1. Introduction

In this paper we consider systems of differential operators on R™ whose coefficients have
certain asymptotic properties as |z| — oo. These elliptic operators define continuous
maps between weighted function spaces on R™ which are locally modeled on Sobolev,
Holder or other types of spaces, but which contain a derivative dependent weight that
controls behaviour as |x| — oo. In this setting we obtain results of the following types,
which parallel those of the standard theory for elliptic operators on compact manifolds:

e A priori estimates for solutions.
e Regularity results relating solutions in different weighted spaces.

e The Fredholm property for operators acting between certain weighted spaces.
e Dependence of the Fredholm index on the weighted spaces.

In order to avoid a large number of lengthy definitions in the Introduction we presently
restrict our attention to the formulation of our results for the case of scalar operators
acting on weighted function spaces modeled on Sobolev spaces of integral order. At the
end of the Introduction we indicate where the corresponding results for the general case
can be found.

For the purpose of defining our class of elliptic operators we introduce the following
symbol classes (see Section 1.1 for basic notation).

DEFINITION 1.1. For any 3 € R define Sc” to be the set of those functions p € Cre. for
which there exist a € C°°(S" 1) and g € Cf2, satisfying the following conditions:

(i) Writing = € R” in polar coordinates as « = (r,w) we have
p(x) = a(w)r~? + q(z)

whenever |z| =7 > 1.
(ii) For any multi-index a we have an estimate of the form

Dq(z) = o(|z|7P71el)  as |z| — .
The function a(w)r—? defined on R? will be called the principal part of p.

Let A(z, D,) be a differential operator on R™ of order m. Thus we can write
(1) Alw,D;)= Y p*(x)Dg
laf<m

where p® € C2, for each multi-index o with |a] < m. We say that A is an admissible
elliptic operator provided p® € S¢™ 1 for each |a| < m and A is uniformly elliptic on
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R™ in the sense that

(2) PGS

|a|=m

= Clg™

for all x,& € R™ (where C' is some positive constant). Examples of admissible elliptic
operators include the Laplacian —A and the Schrodinger operator —A + V' whenever
V € Sc?; in particular, V must decay at least as quickly as |z| 2.

In order to define the function spaces on which A shall act we need to introduce the
weight function A defined on R™ by A(x) = (1 + |z|?)Y/2.

DEFINITION 1.2. For p € [1,00), k € Z and 3 € R define a norm ||~\|H§,k on C§° by

e = > §A7PHD @) DFu(a) P v,
la|<k

and let Hg’k denote the Banach space obtained by taking the completion of C§° with
respect to this norm.

For p € (1,00), k € Z\Ng and 8 € R let g € (1,00) be given by 1/p+ 1/q = 1 and
define H g’k to be the Banach space obtained by taking the dual of Hig * with respect
to the L? pairing on R”.

If A is an admissible elliptic operator of order m then A defines a continuous map
Hgf:;m — Hg’k for any p € (1,00), k € Z and 3 € R. We obtain the following regularity
result relating solutions of the equation Au = f for some different values of p, k and S.

THEOREM 1.3. Let p,q € (1,00), k,l € Z, 3,y € R and suppose we have either S+n/p <
y+n/qor B+n/p<~vy+n/qand p>q. If Au€ Hg’k ﬁHg’l for some u € Hg,ljnm then

we also have u € Hgf;m. Furthermore,

ullgpsm < Al g+ el grassm)
for all such w.

In order to proceed with further regularity results and Fredholm properties for the
map A: H gﬂtm — H g’k we must eliminate a countable set of values of 3. These values
are related to the eigenvalues of an associated spectral problem which we now introduce.

Suppose A is an admissible elliptic operator of order m given by (1). We define the
principal part of A to be the operator Ag on R} given by

Ag(z,D,) = Z a®(w)rlel=m po,

la|<m
where, for each |a| < m, a®(w)r!®l=™ is the principal part of p®. It is easy to see that
the ellipticity estimate (2) for A implies that Ag is elliptic on R”.
The principal part of A can be rewritten in the form

m

Ag(w,Dg) =A™ (w, D) (D) (r7™ ),
7=0

where, for j=0,...,m, AJ(w, D,) is a differential operator on S"~! of order at most j.
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We associate with A an operator pencil B4 : C — L(H™(S" 1), L2(S"~1)), which is
defined by

Ba() = D A" (w, DN
=0

for each A\ € C. The spectrum of this operator pencil is the set
oc(Ba)={AeC|Ba(\): H™(S" 1) — L?(S"1) is not invertible}.

The geometric and algebraic multiplicities of any Ao € o(B4) can be respectively de-
fined as dim Ker B 4(\o) and the sum of the lengths of a set of maximal Jordan chains
corresponding to Ag (see Section 3.3 or [GGK] for more details).

By using the ellipticity of Ag it can be shown that o(B 4) consists of isolated points
of finite algebraic multiplicity and that any strip of finite width parallel to the real
axis contains at most finitely many points of (8 4) (see Theorem 5.2.1 in [KMR] or
Theorem 1.2.1 in [NP], for example).

The projection of (B 4) onto the imaginary axis is of particular importance and will
be denoted by I'(A); that is,

I'(A)={ImA | A€o(Ba)} CR.

In particular, the above discussion implies that I"(A) consists of isolated points and, given
v € I'(A), the total algebraic multiplicity of all those A € o(B4) with Im A =  is finite.

The Fredholm property for A is related to the spectrum of the associated operator
pencil through the set I'(A) as follows.

THEOREM 1.4. Let p € (1,00), k € Z and B € R. If B+ n/p & I'(A) then the map
A Hgf;m — Hg’k is Fredholm.

We also obtain a I'(A) dependent regularity result complementing Theorem 1.3.

THEOREM 1.5. Let p,q € (1,00), k,l € Z, 5,7 € R and suppose 3+ n/p and v+ n/q
belong to the same component of R\ I'(A). If Au € Hg’k NHZ! for some u € Hgl‘fnm

then we also have u € Hgf;rbm. Furthermore,
s < COIAU] g+ [l ggssn)
for all such w.

As a consequence of Theorems 1.4 and 1.5 we also obtain a stability result for the
Fredholm index of A.

THEOREM 1.6. Let p,q € (1,00), k,l € Z, 5,7 € R and suppose 3+ n/p and v+ n/q
belong to the same component of R\ I'(A). Then the Fredholm maps A : Hgf:;m — Hg’k
and A : Hgf;m — H?! have the same index.

If the parameter [ is varied so that 8+ n/p moves between components of R\ I"(A)

then the index of the corresponding map will change. This change is related to more
detailed information about the spectrum of the operator pencil 25 4.

THEOREM 1.7. Let p € (1,00), k € Z and (1,02 € R with 81 < By and B; +n/p & ['(A)
fori=1,2. Set ¥ ={A € o(B)|ImA € [B1,5:]} and, for each A\ € X, let my denote
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the algebraic multiplicity of A. Then we have

Index AP = Index A%2) 4+ Z my,
AeX

where AP denotes the map A : Hg;’it;” — Hgk fori=1,2.

Let A*(x, D) denote the differential operator obtained by taking the formal adjoint of
A(z, D,) (with respect to the standard Lebesgue measure on R™). By using the definition
of the symbol classes Scf it is straightforward to check that A* is also an admissible elliptic
operator. Furthermore, we have

(3) I'(A*) = (n+m)—I'(A4).

In the case when A is formally self-adjoint we can determine the Fredholm index
entirely from knowledge of the spectrum of the operator pencil B 4.

THEOREM 1.8. Let p € (1,00), k € Z and, for any v € R, let AY) denote the map
A Hf;f;gm — H$>k. Now suppose A is formally self-adjoint. Then I'(A) is symmelric
about (n+m)/2 and, for any 3 € R with 8+ n/p & I'(A), we have

Index AT =6-2n/p) — _ Tndex A,

In particular, we have either (n+m)/2 & I'(A), in which case Index A(™/2+n/2=n/p) — (),
or (n+m)/2 € I'(A), in which case the sum of the algebraic multiplicities of those
A€ c(Ba) with ImA = (n+m)/2 is even (say 2d for some d € N) and

Index A(M/2+n/2=n/p=¢) — g — _ [pdex A(M/2+n/2—n/p+e)

for all sufficiently small € > 0.

The paper is arranged as follows. In Section 2 we define the general class of weighted
function spaces on which our elliptic operators act, as well as related weighted function
spaces for the associated “model operators”. The majority of that section is devoted to
establishing the basic properties of these spaces that are necessary in order to work with
them. In particular, Section 2.3.5 gives details of how some previously defined weighted
function spaces (including the weighted Sobolev spaces of Definition 1.2) arise in this
general setting.

The full class of elliptic operators on R™ to which our results apply is introduced at the
beginning of Section 4 (see Definition 4.3). This class is basically a generalisation of the
class of (scalar) admissible elliptic operators introduced above to cover the case of systems
with Douglis—Nirenberg type ellipticity. The generalisations of Theorems 1.3 to 1.8 are
given in Theorems 4.12, 4.22,4.18, 4.19, 4.23 and 4.26 respectively (Remarks 2.22 and 2.36
provide the details needed to derive the results given above from their counterparts in
Section 4). Additionally, it is shown that the finite dimensionality of the kernel implied by
Theorem 1.4 (or Theorem 4.22) remains valid without restriction on the parameter [ (see
Theorem 4.17). Finally, at the end of Section 4, we give some index formulae for elliptic
operators whose principal part is homogeneous with constant coefficients (see Theorems
4.29, 4.30 and 4.31).

The main results are obtained from results for “model operators” on II™ and RT.
These operators provide the necessary generalisation of the operators B 4 and Ag in-
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troduced above and are dealt with in Section 3. The isomorphism results contained in
Sections 3.4 and 3.5 (for II™ and R? respectively) are also of interest in their own right.

Broadly speaking, there appear to be two areas of research related to the results
presented here. The older of these areas appears principally in the Russian literature and
was centred around the problem of elliptic operators on bounded domains with conical
singularities on the boundary. The motivation for a lot of this work came from applications
to the mechanics and electrodynamics of continua and to numerical methods.

The difference between the problems of elliptic operators on R™ and on domains with
conical singularities on the boundary is a largely superficial one—in some sense co can
be regarded as a one-point boundary of R™ which is of conical type. Both problems can
be split into the study of standard elliptic problems on bounded domains and of elliptic
problems in neighbourhoods of the singular points. In turn, the latter can be reduced
to the study of model elliptic problems on conical or cylindrical domains. The model
problems and the arguments used to go from results for these to results for the actual
problems are similar in many respects. In particular, the study of the model problems
suggests a natural choice of weighted function spaces, which, in turn, gives rise to a
natural choice of weighted function spaces for the original problems.

Early work on the problem of elliptic operators on domains with conical singularities
on the boundary includes [Es|, [K1], [Lop], and the fundamental paper [K2], in which
the general approach to these problems was refined and applied to scalar operators of
arbitrary order in weighted Sobolev spaces based on H*, k € Ny. Aspects of the theory
were developed by authors including V. G. Maz’ya, B. A. Plamenevskii, S. A. Nazarov,
V. A. Kozlov, J. Rossmann and M. Dauge (see [KMR] for a comprehensive list of refer-
ences). The paper [MP] and the monograph [Da] are of particular relevance to the work
presented here; in [MP] generalisations were made to systems of operators on weighted
L? Sobolev spaces of integral order and weighted Holder spaces, whilst in [Da] weighted
L? Sobolev spaces of fractional order were considered. The monographs [Gr], [Da], [NP]
and [KMR], as well as the overview paper [Pl], provide expositions of (aspects of) this
theory, further results and references, and some notes on the historical development of
this work.

Although the presumed existence of parallel results for elliptic operators on R™ has
been remarked upon by several authors (see in particular Remark 4.1.5 in [NP]) the
problem was considered explicitly in only a handful of papers from this area, the most
significant of these being [BK]. Here Theorem 4.22 was established for scalar operators
and the model spaces E = H* k € Ny, whilst Theorem 4.17 was given for scalar operators
and the model spaces E' = L?, p € (1,00), when 8 = n/p. The possibility of generalisation
to systems of operators was also observed in [BK]. However, since [BK], no detailed study
of the problem on R"™ appears to have been carried out by authors in this area.

The second area of research related to the results presented here is connected to the
study of elliptic problems on non-compact manifolds, with motivation coming from ap-
plications to global analysis on non-compact manifolds, especially in questions related to
general relativity. Initial work in this area centred on R™ (as the simplest of a class of
non-compact manifolds) and elliptic operators of the form A+ @ where Ay is a homoge-
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neous operator with constant coefficients and @ is a perturbation with variable coefficients
which have suitable decay at infinity. The approach used in this work was fundamentally
different from that taken here; it was based on establishing mapping properties for an
explicit class of related convolution operators. This technique was essentially introduced
in the key paper [NW] where it was shown that such operators have a finite-dimensional
kernel when acting on HP* p € (1,00), k € Np.

The weighted function spaces suggested by the estimates in [NW] (i.e. the spaces
Hg’k appearing in Definition 1.2 above) were explicitly defined in [C1l] and the theory
was developed steadily in a series of papers thereafter; these included [C2], [C3], [Loc],
[M1], [M2], [CC], [Mu], [LM1], [Ben], [De] and [BP]. In particular, Theorem 4.29 was given
for the model spaces E = HP* p € (1,00), k € Ng in [LM1] (see also [LM2]), and for the
model spaces E = C'*7 [ € Ny, o € (0,1) in [BP]. It should be remarked that the papers
[C2], [C3], [CC], [Loc] and [De] also considered operators of the above type on non-
compact manifolds which are “asymptotically Euclidean”. The essential modifications
needed to consider such problems relate to the non-Euclidean part of the manifold—this
is bounded and can be treated using the well developed theory for elliptic operators on
compact manifolds.

The techniques of the above papers seem to be well suited to operators which are ap-
propriate perturbations of homogeneous constant coefficient operators and even allow for
the computation of the index and the characterisation of kernels and cokernels in certain
cases. However, these techniques do not appear to generalise easily to cover operators
with arbitrarily varying coefficients. In [LM3] a switch was made to techniques similar to
those employed here, and Theorems 4.22, 4.23 and 4.26 were established for the model
spaces B = HP* p € (1,00), k € Ny. In fact, these theorems were established for an
appropriately defined class of operators on non-compact manifolds which have finitely
many cylindrical ends (R™ being the special case of a manifold with a single cylindrical
end homeomorphic to RT x S"~1). Along with [BK], the results of [LM3] appear to be
the closest existing results to those presented here.

The work on non-compact manifolds cited above can be viewed as being part of a
broader collection of work on elliptic operators on non-compact manifolds. Apart from
the inherent interest of such problems, results parallel to the well known ones for elliptic
operators on compact manifolds have useful applications in many areas of geometry and
analysis. However, it is not possible to develop a theory as comprehensive as that for
compact manifolds; to obtain useful results one is forced to restrict to classes of prob-
lems where there is some kind of relationship between the asymptotic behaviour of the
operators and the asymptotic properties of the function spaces on which they are acting.
Of the large and diverse collection of work in this area we mention only a brief (and
necessarily subjective) selection. In [CH] and [M3] necessary and sufficient conditions
for certain types of (pseudo-)differential operators to be Fredholm when acting between
Sobolev spaces on a complete Riemannian manifold were formulated in terms of objects
related to the operator’s symbol. In [Ei] several approaches to the study of the spectral
theory of certain self-adjoint differential operators on non-compact manifolds were pre-
sented, whilst in [An| manifolds with asymptotically negative curvature were considered.
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Finally we mention the very general works [MM], [Ma] and [Sc] which gave results re-
lated to various special classes of (pseudo-)differential operators on compact manifolds
with boundaries (including “totally characteristic operators” and “edge operators”). By
using appropriate coordinate transformations these results can be reformulated for certain
operators on non-compact manifolds; in particular, the general framework used in these
works allows one to consider operators similar to those considered here, at least when
they are classically elliptic and act between weighted spaces modeled on H*, k € Ny.

The present paper extends existing work in its consideration of much more general
types of function spaces. Apart from filling numerous gaps in the existing collection of re-
sults (in particular for weighted LP Sobolev spaces of negative integral order and weighted
Holder spaces) numerous new types of spaces are considered; perhaps the most important
of these are the weighted LP Sobolev spaces of arbitrary real order. The key technique
employed to achieve this lies in a characterisation of pseudo-differential operators given in
[Bea] which allows the generalisation of results about the model operators (see Section 3).

The inclusion of spaces of “negative order” in our general setting means we can
consider dual problems as well as operators arising from problems in variational form. In
particular, the use of duality simplifies the argument needed to go from the semi-Fredholm
property to the Fredholm property (i.e. from Theorem 4.16 to Theorem 4.22). In most
existing work in this area some type of parametrix or regulariser is constructed for the
corresponding step (n.b. duality is also used in [KMR]).

In this paper, as in the majority of the literature cited above, the necessary weighted
function space results are proved locally. Due to the more general function space setting of
the present work a more complete set of related weighted function space results has been
obtained here. However, it should be pointed out that many of these results probably
appear in the function space literature.

One application of the results presented here is to the study of zero modes (or zero
energy bound states) of the Dirac-Weyl operator o.(D — A) on R? (here o is the vector
of Pauli matrices and A is a real vector potential); this will appear in [El].

1.1. Notation. In this section we introduce some (not necessarily standard) notation
and conventions that will be used throughout the paper.

We define Ng = N U {0} to be the set of non-negative integers; thus a multi-index «
is simply an element of Nij with || := a1 + ...+ .

The sets R" \ 0 and R x S"~1 are denoted by R? and II™ respectively. The letter
w is used to denote a point on S™~!, whilst (r,w) and (t,w) denote polar coordinates
on R” and cylindrical coordinates on II" respectively. When necessary, S®~!, R? and
II"™ will be considered as Riemannian manifolds with the obvious choice of Riemannian
metrics (i.e. that given by the standard embedding into R™ as the unit sphere for S,
the restriction of the Euclidean metric for R? and the product metric for II™).

For ¢ € {1,...,n} we use D; to denote the differential operator —id/dz; on R".
By D, we mean the vector differential operator (D, ..., D,,) whilst D, and D; are used
to denote the differential operators —id/dr and —id/dt on R™ and R respectively. Finally,
the notation A(w, D,,) is used to mean that A is a differential operator on S™~ 1.
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For any manifold M with volume measure dM let (-,-)s denote the L? pairing on M;
that is, (u,v)y = S oy wvdM for all appropriate u and v. The associated sesquilinear
pairing is then (u,v)y := (u,v)y. We use these pairings with M being R™, S7~1 R”
or IT". In all cases dM is the volume measure induced by our choice of the Riemannian
metric; in particular, the volume measures on R™, R? and II" are d"z (the Lebesgue
measure), d"x = r" " 1drdS™~! and dtdS™ ! respectively, where dS™! is the standard
volume measure on S™ ! inherited from its embedding into R™ as the unit sphere.

Let 2’ denote the set of distributions on R™ and 2’(M) the set of distributions on
an arbitrary manifold M (see Section 6.3 of [H1] for further details). The pairing (u,v)as
can be defined for all u € C§°(M) and v € 2'(M); in particular, this pairing can be
viewed as a way of identifying elements of 2'(M) with distributional densities on M.

If E C 2'(M) for some manifold M we use Ej,. to denote the set of v € 2'(M) with
¢u € E for all ¢ € C5°(M). On the other hand, for open U C M, E(U) denotes the set of
(equivalence classes of) restrictions of elements u € E to U. If ¢ € C5°(U) and u € E(U)
we can extend ¢u by 0 outside U to enable us to consider it as an element of E.

We use A to denote the weight function defined on R™ by A(z) = (1+|x|?)'/2. Let .
and .’ denote respectively the locally convex spaces of Schwartz class functions on R"
and its dual, the set of tempered distributions on R™. The topology of the former is
provided by the semi-norms

pi(u) := Z sup Al(x)|D%u(x)|
lal<l z€R"
for any [ € Ny, whilst we choose the weak dual topology for the latter.

For any | € Ny we use C! to denote the set of bounded [ times continuously differen-

tiable functions on R™, provided with the norm

luller = 3 sup |D2u(a)]
| <1 zeR™
We put C* = mleNo C' and provide this set with the locally convex topology induced
by the collection of semi-norms {||-|[ct | I € No}. The set of smooth functions on R™
(without restrictions on growth at infinity) is then denoted by Cy%.. We also use C§° for
the set of smooth functions on R™ with compact support.

For p € [1,00] and s € R we use H”® to denote the Sobolev space on R™ of “functions
with s p-integrable derivatives”. This notation will be simplified to H® in the case p = 2
and LP in the case s = 0. Other spaces appearing as examples include the Holder spaces
C*e for | € Ny and o € [0,1) (n.b. we set C'*0 = C!) and the Zygmund spaces C* for
s € R*. A detailed account of all these spaces can be found in [T1].

Let BS denote the set of R-valued functions ¢ € C'*° which are constant in a neigh-
bourhood of 0 and co. We also use BSp; to denote the subset of BS containing those (
with ¢ = 0 in a neighbourhood of 0 and ¢ = 1 in a neighbourhood of co.

If x1 and x2 are R-valued functions we write x1 < x2 (or, alternatively, x2 = x1)
provided x2 = 1 on supp(x1). If x1 < x2 then it clearly follows that x1x2 = x1-

We use C' to denote any positive constant whose exact value is not important but
which may depend only on the things it is allowed to in a given problem (i.e. parameters
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defining function spaces but not the actual element of the space under consideration etc.).
Constants depending on something extra are indicated with appropriate function type
notation whilst subscripts are added if we need to keep track of the value of a particular
constant (e.g. C1(u) etc.).

We use the notation x(u) =< g(u) to indicate that the quantities x(u) and o(u) satisfy
the inequalities Cr(u) < o(u) < Ck(u) for all relevant u (possibly including parameter
values). Generally x and g will be norms of some description.

2. Function spaces

In this section we introduce classes of weighted function spaces for our elliptic operators
and associated “model” operators. In order to define these spaces and establish the basic
results necessary to work with them, we use general constructions and arguments applied
to specific “model spaces”.

DEFINITION 2.1. A model space E is a Banach space of functions with the following
properties:

(A1) We have continuous inclusions . — FE «— .9,

(A2) Multiplication defines a continuous bilinear map C* x E — E.

(A3) The norm ||-||g is translationally invariant.

(A4) If ¢ is a diffeomorphism on R™ which is linear outside some compact set then
the pull-back * : ' — ¥’ restricts to give an isomorphism on E.

Throughout this paper the letters £, F' and G are used to denote model spaces.

REMARK 2.2. Examples of model spaces include the Sobolev spaces HP-® for p € [1, 0]
and s € R, the Holder spaces C**¢ for k € Ny and o € [0,1) and the Zygmund spaces
C¢ for s € RT.

LEMMA 2.3. Suppose ¥ : U — V is a diffeomorphism between open subsets of R™ and
X € C§ (V). Then ||v*(xu)|lg = |Ixullg for all u e E(V).

Proof. Any point x € U has a neighbourhood in U outside which ¢ can be extended
linearly to give a diffeomorphism of R™. Choose a finite collection {U; };¢s of such neigh-
bourhoods which cover ¢~ (supp(x)) and, for each i € I, let ¥; : R®™ — R™ denote a
diffeomorphism which is linear outside a compact region and satisfies ¢;(z) = ¥(x) for
all z € U;. Thus {¢;(U;)}icr U {R™ \ supp(x)} is an open cover of R™. Choosing any
partition of unity {@;}icr U {doo} subordinate to this cover we clearly have ., ¢; =1
on supp(y). Conditions (A2) and (A4) now give

9" (xuw)lle < Y Il (eoxw)lle = Y 10; (dixu) |

el el
<C_lleixulls < Csup léixulls < Clixulle
icl t€

for all w € E(V). Symmetry completes the result. m



14 D. M. Elton

DEFINITION 2.4. Suppose E is a model space and | € Ny. We define the space E' to be
the set of all u € .9 satisfying D¥u € E for each multi-index a with |a| < I, equipped
with the norm
lullz = IIDgul|s.
el <l
REMARK 2.5. It is straightforward to check that E! is again a model space. Furthermore,
the differential operator D2 clearly defines a continuous map E! — E whenever |a| < I.

DEFINITION 2.6. For any model space E we define Ey to be the separable subspace of F
obtained by taking the closure of .¥ in F.

REMARK 2.7. It is straightforward to check that Fy is again a model space. Furthermore,
C§° is a dense subset of . (see Proposition VI.1.3 in [Yo], for example) so Ey = Cl(.¥) =
Cl(C§°); in particular, .7 is dense in E (i.e. E = Ey) iff C§° is dense in E.

2.1. Weighted function spaces on II™. For any chart (1,U) on S"~! we can define
a corresponding chart (#,R x U) on II"™ by setting ¥(¢t,w) = (¢, % (w)) € R x ¢(U) C
R” for all (t,w) € R x U. Now suppose {(v;,U;)}ics is a finite atlas for S*~! and let
{(¥;,R x U;) }ier be the corresponding atlas for IT™. Choose a partition of unity {x;}ier
which is subordinate to the cover {U;};c; of S~ 1. We also consider {x;}icr to be a
partition of unity subordinate to the cover {R x U, };cr of II"™ by regarding each x; as a
function on IT™ which is independent of .

Let E and F be model spaces on R” and R"~! respectively. We define E(II") to be
the set of u € 2'(IT") with (¥, ')*(x;u) € E for each i € I. On this set we define a norm

(4) lull gy = (@ u)|| g

el
We define the normed space F(S™ 1) in a similar fashion with ¥; replaced by ;. Standard
calculations using conditions (A2) and (A4) show that E(II") and F(S™"~1) are Banach
spaces which are independent of the choice of atlas {(¢;,U;)};cr and partition of unity
{xi}icr (up to equivalent norms); the next result is a somewhat more general statement
of this fact for the space E(II"™).

LEMMA 2.8. Suppose {(¢;,V;)}jes is a finite atlas for S~ and {{;}jes is a collection
of functions in C°°(S"~1) with supp({;) C V; for each j € J and 12 25esGl =2C >0
on S"1. Let {(®;,R x V;)}jes be the corresponding atlas for II"™ and consider ¢; as
a function on II™ which is independent of t. Then v € E(II"™) iff v € 2'(II™) and
(@;1)*(Cju) € I for each j € J. Furthermore,

lull ey =D (I(@ u)| e
jeJ

Proof. For each z € I choose x; € C§°(U;) with x} > x;. Then, for each j € J, set
C” = (¢x;) o ¥, 1€ ¢ (here we are considering ¢;X; to be a function on IT™ which is
independent of ¢ and extending C” by 0 outside R x ¢;(U;)). For u € E(II™) and j € J,

(@) (Gu) =D (@) (Gxixan) = D (T 0 @) (G ()" (xau)).

i€l icl
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Using Lemma 2.3 (with the obvious minor modification) and condition (A2) we now get
(sﬁj_l)*(cju) € E and

(@) (Gulle <CY I, u)lle < Cllullparm)-
el
Our assumption on the ¢;’s implies ¢ := (32;.;¢;)~" € C=(S"'). By using the
partition of unity on S™~! given by {¢(;}je., the remainder of the result can be completed
with an argument similar to that above. m

REMARK 2.9. We note the following technically useful consequence of Lemma 2.8. For
each i € I choose x; € C§°(U;) with Xé > Xi- Then
lullpary = > 1@ (aw)lle <Y (2, u)lle
icl iel
for all w € E(IT™).

LEMMA 2.10. Suppose (,U) is a chart for S*~! and let (¥,R x U) be the correspond-
ing chart for II". Also suppose x € C§°(U) (considered as a function on IT™ which is
independent of t) and define X = x oW1 € C*®. Then xu € E(II") iff (¢~ H)*(xu) € E
whilst || xul gy =< (&) *(xu)||g. On the other hand, Xv € E iff ¥*(xv) € E(II")
whilst || xul|lg =< [|[¥* (Xu)|| gam)-
Proof. The first part of this result follows easily from Lemma 2.8 applied to the atlas
{(, U)}U{(¢;,U;)} for S*~! and any partition of unity {¢}U{(; }ser which is subordinate
to the covering {U} U {U; \ supp(x)}ier of S"~% (n.b. {x = x and ¢;x = 0 for each i € T
in this case).

Choose x' € C§°(U) with ' = x and set X' = x’ o ¥~ € C°. The second part of
the result follows from the first part by taking u = *(X'v). =

REMARK 2.11. Suppose K is a locally convex space which satisfies conditions (A1), (A2)
and (A4). By applying (4) to individual semi-norms we can obviously define a new locally
convex space K(II"™) C 2'(II™). In particular, we shall need the locally convex spaces
L), S (IT™) and C*°(II™). It is straightforward to check that condition (A1) gives
us continuous inclusions .7 (II") «— E(II™) — ' (II") for any model space E. It is also
clear that C°°(II") = (e, CY(II™) whilst the topology on C*°(II™) is that induced by
the collection of semi-norms {||-[|c1 ¢y | I € No}.

LEMMA 2.12. For any model space E multiplication defines a continuous bilinear map
C>(II") x E(IT™) — E(II™).

Proof. Condition (A2) for E means we can find [ € Ny such that
lpulle < Cllllclullz
for all ¢ € C*° and u € E. With the notation of Remark 2.9 it follows that
1@ (agw)le = 17" 0ad) (@) (ulle < CIE* (xio) el ()l e
for any ¢ € C°°(II") and v € E(II™). Combining this with Remark 2.9 and the fact that
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1 is finite, we then get

gl pemmy < C DN (idu)l|e
iel
<Y @Y ad) el (@) (e < Clillor i llul s
iel

for all p € C°(II™) and v € E(II™). n

Given a model space E and § € R we define ZgFE to be the set of uw € 2'(II") with
Bty € E(IT™). On this set we define a norm

() lullzoe = e ull ).
Clearly, ZgE is a Banach space and ZgE C E(II™)ioc-

REMARK 2.13. An easy consequence of Lemma 2.12 is that multiplication defines a con-
tinuous bilinear map C*°(II") x ZgE — ZgE for any model space E and § € R.

REMARK 2.14. With K as in Remark 2.11 it is clear that we can define a locally convex
space ZgK C 2'(II") for any 8 € R. It is straightforward to check that condition (A1)
gives us continuous inclusions 75 — ZgE — Zg.%" for any model space E and § € R.

In order to work with the spaces ZgE (and other spaces to be defined below) we need
to introduce a set of auxiliary functions. Choose ¢y € C°(R) with ¢y = 0 on (—oo0, —2/3],
¢o =1 on [-1/3,00) and Ran¢o = [0,1]. For any i,j € Z U {£oo} with j > i define
Qsij S COO(HH) by

bij(t,w) = ¢o(t —i) — go(t —j —1).

Therefore ¢;; is non-negative, supp(¢;) C (i—1,7+1)xS" ! and ¢;; = 1 on [i, j]xS" L.
We also set ¢; = ¢ic S0 dij = di — Pjt1-
REMARK 2.15. Suppose ¢ € C°(II") satisfies supp(¢) C [i,4] x S™~! for some i,j €
Z U {*oo} with ¢ < j. Then we have

J J
loullzes = || > ounon|, <D loudullzas
k=i o k=i

for all w € E(IT™)1oc. On the other hand, {¢ir}rez is a bounded subset of C*°(II") so
Remark 2.13 implies

sup |[|prroullz,e < Clloullz,e
i<k<j

for all uw € E(IT™)j0c.

For any k € Z we can write et = e#*ef(t=F) where e#(t=%) and its derivatives can be
bounded independently of k € Z on supp(¢rr) € (K — 1,k + 1). Lemma 2.12 then gives

(6) pritellzoe =< €|l oprull prm),
where the equivalence constants are independent of k.

2.2. Weighted function spaces on R} and R"”. Let © : [I™ — R} denote the
diffeomorphism defined by ©(t,w) = (r,w) where r = e!. Under the pull-back ©* we
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clearly have
(7) r—e', rD,— D; and r ldr— dt.

Now ©* defines an isomorphism 2'(R?) — @’(II"). For any model space E and 8 € R
we define YgE C 2'(R?) to be the preimage of ZgE under ©* with the induced norm.
Therefore the restricted map
8) O :Y4E — ZsE
is an isomorphism, and
(9) lully,e = |© ullz,e  for any u € YgE.

Choose 6 € BSp; with # =1 on {|z| > 2}, 6 =0 on {|z| < 1} and Ran6 = [0, 1]. For

any model space F and § € R we define XgE to be the set of u € 2’ with (1 - 0)u € E
and Ou € YgE. On this set we define a norm

[ullxse = I(1 = O)ulle + [|0ullv, -
Straightforward calculations show that XgE C Ejoc, XgE is a Banach space and the

definition is independent of the choice of 8 (up to equivalence of norms). These and other
observations are summarised in the following result.

LEMMA 2.16. Suppose B € R, ¢ € BSo1 and n € C§° is a non-negative function for which
1+ ¢ is bounded away from 0. Then u € XgE iff nu € E and Cu € YgE. Furthermore,
all such u satisfy an estimate of the from

[ullxse = llnulle + [ICullv,e-

Also, for u € E(R})ioc we have Cu € XgE iff (u € YgE whilst all such u satisfy an
estimate of the form ||Cullx,e < [|Cully,E-

REMARK 2.17. Suppose f € C'*° is constant on a neighbourhood of 0 and satisfies fo© €
C°(IT™) (we could take f € BS, for example). For any § € R, Remark 2.13 and (8) then
imply that multiplication by f defines a continuous map YgE — YgE. By coupling this
observation with Lemma 2.16 and the fact that f is constant on a neighbourhood of 0,
it follows easily that multiplication by f also defines a continuous map XgF — XgkE.

REMARK 2.18. Suppose (3,7 € R and ¢ € BSp;. Making straightforward applications of
Lemma 2.16 (with n = 1 — ¢) we can obtain the following:

(i) If Cu € X, E for some u € XgE then we also have u € X, E.
(ii) If (u € Y,F and u = 0 in a neighbourhood of 0 for some u € YgE then we also
have u € Y, E.

For each i,j € Z U {£oo} with j > i define (;,(;; € C™ by (; = ¢; 0 O~ ! and
Cij = ¢ij 0 ©~1 (n.b. there are no problems with smoothness at 0 since ¢; and ¢i; are
constant in a neighbourhood of —co x $™~1). Also set 1; = (_ ;1. Therefore ¢; € BSp1,
n; € Cg° and n; + ¢; = 1. The next result follows from Lemma 2.16 with ¢ = (o, n = o
and the observation that (y(; = (;, n0(; = 0 for any ¢ € N.

LEMMA 2.19. Given i € N we have ||Gullx,e < [[Gullv,e for any u € XgE, where the
equivalence constants are independent of 1.
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2.3. Basic properties

2.3.1. Isomorphisms

PROPOSITION 2.20. Suppose E is a model space and 3,y € R. Then multiplication by
e, r7 and A7 defines isomorphisms Zg1E — ZgE, Y3inE — YgE and Xg4E — XgE
respectively.

Proof. The first isomorphism is an immediate consequence of (5) whilst the second then
follows from (7) and (8). Now define a smooth function f on R™ by f = (oA"r~ 7. It
follows that f o @ is a smooth function on IT" with f(O(t,w)) = 0 for t < —1 and
fO(t,w) = (1 +e2)7/2 for t > 1. Hence f o ©® € C®(II"™), so multiplication by f
defines a continuous map YgF — YgE by Remark 2.17. Combining this observation with
Lemma 2.16, the identity (147 = f(377 and the second part of the present result, we
now have

A7 ullxsz < CUIm A ulle + 1 fGrully,z) < CUmA ulle + 1Gullvy,,e) < Cllullx,, .z

for all u € XgiyE (nb. mAY € C§° is non-negative whilst 7147 + ¢; is bounded away
from 0). A similar argument for A=Y now completes the result. m

2.3.2. Inclusions

REMARK 2.21. It is easy to see that any continuous inclusion F — F' between model
spaces I/ and F' induces continuous inclusions ZgFE — ZgF, YgE — YgF and Xgk —
XgF for any 3 € R.

By a local inclusion Ejoec < Floc we mean that Eioe C Floc and ||¢u||p < C|l¢u||g for
¢ € C§° and all u € Ejoe (where C may depend on ¢).

REMARK 2.22. We have a local inclusion H}''** < HP>** whenever pi,ps € [1,00) and
s1,82 € R satisfy s > s9 and s1 —n/p; > s2 —n/py. The additional condition p; < ps is
needed in order to get a continuous inclusion HP*+%1 «— HP2:52 'We also have continuous
inclusions HP1:%1 < (C%2 whenever s;1 —n/p; > s2 > 0 and HP»%1 — C* whenever k € Ny
satisfies s;1 — n/p1 > k. Further details can be found in Sections 2.3.2, 2.7.1 and 3.3.1

of [T1].
Obviously, a continuous inclusion F — F' leads to a local inclusion Ejoc — Floc-

Although the converse does not hold in general we can obtain the following related results,
the first of which is an easy consequence of the compactness of S~ 1.

LEMMA 2.23. A local inclusion Eio. — Fioe for model spaces E and F on R" ™! induces
a continuous inclusion E(S" 1) — F(S"~1).
LEMMA 2.24. Suppose we have a local inclusion Ejo. < Floc for some model spaces E
and F. If BE€R, e >0,l€Z and ¢+ € C°(I") with supp(¢+) C £[l, +00) x S™7L,
then

[¢+ullz,r < Cle,Dllosullzs..m
for any u € E(II"™)1oc. Furthermore, C(g,l) can be chosen independently of ¢.

Proof. Clearly, condition (A3) implies that the norm ||-|| p(;7») is invariant under trans-
lations with respect to the first variable of II™. With the help of (6) it follows that the
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local inclusion Ejo. < Flo. leads to an estimate

(10) ¢rrvllzor < Ce™F||drrvllz,, .0

for any k € Z and v € E(II"™)joc, where C is independent of k. On the other hand,
> k>1 $kk = 1 on supp(¢4 ). Combined with Remark 2.15 and (10) this implies

lpsullzyr <Y llorrdsullzr < CY e F|oprdiulz,,.m

k>l k>l
< Clsup [9usdsullz,ee) Y 0 < Cllosulz,..e
2 k>l

for any w € E(II"™))c. Clearly, a similar argument can be used for ¢_. m

REMARK 2.25. If ¢+ are as in the previous lemma it is easy to check that multiplication
by ¢+ defines continuous maps 23 — Zg..” and Zg.%" — Zg..”’ for any § € R and
e > 0.

PROPOSITION 2.26. Suppose we have a local inclusion Eyo. — Floc for some model spaces
E and F. If B,y € R with 3 <~y then we have a continuous inclusion XyE — XgF.

This result obviously implies that we have a continuous inclusion

(11) XyE — XgE  for 8 < 7.
Proof. Let u € X,E. Therefore u € Ejoc C Floc. Now Lemma, 2.16 gives
(12) [ullxgr < C(llmullr + |CGullv,r).

However, (9) and Lemma 2.24 (with ¢4 = ¢1) combine to give
1Gullvsr = $210%ullz,r < Cll10%ullz, 5 = [[Crully, £
Together with the definition of local inclusion and (12) this shows that
[ullxsr < Cllmulle + IGullv,z) < Cllullx, e,
the last inequality following from a further application of Lemma 2.16. m

We finish this section with some results which are direct consequences of condi-
tions (A1) to (A3) for model spaces. We will make use of the collection of semi-norms
{pi | 1 € Ny} for . introduced in Section 1.1; in particular, we observe that py (u) < p;(u)
whenever 0 < I’ < [.

LEMMA 2.27. We have Cl . < Eoc for all sufficiently large | € Ny.

Proof. The continuous inclusion . — E given by condition (Al) simply means that we
can find I’ € Ny such that ||ul]|g < Cpp(u) for all u € .. Now let | € Ny with [ > I’. Also
let ¢ € C§° and choose ¢ € C§° with ¢1 > ¢. Therefore DI (pu) = ¢1 D3 (pu) for any
multi-index a whilst Al¢; € C§°. Hence
léulle < Cpu(¢u) = C Y 141D (@u)ll= < C Y |D(Su)llze = Cligullcs
| <1 || <1

for all u € .#. The result now follows from the fact that if u € C! then we can approximate
¢u arbitrarily closely (in the C' norm) by ¢u’ for some v/ € .7. m
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LEMMA 2.28. Suppose L is a locally convex space whose topology is given by a countable
collection of semi-norms {q | I € N}. Also suppose X and Y are Banach spaces and
T:LxX —Y isa bilinear mapping which is continuous in each variable. Then we can
find 1 € N and a constant C such that

l
(13) IT(a,2)lly < Cllzx Y aila)

i=1
for all (a,z) € L x X.

Proof. Without loss of generality we may assume that the semi-norms are defined so that
¢i < g; for all 4, j € N with 4 < j. Therefore (13) can be rewritten as
IT(a, z)lly < Cllllx qa)

for all (a,z) € L x X. Suppose an estimate of this form is not valid. It follows that we can
find a sequence {a;};en in L such that g;(a;) <1 and || T(as,-)|| 2 x,y) — o0 as i — oo.
Now the continuity of the map T'(-,z) : L — Y gives us j € N and a constant C' such that
| T (ai, x)|ly < Cgj(a;) for all i € N. It follows that the set {T'(a;,z) | ¢ € N} is bounded
in Y (by the maximum of Cg;(a1),...,Cqj(aj—1) and C). The Uniform Boundedness
Theorem (see Section IL.1 in [Yo], for example) then implies {[|T(as, )|l #(x,v) | i € N}
must also be bounded. The result now follows by contradiction. m

LEMMA 2.29. We have E' < C° for all sufficiently large | € Ny.

Proof. Using the inclusion E — .’ and the dual pairing . x ./ — C we can define a
continuous bilinear map . x E — C by (¢,u) — (¢, u)g~. By Lemma 2.28 we can thus
find j € N and a constant C such that

(¢, u)rn | < Cllulle p;i(¢)

for all ¢ €. and u € E. Now suppose x € Cg° and choose x1, x2 € C§° with x2 > x1 > Xx-
Thus DS (x16) = x2DS(x16) and AT xe € C§° so

pi(x10) = Y [4x2Dg (x10)| L < Clixaglles < Clig|l roen
ol <j
for all ¢ € ., where we have used the continuous inclusion H?*" < C7 in the last
inequality. Therefore
(¢, xu)rn | = |29, xw)mn | < Cllxulle | g+n

for all w € E and ¢ € . Now let | € Ny with [ > 2n + j. Choose I’ € 2Ny so that
2n 4 j <1’ < 1. Now the Fourier multiplier A~" (D) defines an isomorphism on .# whose
inverse is simply the constant coefficient differential operator A (D) of order I’ (recall
that I’ is even). Therefore

14) (¢ xu)ra| = [(AT(DYATV (D), xu)ga| = (A7 (D)p, A (D)(xu))gn|
< O A" (D) (xw)l|E 1A (D)dl| rs+n < Clixull g || 6]l zr—n

for all u € E' and ¢ € .#, where the last inequality follows from Remark 2.5, the fact that
A=V(D) defines an isomorphism Hit"=! — Hi*tn and the inequality j +n —I' < —n.
Since . is dense in H~™, (14) implies that for any u € E' we have yu € H™ (the dual
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space of H~™) with a corresponding norm estimate. Since we have a continuous inclusion

H™ — C° whilst xy € C§° was arbitrary, we finally arrive at a local inclusion E} _ — C{ ..

Let {xr}rez» be a partition of unity of R™ where xo € C§° and, for each I € Z",
x1(z) = xo(x — I). Using conditions (A2) and (A3) we thus have ||xrulg < Cllu|| g for
all u € E', where C is independent of I € Z". On the other hand, it is clear that ||ufco <
C'suprezn ||xrullco (where for C' we can take #{I € Z™ | supp(xo) N supp(xr) # 0}).
The fact that we have a continuous inclusion E! < C° now follows from the existence of
a local inclusion. m

Clearly, a continuous inclusion E — F’ for model spaces E and F' leads to a continuous
inclusion E' < F' for any [ € Ny. Coupling this observation with Lemmas 2.27 and 2.29
we immediately get the following.

COROLLARY 2.30. For any model spaces E and F we have a local inclusion ElloC — Floc
for all sufficiently large | € Ny.

2.3.3. Derivatives. For each ¢ € {1,...,n} we can write
(15) D; = (b(w)(rD;) + P;(w, D))

where b;(w) = z;/r € C>®°(S" 1) and P;(w,D,) is a first order differential operator
on S"~1. Now any first order differential operator A on S™~! can be written as a (not
necessarily unique) linear combination

A =ag +i a; P;
i=1

where ag, . ..,a, € C°°(S""1). On the other hand, b? + ...+ b2 = 1 while by Py + ... +
b, P, = 0. Defining differential operators B; on II™ by B; = b;(w)D; + P;(w, D,,) for
i =1,...,n we thus arrive at the following result.

LemMA 2.31. If A(w,D,,,Dy) is a first order differential operator on II"™ whose coeffi-
cients do not depend upon t then we can write

A=ag+ i a;B;
=1

for some ag, . ..,a, € C>®°(S"1).

LEMMA 2.32. Suppose E is a model space and B € R. Then

n
lullzoer = llullzye + > |1 Biullz,e
i=1
for all w € P'(II™) (where we define the norm of a function not belonging to the rel-
evant space to be +o0). In particular, B; defines a continuous map ZgE' — ZgE for
t=1,...,n.

Proof. Counsider the notation of Remark 2.9 and let i € [ and j € {1,...,n}. Now
(Wi_l)*XiBj X;¥} is a first order differential operator on R™ whose coefficients are con-
tained in C*° (in fact, the coefficients do not depend upon the first variable and are
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compactly supported with respect to the rest). Thus we have

1% )" xi(B; +i80;)xi%; v || & < Clo]|
for any v € 2. On the other hand, ¢ Bju = (B; + if3b;)e’tu so
(Wi_l)*XieﬂtBju = (Wi_l)*Xi(Bj + iﬂbj)X;g/i* (g/z )*X/eﬂt

forany i€ I,j€{1,...,n} and u € Z'(II"). Since we clearly have |lu||x,z < C|lullx &1,
the above results combine to give

n
lullzym + > | Bittllzor < Cllullz, e

i=1
for all u € 2'(I1™).
Let ¢ € I. Using Definition 2.4 we get

n
17 e ull g < 177 xae™ ulle + Y 11D () xie ull g
=1

for all w € 2'(I1™). On the other hand, we can write
D (w7 xie ™ u = (¥71) "Xie Ajju

7

where A;; = X/W*(D; —if38;1)(W~1)*x; is a first order differential operator on II™ whose
coefficients are independent of ¢. By Lemma 2.10, Remark 2.9 and (5) we thus have

[ullzser < C(H”HZ;;E +Y ) ||Aiju||zBE)

i€l j=1
for all u € 2'(II"™). On the other hand, using Lemma 2.31 and the fact that multiplication
by an element of C*°(S™~!) defines a continuous map on ZgE (see Remark 2.13), we get

n
lAsjullzas < C(lullzee + Y |1 Biulzae)
=1

for all u € 2'(II™). Clearly, the last two estimates complete the result. m

For any i € {1,...,n}, (7) and (15) give us D; = r~1(671)*B,0*. With the help
of (8) and Proposition 2.20, Lemma 2.32 now implies that

n
(16) lully,er = llullv,e + ) IDiullv,,,

i=1
for all u € Z2'(R7).

PROPOSITION 2.33. Let E be a model space, | € Ny and 8 € R. Given u € 2 we have
u € XgE' iff Dgu € Xgy|o|E for all multi-indices o with || < 1. Furthermore,

”uHXQEl = Z ||Dgu||xg+\a|E
la|<l

for all uw € XgE'. In particular, the differential operator D2 defines a continuous map
XgE" = X4 o/ E whenever |af <.



Fredholm properties of elliptic operators on R™ 23

Proof. Induction clearly reduces the proof to the case [ = 1. Now let ¢ € {1,...,n} and
u € 2'. Since (y,m2 = D;(1 = —D;n several applications of Lemma 2.16 and condition
(A2) give us

[(Di¢1)ully sy, = [1C0(DiC)ullvs 2 < CIl(DiC1)ullxy B
< C(In2(Di¢r)ulle + [|C2(DiC1)ullv,,, )
= Cl[(Dim)ulle < Clnaulle < Cllullxqe-
Combining this with Definition 2.4, Lemma 2.16 and (16) we thus have
HDiu”X5+1E < O(lmDiullg + |G Diullv,, . £)
< C(IDitmu)lle + [|1Di(C1w)lvay e + [lullxe)
< C(lmuller + 1Gully,er + lullx,e) < Cllullx,er

and

lulxser < Clllmuller + [[Gullv,er)

Imulle + lIGullvse + Z I1Di(mw)|| e + || D (CW)HYME))

=l >
(

IN

¢ (o + 3 (m Dl + 6 Dralyy )

i=1

< C(lullxse + 31 Drulix, )

i=1
for all u € 2’. The result follows. =

2.3.4. Separable subspaces. Suppose E is a model space and let Ey denote the separable
subspace obtained by taking the closure of C§° (see Definition 2.6 and Remark 2.7).

LEMMA 2.34. For any 3 € R, ZgEy is the closure of C§°(II"™) in ZgE, YgEy is the
closure of C§°(RY) in YgE and XgEy is the closure of C§° in XgE.

Proof. For any § € R it is easy to check that C§°(II") C ZgE whilst the isometric
inclusion Ey — FE leads to an isometric inclusion ZgFy — ZgFE. Since ZgEy is complete
it thus remains to show that C§°(II™) is dense in ZgEy. In turn, by the isomorphism
ePt 1 ZgEy — Eo(II™) (see (5)) and the definition of the norm on Ey(II™), it is clear that
the first part of the result is completed by the following.

Claim: Suppose (¥,R x U) and x are as in Lemma 2.10. If w € Eq(II™) and € > 0 then
there exists u. € Cg°(I™) with ||[xu — uc||g,(rm) < €. Indeed, choose x1 € C§°(U) with
X1 = x and set Y1 = x1 o ¥~ € C*. Now Lemma 2.10 shows that (¥~1)*(xu) € Ej so,
given any § > 0, we can find vs; € C§° with |[(#~1)*(xu) — vs||g < 6. On the other hand,
X1 € C* so condition (A2) implies

1@~ (xu) = Xavslle = (X (@) (xu) — vs)lle < C8
where C' is independent of §. Setting us = ¥*(X1vs) € C§°(II™) we deduce from Lem-

ma 2.10 that ||xu — us||g(z») < C0 where C' is again independent of §. This completes
the claim.
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The second part of the result follows from (8) and the fact that ©*(C5°(RZ)) =
Cge(IIm).

By arguments as above it is clear that XgFy is a closed subspace of XgFE which
contains C3°. Now let u € XgEy. By Lemma 2.16, niu € Ey and (iu € YgEy so, given
d >0, we can find v € C§° and w € C§°(R}) with |[nu —v|| g, |Giu — w|ly,g < J. Thus
M2V + (ow € C§°. On the other hand, condition (A2) gives

(17) Imu —=mnzvl[e = [lne(mu —v)|[z < C9,

whilst from Remark 2.17 we have

(18) [G1u = Gowllv,e = [[So(Gru — w)lly,e < C6.
Combining (17), (18) and Lemma 2.16 we get

lu = (n2v + Gow)lIxz < lmu —nevlxse + |G1u — Gowllx, &
< C(llmu —navlle + [Gru — Gwllv,e) < CO.

The fact that C' is independent of § completes the result. m

2.3.5. Equivalent norms for some model spaces. In this section we consider some equiv-
alent norms on the spaces XgE when FE is either a Sobolev space of positive integral order
or a Holder space. In particular, this will allow us to identify the spaces Hg’k given in
Definition 1.2 in the Introduction with XgE for appropriate 3 and E.

PROPOSITION 2.35. Suppose 5 € R, p € [1,00) and k € Ny. Given u € 2’ we have
u € XgHP* iff D%u is a measurable function for all multi-indices o with |a| < k and

(19) > [ arerieb=n (@) D2u(@)|P d" < +oc.
la|<k

Furthermore, the quantity on the left hand side of (19) is equivalent to ||u||§@Hka'

REMARK 2.36. Let 8 € R, p € [1,00) and k € Ny. Since the Sobolev space HP"* contains
C§° as a dense subset, Lemma 2.34 and Proposition 2.35 immediately imply that the space
H g’k given in Definition 1.2 in the Introduction is simply Xz, /,H Pk (up to equivalent
norms).

Proof of Proposition 2.35. Propositions 2.20 and 2.33 reduce our task to proving the
result under the assumptions that 5 =0 and k = 0.

Let I, v;, ¥;, U; and x; be as given in the introduction to Section 2.1. Now the
pull-back of the density d"z on R x ;(U;) € R™ is a density on R x U; C IT™ so we
can write (¥;)*(d"x) = J; dtdS™~! for some positive function J; defined on R x U;. In
particular,

S (T Y vdie = Sin dtds™*
for any measurable function v which is supported on R x U;. Now J; is independent of ¢

whilst supp(;) C U; is compact. Therefore J; is bounded and bounded away from 0 on
R x supp(x;). Hence we have
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1@ Ol = (1@ e P d™e = {IxsulP Ji dt dS™— < | ul? dt dS™—

7

for any measurable function u on IT™. From the definition of ZoLP (see (4) and (5)) and
the finiteness of I it follows that

el = § (3 |Xiu|)pdt ds™ =\ jul? dr ds™,

il
where we have used the identity

(20) S il = ]

iel
(recall that {x;}icr is a partition of unity). From (7) we have
(O Y*dtdS" ' = r~tdrdS™t = r~ """ tdrdS" ! = |z "d"x

so (9) now gives

lully, o = @ ulPdt ds™— =\ [uf (©~)*(dtds™ ") = {2~ ufPd"x
for all measurable functions u on R?. Finally, Lemma 2.16 gives

[ullore = ImoullZs + [1oully, -

=\ (@) + 27" I¢o @) [P [u(@) [P d"z < | A" (@) u(z) P d"=

for all measurable functions u on R"™, where the last line follows from the existence of
constants C7,Cy > 0 such that

C1A7"(2) < Ino(@)P + |z["|Co ()P < C2A™" ()
forallz € R™. u

A simpler version of the previous argument can be used to find an equivalent norm
for the spaces XﬂCl when 8 € R and [ € Ng.

PROPOSITION 2.37. Suppose 3 € R and | € Ng. Given u € 9’ we have u € X,BCZ iff uis
l times continuously differentiable and

(21) > sup APTN(@)| Dou(z)| < +oo.
‘a|§lxeR"

Furthermore, the quantity on the left hand side of (21) is equivalent to ||u||x,ct-

Proof. Once again Propositions 2.20 and 2.33 reduce our task to proving the result in
the case =0 and [ = 0.
If w is a continuous function on I7™ then (4) and (5) give

lilr =3 sup 0@ @)l = s Sl = sup [uteo)

ic1 TERXY;(Uy) (tw)ell™ (tw)ell™

where we have used the finiteness of I and (20) in the second last and last steps respec-
tively. From (9) we now get

[ullyoco < sup  [u(O(t,w))| = sup |u(z)],
(t,w)ellm™ zeRn
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for all continuous functions w on R}, whilst Lemma 2.16 finally gives
[[ullxyco = sup |no(z)u(z) + sup |Co(z)u(z)|
zeR” zeR”
= sup (|no(z)u(z)| + [Co(x)u(z)]) = sup |u(z)]
zeR” zeR™

for all continuous functions v on R™. m

It is clear from the proof of Proposition 2.37 that we have
(22) [ully,cr = > sup |27 Dgu(a)]
jaf <t =€R2

for any 5 € R and [ € Ny. This observation will be useful below.
For any [ € Ny and o € (0,1) the Hélder space C'*° can be defined as the collection
of all those functions v € C* for which

S sup [D3u(@)[+ Y sup [Dule) — Dlu(y)| - lx -y =7 < +ox.

lal<l zeR™ =1 z,ycR™
z#y

We can use this sum to define the norm ||||ci+o on C!*7.

REMARK 2.38. Suppose V' C R" is open and {B, },cv is a collection of open subsets of
V for which there exists a constant x > 0 such that VN {y | |zt —y| < k} C B, for all
x € V. It is straightforward to check that
|ullco+e =< sup [u(z)|+ sup  |u(z) —u(y)|- |z —y[7
zeV x€eV
yE€B \{z}
for all continuous functions u with supp(u) C V.

As was the case for the model spaces H?'¥ and C! we can obtain an explicit description
of the space XgO!*.

PROPOSITION 2.39. Suppose 8 € R, 1 € Ng and o € (0,1). Given u € 9’ we have
u € XgC'o iff w is I times continuously differentiable and

(23) > sup [(A7FIDgu)(z)|

|a‘glw€R"
£20 swp |(4H DG @) — (AT D)) -~ 9l 77 < oo
—_; z,yeR"
lol=t "y

Furthermore, the quantity on the left hand side of (23) is equivalent to ||‘||XBCL+0.

The proof of Proposition 2.39 will be preceded by some technical results for which we
introduce the following notation: if u is a continuous function on R” let ||u||, denote the
left hand side of (23) when =0 and [ = 0.

LEMMA 2.40. For continuous functions u on R™,
lulle < sup Ju(z)|+  sup  A7(x)u(z) —u(y)| - |z —y|~7.

zcR» z,ycR"
0<|z—y|<A(x)
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Proof. Since o € (0,1) we have 1 —t7 <1 —t < (1 —1¢)? for all t € [0, 1]. It follows that
(24) |47 (z) = A7 (y)| < |A(z) = A()|” < |z =yl
for all z,y € R™. If w is any continuous function on R™ we thus have
[(A7u) (2) = (A7u)(y)] — A7 () u(z) — uy)|] < [47(x) = A7(y)] - [u(y)] < |z - y|7u(y)]
for all x,y € R™. Hence

lulle < sup |u(z)| + sup A7 (x)lu(z) — u(y)| - |z -y~

zeRm z,yeR™
zFy

On the other hand, |x — y|77 < A7%(z) whenever |x — y| > A(x). Therefore
sup A% (x)[u(z) —u(y)| - & —y[~7 <2 sup [u(z)].
z,yeR™ zeRm
lz—y|>A(x)
The result now follows. m

LEMMA 2.41. We have ||uv]l, < C|lullx,o1l|v]lo for all u € XoC' and continuous func-
tions v on R™.

Proof. For any u € XqC! Proposition 2.37 gives us

(25) lu(@)] < Cllullx,c
and
(26) 1D;u(z)] < Cllullxyer A Hz), i=1,...,n,

for all z € R™. Now suppose z,y € R" with 0 < |z —y| < A(y). Thus = and y both
belong to the ball of radius 2A(y) centred at the origin. Combining this observation with
(26) and the fact that A°~!(y)|z — y|* =7 < 1 we then get

A7 (y)u(z) = u(y)] - |z —y[77 < CA7(y)le — y[' 7 Jullxeer A7 (y) < Cllullxgen
On the other hand, if z,y € R™ with |z — y| > A(y) then A7 (y)|z —y|~7 < 1so
A7 (y)|u(z) —u(y)] - [z =y < Cllullx,er
by (25). Combining the above estimates we thus get
(27) A7 (y)lu(z) —uy)] - [z —y[77 < Cllullx,cr
for all z,y € R™ with z # y.

Suppose v is a continuous function and x,y € R™ with  # y. Using (25) and (27) we
thus have

[(A7u)(z) = (A7wv)(y)] - |2 —y[~°
< Ju(@)] - |[(A70)(z) = (A7) ()| - [z = 4|7 + [o(Y) |47 (Y)[u(z) —u(y)] - [z —y|~°
< Cllullxyer (I(A70) (2) = (A70)(Y)] - |2 = y[77 + [o(y))-
The result now follows from the definition of ||-||,. =

Proof of Proposition 2.39. Propositions 2.20 and 2.33 reduce our task to proving the
result in the case # =0 and [ = 0.

Consider the notation introduced in the first paragraph of Section 2.1 and let © be
as given in Section 2.2. Now, for each i« € I, define open sets V;, W, C R"™ by V; =
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(0,00) x ;(U;) and W; = O(%; }(V;)). Thus the map &; := O o ¥, ' : V; — W, is
a diffeomorphism. Also define a function g; by gi(z) = i (x)x:(P; () for 2 € W;
and g;(x) = 0 for x ¢ W,;. It is easy to see that g; is smooth and independent of ||
for sufficiently large |z|; it follows from Proposition 2.37 that o; € XoC!. Finally, set
V ={lz| <3} CR", som € C(V) C XoCL.
Since {xi}iesr is a partition of unity on II™ we have 1 +> ., 00 = m + ¢ = 1.
Together with Lemma 2.41 and the fact that I is finite this gives
[ulle < lmulle + Z loiulls
il
for all continuous functions u on R™. On the other hand, the definition of XqC°*? means
we have
[ullxocote = [Imulloose + Y 1|19} (0iw)||co+e
iel
for all u € XoC?*?. The following claims thus complete the result.

Claim (i): We have ||v]|co+s < ||v]ls for all continuous functions v with supp(v) C V.
This is a straightforward consequence of Remark 2.38, Lemma 2.40 and the fact that
A(z) <1 for x € V (n.b. V is bounded).

Claim (ii): If ¢ € I then |Piv|go+o < ||v]ls for all continuous functions v with supp(v)
C V;. If we write y € R™ in the form y = (t,w) with t € R and w € R""! then
®;(y) = e'h; ' (w) (where we are considering S™~! to be the unit sphere in R™). Thus,
for all y1,ys € V; with |y; — yo| < 1,
(28)  1i(y1) — Dilye)| = e (JL = e 71| o7 (wa)| + [ (w1) — 7 (w2)])

= 6t1(|t1 — t2| + \wl — ’wg‘)

= A(DQi(y1))ly1 — w2l

where the inequalities |t — t2| < |y1 — y2| < 1 and |@;(y1)| = €'* > 1 have been used in
the second last and last lines respectively. For each y; € V; set

By, = {y2 € Vi | [Pi(y1) — Pi(y2)| < A(Pi(y1))}

Estimate (28) implies there exists £ > 0 such that V; N {y2 | |y1 — y2| < &} C By, for all
11 € V;. Further use of (28) together with Remark 2.38 and Lemma 2.40 then gives

@i vlleorr = sup o(@i(y)l +  sup  |o(@i(y1)) = v(@i(a))] - |y — 22"

yev; y1€V;
y2€By; \{y1}
= sup [v(z)|+ sup A% (@1)|v(@1) — v(@2)| - |21 — 22|77 < [Jv]ls
zeW; xz1,22€W;

0<|I17I2‘<A(I1)

for all continuous functions v with supp(v) C V;. =

REMARK 2.42. Let § € R, I € Ny and o € (0,1). By using Proposition 2.39 it can be
seen that X3C!'*7 coincides with the space CZH(R") defined in [Ben]. Also, by Propo-
sition 2.20, Lemma 2.34 and the obvious modification of Proposition 2.39 for the spaces
Y5C!H7, it can be seen that YzC," coincides with the space Agng(Rf) defined in
Section 3.6.4 of [NP] (here C5™ denotes the separable subspace of C'*7 obtained by
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taking the completion of C§°). The non-separable space YC!*7 contains elements which
behave as O(|z|~?) for |z| — 0,00 and is strictly larger than Y3C5™ (see Section 2.3.9
for a related discussion).

2.3.6. Dual spaces. Suppose E is a model space. By definition . is dense in Ey so any
element in the dual of Fy is uniquely determined by its action on .. We can thus uniquely
identify elements of the dual of Ey with tempered distributions on R", i.e. elements of .7#".
Furthermore, a norm can be defined on Ej by the expression

sup |(7.L, U)R"| = sup |(7.L, U)R"| ’

(29) [[v
ozues ulle ozucce  |ulle

where the second equality follows from the density of C§° in Ey (see Remark 2.7). Ap-
plying standard duality arguments to conditions (A1) to (A4) we obtain the following.

LEMMA 2.43. If E is a model space then so is Ef.

If £ and F' are model spaces we shall write Ef = F provided these spaces agree as
subsets of ." and ||| is equivalent to the norm given by (29). In other words, E} = F
iff there are constants C7,Cy > 0 such that the following hold:

(D1) For each u € C§° and v € F we have |(u,v)ga| < Cy||u] gllv] F-
(D2) For each v € F there exists 0 # u € C§° with |(u,v)ga| > Co|lu| gllv] F-

Suppose E is a model space and 3 € R. Using Lemma 2.34 and an argument similar to
that above, we can identify the dual spaces (ZgEy)*, (YgEy)* and (XgEy)* with subspaces
of 2'(1I"), 2'(R}) and 2’ respectively. The pairings (-,-)mn, (,)rr and (-, -)g~ then
allow us to define norms on these dual spaces (as in the second part of (29)) and compare
them with existing spaces.

REMARK 2.44. For any § € R the pairing (-,-)g» on II" extends to a dual pairing
ng’ X Z_gy — C.
LEMMA 2.45. If E is a model space and 3 € R then (ZgEy)* = Z_(Ef).

Here “equality” is understood in the sense of equivalent norms; that is, we have
expressions similar to (D1) and (D2) above.

Proof. Let F' = E§ and consider the notation of Remark 2.9. Now, for ¢ € I, the pull-
back under Wi_l of the density y.dtdS™ ! is a smooth density on R". Thus we can
write (&, 1)*(x} dtdS"~') = J;d"x where J; € C* (in fact, J; is independent of ¢ and
compactly supported in the remaining variables). It follows that

(u, xiv) 1 = (XjxiePu, xie™Po)gn = (J; (07 )* (e u), (77 1) (xie ') gn

for all w € C§°(II") and v € 2'(II™). Using (D1), (A2) (to deal with J;), Remark 2.9
and ( ), we therefore have

(,0) e <D (u,xa0)mn | < CY T (e w) || sl (77 (e ™) | v
el iel
<O @Y (e w)lle Y (@ “P)|lp < Cllullzsellvllz_r
el i€l

for all u € C§°(II™) and v € Z_gF.
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Now let v € Z_gF'. By definition
[vllz e =D 1) (xie™ " )|l

iel
Hence we can find 7 € I such that

lollz_r < CLl(&7) (xie™ o) s

n.b. i may depend on v but C; does not (we can define C; to be the number of elements
in I). Using (D2) we can now choose 0 # ¢ € C§° such that
(30) (&, (&) (xie™ " 0))re| = Collgll | (#71)* (xie™ o)l
> O Ooll9 e lvllz_ -
Define J! € C®(II"™) by X'} (d"z) = J/dtdS"~! and set u = x;J/e PWr ¢ € C§°(I™).

?

By (5), Lemma 2.10 and condition (A2) (n.b. (¥, 1)*(x;J!) € C*), it follows that

(31) lullzym = IXiTi%; bl ey < CIT)* () dlle < Csllg] e
On the other hand, the definition of J; gives us
(32) (u,0) i1 = (Jixie "W ¢, v) e

= (S ¢, xie o) = (¢, (F) (xie™ "))
Combining (30), (31) and (32), we then get
|(w,0)11n] 2 O Coll @l g llvllz_ o = O C2C5 7 lullzsp 0]z or- m
Under the pull-back induced by the diffeomorphism © : [I"™ — R? (from Section 2.2)
we have ©*d"x = e"'dtdS™~". It follows that (u,v)rs = (0*u,e™O*v) g for any u €
C§°(R?) and v € 2'(R?). Now suppose F is a model space and 5 € R. With the help of

(5) and (8), Lemma 2.45 then gives
[(w, e™O*v) x|

[vlly, _o(mg) = €O 0lz_ymg) = sup
o(E5) o(E5) 0£weCs® (M) |wllz,
|(©*u, e™O*v) | |(u, v)Rr
= @ - DR i
o£uece@®r)  19*ullz,e o£uece®n) Nullvae
for all v € Y,,_g(E{); that is, we have
(33) (YsEo)" = Yn_p(Ep).

PROPOSITION 2.46. If E is a model space and 3 € R then (XgEo)* = X,_g(Ep).
Proof. Let F' = Ej and choose 0 # v € X,,_gF. Now 1211 = 171, (o¢1 = (1 and 12 + (o >
m + (1 =1 so, for any u € C§°,
(u,v)gn = (2w, MmV)R + (CoUs Clv)RQ
while
B4)  ullxse < In2ullz + l[Goully,e and  |vllx,_,r =< [Imollr + [|Golly, _sr,

by Lemma 2.16. Together with (33) this implies

[(u, V)R | < |22, MV)RA |+ [(Cou, GO)Rz | < Cllln2ullEllmullr + [[CoullvsellColly, or)
< Cllneulle + lICoulvse)(Imolle + [Golly, _sr) < Cllullx,zllv

for any u € C§°.

X”,QF
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By the second part of (34) we have
[0lx,—sr < Cilllmollr + 1G]y, _F)-
Consider the following cases.

Case (i): |lvlx,_sr < 2C1[[mv|[r. Using (D2) choose w € C§° with [|w|z = 1 and

vllx,, 57 < 4C1[(w, mv)rnl|. Set u = nmw, so u € C§°, ||v][x,_sr < 4C1|(u,v)grn| and
lullx,2 < C(lln2ulle + [[Gullv,p) = Cllmw|e < Cs
by Lemma 2.16, where C is independent of v and v.

Case (ii): [|vlx,_sr < 2C1[|G1v|ly,_sr- Using (33) choose w € Cg°(RY) with ||w|ly,e
=l and |[v[|x,_sr < 4C1|(w, C1v)Re]. Set u = Gw, so u € C§°, ||v||x,_,r < 4C1|(u, V)R |
and
[ullx,z < C(llmoull 2 + [[Goullv,2) = CllGwllv,e < Cq
by Lemma 2.16, where C is independent of v and v.
By combining the two cases it follows that we can find 0 # v € C§° with

Xn—gF S 40102‘(U7U)Rn‘. n

[ullxsz ]
2.3.7. Multiplication

PROPOSITION 2.47. Suppose multiplication defines a continuous bilinear map EX F — G
for some model spaces E, F' and G. Then multiplication also defines continuous bilinear
maps ZglE X L F — Z51 G, YgEE X Y, F' — Yg,1,G and XgE x X\ F — Xg4,G for any
B,v € R.

Proof. We can prove that multiplication defines a continuous bilinear map E(II™) X
F(II") — G(II™) by an argument identical to that given for Lemma 2.12. The first two
parts of the result now follow from (5) and (8) respectively.

Now nom = mp and (1¢p = (1 so GuCov = (uv and npumv = (Guv. However,
N2 + C1,m + (o > 1, so Lemma 2.16 and the continuity of multiplication as a map
E x F — G and as a map YgE x Y, F — Yg,,G gives

[uvllxs,a < Cllmuvlle + [Guvlly,,,c) < Clnzullsllmollr + [[Gully,zlGovllv, #)
< Cllnzulle + lIGully,2)(lmvlle + lISovllv, r) < Cllullxellvlix,r
for any u € XgE and v € X, F. =

REMARK 2.48. Suppose multiplication defines a continuous bilinear map E x F' — G for
some model spaces E, F' and G. A straightforward consequence of Definition 2.4 and the
Leibniz rule is that multiplication also defines a continuous bilinear map E! x F! — G
for any [ € Ny.

Let E’ denote the closure of E N C, in E with the induced norm (n.b. we have
Ey, C E’' C E although both inclusions could be strict in general). If u € E N Cre and
v € G§ then (uv, f)rn = (v, fu)rs and ||uf]le < C|lullgll fllF for all f € C§°. Using (29)
we thus get

uv n v,u n
|uv| gy = sup MSCHU”E sup m
ozfecge  IfllF rece lluflle
uf7#0

< Cllullgllv]

G§-
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By taking completions we finally see that multiplication defines a continuous bilinear
map E' x G — Fj.

For any model space F, condition (A2) ensures that multiplication defines a contin-
uous bilinear map C*° x E — E. Since the topology on C'*° is defined by the collec-
tion of semi-norms {||-||c: | | € Np}, we can find I € Ny and a constant C' such that
lpulle < Cllollcillulle < Cllollci+|lul|g for all uw € E and ¢ € C*°. The fact that the
closure of C* in C! includes C'*! now completes the following result.

LEMMA 2.49. For all sufficiently large | € No, multiplication defines a continuous bilinear
map C' x E — E.

We conclude this section with an immediate consequence of Proposition 2.47 and
Lemma 2.49 which will be used later in dealing with symbols.

PROPOSITION 2.50. Suppose E is a model space and 3,7 € R. Then, for all sufficiently
large | € Ny, multiplication defines continuous bilinear maps ZWC’I X LgE — Zgi\E,
Y,YCl X YBE — Yﬁ+,yE and X,YCl X XBE — Xﬂ+ryE.

2.3.8. Compactness. Let E and F' be model spaces. We say E is locally compact in F
if multiplication by any ¢ € C§° defines a compact map E — F; in particular, it follows
that we have a local inclusion Ejo. — Floc.

ProOPOSITION 2.51. Suppose E, F' and G are model spaces with E locally compact in G
and for which multiplication defines a continuous bilinear map E x F — G. Let 3,7 € R
and v € X, Fy. Then multiplication by v defines a compact map XgE — Xg4,G.

Proof. Initially suppose v € C§°. Let {u;};en C XgE be a bounded sequence. By
Lemma 2.16 it follows that {vu;};cn is a bounded sequence in E. By local compactness
we can thus find a subsequence {vu;(;)}jen which is convergent in G. Lemma 2.16 then
implies this subsequence must also be convergent in Xg,G. It follows that multiplication
by v defines a compact map XgE — Xg4,G.

Now let v be an arbitrary element of X, Fp. Let € > 0 and, using Lemma 2.34, choose
ve € C§° with [[v — v.|x,r < €. Proposition 2.47 then implies that multiplication by v—v.
defines a map in .Z(XgE, Xg+,G) with norm at most Ce, where C is independent of ¢.
The result now follows from the fact that the set of compact maps in .Z(XgE, X54,G) is
closed (see Theorem II1.4.7 in [Ka] for example). m

2.3.9. Some results relating to symbols. Let | € Ny. Clearly, ¢ € C®(II") C C'(II™),
whilst ¢; is simply a translation of ¢g for any i € Z. Condition (A3) for C'(II") = Z,C!
then implies ||¢;||z,c: is independent of i € Z. However, ¢; = ¢;00~" (by definition) so (9)
now implies [|¢;|ly,c: is also independent of ¢ € Z. Since 1 € XoC' (by Proposition 2.37),
Lemma 2.19 now completes the following result.

LEMMA 2.52. Let | € Ng. Then ||Gllv,ct and ||Gilx,ct are bounded uniformly for i € N.

Proposition 2.47 and the fact that multiplication defines a continuous bilinear map
C!' x C' — (' show that multiplication also defines a continuous bilinear map XqC' x
Xz0! — XC! for any 3 € R. For a given u € XgC!, Lemmas 2.19 and 2.52 now imply
[¢iullx,cr and [|Gully,cr are bounded uniformly for i € N.
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LEMMA 2.53. Let | € Ng, B € R and u € XgC'. Then the following are equivalent:

(i) ||<iUHchl — 0 as i — o0.
(ii) [IGiully,ct — 0 as i — oo.
(111) Dgu(l’) = O(|$|_B_|Oé‘) as r — 00 fo,,,. each |OZ‘ S I.

Proof. The equivalence of (i) and (ii) follows from Lemma 2.19.
(iii)=-(ii). Let ¢ € Ny. Using (22) and the Leibniz rule we have

IGully,er <C Y sup [2)P19 D2 (Gu) ()]

laf <t 2€R
<c(Y sup felIDzG@)) (Y suwp el Dgu()))
la <t €R2 |af <t €suPP(C)

< C|Gllyoen Z sup |27 DSu(z)],
o] <i EsuPP(Gi)
where the constants are independent of ¢. With the help of Lemma 2.52 and the fact that
supp(¢;) C {|z| > €71} we now get (iii)=(ii).
(ii)=-(iii). Suppose (iii) is not satisfied. Thus we can find some multi-index a with
|| <1 and a sequence of points {x;};cy with 2; — oo such that

(35) |zl DSu(z;)| > C >0 for all j € N.
Choose a sequence {j(i)};en with j(i) — 0o as i — oo and |z;(;)| > €'. Therefore ¢; = 1
on a neighbourhood of ;) so (22) gives

ICiully,or > C > Sup |z D (Gu) ()] > Claj o) |71 Dgu(aa))|.-
o <t FERY

The fact that (ii) is not satisfied now follows from (35). m

By Lemma 2.34 we know that, for any 8 € R, XBC(I) is the separable subspace of
XgC" obtained by taking the closure of C§° with respect to the norm ||-[|x,c:. Elements
of XgC} can be given an alternative characterisation as follows.

PROPOSITION 2.54. Suppose | € Ng, 8 € R and u € XgC'. Then u € XgC} iff Du(x) =
o(|z|=P=1el) as 2 — oo for each multi-index o with |a| < 1.

REMARK 2.55. It follows that A= € XgC} for any | € Ng and 3, s € R with 8 < s.

Proof. By Lemma 2.53 it suffices to show u € XzC} iff [Ciullx,cr — 0 as i — oo.

Let u € XgCh and & > 0. Thus we can find u. € C§° with [Ju — uc[x,c1 < e. Now
suppose i € N is sufficiently large so that supp(uc) C {|z| < e?~1}. Since {; = 0 on the
latter set we have (;u = (;(u — u.). Lemma 2.52 and the continuity of multiplication as
a bilinear map XoC' x XgC! — XgC' now imply [|¢ullx,cr < Ce for some C which is
independent of e. It follows that |[(;ullx,ct — 0 as i — oo.

On the other hand, suppose [|G;ul[x,ct — 0 as i — oo. Let € > 0 and choose I € N so
that ||Crullx,ct <e. Now Lemma 2.16 gives us a constant Cy such that

(36) [nr1vllx,0t < Crllnravlle
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for all v € XgC'. Since nyu € C' with supp(nu) C {|z| < e!*'} we can find u. € C§°
with supp(u.) C {|z| < e!*1} and ||nru — ucl|cr < €/Cy. Tt follows that nryq (nru—u.) =
nru—ue so (36) gives |[nru — uel|x,c1 < e. However, u = nyu+Cruso |lu — uellx,cr < 2. m

From Definition 1.1 and Proposition 2.37 it is clear that we have
(37) Sc” C X,C"
for any v € R and [ € Ny. Together with Proposition 2.50 this implies the following.

PROPOSITION 2.56. If E is a model space and 3,7 € R then multiplication by any p € Sc”
defines a continuous map Xgll — Xgy I,

REMARK 2.57. Suppose v € R and p € Sc¢” with principal part r~Ya(w). For any f € BS
define a function p¢ by

pr(x) = f(@)p(z) + (1 = f2)r a(w).
If f =1 on a neighbourhood of 0 it is clear that py € Sc” with the same principal part
as p. On the other hand, if f = 0 on a neighbourhood of 0 then Lemma 2.16 and (22)
imply py is contained in Y,C! for any I € No.

Finally, condition (ii) of Definition 1.1 and Lemma 2.53 give the following result.

LEMMA 2.58. Suppose v € R and p € Sc” with principal part r—7a(w). Then, for any
l € Ny,

Jim [|G(p — a(@)r)lly,ct = 0= lm [[G:(p— alw)r ) x.cr.

2.4. Admissible spaces

DEFINITION 2.59. For any m€R let Sym™ denote the set of functions on a € C2 (R™ xR™)
which satisfy estimates of the form

(38) DS DE a(,€)| < Coar A1I(g)

for all multi-indices o and «’. The best constants in (38) provide Sym™ with a collection
of semi-norms making it into a locally convex space.

For any a € Sym" we shall use a(x, D,) to denote the pseudo-differential operator
defined by the symbol a(z,£). The set of all pseudo-differential operators of order m
(i.e. the set of all operators defined by symbols in Sym™) will be denoted by #Op™.

REMARK 2.60. For any m € R the pairing (a,u) — a(z, D;)u defines a continuous bi-
linear map Sym™ x . — . and a bilinear map Sym™ x %/ — .’ which is sepa-
rately continuous in each variable. If m,l € R it can also be shown that the composition
of operators in wOp™ and WOp' gives an operator in WOp™™!, whilst the adjoint of
an operator in YOp™ is again in YOp™. Furthermore, the corresponding symbol maps

l+m

Sym™ x Sym! — Sym and Sym”™ — Sym™ are continuous bilinear and continuous

anti-linear respectively. Further details can be found in Section 18.1 of [H2], for example.

If a € Sym™ for some m € R then we can write

(39) a(w, Dy)u = | Ko(w, y)uly) d"y
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for all u € &, where K, € %' (R"™ x R™) is the Schwartz kernel of a(x, D,); that is,
Ku(z,y) = (2r) "a(x,y — x) where a is the Fourier transform of a(x, &) with respect to
the second variable (see Section 18.1 of [H2], for example).

LEMMA 2.61. We have K, € Z(R™ xR") iff a € L (R™ xR"™). Furthermore, in this case
a(z, D;) defines a continuous map ' — 7.

Proof. The first part of the result follows from the fact that the Fourier transform defines
an isomorphism . — .. Now suppose K, € ./ (R" x R") and choose any multi-index «
and s € R. Then (39) gives

(40) |AS(CL‘)D$G($,D$)U‘ < |(AS($)D§‘Ka($7 ')7 U)R"l

for all u € .. The assumption that K, € .(R™ x R™) implies that A%(z)DYK,(z,")
forms a bounded subset of . as x varies over R™. The second part of the result now
follows from (40) and the continuity of the dual pairing of . and .%’. =

As a corollary of this result we have the following.

COROLLARY 2.62. Let s € R and ¢1, ¢ € C™ with supp(¢1) Nsupp(¢2) = O and either
¢1 € C§° or ¢a € C§°. Then the pseudo-differential operator ¢1(x)A®(Dy)p2(x) defines
a continuous map ' — .

Proof. The Schwartz kernel of the operator ¢ (z)A%(D;)¢pa(z) is
K(z,y) = (2m) " "o1(2)¢(y — x)da(y)

where ¢ € .’ is the Fourier transform of A*. By standard properties of the Fourier
transform of symbols (see Proposition V1.4.1 in [St], for example) v is smooth and rapidly
decaying away from 0, along with all its derivatives. On the other hand, ¢; and ¢ have
disjoint supports, at least one of which is compact. It follows that K € Z(R"™ x R"™).
Lemma 2.61 now completes the result. m

Using the mapping properties of pseudo-differential operators we can now single out
a special class of model spaces which will provide the natural function space setting for
our main results.

DEFINITION 2.63. An admissible space is a model space E satisfying the following addi-
tional condition:

(B) We have a continuous bilinear map Sym” x E' — E which sends (a, u) to a(z, D, )u.
REMARK 2.64. Condition (A2) for a model space is a special case of condition (B).

EXAMPLE 2.65. A rich class of admissible spaces is provided by the Besov spaces B,, for
s € Rand p,q € [1,00], and the Triebel-Lizorkin spaces F},, for s € R and p,q € [1, o0]
with ¢ # 1 if p = oo; see [T1] and [T2] for the definitions of these spaces and the
justification of conditions (A1) to (A4) and (B) (}).

(*) In the cited literature the continuity of the bilinear map in condition (B) is established
explicitly only for the second variable. However, the full continuity of this map can be obtained
easily from the proof of the relevant result (Theorem 6.2.2 in [T2]) by using symbol norms of a
to make simple estimates of the constants appearing therein.
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The classes of Besov spaces and Triebel-Lizorkin spaces include a large number of
the “standard” function spaces as follows (see [T1]):

Fj, = HP* (the Sobolev or Bessel-potential spaces) for s € R and p € (1, 00),
F2 = hy, (the local Hardy spaces) for p € [1,00),

FY, = bmo (the inhomogeneous version of BMO),

B2, = C? (the Zygmund spaces) for s > 0,

By, = Fs, =W} (the Slobodetskii spaces) for s € RT \ N and p € [1, 00),

B,, = A; , (the Lipschitz spaces) for s > 0, p € [1,00) and ¢ € [1, c0].

The most notable omissions from this list are the spaces C! for | € Ny; these spaces do
not satisfy condition (B) (n.b. although the Zygmund space C* coincides with the Holder
space C'*7 whenever | € Ny, 0 € (0,1) and s = | + o, we only have a strict inclusion
C! ¢ C! when [ € N).

DEFINITION 2.66. Suppose E is an admissible space and let s € R. We define E° to be
the set of u € .’ for which A%(D,)u € E. Furthermore, we give this set a norm |||
defined by |lu||lgs = ||4%(D.)ul &.

REMARK 2.67. If E = H?S for some s € R and p € (1,00) then E* = HP*t5" for any
s’ € R. Likewise, if E = C* for some s > 0 then E¥ = C5+% for any s’ € R, provided
s+s > 0.

Es

PROPOSITION 2.68. Suppose s,m € R. Then the assignment (a,u) — a(x, D;)u defines
a continuous bilinear map Sym™ x E* — E*~™. In particular, for any s € R and
multi-index «, the differential operator DS defines a continuous map Estlal g,

Proof. Given a € Sym™ define a new symbol b € Sym® as the symbol of the pseudo-
differential operator b(z, D,) = A*~™(D,)a(x, D,)A~*(D,). Standard results on the cal-
culus of pseudo-differential operators (see Remark 2.60) imply that the assignment a — b
defines a continuous map Sym™ — Sym”. On the other hand, A" (Dy)a(x, Dy)u =
b(x, Dy )A*(D,)u for any u € .. The result now follows from Definition 2.66 and condi-
tion (B) on the admissible space E. m

PROPOSITION 2.69. Any admissible spaces E and F have the following properties:

(i) If s € R then E* is again an admissible space.
(ii) If 5,5 € R then (E%)S = Est5,
(iii) If s =1 € Ny then E* = E' up to equivalent norms (where E' is as given by
Definition 2.4).
(iv) We have a continuous inclusion E — F iff we have a continuous inclusion
E® — F? for any s € R.
(v) We have a local inclusion Eioe — Fioc iff we have a local inclusion Ef . — F?
for any s € R.
(vi) The space Eq and its dual E§ are admissible spaces.
(vii) If s € R then (E®)o = (Ep)® and (E§)* = (EF)~°.

Proof. (i) The only non-trivial conditions are (B) and (A4) (n.b. condition (A2) is covered
by condition (B)). The former is established in Proposition 2.68 whilst the latter uses
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the fact that conjugation of a pseudo-differential operator by a diffeomorphism which is
linear outside a compact region gives another pseudo-differential operator of the same
order (see Theorem 18.1.17 in [H2], for example (2)).

(i) This is an easy consequence of the identity A%(D,)A* (D,) = A5ts'(D,).

(iii) Suppose u € E*® and let o be a multi-index with |a| <1 =s. Thus A%(D,)u € E
whilst £€*A~5(€) defines a symbol in Sym® so DX A~*(D,,) defines a continuous map on E
(by condition (B) for the admissible space E). Hence DSu = D3A™*(Dy)A*(Dy)u € E
and we have a norm estimate of the form

[1DZulle < Cl[A*(Dy)ullp = Cllul|g:-

The existence of a continuous inclusion E* < E' now follows from the definition of E'.
On the other hand, we can write

(41) A%(D,) = A2(D <1+ZD2) 3" aDgDg
o<

for some constants a® € C. Now suppose u € E'. Therefore D%u € E with |[D%u||g <
Challullg (see Remark 2.5) whilst A=*(€)¢* € Sym” so A~*(D,) D¢ defines a continuous
map on E. Hence A~%(D,)D¥D%u € FE and

[47%(D2) Dy Diul| 5 < Coallull g
With the help of (41) it follows that
Ju = Z a® ) DeDou € E

e <

and ||u||gs = ||A°(Dy)ullg < Cllu||g:. This completes the proof of part (iii).

(iv) The fact that a continuous inclusion F — F' induces a continuous inclusion
E?® — F* is trivial. Part (ii) now gives the converse.

(v) Let ¢ € C§° and choose ¢1, ¢2 € C§° with ¢1 = ¢ and ¢2 = 1 on a neighbourhood
of supp(¢1). Setting ¢3 = 1 — ¢ we deduce that ¢3 € C* and supp(¢;) Nsupp(¢s) = 0.
Now let w € Ej . Therefore pu € E® or, equivalently, A°(D,)¢u € E. By the local

inclusion Ejoc < Floc it follows that ¢oA°(D,)¢u € F and

(42) [¢24° (D) pullp < Ch|¢ul

where C1 may depend on ¢ (through ¢5) but not on u. On the other hand, Corollary 2.62
implies that ¢34°(D,)¢; defines a continuous map .’ — .. Condition (A1) for the
model spaces E® and F then shows that ¢34°(D,)¢$; defines a continuous map E* — F.
Therefore ¢p3A°(D,)pu = ¢p3A°(Dy)p1édu € F and

(43) 3 A% (Dz)gul|r < Collpul|gs,

where Cq7 may depend on ¢ (through ¢; and ¢3) but not on u. Since ¢2 + ¢3 = 1, (42)
and (43) combine to establish the existence of a local inclusion E  — F? . Part (ii) now
gives the converse.

Es,

(?) Technically the result in [H2] only gives a local version of what we need; however, it is
easy to see how the proof can be modified to give the conjugation result as stated above.
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(vi) Condition (B) for Ej follows from the same condition for F and the fact that
pseudo-differential operators preserve the set . (which is dense in Ey). For the dual
space we can use Lemma 2.43 and the fact that the map which sends a pseudo-differential
operator a(z, D,) € wOp° to its adjoint induces an (anti-linear) isomorphism on Sym”
(see Remark 2.60).

(vii) Clearly, (Fy)® C E® whilst A*(D,) : (Ep)® — Ep is an isomorphism which
preserves the set .. The fact that .# is dense in Ey now implies the same is true
for (Ey)®, with the first identity following immediately. The second identity can be ob-
tained from (29) and the expression (u,v)gn = (A*(Dy)u, A=*(D,)v)gn, which is valid
forallue ¥ andve ¥ . n

For the proofs of the next three results let ¢ denote a choice of function in C§° with
1 =1 in a neighbourhood of 0 and Ran = [0,1]. Also, for each j € N, define 9; € C§°
by 1;(x) = (x/j).
LEMMA 2.70. Suppose f € E for some admissible space E. Then we can find a sequence
{fi}jen C Nyer E* with f; — f in E7° for any § > 0.
Proof. For each j € N set f; = ¢;(D;)f. Since ¢;(§) € Sym™ for any m € R, Proposi-
tion 2.68 gives f; € E° for any s € R. On the other hand, a straightforward check shows
A=%(€);(&) — A9(€) in Sym” for any § > 0. Condition (B) for the admissible space
E then implies A=°(D,)f; — A™%(D,)f in E for any § > 0; by definition this means
fi—>finE° =

Although the space XgE need not contain C§° as a dense subset for a general admis-
sible space F, Lemma 2.70 leads to the following slightly weaker result.

LEMMA 2.71. Suppose f € XgE for some admissible space E and 3 € R. Then we can
find a sequence {f;}ien C C5° such that f; — f in Xg_.E~° for any &,5 > 0.
Proof.
Claim: Given f € ZgE we can find a sequence {fj}jen C (Nyer ZpE® with f; — f
in ZgE~? for any § > 0. Since multiplication by e’* defines an isomorphism ZzE® —
ZoE® = ES(II") for any s € R, we may prove the Claim assuming 3 = 0. Consider the
notation of Remark 2.9 and define Y}, = y; o y'lfl € C° for each i € I. Now Lemma 2.10
implies g; := (% ")*(x:f) € E so Lemma 2.70 gives us a sequence {g;;}jen C yer B°
with g;; — g; in E7° for any § > 0. Condition (A2) and the fact that x/} = x; then give
X.gi; — X.gi = gi in E~% for any § > 0. Setting

fi= Z%*(%gw)

el
for any j € N, we deduce from Lemma 2.10 that {f;};en C (,cr £°(/I") whilst
fi= Y Wg=> xif=f

icl iel

in E79(I™) for any 6 > 0. This completes the Claim.

Let f € XgE. By Lemma 2.16 we have nof € E and (of € YgF so Lemma 2.70 and
the above Claim (coupled with (8)) give us sequences {g;}jen C [ er £° and {h;},en C
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Nser YpE?® with g; — no f in E=% and hj — (of in YgE° for any § > 0. For any j € N
define further functions by fi = m1g; + (~1h; and f; = ¢;f;. Another application of
Lemma 2.16 now shows {f]};en C (,eg XpE® and f; — (mmno + (-1¢o)f = f in XgE~°
for any § > 0.

By Remark 2.21 and Lemma 2.29 we can find k € Ny so that we have a continuous
inclusion XgE*+! < XgC! for all I € No. It follows that {f]};en C ey XpC' C Cf%..
Therefore {f;};en C C§°. Now let €,8 > 0. A straightforward application of Proposi-
tion 2.37 shows 9; — 1 in X_.C" for any | € Ny. Proposition 2.50 and the convergence
fi— fin XpE =% then imply f; — f in Xg_.E%. u

LEMMA 2.72. The set C5° is dense in both . and .7'.

Proof. For the density of C§° in . see Proposition VI.1.3 in [Yo]. Now let f € .#’ and,
for each j € N, set f; = ¢,(x)¥;(D,)f. Thus f; has compact support (contained in
supp(v;)) whilst the symbol ¢;(z)y;(€) is contained in C§°(R™ xR™) so Lemma 2.61
gives f; € 7. Therefore {f;},en C Cg°.

A straightforward check shows A~ (2)1;(2)1;(D,) — A~ (z) in Sym' so Remark 2.60
gives A7 (z) f; — A~ (x)f in .. Since the operator (of multiplication by) A(z) defines
a continuous map on .’ we now get f; — fin .. m

The next result follows from Lemma 2.72 and an argument similar to that used to
prove the Claim in the proof of Lemma 2.71.

LEMMA 2.73. For any ( € R the set 23 is dense in Zg.".

The compactness results given in Section 2.3 can be refined for admissible spaces.
We begin with two technical lemmas, the first of which is essentially the Ascoli-Arzela
Theorem (see Section IIL.3 of [Yo]).

LEMMA 2.74. Any bounded subset of . is pre-compact.
LEMMA 2.75. If E is an admissible space and s > 0 then E° is locally compact in E.

Proof. Let ¢ € C§° and choose a sequence {t;};eny C C§° such that ¢, — A% in
XoC® (which is possible by Remark 2.55 since s > 0). It follows that the sequence
of symbols ¢(x)1;(€) converges to ¢(x)A~°(€) in Sym® and so the pseudo-differential
operator ¢(x)y;(D,) converges to ¢(z)A~*(D,) in £ (E, E) (by condition (B) for the
admissible space E). However, the map E® — E given by multiplication by ¢ can be
written as ¢(z)A~%(D,)A*(D,) where A*(D,) acts as an isomorphism E° — E. By the
fact that the set of compact operators is closed in Z(E, F) it therefore suffices to show
that the operator ¢(z)v;(§) defines a compact map E — E for any ¢ € N.

Now ¢(z)1);(€) e C (R™ xR™) C.(R"™ x R™) so Lemma 2.61 implies that ¢(z)y;(D.)
defines a continuous map .’ — .. On the other hand, condition (A1) for the admissible
space E gives us continuous inclusions E — .’ and . — E. By composing these maps
and using Lemma 2.74 it follows that ¢(x)v;(D,.) defines a compact map F — E. =

Lemma 2.75 and Proposition 2.51 (with E, F' and G replaced by E*, F and E re-
spectively) immediately lead to the following useful result.
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PROPOSITION 2.76. Let 3,v,s € R with s > 0 and suppose that, for an admissible space
E and a model space F, multiplication defines a continuous bilinear map EX F — E (or,
more generally, E° x F' — E). Then multiplication by any ¢ € X Fy defines a compact
map Xgl® — Xgy L.

COROLLARY 2.77. Suppose E is an admissible space and (3,7v,s € R with v > (8 and
5> 0. Then the inclusion X E°® — XgE is compact