
1. Introdu
tionPlan of the Introdu
tionSe
tion 1.1The se
tion starts with a statement of two theorems whi
h exemplify the type of results provedin this work. The notions of a faithful 
lass and of a determining 
ategory are then introdu
ed.A 
lass of topologi
al spa
es is said to be faithful if its members are re
onstru
tible from theirhomeomorphism groups. Example 1.2 
ontains a short survey of older re
onstru
tibily theorems,and Example 1.3 mentions several determining 
ategories. We then des
ribe the pre
ise formsof the theorems whi
h will be proved in this work.Se
tion 1.2This se
tion summarizes Chapter 2. The theorems des
ribed in 1.2 have the form: If for i = 1, 2,
Gi ≤ H(Xi) and ϕ is an isomorphism between G1 and G2, then there is a homeomorphism τbetween X1 and X2 su
h that τ indu
es ϕ.Se
tion 1.3This se
tion is a summary of Chapters 3 and 4. It starts with the de�nition of a modulus of
ontinuity. A modulus of 
ontinuity Γ is a set of fun
tions from [0,∞) to [0,∞) whi
h servesas a measure for the 
ontinuity of a uniformly 
ontinuous fun
tion. With Γ one asso
iates thegroup HLC

Γ (X) of lo
ally Γ -bi
ontinuous homeomorphisms of X. The re
onstru
tion result forgroups of type HLC
Γ (X) says that any isomorphism between HLC

Γ (X) and HLC
Γ (Y ) is indu
ed bya lo
ally Γ -bi
ontinuous homeomorphism between X and Y .Se
tion 1.4Se
tion 1.4 summarizes the re
onstru
tion theorems for the group UC(X) of uniformly bi
on-tinuous homeomorphisms of X. These theorems appear in Chapter 5.Se
tion 1.5The previous se
tions dealt mainly with spa
es whi
h are an open subset of a normed ve
torspa
e. This se
tion des
ribes the re
onstru
tion theorems for spa
es whi
h are the 
losure of anopen subset of a normed ve
tor spa
e. These theorems appear in Chapter 6. Se
tion 1.5 alsoin
ludes a survey of the results of Chapter 7.Se
tion 1.6Let X be the 
losure of an open subset of a normed spa
e. Chapters 8�12 deal with the group

HLC
Γ (X) when X is su
h a spa
e. Se
tion 1.6 des
ribes the results obtained in these 
hapters.Se
tion 1.7This se
tion 
ontains a dis
ussion and open problems.Se
tion 1.8This se
tion 
ontains a short histori
al survey.1.1. General des
ription. This work 
on
erns groups of auto-homeomorphisms ofopen subsets of normed ve
tor spa
es and of manifolds over normed ve
tor spa
es. Mainly,we 
onsider groups whose de�nition is based on the metri
 of the normed spa
e, forexample, the group of all bilips
hitz auto-homeomorphisms of su
h a spa
e.[6℄



Re
onstru
tion of manifolds from subgroups of homeomorphism groups 7Two types of results are proved. The following statement is an example of the �rsttype.1. Suppose that X1, X2 are open subsets of the Bana
h spa
es spa
es E1 and E2respe
tively. For i = 1, 2 let Gi be a group of auto-homeomorphisms ofXi su
h that everybilips
hitz homeomorphism of Xi belongs to Gi. Suppose that ϕ is a group isomorphismbetween G1 and G2. Then there is a homeomorphism τ between X1 and X2 su
h thatfor every g ∈ G1, ϕ(g) = τ ◦ g ◦ τ−1.An example of the se
ond type of results is as follows.2. BL(E) denotes the group of all auto-homeomorphisms f of a Bana
h spa
e E su
hthat f and f−1 are Lips
hitz on every bounded set, and BUC(E) denotes the group ofall auto-homeomorphisms f of E su
h that f and f−1 are uniformly 
ontinuous on everybounded set. These groups determine the spa
es they a
t upon in the following sense.(a) Suppose that E1 and E2 are Bana
h spa
es, and ϕ is a group isomorphism between
BL(E1) and BL(E2). Then there is a unique homeomorphism τ between E1 and
E2 su
h that for every f ∈ BL(E1), ϕ(f) = τ ◦ f ◦ τ−1. Also, τ and τ−1 areLips
hitz on every bounded set (τ is BL).(b) The same holds for groups of the type BUC(E). That is, the statement obtainedfrom (a) by repla
ing BL by BUC is true.(
) For every E1 and E2, BL(E1) and BUC(E2) are not isomorphi
.Terminology. The notation f : X ∼= Y means that f is a homeomorphism betweenthe topologi
al spa
es X and Y . That is, f is bije
tive, and f and f−1 are 
ontinuous.Let H(X) = {f | f : X ∼= X}. If G,H are groups, then ϕ : G ∼= H means that ϕ is anisomorphism between G and H. The ordered pair with elements a and b is denoted by

〈a, b 〉.Definition 1.1. (a) A pair 〈X,G 〉 
onsisting of a topologi
al spa
e X and a group G ofauto-homeomorphisms of X is 
alled a spa
e-group pair. Let K be a 
lass of spa
e-grouppairs. K is faithful if for every 〈X1, G1 〉, 〈X2, G2 〉 ∈ K and ϕ : G1
∼= G2 there exists

τ : X1
∼= X2 whi
h indu
es ϕ. That is, for every f ∈ G1, ϕ(f) = τ ◦ f ◦ τ−1.A 
lass K of topologi
al spa
es is faithful if {〈X,H(X) 〉 | X ∈ K} is faithful.(b) A restri
ted topologi
al 
ategory is a 
ategory K whose obje
ts are topologi
alspa
es, in whi
h every morphism between two obje
ts X and Y of K is a homeomorphismfrom X onto Y , and in whi
h for every morphism g of K, g−1 also belongs to K. Forevery X,Y ∈ K let IsoK(X,Y ) denote the set of morphisms between X and Y and

AutK(X) = IsoK(X,X).We say that K is a determining 
ategory if for every X,Y ∈ K and a group isomor-phism ϕ : AutK(X) ∼= AutK(Y ) there is τ ∈ IsoK(X,Y ) su
h that ϕ(g) = τ ◦ g ◦ τ−1 forevery g ∈ AutK(X).Let K,L be restri
ted topologi
al 
ategories. K,L are said to be distinguishable iffor every X ∈ K and Y ∈ L: if AutK(X) ∼= AutL(Y ), then
X ∈ L and AutK(X) = AutL(X) or Y ∈ K and AutL(Y ) = AutK(Y ). �



8 M. Rubin and Y. YomdinThe above notions provide a 
onvenient way for stating the se
ond type of resultsin this work. However, we shall not use other notions or any te
hniques from 
ategorytheory.Some faithful 
lasses of topologi
al spa
es and some determining 
ategories are listedin the next two examples. The lists are not exhaustive.Examples 1.2. The following 
lasses are faithful.(a) The 
lass of Eu
lidean manifolds. This was proved by J. Whittaker [W℄ (published1963).(b) The 
lass of manifolds over the Hilbert 
ube. This was proved by R. M
Coy [M
C℄(published 1972).(
) The 
lass Eu
lidean manifolds with boundary. This was proved by M. Rubin [Ru1℄(published 1989).(d) The 
lass of all spa
es 〈X, τ 〉 su
h that:(1) X is a polyhedron, and τ is either the metri
 or the 
oherent topology of X,(2) the simpli
ial 
omplex de�ning X does not have an in�nite in
reasing (withrespe
t to in
lusion) sequen
e of simplexes,(3) for every x ∈ X, {h(x) | h ∈ H(X)} has no isolated points.This was proved by M. Rubin [Ru1℄.(e) The 
lass of all manifolds over normed ve
tor spa
es. This was proved by M.Rubin [Ru1℄.(f) The 
lass of manifolds over the 
lass of real topologi
al ve
tor spa
es whi
h arelo
ally 
onvex, normal and have a nonempty open set whi
h interse
ts every straightline in a bounded set. This was proved by A. Leiderman and M. Rubin [LR℄ (published1999). �Examples 1.3. The following are determining 
ategories.(a) For n ≤ ∞ let K
C
n be the 
ategory of Ck-smooth manifolds. The morphisms of KC

nare the homeomorphisms f su
h that f and f−1 are k times 
ontinuously di�erentiable.This was proved in [Fi℄ (R. Filipkiewi
z 1982), but was earlier proved by W. Ling in[Lg1℄ and [Lg2℄ (unpublished preprint, 1980). See the topi
 �Re
onstru
tion questions forrelated groups� in Subse
tion 1.7 of the Introdu
tion.(b) The 
ategories arising from Ck-smooth Eu
lidean manifolds 
arrying various typesof additional stru
ture, the morphisms being the Ck-di�eomorphisms whi
h preservethat stru
ture. These are determining 
ategories. This in
ludes e.g. foliated manifolds(Ling [Lg1℄ and [Lg2℄) and symple
ti
 manifolds (Banyaga [Ba1℄ 1997). See the topi
�Re
onstru
tion questions for related groups� in Subse
tion 1.7 for more details.(
) The 
ategory of open subsets of Rn with quasi-
onformal homeomorphisms asmorphisms. This was proved by V. Gol'dshtein and M. Rubin [GR℄ (1995). �Continuing the investigaton of faithful 
lasses and determining 
ategories, we 
onsidertopologi
al spa
es with extra stru
ture. The spa
es 
onsidered in this work are opensubsets of a normed ve
tor spa
e, and more generally, manifolds over normed ve
torspa
es. We also 
onsider sets whi
h are the 
losures of open subsets of a normed spa
e.



Re
onstru
tion of manifolds from subgroups of homeomorphism groups 9If X is an open subset of a normed spa
e E, the �extra stru
ture� atta
hed to X isusually the obje
t 〈X, bdE(X), d〉, where bdE(X) is the boundary of X in E, and d isthe metri
 on clE(X) inherited from E (clE(X) denotes the 
losure of X in E). Themethods of this work 
an be applied to more general �extra stru
tures�. See Remarks6.25 and 6.28.This extra stru
ture is used to de�ne various subgroups of H(X). The groups BL(X)and BUC(X) de�ned at the beginning of Subse
tion 1.1 are examples of su
h subgroups.Another typi
al example is as follows. Let X,Y be open subsets of the normed spa
es
E and F respe
tively. A homeomorphism h : X ∼= Y is said to be extendible if there isa 
ontinuous fun
tion h̄ : cl(X) → cl(Y ) su
h that h̄ extends h. We 
onsider the group
EXT(X) := {h ∈ H(X) | h and h−1 are extendible}.A homeomorphism h : X ∼= Y is said to be 
ompletely lo
ally uniformly 
ontinu-ous (CMP.LUC ) if h is extendible, and for every x ∈ cl(X) there is a neighborhood
U of x in cl(X) su
h that h↾(U ∩ X) is uniformly 
ontinuous. We also 
onsider thegroup

CMP.LUC(X) := {h ∈ H(X) | h and h−1 are CMP.LUC}.The setting is thus as follows. We shall have a 
lass M of topologi
al spa
es. Usuallythis 
lass 
onsists of spa
es X su
h that either X is an open subset or the 
losure of anopen subset of a normed ve
tor spa
e, or even more generally, X 
an be the 
losure ofan open subset of a manifold over a normed ve
tor spa
e. P and Q are properties ofmaps between X and Y de�ned for obje
ts of the form 〈X, bd(X), d〉. The set P(X) ofall homeomorphisms f ∈ H(X) su
h that f and f−1 have property P is a subgroup of
H(X), and the same holds for Q(Y ). The �nal results have the following form.If X,Y ∈ M and ϕ : P(X) ∼= Q(Y ), then(1) ϕ is indu
ed by a unique homeomorphism τ : X ∼= Y ,(2) P(X) = Q(X) and τ and τ−1 have property Q, or P(Y ) = Q(Y ) and τ and τ−1have property P.Let KM,P be the following 
ategory.(a) The 
lass of obje
ts of KM,P is M.(b) The 
lass of morphisms of KM,P is {g : X ∼= Y | X,Y ∈ M and g and g−1 haveproperty P}.Con
lusion (1)�(2) is the same as saying that KM,P and KM,Q are determining 
ate-gories and KM,P and KM,Q are distinguishable.This work uses only elementary fa
ts. It is self-
ontained ex
ept for Theorem 2.3whi
h is taken from [Ru5℄; it is stated there as Corollary 1.4 on page 122, and it is provedthere in Corollary 2.10 on page 131.Theorem 2.3 says that given a pair (X,G), where G is a subgroup of H(X) satisfying
ertain weak transitivity requirements, it is possible to re
over fromG the Boolean algebra
Ro(X) of regular open subsets of X, together with the a
tion of G on Ro(X). (A set Uis regular open if U is equal to the interior of its 
losure.)Consider the stru
tures (G, Ro(X); λ

Ro(X)
G ) and (G, X; λXG ), where λRo(X)

G and λXGdenote the a
tion of G on Ro(X) and on X respe
tively. The essen
e of Chapter 2



10 M. Rubin and Y. Yomdinis showing that for appropriate 
lasses of (X, G)'s, (G, X; λXG ) 
an be re
overed from
(G, X; λ

Ro(X)
G ). This kind of argument appears in Theorems 2.5, 2.8, 2.30 and 8.8.1.2. Faithfulness of 
lasses of spa
e-group pairs. Chapter 2 deals with the faith-fulness of 
lasses of spa
e-group pairs. We introdu
e some terminology.Definition 1.4. (a) A homeomorphism h between two metri
 spa
es (X, dX) and (Y, dY )is Lips
hitz if there is K > 0 su
h that dY (h(u), h(v)) ≤ KdX(u, v) for every u, v ∈ X.We say that h is bilips
hitz if both h and h−1 are Lips
hitz homeomorphisms. De�ne

LIP(X) := {h ∈ H(X) | h is bilips
hitz}.(b) Let X,Y be metri
 spa
es. A homeomorphism h between X and Y is lo
allyLips
hitz if for every u ∈ X there is a neighborhood U of u su
h that h↾U is Lips
hitz.
h is lo
ally bilips
hitz if both h and h−1 are lo
ally Lips
hitz. De�ne

LIPLC(X) := {h ∈ H(X) | h is lo
ally bilips
hitz}.(
) If S ⊆ X is open, then
LIP(X,S) := {h ∈ LIP(X) | h↾(X − S) = Id}.(d) Let E be a normed ve
tor spa
e, F be dense linear subspa
e of E, and X be anopen subset of E. Set

LIP(X;F ) := {h ∈ LIP(X) | h(X ∩ F ) = X ∩ F}.(e) For E, F , X, S as above we de�ne
LIP(X;S, F ) := LIP(X;F ) ∩ LIP(X,S).(f) LIPLC(X,S), LIPLC(X;F ) and LIPLC(X;S, F ) are de�ned analogously.(g) Let G ≤ H mean that G is a subgroup of H.(h) For a normed ve
tor spa
e E, x ∈ E and r > 0 let

BE(x, r) = {y ∈ E | ‖y − x‖ < r}.Note that LIP(X,S) and LIP(X;F ) are subgroups of H(X). �The main result of Chapter 2 is part (
) of the next theorem. It is restated asTheorem 2.8(b). Parts (a) and (b) of Theorem 1.5 are spe
ial 
ases of (
). They aremore frequently used, and are more readable.Theorem 1.5. (a) Let K be the 
lass of all pairs 〈X,G 〉 su
h that X is an open subsetof some Bana
h spa
e and LIP(X) ≤ G ≤ H(X). Then K is faithful.(b) Let K be the 
lass of all pairs 〈X,G 〉 su
h that X is an open subset of somenormed ve
tor spa
e and LIPLC(X) ≤ G ≤ H(X). Then K is faithful.(
) The 
lass K of all pairs 〈X,G 〉 whi
h satisfy (1) and (2), or (3) and (4) below isfaithful.(1) X is an open subset of some Bana
h spa
e E and G ≤ H(X).(2) For every x ∈ X there are an open set S ⊆ X 
ontaining x and a dense linearsubspa
e F ⊆ E su
h that LIP(X;S, F ) ≤ G.(3) X is an open subset of some normed ve
tor spa
e E and G ≤ H(X).(4) For every x ∈ X there are an open set S ⊆ X 
ontaining x and a dense linearsubspa
e F ⊆ E su
h that LIPLC(X;S, F ) ≤ G.



Re
onstru
tion of manifolds from subgroups of homeomorphism groups 11Compare parts (a) and (b) of Theorem 1.5. Part (a) deals with Bana
h spa
es,and assumes that LIP(X) ≤ G. Part (b) deals with normed spa
es, but assumes that
LIPLC(X) ≤ G. It is unknown whether in (b), assuming only that LIP(X) ≤ G su�
es.The following theorem 
ontains the strongest known fa
t regarding this question. It isrestated as Corollary 2.26.For a metri
 spa
e Z, x ∈ Z and r > 0 let BZ(x, r) denote the open ball in Zdetermined by x and r. Let X be an open subset of a normed spa
e E. Let E denotethe 
ompletion of E. De�ne int(X) =

⋃{BE(x, r) | BE(x, r) ⊆ X} and
IXT(X) = {h↾X | h ∈ H(int(X)) and h(X) = X}.Theorem 1.6. Let K be the 
lass of all spa
e-group pairs 〈X,G 〉 su
h that(1) X is an open subset of a Bana
h spa
e, or X is an open subset of a normed ve
torspa
e whi
h is a topologi
al spa
e of the �rst 
ategory ,(2) LIP(X) ≤ G ≤ IXT(X).Then K is faithful.Theorem 1.5 deals with open subsets of normed spa
es. However, the method of prooftransfers without substantial 
hange to the more 
umbersome setting of manifolds overnormed ve
tor spa
es (normed manifolds). This is dealt with in Theorem 2.30. In fa
t,Theorem 2.30 deals even with normed manifolds with boundary and with spa
es whi
hare the 
losures of open subsets of normed spa
es. For su
h spa
es Theorem 2.30 saysthat the �extended normed interior� of the spa
e 
an be re
onstru
ted from the group.See De�nition 2.29. An additional step is needed in order to re
over the entire spa
e.This step is 
arried out under various assumptions in Theorems 5.2, 6.22, 6.24, 6.27(a)and 6.30.For reasons of exposition and a

essibility we in
lude in Chapter 2 a theorem from[Ru1℄. It says that KLCM is faithful, where KLCM is the 
lass of all spa
e-group pairs

〈X,G 〉 whi
h satisfy:(i) X is a lo
ally 
ompa
t Hausdor� spa
e without isolated points.(ii) G has the property that for every nonempty open subset U of X and x ∈ U the
losure of the set {g(x) | g ∈ G and g↾(X − U) = Id} has a nonempty interior.This result appears here as Theorem 2.5.1.3. Moduli of 
ontinuity and groups of lo
ally uniformly 
ontinuous hom-eomorphisms. Chapters 3, 4 and 5 deal with groups 
onsisting of uniformly 
ontinuoushomeomorphisms. The uniform 
ontinuity of a fun
tion f 
an be measured by a realfun
tion whi
h determines the bound of d(f(x), f(y)) as a fun
tion of d(x, y). Usingsemigroups of su
h real fun
tions we obtain a hierar
hy of subgroups of H(X).Definition 1.7. MC denotes the set of fun
tions α ∈ H([0,∞)) su
h that for every
x, y ∈ [0,∞) and 0 ≤ λ ≤ 1,

α(λx+ (1 − λ)y) ≥ λα(x) + (1 − λ)α(y).That is, MC is the set of all 
on
ave homeomorphisms of [0,∞). �



12 M. Rubin and Y. YomdinIt is trivial that if α ∈ MC, then α(cx) ≥ cα(x) and α(dx) ≤ dα(x), for every
0 ≤ c ≤ 1 and d ≥ 1.Definition 1.8. Let f be a fun
tion from a metri
 spa
e (X, dX) to a metri
 spa
e
(Y, dY ). Let α ∈ MC. We say that f is α-
ontinuous if dY (f(u), f(v)) ≤ α(dX(u, v)) forevery u, v ∈ X.If f, g : A→ R ∪ {∞}, then f ≤ g means that f(a) ≤ g(a) for every a ∈ A.Let α, β : [0,∞) → R ∪ {∞}. Then α � β means that there is a > 0 su
h that
α↾[0, a] ≤ β↾[0, a].For Γ ⊆ MC we de�ne

cl�(Γ ) = {α ∈ MC | for some γ ∈ Γ , α � γ}. �Note that if K > 0, then the fun
tion y = Kx belongs to MC. Also, if α, β ∈ MC,then α+ β, α ◦β ∈ MC.Definition 1.9. Let Γ denote a subset of MC 
ontaining Id[0,∞). We de�ne the followingproperties of Γ .M1 For every α ∈ Γ and β ∈ MC: if β � α, then β ∈ Γ .M2 For every α ∈ Γ and K > 0: Kα,α(Kx) ∈ Γ .M3 For every α, β ∈ Γ : α+ β ∈ Γ .M4 For every α, β ∈ Γ : α ◦β ∈ Γ .M5 Γ is 
ountably generated. This means that there is a 
ountable set Γ0 ⊆ Γ su
hthat Γ ⊆ cl�(Γ0).M6 Let α ◦n denote α ◦ · · · ◦α, n times. We say that Γ is prin
ipal if there is α ∈ Γsu
h that Γ ⊆ cl�({α ◦n | n ∈ N}). �Example 1.10. (a) The set Γ
LIP := {α ∈ MC | α � Kx for some K > 0} satis�esM1�M6, and it is 
alled the Lips
hitz modulus.(b) For 0 < r ≤ 1 the set Γ

HLD
r := {α ∈ MC | α � Kxr for some K > 0} is 
alled the

r-Hölder set , and it satis�es M1�M3 and M5.(
) The set Γ
HLD :=

⋃{ΓHLD
r | r ∈ (0, 1]} is 
alled the Hölder modulus , and itsatisi�es M1�M6. �Proposition 1.11. (a) If Γ ⊇ Γ

LIP and Γ satis�es M1 and M4 , then it satis�es M3.(b) If Γ satis�es M1 and M3 , then it satis�es M2.Proof. Left to the reader.Definition 1.12. (a) Let Γ ⊆ MC and f be a fun
tion from a metri
 spa
e X to a metri
spa
e Y . Then f is lo
ally Γ -
ontinuous if for every x ∈ X there is a neighborhood Uof x and α ∈ Γ su
h that f↾U is α-
ontinuous. f is lo
ally Γ -bi
ontinuous if f is ahomeomorphism between X and Rng(f), and both f and f−1 are lo
ally Γ -
ontinuous.(b) Let Γ ⊆ MC. Then Γ is 
alled a modulus of 
ontinuity if Id[0,∞) ∈ Γ and Γsatis�es M1�M4. Hen
e Γ
LIP ⊆ Γ .(
) Let Γ be a modulus of 
ontinuity, and X be a metri
 spa
e. HLC

Γ
(X) denotes theset of lo
ally Γ -bi
ontinuous homeomorphisms from X onto X. �Obviously, 〈HLC

Γ
(X), ◦ 〉 is a group.



Re
onstru
tion of manifolds from subgroups of homeomorphism groups 13Chapters 3 and 4 deal with groups of typeHLC
Γ

(X). The main result on su
h groups isstated in Theorem 4.1(a), and is proved at the end of Chapter 4. The part of that theoremwhi
h deals with moduli of 
ontinuity di�erent from MC appears in Corollary 3.42(a).The following theorem 
aptures mu
h of the 
ontent of 4.1(a). The full statement of4.1(a) requires more terminology.Theorem 1.13. For ℓ = 1, 2 let Γℓ be a modulus of 
ontinuity su
h that either Γℓ is
ountably generated or Γℓ = MC; let Eℓ be a normed spa
e and Xℓ be a nonempty opensubset of Eℓ. Let ϕ : HLC
Γ1

(X1) ∼= HLC
Γ2

(X2). Then Γ1 = Γ2, and there is a lo
ally Γ1-bi
ontinuous homeomorphism τ su
h that τ indu
es ϕ. That is , ϕ(f) = τ ◦f ◦ τ−1 forevery f ∈ HLC
Γ1

(X).Let KΓ denote the restri
ted topologi
al 
ategory in whi
h the obje
ts are opensubsets of normed ve
tor spa
es, and the morphisms are lo
ally Γ -bi
ontinuous homeo-morphisms between su
h sets. The above theorem says that for every Γ as above KΓis a determining 
ategory, that KΓ1
and KΓ2

are distinguishable, and that for everynonempty open subset of a normed ve
tor spa
e X and distin
t Γ1 and Γ2, HLC
Γ1

(X) 6=
HLC

Γ2
(X).The proof of 1.13 has two main steps. In the �rst step we apply Theorem 1.5 anddedu
e that there is τ : X ∼= Y su
h that τ indu
es ϕ. This part of the argument is usedrepeatedly for the other groups whi
h are dealt with in this work.The following statement 
onstitutes the se
ond step in the proof of 1.13.Theorem 1.14. Let X and Y be open subsets of the normed spa
es E and F respe
tivelyand τ : X ∼= Y . Let Γ be a 
ountably generated modulus of 
ontinuity. If LIP(X)τ ⊆

HLC
Γ

(Y ), then τ is lo
ally Γ -bi
ontinuous.The above theorem is restated as Theorem 3.27.Remark 1.15. (a) Theorem 1.13 is stated only for open subsets of normed spa
es. Butit is also true for normed manifolds. See De�nitions 2.29 and 3.46 and Corollary 3.48(a).In fa
t, if 〈X,Φ 〉 is a normed manifold with an atlas Φ su
h that for every ϕ1, ϕ2 ∈ Φ,
ϕ1 ◦ϕ−1

2 is lo
ally Γ -
ontinuous, then HLC
Γ

(X) 
an be de�ned, and Theorem 1.13 remainstrue. The proof remains essentially un
hanged.(b) Theorem 1.13 has the obvious short
oming of assuming that Γ is 
ountably gen-erated. In fa
t, the assumption on Γ in Theorem 4.1(a) is weaker. For example, foropen subsets X,Y ⊆ ℓ∞ the 
on
lusion of Theorem 1.13 is true for every modulus of
ontinuity. Note though that the two natural moduli whi
h motivated 1.13, the Lips
hitzand the Hölder moduli, are 
ountably generated, and hen
e are 
overed by 1.13. Butthe question of whether Theorem 1.13 is true for every modulus of 
ontinuity remainsopen. �1.4. Other groups of uniformly 
ontinuous homeomorphisms. A priori it seemsnatural to deal with the group UC(X) of all uniformly bi
ontinuous homeomorphismsof X rather than with HLC
MC(X). (A homeomorphism h is uniformly bi
ontinuous if forevery ε > 0 there is δ > 0 su
h that if d(x, y) < δ, then d(h(x), h(y)) < ε, and if

d(h(x), h(y)) < δ, then d(x, y) < ε.)



14 M. Rubin and Y. YomdinSimilarly, the group HΓ (X) of all Γ -bi
ontinuous homeomorphisms of X seems to bemore natural than HLC
Γ

(X). (A homeomorphism h is Γ -bi
ontinuous if there is γ ∈ Γsu
h that h and h−1 are γ-
ontinuous.) It turns out that UC(X) and HΓ (X) pose moreproblems than their 
ounterparts. Chapter 5 addresses these groups and some relatedgroups.Let P be a property of maps andX,Y be topologi
al spa
es. De�ne P(X,Y ) = {h | h :

X ∼= Y and h has property P}. IfH is a set of 1-1 fun
tions, thenH−1 := {h−1 | h ∈ H}.De�ne P±(X,Y ) = P(X,Y ) ∩ (P(Y,X))−1 and P(X) = P±(X,X). We 
onsider only
P's su
h that P(X) is a group. The �nal results of Chapter 5 have the following form.
(∗) Suppose that ϕ : P(X) ∼= P(Y ). Then there is τ ∈ P±(X,Y ) su
h that τ indu
es ϕ.A 
lass M of topologi
al spa
es is 
alled P-determined if (∗) holds for every X,Y ∈ K,that is, if the 
ategory KM,P whose obje
ts are the members ofM and whose morphismsare the members of P±(X,Y ) for X,Y ∈ M is a determining 
ategory.The �rst result in Chapter 5 is about groups of type UC(X). Denote the diameter ofa subset A of a metri
 spa
e by diam(A). A metri
 spa
e 〈X, d 〉 is uniformly-in-diameterar
wise-
onne
ted if for every ε > 0 there is δ > 0 su
h that for every x, y ∈ X: if
d(x, y) < δ, then there is an ar
 L ⊆ X 
onne
ting x and y su
h that diam(L) < ε.The following statement is the main result on groups of type UC(X). It is restated asCorollary 5.6.Theorem 1.16. Let X be an open subset of a Bana
h spa
e or of a normed ve
tor spa
eof the �rst 
ategory. Suppose that the same holds for Y . Suppose further that X and Yare uniformly-in-diameter ar
wise-
onne
ted. Let ϕ : UC(X) ∼= UC(Y ). Then there is
τ ∈ UC±(X,Y ) su
h that τ indu
es ϕ.The following theorem restated later as 5.2 is a 
orollary of 1.16.Theorem 1.17. Let F and K be the 
losures of uniformly-in-diameter ar
wise-
onne
tedopen bounded subsets of Rm and Rn respe
tively. Let ϕ : H(F ) ∼= H(K). Then ϕ isindu
ed by a homeomorphism between F and K.Theorem 1.17 is 
onsiderably stronger than the analogous statement for Eu
lideanmanifolds with boundary. This is so, sin
e uniformly-in-diameter ar
wise-
onne
ted opensubsets of Rn may have a boundary whi
h is more 
ompli
ated than the boundary of amanifold with boundary.

UC(X) is a spe
ial 
ase of the groups HΓ (X). But the analogue of Theorem 1.16 isnot true for HΓ (X). In Example 5.11 it is shown that for every normed spa
e E there is
τ ∈ H(E) su
h that (LIP(E))τ = LIP(E) but τ 6∈ LIP(E).Chapter 5 proves P-determinedness for several other P's. De�nition 5.4 lists eighttypes of groups for whi
h P-determinedness 
an be proved. But we have 
hosen to dealonly with properties P whi
h o

ur in other mathemati
al 
ontexts.Definition 1.18. (a) Let BUC(X,Y ) denote the set of homeomorphisms g : X ∼= Ysu
h that g takes bounded sets to bounded sets and for every bounded B ⊆ X, g↾B isuniformly 
ontinuous.
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onstru
tion of manifolds from subgroups of homeomorphism groups 15(b) Let X be a metri
 spa
e. X is boundedly uniformly-in-diameter ar
wise-
onne
tedif for every bounded set B ⊆ X and ε > 0 there is δ > 0 su
h that for every x, y ∈ B: if
d(x, y) < δ, then there is an ar
 L ⊆ X 
onne
ting x and y su
h that diam(L) < ε.(
) If h : [0, 1] × X → X and t0 ∈ [0, 1], then the fun
tion f from X to X de�nedby f(x) = h(t0, x) is denoted by ht0 . X has Property MV1 if for every bounded B ⊆ Xthere are r = rB > 0 and α = αB ∈ MC su
h that for every x ∈ B and 0 < s ≤ r, there isan α-
ontinuous fun
tion h : [0, 1]×X → X su
h that: for every t ∈ [0, 1], ht(x) ∈ H(X)and h−1

t is α-
ontinuous; h0 = Id and d(x, h1(x)) = s; and ht↾(X − B(x, 2s)) = Id forevery t ∈ [0, 1]. �The following P-determinedness theorem is restated as Theorem 5.20.Theorem 1.19. Let K be the 
lass of all X su
h that X is an open subset of a Bana
hspa
e or X is an open subset of a normed spa
e of the �rst 
ategory , X is boundedlyuniformly-in-diameter ar
wise-
onne
ted , and X has Property MV1. Then K is BUC-determined.There is of 
ourse the Γ variant of BUC(X). For a modulus of 
ontinuity Γ de�ne
HBD

Γ (X) = {h ∈ H(X) | for every bounded A ⊆ X there is γ ∈ Γ su
h that
h↾A is γ-bi
ontinuous}.When X is a subset of a �nite-dimensional normed spa
e and Γ is prin
ipal, then Theo-rem 8.4 provides a faithfulness result for this type of groups.We do not know a more general theorem in this dire
tion.The last type of groups 
onsidered in Chapter 5 are groups of homeomorphisms gsu
h that g↾B is uniformly 
ontinuous for every B ⊆ X su
h that B is bounded, and thedistan
e of B from the boundary of X is positive. The P-determinedness in this situationis proved in Theorems 5.32 and 5.36.These theorems are not quoted here be
ause their statement requires terminologythat has not yet been introdu
ed.Throughout Chapter 5 one en
ounters two types of intermediate results.(1) Let τ : X ∼= Y be su
h that (P(X))τ = P(Y ). Then τ ∈ P±(X,Y ).(2) Let τ : X ∼= Y be su
h that (P(X))τ ⊆ P(Y ). Then τ ∈ P±(X,Y ).Results of type (2) are stronger, but they are not true for all P's whi
h we 
on-sider. Results of type (2) are needed in order to show that P(X) 
annot be isomorphi
to Q(Y ) when P is di�erent from Q.1.5. Groups of extendible homeomorphisms and the group of homeomor-phisms of the 
losure of an open set. Chapter 6 is 
on
erned with the faithfulnessof groups of the form H(cl(X)) and with groups of the form EXT(X), where X is anopen subset of a normed ve
tor spa
e. The group EXT(X) is de�ned below.Let X,Y be open subsets of the normed spa
es E and F . A 
ontinuous fun
tion

g : X → Y is 
alled extendible if there is a 
ontinuous fun
tion ĝ : cl(X) → cl(Y ) su
hthat ĝ extends g. The set of extendible homeomorphisms between X and Y is denotedby EXT(X,Y ). A

ordingly, EXT(X) = {g ∈ H(X) | g and g−1 are extendible}. Note



16 M. Rubin and Y. Yomdinthat if X is a regular open subset of Rn, then EXT(X) = H(cl(X)). Re
all that a set is
alled regular open if it is equal to the interior of its 
losure.The goal is to �nd large 
lasses K of open subsets of a normed spa
e 
ontaining the
ommonly en
ountered open sets and 
ontaining also exoti
 open sets for whi
h {cl(X) |
X ∈ K} is faithful. It is not true, though, that for any open subsets of X,Y ⊆ Rn, if
ϕ : H(cl(X)) ∼= H(cl(Y )), then there is τ : cl(X) ∼= cl(Y ) su
h that τ indu
es ϕ. Example5.8 demonstrates this phenomenon in two di�erent ways.The following theorem gives the �avor of the type of results proved in Chapter 6.Theorem 1.20. Let X,Y be open bounded subsets of the Bana
h spa
es E and F . As-sume that :(1) There is d su
h that for every u, v ∈ X there is a re
ti�able ar
 L ⊆ X 
onne
ting

u and v su
h that length(L) ≤ d.(2) For every point w in the boundary of X and for every ε > 0 there is δ > 0 su
hthat for every u, v ∈ X: if ‖u − w‖, ‖v − w‖ < δ, then there is an ar
 L ⊆ X
onne
ting u and v su
h that diam(L) < ε.(3) Conditions (1) and (2) hold for Y .Then(a) If ϕ : H(cl(X)) ∼= H(cl(Y )), then there is τ : cl(X) ∼= cl(Y ) su
h that τ indu
es ϕ.(b) If ϕ : EXT(X) ∼= EXT(Y ), then there is τ ∈ EXT±(X,Y ) su
h that τ indu
es ϕ.Part (a) of the above theorem is an ex
erpt from Theorem 6.22, and (b) is an ex
erptfrom Theorem 6.3(a).The 
lass of spa
es de�ned in Theorem 1.20 
ontains some spa
es whose boundary isquite 
ompli
ated. Also, su
h spa
es may have boundary points whi
h are �xed under
H(cl(X)). Here is an example of a possibly not well-behaved set whi
h is 
overed byTheorem 6.22.Example 1.21. Let B and S be the open unit ball and the unit sphere in a Bana
h spa
e
E, and {Bi | i ∈ I} be a family of pairwise disjoint 
losed balls su
h that Bi ⊆ B forevery i ∈ I. Suppose that for every x ∈ E: if every neighborhood of x interse
ts in�nitelymany Bi's, then x ∈ S. Then the set X := B − ⋃

i∈I Bi, satis�es 
lauses (1) and (2)of Theorem 1.20. Note that even in the 
ase of E = Rn, the boundary of X 
an be
ompli
ated. �Clause (2) in Theorem 1.20 implies that cl(X) is ar
wise 
onne
ted. Consider the openset X des
ribed in the following example. Its 
losure is not lo
ally ar
wise 
onne
ted.Example 1.22. Let X =
{
(r, θ) | θ ∈ (π,∞) and 1 − 1

θ−π/2 < r < 1 − 1
θ+π/2

} (in polar
oordinates). Note that X is an open spiral strip 
onverging to the 
ir
le S(0, 1). �Example 1.22 is not 
overed by Theorem 1.20 but it is in
luded in the 
lass 
onsideredin the following theorem.Theorem 1.23. Let X,Y be open bounded subsets of the normed spa
es E and F . As-sume that :
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onstru
tion of manifolds from subgroups of homeomorphism groups 17(1) For every sequen
e ~x = {xn | n ∈ N} ⊆ X there are a subsequen
e ~y of ~x, a se-quen
e ~z su
h that ~z is 
onvergent in E and a sequen
e of re
ti�able ar
s Ln ⊆ X,
n ∈ N, su
h that supn∈N length(Ln) <∞ and Ln 
onne
ts yn and zn.(2) For every x ∈ bd(X) and r > 0 there is a 
ontinuous fun
tion ht(x) : [0, 1] ×
cl(X) → cl(X) su
h that h0 = Id, h1(x) 6= x, and for every t ∈ [0, 1], ht↾X ∈
EXT(X) and ht↾(cl(X) −B(x, r)) = Id.(3) Conditions (1) and (2) hold for Y .Then(a) If ϕ : H(cl(X)) ∼= H(cl(Y )), then there is τ : cl(X) ∼= cl(Y ) su
h that τ indu
es ϕ.(b) If ϕ : EXT(X) ∼= EXT(Y ), then there is τ ∈ EXT±(X,Y ) su
h that τ indu
es ϕ.Theorem 1.23(a) is an ex
erpt from Theorem 6.24, and 1.23(b) is an ex
erpt from 6.18.Example 1.22 is restated as 6.15(a). Other examples whi
h are 
overed by Theorems 6.24and 6.18, but have a non-lo
ally ar
wise 
onne
ted 
losure appear in 6.8 and 6.15(b).Another EXT-determined 
lass is des
ribed in Theorem 6.12.Chapter 6 also deals with groups of type CMP.LUC(X) de�ned in Subse
tion 1.1.CMP.LUC-determinedness is proved in Theorem 6.20(a). It 
ompletes the pi
ture givenin Chapters 8�12. The following is a spe
ial 
ase of 6.20(a).Theorem 1.24. Let X,Y be open bounded subsets of the normed spa
es E and F . As-sume that :(1) For every sequen
e ~x = {xn | n ∈ N} ⊆ X there are a subsequen
e ~yof ~x, a sequen
e ~z su
h that ~z is 
onvergent in E and a sequen
e of re
ti�ablear
s Ln ⊆ X, n ∈ N, su
h that supn∈N length(Ln) < ∞ and Ln 
onne
ts ynand zn.(2) For every x ∈ bd(X) there is r > 0 su
h that for every ε > 0 there is δ > 0 su
hthat for every u, v ∈ BE(x, r) ∩ X: if d(u, v) < δ, then there is an ar
 L ⊆ X
onne
ting u and v su
h that diam(L) < ε.(3) Conditions (1) and (2) hold for Y .Then if ϕ : CMP.LUC(X) ∼= CMP.LUC(Y ), then there is τ ∈ CMP.LUC±(X,Y ) su
hthat τ indu
es ϕ.Two extensions of the results of Chapter 6 are presented at the end of that 
hapter.These extensions 
over some natural spa
es whi
h are not 
overed by the original 
lasses.Also, the faithful 
lass dealt with in Extension 2 
ontains 22ℵ0 subsets of R3.(1) The original 
lasses 
onsidered in Chapter 6 
onsist of open subsets of normedve
tor spa
es, and the 
losures of su
h sets. However, all the results obtained for these
lasses translate to the 
lass of open subsets of manifolds over normed ve
tor spa
es andthe 
losures of su
h sets. See Example 6.28 and Theorem 6.30.(2) The results obtained for the 
lass of 
losures of open subsets of a normed ve
torspa
e extend to the 
lass of all subsets Z of a normed ve
tor spa
e whi
h satisfy Z ⊆

cl(int(Z)). See Example 6.26 and Theorem 6.27.Chapter 7 
ontains theorems of the following type. Suppose that ϕ : P(X) ∼= Q(Y ).Then



18 M. Rubin and Y. Yomdin(i) There is τ : X ∼= Y su
h that τ indu
es ϕ.(ii) P(X) = Q(X) and τ ∈ Q±(X,Y ), or P(Y ) = Q(Y ) and τ ∈ P±(X,Y ).These results appear in Corollary 7.11. As an example of su
h results we quote 7.11(e).Theorem 1.25. If X and Y are nonempty open subsets of an in�nite-dimensional Ba-na
h spa
e, then UC(X) 6∼= EXT(Y ).1.6. Lo
al uniform 
ontinuity at the boundary of an open set. Let X ⊆ Rn and
Y ⊆ Rm be open sets and suppose that ϕ : LIP(cl(X)) ∼= LIP(cl(Y )). Can we 
on
ludethat there is τ : cl(X) ∼= cl(Y ) su
h that τ is bilips
hitz and τ indu
es ϕ? This questionmotivates the work presented in Chapters 8�12. Indeed, if the boundaries of X and Yare well-behaved, then the answer to the above question is positive.Let X,Y be open subsets of the normed spa
es E and F , and Γ be a modulus of
ontinuity. For g ∈ EXT(X,Y ) let gcl denote the 
ontinuous extension of g to cl(X).De�ne

HCMP.LC
Γ (X,Y ) = {g ∈ EXT(X,Y ) | gcl is lo
ally Γ -
ontinuous}and HCMP.LC

Γ
(X) = (HCMP.LC

Γ
)±(X,X).Note that the group CMP.LUC(X) dis
ussed in Subse
tion 1.5 is a spe
ial 
ase ofgroups of the form HCMP.LC

Γ
(X). Indeed, CMP.LUC(X) = HCMP.LC

MC (X). In the spe
ial
ase that X ⊆ Rn is a regular open bounded set we have LIP(cl(X)) = HCMP.LC

Γ
LIP (X).More generally, HΓ (cl(X)) = HCMP.LC

Γ
(X). So a determiningness result for the property

P = CMP.LCΓLIP implies su
h a result for the 
lass KM,P , where P = LIP and M isthe 
lass of bounded regular open subsets of �nite-dimensional spa
es.Chapters 8�12 are devoted to the proof of the following statement aboutHCMP.LC
Γ

(X).
(∗) If ϕ : HCMP.LC

Γ
(X) ∼= HCMP.LC

∆
(Y ), then Γ = ∆, and there is τ ∈ (HCMP.LC

Γ
)±

(X,Y ) su
h that τ indu
es ϕ.Statement (∗) is proved for X,Y , Γ and ∆ whi
h satisfy the following assumptions.(1) Γ is prin
ipal (see M6 in De�nition 1.9).(2) X is lo
ally Γ -LIN-bordered, and Y is lo
ally ∆-LIN-bordered (see De�nition8.1(b)).The exa
t de�nition of lo
al LIN-borderedness is a bit long, but a main spe
ial 
ase isthe 
lass of open sets whose 
losure is a manifold with boundary with a Γ -bi
ontinuousatlas.Statement (∗) is restated in Theorem 8.4(a). The proof of 8.4(a) has four steps.The two major steps are Steps 3 and 4, whi
h are stated as Theorems 8.8 and 12.19.The following theorem is the 
on
lusion of the �rst three steps 
ombined together. Theprini
ipality of Γ is not needed here. It is needed only at Step 4.Theorem 1.26. Let Γ ,∆ be 
ountably generated moduli of 
ontinuity , E and F benormed spa
es and X ⊆ E, Y ⊆ F be open. Suppose that X is lo
ally Γ -LIN-bordered ,and Y is lo
ally ∆-LIN-bordered. Let ϕ : HCMP.LC
Γ

(X) ∼= HCMP.LC
∆

(Y ). Then there is
τ ∈ EXT±(X,Y ) su
h that τ indu
es ϕ.



Re
onstru
tion of manifolds from subgroups of homeomorphism groups 19The proof of Theorem 1.26 requires mu
h te
hni
al work. This work is 
arried out inChapters 9 and 10. The proof of 1.26 appears at the end of Chapter 11.Step 4 of the proof of Theorem 8.4(a) says that if in Theorem 1.26, Γ is prin
ipal,then the homeomorphism τ obtained in 1.26 belongs to (HCMP.LC
Γ

)±(X,Y ).It should be pointed out that the results mentioned above are true for open subsetsof normed manifolds. The �nal result for manifolds is stated in Theorem 8.4(b).As a byprodu
t of the proof of the main theorem of Chapters 8�12, we also obtain adeterminingness result for the group de�ned below. Let X be an open subset of a normedspa
e E. De�ne
HBDR.LC

Γ (X) = {g ∈ EXT(X) | every x ∈ cl(X) −X has a neighborhood U in cl(X)su
h that gcl↾U is Γ -bi
ontinuous}.Theorem 12.20(b) 
ontains a determiningness result for the property P = BDR.LCΓ .1.7. Further questions and dis
ussion. This work leaves many unsolved questions,whi
h we mention at the point where they naturally arise. In what follows we highlightthe questions we regard to be more 
entral.The 
ountable generatedness of ΓQuestion 1.27. Can Theorem 1.13 be proved for every pair of moduli of 
ontinuity,regardless of whether they are 
ountably generated or not? That is, we ask if the followingstatement true:For ℓ = 1, 2 let Γℓ be a modulus of 
ontinuity. Let Eℓ be a normed spa
e and Xℓbe an open subset of Eℓ. Let ϕ : HLC
Γ1

(X1) ∼= HLC
Γ2

(X2). Then Γ1 = Γ2, and there is alo
ally Γ1-bi
ontinuous homeomorphism τ su
h that τ indu
es ϕ. �Note that the assumption in Theorem 4.1 is in fa
t somewhat weaker than 
ountablegeneratedness. We ask Question 1.27 also for the other theorems in whi
h Γ is requiredto be 
ountably generated. See e.g. parts (a) and (b) of Theorem 5.24.The prin
ipality of Γ in the theorem about HCMP.LC
Γ

(X)Question 1.28. Is Theorem 12.20(a) true without the assumption that Γ is prin
ipal?That is, we ask if the following statement is true:Let X,Y be open subsets of a normed spa
e, and Γ ,∆ be moduli of 
ontinuity.Assume that X is lo
ally Γ -LIN-bordered, and Y is lo
ally ∆-LIN-bordered. If ϕ :

HCMP.LC
Γ

(X) ∼= HCMP.LC
∆

(Y ), then Γ = ∆, and there is τ ∈ (HCMP.LC
Γ

)±(X,Y ) su
hthat τ indu
es ϕ. �Obviously, the 
ase that Γ and ∆ are 
ountably generated is also unknown.A possible stronger way of distinguishing between the HLC
Γ

(X)'s. The fa
t that HLC
Γ

(X)

6∼= HLC
∆

(Y ) for Γ 6= ∆ may have a stronger reason. That is, maybe there is a lo
ally
∆-bi
ontinuous homeomorphism whi
h is not 
onjugate to any lo
ally Γ -bi
ontinuoushomeomorphism. So a positive answer to the following question together with the faith-fulness result of Theorem 1.5(a) will imply the distinguishability of the KΓ 's.



20 M. Rubin and Y. YomdinQuestion 1.29. Let Γ ,∆ be moduli of 
ontinuity su
h that ∆ 6⊆ Γ and let X bea nonempty open subset of a normed spa
e of dimension > 1. Is there a lo
ally ∆-bi
ontinuous homeomorphism g of X su
h that g is not 
onjugate to any Γ -bi
ontinuoushomeomorphism? �In the spa
e R, every homeomorphism is 
onjugate to a Lips
hitz homeomorphism.Relaxing the assumption on the boundary in the theorem about HCMP.LC
Γ

(X). Let X0 =

{(x, y) ∈ R2 | x > 0,−x2 < y < x2}. The set X0 is not Γ
LIP-LIN-bordered. Our generalquestion is whether Theorem 12.20(a) 
an be strengthened to 
lasses whi
h in
lude setssimilar to X0. We may ask the following 
on
rete question.Question 1.30. Let ϕ ∈ Aut(HCMP.LC

Γ
LIP (X0)). Is ϕ an inner automorphism? �Question 8.11 introdu
es the notion of a lo
ally Γ -almost-linearly-bordered set (lo
ally

Γ -ALIN-bordered set). It seems that Theorem 12.20(a) 
an be extended to the 
lass oflo
ally Γ -ALIN-bordered sets. This requires a more detailed te
hni
al analysis similar tothe work 
arried out in Chapters 9�11.However, we do not know how to handle the type of singularity at the boundary point
(0, 0) of X0 above.A variant of the group HCMP.LC

Γ
(X). Let X,Y be open subsets of the normed spa
es

E and F , f : X → Y and Γ be a modulus of 
ontinuity. f is 
ompletely weakly Γ -
ontinuous (CMP.WK Γ -
ontinuous) if f is extendible, and there is γ ∈ Γ su
h thatfor every x ∈ cl(X) there is a neighborhood U of x su
h that f cl↾U is γ-
ontinuous. Asusual,
HCMP.WK

Γ (X,Y ) := {f | f is a homeomorphism between X and Y and
f is CMP.WK Γ -
ontinuous}.Question 1.31. Prove the analogue of Theorem 12.20(a) for the groupsHCMP.WK

Γ
(X). �Naturally, the de�nition of lo
al Γ -LIN-borderedness has to be repla
ed by the anal-ogous notion of weak Γ -LIN-borderedness.It seems that the main di�
ulty in proving CMP.WKΓ -determinedness is the 
oun-terpart of Theorem 1.26.Groups whi
h �t into the framework but have not been investigatedDefinition 1.32. Let Γ be a modulus of 
ontinuity and f : X → Y .(a) f is regionally Γ -
ontinuous if for every nonempty open U ⊆ X there is a nonempty

V ⊆ U and α ∈ Γ su
h that f↾V is α-
ontinuous.(b) f is pointwise Γ -
ontinuous if for every x ∈ X there is a neighborhood V of xand α ∈ Γ su
h that d(f(y), f(x)) ≤ α(d(y, x)) for every y ∈ V . Note that �pointwiseMC-
ontinuous� is just �
ontinuous�.(
) f is boundedly Γ -
ontinuous if for every bounded set V ⊆ X there is α ∈ Γ su
hthat f↾V is α-
ontinuous.Let HRG
Γ

(X), HPW
Γ

(X) and HBD
Γ

(X) denote the groups of homeomorphisms 
orre-sponding to the notions introdu
ed in (a)�(
). �
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onstru
tion of manifolds from subgroups of homeomorphism groups 21Proposition 1.33. (a) Let X be a metri
 spa
e and Γ be a modulus of 
ontinuity. Then(i) HBD
Γ

(X) ⊆ HLC
Γ

(X) ⊆ HPW
Γ

(X);(ii) HLC
Γ

(X) ⊆ HRG
Γ

(X).(b) Let X be an open subset of a Bana
h spa
e and Γ be a 
ountably generated modulusof 
ontinuity. Then HPW
Γ

(X) ⊆ HRG
Γ

(X).Proof. (a) Part (a) follows from the de�nitions.(b) Suppose that f : X → Y is not regionally Γ -
ontinuous. Let {αi | i ∈ N} generate
Γ . Let U ⊆ X be an open ball whi
h shows that f is not regionally Γ -
ontinuous. Wede�ne by indu
tion xi, yi ∈ U . Let x0, y0 be su
h that d(f(x0), f(y0)) > 2α0(d(x0, y0)).Suppose that xi, yi have been de�ned. Let xi+1, yi+1 ∈ B

(
(xi + yi)/2, d(xi, yi)/2

i
)be su
h that d(f(xi+1), f(yi+1)) > 2αi+1(d(xi+1, yi+1)). Sin
e {xi | i ∈ N} is a Cau
hysequen
e, it 
onverges, say to z. Hen
e limi yi = z. We may assume that d(f(z), f(xi)) ≥

d(f(xi), f(yi))/2 for every i ∈ N. So for i ∈ N,
d(f(z), f(xi)) ≥ 1

2d(f(xi), f(yi)) >
1
2 · 2αi(d(xi, yi)) > αi(d(z, xi)).Hen
e z shows that f is not pointwise Γ -
ontinuous.Let

K = {X | X is an open subset of a separable normed spa
e of the se
ond 
ategory}.Using an argument similar to the one used in Theorem 3.41, one 
an prove the analoguesof 1.13 and 1.14 for the 
lass
{HRG

Γ (X) | X ∈ K and Γ is a 
ountably generated modulus of 
ontinuity}.It is not known whether other arguments used for HLC
Γ

(X) 
an be applied to HRG
Γ

(X).Question 1.34. Prove the analogues of 1.13 and 1.14 for the 
lass {HRG
Γ

(X) | X is anopen subset of a normed spa
e, and Γ is a 
ountably generated modulus of 
ontinuity}. �It is easy to see that a re
onstru
tion theorem for the 
lass of HRG
Γ

(X)'s impliesre
onstru
tion theorems for the 
lasses of HWK
Γ

(X)'s and HBD
Γ

(X)'s.1.8. Some more fa
ts about re
onstru
tion theoremsRe
onstru
tion questions for related groups. Mu
h work has been done on the analogousproblems for di�eomorphism groups. It seems that the �rst work in this dire
tion was
arried out by F. Takens [Ta℄.Soon afterwards there was an unpublished extensive work by W. Ling [Lg1℄ and[Lg2℄. Ling proved that many types of stru
tures on a Eu
lidean manifold give rise toa determining 
ategory (or to an appropriate variant of this notion). Some of these
ategories are:(1) The 
ategory of k-smooth Eu
lidean manifolds with k-smooth di�eomorphisms.(2) The 
ategory of k-smooth Eu
lidean manifolds with a k-smooth volume form withdi�eomorphisms preserving the form.(3) The 
ategory of k-smooth foliated Eu
lidean manifolds with the foliation preserv-ing di�eomorphisms.



22 M. Rubin and Y. Yomdin(4) Di�erentiable manifolds with a 
onta
t form.(5) Manifolds with a pie
ewise linear stru
ture, and homeomorphisms preserving thisstru
ture.The authors in [RY℄ (unpublished) reproved result (1) from Ling's work, and provedsome additional fa
ts. For example, they showed that the 
ategory of Eu
lidean di�er-entiable manifolds with di�eomorphisms that have a lo
ally Γ -
ontinuous kth derivativeis a determining 
ategory, for every 
ountably generated modulus of 
ontinuity Γ .The next work was by R. Filipkiewi
z [Fi℄. He proved that the 
ategory of k-smoothmanifolds with k-smooth di�eomorphisms is a determining 
ategory.Further work on this subje
t has been done more re
ently by a number of authors.A. Banyaga [Ba1℄, [Ba2℄ proved the determiningness for the 
ategories arising fromdi�erentiable stru
tures, unimodular stru
tures, symple
ti
 stru
tures, and 
onta
t stru
-tures. Also, he established an analogous result for measure preserving homeomorphisms.T. Rybi
ki [Ryb℄ presented an axiomati
 approa
h to groups of C∞ di�eomorphismswhi
h determine a C∞ manifold.Re
ent progress on re
onstru
tion problems was obtained by J. Borzellino and V. Bru-nsden [BB℄. They proved faithfulness for the 
lass of spa
es whi
h are lo
ally 
ompa
torbifolds.Results on di�erentiabilty obtained by the authors of this work whi
h re�ne olderresults and whi
h also deal with Fré
het di�erentiabilty in in�nite-dimensional spa
es,will appear in a subsequent work.V. Gol'dshtein and M. Rubin obtained analogous results for quasi-
onformal homeo-morphism groups. Part of these results appeared in [GR℄. The results for quasi-
onformalhomeomorphism groups apply to �nite- and in�nite-dimensional spa
es. The full a

ountof this subje
t will be presented in a separate arti
le.Another interesting theorem on a determining 
ategory appears in the works ofM. G. Brin and of Brin and F. Guzmán on the Thompson group. Let G ≤ H([0, 1])be the group of all homeomorphisms h su
h that: (1) h is pie
ewise linear; (2) everyslope of h is an integral power of 2; (3) every breakpoint of h is a diadi
 number. It is
lear that G ∈ KLCM (see 2.4 and 2.5). Hen
e {〈[0, 1], G 〉} is faithful. Interestingly, G isa �nitely presented group.One of Brin's results from [Br1℄ is as follows.
• Every automorphism of G is indu
ed by a homeomorphism f ∈ H([0, 1]) su
h thatfor every a < b in [0, 1], f↾[a, b] satis�es (1)�(3) above.
• Every su
h homeomorphism indu
es an automorphism of G.Denote by G+ the group of all f ∈ H([0, 1]) su
h that 
onjugation by f is an auto-morphism of G. Brin also proves that {〈[0, 1], G+ 〉} is a determining 
ategory. See alsoBrin [Br2℄ and Brin and F. Guzmán [BG℄.Re
onstru
tion theorems in other areas. The theme of re
onstru
ting a stru
ture fromits automorphism group was investigated in several other areas.The re
overy of a ve
tor spa
e from its group of linear isomorphisms has a long history.Ma
key [Ma
℄ proved in 1942 that a normed ve
tor spa
e X 
an be re
onstru
ted from
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tive bounded linear transformations fromthe spa
e to itself). More pre
isely, Ma
key showed that if X is �nite-dimensional and
L(X) ∼= L(Y ), then dim(X) = dim(Y ). In the 
ase that X is in�nite-dimensional anisomorphism between L(X) and L(Y ) is indu
ed by an isomorphism between X and Y .In the 
ase that X is re�exive an isomorphism between L(X) and L(Y ) 
an also beindu
ed by an isomorphism between X∗ and Y .Let F1, F2 be division rings and n1, n2 > 2 be integers. If the linear groups GL(n1, F1)and GL(n2, F2) are isomorphi
, then n1 = n2 and either F1

∼= F2 or F1
∼= F op

2 , where F opis the division ring obtained from F by reversing the multipli
ation. That is, a ·F op

b =

b ·F a. This fa
t is due to J. Dieudonné [Di1℄ (1947) and [Di2℄ (1951).For in�nite-dimensional ve
tor spa
es, V1 over F1 and V2 over F2, every isomorphismbetweenAut(V1) and Aut(V2) is indu
ed by isomorphisms between F1 and F2 and between
V1 and V2. A strong theorem 
on
erning this, but not exa
tly this fa
t, was proved by C.E. Ri
kart in [Ri1℄�[Ri3℄ (1950�1951). The theorem of Dieudonné for �nite dimensions isa spe
ial 
ase of Ri
kart's Theorem. O. O'Meara [Om℄ (1977) proved the re
onstru
tiontheorem for in�nite dimensions. Another proof was found by V. Tolstykh [To1℄ (2000).Free groups are also re
onstru
tible from their automorphism groups. That Aut(Fn) 6∼=
Aut(Fm) for n 6= m 
an be dedu
ed from the work of J. Dyer and G. P. S
ott [DS℄ (1975).
Fn denotes the free group with n generators (in the variety of all groups). E. Formanek in[Fo℄ (1990) proved that Inn(Fn) is the only normal free subgroup of rank n of Aut(Fn).This implies immediately the re
onstru
tion result for �nitely generated free groups.V. Tolstykh in [To2℄ (2000) proved that if λ is an in�nite 
ardinal then Inn(Fλ) is de-�nable in Aut(Fλ). This implies the re
onstru
tion result for free groups with in�niterank.Another body of re
onstru
tion results for groups of linear transformations is due toM. Droste and M. Göbel [DG1℄ (1995) and [DG2℄ (1996). Given a ring R with unity anda poset P one 
an de�ne the generalized M
Lain group G(R,P ) of R and P . Droste andGöbel re
onstru
t R and P from G(R,P ).The symmetri
 group is another important instan
e. It is the automorphism groupof a stru
ture with no relations and no operations. Sym(6) is the only symmetri
 groupwhi
h has outer automorphisms. A proof that A is re
overable from Sym(A) appears inM
Kenzie [M
K℄ (1971). This had been known before. See S
ott [S
, p. 311℄.Automorphism groups of various types of ordered stru
tures were also extensively in-vestigated. We mention some of the more re
ent referen
es. Re
onstru
tion theorems fortrees appear in Rubin [Ru3℄ (1993). Linear orders and related stru
tures are 
onsideredin Rubin [Ru5℄ (1996) and in [MR℄. And Boolean algebras are re
onstru
ted in Rubin[Ru2℄ (1989).The re
onstru
tion of measure algebras is dealt with in [Ru2℄. The group of measurepreserving transformations of [0, 1] is 
onsidered by S. Eigen in [Ei℄ (1982).Rubin [Ru4℄ (1994) deals with the re
onstru
tion of ℵ0-
ategori
al stru
tures.A
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2. Obtaining a homeomorphism from a group isomorphism2.1. Capturing the a
tion of the group on the regular open sets. Let G ≤ H(X).In order to prove that X is re
onstru
tible from G, we shall �rst show that the a
tion of
G on the set of regular open subsets of X is re
onstru
tible from G.We next introdu
e some notations, re
all some basi
 de�nitions, and present somenotions spe
i�
 to this work.Definition 2.1. Let X be a topologi
al spa
e U ⊆ X and G ≤ H(X).(a) Let intX(U), clX(U), bdX(U) and accX(U) denote respe
tively the interior, 
lo-sure, boundary and the set of a

umulation points of U in X. The boundary, bdX(U),is de�ned by bdX(U) := clX(U) ∩ clX(X −U). The supers
ript X is omitted when X isunderstood from the 
ontext.(b) U is regular open if U = int(cl(U)). Ro(X) denotes the set of regular open subsetsof X. We equip Ro(X) with the operations: U + V := int(cl(U ∪ V )), U · V := U ∩ Vand −U := int(X−U). Then 〈Ro(X),+, ·,−〉 is a 
omplete Boolean algebra. Obviously,
0Ro(X) = ∅, 1Ro(X) = X, and the indu
ed partial ordering of Ro(X) is ≤Ro(X) = ⊆. Weregard Ro(X) both as a set and as a Boolean algebra.(
) If g : X ∼= Y then g indu
es an isomorphism gRo between Ro(X) and Ro(Y ):
gRo(U) = {g(x) | x ∈ U}. For G ≤ H(X) let GRo := {gRo | g ∈ G}. Then GRo ≤
Aut(Ro(X)) and if X is Hausdor�, then g 7→ gRo is an embedding of G into Aut(Ro(X)).We assume that X is Hausdor� and identify G with GRo. So H(X) is regarded as asubgroup of Aut(Ro(X)).(d) G is a lo
ally moving subgroup of H(X) if for every nonempty open V ⊆ X thereis g ∈ G−{Id} su
h that g↾(X−V ) = Id. In that 
ase 〈X,G 〉 is 
alled a topologi
al lo
almovement system.(e) Let Ap : G×Ro(X) → X be the appli
ation fun
tion. That is, Ap(g, V ) = g(V ).The stru
ture MR(X,G) is de�ned as follows:

MR(X,G) = 〈Ro(X), G,+, ·,−,Ap〉.(f) η : MR(X,G) ∼= MR(Y,H) means that η is an isomorphism between MR(X,G)and MR(Y,H). That is, η is a bije
tion between Ro(X) ∪G and Ro(Y ) ∪H, η(G) = H,and η preserves +, ·,− and Ap.(g) If η : A → B is a bije
tion and g : A → A, then the 
onjugation of g by η isde�ned as gη := η ◦ g ◦ η−1. � [25℄



26 M. Rubin and Y. YomdinProposition 2.2. Let X,Y be Hausdor� spa
es , G ≤ H(X) and H ≤ H(Y ). Supposethat ϕ : G ∼= H and η : Ro(X) ∼= Ro(Y ). Then ϕ ∪ η : MR(X,G) ∼= MR(Y,H) i�
ϕ(g) = gη for every g ∈ G.The next theorem says that for topologi
al lo
al movement systems the a
tion of Gon Ro(X) 
an be re
onstru
ted from G. This theorem is proved in [Ru5℄.Theorem 2.3 (The re
onstru
tion theorem for topologi
al lo
al movement systems). Let
〈X,G 〉 and 〈Y,H 〉 be topologi
al lo
al movement systems and ϕ : G ∼= H. Then there isa unique η : Ro(X) ∼= Ro(Y ) su
h that ϕ ∪ η : MR(X,G) ∼= MR(Y,H). That is , there isa unique η : Ro(X) ∼= Ro(Y ) su
h that ϕ(g) = gη for every g ∈ G.Proof. See [Ru5, De�nition 1.2, Corollary 1.4 or Corollary 2.10 and Proposition 1.8℄.2.2. Faithfulness in lo
ally 
ompa
t spa
es. The �rst faithfulness theorem to bepresented is about lo
ally 
ompa
t spa
es. It is taken from [Ru1℄ and brought here forthe sake of 
ompleteness. It is the 
onjun
tion of parts (a), (b) and (
) of Theorem 3.5there.Definition 2.4. (a) For G ≤ H(X), g ∈ H(X) and x ∈ X, let G(x) := {g(x) | g ∈ G}.A set A ⊆ X is somewhere dense if int(cl(A)) 6= ∅. X is a perfe
t spa
e if there is no
x ∈ X su
h that {x} is open. Suppose that G is a set of permutations of a set A and
B ⊆ A. De�ne G B := {g ∈ G | g↾(A−B) = Id}.(b) Let

KLCM := {〈X,G 〉 | X is a perfe
t lo
ally 
ompa
t Hausdor� spa
e, andfor every open V ⊆ X and x ∈ V, G V (x) is somewhere dense}. �Theorem 2.5 (Rubin [Ru1℄ 1989). KLCM is faithful.Proof. It follows easily from the de�nitions that for every 〈X,G 〉 ∈ KLCM, 〈X,G 〉 is atopologi
al lo
al movement system.A subset p of a Boolean algebra B is 
alled an ultra�lter if: (i) 0 6∈ p; (ii) if a1, . . . , an ∈
p, then ∏n

i=1 ai ∈ p; (iii) if a ∈ p and b ≥ a, then b ∈ p; (iv) for every a ∈ B either a ∈ por −a ∈ p.By Zorn's lemma, every subset of B satisfying (i)�(ii) is 
ontained in an ultra�lter.For an ultra�lter p in Ro(X), let Ap :=
⋂{cl(V ) | V ∈ p}. Let 〈X,G 〉 ∈ KLCM. We saythat an ultra�lter p in Ro(X) is good if Ap is a singleton. If p is good and Ap = {x},then we write x = xp. The following fa
ts 
an be easily 
he
ked.(a) Ap = {x} i� p 
ontains all regular open neighborhoods of x.(b) p is good i� there is W ∈ Ro(X) − {∅} su
h that for every V ∈ Ro(X) − {∅}: if

V ⊆W , then there is g ∈ G su
h that g(V ) ∈ p.(
) Let p and q be good ultra�lters. Then xp 6= xq i�
(∃U ∈ p)(∃V ∈ q)((U ∩ V = ∅) ∧ (∀U1 ⊆ U)(U1 6= ∅ →

(∃f ∈ G)(V ∈ f(q) ∧ U1 ∈ f(p)))).(d) Let p be a good ultra�lter, and U ∈ Ro(X). Then xp ∈ U i� for every goodultra�lter q: if xq = xp, then U ∈ q.
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tion of manifolds from subgroups of homeomorphism groups 27(e) Let p, q be good ultra�lters, and g ∈ G. Then g(xp) = xq i� xg(p) = xq.(f) If p is a good ultra�lter and g ∈ G, then g(p) is a good ultra�lter.(g) If x ∈ X, then there is a good ultra�lter p su
h that xp = x.Clearly, the fa
t that p is an ultra�lter is expressible in terms of the operations of
〈Ro(X),+, ·,−〉.(1) By (b), the fa
t that p is a good ultra�lter is expressible in terms of the operationsof MR(X,G).(2) By (
), for good ultra�lters p and q, the fa
t that xp = xq is expressible in termsof the operations of MR(X,G).(3) By (d), for a good ultra�lter p and U ∈ Ro(X), the fa
t that xp ∈ U is expressiblein terms of the operations of MR(X,G).(4) By (e), for good ultra�lters p and q and g ∈ G, the fa
t that g(xp) = xq isexpressible in terms of the operations of MR(X,G).Let 〈X,G 〉, 〈Y,H 〉 ∈ KLCM, and let ϕ : G ∼= H. By Theorem 2.3, there is η :

Ro(X) ∼= Ro(Y ) su
h that (ϕ ∪ η) : MR(X,G) ∼= MR(Y,H). Let ψ = ϕ ∪ η. We de�ne
τ : X → Y . Let x ∈ X. By (g), there is an ultra�lter p su
h that xp = x. By (1), ψ(p)is a good ultra�lter.We de�ne τ (x) = xψ(p). If q is a good ultra�lter su
h that also xq = x, then by (2),
xψ(q) = xψ(p). So the de�nition of τ is valid.We 
he
k that τ is a bije
tion between X and Y . Suppose that xp 6= xq. By (2),
τ (xp) = xψ(p) 6= xψ(q) = τ (xq). So τ is inje
tive.Let y ∈ Y . By (g), there is an ultra�lter q su
h that xq = y. By (1), p := ψ−1(q) is agood ultra�lter. So τ (xp) = xψ(p) = xq = y. So τ is surje
tive.Let τ (A) denote {τ (a) | a ∈ A}. In order to show that τ is a homeomorphism, itsu�
es to show that for some open base B of X, {τ (U) | U ∈ B} is an open base for Y .Sin
e X and Y are lo
ally 
ompa
t, they are regular spa
es. So Ro(X) and Ro(Y ) areopen bases of X and Y repe
tively. So it su�
es to show that {τ (U) | U ∈ Ro(X)} =

Ro(Y ). Let x ∈ X and U ∈ Ro(X). Let p be an ultra�lter su
h that xp = x. By (3),
xp ∈ U i� xψ(p) ∈ ψ(U). That is, x ∈ U i� τ (x) ∈ ψ(U). So τ (U) = ψ(U) for every
U ∈ Ro(X). Hen
e {τ (U) | U ∈ Ro(X)} = {ψ(U) | U ∈ Ro(X)} = Ro(Y ). So τ is ahomeomorphism.It remains to show that τ indu
es ϕ. Let g ∈ G and y ∈ Y . Let q be an ultra�lter in
Ro(Y ) su
h that xq = y. Then gτ (y) = τ ◦ g ◦ τ−1(xq) = τ ◦ g(xψ−1(q)) = τ (xg(ψ−1(q))) =

xψ(g(ψ−1(q))) = xη(g(η−1(q))) = xgη(q). But by Proposition 2.2, gη = ϕ(g). So xgη(q) =

xϕ(g)(q). However, if xq = y, then trivially xh(q) = h(y) for every h ∈ H. In parti
ular,
xϕ(g)(q) = ϕ(g)(y).We have shown that gτ (y) = ϕ(g)(y) for every y ∈ Y . So gτ = ϕ(g).Remark. In the above proof the existen
e of the indu
ing homeomorphism τ was de-du
ed from fa
ts (b)�(e) whi
h showed that point representation, equality, belonging andappli
ation were expressible in MR(X,G). The toil of dedu
ing the existen
e of τ from(b)�(e) 
ould have been spared by using a 
ertain general ma
hinery 
alled the method



28 M. Rubin and Y. Yomdinof interpretation. The notion of interpretation is not introdu
ed here, sin
e it is usedonly twi
e. Interpretations are des
ribed e.g. in [Ru2, Se
tion 2℄ or in [MR, Se
tion 6℄.Theorem 2.5 has many appli
ations in the Eu
lidean 
ase. For example, it applies to
m times 
ontinuously di�erentiable Eu
lidean manifolds.Corollary 2.6 ([Ru1℄). Let KD = {〈X,G 〉| for some 0 ≤ m ≤ ∞, X is a Eu
lidean
Cm-manifold and G 
ontains all homeomorphisms f su
h that both f and f−1 are Cmhomeomorphisms}. Then KD is faithful.Proof. KD ⊆ KLCM.Theorem 2.5 also applies to Hilbert 
ube manfolds, and in fa
t to manifolds over
[0, 1]λ for any 
ardinal λ.The 
lass of Menger manifolds is also a sub
lass of KLCM, and hen
e it is faithful.See Kawamura [K℄.The �nitely presented subgroups of H(R) de�ned by R. Thompson (see [Br1℄, [Br2℄and [BG℄) also belong to KLCM.2.3. Faithfulness in normed and Bana
h spa
es. We now turn to the 
ontext ofnormed ve
tor spa
es and Bana
h spa
es.To avoid notational 
ompli
ations, we shall mainly deal with open subsets of normedand Bana
h spa
es and not with manifolds over su
h spa
es. Nevertheless, all theoremsand proofs transfer (with a 
orre
t translation) to manifolds. In this se
tion, De�nition2.29 and Theorem 2.30 deal with the setting of manifolds (and indeed with a somewhatmore general setting).Manifolds are 
onsidered again at the end of Chapter 3 starting from De�nition 3.46.Re
all that for a metri
 spa
e X, LIP(X) = {h ∈ H(X) | h is bilips
hitz} and
LIPLC(X) = {h ∈ H(X) | h is lo
ally bilips
hitz}.For a normed spa
e E, an open set S ⊆ E and a dense linear subspa
e F ⊆ E, we shalluse the notations LIP(X;S, F ), LIPLC(X;S, F ), LIP(X;F ) and LIPLC(X,F ) introdu
edin De�nition 1.4.We shall prove the faithfulness of the 
lasses KB and KN de�ned below. However,these faithfulness results do not su�
e for some of the 
ontinuations. To this end wede�ne the bigger 
lass KBNO and prove its faithfulness.Definition 2.7. Let E be a normed spa
e, X ⊆ E be open, S be a set of open subsetsof X and F = {FS | S ∈ S} be a family of dense linear subspa
es of E indexed by S.Then F is 
alled a subspa
e 
hoi
e for S. If S is a 
over of X, then 〈E,X,S,F〉 is 
alleda subspa
e 
hoi
e system.(a) LIP(X;S,F) is the subgroup of H(X) generated by ⋃{LIP(X;S, FS) | S ∈ S}.
LIPLC(X;S,F) denotes the subgroup ofH(X) generated by ⋃{LIPLC(X;S, FS) | S∈S}.Also, LIP(X,S) denotes the subgroup of H(X) generated by ⋃{LIP(X,S) | S ∈ S}. Thegroup LIPLC(X,S) is de�ned analogously.(b) Let KB be the 
lass of all 〈X,G 〉's su
h that X is an open subset of some Bana
hspa
e, and LIP(X) ≤ G ≤ H(X).
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lass of all 〈X,G 〉's su
h that X is an open subset of some normedspa
e, and LIPLC(X) ≤ G ≤ H(X).Let KBO be the 
lass of all 〈X,G 〉's su
h that:(1) X is an open subset of some Bana
h spa
e E,(2) there are an open 
over S of X and a subspa
e 
hoi
e F for S su
h that we have
LIP(X;S,F) ≤ G ≤ H(X).Let KNO be the 
lass of all 〈X,G 〉's su
h that:(1) X is an open subset of some normed spa
e E,(2) there are an open 
over S of X and a subspa
e 
hoi
e F for S su
h that we have
LIPLC(X;S,F) ≤ G ≤ H(X).Let KBNO = KBO ∪ KNO. If 〈X,G 〉 ∈ KBNO and E,S,F are as above, then thesystem 〈E,X,S,F , G〉 is 
alled a BNO-system. �Theorem 2.8. (a) KB ∪KN is faithful.(b) KBNO is faithful.Note that KB ∪KN ⊆ KBNO. So only (b) has to be proved.Remark 2.9. (a) Dealing with the larger but less natural 
lasses of groups LIP(X;S,F)and LIPLC(X;S,F) needs justi�
ation. Certainly the groups LIP(X) and LIPLC(X) arethose that 
ome to mind �rst. There are two 
lasses of groups whi
h merit attention forwhi
h Theorem 2.8(a) does not su�
e, but Theorem 2.8(b) does.Let E be a normed ve
tor spa
e and X ⊆ E be open. The group of extendiblehomeomorphisms of X is de�ned as follows:

EXTE(X) = {h↾X | h ∈ H(clE(X)) and h↾X ∈ H(X)}.If E is a Bana
h spa
e, then LIP(X) ⊆ EXTE(X). However, if E is not 
omplete, then
LIP(X) 6⊆ EXTE(X).For h ∈ EXT(X) let hcl denote the extension of h to clE(X). Let Γ be a modulus of
ontinuity. De�ne

HCMP.LC
Γ (X) = {h ∈ EXT(X) | for some α ∈ Γ , hcl is lo
ally α-bi
ontinuous}.Then Theorem 2.8(a) does not apply to HCMP.LC

Γ
(X), but Theorem 2.8(b) does.Another su
h example is the following group. Let E be a �nite-dimensional normedspa
e, X ⊆ E be open and

H = {h ∈ H(X) | cl({x ∈ X | h(x) 6= x}) is 
ompa
t}.Then G 6⊇ LIP(X), but nevertheless X is re
onstru
tible from G.The reason for introdu
ing the group LIP(X;F ) is as follows. For an in
ompletenormed spa
e X, we give a proof that X is re
onstru
tible from G's whi
h 
ontain
LIPLC(X). But we do not know whether X is re
onstru
tible from LIP(X). In fa
t,every member of LIP(X) 
an be uniquely extended to a homeomorphism of X, the
ompletion of X. So LIP(X) 
an be regarded as a subgroup of H(X). By 
onsidering
LIP(X;X) we prove that X is re
onstru
tible from LIP(X). It remains open (ex
ept forspa
es of the �rst 
ategory) whether X is re
onstru
tible from LIP(X).



30 M. Rubin and Y. Yomdin(b) The groups LIP(X;S,F) and LIP(X) in Theorem 2.8 
an be repla
ed by thefollowing smaller groups. Suppose that a normed or a Bana
h spa
e E has an equivalentnorm whi
h is Cm, m ≤ ∞, that is, a norm whi
h is m times 
ontinuously Fré
hetdi�erentiable at every x 6= 0. We de�ne Diffm(X) to be the group of all homeomorphisms
g of X su
h that g, g−1 are Cm, and whose �rst derivative is bounded. The group
Diffm(X;F ,S) is de�ned in analogy to LIP(X;S,F), and the 
lasses KBDm , KNDm and
KBNODm are de�ned in analogy to KB, KN and KBNO. Then Theorem 2.8 remains true.The proof remains the same. The only di�eren
e is that the homeomorphisms whi
hare 
onstru
ted in the proof of Theorem 2.8 have to be in this 
ase Cm and not justbilips
hitz.This variant of Theorem 2.8 will be needed in a subsequent work where groups ofFré
het di�erentiable homeomorphisms will be 
onsidered. �An explanation of the method of proof of Theorem 2.8. We show that there is a property
P (x, y) of pairs 〈x, y 〉 whi
h is expressible in terms of the operations of MR(X,G) su
hthat for every 〈X,G 〉 ∈ KBNO and U, V ∈ Ro(X):

P (U, V ) holds in MR(X,G) i� cl(U) ∩ cl(V ) is a singleton.A pair 〈U, V 〉 satisfying P is 
alled a point representing pair.We shall then prove two similar fa
ts.(1) There is a property Q(x1, y1, x2, y2) expressible in terms of the operations of
MR(X,G) su
h that for every 〈X,G 〉 ∈ KBNO and point representing pairs
〈U1, V1 〉, 〈U2, V2 〉 ∈ (Ro(X))2:
Q(U1, V1, U2, V2) holds in MR(X,G) i� cl(U1) ∩ cl(V1) = cl(U2) ∩ cl(V2).(2) There is a property S(x, y, z) expressible in terms of the operations of MR(X,G)su
h that for every 〈X,G 〉 ∈ KBNO, a point representing pair 〈U, V 〉 ∈ (Ro(X))2and W ∈ Ro(X):

S(U, V,W ) holds in MR(X,G) i� cl(U) ∩ cl(V ) ⊆W.As in the proof of 2.5, the existen
e of properties P , Q and S implies that every iso-morphism between MR(X,G) and MR(Y,H) is indu
ed by a homeomorphism between
X and Y .The following 
onventions are kept through Lemma 2.23 and the proof of Theorem 2.8.(a) In what follows, 〈E,X,S,F , G〉 denotes a BNO-system. That is, E denotes anormed ve
tor spa
e, X is an open subset of E, S is a 
over of X, F is a subspa
e 
hoi
efor S and G ≤ H(X). If E is a Bana
h spa
e, then LIP(X;S,F) ≤ G, and if E isin
omplete, then LIPLC(X;S,F) ≤ G.If X is an open subset of E and 〈X,G 〉 ∈ KB ∪ KN, then 〈X,G 〉 is regarded as aBNO-system with S = {X} and FX = E.(b) Also, U, V,W denote members of Ro(X). If A ⊆ X, then clX(A) and intX(A) areabbreviated by cl(A) and int(A) respe
tively.



Re
onstru
tion of manifolds from subgroups of homeomorphism groups 31Definition 2.10. (a) For U, V ∈ Ro(X) let U ∼= V denote that (∃g ∈ G)(g(U) = V ).(b) U is a small set if there is W 6= ∅ su
h that for every ∅ 6= W ′ ⊆W there is U ′ ∼= Usu
h that U ′ ⊆W ′.(
) U is strongly small in V (U ≺ V ) if there is ∅ 6= W ⊆ V su
h that for every
∅ 6= W1 ⊆W there is g ∈ G V su
h that g(U) ⊆W1.(d) U is strongly separated fromW (U ←‖→W ) if there is V ∈ Ro(X) su
h that U ≺ Vand V ∩W = ∅. �Remark 2.11. The properties �U ∼= V �, �U is a small set�, �U ≺ V � and �U ←‖→W � areexpressible in terms of the operations of MR(X,G). Formally this means the followingstatements.(1) Let χ∼=(x, y) ≡ (∃z ∈ G)(Ap(z, x) = y). Then U, V satisfy χ∼= in MR(X,G) i�

U ∼= V .(2) Let χ⊆(x, y) ≡ x · y = x. Then U, V satisfy χ⊆ in MR(X,G) i� U ⊆ V .(3) Let χ∅(x) ≡ (∀y ∈ Ro(X))(x ·y = x). Then U satis�es χ∅ in MR(X,G) i� U = ∅.(4) Let
χSml(x) ≡ (∃y ∈ Ro(X))(¬χ∅(y) ∧ (∀y′ ∈ Ro(X))((χ⊆(y′, y) ∧ ¬χ∅(y

′)) →
(∃x′ ∈ Ro(X))(χ∼=(x′, x) ∧ χ⊆(x′, y′)))).Then U satis�es χSml in MR(X,G) i� U is small.(5) Let χSpprtd(x, y) ≡ (∀z ∈ Ro(X))(χ∅(z · y) → (Ap(x, z) = z)). Then g, V satisfy

χSpprtd in MR(X,G) i� g ∈ G V .Similar formulas χ≺ and χ←‖→ 
an be written for U ≺ V and for U ←‖→ V . Theabove formulas use only the operations +, ·, − and Ap. So if χ is any of the aboveformulas, ψ : MR(X,G) ∼= MR(Y,H) and U, V ∈ Ro(X), then U, V satisfy χ in MR(X,G)i� ψ(U), ψ(V ) satisfy χ in MR(Y,H). So smallness, ≺, ←‖→ et
. are preserved underisomorphisms. �Definition 2.12. (a) For a metri
 spa
e (Z, d), x ∈ Z and r > 0 we de�ne BZ(x, r) :=

{y ∈ Z | d(x, y) < r}, SZ(x, r) := {y ∈ Z | d(x, y) = r} and BZ(x, r) := {y ∈ Z | d(x, y)
≤ r}. If A ⊆ Z, then BZ(A, r) :=

⋃
x∈AB

Z(x, r).In the 
ontext of this se
tion there are two metri
 spa
es involved: a normed spa
e
E and an open subset X ⊆ E. We use B(x, r), S(x, r) and B(x, r) as abbreviations of
BX(x, r), SX(x, r) and BX(x, r).For x, y ∈ E, [x, y] denotes the line segment 
onne
ting x and y. For v ∈ E let
trEv : E → E be the translation by v, that is, trEv (x) = v + x. Whenever E 
an beunderstood from the 
ontext, trEv is abbreviated by trv.(b) Let N = 〈E,X,S,F , G〉 be a BNO-system and B = BE(x, r) be a ball of E. Then
B is a manageable ball of X (with respe
t to N ) if there are S ∈ S and ε > 0 su
h that
x ∈ S ∩FS and BE(x, r+ ε) ⊆ S. In su
h a 
ase we say that B is based on S. Note thatif B = BE(x, r) is a manageable ball, then BE(x, r) = BX(x, r) and clE(B) = clX(B).(
) For a topologi
al spa
e Y and h ∈ H(Y ), the support of h is de�ned as

supp(h) = {y ∈ Y | h(y) 6= y}. �



32 M. Rubin and Y. YomdinProposition 2.13. (a) Suppose that Y is any topologi
al spa
e, and let H ≤ H(Y ). For
k ∈ H let ψk : MR(Y,H) → MR(Y,H) be de�ned as follows. For every h ∈ H, ψk(h) =

hk, and for every U ∈ Ro(Y ), ψk(U) = {h(x) | x ∈ U}. Then ψk ∈ Aut(MR(Y,H)).(b) Let Y be any topologi
al spa
e.(i) If F ⊆ Y is 
losed , then int(F ) ∈ Ro(Y ).(ii) int(cl(A)) ∈ Ro(Y ) for every A ⊆ Y .(iii) int(cl(A)) is the minimal regular open set 
ontaining A.(iv) If T, S ⊆ Y are disjoint open sets , then int(cl(T )) ∩ S = ∅.Proof. Trivial.We shall next 
onstru
t 
ertain homeomorphisms in LIP(X;S,F). Geometri
ally,their existen
e is quite obvious. However, the formal proof requires some 
omputation.All balls mentioned in the next lemma are manageable. For su
h balls we write
BE(x, r) = B(x, r). Part (b)(ii) of the lemma will be used in Chapter 3. See Proposition3.4.Lemma 2.14. (a) Suppose that B = B(x0, r0) is a manageable ball based on S, x0 ∈ FSand 0 < s0 < s1 < r0. Then there is h ∈ LIP(X;S,F) B su
h that h(B(x0, s1)) =

B(x0, s0).(b) Suppose that B = B(x0, r0) is a manageable ball based on S, x0, v ∈ B ∩ FS ,
0 < r < r0 and 0 < s < r0 − ‖v − x0‖. Then(i) There is h ∈ LIP(X;S,F) B su
h that h(B(x0, r)) = B(v, s).(ii) If also r=s, then h is (1+ ‖v‖

r0−r−‖v‖ )-bilips
hitz and h↾B(x0, r)=trv↾B(x0, r).(
) Let B be a manageable ball based on S, x, y ∈ B ∩ FS and r > 0. Assume that
B([x, y], r) ⊆ B. Then there is h ∈ LIP(X;S,F) B([x, y], r) su
h that h↾B(x, 2r/3) =

try−x↾B(x, 2r/3). Moreover , there is a fun
tion Kseg(ℓ, t) in
reasing in ℓ and de
reasingin t su
h that the above h is Kseg(‖x− y‖, r)-bilps
hitz.(d) Let U ⊆ X be open, γ : [0, 1] → U be 
ontinuous and 1-1 and s ∈ (0, 1]. Thenthere is h ∈ LIP(X) su
h that h(γ(0)) = γ(0), h(γ(s)) = γ(1) and supp(h) ⊆ U .Proof. (a) Assume for simpli
ity that x0 = 0. Let g ∈ H([0,∞)) be the pie
ewise linearfun
tion with breakpoints at s0 and r0 su
h that g(s0) = s1 and g(t) = t for every t ≥ r0.Then g is K-bilips
hitz with K = max
(
s1
s0
, r0−s0r0−s1

).We de�ne h : E → E

h(x) = g(‖x‖) x

‖x‖ if x 6= 0 and h(0) = 0.Let x, y ∈ E. We may assume that 0 6= ‖y‖ ≤ ‖x‖. Let z = ‖y‖ x
‖x‖ . Then ‖x − z‖ =

‖x‖ − ‖y‖ ≤ ‖x− y‖ and ‖z − y‖ ≤ ‖z − x‖ + ‖x− y‖ ≤ 2‖x− y‖. So
‖h(x) − h(y)‖ ≤ ‖h(x) − h(z)‖ + ‖h(z) − h(y)‖ ≤ K‖x− z‖ +

g(‖y‖)
‖y‖ ‖z − y‖

≤ K‖x− y‖ +K · 2‖x− y‖ = 3K‖x− y‖.An identi
al argument shows that h−1 is 3K-Lips
hitz.



Re
onstru
tion of manifolds from subgroups of homeomorphism groups 33It is obvious that h(F ) = F and that h(B(0, s0)) = B(0, s1). So h−1↾X is as required.(b) Assume for simpli
ity that x0 = 0. By (a), we may assume that r = s. De�ne
g : [0,∞) → [0, 1] as follows:

g(t) =





1, 0 ≤ t ≤ r,
r0−t
r0−r , r ≤ t ≤ r0,

0, r0 ≤ t.Suppose that a > r0 and B(0, a) ⊆ X. We de�ne h : B(0, a) → E by h(x) = x+g(‖x‖)·v.Obviously, h(B(0, r)) = B(v, r).We show that h is Lips
hitz. At �rst we see that h↾(B(0, r0) − B(0, r)) is Lips
hitz.Let x, y ∈ B(0, r0) −B(0, r). Then h(x) − h(y) = x− y + ‖y‖−‖x‖
r0−r · v. It follows that

‖h(x)−h(y)‖ ≤ ‖x−y‖+ | ‖y‖ − ‖x‖ |
r0 − r

·‖v‖ ≤ ‖x−y‖+‖x− y‖
r0 − r

·‖v‖ =

(
1+

‖v‖
r0 − r

)
·‖x−y‖.Let x, y ∈ B(0, a). If x, y ∈ B(0, r) or x, y ∈ B(0, r0)−B(0, r) or x, y ∈ B(0, a)−B(0, r0),then ‖h(x) − h(y)‖ ≤ (1 + ‖v‖

r0−r ) · ‖x− y‖.If x ∈ B(0, r) and y ∈ B(0, r0) − B(0, r), let z ∈ [x, y] ∩ S(0, r). Then
‖h(x) − h(y)‖ ≤ ‖h(x) − h(z)‖ + ‖h(z) − h(y)‖ ≤ ‖x− z‖ +

(
1 +

‖v‖
r0 − r

)
· ‖z − y‖

≤
(

1 +
‖v‖
r0 − r

)
· (‖x− z‖ + ‖z − y‖) =

(
1 +

‖v‖
r0 − r

)
· ‖x− y‖.The other 
ases are dealt with similarly. So h is (1 + ‖v‖

r0−r )-Lips
hitz.In order to show that h is 1-1 and that h−1 is Lips
hitz, we �rst 
he
k that there is
K su
h that ‖x− y‖ ≤ K · ‖h(x) − h(y)‖ for every x, y ∈ B(0, r0) −B(0, r). Indeed,

‖h(x) − h(y)‖ ≥ ‖x− y‖ − | ‖y‖ − ‖x‖ |
r0 − r

· ‖v‖ ≥ ‖x− y‖ − ‖y − x‖
r0 − r

· ‖v‖

=

(
1 − ‖v‖

r0 − r

)
· ‖x− y‖ =

r0 − r − ‖v‖
r0 − r

· ‖x− y‖.Clearly, r0−r−‖v‖
r0−r > 0. Let K = r0−r

r0−r−‖v‖ . Then ‖x − y‖ ≤ K · ‖h(x) − h(y)‖. Thisimplies that h↾(B(0, r0) −B(0, r)) is 1-1.We next 
he
k that h(B(0, r0) − B(0, r)) = B(0, r0) − B(v, r). Let x ∈ B(0, r0) −
B(0, r). There are x1, x2 ∈ bd(B(0, r0) − B(0, r)) su
h that x ∈ [x1, x2] ⊆ B(0, r0) −
B(0, r), and x2 = x1 + λv for some λ ≥ 0. Suppose �rst that x1, x2 ∈ S(0, r0). Clearly,
h([x1, x2]) is a line segment. Sin
e h↾[x1, x2] is 1-1 and h(xi) = xi, i = 1, 2, we have
h([x1, x2]) = [x1, x2].A similar argument shows that if x1 ∈ S(0, r0) and x2 ∈ S(0, r), then h([x1, x2]) =

[x1, x2 + v] ⊆ B(0, r0)−B(0, r). Also if x1 ∈ S(0, r) and x2 ∈ S(0, r0), then h([x1, x2]) =

[x1 + v, x2] ⊆ B(0, r0) −B(0, r).It follows that h(B(0, r0)−B(0, r)) ⊆ B(0, r0)−B(v, r). A similar 
onsideration showsthat B(0, r0) − B(v, r) ⊆ h(B(0, r0) − B(0, r)). Also, h(B(0, r)) = B(0, v), h(B(0, a) −
B(0, r0)) = B(0, a) − B(0, r0) and h↾((B(0, a) − B(0, r0) ∪ B(0, r)) is 1-1. So h is a
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tion and Rng(h) = B(0, a). We have proved that h−1↾(B(0, r0)−B(0, r)) is r0−r
r0−r−‖v‖ -Lips
hitz. The argument that h−1 is r0−r

r0−r−‖v‖ -Lips
hitz is the same one used to showthat h is Lips
hitz.Clearly, r0−r
r0−r−‖v‖ = 1 + ‖v‖

r0−r−‖v‖ and 1 + ‖v‖
r0−r ≤ 1 + ‖v‖

r0−r−‖v‖ . So h is 1 + ‖v‖
r0−r−‖v‖ -bilips
hitz. As in the pre
eding arguments, this implies that h ∪ Id↾(X − B(0, a)) is

1 + ‖v‖
r0−r−‖v‖ -bilips
hitz.For every x ∈ B(0, a), h(x) − x ∈ span({v}) ⊆ F . So x ∈ F i� h(x) ∈ F . Hen
e

h ∪ Id↾(X − B(0, a)) ∈ LIP(X;F ,S). Note also that h↾B(0, r) = trv↾B(0, r). So h ∪
Id↾(X − B(0, a)) ful�lls the requirements of (i) and (ii).(
) Let x0, . . . , xn ∈ [x, y] be su
h that x0 = x, x1 = y and ‖xi − xi+1‖ < r/4 forevery i < n. By (b), for every i < n there is hi ∈ LIP(X;S,F) B(xi, r) su
h that
hi↾B(xi, 2r/3)) = trxi+1−xi

↾B(xi, 2r/3). Let h = h0 ◦ · · · ◦hn−1. Then h is as required.Note that n 
an be 
hosen to be [4‖x − y‖/r] + 1. By (b) ea
h hi is (1 + r/4
r−2r/3−r/4)-bilips
hitz. That is, hi is 4-bilips
hitz. Hen
e Kseg(ℓ, t) = 4[4ℓ/t]+1.(d) Let x = γ(s), y = γ(1), L = γ([s, 1]) and r = d(L, (X − U) ∪ {s(0)}). There is asequen
e of balls B(x1, r), . . . , B(xn, r) su
h that x1, . . . , xn ∈ L and ⋃n

i=1B(xi, r) ⊇ L.We may assume that x ∈ B(x1, r), y ∈ B(xn, r), and B(xi, r) ∩ B(xi+1, r) 6= ∅ for every
i < n. For every i < n let yi ∈ B(xi, r) ∩B(xi+1, r). Set y0 = x and yn = y. By (b), forevery i = 1, . . . , n there is hi ∈ LIP(X) su
h that hi(yi−1) = yi and supp(hi) ⊆ B(xi, r).Clearly, hn ◦ · · · ◦h1 is as required.The following observation will be used in many arguments. Its proof is left to thereader.Proposition 2.15. (a) Let X be a metri
 spa
e, and ~x be a sequen
e in X. Then either
~x has a Cau
hy subsequen
e, or there are r > 0 and a subsequen
e {yn | n ∈ N} of ~xsu
h that for distin
t i, j ∈ N, d(yi, yj) ≥ r.(b) Let X be a metri
 spa
e and {xi | i ∈ N} ⊆ X be a bounded sequen
e. Theneither {xi | i ∈ N} has a Cau
hy subsequen
e, or there is a subsequen
e {yi | i ∈ N} of
{xi | i ∈ N} and r > 0 su
h that for every ε > 0 there is N ∈ N su
h that |d(yi, yj)−r| < εfor distin
t n,m > N .Proposition 2.16. (a) If U1 ⊆ U ≺ V ⊆ V1, then U1 ≺ V1.(b) If U ≺ V for some V , then U is small.(
) Let B(x, r) and B(y, s) be manageable balls based on the same S. If cl(B(x, r)) ⊆
B(y, s), then B(x, r) ≺ B(y, s).(d) If U ∈ Ro(X) is a subset of a manageable ball , then U is small.(e) If U ≺ V , then cl(U) ⊆ V .(f) If B is a manageable ball of X, then B ∈ Ro(X) and B is small.Proof. Parts (a) and (b) follow trivially from the de�nitions.(
) Note that if cl(B(x, r)) ⊆ B(y, s), then ‖x−y‖+r < s. So (
) follows from Lemma2.14(b).



Re
onstru
tion of manifolds from subgroups of homeomorphism groups 35(d) Suppose that U ⊆ B, and B is a manageable ball. There is a manageable ball B′with the same 
enter as B su
h that cl(B) ⊆ B′. Obviously, B and B′ are based on thesame S. So by (
), B ≺ B′. By (a), U ≺ B′. By (b), U is small.(e) Suppose that x ∈ cl(U) − V . Let ∅ 6= W ⊆ V . Then there is ∅ 6= W ′ ⊆ Wsu
h that cl(W ′) ⊆ W . Let g ∈ G V . Then g(x) = x. Suppose by 
ontradi
tion that
g(U) ⊆W ′. Then g(x) ∈ g(cl(U)) ⊆ cl(W ′) ⊆W 6∋ x. A 
ontradi
tion.(f) B ∈ Ro(E) and int(cl(B)) = intE(clE(B)). So B ∈ Ro(X).Let U ⊆ Ro(X). We use ∑U to denote the supremum of U in the 
omplete Booleanalgebra Ro(X). It is easy to 
he
k that ∑U = int(cl(

⋃U)).Definition 2.17. (a) Let U ⊆ V and U ⊆ Ro(X). U is 
alled a V -small semi
over of Uif ∑U = U and U ′ ≺ V for every U ′ ∈ U .(b) Let U be a V -small semi
over of U , and let {Ui | i ∈ I} be a 1-1 enumerationof U . We say that U is a V -good semi
over of U if the following holds. For every J ⊆ Iand {Wj | j ∈ J} ⊆ Ro(X): if J is in�nite and ∅ 6= Wj ⊆ Uj for every j ∈ J , thenthere are pairwise disjoint in�nite J1, J2 ⊆ J and {W ′
j | j ∈ J1 ∪ J2} ⊆ Ro(X) su
h that

∅ 6= W ′
j ⊆Wj for every j ∈ J1 ∪ J2 and ∑

j∈J1
W ′
j
←‖→

∑
j∈J2

W ′
j .(
) For a normed ve
tor spa
e E let E denote the 
ompletion of E. So E is a Bana
hspa
e.(d) Let Z be a topologi
al spa
e. Suppose that F ⊆ H(Z) and supp(f)∩ supp(g) = ∅for distin
t f, g ∈ F . We de�ne

◦F :=
⋃
{f↾supp(f) | f ∈ F} ∪ Id↾(Z −

⋃
{supp(f) | f ∈ F}).Let F = {fn | n ∈ N} ⊆ H(Z) be su
h that for any distin
t m,n ∈ N, Then ◦n∈N fn

:= ◦F . �Lemma 2.18. Let V be a small set. Then for every U ∈ Ro(X): cl(U) ⊆ V i� U has a
V -good semi
over.Proof. Suppose that cl(U) 6⊆ V . Let U be a V -small semi
over of U ; we show that Uis not V -good. The fa
t that V is small is not used in the proof of this dire
tion. Let
x ∈ cl(U) − V . If U ′ ∈ U , then by 2.16(e), cl(U ′) ⊆ V . By indu
tion on i ∈ N we de�ne
Ui ∈ U and Wi ⊆ Ui. Let U0 be any member of U and W0 = U0. Suppose U0, . . . , Ui−1and W0, . . . ,Wi−1 have been de�ned. Let Bi be a ball with 
enter at x and radius < 1/isu
h that Bi ∩ ⋃

j<i Uj = ∅. Let Ui ∈ U be su
h that Bi ∩ Ui 6= ∅, and let Wi =

Ui ∩ int(cl(Bi)). So Wi ∈ Ro(X). For every in�nite J ′ ⊆ N and {W ′
j | j ∈ J ′} ⊆ Ro(X):if ∅ 6= W ′

j ⊆ Wj for every j ∈ J ′, then x ∈ cl(
∑
j∈J′ W ′

j). Suppose by 
ontradi
tionthat U is V -good. The family {Ui | i ∈ N} is an in�nite subset of U , and Wi ⊆ Ui forevery i ∈ N. So let J1, J2 and {W ′
j | j ∈ J1 ∪ J2} be as required in the de�nition of

V -goodness for {Ui | i ∈ N} and {Wi | i ∈ N}, and let W strongly separate ∑
j∈J1

W ′
jfrom ∑

j∈J2
W ′
j . Sin
e x ∈ cl(

∑
j∈J2

W ′
j) and W ∩∑

j∈J2
W ′
j = ∅, it follows that x 6∈W .But x ∈ cl(

∑
j∈J1

W ′
j). So by 2.16(e), ∑

j∈J1
W ′
j 6≺W . A 
ontradi
tion.Assume next that V is small and that cl(U) ⊆ V ; we will 
onstru
t a V -good semi
over

U of U . Sin
e V is small, there is g ∈ G su
h that g(V ) is 
ontained in a manageableball. Obviously cl(g(U)) ⊆ g(V ). Clearly, g(U) has a g(V )-good semi
over i� U has a
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V -good semi
over. In fa
t, this follows from Proposition 2.13(a). We may thus assumethat V is 
ontained in a manageable ball. This means that cl(U) = clE(U).We may further assume that there is a manageable ball B∗ = BE(x∗, r∗) su
h that
V ⊆ BE(x∗, r∗/16). Suppose that B∗ is based on S∗ , and denote FS∗ by F ∗ . We mayassume that x∗ ∈ F ∗ . For every x ∈ cl(U) let Wx ∈ Ro(X) be su
h that x ∈Wx ≺ V .The existen
e of Wx follows from Proposition 2.16(
), (a) and (f). Sin
e cl(U) is para-
ompa
t, there is an open lo
ally �nite re�nement T of {Wx | x ∈ cl(U)} su
h that
cl(U) ⊆ ⋃ T . Let U = {int(cl(T ))∩U | T ∈ T }. By Proposition 2.13(b)(ii), U ⊆ Ro(X).Clearly, ⋃U = U . So ∑U = U .We show that for every x ∈ cl(U) there is a neighborhood Sx su
h that {U ′ ∈ U |
U ′ ∩ Sx 6= ∅} is �nite. For x ∈ cl(U) let Sx be an open neighborhood of x su
h that
{T ∈ T | T ∩ Sx 6= ∅} is �nite. By Proposition 2.13(b)(iv), {T ∈ T | int(cl(T ))∩ Sx 6= ∅}is �nite. So {T ∈ T | (int(cl(T ))∩U)∩Sx 6= ∅} is �nite. That is, {U ′ ∈ U | U ′ ∩Sx 6= ∅}is �nite.We show that U is V -good. Let {Ui | i ∈ N} ⊆ U be su
h that Ui 6= Uj for every
i 6= j; and let ∅ 6= Wi ⊆ Ui. We shall �nd J1, J2 and {W ′

j | j ∈ J1 ∪ J2} as required inthe de�nition of V -goodness. For every i ∈ N let xi ∈Wi ∩ F ∗ .Claim 1. {xi | i ∈ N} does not 
ontain a 
onvergent subsequen
e.Proof. If x is a limit of su
h a subsequen
e, then x ∈ cl(U), but then Sx interse
ts only�nitely many Ui's. So {i ∈ N | xi ∈ Sx} is �nite. A 
ontradi
tion, so the 
laim is proved.By Claim 1 and Proposition 2.15(b), either (i) or (ii) below happen:(i) E is in
omplete, there is an in�nite J ⊆ N su
h that {xi | i ∈ J} is a Cau
hysequen
e, and {xi | i ∈ J} is not 
onvergent in clE(X).(ii) There is in�nite J ⊆ N and an r > 0 su
h that for any distin
t i, j ∈ J , r <
‖xi − xj‖ < 9r/8.Case (i). Let x̄ = limE

i∈J xi. Hen
e x̄ ∈ clE(V ) − X. Sin
e V ⊆ BE(x∗, r∗/16), thereis r > 0 su
h that BE(x̄, r) ∩ E ⊆ BE(x∗, r∗/8). So x̄ 6∈ E. We may assume that
xi ∈ BE(x̄, r/8) for every i ∈ J . Let v ∈ F ∗ and ‖v‖ = r/2. Let Li = [xi, xi + v]and L = [x̄, x̄ + v]. So Li ⊆ BF

∗
(x∗, r∗/8) for every i ∈ J . Also, L ⊆ E − E. One
an 
hoose an in�nite subset J0 ⊆ J and a sequen
e {ri | i ∈ J0} ⊆ (0, r/8) su
h that

BE(xi, ri) ⊆Wi for every i ∈ J0, and clE(B(Li, ri)) ∩ clE(B(Lj , rj)) = ∅ for distin
t
i, j ∈ J0.For every i ∈ J0 let W ′

i = B(xi, ri/3). Let J1 ⊆ J0 be su
h that J1 and J0 − J1 arein�nite, and let J2 = J0 − J1. For ℓ = 1, 2 let W ℓ =
∑
i∈Jℓ

W ′
i . We shall show that

W 1 ←‖→W 2.For every i ∈ J1, ‖xi− x̄‖ < r/8 and ri < r/8, and for every u ∈ Li, we have ‖u−xi‖
≤ ‖(xi+v)−xi‖ = r/2. It follows that for every u ∈ B(Li, ri), ‖u− x̄‖ < r/8+r/2+r/8

= 3r/4. So B(Li, ri) ⊆ B(x̄, r) ⊆ B(x∗, r∗) ⊆ S∗ .By Lemma 2.14(
), for every i ∈ J1 there is hi ∈ LIP(X;S,F) B(Li, ri) su
h that
hi(B(xi, ri/3)) = B(xi + v, ri/3). Let h = ◦i∈J1

hi. We show that h ∈ LIPLC(X;S,F).Clearly, supp(h) =
⋃
i∈J1

supp(hi) ⊆ S∗ . We show that for every u ∈ E, there is a
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tion of manifolds from subgroups of homeomorphism groups 37neighborhood Vu of u su
h that |{i ∈ J1 | B(Li, ri) ∩ Vu 6= ∅}| ≤ 1. Suppose that u is a
ounter-example. Sin
e {xi | i ∈ N} is a Cau
hy sequen
e and the B(xi, ri)'s are pairwisedisjoint, limi ri = 0. Sin
e for i 6= j, clE(B(Li, ri)) ∩ clE(B(Lj , rj)) = ∅, there is at mostone i su
h that u ∈ clE(B(Li, ri)). Hen
e there is an in�nite set J3 ⊆ J1 and a sequen
e
{ui | i ∈ J3} su
h that ui ∈ B(Li, ri) for every i ∈ J3, and limi∈J3

ui = u. There are
yi ∈ Li su
h that ‖yi − ui‖ < ri. Hen
e limi∈J3

yi = u. Let yi = xi + tiv. Sin
e {xi} and
{yi} 
onverge in E, limi∈J3

ti exists. Also, limi∈J3
ti ∈ [0, 1]. So u ∈ [x̄, x̄ + v]. Hen
e

u 6∈ E, a 
ontradi
tion.Let u ∈ X. Then there is i ∈ J1 su
h that h↾Vu = hi↾Vu. So h↾Vu is bilips
hitz.This means that h ∈ LIPLC(X;S,F). Sin
e E is in
omplete, LIPLC(X;S,F) ⊆ G. So
h ∈ G.We shall prove that h(W 1) ←‖→ W 2. Let us �rst see that h(W 1) ⊆ BE(x̄ + v, r/6).We have h(W 1) =

⋃
i∈J1

hi(W
′
i ) =

⋃
i∈J1

hi(B(xi, ri/3)) =
⋃
i∈J1

B(xi + v, ri/3). Also,
‖(xi+ v)− (x̄+ v)‖ = ‖xi− x̄‖ < r/8. Sin
e ‖xi− x̄‖ < r/8 and x̄ 6∈ BE(xi, ri), it followsthat ri < r/8. So B(xi + v, ri/3) ⊆ BE(x̄ + v, r/6). That is, h(W ′

i ) ⊆ BE(x̄ + v, r/6).Hen
e h(W 1) ⊆ BE(x̄+ v, r/6).Similarly, W 2 ⊆ BE(x̄, r/6). Sin
e ‖(x̄ + v) − x̄‖ = r/2 > r/3, there are x̂ ∈ E and
0 < s0 < s1 su
h that BE(x̄ + v, r/6) ⊆ BE(x̂, s0) and BE(x̂, s1) ∩ BE(x̄, r/6) = ∅. So
h(W 1) ⊆ BE(x̂, s0). By Propositions 2.16(
) and 2.16(a), h(W 1) ≺ BE(x̂, s1). Sin
e
BE(x̂, s1) ∩W 2 = ∅, it follows that h(W 1) ←‖→W 2.Note that h(W 2) = W 2. By Proposition 2.13(a), h−1(h(W 1)) ←‖→ h−1(W 2). But
h−1(h(W 1)) = W 1 and W 2 = h−1(h(W 2)). So W 1 ←‖→W 2.Case (ii). Sin
e the xi's belong to BE(x∗, r∗/16) and r < ‖xi − xj‖, it follows that
r < r∗/8. Let i0 ∈ J and J1 and J2 be disjoint in�nite subsets of J not 
ontaining i0. Forevery i ∈ J1 ∪ J2 let Bi = BE(xi, r/8) and W ′

i = Bi ∩Wi. Clearly, Bi ⊆ BE(x∗, 3r∗/16).So Bi ⊆ X, and hen
e W ′
i ∈ Ro(X). For ℓ = 1, 2 let W ℓ =

∑
i∈Jℓ

W ′
i , and let W =

B(xi0 , 2r).We shall show that:(∗) There is h ∈ LIP(E;BE(xi0 , 3r), F
∗) su
h that h↾W 1 = Id and h(W 2) ∩W = ∅.But �rst we prove that (∗) implies that W 1 ←‖→ W 2. If x ∈ BE(xi0 , 3r), then

‖x − x∗‖ ≤ ‖x − x∗‖ + 3r < r∗/16 + 3r∗/8 = 7r∗/16. So BE(xi0 , 3r) ⊆ B∗ ⊆ S∗ .Hen
e h↾X ∈ LIP(X;S∗ , F ∗) ⊆ LIP(X;S,F). Now, W 1 ⊆ B(0, 5r/4), so by 2.16(
)and 2.16(a), W 1 ≺ W . Also h(W 2) ∩W = ∅. Hen
e W strongly separates W 1 from
h(W 2). That is, W 1 ←‖→ h(W 2). By Proposition 2.13(a), h−1(W 1) ←‖→ h−1(h(W 2)).But h−1(W 1) = W 1 and W 2 = h−1(h(W 2)). So W 1 ←‖→W 2.To 
omplete the proof, it remains to show that (∗) holds. For simpli
ity let us assumethat xi0 = 0 and that r = 1. We de�ne a fun
tion g : [0, 3] × [0,∞) → R as follows. Forevery s0 ∈ [0, 3], g(s0, t) will be a pie
ewise linear homeomorphism of [0,∞]. Let a(s) bethe linear fun
tion su
h that a(3/8) = 3/4 and a(5/8) = 2.If s0 ≤ 3/8, then g(s0, t) = t. If 3/8 ≤ s0 ≤ 5/8, then

g(s0, t) =

{
t, t ≤ 1

2 ,
a(s0)− 1

2
3
4
− 1

2

(t− 1
2 ) + 1

2 ,
1
2 ≤ t ≤ 3

4 ,
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g(s0, t) =

{
3−a(s0)

3− 3
4

(t− 3) + 3, 3
4 ≤ t ≤ 3,

t, 3 ≤ t.If 5/8 ≤ s0 ≤ 3, then g(s0, t) = g(5/8, t).Let F = {xi | i ∈ J1} and
h(x) =

{
g(d( x

‖x‖ , F ), ‖x‖) · x
‖x‖ , x 6= 0,

0, x = 0.We leave it to the reader to 
he
k that h ∈ LIP(E;BE(0, 3), FS∗).If i ∈ J1 ∪ J2 and x ∈ Bi, then ‖ x
‖x‖ − xi‖ ≤ ‖ x

‖x‖ − x‖+ ‖x− xi‖ < 1/4 + 1/8 = 3/8.Let x ∈ W 1. There is i ∈ J1 su
h that x ∈ Bi. Hen
e d( x
‖x‖ , F ) ≤ ‖ x

‖x‖ − xi‖ < 3/8.So g(d( x
‖x‖ , F ), ‖x‖) = ‖x‖, and hen
e h(x) = x. Let x ∈ W 2. There is i ∈ J2 su
h that

x ∈ Bi. So d( x
‖x‖ , F ) ≥ d(xi, F ) − ‖ x

‖x‖ − xi‖ > 1 − 3/8 = 5/8. Also, ‖x‖ > 7/8. Hen
e
‖h(x)‖ =

∥∥∥∥g
(
d

(
x

‖x‖ , F
)
, ‖x‖

)
· x

‖x‖

∥∥∥∥

= g

(
d

(
x

‖x‖ , F
)
, ‖x‖

)
= g(5/8, ‖x‖) > g(5/8, 3/4) = 2.We have proved (∗), so the proof of the lemma is 
omplete.Lemma 2.19. Let V be a small set. Then for every U : cl(U) ∩ cl(V ) 6= ∅ i� for everysmall V1: if cl(V ) ⊆ V1, then V1 ∩ U 6= ∅.Proof. If cl(U) ∩ cl(V ) 6= ∅, then 
learly V1 ∩ U 6= ∅ for every V1 ⊇ cl(V ). Conversely,suppose that V is small and cl(V )∩cl(U) = ∅. Let V ′ be a small set su
h that cl(V ) ⊆ V ′,and let V1 = V ′ ∩ int(X − U). Sin
e int(X − U) ⊇ cl(V ), V1 ⊇ cl(V ), hen
e V1 is asrequired.Lemma 2.20. Let U and V be small sets. Then |cl(U)∩cl(V )| = 1 i� the following holds.(i) cl(U) ∩ cl(V ) 6= ∅,(ii) for every small W1 and W2: if cl(U ∩W1) ∩ cl(V ∩W1) 6= ∅ and cl(U ∩W2) ∩

cl(V ∩W2) 6= ∅, then cl(W1) ∩ cl(W2) 6= ∅.Proof. Suppose that x1, x2 ∈ cl(U) ∩ cl(V ) and x1 6= x2. For i = 1, 2 let Wi ∈ Ro(X)be a neighborhood of xi su
h that Wi is small and Wi ⊆ BX(xi,
1
3‖x2 − x1‖). Then

cl(U ∩Wi) ∩ cl(V ∩Wi) 6= ∅ for i = 1, 2, but cl(W1) ∩ cl(W2) = ∅.Suppose that cl(U) ∩ cl(V ) = {x} and let Wi, i = 1, 2, be su
h that cl(U ∩Wi) ∩
cl(V ∩Wi) 6= ∅. Hen
e x ∈ cl(W1) ∩ cl(W2).Lemma 2.21. For i = 1, 2 let Ui, Vi be small sets su
h that |cl(Ui) ∩ cl(Vi)| = 1. Then
cl(U1)∩cl(V1) = cl(U2)∩cl(V2) i� (∗) for any smallW1,W2: if cl(Ui∩Wi)∩cl(Vi∩Wi) 6= ∅,
i = 1, 2, then cl(W1) ∩ cl(W2) 6= ∅.Proof. Similar to 2.20.Lemma 2.22. Let U, V be small sets su
h that cl(U)∩cl(V ) = {x} andW ∈ Ro(X). Then
x ∈W i� (∗) for any small U ′, V ′: if cl(U ′) ∩ cl(V ′) = cl(U) ∩ cl(V ), then U ′ ∩W 6= ∅.Proof. It is trivial that if x ∈W , then (∗) holds.
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onstru
tion of manifolds from subgroups of homeomorphism groups 39Suppose that x 6∈ W . Sin
e W is regular open, x ∈ cl(X − cl(W )). Let B be amanageable ball 
ontaining x. So let {xi | i ∈ N} ⊆ B be a 1-1 sequen
e 
onvergingto x and disjoint from cl(W ). Let ri = 1
3 min(1/i, d(xi, {xj | j 6= i} ∪W ∪ (X − B))).Let U ′ =

⋃{BE(xi, ri) | i is odd} and V ′ =
⋃{BE(xi, ri) | i is even}. Then U ′, V ′ ⊆

B ⊆ X. It is easy to see that U ′, V ′ ∈ Ro(X). Also, sin
e U ′, V ′ ⊆ B, they are small.We have cl(U ′) ∩ cl(V ′) = {x} = cl(U) ∩ cl(V ), and U ′ ∩ W = ∅. So (∗) does nothold.Lemma 2.23. For every x ∈ X there are small U, V su
h that cl(U) ∩ cl(V ) = {x}.Proof. Use the 
onstru
tion of 2.22.Proof of Theorem 2.8. Re
all that 2.8(a) is a spe
ial 
ase of 2.8(b). We prove (b).Let 〈X1, G1 〉, 〈X2, G2 〉 ∈ KBNO and ϕ : G1
∼= G2. It is trivial that 〈Ro(Xi), Gi 〉 aretopologi
al lo
al movement systems. Indeed, this follows from Lemma 2.14(a). Hen
e byTheorem 2.3, there is η : Ro(X1) ∼= Ro(X2) su
h that ϕ∪η : MR(X1, G1) ∼= MR(X2, G2).Let ψ = ϕ ∪ η.As in Remark 2.11 the property of U being a V -small semi
over of U is expressedin terms of the operations of MR(X,G). That is, there is a formula ϕsm-sc(X , x, y)expressed in terms of the operations of MR(X,G) su
h that for every 〈X,G 〉 ∈ KBNO,

U ⊆ Ro(X) and U, V ∈ Ro(X), 〈 U , U, V 〉 satis�es ϕsm-sc(X , x, y) in MR(X,G) i� U is a
V -small semi
over of U . Hen
e, if U is a V -small semi
over of U in MR(X1, G1), then
ψ(U) := {ψ(U ′) | U ′ ∈ U} is a ψ(V )-small semi
over of ψ(U) in MR(X2, G2).The same fa
t is true for the property of being a V -good semi
over.Lemmas 2.18�2.22, and the existen
e of the formulas χSml et
. of Remark 2.11 implythat the following properties are expressible in terms of the operations of MR(X,G).(1) U and V are small, and cl(U) ∩ cl(V ) is a singleton.(2) U1, V1, U2, V2 are small, cl(U1) ∩ cl(V1) is a singleton, and cl(U1) ∩ cl(V1) =

cl(U2) ∩ cl(V2).(3) U and V are small, cl(U) ∩ cl(V ) is a singleton, and cl(U) ∩ cl(V ) ⊆W .A word of 
aution. In (1)�(3) smallness 
annot be omitted. This is so, sin
e in Lemmas2.18�2.22 the equivalen
e of (1)�(3) to the expressible properties mentioned there wasproved only under the assumption that the sets in question are small.We are ready to de�ne τ : X1 → X2. Let x ∈ X1. By Lemma 2.23, there are small Uand V su
h that {x} = cl(U) ∩ cl(V ). Sin
e ψ is an isomorphism between MR(X1, G1)and MR(X2, G2), and by the expressibility of (1) above, cl(ψ(U))∩cl(ψ(V )) is a singleton.Denote it by {y} and de�ne τ (x) = y.By the expressibility of (2) above: if U ′, V ′ are small and {x} = cl(U ′)∩ cl(V ′), then
cl(ψ(U ′)∩cl(ψ(V ′)) = {y}. So the de�nition of τ is valid. As in the proof of Theorem 2.5,Lemma 2.23 and the expressibility of (1) and (2) imply that τ is 1-1 and onto. As in theproof of Theorem 2.5, the expressibility of (3) implies that τ is a homeomorphism andthat τ indu
es ϕ. This 
ompletes the proof of Theorem 2.8.Consider the 
lass
KNL = {〈X,G 〉 | X is an open subset of a normed spa
e and LIP(X) ≤ G ≤ H(X)}.



40 M. Rubin and Y. YomdinIt is not known whether KNL is faithful. But we 
an show the faithfulness of the sub
lassof KNL 
onsisting of those 〈X,G 〉's in whi
h X is a �rst 
ategory topologi
al spa
e and
G is internally extendible. (See below.) To this end we have strengthened the originalstatement of Theorem 2.8, and in
luded G's whi
h are required to 
ontain LIP(X;F )rather than LIP(X). Sin
e LIP(X;F ) ⊆ LIP(X), this is a stronger result.Definition 2.24. Suppose that E is a normed ve
tor spa
e, and that X ⊆ E is open.(a) The 
omplete interior of X in E is de�ned by

int
E

(X) =
⋃{BE(x, r) | x ∈ E and BE(x, r) ⊆ X}.Note that int

E
(X) is open in E.(b) Let h ∈ H(X). We say that h is internally extendible in E if there is h̄ ∈

H(int
E

(X)) su
h that h̄ extends h. Let IXTE(X) denote the group of internally ex-tendible homeomorphisms of X.(
) Let X be an open subset of a normed spa
e E, and U be a set of open subsets of
X. Then U is a 
omplete 
over of X if ⋃{int(U) | U ∈ U} = int(X).(d) For a subset A of a metri
 spa
e denote the diameter of A by diam(A). That is,
diam(A) = supx,y∈A d(x, y). So diam(A) ∈ R ∪ {∞}. �The following proposition is known. See [BP℄, the 
hapter on in
omplete norms. Wepresent a proof here.Proposition 2.25. (a) Let E be a normed spa
e and x, y ∈ BE(0, a)−E. Then there is
h ∈ LIP(E;E) BE(0, a) su
h that h(x) = y.(b) Let E be a normed spa
e, x ∈ BE(0, a) and y ∈ BE(0, a) − E. Then there is
h ∈ LIP(E) BE(0, a) su
h that h(E − {x}) = E and h(x) = y.Proof. (a) We leave the straightforward proof of the following 
laim to the reader.Claim 1. Let E be a normed spa
e. Let {Kn | n ∈ N} ⊆ (1,∞) be su
h that ∏

n∈N
Kn

<∞ and {gn | n ∈ N} ⊆ LIP(E;E) be su
h that :(1) gn is Kn-bilips
hitz ;(2) ∑
n∈N

diam(supp(gn)) <∞;(3) there is x0 ∈ E − E and a sequen
e {rn | n ∈ N} ⊆ (0,∞) 
onverging to 0 su
hthat for every n ∈ N, supp(gn) ⊆ gn−1 ◦ · · · ◦ g0(BE(x0, rn)).Let hn = gn−1 ◦ · · · ◦ g0. Then for every x ∈ E, limn→∞ hn(x) exists. De�ne h(x) =

limn→∞ hn(x). Then h ∈ LIP(E;E).We 
onstru
t gn's whi
h satisfy the assumptions of Claim 1. Let {Mn | n ∈ N}
⊆ (3,∞) be su
h that ∏

n∈N
(1 + 1/(Mn − 3)) < ∞. We may assume that ‖x − y‖

·M0 < a. Set x = x0 and ‖x − y‖ = d0. De�ne dn by indu
tion as follows: dn+1 =

dn/Mn+1.We shall apply Proposition 2.14(b)(ii). The normed spa
e E of 2.14 is taken to be
E, S = {E}, FE = E and a of 2.14(b) is a here. The homeomorphism h 
onstru
ted inProposition 2.14(b) depended on the ve
tors x0 and v and on the radii r0 and r. Denotethat h by hx0,v,r0,r.
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onstru
tion of manifolds from subgroups of homeomorphism groups 41We de�ne gn and xn+1 by indu
tion. Suppose that xn has been de�ned. Let
un = dn+1 ·

y − xn
‖y − xn‖

and fn = hxn,un,Mndn,2dn
.So supp(fn) ⊆ B(xn,Mndn). Note that fn is (1 + dn

Mndn−2dn−dn+1
)-bilips
hitz. Sin
e

dn+1 < dn, we have dn

Mndn−2dn−dn+1
> 1

Mn−3 . So(1.1) ‖y − fn(xn)‖ = dn+1 < 2dn+1,(1.2) fn↾B(xn, 2dn) = trun
↾B(xn, 2dn),(1.3) for some ε > 0, fn is (1 + 1

Mn−3 + ε)-bilips
hitz,(1.4) if n > 0, then for some ε > 0, supp(fn) ⊆ B(xn, dn−1 − ε).Choose yn, vn ∈ E 
lose enough to xn and un respe
tively so that for gn de�ned by
gn = hyn,vn,Mndn,2dn

the following holds:(2.1) ‖y − gn(xn)‖ < 2dn+1,(2.2) gn↾B(xn, dn) = trvn
↾B(xn, dn),(2.3) gn is (1 + 1

Mn−3 )-bilips
hitz,(2.4) if n > 0, then supp(gn) ⊆ B(xn, dn−1).Let xn+1 = gn(xn). So xn+1 = xn + vn. Also, gn ∈ LIP(E;E)We 
he
k that (1)�(3) of Claim 1 are ful�lled. Clearly, Kn = 1 + 1
Mn−3 , n ∈ N ful�ll
lause (1). Sin
e dn+1 < dn/3, we have ∑

n∈N
dn < ∞. So ∑

n∈N
diam(supp(gn)) <∑

n∈N
2dn <∞, proving (2).Let hn = gn ◦ · · · ◦ g0 and wn =

∑
i≤n vi. We show by indu
tion that(2.5) hn↾B(x0, dn) = trwn

↾B(x0, dn) for every n ∈ N.By (2.2), this is true for n = 0. Assume it is true for n. Hen
e xn+1 = hn(x0) = x0 +wn.For n+ 1 we have
hn+1↾B(x0, dn+1) = (gn+1 ◦hn)↾B(x0, dn+1) = gn+1↾hn(B(x0, dn+1)) ◦ trwn

↾B(x0, dn+1)

= gn+1↾B(x0 + wn, dn+1) ◦ trwn
↾B(x0, dn+1) = gn+1↾B(xn+1, dn+1) ◦ trwn

↾B(x0, dn+1)

= trvn+1
↾B(xn+1, dn+1) ◦ trwn

↾B(x0, dn+1) = trwn+1
↾B(x0, dn+1).It follows from (2.4) and (2.5) that supp(gn+1) ⊆ B(xn+1, dn) = hn(B(x0, dn)). Sin
e

limn→∞ dn = 0, 
lause (3) of Claim 1 holds. Let h be as 
onstru
ted in Claim 1. So
h ∈ LIP(E;E).Sin
e ‖y−xn‖ = dn and limn→∞ dn = 0, we have h(x) = y. We show that supp(gn) ⊆
B(x, a) for every n ∈ N. For n = 0, supp(g0) ⊆ B(x,M0d0) ⊆ B(x, a). Suppose that
n > 0. Then supp(gn) ⊆ B(xn,Mndn) ⊆ B(x,Mndn + ‖xn − x‖). Sin
e
Mndn + ‖xn − x‖ ≤Mndn + ‖xn − y‖ + ‖y − x‖ < dn−1 + 2dn + d0 < 3d0 < M0d0 < a,we have supp(gn) ⊆ B(x, a). It follows that supp(h) ⊆ B(x, a). So h is as required.(b) The proof is very similar to the proof of (a).Corollary 2.26. Let KNFCB be the 
lass of all spa
e-group pairs 〈X,G 〉 for whi
h thereis a normed spa
e E su
h that X is an open subset of E and(1) E is of the �rst 
ategory , or E is a Bana
h spa
e;
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omplete 
over U of X su
h that LIP(X,U) ≤ G ≤ IXT(X).Then KNFCB is faithful.Proof. Let 〈X,G 〉 ∈ KNFCB. For g ∈ G let ḡ be the extension of g to int(X) and
G = {ḡ | g ∈ G}. Then 〈int

E
(X), G 〉 ∈ KBO.Let O(X,G) be the set of orbits of G. That is, O(X,G) = {G(x) | x ∈ int(X)}. Itfollows from Proposition 2.25(a) that if X is an open subset of an in
omplete normedspa
e, then for every O ∈ O(X,G) there is a set C of 
onne
ted 
omponents of int(X)su
h that O = E∩⋃ C or O = (E−E)∩⋃ C. Clearly, if X is an open subset of a Bana
hspa
e, then for every O ∈ O(X,G) there is a set of 
onne
ted 
omponents of X su
h that

O =
⋃ C. Let FC(X,G) =

⋃{O ∈ O(X,G) | O is a �rst 
ategory set}. If X is of the�rst 
ategory, then X = FC(X,G).For i = 1, 2 let 〈Ei, Gi 〉 ∈ KNFCB, and let ϕ : G1
∼= G2. Let ϕ̄ : G1 → G2 bede�ned by ϕ̄(ḡ) = ϕ(g). Then ϕ̄ : G1

∼= G2. By Theorem 2.8(b), there is τ̄ : E1
∼= E2whi
h indu
es ϕ̄. Obviously, τ̄ takes orbits of G1 to orbits of G2. So O(X,G1) 
ontainsmembers of the �rst 
ategory i� O(X,G2) 
ontains members of the �rst 
ategory.It is obvious that τ̄ takes every �rst 
ategory orbit of G1 to a �rst 
ategory orbit of

G2. So if X1 is of the �rst 
ategory, then τ̄(X1) = τ̄(FC(X1, G1)) = FC(X2, G2) = X2,and hen
e τ : X1
∼= X2. If X1 is an open subset of a Bana
h spa
e, then τ̄ = τ and hen
e

τ : X1
∼= X2.Remark 2.27. If E has a 
ountable Hamel basis, then it is of the �rst 
ategory. Thespa
e ℓ1 is a linear subspa
e of ℓ2, and it is of the �rst 
ategory in ℓ2.This is a spe
ial 
ase of the following fa
t. If T : F → E is a bounded linear operatorfrom a Bana
h spa
e F to a Bana
h spa
e E, and Rng(T ) is a proper dense subset of

E, then Rng(T ) is of the �rst 
ategory in E. This follows from the proof of the OpenMapping Theorem. If Rng(T ) is of the se
ond 
ategory, then for some ball B = BF (0, n),
T (B) is somewhere dense. Hen
e T (B) is dense in some ball of the form BE(0, r). It 
anthen be proved that T (B) ⊇ BE(0, r). This implies that Rng(T ) = E. �In Corollary 2.26 the assumptions that E is of the �rst 
ategory, and that G is
ompletely extendible are undesirable. We do not know whether they 
an be dispensedwith.The �nal re
onstru
tion results of Chapter 5 are proved for open subsets of �rst
ategory normed ve
tor spa
es and for open subsets of Bana
h spa
es. The proofs of allintermediate theorems are valid for open subsets of any normed spa
e. If Parts (
) or (d)of the following question have a negative answer, then the �nal results of Chapter 5 willbe true for open subsets of any normed ve
tor spa
e.On the other hand, examples answering (
) or (d) below in the a�rmative imply that
ertain results in Chapter 5 are not true for arbitrary normed spa
es.Question 2.28. (a) Is KNL faithful?(b) LetKNLIX be the sub
lass ofKNL 
onsisting of all 〈E,G 〉's in whi
h G is internallyextendible. Is KNLIX faithful?(
) Are there normed spa
es E and F and a homeomorphism τ : E ∼= F su
h that
τ (E) = F − F?
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onstru
tion of manifolds from subgroups of homeomorphism groups 43Note that the answer to (b) is positive i� the answer to (
) is negative.(d) Are there normed spa
es E and F and a uniformly bi
ontinuous homeomorphism
τ : E ∼= F su
h that τ (E) = F − F? �2.4. Faithfulness of normed manifolds. As has been mentioned, the proof of The-orem 2.8 extends without 
hange to manifolds over normed ve
tor spa
es. This 
lass
ontains some new instan
es. The unit sphere of a normed spa
e is one, and spa
eswhi
h are a �nite produ
t of manifolds are another.We extend the results a bit further, in order to allow the in
lusion of manifoldswith boundary over a normed ve
tor spa
e. To this end we introdu
e the notion of a�regionally normed manifold�. By 
ombining Remark 2.31 with the various results onextendible homeomorphism groups appearing in Chapter 5, one obtains re
onstru
tiontheorems for manifolds with boundary.It should be pointed out that no new arguments are needed for this new framework,Definition 2.29. (a) Let X be a topologi
al spa
e. A family of mappings Φ is 
alled aregional normed atlas for X if the following holds.(1) ⋃{Rng(ϕ) | ϕ ∈ Φ} is a dense subset of X.(2) For every ϕ ∈ Φ there is a normed spa
e E = Eϕ, x = xϕ ∈ E and r = rϕ > 0su
h that:(i) ϕ : BE(x, r) → X,(ii) ϕ is a homeomorphism between Dom(ϕ) and Rng(ϕ),(iii) Rng(ϕ) is 
losed in X, and ϕ(BE(x, r)) is open in X.If Φ is a regional normed atlas for X, then 〈X,Φ 〉 is 
alled a regionally normed manifold(RNM ). If X =

⋃{ϕ(BEϕ(xϕ, rϕ)) | ϕ ∈ Φ}, then 〈X,Φ 〉 is 
alled a normed manifold.Let 〈X,Φ 〉 be an RNM. If for every ϕ ∈ Φ, Eϕ is a Bana
h spa
e, then 〈X,Φ 〉 is said tobe a regional Bana
h manifold (RBM ). A normed manifold whi
h is an RBM is 
alled aBana
h manifold.(b) Re
all that for a metri
 spa
e (Y, d), x ∈ Y and r > 0, SY (x, r) denotes {y ∈ Y |
d(x, y) = r}. For a normed spa
e E, x ∈ E and r > 0 let

L1(E, x, r) := {h ∈ H(BE(x, r)) | h is bilips
hitz, and h↾S(x, r) = Id},
LLC

1 (E, x, r) := {h ∈ H(BE(x, r)) | h is lo
ally bilips
hitz, and h↾S(x, r) = Id}.Let F be a dense linear subspa
e of E. De�ne
L1(E, x, r;F ) := {h ∈ L1(E, x, r) | h(BE(x, r) ∩ F ) = BE(x, r) ∩ F},

LLC
1 (E, x, r;F ) := {h ∈ LLC

1 (E, x, r) | h(BE(x, r) ∩ F ) = BE(x, r) ∩ F}.If 〈X,Φ 〉 is an RNM, ϕ ∈ Φ and h ∈ LLC
1 (Eϕ, xϕ, rϕ), then h[ϕ] := hϕ∪Id↾(X−Rng(ϕ)) ∈

H(X). Suppose that F := {Fϕ | ϕ ∈ Φ} is a family of linear spa
es su
h that for every
ϕ ∈ Φ, Fϕ is a dense subspa
e of Eϕ. Then F is 
alled a subspa
e 
hoi
e for 〈X,Φ 〉.Let LIP(X;Φ,F) denote the subgroup of H(X) generated by {h[ϕ] | ϕ ∈ Φ, h ∈
L1(Eϕ, xϕ, rϕ;Fϕ)}. Let LIPLC(X;Φ,F) denote the subgroup of H(X) generated by
{h[ϕ] | ϕ ∈ Φ, h ∈ LLC

1 (Eϕ, xϕ, rϕ;Fϕ)}. If Fϕ = Eϕ for every ϕ ∈ Φ, then LIP(X;Φ,F)and LIPLC(X;Φ,F) are denoted by LIP(X;Φ) and LIPLC(X;Φ) respe
tively.



44 M. Rubin and Y. YomdinRemark: Even though the groups 
onsidered below 
ontain LIP(X;Φ,F), we do nothave to require at this point that the transition maps in the atlas be Lips
hitz. That is,we do not require that ϕ−1 ◦ψ is bilips
hitz for every ϕ, ψ ∈ Φ.(
) Let KBM be the 
lass of all 〈X,G 〉's whi
h satisfy the following: There are Φ and
F su
h that(1) 〈X,Φ 〉 is a Bana
h manifold and F is a subspa
e 
hoi
e for Φ,(2) LIP(X;Φ,F) ≤ G ≤ H(X).Let KNM be the 
lass of all 〈X,G 〉's whi
h satisfy the following: There are Φ and F su
hthat(1) 〈X,Φ 〉 is a normed manifold and F is a subspa
e 
hoi
e for Φ,(2) LIPLC(X;Φ,F) ≤ G ≤ H(X).Let KBNM = KBM ∪KNM.(d) Let 〈X,Φ 〉 be an RNM. The set NI(X,Φ) :=

⋃{ϕ(BEϕ(xϕ, rϕ)) | ϕ ∈ Φ} is 
alledthe normed interior of 〈X,Φ 〉.Let G ≤ H(X). The extended normed interior of 〈X,Φ, G〉 is de�ned as
ENI(X,Φ, G) := {g(x) | x ∈ NI(X,Φ) and g ∈ G}.Also, ENI(X,Φ, H(X)) is denoted by ENI(X,Φ).If X is a subset of a normed spa
e E and intE(X) is dense in X, then X is a regionalnormed manifold. As a regional normed atlas for X we take the set Φ = {Id↾BE(x, r) |

BE(x, r) ⊆ X}. We denote ENI(X,Φ) by ENI(X). Hen
e we have ENI(X) = {h(x) | x ∈
intE(X), h ∈ H(X)}. �Theorem 2.30. (a) KBNM is faithful.(b) For i = 0, 1 let 〈Xi,Φi 〉 be an RNM and Fi be a subspa
e 
hoi
e for 〈Xi,Φi 〉. Let
Gi ≤ H(Xi). Suppose that for i = 0, 1:(1) if 〈Xi,Φi 〉 is an RBM , then LIP(Xi,Φi;Fi) ≤ Gi,(2) if 〈Xi,Φi 〉 is not an RBM , then LIPLC(Xi,Φi;Fi) ≤ Gi.Let ϕ : G1

∼= G2. Then there is τ : ENI(X1,Φ1, G1) ∼= ENI(X2,Φ2, G2) su
h that τindu
es ϕ. That is , ϕ(g)↾ENI(X2,Φ2, G2) = (g↾ENI(X1,Φ1, G1))
τ for every g ∈ G1.(
) Let X be a subset of a normed spa
e E and Y be a subset of a normed spa
e F su
hthat intE(X) is dense in X and intF (Y ) is dense in Y . Suppose that ϕ : H(X) ∼= H(Y ).Then there is τ : ENI(X) ∼= ENI(Y ) su
h that τ indu
es ϕ. That is , for every g ∈ H(X),

ϕ(g)↾ENI(Y ) = (g↾ENI(X))τ .Proof. (a) If 〈X,G 〉 ∈ KBNM and Φ is a normed regional atlas for X whi
h demonstratesthat X is a normed manifold, then NI(X,Φ) = X. So ENI(X,Φ, G) = X. Hen
e (b)implies (a).(b) The proof of Theorem 2.8 applies without 
hange.(
) This is a spe
ial 
ase of (b).Remark 2.31. The proof of the above theorem applies to RNM's too. The state-ment that is proved for RNM's is as follows. If ϕ : G1
∼= G2, then there is τ :
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ENI(X1,Φ1, G1) ∼= ENI(X2,Φ2, G2) su
h that τ indu
es ϕ. That is, for every g ∈ G1,
ϕ(g)↾ENI(X2,Φ2, G2) = (g↾ENI(X1,Φ1, G1))

τ . �Manifolds with boundary, 
losures of open subsets of a normed spa
e and 
losures ofopen subsets of a normed manifold are obviously RNM's. Note that in the above theorem,the groups Gi are not assumed to preserve the boundary of Xi. Indeed, when the Xi'sare in�nite-dimensional, it may happen that their boundary is not preserved.2.5. The faithfulness of some smaller subgroups. The homeomorphisms 
on-stru
ted in Lemma 2.14(b) suggest some new types of subgroups of H(X) whi
h may beinteresting in the 
ontext of re
onstru
tion and in other 
ontexts involving homeomor-phisms of in�nite-dimensional spa
es.Definition 2.32. Let X be an open subset of a normed ve
tor spa
e E and g ∈ H(X).(a) We 
all g a ��nite-dimensional di�eren
e� homeomorphism if there is a �nite-dimensional subspa
e F of E su
h that g(x) − x ∈ F for every x ∈ X.Let FD(X) denote the set of ��nite-dimensional di�eren
e� homeomorphisms of Xand FD.LIP(X) := FD(X) ∩ LIP(X).(b) We 
all g a weakly ��nite-dimensional di�eren
e� homeomorphism, if there is a�nite-dimensional subspa
e F of E su
h that for every x ∈ X there is a ∈ R− {0} su
hthat g(x) − ax ∈ F .Let WFD(X) denote the set of weakly ��nite-dimensional di�eren
e� homeomor-phisms of X and WFD.LIP(X) := WFD(X) ∩ LIP(X). For a subspa
e 
hoi
e system
〈E,X,S,F〉 de�ne WFD.LIP(X;S,F) and WFD.LIPLC(X;S,F) in analogy to the def-inition of LIP(X;S,F). See De�nition 2.7(a). Also, de�ne KWFD.BNO in analogy to thede�nition of KBNO. � �It is easy to 
he
k that FD(X) and WFD(X) are groups. The following is a 
orollaryof the proof of Theorem 2.8.Corollary 2.33. KWFD.BNO is faithful.Proof. The proof of Theorem 2.8 applies, sin
e it uses only homeomorphisms belongingto WFD(X).By Lemma 2.14(b), FD.LIP(X) is lo
ally moving. In fa
t, the 
onstru
tion of 2.14(b)
an be used to show that FD.LIP(X) is transitive in the following sense. There is anopen base B of X su
h that for every B ∈ B and for every �nite inje
tive fun
tion ̺whose domain and range are subsets of B there is g ∈ G B su
h that g extends ρ. Infa
t, B 
an be taken to be {BE(x, r) | BE(x, r) ⊆ X}.Question 2.34. Are any of the 
lasses related to FD(X) faithful? For example, is the
lass KBFD := {〈E,G 〉 | E is a Bana
h spa
e, and FD(E) ≤ G ≤ H(E)} faithful? �



3. The lo
al Γ -
ontinuity of a 
onjugating homeomorphism3.1. General des
ription. The Main Result of this se
tion is the statement that if
X1, X2 are open subsets of normed spa
es E1 and E2 respe
tively, Γ1 and Γ2 are 
ountablygenerated moduli of 
ontinuity, and τ : X1

∼= X2 is su
h that (HLC
Γ1

(X1))
τ = HLC

Γ2
(X2),then Γ1 = Γ2 and τ is lo
ally Γ1-bi
ontinuous. This is proved in Theorem 3.19(a).Equally 
entral are the four results stated in Corollary 3.43.The 
onjun
tion of the �nal results of Chapters 2 and 3 is stated in Theorem 3.42. Itsays that the existen
e of an isomorphism ϕ between the groups HLC

Γ1
(X1) and HLC

Γ2
(X2)implies that Γ1 = Γ2, and that ϕ is indu
ed by a lo
ally Γ1-bi
ontinuous homeomorphism

τ between X1 and X2.As in Chapter 2, the results quoted above are in fa
t spe
ial 
ases of a more generalsetting. The groups whi
h are a
tually being 
onsidered are of the type HLC
Γ

(X;S,F).See De�nition 3.17.There are two methods of proving the Main Result. The 
entral intermediate lemmain Method I roughly says that if X1, X2 are normed ve
tor spa
es, τ : X1
∼= X2, and forevery translation trv of X1, (trv)

τ ∈ HLC
Γ2

(X2), then τ−1 is lo
ally Γ2-
ontinuous. Thisis in fa
t the hidden 
ontent of Theorem 3.15. A variant of this statement whi
h worksonly for se
ond 
ategory spa
es, but yields a slightly stronger result is proved in Theorem3.26.The main lemma in Method II says roughly that if X1, X2 are normed ve
tor spa
es,
τ : X1

∼= X2, and for every bounded a�ne isomorphism T of X1, T τ ∈ HLC
Γ2

(X2), then τis lo
ally Γ2-bi
ontinuous.Going ba
k to the Main Result, we in fa
t prove a stronger statement. Suppose that
〈E,X,S, E〉 and 〈F, Y, T ,F〉 are subspa
e 
hoi
e systems, Γ ,∆ are 
ountably generatedmoduli of 
ontinuity, τ : X ∼= Y , and the following holds:

(HΓ (X;S,F))τ ⊆ HLC
∆ (Y ) and (H∆(Y ; T ,F))τ

−1 ⊆ HLC
Γ (X).Then Γ = ∆ and τ is lo
ally Γ -bi
ontinuous. This is proved in Theorem 3.19(b). SeeDe�nitions 2.7 and 3.17(a).Part of this strengthening is needed in the proof that if τ : cl(X) ∼= cl(Y ) and

(HLC
Γ

(cl(X)))τ = HLC
∆

(Y ), then Γ = ∆ and τ is lo
ally Γ -bi
ontinuous.There are two situations in whi
h we use Method I and we 
annot use Method II. The�rst one appears in Chapter 11, where the re
onstru
tion of the 
losure of an open setis 
onsidered. Method I is used again in the proof that the derivative of a 
onjugatinghomeomorphism is Γ -
ontinuous. Su
h results will appear in a subsequent work.[46℄
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onstru
tion of manifolds from subgroups of homeomorphism groups 473.2. Partial a
tions and de
ayability. If X is a proper open subset of a normed spa
e
E, then X is not 
losed under the group of translations T(E) of E. So there is no naturala
tion of T(E) on X. But for every x ∈ X there are neighborhoods Bx and Vx of x in
X and IdE in T(E) respe
tively su
h that the a
tion of every trv ∈ Vx on Bx is de�ned.Moreover, H(X) 
ontains a homeomorphism whi
h 
oin
ides with trv on Bx and whi
h isthe identity outside some bigger neighborhood of x. Indeed, even LIP(X) 
ontains su
ha homeomorphism. We shall use su
h homeomorphisms. To this end we introdu
e twonotions: the notion of a partial a
tion of a topologi
al group on a topologi
al spa
e, andthe notion of de
ayability of partial a
tions.Definition 3.1. (a) Let X be a topologi
al spa
e and x ∈ X. Set NbrX(x) := {U |
x ∈ U ⊆ X and U is open} and MBC = {α ∈ MC | Id[0,∞) ≤ α}. Let α ∈ MBC,
X,Y be metri
 spa
es and τ : X ∼= Y . We say that τ is α-bi
ontinuous if τ and
τ−1 are α-
ontinuous. Let x ∈ X. We say that τ is α-
ontinuous at x if for some
U ∈ Nbr(x), τ↾U is α-
ontinuous. Also, τ is said to be α-bi
ontinuous at x if for some
U ∈ Nbr(x), τ↾U is α-bi
ontinuous. Let Γ ⊆ MC. We say that τ is Γ -
ontinuous(resp. Γ -bi
ontinuous) at x if for some α ∈ Γ , τ is α-
ontinuous (resp. α-bi
ontinuous)at x.If H is a group, then eH denotes the unit of H.(b) Let H be a topologi
al group, X be a topologi
al spa
e and λ be a fun
tion su
hthat Dom(λ) ⊆ H ×X and Rng(λ) ⊆ X. We say that λ is a partial a
tion of H on X ifthe following 
onditions hold.(1) λ is 
ontinuous.(2) Dom(λ) is open in H ×X.(3) For g ∈ H let gλ be the fun
tion de�ned by gλ(x) = λ(g, x). Then gλ is ahomeomorphism between Dom(gλ) and Rng(gλ).(4) (eH)λ = IdDom((eH)λ).(5) For every g ∈ H, (g−1)λ = (gλ)

−1.(6) For every g, h ∈ H and x ∈ X: if gλ(x) and hλ(gλ(x)) are de�ned, then
(hg)λ(x) is de�ned and (hg)λ(x) = hλ(gλ(x)).De�ne Fld(λ) := Dom((eH)λ). Note that by (5) and (6), Dom(gλ) ⊆ Fld(λ) for every

g ∈ H.(
) Let α ∈ MBC, a ∈ (0, 1), H be a topologi
al group, λ be a partial a
tion of Hon a metri
 spa
e X, G ≤ H(X) and x ∈ Fld(λ). Then λ is 
alled an (a, α,G)-de
ayablea
tion at x if there is rx > 0 su
h that for every r ∈ (0, rx) there is V = Vx,r ∈ Nbr(eH)su
h that:(i) V ×B(x, ar) ⊆ Dom(λ);(ii) for every h ∈ V there is g ∈ G su
h that: g is α-bi
ontinuous, g↾B(x, ar) =

hλ↾B(x, ar) and supp(g) ⊆ B(x, r).Let A ⊆ Fld(λ). We say that λ is an (a, α,G)-de
ayable a
tion in A if it is (a, α,G)-de
ayable at every x ∈ A; λ is (a, α,G)-de
ayable if it is (a, α,G)-de
ayable in Fld(λ).Suppose that Γ is a modulus of 
ontinuity. Then λ is 
alled (a,Γ , G)-de
ayable if λ is
(a, α,G)-de
ayable for some α ∈ Γ .



48 M. Rubin and Y. YomdinIf in the above a = 1/2, then we omit its mention. So �λ is (α,G)-de
ayable at
x� means �λ is (1/2, α,G)-de
ayable at x� et
. If a = 1/2 and G = H(X), then weomit the mention of a and G. So �λ is α-de
ayable at x� means �λ is (1/2, α,H(X))-de
ayable at x�, �λ is α-de
ayable in A� means �λ is (1/2, α,H(X))-de
ayable in A�et
.(d) Let λ be a partial a
tion of a topologi
al group H on a topologi
al spa
e X,
A ⊆ H and x ∈ X. We write Aλ(x) = {hλ(x) | h ∈ A}. We say that x is a λ-limit-pointif x ∈ acc(Vλ(x)) for every V ∈ Nbr(eH). �Note that if λ is (a, α,G) de
ayable partial a
tion of H at x, then there are V ∈
Nbr(eH) and U ∈ Nbr(x) su
h that hλ↾U is α-bi
ontinuous for every h ∈ V .The partial a
tions appearing in this se
tion are obtained by restri
ting a full groupa
tion on a spa
e E to an open subset of E. This is des
ribed in (a) below.Proposition 3.2. (a) Suppose that λ is a partial a
tion of a topologi
al group H on atopologi
al spa
e E. Let X ⊆ Fld(λ) be open, and de�ne λ |̀̀X by setting Dom(λ |̀̀X) =

{〈h, x 〉 | h ∈ H and x, hλ(x) ∈ X} and (λ |̀̀X)(h, x) = λ(h, x). Then λ |̀̀X is a partiala
tion of H on X.(b) Let λ be a partial a
tion of H on X, G ≤ H(X), D ⊆ C ⊆ Fld(λ), a ∈ (0, 1),
α ∈ MBC, r0 > 0 and let Vr ∈ Nbr(eH) for every r ∈ (0, r0). Assume that : (i) D is adense subset of C, (ii) λ is (a, α,G)-de
ayable in D, (iii) rx ≥ r0 for every x ∈ D, (iv)
Vx,r ⊇ Vr for every x ∈ D and r ∈ (0, r0). Then λ is (a, α,G)-de
ayable in C, rx ≥ r0for every x ∈ C, and Vx,r ⊇ Vr for every x ∈ C and r ∈ (0, r0).Proof. The proof of both parts is trivial.Suppose that X is an open subset of a normed spa
e E. We shall be interested in twopartial a
tions on X: the partial a
tion of the group T(E) of translations of E, and thepartial a
tion of the group A(E) of a�ne transformations of E. We need to know thatthese partial a
tions are de
ayable. In fa
t, we shall show that A(E) is (α,G)-de
ayable,where α(t) = 15t, and G is any group 
ontaining LIP(X).Obviously, the de
ayability of A(E) implies the de
ayability of both T(E) and thegroup of bounded linear automorphisms of E. Be
ause we deal with groups 
ontaining
LIP(X;F ), we shall really need to show that {T ∈ A(E) | T (F ) = F} is de
ayable withrespe
t to any group G 
ontaining LIP(X;F ).Definition 3.3. (a) Let E be a normed spa
e and v ∈ E. De�ne trEv (x) := v + x and
T(E) = {trEv | v ∈ E}. Whenever E 
an be understood from the 
ontext, we abbreviate
trEv by trv. We de�ne d(tru, trv) = ‖u− v‖.(b) Let E be a normed spa
e and x ∈ X. Denote the group of bounded linearautomorphisms of E by L(E) and set L(E, x) = (L(E))tr

E
x . For S, T ∈ L(E) de�ne

d(S, T ) = ‖S−T‖+‖S−1−T−1‖. Let A(E) := {trEv ◦T | v ∈ E, T ∈ L(E)}.That is, A(E)is the group of bounded a�ne transformations of E. Suppose that A = trEv ◦T ∈ A(E).Then v and T are uniquely determined by A. We set v = vA and T = TA. We may thusde�ne
d(A1, A2) = ‖vA1

− vA2
‖ + ‖TA1

− TA2
‖ + ‖T−1

A1
− T−1

A2
‖.
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onstru
tion of manifolds from subgroups of homeomorphism groups 49Then d is a metri
 on A(E), 〈A(E), d 〉 is a topologi
al group, and the a
tion of A(E) on
E is 
ontinuous. Note that L(E, x) ≤ A(E) and the fun
tion T 7→ T trx , T ∈ L(E), is atopologi
al isomorphism between L(E) and L(E, x).Let λE

T
, λE

L
, λE,x

L
, λE,x

A
denote respe
tively the natural a
tions of T(E), L(E), L(E, x)and A(E) on E.(
) Suppose that E is a normed spa
e, F is a linear subspa
e of E and x ∈ F . De�ne

T(E;F ) = {trEv | v ∈ F}, L(E;F ) = {T ∈ L(E) | T (F ) = F},
A(E;F ) = {A ∈ A(E) | A(F ) = F}, L(E, x;F ) = (L(E;F ))tr

E
x .The groups T(E;F ), L(E;F ), L(E, x;F ) and A(E;F ) equipped with the metri
 theyinherit from T(E), L(E), L(E, x) and A(E) respe
tively are metri
 topologi
al groups.If λ is a partial a
tion of H on X and H1 ≤ H, let λ |̀̀H1 denote the restri
tion of λto H1. Let λE;F

T
= λE

T
|̀̀ T (E;F ); λE;F

L
, λE,x;F

L
and λE;F

A
are de�ned in a similar way.(d) Suppose that X is a topologi
al spa
e and F is a set. De�ne

H(X;F ) := {h ∈ H(X) | h(X ∩ F ) = X ∩ F}. �Proposition 3.4. Let E be a normed spa
e, X ⊆ E be open, S be an open 
over of X,
F be a subspa
e 
hoi
e for S, S ∈ S, G = LIP(X;S, FS) and α(t) = 3t. Then λE;FS

T
|̀̀Sis (5/8, α,G)-de
ayable. In parti
ular , λE;FS

T
|̀̀S is (α,G)-de
ayable.Proof. We show that if x ∈ S ∩ FS , then λE;FS

T
|̀̀S is (5/8, α,G)-de
ayable at x, rx =

d(x,E − S), and for every r ∈ (0, rx), Vx,r = BT(E;FS)(IdE , r/4).Let r < rx. Let trEv ∈ Vx,r. So v ∈ FS and ‖v‖ < r/4. We apply Lemma 2.14(b).Choose r0 of 2.14(b) to be r, 
hoose r and s of 2.14(b) to be 5r/8 and v of 2.14(b) tobe v. Let h be as ensured by 2.14(b). By 2.14(b)(ii), h is (1 + ‖v‖
r−5r/8−‖v‖)-bilips
hitz.

(1 + ‖v‖
r−5r/8−‖v‖) < 3. Hen
e h is 3-bilips
hitz. It follows from 2.14(b)(ii) that h is asrequired. By Proposition 3.2(b), λE;FS

T
|̀̀S is (α,G)-de
ayable.Proposition 3.5. Let η : [0,∞) → [0, 1]. Suppose that η is K-Lips
hitz and that η(t) = afor every t ≥ a. Let E be a normed spa
e. De�ne g : E → E by g(x) = η(‖x‖) · x. Then

g is (1 +Ka)-Lips
hitz.Proof. Let x, y ∈ E. If ‖x‖, ‖y‖ ≥ a, then g(x) = x and g(y) = y, and hen
e ‖g(x) −
g(y)‖ = ‖x − y‖. Assume that ‖x‖ ≤ a or ‖y‖ ≤ a. Without loss of generality ‖y‖ ≤ a.Hen
e

‖g(x) − g(y)‖ = ‖η(‖x‖) · x− η(‖y‖) · y‖
≤ ‖η(‖x‖) · x− η(‖x‖) · y‖ + ‖η(‖x‖) · y − η(‖y‖) · y‖
= η(‖x‖) · ‖x− y‖ + |η(‖x‖) − η(‖y‖)| · ‖y‖
≤ ‖x− y‖ +K · ‖x− y‖ · ‖y‖ ≤ (1 +Ka) · ‖x− y‖.Proposition 3.6. Let E be a normed spa
e, T ∈ L(E), η : [0,∞) → [0, 1] and a > 0. Set

IdE = I. Suppose that η is K-Lips
hitz , η(t) = t for every t ≥ a and ‖I−T‖(1+Ka) < 1.De�ne h : E → E by
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h(x) = (1 − η(‖x‖)) · T (x) + η(‖x‖) · x.Then(i) h ∈ H(E), h is (‖T‖ + ‖I − T‖ · (1 +Ka))-Lips
hitz , and h−1 is

max( ‖T−1‖
1−‖I−T‖·(1+Ka) , 1)-Lips
hitz.(ii) If F is a linear subspa
e of E, and T ∈ L(E;F ), then h ∈ H(E;F ).Proof. (i) We prove that h is Lips
hitz. Let x, y ∈ E. Then

h(x) − h(y) = (1 − η(‖x‖)) · T (x) + η(‖x‖) · x− ((1 − η(‖y‖)) · T (y) + η(‖y‖) · y)
= T (x− y) + (I − T )(η(‖x‖) · x− η(‖y‖) · y).By Proposition 3.5,

‖h(x)−h(y)‖ ≤ ‖T‖·‖x−y‖+‖I−T‖·(1+Ka)·‖x−y‖ ≤ (‖T‖+‖I−T‖·(1+Ka))·‖x−y‖.Hen
e h is (‖T‖ + ‖I − T‖ · (1 +Ka))-Lips
hitz.We prove that h−1 is Lips
hitz. Let x, y ∈ E. By the above,
T−1(h(x) − h(y)) = (x− y) + T−1(I − T )(η(‖x‖) · x− η(‖y‖) · y)

= (x− y) + (T − I)(η(‖x‖) · x− η(‖y‖) · y).So
‖T−1‖·‖h(x)−h(y)‖ ≥ ‖T−1(h(x)−h(y))‖ ≥ ‖x−y‖−‖(T−I)(η(‖x‖)·x−η(‖y‖)·y)‖
≥ ‖x− y‖ − ‖(T − I)‖ · (1 +Ka) · ‖x− y‖ = (1 − ‖T − I‖ · (1 +Ka)) · ‖x− y‖.That is, ‖x− y‖ ≤ ‖T−1‖

1−‖T−I‖·(1+Ka) · ‖h(x) − h(y)‖.(ii) Let x ∈ F . Set Tx = (1−η(‖x‖)T+η(‖x‖)I. Then h(x) = Tx(x) and Tx(F ) = F .Lemma 3.7. Let E be a normed spa
e, X ⊆ E be open, S be an open 
over of X, F bea subspa
e 
hoi
e for S, S ∈ S, x ∈ S ∩ FS , G = LIP(X;S, FS) and α(t) = 5t. Then
λE,x;FS

L
|̀̀S is (α,G)-de
ayable at x, rx = d(x,E − S), and Vx,r = (BL(E;F )(IdE , 1/4)tr

E
xfor every r ∈ (0, rx).Proof. We may assume that 0E ∈ S and x = 0E . Set I = IdE . Let r0 = d(0E , E − S)and V = BL(E;FS)(I, 1/4). Let r < r0 and T ∈ V . We show that T is �de
ayable�. De�ne

η(t) : [0,∞) → [0, 1] to be the following pie
ewise linear fun
tion. The breakpoints of ηare r/2 and r; η(t) = 0 for every t ∈ [0, r/2] and η(t) = 1 for every t ≥ r. Clearly, η is
2/r-Lips
hitz.De�ne h : E → E by h(y) = (1 − η(‖y‖)) · T (y) + η(‖y‖) · y. We 
he
k that Propo-sition 3.6 applies to h. Set K = 2/r. So η is K-Lips
hitz. Sin
e ‖I − T‖ < 1/4 and
Ka = 2

r · r = 2, it follows that ‖I − T‖ · (1 +Ka) < 1
4 · (1 + 2) = 3/4 < 1. It thus followsfrom 3.6(i) that h ∈ H(E) and h is ‖T‖ + ‖I − T‖ · (1 +Ka)-Lips
hitz. By the above,

‖T‖+‖I−T‖·(1+Ka) < 5/4+3/4 = 2. So h is 2-Lips
hitz. Sin
e ‖T−1‖ < 5/4, it followsthat ‖T−1‖
1−‖I−T‖·(1+Ka) <

5/4
1−3/4 = 5. By 3.6(i), h−1 is 5-Lips
hitz. So h is 5-bilips
hitz.Clearly, supp(h) ⊆ B(0E , r) ⊆ X. So h↾X ∈ H(X). Also, h↾B(0E , r/2) = T ↾B(0E ,

r/2). By 3.6(ii), h(E ∩ FS) = FS . Hen
e h↾X is as required.
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onstru
tion of manifolds from subgroups of homeomorphism groups 51Lemma 3.8. Let E be a normed spa
e, X ⊆ E be open, S be an open 
over of X, F bea subspa
e 
hoi
e for S, LIP(X;S,F) ≤ G ≤ H(X) and α(t) = 15t. Let S ∈ S. Then
λE;FS

A
|̀̀S is (α,G)-de
ayable.Proof. Set I = IdE . Let x ∈ S ∩ FS , rx = d(x,E − S) and r ∈ (0, rx). If x 6= 0E let

ar = min(1/4, r/8, r
8‖x‖ ) and if x = 0E let ar = min(1/4, r/8). Let Vx,r = BA(E;F )(I, ar).We show that(∗) Vx,r ⊆ BT(E;FS)(I, r/4) ◦ (BL(E;FS)(I, 1/4))tr

E
x .If A ∈ A(E;F ), then A 
an be uniquely represented in the form A = truA,x

◦ (TA,x)
trx ,where TA,x ∈ L(E;F ). Let A = trvA

◦TA, where TA ∈ L(E;F ). Then TA,x = TA and
uA,x = vA + (TA − I)(x). Set T = TA, v = vA and u = uA,x. Suppose that A ∈ Vx,r.Then d(T, I) < ar < 1/4. So T ∈ BL(E;FS)(I, 1/4). Hen
e T trx ∈ (BL(E;FS)(I, 1/4))trx .Suppose that x 6= 0. Then ‖u‖ ≤ ‖v‖ + ‖T − I‖ · ‖x‖ ≤ r/8 + r

8‖x‖ · ‖x‖ = r/4. If x = 0,then u = v. So ‖u‖ < r/4. In both 
ases u ∈ BT(E;FS)(I, r/4). This proves (∗).LetA ∈ Vx,r. Let T and u be as above. By Lemma 3.7, there is h1 ∈ H(X;FS) B(x, r)su
h that h1↾B(x, r/2) = T trx↾B(x, r/2) and h2 is 5-bilips
hitz. By Proposition 3.4,there is h2 ∈ H(X;FS) B(x, r) su
h that h2↾B(x, 5r/8) = tru↾B(x, 5r/8) and h1 is 3-bilips
hitz. Let h = h2 ◦h1. So h ∈ H(X;FS), supp(h) ⊆ B(x, r) and h is 15-bilips
hitz.It remains to show that h↾B(x, r/2) = A↾B(x, r/2). Let y ∈ B(x, r/2). Then h1(y) =

T trx(y). Sin
e T ∈ BL(E;FS)(I, 1/4), ‖T‖ ≤ 5/4. So ‖T (y − x)‖ ≤ 5
4‖y − x‖. That is,

d(T (y−x), 0) ≤ 5
4‖y−x‖. Sin
e trx is an isometry, d(T trx(trx(y−x)), trx(0)) ≤ 5

4‖y−x‖.That is, ‖T trx(y) − x‖ ≤ 5
4‖y − x‖. Sin
e y ∈ B(x, r/2), ‖T trx(y) − x‖ ≤ 5r/8. Hen
e

h2(T
trx(y)) = tru(T

trx(y)). So h(y) = h2(h1(y)) = A(y). We have shown that if x ∈
S ∩ FS , then λE;FS

A
|̀̀S is (α,G)-de
ayable at x.Let x ∈ S − FS . Then x ∈ acc(S ∩ FS). De�ne rx = 1

2d(x,E − S). For r ∈ (0, rx)let ar = 1
2 min(1/4, r/8, r

8‖x‖ ) and Vx,r = BA(E;F )(x, ar). Let D = B(x, r/3) ∩ FS . Bythe above argument, for every y ∈ D: λE;FS

A
|̀̀S is (α,G)-de
ayable at y, ry ≥ rx, and

Vy,r ⊇ Vx,r for every r ∈ (0, rx). By Proposition 3.2(b), λE;FS

A
|̀̀S is (α,G)-de
ayableat x.Re
all that in this se
tion we prove that if (HLC

Γ
(E))τ = HLC

Γ
(F ), then τ is lo
ally

Γ -bi
ontinuous. If Γ is 
ountably generated or if Γ = MC, then the above is true for any
E and F . For Γ 's whi
h are not 
ountably generated, we have only a partial answer. Weknow how to prove that τ is lo
ally Γ -bi
ontinuous only for Γ 's whi
h are κ(E)-generated.See the de�nition below.Definition 3.9. (a) Let X be a metri
 spa
e and r > 0. A family A of subsets of Xis r-spa
ed if d(A,B) ≥ r for any distin
t A,B ∈ A. A subset C ⊆ X is r-spa
ed if
{{x} | x ∈ C} is r-spa
ed. A set C is spa
ed if C is r-spa
ed for some r > 0.(b) Let X be a metri
 spa
e x ∈ X and A ⊆ X. We de�ne the set of 
ardinals
κX(x,A) as follows: κ ∈ κX(x,A) i� for every U ∈ Nbr(x) there is B ⊆ A∩U su
h that
|B| = κ and B is spa
ed. Let

κX(x,A) = sup(κX(x,A)), κ(X) = min
x∈X

κX(x,X).
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) Let Γ be a modulus of 
ontinuity. We say that Γ0 generates Γ if Γ = cl�(Γ0).We say that Γ is (≤κ)-generated if there is Γ0 su
h that |Γ0| ≤ κ and Γ = cl�(Γ0).(d) Let γ ∈ MC and a, b ∈ [0,∞). Then a ≈γ b means that a ≤ γ(b) and b ≤ γ(a).(e) Let X be a metri
 spa
e, x ∈ X, G ≤ H(X) and α ∈ MBC. We say that G is
α-in�nitely-
losed at x if there is U ∈ Nbr(x) su
h that if F ⊆ G and F satis�es:(1) for every f ∈ F , f is α-bi
ontinuous,(2) for every f ∈ F , supp(f) ⊆ U and x 6∈ cl(supp(f)),(3) for any distin
t f, g ∈ G, cl(supp(f)) ∩ cl(supp(g)) = ∅,(4) cl(

⋃
f∈F supp(f)) = {x} ∪ ⋃

f∈F cl(supp(f)),then ◦F ∈ G.Note that if F is as above, then ◦F ∈ H(X). So H(X) is α-in�nitely-
losed at x forevery α ∈ MBC.(f) When dealing with partial a
tions, we often wish to perform a 
omposition g ◦ f ,where Rng(f) 6⊆ Dom(g). Su
h a 
omposition is 
onsidered to be legal. The domain ofthe resulting fun
tion is f−1(Rng(f) ∩ Dom(g)).If f, g are fun
tions and ̺ is a 1-1 fun
tion, then f ∼̺ g means that
Dom(f) ∪ Rng(f) ⊆ Dom(̺), g = ̺ ◦ f ◦̺−1. �Proposition 3.10. (a) If X is a metri
 spa
e, A ⊆ X and x ∈ acc(A), then κ(x,A) ≥ ℵ0.(b) If E is a normed spa
e, then κ(x,E) = min({|D| | D is a dense subset of E}) forevery x ∈ E.(
) If E = ℓ∞, then κ(E) = 2ℵ0 .(d) If E is a Hilbert spa
e with an orthonormal base of 
ardinality ν, then κ(E) = ν.Proof. The proof is trivial.The next lemma says roughly that if for every h ∈ H, (hλ)

τ is Γ -bi
ontinuous at x,then there are γ ∈ Γ and neighborhoods T, V of x and eH respe
tively su
h that (hλ)
τ ↾Tis γ-bi
ontinuous for every h ∈ V . This is proved under the assumption that H is

G-de
ayable, where G is an in�nitely-
losed subgroup of H(X).For 
ountably generated Γ 's the 
on
lusion of the lemma is true for every metri
spa
e X. If however, Γ is not 
ountably generated, then we need to assume that Γ hasa generating set of size ≤ κ(X). The lemma will be applied to T(E;F ) and A(E;F ).Lemma 3.11. Suppose that :(i) X is a metri
 spa
e, G ≤ H(X), H is a topologi
al group, λ is a partial a
tion of
H on X, x ∈ Fld(λ), x is a λ-limit-point , α ∈ MBC, G is α-in�nitely-
losed at
x, and for some N ∈ Nbr(x), λ is (α,G)-de
ayable at every point y ∈ Hλ(x)∩N .Set

κ = min({κ(x, Vλ(x)) | V ∈ Nbr(eH)}).(ii) Y is a metri
 spa
e and τ : X ∼= Y .(iii) Γ is a modulus of 
ontinuity , and Γ is (≤κ)-generated.(iv) There is U ∈ Nbr(x) su
h that for every g ∈ G U : if g is α ◦α-bi
ontinuous ,then gτ is Γ -bi
ontinuous at τ (x).
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onstru
tion of manifolds from subgroups of homeomorphism groups 53Then P (x) holds , where
P (x): There are T ∈ Nbr(x), V ∈ Nbr(eH) and γ ∈ Γ su
h that for every h ∈ V ,

T ⊆ Dom(hλ) and (hλ)
τ ↾τ (T ) is γ-bi
ontinuous.Proof. Let U1 ∈ Nbr(x) be as ensured by the α-in�nite-
losedness of G at x. Let rxbe as ensured by the de
ayability of H at x. Let r ∈ (0, rx) be su
h that B(x, r) ⊆

U1∩U ∩N , and W = Vx,r be as ensured by the de
ayability of H at x. So W ∈ Nbr(eH),
W ×B(x, r) ⊆ Dom(λ) and Wλ(x) ⊆ B(x, r). First we prove the following 
laim.Claim 1. There is y ∈ B(x, r/2) ∩Wλ(x) su
h that P (y) holds.Proof. Suppose by 
ontradi
tion that there is no su
h y. Let Γ0 be as ensured by
lause (iii). We distinguish two 
ases.Case 1: |Γ0| = ℵ0. Let ~x = {xi | i ∈ N} be a 1-1 sequen
e tending to x and 
ontained in
B(x, r/2)∩Wλ(x)−{x}. Let {γi | i ∈ N} be an enumeration of Γ0 su
h that {j | γj = γi}is in�nite for every i. Let rxi

> 0 be as ensured by the de
ayability of λ at xi. Let
{ri | i ∈ N} be a sequen
e su
h that for any distin
t i, j ∈ N we have 0 < ri < rxi

,
B(xi, ri) ⊆ B(x, r), d(xi, x) > ri and cl(B(xi, ri)) ∩ cl(B(xj , rj)) = ∅.Let Wi = Vxi,ri

be as ensured by the de
ayability of λ at xi. That is, Wi ∈ Nbr(eH)and Dom(hλ) ⊇ B(xi, ri/2) for every h ∈ Wi, and there is g ∈ G su
h that g is α-bi
ontinuous, g↾B(xi, ri/2) = hλ↾B(xi, ri/2) and supp(g) ⊆ B(xi, ri).Let Vi = B(xi, ri/2). Then Dom(hλ) ⊇ Vi for every h ∈Wi. Sin
e ¬P (xi) holds, thereis hi ∈ Wi su
h that ((hi)λ)
τ ↾τ (Vi) is not γi-bi
ontinuous. Let gi ∈ G be su
h that giis α-bi
ontinuous, gi↾B(xi, ri/2) = (hi)λ↾B(xi, ri/2) and supp(gi) ⊆ B(xi, ri). Clearly,

F := {gi | i ∈ N} satis�es 
lauses (1)�(4) in the de�nition of α-in�nite-
losedness, so
g := ◦i∈N gi ∈ G. For every u, v ∈ X there are i, j ∈ N su
h that g(u) = gi ◦ gj(u)and g(v) = gi ◦ gj(v). So g is α ◦α-
ontinuous. Similarly, g−1 is α ◦α-
ontinuous. Sin
e
supp(g) ⊆ U , by 
lause (iv), gτ is Γ -bi
ontinuous at τ (x). That is, there are γ ∈ Γ and
T ∈ Nbr(τ (x)) su
h that(1.1) gτ ↾T is γ-bi
ontinuous.Let i be su
h that γ � γi, and let t > 0 be su
h that γ↾[0, t] ≤ γi↾[0, t]. There is j su
hthat γj = γi, τ (B(xj, rj)) ⊆ T and(†) diam(τ (B(xj, rj))) < t.Set k = (hj)λ. Now, g↾Vj = gj↾Vj = k↾Vj . So(1.2) gτ ↾τ (Vj) = (gj)

τ ↾τ (Vj) = kτ ↾τ (Vj).Re
all that kτ ↾τ (Vj) is not γj-bi
ontinuous. So there are u, v ∈ τ (Vj) su
h that
dY (kτ (u), kτ (v)) 6≈γj dY (u, v). By (1.2),(1.3) dY (gτ (u), gτ (v)) 6≈γj dY (u, v).Let u1 = τ−1(u) and v1 = τ−1(v). So u1, v1 ∈ B(xj , rj/2). Sin
e k↾B(xj , rj/2) =

gj↾B(xj , rj/2) and supp(gj) ⊆ B(xj , rj), we have k(u1), k(v1) ∈ B(xj , rj). By (†),
dY (τ (k(u1)), τ (k(v1))) < t. Also, τ (k(u1)) = kτ (u), and the same holds for v and v1. So
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dY (u, v) < t and dY (kτ (u), kτ (v)) < t. By (1.2),(1.4) dY (u, v) < t, dY (gτ (u), gτ (v)) < t.Re
all that γ↾[0, t] ≤ γj↾[0, t]. Hen
e by (1.3) and (1.4),(1.5) dY (gτ (u), gτ (v)) 6≈γ dY (u, v).Re
all that u, v ∈ τ (Vj) ⊆ T . Hen
e (1.1) and (1.5) are 
ontradi
tory. So there is
y ∈ B(x, r/2) ∩Wλ(x) su
h that P (y) holds.Case 2: |Γ0| > ℵ0. Let L = Wλ(x) and κ = κX(x, L). We prove that there are sequen
es
{ri | i ∈ N} ⊆ (0,∞) and {Li | i ∈ N} su
h that:(i) r0 = r/2 and {ri | i ∈ N} is a stri
tly de
reasing sequen
e 
onverging to 0;(ii) for every i ∈ N, Li ⊆ L ∩ (B(x, ri) −B(x, ri+1)) and Li is spa
ed;(iii) |⋃{Li | i ∈ N}| = κ.Suppose �rst that cf(κ) = ℵ0. (That is, there is a 
ountable set of 
ardinals κ su
hthat for every κ′ ∈ κ, κ′ < κ and ∑

κ = κ.) Let κ = {κi | i ∈ N} and r0 = r/2. We mayassume that ea
h κi is in�nite. We de�ne Li and ri+1 by indu
tion on i. Suppose that rihas been de�ned. Sin
e κi < κX(x, L) there is Li ⊆ L ∩ B(x, ri) su
h that Li is spa
edand |Li| = κi. Suppose that Li is si-spa
ed. There is at most one member y ∈ Li su
hthat d(x, y) < si/2. So by removing this member we may assume that d(Li, x) ≥ si/2.Let ri+1 = min( si

2 ,
1
i+1 ). Evidently, {ri | i ∈ N}, {Li | i ∈ N} ful�ll (i)�(iii).Suppose that cf(κ) > ℵ0. First we show that

(∗) For every s > 0 there is M ⊆ L ∩B(x, s) su
h that |M | = κ and M is spa
ed.Suppose not, and let s be a 
ounter-example. For every n > 0 let κn be the set of all
κ′ su
h that there is M ⊆ L ∩ B(x, s) su
h that |M | = κ′ and M is 1/n-spa
ed. Thenthere is n su
h that κn is unbounded in κ. Let N be a maximal 1

2n -spa
ed subset of
L ∩ B(x, s). Then |N | < κ. So there is κ′ ∈ κn su
h that |N | < κ′. Let M be a
1/n-spa
ed subset of L ∩B(x, s) of 
ardinality κ′. Then there are y ∈ N and z1, z2 ∈Msu
h that z1, z2 ∈ B(y, 1

2n ). A 
ontradi
tion, so (∗) holds.As in the 
ase that cf(κ) = ℵ0 we de�ne a sequen
e {κi | i ∈ N}. Indeed, we set
κi = κ for every i ∈ N. The Li's and ri's are now 
onstru
ted as in the 
ase cf(κ) = ℵ0,and they obviously ful�ll 
lauses (i)�(iii).We really need sequen
es {ri | i ∈ N} ⊆ (0,∞) and {Li | i ∈ N} whi
h ful�ll thefollowing 
onditions:(i) r0 = r/2 and {ri | i ∈ N} is a stri
tly de
reasing sequen
e 
onverging to 0;(ii) for every i ∈ N, Li ⊆ L ∩ (B(x, ri/2) − B(x, 2ri+1)) and Li is spa
ed, and

|Li| ≤ |Lj | for every i < j;(iii) |⋃{Li | i ∈ N}| = |Γ0|.Su
h sequen
es 
an be obtained from the original {ri | i ∈ N} and {Li | i ∈ N} by takingan appropriate subsequen
e of {ri | i ∈ N} and by repla
ing Li by a subset of Li ifne
essary.Let si > 0 be su
h that Li is si-spa
ed. Set M =
⋃{Li | i ∈ N}, and let ι : M → Γ0be a fun
tion su
h that for every γ ∈ Γ0 there is n ∈ N su
h that γ ∈ ι(Lm) for every
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m ≥ n. De�ne γy = ι(y). Let ry be as ensured by the de
ayability of H at y. For every
y ∈M we de�ne sy > 0. If y ∈ Li, 
hoose sy < min(ry, ri+1, si/3). Note that for distin
t
y, z ∈ Li, B(y, sy) ⊆ B(x, ri) − B(x, ri+1) and cl(B(y, sy)) ∩ cl(B(z, sz)) = ∅. So fordistin
t y, z ∈M , cl(B(y, sy)) ∩ cl(B(z, sz)) = ∅.For every y ∈M let Wy = Vy,sy

be as ensured by the de
ayability of λ at y. That is,
Wy ∈ Nbr(eH), Dom(hλ) ⊇ B(y, sy/2) for every h ∈ Wy, and there is g ∈ G su
h that gis α-bi
ontinuous, g↾B(y, sy/2) = hλ↾B(y, sy/2) and supp(g) ⊆ B(y, sy).Let Vy = B(y, sy/2). So Dom(hλ) ⊇ Vy for every h ∈ Wy. Sin
e ¬P (y) holds, thereis hy ∈ Wy su
h that ((hy)λ)

τ↾τ (Vy) is not γy-bi
ontinuous. Let gy ∈ G be su
h that
gy is α-bi
ontinuous, gy↾B(y, sy/2) = (hy)λ↾B(y, sy/2) and supp(gy) ⊆ B(y, sy). Forany distin
t y, z ∈ M , supp(gy) ∩ supp(gz) = ∅. Clearly, F := {gy | y ∈ M} satis�es
lauses (1)�(4) in the de�nition of α-in�nite-
losedness, so g = ◦y∈M gy ∈ G. The restof the argument is identi
al to the one given in Case 1. We have proved Claim 1.Let y be as ensured by Claim 1. Sin
e y ∈Wλ(x), there is ĥ ∈W su
h that y = ĥλ(x).Sin
eW = Vx,r, there is g ∈ G su
h that g is α-bi
ontinuous, g↾B(x, r/2) = ĥλ↾B(x, r/2)and supp(g) ⊆ B(x, r). So g(x) = y. Sin
e α ∈ MBC, we have α ≤ α ◦α, and hen
e gis α ◦α-bi
ontinuous. The bi
ontinuity of g and the fa
t supp(g) ⊆ B(x, r) ⊆ U implythat gτ is Γ -bi
ontinuous at τ (x). Let R ∈ Nbr(τ (x)) and β ∈ Γ be su
h that gτ ↾R is
β-bi
ontinuous. We may assume that(2.1) τ−1(R) ⊆ B(x, r/2).Hen
e gτ ↾R = (ĥλ)

τ↾R. So(2.2) (ĥλ)
τ ↾R is β-bi
ontinuous.Note that if T ′, V ′, γ′ ful�ll the requirements of P (y) and T ′ ⊇ T ′′ ∈ Nbr(y), then

T ′′, V ′, γ′ ful�ll the requirements of P (y). Sin
e P (y) holds, there are S1 ∈ Nbr(y),
V1 ∈ Nbr(eH) and γ1 ∈ Γ su
h that for every h ∈ V1,(2.3) S1 ⊆ Dom(hλ), (hλ)

τ ↾τ (S1) is γ1-bi
ontinuous.Sin
e ĥλ(x) = y and τ−1(R) ∈ Nbr(x), we may assume that(2.4) S1 ⊆ ĥλ(τ
−1(R)).So S1 ⊆ ĥλ(B(x, r/2)). Let S2 ∈ Nbr(y) and V2 ∈ Nbr(eH) be su
h that(2.5) S2 ⊆ S1, V2 ⊆ V1, λ(V2 × S2) ⊆ S1.Note that S2 ⊆ Rng(ĥλ). We de�ne T = (ĥλ)
−1(S2), V = ĥ−1 · V2 · ĥ and γ = β ◦γ1 ◦βand show that T, V, γ satisfy the requirements of P (x). Sin
e β, γ1 ∈ Γ , we have(2.6) γ ∈ Γ .We verify that if h ∈ V , then(2.7) T ⊆ Dom(hλ) and (hĥ)λ↾S2 ∼̺−1

hλ↾T, where ̺ = ĥλ↾τ
−1(R).Let h̄ = hĥ. Then h̄ ∈ V2 and h = ĥ−1 · h̄ · ĥ. We show that ĥλ(z), h̄λ(ĥλ(z)) and

(ĥ−1)λ(h̄λ(ĥλ(z))) are de�ned for every z ∈ T . Clearly, T ⊆ Dom(ĥλ) and ĥλ(T ) = S2.So by (2.5),



56 M. Rubin and Y. Yomdin(i) for every z ∈ T , h̄λ(ĥλ(z)) is de�ned and h̄λ(ĥλ(z)) ∈ S1.By (2.4), S1 ⊆ Rng(ĥλ). So (ĥλ)
−1(h̄λ(ĥλ(z))) is de�ned. Sin
e h = h̄ĥ and by thede�nition of a partial a
tion, it follows that(ii) for every z ∈ T , hλ(z) is de�ned and hλ(z) = (ĥλ)

−1 ◦ h̄λ ◦ ĥλ(z).By (ii), T ⊆ Dom(hλ), and by (2.1), τ−1(R) ⊆ Dom(ĥλ). So Dom(̺−1) = Rng(̺) =

ĥλ(τ
−1(R)). Sin
e h̄ ∈ V2, we have S2 ⊆ Dom(h̄λ), hen
e Dom(h̄λ↾S2) = S2. By (2.4)and (2.5), S2 ⊆ ĥλ(τ

−1(R)). So Dom(h̄λ↾S2) ⊆ Dom(̺−1). We have Rng(h̄λ↾S2) =

h̄λ(S2), and from (2.5) and the fa
t that h̄ ∈ V2, it follows that h̄λ(S2) ⊆ S1. By (2.4),
S1 ⊆ ĥλ(τ

−1(R)), so Rng(h̄λ↾S2) ⊆ Dom(̺−1). Note that T ⊆ τ−1(R); indeed, thisfollows from the de�nition of T , (2.4) and (2.5). So(iii) for every z ∈ T , ĥλ(z) = (ĥλ↾τ
−1(R))(z) = ̺(z).Also,(iv) for every z ∈ T , h̄λ(ĥλ(z)) = (h̄λ↾S2)(ĥλ(z)).Let z ∈ T and denote u = h̄λ(ĥλ(z)). By (i) and (2.4), u ∈ S1 ⊆ ĥλ(τ

−1(R)) =

Dom(̺−1). Hen
e (ĥλ)
−1(u) = ̺−1(u). We 
on
lude that(v) for every z ∈ T , (ĥλ)

−1(h̄λ(ĥλ(z))) = ̺−1(h̄λ(ĥλ(z))).It follows from (ii)�(v) that hλ↾T = ̺−1 ◦ (h̄λ↾S2) ◦̺. We have veri�ed (2.7). Next
onjugate (2.7) by τ . We obtain(2.8) ((hĥ)λ↾S2)
τ ∼(̺−1)τ

(hλ↾T )τ .Clearly, ((hĥ)λ↾S2)
τ = ((hĥ)λ)

τ ↾τ (S2). Sin
e h ∈ V , we have hĥ ∈ V ĥ = V2. So by (2.3),(2.9) ((hĥ)λ↾S2)
τ is γ1-bi
ontinuous.Fa
t (2.8) has the form f ∼σ−1

k, where f = ((hĥ)λ↾S2)
τ , k = (hλ↾T )τ and σ =

̺τ = (ĥλ)
τ ↾R. By (2.9), f is γ1-bi
ontinuous, and by (2.2) σ is β-bi
ontinuous. Sin
e

k = σ−1 ◦ f ◦σ, it follows that k is β ◦γ1 ◦β-bi
ontinuous. Re
all that γ = β ◦γ1 ◦β and
k = (hλ↾T )τ = (hλ)

τ↾τ (T ). Hen
e (hλ)
τ↾τ (T ) is γ-bi
ontinuous.We have shown that for every h ∈ V , Dom(hλ) ⊇ T and (hλ)

τ ↾τ (T ) is γ-bi
ontinuous.So T, V, γ satisfy the requirements of the lemma.
3.3. Translation-like partial a
tions. We have isolated the properties of T(E) and
A(E) whi
h are used in the proof that τ is Γ -
ontinuous. The following de�nition dealswith the properties of T(E). Partial a
tions having these properties are 
alled translation-like partial a
tions. In fa
t, the de�nition 
aptures the properties of T(E;F ), where F isany dense linear subspa
e of E. The properties of A(E) to be used appear in De�nition3.28(b).
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 spa
e, H is a topologi
al group, and λ isa partial a
tion of H on X. Let x ∈ Fld(λ). We say that λ is a translation-like partiala
tion at x if for every V ∈ Nbr(eH) there are:(i) U = Ux,V ∈ Nbr(x), and a dense subset of U , D = Dx,V ,(ii) a radius r = rx,V > 0 and a 
onstant K = Kx,V > 0,su
h that the following holds. For any distin
t x̄0, x̄1 ∈ D there are n ≤ K · r
d(x̄0,x̄1) , asequen
e x̄0 = x0, x1, . . . , xn ∈ X and h1, . . . , hn ∈ V su
h that xn 6∈ B(x, r), and forevery i = 1, . . . , n, x̄0, x̄1 ∈ Dom((hi)λ), (hi)λ(x̄0) = xi−1 and (hi)λ(x̄1) = xi.A partial a
tion λ is translation-like if λ is translation-like at x for all x ∈ Fld(λ). �Proposition 3.13. Let E be a normed spa
e, F be a dense linear subspa
e of E and

X ⊆ E be open. Then λE;F
T

|̀̀X is a translation-like partial a
tion.Proof. For x ∈ X and V ∈ NbrT(E;F )(Id) we de�ne U = Ux,V , D = Dx,V et
. as follows.Let r0 > 0 be su
h that BE(x, r0) ⊆ X and {trv | v ∈ BF (0, r0)} ⊆ V . Now de�ne
U = B(x, r0/4), D = F ∩ U , r = r0/2 and K = 2.For distin
t x̄0, x̄1 ∈ D we de�ne n, x0, . . . , xn and h1, . . . , hn as required in De�ni-tion 3.12. Let n be the least integer su
h that n · ‖x̄1 − x̄0‖ ≥ r. For i = 0, . . . , n let
xi = x̄0 + i(x̄1 − x̄0) and for i = 1, . . . , n let hi = tr(i−1)(x̄1−x̄0). It is easily 
he
ked that
n, the xi's and the hi's are as required.We let X and Y denote metri
 spa
es. Their metri
s are denoted by dX and dY .However, in most 
ases we write d(x, y) as an abbreviation of both dX(x, y) and dY (x, y).Lemma 3.14. Let X be a metri
 spa
e and λ be a partial a
tion of H on X. Supposethat x ∈ Fld(λ) and λ is translation-like at x. Let Y be a metri
 spa
e and τ : X ∼= Y .Let Γ ⊆ MC, and suppose that for every γ ∈ Γ and K > 0, K · γ ∈ Γ . Suppose that
P (x) of Lemma 3.11 holds. That is , there are T ∈ Nbr(x), V ∈ Nbr(eH) and γ ∈ Γsu
h that for every h ∈ V , T ⊆ Dom(hλ) and (hλ)

τ ↾τ (T ) is γ-bi
ontinuous. Then τ−1is Γ -
ontinuous at τ (x).Proof. Let U = Ux,V , D = Dx,V , r = rx,V and K = Kx,V be as ensured by thetranslation-likeness of H at x. Set y = τ (x), B = B(x, r) and C = τ (B). Sin
e C ∈
Nbr(y), we have e := d(y, Y − C) > 0. Let R = τ (T ∩ U) ∩ B(y, e/2) and M = 2Kr/e.Sin
e γ ∈ Γ , we have M · γ ∈ Γ .We show that τ−1↾R is M · γ-
ontinuous. Suppose by way of 
ontradi
tion that thisis not true. Hen
e there are ȳ0, ȳ1 ∈ R su
h that d(τ−1(ȳ0), τ

−1(ȳ1)) > M · γ(d(ȳ0, ȳ1)).Sin
e D is dense in U and ȳ0, ȳ1 ∈ τ (U), we may assume that ȳ0, ȳ1 ∈ τ (D). For every
h ∈ H let ĥ denote hλ, and for ℓ = 0, 1 let x̄ℓ = τ−1(ȳℓ). Hen
e x̄0, x̄1 ∈ D. So thereare n ≤ Kr/d(x̄0, x̄1), x̄0 = x0, x1, . . . , xn and h1, . . . , hn ∈ V su
h that xn 6∈ B, and forevery i = 1, . . . , n, x̄0, x̄1 ∈ Dom(hi), ĥi(x̄0) = xi−1 and ĥi(x̄1) = xi. For i = 1, . . . , n let
yi = τ (xi).In the spa
e Y we thus have the following situation:(i) d(y, y0) < e/2;(ii) for every i = 1, . . . , n, ĥτi (ȳ0) = yi−1 and ĥτi (ȳ1) = yi;(iii) yn 6∈ C.
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e ĥτi ↾ τ (T ) is γ-bi
ontinuous. Also, ȳ0, ȳ1 ∈ τ (T ), so(iv) d(yi−1, yi) ≤ γ(d(ȳ0, ȳ1)).Hen
e
e = d(y, Y − C) ≤ d(y, yn) ≤ d(y, y0) +

n∑

i=1

d(yi−1, yi) < e/2 + n · γ(d(ȳ0, ȳ1))

≤ e/2 +
Kr

d(x̄0, x̄1)
· γ(d(ȳ0, ȳ1)) < e/2 +

Kr

M · γ(d(ȳ0, ȳ1))
· γ(d(ȳ0, ȳ1))

= e/2 +
Kr

2Kr/e
= e.A 
ontradi
tion, so the lemma is proved.The following theorem is the 
onjun
tion of Lemmas 3.11 and 3.14. It will be used inTheorem 3.16. The statement of Theorem 3.15 is rather te
hni
al. So it seems worthwhileto explain its main appli
ation. Let X be an open subset of a normed spa
e E and

G ≤ H(X). Suppose that for every x ∈ X and r > 0 there are s ∈ (0, r) and K > 0su
h that for every v ∈ BE(0, s) there is g ∈ G su
h that g↾B(x, s) = trv↾B(x, s), g is
K-bilips
hitz and supp(g) ⊆ B(x, r). Assume further that G is α-in�nitely-
losed forevery α of the form y = Mt. Then if τ is a homeomorphism between X and a metri
spa
e Y , Γ is a 
ountably generated modulus of 
ontinuity and Gτ ⊆ LIPLC

Γ (Y ), then
τ−1 is lo
ally Γ -
ontinuous.Theorem 3.15. Suppose that :(i) X is a metri
 spa
e, G ≤ H(X), H is a topologi
al group, λ is a partial a
tionof H on X, x ∈ Fld(λ) and α ∈ MBC;(ii) G is α-in�nitely-
losed at x;(iii) x is a λ-limit-point ;(iv) for some N ∈ Nbr(x), λ is (α,G)-de
ayable in Hλ(x) ∩N ;(v) λ is translation-like at x;(vi) Γ is a modulus of 
ontinuity and Γ is (≤κ)-generated , where κ = min({κ(x,

Vλ(x)) |V ∈ Nbr(eH))});(vii) Y is a metri
 spa
e and τ : X ∼= Y ;(viii) there is U ∈ Nbr(x) su
h that for every g ∈ G U : if g is α ◦α-bi
ontinuous ,then gτ is Γ -bi
ontinuous at τ (x).Then τ−1 is Γ -
ontinuous at τ (x).Proof. Combine Lemmas 3.11 and 3.14.The above lemma will be used in the proof that the derivative of a di�eomorphism τis lo
ally Γ -
ontinuous. For groups of type HLC
Γ

(X), Theorem 3.15 yields a result whi
his slightly weaker than the result obtained in Theorem 3.27, where the a
tion is assumedto be �a�ne-like� rather than just �translation-like�.Theorem 3.16. Let 〈E,X,S,F〉 be a subspa
e 
hoi
e system, Γ be a (≤κ(E))-generatedmodulus of 
ontinuity , Y be a metri
 spa
e and τ : X ∼= Y . Suppose that (LIP(X;S,F))τ

⊆ HLC
Γ

(Y ). Then τ−1 is lo
ally Γ -
ontinuous.
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h that x ∈ S. Write H = T(E;FS), λ = λE;FS

T
|̀̀S,

G = LIP(X;S, FS) and α(t) = 3t. We shall apply Theorem 3.15.By Lemma 3.4, λ is (α,G)-de
ayable. So 3.15(iv) holds. Let V ∈ Nbr(eH). Thenthere is r > 0 su
h that Vλ(x) ⊇ BFS (x, r). Sin
e FS is dense in E, κ(FS) = κ(E). So
κ(x, Vλ(x)) = κ(FS) = κ(E). It follows that min({κ(x, Vλ(x)) | V ∈ Nbr(eH)}) = κ(E).Sin
e Γ is (≤κ(E))-generated, 3.15(vi) holds.Take U in the de�nition of α-in�nite-
losedness to be S. Let L be a subset of G whi
hsatis�es 
lauses (1)�(4) in the de�nition of α-in�nite-
losedness (see De�nition 3.9(e)).Then ◦L is α ◦α-bi
ontinuous, whi
h implies that ◦L ∈ G. So G is α-in�nitely-
losedat x. That is, 3.15(ii) holds.Sin
e for every V ∈ Nbr(eH) there is r > 0 su
h that Vλ(x) ⊇ BFS (x, r), x is a
λ-limit-point. That is, 3.15(iii) holds. By Proposition 3.13, λ is translation-like at x.That is, 3.15(v) holds. By the assumptions of this theorem, 3.15(vii) and (viii) hold.We have seen that all the assumptions of Theorem 3.15 are ful�lled, so τ−1 is Γ -
ontinuous at τ (x).Definition 3.17. (a) Let E be a normed spa
e, S ⊆ X ⊆ E be open subsets and F bea dense linear subspa
e of E. Let Γ be a modulus of 
ontinuity. We de�ne

HΓ (X) = {h ∈ H(X) | there is γ ∈ Γ su
h that h is γ-bi
ontinuous},
HΓ (X,S) = HΓ (X) S ,

HΓ (X;F ) = {h ∈ HΓ (X) | h(X ∩ F ) = X ∩ F}and
HΓ (X;S, F ) = HΓ (X,S) ∩HΓ (X;F ).Similarly, letHLC

Γ
(X,S) = HLC

Γ
(X) S , HLC

Γ
(X;F ) = {h ∈ HLC

Γ
(X) | h(X∩F ) = X∩F}and HLC

Γ
(X;S, F ) = HLC

Γ
(X,S) ∩HLC

Γ
(X;F ).Let 〈E,X,S,F〉 be a subspa
e 
hoi
e system. We de�ne HΓ (X;S,F) to be thesubgroup of H(X) generated by ⋃{HΓ (X;S, FS) | S ∈ S}. Analogously, the group

HLC
Γ

(X;S,F) is de�ned to be the subgroup of H(X) generated by ⋃{HLC
Γ

(X;S, FS) |
S ∈ S}.(b) Let E be a normed spa
e, z ∈ E and η ∈ H([0,∞)). De�ne h = RadEη,z as follows:

h(x) = z + η(‖x− z‖) x− z

‖x− z‖ , x 6= z,and h(z) = z. Clearly, h ∈ H(E). We 
all h the radial homeomorphism based on η, z.Also, denote RadEη,0E by RadEη , and 
all it the radial homeomorphism based on η. �Remark. Note the following fa
ts.(1) HΓ (X) is a spe
ial 
ase of HΓ (X;S,F), where S = {X} and FX = E. The sameholds for HLC
Γ

(X).(2) HΓ (X,S), HΓ (X;F ), HΓ (X;S, F ), HΓ (X;S,F) ⊆ HΓ (X).(3) HLC
Γ

(X,S), HLC
Γ

(X;F ), HLC
Γ

(X;S, F ), HLC
Γ

(X;S,F) ⊆ HLC
Γ

(X). �Proposition 3.18. Let E be a normed spa
e, z ∈ E and η ∈ H([0,∞)). Suppose that ηis α-bi
ontinuous. Then hη,z is 3 · α-bi
ontinuous.



60 M. Rubin and Y. YomdinProof. Set h = Radη,z. We may assume that z = 0. Note that η(t) ≤ α(t) for every
t ≥ 0. Sin
e α is 
on
ave, it follows that α(t)

t · s ≤ α(s) for every 0 < s ≤ t.Let u, v ∈ E − {0}. Assume that ‖u‖ ≤ ‖v‖ and set w = ‖u‖
‖v‖ v. Then ‖w − u‖ ≤

‖u‖ + ‖w‖ = 2‖u‖. So ‖w−u
2 ‖ ≤ ‖u‖. Also, ‖v − w‖ = ‖v‖ − ‖u‖ ≤ ‖v − u‖. So

‖w − u‖ ≤ ‖v − u‖ + ‖v − w‖ ≤ 2‖v − u‖. Hen
e
‖h(v) − h(u)‖ ≤ ‖h(v) − h(w)‖ + ‖h(w) − h(u)‖

= (η(‖v‖) − η(‖w‖)) +
η(‖u‖)
‖u‖ ‖w − u‖ = (η(‖v‖) − η(‖u‖)) + 2 · η(‖u‖)‖u‖

∥∥∥∥
w − u

2

∥∥∥∥

≤ α(‖v‖ − ‖u‖) + 2α

(‖w − u‖
2

)
≤ α(‖v − u‖) + 2α(‖v − u‖) = 3α(‖v − u‖).So h is 3α-
ontinuous. Sin
e h−1 = Radη−1,z, it follows that h−1 is 3α-
ontinuous.The main result of the next theorem is part (a). It is a more readable spe
ial 
aseof (b). Part (b) is a trivial 
orollary of (
). The proof of (
) is more than just 
olle
tingsome of the previous lemmas together. It requires an additional argument.Theorem 3.19. (a) Let X,Y be open subsets of the normed spa
es E and F respe
tively.Write κ = κ(E) and let Γ ,∆ be (≤κ)-generated moduli of 
ontinuity. Let τ : X ∼= Y ,and suppose that (HLC

Γ
(X))τ = HLC

∆
(Y ). Then Γ = ∆ and τ is lo
ally Γ -bi
ontinuous.(b) Let 〈E,X,S, E〉 and 〈F, Y, T ,F〉 be subspa
e 
hoi
e systems. Write κ = κ(E) andlet Γ ,∆ be (≤ κ)-generated moduli of 
ontinuity. Let τ : X ∼= Y , and suppose that :

(i) (HΓ (X;S,F))τ ⊆ HLC
∆ (Y ), (ii) (H∆(Y ; T ,F))τ

−1 ⊆ HLC
Γ (X).Then Γ = ∆ and τ is lo
ally Γ -bi
ontinuous.(
) Let 〈E,X,S, E〉 and 〈F, Y, T ,F〉 be subspa
e 
hoi
e systems. Write κ = κ(E) andlet Γ ,∆ be (≤κ)-generated moduli of 
ontinuity. Let τ : X ∼= Y , and suppose that :(i) (LIP(X;S,F))τ ⊆ HLC

∆
(Y ),(ii) (H∆(Y ; T ,F))τ

−1 ⊆ HLC
Γ

(X).Then ∆ ⊆ Γ and τ is lo
ally Γ -bi
ontinuous.Proof. Part (a) is a spe
ial 
ase of (b), and (b) is 
on
luded by applying (
) twi
e: on
eto X,Y and on
e to Y,X. So it su�
es prove (
).(
) Sin
e X and Y are homeomorphi
, κ(F ) = κ(E) = κ. Suppose by way of 
ontra-di
tion that ∆ 6⊆ Γ . Pi
k any T ∈ T and y ∈ T ∩ FT , and set x = τ−1(y). (Re
all that
FT denotes the dense subspa
e of F assigned to T by the subspa
e 
hoi
e system). Let
x ∈ S ∈ S. By Theorem 3.16 and 
lause (
)(i), for some δ ∈ ∆, τ−1 is δ-
ontinuous at
τ (x). There is α ∈ (∆ − Γ ) ∩ MBC su
h that δ � α. So τ−1 is α-
ontinuous at τ (x).Choose r > 0 be su
h that τ−1↾BF (y, r) is α-
ontinuous and BF (y, r) ⊆ τ (S) ∩ T , andlet e be su
h that α ◦α(e) = r/2. We de�ne η : [0,∞) → [0,∞) as follows. For t ∈ [0, e],
η(t) = α ◦α(t), for t ∈ [r,∞), η(t) = t, η↾[e, r] is a linear fun
tion, and η is 
ontinuous.Clearly, η ∈ H([0,∞)), and it is easily seen that η is 4 · α ◦α-
ontinuous and that η−1 is
2-Lips
hitz. So η is 4 · α ◦α-bi
ontinuous. Let h = Radη,y↾Y . By Proposition 3.18, h is
12 · α ◦α-bi
ontinuous, hen
e h ∈ H∆(Y ). Sin
e y ∈ FT , we have h(Y ∩ FT ) = Y ∩ FT ,and so h ∈ H∆(Y ; T ,F). By 
lause (
)(ii), g := hτ

−1 is lo
ally Γ -bi
ontinuous, and
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onstru
tion of manifolds from subgroups of homeomorphism groups 61by Theorem 3.16 and 
lause (
)(ii), τ is lo
ally Γ -
ontinuous. This implies that τ ◦ g islo
ally Γ -
ontinuous. Sin
e h ◦ τ = τ ◦ g, we 
on
lude that h ◦ τ is lo
ally Γ -
ontinuous.Let γ ∈ Γ be su
h that h ◦ τ is γ-
ontinuous at x, and 
hoose s su
h that h ◦ τ↾BE(x, s)is γ-
ontinuous. We may assume that τ (BE(x, s)) ⊆ BF (y, r/2).Sin
e α 6∈ Γ , there is t < s su
h that α(t) > γ(t). Choose w su
h that ‖w − x‖ = tand set z = τ (w). Then z ∈ BF (y, r/2) and hen
e ‖h(z) − h(y)‖ = α ◦α(‖z − y‖). Now,
‖w − x‖ = ‖τ−1(z) − τ−1(y)‖ ≤ α(‖z − y‖). So α−1(‖w − x‖) ≤ ‖z − y‖ and hen
e

‖h(z) − h(y)‖ = α ◦α(‖z − y‖) ≥ α ◦α(α−1(‖w − x‖)) = α(‖w − x‖).That is, ‖h ◦ τ (w)− h ◦ τ (x)‖ ≥ α(‖w− x‖) > γ(‖w− x‖). This 
ontradi
ts the fa
t that
h ◦ τ↾BE(x, s) is γ-
ontinuous. So ∆ ⊆ Γ .Sin
e τ−1 is lo
ally ∆-
ontinuous, τ−1 is lo
ally Γ -
ontinuous. Re
all also that τ islo
ally Γ -
ontinuous. So τ is lo
ally Γ -bi
ontinuous.Remark 3.20. The assumptions of Theorem 3.19(
) probably imply that τ is lo
ally
∆-bi
ontinuous. We do not know how to prove this fa
t. However, the �nal result is nota�e
ted. We also do not know how to prove Theorem 3.19(a) without the assumptionthat Γ ,∆ are (≤κ(E))-generated. �There is a variant of translation-likeness whi
h we shall use in the 
ontext of di�eo-morphisms. Suppose that f, g ∈ Diff([0, 1]). If the derivative f ′ of f is α-
ontinuous and
g′ is β-
ontinuous, then (i) for some K,L > 0, (f ◦ g)′ is (K ·α+L · β)-
ontinuous. Also,(ii) for some M > 0, (f−1)′ is M · α-
ontinuous. (iii) A similar fa
t holds for higherderivatives.Let Γ ⊆ MC, and assume that K · α + L · β ∈ Γ for every α, β ∈ Γ and K,L > 0.Consider GΓ = {f ∈ Diff([0, 1]) | for some α ∈ Γ , f ′ is α-
ontinuous}. By (i)�(ii), GΓ isa group, and by (iii), the analogous fa
t for Diffn([0, 1]) is also true. So Γ need not be amodulus of 
ontinuity in order for GΓ to be a group. Let us 
all su
h a Γ a modulus ofdi�erentiability.We do not deal with di�erentiability in this work, but we shall show here that if Γ is amodulus of di�erentiability and (LIP(X))τ ⊆ HLC

Γ
(Y ), then τ−1 is lo
ally Γ -
ontinuous.This is the analogue of Theorem 3.16, and Theorem 3.15 has an analogue too. Theproofs use the additional assumptions that X is of the se
ond 
ategory, and that Γ is
ountably generated. On the other hand, the in�nite-
losedness of G is not needed, andthe assumption of de
ayability is repla
ed by a mu
h weaker property.Definition 3.21. Let X be a topologi
al spa
e, λ be a partial a
tion of a topologi
algroup H on X and G ≤ H(X). Let x ∈ X. We say that λ is 
ompatible with G at x ifthere is W ∈ Nbr(eH) su
h that for every h ∈ W there are U ∈ Nbr(x) and g ∈ G su
hthat U ⊆ Dom(hλ) and hλ↾U = g↾U .We say that λ is 
ompatible with G if λ is 
ompatible with G at every x ∈ Fld(λ). �The following lemma repla
es Lemma 3.11.Lemma 3.22. Suppose that :



62 M. Rubin and Y. Yomdin(i) X is a metri
 spa
e, G ≤ H(X), H is a topologi
al group and H is of the se
ond
ategory , λ is a partial a
tion of H on X, x ∈ Fld(λ), and λ is 
ompatible with
G at x.(ii) Y is a metri
 spa
e and τ : X ∼= Y .(iii) Γ is a 
ountably generated subset of MC, cl�({γ}) ⊆ Γ and K · γ ∈ Γ for every
γ ∈ Γ and K > 0.(iv) For every g ∈ G, gτ is Γ -bi
ontinuous at τ (x).Then Q(x) holds , where

Q(x): For every W ∈ Nbr(eH) there are T ∈ Nbr(x), a nonempty open subset V ⊆ Wand γ ∈ Γ su
h that for every h ∈ V : T ⊆ Dom(hλ) and (hλ)
τ↾τ (T ) is γ-bi
ontinuous.Proof. For every h ∈ H denote hλ by ĥ. Let W ∈ Nbr(eH). We may assume thatfor every h ∈ W there are Uh ∈ Nbr(x) and gh ∈ G su
h that Uh ⊆ Dom(ĥ) and

hλ↾U = gh↾U .We verify that (∗) for every h ∈W there are rh > 0 and γh ∈ Γ su
h that B(x, rh) ⊆
Dom(ĥ) and ĥτ ↾τ (B(x, rh)) is γh-bi
ontinuous. Let Uh, gh be as above. Then (gh)

τis Γ -bi
ontinuous at τ (x). Let γh ∈ Γ and T ∈ Nbr(τ (x)) be su
h that (gh)
τ↾T is γh-bi
ontinuous, and let rh > 0 be su
h that B(x, rh) ⊆ Uh and τ (B(x, rh)) ⊆ T . Obviously,

ĥτ ↾τ (B(x, rh)) = (ĥ↾B(x, rh))
τ = (gh↾B(x, rh))

τ = (gh)
τ ↾τ (B(x, rh)).So ĥτ ↾τ (B(x, rh) is γ-bi
ontinuous. That is, (∗) holds.Let Γ0 = {γi | i ∈ N} be su
h that Γ = cl�(Γ0), and assume that {j | γj = γi} isin�nite for every i ∈ N. Set

Ki =

{
h ∈W

∣∣∣∣B
(
x,

1

i+ 1

)
⊆ Dom(ĥ) and ĥτ ↾τ(B(

x,
1

i+ 1

)) is γi-bi
ontinuous}.By (∗), ⋃
i∈N

Ki = W . We show that for every i, Ki is 
losed in W . Set Bi = B(x, 1
i+1 )).Let h ∈W−Ki. So there are y1, y2 ∈ τ (Bi) su
h that (i) d(ĥτ (y1), ĥτ (y2)) > γi(d(y1, y2))or (ii) d(ĥτ (y1), ĥτ (y2)) < γ−1

i (d(y1, y2)). We may assume that (i) happens. For ℓ = 1, 2let Tℓ be an open neighborhood of ĥτ (yℓ) su
h that d(T1, T2) > γi(d(y1, y2)). Set Sℓ =

τ−1(Tℓ) and xℓ = τ−1(yℓ). Let V0 = {k ∈ W | x1, x2 ∈ Dom(k̂), k̂(x1) ∈ S1 and k̂(x2) ∈
S2}. So V0 is open. We show that V0 
ontains h and is disjoint from Ki. Clearly,
ĥ(xℓ) = τ−1(ĥτ (yℓ)) ∈ τ−1(Tℓ) = Sℓ, hen
e h ∈ V0. If k ∈ V0, then k̂(xℓ) ∈ Sℓ andso k̂τ (yl) ∈ τ (Sℓ) = Tℓ. Hen
e k̂τ ↾τ (Bi) is not γi-
ontinuous, namely, k 6∈ Ki. Sin
e
W is of the se
ond 
ategory and every Kn is 
losed, there is n su
h that int(Kn) 6= ∅.De�ne V = int(Kn), T = B(x, 1

n+1 ) and γ = γn. Then V , T and γ are as required in thelemma.Definition 3.23. Let X be a metri
 spa
e, H be a topologi
al group λ be a partiala
tion of H on X and x ∈ Fld(λ). The a
tion λ is said to be regionally translation-likeat x if there is Wx ∈ Nbr(eH) su
h that for every nonempty open V ⊆ Wx su
h that
V × {x} ⊆ Dom(λ) there are:(i) U = Ux,V ∈ Nbr(x) and a dense subset of U , D = Dx,V ;(ii) a point z = zx,V , a radius r = rx,V > 0, and a 
onstant K = Kx,V > 0;
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onstru
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h that for any distin
t x̄0, x̄1 ∈ U ∩ D there are n ≤ K · r
d(x̄0,x̄1)

, a sequen
e z =

z0, z1, . . . , zn ∈ X and h1, . . . , hn ∈ V su
h that zn 6∈ B(z, r), and for every i = 1, . . . , n,
x̄0, x̄1 ∈ Dom((hi)λ), (hi)λ(x̄0) = zi−1 and (hi)λ(x̄1) = zi.If λ is regionally translation-like at every x ∈ Fld(λ), then λ is said to be a regionallytranslation-like a
tion. �The next proposition is a 
ounterpart of Proposition 3.13.Proposition 3.24. Let E be a normed ve
tor spa
e, F be a dense linear subspa
e of Eand X be an open subset of E. Then λE;F

T
|̀̀X is regionally translation-like.Proof. Write λ = λE;F

T
|̀̀X and de�neWx = T(E;F ). Let V ⊆Wx be open and nonempty,and suppose that V × {x} ⊆ Dom(λ). Choose v ∈ F and s > 0 su
h that V1 := {trEu |

u ∈ BF (v, s)} ⊆ V and V1 × BE(x, s) ⊆ Dom(λ). De�ne zx,V = v + x, r = rx,V = s/2,
Ux,V = B(x, s/4), Dx,V = Ux,V ∩ (x+ F ) and Kx,V = 2. It is left to the reader to verifythat the above satisfy the requirements of regional translation-likeness of λ at x.The following lemma is a 
ounterpart of Lemma 3.14.Lemma 3.25. Let X be a metri
 spa
e, and λ be a partial a
tion of H on X. Supposethat x ∈ Fld(λ), and λ is regionally translation-like at x. Let Y be a metri
 spa
e and
τ : X ∼= Y . Let Γ ⊆ MC, and suppose that for every γ ∈ Γ and K > 0, K · γ ∈ Γ .Also assume that Q(x) of Lemma 3.22 holds. That is , for every W ∈ Nbr(eH) there are
U ∈ Nbr(x), a nonempty open subset V ⊆ W and γ ∈ Γ su
h that U ⊆ Dom(hλ) and
(hλ)

τ ↾τ (U) is γ-bi
ontinuous for every h ∈ V . Then τ−1 is Γ -
ontinuous at τ (x).Proof. Let Wx be as ensured by the regional translation-likeness of λ at x. By Q(x),there are U ∈ Nbr(x), a nonempty open V ⊆ Wx and γ ∈ Γ su
h that for every h ∈ V :
U ⊆ Dom(hλ) and (hλ)

τ↾τ (U) is γ-bi
ontinuous. So V ⊆ Wx and V × {x} ⊆ Dom(λ).We apply the de�nition of regional translation-likeness to V . Write S = Ux,V , D = Dx,V ,
z = zx,V , r = rx,V and K = Kx,V .Let w = τ (z), B = B(z, r) and C = τ (B). Sin
e C ∈ Nbr(w), we 
on
lude that
e := d(w, Y − C) > 0. Let R = τ (U ∩ S) and M = Kr/e. Sin
e γ ∈ Γ , we have
M · γ ∈ Γ .We show that τ−1↾R is M · γ-
ontinuous. Suppose by 
ontradi
tion that this is nottrue. For h ∈ H denote hλ by ĥ. Hen
e there are ȳ0, ȳ1 ∈ R su
h that d(τ−1(ȳ0), τ

−1(ȳ1))

> M · γ(d(ȳ0, ȳ1)). Sin
e D is dense in S and ȳ0, ȳ1 ∈ τ (S), we may assume that
ȳ0, ȳ1 ∈ τ (D). For ℓ = 0, 1 let x̄ℓ = τ−1(ȳℓ). Hen
e x̄0, x̄1 ∈ D. So there are n ≤ Kr

d(x̄0,x̄1) ,
z = z0, z1, . . . , zn and h1, . . . , hn ∈ V su
h that zn 6∈ B, and for every i = 1, . . . , n,
x̄0, x̄1 ∈ Dom(ĥi), ĥi(x̄0) = zi−1 and ĥi(x̄1) = zi. For i = 1, . . . , n let wi = τ (zi).In the spa
e Y we have: w0 = w; for every i = 1, . . . , n, ĥτi (ȳ0) = wi−1 and ĥτi (ȳ1) =

wi; and wn 6∈ C. Every hi belongs to V , hen
e ĥτi |̀ τ (U) is γ-bi
ontinuous. Also,
ȳ0, ȳ1 ∈ τ (U), so d(wi−1, wi) ≤ γ(d(ȳ0, ȳ1)). Hen
e

e = d(w, Y − C) ≤ d(w,wn) = d(w0, wn) ≤
n∑

i=1

d(wi−1, wi) ≤ n · γ(d(ȳ0, ȳ1))

≤ Kr

d(x̄0, x̄1)
· γ(d(ȳ0, ȳ1)) <

Kr

M · γ(d(ȳ0, ȳ1))
· γ(d(ȳ0, ȳ1)) =

Kr

Kr/e
= e.A 
ontradi
tion, so the lemma is proved.



64 M. Rubin and Y. YomdinTheorem 3.26. Assume the following fa
ts.(i) X is a metri
 spa
e, G ≤ H(X), H is a topologi
al group and H is of the se
ond
ategory , λ is a partial a
tion of H on X and x ∈ Fld(λ).(ii) λ is 
ompatible with G at x.(iii) λ is regionally translation-like at x.(iv) Γ is a 
ountably generated subset of MC, cl�({γ}) ⊆ Γ , and K · γ ∈ Γ for every
γ ∈ Γ and K > 0.(v) Y is a metri
 spa
e and τ : X ∼= Y .(vi) For every g ∈ G, gτ is Γ -bi
ontinuous at τ (x).Then τ−1 is Γ -
ontinuous at τ (x).Proof. Combine Lemmas 3.22 and 3.25.3.4. A�ne-like partial a
tions. The goal of this part of the 
hapter is the following�nal theorem.Theorem 3.27. Let 〈E,X,S, E〉 be a subspa
e 
hoi
e system with dim(E) > 1, Y be anopen subset of a normed spa
e F , Γ be a (≤κ(E))-generated modulus of 
ontinuity and

τ : X ∼= Y . Suppose that (LIP(X,S, E))τ ⊆ HLC
Γ

(Y ). Then τ is lo
ally Γ -bi
ontinuous.This parallels Theorem 3.16, but has a stronger 
on
lusion. Whereas in 3.16 the
on
lusion is that τ−1 is lo
ally Γ -
ontinuous, 3.27 says that τ is lo
ally Γ -bi
ontinuous.Definition 3.28. (a) A subset D of a metri
 spa
e X is 
alled a metri
ally dense subsetof X if for any x, y ∈ X and ε > 0 there are x1 ∈ B(x, ε) ∩D and y1 ∈ B(y, ε) ∩D su
hthat d(x1, y1) = d(x, y). Note that metri
 density implies density.(b) Let X be a metri
 spa
e, H be a topologi
al group and λ be a partial a
tionof H on X. For h ∈ H denote hλ by ĥ. Let x ∈ X. We say that λ is an a�ne-likepartial a
tion at x if the following holds. For every V ∈ Nbr(eH) and U ∈ Nbr(x)there are n = n(x, V, U) ∈ N, U0 = U0(x, V, U) ∈ Nbr(x) and D = D(x, V, U) ⊆ U0su
h that U0 ⊆ U , D is metri
ally dense in U0, and for every x1, y1, x2, y2 ∈ D: if
d(x1, y1) = d(x2, y2), then there are h1, . . . , hn ∈ V su
h that ĥ1 ◦ · · · ◦ ĥn(x1) = x2,
ĥ1 ◦ · · · ◦ ĥn(y1) = y2 and ĥi ◦ ĥi+1 ◦ · · · ◦ ĥn({x1, y1}) ⊆ U for every 1 ≤ i ≤ n.If λ is a�ne-like at every x ∈ Fld(λ), then λ is said to be an a�ne-like partial a
tion.(
) If H is a group, A ⊆ H and n ∈ N, then An = {a1 · · · an | a1, . . . , an ∈ A}. Let λbe a partial a
tion of a topologi
al group H on a topologi
al spa
e X. If h ∈ H then hλis denoted by ĥ. For U ⊆ H and W1,W2 ⊆ X de�ne

U [n;W1,W2] = {h1 · · ·hn | h1, . . . , hn ∈ U, W1 ⊆ Dom(ĥi ◦ · · · ◦ ĥn) and
ĥi ◦ · · · ◦ ĥn(W1) ⊆W2 for every i = 1, . . . , n}. �We shall prove two intermediate main fa
ts. They roughly say the following.(a) If X is an open subset of a normed spa
e E, and F is a dense linear subspa
e of

E, then λE;F
A

|̀̀X is a�ne-like.(b) Suppose that λ is a de
ayable a�ne-like partial a
tion of H on X, τ : X ∼= Y , Γ isa 
ountably generated modulus of 
ontinuity, and (hλ)
τ is lo
ally Γ -bi
ontinuousfor every h ∈ H. Then τ is lo
ally Γ -bi
ontinuous.
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onstru
tion of manifolds from subgroups of homeomorphism groups 65We start with the proof of (a). When proving the a�ne-likeness of λE;F
A

|̀̀X at x,it is easier to deal �rst with x's whi
h belong to F ∩ X. To 
on
lude that λE;F
A

|̀̀X isa�ne-like at every x ∈ X, we use the observation that if λ is a�ne-like at every x ∈ C,and U0(x, V, U) and n(x, V, U) depend on x ∈ C and V in some uniform way, then λ isa�ne-like at every x ∈ cl(C).Proposition 3.29. Assume the following fa
ts.(i) X is a metri
 spa
e, λ is a partial a
tion of H on X, C ⊆ Fld(λ), r0 > 0,
ι : Nbr(eH)×C → Nbr(eH), n̄ : Nbr(eH)×(0, r0) → N and s̄ : Nbr(eH)×(0, r0) →
(0,∞). Denote ι(V, y) by Vy.(ii) For every y ∈ C, λ is a�ne-like at y, and for every V ∈ Nbr(eH) and r ∈ (0, r0),
n(y, Vy, B(y, r)) ≤ n̄(V, r) and U0(y, Vy, B(y, r)) ⊇ B(y, s̄(V, r)).(iii) For every x ∈ cl(C) and W ∈ Nbr(eH) there are U1 ∈ Nbr(x) and V ∈ Nbr(eH)su
h that for every y ∈ C ∩ U1, Vy ⊆W .Then for every x ∈ cl(C), λ is a�ne-like at x. Also, if r < r0, then n(x, V,B(x, r)) and

U0(x, V,B(x, r)) 
an be taken to be n̄(V, r/2) and B(x, 1
2 s̄(V, r/2)) respe
tively.Proof. Let x ∈ cl(C), W ∈ Nbr(eH), r ∈ (0, r0) and U = B(x, r). There is V ∈

Nbr(eH) and U1 ∈ Nbr(x) su
h that for every y ∈ U1 ∩ C, Vy ⊆ W . De�ne U0 =

U0(x,W,U) to be B(x, 1
2 s̄(V, r/2)). Let y ∈ C ∩ U0 ∩ U1. Then U0 ⊆ B(y, s̄(V, r/2)) ⊆

U0(y, Vy, B(y, r/2)). Hen
e D(y, Vy, B(y, r/2)) ∩ U0 is metri
ally dense in U0. Let D =

D(x,W, V ) = D(y, Vy, B(y, r/2)) ∩ U0 and n = n(x,W,U) = n̄(V, r/2). We show that
U0, D and n full�ll the requirements of a�ne-likeness.Let x1, x2, y1, y2 ∈ D be su
h that d(x1, y1) = d(x2, y2). Let h1, . . . , hn ∈ Vy be asensured by the a�ne-likeness of λ at y. So for every i = 1, . . . , n, ĥi ◦ · · · ◦ ĥn({x1, y1}) ⊆
B(y, r/2). Clearly, s̄(V, r/2) ≤ r/2 and d(x, y) < s̄(V, r/2). So B(y, r/2) ⊆ B(x, r) = U .Sin
e y ∈ U1, Vy ⊆W . So h1, . . . , hn ful�ll the requirements needed to demonstrate that
λ is a�ne-like at x.If X is an open subset of R, then A(R) |̀̀X is not a�ne-like. So in what follows weassume that dim(E) > 1.The group L(E) has a property similar to a�ne-likeness. But the �a�ne-likeness� of
L(E) applies only to pairs of pairs x1, y1, x2, y2 in whi
h x1 = x2 = 0E .Lemma 3.30. Let E be a normed spa
e with dimension > 1, E1 be a dense linear subspa
eof E and V ∈ NbrL(E;E1)(Id). Then there is n = n(V ) ∈ N with the following property :
(∗) For every W1 ∈ NbrE(0) there is W2 ∈ NbrE(0) su
h that W2 ⊆ W1 and for every
x1, x2 ∈W2 ∩E1: if ‖x1‖ = ‖x2‖, then there is S ∈ V [n;W2,W1] su
h that S(x1) = x2.Moreover , if in the above V = BL(E;E1)(Id, r) and W1 = BE(0, s), then W2 
an betaken to be BE(0, s/(1 + r)n(V )).Proof. The proof of the lemma relies on three easy 
laims.Claim 1. Let H

2 be the 2-dimensional Hilbert spa
e. For every K ≥ 1 and V ∈
NbrL(H2)(Id) there is n = n(V,K) ∈ N su
h that for every x1, x2 ∈ H

2: if 1/K ≤
‖x1‖/‖x2‖ ≤ K, then there is T ∈ V n su
h that T (x1) = x2.



66 M. Rubin and Y. YomdinProof. We may assume that V = V −1. For some angle γ0 > 0, U 
ontains all rotations
Rotγ , γ ∈ [0, γ0]. For some ε0 > 0, U 
ontains all isomorphisms Tε(x) = (1 + ε)x where
ε ∈ [0, ε0]. It is left to the reader to verify that n(U,K) = [π/γ0] + logK/log(ε0 + 1) + 2is as required.We do not prove Claim 2 whi
h is well-known and easy. In fa
t, the best possible
onstant in Claim 2 is √2.Claim 2. For every 2-dimensional normed spa
e E there is an isomorphism T between
E and the 2-dimensional Hilbert spa
e H

2 su
h that ‖T‖ ≤ 1 and ‖T−1‖ ≤ 3
√

2.Claim 3. Let E be a normed spa
e, E1 be a dense linear subspa
e of E, F be a 2-dimensional linear subspa
e of E1 and T ∈ L(F ), then there is T1 ∈ L(E;E1) extending
T su
h that d(T1, IdE) ≤ 3d(T, IdF ).Proof. Let x1, x2 be a basis for F su
h that ‖x1‖ = d(x1, span({x2})). For i = 1, 2 let
ϕ1, ϕ2 ∈ F ∗ be su
h that ϕi(xj) = δi,j · ‖xj‖, and let ψi ∈ E∗ be su
h that ψi extends
ϕi and ‖ψi‖ = ‖ϕi‖. Set F1 =

⋂2
i=1 ker(ϕi), hen
e F ⊕F1 = E. For x ∈ E let x̂ ∈ F and

x̄ ∈ F1 denote the 
omponents of x in F and F1 respe
tively. If x̂ = ax1+bx2, denote ax1and bx2 by x̂1 and x̂2 respe
tively. Let x ∈ F . Then |ϕ1(x̂)| = ‖x̂1‖ = d(x̂, span({x2})) ≤
‖x̂‖. So ‖ϕ1‖ ≤ 1. Hen
e ‖ψ1‖ ≤ 1. It follows that ‖x̂1‖ = |ψ1(x)| ≤ ‖x‖. Also,
‖x̂2‖ ≤ ‖x̂‖ + ‖x̂1‖ ≤ 2‖x̂‖. Hen
e |ϕ2(x̂)| = ‖x̂2‖ ≤ 2‖x̂‖. So ‖ψ2‖ = ‖ϕ2‖ ≤ 2. Hen
e
‖x̂2‖ = |ψ2(x)| ≤ 2‖x‖. So ‖x̂‖ ≤ ‖x̂1‖ + ‖x̂2‖ ≤ 3‖x‖.Let T1 be de�ned by T1(x) = T (x̂) + x̄. Hen
e T−1

1 (x) = T−1(x̂) + x̄. Then for every
x ∈ E, ‖(T1 − IdE)(x)‖ = ‖(T − IdF )(x̂)‖ ≤ ‖T − IdF ‖ · ‖x̂‖ ≤ 3‖T − IdF ‖ · ‖x‖. That is,
‖T1−IdE‖ ≤ 3‖T−IdF ‖. A similar 
omputation shows that ‖T−1

1 −IdE‖ ≤ 3‖T−1−IdF ‖.So d(T1, IdE) ≤ 3d(T, IdF ).Also for every x ∈ E, T1(x) − x ∈ F ⊆ E1. So T1(E1) = E1, that is, T1 ∈ L(E;E1).This proves Claim 3.We return to the proof of the lemma. Let V ∈ NbrL(E;E1)(Id). We may assume that
V = BL(E;E1)(IdE , r). Let n = n(BL(H2)(IdH2 , r/9

√
2), 3

√
2) be as ensured by Claim 1.Let x1, x2 ∈ E1 be su
h that ‖x1‖ = ‖x2‖ 6= 0. We show that there is S ∈ V n su
hthat S(x1) = x2. Let F be a 2-dimensional subspa
e of E1 
ontaining x1 and x2, and

T : F → H
2 be as ensured by Claim 2. Sin
e ‖T‖ ≤ 1 and ‖T−1‖ ≤ 3

√
2, it follows that

1/3
√

2 ≤ ‖T (x1)‖/‖T (x2)‖ ≤ 3
√

2. Hen
e there is S0 ∈ (BL(H2)(IdH2 , r/9
√

2))n su
hthat S0(T (x1)) = T (x2). Let S0 = S0,1 ◦ · · · ◦S0,n, where S0,i ∈ BL(H2)(IdH2 , r/9
√

2),and de�ne S1 = T−1S0T and S1,i = T−1S0,iT . Then S1(x1) = x2 and S1 = S1,1 ◦ · · ·
◦S1,n. Clearly, S1,i − IdF = T−1(S0,i − IdH2)T , and hen
e

‖S1,i − IdF ‖ ≤ ‖T−1‖ · ‖(S0,i − IdH2)‖ · ‖T‖ ≤ 3
√

2 · ‖(S0,i − IdH2)‖.The same inequality holds for (S1,i)
−1. So

d(IdF , S1,i) = ‖S1,i − IdF ‖ + ‖(S1,i)
−1 − IdF ‖

≤ 3
√

2 · ‖(S0,i − IdH2)‖ + 3
√

2 · ‖((S0,i)
−1 − IdH2)‖

= 3
√

2 · d(S0,i, IdH2) < r/3.
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onstru
tion of manifolds from subgroups of homeomorphism groups 67By Claim 3, there are S2,i∈L(E;E1) extending S1,i su
h that d(IdE , S2,i)≤3·d(IdF , S1,i).Hen
e S2,i ∈ BL(E;E1)(IdE , r), and so S := S2,1 ◦ · · · ◦S2,n ∈ (BL(E;E1)(IdE , r))
n = V n.Let W1 ∈ NbrE(0), and suppose that W1 ⊇ BE(0, s). Set W2 = BE(0, s/(1 + r)n).For any L ∈ V , ‖L‖ < 1 + r, hen
e for every i ≤ n and L′ ∈ V i, ‖L′‖ < (1 + r)i. So

L′(W2) ⊆ W1 for every i ≤ n and L′ ∈ V i. This proves that n ful�lls the requirementsof the lemma.The following lemma is analogous to Proposition 3.13.Lemma 3.31. Let E be a normed spa
e with dimension > 1, F be a dense linear subspa
eof E and X ⊆ E be open. Then λE;F
A

|̀̀X is an a�ne-like partial a
tion.Proof. First we show that for every x ∈ X∩F , λE;F
A

|̀̀X is a�ne-like at x. Let Y = X−x.The fun
tion χ from A(E;F ) ∪X to A(E;F ) ∪ Y de�ned by: χ(u) = u− x, x ∈ X; and
χ(h) = htr−x , h ∈ A(E;F ), is an isomorphism between the partial a
tions λE;F

A
|̀̀X and

λE;F
A

|̀̀Y . Also, χ↾X is an isometry. So it su�
es to prove that λE;F
A

|̀̀Y is a�ne-like at 0E .We rename Y and 
all it X.Denote A(E;F ) by A, T(E;F ) by T and L(E;F ) by L. Let r, s > 0, V = BA(Id, r),
U = BE(0, s), and assume that U ⊆ X. We shall �nd n = n(0E, V, U), U0 = U0(0

E , V, U)and D = D(0E , V, U) whi
h demonstrate that A is a�ne-like at 0E . Letm = n(BL(Id, r))be as ensured by Lemma 3.30. De�ne t = min(r, s)/2, W1 = BE(0, t) and W2 =

BE(0, t/(1 + r)m), and set n = m+ 2, U0 = 1
2W2 and D = U0 ∩ F .It is obvious that D is metri
ally dense in U0. Let x1, y1, x2, y2 ∈ D be su
h that

‖x1 − y1‖ = ‖x2 − y2‖. For ℓ = 1, 2 let gℓ = trE−xℓ
. Sin
e ‖x1‖, ‖x2‖ < r

2 , it fol-lows that g1, g2 ∈ BT(Id, r). Clearly, gℓ(xℓ) = 0, and sin
e xℓ, yℓ ∈ U0 = 1
2W2, itfollows that gℓ(yℓ) ∈ W2. By Lemma 3.30, there are h1, . . . , hm ∈ BL(Id, r) su
h that

h1 ◦ · · · ◦hm(g1(y1)) = g2(y2) and for every i = 1, . . . ,m, hi ◦ · · · ◦hm(g1(y1)) ∈ W1. Itfollows that g−1
2 , h1, . . . , hm, g1 are as required in the de�nition of a�ne-likeness.To show that A is a�ne-like at points that do not belong to F we shall apply Propo-sition 3.29. Let x ∈ X. Choose r0 > 0 su
h that B(x, 2r0) ⊆ X and set C = B(x, r0)∩F .By the pre
eding argument, A is a�ne-like at every y ∈ C. For y ∈ C and V ∈ NbrA(Id)we de�ne Vy = V try .We next de�ne fun
tions n̄ : NbrA(Id)×(0, r0) → N and s̄ : NbrA(Id)×(0, r0) → (0,∞)as needed in 3.29. Let V = BA(Id, r) and s ∈ (0, r0). Set m = n(BL(Id, r)), where

n(BL(Id, r)) is as ensured by Lemma 3.30. De�ne n̄(V, s) = m + 2, set t = min(r, s)/2and de�ne s̄(V, s) = t/2(1 + r)m. It was proved in the pre
eding argument that
n(0E, V, B(0E , s)) = n̄(V, s) and U0(0

E , V, B(0E, s)) = B(0E , s̄(V, s)).Sin
e try de�nes an isomorphism of partial a
tions, whi
h is an isometry on X, and sin
e
try takes 0E to y, it 
an be 
on
luded that

n(y, V try , BE(y, s)) = n̄(V, s) and U0(y, V
try , BE(y, s)) = B(y, s̄(V, s)).We have shown that 
lauses (i) and (ii) of Proposition 3.29 hold.Re
all that x ∈ X, B(x, 2r0) ⊆ X and C = B(x, r0)∩F . Let r > 0 andW = BA(Id, r).We shall �nd U1 and V as required in 
lause (iii) of 3.29. Let A = T(E)·L(E;F ). Clearly,

A ≤ A(E). Also, A is dense in A. LetW = BA(Id, r), g = trx and V 1 = W g−1 . Note that
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W = W ∩ A. Let t > 0 be su
h that (BA(Id, t))3 ⊆ V 1 and set V = BA(Id, t). De�ne

V = BA(Id, t) and U1 = x+BE(0, t).Let y ∈ U1. Then try ∈ g · V and so
(V )try ⊆ g · V · V · (V )−1 · g−1 = g · (V )3 · g−1 ⊆ (V 1)

g = W.That is, (V )try ⊆ W . If y ∈ F , then V try ⊆ A. In parti
ular, if y ∈ U1 ∩ F , then
V try ⊆ W ∩ A = W . This implies that 
lause (iii) of Proposition 3.29 holds. ByProposition 3.29, A is a�ne-like at x.Definition 3.32. (a) Let X be a metri
 spa
e and x ∈ X. We say that X has thedis
rete path property at x (X is DPT at x) if the following holds. There is U ∈ Nbr(x)and K ≥ 1 su
h that (∗) for every y, z ∈ U and d ∈ (0, d(y, z)) there are n ∈ N and
u0, . . . , un ∈ X su
h that n ≤ K · d(y, z)/d, d(y, u0), d(un, z) < d and d(ui−1, ui) = d forevery i = 1, . . . , n.If X is DPT at every x ∈ X, then X is 
alled a DPT spa
e.(b) Let X be a metri
 spa
e and x ∈ X. X has 
onne
tivity property 1 at x (Xis CP1 at x) if for every r > 0 there is r∗ ∈ (0, r) su
h that for every x′ ∈ X and
r′ > 0: if B(x′, r′) ⊆ B(x, r∗) and C is a 
onne
ted 
omponent of B(x, r) − B(x′, r′),then C ∩ (B(x, r) −B(x, r∗)) 6= ∅.If X is CP1 at every x ∈ X, then X is 
alled a CP1 spa
e. �Proposition 3.33. Let X be an open subset of a normed spa
e E. Then X is DPT andCP1.Proof. Let x ∈ X and s > 0 be su
h that BE(x, s) ⊆ X. First we show that X is DPTat x. Let y, z ∈ BE(x, s) and d ∈ (0, ‖z − y‖). The points ui = y + i · d(z − y)/‖z − y‖,
i = 0, . . . , [‖z − y‖/d] demonstrate the DPT-ness at x. So K = 1.Let r > 0. Take r∗ to be any member of (0,min(r, s)). Let x′ and r′ < r∗ be su
hthat BE(x′, r′) ⊆ BE(x, r∗). It is trivial that BE(x, s) − BE(x′, r′) is 
onne
ted. Sothere is only one 
omponent C of B(x, r) − BE(x′, r′) whi
h interse
ts BE(x, s), and
C 
ontains BE(x, s) − BE(x′, r′). So C interse
ts B(x, r) − BE(x∗, r). Trivially, any
onne
ted 
omponent of B(x, r) − BE(x′, r′) whi
h is disjoint from BE(x, s) interse
ts
B(x, r) −BE(x∗, r).Suppose that X is an open subset of a normed spa
e E, G ≤ H(X), τ : X ∼= Yand Gτ ⊆ HLC

Γ
(Y ). Loosely speaking we shall prove that if (†) A(E)↾X ⊆ G, then

τ is lo
ally Γ -bi
ontinuous. Obviously, (†) is �awed be
ause A(E)↾X is not a set ofhomeomorphisms of X, and hen
e not a subset of G. The 
orre
t statement whi
hrepla
es (†) has the assumption that λE
A
is 
ompatible with G. We do not know if thisassumption su�
es unless E is a normed spa
e of the se
ond 
ategory, or in parti
ular, aBana
h spa
e. Instead we assume that λE

A
is G-de
ayable, and that G is in�nitely 
losed.These assumptions work for every normed spa
e E.The following remains open.
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onstru
tion of manifolds from subgroups of homeomorphism groups 69Question 3.34. Let E,F be normed spa
es of the �rst 
ategory, τ : E ∼= F and Γ bea 
ountably generated modulus of 
ontinuity. Suppose that A(E)τ ⊆ HLC
Γ

(F ). Are τ or
τ−1 or both lo
ally Γ -
ontinuous? �The 
ore fa
t that leads to the �nal result of 3.27 is stated in the following theorem.Theorem 3.35. Assume the following fa
ts.(i) X and Y are metri
 spa
es , x ∈ X and τ : X ∼= Y . Also, X is DPT at x, and

Y is DPT and CP1 at τ (x).(ii) G ≤ H(X), λ is a partial a
tion of a topologi
al group H on X, α ∈ MBC,
x ∈ Fld(λ), x is a λ-limit-point , G is α-in�nitely-
losed at x and for some
N ∈ Nbr(x), λ is (α,G)-de
ayable in Hλ(x) ∩N .(iii) Γ is a modulus of 
ontinuity , and Γ is (≤κ)-generated , where κ = min({κ(x,
Vλ(x)) | V ∈ Nbr(eH)}).(iv) There is U ∈ Nbr(x) su
h that for every g ∈ G U : if g is α ◦α-bi
ontinuous ,then gτ is Γ -bi
ontinuous at τ (x).Then τ is Γ -bi
ontinuous at x.We next introdu
e the notion of almost Γ -
ontinuity. The proof of Theorem 3.35 isbroken into two 
laims. The �rst one, Lemma 3.37(b), says that if G ful�lls assumptions(i)�(iv) of 3.35 and Gτ ⊆ HLC

Γ
(Y ), then τ is lo
ally almost Γ -
ontinuous. This part ofthe proof does not use the DPT-ness or the CP1-ness of X or Y . The se
ond 
laim isstated in Theorem 3.40. It says that if X and Y are DPT and PC1 metri
 spa
es, and

τ : X ∼= Y is lo
ally almost Γ -
ontinuous, then τ is lo
ally Γ -bi
ontinuous.Definition 3.36. (a) Let X, Y be metri
 spa
es, α ∈ MC, Γ be a modulus of 
ontinuityand f : X → Y . We say that f is almost α-
ontinuous if f is 
ontinuous, and for every
x1, y1, x2, y2 ∈ X: if d(x1, y1) = d(x2, y2), then d(f(x2), f(y2)) ≤ α(d(f(x1), f(y1))). Thenotion f is almost α-
ontinuous at x means that there is U ∈ Nbr(x) su
h that f↾U isalmost α-
ontinuous. We say that f is almost Γ -
ontinuous at x if for some γ ∈ Γ , fis almost γ-
ontinuous at x, and f is said to be lo
ally almost Γ -
ontinuous if for every
x ∈ X, f is almost Γ -
ontinuous at x.(b) If g : A→ A, then g ◦n denotes n︷ ︸︸ ︷

g ◦ · · · ◦ g. �The following lemma has also a variant in whi
h H is assumed to be of the se
ond
ategory, but de
ayability is repla
ed by 
ompatibility, and in�nite-
losedness is dropped.Lemma 3.37.(a) Suppose that the following fa
ts hold.(i) X and Y are metri
 spa
es , x ∈ X and τ : X ∼= Y .(ii) λ is a partial a
tion of a topologi
al group H on X, x ∈ Fld(λ) and λ isa�ne-like at x.(iii) Γ is a modulus of 
ontinuity and γ ∈ Γ .(iv) T ∈ Nbr(x), V ∈ Nbr(eH), V ×T ⊆ Dom(λ) and for every h ∈ V , (hλ)
τ↾τ (T )is γ-bi
ontinuous.Then τ is almost Γ -
ontinuous at x.



70 M. Rubin and Y. Yomdin(b) Suppose that the following fa
ts hold.(i) X and Y are metri
 spa
es , x ∈ X and τ : X ∼= Y .(ii) G ≤ H(X), λ is a partial a
tion of a topologi
al group H on X and α ∈ MBC.Also, x ∈ Fld(λ), x is a λ-limit-point , G is α-in�nitely-
losed at x, for some
N ∈ Nbr(x), λ is (α,G)-de
ayable in Hλ(x) ∩N , and λ is a�ne-like at x.(iii) Γ is a (≤κ)-generated modulus of 
ontinuity , where κ = min({κ(x, Vλ(x)) |
V ∈ Nbr(eH)}).(iv) There is U ∈ Nbr(x) su
h that for every g ∈ G U : if g is α ◦α-bi
ontinuous ,then gτ is Γ -bi
ontinuous at τ (x).Then τ is almost Γ -
ontinuous at x.Proof. (a) Let n = n(x, V, T ), U0 = U0(x, V, T ) and D = D(x, V, T ) be as ensured bythe de�nition of a�ne-likeness (De�nition 3.28(a)). For h ∈ H denote hλ by ĥ. Set

β = γ ◦n, so β ∈ Γ . Suppose that x1, y1, x2, y2 ∈ D and d(x1, y1) = d(x2, y2). Choose
h1, . . . , hn ∈ V as ensured by the de�nition a�ne-likeness, and de�ne h = ◦ni=1 hi. So
ĥ(x1) = x2, ĥ(y1) = y2 and ĥi ◦ · · · ◦ ĥn({x1, x2}) ⊆ T for every i = 1, . . . , n. Also, for ev-ery i = 1, . . . , n, (ĥi)τ↾τ (T ) is γ-
ontinuous. Hen
e d(τ (x2), τ (y2))=d((τ (x1))

ĥ, (τ (y2))
ĥ)

≤ β(d(τ (x2), τ (y2))). We have shown that τ↾D is almost β-
ontinuous. Relying on thefa
t that D is metri
ally dense in U0 we 
on
lude that τ↾U0 is almost β-
ontinuous. So
τ is almost Γ -
ontinuous at x.(b) By Lemma 3.11, there are T ∈ Nbr(x), V ∈ Nbr(eH) and γ ∈ Γ su
h that forevery h ∈ V : T ⊆ Dom(hλ) and (hλ)

τ ↾τ (T ) is γ-bi
ontinuous. By part (a), τ is almost
Γ -
ontinuous at x.The next two propositions are ingredients in the proof of Theorem 3.40.Proposition 3.38. Let x belong to a metri
 spa
e X, and suppose that X is DPT at x,that K and U satisfy 
ondition (∗) of De�nition 3.32(a) and that W ∈ Nbr(x). Thenthere is T ∈ Nbr(x) su
h that : (∗∗) T ⊆ W , and for every y, z ∈ T and d ∈ (0, d(y, z))there are n ∈ N and u0, . . . , un ∈ W su
h that n ≤ K · d(x, y)/d, d(x, u0), d(un, y) < d,and d(ui, ui+1) = d for every i = 0, . . . , n− 1.Proof. Let s > 0 be su
h that B(x, (2K + 3)s) ⊆ U ∩W . We show that T := B(x, s) isas required. Let y, z ∈ T and d ∈ (0, d(y, z)). Let n ∈ N and u0, . . . , un be as ensured in
(∗) of 3.32(a). Then for every i = 1, . . . , n,

d(ui, x) ≤ d(ui, u0) + d(u0, y) + d(y, x) < id+ d+ s ≤ nd+ d+ s

≤ Kd(x, y) + 2s+ s < K · 2s+ 2s+ s < (2K + 3)s.So ui ∈W .Proposition 3.39. Let X,Y be metri
 spa
es and τ : X ∼= Y . Suppose that x ∈ X, τ isalmost α-
ontinuous at x, and Y is CP1 at τ (x). Then there is U ∈ Nbr(x) su
h that forall x1, y1, x2, y2 ∈ U : if d(x2, y2) ≤ d(x1, y1), then d(τ (x2), τ (y2)) ≤ α(d(τ (x1), τ (y1))).Proof. Let T ∈ Nbr(x) be su
h that τ↾T is almost α-
ontinuous, and s > 0 be su
hthat B(τ (x), s) ⊆ τ (T ). Choose s∗ ∈ (0, s) su
h that for every y ∈ Y and t > 0: if
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B(y, t) ⊆ B(τ (x), s∗), then every 
onne
ted 
omponent of B(τ (x), s)−B(y, t) interse
ts
B(τ (x), s)−B(τ (x), s∗). Let r∗ > 0 be su
h that(i) τ (B(x, r∗)) ⊆ B(τ (x), s∗),and let r ∈ (0, r∗/3) be su
h that U := B(x, r) satis�es the following 
ondition:(ii) diam(τ (U)) + α(diam(τ (U))) < s∗.We show that U is as required. Let x1, y1, x2, y2 ∈ U and d(x2, y2) ≤ d(x1, y1). If
d(x2, y2) = d(x1, y1), then by the 
hoi
e of T , and sin
e U ⊆ T , d(τ (x2), τ (y2)) ≤
α(d(τ (x1), τ (y1))). Suppose next that d(x2, y2) < d(x1, y1). Let r1 = d(x1, y1), and set
s1 = α(d(τ (x1), τ (y1))). By the almost α-
ontinuity of τ↾T ,(iii) τ (S(x2, r1)) ⊆ B(τ (x2), s1 + ε) for every ε > 0.Sin
e r < r∗/3, d(x2, x) < r and r1 = d(x1, y1) < 2r, we have(iv) B(x2, r1) ⊆ B(x, r∗).The following three fa
ts: d(τ (x), τ (x2)) ≤ diam(τ (U)), s1 ≤ α(diam(τ (U))) and
diam(τ (U)) + α(diam(τ (U))) < s∗, imply that(v) for all su�
iently small ε, B(τ (x2), s1 + ε) ⊆ B(τ (x), s∗).Let z ∈ Y − B(τ (x2), s1 + ε). We show that τ−1(z) 6∈ B(x2, r1). If z 6∈ B(τ (x), s), then
τ−1(z) 6∈ B(x, r∗) ⊇ B(x2, r1). Suppose that z ∈ B(τ (x), s), and let C be the 
onne
ted
omponent of z in B(τ (x), s)−B(τ (x2), s1 + ε). Hen
e(vi) C ∩ (B(τ (x), s)−B(τ (x), s∗)) 6= ∅.Sin
e τ (B(x2, r1)) ⊆ τ (B(x, r∗)) ⊆ B(τ (x), s∗), it follows that(vii) τ−1(C) ∩ (X −B(x2, r1)) 6= ∅.From the fa
ts: τ (S(x2, r1)) ⊆ B(τ (x2), s1 +ε) and C∩B(τ (x2), s1 +ε) = ∅, we 
on
ludethat(viii) τ−1(C) ∩ S(x2, r1) = ∅.The 
onne
tedness of C and hen
e of τ−1(C) and fa
ts (vii) and (viii) imply that(ix) τ−1(C) ∩B(x2, r) = ∅.This implies that τ−1(z) 6∈ B(x2, r1). Sin
e the above argument holds for all su�
ientlysmall ε, it follows that for every z ∈ Y : if z 6∈ B(τ (x2), s1), then τ−1(z) 6∈ B(x2, r1). But
y2 ∈ B(x2, r1), so τ (y2) ∈ B(τ (x2), s1). That is, d(τ (x2), τ (y2)) ≤ s1 = α(d(x1, y1)).Theorem 3.40. Let X and Y be metri
 spa
es , x0 ∈ X, τ : X ∼= Y and α ∈ MBC.Suppose that X is DPT at x0, Y is DPT and CP1 at τ (x0), and τ is almost α-
ontinuousat x0. Then there is M > 0 su
h that τ is M · α-bi
ontinuous at x0.Proof. We �rst show that there is someM > 0 su
h that τ−1 isM ·α-
ontinuous at τ (x0).By Proposition 3.39, by the fa
t that Y is CP1, and sin
e τ is almost α-
ontinuous at
x0, there is U ∈ Nbr(x0) su
h that for every x1, y1, x2, y2 ∈ U : if d(x2, y2) ≤ d(x1, y1),then d(τ (x2), τ (y2)) ≤ α(d(τ (x1), τ (y1))). It is assumed that X is DPT at x0, so thereare W ∈ Nbr(x0) and K ≥ 1 su
h that W ⊆ U , and W, K satisfy 
ondition (∗) of



72 M. Rubin and Y. YomdinDe�nition 3.32(a). Let V ⊆W be an open neighborhood of x0 satisfying 
ondition (∗∗) ofProposition 3.38. Fix any distin
t x1, y1 ∈ V and set d1 = d(x1, y1), e1 = d(τ (x1), τ (y1)),
V1 = B(x0, d1/2) ∩ V and V2 = τ (V1).We show that τ−1

↾V2 is d1/e1 · (K + 2) · α-
ontinuous. Let u, v ∈ V2 be distin
t andset d = d(τ−1(u), τ−1(v)). Sin
e τ−1(u), τ−1(v) ∈ V1, d < d1 = d(x1, y1). So there are
n ≤ K · d(x1,y1)

d and z0, . . . , zn ∈ U su
h that d(x1, z0), d(zn, y1) < d and d(zi, zi+1) = dfor all i = 0, . . . , n− 1. By the 
hoi
e of U ,
d(τ (x1), τ (z0)), d(τ (zn), τ (y1)), d(τ (zi), τ (zi+1)) ≤ α(d(ττ−1(u), ττ−1(v))) = α(d(u, v)).Hen
e

d(τ (x1), τ (y1)) ≤ d(τ (x1), τ (z0)) +

n−1∑

i=0

d(τ (zi), τ (zi+1)) + d(τ (zn), τ (y1))

≤ (n+ 2)α(d(u, v)) ≤
(
K

d(x1, y1)

d(τ−1(u), τ−1(v))
+ 2

)
α(d(u, v)).It follows from the above inequality that

d(τ−1(u), τ−1(v)) ≤ Kd(x1, y1) + 2d(τ−1(u), τ−1(v))

d(τ (x1), τ (y1))
α(d(u, v))

≤ Kd1 + 2d1

e1
· α(d(u, v)) =

d1

e1
· (K + 2)α(d(u, v)).So τ−1↾V2 is d1

e1
· (K + 2) · α-
ontinuous, and hen
e τ−1 is lo
ally Γ -
ontinuous.Note that in the above proof we only used the fa
ts that X is DPT at x0, and that

Y is CP1 at τ (x0).We now turn to the proof that there is M > 0 su
h that τ is M · α-
ontinuous at x0.In this part we use the fa
ts that Y is DPT and CP1 at τ (x0). Let U1 ∈ Nbr(x0) and
K ≥ 1 be su
h that τ (U1) and K satisfy 
ondition (∗) of 3.32(a) applied to τ (x0). ByProposition 3.39, there is U0 ∈ Nbr(x0) su
h that U0 ⊆ U1, and(1) for every x1, y1, x2, y2 ∈ U0: if d(x2, y2) ≤ d(x1, y1), then d(τ (x2), τ (y2)) ≤

α(d(τ (x1), τ (y1))).We apply Proposition 3.38 to τ (x0) and τ (U0), and obtain T ⊆ Y satisfying 
ondition(∗∗) of Proposition 3.38. Let U = τ−1(T ). We may assume that(2) K ≥ 2.Let x, y ∈ U be distin
t. Set N = 4Kd(τ (x), τ (y))/d(x, y) and M = max(1, N). Weshow that if x′, y′ ∈ U and d(x′, y′) < d(x, y)/4K, then d(τ (x′), τ (y′)) ≤M · α(d(x′, y′)).Obviously, this implies that τ↾(B(x0, d(x, y)/8K) ∩ U) is M · α-
ontinuous.Let x′, y′ ∈ U be su
h that d(x′, y′) < d(x, y)/4K and n = [d(x, y)/Kd(x′, y′)] − 2.Hen
e n ≥ 2. Let d = d(τ (x), τ (y))/n. So there are m ≤ Kn and z0, . . . , zm ∈ τ (U0) su
hthat d(τ (x), z0), d(zm, τ (y)) < d and d(zi−1, zi) = d, i = 1, . . . ,m. Let xi = τ−1(zi).Denote x by x−1 and y by xm+1. For ℓ ∈ {−1,m + 1} let zℓ = τ (xℓ). The number of
xj 's is m+ 3. So the number of distan
es between 
onse
utive xj 's is m + 2. Hen
e forsome i ∈ {0, . . . ,m+ 1},
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d(x, y)

m+ 2
.It follows from (3) and (2) that

d(xi−1, xi) ≥
d(x, y)

m+ 2
≥ d(x, y)

K([ d(x,y)
Kd(x′,y′) ] − 2) + 2

≥ d(x, y)

K( d(x,y)
Kd(x′,y′) + 1 − 2) +K

≥ d(x, y)

K · d(x,y)
Kd(x′,y′)

= d(x′, y′).That is,(4) d(x′, y′) ≤ d(xi−1, xi).Sin
e the zi's belong to τ (U0), the xi's belong to U0. This is also true for x−1 = xand xm+1 = y be
ause they belong to U ⊆ U0. By (1) and (4),(5) d(τ (x′), τ (y′)) ≤ α(d(zi−1, zi)) = α(d).Also,
d =

1

n
d(τ (x), τ (y)) =

1

[ d(x,y)
Kd(x′,y′) ] − 2

d(τ (x), τ (y)) ≤ 1
d(x,y)

Kd(x′,y′) − 1 − 2
d(τ (x), τ (y))

=
Kd(x′, y′)

d(x, y) − 3Kd(x′, y′)
d(τ (x), τ (y)) ≤ Kd(x′, y′)

d(x, y) − 3K d(x,y)
4K

d(τ (x), τ (y))

=
4Kd(τ (x), τ (y))

d(x, y)
d(x′, y′) = Nd(x′, y′).By (5), by the fa
t M ≥ 1, N and by the 
on
avity of α,

d(τ (x′), τ (y′)) ≤ α(d) ≤ α(Nd(x′, y′)) ≤ α(M · d(x′, y′)) ≤M · α(d(x′, y′)).We have thus shown that τ↾(B(x0,
d(x,y)
8K ) ∩ U) is M · α-
ontinuous.Proof of Theorem 3.35. Let X, x, Y , τ , Γ et
. ful�ll the premises of 3.35. Then theassumptions of Lemma 3.37(b) are satis�ed. So τ is almost Γ -
ontinuous at x. ByTheorem 3.40, τ is Γ -bi
ontinuous at x.Proof of Theorem 3.27. Let 〈E,X,S, E〉 be a subspa
e 
hoi
e system, Y be an open subsetof a normed spa
e F , Γ be a (≤κ(E))-generated modulus of 
ontinuity and τ : X ∼= Y .Suppose that (LIP(X,S, E))τ ⊆ HLC

Γ
(Y ), and we prove that τ is lo
ally Γ -bi
ontinuous.For x ∈ X 
hoose S ∈ S su
h that x ∈ S and denote ES by D. We wish to applyTheorem 3.35 to G = LIP(X,S, E), H = A(E;D), α(t) = 15t and λ = λE;D

A
|̀̀S, so we
he
k that 
lauses (i)�(iv) of Theorem 3.35 hold.In 
lause (i) we have to 
he
k that X is DPT at x and that Y is DPT and CP1 at τ (x),and this was proved in Proposition 3.33. In 
lause (ii) we have to 
he
k: (1) x is a λ-limit-point; (2) G is α-in�nitely-
losed at x; (3) for some N ∈ Nbr(x), λ is (α,G)-de
ayable in

N ∩Hλ(x).(1) Obviously, for every V ∈ NbrH(Id), Vλ(x) 
ontains a ball with 
enter at x. So xis a λ-limit-point.(2) Suppose that β ∈ MC, K ⊆ H{β}(Z) and for any distin
t k1, k2 ∈ K, supp(k1) ∩
supp(k2) = ∅. Then k := ◦K ∈ H(Z), and k is β ◦β-bi
ontinuous. Also, if M ⊆ Z,



74 M. Rubin and Y. Yomdinand k′(M) = M for every k′ ∈ K, then k(M) = M . These observations imply that G is
α-in�nitely-
losed.(3) The (α,G)-de
ayability of λ at every point of S was proved in Lemma 3.8.Clause (iii) is given, and 
lause (iv) holds, sin
e it is assumed that Gτ ⊆ HLC

Γ
(Y ).By Theorem 3.35, τ is Γ -bi
ontinuous at x. We have shown that τ is lo
ally Γ -bi
on-tinuous.In Theorem 3.26 we have presented an alternative argument for showing the lo
al Γ -
ontinuity of τ−1. This method used the Baire Category Theorem, but did not require theassumptions of de
ayability of λ and the in�nite-
losedness of G. The same alternativeargument 
an be employed in the 
ontext of a�ne-like partial a
tions. It is presented inthe following theorem.Theorem 3.41. Assume that the following fa
ts hold.(i) X is a metri
 spa
e, G ≤ H(X), H is a topologi
al group and H is of the se
ond
ategory , λ is a partial a
tion of H on X and x ∈ Fld(λ).(ii) λ is 
ompatible with G at x.(iii) λ is a�ne-like at x.(iv) Γ is a 
ountably generated modulus of 
ontinuity.(v) Y is a metri
 spa
e and τ : X ∼= Y .(vi) For every g ∈ G, gτ is Γ -bi
ontinuous at τ (x).(vii) X is DPT at x and Y is DPT and CP1 at τ (x).Then τ is Γ -bi
ontinuous at x.Proof. For h ∈ H write hλ = ĥ. The assumptions of Lemma 3.22 hold, so there are

T ∈ Nbr(x), a nonempty open subset V ⊆ H and γ ∈ Γ su
h that V × T ⊆ Dom(λ) and
ĥτ↾τ (T ) is γ-bi
ontinuous for every h ∈ V . Note that (ĥ−1)τ↾τ (ĥ(T )) is γ-bi
ontinuousfor every h ∈ V .Let h0 ∈ V . There are S ∈ Nbr(x) and V1 ∈ Nbr(h0) su
h that V1 ⊆ V , S ⊆ T and
λ(V1 × S) ⊆ ĥ0(T ). Set W = h−1

0 · V1. Clearly, W ∈ Nbr(eH) and W × S ⊆ Dom(λ).Let h ∈ W . So for some h1 ∈ V1 we have h = h−1
0 · h1. From the fa
ts h1 ∈ V1 ⊆ V and

S ⊆ T , it follows that (1) (ĥ1)
τ↾τ (S) is γ-bi
ontinuous, and sin
e ĥ1(S) ⊆ ĥ0(T ) and

h−1
1 ∈ V −1, we 
on
lude that (2) (ĥ−1

0 )τ↾τ (ĥ1(S)) is γ-bi
ontinuous. (1) and (2) implythat ĥτ↾τ (S) is γ ◦γ-bi
ontinuous.We have shown that there are W ∈ Nbr(eH) and S ∈ Nbr(x) su
h that W × S ⊆
Dom(λ), and for every h ∈ W , ĥτ↾τ (W ) is γ ◦γ-bi
ontinuous. By Lemma 3.37(a), τ isalmost Γ -
ontinuous at x, and by Theorem 3.40, τ is Γ -bi
ontinuous at x.3.5. Summary and questions. The following �nal theorem 
ombines the results ofChapters 2 and 3. Note that part (a) of 3.42 is not a spe
ial 
ase of (b).Theorem 3.42. (a) Let X,Y be open subsets of the normed spa
es E and F respe
tively ,
Γ ,∆ be moduli of 
ontinuity and ϕ : HLC

Γ
(X) ∼= HLC

∆
(Y ). Suppose that Γ is (≤κ(E))-generated. Then Γ = ∆, there is τ : X ∼= Y su
h that ϕ(h) = hτ for every h ∈ HLC

Γ
(X),and τ is lo
ally Γ -bi
ontinuous.
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e 
hoi
e systems , Γ ,∆ be moduli of
ontinuity and ϕ : HLC
Γ

(X;S, E) ∼= HLC
∆

(Y ; T ,F). Suppose that Γ and ∆ are (≤κ(E))-generated. Then Γ = ∆, there is τ : X ∼= Y su
h that ϕ(h) = hτ for every h ∈
HLC

Γ
(X;S, E), and τ is lo
ally Γ -bi
ontinuous.Proof. (a) LIPLC(X) ⊆ HLC

Γ
(X) ⊆ H(X) and the same holds for Y . So by Theorem2.8(a) there is τ : X ∼= Y su
h that τ indu
es ϕ. Hen
e (HLC

∆
(Y ))τ

−1

= HLC
Γ

(X). Inparti
ular, (LIP(Y ))τ
−1 ⊆ HLC

Γ
(X). Sin
e X ∼= Y , κ(F ) = κ(E). So Γ is (≤κ(F ))-generated. By Theorem 3.27, τ−1 is lo
ally Γ -bi
ontinuous. That is, τ is lo
ally Γ -bi
ontinuous. Hen
e HLC

∆
(Y ) = (HLC

Γ
(X))τ ⊆ HLC

Γ
(Y ). It is easy to see that if α ∈

∆ − Γ , then there is h ∈ H(Y ) su
h that h is α-bi
ontinuous and h is not lo
ally Γ -
ontinuous. This implies that ∆ ⊆ Γ .Suppose by 
ontradi
tion that Γ−∆ 6=∅. It is easy to see that there is h∈HLC
Γ

(Y )−
HLC

∆
(Y ). So g :=hτ

−1∈HLC
Γ

(X). However, gτ=h 6∈HLC
∆

(Y ). A 
ontradi
tion. So Γ =∆.(b) LIPLC(X;S, E) ⊆ HLC
Γ

(X;S, E) ⊆ H(X) and the same holds for Y . So by The-orem 2.8(b) there is τ : X ∼= Y su
h that τ indu
es ϕ. Hen
e (HLC
Γ

(X;S, E))τ =

HLC
Γ

(Y ; T ,F). In parti
ular, (LIP(X;S, E))τ ⊆ HLC
∆

(Y ) and (LIP(Y ; T ,F))τ
−1 ⊆

HLC
Γ

(X). By Theorem 3.19(b), Γ = ∆ and τ is lo
ally Γ -bi
ontinuous.The te
hni
al and abstra
t formulation of Theorems 3.15, 3.26, 3.35 and 3.41 hindersthe understanding of their essen
e. The above theorems are better understood throughtheir appli
ation to normed spa
es, as stated in the following 
orollary.Corollary 3.43. Suppose that(1) 〈E,X,S, E〉 is a subspa
e 
hoi
e system and G ≤ H(X),(2) α ∈ MBC and Γ ⊆ MC,(3) F is a normed spa
e, Y ⊆ F is open and τ : X ∼= Y ,(4) for every g ∈ G, gτ is lo
ally Γ -bi
ontinuous.(a) Assume that in addition to (1)�(4) the following 
onditions are ful�lled.(a1) For every x ∈ X, if x ∈ S ∈ S, then λE;ES

T
|̀̀S is (α,G)-de
ayable at x.(a2) For every x ∈ X, G is α-in�nitely-
losed at x.(a3) Γ is a modulus of 
ontinuity.(a4) Γ is (≤κ(E))-generated.Then τ−1 is lo
ally Γ -
ontinuous.(b) Assume that in addition to (1)�(4) the following 
onditions are ful�lled.(b1) For every x ∈ X, if x ∈ S ∈ S, then λE;ES

T
|̀̀S is 
ompatible with G at x.(b2) For every S ∈ S, ES is of the se
ond 
ategory.(b3) For every γ ∈ Γ and K > 0, K · γ ∈ Γ .(b4) Γ is 
ountably generated.Then τ−1 is lo
ally Γ -
ontinuous.(
) Assume that in addition to (1)�(4) the following 
onditions are ful�lled.(
1) For every x ∈ X, if x ∈ S ∈ S, then λE;ES

A
|̀̀S is (α,G)-de
ayable at x.(
2) For every x ∈ X, G is α-in�nitely 
losed at x.
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3) Γ is a modulus of 
ontinuity.(
4) Γ is (≤κ(E))-generated.Then τ is lo
ally Γ -bi
ontinuous.(d) Assume that in addition to (1)�(4) the following 
onditions are ful�lled.(d1) For every x ∈ X, if x ∈ S ∈ S, then λE;ES

A
|̀̀S is 
ompatible with G at x.(d2) For every S ∈ S, ES is of the se
ond 
ategory.(d3) Γ is a modulus of 
ontinuity.(d4) Γ is 
ountably generated.Then τ is lo
ally Γ -bi
ontinuous.Proof. Parts (a), (b), (
) and (d) follow respe
tively from Theorems 3.15, 3.26, 3.35 and3.41.There are 
ases in whi
h the a
tion is translation-like but not a�ne-like. In su
hsituations parts (a) or (b) are appli
able but (
) and (d) are not, and hen
e we 
an onlyprove the Γ -
ontinuity of τ−1.For spa
es of the �rst 
ategory only (a) and (
) are appli
able. Part (
) has a 
on-
lusion stronger than that of (a). However, the �nal theorem about groups of the form

HLC
Γ

(X) (Theorem 3.19) 
an be inferred from either (a) or (
).The 
on
lusion of (
) is stronger than that of (d). But the assumptions of (
) arestronger in some respe
ts than those of (d). Nevertheless, we do not know how to 
on-stru
t a group G to whi
h the re
onstru
tion methods of Chapter 2 apply, and for whi
h(d) 
an be applied but (
) 
annot.There are two outstanding open questions. The �rst is whether the assumption that Γis (≤κ(E))-generated is needed. The se
ond is whether translation-likeness of the a
tionimplies the Γ -
ontinuity of τ .Question 3.44. Let X,Y be open subsets of the normed spa
es E,F , and Γ be amodulus of 
ontinuity. Suppose that τ : X ∼= Y and that (HLC
Γ

(X))τ = HLC
Γ

(Y ). Is τlo
ally Γ -bi
ontinuous? �Question 3.45. Let E and F be normed spa
e, τ : X ∼= Y and Γ be a 
ountablygenerated modulus of 
ontinuity. Suppose that (T(E))τ ⊆ HLC
Γ

(Y ). Is τ lo
ally Γ -
ontinuous? Is the above true when E,F are Bana
h spa
es? �3.6. Normed manifolds. As in Chapter 2, the results of this se
tion extend to normedmanifolds. Also, the proofs presented to this point transfer without 
hange to this new
ontext. We now state some of these results expli
itly.Definition 3.46. (a) Let 〈X,Φ 〉 be a normed manifold. We say that 〈X,Φ 〉 is a lo
allyLips
hitz normed manifold if for every ϕ, ψ ∈ Φ, ϕ−1 ◦ψ is a bilips
hitz fun
tion.(b) Let 〈X,Φ 〉 and 〈Y,Ψ 〉 be lo
ally Lips
hitz normed manifolds and τ : X ∼= Y .We say that τ is Lips
hitz with respe
t to Φ and Ψ if there is K su
h that for every
x ∈ X there are ϕ ∈ Φ and ψ ∈ Ψ su
h that x ∈ int(Rng(ϕ)), τ (x) ∈ int(Rng(ψ)) and
ψ−1 ◦ τ ◦ϕ is K-Lips
hitz. We say that τ is bilips
hitz with respe
t to Φ and Ψ if both τand τ−1 are Lips
hitz. De�ne
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LIP(X,Φ) = {h ∈ H(X) | h is bilips
hitz with respe
t to Φ}.(
) Let 〈X,Φ 〉 and 〈Y,Ψ 〉 be lo
ally Lips
hitz normed manifolds and Γ be a modulusof 
ontinuity. A homeomorphism τ : X ∼= Y is lo
ally Γ -
ontinuous with respe
t to Φand Ψ if for every x ∈ X there are ϕ ∈ Φ, ψ ∈ Ψ , U ∈ Nbr(ϕ−1(x)) and γ ∈ Γ su
h that

x ∈ int(Rng(ϕ)), τ (x) ∈ int(Rng(ψ)), U ⊆ Dom(ϕ) and (ψ−1 ◦ τ ◦ϕ)↾U is γ-
ontinuous.We say that τ is lo
ally Γ -bi
ontinuous if τ and τ−1 are lo
ally Γ -
ontinuous. De�ne
HLC

Γ (X,Φ) = {h ∈ H(X) | h is lo
ally Γ -bi
ontinuous with respe
t to Φ}.(d) Let 〈X,Φ 〉 be a lo
ally Lips
hitz normed manifold, S be an open 
over of Xand Γ be a modulus of 
ontinuity. De�ne LIP(X,Φ,S) to be the group generated by⋃{LIP(X,Φ) S | S ∈ S} and HLC
Γ

(X,Φ,S) to be the group generated by ⋃{HLC
Γ

(X,Φ)

S | S ∈ S}. �Theorem 3.47. Let 〈X,Φ 〉 and 〈Y,Ψ 〉 be normed manifolds with lo
ally Lips
hitz atlasesand τ : X ∼= Y . Let Γ be a 
ountably generated modulus of 
ontinuity.(a) Suppose that (LIP(X,Φ))τ ⊆ HLC
Γ

(Y,Ψ). Then τ is lo
ally Γ -bi
ontinuous withrespe
t to Φ and Ψ .(b) Let S be an open 
over of X, and suppose that (LIP(X,Φ,S))τ ⊆ HLC
Γ

(Y,Ψ).Then τ is lo
ally Γ -bi
ontinuous with respe
t to Φ and Ψ .Note that (a) is a spe
ial 
ase of (b).We simplify the notation below by omitting the mention of Φ and Ψ .Corollary 3.48. Let 〈X,Φ 〉 and 〈Y,Ψ 〉 be normed manifolds with lo
ally Lips
hitzatlases.(a) Let Γ and ∆ be 
ountably generated moduli of 
ontinuity , and ϕ : HLC
Γ

(X) ∼=
HLC

∆
(Y ). Then Γ = ∆ and there is τ : X ∼= Y su
h that τ indu
es ϕ, and τ is lo
ally

Γ -bi
ontinuous.(b) Let Γ be a 
ountably generated modulus of 
ontinuity , S an open 
over of X, and
G ≤ H(X). Assume that if 〈X,Φ 〉 is a Bana
h manifold , then LIP(X,S) ≤ G, and if
〈X,Φ 〉 is not a Bana
h manifold , then LIPLC(X,S) ≤ G. Suppose that ϕ : G ∼= HLC

Γ
(Y ).Then G = HLC

Γ
(X) and there is τ : X ∼= Y su
h that τ indu
es ϕ, and τ is lo
ally

Γ -bi
ontinuous.Proof. (a) Note that if HLC
Γ

(X) = HLC
∆

(X), then Γ = ∆. Hen
e (a) 
an be 
on
ludedfrom (b).(b) We shall apply Theorem 2.30(a). Clearly, LIPLC(Y ;Ψ) ≤ HLC
Γ

(Y ) (see De�ni-tion 2.29(b)). There is an atlas Φ
′ for X su
h that if 〈X,Φ 〉 is a Bana
h manifold, then

LIP(X,Φ′) ≤ G, and if 〈X,Φ 〉 is not a Bana
h manifold, then LIPLC(X,Φ′) ≤ G. Indeed,
Φ

′ = {ψ↾B(x, r) | ψ ∈ Φ, B(x, r) ⊆ Dom(ψ) and there is U ∈ S with ψ(B(x, r)) ⊆ U}.By Theorem 2.30(a), there is τ : X ∼= Y su
h that τ indu
es ϕ. So Gτ = HLC
Γ

(Y ). Inparti
ular, (LIP(X,S))τ ⊆ HLC
Γ

(Y ). By Theorem 3.47(b), τ is lo
ally Γ -bi
ontinuous.So G = HLC
Γ

(X).Question. In the above theorem does it su�
e to assume that LIP(X,S) ≤ G, regard-less of whether 〈X,Φ 〉 is a Bana
h manifold? �



4. The lo
al uniform 
ontinuity of 
onjugating homeomorphismsTo 
omplete the pi
ture of the lo
al Γ -bi
ontinuity of 
onjugating homeomorphisms, wenow deal with the group HLC
MC(X) of lo
ally bi-uniformly-
ontinuous homeomorphisms.(Note that MC is a modulus of 
ontinuity, so the notation HLC

MC(X) is a spe
ial 
ase ofDe�nition 1.12(
).) The methods employed in dealing with HLC
MC(X) are quite di�erentfrom those used in the previous se
tion.We shall prove the following extension of Theorem 3.42:Theorem 4.1. (a) Let X,Y be open subsets of the normed spa
es E and F respe
tively ,

Γ ,∆ be moduli of 
ontinuity and ϕ : HLC
Γ

(X) ∼= HLC
∆

(Y ). Suppose that Γ is (κ(E))-generated or Γ = MC. Then Γ = ∆, there is τ : X ∼= Y su
h that ϕ(h) = hτ for every
h ∈ HLC

Γ
(X), and τ is lo
ally Γ -bi
ontinuous.(b) Let 〈E,X,S, E〉 and 〈F, Y, T ,F〉 be subspa
e 
hoi
e systems , Γ ,∆ be moduli of
ontinuity and ϕ : HLC

Γ
(X;S, E) ∼= HLC

∆
(Y ; T ,F). Suppose that Γ is (≤κ(E))-generatedor Γ = MC, and the same holds for ∆. Then Γ = ∆, there is τ : X ∼= Y su
h that

ϕ(h) = hτ for every h ∈ HLC
Γ

(X;S, E), and τ is lo
ally Γ -bi
ontinuous.Note that (a) is not a spe
ial 
ase of (b), sin
e in (b) ∆ is assumed to be (≤κ(E))-generated or equal to MC, and this is not assumed in (a). The key intermediate step inthe proof of Theorem 4.1 is Theorem 4.8.There are several ways of de�ning uniform 
ontinuity. We sort this matter out in thenext de�nition and proposition.Definition 4.2. (a) Let 〈X, dX 〉 and 〈Y, dY 〉 be metri
 spa
es, and f : X → Y .We say that f is uniformly 
ontinuous (f is UC) if for every ε > 0 there is δ > 0 su
hthat for every x, y ∈ X: if dX(x, y) < δ, then dY (f(x), f(y)) < ε. If f : X ∼= f(X) andboth f and f−1 are uniformly 
ontinuous, then f is said to be bi-uniformly-
ontinuous(bi-UC ).(b) Let α ∈ MC and r > 0. We say that f : X → Y is (r, α)-
ontinuous if for every
x, y ∈ X: if dX(x, y) < r, then dY (f(x), f(y)) ≤ α(dX(x, y)).(
) We say that f : X → Y is uniformly 
ontinuous for all distan
es if there is α ∈ MCsu
h that f is α-
ontinuous.(d) Let f : X → Y and x ∈ X. Say that f is uniformly 
ontinuous at x (f is UCat x) if there is U ∈ Nbr(x) su
h that f↾U is UC, and f is bi-uniformly-
ontinuous at x(bi-UC at x) if there is U ∈ Nbr(x) su
h that f↾U is bi-UC.(e) Let f : X → Y . Say that f is lo
ally uniformly 
ontinuous (lo
ally UC ) if f is UCat every x ∈ X, and f is lo
ally bi-uniformly-
ontinuous (lo
ally bi-UC ) if f is bi-UC atevery x ∈ X. [78℄
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onstru
tion of manifolds from subgroups of homeomorphism groups 79(f) Let 〈X, d 〉 be a metri
 spa
e. The dis
rete path property for large distan
es is thefollowing property of X. There are a, b > 0 su
h that for every x, y ∈ X and r > 0 thereare n ∈ N and x = x0, x1, . . . , xn = y in X su
h that for every i < n, d(xi, xi+1) < r and∑
i<n d(xi, xi+1) ≤ ad(x, y) + b. �Proposition 4.3. (a) Let f : X → Y . Then f is UC i� for some α ∈ MC and r > 0,

f is (r, α)-
ontinuous.(b) Suppose that X has the dis
rete path property for large distan
es. Let f : X → Y .Then f is UC i� f is uniformly 
ontinuous for all distan
es.(
) Suppose that f : X → Y , f is UC and Rng(f) is bounded. Then f is uniformly
ontinuous for all distan
es.(d) Let f : X → Y and x ∈ X. Then f is UC at x i� for some α ∈ MC, f is
α-
ontinuous at x.Proof. All parts are trivial. However, the proof of the impli
ation ⇒ in (a) requires thefollowing fa
t. If η : (0, a] → [0,∞), and limtt→0 η(t) = 0, then there is α ∈ MC su
hthat η ≤ α↾(0, a]. The veri�
ation of this fa
t is left to the reader.Definition 4.4. (a) Suppose thatX, Y are topologi
al spa
esD ⊆ X. De�neH(X,Y ) =

{h | h : X ∼= Y } and H(X;D) = {h ∈ H(X) | h(D) = D}.(b) For metri
 spa
es X,Y de�ne UC(X,Y ) = {h ∈ H(X,Y ) | h is UC}, UC±(X,Y )

= {h ∈ H(X,Y ) | h is bi-UC} and UC(X) = UC±(X,X). For x ∈ X let PNT.UC(X,x)

= {h ∈ H(X) | h(x) = x and h is bi-UC at x}.(
) Let X be an open subset of a normed spa
e E, S ⊆ X be open, and F be adense linear subspa
e of E. De�ne UC(X;F ) = {h ∈ UC(X) | h(X ∩ F ) = X ∩ F} and
UC(X;S, F ) = UC(X) S ∩UC(X;F ). For x ∈ S let UC(X;S, F, x) = {h ∈ UC(X;S, F ) |
h(x) = x}.(d) Let 〈E,X,S,F〉 be a subspa
e 
hoi
e system. Then UC(X,S) denotes the sub-group of H(X) generated by ⋃{UC(X) S | S ∈ S}, and UC(X;S,F) denotes the sub-group of H(X) generated by ⋃{UC(X;S, FS) | S ∈ S}.(e) For metri
 spa
es X,Y let LUC(X,Y ) = {h ∈ H(X,Y ) | h is lo
ally UC}. Asusual we de�ne LUC±(X,Y ) = {h ∈ H(X,Y ) | h is lo
ally bi-UC} and LUC(X) =

LUC±(X,X). �Remark. Note that HMC(X) ≤ UC(X) but equality need not hold. See Proposition4.3. It is the group HMC(X) that �ts into the framework better, but the group whi
hhas been traditionally 
onsidered is UC(X). We based the above de�nitions on UC(X)rather than on HMC(X). As for lo
al uniform 
ontinuity, the two ways of de�ning thisnotion are equivalent. Hen
e LUC(X) = HLC
MC(X) for every metri
 spa
e X. This fa
t isa triviality. �The following easy proposition will be used extensively.Proposition 4.5. Let X be a metri
 spa
e and {Un | n ∈ N} be a sequen
e of open setsin X su
h that limn→∞ diam(Un) = 0, and for any distin
t m,n ∈ N, d(Um, Un) > 0.For every n ∈ N let hn ∈ UC(X) be su
h that supp(hn) ⊆ Un. Then ◦n∈N hn ∈ UC(X).



80 M. Rubin and Y. YomdinProof. Let h = ◦n∈N hn. Let ε > 0. Let N ∈ N be su
h that for every m ≥ N ,
diam(Um) < ε/3. Let δ1 > 0 be su
h that for every i < N and x, y ∈ X: if d(x, y) < δ1,then d(hi(x), hi(y)) < ε/3. Let δ2 = min({d(Ui, Uj) | i < j < N}), and let δ =

min(δ1, δ2, ε/3).Suppose that d(x, y) < δ, and we show that d(h(x), h(y)) < ε. Sin
e for any distin
t
i, j < N , d(x, y) < d(Ui, Uj), there are no distin
t i, j < N su
h that x ∈ Ui and y ∈ Uj .So we may assume that one of the following o

urs: (i) for some i < N , x ∈ Ui and
y 6∈ ⋃{Uj | j 6= i}; (ii) for some i < N and j ≥ N , x ∈ Ui and y ∈ Uj ; (iii) for some
i ≥ N , x ∈ Ui and y 6∈ ⋃{Uj | j 6= i}; (iv) for some distin
t i, j ≥ N , x ∈ Ui and y ∈ Uj ;(v) x, y 6∈ ⋃{Ui | i ∈ N}.In 
ase (i), h(x) = hi(x) and h(y) = hi(y), so sin
e d(x, y) < δ1, it follows that
d(h(x), h(y)) < ε. In 
ase (ii),
d(h(x), h(y)) ≤ d(h(x), y) + d(y, h(y)) = d(hi(x), hi(y)) + d(y, hj(y)) < ε/3 + ε/3 < ε.In 
ase (iii),
d(h(x), h(y)) = d(hi(x), hi(y)) ≤ d(hi(x), x)+d(x, y)+d(y, hi(y)) < ε/3+ ε/3+ ε/3 = ε.Case (iv) is similar to 
ase (iii), and 
ase (v) is trivial.Definition 4.6. Let M be a topologi
al spa
e and N be a Hausdor� spa
e.(a) Let A ⊆M and g : A→ N be 
ontinuous. For every x ∈ clM (A) there is at mostone y ∈ N su
h that g ∪ {〈x, y 〉} is a 
ontinuous fun
tion. Let

gcl
M,N = {〈x, y 〉 | x ∈ clM (A), y ∈ N and g ∪ {〈x, y 〉} is a 
ontinuous fun
tion}.Obviously, gcl

M,N extends g, and Rng(gcl
M,N ) ⊆ clN (Rng(g)). When possible, gcl

M,N isabbreviated by gcl, and if M = N , then gcl
M,N is denoted by gcl

M . If H is a set of
ontinuous fun
tions from A to B, then Hcl denotes {hcl | h ∈ H}.(b) Let X ⊆M and Y ⊆ N . We de�ne
EXTM,N (X,Y ) = {h ∈ H(X,Y ) | Dom(hcl

M,N ) = clM (X)}.When possible, we abbreviate EXTM,N (X,Y ) by EXT(X,Y ). The notation EXTM (X)stands for (EXTM,M )±(X,X). �Proposition 4.7. (a) (i) Let X be a topologi
al spa
e, D ⊆ X be dense, Y be a regulartopologi
al spa
e and h : D → Y be 
ontinuous. Suppose that for every x ∈ X there is a
ontinuous fun
tion hx : D ∪ {x} → Y extending h. Then ⋃{hx | x ∈ X} is 
ontinuous.(ii) Let M be a topologi
al spa
e, N be a regular spa
e A ⊆ M and g : A → N be
ontinuous. Then gcl
M,N is 
ontinuous.(b) Let X be a metri
 spa
e, Y be a 
omplete metri
 spa
e, A ⊆ X, and g : A → Ybe a uniformly 
ontinuous fun
tion. Then Dom(gcl) = cl(A).(
) Let E be a normed spa
e, D be a dense linear subspa
e of E, X ⊆ E be open, u ∈

D, BE(u, p) ⊆ X, x, y ∈ D∩BE(u, p), z ∈ BE(u, p), ε > 0, 0 < s < min(‖x−z‖, ‖y−z‖)and max(‖x− z‖, ‖y− z‖) < t < ‖z− u‖+ p. Then there is h ∈ UC(X;D) su
h that : (i)
supp(hcl

E
) ⊆ BE(z, t) −BE(z, s), (ii) h(x) = x and (iii) h(y) ∈ B(x, ε).Proof. The proofs of parts (a) and (b) are trivial.
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) Write r′ = ‖z − u‖ + t. For every a ∈ (0, 1) there is h ∈ LIP(X;D) B(u, p)su
h that h↾BE(u, r′) is the multipli
ation by the s
alar a/r′, that is, h(w) = a
r′w forevery w ∈ BE(u, r′). So we may assume that BE(z, t) ⊆ BE(u, ap). Let s < s̄ <

min(‖x− z‖, ‖y − z‖), t > t̄ > max(‖x− z‖, ‖y − z‖) and z̄ ∈ D be su
h that ‖z̄ − z‖ <
min(t − t̄, s̄ − s). Sin
e trEz̄ is an isometry belonging to H(E;D), we may shift z̄ to theorigin. That is, we may assume that z̄ = 0. We have ‖x‖ ≥ ‖x−z‖−‖z‖ > s−(s− s̄) = s̄.The same 
omputation applies to y. We 
on
lude that ‖x‖, ‖y‖ > s̄. Another similar
omputation shows that ‖x‖, ‖y‖ < t̄. It is also obvious that BE(z, s) ⊆ BE(0, s̄) andthat BE(z, t) ⊇ BE(0, t̄). It thus remains to show that there is h ∈ UC(X;D) su
h that
supp(h) ⊆ B(0, t̄) −B(0, s̄), and h ful�lls 
lauses (ii) and (iii). The 
onstru
tion of su
ha homeomorphism is routine but long, so we skip some details.In the in
lusion BE(z, t) ⊆ BE(u, ap), 
hoose a so small that BE(0, 6 max(‖x‖, ‖y‖))
⊆ X. By an argument similar to the 
hoi
e of a above, we may also assume that (1)
t̄ > 5 max(‖x‖, ‖y‖) and s̄ < 1

5 min(‖x‖, ‖y‖). Let F = span({x, y}). As in the proof ofClaim 3 in Lemma 3.30, there is E1 su
h that F ⊕E1 = E, and ‖v0‖+ ‖v1‖ ≤ 3‖v0 + v1‖for every v0 ∈ F and v1 ∈ E1. Let ‖ ‖H be a Hilbert norm on F su
h that (2) ‖v‖ ≤
‖v‖H ≤ 3

√
2‖v‖ for every v ∈ F .For v ∈ E let vF and vE1

be su
h that v = vF + vE1
and de�ne v = ‖vF ‖H + ‖vE1

‖.We may assume that ‖y‖H 6= ‖x‖H. Let S = {v ∈ F | ‖v‖H = ‖y‖H}. By (1)and (2), S ⊆ BE(0, t̄) − BE(0, s̄). So there is b > 0 su
h that x 6∈ B〈E, 〉(S, b) ⊆
BE(0, t̄) − BE(0, s̄).Suppose that the angle between x and y in 〈F, ‖ ‖H 〉 is θ. Let η : [0,∞) → [0,∞)be the pie
ewise linear fun
tion with a unique breakpoint at b su
h that η(0) = θ and
η(b) = 0. For v ∈ X de�ne h1(v) = Rotη( v )(vF ) + vE1

, where Rotφ is rotation throughangle φ in F . Obviously, h1 ∈ LIP(E;D), supp(h1) ⊆ BE(0, t̄) − BE(0, s̄), h1(x) = xand for some c > 0, h1(y) = cx. It is easy to 
onstru
t a radial homeomorphism h2 ∈
LIP(E;D) su
h that supp(h2) ⊆ BE(0, t̄) − BE(0, s̄), h2(x) = x and h2(cy) ∈ B(x, ε).So h = h2 ◦h1 is as required.Theorem 4.8 is phrased in a way that part (a) is easiest to read, (b) is the mainstatement of the theorem, and (
) is the �pointwise� version of (b). So (
)⇒(b)⇒(a), andwe a
tually prove (
).Note that Theorem 4.8(b) is analogous to Theorem 3.27, but the assumption here isthat (UC(X))τ ⊆ LUC(Y ), whereas in 3.27 the weaker assumption that (LIP(X))τ ⊆
HLC

Γ
(Y ) did su�
e.Theorem 4.8. (a) Let X,Y be open subsets of the normed spa
es E and F , and τ ∈

H(X,Y ) be su
h that (UC(X))τ ⊆ LUC(Y ). Then τ ∈ LUC±(X,Y ).(b) Let 〈E,X,S,D〉 be a subspa
e 
hoi
e system, Y an open subset of a normed spa
e
F and τ ∈ H(X,Y ). Suppose that (UC(X;S,D))τ ⊆ LUC(Y ). Then τ ∈ LUC±(X,Y ).(
) Let X,Y be open subsets of the normed spa
es E and F , S ⊆ X be open, D be adense linear subspa
e of E, x∗ ∈ S and τ ∈ H(X,Y ). Suppose that (UC(X;S,D, x∗))τ ⊆
PNT.UC(Y, τ(x∗)). Then τ is bi-UC at x∗.Proof. (
) Let X, Y et
. be as in (
).



82 M. Rubin and Y. YomdinPart 1. τ is UC at x∗.Suppose by 
ontradi
tion that for every U ∈ NbrX(x∗), τ↾U is not UC. The trivialproof of the following 
laim is left to the reader.Claim 1. For every r > 0 there are sequen
es ~x, ~y and d, e > 0 su
h that :(1) Rng(~x) ∪ Rng(~y) ⊆ BX(x∗, r/2) ∩D;(2) limn→∞ ‖xn − yn‖ = 0;(3) either (i) for any distin
t m,n ∈ N, d({xm, ym}, {xn, yn}) ≥ e, or (ii) ~x is aCau
hy sequen
e;(4) d(Rng(~x) ∪ Rng(~y), x∗) > e;(5) for every n ∈ N, ‖τ (xn) − τ (yn)‖ ≥ d.Let e−1 > 0 be su
h that BE(x∗, e−1) ⊆ S. It is easy to de�ne by indu
tion on i ∈ Na radius ri, sequen
es ~xi = {xin | n ∈ N}, ~yi = {yin | n ∈ N} and di, ei > 0 su
h that
ri = ei−1/8 and su
h that ~xi, ~yi, di, ei satisfy (1)�(5) of Claim 1 for r = ri. By deleting,if ne
essary, initial segments from ea
h of the ~x i's and ~y i's, we may further assume thatfor every i, n ∈ N, ‖xin − yin‖ < ei/4. We may further assume that either for every i ∈ N,
lause (3)(i) of Claim 1 holds, or for every i ∈ N, 
lause (3)(ii) of Claim 1 holds.Case 1: Clause (3)(i) of Claim 1 holds. Let {〈i(k), n(k) 〉 | k ∈ N} ⊆ N2 be a 1-1 sequen
eof pairs su
h that limk→∞ ‖xi(k)n(k)−y

i(k)
n(k)‖ = 0, and for every i ∈ N, {k | i(k) = i} is in�nite.For every k ∈ N set uk = x

i(k)
n(k), vk = y

i(k)
n(k), sk = 2‖uk−vk‖ and Bk = B(uk, sk). Then it
an be easily 
he
ked that for any distin
t k, l ∈ N, Bk ⊆ S and d(Bk, Bl) > ei(k)/4. Also,

limk→∞ diam(Bk) = 0. Let wk ∈ [uk, vk]−{uk} be su
h that ‖τ (wk)−τ (uk)‖ < 1/(k+1).So wk ∈ Bk∩D. By Lemma 2.14(
), there is hk ∈ LIP(X;S,D) su
h that supp(hk) ⊆ Bk,
hk(uk) = uk and hk(wk) = vk.By Proposition 4.5, h := ◦k∈N hk ∈ UC(X), and indeed h ∈ UC(X;S,D, x∗). How-ever, we shall now see that for every V ∈ NbrY (τ (x∗)), hτ ↾V is not uniformly 
ontinuousand hen
e hτ 6∈ PNT.UC(Y, τ(x∗)) whi
h is a 
ontradi
tion.Write hτ = ĥ, h(uk) = ûk, h(vk) = v̂k and h(wk) = ŵk. Then ĥ(ûk) = ûk and
ŵk = v̂k. There is i su
h that for every n, τ ([xin, yin]) ⊆ V . De�ne σ = {k ∈ N | i(k) = i}.Then ûk, v̂k, ŵk ∈ V for every k ∈ σ. Now, limk∈σ ‖ûk− ŵk‖ = 0, but ‖ĥ(ûk)− ĥ(ŵk)‖ =

‖ûk − v̂k‖ ≥ di for every k ∈ σ. So ĥ↾V is not uniformly 
ontinuous.Case 2: Clause (3)(ii) of Claim 1 holds. Let z̄i = lim ~xi. Note that z̄i ∈E−E. Clearly,
z̄i ∈BE(x∗,ri)−BE(x∗,ei). Fix i∈N and for j ∈N set ti,j = max(‖xij− z̄i‖,‖yij− z̄i‖) and
si,j = min(‖xij − z̄i‖, ‖yij − z̄i‖). By taking a subsequen
e of {〈xij , yij 〉 | j ∈ N}, we mayassume that for every j, ti,j+1 < si,j . Let εi,j > 0 be su
h that for every u ∈ B(xij , εi,j),
‖τ (u) − τ (xij)‖ < 1

j+1 . Choose s̄i,j , t̄i,j su
h that for every j, si,j > s̄i,j > t̄i,j+1 > ti,j+1.We may also assume that for any distin
t i and i′, d(BE(z̄i, t̄i,0), B
E(z̄i′ , t̄i′,0)) > 0 andthat BE(z̄0, t̄0,0) ⊆ clE(S).By Proposition 4.7(
), for every i, j there is hi,j ∈ UC(X;D) su
h that supp(hi,j) ⊆

BE(z̄i, t̄i) − BE(z̄i, s̄i), hi,j(xij) = xij and hi,j(yij) ∈ B(xij , εi,j). Let hi = ◦j∈N hi,j . ByProposition 4.5, hi ∈ UC(X). So hi ∈ UC(X;D). Also, supp(hi) ⊆ S. Let h = ◦i∈N hi.Applying again Proposition 4.5, we 
on
lude that h ∈ UC(X;S,D, x∗).
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tion of manifolds from subgroups of homeomorphism groups 83We 
he
k that hτ is not bi-UC at τ (x∗). Let V ∈ NbrY (τ (x∗)). For some i,
supp((hi)

τ ) ⊆ V . De�ne uij = τ (xij) and vij = τ (yij). So(1) for every j, ‖uij − vij‖ > di.Sin
e hi(y
i
j) ∈ B(xij , εi,j), it follows that limj→∞ ‖τ (xij) − τ (hi(y

i
j)‖ = 0. That is,

limj→∞ ‖(hi)τ (uij) − (hi)
τ (vij)‖ = 0. Hen
e(2) limj→∞ ‖hτ (uij) − hτ (vij)‖ = 0.(1) and (2) imply that hτ ↾V is not bi-UC. That is, hτ 6∈ PNT.UC(Y, τ(x∗)). A 
on-tradi
tion. We have rea
hed a 
ontradi
tion in both Case 1 and Case 2. So τ is UCat x∗.Part 2. τ−1 is UC at τ (x∗).Suppose by 
ontradi
tion that this is not true. So for every V ∈ NbrY (τ (x∗)), τ−1↾Vis not UC.Claim 2. For every k ∈ N there are positive numbers rk1 , . . . , rk5 and sequen
es ~xk and

~yk whi
h ful�ll the following requirements.(1) rk1 > rk2 ≥ rk3 > rk4 > rk5 = 2rk+1
1 .(2) limi→∞ ‖xki − x∗‖ = rk2 and limi→∞ ‖yki − x∗‖ = rk3 .(3) There is ek > 0 su
h that ‖xki − yki ‖ > ek for every i ∈ N.(4) Rng(~xk) ∪ Rng(~yk) ⊆ D.(5) De�ne sk = sup({‖τ (x) − τ (x∗)‖ | x ∈ B(x∗, rk4 )}) and tk = ‖τ (x∗) − τ (~xk)‖.Then sk < tk.(6) limi→∞ ‖τ (xki ) − τ (yki )‖ = 0.(7) Either ~xk is a Cau
hy sequen
e or ~xk is spa
ed , and either ~yk is a Cau
hy sequen
eor ~yk is spa
ed.Proof. Let r01 > 0 be su
h that B(x∗, r01) ⊆ S. Suppose that rk1 has been de�ned, andwe de�ne rk2 , . . . , rk5 and rk+1

1 . Let r = rk1/2. Sin
e τ−1↾τ (B(x∗, r)) is not uniformly
ontinuous, there are ek > 0 and sequen
es ~x, ~y ⊆ B(x∗, r) su
h that for every i ∈ N,
‖xi−yi‖ > ek and limi→∞ ‖τ (xi)−τ (yi)‖ = 0. Sin
e D∩S is dense in S, we may assumethat Rng(~x) ∪ Rng(~y) ⊆ D. We may also assume that x∗ 6∈ Rng(~x) ∪ Rng(~y).By inter
hanging some xi's with their 
orresponding yi's, we may assume that ‖xi−x∗‖
≥ ‖yi − x∗‖. Taking subsequen
es we may assume that rk2 := limi→∞ ‖xi − x∗‖ and
rk3 := limi→∞ ‖yi − x∗‖ exist. Hen
e rk3 ≤ rk2 . Taking subsequen
es again, we may as-sume that either ~x is a Cau
hy sequen
e or ~x is spa
ed, and that either ~y is a Cau
hysequen
e or ~y is spa
ed.Note that ~x does not 
ontain a 
onvergent subsequen
e, sin
e if x′ is a limit of asubsequen
e of ~x, then τ−1 is not 
ontinuous at τ (x′). Also re
all that x∗ 6∈ Rng(~x). Itthus follows that tk := ‖τ (x∗), τ (~xk)‖ > 0. Next de�ne ~xk = ~x and ~yk = ~y. Let rk4 < rk3be su
h that sk := sup({‖τ (x) − τ (x∗)‖ | x ∈ B(x∗, rk4 )}) < tk. Finally, let rk5 = rk4/2and rk+1

1 = rk5/2. This 
on
ludes the 
onstru
tion whi
h proves Claim 2.Sin
e limi→∞ ‖xki ‖ = rk2 and limi→∞ ‖yki ‖ = rk3 , we may assume that(8) for every i ∈ N, rk4 < ‖xki − x∗‖ < (rk2 + rk1 )/2 and rk4 < ‖yki − x∗‖ < (rk2 + rk1 )/2.



84 M. Rubin and Y. YomdinWe may also assume that either for every k ∈ N, ~yk is spa
ed, or for every k ∈ N, ~yk is aCau
hy sequen
e.Case 1: For every k ∈ N, ~yk is spa
ed. Fix k ∈ N and denote rki , ~xk, ~yk and ek by ri,
~x, ~y and e respe
tively.Claim 3. There are subsequen
es {xin | n ∈ N} {yin | n ∈ N} of ~x and ~y respe
tively ,su
h that d({xin | n ∈ N}, {yin | n ∈ N}) > 0.Proof. The 
laim is trivial if ~x is a Cau
hy sequen
e. So suppose ~x is spa
ed. We showthat there is a sequen
e {in | n ∈ N} su
h that (i) limn>m→∞ ‖xim − yin‖ exists, and (ii)
limn>m→∞ ‖yim − xin‖ exists. By repeatedly applying the Ramsey Theorem, we obtaina de
reasing sequen
e A0 ⊇ A1 ⊇ · · · of in�nite subsets of N su
h that for every ℓ ∈ Nand m,n,m′, n′ ∈ Aℓ: if m < n and m′ < n′, then |‖xm − yn‖ − ‖xm′ − yn′‖| < 2−ℓ. Let
{in | n ∈ N} be a 1-1 sequen
e su
h that for every n ∈ N, in ∈ An. Then (i) holds for
{in | n ∈ N}. The same argument is applied to show that (ii) holds.Let s̄1 = limn>m→∞ ‖xim − yin‖ and s̄2 = limn>m→∞ ‖yim − xin‖. It is easy to seethat if s̄1 = 0 or s̄2 = 0, then ~x is a Cau
hy sequen
e. So s̄1, s̄2 > 0. By removing aninitial segment from the sequen
es {xin}n∈N and {yin}n∈N we may assume that for every
n > m, ‖xim−yin‖ > s̄1/2 and ‖xin−yim‖ > s̄2/2. Re
all also that ‖xi−yi‖ > e for every
i ∈ N. So d({xin | n ∈ N}, {yin | n ∈ N}) ≥ min(s̄1/2, s̄2/2, e). So Claim 3 is proved.We may thus assume that dk := d(Rng(~xk),Rng(~yk)) > 0.Claim 4. For every k ∈ N there is hk ∈ LIP(X;D) with the following properties : (i)
supp(hk) ⊆ B(x∗, rk1 ) − B(x∗, rk5 ); and (ii) there is nk ∈ N su
h that for every i ≥ nk,
hk(x

k
i ) = xki and hk(yki ) ∈ B(x∗, rk4 ).Proof. Fix k, for j = 1, . . . , 5 set rkj = rj , write ~xk = ~x, ~yk = ~y, xki = xi, yki = yi andde�ne wi = xi−x∗, zi = yi−x∗, ui = zi/‖zi‖. Note that limi∈N ‖(x∗+r3ui)−yi‖ = 0, andre
all that d(Rng(~x),Rng(~y)) > 0. From these fa
ts it follows that by removing an initialsegment of ~x and of ~y, we may assume that there is a > 0 su
h that ‖xi−(x∗+r3uj)‖ ≥ afor every i, j ∈ N. Similarly, sin
e ~y is spa
ed, we may assume that {x∗ + r3ui}i∈N isspa
ed too. Certainly we may 
hoose a to be smaller than r3 − r4 and r1 − r3, and wemay assume that for every i, ‖wi‖ ≥ r3 − a/8 and r3 − a/4 < ‖zi‖ < r3 + a/4. Let

Li = [x∗ + r4ui, x
∗ + (r3 + a/4)ui]. Note that yi ∈ Li. We show that for every i, j,

d(xi, Lj) > a/4. Let y ∈ Lj . If y ∈ [x∗ + (r3 − a/2)uj , x
∗ + (r3 + a/4)uj ], then

‖xi − y‖ ≥ ‖xi − (x∗ + r3uj)‖ − ‖(x∗ + r3uj) − y‖ ≥ a− a/2 = a/2,and if y ∈ [x∗, x∗ + (r3 − a/2)ui], then
‖xi − y‖ ≥ ‖xi − x∗‖ − ‖y − x∗‖ ≥ r3 − a/8 − (r3 − a/2) = 3a/8.It follows that d(xi, Lj) > a/4.Let vi = x∗ + r4ui, and let b > 0 be su
h that for every i 6= j, ‖vi − vj‖ > b. Weshow that if i 6= j, then d(Li, Lj) ≥ b/2. It is easy to see that d(Li, Lj) = d(vi, Lj). Let

x∗ + tuj ∈ Lj . If t ∈ [r4, r4 + b/2], then
‖vi − (x∗ + tuj)‖ ≥ ‖vi − vj‖ − ‖x∗ + tuj − vj‖ > b− b/2 = b/2.If t > r4 + b/2, then
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‖vi − (x∗ + tuj)‖ ≥ ‖tuj‖ − ‖vi − x∗‖ > r4 + b/2 − r4 = b/2.It follows that there is d > 0 su
h that:(1) for every i 6= j, 2d < d(Li, Lj);(2) for every i 6= j, d < d(xi, Lj);(3) r3 + a/4 + d < r1;(4) r4 − d > r5.Let L1

i = [vi, yi]. So L1
i ⊆ Li. Hen
e(1.1) for every i 6= j, 2d < d(L1

i , L
1
j );(1.2) for every i 6= j, d < d(xi, L

1
j);(1.3) ‖yi − vi‖ < r3 − r4 + a/4.By (3), d(B(L1

i , d), X−B(x∗, r1))>r1−(r3+a/4+d)>0 and by (4), d(B(L1
i , d), B(x∗, r5))

> r4 − r5 − d > 0. So(1.4) d(B(L1
i , d), X − (B(x∗, r1) −B(x∗, r5))) > 0 for every i ∈ N.Re
all that yi ∈ D, but vi need not be in D. For every i, 
hoose v′i ∈ D su�
iently 
loseto vi and de�ne L′
i = [v′i, yi]. This 
an be done in su
h a way that L′

i satisfy (1.1)�(1.4).So indeed 
hoose v′i ∈ D ∩B(x∗, r4) in su
h a way that the L′
i's ful�ll (1.1)�(1.4). Write

vk,i = v′i.Let K = Kseg(r3 − r4 + a/4, d) be as in 2.14(
) and i ∈ N. By 2.14(
), there is
h′i ∈ LIP(X;D) su
h that: supp(h′i) ⊆ B(L′

i, d), h′i is K-bilips
hitz, and h′i(yi) = v′i.Sin
e the L′
i's satisfy (1.1), it follows that for every i 6= j, d(supp(h′i), supp(h′j)) > 0. So

hk := ◦i∈N h
′
i is well de�ned. Also, hk is 2K-bilips
hitz.For every i, hk(yi) = h′i(yi) = v′i ∈ B(x∗, r4). By (1.2) applied to the L′

j 's, xi 6∈
supp(hk). So hk(xi) = xi. By (1.4) applied to L′

i, for every i, supp(h′j) ⊆ B(x∗, r1) −
B(x∗, r5). So supp(hk) ⊆ B(x∗, r1) − B(x∗, r5). Re
all that for every i, h′i ∈ H(X;D).So hk ∈ H(X;D). We have shown that hk ful�lls the requirements of Claim 4.Let h = ◦k∈N hk. By Proposition 4.5, h ∈ UC(X). Sin
e B(x∗, r01) ⊆ S, we obtainthat supp(h) ⊆ S, and sin
e for every k, hk ∈ H(X;D), we 
on
lude that h ∈ H(X;D).Also for every k, x∗ 6∈ supp(hk). So h(x∗) = x∗, that is, h ∈ UC(X;S,D, x∗).We shall rea
h a 
ontradi
tion by showing that hτ 6∈ PNT.UC(Y τ(x∗)). Let V ∈
NbrY (τ (x∗)). Let k be su
h that τ (B(x∗, rk1 )) ⊆ V . Hen
e(i) for every i ∈ N, τ (xki ), τ (yki ) ∈ V , and limi→∞ ‖τ (xki ) − τ (yki )‖ = 0.Now hτ (τ (xki )) = τ (xki ) and hτ (τ (yki )) = τ (h(yki )) ∈ τ (B(x∗, rk4 )). So for every i ∈ N,
(†) ‖(hτ (τ (xki )) − τ (x∗)) − (hτ (τ (yki )) − τ (x∗))‖

= ‖(τ (xki ) − τ (x∗)) − (τ (h(yki )) − τ (x∗))‖ ≥ ‖τ (xki ) − τ (x∗)‖ − ‖τ (h(yki )) − τ (x∗)‖.Re
all that h(yki ) = vk,i ∈ B(x∗, rk4 ). Let sk, tk be as in 
lause (5) of Claim 2. Then
‖τ (h(yki )) − τ (x∗)‖ ≤ sk and ‖τ (xki ) − τ (x∗)‖ ≥ tk. Denote the right hand side of (†)by A. So A ≥ tk − sk. By 
lause (5) in Claim 2, tk − sk > 0. We have proved that(ii) for every i ∈ N, ‖hτ (τ (xki )) − hτ (τ (yki ))‖ ≥ tk − sk > 0.



86 M. Rubin and Y. Yomdin(i) and (ii) demonstrate that hτ ↾V is not bi-UC. We have shown that for every V ∈
Nbr(τ (x∗)), hτ ↾V is not UC. That is, hτ 6∈ PNT.UC(Y, τ(x∗)). A 
ontradi
tion.Case 2: For every k ∈ N, ~yk is a Cau
hy sequen
e.Claim 5. For every k ∈ N there is hk ∈ LIP(X;D) with the following properties : (i)
supp(hk) ⊆ B(x∗, rk1 ) − B(x∗, rk5 ); and (ii) there is nk ∈ N su
h that for every i ≥ nk,
hk(x

k
i ) = xki and hk(yki ) ∈ B(x∗, rk4 ).Proof. Fix k, and denote ~xk, ~xk, rkj et
. by ~x, ~y, rj et
. Let ȳ = limE ~y. Sin
e τ−1 is
ontinuous, ȳ ∈ clE(S)−S. Also, ‖ȳ−x∗‖ = r3. Sin
e ȳ 6∈ E and Rng(~x) ⊆ E, Rng(~x)∩

[x∗, ȳ] 
ontains at most one element. By removing this element we may assume that ê :=

d(Rng(~x), [x∗, ȳ]) > 0. Let b = (r4 + r5)/2, a = (r4− r5)/2 and c = min(a, ê, r1− r3). Let
w ∈ [x∗, ȳ] be su
h that ‖w−x∗‖ = b. Let u, v ∈ D be su
h that ‖u− ȳ‖, ‖v−w‖ < c/12.By Lemma 2.14(
), there is h ∈ LIP(X;D) su
h that supp(h) ⊆ B([u, v], c/4), h(u) = vand h(B(u, c/12)) = B(v, c/12). Sin
e h is bilips
hitz, Dom(hcl) = clE(X). Denote
ĥ = hcl. We show that ĥ(ȳ) ∈ BE(x∗, r4). Sin
e ȳ ∈ BE(u, c/12), ĥ(ȳ) ∈ BE(v, c/12).So
‖ĥ(ȳ)−x∗‖ ≤ ‖ĥ(ȳ)− v‖+ ‖v−w‖+ ‖w−x∗‖ < c/12+ c/12 + b ≤ b+ a/6 < b+ a = r4.It follows that(1) for all but �nitely many i's, h(yi) ∈ B(x∗, r4).For every i, d(xi, [u, v]) ≥ d(xi, [ȳ, w]) − (c/12 + c/12) ≥ ê− c/6 ≥ c/4. So xi 6∈ supp(h)and hen
e(2) h(xi) = xi for all i ∈ N.
‖u − x∗‖ ≤ c/12 + r3 < r1 − c/4. It easily follows that B([u, v], c/4) ⊆ B(x∗, r1).
‖v − x∗‖ ≥ b− c/12 > r5 + a/4. Next we have

d(B([u, v], c/4), x∗) ≥ d(B([ȳ, w], c/4), x∗) − c/6 − c/4 = b− 5c/12 > r5.So B([u, v], c/4) ∩B(x∗, r5) = ∅. Similarly, for every y ∈ B([u, v], c/4),
‖y‖ ≤ max(‖u‖, ‖v‖) + c/4 ≤ max(‖ȳ‖, ‖w‖) + c/12 + c/4 = r3 + 5c/12 < r1.That is, supp(h) ⊆ B(x∗, r1). So(3) supp(h) ⊆ B(x∗, r1) −B(x∗, r5).It follows that hk := h ful�lls the requirements of Claim 5. So Claim 5 is proved.The remaining steps in the proof are identi
al to those in Case 1. So both Case 1 andCase 2 lead to a 
ontradi
tion. This means that τ−1 is UC at τ (x∗).Question 4.9. LetX,Y be open subsets of the normed spa
es E and F and τ ∈ H(X,Y )be su
h that (LIP(X))τ ⊆ LUC(Y ). Is τ lo
ally UC? Is τ−1 lo
ally UC? �Note that by Theorem 3.27, the answer to both parts of the question is positive for

E's su
h that κ(E) ≥ 2ℵ0 . Hen
e the answer is positive for open subsets of ℓ∞.Proof of Theorem 4.1. (a) Let X,Y , Γ ,∆ and ϕ be as in part (a). Suppose that Γ is
(≤κ(E))-generated. Then by Theorem 3.42, Γ = ∆ and there is τ ∈ H(X,Y ) as required.
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 spa
e X, LUC(X) = HLC
MC(X).Suppose that Γ = MC. By Theorem 2.8(a), there is τ ∈ H(X,Y ) su
h that τindu
es ϕ. We have (UC(X))τ ⊆ LUC(Y ). So by Theorem 4.8(a), τ is lo
ally bi-UC.So (LUC(X))τ = LUC(Y ). Hen
e HLC

MC(X) = HLC
∆

(Y ). We have seen that the aboveequality implies that MC = ∆. So (a) is proved.(b) Let 〈E,X,S, E〉, 〈F, Y, T ,F〉, Γ ,∆ be and ϕ be as in (b). If both Γ and ∆ are
(≤κ(E))-generated, then by Theorem 3.42, Γ = ∆, and there is τ whi
h indu
es ϕ.Suppose that ∆ or Γ are not (≤κ(E))-generated. By Theorem 2.8(a), there is τ ∈
H(X,Y ) su
h that τ indu
es ϕ.Suppose by 
ontradi
tion that Γ = MC and ∆ 6= MC. Hen
e ∆ is (≤κ(E))-generated.Clearly, (LIP(X;S, E))τ ⊆ HLC

∆
(Y ). By Theorem 3.27, τ is lo
ally ∆-bi
ontinuous.Hen
e (HLC

∆
(Y ; T ,F))τ

−1 ⊆ HLC
∆

(X). However, (HLC
∆

(Y ; T ,F))τ
−1

= HLC
MC(X;S, E).Hen
e HLC

MC(X;S, E) ⊆ HLC
∆

(X). A 
ontradi
tion. It follows that Γ = ∆ = MC.As in Chapter 3, the analogous statement for manifolds is also true.Corollary 4.10. Let 〈X,Φ 〉 and 〈Y,Ψ 〉 be normed manifolds with lo
ally Lips
hitzatlases. Let Γ and ∆ be moduli of 
ontinuity , Suppose that Γ is 
ountably generated or
Γ = MC, and the same holds for ∆.(a) If ϕ : HLC

Γ
(X,Φ) ∼= HLC

∆
(Y ). Then Γ = ∆ and there is τ : X ∼= Y su
h that τindu
es ϕ, and τ is lo
ally Γ -bi
ontinuous.(b) Let S be an open 
over of X, T be an open 
over of Y and ϕ : HLC

Γ
(X,Φ,S) ∼=

HLC
∆

(Y,Ψ , T ). Then Γ = ∆, there is τ : X ∼= Y su
h that ϕ(h) = hτ for every h ∈
HLC

Γ
(X;S, E), and τ is lo
ally Γ -bi
ontinuous.



5. Other groups de�ned by properties related to uniform
ontinuity5.1. General des
ription. The results we have obtained on groups of type HLC
Γ

(X)are more 
omprehensive than those obtained for other types of groups. We have presentedthe results on HLC
Γ

(X) in the quite general framework of �subspa
e 
hoi
e systems�. Wenow abandon this framework, and restri
t the dis
ussion to the 
lass of open subsets ofnormed spa
es.Re
all the following notations whi
h were introdu
ed in the introdu
tion.Definition 5.1. (a) For a set F of 1-1 fun
tions let F−1 = {f−1 | f ∈ F}. Suppose that
P is used as an abbreviation for some property of maps, and let X and Y be topologi
alspa
es. We shall use the notation P(X,Y ) to denote the set of all homeomorphismsbetween X and Y whi
h have property P. We de�ne

P±(X,Y ) := P(X,Y ) ∩ (P(Y,X))−1 and P(X) := P±(X,X).Usually but not always this 
onvention will be used for P's whi
h are �
losed under
omposition�. (P is 
losed under 
omposition if for every f : X → Y and g : Y → Z: if
f and g ful�ll P, then g ◦ f ful�lls P.) In su
h 
ases P(X) is a group.(b) Let 〈X, d 〉 be a metri
 spa
e. X is uniformly-in-diameter ar
wise-
onne
ted(UD.AC ) if for every ε > 0 there is δ > 0 su
h that for every x, y ∈ X: if d(x, y) < δ,then there is an ar
 L ⊆ X 
onne
ting x and y su
h that diam(L) < ε.(
) Let KO

NRM be the 
lass of all spa
es X su
h that X is an open subset of a normedspa
e. Let KO
BNC be the 
lass of all spa
es X su
h that X is an open subset of a Bana
hspa
e. Let KO
NFCB be the 
lass of all spa
es X su
h that X is an open subset of a normedspa
e of the �rst 
ategory, or X is an open subset of a Bana
h spa
e. �Note that a dis
onne
ted spa
e may be UD.AC. The spa
e [0, 1] ∪ [2, 3] is su
h anexample.The following statement is a typi
al example of some of the �nal results obtained inthis 
hapter. It is restated in Corollary 5.6.Theorem A. Let X,Y ∈ KO

NFCB. Suppose that X and Y are UD.AC spa
es. Let
ϕ : UC(X) ∼= UC(Y ). Then there is τ ∈ UC±(X,Y ) su
h that τ indu
es ϕ.The reason that Theorem A 
an be proved only for members of KO

NFCB and not forall members of KO
NRM is that Theorem 2.8 
annot be used. This is so, sin
e in Theorem2.8 we need to know that LIPLC(X) ≤ G. However, LIPLC(X) 6≤ UC(X).Theorem A assumes that the open sets X and Y are UD.AC. Di�erent extra as-sumptions on the open sets in question are often used in proving other re
onstru
tion[88℄
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onstru
tion of manifolds from subgroups of homeomorphism groups 89results. We make sure, though, that these extra assumptions do not ex
lude the knownwell-behaved open subsets of a normed spa
e. For example, 
onvex bounded open setsare always in
luded. Usually the 
lasses for whi
h re
onstru
tion is proved do 
ontainsome 
ompli
ated open sets.Theorem A has the following 
orollary.Theorem 5.2. Let F and K be the 
losures of UD.AC bounded open subsets of Rm and
Rn respe
tively. Let ϕ : H(F ) ∼= H(K). Then ϕ is indu
ed by a homeomorphism between
F and K.The proof of Theorem 5.2 appears after Example 5.7. The boundedness of F and Kabove is ne
essary: see Example 5.8. The analogue of Theorem 5.2 for open subsets ofin�nite-dimensional normed spa
es is proved in 6.22. The boundedness of F and K isnot required in the in�nite-dimensional 
ase.Let us point out that the 
losure of a UD.AC open subset of Rn does not have tobe a Eu
lidean manifold with boundary, neither does it have to be a polyhedron. There
onstru
tion theorems for polyhedra and for Eu
lidean manifolds with boundary wereproved in [Ru1, 3.34 and 3.43℄. Theorem 5.2 is not a spe
ial 
ase of these theorems.Definition 5.3. (a) Throughout this se
tion, if not otherwise stated, X and Y denotenonempty open subsets of normed spa
es E and F respe
tively. The metri
s dE and
dF are both abbreviated by d. For A ⊆ X, cl(A), bd(A), acc(A), B(A, r) et
. areabbreviations for clE(A), bdE(A), accE(A), BE(A, r) et
. Let ~x, ~y, ~x0 et
. denote thein�nite sequen
es {xn | n ∈ N}, {yn | n ∈ N}, {x0

n | n ∈ N} et
. So ~x ⊆ X means that
{xn | n ∈ N} ⊆ X.(b) For A ⊆ X de�ne δX(A) := d(A,E−X). The notation δX(x) abbreviates δX({x})and δX(A) and δX(x) are abbreviated by δ(A) and δ(x).(
) If L is a re
ti�able ar
, then lngth(L) denotes the length of L.(d) Let A ⊆ X. We say that A is a positively distan
ed set (PD set) if δ(A) > 0.A bounded PD set is 
alled a BPD set. A sequen
e ~x is a BPD sequen
e if Rng(~x) is aBPD set.(e) Let {Ai | i ∈ N} be a sequen
e of sets. We de�ne limi→∞Ai = x if for every
U ∈ Nbr(x) there is i0 su
h that for every i > i0, Ai ⊆ U .(f) Let f : X → Y . We say that f is positive distan
e preserving (f is PD.P) if forevery PD set A ⊆ X, f(A) is a PD subset of Y . The fun
tion f is boundedness preserving(f is BDD.P) if for every bounded A ⊆ X, f(A) is a bounded set, and f is boundednesspositive distan
e preserving (f is BPD.P) if for every bounded PD set A ⊆ X, f(A) is abounded PD subset of Y .(h) Let UC0(X) := {f ∈ UC(X) | Dom(f cl) = cl(X) and fcl↾bd(X) = Id}. �The following de�nition lists some subgroups of H(X) for whi
h re
onstru
tion 
anbe proved.Definition 5.4. Let f : X → Y .(a) f is boundedly UC (f is BUC ) if f is boundedness preserving, and for everybounded set B ⊆ X, f↾B is UC. A

ording to De�nition 5.1(a), BUC(X,Y ) = {f ∈
H(X,Y ) | f is BUC}.



90 M. Rubin and Y. Yomdin(b) f is extendible if Dom(fcl) = cl(X). A

ording to De�nition 4.6(b), EXT(X,Y ) :=

{f ∈ H(X,Y ) | f is extendible}.(
) f is bounded positive distan
e UC (f is BPD.UC ) if f is BPD.P, and for everyBPD set A ⊆ X, f↾A is UC.(d) f is positive distan
e UC (f is PD.UC ) if f is PD.P, and for every PD set A ⊆ X,
f↾A is UC.(e) f is LUC on bd(X) (f is BR.LUC ) if f is extendible, and for every x ∈ bd(X)there is U ∈ Nbrcl(X)(x) su
h that fcl↾U is UC.(f) f is 
ompletely LUC (f is CMP.LUC ) if f is extendible, and f cl is UC at every
x ∈ cl(X). That is, for every x ∈ cl(X) there is U ∈ Nbrcl(X)(x) su
h that fcl↾U is UC.(g) f is UC around bd(X) (f is BDR.UC ) if f is extendible, and for some d > 0,
fcl↾{x ∈ cl(X) | δ(x) < d} is UC.(h) Let A,B ⊆ X. We say that f is (A,B)-UC if for every ε > 0 there is δ > 0su
h that for every x ∈ A and y ∈ B: if d(x, y) < δ, then d(f(x), f(y)) < ε. Thefun
tion f is BI.UC if f is extendible, and fcl is (bd(X), X)-UC. Note that f is BI.UCi� for every ε > 0 there is δ > 0 su
h that for every x, y ∈ X: if δ(x), d(x, y) < δ, then
d(f(x), f(y))) < ε. �Note that if P is one of the properties de�ned in (a)�(h), that is, if

P = BUC,EXT,BPD.UC,PD.UC,BR.LUC,CMP.LUC,BDR.UC,BI.UC,then P(X) is a group.For ea
h P appearing above we 
an prove the following statement. If ϕ : P(X) ∼=
P(Y ), then there is τ ∈ P±(X,Y ) su
h that τ indu
es ϕ. More pre
isely, the abovestatement 
an be proved, provided that some additional restri
tions are imposed on Xand Y .We shall prove the above statement only for UC(X) and the groups BUC(X), EXT(X),
BPD.UC(X) and CMP.LUC(X) de�ned in 5.4(a), (b), (
) and (f). Re
all that the group
LUC(X) has already been dealt with in Chapter 4. We omit the proof for the remaininggroups, sin
e the arguments used are similar to those employed in the proofs that we dopresent fully. Also, the groups that we do deal with are de�ned by properties that seemto have played a role in other 
ontexts in analysis and topology.The group UC(X) and ea
h of the groups in De�nition 5.4 ex
ept for EXT(X) has ageneralization in whi
h �uniform 
ontinuity� is repla
ed by �Γ -
ontinuity�. This type ofgeneralization is demonstrated by the following three examples.Example 1. The generalization of UC(X) is de�ned as follows. Let Γ be a modulus of
ontinuity. We say that f : X → Y is nearly Γ -
ontinuous if there are α ∈ Γ and r > 0su
h that f is (r, α)-
ontinuous. Let HNR

Γ
(X,Y ) be the set of f ∈ H(X,Y ) su
h that fis nearly Γ -
ontinuous. In view of Proposition 4.3(a), UC(X) = HNR

MC(X). �Example 2. The generalization of CMP.LUC(X) is de�ned as follows. For a mod-ulus of 
ontinuity Γ let HCMP.LC
Γ

(X) = {h ∈ EXT(X) | for every x ∈ cl(X), hcl is
Γ -bi
ontinuous at x}. �
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tion of manifolds from subgroups of homeomorphism groups 91Example 3. The generalization of BPD.UC(X) is the following group. For a modulusof 
ontinuity Γ let
HNBPD

Γ (X) = {h ∈ H(X) | h and h−1 are BPD.P, and for every BPD set A ⊆ X,

h↾A is nearly Γ -bi
ontinuous}. �The re
onstru
tion problem for these generalizations has not been investigated thor-oughly. However, an answer for the groups in Example 3 is given in Theorem 5.32.Example 2 is 
onsiderably more di�
ult to sort out. It is dealt with in Chapters 8�12.The generalization in Example 1 is not true. A 
ounter-example is presented in Example5.11.So far, the re
onstru
tion question arising from Example 2 has only a partial answer.It is proved only for prin
ipal moduli of 
ontinuity (see M6 in De�nition 1.9), and onlyfor X's with a �well-behaved� boundary. This is proved in Theorem 12.20.5.2. The group of uniformly 
ontinuous homeomorphisms. The �rst group tobe 
onsidered is UC(X). The �nal re
onstru
tion theorem for su
h groups is stated inCorollary 5.6. The following is the main intermediate theorem.Theorem 5.5. Let X,Y ∈ KO
NRM. Suppose that X is UD.AC. Let τ ∈ H(X,Y ) be su
hthat (UC0(X))τ ⊆ UC(Y ). Then τ ∈ UC(X,Y ).Proof. Variants of the argument used in this proof will be applied in several other proofs.Suppose by 
ontradi
tion that τ 6∈ UC(X,Y ). Let d > 0 and ~x, ~y ⊆ X be su
h that

limn→∞ d(xn, yn) = 0, and for every n ∈ N, d(τ (xn), τ (yn)) ≥ d. Sin
e τ is 
ontinuous,there is no z ∈ X su
h that {n | xn = z} is in�nite. So we may assume that ~x is 1-1. Wemay further assume that for any distin
t m,n ∈ N, {xm, ym}∩ {xn, yn} = ∅. By 2.15(a),we may assume that either (i) ~x is Cau
hy sequen
e, or (ii) there is e > 0 su
h that ~x is
e-spa
ed.Case 1: (i) holds. Let x∗ = limE ~x. So x∗ ∈ E − X. Note that either x∗ ∈ int

E
(X)or x∗ ∈ clE(bd(X)). By the UD.AC-ness of X and sin
e limn→∞ d(xn, yn) = 0, we mayassume that for every n ∈ N there is an ar
 Ln ⊆ X 
onne
ting xn and yn su
h that

limn→∞ diam(Ln) = 0. By indu
tion on k, we de�ne nk ∈ N and rk > 0. Let n0 = 0.Suppose that nk has been de�ned. Let rk = 1
4d
E(Lnk

, {x∗}∪ (E−X)) and nk+1 be su
hthat Lnk+1
⊆ BE(x∗, rk). We denote xnk

, ynk
and Lnk

by uk, vk and Jk respe
tively.Let Uk = BX(Jk, rk). Clearly, limk→∞ diam(Uk) = 0, and for every k ∈ N, δ(Uk) > rkand d(Uk,⋃{Um | m 6= k}) > rk. Let wk ∈ Jk − {uk} be su
h that d(τ (uk), τ (wk)) <
1/(k+1). By Lemma 2.14(d), there is hk ∈ LIP(X) su
h that supp(hk) ⊆ Uk, hk(uk) = ukand hk(wk) = vk.Let h = ◦k∈N hk. By Proposition 4.5, h ∈ UC(X). Sin
e δ(supp(hk)) > 0, h ∈
UC0(X). We 
he
k that hτ 6∈ UC(Y ). Clearly, hτ (τ (uk)) = τ (uk) and hτ (τ (wk)) = τ (vk).However, limk→∞ d(τ (uk), τ (wk)) = 0, whereas for every k ∈ N, d(τ (uk), τ (vk)) ≥ d. So
hτ 6∈ UC(Y ).Case 2: (ii) holds. By the UD.AC-ness of X, and sin
e limn→∞ d(xn, yn) = 0, there is
N ∈ N su
h that for every n ≥ N there is an ar
 Ln ⊆ X 
onne
ting xn and yn su
h



92 M. Rubin and Y. Yomdinthat diam(Ln) < e/6 and limn→∞ diam(Ln) = 0. We may assume that N = 0. Let rn =

min(diam(Ln), δ(Ln)/2) and Un = B(Ln, rn). So δ(Un) > 0, limn→∞ diam(Un) = 0, andfor any distin
t m,n ∈ N, d(Um, Un) ≥ e/3. The proof now pro
eeds as in Case 1.The �nal result for groups of type UC(X) is at this stage as follows.Corollary 5.6. Let X,Y ∈ KO
NFCB. Suppose that X and Y are UD.AC spa
es. Let

ϕ : UC(X) ∼= UC(Y ). Then there is τ ∈ UC±(X,Y ) su
h that τ indu
es ϕ.Proof. Combine Corollary 2.26 and Theorem 5.5.In the 
ase of lo
al uniform 
ontinuity, we dedu
ed from the fa
t that (UC(X))τ ⊆
LUC(Y ) that both τ and τ−1 are LUC. The analogue of this fa
t for uniform 
ontinuityis not true.Example 5.7. (a) Let X = Y = (1,∞), and τ : X → Y be de�ned by τ (x) =

√
x. Then

(UC(X))τ ⊆ UC(Y ), but τ−1 is not UC.(b) There are bounded open subsets X and Y of the Hilbert spa
e ℓ2 and τ ∈ H(X,Y )su
h that (UC(X))τ ⊆ UC(Y ), but τ−1 is not uniformly 
ontinuous. The boundary ofboth X and Y is the union of a spa
ed family of spheres.Proof. (a) Clearly τ−1 6∈ UC(X). Let f ∈ UC(X). By Proposition 4.3(b), f is α-
ontinuous for some α ∈ MC. By the uniform 
ontinuity of f−1, there is C su
h that forevery y ∈ X, f−1(y + 1) − f−1(y) ≤ C. Set K = C + 1. We 
he
k that f(x) ≥ x/K forevery x ∈ X. Let y ∈ X. Then f−1(y) − 1 ≤ f−1([y] + 1) − f−1(1) ≤ [y] · C ≤ y · C.Hen
e f−1(y) ≤ Cy + 1 ≤ (C + 1)y. That is, y ≤ f((C + 1)y). Write x = (C + 1)y. We
on
lude that if x ≥ C + 1, then x/K ≤ f(x). The above inequality holds automati
allyfor x ≤ C + 1 sin
e f(x) ≥ 1.We show that fτ is (1, 2
√
Kα)-
ontinuous. This trivially implies that fτ is UC. Let

y > x ≥ 1 be su
h that y − x ≤ 1. We have τ−1(y) − τ−1(x) = y2 − x2 ≤ 2y(y − x).So f(τ−1(y)) − f(τ−1(x)) ≤ α(2y(y − x)) ≤ 2yα(y − x). The last inequality followsfrom the fa
t that 2y ≥ 1. Now, τfτ−1(y) − τfτ−1(x) =
√
f(y2) −

√
f(x2). Thereis c ∈ (f(x2), f(y2)) su
h that √

f(y2) −
√
f(x2) = 1

2
√
c
(f(y2) − f(x2)). Re
all that

f(x2) ≥ x2/K. So
fτ (y) − fτ (x) = τfτ−1(y) − τfτ−1(x) =

1

2
√
c
(f(y2) − f(x2)) ≤ 1

2
√
f(x2)

· 2yα(y − x)

≤ 1√
x2/K

· yα(y − x) ≤ 1√
x2/K

· 2xα(y − x) = 2
√
Kα(y − x).

(b) In ℓ2 let ei = (0, . . . , 0,
i
1, 0, . . .) and ai = 3

√
2ei. Let X = B(0, 6)−⋃

n>0B(ai, 1)and Y = B(0, 6) − ⋃
n>0B(ai, 1/n). For every n > 0 let hn : [0,∞) → [0,∞) be thepie
ewise linear fun
tion with two breakpoints whi
h takes 0 to 0, 1 to 1/n, and su
hthat hn(t) = t for every t ≥ 2. Let τn : X → Y be de�ned by

τn(x) = an + hn(‖x− an‖)
x− an
‖x− an‖

,and τ = ◦n>0 τn. It is left to the reader to 
he
k that τ is as required.
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onstru
tion of manifolds from subgroups of homeomorphism groups 93We shall later see a �nite-dimensional example in whi
h (UC(X))τ ⊆ UC(Y ), but
τ−1 is not uniformly 
ontinuous. In Example 6.7(a) we 
onstru
t two bounded domains
X,Y ⊆ R2 and τ ∈ H(X,Y ) with these properties.However, for some sets X, whi
h are very well behaved, the fa
t that (UC(X))τ ⊆
UC(Y ) does imply that τ−1 is uniformly 
ontinuous. Theorems 7.1 and 7.7(a) andRemark 7.8(b) and (
) prove the above impli
ation in some spe
ial 
ases involving subsetsof a Bana
h spa
e or a Bana
h manifold. For example, the above impli
ation holds when
X and Y are spheres of a Bana
h spa
e.Proof of Theorem 5.2. Let X ′ and Y ′ be UD.AC open subsets of Rm and Rn respe
tively,
F = cl(X ′), K = cl(Y ′) and ϕ : H(F ) ∼= H(K). Let X = int(F ) and Y = int(K).Clearly, X and Y are regular open sets, F = cl(X) and K = cl(Y ). It is trivial to 
he
kthat X and Y are UD.AC. It is also trivial to 
he
k that if Z is a bounded regular opensubset of Rk, then H(cl(Z)) = {fcl | f ∈ UC(Z)}. Let ψ : H(X) → H(Y ) be de�ned by
ψ(f) = ϕ(fcl)↾Y . So ψ : UC(X) ∼= UC(Y ).By Theorem 2.8, there is τ ∈ H(X,Y ) su
h that for every h ∈ UC(X), ψ(h) = hτ .Obviously, (UC(X))τ = UC(Y ). Applying Theorem 5.5 to τ and τ−1 one 
on
ludes that
τ and τ−1 are uniformly 
ontinuous. It follows that τ cl : F ∼= K. It is trivial that forevery h ∈ H(F ), ϕ(h) = hτ


l .Part (a) of the next example shows that in Theorem 5.2, the requirement that F and
K are bounded 
annot be dropped, and (b) shows that in Theorem 5.2, the requirementthat F and K are 
losures of UD.AC open sets 
annot be dropped.Example 5.8. (a) There are regular open 
onne
ted subsets X,Y ⊆ R2 su
h that X,Yare UD.AC , X is bounded , cl(X) 6∼= cl(Y ) but H(cl(X)) ∼= H(cl(Y )).(b) There are regular open 
onne
ted subsets X,Y ⊆ R2 su
h that X is UD.AC ,
X and Y are bounded , cl(X) 6∼= cl(Y ) but H(cl(X)) ∼= H(cl(Y )).Proof. (a) Let x ∈ S(0, 1) and Bi = B(x/22i+2, 1/22i+3). So ⋃

i∈N
Bi ⊆ B(0, 1/2), forevery i 6= j, cl(Bi) ∩ cl(Bj) = ∅ and limi→∞Bi = 0.Let F = cl(B(0, 1)) − ⋃

i∈N
Bi. Let τ (x) := x/‖x‖2 be the inversion map in R2 and

K = τ (F − {0}). Let X = int(F ) and Y = int(K). Then F = cl(X) and K = cl(Y ).Clearly, X,Y are UD.AC. It is easy to see that H(K) = {(h↾(F − {0}))τ | h ∈ H(F )}.So H(F ) ∼= H(K). It is obvious F 6∼= K.(b) Let
X0 = {(θ − π, t) | θ ∈ (0, 2π), t ∈ (1 − 1

4 |sin(θ/2)|, 1 + 1
4 |sin(θ/2)|)}and

Y0 = {t · (cos θ, sin θ) | θ ∈ (0, 2π), t ∈ (1 − 1
4 |sin(θ/2)|, 1 + 1

4 |sin(θ/2)|)}.Note that X0 is a strip surrounding the line segment ((−π, 0), (π, 0)) with width tendingto 0 as (θ, 0) approa
hes (−π, 0) and (π, 0), and Y0 is a strip surrounding the 
ir
ularar
 {(cos θ, sin θ) | θ ∈ (0, 2π)} with width tending to 0 as θ approa
hes 0 and 2π. Let
τ : X0 → Y0 be de�ned by τ ((θ − π, t)) = t · (cos θ, sin θ). Then τ ∈ H(X0, Y0).For every n ∈ Z let xn = ( n

|n|+1 · π, 0), rn = 1
3 min(δX0(xn), d(xn, {xi | i ∈ Z− {n}}))and Bn = B(xn, rn). So Bn ⊆ X0, for n 6= m, Bn ∩ Bm = ∅, limn→∞Bn = (π, 0) and
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limn→−∞Bn = (−π, 0). Let X = X0 − ⋃

n∈Z
Bn and Y = τ (X). Clearly, X and Yare bounded, 
onne
ted and regular open. Hen
e H(cl(X)) = (H(X))cl, and the sameholds for Y . It is also obvious that cl(X) 6∼= cl(Y ). Note that for every h ∈ H(cl(X)),

h((π, 0)) ∈ {(π, 0), (−π, 0)} and the same holds for (−π, 0). Also, for every h ∈ H(cl(Y )),
h((1, 0)) = (1, 0). It follows that hcl 7→ (hτ )cl, h ∈ H(X), is an isomorphism between
H(cl(X)) and H(cl(Y )).Example 5.8(b) leads to the following questions.Question 5.9. A topologi
al spa
e Z has the Perfe
t Orbit Property if for every z ∈ Z,
z ∈ acc({h(z) | h ∈ H(Z)}). Is it true that for every open X ⊆ Rm and Y ⊆ Rn: if cl(X)and cl(Y ) have the Perfe
t Orbit Property and ϕ : H(cl(X)) ∼= H(cl(Y )), then there is
τ ∈ H(cl(X), cl(Y )) su
h that τ indu
es ϕ?If the above is not true, is the 
on
lusion in the above question true for open subsetsof Rn that have the following stronger property: For every x ∈ bd(X) the orbit of xunder H(cl(X)) is lo
ally ar
wise 
onne
ted?Is the same true for open subsets of in�nite-dimensional normed spa
es? �The generalization of Corollary 5.6 is not true for all moduli of 
ontinuity. As shownin the next example, Γ

LIP is a 
ounter-example. The question whether Theorem 5.6 istrue for any 
ountably generated Γ is open.Question 5.10. Is there a 
ountably generated modulus of 
ontinuity Γ su
h that forevery normed spa
e E and τ ∈ H(E): if (HΓ (E))τ = HΓ (E), then τ ∈ HΓ (E)? �Example 5.11. Let E be a normed spa
e and τ ∈ H(E) be de�ned by : τ (x) = x if
‖x‖ ≤ 1 and τ (x) = ‖x‖ · x if ‖x‖ > 1. Then (LIP(E))τ = LIP(E) and τ 6∈ LIP(E,E).Proof. Let g ∈ LIP(X,X). We show that gτ is Lips
hitz. Let r be su
h that r ≥ 1, ‖g(0)‖and g(B(0, r)) ⊇ B(0, 1). We show that gτ ↾(E − B(0, r2)) is Lips
hitz. Suppose that gis K-Lips
hitz. Let u ∈ E −B(0, r). Then

‖g(u)‖ ≤ ‖g(u) − g(0)‖ + ‖g(0)‖ ≤ K‖u‖ + ‖g(0)‖ ≤ K‖u‖ + ‖u‖ = (K + 1)‖u‖.That is,(i) ‖g(u)‖ ≤ (K + 1)‖u‖.For u, v ∈ E−{0} write w(u, v) = ‖v‖
‖u‖u, and for u, v 6= g−1(0) set wg(u, v) = w(g(u), g(v)).Clearly,(ii) ‖u− w(u, v)‖ = |‖u‖ − ‖v‖| ≤ ‖u− v‖,(iii) ‖w(u, v) − v‖ ≤ ‖w(u, v) − u‖ + ‖u− v‖ ≤ 2‖u− v‖,and it follows that(iv) ‖g(u) − wg(u, v)‖ ≤ K‖u− v‖,(v) ‖wg(u, v) − g(v)‖ ≤ 2K‖u− v‖.Claim 1. There is M su
h that for every x, y ∈ E−B(0, r2): if y = λx for some λ > 1,then ‖gτ (y) − gτ (x)‖ ≤M‖y − x‖.Proof. Let x = az and y = (a+ e)z, where ‖z‖ = 1 and a > 0. Clearly, e > 0 and hen
e

‖y − x‖ = e. Also, a ≥ r2. Then ‖τ−1((a+ e)z)− τ−1(az)‖ =
√
a+ e−√

a ≤ e/
√
a+ e.
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onstru
tion of manifolds from subgroups of homeomorphism groups 95Set u = τ−1((a + e)z) and v = τ−1(az). So ‖u − v‖ ≤ e/
√
a+ e. The next inequalityuses the de�nitions of τ and wg, the K-Lips
hitzness of g and (i):

‖τ (g(u)) − τ (wg(u, v))‖ = |‖g(u)‖2 − ‖wg(u, v)‖2| = |‖g(u)‖2 − ‖g(v)‖2|
= (‖g(u)‖ + ‖g(v)‖) · |‖g(u)‖ − ‖g(v)‖| ≤ (‖g(u)‖ + ‖g(v)‖) · ‖g(u) − g(v)‖

≤ (‖g(u)‖ + ‖g(v)‖) ·K‖u− v‖ ≤ (‖g(u)‖ + ‖g(v)‖) · Ke√
a+ e

≤ (K + 1)(‖u‖ + ‖v‖) · Ke√
a+ e

= (K + 1)(
√
a+ e+

√
a) · Ke√

a+ e

≤ 2(K + 1)2
√
a+ e · e√

a+ e
= 2(K + 1)2e = 2(K + 1)2‖y − x‖.We next �nd a bound for ‖τ (wg(u, v)) − τ (g(v))‖. Sin
e g is K-Lips
hitz and by (v),

‖τ (wg(u, v)) − τ (g(v))‖ = ‖g(v)‖ · ‖wg(u, v) − g(v)‖ ≤ (K + 1) · ‖v‖ · 2K · ‖u− v‖
≤ (K + 1) · √a · 2K · e√

a+ e
≤ 2(K + 1)2 · ‖y − x‖.Note that gτ (y) = τ (g(u)) and gτ (x) = τ (g(v)). It follows that

‖gτ (y)−gτ (x)‖ ≤ ‖τ (g(u))−τ (wg(u, v))‖+‖τ (wg(u, v))−τ (g(v))‖ ≤ 4(K+1)2 · ‖y−x‖.So Claim 1 is proved.Claim 2. There is M su
h that for every x, y ∈ E − B(0, r2): if ‖x‖ = ‖y‖, then
‖gτ (x) − gτ (y)‖ ≤M‖x− y‖.Proof. Let ‖x‖ = ‖y‖ = a ≥ r2. Set u = τ−1(x) and v = τ−1(y). Then by (iv),
‖g(u) − wg(u, v)‖ ≤ K‖u− v‖. So
‖τ (g(u)) − τ (wg(u, v))‖ = |‖g(u)‖2 − ‖wg(u, v)‖2| = |‖g(u)‖2 − ‖g(v)‖2|

= (‖g(u)‖ + ‖g(v)‖) · |‖g(u)‖ − ‖g(v)‖| ≤ (K + 1)(‖u‖ + ‖v‖) · ‖g(u) − g(v)‖

≤ 2(K + 1)
√
a ·K‖u− v‖ = 2(K + 1)K

√
a · ‖x− y‖√

a
≤ 2(K + 1)2‖x− y‖.We next �nd a bound for ‖τ (wg(u, v)) − τ (g(v))‖. By (iv) we have ‖wg(u, v) − g(v)‖ ≤

2K‖u− v‖. So
‖τ (wg(u, v)) − τ (g(v))‖ = ‖g(v)‖ · ‖wg(u, v) − g(v)‖ ≤ (K + 1)

√
a · ‖wg(u, v) − g(v)‖

≤ (K + 1)
√
a · 2K‖u− v‖ = (K + 1)

√
a · 2K · ‖x− y‖√

a
≤ 2(K + 1)2‖x− y‖.It follows that ‖gτ (x) − gτ (y)‖ ≤ 4(K + 1)2‖x− y‖. We have proved Claim 2.Let x, y ∈ E −B(0, r2). By Claims 1 and 2 and by (ii) and (iii),

‖gτ (x) − gτ (y)‖ ≤ ‖gτ (x) − gτ (w(x, y))‖ + ‖gτ (w(x, y)) − gτ (y)‖
≤ 4(K + 1)2‖x− w(x, y)‖ + 4(K + 1)2‖w(x, y) − y‖ ≤ 12(K + 1)2‖x− y‖.We have shown that if g is Lips
hitz, then gτ ↾(E − B(0, r2)) is Lips
hitz. Sin
e forevery bounded set B, τ↾B is bilips
hitz, it follows that gτ ↾B(0, r2) is Lips
hitz. It is nowesay to 
on
lude that gτ is Lips
hitz.



96 M. Rubin and Y. YomdinThe proof that (LIP(E))τ
−1 ⊆ LIP(E) is slightly di�erent. Denote τ−1 by η. Weprove that if g is bilips
hitz, then gη is Lips
hitz. Let g ∈ LIP(X), suppose that g is

K-bilips
hitz and let r be su
h that r ≥ max(1, 2K‖g(0)‖) and g(B(0, r)) ⊇ B(0, 1). Weshow that gη↾(E −B(0,
√
r)) is Lips
hitz.We shall use fa
ts (ii)�(v) from the pre
eding part of the proof. In addition, we needthe following fa
t. Let u ∈ E −B(0, r). Then

‖g(u)‖ ≥ ‖g(u) − g(0)‖ − ‖g(0)‖ ≥ ‖u‖/K − ‖g(0)‖ ≥ ‖u‖/K − ‖u‖/2K = ‖u‖/(2K).That is,(vi) ‖g(u)‖ ≥ ‖u‖/(2K).Claim 3. There is M su
h that for every x, y ∈ E−B(0,
√
r): if y = λx for some λ > 1,then ‖gη(y) − gη(x)‖ ≤M‖y − x‖.Proof. Let x = az and y = (a+ e)z, where ‖z‖ = 1 and a, e > 0. Then ‖y − x‖ = e and

a ≥ √
r. Set u = η−1((a+e)z) and v = η−1(az). We skip the veri�
ation of the followingfa
ts:

‖gη(x) − η(wg(v, u))‖ ≤
√

2K3/2‖x− y‖,(1)

‖η(wg(v, u)) − gη(y)‖ ≤ 4
√

2K3/2‖x− y‖.(2)From (1) and (2) it follows that
‖gη(x)− gη(y)‖ ≤ ‖η(g(v))− η(wg(v, u))‖+ ‖η(wg(v, u))− η(g(u))‖ ≤ 5

√
2K3/2‖x− y‖.This proves Claim 3.Claim 4. There is M su
h that for every x, y ∈ E − B(0,

√
r): if ‖x‖ = ‖y‖, then

‖gη(x) − gη(y)‖ ≤M‖x− y‖.Proof. Let ‖x‖ = ‖y‖ ≥ √
r. Set u = η−1(x) and v = η−1(y). We skip the veri�
ation ofthe following fa
ts:

‖η(gη(y)) − η(wg(v, u))‖ ≤ (
√

2/2)K3/2‖y − x‖,(3)

‖η(wg(v, u)) − gη(x)‖ ≤ 2
√

2K3/2‖y − x‖.(4)We 
on
lude that
‖gη(y) − gη(x)‖ ≤ (5

√
2/2)K3/2‖y − x‖.This proves Claim 4.The rest of the argument is the same as in the pre
eding part of the proof.5.3. The group of homeomorphisms whi
h are uniformly 
ontinuous on everybounded set. We now turn to the group BUC(X) of all homeomorphisms f of X su
hthat f and f−1 are boundedness preserving, and f and f−1 are uniformly 
ontinuous onevery bounded subset of X. The �nal re
onstru
tion result for su
h groups is stated inTheorem 5.20. The 
on
lusion of 5.20 is the statement: (∗) if ϕ : BUC(X) ∼= BUC(Y ),then there is τ ∈ BUC±(X,Y ) su
h that τ indu
es ϕ. However, (∗) is not true forgeneral open subsets of a normed spa
e, so we shall make some extra assumptions on

X and Y . These assumptions are (roughly): (1) X and Y are uniformly-in-diameter
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wise-
onne
ted; (2) the orbit of every member of bd(X) under the a
tion of BUC(X)
ontains an ar
, and the same holds for Y .Let ABUC(X,Y ) = {h ∈ H(X,Y ) | for every bounded set A ⊆ X, h↾A is UC}.Re
all that ABUC(X) = ABUC±(X,X). While BUC(X) is a group, it is not alwaystrue that ABUC(X) is a group. It is easy to 
onstru
t an open set X in a normedspa
e and f ∈ ABUC(X) su
h that f takes a bounded set to an unbounded set. We 
anthen 
hoose another g ∈ ABUC(X) su
h that g ◦ f 6∈ ABUC(X). However, if X has thedis
rete path property for large distan
es (see 4.2(f)), then every member of ABUC(X)is boundedness preserving, and hen
e ABUC(X) = BUC(X). So ABUC(X) is a group.Proposition 5.12. Let X have the dis
rete path property for large distan
es.(a) There are a1, b1 > 0 su
h that , for every x, y ∈ X and 0 < t < d(x, y), there are
n ∈ N and x = x0, x1, . . . , xn = y su
h that n ≤ (a1d(x, y) + b1)/t, and for every i < n,
d(xi, xi+1) ≤ t.(b) If Y is a metri
 spa
e, and τ ∈ ABUC(X,Y ), then τ is boundedness preserving.(Hen
e τ ∈ BUC(X,Y ).)(
) BUC(X) = ABUC(X).Proof. (a) Let x = z0, z1, . . . , zm = y be su
h that d(zi, zi+1) < t/2 for every i < m,and ∑

i<m d(zi, zi+1) ≤ ad(x, y) + b. There are n ∈ N and 0 = i0 < · · · < in ≤ msu
h that for every j < n, t/2 ≤ d(zij , zij+1
) < t and d(zin , zm) ≤ t/2. It followsthat n · t2 ≤ ∑

j<in
d(zj , zj+1) ≤ ad(x, y) + b. Hen
e n ≤ (2ad(x, y) + 2b)/t and so

n+ 1 ≤ ((2a+ 1)d(x, y) + 2b)/t. For j ≤ n de�ne xj = zij and de�ne xn+1 = zm. Then
n+ 1 and x0, . . . , xn+1 are as required. That is, we may take a1 and b1 to be 2a+ 1 and
2b. So (a) is proved.(b) Let a1, b1 be the numbers obtained by applying (a) to X. Let C ⊆ X be bounded.De�ne r = diam(C) and B = B(C, a1r + b1). Sin
e B is bounded, there is δ > 0su
h that for every x, y ∈ B: if d(x, y) ≤ δ, then d(τ (x), τ (y)) ≤ 1. Let x, y ∈ C. If
d(x, y) ≤ δ, then d(τ (x), τ (y)) ≤ 1. Otherwise, let n ∈ N and x = z0, . . . , zn = y besu
h that n ≤ (a1d(x, y) + b1)/δ and d(zi, zi+1)) ≤ δ for every i < n. So for every i ≤ n,
d(x, zi) ≤ nδ ≤ a1d(x,y)+b1

δ ·δ ≤ a1r+b1. So zi ∈ B and hen
e d(τ (zi), τ (zi+1)) ≤ 1. Then
d(τ (x), τ (y)) ≤ ∑

i<n d(τ (zi), τ (zi+1)) ≤ n ≤ (a1d(x, y) + b1)/δ ≤ (a1 · diam(C) + b1)/δ.So τ (C) is bounded.(
) By (b), if f ∈ ABUC(X,X), then f ∈ BUC(X,X). So ABUC(X) = BUC(X).Remark. Part (b) of the above proposition follows trivially from Proposition 4.3(b).However, the proof of 4.3 was left to the reader. �Suppose that τ ∈ H(X,Y ) and (UC(X))τ ⊆ ABUC(Y ). Assuming that τ is bound-edness preserving, the proof that τ ∈ ABUC(X,Y ) is just as the proof of 5.5. This is the
ontent of the next lemma. The main problem will be to dedu
e that τ is boundednesspreserving.Definition 5.13. Let X be a metri
 spa
e. X is boundedly uniformly-in-diameterar
wise-
onne
ted (X is BUD.AC ) if for every bounded set B ⊆ X and ε > 0 thereis δ > 0 su
h that for every x, y ∈ B: if d(x, y) < δ, then there is an ar
 L ⊆ X
onne
ting x and y su
h that diam(L) < ε. �



98 M. Rubin and Y. YomdinLemma 5.14. Let X be BUD.AC , and τ ∈ H(X,Y ) be boundedness preserving. Supposethat (UC(X))τ ⊆ BUC(Y ). Then τ ∈ BUC(X,Y ).Proof. The proof is the same as that of 5.5.The following example is a preparation for Theorem 5.18. It shows that the assump-tions of that theorem are �
orre
t�.Example 5.15. (a) Let X = BE(0, 1) − {0}, Y = E − cl(BE(0, 1)), and τ (x) := x
‖x‖2be the inversion map from X to Y . Then (BUC(X))τ = BUC(Y ), but τ is not ABUC.Note that 0 ∈ bd(X) and for every h ∈ BUC(X), hcl(0) = 0. In part (b) we get rid ofthis pathology.(b) Let X, Y and τ be as in part (a). Let X1 = X × R, Y1 = Y × R and τ1(x, y) =

(τ (x), y). Then (BUC(X1))
τ1 ⊆ BUC(Y1), but τ1 is not ABUC. In this example, Xdoes not have boundary points �xed under BUC(X), but we have 
ontainment and notequality between (BUC(X1))
τ1 and BUC(Y1). �We next formulate the movability property of X, whi
h will be used in the proof that

τ is boundedness preserving. It is rather te
hni
al but it in
ludes many open sets whoseboundary is not so well-behaved.Definition 5.16. For h : [0, 1] × X → X and t ∈ [0, 1] we de�ne ht(x) := h(t, x). Wesay that X has Property MV1 if for every bounded B ⊆ X there are r = rB > 0 and
α = αB ∈ MC su
h that for every x ∈ B and 0 < s ≤ r, there is an α-
ontinuous fun
tion
h : [0, 1]×X → X su
h that: (1) for every t ∈ [0, 1], ht ∈ H(X) and h−1

t is α-
ontinuous;(2) h0 = Id and d(x, h1(x)) = s; and (3) for every t ∈ [0, 1], supp(ht) ⊆ B(x, 2s). �Note that if there is x ∈ bd(X) su
h that f(x) = x for every f ∈ BUC(X), then
X does not have Property MV1. On the other hand, Property MV1 holds for setswhose boundary is, in a 
ertain sense, well-behaved. Open half spa
es, open balls, and
omplements of 
losed subspa
es ful�ll MV1.The following family of examples 
ontains open sets X su
h that cl(X) is not amanifold with boundary. Let U be any nonempty open subset of a normed spa
e E0 and
X = U × R. Then X has Property MV1. More generally, X has Property MV1 if thefollowing happens. Let E0 be a normed spa
e, E = E0×R, s > 0 and α ∈ MBC. Supposethat X is an open subset of E with the following property. For every x ∈ bd(X) there are:an open subset U ⊆ E0, x0 ∈ bd(U) and a homeomorphism ϕ from BE0(x0, s) × [−1, 1]into E, su
h that:(1) ϕ(x0, 0) = x,(2) Rng(ϕ) is 
losed in E, and ϕ(BE0(x0, s) × (−1, 1)) is open in E,(3) X ∩ Rng(ϕ) = ϕ((U ∩BE0(x0, s)) × [−1, 1]),(4) ϕ is α-bi
ontinuous.Proposition 5.17. (a) Let X be a metri
 spa
e, α ∈ MC and {hn | n ∈ N} ⊆ H(X).Suppose that for any distin
t m,n ∈ N, hm is α-
ontinuous and supp(hm)∩supp(hn) = ∅.Then ◦n∈N hn is α ◦α-
ontinuous.
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onstru
tion of manifolds from subgroups of homeomorphism groups 99(b) Let X be a subset of a normed spa
e E, α ∈ MC and {hn | n ∈ N} ⊆ H(X).Suppose that for any distin
t m,n ∈ N, hm is α-
ontinuous , clE(supp(hn)) ⊆ X and
supp(hm) ∩ supp(hn) = ∅. Then ◦n∈N hn is 2α-
ontinuous.Proof. (a) De�ne h = ◦n∈N hn. Let x, y ∈ X. Then there are m,n ∈ N su
h that x, y ∈
supp(hm)∪supp(hn)∪(X−⋃

i∈N
supp(hi)). So h(x) = hm ◦hn(x) and h(y) = hm ◦hn(y).Sin
e hm ◦hn is α ◦α-
ontinuous, d(h(x), h(y)) ≤ α ◦α(d(x, y)).(b) De�ne h = ◦n∈N hn. Let x, y ∈ X. Then there are m,n ∈ N su
h that x, y ∈

supp(hm) ∪ supp(hn) ∪ (X − ⋃
i∈N

supp(hi)). If x or y belong to X − ⋃
i∈N

supp(hi),or x, y ∈ supp(hm), or x, y ∈ supp(hn), then either d(h(x), h(y)) = d(hm(x), hm(y)) ≤
α(d(x, y)), or d(h(x), h(y)) = d(hn(x), hn(y)) ≤ α(d(x, y)).So we may assume that x ∈ supp(hm) and y ∈ supp(hn). Let z ∈ [x, y]∩bd(supp(hm)).Then z ∈ X and z 6∈ supp(hn). Hen
e hm(z) = hn(z) = z. So

d(h(x), h(y)) ≤ d(h(x), h(z)) + d(h(z), h(y)) = d(hm(x), hm(z)) + d(hn(z), hn(y))

≤ α(d(x, z)) + α(d(z, y)) ≤ 2α(d(x, y)).Theorem 5.18. Let X,Y ∈ KO
NRM. Suppose that X has Property MV1 , and let τ ∈

H(X,Y ) be su
h that (UC(X))τ ⊆ BUC(Y ) ⊆ (BUC(X))τ . Then τ is boundednesspreserving.Proof. Suppose otherwise. Let ~x ⊆ X be a bounded sequen
e su
h that τ (~x) is un-bounded. We may assume that either ~x is a Cau
hy sequen
e or ~x is spa
ed.Case 1: ~x is a Cau
hy sequen
e. Applying MV1 to the bounded set Rng(~x) we obtain r =

rRng(~x) > 0 and α = αRng(~x) ∈ MC. Set x∗ = limE ~x, and 
hoose δ > 0 su
h that δ, α(δ) <

r/4, and m su
h that d(xm, x∗) < δ. Let h : [0, 1] ×X → X be the isotopy provided byMV1 when x and s are taken to be xm and r, and let h̄ = hcl
[0,1]×E . (See De�nition 4.6.)From the fa
t that h is α-
ontinuous it follows that h̄ : cl[0,1]×E([0, 1]×X) → clE(X) and

h̄ is α-
ontinuous. Sin
e h̄1 is α-
ontinuous, d(h̄1(x
∗), h̄1(xm)) ≤ α(d(x∗, xm)) < α(δ) <

r/4. So d(x∗, h̄1(x
∗)) ≥ d(xm, h̄1(xm))−d(xm, x∗)−d(h̄1(xm), h̄1(x

∗)) > r− r/4− r/4 =

r/2. That is, d(x∗, h̄1(x
∗)) > r/2. For n ∈ N de�ne Ln = h(xn, [0, 1]).Claim 1. limn→∞ d(τ (Ln), 0) = ∞.Proof. Suppose otherwise. Then there are a 1-1 sequen
e {nk | k ∈ N} and a sequen
e

{tk | k ∈ N} ⊆ [0, 1] su
h that {τ (h(xnk
, tk)) | k ∈ N} is bounded. We may assumethat {tk | k ∈ N} 
onverges to t∗. Sin
e ht∗ ∈ UC(X), (ht∗)

τ ∈ BUC(Y ). In parti
ular,
(ht∗)

τ ∈ BDD.P(Y ). It follows that {τ (ht∗(xnk
)) | k ∈ N} = (ht∗)

τ ({τ (xnk
) | k ∈ N}) isunbounded. Let Ik be the interval whose endpoints are tk and t∗ and L′

k = h(Ik×{xnk
}).By the α-
ontinuity of h, limk→∞ diam(L′

k) = 0. Pro
eeding as in the proof of Case 1of Theorem 5.5, we 
onstru
t a 1-1 sequen
e {ki | i ∈ N} and g ∈ UC(X) su
h that
g(h(tki

, xnki
)) = h(t∗, xnki

). The fa
t that g ∈ UC(X) implies that gτ ∈ BUC(Y ), soin parti
ular, gτ is boundedness preserving. However, gτ takes the bounded sequen
e
τ (h(tki

, xnki
)) to the unbounded sequen
e τ (h(t∗, xnki

)). A 
ontradi
tion, so Claim 1 isproved.



100 M. Rubin and Y. YomdinLet un = h(1, xn) and Un = BY (τ (Ln), 1). There is a subsequen
e {Unk
| k ∈ N} of

{Un | n ∈ N} su
h that for every k ∈ N, Unk
⊆ B(0, d(0, Unk+1

))/2. For every k ∈ N, let
gk ∈ UC(Y ) be su
h that supp(gk) ⊆ Unk

and gk(τ (xnk
)) = τ (unk

). Let g = ◦k∈N g2kand f = gτ
−1 .Clearly, g ∈ BUC(Y ). So f must belong to BUC(X). Note that limn∈N un = h̄1(x

∗) 6=
x∗ = limn∈N xn. So sin
e f(xn2k

) = un2k
and f(xn2k+1

) = xn2k+1
, {f(xnk

) | k ∈ N} isnot 
onvergent in E. However, {xnk
| k ∈ N} is 
onvergent in E. Hen
e f takes aCau
hy sequen
e to a sequen
e whi
h is not a Cau
hy sequen
e. So f 6∈ BUC(X), a
ontradi
tion.Case 2: ~x is spa
ed. Let r0 > 0 be su
h that ~x is 5r0-spa
ed. Applying MV1 tothe bounded set Rng(~x) we obtain r1 = rRng(~x) > 0 and α = αRng(~x) ∈ MC. Let

s = min(r0, r1). For every n ∈ N let hn : [0, 1]×X → X be the fun
tion ensured by MV1for xn and s. Re
all that for t ∈ [0, 1], hn,t(x) is the homeomorphism of X taking every
x ∈ X to hn(t, x). Set Ln = hn([0, 1] × {xn}).Claim 2. limn→∞ d(τ (Ln), 0) = ∞.Proof. Suppose otherwise. Then there are a 1-1 sequen
e {nk | k ∈ N} and a sequen
e
{tk | k ∈ N} ⊆ [0, 1] su
h that {τ (hnk

(tk, xnk
)) | k ∈ N} is bounded. Clearly, for anydistin
t m,n ∈ N and q, t ∈ [0, 1], d(supp(hm,q), supp(hn,t)) ≥ r0. So by 5.17(a), f :=

◦k∈N hnk,tk ∈ UC(X). So fτ ∈ BUC(Y ) ⊆ BDD.P(Y ). We shall rea
h a 
ontradi
tion byshowing that fτ takes an unbounded sequen
e to a bounded sequen
e. {τ (xnk
) | k ∈ N}is unbounded, whereas fτ ({τ (xnk

) | k ∈ N}) = {τ (hnk
(tk, xnk

)) | k ∈ N} is bounded.Claim 2 is thus proved.Let un = hn(1, xn), vn = hn(1/n, xn) and Un = BY (τ (Ln), 1). There is a subsequen
e
{Unk

| k ∈ N} of {Un | n ∈ N} su
h that for every k ∈ N, Unk
⊆ B(0, d(0, Unk+1

))/2.For every k ∈ N, let gk ∈ UC(Y ) be su
h that supp(gk) ⊆ Unk
, gk(τ (xnk

)) = τ (xnk
) and

gk(τ (vnk
)) = τ (unk

). Let g = ◦k∈N gk and f = gτ
−1 .Clearly, g ∈ BUC(Y ). So f must belong to BUC(X). By the α-
ontinuity of all hn's,

limk→∞ d(xnk
, vnk

) = 0, whereas for every k ∈ N, d(f(xnk
), f(vnk

)) = d(xnk
, unk

) = s.So f 6∈ BUC(X), a 
ontradi
tion.Re
all the 
onvention that X and Y denote open subsets of the normed spa
es Eand F .Corollary 5.19. Let X,Y ∈ KO
NRM. Suppose that X is BUD.AC , and X has Prop-erty MV1. Let τ ∈ H(X,Y ) be su
h that (UC(X))τ ⊆ BUC(Y ) and (BUC(Y ))τ

−1 ⊆
BUC(X). Then τ ∈ BUC(X,Y ).Proof. Combine Lemma 5.14 and Theorem 5.18.The following theorem is the �nal result for groups of type BUC(X).Theorem 5.20. Let X,Y ∈ KO

NFCB. Suppose that X and Y are BUD.AC , and X and
Y have Property MV1. Let ϕ : BUC(X) ∼= BUC(Y ). Then there is τ ∈ BUC±(X,Y )su
h that τ indu
es ϕ.Proof. Combine Corollaries 2.26 and 5.19.
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onstru
tion of manifolds from subgroups of homeomorphism groups 1015.4. Groups of homeomorphisms whi
h are uniformly 
ontinuous on everybounded positively distan
ed set. We next deal with the group BPD.UC(X) andwith some related groups. Re
all that BPD.UC(X) is the group of all homeomorphisms
f su
h that f and f−1 take every subset of X whose distan
e from the boundary of Xis positive to a set whose distan
e from the boundary of X is positive, and su
h that fand f−1 are uniformly 
ontinuous on every su
h set. The generalization of BPD.UC(X)to arbitrary moduli of 
ontinuity is denoted by HNBPD

Γ
(X). That is, BPD.UC(X) is thegroup HNBPD

Γ
(X) when Γ = MC. These groups are explained in the next de�nition. The�nal re
onstru
tion result for su
h groups appears in Theorem 5.32, and this result isobtained for 
ountably generated Γ 's and for Γ = MC. The main intermediate result for
ountably generated Γ 's appears in Theorem 5.24(b), and it says that if (LIP00(X))τ ⊆

HNBPD
Γ

(X), then τ ∈ HNBPD
Γ

(X,Y ). The intermediate result fot Γ = MC appears inTheorem 5.31. The analogous statement here is: if (UC00(X))τ ⊆ BPD.UC(Y ), then
τ ∈ BPD.UC(X,Y ). The groups LIP00(X) and UC00(X) are de�ned in 5.23.For open subsets of a Bana
h spa
e we 
an also 
on
lude that τ−1 ∈ BPD.UC(X,Y ).That is, if (BUC(X))τ ⊆ BPD.UC(Y ), then τ−1 ∈ BPD.UC(Y,X). This is done inTheorem 5.41(a).A weaker variant of uniform 
ontinuity pops up, and is also dealt with. Groups arisingfrom this variant are de�ned in 5.21(
) and are denoted by HWBPD

Γ
(X). The �nal resultfor su
h groups is stated in Theorem 5.36. The main intermediate results for su
h groupsappear in Theorem 5.24(a) and Proposition 5.35.We next de�ne the groups HBPD

Γ
(X), HNBPD

Γ
(X) and HWBPD

Γ
(X).Definition 5.21. (a) De�ne

HBPD
Γ (X,Y ) = {f ∈ BPD.P(X,Y ) | for every BPD set A ⊆ X, f↾A is Γ -
ontinuous}.(b) Let Γ be a modulus of 
ontinuity and f : X → Y . We say that f is nearly

Γ -
ontinuous on BPD sets if for every BPD set A ⊆ X there are α ∈ Γ and r > 0 su
hthat f↾A is (r, α)-
ontinuous. See De�nition 4.2(b). We denote by HNBPD
Γ

(X,Y ) the setof all h ∈ BPD.P(X,Y ) su
h that h is nearly Γ -
ontinuous on BPD sets.(
) Let α ∈ MC, and f : X → Y be a fun
tion between metri
 spa
es. Re
all thata

ording to De�nition 1.12(a), f is lo
ally {α}-
ontinuous if for every x ∈ X there is
U ∈ NbrX(x) su
h that f↾U is α-
ontinuous. Let f : X → Y be a fun
tion betweenmetri
 spa
es and Γ be a modulus of 
ontinuity. Call f weakly Γ -
ontinuous if there is
α ∈ Γ su
h that f is lo
ally {α}-
ontinuous. If f ∈ H(X,Y ) and both f and f−1 areweakly Γ -
ontinuous, then f is said to be weakly Γ -bi
ontinuous.Let X and Y be open subsets of normed spa
es E and F respe
tively, Γ be a modulusof 
ontinuity and f : X → Y . Call f weakly Γ -
ontinuous on BPD sets if for every BPDset A ⊆ X, f↾A is weakly Γ -
ontinuous. We denote by HWBPD

Γ
(X,Y ) the set of all

h ∈ BPD.P(X,Y ) su
h that h is weakly Γ -
ontinuous on BPD sets.(d) Let X be a subset of a metri
 spa
e E. X has the dis
rete path property for BPDsets if for every BPD subset A ⊆ X there are d > 0 andK ≥ 1 su
h that for every x, y ∈ Aand r > 0 there are n ∈ N and x = x0, . . . , xn = y ∈ X su
h that n ≤ K · d(x, y)/r, andfor every i < n, δ(xi) > d and d(xi, xi+1) ≤ r. �
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Γ

(X), HNBPD
Γ

(X) and HWBPD
Γ

(X) are groups. It is easy to 
he
k thatfor X's whi
h are open subsets of a �nite-dimensional normed spa
e, X has the dis
retepath property for BPD sets i� X is 
onne
ted. For in�nite-dimensional normed spa
esneither of the above impli
ations is true. In any 
ase, �well-behaved� open subsets ofa normed spa
e have the dis
rete path property for BPD sets. For example, an openball has this property. We �rst observe the following easy fa
ts. Part (a) follows fromProposition 4.3(a), and the proof of (b) is left to the reader.Proposition 5.22. (a) BPD.UC(X) = HNBPD
MC (X).(b) Suppose that X has the dis
rete path property for BPD sets. Then HBPD

Γ
(X) =

HNBPD
Γ

(X).Definition 5.23. (a) X is BPD-ar
wise-
onne
ted (X is BPD.AC ) if for every BPD set
A ⊆ X there are C,D > 0 su
h that for every x, y ∈ A there is a re
ti�able ar
 L ⊆ X
onne
ting x and y su
h that lngth(L) ≤ D and δ(L) ≥ C.(b) In some of the subsequent lemmas it will be 
onvenient to regard a sequen
e as afun
tion whose domain is an in�nite subset of N. So if σ ⊆ N is in�nite, then the obje
t
{xi | i ∈ σ} is 
onsidered to be a sequen
e. The notions of a subsequen
e, a 
onvergentsequen
e et
. are easily modi�ed to �t into this setting.(
) Let LIP00(X) = {h ∈ LIP(X) | supp(h) is a BPD set} and UC00(X) = {h ∈
UC(X) | supp(h) is a BPD set}.(d) For x ∈ X let δX1 (x) = max(‖x‖, 1/δX(x)). We abbreviate δX1 (x) by δ1(x).(e) Let A ⊆ N and n ∈ N. De�ne A≥n = {m ∈ A | m ≥ n}. The notations A>n,
A≤n, A<n et
. are de�ned analogously. �Note that if X is BPD.AC, then X is 
onne
ted. Note that a subset A ⊆ X is BPDi� sup({δX1 (x) | x ∈ A}) <∞.Theorem 5.24. Let Γ be a 
ountably generated modulus of 
ontinuity. Suppose that
X and Y are open subsets of normed spa
es E and F respe
tively , X is BPD.AC and
τ ∈ H(X,Y ).(a) If (LIP00(X))τ ⊆ HWBPD

Γ
(Y ), then τ ∈ HWBPD

Γ
(X,Y ).(b) If (LIP00(X))τ ⊆ HNBPD

Γ
(Y ), then τ ∈ HNBPD

Γ
(X,Y ).The argument of Claim 3 in the proof below is repeated in some other proofs.Lemma 5.25. Suppose that X is BPD.AC , τ ∈ H(X,Y ) and (LIP00(X))τ ⊆ BPD.P(Y ).Then τ ∈ BPD.P(X,Y ).Proof. Let X,Y and τ be as in the lemma.Claim 1. Suppose that u ∈ X, 0 < r < s, B(u, s) ⊆ X and ~x ⊆ B(u, r). Then τ (~x) isBPD in Y .Proof. Suppose by 
ontradi
tion that τ (~x) is not BPD in Y . Let a ∈ (0, 1) be su
h that

τ (B(u, ar)) is BPD in Y . Let η : [0,∞) → [0,∞) be the pie
ewise linear fun
tion withbreakpoints at ar and (r+ s)/2 su
h that η(ar) = r and for every t ≥ (r+ s)/2, η(t) = t.Let h = RadEη,u↾X. (See De�nition 3.17(b).) Then h ∈ LIP00(X). Let ~v = h−1(~x).Clearly, ~v ⊆ B(u, ar). So τ (~v) is BPD in Y . Obviously, hτ (τ (~v)) = τ (~x). Hen
e hτ takesa BPD set to a set whi
h is not BPD. That is, hτ 6∈ BPD.P(Y ), a 
ontradi
tion.
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onstru
tion of manifolds from subgroups of homeomorphism groups 103Claim 2. If ~x is a BPD sequen
e in X and ~x is a Cau
hy sequen
e, τ (~x) is a BPDsequen
e in Y .Proof. Suppose by 
ontradi
tion that ~x is a 
ounter-example. Let x∗ = limE(~x). Clearly,
x∗ ∈ int(X). Let u ∈ X and r > 0 be su
h that x∗ ∈ BE(u, r) and BE(u, 2r) ⊆ X. Let
~y be a �nal segment of ~x su
h that ~y ⊆ B(u, r). Then ~y is a 
ounter-example to Claim 1.This proves Claim 2.Suppose by 
ontradi
tion that τ 6∈ BPD.P(X,Y ). Let ~x be a BPD 1-1 sequen
e su
hthat τ (~x) is not BPD. We may assume that limn→∞ δ1(τ (xn)) = ∞. Hen
e for everysubsequen
e ~y of ~x, τ (~y) is not BPD.It follows from Claim 2 that ~x has no Cau
hy subsequen
es. Let x∗ ∈ X − Rng(~x)and A = Rng(~x) ∪ {x∗}. Let C an D be as ensured by the property BPD.AC. For ev-ery n ∈ N let Ln ⊆ X be a re
ti�able ar
 
onne
ting x∗ and xn su
h that δ(Ln) ≥ Cand lngth(Ln) ≤ D. Note that ⋃

n∈N
Ln is a BPD set. Let γn : [0, 1] → Ln be aparametrization of Ln su
h that γn(0) = x∗, γn(1) = xn, and for every t ∈ [0, 1],

lngth(γn([0, t])) = t · lngth(Ln).For every in�nite σ ⊆ N and t ∈ [0, 1] let A[σ, t] = {γn(t) | n ∈ σ}. We regard A[σ, t] asa sequen
e whose domain is σ. Clearly, for every t ∈ [0, 1], A[N, t] ⊆ cl(B(x∗, tD)). So bythe 
ontinuity of τ , there is t0 > 0 su
h that for every t ∈ [0, t0], and σ ⊆ N, τ (A[σ, t]) is aBPD set. For every in�nite σ ⊆ N let sσ = inf({t ∈ [0, 1] | τ (A[σ, t]) is not a BPD set}).So sσ > 0.For σ, η ⊆ N let σ ⊂∼ η mean that σ − η is �nite.Claim 3. There is an in�nite σ ⊆ N su
h that for every in�nite η ⊆ σ, sη = sσ.Proof. Suppose by 
ontradi
tion that no su
h σ exists. Clearly if η ⊂∼ σ, then sη ≥ sσ.We de�ne by trans�nite indu
tion on ν < ω1 an in�nite subset σν ⊆ N su
h that forevery ν < µ: σµ ⊂∼ σν and sσµ
> sσν

. If σν has been de�ned, let σν+1 ⊆ σν be su
hthat sσν+1
> sσν

. If µ is a limit ordinal, and σν has been de�ned for every ν < µ, let
σµ be an in�nite set su
h that for every ν < µ, σµ ⊂∼ σν . By the indu
tion hypothesis, if
ν < µ, then sσν+1

> sσν
. Hen
e sσµ

≥ sσν
> sσν

. So the indu
tion assertion holds. Theset {sσν
| ν < ω1} is a subset of R order isomorphi
 to ω1, a 
ontradi
tion. Claim 3 isproved.Let σ be as ensured by Claim 3 and write s = sσ.Claim 4. A[σ, s] does not have Cau
hy subsequen
es.Proof. Suppose by 
ontradi
tion that η ⊆ σ is in�nite, and A[η, s] is a Cau
hy sequen
e.Sin
e A[N, 1] = ~x does not 
ontain Cau
hy subsequen
es, s < 1. Let x̂ = limA[η, s].Sin
e A[η, s] is a BPD sequen
e x̂ ∈ int(X). So there are u ∈ X and r > 0 su
h that

x̂ ∈ BE(u, r) and BE(u, 3r) ⊆ X. We may assume that A[η, s] ⊆ B(u, r). For every iand t, ‖γi(t) − γi(s)‖ ≤ (t− s) ·D. So for every t ∈ (s, s+ r/D), A[η, t] ⊆ B(u, 2r). Bythe de�nition of σ, sη = sσ = s. So there is t ∈ (s, s+ r/D) su
h that τ (A[η, t]) is not aBPD subset of Y . But A[η, t] ⊆ B(u, 2r) and B(u, 3r) ⊆ X. This 
ontradi
ts Claim 1.So Claim 4 is proved.



104 M. Rubin and Y. YomdinBy Proposition 2.15(a) and Claim 4, we may assume that there is d > 0 su
h that
A[σ, s] is d-spa
ed. Let r = min(C, d)/4. δ(A[σ, s]) ≥ C, and so BE(A[σ, s], r) ⊆ X and
δ(BE(A[σ, s], r)) > 0. Also for any distin
t m,n ∈ σ, d(B(γm(s), r), B(γn(s), r)) ≥ d/2.Let t1 ∈ (s − r

2D , s). Sin
e t1 < s, it follows that τ (A[σ, t1]) is a BPD set. Let t2 ∈
[s, s+ r

2D ) be su
h that τ (A[σ, t2]) is not a BPD set.By Lemma 2.14(b), there is K ≥ 1 su
h that for every normed spa
e E, u ∈ E, r > 0and x, y ∈ BE(u, r/2) there is h ∈ H(E) su
h that h is K-bilips
hitz, supp(h) ⊆ BE(u, r)and h(x) = y.Clearly, for every n ∈ σ, γn(t1), γn(t2) ∈ B(γn(s), r/2). So by the above fa
t, thereis hn ∈ H(X) su
h that hn is K-bilips
hitz, supp(hn) ⊆ B(γn(s), r) and hn(γn(t1)) =

γn(t2).By Proposition 5.17(b), h := ◦n∈σ hn ∈ LIP(X). Sin
e supp(h) ⊆ BE(A[σ, s], r), and
δ(BE(A[σ, s], r)) > 0, h ∈ LIP00(X). Hen
e hτ ∈ BPD.P(Y ). However, τ (A[η, t1]) is aBPD set, τ (A[η, t2]) is not a BPD set, and hτ (τ (A[η, t1])) = τ (A[η, t2]). A 
ontradi
-tion.Proposition 5.26. For a 
ompa
t metri
 spa
e C and t > 0 let νC(t) denote the minimal
ardinality of a 
over of C 
onsisting of subsets of C with diameter ≤ t. Let ~C = {Ci |
i ∈ N} be a sequen
e of 
ompa
t subsets of a metri
 spa
e X, and let ν : (0,∞) → N.Suppose that for every i ∈ N, νCi

≤ ν. Suppose further that there is no in�nite set η ⊆ Nand a sequen
e {ci | i ∈ η} su
h that for every i ∈ η, ci ∈ Ci, and {ci | i ∈ η} is a Cau
hysequen
e. Then there is a subsequen
e ~D of ~C su
h that ~D is spa
ed.Proof. Suppose that ~C has no spa
ed subsequen
es, and we show that there are an in�niteset A ⊆ N and a Cau
hy sequen
e ~c = {ci | i ∈ A} su
h that for every i ∈ A, ci ∈ Ci.There are a subsequen
e ~C1 of ~C and r ∈ R ∪ {∞} su
h that limi,j→∞ d(C1
i , C

1
j ) = r.Sin
e ~C has no spa
ed subsequen
es, r = 0. We may assume that ~C = ~C1.For ~p ⊆ N let T~p be the tree of �nite sequen
es ~n su
h that for every i < lngth(~n),

ni < pi. Let S~p =
∏
i∈N
N<pi .Let pi =

∏
j≤i ν(1/j), T = T~p and S = S~p. Then for every i ∈ N there is {Ci,~n | ~n ∈ T}su
h that for every ~n ∈ T , Ci,~n is 
losed and diam(Ci,~n) ≤ 1/lngth(~n); for every ℓ ∈ N,

Ci =
⋃{Ci,~n | ~n ∈ T and lngth(~n) = ℓ}; and for every ~m,~n ∈ T : if ~m is an initialsegment of ~n, then Ci,~n ⊆ Ci,~m.By the Ramsey Theorem, there are a sequen
e of in�nite subsets of N, A0 ⊇ A1 ⊇ · · · ,and ~q, ~r ∈ S su
h that for every ℓ and i, j ∈ Aℓ: if i < j, then d(Ci,~q↾N≤ℓ , Cj,~r↾N≤ℓ) =

d(Ci, Cj).Let A ⊆ N be an in�nite set su
h that for every i, A − Ai is �nite. For every i ∈ Alet Di =
⋂
j∈N

Ci,~q↾N≤j and Ei =
⋂
j∈N

Ci,~r↾N≤j . Clearly, Di, Ei are singletons, denotethem by xi and yi respe
tively. We 
he
k that limi→∞,i<j d(xi, yj) = 0. Let ε > 0.Then there is N1 su
h that for every i, j > N1, d(Ci, Cj) < ε/3. Let N2 be su
h that
1/N2 < ε/3, N3 be su
h that A≥N3 ⊆ AN2

and N = max(N1, N3). Let i < j and
i, j ∈ A≥N . So i, j ∈ AN2

. Hen
e d(Ci,~q↾N≤N2 , Ci,~r↾N≤N2 ) = d(Ci, Cj) < ε/3. It followsthat
d(xi, yj) ≤ diam(Ci,~q↾N≤N2 ) + d(Ci, Cj) + diam(Cj,~r↾N≤N2 ) < ε/3 + ε/3 + ε/3 = ε.
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onstru
tion of manifolds from subgroups of homeomorphism groups 105We have proved that limi→∞,i<j d(xi, yj) = 0. Let ε > 0. Choose N su
h that for every
i, j ∈ A≥N : if i < j, then d(xi, yj) < ε/2. Suppose that i1, i2 ∈ A≥N and let j be su
hthat i1, i2 < j ∈ A. Then d(xi1 , xi2) ≤ d(xi1 , yj) + d(yj , xi2) < ε. So {xi | i ∈ A} is aCau
hy sequen
e.Lemma 5.27. There is Karc(ℓ, t) > 0 su
h that for every normed spa
e E, L, r > 0, anda re
ti�able ar
 γ ⊆ E with endpoints x, y: if lngth(γ) ≤ L, then there is h ∈ H(E) su
hthat :(1) supp(h) ⊆ B(γ, r);(2) h↾B(x, r/2) = try−x↾B(x, r/2);(3) h is Karc(L, r)-bilips
hitz.Proof. Let n = [ Lr/2 ] + 1. Suppose that γ : [0, 1] → X. There are 0 = t0, t1, . . . , tn = 1su
h that for every i < n, lngth(γ↾[ti, ti+1]) < r/2. Let xi = γ(ti). Then for every
z ∈ [xi, xi+1], d(z, γ↾[ti, ti+1]) < r/4. So ⋃

i<nB([xi, xi+1], 3r/4) ⊆ B(γ, r). By Lemma2.14(
), there are h1, . . . , hn ∈ H(E) su
h that for every i = 1, . . . , n:(1.1) supp(hi) ⊆ B([xi−1, xi], 3r/4);(1.2) hi↾B(xi−1,
2
3 · 3r

4 ) = trxi−xi−1
|̀B(xi−1,

2
3 · 3r

4 ).(1.3) hi is Kseg(r/2, 3r/4)-bilips
hitz.Let h = hn ◦ · · · ◦h1. Then h satis�es requirements (1) and (2) in the lemma. Also,
h is Kseg(r/2, 3r/4)n-bilips
hitz. Sin
e n = [2L/r] + 1, we may de�ne Karc(ℓ, t) =

Kseg(t/2, 3t/4)[2ℓ/t]+1.If L is a re
ti�able ar
 let γL : [0, 1] → L be a parametrization of L su
h that forevery t ∈ [0, 1], lngth(γL↾[0, t]) = t · lngth(L).Lemma 5.28. Let X be an open subset of a normed spa
e E. For n ∈ N let Ln ⊆ X bea re
ti�able ar
 with lngth(Ln) ≤ M and δ(Ln) ≥ d > 0. Let γn = γLn
and xn = γn(0).Suppose that {xn | n ∈ N} is spa
ed and 1-1 and that there is x∗ ∈ X su
h that for every

n ∈ N, γn(1) = x∗. Then there are x̂ ∈ X, r > 0, an in�nite η ⊆ N and t ∈ (0, 1] su
hthat :(1) B(x̂, r) ⊆ X, B(x̂, r) is a BPD set , and for every n ∈ η, xn 6∈ clE(B(x̂, r));(2) for every n ∈ η, γn(t) ∈ B(x̂, r);(3) {γn↾[0, t] | n ∈ η} is spa
ed.Proof. For η ⊆ N and t ∈ [0, 1] let A[η, t] = {γn(t) | n ∈ N}. We regard A[η, t] both as aset and as a sequen
e. For every in�nite η ⊆ N let
sη = inf({s ∈ [0, 1] | A[η, s] 
ontains a Cau
hy sequen
e}).Sin
e for every n ∈ N, γn(1) = x∗, sη is well de�ned. Clearly, if η ⊆ σ, then sη ≥ sσ.As in 5.25, there is an in�nite σ ⊆ N su
h that for every in�nite η ⊆ σ, sη = sσ. Let

s = sσ. We show that if t ∈ [0, s), then
(∗) there is no in�nite set η ⊆ σ and a sequen
e {ti | i ∈ η} su
h that for every i ∈ η,

ti ∈ [0, t], and {γi(ti) | i ∈ η} is a Cau
hy sequen
e.
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onvergent sequen
e. Let t∗ bethe limit of this sequen
e. So t∗ < s. Let Ii be the interval whose endpoints are ti and t∗.Re
all that lngth(γi↾Ii) = |t∗− ti| · lngth(γi) ≤ |t∗− ti| ·M . So limi∈η d(γi(ti), γi(t∗)) = 0.Hen
e {γi(t∗) | i ∈ η} is a Cau
hy sequen
e. This 
ontradi
ts the de�nition of s.Suppose by 
ontradi
tion that there is an in�nite η ⊆ σ su
h that A[η, s] is spa
ed.Let e > 0 be su
h that A[η, s] is e-spa
ed. Then for every t ∈ [s, s + e/3M ], A[η, t] isspa
ed. So sη > sσ. This 
ontradi
ts the de�nition of σ.It follows that A[σ, s] 
ontains a Cau
hy sequen
e. Hen
e we may assume that A[σ, s]is a Cau
hy sequen
e. Let x̄ = limE A[σ, s]. Sin
e {xn | n ∈ σ} is 1�1, we may as-sume that for every n, x̄ 6= xn. Sin
e δ(Ln) ≥ d > 0, dE(x̄, E − X) ≥ d > 0. Sin
e
{xn | n ∈ N} is spa
ed, there is 0 < r < d su
h that {xn | n ∈ σ} ∩ BE(x̄, r) = ∅.Let t = s − r/2M . There is i0 su
h that for every i0 ≤ i ∈ σ, d(γi(s), x̄) < r/4. Wemay assume that i0 = 0. So for every i ∈ σ, d(γi(t), x̄) ≤ d(γi(t), γi(s)) + d(γi(s), x̄) <

lngth(γi↾[t, s]) + r/4 ≤ (s − t) ·M + r/4 ≤ 3r/4. Let x̂ ∈ E ∩ BE(x̄, r/8). So for every
i ∈ σ, d(γi(t), x̂) < 7r/8.By (∗) and Proposition 5.26, there is an in�nite η ⊆ σ su
h that {γi↾[0, t] | i ∈ η} isspa
ed. Also, sin
e δ(x̂) ≥ d − r/8, δ(B(x̂, 7r/8)) ≥ d − r > 0. So B(x̂, 7r/8) is a BPDset. Hen
e x̂, r, η and t are as required in the lemma.Proposition 5.29. Let Γ be a 
ountably generated modulus of 
ontinuity , and let a > 0.Then there is {αn | n ∈ N} ⊆ Γ su
h that(1) for every α ∈ Γ there is n ∈ N su
h that α � αn, that is , {αn | n ∈ N}generates Γ ;(2) for every m < n, αm↾[0, a] ≤ αn↾[0, a].Proof. Let {βn | n ∈ N} be a generating set for Γ su
h that for every m < n, βm � βn.We de�ne by indu
tion Kn > 0 and αn ∈ Γ . We assume by indu
tion that αn = Knβn.Let K0 = 1 and α0 = β0. Suppose that Kn and αn have been de�ned. Let i ≤ n. Sin
e
βi � βn+1 and αi = Kiβi, it follows that Mi := supx∈[0,a] αi(x)/βn+1(x) < ∞. Let
Kn+1 = max(M0, . . . ,Mn)+1 and αn+1 = Kn+1βn+1. Obviously, {αn | n ∈ N} ⊆ Γ and
{αn | n ∈ N} is as required.Proof of Theorem 5.24. (a) Let Γ , X, Y and τ be as in (a). We have LIP00(X) ⊆
HWBPD

Γ
(X) and HWBPD

Γ
(Y ) ⊆ BPD.P(Y ), hen
e (LIP00(X))τ ⊆ BPD.P(Y ). So byLemma 5.25, τ ∈ BPD.P(X,Y ).Using the notation of De�nition 2.7(a), LIP00(X) = LIP(X;U), where U is the set ofall open BPD subsets of X. Clearly, HWBPD

Γ
(Y ) ⊆ HLC

Γ
(Y ) so (LIP(X;U))τ ⊆ HLC

Γ
(Y ).Hen
e by Theorem 3.27, τ is lo
ally Γ -
ontinuous.Suppose by 
ontradi
tion that there is an open BPD set U ⊆ X su
h that for no

α ∈ Γ , τ↾U is lo
ally {α}-
ontinuous. Let {αn | n ∈ N} generate Γ . We may assumethat for every m < n ∈ N, αm � αn. For every n ∈ N let βn = αn ◦αn and xn ∈ U besu
h that for every V ∈ NbrX(xn), τ↾V is not βn-
ontinuous. Let ~x = {xn | n ∈ N}.Suppose by 
ontradi
tion that ~x has a Cau
hy subsequen
e ~y. Let ȳ = limE ~y. Sin
e
U is a BPD set and Rng(~y) ⊆ U , ȳ ∈ int(X). Let u ∈ X and r > 0 be su
h that
BE(u, 2r) ⊆ X and ȳ ∈ BE(u, r). Sin
e τ is lo
ally Γ -
ontinuous, there are V ∈ NbrX(u)
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h that τ↾V is β-
ontinuous. There is h ∈ LIP(X) B(u, r) su
h that
hcl
E

(ȳ) ∈ int(V ). Sin
e h ∈ LIP00(X), hτ ∈ HWBPD
Γ

(Y ).Re
all that τ ∈ BPD.P(X,Y ). Sin
e B(u, r) is a BPD set in X, W := τ (B(u, r)) is aBPD set in Y . So there is α ∈ Γ su
h that (hτ )−1↾W is lo
ally {α}-
ontinuous. Sin
e
lim ~y = ȳ and hcl

E
(ȳ) ∈ int(V ), we may assume that h(~y) ⊆ V . Let K be su
h that his K-bilips
hitz, and de�ne γ(t) = Kt. So γ ∈ Γ . We show that for every n ∈ N, τ is

α ◦β ◦γ-bi
ontinuous at yn. Note that τ = (hτ )−1 ◦ τ ◦h. We have(i) h is γ-bi
ontinuous at yn.Sin
e h(yn) ∈ B(u, r), we have(ii) τ is β-bi
ontinuous at h(yn).Also, τ (h(yn)) ∈ τ (B(u, r)) = W . So(iii) (hτ )−1 is α-bi
ontinuous at τ (h(yn)).It follows from (i)�(iii) that τ is α ◦β ◦γ-bi
ontinuous at yn. Clearly, α ◦β ◦γ ∈ Γ , sothere is n su
h that α ◦β ◦γ � βn. Hen
e τ is βn-bi
ontinuous at yn. This 
ontradi
tsthe 
hoi
e of yn. So ~x does not have Cau
hy subsequen
es.We may thus assume that ~x is spa
ed. Let x∗ ∈ U . Sin
e X is BPD.AC, there are
M,d > 0 and re
ti�able ar
s {Ln | n ∈ N} su
h that for every n ∈ N, Ln 
onne
ts xnwith x∗, δ(Ln) ≥ d and lngth(Ln) ≤ M . Applying Lemma 5.28 to x∗ and {Ln | n ∈ N}we obtain x̂ ∈ X, r > 0, an in�nite η ⊆ N and t ∈ (0, 1] as ensured by that lemma. Sofor the parametrization γn of Ln de�ned in Lemma 5.28 the following holds:(1.1) B(x̂, r) ⊆ X, B(x̂, r) is a BPD set, and for every n ∈ η, xn 6∈ clE(B(x̂, r));(1.2) for every n ∈ η, γn(t) ∈ B(x̂, r);(1.3) {γn↾[0, t] | n ∈ η} is spa
ed.We may assume that η = N. For every n ∈ N let tn be the least t′ su
h that γn(t′) ∈
clE(B(x̂, r)). Let γ ′

n = γn↾[0, tn] and yn = γn(tn). So d(yn, x̂) = r and Rng(γ ′
n) ∩

B(x̂, r) = ∅.Sin
e τ is lo
ally Γ -
ontinuous, there is α∗ ∈ Γ and r1 < r su
h that τ↾B(x̂, r1) is
α∗-
ontinuous. Let zn = x̂+ r1

2 · (yn − x̂)/‖yn − x̂‖ and L∗
n = Rng(γ ′

n) ∪ [yn, zn]. So L∗
nis a re
ti�able ar
. Clearly, there are M∗, d∗, D∗ > 0 su
h that for any distin
t m,n ∈ N,(2.1) lngth(L∗

m) ≤M∗;(2.2) δ(L∗
m) ≥ d∗;(2.3) d(L∗
m, L

∗
n) ≥ D∗.Let r∗ > 0 be su
h that r∗ < d∗/2, D∗/3, r1/2. For every n ∈ N we apply Lemma 5.27with L = M∗, r = r∗, γ = L∗

n, x = xn and y = zn. We obtain hn ∈ H(X) su
h that:(3.1) supp(hn) ⊆ B(L∗
n, r

∗);(3.2) hn↾B(xn, r
∗/2) = trzn−xn

↾B(xn, r
∗/2);(3.3) hn is Karc(M

∗, r∗)-bilips
hitz.Clearly, {hn | n ∈ N} and {h−1
n | n ∈ N} satisfy the 
onditions of Proposition 5.17(b) with

α(x) = Karc(M
∗, r∗) · x. De�ne h = ◦n∈N hn and g = h−1. So by Proposition 5.17(b),

h and g are 2K(M∗, r∗)-Lips
hitz. Also δ(supp(h)) ≥ d∗ − r∗ > 0. So h, g ∈ LIP00(X).
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e τ ∈ BPD.P(X,Y ), τ (U) is a BPD subset of Y . We shall thus rea
h a 
ontradi
tionby proving the following statement:
(∗) There is no α ∈ Γ su
h that gτ ↾τ (U) is lo
ally {α}-
ontinuous.Let α ∈ Γ . Choose n su
h that α, α∗ � αn and set u = τ (zn). For s > 0 de�ne

Us = B(u, s), Ts = τ−1(Us) and Ss = h−1(Ts). There is s > 0 su
h that:(4.1) α↾[0, 2s] ≤ αn↾[0, 2s];(4.2) Ts ⊆ B(zn, r
∗/2);(4.3) α∗↾[0, diam(Ts)] ≤ αn↾[0, diam(Ts)].Let s′ < s. We show that hτ ↾B(u, s′) is not α-
ontinuous. Sin
e Ss′ is a neighborhoodof xn, there are x1, x2 ∈ Ss′ su
h that(5.1) d(τ (x1), τ (x2)) > βn(d(x

1, x2)).For i = 1, 2 let zi = h(xi) and ui = τ (zi). So z1, z2 ∈ Ts′ and so u1, u2 ∈ Us′ . By(4.2), the 
hoi
e of zn and the 
hoi
e of r∗, Ts′ ⊆ B(zn, r
∗/2) ⊆ B(x̂, r1). So τ↾Ts′ is

α∗-
ontinuous. Hen
e α∗(d(z1, z2)) ≥ d(u1, u2). By (4.3), αn(d(z1, z2)) ≥ α∗(d(z1, z2)).So αn(d(z1, z2)) ≥ d(u1, u2). Hen
e(5.2) d(z1, z2) ≥ (αn)
−1(d(u1, u2)).Sin
e Ts′ ⊆ B(zn, r

∗/2) and by property (3.2) of hn, h−1↾Us′ is an isometry. So(5.3) d(z1, z2) = d(x1, x2).By (5.1) and (5.3),(5.4) d(τ (x1), τ (x2)) > βn(d(z
1, z2)).Combining (5.2) and (5.4) we obtain(5.5) d(τ (x1), τ (x2)) > βn((αn)
−1(d(u1, u2))).But βn = αn ◦αn. So(5.6) d(τ (x1), τ (x2)) > αn(d(u

1, u2)).By 
lause (4.1) in the de�nition of s, and sin
e u1, u2 ∈ B(u, s),(5.7) d(τ (x1), τ (x2)) > α(d(u1, u2)).But τ (xi) = (h−1)τ (ui) = gτ (ui). So(5.8) d(gτ (u1), gτ (u2)) > α(d(u1, u2)).We have proved (∗), and this 
ontradi
ts the fa
t that gτ ∈ HWBPD
Γ

(Y ). So (a) isproved.(b) Let Γ , X, Y and τ be as in (b). As in the proof of (a), we 
on
lude that
τ ∈ BPD.P(X,Y ) and τ is lo
ally Γ -
ontinuous.Suppose by 
ontradi
tion that there is an open BPD set U ⊆ X su
h that for no α ∈ Γand r > 0, τ↾U is (r, α)-
ontinuous. By Proposition 5.29, there is a set {αn | n ∈ N}whi
h generates Γ and su
h that αm↾[0, 1] ≤ αn↾[0, 1] for every m < n. For every n ∈ Nlet βn = αn ◦αn, and xn, x

′
n ∈ U be su
h that d(xn, x′n) < 1/n and d(τ (xn), τ (x

′
n)) >

βn(d(xnx
′
n)). Let ~x = {xn | n ∈ N}.
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ontradi
tion that {xni
| i ∈ N} is a Cau
hy subsequen
e ~x. Set yi = xniand y′i = x′ni

. Let ȳ = limE ~y. Sin
e U is a BPD set and Rng(~y) ⊆ U , ȳ ∈ int(X).Let u ∈ X and r > 0 be su
h that BE(u, 2r) ⊆ X and ȳ ∈ BE(u, r). Sin
e τ is lo
ally
Γ -
ontinuous, there are V ∈ NbrX(u) and β ∈ Γ su
h that τ↾V is β-
ontinuous. Thereis h ∈ LIP(X) B(u, r) su
h that hcl

E
(ȳ) ∈ int(V ). Sin
e h ∈ LIP00(X), hτ ∈ HNBPD

Γ
(Y ).Re
all that τ ∈ BPD.P(X,Y ). Sin
e B(u, r) is a BPD set in X, it follows that

W := τ (B(u, r)) is a BPD set in Y . So there are α ∈ Γ and s > 0 su
h that hτ ↾Wis (s, α)-
ontinuous, and (hτ )−1↾W is (s, α)-
ontinuous. Sin
e lim ~y = lim ~y′ = ȳ and
hcl
E

(ȳ) ∈ int(V ), we may assume that h(~y), h(~y′) ⊆ V .From the fa
t h ∈ LIP(X) it follows that limi→∞ d(h(yi), h(y
′
i)) = 0. Set ui =

h(yi) and u′i = h(y′i). Sin
e h(~y), h(~y′) ⊆ V and τ↾V is β-
ontinuous, it follows that
limi→∞ d(τ (ui), τ (u

′
i)) = 0. We may thus assume that for every i ∈ N, d(τ (ui), τ (u′i)) < s.Let K be su
h that h is K-bilips
hitz, de�ne γ(t) = Kt and ̺ = α ◦β ◦γ. So γ ∈ Γand hen
e ̺ ∈ Γ . We show that for every i ∈ N

(†) d(τ (yi), τ (y′i)) ≤ ̺(d(yi, y
′
i)).Note that τ (yi) = (hτ )−1 ◦ τ ◦h(yi), and the same holds for y′i. So(1) d(h(yi), h(y′i) ≤ γ(d(yi, y
′
i).Now, h(yi), h(y′i) ∈ V and τ↾V is β-
ontinuous, so(2) d(τ (h(yi)), τ (h(y′i))) ≤ β(γ(d(yi, y

′
i))).Sin
e d(τ (ui), τ (u′i)) < s and τ (ui), τ (u′i) ∈W , it follows that(3) d((hτ )−1(τ (ui)), (h

τ )−1(τ (u′i))) ≤ α(d(τ (ui), τ (u
′
i)).Obviously, (1)�(3) imply (†).De�ne β̂i = βni

. There is j su
h that ̺ � β̂j . Let ℓ ∈ N be su
h that ̺|̀[0, 1/ℓ] ≤
β̂j |̀[0, 1/ℓ]. Let i = max(j, ℓ). So d(yi, y

′
i) ≤ 1/ni ≤ 1/ℓ. From (†) and the fa
t

β̂j↾[0, 1] ≤ β̂i↾[0, 1] we 
on
lude that d(τ (yi), τ (y′i)) ≤ ̺(d(yi, y
′
i)) ≤ β̂i(d(yi, y

′
i)). Thatis,

d(τ (xni
), τ (x′ni

)) ≤ βni
(d(xni

, x′ni
)).This 
ontradi
ts the way that xni

and x′ni
were 
hosen. So ~x has no Cau
hy subse-quen
es.We may thus assume that ~x is spa
ed. Let x∗ ∈ U . Sin
e X is BPD.AC, there are

M,d > 0 and re
ti�able ar
s {Ln | n ∈ N} su
h that for every n ∈ N, Ln 
onne
ts xn with
x∗, δ(Ln) ≥ d and lngth(Ln) ≤M . From Lemma 5.28 we obtain x̂ ∈ X, r > 0, an in�nite
η ⊆ N and t ∈ (0, 1] su
h that for the parametrization γn of Ln de�ned in Lemma 5.28the following holds: B(x̂, r) is a BPD subset of X, for every n ∈ η, xn 6∈ clE(B(x̂, r))and γn(t) ∈ B(x̂, r) and the set of ar
s {γn↾[0, t] | n ∈ η} is spa
ed. We may assume that
η = N.For every n ∈ N let tn be the least t′ su
h that γn(t′) ∈ clE(B(x̂, r)). Let γ ′

n =

γn↾[0, tn] and yn = γn(tn). So d(yn, x̂) = r and Rng(γ ′
n) ∩B(x̂, r) = ∅.Sin
e τ is lo
ally Γ -
ontinuous, there is α∗ ∈ Γ and r1 < r su
h that τ↾B(x̂, r1)is α∗-
ontinuous. Let zn = x̂ + r1

2 · (yn − x̂)/‖yn − x̂‖ and L∗
n = Rng(γ ′

n) ∪ [yn, zn].
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n is a re
ti�able ar
. Clearly, there are M∗, d∗, D∗ > 0 su
h that for any distin
t

m,n ∈ N, lngth(L∗
m) ≤ M∗, δ(L∗

m) ≥ d∗ and d(L∗
m, L

∗
n) ≥ D∗. Let r∗ > 0 be su
h that

r∗ < d∗/2, D∗/3, r1/2.For every n ∈ N we apply Lemma 5.27 with L = M∗, r = r∗, γ = L∗
n, x = xnand y = zn. We obtain hn ∈ H(X) su
h that supp(hn) ⊆ B(L∗

n, r
∗), hn↾B(xn, r

∗/2) =

trzn−xn
↾B(xn, r

∗/2) and hn is Karc(M
∗, r∗)-bilips
hitz.The families {hn | n ∈ N} and {h−1
n | n ∈ N} satisfy the 
onditions of Proposi-tion 5.17(b) with α(x) = Karc(M

∗, r∗) · x. Let h = ◦n∈N hn and g = h−1. So by Propo-sition 5.17(b), h is 2Karc(M
∗, r∗)-bilips
hitz. Also, δ(supp(h)) ≥ d∗ − r∗ > 0, and hen
e

h, g ∈ LIP00(X). Sin
e τ ∈ BPD.P(X,Y ), τ (U) is a BPD subset of Y . From the fa
t
(LIP00(X))τ ⊆ HNBPD

Γ
(Y ) it follows that for some α ∈ Γ and r > 0, gτ ↾τ (U) is (r, α)-bi
ontinuous. We shall thus rea
h a 
ontradi
tion by proving the following statement:

(∗) There are no r > 0 and α ∈ Γ su
h that gτ ↾τ (U) is (r, α)-
ontinuous.Let r > 0 and α ∈ Γ . For n ∈ N set z′n = h(x′n), un = τ (zn) and u′n = τ (z′n). Choose
m ∈ N and b ∈ (0, 1) su
h that α↾[0, b], α∗↾[0, b] ≤ αm↾[0, b]. So for every n ≥ m,(1) α↾[0, b] ≤ αn↾[0, b];(2) α∗↾[0, b] ≤ αn↾[0, b].There is n ≥ m su
h that:(3) 1/n < b;(4) α∗(1/n) < r;(5) α∗(1/n) < b;(6) 1/n < r∗/2.By the 
hoi
e of zn and r∗, B(zn, r

∗) ⊆ B(x̂, r1). So τ↾B(zn, r
∗) is α∗-
ontinuous. Sin
e

d(xn, x
′
n) ≤ 1/n < r∗/2 and by the de�nition of hn and h,(7) d(xn, x′n) = d(zn, z

′
n).Hen
e z′n ∈ B(zn, r

∗), and so(8) d(un, u′n) ≤ α∗(d(zn, z′n)).By (3) and (7), d(zn, z′n) ≤ 1/n < b, so by (2) and (8), d(un, u′n) ≤ αn(d(zn, z
′
n)). Itfollows that(9) d(zn, z′n) ≥ α−1

n (d(un, u
′
n)).By (7) and (9), d(xn, x′n) ≥ α−1
n (d(un, u

′
n)). By the de�nition of βn, xn and x′n,

d(τ (xn), τ (x
′
n)) > αn ◦αn(d(xn, x′n)). So(10) d(τ (xn), τ (x′n)) > αn(d(un, u

′
n)).Note that τ (xn) = gτ (un) and τ (x′n) = gτ (u′n). So(11) d(gτ (un), gτ (u′n)) > αn(d(un, u

′
n)).Sin
e d(zn, z

′
n) ≤ 1/n, by (8) and (5), d(un, u′n) ≤ b. So by (1), αn(d(un, u′n)) ≥

α(d(un, u
′
n)). It now follows from (11) that(12) d(gτ (un), gτ (u′n)) > α(d(un, u

′
n)).
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tion of manifolds from subgroups of homeomorphism groups 111By (8), d(un, u′n) ≤ α∗(1/n). So by (4),(13) d(un, u′n) < r.Fa
ts (12), (13) mean that gτ ↾τ (U) is not (r, α)-
ontinuous. This was proved for arbitrary
r and α, that is, we have proved (∗). We have a 
ontradi
tion to the fa
t that gτ ∈
HNBPD

Γ
(Y ). So (b) is proved.Question 5.30. Does Theorem 5.24 remain true when the assumption that Γ is 
ount-ably generated is dropped or repla
ed by the assumption that Γ is generated by a setwhose 
ardinality is ≤ κ(X)? �Note that the use of the 
ountable generatedness of Γ in the proof of 5.24 was essential.Theorem 5.31. Let X,Y ∈ KO

NRM. Suppose that X is BPD.AC. Let τ ∈ H(X,Y ) besu
h that (UC00(X))τ ⊆ BPD.UC(Y ). Then τ ∈ BPD.UC(X,Y ).Proof. By de�nition, BPD.UC(Y )⊆BPD.P(Y ), hen
e by Lemma 5.25, τ ∈BPD.P(X,Y ).Suppose by 
ontradi
tion that τ 6∈ BPD.UC(X,Y ). Then there are d > 0 and ~x, ~y
⊆ X su
h that Rng(~x)∪Rng(~y) is a BPD set, limn→∞ d(xn, yn) = 0, and for every n ∈ N,
d(τ (xn), τ (yn)) ≥ d.Suppose by 
ontradi
tion that ~x has a Cau
hy subsequen
e. We may then assumethat ~x is a Cau
hy sequen
e. Let x̄ = limE ~x. Sin
e Rng(~x) is a BPD set, x̄ ∈ int(X).Let u ∈ X and r > 0 be su
h that BE(u, 2r) ⊆ X and x̄ ∈ BE(u, r).We have BPD.UC(X) ⊆ LUC(X) and UC00(X) = UC(X,U), where U is the setof all open BPD subsets of X. So by Theorem 4.8(b), τ ∈ LUC(X,Y ). So there is
V ∈ NbrX(u) su
h that τ↾V is uniformly 
ontinuous. There is h ∈ LIP(X) B(u, r) su
hthat hcl

E
(ȳ) ∈ int(V ). Sin
e h ∈ UC00(X), hτ ∈ BPD.UC(X).Re
all that τ ∈ BPD.P(X,Y ). Sin
e B(u, r) is a BPD set in X, W := τ (B(u, r)) isa BPD set in Y . So hτ↾W is bi-UC. Sin
e lim ~x = lim ~y = x̄ and hcl

E
(x̄) ∈ int(V ), wemay assume that h(~x), h(~y) ⊆ V . Sin
e h is uniformly 
ontinuous and τ↾V is uniformly
ontinuous,(1) limi→∞ d(τ (h(xi)), τ (h(yi))) = 0.Note that (hτ )−1(τ (h(xi))) = τ (xi), and the same holds for yi. So for every i,(2) d((hτ )−1(τ (h(xi))), (h

τ )−1(τ (h(yi)))) ≥ d.(1) and (2) 
ontradi
t the fa
t that hτ ↾W is bi-UC. So ~x has no Cau
hy subsequen
es.We may thus assume that there is s>0 su
h that ~x is s-spa
ed. Let r=min(s, δ(~x))/3.We may assume that for every n ∈ N, d(yn, xn) < r/3. Let rn = 2d(yn, xn). Hen
e
BE(xn, rn) ⊆ X, and limn→∞ diam(BE(xn, rn)) = 0. Also, for any distin
t m,n ∈ N,
d(BE(xm, rm), BE(xn, rn)) ≥ s/3.For every n ∈ N, let zn ∈ [xn, yn] be su
h that d(τ (zn), τ (xn)) ≤ d/(n + 2), and
hn ∈ UC(X) be su
h that supp(hn) ⊆ B(xn, rn), hn(xn) = xn and hn(zn) = yn. ByProposition 4.5, h := ◦n∈N hn ∈ UC(X). Also δ(supp(h)) ≥ r/3. So h ∈ UC00(X).Hen
e hτ ∈ BPD.UC(Y ). ~x ∪ ~y ∪ ~z is a BPD set. So sin
e τ ∈ BPD.P(X,Y ), it followsthat τ (~x)∪τ (~y)∪τ (~z) is a BPD set. However, hτ↾(τ (~x)∪τ (~y)∪τ (~z)) is not UC. This is so,
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ause limn→∞ d(τ (xn), τ (zn)) = 0, whereas for every n ∈ N, d(hτ (τ (xn)), hτ (τ (zn))) =

d(τ (xn), τ (yn)) ≥ d. A 
ontradi
tion.Theorem 5.32. Let Γ ,∆ be moduli of 
ontinuity. Suppose that Γ is 
ountably generatedor Γ = MC, and that the same holds for ∆. Let X,Y ∈ KO
NFCB, and assume that X and

Y are BPD.AC. Suppose that ϕ : HNBPD
Γ

(X) ∼= HNBPD
∆

(Y ). Then Γ = ∆ and there is
τ ∈ (HNBPD

Γ
)±(X,Y ) whi
h indu
es ϕ.Proof. Let U denote the set of all open BPD subsets of X. Note that(1) LIP00(X) ≤ HNBPD

Γ
(X) ≤ IXT(X) and LIP00(X) = LIP(X,U).Hen
e by Corollary 2.26, there is τ ∈ H(X,Y ) su
h that τ indu
es ϕ. Suppose that ∆ is
ountably generated. Clearly,(2) HNBPD

∆
(Y ) ⊆ HLC

∆
(Y ).By (1) and (2), (LIP(X,U))τ ⊆ HLC

∆
(Y ). By Theorem 3.27, τ is lo
ally ∆-bi
ontinuous.Suppose by 
ontadi
tion that α ∈ ∆ − Γ . Let B be an open ball in E su
h that B isa BPD subset of X and su
h that for some β ∈ ∆, τ↾B is β-bi
ontinuous. There is

g ∈ H(X) B su
h that g is α-bi
ontinuous, and for every γ ∈ Γ , g is not γ-bi
ontinuous.So g 6∈ HNBPD
Γ

(X), but gτ ∈ HNBPD
∆

(Y ), a 
ontradi
tion. So ∆ ⊆ Γ . An identi
alargument shows that Γ ⊆ ∆. Hen
e Γ = ∆. Applying Theorem 5.24 to τ and τ−1, we
on
lude that τ ∈ (HNBPD
Γ

)±(X,Y ).Suppose next that Γ = ∆ = MC. Sin
e UC00(X) ≤ HNBPD
MC (X), we have (UC00(X))τ

⊆ HNBPD
MC (X), and the same holds for Y . Hen
e Theorem 5.31 may be applied to τ and

τ−1. We 
on
lude that τ ∈ BPD.UC±(X,Y ). That is, τ ∈ (HNBPD
MC )±(X,Y ).We now turn to the group HWBPD

MC (X). We shall rea
h the same �nal result as forthe groups of type HNBPD
MC (X). But here we need the extra assumption that X is �llable.This notion is de�ned below.Definition 5.33. Let X be a topologi
al spa
e and G ≤ H(X). A sequen
e ~x ⊆ X is
alled a G-�lling of X if the following holds. For every sequen
e {Ui | i ∈ N} su
h thatfor every i, Ui ∈ Nbr(xi), there is a sequen
e {gi | i ∈ N} ⊆ G su
h that ⋃

i∈N
gi(Ui) = X.We say that X is G-�llable if X has a G-�lling. �The trivial veri�
ation of the following observation is left to the reader.Proposition 5.34. Let E be a normed spa
e.(a) If E is separable and X ⊆ E is open, then X is LIP00(X)-�llable.(b) If r > 0, then BE(0, r) is LIP00(X)-�llable.The following observation gives some answer for the groups of type HWBPD

MC (X).Proposition 5.35. Suppose that X is BPD.AC , UC00(X) ≤ G ≤ HWBPD
MC (X) and X is

G-�llable. Let τ ∈ H(X,Y ) be su
h that Gτ ⊆ HWBPD
MC (Y ). Then τ ∈ HWBPD

MC (X,Y ).Proof. Let U be the set of all open BPD subsets of X. Then UC00(X) = UC(X,U).Note that HWBPD
MC (Y ) ⊆ LUC(Y ). So (UC(X,U))τ ⊆ LUC(Y ). By Theorem 4.8(b),

τ ∈ LUC±(X,Y ). Similarly, (LIP00(X))τ ⊆ (UC00(X))τ ⊆ HWBPD
MC (Y ) ⊆ BPD.P(Y ).So by Lemma 5.25, τ ∈ BPD.P(X,Y ).
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tion of manifolds from subgroups of homeomorphism groups 113Let ~x be a G-�lling for X. For every i ∈ N let Ui ∈ Nbr(xi) and αi be su
h that τ↾Uiis αi-bi
ontinuous. Let {gi | i ∈ N} ⊆ G be su
h that ⋃{gi(Ui) | i ∈ N} = X.Let A ⊆ X be a BPD set. We show that τ↾A is weakly MC-bi
ontinuous. Sin
e
τ ∈ BPD.P(X,Y ), τ (A) is a BPD set. For every i ∈ N let βi be su
h that gi↾A is lo
ally
{βi}-bi
ontinuous and γi be su
h that gτi ↾τ (A) is lo
ally {γi}-bi
ontinuous. Next notethat

τ↾gi(Ui) = (gτi ↾τ (Ui)) ◦ (τ↾Ui) ◦ ((gi)
−1↾gi(Ui)).Hen
e τ↾(gi(Ui) ∩A) is lo
ally {γi ◦αi ◦βi}-bi
ontinuous.There is ̺ ∈ MC su
h that for every i ∈ N, γi ◦αi ◦βi � ̺. Hen
e for every i ∈ N,

τ↾(gi(Ui) ∩ A) is lo
ally {̺}-bi
ontinuous, and from the fa
t ⋃
i∈N

(gi(Ui) ∩ A) = A we
on
lude that τ↾A is {̺}-bi
ontinuous. So τ ∈ HWBPD
MC (X,Y ).Theorem 5.36. Let Γ ,∆ be moduli of 
ontinuity. Suppose that Γ is 
ountably generatedor Γ = MC, and that the same holds for ∆. Let X,Y ∈ KO

NFCB. Assume that(1) X and Y are BPD.AC ;(2) If Γ = MC, then X is HWBPD
MC (X)-�llable, and the same holds for ∆ and Y .Suppose that ϕ : HWBPD

Γ
(X) ∼= HWBPD

∆
(Y ). Then Γ = ∆ and there is τ ∈ HWBPD

Γ
(X,Y )whi
h indu
es ϕ.Proof. The proof is very similar to the proof of Theorem 5.32.In some 
ases we rea
h a �nal re
onstru
tion result of the following strong form:(1) If ϕ : P(X) ∼= Q(Y ), then either P(X) = Q(X) and there is τ ∈ Q±(X,Y ) whi
hindu
es ϕ, or P(Y ) = Q(Y ) and there is τ ∈ P±(X,Y ) whi
h indu
es ϕ.In other 
ases we are able to rea
h only the following weaker 
on
lusion:(2) If ϕ : P(X) ∼= P(Y ), then there is τ ∈ P±(X,Y ) whi
h indu
es ϕ.Roughly speaking, in order to prove results of the �rst form, we need to prove the followingintermediate 
laim:(3) If τ ∈ H(X,Y ) and (P(X))τ ⊆ P(Y ), then τ ∈ P±(X,Y ),and in order to prove a result of the se
ond form, the following intermediate 
laim su�
es:(4) If τ ∈ H(X,Y ) and (P(X))τ ⊆ P(Y ), then τ ∈ P(X,Y ).For example, Theorem 4.8 whi
h deals with the group LUC(X) has the stronger form (3),and Theorem 5.5 whi
h deals with the group UC(X) has the weaker form (4).The strong intermediate 
laim is not always true. Example 5.7 shows that (3) is falsefor UC(X), and also false for BPD.UC(X), as is shown in Example 5.38(a). However, if

X is an open subset of a Bana
h spa
e, and X ful�lls some additional requirements, thenthe impli
ation
(BPD.UC(X))τ ⊆ BPD.UC(Y ) ⇒ τ ∈ BPD.UC±(X,Y )is true. This will be proved in Theorem 5.41(a). Later, in Theorem 7.7 we shall prove ananalogous statement for UC(X). Namely, if X satis�es 
ertain additional requirements,then (UC(X))τ ⊆ UC(Y ) ⇒ τ ∈ UC±(X,Y ).



114 M. Rubin and Y. YomdinWe need yet another notion of weak uniform ar
wise 
onne
tedness. This will be theadditional assumption in Theorem 5.41(a).Definition 5.37. Let E be a metri
 spa
e, X ⊆ E and x ∈ bdE(X). We say that Xis lo
ally ar
wise 
onne
ted at x if for every ε > 0 there is δ > 0 su
h that for every
y, z ∈ X: if d(x, y), d(x, z) < δ, then there is an ar
 L ⊆ X 
onne
ting y and z su
hthat diam(L) < ε. We then 
all x a simple boundary point of X. We say that X islo
ally ar
wise 
onne
ted at its boundary with respe
t to E (BR.LC.AC with respe
t to E)if every boundary point of X is simple. �An equivalent formulation of simpli
ity is as follows. For every ε > 0 there is δ > 0su
h that for every y, z ∈ X ∩ B(x, δ) there is an ar
 L 
onne
ting y and z su
h that
L ⊆ X ∩B(x, ε). Note that being lo
ally ar
wise 
onne
ted at x ∈ bd(X) implies but isnot equivalent to the fa
t that X ∪ {x} is lo
ally ar
wise 
onne
ted at x.The following example shows that the 
ompleteness requirement in Lemma 5.39 
an-not be dropped.Example 5.38. Let E be an in
omplete normed spa
e, K ⊆ [0, 1/2) be a 
losed nowheredense perfe
t set 
ontaining 0, X ′ = BE(0, 2)−BE(0, 1), u ∈ SE(0, 1), C = {(1 + t) · u |
t ∈ K − {0}}, X = X ′ − C, Y ′ = BE(0, 1), D = {(1 − t) · u | t ∈ K − {0}}, and
Y = Y ′ −D.(a) X and Y are BPD.AC , BR.LC.AC and UD.AC.(b) There is τ ∈ H(X,Y ) su
h that (BPD.UC(X))τ ⊆ BPD.UC(Y ) and τ−1 6∈
BPD.UC(Y,X).(
) There is τ ∈ H(X,Y ) su
h that(1) (BPD.UC(X))τ ⊆ BPD.UC(Y ),(2) τ−1 6∈ BPD.P(Y,X),(3) for every BPD set A ⊆ X, τ↾A is bilips
hitz.Proof. (a) This part is trivial, so we leave its veri�
ation to the reader. In any 
ase, (a)shows that the fa
t that the boundaries of X and Y are well-behaved does not by itselfimply that τ−1 ∈ BPD.UC(Y,X).(b) This follows from (
). So it su�
es to prove (
).(
) Note the following fa
ts: C ⊆ BE(0, 3/2)−BE(0, 1), D ⊆ BE(0, 1)−BE(0, 1/2),
u ∈ acc(C) and u ∈ acc(D).Let y ∈ BE(0, 1/2) − BE(0, 1/2). Proposition 2.25(b) yields ̺ ∈ LIP(E) BE(0, 1/2)su
h that ̺(0) = y and ̺(E − {0}) = E. So ̺(D) = D and hen
e ̺(Y − {0}) = Y . Let
η : X → Y −{0} be de�ned by η(x) = (2−‖x‖) · x

‖x‖ and τ = ̺ ◦ η. Clearly, τ ∈ H(X,Y ),and it is easy to 
he
k that τ satis�es 
lause (3).Let r > 0 be su
h that BE(y, r) ⊆ BE(0, 1/2) and M = BE(y, r) ∩ E. Then M is aBPD subset of Y . However, τ−1(M) 
ontains a set of the form BE(0, 2) − B(0, 2 − ε),where ε > 0. So τ−1(M) is not a BPD subset of X. Hen
e 
lause (2) is ful�lled.We show that τ ful�lls 
lause (1). It is easy to 
he
k that (BPD.P(X))τ ⊆ BPD.P(Y ).So it remains to show that if h ∈ BPD.UC(X) and M ⊆ Y is a BPD set, then hτ ↾M isbi-UC.
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e ̺ is bilips
hitz it su�
es to show that for every h ∈ BPD.UC(X) and M ⊆
Y − {0}: if d(M,D ∪ S(0, 1)) > 0, then hη↾M is bi-UC. (Indeed we show that hη↾M isbi-UC, even for M 's whi
h satisfy M ⊆ Y − {0} and d(M,D) > 0.)Claim 1. Let Z,W be metri
 spa
es , z ∈ Z, and f : Z → W . Suppose that f is
ontinuous at z, and for every r > 0, f↾(Z −B(z, r)) is UC. Then f is UC.Proof. Let ε > 0. There is δ1 > 0 su
h that diam(f(B(z, δ1))) < ε. Let δ2 > 0be su
h that for every x, y ∈ Z − B(z, δ1/2): if d(x, y) < δ2, then d(f(x), f(y)) < ε.Let δ = min(δ1/2, δ2). Suppose that d(x, y) < δ. Either x, y ∈ Z − B(z, δ1/2) or
x, y ∈ B(z, δ1). In either 
ase d(f(x), f(y)) < ε. Claim 1 is proved.Claim 2. Let h ∈ BPD.P(X) and ~x ⊆ X be su
h that limn→∞ ‖xn‖ = 2. Then
limn→∞ ‖h(xn)‖ = 2.Proof. Suppose by way of 
ontradi
tion that this is not true, and let ~x be a 
ounter-example. Sin
e h ∈ BPD.P(X), for every subsequen
e ~x′ of ~x, h(~x′) is not a BPD se-quen
e. It follows easily that either ~x has a subsequen
e ~x′ su
h that limn→∞ ‖h(x′n)‖ = 1,or ~x has a subsequen
e ~x′ whi
h 
onverges to a member of C. Taking ~x to be ~x′ we mayassume that either (i) limn→∞ ‖h(xn)‖ = 1 or (ii) for some û ∈ C, limh(~x) = û.Suppose that (i) happens. Then for every n ∈ N there are un ∈ C, sn > rn > 0 andan ar
 Ln ⊆ X su
h that the following hold:(1) h(xn) ∈ Ln and Ln interse
ts both S(un, rn) and S(un, sn).(2) Set Sn = S(un, rn) ∪ S(un, sn). Then δX(Sn) > 0. (Hen
e Sn ⊆ X.)(3) De�ne dn = sup({d(z, S(0, 1)) | z ∈ Ln ∪ Sn}). Then limn→∞ dn = 0.(4) (B(un, sn) − B(un, rn)) ∩ C 6= ∅.Suppose that (ii) happens. Then for every n ∈ N there are sn > rn > 0 and an ar

Ln ⊆ X su
h that the following hold:(5) h(xn) ∈ Ln, and Ln interse
ts both S(û, rn) and S(û, sn).(6) Set Sn = S(û, rn) ∪ S(û, sn). Then δX(Sn) > 0. (Hen
e Sn ⊆ X.)(7) De�ne dn = sup({d(z, û) | z ∈ Ln ∪ Sn}). Then limn→∞ dn = 0.(8) (B(û, sn) −B(û, rn)) ∩ C 6= ∅.In both 
ase (i) and 
ase (ii) set An = Ln∪Sn and Bn = h−1(An). Let ~z be a sequen
esu
h that zn ∈ Bn for every n ∈ N. By (3) and (7), limn→∞ δX(h(zn)) = 0. From the fa
tthat h ∈ BPD.P(X) it follows that limn→∞ δX(zn) = 0. There is a subsequen
e {ni |
i ∈ N} su
h that either limn→∞ d(zni

, S(0, 2)) = 0 or limn→∞ d(zni
, S(0, 1) ∪ C) = 0.We may assume that ni = i for every i. Suppose by 
ontradi
tion that the latter hap-pens. Now, xn, zn ∈ Bn, Bn is 
onne
ted and limn→∞ d(xn, S(0, 2)) = 0. We also have

d(S(0, 2), S(0, 1) ∪ C) > 0. Choose yn ∈ Bn su
h that ‖yn − xn‖ = ‖zn − xn‖/2. Then
d({yn | n ∈ N}, bd(X)) > 0, a 
ontradi
tion. So limn→∞ d(zn, S(0, 2)) = 0.Let en = sup({d(z, S(0, 2)) | z ∈ Bn}). It follows that limn→∞ en = 0. Let n be su
hthat en ≤ 1/4. De�ne S = Sn and T = h−1(S). Sin
e S is a BPD set, T is a BPDset. Let d = d(T, S(0, 2)). It is obvious that X − S has three 
onne
ted 
omponents,and neither of them is a BPD set. So the same holds for T . However, sin
e en ≤ 1/4,
T ⊆ B(0, 2)−B(0, 3/2) and so X ∩B(0, 3/2) is 
ontained in a 
omponent of X −T , and
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B(0, 2) − B(0, 2 − d) is also 
ontained in a 
omponent of X − T . It follows that one ofthe 
omponents of X −T is 
ontained in W := B(0, 2− d)−B(0, 3/2). But W is a BPDsubset of X. A 
ontradi
tion, so Claim 2 is proved.Let h ∈ BPD.UC(X) and de�ne g = hη.Claim 3. 0 ∈ Dom(gcl) and gcl(0) = 0.Proof. Let ~x ⊆ B(0, 1)−{0} be su
h that lim ~x = 0. Then limn→∞ ‖η−1(xn)‖ = 2. Notethat h ∈ BPD.P(X). Applying Claim 2 to h, we 
on
lude that limn→∞ ‖h(η−1(xn))‖ = 2.Hen
e limn→∞ ‖η(h(η−1(xn)))‖ = 0. That is, limn→∞ ‖g(xn)‖ = 0. So Claim 3 is proved.Let M ⊆ Y − {0} be su
h that d(M,D) > 0. Let r > 0 and N = η−1(M − B(0, r)).Then d(N,S(0, 2)) ≥ r. So η↾N is bilips
hitz, hen
e (i) η−1↾(M −B(0, r)) is bilips
hitz.
N is a BPD subset of X. So (ii) h↾N is bi-UC. Also, h(N) is a BPD subset of X. Inparti
ular, d(h(N), S(0, 2)) > 0. So (iii) η↾h(N) is bilips
hitz.
g↾(M −B(0, r)) = η ◦h ◦η−1↾(M −B(0, r))

= (η↾h(η−1(M −B(0, r)))) ◦ (h↾η−1(M −B(0, r))) ◦ (η−1↾(M −B(0, r)))

= η↾h(N) ◦ (h↾N) ◦ (η−1↾(M −B(0, r))).By (i)�(iii), g↾(M − B(0, r)) is bi-UC. By Claim 3 and Claim 1, gcl↾M is UC. Applyingthe same argument to h−1 we 
on
lude that (gcl)−1↾g(M) is UC. So g↾M is bi-UC. Thatis, hη↾M is bi-UC. It has already been argued that this implies that hτ ∈ BPD.UC(Y ).Lemma 5.39. Suppose that X is an open subset of a Bana
h spa
e E.(a) BUC(X) ⊆ BPD.UC(X).(b) Suppose that X is BR.LC.AC , τ ∈ H(X,Y ) and (BUC(X))τ ⊆ BPD.P(Y ). Then
τ−1 ∈ BPD.P(Y,X).Proof. (a) Let h ∈ BUC(X). Suppose that x ∈ bd(X), ~x ⊆ X and lim ~x = x. Then h(~x)is a Cau
hy sequen
e. Let y = limh(~x). Clearly, y ∈ bdE(X)∪ int(X) and y 6∈ X. Sin
e
E is 
omplete, int(X) = X. Hen
e y ∈ bd(X). We have shown that Dom(hcl) = cl(X)and that hcl(bd(X)) ⊆ bd(X). Applying the same argument to h−1 one 
on
ludes that
(†) hcl(bd(X)) = bd(X). It is trivial that hcl ∈ BUC(cl(X)).Suppose by 
ontradi
tion that A is a BPD set and h(A) is not a BPD set. Byde�nition, h is boundedness preserving. So h(A) is bounded and hen
e δ(h(A)) = 0.Let ~x ⊆ h(A) and ~y ⊆ bd(X) be su
h that limn→∞ d(xn, yn) = 0. By (†), (hcl)−1(~y) ⊆
bd(X). So for every n, d(h−1(xn), h

−1(yn)) ≥ δ(A) > 0. Hen
e (hcl)−1↾(Rng(~x)∪Rng(~y))is not uniformly 
ontinuous. A 
ontradi
tion.(b) Let X,E, Y and τ be as in part (b), and suppose that Y is an open subset of thenormed spa
e F . Then F is a Bana
h spa
e. To see this note that an open ball B of Fis homeomorphi
 to an open subset of E. So B is 
ompletely metrizable. But F ∼= B,so F is 
ompletely metrizable. So F is a dense Gδ subset of F , and so is every 
oset of
F in F . Sin
e F has no disjoint dense Gδ subsets, F = F . Suppose by 
ontradi
tion
τ−1 6∈ BPD.P(Y,X). Then there is a 1-1 sequen
e ~x ⊆ X su
h that ~x is not a BPDsequen
e, but τ (~x) is a BPD sequen
e. We may assume that limn→∞ δX1 (xn) = ∞.
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e τ (~x) is a BPD set, it does not have 
onvergent subsequen
es in F , hen
e τ (~x)does not have a Cau
hy subsequen
e. So we may assume that there is d > 0 su
h that
τ (~x) is d-spa
ed.Claim 1. ~x is not a Cau
hy sequen
e.Proof. Suppose otherwise, and let x∗ = lim ~x. Then x∗ ∈ bd(X), for if x∗ 6∈ X, then ~x isa BPD sequen
e.By the simpli
ity of x∗, we 
an �nd a subsequen
e ~y of ~x, ar
s {Ln | n ∈ N} andopen sets {Un | n ∈ N} su
h that y2n, y2n+1 ∈ Ln ⊆ Un ⊆ cl(Un) ⊆ X, for any distin
t
m,n ∈ N, d(Um, Un) > 0, and limn→∞ diam(Un) = 0.Let zn ∈ Ln − {y2n} be su
h that limn→∞ d(τ (y2n), τ (zn)) = 0. It follows that(1) τ (~y) ∪ τ (~z) is a BPD set.Let hn ∈ UC(X) be su
h that hn(y2n) = y2n, hn(zn) = y2n+1 and supp(hn) ⊆ Un. ByProposition 4.5, h := ◦n∈N hn ∈ UC(X). However,(2) hτ ↾(τ (~y) ∪ τ (~z)) is not UC.To see this re
all that limn→∞ d(τ (y2n), τ (zn)) = 0. However, d(hτ (τ (y2n)), hτ (τ (zn))) =

d(τ (y2n), τ (y2n+1)) ≥ d. Fa
ts (1) and (2) mean that hτ 6∈ BPD.UC(Y ). A 
ontradi
tion,so Claim 1 is proved.Claim 2. It is not true that limn→∞ δ(xn) = 0.Proof. Suppose otherwise. By Claim 1, we may assume that there is e1 > 0 su
h that
~x is e1-spa
ed. For every n ∈ N let bn ∈ bd(X) be su
h that d(xn, bn) ≤ 2δ(xn), and
[xn, bn) ⊆ X.For every n ∈ N let ~xn = {xni | i ∈ N} ⊆ [xn, bn) be a sequen
e 
onverging to bn.By Claim 1, τ (~xn) is not a BPD set. It follows that there is a sequen
e {in | n ∈ N}su
h that {τ (xnin) | n ∈ N} is not a BPD set. Let yn = xnin . Sin
e ~x is e1-spa
ed and
limn→∞ d(xn, yn) = 0, we may assume that there is e > 0 su
h that {[xn, yn] | n ∈ N} is
e-spa
ed.Let {Un | n ∈ N} be a sequen
e of open subsets of X su
h that [xn, yn] ⊆ Un,
limn→∞ diam(Un) = 0 and for any distin
tm,n ∈ N, d(Um, Un) > 0. Let hn ∈ UC(X) besu
h that supp(hn) ⊆ Un and hn(xn) = yn. By Proposition 4.5, h := ◦n∈N hn ∈ UC(X),but hτ 6∈ BPD.P(Y ). This is so, be
ause hτ (τ (~x)) = τ (~y), and τ (~x) is a BPD set, whereas
τ (~y) is not. A 
ontradi
tion. This proves Claim 2.From Claims 1 and 2 and the fa
t that ~x is not a BPD sequen
e, it follows that ~xis unbounded. So we may assume that {‖xn‖ | n ∈ N} is a stri
tly in
reasing sequen
e
onverging to ∞. Re
all also that τ (~x) is d-spa
ed. We now deal with two 
ases.Case 1: E −X is bounded. We may assume that E −X ⊆ B(0, ‖x0‖/2). Set x−1 = 0.Choose yn∈(x2n, x2n+1] with d(τ (x2n), τ (yn))<1/(n+1). De�ne rn=min(‖x2n−x2n−1‖,
‖x2n+2 − x2n+1‖)/2 and let hn ∈ UC(X) be su
h that hn(x2n) = x2n, hn(yn) = x2n+1and supp(hn) ⊆ B([x2n, x2n+1], rn). Clearly, supp(hm) ∩ supp(hn) = ∅ for every n 6= mand hen
e h := ◦n∈N hn ∈ BUC(X). Sin
e limn→∞ d(τ (x2n), τ (yn)) = 0, it follows that
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τ (~x) ∪ τ (~y) is a BPD set. But hτ ↾(τ (~x) ∪ τ (~y)) is not UC. So hτ 6∈ BPD.UC(Y ). A
ontradi
tion, so Case 1 does not o

ur.Case 2: E −X is unbounded. We de�ne by indu
tion on n ∈ N: un ∈ Rng(~x), vn ∈ X,
hn ∈ UC(X) and rn > 0. Let r−1 = 0. Suppose that rn−1 has been de�ned. Let
un ∈ Rng(~x)− cl(B(0, rn−1)) and Let bn ∈ bd(X)− cl(B(0, rn−1)). We may assume thatthere is an ar
 Ln ⊆ (X ∪ {bn})− cl(B(0, rn−1)) 
onne
ting un and bn. Let ~vn := {vn,i |
i ∈ N} ⊆ Ln − {bn} be a sequen
e 
onverging to bn. So ~vn is a Cau
hy sequen
e. So byClaim 1, τ (~vn) is not a BPD set. Hen
e there is vn ∈ Ln − {bn} su
h δ1(τ (vn)) > n.Let rn be su
h that Ln ⊆ B(0, rn) and hn ∈ UC(X) be su
h that hn(un) = vn and
supp(hn) ⊆ B(0, rn)−cl(B(0, rn−1)). Clearly, supp(hm)∩ supp(hn) = ∅ for every m 6= n,and hen
e h := ◦n∈N hn ∈ BUC(X). However, sin
e τ (~u) is a BPD sequen
e, τ (~v) is nota BPD sequen
e, and hτ (τ (~u)) = τ (~v), hτ 6∈ BPD.P(Y ). A 
ontradi
tion, so Case 2 doesnot happen. It follows that τ−1 ∈ BPD.P(Y,X).If X is BPD.AC, and we remove from X a spa
ed set, then the resulting open set isalso BPD.AC. This is proved in the next proposition. Although this fa
t is quite trivial,a 
omplete proof requires mu
h writing.Proposition 5.40. (a) Let E be a normed spa
e whi
h is not 1-dimensional. Let u, v, w
∈ E be su
h that ‖u− w‖ = ‖v − w‖ = r > 0. Then there is an ar
 L ⊆ X 
onne
ting uand v su
h that L ∩B(w, r) = ∅, and lngth(L) ≤ 8r.(b) Suppose that X is BPD.AC , and is not 1-dimensional. If A ⊆ X is spa
ed , then
X −A is BPD.AC.Proof. (a) We may assume that E is 2-dimensional, w = 0 and r = 1. Let z ∈ S(0, 1) besu
h that ℓ := {u+tz | t ∈ R} is a supporting line for B(0, 1). Represent v as v = au+bz,and 
hoose z in su
h a way that b > 0. Let L1 = [u, u + 2z], L2 = [2z + u, 2z − u],
L3 = [2z−u,−u] and L0 = L1 ∪L2 ∪L3. Sin
e ℓ is a supporting line of B(0, 1) it followsthat L1 and L3 are disjoint from B(0, 1). Suppose that w ∈ L2. So w = 2z + tu, where
|t| ≤ 1. We may assume that t ≥ 0. Then ‖w‖ ≥ 2‖z‖ − t‖u‖ ≥ 1. So L2 ∩ B(0, 1) = ∅.Re
all that v = au + bz ∈ S(0, 1). From the fa
t that ℓ supports B(0, 1) it follows that
a ≤ 1. Then 1 = ‖v‖ ≥ b− a ≥ b− 1. So b ≤ 2. Let λ = min(1/|a|, 2/b) and Lv = [v, λv].Clearly, Lv ∩B(0, 1) = ∅. Either λv = u+ b1z, where b1 ∈ [0, 2], or λv = −u+ b1z, where
b1 ∈ [0, 2], or λv = a1u+ 2z, where a1 ∈ [−1, 1]. Hen
e λv ∈ L1 ∪L3 ∪L2 = L0. The set
L0 ∪ Lv is disjoint from B(0, 1) and 
ontains an ar
 L 
onne
ting u and v. Obviously,for i = 1, . . . , 3, lngth(Li) = 2 and lngth(Lv) = ‖λv‖ − ‖v‖ ≤ 2‖z‖ + ‖u‖ − 1 = 2. So
lngth(L) ≤ 8.(b) We prove Claim 1 stated below, and leave it to the reader to verify that (b) isimplied by Claim 1.Claim 1. For every r, C,D > 0 there are r1, C1, D1 > 0 su
h that for every normedspa
e E, an open subset X ⊆ E and an r-spa
ed subset A ⊆ X the following holds. If
x, x∗ ∈ X −A are su
h that d({x, x∗}, A) ≥ r, and L ⊆ X is an ar
 
onne
ting x and x∗su
h that δX(L) ≥ C and lngth(L) ≤ D, then there is an ar
 M ⊆ X − A 
onne
ting xand x∗ su
h that d(M,A) ≥ r1, δX(M) ≥ C1 and lngth(M) ≤ D1.
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tion of manifolds from subgroups of homeomorphism groups 119Proof. Let D1 = 8D, C1 = C/2 and r1 = min(r, C)/64. Let E, X, A, x, x∗ and L be asin the 
laim and γ : [0, 1] → L be a parametrization of L whi
h satis�es lngth(γ↾[0, t]) =

t · lngth(L) for every t ∈ [0, 1]. For every a ∈ A let Ta = {t ∈ [0, 1] | γ(t) ∈ B(w, 2r1)}.Clearly, Ta is an open subset of (0, 1), and cl(Ta) ∩ cl(Tb) = ∅ for any distin
t a, b ∈ A.De�ne T =
⋃{Ta | a ∈ A}, and let I be a set of pairwise disjoint open intervals of (0, 1)su
h that ⋃ I = T . For an open interval I in (0, 1) denote by sI and tI the left andright endpoints of I, and if I ∈ I denote by aI that member of A su
h that I ⊆ Ta.Clearly, sI , tI ∈ S(aI , 2r1). For every I ∈ I let LI = γ([sI , tI ]) and MI be a re
ti�ablear
 
onne
ting aI and bI su
h that MI ∩ B(aI , 2r1) = ∅ and lngth(MI) ≤ 16r1. Theexisten
e of MI is ensured by part (a). Let I0 = {I ∈ I | d(LI , aI) ≤ r1}. Let

M = L−
⋃

I∈I0

LI ∪
⋃

I∈I0

MI .Certainly, M is an ar
 whose endpoints are x and x∗. It is trivial that if I ∈ I0, then
lngth(LI) ≥ 2r1, and so for every I ∈ I0, lngth(MI)/lngth(LI) ≤ 8. It follows that M isre
ti�able and that lngth(M) ≤ 8 · lngth(L) ≤ 8D.Let w ∈ M . If w ∈ L − ⋃

I∈I0
LI , then d(w,A) ≥ 2r1. If there is I ∈ I0 su
h that

w ∈MI , then d(w, aI) ≥ 2r1 and for every b ∈ A− {aI},
d(w, b) ≥ d(b, aI) − d(w, aI) ≥ r − 8r1 − 2r1 ≥ 64r1 − 10r1 = 54r1.It follows that d(M,A) ≥ r1.It remains to show that δX(M) ≥ C/2. Obviously, δX(L− ⋃

I∈I0
LI) ≥ δX(L) ≥ C.Let I ∈ I0 and be su
h that w ∈MI . Then

d(w,E −X) ≥ d(aI , E −X) − d(w, aI) ≥ C − 8r1 − 2r1 = C − 10r1 ≥ C − 16r1 ≥ C/2.It follows that δX(M) ≥ C/2. We have proved Claim 1.We are ready to prove that for open subsets of Bana
h spa
es, if (BUC(X))τ ⊆
BPD.UC(Y ), then τ−1 ∈ BPD.UC(Y,X). This is the 
ontent of part (a) of the nexttheorem. The main argument lies though in part (b), and on
e it is proved, (a) followseasily. So we shall start with the proof of (b).Theorem 5.41. Let E be a Bana
h spa
e and X be an open subset of E.(a) Suppose that X is BPD.AC and BR.LC.AC , and that τ ∈ H(X,Y ) is su
h that
(BUC(X))τ ⊆ BPD.UC(Y ). Then τ−1 ∈ BPD.UC(Y,X).(b) Suppose that X is BPD.AC , and that τ ∈ H(X,Y ) is su
h that (LIP00(X))τ ⊆
BPD.UC(Y ). Assume further that τ−1 ∈ BPD.P(Y,X). Then τ−1 ∈ BPD.UC(Y,X).Proof. (b) We shall see that the proof of (b) 
an be redu
ed to an instan
e of Lemma 5.25.Suppose by 
ontradi
tion that τ−1 6∈ BPD.UC(Y,X). So there are sequen
es ~x′, ~y′ in Yand e > 0 su
h that Rng(~x′)∪Rng(~y′) is a BPD subset of Y , limn→∞ d(x′n, y

′
n) = 0, and

d(τ−1(x′n), τ
−1(y′n)) > e for every n ∈ N. We may assume that ~x′ is either a Cau
hysequen
e or ~x′ is spa
ed. However, ~x′ 
annot be a Cau
hy sequen
e be
ause in that 
aseits limit belongs to Y , and this violates the 
ontinuity of τ−1. So we may assume that

~x′ is spa
ed. Set ~x = τ−1(~x′) and ~y = τ−1(~y′). From the fa
t that τ−1 ∈ BPD.P(Y,X)it follows that Rng(~x) is a BPD set. We may assume that ~x is either spa
ed or is aCau
hy sequen
e. But if it is a Cau
hy sequen
e then its limit belongs to X, and by the
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ontinuity of τ at x, ~x′ is a Cau
hy sequen
e, whi
h we have already ex
luded. So wemay assume that ~x is spa
ed. Let d > 0 be su
h that ~x is d-spa
ed. Then for every n ∈ Nthere is at most one m su
h that ‖yn− xm‖ < d/2. It follows that there is an in�nite set
η ⊆ N su
h that ‖yn − xm‖ ≥ min(e, d/2) for every m,n ∈ η. We may thus assume that
d(Rng(~x),Rng(~y)) > 0.We denote Rng(~x),Rng(~y),Rng(~x′) and Rng(~y′) by A,B,A′ and B′ respe
tively. Let
X̂ = X −A, Ŷ = Y −A′ and τ̂ = τ↾X̂. So τ̂ ∈ H(X̂, Ŷ ). We shall prove that(i) X̂ is BPD.AC,(ii) (LIP00(X̂))τ̂ ⊆ BPD.P(Ŷ ),(iii) B is a BPD subset of X̂, whereas τ̂(B) is not a BPD subset of Ŷ .Fa
ts (i)�(iii) 
ontradi
t Lemma 5.25.(i) By Proposition 5.40(b), X̂ is BPD.AC.(ii) Let h ∈ LIP00(X̂). Then h is extendible, and hcl↾bd(X̂) = Id. So hcl(A) = A.Hen
e h∗ := hcl↾X ∈ H(X) and 
learly, h∗ ∈ LIP00(X). So (h∗)τ ∈ BPD.UC(Y ).We show that if C is a BPD subset of Ŷ , then hτ̂ (C) is a BPD subset of Ŷ . Clearly,
hτ̂ = (h∗)τ↾Ŷ . Obviously, C ∪ A′ is a BPD subset of Y , and hen
e (h∗)τ↾(C ∪ A′) isbi-UC. So sin
e d(C,A′) > 0, d((h∗)τ (C), (h∗)τ (A′)) > 0. Sin
e (h∗)τ (A′) = A, it followsthat (†) d((h∗)τ (C), A′) > 0. Sin
e (h∗)τ ∈ BPD.P(Y ), and C is a BPD subset of Y , wealso have (††) (h∗)τ (C) is a BPD subset of Y . From (†) and (††) it follows that (h∗)τ (C)is a BPD subset of Ŷ . That is, hτ̂ (C) is a BPD subset of Ŷ . We have shown that forevery h ∈ LIP00(X̂), hτ̂ is BPD.P. The same holds for h−1, so (LIP00(X̂))τ̂ ⊆ BPD.P(Ŷ ).(iii) Sin
e τ−1 ∈ BPD.P(Y,X) and B′ is a BPD subset of Y , we see that B is a BPDsubset of X. From the fa
t that d(A,B) > 0 we 
on
lude that B is a BPD subset of
X − A = X̂. On the other hand, d(A′, B′) = d(Rng(~x′),Rng(~y′)) = 0, so B′ is not aBPD subset of Ŷ .Fa
ts (i)�(iii) 
ontradi
t Lemma 5.25, so τ−1 ∈ BPD.UC(Y,X). Part (b) is thusproved.(a) Let X,Y, τ be as in (a). Then (BUC(X))τ ⊆ BPD.P(Y ). So by Lemma 5.39(b),
τ−1 ∈ BPD.P(Y,X). We also have (LIP00(X))τ ⊆ BPD.UC(Y ). So by part (b) of thistheorem, τ−1 ∈ BPD.UC(Y,X).



6. Groups of extendible homeomorphisms andre
onstru
tion of the 
losure of open sets6.1. General des
ription. This 
hapter deals with the homeomorphism groups of
losed sets whi
h are the 
losures of open subsets of a normed spa
e and with groups ofextendible homeomorphisms. Under appropriate assumptions on the open sets X and Ywe prove that if ϕ : H(cl(X)) ∼= H(cl(Y )), then there is τ ∈ H(cl(X), cl(Y )) whi
hindu
es ϕ. Under the same assumptions we also prove that if ϕ : EXT(X) ∼= EXT(Y ),then there is τ ∈ EXT±(X,Y ) whi
h indu
es ϕ. The de�nitions of EXT(X,Y ) and
EXT(X) appear in 4.6(b) and 5.1(a).The results about H(cl(X)) appear in Theorems 6.22 and 6.24, and those about
EXT(X) appear in Theorems 6.3, 6.12 and 6.18. These theorems 
over open subsets of anormed spa
e whose boundary may be quite 
ompli
ated. So they go far beyond the 
lassof open sets whose 
losure is a manifold with boundary. Nevertheless, the statementsEvery ϕ : H(cl(X)) ∼= H(cl(Y )) is indu
ed by some τ ∈ H(cl(X), cl(Y ))and Every ϕ : EXT(X) ∼= EXT(Y ) is indu
ed by some τ ∈ EXT±(X,Y )are not true for every pair of open subsets of a normed spa
e, not even in the �nite-dimensional 
ase. Example 5.8 exhibits two di�erent trivial reasons why the above state-ments are not true in their full generality.The proofs of the theorems about EXT(X) and about H(cl(X)) are essentially identi-
al. Moreover, for �nite-dimensional normed spa
es the question about the faithfulness of
{H(cl(X)) | X is open} is a spe
ial 
ase of the question about the EXT-determinednessof {X | X is open}. To see this, noti
e the following fa
ts.(1) If U is a regular open subset of Rn, then EXT(U) = H(cl(U)).(2) If X ⊆ Rn is open and X̂ = int(cl(X)), then X̂ is regular open and cl(X) = cl(X̂).Suppose now that ϕ : H(cl(X)) ∼= H(cl(Y )). By (2), ϕ : H(cl(X̂)) ∼= H(cl(Ŷ )), andby (1), ϕ : EXT(X̂) ∼= EXT(Ŷ ). So if it 
an be proved that there is τ ∈ EXT±(X̂, Ŷ )whi
h indu
es ϕ, then this τ indeed belongs to H(cl(X), cl(Y )).Theorems 6.3 and 6.18 prove the EXT-determinedness of 
ertain 
lasses. In 6.3 it isassumed that the members of the EXT-determined 
lass are BR.LC.AC (see 5.37). Thisproperty is a weakening of uniform-in-diameter ar
wise 
onne
tedness. It may happenthough that every point in the boundary of su
h a set is �xed under EXT(X). In 6.18, onthe other hand, the EXT-determinedness is derived from the property that the EXT(X)-orbit of every member of bd(X) 
ontains an ar
, but X need not be BR.LC.AC.[121℄



122 M. Rubin and Y. YomdinIn Corollary 6.6(a) we prove that if X and Y satisfy 
ertain weak assumptions onar
wise 
onne
tedness, and (EXT(X))τ = EXT(Y ), then τ ∈ EXT(X,Y ). A statementof the form: �(EXT(X))τ ⊆ EXT(X) ⇒ τ ∈ EXT(X,Y )� is also proved, but only underrather restri
tive assumptions on X and Y . See Corollary 6.6(b).Suppose that X is an open subset of Rn. Then EXT(X) = BUC(X). If in addition,
X is bounded, then EXT(X) = UC(X). So for �nite-dimensional bounded X's Corollary5.6 whi
h deals with BUC(X) is indeed about EXT(X). However, Theorems 6.12 and6.18 are stronger than 5.6 even for �nite-dimensional bounded X's.Groups of 
ompletely lo
ally uniformly 
ontinuous homeomorphisms are dealt within Theorem 6.20. (See De�nition 5.3(f).) The Γ -
ontinuous version of these groups isthe subje
t of Chapters 8�12.At the end of this 
hapter in items 6.25�6.30, we dis
uss two generalizations of theseresults. The �rst generalization deals with subsets Z of a normed spa
e su
h that Z ⊆
cl(int(Z)). The se
ond generalization deals with sets whi
h are the 
losures of opensubsets in a normed manifold.Re
all that unless otherwise stated, X and Y denote respe
tively open subsets of thenormed spa
es E and F .6.2. Groups of extendible homeomorphisms. The following de�nition 
ontainssome notions related to ar
wise 
onne
tedness. These notions are used in the statementof Theorem 6.3 whi
h deals with EXT-determinedness. In the next de�nition only, Edenotes a general metri
 spa
e.Definition 6.1. Let E be a metri
 spa
e and X ⊆ E.(a) A set of pairwise disjoint sets is 
alled a pairwise disjoint family. Let A be apairwise disjoint family of subsets of X. A is 
ompletely dis
rete with respe
t to E if forevery x ∈ E there is U ∈ Nbr(x) su
h that {A ∈ A | A∩U 6= ∅} is �nite. A set A ⊆ X is
ompletely dis
rete with respe
t to E if A does not have a

umulation points in E. Themention of E in the above de�nition is often omitted, sin
e E is usually understood fromthe 
ontext. A sequen
e ~x ⊆ X is a 
ompletely dis
rete sequen
e if it is 1-1, and its rangeis 
ompletely dis
rete.(b) X is said to be boundedly ar
wise 
onne
ted (BD.AC ) if for every bounded A ⊆ Xthere is d > 0 su
h that for every x, y ∈ A there is a re
ti�able ar
 L ⊆ X 
onne
ting xand y su
h that lngth(L) ≤ d.(
) X is said to be a wide set if for every in�nite 
ompletely dis
rete set A ⊆ Xthere is an in�nite B ⊆ A, a set {yb | b ∈ B} and a set of ar
s {Lb | b ∈ B} su
h that:
{yb | b ∈ B} is bounded; for every b ∈ B, yb, b ∈ Lb ⊆ X; and {Lb | b ∈ B} is 
ompletelydis
rete.(d) Let ~x ⊆ X be a 
ompletely dis
rete sequen
e. Let x∗ ∈ cl(X), {Ln | n ∈ N} be asequen
e of ar
s and ~y ⊆ X. Assume that(1) Ln ⊆ X for every n ∈ N,(2) Ln 
onne
ts xn with yn for every n ∈ N,(3) lim ~y = x∗,
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tion of manifolds from subgroups of homeomorphism groups 123(4) Lm ∩ Ln = ∅ for any distin
t m,n ∈ N,(5) for every r > 0, {Ln −BE(x∗, r) | n ∈ N} is 
ompletely dis
rete.Then 〈~x, x∗, {Ln | n ∈ N}, ~y 〉 is 
alled a joining system for ~x with respe
t to E.(e) X is jointly ar
wise 
onne
ted (JN.AC ) with respe
t to E if for every 
ompletelydis
rete sequen
e ~x ⊆ X there is a subsequen
e ~x′ of ~x su
h that ~x′ has a joining system. �In (a)�(d) of the next proposition we infer joint ar
wise 
onne
tedness from varioussimpler properties of X. Part (e) is a trivial observation, so we do not prove it.Proposition 6.2. (a) Suppose that ~x⊆X is a Cau
hy sequen
e and limE ~x∈ int(X)−X.Then ~x has a subsequen
e ~x′ su
h that ~x′ has a joining system.(b) Suppose that X is an open subset of a �nite-dimensional normed spa
e. Then Xis JN.AC i� X is bounded.(
) Suppose that X is an open subset of a Bana
h spa
e and X is BD.AC. Then everybounded 
ompletely dis
rete sequen
e ~x ⊆ X has a subsequen
e ~x′ su
h that ~x′ has ajoining system. In parti
ular , if in addition X is bounded , then X is JN.AC.(d) If X is an open subset of a Bana
h spa
e, X is wide and X is BD.AC , then Xis JN.AC.(e) Let X be a bounded subset of a �nite-dimensional normed spa
e. Then X isBR.LC.AC i� X is UD.AC.Proof. (a) Let x̄ = limE ~x. Let u ∈ E and r > 0 be su
h that B(u, r) ⊆ E and
x̄ ∈ BE(u, r). Let v ∈ B(u, r). There is a subsequen
e ~y of ~x su
h that ~y ⊆ B(u, r) and
{[yn, v) | n ∈ N} is a pairwise disjoint family. Let vn ∈ [yn, v) be su
h that lim~v = v.Then 〈~y, v, {[yn, vn] | n ∈ N}, ~v 〉 is a joining system for ~y.(b) If X is a bounded open subset of a �nite-dimensional spa
e, then X does not
ontain an in�nite 
ompletely dis
rete set. So X is JN.AC.Suppose that X is an unbounded open subset of a �nite-dimensional spa
e, Let ~x ⊆ Xbe a 1-1 sequen
e su
h that limn→∞ ‖xn‖ = ∞. Then ~x is 
ompletely dis
rete, and it istrivial that ~x has no joining system.(
) Let X be as in (
). Let ~x ⊆ X be 
ompletely dis
rete. Sin
e X is an open subsetof a Bana
h spa
e, we may assume that ~x is spa
ed. Let u ∈ X. For every n ∈ N let
Ln ⊆ X be a re
ti�able ar
 
onne
ting xn with u su
h that lngth(Ln) ≤ d. Let γn(t)be the parametrization of Ln satisfying γn(0) = u, γn(1) = xn and lngth(γn([0, t])) =

t · lngth(Ln).For every σ ⊆ N and t ∈ [0, 1] set A[σ, t] = {γn(t) | n ∈ σ}, and if σ is in�nite de�ne
tσ = inf({t | A[σ, t] is spa
ed}). There is an in�nite σ su
h that for every in�nite η ⊆ σ,
tη = tσ. It is easy to see that there is no in�nite η ⊆ σ su
h that A[η, tσ] is spa
ed. Sothere is η ⊆ σ su
h that A[η, tσ] is a Cau
hy sequen
e. Then A[η, 1] is a subsequen
e of
~x and 〈A[η, 1], limA[η, tη], {γn([tη, 1]) | n ∈ η}, A[η, tη] 〉 is a joining system for A[η, 1].(d) This part follows easily from (
).In the next theorem, (a) is a spe
ial 
ase of (b). It seems worthwhile to state (a)separately, be
ause the 
lass 
onsidered there is more understandable than the 
lassdealt with in (b).



124 M. Rubin and Y. YomdinTheorem 6.3. (a) Let KO
BCX denote the 
lass of all X ∈ KO

BNC su
h that X is wide,BR.LC.AC and BD.AC. Suppose that X,Y ∈ KO
BCX and ϕ : EXT(X) ∼= EXT(Y ). Thenthere is τ ∈ EXT±(X,Y ) whi
h indu
es ϕ. Note that KO

BCX 
ontains the 
lass of allbounded members of KO
BNC whi
h are BR.LC.AC and BD.AC.(b) Let KO

NMX denote the 
lass of all X ∈ KO
NRM su
h that X is BR.LC.AC andJN.AC. Let X,Y ∈ KO

NMX. Suppose that ϕ : EXT(X) ∼= EXT(Y ). Then there is
τ ∈ EXT±(X,Y ) whi
h indu
es ϕ.The proof of Theorem 6.3 appears after Corollary 6.6.Remark. (a) By Proposition 6.2(
), KO

BCX ⊆ KO
NMX. So 6.3(b) is a spe
ial 
ase of 6.3(a).(b) Note that all members of KO

BCX whi
h are subsets of a �nite-dimensional normedspa
e are bounded. This is so, sin
e for �nite-dimensional spa
es, wideness implies bound-edness. Yet KO
BCX 
ontains unbounded subsets of in�nite-dimensional Bana
h spa
es.(
) There is a regular open subset X ⊆ R3 su
h that X ∈ KO

BCX and gcl↾bd(X) = Idfor every g ∈ EXT(X). This is maybe somewhat unexpe
ted, sin
e it means that bd(X)is re
overable from EXT(X) even though every member of EXT(X) is the identity on
bd(X). See Example 6.7(d). �Re
all that UC0(X) = {f ∈ UC(X) | Dom(f cl) = cl(X) and fcl |̀bd(X) = Id}.Proposition 6.4. Suppose that X is BR.LC.AC , and let τ ∈ H(X,Y ) be su
h that
(UC0(X))τ ⊆ EXT(Y ). Let x ∈ bd(X), y ∈ bd(Y ) and ~x ⊆ X be su
h that lim ~x = xand lim τ (~x) = y. Then τ ∪ {〈x, y 〉} is 
ontinuous.Proof. Let ~u ⊆ X be su
h that lim ~u = x. Suppose by 
ontradi
tion that τ (~u) does not
onverge to y. We may assume that y is not a limit point of τ (~u).We now repeat the 
onstru
tion appearing in the proof of Case 1 in Theorem 5.5.Using the fa
t that X is BR.LC.AC, by indu
tion on i ∈ N we 
onstru
t ni ∈ N and
Li ⊆ X su
h that: (i) Li is an ar
 
onne
ting xni

and uni
; (ii) limi→∞ diam(Li) = 0;and (iii) for every i ∈ N, d(Li,⋃j 6=i Lj) > 0. For every i ∈ N let Ui ⊆ X be an open setsu
h that Li ⊆ Ui, limi→∞ diam(Ui) = 0, and for every i 6= j, d(Ui, Uj) > 0.Let hi ∈ UC(X) be su
h that supp(hi) ⊆ U2i and hi(xn2i

) = un2i
. By Proposition 4.5,

h := ◦i∈N hi ∈ UC(X). It is also obvious that h ∈ UC0(X). However, hτ is not exendible,sin
e τ (~x) is 
onvergent, whereas hτ (τ (~x)) is not 
onvergent. A 
ontradi
tion.Our next goal is to show that if (EXT(X))τ ⊆ EXT(Y ), then for every y ∈ bd(Y )there is a sequen
e ~y 
onverging to y su
h that τ−1(~y) is a 
onvergent sequen
e. This holdsautomati
ally when X is bounded and �nite-dimensional, but in that 
ase extendibilityis equivalent to uniform 
ontinuity, and so Theorem 5.2 already answers our question. Inthe general 
ase we have to make an additional ar
wise 
onne
tedness assumption on X.For a metri
 spa
e E and X ⊆ E de�ne
LUC01(X) = {h ∈ LUC(X) | there is an E-open set U ⊇ bd(X)su
h that h↾(U ∩X) = Id}.Lemma 6.5. Assume that X is JN.AC , τ ∈ H(X,Y ) and (LUC01(X))τ ⊆ EXT(Y ), andlet y ∈ bd(Y ).



Re
onstru
tion of manifolds from subgroups of homeomorphism groups 125(a) Suppose that ~x ⊆ X is 
ompletely dis
rete, 〈~x, x∗, {Ln | n ∈ N}, ~x′ 〉 is a joiningsystem for ~x and lim τ (~x) = y. Then there is a sequen
e ~u ⊆ X su
h that lim ~u = x∗ and
lim τ (~u) = y.(b) There is a sequen
e ~u ⊆ X su
h that ~u 
onverges to a member of bd(X) and
lim τ (~u) = y.Proof. (a) Suppose that ~x is 
ompletely dis
rete, 〈~x, x∗, {Ln | n ∈ N}, ~x′ 〉 is a joiningsystem for ~x, and τ (~x) 
onverges to y. We may assume that x∗ 6∈ {xn | n ∈ N}. Hen
esin
e ~x is 
ompletely dis
rete, d := d(~x, x∗) > 0. Also assume that Ln(0) = xn and
Ln(1) = x′n.Claim 1. For every r > 0 there is a sequen
e ~ur ⊆ B(x∗, r)∩X su
h that τ (~ur) 
onvergesto y.Proof. Let r ∈ (0, d). For every n ∈ N we de�ne vn. If n is even and d(x′n, x∗) ≤ r/2,let tn = min{t ∈ [0, 1] | d(Ln(t), x∗) = r/2} and vn = Ln(tn). Otherwise, let vn = xn.Let ~v = {vn | n ∈ N}. Let L′

n be the subar
 of Ln 
onne
ting xn with vn. Clearly L′
n ∩

B(x∗, r/2) = ∅, and hen
e by De�nition 6.1(d)(5), {L′
n | n ∈ N} is 
ompletely dis
rete.It is easy to see that there is a 
ompletely dis
rete family of open sets {Un | n ∈ N}su
h that for every n ∈ N, L′

n ⊆ Un ⊆ cl(Un) ⊆ X. Let hn ∈ UC(X) be su
h that
supp(hn) ⊆ Un and hn(xn) = vn. It is easy to see that h := ◦{hn | n ∈ N} ∈ LUC01(X).Hen
e hτ ∈ EXT(Y ).The fa
ts that τ (~x) is 
onvergent in cl(Y ) and that hτ ∈ EXT(Y ) imply that hτ (τ (~x))is also 
onvergent in cl(Y ). Note that hτ (τ (~x)) = τ (~v). So τ (~v) is 
onvergent in cl(Y ).Re
all that for every n ∈ N, v2n+1 = x2n+1. So lim τ (~v) = lim τ (~x) = y. Let Nr ∈ Nbe su
h that for every n > Nr, d(x′n, x∗) ≤ r/2 and de�ne ~ur = {v2n | 2n > Nr}. Then
~ur ⊆ B(x∗, r) ∩X and hen
e ~ur is as required in Claim 1.Let rn = 1/n. For every n ∈ N let kn be su
h that d(y, τ (urn

kn
)) < 1/n. Then

~u := {urn

kn
| n ∈ N} 
onverges to x∗ and lim τ (~u) = y.(b) Suppose by 
ontradi
tion that y is a 
ounter-example to the 
laim of (b). Let ~y ⊆

Y be a 1-1 sequen
e 
onverging to y and ~z = τ−1(~y). If ~z has a 
onvergent subsequen
e,then this subsequen
e 
onverges to a member of bd(X), so y is not a 
ounter-example.Hen
e ~z is 
ompletely dis
rete.Sin
e X is JN.AC, there is a subsequen
e ~x of ~z su
h that ~x has a joining system
〈~x, x∗, {Ln | n ∈ N}, ~x′ 〉. By (a) there is a sequen
e ~u ⊆ X su
h that lim ~u = x∗ and
lim τ (~u) = y. If x∗ ∈ X, then y = lim τ (~u) = τ (x∗) ∈ Y , a 
ontradi
tion. So x∗ ∈ bd(X).This means that y is not a 
ounter-example to (b). A 
ontradi
tion, so (b) is proved.The fa
t (EXT(X))τ ⊆ EXT(X) does not imply that τ ∈ EXT(X,Y ). To dedu
ethat τ ∈ EXT(X,Y ), we need to assume that (EXT(X))τ = EXT(X). This is shown inpart (a) of the next 
orollary. In (b) we show that if EXT(X) a
ts transitively on bd(X),then the assumption (EXT(X))τ ⊆ EXT(X) does su�
e.Corollary 6.6. (a) Suppose that X is BR.LC.AC , and Y is JN.AC. Let τ ∈ H(X,Y )be su
h that (†) (UC0(X))τ ⊆ EXT(Y ) and (††) (LUC01(Y ))τ

−1 ⊆ EXT(X). Then
τ ∈ EXT(X,Y ).



126 M. Rubin and Y. Yomdin(b) Suppose that X is BR.LC.AC , X is JN.AC , and that the boundary of X has thefollowing transitivity property : (∗) for every x, y ∈ bd(X) there is h ∈ EXT(X) su
h that
hcl(x) = y. Let τ ∈ H(X,Y ) be su
h that (EXT(X))τ ⊆ EXT(Y ). Then τ ∈ EXT(X,Y ).Proof. The two parts of the 
orollary will be proved by 
ombining Lemma 6.5(b) andPropositions 6.4 and 4.7(a).(a) Let x ∈ bd(X). By Lemma 6.5(b) applied to τ−1, there is ~x ⊆ X 
onverging to
x su
h that τ (~x) 
onverges to a point in bd(Y ). Let y = lim τ (~x). By Proposition 6.4,
τ ∪ {〈x, y 〉} is 
ontinuous. So by Proposition 4.7(a), τ is extendible.(b) By Lemma 6.5(b) applied to τ , there are x0 ∈ bd(X) and ~x ⊆ X 
onverging to x0su
h that τ (~x) 
onverges to a member of bd(Y ). Let x ∈ bd(X). There is h ∈ EXT(X)su
h that h(x0) = x. Sin
e hτ ∈ EXT(Y ), hτ (τ (~x)) 
onverges to a member of bd(Y ). But
τ (h(~x)) = hτ (τ (~x)). It follows that for every x ∈ bd(X) there is a sequen
e ~u 
onvergingto x su
h that τ (~u) is 
onvergent. By Propositions 6.4 and 4.7(a), τ ∈ EXT(X,Y ).Proof of Theorem 6.3. (a) This is a spe
ial 
ase of (b), be
ause by Proposition 6.2(d), aBD.AC wide open subset of a Bana
h spa
e is JN.AC.(b) LIP00(X) ⊆ EXT(X) and LIP00(X) = LIP(X,S), where S is the set of allopen BPD subsets of X. The same holds for Y . So by Theorem 2.8(b), there is τ ∈
H(X,Y ) su
h that τ indu
es ϕ. From the fa
t that UC0(X) ⊆ EXT(X) we 
on
ludethat (UC0(X))τ ⊆ EXT(Y ). So 6.6(a) 
an be applied to τ and τ−1. We 
on
lude that
τ ∈ EXT±(X,Y ). This proves (b).Part (a) of the next example is designed to show that the 
ondition (†) of 6.6(a) isneeded. Indeed, for Y,X and τ−1 of (a), (††) holds but the 
on
lusion of 6.6(a) doesnot. Part (b) shows that assumption (††) in Corollary 6.6(a) 
annot be omitted. Theexample is in�nite-dimensional. Indeed, for �nite-dimensional normed spa
es (†) doessu�
e. This follows from Theorem 5.5 and Proposition 6.2(e). Part (
) shows that thetransitivity assumption (∗) in Corollary 6.6(b) is indeed needed. Part (d) shows thatthere is X ∈ KO

BCX su
h that EXT(X) �xes bd(X) pointwise. The set X is a regularopen subset of R3, therefore EXT(X) = H(cl(X)).Let Cmp(X) denote the set of 
onne
ted 
omponents of a topologi
al spa
e X.Example 6.7. (a) There are bounded regular open 
onne
ted sets X and Y in R2 and
τ ∈ H(X,Y ) su
h that X and Y are BR.LC.AC , (EXT(X))τ ⊆ EXT(Y ), but τ−1 6∈
EXT(Y,X). Note that by Proposition 6.2(b), X and Y are JN.AC.(b) There are regular open bounded domains X and Y in an in�nite-dimensional Ba-na
h spa
e and τ ∈ H(X,Y ) su
h that X and Y are BR.LC.AC and JN.AC , (EXT(X))τ

⊆ EXT(Y ), but τ 6∈ EXT(X,Y ).(
) There are bounded domains X and Y in an in�nite-dimensional Bana
h spa
e and
τ ∈ H(X,Y ) su
h that X and Y are BR.LC.AC and JN.AC , bd(X) has two 
onne
ted
omponents , bd(Y ) is 
onne
ted , EXT(X) and EXT(Y ) a
t very transitively on bd(X)and bd(Y ) respe
tively , (EXT(X))τ ⊆ EXT(Y ), but τ 6∈ EXT(X,Y ).(d) There is X ∈ KO

BCX su
h that X is a regular open bounded subset of R3, and
gcl↾bd(X) = Id for every g ∈ EXT(X).



Re
onstru
tion of manifolds from subgroups of homeomorphism groups 127Proof. (a) Let X ′ ⊆ R2 be the open square whose verti
es are (0, 0), (1, 0), (0, 1) and
(1, 1), and Y ′ ⊆ R2 be the open triangle whose verti
es are (0, 0), (0, 1) and (1, 1). Let
τ ′ ∈ H(X ′, Y ′) be de�ned by τ ′((x, y)) = (xy, y). Let A = [(0, 0), (1, 0)].Clearly, τ ′ ∈ EXT(X ′, Y ′), (τ ′)cl↾(cl(X) −A) ∈ H(cl(X ′) − A, cl(Y ′) − {(0, 0)}) and
(τ ′)cl(A) = {(0, 0)}. Also, if g ∈ EXT(X ′, X ′) and gcl(A) = A, then gτ ′ ∈ EXT(Y ′).For n > 1 and 1 ≤ k < n let xn,k = (k/2n, 1/2n), Bn,k = cl(B(xn,k, 1/8

n)) and
B = {Bn,k | n > 1, 1 ≤ k < n}. Note that B is a pairwise disjoint family of 
losed balls
ontained in X ′ and cl(

⋃B) − ⋃B = A. Let X = X ′ − ⋃B, Y = τ ′(X) and τ = τ ′↾X.Clearly, for every g ∈ EXT(X), gcl(A) = A. It follows that X, Y and τ are as required.Note also that for every x, y ∈ A−{(0, 0), (1, 0)} there is g ∈ EXT(X) su
h that g(x) = y.(b) Let E be the Hilbert spa
e ℓ2, Y ′ be the open 
ylinder de�ned by
Y ′ =

{
(x0, x1, . . .)

∣∣∣ |x0| < 3 and ∞∑

i=1

x2
i < 9

}

and X ′ = Y ′−BE(0, 1). Let τ1 : X ′ ∼= Y ′−{0} be su
h that τ1↾(Y ′−BE(0, 2)) = Id. Let
τ2 : Y ′−{0} ∼= Y ′ be su
h that τ2↾(Y ′−BE(0, 2)) = Id and τ ′ = τ2 ◦ τ1. The existen
e of
τ2 follows from the fa
ts that a point in RN is a strongly negligible set, and that ℓ2 ∼= RN.See [BP, Chapter IV, De�nition 5.1 and Chapter V, Proposition 2.2(
)℄ and Theorem 6.4.Note that τ ′ 
annot be 
ontinued to a 
ontinuous fun
tion de�ned on S(0, 1). Hen
e
τ ′ 6∈ EXT(X ′, Y ′). It is trivial that bd(Y ′) is homeomorphi
 to a sphere, and that bd(X ′)has two 
omponents: bd(Y ′) and S(0, 1). It 
an be easily 
he
ked that for every h ∈
EXT(X ′): if hcl(S(0, 1)) = S(0, 1), then hτ ′ ∈ EXT(Y ′). However, there is h ∈ EXT(X ′)su
h that hcl(S(0, 1)) = bd(Y ′). This implies that (EXT(X ′))τ 6⊆ EXT(Y ′), 
ontrary towhat is required in this example.For a pairwise disjoint family C of subsets a topologi
al spa
e Z de�ne

accZ(C) = {z ∈ Z | for every U ∈ NbrZ(z), {C ∈ C | U ∩ C 6= ∅} is in�nite}.To de�ne X we 
onstru
t a pairwise disjoint family F of 
losed sets su
h that (i) ⋃F ⊆
Y ′−B(0, 2) and (ii) acc(F) ⊆ bd(Y ′)∪⋃F . We then de�neX, Y and τ to be respe
tively
X ′ − ⋃F , τ ′(X) and τ ′↾X. It follows from (ii) that X is open, and the 
onstru
tion of
F will ensure that S(0, 1) is the unique 
onne
ted 
omponent of bd(X) whi
h is 
lopenin bd(X) and whi
h is also strongly 
onne
ted (a notion to be de�ned later). It will thusfollow that for every h ∈ EXT(X), hcl(S(0, 1)) = S(0, 1), and this in turn implies that
(EXT(X))τ ⊆ EXT(Y ).Let {ei | i ∈ N} be the standard basis of ℓ2, denote by T the set of �nite sequen
es ofnatural numbers, let f : T → N− {0} be a 1-1 fun
tion, and for η ∈ T de�ne dη = ef(η).Let Λ denote the empty sequen
e and T ∗ = T − {Λ}. The relation �ν is a proper initialsegment of η� is denoted by η < ν. Suppose that η = ν ˆ〈 i〉, ζ = ν ˆ〈j 〉 and i 6= j. Inthat 
ase we write ν = pred(η), η ∈ Suc(ν) and ζ ∈ Brthr(η).Let <T be the relation on T de�ned by ν <T η if either η < ν or there is n ∈
Dom(ν) ∩ Dom(η) su
h that ν↾N<n = η↾N<n and ν(n) < η(n). It is easy to 
he
k that
<T is a dense linear ordering with maximum Λ and with no minimum. Denote by Tnthe set of all η ∈ T su
h that Dom(η) = N<m for some m ≤ n. Then Tn is well-orderedby <T .



128 M. Rubin and Y. YomdinWe de�ne a line segment Lη for every η ∈ T ∗. If η = ν ˆ〈m〉, then Lη has theform [dν + aη · e0, dη + aη · e0], where 2 < aη < 3. So for Lη to be de�ned we needto de�ne aη. We de�ne aη by indu
tion. Let {ηn | n ∈ N} be a 1-1 enumerationof T su
h that for every n ∈ N and ν < ηn there is m < n su
h that ηm = ν. De�ne
Sn = {ηm 〈̂ i〉 | m < n and i ∈ N}. We de�ne by indu
tion on n the set {aν | ν ∈ Sn}. Soat stage n we need to de�ne the set {aηnˆ〈 i 〉 | i ∈ N}. Sin
e {ν | ν < ηn} ⊆ {ηm | m < n}for every n, it follows that η0 = Λ. Let {a〈 i 〉}i∈N be a stri
tly in
reasing sequen
e
onverging to 3 su
h that a〈0 〉 = 5/2. So

L〈 i 〉 = [dΛ + a〈 i 〉 · e0, d〈 i 〉 + a〈 i 〉 · e0].Let n > 0 and suppose that aν has been de�ned for every ν ∈ Sn. Let 0̄ = 〈0, . . . 〉 denotethe in�nite sequen
e of 0's. It is 
onvenient to de�ne a0̄ = 2. We assume by indu
tionthat(1) 2 < aν < 3 for every ν ∈ Sn,(2) {aηmˆ〈 i 〉 | i ∈ N} is a stri
tly in
reasing sequen
e 
onverging to aηm
for every

0 < m < n,(3) if ν, ̺ ∈ Sn and ν <T ̺, then aν < a̺.Note that for n = 1 the indu
tion hypotheses hold. Clearly, Sn ⊆ Tn+1, so {aν | ν ∈ Sn}is well-ordered. Obviously, ηn ∈ Sn. If ηn = 〈0, . . . , 0〉, then ηn = min(Sn). In this 
aseset ̺n = 0̄. Otherwise, write ηn as ν ˆ〈k 〉ˆ〈0, . . . , 0〉, where k > 0, and the sequen
e of
0's at the end of ηn may be the empty sequen
e. De�ne ̺n = ν ˆ〈k − 1〉. It is easy to
he
k that in this 
ase ̺n is the prede
essor of ηn in Sn. Choose {aηnˆ〈 i 〉 | i ∈ N} to bea stri
tly in
reasing sequen
e 
onverging to aηn

su
h that aηnˆ〈0 〉 = (a̺n
+ aηn

)/2. It isleft to the reader to verify that the indu
tion hypotheses hold.Let L = {Lη | η ∈ T ∗}, set aΛ = 3, for η ∈ T de�ne cη = dη + aηe0 and let
C = {cη | η ∈ T}. Note that cΛ ∈ bd(Y ′). For η = ν ˆ〈 i〉 ∈ T ∗ de�ne bη = dν + aηe0. So
Lη = [bη, cη].We �rst establish some fa
ts about the distan
e between the members of L.Claim 1. If ν 6= pred(η), η 6= pred(ν) and pred(ν) 6= pred(η), then d(Lν , Lη) > 1.Proof. Lν and Lη 
an be written as Lν = aνe0 + [b, c] and Lη = aηe0 + [d, e], where
b, c, d, e ∈ {ei | i ∈ N≥1} and {b, c} ∩ {d, e} = ∅. So (d(Lν , Lη))

2 = (aν − aη)
2 + 4 · 1

4 > 1.Claim 2. Suppose that ν = pred(η) or η = pred(ν) or ν ∈ Brthr(η) and write Lν =

aνe0 + [b, c] and Lη = aηe0 + [b, d], where b, c, d ∈ {ei | i ∈ N≥1}. Let x ∈ Lν and write
x = aνe0 + b+ e. Then d(x, Lη) > √

3
2 ‖e‖.Proof. Clearly, e 
an be written as e = t(c− b) and so

d(x, Lη)
2 = (aη − aν)

2 + d(b+ e, [b, d])2 > d(b+ e, [b, d])2 = d(t(c− b), [0, d− b])2.Also,
d(t(c− b), [0, d− b]) ≥ d(t(c− b), {s(d− b) | s ∈ R}) = ‖t(c− b)‖ · sin π

3
=

√
3

2
‖e‖.So d(x, Lη) > √

3
2 ‖e‖. This proves Claim 2.



Re
onstru
tion of manifolds from subgroups of homeomorphism groups 129If we de�ne X0 = X ′ − ⋃L, Y0 = τ ′(X0) and τ0 = τ ′↾X0, then all the requirementsof part (b) are ful�lled ex
ept that X0 is not regular open. To a
hieve that X be regularopen, we repla
e every Lη by a set Fη su
h that Fη = cl(int(Fη)). This will ensure that
X is regular open. The veri�
ation of the following trivial fa
t is left to the reader.Claim 3. C is √

2-spa
ed.Let η, ν ∈ T ∗. For distin
t x, y ∈ ℓ2 de�ne Hx,y = ({t(y − x) | t ∈ R})⊥. Let θ besu
h that tan θ = 1/8 and de�ne the �
losed double 
one� of x, y to be
dcone(x, y) = {z ∈ [x, y] +Hx,y | d(z, [x, y]) ≤ d(z, {x, y}) · sin θ}.Note that dcone(x, y) is the union of two 
ones with verti
es x, y. The 
ommon base ofthe two 
ones is B((x+ y)/2, r)∩ ((x+ y)/2 +Hx,y), where r = 1

2‖y− x‖ · tan θ, and theopening angle of the 
ones is θ. The veri�
ation of the following fa
t is omitted.Claim 4. There is K > 1 su
h that for any distin
t x, y, u, v ∈ ℓ2 and ε > 0: if u, v 6∈
dcone(x, y) and d(u, dcone(x, y)), d(v, dcone(x, y)) ≤ ε, then there is a re
ti�able ar
 J
onne
ting u, v su
h that J ⊆ {z | d(z, dcone(x, y)) ≤ ε} − dcone(x, y), d(J, {x, y}) =

d({u, v}, {x, y}) and lngth(J) ≤ K‖u− v‖.Note that in order to prove Claim 4 it su�
es to 
onsider the a�ne subspa
e of ℓ2generated by x, y, u, v. So the proof 
an be 
arried out in a 3-dimensional Eu
lideanspa
e.De�ne Fη = dcone(bη, cη), F = {Fη | η ∈ T ∗}, F̂ =
⋃F , X = X ′−F̂ , Y = Y ′−F̂ and

τ = τ ′↾X. Clearly, τ ∈ H(X,Y ). Sin
e τ ′ 
annot be 
ontinued to a 
ontinuous fun
tionde�ned on S(0, 1), neither 
an τ . Hen
e τ 6∈ EXT(X,Y ). The next 
laim 
ontains the
entral fa
t about F .Claim 5. Let η ∈ T ∗ and r > 0. Then d(Fη −B(cη, r), F̂ − Fη) > 0.Proof. Let η = ν ˆ〈 i〉. If i > 0 de�ne δη = min(aνˆ〈 i+1 〉 − aνˆ〈 i 〉, aνˆ〈 i 〉 − aνˆ〈 i−1 〉) andif i = 0 de�ne δη = aνˆ〈 i+1 〉 − aνˆ〈 i 〉. Let εη,r = min(3/4, 3r/4, δη/3). Let ζ ∈ T ∗ − {η}.We show that d(Fη − B(cη, r), Fζ) ≥ εη,r. If ζ 6∈ Brthr(η) ∪ Suc(η) ∪ {pred(η)}, then byClaim 1, d(Lη, Lζ) > 1. So d(Fη, Fζ) > 1 − 2 · 1
8

√
2

2 > 3/4.Suppose that ζ ∈ Suc(η). Re
all that cη = aηe0 + dη. Let x ∈ Fη − B(cη, r)and let y be the nearest point to x in Lη. Then y = aηe0 + dη + e, where e has theform e = s(dν − dη). Sin
e ‖x − y‖ ≤ ‖e‖/8 and ‖x − (aηe0 + dη)‖ ≥ r, we have
‖e‖ ≥ 8r/9. Take a point z ∈ Fζ , let w be the nearest point to z in Lζ and suppose that
‖w−(aζe0+dη)‖ = t. Then ‖y−w‖ >

√
‖e‖2 + t2 and hen
e ‖y−z‖ > √

‖e‖2 + t2−t/8.The minimal value of the fun
tion g(t) =
√
‖e‖2 + t2 − t/8 is ≥ ‖e‖ − ‖e‖/56. Thisimplies that d(y, Fζ) ≥ ‖e‖ − ‖e‖/56. Sin
e ‖x − y‖ ≤ ‖e‖/8, it follows that d(x, Fζ) ≥

‖e‖ − ‖e‖/56 − ‖e‖/8 = 6‖e‖/7. Hen
e d(x, Fζ) ≥ 6
7 · 8

9r ≥ 3r/4.Assume that ζ ∈ Brthr(η)∪{pred(η)}. De�ne f = aηe0 +dν . Let x ∈ Fη and suppose�rst that ‖x− f‖ ≤ δη/2. If w ∈ Lζ and ‖w− (aζe0 + dν)‖ = t, then d(f, w) ≥
√
δ2η + t2,So the distan
e between f and a general point in Fζ is ≥ √

δ2η + t2 − t/8. So d(f, Fζ) ≥
δη − δη/56 and hen
e d(x, Fζ) ≥ δη − δη/56 − δη/2 > δη/3.



130 M. Rubin and Y. YomdinSuppose that x ∈ Fη and ‖x− f‖ ≥ δη/2. Let y be the nearest point to x in Lη and
δ = ‖y−f‖. Then d(y, Fζ) ≥ δ− δ/56 and hen
e d(x, Fζ) ≥ δ− δ/56− δ/8 = 6δ/7. Also,
δ ≥ 8

9 · δη

2 . So d(x, Fζ) ≥ 6
7 · 8

9 · δη

2 >
δη

3 . The proof of Claim 5 is 
omplete.Claim 6. (i) F is a pairwise disjoint family and accE(F) = C.(ii) Let η ∈ T , {Fn | n ∈ N} ⊆ F be a 1-1 sequen
e, xn ∈ Fn and limn→∞ xn = cη.Then {Fn | n ∈ N} − {Fηˆ〈 i 〉 | i ∈ N} is �nite.Proof. By Claim 5, (Fη−{cη})∩Fζ = ∅ for any distin
t η, ζ ∈ T ∗. Sin
e cη 6= cζ for any
η 6= ζ, it follows that F is pairwise disjoint.We show that C ⊆ acc(F). Re
all that C = {cη | η ∈ T}, where cη = dη + aηe0and aΛ = 3. We start with cΛ. By the 
onstru
tion, a〈n 〉 · e0 + dΛ ∈ L〈n 〉 ⊆ F〈n 〉 and
cΛ = 3e0 + dΛ = limn→∞ a〈n 〉 · e0 + dΛ. So cΛ ∈ acc(F). Suppose now that η 6= Λ. Then
aηˆ〈n 〉 · e0 + dη ∈ Lηˆ〈n 〉 ⊆ Fηˆ〈n 〉 and cη = aηe0 + dη = limn→∞ aηˆ〈n 〉 · e0 + dη. So
cη ∈ acc(F). We have shown that C ⊆ acc(F).Let {νi | i ∈ N} ⊆ T ∗ be a 1-1 sequen
e, xi ∈ Fνi

, and suppose that {xi}i∈N is
onvergent. Let x = limi→∞ xi. We shall show that for some η ∈ T , x = cη and {Fνi
|

i ∈ N}−{Fηˆ〈 i 〉 | i ∈ N} is �nite. This will imply both that acc(F) ⊆ C and (ii). We 
olorthe unordered pairs of N in three 
olors. The pair {i, j} has Color 1 if νi ∈ Brthr(νj), and
{i, j} has Color 2 if νi = pred(νj) or νj = pred(νi). The remaining unordered pairs haveColor 3. By the Ramsey Theorem we may assume that N is mono
hromati
. Color 2has no in�nite mono
hromati
 sets, and if N has Color 3, then by the �rst paragraph inthe proof of Claim 5 the sequen
e {xi}i∈N is 3

4 -spa
ed. It follows that for some η ∈ T ,
{νi | i ∈ N} ⊆ Suc(η).Let yi be the nearest point to xi in Lνi

, and write yi = aνi
· e0 + dη + fi, where

fi = ti(dηˆ〈ni 〉 − dη) for some ti ∈ [0, 1]. We may assume that {fi}i∈N is 
onvergent andlet f = limi→∞ fi. Suppose by way of 
ontradi
tion that f 6= 0. Let n be su
h that forevery i, j ≥ n, ‖xi−xj‖ < ε, where ε is to be 
hosen later, and 4
5‖f‖ < ‖fi‖ < 2‖f‖. Let

i, j ≥ n be distin
t. Then ‖xi − yi‖ ≤ ‖fi‖/8 ≤ ‖f‖/4 and ‖xj − yj‖ ≤ ‖f‖/8 ≤ ‖f‖/4.So
‖yi − yj‖ ≤ ‖yi − xi‖ + ‖xi − xj‖ + ‖xj − yj‖ ≤ ‖fi‖/8 + ‖fj‖/8 + ε < ‖f‖/2 + ε.On the other hand, by Claim 2,

‖yi − yj‖ ≥ d(yi, Lνj
) ≥

√
3

2
‖fi‖ ≥ 2

√
3

5
‖f‖.If ε is su�
iently small, then the last two inequalities are 
ontradi
tory. So f = 0. Now,

‖xi − yi‖ ≤ ‖fi‖/8. So limi→∞ ‖xi − yi‖ = 0 and hen
e
lim
i→∞

xi = lim
i→∞

yi = lim
i→∞

aνi
e0 + dη + fi = lim

i→∞
aνi
e0 + dη = aηe0 + dη = cη ∈ C.We have proved that acc(F) ⊆ C. We have also shown that if {Fn | n ∈ N} ⊆ F is a 1-1sequen
e, xn ∈ Fn and limn→∞ xn = cη, then {Fn | n ∈ N} ∩ {Fηˆ〈 i 〉 | i ∈ N} is in�nite.Obviously, this implies (ii). This 
ompletes the proof of Claim 6.Denote F̂ ∪ {cΛ} by F̃ . Sin
e every member of F is 
losed and acc(F) = C ⊆ F̃ , itfollows that F̃ is 
losed. Re
all that cΛ ∈ bd(Y ′) and hen
e cΛ 6∈ X ′. It follows that
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X = X ′ − F̃ , so X is open. Clearly, F = cl(int(F )) for every F ∈ F . So F̃ = cl(int(F̃ )).This implies that E − F̃ is regular open, and hen
e X = X ′ ∩ (E − F̃ ) is regular open.An identi
al argument shows that Y is regular open in E.Claim 7. Let K be the 
onstant mentioned in Claim 4. Then for every x, y ∈ Y there isa re
ti�able ar
 J ⊆ Y 
onne
ting x and y su
h that lngth(J) ≤ 2K‖x − y‖. Similarly ,let K1 = max(2K,π). Then for every x, y ∈ X there is a re
ti�able ar
 J ⊆ X 
onne
ting
x and y su
h that lngth(J) ≤ K1‖x− y‖.Proof. Let x, y ∈ Y . By Claim 3, C is spa
ed, so for every ε > 0 there is z ∈ B(y, ε) su
hthat [x, z]∩C = ∅. Choose su
h a z for a small ε whi
h will be determined later. Sin
e Yis open, we may 
hoose z su
h that [z, y] ⊆ Y , and sin
e Y ′ is 
onvex, [x, z] ⊆ Y ′. Sin
e
[x, z] ∩ C = ∅ and acc(F) = C, F0 := {F ∈ F | F ∩ [x, z] 6= ∅} is �nite. The fa
t that Cis spa
ed implies that r := d([x, z], C) > 0. Let F0 = {F0, . . . , Fn−1}, Fi = Fηi

, bi = bηi
,

ci = cηi
, Fi ∩ [x, z] = [xi,0, xi,1] and

δi = 1
2 min(d(Fi −B(ci, r/2), F̂ − Fi), r, δ

Y ′

(
⋃F0)).By Claim 5, δi > 0. Let x̂i,j ∈ [x, z] be su
h that ‖x̂i,j − xi,j‖ ≤ δi and [x̂i,j , xi,j) ∩

Fi = ∅. By Claim 4, there is a re
ti�able ar
 Ji 
onne
ting x̂i,0 and x̂i,1 su
h that
lngth(Ji) ≤ K‖x̂i,0 − x̂i,1‖, Ji ⊆ {z ∈ ℓ2 | d(z, Fi) ≤ δi} − Fi and d(Ji, {bi, ci}) =

d({x̂i,0, x̂i,1}, {bi, ci}). Sin
e d({x̂i,0, x̂i,1}, {bi, ci}) ≥ r, it follows that d(Ji, ci) ≥ r. Let
u ∈ Ji and v be the nearest point to u in Fi. Then ‖ci−v‖ ≥ ‖ci−u‖−‖u−v‖ ≥ r/2. So
v ∈ Fi−B(ci, r/2), and hen
e d(v, F̂−Fi) ≥ 2δi. From the fa
t that ‖u−v‖ ≤ δi it followsthat u 6∈ F̂ − Fi, so Ji ∩ F̂ = ∅. Also, sin
e for every u ∈ Ji, d(u,⋃F0) < δY

′

(
⋃F0), wehave Ji ⊆ Y ′. Let J ′ = [x, z] ∪ ⋃

i<n Ji −
⋃
i<n[x̂i,0, x̂i,1] and J = J ′ ∪ [z, y]. It is easilyseen that J ′ and J are re
ti�able ar
s, and it follows that J ⊆ Y ′ − F̂ = Y . From thefa
t that lngth(Ji) ≤ K‖x̂i,0 − x̂i,1‖, it follows that lngth(J ′) ≤ K‖z − x‖. Re
all that

‖y − z‖ < ε. So if ε is su�
iently small, then lngth(J) < 2K‖y − x‖.The proof of the analogous fa
t for X is almost identi
al. We have proved Claim 7.We now show that X and Y are BR.LC.AC and JN.AC. Claim 7 implies that Y isUD.AC and BD.AC. It follows dire
tly from the de�nitions that if F is any metri
 spa
e,
Z ⊆ F and Z is UD.AC, then Z is BR.LC.AC with respe
t to F . Hen
e Y is BR.LC.ACwith respe
t to ℓ2. The bounded ar
wise 
onne
tedness of Y and Proposition 6.2(
)imply that Y is JN.AC. The same arguments apply to X, hen
e X too is BR.LC.AC andJN.AC.Our next goal is to show (∗) h(S(0, 1)) = S(0, 1) for every h ∈ EXT(X). It mayvery well be true that (†) S(0, 1) is the only 
lopen 
omponent of bd(X). This wouldimply (∗), but we do not know how to prove this. So instead we prove (††) S(0, 1) isthe only 
lopen 
omponent of bd(X) whi
h is strongly 
onne
ted in bd(X). This alsoimplies (∗).Let Z be a 
onne
ted spa
e. We say that Z is strongly 
onne
ted if for every z ∈ Zand U ∈ Nbr(z), there is V ∈ Nbr(z) su
h that V ⊆ U and Z − V is 
onne
ted. Clearly,
S(0, 1) is strongly 
onne
ted.For η ∈ T ∗ let Sη = bdℓ2(Fη). It is easy to see that bd(X) = S(0, 1) ∪ S(0, 3) ∪⋃
η∈T∗ Sη. Obviously, S(0, 1) is a 
omponent of bd(X), and S(0, 1) is 
lopen in bd(X).



132 M. Rubin and Y. YomdinLet K denote the set of 
omponents of bd(X) whi
h are 
lopen in bd(X) and whi
h aredi�erent from S(0, 1). Let η ∈ T and T ′ ⊆ T . We say that T ′ is η-large if η ∈ T ′ ⊆ T ≥ η,and for every ν ∈ T ′, {i | ν ˆ〈 i〉 6∈ T ′} is �nite. De�ne SΛ = S(0, 3) and for T ′ ⊆ T set
ST ′ =

⋃
ν∈T ′ Sν .Claim 8. For every K ∈ K there are a �nite set σ ⊆ T and a family {Tν | ν ∈ σ} su
hthat Tν is ν-large for every ν ∈ σ, and K =

⋃
ν∈σ STν

.Proof. Note that Sη is 
onne
ted for every η ∈ T . Hen
e for every K ∈ K and η ∈ T ,either Sη ⊆ K or Sη ∩ K = ∅. Also, for every η ∈ T and an in�nite σ ⊆ N, Sη ∩
acc({Sηˆ〈 i 〉 | i ∈ σ}) 6= ∅. This implies that (†) if K ∈ K and Sη ∩K 6= ∅, then Sη ⊆ Kand {i | Sηˆ〈 i 〉 6⊆ K} is �nite. The fa
t that the members of K are 
losed implies that
(††) if K ∈ K and {i | Sηˆ〈 i 〉 ⊆ K} is in�nite, then Sη ⊆ K. Fa
ts (†) and (††) implythat Claim 8 is true.Let K ∈ K and suppose that σ ⊆ T and {Tν | ν ∈ σ} are as ensured by Claim 8.So there are η ∈ T ∗ and an in�nite T ′ ⊆ T su
h that Sη ⊆ K = ST ′ . By Claim 5,
d(Sη −B(cη, r), F̂ − Fη) > 0 for every r > 0. Sin
e Sη and SΛ are 
losed and disjoint, itfollows that d(Sη, SΛ) > 0, and from the fa
ts that K ⊆ F̂ ∪SΛ and Sη ⊆ Fη we 
on
ludethat d(Sη − B(cη, r),K − Sη) > 0. So Sη − B(cη, r) is 
lopen in K. This implies that
K is not strongly 
onne
ted. We have shown that S(0, 1) is the unique 
lopen strongly
onne
ted 
omponent of bd(X). Hen
e h(S(0, 1)) = S(0, 1) for every h ∈ EXT(X). Itfollows that (EXT(X))τ ⊆ EXT(Y ). This 
ompletes the proof of (b).(
) Let S ⊆ ℓ2 be a two-dimensional sphere with radius 1 and 
enter at 0. Let
X = B(0, 3) − S and Y = B(0, 3). Then there is τ ∈ H(X,Y ) su
h that τ↾(B(0, 3) −
B(0, 2)) = Id. It is trivial that X and Y are BR.LC.AC and JN.AC, and it is easy to seethat (EXT(X))τ ⊆ EXT(Y ) and τ 6∈ H(X,Y ).(d) We 
onstru
t a set X with the following properties:(1) X is a regular open bounded subset of R3,(2) there is K > 1 su
h that for every x, y ∈ X there is a re
ti�able ar
 L ⊆ Xsu
h that lngth(L) ≤ K‖x− y‖,(3) for every g ∈ EXT(X), gcl↾bd(X) = Id.It is easy to verify that if X satis�es (1)�(3), then it ful�lls the requirements of theexample.We turn to the 
onstru
tion of X. Let R̂n be the n-fold solid torus and T̂n denoteits boundary. A subset A ⊆ R3 is K-bypassable if for every x, y ∈ R3 − A there is are
ti�able ar
 L ⊆ R3 − A 
onne
ting x and y su
h that lngth(L) ≤ K‖x − y‖ and
d(z,A) ≤ d(x,A), d(y,A) for every z ∈ L. Obviously, there is K > 1 su
h that for every
n there is a K-bypassable F ⊆ R3 su
h that F ∼= R̂n. Let D be a 
ountable dense subsetof B(0, 1), E be a 
ountable dense subset of S(0, 1) and {{an, bn} | n ∈ N} be a list ofall 2-element subsets of D and all singletons from D ∪E. Also assume that a0 = b0 ∈ E.We de�ne by indu
tion a �nite family of open sets Un and a �nite family of 
losed sets
Fn su
h that for any distin
t A ∈ Un ∪ Fn and F ∈ Fn, cl(A) ⊆ B(0, 1), cl(A) ∩ F = ∅and F is K-bypassable. Let U0 = F0 = ∅. Suppose that Un and Fn have been de�ned.
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onstru
tion of manifolds from subgroups of homeomorphism groups 133Case 1: an 6= bn. If {an, bn} ∩ ⋃Fn 6= ∅ de�ne Un+1 = Un and Fn+1 = Fn. Supposeotherwise. De�ne Fn+1 = Fn. Sin
e Fn is a �nite pairwise disjoint family of 
losed
K-bypassable sets there is a re
ti�able ar
 Ln ⊆ B(0, 1) − ⋃Fn 
onne
ting an and
bn su
h that lngth(Ln) ≤ K‖an − bn‖. Let r = d(Ln, S(0, 1) ∪ ⋃Fn) and Un+1 =

Un ∪ {B(Ln, r/2)}.Case 2: an = bn. If an ∈ D let cn ∈ ⋃
F∈Fn

bd(F )) be su
h that ‖cn − an‖ =

d(an,
⋃
F∈Fn

bd(F )) and Hn ∈ Fn be su
h that cn ∈ bd(Hn). If an ∈ E let cn =

an and Hn = S(0, 1). Let Fn ⊆ B(cn,
1

n+1 ) ∩ (B(0, 1) − ⋃Fn − ⋃
U∈Un

cl(U)) besu
h that Fn ∼= R̂n and Fn is K-bypassable. De�ne Fn+1 = Fn ∪ {Fn}. Let rn =

d(Hn, S(0, 1)∪⋃Fn+1 −Hn) and Un,0 = B(0, 1)∩ (B(Hn, rn/2)− cl(B(Hn, rn/4))). Let
xn ∈ B(0, 1)∩(B(cn, rn/2)−Hn), sn ∈ (0, rn/2) be su
h that Un,1 := B(xn, sn) is disjointfrom Hn and Un+1 = Un ∪ {Un,0, Un,1}. This 
on
ludes the indu
tive 
onstru
tion.Let X = B(0, 1) − cl(

⋃
n∈N

Fn). Sin
e any two members of D ∩ X lie in the samemember of Cmp(X) and D ∩X is dense in X, it follows that X is 
onne
ted.Set A = {n | an = bn}, for every n ∈ A let fn : R̂n ∼= Fn and Tn = fn(T̂n) and de�ne
T = S(0, 1) ∪ ⋃

n∈A Tn. The veri�
ation of the following fa
ts is left to the reader.(1) bd(X) = cl(T ) and T ⊆ cl(int(R3 −X)).(2) For every n ∈ A, Tn ∈ Cmp(bd(X)), and S(0, 1) ∈ Cmp(bd(X)).(3) For every C ∈ Cmp(bd(X)) − {Tn | n ∈ A} − {S(0, 1)}, R3 − C is 
onne
ted.Fa
t (1) implies that X is regular open. It follows from (3) and Alexander's DualityTheorem that for every C ∈ Cmp(bd(X))−{Tn | n ∈ A}−{S(0, 1)} and n ∈ N, C 6∼= T̂n.Let x ∈ T . Then there is a sequen
e {kn | n ∈ N} ⊆ A su
h that limkn→∞ Tn = x. Hen
e
x has the following property:There is a sequen
e {Cn | n ∈ N} of members of Cmp(bd(X)) su
h that Cn ∼= Tknand limn→∞ Cn = x.However, if y ∈ bd(X)−{x}, then y does not have this property. Sin
e bd(X) is invariantunder EXT(X), it follows that g(x) = x for every g ∈ EXT(X). That is, g↾T = Id forevery g ∈ EXT(X). Sin
e T is dense in bd(X), it follows that g↾bd(X) = Id for every
g ∈ EXT(X).Remark. Re
all that in Corollary 6.6(b) it was assumed that for every x, y ∈ bd(X)there is h ∈ EXT(X) su
h that hcl(x) = y. In part (
) of the above example bd(X)has two 
onne
ted 
omponents K0,K1, neither is a singleton, and for every i = 0, 1and x, y ∈ Ki there is h ∈ EXT(X) su
h that hcl(x) = y. The spa
e Y in the aboveexample has the property that bd(Y ) is 
onn
eted, bd(Y ) is not a singleton, and for every
x, y ∈ bd(Y ), there is h ∈ EXT(X) su
h that hcl(x) = y. These transitivity propertiesof bd(X) and bd(Y ), though quite strong, do not imply the 
on
lusion of 6.6(b). �In Theorem 6.3 it was shown that if ϕ : EXT(X) ∼= EXT(Y ), then ϕ is indu
ed bysome τ ∈ EXT±(X,Y ). But Theorem 6.3 applies only to sets X with �nitely many
onne
ted 
omponents. To see this let X be BR.LC.AC and JN.AC as was assumed in6.3, and suppose by 
ontradi
tion that X has in�nitely many 
onne
ted 
omponents. Let
~z be a sequen
e of members of X whi
h lie in distin
t 
omponents of X. Let 〈~x, x∗, {Ln |
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n ∈ N}, ~x′ 〉 be a joining system for some subsequen
e ~x of ~z. Then ~x′ is a 
onvergentsequen
e, but ea
h member of Rng(~x′) lies in a di�erent 
omponent ofX. This 
ontradi
tsthe fa
t that X is BR.LC.AC. So X has only �nitely many 
onne
ted 
omponents.Our next goal is to extend 6.3 to sets X that may have in�nitely many 
onne
ted
omponents. We have four test 
ases X for whi
h EXT(X) seems to be su�
iently wellbehaved to imply a re
onstru
tion theorem for EXT(X), but whi
h are not 
overed byTheorem 6.3. The �rst example whi
h is de�ned below, has in�nitely many 
omponents.The three others appear in Example 6.15, and they are 
onne
ted.Example 6.8. Let E be a Bana
h spa
e. We de�ne

RE1 =
⋃

n∈N

(
BE

(
0, 1 − 1

2n+ 3

)
−BE

(
0, 1 − 1

2n+ 2

))

The set RE1 is the union of a sequen
e of pairwise disjoint open rings 
onverging to
SE(0, 1). �We shall prove a re
onstru
tion theorem for a 
lass whi
h 
ontains RE1 . The de�nitionof this 
lass is rather te
hni
al, but it 
ontains quite 
ompli
ated sets. This 
lass willbe denoted by KO

BX. For simpli
ity, we 
onsider only subsets of Bana
h spa
es and notsubsets of general normed spa
es. Hen
e only 6.3(a) is extended. That is, KO
BCX ⊆ KO

BX.Definition 6.9. (a) Re
all that Cmp(X) denotes the set of 
onne
ted 
omponents of atopologi
al spa
e X. For x, y ∈ X, x ≃X y denotes that x and y lie in the same 
onne
ted
omponent of X. The notation ~x ≃X ~y means that xn ≃X yn for every n ∈ N.(b) Let X be a metri
 spa
e. We say that X is boundedly 
omponent-wise ar
wise
onne
ted (BD.CW.AC ) if for every bounded set A ⊆ X there is d = dA su
h that forevery x, y ∈ A: if x ≃X y, then there is a re
ti�able ar
 L ⊆ X 
onne
ting x and y su
hthat lngth(L) ≤ d.(
) Let X ∈ KO
NRM and x ∈ bd(X). We say that X is 
omponent-wise lo
ally ar
wise
onne
ted at x if for every ε > 0 there is δ > 0 su
h that for every y, z ∈ B(x, δ) ∩ X:if y ≃X z, then there is an ar
 L ⊆ B(x, ε) ∩ X 
onne
ting y and z. We say that

X is 
omponent-wise lo
ally ar
wise 
onne
ted at its boundary (BR.CW.LC.AC ) if X is
omponent-wise lo
ally ar
wise 
onne
ted at every x ∈ bd(X).(d) Let X ∈ KO
NRM. Call X a 
omponent-wise wide spa
e if for every r > 0, ⋃{C ∈

Cmp(X) | C ∩B(0, r) 6= ∅} is wide.(e) Let X ⊆ E. A point x ∈ bd(X) is 
alled a multiple boundary point of X if forevery C ∈ Cmp(X), x ∈ bd(X − C), and x is a double boundary point of X if there aredistin
t C1, C2 ∈ Cmp(X) su
h that x ∈ bd(C1) ∩ bd(C2).(f) A subspa
e X ⊆ E is lo
ally movable at its multiple boundary if for every ~x ⊆ Xwhi
h 
onverges in E to a multiple boundary point and U ∈ Nbrcl(X)(lim~x) there is asubsequen
e ~x′ of ~x and g ∈ EXT(X) su
h that: g(~x′) ≃X ~x′, gcl(lim ~x) 6= lim ~x and
supp(g) ⊆ U .(g) Let KO

BX be the 
lass of all X ∈ KO
BNC su
h that:(1) X is 
omponent-wise wide, BR.CW.LC.AC and BD.CW.AC,(2) X is lo
ally movable at its multiple boundary. �
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tion of manifolds from subgroups of homeomorphism groups 135Proposition 6.10. (a) Let RE1 be as de�ned in Example 6.8. Then RE1 ∈ KO
BX.(b) KO

BCX ⊆ KO
BX.Proof. The proofs of both parts are trivial. Anyway, we indi
ate the proof of (b). Supposethat X ∈ KO

BCX. It is easily seen that the multiple boundary of X is empty, hen
e Xis lo
ally movable at its multiple boundary. The fa
t that X is wide implies that it is
omponent-wise wide. Similarly, sin
e X is BR.LC.AC and BD.AC, it is BR.CW.LC.ACand BD.CW.AC. So X ∈ KO
BX.Proposition 6.11. (a) Let X ∈ KO

BX. Then for every C ∈ Cmp(X), C is BR.LC.ACand JN.AC.(b) Let X,Y ∈ KO
BX and τ ∈ H(X,Y ) be su
h that (EXT(X))τ = EXT(Y ). Let

C ∈ Cmp(X), D = τ (C) and η = τ↾C. Then D ∈ Cmp(Y ) and η ∈ EXT±(C,D).Proof. (a) The fa
t that X is 
omponent-wise wide implies that C is wide. The fa
t that
X is BD.CW.AC implies that C is BD.AC. So by Proposition 6.2(d), C is JN.AC.Let x ∈ bd(C). The fa
t that X is 
omponent-wise lo
ally ar
wise 
onne
ted at ximplies that C is lo
ally ar
wise 
onne
ted at x. So C is BR.LC.AC.(b) It is trivial that C is an open subset of E and that D ∈ Cmp(Y ). So by (a),
C is JN.AC and BR.LC.AC, and the same holds for D. We wish to apply Corollary6.6(a) to η, so we need to 
he
k that (UC0(C))η ⊆ EXT(D) and that (LUC01(D))η

−1 ⊆
EXT(C). Let g ∈ UC0(C). Set h = g ∪ Id↾(X − C). Then h ∈ UC0(X) ⊆ EXT(X).So hτ ∈ EXT(Y ). Hen
e gη = hτ ↾D ∈ EXT(D). A similar argument shows that
(LUC01(D))η

−1 ⊆ EXT(C). By Corollary 6.6(a), η ∈ EXT(C,D). The same argument
an be applied to η−1. Hen
e η ∈ EXT±(C,D).Theorem 6.12. Let X,Y ∈ KO
BX and ϕ : EXT(X) ∼= EXT(Y ). Then there is τ ∈

EXT±(X,Y ) su
h that τ indu
es ϕ.Proof. By Theorem 2.8(b), there is τ ∈ H(X,Y ) su
h that τ indu
es ϕ.Claim 1. Let ~x, ~u ⊆ X. Suppose that ~x, ~u, τ(~x), τ (~u) are 
onvergent sequen
es and
lim ~x = lim ~u ∈ bd(X). Then lim τ (~x) = lim τ (~u).Proof. Let x = lim ~x, y = lim τ (~x) and v = lim τ (~u), and suppose by 
ontradi
tion that
y 6= v. Clearly, y, v ∈ bd(Y ). Assume �rst that either y or v is a multiple boundary pointof Y , and assume without loss of generality that y is su
h a point. Sin
e Y is lo
allymovable at its multiple boundary, there are h ∈ EXT(Y ) and a subsequen
e ~y′ of τ (~x)su
h that hcl(y) 6= y, h(~y′) ≃Y ~y′ and for some W ∈ Nbrcl(Y )(v), h↾(W ∩ Y ) = Id. Byremoving an initial segment of τ (~u) we may assume that τ (~u) ⊆ W . So h, ~y′ and Wsatisfy

(∗) h ∈ EXT(Y ), ~y′ is a subsequen
e of τ (~x), W ∈ Nbrcl(Y )(v), hcl(y) 6= y, τ (~u) ⊆Wand hcl↾W = Id.Now assume that y, v are not multiple boundary points of Y . Then there are C1, C2 ∈
Cmp(X) su
h that all but �nitely members of ~x belong to C1, and all but �nitely membersof ~u belong to C2. From Proposition 6.11(b) and the fa
t that lim τ (~x) 6= lim τ (~u)it follows that C1 6= C2. So x is a double boundary point of X. Let D1 = τ (C1)



136 M. Rubin and Y. Yomdinand set D̂ = Y − D1. Then by 6.11(b), D1 ∈ Cmp(Y ), and sin
e y is not a multipleboundary point of Y , it follows that y ∈ bd(D1)− cl(D̂). Let V ∈ NbrF (y) be su
h that
cl(V ) ∩ cl(D̂) = ∅, and let U ∈ NbrE(x) be su
h that τ (U ∩ C1) ⊆ V . Sin
e X is lo
allymovable at its multiple boundary, there is k ∈ EXT(X) and a subsequen
e ~z′ of ~x su
hthat kcl(x) 6= x, supp(k) ⊆ U and k(~z′) ≃ ~z′. Let h = (k↾C1)

τ ∪ Id↾(Y − D1). Then
h↾D1 ∈ EXT(D1). Also,

supp(h) = supp(h↾D1) = τ (supp(k↾C1)) ⊆ τ (U ∩ C1) ⊆ V.So supp((h↾D1)
cl) ⊆ cl(V ). From the fa
t that cl(V ) ∩ cl(D̂) = ∅, it follows that h ∈

EXT(Y ). Let ~y′ = τ (~z′). Then hcl(y) 6= y and h(~y′) ≃Y ~y′. Clearly, v ∈ cl(τ (C2)) and
τ (C2) ⊆ D̂. So v ∈ cl(D̂), and hen
e for some W ∈ Nbrcl(Y )(v), h↾(W ∩ Y ) = Id. Byremoving an initial segment of τ (~u) we may assume that τ (~u) ⊆ W . It follows that h,
~y′ and W satisfy (∗). So whether or not {u, v} 
ontains a multiple boundary point, wehave found h, ~y′ and W satisfying (∗).Let g = hτ

−1 and ~x′ = τ−1(~y′). So g ∈ EXT(X) and g↾~u = Id. Sin
e ~u∪ ~x′ 
onvergesto x and g ∈ EXT(X), lim g(~x′) = x. Sin
e h(~y′) ≃Y ~y′, it follows that g(~x′) ≃X ~x′.Sin
e X is BR.CW.AC, there is {fk | k ∈ N} ⊆ UC(X) and subsequen
es {nk}k∈N and
{mk}k∈N su
h that: (i) for every k, fk(x′nk

) = g(x′nk
), cl(supp(fk)) ⊆ X and fk↾{x′mk

|
k ∈ N} = Id, (ii) limk→∞ diam(supp(fk)) = 0, (iii) for any ℓ 6= k, supp(fℓ)∩supp(fk) = ∅.Let f = ◦k∈N fk. So f ∈ UC0(X) ⊆ EXT(X), and hen
e fτ must belong to EXT(Y ).Let us see that this does not happen. Re
all that lim ~y′ = y. However, limk f

τ (y′nk
) =

limk h(y
′
nk

) = h(y) 6= y, and on the other hand, limk f
τ (y′mk

) = limk y
′
mk

= y. So ~y′ is
onvergent, but fτ (~y′) is not, and hen
e fτ 6∈ EXT(Y ). A 
ontradi
tion, so Claim 1 isproved.Claim 2. Let ~x ⊆ X be a 
onvergent sequen
e in E. Then there is a subsequen
e ~x′ of
~x su
h that τ (~x′) is 
onvergent in F .Proof. Let x = lim ~x. We may assume that x ∈ bd(X). If for some C ∈ Cmp(X),
{n | xn ∈ C} is in�nite, then by Proposition 6.11(b), there is a subsequen
e as requiredin the 
laim.Hen
e we may assume that for every m 6= n, xm 6≃X xn, and so x is a multipleboundary point. For every n let yn = τ (xn), and Cn and Dn be su
h that xn ∈ Cn ∈
Cmp(X) and yn ∈ Dn ∈ Cmp(Y ).Suppose by 
ontradi
tion that {Dn | n ∈ N} is 
ompletely dis
rete. Let ~u ∈ ∏

n∈N
Cn.De�ne ~v = τ (~u). There is k ∈ EXT(Y ) su
h that for every n, k(y2n) = v2n and k(y2n+1) =

y2n+1. Let g = kτ
−1 . Then g ∈ EXT(X). Sin
e ~x is 
onvergent, g(~x) is 
onvergent. Forevery n, g(x2n) = u2n and g(x2n+1) = x2n+1. So limn→∞ u2n = limn→∞ x2n+1 = x. Thisimplies that limn→∞ C2n = x. Hen
e for every f ∈ EXT(X): if {n ∈ N | f(x2n) ≃X x2n}is in�nite, then f(x) = x. Clearly, x is a multiple boundary point. So the above fa
t is in
ontradi
tion with the fa
t that X is lo
ally movable at its multiple boundary. It followsthat {Dn | n ∈ N} is not 
ompletely dis
rete. By 
hoosing a subsequen
e of ~x we mayassume that there is ~v ∈ ∏

i∈N
Dn su
h that ~v is 
onvergent in F . Let v = lim~v.Suppose by way of 
ontradi
tion that ~y does not 
ontain a 
onvergent subsequen
e.We show that if ~y is unbounded, then there is another 
ounter-example to Claim 2 in
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h ~y is bounded. Let r be su
h that v ∈ BF (0, r). Then for every n, Dn∩BF (0, r) 6= ∅.Sin
e Y is 
omponent-wise wide, there are a subsequen
e ~y′ of ~y, s > 0 and a 
ompletelydis
rete sequen
e of ar
s {Ln | n ∈ N} su
h that for every n, Ln ⊆ Dn and Ln 
onne
ts
y′n with a member of BF (0, s). We may assume that ~y′ = ~y.Denote the endpoint of L2n whi
h is not y2n by ŵn. Let k̂ ∈ EXT(Y ) be su
h that forevery n, k̂(y2n) = ŵn and k̂(y2n+1) = y2n+1 and set ĝ = k̂τ

−1 . Then ĝ ∈ EXT(X) andhen
e lim ĝ(~x) exists. So limn→∞ ĝ(x2n+1) = limn→∞ ĝ(x2n) = x. Sin
e k̂(y2n) = ŵn,it follows that ĝ(x2n) = τ−1(ŵn). That is, τ (ĝ(x2n)) = ŵn. So {τ (g(x2n)) | n ∈ N}is bounded and 
ompletely dis
rete. By repla
ing ~x by {ĝ(x2n) | n ∈ N} we obtain a
ounter-example to Claim 2 in whi
h ~y is bounded. Sin
e E is a Bana
h spa
e, we mayalso assume that ~y is spa
ed.Sin
e Y is BR.CW.AC, there are d and re
ti�able ar
s Ln ⊆ Dn su
h that Ln 
onne
ts
yn with vn and lngth(Ln) ≤ d. Let γn(t) be a parametrization of Ln su
h that γn(1) = yn,
γn(0) = vn, and for every t, lngth(γn([0, t])) = t · lngth(Ln). For every in�nite σ ⊆ N let
sσ = inf({t ∈ [0, 1] | {γn([t, 1]) | n ∈ σ} is spa
ed}). Let σ be an in�nite set su
h thatfor every in�nite η ⊆ σ, sη = sσ. Then {γn(sσ) | n ∈ σ} 
ontains a Cau
hy sequen
e,and for every t > sσ, {γn([t, 1]) | n ∈ σ} is spa
ed. Set s = sσ. It 
an be assumed that
{γn(s) | n ∈ σ} is a Cau
hy sequen
e, that σ = N and that s = 0. So γn(1) = yn forevery n ∈ N, {γn(0) | n ∈ N} is a Cau
hy sequen
e, and {γn([t, 1]) | n ∈ N} is spa
ed forevery t ∈ (0, 1]. Let wn = γn(0) and w = lim ~w.For every t > 0 let ~wt = {γ2n(t) | n ∈ N}. Let ~y 0 = {y2n | n ∈ N} and ~y 1 = {y2n+1 |
n ∈ N}. For every t > 0 there is kt ∈ EXT(Y ) su
h that kt(~y 0) = ~wt and kt(~y 1) = ~y 1.This follows from the fa
t that for t > 0, {γn([t, 1]) | n ∈ N} is 
ompletely dis
rete. We
he
k that for every t ∈ (0, 1], lim τ−1(~wt) = x. Let ht = kτ

−1

t . Then ht(x2n+1) = x2n+1and ht(x2n) = τ−1(wtn). Clearly, ht ∈ EXT(X), so ht takes ~x to a 
onvegent sequen
e.But ht(x2n) = x2n, hen
e limht(~x) = limn x2n = x. So limn τ
−1(wtn) = x.Note that for every ε > 0 there are tε > 0 and mε su
h that for every t ≤ tε and

n ≥ mε, ‖wtn−w‖ < ε. Also, x2n ≃X τ−1(wtn) for every n and t. It follows that there aresequen
es ~z and {nk}∞k=1 su
h that lim~z = x, lim τ (~z) = w, and for every k, zk ≃X x2nk
.To see this, take zk to be τ−1(wtknk

), where {tk}∞k=1 is any sequen
e 
onverging to 0 and
nk is su
h that nk ≥ m1/k and ‖τ−1(wtknk

) − x‖ < 1/k.From the fa
ts X is BR.CW.AC, zk ≃X x2nk
and lim ~z = limk x2nk

, we 
on
lude thatthere is g ∈ EXT(X) su
h that for in�nitely many k's, g(x2nk
) = zk. We now 
he
kthat gτ 6∈ EXT(Y ), and this is of 
ourse a 
ontradi
tion. Using the fa
t that τ (~x) = ~y,it is evident that gτ takes an in�nite subsequen
e of ~y to an in�nite subsequen
e of

τ (~z). However, ~y is spa
ed, and τ (~z) is 
onverges to w, that is, gτ takes a spa
ed se-quen
e to a 
onvergent sequen
e. Hen
e gτ 6∈ EXT(Y ). A 
ontradi
tion. This provesClaim 2.We prove that τ ∈ EXT(X,Y ). Suppose by 
ontradi
tion that ~x ⊆ X is a 
onvergentsequen
e and τ (~x) is not a 
onvergent sequen
e. By Claim 2, there is a subsequen
e ~x 0of ~x su
h that τ (~x 0) is 
onvergent. Sin
e τ (~x) is not 
onvergent, there is a subsequen
e
~x 2 of ~x su
h that d(τ (~x 2), τ (~x 0)) > 0. By Claim 2, there is a subsequen
e ~x1 of ~x 2su
h that τ (~x1) is 
onvergent. But lim τ (~x 0) 6= lim τ (~x1). This 
ontradi
ts Claim 1. So
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τ ∈ EXT(X,Y ). The assumptions on X, Y and τ were symmetri
 with respe
t to Xand Y . So τ ∈ EXT±(X,Y ).Remark 6.13. The requirement that X be lo
ally movable at its multiple boundary,whi
h appears in Theorem 6.12 is stronger than what is really needed in the proof ofthat theorem. However, the exa
t assumption needed in that proof is longer and more
ompli
ated, so we in
lude it only as a remark. Thus in Theorem 6.12 the assumptionthat X is lo
ally movable at its multiple boundary 
an be repla
ed by the followingweaker requirement. The proof remains essentially un
hanged.Let X ⊆ E. Then(1) For every ~x ⊆ X whi
h is 
onvergent to a multiple boundary point and z ∈

bd(X) − {lim ~x}, there is a subsequen
e ~x′ of ~x and g ∈ EXT(X) su
h that:
g(~x′) ≃X ~x′, gcl(lim ~x′) 6= lim ~x′ and for some U ∈ NbrE(z), g↾(U ∩X) = Id.(2) For every ~x ⊆ X whi
h 
onverges to a double boundary point and U ∈ NbrE(lim~x)there is a subsequen
e ~x′ of ~x and g ∈ EXT(X) su
h that: g(~x′) ≃X ~x′, gcl(lim~x)

6= lim ~x and supp(g) ⊆ U . �The requirement that X be lo
ally movable at its multiple boundary whi
h appearsin De�nition 6.9(g) 
annot be entirely omitted. This is demonstrated by the followingtrivial example.Example 6.14. There are regular open subsets X,Y ⊆ R2 whi
h satisfy 
lause 1 in thede�nition of KO
BX su
h that EXT(X) ∼= EXT(Y ) and cl(X) 6∼= cl(Y ).Proof. Let u ∈ R2 and F0, . . . , F3 ⊆ R2 be 
losed solid triangles su
h that for any i 6= j,

Fi∩Fj = {u}. For i = 1, 2, 3 let {Di,j | j < i} be a set of pairwise disjoint 
losed balls su
hthat Di,j ⊆ int(Fi) for every j < i. Let X =
⋃
i<4 int(Fi) −

⋃{Di,j | i = 1, 2, 3, j < i}.Let v, w ∈ R2 and G0, . . . , G3 ⊆ R2 be 
losed solid triangles su
h that G0 ∩G1 = {v},
G2 ∩ G3 = {w} and Gi ∩ Gℓ = ∅ for every i ∈ {0, 1} and ℓ ∈ {2, 3}. For i = 1, 2, 3 let
{Ei,j | i = 1, 2, 3, j < i} be a set of pairwise disjoint 
losed balls su
h that Ei,j ⊆ int(Gi)for every j < i. Let Y =

⋃
i<4 int(Gi) −

⋃{Ei,j | i = 1, 2, 3, j < i}. Then X and Y areas required in the example.For open subsets of �nite-dimensional spa
es we have Theorem 5.2 whi
h says that the
lass of bounded sets whi
h are the 
losures of open UD.AC subsets of a Eu
lidean spa
eis faithful. We shall next de�ne another faithful 
lass of spa
es whi
h are not requiredto be UD.AC. This 
lass, denoted by KO
IMX, is de�ned in 6.16(b). Loosely speaking,we repla
e the assumption that X is UD.AC by the assumption that the orbit of every

x ∈ bd(X) under EXT(X) 
ontains an ar
. This gives rise to a rather large 
lass. SeeProposition 6.17.The next example 
ontains �nite- and in�nite-dimensional sets whi
h belong to KO
IMXbut do not belong to any of the previously de�ned EXT-determined 
lasses. The threeexamples are 
onne
ted. The �rst example is a subset of R2 whi
h is not UD.AC. These
ond set is in�nite-dimensional. It is quite similar to the set RE1 de�ned in 6.8, yet itdoes not belong to KO

BX. Note the se
ond example is BD.AC, and the �rst two examplesare regular open.
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θ−π/2 < r < 1− 1

θ+π/2} (R2 isdes
ribed in polar 
oordinates). So R2 is an open spiral strip 
onverging to S(0, 1). Notethat R2 is 
onne
ted, R2 is not UD.AC and R2 6∈ KO
BX.(b) Let E = ℓ2 and RE1 be as in Example 6.8. So the set RE1 is the union of asequen
e of pairwise disjoint open rings 
onverging to SE(0, 1). We 
onne
t any two
onse
utive rings by an open tube whose 
losure is disjoint from the 
losure of any otherring. The set of tubes is to be spa
ed. Let {en}n∈N be the standard basis of ℓ2 and

Ln = [(1 − 1
2n+3 )en, (1 − 1

2n+4 )en]. So ea
h Ln 
onne
ts two 
onse
utive rings in RE1 .For some d > 0, {Ln | n ∈ N} is d-spa
ed. Let sn = 1
2n+4 − 1

2n+5 and rn = min(d/3, sn)and R3 = RE1 ∪ ⋃
n∈N

B(Ln, rn). It follows that R3 is 
onne
ted, R3 is not UD.AC and
R3 6∈ KO

BX. However, R3 is JN.AC.(
) Let E be a normed spa
e with dimension > 2 and F be a subspa
e of E with
o-dimension 1. Let RE4 = BE(0, 2) −BF (0, 1). �Definition 6.16. (a) Let h : [a, b]×Z1 → Z2 and t ∈ [a, b]. We denote by ht the fun
tion
g(z) = h(t, z). LetX ∈ KO

NRM and x ∈ bd(X). We say that x is isotopi
ally movable withrespe
t toX if for every r > 0 there is a 
ontinuous fun
tion h : [0, 1]×cl(X) → cl(X) su
hthat h0 = Id, h1(x) 6= x, and for every t ∈ [0, 1], ht↾X ∈ EXT(X) and supp(ht) ⊆ B(x, r).We say that X is isotopi
ally movable at its boundary (BR.IS.MV ) if every x ∈ bd(X)is isotopi
ally movable with respe
t to X.(b) Let KO
IMX be the 
lass of all open subsets X of a normed spa
e su
h that X isJN.AC and BR.IS.MV. �The next observation and Proposition 6.2 show that KO

IMX is a large 
lass. Let E bea normed spa
e and X ⊆ E × (0,∞) be open and Z = {z ∈ E | ∃a ((z, a) ∈ X)}. Thebody of revolution of X is de�ned as follows:
revb(X) = {(z, u, v) | (z,

√
u2 + v2) ∈ X}.So revb(X) is an open subset of E × R2. If inf({a | (z, a)) ∈ X}) > 0 for every z ∈ Z,then revb(X) is 
alled a hollow body of revolution. Clearly if revb(X) is hollow, then

revb(X) ∼= X × S1.Proposition 6.17. Let X,Y ∈ KO
NRM.(1) If Y is BR.IS.MV , then X × Y is BR.IS.MV.(2) If X and Y are JN.AC , then X × Y is JN.AC.(3) If X ⊆ Rn, Y ⊆ Rm, X,Y are bounded , and Y is BR.IS.MV , then X×Y ∈ KO

IMX.(4) If X and Y are JN.AC and Y is BR.IS.MV , then X × Y ∈ KO
IMX.(5) If X ⊆ Rn, X is bounded and revb(X) is hollow , then revb(X) ∈ KO

IMX.Proof. The proof is trivial. For (3) and (5) see 6.2(b).Remark. The 
lass KO
IMX does not 
ontain any of the 
lasses KO

NMX, KO
BCX and KO

BXde�ned in 6.3 and 6.9(g). Re
all that KO
BCX ⊆ KO

BX,K
O
NMX. Example 6.8 belongs to

KO
BCX but not to KO

IMX. �Theorem 6.18. Suppose that X,Y ∈ KO
IMX and ϕ : EXT(X) ∼= EXT(Y ). Then there is

τ ∈ EXT±(X,Y ) whi
h indu
es ϕ.
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h indu
es ϕ.Claim 1. For every x ∈ bd(X) there is a sequen
e ~x 
onverging to x su
h that τ (~x)
onverges to a member of bd(Y ).Proof. This 
laim follows from Lemma 6.5(b) applied to τ−1.Claim 2. Let x ∈ bd(X) and ~x, ~u ⊆ X. Suppose that lim ~x = lim ~u = x and that τ (~x)and τ (~u) are 
onvergent. Then lim τ (~x) = lim τ (~u).Proof. Set ~y = τ (~x), ~v = τ (~u), y = lim ~y, v = lim~v, and suppose by 
ontradi
tion that
y 6= v. Obviously, y, v ∈ bd(Y ). Let r = ‖y − v‖/2. We may assume that ~v ⊆ B(v, r)and that ~y ∩ B(v, r) = ∅. Let h : [0, 1] × cl(Y ) → cl(Y ) be an isotopy as ensured by thefa
t that v is isotopi
ally movable with respe
t to Y , and su
h that for every t ∈ [0, 1],
supp(ht) ⊆ B(v, r).For every t ∈ [0, 1] let un,t = τ−1(h(t, vn)). We �rst prove the following fa
t. (∗) Forevery t ∈ [0, 1], limn→∞ un,t = x. Let t ∈ [0, 1]. Let h̄ = ht↾Y and ḡ = h̄τ

−1 . Then
ḡ ∈ EXT(X). Also ḡ↾~x = Id. So ḡcl(x) = x. Hen
e limn→∞ un,t = limn→∞ ḡ(un) =

ḡ(limn→∞ un) = ḡ(x) = x. So (∗) is proved.Let Ln = h([0, 1] × {vn}) and Kn = τ−1(Ln). We prove that limn→∞Kn = x.Suppose by 
ontradi
tion that this is not true. Then there are d > 0, ~t ⊆ [0, 1] and a1-1 sequen
e {ni | i ∈ N} su
h that d(x, uni,ti) ≥ d for every i ∈ N. We may assumethat ~t is 
onvergent. Set t∗ = lim~t. Let Ii be the 
losed interval whose endpoints are
ti and t∗ and Ji = h(Ii × {vni

}). Then limi→∞ Ji = h(t∗, v). Sin
e for every t ∈ [0, 1],
ht↾Y ∈ EXT(Y ) and v ∈ bd(Y ), it follows that h(t∗, v) ∈ bd(Y ). The fa
t ~v ⊆ Yimplies that Ji ⊆ Y , and hen
e h(t∗, v) 6∈ Ji for every i ∈ N. Sin
e Ji is 
ompa
t,
d(Ji, h(t

∗, v)) > 0. We may thus repla
e {ni}i∈N by a subsequen
e and dedu
e that
max({d(z, h(t∗, v)) | z ∈ Ji+1}) < d(Ji, h(t

∗, v)) for every i ∈ N. There is a sequen
e
{Vi}i∈N of open sets su
h that for any distin
t i, j ∈ N, Ji ⊆ Vi ⊆ cl(Vi) ⊆ Y ∩ B(v, r),
Vi ∩ Vj = ∅ and limi→∞ Vi = limi→∞ Ji. From the fa
t that Ji 
onne
ts h(vni

, t∗) and
h(vni

, ti), it follows that there is hi ∈ UC(Y ) Vi su
h that hi(h(vni
, t∗)) = h(vni

, ti). Let
ĥ = ◦i∈N hi. Then by Proposition 4.5, ĥ ∈ UC0(Y ) ⊆ EXT(Y ). Clearly, supp(ĥ) ⊆
B(v, r) and so ĥ↾~y = Id. Let ĝ = ĥτ

−1 . So ĝ ∈ EXT(X). Sin
e ĥ↾~y = Id, it follows that
ĝ↾~x = Id and hen
e ĝcl(x) = x. Clearly, for every i, ĝ(uni,t∗) = uni,ti , and from (∗) itfollows that limi→∞ uni,t∗ = x. So

lim
i→∞

uni,ti = lim
i→∞

ĝ(uni,t∗) = ĝcl( lim
i→∞

uni,t∗) = ĝcl(x) = x.This 
ontradi
ts the fa
t that d(x, uni,ti) ≥ d. So limn→∞Kn = x.There is an in�nite set σ ⊆ N su
h that Ki ∩Kj = ∅ for any distin
t i, j ∈ σ. Let
{Ui | i ∈ σ} be su
h that Ki ⊆ Ui ⊆ X, Ui is open, Ui ∩ Uj = ∅ for any i 6= j and
limi∈σ Ui = x. Let η ⊆ σ be su
h that η and σ − η are in�nite. For every i ∈ η let
gi ∈ UC(X) Ui be su
h that gi(ui) = ui,1. Let ḡ = ◦i∈η gi and h̄ = ḡτ . By Proposition4.5, ḡ ∈ UC0(X) ⊆ EXT(X), hen
e it follows that h̄ ∈ EXT(Y ).For every i ∈ η, h̄(vi) = h(vi, 1), so limi∈η h̄(vi) = h(v, 1). For every i ∈ σ − η,
h̄(vi) = vi, so limi∈σ−η h̄(vi) = v. Re
all that h(v, 1) 6= v. Also, limi→∞ vi = v. So ~v is
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onvergent and h̄(~v) is not 
onvergent. Hen
e h̄ 6∈ EXT(Y ). A 
ontradi
tion, so Claim 2is proved.Suppose by 
ontradi
tion that x ∈ bd(X) and x 6∈ Dom(τ cl). By Claim 1, thereis a sequen
e ~x ⊆ X su
h that lim ~x = x and τ (~x) is 
onvergent. Set y = lim τ (~x).There are a 1-1 sequen
e ~u ⊆ X and d > 0 su
h that lim ~u = x and d(τ (~u), y) ≥ d.De�ne ~v = τ (~u). By Claim 2, ~v does not have a 
onvergent subsequen
e. That is, ~v is
ompletely dis
rete. Sin
e Y is JN.AC, there is a subsequen
e ~w of ~v su
h that ~w has ajoining system. Let 〈~w,w∗, {Ln | n ∈ N}, ~w′ 〉 be a joining system for ~w. We may assumethat w∗ 6∈ Rng(~w).We show that it 
an be assumed that w∗ 6= y. Suppose that w∗ = y. Let r = d(~w, y).Sin
e Y is BR.IS.MV and y ∈ bd(Y ), there is h ∈ EXT(Y ) su
h that supp(h) ⊆ B(y, r)and hcl(y) 6= y. So h↾~w = Id. It follows that 〈~w, hcl(y), {h(Ln) | n ∈ N}, h(~w′) 〉 is ajoining system for ~w. So we may assume that w∗ 6= y.Re
all that Y is JN.AC. So we may apply Lemma 6.5(b) to τ−1. Re
all also that
lim τ−1(~w) = lim τ−1(~v) = x. Hen
e there is ~z ⊆ Y su
h that lim ~z = w∗ and
lim τ−1(~z) = x. We now have two sequen
es: ~x and τ−1(~z), both 
onverge to x, and
τ (~x) and τ (τ−1(~z)) are 
onvergent, but not to the same point. This 
ontradi
ts Claim 2,so x ∈ Dom(τ cl).We have shown that τ ∈ EXT(X,Y ), and an identi
al argument shows that τ−1 ∈
EXT(Y,X). That is, τ ∈ EXT±(X,Y ).6.3. Completely lo
ally uniformly 
ontinuous homeomorphism groups. Havingobtained the results about EXT(X) and LUC(X), only little extra work is needed to proveCMP.LUC-determinedness. See De�nition 5.3(f). This faithfulness result will 
ompletethe pi
ture of groups of type HCMP.LC

Γ
(X) dis
ussed in Chapters 8�12.The following is a strengthening of property BR.LC.AC.Definition 6.19. X is lo
ally uniformly-in-diameter ar
wise 
onne
ted (LC.UD.AC ) iffor every x ∈ bd(X) there is U ∈ Nbr(x) su
h that for every ε > 0 there is δ > 0 su
hthat for every u, v ∈ U : if d(u, v) < δ, then there is an ar
 L ⊆ X 
onne
ting u and vsu
h that diam(L) < ε. �Theorem 6.20. (a) Let X,Y ∈ KO

NRM. Suppose that X and Y are LC.UD.AC andJN.AC. Let ϕ : CMP.LUC(X) ∼= CMP.LUC(Y ). Then there is τ ∈ CMP.LUC±(X,Y )whi
h indu
es ϕ.(b) Suppose that X is LC.UD.AC and Y is JN.AC , and let τ ∈ H(X,Y ) be su
hthat (UC0(X))τ ⊆ CMP.LUC(Y ) and (LUC01(Y ))τ
−1 ⊆ CMP.LUC(X). Then τ ∈

CMP.LUC(X,Y ).Proof. We shall see that (b) implies (a). So we start by proving (b).(b) It is trivial thatX is BR.LC.AC.We �rst show that τ ∈ EXT(X,Y ). By de�nition,
CMP.LUC(X) ⊆ EXT(X). So (UC0(X))τ ⊆ EXT(Y ) and (LUC01(Y ))τ

−1 ⊆ EXT(X).By Corollary 6.6(a), τ ∈ EXT(X,Y ).



142 M. Rubin and Y. YomdinWe show that τ ∈ LUC(X,Y ). Let S be the set of BPD-subsets of X. Then
UC(X,S) ⊆ UC0(X) and CMP.LUC(Y ) ⊆ LUC(Y ). So (UC(X,S))τ ⊆ LUC(Y ). ByTheorem 4.8(b), τ ∈ LUC±(X,Y ).Let x∗ ∈ bd(X). We show that there is U ∈ Nbr(x∗) su
h that τ↾(U ∩X) is UC. Theproof is very mu
h a repetition of the proof of part 1 of Theorem 4.8(
).Suppose by 
ontradi
tion that for every U ∈ NbrX(x∗), τ↾U is not UC. The following
laim is an easy 
onsequen
e of the fa
t that τ↾B(x∗, r) ∩X is not UC. Its proof is leftto the reader.Claim 1. For every r > 0 there are sequen
es ~x, ~y and d, e > 0 su
h that :(1) Rng(~x) ∪ Rng(~y) ⊆ BX(x∗, r/2);(2) limn→∞ ‖xn − yn‖ = 0;(3) either (i) for any distin
t m,n ∈ N, d({xm, ym}, {xn, yn}) ≥ e, or (ii) ~x is aCau
hy sequen
e;(4) d(Rng(~x) ∪ Rng(~y), x∗) > e;(5) for every n ∈ N, ‖τ (xn) − τ (yn)‖ ≥ d.Let U ∈ Nbr(x∗) be as ensured by the LC.UD.AC-ness of X. There is a > 0 and afun
tion η : (0, a] → R su
h that limt→0 η(t) = 0 and for every u, v ∈ U∩X, if ‖u−v‖ ≤ t,then there is an ar
 L ⊆ X 
onne
ting u and v su
u that diam(L) ≤ η(t).Let e−1 > 0 be su
h that BE(x∗, e−1) ⊆ U . It is easy to de�ne by indu
tion on i ∈ N,
ri > 0, sequen
es ~x i, ~y i and di, ei > 0 su
h that: (i) ~x i, ~y i, di, ei satisfy the 
on
lusionof Claim 1 for ri; and (ii) for every i ∈ N, ri = ei−1/8. Clearly ei+1 ≤ ei/4. By deletinginitial segments from the ~x i's and ~y i's, we may further assume that for every i, n ∈ N,
η(‖xin − yin‖) < ei/8. We may further assume that either for every i ∈ N 
lause (3)(i) ofClaim 1 holds, or for every i ∈ N 
lause (3)(ii) of Claim 1 holds.Case 1: Clause (3)(i) of Claim 1 holds. Let {〈i(k), n(k) 〉 | k ∈ N} be a 1-1 enumerationof N2. Then limk→∞ ‖xi(k)n(k)−y

i(k)
n(k)‖ = 0. Set uk = x

i(k)
n(k), vk = y

i(k)
n(k) and let Lk ⊆ X be anar
 
onne
ting uk and vk su
h that diam(Lk) ≤ η(‖uk−vk‖). Let Bk = B(Lk, ei(k)+1/4).Then

diam(Bk) ≤ diam(Lk) + ei(k)+1/2 ≤ η(‖uk − vk‖) + ei(k)+1/2

≤ ei(k)/8 + ei(k)+1/2 ≤ ei(k)/4.It follows that if i(k) = i(ℓ), then d(Bk, Bℓ) ≥ ei(k)/2. Suppose that i(k) < i(ℓ). Then
‖uℓ−uk‖ ≥ 7eiℓ/8, diam(Bk) ≤ ei(k)/4 ≤ ei(ℓ)/4 and diam(Bℓ) ≤ ei(ℓ)/4. So d(Bk, Bℓ) ≥
3eiℓ/8. Obviously, limk→∞ diam(Bk) = 0. Let wk ∈ Lk − {uk} be su
h that ‖τ (wk) −
τ (uk)‖ < 1

k+1 . By Lemma 2.14(d), there is hk ∈ LIP(X) su
h that supp(hk) ⊆ Bk,
hk(uk) = uk and hk(wk) = vk. By Proposition 4.5, h := ◦k∈N hk ∈ UC(X) and indeed
h ∈ UC0(X).Let us see that for every V ∈ Nbr(τ cl(x∗)), hτ ↾(V ∩ Y ) is not UC. For i ∈ N de�ne
σi = {k | i(k) = i}. So if k ∈ σi, then Lk ⊆ B(x∗, η(2rk)). Sin
e limi→∞ η(2ri) = 0, andsin
e τ cl is 
ontinuous at x∗, there is i su
h that for every k ∈ σi, τ (Lk) ⊆ V .For every k ∈ σi, τ (ui), τ (wi) ∈ V . Clearly, limk∈σi

‖τ (uk) − τ (wk)‖ = 0. However,for every k ∈ σi, ‖hτ (τ (uk))−hτ (τ (wk))‖ = ‖τ (ui))− τ (vi))‖ ≥ di. So hτ ↾(V ∩Y ) is notUC. Hen
e hτ 6∈ CMP.LUC(Y ) even though h ∈ UC0(X), a 
ontradi
tion.
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tion of manifolds from subgroups of homeomorphism groups 143Case 2: Clause (3)(ii) of Claim 1 holds. Let z̄i = lim ~x i. Clearly, z̄i ∈ BE(x∗, ri) −
BE(x∗, ei). So {z̄i | i ∈ N} is 1-1 and limi→∞ z̄i = x∗. Also, z̄i ∈ E − E. This is so,be
ause if z̄i ∈ E, then either z̄i ∈ X and τ is not 
ontinuous at z̄i, or z̄i ∈ bdE(X) and
z̄i 6∈ Dom(τ cl). Both situations are impossible. For every i and n let Li,n ⊆ X be anar
 
onne
ting xin and yin su
h that diam(Li,n) ≤ η(‖xin − yin‖). Note that for every i,
limn→∞ Li,n = z̄i. From the fa
ts z̄i 6∈ E and Li,n ⊆ E we 
on
lude that d(z̄i, Li,n) > 0.It follows easily that there is a sequen
e {〈i(k), n(k) 〉 | k ∈ N} su
h that(1) for every i ∈ N, {k | i(k) = i} is in�nite,(2) for every k ∈ N, ck := d(Li(k),n(k),

⋃
m 6=k Li(m),n(m)) > 0.It is also 
lear from the 
onstru
tion that(3) limk→∞ diam(Li(k),n(k)) = 0.Set Lk = Li(k),n(k), uk = x

i(k)
n(k), vk = y

i(k)
n(k) and Bk = B(Lk, ck/3). Clearly, for every

ℓ 6= k, d(Bℓ, Bk) ≥ ck and limk→∞ diam(Bk) = 0. From this point on the proof pro
eedsexa
tly as in Case 1. So in Case 2 too, a 
ontradi
tion is rea
hed.It follows that there is U ∈ Nbr(x∗) su
h that τ↾(U ∩X) is UC, and this implies that
τ cl is UC at x∗. Re
all that we have already shown before that τ ∈ EXT(X,Y ) and that
τ ∈ LUC(X,Y ). So τ ∈ CMP.LUC(X,Y ).(a) Let ϕ : CMP.LUC(X) ∼= CMP.LUC(Y ). Clearly, LIPLC(X) ≤ CMP.LUC(X) ≤
H(X), and the same holds for Y . So by Theorem 2.8(a), there is τ ∈ H(X,Y ) su
hthat τ indu
es ϕ. Hen
e (CMP.LUC(X))τ = CMP.LUC(Y ). Obviously, UC0(X) ⊆
CMP.LUC(X) and LUC01(Y ) ⊆ CMP.LUC(Y ). So part (b) of this lemma 
an beapplied. Hen
e τ ∈ CMP.LUC(X,Y ). Similarly, τ−1 ∈ CMP.LUC(Y,X). That is,
τ ∈ CMP.LUC±(X,Y ).6.4. The re
onstru
tion of cl(X) from H(cl(X)). The next two theorems 6.22 and6.24 deal with the re
onstru
tion of F from H(F ), when F is the 
losure of an opensubset of a normed spa
e. The sets to whi
h these theorems apply may have rather
ompli
ated boundaries. It is not true though that for any F,K whi
h are the 
losures ofopen subsets of a normed spa
e, H(F ) ∼= H(K) implies that F ∼= K. See Example 5.8.Re
all that if A ⊆ E has a nonempty interior, then ENI(A) := {h(x) | x ∈ intE(A)and h ∈ H(A)}. For f ∈ UC0(X), de�ne feni = fcl↾ENI(cl(X)). Hen
e feni ∈
H(ENI(cl(X))). Also de�ne UCeni

0 (X) = {feni | f ∈ UC0(X)}.Parts (a) and (b) of the next proposition are analogous to Proposition 6.4 andLemma 6.5(a). The proofs of (a) and (b) are essentially identi
al to the proofs of their
ounterparts, so they are omitted. Part (
) is analogous to Lemma 6.5(b), but (
) isstated for η−1 rather than for η.Proposition 6.21. (a) Let X be BR.LC.AC and τ ∈ H(ENI(cl(X)),ENI(cl(Y ))). As-sume that (UCeni
0 (X))τ ⊆ EXT(ENI(cl(Y ))). Let x ∈ bd(X) − ENI(cl(X)), y ∈ bd(Y )and ~x ⊆ X be su
h that lim ~x = x and lim τ (~x) = y. Then (τ↾X)∪{〈x, y 〉} is 
ontinuous.(b) Let X be JN.AC and τ ∈ H(ENI(cl(X)),ENI(cl(Y ))) be su
h that (LUC01(X))τ ⊆

H(ENI(cl(Y ))). Let y ∈ bd(Y )−ENI(cl(Y )). Suppose that ~x ⊆ X is 
ompletely dis
rete,
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〈~x, x∗, {Ln | n ∈ N}, ~x′ 〉 is a joining system for ~x and lim τ (~x) = y. Then there is asequen
e ~u ⊆ X su
h that lim ~u = x∗ and lim τ (~u) = y.(
) Let X,Y ∈ KO

NRM. Assume that Y is JN.AC. Set K = cl(X) and M = cl(Y ),and let η ∈ H(ENI(K),ENI(M)) be su
h that for every h ∈ H(M), ((h↾ENI(M))η
−1

)cl ∈
H(K). Then for every x ∈ K −ENI(K) there is a sequen
e ~x ⊆ X 
onverging to x su
hthat η(~x) ⊆ Y , and η(~x) is 
onvergent in M .Proof. (
) Let x ∈ K − ENI(K). Let ~x′ ⊆ X be a sequen
e 
onverging to x. For every
n ∈ N let rn = min(δ(x′n), d(x

′
n, x)). So BE(x′n, rn) is a nonempty open subset of ENI(K).Clearly, bd(Y )∩ENI(M) is nowhere dense in ENI(M). So there is xn ∈ BE(x′n, rn) su
hthat η(xn) 6∈ bd(Y ) ∩ ENI(M). That is, η(xn) ∈ Y . So ~x ⊆ X, lim ~x = x and η(~x) ⊆ Y .De�ne ~y = η(~x). Suppose that ~y has a subsequen
e ~y′ su
h that ~y′ is 
onvergent in

cl(Y ). Then η−1(~y′) is as required in the proposition. Suppose that su
h a ~y′ does notexist. Hen
e ~y is 
ompletely dis
rete.Let 〈~y, y∗, {Ln | n ∈ N}, ~y′ 〉 be a joining system for ~y. By 6.21(b) applied to ~yand η−1, there is ~v ⊆ Y su
h that lim~v = y∗ and lim η−1(~v) = x. It is obvious that
y∗ ∈ bd(Y ) − ENI(cl(Y )).As at the beginning of the proof, there is a sequen
e ~v′ ⊆ Y su
h that lim~v′ = y∗,
η−1(~v′) ⊆ X and lim η−1(~v′) = lim η−1(~v) = x. So η−1(~v′) is as required.The following theorem is analogous to Theorem 6.3(b). The proofs are essentially thesame.Theorem 6.22. Let X,Y ∈ KO

NMX (see 6.3(b)). If ϕ : H(cl(X)) ∼= H(cl(Y )), then thereis τ : cl(X) ∼= cl(Y ) su
h that τ indu
es ϕ.Proof. Let K = cl(X) and M = cl(Y ). From Theorem 2.30(
) it follows that there is
η ∈ H(ENI(K),ENI(M)) whi
h indu
es ϕ.For every x ∈ bd(X) − ENI(cl(X)) let ~x ⊆ X be su
h that lim ~x = x and η(~x)is 
onvergent in M . The existen
e of ~x is ensured by Proposition 6.21(
). Let yx =

lim η(~x). Sin
e Rng(η) ⊇ Y , yx ∈ bd(Y ). Sin
e η indu
es ϕ, for every g ∈ H(K),
((g↾ENI(K))η)cl ∈ EXT(ENI(M)). In parti
ular, (UCeni

0 (X))η ⊆ EXT(ENI(M)). Hen
eby Proposition 6.21(a), η↾X ∪ {〈x, yx 〉} is 
ontinuous. Also, for every x ∈ bd(X) ∩
ENI(cl(X)), η↾X ∪ {〈x, η(x) 〉} is 
ontinuous. We thus have(1) for every x ∈ bd(X) − ENI(cl(X)), η↾X ∪ {〈x, yx 〉} is 
ontinuous,(2) for every x ∈ bd(X) ∩ ENI(cl(X)), η↾X ∪ {〈x, η(x) 〉} is 
ontinuous.So by Proposition 4.7(a), η∪{〈x, yx 〉 | x ∈ bd(X)−ENI(cl(X))} is 
ontinuous. So η 
anbe extended to a 
ontinuous fun
tion τ from cl(X) to cl(Y ).Similarly, η−1 
an be extended to a 
ontinuous fun
tion ̺ from cl(Y ) to cl(X). Itfollows easily that τ is 1-1 and that τ−1 = ̺. So τ ∈ H(cl(X), cl(Y )). Sin
e η indu
es ϕand Dom(η) is dense in Dom(τ ), it follows that τ indu
es ϕ.Proposition 6.23. (a) Let X ∈ KO

NRM, K = cl(X), U ⊆ ENI(K) be open in K, L ⊆ Ube an ar
 and x, y be the endpoints of L. Then there is h ∈ H(K) U su
h that h(x) = y.(b) Let Z be a topologi
al spa
e z ∈ Z and {hi | i ∈ N} ⊆ H(Z) be su
h that for any
i 6= j, supp(hi) ∩ supp(hj) = ∅ and limi→∞ supp(hi) = z. Then ◦i∈N hi ∈ H(Z).
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onstru
tion of manifolds from subgroups of homeomorphism groups 145Proof. (a) Let γ : [0, 1] → L be a parametrization of L su
h that γ(0) = x and γ(1) = y.There are n ∈ N, {Ui | i < n} and 0 = t0 < · · · < tn = 1 su
h that for every i < n:
Ui is open in K, Ui is homeomorphi
 to an open ball of a normed spa
e, Ui ⊆ U and
γ([ti, ti+1]) ⊆ Ui. So for every i < n there is hi ∈ H(K) Ui su
h that hi(zi) = zi+1.Clearly, hn−1 ◦ · · · ◦h0 is as required.(b) The proof is trivial.The following theorem is analogous to Theorem 6.18. The proofs are essentially thesame.Theorem 6.24. Let X,Y ∈ KO

IMX and ϕ : H(cl(X)) ∼= H(cl(Y )). Then there is τ ∈
H(cl(X), cl(Y ))) whi
h indu
es ϕ.Proof. SetK = cl(X) andM = cl(Y ). Then by Theorem 2.30(
), there is η ∈ H(ENI(K),

ENI(M)) whi
h indu
es ϕ. So for every g ∈ H(K), ((g↾ENI(K))η)cl = ϕ(g) ∈ H(M).We shall prove that ηcl ∈ H(K,M).Claim 1. Let x ∈ K − ENI(K) and ~x, ~u ⊆ X. Suppose that lim ~x = lim ~u = x and that
η(~x) and η(~u) are 
onvergent in M . Then lim η(~x) = lim η(~u).Proof. Let ~y = η(~x), ~v = η(~u), y = lim ~y, v = lim~v, and suppose by 
ontradi
tion that
y 6= v. Obviously, y, v ∈ bd(Y ). Let r = ‖y − v‖/2. We may assume that ~v ⊆ B(v, r)and that ~y ∩ B(v, r) = ∅. Let h : [0, 1] × cl(Y ) → cl(Y ) be an isotopy as ensured by thefa
t that v is isotopi
ally movable with respe
t to Y , and su
h that for every t ∈ [0, 1],
supp(ht) ⊆ B(v, r).For every t ∈ [0, 1] let un,t = η−1(h(t, vn)). We prove the following fa
t. (∗) Forevery t ∈ [0, 1], limn→∞ un,t = x. Let t ∈ [0, 1]. Let h̄ = ht↾ENI(M) and ḡ = h̄η

−1 .Then ḡ ∈ EXT(ENI(K)). Clearly, ḡ↾~x = Id and so ḡcl(x) = x. Hen
e limn→∞ un,t =

limn→∞ ḡ(un) = ḡ(limn→∞ un) = ḡ(x) = x. So (∗) is proved.Let Ln = h([0, 1] × {vn}) and Kn = η−1(Ln). We prove that limn→∞Kn = x.Suppose by 
ontradi
tion that this is not true. Then there are d > 0, ~t ⊆ [0, 1] and a1-1 sequen
e {ni | i ∈ N} su
h that for every i ∈ N, d(x, uni,ti) ≥ d. We may assumethat ~t is 
onvergent. Let t∗ = lim~t. Let Ii be the 
losed interval whose endpoints are
ti and t∗ and Ji = h(Ii × {vni

}). Then limi→∞ Ji = h(t∗, v). Sin
e for every t ∈ [0, 1],
ht↾Y ∈ EXT(Y ) and v ∈ bd(Y ), it follows that h(t∗, v) ∈ bd(Y ). The fa
t that vni

∈ Yimplies that Ji ⊆ Y . Hen
e for every i ∈ N, h(t∗, v) 6∈ Ji. We may thus assume that forany i 6= j, Ji ∩ Jj = ∅.There is a sequen
e {Vi}i∈N of pairwise disjoint open sets su
h that for every i ∈ N,
Ji ⊆ Vi ⊆ cl(Vi) ⊆ Y ∩ B(v, r) and limi→∞ Vi = h(t∗, v). Let hi ∈ UC(Y ) Vi besu
h that hi(h(vni

, t∗)) = h(vni
, ti) and h̃ = ◦i∈N hi. Then h̃ ∈ UC0(Y ). Hen
e ĥ :=

h̃eni ∈ EXT(ENI(M)). Let ĝ = ĥη
−1 . So ĝ ∈ EXT(ENI(K)). Clearly, ĝ↾~x = Id andhen
e ĝcl(x) = x. Also, for every i ∈ N, ĝ(uni,t∗) = uni,ti . It follows from (∗) that

limi→∞ uni,t∗ = x and so
lim
i→∞

uni,ti = lim
i→∞

ĝ(uni,t∗) = ĝcl( lim
i→∞

uni,t∗) = ĝcl(x) = x.This 
ontradi
ts the fa
t that d(x, uni,ti) ≥ d, so limn→∞Kn = x.



146 M. Rubin and Y. YomdinRe
all that x ∈ K − ENI(K), and note that Ki = η−1(Li) ⊆ η−1(Y ) ⊆ ENI(K).So x 6∈ Ki. Hen
e there is an in�nite set σ ⊆ N su
h that for any distin
t i, j ∈ σ,
Ki ∩ Kj = ∅. There is a sequen
e {Ui | i ∈ σ} of pairwise disjoint sets su
h that
Ki ⊆ Ui ⊆ ENI(K), Ui is open in ENI(K) and limi∈σ Ui = x. Let ̺ ⊆ σ be su
h that ̺and σ − ̺ are in�nite.By Proposition 6.23(a), for every i ∈ ̺ there is gi ∈ H(K) Ui su
h that gi(ui) = ui,1.By Proposition 6.23(b), ĝ := ◦i∈̺ gi ∈ H(K). Let ḡ = ĝ↾ENI(K) and h̄ = ḡη. Then
ḡcl = ĝ ∈ H(K). From the fa
t that η indu
es ϕ it follows that h̄cl ∈ H(M).For every i ∈ ̺, h̄(vi) = h(vi, 1). So limi∈̺ h̄(vi) = h(v, 1). For every i ∈ σ − ̺,
h̄(vi) = vi. So limi∈σ−̺ h̄(vi) = v. Re
all that h(v, 1) 6= v and that limi→∞ vi = v.So ~v is 
onvergent and h̄(~v) is not 
onvergent. Hen
e h̄cl 6∈ H(M). A 
ontradi
tion, soClaim 1 is proved.Suppose by 
ontradi
tion that x ∈ K − ENI(K) and x 6∈ Dom((η↾X)cl). Re
all that
Y ∈ KO

IMX and hen
e Y is JN.AC. So by Proposition 6.21(
), for every x ∈ K −ENI(K)there is a sequen
e ~x ⊆ X 
onverging to x su
h that η(~x) ⊆ Y , and η(~x) is 
onvergentin M . Set y = lim η(~x). Obviously, y ∈ bd(Y ). Sin
e x 6∈ Dom((η↾X)cl), there are a 1-1sequen
e ~u ⊆ X and d > 0 su
h that lim ~u = x and d(η(~u), y) ≥ d. De�ne ~v = η(~u). Thenby Claim 1, ~v does not have a 
onvergent subsequen
e. That is, ~v is 
ompletely dis
rete.Sin
e Y is JN.AC, there is a subsequen
e ~w of ~v su
h that ~w has a joining system. Let
〈~w,w∗, {Ln | n ∈ N}, ~w′ 〉 be a joining system for ~w. We may assume that w∗ 6∈ Rng(~w).It 
an be assumed that w∗ 6= y. For suppose that w∗ = y. Let r = d(~w, y). Sin
e
Y is BR.IS.MV and y ∈ bd(Y ), there is h ∈ EXT(Y ) su
h that supp(h) ⊆ B(y, r) and
hcl(y) 6= y. So h↾~w = Id. It follows that 〈~w, hcl(y), {h(Ln) | n ∈ N}, h(~w′) 〉 is a joiningsystem for ~w, and if we rede�ne w∗ to be hcl(y), then w∗ 6= y.Re
all that Y is JN.AC. So we may apply Lemma 6.21(b) to η−1. Re
all alsothat lim η−1(~w) = lim η−1(~v) = x. Hen
e there is ~z ⊆ Y su
h that lim ~z = w∗ and
lim η−1(~z) = x. The two sequen
es ~x and η−1(~z) 
onverge to x, however, η(~x) and
η(η−1(~z)) are 
onvergent, but they do not 
onverge to the same point. This 
ontra-di
ts Claim 1, so Dom((η ↾ X)cl) ⊇ K − ENI(K). Sin
e Dom(η) = ENI(K), we have
Dom(ηcl) = K.We have shown that η ∈ EXT(ENI(X),ENI(Y )). An identi
al argument showsthat η−1 ∈ EXT(ENI(Y ),ENI(X)). Hen
e ηcl ∈ H(K,M). Sin
e η indu
es ϕ, ηclindu
es ϕ.6.5. Generalizations to manifolds and to nearly open sets. The results of this
hapter are true in two other settings, whi
h are more general than the present setting.The proofs remain exa
tly the same.Remark 6.25. (a) Let Z be a subset of the normed spa
e E. Z is a nearly open set if
Z ⊆ clE(intE(Z)). The results of this 
hapter 
an be extended to the 
lass of nearly opensubsets of a normed spa
e. Let

KNO
NRM = {〈X,Z 〉 | X ∈ KO

NRM and X ⊆ Z ⊆ cl(X)}.Note that {〈X, cl(X) 〉 | X ∈ KO
NRM} ⊆ KNO

NRM.
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NRM is as follows. Let 〈X,Z 〉 ∈ KNO

NRM. The group
EXTZ(X) = {h↾X | h ∈ H(Z) and h(X) = X}is the analogue of EXTE(X), and the group H(Z) is the analogue of H(cl(X)).(
) Suitable reformulations of Theorem 6.3, Corollary 6.6 and Theorems 6.18, 6.20,6.22 and 6.24 are true for KNO

NRM. �We demonstrate the generalization dis
ussed in Remark 6.25 by des
ribing the ana-logues of Theorem 6.3(b) and 6.22. The faithful 
lass 
aptured by this generalization
ontains 22ℵ0 subsets of R3.Let KNO
NMX be the 
lass of all 〈X,Z 〉 ∈ KNO

NRM su
h that X is BR.LC.AC with respe
tto Z, and X is JN.AC with respe
t to Z. Evidently, this is the analogue of KO
NMX de�nedin 6.3(b). Let us �rst see that KNO

NMX is a large 
lass. Write X = (0, 1)3, that is, X isan open 
ube in R3. We 
onstru
t sets Z su
h that 〈X,Z 〉 ∈ KNO
NMX, and in fa
t, weshow that |{Z | 〈X,Z 〉 ∈ KNO

NMX}| = 22ℵ0 . We skip the easy proof of part (b) of the nextexample.Example 6.26. Let X = (0, 1)3.(a) For x, y ∈ R let Lx,y = [(x, 0, 0), (x, y, 0)]. Let ∅ 6= A ⊆ [0, 1] and ̺ : A → [0, 1).(We do not assume that ̺ is 
ontinuous.) Let Z̺ = X ∪ ⋃
x∈A Lx,̺(x). Then 〈X,Z̺ 〉 ∈

KNO
NMX.(b) Let F be a 
losed nonempty subset of bdR

3

(X). Then 〈X,X ∪ F 〉 ∈ KNO
NMX.Proof. (a) Let X,A, ̺ and Z be as above. It is trivial that X is BR.LC.AC with respe
tto Z. We show thatX is JN.AC with respe
t to Z. Let ~u = {un}n∈N ⊆ X be a 
ompletelydis
rete sequen
e with respe
t to Z. It may be assumed that ~u is 
onvergent in R3, andwe denote its limit by û. So û ∈ clR

3

(X) − Z. Write un = (xn, yn, zn) and û = (x̂, ŷ, ẑ).Case 1: Assume that ẑ = 0. Suppose �rst that there is a ∈ A su
h that {n | xn = a}is in�nite. So we may assume that xn = a for every n ∈ N. It follows that for some
b > ̺(a), lim ~u = (a, b, 0). Hen
e ~u has a subsequen
e ~v su
h that [vm, (a, ̺(a), 0)] ∩
[vm, (a, ̺(a), 0)] = {(a, ̺(a), 0)} for any m 6= n. Choose wn ∈ [vn, (a, b, 0)) su
h that
limn→∞ wn = (a, b, 0) and de�ne Ln = [vn, wn]. It is easy to see that 〈~v, (a, ̺(a), 0),
~L, {wn}n∈N 〉 is a joining system for ~vSuppose next that for every a ∈ A, {n | xn = a} is �nite. Choose any a ∈ A andremove from ~u all un's su
h that xn = a. Then a 6= xn for every n ∈ N. We may alsoassume that z0 < 1/2 and that {zn}n∈N is stri
tly de
reasing. Let y′n = max(1− zn, yn),
u′n = (xn, y

′
n, zn) and L0

n = [un, u
′
n]. We show that ~L0 := {L0

n}n∈N is 
ompletely dis
retewith respe
t to Z. Sin
e {zn}n∈N is 1-1, ~L0 is a pairwise disjoint sequen
e, that is,
L0
m ∩ L0

n = ∅ for any m 6= n. If (x, y, z) ∈ accR
3

(~L0), then x = x̂, z = 0 and y ≥ ŷ, andsin
e (x̂, ŷ, 0) 6∈ Z, it follows that (x̂, y, 0) 6∈ Z. The sequen
e {y′n}n∈N 
onverges to 1, sowe may assume that it is stri
tly in
reasing. Let vn = (xn, y
′
n, 1/2) and L1

n = [u′n, vn].It is trivial that ~L1 := {L1
n}n∈N is a pairwise disjoint sequen
e. If (x, y, z) ∈ accR

3

(~L1),then y = 1 and so (x, y, z) 6∈ Z. So ~L1 is 
ompletely dis
rete with respe
t to Z. Supposethat m < n. Then L0
m ∩ L1

n = ∅, sin
e the y-
oordinate of any member of L0
m is ≤ y′m,and the y-
oordinate of any member of L1

n is equal to y′n whi
h is > y′m. Similarly,
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L1
m∩L0

n = ∅, sin
e members of L1
m and L0

n di�er in their z-
oordinate. We 
on
lude that
(L0

m ∪ L1
m) ∩ (L0

n ∩ L1
n) = ∅ for any m 6= n.Let wn = (a, y′n, 1/2) and L2

n = [vn, wn]. The sequen
e ~L2 := {L2
n}n∈N is a pairwisedisjoint sequen
e, sin
e members of L2

m and L2
n di�er in their y-
oordinate. Also, L2

n ∩
(L0

m∪L1
m) = ∅ for any m 6= n. This follows from the fa
t that the only point in L0

m∪L1
mwhose z-
oordinate is 1/2 is vm and vm 6∈ L2

n. The y-
oordinate of any member of
accR

3

(~L2) is 1, so accR
3

(~L2) ∩ Z = ∅ and hen
e ~L2 is 
ompletely dis
rete with respe
tto Z. Let w∗ = (a, ̺(a), 0), 
hoose w′
n ∈ [wn, w

∗) su
h that limn→∞ w′
n = w∗ andde�ne L3

n = [wn, w
′
n]. Clearly, ~L3 := {L3

n}n∈N is a pairwise disjoint sequen
e. Sin
e
limn→∞ wn = (a, 1, 0), it follows that accR

3

(~L3) = [w∗, (a, 1, 0)]. So accZ(~L3) = {w∗}. Itfollows that for every r > 0, {L3
n −B(w∗, r) | n ∈ N} is 
ompletely dis
rete with respe
tto Z. Note that wm is the only point in ⋃

i≤2 L
i
m whose x-
oordinate is a. So sin
efor n 6= m, wm 6∈ L3

n, L3
n ∩ (

⋃
i≤2 L

i
m) = ∅. De�ne Ln =

⋃
i≤3 L

i
m, ~w′ = {w′

n}n∈N and
~L = {Ln}n∈N. It follows that ~L is a pairwise disjoint sequen
e and that for every r > 0,
{Ln − B(w∗, r) | n ∈ N} is 
ompletely dis
rete with respe
t to Z. So 〈~u,w∗, ~L, ~w′ 〉 is ajoining system for ~u.The 
ase that ẑ 6= 0 is divided into several sub
ases. Their proofs are similar to theproof of Case 1, but simpler.Theorem 6.27. For ℓ = 1, 2 let 〈Xℓ, Zℓ 〉 ∈ KNO

NMX.(a) If ϕ : Z1
∼= Z2, then there is τ ∈ H(Z1, Z2) whi
h indu
es ϕ.(b) If ϕ : EXTZ1(X1) ∼= EXTZ2(X2), then there is τ ∈ EXTZ1,Z2(X1, X2) whi
hindu
es ϕ.Proof. The proof of (a) is identi
al to the proof of Theorem 6.22. The proof of (b) isidenti
al to the proof of Theorem 6.3.Remark 6.28. The se
ond generalization is motivated by the following example. Let

E = R × SR
2

(0, 1), Y = [0, 1] × SR
2

(0, 1) and X = (0, 1) × SR
2

(0, 1). X is a normedmanifold. So its re
onstru
tion from subgroups of H(X) is in
luded in Theorem 2.30(a).The lo
al Γ -
ontinuity of 
onjugating homeomorphisms of X is proved in 3.47(a), 3.48(a)and 4.10. The spa
e Y , however, is not 
overed by any of the above theorems be
auseit is not a normed manifold. Also, Y is not the 
losure of an open subset of a normedspa
e. So the theorems proved so far in Chapter 6 do not apply to Y . However, Y isa well-behaved spa
e and is very similar to the spa
es whi
h have already been dealtwith. �The above remark 
alls for the setting in whi
h E is a normed manifold, X is an opensubset of E and Y = clE(X). This setting will yield re
onstru
tion results for Y .Definition 6.29. (a) Let 〈X,Φ, d〉 be su
h that 〈X,Φ 〉 is a normed manifold, 〈X, d 〉is a metri
 spa
e, and there is K su
h that for every ϕ ∈ Φ, ϕ is K-bilips
hitz. Then
〈X,Φ, d〉 is 
alled a normed Lips
hitz manifold.(b) Let KO

NLPM = {Y | Y is an open subset of a normed Lips
hitz manifold}. �Chapter 6 in its entirety 
an be proved for KO
NLPM.
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tion of manifolds from subgroups of homeomorphism groups 149Theorem 6.30. In De�nitions 6.1, 6.9, 6.16, 6.19 and in Remark 6.25 
hange everymention of KO
NRM to a mention of KO

NLPM. Then the variants obtained in this way fromTheorem 6.3 and Theorems 6.12, 6.18, 6.20, 6.22, 6.24 and 6.27 are true.Proof. The proofs of all the above theorems are identi
al to the proofs of their 
ounter-parts.



7. Groups whi
h are not of the same type are not isomorphi
In the previous 
hapters we 
onsidered several properties of homeomorphisms, for in-stan
e, UC homeomorphisms, LUC homeomorphisms, extendible homeomorphisms andhomeomorphisms whi
h are uniformly 
ontinuous on every bounded positively distan
edset. In this 
hapter we prove that for properties P and Q as above, if P(X) ∼= Q(Y ),then either P(X) = Q(X) or P(Y ) = Q(Y ). But before we deal with these questions,we prove some additional fa
ts about the group UC(X).7.1. The group UC(X) revisited. We have seen in Theorem 5.5 that if X,Y ∈
KO

NRM, X is UD.AC and (UC(X))τ ⊆ UC(Y ), then τ is uniformly 
ontinuous. We nextre
onsider the problem of dedu
ing that τ−1 is uniformly 
ontinuous from the fa
t that
(UC(X))τ ⊆ UC(Y ). Re
all that the impli
ation
(†) (UC(X))τ ⊆ UC(Y ) ⇒ τ−1 is uniformly 
ontinuousis not true for every X,Y ∈ KO

NRM. Counter-examples appear in 5.7 and 6.7(a). Yet,
(†) holds when X and Y are well-behaved. Theorem 7.1 below deals with �nite-dimen-sional spa
es for whi
h (†) is true. The in�nite-dimensional 
ase is 
onsidered in 7.7. Theresult of 7.7 is needed in the proof of Corollary 7.11(d) and (e).Theorem 7.1. Let X,Y ∈ KO

NRM. Suppose that X is �nite-dimensional and bounded ,
X is UD.AC , |Cmp(bd(X))| ≤ ℵ0 and (∗) for every C ∈ Cmp(bd(X)), distin
t x, y ∈ C,and z ∈ bd(X) − {x, y}, there is f ∈ UC(X) su
h that either f cl(x) = y and fcl(z) = z,or fcl(z) = y and fcl(x) = x. Suppose that for every C ∈ Cmp(bd(Y )), |C| > 1. Let
τ ∈ H(X,Y ) be su
h that (UC(X))τ ⊆ UC(Y ). Then τ−1 is uniformly 
ontinuous.Proof. By Theorem 5.5, τ is uniformly 
ontinuous, and hen
e τ cl maps cl(X) onto cl(Y ).It thus su�
es to show that τ cl is inje
tive. Suppose otherwise. For x ∈ bd(X) let Cxdenote the 
onne
ted 
omponent of bd(X) 
ontaining x. It follows from (∗) that if forsome z 6= x, τ cl(x) = τ cl(z), then for every y ∈ Cx, τ cl(y) = τ cl(x). The argument is asfollows. Suppose indeed that z 6= x, τ cl(x) = τ cl(z) and y ∈ Cx−{x, z}. Let f ∈ UC(X)be as ensured by (∗). We assume �rst that f cl(x) = x and fcl(z) = y, Let ~x, ~y ⊆ X
onverge respe
tively to x and y, and let ~x′ = f−1(~x) and ~z = f−1(~y). Then
τ cl(y) = lim τ (~y) = lim fτ ◦ τ ◦ f−1(~y) = lim fτ (τ (~z)) = (fτ )cl(lim τ (~z)) = (fτ )cl(τ cl(z)).Similarly,

τ cl(x) = lim τ (~x) = lim fτ ◦ τ ◦ f−1(~x) = lim fτ (τ (~x′))

= (fτ )cl(lim τ (~x′)) = (fτ )cl(τ cl(lim ~x′)).[150℄
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e fcl(x) = x and lim ~x = x, we have lim ~x′ = x. So
τ cl(x) = (fτ )cl(τ cl(lim ~x′)) = (fτ )cl(τ cl(x)) = (fτ )cl(τ cl(z)) = τ cl(y).The same argument applies to the 
ase that fcl(z) = z and fcl(x) = y. It follows thatfor any distin
t C,D ∈ Cmp(bd(X)), either τ cl(C) = τ cl(D) and τ cl(C) is a singleton,or τ cl(C) ∩ τ cl(D) = ∅.Let x and y be distin
t members of bd(X) su
h that τ cl(x) = τ cl(y), and C be the
omponent of τ cl(x) in bd(Y). The family {τ cl(Cu) ∩ C | u ∈ bd(X)} is a partitionof C into more than one and at most 
ountably many 
losed sets. This 
ontradi
tsthe theorem of Sierpi«ski that a 
ontinuum 
annot be partitioned into 
ountably manynonempty 
losed sets. See [En, Theorem 6.1.27℄.We do not know whether in the above theorem, the requirement that bd(X) has atmost 
ountably many 
omponents 
an be dropped. Here is an easy example of a boundedregular open subset X ⊆ R3 su
h that X is UD.AC, X satis�es (∗) of Theorem 7.1,every 
onne
ted 
omponent of bd(X) has 
ardinality > 1, and bd(X) has 2ℵ0 
onne
ted
omponents.Example 7.2. Let C ⊆ [0, 1] be the Cantor set. Let K = C×{1}. So K ⊆ BR

2

(0, 2) and
BR

2

(0, 2)−K is 
onne
ted. Let A = {an | n ∈ N} ⊆ BR
2

(0, 2) be su
h that cl(A)−A = K,and every member of A is an isolated point in A. Let rn > 0 andDn = B(an, rn). Assumethat Dn ⊆ B(0, 2) ∩ {(x, y) | x > 0} and B(am, 2rm) ∩ B(an, 2rn) = ∅ for any m 6= n,and that cl(
⋃
n∈N

Dn)−
⋃
n∈N

Dn = K. Let U = B(0, 3)− cl(
⋃
n∈N

Dn). Let X ⊆ R3 bethe set obtained by rotating U about the x-axis. Note that if x, y ∈ U , then there is anar
 L ⊆ U 
onne
ting x and y su
h that lngth(L) ≤ 2π · ‖x− y‖. It follows easily that Xis as required. �We next deal with in�nite-dimensional open sets for whi
h the fa
t that (UC(X))τ ⊆
UC(Y ) implies that τ−1 is uniformly 
ontinuous.Definition 7.3. (a) For A ⊆ X de�ne ∆X,E(A) = supa∈A d(a,E − X). As usual, weabbreviate ∆X,E(A) by ∆(A).(b) Let h ∈ H(X). We say that h is strongly extendible if for every ε > 0 there is
h̃ ∈ H(E) su
h that h̃ extends h and supp(h̃) ⊆ B(supp(h), ε). De�ne UCe(X) := {h ∈
UC(X) | h is strongly extendible}.(
) A simple ar
 is a spa
e homeomorphi
 to [0, 1]. For a simple ar
 L and x, y ∈ Llet [x, y]L denote the subar
 of L whose endpoints are x and y. Let α ∈ MBC and
η : (0,∞) → (0,∞) be su
h that η is monotoni
 and limtt→0 η(t) = 0. Let X be a metri
spa
e and L ⊆ X be a simple ar
. We say that L is an 〈α, η 〉-tra
k if for every x, y ∈ Lthere is h ∈ UC(X) su
h that h is α-bi
ontinuous, h(x) = y and supp(h) ⊆ B([x, y]L, r),where r = η(diam([x, y]L). If in the above de�nition we require that h ∈ UCe(X), then
L is 
alled an 〈α, η 〉-e-tra
k.(d) We de�ne the notion of a tra
k system for ~x. Let ~x ⊆ X be a 
ompletely dis
retesequen
e, y∗ ∈ bd(X), ~y ⊆ X and ~L = {Ln | n ∈ N} be a sequen
e of simple ar
s su
hthat lim ~y = y∗, Ln ⊆ X, Ln 
onne
ts xn with yn and ⋃

n∈N
Ln is bounded. Assume that(1) there are α and η su
h that Ln is an 〈α, η 〉-tra
k for every n ∈ N,
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h that
Dom(γn) = [0, 1], γn is β-UC for every n ∈ N and γn(0) = yn and γn(1) = xn.Then T = 〈~x, y∗, ~L, ~y 〉 is 
alled a tra
k system for ~x, and γn is 
alled a legal parametriza-tion of Ln in T . Note that (2) just means that {γn | n ∈ N} is equi
ontinuous. If in (1)we require that Ln be an e-tra
k, then T is 
alled an e-tra
k system.Let T = 〈~x, y∗, ~L, ~y 〉 be a tra
k system. If for every r > 0, {Ln − B(y∗, r) | n ∈ N}is 
ompletely dis
rete, then T is 
alled a 
ompletely dis
rete tra
k system. If for every

r > 0, {Ln −B(y∗, r) | n ∈ N} is spa
ed, then T is 
alled a spa
ed tra
k system.(f) X is jointly tra
k 
onne
ted (JN.TC ) if for every 
ompletely dis
rete boundedsequen
e ~x ⊆ X: if limn→∞ δ(xn) = 0, then ~x has a subsequen
e ~y su
h that ~y has atra
k system. X is jointly e-tra
k 
onne
ted (JN.ETC ) if the above subsequen
e ~y isrequired to have an e-tra
k system. �Remark 7.4. We explain the notion of a tra
k system by an example. Let X be theunit ball of the Hilbert spa
e ℓ2 and S be the unit sphere. Let ~x be a 
ompletely dis
retesequen
e in X su
h that δ(~x) = 0. We 
onstru
t a tra
k system for a subsequen
e of ~x.Let e0 = (1, 0, 0, . . .). Take a subsequen
e ~y of ~x su
h that {e0}∪Rng(~y) is an independentset. For n ∈ N let zn = ‖yn‖e0, Sn = S(0, ‖yn‖) ∩ span({yn, e0}) and Ln be any of thetwo subar
s of Sn 
onne
ting yn with zn. Then T = 〈~y, e0, {Ln}n∈N, {zn}n∈N 〉 is a tra
ksystem for ~y. Indeed, T is an e-tra
k system.The property JN.ETC is needed in the proof that UC(X) 6∼= EXT(X). �Proposition 7.5. (a) Let {hn | n ∈ N} ⊆ UCe(X), and suppose that {supp(hn) | n ∈ N}is spa
ed. Then ◦n∈N hn ∈ UCe(X).(b) Let x, y ∈ E be su
h that ‖x‖ = ‖y‖ and ‖x − y‖ = d > 0. Let L = {tx | t ≥ 0}.Then d(y, L) ≥ d/2.(
) If T = 〈~x, y∗, ~L, ~y 〉 a tra
k system, then the following hold.(i) For every t ∈ (0, 1), Tt := 〈{γn(t)}n∈N, y
∗, {γn([0, t])}n∈N, ~y 〉 is a tra
k sys-tem, and if T is 
ompletely dis
rete, so is Tt.(ii) limn→∞∆(Ln) = 0.(d) Let 〈~x, y∗, ~L, ~y 〉 be a 
ompletely dis
rete tra
k system. Then there is an in�nite

σ ⊆ N su
h that 〈~x↾σ, y∗, ~L↾σ, ~y↾σ 〉 is a spa
ed tra
k system.(e) Let T = 〈~x, y∗, ~L, ~y 〉 be a tra
k system. Let γn be legal parametrization of Ln in T .Then there are t ∈ [0, 1), z∗ ∈ bd(X) and an in�nite σ ⊆ N su
h that 〈~x↾σ, z∗, {γn([t, 1]) |
n ∈ σ}, {γn(t) | n ∈ σ} 〉 is a spa
ed tra
k system.(f) Let T = 〈~x, y∗, ~L, ~y 〉 be a 
ompletely dis
rete tra
k system and C ∈ Cmp(bd(X))be su
h that d(~x,C) = 0. Then y∗ ∈ C.(g) Let T = 〈~x, y∗, ~L, ~y 〉 be a tra
k system, h ∈ UC(X) and T ′ := 〈h(~x), hcl(y∗), h(~L),

h(~y) 〉. Then T ′ is a tra
k system.Proof. (a) The proof is trivial and is left to the reader.(b) We may assume that ‖x‖ = 1. Let tx ∈ L. If |1 − t| ≤ d/2, then use thetriangle with verti
es x, tx and y to 
on
lude that ‖y − tx‖ ≥ ‖y − x‖ − ‖x− tx‖ ≥ d/2;and if |1 − t| ≥ d/2, then use the triangle with verti
es 0, tx and y to 
on
lude that
‖y − tx‖ ≥ | ‖y − 0‖ − ‖tx− 0‖ | = |1 − t| ≥ d/2.
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) The �rst part of (
) follows from the de�nition of a tra
k system. To prove these
ond part, suppose by way of 
ontradi
tion that for some d > 0, {n | ∆(Ln) > d}is in�nite. Let α and η be as ensured by the fa
t that T is a tra
k system. Sin
e
lim ~y = y∗ ∈ bd(X), there is n su
h that α(δ(yn)) < d and ∆(Ln) > d. Choose z ∈ Lnsu
h that δ(z) > d and w ∈ bd(X) su
h that α(‖yn−w‖ < d. Sin
e Ln is an 〈α, η 〉-tra
k,there is h ∈ H(X) su
h that h is α-bi
ontinuous and h(yn) = z. Then

‖h(yn) − h(w)‖ = ‖z − h(w)‖ ≥ d(z, bd(X)) > d > α(‖yn − w‖),and this 
ontradi
ts the α-
ontinuity of h.(d) For every r > 0, {Li − B(y∗, r) | i ∈ N} is 
ompletely dis
rete. So by Propo-sition 5.26, for every r > 0 and an in�nite η ⊆ N there is an in�nite ν ⊆ η su
h that
{Li − B(y∗, r) | i ∈ ν} is spa
ed. We de�ne by indu
tion ̺n ⊆ N. Let ̺0 = N. Forevery n ∈ N let ̺n+1 be an in�nite subset of ̺n su
h that {Li − B(z∗, 1

n+1 ) | i ∈ ̺n+1}is spa
ed. Let σ = {min(̺n ∩ N≥n) | n ∈ N}. It is easy to see that for every r > 0,
{Li −B(z∗, r) | i ∈ σ} is spa
ed. So 〈~x↾σ, y∗, ~L↾σ, ~y↾σ 〉 is a spa
ed tra
k system.(e) For every in�nite η ⊆ N and t ∈ [0, 1] let A[η, t] = {γn(t) | n ∈ η}. Let sη =

sup({t | A[η, t] is not 
ompletely dis
rete}). Let ̺ ⊆ N be an in�nite set su
h that forevery in�nite η ⊆ ̺, sη = s̺. Set s = s̺. Suppose by 
ontradi
tion that A[̺, s] does not
ontain a Cau
hy sequen
e. Then for some in�nite η ⊆ ̺ and d > 0, A[η, s] is d-spa
ed.There is ε > 0 su
h that for every t > s− ε, A[η, t] is spa
ed. The existen
e of ε followsfrom the equi
ontinuity of {γn | n ∈ N}, that is, from the existen
e of β appearing in
lause (2) of the de�nition of a tra
k system. So sη < s. A 
ontradi
tion. So A[̺, s]
ontains a Cau
hy sequen
e. We may thus assume that A[̺, s] is a Cau
hy sequen
e. Let
z∗ = limA[̺, s].Let Ji = γi([s, 1]). We show that there are no r > 0, an in�nite η ⊆ ̺ and ~u ∈∏
i∈η(Ji − B(z∗, r)) su
h that ~u is a Cau
hy sequen
e. Suppose otherwise. Let ti ∈

[s, 1] be su
h that ui = γi(ti). We may assume that ~t = {ti | i ∈ η} is a Cau
hysequen
e. Let t∗ = lim~t. Sin
e Rng(~u) ∩ B(z∗, r) = ∅, it follows that t∗ 6= s, and sin
e
limi∈η d(γi(ti), γi(t∗)) = 0, we �nd that {γi(t∗) | i ∈ η} is a Cau
hy sequen
e. That is,
sη > s, a 
ontradi
tion. We have shown that 〈{xn | n ∈ ̺}, z∗, {γn([s, 1]) | n ∈ ̺}, A[̺, s] 〉is a 
ompletely dis
rete tra
k system. By (d), there is an in�nite σ ⊆ ̺ su
h that
〈{xn | n ∈ σ}, z∗, {γn([s, 1]) | n ∈ σ}, A[σ, s] 〉 is a spa
ed tra
k system.(f) Suppose by 
ontradi
tion that y∗ 6∈ C. By (d), we may assume that T is a spa
edtra
k system. Let α, η be as ensured by the fa
t that T is a tra
k system. Clearly,
a := d(y∗, C) > 0. Choose u ∈ C, and for every n ∈ N 
hoose zn ∈ (B(y∗, a/2) −
B(y∗, a/4)) ∩ Ln and set Jn = [xn, zn]

Ln . Then b1 := d(u,
⋃
n∈N

Jn) > 0, and there is
b2 su
h that {Jn | n ∈ N} is b2-spa
ed. Set b = min(b1, b2)/3, and let c > 0 be su
hthat c+ η(c) < b. From the equi
ontinuity of {γn}n∈N it follows that there is k ∈ N and
{zn,i | n ∈ N, i ≤ k} su
h that for every n ∈ N, zn,0 = xn, zn,k = zn and zn,i ∈ Ln,and diam([zn,i, zn,i+1]

Ln) < c for every i < k. So for every n ∈ N and i < k thereis hn,i ∈ UC(X) su
h that hn,i is α-bi
ontinuous, hn,i(zn,i) = zn,i+1 and supp(hn,i) ⊆
B([zn,i, zn,i+1]

Ln , c). Let hn = ◦i<k hn,i. Clearly, hn ∈ UC(X), and it is easily seenthat {supp(hn) | n ∈ N} is b2/3-spa
ed and d(u, supp(hn)) > b1/2 > 0. It follows that
h := ◦i<k hn,i ∈ UC(X), hcl(u) = u and h(xn) = zn for every n ∈ N. Sin
e h(u) = u,
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ontradi
ts the fa
t that h is uniformly 
ontinuous.(g) By Proposition 4.3(
), there is γ ∈ MBC su
h that h is γ-bi
ontinuous. Let α, ηand β be as in the de�nition of a tra
k system. De�ne α′ = γ ◦α ◦γ, η′ = γ ◦ η ◦γ and
β′ = γ ◦β. Then α′, η′ and β′ demonstrate that T ′ is a tra
k system.Proposition 7.6. Let Z be a metri
 spa
e, and {Fn | n ∈ N} and {Kn | n ∈ N} besequen
es of 
ompa
t subsets of Z su
h that : (i) {Fn | n ∈ N} is spa
ed ; (ii) for every
ε > 0 there is ℓε ∈ N su
h that for every n ∈ N and a subset A ⊆ Kn, if |A| ≥ ℓε, thenthere are distin
t x, y ∈ A su
h that d(x, y) < ε; and (iii) inf({d(Fn,Kn) | n ∈ N}) > 0.Then there is an in�nite σ ⊆ N su
h that d(⋃{Fn | n ∈ σ},⋃{Kn | n ∈ σ}) > 0.Proof. Write N+ = {n ∈ N | n > 0}. We de�ne by indu
tion on i ∈ N+ a sequen
e ofin�nite subsets of N, σ0 ⊇ σ1 ⊇ · · · . Let σ0 = N. Suppose that σi has been de�ned. We
olor the in
reasing pairs 〈m,n 〉 of members of σi in four 
olors, a

ording to whether
d(Fm,Kn) < 1/i or not, and a

ording to whether d(Km, Fn) < 1/i or not. By theRamsey Theorem, there is a mono
hromati
 in�nite σi+1 ⊆ σi. If there is i ∈ N+ su
hthat for any distin
t m,n ∈ σi, d(Fm,Kn) ≥ 1/i and d(Km, Fn) ≥ 1/i, then σ := σi is asrequired. Otherwise, for every i ∈ N either (1) for every m < n in σi, d(Fm,Kn) < 1/i,or (2) for every m < n in σi, d(Km, Fn) < 1/i.Let i ∈ N and ℓ = ℓ1/i be as ensured by 
lause (ii). Let k0 < · · · < kℓ be members of
σi. Suppose that 
ase (1) o

urs. For every j < ℓ let xj ∈ Fj and yj ∈ Kℓ be su
h that
d(xj , yj) < 1/i. Hen
e for some j1 < j2 < ℓ, d(yj1 , yj2) < 1/i. So d(Fj1 , Fj2) < 3/i. Thesame argument is repeated in 
ase (2). Hen
e for every i ∈ N+ there are distin
t j1 and
j2 su
h that d(Fj1 , Fj2) < 3/i, 
ontradi
ting the fa
t that {Fn | n ∈ N} is spa
ed.The properties that X is required to ful�ll in the next theorem are quite restri
tive.However, they are shared by �well-behaved� open sets. For example, if X = B−⋃

i<k Bi,where B is an open ball and {B0, . . . , Bk−1} is a pairwise disjoint family of 
losed balls
ontained in B, then X ful�lls the requirements of the theorem. Part (b) of the theoremis a slight modi�
ation of its �rst part. This modi�
ation is needed in the proof that
UC(X) and EXT(X) are not isomorphi
 unless they 
oin
ide.Theorem 7.7. (a) Let X ∈ KO

BNC. Suppose that the following hold.(1) X is bounded and X is UD.AC ,(2) bd(X) has �nitely many 
onne
ted 
omponents ,(3) if C ∈ Cmp(bd(X)), x, y ∈ C are distin
t and z ∈ bd(X) − {x, y}, then thereis f ∈ UC(X) su
h that either f cl(x) = y and fcl(z) = z, or fcl(z) = y and
fcl(x) = x,(4) X is JN.TC ,Let Y ∈ KO

BNC and assume that(5) if C is a 
omponent of bd(Y ), then |C| > 1.Let τ ∈ H(X,Y ) be su
h that (UC(X))τ ⊆ UC(Y ). Then τ−1 is uniformly 
ontinu-ous.
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lause (3) of (a) by requiring that f ∈ UCe(X), and modify (4) by requiringthat X is JN.ETC. Let τ ∈ H(X,Y ) be su
h that (UCe(X))τ ⊆ UC(Y ). Then τ−1 isuniformly 
ontinuous.Proof. The proofs of (a) and (b) are identi
al. We prove (a). Re
all that X and Y aresubsets of the Bana
h spa
es E and F respe
tively. By Theorem 5.5, τ is uniformly
ontinuous.Claim 1. Let ~x ⊆ X be a 
ompletely dis
rete sequen
e su
h that τ (~x) is a Cau
hysequen
e. Then there is a sequen
e ~x′ ⊆ X su
h that limn→∞ δ(x′n) = 0, ~x′ is 
ompletelydis
rete, and limn→∞ τ (~x′) = limn→∞ τ (~x).Proof. If δ(~x) = 0, then we take ~x′ to be a subsequen
e of ~x su
h that limn→∞ δ(x′n) = 0.Suppose otherwise. Sin
e X ∈ KO
BNC, we may assume that for some d > 0, ~x is d-spa
ed,and sin
e X is bounded, we may also assume that for every n ∈ N+, d(xn, x0) ≤ d+ d/8.Without loss of generality, x0 = 0. For every n ∈ N+ let tn = min({t > 1 | txn ∈ bd(X)}),

yn = tnxn, Ln = [xn, yn] and γn(t) = xn + t(yn − xn), t ∈ [0, 1]. If m 6= n, then
∥∥∥∥d ·

xm
‖xm‖ − d · xn

‖xn‖

∥∥∥∥ ≥ ‖xm − xn‖ −
∥∥∥∥xm − d · xm

‖xm‖

∥∥∥∥ −
∥∥∥∥xn − d · xn

‖xn‖

∥∥∥∥ ≥ 3d

4
.Hen
e by Proposition 7.5(b), d(Lm, Ln) ≥ 3d/8.De�ne η(t) = δ({γn(t) | n ∈ N+}). Sin
e {‖xn − yn‖ | n ∈ N} is bounded, η is
ontinuous. Also, η(1) = 0. Let s = min(η−1(0)). We may assume that for every

n ∈ N+, δ(γn(s)) < 1/n. It follows that for every t ∈ (0, s), the family {γn([0, t]) |
n ∈ N+} is spa
ed, and δ(

⋃{γn([0, t]) | n ∈ N+}) > 0. Also, sin
e X is bounded,
{d(xn, γn(t)) | n ∈ N+} is bounded. So for every t < s there is ht ∈ UC(X) su
h that forevery n ∈ N+, ht(x2n) = γ2n(t) and ht(x2n−1) = x2n−1. Let z∗ = lim τ (~x). Let t ∈ (0, s).Clearly, τ ({γ2n(t) | n ∈ N+} ∪ {x2n−1 | n ∈ N+}) = (ht)

τ (~x), and sin
e (ht)
τ ∈ UC(Y )and τ (~x) is a Cau
hy sequen
e, τ ({γ2n(t) | n ∈ N+} ∪ {x2n−1 | n ∈ N+}) is a Cau
hysequen
e. Denote this sequen
e by ~u. Then τ ({x2n−1 | n ∈ N+}) is a subsequen
e of ~u
onverging to z∗. So ~u 
onverges to z∗, and hen
e τ ({γ2n(t) | n ∈ N+}) 
onverges to z∗.Let ~s ⊆ (0, s) be a sequen
e 
onverging to s. For every n ∈ N+ let kn ≥ n be su
h that

d(τ (γ2kn
(sn)), z

∗) < 1/n. Let x′n = γ2kn
(sn). So lim τ (~x′) = z∗, limn→∞ δ(x′n) = 0 and

~x′ is spa
ed. Claim 1 is thus proved.Claim 2. Let T = 〈~y, y∗, {Ln | n ∈ N}, ~z 〉 be a 
ompletely dis
rete tra
k system in X,and suppose that lim τ (~y) = w∗. Then τ cl(y∗) = w∗.Proof. Suppose by 
ontradi
tion that τ cl(y∗) 6= w∗. Let γn be a legal parametrizationof Ln, and β ∈ MC be su
h that for every t1, t2 ∈ [0, 1] and n ∈ N, γn(t1) − γn(t2) ≤
β(|t1 − t2|).We now follow the proof of Lemma 5.25. For every in�nite σ ⊆ N and t ∈ [0, 1] let
A[σ, t] = {γn(t) | n ∈ σ} and sσ = inf({t ∈ [0, 1] | τ (A[σ, t]) 
onverges to w∗}). Sin
e
τ cl(y∗) 6= w∗, there is U ∈ Nbr(y∗) su
h that d(w∗, τ (U ∩X)) > 0. Thus there is t0 > 0su
h that for every t < t0, d(w∗, τ (A[N, t])) > 0. So for every in�nite σ ⊆ N, sσ > 0. Asin Lemma 5.25, there is an in�nite σ ⊆ N su
h that for every in�nite η ⊆ σ, sη = sσ.Write s = sσ.
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ontradi
tion that d(A[σ, s], y∗)=0. We may assume that limA[σ, s]=y∗.Let r > 0. Then there ism su
h that A[σ≥m, s] ⊆ B(y∗, r/2). By the de�nition of s, thereis t ≥ s su
h that β(t − s) < r/2 and lim τ (A[σ, t]) = w∗. Then A[σ≥m, t] ⊆ B(y∗, r).Hen
e for every r, ε > 0 there are m ∈ N and t ∈ [s, s+ ε) su
h that A[σ≥m, t] ⊆ B(y∗, r)and lim τ (A[σ, t]) = w∗. It follows that there is a sequen
e ~u ⊆ X su
h that lim ~u = y∗and lim τ (~u) = w∗, and hen
e τ cl(y∗) = w∗. A 
ontradi
tion, so d(A[σ, s], y∗) > 0.From the fa
t that {Ln − B(y∗, r) | n ∈ N} is 
ompletely dis
rete for every r > 0, itfollows that A[σ, s] is 
ompletely dis
rete. So we may assume that for some d > 0, A[σ, s]is d-spa
ed. Let α and η be as ensured by the fa
t that T is a tra
k system. It followsfrom the equi
ontinuity of {γn}n∈N that there is δ > 0 su
h that for every n ∈ N and
t1, t2 ∈ [0, 1]: if 0 < t2 − t1 < δ, then

diam(γn([t1, t2])) + η(diam(γn([t1, t2]))) < d/3.Choose t1 ∈ [s, s+ δ/2)∩ [0, 1] su
h that lim τ (A[σ, t1]) = w∗ and t2 ∈ (s− δ/2, s)∩ [0, 1].For every n ∈ σ let xn = γn(t1), un = γn(t2) and Jn = [xn, un]
Ln , that is, Jn =

γn([t2, t1]). Sin
e |t1 − t2| < δ, it follows that
diam(B(Jn, η(diam(Jn)))) ≤ diam(Jn) + η(diam(Jn)) ≤ d/3.We may assume that σ = N. Sin
e T is a tra
k system, there is hn ∈ H(X) su
h that

hn(xn) = un, supp(hn) ⊆ B(Jn, η(diam(Jn))) and hn is α-bi
ontinuous. We 
he
k that
{supp(hn) | n ∈ N} is d/3-spa
ed. Let m 6= n. Then γm(s), γn(s) ∈ A[σ, s] and so
‖γm(s) − γn(s)‖ ≥ d. Sin
e γm(s) ∈ Jm and the same holds for n, it follows that

d(B(Jn, η(diam(Jn))), B(Jn, η(diam(Jn)))) ≥ d− 2d/3 = d/3.So {supp(hn) | n ∈ N} is d/3-spa
ed.By Proposition 5.17(a), h := ◦n∈N h2n ∈ UC(X). It follows that hτ ∈ UC(Y ). Let
wn = xn if n is odd, and wn = un if n is even. Hen
e hτ (τ (~x)) = τ (~w). By the 
hoi
e of
t1, τ (~x) 
onverges to w∗. By the 
hoi
e of σ and t2, τ ({u2n | n ∈ N}) does not 
onvergeto w∗. So τ (~w) is not a Cau
hy sequen
e. This 
ontradi
ts the fa
t that hτ ∈ UC(Y ).We have thus proved Claim 2.Claim 3. bd(Y ) ⊆ Rng(τ cl).Proof. Suppose by 
ontradi
tion that z∗ ∈ bd(Y ) − Rng(τ cl). Let ~z ⊆ Y 
onvergeto z∗. So ~x := τ−1(~z) is 
ompletely dis
rete. By Claim 1, we may assume that
limn→∞ δ(xn) = 0. Let ~y be a subsequen
e of ~x whi
h has a tra
k system. By Proposition7.5(e), ~y has a 
ompletely dis
rete tra
k system 〈~y, y∗, {Ln | n ∈ N}, ~y′ 〉. By Claim 2,
τ cl(y∗) = z∗. A 
ontradi
tion, so Claim 3 is proved.Claim 4. If C ∈ Cmp(bd(X)), then τ cl(C) is 
losed in F .Proof. Let C ∈Cmp(bd(X)) and v∈cl(τ cl(C)). Let ~x′⊆C be su
h that limn→∞ τ cl(x′n)
= v. If ~x′ has a Cau
hy subsequen
e ~y, then lim ~y ∈ C and τ cl(lim ~y) = v. Suppose that
~x′ does not have Cau
hy subsequen
es, that is, ~x′ is 
ompletely dis
rete. There is ~x ⊆ Xsu
h that limn→∞ d(xn, x

′
n) = 0 and limn→∞ τ (xn) = v. So ~x is 
ompletely dis
rete.Sin
e X is JN.TC, there are a subsequen
e ~y of ~x and a tra
k system T = 〈~y, z∗, ~L, ~z 〉.
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tion of manifolds from subgroups of homeomorphism groups 157By Proposition 7.5(e), we may assume that T is a spa
ed tra
k system, and by 7.5(f),
z∗ ∈ C. By Claim 2, τ cl(z∗) = v, so τ cl(C) is 
losed.Claim 5. τ cl is 1-1.Proof. By (3), for every 
omponent C ∈ Cmp(bd(X)), either τ cl↾C is 1-1 or τ cl(C) is asingleton; and for any distin
t C,D ∈ Cmp(bd(X)), either τ cl(C) = τ cl(D) and τ cl(C) isa singleton, or τ cl(C) ∩ τ cl(D) = ∅. The argument is as in the proof of Theorem 7.1.Suppose by 
ontradi
tion that τ cl is not 1-1. Then there is C ∈ Cmp(bd(X)) and
y ∈ bd(Y ) su
h that τ cl(C0) = {y}. Let D be the 
omponent of y in bd(Y ). Then
|D| > 1. By Claims 3 and 4, {τ cl(C) | C ∈ Cmp(bd(X)) and τ cl(C) ⊆ D} is a partitionof D into �nitely many and more than 1 
losed sets. This 
ontradi
ts the 
onne
tivityof D.Claim 6. Let T = 〈~x, y∗, ~L, ~y 〉 be a tra
k system in X. Then for every d > 0 there is
h ∈ UC(X) su
h that hcl(y∗) 6= y∗ and supp(h) ⊆ B(y∗, d).Proof. Let α and η be as ensured by the fa
t that T is a tra
k system. We may assumethat y∗ 6∈ Rng(~x), and hen
e we may also assume that d < d(~x, y∗). Let a > 0 be su
hthat 2a + η(a) < d and b be su
h that α(b) < a − b. Clearly, b < a. Let n be su
hthat ‖yn − y∗‖ < b. Then ‖xn − yn‖ ≥ d − b > a, and hen
e there is z ∈ Ln su
hthat ‖z − yn‖ = diam([z, yn]

Ln) = a. Sin
e Ln is an 〈α, η 〉-tra
k, there is h ∈ H(X)su
h that h is α-bi
ontinuous, h(yn) = z and supp(h) ⊆ B([z, yn]Ln , η(a)). Clearly,
B([z, yn]

Ln , η(a)) ⊆ B(y∗, b+ a + η(a)) ⊆ B(y∗, d). So supp(h) ⊆ B(y∗, d). Suppose byway of 
ontradi
tion that h(y∗) = y∗. Then ‖z− y∗‖ = ‖h(yn)−h(y∗)‖ ≤ α(‖yn− y∗‖ <
α(b). However, ‖z − y∗‖ ≥ ‖z − yn‖ − ‖yn − y∗‖ ≥ a − b. That is, α(b) > a − b,a 
ontradi
tion. So h(y∗) 6= y∗. So Claim 6 is proved.Claim 7. There is no sequen
e ~x ⊆ X su
h that ~x is 
ompletely dis
rete, and τ (~x) is aCau
hy sequen
e.Proof. Suppose otherwise, and let ~x be a 
ounter-example to the 
laim. By Claim 1, wemay assume that limn→∞ δ(xn) = 0. Sin
e X is JN.TC, there are a subsequen
e ~y of
~x, y∗, ~L and ~z su
h that T = 〈~y, y∗, ~L, ~z 〉 is a tra
k system. By Proposition 7.5(e), wemay assume that T is a spa
ed tra
k system. Let w = lim τ (~x). So w = lim τ (~y). ByClaim 2, (i) τ cl(y∗) = w. Sin
e y∗ ∈ bd(X) and ~y ⊆ X, it follows that y∗ 6∈ Rng(~y),and sin
e ~y is 
ompletely dis
rete, d(~y, y∗) > 0. By Claim 6, there is h ∈ UC(X) su
hthat (ii) hcl(y∗) 6= y∗ and supp(h) ⊆ B(y∗, d(~y, y∗)). So h↾~y = Id. By Proposition 7.5(g),
T ′ := 〈h(~y), hcl(y∗), h(~L), h(~z) 〉 is a tra
k system. Sin
e T is spa
ed and h ∈ UC(X) itfollows that T ′ is also spa
ed. Re
all that h(~y) = ~y and so limh(~y) = w. So by Claim 2applied to T ′, (iii) τ cl(hcl(y∗)) = w. Fa
ts (i)�(iii) 
ontradi
t the fa
t that τ cl is 1-1.This proves Claim 7.Suppose by 
ontradi
tion that τ−1 is not uniformly 
ontinuous. Then there are se-quen
es ~x, ~y ⊆ X and d > 0 su
h that for every n ∈ N, d(xn, yn) ≥ d and limn→∞ d(τ (xn),

τ (yn)) = 0. We may assume that ea
h of the sequen
es ~x, ~y, τ (~x) and τ (~y) is either spa
edor is a Cau
hy sequen
e.Claim 8. The sequen
es ~x, ~y, τ (~x) and τ (~y) are spa
ed.
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ontradi
tion that ~x is a Cau
hy sequen
e. Sin
e τ cl is uniformly
ontinuous and Dom(τ cl) = cl(X), it follows that τ (~x) is a Cau
hy sequen
e. Hen
e τ (~y)is also a Cau
hy sequen
e. If ~y is a Cau
hy sequen
e, then τ cl is not 1-1, 
ontradi
tingClaim 5; and if ~y is 
ompletely dis
rete, then Claim 7 is 
ontradi
ted. So ~x is not aCau
hy sequen
e. The same is true for ~y. By Claim 7, τ (~x) and τ (~y) are 
ompletelydis
rete. Claim 8 is proved.We 
all a pair of sequen
es 〈~u,~v 〉 in X a 
ounter-example if ~u and ~v are spa
ed,
inf({d(un, vn) | n ∈ N}) > 0 and limn→∞ d(τ (un), τ (vn)) = 0.Claim 9. There is a 
ounter-example 〈~u,~v 〉 su
h that δ(~u) = 0.Proof. By Claim 8, there is a 
ounter-example 〈~x, ~y 〉. If δ(~x) = 0 or δ(~y) = 0, thenthere is nothing to prove. Suppose otherwise. By Proposition 7.6, we may assume that
d(~x, ~y) > 0. Let d > 0 be su
h that ~x is d-spa
ed and d(~x, ~y) ≥ d. By possibly inter
hang-ing ~x and ~y, we may also assume that there are e1 ≥ e2 > 0 su
h that limn→∞ ‖xn‖ = e1and limn→∞ ‖yn‖ = e2. Let x′n = (e1/‖xn‖)xn. Sin
e δ(~x) > 0, there is a > 0 su
h thatfor every n ∈ N, B(x′n, a) ⊆ X. We may further assume that a < d/8, and that for every
n ∈ N, d(xn, x′n) < a/2. So (

⋃{B(x′n, a) | n ∈ N})∩{yn | n ∈ N} = ∅, and for any distin
t
m,n ∈ N, d(B(x′m, a), B(x′n, a)) > d/2. Let x′′n = (1 + a/2)x′n. It follows that there is
h ∈ LIP(X) su
h that for every n ∈ N, h(xn) = x′′n and supp(h) ⊆ ⋃{B(x′n, a) | n ∈ N}.Sin
e h(~x) = ~x′′ and h(~y) = ~y, it follows that 〈~x′′, ~y 〉 is a 
ounter-example. So we mayassume that e1 > e2, and that ‖xn‖ = e1 for every n ∈ N. We still assume that ~x is
d-spa
ed and that d(~x, ~y) ≥ d.We now pro
eed as in the proof of Claim 1. For n ∈ N+ let tn = min({t > 1 | txn ∈
bd(X)}), zn = tnxn, Ln = [xn, zn] and γn(t) = xn + t(zn − xn), t ∈ [0, 1]. By Propo-sition 7.5(b), for any distin
t m,n ∈ N, d(Lm, Ln) ≥ d/2, and 
learly, d(Lm, ~y) ≥ e1−e2.Let s = min({t | δ({γn(t) | n ∈ N+}) = 0}). We may assume that for every n ∈ N+,
δ(γn(s)) < 1/n. It follows that for every t ∈ (0, s), the family {γn([0, t]) | n ∈ N+}is spa
ed, d(⋃{γn([0, t]) | n ∈ N+}, ~y) > 0 and δ(

⋃{γn([0, t]) | n ∈ N+}) > 0. Also,sin
e X is bounded, {d(xn, γn(t)) | n ∈ N+} is bounded. So for every t < s thereis ht ∈ UC(X) su
h that for every n ∈ N+, ht(xn) = γn(t) and ht(yn) = yn. Sin
e
hτt ∈ UC(Y ), limn→∞ d(τ (xn), τ (yn)) = 0 and hτt (τ (xn)) = τ (γn(t)), it follows that
limn→∞ d(τ (γn(t)), τ (yn)) = 0.Let ~s ⊆ (0, s) be a sequen
e 
onverging to s. For every n ∈ N+ let kn ≥ n be su
hthat d(τ (γkn

(sn)), τ (yn)) < 1/n. De�ne x′n = τ (γkn
(sn)). It follows that d(~x′, ~y) > 0,

limn→∞ d(τ (x′n), τ (yn)) = 0, limn→∞ δ(x′n) = 0 and ~x′ is spa
ed. Claim 9 is thus proved.Let T = 〈~y, y∗, ~L, ~z 〉 be a tra
k system, and γn be a legal parametrization of Ln. Wesay that T is good if for every t ∈ [0, 1), inf({d(yn, γn([0, t])) | n ∈ N}) > 0.Claim 10. If 〈~y, y∗, ~L, ~z 〉 is a tra
k system, and γn is a legal parametrization of Ln,then there is s ∈ (0, 1] and an in�nite σ ⊆ N su
h that 〈{γn(s) | n ∈ σ}, y∗, {γn([0, s]) |
n ∈ σ}, ~z 〉 is a good tra
k system, and limn∈σ d(τ (yn), τ (γn(s))) = 0.Proof. For every in�nite η ⊆ N let sη = inf({t ∈ [0, 1] | limn∈η d(yn, γn(t)) = 0}).As in previous analogous arguments, there is an in�nite η ⊆ N su
h that for every in-�nite ζ ⊆ η, sζ = sη. Let s = sη and ~t be a sequen
e 
onverging to s su
h that
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tion of manifolds from subgroups of homeomorphism groups 159for every i ∈ N, limn∈η d(yn, γn(ti)) = 0. Let σ = {ni | i ∈ N} ⊆ η be an in
reas-ing sequen
e su
h that limi→∞ d(yni
, γni

(ti)) = 0. By the equi
ontinuity of {γn}n∈N,
limi→∞ d(γni

(ti), γni
(s)) = 0. So limn∈σ d(yn, γn(s)) = 0. Hen
e sin
e τ is uniformly
ontinuous, limn∈σ d(τ (yn), τ (γn(s))) = 0. Now suppose by 
ontradi
tion that thereis t < s su
h that lim infn∈σ d(yn, γn([0, t])) = 0. So there is an in
reasing sequen
e

ζ = {ki | i ∈ N} ⊆ σ and ~t ⊆ [0, t] su
h that limi→∞ d(yki
, γki

(ti)) = 0. We may as-sume that ~t 
onverges, say to s∗. Hen
e s∗ ≤ t < s, and limn∈ζ d(yn, γn(s∗)) = 0. So
sζ ≤ s∗ < s, a 
ontradi
tion. So for every t ∈ [0, s), lim infn∈σ d(yn, γn([0, t])) > 0. Sin
e
limn∈σ d(yn, γn(s))=0, it follows that for every t ∈ [0, s), lim infn∈σ d(γn(s), γn([0, t]))>0;and the fa
t that Ln is a simple ar
 implies that γn(s) 6∈ γn([0, s)). So inf({d(γn(s),
γn([0, t])) | n ∈ σ}) > 0. Claim 10 is proved.Claim 11. There are a 
ounter-example 〈~u,~v 〉 and a 
ompletely dis
rete tra
k system
〈~u, u∗, ~J, ~u′ 〉 su
h that infn∈N d(Jn, vn) > 0.Proof. By Claim 9, there is a 
ounter-example 〈~x, ~y 〉 su
h that δ(~x) = 0. Let T =

〈~x, x∗, ~L, ~x′ 〉 be a 
ompletely dis
rete tra
k system for ~x. By Claim 10, we may assumethat T is a good tra
k system.Suppose �rst that d := lim infn→∞ d(Ln, yn) > 0. Let {ℓi | i ∈ N} be a subsequen
eof N su
h that d(Lℓi , yℓi) ≥ d/2. Hen
e ~u = {xℓi | i ∈ N}, u∗ = x∗, ~v = {yℓi | i ∈ N} and
~J = {Lℓi | i ∈ N} are as required in the 
laim.Assume next that lim infn→∞ d(Ln, yn)=0. So we may assume that limn→∞ d(Ln, yn)

= 0. Let γn be a legal parametrization of Ln. Hen
e there is ~t ⊆ [0, 1] su
h that
limn→∞ d(γn(tn), yn) = 0. We may assume that ~t is 
onvergent. Let t = lim~t. It easilyfollows that limn→∞ d(γn(t), yn) = 0. Clearly t < 1, for otherwise limn→∞ d(xn, yn) = 0.For every n ∈ N let un = γn(t), vn = xn and Jn = γn([0, t]).Sin
e τ is uniformly 
ontinuous, we know that limn→∞ d(τ (un), τ (yn)) = 0. Also,
limn→∞ d(τ (vn), τ (yn)) = 0. Hen
e limn→∞ d(τ (un), τ (vn)) = 0. Sin
e 〈~x, x∗, ~L, ~x′ 〉 isa good tra
k system, infn∈N d(xn, γn([0, t])) > 0. That is, infn∈N d(vn, Jn) > 0. ByProposition 7.5(
)(i) applied to T and t, 〈~u, x∗, ~J, ~x′ 〉 is a tra
k system. So ~u, ~v, x∗ and
~J are as required. Claim 11 is proved.Claim 12. There are a 
ounter-example 〈~u,~v 〉 and a 
ompletely dis
rete tra
k system
〈~u, u∗, ~J, ~u′ 〉 su
h that d(⋃{Jn | n ∈ N}, ~v) > 0.Proof. Let 〈~u,~v 〉 and 〈~u, u∗, ~J, ~u′ 〉 be as ensured by the previous 
laim. We show thatthere is an in�nite σ ⊆ N su
h that 〈~u↾σ,~v↾σ 〉 and 〈~u↾σ, u∗, ~J↾σ, ~u′↾σ 〉 are as requiredin the 
laim. We shall apply Proposition 7.6 with Fn taken to be {vn} and Kn takento be Jn. By our assumptions, 
lauses (i) and (iii) of 7.6 hold. We show that (ii) holds.Let γn be a legal parametrization of Jn. Suppose that ε > 0. Then by the equi
ontinuityof {γn}n∈N, there is δ > 0 su
h that for every n ∈ N and t1, t2 ∈ [0, 1]: if |t1 − t2| < δ,then ‖γn(t1) − γn(t2)‖ < ε. De�ne ℓε = [1/δ] + 1. Then ℓε ful�lls the requirement of
lause (ii) of 7.6. The set σ obtained from 7.6 is as required. This proves Claim 12.Con
lusion of the proof of the theorem. Let 〈~x, ~y 〉 and T = 〈~x, x∗, ~L, ~x′ 〉 be as ensured byClaim 12. By Claim 7, τ (~y) is 
ompletely dis
rete. So we may assume that τ (~y) is spa
ed.
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⋃{Ln | n ∈ N}, ~y). Let γn be a legal parametrization of Ln. For every in�-nite σ ⊆ N let sσ = inf({t ∈ [0, 1] | limn∈σ d(τ (γn(t)), τ (yn)) = 0}). Let σ be su
h that forevery in�nite η ⊆ σ, sη = sσ. Sin
e τ (~x′) is 
onvergent and τ (~y) is spa
ed, s := sσ > 0.As in previous analogous arguments, {γn(s) | n ∈ σ} is 
ompletely dis
rete. So we may as-sume that for some d2 > 0, {γn(s) | n ∈ σ} is d2-spa
ed. Set d = min(d1, d2). Let α, η beas ensured by the fa
t that T is a tra
k system. Let a > 0 be su
h that a+η(a) < d/3. Bythe equi
ontinuity of {γn}n∈N, there is δ > 0 su
h that for every n ∈ N and t1, t2 ∈ [0, 1]:if |t1−t2| < δ, then ‖γn(t1)−γn(t2)‖ < a. By the 
hoi
e of s, there is t1 ∈ [s, s+δ/2) su
hthat limn∈σ d(τ (γn(t1)), τ (yn)) = 0. Also, 
hoose t2∈(s−δ/2, s). Then by the 
hoi
e of σand s, infn∈σ d(τ (γn(t2)), τ (yn))>0. For n ∈ σ write un = γn(t1), vn = γn(t2) and Jn =

γn([t2, t1]). Let n ∈ σ. Then sin
e Ln is an 〈α, η 〉-tra
k, there is hn ∈ H(X) su
h that hnis α-bi
ontinuous, hn(un) = vn and supp(hn) ⊆ B(Jn, η(diam(Jn))). Sin
e |t1 − t2| < δ,it follows that diam(Jn) < a. So for every x ∈ supp(hn), ‖x− γn(s)‖ < a+ η(a) < d2/3.This implies that d(supp(hm), supp(hn)) > d2/3 for any m 6= n. We 
on
lude that h :=

◦n∈σ1
hn is well de�ned and belongs to UC(X). Clearly, supp(h) ⊆ B(

⋃
n∈N

Ln, η(a)).Sin
e d(⋃n∈N
Ln, ~y) = d1 and η(a) < d1, we infer that supp(h) ∩ Rng(~y) = ∅ and hen
e

h↾~y = Id. It follows that infn∈σ d(hτ (τ (yn)), hτ (τ (un))) = infn∈σ d(τ (yn), τ (vn))) > 0.But limn∈σ d(τ (yn), τ (un)) = 0. So hτ 6∈ UC(Y ). A 
ontradi
tion.Remark 7.8. (a) Clause (2) in Theorem 7.7 
an be relaxed. In that 
ase (5) has to bestrengthened. Repla
e (2) and (5) by (2.1) and (5.1) stated below.(2.1) bd(X) has 
ountably many 
omponents.(5.1) If C is a 
omponent of bd(Y ), then C is not a singleton, and either C is ar
wise
onne
ted or C is lo
ally 
onne
ted.The proof of 7.7 is 
hanged only in one pla
e. In the proof of Claim 5, the 
omponent Dof bd(Y ) is partitioned into 
ountably many 
losed sets. By (5.1), this is impossible. Soa 
ontradi
tion is rea
hed.There are spa
es X whi
h satisfy (1), (2.1), (3) and (4), but do not satisfy (2).However, su
h examples are rare.(b) LetKO
BLPM = {Y | Y is an open subset of a Bana
h Lips
hitz manifold} (see Def-inition 6.29). In Theorem 7.7 repla
e the assumption that X ∈ KO

BNC by the assumptionthat X ∈ KO
BLPM. Then parts (a) and (b) of 7.7 remain true, and the proof remains asis. (
) The sphere of a Bana
h spa
e satis�es the assumptions of (b). See Remark 7.4. �Question 7.9. (a) Prove Theorem 7.7 for in
omplete normed spa
es.(b) Let E be a Bana
h spa
e. Let {Bn | n ∈ N} be a spa
ed set of 
losed balls su
hthat for every n, Bn ⊆ BE(0, 1). Let X = BE(0, 2) − ⋃

n∈N
Bn. Let Y ∈ KO

BNC and
τ ∈ H(X,Y ). Suppose that (UC(X))τ ⊆ UC(Y ). Is τ−1 uniformly 
ontinuous?Note that X is not JN.TC, but it satis�es all the other assumptions of Theorem 7.7. �Proposition 7.10. Suppose that X is an open ball of a Bana
h spa
e. Then X satis�es
lauses (1)�(4) of Theorem 7.7(b).Proof. The proof is easy and is left to the reader.



Re
onstru
tion of manifolds from subgroups of homeomorphism groups 1617.2. The nonexisten
e of isomorphisms between groups of di�erent types. Inthe previous 
hapters we 
onsidered groups of various types. We now show that groups ofdi�erent types 
annot be isomorphi
 unless they 
oin
ide. We shall deal with the groups
UC(X), LUC(X), BUC(X), BPD.UC(X) and EXT(X), and we add to this list the group
H(X). Let P,Q denote one of the above properties and P(X),Q(X) be the groups theyde�ne. We des
ribe the situation pre
isely. It may happen that for distin
t properties Pand Q, there is ϕ su
h that ϕ : P(X) ∼= Q(Y ). But in that 
ase either P(X) = Q(X) and
ϕ is indu
ed by a homeomorphism belonging to Q±(X,Y ), or P(Y ) = Q(Y ), and ϕ isindu
ed by a homeomorphism belonging to P±(X,Y ). The situation with regard to su
hquestions is not sorted out 
ompletely, and we only state results whi
h follow dire
tlyfrom the theorems that have been proved so far. Only some of the possible 
onsequen
esare stated and proved.Let X ∈ KO

NRM and h ∈ H(X). Re
all that h is said to be internally extendible ifthere is h̄ ∈ H(int(X)) su
h that h̄ ⊇ h. Denote h̄ by hint. If P = UC,BUC,BPD.UC,then P(X) ⊆ IXT(X). See De�nition 2.24(b). For these P's de�ne XP = int(X) and
PBNO(X) = {hint | h ∈ P(X)}. So 〈XP ,PBNO(X) 〉 ∈ KBO. See De�nition 2.7(b).For P = LUC,EXT, write XP = X and PBNO(X) = P(X). So 〈XP ,PBNO(X) 〉
∈ KNO.Corollary 7.11. Let X,Y ∈ KO

NRM.(a) If ϕ : LUC(X) ∼= P(Y ), then P(Y ) = LUC(Y ), and there is τ ∈ LUC±(X,Y )whi
h indu
es ϕ.(b) Let X,Y ∈ KO
NFCB. Assume that X is BUD.AC and MV1 , Y is UD.AC and that

ϕ : UC(X) ∼= BUC(Y ). Then BUC(X) = UC(X), and there is τ ∈ BUC±(X,Y ) whi
hindu
es ϕ. (X may be unbounded , and X need not be UC-equivalent to Y .)(
) Let X,Y ∈ KO
NFCB. Suppose that X is BPD.AC , Y is UD.AC , and Y hasthe dis
rete path property for large distan
es. Let ϕ : UC(X) ∼= BPD.UC(Y ). Then

BPD.UC(X) = UC(X), and there is τ ∈ BPD.UC±(X,Y ) whi
h indu
es ϕ.(d) Let X,Y ∈ KO
BNC. Suppose that X is BPD.AC and BR.LC.AC. Let ϕ : BUC(X) ∼=

BPD.UC(Y ). Then BUC(X) = BPD.UC(X), and there is τ ∈ BPD.UC±(X,Y ) whi
hindu
es ϕ.(e) Suppose that X,Y ∈ KO
BNC, and X or Y is in�nite-dimensional. Then there is no

ϕ : UC(X) ∼= EXT(Y ). (Sin
e EXT(X) = BUC(X) whenever X is �nite-dimensional ,su
h 
ases are in
luded in (
).)(f) Suppose that X,Y ∈ KO
BNC, and X or Y is in�nite-dimensional. Then there is no

ϕ : UC(X) ∼= H(Y ).Proof. (a) Sin
e PBNO(Y ) ∼= P(Y ), there is ϕ̄ : LUC(X) ∼= PBNO(Y ). We have
〈Y P ,PBNO(Y ) 〉 ∈ KBNO. Also 〈X,LUC(X) 〉 ∈ KBNO. So by Theorem 2.8(b), thereis τ ∈ H(X,Y P) whi
h indu
es ϕ̄. Sin
e 〈X,LUC(X) 〉 is transitive, 〈Y P ,PBNO(Y ) 〉 istransitive. Sin
e Y is an orbit of 〈Y P ,PBNO(Y ) 〉, Y P = Y . Hen
e ϕ̄ = ϕ, and hen
e τindu
es ϕ.Note that if P = UC,LUC,BUC,BPD.UC, then UC00(Y ) ⊆ P(Y ). So (UC00(Y ))τ

−1

⊆ (P(Y ))τ
−1 ⊆ LUC(X). Also, UC00(Y ) = UC(Y,U), where U is the set of all open



162 M. Rubin and Y. YomdinBPD subsets of Y . So by Theorem 4.8(b), τ−1 ∈ LUC±(Y,X), that is, τ ∈ LUC±(X,Y ).So P(Y ) = (LUC(X))τ = LUC(Y ).(b) By Corollary 2.26 there is τ ∈ H(X,Y ) whi
h indu
es ϕ. So (†) (UC(X))τ =

BUC(Y ). We show that τ ∈BUC(X,Y ). By (†), (UC(X))τ⊆BUC(Y ) and (BUC(Y ))τ
−1

⊆ BUC(X). Re
all that X is BUD.AC and MV1. So by Corollary 5.19, τ ∈ BUC(X,Y ).We show that τ−1 ∈ UC(Y,X). By (†), UC0(Y ))τ
−1 ⊆ UC(X). Re
all that Yis UD.AC. So by Theorem 5.5, τ−1 ∈ UC(Y,X), and hen
e τ ∈ BUC±(X,Y ). Then

UC(X) = (BUC(Y ))τ
−1

= BUC(X).(
) Let ϕ : UC(X) ∼= BPD.UC(Y ). By Corollary 2.26, there is τ ∈ H(X,Y ) whi
hindu
es ϕ. So (∗) (UC(X))τ = BPD.UC(Y ). By (∗), (UC00(X))τ = BPD.UC(Y ). Re
allthat X is BPD.AC. Hen
e by Theorem 5.31, τ ∈ BPD.UC(X,Y ).Obviously, UC0(Y ) ⊆ BPD.UC(Y ). So by (∗), (UC0(Y ))τ
−1 ⊆ UC(X). Re
allthat Y is UD.AC. Hen
e by Theorem 5.5, τ−1 ∈ UC(Y,X). Sin
e Y has the dis
retepath property for large distan
es, by Proposition 4.3(b), τ−1 is uniformly 
ontinuousfor all distan
es. That is, for some α ∈ MC, τ−1 is α-
ontinuous. In parti
ular, τ−1 isboundedness preserving. So τ−1 ∈ BPD.UC(Y,X). In summary, τ−1 ∈ BPD.UC±(Y,X).It follows that UC(X) = (BPD.UC(Y ))τ

−1

= BPD.UC(X).(d) By Theorem 2.8(a), there is τ ∈ H(X,Y ) whi
h indu
es ϕ. This means that
(BUC(X))τ = BPD.UC(Y ). By Theorem 5.31, τ ∈ BPD.UC(X,Y ), and by Theo-rem 5.41(a), τ−1 ∈ BPD.UC(Y,X). Hen
e τ−1 ∈ BPD.UC±(Y,X). It follows that
BUC(X) = (BPD.UC(Y ))τ

−1

= BPD.UC(X).(e) Suppose by 
ontradi
tion that ϕ : UC(X) ∼= EXT(Y ). By Theorem 2.8(a), thereis τ ∈ H(X,Y ) whi
h indu
es ϕ. So (UC(X))τ = EXT(Y ).Suppose that Y is an open subset of the Bana
h spa
e F . Let B be a ball in F su
hthat clF (B) ⊆ Y . Clearly, for every h ∈ UCe(B) there is h̃ ∈ EXT(Y ) whi
h extends h.Let η = τ−1↾B and C = η(B). Sin
e (EXT(Y ))τ
−1 ⊆ UC(X), (UCe(B))η ⊆ UC(C). Soalso (UC0(B))η ⊆ UC(C). So by Theorem 5.5, η is UC. It follows that C is bounded, andhen
e bd(C) is not a singleton. Clearly, bd(C) = ηcl(bd(B)), and so bd(C) is 
onne
ted.So no 
omponent of bd(C) is a singleton. By Proposition 7.10, B satis�es 
lauses (1)�(4)of Theorem 7.7(b). By Theorem 7.7(b) applied to B, C and η, η−1 is UC. In summary,

η ∈ UC±(B,C).Choose h ∈ H(B) − UC(B) whi
h is strongly extendible. So there is h̃ ∈ EXT(Y )extending h. So h̃τ−1 ∈ UC(X). Hen
e hη = h̃τ
−1

↾C ∈ UC(C). Sin
e η−1 ∈ UC±(C,B),
h = (hη)η

−1 ∈ UC(B). A 
ontradi
tion.(f) The proof is identi
al to that of (e).The following trivial examples show that the 
on
lusions of Corollary 7.11(b), (
) and(f) 
annot be strengthened.Example 7.12. (a) There are regular open sets X,Y ⊆ R2 su
h that(1) UC(X) = BUC(X) ∼= BUC(Y ) 6∼= UC(Y ).(2) X is BUD.AC and MV1 , and Y is UD.AC.(b) Let X = (0, 1). Then UC(X) = BPD.UC(X).
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) Let E be a Bana
h spa
e. Let Y = BE(0, 1). Let τ : E → Y be de�ned by τ (x) =

x/(1 + ‖x‖). Then τ ∈ BPD.UC±(E, Y ), BUC(E) = BPD.UC(E) and BPD.UC(Y ) 6∼=
BUC(Y ).Proof. (a) For n ∈ N we de�ne an open set Bn by

Bn = B(0, 1) −
⋃

i<n

B((i/n, 0), 1/3n).So Bn is obtained by removing from B(0, 1) n pairwise disjoint 
losed balls ea
h ofwhi
h 
ontained in B(0, 1). For every n ∈ N let Xn = (n, 0) + 1
n+4 · Bn and Yn =

(n, 0) + 1
4 · Bn. Let X =

⋃
n∈N

Xn and Y =
⋃
n∈N

Yn. Note that for every n 6= m,
d(Xn, Xm), d(Yn, Ym) ≥ 1/2 and Xn

∼= Yn 6∼= Ym. Note that limn→∞ diam(Xn) = 0and for every n, diam(Yn) = 1/2. It is easy to 
he
k that X and Y have the requiredproperties.The proofs of (b) and (
) are trivial.Question 7.13. For n > 1, 
onstru
t an open subset X ⊆ Rn su
h that UC(X) =

BPD.UC(X). Note that if X is su
h an example, then every 
onne
ted 
omponent of Xis an example. Note that every example whi
h is a 
onne
ted set is bounded. �



8. The group of lo
ally Γ -
ontinuous homeomorphisms of the
losure of an open set8.1. General des
ription. Lips
hitz equivalen
e between open subsets of Rn is relevantin the theory of fun
tion spa
es. Suppose that U, V are open subsets of Rn. The fa
tthat U, V are homeomorphi
 by a bilips
hitz homeomorphism or by a quasi
onformalhomeomorphism is equivalent to the fa
t that 
ertain Sobolev spa
es of fun
tions from Uto R and from V to R are isomorphi
 as latti
e ordered ve
tor spa
es. These resultsappear in [GV1℄, [GV2℄ and [GRo℄. We 
onsider the analogous question for the settingin whi
h the Sobolev fun
tion spa
es are repla
ed by homeomorphism groups.The simplest question of this kind is as follows. Let X ⊆ Rn and Y ⊆ Rm be opensets. Suppose that ϕ : LIP(cl(X)) ∼= LIP(cl(Y )). Prove that there is τ ∈ LIP±(X,Y )whi
h indu
es ϕ.We shall prove the above statement for bounded open subsets of Rn whi
h have awell-behaved boundary. In fa
t, we shall deal with a di�erent group of homeomorphisms,namely, the group LIPLC(cl(X)) of lo
ally bilips
hitz homeomorphisms of cl(X). But forbounded subsets of Rn this group 
oin
ides with LIP(cl(X)).The group of bilips
hitz homeomorphisms is only a spe
ial 
ase. It is generalizedto the setting of Γ -bi
ontinuous homeomorphisms, where Γ is any prin
ipal modulus of
ontinuity. (See Property M6 in De�nition 1.9.)The open sets for whi
h we 
an prove su
h results at this point, have a very well-behaved boundary. They are 
alled lo
ally Γ -LIN-bordered sets. See De�nition 8.1(
).Essentially these are the open subsets of a normed spa
e whose 
losure is a manifoldwith boundary. For su
h sets we de�ne the group of 
ompletely lo
ally Γ -bi
ontinuoushomeomorphisms. This group is denoted byHCMP.LC
Γ

(X), and is de�ned in De�nition 8.2.We give here an equivalent de�nition. Let X be an open subset of a metri
 spa
e E and
Γ be a modulus of 
ontinuity. De�ne

HCMP.LC
Γ (X) = {g ∈ H(cl(X)) | g is lo
ally Γ -bi
ontinuous and g(X) = X}.Suppose that Γ ,∆ are moduli of 
ontinuity and Γ is prin
ipal, E,F are normed spa
es,

X ⊆ E, Y ⊆ F and X,Y are lo
ally Γ -LIN-bordered sets. We shall prove thatif ϕ : HCMP.LC
Γ

(X) ∼= HCMP.LC
∆

(Y ), then Γ = ∆ and there is τ : cl(X) ∼= cl(Y )su
h that τ (X) = Y , τ is lo
ally Γ -bi
ontinuous and ϕ(g) = τ ◦ g ◦ τ−1 for every g ∈
HCMP.LC

Γ
(X).The above statement is also true whenX and Y are open subsets of a normed Lips
hitzmanifold; see Theorem 8.4(b). The argument for manifolds is essentially identi
al, soproofs will be given only for the 
lass of open subsets of normed spa
es.[164℄



Re
onstru
tion of manifolds from subgroups of homeomorphism groups 1658.2. Statement of the main theorems and the plan of the proof. We shall nowde�ne the 
lass of open sets with a well-behaved boundary.Definition 8.1. (a) Let E be a normed spa
e, A ⊆ E and r > 0. The set BCDE(A, r) :=

BE(0, r)−A is 
alled the boundary 
hart domain based on E and A with radius r. We saythat A ⊆ E is a 
losed half spa
e of E if there is ϕ ∈ E∗ su
h that A = {x ∈ E | ϕ(x) ≥ 0}.Suppose that dim(E) > 1, and A is either a 
losed subspa
e of E di�erent from {0} or a
losed half spa
e of E. Then BCDE(A, r) is 
alled a linear boundary 
hart domain.(b) Let 〈Y,Φ, d〉 be a normed manifold, X ⊆ Y be open, x ∈ bd(X) and α ∈ MBC.We say that X is α-linearly-bordered at x (α-LIN-bordered) if there are a linear boundary
hart domain BCDE(A, r) and a fun
tion ψ : BE(0, r) → Y su
h that:(i) ψ : BE(0, r) ∼= Rng(ψ),(ii) ψ takes open subsets of E to open subsets of Y and 
losed subsets of E to
losed subsets of Y ,(iii) ψ(BCDE(A, r)) = Rng(ψ) ∩X,(iv) ψ↾BCDE(A, r) is α-bi
ontinuous,(v) ψ(0) = x.
〈ψ,A, r〉 is 
alled a boundary 
hart element for x.(
) Let Γ ⊆ MC. We say that X is lo
ally Γ -LIN-bordered if for every x ∈ bd(X)there is α ∈ Γ su
h that X is α-LIN-bordered at x. �The open sets that we had in mind when de�ning LIN-borderedness are des
ribedbelow. Take an open subset U of Rn whose boundary is a smooth submanifold. Let
K1, . . . ,Kn be pairwise disjoint subsets of U , and assume that for every i, Ki is a 
ompa
tsmooth submanifold of Rn whi
h is not a singleton. Then U − ⋃n

i=1Ki is Γ
LIP-LIN-bordered.We re
all the de�nition of the group HCMP.LC

Γ
(X).Definition 8.2. Suppose that E,F are metri
 spa
es, X ⊆ E and Y ⊆ F , Γ ⊆ MC.Let f : X → Y . Then f is 
ompletely lo
ally Γ -
ontinuous if f ∈ EXTE,F (X,Y ),and for every x ∈ clE(X) there are α ∈ Γ and T ∈ NbrE(x) su
h that f↾(T ∩ X) is

α-
ontinuous. Complete lo
al Γ -bi
ontinuity is de�ned analogously.
HCMP.LC

Γ
(X,Y ;E,F ) denotes the set of 
ompletely lo
ally Γ -
ontinuous homeomor-phisms between X and Y . We use the notation HCMP.LC

Γ
(X,Y ) as an abbreviation of

HCMP.LC
Γ

(X,Y ;E,F ). The notations (HCMP.LC
Γ

)±(X,Y ) and HCMP.LC
Γ

(X) are derivedin the usual way. �Remark 8.3. (a) Note that in the above de�nition, if E and F are 
omplete metri
spa
es, then the requirement that f ∈ EXT(X,Y ) is not needed.(b) In the above de�nition assume that E,F are �nite-dimensional normed spa
es,and X,Y are bounded. Let g ∈ H(X,Y ). Then g ∈ (HCMP.LC
Γ

)±(X,Y ) i� there is α ∈ Γsu
h that gcl is α-bi
ontinuous.(
) The motivation for dealing with groups of the type HCMP.LC
Γ

(X) is the �nite-dimensional spe
ial 
ase des
ribed in (b). However, the proof of Theorem 8.4 below
overs other types of groups. The following is an example. Let E be a normed spa
e,



166 M. Rubin and Y. Yomdinand E be its 
ompletion. Let X ⊆ E be open. Write
bd(X) = clE(X) − int(X).See De�nition 2.24(a). Let cl(X) = X∪bd(X). Let HCMP.LC

Γ
(X) = HCMP.LC

Γ
(X; cl(X)).The proof of Theorem 8.4 
arries over to the group HCMP.LC

Γ
(X) ex
ept for a slight
hange in the 
onstru
tion of homeomorphisms in Chapter 11. �The next theorem is our main �nal goal. It is proved in 12.20(a).Theorem 8.4. (a) Let Γ be a prin
ipal modulus of 
ontinuity and ∆ be a modulus of
ontinuity. Let E,F be normed spa
es , X ⊆ E be a lo
ally Γ -LIN-bordered open set ,and Y ⊆ F be a lo
ally ∆-LIN-bordered open set. Suppose that ϕ : HCMP.LC

Γ
(X) ∼=

HCMP.LC
∆

(Y ). Then Γ = ∆, and there is τ ∈ (HCMP.LC
Γ

)±(X,Y ) su
h that ϕ(g) = gτ forevery g ∈ HCMP.LC
Γ

(X).(b) In (a) assume that E and F are normed Lips
hitz manifolds. Then the 
laim of(a) is true.Part (a) is a spe
ial 
ase of (b). But we shall prove only (a), sin
e the setting of (b)is more 
ompli
ated and the proofs are essentially identi
al.In the spe
ial 
ase of bounded �nite-dimensional spa
es, Theorem 8.4 has a morenatural formulation, whi
h we state in the next 
orollary.Corollary 8.5. Let Γ be a prin
ipal modulus of 
ontinuity , ∆ be a modulus of 
ontinuityand 〈X, d 〉 and 〈Y, e 〉 be 
ompa
t metri
 Eu
lidean manifolds with boundary. Assume that
〈X, d 〉 has an atlas 
onsisting of Γ -bi
ontinuous 
harts , 〈Y, e 〉 has an atlas 
onsisting of
∆-bi
ontinuous 
harts and ϕ : HΓ (X) ∼= H∆(Y ). Then Γ = ∆ and there is τ : X ∼= Ysu
h that τ is Γ -bi
ontinuous and ϕ(g) = gτ for every g ∈ HΓ (X).Proof. The 
orollary follows from Theorem 8.4(b) and Remark 8.3(b).Plan of the proof of Theorem 8.4(a). The proof of Theorem 8.4(a) has four main steps:Step 1: There is τ ∈ H(X,Y ) su
h that ϕ(g) = gτ for every g ∈ HCMP.LC

Γ
(X).Step 2: Γ = ∆, and τ is lo
ally Γ -bi
ontinuous.Step 3: τ ∈ EXT±(X,Y ).Step 4: τ is 
ompletely lo
ally Γ -bi
ontinuous.The �rst two steps have already been a

omplished. Step 1 follows from Theorem 2.8and Step 2 from Theorem 3.27. The exa
t statement of Step 3 is given in Theorem 8.8.The proof of this theorem takes all of Chapters 8�11, and the 
on
lusion of the proofappears at the end of Chapter 11. Chapter 12 is devoted to the proof of Step 4.Theorem 8.8 has two variants. Part (a) is indeed the main goal. However, the strengthof the argument is partially lost when dealing only with groups of the type HCMP.LC

Γ
(X).Part (b) is stated in order to later reveal the full strength of the argument. See furtherexplanation after the statement of Theorem 8.8.Definition 8.6. (a) Suppose thatX ⊆ E is open. A subset H ⊆ EXTE(X) is E-dis
reteif {supp(h) | h ∈ H} is 
ompletely dis
rete with respe
t to E. (See De�nition 6.1(a).)Note that if H is E-dis
rete, then ◦{h | h ∈ H} ∈ EXTE(X).
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onstru
tion of manifolds from subgroups of homeomorphism groups 167(b) A subgroup G ≤ EXT(X) is 
losed under E-dis
rete 
omposition if ◦{h | h ∈ H}
∈ G for every E-dis
rete set H ⊆ G.(
) Let E be a metri
 spa
e, X ⊆ E be open, and G ≤ EXT(X). We say that G is ofboundary type Γ if for every x ∈ bd(X):(i) there is U ∈ NbrE(x) su
h that G U ∩X ⊇ HCMP.LC

Γ
(X) U ∩X ,(ii) for every g ∈ G, there is V ∈ NbrE(x) su
h that g↾(V ∩X) is Γ -bi
ontinuous.A subgroup G ≤ EXT(X) is Γ -appropriate if G is 
losed under E-dis
rete 
omposition,and G is of boundary type Γ .(d) Let HBDR.LC

Γ
(X) = {g ∈ EXT(X) | for every x ∈ bd(X), g is Γ -bi
ontinuousat x}. Let∆ be a modulus of 
ontinuity. De�neHCMP.LC

∆,Γ (X)=HLC
∆

(X)∩HBDR.LC
Γ

(X).�Example 8.7. HCMP.LC
Γ

(X) and HBDR.LC
Γ

(X) are Γ -appropriate, and if Γ ⊆ ∆, then
HCMP.LC

∆,Γ (X) is Γ -appropriate. �Theorem 8.8. Let Γ ,∆ be 
ountably generated moduli of 
ontinuity , E and F be normedspa
es and X ⊆ E, Y ⊆ F be open. Suppose that X is lo
ally Γ -LIN-bordered , and Y islo
ally ∆-LIN-bordered and let τ ∈ H(X,Y ).(a) If (HCMP.LC
Γ

(X))τ = HCMP.LC
∆

(Y ), then τ ∈ EXT±(X,Y ).(b) Suppose that G ≤ EXT(X), H ≤ EXT(Y ) are respe
tively Γ - and ∆-appropriateand Gτ = H. Then τ ∈ EXT±(X,Y ).The proof of Theorem 8.8 appears at the end of Chapter 11.Explanation. Suppose that (HCMP.LC
Γ

(X))τ = HCMP.LC
∆

(Y ). Then Γ = ∆. This iseasily 
on
luded in the following way. Let U ⊆ X be an open set su
h cl(U) ⊆ X and
cl(τ (U)) ⊆ Y . Sin
e cl(U) ⊆ X, HCMP.LC

Γ
(X) U = HLC

Γ
(X) U . Sin
e cl(τ (U)) ⊆ Y ,

HCMP.LC
∆

(Y ) τ (U) = HLC
∆

(Y ) τ (U) . So (HLC
Γ

(X) U )τ = HLC
∆

(Y ) τ (U) . It now followseasily from Theorem 3.27 or from Theorem 3.42(b) that Γ = ∆.When dealing with HBDR.LC
Γ

(X), the above argument is no longer valid. Instead onehas to infer that Γ = ∆ from the behavior of τ at bd(X). This is more di�
ult, and wehave a proof only in spe
ial 
ases. Part (b) of 8.8 prepares the ground for this argument.As a 
onsequen
e of Step 2, at the time that we rea
h Step 4, we already know that
Γ = ∆. So the statement of Step 4 is as follows.Theorem 8.9. Let Γ be a prin
ipal modulus of 
ontinuity , X ⊆ E and Y ⊆ F be opensubsets of the normed spa
es E and F and τ ∈ EXT±(X,Y ). Suppose that X and Y are
Γ -LIN-bordered and (HCMP.LC

Γ
(X))τ = HCMP.LC

Γ
(Y ). Then τ ∈ (HCMP.LC

Γ
)±(X,Y ).Chapter 12 is devoted to the proof of Theorem 8.9. A
tually, the main result ofChapter 12 is Theorem 12.19, and 8.9 is just a 
orollary of that theorem. At the end ofChapter 12 we prove Theorem 8.4(a). At that point it is only a matter of 
ombining theintermediate results from Chapters 11 and 12. This is done in Theorem 12.20, and 8.4(a)is the �rst part of that theorem.Certain types of boundary points have to be treated di�erently than others. Thesetypes are de�ned below.



168 M. Rubin and Y. YomdinDefinition 8.10. If in part (b) of De�nition 8.1, A is a 
losed subspa
e of E and
dim(A) = 1, or dim(E) = 2 and A is a half spa
e of E, then we say that bd(X) is
1-dimensional at x.If in part (b) of De�nition 8.1, A is a 
losed subspa
e of E and 
o-dim(A) = 1, or Ais a half spa
e of E, then we say that bd(X) has 
o-dimension 1 at x.If in part (b) of 8.1, A is a 
losed subspa
e of E with 
o-dimension 1, then wesay that X is two-sided at x. Hen
e Rng(ψ) ∩ X has two 
onne
ted 
omponents. Let
u, v ∈ Rng(ψ) ∩ X. We say that u, v ∈ X are on the same side of bd(X) with respe
tto 〈ψ,A, r〉 if u, v are in the same 
onne
ted 
omponent of Rng(ψ) ∩ X. We say that
u, v ∈ X are on di�erent sides of bd(X) with respe
t to 〈ψ,A, r〉 if u, v are in di�erent
onne
ted 
omponents of Rng(ψ) ∩X.If in part (b) of 8.1, (i) dim(E) > 2, and (ii) A is a 
losed subspa
e of E of dimension
> 1 or A is a 
losed half spa
e of E, then we say that X is α-simply-linearly-bordered
(α-SLIN-bordered) at x. �Let x ∈ bd(X). Note that if bd(X) is 1-dimensional at x, and 〈ψ,A, r〉 is any boundary
hart element for x, then either (i) A is a 1-dimensional subspa
e, or (ii) dim(E) = 2 and
A is a 
losed half spa
e. Similarly, if X is two-sided at x, and 〈ψ,A, r〉 is any boundary
hart element for x, then A is a 
losed subspa
e with 
o-dimension 1.Question 8.11. A subset A ⊆ E is 
alled a 
losed half subspa
e of E if there is a 
losedsubspa
e F of E su
h that F 6= {0} and A is a half spa
e of F . Let BCDE(A, r) be aboundary 
hart domain. We 
all BCDE(A, r) an almost linear boundary 
hart domainif either it is a linear boundary 
hart domain, or A is a 
losed half subspa
e of E. Let
Γ ⊆ MC. De�ne the notion �X is lo
ally Γ -almost-linearly-bordered� (lo
ally Γ -ALIN-bordered) in analogy with De�nition 8.1(
).Are Theorems 8.8 and 8.9 true for lo
ally ALIN-bordered sets?In order to prove the analogues of 8.8 and 8.9 for lo
ally ALIN-bordered sets, onlyLemma 9.13 needs to be generalized. All other ingredients in the proof remain essentiallythe same. �Some ALIN-bordered sets are des
ribed below. Take an open subset U of Rn whoseboundary is a smooth submanifold. Let K1, . . . ,Kn be pairwise disjoint subsets of U ,and assume that for every i, Ki is a 
ompa
t manifold with a boundary whi
h is nota singleton, and Ki is smoothly embedded in Rn. Then U − ⋃n

i=1Ki is Γ
LIP-ALIN-bordered.



9. The Uniform Continuity Constant9.1. Preliminary lemmas about the existen
e of 
ertain 
onstants. In preparingthe ground for the proof of Theorem 8.8, we need to 
hara
terize the pairs of 
onvergentsequen
es ~x, ~y in X for whi
h there is an α-bi
ontinuous homeomorphism g ∈ H(X) andsubsequen
es ~x′, ~y′ of ~x and ~y su
h that g(~x′) = ~y′. Stated more pre
isely, let z ∈ bd(X)and lim ~x = lim ~y = z, and assume that for every n ∈ N,(1) ‖xn − z‖ ≤ α(‖yn − z‖) and ‖yn − z‖ ≤ α(‖xn − z‖),(2) d(xn, bd(X)) ≤ α(d(yn, bd(X))) and d(yn, bd(X)) ≤ α(d(xn, bd(X))).We shall prove that there are g ∈ H(X) and subsequen
es ~x′ and ~y′ of ~x and ~y respe
-tively su
h that g(~x′) = ~y′ and g is N · α ◦α ◦α ◦α-bi
ontinuous. In fa
t, this is only anapproximation of what we really prove. The exa
t statement to be proved is the equiv-alen
e between the 
onjun
tion of (1) and (2) above and the fa
t that ~x ∼Nα
4

~y. Therelation ∼α is de�ned in 11.1(
), and in Proposition 11.3(a) we prove this equivalen
e.The Uniform Continuity Constant Lemma 9.13 is the main fa
t needed in the proofof the above. It says that there is K > 0 for whi
h A ⇒ B, where A and B are thefollowing statements.
(A) E is a normed ve
tor spa
e, F is a 
losed subspa
e of E with dimension > 1,

α ∈ MBC, x, y ∈ E − F , ‖x‖ ≤ ‖y‖ ≤ α(‖x‖) and α−1(d(x, F )) ≤ d(y, F ) ≤ α(d(x, F )).
(B) There is an K ·α ◦α-bi
ontinuous homeomorphism g su
h that: g(x) = y, g(F ) =

F and supp(g) ⊆ B(0, 2‖y‖) −B(0, ‖x‖/2).This 
hapter is devoted to the proof of this lemma. The geometri
 
ontent of thelemma is simple, but a detailed proof seems to require mu
h work. When the 
laim ofthe lemma is restri
ted to pre-Hilbert spa
es and not to general normed spa
es, the proofis easier.We shall also need a statement analogous to A ⇒ B for subspa
es F of E with
dim(F ) = 1. In this 
ase statements A and B need to be slightly modi�ed. Chapter 10deals with this situation.Before turning to the proof of the Uniform Continuity Constant Lemma we quotesome well-known basi
 fa
ts from fun
tional analysis, and we also establish the existen
eof various types of homeomorphisms whi
h will be used in the proof of 9.13. Thesepreparations are 
arried out in 9.1�9.10. We start with some notation.Notations 9.1. (a) For K ≥ 1 and a, b ≥ 0 let a ≈K b mean that a/K ≤ b ≤ Ka. If
‖ ‖1, ‖ ‖2 are norms on a ve
tor spa
e E, then ‖ ‖1 ≈K ‖ ‖2 means that ‖u‖1 ≈K ‖u‖2for every u ∈ E. [169℄



170 M. Rubin and Y. Yomdin(b) The notation E = L⊕algS means that L+S = E and L∩S = {0}. If E = L⊕algS,then (x)L,S , (x)S,L denote the 
omponents of x in L and S respe
tively. In what followswe sometimes abbreviate (x)L,S by (x)L and (x)S,L by (x)S. Suppose that E = L⊕alg S.We de�ne ‖u‖L,S = ‖(u)S‖+ ‖(u)L‖. The notation E = L⊕S means that E = L⊕alg S,and that for some K ≥ 1, ‖ ‖L,S ≈K ‖ ‖. In su
h a 
ase S is 
alled a 
omplement of Lin E.(
) Let L be a linear subspa
e of E. Then 
o-dimE(L) denotes the 
o-dimension of Lin E. This is abbreviated by 
o-dim(L).(d) Let F and H be linear subspa
es of a normed spa
e E and M ≥ 1. We de�ne
H ⊥M F if d(h, F ) ≥ ‖h‖/M for every h ∈ H.(e) Let E = F ⊕alg H. Then ProjF,H denotes the fun
tion u 7→ (u)F,H , u ∈ E.(f) Let X be a metri
 spa
e, x ∈ X and 0 < r < s. The ring with 
enter at x andwith radii r, s is de�ned as

B(x; r, s) = {y ∈ X | r < d(x, y) < s}.We quote without proof some basi
 and well-known fa
ts from fun
tional analysis.Proposition 9.2. (a) For every n > 0 there is M = Maoc(n) ≥ 1 su
h that for everynormed spa
e E and an n-dimensional subspa
e L of E there is a 
omplement S of L in
E su
h that M‖x‖ ≥ ‖(x)L,S‖ + ‖(x)S,L‖ for every x ∈ E. A subspa
e S satisfying theabove is 
alled an almost orthogonal 
omplement of L.(b) For every n > 0 there is M = M thn(n) ≥ 1 su
h that for every normed n-dimensional spa
e E there is a Hilbert norm ‖ ‖H on E su
h that ‖x‖ ≤ ‖x‖H ≤ M‖x‖for every x ∈ E. The norm ‖ ‖H is 
alled a tight Hilbert norm on E. We denote M thn(2)by M thn.(
) For every n > 0 there is M = Mhlb(n) ≥ 1 su
h that for every normed spa
e Eand an n-dimensional linear subspa
e L of E there are a Eu
lidean norm ‖ ‖H on L anda 
omplement S of L su
h that for every x ∈ E,

‖(x)L,S‖H + ‖(x)S,L‖ ≈M ‖x‖.Also, if m < n, then Mhlb(m) ≤Mhlb(n). A pair 〈‖ ‖H, S 〉 satisfying the above is 
alleda tight Hilbert 
omplementation for L. We denote Mhlb(2) by Mhlb.(d) Let E = F ⊕H and M ≥ 1. Then H ⊥M F i� ‖ProjH,F ‖ ≤M .(e) Let E = F ⊕H and suppose that H ⊥M F . Then F ⊥M+1 H.(f) Let E = F ⊕H and suppose that H ⊥M F . Then ‖ ‖F,H ≈2M+1 ‖ ‖.(g) Let E = F ⊕H and suppose that ‖ ‖F,H ≈M ‖ ‖. Then H ⊥M F .(h) Let T : E → E be a bounded linear proje
tion with a 
losed range. Then
ker(T ) ⊥‖T‖+1 Rng(T ).(i) Let x, y ∈ E −{0} be su
h that ‖x‖ ≤ ‖y‖. Let z = ‖x‖

‖y‖y. Then ‖y− z‖ ≤ ‖y− x‖and ‖x− z‖ ≤ 2‖y − x‖.Proposition 9.3. Let F be a 
losed subspa
e of a normed ve
tor spa
e E, x, y ∈ E − Fand ε > 0. Then there is a 
losed subspa
e H of E su
h that F ⊆ H, span(H∪{x, y}) = E,
d(x,H) ≥ 1

1+εd(x, F ) and d(y,H) ≥ 1
1+εd(y, F ).



Re
onstru
tion of manifolds from subgroups of homeomorphism groups 171Proof. Let ∆ = 1+ε and x̂ ∈ F be su
h that ‖x− x̂‖ ≤ ∆d(x, F ). Write x⊥ = x− x̂. Let
ψ be the linear fun
tional on span(F ∪ {x}) de�ned by ψ(x

⊥
) = ‖x⊥‖ and ψ(F ) = {0}.We 
he
k that ‖ψ‖ ≤ ∆. Let z ∈ span(F ∪ {x}). If z ∈ F , then |ψ(z)| = 0 ≤ ∆‖z‖.Suppose that z = u+ λx

⊥, where u ∈ F and λ 6= 0. We may assume that λ = 1. Then
|ψ(z)| = ‖x⊥‖ ≤ ∆d(x, F ) ≤ ∆‖(u− x̂) + x‖ = ∆‖u+ x

⊥‖ = ∆‖z‖.Let ϕ ∈ E∗ extend ψ and ‖ϕ‖ = ‖ψ‖. Let H1 = ker(ϕ). So F ⊆ H1. Sin
e x = x̂ + x
⊥and x̂ ∈ H1, d(x,H1) = d(x

⊥
, H1). Let u ∈ H1. Then

‖x⊥ − u‖ ≥ |ϕ(x
⊥ − u)|
∆

=
‖x⊥‖

∆
≥ d(x, F )

∆
.Hen
e d(x,H1) = d(x

⊥
, H1) ≥ d(x,F )

1+ε .Similarly, there is a 
losed linear subspa
eH2 with 
o-dimension 1 su
h that d(y,H2) ≥
d(y,F )
1+ε . Let H = H1 ∩H2. Then H is as required.The next proposition 
ontains some additional basi
 and well-known fa
ts from fun
-tional analysis. The proofs are again omitted.Proposition 9.4. (a) For every n ∈ N there isMprj(n) su
h that for every normed spa
e
E and a 
losed linear subspa
e F ⊆ E: if 
o-dimE(F ) = n, then there is a proje
tion
T : E → F su
h that ‖T‖ ≤Mprj(n).(b) For every n ∈ N there is M = Mort(n) su
h that for every normed spa
e E and a
losed linear subspa
e F ⊆ E: if 
o-dimE(F ) ≤ n, then there is a 
losed linear subspa
e
H ⊆ E su
h that F ⊕H = E and H ⊥M F . One 
an take Mort(n) to be 2n − 1 + ε forany ε > 0. We denote Mort(2) by Mort.(
) Let M fdn(n) = (1+M thn(n)) ·Mort(n)+1. Let E be a normed spa
e, F ⊆ E be a
losed subspa
e with 
o-dimension ≤ n and H be su
h that F⊕H = E and H ⊥M

ort
(n) F .Let ‖ ‖H be a Hilbert norm on H su
h that ‖ ‖H ≈M

thn
(n) ‖ ‖↾H. De�ne a new norm on

E by ‖u‖N = ‖(u)F‖+ ‖(u)H‖H. Then ‖ ‖N ≈M
fdn

(n) ‖ ‖. We denote M fdn(2) by M fdn.Definition 9.5. (a) Let H be a 2-dimensional Hilbert spa
e and θ ∈ R. Then RotHθdenotes the rotation by an angle of θ in H. Let E = F ⊕H be normed spa
es. Supposethat H is a 2-dimensional Hilbert spa
e. For θ ∈ R let RotF,Hθ ∈ H(E) be de�ned by
RotF,Hθ (u) = (u)F + RotHθ ((u)H), u ∈ E.(b) Let h = RadEη,z be a radial homeomorphism. (See De�nition 3.17(b).) We saythat h is pie
ewise linearly radial if η is pie
ewise linear. �Part (a) of the following proposition is a variant of Lemma 2.14(
).Proposition 9.6. (a) There is M seg > 1 su
h that for every normed spa
e E, x, y ∈ Eand r > 0, there is h ∈ H(E) su
h that(1) supp(h) ⊆ B([x, y], r),(2) h(x) = y,(3) h is M seg · (‖x− y‖/r + 1)-bilips
hitz.(b) For every t > 0 there is Marc(t) > 1 su
h that for every normed spa
e E, are
ti�able ar
 L ⊆ E with endpoints x, y and r > 0 there is h ∈ H(E) su
h that



172 M. Rubin and Y. Yomdin(1) supp(h) ⊆ B(L, r),(2) h(x) = y,(3) h is Marc(lngth(L)/r)-bilips
hitz.(
) There is M rot ≥ 1 su
h that the following holds. Let E = F ⊕ H be normedspa
es. Suppose that H is a 2-dimensional Hilbert spa
e, and that for every u ∈ E,
‖u‖ = ‖(u)F ‖ + ‖(u)H‖. Let S be a 
losed subset of E, η : [0,∞) → R, and K, r > 0be su
h that : (i) S ⊆ B̄(0, r); (ii) for every u ∈ S and θ ∈ R, RotF,Hθ (u) ∈ S; (iii) ηis K-Lips
hitz ; (iv) η(s) = 0 for every s ≥ r. Let g : E → E be de�ned by g(u) =

RotF,Hη(d(u,S))(u). Then g ∈ H(E) and g is (M rotKr + 1)-bilips
hitz.(d) Suppose that F,H are normed spa
es , E = F ⊕H, and ‖u + v‖ = ‖u‖ + ‖v‖ forevery u ∈ F and v ∈ H. Let x̂ ∈ F , x ∈ H, a > 1, x′ = x̂ + x and x′′ = x̂ + ax. Thenthere is g ∈ H(E) su
h that(1) g(x′) = x′′,(2) g↾F = Id,(3) for every u ∈ F we have supp(g) ⊆ B(u; s, t), where s = ‖x′ − u‖/2 and
t = 3‖x′′ − u‖/2.(4) g is 2M sega-bilips
hitz.Proof. (a) Set x̄ = x/‖x‖ and a = ‖x− y‖. We may pla
e the origin in su
h a way that

x = (r/2) · x̄ and y = (r/2+ a) · x̄. We may assume that r < a. Write M = Maoc(1). Let
L = span({x}) and S be a 
omplement of L su
h that M‖u‖ ≥ ‖(u)L,S‖ + ‖(u)S,L‖ forevery u ∈ E. So for every u ∈ S, ‖u‖ ≤ M · d(u, L). Write (u)L,S = û and (u)S,L = u

⊥.For every u ∈ E let λu be su
h that û = λux̄. So u = λux̄+ u
⊥.Let g(s, t) = gs(t), s ≥ 0, t ∈ R, be de�ned as follows. For every s ≥ 0, gs(t) is apie
ewise linear fun
tion satisfying the following.(1) The breakpoints of gs(t) are 0, r/2 and a+ r.(2) If s ∈ [0, r/2M ], then gs(r/2) = r/2M−s

r/2M · (a + r/2), and if s ≥ r/2M , then
gs(r/2) = r/2.(3) If t ≤ 0 or t ≥ a+ r, then gs(t) = t.So g0(r/2) = a+ r/2 and gs = Id for every s ≥ r/2M . De�ne

h(u) = u
⊥

+ gd(u,L)(λu) · x̄.Clearly, h(x) = y. Let u ∈ E − B([x, y], r), and we prove that h(u) = u. If d(u, L) ≥
r/2M , then gd(u,L) = Id. So h(u) = u

⊥
+ λux̄ = u. Assume that d(u, L) < r/2M . If

λu ≤ 0, then for every s, gs(λu) = λu and hen
e h(u) = u. Assume that λu > 0. Sin
e
d(u, L) < r/2M , it follows that ‖u⊥‖ < r/2. Hen
e

|λu − (a+ r/2)| = ‖û− y‖ ≥ ‖u− y‖ − ‖u⊥‖ > r − r/2 = r/2.That is, either (i) λu − (a + r/2) > r/2 or (ii) λu − (a + r/2) < −r/2. Suppose by
ontradi
tion that (ii) happens. Then 0 < λu < a. If λu ≥ r/2, then û = λux̄ ∈ [x, y],and hen
e d(u, [x, y]) ≤ ‖u − û‖ = ‖u⊥‖ < r/2. So u ∈ B([x, y], r), a 
ontradi
tion. If
λu < r/2, then d(u, [x, y]) ≤ ‖x−u‖ ≤ ‖x−û‖+‖u⊥‖ < r/2+r/2 = r. So u ∈ B([x, y], r).
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ontradi
tion. Hen
e λu − (a + r/2) > r/2. So λu > a + r, and hen
e for every s,
gs(λu) = λu. So h(u) = u. We have shown that h↾(E −B([x, y], r)) = Id.For every s ≥ 0 let fs = g−1

s , and let f(s, t) = fs(t). Note that for every u ∈ E, u⊥ =

(h(u))
⊥, and hen
e d(h(u), L) = d(u, L). So if w = h(u), then u = w

⊥
+ fd(w,L)(λw) · x̄.Hen
e h−1 exists and is 
ontinuous, and so h ∈ H(E).We show that h and h−1 are Lips
hitz. Note that for every s, the three slopes of gsare ≤ a+r/2

r/2 . Also, for every s1, s2 ≥ 0 and t ∈ R,
|gs1(t) − gs2(t)| ≤

a

r/2M
· |s1 − s2|.For fs, the maximal slope is again a+r/2

r/2 and
|fs1(t) − fs2(t)| ≤

a

r/2M
· |s1 − s2|.Now

h(u) − h(v) = u
⊥ − v

⊥
+ (gd(u,L)(λu) − gd(u,L)(λv))x̄+ (gd(u,L)(λv) − gd(v,L)(λv))x̄.Write w = u− v. So

‖h(u) − h(v)‖ ≤ ‖u⊥ − v
⊥‖ + |gd(u,L)(λu) − gd(u,L)(λv)| + |gd(u,L)(λv) − gd(v,L)(λv)|

≤ ‖w⊥‖ +
a+ r/2

r/2
‖û− v̂‖ +

a

r/2M
· (d(u, L) − d(v, L))

≤ ‖w⊥‖ + (2a/r + 1) · ‖ŵ‖ + ‖u− v‖

≤M‖u− v‖ + (2a/r + 1)M‖u− v‖ + ‖u− v‖ ≤ (3M + 1)(a/r + 1)‖u− v‖.An identi
al 
omputation shows that h−1 is (3M + 1)(a/r + 1)-Lips
hitz. So M seg =

3M + 1.(b) Let E be a normed spa
e, L ⊆ E be a re
ti�able ar
 with endpoints x, y and
r > 0. Set ℓ = lngth(L) and n = [ℓ/r] + 1. There are xi ∈ L, i = 0, . . . , n, su
h that
x0 = x, xn = y and for every i < n, ‖xi − xi+1‖ ≤ r. For i < n let Li = [xi, xi+1]. Then
B(Li, r/2) ⊆ B(L, r). By (a), there is gi ∈ H(E) su
h that(1) supp(gi) ⊆ B(Li, r/2),(2) gi(xi) = xi+1,(3) gi is M seg · ( ‖xi−xi+1‖

r/2 + 1)-bilips
hitz.Sin
e ‖xi − xi+1‖ ≤ r and by (3), gi is 3M seg-bilips
hitz. Let Marc(t) = (3M seg)[t]+1.De�ne g = g0 ◦ · · · ◦ gn−1. It is easily seen that g(x) = y, supp(g) ⊆ B(L, r) and g is
Marc(ℓ/r)-bilips
hitz.(
) Suppose that some fun
tion f : E → E has the property that for some a > 0,
‖f(u)−f(v)‖ ≤M‖u−v‖ for every u, v ∈ E su
h that ‖u−v‖ ≤ a. Then f isM -Lips
hitz.For the fun
tion g we take a to be r. Let u, v ∈ E be su
h that ‖u−v‖ ≤ r. If v 6∈ B(0, 3r),then u 6∈ B(0, 2r). So g(u) = u and g(v) = v. We may thus assume that ‖v‖ < 3r. Denote
(u)H , (u)F , (v)H , (v)F by u1, u2, v1, v2 respe
tively and θ(w) := η(d(w, S)). Then
g(v) − g(u) = (RotHθ(v)(v1) − RotHθ(u)(v1)) + (RotHθ(u)(v1) − RotHθ(u)(u1)) + (v2 − u2).
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‖g(v) − g(u)‖ ≤ ‖(RotHθ(v)(v1) − RotHθ(u)(v1))‖

+ ‖(RotHθ(u)(v1) − RotHθ(u)(u1)) + (v2 − u2)‖
= ‖(RotHθ(v)(v1) − RotHθ(u)(v1))‖ + ‖v − u‖.We estimate the �rst summand in the last expression:

‖(RotHθ(v)(v1) − RotHθ(u)(v1))‖ ≤ |θ(v) − θ(u)| · ‖v1‖ ≤ |θ(v) − θ(u)| · ‖v‖
= |η(d(v, S)) − η(d(u, S))| · ‖v‖ ≤ K · |d(v, S) − d(u, S)| · ‖v‖

≤ K · ‖v − u‖ · ‖v‖ ≤ 3Kr · ‖v − u‖.It follows that ‖g(v) − g(u)‖ ≤ (3Kr + 1) · ‖v − u‖.Note that g−1(u) = RotF,H−η(d(u,S))(u). Sin
e (iii) and (iv) of (
) hold for −η, we also�nd that g−1 is (3Kr + 1)-Lips
hitz. So M rot = 3.(d) Let E,F,H, x̂, x, a be as in (d). It su�
es to prove (d) for x̂ = 0, sin
e if gsatis�es the requirements of (d) for E,F, 0, x, a, then gtrx̂ satis�es those requirements for
E,F, x̂, x, a. So x′ = x and x′′ = ax. Let L = [x, ax] and r = ‖x‖/2. So

lngth(L)

r
+ 1 ≤ (a− 1)‖x‖

‖x‖/2 + 1 = 2(a− 1) + 1 ≤ 2a.It follows from (a) that there is g ∈ H(E) su
h that supp(g) ⊆ B(L, r), g(x) = ax and gis 2aM seg-bilips
hitz. A trivial 
omputation shows that g ful�lls (d)(2) and (d)(3).Proposition 9.7. For every K ≥ 1 there is Mbnd(K) ≥ 1 su
h that the following holds.Suppose that E is a normed spa
e and F is a 
losed linear subspa
e of E. Let x ∈ E−Fbe su
h that d(x, F ) > ‖x‖/K and y ∈ F − {0}. Then there is g ∈ H(E) and a, b > 0su
h that(1) g(x) = ax+ by,(2) ‖g(x)‖ = ‖x‖,(3) d(g(x), F ) = ‖g(x)‖/K,(4) g↾F = Id,(5) supp(g) ⊆ B(0; ‖x‖/2, 3‖x‖/2),(6) g is Mbnd(K)-bilips
hitz.Proof. Let x, y be as in the proposition. We may assume that ‖y‖ = ‖x‖. Let L1 =

[x, y]. We �nd D(K) su
h that d(L1, 0) ≥ D(K)‖x‖. Let E1 = span({x, y}) and F1 =

span({y}). So ‖x‖ ≤ Kd(x, F1). Set M = M thn(2), and let ‖ ‖H be a Hilbert norm on
E1 su
h that ‖u‖ ≤ ‖u‖H ≤ M‖u‖ for every u ∈ E1, Hen
e ‖x‖H/M ≤ KdH(x,E1).Also, ‖x‖H, ‖y‖H ≥ ‖x‖/M . Let α be the angle between x and F1. Hen
e sin(α) =

dH(x,E1)/‖x‖H ≥ 1/MK. It follows that
d(0, L1) ≥

dH(0, L1)

M
=

sin(α/2)‖x‖H
M

≥ sin(α)

2M
‖x‖ ≥ ‖x‖

2M2K
.So D(K) = 1/2M2K.Sin
e d(x, F )/‖x‖ > 1/K and d(y, F )/‖y‖ = 0 < 1/K, there is z0 ∈ [x, y] su
h that

d(z0, F )/‖z0‖ = 1/K. Obviously, ‖z0‖ ≤ ‖x‖. Let z = (‖x‖/‖z0‖) · z0. So ‖z‖ = ‖x‖and d(z, F )/‖z‖ = 1/K. Obviously, for some a, b > 0, z = ax + by. Let L = [x, z]. For
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tion of manifolds from subgroups of homeomorphism groups 175some λ ≥ 1, z = λz0. This implies that for every u ∈ L there are v ∈ [x, z0] and µ ≥ 1su
h that u = µv. It follows that d(L, 0) ≥ d([x, z0], 0), and sin
e [x, z0] ⊆ L1, we have
d(L, 0) ≥ d(L1, 0) ≥ ‖x‖/2M2K.Obviously, ‖x − z‖ ≤ 2‖x‖. Let r = ‖x‖/4M2K. By Proposition 9.6(a), there is
h ∈ H(E) su
h that h(x) = z, supp(h) ⊆ B(L, r) and h is M seg · (‖x − z‖/r + 1)-bilips
hitz. By the above,

‖x− z‖
r

+ 1 ≤ 2‖x‖
‖x‖/4M2K

+ 1 = 8M2K + 1 ≤ 9M2K.So h is 9M segM2K-bilips
hitz.Re
all that d(z, F ) = ‖z‖/K, d(x, F ) > ‖x‖/K and for some u ∈ F and c > 0,
x = u+ cz. This implies that d(L,F ) = ‖z‖/K. Hen
e

d(B(L, r), F ) =
‖x‖
K

− r =
‖x‖
K

− ‖x‖
4M2K

> 0.So h↾F = Id.From the fa
t that ‖z‖ = ‖x‖, it follows that L ⊆ B(0, ‖x‖). Therefore B(L, r) ⊆
B(0, ‖x‖ + r). Hen
e supp(h) ⊆ B(0, (1 + 1/4M2K)‖x‖). But 1 + 1/4M2K < 3/2, so
supp(h) ⊆ B(0, 3

2‖x‖). Clearly, h↾B(0, d(L, 0)−r) = Id. Hen
e h↾B(0, ‖x‖/4M2K) = Id.Let η ∈ H([0,∞)) be the pie
ewise linear fun
tion su
h that: (i) the breakpoints of
η are ‖x‖/4M2K and ‖x‖; (ii) η(‖x‖/4M2K) = ‖x‖/2, and η(t) = t for every t ≥ ‖x‖.The slopes of the pie
es of η are 2M2K, 4M2K/2(4M2K − 1) and 1. So η is 2M2K-bilips
hitz.Let k be the radial homeomorphism based on η. Then by Proposition 3.18, k is 6M2K-bilips
hitz. Also, k(B(0, ‖x‖/4M2K)) = B(0, ‖x‖/2), k(B(0, 3‖x‖/2)) = B(0, 3‖x‖/2),
k(F ) = F , k(x) = x and k(z) = z.Let g = hk. Then g(x) = z, supp(g) ⊆ B(0; ‖x‖/2, 3‖x‖/2), g↾F = Id, and g hasbilips
hitz 
onstant (6M2K)2 · 9M segM2K. So Mbnd(K) = 324M segM6K3.Proposition 9.8. There is M cmp ≥ 1 su
h that the following holds. Suppose that E =

F⊕H, dim(H) ≤ 2 and H ⊥M
ort

F . Let x ∈ E−F , x = x̂+x
⊥, x̂ ∈ F , ‖x⊥‖ ≤ 4

3d(x, F )and d(x, F ) ≤ 1
16‖x‖. Then there is g ∈ H(E) su
h that(1) g is M cmp-bilips
hitz ,(2) g(x) = x̂+ (x)H ,(3) g↾F = Id,(4) supp(g) ⊆ B(0; ‖x‖/2, 3‖x‖/2).Proof. Note that x̂ + x

⊥
= x = (x)F + (x)H . So (x)H − x

⊥
= x̂ − (x)F ∈ F . Hen
e

d(x+λ((x)H−x⊥), F ) = d(x, F ) for every λ ∈ R. Consider the interval L = [x, x̂+(x)H ].Then L = {x+ λ((x)H − x
⊥
) | λ ∈ [0, 1]} and so d(L,F ) = d(x, F ). It follows that

lngth(L) = ‖(x)H−x⊥‖ ≤ ‖(x)H‖+‖x⊥‖ ≤Mort ·d(x, F )+ 4
3d(x, F ) = (Mort+ 4

3 )d(x, F )and hen
e lngth(L)/d(x, F )+1 ≤Mort+4/3+1 ≤Mort+3.We shall now �nd minu∈L ‖u‖and maxu∈L ‖u‖. Let u ∈ L. Then for some λ ∈ [0, 1], u = x+λ((x)H −x⊥). Re
all that
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d((x)H , F ) ≥ ‖(x)H‖/Mort. So

‖u‖ ≥ ‖x‖ − ‖x⊥‖ − ‖(x)H‖ ≥ ‖x‖ − 4

3
d(x, F ) −Mort · d((x)H , F )

= ‖x‖ − 4

3
d(x, F ) −Mort · d(x, F ) = ‖x‖ −

(
Mort +

4

3

)
d(x, F )

≥ ‖x‖ −
(
Mort +

4

3

)‖x‖
16

≥ 9

16
‖x‖.For the maximum of ‖u‖ we have

‖u‖ ≤ ‖x‖ + ‖x⊥‖ + ‖(x)H‖ ≤ ‖x‖ +
4/3

16
‖x‖ +

Mort
16

‖x‖ < 1
7

16
‖x‖.It follows that B(L, d(x, F )) ⊆ B(L, ‖x‖/16) ⊆ B(0; ‖x‖/2, 3‖x‖/2). So by Proposition9.6(a), there is g ∈ H(E) su
h that supp(g) ⊆ B(L, d(x, F )), g(x) = x̂ + (x)H and gis M seg · (Mort + 3)-bilips
hitz. It follows that g satis�es requirements (3)�(4) of theproposition. So we may de�ne M cmp = M seg(Mort + 3).Definition 9.9. (a) Let α ∈ MBC and s, t ∈ [0,∞). Then s ≈α t means that t ≤ α(s)and s ≤ α(t).(b) Let α ∈ MBC, n ∈ N and ̺ : [0,∞) → [0,∞) be 
ontinuous. We say that ̺ is

(n, α)-
ontinuous if there are 0 = a0 < · · · < an−1 < an = ∞ su
h that
̺i(t) := ̺(t+ ai−1), t ∈ [0, ai − ai−1),is α-
ontinuous for every 0 < i ≤ n. �The four parts of the next proposition are trivial. Their proofs are omitted.Proposition 9.10. (a) Let α ∈ MBC, n ∈ N and ̺ : [0,∞) → [0,∞). If ̺ is (n, α)-
ontinuous , then ̺ is n · α-
ontinuous.(b) Let ̺ : [0,∞) → [0,∞) and a > 0. De�ne η(s, t) as follows. If s ≥ a, then

η(s, t) = t; and if s ∈ [0, a], then η(s, t) = (1 − s/a)̺(t) + (s/a)t. Suppose that β ∈ MCand ̺ is β-
ontinuous. Then ηs(t) := η(s, t) is β-
ontinuous for every s ∈ [0,∞). Wedenote η(s, t) by η(̺,a)(s, t).(
) Let β ∈ MC, a > 0 and 0 < m ≤ β(a)/a. Then the fun
tion f(t) = mt, t ∈ [0, a],is β-
ontinuous.(d) If β ∈ MC, M ≥ 1, and γ is the fun
tion de�ned by γ(t) = β(Mt), then γ ≤Mβ.9.2. The main 
onstru
tionDefinition 9.11. (a) Let 0 < a < 1 and b,M > 1. We say that M is a UniformContinuity 
onstant for 〈a, b 〉 (M is UC-
onstant for 〈a, b 〉) if the following holds.Suppose that E,F, α, x, y satisfy the following assumptions.A1 E is a normed spa
e, F is a 
losed linear proper subspa
e of E, dim(F ) > 1,
α ∈ MBC and x, y ∈ E − F ,A2 ‖x‖ ≤ ‖y‖ and ‖x‖ ≈α ‖y‖,A3 d(x, F ) ≈α d(y, F ),A4 if 
o-dimE(F ) = 1, then x, y are on the same side of F .Then there are g1,g2 ∈ H(E) su
h that
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ontinuous,B2 g2 ◦g1(x) = y,B3 g1(F ) = F and g2(F ) = F ,B4 for every i = 1, 2, supp(gi) ⊆ B(0; a‖x‖, b‖y‖).(b) We de�ne a relation R(u, v, g;α, a, b, F ). Let F be a 
losed linear subspa
e of anormed spa
e E, u, v ∈ E −F , g ∈ H(E), 0 < a < 1, b > 1 and α ∈ MBC. The notation
R(u, v, g;α, a, b, F ) means thatR1 g(u) = v,R2 g is α-bi
ontinuous,R3 g(F ) = F ,R4 g↾B(0; a‖u‖, b‖v‖) = Id.Let M ≥ 1. Then R(u, v, g;M,a, b, F ) means that R(u, v, g;M · Id[0,∞), a, b, F ) holds. �The trivial proof of part (b) in the next proposition is omitted.Proposition 9.12.(a) (R(u, v, g;α, a, b, F ) ∧R(v, w, h;β, c, d, F )) ⇒ R(u,w, h ◦ g;β ◦α, ac, bd, F ).(b) R(u, v, g;M,a, b, F ) ⇒ R(v, u, g−1;M,a/M,Mb, F ).Proof. (a) It is obvious that h ◦ g is β ◦α-bi
ontinuous, h ◦ g(u) = w and h ◦ g(F ) = F .If v = u, then ca‖u‖ < c‖u‖ = c‖v‖. So h↾B(0, ca‖u‖) = Id. If v 6= u, then v ∈
supp(g). This implies that ‖v‖ > a‖u‖ and hen
e c‖v‖ > ca‖u‖. So h↾B(0, ca‖u‖) = Id.Clearly, ca‖u‖ < a‖u‖. So g↾B(0, ca‖u‖) = Id. It follows that h ◦ g↾B(0, ac‖u‖) = Id.If v = w, then bd‖w‖ = bd‖v‖ > b‖v‖. So supp(g) ⊆ B(0,bd‖w‖). If v 6= w, then
v ∈ supp(g) ⊆ B(0,d‖w‖). This implies that ‖v‖ < d‖w‖ and hen
e b‖v‖ < bd‖w‖. So
supp(g)⊆B(0,b‖v‖)⊆B(0,bd‖w‖). It follows that supp(g)⊆B(0,bd‖w‖). From the fa
tthat bd>d it follows that supp(h)⊆B(0,bd‖w‖). So supp(h ◦ g)⊆B(0,bd‖w‖). We haveshown that supp(h ◦ g⊆B(0;ac‖u‖,bd‖w‖). So R(u,w,h ◦ g;β ◦α,ac,bd,F ) holds.Lemma 9.13 (The Uniform Continuity Constant Lemma).(a) There are 0 < a < 1, b > 1 and M > 1 su
h that M is a UC-
onstant for 〈a, b 〉.(b) For every 0 < a < 1, b > 1 there is M > 1 su
h that M is a UC-
onstant for
〈a, b 〉.Proof. (a) The proof is long and has many steps. The survey below may help guide thereader through the proof.Plan of the proof. Let E, F , α, x0, y0 satisfy 
onditions A1�A4 in the de�nition of aUC-
onstant. We 
onstru
t two bilips
hitz homeomorphisms e and h. Set e(x0) = x and
y = h

−1(y0). Next we 
onstru
t N · α-bi
ontinuous homeomorphisms f1, f2 and v ∈ Esu
h that f1(x) = v and f2(v) = y. Here N is a �xed number independent of E, F , α, x0and , y0. So we have
e(x0) = x, f1(x) = v, f2(v) = y, h(y) = y0.The homeomorphisms g1 := f1 ◦e and g2 := h ◦ f2 are the ones required in the de�nitionof a UC-
onstant. To explain what ea
h homeomorphism does, we take the simpler
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h E is a pre-Hilbert spa
e. Let F be a 
losed linear subspa
e of E.For any z ∈ E, denote (z)F,F⊥ by ẑ and (z)F⊥,F by z⊥. The homeomorphism e is a
omposition of four a
tions. So e = e4 ◦ · · · ◦e1. Similarly, h is a 
omposition of twoa
tions. We shall de�ne homeomorphisms h1 and h2, and h will be h
−1
1 ◦h−1

2 .The �rst a
tion e1 is needed only if d(x0, F ) > ‖x0‖/3. Otherwise, e1 = Id. If theformer happens, then e1(x0) = x1, where d(x1, F ) = ‖x1‖/3 and ‖x1‖ = ‖x0‖. A similara
tion is performed by the homeomorphism h1 on y0, and we denote h1(y0) by y1. Wenow have the points x1 and y1 with the properties ‖x1‖ = ‖x0‖, d(x1, F ) ≤ ‖x1‖/3,
‖y1‖ = ‖y0‖ and d(y1, F ) ≤ ‖y1‖/3.Now, e2 takes x1 to λŷ1 + x

⊥

1 , where λ > 0 and ‖λŷ1‖ = ‖x̂1‖. The a
tion of e2
an be roughly des
ribed as a rotation in the plane F1 generated by x̂1 and ŷ1 and theidentity on F⊥
1 . It is at this stage that we need F to be of dimension ≥ 2. Denote e2(x1)by x2.The homeomorphism e3 takes x2 to a ve
tor x3 of the form ax̂2 +bx

⊥

2 , where a, b > 0,
‖x3‖ = ‖x2‖, d(x3, F ) ≤ ‖x3‖/∆, and ∆ is a �xed number > 1 independent of E, F , α,
x0 and y0. Similarly, h2 takes y1 to a ve
tor y of the form cŷ1 + dy

⊥

1 , where c, d > 0,
‖y‖ = ‖y1‖ and d(y, F ) ≤ ‖y‖/∆. Denote y by y2.Note that the subspa
e K := span(x

⊥

3 , y
⊥
) is orthogonal to F . (This is not truewhen E is a general normed spa
e.) Set x∨∨ = (‖x⊥3‖/‖y⊥‖)y

⊥ and de�ne x = x̂3 + x∨∨.Clearly, x⊥ = x∨∨. The homeomorphism e4 takes x3 to x. The a
tion of e4 
an be roughlydes
ribed as a rotation in the plane x̂3 +K and the identity on K⊥. De�ne x4 = x.We have the following situation: x = x̂ + x
⊥, y = ŷ + y

⊥, x̂, ŷ ∈ F and for some
λ, µ > 0, ŷ = λx̂ and y

⊥
= µx

⊥. If ‖ŷ‖ ≥ ‖x̂‖ de�ne v = ŷ + x
⊥, and if ‖ŷ‖ < ‖x̂‖de�ne v = λx. We shall de�ne f1 su
h that f1(x) = v and f1 is N · α-bi
ontinuous forsome �xed N . If v = ŷ + x

⊥, then f1 has the form f1(z) = z + a(z) · x̂, and a(z) tendsto zero as d(z, [x, v]) tends to λ. In the 
ase that v = λx, f1 is a pie
ewise linearlyradial homeomorphism and f1 is N -bilips
hitz. This of 
ourse implies that f1 is N · α-bi
ontinuous.Now we have v = ŷ + v
⊥ and y = ŷ + y

⊥, where for some ν > 0, y
⊥

= νv
⊥. Weshall de�ne f2 whi
h takes v to y. The homeomorphism f2 will have the form f2(z) =

z + a(z) · v⊥, and it will be N · α-bi
ontinuous.Along the 
onstru
tion des
ribed above, but independently of the parti
ular 
hoi
e of
E, F , α, x0, y0, we shall de�ne numbers

M1,i, a1,i, b1,i for i = 1, . . . , 4;
M2,i, a2,i, b2,i for i = 1, 2;
M3,i, a3,i, b3,i for i = 1, 2.These numbers satisfy the following 
onditions.C1 for every i = 1, . . . , 4, R(xi−1, xi, ei;M1,i, a1,i, b1,i, F );C2 for every i = 1, 2, R(yi−1, yi,hi;M2,i, a2,i, b2,i, F );C3 R(x4, v, f1;M3,1 · α, a3,1, b3,1, F );C4 R(v, y2, f2;M3,2 · α, a3,2, b3,2, F ).
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on
lusion. There are Mi,j , ai,j , bi,j su
h that for every
E, F , α, x0, y0 satisfying 
onditions A1�A4 in the de�nition of a UC-
onstant, there are
ei ∈ H(E), xi, i = 1, . . . , 4; hi ∈ H(E), yi, i = 1, 2; f1, f2 ∈ H(E) and v su
h that C1�C4hold.We now �nd a, b,M su
h that M is a UC-
onstant for 〈a, b 〉. Let E, F , α, x0, y0 ful�ll
onditions A1�A4 in the de�nition of a UC-
onstant. Then there are ei's, fi's, hi, et
.whi
h satisfy C1�C4. De�ne e = e4 ◦ · · · ◦e1, h = h

−1
1 ◦h−1

2 , g1 = f1 ◦e and g2 = h ◦ f2.Let M1 =
∏4
i=1 M1,i, A1 =

∏4
i=1 a1,i and B1 =

∏4
i=1 b1,i. Then by Proposi-tion 9.12(a), R(x0, x4, e;M1,A1,B1, F ) holds. By 9.12(b), R(y1, y0,h

−1
1 ;M2,1, a2,1/M2,1,

M2,1b2,1, F ) and R(y2, y1,h
−1
2 ;M2,2, a2,2/M2,2,M2,2b2,2, F ) hold. Let A2 = (a2,2/M2,2)

(a2,1/M2,1), B2 = M2,2b2,2M2,1b2,1 and M2 = M2,2M2,1. Then by Proposition 9.12(a),
R(y2, y0,h;M2,A2,B2, F ) holds. Let M

′ = M1M3,1, A
′ = A1a3,1 and B

′ = B1b3,1.Note that if α ∈ MC and M ≥ 1, then α(Mt) ≤Mα. So by Proposition 9.12(a),
(1) R(x0, v,g1;M

′ · α,A′,B′, F ) holds.Let M
′′ = M3,2M2, A′′ = a3,2A2 and B

′′′ = b3,2B2. Then by Proposition 9.12(a),
(2) R(v, y0,g2;M

′′ · α,A′′,B′′, F ) holds.Let M = max(M′,M′′), a = A
′
A

′′ and b = B
′
B

′′. Then (1) and (2) imply that B1�B4of De�nition 9.11(a) hold. So M is a UC-
onstant for 〈a, b 〉.C1 is the 
onjun
tion of four requirements. Denote them by C1.1, . . . ,C1.4. Similarly,denote the two 
onjun
ts of C2 by C2.1 and C2.2.The 
onstru
tionPart 1: The 
onstru
tion of e1 and h1. Let E,F, α, x0, y0 satisfy 
onditions A1�A4 inthe de�nition of a UC-
onstant. Write x = x0 and y = y0. If d(x, F ) ≤ ‖x‖/3, let
e1 = Id. Otherwise let u ∈ F − {0} and e1 ∈ H(E) be su
h that(1) e1(x) ∈ span({x, u}),(2) ‖e1(x)‖ = ‖x‖,(3) d(e1(x), F ) = ‖e1(x)‖/3,(4) e1↾F = Id;(5) supp(e1) ⊆ B(0; ‖x‖/2, 3‖x‖/2),(6) e1 is Mbnd(3) bilips
hitz.The existen
e of e1 is ensured by Proposition 9.7. Let x1 = f(x), M1,1 = Mbnd(3),
a1,1 = 1/2 and b1,1 = 3/2. Re
all that x0 = x. By (1)�(6), R(x0, x1, e1;M1,1, a1,1, b1,1, F )holds. So C1.1 is ful�lled.Let h1 ∈ H(E) have the same role for y as e1 had for x. Let y1 = h1(y), M2,1 =

Mbnd(3), a2,1 = 1/2 and b2,1 = 3/2. Re
all that y0 = y. Then R(y0, y1,h1;M2,1, a2,1,

b2,1, F ) holds. So C2.1 is ful�lled.Part 2: The 
onstru
tion of e2. Sin
e ‖e1(x)‖ = ‖x‖ and ‖h1(y)‖ = ‖y‖, ‖e1(x)‖ ≈α
‖h1(y)‖. We 
he
k that

d(e1(x), F ) ≈α d(h1(y), F ).



180 M. Rubin and Y. YomdinIf e1 = h1 = Id, then there is nothing to 
he
k. Suppose that e1 6= Id 6= h1. Then
d(e1(x), F ) = ‖x‖/3 and d(h1(y), F ) = ‖y‖/3. So

d(h1(y), F )

d(e1(x), F )
=

‖y‖
‖x‖ ≤ α(‖x‖)

‖x‖ ≤ α(‖x‖/3)

‖x‖/3 =
α(d(e1(x), F ))

d(e1(x), F )
.Hen
e d(h1(y), F ) ≤ α(d(e1(x), F )). Sin
e ‖x‖ ≤ ‖y‖, d(h1(x), F ) ≤ d(e1(y), F ) ≤

α(d(e1(y), F )).Suppose that e1 6= Id = h1. Then d(h1(y), F ) ≤ ‖y‖/3 and d(e1(x), F ) = ‖x‖/3.So d(h1(y), F ) ≤ α(‖x‖)/3 ≤ α(‖x‖/3) = α(d(e1(x), F )). Also, d(e1(x), F ) ≤ d(x, F ) ≤
α(d(y, F )) = α(d(h1(y), F )). The argument in the 
ase e1 = Id 6= h1 is identi
al.Let e1(x) take the role of x and h1(y) take the role of y. That is, e1(x),h1(y) arerenamed and are now denoted by x and y. Hen
e d(x, F ) ≤ ‖x‖/3 and d(y, F ) ≤ ‖y‖/3.Let x̂, ŷ ∈ F be su
h that ‖x− x̂‖ ≤ (1 + ε)d(x, F ) and ‖y − ŷ‖ ≤ (1 + ε)d(y, F ). ε willbe determined later. Let x⊥ = x− x̂ and y⊥ = y − ŷ. Then e2 will take x to a ve
tor ofthe form λŷ + x

⊥, where λ > 0. It is in this part that F needs to be of dimension > 1.We may assume that:2.1 x = x̂+ x
⊥ and y = ŷ + y

⊥,2.2 x̂, ŷ ∈ F ,2.3 ‖x⊥‖ ≤ (1 + ε)d(x, F ) and and ‖y⊥‖ ≤ (1 + ε)d(y, F ),2.4 d(x, F ) ≤ ‖x‖/3 and d(y, F ) ≤ ‖y‖/3,2.5 ‖x‖ ≈α ‖y‖ and d(x, F ) ≈α d(y, F ),2.6 if 
o-dimE(F ) = 1, then x and y are on the same side of F .We de�ne a fun
tional ψ on span(F ∪ {x⊥}): ψ(x
⊥
) = ‖x⊥‖, and ψ(u) = 0 for every

u ∈ F . Let ϕ ∈ E∗ extend ψ and ‖ϕ‖ = ‖ψ‖. Let L = span({x⊥}) and H = ker(ϕ). So
F ⊆ H. For every u ∈ F ,

|ψ(u+ x
⊥
)| = ‖x⊥‖ ≤ (1 + ε)d(x, F ) = (1 + ε)d(x

⊥
, F ) ≤ (1 + ε)‖u+ x

⊥‖.So ‖ϕ‖ = ‖ψ‖ ≤ 1 + ε.Let u ∈ E. De�ne v = u − ϕ(u)x
⊥
/‖x⊥‖. Then (u)H = v and (u)L = ϕ(u)x

⊥
/‖x⊥‖.So

‖(u)H‖ = ‖v‖ =

∥∥∥∥u− ϕ(u)
x
⊥

‖x⊥‖

∥∥∥∥ ≤ ‖u‖ + |ϕ(u)|
∥∥∥∥
x
⊥

‖x⊥‖

∥∥∥∥ = ‖u‖ + |ϕ(u)|

≤ ‖u‖ + ‖ϕ‖‖u‖ ≤ (2 + ε)‖u‖and ‖(u)L‖ = ‖ϕ(u) x
⊥

‖x⊥‖‖ = |ϕ(u)| ≤ ‖ϕ‖‖u‖ ≤ (1 + ε)‖u‖. So
‖(u)H‖ + ‖(u)L‖ ≤ (3 + 2ε)‖u‖.Let F1 be a 2-dimensional subspa
e of F su
h that x̂, ŷ ∈ F1. Su
h a subspa
e existssin
e F is not 1-dimensional. Let H1 be an almost orthogonal 
omplement of F1 in H.That is, H1 ⊕ F1 = H, and for every u ∈ H, ‖(u)F1

‖ + ‖(u)H1
‖ ≤ Maoc(2) · ‖u‖. Let

‖ ‖H be a tight Hilbert norm on F1. So ‖ ‖H ≈M
thn

‖ ‖F1 .We de�ne an equivalent norm ‖ ‖N on E. Let u ∈ E and suppose that u = u1+u2+u3,where u1 ∈ F1, u2 ∈ H1 and u3 ∈ L. De�ne ‖u‖N := ‖u1‖H + ‖u2‖ + ‖u3‖. Then
‖u‖ ≈3+2ε ‖u1 + u2‖ + ‖u3‖ and ‖u1 + u2‖ ≈M

hlb
‖u1‖H + ‖u2‖. Note that if E =
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E1 ⊕ E2, for ℓ, i = 1, 2, ‖ ‖ℓ,i is a norm on Eℓ and ‖ ‖ℓ,1 ≈Mℓ ‖ ‖ℓ,2, then for every
u ∈ E, ‖(u)E1

‖1,1 + ‖(u)E2
‖2,1 ≈max(M1,M2) ‖(u)E1

‖1,2 + ‖(u)E2
‖2,2. So ‖u1 + u2‖ +

‖u3‖ ≈max(M
hlb

,1) ‖u1‖H +‖u2‖+‖u3‖. That is, ‖u1 +u2‖+‖u3‖ ≈M
hlb

‖u1‖H +‖u2‖+

‖u3‖. Let M sp = (3 + 2ε)Mhlb. Then ‖u‖ ≈M
sp

‖u1‖H + ‖u2‖ + ‖u3‖ = ‖u‖N. Let dNdenote the metri
 on E obtained from ‖ ‖N.Let ẑ = (‖x̂‖H/‖ŷ‖H)ŷ. Then ‖ẑ‖H = ‖x̂‖H. The homeomorphism e2 will take x to
ẑ + x

⊥. Let r = ‖x̂‖H, S1 = SH(0, r) and S = {u + µ · (x)⊥ | u ∈ S1 and 0 ≤ µ ≤ 1}.Let θ0 be the angle from x̂ to ŷ. That is, RotF1

θ0
(x̂) = ẑ.Let E1 = H1 + L. Then F1 ⊕ E1 = E. We �rst de�ne a fun
tion η : [0,∞) → [0, θ0],and the homeomorphism e2 will be de�ned by means of η as follows:

e2(u) = RotF1

η(dN(u,S))
((u)F1

) + (u)E1
.De�ne η to be the pie
ewise linear fun
tion with one breakpoint at r/2 su
h that η(0) = θ0and η(s) = 0 for every s ≥ r/2.Note that x̂ ∈ F1, x⊥ ∈ L and x = x̂ + x

⊥. So (x)F1
= x̂ and (x)E1

= x
⊥. Also,

x ∈ S. It follows that e2(x) = ẑ+x
⊥. Hen
e for some λ > 0, e2(x) = λŷ+x

⊥. Obviously,
e2(F1) = F1. We verify that(2.1) e2(F ) = F.Suppose that u ∈ F . So u = (u)F1

+ (u)E1
. Hen
e (u)E1

∈ F . For some angle β,
e2(u) = RotF1

β ((u)F1
) + (u)E1

. Sin
e F1 ⊆ F , RotF1

β ((u)F1
) ∈ F . So e2(u) ∈ F .Note that dN(BN(u, s), S) = r/2. Hen
e e2↾B

N(0, r/2) = Id. By 2.3 and 2.4,
r = ‖x̂‖N ≥ ‖x̂‖

M sp ≥ 1

M sp (‖x‖ − ‖x⊥‖) ≥ 1

M sp (‖x‖ − (1 + ε)d(x, F ))

≥ 1

M sp (
‖x‖ − (1 + ε)

‖x‖
3

)
=

1

M sp(
2

3
− ε

)
‖x‖ > 1

2M sp ‖x‖The last inequality holds when ε is su�
iently small. So e2↾B
N(0, 1

4Msp ‖x‖) = Id.Re
all that ‖ ‖E ≈M
sp

‖ ‖N. So B(0, s/M sp) ⊆ BN(0, s) for every s. It follows that
e2↾B(0, 1

4(Msp)2
‖x‖) = Id. Let a1 = 1/4(M sp)2. We have shown that(2.2) e2↾B(0, a1‖x‖) = Id.Now, supp(e2) ⊆ BN(0, ‖x‖N + r/2) ⊆ B(0,M sp(‖x‖N + r/2)) and r/2 = ‖x̂‖N/2 ≤

M sp‖x̂‖/2 ≤ M sp · 4
3‖x‖/2 = 2

3M
sp‖x‖. So supp(e2) ⊆ B(0, 2(M sp)2‖x‖). De�ne

b1 = 2(M sp)2. Then(2.3) e2↾(E −B(0, b1‖x‖)) = Id.We next show that there isM1 > 0 whi
h is independent of x, F and θ0 su
h that e2 is
M1-bilips
hitz. Indeed, we shall �nd M ′

1 su
h that for every u, v ∈ E: if ‖u− v‖N ≤ r/2,then ‖e2(u)− e2(v)‖N ≤M ′
1 · ‖u− v‖N. This fa
t implies that e2 is M ′

1-Lips
hitz in themetri
 dN.Obviously, |η(t) − η(s)| ≤ θ0
r/2 |t − s| ≤ 2π

r |t − s| for every s, t ∈ [0,∞). De�ne
θ(u) = η(dN(u, S)). So |θ(u) − θ(v)| = |η(dN(u, S)) − η(dN(v, S))| ≤ 2π

r ‖u− v‖N.



182 M. Rubin and Y. YomdinClearly, ‖x⊥‖ < ‖x‖/2. So ‖x‖ < 2‖x̂‖. Hen
e ‖x⊥‖ < ‖x̂‖. It follows that ‖x⊥‖N <

(M sp)2‖x̂‖N. Hen
e max({‖u‖N | u ∈ S}) ≤ (1 + (M sp)2) · ‖x̂‖N = 2(1 + (M sp)2) · r.Let u, v ∈ E be su
h that ‖u − v‖N ≤ r/2. If ‖u‖N > 2(1 + (M sp)2) · r + r,then ‖v‖N > 2(1 + (M sp)2) · r + r/2. So e2(u) = u and e2(v) = v. Suppose that
‖u‖N ≤ 2(1 + (M sp)2) · r+ r. De�ne M sp1 = 4 + 2(M sp)2. Then ‖u‖N, ‖v‖N < M sp1 · r.We have

e2(v) − e2(u) = (RotF1

θ(v)((v)F1
) − RotF1

θ(u)((v)F1
))

+ (RotF1

θ(u)((v)F1
) − RotF1

θ(u)((u)F1
)) + ((v)E1

− (u)E1
).So

‖e2(v) − e2(u)‖N ≤ ‖RotF1

θ(v)((v)F1
) − RotF1

θ(u)((v)F1
)‖N

+ ‖(RotF1

θ(u)((v)F1
) − RotF1

θ(u)((u)F1
)) + ((v)E1

− (u)E1
)‖N

= ‖RotF1

θ(v)((v)F1
) − RotF1

θ(u)((v)F1
)‖N + ‖v − u‖N.We deal with the �rst summand in the last expression:

‖RotF1

θ(v)((v)F1
) − RotF1

θ(u)((v)F1
)‖N ≤ |θ(v) − θ(u)| · ‖v‖N ≤ 2π

r
‖v − u‖N · ‖v‖N

≤ 2π

r
‖v − u‖N ·M sp1 · r = 2π‖v − u‖N ·M sp1.It follows that for every u, v ∈ E, ‖e2(v) − e2(u)‖N ≤ (2πM sp1 + 1) · ‖v − u‖N.Obviously, for every u ∈ E, e−1

2 (u) = RotF1

−η(dN(u,S))
((u)F1

) + (u)E1
. So

‖e−1
2 (v) − e−1

2 (u)‖N ≤ (2πM sp1 + 1) · ‖v − u‖N.Let M1 = (2πM sp1 + 1) · (M sp)2. Then(2.4) e2 is M1-bilips
hitz in the norm ‖ ‖E .Set x2 = e2(x) and re
all that x1 = x. Hen
e by (2.1)�(2.4), R(x1, x2, e2;M1, a1, b1, F )holds. That is, C1.2 is ful�lled with M1,2 = M1, a1,2 = a1 and b1,2 = b1.Sin
e e2 is M1-bilips
hitz and e2(0) = 0, it follows that ‖e2(x)‖ ≈M1 ‖x‖. From thefa
t that e2(F ) = F , it follows that d(e2(x), F ) ≈M1 d(x, F ). So(2.5) ‖e2(x)‖ ≈M1·α ‖y‖ and d(e2(x), F ) ≈M1·α d(y, F ).Part 3: The 
onstru
tion of e3, h2 and e4. Re
all that x2 has the form λŷ+x
⊥. Rename

x2 and 
all it x, and denote λŷ by x̂. We now have:3.1∗ x = x̂+ x
⊥ and y = ŷ + y

⊥,3.2∗ x̂, ŷ ∈ F and for some λ > 0, x̂ = λŷ,3.3∗ ‖x⊥‖ ≤ (1 + ε)d(x, F ) and ‖y⊥‖ ≤ (1 + ε)d(y, F ),3.5∗ ‖x‖ ≈M1·α ‖y‖ and d(x, F ) ≈M1·α d(y, F ),3.6∗ if 
o-dimE(F ) = 1, then x and y are on the same side of F .Property 3.4 whi
h is analogous to 2.4 is missing. Only after applying e3 to x and h2to y, we shall retain this property.For the next step in the 
onstru
tion we 
hoose some ∆ > 1. The value of ∆ will bedetermined later, and it will be independent of E,F, α, x0 and y0. The de�nition of e3and h2 depends on ∆.
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tion of manifolds from subgroups of homeomorphism groups 183We �rst de�ne e3. If d(x, F ) ≤ ‖x‖/∆, then de�ne e3 = Id. Suppose that d(x, F ) >

‖x‖/∆. Then there are e3 ∈ H(E) and a, b > 0 su
h that(1) e3(x) = ax̂+ bx,(2) ‖e3(x)‖ = ‖x‖,(3) d(e3(x), F ) = ‖e3(x)‖/∆,(4) e3↾F = Id,(5) supp(e3) ⊆ B(0; ‖x‖/2, 3‖x‖/2),(6) e3 is Mbnd(∆)-bilips
hitz.The existen
e of e3 follows from Proposition 9.7.Re
all that x2 = x and de�ne x3 = e3(x). Then R(x2, x3, e3;M
bnd(∆), 1/2, 3/2, F )holds. That is, C1.3 is ful�lled with M1,3 = Mbnd(∆), a1,3 = 1/2 and b1,3 = 3/2.There is h2 ∈ H(E) whi
h a
ts on y in the way that e3 a
ts on x. That is, if

d(y, F ) ≤ ‖y‖/∆, then h2 = Id, and if d(y, F ) > ‖y‖/∆, then there are c, d > 0 su
hthat (1)�(6) above hold when y,h2, c, d repla
e x, e3, a, b. Re
all that y1 = y and de�ne
y2 = h2(y). Then R(y1, y2,h2;M

bnd(∆), 1/2, 3/2, F ) holds. That is, C2.2 is ful�lledwith M2,2 = Mbnd(∆), a2,2 = 1/2 and b2,2 = 3/2.Suppose that e3 6= Id. Then (⋆) e3(x) = aλŷ + b(λŷ + x
⊥
) = (a + b)λŷ + bx

⊥. By3.1∗�3.3∗, ‖x⊥‖ ≤ (1+ε)d(x
⊥
, F ). So from (⋆) it follows that ‖bx⊥‖ ≤ (1+ε)d(e3(x), F ).Denote (a+ b)λŷ by x̂3 and bx⊥ by x

⊥

3 . In 3.1∗�3.3∗ and in 3.6∗ repla
e x, x̂ and x⊥ by
x3, x̂3 and x

⊥

3 , and denote the resulting statements by 3.1∗(x3, y) et
. Then 3.1∗(x3, y)�3.3∗(x3, y) and 3.6∗(x3, y) hold. Also,(†) d(x3, F ) ≤ ‖x3‖/∆.If e3 = Id and we de�ne x̂3 to be x̂ and x
⊥

3 to be x⊥, then again (†) holds.Applying the same argument to y2 and de�ning ŷ2 and y
⊥

2 in analogy with x̂3 and
x
⊥

3 we 
on
lude that 3.1∗(x, y2)�3.3∗(x, y2) and 3.6∗(x, y2) hold. Also, (†) holds for y2.From 3.5∗ and from (6) applied to e3 and h2 it follows that
‖x3‖ ≈M

bnd
(∆) ‖x‖ ≈M1·α ‖y‖ ≈M

bnd
(∆) ‖y2‖and so (††) ‖x3‖ ≈M1(M

bnd
(∆))2·α ‖y‖. Similarly, (†††) d(x3, F ) ≈M1(M

bnd
(∆))2·α d(y2, F ).We now rename x3, x̂3, x

⊥

3 , y2, ŷ2, y
⊥

2 as x, x̂, x⊥, y, ŷ, y⊥. We also denoteM1(M
bnd(∆))2 ·

α by α1. From the above we 
on
lude that3.1 x = x̂+ x
⊥ and y = ŷ + y

⊥,3.2 x̂, ŷ ∈ F and for some λ > 0, x̂ = λŷ,3.3 ‖x⊥‖ ≤ (1 + ε)d(x, F ) and ‖y⊥‖ ≤ (1 + ε)d(y, F ),3.4 d(x, F ) ≤ ‖x‖/∆ and d(y, F ) ≤ ‖y‖/∆,3.5 ‖x‖ ≈α1 ‖y‖ and d(x, F ) ≈α1 d(y, F ),3.6 if 
o-dimE(F ) = 1, then x and y are on the same side of F .Property 3.1 follows from 3.1∗(x3, y) and 3.1∗(x, y2), and the same is true for Properties 3.2,3.3 and 3.6. Property 3.4 is the 
onjun
tion of (†) applied to x3 and to y2 and 3.6 is the
onjun
tion of (††) and (†††).



184 M. Rubin and Y. YomdinSet z⊥ = ‖x⊥‖ · y
⊥

‖y⊥‖ and z = x̂+ z
⊥. We next de�ne e4. It will take x to z. So afterapplying e4 we shall rea
h the following situation: x4 = x̂4 +x

⊥

4 , y2 = ŷ2 +y
⊥

2 , x̂4 = λŷ2for some λ > 0 and x
⊥

4 = µy
⊥

2 for some µ > 0.There are two 
ases: 
o-dimE(F ) = 1 and 
o-dimE(F ) > 1.Case 1: 
o-dimE(F ) = 1. Sin
e x and y are on the same side of F , there are ν > 0and u ∈ F su
h that z⊥ = u + νx
⊥. Let L = [x, x̂ + z

⊥
]. We may assume that in 3.3,

ε ≤ 1/2. We show that lngth(L)/d(L,F ) + 1 ≤ 19. Clearly, lngth(L) = ‖x̂ + z
⊥ − x‖ =

‖z⊥ − x
⊥‖ ≤ 2‖x⊥‖. So(3.1) lngth(L) ≤ 2‖x⊥‖.Sin
e for some t, z⊥ = ty

⊥, we have ‖z⊥‖ ≤ (1 + ε)d(z
⊥
, F ). So

‖x⊥‖ = ‖z⊥‖ ≤ (1 + ε)d(u+ νx
⊥
, F ) = (1 + ε)νd(x

⊥
, F ) ≤ (1 + ε)ν‖x⊥‖.Hen
e 1 ≤ (1 + ε)ν. In the above argument we inter
hange the roles of x⊥ and z

⊥.That is, for some u′ ∈ F , x⊥ = u′ + 1
ν z
⊥, and hen
e 1 ≤ (1 + ε) 1

ν . We 
on
lude that
1

1+ε ≤ ν ≤ 1 + ε. Let v ∈ L. Then for some t ∈ [0, 1], v = x̂ + x
⊥

+ t(z
⊥ − x

⊥
) =

x̂+ x
⊥

+ t((u+ νx
⊥ − x

⊥
). So

d(v, F ) = d((1 + t(ν − 1))x
⊥
, F ) = |1 + t(ν − 1)| · d(x⊥, F ) ≥ (1 − t|ν − 1|) · d(x⊥, F )

≥ (1 − |ν − 1|) · d(x⊥, F ) ≥
(

1 −
(

1 + ε− 1

1 + ε

))
· d(x⊥, F )

=

(
1

1 + ε
− ε

)
d(x

⊥
, F ) ≥ 1

6
d(x

⊥
, F ) ≥ 1

6(1 + ε)
‖x⊥‖ ≥ 1

9
‖x⊥‖.Hen
e(3.2) d(L,F ) ≥ ‖x⊥‖/9.It follows from (3.1) and (3.2) that lngth(L)/d(L,F ) + 1 ≤ 19.Set ∆ = 8. Then d(L,F ) ≤ d(x, F ) ≤ ‖x‖/8. Hen
e ‖x⊥‖ ≤ 3

2d(x, F ) ≤ 3
16‖x‖. So

lngth(L) ≤ 3
8‖x‖. Let B = B(L, d(L,F )). Then(3.3) min

v∈B
‖v‖ ≥ ‖x‖ − lngth(L) − d(L,F ) ≥ ‖x‖/2.Similarly,(3.4) max

v∈B
‖v‖ ≤ ‖x‖ + lngth(L) + d(L,F ) ≤ 3‖x‖/2.The endpoints of L are x and x̂+ z

⊥, so by Proposition 9.6(a), there is e4 ∈ H(E) su
hthat(3.5) supp(e4) ⊆ B(L, d(L,F )),(3.6) e4(x) = x̂+ z
⊥,(3.7) e4 is 19M seg-bilips
hitz.By (3.5), e4↾F = Id. By (3.3), (3.4) and (3.5), supp(e4) ⊆ B(0; ‖x‖/2, 3‖x‖/2). Re
allthat x3 = x and de�ne x4 = e4(x). It follows that R(x3, x4, e4; 19M seg, 1/2, 3/2, F )holds.
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o-dimE(F ) > 1. Let Υ > 1. By Proposition 9.3, there is a 
losed subspa
e
F1 of E su
h that F ⊆ F1, span(F1 ∪ {x, y}) = E, d(x, F1) ≥ 1

Υ
d(x, F ) and d(y, F1) ≥

1
Υ
d(y, F ). Obviously, either 
o-dimE(F1) = 1 or 
o-dimE(F1) = 2. If 
o-dimE(F1) = 1,let F ⊆ F2 ⊆ F1 be a 
losed subspa
e su
h that 
o-dimE(F2) = 2. Otherwise let F2 = F1.It follows that 
o-dimE(F2) = 2, d(x, F2) ≥ 1

Υ
d(x, F ) and d(y, F2) ≥ 1

Υ
d(y, F ).In 3.4, 
hoose ∆ = 24. Hen
e d(x, F2) ≤ d(x, F ) ≤ ‖x‖/24. In 3.3, 
hoose ε = 1/9, and
hoose Υ = 1 1

9 . So ‖x⊥‖ ≤ (1+ε)d(x, F ) ≤ Υ(1+ε)d(x, F2) ≤ (1 1
9 )2d(x, F2) ≤ 4

3d(x, F2).In summary,(3.8) ‖x⊥‖ ≤ 4d(x, F2)/3 and d(x, F2) ≤ ‖x‖/24.Re
all that z⊥ = (‖x⊥‖/‖y⊥‖)y⊥ and z = x̂+ z
⊥. We have ‖y⊥‖ ≤ 4

3d(y, F2). This isshown in the same way as the analogous fa
t for x. Obviously, d(y, F2) = d(y
⊥
, F2). So

‖y⊥‖ ≤ 4
3d(y

⊥
, F2). Sin
e z⊥ is a multiple of y⊥, ‖z⊥‖ ≤ 4

3d(z
⊥
, F2). Also, d(z, F2) =

d(z
⊥
, F2). So ‖z⊥‖ ≤ 4

3d(z, F2).Note that z = x − x
⊥

+ z
⊥. So ‖z‖ ≥ ‖x‖ − ‖x⊥‖ − ‖z⊥‖ = ‖x‖ − 2‖x⊥‖. Also,

‖x⊥‖ ≤ 4
3d(x, F2) ≤ 4

3 · 1
24‖x‖ = 1

18‖x‖. Hen
e
d(z, F2)

‖z‖ ≤ ‖z⊥‖
‖z‖ ≤ ‖x⊥‖

‖x‖ − 2‖x⊥‖
≤ ‖x‖/18

‖x‖ − ‖x‖/9 =
1

16
.In summary,(3.9) ‖z⊥‖ ≤ 4d(z, F2)/3 and d(z, F2) ≤ ‖z‖/16.Let H be su
h that E = F2 ⊕ H and H ⊥M

ort
F2. We apply Proposition 9.8 to

x and to z. Note that by (3.8) and (3.9), x and z satisfy the assumptions of 9.8. Sothere is f1 ∈ H(E) su
h that: f1 is M cmp-bilips
hitz, f1(x) = x̂ + (x)H , f1↾F2 = Idand supp(f1) ⊆ B(0; ‖x‖/2, 3‖x‖/2). Similarly, there is h1 ∈ H(E) su
h that: h1 is
M cmp-bilips
hitz, h1(z) = x̂+ (z)H , h1↾F2 = Id and supp(h1) ⊆ B(0; ‖z‖/2, 3‖z‖/2).We now translate what we have obtained for f1 and h1 to statements of the form
R(., ., f1; . . .) and R(., ., h1; . . .). Sin
e f1 is M cmp-bilips
hitz f1(x) = x̂+ (x)H and f1(0)

= 0, it follows that ‖x‖ ≤M cmp‖x̂+(x)H‖. So supp(f1) ⊆ B(0; 1
2‖x‖, 3Mcmp

2 ‖x̂+(x)H‖).This implies that(3.10) R(x, x̂+ (x)H , f1;M
cmp, 1/2, 3M cmp/2, F ) holds.Similarly,(3.11) R(z, x̂+ (z)H , h1;M
cmp, 1/2, 3M cmp/2, F ) holds.Let ‖ ‖H be a tight equivalent Hilbert norm on H, and de�ne a new norm on E by

‖u‖N = ‖(u)F2
‖ + ‖(u)H‖H. So ‖ ‖ ≈M

fdn
‖ ‖N. This follows from Proposition 9.4(
).Let dN denote the metri
 indu
ed by ‖ ‖N on E.Set x∗ = (x)H , z∗ = (z)H and z# = (‖x∗‖N/‖z∗‖N)z∗. We de�ne a homeomorphism

g2,1 whi
h takes x̂ + x∗ to x̂ + z#. A se
ond homeomorphism g2,2 will take x̂ + z# to
x̂+ z∗. So

x = x̂+ x
⊥ f1→ x̂+ (x)H

g2,1→ x̂+ z# g2,2→ x̂+ (z)H
h−1
1→ x̂+ z

⊥
= z.Finally, we shall de�ne e4 := h−1

1
◦ g2,2 ◦ g2,1 ◦ f1.



186 M. Rubin and Y. YomdinLet θ be the angle from x∗ to z#. That is, θ ∈ [0, π] and RotHθ (x∗) = z#. Let η :

[0,∞) → [0, θ] be the pie
ewise linear fun
tion with one breakpoint at s0 = ‖x∗‖N/2M thnsu
h that η(0) = θ and η(s) = 0 for every s ≥ s0. Let S0 be the 
ir
le in 〈H, ‖ ‖H 〉 with
enter at 0 and radius ‖x∗‖H, and let S = x̂ + S0. Let g2,1 be de�ned as follows. For
u ∈ E set u1 = (u)H and u2 = (u)F2

. De�ne
g2,1(u) = u2 + RotHη(dN(u,S))(u1).Sin
e for every u ∈ E, dN(u, S) = dN(g2,1(u), S), it follows that g2,1 ∈ H(E). Clearly,

g2,1(x̂+ x∗) = x̂+ z#.Also, supp(g2,1) ⊆ BN(S, s0). If u ∈ F2 then dN(u, S) = ‖u − x̂‖ + ‖x∗‖H > s0 and so
g2,1(u) = u. That is, g2,1↾F2 = Id. Sin
e F ⊆ F2,

g2,1↾F = Id.Note that s0 = ‖x∗‖N/2M thn ≤ ‖x∗‖/2. So supp(g2,1) ⊆ BN(S, ‖x∗‖/2).Let u ∈ BN(0, ‖x̂‖ − ‖x∗‖/2). So ‖u2‖ ≤ ‖x̂‖ − ‖x∗‖/2. Then
dN(u, S) = ‖u2 − x̂‖ + dN(u1, S0) ≥ ‖u2 − x̂‖ ≥ ‖x̂‖ − ‖u2‖

≥ ‖x̂‖ − (‖x̂‖ − ‖x∗‖/2) = ‖x∗‖/2.It follows that g2,1↾BN(0, ‖x̂‖ − ‖x∗‖/2) = Id.Let r = ‖x̂‖ + 2‖x∗‖N. Suppose that u ∈ E − BN(0, r). Either ‖u1‖ ≥ 3‖x∗‖N/2 or
‖u2‖ ≥ ‖x̂‖+‖x∗‖N/2. If v ∈ S then v = x̂+w, where w ∈ H and ‖w‖N = ‖x∗‖N. Hen
e
‖u− v‖N = ‖u1 − w‖N + ‖u2 − x̂‖. If ‖u1‖ ≥ 3‖x∗‖N/2, then ‖u− v‖N ≥ ‖u1 −w‖N ≥
3‖x∗‖N/2 − ‖x∗‖N = ‖x∗‖N/2. So u 6∈ supp(g2,1). If ‖u2‖ ≥ ‖x̂‖ + ‖x∗‖N/2, then
‖u − v‖N ≥ ‖u2 − x̂‖ ≥ ‖x̂‖ + ‖x∗‖N/2 − ‖x̂‖ = ‖x∗‖N/2. So u 6∈ supp(g2,1). It followsthat supp(g2,1) ⊆ BN(0, r).By (3.8), ‖x⊥‖ ≤ 1

18‖x‖, and sin
e x = x̂ + x
⊥, we have 17

18‖x‖ ≤ ‖x̂‖ ≤ 19
18‖x‖.Sin
e H ⊥Mort

F2, ‖x∗‖ ≤ Mortd(x∗, F2). Also, Mort < 4. By the above and (3.8),
‖x∗‖ ≤ Mortd(x∗, F2) = Mortd(x, F2) ≤ 4

24‖x‖. Hen
e ‖x̂‖ − ‖x∗‖/2 ≥ 17−2
24 ‖x‖ and

r = ‖x̂‖ + 2‖x∗‖N ≤ (1 +M thn/3)‖x‖. It follows that
supp(g2,1) ⊆ B(0; ‖x‖/2, 2M thn‖x‖).Next we �nd a Lips
hitz 
onstant for g2,1. By its de�nition, η is θ

‖x∗‖N/2Mthn -Lips
hitz.So η is 2πM thn/‖x∗‖N-Lips
hitz. Obviously, S ⊆ x̂ + B̄N(0, ‖x∗‖N). By 9.6(
), g2,1 is
(M rot · 2πM

thn
‖x∗‖N ·‖x∗‖N+1)-Lips
hitz in the norm ‖ ‖N. That is, g2,1 is (2πM rot ·M thn+1)-Lips
hitz in the norm ‖ ‖N. The same is true for g−1

2,1. So g2,1 is (2πM rot ·M thn + 1)-bilips
hitz in the norm ‖ ‖N. Re
all that ‖ ‖ ≈M
fdn

‖ ‖N. Write M̂2,1 = (M fdn)2(2πM rot ·
M thn + 1). Then g2,1 is M̂2,1-bilips
hitz.We may now write an R(. . .) statement for g2,1. Sin
e f1 isM cmp-bilips
hitz, f1(x) =

x̂+ (x)H and f1(0) = 0, it follows that ‖x‖ ≥ ‖x̂+ (x)H‖/M cmp. Similarly, g1,2 ◦ f1(x) =

x̂ + z#, g1,2 ◦ f1(0) = 0 and g2,1 ◦ f1 is M̂2,1M
cmp-bilips
hitz. Consequently, ‖x‖ ≤
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M̂2,1M

cmp‖x̂+ z#‖. It follows that
supp(g2,1) ⊆ B

(
0;

1

2M cmp
‖x̂+ (x)H‖, 2M thnM̂2,1M

cmp‖x̂+ z#‖
)
.Hen
e(3.12) R(x̂+ (z)H , x̂+ z#, g2,1; M̂2,1, 1/2M

cmp, 2M thnM̂2,1M
cmp, F ) holds.Our next goal is to de�ne g2,2. Re
all that f1(x̂) = x̂ and f1(x̂ + x

⊥
) = x̂ + x∗.Also, f1 is M cmp-bilips
hitz. So ‖x∗‖ ≈M


mp
‖x⊥‖. Similarly, ‖z∗‖ ≈M


mp
‖z⊥‖. Also,

‖x⊥‖ = ‖z⊥‖. LetM2,1 = (M cmp)2 andM2,2 = M2,1 ·(M fdn)2. It follows that ‖x∗‖ ≈M2,1

‖z∗‖. By Proposition 9.4(
), ‖ ‖ ≈M
fdn

‖ ‖N, and hen
e ‖x∗‖N ≈M2,2 ‖z∗‖N. Sin
e
‖z#‖N = ‖x∗‖N, ‖z#‖N ≈M2,2 ‖z∗‖N. Let a = ‖z∗‖N/‖x∗‖N. So(i) z∗ = az#,(ii) E = F2 ⊕H and ‖u+ v‖N = ‖u‖ + ‖v‖H for every u ∈ F2 and v ∈ H,(iii) x̂ ∈ F2 and z# ∈ H,(iv) 1/M2,2 ≤ a ≤M2,2.Assume �rst that a ≥ 1. Let x̂, z#, a, 0 take the roles of x̂, x, a and u in Proposi-tion 9.6(d). By (i)�(iii), the assumptions of 9.6(d) are ful�lled. So relying also on (iv),we 
on
lude that there is g2,2 ∈ H(E) su
h that (1) g2,2(x̂+z#) = x̂+z∗; (2) g2,2↾F2 = Id;(3) supp(g2,2) ⊆ BN(0; ‖x̂ + z#‖N/2, 3‖x̂ + z∗‖N/2); (4) g2,2 is 2M seg ·M2,2-bilips
hitzin the norm ‖ ‖N.If a < 1 then we apply 9.6(d) to x̂, z∗, 1/a and 0, thus obtaining a homeomorphism
g′2,2 ∈ H(E) su
h that g′2,2(x̂ + z∗) = x̂ + z#. De�ne g2,2 = (g′2,2)

−1. Then (1), (2)and (4) remain true. Instead of (3) we now have supp(g2,2) ⊆ BN(0; ‖x̂ + z∗‖N/2,
3‖x̂ + z#‖N/2). Note that by (i)�(iv), ‖x̂ + z#‖N ≤ M2,2‖x̂ + z∗‖N. So supp(g2,2) ⊆
BN(0; ‖x̂ + z#‖N/2M2,2, 3M2,2‖x̂ + z∗‖N/2). Re
all that z∗ = (z)H . What we haveshown implies that(3.13) R(

x̂+ z#, x̂+ (z)H , g2,2; 2(M fdn)2M segM2,2,
1

2M fdnM2,2
, 2M fdnM2,2, F

) holds.Note that in dedu
ing (3.13) we used the fa
t that ‖ ‖N ≈M fdn ‖ ‖. This 
on
ludes the
onstru
tion of g2,2.De�ne e4 = h−1
1

◦ g2,2 ◦ g2,1 ◦ f1 and x4 = z. Re
all that x3 = x. So x4 = z =

e4(x3). We now apply Proposition 9.12(a) and (b). It follows from (3.10)�(3.13) andfrom 9.12 that there are M ′
2, A

′
2, B

′
2 whi
h do not depend on E,F, α, x0, y0 su
h that

R(x3, x4, e4;M
′
2, A

′
2, B

′
2, F ) holds.In Case 1 too, we found M ′

1, A
′
1, B

′
1 su
h that R(x3, x4, e4;M

′
1, A

′
1, B

′
1, F ) holds.De�ne M1,4 = max(M ′

1,M
′
2), a1,4 = min(A′

1, A
′
2) and b1,4 = max(B′

1, B
′
2). Then

M1,4, a1,4, b1,4 ful�ll C1.4 in both Case 1 and Case 2.Part 4: The 
onstru
tion of f1. We have shown that for i = 1, . . . , 4 there is M1,iwhi
h does not depend on E,F, α, x0, y0 su
h that ei is M1,i-bilips
hitz. We de�ne
e = e4 ◦ · · · ◦e1. Then e(x0) = x4 = z and e(0) = 0. Let M3,1 =

∏4
i=1 M1,i. So e is

M3,1-bilips
hitz. It follows that ‖z‖ ≈M3,1 ‖x0‖. Similarly, for i = 1, 2 there is M2,i su
h



188 M. Rubin and Y. Yomdinthat hi is M2,i-bilips
hitz. We de�ne h = h2 ◦h1. Then h(y0) = y2 = y and h(0) = 0.Let M3,2 = M2,1M2,2. So h is M3,2-bilips
hitz. Let M3,0 = M3,1M3,2. Then4.1 ‖z‖ ≈M3,0 ‖x0‖.Sin
e e(F ) = F , we have d(z, F ) ≈M3,1 d(x0, F ). Similarly, d(y, F ) ≈M3,2 d(y0, F ).Hen
e4.2 ‖z‖ ≈M3,0·α ‖y‖ and d(z, F ) ≈M3,0·α d(y, F ).The 
onstru
tion also implies that4.3 z = ẑ + z
⊥, y = ŷ + y

⊥, where ẑ, ŷ ∈ F , and for some λ, µ > 0, ŷ = λẑ and
y
⊥

= µz
⊥.If Case 1 of Part 3 happens, let F̂ = F . Suppose that Case 2 of Part 3 happens. Let

F2 be as de�ned in Case 2 of Part 3. So by (3.9), ‖z⊥‖ ≤ 4
3d(z, F2). By Proposition 9.3applied to F2 and taking x and y to be z⊥, there is a 
losed subspa
e F̂ su
h that

‖z⊥‖ ≤ 3
2d(z

⊥
, F̂ ), F2 ⊆ F̂ and span(E ∪ {z⊥}) = E. In both 
ases we have4.4 F ⊆ F̂ , F̂ ⊕ span({z⊥}) = E and ‖z⊥‖ ≤ 1 1

2d(z
⊥
, F̂ ).Case 1: ‖ŷ‖ ≥ ‖ẑ‖. In this 
ase λ ≥ 1. Let v = ŷ + z

⊥. We shall 
onstru
t ahomeomorphism f1 su
h that f1(z) = v. (Re
all that z = x4.) Denote v by v. So
v = λẑ + z

⊥. If λ = 1 let f1 = Id. Assume that λ > 1.Let H = span({ŷ, y⊥}), H1 = span({ŷ}) and H2 = span({y⊥}). Let F3 be a subspa
eof F̂ su
h that for some ϕ ∈ F̂ ∗, ‖ϕ‖ = 1, ϕ(ẑ) = ‖ẑ‖ and F3 = ker(ϕ). It follows that
H1 ⊕ F3 = F̂ , F̂ ⊕H2 = E and F̂ = H1 ⊕H2 ⊕ F3. Clearly, ‖ProjH1,F3

‖ = ‖ϕ‖ = 1. Soby Proposition 9.2(d), H1 ⊥1 F3.Let S = {aẑ + bz
⊥ | a ∈ R, b ∈ [0, 1]}. We de�ne η : [0,∞) × [0,∞) → [0,∞). Forevery s, ηs(t) := η(s, t) is a pie
ewise linear fun
tion of t. For s ≥ (λ− 1)‖ẑ‖, ηs = Id. If

s < (λ− 1)‖ẑ‖, then ηs(t) has breakpoints at ‖ẑ‖/2, ‖ẑ‖ and 2λ‖ẑ‖; ηs(t) = t for every
t ∈ [0, ‖ẑ‖/2) ∪ [2λ‖ẑ‖,∞); and

ηs(‖ẑ‖) =

(
1 − s

(λ− 1)‖ẑ‖

)
· λ‖ẑ‖ +

s

(λ− 1)‖ẑ‖ · ‖ẑ‖.Denote (λ− 1)‖ẑ‖ by a. Then in parti
ular, η0(‖ẑ‖) = λ‖ẑ‖ and ηa(‖ẑ‖) = ‖ẑ‖.For u ∈ E we denote (u)H1
, (u)H2

, (u)F3
by (u)1, (u)2 and (u)3 respe
tively, and weabbreviate (u)i by ui when the notation (u)i is too 
umbersome. Set E+ = {tẑ + w |

t ≥ 0, w ∈ H2 ⊕ F3}. Let f1 be de�ned by
f1(u) =




η(d(u, S), ‖u1‖)

ẑ

‖ẑ‖ + u2 + u3, u ∈ E+,

u, u ∈ E − E+.Note that f1↾H2⊕F3 = Id, so f1 ∈ H(E). We shall de�ne the 
onstants mentioned in C3and show that C3 holds. Re
all that C3 ≡ R(x4, v, f1;M3,1 · α, a3,1, b3,1, F ). We verifyR1�R4 in the de�nition of R(. . .).R1: Clearly, f1(x4) = f1(z) = v = v.
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tion of manifolds from subgroups of homeomorphism groups 189R3: We verify that f1(F ) = F . For every u ∈ E and in parti
ular for every u ∈ F ,
f1(u)−u ∈ H1 = span({ŷ}) ⊆ F . So f1(u) = u+ (f1(u)−u) ∈ F . An identi
al argumentshows that f

−1
1 (F ) ⊆ F . Hen
e R3 holds.R2: We �nd M3,1 and prove that f1 is M3,1 ·α-bi
ontinuous. Note that if g ∈ H(E),

K ⊆ E is 
losed, supp(g) ⊆ K and g↾K is β-
ontinuous, then g is 2β-
ontinuous. Sin
e
supp(f1) ⊆ E+, we may 
onsider only points whi
h belong to E+. Let u,w ∈ E+. Then

‖f1(w) − f1(u)‖ ≤ |η(d(w, S), ‖w1‖) − η(d(u, S), ‖u1‖)| + ‖(w − u)2‖ + ‖(w − u)3‖
≤ |η(d(w, S), ‖w1‖) − η(d(u, S), ‖w1‖)| + |η(d(u, S), ‖w1‖) − η(d(u, S), ‖u1‖)|

+ ‖(w − u)2‖ + ‖(w − u)3‖.That is,
(4.1) ‖f1(w) − f1(u)‖ ≤ |η(d(w, S), ‖w1‖) − η(d(u, S), ‖w1‖)|

+ |η(d(u, S), ‖w1‖) − η(d(u, S), ‖u1‖)| + ‖(w − u)2‖ + ‖(w − u)3‖.The �rst summand on the right hand side of (4.1) has the form |η(s1, t) − η(s2, t)|. If
s1, s2 ∈ [0, (λ− 1)‖ẑ‖], then

|η(s1, t) − η(s2, t)| =
|s1 − s2|

(λ− 1)‖ẑ‖ · (η(0, t) − η((λ− 1)‖ẑ‖, t))

≤ λ‖ẑ‖ − ‖ẑ‖
(λ− 1)‖ẑ‖ · |s1 − s2| = |s1 − s2|.The inequality between the �rst and last expression above is true for every s1, s2 ∈ [0,∞).So |η(d(w, S), ‖w1‖) − η(d(u, S), ‖w1‖)| ≤ |d(w, S) − d(u, S)| ≤ ‖w − u‖. That is,(4.2) |η(d(w, S), ‖w1‖) − η(d(u, S), ‖w1‖)| ≤ |d(w, S) − d(u, S)| ≤ ‖w − u‖.The next 
omputations are needed in order to estimate the se
ond summand on theright hand side of (4.1). We �nd A,B,C su
h thatA‖z‖ ≤ ‖ẑ‖ ≤ B‖z‖ and ‖z⊥‖ ≤ C‖z‖.There are di�erent 
omputations 
orresponding to Cases 1 and 2 of Part 3.In Case 1 of Part 3, ∆ = 8 and ε = 1/2. So d(x, F ) ≤ ‖x‖/8 and ‖x⊥‖ ≤ 1 1

2d(x, F ).Hen
e ‖z⊥‖ = ‖x⊥‖ ≤ 3
2 · 1

8‖x‖ = 3
16‖x‖. We have z = x − x

⊥
+ z

⊥. Hen
e ‖z‖ ≥
‖x‖ − ‖x⊥‖ − ‖z⊥‖ = ‖x‖ − 2‖x⊥‖. Hen
e ‖z‖ ≥ ‖x‖ − 3

8‖x‖ = 5
8‖x‖. It follows that

‖z⊥‖ ≤ 3
16 · 8

5‖z‖. That is,(4.4.1) ‖z⊥‖ ≤ 3
10‖z‖.From the fa
t that ẑ = z − z

⊥, we 
on
lude(4.5.1) 7
10‖z‖ ≤ ‖ẑ‖ ≤ 13

10‖z‖.Re
all that in Case 2 of Part 3, ∆ = 24 and ε = 1/9. We 
arry out a 
omputationsimilar to the one in Case 1. So d(x, F ) ≤ ‖x‖/24 and ‖x⊥‖ ≤ 1 1
9d(x, F ). So ‖z⊥‖ =

‖x⊥‖ ≤ 10
9·24‖x‖ = 5

108‖x‖. We have ‖z‖ ≥ ‖x‖ − 2‖x⊥‖ ≥ ‖x‖ − 5
54‖x‖ = 49

54‖x‖ andhen
e ‖z⊥‖ ≤ 5
108 · 54

49‖z‖. That is,(4.4.2) ‖z⊥‖ ≤ 5
98‖z‖and hen
e(4.5.2) 93

98‖z‖ ≤ ‖ẑ‖ ≤ 103
98 ‖z‖.



190 M. Rubin and Y. YomdinBy (4.4.1) and (4.4.2),(4.4) ‖z⊥‖ ≤ 3
10‖z‖,and by (4.5.1) and (4.5.2),(4.5) 7

10‖z‖ ≤ ‖ẑ‖ ≤ 13
10‖z‖.Sin
e y also obeys 3.3, 3.4, in Case 1 of Part 3 we obtain 13

16‖y‖ ≤ ‖ŷ‖ ≤ 19
16‖y‖ and inCase 2, 103

108‖y‖ ≤ ‖ŷ‖ ≤ 113
108‖y‖. The following is thus true in both 
ases:(4.6) 13

16‖y‖ ≤ ‖ŷ‖ ≤ 19
16‖y‖.By 4.3, (4.6), 4.2, (4.5), the monotoni
ity of α and the fa
t that α(At) ≤ Aα(t) for

A ≥ 1,
λ‖ẑ‖ = ‖ŷ‖ ≤ 19

16‖y‖ ≤ 19
16M3,0 · α(‖z‖) ≤ 19

16M3,0 · α( 10
7 ‖ẑ‖)

≤ 10
7 · 19

16M3,0 · α(‖ẑ‖) ≤ 2M3,0 · α(‖ẑ‖).So(4.7) λ‖ẑ‖ ≤ 2M3,0 · α(‖ẑ‖).Let ̺ = η0. So ̺ is the pie
ewise linear fun
tion with breakpoints at ‖ẑ‖/2, ‖ẑ‖and 2λ‖ẑ‖; ̺(t) = t for every t ∈ [0, ‖ẑ‖/2) ∪ [2λ‖ẑ‖,∞); and ̺(‖ẑ‖) = λ‖ẑ‖. Clearly,
̺ ∈ H([0,∞)). Using the notations of Proposition 9.10(b), η = η(̺,(λ−1)·‖ẑ‖).We show that ̺ is 16M3,0 · α-
ontinuous. The linear pie
es of ̺ have the slopes: 1,
λ‖ẑ‖−‖ẑ‖/2

‖ẑ‖/2 , 2λ‖ẑ‖−λ‖ẑ‖
2λ‖ẑ‖−‖ẑ‖ and 1. That is, the slopes of the linear pie
es of ̺ are 1, 2λ − 1and λ

2λ−1 . We use the notations of De�nition 9.9(b). Let a0, . . . , a4 denote 0, ‖ẑ‖/2, ‖ẑ‖,
2λ‖ẑ‖ and ∞. Then ̺1, . . . , ̺4 are the fun
tions

Id↾[0, ‖ẑ‖/2],

y = (2λ− 1)t+ ‖ẑ‖/2, t ∈ [0, ‖ẑ‖/2],

y =
λ

2λ− 1
t+ λ‖ẑ‖, t ∈ [0, (2λ− 1)‖ẑ‖],

y = t+ 2λ‖ẑ‖, t ∈ [0,∞).For i = 1, 3, 4, for every t1, t2, |̺i(t1)− ̺i(t2)| ≤ |t1 − t2| ≤ 4M3,0 · α(|t1 − t2|). Hen
e ̺iis 4M3,0 · α-
ontinuous. We deal with ̺2. By (4.7), 2λ − 1 ≤ 2λ ≤ 4M3,0 · α(‖ẑ‖)/‖ẑ‖.So (2λ− 1)/4M3,0 ≤ α(‖ẑ‖)/‖ẑ‖. Let ̺∗2(t) be the fun
tion
y =

2λ− 1

4M3,0
t, t ∈ [0, ‖ẑ‖].Then by Proposition 9.10(
), ̺∗2(t) is α-
ontinuous. Clearly, ̺2(t) = 4M3,0 ·̺∗2(t)+‖ẑ‖/2.So ̺2 is 4M3,0 · α-
ontinuous. We have shown that ̺ is (4, 4M3,0 · α)-
ontinuous. ByProposition 9.10(a), ̺ is 16M3,0 · α-
ontinuous. De�ne γ = 16M3,0 · α.We next deal with the se
ond summand on the right hand side of inequality (4.1).It has the form |η(s, t1) − η(s, t2)|. Re
all that η = η(̺,(λ−1)·‖ẑ‖). Then by Proposi-tion 9.10(b), for every s ∈ [0,∞), ηs is γ-
ontinuous. So

|η(d(u, S), ‖w1‖) − η(d(u, S), ‖u1‖)| ≤ γ(|‖w1‖ − ‖u1‖|) = γ(‖(w − u)1‖).
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(4.8) |η(d(u, S), ‖w1‖) − η(d(u, S), ‖u1‖)| ≤ γ(‖(w − u)1‖).We shall now bound the expressions ‖(w − u)i‖ appearing in (4.1) and (4.8) by amultiple of ‖w−u)‖. For ū ∈ E let ū1,3 = ū1 + ū3. Re
all that H2 = span({y⊥}). By 4.4,
‖y⊥‖ ≤ 3

2d(y
⊥
, F̂ ). Hen
e ‖ū2‖ ≤ 3

2d(ū2, F̂ ) ≤ 3
2‖ū‖. From the fa
t that ū1,3 = ū − ū2,it follows that ‖ū1,3‖ ≤ ‖ū‖ + ‖ū2‖ ≤ 5

2‖ū‖. So we have(⋆) ‖ū1,3‖ ≤ 5
2‖ū‖.From the fa
t that H1 ⊥1 F3, it follows that ‖ū1‖ ≤ ‖ū1,3‖, and this implies that

‖ū3‖ ≤ 2‖ū1,3‖. It follows that(4.9) ‖ū1‖ ≤ 5
2‖ū‖, ‖ū2‖ ≤ 3

2‖ū‖, ‖ū3‖ ≤ 5‖ū‖.Substituting (4.2) and (4.8) into (4.1), we obtain(4.10) ‖f1(w) − f1(u)‖ ≤ ‖w − u‖ + γ(‖(w − u)1‖) + ‖(w − u)2‖ + ‖(w − u)3‖.We substitute (4.9) into (4.10) and use Proposition 9.10(d). So
‖f1(w) − f1(u)‖ ≤ 7 1

2‖w − u‖ + 2 1
2γ(‖w − u‖).This means that f1↾E

+ is (40M3,0 · α + 7 1
2 Id)-
ontinuous. Hen
e f1↾E

+ is 50M3,0 · α-
ontinuous. It follows that f1 is 100M3,0 · α-
ontinuous.The 
omputation whi
h shows that for some M , f−1
1 is M ·α-
ontinuous is analogous.However, for f

−1
1 there is M whi
h does not depend on E,F, α, x0, y0 su
h that f

−1
1 iseven M -Lips
hitz. For this M it is also true that f

−1
1 is M ·α-
ontinuous. We now 
arryout the 
omputation for f

−1
1 . For s ∈ [0,∞) let θs = η−1

s . Write θ(s, t) = θs(t). Notethat for every u ∈ E, d(f1(u), S) = d(u, S). This implies that
f
−1
1 (u) = θd(u,S)(‖u1‖)

u1

‖u1‖
+ u2 + u3.The analogues (4.1∗) of (4.1) and (4.2∗) of (4.2) obtained by repla
ing η by θ are stilltrue. Let µ = θ0. So µ = ̺−1 and θ = η(µ,(λ−1)·‖ẑ‖). The slopes of the linear pie
es of

µ are the inverses of the slopes of the linear pie
es of ̺. Hen
e the slopes of the linearpie
es of µ are: 1, 1
2λ−1 and 2λ−1

λ . Clearly, 1, 1
2λ−1 ,

2λ−1
λ ≤ 2. So µ is 2-Lips
hitz. ByProposition 9.10(b), for every s ∈ [0,∞), θs is 2-Lips
hitz. Hen
e

|θ(d(u, S), ‖w1‖) − θ(d(u, S), ‖u1‖)| ≤ 2 · |‖w1‖ − ‖u1‖| = 2 · ‖(w − u)1‖.So (4.8) is repla
ed by(4.11) |θ(d(u, S), ‖w1‖) − θ(d(u, S), ‖u1‖)| ≤ 2 · ‖(w − u)1‖.Substituting (4.9) into (4.11) we get(4.12) |θ(d(u, S), ‖w1‖) − θ(d(u, S), ‖u1‖)| ≤ 5‖w − u‖.Repla
e the �rst summand of the right hand side of (4.1∗) by (4.2∗) and the se
ondsummand by (4.12). Use (4.9) to estimate the last two summands of (4.1∗). So
‖f−1

1 (w) − f
−1
1 (u)‖ ≤ ‖w − u‖ + 5‖w − u‖ + 3

2‖w − u‖ + 5‖w − u‖.
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1 (w) − f

−1
1 (u)‖ ≤ 12 1

2‖w − u‖. From the fa
t that α ≥ Id, it follows that
f
−1
1 ↾E+ is 12 1

2 · α-
ontinuous. It follows that f
−1
1 is 25 · α-
ontinuous. Hen
e f1 is

100M3,0 · α-bi
ontinuous. So M3,1 = 100M3,0.R4: We next �nd a3,1 su
h that f1↾B(0, a3,1‖z‖) = Id. For every t ≤ ‖ẑ‖/2 and forevery s, η(s, t) = t. So for every u ∈ E, if ‖u1‖ ≤ ‖ẑ‖/2, then f1(u) = u. By (4.9) andthe above, if ‖u‖ ≤ 1
5‖ẑ‖, then f1(u) = u. By (4.5), 7

10‖z‖ ≤ ‖ẑ‖. So if ‖u‖ ≤ 7
50‖z‖,then f1(u) = u. Let a3,1 = 7

50 , then f1↾B(0, a3,1‖z‖) = Id.We now �nd b3,1 su
h that supp(f1) ⊆ B(0, b3,1‖v‖). We shall �nd Ai, i = 1, 2, 3,su
h that for every u ∈ E: if ‖ui‖ ≥ Ai, then f1(u) = u. For every t ≥ 2λẑ and every s,
η(s, t) = t. So(4.13) If ‖u1‖ ≥ 2λ‖ẑ‖, then f1(u) = u.For every s ≥ (λ − 1)‖ẑ‖, ηs = Id. So for every u ∈ E, if d(u, S) ≥ (λ − 1)‖ẑ‖, then
f1(u) = u. Let u ∈ E. By the se
ond part of (4.9), ‖u‖ ≥ 2

3‖u2‖. Let a > 0. If
‖u2‖ ≥ a+ ‖z⊥‖, then for every w ∈ S, ‖(u− w)2‖ ≥ a. Hen
e ‖u − w‖ ≥ 2

3‖(u− w)2‖
≥ 2

3a. Take a = 3
2 (λ − 1)‖ẑ‖. So if ‖u2‖ ≥ 3

2 (λ − 1)‖ẑ‖ + ‖z⊥‖, then for every w ∈ S,
‖u−w‖ ≥ (λ− 1)‖ẑ‖. That is, if ‖u2‖ ≥ 3

2 (λ− 1)‖ẑ‖+ ‖z⊥‖, then d(u, S) ≥ (λ− 1)‖ẑ‖.Hen
e(4.14) If ‖u2‖ ≥ 3
2 (λ− 1)‖ẑ‖ + ‖z⊥‖, then f1(u) = u.The third part of (4.9) says that ‖ū‖ ≥ 1

5‖ū3‖ for every ū ∈ E. Let u ∈ E be su
h that
‖u3‖ ≥ 5(λ − 1)‖ẑ‖. For every w ∈ S, (u − w)3 = u3. So ‖(u − w)‖ ≥ 1

5‖(u − w)3‖ =
1
5‖u3‖ ≥ (λ− 1)‖ẑ‖. That is, d(u, S) ≥ (λ− 1)‖ẑ‖. Hen
e(4.15) If ‖u3‖ ≥ 5(λ− 1)‖ẑ‖, then f1(u) = u.Combining (4.13)�(4.15) we 
on
lude that(4.16) If ‖u1‖ + ‖u2‖ + ‖u3‖ ≥ (8 1

2λ− 6 1
2 )‖ẑ‖ + ‖z⊥‖, then f1(u) = u.By 4.4, ‖z⊥‖ ≤ 1 1

2d(z
⊥
, F̂ ) = 1 1

2d(z, F̂ ) ≤ 1 1
2‖z‖, and by (4.5), ‖ẑ‖ ≤ 13

10‖z‖. So(4.17) (8 1
2λ− 6 1

2 )‖ẑ‖ + ‖z⊥‖ ≤ ( 13
10 · (8 1

2λ− 6 1
2 ) + 1 1

2 )‖z‖ ≤ 10λ‖z‖.Note that z = ẑ + z
⊥

= 1
λv − 1

λz
⊥

+ z
⊥

= 1
λv + (1 − 1

λ)z
⊥. Hen
e ‖z‖ ≤ 1

λ‖v‖ + ‖z⊥‖.By (4.4), ‖z‖ ≤ 1
λ‖v‖ + 3

10‖z‖. So(4.18) ‖z‖ ≤ 10
7λ‖v‖.From (4.16), (4.17) and (4.18) we 
on
lude that(4.19) If ‖u‖ ≥ 100

7 · ‖v‖, then f1(u) = u.That is, supp(f1) ⊆ B(0, 100
7 · ‖v‖). So b3,1 := 100

7 is as required in R4.Case 2: ‖ŷ‖ < ‖ẑ‖. So λ < 1. Let v = v = λz, and we 
onstru
t f1 su
h that f1(z) = v.By (4.6), ‖ŷ‖ ≥ 13
16‖y‖, and by (4.5), ‖ẑ‖ ≤ 13

10‖z‖. So (i) λ = ‖ŷ‖/‖ẑ‖ ≥ 5
8‖y‖/‖z‖. Bythe 
onstru
tion of h1 and h2, (ii) ‖y‖ = ‖y0‖. By 4.1, (iii) ‖z‖ ≈M3,0 ‖x0‖. Sin
e x0, y0satisfy 
onditions A1�A4 appearing in the de�nition of a UC-
onstant, (iv) ‖y0‖ ≥ ‖x0‖.



Re
onstru
tion of manifolds from subgroups of homeomorphism groups 193So by (i)�(iv),(4.20) λ ≥ 5

8

‖y0‖
M3,0‖x0‖

≥ 1

2M3,0
.Let η : [0,∞) → [0,∞) be a pie
ewise linear fun
tion with breakpoints at λ‖z‖/2, ‖z‖and 2‖z‖ su
h that η |̀([0, λ‖z‖/2] ∪ [2‖z‖,∞)) = Id and η(‖z‖) = λ‖z‖. De�ne f1 to bethe pie
ewise linearly radial homeomorphism based on η. (See De�nition 9.5(b).) Re
allthat z = x4, v = v. We shall de�ne M ′

1,3, a′1,3 and b′1,3 su
h that R(x4, v, f1,M
′
1,3 ·

α, a′1,3, b
′
1,3, F ) holds.R1 and R3: Obviously, f1(x4) = v and f1(F ) = F .R2: The slopes of the linear pie
es of η are 1, 1

2
λ‖z‖

‖z‖− 1
2
λ‖z‖ , and 2‖z‖−λ‖z‖

‖z‖ . Thatis, they are 1, λ
2−λ and 2 − λ. Now, λ

2−λ ≤ 1 and by (4.20), 1
4M3,0

≤ λ
2−λ . That is,

1
4M3,0

≤ λ
2−λ ≤ 1. Also, 1 ≤ 2 − λ ≤ 2. Hen
e the slopes of all linear pie
es of η and

η−1 are ≤ 4M3,0. So η is 4M3,0-bilips
hitz. By Proposition 3.18, f1 is 12M3,0-bilips
hitz.Sin
e α ≥ Id, f1 is 12M3,0 · α-bi
ontinuous. We may thus de�ne M ′
3,1 = 12M3,0.R4: Obviously, supp(f1) ⊆ B(0; λ‖z‖2 , 2‖z‖). By (4.20), B(0, 1

4M3,0
‖z‖) ⊆ B(0, λ‖z‖2 ).So we may de�ne a′3,1 = 1

4M3,0
. Re
all that v = λz. So by (4.20), ‖v‖ = λ‖z‖ ≥ 1

2M3,0
‖z‖.Hen
e 2‖z‖ ≤ 4M3,0‖v‖. It follows that B(0, 2‖z‖) ⊆ B(0, 4M3,0‖v‖). So we may take

b′3,1 = 4M3,0.We have shown that R(x4, v, f1,M
′
1,3 ·α, a′1,3, b′1,3, F ) holds. Taking in a

ount Case 1and Case 2, we de�ne M

′′
3,1 = max(M3,1,M

′
3,1), a′′3,1 = min(a3,1, a

′
3,1) and b′′3,1 =

max(b3,1, b
′
3,1). Then M

′′
3,1, a

′′
3,1, b

′′
3,1 are as required in C3.Part 5: The 
onstru
tion of f2. Let v be as in Part 4. Remember that v was de�nedin two di�erent ways. In the 
ase that ‖ẑ‖ ≤ ‖ŷ‖, v = ŷ + z

⊥, and in the 
ase that
‖ẑ‖ > ‖ŷ‖, v = λz. De�ne v⊥ = v − ŷ. The following holds:5.1 y = ŷ + y

⊥, v = ŷ + v
⊥, y⊥ = νv

⊥, ŷ ∈ F and ν > 0.If ν = 1 let f2 = Id. Assume that ν 6= 1. The ve
tor y⊥ is as in Part 4, and in bothCases 1 and 2 of Part 4, v⊥ is a multiple of y⊥. So the analogue of 
lause 4.4 in Part 4holds for y⊥ and v⊥. That is,5.2 F ⊆ F̂ , F̂ ⊕ span({y⊥}) = E and ‖y⊥‖ ≤ 1 1
2d(y

⊥
, F̂ ) and equivalently ‖v⊥‖ ≤

1 1
2d(v

⊥
, F̂ ).Re
all that g1 = f1 ◦e. We shall next show that there is N1 whi
h does not depend on

E,F, α, x0, y0 su
h that(♣) for every u ∈ E, d(g1(u), F ) ≈N1 d(u, F ). In parti
ular, d(v, F ) ≈N1 d(x0, F ),Re
all that M3,1 =
∏4
i=1 M1,i. Then by C1, d(e(u), F ) ≈M3,1 d(u, F ) for every u ∈ E.In Case 1 of Part 4, f1(u) − u ∈ F for every u ∈ E, so d(f1(u), F ) = d(u, F ). So in Case1 of Part 4, d(g1(u), F ) ≈N1 d(u, F ) for every u ∈ E.In Case 2 of Part 4, f1 is the pie
ewise linearly radial homeomorphism based on η,and for any slope a of a pie
e of η, 1/4M3,0 ≤ a ≤ 2 ≤ 4M3,0. So for every u ∈ E,

d(u, F ) ≈4M3,0 d(f1(u), F ). Now, de�ne N1 = 4M3,1M3,0. Then in both Case 1 and



194 M. Rubin and Y. YomdinCase 2 of Part 4, d(g1(u), F ) ≈N1 d(u, F ) for every u ∈ E. The fa
t d(v, F ) ≈N1 d(x0, F )is a spe
ial 
ase of the above, sin
e v = g1(x0).It is given that d(x0, F ) ≈α d(y0, F ). Let N2 = M2,1M2,2. Then from C2 it followsthat d(y0, F ) ≈N2 d(y, F ). So(♣♣) d(x0, F ) ≈N2·α d(y, F ).Let N = N1N2 and β = N · α. It follows from (♣) and (♣♣) that d(v, F ) ≈β d(y, F ).By 5.1, d(v, F ) = d(v
⊥
, F ) and d(y, F ) = d(y

⊥
, F ). Hen
e

d(y
⊥
, F ) ≈β d(v⊥, F ).Clause 3.3 in Part 3 says that ‖y⊥‖ ≤ (1 + ε)d(y, F ). In Cases 1 and 2 of Part 3, ε wastaken to be 1/2 and 1/9 respe
tively. So ‖y⊥‖ ≤ 3

2d(y
⊥
, F ). Hen
e

‖y⊥‖ ≤ 3
2 · β(d(v

⊥
, F )) ≤ 3

2 · β(‖v⊥‖).Sin
e v⊥ is a multiple of y⊥, it follows that ‖v⊥‖ ≤ 3
2d(v

⊥
, F ). So

‖v⊥‖ ≤ 3
2 · β(d(v

⊥
, F )) ≤ 3

2 · β(d(y
⊥
, F )) ≤ 3

2 · β(‖y⊥‖).Let γ = 3β/2. Hen
e(5.1) ‖y⊥‖ ≈γ ‖v⊥‖.From the fa
t that y⊥ = νv
⊥ and (5.1), it follows that(5.2) If ν > 1, then ν · ‖v⊥‖ ≤ γ(‖v⊥‖); and if ν < 1, then 1

ν · ‖y⊥‖ ≤ γ(‖y⊥‖).Let L = {ŷ + ty
⊥ | t ∈ R}. So L is the straight line 
onne
ting y and v. Re
all that

H2 = span({y⊥}). By 5.2, H2 ⊥1 1
2 F̂ . So by Proposition 9.2(f), ‖ ‖F̂ ,H2 ≈2 1

2 ‖ ‖. By 5.1and 5.2, ŷ ∈ F̂ . So for every t ∈ R, ‖ŷ + ty
⊥‖ ≥ 2

5 · (‖ŷ‖ + |t|‖y⊥‖) ≥ 2
5 · ‖ŷ‖. That is,(5.3) d(L, 0) ≥ 2

5 · ‖ŷ‖.We show that(5.4) ‖v⊥‖ ≤ 3
7‖ŷ‖.Let ŷ, ẑ be as in Part 4. Suppose �rst that ‖ŷ‖ ≥ ‖ẑ‖. In this 
ase v⊥ = z

⊥. By (4.4),
‖z⊥‖ ≤ 3

10‖z‖. Sin
e z = ẑ + z
⊥, ‖z⊥‖ ≤ 3

7‖ẑ‖, and sin
e ‖ŷ‖ ≥ ‖ẑ‖, ‖z⊥‖ ≤ 3
7‖ŷ‖.That is, if ‖ŷ‖ ≥ ‖ẑ‖, then ‖v⊥‖ ≤ 3

7‖ŷ‖. Next suppose that ‖ŷ‖ < ‖ẑ‖. In this 
ase
ŷ + v

⊥
= v = λz = λ(ẑ + z

⊥
) = ŷ + λz

⊥. That is, v⊥ = λz
⊥ and ŷ = λẑ. Hen
e

‖v⊥‖/‖ŷ‖ = ‖z⊥‖/‖ẑ‖. By (4.4), ‖v⊥‖/‖ŷ‖ = ‖z⊥‖/‖ẑ‖ ≤ 3
7 . So, if ‖ŷ‖ < ‖ẑ‖, then

‖v⊥‖ ≤ 3
7‖ŷ‖. We 
on
lude that (5.4) holds in both 
ases.Sin
e v = ŷ + v

⊥, it follows that ‖v‖ ≤ ‖ŷ‖ + ‖v⊥‖. So by (5.4), ‖v‖ ≤ 10
7 ‖ŷ‖.Similarly, ‖ŷ‖ ≤ ‖v‖ + ‖v⊥‖ ≤ ‖v‖ + 3

7‖ŷ‖. So 4
7‖ŷ‖ ≤ ‖v‖. Hen
e(5.5) 7

10‖v‖ ≤ ‖ŷ‖ ≤ 7
4‖v‖.Fa
t (5.3) and the �rst inequality in (5.5) imply that(5.6) d(L, 0) ≥ 14

50‖v‖.In Case 1 of Part 3 we 
hose ε = 1
2 and ∆ = 8. So by 3.3 and 3.4, ‖y⊥‖ ≤ 3

2d(y, F ) ≤
3
2 · 1

8‖y‖. That is, ‖y⊥‖ ≤ 3
16‖y‖. Sin
e y = ŷ + y

⊥, ‖ŷ‖ ≥ 13
16‖y‖. Hen
e in Case 1,
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‖y⊥‖ ≤ 3

13‖ŷ‖. In Case 2 of Part 3 we follow the same 
omputation with ε = 1
9 and

∆ = 1
24 . We obtain ‖y⊥‖ ≤ 10

108‖y‖ and hen
e ‖y⊥‖ ≤ 10
98‖ŷ‖. So in both 
ases(5.7) ‖y⊥‖ ≤ 3

13‖ŷ‖.We shall next de�ne g4. The required f2 will be either g4 or g−1
4 . Re
all that F̂ and

H2 were de�ned in Part 4, and that ν was de�ned in 5.1. For u ∈ E set u1 := (u)F̂ and
u2 := (u)H2

.If ν > 1 let
ν̄ = ν, v̄

⊥
= v

⊥
, ȳ

⊥
= y

⊥
, v̄ = v, ȳ = y,and if ν < 1 let

ν̄ =
1

ν
, v̄

⊥
= y

⊥
, ȳ

⊥
= v

⊥
, v̄ = y, ȳ = v.So ν̄ > 0, ȳ⊥ = ν̄ · v̄⊥ and by (5.2),(5.8) ν̄ ≤ γ(‖v̄⊥‖)

‖v̄⊥‖
.Let ̺ ∈ H([0,∞)) be the pie
ewise linear fun
tion with breakpoints at ‖v̄⊥‖/2, ‖v̄⊥‖and 2ν̄‖v̄⊥‖ su
h that ̺↾([0, ‖v̄⊥‖/2] ∪ [2ν̄‖v̄⊥‖,∞)) = Id and ̺(‖v̄⊥‖) = ν̄‖v̄⊥‖. De�ne

η(s, t) to be the fun
tion
η(s, t) =





(
1 − s

‖ŷ‖/5

)
̺(t) +

s

‖ŷ‖/5 t, s ∈ [0, ‖ŷ‖/5],

t, s ≥ ‖ŷ‖/5.So η = η(̺,‖ŷ‖/5) as de�ned in Proposition 9.10(b). Let Eˆ = {u ∈ E | u2 ≥ 0}. De�ne
g4(u) =




u1 + η(d(u, L), ‖u2‖) ·

v̄
⊥

‖v̄⊥‖
, u ∈ Eˆ,

u, u ∈ E − Eˆ.If u2 = 0 then g4(u) = u, so g↾F̂ = Id. and hen
e g4 ∈ H(E). Note that if ν > 1,then g4(v) = y, and if ν < 1, then g−1
4 (v) = y. Next we �nd M3,2, a3,2, b3,2 indepen-dent of E,F, α, x0, y0 su
h that R(v, y, g4;M3,2 ·α, a3,2, b3,2, F ) holds or R(y, v, g4;M3,2 ·

α, a3,2, b3,2, F ) holds.R3: Clearly, g4↾F = Id and hen
e g4(F ) = g−1
4 (F ) = F .R2: We shall next �nd M3,2 su
h that g4 is M3,2 · α-bi
ontinuous. The slopes ofthe linear pie
es of ̺ are: 1, ν̄‖v̄⊥‖−‖v̄⊥‖/2

‖v̄⊥‖−‖v̄⊥‖/2
, 2ν̄‖v̄⊥‖−ν̄‖v̄⊥‖

2ν̄‖v̄⊥‖−‖v̄⊥‖
and 1. That is, the fourslopes of ̺ are 1, 2ν̄ − 1, ν̄

2ν̄−1 and 1. We apply Proposition 9.10(a) to ̺ taking a0to be 0, a1, a2, a3 to be the breakpoints of ̺, and a4 to be ∞. Using the notation ofDe�nition 9.9(b), the fun
tions ̺1, ̺3 and ̺4 are linear fun
tion with slopes 1, ν̄
2ν̄−1 and

1 respe
tively. So they are 1-Lips
hitz. Clearly, ̺2(t) = (2ν̄ − 1)t + c, t ∈ [0, ‖v̄⊥‖/2).By (5.8) and Proposition 9.10(
), ̺2 is 2 · γ-
ontinuous, and so ̺ is (4, 2 · γ)-
ontinuous.By Proposition 9.10(a),(5.9) ̺ is 8 · γ-
ontinuous.



196 M. Rubin and Y. YomdinLet u,w ∈ Eˆ. Then
‖g4(w) − g4(u)‖ ≤ ‖(w − u)1‖ + |η(d(w,L), ‖w2‖) − η(d(u, L), ‖w2‖)|(5.10)

+ |η(d(u, L), ‖w2‖) − η(d(u, L), ‖u2‖)|.Denote the three summands on the right hand of inequality (5.10) by D1, D2 and D3. If
d(w,L), d(u, L) ∈ [0, ‖ŷ‖/5), then

D2 ≤ |d(w,L) − d(u, L)|
‖ŷ‖/5 · (̺(‖w2‖) − ‖w2‖) ≤

‖w − u‖
‖ŷ‖/5 · (̺(‖w2‖) − ‖w2‖)

≤ ‖w − u‖
‖ŷ‖/5 · (ν̄ − 1)‖v̄⊥‖ ≤ ‖w − u‖

‖ŷ‖/5 · ν̄ · ‖v̄⊥‖ := D′
2.The above is true for every u,w ∈ Eˆ. Sin
e ν̄ · v̄⊥ = v

⊥ or ν̄ · v̄⊥ = y
⊥, by (5.4) and(5.7), ν̄ · ‖v̄⊥‖/‖ŷ‖ ≤ 3

7 . Hen
e, D′
2 ≤ 15

7 · ‖w − u‖. That is,(5.11) |η(d(w,L), ‖w2‖) − η(d(u, L), ‖w2‖)| ≤ 15
7 · ‖w − u‖.By (5.9) and Proposition 9.10(b), D3 ≤ 8 · γ(|‖w2‖ − ‖u2‖|) ≤ 8 · γ(‖(w − u)2‖) := D′

3,and by the se
ond inequality in (4.9) and Proposition 9.10(d), D′
3 ≤ 3

2 · 8 · γ(‖w − u‖.Hen
e(5.12) |η(d(u, L), ‖w2‖) − η(d(u, L), ‖u2‖)| ≤ 12 · γ(‖w − u‖).Note that for every ū ∈ E, ū1 of Part 5 is ū1 + ū3 of Part 4. So by the �rst and thirdinequalities in (4.9),(5.13) ‖(w − u)1‖ ≤ 7 1
2‖w − u‖.Substitute into (5.10) inequalities (5.13), (5.11) and (5.12). We obtain the inequality

‖g4(w) − g4(u)‖ ≤ 9 9
14‖w − u‖ + 12 · γ(‖w − u‖). Re
all that γ = 3

2β and that β = Nα.Hen
e, sin
e α ≥ Id,
g4↾Eˆ is (18N + 10) · α-
ontinuous.The 
omputation whi
h shows that for some M independent of E,F, α, x0, y0,

g−1
4 ↾Eˆ is M · α-
ontinuous is analogous. But for g−1

4 there is M whi
h does not de-pend on E,F, α, x0, y0 su
h that g−1
4 ↾Eˆ is M -Lips
hitz. So we 
on
lude that g−1

4 ↾Eˆ is
M · α-
ontinuous. This 
omputation is analogous to the proof that f

−1
1 is Lips
hitz.For s ∈ [0,∞) let θs = η−1

s . Write θ(s, t) = θs(t). As in Part 4, for every u ∈ E,
g−1
4 (u) = u1 + θd(u,S)(‖u2‖)

v̄
⊥

‖v̄⊥‖
.The analogues (5.10∗) of (5.10) and (5.11∗) of (5.11) obtained by repla
ing η by θ aretrue. Let µ = θ0. So µ = ̺−1 and θ = η(µ,‖ŷ‖/5). The slopes of the linear pie
es of µ arethe inverses of the slopes of the linear pie
es of ̺. Hen
e the slopes are 1, 1

2ν̄−1 and 2ν̄−1
ν̄ .The �rst two slopes are ≤ 1 and the third is ≤ 2. So µ is 2-Lips
hitz. By Proposition9.10(b), for every s ∈ [0,∞), θs is 2-Lips
hitz. Hen
e

|θ(d(u, L), ‖w2‖) − θ(d(u, L), ‖u2‖)| ≤ 2 · |‖w2‖ − ‖u2‖| = 2 · ‖(w − u)2‖.Applying the se
ond inequality in (4.9) we 
on
lude that(5.14) |θ(d(u, L), ‖w2‖) − θ(d(u, L), ‖u2‖)| ≤ 3‖w − u‖.
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on
lude that
‖g−1

4 (w) − g−1
4 (u)‖ ≤ (7 1

2 + 15
7 + 3)‖w − u‖ ≤ 13‖w − u‖.Sin
e 13 · Id ≤ (18N + 10) · α, g−1

4 ↾Eˆ is (18N + 10) · α-
ontinuous. Hen
e g4↾Eˆ is
(18N+ 10) ·α-bi
ontinuous and so g4 is 2(18N+ 10) ·α-bi
ontinuous. So M3,2 := 60N isas required. That is, g and g−1 are M3,2 · α-bi
ontinuous.R4: We shall �nd a′ and b′ independent of E,F, α, x0 and y0 su
h that supp(g4) ⊆
B(0; a′‖ŷ‖, b′‖ŷ‖). Let u ∈ B(0, ‖ŷ‖/5). By (5.3), d(u, L) > ‖ŷ‖/5. So for every t ∈
[0,∞), η(d(u, L), t) = t. In parti
ular, η(d(u, L), ‖u2‖) = ‖u2‖. Hen
e

g4(u) = u1 + η(d(u, L), ‖u2‖) ·
v̄
⊥

‖v̄⊥‖
= u1 + u2 = u.That is, g4↾B(0, ‖ŷ‖/5) = Id and hen
e a′ = 1/5.Let u ∈ E. If d(u, L) ≥ ‖ŷ‖/5 or ‖u2‖ ≥ 2ν̄‖v̄⊥‖, then η(d(u, L), ‖u2‖) = ‖u2‖ andhen
e g4(u) = u. Re
all that ν̄ · v̄⊥ = v

⊥ or ν̄ · v̄⊥ = y
⊥. So if ‖u2‖ ≥ 2‖v̄⊥‖ and

‖u2‖ ≥ 2‖ȳ⊥‖, then g4(u) = u. So by (5.4) and (5.7),(5.15) If ‖u2‖ ≥ 6
7‖ŷ‖, then g4(u) = u.Fa
t (⋆) in Part 4 (whi
h pre
edes (4.9)) says that ū1,3 ≤ 2 1

2 ū for every ū ∈ E. But
ū1,3 of Part 4 is ū1 of Part 5. So ‖ū1‖ ≤ 5

2‖ū‖ for every ū ∈ E. We show that(5.16) If ‖u1‖ ≥ 1 1
2‖ŷ‖, then g4(u) = u.Suppose that ‖u1‖ ≥ 1 1

2‖ŷ‖ and let w ∈ L. Then (u−w)1 = u1−ŷ and hen
e ‖(u−w)1‖ ≥
‖u1‖−‖ŷ‖ ≥ 1

2‖ŷ‖. So ‖u−w‖ ≥ 2
5‖(u−w)1‖ ≥ 2

5 · 12‖ŷ‖ = ‖ŷ‖/5. Hen
e d(u, L) ≥ ‖ŷ‖/5.This implies that g4(u) = u. Suppose that ‖u‖ ≥ 3‖ŷ‖ and we show that g4(u) = u.Clearly, ‖u1‖ + ‖u2‖ ≥ ‖u‖ ≥ 3‖ŷ‖. So either ‖u1‖ ≥ 1 1
2‖ŷ‖ or ‖u2‖ ≥ 6

7‖ŷ‖. By (5.16)and (5.15), g4(u) = u. It follows that g4↾(E −B(0, 3‖ŷ‖)) = Id. So b′ := 3 is as desired.Re
all that (4.6) said that ‖ŷ‖ ≤ 19
16‖y‖, and that (5.5) said that 7

10‖v‖ ≤ ‖ŷ‖. Itfollows that supp(g4) ⊆ B(0; 1
5 · 7

10‖v‖, 3 · 19
16‖y‖). That is, supp(g4) ⊆ B(0; 7

50‖v‖, 57
16‖y‖),and the same is true for g−1

4 . Let a3,2 = 7/50 and b3,2 = 57/16. Then supp(g2), supp(g−1
2 )

⊆ B(0; a3,2‖v‖, b3,2‖y‖). So R3 is proved.The de�nition of f2: If ν > 1 de�ne f2 = g4, and if ν < 1 de�ne f2 = g−1
4 .R1: Clearly, f2(v) = y, and sin
e v = v and y2 = y, we have f2(v) = y2.We have found Mi,j 's, ai,j 's and bi,j 's whi
h ful�ll C1�C4. It follows from the �rstpart of the proof of the lemma that there exist M, a, b su
h that M is a UC-
onstant for

〈a, b 〉.(b) Let M, a, b be as ensured by (a), and let a′ < 1 and b′ > 1. We may assumethat a′ > a and that b′ < b. Let x, y ∈ E − F be as in the de�nition of a UC-
onstant.Let g1,g2 be as ensured in (a) for the numbers a and b. (See De�nition 9.11(a).) Let
η ∈ H([0,∞)) be a pie
ewise linear fun
tion with breakpoints at: a · ‖x‖, ‖x‖, ‖y‖, b ·
‖y‖, 2b · ‖y‖ and su
h that: η(0) = 0; η(a · ‖x‖) = a′ · ‖x‖; η(‖x‖) = ‖x‖; η(‖y‖) = ‖y‖;
η(b · ‖y‖) = b′ · ‖y‖; η↾[2b · ‖y‖,∞) = Id. The slopes of the linear pie
es of η are: a′

a , 1−a′
1−a ,

1, b′−1
b−1 , 2b−b′

b and 1. These slopes depend only on a, a′, b, b′ and not on x and y. Let Lbe the maximum of all the above slopes and their inverses. So η is L-bilips
hitz.



198 M. Rubin and Y. YomdinLet k be the pie
ewise linearly radial homeomorphism based on η. That is, for every
u ∈ E − {0}, k(u) = η(‖u‖) u

‖u‖ and k(0) = 0. By Proposition 3.18, k is 3L-bilips
hitz.For i = 1, 2, let g′
i = k ◦gi ◦k

−1. Then g′
i is (3L · Id) ◦α ◦ (3L · Id)-bi
ontinuous. So byProposition 9.10(d), g′

i is 9L2
M ·α-bi
ontinuous. De�ne M

′ = 9L2
M. It is easy to verifythat 
lauses B1�B4 in the de�nition of a UC-
onstant (De�nition 9.11(a)) are ful�lled by

a′, b′, g′
1, g′

2 and M
′. Hen
e M

′ is a UC-
onstant for 〈a′, b′ 〉.



10. 1-dimensional boundariesChapter 9 dealt with the following situation. E is a normed spa
e, F is a 
losed subspa
eof E with dimension ≥ 2, x, y ∈ E − F , and ‖x‖ ≈α ‖y‖ and d(x, F ) ≈α d(y, F ). It wasshown that there is an M · α ◦α-bi
ontinuous g ∈ H(E) su
h that g(x) = y, g(F ) = Fand supp(g) is 
ontained in the ring B(0; a‖x‖, b‖y‖). When F is 1-dimensional, su
h a
g does not always exist. The reason for this is that in order to move x to y we need torotate x about an axis perpendi
ular to F . See the 
onstru
tion of g1 in Part 2 of theproof of Lemma 9.13(a). When F is 1-dimensional, su
h a rotation does not exist.Whereas Part 2 of the proof of Lemma 9.13(a) fails for a 1-dimensional subspa
e,Parts 1 and 3�5 remain without 
hange. In these parts, the fa
t that dim(F ) ≥ 2 is notused. By skipping Part 2 in the proof of Lemma 9.13(a) one obtains the following lemma.Let F,K be linear subspa
es of a normed spa
e E and u ∈ E. Then u ⊥ F denotesthe fa
t that ‖u‖ = d(u, F ), and K ⊥ F means that u ⊥ F for every u ∈ K.Lemma 10.1. Let M be a UC-
onstant for 〈a, b 〉. Let E be a normed spa
e and F be a
1-dimensional linear subspa
e of E. Let α ∈ MBC and x, y ∈ E − F be su
h that :(i) ‖x‖ ≤ ‖y‖ and ‖x‖ ≈α ‖y‖,(ii) d(x, F ) ≈α d(y, F ),(iii) x = x̂+ x

⊥, y = ŷ + y
⊥, x̂, ŷ ∈ F , x⊥, y⊥ ⊥ F , and for some λ > 0, x̂ = λŷ,(iv) if dim(E) = 2, then x, y are on the same side of F .Then there are g1, g2 ∈ H(E) su
h that :(1) g1, g2 are Mα-bi
ontinuous ,(2) g1 ◦ g2(x) = y,(3) g1(F ) = F and g2(F ) = F ,(4) for every i = 1, 2, supp(gi) ⊆ B(0; a‖x‖, b‖y‖).Proof. Parts 1, 3�5 of the proof of Lemma 9.13(a) 
onstitute the proof of this lemma.Definition 10.2. Let 0 < a < 1, b > 1 and M ≥ 1. We say that M is a 1-dimensionalUniform Continuity 
onstant for a and b (abbreviated by �M is a 1UC-
onstant for

〈a, b 〉�) if the following holds. Suppose that E,F, α, x, y satisfy the following assumptions.A1 E is a normed spa
e and F is a proper linear subspa
e of E su
h that dim(F ) = 1,
α ∈ MBC and x, y ∈ E − F ,A2 ‖x‖ ≤ ‖y‖ ≤ α(‖x‖),A3 d(x, F ) ≈α d(y, F ),A4 ‖x‖ ≤ α(d(x, F )) and ‖y‖ ≤ α(d(y, F )),A5 if dim(E) = 2, then x, y are on the same side of F .[199℄



200 M. Rubin and Y. YomdinThen there are g1, g2, g3 ∈ H(E) su
h that:B1 for every i = 1, 2, 3, gi is M · α-bi
ontinuous,B2 g3 ◦ g2 ◦ g1(x) = y,B3 for every i = 1, 2, 3, gi(F ) = F ,B4 for every i = 1, 2, 3, supp(gi) ⊆ B(0; a‖x‖, b‖y‖). �Remark. Note that in the de�nition of a 1UC-
onstant there is an extra assumption on
x and y whi
h did not appear in the de�nition of a UC-
onstant, namely, AssumptionA4 whi
h says that ‖x‖ ≤ α(d(x, F )) and ‖y‖ ≤ α(d(y, F )). �The rest of the 
hapter is devoted to the proof of the following lemma.Lemma 10.3. (a) There are a, b,M su
h that M is a 1UC-
onstant for a and b.(b) For every 0 < a < 1 and b > 1 there is M su
h that M is a 1UC-
onstant for aand b.Items 10.4�10.9 are needed in the proof of the above lemma.Proposition 10.4. Let F be a �nite-dimensional linear subspa
e of a normed spa
e
E and u 6∈ F . Then there is a 1-dimensional subspa
e L ⊆ span(F ∪ {u}) su
h that
L ⊥ F .Proposition 10.5. Let X be a metri
 spa
e, α ∈ MBC, c > 0, D,K ≥ 1, g ∈ H(X),
diam(supp(g)) ≤ Dα(c) and g is K · α(c)/c-Lips
hitz. Then g is (D + K + 1) · α-
ontinuous.Proof. Note that if α ∈ MC, then the fun
tion α(t)/t is de
reasing. Let x, y ∈ X.Suppose �rst that d(x, y) ≤ c. Then

d(g(x), g(y)) ≤ K
α(c)

c
d(x, y) ≤ K

α(d(x, y))

d(x, y)
d(x, y) = Kα(d(x, y))

≤ (D +K + 1) · α(d(x, y)).Next assume that d(x, y) > c. If x, y ∈ supp(g), then
d(g(x), g(y)) ≤ Dα(c) < Dα(d(x, y)) ≤ (D +K + 1) · α(d(x, y)).If x 6∈ supp(g) and y ∈ supp(g), then
d(g(x), g(y)) ≤ d(x, y) + d(y, g(y)) ≤ α(d(x, y)) +Dα(c)

< α(d(x, y)) +Dα(d(x, y)) = (D +K + 1)α(d(x, y)).The 
ase that x ∈ supp(g) and y 6∈ supp(g) is identi
al, and the 
ase that x, y 6∈ supp(g)is trivial.Proposition 10.6. There are b > 1, 0 < a < 1 and M > 1 su
h that the following holds.Suppose that :(1) α ∈ MBC,(2) E is a normed spa
e, and L is a 1-dimensional linear subspa
e of E,(3) u ∈ E − L and ‖u‖ ≤ α(d(u, L)),(4) u = û+ u
⊥, where û ∈ L and u⊥ ⊥ L, and v = (‖u‖/‖u⊥‖)u⊥.Then there is g ∈ H(E) su
h that :



Re
onstru
tion of manifolds from subgroups of homeomorphism groups 201(1) g(u) = v,(2) g is M · α-bi
ontinuous ,(3) supp(g) ⊆ B(0; a‖u‖, b‖u‖),(4) g(L) = L.De�ne M lift = M , alift = a and blift = b. Note that the 
onjun
tion of 
lauses (1)�(4) isthe relation R(u, v, g;M · α, a, b, L) de�ned in De�nition 9.11(b).Proof. Let A = [u, v]. Clearly, d(u, L) = ‖u⊥‖. So ‖u⊥‖ ≤ ‖u‖. We �nd an upper boundfor ‖u− v‖:
‖u− v‖ ≤ ‖u− u

⊥‖ + ‖u⊥ − v‖ = ‖û‖ + (‖u‖ − d(u, L))

≤ (‖u‖ + ‖u⊥‖) + (‖u‖ − d(u, L))

= (‖u‖ + d(u, L)) + (‖u‖ − d(u, L)) = 2‖u‖ ≤ 2α(d(u, L)).We show that d(A,L) = d(u, L). For every z ∈ A there are λ ∈ [0, 1] and µ ≥ 1 su
hthat z = λû + µu
⊥. So d(z, L) = µ‖u⊥‖ ≥ ‖u⊥‖ = d(u, L). Sin
e u ∈ A, we have

d(A,L) = d(u, L). We show that d(A, 0) ≥ ‖u‖/4. Let w = û+ v and C = [u,w]∪ [w, v].We �rst show that d(C, 0) ≥ ‖u‖/2. If z ∈ [v, w], then for some t ∈ R, z = v + tû. So
‖z‖ ≥ d(z, L) = d(v, L) = ‖v‖ = ‖u‖. Hen
e d([v, w], 0) = ‖u‖.Note that [u,w] = {u+ tv | 0 ≤ t ≤ 1−‖u⊥‖/‖v‖}. Let z = u+ tv ∈ [u,w]. If t ≤ 1/2,then ‖u+ tv‖ ≥ ‖u‖ − t‖v‖ ≥ ‖u‖ − ‖u‖/2 = ‖u‖/2. If t ≥ 1/2, then

‖u+ tv‖ ≥ d(u+ tv, L) = d(û+ u
⊥

+ tv, L) = d(u
⊥

+ tv, L)

= d((t+ ‖u⊥‖/‖v‖)v, L) ≥ d(tv, L) ≥ d(v, L)/2 = ‖u‖/2.Hen
e d([u,w], 0) ≥ ‖u‖/2. It follows that d(C, 0) ≥ ‖u‖/2.We next prove that (∗) for every x ∈ A there are z ∈ C and µ ∈ [1/2, 1] su
h that
x = µz. Re
all that w = û + v. The equation µw = λu + (1 − λ)v has the solution
µ = λ = ‖u‖

2‖u‖−‖u⊥‖ . So µ ∈ (0, 1). That is, there are x ∈ A, z ∈ C and µ ∈ (0, 1) su
hthat x = µz, and hen
e for every x ∈ A there are z ∈ C and µ ∈ (0, 1) su
h that x = µz.Let z ∈ [u,w]. Then z = u + t ‖u‖
‖u⊥‖u

⊥, where 0 ≤ t ≤ 1 − ‖u⊥‖
‖u‖ . The equation

µz = λu + (1 − λ)v has the solution λ = µ = 1
1+t . Sin
e t ∈ (0, 1), µ ∈ [1/2, 1]. Let

z ∈ [v, w]. Then z = ‖u‖
‖u⊥‖u

⊥
+t(u−u⊥), where 0 ≤ t ≤ 1. The equation µz = λu+(1−λ)vhas the solution

µ =
‖u‖

‖u‖ + t(‖u‖ − ‖u⊥‖) , λ = tµ.It follows that µ ∈ (1/2, 1]. So (∗) is proved. Hen
e d(A, 0) ≥ d(C, 0)/2 ≥ ‖u‖/4.Let r = d(u, L)/8. By Proposition 9.6(a), there is g ∈ H(E) su
h that g(u) = v,
supp(g) ⊆ B(A, r) and g is M seg · (lngth(A)/r + 1)-bilips
hitz. Hen
e requirement (1)holds. Moreover

M seg ·
(

lngth(A)

r
+ 1

)
≤M seg ·

(
16α(d(u, L))

d(u, L)
+ 1

)
≤M seg · 17α(d(u, L))

d(u, L)
.So g is 17M seg · α(d(u,L))

d(u,L) -bilips
hitz. Also,
diam(B(A, r)) ≤ lngth(A) + 2r ≤ 2α(d(u, L)) + d(u, L)/4 ≤ 3α(d(u, L)).



202 M. Rubin and Y. YomdinWe apply Proposition 10.5 to g and to g−1 with c = d(u, L), D = 3 and K = 17M seg.It follows that g is (4 + 17M seg) · α-bi
ontinuous. So requirement (2) holds with M =

4 + 17M seg. Sin
e d(A,L) = d(u, L) and r < d(u, L), it follows that d(B(A, r), L) > 0.So g↾L = Id. Requirement (4) thus holds.We �nd the a and b of requirement (3). Let r0 = d(B(A, r), 0). So g↾B(0, r0) = Id.But r0 = d(A, 0)−r ≥ ‖u‖/4−d(u, L)/8 ≥ ‖u‖/8. So a = 1/8. Let r1 = supx∈B(A,r) ‖x‖.Then supp(g) ⊆ B(0, r1). For every x ∈ A, ‖x‖ ≤ max(‖u‖, ‖v‖) = ‖u‖. So r1 ≤
‖u‖ + r < 2‖u‖. De�ne b = 2. Then supp(g) ⊆ B(0; a‖u‖, b‖u‖). So requirement (3) isful�lled with a = 1/8 and b = 2.Proposition 10.7. Let E be a 3-dimensional Hilbert spa
e, L be a 1-dimensional syb-spa
e of E, u, v ∈ E − L and M ≥ 1. Suppose that ‖u‖, ‖v‖ ≤ Md(u, L) and ‖u‖, ‖v‖ ≤
Md(v, L). Then there is a re
ti�able ar
 A 
onne
ting u and v su
h that :(1) lngth(A) ≤ (4 + π)M‖u‖,(2) d(A,L) ≥ ‖u‖/M ,(3) max({‖x‖ | x ∈ A}) ≤M‖u‖.Proof. Let w1 = u⊥, w2 = v⊥ and w3 = (‖u⊥‖/‖v⊥‖)v⊥. Let S be a subar
 of
S(0, ‖w1‖)∩L⊥ whose endpoints are w1 and w3 and su
h that lngth(S) ≤ π‖w1‖. De�ne
A = [u,w1] ∪ S ∪ [w3, w2] ∪ [w2, v]. Then d(A,L) = min(d(u, L), d(v, L)) ≥ ‖u‖/M . It isobvious that max({‖x‖ | x ∈ A}) = max(‖u‖, ‖v‖) ≤M‖u‖. Now,

lngth(A) ≤ ‖(u)L‖ + π‖u⊥‖ + |‖u⊥‖ − ‖v⊥‖| + ‖(v)L‖
≤ ‖u‖ + π‖u‖ + ‖u‖ + ‖v‖ ≤ (4 + π)M‖u‖.So A is as required.Proposition 10.8. There are M > 1, 0 < a < 1 and b > 1 su
h that the following holds.Suppose that :(1) E is a normed spa
e, and L is a 1-dimensional linear subspa
e of E,(2) u, v ∈ E − L, ‖u‖ = ‖v‖, u ⊥ L and v ⊥ L,(3) if E is 2-dimensional , then u, v are on the same side of L.Then there is g ∈ H(E) su
h that R(u, v, g;M,a, b, L) holds. (See De�nition 9.11(b).)We write Mperp = M , aperp = a and bperp = b.Proof. If E is 2-dimensional, then [u, v] ⊆ S(0, ‖u‖). So d([u, v], L)=‖u‖ and lngth([u, v])

≤ ‖u‖ + ‖v‖ = 2‖u‖. By Proposition 9.6(a), there is g ∈ H(E) su
h that: g(u) = v,
supp(g) ⊆ B([u, v], ‖u‖/2), and g is M seg · 2‖u‖

‖u‖/2 -bilips
hitz. So for 2-dimensional E's,
M,a, b 
an be taken to be 4M seg, 1/2 and 3/2.Suppose that dim(E) > 2. Let F be a 3-dimensional linear subspa
e of E 
ontaining
L, u and v, and let ‖ ‖H be a tight Hilbert norm on F . De�ne N = M thn(3). (SeeProposition 9.2(b).) So for every x ∈ F , ‖x‖ ≤ ‖x‖H ≤ N‖x‖. Obviously, ‖u‖H, ‖v‖H ≤
NdH(u, L), and ‖u‖H, ‖v‖H ≤ NdH(v, L). By Proposition 10.7, there is a re
ti�able ar

A in F 
onne
ting u and v su
h that: lngthH(A) ≤ (4 + π)N‖u‖H, dH(A,L) ≥ 1

N ‖u‖Hand max({‖x‖H | x ∈ A}) ≤ N‖u‖H. So



Re
onstru
tion of manifolds from subgroups of homeomorphism groups 203(1) lngth(A) ≤ (4 + π)N2‖u‖,(2) d(A,L) ≥ 1
N2 ‖u‖,(3) max({‖x‖ | x ∈ A}) ≤ N2‖u‖.Let r = 1

2N2 ‖u‖, By Proposition 9.6(b), there is g ∈ H(E) su
h that:(4) supp(g) ⊆ B(A, r),(5) g(u) = v,(6) g is Marc( (4+π)N2‖u‖
‖u‖/(2N2) )-bilips
hitz.So g is Marc(16N4)-bilips
hitz.Sin
e d(B(A, r), L) ≥ (1/2N2)‖u‖, g↾L = Id. De�ne M = Marc(16N4), a = 1/2N2and b = N2 + 1. Then M,a, b are as required in the proposition.Proposition 10.9. There are M > 1, 0 < a < 1 and b > 1 su
h that the followingholds. Suppose that E is a normed spa
e, u ∈ E − {0}, α ∈ MBC, 1 ≤ λ ≤ α(‖u‖)/‖u‖and v = λu. Then there is a radial homeomorphism g ∈ H(E) su
h that : g(u) = v,

g is M · α-bi
ontinuous and supp(g) ⊆ B(0; a‖u‖, b‖v‖). Note that this implies that
R(u, v, g;M · α, a, b, L) holds. Denote M,a, b by Mdlt, adlt and bdlt.Proof. Let η ∈ H([0,∞)) be the pie
ewise linear fun
tion whi
h is determined by thefollowing equalities: η(0) = 0, η(‖u‖/2) = ‖u‖/2, η(‖u‖) = λ‖u‖, and for every t ≥
λ‖u‖ + ‖u‖, η(t) = t. The slopes of the linear parts of η are 1, 2λ and 1/λ. Sin
e 1 ≤
λ ≤ α(‖u‖)/‖u‖, η is 2 ·α(‖u‖)/‖u‖-bilips
hitz. Let g be the radial homeomorphism of Ebased on η. By Proposition 3.18, g is 6 ·α(‖u‖)/‖u‖-bilips
hitz. Also, λ‖u‖+‖u‖ ≤ 2‖v‖,hen
e supp(g) ⊆ B(0, 2‖v‖). By Proposition 10.5, g is (6+2+1) ·α-bi
ontinuous. So wemay de�ne M = 9, a = 1/2 and b = 2.Proof of Lemma 10.3. (a) Let E,F, x, y be as in the de�nition of a 1UC-
onstant (Def-inition 10.2). There are x̂ and x⊥ su
h that x = x̂ + x

⊥, x̂ ∈ F and x⊥ ⊥ F . Similarly,there are ŷ and y⊥ su
h that y = ŷ + y
⊥, ŷ ∈ F and y⊥ ⊥ F . Let x1 = (‖x‖/‖x⊥‖)x⊥and y1 = (‖y‖/‖y⊥‖)y⊥. By Proposition 10.6, there are f1, h1 ∈ H(E) su
h that

R(x, x1, f1;M
lift · α, alift, blift, F ) and R(y, y1, h1;M

lift · α, alift, blift, F ).Let y2 = (‖x1‖/‖y1‖)y1. Note that ‖x1‖ = ‖y2‖, x1 ⊥ F and y2 ⊥ F , and if E is
2-dimensional then x1, y2 are on the same side of F . By Proposition 10.8, there is
f2 ∈ H(E) su
h that

R(x1, y2, f2;M
perp, aperp, bperp, F ).Sin
e ‖y2‖ = ‖x‖ and ‖y1‖ = ‖y‖, it follows that ‖y2‖ ≤ ‖y1‖ ≤ α(‖y2‖). So byProposition 10.9, there is g2 ∈ H(E) su
h that

R(y2, y1, g2;M
dlt · α, adlt, bdlt, F ).Let g1 =f2 ◦f1 and g3 =h−1

1 . Clearly, g3 ◦ g2 ◦ g1(x)=y. Let M=max(M liftMperp,Mdlt).Note that ‖x1‖ = ‖x‖, so f2↾B(0, aperp‖x‖) = Id. Set a = min(alift, aperp, adlt) and
b = max(blift, bperp, bdlt). It is obvious that 
lauses B1�B4 in the de�nition of a 1UC-
onstant hold for M,a, b, x, y, g1, g2, g3 and F .(b) Part (b) is dedu
ed from (a) in the same way that part (b) of Lemma 9.13 isdedu
ed from (a) of that lemma.



11. Extending the indu
ing homeomorphism to the boundaryA sequen
e means a fun
tion whose domain is an in�nite subset of N. If σ ⊆ N is in�nite,then {xi | i ∈ σ} is abbreviated by ~x (σ). Suppose that ~x (σ) is a sequen
e in X and
g ∈ H(X,Y ). Then g(~x (σ)) denotes the sequen
e {g(xi) | i ∈ σ}. For n ∈ N and anin�nite σ ⊆ N let σ≥n := {k ∈ σ | k ≥ n}. For a sequen
e ~x let ~x≥n := ~x↾Dom(~x)≥n.Re
all that if α : A → A, then α ◦n denotes α ◦ · · · ◦α, n times. Let X,Y be opensets in metri
 spa
es E and F respe
tively and g : X → Y . If x ∈ Dom(gcl), then wesometimes abbreviate gcl(x) by g(x).Definition 11.1. (a) Let X,Y be open sets in metri
 spa
es E and F respe
tively.Suppose that x ∈ cl(X) and g ∈ H(X,Y ). We say that g is α-
ontinuous at x if there is
T ∈ Nbr(x) su
h that g↾(T ∩X) is α-
ontinuous.Obviously, if F is a 
omplete metri
 spa
e, and g is α-
ontinuous at x, then x ∈
Dom(gcl). We say that g is α-bi
ontinuous at x if g is α-
ontinuous at x, x ∈ Dom(gcl)and g−1 is α-
ontinuous at gcl(x). We say that g is Γ -bi
ontinuous at x if for some α ∈ Γ ,
g is α-bi
ontinuous at x.(b) Suppose that E is a metri
 spa
e X ⊆ E is open, b ∈ bd(X), α ∈ MBC and
x, y ∈ X. Re
all that we write δX,E(x) = d(x,E−X). Supers
ripts E and X are omittedwhen they are understood from the 
ontext. The notation x ≈(α,b)

(X,E) y means that
d(x, b) ≈α d(y, b) and δX(x) ≈α δX(y).Suppose that ~x (σ) and ~y (σ) are sequen
es in X. Then ~x (σ) ≈(α,b)

(X,E) ~y
(σ) means that forevery n ∈ σ, xn ≈(α,b)

(X,E) yn. We abbreviate ≈(α,b)
(X,E) by ≈(α,b). Note that the notation

~x ≈(α,b) ~y entails that Dom(~x) = Dom(~y).(
) Let X be a topologi
al spa
e, A ⊆ H(X), ̺ ⊆ N be in�nite and ~x (̺), ~y (̺) besequen
es in X. We de�ne the relation ~x (̺) ∼A ~y (̺). The relation ~x (̺) ∼A ~y (̺) meansthat for any in�nite σ, η ⊆ ̺ there is g ∈ A su
h that {i ∈ σ | g(xi) = yi} and {i ∈ η |
g(xi) = xi} are in�nite. If α ∈ MBC, then ~x (̺) ∼α ~y (̺) means that ~x (̺) ∼A ~y (̺), where
A = {g ∈ H(X) | g is α-bi
ontinuous}.(d) Let E be a metri
 spa
e, X ⊆ E be open, α ∈ MBC and Γ be a modulus of
ontinuity. A sequen
e ~x in X is 
alled an α-abiding sequen
e if(i) ~x is 
onvergent and b := lim ~x ∈ bd(X);(ii) there is n = n(~x, α) ∈ N su
h that for every k ∈ Dom(~x)≥n, d(xn, b) ≤

α(δ(xn)).A sequen
e ~x in X is 
alled a Γ -evasive sequen
e if[204℄
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onstru
tion of manifolds from subgroups of homeomorphism groups 205(i) ~x is 
onvergent and b := lim ~x ∈ bd(X);(ii) for every subsequen
e ~y of ~x and α ∈ Γ , ~y is not α-abiding.Equivalently, ~x is Γ -evasive i� (i) holds and for every α ∈ Γ there is n ∈ N su
h that forevery m ∈ Dom(~x)≥n, d(xm, b) > α(δ(xm)).(e) Let X be an open subset of a normed spa
e E, and x ∈ bd(X). Suppose that Xis two-sided at x, and let 〈ψ,A, r〉 be a boundary 
hart element for x. Let U, V ∈ Nbr(x)and h ∈ EXT±(U ∩X,V ∩X) be su
h that hcl(x) = x. We say that h is side preservingat x if there is U ′ ∈ Nbr(x) su
h that for every u ∈ U ′ ∩ X, u and h(u) are on thesame side of bd(X) with respe
t to 〈ψ,A, r〉. See De�nition 8.10. We say that h is sidereversing at x if there is U ′ ∈ Nbr(x) su
h that for every u ∈ U ′ ∩X, u and h(u) are ondi�erent sides of bd(X) with respe
t to 〈ψ,A, r〉. Note that the properties of being sidepreserving or side reversing do not depend on the 
hoi
e of 〈ψ,A, r〉.(f) Let X be an open subset of a normed spa
e E, and x ∈ bd(X). Suppose that
bd(X) is 1-dimensional at x, and let 〈ψ,A, r〉 be a boundary 
hart element for x. Let L =

bd(X)∩Rng(ψ). So L is an open ar
. Let U, V ∈ Nbr(x) and h ∈ EXT±(U ∩X,V ∩X)be su
h that hcl(x) = x. We say that h is order preserving at x if there is U ′ ∈ Nbr(x)su
h that for every u ∈ U ′ ∩ L, u and hcl(u) are in the same 
onne
ted 
omponent of
L−{x}. We say that h is order reversing at x if there is U ′ ∈ Nbr(x) su
h that for every
u ∈ U ′ ∩X, u and h(u) are in di�erent 
onne
ted 
omponents of L−{x}. Note that theproperties of being order preserving or order reversing are independent of the 
hoi
e of
〈ψ,A, r〉.Let G ≤ EXT(X). We say that bd(X) is G-order-reversible at x if there is g ∈ Gsu
h that g is order reversing at x, and if X is two-sided at x, then g is side preserving.If su
h a g does not exist, then we say that bd(X) is G-order-irreversible at x. �Proposition 11.2. Let E,F normed spa
es. Suppose that X ⊆ E, Y ⊆ F are open,
α ∈ MBC and g ∈ EXT±(X,Y ). Let b ∈ bd(X), and suppose that g is α-bi
ontinuousat x.(a) There is r0 > 0 su
h that for every x ∈ B(b, r0) ∩X, δ(x) ≈α δ(g(x)).(b) Assume that E = F , Y = X and g(b) = b. Suppose that ~x is a sequen
e in X
onverging to b. Then for some n ∈ N, ~x≥n ≈(α,b) g(~x)≥n.(
) Assume that E = F , Y = X and g(b) = b. Suppose that X is two-sided at b.Let 〈ψ,A, r〉 be a boundary 
hart element for b. Then there is U ∈ Nbr(b) su
h that
U, g(U) ⊆ Rng(ψ), and for every u, v ∈ U ∩X: u, v are on the same side of bd(X) withrespe
t to 〈ψ,A, r〉 i� g(u), g(v) are on the same side bd(X) with respe
t to 〈ψ,A, r〉.Proof. (a) Let r > 0 be su
h that g↾(B(b, r) ∩ X) is α-
ontinuous. Choose s > 0 su
hthat g−1↾(B(g(b), s)∩Y ) is α-
ontinuous, and let r0 be su
h that r0 < r/2 and g(B(b, r0)

∩X) ⊆ B(g(b), s/2) ∩ Y . Let x ∈ B(b, r0) ∩X. Suppose that ε ∈ (0, r/2− ‖x− b‖). Let
u ∈ bd(X) be su
h that ‖u− x‖ < δ(x) + ε. Sin
e δ(x) < ‖x− b‖ < r0, it follows that

‖u− b‖ ≤ ‖u− x‖ + ‖x− b‖ < δ(x) + r/2 − ‖x− b‖ + ‖x− b‖ ≤ r0 + r/2 < r.Hen
e gcl↾{x, u} is α-
ontinuous. So
δ(g(x)) ≤ ‖gcl(x) − gcl(u)‖ ≤ α(‖x− u‖) < α(δ(x) + ε).
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e this argument is valid for any ε ∈ (0, r/2−‖x−b‖), it follows that δ(g(x)) ≤ α(δ(x)).We apply the analogous argument to g(x). This 
an be done, sin
e g(x) ∈ B(g(b), s/2)∩Y .So δ(g−1(g(x))) ≤ α(δ(g(x))). That is, δ(x) ≤ α(δ(g(x))). We 
on
lude that
δ(x) ≈α δ(g(x)).(b) This follows trivially from (a).(
) There is s ∈ (0, r) su
h that g(ψ(B(0, s))) ⊆ Rng(ψ). Let U = ψ(B(0, s)).Let u, v ∈ U ∩ X be on the same side of bd(X). Let L = [ψ−1(u), ψ−1(v)]. Then

L ⊆ B(0, r)−A and thus ψ(L) ⊆ X. So g(ψ(L)) ⊆ X. Hen
e ψ−1(g(ψ(L))) ⊆ B(0, r)−A.That is, there is an ar
 in B(0, r)−A 
onne
ting ψ−1(g(u)) and ψ−1(g(v)). So ψ−1(g(u))and ψ−1(g(v)) are on the same side of A. This means that g(u) and g(v) are on the sameside of bd(X).Proposition 11.3. (a) There is N > 1 su
h that (a1) and (a2) below hold. Let α, β ∈
MBC, X be an open subset of a normed spa
e. Suppose that b ∈ bd(X), X is β-LIN-bordered at b, and bd(X) is not 1-dimensional at b. De�ne ᾱ = β ◦α ◦β.(a1) Let ~x, ~y be sequen
es in X 
onverging to b. Suppose that ~x ≈(α,b) ~y. Also assumethat if X is two-sided at b, then for every n ∈ Dom(~x), xn and yn are on the same sideof bd(X). Then ~x ∼N·β ◦ ᾱ ◦4 ◦ β ~y.(a2) Let g ∈ EXT(X) be α-bi
ontinuous at b. Suppose that g(b) = b. Suppose furtherthat if X is two-sided at b, then g is side preserving at b. Let ~x be a sequen
e in X
onverging to b. Then ~x ∼N·β ◦ ᾱ ◦4 ◦ β g(~x).(b) Let X be an open subset of a normed spa
e and β ∈ MBC. Suppose that b ∈ bd(X),
X is β-LIN-bordered at b, and X is two-sided at b. Let g ∈ EXT(X) be su
h that
g(b) = b, and g is side reversing at b. Let ~x be a sequen
e in X 
onverging to b. Then
~x 6∼EXT(X) g(~x).Proof. (a) Let M be a UC-
onstant for 〈1/2, 2 〉, M = M2 and N = M2. (See De�nition9.11(a).) We shall prove that N is as required in (a).(a1) Let X, b, ~x, ~y and α be as in (a1). Let 〈ψ,A, r〉 be a boundary 
hart elementfor b, and assume that ψ is β-bi
ontinuous. We show that ~x ∼N·β ◦ ᾱ ◦4 ◦ β ~y. We mayassume that ~x, ~y ⊆ Rng(ψ). Set ~w = ψ−1(~x) and ~z = ψ−1(~y). Clearly, ~w ≈(ᾱ,0) ~z. Let
σ, η ⊆ N be in�nite. We may assume that either for every i ∈ σ, ‖wi‖ ≤ ‖zi‖, or for every
i ∈ σ, ‖zi‖ < ‖wi‖. Let us assume that the former happens. The 
ase that ‖zi‖ < ‖wi‖is dealt with in a similar way. Let {mi | i ∈ N} and {m1

i | i ∈ N} be respe
tively 1-1enumerations of σ and η and set ui = wmi
, vi = zmi

and u1
i = wm1

i
. So ~u ≈(ᾱ,0) ~v.We de�ne by indu
tion in, jn ∈ N and hn ∈ H(BE(0, r)) su
h that:(1) ‖vi0‖ < r/2,(2) hn(uin) = vin ,(3) hn is M · ᾱ ◦ ᾱ-bi
ontinuous,(4) supp(hn) ⊆ B(0; 1

2‖uin‖, 2‖vin‖),(5) ‖u1
jn
‖ < ‖uin‖/2 and ‖vin+1

‖ < ‖u1
jn
‖/2,(6) hn(A) = A.
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onstru
tion is possible follows from Lemma 9.13(b). Fa
ts (4) and (5) implythat supp(hm) ∩ supp(hn) = ∅ for any m 6= n. So h := ◦n hn is well de�ned.Let γ = M · ᾱ ◦ ᾱ. We verify that h is γ ◦γ-bi
ontinuous. Let u, v ∈ BE(0, r). Thenthere are m,n ∈ N su
h that u, hm(u) ∈ BE(0, r) − ⋃
k 6=m supp(hk) and v, hn(u) ∈

BE(0, r) − ⋃
k 6=n supp(hk). If m 6= n, then h(u) = hm ◦hn(u) and h(v) = hm ◦hn(v),and if m = n, then h(u) = hm(u) and h(v) = hm(v). Sin
e hm ◦hn and hm are γ ◦γ-
ontinuous, ‖h(u) − h(v)‖ ≤ γ ◦γ(‖u − v‖). So h is γ ◦γ-
ontinuous. The same argu-ment holds for h−1. It follows that h is γ ◦γ-bi
ontinuous. Sin
e γ ◦γ ≤ M

2 · ᾱ ◦4,we infer that h is M
2 · ᾱ ◦4-bi
ontinuous. By (4) and (5), h(u1

jn
) = u1

jn
for every

n ∈ N. Let g′ = ψ ◦h ◦ψ−1↾BCDE(A, r). Then Dom(g′) = Rng(ψ) ∩ X. Clearly, g′is β ◦ (M2 · ᾱ ◦4) ◦β-bi
ontinuous, and hen
e g′ is M
2 · β ◦ ᾱ ◦4 ◦β-bi
ontinuous. De�ne

g = g′ ∪ Id↾(X − Rng(ψ)). From (1) and (4) it follows that g ∈ H(X). The fa
tthat M
2 · β ◦ ᾱ ◦4 ◦β ∈ MBC implies that g too is M

2 · β ◦ ᾱ ◦4 ◦β-bi
ontinuous. Clearly,
x′n := ψ(u1

jn
) ∈ {xi | i ∈ η} and h(x′n) = x′n. For every n ∈ N there is k(n) ∈ σ su
hthat ψ(uin) = xk(n) and ψ(vin) = yk(n). From the fa
t that h(uin) = vin it follows that

g(xk(n)) = yk(n). So g ful�lls the requirements whi
h are needed in order to show that
~x ∼N·β ◦ ᾱ ◦4 ◦ β ~y.(a2) It follows trivially from Proposition 11.2(b) and (a1) that N is as required.(b) Suppose by 
ontradi
tion that ~x ∼EXT(X) g(~x). Then (∗) there is h ∈ EXT(X)su
h that {i ∈ N | h(xi) = g(xi)} and {i ∈ N | h(xi) = xi} are in�nite. Sin
e lim ~x = band g is side reversing, (∗) 
ontradi
ts Proposition 11.2(
).Proposition 11.4. There is N > 1 su
h that the following holds. Let α, β ∈ MBC,and X be an open subset of a normed spa
e E. Suppose that b ∈ bd(X), X is β-LIN-bordered at b, and bd(X) is 1-dimensional at b. De�ne ᾱ = β ◦α ◦β.(a) Let ~x, ~y be α-abiding sequen
es in X 
onverging to b and ~x ≈(α,b) ~y. Also assumethat if X is two-sided at b, then for every n ∈ Dom(~x), xn and yn are on the same sideof bd(X). Then ~x ∼N·β ◦ ᾱ ◦6 ◦ β ~y.(b) Let g ∈ EXT(X) be α-bi
ontinuous at b. Suppose that g(b) = b. Suppose furtherthat if X is two-sided at b, then g is side preserving at b. Let ~x be an α-abiding sequen
ein X 
onverging to b. Then ~x ∼N·β ◦ ᾱ ◦6 ◦ β g(~x).Proof. (a) The proof follows the same steps as the proof of Proposition 11.3(a1). Buthere Lemma 10.3 repla
es the use of Lemma 9.13 in the proof of 11.3(a1).(b) The proof follows the same steps as the proof of Proposition 11.3(a2).Proposition 11.5. (a) There is N > 1 su
h that (a1) and (a2) below hold. Let α, β ∈
MBC, and X be an open subset of a normed spa
e E. Suppose that b ∈ bd(X), X is
β-LIN-bordered at b, and bd(X) is 1-dimensional at b. Let 〈ψ,A, r〉 be boundary 
hartelement for b with ψ being β-bi
ontinuous. If A is a subspa
e of E, let F = A. If
dim(E) = 2 and A is a half spa
e of E, let F = bd(A). (So F is a 1-dimensionalsubspa
e of E.) De�ne ᾱ = β ◦α ◦β.(a1) Let ~x, ~y ⊆ Rng(ψ) be sequen
es whi
h 
onverge to b, and set ~u = ψ−1(~x) and
~v = ψ−1(~y). Assume that



208 M. Rubin and Y. Yomdin(i) ~x ≈(α,b) ~y,(ii) for every n ∈ Dom(~x) there are ûn, u⊥n , v̂n, v⊥n and λn su
h that un = ûn+u
⊥

n ,
vn = v̂n + v

⊥

n , ûn, v̂n ∈ F , u⊥n , v⊥n ⊥ F , λn > 0 and v̂n = λnûn,(iii) if X is two-sided at b, then for every n ∈ Dom(~x), xn and yn are on thesame side of bd(X).Then ~x ∼N·β ◦ ᾱ ◦4 ◦ β ~y.(a2) Let Γ be a modulus of 
ontinuity , α, β ∈ Γ , and ~x be a Γ -evasive sequen
e in
X 
onverging to b. Let g ∈ EXT(X) be α-bi
ontinuous at b, and assume that : g(b) = b,
g is order preserving at b, and if X is two-sided at b then g is side preserving at b. Then
~x ∼N·β ◦ ᾱ ◦4 ◦ β g(~x).In parts (b)�(d) below we assume that Γ is a modulus of 
ontinuity , β ∈ Γ ∩MBC, Xis an open subset of a normed spa
e E, b ∈ bd(X), X is β-LIN-bordered at b, and bd(X)is 1-dimensional at b. We also assume that G ≤ EXT±(X), and G is of boundary type Γ .(b) Let 〈ψ,A, r〉 be boundary 
hart element for b with ψ being β-bi
ontinuous. If A isa subspa
e of E set F = A, and if dim(E) = 2 and A is a half spa
e of E, set F = bd(A).(So F is a 1-dimensional subspa
e of E.) Let ~x, ~y ⊆ Rng(ψ) be sequen
es whi
h 
onvergeto b, and set ~u = ψ−1(~x) and ~v = ψ−1(~y). Assume that(i) ~x, ~y are Γ -evasive,(ii) for every n ∈ Dom(~x) there are ûn, u⊥n , v̂n, v⊥n and λn su
h that un = ûn+u

⊥

n ,
vn = v̂n + v

⊥

n , ûn, v̂n ∈ F , u⊥n , v⊥n ⊥ F , λn < 0 and v̂n = λnûn.Then ~x 6∼G ~y.(
) Let ~x be a Γ -evasive sequen
e in X 
onverging to b. Let g ∈ G. Suppose that
g(b) = b, and g is order reversing at b. Then ~x 6∼G g(~x).(d) Let ~x be a sequen
e in X 
onverging to b. Let g ∈ G be su
h that g(b) = b and
g is order preserving at b. Assume further that if X is two-sided at b, then g is sidepreserving. Then ~x ∼Γ g(~x).Proof. (a1) The proof follows the same steps as the proof of Proposition 11.3(a1). Buthere Lemma 10.1 repla
es the use of Lemma 9.13 in the proof of 11.3(a1).(a2) Let 〈ψ,A, r〉 be boundary 
hart element for b su
h that ψ is β-bi
ontinuous. If Ais a half spa
e set F = bd(A). Otherwise, set F = A. Let B be an open ball with 
enter at
b su
h that gcl↾(cl(B)∩cl(X)) is α-bi
ontinuous, and cl(B), gcl(cl(B)∩cl(X)) ⊆ Rng(ψ).Let U = ψ−1(B ∩X) and h = (g↾(B ∩X))ψ

−1 .We may assume that ~x ⊆ B and that Dom(~x) = N. Set ~u = ψ−1(~x), and for every
n ∈ N let un = ûn + u

⊥

n , where ûn ∈ F and u
⊥

n ⊥ F . Denote h(~u) by ~v, and forevery n ∈ N let vn = v̂n + v
⊥

n , where v̂n ∈ F and v
⊥

n ⊥ F . Let s > 0 be su
h that
B(0, s) ∩ (E − A) ⊆ U, h(U). We may assume that un, ûn, u⊥n , vn, v̂n, v⊥n ∈ B(0, s) forevery n ∈ N. In order to apply (a1), we need to show that v̂n = λnûn, where λn > 0.From Proposition 11.2(a) and the fa
ts that ~x is Γ -evasive, β ∈ Γ and ψ is β-bi
ontinuous,it follows that ~u is Γ -evasive.De�ne ᾱ = β ◦α ◦β. Then h is ᾱ-bi
ontinuous. This implies that ~v too is Γ -evasive. So
lim d(un, F )/‖un‖ = 0 and lim d(vn, F )/‖vn‖ = 0. We may thus assume that d(un, F ) <
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‖un‖/2 and d(vn, F ) < ‖vn‖/2 for every n ∈ N. It follows that for every n, ûn 6= 0. Let λnbe su
h that v̂n = λnûn. It is trivial that hcl is ᾱ-bi
ontinuous, and that hcl↾(F ∩B(0, s))is order preserving, that is, for every u ∈ F ∩B(0, s), u and hcl(u) are on the same sideof 0. It follows that for every n there is µn > 0 su
h that hcl(ûn) = µnûn. Suppose by
ontradi
tion that for in�nitely many n's, λn ≤ 0. Take su
h an n. Then

‖hcl(un) − hcl(ûn)‖ ≤ ᾱ(‖un − ûn‖) = ᾱ(‖u⊥n‖).But
hcl(un) − hcl(ûn) = vn − µnûn = v

⊥

n + λnûn − µnûn = v
⊥

n − (µn − λn)ûn.So
‖hcl(un) − hcl(ûn)‖ = ‖v⊥n − (µn − λn)ûn‖ ≥ (µn − λn)‖ûn‖ − ‖v⊥n ‖

≥ µn‖ûn‖ − ‖v⊥n ‖ = ‖h(ûn)‖ − ‖v⊥n ‖ ≥ ᾱ−1(‖ûn‖) − ‖v⊥n ‖ ≥ ᾱ−1(‖un‖/2) − ᾱ(‖u⊥n‖).Note that ᾱ(‖u⊥n‖) = ᾱ(‖un − ûn‖) ≥ ‖hcl(un) − hcl(ûn)‖. It follows that
ᾱ−1(‖un‖/2) − ᾱ(‖u⊥n‖) ≤ ᾱ(‖u⊥n‖).So ‖un‖ ≤ 2ᾱ ◦ ᾱ(‖u⊥n‖) + 2ᾱ(‖u⊥n‖) ≤ 4ᾱ ◦ ᾱ(‖u⊥n‖). That is, ‖un‖ ≤ 4ᾱ ◦ ᾱ(d(un, F )).Sin
e 4ᾱ ◦ ᾱ ∈ Γ , and sin
e the above holds for in�nitely many n's, ~u is not Γ -evasive.A 
ontradi
tion. Hen
e for all but �nitely many n's, λn > 0. Re
all that ~v = h(~u). So

~v = ψ−1(g(~x)). Obviously, ~x ≈(α,b) g(~x). Hen
e by (a), ~x ∼N·β ◦ ᾱ ◦4 ◦ β g(~x).(b) Suppose by 
ontradi
tion that there are in�nite σ, η ⊆ Dom(~x) and g ∈ G su
hthat for every i ∈ σ, g(xi) = yi, and for every i ∈ η, g(xi) = xi. Let h = gψ
−1 . So forsome γ ∈ Γ , h is γ-bi
ontinuous at 0. Let Y = E −A. Then ~u is Γ -evasive with respe
tto Y and E. Note that for every i ∈ σ, h(ui) = vi, and for every i ∈ η, h(ui) = ui. Weabbreviate hcl by h. De�ne h(ûi) = µiûi. Assume by 
ontradi
tion that for in�nitelymany i's in η, µi ≤ 0. Sin
e ~u is Γ -evasive, there is n su
h that for every i ∈ η≥n,

‖u⊥i ‖ ≤ 1
4‖ui‖. Let i ∈ η≥n, and assume that µi ≤ 0. Then
γ(δ(ui)) = γ(‖u⊥i ‖) = γ(‖u⊥i ‖) = γ(‖ui − ûi‖) ≥ ‖h(ui) − h(ûi)‖

= ‖ui − µiûi‖ = ‖u⊥i + ûi − µiûi‖ ≥ (1 − µi)‖ûi‖ − ‖u⊥i ‖
≥ ‖ûi‖ − ‖u⊥i ‖ ≥ 3

4‖ui‖ − 1
4‖ui‖ = 1

2‖ui‖.So ~u is not Γ -evasive, a 
ontradi
tion. It follows that there is i su
h that µi > 0. Thisimplies that h is order preserving at 0. In parti
ular, for every i ∈ σ, µi > 0. We 
laimthat ~v is Γ -evasive.This is so, sin
e (i) ~v = h(~u), (ii) γ ∈ Γ , (iii) h is γ-
ontinuous and (iv) ~u is Γ -evasive.Let n be su
h that for every i ∈ Dom(~v)≥n, δ(vi) ≤ 1
4‖vi‖. Let i ∈ σ≥n. Then

γ ◦2(δ(vi)) ≥ γ(δ(ui)) = γ(‖ui − ûi‖) ≥ ‖h(ui) − h(ûi)‖ = ‖vi − µiûi‖
= ‖v⊥i + (λi − µi)ûi‖ ≥ |λi − µi| ‖ûi‖ − ‖v⊥i ‖ ≥ |λi| ‖ûi‖ − ‖v⊥i ‖
= ‖v̂i‖ − ‖v⊥i ‖ ≥ 3

4‖vi‖ − 1
4‖vi‖ = 1

2‖vi‖.So ~v↾σ≥n is 2 · γ ◦γ-abiding. This 
ontradi
ts the fa
t that ~v is Γ -evasive.(
) Let 〈ψ,A, r〉 be a boundary 
hart element for b su
h that ψ is β-bi
ontinuous. Sin
e
g ∈ G there is α ∈ Γ and U ∈ NbrE(b) su
h that g↾(U ∩X) is α-bi
ontinuous. We may



210 M. Rubin and Y. Yomdinassume that ~x ⊆ Rng(ψ) ∩ U . Let h = gψ
−1 and γ = β ◦α ◦β. Then h is γ-bi
ontinuous.Let ~u = ψ−1(~x) and ~v = h(~u). So ~v = ψ−1(g(~x)). Also, let ui = ûi+u

⊥

i and vi = v̂i+v
⊥

i ,where ûi, v̂i ∈ F and u⊥i , v⊥i ⊥ F . Sin
e ~u is Γ -evasive, and ~v = h(~u), ~v is Γ -evasive. Wemay thus assume that for every i ∈ Dom(~u), ‖u⊥i ‖ ≤ ‖ui‖/4 and ‖v⊥i ‖ ≤ ‖vi‖/4. Let λibe su
h that v̂i = λûi. Suppose by 
ontradi
tion that for in�nitely many i's, λi ≥ 0. Weabbreviate hcl by h. Let µi be su
h that h(ûi) = µiûi. Sin
e g is order reversing at b,
h is order reversing at 0. So µi < 0. Let i be su
h that λi ≥ 0. Then

γ(‖u⊥i ‖) ≥ ‖h(ui) − h(ûi)‖ = ‖v⊥i + λiûi − µiûi‖ ≥ (λi − µi)‖ûi‖ − ‖v⊥i ‖
≥ |µi| ‖ûi‖ − ‖v⊥i ‖ = ‖v̂i‖ − ‖v⊥i ‖ ≥ ‖vi‖/2.But ‖u⊥i ‖ = δ(ui) ≤ γ(δ(vi)). So 2 · γ ◦γ(δ(vi)) ≥ ‖vi‖. That is, ~v is not Γ -evasive, a
ontradi
tion. It follows that for all but �nitely many i's, λi < 0. By (b), ~x 6∼G g(~x).(d) Let σ, η be in�nite subsets of Dom(~x). Either (i) there is an in�nite ̺ ⊆ σ and

γ ∈ Γ su
h that ~x↾̺ is γ-abiding; or (ii) there is an in�nite ̺ ⊆ σ su
h that ~x↾̺ is
Γ -evasive.Suppose that 
ase (i) happens. To get an f ∈ G su
h that {i ∈ ̺ | f(xi) = g(xi)} and
{i ∈ η | f(xi) = xi} are in�nite, follow the 
onstru
tion in Proposition 11.3(a). However,Lemma 9.13 whi
h was used in 11.3(a) is repla
ed here by Lemma 10.3. In 
ase (ii),follow the proof of (a2) in this proposition.Re
all that we deal with the setting where we have a normed spa
e E and an opensubset X ⊆ E. In this setting, when we write cl(A) we mean clE(A). If we wish to denotethe 
losure of A with respe
t to other sets, e.g. the 
losure of A with respe
t to X, thenwe write clX(A).Proposition 11.6. For a topologi
al spa
e X and a subgroup G ≤ H(X), we de�ne theproperty Pcmpct(~x) of sequen
es ~x in X as follows.
Pcmpct(~x) ≡ For every in�nite σ ⊆ Dom(~x) and a sequen
e {Ui | i ∈ σ} ∈ ∏{Nbr(xi) |
i ∈ σ} 
onsisting of pairwise disjoint sets , there is a sequen
e {gi | i ∈ σ} ∈ ∏{G Ui |
i ∈ σ} su
h that ◦{gi | i ∈ σ} 6∈ G.Let E be a normed spa
e and X ⊆ E be open. Let Γ be a 
ountably generated modulusof 
ontinuity and G ≤ EXT(X) be Γ -appropriate. (See De�nition 8.6(
).) Let ~x be a 1-1sequen
e in X. Then cl(Rng(~x)) is 
ompa
t i� Pcmpct(~x) holds.Proof. Suppose �rst that cl(Rng(~x)) is not 
ompa
t. Then there is an in�nite σ ⊆
Dom(~x) su
h that either {xi | i ∈ σ} is spa
ed, or {xi | i ∈ σ} is a non
onvergent Cau
hysequen
e. For every i ∈ σ let ri = 1

3 inf{‖xj − xi‖ | j ∈ σ − {i}} and Ui = BX(xi, ri).Hen
e d(Ui, Uj) ≥ ri/3 for any i 6= j in σ. It is easily seen that {Ui | i ∈ N} is cl(X)-dis
rete. Let {gi | i ∈ σ} ∈ ∏{G Ui | i ∈ σ}. So {gi | i ∈ σ} is cl(X)-dis
rete. Sin
e G is
Γ -appropriate, ◦{gi | i ∈ σ} ∈ G. So ¬Pcmpct(~x) holds.Suppose that ~x is 1-1 and that cl(Rng(~x)) is 
ompa
t. Let {αi | i ∈ N} ⊆ Γ be agenerating sequen
e for Γ . That is, for every α ∈ Γ there is i ∈ N su
h that α � αi.We also assume that for every i ∈ N, {j | αj = αi} is in�nite. Let σ ⊆ Dom(~x) bein�nite, and for every i ∈ σ let Ui ∈ NbrX(xi). Assume that for any i 6= j, Ui ∩ Uj = ∅.Sin
e cl(Rng(~x)) is 
ompa
t, {xi | i ∈ σ} 
ontains a 1-1 
onvergent subsequen
e {xin |
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n ∈ N}. De�ne yn = xin and Vn = Uin ∩ B(yn,

1
n+1 ). For every n let gin ∈ G Vnbe su
h that gin↾Vn is not αn-
ontinuous. It is easy to see that su
h a gin exists. For

i ∈ σ − {in | n ∈ N} let gi = Id. Let y = limn yn and g = ◦{gi | i ∈ σ}. Then there isno α ∈ Γ and U ∈ Nbr(y) su
h that g↾(U ∩X) is α-
ontinuous. We justify this 
laim.Let α ∈ Γ . Then for some i ∈ N, α � αi. Let r > 0 be su
h that α↾[0, r) ≤ αi↾[0, r).There is n su
h that αin = αi, diam(Vn) < r and Vn ⊆ U . There are u, v ∈ Vn su
h that
‖gin(u) − gin(v)‖ > αi(‖u− v‖). Sin
e ‖u − v‖ < r, we have αi(‖u− v‖) ≥ α(‖u− v‖).So ‖gin(u)−gin(v)‖ > α(‖u−v‖). That is, ‖g(u)−g(v)‖ > α(‖u−v‖). Hen
e g↾(U ∩X)is not α-
ontinuous. It follows that g 6∈ G. So Pcmpct(~x) holds.Explanation. For a topologi
al spa
e 〈X, τX 〉 and G ≤ H(X) let Ap : G × X → Xbe the appli
ation fun
tion, that is, Ap(g, x) = g(x) and let M(X,G) be the stru
ture
〈X, τX , G;∈, ◦ ,Ap〉. Note that Pcmpct(~x) is a property of ~x whi
h 
an be expressedin M(X,G). Hen
e if ~x ⊆ X, Pcmpct(~x) holds and ψ : M(X,G) ∼= M(Y,H), then
Pcmpct(ψ(~x)) holds. So in the 
ase that X is an open subset of a normed spa
e E and
G is Γ -appropriate, and a similar fa
t holds for Y , then the property �cl(Rng(~x)) is
ompa
t� is preserved under ψ. In what follows we shall de�ne additional propertiesof ~x whi
h are expressible in M(X,G). So they too are preserved under isomorphismsbetween M(X,G) and M(Y,H).Definition 11.7. Let X be a topologi
al spa
e, G ≤ H(X) and ~x be a sequen
e in X.(a) Let Pprerep(~x) be the following property of ~x:(i) Dom(~x) = N and ~x is 1-1,(ii) no subsequen
e of ~x is 
onvergent in X,(iii) Pcmpct(~x) holds.A sequen
e ~x whi
h ful�lls Pprerep is 
alled a point pre-representative.(b) Let Pcnvrg(~x) and Ppnt(~x) be the following properties:

Pcnvrg(~x) ≡ For every in�nite σ ⊆ Dom(~x) and g ∈ G,if ~x↾σ ∼G g(~x)↾σ, then ~x ∼G g(~x).
Ppnt(~x) ≡ Pprerep(~x) ∧ Pcnvrg(~x). �Lemma 11.8. Let Γ be a 
ountably generated modulus of 
ontinuity. Suppose that E isa normed spa
e, X ⊆ E is open, X is lo
ally Γ -LIN-bordered , and G ≤ EXT(X) is

Γ -appropriate. Let ~x be a point pre-representative in X. Then Pcnvrg(~x) holds i� ~x is
onvergent , and (i), (ii), (iii), (iv) or (v) below happen. Set b = lim ~x.(i) For some β ∈ Γ , X is β-SLIN-bordered at b.(ii) For some β ∈ Γ , X is β-LIN-bordered at b, X is two-sided at b, and bd(X) isnot 1-dimensional at b.(iii) bd(X) is 1-dimensional and G-order-reversible at b, and for some α ∈ Γ , ~x is
α-abiding.(iv) bd(X) is 1-dimensional and G-order-reversible at b, and ~x is Γ -evasive.(v) bd(X) is 1-dimensional and G-order-irreversible at b.Proof. We shall use the following trivial fa
ts.



212 M. Rubin and Y. YomdinClaim 1. If ~y ∼A ~z, then for every in�nite σ ⊆ Dom(~y), ~y↾σ ∼A ~z↾σ.Claim 2. Suppose that ~y is a sequen
e in X 
onverging to a point in bd(X). Assumefurther that bd(X) is 1-dimensional at lim ~y. Then either ~y is Γ -evasive, or for some
α ∈ Γ , ~y has an α-abiding subsequen
e.Claim 3. Suppose that ~y is a sequen
e in X 
onverging to a point in bd(X). Assumefurther that bd(X) is two-sided at lim ~y. Let g ∈ EXT(X) be su
h that gcl(lim ~y) = lim ~y,and suppose that g is side reversing. Then g(~y) 6∼EXT(X) ~y.Proof. The 
laim follows trivially from Proposition 11.2(
).Claim 4. Let ~y be a sequen
e in X su
h that ~y is 
onvergent in cl(X). Suppose that
g ∈ EXT(X) and gcl(lim ~y) 6= lim ~y. Then g(~y) 6∼EXT(X) ~y.The following fa
t does require a proof.Claim 5. Let ~x be a point pre-representative. If Pcnvrg(~x) holds , then ~x is 
onvergent.Proof. Suppose that ~x is not 
onvergent. Let ~y, ~z be 
onvergent subsequen
es of ~x su
hthat lim ~y 6= lim~z. Assume further that (∗) if bd(X) is 1-dimensional at lim ~y, then either
~y is Γ -evasive, or for some α ∈ Γ , ~y is α-abiding. Sin
e X is lo
ally Γ -LIN-bordered,there is g ∈ G su
h that(1) gcl(lim ~y) = lim ~y and gcl(lim~z) 6= lim ~z,(2) if X is two-sided at lim ~y, then g is side preserving,(3) if bd(X) is 1-dimensional at lim ~y, then g is order preserving.By Propositions 11.3(a2), 11.4(b) and 11.5(a2) and by (∗), g(~y) ∼G ~y. By Claim 4,
g(~z) 6∼G ~z, and by Claim 1, g(~x) 6∼G ~x. Hen
e ¬Pcnvrg(~x) holds. This proves Claim 5.Suppose that ~x satis�es 
lause (i) in the statement of the lemma. We show that
Pcnvrg(~x) holds. Let g ∈ G. If gcl(b) 6= b, then by Claim 4, g(~x′) 6∼G ~x′, for everysubsequen
e of ~x′ of ~x. If gcl(b) = b, then by Proposition 11.3(a2), g(~x) ∼G ~x. So
Pcnvrg(~x) holds.Suppose that ~x satis�es 
lause (ii) in the statement of the lemma. Let g ∈ G. If
gcl(b) 6= b, then by Claim 4, g(~x′) 6∼G ~x′ for every subsequen
e of ~x′ of ~x. Suppose that
gcl(b) = b. If g is side reversing, then by Claim 3, g(~x′) 6∼G ~x′ for every subsequen
e of ~x′of ~x. If g is side preserving, then by Proposition 11.3(a2), g(~x) ∼G ~x. So Pcnvrg(~x) holds.Suppose that ~x satis�es 
lause (iii) above. Let g ∈ G. The 
ase gcl(b) 6= b, istreated as in (i) and (ii). Suppose that gcl(b) = b. If X is two-sided at x and g is sidereversing, then by Claim 3, g(~x′) 6∼G ~x′, for every subsequen
e of ~x′ of ~x. Suppose thateither X is not two-sided at b, or X is two-sided at b and g is side preserving. Then byProposition 11.4(b), g(~x) ∼G ~x. So Pcnvrg(~x) holds.Suppose that ~x satis�es 
lause (iv). As above, we may assume that gcl(b) = b, andthat if X is two-sided at b, then g is side preserving. If g is order reversing at b, then byProposition 11.5(
), g(~x′) 6∼G ~x′, for every subsequen
e of ~x′ of ~x. If g is order preservingat b, then by Proposition 11.5(a2), g(~x) ∼G ~x. So Pcnvrg(~x) holds.
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lause (v). We may assume that gcl(b) = b, and that if X istwo-sided at b, then g is side preserving. Sin
e bd(X) is G-order-irreversible at b, g mustbe order preserving at b. Then by Proposition 11.5(d), g(~x) ∼G ~x. So Pcnvrg(~x) holds.We have shown that if ~x is point pre-representative, ~x is 
onvergent, and ~x satis�esone of the 
lauses (i)�(v), then Pcnvrg(~x) holds.Let ~x be a point pre-representative, and suppose that Pcnvrg(~x) holds. By Claim 5,
~x is 
onvergent. Suppose by 
ontradi
tion that ~x does not satisfy any of the 
lauses(i)�(v). Let b = lim ~x. Then bd(X) is 1-dimensional and G-order-reversible at b, and(1) ~x is not Γ -evasive; (2) there is no α ∈ Γ su
h that ~x is α-abiding. There is γ ∈ Γand a subsequen
e ~y of ~x su
h that ~y is γ-abiding. Sin
e Γ is 
ountably generated, thereis a subsequen
e ~z of ~x su
h that ~z is Γ -evasive. Let g ∈ G be su
h that g is orderreversing at b, and if X is two-sided at x, then g is side preserving. By Proposition11.5(
), g(~z) 6∼G ~z. So g(~x) 6∼G ~x. By Proposition 11.4(b), g(~y) ∼G ~y. So ¬Pcnvrg(~x)holds. A 
ontradi
tion.We represent points in bd(X) by sequen
es ~x in X whi
h satisfy Ppnt(~x). Su
hsequen
es are 
alled point representatives. By the above proposition, for every x ∈ bd(X),there is ~x su
h that lim ~x = x and Ppnt(~x) holds. So every point of bd(X) is represented.We shall �nd a property ϕpnteq(~x, ~y) whi
h for point representatives ~x, ~y expressesthe fa
t that lim ~x = lim ~y. Let ~x be a point representative. The weak stabilizer of ~x isde�ned as follows:

wstab(~x) = {g ∈ G | g(~x) ∼G ~x}.De�ne
Ppnteq(~x, ~y) ≡ (wstab(~x) ⊆ wstab(~y)) ∨ (wstab(~y) ⊆ wstab(~x)).For an open subset U of X de�ne opcl(U) = U ∪ (bd(X) − acccl(X)(X − U)). Then

opcl(U) is open in cl(X). Also, if V ∈ Ro(cl(X)), then V = opcl(V ∩ X). Let B =

{opcl(U) | U is open in X}. Hen
e Ro(cl(X)) ⊆ B, and so B is an open base for cl(X).Every open subset U of X will represent opcl(U). So the set of open subsets of cl(X)whi
h are represented forms an open base for cl(X).We next de�ne property Pblng(~x, U). For a point representative ~x and an open subset
U of X, Pblng(~x, U) will express the fa
t that lim ~x ∈ opcl(U). Let
Pblng(~x, U) ≡ For every sequen
e ~y: if Ppnt(~y) and Ppnteq(~x, ~y), then Rng(~y)U is �nite.Proposition 11.9. Let Γ be a 
ountably generated modulus of 
ontinuity. Suppose that
E is a normed spa
e, X ⊆ E is open, and X is lo
ally Γ -LIN-bordered. Let G be a
Γ -appropriate subgroup of EXT(X).(a) Suppose that ~x, ~y are point representatives. Then lim ~x = lim ~y i� Ppnteq(~x, ~y)holds.(b) Let ~x be a point representative, and U ⊆ X be open. Then lim ~x ∈ opcl(U) i�
Pblng(~x, U) holds.Proof. (a) Let ~x, ~y be point representatives. If lim ~x 6= lim ~y, then there is g ∈ G su
hthat g is the identity on some neighborhood of lim ~x and g(lim ~y) 6= lim ~y. So g ∈
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wstab(~x) − wstab(~y). Similarly, wstab(~y) 6⊆ wstab(~x). So wstab(~x) and wstab(~y) arein
omparable.Suppose that lim ~x = lim ~y. De�ne b = lim ~x. If for some α ∈ Γ , bd(X) is α-SLIN-bordered at b, then by Proposition 11.3(a2), wstab(~x) = wstab(~y) = {g ∈ G | g(b) = b}.Suppose that X is two-sided at b and bd(X) is not 1-dimensional at b. Then wstab(~x)

= wstab(~y) = {g ∈ G | g(b) = b and g is side preserving at b}. This follows from Propo-sition 11.3(a2) and (b).Suppose that bd(X) is 1-dimensional at b. If bd(X) is G-order-irreversible at b, and Xis not two-sided at b, then wstab(~x) = wstab(~y) = {g ∈ G | g(b) = b}. This follows fromProposition 11.5(d). Next assume that bd(X) is G-order-irreversible at b, and X is two-sided at b. Then wstab(~x) = wstab(~y) = {g ∈ G | g(b) = b and g is side preserving at b}.This follows from Propositions 11.5(d) and 11.3(b).Suppose that G-order-reversible at b. Then by Lemma 11.8, ~x is Γ -evasive, or thereis α ∈ Γ su
h that ~x is α-abiding. The same holds for ~y. If both ~x and ~y are evasiveor both are abiding, then wstab(~x) = wstab(~y). This follows from Propositions 11.4(b),11.5(a2), 11.5(
) and 11.3(b). Suppose that ~x is evasive and ~y is abiding. Then wstab(~x)
onsists of all g ∈ G su
h g(b) = b, g is order preserving at b, and if X is two-sided at
b, then g is side preserving at b. wstab(~y) 
onsists of all g ∈ G su
h that g(b) = b, andif X is two-sided at b, then g is side preserving at b. So wstab(~x) ⊆ wstab(~y). We haveshown that if lim ~x = lim ~y, then wstab(~x) and wstab(~y) are 
omparable.(b) Let ~x be a point representative, U ⊆ X be open inX and b = lim ~x. If b ∈ opcl(U),then for every sequen
e ~y in X su
h that lim ~y = b there is n su
h that Rng(~y≥n) ⊆ U .So Pblng(~x, U) holds. If b 6∈ opcl(U), then there is a sequen
e ~y in X whi
h 
onvergesto b and su
h that Rng(~y) is disjoint from U . There is a subsequen
e ~z of ~y su
h that
Ppnt(~z) holds. So Ppnteq(~x, ~z) holds. Hen
e ¬Pblng(~x, U) holds.Proof of Theorem 8.8. Part (a) of 8.8 is a spe
ial 
ase of (b), so we prove (b). Let
X,Y,G,H and τ be as in (b). Then τ indu
es an isomorphism τ̃ between M(X,G) and
M(Y,H). Clearly, properties Ppnt(~x), Ppnteq(~x) and Pblng(~x) are preserved by τ̃ . Thisimplies the bi-extendability of τ .



12. The 
omplete Γ -bi
ontinuity of the indu
ing homeomorphismIn the previous 
hapter we have shown that if (HCMP.LC
Γ

(X))τ = HCMP.LC
∆

(Y ), then
τ ∈ EXT±(X,Y ). Further, by Theorem 3.27, τ is lo
ally Γ -bi
ontinuous. In this 
hapterwe �nally 
on
lude that τ is 
ompletely lo
ally Γ -bi
ontinuous. However, at this pointwe 
an only show this for prin
ipal Γ 's.12.1. Γ -
ontinuity in dire
tions parallel to the boundary of XDefinition 12.1. (a) Let S be a set and P be a partition of S, that is, P is a pairwisedisjoint family whose union is S. Denote S by SP . For T ⊆ S let P↾T := {P∩T | P ∈ P}.Let a ∼P b mean that there is P ∈ P su
h that a, b ∈ P . If X is a topologi
al spa
e, and
S ⊆ X is an open set, then P is 
alled an open sum partition with respe
t to X.In (b)�(d) assume that 〈X, d 〉, 〈Y, e 〉 are metri
 spa
es, τ : X ∼= Y , α ∈ MC and
Γ ⊆ MC. Let P be an open sum partition with respe
t to X and S = SP .(b) Call τ an 〈α,P 〉-
ontinuous fun
tion if for every P ∈ P and x1, x2 ∈ P , e(τ (x1),

τ (x2)) ≤ α(d(x1, x2)), and 
all τ an 〈α,P 〉-inversely-
ontinuous if for every P ∈ Pand x1, x2 ∈ P , d(x1, x2) ≤ α(e(τ (x1), τ (x2))). We say that τ is 〈α,P 〉-bi
ontinuousif for every P ∈ P and x1, x2 ∈ P , e(τ (x1), τ (x2)) ≤ α(d(x1, x2)) and d(x1, x2) ≤
α(e(τ (x1), τ (x2))).(
) We say that τ is 〈α,P 〉-
ontinuous at x if there is T ∈ Nbr(x) su
h that T ⊆ Sand τ is 〈α,P↾T 〉-
ontinuous, and τ is said to be 〈Γ ,P 〉-
ontinuous at x if there is α ∈ Γsu
h that τ is 〈α,P 〉-
ontinuous at x. The notions of 〈α,P 〉-inverse-
ontinuity at x,
〈α,P 〉-bi
ontinuity at x, 〈Γ ,P 〉-inverse-
ontinuity at x and 〈Γ ,P 〉-bi
ontinuity at x arede�ned analogously.(d) Call τ a lo
ally 〈Γ ,P 〉-
ontinuous fun
tion if for every x ∈ S, τ is 〈Γ ,P 〉-
ontinuous at x. The notions of lo
al 〈Γ ,P 〉-inverse-
ontinuity and lo
al 〈Γ ,P 〉-bi-
ontinuity are de�ned analogously. �The partitions P that will be used here are of the following form. Let F be a 
losedlinear subspa
e of E. Then P is the partition of E into the 
osets of F .The next goal is to show that if (HCMP.LC

Γ
(X))τ ⊆ HCMP.LC

Γ
(Y ), then for every

x ∈ bd(X) there is α ∈ Γ and a neighborhood of the identity in the group of translationsparallel to the boundary of X su
h that for every h in this neighborhood, hτ is α-bi
ontinuous at τ cl(x).Re
all that the notion of de
ayability was de�ned in De�nition 3.1(
). We shall useit now again for the following situation. Let BCDE(A, r) be a linear boundary 
hartdomain, X = clB(0,r)(BCDE(A, r)), H = {trv | v ∈ bdE(A)} and λ be the natural a
tionof H on X. Then λ is de
ayable. [215℄



216 M. Rubin and Y. YomdinWhen dealing with partial a
tions, it is often the 
ase that we wish to perform a
omposition g ◦ f , where Rng(f) 6⊆ Dom(g). Su
h a 
omposition is 
onsidered to belegal. The domain of the resulting fun
tion is f−1(Rng(f) ∩ Dom(g)).Proposition 12.2. (a) Suppose that BCDE(A, r′) is a linear boundary 
hart domainand L = bdE(A). So L is a 
losed subspa
e of E. Let L′ = L ∩ B(0, r′). So L′ =

bdB(0,r′)(BCDE(A, r′)). Let X = BCDE(A, r′)∪L′ and H = {trEv | v ∈ L}. We equip Hwith the norm topology of L. Let λ be de�ned as follows :
Dom(λ) = {〈h, z 〉 | h ∈ H and z, h(z) ∈ X} and λ(h, z) = h(z).Then λ is a partial a
tion of H on X.(b) Let BCDE(A, r′) et
. be as in (a) and α(t) = 2t. Then λ is α-de
ayable in X.(
) Let BCDE(A, r′) et
. be as in (a). Then for every x ∈ L′, x is a λ-limit-point.Proof. (a) This is trivial.(b) It su�
es to 
he
k that λ is α-de
ayable at 0. We take r0 to be r′. For r ∈ (0, r′)we take V = V0,r to be {trEv | v ∈ BL(0, r/4}. So indeed V × B(0, ar) ⊆ Dom(λ).(Re
all that a = 1/2.) It thus su�
es to show that for every normed spa
e E, r > 0 and

v ∈ B(0, r/4) there is g ∈ H(E) su
h that(i) supp(g) ⊆ B(0, r),(ii) for every x ∈ E, g(x) − x ∈ span({v}),(iii) g↾B(0, r/2) = trv↾B(0, r/2),(iv) g is 2-bilips
hitz.Let k : [0,∞) → [0,∞) be the pie
ewise linear fun
tion su
h that k(t) = 1 for t ∈ [0, r/2],
k(t) = 0 for t ≥ r, and k is linear in [r/2, r]. So (k↾[r/2, r])(t) = 2 − 2t/r. Let

g(x) = x+ k(‖x‖) · v.It is trivial that (i)�(iii) hold. We 
he
k that (iv) holds. Let x, y ∈ E. If ‖x‖, ‖y‖ ≥ r or
‖x‖, ‖y‖ ≤ r/2, then ‖g(x) − g(y)‖ = ‖x− y‖. Let u = g(x) and w = g(y). Assume �rstthat ‖x‖, ‖y‖ ∈ [r/2, r]. Then u− w = (x− y) − 2

r (‖x‖ − ‖y‖) · v. So
‖u− w‖ ≤ ‖x− y‖ +

2

r
‖x− y‖ · ‖v‖ <

(
1 +

2

r
· r
4

)
‖x− y‖ =

3

2
‖x− y‖and

‖u− w‖ ≥ ‖x− y‖ − 2

r
‖x− y‖ · ‖v‖ >

(
1 − 2

r
· r
4

)
‖x− y‖ =

1

2
‖x− y‖.That is, ‖x− y‖ < 2‖u− w‖.Suppose that r/2 < ‖x‖ ≤ r and ‖y‖ < r/2. Let z ∈ [x, y] be su
h that ‖z‖ = r/2.Let f ∈ {g, g−1}. Then

‖f(x) − f(y)‖ ≤ ‖f(x) − f(z)‖ + ‖f(z) − f(y)‖ ≤ 2‖x− z‖ + ‖z − y‖
< 2(‖x− z‖ + ‖z − y‖) = 2‖x− y‖.The 
ase that r/2 < ‖x‖ ≤ r and ‖y‖ > r is dealt with in a similar way. The 
ase that

‖x‖ < r/2 and ‖y‖ > r too is dealt with in a similar way.(
) It is trivial that every x ∈ X, and in parti
ular every x ∈ L′, is a λ-limit-point.
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onstru
tion of manifolds from subgroups of homeomorphism groups 217Definition 12.3. Let 〈X, d 〉 be a metri
 spa
e, P be an open sum partition with S = SP ,
H be a topologi
al group and λ be a partial a
tion of H on X. Denote the unit of H by
eH , and for g ∈ H set ĝ = gλ.(a) Let x ∈ S. We say that 〈H,λ 〉 is P-translation-like at x if for everyM ∈ Nbr(eH)and U ∈ Nbr(x) there are:(i) N ∈ Nbr(eH) su
h that N ⊆M ,(ii) T,B ∈ Nbr(x) su
h that T ⊆ B ⊆ S ∩ U and N ×B ⊆ Dom(λ),(iii) K > 0;su
h that for every P ∈ P and distin
t x0, x1 ∈ P ∩ T there are n ≤ K/d(x0, x1) and
g1, . . . , gn ∈ N whi
h satisfy:(1) g1 = eH ,(2) for every i = 1, . . . , n− 1, ĝi(x1) = ĝi+1(x0),(3) ĝn(x1) 6∈ B.(b) Let L ⊆ S. We say that 〈H,λ 〉 is P-translation-like in L if for every x ∈ L, 〈H,λ 〉is P-translation-like at x. �The notion of a P-translation-like a
tion will be used in the following setting. Let
BCDE(A, r) be a linear boundary 
hart domain, X = clB(0,r)(BCDE(A, r)) and H =

{trv | v ∈ bdE(A)}. The natural partial a
tion of H on X is translation-like.Proposition 12.4. Let BCDE(A, r) be a linear boundary 
hart domain, L = bdE(A).So L is a 
losed subspa
e of E. Let L′ = L ∩ B(0, r). So L′ = bdB(0,r)(BCDE(A, r)).Let X = BCDE(A, r)∪L′, P = {X ∩ (v+L) | v ∈ X} and H = {trEv | v ∈ L}. We equip
H with the norm topology of L. Let λ be the following partial a
tion of H on X:

Dom(λ) = {〈h, z 〉 | h ∈ H and z, h(z) ∈ X} and λ(h, z) = h(z).Then λ is P-translation-like in X.Proof. The proof is trivial.The following lemma will be applied to the group of translations in a dire
tion parallelto the boundary of a linear boundary 
hart domain. This lemma 
aptures the mainargument in the proof of Lemma 12.6.Lemma 12.5. Let 〈X, dX 〉 and 〈Y, dY 〉 be metri
 spa
es , and τ : X ∼= Y . Let Γ be a
ountably generated modulus of 
ontinuity , and let α ∈ MBC. Let S ⊆ X be open, and
P be a partition of S. Let H be a topologi
al group and λ be a partial a
tion of H on X.Let x ∈ S. Assume that :(i) S ⊆ Fld(λ),(ii) λ is P-translation-like at x,(iii) λ is α-de
ayable in S,(iv) x is a λ-limit-point ,(v) there is U ∈ Nbr(x) su
h that for every g ∈ H(X), if supp(g) ⊆ U and g is

α ◦α-bi
ontinuous , then gτ is Γ -bi
ontinuous at τ (x).Then τ is inversely 〈Γ ,P 〉-
ontinuous at x.
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ontradi
tion that τ is not inversely 〈Γ ,P 〉-
ontinuous at x. The
onditions of Lemma 3.11 hold for x, a

ording to the following 
orresponden
e. Thegroup G of 3.11 is H(X) here, and N of 3.11 is S here. Also, sin
e x is a λ-limit-point,
κ := min({κ(x, Vλ(x)) | V ∈ Nbr(eH)}) ≥ ℵ0. Hen
e Γ is (≤κ)-generated. It follows from3.11 that there are V ∈ Nbr(x), M ∈ Nbr(eH) and γ ∈ Γ su
h that M × V ⊆ Dom(λ),and (i) for every h ∈M , (hλ)

τ ↾τ (V ) is γ-bi
ontinuous.For g ∈ H denote ĝ = gλ. Sin
e λ is P-translation-like at x, there are:(ii) N ∈ Nbr(eH) su
h that N ⊆M ,(iii) T,B ∈ Nbr(x) su
h that T ⊆ B ⊆ S ∩ V ,(iv) K > 0,su
h that for every P ∈ P and distin
t x0, x1 ∈ P ∩ T there are n ≤ K/d(x0, x1) and
eH = g1, . . . , gn ∈ N whi
h satisfy: ĝi(x1) = ĝi+1(x0) for every i = 1, . . . , n − 1, and
ĝn(x1) 6∈ B.Let C = τ (B) and y = τ (x). Sin
e C is a neighborhood of y, d := d(y, Y − C) > 0.Let t > 0 be su
h that τ (B(x, t)) ⊆ B(y, d/2) and B(x, t) ⊆ T . Set K∗ = 2K/d. By
lause M2 in De�nition 1.9, K∗ · γ ∈ Γ . We have assumed that τ−1 is not 〈Γ , τ (P) 〉-
ontinuous at y. Hen
e there are P ∈ P and y0, y1 ∈ τ (B(x, t) ∩ P ) su
h that

d(τ−1(y0), τ
−1(y1)) > K∗γ(d(y0, y1)).For ℓ = 0, 1 let xℓ = τ−1(yℓ), hen
e x0, x1 ∈ B(x, t) ⊆ T . So there are n ≤ K/d(x0, x1)and eH = g1, . . . , gn ∈ N su
h that for every i = 1, . . . , n − 1, gi(x1) = gi+1(x0) and

gn(x1) 6∈ B. For i = 2, . . . , n let xi = gi(x1) and yi = τ (xi). Sin
e y0 ∈ τ (B(x, t)) ⊆
B(y, d/2), we have d(y0, y) < d/2. Note that(1) For every i = 1, . . . , n, gτi (y0) = yi−1 and gτi (y1) = yi,and re
all that(2) y0, y1 ∈ τ (B(x, t)) ⊆ τ (V ),(3) g1, . . . , gn ∈ N ⊆M .So by (i) and (1)�(3), d(yi−1, yi) ≤ γ(d(y0, y1)) for every i = 1, . . . , n. Re
all that
d(x0, x1) > K∗γ(d(y0, y1)). Also, xn 6∈ B and hen
e yn 6∈ C. So

d(y, Y − C) ≤ d(y, yn) ≤ d(y, y0) +
n∑

1=1

d(yi−1, yi) < d/2 + nγ(d(y0, y1))

≤ d/2 +
K

d(x0, x1)
· γ(d(y0, y1))

< d/2 +
K

K∗γ(d(y0, y1))
· γ(d(y0, y1))

= d/2 +
K

2K
d γ(d(y0, y1))

· γ(d(y0, y1)) = d.But d(y, Y − C) = d, a 
ontradi
tion.
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tion of manifolds from subgroups of homeomorphism groups 219Lemma 12.6. Assume the following situation.(1) Γ ,∆ are 
ountably generated moduli of 
ontinuity.(2) X ⊆ E and Y ⊆ F are open subsets of the normed spa
es E and F , X is Γ -LIN-bordered and Y is ∆-LIN-bordered.(3) τ ∈ EXT±(X,Y ), G is a Γ -appropriate subgroup of EXT(X), H is a ∆-appro-priate subgroup of EXT(Y ) and Gτ = H.(4) x ∈ bd(X), 〈ϕ,A, r〉 is a boundary 
hart element for x, γ ∈ Γ and ϕ is γ-bi
ontinuous.(5) y ∈ bd(Y ), 〈ψ,B, s〉 is a boundary 
hart element for y, δ ∈ ∆ and ψ is δ-bi
ontinuous.(6) τ cl(x) = y and τ (ϕ(BCDE(A, r))) ⊆ ψ(BCDF (B, s)).(7) Set L = bd(A), X̂ = BCDE(A, r)∪ (L∩B(0, r)), τ̂ = ψ−1 ◦ τ cl ◦ϕ, Ŷ = τ̂(X̂) and
P = {(v + L) ∩ X̂ | v ∈ X̂}.Then τ̂ is inversely 〈∆,P 〉-
ontinuous at 0.Proof. We may assume that X − Rng(ϕ) 6= ∅. From the fa
t that G has boundary type

Γ it follows that there is Z ∈ NbrE(x) su
h that G Z ∩X ⊇ HCMP.LC
Γ

(X) Z ∩X . Wemay also assume that ϕ(BCDE(A, r)) ⊆ Z.We wish to apply Lemma 12.5 to X̂, Ŷ and τ̂ . More spe
i�
ally, the roles of theobje
ts mentioned in 12.5 are taken by the following obje
ts here. The role of Γ in 12.5is taken by ∆ here, the spa
es X,Y in 12.5 are X̂, Ŷ here, τ of 12.5 is τ̂ , α of 12.5 is thefun
tion y = 2x, S is X̂ and P of 12.5 is P here. The topologi
al group H appearing in12.5 is {trEv | v ∈ L} equipped with the norm topology of L, and λ is the natural partiala
tion of {trEv | v ∈ L} on X̂.Our next goal is to de�ne the open set U appearing in 
lause (v) of 12.5. We �rst
he
k that ϕ(X̂) = cl(X) ∩ Rng(ϕ) and that ϕ(X̂) is open in cl(X). Clearly, X̂ ⊆
clE(BCDE(A, r)). So if u ∈ X̂, then by the 
ontinuity of ϕ, ϕ(u) ∈ clE(ϕ(BCDE(A, r))) ⊆
cl(X). That is, ϕ(X̂) ⊆ cl(X). Now, X̂ is 
losed in B(0, r) and so B(0, r)− X̂ is open in
B(0, r). So B(0, r)−X̂ is open in E. Sin
e ϕ takes open subsets of E to open subsets of E,
ϕ(B(0, r)−X̂) is open in E. Also, ϕ(B(0, r)−X̂)∩X = ∅. So ϕ(B(0, r)−X̂)∩cl(X) = ∅.It follows that Rng(ϕ)∩cl(X) = ϕ(X̂). From the fa
t that Rng(ϕ) is open in E it followsthat ϕ(X̂) is open in cl(X).Sin
e x = ϕ(0) and 0 ∈ X̂, it follows that ϕ(X̂) ∈ Nbrcl(X)(x). So d(x, cl(X) −
ϕ(X̂)) > 0. Let r′ ∈ (0, r) be su
h that diam(ϕ(X̂ ∩ B(0, r′))) < d(x, cl(X) − ϕ(X̂))/2.The open set U appearing in 
lause (v) of 12.5 is X̂ ∩BE(0, r′).We have to show that 
lauses (i)�(v) of 12.5 hold. It follows from Proposition 12.2(b)that λ is α-de
ayable in X̂, and from Proposition 12.2(
) that 0 is a λ-limit-point. Itfollows from Proposition 12.4 that λ is P-translation-like at 0.We 
he
k that U satis�es 
lause (v) of 12.5. Note that X̂ = clB(0,r)(BCDE(A, r)).We shall also use the fa
t that if clE(A) ⊆ Dom(ϕ), then clE(ϕ(A)) = ϕ(clE(A)). Thisfollows from the fa
t that ϕ takes 
losed subsets of E to 
losed subsets of E.Let β = α ◦α. So β(t) = 4t. Let g ∈ H(X̂) be β-bi
ontinuous and supp(g) ⊆ U . Inorder to prove that 
lause (v) is ful�lled, it has to be shown that gτ̂ is ∆-bi
ontinuous at
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τ̂(0E). Re
all that τ̂ = ψ−1 ◦ τ cl ◦ϕ. So gτ̂ = ((gϕ)τ

cl

)ψ
−1 . Set ĥ = gϕ and ̺ = γ ◦β ◦γ.Sin
e g is β-bi
ontinuous and ϕ is γ-bi
ontinuous, it follows that ĥ is ̺-bi
ontinuous.Also, β ∈ Γ

LIP ⊆ Γ and γ ∈ Γ , so ̺ ∈ Γ .Note that Dom(g) = X̂ ⊆ Dom(ϕ). So Dom(ĥ) = ϕ(X̂) and hen
e Dom(ĥ) is openin cl(X). It follows trivially from the de�nitions of X̂ and U that clE(U) ⊆ X̂. Hen
e
clE(supp(g)) ⊆ X̂ ⊆ Dom(ϕ) and so clE(ϕ(supp(g))) = ϕ(clE(supp(g))). So

clE(supp(ĥ)) = clE(ϕ(supp(g))) = ϕ(clE(supp(g))) ⊆ ϕ(clE(U) ⊆ ϕ(X̂) = Dom(ĥ).Let h̄ = ĥ ∪ Id↾(cl(X) − Dom(ĥ)). We show that h̄ ∈ HΓ (cl(X)). That is, h̄ ∈ H(cl(X))and h̄ is Γ -bi
ontinuous. Let u ∈ cl(X). If u ∈ Dom(ĥ), then sin
e Dom(ĥ) is openin cl(X) and ĥ is 
ontinuous, we infer that h̄ is 
ontinuous at u. If u 6∈ Dom(ĥ), thensin
e clE(supp(ĥ)) ⊆ Dom(ĥ), it follows that u ∈ cl(X) − clE(supp(ĥ)). So there is
V ∈ Nbrcl(X)(u) su
h that h̄↾V = Id. Hen
e h̄ is 
ontinuous at u. The same argumentapplies to h̄−1. So h̄ ∈ H(cl(X)).We now show that h̄ is Γ -bi
ontinuous. Re
all that X − Rng(ϕ) 6= ∅ and hen
e
X −Dom(ĥ) 6= ∅. Sin
e ϕ is γ-
ontinuous, it follows that Dom(ĥ) and hen
e supp(ĥ) arebounded. Set c = d(supp(ĥ), cl(X) − Dom(ĥ)) and e = diam(supp(ĥ)). Clearly, e < ∞.We show that c > 0. Re
all that supp(g) ⊆ U , and hen
e supp(ĥ) = ϕ(supp(g)) ⊆ ϕ(U).Also, x = ϕ(0) ∈ ϕ(U). So

c = d(supp(ĥ), cl(X) − Dom(ĥ)) ≥ d(ϕ(U), cl(X) − ϕ(X̂))

≥ d(x, cl(X) − ϕ(X̂)) − diam(ϕ(U))

≥ d(x, cl(X) − ϕ(X̂)) − d(x, cl(X) − X̂)/2 = d(x, cl(X) − X̂)/2 > 0.Let u, v ∈ cl(X). If u, v ∈ supp(ĥ), then ‖h̄(u) − h̄(v)‖ ≤ ̺(‖u − v‖). If u, v ∈
cl(X)−supp(ĥ), then ‖h̄(u)−h̄(v)‖ = ‖u−v‖. Suppose that u ∈ supp(ĥ) and v 6∈ supp(ĥ).If v ∈ Dom(ĥ), then ‖h̄(u) − h̄(v)‖ ≤ ̺(‖u− v‖). Otherwise,

‖h̄(u) − h̄(v)‖ ≤ ‖h̄(u) − u‖ + ‖u− v‖ ≤ e+ ‖u− v‖

=
e

c
· c+ ‖u− v‖ ≤ e

c
· ‖u− v‖ + ‖u− v‖ =

e+ c

c
· ‖u− v‖.It follows that h̄ is (1+ e/c) · ̺-
ontinuous. The same argument applies to h̄−1. Sin
e

(1 + e/c) · ̺ ∈ Γ , it follows that h̄ is Γ -bi
ontinuous.Let h = h̄↾X. Then supp(h) ⊆ Z∩X. Hen
e h ∈ HCMP.LC
Γ

(X) Z ∩X . It follows that
h ∈ G. By assumption (3) in the statement of the lemma, hτ ∈ H. So hτ ∈ EXT(Y ) and
hτ is ∆-bi
ontinuous at y. That is, for some ν ∈ ∆, hτ is ν-bi
ontinuous at y. So (hτ )clis ν-bi
ontinuous at y. Now, h̄ = hcl, hen
e h̄τcl

= (hτ )cl and so h̄τcl is ν-bi
ontinuousat y. Re
all that ψ is δ-bi
ontinuous, where δ ∈ ∆. Also, ψ−1(y) = 0F . It followsthat (h̄τ
cl

)ψ
−1 is δ ◦ν ◦ δ-bi
ontinuous at 0F . That is, (h̄τ

cl

)ψ
−1 is ∆-bi
ontinuous at 0F .Finally, gϕ = ĥ ⊆ h̄ and y ∈ Dom((gϕ)τ

cl

). So ((gϕ)τ
cl

)ψ
−1 is ∆-bi
ontinuous at 0F .That is, gτ̂ is ∆-bi
ontinuous at τ̂(0E).We have 
he
ked that the 
onditions of Lemma 12.5 hold. So τ̂ is inversely 〈∆,P 〉-
ontinuous at 0.
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ontinuity for submerged pairs and the star operation. The next in-termediate goal is to show that in the above setting, τ̂ is inversely ∆-
ontinuous at 0E(Lemma 12.17(b)). Unfortunately, we are able to prove this only under additional asump-tions on Γ and ∆. The assumptions Γ = ∆ and Γ prin
ipal su�
e. (See 
lause M6 inDe�nition 1.9.) The exa
t extra assumptions use the notion of star-
losedness whi
h isde�ned in De�nition 12.11(d). They are: Γ ⊆ ∆ and ∆ is Γ -star-
losed.Proposition 12.7. Re
all that for ̺ ∈ H([0,∞)) and a normed spa
e E, the homeomor-phism RadE̺ ∈ H(E) was de�ned as follows : for u 6= 0, RadE̺ (u) = ̺(‖u‖) · u/‖u‖ and
RadE̺ (0) = 0. If α ∈ MC and ̺ is α-
ontinuous , then RadE̺ is 5 · α-
ontinuous.Proof. Let x, y ∈ E and y 6= 0. De�ne z = ‖x‖ · y/‖y‖. Then ‖y − z‖ = |‖y‖ − ‖x‖| ≤
‖y−x‖. So ‖x− z‖ ≤ ‖x− y‖+ ‖y− z‖ ≤ 2‖y−x‖. Let h = RadE̺ . Suppose that x 6= z.Then
‖h(y) − h(x)‖ ≤ ‖h(y) − h(z)‖ + ‖h(z) − h(x)‖ ≤ α(‖y − z‖) +

̺(‖x‖)
‖x‖ · ‖x− z‖

≤ α(‖y − x‖) +
α(‖x‖)
‖x‖ · ‖x− z‖ ≤ α(‖y − x‖) +

α(‖x−z2 ‖)
‖x−z2 ‖ · ‖x− z‖

= α(‖y− x‖) + 2α

(∥∥∥∥
x− z

2

∥∥∥∥
)
≤ α(‖y− x‖) + 2α(‖x− z‖) ≤ α(‖y− x‖) + 2α(2‖y− x‖)

≤ α(‖y − x‖) + 4α(‖y − x‖) = 5α(‖y − x‖).If x = z, then ‖h(y) − h(x)‖ ≤ α(‖y − x‖). So RadE̺ is 5 · α-
ontinuous.Proposition 12.8. There isM rtn su
h that the following holds. Let α ∈ MBC and a > 0.Let E be a normed spa
e, x, y ∈ E and ‖x‖ = ‖y‖ = α(a). Then there is g ∈ H(E) su
hthat g(0) = 0, g(x) = y, supp(g) ⊆ B(0, α(a) + a/2), and g is M rtn · α ◦α-bi
ontinuous.Proof. Let b = α(a), c = α(a) + a/2 and N = Mhlb. (See Proposition 9.2(
).) Let
̺ ∈ H([0,∞)) be the pie
ewise linear fun
tion with breakpoints at b and c su
h that
̺(b) = b/2N and ̺(t) = t for every t ≥ c. The slope of ̺ on [0, α(a)] is 1/2N < 1. Theslope of ̺ on [α(a), α(a) + a/2] is

c− b/2N

α(a)/2
=

2α(a) + a− α(a)/N

a
≤ 3α(a)

a
.The slope of ̺ on [α(a) + α/2,∞) is 1. So ̺ is (3, 3α)-
ontinuous. (See De�nition9.9(b).) By Proposition 9.10(a), ̺ is 9α-
ontinuous. By Proposition 12.7, RadE̺ is 45 ·α-
ontinuous. Clearly, (RadE̺ )−1 = RadE̺−1 . The slope of ̺−1 on [0, α(a)/2N ] is 2N . Theslope of ̺−1 on [α(a)/2N,α(a) + α/2] is ≤ a/α(a) ≤ 1. So ̺−1 is (3, 2Nα)-
ontinuous.It follows that (RadE̺ )−1 is 30N · α-
ontinuous. Let M1 = max(30N, 45). Then RadE̺ is

M1 · α-bi
ontinuous. Let h = RadE̺ . Then(1) supp(h) ⊆ B(0, α(a) + a/2),(2) h(x) = x/2N ,(3) h is M1 · α-bi
ontinuous.



222 M. Rubin and Y. YomdinLet L = span({x, y}). By Proposition 9.2(
), there are a Eu
lidean norm ‖ ‖H on Land a 
omplement S of L su
h that for every u ∈ E, ‖(u)L‖H+‖(u)S‖ ≈M
hlb

‖u‖. De�ne
u = ‖(u)L‖H +‖(u)S‖. We shall apply Proposition 9.6(
). Let x̂ = x/2N , ŷ = x̂ / y y,and θ be the angle from x̂ to ŷ in 〈L, ‖ ‖H 〉. So ŷ = x̂ . Let S = B̄L(0, x̂ ). Let η bethe pie
ewise linear fun
tion with breakpoint at x̂ su
h that η(0) = θ and η( x̂ ) = 0.So η is θ/ x̂ -Lips
hitz. Hen
e the 
onditions of Proposition 9.2(
) hold with r = x̂and K = θ/ x̂ . Let d̄ denote the distan
e fun
tion obtained from . Let g1 be de�nedby g1(u) = RotF,H

η(d̄(u,S))
(u). Then g1 ∈ H(E) and g1 is (M rot ·Kr + 1)-bilips
hitz withrespe
t to d̄. Note that Kr = θ ≤ π. So g1 is M rot(π + 1)-bilips
hitz with respe
t to d̄.Write M2 = (Mhlb)2M rot(π + 1). Hen
e(4) g1 is M2-bilips
hitz in 〈E, ‖ ‖ 〉.Let u ∈ E − B(0, ‖x‖). Then u ≥ ‖u‖/Mhlb ≥ ‖x‖/N . So d̄(u, S) ≥ x̂ . Hen
e

g1(u) = u. That is,(5) supp(g1) ⊆ B(0, ‖x‖).It is also obvious that(6) g1(x̂) = ŷ.Let ȳ = y/2N . Then ‖ȳ‖ = ‖x̂‖. Re
all that ŷ = x̂ . Sin
e x̂ ≈M
hlb

‖x̂‖,
‖ŷ‖ ≈M

hlb
‖ȳ‖. That is, (1/Mhlb) · ‖ŷ‖ ≤ ‖ȳ‖ ≤ Mhlb · ‖ŷ‖. We 
onstru
t g2 whi
htakes ŷ to ȳ. Let ̺ : [0,∞) → [0,∞) be the pie
ewise linear fun
tion with breakpoints

‖ŷ‖ and ‖x‖ su
h that ̺(0) = 0, ̺(‖ŷ‖) = ‖ȳ‖ and ̺(t) = t for every t ≥ ‖x‖. Sin
e
‖ŷ‖, ‖ȳ‖ < ‖x‖, ̺ ∈ H([0,∞)). The slopes of ̺ are ‖ȳ‖

‖ŷ‖ , ‖x‖−‖ȳ‖
‖x‖−‖ŷ‖ and 1, and the slopesof ̺−1 are ‖ŷ‖

‖ȳ‖ , ‖x‖−‖ŷ‖
‖x‖−‖ȳ‖ and 1. Clearly, ‖ȳ‖/‖ŷ‖ ≤ Mhlb = N . Note that ‖ŷ‖ ≤ ‖ŷ‖H =

ŷ = x̂ ≤Mhlb · ‖x̂‖ = N · ‖x‖
2N = ‖x‖/2. So

‖x‖ − ‖ȳ‖
‖x‖ − ‖ŷ‖ =

(1 − 1/2N)‖x‖
‖x‖ − ‖ŷ‖ ≤ ‖x‖

‖x‖ − ‖x‖/2 = 2.Hen
e ̺ is max(N, 2)-Lips
hitz.As to the slopes of ̺−1, 
learly, ‖ŷ‖/‖ȳ‖ ≤ N and
‖x‖ − ‖ŷ‖
‖x‖ − ‖ȳ‖ ≤ ‖x‖

(1 − 1/2N)‖x‖ ≤ 2.So ̺−1 is max(N, 2)-Lips
hitz. Let M3 = 3 max(N, 2) and g2 = RadE̺ . By Proposition3.18,(7) g2 is M3-bilips
hitz.It follows trivially from the de�nitions of ̺ and g2 that(8) g2(ŷ) = ȳ,(9) supp(g2) ⊆ B(0, ‖x‖).Let g = h−1 ◦ g2 ◦ g1 ◦h. Note that(10) h−1(ȳ) = h−1(y/2N) = y.



Re
onstru
tion of manifolds from subgroups of homeomorphism groups 223It follows from (1)�(10) that g is M2
1M2M3 · α ◦α-bi
ontinuous, g(x) = y and supp(g) ⊆

B(0, α(a) + a/2). De�ne M rtn = M2
1M2M3. Then M rtn is as required.Definition 12.9. (a) Let E be a metri
 spa
e, x, y ∈ X ⊆ E and α ∈ MC. We say that

〈x, y 〉 is α-submerged in X with respe
t to E if δX(x) ≥ ‖x− y‖ + α−1(‖x− y‖).(b) Let X ⊆ E, Y ⊆ F be open subsets of the metri
 spa
es E,F , V ⊆ X, x ∈
bd(X), α, β ∈ MC, Γ ,∆ ⊆ MC and τ ∈ EXT±(X,Y ). We say that τ is β-
ontinuousfor α-submerged pairs in V if for every α-submerged pair 〈y, z 〉 in V , dY (τ (y), τ (z)) ≤
β(dX(y, z)).We say that τ is β-
ontinuous for α-submerged pairs at x (τ is (β;α)-
ontinuous at x)if there is U ∈ NbrE(x) su
h that τ is β-
ontinuous for α-submerged pairs in U ∩X. Wesay that τ is ∆-
ontinuous for Γ -submerged pairs at x (τ is (∆;Γ )-
ontinuous at x) if forany α ∈ Γ there is β ∈ ∆ su
h that τ is (β;α)-
ontinuous at x.(
) Let X ⊆ E, Y ⊆ F be open subsets of the metri
 spa
es E,F , V ⊆ X, α, β ∈ MCand τ ∈ EXT±(X,Y ). We say that τ is almost β-
ontinuous for α-submerged pairs in V(τ is (β;α)-almost-
ontinuous in V ) if for any α-submerged pairs 〈y, z1 〉, 〈y, z2 〉 in V : if
d(y, z1) = d(y, z2), then dY (τ (y), τ (z2)) ≤ β(dY (τ (y), τ (z1))). �Under assumptions similar to Lemma 12.6, we prove the submerged 
ontinuity of τ−1.Lemma 12.10. Assume the following fa
ts.(1) Γ ,Σ are 
ountably generated moduli of 
ontinuity , and Ω is the modulus of 
on-tinuity generated by Γ ∪ Σ .(2) X ⊆ E and Y ⊆ F are open subsets of the normed spa
es E and F , X is Γ -LIN-bordered and Y is Σ -LIN-bordered.(3) τ ∈ EXT±(X,Y ), G is a Γ -appropriate subgroup of EXT(X), H is a ∆-appro-priate subgroup of EXT(Y ) and Gτ = H.(4) x ∈ bd(X), 〈ϕ,A, r〉 is a boundary 
hart element for x, γ ∈ Γ and ϕ is γ-bi
ontinuous.(5) y ∈ bd(Y ), 〈ψ,B, s〉 is a boundary 
hart element for y, σ ∈ Σ and ψ is σ-bi
ontinuous.(6) τ cl(x) = y and τ (ϕ(BCDE(A, r))) ⊆ ψ(BCDF (B, s)).(7) Set X̃ = BCDE(A, r), τ̃ = ψ−1 ◦ τ ◦ϕ and Ỹ = τ̃(X̃).Then τ̃−1 is (Ω ;Σ )-
ontinuous at τ̃(0).Proof. There is Z ∈ NbrF (y) su
h that H Z ∩ Y ⊇ HCMP.LC

Σ
(Y ) Z ∩ Y , and we mayassume that ψ(BCDF (B, s)) ⊆ Z. Set L = bd(A), X̂ = BCDE(A, r) ∪ (L ∩ BE(0, r)),

τ̂ = ψ−1 ◦ τ cl ◦ϕ, Ŷ = τ̂(X̂) and P = {(v+L)∩X̂ | v ∈ X̂}. Note that τ̂ = τ̃ cl
BE(0,r),BF (0,s).By Lemma 12.6, τ̂ is inversely 〈Σ ,P 〉-
ontinuous at 0. Let r0 ∈ (0, r) and σ ∈ Σ besu
h that τ̂↾(BE(0, r0)∩ X̂) is inversely 〈σ,P 〉-
ontinuous. Let L0 ⊆ L be any ray whoseendpoint is 0. For every u ∈ B(0, r0) ∩ X̂ let xu be the interse
tion point of the ray

u+ L0 with the sphere S(0, r0). Clearly, limu→0 xu = x0E . So limu→0 d
F (τ̂(u), τ̂(xu)) =

dF (τ̂(0E), τ̂(x0E )) > 0. Also, limỸ
u→0 δ

Ỹ (τ̃(u)) = 0. Hen
e there is r1 ∈ (0, r0) su
hthat for every u ∈ B(0, r1) ∩ X̃, dF (τ̃(u), τ̃(xu)) > δỸ (τ̂(u)). Let V = τ̃(B(0, r1) ∩ X̃).So for every v ∈ V and t ∈ [0, δỸ (v)] there is y(v, t) ∈ τ̃([τ̃−1(v), xτ̃−1(v)]) su
h that
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dF (y(v, t), v) = t. Denote τ̃−1 by η̃. By the inverse 〈σ,P 〉-bi
ontinuity of τ̂ , for every vand t as above dE(η̃(y(v, t)), η̃(v)) ≤ σ(dF (y(v, t), v)).Claim 1. Let α ∈ Σ ∩ MBC. Then there are W ∈ NbrF (0) and γ ∈ Γ su
h that η̃ is
(γ;α)-almost-
ontinuous in W ∩ Ỹ .Proof. Suppose by 
ontradi
tion this is not so. Let {γi | i ∈ N} be a generatingset for Γ , and assume that for every i, {j | γj = γi} is in�nite. There is a se-quen
e {〈yi, ui, vi〉 | i ∈ N} su
h that: (i) for every i, 〈yi, ui 〉 is α-submerged in Ỹand ‖ui − yi‖ = ‖vi − yi‖; (ii) limi yi = 0F ; (iii) δỸ (yi+1) < α−1(‖yi − ui‖)/4; (iv)
‖η̃(vi) − η̃(yi)‖ > γi(‖η̂(ui) − η̂(yi)‖). Let ri = ‖ui − yi‖ + α−1(‖ui − yi‖)/2. Note thatfrom (iii) and the fa
t that 〈yi, ui 〉 is α-submerged it follows that B(yi, ri)∩B(yi, rj) = ∅for any i 6= j. By Proposition 12.8, there is gi ∈ H(Ỹ ) su
h that gi(yi) = yi, g(ui) = vi,
supp(gi) ⊆ B(yi, ri), and gi is M rtn · α ◦α-bi
ontinuous. Sin
e supp(gi) ∩ supp(gj) = ∅for any i 6= j, we infer that g̃ = ◦i gi is well-de�ned, and g̃ is (M rtn)2 ·α ◦4-bi
ontinuous.We shall rea
h a 
ontradi
tion by showing that g̃ is Σ -bi
ontinuous at 0F , whereas g̃τ̃−1is not Γ -bi
ontinuous at 0E .De�ne h̃ = g̃ψ and h = h̃ ∪ Id↾(Y − ψ(Ỹ )). We shall show that h ∈ H. Re
all that
y = ψ(0F ) and set hi = gψi . Then h̃ = ◦i∈N hi. Re
all that supp(gi) ⊆ BF (yi, ri) andnote that limi∈N B

F (yi, ri) = 0F . Sin
e {0F } ∪ ⋃
i∈N

BF (yi, ri) ⊆ Dom(ψ), it followsthat limi∈N ψ(BF (yi, ri)) = y. Also, supp(hi) = ψ(supp(gi)). Hen
e cl(supp(hi)) =

ψ(cl(supp(gi))) ⊆ ψ(BF (yi, ri)) and so limi∈N cl(supp(hi)) = y. We thus 
on
lude that:(1) cl(supp(h̃)) = {y}∪⋃
i∈N

cl(supp(hi)). It also follows that: (2) if ~z ⊆ Y and lim ~z = y,then limh(~z) = y. Note that: (3) for every i ∈ N, cl(supp(hi)) ⊆ ψ(BF (yi, ri)) ⊆ ψ(Ỹ ).Let z ∈ cl(Y ). If z 6∈ cl(supp(h)), then h ∪ {〈z, z 〉} is 
ontinuous. If z ∈ cl(supp(h)),then z ∈ cl(supp(h̃)). So by (1) and (3), either z = y or z ∈ ψ(Ỹ ). If z = y, then by (2),
h∪{〈z, z 〉} is 
ontinuous. If z ∈ ψ(Ỹ ), then h(z) = h̃(z). From the fa
ts: h̃ is 
ontinuous,
h↾Ỹ = h̃ and ψ(Ỹ ) is open in F , it follows that h is 
ontinuous at z. We have shownthat h is extendible in F . The same argument applies to h−1, so h ∈ EXT(Y ). Clearly,
supp(h) = supp(h̃) ⊆ ψ(Ỹ ) ⊆ ψ(BCDF (B, s)) ⊆ Z. That is, (4) supp(h) ⊆ Z.We now show that h ∈ HCMP.LC

Σ
(Y ). Write ᾱ = (M rtn)2 ·α ◦4 and β = σ ◦ ᾱ ◦σ. Then

β ∈ Σ . We have seen that g̃ is ᾱ-bi
ontinuous. So sin
e ψ is σ-bi
ontinuous, it followsthat h̃ is β-bi
ontinuous. This implies that h̃cl is β-bi
ontinuous. We show that for every
z ∈ cl(Y ), h is β-bi
ontinuous at z. This is 
ertainly true if z 6∈ cl(supp(h)). So supposethat z ∈ cl(supp(h)). Then z ∈ cl(supp(h̃)). By (1) and (3), either z ∈ ψ(Ỹ ) or z = y. If
z ∈ ψ(Ỹ ), then ψ(Ỹ ) ∈ NbrF (z) and h↾ψ(Ỹ ) = h̃↾ψ(Ỹ ). So h is β-bi
ontinuous at z.Assume that z = y. Re
all that x = ϕ(0E) and y = ψ(0F ) and de�ne X0 = X ∪ {x}and Y0 = Y ∪ {y}. Note that ψ(Ỹ ) = τ (ϕ(BCDE(A, r))). Sin
e ϕ(BCDE(A, r)) =

ϕ(BE(0, r)) ∩ X and ϕ(BE(0, r)) is open in E, it follows that ϕ(BCDE(A, r)) ∪ {x} ∈
NbrX0(x). From the fa
t that τ ∈ EXT±(X,Y ) it follows that τ (ϕ(BCDE(A, r)))∪{y} ∈
NbrY0(y). That is, ψ(Ỹ )∪{y} ∈ NbrY0(y). So there is W ∈ NbrF (y) su
h that W ∩Y =

ψ(Ỹ ). Thus h↾W = h̃↾W . It follows that h is β-bi
ontinuous at y. So h ∈ HCMP.LC
Σ

(Y ).By (4), h ∈ HCMP.LC
Σ

(Y ) Z ∩ Y . Also re
all that H Z ∩ Y ⊇ HCMP.LC
Σ

(Y ) Z ∩ Y . So
h ∈ H.
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onstru
tion of manifolds from subgroups of homeomorphism groups 225We 
on
lude that hτ−1 ∈ G. Now, G is of boundary type Γ , so hτ−1 is Γ -bi
ontinuousat x. Sin
e ϕ is Γ -bi
ontinuous and ϕ(0E) = x, we see that (hτ
−1

)ϕ
−1 is Γ -bi
ontinuousat 0E . The following steps show that (hτ

−1

)ϕ
−1

= g̃η̃:
hτ

−1

= (h̃∪ Id↾(Y −Dom(h̃)))τ
−1

= (g̃ψ∪ Id↾(Y −ψ(Ỹ )))τ
−1

= (g̃ψ)τ
−1 ∪ Id↾(X−ϕ(X̃)).Sin
e Rng(ϕ) is disjoint from X − ϕ(X̃),

((g̃ψ)τ
−1 ∪ Id↾(X − ϕ(X̃)))ϕ

−1

= ((g̃ψ)τ
−1

)ϕ
−1

.That is,
(hτ

−1

)ϕ
−1

= ((g̃ψ)τ
−1

)ϕ
−1

= g̃η̃.We 
on
lude that g̃η̃ is Γ -bi
ontinuous at 0E .We shall now show that g̃η̃ is not Γ -
ontinuous at 0E , thus rea
hing a 
ontradi
tion.Let T ∈ NbrE(0) and γ′ ∈ Γ . Then there are i ∈ N and a > 0 su
h that γ′↾[0, a] ≤
γi↾[0, a], η̃(ui), η̃(yi) ∈ T and ‖η̃(ui) − η̃(yi)‖ ≤ a. So
‖gη̃(η̃(ui)) − gη̃(η̃(yi))‖ = ‖η̃(vi) − η̃(yi)‖ > γi(‖η̃(ui) − η̃(yi)‖) ≥ γ′(‖η̃(ui) − η̃(yi)‖).This shows that gη̃ is not Γ -
ontinuous at 0E . A 
ontradi
tion, so Claim 1 is proved.Let W and γ be as in Claim 1. We may assume that W ⊆ V . There is U ∈ NbrF (0)su
h that for every u, v ∈ U ∩ Ỹ : if 〈u, v 〉 is α-submerged in Ỹ , then B(u, ‖v− u‖) ⊆W .Let u, v ∈ U ∩ Ỹ be su
h that 〈u, v 〉 is α-submerged in Ỹ . Let w = y(u, ‖v − u‖). Then
w ∈ U . Hen
e

‖η̃(v) − η̃(u)‖ ≤ γ(‖η̃(w) − η̃(u)‖) ≤ γ ◦σ(‖w − u‖) = γ ◦σ(‖v − u‖).Clearly, γ ◦σ ∈ Ω , and we have just shown that η̃ is (γ ◦σ;α)-
ontinuous at 0F .Definition 12.11. (a) Let α ∈ H([0,∞)). For every t ∈ [0,∞) we de�ne a sequen
e
~t = {tn | n ∈ N}. De�ne t0 = t and for every n ∈ N, let tn+1 satisfy the equation

tn+1 + α(tn+1) = tnand de�ne
pα,n(t) = tn and qα,n(t) = tn − tn+1.Note that pα,0 = Id.(b) Let α, β ∈ H([0,∞)). We de�ne the fun
tion β ⋆α : [0,∞) → [0,∞) ∪ {∞} by

β ⋆α(t) =

∞∑

n=0

β(qα,n(t)).(
) For α ∈ MC let Γα = cl�({α ◦n | n ∈ N}).(d) Let Γ ⊆ MC and α ∈ MC. We say that Γ is α-star-
losed if for every β ∈ Γ thereis γ ∈ Γ su
h that β ⋆α � γ. Let ∆ ⊆ MC. We say that Γ is ∆-star-
losed if there is
δ ∈ ∆ su
h that Γ is δ-star-
losed. �The next proposition 
ontains some trivial observations about the operation � ⋆�. Forthe 
ontinuation of the proof of the main theorems we need only parts (a)�(
) of theproposition. The other parts are mentioned in order to familiarize the reader with thisoperation. Part (a) was proved by Wiesªaw Kubis.



226 M. Rubin and Y. YomdinProposition 12.12. Let α, β, γ ∈ H([0,∞)).(a) For every n ∈ N, α ◦n ⋆α ≤ nα ◦n + Id.(b) If γ � β, then γ ⋆α � β ⋆α.(
) For every n ∈ N, qα,n and pα,n+1 are stri
tly in
reasing fun
tions.(d) If s < t, then β ⋆α(s) ≤ β ⋆α(t).(e) Either β ⋆α↾(0,∞) is the 
onstant fun
tion f(t) = ∞, or β ⋆α ∈ H([0,∞)).Proof. (a) Let t ∈ [0,∞). De�ne pα,n(t) = pn and qα,n(t) = qn. Hen
e qn = α(pn) and
pn + qn = pn−1. Let k ≥ n ≥ 1. Then
α ◦n(qk) ≤ α ◦n(pk−1) = α ◦(n−1)(qk−1) ≤ · · · ≤ α ◦(n−(n−1))(pk−n)) = α(pk−n) = qk−n.Note that ∑∞

i=0 qi = t. Let n ≥ 1. Then
α ◦n ⋆α(t) =

∞∑

k=0

α ◦n(qk) =
∑

k<n

α ◦n(qk) +
∑

k≥n
α ◦n(qk)

≤
∑

k<n

α ◦n(t) +
∑

k≥n
qk−n = nα ◦n(t) + t.(b) This is immediate.(
) Note that pα,n+1 + qα,n = pα,n. This equality together with the fa
ts that α isstri
tly in
reasing and pα,0 = Id implies by indu
tion that qα,n and pα,n+1 are stri
tlyin
reasing for every n ∈ N.(d) This follows from the fa
ts that qα,n and β are in
reasing fun
tions.(e) Note that qα,k(pα,n(t)) = qα,k+n(t). Hen
e β ⋆α(pα,n(t)) is a tail of β ⋆α(t). Sofor every n, β ⋆α(pα,n(t)) <∞ i� β ⋆α(t) <∞. Note also that limn pα,n(t) = 0. Supposethat for some t, β ⋆α(t) = ∞ and let s > 0. Then there is n su
h that pα,n(t) < s. So

∞ = β ⋆α(pα,n(t)) ≤ β ⋆α(s). Hen
e β ⋆α↾(0,∞) is the 
onstant fun
tion with value ∞.Suppose that β ⋆α↾(0,∞) is not the 
onstant ∞. So Rng(β ⋆α) ⊆ [0,∞). Note that
qα,0 = α ◦pα,0 = α ◦ (Id+α)−1. So limt→∞ qα,0(t) = ∞. For β we have limt→∞ β(t) = ∞.It follows that limt→∞ β ⋆α(t) ≥ limt→∞ β(qα,0(t)) = ∞.The stri
t in
reasingness of β and all the qα,n's together with the fa
t that β ⋆α(t) <∞for every t, implies that β ⋆α is stri
tly in
reasing.It remains to show that β ⋆α is 
ontinuous. Let a ∈ (0,∞), and we show that∑
n β(qα,n(t)) is uniformly 
onvergent in [0, a]. Let ε > 0. There is n su
h that∑
k≥n β(qα,k(a)) < ε. From the in
reasingness of β and all the qα,n's it follows that∑
k≥n β(qα,k(t)) < ε for all t ∈ [0, a]. So ∑

n β(qα,n(t)) is uniformly 
onvergent in [0, a].Hen
e β ⋆α is 
ontinuous.Question 12.13. (a) Let α, β ∈ MC. Is it true that either β ⋆α↾(0,∞) is the 
onstantfun
tion ∞, or β ⋆α belongs to MC?(b) Let α1, α2, β ∈ MC. Is the following statement true: if α1 � α2, then β ⋆α2 �
β ⋆α1?(
) Let α ∈ MC. Is there β ∈ MC − Γα su
h that Γβ is α-star-
losed? �Proposition 12.14. Let K > 0, r ∈ (0, 1), α(t) = Kt and β(t) = tr. Then there is Csu
h that β ⋆α = C · β.
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onstru
tion of manifolds from subgroups of homeomorphism groups 227Proof. Abbreviate qα,n(t) by qn. Let t ≥ 0. Then
qn =

(
1

(1 +K)n
− 1

(1 +K)n+1

)
· t =

1

(1 +K)n
· Kt

1 +Kand hen
e
β ⋆α =

∞∑

n=0

1

(1 +Kr)n
·
(

Kt

1 +K

)r
=

(1 +K)r

(1 +K)r − 1
· Kr

(1 +K)r
· tr =

Kr

(1 +K)r − 1
· β(t).So C = Kr/((1 +K)r − 1).Lemma 12.17(b) is our next main step. It is pre
eded by two propositions. Part (a) of12.17 is also a step in the proof of 12.17(b). For α ∈ MC, a normed spa
e E and x, y ∈ Elet prtα(x, y) be the point z in the line segment [x, y] su
h that α(‖z − y‖) = ‖x− z‖.Proposition 12.15. Let α ∈ MC and a > 0. Then there is ε = εα,a su
h that thefollowing holds. If F is a normed spa
e, M is a 
losed subspa
e of F or a 
losed halfspa
e of F , x ∈ F −M and d(x,M) = a, then for every y ∈ bd(M): if d(x, y) < a + ε,then 〈x, prtα(x, y) 〉 is 2α-submerged in F −M .Proof. Let q(t) = qα,0(t) and f(t) = q(t)+(2α)−1(q(t)). Then f(t) = q(t)+α−1( 1

2q(t)) <

q(t) + α−1(q(t)). In parti
ular, f(a) < q(a) + α−1(q(a)) = a. So there is ε > 0 su
hthat for every t: if |t − a| < ε, then f(t) < (f(a) + a)/2. Let y ∈ bd(M) be su
h that
d(x, y) < a+ ε. Then

‖x− prtα(x, y)‖ + (2α)−1(‖x− prtα(x, y)‖) = q(‖x− y‖) + (2α)−1(q(‖x− y‖))

= f(‖x− y‖) < f(a) + a

2
< a = δF−M (x).So 〈x, prtα(x, y) 〉 is 2α-submerged in F −M .Proposition 12.16. Let α ∈ MC, F be a normed spa
e, M be a 
losed subspa
e of F ora 
losed half spa
e of F , x ∈ F −M and y ∈ M . Then there is a sequen
e {xi | i ∈ N}su
h that :(i) x0 = x,(ii) for every i ∈ N, 〈xi, xi+1 〉 is 2α-submerged in F −M ,(iii) for every i ∈ N, ‖xi − xi+1‖ ≤ qα,i(‖x− y‖),(iv) limi xi exists and limi xi ∈ bd(M),(v) ‖ limi xi − y‖ ≤ 2‖x− y‖.Note that the 
onvergen
e of {xi | i ∈ N} follows from (iii), and need not be required.Proof. Write pα,i = pi and qα,i = qi. Note that p1 ◦pi = pi+1 and that q0 ◦pi = qi. Let

x0 = x and y0 = y. We de�ne by indu
tion xi ∈ F −M and yi ∈ bd(M). Suppose that
xi, yi have been de�ned. Let yi+1 ∈ bd(M) be su
h that ‖xi − yi+1‖ ≤ ‖xi − yi‖ and
〈xi, prtα(xi, yi+1) 〉 is 2α-submerged in F −M . The existen
e of su
h yi+1 is ensured byProposition 12.15. Let xi+1 = prtα(xi, yi+1). (Note that if for some ȳ ∈ M , d(x,M) =

‖x− ȳ‖, then yi 
an be 
hosen to be ȳ for every i ≥ 1.)By the de�nitions, 
lauses (i) and (ii) hold. We prove (iii). We prove by indu
tionon i that ‖xi − xi+1‖ ≤ qi(‖x− y‖) and ‖xi+1 − yi+1‖ ≤ pi+1(‖x− y‖). It is trivial that
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tion hypotheses hold for i = 0. Suppose that the indu
tion hypotheses hold for
i− 1. Then

‖xi − xi+1‖ = q0(‖xi − yi+1‖) ≤ q0(‖xi − yi‖) ≤ q0(pi(‖x− y‖)) = qi(‖x− y‖),
‖xi+1 − yi+1‖ = p1(‖xi − yi+1‖) ≤ p1(‖xi − yi‖) ≤ p1(pi(‖x− y‖)) = pi+1(‖x− y‖).So (iii) holds.We prove (iv). Obviously, ∑∞

i=0 qi(‖x−y‖) = ‖x−y‖. Sin
e ‖xi−xi+1‖ ≤ qi(‖x−y‖),it follows that ∑∞
i=0 ‖xi − xi+1‖ is 
onvergent. So {xi | i ∈ N} is 
onvergent. Let

x̄ = limi xi. The fa
ts limi pi(‖x − y‖) = 0 and ‖xi − yi‖ ≤ pi(‖x − y‖) imply that
limi ‖xi − yi‖ = 0. Sin
e yi ∈ bd(M), it follows that x̄ ∈ bd(M).We prove (v):

‖x̄− x‖ ≤
∞∑

i=0

‖xi − xi+1‖ ≤
∞∑

i=0

qi(‖x− y‖) = ‖x− y‖.So ‖x̄− y‖ ≤ ‖x̄− x‖ + ‖x− y)‖ ≤ 2‖x− y‖.Lemma 12.17. Assume that 
lauses (1)�(7) of Lemma 12.10 hold. That is ,(1) Γ ,Σ are 
ountably generated moduli of 
ontinuity , and Ω is the modulus of 
on-tinuity generated by Γ ∪ Σ .(2) X ⊆ E and Y ⊆ F are open subsets of the normed spa
es E and F , X is Γ -LIN-bordered and Y is Σ -LIN-bordered.(3) τ ∈ EXT±(X,Y ), G is a Γ -appropriate subgroup of EXT(X), H is a ∆-appro-priate subgroup of EXT(Y ) and Gτ = H.(4) x ∈ bd(X), 〈ϕ,A, r〉 is a boundary 
hart element for x, γ ∈ Γ and ϕ is γ-bi
ontinuous.(5) y ∈ bd(Y ), 〈ψ,B, s〉 is a boundary 
hart element for y, σ ∈ Σ and ψ is σ-bi
ontinuous.(6) τ cl(x) = y and τ (ϕ(BCDE(A, r))) ⊆ ψ(BCDF (B, s)).(7) Set L = bd(A), X̂ = BCDE(A, r) ∪ (L ∩ B(0, r)), τ̂ = ψ−1 ◦ τ cl ◦ϕ, Ŷ = τ̂(X̂),
Ỹ = τ̂(BCDE(A, r)) and P = {(v + L) ∩ X̂ | v ∈ X̂}.Assume further that(8) Ω is Σ -star-
losed.The the following hold :(a) Let M = bd(B). Then there is W ∈ NbrF (0) and ω ∈ Ω su
h that for every
x ∈ (Ŷ −M) ∩W and y ∈ Ŷ ∩M ∩W , ‖τ̂−1(x) − τ̂−1(y)‖ ≤ ω(‖x− y‖).(b) τ̂−1 is Ω-
ontinuous at τ̂ (0).Proof. (a) Let α ∈ Σ be su
h that Ω is α-star-
losed. It is easy to see that α maybe 
hosen to be in MBC. Note that Ỹ = Ŷ − M . Let η̂ = τ̂−1. By Lemma 12.10,there are ̺ ∈ Ω and W1 ∈ NbrF (0F ) su
h that for every u, v ∈ W1 ∩ Ỹ : if 〈u, v 〉 is

2α-submerged in Ỹ , then ‖η̂(u)− η̂(v)‖ ≤ ̺(‖u− v‖). Let ν ∈ Ω and a > 0 be su
h that
̺⋆α↾[0, a] ≤ ν↾[0, a].
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tion of manifolds from subgroups of homeomorphism groups 229Let P = {(v + L) ∩ X̂ | v ∈ X̂}. By Lemma 12.6, τ̂ is inversely 〈∆,P 〉-
ontinuousat 0E . Note that τ̂(L ∩ X̂) = M ∩ Ŷ , that is, M ∩ Ŷ ∈ τ̂(P). So there are σ ∈ Σ and
W2 ∈ NbrF (0F ) su
h that for every u, v ∈ W2 ∩M ∩ Ŷ , ‖η̂(u) − η̂(v)‖ ≤ σ(‖u − v‖).Choose s0 ∈ (0, a/2) su
h that B(0F , 6s0) ∩ BCDF (B, s) ⊆ Ŷ ∩ W1 ∩ W2 and let
W = B(0F , s0).Let x ∈ (Ŷ −M) ∩W and y ∈ Ŷ ∩M ∩W . Let {xi | i ∈ N} be the sequen
e ensuredby Proposition 12.16 and x̄ = limi xi. Note that by (iii) of 12.16, ∑

i∈N
‖xi − xi+1‖

≤ ‖x − y‖ < 2s0. So ‖xn‖ ≤ ‖x‖ +
∑n−1

i=0 ‖xi − xi+1‖ < 3s0 for every n ∈ N. Similarly,
‖x̄‖ < 3s0. Hen
e {xi | i ∈ N} ⊆ W1 ⊆ Dom(η̂) and x̄ ∈ W2 ⊆ Dom(η̂). We 
on
ludethat

‖η̂(x) − η̂(y)‖ ≤
∞∑

i=0

‖η̂(xi) − η̂(xi+1)‖ + ‖η̂(x̄) − η̂(y)‖ := A.Sin
e x̄, y ∈W2 ∩M ∩ Ŷ , we have ‖η̂(x̄) − η̂(y)‖ ≤ σ(‖x̄− y‖).By (ii) of 12.16, 〈xi, xi+1 〉 is 2α-submerged in F − M . Using the fa
ts that xi ∈
B(0, 3s0) and that B(0F , 6s0)∩BCDF (B, s) ⊆ Ŷ , it is easily seen that δỸ (xi) = δF−M (xi)for every i ∈ N. So 〈xi, xi+1 〉 is 2α-submerged in Ỹ . This, together with the fa
t that
xi, xi+1 ∈W1, implies that ‖η̂(xi) − η̂(xi+1)‖ ≤ ̺(‖xi − xi+1‖). Hen
e

A ≤
∞∑

i=0

̺(‖xi − xi+1‖) + σ(‖x̄− y‖) := B.By the in
reasingness of qα,i and 
lause (iii) in Proposition 12.16,
∞∑

i=0

̺(‖xi − xi+1‖) ≤
∞∑

i=0

̺(qα,i(‖x− y‖)) = ̺⋆α(‖x− y‖).Clause (v) in 12.16 implies that σ(‖x̄− y‖) ≤ σ(2‖x− y‖). Hen
e
B ≤ ̺⋆α(‖x− y‖) + σ ◦ (2 · Id)(‖x− y‖).Re
all that ν ∈ Ω , ̺⋆α↾[0, a] ≤ ν↾[0, a] and s0 < a/2. Let ω = ν + σ ◦ (2 · Id). It followsfrom the above that ω ∈ Ω and ‖η̂(x) − η̂(y)‖ ≤ ω(‖x− y‖). This proves (a).(b) We use the notations of (a). Let x, y ∈W ∩ Ŷ . If x, y ∈M , then ‖η̂(x)− η̂(y)‖ ≤

σ(‖x−y‖). If x 6∈M and y ∈M or vi
e versa, then ‖η̂(x)− η̂(y)‖ ≤ ω(‖x−y‖). Supposethat x, y 6∈M and write β = 2α. If 〈x, y 〉 is β-submerged in Ỹ or 〈y, x 〉 is β-submergedin Ỹ , then ‖η̂(x) − η̂(y)‖ ≤ ̺(‖x− y‖).Suppose that neither 〈x, y 〉 nor 〈y, x 〉 are β-submerged in Ỹ . Sin
e x, y ∈ B(0, s0)and B(0, 6s0) ∩ BCDF (B, s) ⊆ Ŷ , δF−M (x) = δỸ (x) and δF−M (y) = δỸ (y). So by thenon-submergedness of 〈x, y 〉 and 〈y, x 〉, δF−M (x), δF−M (y) < ‖x − y‖ + β−1(‖x − y‖).Sin
e β ∈ MBC, β−1(t) ≤ t for every t. So δF−M (x), δF−M (y) < 2‖x− y‖.Let x̄, ȳ ∈ M be su
h that ‖x − x̄‖ < 2δF−M (x) and ‖y − ȳ‖ < 2δF−M (y). Clearly,
‖x̄‖ < 3‖x‖ < 3s0. Hen
e x̄ ∈W2 ∩M ∩ Ŷ . Similarly, ȳ ∈W2 ∩M ∩ Ŷ . We also have
‖x̄− ȳ‖ ≤ ‖x̄− x‖ + ‖x− y‖ + ‖y − ȳ‖ ≤ 2δF−M (x) + ‖x− y‖ + 2δF−M (y) ≤ 9‖x− y‖and ‖x− x̄‖, ‖y − ȳ‖ < 4‖x− y‖. The �nal estimate is
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‖η̂(x) − η̂(y)‖ ≤ ‖η̂(x) − η̂(x̄)‖ + ‖η̂(x̄) − η̂(ȳ)‖ + ‖η̂(ȳ) − η̂(y)‖

≤ ω(‖x− x̄‖) + σ(‖x̄− ȳ‖) + ω(‖ȳ − y‖)

≤ ω(4‖x− y‖) + σ(9‖x− y‖) + ω(4‖x− y‖) ≤ 8ω(‖x− y‖) + 9σ(‖x− y‖).Clearly, γ := 8ω+9σ ∈ Ω . Obviously, σ, ω, ̺ ≤ γ. We have thus shown that for every
x, y ∈W ∩ Ŷ , ‖η̂(x) − η̂(y)‖ ≤ γ(‖x− y‖). So η̂ is Ω -
ontinuous at 0F .We make a last trivial observation before proving the main theorem.Proposition 12.18. (a) Let Γ be a modulus of 
ontinuity and α ∈ MBC− Γ . Let X bean open subset of a normed spa
e E and x ∈ bd(X). Then there is g ∈ H(E)X su
hthat g is 9 · α ◦α-bi
ontinuous and g is not Γ -bi
ontinuous at x.(b) Let Γ ,∆ be moduli of 
ontinuity , E,F be normed spa
es , X  E be an open
Γ -LIN-bordered set , Y ⊆ F be an open ∆-LIN-bordered set , G ≤ EXT(X) and H ≤
EXT(Y ) be respe
tively Γ -appropriate and ∆-appropriate, τ ∈ (HBDR.LC

∆
)±(X,Y ) and

Gτ = H. Then Γ = ∆.Proof. (a) For r > 0 de�ne gr : E ∼= E as follows: gr(0) = 0,
gr(z) =

r

α(r)
· α(‖z‖) · z

‖z‖ if ‖z‖ ∈ (0, r),and gr(z) = z if ‖z‖ ≥ r. Obviously, supp(gr) = B(0, r), and it is left to the reader to
he
k that gr is 3r
α(r) ·α-bi
ontinuous, and that if γ ∈ MC is su
h that gr is γ-bi
ontinuous,then γ↾[0, r] ≥ r
α(r) · α↾[0, r]. For y ∈ E de�ne gy,r = g

try
r . Let {B(xi, ri) | i ∈ N} be asequen
e of pairwise disjoint balls su
h that for every i, B(xi, ri) ⊆ X and limi xi = x,and let g = ◦i gxi,ri

↾X. Then g is as required.(b) First we show that ∆ ⊆ Γ . Suppose otherwise. Let x ∈ bd(X) and y = τ cl(x).So y ∈ bd(Y ). There are W ∈ Nbr(y) and β ∈ ∆ su
h that τ−1↾(W ∩ Y ) is β-bi
ontinuous. Let V ∈ Nbr(y) su
h that V ⊆ W and HCMP.LC
∆

(Y ) V ∩ Y ⊆ H. Choose
α ∈ ∆∩MBC−Γ and de�ne ᾱ = 9 ·α ◦α and δ = β ◦ ᾱ ◦β. Let U = τ−1(V ∩ Y ). Hen
e
x ∈ bd(U).Let X ′ be an open subset of U ∩X su
h that cl(X ′) ∩ bd(X) = {x}. By (a), thereis g′ ∈ H(E)X ′ su
h that g′ is ᾱ-bi
ontinuous, and g′ is not Γ -bi
ontinuous at x. Let
g = g′↾X and h = gτ . Sin
e g is E-biextendible and τ is (E,F )-biextendible, h is F -biextendible. From the fa
t that τ↾(U ∩X) is β-bi
ontinuous, it follows that h↾(V ∩ Y )is δ-bi
ontinuous. We wish to 
on
lude that h is δ-bi
ontinuous. Indeed, this followsfrom the fa
ts: clF (supp(h)) ⊆ (V ∩ Y ) ∪ {y} and y ∈ cl(V ∩ Y ). (The same argumentappears in the proof 12.10, where it is proved that h ∈ HCMP.LC

Σ
(Y ).) Obviously, δ ∈ ∆,so h ∈ HCMP.LC

∆
(Y ) V ∩ Y ⊆ H. Re
all that Gτ = H, hen
e g = hτ

−1 ∈ G. But gis not Γ -bi
ontinuous at x. This 
ontradi
ts the fa
t that G is Γ -appropriate. Hen
e
∆ ⊆ Γ .It follows that τ ∈ (HBDR.LC

Γ
)±(X,Y ) and hen
e τ−1 ∈ (HBDR.LC

Γ
)±(Y,X). We nowrepeat the above argument for τ−1. So the roles of Γ and ∆ are inter
hanged, and we
on
lude that Γ ⊆ ∆.
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tion of manifolds from subgroups of homeomorphism groups 23112.3. Final resultsTheorem 12.19 (Main Theorem of Chapter 12). Assume that(1) Γ ,∆ are 
ountably generated moduli of 
ontinuity , Γ ⊆ ∆ and ∆ is Γ -star-
losed.(Or assume the spe
ial 
ases : (i) Γ is prin
ipal and ∆ = Γ , or (ii) Γ = Γ
LIP and

∆ = Γ
HLD.)(2) X $ E and Y ⊆ F are open subsets of the normed spa
es E and F , X is Γ -LIN-bordered , and Y is ∆-LIN-bordered.(3) G ≤ EXT(X) is Γ -appropriate, and H ≤ EXT(Y ) is ∆-appropriate.(4) τ ∈ EXT±(X,Y ) and Gτ = H.Then Γ = ∆ and τ ∈ (HBDR.LC

Γ
)±(X,Y ).Proof. That (i) is a spe
ial 
ase of (1) follows from Proposition 12.12(a) and (b), andthat (ii) is a spe
ial 
ase follows from Proposition 12.14.Sin
e Γ ⊆ ∆, the modulus of 
ontinuity Ω whi
h is generated by Γ ∪∆ is ∆, and sin
e

∆ is Γ -star-
losed and Γ ⊆ ∆, we see that ∆ is ∆-star-
losed. So Ω is ∆-star-
losed. Let
x ∈ bd(X). There are a boundary 
hart element for x, 〈ϕ,A, r〉, and γ ∈ Γ su
h that ϕis γ-bi
ontinuous. Let y = τ cl(x). Choose a boundary 
hart element for y, 〈ψ,B, s〉, and
σ ∈ Σ su
h that ψ is σ-bi
ontinuous. Also assume τ (ϕ(BCDE(A, r))) ⊆ ψ(BCDF (B, s)).Set L = bd(A), X̂ = BCDE(A, r) ∪ (L ∩B(0, r)), τ̂ = ψ−1 ◦ τ cl ◦ϕ and Ŷ = τ̂(X̂).By Theorem 12.17(b), τ̂−1 is Ω -
ontinuous at 0F . That is, τ̂−1 is ∆-
ontinuous at 0F .Sin
e ϕ, ψ are ∆-bi
ontinuous at 0E and 0F respe
tively, ϕ ◦ τ̂−1 ◦ψ−1 is ∆-
ontinuousat y. Note that there is V ∈ NbrF (y) su
h that Dom(ϕ ◦ τ̂−1 ◦ψ−1) ⊇ V ∩ Y . Also,
ϕ ◦ τ̂−1 ◦ψ−1↾(V ∩ Y ) = τ−1↾(V ∩ Y ). Hen
e τ−1 is ∆-
ontinuous at y. Sin
e it is alsogiven that τ ∈ EXT±(X,Y ), it follows that τ−1 ∈ HBDR.LC

∆
(Y,X).We now reverse the roles of X and Y . Let η = τ−1. So η : Y ∼= X, Hη = G and themodulus of 
ontinuity Ω generated by ∆ ∪ Γ is again ∆. So Ω is Γ -star-
losed.Let y ∈ bd(Y ) and x = η(y). We 
hoose ψ and ϕ and de�ne η̂ in the same waythat ϕ, ψ and τ̂ were de�ned in the pre
eding argument. We thus 
on
lude that η̂−1 is

Ω -
ontinuous at x. That is, η̂−1 is ∆-
ontinuous at x. There is U ∈ NbrE(x) su
h that
ψ ◦ η̂ ◦ϕ−1↾(U ∩X) = τ↾(U ∩X). Hen
e τ is ∆-
ontinuous at x. We also need to knowthat τ ∈ EXT±(X,Y ), and this is indeed given. Hen
e τ ∈ HBDR.LC

∆
(X,Y ). We provedthat τ ∈ (HBDR.LC

∆
)±(X,Y ). By Proposition 12.18(b), Γ = ∆.Proof of Theorem 8.9. If X = E then Y = F and hen
e HCMP.LC

Γ
(X) = HLC

Γ
(X), andthe same holds for Y . So in this 
ase the 
laim of 8.9 is implied by Theorem 3.27.Assume that X 6= E. We apply Theorem 12.19 to the spe
ial 
ase that Γ = ∆and Γ is prin
ipal, and take G,H to be HCMP.LC

Γ
(X) and HCMP.LC

∆
(Y ) respe
tively.So τ ∈ (HBDR.LC

Γ
)±(X,Y ). By Theorem 3.27, τ is lo
ally Γ -bi
ontinuous. Hen
e τ ∈

(HCMP.LC
Γ

)±(X,Y ).The �nal re
onstru
tion theorems of Chapters 8�12. Combining the results of the pre-vious se
tions in di�erent ways, one obtains various re
onstru
tion theorems. Parts (a)and (b) of the following theorem are su
h 
orollaries. Part (a) is a restatement of Theo-rem 8.4(a). Indeed, the spe
ial 
ase of (a) in whi
h Γ = ΓLIP motivated the whole workpresented in Chapters 8�12.
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onstru
tion theorem for the group HBDR.LC
Γ

(X) whi
h appears in (b) is abyprodu
t of the proof of the main result. We thought it was worth mentioning.In (
) we tried to 
apture the essen
e of the argument. Part (
) 
an be furtherstrengthened. But it seems to be a natural stopping point.Theorem 12.20. Let Γ ,∆ be moduli of 
ontinuity , E and F be normed spa
es and
X ⊆ E, Y ⊆ F be open. Suppose that X is lo
ally Γ -LIN-bordered , and Y is lo
ally
∆-LIN-bordered.(a) Suppose that Γ is prin
ipal. If ϕ : HCMP.LC

Γ
(X) ∼= HCMP.LC

∆
(Y ). Then Γ = ∆and there is τ ∈ (HCMP.LC

Γ
)±(X,Y ) su
h that ϕ(g) = gτ for every g ∈ HCMP.LC

Γ
(X).(b) Suppose that Γ is prin
ipal. If ϕ : HBDR.LC

Γ
(X) ∼= HBDR.LC

Γ
(Y ). Then there is

τ ∈ (HBDR.LC
Γ

)±(X,Y ) su
h that ϕ(g) = gτ for every g ∈ HBDR.LC
Γ

(X).(
) Suppose that Γ and ∆ are 
ountably generated , Γ ⊆ ∆ and ∆ is Γ -star-
losed.Let G ≤ EXT(X) be Γ -appropriate and H ≤ EXT(Y ) be ∆-appropriate. Assume furtherthat LIPLC(X) ≤ G and LIPLC(Y ) ≤ H, and suppose that ϕ : G ∼= H. Then Γ = ∆, andthere is τ ∈ (HBDR.LC
Γ

)±(X,Y ) su
h that ϕ(g) = gτ for every g ∈ G.Proof. (a) By Theorem 2.8(b), there is τ ∈ H(X,Y ) su
h that τ indu
es ϕ. By Theo-rem 3.27, Γ = ∆ and τ ∈ (HLC
Γ

)±(X,Y ). By Theorem 8.8(a), τ ∈ EXT±(X,Y ). ByTheorem 8.9, τ ∈ (HCMP.LC
Γ

)±(X,Y ).(b) The proof is similar to the proof of (a). However, we use Theorem 8.8(b) and not8.8(a).(
) By Theorem 2.8(b), there is τ ∈ H(X,Y ) whi
h indu
es ϕ. By Theorem 8.8(b),
τ ∈ EXT±(X,Y ). By Theorem 12.19, Γ = ∆ and τ ∈ (HBDR.LC

Γ
)±(X,Y ).Proof of Theorem 8.4(a). Theorem 8.4(a) is restated as part (a) of 12.20 above.
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Index of symbols(in order of appearan
e)
f : X ∼= Y . This means f is a homeomorphism between X and Y 7
ϕ : G ∼= H. This means ϕ is an isomorphism between G and H 7
〈a, b 〉. Notation of an ordered pair 7
G ≤ H. G is a subgroup of H 10
f ≤ g. This means for every t, f(t) ≤ g(t) 12
α � β ≡ for some t > 0, α↾[0, t] ≤ β↾[0, t] 12
g ◦n. Notation for g ◦ · · · ◦ g (n times) 12
H−1 = {h−1 | h ∈ H} 14
η : MR(X,G) ∼= MR(Y,H) 25
G(x) = {g(x) | g ∈ G} 26
G B . If G ⊆ {g | g : A→ A}, then G B := {g ∈ G | g↾(A−B) = Id} 26
U ∼= V . This means (∃g ∈ G)(g(U) = V ) 31
U ≺ V . This means U is strongly small in V 31
U ←‖→ V . This means U is strongly separated from V 31
[x, y]. The line segment with endpoints x and y 31
E. The 
ompletion of a normed ve
tor spa
e E 35
◦F =

⋃
{f↾supp(f) | f ∈ F} ∪ Id↾(Z −

⋃
{supp(f) | f ∈ F}) 35

◦n∈N hn 35
Aλ(x) = {hλ(x) | h ∈ A} 48
λ |̀̀X. The restri
tion of a partial group a
tion λ to an open set X 48
λ |̀̀H1. The restri
tion of a partial a
tion λ of H to a subgroup H1 of H 49
a ≈γ b. This means that a ≤ γ(b) and b ≤ γ(a) 52
f ∼̺ g. This means that Dom(f) ∪ Rng(f) ⊆ Dom(̺) and g = ̺ ◦ f ◦ ̺−1 52
U [n;W1,W2] 64
gcl

M,N = {〈x, y 〉 | x ∈ clM (A), y ∈ N and g ∪ {〈x, y 〉} is a 
ontinuous fun
tion} 81
gcl. Abbreviation of gcl

M,N 81
gcl

M . Abbreviation of gcl
M,M 81

Hcl = {hcl | h ∈ H} 81
A≥n = {m ∈ A | m ≥ n} 103
A>n = {m ∈ A | m > n} 103
A≤n = {m ∈ A | m ≤ n} 103
A<n = {m ∈ A | m < n} 103
x ≃X y. This means that x and y lie in the same 
onne
ted 
omponent of X 135
~x ≃X ~y. This means that for every n, xn ≃X yn 135[235℄
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f eni = f cl↾ENI(cl(X)) 144
a ≈K b. This means 1

K
a ≤ b ≤ Ka 170

‖ ‖1 ≈K ‖ ‖2. This means for every u ∈ E, ‖u‖1 ≈K ‖u‖2 170
E = L⊕alg S. The algebrai
 dire
t sum 170
(x)L,S. The L-
omponent of x in L⊕ S 171
(x)L. Abbreviation of (x)L,S 171
‖u‖L,S = ‖(u)S‖ + ‖(u)L‖ 171
H ⊥M F . This means for every u ∈ H, d(u, F ) ≥ 1

M
‖u‖ 171

s ≈α t. This means t ≤ α(s) and s ≤ α(t) 177
u ⊥ F . This means: F is a linear subspa
e of a normed spa
e E, u ∈ E and ‖u‖ = d(u, F ) 200
K ⊥ F . This means: K,F are linear subspa
es of E and for every u ∈ K, u ⊥ F 200
~x (σ). A sequen
e whose domain is σ ⊆ N 205
σ≥n = {k ∈ σ | k ≥ n} 205
~x≥n = ~x↾Dom(~x)≥n 205
x ≈(α,b)

(X,E) y. This means d(x, b) ≈α d(y, b) and δX(x) ≈α δX(y) 205
~x (σ) ≈(α,b)

(X,E) ~y
(σ). This means: for every n ∈ σ, xn ≈(α,b)

(X,E) yn 205
≈(α,b). Abbreviation of ≈(α,b)

(X,E) 205
~x (̺) ∼A ~y (̺) 205
~x (̺) ∼α ~y (̺) 205
P ↾ T = {P ∩ T | P ∈ P} 216
a ∼P b. This means: there is P ∈ P su
h that a, b ∈ P 216
β ⋆α(t) =

∑∞
n=0 β(qα,n(t)) 226

Index of notations(in alphabeti
al order)
A(E). The group of a�ne automorphisms of E 48
A(E;F ) = {A ∈ A(E) | A(F ) = F} 49
ABUC(X,Y ) = {h ∈ H(X,Y ) | for every bounded set A ⊆ X, h↾A is UC} 98
accX(U). The set of a

umulation points of U in X 25
BZ(x, r) = {y ∈ Z | d(x, y) < r} 31
BE(x, r) = {y ∈ E | d(x, y) ≤ r} 31
BZ(A, r) =

⋃
x∈A B

Z(x, r) 31
B(x, r). Abbreviation of BX(x, r) 31
B(x; r, s) = {y ∈ X | r < d(x, y) < s} 171
BCDE(A, r) = BE(0, r) −A. A boundary 
hart domain based on E and A with radius r 166
bdX(U). The boundary of U in X 25
BUC(X,Y ) = {g ∈ H(X,Y ) | g is boundedness preserving and g↾A is UC for everybounded set A ⊆ X} 14
cl�(Γ ) = {α ∈ MC | for some γ ∈ Γ , α � γ} 12
clX(U). The 
losure of U in X 25
CMP.LUC(X). The group of biextendible homeomorphisms of X whi
h are bi-uniformly
ontinuous at every x ∈ cl(X) 9
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Cmp(X). The set of 
onne
ted 
omponents of X 127
o-dimE(L). The 
o-dimension of L in E. Abbreviation 
o-dim(L) 171
δX(A) = d(A,E −X) 90
δX(x) = δX({x}) 90
δ(A). Abbreviation of δX(A) 90
δ(x). Abbreviation of δX(x) 90
δX
1 (x) 103
∆(A) = supa∈A d(a,E −X) 152
δX,E(x) = d(x,E −X). Abbreviations: δX(x), δ(x) 205
diam(A) = supx,y∈A d(x, y) 40
eH . The unit of a group H 47
ENI(X,Φ, G) = {g(x) | x ∈ NI(X,Φ) and g ∈ G}. The extended normed interiorof 〈X,Φ, G〉 44
ENI(X,Φ) = ENI(X,Φ,H(X)) 44
ENI(X) = {h(x) | x ∈ intE(X), h ∈ H(X)} 44
η(̺,a)(s, t) 177
EXT(X) = {g ∈ H(X) | g and g−1 are extendible} 16
EXTM,N (X,Y ) = {h ∈ H(X,Y ) | Dom(hcl

M,N ) = clM (X)} 81
EXT(X,Y ). Abbreviation of EXTM,N (X,Y ) 81
EXTM (X). Abbreviation of (EXTM,M )±(X,X) 81
FD.LIP(X) 45
FD(X) 45
Fld(λ) = Dom(eλ) 47
Γα = cl�({α ◦n | n ∈ N}) 226
Γ

HLD
r = {α ∈ MC | for some K > 0, α � Kxr} 12

Γ
HLD =

⋃
{ΓHLD

r | r ∈ (0, 1]}. The Hölder modulus 12
Γ

LIP = {α ∈ MC | for some K > 0, α � Kx} 12
H(X). The group of all auto-homeomorphisms of X 7
HΓ (X). The group of all Γ -bi
ontinuous auto-homeomorphisms of X 14
H(X;F ) = {h ∈ H(X) | h(X ∩ F ) = X ∩ F} 49
HΓ (X) = {h ∈ H(X) | there is γ ∈ Γ su
h that h is γ-bi
ontinuous} 59
HΓ (X;F ) = {h ∈ HΓ (X) | h(F ∩X) = F ∩X} 59
HΓ (X;S, F ) = HΓ (X,S) ∩HΓ (X;F ) 59
HΓ (X;S,F). The subgroup of H(X) generated by ⋃

{HΓ (X;S, FS) | S ∈ S} 59
H(X,Y ) = {h | h : X ∼= Y } 80
H(X;D) = {h ∈ H(X) | h(D) = D} 80
HΓ (X,S) = HΓ (X) S 59
HBD

Γ (X) 20
HBDR.LC

Γ (X) = {g ∈ EXT(X) | for every x ∈ bd(X), g is Γ -bi
ontinuous at x} 168
HCMP.LC

∆,Γ (X) = HLC
∆ (X) ∩HBDR.LC

Γ (X) 168
HBPD

Γ (X,Y ) = {f ∈ BPD.P(X,Y ) | for every BPD set A ⊆ X, f↾A is Γ -
ontinuous} 102
HCMP.LC

Γ (X) = {g ∈ EXT(X) | (∀x ∈ clE(X))(∃U ∈ NbrE(X))(∃α ∈ Γ )(g↾(U ∩X)is α-bi
ontinuous)} 166
HCMP.LC

Γ (X,Y ) = {g ∈ EXT(X,Y ) | gcl is lo
ally Γ -
ontinuous} 18
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HLC

Γ (X). The group of lo
ally Γ -bi
ontinuous auto-homeomorphisms of X 12
HLC

Γ (X). The group of lo
ally Γ -bi
ontinuous homeomorphisms of X 59
HLC

Γ (X,S) = HLC
Γ (X) S 59

HLC
Γ (X;F ) = {h ∈ HLC

Γ (X) | h(F ∩X) = F ∩X} 59
HLC

Γ (X;S, F ) = HLC
Γ (X,S) ∩HLC

Γ (X;F ) 59
HLC

Γ (X;S,F). The subgroup of H(X) generated by ⋃
{HLC

Γ (X;S, FS) | S ∈ S} 59
HLC

Γ (X,Φ) = {h ∈ H(X) | ∀x(∃ϕ, ψ ∈ Φ)(x ∈ int(Rng(ϕ)), h(x) ∈ int(Rng(ψ))and ψ−1 ◦h ◦ϕ is Γ -bi
ontinuous at ϕ−1(x)} 78
HLC

Γ (X,Φ,S) 78
HNBPD

Γ (X,Y ) = {h ∈ BPD.P (X, Y ) | h is nearly Γ -
ontinuous on BPD sets} 102
HPW

Γ (X) 20
HRG

Γ (X) 20
HWBPD

Γ (X,Y ) = {h ∈ BPD.P (X, Y ) | h is weakly Γ -
ontinuous on BPD sets} 102
intX(U). The interior of U in X 25
int

E
(X) =

⋃
{BE(x, r) | x ∈ X and BE(x, r) ⊆ X} 40

IXTE(X). The group of bi-externally-extendible auto-homeomorphisms of X 40
KM,P . The 
ategory 〈M, {g | g : X ∼= Y, X, Y ∈ M and g, g−1 have property P} 〉 9
KΓ 13
κX(x,A) = {κ | (∀U ∈ Nbr(x))(∃B ⊆ A ∩ U)(|B| = κ and B is spa
ed} 51
κX(x,A) = sup(κX(x,A)) 51
κ(X) = minx∈X κX(x,X) 51
Karc(ℓ, t) 106
KB = {〈X,G 〉 | X is an open subset of a Bana
h spa
e and LIP(X) ≤ G ≤ H(X)} 28
KBM 44
KBNM 44
KBNO 29
KBO 29
KLCM = {〈X,G 〉 | X is Hausdor�, perfe
t lo
ally 
ompa
t and for everyopen V ⊆ X and x ∈ V, G V (x) is somewhere dense} 26
KNFCB 42
KN = {〈X,G 〉 | X is an open subset of a normed spa
e and LIPLC(X) ≤ G ≤ H(X)} 29
KNL 39
KNM 44
KNO 29
KNONMX = {〈X,Z 〉 ∈ KNONRM | X is BR.LC.AC and JN.AC with repe
t to Z} 148
KNONRM = {〈X,Z 〉 | X ∈ KONRM and X ⊆ Z ⊆ cl(X)} 147
KOBCX 125
KOBLPM = {Y | Y is an open subset of a Bana
h Lips
hitz manifold} 161
KOBNC. The 
lass of all spa
es whi
h are open subsets of Bana
h spa
es 89
KOBX 135
KOIMX. The 
lass of open �nite-dimensional BR.IS.MV open sets 140
KONFCB. The 
lass of open subsets of �rst 
ategory or 
omplete normed spa
es 89
KONLPM = {Y | Y is an open subset of a normed Lips
hitz manifold} 149
KONMX 125
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KONRM. The 
lass of all spa
es whi
h are open subsets of normed spa
es 89
KWFD.BNO 45
L(E). The group of bounded linear automorphisms of E 48
L(E,x) = (L(E))tr

E
x 48

L(E;F ) = {T ∈ L(E) | T (F ) = F} 49
λE;F

A
= λE

A |̀̀ A (E;F ) 49
limi→∞Ai = x. The limit of a sequen
e of sets 90
LIP(X). The group of bilips
hitz auto-homeomorphisms of a metri
 spa
e X 10
LIP(X,S). For S ⊆ X, LIP(X,S) = {h ∈ LIP(X) | h↾(X − S) = Id} 10
LIP(X;F ). For a normed spa
e E, X ⊆ E and a dense linear subspa
e

F of E, LIP(X;F ) = {h ∈ LIP(X) | h(X ∩ F ) = X ∩ F} 10
LIP(X;S, F ) = LIP(X;F ) ∩ LIP(X,S) 10
LIP(X;S,F). The subgroup of H(X) generated by ⋃

{LIP(X;S, FS) | S ∈ S} 28
LIP(X,S). The subgroup of H(X) generated by ⋃

{LIP(X,S) | S ∈ S} 28
LIP(X;Φ,F) 43
LIP(X;Φ) 43
LIP(X,Φ) = {h ∈ H(X) | ∃K∀x(∃ϕ, ψ ∈ Φ)(x ∈ int(Rng(ϕ)), h(x) ∈ int(Rng(ψ)) and

ψ−1 ◦h ◦ϕ is K-bilips
hitz} 78
LIP(X,Φ,S) 78
LIP00(X) = {f ∈ LIP(X) | supp(f) is a BPD set} 103
LIPLC(X). The group of lo
ally bilips
hitz auto-homeomorphisms of X 10
LIPLC(X,S). For S ⊆ X, LIP(X,S)LC = {h ∈ LIPLC(X) | h↾(X − S) = Id} 10
LIPLC(X;F ). For a normed spa
e E, X ⊆ E and a dense linear subspa
e

F of E, LIPLC(X;F ) = {h ∈ LIPLC(X) | h(X ∩ F ) = X ∩ F} 10
LIPLC(X;S, F ) = LIP(X;F ) ∩ LIP(X,S) 10
LIPLC(X;S,F). The subgroup of H(X) generated by ⋃

{LIPLC(X;S, FS) | S ∈ S} 28
LIPLC(X,S). The subgroup of H(X) generated by ⋃

{LIPLC(X,S) | S ∈ S} 28
LIPLC(X;Φ,F) 43
LIPLC(X;Φ) 43
λE;F

L
= λE

L |̀̀ L (E;F ) 49
λE,x;F

L
= λE,x

L
|̀̀ L (E, x;F ) 49

lngth(L). The length of an ar
 90
λE

T , λE
L , λE,x

L
, λE

A . The a
tions of T(E), L(E), λE,x
L

and A(E) on E 49
λE;F

T
= λE

T |̀̀ T (E;F ) 49
LUC(X,Y ) = {h ∈ H(X,Y ) | h is lo
ally UC} 80
LUC±(X,Y ) = {h ∈ H(X,Y ) | h is lo
ally bi-UC} 80
LUC01(X) = {h ∈ LUC(X) | (∃U)(U is E-open, U ⊇ bd(X) and supp(h) ⊆ X − U)} 125
LUC(X) = LUC±(X,X) 80
M(X,G) = 〈X, τX , G;∈, ◦ ,Ap〉 212
Maoc(n) 171
Marc(t) 172
MBC = {α ∈ MC | Id[0,∞) ≤ α} 47
Mbnd(K) 175
Mcmp 176
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MC = {h ∈ H([0,∞)) | h is 
on
ave} 11
M fdn = M fdn(2) 172
M fdn(n) 172
Mhlb = Mhlb(2) 171
Mhlb(n) 171
M lift 202
Mort = Mort(2) 172
Mort(n) 172
Mprj(n) 172
M rot 173
MR(X,G) = 〈Ro(X),G,+, ·,−,Ap〉 25
M rtn 222
M seg 172
M thn = M thn(2) 171
M thn(n) 171
N+ = {n ∈ N | n > 0} 155
NbrX(x) = {U | x ∈ U ⊆ X and U is open} 47
NI(X,Φ) =

⋃
{ϕ(BEϕ(xϕ, rϕ)) | ϕ ∈ Φ}. The normed interior of 〈X,Φ 〉 44

opcl(U) = intcl(X)(clcl(X)(U)) 214
P(X,Y ) = {h | h : X ∼= Y and h has property P} 14
P±(X,Y ) = P(X, Y ) ∩ (P(Y,X))−1 14
P(X) = P±(X,X) 14
pα,n(t) = ((Id + α)−1) ◦n(t) 226
PNT.UC(X,x) = {h ∈ H(X) | h(x) = x and h is bi-UC at x} 80
qα,n(t) = pα,n(t) − pα,n+1(t) 226
R(u, v, g;α, a, b, F ) 178
R(u, v, g;M,a, b, F ) 178
RadE

η,z = z + η(‖x− z‖) x−z
‖x−z‖ . The radial homeomorphism based on η, z 59

RadE
η = RadE

η,0E 59
Ro(X). The set of regular open subsets of X 25
RotH

θ . In a 2-dimensional Hilbert spa
e H, rotation by the angle θ 172
RotF,H

θ . For a 2-dimensional Hilbert spa
e H and a normed spa
e F , the operator on
H ⊕ F whi
h is RotH

θ on H and Id on F 172
SZ(x, r) = {y ∈ Z | d(x, y) = r} 31
SP =

⋃
P 216

supp(h) = {y ∈ Y | h(y) 6= y} 31
T(E) = {trE

v | v ∈ E}. The group of translations of E 48
T(E;F ) = {trE

v | v ∈ F} 49
trE

v . Translation by v. For v, x ∈ E, trE
v (x) = v + x 31

trv. Abbreviation of trE
v 31

UC(X,Y ) = {h ∈ H(X) | h is UC} 80
UC±(X,Y ) = {h ∈ H(X) | h is bi-UC} 80
UC(X) = UC±(X,X) 80
UC(X;F ) = {h ∈ UC(X) | h(X ∩ F ) = X ∩ F} 80
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UC(X;S, F ) = UC(X) S ∩ UC(X;F ) 80
UC(X;S, F, x) = {h ∈ UC(X;S, F ) | h(x) = x} 80
UC(X;S,F). The subgroup of H(X) generated by ⋃

{UC(X;S, FS) | S ∈ S} 80
UC(X,S). The subgroup of H(X) generated by ⋃

{UC(X) S | S ∈ S} 80
UC0(X) = {f ∈ UC(X) ∩ EXT(X) | f cl↾bd(X) = Id} 90
UC00(X) = {f ∈ UC(X) | supp(f) is a BPD set} 103
UCeni

0 (X) = {f eni | f ∈ UC0(X)} 144
UCe(X) = {h ∈ UC(X) | h is strongly extendible} 152
WFD.LIPLC(X;S,F) 45
WFD.LIP(X) 45
WFD.LIP(X;S,F) 45
WFD(X) 45

Index of de�nitions(in alphabeti
al order)abiding sequen
e. α-abiding sequen
e 205a�ne-like partial a
tion 64a�ne-like partial a
tion at x 64almost α-
ontinuous 70almost α-
ontinuous at x 70almost β-
ontinuous for α-submerged pairs. Abbreviation: (β;α)-almost-
ontinuous 224almost Γ -
ontinuous at x 70almost linear boundary 
hart domain 169almost orthogonal 
omplement 171appropriate. A Γ -appropriate group 168Bana
h manifold 43BD.AC. Abbreviation of boundedly ar
wise 
onne
ted 123BD.CW.AC. Abbreviation of boundedly 
omponent-wise ar
wise 
onne
ted 135BDD.P fun
tion. A fun
tion whi
h takes bounded sets to bounded sets 90BDR.UC fun
tion 91bi
ontinuous. α-bi
ontinuous at x 47bi
ontinuous. α-bi
ontinuous at x ∈ cl(X)) 205bi
ontinuous. α-bi
ontinuous homeomorphism 47bi
ontinuous. Γ -bi
ontinuous at x 47bi
ontinuous. Γ -bi
ontinuous at x ∈ cl(X) 205bi
ontinuous. Γ -bi
ontinuous. h is Γ -bi
ontinuous if (∃γ ∈ Γ )(h, h−1 are γ-
ontinuous) 14bi
ontinuous. 〈K,P 〉-bi
ontinuous 216bilips
hitz homeomorphism 10bilips
hitz homeomorphism between lo
ally Lips
hitz normed manifolds 78bi-UC. Abbreviation of bi-uniformly-
ontinuous 79bi-UC at x. Abbreviation of bi-uniformly-
ontinuous at x 79BI.UC fun
tion 91
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ontinuous 79bi-uniformly-
ontinuous at x 79BNO-system 29boundary 
hart domain based on E and A with radius r. A set of the form BCDE(A, r) 166boundary 
hart element 166boundary type. A group of boundary type Γ 168boundedly ar
wise 
onne
ted. Abbreviated by BD.AC 123boundedly 
omponent-wise ar
wise 
onne
ted 135boundedly Γ -
ontinuous 20boundedly UC fun
tion. A fun
tion whi
h is uniformly 
ontinuous on every bounded set 90boundedly uniformly-in-diameter ar
wise-
onne
ted 98boundedness preserving fun
tion. A fun
tion whi
h takes bounded sets to bounded sets 90bounded positive distan
e UC fun
tion 91BPD.AC. Abbreviation of BPD-ar
wise-
onne
ted 103BPD-ar
wise-
onne
ted 103BPD.P fun
tion. A fun
tion whi
h takes BPD sets to BPD sets 90BPD sequen
e. A sequen
e ~x su
h that Rng(~x) is a BPD set 90BPD set. A bounded subset of X whose distan
e from the boundary of X is positive 90BPD.UC fun
tion. A fun
tion whi
h is uniformly 
ontinuous on every BPD set 91BR.CW.LC.AC. Abbreviation of 
omponent-wise lo
ally ar
wise 
onne
ted atthe boundary 135BR.IS.MV. Abbreviation of isotopi
ally movable at the boundary 140BR.LC.AC. Abbreviation of lo
ally ar
wise 
onne
ted at the boundary 115BR.LUC fun
tion 91BUC fun
tion. A fun
tion whi
h is uniformly 
ontinuous on every bounded set 90BUD.AC. Abbreviation of boundedly uniformly-in-diameter ar
wise-
onne
ted 98
losed half spa
e. A set of the form {x ∈ E | ϕ(x) ≥ 0}, where ϕ ∈ E∗ 166
losed half subspa
e of a normed spa
e 169
losed under E-dis
rete 
omposition 168CMP.LUC fun
tion. An extendible fun
tion whi
h is UC at every x ∈ cl(X) 91
o-dimension 1 at x. bd(X) has 
o-dimension 1 at x 169
ompatible. λ is 
ompatible with G 61
ompatible. λ is 
ompatible with G at x 61
omplete 
over. U is a 
omplete 
over of X if ⋃
{int(U) | U ∈ U} = int(X) 40
ompletely dis
rete family of sets. A set A of pairwise disjoint sets su
h that

∀B((∀A ∈ A)(|B ∩ A| ≤ 1) → acc(B) = ∅) 123
ompletely dis
rete sequen
e 123
ompletely dis
rete set 123
ompletely dis
rete tra
k system 153
ompletely lo
ally Γ -bi
ontinuous 166
ompletely lo
ally Γ -
ontinuous 166
ompletely LUC fun
tion 91
omponent-wise lo
ally ar
wise 
onne
ted at the boundary 135
omponent-wise lo
ally ar
wise 
onne
ted at x 135
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omponent-wise wide 135
ontinuous. α-
ontinuous at x ∈ cl(X) 205
ontinuous. α-
ontinuous at x. There is U ∈ Nbr(x) su
h that f↾U is α-
ontinuous 47
ontinuous. α-
ontinuous. f is α-
ontinuous if for every x, y, d(f(x), f(y)) ≤ α(d(x, y)) 12
ontinuous. β-
ontinuous for α-submerged pairs. Abbreviation: (β;α)-
ontinuous 224
ontinuous. ∆-
ontinuous for Γ -submerged pairs. Abbreviation: (∆;Γ )-
ontinuous 224
ontinuous. Γ -
ontinuous at x. There is α ∈ Γ su
h that f is α-
ontinuous at x 47
ontinuous. 〈α,P 〉-
ontinuous 216
ontinuous. 〈α,P 〉-
ontinuous at x 216
ontinuous. 〈Γ ,P 〉-
ontinuous at x 216
ontinuous. (r, α)-
ontinuous 79
ontinuous. ̺ is (n, α)-
ontinuous 177
ountably generated. Γ is 
ountably generated if for some 
ountable Γ0 ⊆ Γ ,
Γ ⊆ {α ∈ MC | (∃γ ∈ Γ0)(α � γ)} 12CP1. X is CP1 at x 68CP1 spa
e 68de
ayable a
tion. α-de
ayable at x. This means (1/2, α,H(X))-de
ayable at x 48de
ayable a
tion. λ is an (a, α,G)-de
ayable a
tion 47de
ayable a
tion. λ is an (a, α,G)-de
ayable a
tion at x 47de
ayable a
tion. λ is an (a, α,G)-de
ayable a
tion in A 47de
ayable a
tion. λ is an (a,Γ , G)-de
ayable a
tion 47de
ayable a
tion. (α,G)-de
ayable at x. This means (1/2, α,G)-de
ayable at x 48determined 
lass. P-determined 
lass of topologi
al spa
es 14determining 
ategory 7dimension 1 at x. bd(X) is 1-dimensional at x 169dis
rete path property for BPD sets 102dis
rete path property for large distan
es 80dis
rete subset. E-dis
rete subset of EXTE(X) 167distinguishable 
ategories 7double boundary point 135DPT. A metri
 spa
e is DPT 68DPT. A metri
 spa
e X is DPT at x ∈ X 68e-tra
k. 〈α, η 〉-e-tra
k 152e-tra
k system 153evasive sequen
e. Γ -evasive sequen
e 205extendible fun
tion. A fun
tion from X to Y that 
an be extended to a 
ontinuousfun
tion from cl(X) to cl(Y ) 91extendible homeomorphism 9faithful 
lass of spa
e-group pairs 7faithful 
lass of topologi
al spa
es 7�llable. G-�llable 113�lling. G-�lling 113�nite-dimensional di�eren
e homeomorphism 45generated. Γ is (≤κ)-generated. This means ∃Γ0 (|Γ0| ≤ κ and Γ = cl�(Γ0)) 52



244 M. Rubin and Y. Yomdingenerates. Γ0 generates Γ . This means Γ = cl�(Γ0) 52good semi
over. V -good semi
over 35in�nitely-
losed. α-in�nitely-
losed at x 52internally extendible in E. A homeomorphism of X ⊆ E whi
h extends to a
ontinuous fun
tion on int
E

(X) 40inversely 〈K,P 〉-
ontinuous 216isotopi
ally movable at the boundary 140isotopi
ally movable with respe
t to X 140JN.AC. Abbreviation of jointly ar
wise 
onne
ted 124JN.ETC 153JN.TC 153joining system 124jointly ar
wise 
onne
ted 124legal parametrization 153limit-point. λ-limit-point 48LIN-bordered. α-LIN-bordered at x 166linear boundary 
hart domain. A set of the form BCDE(A, r), where A is a 
losedsubspa
e of E di�erent from {0} or a 
losed half spa
e of E 166Lips
hitz fun
tion between lo
ally Lips
hitz normed manifolds 78Lips
hitz homeomorphism 10lo
ally almost Γ -
ontinuous 70lo
ally ar
wise 
onne
ted at a boundary point 115lo
ally ar
wise 
onne
ted at the boundary. Abbreviated by BR.LC.AC 115lo
ally bilips
hitz homeomorphism 10lo
ally bi-UC. Abbreviation of lo
ally bi-uniformly-
ontinuous 79lo
ally bi-uniformly-
ontinuous 79lo
ally Γ -bi
ontinuous 12lo
ally Γ -bi
ontinuous with respe
t to Φ and Ψ 78lo
ally Γ -
ontinuous 12lo
ally Γ -
ontinuous with respe
t to Φ and Ψ 78lo
ally-LIN-bordered. Lo
ally Γ -LIN-bordered 166lo
ally Lips
hitz homeomorphism 10lo
ally Lips
hitz normed manifold 77lo
ally movable at the multiple boundary 135lo
ally moving subgroup of H(X) 25lo
ally 〈α,P 〉-
ontinuous 216lo
ally UC. Abbreviation of lo
ally uniformly 
ontinuous 79lo
ally uniformly 
ontinuous 79LUC on bd(X) fun
tion 91manageable ball B based on S 31manageable ball (with respe
t to a BNO-system) 31metri
ally dense subset 64modulus of 
ontinuity 12multiple boundary point 135
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ontinuous on BPD sets 102nearly open set. Z is nearly open if Z ⊆ cl(int(Z)) 147normed Lips
hitz manifold 149normed manifold 43on di�erent sides. u, v are on di�erent sides of bd(X) with respe
t to 〈ψ,A, r〉 169on the same side. u, v are on the same side of bd(X) with respe
t to 〈ψ,A, r〉 169open sum partition with respe
t to X 216order-irreversible. bd(X) is G-order-irreversible at x 206order preserving at x 206order-reversible. bd(X) is G-order-reversible at x 206order reversing at x 206pairwise disjoint family. A set of pairwise disjoint sets 123partial a
tion of a topologi
al group on a topologi
al spa
e 47PD.P fun
tion. A fun
tion whi
h takes PD sets to PD sets 90PD set. A subset of X whose distan
e from the boundary of X is > 0 90PD.UC fun
tion. A fun
tion whi
h is uniformly 
ontinuous on every PD set 91pie
ewise linearly radial. A radial homeomorphism RadE
η in whi
h η is pie
ewise linear 172point pre-representative 212pointwise Γ -
ontinuous 20positive distan
e UC fun
tion 91positively distan
ed set. A subset of X whose distan
e from the boundary of X is > 0 90prini
ipal. Γ is prin
ipal if for some α ∈ Γ , Γ ⊆ cl�({α ◦n | n ∈ N}) 12Property MV1 99radial homeomorphism based on η. RadE

η . 59radial homeomorphism. RadE
η,z. The radial homeomorphism based on η, z 59RBM. A regional Bana
h manifold 43regional Bana
h manifold (RBM) 43regionally Γ -
ontinuous 20regionally normed manifold (RNM) 43regionally translation-like a
tion 63regionally translation-like at x 62regional normed atlas for X 43regular open. A set is regular open if it is equal to the interior of its 
losure 25restri
ted topologi
al 
ategory 7RNM. A regionally normed manifold 43side preserving at x 206side reversing at x 206simple boundary point 115SLIN-bordered. α-simply-linearly-bordered at x (α-SLIN-bordered at x) 169small semi
over. V -small semi
over 35small set 31somewhere dense set. A set whose 
losure 
ontains a nonempty open set 26spa
ed set of sets. r-spa
ed set of sets 51spa
ed subset of X. A ⊆ X is spa
ed if (∃r > 0)(∀x, y ∈ A)((x 6= y) → (d(x, y) ≥ r)) 51
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ed tra
k system 153spa
e-group pair. 〈X,G 〉 is a spa
e-group pair if X is a topologi
al spa
e and G ≤ H(X) 7star-
losed. Γ is α-star-
losed 226star-
losed. Γ is ∆-star-
losed 226strongly extendible 152strongly separated. U is strongly separated from V if ∃W (U ≺W and W ∩ V = ∅) 31strongly small set 31submerged. 〈x, y 〉 is α-submerged in X. This means δX(x) ≥ ‖x− y‖ + α−1(‖x− y‖) 224subspa
e 
hoi
e 28subspa
e 
hoi
e for 〈X,Φ 〉 43subspa
e 
hoi
e system 28tight Hilbert 
omplementation 171tight Hilbert norm 171topologi
al lo
al movement system 25tra
k. 〈α, η 〉-tra
k 152tra
k system 153translation-like. 〈H,λ 〉 is P-translation-like at x 218translation-like. 〈H,λ 〉 is P-translation-like in L 218translation-like partial a
tion 57translation-like partial a
tion at x 57two-sided. X is two-sided at x 169UC around bd(X) 91UC at x. Abbreviation of uniformly 
ontinuous at x 79UC-
onstant. M is a 1UC-
onstant for 〈a, b 〉 200UC-
onstant. M is a UC-
onstant for 〈a, b 〉 177UC. Abbreviation of uniformly 
ontinuous 79UD.AC. Abbreviation of uniformly-in-diameter ar
wise-
onne
ted 89uniformly 
ontinuous 79uniformly 
ontinuous at x 79uniformly 
ontinuous for all distan
es 79uniformly-in-diameter ar
wise-
onne
ted 89weakly ��nite-dimensional di�eren
e� homeomorphism 45weakly Γ -bi
ontinuous fun
tion 102weakly Γ -
ontinuous fun
tion 102weakly Γ -
ontinuous on BPD sets 102wide set 123


