x rE).

Proof. Since K(0) is a polar set, there is an s with » < s < ¢ such that K(0") N9B1(0, s)
= (). Therefore, we find a neighborhood V' = V/(0") C V such that K(z')NdB1(0,s) = 0,
z' € V'. Then we may define

=g | AN

27
OB (0,s)
Obviously, f € OV’ x By (0, 5)).

On the other hand, using the fact that f € LZ(D), the Fubini theorem and the
assumptions made in Lemma 3.4.4 we deduce that for almost all z/ € V' the function
f(z',-) € L3(B1(0,¢)\ K(2')) and K (') is polar. Hence, f(z/,-) extends to a holomorphic
function on By (0,t) for almost all 2’ € V' (1!). Applying the Cauchy integral formula,
we obtain f(2/, z,) = f(z’, zn), (7', 2n) € V! x B1(0, ), for almost all 2z’ € V’. Since this
set is dense in (V' x B1(0, s)) N D, we have reached the claim of Lemma 3.4.4. m

d\, (Z,z,) € V! x By(0,s).

Now we are able to complete the proof of Theorem 3.4.1.

(*') Recall that a relatively closed polar subset of a plane domain is a removable set of
singularities for square-integrable holomorphic functions.
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(i)=(ii). Fix a boundary point w € dD. First we discuss the case when w ¢ int(D).
Then there is a sequence (z;); C C" such that z; — w and 2; ¢ D, j € N. By r;
we denote the largest radius such that B; := B,(z;,7;) does not intersect D. Select
w; € 0B; NdD. Then w; — w. Observe that the domain D satisfies the general outer
cone condition at w; (see Theorem 6.1.17 in [J-P 1993]). Therefore, limps. .., kp(2)
= oo. Hence, (ii) follows.

From now on we assume that w € int(D). Suppose that (ii) is not true for w. Then
there are a polydisc P € D with center at w and a constant C' > 0 such that

kp(z) <C, zeDNP.
Now, let L be a complex line through P. Then (L N P)\ D is a polar set (in L) or it is
empty. Indeed, otherwise we apply Lemma 3.4.3. Therefore,
sup{kpnr(z) : z€ LN PN D} = cc.
Then, by Theorem 3.1.1, sup{kp(z) : z € LN DN P} = oo, a contradiction.

Observe that there is a complex line L* passing through w and PN D. We may assume
that w = 0 and, after a linear change of coordinates, that P = E™ and L* = {(0,...,0)}
x C. So the assumptions of Lemma 3.4.4 are satisfied with respect to some neighborhood
V C E"! of 0’ € C"~L. Therefore, there is a neighborhood V' = V'(0) C V such that
for any f € L?(D) thereis an f € O(V' xB;(0,1/2)) with f = f on DN (V' xB1(0,1/2)),
contradicting the assumption in (i). m
REMARK 3.4.5. In [Irg 2003], the following generalization of Theorem 3.4.1 may be found:

THEOREM. Let (X,7) be a Riemann domain over C" such that 7(X) is bounded. Let
(X,7) be the envelope of holomorphy and (X,7) the L}(X)-envelope of holomorphy of
(X, 7). Then (X, 7) embeds into (X, 7) and the difference of these two sets is a pluripolar
subset of X.

Theorems 3.3.9 and 3.4.1 may be used to get the following result.

COROLLARY 3.4.6 ([Jar-Pfl 1996]). Any bounded balanced domain of holomorphy is an
L2-domain of holomorphy.
It is an open problem to characterize those unbounded domains of holomorphy

that are L?-domains of holomorphy. Even more, so far there is no description of such
unbounded domains that carry a non-trivial L?-function.

3.5. Bergman completeness

Let G C C" be a domain such that kg(z) > 0, 2 € G (1?). Then the Bergman kernel kg
is a logarithmically psh function on G. So

n 82 . 1/2
3 X) = log k X; X G, XeC
ﬁG(Z7 ) <]; azjazk Og G(Z) J k) ) PSS ) S )

(*?) Observe that this condition holds if for any z € G there exists an f € LZ(G) such that
f(z) #0.
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gives a hermitian pseudometric on G. It is the Bergman pseudometric. Recall that there
is another description of the Bergman pseudometric. Let G C C™ be as above. We define

Mo (= X) = sup{|'(:)X| : F € IR(@). |fllsze) = L. f(:) =0}, z€G. XeCm

Then

(3.5.14) Ba(z; X) = ]\%

Observe that B¢ is a metric if
(3.5.15) V.ec Vxecn, x20 Jgfer2(q) ¢ 9(2) #0and f(2) =0, f'(2)X # 0.

The Bergman pseudodistance on G is given by
1

bo(z,w) = inf { § Ba(y(0);7/(H)dt : 7 € C1(10,1],G) :7(0) = 2, 7(1) =w}, zweG.
0
Under the condition (3.5.15), the function b¢ is in fact a distance.
One of the main questions here is to decide which domain in C" is bg-complete.

DEFINITION 3.5.1. A domain G C C" satisfying kg(z) > 0 for all z € G is called
Bergman-complete (for short b-complete or b -complete) if be is a distance and if for any
be-Cauchy sequence (z;); C G there is a point ¢ € G such that lim;_, z; = a.

Obviously, for any bounded domain D C C™, Bp is a metric and bp is a distance
on D. For a not necessarily bounded domain D, we have the following sufficient criterion
(see [Che-Zha 2002]).

THEOREM 3.5.2. Let D C C" be a pseudoconver domain (not necessarily bounded). As-
sume that for any point w € D there is an v > 0 such that
Ay(D;r) :={2€ D :loggp(w,z) < —r} cC D. (13)

Then Bp is a metric on D and bp 1s a distance.

Proof. The functions satisfying condition (3.5.15) are found by solving a d-problem. For
more details, the reader may consult [Che-Zha 2002]. m

From the above theorem we immediately get the following one-dimensional result (see
[Che-Zha 2002]):

COROLLARY 3.5.3. Any hyperbolic Riemann surface has a Bergman metric and distance.
In particular, any plane domain D C C such that C\ D is not a polar set has a Bergman
distance.

REMARK 3.5.4. Moreover, any domain D C C" which carries either a bounded continu-
ous strictly psh function or a negative function u € PSH(D) such that {z€ D : u(z) < —r}
€ D, r > 0, satisfies (3.5.15), i.e. D admits a Bergman distance. For more details see
[Che-Zha 2002].

Moreover, the following result due to N. Nikolov (private communication) is also a
consequence of Theorem 3.5.2.

(**) Observe that this condition is always true for a bounded domain.
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COROLLARY 3.5.5. Let D C C" be an unbounded domain. Assume that there are R > 0
and ¢ € PSH(D \ B(R)) such that:

e 1) <0 on D\B(R),
o lim, . ¢(z) =0,
e limsup, ,,¥(z) <0, a € (D) \ B(R).

Then D has the Bergman metric.

Proof. Fix a zg € D and choose positive numbers R3 > Ry > R; > Rsuch that ||zg]| < Ry
and

2 inf ¥ > sup =:c<0.
D\B(R2) DmB]B(Rl)w

Moreover, put

= inf 1 — =2 — D\ B .
d weniBE ) 08 gB(Rs) (20, w) > —00,  u(w):=2¢(w)(d/c) —d, we D\B(R)

Observe that
u(w) < d <log gp(rs)(20,w), we DNIB(Ry),
0

u(w) > 0 > log gg(ry)(20,w), w € DNIB(Ry).
Hence, the function
10g 9B (Ry) (20, W), w e DNB(R,),
v(w) := { max{log gg(r,) (20, w), u(w)}, w e DN (B(R2)\B(Ry)),
u(w), w € D\ B(Ry),

is psh on D with a logarithmic pole at z;. Therefore, v + d < loggp(z0,-) on D. Since
v=u>0on D\B(Rs), we have logy(z0,) > d on D\ B(R3). And if w € D NB(Ry),
then log gp (20, w) > 10g gp(Rrs) (20, W) + d > 108 gB(zy, Ry + 120 (20, W) + d.

Let B(z0,5) € D NB(Rz). Then there is a d; < 0 such that log gp (2o, w) > d + d,
w € DNB(Ry) \ B(2p,s). Therefore, A, (D;d+ dy) € D and, since zy was arbitrarily
chosen, Theorem 3.5.2 finishes the proof. m

It is an old result due to Bremermann that a bounded b-complete domain in C”
is pseudoconvex. On the other hand, the following sufficient conditions for a bounded
domain to be b-complete are mainly due to Kobayashi.

THEOREM 3.5.6. Let D C C™ be a bounded pseudoconvex domain.
(a) Assume that

limsup‘f(iz)| < ||f||%ﬁ(D), f e Ly(D)\ {0}

z—0D \/kD(Z)
Then D s b-complete.
(a') Let H C L}Q](D) be a dense subspace. Moreover, assume that for any sequence
(2j)j € D, zj — 29 € 0D, and any g € H, there is a subsequence (2, )i, such that
o el
koo \/kp(z),)

Then D 1is b-complete.
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(b) For all z,w € D we have
bp(z,w) > arccos K (2 w)l .
kp(2)y/kp(w)
The statements (a) and (b) are due to Z. Blocki (see [Bto 2002], [Blo 2003]). Observe
that (b) explains the connection between the Bergman distance and the Skwarczynski
distance (for more details see [J-P 1993]).

Proof. (a) Suppose D is not b-complete. Then, by the proof of Lemma 7.6.4 in [J-P 1993],
we may find an f € L3(D), [fllz2(p) = 1, and real numbers 6; such that

e Kp(-, z)
kp(z;) d—ee
Therefore, taking the scalar product with f, we get |f(z;)|/\/kp(z;) — || f]|?, a contra-
diction.
(a’) Suppose again that D is not b-complete and choose f and 6; as above. Moreover,

take a g € H with [lg — fllr2(py < 1/2. Then, because of our assumption, there is a
subsequence (z;, ), such that

|f(ZJk)|
1 EL cyp o +
e Jn () If = 9llzz(p)

f in L3(D).

kp (ij ) k=

)

N~

— If =dllez) <
a contradiction. m

REMARK 3.5.7. Most of the results on b-completeness will be based on Theorem 3.5.6.
In order to verify b-completeness one could also try to find good quantitative estimates
for the Bergman distance or the Bergman metric near the boundary. For example, there
are the following two positive results.

THEOREM ([Die-Ohs 1995]). Let D C C" be a C*-smooth bounded pseudoconvezr domain
and let zog € D. Then there exist positive constants Ci and Cy such that
(3.5.16) bp(z0,2) > Cylog|log(Ca dist(z,0D))| -1, =ze€ D.
THEOREM ([Blo 2002]). Let D be as above and let zy € D. Then there is a positive
constant C' such that

log (1/dist(z,0D))
3.5.17 b >C ,
(3:517) - bpl20,2) 2 C1 0 = T dist(z, 0D))

In fact, both estimates (3.5.16) and (3.5.17) remain true in a more general situation,

z € D, z sufficiently close to OD.

namely, for bounded pseudoconvex domains, not necessarily smooth, which admit a good
bounded psh exhaustion function.

On the other hand, the following example shows that there are certain obstacles, even
for smooth domains, to good boundary behavior of the Bergman metric.

THEOREM ([Die-Her 2000]). Let a € (0,1). Then there ezists a bounded pseudoconvez
domain D C C? given as

D={z€C?:7(z) <0}
with a smooth boundary, 0 € 0D, where the defining function r is of the form r(z) =
Re 21 + b|z1|? + o(22) for suitable o € PSH(C), 0(0) = 0, and b > 0 such that there are
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no positive constant C' and no neighborhood U =U(0) C C? such that

) C|r<z>|<log 7y 2PN

As a consequence of Theorem 3.5.6 we get (see [Blo-Pfl 1998], [Her 1999])

THEOREM 3.5.8. Let D C C™ be a bounded pseudoconvex domain. Assume that

DaliglaD Aan(A:(D)) = 0.

Then D is b-complete. In particular, any hyperconvex bounded domain is b-complete.
Proof. Fix an f € L3(D)\ {0}. Using Theorem 3.3.3 we have

|f(2)
kp(z) =

Then the assumption and Theorem 3.5.6(a’) immediately give the proof.
Finally, it suffices to recall that a hyperconvex domain satisfies the condition on the
level sets of the Green function. m

On S |f(w)|2d/12n(w)a Z € D.
A.(D)

REMARK 3.5.9. In [Che 2004], a similar result is announced even for arbitrary domains,
namely:

Let D C C" be a (not necessarily bounded) domain. Assume that there is a strictly
psh function w : D — [—1,0) such that all sublevel sets {z € D : u(z) < ¢}, ¢ € (—1,0),
are relatively compact subsets of D. Then D is b-complete.

For weaker results see also [Che-Zha 2002].

A direct consequence of Theorem 3.5.6 is the following sufficient criterion for b-
completeness.

COROLLARY 3.5.10. Let D C C™ be a bounded b-exhaustive domain. Assume that there
is a dense subspace H C L2 (D) such that

any f € H is bounded near zy, 2o € OD.
Then D is b-complete.

Applying this result together with Theorem 3.1.2 leads to the following sufficient
criterion for a plane domain to be b-complete (see [Che 2000]).

COROLLARY 3.5.11. Any bounded b-exhaustive domain D C C is b-complete.

REMARK 3.5.12. For a bounded pseudoconvex domain, a localization result for the
Bergman metric is well known ([J-P 1993|; for a sharper version see also [Her 2003])
This implies that a bounded pseudoconvex domain in C" is b-complete iff D is locally
b-complete, i.e. for any a € 0D there is an open neighborhood U = U(a) such that any
connected component V' of D NU is b-complete.

There is an analogous result, due to N. Nikolov [Nik 2003], in the plane case for the
unbounded situation, namely:
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THEOREM 3.5.13. Let D C C be a domain such that C\ D is not a polar set. Assume

that D is locally b-complete (1*). Then D is b-complete.

The proof of Theorem 3.5.13 is based on the following lemma.

LEMMA 3.5.14. Let D C C be a domain such that C\ D is not polar. Moreover, let
a € 0D and U = U(a) be an open neighborhood of a. Then there exists a neighborhood
V =V(a) CU and a constant C > 0 such that
CPBp(z1) < Bp(2;1), =zeVND,
where U denotes the connected component of D NU with z € U.
Proof. Since C\ D is not polar, there is an rg > 0 such that C\ (D UB(a,rg)) is not
polar. Hence, log gpup(a,ry) is harmonic on (D UB(a,70)) \ {a}. Fix an r; € (0,7() and
define Dy := D UB(a,r1). Applying the fact that gp, (a, 2) > gpus(a,r)(a,2), z € D1,
we have
inf{log gp, (a,2) — |z — al* : z € dB(a,r1) N D} =: m > —o0.
Put
{ max{|z — a|?> + m, log gp, (a,2)} if z € DNB(a,r),
u(z) ==
log gp, (a, 2) if z€ D\ B(a,r).
Observe that |z —a|> +m < gp, (a,2), 2 € DNB(a,r;). Therefore, 0 > u € SH(D;) and
uw(z) = |z —al?* + m, z € B(a, ra), for a sufficiently small ry < r;.
Choose numbers 0 < 14 < 73 < ro and a C* cut-off function y such that X = 1 on
B(a,r4) and x = 0 outside B(a,r3). Fix a point 2o € D N B(a,r4) and let U be the
connected component of D N U with z, € U. Take an f € LQ(U) with f(z9) = 0. Put

if U
0 ifze D\U.
Then « is a O-closed Cz’g’l)—form on D satisfying the following inequality:
| la(z)Petlesonto2=u(2) Ay (2) < C [ | £(2)[2 dAa(2) < o0,
D U
where C' > 0 is independent of f and zy. Observe that the subharmonic weight function is

strictly subharmonic near the support of a. Therefore, using Hérmander’s L2-theory (1°),
we get a function h € C>°(D) with 0h = « on D such that

18132, < § [n(2)|2e S8 amGoa)=u) ap, () < ') £ 2
D

L2(0)

(**) Observe that here the point oo is counted as a boundary point of D; so we also assume
that there is a compact set K C C such that any (non-empty) connected component of D \ K
is b-complete.

(*%) Here we use the following form of Hérmander’s result:

THEOREM. Let D C C" be a pseudoconvex domain, ¢ € PSH(D), and o € C(5 1y(D). Assume

that Oa: = 0 and that on an open set U C D with suppa C U, the function ¢ can be written as
o=1v+x, ¥, x € PSH(U), such that Lp(z; X) > C||X||* for = € U, X € C"™. Then there exists
an h € C*(D) with Oh = «, such that SD |h|2€_(’0d/12n < SD |a|26_” dAs,, where C' > 0
depends only on C.
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where C’ is a positive number which is independent of f and z;. Moreover, since the
second integral is finite, it follows that h(zy) = h'(z¢) = 0. Hence, the function

7 .= ) (h(z) = h(z) if € U,
e {—h(Z) if ze D\ U,

is holomorphic on D and satisfies f(z0) = 0, f'(z0) = f(20), and || f]|z2(py < C| Fllzz @
with C' > 0 independent of f and z;. Therefore, in view of (3.5.14), we get CBp (z0;1) >

B (203 1). Since zp was arbitrary, the lemma is proved. m

Proof of Theorem 3.5.13. First of all, let us mention that, by Corollary 3.5.3, D has a
Bergman metric.

Suppose now that D is not b-complete. Then there is a b-Cauchy sequence (z;); C D
with z; — a € 0D or z; — 0o. The second case can be reduced to the first one by using
the biholomorphic transformation z — 1/(z — ¢), where ¢ ¢ D. So we only have to deal
with the first case.

By the assumption, there is an open neighborhood U = U(a) such that any connected
component of U N D is b-complete. Fix a positive r; such that B(a,r;) € U. Applying
Lemma 3.5.14, we may find positive numbers 7o < r; and C such that CGp(z;1) <
min{fg(2; 1), Bz(2;1)}, 2 € D N B(a,ry), where U and U denote the connected compo-
nents of DN U and D N B(a,r;), respectively, with z € UNU. Choose an 73 € (0,72).
Put

d = inf{bz(z,w) : z € OB(a,r3) N D, w € IB(a,r2) N D,
Z,w € 17, U a connected component of D NB(a,r1)}.

In view of the inequality ¢ < b, it follows that d > 0. So we may take an index kg € N
such that bp (2, 2z;) < Cd/2 and z, € B(a,r3), k,1 > k.
Fix such k, [ with z; # 2. Then there is a C'-curve oy : [0,1] — D such that
1
2bp (21, 21) > | B an(t); o (1)) dt.
0
Suppose this curve does not lie in B(a,71). Then there are numbers 0 < s; < s < 1 such
that oy i(s1) € OB(a,rs), ak(s2) € 0B(a,r2), and oy ([s1,52]) C B(a,r1). Hence,
2bp (2, 21) > | Bp(ara(); oy (8)) dt > Chg (2, 21) > de,
where U is the connected component of D N B(a,r1) containing this part of the curve,
a contradiction.
Hence, we deduce for k,l > ko that Cbgk l(zk,zl) < bp(zk,z1), where Uy denotes
the connected component of U N D which contains the curve oy, Hence, (z;); is even a
bﬁk l—Cauchy sequence, a contradiction. m

REMARK 3.5.15. Let D C C be an unbounded b-complete domain. The following converse
to Theorem 3.5.13 is due to N. Nikolov (private communication): For any open disc
U C C, any connected component of U N D (resp. D \ U) is also b-complete.
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Moreover, we have the following general result for balanced domains:

THEOREM 3.5.16. Let D C C™ be a bounded pseudoconver balanced domain. Then D is
b-complete.

Proof. Recall that any f € O(D) can be written as a series .- ; Q, where Q. are ho-
mogeneous polynomials, and the convergence is L?-convergence. Therefore, the bounded
holomorphic functions on D are dense in L?(D). Then Theorem 3.3.9 and Corollary
3.5.10 finish the proof. m

Characterize the b-complete bounded circular pseudoconvex domains.

REMARK 3.5.17. There are also sufficient conditions for Hartogs domains with m-dimen-
sional fibers to be b-complete (see [Jar-Pfl-Zwo 2000]).

THEOREM. Let D C C™ be a domain and let Gp be a bounded pseudoconver Hartogs
domain with m-dimensional balanced fibers.

(a) Assume that D is b-ezhaustive, that H> (D) is dense in L2 (D), and that there is
an € > 0 such that D x P(0,e) C Gp. Then Gp is b-complete.
(b) Assume that D is c'-complete. Then Gp is b-complete.

For further results on b-complete Hartogs domains see also [Che 2001b]. Is there

a complete characterization of such domains which are b-complete
Moreover, the following result may be found in [Che 2001a].

THEOREM. Let u € PSH(C"™), u # —o0, and h € O(C™), h £ 0, be such that u €
C(C"\ u=t(—00)). Let r > 0 and assume that

Q:={(z,2") €Bp(r) X Bp(r) C C" x C™ : u(2') + /1" < 1}

is a domain. Then (2 is b-complete. If, in addition, there is a point (z{,z{)) € B, (r) x
B, (r) with u(z}) = —o0, h(z{j) = 0, then {2 is not hyperconvez.

Observe that the boundary behavior of the level sets of the Green function im-
plies both b-exhaustiveness and b-completeness. We already saw that there exist b-
exhaustive domains which are not b-complete. It was a long-standing question whether
any b-complete domain was automatically b-exhaustive. The first counterexample was
given by W. Zwonek [Zwo 2001a] (see also [Zwo 2002]). The following Theorem 3.5.18
(see [Juc 2004]) gives even a large variety of domains that are b-complete but not b-
exhaustive.

THEOREM 3.5.18. Let D C C be a Zalcman domain as in Corollary 3.3.22. Then

o0
1
D is b-complete 1 — =
P i ;xk«/flogrk
Proof. The proof “=-" is similar to the one of Theorem 3.3.19, so it is omitted here. Proof
of “<": Suppose that D is not b-complete. Then D is not b-exhaustive. Therefore, in

view of Corollary 3.3.22, we have
[ee]

1 1
3.5.18 = —060, lim——— =0
- 2o T M
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Moreover, there is a bp-Cauchy sequence (zx)r C D with limg_.o 2z = 0. We may
even assume that bp(zx, 2zx+1) < 1/2%. So there exist Cl-curves 7y : [0,1] — D such
that Lg, (7x) < 1/2*. Gluing all these curves together we obtain a piecewise-C'-curve
v :[0,1) — D of finite Sp-length.

We claim that the Bergman kernel remains bounded along ~. In fact, if not then there
is a sequence (wg)r C ([0, 1)) such that

klim kp(wy) = oo, klim wy, = 0.
Obviously, (wy )k is again a bp-Cauchy sequence. As in the proof of Theorem 3.5.6, there

exist an f € L} (D) and a subsequence (wy, ); such that

2
TRLACT
Jj—00 k‘D (’LUkj)

Applying Theorem 3.1.2, we find a ¢ € L?(D), locally bounded near 0, such that

1f = 9llzz(p) < 1/2. Therefore,
o)l o)l W)l 1
i—oe \/kp(wk;) — \/kp(wk,) i) = kp(wy,) 2 jooo 2
a contradiction. Hence, there is a positive C' such that kp(y(¢)) < C, t € [0,1).
To be able to continue we need the following lemma.

LEMMA 3.5.19. Let D be a domain as above satisfying (3.5.18) and let v : [0,1) — D be
a piecewise-C! -curve with lim;_1 y(t) = 0. Then

lim

T—1

Mp (1D /(1) dt = .

O ey 3

Proof. We may assume that |y(0)| > z; and that z1/—logr; < z;\/—logr;, j > jo, for
a suitable jo (use (3.5.18)). Now, fix an N € N, N > jy, and let zy € D be an arbitrary
point with zy12 < |2n] < zn41. We define

o _ TN — ZN .
f T fIB(ml,'rl) 1 — AN ]B(QIN,T'N)’
where fx denotes the Cauchy transform of K. Or more explicitly, we have
1 IN — 2 1
flz) = _ NN , z€D.

X1 —%Z T1—2ZN TN — 2
Therefore, we see that
IN — T1

f(ZN):O’ f/(ZN):(I'1*ZN)2(ZN*ZN)

What remains is to estimate the L2 (D)-norm of the function f. Applying the relation

between x,, and z,1, we get
|zv — 2] [N — 2]
1fllz2(p) < By llz o) + T2 —on] 15w ll2(p) < C2 T =] V —logrn,
where C'1, C; are positive constants, independent of N and zy.
Therefore, if x40 < |2| < zy11 then

T — T C
VIR0 2 X o [z = 2] x|

3
> ,
21 = ()| |zn —y(8)[*V—logry — 3 v/—logry
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where C5 > 0 is a constant (use again the condition xy 41 < ©gxy, for all k). Finally, we
obtain

Tt —TNya @1£N Q3N
lim \ /M ) dt > Cy= e —_—2
TL&S Z /— long Z /—IOgTN

1
> C _ =
=Jo
where Cy > 0. Hence, the proof of this lemma is complete. m

Now, applying Lemma 3.5.19 leads to the following contradiction:

T

o0 >l § Ao (o (05 () > &V @) d =
0

The boundary behavior of the Bergman metric on a Zalcman domain is partially
described in the following result, whose proof is based on methods of the proof of Theorem
3.5.18.

THEOREM 3.5.20 ([Juc 2004]). Let D be a domain as in Theorem 3.5.18.

) If < 00, then limsup Op(t;1l) < oo
Zxk,/ log 7, (—1,0)3t—0 (t1)

If limsup PBp(t;1) < oo, then limsup ——————
(o) (—1,0)3t—0 (t:1) k—oo ﬂckx/flog rk

It seems to be open how to characterize those Zalcman domains that are (-
ewhaustwe, ie. lim,_sp Bp(z;1) = co. .

The b-completeness means heuristically that boundary points are infinitely far away
from inner points. So one might think that for a b-complete domain the Bergman metric
Bp becomes infinite at the boundary. The following example shows that this is not true.

ExAMPLE 3.5.21. There exists a b-complete bounded domain D in the plane which is not
Bp-exhaustive, i.e. there is a boundary sequence (wy)r C D such that (8p(wg;1))ken is
bounded (cf. [Pfl-Zwo 2003]). To be more precise, put

1 1 2wy ) "
W+W’ Zn,j:eXp<zW), neN,j:O,...,24 —1.

Moreover, let 7, := exp(—C12°"), n € N, where C; > 0 is chosen such that

Ty 1=

e the discs B(2,, ;j,7,) C C,n €N, j =0,...2%" — 1, are pairwise disjoint,
e B(z,;,7) C A(0),n €N, j=0,...,24" — 1.

Then there is a sequence (ny); C N such that

co 247k —1

D::E\(U U @(znk,j,rn))

k=1 j=0

is a domain with the desired properties.
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3.5.1. Reinhardt domains and b-completeness. Within the class of pseudoconvex
Reinhardt domains there is a complete geometric characterization of b-complete domains
(see [Zwo 1999b], [Zwo 2000Db]).

Let D C C" be a pseudoconvex Reinhardt domain. Then (2 := 2p :=logD is a
convex domain in R™. Fix a point a € {2. Put

C(R2,a):={veR":a+RivC 2}

It is easy to see that €(2,a) is a closed convex cone with vertex at 0, i.e. tz € €(£2,a)
for all € €(f2,a) and t € R,.. Moreover, this cone is independent of the point «,
ie. €(£2,a) = €(§2,b), b € 2. So we will write briefly €(§2) := &€(£2,a). Observe that
¢(£2) = {0} iff 2 CC R™

We now define

&(D) = {v e ¢(2p) :expla+ Ryv) c D}, (D) :=¢(2p)\ (D).

Observe that ¢(D) and ¢’(D) are independent of the point a.

With the help of these geometric notions, there is the following complete description
of those bounded Reinhardt domains which are Bergman complete:

THEOREM 3.5.22 ([Zwo 1999b]). Let D C C™ be a bounded pseudoconvexr Reinhardt do-
main. Then the following conditions are equivalent:

(i) D is b-complete;
(ii) ¢(D)NQ"™ = 0.
ExAMPLE 3.5.23. Put
Dy :={2€C?: |21]?/2 < |2] < 2|21%, |21 < 2}
Obviously, D; is a bounded pseudoconvex domain which contains the point (1,1). Then

it turns out that €’(D;) = Ryo(—1, —2), so €'(D;) contains the rational vector (—1, —2).

Using the map

D:C2—C2, O(2):= (2t 27 ), 2= (21,2),
we see that D; is biholomorphic to
Dy :={z€C?:1/2 < |z| <2, |z12| < 2}.

It may be directly seen that f)l, and therefore also D1, is not b-complete.

On the other hand, let

Dy :={z€C?: L]V < |z2| < 221 |2, || < 2}.

Again, D is a bounded pseudoconvex Reinhardt domain; now a simple calculation gives
¢/(Ds) = Rso(—1,—/2), i.e. €/(Dy) does not contain any rational vector. Hence Theo-

rem 3.5.22 tells us D5 is b-complete. Recall that D is not hyperconvex.
The next example can be found in [Her 1999]. Let

D :={2€ C?:|z|? <exp(—1/|z1]?), |z1] < 1}.
Again, D is a bounded pseudoconvex Reinhardt domain. Here we have €(D) = €(D) =

{0} x R_ and ¢'(D) = (). So Theorem 3.5.22 entails that D is b-complete (in [Her 1999),
a direct proof of this fact is given). Again, observe that D is not hyperconvex.

For the proof of Theorem 3.5.22 we need the following lemma.
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LeEmMA 3.5.24. Let C C R"™ be a convex closed cone with C N Q™ = {0}. Assume that C
contains no straight lines. Then for any positive 6 and any vector v € C'\ {0} there is a
B € Z"™ such that

(By,v)y >0, (By,w)y<d, weCl, |w|=1.

Since this lemma is based on geometric number theory, we omit its proof. For more
details, we refer to [Zwo 1999b].

Proof of Theorem 3.5.22. First we are going to verify (i)=-(ii). Suppose that (ii) does not
hold, i.e. there is a non-trivial vector v € ¢'(D) N Q". We may assume that 0 € log D,
v=(v1,...,0,) € Z", and that vy, ..., v, are relatively prime. It suffices to see that the
Bergman length Lg, of the curve (0,1) = (t~%*,...,t~") € D is finite.

In fact, put o(A\) := (A7%,...,;A7%), A € E,. Then ¢ € O(FE,, D). Now let u(}) :=
kp(p(N)), A € E.. To continue we need a part of the following lemma (see [Zwo 2000b]).

LEMMA 3.5.25. Let D C C" be a pseudoconver Reinhardt domain, oo € Z", and p €
(0,00). Then:

e the monomial 2 belongs to L} (D) iff ((p/2)a +1,v) <0 for any v € €(D) \ {0};
o if (a,v) <0 for any v € €(D) \ {0}, then z* € H*(D);
e if 2% € H*®(D), then (a,v) <0 for any v € €(D).

From Lemma 3.5.25 (p = 2) it follows that

u(A) = > aa| A3 = b A,

a€Z™: (a+1,v)<0 J=Jo
where b;, # 0. Therefore,

2 oo u 2 o0 o
5(p0); /() = T2t _ O (10g 3 by a2 ). (19)

INOXN  DNOX
Obviously, the last expression remains bounded along (0,1), which gives the desired
contradiction.
Now we turn to the proof of (ii)=-(i). We start with the following observation. Put
@ := span{z® : 2* € L3(D)}. Then € is a dense subspace of L (D). In view of Theorem
3.5.6, we only have to show that for any point 2 € D and for any sequence (z7); C D
with lim; . 27 = zy we can find a subsequence (z7*), such that

£ (=7)]

kD(ij) k—o0

(3.5.19) 0, fee.

First, we discuss the case when 2 has the following property: if z;-) = 0 then V;ND # 0,
j=1,...,n, where V; := {z € C" : z; = 0}.

Fix an o € Z" such that z* € L{(D). Then o; > 0 for all j with 2§ = 0. So it suffices
to verify that kp — 0o as z — 2°. Without loss of generality, we may assume that 2 = 0,
j=1,...,s, and z? #0,j=s+1,...,n. Obviously, s < n. Then there is an R > 0
such that D C B;(0, R) x s(D), where 7y := ms41,.. » denotes the projection of C™ onto

(*®) Observe here that log |A\|?° is harmonic on E..
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C™* if s > 1 or the identity if s = 0. Then 74(D) is a bounded pseudoconvex Reinhardt
domain with 7,(2°) € 974(D), where all coordinates of 7,(z") are different from zero.
Hence, 75(D) satisfies the general outer cone condition at 75(z). By Theorem 6.1.17 in
[J-P 1993], it follows that lim_.. % (.0) kz (p)(2”) = oo. Using the monotonicity and the
product formula of the Bergman kernel, we finally get

k > k / k~ 1 -
p(2) > kg, (0,r)(2")kz. (D) (2") PR

In the remaining part of the proof we assume that there is at least one j such that
29 =0, but V; N D = (). We may also assume that DNV; #0,j=1,...,k, DNV; =0,
j=k+1,...,n ("), 2),, =0,and 1 € D.

Let v € (Q"N¢(D))\ {0}. Then, by assumption, we know that v € (D). Therefore,
lim; o exp(tv) = w € D. So, if v; < 0 then w; = 0, and if v; = 0 then w; = 1. In
particular, if there is a v € €(D) N Q", v; < 0, then j < k.

Observe that R* x {0}"~* C ¢(D). Now, we claim that v ¢ R¥ x Q"% for any
v € €(D)\ (R* x {0}"%). In fact, suppose that v € R* x Q""*. So v; < 0 for a
some j > k. So we may choose a suitable vector w € R* x {0}"~* C &(D) such that
v:=v+we&D)NQ" and v; < 0. Hence, j < k, a contradiction.

Put 7 : R» — R”, n(z) := (0,...,0,Zk41,...,%n), where x = (21,...,2,). Then
7(€(D)) is a closed convex cone in {0}* x R¥ . In view of the above property, we conclude
that

m(€(D)) N ({0} x Q") = {0}.
Recall that z) , = 0. Now, let 27 € DN C? be a sequence tending to 2% (**). Put
2/ = (log|z|,...,log|2]|) € R™. Obviously, ||z/|] — oo. Moreover, without loss of

generality, we may assume that the sequence (z7/|27||); converges to a vector v € €(D).
Fix an o € Z" such that z* € L2(D). Then, using Lemma 3.5.25, we conclude that

inf{—(a+1,w) : w € &(D), ||w|]| =1} =: 6o > 0.
Two cases have to be discussed.

CASE 1: v; < 0 for some j > k. Applying Lemma 3.5.24 for C = 7(¢&(D)), v = 7(v),
and dy, we get the existence of a 3 € {0}* x Z"~* such that
(w)

(33 = (Bon(@) >0, (B = [ (570 ) <5 w € ED).m(w) 0.

Observe that (3,w) = 0 if 7(w) = 0. Then 2°*# € L2(D) (use Lemma 3.5.25) and

|(27)“] |(=7)*] i\~
S A [ Paaacalps R e [P 2B —— 0.
s <1 g b = 1 ()1 S
Hence, the assumption of Theorem 3.5.6 is satisfied.
CASE 2: Uj41 = -+ = 0, = 0. Recall that |7 (27)|| — co. So we may assume that
7(z9) ~ - ~
— — w=(0,...,0,Wgs1,-.,Wn)-
[[w(27) !

(*") Then necessarily k < n.
(*®) Observe that it suffices to prove (3.5.19) for sequences in C7.
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If w € 7(¢(D)), then, by Lemma 3.5.24, there is a 3 € {0}* x Z"~* such that (3,w) > 0
and (3,w) < do, w € €(D) \ {0}.

Ifw ¢ m(&(D)), let C be the smallest convex closed cone containing 7 (€(D)) and — .
Then C C {0}* x R"* and @ ¢ C. Therefore,

(B e {0} xR (B,u) <0,ueC\{0}}
is a non-empty convex open cone (see [Vla 1993, §25]). So it contains a 3 € {0}* x Z"~*.
Thus, (3, —w) <0 and (8, w) = || (w)|[(3, m(w)/||7(w)[}) <0 < do, w € (D), w(w) # 0.
Now we are able to complete the proof as in case 1 using the 5 we just constructed.
Namely, we conclude that 2*+# € LZ(D) and
20y o -
C < oot )| ) = 12 gy T] 1)) — 0.
kp(27) ' C LS Jmes
Hence, Theorem 3.5.6 may be applied. =
Finally, we will prove the part of Lemma 3.5.25 used during the proof of Theorem
3.5.22.

Proof of Lemma 8.5.25. We restrict ourselves to proving only the following statement
(the other ones in Lemma 3.5.25 may be taken as an exercise!):

(t)  if D is as in Theorem 3.5.22 (in particular, D is bounded) and if (¢ +1,v) <0, v €
¢(D) \ {0}, then 2 € L3(D).
Assume that 1 € D. If €¢(D) = {0}, then (}) is obvious. So let us assume that
¢(D) # {0}. Then there is a §p < 0 such that (o + 1,v) < g, v € €(D), |jv]| = 1.
We claim that for any e > 0 there is a cone T such that log D \ T is bounded and
lw—vl| <& veT,welD),|lv] = [w|=1.
Indeed, fix an € > 0 and let A be the Minkowski function of the convex set log D.
Observe that h is continuous and h~1(0) = ¢(D). Therefore, there is a § > 0 such that
{we R : hw) <4, Juwl =1} < {w e R : Jull = 1, Jyeepy : vl =1, o — w] < e}.
Let T be the smallest cone containing {w € R™ : h(w) <6, ||w|| = 1}. Then log D\ T is
bounded. Otherwise there would exist an unbounded sequence z7 € log D \ T such that
h(z7) < 1; then h(x? /||27|) < 1/||27]], i.e. 27 € T for large j, a contradiction.
Now observe that (o + 1,v) < (09/2)||v]|, v € T, and
S |2%2d g, (2) < 0o iff S AL dA, (2) < oo iff Se2<a+1’x> dA, (z) < oo.
D log D T
So it remains to estimate the last integral. We get
Seg<a+1’z> dA,(z) < Xeéo\lxl\ dA,(z) < S el g A, (z) < oo.
T T R™
Hence, the monomial z® is in LZ(D). m

REMARK 3.5.26. Up to our knowledge, so far there is no complete description of
b-complete unbounded Reinhardt domains.
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