Introduction

There are three main problems for the Navier-Stokes equations: global existence, global
regularity and uniqueness. Global existence of weak solutions for the Cauchy problem was
proved by Leray in 1934 (see [ler]). Next in 1951 Hopf [hop] proved existence of global
weak solutions in a bounded domain for the Dirichlet problem with nonslip boundary
conditions. The other two problems: existence of global regular solutions and uniqueness
are still open. For the last fifty years many mathematicians have been working to solve
these problems (see Kiselev and Ladyzhenskaya [kil], Ladyzhenskaya [lad 1-3], Serrin [ser],
Fujita and Kato [fuk 1], Masuda [mas], Komatsu [kom]|, Caffarelli, Kohn and Nirenberg
[ckn], Sohr [soh], Wiegner [wie 1-5], Necas [nen, nrs], Neustupa [nen, nep 1-2, neu, nnp,
npo 1-2], Penel [nnp, nep 1-2] etc.).

We can distinguish the following research directions: conditional regularity, blow-ups,
existence of global regular special solutions (lower-dimensional, under special geometries)
solutions. By conditional regularity we mean that some restrictions are imposed either
on velocity or on pressure which imply regularity of weak solutions. The most important
problem is to impose the weakest restrictions.

In this work we present a proof of existence and uniqueness of global regular special
solutions to the Navier—Stokes equations in a bounded axially symmetric domain with
boundary slip conditions under some restrictions on the initial conditions, the external
force and the shape of the domain considered. The main aim is to prove the existence of
solutions without restrictions on the magnitudes of the initial velocity and the external
force. Hence we generalize [zaj 5] where a similar result in a cylindrical domain and with
the slip coefficient v equal to zero was proved.

We have to underline that the proofs in this paper and in [zaj 5] are essentially
different. However, in both cases the main step is the energy estimate for the azimuthal
component of vorticity x (x = a,, a = rotv) which employs an idea of Ladyzhenskaya
[lad 1] who proved such an estimate in the axially symmetric case. To prove this estimate
she needed x|s = 0 as the boundary condition. In [zaj 5] we showed that x|s = 0 follows
from the slip boundary conditions with slip coefficient v equal to zero and the fact that
the domain considered is a cylinder. In this paper we consider the case with nonvanishing
slip coefficient v and a general axially symmetric domain. Therefore x|s is proportional
to k — 7v/(2v), where k is the curvature of the boundary in the plane passing through
the axis of symmetry, and v is the viscosity coefficient. This fact makes the proof of the
energy type estimate for xy much more difficult. Moreover, it implies heavy restrictions
on the boundary and smallness of k — v/(2v) in the norm of V32 (ST), 6 > 1 (see

4,-5/2
Section 2 for the definition of the norm and also Lemmas 4.1 and 6.2).
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In this paper, similarly to [zaj 5], the most important estimates follow from the evo-
lutionary problems for vorticity because the velocity v is calculated from the elliptic
problem rotv = a, dive = 0, v - i|g = 0. To obtain such estimates we need appropriate
boundary conditions for vorticity, where by “appropriate” we mean that «|s depends at
most on v|g, and - Valg at most on v ,|s. This kind of boundary conditions follow from
the slip boundary conditions in [zaj 5] as well as in this paper. Compared with [zaj 5]
the proof of this fact in this paper is much more complicated (see Lemma 3.2). Moreover,
the appropriate boundary conditions for vorticity imply that problems for a, and a,
(o = @ €, a, = €, & = (cosy,sing,0), &, = (0,0,1)) are coupled in boundary
conditions (see (1.7)), in contrast to [zaj 5], where they are decoupled. This implies that
the proof of the energy estimate for components «,., «, of vorticity (solutions to problem
(1.7) (see Lemma 4.4)) is much more difficult than the corresponding one in [zaj 5].

Finally, we underline that all estimates in this paper are done in the Lo-approach.

The main results of this paper are formulated in Theorems 1.1 (local existence) and 1.3
(global existence). The proof of global existence is divided into two main parts. First, local
existence of solutions is proved by the method of successive approximations. In Section 6 a
uniform bound for the constructed sequence is found (see Lemmas 6.1, 6.2). We underline
that the time of local existence is inversely proportional to the expression which depends
on norms describing the distance between the solution considered and the axially sym-
metric solution (see Definition 1.1). It is shown in Section 7 that the constructed sequence
converges (see Theorem 7.7). In Section 8 global existence is proved step by step by con-
tinuing the local solution in time. To prove this we need some decay in time of the external
force, and the existence time of the local solution must be sufficiently large. These condi-
tions imply that no norms of initial data necessary for the local existence should increase
with time. This yields global existence, which is shown in a series of lemmas in Section 8.

Inequalities necessary for the proof of local existence in Sections 6, 7 are derived in
Sections 4 and 5.

We underline that the solution whose existence is proved in this paper has a much more
general form than any solution obtained by examining stability of an axially symmetric
solution (for more details see Section 9.7).

The paper is divided into nine sections. In Section 1 we formulate the main problems
examined in this paper and also present the main results. In Section 2 we introduce
notation. In particular, we formulate imbedding theorems for weighted Sobolev spaces.
Boundary conditions for velocity and vorticity, and energy estimates for weak solutions
are found in Section 3. In Section 9 we present a review of results on global solutions to
the Navier—Stokes equations, giving the state of the art in one of the seven millennium
problems. Other sections are described above.

We use the abbreviation r.h.s. (Lh.s.) for right-hand side (left-hand side). Formulas
and theorems are numbered by section, except those in Section 9 which are numbered by
subsection.

Acknowledgments. The author thanks Prof. J. Zabczyk for important remarks which
allowed improving the form of this paper.



1. Formulation of main results

In this work we consider a motion of a viscous incompressible fluid in a bounded axially
symmetric domain 2 C R3 under the boundary slip conditions (see [lal]):

vy +v-Vo—divT(v,p) = f in 2T =02 x(0,7),
dive =0 in 27,
(1.1) DREDES on ST =8 x (0,T),

0
-T(v,p) Ta +70-Ta =0, a=1,2, onS7,
V|t=0 = v(0) in £2,
where v = v(x,t) = (vi(,t),v2(x,t),v3(x,t)) € R3 is the velocity vector field, p =
p(x,t) € R the pressure, f = f(x,t) = (f1(x,1), f2(z,1), f3(z,t)) € R3 the external force

field, 7 is the unit outward vector normal to S = 0f2, T1, To are the unit vectors tangent
to S, v > 0 is the constant slip coefficient and T(v, p) is the stress tensor of the form

(1.2) T(v,p) = {v(vi; +Vj2,) = Pdij}ij=1,2,3 = vD(v) — pI,
where v is the constant positive viscosity coefficient, D(v) is the dilatation tensor and I
is the unit matrix.

We should underline that another boundary condition for system (1.1); o is the nonslip
condition

(1.3) vlg = 0.

Letting v — oo in (1.1)4 we obtain from (1.1)34 the nonslip boundary condition (1.3).

Moreover, x = (x1, 2, x3) are the Cartesian coordinates. We assume that 2 C R3 is
a bounded axially symmetric domain. The cylindrical coordinates (r, ¢, z) are introduced
by the relation x1 = rcos ¢, zo = rsinp, x3 = z, and the z axis is the axis of symmetry
of £2. S is described by ¥(r,z) =0, r € [0, R], z € [—a, a], which in a neighbourhood of
r = R can be expressed by r = 11 (%) and in a neighbourhood of |z| = a by z = ¥2(r).

Let & = (cos,sing,0), &, = (—siny,cosp,0), e, = (0,0,1) be the unit vectors
along the lines r, ¢, z, respectively. Let k be any vector. Then k., = k -e,, k, = k - &,
k.=k-e,.

Let us introduce the quantities

h =008 +Vp €y + V2 0€z, (=D, W=y

DEFINITION 1.1. By an axially symmetric solution to (1.1) we mean a solution such that
h=0,¢g=0,w=0.

[7]
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To show existence of such solutions we have to assume that h|;—¢g = h(0) = 0, w|i=g =
w(0) =0, f, =0, g = freer + fo,0€p + fr06: =0.

1.1. Reformulation of the main problem. To prove the existence of solutions to
problem (1.1) we replace it by a system of problems. From [zaj 5, Ch. 4] we have

hy—vdivD(h)+Vqg=—v-Vh—h-Vo+g=G in 27,

divh =0 in 27,
(1.4) h-m=0 on ST,

vit-D(h) - To +7h Ta =0, a=1,2, on ST,

hli=o = h(0) in £,

where g = fr € + fo.0€p + f20€z, h(0) = Uy € + Vg ,Cp + V2 pE.|t—0 and v is treated
as a given vector.

For given v, ¢, h we have (see [zaj 5, Ch. 4] and (3.2))

r 1 2 .
w,t+v~Vw+U—w—yAw+u%:—q—i——Zhr—i—fg, in T,
r r r r
(1.5) yﬁ-Vw:—'yw—i—yﬂw on ST,
r
Wli=0 = w(0) in £2,

where the boundary S is described by the equation ¥(r,2) =0, so a1 = /Y2 + ¢2,
ag = 7/}72/ 1/),27" + 1/),22
Let us introduce the cylindrical components of vorticity (see [zaj 5, Ch. 4])

1
ap = o, = . (Vz,p — TUs,2),
(16) Qo = Qp = VUry — Uz =X,
1
Qg = Qg = - [(1vp) = Vi)

Applying the rot operator to (1.1); and using (3.6)—(3.8) (see Lemma 3.2) we obtain

(65) 2v
Qaq ¢ +uv- val — 01 Upy — 7 hr — Q3Vp » + T_z(hr,z - hz,r)

+L.;1—VA041:F1 in QT,
r
(&%) . T
(1.7) agy+v-Vag — (v, +asv, ) — - h, —vAaz =F3; in 2",
2
?2'a=—ﬂw+zw591 on S,
r v
(ﬁ : a),n = 51hr + 52hz + 53w,r + ,8411}72 + ﬁBw =92 on STv
aili=o = @1(0), azli=0 = a2(0) in £,

where §;,i=1,...,5, depend on aq, ay and their derivatives with respect to r and z (see

Lemma 3.2). Moreover, F =rot f, F} = F -&,, F3 = F -€,.
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We shall denote a solution of (1.7) by o’ = (a1, @3). Finally, oz is a solution to the
problem

2v (1
ag,t—i—v-Vozg—i-qu—a-Vw—%vr——l;<—hz,¢—hwﬁz>
T r

r2 \r
(1.8) + % —vAas = F in 27,
ag =2(k—~/(2v))v - T on ST,

Qalt=0 = a2(0) = x(0),
where 7o = aseé, — a1€,, T = a1€, + a2€,, To - @ = a1 — A1Q3, N - ¢ = A1 Q1 + a0z,
0, =7n -V, k is the curvature of a curve S’ which generates S by rotating around the z
axis and Fp = F' - €.
Finally, v and p are calculated from the elliptic problems
rotv =« in {2,
(1.9) dive=0 in {2,

v-m=0 onS,

and

Ap=—Vv-Vov+div f in £2,
1.10
( ) g—i=f~ﬁ+uﬁ-Av—ﬁ-U~VU on S.

In [zaj 5, Ch. 3] we showed that (1.10) is necessary and sufficient for equivalence of
problems (1.1) and (1.7), (1.8), (1.9). However to prove global existence with large data
it is not enough to examine problems (1.7)—(1.9) only. To obtain necessary estimates we
also need problems (1.4), (1.5).

Now we express boundary conditions (1.10)5 in the form depending at most on the first
derivatives of velocity. For this we assume that in a neighbourhood of S there is defined
an orthonormal system of vectors m,71,72. With these vectors curvilinear coordinates
n,T1, T2 such that Vn - V71, =0, |Vn| =1, V7, - V73 = 043, o, § = 1,2, are connected.
Then in the neighbourhood of S we have
(1.11) A =Vpp + Vs 7, VAR + v AT,
where the summation convention over the repeated indices « is assumed. Next

n- VUnn = Un,nn + 1)77,ﬁ : ﬁ,nn + QUTamﬁ : Foz,n + 'U‘raﬁ : ?a,nn,
T Vrpre = Unyrare T a0 Mrgry + 2005 7, Tgr0 " M+ Vg TR rry - T
Hence
(1.12) 7m-Av|s = Vnnn + 20ry o7 Tan + VT Tann
+ 2Ury 7 Tire Pt VU Thrgre BTV AN+ 70 v 7, ATy,
where we used (1.1)s.

In the curvilinear coordinates boundary conditions (1.1)4 assume the form

(1.13) Un,ro + Vroon — Villi ., — ViTain + YUr, = 0.

Using (1.1)3 and differentiating (1.13) with respect to 75 yields
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(114) UTQ,nTﬁ - (/Uini,'ra + UiTai,n),'rg + ’Y’U‘ra,na = 07

where a, 8 = 1,2. Applying the curvilinear coordinates we obtain

(1.15) divv = vy + 07, 7, T diva+ v, divT, =0.
Hence
(1.16) (div ) », = Vpomn + Vry ron + (Un div + v, divTy) ,, = 0.

In view of (1.14) and (1.16) the expression (1.12) assumes the form
(1.17) - Avlg = — (VN ry + ViTain) re + VWi re — BV, Ta - V]vg,
— (vdivim + v, divTa) n + 207, n70 - Tamn + Ur, - Tann
+ 200, 7 Thira "M+ Vs Tirare "+ TV AN+ 10 ATy
= Aijviz; + Bivi,
where the summation convention over the repeated indices is used and [-, -] denotes the

commutator. Finally the last term on the r.h.s. of (1.10)2 equals v;v;1; 4, .
Summarizing, problem (1.10) takes the form

Ap=—Vuv-Vu+div f in 2,
(1.18) op
on
where A;;, B; are defined by (1.17).

= Aij'Ui,:pj + B;v; + ViV z; + f -7 on S,

1.2. Main results. The main aim of this paper is to prove existence of global regular
solutions to problem (1.1) with large initial data and external force. In view of the proofs
of existence of global axially symmetric solutions (see [lad 1, ukh 1]) we are able to
prove the existence of such solutions to problem (1.1) which remain close to the axially
symmetric solutions (see Definition 1.1).

Therefore we distinguish two kinds of quantities: large and small. The large quantities
are connected with the corresponding axially symmetric solution and small quantities
measure the distance between the solution considered and the axially symmetric solution.
The large quantities are: v,., vz, fr, f2, 0, X, Fp = F2, v.(0), v2(0), and the small quantities
are: w = vy, h, fo, ar = a1, o, = g, F = F1, F, = Fy, q, w(0), h(0).

We end this subsection by formulating the main results and outlining the ideas of their
proofs. This paper is devoted to proving two theorems: Theorem 1.1 (local existence with
large existence time T') and Theorem 1.3 (global existence, T' < 00).

To formulate the theorems we need the notation:

Ir=17-e, ftp:f'écp’ f-=1"¢e,
€ = (cos,sing,0), €, = (—sinp,cosp,0), €. =(0,0,1),

9= [rper + fop€p + fo€z,
PWZI'Ot’U7 F1:F'§,«, FQZF'EP, F3=F'éz, F/:(Fl,Fg),

_ — — !
a=r10tv, 0 =€, Q=0 C, Qaz=0a-€, & =(aj,a3), X= 0,

(1.19)

w = vy,

where the dots denote the scalar product in R3.
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Moreover, we introduce the necessary weighted spaces. Let v € R. Then Ly, (Q) is
the space with the norm |[jul|, , (@) = (SQ lul?r? dQ)Y/?, Q € {2,027, 8,57}, and

1/2
HY(Q) = {u: el 132y = (S(|uw|27’2”+ |u|2rz<y71>)dx) - oo},

2
1/2
WE () = {u: lulwg, )= ( D2 JIDsu(@)?r® dz) < oo},
la|<k 2
21 T 2 2 1/2
W™ :{ lullwz 2 o) = ( ( |Dau\+\ut|) ”da:dt) <oo},
0T |alL2
1/p
V! s(27) :{ ully oy = (Z | |Dgu|f’rpw—l+‘al)dxdt) <oo}
la|<t QT
and finally

A,(07) = {u:llulla, @) = ||u||W22‘*yl(_QT) + ||u7$||W22::(_QT) < oo},
0 T T 2 1/2
VO(QT) = {u Nullvpar = sup [u(®) oo + (S Vu(,t)] dxdt) < oo}.
= 0

Now, we enumerate the assumptions necessary to present the main results.
ASsSUMPTION Al.

fo € Lo(27), g€ Lo _1(R7), Fi€ Ly, (027,

Fy € Ly _1(27), Fye Ly(027),

h(0) € HL(2),  w(0) € Hy(2), v(0) € W3 _,(2), a'(0)€ Wz, ,(2),

al(o) € LZ*M(Q)a X(O) € L2771(‘Q) n Hllfu(“Q)v IS (1/2a 1)
ASSUMPTION A2. Let S’ be a curve described by the equation ¢ (r,z) = 0, r € [0, R],
z € [—a,al], where ¥(r, 2) is a sufficiently regular function such that (R, z) = R for z
from some neighbourhood of z = 0 and ¥(0, z) = 0 for z € {—a,a}. Let the boundary S

be obtained by rotating S’ around the z3 axis.
We also use r = 1(z), 2 = a(r). We assume that 91,19,9 € C3. Let a; =

Yo/ J V% + V%, ag = 1./ /Y2 + 2 be the coordinates of the normal vector to S for
¢ = const.

Let
k 1 aia k 1
1= —as+ — (a2, +ay:)as + ! 2’ B2 ==~ a1 = —(ag,; +a1:)ar
r r r " "
. a1as
— ( 1) as —To - Vai + (a277‘ _a1,2>a’1 + )
T "
a7\ a3
5 )T Vay + (az,r — a1 2)az + S
a 1 aia
55: T - v<_1_1>+—(ﬁVa2— ! 2)7
r v r r

where @ = a1€, + as€,, To = a2€, — a1, and k is the curvature of S’.



12 1. Formulation of main results

ASSUMPTION A3.

s va
T

a
v r+ (V22 <o,
T

,
1Bl =F + | VBi|rtH <e, i=1,2,
18] +|VBjlr < e, j =34,
|Bs|r + |V Bs|r? < c.

Let Sy = {z € S:az # 0}. Then

ai
—lr<e¢ onS;.

In a neighbourhood of r =0 on S:
1. either v/r —ay/r > 0 or |a1| < cr on S,
2. either 0 < a; < cr? or a1 < 0 and |a;| < er.
Let us introduce the quantities
X1(t) = gl ro_y0t) + 1ol oty F IF Loty + 1P s (2t
Xo(t) = [100) [l i1, () + 1w (O)l| g ) + 1" (O)lwz, () + la(O)l s ()
Yi(t) = 1Fallzs, i on) + IXO)2s, -1 ()
Ya(t) = [|1F2llr, (2t + [Ix(0) [ 2 L)t [v(0 )||W2‘{1,M(Q),
X() = X1 () + Xalt),  pe (1/2.1)

AsSsSUMPTION A4. There exist positive constants A, B and positive increasing functions
1 and @9 such that

gol(A,B)eCt)_((t) <1
Yi(Yi+ 1)+ V1Ys + Y + Ya] < A,
cY1 < B,

and for some 6 > 1 (close to 1) the quantity oo = ||k —v/(2v)||,5/2 is so small that
e

5/2(5%)
So < eVi(Yi+1)7"+ V1Yo + Y + Yo
THEOREM 1.1. Let assumptions A1-A4 hold. Then there exists a unique solution to prob-
lem (1.1) such that v € A1_,(£2%), x/r € V2(2'), and
(1.20) lvlla,_.on <A lIx/rllveen < B,

1 1
for allt <T where T < Zlnm

Let us introduce the quantities

Y®) = N9 Lo, -1 (2) + 196D La()

71(t) = 1 fo ()l L2(2)s
(1.21) Y2 () = 1 Ol ) + 1EF' Ol o) + 1F1 Oz, (02)s
Y3(t) = 1Fo ()l 2o, 1 (02)5
Y4(t) = | f (D)l Lo
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AssuMPTION A5. The external force satisfies the decay estimates

Y(t) < y(0)e 0t (1) < 4(0)e it 1.4,
where vy, ..., vy are positive given numbers.
Introduce the quantities
di(t) = ”h(t)”Hll(Q) + (1Pl a2y + (1) +71(D),
da(t) = di (t) +72(t),
d3(t) = da(t) +v3(t) +74(2),
di = [[w(0)] 1,1 (2) + ¢(A)d1(0),
where A is the constant from (1.20) and ¢ is some increasing positive function.
ASSUMPTION A6. There exist positive constants Ay, As, As such that for all to < T,
[wO)l a2y < A1, @(A)[ds +di(0) + e 7T Ay] < Ay,
o(A)[e"dy (0) + d1(0) + e T A1) + cy2(0)e T = Ay,
IXO) |2z, 1) < Az, o(A)[ds +d3(0) + 7" Ar] + 73(0) + edo A + e T A3 < A3,
where v, = min{vg, 11 }.

THEOREM 1.2. Let T be sufficiently large and let assumptions A1-A6 hold. Then there
exists a constant D, independent of k, such that

(1.22) WK (@) + 1P (RT) || o) + 1w (ET) | g (2)
T IXET) 2,y 2) + llBD)llwy | (2) <D
for all k € N.
From Theorems 1.1 and 1.2 we have

THEOREM 1.3 (global existence). Let the assumptions of Theorems 1.1 and 1.2 hold.

Then there exists a global solution to problem (1.1) and constants A and B, independent
of k, such that

lvlla,_, cox e, (es1yT)) < A= AKT, (k+1)T),
X1l v (2x (kT (k+1)T)) § B = B(kT, (k+1)T),

for all k € N, where A(KT,(k + 1)T'), B(kT, (k + 1)T) are the corresponding constants
from Theorem 1.1 in the interval (KT, (k + 1)T).

(1.23)

1.3. Outline of proof of the main results. Now we describe the proofs of the main
results of this paper. Global existence of solutions to problem (1.1) is proved in two steps.
First we prove local existence (see Sections 6 and 7) by the method of successive approx-
imations. In Lemmas 6.1 and 6.2 we show that the constructed sequence is uniformly
bounded.

Next in Theorem 7.7 we prove convergence. In Sections 3, 4, 5 we obtain estimates
necessary for the proofs of Lemmas 6.1, 6.2, Theorem 7.7 and the theorem of global
existence.
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In Section 4 we obtain estimates for the vorticity vector. The main estimate is the
estimate for o, = x. The estimate depends on the quantity §y = ||k — 7/2”\/4%/}1(3) which
must be small for the proofs of local and global existence. This quantity captures the
main difference between [zaj 5] and this paper. In [zaj 5] the domain (2 is a cylinder so
k = 0 and only the case with 7 = 0 is considered. In Section 5 we find estimates for the
azimuthal component of velocity w = v,,.

Since the proof of existence of a global axially symmetric solution is based on the
estimate for the vorticity vector (see [lad 1, uky]) we also derive the main estimates
from the problems for vorticity (see Lemmas 4.1, 4.4-4.6). For this we obtain appropriate
boundary conditions in Lemma 3.2. The conditions are such that a|s depends on v|g but
(M- a)p is calculated in terms of v|s and v 4g.

Since v is calculated from the elliptic problem (1.9), the vorticity vector o has one
z-derivative less than v. Therefore, the above boundary conditions for vorticity imply es-
timates for velocity via interpolation inequalities and an energy type estimate for velocity.

We underline that in the case of the nonslip boundary condition (1.3) we are not able
to derive appropriate boundary conditions for a.

The main reason why we are able to prove global existence of solutions to problem
(1.1) which are close to the axially symmetric solution is that the equation for x (see
(1.8)) is only one equation which is nonlinear with respect to large quantities. For this
equation we are able to obtain a global estimate for large quantities in terms of nonlinear
expressions of norms of small quantities (see Lemma 4.1). Other equations and problems
are linear with respect to large quantities and nonlinear with respect to small ones (see
(1.4), (1.5), (1.7), (1.9)). Note that the problem for pressure (1.10) is nonlinear with
respect to large quantities but to obtain the main estimates in this paper we do not need
any estimate for pressure.

Although problem (1.1) for (v, p) is equivalent to problems (1.7), (1.8), (1.9), (1.10)
for (e, v,p) (see [zaj b)), to show existence by the method of successive approximations
formulated in Section 6 we also need problems (1.4), (1.5) for (h,w). This is connected
with the fact that we are able to get some additional regularity of (h,w) (see Lemmas 4.2,
4.7, 5.1-5.5) compared to the regularity of v.

In this paper we need two kinds of estimates: energy type estimates and estimates in
either Hf;lﬂ(QT) or W;’llfu(QT), where p € (1/2,1). The difference between Hffﬂ(QT)
and W2211_ (227 is that elements of H. 12_1M(QT) vanish on the axis of symmetry but ele-
ments of W22117 H(QT) do not. Therefore the spaces H ffH(QT) and W227’117 H(QT) describe
the behaviour of solutions in a neighbourhood of the axis of symmetry. The use of such
spaces is very natural for axially symmetric solutions because the main estimate for y
derived by Ladyzhenskaya [lad 1] and Ukhovskii-Yudovich [uky] is in weighted Sobolev
spaces (see also Lemma 4.1).

The difference between H 12_1H(.QT) and W3 ,.(£27) is examined in Section 2.

The weighted spaces are very appropriate to describe solutions which are close to axi-
ally symmetric ones. Therefore in this paper h € H*} (27) (Lemma 4.2), o/ = (a1, as) €
Wit  (27) (Lemma 4.3), o1 € Hi',(27) (Lemma 4.4), X € Loo(0,73 Ly —1(£2)) N
Ly(0,T; H | (£2)) (Lemma 4.1), w € H}' (27) (Lemma 5.1).
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In [zaj 5] we proved the existence of solutions to the heat equation for the Dirichlet
and Neumann problems in weighted Sobolev spaces.

Finally, we have energy estimates for: h (Lemma 3.6), x (Lemma 4.1), o’ = (a1, a3)
(Lemmas 4.4, 4.5), w (Lemmas 5.2-5.6).

To show an energy estimate for h we need the Korn inequality (Lemma 3.4).

Finally, we have to stress that to close all estimates in Section 6 we need a very strong
restriction on the shape of S: ||k — 7/(21/)HV43/_21/2(S) must be sufficiently small. We hope
that employing the L,-approach, this restriction might be relaxed.



2. Notation and auxiliary results

In this part a simplified notation for different weighted Sobolev spaces is introduced.
Moreover the Hardy inequality and some imbedding theorems for weighted Sobolev spaces
are formulated. Next we introduce trace spaces of functions from the weighted Sobolev
spaces and prove direct and inverse trace theorems. Finally, we formulate results on
existence of solutions with corresponding estimates for initial-boundary value problems
for the heat equation, nonstationary Stokes system and for the boundary value problem
for the (rot, div) elliptic system. Since our considerations are restricted to the Ly-approach
the above existence results are obtained by applying the Fourier-Laplace transforms and
examining corresponding problems with parameters.

2.1. Spaces and notation. To simplify the writing we set

[ulp.q = llullL, @) Qe {02,507 5"}, pell o,

lulls.@ = llulls(q)> Q € {£2,5}, s € NU {0},

||u||S,Q = ”’U’HVVE’S/2 bl Q S {QT7ST}7 S € NU {0}7
27 (Q)

where ||ullo,g = |u|2,0. We introduce weighted spaces with weight equal to the distance
to the axis of symmetry,

1/p
fully o= ([l aQ) . pellioo). neR Qe .50 57,
Q

where 2 C R? has an axis of symmetry and r is the distance from it in cylindrical
coordinates and for simplicity we define
lulp.p.@ = llullz,..@-
Next
1/2
HUHH};(Q) _ ( Z S |Dgu‘2r2(ﬂ—s+\0¢|) dQ) ,

loal<s @
where Q € {£2,5}, s e NU{0}, p € R, and

i —s+|al+2i 1/2
HUHH;,sm(Q) = ( Z S ‘Dga,?u|2r2(“ +a|+21) dQ) ’
|a|4+2i<s Q
where Q € {07, ST}, s € NU{0}, u € R. Moreover, for simplicity, we set
lullzzg@), Q€ {2,8}, se NU{0}, peR,
lulls. @ =

lull yoorz gy Q@ € {27, 8T}, s e NU{0}, peR.

[16]
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We define
T QT
fulling = § w2y for @ €427, 57},
v ullwi@) for Q € {02, 5}.
We introduce

luly, po0r = iz, 01, 2 Nuly, pypor = lullL,, 0.1:L,, ,.2);
1/p
||U||W;7“(Q) = ( Z S |Dg’u,‘p’rpl" d.’If) ,
la|<s 2
and
llls,p, = llullwe @), Nulls puor = llullyysrn gr-
ot pon’ (£27)
Moreover

T p2/pP1 1/p2
lullz,, ,,@r) = (S (S |u|Pr dx) dt) )
0 2

We also introduce the space V! (Q), Q € {£2, S}, with the norm

P
1/p
||U||vpl (@ = ( Z S |Dgu|prp(ufl+\al) dQ) 7
’ lal<l Q

where u € R, p € [1,00). Furthermore, we set

lulliper = llullyirzgrys  ullipune = llullvy @)
where Q € {2,5},1 e NU{0}, p € [1,00), 1 € R. Finally, we introduce
||UHA,L(QT) = \|U||W§j(nT) + ||U,r||wz2;;(m),

and
T

1/2
lull%, (27) = lul gr = sup lu(t)o.0 + (lua()Bodt) "
t<T 5

2.2. Imbedding and trace theorems. For the reader’s convenience we list the esti-
mates and imbeddings which are used in this paper. First,

(2.1) lu®)lls.2 < c(llullstr.00 + [[u(0)]ls.2), s € NU{0},
(2.2) [u@®llsp.e < clllullsriper + [u0)]spe), s € NU{0}, peR,

where ¢ does not depend on t.
By ¢(a), ¢(a) we denote generic functions which are always positive and increasing
and satisfy

le(a)| <ea®, ¢>0.
From [bin, Ch. 1, Sect. 2.15] we have the Hardy inequality

m
i
(2.3) |flg—(1/q+a) Ry < (E) |f e lpi—(1/pt+a) Ry 5

where a #0, 1 <p<g<oo,u=1-1/p+1/q, and for p = 1, ¢ = co we assume that
(w/laf) = 1.
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More useful for us is the following Hardy inequality [bin, Ch. 1, Sect. 2.15]:
1 1
24 R, < ———— |z R, a# .
( ) | |P; + |a _ 1/p| | »'Elpy + P

Using (2.4) we obtain the Hardy inequality for the domain (2. For this purpose we write
(2.4) in the form

oo 1 (o)
(2.5) P fIPdr < ————— \ P D[P dr,
§ o —1/p|? (S)

Using cylindrical coordinates we obtain from (2.5) the inequality

a 2 00 a 2m [eS)
1
(26) | dz | do \rrtfPrdr < ——— | dz | dp \ r PO f L Prdr,
—Sa (S) §) |a N 1/p|p —Sa (S) § '
Hence
1
2.7 _ < —\fzlpi—u.,
(2.7) |flp,—pn.2 < la—1/p| |felp,1—p.2

where = o+ 1/p.
We also need the imbedding theorem for weighted Sobolev spaces (see Lemma 1.5 in
[map 1))

(2.8) [[ullve

q,BJrsflJrn/pfn/q(“Q) = c”u"sz,B(Q)’ f2c Rn’
whenever s — I +n/p—n/q <O0.

Now we introduce some weighted Sobolev spaces, isotropic and anisotropic, with frac-
tional derivatives. We formulate for them trace theorems, both direct and inverse. We
shall do it in the case of n space dimensions, although in this paper the case n = 3 is
considered only.

The space V. ,(£2), 2 C R, has the property that DJu, u € V! (£2), vanishes on
the axis of symmetry if |5] <1 — pu — 2/p. Therefore to examine functions which do not
vanish on the axis of symmetry we introduce the space W} ,(£2) with the norm

lullwe oy = (D § IDgu(@) e de)

la|<i 2

1/p

Let us consider a more general anisotropic space W];#(]R”H; M), where M = R"2 is
described by 2’ = (x1,22) = 0, and I = (lo,l1,...,1n), l; €N, i =0,...,n, p € [1,00],
u € R, and

n

Fellus, reniary = 2 105l ey + el cieniany

i=0
and
el g
el emsian = (§ lu@)Plaeaz) ™,
Rr+1
where T = (o, z1,...,2,), € = (T1,...,2y), ' = (21, x2).

From [zaj 3] we have
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LEMMA 2.0. Assume that u € Wg,M(Q), Qe R 1= (lp,ly,...,1p), 1 < p<q< oo,
,U/,VGRJF,0<liGZ,OSUiEZ,i:0717...77L, li =1 =1,

1 I\ =1l Ko 1
(2.9) %1<——> lf*ZT*l—(M*V)ZO,
i=0 v

p q

and q satisfies the R(I)-horn condition. Assume u > v. Then D°u € L,,(Q), & =
(00,01,---,0n), and

(2.10) ID7ullz, @) < 10 llull i (q) + 20 HlullL, @)
for all § € (0, hg), where the constants c1,co do not depend on f and hg = ho(Q).

First we consider the space Vp’fu(R’_ﬁ;M), keN,pe(l,00), u € R, M = R" 2 is
determined by #’ = (z1,22) = 0 and R} = {z € R" : x, > 0}. For the weight we take
the power function r#, where r = |2/|.

We underline that the space (and other spaces introduced later) has a different struc-
ture than the spaces used for elliptic (or parabolic) problems in domains with edges
because the weight is calculated from a subspace intersecting the domain and orthogonal
to the boundary (see [map], [soz]).

By Vp]f,;l/p(R"’l;M) we denote the space of traces on z,, = 0 of functions from
VE(RE M), Le. Vo /PR M) = VE (R M)\ VE (R?; M), where VE (R?; M)
is the closure of the smooth functions vanishing on R’ . Therefore

@1l o sy = {0l enian v —w € VE (RIS M)},
From Lemma 1.3 of [map] we have
LEMMA 2.1. The norm in Vp]f,fl/p(]R”*I; M) is equivalent to
dz, dT
(2.12) ( I > 1 Deu@) - [#1Dgu(@) | ——2—
Rl Rt |a|mhe1 [Ty — Ta["FP

1/p
+ S Z D%u(x)|px/p(u—k+a)—1>
Rn—1 |a|<k—1
where T = (T1,T2,...,Tn-1), T = (T1,T2).
Proof. Let W,f_l/p(Rnfl) be the space of traces on z,, = 0 of functions from WI’f (R™).
For u such that suppu C {x € R""!: 1 < |2/| < 2} we have the equivalence
(2'13) clHu”Vpr;l/p(Rnfl;M) < ||uHW:71/p(Rn71) < C2||u||Vpr;1/p(]Rn71;M)?
where

214) g =( § § X 102 (@) - D u(e)
Rn—1Rn—1 ‘a|:k;71

d.Il dﬂj’g
|x1 _ x2|n+P*2

1/p

+ | > pru@rdr)

Rn-1 |o|<k—1

and in (2.13) the norm [jul||x-1/» has the form (2.12).

(Rm=1;M)
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Using the homothety z +— 2"z we find that for u such that suppu C {z : 27! <
|z'| < 2v*1} the norms Vpk,;l/p(R”’l;M) and (2.12) are equivalent. Let us introduce
a partition of unity {¢,}5 _ . such that supp¢, C {z € R : 271 < |2/| < 2¥"1} and
|D2C, (x)] < 271l v =0,F1,....

Lemma 1.1 in [map] implies that the norm (2.11) is equivalent to the norm

1/p
(2.15) ( Z ||<IJUHVPI‘2;1/P(Rn—1;M)) .

V=—00
Using this equivalence we end the proof.

Although the norm (2.12) for traces is commonly used, it is more convenient for us to
employ norms which distinguish directions orthogonal and parallel to M. This happens

when we consider anisotropic spaces for space-time dependent functions. For this purpose
we use [iln], where the following result has been shown:

LEMMA 2.2. The norm of W;:_l/p(R"’l) is equivalent to the norm

_ o o dz} dz¥§
(2.16) (S Y S S D2 u(F, 7) — DYyu(T, xé’)|pW
R2 |a|=k—1Rn—3 Rn—3 1 2
dz" D% w(@ 7' — D NT d_l d_l
+ 7y |Dg, w(z,7") — Dg; u(T3,7")| —f, AT
Rn—3 |a|=k—1R2 R2 2

1/p
Y ) ppaa@rar)

|a|<k—1Rn-1
where T = (21,...,%p-1), T = (21,22), T' = (23,...,Tpn_1)-
From Lemma 1.4 in [map] we have

LEMMA 2.3. The norm of V,f;l/p(R”_l; M) is equivalent to the norm

@) (Vipear 32§ § IDgu@ w) - Dyu(, 3| QL AL
| e N Gy g

R? o=k —1 Rn=3 Rn=3
dz’ dz
+ a3 I Dg w7 - DguE, 7P e
Rn—3 |a|=k—1R2 R2 o
1/p
FY sl peten)
|| <h—1Rn-—1

The proof is similar to the proof of Lemma 2.1.

Now we pass to the anisotropic space Vp]f;f/Z(Ri x (0,T); M), k € N, p € (1,00),
pE€R. By Vi /pR/271E0) (=1 (0, T); M) we denote the space of traces on a, =0
of functions from Viif/2(R™ x (0,T); M), i.e. Vi /P21 CP =1 (0. T); M) =
Vp]fﬂk/z(Ri x (0,T); M )\Vk k/Q(R" x (0,T); M), where ‘O/l;,’ﬁﬂ(Ri x (0,T); M) is equal to
the closure of the smooth functions vanishing on dR"} x (0,7), OR", = {x € R" : x,, = 0}.
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Therefore

(2.18) ||u|‘vplf;1/p,k/2*k/(2p)(RnflX(O’T);M) = iﬂf{HUHV’v;k/?(Rn x(0,T); M) *

v—ue VERRY x (0,T); M)}.

Similarly to Lemma 2.3 we have

LEMMA 2.4. The norm of Vplf,jl/p’k/Zfl/Zp(R”_l x (0,T); M) is equivalent to the norm

T
(2.19) <S|a?’|p“df’ 3 “dts \ D2, 00w, 7, 1)
0

R2 |a|+2a=k—1 Rn—3 Rn—3

d—// d—//
« a —1
D%, 0 u (@, $2at)|pW

T

dtdt’
S|D—//aa (_l _”,t) — Dall t/u(ﬂjl f//7tl)|p :|
0

|t _ tl|1/2+p/2

+ {azfae ST\ V@D w@, 77, 0) - 7]t DS u(@h, 7, 1)
|| +2a=k—1 R2 R2

— = T 1/p
dl’/dl’/ — a a)—
Wt X 1] et pe i)

A
|a]+2a<k—1 0 Rn—1

Finally, we introduce the traces for ¢ = 0 which belong to the space V), “2/ P(R7; M).
A lemma similar to Lemma 2.4 can be formulated.

Applying homothety (see the proof of Lemma 2.1) we can prove the following trace
results (see [map)):

LEMMA 2.5. Assume that u € Vi, kﬂ(R’jr x (0,T); M), k,|la|,a € N, k — |a| — 2a > 1.
Then D2O%u|y, —o € Vi 117207 1210l [2-a"1 /20 (R"=1 x (0,T); M) and

(2.20) ||Dgafu\xn:o||fof;\awfza—l/p,k/z—\a|/2—a—1/(2p>(Rn,1X(O’T);M)

< cllullyr ez @n w 0.0y

Assume that @; € Vp]f;j_l/p’k/Z_j/Q_l/(zp) (R x (0,T); M), j < k—1, are given. Then
there exists a function u € Vp’fpkm(R:‘_ x (0,T); M) such that

O )
—_— = QO j = 0 e k — ].
ax% - 7 ) 9 )
and
k—1
(2.21) leellv 72 o e 0,900y < D Nsllyzsmarmnramira-rson gooss oy

=0

To simplify considerations we omit the parameter M in the definitions of norms
introduced below.
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By LS’N(RZLF), Lg;l/P(Rn—l)’ W;;l/p(Rn_l>, Rn—l — Ri P k ¢ N, pE [1,00],
1 € R, we define sets of functions for which the following expressions are finite:

1/p
lullzs , @n) = ( S | IDsu(@) Pl dx) .ol = (21, 12),
la|=k R7
D« — D~ p 1/p
||u||L§_ul/p(]R"*1) = < Z S ‘xl‘Pll« dx S ‘ 'U/(x)| |n+p1142($ + y)| dy) ’
’ |laj=k—1 Rn—1 K,y (z) Y

where K () = {y € R" 1 : |y| < |2'|}, and
1/p
lllgirioggny = (0§ IDZu@)PlP de) ™+ el oo gy
Ja|<k—1 Rn—1
Similarly we introduce the anisotropic spaces
W;;l/p’k/271/(2p) (R™ x (0,T)), Lz;;}/p,k/zq/(zp) (R"! x (0,T)).
From [soz] we have

LEMMA 2.6. Let u € LE (R7) and |a| < k. Then D*ul,,—o € Ly """ /P(R*1) and

[ID%u

wa=0ll pr-tor-1/p gy < cllullLe )
Let u € W) (R?) and |a| < k. Then
Dau|mn20 c W}I)@y;m\fl/p(Rnfl)
and
1D ula =0l i tat=1/0 gn-1y < cllullw , @2)-

LEMMA 2.7. Let @; € Ly, 7 "/P(R"=Y), i = 0,....k — 1, be given. Then there emists
a function u € L’;,M(R’}r) such that

u
ax% o0 (p]a .7—07 ak_lv
and
k—1
”u”L’;‘M(Ri) < CZ ||<,0j||Llpc;Ljfl/p(R”,1).
=0

Let p; € Wﬁ;jfl/p(R"_l), j =0,...,k =1, be given. Then there exists a function
u e Wy (RT) such that

o’
8;2%1.:0 QDJ, ]*07 ’k717
and
k—1
o v ey < € 3 1sllsos-17m gncsy
7=0

Similar results hold for anisotropic Sobolev spaces.
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Now we find a relation between Vp’fH(R’}r) and W;# (R7). Assume that u € L’;’“ (R%),
1-2/p+s—1<pu<1-=2/p+s, k>s. Then by the Hardy inequality

[|u — Pk_s_l(“)”ngk(M) < CHUHL’;,#(Ri)a

where
poy S|
N = Ort|, gl
Therefore if u € W} ,(R}) then u — P*~57!(u) € V,J,(R) and

[u— P57 (u )HVk LR S C||UHWk (R
Now we recall some Hardy inequalities.

LEMMA 2.8 (see [kon]). Assume that u € Ly, (£2), 2 C R, 2 is an axially symmetric
domain. Assume that s > p>s—1, m,s € NU{0}, m > s. Then
(2.22) lu = P W), i) < cllullig, @),
where _
= Zu(i)|r:() T._a

i<k it
and u') = d'u/or'.
Proof. Let m =1, s = 0. Taking u € L%’ #(Q) and using cylindrical coordinates we have

a 2r Y1(?) ou

2p+1| 7"

S dz S dy S r o

—a 0 0

where 2 = {x € R®: 2 € (—a,a), p € (0,27), r < 1(z)}. To apply the Hardy inequality
it is enough to consider only the integral

2
dr < oo,

" oul?
_ 2p+1
1= (SJT o dr.

Since p € (—1,0) Lemma 4.2 from [kon] implies that w is a continuous function of r.
Therefore Lemma 4.10 from [kon] implies
R
I> cS r2u — ulp—o|? dr.
0
Let m € N and s = 0. Then in view of the above considerations we have

R 2 R 2
0"Mu oty 9mly
I1:S Zutll dr>cSr2“_1 - dr
— Tmfl Tmfl
: 0 0

om— 1 ’I“m_l
_ym=1
orm- 1(“ w0 (ml)!>

amf ,r,mfl
o mey T
o (“ W o (m—1>!>

2
dr

2p—1

c\T

7,2

>c

|
I




24 2. Notation and auxiliary results

am72 ’I’m71 2
_ gm0 d
drm—2 (“ w =0 1)!) o
R 2
8m—2 rm—l 8m—2
_ 2p—3 _ ,(m=1) _
=c § r Bym=3 <u U lr=0 (= 1)!) 87”7"*2” L dr
R _ _ _ 2
87” 2 rm 1 rm 2
_ 2u—3 _ ,,(m=1) o (m=2) o
_cér ‘87”"—2 (“ w0 G |T_O(m—2)!> ar
R
> o> [ petmmpy Pt ar.
0

Continuing the procedure for s > 0 we conclude the proof.
From [bin, Ch. 1, Sect. 2.16] we have the Hardy inequality:

LEMMA 2.9. Let p € [L,00], B # 1/p, F(x) = §( f(y)dy for B > 1/p and F(z) =
Szo f(y)dy for 3 < 1/p. Then

(2.23) |27 Fl, g1 < = e

15 —1/p| /|

From Lemmas 2.8 and 2.9 we have

LEMMA 2.10. Assume that u € L7, (£2), p € [1,00), and 2 C R? is an azially symmetric
domain. Assume that 1 —2/p+s—1<p<1—2/p+s,m,s € NU{0}, m > s+1. Then

9.24 _ pm—s—l < ¢
( ) [|lu (u>||Lp,“_m((2 =T —2/p—q [|u ||Lp L (2)5

where the polynomial P* is defined in Lemma 2.8.

Proof. We shall restrict our considerations to the case m = 1 because the case m > 1
can be considered in the same way as in the proof of Lemma 2.8. Taking u € L, ,(12)
and using cylindrical coordinates we have

a 27 P1(z)

S dz S dy S pprtl g
—a 0 0

dr < oo.
r

To apply the Hardy inequality we consider the integral

P1(z)
oul?
_ pu+1
I = §J T 7 dr.

Applying the Hardy inequality (2.23) with 6 =1— 1/p — u we obtain

¥1(2)
I>c S rPU=DH )y (0)[P dr
0

if 1 —2/p — p # 0. Following the proof of Lemma 2.8 we finish the proof.
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2.3. Estimates for some elliptic and parabolic problems. We need

LEMMA 2.11. Assume that w € W2'(£2 x (0,T)), 2 C R"™. Assume that u has traces

u(t),u(0) € Wg_Z/p(Q), t € [0,T]. Then there exists a constant cg, which does not
depend on T, such that

025) s [ulyzngy < oz ooy + 1Oz o)
Proof. Let @ be an extension of u such that @ € W' (R" x (0,T)) and

||ﬂ||wg-1(wx(o,:r)) = C||U||W5-1(Qx(o,T))'
In view of the above inequality we have for the trace u(0) a corresponding extension such
that @(0) € W, ~*/?(R") and

O 3y < AUy z-270(y

In the case of bounded {2, the above extensions can be taken in such a way that suppu C
Bpg, where R < 0o, Bp is a ball of radius R and {2 C Bpg.

Let us introduce a new function v = @ — @(0). Hence v|;=¢9 = 0. Therefore v can be
extended by zero for ¢ < 0. Denote the extension by . Then v € W2 (R" x (=00, T))
and

”fﬁHWil(R"x(—oo,T)) < C||UHW,?‘1(R"><(O,T))'
Next we extend ¥ to t > T. Denote the extension by v. Hence we have
||§||W5‘1(]R"><]R) < C||5HW5'1(]R"><(—O<>,T))
= C””ngvl(]Rnx(o,T)) < C(HﬂHWgJ(]Rnx(o,T)) + ||ﬁ(0)||Wp272/p(]Rn))
< C(H“||W3‘1(Q><(O,T)) + HU(O)”Wg*Z/P(Q))a

where the constants ¢ do not depend on T'. Taking the trace

130 -2/ gy < elulliz s o2y + 18O lyy-2m )
where ¢ does not depend on T, we obtain estimate (2.25). This concludes the proof.

The proof of Lemma 2.11 can also be applied to weighted Sobolev spaces Wgﬁ(QT)
because it does not depend on the properties of functions with respect to the x variables.
The extension from {2 to R™ can also be done for functions from weighted Sobolev spaces.
Therefore we have

2,1 n
LEMMA 2.12. Assume that u € W, (£2 x (0,T)), 2 CR", p € R, p € (1,00). Assume

that u(t), u(0) € W;;Z/p(QL t € [0,T]. Then there exists a constant cfy, which does not
depend on T, such that

(2:26) - sup Ju®)lyz 2rm o) < OUtllwztoxom) + 1Oz 2mq)-

In this paper we consider problem (1.1) in the whole axially symmetric domain so
behaviour of solutions near the axis of symmetry must be taken into account. To prove
existence of solutions to problem (1.1) we need to show existence of solutions of the
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following elliptic and evolution problems. First we examine the elliptic problem
rotv =w in {2,

(2.27) dive=0 in {2,
v-n=0 onlS.

From [zaj 2] we have

LEMMA 2.13. Assume that w € W;ﬁ(QT), p € Ry. Then there exists a solution to

problem (2.27) such that v,v, € Wfi(QT) and

(2.28) ||U||A#(QT) < C”wHWéZ:;(QT)'

Let us consider the following problems:

uy — Au = in 2T,

(2.29) ! f .
u|t:0 = Up m Q,

with either the Dirichlet boundary conditions

(2.30) uls =u; on ST,

or the Neumann boundary conditions

0
(2.31) G_Z . =uy onST.

From [zaj 1] we have

LEMMA 2.14. Assume that f € Lo, (27), up € Wy, (2), u1 € W§L2’3/4(ST), uy €
1

W27L2’1/4(ST), € Ry. Then there exist solutions to problems (2.29), (2.30) and (2.29),
(2.31) such that u € Wf;(QT) and

(232)  Jullwzigon < Ul flza cam + luollwg, oy + lunllyzraors o)

and

(2.33) lullwzr (@ry < Ul fllLa uior) +lluollwg @) + luzllyyrzs gy )-

Finally, we consider the nonstationary Stokes problem

vy —vAv+Vp=f in 27,

dive=0 in 27,
(2.34) V=0 = Vo in £2,

v-n=0 on ST,

7-D) -Ta=0, a=1,2, onST.
34

Assume that solutions of (2 satisfy

(2.35) S v (7, , 2) dz = 0, S pdx = 0.
Q Q

Then we have
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LEMMA 2.15. Assume that vo € H},(£2), f € La,(27), p € [-1,0). Assume (2.35). Then
there exists a solution to (2.34) such that v € H2'(27) and

(2.36) [0l gr21 (ory + WP Lac0,msm2 (2)) < clllvollmr o) + 1 fllLs . 0r))-

2.4. Differential operators in cylindrical coordinates. Finally, we express different
differential operators in the cylindrical coordinates r, ¢, z. We recall the relations z; =
recosp, T = rsing, x3 = z and the vectors &1 = €. = (cos¢,siny,0), & = €, =
(—sinp, cos,0), es =€, = (0,0, 1). The Laplace operator in cylindrical coordinates has
the form

1 1 1 1
(2.37) Au = = Or(ru,) + 3 U F Uy =Up + U + 3 Uy + U,
Let v be a vector. Then Av in cylindrical coordinates takes the form
v 2
Av -1 = A(vyey) - €1 = Av, — T—g 2 Vg )
v 2
(2:38) Av -8y = A(va8,) - 82 = Av, — T—g + 2 Ures

Av -3 = Av,,
where v, = v-€,, a = 1,2,3, and the summation convention over repeated indices is
assumed.
Let D(v) = {dij(v)} = {vie; + vj e, }- We calculate
1 1

drr = dijerierj = QUr,ra dmp = dijerieapj = ; Vrp — ; Vy + Vo ,ry
2 2v,
(2.39) depp = dijepiey; = r Vg, + r dor = dijezierj = Ur 2 + 0z,

1
dzga = dijeziecpj = Vp,2 + ; V2,05 dzz = 2vz,z~

Finally,

v-Vh-g, = U~th,—|—%rhr, v-Vh-e, =v-Vh,,

(2.40)  v-Vhe, = U-Vhr—%,

where v - Vh = (0,0, + 220, + 0. )h. Moreover,

(2.41) dive = v + %U%V, +v,. + %,
and

o =10tV -8 = . [V, — TV, 2],
(2.42) Qp, =10tV -8 = Uy, — Uy p,

B 1
o, =10tV €3 = . [(1vy) r — Urgl.



3. Boundary conditions for velocity and vorticity

In this section we express the slip boundary condition in cylindrical coordinates (Lemma
3.1), we find the boundary conditions for the vorticity vector (Lemma 3.2) and show the
Korn inequality necessary to prove energy type estimates for v and h.

3.1. Boundary conditions for velocity in cylindrical coordinates. First we ex-
press the boundary conditions (1.1)3 4 in terms of cylindrical components of velocity.

LEMMA 3.1. Assume that S is described by the relation ¢¥(r,z) = 0. Let

Yy Y,z

Then (1.1)3 takes the form
(3.1) a1, + asv, =0,

and (1.1)4 implies
¥ 1
A1V + A2V 2 + ; Vyp = ; a1y,

(3.2)
2a1a2(Vrp — Uy ) + (a% — a%)(vr,z +v,.) F % (agvy — ayv,) = 0.

Proof. We have Vi = (¢, cosp, ¥ sing, v ) =1 &, + 1 ,€,. Hence

(33) ’/_l|s = aié, + aze,, F1|S = €y, 72‘5 = a2€, — a1€,.

Then (1.1)3 implies ¢ ,v, +1 v, = 0, so (3.1) holds. The condition (1.1)4 for j = 1 yields
(34) TLZ‘(’UZ‘,xj + /Uj7g;i)7-1j =+ g’u ‘T, = 0,

where the summation convention over repeated indices is assumed. By (3.3) condition
(3.4) reads

1
. (a18, + age;) - v, + (a18r + age.) - Vo, + %up =0,

SO
1 v
- (@10r,p — @1Vp + A2V o) + A1V + G2V, - + ” v, = 0.
Using (3.1) and the fact that a;,as do not depend on ¢ we obtain (3.2);. The condition
(1.1)4 for j = 2 amounts to
D
ni(vi,xj + 'Uj,wi>7-2j + ; v-To =0,

(28]
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so in view of (3.3) it implies
(alér + GQEZ) . Vvi(agér — CL1EZ)Z‘ + (agé,« — Cl1§z) . Vvi(alé,« + agéz)i + gv -T9g =0,

which gives (3.2). This concludes the proof.

3.2. Boundary conditions for vorticity. Now we find the boundary conditions for
the vorticity vector @ = rot v. In cylindrical coordinates we have the relations

1
Q] = Qp = ; Vz,p = Vip,zs
(3.5) ay = Qp =V — Uz,
1

a3 =0y =V + —Vp — = Up -
® P A 4

s

LEMMA 3.2. Let the assumptions of Lemma 3.1 hold. Let S’ be a curve which generates
S by rotating around the z axis. Let S’ be described also by ¥(r,z) = 0. Let k be the
curvature of S'. Let To be the tangent vector to S described by (3.3). Then

(3.6) as =2(k—~/(2v))v-To2  on S,
(3.7 as] — a3 = —% vy + %’UW on S,
(38) Un.n = ﬁlvntp + ﬁQ'Uz,go + ﬁB'Ugo,r + ﬁ4'Ugo,z + 557]407

where 3; = 3;(Vp,V2), i = 1,...,5, are defined by (3.15).
Proof. Since a20, — a10, is the tangent operator to S, (3.1) implies
(3.9) (420, — a10;)(a1v, + agv.) = 0.
Calculations yield
(3.10)  araz (v, —v,.) + a3, — atv,..
= (a1a1,. — a2a1 )0y + (102, — a2a2,)v; = —(a1,, + G2,2)V - To,

where the second equality follows by applying the relation a? +a3 = 1, and 75 from (3.3)
is used.

Now we find a geometrical description of the r.h.s. of (3.10). Let r = r(s), z = 2(s)
be a curve in the (7, z) plane. Then its curvature equals

T — 2

R
where the dot denotes the derivative with respect to the parameter s. If the curve is
written in the form ¢ (r, z) = 0, its curvature takes the form

_ ql)?qu),rr + ¢?r¢,zz - 2¢,r¢,z¢,rz

k=

’ (02 + oLy
Using the form of a; and as we see that
(3.11) a1y +ag, = k.

Now from (3.10), (3.11) and (3.2)2 we obtain (3.6).
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Using (3.1), (3.2); and (3.5) we calculate
a
az0n —a103 = (Vs + @10y p) — (10U, + a2V, ) — — Ve

a
= —(a1vp,r + a2vy ;) — T Vp = ——— Vp + o Vo,

which implies (3.7).
Finally, we show (3.8). We have

_ 1 1 1
Qn, = Q- =aj01 + agsas a1<—’uz,¢ —Vpz | ta2| —Vp +Vpr — = VUryp |-
r r r
Hence

(3.12)  apn = (a1 + age;) - Va, = 410,00 + 420,00,

1 1 1
=a10, {al <; Vs — v%z> + as (; Vp + Vg — - vrﬁp)]
1 1 1
+ as0, [al (; Vzp — v%z) + as <; Vo + Vo — - vw,ﬂ

_ 2 2
= [—alv%m +a102Vp rr — G102V 2z + az”w,w]

1
2 2
+ ;[alvz,w — 1020y, pr + 01020z 2 — azvmoz}

2
aj

1 1 1

T 101, | = V20 — Vpz | T 01025 ~ Vo + Vpr — ~ VUrp
T T T
1 1 1

+ azaq . - Vyp — Vp,z | T Q202 - - Vp + Uy — - VUrp | — o} Uz,

1 aia9 a2

2
+ a1a20 -0 + ——w + —=v .
r r ® 2 TP ¥,z

Now we shall estimate the particular terms on the r.h.s. of (3.12). The first term equals
a1(—a10;Vy r + @20,V ) + a2(a20,Vyp > — a10,0, 4)
=a1T2 - VUyr + a2T2 - VU, . =To - V(T - Vu,) — Ta - Vaivy » — Ta - Vagv, . = 1.

Since (3.2); takes the form

we have

Il =T9- V<<al — 7>v¢> — T - Valv%r —T2- vaZULp,Z'

rov

The second term on the r.h.s. of (3.12) takes the form (1/7)K , where
(313) K= a%“z,r - agvr,z + a1a2(vz,z - Ur,'r‘)-
Writing (3.2)2 in the form

2a1a2(vr,r - Uz,z) + (a% - a?)(vhz + Uzﬂ‘) ==
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and applying it to eliminate the last expression in K we obtain
(3.14) K =kv-7To.

Finally, we examine the last eight terms on the r.h.s. of (3.12). The terms with v, ,, v,
take the form
— aiaz
5 (a2 +a1:)(T2 ) + =57 Urg
The terms with v, ., v, . equal

_ az _
(a2, —a1,.)n- Vo, + P Vo,.

Finally, the remaining term gives the expression

1 aia
—(ﬁ-Vag— ! 2>v¢.
r T

— ai “/ _ _
Qpp=T2-V [(7 — ;)%] — T2 Va1V, —Ta - Vagv,, .

Summarizing,

aiaz

+ (az,r +a1,2)(T2 - v)p + T—QUMD

S| =

(kv . FQ)’LP +

r

a 1 aa
+ (a2, —arz)n- Vo, + 72% Vg + ;<7_1.Va2 - 17« 2>’U<p

= ﬂlvr,cp + ﬂsz,ap + /BSULp,T‘ + ﬂ4vap,z + /85ULP3

where
k 1 aia
ﬁl = _a’2+_(a27r+a1,z>a2+ ! 2,
T T r
k
B =——a1 — = (a2, + a1,2)a1,
r r
ai Y — a1as
=\ - -V r z y
(3.15) B3 < ” V>a2 T2 - Vai + (a2, —a1z)ar + .
2
Ba= —<2 - Z)Ch —To - Vag + (az, —a1,.)az + %,
r v r
1
Bs ?2~V<ﬂ 1) +—<ﬁ.Va2 alaz).
r 14 r r

This gives (3.8) and concludes the proof.
3.3. Energy type estimates for velocity and its angular derivative h. Repeating
the proof of Lemma 3.3 from [zaj 5, Ch. 4] we have

LEMMA 3.3. Let n =€y X T, eg = (0,0,1), T = (z1,22,23), 1 = T, and let {2 have the
azis of symmetry ey. Let v be a solution to problem (1.1) and

(3.16) Hv(yndx‘ < oo, } S f-ndxdt| < .
2 ot
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Then
(3.17) §v~ndx+'ygv~ndxdt’:Svo-nda:+ §f~77dxdt’.
Q St 2 ot
Proof. Multiplying (1.1); by 7, integrating the result over !, using the boundary and

initial conditions and the fact that Vn is antisymmetric tensor we obtain (3.17). This
ends the proof.

Now we examine the Korn inequality which is necessary to prove the estimate for
weak solutions to problem (1.1). By the Korn inequality we mean an estimate such that
the H! norm of a vector function is bounded in terms of the Lo norm of its dilatation
tensor.

To prove the Korn inequality we introduce

(3.18) Eo(v) = \ (Wi, + )% da,
2
where the summation convention is assumed.

LEMMA 3.4. Let |, rv, dx| < 0o, Eq(v) < co. Then

2
(3.19) loli2 ¢ < ¢(Ba(w) + | § rop da]").
2
Proof. Since 1) = T , we have rv, = v -1 = vy. Let a, = §, v, dz. Then
(3.20) v=0v"+ ai,; 7,
§o Inl? dx
where
/ — Oy — — I
v vrer+<v¢2r>e¢,+v26z, Sv -ndx = 0.
§, 2 da J

Since Eq(v) = 2(|Vv|3 , — Ss ViV N4, dS) we have (see also [sos])
(3.21) IVol3 o < e(Bo(v) + [vf3 5)-

By the trace theorem we obtain

(3.22) [Vol3,0 < e(Eq(v) + vf3 o).

Let s1,82 € S be two different points such that ai(s1)as(s2) — a1(s2)az(s1) # 0. By the
Poincaré inequality

[vrai(s1) + vza2(s1)|2,0 < c|V(vrai(s1) + via2(s1))|2.0,
[vray(s2) + vzaz(s2)l2,0 < c|V(vrai(s2) +v.a2(s2)) 2,0
Hence
(3.23) |Ur|g,rz + \”z@,ﬂ < C(WW@,Q + |V’Uz\§,rz)-
Repeating considerations from the proof of Lemma 4.2.4 from [zaj 5] we obtain
(3:24) 03,0 < OVV'[3.0 + M(8)Eo(v) + clvy|3 0,

where § can be chosen sufficiently small.



3.4. Reformulation of the problem for the azimuthal component of the vorticity x 33

Employing (3.24) in (3.22) and assuming that ¢ is sufficiently small we get
Vul3,0 < e(Ba(v) + [vgl3,0)-
Next

2
\%@,Q < C<|Ur|§,rz + |Uz|§,.0 + W@,Q + ‘ S Up dl”‘ )
Q
2
< C(EQ(U) + ’ S Uy dx‘ )
o)

Collecting the above considerations implies (3.19). This ends the proof.
LEMMA 3.5. Assume that v(0) € La(£2), f € L21(027) and | Sm v, dr dt’| < oco. Then

(3.25) lv®)l2.0 < flop,00 + 0(0)]20, ¢ <T,
and

t
(3.26) O30+ v §IIE)R e dt’ < 0 +6)(1f131.00 + [0(0)[3,0)-

0
Proof. Multiplying (1.1); by v, integrating over {2 and applying the boundary conditions
yields

1d, , 9
(3.27) 5 7 V5.0 + Eo(v) +lorls = | f v
0
Hence
(328) Ehvls.o <
. 7 V120 S 120

Integrating (3.28) with respect to ¢ yields (3.25).
Making use of (3.19) in (3.27) implies

1d

2 dt

Integrating (3.29) with respect to time and using (3.25) gives (3.26). This ends the proof.

LEMMA 3.6. Assume that h(0) € L2(82), g € L2(27) and v € L2(0,T; W4(£2)). Then

solutions of problem (1.4) satisfy

(3.29) ()13 .0 + Vvl o < clvlzelflae + vl o

t
(3.30) FIRI2 g dt' < e Sl VoBad (g2 4 (h(O) ]

0
forallt <T.
Proof. Since h, = v, , we have S o hny dz = 0. Therefore repeating the proof of Lemma
3.4 implies
(3.31) 1Al < cEo(h).

Multiplying (1.4); by h, integrating over {2 and using (3.31) yields

d
(3.32) B vkl e < c(IVuliolhle +19l5.0)

Integrating (3.32) with respect to time gives (3.30). This ends the proof.
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3.4. Reformulation of the problem for the azimuthal component of the vor-
ticity x. To prove global existence of solutions to problem (1.1) we need very delicate
estimates for the vorticity vector. In this paper, in contrast to [zaj 5], problems for a;
and «ag are coupled by boundary conditions (see (1.7)). Similarly to [zaj 5] the most im-
portant is an energy type estimate for as which is distinguished by denoting it by x (see
(1.6)2). However, unlike [zaj 5], we have a nonhomogeneous boundary condition for x
(see (1.8)2). Hence to apply the energy method to problem (1.8) we introduce a function
(3 such that

By —vAB=0 in 27,
(3.33) Bls =2(k—~/(2v))v-Ta =x1 on ST,
Bli=o =0 in 0.
Let us introduce the new function
(3.34) X' =x-0

In view of (3.33) and (1.8), x’ is a solution to the problem
X0V = SE X = o Sy = Ay
’ r r r

w Uy 2v (1
=F—-v-VB+ —’“5+—5+—2<—hz,¢—hw)
T T re\r
3.35) 1 2
( - - (wyzhr - U}’rhz + v hz) + — Wy 2,
r T r
X/|S = 07
X/|t:0 = X(O)~

It is convenient to express the last two terms on the Lh.s. of (3.35); in the form
/

v X 1 X’
(3.36) vt + = Kr<7) ) ¥ F st 2<7> } .

s
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In this section we find energy estimates and estimates in W2211_ u(QT), w e (1/2,1), for
the vorticity vector.

4.1. Energy estimate for xy. Now we obtain an estimate for x.

LEMMA 4.1. Assume that k—v/(2v) € V43£25/2(S), €, €1 are small positive numbers, 6 > 1,
Vg € Lo(0,t; Ly 374 o(82)). Assume that h € H>}(2'), v € A;_,(2%), p € (1/2,1),
w € Loo(0,t; HY(2)), Fy € Lo —1(£2%), x(0) € Ly, _1(£2), t € [0,T]. Then any solution of
(3.35) satisfies

2

X
CRVIIC IR o

< C(Hh”g,—l,m + |Ur|§0/3,m + Dk~ 7/(2V)||§/2,4,76/2,S
2,0t

(erlvlla o + el vlz,ar)

e supligla 123,100 + (Lt sup fuwlld 0 o) IRIB 1 00

t

+sup ] 0,0 § 106, (F)F —g/ac0 @t + | Fol5 1.0 + X' (0)
0

2
2,-1,02-

Proof. To obtain the estimate we write problem (3.35) in the form

/

v,
X't +vex'y + 7"’ X'y + X2+ (Urr +022)X

! 1 ! ! ]‘ ! 1 !
TV X T E Xipe T X2 T X T 5 X

v g
(42) - |:’U'rﬁ,r + 7<p ﬁﬁ” + ’Uzﬁ,z + (Ur,r + 'Uz,z)ﬁ +v 7‘_2:|
2v 1 1 w 2w,
S e B L i
X'|ls =0,
X' [t=0 = x'(0).

Multiplying (4.2); by x’/r?, integrating over 2. = {r € 2:2 ¢ 2N {r <e, z € (—a,a),
© € [0,27]}, e > 0}, and using the boundary condition (4.2); we obtain

(35]
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/ 12
X X
B ot § oV Sde ot § (v vss) T de
2 Q2.

X' 1, , X\ X
() ) [

QE'
Bl1x 1 1 Y
:—(§ |:U~Vﬂ+(vr,r+vz,z)ﬁ+l/r—2 r—2d$—2V(§ 7‘_2 hcp,z_;hz,<p _de

| =

(4.3)

N | =
QU

t

1 w X’ W . X X'
£ . (P
Now we examine the particular terms in (4.3). The sum of the second and third terms

on the L.h.s. of (4.3) equals

]. ]_ 12 1
- S T—Z'U-VX@d:C-l- S(UT7T+U272)>:1—2dx: 3 S diV(ixa) da

2 r2
2. 2. Q.
1 1 X/2 1 _ X/2
igx'2v~v<r—2>d:c+S(vr7r+v27z)r—2da:5 S v~nﬁd895
2. 2. 002,
vy X/2 _ 1 _X/2 Vi X/Z
+S<U7~7r+vz7z+r>r2d$—2 S UnﬁdaﬁE—STTde,
2. 90, 2.

where (2.41) was used.

In view of the above considerations we see that to examine (4.3) we have to add
boundary conditions on the part of the boundary of {2, determined by r = ¢, z € (—a, a),
¢ € [0,2m]. The first term on the Lh.s. of (4.3) implies an estimate for |x'|2,—1,¢. Since
the norm implies vanishing of x’ at » = 0 we can assume that x|.— = 0.

Then the sum of the second and third terms on the Lh.s. of (4.3) equals

12

U X
p,p d
-\ 22 2 (.
X ro 2
17

€

The last term on the Lh.s. of (4.3) equals

2m

/ / 1 /
—ySdcp S Hr(%)] —|—2(X7> ]%drdz—ug<T—2xf¢¢+xfzz>i<—2dlel,

0 QE (90) ’ ‘Qf

where 2.(¢o) = {z € . : ¢ = ¢o}. Since 2.(p) is a domain in R? with measure equal
to SQ @) dr dz, the first term in I takes the form

27

’ / 7N\ 2 N 2
—v S dy S |:’I“(X—) X + (X—) ] drdz +v S <X—) dx,
)T r , o NT ),

0 2:(p) ’
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where the first term equals

27 a ’ , N\ 27 (7=v%(2) 2m a 1o r=(2)
—I/SngSdZ|:T<X—> &—l-(&)] =—VSd<de XX = Iy,
0 —a r T r r r=e 0 —a r r=e

where r = 1)(2) describes the boundary of £2.(¢), ¢ € (0, 2m).
Since x’'|s = 0 and X'|,.—. = 0 is assumed as an artificial boundary condition we
examine the expression

27 a .
Ig:yxdgpgdz%

0 —a =€

for € small.

Expecting that x’ will belong to Lo (0,T; H:(£2)) we will have x’|,—o = 0. Without
assuming that x'[,= = 0 we see in a neighbourhood of r = 0 that if x’ > 0 then x’, > 0
and if x" < 0 then x’, < 0. Therefore I > 0 so we do not need any estimate for it because
it remains on the Lh.s. of the expected inequality. Hence to examine I; we do not need
to assume that x/|,—. = 0.

Finally, the second term in I; takes the form

12
v S (ﬁ—kx—) dx.
2

€

The first term on the r.h.s. of (4.3) equals

2§Td [ (0B + 20, +0.0.) X dra X g
- 2 Ur ,r+7 ,Lp"‘fvz \Z 7 raz — S(vr,r,"_vz,z)ﬁr_z T
0 2.(p) 0.
X, _
787727«726&:[3’
(PR

where the first term takes the form

/ /
S (UT,T+%—’¢+UZ7Z>ﬂ—>§da:+ S U-V(X—)—daz.
r r r)r

QE ‘QE

=

Hence
!

/ /
= | Ve PX gy | U~V(X—>§dx—u | 5 X 4.
roT r
2. 2 2.
Estimating, we obtain
!/

[I3] < e1 S <‘VX—
T
02

2 /2 V232 2
X 1 2 ﬂ B
() 2 )
for any g1 >0, § > 0.

The second term on the r.h.s. of (4.3) equals

1 !/
2 | [ h ———(th—’;’]deLl,
r

°2 T 3
Qs
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so, for all e5 > 0,

N 2

1

L] < e | {(1{) —|—X:¢2}dx+c(1/62) § (i +h2)dr,
2. 12 0.

where the last term is bounded by ¢[|A|3 _ o_-

By the Holder and Young inequalities we estimate the third term on the r.h.s. of (4.3)

by

712

+e(1/es)|wli o 0lhl3 2.0,

7‘(25

for any €5 > 0, where we use the imbedding

€3

|hl3,—2,0 < c|[Pll1,—2.0 < cllhll2,-1,0-

Finally, the fourth term on the r.h.s. of (4.3) is bounded by

/ 2

€4 + 0(1/54)|w|42;,71/4,95|Ugo,z|42;,73/475',95

yile

2—g!
r 2

2

+e(U/ea)llwllf o 0. 1ve,:13 —3/4-r 0,

9 =
for any e4,&’ > 0. Summarizing the above considerations we obtain
2
/2
dr < clhylz,—1,0.1X 11,10,

!
v
r

d
(44)  ZIXB 1 v
Qs

+c||h

3,—1,95 + CHw”%,O,.QE ||h||§,—1,95 + C||w||io,rzg|U<p,z|421,_3/4—5/,95

h? 1)2ﬂ2 62
2 Y 92
+lFyl3, 1,0, T ¢ S <r2+5 B+ FORN r4+5> dz
02
for any d,e,¢" > 0.
Integrating (4.4) with respect to time and passing with € to 0 we obtain
t

< c{sup |hol2,—1,0 S
0t t 0

2 2

! !
v& X dt
r

1,0

45) 1otV

2,
t

Boractsuplwlion | o) —g/acr 0 dt
0

#1310l

2 hi o | VB B? ()12
+|F</:|2,1,m+(§t(rg+55 + 0 ) da] + OB e

Let us denote the last integral by I. Then we have
(4.6) I< C||h||§,—1,m|ﬁ|§,m + ‘U‘%O/Sﬂt‘ﬁlg,—l,ﬂt + W|g77(2+5/2),9t

< C(Hh”;—Lm + |’U|%0/3,m + 1|8
for all 6 > 1 and

2
2,-5/2,0¢
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(4.7) IBll2,—s/2,00 < cll(k —v/(2v))v - Talls/2,-5/2,50

< CQ 032 (k — 5/ (2v))|*r~*7 as) ”4(§dt' () s)

0

1/2

C(S |k —/2u)|*r—2° dS’) v

S

¢ 1/2
(Sdt’ 33/2 (v- 7'2)|4s+|3/ (v- 7'2)‘45))

0
+e(k—v/(2v))v-Tala —a_s/2,5t < cllk —7/(2v)|l3/2,4,—5/2,5

t
1/2
AV at leva 1o + 1000 1min) + 1/ ]
0
< cllk = 3/ @) lsja-5/2.5 EvlLa,_ (o) + c(1/€) vl2,00)

for all € > 0, where ¢(1/¢) = ce=3/%,
Employing the above considerations in (4.5) yields (4.1). This concludes the proof.

4.2. Estimate of h in weighted Sobolev spaces

LEMMA 4.2. Assume that hg € H1,(£2), g € Ly _1(027), v, € WQZV’f_#(QT), w>1/2.
Then for solutions of (1.4) we have

¢ 1/2
(48)  [hllo, v+ (§IVa)IE 10 dt')

0

<

e([lv.q|

2,211, all2.2,1-p,0t)

t

[ rle+§ g(t'n,ndt'} + e(lgllo—1.00 + IAO)1,-1.0)
0

for allt < T, where ¢ is an increasing positive function.

Proof. In view of [zaj 4] solutions of (1.4) satisfy

1/2
ed) <

(49)  hlav0+ (§ + [h(0)]11,-1.0)

for all t <T. Now we estimate the separate terms in G. First we consider
[v- Vhla 1.0t < |v|ap,,—p.2t | Vhl2p, p—1,00
< cfvalopy 1.2t Vhlap, p-1.00 = I

whenever 1/p; + 1/ps = 1, where the Hardy inequality (see Lemma 2.10) was used.
In view of [zaj 3] we have, for all € > 0,

I < el[hllz v +e(t/e)e(llo, ALz .00 = 1,

where the imbeddings Dy W57, 1 (27) C Lap, -1 (27) and W5, (27) C Lap, 1-,(27),
which hold together, were used.
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Next we have

|h-Vola 1,0t <

Vi |2py,— 2t [Ml2py u—1,00 < v galop 1-p,0t |hl2py 1,0t = 12
whenever 1/p; + 1/ps = 1; in the second inequality the Hardy inequality was used.

By the imbeddings D2W35_,(27) C Lap, 1-u(27), W3 (27) C Lap, u—1(27),
which hold together, we obtain Is < 1.

Using the above estimates in (4.9) yields

0 N2 / 1/2

(410)  Whllz-v00+ (§IVa@IE o dt) < e
0

V.2 2,21, 0t ) |P|2, -1, 00

+c(llgllo,—1,2t + 1A (0)]|1,-1.02)-
By [zaj 3] for u > 1/2 we have
Voloo,2 < e[ Voll2,2,0-p.0;
S0
¢
VIVo(t) oo, dt' < et 2o afl221—p.00-
0
Next from (3.30) and by the Hardy inequality (see Lemma 2.8) we have
t
(4.11) VIR B 5—1dt < cp(t 20 allo2,1-m,00) B0V 0 + 1915 0],
0
where ¢ is an increasing positive function and § > 0.
Choosing 6 = 1 in (4.11), we obtain from (4.10) and (4.11) the inequality (4.8). This
concludes the proof.

4.3. Estimates of vorticity in weighted Sobolev spaces. Now we examine problem
(1.7). Let o/ = (a1, ax3).

LEMMA 4.3. Assume that ve A;_,(2'), aa/r€ Lyg/3(£2), her’_lH(Qt), wEng’_lu(Qt),
F' € Loy, (£2Y), &/(0) € Wy, ,(2), p > 1/2, ey € C? and |V*(ay/r)| < 2,
[V(ar/r)| < er ™ Jar/r] <e, Bi € CHi=1,....5 and |[VB;| < er 3, |35 <er 2, j =
1) 27 |v5k| S CT—17 |ﬁk‘ S C, k = 3747 |Vﬁ5| S C’I"_27 |/85‘ S Cr_la O/ S LOO(07t;L2,17p,(*Q))
N L27,(1+M)(Qt), t S T. Then

(4.12) [l

l2,2,1—p, 02t < csup o/ |21-p2p(lvlla,_,2n) + claza/rlioss,olbll2,— ot

+e(l[Pllz, 0t + [wll21-p20) + clealz, - a0
+elF' 21— a0 + clla’(0)]

1,2,1— 1,42
where  is an increasing positive function.

Proof. Applying [zaj 1] to problem (1.7) we obtain

(4.13) fle|

2,2,1—p,2t < C<|U -Valai—p 0t

+ |U ' va3|2,1—p,(2t + |alvr,r + a3Ur,z|2,1—p,Qt
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a9 1
+ |alvz,r + a3vz7z|2,l—,u,ﬂt +|— h'r + ) (h'r,z - hz,r)
r 21— 1,02t r 2,1—p,02¢
o , a1
e I g + |
™ o 1—p,0t r 3/2,2,1—p,St

+ |81y + B2hz + Bzw o + Baw . + Bswll1/2,2,1—p,5¢ + |||0/(0)||1,2,1—u,9>-
In view of the proof of Lemma 5.3.1 from [zaj 5] the first four terms are estimated by
elalugl3—p. 00 +c(1/€) sup o/ 13.1— 09 (0]l 4, 20)
for any € > 0, where ¢ is an increasing positive function and p > 1/2; the fifth term is
estimated by
claz/rlioss,tllhll2,— 0t
and the sixth by
cllbll2, -
In view of the assumptions the ninth term is estimated by

cllwll2,1—p, 0t
and the tenth term by
1= (bl + lollaa o).
To show the above bound we consider
IB1hr + Bahlliy2,2,1—p,5t < cllBrhr + B2h]

To examine [; it is enough to consider

181 11,20 =, 20 < IVBLhr|21—p,t + [B1V |21 0t + |Brhr|2i—p0t = Io.
Since |V3;| < ¢/r?, i = 1,2, we have |VSihy|21—p 0t < clhrl2,— (24 p),0t) and for |B;| <
0/7“27 1= 1,2, we get ‘ﬁlvhrh,l_%(p < C|VhT|2’,(1+H)’Qt. Hence Il < CHh||27_#7Qt. Let
us consider

12,1—p,0t = 17,

83w, + Baw z|l1/2.2,1—p.50 < cllBzwr + Baw 2|l1,2,1—p 0t = 1.
Since |5;| < ¢, |VBi| < ¢/r, i = 3,4, we have

4

IS S Z(|ﬁiw7ww|2,l—p,(lt + |ﬁzw7w
=3
< c(|wazlai—pot + Wzl —pot) < cllwllai—p,0t-

21—p,0t + |VBiw|a1-p0t)

Finally,
85wl 2.2,1- .5t < cllBswlliz1—p,00 = s
Hence for |B5| < ¢/r, |V 85| < ¢/r? we obtain
Iy < c(|BsVwla1—p,0 + [VBswla1—p,0t)
< c|Vwla,—p 0t + |w

2,—(14p),2t) = C||w||2,1fu,m~
Therefore the bound I follows. In view of the above considerations we obtain (4.12). This
concludes the proof.
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From (4.12) we see that sup; |a/[2,1—,,0 and |a1]a,—(14,),)o¢ must be estimated. Hence
we need

LEMMA44 Assume that F' € Ly(2"), v € Ly(0,6; W3, ,(2)), h € H> (Y, w e
(Qt) HE(1/2,1), aro, a30 € Wy, (2), Jar/r| < ¢, [V (a1 /r)] < CT_la V(a1 /)| <
218 < e/r¥ VG| < ermUB) i = 1,2, |Bi] < ¢, VG| < er i = 3,4, |V55| <

2185l < c¢/r, t € (0,T). Asume that S contains a part S; where a; > ag > 0 such

that any point of 2 can be reached from points of S1 by a curve. Assume that So is a

part of S such that as # 0. Assume that |ay/as| < cr?, |V(ay/as)| < er, [V2(a1/az)| < ¢

on Sy. Then solutions of (1.7) satisfy the estimate

(4.14) |041|§,0 + |O‘3‘§,Q + V(|0‘1,m|§,m + \0‘37r|§,m) + V|O‘1|§,—1,Qt
t
<cexp (| [lo()l3 dt') ||e2l [E: + [Jwll3
> p 3,2,1—p,02 2110/3,0t 2,—1,0¢ 2,1—p, 020
0

HRI3 1o +1FLS g0 + [F53 o0 + 101 (0)3 o + as(0)13 ¢
t

+ (lll31—e + P13 —1.00) § ()13
0

odt’

Proof. First we obtain the energy type estimate for solutions of (1.7). For this purpose
we introduce functions &1, @3 as solutions of the problem

o1y —vAa; =0,

oy —vAoag =0,

(4.15) as0i] — a1z = 2a1 w+ — Y w =0 on S,
(ar101 + a2a3) 51h + 52h + Bsw,, + Baw, + Bsw =gz on S,
aili=o = 0,
&3“;0 =0.

Define the functions

(4.16) a1 =] —a, 03=qa3—03.

Then problem (1.7) takes the form

_ _ _ _ fe%) 2v aq _
a:+v-Vag — (alvm + Q3vy , + " hT) + = g, +V o vAa,

=F —v-Vag + (01vr, + Qsvy,) — v %’
Qs+ v - Vag — (51Uz,r + asv, . + % hz) — vAQ;

(4.17) =Fy —v-Vas + (G10., + G302,2),

azay —ayaz =0 on S,

(a1a1 +agti3) , =0  on s,

a1 li—o0 = a1(0),

a3|t:0 = 053(0).
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Solving (4.15) we have

ai
—w
r

(4.18)  flaallz21-p0t + llasllz2,1-p0t < C[
3/2,2,1—p,St

+ |81y + Bahz + Bzw  + Baw . + Bswll1/2,2,1—p,5t + [l (0)[|1,2,1— 4,0

+ ||a3<o>|||1,2,1_ﬂ,9] .

Now we examine the norms on the r.h.s. of (4.18). Assuming |a1/7| < ¢, |V(a1/7)| <,
|V2(a1/r)| < ¢/r* we find that the first term on the r.h.s. is bounded by ¢||w||2,1—,, ot-
This behaviour is imposed in a neighbourhood of the point where the z axis crosses S.
Assuming |3;| < ¢/r37H, |VBi| < ¢/r*™F i = 1,2, we have

lIBrhr + Bahzll1/2,2,1—p,5t < cllbll2,—1,00-
Finau}’a assuming ‘ﬁl‘ < C, |V6z| < C/T‘, i = 374a |ﬁ5‘ < C/T, |Vﬁ5| < C/T2 we get
83w, + Baw - + Bswll1/2,2,1—p,st < cllwll2,1—p 0t
Hence, (4.18) takes the form

(4.19)  lallzza—p00 + Nasllzzi-per < cllhllz, 1,00 + [[wll2,1-p 00
+ llaa (0)]

121,02 + [las(0)l1,2,1-p,2)-
Now we obtain an energy estimate for solutions of (4.17). Multiplying (4.17); by @j,
(4.17)2 by @, integrating the results over §2 and adding yields
1d,_ _ _ _ _ _
(420) 3 (B0t Bafa) — § @, + @slons +vs) +B30s ) da
Q
(6] _ _ 1 _ — 2
— S " (hraq + h.as) dz + 2v S 2 azpaidr +viailz g o
Q Q

-V S(Aalal + Aagag,) dx = S(Flal + Fgag,) dx
(7 2

N

1

an dxr

<
[\

D

(v-Vajay +v-Vagas)de — v S
o)

+ S [(&lvrﬂ‘ + aBUT,z)al + (&lvz,r + aB’Uz,z)aS] dx.
9}

The term involving laplacians takes the form

— V@ + G dS + [@1al3 o + (@ l3 0,
s
where in view of the boundary conditions (4.17)3 4 the boundary term vanishes.
For completeness we show how to prove this. Let Sy = {z € S : as # 0}. From (4.17)4
we have

_ _ _ a; . _ 1 _ — N—
I =000 + 03,03 = 01,00 — P Q1,03 — P (a1,n,01 + a2,,03)qs.
2 2
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Employing (4.17)3 yields
1
I =——(a1,,01 + a2,,03)0s.
as
Using (4.17)3 again gives
1
I = —— (almal + ag’nCLQ)a% =0
a3
because a? + a3 = 1.
Similarly, we show that I(z) =0 for x € S; = {x € S : a1 # 0}.
The second term on the Lh.s. of (4.20) is bounded by

e(jal3 o + [@sl3 o) +c1/e)llv]
for any € > 0. The third term is estimated by

elon]3 _1.0+c(l/e) S ash? dx
Q

|§,2,17M7Q(‘al|§,0 + |53|§,Q>

and the fourth by
E|§1|§7,1’Q + C(l/E)Hh”%fL(r
We bound the first term on the r.h.s. of (4.20) by

2.0) He(t/e)(|Fif5 0 + |F5l3,0),

€(|51|§7Q + \53
the second by
(Va3 o + [Vasl3 o) + c(1/e)vf3 o(1@1f3 o +asl3 o).
the third by
elanfs 1.0 +ec(l/e)lal3 10
and finally the last by
e(lanf3 o + [@l3,0) + c(1/e)

Summarizing the above results we obtain

”,m|io,rz(|a1|§,9 + |&3|§’Q).

1 o _ v, _ _ v _
(4.21) (@B +[@B0) + 5 (@b + [@abo) + 5 @5 10
< (/)03 21— 0 ([@13,0 + @3 )

+e(1/e)( § adn do+ |10l3 -y 0 + |y
0

3,9 + |F3|§,Q>

+ (/)03 21— 0(ld1 3 0 + |@313,0) + clail3 —1.o + cfas]3 o

To estimate the last term on the r.h.s. of (4.21) we use the Poincaré inequality. For this

purpose we assume that there exists a part Sy of the boundary S, where a; is separated

from zero, that is, there exists a positive number ag such that |a;| > ag on S;. Moreover

we assume that S; is so large that any point of {2 can be reached by a straight line from

a point of S;. An example is a domain close to a cylinder but with a smooth boundary.
We write the boundary condition (4.17)3 in the form

4.22 03 = —
( ) ag a1 aq,
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and we consider (4.22) on S7 only. Then we introduce a function &f by

(4.23) G Z—jal\sl.

Then off = @3 — a is such that

(4.24) s, = 0.

By the Poincaré inequality we have

(4.25) [a3]2,0 < |d4l2,0 + |a513.0 < | Vo420 + |able,0

< c|Vasla, o+ cllag|li,n < c|Vas|z,.q + c|@i|i,o.

Using (4.25) in (4.21) yields

d, _ _ _ _ _
(4.26)  — ([0 + [@l5.0) + v([@als0 + [@s2l50) + Va5 10

< cllvlli 210 (@1]3 o + [@sl3 o)

+o Jadh? o+ I3 1o+ IR B o+ Pl 0)
9]
o ellollf 2. 20181 0 + [sl3 ) + el -1 g

Integrating (4.26) with respect to ¢ yields

(427)  [l3 o+ @l o + v([@10f3 o + @03 00) + IG5 1 g

t
< coxp ( J I 21—t ) [lanlo s cr I3 -y e + 1013 1
0

t

3.0+ 1833, V@) 32,10 d

+ |F1|§,Qt + |F3‘§,.Qf + Sltlp(|&1
0

183 1 + [T O o + [3(0) 3 ]

To estimate the norms of a; and a3 on the r.h.s. of (4.27) we examine problem (4.15).
Multiplying (4.15); by &y, (4.15)9 by as, integrating the results over {2 and adding we
have

| &

(4.28) (181]3,0 + 16s]3 o) + v(IVaul3 o + [ Vas3 o)

N | —
o

t
= v | (@108 +8sns)dS =T
s
To estimate I we divide S into two parts S1, S5 such that S = .57 U S5, where a; # 0 on
S1 and ag # 0 on S3. Then we have
I=v (@108 + @3005) dS1 + v | (@181 + 85 083) dS> = [ + .
S1 Sa
Let us consider I;. In view of the boundary conditions (4.15)3 4 we have
as 1 1

~ ~ . ~ a2,n
a3 =—0Qq1 ——¢g1, Q1 p=—|g2—a03,+—431|,
a1 a1 a1 ai
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SO
1 as.n ~ ~
L =v S — ng + Lgl)al - aS,n91:| dS,
aq ay
S1
and
(4.29) || < e(|asnlss, +101l5s,) +c(1/e)(l91l56, + 192155,

< 5(|&3,m|§,1w79 +103]3,0 + 101,213,0 + 10113,0)
+c(1/e)(|g1l3.5, + 19213.5,)-

Considering I we calculate

~ ajl 1 ~ 1 ~ al’n
ap=—a3+ —g1, Q3p=—|g2—a11n,——J1|,
as a2 az a2
and
1 (- a ~
Iy =v S — {041,7191 + <g2 - L 91>O£3] dSs,
ag ag
Sa
SO
(4.30) L| < e(|a1aal3— 0+ 0150 + 1832l 0 + 1ds)5 0)-

+ 0(1/5)(|91|§751 + |g2|§,52)-
Applying potential theory to (4.15) yields

(4.31) e llz,2,1—p, 20 + lles]
From (4.28)—(4.31) we have
(4.32) |aul3,0 +asl3,0 + @1l 21— 00 + 1301321 .0

< c(llg1ll5 /21 st + 192015 21— p,s0) < clllwll3 e + P13 -1 00)-
To estimate the norm |&1|s 1 o+ from the r.h.s. of (4.27) we have to examine the be-
haviour of &y in neighbourhoods of points » =0, z = —a and r = 0, z = a. Assume that
¥, vanishes only at these points and v . is different from zero in some neighbourhoods.
We denote these neighbourhoods of points of S by Sa, So = {x € S : az # 0}. Let us
restrict our considerations to the point » = 0, z = a, because near r = 0, z = —a we
argue similarly. Let us denote the point » = 0, z = a by zg. Let B(zp, A) be the ball of
radius A and with centre at zg. Let ¢ = {(r, z) be a smooth function such that {(r,z) =1
for (r,z) € B(z0,A) N 2 and ((r,2) = 0 for (r,2) ¢ B(z0,2\) N 2. Defining &} = a,¢,
g4 = g1¢ we obtain from (4.15); 3 the following problem:

o) — vAdy = —2vVa, V¢ — vAla,

2,.2,1—p,Qt < C(|||91H|3/2,2,1—;L,Sf + llg2 H|1/2,2,1—u,st)~

(4.33) &1 | sansupp ¢ = a g + . 91
az az
a1|i&:0 =0,
where o = as(.
Assuming |a1/as| < cr?, |V(ai/a2)| < er, |V3(ai/as)| < ¢ in a neighbourhood of
r =0, z = a we get for solutions of (4.33) the estimate

@ ll21—p.2t < c(|IVar1V|a1p 00 + [ACa1l21— w0t +llasll2.21- et + [19113/2,1-p,52)

< c(llarllzzn—poe + llasllzzn—p00 + lw

2,1—p, 2t )
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In view of (4.32) and properties of ¢ we have

(4.34) la1llza-p0r < clllasllzzi—por + wlzi-per + |[Rll2,-1,00)-
In virtue of (4.32) and (4.34) we obtain

(4.35) |a1le,—(14p),00 < cllwllzn—p,00 + [All2,—1,00)-

Using (4.32) and (4.35) in (4.27) yields

(4.36)  [onl3, + [@sl30 + v([@e
t

< cexp (VI 210 4 ) [[ozlogacor 1B 1 e + 1013 -1
0

g,m + @34 g,m) + V\alg,q,m

t

+1F1 00+ | Fal3 0+ (lwll3 e + 1013 —1,00) § ()]
0

2 /
3,2717u,9dt

[0l 1 e + [T B + [@(0) 3 ]
Using (4.32) and (4.35) in (4.36) implies (4.14). This concludes the proof.
Finally, we obtain an estimate for |ai]a,_(144) 0t

LEMMA 4.5. Assume that h € H>} ("), w € Hf’_lu(Qt), /1 € Lyg)3(92), F' € Ly(£2Y),
F' = (P’17}73)7 F, € L27_H(Qt), O/(O) S WQZ,I—H(“Q)? Oél(O) S L27_H(Q)’ v € Al_u(Qt),
we (1/2,1), la1/r] <c, t <T. Assume that |a1| < cr? on Sy = {x € S : az # 0}. Then

(437) |OZ171;

2wt tlatla — w00 < ellvlla,_,on)llaz/rlio/s,00 12, - 1,00
+|ll2,—1,0t w21 p,0t +|F' 2,0t + | Fil2,— 0t
Hla O 21,22 + e (0) |2, pu.02]-

Proof. Since we have already proved estimate (4.35) for |a1]a,— (14,0t and (4.32) for

|01, |2, —,2¢ we shall restrict ourselves to obtaining an estimate for a1 ]s,—(14),0¢. Mul-
tiplying (4.17); by @;r~2* and integrating over 2 implies

]. d _ _ _ _ _ a2 _ _
5 E'al 3’,“’9 + §2v Vagar #dx — (S}(alvr,r + Q3vy ; + - hr) ar 2 de

(4.38)

1 —_ 92 — 12 —_ = =2
+ 2v §2 3 (hrz — hyp)aqr™ P de + V|a1|2’7(1+u)’0 - 1/§2Aa1a1r P dx

= S Fiagr 2* de — S v-Vajar Hdr + S(&lvm + &311,72)611"72“ dx
0 Q Q

Al _ o,
-v\ = .
S 2 aqr dzx
Q2
Now we examine the particular terms in (4.38). The second term on the L.h.s. equals

1 1
5 S v-Vasr #dy = 3 S v-V(@r ") de + S ajr "ty . Vrde,

[0} [0} 0
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where the first term vanishes and the second is estimated by

€|@1|§,,(1+#),Q + 0(1/5)|U|c2>o,9\51|%,7u,(z
for any € > 0. The third term in (4.38) is estimated by
2
_ _ _ Qg -
(@130 + 1803 ) + (/)00 013 o +c(1/e) | —| [hePr da
Q

The fourth term on the Lh.s. of (4.38) is bounded by

5|al|g,—(1+;¢),n + 6(1/5)|h|§,—1,9~
To estimate the last term on the Lh.s. of (4.38) we express boundary conditions (4.17)3 4
in the form

Elz—ag for agyéO,
as
(4.39) _ 4y _
O =—03, fora #0.
ay

Integrating by parts the term including the laplacian yields

(4.40) —v S div(Vaya;r—2*)ds + v S aiwr_m‘ dr — 2y S Vaar 2#~1Vrde,
0 Q Q
where by the Young inequality the last term is bounded by

20y

Vi 2 — 2
€3 01,22, -0 + Q]2 (14,0

for any € > 0, and in virtue of (4.39) the first term in (4.40) equals
—v S n-Vajar 2*dS
s
= —Vv S a—zag)nalT_Qu dS, — v S n-Va, ﬂag’l“_QH dSy =11 + I,
ai a2
Sl SZ
where
L] < ellasl3 o+ c(/e)lallf o,
L] < ellaill3 oo+ c(l/e) @]l o
where we used the fact that r > 0 on Sy and |a;772| < c on S.
We estimate the first term on the r.h.s. of (4.38) by
e[|z, -0 +c(1/e)|F1l5 0
the second by
elVanl3 o+ e/l of@l -, 0.
and the third by

el -0 + 10505 0 0) +c(1/e)vali ol@l3 o

Finally, the last term on the r.h.s. of (4.38) is estimated by

elails g0 +e/e)lails o0
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In view of the above considerations, for e sufficiently small we obtain from (4.38) the

inequality
1d,_ 4 — 2 2 — 12
(441) g @ o vl —e/Df@al o+ v =207/ —co)[@ily —ip.0

< c(1/e0)vf3e elail3 - o + c(1/en)lvali ol@ls o

+e1([@]3 0+ (@33, 0) + (/1) | las/r[P[hPr 2" da
2

+elhl3 1o+ el

3,2,1—M,Q + [levs |||§,2,1—M,Q)
+e(l/e) (@t o + la@sllf o) + e Fils 0 +clVail3 0
+ 51(|a1‘3,7u,(2 + |a3|§,7u,n) + 0(1/50)|a1|§,—(1+u)79~
From (4.32) we have

(442)  |aal3 o +1asl3 o + L3 2,10 + 1G]

g,Q,l—u,Qt
< cllwl3 o + IRl 1, 00)-

Moreover, (4.36) can be written in the form

(443)  [onl3 o + [@sf3 0 + v([@e

%,Q + |53,w|§79)
< CeXP(C”UH?ql,“(m))[\a2|§0/3,m HhH%,fLm
+ (1713 1,00 + w31y 0) A+ oI, o) + F'3.0 + 0/ (03 o)-
Using (4.43) in (4.12) yields
(4.44) o' lz2,1- 20 < @0l 4, (20)[la2/T]10/3,0t 1Pll2,-1,00

+All2, 100 + [wll21-per + [Fl2.00 + 10/ (0)l1,2,1-4.0]

+ clonlz,— (14,0
Integrating (4.41) with respect to time yields
(445)  glal3 0+ v —e/2@ali 0

+ I/(l — 2#2/6 — 60)|a1

2
2,—(14p), 02t

< cexp(c(1/eo)l|vlla,_, co)l@l3 o + @513 o
+loz/rlToss o 1015 100 + D113, 1 0

+ea(flan]

s21-pa T 18032100 +c(1/e) (@l o + ] )

+ ‘Flg,—u,m + |Va1|g,—ﬂ,m + ‘alg,—u,m + las 3,—H,Qt

+5l@1(0)[3 .0l



50 4. Estimates for vorticity and azimuthal derivatives of velocity
Using (4.42) and (4.44) in (4.45) we have
(446)  glanls 0 +v(1—e/2)[@1al3 0 +v(1 =207 /e = o)@la(14),00

< o(1/e0, [0lla,_, co)@l3, .00 + @815, o

+ |O‘2/T|%0/3,(ZtHhHg,—l,Qt + ||h||§,—1,m + [lw %,1—p,9t + |F/|§,m + ‘Flg,—u,m

e/ OIF 210 + 3@ O o + @7 o + @[]

Employing (4.43) in (4.46) yields

(4.47)  jlal3 0 +v(L—e/2)@ a3, 0 + V(1 =24 e —eo)[l5 1400

< ¢(1/e0, [vlla, 20 lloa/rloss aelIlI3 1 o0 + 113 1 e + w31 o
+ ‘F/@,Qt + |F1‘§,—#,rzt + |H0/(0)|||%,2,17u,9 + [@1(0)2,— . 2]
Finally, from (4.47) and (4.35) we obtain (4.37). This concludes the proof.

To obtain estimates for solutions of problem (1.8) we write it in the form

1
a27t+v-Va2——hq,ag—£ag+L.;2 — vAay
r r r
2v (1 1 w 2
(4.48) = = (; hzp— h%z> - (w,zhr —w,h, + - hz) + - Wy, + Fo,

asls =2(k —v/(2v))v - Ta,
azli=o = a2(0),

where k and 7 are defined in Section 1.

For solutions of (4.48) we have

LEMMA 4.6. Assume that v € A1_,(02), aa/r € La(0,t; H'(2)) N L1g/3(2Y), o €
Lo (14)(02%), h € H2[(2Y), F3 € L1 (2%), w € Lo (0, HY(£2)), v(0) € W3, _,(2)N
H' (), a2(0) € Wy, ,(£2),¢t < T, p e (1/2,1). Then solutions of problem (4.48) satisfy,
for any €1, > 0,

(4.49)  Nlazll22,1-p,00 < [erllvlla, .20

+ 08;3/4(

sup vlz,2 + [vlz.20) + [v(0)l22.1-p.0]

. [‘042/7"|10/3,Qt + (§ ‘V(QQ(t/)/TN;Q dt’) 1/2}
0

+c(1+ |Oé2/7“\10/37m + Slip lwll1,0,2)hll2,~1,00

+ [Sgp wll1,0,2lvlla,_. 20 + lazla, — w00 + [Fol21—p 00
+ do(e2l[v]la,_ 0ty + (1/e2)[v]2,0t) + lla2(0) 12,1, 0],

where 65 = ||k —~/(2v)|l3/2,5 and 65 < cdy.
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Proof. Applying [zaj 1] to (4.48) yields

1
(450) |||Oég|||2’2’1,#’9t S C|:|’U . Va2|2,1,#’m + }; théQ

2,1—p, 2t
Uy 1/1
Ttz + | 2,—(14p),2t |5 < bz = he,2
2,1—p, 02t AT 2,1—p1,02¢
1 w w
+ ‘— w hy —w h, + —h, + | = vy,
r r 2,1—p, 2t r 2,1—p, 02t

| Bala o + [[(k=/(20)v-Talls/21-pst + lla2(0)l1.21-4, 0]

Now we examine the particular terms on the r.h.s. of (4.50). The first and third terms
are estimated by

(€5) (&%)
}’u -V <— 7’> + v, —
r 2,1—p,02¢ T o 1—p,0t
(&) (&%)
< c< v-V— + v, — )
T lo1—p,0t T lo1—p,0t

t
1/2
< csupor' o (§ 9 (0a/r) B0 dt') "+ clvvlsac il /rloss,an
0

=c(l + ),
where the first factor in I; is estimated by
Sltlp(Ei Ivll22,1- 2 + c(1/e1)|v]2,0)
< élvlla,_, oo + e} T4 Slip [v]2,0 + €1 lv(0) 2,21 -2,
and the first factor in Iy by

ebllvllz2,1—pu, 0 + cgh 3 A vl 00

Summarizing, we dominate the first and third terms on the r.h.s. of (4.50) by

lerllvlla,_ .ot + 0(1/61)(8213 [vl2,0 + [v]2,0t) + cllv(0)[l2,2,1— . ]

t

1/2
A(§ IV (az/mBodt) " + laz/rhoss o)
0
We bound the second term by
claa/rlios3,.0t[[h]2,-1,00
and the sixth by
¢ 1/2

§csup||w||17079(s|hr*“|go,9dt') = I;.
2,1—p, 02t t 0

h
Vw — L2
,

[
+

rTTr
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Employing (2.8) we have
t

I; < cstip ||w||1OQ(S In(t)]13
0

/>1/2 -

The seventh term is dominated by
t

1/2
w

1—p 2 /

__‘ (§lopr' 2 g dt)
Tl2,0 %

t

1/2
< csup [wlluo.e (J e a1 o) < eswpfuloalola,
0

w
—_— fl) 2
r @,

2,1—p, 02t t

Finally, the ninth term is estimated as follows:

Ik —~/(2v))v - Talls /2,21 —pu,5¢
t

1/2
< e 1020 B s + 10 o) B s + () B ) ] b
0
t

< (Vle2(vaesBas
0

2 / 1/2
)+ c(1/z2) ol gl ') o

< (e2llvlla,_ .20 + e(1/€2)[v]2,02¢)d0-
Using the above estimates in (4.50) implies (4.49). This ends the proof.

Now we shall estimate the expression

¢ 1/2
(S|U<p7 |4 —3/4— ant) , €>0,
0
which appears on the r.h.s. of (4.1). Using (1.6) we have

(4.51) Wgz—m+;m.

In view of (4.51) we get
t

t
@) n<e(§loa@)B g cnd) + (S o)
0 0

for any small positive number e. To estimate the first term on the r.h.s. of (4.52) we need
(4.47) in the form

—(14p),0t < ‘P(HU”APM(!W))[|042/7‘|§0/3,m||h||§,71,m
+ Hw||§,1fu,m + |F/\§,m + |F1|§,7ﬂ,m
+ lla’ (013 @ (0)[5 .0,

where we used the fact that p € (0,1), ¢ € (0,2), g < 1 — 2u?/e.
Since a1 = @1 + a1 we need (4.35),

‘al,w@,f

(4.54) a1 lo,— (14,20 < clwll2,1—p00 + [[hll2,—1,00).
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Moreover, (4.32) and the Hardy inequality imply

(4.55) |@1el2, 00 < cllwllzi—per + [[Rll2,-1,00)-

Summarizing we have
t

1/2
(456) (Jloal o dt’) ™ < elllolla, ,omllaz/rhoss,orllbllz 1.0
0
+hll2 100 + [wll2a—p00 + [F'l2,00 + [Fil2—p.0
0 Ol 2.2 + 105 (0) 2. .,

for any p € (1/2,1).
In view of (2.8) the first term on the r.h.s of (4.52) is bounded by

0 \]12 / 1/2
(Yo jeat) =1,
0

and to estimate Iz we use (4.56) with p =1/24 ¢, € > 0 a small number.
Summarizing the above considerations we obtain
LEMMA 4.7. Assume that ag/r € L1g/3(2"), ve A1, (£2%), he H> (Y, we Hffu(ﬁt),
F' e Ly(2"), Fi € Ly, (2'), &/(0) € W31, (£2), a1(0) € Lo, (2), where p=1/2+¢
and € is an arbitrary small number. Then
t

N , 1/2
457 (Ylopa ) aucedt’) " < ollolas o)
0
’ [|042/7"\10/37m||h

+ |Fil2,— 00 + [l (0)

2100 + [hll2 100 + [wll2a-per + [Fl2.00

l1,2,1-p,0 + [a1(0)

2,— 2]
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In this section we obtain estimates for solutions of problem (1.5).

LEMMA 5.1. Assume that f, € Loq_,(27), w(0) € H|_,(92), we Lo 140 (027), g €
Lo 1(027), h(0) € HL(£2), p > 1/2. Then

(5.1)  Nwllza-per < @(lvlla,@)lwle w0 + ool @0)
~[1h(0)]2,22 + 19l2,02¢] + ellgla,~1. 0 + [7(O) 1, ~1,2 + [[w0(O) |11, 02

+ /e
where p s an increasing positive function, t < T.

2,17/1,(2’5]7

Proof. Applying [zaj 1] to problem (1.5) we obtain

VW

(5.2)  [Jwllz1—p, 00 < 0(|’U V2o + =

2,1—p, 2t

H1qlo,— w0t + [hlo,— (140,00 + w2 —(140),00 + | fol2—p0t
s |w<o>||1,1u,o)-

In view of [zaj 3] we estimate the first term on the r.h.s. of (5.2) by

+

—w
r

1/2,1—p,ST

[v- Vwlo1—p 0t < [0|2py,0t | VW|opy 1 p, 0t
< ellwllza-p.or +c(t/p(lvll221-p.0m) Wl 1w,
whenever 1/p; + 1/ps = 1; here we used the imbeddings W22)’117M((2T) C Loy, (027,
VH,(2Y) C Lap,1-,(27), which hold together for y > 1/2.
The second term on the r.h.s. of (5.2) is dealt with as follows:

VW w

o = |UT|2p1,Qf|w|2p2,—#ﬂt
2p2,1—p,

< ellwlla 0t + c(V/e)p([vll 22,120 ) w2~ (14). 00
whenever 1/p; + 1/pa = 1; here we used the imbeddings W22”117#(QT) C Loy, (£2%) and
lefu(QT) C Lop,,—,.(£27) which hold together for > 1/2.
To estimate the boundary term in the r.h.s. of (5.2) we use
1

- w
r

for p > 1/2.
Using the above estimates with sufficiently small ¢ and (4.8) in (5.2) we obtain (5.1).
This concludes the proof.

r < ‘UT|2P17Q’5

2,1—p, 2t

= ||’w||1/2,—u,sf <ellwll2,1-p,0t + 0(1/5)\w|2,—(1+u),m
1/2,1—p,St

(54]



5. Estimates for the azimuthal coordinate of velocity 55

To estimate the norm |w|s,_(14,),0¢ in (5.1) we need

LEMMA 5.2. Assume that € (1/2,1), € L2(0,T; La,—,,(§2)), h€ L2(0,T; Ly _(14,)(2)),
fo € L2(0,T; Lo —41(82)), w(0) € Lo _,(£2), v, € Ly(0,T; W2271_M(Q)). Assume that
either v/v —ay/rls > 0 or |ai| < cr, forr close to 0. Then

(53)  |wl _,0+v(l—eo/2—e)|Vuwl3 _, o

+v(l =207 /g0 — &2 — e3)[wl3 (14 .00 T VIWE s

t
c(1/3) exp|e(1/e1,1/e2) (¢ + )]
: Hq@,—y,ﬂt + |h|§,*(1+u),ﬂt + ‘ftp'%-;ﬁ-LQt + |w(0)|§’,%g], t< T?

0
for any e;, i =0,...,3, such that 1 —eo/2 —e; >0, 1 —2u%/eqg — &3 — 3 > 0.

Proof. Multiplying (1.5); by wr~2* and integrating over {2 we get

1d

(54) 5 0B o

S Awwr 2 dx + V|w|§’7(1+u)’g

1 hy
(v Vw+ — w)wr 2 dy + S —qurdz 4+ 2v S — wr 2 dx
r r
Q Q

+ fg,wr_Q” dx.

D

The second term on the L.h.s. equals

L=v S <g - %)wzr_m‘ ds +v S |Vw|?r=2" dx — 2uv S Vwwr ™~V dz.
5 Q 2

To estimate the boundary term in I; we consider two cases. For v/v — a1 /r|s > 0 the
term can be omitted.

For v/v — a1 /r|s < 0 we use the fact that |a1| < er, r < r¢. Then

} S B p=2p2 dS"
Sn{z:r<rg} "

<c(rg) | whrTdS <eifwali 0+ cl/en o)l e
Sn{z:r<ro}
and
S A p=2p,2 dS"
Sn{z:r>ro} "

< c(1/ro)|ar]oo,s|wl s < erlwal 0+ c(1/e1,1/r0, |a1]00,9)

We bound the last term in I; by

2 2
\Vw|2 MQ+V ‘w|27(1+u)79-
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The first term on the r.h.s. of (5.4) takes the form

T - 1 r _
S(”U'wa+v—w2>r 2"d:c§(—v~Vw2+—v w2>r 2
T 2 r

2 2
N 2,2 Ur on2p=20 | g — _ Ur o p2p—2m
= 8211 V(wr==*) + (1 4+ p) — wr dzr = (1—|—,u)s wr~ M dx
2 " o’
EIQ.
Hence

12| < e2lwl3 _(14 .0 + c(1/e2)vr 3 olwl3 o
Using [zaj 3] we have

vy
for p > 1/2.
We apply the above considerations in (5.4) and in addition use the Hélder and Young
inequalities to estimate the last three terms on the r.h.s. of (5.4). Thus we obtain

1d

G5 5 u

—|wl|3 . 0+v(l—co/2—e1)|Vwl3_, o
+v(l—2p%/e0 —e2 —e3)[wl3 (140
< c(1/e1,1/e2)( Dw 0

+ 0(1/53)(|‘J\§,—#,9 + |h|§,—(1+u),n + |f¢|§,—u+1,n)-
Integrating (5.5) with respect to t yields (5.3). This concludes the proof.

Next we need

LEMMA 5.3. Assume that g € Ly(£2%), h € Ly _1(£2"), f, € La(£2"), a1 >0, {4, (a1 /r)w? dS
< 00, w(0) € Ly(£2), vy € Lg(O,t'L (2)), t <T. Then solutions of (1.5) satisfy
1

(5.6) 5w [w(t)3,0 + Vw30 + 5 |w\2 100 Flwl s

t

< cexp [CS \Ur(t/)\zo,n dt/} [M%,m + |h|§,71,9t + |f<p|g7m

0

v | Zutds+ g |w( )379}
St

Proof. Multiplying (1.5); by w and integrating over (2 implies

1d w?
2dt|w|29+§lv wadac—&—s w dx—uSAwwdx—&—z/Sr—zdx

0 0 0

(5.7)

1 1
= — S ;qwdm+2u§ r—2hrwda:+ S fowdz.
Q 0 Q
The second term on the l.h.s. vanishes because it equals
1¢ .. 9 1 9 q
5 édlv(vw )dr = 3 Lsgv -nw”dS = 0.
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The fourth term on the l.h.s. assumes the form
—v S div(Vww) dz + v S |Vw|? dz = v S w? dS — I/S % w? dS + v S |Vw|?dz,
2 Q s S o

where the boundary condition (1.5)2 was used.
We estimate the third term on the Lh.s. of (5.7) by
5|w|§,—1,rz + 0(1/5)\Ur\go,n|w|§,n

for any € > 0, and the terms on the r.h.s. by

5\“’@,71,9 + 0(1/5)(\61@,9 + |h|§,71,fz + |fso|§,n)-
Using the above estimates in (5.7) implies
1d

(5.8) 3@

|w|2 o trlw, w|2 ot5 |w|§,71,9 +7
a
< clorlie olwldo +v | Zrw?dS + (gl o + B3 10 + |felb 0)-
s

Integrating (5.8) with respect to ¢ yields (5.6). This concludes the proof.

LEMMA 5.4. Assume that v € Lo(0,T; Loo(£2)), ¢ € Lo _1(27), h € Lo _o(027), f, €
Ly(027), §(ar/r)w? dS < oo, w(0) € H'(12), w(0) € La —1(£2), a1 > 0. Then solutions
of (1.5) satisfy

(5.9) thlzm+ Iwm|m+ wl s + 5

5 -
¢

< cexp [CS lu(t') goﬂdt’} {|q|g71,9‘ + \h|§’,2)m + |f¢|§7m
0

v Y v Ve ap
+§|w,w(0)2’ §|w(0)|§)s+§|w(0)2’ §§7w2d5], t<T.

Proof. Multiplying (1.5); by w; and integrating over {2 yields

(5.10) |wt|§,9 + S v - Vww dz + S — ww dr — I/X Awwy dz + v S _u:“;t dz
Q 7] 2 %)

1 1
= 78 qutd:ch?z/S —2hrwtda:+ S fowe dz.
r r
0 2 0
We estimate the second and third terms on the l.h.s. by

(1/e)vl%. a(lweli o + w3 1 0)
for any € > 0. The fourth term on the Lh.s. gives

S div(Vww,) dez + = di S w?r dx,
2

where the first term equals

a d vea
—Vén'watd527§wwtdS—V§7lwwtdS: E(% |w|§’s— §§g7lw2d5’>.
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The terms on the r.h.s. of (5.10) are estimated by

5|wt\§,9 + 0(1/5)(\61@71,9 + |h|§,72,n + f¢|§,n)~
In view of the above estimates (5.10) takes the form

d v

a1
611 o+ 2] Y o+ D ol + 2 mblg—§§7wwﬂ

< c|v|§o)9(|w@|g79 + \w@ﬁl,rz) + C(|q|g771,9 + |h|§,72,9 + |f¢|§,g)-

Integrating (5.11) with respect to time yields (5.9). This concludes the proof.

Let us introduce the quantity

(5.12) A(t) =g 1.0 + h@)3 2.0 + o ()3 0
Then we have
LEMMA 5.5. Assume that v € A1_,(2%), p € (1/2,1), w € Loo(0,t; Lo 1(£2)), w(0) €
HY(2)N Lo, —1(2), w(0) € La(S), t < T and
¢

f At dt < oo,
0

Assume either 0 < a; < cr? in a neighbourhood of r = 0, or a; < 0 and |a1| < cr. Then
for solutions of (1.5) we have

(5.13)  vws(t)3o+vIwt)3 10+ lwt)s

cllvll? :
< ce " {1 ol o) sup [0 (1) B 0

t t
+e (w3 ge” dt + | A () dt
0 0

+e ([wa(0) o + [w(0)3 1 o + [w(0)35)|-

Proof. From (5.8) and (5.11) we have

d
@10 5 g [rhoalba oo o s v | w?as| + 5 ol

1 ai
b5 sl vl g oluls v | 2 utas)
S

ai
< ol owlo+walf o+ w1 0) +ef ~Fwds
S

+elal3 1.0+ R o0+ Ifel3 )
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We reformulate (5.14) as

d d aq
(519)  GluBo+ g [Hwso vl 1o+ alols - et is]

a
+ vl + o o +alols — v § 2w dS] + sl o + 2l s
S

a
< ol e+ Vol s+ ol s — v | 2w as]
S

+e(1+f% o) | % w? dS + Ay (t).
S

Multiplying (5.15) by et=efo Pt o d’ yields

(5.16) %|w|%,geticsé |'U(t/)‘io’_(; dt/

d b ,

+ % |:<V|w,x|§7_(z + 1/|w|§,_17_(2 + 7|w|§,5’ _ VS % ’LU2 dS) et—csg lo(t )|icQ dt
S

+ (w3 o + y|w]d g )et S ) E

’

<+ v 0) | 2w dg et eSO o
S

+ cA(t)et=So PEI% o dt',
This implies

d

o etfcs(t) lv(t)12 o dt’)

(5.17) 20

(Jw

d a £ /
+ 7 {<V|wm|§9 + 1/|w|§,_1,9 + 7|w|§,s — yS 71 w2 dS) et—cSo l0(t)% o dt
s

+ (Vw3 o + ylw]d g )et S ) R0

<L+ olk o) § T w?ds el MO0

s
(1= et o)l get =t e 0 0
+ cA;(t)et=<So PEI% o dt',
Integrating (5.17) with respect to time yields
(5.18)  |w(t)[3 pet=eSo M) 0

ay
+ (v OB o+ viw®B 1.0 +ohe®Es v |2 w2<t>ds]
S

t
et ()% o dt’
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t

+{ oo ()30 + )35
0
\ a ’
7 t 1IN 12 "
S(l + |U( ) o0, _Q) S L wz(t/) dSet —cfy ()2, o dt dt’
0 s 7
t ’
’ t N .
+§ (1= o) 2 )lwt))3 et 80 M gy
0
t ’
+ef Ay @)er el M a d gy
0

) t—cs [o(t"” )|mndt dt’

a
+ w0 o+ viwa O o + v o + 1O s - v | 2 w?(0) ds.

s
Assuming that 0 < a; < ¢r? in a neighbourhood of r» = 0 we obtain

a
(5.19) J S wtdS < cluldy s < clwalo e whig
S

for any € > 0. Using (5.19) for 0 < a; < cr? we have the inequality

(5.20) [0 0 § = w? dS < elwal3 o + =7 ol w0
S
In view of (5.20) we obtain from (5.18) the inequality

(5:21)  [w(t)f get=eh M0 b

aj
 [va OB o+ OB 1o+ alw s - § 2 u2(e)ds]
S
t—e ()2 dt’

t
+{[(v = lw ()3 o + ()3 gle” =% P d” gy
0
t

<o | (14 o) % o) [w(t)]3

’_ t/ 1\12 "
2’179615 CSo [o(t'")|2, o dt dt'
0

t

e[ (1 = elo(t)2 @) hw(t) 3 get ~o B P dt” gy
0
t

+ cS Ay(t)e! =8 1P e gy () g + v 2(0) B

a
+rfw(O) 1,0 + w35 —v | = u(0)ds,
S

where the last term can be omitted for a; > 0. For a1 < 0 we use the fact that |a1] < er,
and the last term on the r.h.s. of (5.21) is estimated by c\w(0)|§7s.
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In the case a; < 0 the first term on the r.h.s. of (5.21) can be cancelled. Assuming
that € is sufficiently small we can omit the last term on the Lh.s. of (5.21). Multiplying

—ttefp ()2, o dt’

the result by e and exploiting again (5.19) we have

(5.22)  vwa (8o +viwd) 10+ vwt)s
t
< ceSo POl sup ()3 [1 +{lo(t)]% 0 dt/}

t'<t o
t t
e el e d { ()3 et dt! + ceo 1P @ [ 4y (#) a!
0 0

_ c t ot 2 ’
+ et el M2 L (0)[3 o + [w(0)[3 1 0 + [w(0) 3 s].

Using the estimate
0 AVES / 1/4
(V@) iega) ™ <clvla, on, we1/21),
0

we obtain (5.13). This concludes the proof.

Let us introduce the quantity

(5.23) A2(t) = lg(t)]2.0 + [h(B)|2,-1,0 + | fo (D) |2.00-

LEMMA 5.6. Assume that

As(t')dt < o0, |w(0)]a1.0 < o

O ey

Then for solutions of (1.5) we obtain

~

t
(5.24) w(t)21,0 < WwO)210+ A dt,  teR,.
0
Proof. Multiplying (1.5); by wr?* and integrating over {2 we obtain

1d N
(5.25) 5 *|w|§ w2 T S v - Vwwr?* dz + S o w2r?t dx
NS ,

0 Q
—v\A 21 q + v |2
wwr* dx w3 1,0
0

1 1
= — S — qur** dz 4+ 2v S - hywr dz + S fwwrm‘ dx.
r r
Q Q Q
The sum of the second and third terms on the Lh.s. equals
v
1- — w?r? dg.
(1—p) S wer dx
Q
The fourth term on the Lh.s. of (5.25) takes the form
—v X div(Vwwr?*) dz + v S w?xr2“daj + 2uv S Vwwr?* = Vr d,
19 Q Q
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where by using the boundary condition (1.5)5 the first term is expressed in the form
_\=. 2u _ 2 _ ar o oy
I/S’FL Vwwr® dS =~|wl; , s Z/S wor ds
s s
and the last term is handled as follows:
712 X Vw?*r? Ve de = pv S V(w?r?*=1Vr) do
0 Q
—pv(2u —1) S w?r—2Vr - Vrde — pv S w?rt Ar dx
[0 Q
a1
= ,UI/S - w?r? dS — 2/1,21/|w‘§’#71’9.
s
Finally, the fourth term on the L.h.s. of (5.25) equals

—v S Awwr?t dx = —v S div(Vwwr?*) dz 4+ v S VuV (wr*)de = I, + I,
Q Q Q
where
_ ay
LI =—-v S 7 - Vwwr? dS =~ S w?r? dS — VS . w?r?* ds,
5 s s
L=v S |Vw\27“2“ dx + 2uv S Vw - Vrwr?*~Vdz = I3 + I4.
Q Q
We have to examine
Iy =2uv S Orwwr?t drdz dy = pv S Opw?r?* dr dz dyp
Q Q
= pv S O (W) dr dz do — 2p*v S wir?* Y dr dz d,
Q Q
where the first integral on the r.h.s. equals

wlr2n—1

% S {8,.(11121"2“_1) + f] rdrdzdp
Q
— ; 2, 2p—1- _ = = .2 2u—1 _ ar o 2,
—/WSle(wr er)dx—/wgn-erwr dS—/wSTwr ds
Q 5 s
Hence the fourth term on the Lh.s. of (5.25) takes the form

2
2,p,82°

ay
vl —1) | T wtr¥dS = tviwll o+l s+ vivs
S

In view of the above considerations (5.25) assumes the form

(526) |w|§,u,(l + V|w,1|§,u,() + I/(]' - 2:“’2)|w‘§,p‘71,(2 + ’7‘“’@,#,5

1
2 dt
+(1—p S 1;—Tw2r2“da:+1/(uf 1) S %w2r2"d$
2 s

<|w

2,u,9(|q|2,u*179 + ‘h|2,u*2,9 + |fso|2,u,9>-
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Using the Hardy inequality

(5.27) P[5 10 < Wl e
we obtain from (5.26) the inequality
1d
(5:28) 5 Il 0+ v = p2) w10 +wl,.s
+(1—p) S R T vip—1) S N p2p2m g
o 3T
< |w

2m2(|dl2p—1.02 + h2p-2.0 + |fol2p0)-
Inserting p = 1 in (5.28) yields

1d
(5.29) B} %|w 3,1,9 + ’Y‘w|§,17s < Ay (D)|wl2,1,0-
Hence we have
d
(5.30) E'wb’l’ﬂ < As(t).

Integrating (5.30) with respect to t gives (5.24). This concludes the proof.
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6. Local existence: boundedness of the approximating sequence

We construct successive approximations and show that elements of the approximating
sequence are uniformly bounded.

6.1. Formulation of the method of successive approximations. To prove the
existence of local solutions to problem (1.1) we use the following method of successive
approximations. Let v, be given. Then h,, and g¢,, are solutions to the problem

Bt — v divD(hm) + Vm + V- Vi + b - Vo, =g in 27,

div Ay, =0 in 27,
(6.1) fom -0 =0 on ST,

ﬁ-]])(hm)~?a+%hm-?a:07 a=1,2, on ST,

hunlt=0 = h(0) in 2.

Let v, Gm, han be given. Then w,, satisfies

v"n/r wm
W, t + Um Vwp, + ” Wy, — VAW, + v -2

m o, 2 .
:qi‘i’%hmerfap IHQT,
(6.2) r r
n - Vwn, =—<1— ﬂ)wm on ST,
v r
Wy |t=0 = w(0) in .

Let Vi, @m, hm, W, be given. Then o, is a solution to the problem

A2 m+1

(e5] m—+1,t + Um * val m+1 — (e%] m+lvmr,r - hm'r‘ - a3m+lvmr,z

2v Vo1 m+1

: T
+ ’I"_Q (hmr,z — hmz,r) + T — VAO[l m+1 = F1 in 2 s
Qa3 m—+1,t + Um * VQS m+1 — (Oll m+1vmz,r + a3 m+1vmz,z)
(%) 1 .
(6.3) — %—F hmz — VAQ3 1 = F3 in 27,
20,1
— / T
7—Q'O[m—i—l:* r W OHS s
— / T
(TL : am+1),n = ﬁlhmr + ﬁ2hmz + ﬁ?)wm,r + ﬁ4wm,z + 65wm on S 5

@ mttli=0 = 1(0),  azm1li=o0 = a3(0) in §2,

[64]
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and Xm41 = Q2,41 1S & solution to the problem

hm Umr m
Xm+1,t + Um - VXm+1 — Tso Xm+1 — W Xm41 — VAXmy1 +V XT;I
]‘ m 2 m¥m z
= - <wm7zhmr - wm,rhmz + w— hmz> + WmYme,
r r r
+ 7_72 (’I" hmz,cp - hnup,z) + F2 in _QT,
Xm+1 = 2(k —7/(2v))vm - T2 on ST,
Xm+1lt=0 = a2(0) in £2.
For a given v,, we calculate p,,, from the elliptic problem
Apy, = =V, - Vo, +div f in £2,
(6.5) Om
aL:f~ﬁ+l/ﬁ-Avm—ﬁ-Um-va on S.
n

Finally, in the next step we calculate v, 1 from the elliptic problem for a given a1,
rot U1 = Q1IN £2,
(6.6) divugm41 =0 in {2,

Umt1 =10 on S.

6.2. Estimate of the first step. To start the above method of successive approxima-
tions we assume that vy = 0. Then hg and gg are solutions to the problem

hot — vdivD(hg) + Vgo =g in N7,
divhy =0 in 27,
(6.7) ho-m=0 on ST,
ﬁ-ID)(ho)-Fa—i—gh(y?a:O, a=1,2onS7T,
holt=o = h(0) in £2.
Having hg and gy we calculate wg from the problem
wovt—yAw0+uw—§:q—0+2—Zho+f¢ in 27,
r roor
(6.8) n-Vwy = —(7 — al)wo on ST,
v T
wo =0 = w(0) in £2.

Next we calculate a; from the following system of problems:

Qi — % hor + %(hOT,z —hozr) + 1/7(211 —vAay =F  in Q7
a3y — % ho: —vAaz = F3 in 27,
(6.9) T = 7%% wo on ST,
(n-ah).n = Brhor + Bohos + Bawo » + Bawo . + Bswo on ST,

aiili=o = @1(0), as1li=0 = a3(0) in £2,
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and
hoe 1 w
X1t — —=x1—vAxa+v=5 X _ = <w0,zh0r — wo,rhoz + — hOz)
r2 r r
2v (1 .
(6.10) + pec} (; hoz,e — hOap,z) + in 27,
x1=0 on ST,
X1li=0 = a2(0) = x(0) in £2,

where in the matrix o;; the index ¢ corresponds to the coordinate of the vector a and j
corresponds to the step considered.
For the first step we calculate v; from the problem

rotv; = a1 in §2,
(6.11) divey =0  in £2,
v-n=0 on S.

The aim of this section is to show that the constructed sequence is bounded. For this
purpose we introduce the quantities

(6.12) K (t) = llvmlla,_, 2, meN, pe(1/2,1).

We show that they are bounded by the same constant. From the above considerations we
have KO = HUO||A17“(Qt) =0.
First we find a bound for K.

LEMMA 6.1. Assume that g € Ly _1(027), f, € Lo(27), h(0) € HL,(£2), w(0) € H}(£2),

O/( ) S W21 M(Q)a al(o) € L2,7M(Q)? F/ S LQ(QT)a Fl S L2,7M(QT)7 1% € (1/271)7
Fs € L27,1(QT), X( ) S Lg ,1(.(2). Let

X1 (t) = lgl2, 1,00 + |fel2.a0 + [1(0) ()00 <1,

Xa(t) = |F'a,00 + |Fil2,—or + 10/ (0) 121 0 + 01 (0)]2, 4,0,

Yi(t) = |Folo,—1,00 + [X(0)]2,—1,0-

Assume that there exist constants A and ¢ such that

(6.12') (e X1 (t) + Vi) 2 X1 (1) + Xo(t) + Vi(8)] < A, ¢ <T.
Then
(613) ||'U1HA17“(_Qt) § A, t § T,

and T is defined by (6.12").
Proof. For solutions of problem (6.11) we have

(6.14) Ki(t) = Jvilla,_, 0 < cllaillz.zi—p,o0-

Now we estimate the r.h.s. of the above inequality. Applying Lemma 4.2 to problem (6.7)
yields

(6.15) 1hollz, 1,20 + llgoll1,-1,0¢ < €(lgl2,~1,00 + [1A(0)

2)-
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Applying Lemma 5.1 to problem (6.8) gives
(6.16)  lwoll2,1—p, 020
< c(lglz—1,00 + [RO)I1,-1,0 + WO 11— + [fol2a—p0t + [wol2,—(14p),0¢)-

To estimate the last term on the r.h.s. of (6.16) we use Lemma 5.2. Hence we have

g,—u,St

< ce(qol3 + |hol3 +|£13 )+ w(0)[3

= e ll9ol,—p 0t 012,—(1+p),02¢ el2,1—p, 0t 2,—p, 02
< ce(1913, 1,00 + 1RO)IT 1.0 + [fol31-p.00) + [w(0)[5 s 0

where the last inequality follows from (6.15).
Making use of (6.17) in (6.16) yields

(6.18)  lwoll21—p. 0 < ce(lgl2.—1.0¢ + [|R(0)ll1 1.2 + |fol2a-poe) + clw(0) 11 p.0-

(6.17)  |wo(t)]3 0 + Vol o + w0l (14,00 + w0

Next we obtain an estimate for af = (11, a31). In view of Lemma 4.3 we have
(6.19)  flell22.1— et < clazr/rlioss.tllholl2, -0t
+c(llhollz,— et + lwollz—p,00) + clantla, (4 py.00 + el F21-p,0t
Employing estimates (6.15) and (6.18) in (6.19) yields
(6.20)  [la]

|2,2,1—p,0t < clagr/rlio/3,00 (|9]2,-1,0t + [|R(0)||1,-1,2)
+ ce(|gla,—1,0t + [1RO0) |1~ 1.2 + | fol21—p,2t)
+ cllw(0)]l11-p.2 + | F’

2,1—p, 02t + C\a11|2,—(1+u),9t-

In view of Lemma 4.5 and (6.15), (6.18) we have

(6.21)  Jautla,—(1py.et < cllaoi/rhosz.er + 1)(1gl2,-1,0t + [[R(0)][1,-1,0)
+ce®(|gle, 1,00 + 1ROl -1,0 + | fol2,1-p,00)
+c(|[F' 2,00 + [Filo,—p0) + c(lla’ (0)]l1,2,1-p,0 + |a1(0)]2,—4,0)
+cl[w(0)[l1,1-p,0 < e(laz /710,00 + )X (E) + X3
+ (X3 + Xa(t),
where we introduced the quantities
X1(t) = lglo, 1,00 + [fol2,00,

X5 = [[h(0)]1,-1,0 + [lw(0)[l1,0,0,

X5 = [l (0)]l1,2,1-p,22 + [@1(0)
X4(t) = [F'la,00 + | Fil2,—p, 0t
Y{(t) = |Falo,—1,0t,

Y3 = [x(0)]2,-1,2 + [[X(0)[l1,1-pn,02-
Employing (6.21) in (6.20) yields

(6.23) ot llz20-pr < cllozt/rlhoss,ar +e)(X1(E) + X3) + e(X5 + X4(t)).

(6.22) B
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To obtain an estimate for as; we formulate the problem for yi:

X1 1 X1
B )

2v (1 1 w, .
(624) - 3 (_ hOz,Lp - hOga,z) - = <wO,zh0r - wO,ThOZ + = h02> = Fl m ‘QTa
T T T T
x1=0 on ST,
X1le=0 = x(0) in 0.

For solutions of (6.24) we have the estimate
t

-ve | I/l dt
0

t
(6.25)  sup|xi/rf3.0 + v lxa/rlf g dt’ < csup ho,
0

(L +sup [lwollf o o)lIholl3 -1 e+ elF2l5 1 00 + X(O)f5 -1 0

Using (6.15) in (6.25) and assuming that the r.h.s. of (6.15) is sufficiently small we obtain
from (6.25) the inequality
¢
(6.26)  sup [xil3 1.0+ v Ix1/7l13.0 ' (1 + sup o
0

0.2) (95 100+ [RO)F -1 )

+ C‘F2‘§,—1,Qt + |X(0)|§,71,(z~
To estimate the first factor in the first term on the r.h.s. of (6.26) we use Lemma 5.5
which implies
¢
621)  lun(t)R .0 < esup o) 1,0+ oc §uo(®) e dt

0
t

+ef (a0 B 10+ ho()3 2.0 + | fo(#)[3,0) dt
0
+e (w013 0.0 + [w(0)3 5)-
Using (6.15) in (6.27) yields
¢
(6:25) 0Ol .0 < esup a3 1.0+ e Jlunt) o d
= 0
+e(lgl 100 + 1RO 10 + Ifel3 o)
+ee” (Jw(0)[If o, + [w(0)3 )-
To estimate the first term on the r.h.s. of (6.28) we use Lemma 5.6. From (5.23) and
(5.24) we have
¢

(6:29) |wo(t)a1,0 < [w(0)a1,0 + | (00|20 + Aot )]s, 1.0 + | fo(t)|2,0) d
0
< [w(0)|2,1,0 + /2 (Iglo,~1,0¢ + [1R(0)[l1,-1,0 + [ fol2,00)

<ct'2(X| 4+ X3y),  t>1.
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Moreover, from (5.6) we get the estimate
1 v
(6.30) 3 |w0(t)\§79 + V|w0,x|g7m + 5 |w0|§,71,m + 7|w0\§,st

ay 1
< cllgl3 —100 + 1PO)E —10 + |fol3.a0) +v | —widS + 5 [w(0)]30.
St
REMARK. For domains close to a cylinder the boundary term on the r.h.s. can be ab-
sorbed by the second and third terms on the l.h.s.
Otherwise we consider (5.8) in the form

1d v
(6.31) = —|wol3. o+ viwoelso+ 3 lwol3._1,0 + Ylwol3.s

2dt

a9 2 2 2
< VS W dS + c(lqolz,0 + [holz,—1.0 + [ fol2.0)-
s
Estimating the first term on the r.h.s. by some interpolation inequality we obtain

d
(6.32) £|wo|§,n + v|woel3,0 + vwol3 _1.0 + vlwol3 s

2 2 2 2
< ecilwolz, o + cllgolz 0 + [holz,—1,0 + [fol2.0),
where ¢, is a constant which follows from the interpolation inequality and depends on

ay/r.
From (6.32) we have

d _ -
(6:33)  —(lwo(t)]3.0e™") + (vlwoal3 o + viwol3 10 +7wol3 s)e™ "

dt
< ce”*(|go(t)[3.2 + [ho()]3,0 + | o (D)]3,0)-
Integrating (6.33) with respect to time yields
t
(634)  wo(t)[3.0 + " § (Wlwo o (#)[3.0 + vlwo(t')3, -1, +wo(t') .g)e " dt
0

t

< e [ (o) B + [ho(t)3 1.0 + 1 Fo () B.0)e " dt’ + e w(0) 3 -
0

Since e1(t=t) > 1 for t > t/, using (6.15) we get

(6.35)  |wo(t)[3,0 + Vlwol3 o0 + viwol3 o +7|wol3 s
< ce!(|gl3—1,00 + 1RO)T —1.0 + |fol2.00 +[w(0)]3,0)
< e (X2 + X507,

Employing (6.29) and (6.35) in (6.27) yields

t

2
(636)  llwo()lF 0.0 < OB 1.0+ |§ (o)l + ho(t)o 10+ 1o (#)]2.0) dt

0
+ e (g3 1.0 + IROE 1.0+ ol 00)
+e w(0)[3,0 + e~ ([w(0)lIf 0,0 + [w(0)[3,)
< e (X7 + X57),

where (6.15) was also employed.
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Making use of (6.36) in (6.26) implies
¢

(6:37)  sup|xi/rlE0 + v /rl o dt’ < el + wO),0
0

+ e (g2, 100 + [RO)F 10 + [fol5.00 + [w(0)]50)
+e  (JJw(0)][F o + w(0)3,.6)(|915, 1,0t + 1RO)]IF _1,0)
+ (|3 o+ IXO0)5 -1 0)

<[l 4 e X+ X7 (X2 + X5%) + (Y% + Y57,

where notation (6.22) was used.
For solutions of (6.10) we have

h
638 o S

|2,1-p,0t < clXile,—(1p),0t

2,1—p, 2t

1 w
<w0,zh0r - wO,rhOz + TO hOz)

r

1/1
7"_2 (; hOz,gp - hOcp,z)

+C|F2

+c

2,1—p, 2t

+c

2,1—p, 2t
2,1-p,0¢ T ClIx(0)][1,1-p,0-

The fourth term is dominated by

c|Vhola,—(14u),0t < cllholl2,—1,0:-
The third term on the r.h.s. of (6.38) is estimated by

‘ AYP / 1/2 0 N2 1/2
sup w.c .2 §1ho(#) e, ') "+ sup wo/rla.e ( §ho(#) B0
0 0

t

/ 2 ! 1/2
< esup un(®) 0.2 ( J1ho(t)]3, 1,0 )
0

< esup wo(t)[10./holl2-1.0r-

The second term on the r.h.s. of (6.38) is bounded by

t 2 1/2
h
o = (V] )
2,1—p, 02 0 21-p 02
. 9 1/2
= (S dt’ S |hoy|? XLl 20-m) dl”)
0 2 "
L X1 ? 2
< <S dt hop (#)5,1- 0| 7 () >
; 6,02
t
) ()

2 1/2
dt’) )
6,02

sup ()1 |
<t 5

r
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Summarizing the above considerations gives

xa(t)

(639)  Ixillza-er < eile— .o +esup |ho@<t'>|3,1ﬂ,n(§
t'<t
- 0

+esup [woll1,0,2l1Poll2,~1,02¢ + cllholl2,~1,0:

+ c([Fal2,1—p,00 + [Ix(0)]

In view of (6.22) we have

2 1/2
dt’)
1,02

1,1-p,2)-

xa(t)

2 1/2
dt’)
1,02

t
(6.40)  [x1l2.— (120 + (S
0

<[l + e (X] + X)X+ X)) + (Y] +Y5).
Applying (6.29), (6.36) and (6.40) in (6.39) yields
(6.41) X121 e < (1 + et X))tY2 X, + ey,

where

Xl:X{"'Xé? i;1:1/1/_'_}/2/’
and t >ty > 0.
In view of (6.41) we obtain from (6.23) the inequality

(6.42) e/ ll2,2,1—p,00 < c(e + Y1) Xy + cXo,
where X 1 <1 and
Xy = X4+ X,
From (6.14), (6.41) and (6.42) we obtain
(6.43) K1(t) = villa, 00 < c(e® Xy + Y2 X1 + c(e” Xy + X + 17).

Therefore we can choose a constant A such that the r.h.s. of (6.43) is bounded by A. This
concludes the proof.

6.3. Estimate of the general step. Now we obtain a uniform bound for the con-
structed successive approximations.

LEMMA 6.2. Assume that g € Lo _1(027), f, € Lo(27), f € Lo (027), F' € Ly(027),
Fy € Ly, (027), Fy € Lo _1(27), p € (1/2,1), h(0) € HL,(£2), w(0) € H}(£2), v(0) €
La(92), /(0) € Wy, (2), a1(0) € Lo, ,(2), x(0) € Lo 1 (2) N H{_,(2). Assume that
there exist two positive constants A, B and a positive increasing function @1 such that
¢1(A, B)e” X (t) < 1,
(6.44)’ V(Y + 1) 1YY 4+ Y +Y5) < A,
CYl § Bv
and assume that for some 6 > 1, 60 = ||k — v/ (2v)||3/2,4,—5/2,5 s s0 small that

(6.44)" 6o < (Vi1 + 1) 4+ VYo + Vi 4+ Vo)),



72 6. Local existence: boundedness of the approximating sequence

where
X(t) = |9|271,Qf +1gl2,—1,0t + |f<p|2,fu,!?‘ + ‘F,|2,Qt
+ [Fil2,— 0 + [|(0)[1,-1,0 + [w(O)][1,1-p,2 + [[w(0)||1,0,2
+ 1/ 0)l1.2.1— .22 + 1071 (0) |2, .2
Y1 = [Falz,—1,00 + [x(0)|2,-1,0,
Yo = [Fal21-p0t + IXO)11—pe + [[0(0)ll22.0-p.0-
Then
(6.45) [vmlla,_, 2y <A, IXm/rlge < B, meN, t<T,
and (6.44)} implies the restriction on time:
1 1
(6.46) T<-n——————.
¢ ¢1(A,B)X(T)

Proof. From (3.30) we have

N 2 N2 1/2
(6.47) hnla + (§IhmlEdt) " < ot Kn(®) X,

0
where
(6.48) X1 =lglyi 00 +1hO0)2.0,  Kin(t) = llvmlla, .20,
and ¢ will always denote an increasing positive function.

From (4.8) we get
t
2 N2 1/2
649 olooror 4 (Vanl? o0 dr') " < o2 Kon(t), Kon(t) Xo,
0

where
(650) X2 = X1 —+ |g|27_1,_Qt —+ Hh(O)| 1,—1,02-

Assume that J, is sufficiently small and
(6.51) Slip [Pmgl2,—1,0 < 0k
Next Lemma 4.1 yields
(6.52)  |xmt1/7l e < clllhmll2, 1,0t + [vmli0/3,00 + 1)do(e1 K (t) + c(1/e1)|vml2,2t)
(L4 sup [lwm|[1.0.) o 2,10
+ csup [wmll1,0,010me,2la2 —3/4—c 0 + ¥

for all £,e; > 0, where

(6.53) 6o = Ik —v/(2V)ll3/2,4,-5/2.5. Y1 =1[x(0)]2,—1,0 + [F2l2,—1,0'
To estimate the norms involving v, we use (6.6) for step m. Then we have
(6.54) [vmlo.0r < clamlo.or < cllarlo.0r + [ Xmlo—1.00)

for o equal to either 2 or 10/3, and the constant on the r.h.s. depends linearly on R.
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From Lemma 4.4 applied to problem (6.3) in step m we have

(6.55) lag, | or + liml2,—1,00 < @(Km-1)[[Xmli0/3,2t [Am—1ll2,~ 1,00

+ | hm—1ll2,—1,0t + [[wm-1ll2,1—p, 0t + X3],
where
(6.56) X3 = |F'la,0t + |/ (0)]2,0-

In view of (6.54) and (6.55) we obtain from (6.52) the inequality

(6.57)  Ixm+1/rlor < clllhmll2,—1,0¢ + [Xmli0/3,-1,00
+ ©(Km—1)(IXmli0/3,0t hm—1

l2,1—p,0t + X3) + 1]00[e1 K + 05;3/4|Xm|2,—1,m

+ e M 20 (Ko ) (Pambogs, o |- 1ll2,-1,00 +lAm-1ll2,-1,00

+l[wm—rllz1-p00 + X3)] + (1 + sup [lwm|[1.0.2)Vim|l2.-1.0¢

l2,~1,0t + [|hm—1ll2,—1,0¢

+ || wm—1

+ CSI:D wmll1,0,210me,2la2 —3/4—c o +cYr.
Introducing the notation
(6.59) L = Do/l
and using (3.49) we obtain from (6.57) the inequality
(659)  Lnst < (Lo + 1+ (K Kone1)(Lon + DXz + 0(Kn1) (012,10
+ X3)00[e1 Ko + a7 Y Lo + ce7 ¥ 4 20(K p_1)-

(L + DXz A+ [lwm-1fl21-p.00 + Xs)] + (1 +sup [[wiml1,0.2)9(Km) X2

+ CSltlp ||wm||1,0,Q |/Umap,z |4’2’73/47€"Qt + Y.

Now we shall estimate the norms involving w,,_1 and w,,. Lemma 5.2 implies

(660) |wm|2,7u,() + |wm,w|2,—,u,Qt + |wm 2,—(1+p), 02t + |wm|2,—u,St < @(Km(t))GCtXLL,

where

(6.61) Xy = Xo+|folo,—p,0t + w(0)]2,—p -
From Lemma 5.1 we have

(6.62) lwmll2,1 -0t < (K (t))Xs,
where

(6.63) X5 = X4+ [w(0)[l11-p,0-

From Lemma 5.5 we get

(6.64)  |wpm (1)

2,2 + [wm(t)|2,—1,0 + |wm(t)]2,s
< w(Km(t))[SliP |wm ()

21,0 + |Wml2.0t + Xe],

where

(6.65) Xo = X5+ [wz(0)l2.2 + [w(0)]2,-1,0 + [w(0)]2,s-
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From Lemma 5.6 we obtain

(6.66) [wim (1)]2.1.0 < |w(0)|2.1.0 + /%X,
Using (6.60) and (6.66) in (6.64) yields
(6.67) (Wi (8)]2,2 + [Wm () ]2,-1,0 + [wm(t)]2,5 < ©(Km(t))e” Xe.

Employing (6.62) and (6.67) in (6.59) yields
ferKm + ey Ly + ce7 A o(K - )2 (L, + 1) X7]
+ @(Km)eCtX7 + @(Km)‘ECtX?l'Umga,z |4,2,—3/4—5,Qt +cln,
where
(6.69) X7 = Xo 4+ X3 4+ X5 + Xg.

Now we shall estimate the last factor in the third term on the r.h.s. of (6.68). Using
formula (4.51) applied to (6.6) for step m we have

1
(670) U,z = —Qm1 + ; Pz
Then applying (4.52) we have
(6.71) |vm%z|4’2’,3/4,€’9t < C(lam1|472,73/4—5,9t + HhmHQ,—LQt)'

To estimate the first expression on the r.h.s. of (6.71) we apply (4.56) in the form
¢

1/2
6.72) (Sl @B 0 dt') " < ellom-illa,0)
0

[xm /7oy, 1Pm—1ll2,—1,0t + |hm-1ll2,—1,0t + [[wm—1ll2,1- 0t + Xs],

where
(6.73) Xs = [F'ls,0t + |Fil2,—p,0 + |0 (0)]l1,2,1-p,2 + |a1(0)]2,— 4,0
Using (6.47) and (6.62) in (6.72) implies

0 12 / 1/2 1/2
(6.74) (Vlam@)IE o dt’) ™ < @t/ Kin-1)[Em X1 + X5 + Xa.
0

Taking = 1/2+ ¢, € > 0, we obtain from (6.71) and (6.74) the estimate
(6.75)  |vmg,zla2—3/4-c 0t < (2 K1) [[Xom /T]10/3,00 X1 + X5 + Xs] + @(Kom) X1
Employing (6.75) in (6.68) yields
(676) L1 < C[Lm +1+ @(Kma Km—l)(Lm + 1)X7]60
a1 K + 05;3/4Lm + csf3/4g0(Km,1)t1/2(Lm + 1) X7]
+ (K, Y2 K1) (Lin + 1) Xg + €Y7,
where

(6.77) Xg=X1 + X5+ X7+ Xs.
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Lemma 4.3 implies

(6.78) llat

221—p,02t < o(Knm) sup | 1l2,1— 0,0 + Linp19(Km) Xo
+ ©(Km) X5 + clor mytlo,—(14p),0t + cXs.

Lemma 4.4 yields

(6.79) S‘ip |,y 12,0 < (Kp)[Ling1 X5 + Xo]

and Lemma 4.5 gives

(6.80) |t my1l2,—(14p),0t < @(Km)[Limy1 X5 + Xo.

From (6.78)—(6.80) we have

(6.81) oy

Inequality (4.49) implies

(6.82)  lIxma1ll2,2,1—p,0t
< lesKm(t) + c(1/es)(sup [vm2.0 + [vml2.00 + cllv(0)l2.2.1- 2] Lim

2.2,1—p,2t < Q(Km)[Lims1X5 + Xo].

+c(1+ L1 + sup lwmll1,0,2) |1 Amll2,~1,00

75

+ C[Sgp lwimll1,0,0Km + [Xm+1l2,—(144),0t + €4k + c(1/€4)[vm 2,00 + Y2,

where

(6.83) Y = [Falzn—p.00 + [IXO)L1-pe + 0(0)l2.21-p.2-
Using (6.49) and (6.67) in (6.82) implies

(6.84)  [Ixmtillz2,1-p,00 < [e3Km + 0(1/83)(Sltlp [vml2,02 + [vm2,0¢)

+ cllo(O)ll2.21-p,2] Lt
+ Ly 10(Km) X6 + 0(Km)e® Xo + [Xmt1]2,—(144),0¢
+ e K + c(1/24)|vm 2,00 + cYa.

From (6.54) and (6.55) we have

(6:85)  sup [vm|z, + [vml2.00 < c(tPlag, o + Ixm /1 o0)

< @Ko )t [(Lon + Dllhm1ll2, 1,00 + [[wm—1ll2,1—p, 00 + X5] + L.
Using (6.49) and (6.62) in (6.85) yields
(6.86) sup V2.0 + [Vvml2.0t < @(Kmy Km—1)(Lm + 1)tY3(X2 4+ X3 4+ X5) + Ly

Employing (6.86) in (6.84) gives

(6.87)  [Ixtmet1 e

2,21 p,0t < [e3Km +ceg ™ (@(Km, Kim—1) (L + 1)
. tl/Z(Xg + Xg + X5) + CLm) + cHlv(O)|||2,2717u,Q}Lm+1
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+ L 10(Km) X6 + 0(Km)e X6 + [Xmt12,— (14),02¢
teaKom + 23 ((Kmy Kone1) (L + D)tY2(Xs + X3 + X35) + cLy) + cYa.
From (6.81) and (6.87) we have

(6:88)  [lomiilla 21 por < [e5Km + ce5 * (P(Kony K1) (Lin + 1)

2(Xa + X3+ Xs5) + L) + c|[v(0)[l2,2,1—p, 0] (L1 + 1)
+ @(Km) (L1 + ) (X6 + Xo) + c|Xmt1

2,—(14p),02t +Ya.

Applying [zaj 2] to (6.6) yields

(6.89) [vm+1lla;_, 2t < ellomsllzzi—por-
Hence (6.88) and (6.89) imply
(6.90) K1 < [esKm + ce5 2 (0(Km, Kon—1)(Lm + 1)tY2X + cL,y,)
+ cflo(0)ll2,2,1- 2] (L1 + 1)
+ @(Km)(Lmt1 + ed))_( + cLm41 + cYa,
where
9
(6.91) X = Z X;.
i=1
Assume that A and B are constants and
(6.92) L <B, Kpn<A, Kn1<A.

Then (6.76) and (6.90) imply
(6.93) L1 < c[B+1+4 @(A)(B+ 1)X]do[e1A + ce;**B
+ee] (2B + 1)X) + o(A)(B+ 1)X +cVy
and
(6.94)  Kpi1 < [esA+ ces 7/ (p(A)(B + 1)t'/2X + ¢B)
+ cflv(0)|l2,2,1— 2] (B + 1) + 9(A) (B + )X + ¢B + cYa.
To show that K,,11 < A and L,,+1 < B we assume that
(6.95)  [esA+ ces ¥ ((A)(B + D)t/2X 4 ¢B) + c||[v(0)|l2.21—p.0) (B + 1)
+@(A)( B+ e X +ceB+cYy < A

and

(6.96) c[B+1+@(A)(B+1)X]6ler A+ cey ¥ B+ ce7*o(A)/2(B + 1)X)]
+p(A)(B+1)X +cY; < B.

To have (6.96) we require that

_ 1 - 1
(6.97) ¢(B+1)(e1A+ ce; /*B)dy + ¥y < 5B w4, B)t'2X < 55
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and to have (6.95) we introduce the restrictions

1
es(B+1) < 3’
1
(6:98) BB +1)BB+1) +cl[v0)llap1-po(B+1)+c(B+Y2) < 5 A,
= 1
c(3(B+1))3%p(A, B)etX < 3 A
Hence we obtain
8o < B <!
"= B+1)(A+B) ~ ((A+B)’
(6.99) B>V,

BB+ 1)"* 4 ||v(0)|l2.21-p.0(B+1) + c(B + Y3) < = A.

Wl =

Continuing, we have

B > Y,
1
(6.100) 3 A>ci (Y1 + 1)7/4 + Y1+ DJv0)|l2,2,1—p,0 + (Y1 + Y2),
5o < 1
O= W+ )T+ (Y A+ D[0(0)]l2,2,1— 0 + Vi + Ya]

From the above considerations we obtain (6.45). This concludes the proof.
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In this section we prove that the sequence examined in Section 6 converges. We show
this step by step by dividing the interval [0, T into sufficiently small subintervals and by
assuming that X and Jy (see Lemma 6.2) are sufficiently small.

7.1. Problems for differences. To show convergence of the sequence constructed in
Section 6 we introduce the differences

Hp =hp —bhm—1, Qm =0m —dm-1, Wmn =Wn — Wn-1,
(7.1) Pr=Dm —DPm—1, Am=0m —am_1, Vi =0n—Un_1,
K = Xm = Xm-1
Now we formulate problems for the differences. From (6.1) we have
Hp . —vdivD(Hy,) +VQm = —(Viy - Vi + U1 - VH,,
+ Hyy - Vg 4 hip—1 - Vi),
div H,, =0,
(7.2) H, =0
7-D(Hn) Fot L Hy 7o =0, a=12,
Hpli=0 = 0.

From (6.2) we get

VmT m—1r
Won,t + Vin - Vit + 01 - VWon + =% 1 + Imdr oy
Wm Q',n 2VJq’TrL’I"
— vAW,, — = ,
(7.3) v T 72 T + r2

1
alwm,r + GQWm,z + ;}/ W = = CLle;
14 r
Wm|t:0 =0.
From (6.3) we obtain

Al m+1,t + Vm : vOllm, + Um * v"41 m+1 — Al m+1vmr,r - almvmr,r

_ Azmi
T

2v v
+ 7'_2 (Hmnz - Hmz,'r) + 7"_2 Ay m+1 — vAA; m+1 = 0,

Q2m
Hmr - AS m+1Vmr,z — aSmer,z

mnr

(7.4)

(78]
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A3m+1,t + Vm : Va?)m + Um VAB m—+1

- Al m+1Umz,r — almvmz,r - A3m+1vmz,z - aSmez,z

A m m
O g  VAAs e =0,
r r
(7.4) - X
[cont.] a2A1m+1 — 1Az my1 = - Win + ” Win,

(@1 A1 mt1 + a2A3m41) .0 = BiHmr + BoHpms + BsWin
+ BaWin 2 + BsWin,
Armiili=0 =0,  Azmiili=0 = 0.
From (6.4) we get

h H
Km+1,t + Um * v]:{rn+1 + Vm : va - 7:(,0 Km+1 - % Xm

Umsr Vinr Km—i—l
— Km+1 — T Xm — UAKerl +v 7’2

1
= - (wm,szr + Wm,zhmfl'r - wm,erz - Wm,rhmflz
r

(7.5) +mez+hm_1z)+ Wi Ving.z Um—1¢,
T r T T
2v (1 .
+ T'_2 (; Hmz,w - Hnup,z) m “QT’
K1 =2(k —7/(20))Vin - 72 on 57,
Km+1|t:0 =0 in (2.

Problem (6.5) gives

APy, = =VVy - Vg, — VU, - VVn,

7.6 P,
(7.6) 88—:zyﬁ-AVm—ﬁ-Vm-va—T_L-vm_l-VVm.

Finally, problem (6.6) implies

rot Vm+1 = Am+1,
(7.7) div Viyq = 0,

Vm+1 n= 0
7.2. Estimates of differences. Now we obtain estimates for solutions of problems
(7.2)—(7.7). First we obtain an estimate for A,,11.

LEMMA 7.1. Let the assumptions of Lemmas 6.1 and 6.2 hold. Then
(7.8) 411

l2,20 -t + [An1l2.0 + [ALmyil2,—(14p),00

< @(A)[X(Sltlp | A2 mytl2, 1,2 + [Vinlla,_, 2t)

HWanllz - 00 + [ Hill2,-1,00]-
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Proof. For solutions of (7.4) we have

(7.9) AL i ll220—p0r < clVinVan, al2i—paet + [om-1VAL 21— p 00

A
/ / 2m+1
+ |Am+1vm’w|2al—#79t + |ame7I‘2,1—#7Qt + ’7 hm
r 2,1—p, 2t
Q2m
+ Hm + A2~ (.00 + [ Hmel2,— (40,0t
r 21—, 2t

+ IWanllog w0t + [ Hmllia—p0t]s

where we assumed that a; ~ cr near r = 0. Now we estimate the particular terms of the
r.h.s. of (7.9). The first term is bounded by
‘ / |2 / 1/2
up [Viula, 2 (§ V001 () B, 1o dt’) = 1o,
0
whenever 1/A1+1/X2 =1, A1 < 3 but Ay is arbitrarily close to 3. By Lemma 2.0 we have

t
I <2\ |V, dt’ i L3 dt’ i
1>¢ Vit ( ‘2)\2,9 H|am+1( )|||2,2,1—;L,Q
0

O ey

1/2 , 1/2 ,
<t (S H|Vm v 0 dt ) H|am+1 |||2,2,17/1,Qt

< ctl/zllellAHmf)Hla’m+1|| 2,1— (Vi 4,20,

where in the last inequality Lemma 6.2 was used.
The second and third terms on the r.h.s. of (7.9) are estimated by (see [zaj 5, Ch. 7])
ell4; +e(1/e)to(A)sup Ay, 1 |21-p0,  a>0.
¢

The fourth term on the r.h.s. of (7.9) is bounded by

c / |2 /1/2
0 Vi 212§ () e 0 )
0

t t

1/2 1/2

< ([ WVarar @) B o dt) " (§lat@)loz1 0 dt)
0 0

< et |[Vinll 4yt N 22,1020 < et/ 20(A)[Vinlla,_, 20),

where we used Lemma 2.0 for p > 1/2.
The fifth term is estimated by

t

(G

2,05

A2 m+1
r

sup
t

Ao i1

< el sup \
t 2,02 t

where we used Lemma 6.2 and (6.47).
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We bound the sixth term by

Qom

t
1/2 Qs

(V)i dt) < sup| 22| |,

0 t r 2,02

< o(B)|Hmll2,1-p,0t-

|2,1—M,Qt

sup
t 2,02

Summarizing we obtain the estimate
(7.10) A% 1llz21— e < E20(A)[Vinlla, 00 + t%0(A) sup [Agal2,1- 0
+ ¢(A))?s1;p [A2mi1/rl2.0 + @(B) [ Humll2,1-p, 00

+ C(|A1 m-+1

2,—(14p),2t + [ Hmelo, (40,0t + [Winll2,1—p,0
+ [ Hm 11— p,0t)-

Using

t
1/2
Sup Al 1l21 e <2 (S A1 ()31 dt,)
0

< PAL 2200
in the r.h.s. of (7.10) and assuming that ¢ is sufficiently small we obtain from (7.10) the
inequality
(7.11)  J|AT 1 ll2.2,0—p0 < tl/Zw(A)HWnHAl,M(Qt)
+ (A X sup Az n+1/rl2.0 + (Bl Hinll2, 1.0

+ c(|Atmtle,—a4p),0t + [ Hmelo,— (40,0t + (IWinll21—p0t + [Hmll1,1-p,00)-

To obtain an estimate for [Ay pm1]2,—(144),0t We introduce functions Zl m+1, Avgm+1 as
solutions to the problem

Armg1,t —vAAL 1 =0,

Agmt1,t — VAAg 11 =0,

G2Z1m+1 — a123m+1 = *? Wi + %W = Gim,
(7.12) (@1 A1 mi1 + a2Asm11) 0 = BrHur + BoHpn + B3 Wi
+ BaWi 2 + Bs Wi = Gom,
At mst]i—o = 0,
Az msili—o = 0.
Then
(7.13) Apmi1 = Armg1 — Armst,  Azmir = Asmy1 — Azmpr

are solutions to the problem
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Ay m+1,t — vAA; m+1 + Um - VA, m+1+ Vi - Vaig,

- (Al m~+1Vmr,r + alm‘/m'rﬂ‘ + AS m+1Umr,z + a?)meT,Z

A2 m—+1 h Qom, H
T

mnr + mnr

+

2v Attt
) + 7"_2 (Hmr,z - Hmz,r) +v ?

= - (Um : vA’?{l m+1 + Vm : vaMn) + "2(1 m+1Vmr,r + a1m‘/mr,1"
Zl m+1

7“2
A3m+1,t - VAASm—i—l + Um * VAg m+1 + Vm : vaBm - Al m+1vmz,r

)

(714) + ‘ng‘i'lvmﬁz + a?ﬂnv;nr,z -

Q2m H

mz

mz

T A2m
— — +1
- almezﬂ‘ - AS m+1VUmz,z — a3mez,z - r h

= —Um - vASerl - Vm . V&Bm + Al m+1VUmz,r + almeZ77‘

+ As m+1Vmz,z + 03m Vinz 2,
a2 A1 my1 — a1 Az i1 =0,
(a1 A1 mi1 + a2A3.m41) .0 = 0.
First we obtain the energy estimate for solutions of problem (7.12). Multiplying (7.12),
by A1 m+1, (7.12)2 by As,,41, integrating the results over {2 and adding we have

1d -~ - - - - -
3 ElA;nH@,Q +UVA,L L [Bo=v S(Alerl,nAlerl +Asmi1nAsmir)dS =1,

S

(7.15)

where Av;.nJrl = (Avl m+1, Avg m+1)-
Making use of the boundary conditions yields

1| < el A3 21—0 +c@)|Ghl3 s
where G, = (G1m, Gom)-
Applying potential theory to (7.12) implies
(7.16) A7 1]

l2,2,1-p,02t < clGimllzj2.2,1—p,st + 1G2mll1/2,2,1—p,5¢)-

Integrating (7.15) with respect to time with the estimate for I, employing (7.16) and the
explicit form of G/, we obtain

(7.17) |A~{m+1|279 + H|g;n+1|

l2.21—p0t < c(Will2,1—p.0t + [[Hmll2,-1,0¢).
To estimate |X1 m+1l2,— (14,2t We consider the problem

Al i1y —VAAL L = =20V A 1V~ VACAL 1,
~ a1 1

7.18 A Y ~a

( ) 1m+1‘32 as 3m+1 + as 1m
At milt=0 =0,

where A/ mil = Ay i€, ngﬂ = AgpmiiC G, = GimC, where  is defined before
(4.33).
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Assuming |a;/as] < cr?, |V(a1/a2)| < er, |[V2(ai/az)| < ¢ in a neighbourhood of the
points r =0, z € {—a,a}, we have

(7.19) [ Avmllza—por < cllAzmitllzzi—par + [Wall -0 + [ Himll2,—1,00)-

By (7.17) and (7.19) we obtain
(7.20) |Avtmialo -0t < IWmllza—p.er + [Hmllz,-1.00)-

Our aim is to obtain an estimate for [Ay p,11]2,— (14,0t Since (7.20) is already shown
we need to find an estimate for |4, m+1|2,—(14p),0¢- For this purpose we use problem
(7.14). Multiplying (7.14); by Aj,,417~ % and integrating over 2 implies

1d,~ _ _
(721) 5 %|A1m+1|§7_#79 -V S AA1m+lAlm+17’72M dx

(0]
+ S Um, * v"11 m+1A1m+17’72# dx + S Vm : valmf_llmrizﬂ dx
2 2

- S (Al m+1Vmr,r + alm‘/mr,'r + A3m+1vmr,z + aSm‘/m'r',z
2

A o _
+ 2;71+1 hm'f + im Hmr) Al m+17ﬂ72p’ dx

1 _ B B
+2v | 5 (Hinpz = Hinzp) Ay a2 do 4+ v A 5 - 10,0
2

= - S(vm . v"/4'1 m+1 + Vm . va1m)"11 m+17ﬂ72p‘ dx
2

~ ~ e ~ n -2
+ (Al m+1Vmr,r + CVlmv;nr,'r‘ + AS m~+1VUmr,z + a3mvmr,z)A1 m+1T " dz.

D

To examine the second term on the Lh.s. of (7.21) we transform the boundary conditions
(7.14)3 4 to the form

— al —
Aty = . A1 for ay # 0,
2
(7.22)
T ain + a2.n + az —+
Ay m+1,n = _a— A1m+1 - a— A3m+1 - a— A3m+1,n for a; 75 0.
1 1 1

By integrating by parts, the second term on the lLh.s. of (7.21) takes the form
4 S dlv(V/L m+1A1 m+17ﬂ72#) dl‘ + Z/|VA1 m+1|§’_u,9
19

— 2[/,1/ S V/Tl m—HAl m+17’_2#_1v7“d$,
2

where by the Young inequality the last term is estimated by

| Z _
2 2 2
3 |Atmt1,l2, -0 + 207V AL mta |5 _ 1400
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and the first equals

-V X n- V/Il m+1A1 m+1r*2“dS =1
S

Hence, we have
1] < ellArmsll3 21— + @)l Armal3i_p0

where we used Lemma 2.6.
The third term on the Lh.s. of (7.21) equals

1 - _
5 S Um * vA%m—i—lr o dx
Q
1 _ _
= 5 S Um - V(A¥m+17472#) dx + 1 x A%m—&—lrimtilvm -Vr dﬂ]‘,

Q Q
where the first term vanishes and the second is estimated by
e|Ay m+1|§7_(1+#)79 + c(e) S [V At my1|?r 2 da,

[0

and we bound the last term by

[vm 20 @l At m+1l3 o < clvmlli 21— ol Armial3 o

The fourth term on the Lh.s. of (7.21) is estimated by

[Vin - Vo #le5,01 A1 mtle,— e < ellArmill 0

+c(e)|Vinl3 2 Val,13 .o
The fifth term on the Lh.s. of (7.21) is estimated by
5||A;n+1 ||%,—u,.o + 3(1/5)(|U7n,x|§,9|gl m+1|§,—u79 + ‘a;n@,—uﬂ“/’”»x@ﬂ
+ ‘A2m+1|§,—1,n|hm|§,—p,(z + |0‘2m|§,—1,(z‘Hm|§,—u,Q)~
We estimate the sixth term on the Lh.s. of (7.21) by
elArmi1ls e + (/) Hmals — (14,0
The first term on the r.h.s. is bounded by
ellAimr1li 0 + c(1/e)(vml3 ol VALmt1]5 o + [Vinl3 ol Vaiml3 _.0)-

Finally, the last integral on the r.h.s. of (7.21) is estimated by

A7

¥ o + (/) ([mals ol Amialz o + Vinals  oldr,

el| A1 5.0)

Employing the above estimates in (7.21) and integrating the result with respect to time
we obtain
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(7.23)  Armiils o +VIVALml3 o0 +v(1 =207 = )AL l3 1.0

t
< exp (Y Uom @ 1 + lomoli ) dt') [0,
0

2
2,2,1—p, 2t

t
+e1/2) [ 1 (1)1} 0.+ c((s0p Vil ol Vel 30

0
t t

+sup [@l3, 0 S Vin,a 3,0 dt’ + Sup Az mi1ls 1.0 S [ ()5 — 1,0t
0 0

t

o+ sup oz 1.0 { Hon () .00 4 + [ Himal3 141,00
0

+ Slip |Um|§,(z|vg1 m+1|§,—p,m + Slip |Vm‘§,Q‘V&1m|§,—p,m

2 T 2 2 ~r |2
+ [Vm,zl3,—p 00 Slip 1A% 15,0 + [Vinzls 0 Slip |Oé;n|2,f2):|a
where the exponent factor follows from integration of terms which contain |/Y1 m41 % 0
Using the imbeddings
¢ 1/2

t
V. < 1/2 V. 2 d / 1/2 < 1/2 V. 2 d /
sup [Viulz,o <t [Vint|3,0 dt <t Vi 71— 000 dt ;
¢ 0 0
t t

V Vi VB dt' <\ Vi e ()31 @ < VIV o ()13 010 A
(7.23) o o 0

< Vil 20y

o~

t

VAL (I o dt < ell Al a0 + (1) A3 0t
0

estimate (6.45), estimates for small quantities bounded by X and (7.17) we obtain from
(7.23) the inequality

(724)  |Avmaals 0+ v(L—e/2)|IVA mi1l3 o
+v(1 = 2p% few — o) Avmirls 1.
< p(A) el Ay ll31— 0 + e(1/6)|[Af a3 00
+ X2 Sltlp |A2m+1|§,—1,9 + Y2||Vm||,241,u(m) + ||Wm||§,1fu,m

+ ([ Hm

5 1.0t + [Hmnae 3,—(1+u),m]a

where g¢ is any small positive number, ¢, € (0, 2).

Finally, we have to estimate the first term on the r.h.s. of (7.24). Applying potential
theory to problem (7.14) yields
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(7.25) AL all22 et < cllvm - VAL 210t + Vi - V|21 00

U —/ m—+1
+ ‘Am'i‘l ’ ’Um,w|2’1,#’9t + |am ' Vm,x 2,1—p, 2t + h7n
2,1—p, 02t
Aom 1 —
+ Hm + _2 Hm,:v + |A1 m+1|27_(1+#)79t
" 2,1-p, 2t 1T 21—, 02t

+ |Vm - VAL 21—t + Al 1 Vmel2,1— 0t
V- VA

where in the above estimate v, replaces v, ,, vy, V., U, , and similarly for other
quantities.

21—t + 100, Vin 22— p.0t]s

Now we estimate the terms on the r.h.s. of (7.25). We estimate the first term by
[Vm oo, VA 120,00 < el AL ll220-p00 + c(1/2)p(A) AL, 2.0,
where we used the imbedding
[Um oo, 2t < [Vmloo,0r < C”Um”Al_,L(QT) < c4;

here we exploit the fact that we examine convergence in a short time interval (0,¢) but
quantities like v,,, ., and so on are estimated on the large interval [0,7] in view of
Lemma 6.2. In this way we circumvent the difficulties connected with applying some
imbeddings on small time intervals, which could imply that the imbedding constants
behave as t~%, a > 0, for ¢ small.

The second term on the r.h.s. of (7.25) is estimated by

t

1/2 _
(S1VaB3 ol Vol 1 dt) < sup Vinls allTallozamp.or < et [Vanll3, o X.

0
The third term is dominated by
c A’ 2 2 ! 1/2 / 0 2 ! 1/2
(S |Api1ler 1 2lVmzl3 o dt ) < Sltlp |Api1ler1—p0 (S [Vm, |30 o dt )
0 0

< esup 145, 1 ll20— e + @(1/e, A) sup AL iil2,0

< ell A iallzza-par +o(1/e, A)sup A al2.0,

where 6’ < 6 and 3’ > 3 are such that 2/6" +2/3' = 1 and
t

(5 [V

and ¢(1/e, A) is an increasing positive function.

2 / 1/2
221-p,02 4 ) < cd,

t
1/2
Zod) " <c([llonl
0

Similarly, the fourth term is bounded by
t

1/2
up @12 (§ Vol dt') < llallozapor [Vialas e
0

< eX|Vinlla,_ . 2n)-
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The fifth term is estimated by

sup

A2 m—+1
t

R 1/2
(S'hm@qlfu,ﬂ dt/) < csup [Agmi1
2.0 ¢

< cX sup [A2 mt1l2,-1,0,
t
and similarly the sixth by

0t

sup [azm|2, -1, Himllz1- .00 < @(A)|Hm
Finally, the last four terms on the r.h.s. of (7.25) are estimated in the following way:

(DA 1 ll22,1- 0,00

1/2
A v eloa-mar < 500 A sloaon (§ oo ()30 ')
0

|’Um . VAZn+1|2,17,L’Qt < C|Um|oo,QT|VA;n+1

<Ay llz2— e llvmll oy or) < @(AAL 1 ll2,2,0— 00
~/ c ~/ |2 / 1/2
Vin - Vo < sup Vil (§ Va0 )
0

< cl|al, l2,1—p, 20t P Vinlla, 2y < e Xt Vil 4y, 20)s
~/ ~/ ‘ 2 !/ 1/
@ Vi el < 5D o2 § Vi o . 1)
0
< el llz2n—p,0 Vil a, 2y < @)X Vinlla, 00
Summarizing the above estimates we obtain
(7.26) N Ansall221-p.00 < p(A)lsup (A pal2.0 + AL ]2,

)+ [ Hmll2,~1,00

+ X[Vl 4y (00) + sup [ A2 i1

+ W ll2,1— 2 + [Armal2,— (140,05

where (7.17) was exploited.

Finally, we have to estimate the second term on the r.h.s. of (7.24) and the first two
terms on the r.h.s. of (7.26). For this purpose we multiply (7.14); by A;,,+; and (7.14),
by A3,,41. Adding the results and integrating over 2 we obtain

(7.27) |A il +VIVAL B o F VI Aimil3 10 < - S'Um VAL A da
Q
Vi va, A de - (AP om ] + [ @] Vi [ A4 ]) da
Q 7
A2m+1 Qom
+S o] [ A 1] + [ Hn| |47 41| ) do
2
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+ N (om [V A1 || A 1| + [V V] | Ay )
(9]

+ (A A Tom e |+ 80 [Vinal | A1 ]) d,
£2

where the first term on the r.h.s. vanishes because

1
S§Um V|AL, 1 [?dz = 0.
Q

Hence applying the Holder and Young inequalities we obtain

(7.28) |A +1|2 ot V|VAm+1|2 o+ V|A1m+1|2 10 < 5|Am+1\6 n

+ c(e)(|Vim \3 olVa,, |2 ot ‘Am+1|2,(2|vm7$|3,9 + \a;n|§,n|vm,z|§,n
+ ‘A2m+1|2 —1 (Z|hm|3,n + |0‘2m|2,—1,(z‘Hm|§,Q

+ [Uml3 Q‘VAm+1‘2,Q + |Vm\§,rz\valm|g,n

03,01 Vinal3,0)-

+ \A%+1|27Q

Choosing ¢ sufficiently small and integrating the result with respect to time we get

(7.29) |Am+1|2 ot V|VAm+1\2 ot FVIA a3

t t
< exp (o) o ) [e\fkm;m sup Vi3 § 1V, o
0 0

t t
+sup (@, 13. 0 | 1Vin 23 V173, at
¢ 0 ¢ 0
t t
+5up |aam[3 1.0 § [Hm i 0 dt' +sup [om 3 0 | [V A4 5. 0 dt
0 0
t t
+50p [Vl | IV 5,00+ 50p | 4413 0§ [0 3,0t
0 0

t

+ sup @130 {1V 3.0 dt'} :
0

Applying imbeddings (7.23'), Lemma 6.2, estimates for small quantities bounded by X
and (7.17) we obtain

(7.30) |Am+1|2 o+ V|VAm+1‘2,Qt + V|1‘T1 m+1‘§,717m
< €|A3m+1|2,m +¢(4) [X2||Vm||,241,u(nt) +X? sup |A2my1ls —1.0

+[1H, o]

Now we have to estimate the first term on the r.h.s. of (7.30). For this purpose we consider
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the boundary condition (7.14)s in the form
_ ao —
(7.31) Az g1 = — Apm,
ai

so it is defined on S7 only.
Let us introduce a new function As,,+1 by the relation

—~ ao —
(7.32) Azmyils, = a—i At mt1-

Then the function
A1 = Az — As m+1
is such that
A3 psls: = 0.

Hence by the Poincaré inequality we have

(7.33) | A3 mi1le.0 < ‘A\3m+1|2,9 + A5, 12,0
< VA3 l20 + C|A\3m+l|279
< AVAL a0+ cllAsmia e
< VA3 i1

In view of (7.33) the inequality (7.30) takes the form

2.0 +c|lA1mi1li0

(734) AL, 3.0+ vIVAL ] o + VAL mial3 g o
< (A X2Vl 0y + X sup [Azm 1 510
I Hill3, -1 00 + IWinll3 1 00]-
Using again (7.33) we obtain
t
(7.35) |30+ v 1A 1F 0 d + | A 3y o
0
< PR Vinll%, ) + X7 sup Az mialz 1.0

N Hmll3 1,00 + W31, 00]-
From (7.24), (7.26) and (7.35) we have

(7.36)  [Aimtilo,—po + VA ms1l2, -0t + Al mttlo,— (140,00
¢

_ 1/2 _
1 Aialze + (YA @I 0 dt )+ 1A il
0

< <P(A)[X(Sljp |[A2mt1l2,-1,2 + [Vinlla,_,.2t) + (W20

+ [ Homll2,-1,00]-
Finally, from (7.17), (7.20) and (7.36) we obtain (7.8). This concludes the proof.

For solutions of problem (7.2) we have

89
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LEMMA 7.2. Let the assumptions of Lemmas 6.1 and 6.2 hold. Then
(7.37) 1H o2~ 00 + 1V Qunl2, -0 < ct2X(|Vin 4,y
for all ' € (0,1].
Proof. For solutions of problem (7.2) we have
(7.38)  Hmll2,—pr, 20 + IV@ml2—w 2t < c(|[VinVhm |2, 00
+lvm—1-VHplo —w 0t + [Hp - VUmlo,—p 0t + |hm—1 - VVinl2,—pr 0t)
for all ' € (0,1]. We estimate the first term on the r.h.s. by
|Vm|oo,9t|th|2,—u’,Qt < Ctl/QHVmHAlw(Qt)||hmH2,7u’,QT < Ctl/z)?”VmHAlw(Q‘)a
the second term by
[Vm—1lo0, [V Hinlo,— 00 < et/ 2 (A) || Hnllz,—pr 20

and the third by
T

1/2
SUp ol 0 § Vom0 ) < e Ho o o fomll s m)
0

< C‘:D(A)tl/QHHmHZ,—#/,Q"

Finally, the last term on the r.h.s. of (7.38) is bounded by
t

(
t
2 2 2 2 / 1/2
(Vs olVin B @) < (Yl olVans 1)
0 0

t

2 / 1/2
< sup Vel (§ 1B} 0 dt')
0

t
1/2
< C”Vm”Aku(m) (S |hm—1,m|2,—u’ﬂ‘hm—1|2,—#’,9 dt/)
0

1/2
< cllVinlla, - (20) S0P [ 12 ot P[5 e

1/2 1/2
< Ctl/QHVm”APH(Q‘)(tl/Qm -1, ’/7 ol +|h( ) / /Q)”hm 1”2*# 0t

< 2|Vl ay ) (2 e + 1RO —pr2) < et K| Vinlla_ )

Employing the above estimates in (7.38) and using the fact that ¢ is sufficiently small we
obtain (7.37). This ends the proof.

For solutions of problem (7.3) we have

LEMMA 7.3. Let the assumptions of Lemmas 6.1 and 6.2 hold. Then
2 0 12 / 1/2
(7.39) Wl o+ (VW) @) + 1 Wanla st + [ Wanllz1
0

(A Vil a,_ 2ty + 1Qml2,—p 0t + [Himl2,—(14),00]-



7.2. Estimates of differences 91

Proof. For solutions of problem (7.3) we obtain

(740) (Wil < c(|vmwm|2,1u,m omt - Y Wonlas o

Vi Uy

+ mr W, + m—1r Wm
r 2,1— 1,02t r 2,1— 1,02t
W, H,

+ | = i —=
™ loa—p,0t T olo1—p,0t ™ o 1—p,0t
ap ’)/

+ _Wm’ +_||Wm||1/2,1—u,St>'
r 1/21—-p,5t Y

Now we estimate the particular terms on the r.h.s. of (7.40). We bound the first term by

t 2 ! 1/2 0 2 2 / 1/2
(§VaVwnl3s podt) ™ < (§Vinl} ol Vwml s 0 dt')
0 0

ot < csttlp ||Vm||1,17u,Q<P(A)X

t
<ct'?(§11Van
0

! 1/2 Y 1/2%
) TR < A 2R () Vil 00,

the second term by

t

2 N2 t 2 2 N2
(S |Up—1 - VWm‘QJ_mn dt ) < (S |Um—l‘4,(2‘vwm|4,1—u,9 dt )
0 0

, 1/2
(X‘me:c|21 MQ|W |21 w82 dt)
0

< csup [vg—1
t

1/2
1/8
< esup([om—,sl3_ olvmorl” ﬂQ>sgp|wm\2{1_ﬂ,n(§|Wmm|21 e )

) |Um 1t|21 #_Qt

< et (Jvm-1,ell20—p,00 + [[0(0)
Wi, t|2 1ot | Wm Hz 1o S AP [Wanllz,1- 00,
I, s

the third term by

t

2 1/2 1/2
dt’) < (S Vil e lwmli -0 dtl)
2,1—p, 2 0

t
Vm,r
(!

m

r

t
< sup [Vl o {lwml3 .0 0
¢ 0
t

1/

0 1-0 26 2(1—6

< Sgp(‘vm,zz|2,117;¢,Q|Vm|2,171u,r2)(S|wm,zm|2,ffﬂ,(z|w ‘2(1 ,f}z dt)
0
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t

1/2
20
< A Vanall8h o Vinal3% e lom, 357 g (§ omee B 0)

0
< A Vinlla,_, o0 lwmll2—p.00 < "X Vinlla,_, (24,
for some a > 0, and the fourth term by

c 2 2 / 1/2
[Vm—11,0|Wmnli .o dt < sup [Um—1la,0
s sy ]
0

/) 1/2

1/2
W, 20 ”r 2(1—-06
| m,193|27127,u,,(2| ‘2(1 /1222 dt )

< esup(fom -0 l54  plvm-113:%,0)

O ™ &+ O ey

< Cta( ot + ||U7rz—1(0)||2,1—p,ﬁ)
|Wm t|2 1— M 0t HWm||2 1—p, 02t < @(A)taHWmHQ,Iﬁu,Qt-

To estimate the last but one term we assume that

ad

T

Then the term is bounded by
c(IWmlli1-p0r + Winlz,—p.00) < c[Winll1-p,00

< el[Wanllza—p 00 + ¢(1/€)[Win|21—p, 00

<eWinllzg—p.0t +c(1/e)t“ Wi tl21— .0t

< CtaHWm”Q,lf,u,(Z‘v

where a > 0. The last term has the same bound.

Employing the above estimates and choosing ¢ sufficiently small we obtain from (7.40)
the inequality

(7.41)

ot < cto(A)[Vinlla,_ 00 + cdWmnla,— 4,00
+Qm

To close the estimate we have to find a bound for the second term on the r.h.s. of
(7.41). For this purpose we multiply (7.3); by W,,r~2* and integrate over {2 to obtain

ml2,— (1), 2t

1d
(7.42) 5 2 IWauld 0+ Vi - Vo Wor =4 da + { v,y - YW, Wor ™ da
2 2
v, _
+ S Wy W ™2 d + S Gmtr W2r=2"dx
T r

2

v S AWmeriml dx + V|Wm|g,—(1+#)79
2

SQ—

[0} [0}

Hp,, _
r 2 de + 2v S 5 Wmr 21 e
r
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The third term on the Lh.s. of (7.42) takes the form

1 1
3 S VUm_1 - VW2 r= 2 dg = 5 S VUm_1 - V(W2r=2")de + p S V1 - Vrr 2 W2 dy
o) Q Q
=u S 1)7,1_17“7’*2“*11/1/,3I dr = 1.
17

By the Holder and Young inequalities we have
1| < Wil _ (14,0 + @) vm-1l% o Wnl3 _, o
The fifth term has the same bound. The sixth term on the Lh.s. of (7.42) equals

—v | div (VW Wor =) da + v | [V, 220 de — 200 | VW, Wir =201V dr,
(] (9] (%

where the first term equals

—v S VW, Wir~24dS = 1y,
S

where
vn - VW, + YW, = v “u W,, onS.
r
Hence

a
I = ’yS W2r=21dS — I/S -1 W22 d8s.
5 5"
Assuming that |a1/r| < ¢ we estimate the second integral in I by

elWinll3 1,0+ c(&)Winl3 1 0-
The second term on the Lh.s. of (7.42) is estimated by
EWnlg .0+ c©)Vali ol Vim0
The fourth term on the Lh.s. of (7.42) is bounded by
5‘Wm|g,f(1+u),9 + C(E)|Vm‘§,(2‘wm|g,7u,(z-

In view of the above estimates equality (7.42) takes the form

1d

(7.43) B %|Wm|§,—ﬂ,n + V|VWm|§,—u,Q + V\Wm|§,—(1+u),n + W

2
2,—p,S
< com-1|% 0 Winl3 +el[Winll3
S CUm—1lo00,2IWml2,—p,0 T EIWmlI21—p,0
+e(1/8)[Winl3 1 + clVin 3.0l Vo3 _ o + cVinl2,elwml§ . o
+ C|Qm|§,7u,n + C|Hm|§,7(1+u),(z~
Using the estimate
‘U7n—1|o<>,9 < CH'Um—1||3,1—,u,_Q

we integrate (7.43) with respect to time to get
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1
(7.44) 3 |Wm|§,—u,9 + V|VWm|§,7M,m + V|Wm|§,—(1+u),m + ’Y|Wm\§,fu,st

t t
< (D) [ §Val3 o Vw3 o 0+ § Vil gl ot
0 0

t

+ eV IWnl3 10 dt' + c(1/e)Winl3 1 e + @l 0
0

+ C|Hm|§7f(1+,¢)7m}v

where we used the fact that
t

Vlivm-1l31- 0 dt’ < o(A).
0

In view of the estimates

sup Vinl3.0 < sup [[Vin

1o < etV

|%,17M7Q < Ct”Vm”il,“(Qt)a
|vwm|2,—p,(2 < C||wm||2,1—u,.07 |wm|6,—u,(2 < CmeHQ,l—u,Q;
the first two terms on the r.h.s. of (7.44) are estimated by
21— 2t [Vinllh, (o) < cp (X2 Vinlld, o
The fourth term on the r.h.s. of (7.44) is estimated by
c(€)t| Wit

ct||wpm

2
2,1—p, 02t

so the sum of the third and fourth terms is bounded by
2
Cta”WmHzl—u,mv

for some a > 0. In view of the above considerations inequality (7.44) implies
(T45) S (Wl o+ oIV Wl2 o + 2| Win2 A Wl
: 5 WWml2,—p,0 ml2,—p 0t m2,—(14p),02t T TIWml2,—p st
< @A X Vinllh, L con

+ ta”WmH%,l—u,Qt + |Qm|§,w,m + \Hm|§,—(1+u),m]-

Using (7.45) in (7.41) and assuming that ¢ is sufficiently small we obtain (7.39). This
ends the proof.

Now we shall obtain estimates for K,,41.
LEMMA 7.4. Let the assumptions of Lemmas 6.1 and 6.2 hold. Then
(7.46) || Ky

2.21-p,00 < (P(AN* + X 4 ¢bo) |Vinll 4, (2%)
+ (X + p(A)t?) sup | Kint1/7|2,2 + ©(B) [ Hpll2,— .00

+©(A) S‘zp(\Wm,xb,Q + [Winl2,—p,0)

for some a > 0, where 69 = ||k —v/(2V)][3/2,s-
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Proof. For solutions of problem (7.5) we have

(747) N Km+ill221-p,00 < cllvm - VEmiil21-p.0t + [Vm - VXm|2,1-p,00
B B u
hm X v
© m mr
+ —Km+1 + _nga + Km+1
r 2,11, 02t 2,1—p, 02t 2,1—p,02¢
Xm
+ er + |Km+1|2,—(1+u),9t
r 2,1—p, 02t
1
+ |- (wm,sz'r - wm,'erz)
r 2,1—p, 2t
1 1
+ |- (Wm,zhmflr - Wm,rhmfl z) + ) memz
r 2,1—p, 02t r 2,1—p, 02t
1 Win,
+ 2 Wmhm—lz Vmga,z
r 2,1—p, 2t 2,1—p, 2t
1 1 /1
+ | = Um—1 LP,ZW’ITL + =l - Hmz,ga - Hmtp,z
T r2\r
2,1—p, 02 2,1—p, 02

+ Ik =~/ 2v)Vin - Tall3/2.2.0- .50

Now we shall estimate the particular terms on the r.h.s. of (7.47). The first term is
estimated by

t t
2 / 1/2 2 / /2
(Slom VEmirBipedt) " <swlvnloo({IVEw3, 0 dt)
0 t<T 0
t
2 2 / 1/2
|1,r,1—u,9 (S (5|Km+1,x:c|2717u,9 + 0(1/5)|Km+1\2,17,¢,9) dt ) =1,
0

< sup [Jvy,
t<T

whenever r > 12/5, so

t

1/2
I <cllvmlla,_,0m) (S (el K ms1al51 -0 + (1))t Kt tlo1—p,00) dt) =1,
0

where we needed that r < 6. Hence,

Iy < cllvmlla,_, cor)t* I m+1llz.2,1-p0t < (A Kntill2,2,1-p 00

for some a > 0, where to estimate the first factor we used estimates from Lemmas 6.1
and 6.2 on the interval [0,7] but we examine convergence on interval [0, ¢], where ¢ is in
general very small. This interpretation implies that ¢ and ¢ do not depend on t.

We treat the second integral on the r.h.s. of (7.47) as follows:

0 2 / 1/2 0 2 2 ! 1/2
(§1Vin - VxnBa o dt') " < (§1Vild 10l Vil 0 dt')
0 0
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where 6’ < 6 but is very close to 6, 6’ = 2A1, 3’ =2Xy, 1/A1 +1/X2 =1,

¢
1/2
< sgp Vinler 1,02 (X |va(t/)|§’,.Q dt/)
0

t 1/2
(A2 (§ Vi ()1 1)
0

< (A2 (Vinlla, 0
We estimate the third term on the r.h.s. of (7.47) by

t 2 1/2 2 t
Km+1 / Km+1 N2 / 1/2
<S hnup - dt S sup r (S ‘hm(t )‘oo,l—,u,!? dt )
0 2,1—p,02 t 2,2 %)
K — K
< cf|hm|2,1—p, 0t SUp mtl < cX sup —mtl ,
t 2.0 t LA o}

the fourth term by
<t
0

the fifth term by

1/2 12
dt’) < sup Xm (S|Hm( N2 Mndtl)

< @(B)HHmHm—u,m,

2
Xm
o e

21—, r

2,02

t 2
Km+1
<§J

Umsr

1/2
dt’) < sup ’ mtl
9] t

¢ \1/2
(S‘Um |ool H7th)
2,02 g

t
1/2 3
2 6
(Sl s mlon B )™ (9=3)
0

t

1/2
0 015, (T om (V13210 )
2,0 o

2,1—p,

K,
< sup ‘ m+1

2,02

Km+1

< csup‘
t

K,
< ctt=? sup ‘Lﬂ Ot
t

sup [ [3 7
2,02 t

)

K
< (At sup ‘mH
t T 2.0

the sixth term by

t 2 1/2 t 1/2
<S Amy dt’) < Sup‘ (Y1) et
0 r 2,1—p, 02 2,02
Xm ‘ N2 ’ NP N2
< sup [X2) [ §(ENVin () 2o+ e/ Vi (1) 1) |
2,25

< p(A) [ Vinll2,2,0— .20
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for some a > 0, and the eighth term by
t

¢ 1/2 1/2
(S Wi o Hinl3 0 dt’) < Sup (Wi 22,0 (S |Hon ()20, 0 dt')
0 i 0
t

— 1/2 —
< X(IHn ()3 e dt) " < X Hunlla, 00
0
Similarly we estimate the ninth term by

esup | Wi zl2, 2| hm—1ll2,—p0t < cYSLtlp Win.z|2.0,
t

and the tenth term by
t

2 / 1/2 ‘ |2 / 1/2
(VlwmHonsl3 1 ,00t) < supfwnlo 0 ( § 1 (O, -0 ')
0 0

< csup |wmlz,—1,0|Hmll2,— 0t < cX||Hmll2,—p0t-
t

We majorize the eleventh term on the r.h.s. of (7.47) by

N 2 / 1/2
|Wmhmflz|2,7(1+p,),(2t = (S ‘Wmhmflz‘Q’f(leu),Q dt )
0

‘ |2 /! 1/2
< sup Wil o (§ o ()2, -0 )
0

< cllhm-1ll2.-1.00 59p [Winl2,—,2 < X sup [Winl2, .0
The twelfth term is estimated by
t
W

(!

0

t

1/2 , 1/2
dt,) < Sltlp |wm|2,—1,(2 (S |‘/77ltp,z(t/)|oo,1—u,(2 dt/)
0

2

Vmap,z

2,1—p, 82
t

1/2 _
0.2 (S Vi e OB o @) < XVinlla, o0
0

< esup ||wp,
t

The thirteenth term is bounded by
t

(!

t

1/2 1/2
i) < s Winla ([l )
0

W 2

Um—1¢,2
r £

2,1—p,2
t

1/2
< esup (Winlz, o (§lomrs (B 21 0 dt') < 0(A) 50D [Winla, 0
0

where we employed p > 1/2.
The last but one term is estimated by
|Hm,m‘2,—(1+u),ﬂt < ||Hm||27_u7_(2t~

Finally, the last term is bounded by
cllk — 7/(2V)||3/2,s

Vinll2,2,1- 2t
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Employing the above estimates in (7.47) yields

(7.48) 1 Km+1ll2,2,10— 00 < @(A 1K mt1ll2,20—p,0
+ ((p(A)ta +cX + 650)||Vm“A17“(Qt)
_ K, _
X s | K2 (o(8) + Xl
2,02

+ (C)_( + w(A))(Slgp |Wm,w|2,9 + Slip |Wm

2,-11,02)-
Assuming that ¢ is sufficiently small we obtain (7.46). This ends the proof.
Next we introduce functions (,,4+1 by
ﬂm+1,t - VAﬁm—&-l =0,
(7.49) Bm+1ls = 2(k —v/(2v)) vy, - Ta,

ﬂm-&-l ‘t:O =0.
Taking the differences

Brt1 = Bmt1 — Bm
we see that they satisfy
Bry1,: — vABp41 =0,
(7.50) Biit1ls =2(k —~v/(2v)) Vi, - Ta,
Bptili=0 = 0.
Finally, we introduce
(7.51) K 1= Kpi1 — B

We see that K, is a solution to the problem

Kiia
K1/n+1,t + U VKranrl + (Umr,r + Umz7Z>K7/n+1 - VAKranrl +v 7,;

+ Vm . va + (er,r + sz,z)Xm

2v 1

1
= ’I"_2 <_ngp,z + ; Hmzﬁsﬁ> - ; (Wm,zhmr + wmfl,szr

W, Wy —
(752) - Wm,rhmz - wm—l,erz + Tm Rz + n; ! Hmz)

2 2
+ ; Wmvmcp,z + ; wmflvmgo,z —Um * VBerl

Bm+1
- (Umr,r + Umz,z)Berl -V 7"2 )
/
Km+1|5 = O’
/ —
Km+1 |t:0 — 0

LEMMA 7.5. Let the assumptions of Lemmas 6.1 and 6.2 hold. Then
¢

(7.53)  |Kmiil2,—1,0 + (S
0

Ky |2 1/2 B
VIR )< A+ D Vallar o
2,02

s
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+ C|Hm|2,73,(2t + CyHHm”Q,fl,Q‘
+ X[ Winll2a -0 + o(A)E° sup Wenll1,~1/a—pr 02

c 2 / 1/2 0 N |12 /
+ () (V1B —codt’) " + eI Brsn @)1 ., o dt
0 0

for any small positive number €1 and any p' < 1/4.
Proof. To obtain the estimate we multiply (7.52)1 by K/, ,/r* and integrate the result
over 2t. Then we get

t
(7.54)  |Kppial3 10+
0

/ 2
va+1
r

dt’
2,02

K/
< Wl 9 [ 2252t § Wil el | “252 |

£t £t

/
K7n+1
7.2

1 1 K
= (Hmw +- Hmz#’> r2+1 dz dt’

+ ‘21/ S
Qt

1
5 Wl o |
Qt

1 1
+ {5 sl [Hon| (K de dt 4§ = (W o] K| der
(PAd 0t

1 1
+ S s [Win 1] [Hm| |K1In+1| d dt’ + S 3 (Wl |vm<p,z

\K! | d dt’

0t 0t
1 K7,
+ | 5 [ | Vi [ | dav it + \ [om - VB T“ da dt'
0t 0t
K!, 1
Y omal B | =255 dadt! + § (B [ | dar .
0t 0t

We estimate the first term on the r.h.s. by

t

Kl |? t
sS ZmAl) g +c(1/€)x Vi VX [6/5,-1,02 41,
p 6,02 0

where the second expression is bounded by

t

t
X
NV el et < com Vil (|952
0 0

Xm

2
+ 7,275

2
)dt’
2
)dt’

Xm

2
+ 7“2_5

IN

t t
Cts ”Vm,t’ ||%,17,u,(2 dtl S (’vXTm
0 0

< C‘P(A)tHVmH,%xl,u(Qt)'
We bound the second term on the r.h.s. of (7.54) by




100 7. Local existence: convergence of the approximating sequence

t 7 2 :
ES Al gy +c(1/5)s [VinaXiml /5.1, 41’
5 6,02 0

where the second expression is bounded by
t
2 2
21,0 S |VVinl3.0dt’,
0

csgp IXm

and
t

t

-0
VIVVi3gdt < §Viaaa 350 Vin 30— dt = I
0
).

0
for any 6; € (0,1). Continuing,
t t
2(1—6;) 01
Il S Ctz(liel) (S |Vm,rt|§,1—p,(2 dt/> t1791 (S ‘Vm,zzmg,l—p,ﬂ dt/)
0 0

< Cta”VmHil_“(m) for some a > 0.
The third term on the r.h.s. of (7.54) equals

1 K, 1 1, (K,
| (T—Bnga( r“) —r—3Hmz;3¢<T+1>>dxdt’

nt

2v

2
<e S dadt’ + c(1/e)|Hml3 _5 -

nt

4
VK77L+1
r

The fourth term is estimated by

t

3

0

2 t
dt’ +c(1/e) | Wi
2

i
Km+1
r

6, 0

g,l—p,ﬂ|h‘m|§,—3+p,ﬂ dt/7

where the second expression is bounded by
t

5D Wiz 310 {131,041 < el Win 31—y el om 3,10
0

< X |Winll3 10
where we used (2.8) in the form
|3, —34,0 < cl|hmll2,—1,0-

We estimate the fifth term exactly in the same way as the fourth. Therefore it is bounded
by
t

‘|

0

/ 2

K
= e(t/e)lwnll3 g 1Hm13, -1 e

6,02

where the second expression is not greater than

X Hynl3 100
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The sixth term is estimated by

30 <L ¢
el |7 at 4 e(1/e) [ IWal3 el B a0 4
0 6,02 0
t K/ 2 ‘
< sX VL dt 4 e(1/e) sup IWm,x|3,1—uﬂS 1Fnll3, 1,0 A
0 LA Do) t 0
t K/ 2 .
<el|v="t ]t 4 c(1/e) X2 Winll3 1y
LA Do) ’ ,

)

the seventh term by

t Kl 2
e\ | V="t e(1/e)[wml3 o [ 13 1 o
0 2,02
t K/ 2 .
<el|v=mt) o ar + e(1/e) X2 Hinllf -y
0 r 2,02
and the eighth term by
t K’ 2 t
+1 .
ES 7«2”:a/ 5.0 + C(]‘/E) S |Wm|i—p1,(2‘vmap,z 4217_#2_5/7_(2 dt/ = IQ
0 ) 0

whenever py + po =1, 1 < 1/4, pg > 3/4, &/ > 0, and by the Hardy inequality the first
term in I5 is estimated by

2
Ko
r

dt’.
2,02

\%

¢
0
Using (2.8) we estimate the second term in Iy by

¢
2 2 —
CSI;P HWm||1,1/4—m,QS ‘”7rw,z|4,—u2—g',9 at' = I.
0
To get a bound for the second factor in I3 we use problem (6.6) for step m. Hence in
cylindrical coordinates we have

1

(7.55) Ump,z = —Qm1 + — hms.
T
Next
t t t 1 2
Vome s ()3 s 00 < N lomn () iy er 0 @t + § |~ () dt' =1y
0 0 0 4,—po—e’ 02
Using (2.8) we have
t t
Iy < ellom ()13 14 pp—er0 @t + N IBm @By py ot =15
0 0

whenever ps € (3/4,1).



102 7. Local existence: convergence of the approximating sequence
In view of (4.53), (4.32), (4.35), (6.49) and (6.74) we have
I; < p(A) X2

Summarizing

I3 < p(A)X? sup W |%,1/4—p1,(2'

Finally, we estimate the ninth term by

t K, 2 t
1 —
e e 2th’+c(1/a)§|wm_1 2 Vg2 e gt = I,
) 0

whenever py + po =1, g < 1/4, ps > 3/4, ¢ > 0.
The first term in I/ is estimated by the same bound as in I. By (2.8) the second
term in I} is bounded by
t
, 2 N2 ! g/
esup [wnllf 14, 0 | Voo ()i o cr i 0t = T
0
By (6.67) the first factor in I} is bounded by ¢(A)X?2. To estimate the second factor in
I we use (7.7) for step m. Hence in cylindrical coordinates we have the relation

1
(7.56) Vinp,z = —Am1 + — Hpo.
T
In view of (7.56) and repeating the considerations for Iy we obtain
t t t
Vi 2 ()5 et < N 1A (I sy 0 @8+ N NHm @314y er 0 At
0 0 0

< cllAmillf 5,00 + |l Hmll3 s 0

whenever § € (1/2,1).
The terms with B,,;1 are estimated by

t 2 t
K/
ef |t T (onPIV B+ fom P B [2) 4 2G40 By P d
0 2,2 g0

for any €1 > 0 close to 0 and we bound the second integral by

t t
esuplvmlSe,0 | IV Bmials o, 0 At + csuplvmali o | 1Briil§ ., 0 d¥
0 0

t
+ CS | Bims1l3,—(24e1),0 dt’

0
t t
< c(l[vmlla,_com) + 10O 2,0)* V1 Bria 3 —cp o @t + e\ [Bimia 3 _4ey.0 '
0 0
t t

<o 1Bmiall ., 0 dt' + \I1Bmial3_., o dt.
0 0
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Employing the above estimates in (7.54) we obtain

t

K P
(7.57)  |Kpyia 310+ | [ V=22
0

dt’ < o(A)(t* + X Vinll,_,.(20)

LA Do)

+ C|Hm|§,—3,(zf + CX?HWm”g,l—M,Qf + (A)* Sltlp \ng,q,n

t t
+ X2 Hll3, -1 o0 + o) VB I3 oy o dt’ + e\ | Bmaall3 ., o dt’
0 0

for any small 1 > 0.
Using (7.51) we obtain from (7.57) inequality (7.53). This concludes the proof.

Finally, we have
THEOREM 7.6. Let the assumption of Lemmas 6.1 and 6.2 hold. Then
(7.58) Vintilla,_,.@n < @A, B)(t* + X + 60)[Vinlla,_,. (2
for any 6 > 1, where 69 = ||k — v/(2v)]|,,3/2 .
VilZs/2(5)

Proof. From (7.8) we have
(7.59) 1A% sall221- 00 + A

2,0 T [ At mile,— (14,0t
< @(A)[X(Slip |Kmt1l2,—1,0 + [Vinlla,_.0t)

[ Wanllz1-p.0t + [ Hmll2,-1,00]-
From (7.37) we get
(7.60) | Hp

o2+ IVQul2, 00 < et X[ Vinllay et
for any ' € (0,1].

Next (7.39) implies

‘ ! 2 / 1/2
(7.61)  sup (Wil + (§IWn ()R )+ [ Wil
0

< @A) Vimlla, o) + 1Qm
< SD(A)taHVm”Alfu(Qt%
where (7.60) was used to get the second inequality. From (7.46) we obtain
(7.62) [ Kmrillzz1-p.00 < (0(A)" + X + ) [[Vinlla,_u(00)
+ (X +p(A)?) SUp [Kmy1/7l2.0 + @(B) [ Homll2, .00

2,—p, 2t + |Hm‘2,—(1+u)»9*]

+ QO(A> Slz-p(‘me'ZQ + |Wm|2,7u,())

< o(A,B)(t* + X +6)[Vinll a, . 00)
+ (X + o(A)tY) sup | Kmt1/7]2,02,

where &y = ||k —v/(2v)||3/2,5 and the second inequality follows from (7.60) and (7.61).



104 7. Local existence: convergence of the approximating sequence

From (7.53) we get

I e 2 1/2
(7.63)  |Km+1l2,-1.0 + (S vt dt/> < c||Hmll2,—p, 02t
o T 20
+eX(| o+ [|A )

t
1/2
(A sp [ Wil /a0 + () (§I1 B} oy 0 )
0

¢ 1/2
(S Buia ()13, o dt')

for any 0 € (1/2,1),e1 >0, p/ < 1/4.
For solutions of problem (7.50) we have

¢ 1/2 ¢ 1/2
(7.64)  (VIBuarlico0dt) "+ (VIBua ) c0dt) " < cbollVinlla, o
0 0

for any § > 1, where do = ||k —v/(2v)|,3/2 and ¢; = §/2. For more details see the
4,

,5/2(5)
proof of Lemma 4.1.

Employing (7.64), (7.60) and (7.61) in (7.63) yields

t

(7.65) |Km+1|2,—1,9 + <S

0

2

K.,
yomtl
,

1/2
dt’> < (A, B)(X +t* + 60)[[Vinll a2
2

2,

where to estimate the norm with A,,; we use problem (7.7) for step m.
Using (7.65) in (7.62) and (7.59) we obtain

(7.66) 4 iz (A BYK A+ 60) [VirlLa,_y )
For solutions of problem (7.7) we have

(7.67) [Vintlla, 020 < cllAmsallz2n—p,00

From (7.67) and (7.66) we obtain (7.58). This ends the proof.

From (7.58) we have convergence of the sequence constructed in Section 6 in a small
interval [0, ¢].

THEOREM 7.7. Let the assumptions of Lemmas 6.1 and 6.2 hold. Then the sequence con-
structed in Section 6 converges.

Proof. By Lemmas 7.1-7.6 the sequence converges in a small interval [0,¢]. Applying
Lemmas 6.1 and 6.2 we can extend the considerations in this section step by step up
to T'. This ends the proof.

7.3. Local existence

Proof of Theorem 1.1. Lemmas 6.1, 6.2 and Theorem 7.7 imply Theorem 1.1.



8. Global existence

8.1. Idea of the proof. To prove global existence we have to prolong the local solution
from Sections 6 and 7 step by step up to infinity. To make this possible we have to prove
local existence for sufficiently large time 7. Moreover, we have to show that all quantities
collected in X,Y7,Y5,Ys (see Lemma 6.2) do not increase if we pass from the interval
kT, (k+ 1)T] to [(k+ 1)T, (k+2)T], k € N.
For this purpose we distribute all the quantities into the following four new quantities:
Q1(t) = |h®)[l1,-1.0 + [w®)[1.0,2 + &/ )21 4.2,
Q2(t) = X h1-p.2 + XO)|2-1.0 + [0)l221- .0,
Pi(0,t) = lgla1 0 +19l2,-1,00 + | folo,—p,00 + [F' 2,00 + |[Fil2,— 0,
P5(0,1) = [Fal2,-1,0,
where 1, P, are sufficiently small and the magnitudes of Ps, Q5 are not restricted.
To prove global existence we have to show that Q1(¢), Q2(t), P1(0,t), P»(0,t) can be

estimated by some quantities Q7, Q35, P, Py for any ¢ € R,. For this purpose we have
to show that

(8.1)

(8.2) lvlla,_,coxr,kenT)) < A, Yk EN.

To simplify notation we introduce

(83) A(tlatZ) = ||’UHA17#(QX(t17t2))'

To show

(8.4) Qi(t) <Qf, P(0,t) <P, i=1,2 teRy,

we have to obtain some decay estimates.

8.2. Decay estimates. First we assume

(8.5) V() = lgt)l2—1,0 + lge(t) |20 < ¥(0)e™™", 1o > 0.
Repeating the proof of Lemma 7.4.1 from [zaj 5] we have

LEMMA 8.1. Assume that v € Ay_,,(2") and h is a solution of (1.4). Assume that 0 <
t1 <t <T. Assume (8.5). Then

(8.6) 1A 11,12 < 9(A(0,8))e™" (7(0)[[1,-1, +7(0)),

where @ is an increasing positive function and t1 which is close to t can be chosen large.

Let us introduce the quantity
(8.7) Z1(t) = lwt)|l10.0-

[105]
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Now we prove a result similar to Lemma 7.4.2 from [zaj 5].

LEMMA 8.2. Assume that v € Ay_,(2") and (8.5) holds. Assume the growth condition
(8.16). Assume the geometry of the boundary such that (8.19) holds. Assume h4(0) €
La(02), h(0) € HY,(£2), w(0) € HL(£2). Then
(8.8) Z1(t) < (A0, 1) [[w(0)]21,2 + |1t (0)|2,2 + |h(0)[l1, 1.2

+7(0) +71(0) + e 21(0) + e w(0) ]2, 0].
Proof. From (6.3.41) in [zaj 5] we have
(89)  |ha(Bo+IR@I3 o < e I |

t
+ (0 |\m+c§ )30+ 193 0)e

+0)3 0

v ’,c||v|\A17M(Qt/) dt/i|
< @(A(0,1)e™ " [[ht(0)[3.o + IR(0)IIF  +~*(0)],

where (8.5) was used in the second inequality and the constants ¢ do not depend on t.
From (7.4.24) in [zaj 5] we obtain

(8.10) la(®)[3,2 < (A, 1)e™"[[h(0)3 o + [R(O)I o +*(0)].
Moreover (7.4.25) in [zaj 5] gives

¢ 1/2
(811 Jhlla e+ (Jla@IE - dt') T < p(A©0,0)(4(0) + [AO)]h,-1.0)-
0
From (5.13),
t
/ —t N2 t g 1/2
(812)  Z(1) < o(A©.0)) [sup (¥ 20 + (7 § ot 3 0" )
t' <t
- 0
0 \|2 AYP 7\|2 / 1/2 —t
+ (§0a)B v+ B a0 + S ()B.2)dt) " + e 21(0).
0
In view of (8.11) we simplify (8.12) to
tt 2t g 1/2
(813)  Zi(t) < @(AW0.0) [sup ()0 + (7 Flu)Boe dr )
t'<t
- 0

+90) + RO, 1,0+ fyl2.00 + €7 Z2(0)]

To examine the first term on the r.h.s. we use Lemma 5.6. Hence we have
t

(8.14) w0 (®)]2,1,0 < [wO)21,0 + | (1a#) 2.0 + R,
0

In view of (8.6) and (8.10) we obtain

8.15)  fw(t)l21.0 < [w(0)|2,1.0 + @(A0,0))[[h1(0)]2,2 + [[A(0)][1,-1.0 +¥(0)]

+§ 1S ()20 dt.
0

(t)]2,0)dt'.
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Assuming the growth condition

(8.16) n(t) = fp(t)l2,0 <n0)e™™", 11 >0,

and inserting it in (8.15) implies

B17)  fw(t)l21,0 < [w(0)|2,1,0 + @(A0,1)[[h4(0)]2,2 + [[2(0)]l1,-1,2 +¥(0)]
+ cv1(0).

In view of (8.17) estimate (8.13) takes the form

(818)  Z1(t) < (A0, ) [[0(0) 21,0 + [Be(0)]z,0 + | A(O)

1,-1,02
t
- 2t g 1/2 —t
+(0) +(0) + (e w3 ge” dt ) +et2,(0)].
0
Finally, we have to estimate the integral on the r.h.s. of (8.18). For this purpose we use
the proof of Lemma 5.3. We exploit formula (5.8). Assuming that

(8.19) la1] < er®  in a neighbourhood of 7 = 0,
we can write (5.8) in the form
d
(8.20) E|w|§,n +V|w|§,n < c|w|§’1’n+c|vr|io’9\w|§ﬂ +c(lq %,(2"‘ |h %,71,9 + \f«p|§,n)~

Since Sg |”ur|§o’Q dt’ < c||vH12417u(m) for € (1/2,1) we have

d vi—cl||v||? t
(8:21)  Z(jwfge" M)

2
Vtic”’vHAl,M(Qt)

3,9 + |h|§,—1,9 + £y 379}6

Integrating (8.21) with respect to time yields

(822)  [w(t)B.o < o(A0.0) [ sup () 1,0

+§ (B o+ 1R()B o+ o) B.a) d + e () o]
0

Using (8.11), (8.16) and (8.17) in (8.22) implies
(823)  [w(t)l2,2 < ¢(A(0,8))[[w(0)]2,1,0 + [2,:(0)|2,0 + [|A(0)][1,-1,2 + ~(0)
+7(0) + e w(0)]2,0].
Employing (8.23) in (8.18) we have
(824)  Zi(t) + [w(t)|2,0 < (A0, 1) [[w(0)]21.2 + [71(0)]2,2 + [[2(0)][1,-1.2
+7(0) +71(0) + e Z1(0) + e w(0) |2, 0.
This estimate implies (8.8). This concludes the proof.

< clwl o+l

Now we obtain a decay estimate for .

LEMMA 8.3. Assume that v € Ay_,(2'), F, € Lo _1(2%), k —~/(2v) € H*2(S) and

k—v/@2v) € V% ,(8), 8 2 1, w(0) € Laa(2), h(0) € H (), h,(0) € L),
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Xx(0) € Ly _1(£2) and the decay estimates (8.5) and (8.16) hold. Then

(825)  [x(®)]2.-1.0 < (A0, 1) [[w(0)l21.2 + A (0)l2.2 + [A(0)[[1.-1.0
+9(0) +71(0) + 7" Z1(0) + e w(0)|2,0] + €|y
+cllk —v/(2v)l3/2,4,-5/2,51Iv ] 4, 2ty + e "X (0)]2,—1,0-

2,—-1,0t

Proof. By the local existence result sup; |hy|2,—1,0 is sufficiently small. Then (4.4) implies

d
(8.26)  —ZIX[B-10+vIX % 0.2) 17

il o,0llvel3 210 +clw

10 Scl+w

2
2,—-1,02

g,—1,9|%,z 421,_3/4_5,9 + C|F¢|§,—1,Q

+ C(\hw|i,n|5|i,f(1+5/z),n + |UI|§0/3,(Z|5|§,71,Q + Wg,f(ua/z),n)a

where £ > 0, 6 > 0. Integrating (8.26) with respect to time yields
t

827) W) -10<cl+ sup wll? 0.) §11()
0

|§,—1,.Q dt’

+esup [l o ollop I, con +elFylB 1.0

+ (bl 00 1813 118 /2),00t T10T0 /3,00 1813 -1 0t 1815 _(245/2).0t)
+e " X (0)[3 -1, 0-
Using (8.8) and (8.11) we have
(828) X' (t)l2,—1,2 < (A0, 1)) [[w(0)|2,1,02 + [74(0)]2,2 + [[2(0)[l1,-1,0 + 7(0)
+71(0) + e Z1(0) + eV |w(0)|2,0] + c|Fpla,—1 .00
+ (|8

where we have used the fact that

2, (2+6/2),2t) + € "X (0)
v]10/3,0t < c in view of the energy estimate.

4,—(145/2),02¢ +|Bls,—1,0t +18 2,-1,25

Finally, the terms involving ( are estimated by
cllk — 7/(21/)”3/2,4775/2,5
where we have applied estimate (4.7).
Hence (8.28) implies
(8:29)  IX'(B)l2—1.0 < (A(0,1)[[w(0)]2,1,0 + |t(0)|2,2 + [[2(0)[[1,-1,2
+7(0) +71(0) + €7 Z1(0) + e~ w(0) |2,0] + | Fy|2,—1,0r
+cllk — v/ 2v) 372,472,511Vl 4, 2ty + e "X (0)|2,-1,0.
Using again problem (3.33) for 8 we obtain from (8.29) the inequality (8.25). This con-
cludes the proof.

LEMMA 8.4. Assume that A(KT, (k+1)T) < A for all k € N,

|U||A1,u(m),

(8.30) Zy(t) = |h ¢ (t)]2,0 + |R() |1, + (1),
p(A)e T <1, Sgo |[fo(t')|2,1,0dt" < e1 and €1 is sufficiently small. Then
p(A) R
(831 wkDhpe < lwO)1e + 78 =0 22(0) +c § [fo(t)|2,1,0d

for any k € N.
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Proof. From (8.9) and (8.17) we have
kT
(832)  |w(kD)lspo < w(0)|a10 + Z e TYip(A) Z5(0) + ¢ | 1) 21,00t
0
Passing with k to oo and using the assumptions of the lemma we obtain (8.30). This
concludes the proof.

To obtain the time behaviour of Q1 (t) we need an estimate for ||a/(t)||1,1—p,0-
LEMMA 8.5. Assume that v € A;_,(27), h4(0) € Lao(£2), h(0) € HL,(£2), w(0) €
H}(£2), g(0) € Lo _1(£2), g+(0) € La(£2), f,(0) € La(£2), v(0) € Lo(92). Assume the
decay estimates (8.5), (8.16). Assume that there exists a local solution determined by

Theorem 1.1. Then
(8.33) |/ (¢)

1+ cypev2(tto)

0<ty<t<T,

2 < ¢(A(0,1))[d1(to) + [[w(to) (o)

where o = (a1, a3) and dy(t) is defined by (8.40).

Proof. Let us introduce a smooth function ¢ = ((¢) such that {(¢) = 0 for ¢t < ¢; and
¢(t) = 1 for t > ty. Multiplying (1.7) by ¢ and introducing the notation &’ = o/¢ we
obtain

~ ~ ~ (65 ~ 2v
Q¢ +v- V041 — O Upp — ? h'r — Q3Vp + 7”'_2 (hr,z - hz,r)C

+ L.;l —vAa; = 151 + éal in 7,
,

(8.34) azy+v-Vas — (a1v,, + a3v, ) — 72 h, —vAdz = F5 4 Caz  in 07,

20,1 ~

asi] — a10i3 = —Tw on ST,
(a10q + a20i3) = Brhy + Boh + BaW,r + Baw , + Bsw on ST,
aili=0 =0, aslt=0 =0 in £,
where ¢ = 8,¢. Applying Lemma 4.3 (see (4.12)) to problem (8.34) yields
(8.35) o/ )11 < ¢ sup [a'(t)|2,1-p,00(A(0,1))
t <t/ <t

+ claz/rlio/3,0x 1 4) 1Pll2,—p0x (t1.1)
+e(Ihll2,—p,ox ) + wll21—p 0x @t .0)

+ c|@1lo,—(14p), 2% (t1,6) T F 20— 0 (81,0)

t2 _ tl |a/|271_,u7~0><(t11t)

for all 1 € (1/2,1), where ' = (a1, a3), & = (a1, as). From (4.14) we have
(8.36) sup &' (t')]2,0 < @(A(0,£))[|a2/7hos3,0x (b, 1hl2,-1,0x ¢1.0)

L <t'<t
1)+ 1 2,25 (61 0)]

+ llwll2,1-p, 2% 11,

C !/
PR— |ox |2,Qx(t1,t)-
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From (4.1) we get
¢

_ _ _ ) N 1/2
(837) (@ /rlojs.ar < e supldzl 10+ (§1V@/r)Bod) )
0

< o(A0, 1) (Ihll2,—1,0x(t1,6) + 1vr|10/3,2x (t1.4) + 1)d0

+ela+ sup fut)

lLo.2)hll2,—1,0x 0 + sup flw(t) 10,02
t1 <t'<t t1<t'<t

t

_ , , 1/2
: (S a1 (t')]4,-3/4—c 0 dt ) + |F¢|2,—1,Q><(t1,t):| +
0

ty — 11 \Oé2|2,—1,.ox(t1,t)~

To estimate the second factor in the third term on the r.h.s. of (8.37) we use inequality
(4.37) for solutions of problem (8.34). Hence we have
t

t
3389 (J@®)E s o) <c(Jlm@)E o))"
0 0

< o(A(0, 1)) {ag/rho/g,m||h||2,_1,m<t1,t> Bl e

+ ||w

2,1—p, 2% (t1,t) T ‘Fl|2,!2><(t1,t) F 1 F1 o, — 0o x(t1,8)

+

1 /
tQ — tl |a |2,7/J,,.Q><(tl,t2)

for any p € (1/2,1). Inserting (8.38) in (8.37) and assuming that X is sufficiently small
we obtain

t
_ _ _ 1/2
(8:39)  [@/rlojs.ar < e supldzls 10+ (§1V(@/r)Bod) )
0

< o(A0,0))(1Pll2,—1,2% (t1,6) + [vrl10/3,2x(t1,6) + 1)d0
+c(l+ sup |lw(t)
t <t'<t

l1,0,2)1Pll2,—1,0%(t1.0)

+¢(A(0,t)) sup IIw(t’)II1,o,n[Ilhllz,—l,nx(tl,t)+||w||2,1—u,nx<t1,t>
1 <t'<t

+ 1 2,0 (tr,6) + 12— px (tr,6) + P— 0/ 9, 2 (t1,t2)
c
+elFplo,—1,0x(0 + 3 a2, —1,0x (t1,1)-
22—t

Let us introduce
(8.40) di(t) = |he(@)l2, + [1R(O)]1, 1.2 + (&) +71(1).
Assume the decay estimate
(841) %) = |F (i + [F Ol + [Fi®le e < 12(0)e "

From (6.49) we have
(8.42) 1hll2 1,00 < (A0, £))X  so [lhll2—1,0¢ < @(A(0,1))d1(0)
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and (6.62) implies

(8.43) [wll2,1-p.00 < 0(A(0,))X.

In view of (8.40) inequality (8.8) takes the form

(844) Jw(®)[l10.2 < (A0, ))[[w(0)|2,1.0 +di(t) + " [w(0) “w(0)]2,0]-

Applying the above estimates in (8.39) and using the fact that X is sufficiently small we
obtain

t

_ _ _ 5 .\ 1/2
(8:45)  |az/rhojs.ar < o[ sup[@ala 1.0+ (§1V(@/m) 2 dt') ]
0

(A0, 1)) (Jvrl10/3,2x (t1,6) + 1)d0
(A0, 1))[lw(to)|2,1,0 + di(to) + 72(to) + e~ Jw(to)[|1,0,0

+ e_”(t_t°)|w(t0)

C
ol FelFola 1 0x o) + P— a2, (t1,t2)

for some tg < t;. From Lemma 3.4 we have

(8.46) [v()|2,2 < [ flaq,00 + [0(0)]2,0,
and
(47 hosor < clsup | (OB 0+ V0B o) < el1f o0 + [0(0)|2.0):

where v’ is defined in the proof of Lemma 3.4.
Inserting (8.11) and (8.47) in (8.36) (where (8.45) is employed) yields

(848)  sup [a/(t)]z.2 < @(A(0.£)d0(1 21,00 +[0(0)]2.0 + 1)da(to)
t1<t'<t

+ o(A(0, 1) [[w(to)]2,1,0 + di(to) + e~ lw(to)|1,0,]

# plA0.0) 1Pl

1
(to) T 34, \a2|2 ~1,2x(to,t) }d1(to)

¢
2x(to,t) T ‘F/|2,Q><(t0,t) =+ P— |0/|2,Qx(t1,t)]-

+pd0.0)
From (6.62) we have

(8.49) [wll2,1- .20 < @(A0, ))[[1R(0)][1,-1,2 + [[w(0)[[1,0,2
+7(0)e™ "t + ~1(0)e~ .
Employing (8.49) and (6.81) in the form

(8.50) I (A(0,), B(0,1))X

we obtain from (8.48) the inequality

(8.51) sup [ (t)]2.2 < ¢(A(0,4), B0, 1))[da(to) + [[w(to) 10,0
t<t'<t

C
+ |w(to)l2,1,2 +72(to)] + — i |0/ ]2, 0% (t1,1)-

to
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From (3.5) we have
(8.52) |O/|2,!2><(t0,t) + |a1|277(1+p.),9><(t0,t) < (A0, 1))[t — 750|1/2

[di(to) + [w(to)|2,1,0 + e [w(to)l|h.0,0)-
Making use of the above estimates in (8.35) yields
(8:53)  [la'(t)ll1.1-p.2 < (A0, 1))[d1(t0) + [lw(to)ll1.0.2 + [w(to)
This ends the proof.

—va2(t—to)

2.1,0] + cy2e

8.3. Proof of global existence
Proof of Theorem 1.2. To show (8.4); for i = 1 we collect the necessary estimates. Since
(8:54)  |he(t)l2,0 + [[A(t)]I1,-1,2 < (A0, 8)e™"(|7t(0)]2,2 + [1h(0)[l1,-1,2 +~(0))

for some ty < t, we have

(8.55) di(t) < di(0)e ", v, = min{vy,v1}.

From (8.8) we get

(8.56) lw(®)ll.0.02 < (A0, 1))[[w(0)]2,1,2 + d1(0) + e~ [w(0)][1,0,2].
Next (8.17) implies

(8.57) lw(t)]2,1,2 < [w(0)|2,1,2 + ¢(A(0,1))d1(0) = d.,

which holds for all ¢ < oo if A(0,t) does not increase with time. In view of (8.54)—(8.57)
the inequality (8.53) takes the form

(8.59) lo/ (1.1 < 9(AO, D)[e™*0d1 (0) + da (0)
e w(0)[10.0) + er2(0) ™, t< T,

where T is the time of local existence.

Assume that

(8.59) [w(0)][1,0,2 < A1,
where A; is a constant so large that
(8.60) ©(A(0,T))[ds + d1(0) + e T A1) < Ay
Then
(8.61) lw(T) 100 < Aiz.
Moreover,
(8.62) di(T) < d1(0).
Inserting (8.59) in (8.58) yields
(8.62) & (T) 11—, < (A0, T))[e™""d1 (0) + di (0) + ™" A]

+ cy2(0)e T = A,.
Hence we have
o/ 2T) 11—, < @(A(t,2T)) [ dy(T) + di (T) + " Ay] + ey2(T)e ™"
< (A0, T))[e”""d1 (0) + d1(0) + e " A1] + cy2(0)e " = As.
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In this way we have shown that there exists Q7 < oo such that
(8.63) Q:1(t) <Q7 VteR,.
From (8.25) we have the estimate

(8.64) IX(t)]2,-1.2 < ©(A0,)[[w(0)]2,1,0 + d1(0) + e~ w(0)[[1.0.e]
+ ¢|Fpla, 1,00 + 0o A0, 1) + e ! [x(0)]2,-1,0-

Using the growth condition

(8.65) ¥3(t) = |Fp(t)|2, 1,0 < 73(0)e ™"
we obtain from (8.64) the inequality
(8.66) X() 21,2 < 9(A(0,))[[w(0)|2,1,0 + di(0) + e~ w(0)][1,0,c]

+73(0) + cdo A0, 1) + e |x(0)|2,-1,0-
From (8.45) we have

t
(8.67)  |X/rlios.0r < c(bﬂz,—l,ﬁ + (S IV(X/)5.0 dt/) 1/2)
0

< (A0, ) [([vr]10/3,00 + 1)do + [w(to)l2,1,2 + di(to) + Y2(to)
+ e 70 |[w(to)[|1,0,2 + 3 (to)]

+ G gy A0 D) [wt)lz1.0 + dilio) + e~ ()

+72(t0) + 73(t0) + 00 A(0,) + e 1) | (o) |2,—1,02}-
Finally, (8.67) implies

1,0.2]

~ ~ b N 1/2
(8.68) IX/Tlo/3,0t < c|sup [X|2,—1,0 + (S IV(X/7)|2,0dt ) }
to<t 0

< w(A(0,1))[00 + |w(to)l2,1,02 + da(to) + v3(to)
+ e~ ) lw(t) 10,0 + e X (t0) |2, 1.0],

where
da(t) = di(t) + 72 (t).
From (4.49) we have
(8.69)  lIx()ll1—p.2 < IXll21—p, 00
< lerllvlla, @) + c(1/e1)(va(to) + [v(0)|2,2) + cllv(0)]

|2,2,1—p,02 + 1]

o+ ([0 d) ")
0

+ ¢(A(0,2)) sup [lwll1,0,2 +v3(to)
to<t

+ [e(A(0, 1)) + c(1/e)(va(to) + [v(0)]2,2)]d0 +

: [sgp\i/f

C
2,1—p, 2% (t1,t
ty — 1, IX[2,1-p, X (t1,t2)
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where
Y4(t) = | f(t)|2,0 < 72(0)e 4.
In view of (8.8) and (8.68) we obtain from (8.69) the inequality
(8.70)  Ix(D)ll1.21-pm0 < @(A0,1))[d3(to) + [v(0)|2,0 + |w(to)]2.1.0
+ 80 + e flw(to) 1,00 + €0 x(t0) |2, 1,0]4

where
d3(t) = da(t) + v3(t) + 7a(t)-
Next we examine |x(t)|2,—1,0 from (8.66). Assume that |x(0)|2,—1,0 < As. Then (8.66)
implies
(8.71) X(T)l2 1,0 < (A0, T))ld. + ds(T) + e Aa] + ey3(T)
+ CéoA(O, T) + €_VTA3 < A3,

where the second inequality follows for Ajs sufficiently large. Inequality (8.71) can be
repeated step by step because d. is fixed for all ¢, ds(t) is a decreasing function and
eiTAl < Al, e*”TAg < A,.

Since |x(t)|2,—1,» does not increase with time we have the same for ||x(¢)[/1,1—p,0-

These considerations imply global existence for problem (1.1). Hence Theorem 1.2 is
proved.

Theorem 1.3 follows directly from Theorems 1.1 and 1.2.



9. Historical overview

In this section we recall results concerning the existence and regularity of solutions to
the Navier—Stokes equations.

9.1. Problems with slip boundary conditions. In this subsection we concentrate
on problem (1.1) under different geometrical and analytical restrictions, where the slip
boundary conditions are employed. The boundary conditions imply the boundary condi-
tions for vorticity, so a problem for vorticity can be considered. Then applying the ideas
of [lad 1] and [uky] the global estimate for vorticity modulo norms of small quantities
follows. This is the main step for proofs of global existence of solutions to problems (1.1).

In this paper we proved existence of global regular solutions to problem (1.1) assuming
that w(0), h(0), f,, Fr, F are small and imposing decay of the external force (see (1.21)).
The results are formulated in Theorems 1.1-1.3. In this paper (2 is an axially symmetric
domain. Hence to show global existence a lot of strong geometrical restrictions on the
boundary must be imposed (see assumptions A.1, A.2, A.3). Most of them follow from
the fact that x|s # 0, which is implied by the fact that {2 is axially symmetric but
noncylindrical and the slip coefficient - is nonvanishing.

In [zaj 5] problem (1.1) in a cylinder and with vanishing slip coefficient ~ is considered.
In this case x|s = 0, so the proofs of the results similar to Theorems 1.1-1.3 are much
simpler. The ideas of the proofs are the same as in this paper.

Since in this paper and in [zaj 5] we proved existence of solutions to (1.1) with small
azimuthal component of velocity v, we are interested to have the existence of solutions
with large v,,. In [zaj 7] existence of global axially symmetric solutions with large swirl is
proved in a cylinder with the axis of symmetry removed. We do not know how to obtain
any estimate for v, near the axis of symmetry without assuming that v, is sufficiently
small. This is connected with the property that any axially symmetric solution near the
axis of symmetry behaves as a three-dimensional one (see [zaj 11]).

Existence of global solutions with large swirl which are close to the axially symmetric
solutions from [zaj 7] is also proved in [zaj 8] for cylinders with the axis of symmetry
removed.

In [zaj 11] we showed existence of global axially symmetric solutions in a full cylinder
which are such that near the axis of symmetry v, is sufficiently small but at a sufficiently
large distance from it v, is large. The existence follows from the Leray—Schauder fixed
point theorem by making use of an appropriate partition of unity.

In this paper and in [zaj 5, 7, 8, 11, 12] the existence of solutions which are either axi-
ally symmetric or close to axially symmetric and in axially symmetric domains is proved.

[115]
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In [zaj 9-10] we showed the existence of solutions in non-axially symmetric cylinders.
The solutions are such that they do not change much with respect to the variable along
the cylinder. Hence they are close to two-dimensional solutions. The papers generalize
the results of Raugel-Sell (see [ras 1-3]). The existence is proved via the Leray—Schauder
fixed point theorem. In [zaj 10, 12] the case with inflow and outflow, while in [zaj 9] the
case without inflow and outflow are considered.

9.2. Local existence and uniqueness of strong solutions. We shall start with the
most fundamental problem: existence and uniqueness of local strong solutions for different
initial-boundary value problems. We indicate different approaches and relations between
them.

To present results concerning problems (1.1)—(1.3) we first introduce some function
spaces (the notation concerning the results of this paper is introduced in Chapter 2). By
C6%,(§2) we denote the set of all C> vector functions ¢ = (¢1,...,¢,) with compact
support in §2 such that div ¢ = 0, where 2 C R". L, ;(§2) is the closure of C§< (£2) with
respect to the L,-norm, (-, ) denotes the duality pairing between L,.({2) and L, (£2),
where 1/r +1/r' =1, and

e, = (§ fuCe)az)
2

where u is a scalar or vector-valued function. Hg ,({2) denotes the closure of C§, (2)
with respect to the norm
HUHH&U(Q) = Z \|D$“||L2,G(Q)~
laf<s
For an interval I C R! and a Banach space X, L,(I; X) and C™(I; X) denote the usual
Banach spaces of functions on I with values in X, respectively, where p € [1, 00| and
m=20,1,....

Now we define weak solutions to problems (1.1)1 25 and (1.1)1,25, (1.3).
DEFINITION 9.2.1. Let v(0) € Lo »(£2). Let £2 C R”, n = 2,3. A measurable function v
on 2T = 2 x (0,7) is called a weak solution to problems (1.1)1 25 and (1.1)1 25, (1.3) if

(1) v € Loo(0,T; La,o(£2)) N Lo (0, T; Hy ,(£2));

(2) for every ¢ € H'(0,T; H ,(£2) N Ly,(£2)) with o(T) =0,

T
(9:2.1) | [=(0,0.0) +1(Vo, Vi) + (v Vo, p)]dt = (0(0), (0)).
0
Concerning existence of weak solutions, by Leray [ler] and Hopf [hop] we have

THEOREM 9.2.2 (Leray-Hopf). For every v(0) € Lo ,(£2), there exists at least one weak
solution to the Cauchy problem (1.1)1,2,5 (see [ler]) and to the Dirichlet problem (1.1)1 2.5,
(1.3) (see [hop]) fort € (0,00) such that

t
(9.2.2) 0()E o + 2 | [To)B 0 dt < (O

0
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and
(9.2.3) [v(t) —v(0)]2,0 = 0 ast— +0
(see notation in Section 2).

Let us now consider problem (1.1).

DEFINITION 9.2.3. By a weak solution to problem (1.1) we mean a function v € Lo (0,T}
Lo (2)) N L2(0,T; HL(£2)) satisfying the integral identity
T

9:24) =, 0,) + (D), D(¢)) +7(0 - Tar 0 - Ta)s + (v - Vo, )] dt
0

T
= (v(0),(0)) + { (f,v) dt,
0
which holds for any ¢ € HY(0,T; H:(2)) with o(T) = 0, where (v - T, ¢ * Ta)s =
S gV Tap Ta dS and the summation convention over the repeated index « is assumed.

By Lemma 3.5 the following estimate for weak solutions satisfying (9.2.4) holds:
¢
(925 OB+ v [Vo)Bodt <0+ OB 0+ 0O0)
0
Next we recall results on local existence. The first result on the solvability of the
Cauchy problem (1.1) 2 5 with initial data v(0) € L, »(R") is due to Fabes—Jones-Riviere
[fjr]. For this purpose they introduced

DEFINITION 9.2.4. By a very weak solution to problem (1.1);25 we mean a function
v € L,(0,T; L, - (R™)) satisfying
T
(9.2.6) V(0 +v2)p,v) + (Vio, v @ v)] dt = —((0),v(0))
0
for ¢ € CF%,(R™).

THEOREM 9.2.5 (Fabes-Jones-Riviere [fjr]). Let v(0) € Ly »(R™). Then the Cauchy prob-
lem (1.1)125 has a unique local solution v € L,.(0,T;Ls,(R™)) with s > n, n/q <
2/r+n/s<1.

Provided v(0) is sufficiently small in Ly(R™) N Ly (R™), 1/¢+1/¢" = 1, the solution
exists globally, so T' = oc.

The existence of local solutions for the Cauchy—Dirichlet problem (1.1); 25 with non-
homogeneous boundary conditions (1.3) with data in L, has been proved in R’} by Lewis
(see [lew]) and in a bounded domain by Fabes-Lewis—Riviére [fir].

By different techniques Beirdo da Veiga proved (see [bdv 5]):

THEOREM 9.2.6. If v(0) € L, ,(R™), ¢ > n, then there exists a unique very weak solution
v to problem (1.1)1,25 which is a weakly continuous function from [0,T)] into Ly ,(R™).
Furthermore, if v(0) € Lo »(R™) N Ly »(R™) then v € C([0,T]; L2, (R™) N Ly »(R™)) N
Ly((0,T); HY(R™) N Ly - (R™)).
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In addition, Beirao da Veiga gives an estimate for the maximal existence time (de-
pending on [[v(0)]|z, r=)) and proves that the solution exists globally, that is, for all time,
if the norm ||v(0)| £, ®»)nL, &) is sufficiently small.

More recently C. P. Calderén (see [cal 1-3]) proved also the existence of very weak
local solutions to (1.1)125 for ¢ = n.

Let S be the Stokes operator —vPA, where P is the projector onto the solenoidal
vector fields. Let b(v,v) = —P(v - Vv). Then solutions of problem (1.1); 25 satisfy the
following integral equation:

t
(9.2.7) v(t) = e S0(0) + S e~ b(v, v) (1) + f(7)]dr.

0
DEFINITION 9.2.7. Let E be a Banach space and I C Ry an interval. By a mild solution
(in E) of (1.1)1,2,5 on I we mean a function v € C(I; E) satisfying (9.2.7) on I, where
E is a Banach space of distributions on which the Stokes semigroup {e=*% : ¢ > 0} is
strongly continuous and the integral in (9.2.7) is well defined.

Applying the semigroup approach Kato [kat 1] considered Theorem 9.2.6 in the critical
case ¢ = n. He showed, by using some ideas developed earlier jointly with Fujita (see
[fuk 1-2]), the following result:

THEOREM 9.2.8. Given v(0) € L, ,(R™) there exists T > 0 and a unique solution of
(1.1)1,25 with f =0 in the class

(9.2.8) C([0,T]; L o(R™)) N CA=D/2((0, T); L, o(R™))
forn < q < oo.

We underline that Theorem 9.2.8 is a simplified version of Kato’s result (see [can,
wie]) since in [kat 1] class (9.2.8) is more restricted.

In [kat 1] it is also shown that v is global if ||v(0)|z, (r) is sufficiently small.

The case n = 3 has been extensively studied by Cannone and Meyer [cam] and
Cannone [can]. They introduced a concept of “well-suited” spaces for the Navier—Stokes
equations. They showed local existence and uniqueness of solutions in the class of well-
suited spaces. In [cam] (see also [can]) it is shown that L4(R™) is well-suited if ¢ > n = 3.
In the same paper it is also shown that the Sobolev spaces HS({2;R") are well-suited if
s > 1/2. Thus, if n = 3, s > 1/2 and v(0) € H3, ,(£2;R™) then there exists a unique
mild solution to the Navier—Stokes equations such that

CAS C([O’ T]7 HS,O,G’('Q; Rg))v
where
s " uw € H5(2;R™) : divu = 0, ulgn = 0}, 1/g<s<2,
(92.9)  Hgoo(5R") = { }u c HZSEQ; M - divy =0, u|- Ao i 01, o/g s <1/q.
Moreover, the existence time 7" depends on [|v(0)| s only. This extends an earlier result
of Kato [kat 2] who had to suppose that s > 5/2.

The more general case where v(0) belongs to a Bessel potential space Hg(f2;R"™)
has been investigated by Kato—Ponce [kap] for ¢ € (1,00), s > 1 +n/q if n = 3, and
by Ribaud [rib] for ¢ € (1,00), =1+ n/q < s < (m/q) A (1 +n/q)/2. Assuming that
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v(0) € HJ o ,(£2;R™) they proved that problem (1.1)12;5, (1.3) has a local mild solution
v e C([0,T); Hy o ,(£2;R™)). Tt is unique if s > n(1/q —1/2) 4.

In the situation described above uniqueness is always, except in Ribaud’s result,
proven under additional restrictions. Moreover, there is no relation between different
uniqueness theorems.

Amann [ama] improved the situation. For this purpose he introduced a scale of Besov
and Nikol’skil spaces. We recall the simplest result. Let B . := B; .(£2;R") be a Besov
space. A little Nikol’skii space nj is defined by

ny = closure of Hy in By , [s] € (0,2).
Let us also introduce the spaces n; o , := {u € n; : divu = 0}, ¢ € (1, 00), |s| € (0,2).
THEOREM 9.2.9. Suppose that n < ¢ < r < oo and v(0) € n;(l):r,n/q. Then there exists

a unique mazimal solution v := v(-,v(0)) of the Navier-Stokes equations

v+ P(v-Vv) —vPAv = Pf,

dive =0,
(9.2.10)

1)|s = 0,

V|t=0 = v(0),
such that
(9.2.11) v e C((0,7); HZg ) N C((0,6); Ly.o)
and

. . —14n

}1_{1(1) v(t) =v(0) in ”q,o; /e

as well as

2yrr(l) tA=n/ D2y =0 in L,.

Theorem 9.2.9 guarantees for each r > ¢ a unique maximal solution v,- on the maximal
interval of existence [0,¢,). Since the spaces (9.2.11) are not comparable for different
values of 7 it is conceivable that v, # vs if r # s.

It has been shown in [ama] that vs D v, if s > r. This means in particular that
tF <t for r < s. Thus, although the solution v, ceases to exist in class (9.2.11) at ¢,
if ¢,/ < 0o, it can be continued to the possibly larger interval [0,¢7) in the class which is
obtained by replacing H?, and L, in (9.2.11) by HZ, and L, respectively. Thus we
should obtain a unique maximal solution v, independently of r > ¢, by letting r — oo.

In Theorems 9.2.6-9.2.9 local existence of strong solutions is proved. In these theorems
under sufficiently small initial data (in corresponding norms) there is always a possibility
of prolongation of the local solution with ¢ — oco.

Finally, we formulate a local existence result which will be useful to describe the
problem of prolongation of local strong solutions.

THEOREM 9.2.10 (Kato [kat 1], Giga—Miyakawa [gim], Brezis [bre]). For n < r < oo,
there is a constant v = ~y(n,r) > 0 such that if the initial data v(0) € L, »(R™) and
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T. > 0 satisfy

(9.2.12) O<S;l<pT t("/Q)(l/n—l/r)He—tSU(O)HLT(Rn) <7,

then there exists a unique strong solution v(t) of problem (1.1)1,2,5. Moreover, the solution
v is such that t™/2 /=1y (t) € C([0,T,), L.(R™)) and

(9.2.13) lim /DA lo(t)]|g, , @) = 0.

t——+

If, in addition, v(0) € L, ,(R"™) N Ly ,(R™) satisfies (9.2.12), then v is also a weak
solution of the Navier—Stokes equations on (0,T).

Under condition (9.2.12) we can construct a strong solution v on the interval (0,T})
by the method of successive approximations. To verify (9.2.12) we use the following L,-L,
estimates for the Stokes semigroup {e=**};>0:
le™allz, ey < Ct=2AP D a]l @y, 1Sp<T <00,
Ve tSal|, @y < CE /DA ol o 1<p<r < oo,
which hold for all ¢ € L, ,(R"™) and all ¢ > 0, where C = C(n,p,r). Hence, if v(0) €

L, -[R")N L, ,(R"™) for some n < r < 0o, then (9.2.12) can be achieved in such a way
that

(9.2.14)

2r/(r—n)
(9.2.15) 7 )
)

S T
Cllo(0)ll,,, @
with the same constant C as in (9.2.14).

Abandoning the smallness assumption we have the open problem of regularity and
uniqueness of weak solutions (see Definitions 9.2.1 and 9.2.3). To solve it we can distin-
guish the following directions:

1. conditional regularity
. singular and regular points
. blow-up problems
(9.2.16) PP

2

3

4. continuation of local strong solutions

5. existence of global regular special solutions
6

. decay of solutions.

9.3. Conditional regularity. The classical result on uniqueness and regularity of weak
solutions in the class L(0,7T; L-(R™)) was given by Foiag [foi], Serrin [ser 1-2], Masuda
[mas 1J:
THEOREM 9.3.1 (Foiag-Serrin-Masuda). Let v(0) € Ly ,(R™).
(i) Let u and v be two weak solutions of the Navier—Stokes equations on (0,T). Sup-
pose that u satisfies
(9.3.1) u€ Lg(0,T;L.(R™)) for2/s+n/r=1withn <r < oco.

Assume that v fulfills the energy inequality (9.2.2) for t € [0,T). Then uw = v on
0,7).
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(ii) Every weak solution of the Navier—Stokes equations in the class (9.3.1) satisfies

(9.3.2) u € CPLR™ x (0,T)).

The class (9.3.1) is important from the viewpoint of scaling invariance. It is known
that if (v,p) is a solution to the Navier-Stokes equations on R™ x (0,00), then so is
or(z,t) = Az, A\%t), pa(z,t) = N2p(Az,A%t), X > 0 (see [ckn]). Scaling invariance
means that

Lo(0,T;L.(R")) = )\17(2/8+n/r)\|v|

[[ual L.(0,75L, (&) = V]|, 0,7:L, (R7))

if and only if 2/s 4+ n/r = 1.
We shall next deal with the critical case s = co and r =n in (9.3.1).

THEOREM 9.3.2 (Masuda [mas 1], Kozono—Sohr [kos 1-2]).

(i) (uniqueness) Let u and v be weak solutions to the Navier—Stokes equations. Sup-
pose that u € Lo (0,T; L, (R™)) and v satisfies the energy inequality (9.2.2) for
0<t<T. Thenu=v on[0,T).

(ii) (regularity) There exists a positive constant €g such that if u is a weak solution
of the Navier—Stokes equations in Lo (0,T; L, (R™)) with the property

(933) T sup [u@lE, o) < Ju(t)|F, @y +20 for some t. € (0,7),
then

(9.3.4) u € C*HR"™ x (t, — o,t. +0)) for some o> 0.

In particular, if u has the property (9.3.3) for every t, € (0,T), then u is regular
on R™ x (0,T) as in (9.3.2).

REMARK 9.3.3.

(1) Masuda [mas 1] proved that if u € Lo (0,T'; L,,(R™)) is continuous from the right
on [0,7) in the norm L, (R™), then u = v on [0, 7). Later on Kozono—Sohr [kos 1]
showed that every weak solution w in L. (0,T; L,(R™)) of the Navier-Stokes
equations on (0,7") becomes necessarily continuous from the right in the norm
of L, (R™).

(2) By the above theorem, every weak solution in C([0,7); L,(R™)) is unique and
regular. This has been proved by Giga [gig] and von Wahl [wah].

(3) Recently, Hishida—Izumida [hii] have improved the condition (9.3.3). They have
proved regularity of u under the weaker assumption

(9.3.5) im (w7, @ey < llult)lz, @n) + o

Theorems 9.3.1, 9.3.2 and Remark 9.3.3 can be found in [koz 1].

Now we recall further results concerning conditional regularity and uniqueness of weak
solutions to the Navier—Stokes equations. The first result in this direction was shown by
Serrin [ser 1]:
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THEOREM 9.3.4 (Serrin). Let v be a weak solution of the Navier—Stokes equations in some
open region R C R™ x (0,T"). Suppose that v € Ls ,(R) with
(9.3.6) 2.n oy

s T
Then v is of class C™ in the space variables, and each derivative is bounded in compact
subregions of R. Assume that vy € Lo p(R) with p > 1. Then the space derivatives of v
are absolutely continuous functions of time and p is a strongly differentiable function.

DEFINITION 9.3.5 (Caffarelli-Kohn—Nirenberg [ckn]). A pair (v,p) of measurable func-
tions on 27 is called a suitable weak solution of problem (1.1)1 25, (1.3) with f = 0 if

1. v € Loo(0,T5 Ly 5 (£2)) N La(0, T3 W3 ,(£2)), p € Lsa(27),
2. v is a weak solution of problem (1.1); 25, (1.3) and p is an associated pressure,
3. (v, p) satisfies the so called generalized energy inequality

T T
(9.3.7) S S (Vo2 drdt < X S[|U|2(<P,t + Ap) + (Jv]* + 2p)v - V] da dt
08 00

for every infinitely differentiable positive function ¢ on 27 with compact support.

Caffarelli-Kohn—Nirenberg [ckn] proved the existence of a suitable weak solution of

problem (1.1)1,2,5, (1.3) under the assumption that v(0) € Lg ,(§2) N W52//45(Q)

DEFINITION 9.3.6. A point (z,t) € 27 is called a regular point of the weak solution v if
there exists a neighbourhood U of (z,t) € 27 such that v € Lo (U). Points of 27 which
are not regular are called singular. Let us denote by S(v) the set of all singular points
of v. Then S(v) is closed in 27.

A further important result of [ckn] states that if (v, p) is a suitable weak solution of
problem (1.1)1 25, (1.3) then the one-dimensional Hausdorff measure of S(v) equals zero.
Next we recall anisotropic conditional regularity results.

THEOREM 9.3.7 (Neustupa—Penel [nep 1]). Let (v, p) be a suitable weak solution to prob-
lem (1.1)1,25, (1.3) with f = 0. Suppose that there exists a subdomain D of 2T such that
v3 € Loo(D) (vs is the third cartesian component of v). Then v has no singular points in
D (i.e. S(v)ND = 0).

THEOREM 9.3.8 (Neustupa—Novotny—Penel [nnp]). Let (v,p) (where v = (v1,va,v3)) be
a suitable weak solution to problem (1.1)1 25, (1.3) with f = 0. Suppose that there exists
a subdomain D C 27 such that vy € L, (D) (where L, s(27) = L.(0,T; Ls(£2))) with
re[d,00], s € (6,00],2/r+3/s <1/2. Then v has no singular points in D.

THEOREM 9.3.9 (Neustupa—Penel [nep 2]). Suppose that (v,p) is a suitable weak solution
of problem (1.1)125, (1.3), D is an open subdomain in 27 and v = (v1,ve,vs) in Carte-
sian coordinates. Suppose further that vi,v2 € Ly gi0c(D) and vs € Ly s10c(D), where
Lns(QT) = L’I‘(O?T; LS(Q)) and

1.p,q € [2,00], € [2,00), s € [3, 0],
2.2/r+3/s <1, (2/p+3/q) +(2/r+3/s) <2,2/p+2/r<1,2/q+2/s < 1.

Then (v, p) has no singular points in D.
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THEOREM 9.3.10 (Neustupa—Penel [nep 2|). Suppose that D is an open subdomain of
QT (v,p) is a suitable weak solution of problem (1.1)125, (1.3), ¢1 < (2 < (3 are the
eigenvalues of the tensor (3(viz, +vj4,)) and (o = (3 + (3, where

1. (3 € Lov.a1oc(D) fora>3/2,

2. (€3)+ € Li.0010c(D), where ((3)+ denotes the positive part of (3.
Then (v,p) is reqular in D.

In [bdv 6] Beirao da Veiga proved regularity of weak solutions to problem (1.1); 25
by imposing some conditions on the vorticity w = rotv.

THEOREM 9.3.11. Let v(0) € Ly(R™), divw(0) = 0, Dv(0) € Lo/ (£2). Let v be a Leray-
Hopf solution of problem (1.1)125. If Dv € Lo(0,T; Lg(R™) with 2/a+n/f =2, 1 <
a <min{2,n/(n —2)}, then

Dv € C(0,T; Loas(R")) N Lo (0,T; Lypar y(n—2)(R™)),  Dv = {00, + Vje, }ij=1,2,3-
In the above assumption Dv can be replaced by rotv.
Further, we have

THEOREM 9.3.12 (Chae-Choe [chc]). Let 2 = R?, v(0) € Hy ,(R?), w(0) = rotv(0) €
H(()),U(Rg)v w = (w17w2;w3)7 w1, W2 € Lp,q(QT)v pe (1700)7 qc (3/27OO>7 2/p+3/q S 2
or if the norms of wy and wy in Loo’3/2(.QT) = Loo(0,T; L3/2(82)) are sufficiently small.
Then v is a classical solution on (0,T) of problem (1.1)125.

Moreover, Chae—Cho [chc] have proved
THEOREM 9.3.13. Let 2 =R3,v(0) € H} ,(R?), Vo1, Vg € Ly o(27) = L,(0,T; Le(£2))
with p € [2,00], ¢ € [3,00], 2/p +3/q < 1. Then v is a classical solution on (0,T) of
problem (1.1)125.

Finally, Constantin-Fefferman [cof] have proved regularity of a weak solution v under
certain assumptions about the behaviour of the quantity rot v/rot |v|.

Now we formulate conditional results where pressure is involved. Put €(t) = /to — ¢
for t < tg. Assume that o > 0 and r > 0. Set

U2 = {(z,t) €ER3 x (0,T) : tg — 1%/ < t < to, e(t)o < |x — x| < 7},
Ve ={(z,t) € R3 x (0,7) :tg — 7“2/92 <t < tg, |r—xo| < e(t)o}.
Let us introduce the conditions

(A1)?: v € Lap(UP) for a >3, b >3 such that 2/a+3/b =1,
(A2)7: Mvll.swe e,

(B1)2: p- € Lap(V2) for « > 3/2, 3> 3/2 such that 2/a + 3/ = 2,
(B2)? Hp—”Lm,S/z(Vrg) < &2,

where p_ denotes the negative part of the pressure p: p_ =0ifp >0, p_ = —pif p <O0.

THEOREM 9.3.14 (Necas—Neustupa [nen]). Suppose that there exist 0 > 0 and r > 0 such
that
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(a) condition (A1)2 or condition (A2)? with sufficiently small €1 is satisfied, and

(b) condition (B1)2 or condition (Bg)2 with sufficiently small €5 is satisfied.
Then (xo,to) is a regular point of a suitable weak solution (v,p) of the Cauchy problem
(1.1)172,5.

Let us introduce

DEFINITION 9.3.15. We say that a function g : R? x (0,00) — [0, 00) satisfies condition
(c) if, for any to > 0, there exists a positive number Ry = Ry(to) such that

t
A(tg) = sup  sup 9z, 1) dz < o0
o €ER3 —R2<t<to Blzo. R |z — 20

o)
and, for each fixed o € R and each R € (0, Ry], the function
t
t— S 9(x.1) dx

B(z0,R) | = ol

is continuous at t¢ from the left.
Seregin-Sverdk [ses 1] have proved

THEOREM 9.3.16. Let v be a Leray-Hopf solution of the Cauchy problem (1.1)1 25 and
let p be the normalized pressure associated with v. Assume that there exists a function g
satisfying condition (c) such that

(9.3.8) lo(z,t)|? + 2p(x,t) < g(z,t), z€R3, te(0,00),
or
(9.3.9) p(x,t) > —g(z,t), x€R3 te€(0,00).

Then v is Hélder continuous on R® x (0,00) and therefore smooth and unique.

REMARK 9.3.17. Conditions (9.3.8) and (9.3.9) are satisfied if g = const > 0 in R3 x
(0, 00).

Finally, we describe conditional regularity results obtained by Beirao da Veiga by
methods connected with the regularity techniques used for parabolic equations by De
Giorgi-Moser—Ladyzhenskaya and truncation methods (see [lsu]).

THEOREM 9.3.18 (Beirao da Veiga [bdv 7]). Let (v,p) be a solution to problem (1.1)1 25,
(1.3). Let v(0) € H§ ,(£2), a > n, and f be regular. Let

p
1+ ||

Then v € C(0,T); H,(12)), [v|*/? € Ly(0,T; Hy (£2)).

2
(9.3.10) € Lr(0.T5 Ly(2))  with ~+ g =1, g € (n,o0).

THEOREM 9.3.19 (Beirao da Veiga [bdv 1]). Let (v,p) be a solution to problem (1.1)1 25,
(1.3). Let |[v(0)[|L(2) < ko for some positive constant ko. Let

p(z, t)|
ok(z,t) = ¢ 1+ |v(z,1)]
0 otherwise,

if v(z,t) >k,



9.3. Conditional regularity 125

and let ¢ € Ly(0,T;Ly(£2)) with 2/r +n/qg < 1, r € (2,00|, ¢ € (n,00]. Then v €
Loo(27). If p/(1 + |v]) € L,.(0,T; Ly(£2)) with the same restrictions on r and q as above
then v € Loo(27).

To formulate results from [bdv 2] we need some notation. Let E be a measurable subset
of R™ and let |E| be its Lebesgue measure. Let us define the classical Marcinkiewicz space
L, .(E). A measurable function f(y) belongs to L, .(E) if there exists a constant [f],
such that
(9.3.11) Hz e E:|f(x)] > 0o} <([flg/0)!, Vo >0.

The smallest constant [f], for which (9.3.11) holds is called the “norm” of f in L, .(E).
The following algebraic and topological imbeddings hold:

(9.3.12) L,(E)C Ly+(E) C Ly—e(E), Ve>0.

THEOREM 9.3.20 (Beirao da Veiga [bdv 2]). Let (v,p) be a weak solution of problem
(1.1)1,2,5, (1.3). Assume that for some 6 € [0,1) and some v such that

2(n+2)

3.1 2
(9:3.13) W+ (1_0)nt2) "
one has
p T
9.3.14 ————— € L, ,.(2).
( ) (1+|’U|)9 s ( )
Then
T . gy (nt2)y
(9.3.15) veL,.(2") withp=(1-0) PG B
Moreover, if
p T
3.1 P e (07, 2,
(9.3.16) 1+|v|€ Vv (027),  y>n+

then v € Loo(£27).

To recall results from [bdv 4] we have to introduce some notation. Let us consider
problem (1.1)1,25, (1.3). By a weak solution to problem (1.1)125, (1.3) we mean v €
Cw(0,T; Ly 5 (£2)) N La(0, T; Hy ,(£2)) (Cw(0,T; X) stands for the continuous functions
with respect to the weak topology in X) satisfying the identity

T

9.317)  [1(0(t), o) + v(Vo(t), Vo (1)) + (v(t) - Vo(t), (1))

0

for all ¢ € C'([0,T]; Hj ,(£2)).
We say that v is a strong solution of the Navier—Stokes equations if
(9318) v E L2(07T7D(S)) mC([OaT]aH(%,U(Q))7 Ut S L2(O7Ta LZ,U(Q))

and
vy +vSv+ Pv-Vv)=Pf in Ly(0,T; Ly »(£2)),

vfi=0 = v(0),
where S = —PA and D(S) = Hj ,(£2) N H?(£2).

(9.3.19)
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Let us consider the condition

2
(9.3.20) vEL(O,T5L(2), <+ % —1 and r>n.

If n = 3, any weak solution satisfying (9.3.20) is necessarily strong.
Let us introduce the set
At k) ={z € 2: |v(t,x)| >k}, k>0,te]|0,T].

HypPOTHESIS A. We say that v satisfies hypothesis A at t (with constant C) if v €
Loo(0,T; L, (82)) and if there are § > 0 and a real nonnegative function k(t) defined and
square integrable on (¢ — §,%) such that
(9.3.21) | ta)rde<cm aein (T-67).

A(t,k(t))
We say that v satisfies hypothesis A in [0, T if it satisfies hypothesis A at each t € (0,77;
here § and k(t) may depend on the particular point .
THEOREM 9.3.21 (Beirao da Veiga [bdv 4]). Let v be a weak solution of problem (1.1)1 25,

(1.3). Assume that for some t € (0,T], v is a strong solution in [0, 7] for each T <t and
moreover v satisfies hypothesis A at t with constant Cy. Then v € C(0,t; Hj ,(12)).

Finally, we have

THEOREM 9.3.22 (Beirdo da Veiga [bdv 3]). Suppose v(0) € La »(£2) and Dv(0) € L,(12)
for some p > max{2,n/2}. Suppose v is a Leray-Hopf solution of problem (1.1)1,25. If
1 1

Dv e Lp/(O,T; Lpn/Q(Rn>), -+ - = 1,
p P

then

Dv e C(Oa T; LP(Rn)) n LP(Oa T; L;zm/(n—Q) (Rn))
Moreover,

T
P P
oililgT HD(U(t))HLp(R") T § |‘Dv(t)HLpn/<mz>(R’L) dt

T
< | Do), oy [1 + exp ([ IDUDIE | t)]-
0

Finally, we recall results concerning axially symmetric solutions and their proper-
ties. Global existence of axially symmetric solutions was considered by Leonardi-Malek—
Necas—Pokorny [lmnp 1-2] and by Gallagher-Ibrahim-Majdoub [gima]. Properties of ax-
ially symmetric solutions were examined by Neustupa—Pokorny [npo 1-2, pok]. Recently
Seregin-Sverdk [ses 2] have proved that v € Lo (0, T; L3(£2)) implies regularity of a weak
solution.

9.4. Singular and regular points. Caffarelli-Kohn—Nirenberg [ckn] have shown that
H(S) = 0, where H'(S) is the one-dimensional Hausdorff measure and S is the set of

singular points introduced in Definition 9.3.6. Recently Choe-Lewis [chs] have obtained
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a better estimate of the Hausdorff dimension of S. Neustupa [neu] has described the set
of singular points.

THEOREM 9.4.1 (Neustupa [neu]). Let n = 3. Then there is an absolute constant €9 > 0
such that every weak solution v in Lo (0,T; Ls(£2)) fulfills

#S(v) < <l sup II’U(t)IILs(m) )

€0 0<t<T

where #S denotes the number of elements of the set S.
Recently Kozono [koz 2] has found deeper characteristics of the singular set.

THEOREM 9.4.2 (Kozono [koz 2], see also [koz 1]). Let n = 3. There is an absolute con-
stant eg > 0 with the following property. If v is a weak solution of the Navier—Stokes
equations on (0,T) and if v satisfies

(9.4.1) sup  [[0(t)l| Ly, w (B(ao.6)) < €0
to—o<t<to+e

at (zo,t0) € R® x (0,T) for some § >0, o0 > 0, then (xq,t0) is a reqular point.

Here || - || 2y w (B(zo,6)) = SUPrso Ru{z € B(xo,6) : Jv(z)| > R}/?, where p is the
Lebesgue measure.

COROLLARY 9.4.3 (removable singularities, Kozono [koz 1]). Let n = 3. There is an
absolute constant €y such that if v is a weak solution to the Navier—Stokes equations on
(0,T) and (zg,to) is an isolated singular point of v satisfying

(9.4.2) lim sup |z — zolv(z, t)| < o,

T—=To tt
then (xo,t0) is a reqular point.
In particular, if v behaves at (zg, to) like
(9.4.3) v(z,t) = o(|lr —z0|™!)  as x — w0
uniformly with respect to ¢ in some neighbourhood of tg, then (zg,to) is a regular point.

REMARK 9.4.4. Kozono [koz 1], Serrin [ser 1] and Takahashi [tak] have shown that every
weak solution v of the Navier—Stokes equations satisfying

2 3
HU‘ L.(a,b;L.(D)) < 0 for D x (a,b) C 2 x (O,T‘)7 g =+ ; < 1, r> 3,

is of class C* in the space variables. Theorem 9.4.2 deals with the marginal case s =
oo, 7 = 3 and L3(D) C L3, (D). Moreover, Theorem 9.4.2 implies interior regular-
ity in the space-time variables but Serrin [ser 1] had to impose additionally that v, €
Ls(a,b; Ly(D)) with s > 1.

Caffarelli-Kohn—Nirenberg [ckn] have found an absolute constant ;1 such that if the
suitable weak solution satisfies
to 5/4
©44) R\ (P + ol p) dedt + RT3/ ( {1 dx) dt < ey,
Qr(wo,to) to—R? |z—xz0|<R
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where Qgr(xo,t0) = {(z,t): |z — 29| < R, to — R* < t < to}, then v is regular in
Qry2(zo,to).
Theorem 9.4.2 generalizes this result because Corollary 9.4.3 implies that
S |v(z, )] dz dt = oo,
Qr(wo,to)
which is excluded by (9.4.4).

9.5. Blow-up problems. Leray [ler] has proposed a construction of singular solutions
to the Cauchy problem (1.1); 25 by looking for v and p in the form

B 1 T — 2 . _ 1 T — Xg
(9.5.1) wv(z,t) = 2a(to—t)v<\/m)’ p(,t) 2a(to—t)P< Qa(to—t)>

where a > 0 and V, P are solutions of the problem

V.VV =—-VP+vAV —aV —azx-VV in R3,

divV =0 in R3.

The existence of nontrivial solutions of problem (9.5.2) would easily lead to the singularity
of v, p at the point (zg, tg). However, the following result holds:

(9.5.2)

THEOREM 9.5.1 (Necas Rizicka-Sverdk [nrs)). If V,P is a solution of (9.5.2), then
V=0

9.6. Continuation of the local strong solution. Let v(0) € H:(R") with s > n/2—1.
Then Fujita-Kato [fuk 1] have shown that there exists 7' = T'(|[v(0)| zs®n)) > 0 and
a unique solution v(t) to the Cauchy problem (1.1)1 25 such that
(0.61)  weC(0,T); Hy(R™) N CH(0,T); H*(R™) N C((0, T} HH(R™)).
Since s > n/2 — 1, we have the imbedding H*(R"™) C L,.(R"), » > n. Hence the time
T(||v(0)|| 75 (rny) is characterized by (9.2.15).

The following problem appears: either the solution v(t) loses its regularity at ¢t = T
or there exists T" > T such that (9.6.1) holds with 7" in place of T

Giga [gig] and Beale-Kato—Majda [bkm] have given a criterion for extension of strong

solutions.

THEOREM 9.6.1. Let v(0) € HZ(R™), s > n/2 — 1. Suppose that v is a solution of the
Navier—Stokes equations on [0,T) in the class (9.6.1). If either

T
(9.6.2) S ||v(t)||’£7.(Rn) dt <oo for 2/k+n/r=1, n<r < oo,
0
or
T
(9.6.3) | l[rot v()|| .o ) dt < o0,
0

then there exists T' > T such that v(t) can be continued to a solution on [0,T") in the
class (9.6.1).
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Using [zaj 6] Theorem 9.6.1 can be extended to solutions for the Cauchy—Dirichlet
problem (1.1); 25, (1.3).

Let us define the BMO space by the norm

1
IfllByo = sup = | |f(2) = fz|dz < oo,
B |B|

where B denotes a ball in R and fp = |B|™! SB f(x)dz. In the above definition, the
supremum is taken with respect to all balls B in R”.

THEOREM 9.6.2 (Kozono—Taniuchi [kta], Kozono [koz 1]). Let s > n/2—1 and let v(0) €
H:(R™). Suppose that v is a strong solution of the Navier—Stokes equations in the class
(9.6.1). Assume that v satisfies either

T T
V@) B0 dt < oo or | [rotv(t)|[pmo dt < oo
€0 €0

for some g9 € (0,T). Then v can be continued to a solution on [0,T") in the class (9.6.1)
for some T > T.

THEOREM 9.6.3 (Kozono [koz 1]). Let v be a solution of the Navier—Stokes equations in
the class (9.6.1) for s > n/2 — 1. Suppose that T is mazimal, i.e. v cannot be continued
in the class (9.6.1) for any T' > T. Then

T T
Vo) Baio @t = | ot v(®) [Bumo dt = oo

for alle € (0,T). In particular,

lim sup ||v(t)||Bmo = limsup |[rot v(t)||Bmo = oo.
t/T t /T

In the above theorem || ||gmo can be replaced by || || g0, where B;’q is the homo-

geneous Besov space (see Kozono-Ogawa-Taniuchi [kot]).

9.7. Global special regular solutions. The aim of this section is to present results
on global regular solutions to the Navier—Stokes equations which are proved under some
geometrical and analytical restrictions. The results are proved under some symmetry
assumptions. Up to now three kinds of global regular solutions to the Navier—Stokes
equations are known:

1. two-dimensional solutions — Ladyzhenskaya [lad 2];

2. axially symmetric solutions, in all space — Yudovich-Ukhovskij [uky] and in a cyl-
inder with the axis of symmetry removed — Ladyzhenskaya [lad 1];

3. helically symmetric solutions — Mahalov—Leibovich-Titi [mlt].

The above solutions, in fact two-dimensional, have been generalized to three dimen-
sions by examining their stability by Ponce-Racke—Sideris—Titi [prst] and by Strohmer—
Zajaczkowski [stz].

A generalization of the two-dimensional solutions from [lad 2] was done by Sell,
Raugel, Iftimie and Avrin. In [ras] Raugel and Sell have proved existence of global regular
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solutions in a thin domain 2. = 2’ x (0,¢), £’ C R?, ¢ small and with periodic boundary
conditions by using the semigroup technique.

THEOREM 9.7.1 (Raugel-Sell [ras 1]). Consider problem (1.1)125 on 2. with periodic
boundary conditions. There is an €9 = €9(v, A1) > 0, where Ay = 47r21f2 is the smallest
eigenvalue of —PA on 2. = (0,11) x (0,12) x (0,¢), I3 > Iy > €, such that for every
e € (0,e9] there are large sets R(e) and S(¢),

R(e) C {u € H' (0. : divu =0, S udr = 0},

€

S(e) < {f € WL([0,00); La(2.)) : | fdo =0},
such that if v(0) € R(e) and f € S(g), then (1.1)125 has a strong solution v(t) with
V|t=0 = v(0), defined for allt > 0 and

o)1 (2.) < k1 < oo,

where k1 depends on v(0) and f. Furthermore, there exist constants l1 and lo which do
not depend on v(0) and which satisfy

11?131113 lv@)mr ey <, 11?131113 o)z (2. < 2.

This result was generalized by Avrin [avr 1-2] who also proved existence of global
regular solutions in the thin domain 2. = 2’ x (0,¢), £’ C R2, ¢ small, with Dirichlet
boundary conditions on 92" and periodic conditions in the third direction. In his con-
siderations the smallness of € was replaced by large first eigenvalue of —PA, where P is
the projection operator on the divergence free vector fields. To prove existence he used
a fixed point argument. A generalization of the above results was given by Iftimie-Raugel
[ifr] who relaxed the conditions on the magnitude and regularity of v(0) and f.

Constantin-Fefferman [cof] have proved that uniformly Lipschitz (for all times) es-
timate of variation of direction of the vorticity vector implies regularity of solutions to
the Navier—Stokes equations. A generalization of the result has been given by Babin—
Mahalov—Nicolaenko (see [bmn 1-2]). They have proved existence of global regular so-
lutions to the Navier—Stokes equations for initial data characterized by uniformly large
vorticity. They consider the following problem:

vy +v-Vo—vAv+ Vp =0,
(9.7.1) dive =0,

V]t—0 = vo + % {les x 7,
where €3 = (0,0,1), T = (z1, 22, 3), §2 is a constant.

THEOREM 9.7.2 ([bmn 1]). Let positive numbers ay,as,as be given. Let the initial con-
dition vy be defined on the x-periodic lattice Ty aras = [0,2maq] X [0,27as] X [0, 27was]
with zero mean. Let vy € La(Tayaza5) and |00l Ly(Ts,0yay) < Mo- Then there exist Ty =

T.(My, a1, a2, as3,v) and 2. = 2(a1,a2,a3,v) such that for every 2 > 2., v(z,t) can
be extended to t € (0,00) and it is reqular for t € (Ty,o0). Moreover v(z,t) € H}(R?),
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r>5/2, rotv € Lajoc(R3) fort > T, and
o)l 1 rey < Cilar, az,as,v).

In the above formulation H?(R?) is the weighted space with the norm

1 1/2
— a, |12
(vl frs 3y = < g S ESTDR FBE | Dyul dx> )

la|<sR3

In this paper we prove global existence of solutions to problem (1.1) which are close
to axially symmetric solutions.

DEFINITION 9.7.3. By an axially symmetric solution to problem (1.1) we mean a solution
such that v, = 0, f@ =0, ’U(O)Lp =0, v =0, v;,, =0, fr,cp =0, fZ,w =0, =0.

The main result of this paper can be expected as a classical stability result for the
axially symmetric solution. Let v = v, (r, 2,t), p = pa(r, 2,t) be the axially symmetric
solution to problem (1.1) with the r.h.s. f = f,(r, 2,t). Then the disturbances v’ = v—w,,
p’ = p — p, are solutions to the problem

vy +0 VU v, - VO 0 Vo, —v AV + V' = f
divey’ =0,
(9.7.2) v -mlg =0,
n-TW,p) Tat+1 To)ls =0, a=12,
Y
v'|4=0 = v/(0).
Having a sufficiently regular axially symmetric solution we are able to prove the existence

of global regular solutions to (9.7.2) for small data.

However we do not know how to prove the existence of global axially symmetric
solutions in the rectangle 0 < r < R, —a < z < a in spaces with the weight equal to
a power function of r.

Appearance of this kind of weighted spaces is connected with the global energy type
estimate for the xy-component of vorticity (see Section 4). Therefore we consider problem
(1.1) directly in three dimensions because in this case we are able to treat elliptic and
parabolic problems in weighted spaces.

Moreover, we underline that the result of this paper is not a stability result in the above
sense. We shall show this by contradiction. Assume that we are looking for a stability
result. Then employing the quantities h and ¢ we have

@ @ @
vV =0 —v, = S h-dpe, + S hedpe, + S h,dye, = H,
©®o %o %o
(9.7.3) -
P =p—pa= | qde,
¥o

where g is any number from [0, 27]. Since v, satisfies (9.7.2)2 we have to check that so
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does H modulo that h is a solution to (1.4). Since

¥ (7] P
Hr:Shrdcp, H :Sh@dcp, Hz:Shzdso,
o 0 Yo
we calculate
1 H @ 1 ¥
div H = HT»"‘ + ; HWaSG + Hz,z =+ TT = X hr,r d@ + ;( S h4p d(p)w
o %0
Y w %]
1 h, 1
+ § hezdot — { hdp = | (hr,r+hz,z+—> + = hy
r r r
o Yo ®o
@
1 1 1
==\ -hy,d Zhy,=<=h 0.
§ e <'0+r v =7 o (o) #
0

Similarly, H does not satisty (9.7.2);.

9.8. Decay of solutions. Time asymptotics and stability of solutions to the Navier—
Stokes equations in R™ and in exterior domains were examined intensively by Schonbek
[sch 1-2], Schonbek-Wiegner [scw], Wiegner [wie 1-5], Kajikiya—Miyakawa [kam], and
Galdi-Maremonti [gam].
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