1. Introduction

Plan of the Introduction

Section 1.1

The section starts with a statement of two theorems which exemplify the type of results proved
in this work. The notions of a faithful class and of a determining category are then introduced.
A class of topological spaces is said to be faithful if its members are reconstructible from their
homeomorphism groups. Example 1.2 contains a short survey of older reconstructibily theorems,
and Example 1.3 mentions several determining categories. We then describe the precise forms
of the theorems which will be proved in this work.

Section 1.2

This section summarizes Chapter 2. The theorems described in 1.2 have the form: If for i = 1,2,
G; < H(X;) and ¢ is an isomorphism between G1 and Ga, then there is a homeomorphism 7
between X; and X2 such that 7 induces ¢.

Section 1.3

This section is a summary of Chapters 3 and 4. It starts with the definition of a modulus of
continuity. A modulus of continuity I" is a set of functions from [0, c0) to [0, 00) which serves
as a measure for the continuity of a uniformly continuous function. With I" one associates the
group HIEC(X) of locally I'-bicontinuous homeomorphisms of X. The reconstruction result for
groups of type HEC(X) says that any isomorphism between HFC(X) and HEC(Y) is induced by
a locally I'-bicontinuous homeomorphism between X and Y.

Section 1.4

Section 1.4 summarizes the reconstruction theorems for the group UC(X) of uniformly bicon-
tinuous homeomorphisms of X. These theorems appear in Chapter 5.

Section 1.5

The previous sections dealt mainly with spaces which are an open subset of a normed vector
space. This section describes the reconstruction theorems for spaces which are the closure of an
open subset of a normed vector space. These theorems appear in Chapter 6. Section 1.5 also
includes a survey of the results of Chapter 7.

Section 1.6

Let X be the closure of an open subset of a normed space. Chapters 8-12 deal with the group
H%C(X) when X is such a space. Section 1.6 describes the results obtained in these chapters.
Section 1.7

This section contains a discussion and open problems.

Section 1.8

This section contains a short historical survey.

1.1. General description. This work concerns groups of auto-homeomorphisms of
open subsets of normed vector spaces and of manifolds over normed vector spaces. Mainly,
we consider groups whose definition is based on the metric of the normed space, for
example, the group of all bilipschitz auto-homeomorphisms of such a space.
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Reconstruction of manifolds from subgroups of homeomorphism groups 7

Two types of results are proved. The following statement is an example of the first
type.

1. Suppose that X, X5 are open subsets of the Banach spaces spaces E; and Fs
respectively. For ¢ = 1,2 let G; be a group of auto-homeomorphisms of X; such that every
bilipschitz homeomorphism of X; belongs to GG;. Suppose that ¢ is a group isomorphism
between (G; and G5. Then there is a homeomorphism 7 between X; and X5 such that

for every g € Gy, o(g) = Togor L.

An example of the second type of results is as follows.

2. BL(E) denotes the group of all auto-homeomorphisms f of a Banach space E such
that f and f~! are Lipschitz on every bounded set, and BUC(E) denotes the group of
all auto-homeomorphisms f of E such that f and f~! are uniformly continuous on every
bounded set. These groups determine the spaces they act upon in the following sense.

(a) Suppose that E; and F5 are Banach spaces, and ¢ is a group isomorphism between
BL(E,) and BL(E>). Then there is a unique homeomorphism 7 between E; and
E5 such that for every f € BL(E1), ¢(f) = 7ofor™!. Also, 7 and 77! are
Lipschitz on every bounded set (7 is BL).

(b) The same holds for groups of the type BUC(E). That is, the statement obtained
from (a) by replacing BL by BUC is true.

(c¢) For every Ey and E2, BL(E;) and BUC(Es) are not isomorphic.

TERMINOLOGY. The notation f : X = Y means that f is a homeomorphism between
the topological spaces X and Y. That is, f is bijective, and f and f~! are continuous.
Let HX)={f]f:X = X}. If G, H are groups, then ¢ : G & H means that ¢ is an
isomorphism between G and H. The ordered pair with elements a and b is denoted by

{(a,b).

DEFINITION 1.1. (a) A pair (X, G) consisting of a topological space X and a group G of
auto-homeomorphisms of X is called a space-group pair. Let K be a class of space-group
pairs. K is faithful if for every (X1,G1),(X2,G2) € K and ¢ : G; = G5 there exists
7: X1 = X, which induces . That is, for every f € Gy, o(f) =70 for L

A class K of topological spaces is faithful if {(X,H(X)) | X € K} is faithful.

(b) A restricted topological category is a category K whose objects are topological
spaces, in which every morphism between two objects X and Y of K is a homeomorphism
from X onto Y, and in which for every morphism ¢ of K, g—' also belongs to K. For
every X, Y € K let Isox(X,Y) denote the set of morphisms between X and Y and
Autg (X) = Isox (X, X).

We say that K is a determining category if for every X,Y € K and a group isomor-
phism ¢ : Autg (X) = Autg (V) there is 7 € Isogx (X, Y) such that p(g) = Togor ™! for
every g € Autg (X).

Let K, L be restricted topological categories. K, L are said to be distinguishable if
for every X € K and Y € L: if Autg(X) = Autr(Y), then

X € L and Autg(X) =Autp(X) or Y € K and Autp(Y) = Autg (V). O
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The above notions provide a convenient way for stating the second type of results
in this work. However, we shall not use other notions or any techniques from category
theory.

Some faithful classes of topological spaces and some determining categories are listed
in the next two examples. The lists are not exhaustive.

ExAMPLES 1.2. The following classes are faithful.

(a) The class of Euclidean manifolds. This was proved by J. Whittaker [W] (published
1963).

(b) The class of manifolds over the Hilbert cube. This was proved by R. McCoy [McC]
(published 1972).

(¢) The class Euclidean manifolds with boundary. This was proved by M. Rubin [Rul]
(published 1989).

(d) The class of all spaces (X, 7) such that:

(1) X is a polyhedron, and 7 is either the metric or the coherent topology of X,

(2) the simplicial complex defining X does not have an infinite increasing (with
respect to inclusion) sequence of simplexes,

(3) for every x € X, {h(x) | h € H(X)} has no isolated points.

This was proved by M. Rubin [Rul].

(e) The class of all manifolds over normed vector spaces. This was proved by M.
Rubin [Rul].

(f) The class of manifolds over the class of real topological vector spaces which are
locally convex, normal and have a nonempty open set which intersects every straight
line in a bounded set. This was proved by A. Leiderman and M. Rubin [LR] (published
1999). O

ExAMPLES 1.3. The following are determining categories.

(a) For n < oo let K,C; be the category of C*-smooth manifolds. The morphisms of Kg
are the homeomorphisms f such that f and f~! are k times continuously differentiable.
This was proved in [Fi] (R. Filipkiewicz 1982), but was earlier proved by W. Ling in
[Lgl] and [Lg2| (unpublished preprint, 1980). See the topic “Reconstruction questions for
related groups” in Subsection 1.7 of the Introduction.

(b) The categories arising from C*-smooth Euclidean manifolds carrying various types
of additional structure, the morphisms being the C*-diffeomorphisms which preserve
that structure. These are determining categories. This includes e.g. foliated manifolds
(Ling [Lgl] and [Lg2]) and symplectic manifolds (Banyaga [Bal] 1997). See the topic
“Reconstruction questions for related groups” in Subsection 1.7 for more details.

(c) The category of open subsets of R™ with quasi-conformal homeomorphisms as
morphisms. This was proved by V. Gol’dshtein and M. Rubin [GR] (1995). O

Continuing the investigaton of faithful classes and determining categories, we consider
topological spaces with extra structure. The spaces considered in this work are open
subsets of a normed vector space, and more generally, manifolds over normed vector
spaces. We also consider sets which are the closures of open subsets of a normed space.
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If X is an open subset of a normed space F, the “extra structure” attached to X is
usually the object (X,bd”(X),d), where bd¥(X) is the boundary of X in E, and d is
the metric on c1”(X) inherited from E (cI”(X) denotes the closure of X in E). The
methods of this work can be applied to more general “extra structures”. See Remarks
6.25 and 6.28.

This extra structure is used to define various subgroups of H(X). The groups BL(X)
and BUC(X) defined at the beginning of Subsection 1.1 are examples of such subgroups.
Another typical example is as follows. Let X,Y be open subsets of the normed spaces
FE and F respectively. A homeomorphism h : X = Y is said to be extendible if there is
a continuous function % : cl(X) — cl(Y) such that h extends h. We consider the group
EXT(X):={h € H(X) | h and h~! are extendible}.

A homeomorphism h : X = Y is said to be completely locally uniformly continu-
ous (CMP.LUC) if h is extendible, and for every z € cl(X) there is a neighborhood
U of z in cl(X) such that A[(U N X) is uniformly continuous. We also consider the
group

CMP.LUC(X) :={h € H(X) | h and h~! are CMP.LUC}.

The setting is thus as follows. We shall have a class M of topological spaces. Usually
this class consists of spaces X such that either X is an open subset or the closure of an
open subset of a normed vector space, or even more generally, X can be the closure of
an open subset of a manifold over a normed vector space. P and Q are properties of
maps between X and Y defined for objects of the form (X,bd(X),d). The set P(X) of
all homeomorphisms f € H(X) such that f and f~! have property P is a subgroup of
H(X), and the same holds for Q(Y). The final results have the following form.

If X, Y e Mand p:P(X) = Q(Y), then

(1) ¢ is induced by a unique homeomorphism 7: X 2V
(2) P(X)= Q(X) and 7 and 7! have property Q, or P(Y) = Q(Y) and 7 and 7~}
have property P.

Let K pqp be the following category.

(a) The class of objects of K ¢ p is M.
(b) The class of morphisms of Ky p is {g: X 2Y | X,Y € M and g and g~! have
property P}.

Conclusion (1)—(2) is the same as saying that K ¢ p and K oo are determining cate-
gories and K p and K pq,¢ are distinguishable.

This work uses only elementary facts. It is self-contained except for Theorem 2.3
which is taken from [Ru5]; it is stated there as Corollary 1.4 on page 122, and it is proved
there in Corollary 2.10 on page 131.

Theorem 2.3 says that given a pair (X, G), where G is a subgroup of H(X) satisfying
certain weak transitivity requirements, it is possible to recover from G the Boolean algebra
Ro(X) of regular open subsets of X, together with the action of G on Ro(X). (A set U
is regular open if U is equal to the interior of its closure.)

Consider the structures (G, Ro(X); )\GO(X)) and (G, X; \Y), where )\go(x) and A\
denote the action of G on Ro(X) and on X respectively. The essence of Chapter 2



10 M. Rubin and Y. Yomdin

is showing that for appropriate classes of (X, G)’s, (G, X; A&) can be recovered from
(G, X; )\go(x))- This kind of argument appears in Theorems 2.5, 2.8, 2.30 and 8.8.

1.2. Faithfulness of classes of space-group pairs. Chapter 2 deals with the faith-
fulness of classes of space-group pairs. We introduce some terminology.

DEFINITION 1.4. (a) A homeomorphism h between two metric spaces (X, d~ ) and (Y, d")

is Lipschitz if there is K > 0 such that d¥ (h(u), h(v)) < Kd*(u,v) for every u,v € X.

We say that h is bilipschitz if both h and h~! are Lipschitz homeomorphisms. Define
LIP(X) :={h € H(X) | h is bilipschitz}.

(b) Let X,Y be metric spaces. A homeomorphism h between X and Y is locally
Lipschitz if for every u € X there is a neighborhood U of u such that h[U is Lipschitz.
h is locally bilipschitz if both h and h~! are locally Lipschitz. Define

LIP*®(X) := {h € H(X) | h is locally bilipschitz}.

(c) If S C X is open, then

LIP(X, S) := {h € LIP(X) | (X — S) = Id}.
(d) Let E be a normed vector space, F' be dense linear subspace of F, and X be an
open subset of E. Set
LIP(X; F) := {h € LIP(X) | h(X N F) = X N F}.
(e) For E, F, X, S as above we define
LIP(X; S, F) := LIP(X; F) N LIP(X, S).

(f) LIPYC(X, S), LIP*®(X; F) and LIP"“(X; S, F) are defined analogously.

(g) Let G < H mean that G is a subgroup of H.

(h) For a normed vector space F, x € E and r > 0 let

BE(a,r)={y e B |y —z| <r}.
Note that LIP(X, S) and LIP(X; F) are subgroups of H(X). O

The main result of Chapter 2 is part (c) of the next theorem. It is restated as
Theorem 2.8(b). Parts (a) and (b) of Theorem 1.5 are special cases of (¢). They are
more frequently used, and are more readable.

THEOREM 1.5. (a) Let K be the class of all pairs (X,G) such that X is an open subset
of some Banach space and LIP(X) < G < H(X). Then K is faithful.

(b) Let K be the class of all pairs (X,G) such that X is an open subset of some
normed vector space and LIPYC(X) < G < H(X). Then K is faithful.

(c) The class K of all pairs (X,G) which satisfy (1) and (2), or (3) and (4) below is
faithful.

(1) X is an open subset of some Banach space E and G < H(X).

(2) For every x € X there are an open set S C X containing x and a dense linear
subspace F' C E such that LIP(X; S, F) < G.

(3) X is an open subset of some normed vector space E and G < H(X).

(4) For every x € X there are an open set S C X containing x and a dense linear

subspace F' C E such that LIPLC(X; S, F)<G@G.
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Compare parts (a) and (b) of Theorem 1.5. Part (a) deals with Banach spaces,
and assumes that LIP(X) < G. Part (b) deals with normed spaces, but assumes that
LIPY®(X) < G. It is unknown whether in (b), assuming only that LIP(X) < G suffices.
The following theorem contains the strongest known fact regarding this question. It is
restated as Corollary 2.26.

For a metric space Z, + € Z and r > 0 let BZ(x,r) denote the open ball in Z
determined by x and r. Let X be an open subset of a normed space E. Let E denote
the completion of E. Define t(X) = (J{BE(z,r) | BE(z,r) C X} and

IXT(X)={h]X | h € H(int(X)) and h(X) = X }.
THEOREM 1.6. Let K be the class of all space-group pairs (X, G) such that

(1) X is an open subset of a Banach space, or X is an open subset of a normed vector
space which is a topological space of the first category,
(2) LIP(X) < G < IXT(X).

Then K 1is faithful.

Theorem 1.5 deals with open subsets of normed spaces. However, the method of proof
transfers without substantial change to the more cumbersome setting of manifolds over
normed vector spaces (normed manifolds). This is dealt with in Theorem 2.30. In fact,
Theorem 2.30 deals even with normed manifolds with boundary and with spaces which
are the closures of open subsets of normed spaces. For such spaces Theorem 2.30 says
that the “extended normed interior” of the space can be reconstructed from the group.
See Definition 2.29. An additional step is needed in order to recover the entire space.
This step is carried out under various assumptions in Theorems 5.2, 6.22, 6.24, 6.27(a)
and 6.30.

For reasons of exposition and accessibility we include in Chapter 2 a theorem from
[Rul]. It says that Kpcy is faithful, where KoM is the class of all space-group pairs
(X, G) which satisfy:

(i) X is a locally compact Hausdorff space without isolated points.
(ii) G has the property that for every nonempty open subset U of X and z € U the
closure of the set {g(z) | ¢ € G and g[(X — U) = Id} has a nonempty interior.

This result appears here as Theorem 2.5.

1.3. Moduli of continuity and groups of locally uniformly continuous hom-
eomorphisms. Chapters 3, 4 and 5 deal with groups consisting of uniformly continuous
homeomorphisms. The uniform continuity of a function f can be measured by a real
function which determines the bound of d(f(x), f(y)) as a function of d(x,y). Using
semigroups of such real functions we obtain a hierarchy of subgroups of H(X).

DEFINITION 1.7. MC denotes the set of functions o € H([0,00)) such that for every
x,y € 0,00) and 0 < A < 1,

a(Azx + (1= Ny) > da(z) + (1 = Na(y).

That is, MC is the set of all concave homeomorphisms of [0, c0). O
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It is trivial that if o« € MC, then a(cx) > ca(z) and o(dz) < da(z), for every
0<c¢<landd>1.

DEFINITION 1.8. Let f be a function from a metric space (X,d¥) to a metric space
(Y,d¥). Let « € MC. We say that f is a-continuous if d¥ (f(u), f(v)) < a(dX (u,v)) for
every u,v € X.

If f,g: A— RU{oo}, then f < g means that f(a) < g(a) for every a € A.

Let a,( : [0,00) — RU{oo}. Then o < [ means that there is @ > 0 such that
al[0,a] < 810, a].

For I' C MC we define

c<(I') ={aeMC| for some yeI', a<~}. 0

Note that if K > 0, then the function y = Kz belongs to MC. Also, if a, 3 € MC,
then a + 3, a0 € MC.

DEFINITION 1.9. Let I' denote a subset of MC containing Idg ). We define the following
properties of I'.

M1 For every a« € I' and 8 € MC: if § < a, then § € I'.

M2 Forevery a € I'and K > 0: Ka,a(Kz) € I

M3  Forevery o, el a+pel.

M4  For every o, € ' aoff eI

M5 I is countably generated. This means that there is a countable set Iy C I' such
that I C cl<(Ip).

M6 Let a°” denote o --- o, n times. We say that I' is principal if there is a € I’
such that I' C clc({a°™ | n € N}). O

ExampPLE 1.10. (a) The set I'MF := {a € MC | a < Kux for some K > 0} satisfies
M1-M6, and it is called the Lipschitz modulus.

(b) For 0 < r < 1 the set I''''P := {a € MC | @ < Kz" for some K > 0} is called the
r-Holder set, and it satisfies M1-M3 and Mb5.

(c) The set I'LP = (J{rMLD | v € (0,1]} is called the Hélder modulus, and it
satisifies M1-M6. [J

PROPOSITION 1.11. (a) If I' O I'™Y and I' satisfies M1 and M/, then it satisfies M3.
(b) If I satisfies M1 and M3, then it satisfies M2.

Proof. Left to the reader. m

DEFINITION 1.12. (a) Let I' € MC and f be a function from a metric space X to a metric
space Y. Then f is locally I'-continuous if for every x € X there is a neighborhood U
of x and o € I' such that f[U is a-continuous. f is locally I'-bicontinuous if f is a
homeomorphism between X and Rng(f), and both f and f~! are locally I'-continuous.

(b) Let I' € MC. Then I' is called a modulus of continuity if Idj oy € I' and I’
satisfies M1-M4. Hence I'*P C .

(c) Let I" be a modulus of continuity, and X be a metric space. H=°(X) denotes the
set of locally I'-bicontinuous homeomorphisms from X onto X. [J

Obviously, (H:C(X), o ) is a group.
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Chapters 3 and 4 deal with groups of type HII#C (X). The main result on such groups is
stated in Theorem 4.1(a), and is proved at the end of Chapter 4. The part of that theorem
which deals with moduli of continuity different from MC appears in Corollary 3.42(a).

The following theorem captures much of the content of 4.1(a). The full statement of
4.1(a) requires more terminology.

THEOREM 1.13. For ¢ = 1,2 let I'; be a modulus of continuity such that either Iy is
countably generated or I'y = MC; let Ey be a normed space and X, be a nonempty open
subset of Ey. Let ¢ : H%lc(Xl) = H%QC(XQ). Then I'y = I, and there is a locally I'-
bicontinuous homeomorphism T such that 7 induces @. That is, ¢(f) = Tofor™ 1 for
every f € H}:lc(X)

Let K denote the restricted topological category in which the objects are open
subsets of normed vector spaces, and the morphisms are locally I'-bicontinuous homeo-
morphisms between such sets. The above theorem says that for every I' as above K
is a determining category, that K, and K, are distinguishable, and that for every
nonempty open subset of a normed vector space X and distinct I} and I%, HlIilc(X) =+

The proof of 1.13 has two main steps. In the first step we apply Theorem 1.5 and
deduce that there is 7 : X =2 Y such that 7 induces . This part of the argument is used
repeatedly for the other groups which are dealt with in this work.

The following statement constitutes the second step in the proof of 1.13.

THEOREM 1.14. Let X and Y be open subsets of the normed spaces E and F respectively
and 7 : X 2 Y. Let I' be a countably generated modulus of continuity. If LIP(X)™ C
HEC(Y), then 7 is locally I'-bicontinuous.

The above theorem is restated as Theorem 3.27.

REMARK 1.15. (a) Theorem 1.13 is stated only for open subsets of normed spaces. But
it is also true for normed manifolds. See Definitions 2.29 and 3.46 and Corollary 3.48(a).
In fact, if (X, @) is a normed manifold with an atlas @ such that for every ¢1,p2 € &,
Y10 @2—1 is locally I'-continuous, then H:(X) can be defined, and Theorem 1.13 remains
true. The proof remains essentially unchanged.

(b) Theorem 1.13 has the obvious shortcoming of assuming that I' is countably gen-
erated. In fact, the assumption on ' in Theorem 4.1(a) is weaker. For example, for
open subsets X,Y C /., the conclusion of Theorem 1.13 is true for every modulus of
continuity. Note though that the two natural moduli which motivated 1.13, the Lipschitz
and the Holder moduli, are countably generated, and hence are covered by 1.13. But
the question of whether Theorem 1.13 is true for every modulus of continuity remains
open. [

1.4. Other groups of uniformly continuous homeomorphisms. A priori it seems
natural to deal with the group UC(X) of all uniformly bicontinuous homeomorphisms
of X rather than with H5%(X). (A homeomorphism h is uniformly bicontinuous if for
every € > 0 there is 6 > 0 such that if d(z,y) < §, then d(h(x),h(y)) < e, and if
d(h(z),h(y)) < 0, then d(z,y) <e.)
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Similarly, the group Hp(X) of all I'-bicontinuous homeomorphisms of X seems to be
more natural than H=¢(X). (A homeomorphism h is I'-bicontinuous if there is v € I’
such that h and h~! are -continuous.) It turns out that UC(X) and H(X) pose more
problems than their counterparts. Chapter 5 addresses these groups and some related
groups.

Let P be a property of maps and X, Y be topological spaces. Define P(X,Y) ={h | h:
X =Y and h has property P}. If H is a set of 1-1 functions, then H~! := {h™1 | h € H}.
Define P*(X,Y) = P(X,Y) N (P(Y, X))~ ! and P(X) = P*(X, X). We consider only
P’s such that P(X) is a group. The final results of Chapter 5 have the following form.

(*¥)  Suppose that ¢ : P(X) = P(Y). Then there is 7 € P¥(X,Y) such that 7 induces .

A class M of topological spaces is called P-determined if (x) holds for every X,Y € K,
that is, if the category K o » whose objects are the members of M and whose morphisms
are the members of P*(X,Y) for X, Y € M is a determining category.

The first result in Chapter 5 is about groups of type UC(X). Denote the diameter of
a subset A of a metric space by diam(A). A metric space (X, d) is uniformly-in-diameter
arcwise-connected if for every € > 0 there is § > 0 such that for every z,y € X: if
d(xz,y) < 9, then there is an arc L C X connecting  and y such that diam(L) < e.
The following statement is the main result on groups of type UC(X). It is restated as
Corollary 5.6.

THEOREM 1.16. Let X be an open subset of a Banach space or of a normed vector space
of the first category. Suppose that the same holds for Y. Suppose further that X and Y
are uniformly-in-diameter arcwise-connected. Let ¢ : UC(X) =2 UC(Y). Then there is
7€ UCH(X,Y) such that T induces ¢.

The following theorem restated later as 5.2 is a corollary of 1.16.

THEOREM 1.17. Let F and K be the closures of uniformly-in-diameter arcwise-connected
open bounded subsets of R™ and R™ respectively. Let ¢ : H(F) = H(K). Then ¢ is
induced by a homeomorphism between F and K.

Theorem 1.17 is considerably stronger than the analogous statement for Euclidean
manifolds with boundary. This is so, since uniformly-in-diameter arcwise-connected open
subsets of R™ may have a boundary which is more complicated than the boundary of a
manifold with boundary.

UC(X) is a special case of the groups Hr(X). But the analogue of Theorem 1.16 is
not true for Hp(X). In Example 5.11 it is shown that for every normed space E there is
T € H(FE) such that (LIP(E))™ = LIP(F) but 7 ¢ LIP(E).

Chapter 5 proves P-determinedness for several other P’s. Definition 5.4 lists eight
types of groups for which P-determinedness can be proved. But we have chosen to deal
only with properties P which occur in other mathematical contexts.

DEFINITION 1.18. (a) Let BUC(X,Y) denote the set of homeomorphisms g : X &2 Y
such that g takes bounded sets to bounded sets and for every bounded B C X, g[B is
uniformly continuous.
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(b) Let X be a metric space. X is boundedly uniformly-in-diameter arcwise-connected
if for every bounded set B C X and ¢ > 0 there is 6 > 0 such that for every z,y € B: if
d(x,y) < 6, then there is an arc L C X connecting x and y such that diam(L) < e.

(¢) If h:[0,1] x X — X and ty € [0,1], then the function f from X to X defined
by f(x) = h(to,z) is denoted by hy,. X has Property MV1 if for every bounded B C X
there are r = rg > 0 and o = ag € MC such that for every x € B and 0 < s < r, there is
an a-continuous function A : [0,1] x X — X such that: for every t € [0,1], ht(x) € H(X)
and h; ! is a-continuous; hy = Id and d(z, hi(x)) = s; and h;[(X — B(x,2s)) = Id for
every ¢t € [0,1]. O

The following P-determinedness theorem is restated as Theorem 5.20.

THEOREM 1.19. Let K be the class of all X such that X is an open subset of a Banach
space or X 1is an open subset of a normed space of the first category, X is boundedly
uniformly-in-diameter arcwise-connected, and X has Property MV1. Then K is BUC-
determined.

There is of course the I' variant of BUC(X). For a modulus of continuity I" define

HEP(X) = {h € H(X) | for every bounded A C X there is v € I'" such that
hlA is v-bicontinuous}.

When X is a subset of a finite-dimensional normed space and I" is principal, then Theo-
rem 8.4 provides a faithfulness result for this type of groups.

We do not know a more general theorem in this direction.

The last type of groups considered in Chapter 5 are groups of homeomorphisms g
such that ¢[B is uniformly continuous for every B C X such that B is bounded, and the
distance of B from the boundary of X is positive. The P-determinedness in this situation
is proved in Theorems 5.32 and 5.36.

These theorems are not quoted here because their statement requires terminology
that has not yet been introduced.

Throughout Chapter 5 one encounters two types of intermediate results.

(1) Let 7: X 2 Y be such that (P(X))” = P(Y). Then 7 € P*(X,Y).
(2) Let 7: X 2 Y be such that (P(X))” C P(Y). Then 7 € P*(X,Y).

Results of type (2) are stronger, but they are not true for all P’s which we con-
sider. Results of type (2) are needed in order to show that P(X) cannot be isomorphic
to Q(Y) when P is different from Q.

1.5. Groups of extendible homeomorphisms and the group of homeomor-
phisms of the closure of an open set. Chapter 6 is concerned with the faithfulness
of groups of the form H(cl(X)) and with groups of the form EXT(X), where X is an
open subset of a normed vector space. The group EXT(X) is defined below.

Let X,Y be open subsets of the normed spaces £ and F. A continuous function
g: X — Y is called extendible if there is a continuous function § : cl(X) — cl(Y) such
that g extends g. The set of extendible homeomorphisms between X and Y is denoted
by EXT(X,Y). Accordingly, EXT(X) = {g € H(X) | g and g~' are extendible}. Note
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that if X is a regular open subset of R”, then EXT(X) = H(cl(X)). Recall that a set is
called regular open if it is equal to the interior of its closure.

The goal is to find large classes K of open subsets of a normed space containing the
commonly encountered open sets and containing also exotic open sets for which {cl(X) |
X € K} is faithful. Tt is not true, though, that for any open subsets of X, Y C R", if
v H(cl(X)) =2 H(cl(Y)), then there is 7 : cl(X) 2 cl(Y") such that 7 induces ¢. Example
5.8 demonstrates this phenomenon in two different ways.

The following theorem gives the flavor of the type of results proved in Chapter 6.

THEOREM 1.20. Let X,Y be open bounded subsets of the Banach spaces E and F'. As-
sume that:

(1) There is d such that for every u,v € X there is a rectifiable arc L C X connecting
u and v such that length(L) < d.

(2) For every point w in the boundary of X and for every € > 0 there is § > 0 such
that for every u,v € X: if |lu — w||,||v — w| < 0, then there is an arc L C X
connecting w and v such that diam(L) < e.

(3) Conditions (1) and (2) hold for Y.

Then

(a) Ifo: H(cl(X)) =2 H(cl(Y)), then there is 7 : cl(X) = cl(Y') such that T induces .
(b) If ¢ : EXT(X) = EXT(Y), then there is T € EXTE(X,Y) such that 7 induces .

Part (a) of the above theorem is an excerpt from Theorem 6.22, and (b) is an excerpt
from Theorem 6.3(a).

The class of spaces defined in Theorem 1.20 contains some spaces whose boundary is
quite complicated. Also, such spaces may have boundary points which are fixed under
H(cl(X)). Here is an example of a possibly not well-behaved set which is covered by
Theorem 6.22.

ExXAMPLE 1.21. Let B and S be the open unit ball and the unit sphere in a Banach space
E, and {B; | i € I} be a family of pairwise disjoint closed balls such that B; C B for
every ¢ € I. Suppose that for every x € E: if every neighborhood of x intersects infinitely
many B;’s, then « € S. Then the set X := B — |J;.; B, satisfies clauses (1) and (2)
of Theorem 1.20. Note that even in the case of F = R", the boundary of X can be
complicated. [J

Clause (2) in Theorem 1.20 implies that cl(X) is arcwise connected. Consider the open
set X described in the following example. Its closure is not locally arcwise connected.

ExampLE 1.22. Let X = {(r,0) | § € (1,00) and 1 — 5= <7 <1— 505} (in polar

coordinates). Note that X is an open spiral strip converging to the circle S(0,1). O

Example 1.22 is not covered by Theorem 1.20 but it is included in the class considered
in the following theorem.

THEOREM 1.23. Let XY be open bounded subsets of the normed spaces E and F. As-
sume that:
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(1) For every sequence T = {x,, | n € N} C X there are a subsequence § of T, a se-
quence Z such that Z is convergent in E and a sequence of rectifiable arcs L, C X,
n € N, such that sup,,¢y length(Ly,,) < co and L,, connects y,, and z,.

(2) For every z € bd(X) and r > 0 there is a continuous function hy(x) : [0,1] x
cl(X) — cl(X) such that hg = 1d, hi(x) # z, and for every t € [0,1], h[X €
EXT(X) and h;[(cl(X) — B(z,7)) = Id.

(3) Conditions (1) and (2) hold for Y.

Then

(a) If o : H(c(X)) =2 H(cl(Y)), then there is T : cl(X) = cl(Y)) such that T induces p.
(b) If ¢ : EXT(X) = EXT(Y), then there is T € EXT*(X,Y) such that T induces ¢.

Theorem 1.23(a) is an excerpt from Theorem 6.24, and 1.23(b) is an excerpt from 6.18.
Example 1.22 is restated as 6.15(a). Other examples which are covered by Theorems 6.24
and 6.18, but have a non-locally arcwise connected closure appear in 6.8 and 6.15(b).
Another EXT-determined class is described in Theorem 6.12.

Chapter 6 also deals with groups of type CMP.LUC(X) defined in Subsection 1.1.
CMP.LUC-determinedness is proved in Theorem 6.20(a). It completes the picture given
in Chapters 8-12. The following is a special case of 6.20(a).

THEOREM 1.24. Let X,Y be open bounded subsets of the normed spaces E and F. As-
sume that:

(1) For every sequence & = {x, | n € N} C X there are a subsequence ¥
of ¥, a sequence Z such that Z is convergent in E and a sequence of rectifiable
arcs L, € X, n € N, such that sup, cylength(L,) < oo and L, connects yn
and zy,.

(2) For every x € bd(X) there is r > 0 such that for every € > 0 there is 6 > 0 such
that for every u,v € B¥(x,r) N X: if d(u,v) < 6, then there is an arc L C X
connecting u and v such that diam(L) < e.

(3) Conditions (1) and (2) hold for Y.

Then if ¢ : CMP.LUC(X) & CMP.LUC(Y), then there is 7 € CMP.LUCE(X,Y) such
that T induces p.

Two extensions of the results of Chapter 6 are presented at the end of that chapter.
These extensions cover some natural spaces which are not covered by the original classes.
Also, the faithful class dealt with in Extension 2 contains 22" subsets of R3.

(1) The original classes considered in Chapter 6 consist of open subsets of normed
vector spaces, and the closures of such sets. However, all the results obtained for these
classes translate to the class of open subsets of manifolds over normed vector spaces and
the closures of such sets. See Example 6.28 and Theorem 6.30.

(2) The results obtained for the class of closures of open subsets of a normed vector
space extend to the class of all subsets Z of a normed vector space which satisfy Z C

cl(int(Z)). See Example 6.26 and Theorem 6.27.

Chapter 7 contains theorems of the following type. Suppose that ¢ : P(X) = Q(Y).
Then
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(i) Thereis 7: X =Y such that 7 induces ¢.
(ii) P(X) = Q(X) and 7 € QF(X,Y), or P(Y) = Q(Y) and 7 € P*(X,Y).

These results appear in Corollary 7.11. As an example of such results we quote 7.11(e).

THEOREM 1.25. If X and Y are nonempty open subsets of an infinite-dimensional Ba-
nach space, then UC(X) 2 EXT(Y).

1.6. Local uniform continuity at the boundary of an open set. Let X C R" and
Y C R™ be open sets and suppose that ¢ : LIP(cl(X)) = LIP(cl(Y)). Can we conclude
that there is 7 : cl(X) = cl(Y) such that 7 is bilipschitz and 7 induces ¢? This question
motivates the work presented in Chapters 8-12. Indeed, if the boundaries of X and Y
are well-behaved, then the answer to the above question is positive.

Let X,Y be open subsets of the normed spaces F and F, and I' be a modulus of
continuity. For ¢ € EXT(X,Y) let g¢! denote the continuous extension of g to cl(X).
Define

HEMPLC(X V) = {g € EXT(X,Y) | g% is locally I'-continuous}

and HEMP-LC(X) = (HEMP-LO)E(X | X)),

Note that the group CMP.LUC(X) discussed in Subsection 1.5 is a special case of
groups of the form HEMP-LC(X). Indeed, CMP.LUC(X) = HGHPLC(X). In the special
case that X C R" is a regular open bounded set we have LIP(cl(X)) = Hg%E‘LC (X).
More generally, Hr(cl(X)) = HEMFP-LC(X). So a determiningness result for the property
P = CMP.LCur implies such a result for the class K x¢,p, where P = LIP and M is
the class of bounded regular open subsets of finite-dimensional spaces.

Chapters 8-12 are devoted to the proof of the following statement about H&MP-LC(X).

(x) If p: HIMPLO(X) > FGMPLO(Y) then I' = A, and there is 7 € (HEMP-LO)E
(X,Y) such that 7 induces .

Statement (*) is proved for X, Y, I' and A which satisfy the following assumptions.

(1) I' is principal (see M6 in Definition 1.9).
(2) X is locally I'-LIN-bordered, and Y is locally A-LIN-bordered (see Definition
8.1(b)).

The exact definition of local LIN-borderedness is a bit long, but a main special case is
the class of open sets whose closure is a manifold with boundary with a I'-bicontinuous
atlas.

Statement (x) is restated in Theorem 8.4(a). The proof of 8.4(a) has four steps.
The two major steps are Steps 3 and 4, which are stated as Theorems 8.8 and 12.19.
The following theorem is the conclusion of the first three steps combined together. The
prinicipality of I" is not needed here. It is needed only at Step 4.

THEOREM 1.26. Let I', A be countably generated moduli of continuity, E and F be
normed spaces and X C E, Y C F be open. Suppose that X 1is locally I'-LIN-bordered,
and Y is locally A-LIN-bordered. Let o : HEMPLC(X) = HGMPLC(Y) Then there is
7 € EXTH(X,Y) such that 7 induces .
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The proof of Theorem 1.26 requires much technical work. This work is carried out in
Chapters 9 and 10. The proof of 1.26 appears at the end of Chapter 11.

Step 4 of the proof of Theorem 8.4(a) says that if in Theorem 1.26, I" is principal,
then the homeomorphism 7 obtained in 1.26 belongs to (H&MP-LC)*(X V).

It should be pointed out that the results mentioned above are true for open subsets
of normed manifolds. The final result for manifolds is stated in Theorem 8.4(b).

As a byproduct of the proof of the main theorem of Chapters 8-12, we also obtain a
determiningness result for the group defined below. Let X be an open subset of a normed
space E. Define

HEPRLC(X) = {g ¢ EXT(X) | every z € cl(X) — X has a neighborhood U in cl(X)
such that g°'[U is I'-bicontinuous}.

Theorem 12.20(b) contains a determiningness result for the property P = BDR.LCr.

1.7. Further questions and discussion. This work leaves many unsolved questions,
which we mention at the point where they naturally arise. In what follows we highlight
the questions we regard to be more central.

The countable generatedness of I’

QUESTION 1.27. Can Theorem 1.13 be proved for every pair of moduli of continuity,
regardless of whether they are countably generated or not? That is, we ask if the following
statement true:

For ¢ = 1,2 let I, be a modulus of continuity. Let F, be a normed space and X,
be an open subset of Fy. Let ¢ : H%?(Xl) = HII{ZC(XQ) Then Iy = I, and there is a
locally I'j-bicontinuous homeomorphism 7 such that 7 induces ¢. O

Note that the assumption in Theorem 4.1 is in fact somewhat weaker than countable
generatedness. We ask Question 1.27 also for the other theorems in which I" is required
to be countably generated. See e.g. parts (a) and (b) of Theorem 5.24.

The principality of I' in the theorem about HEMP-LC(X)

QUESTION 1.28. Is Theorem 12.20(a) true without the assumption that I" is principal?
That is, we ask if the following statement is true:

Let X,Y be open subsets of a normed space, and I', A be moduli of continuity.
Assume that X is locally I'-LIN-bordered, and Y is locally A-LIN-bordered. If ¢ :
HMPLC(x) o FEMPLC(Y) then I' = A, and there is 7 € (HEMPLO)E(XY) such
that 7 induces ¢. O

Obviously, the case that I' and A are countably generated is also unknown.

A possible stronger way of distinguishing between the HXC(X)’s. The fact that HEC(X)
% HEC(Y) for I' # A may have a stronger reason. That is, maybe there is a locally
A-bicontinuous homeomorphism which is not conjugate to any locally I'-bicontinuous
homeomorphism. So a positive answer to the following question together with the faith-
fulness result of Theorem 1.5(a) will imply the distinguishability of the K ’s.
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QUESTION 1.29. Let I'; A be moduli of continuity such that A € I' and let X be
a nonempty open subset of a normed space of dimension > 1. Is there a locally A-
bicontinuous homeomorphism g of X such that g is not conjugate to any I'-bicontinuous
homeomorphism? [J

In the space R, every homeomorphism is conjugate to a Lipschitz homeomorphism.

Relazing the assumption on the boundary in the theorem about HIQMP'LC(X). Let Xy =
{(z,y) € R? | 2 > 0,—2? < y < 22}. The set Xy is not I'*'P-LIN-bordered. Our general
question is whether Theorem 12.20(a) can be strengthened to classes which include sets
similar to Xy. We may ask the following concrete question.

QUESTION 1.30. Let ¢ € Aut(H?%E'LC(XO)). Is ¢ an inner automorphism? ]

Question 8.11 introduces the notion of a locally I'-almost-linearly-bordered set (locally
I'-ALIN-bordered set). It seems that Theorem 12.20(a) can be extended to the class of
locally I'-ALIN-bordered sets. This requires a more detailed technical analysis similar to
the work carried out in Chapters 9-11.

However, we do not know how to handle the type of singularity at the boundary point
(0,0) of X, above.

A wvariant of the group HIQMP'LC(X). Let X,Y be open subsets of the normed spaces
Fand F, f : X — Y and I' be a modulus of continuity. f is completely weakly I'-
continuous (CMP.WK I'-continuous) if f is extendible, and there is v € I" such that
for every z € cl(X) there is a neighborhood U of x such that f'[U is y-continuous. As
usual,

HEMP-WE (X y) .= {f | f is a homeomorphism between X and Y and
f is CMP.WK I'-continuous}.

QUESTION 1.31. Prove the analogue of Theorem 12.20(a) for the groups H&MP-WK (X)) [

Naturally, the definition of local I'-LIN-borderedness has to be replaced by the anal-
ogous notion of weak I'-LIN-borderedness.

It seems that the main difficulty in proving CMP.WK -determinedness is the coun-
terpart of Theorem 1.26.

Groups which fit into the framework but have not been investigated
DEFINITION 1.32. Let I' be a modulus of continuity and f: X — Y.

(a) f is regionally I'-continuous if for every nonempty open U C X there is a nonempty
V CU and «a € I' such that f[V is a-continuous.

(b) f is pointwise I'-continuous if for every x € X there is a neighborhood V of x
and « € I' such that d(f(y), f(z)) < a(d(y,x)) for every y € V. Note that “pointwise
MC-continuous” is just “continuous”.

(c) f is boundedly I'-continuous if for every bounded set V' C X there is « € I" such
that f[V is a-continuous.

Let HRG(X), HEW(X) and HEP(X) denote the groups of homeomorphisms corre-
sponding to the notions introduced in (a)—(c). O
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PROPOSITION 1.33. (a) Let X be a metric space and I' be a modulus of continuity. Then
(i) HEP(X) € HE(X) € HEV(X);
(i) HEC(X) C HRS ().
(b) Let X be an open subset of a Banach space and I' be a countably generated modulus
of continuity. Then HEW (X) C HRG(X).

Proof. (a) Part (a) follows from the definitions.

(b) Suppose that f : X — Y is not regionally I'-continuous. Let {a; | ¢ € N} generate
I'. Let U C X be an open ball which shows that f is not regionally I'-continuous. We
define by induction z;,y; € U. Let z¢,yo be such that d(f(xo), f(yo)) > 20 (d(z0, Y0))-
Suppose that z;,y; have been defined. Let x;,1,y;,41 € B ((xi+yi)/2, d(xi,yi)/T)
be such that d(f(xit1), f(Yi+1)) > 20u4+1(d(@ig1, Yit1))- Since {z; | ¢ € N} is a Cauchy
sequence, it converges, say to z. Hence lim; y; = z. We may assume that d(f(z), f(z;)) >
d(f(x;), f(y:))/2 for every i € N. So for i € N,

d(f(2), f(xi)) = 3d(f (@), f(yi) > 5 - 205(d(@s, yi) > ai(d(z, ).
Hence z shows that f is not pointwise I'-continuous. m
Let
K ={X | X is an open subset of a separable normed space of the second category}.

Using an argument similar to the one used in Theorem 3.41, one can prove the analogues
of 1.13 and 1.14 for the class

{HBS(X) | X € K and I' is a countably generated modulus of continuity}.
It is not known whether other arguments used for H=°(X) can be applied to HR%(X).

QUESTION 1.34. Prove the analogues of 1.13 and 1.14 for the class {HR%(X) | X is an
open subset of a normed space, and I is a countably generated modulus of continuity }. O

It is easy to see that a reconstruction theorem for the class of HRG(X)’s implies
reconstruction theorems for the classes of H)Y¥(X)’s and HEP(X)’s.

1.8. Some more facts about reconstruction theorems

Reconstruction questions for related groups. Much work has been done on the analogous
problems for diffeomorphism groups. It seems that the first work in this direction was
carried out by F. Takens [Ta].

Soon afterwards there was an unpublished extensive work by W. Ling [Lgl] and
[Lg2]. Ling proved that many types of structures on a Euclidean manifold give rise to
a determining category (or to an appropriate variant of this notion). Some of these
categories are:

(1) The category of k-smooth Euclidean manifolds with k-smooth diffeomorphisms.

(2) The category of k-smooth Euclidean manifolds with a k-smooth volume form with
diffeomorphisms preserving the form.

(3) The category of k-smooth foliated Euclidean manifolds with the foliation preserv-
ing diffeomorphisms.
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(4) Differentiable manifolds with a contact form.
(5) Manifolds with a piecewise linear structure, and homeomorphisms preserving this
structure.

The authors in [RY] (unpublished) reproved result (1) from Ling’s work, and proved
some additional facts. For example, they showed that the category of Euclidean differ-
entiable manifolds with diffeomorphisms that have a locally I'-continuous kth derivative
is a determining category, for every countably generated modulus of continuity I'.

The next work was by R. Filipkiewicz [Fi|. He proved that the category of k-smooth
manifolds with k-smooth diffeomorphisms is a determining category.

Further work on this subject has been done more recently by a number of authors.

A. Banyaga [Bal], [Ba2] proved the determiningness for the categories arising from
differentiable structures, unimodular structures, symplectic structures, and contact struc-
tures. Also, he established an analogous result for measure preserving homeomorphisms.

T. Rybicki [Ryb] presented an axiomatic approach to groups of C*° diffeomorphisms
which determine a C*° manifold.

Recent progress on reconstruction problems was obtained by J. Borzellino and V. Bru-
nsden [BB]. They proved faithfulness for the class of spaces which are locally compact
orbifolds.

Results on differentiabilty obtained by the authors of this work which refine older
results and which also deal with Fréchet differentiabilty in infinite-dimensional spaces,
will appear in a subsequent work.

V. Gol’dshtein and M. Rubin obtained analogous results for quasi-conformal homeo-
morphism groups. Part of these results appeared in [GR]. The results for quasi-conformal
homeomorphism groups apply to finite- and infinite-dimensional spaces. The full account
of this subject will be presented in a separate article.

Another interesting theorem on a determining category appears in the works of
M. G. Brin and of Brin and F. Guzméan on the Thompson group. Let G < H([0,1])
be the group of all homeomorphisms h such that: (1) h is piecewise linear; (2) every
slope of h is an integral power of 2; (3) every breakpoint of h is a diadic number. It is
clear that G € Krcm (see 2.4 and 2.5). Hence {([0, 1], G)} is faithful. Interestingly, G is
a finitely presented group.

One of Brin’s results from [Brl] is as follows.

e Every automorphism of G is induced by a homeomorphism f € H([0,1]) such that
for every a < bin [0, 1], f[[a, b] satisfies (1)—(3) above.
e Every such homeomorphism induces an automorphism of G.

Denote by G the group of all f € H([0,1]) such that conjugation by f is an auto-
morphism of G. Brin also proves that {([0,1],G")} is a determining category. See also
Brin [Br2| and Brin and F. Guzméan [BG].

Reconstruction theorems in other areas. The theme of reconstructing a structure from
its automorphism group was investigated in several other areas.

The recovery of a vector space from its group of linear isomorphisms has a long history.
Mackey [Mac]| proved in 1942 that a normed vector space X can be reconstructed from
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its group L(X) of isomorphisms (that is, bijective bounded linear transformations from
the space to itself). More precisely, Mackey showed that if X is finite-dimensional and
L(X) 2 L(Y), then dim(X) = dim(Y). In the case that X is infinite-dimensional an
isomorphism between L(X) and L(Y") is induced by an isomorphism between X and Y.
In the case that X is reflexive an isomorphism between L(X) and L(Y) can also be
induced by an isomorphism between X* and Y.

Let F1, F5 be division rings and n1, ne > 2 be integers. If the linear groups GL(n1, Fi)
and GL(nq, F») are isomorphic, then ny = ny and either F} & F; or F; & Fy®, where F°P
is the division ring obtained from F by reversing the multiplication. That is, a - b =
b-F a. This fact is due to J. Dieudonné [Dil] (1947) and [Di2] (1951).

For infinite-dimensional vector spaces, V7 over F} and V5 over Fy, every isomorphism
between Aut(V;) and Aut(V3) is induced by isomorphisms between F; and F5 and between
V1 and V5. A strong theorem concerning this, but not exactly this fact, was proved by C.
E. Rickart in [Ril]-[Ri3] (1950-1951). The theorem of Dieudonné for finite dimensions is
a special case of Rickart’s Theorem. O. O’Meara [Om] (1977) proved the reconstruction
theorem for infinite dimensions. Another proof was found by V. Tolstykh [Tol] (2000).

Free groups are also reconstructible from their automorphism groups. That Aut(F},) 2
Aut(F,,) for n # m can be deduced from the work of J. Dyer and G. P. Scott [DS] (1975).
F,, denotes the free group with n generators (in the variety of all groups). E. Formanek in
[Fo] (1990) proved that Inn(F},) is the only normal free subgroup of rank n of Aut(F,).
This implies immediately the reconstruction result for finitely generated free groups.
V. Tolstykh in [To2] (2000) proved that if X is an infinite cardinal then Inn(F)) is de-
finable in Aut(Fy). This implies the reconstruction result for free groups with infinite
rank.

Another body of reconstruction results for groups of linear transformations is due to
M. Droste and M. Gobel [DG1] (1995) and [DG2] (1996). Given a ring R with unity and
a poset P one can define the generalized McLain group G(R, P) of R and P. Droste and
Gobel reconstruct R and P from G(R, P).

The symmetric group is another important instance. It is the automorphism group
of a structure with no relations and no operations. Sym(6) is the only symmetric group
which has outer automorphisms. A proof that A is recoverable from Sym(A) appears in
McKenzie [McK] (1971). This had been known before. See Scott [Sc, p. 311].

Automorphism groups of various types of ordered structures were also extensively in-
vestigated. We mention some of the more recent references. Reconstruction theorems for
trees appear in Rubin [Ru3] (1993). Linear orders and related structures are considered
in Rubin [Ru5] (1996) and in [MR]. And Boolean algebras are reconstructed in Rubin
[Ru2] (1989).

The reconstruction of measure algebras is dealt with in [Ru2]. The group of measure
preserving transformations of [0, 1] is considered by S. Eigen in [Ei] (1982).

Rubin [Ru4] (1994) deals with the reconstruction of Ry-categorical structures.
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2. Obtaining a homeomorphism from a group isomorphism

2.1. Capturing the action of the group on the regular open sets. Let G < H(X).
In order to prove that X is reconstructible from G, we shall first show that the action of
G on the set of regular open subsets of X is reconstructible from G.

We next introduce some notations, recall some basic definitions, and present some
notions specific to this work.

DEFINITION 2.1. Let X be a topological space U C X and G < H(X).

(a) Let int* (U), cI* (U), bd™ (U) and accX (U) denote respectively the interior, clo-
sure, boundary and the set of accumulation points of U in X. The boundary, bdX(U),
is defined by bd™ (U) := cI* (U) Nel® (X — U). The superscript X is omitted when X is
understood from the context.

(b) U is regular open if U = int(cl(U)). Ro(X) denotes the set of regular open subsets
of X. We equip Ro(X) with the operations: U +V := int(c(UUV)), U -V :=UNV
and —U := int(X —U). Then (Ro(X), +, -, —) is a complete Boolean algebra. Obviously,
ORe(X) — ), 1Ro(X) = X, and the induced partial ordering of Ro(X) is <R°(X) = C. We
regard Ro(X) both as a set and as a Boolean algebra.

(c) If g : X = Y then g induces an isomorphism g*° between Ro(X) and Ro(Y):
g*°(U) = {g(z) | € U}. For G < H(X) let GR° := {g"° | g € G}. Then G?° <
Aut(Ro(X)) and if X is Hausdorff, then g — ¢g®° is an embedding of G into Aut(Ro(X)).
We assume that X is Hausdorff and identify G with GR°. So H(X) is regarded as a
subgroup of Aut(Ro(X)).

(d) G is a locally moving subgroup of H(X) if for every nonempty open V C X there
is g € G —{Id} such that g[(X — V) = Id. In that case (X, G) is called a topological local
movement system.

(e) Let Ap : G x Ro(X) — X be the application function. That is, Ap(g,V) = g(V).
The structure MR (X, G) is defined as follows:

MR(Xa G) = <RO(X)a G,+,, 73Ap>'

(f) n : MR(X,G) = MR(Y, H) means that n is an isomorphism between MR(X, G)
and MR(Y, H). That is, n is a bijection between Ro(X)UG and Ro(Y)U H, n(G) = H,
and 7 preserves +,-, — and Ap.

(g) If n: A — B is a bijection and g : A — A, then the conjugation of g by 7 is
defined as g"7 :=nogon~!. O

[25]
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PROPOSITION 2.2. Let X,Y be Hausdorff spaces, G < H(X) and H < H(Y'). Suppose
that ¢ : G =2 H and n : Ro(X) = Ro(Y). Then o Un : MR(X,G) = MR(Y, H) iff
w(g) = g" for every g € G.

The next theorem says that for topological local movement systems the action of G
on Ro(X) can be reconstructed from G. This theorem is proved in [Ru5].

THEOREM 2.3 (The reconstruction theorem for topological local movement systems). Let
(X,G) and (Y, H) be topological local movement systems and ¢ : G = H. Then there is
a unique 1 : Ro(X) =2 Ro(Y) such that p Un : MR(X,G) 2 MR(Y, H). That is, there is
a unique 1 : Ro(X) = Ro(Y) such that ¢(g) = g" for every g € G.

Proof. See [Rub5, Definition 1.2, Corollary 1.4 or Corollary 2.10 and Proposition 1.8]. =

2.2. Faithfulness in locally compact spaces. The first faithfulness theorem to be
presented is about locally compact spaces. It is taken from [Rul] and brought here for
the sake of completeness. It is the conjunction of parts (a), (b) and (c) of Theorem 3.5
there.

DEFINITION 2.4. (a) For G < H(X), g € H(X) and z € X, let G(x) :={g(z) | g € G}.
A set A C X is somewhere dense if int(cl(A)) # 0. X is a perfect space if there is no
x € X such that {z} is open. Suppose that G is a set of permutations of a set A and
B C A. Define G|B| :={g € G| g|(A— B) =1d}.

(b) Let

Krom := {{X,G) | X is a perfect locally compact Hausdorff space, and

for every open V C X and = € V, G|V](x) is somewhere dense}. [J

THEOREM 2.5 (Rubin [Rul]| 1989). Krcwm is faithful.

Proof. Tt follows easily from the definitions that for every (X,G) € Kiom, (X,G) is a
topological local movement system.

A subset p of a Boolean algebra B is called an ultrafilterif: (i) 0 & p; (ii) if a1,...,a, €
p, then []1"_, a; € p; (iii) if a € p and b > a, then b € p; (iv) for every a € B either a € p
or —a € p.

By Zorn’s lemma, every subset of B satisfying (i)—(ii) is contained in an ultrafilter.
For an ultrafilter p in Ro(X), let A, := {cl(V) | V € p}. Let (X,G) € Krcm. We say
that an ultrafilter p in Ro(X) is good if A, is a singleton. If p is good and A4, = {z},
then we write x = x,. The following facts can be easily checked.

(a) Ay, = {z} iff p contains all regular open neighborhoods of z.
(b) p is good iff there is W € Ro(X) — {0} such that for every V € Ro(X) — {0}: if
V C W, then there is g € G such that g(V) € p.
(c) Let p and ¢ be good ultrafilters. Then z, # z, iff
AU ep)FVeq)((UnNV=0)ANU, CU)(U #0 —
Bfe @)V e flg AU e f(p)):

(d) Let p be a good ultrafilter, and U € Ro(X). Then z, € U iff for every good
ultrafilter ¢: if z;, = x,, then U € q.
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(e) Let p,q be good ultrafilters, and g € G. Then g(x,) = x4 iff 2,0,y = 4.
(f) If p is a good ultrafilter and g € G, then g(p) is a good ultrafilter.
(g) If z € X, then there is a good ultrafilter p such that =, = .

Clearly, the fact that p is an ultrafilter is expressible in terms of the operations of

<RO(X)’+a ) 7>‘

(1) By (b), the fact that p is a good ultrafilter is expressible in terms of the operations
of MR(X, G).

(2) By (c), for good ultrafilters p and ¢, the fact that x, = x, is expressible in terms
of the operations of MR(X, G).

(3) By (d), for a good ultrafilter p and U € Ro(X), the fact that z,, € U is expressible
in terms of the operations of MR(X, G).

(4) By (e), for good ultrafilters p and ¢ and g € G, the fact that g(z,) = z4 is
expressible in terms of the operations of MR(X, G).

Let (X,G),(Y,H) € Kycm, and let ¢ : G =2 H. By Theorem 2.3, there is 7 :
Ro(X) = Ro(Y) such that (¢ Un) : MR(X,G) =2 MR(Y, H). Let ¢ = ¢ Un. We define
7:X — Y. Let x € X. By (g), there is an ultrafilter p such that z, = z. By (1), ¥(p)
is a good ultrafilter.

We define 7(z) = 2y (). If ¢ is a good ultrafilter such that also x4 = =, then by (2),
Top(q) = Top(p)- S0 the definition of 7 is valid.

We check that 7 is a bijection between X and Y. Suppose that z, # z,. By (2),
T(Tp) = Ty(p) 7# Ty(q) = T(Tq). So T is injective.

Let y € Y. By (g), there is an ultrafilter ¢ such that z, = y. By (1), p:=1"(q) is a
good ultrafilter. So 7(x,) = 2y () = £y = y. So 7 is surjective.

Let 7(A) denote {7(a) | @ € A}. In order to show that 7 is a homeomorphism, it
suffices to show that for some open base B of X, {7(U) | U € B} is an open base for Y.
Since X and Y are locally compact, they are regular spaces. So Ro(X) and Ro(Y) are
open bases of X and Y repectively. So it suffices to show that {7(U) | U € Ro(X)} =
Ro(Y). Let z € X and U € Ro(X). Let p be an ultrafilter such that z,, = z. By (3),
x, € U iff 2y, € 9(U). That is, x € U iff 7(x) € ¢(U). So 7(U) = (U) for every
U € Ro(X). Hence {7(U) | U € Ro(X)} = {¢(U) | U € Ro(X)} = Ro(Y). So7is a
homeomorphism.

It remains to show that 7 induces ¢. Let g € G and y € Y. Let ¢ be an ultrafilter in
Ro(Y') such that z; = y. Then ¢g7(y) = Toger Yzg) = Tog(@y-1() = T(Tgp-1(q)) =
Ty(g(s-1(a))) = Tulg(n—1(a))) = Tgn(q)- But by Proposition 2.2, g7 = ¢(g). So zgn(g) =
Ty(g)(q)- However, if 2, = y, then trivially x4 = h(y) for every h € H. In particular,

Tp(o) (@) = P9)(Y)-
We have shown that ¢"(y) = ¢(g)(y) for every y € Y. So ¢ = p(g). m

REMARK. In the above proof the existence of the inducing homeomorphism 7 was de-
duced from facts (b)—(e) which showed that point representation, equality, belonging and
application were expressible in MR(X, G). The toil of deducing the existence of 7 from
(b)—(e) could have been spared by using a certain general machinery called the method
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of interpretation. The notion of interpretation is not introduced here, since it is used
only twice. Interpretations are described e.g. in [Ru2, Section 2] or in [MR, Section 6].

Theorem 2.5 has many applications in the Euclidean case. For example, it applies to
m times continuously differentiable Euclidean manifolds.

COROLLARY 2.6 ([Rul]). Let Kp = {(X,G)| for some 0 < m < 00, X is a Euclidean
C™-manifold and G contains all homeomorphisms f such that both f and f~' are C™
homeomorphisms}. Then Kp is faithful.

P’I"OOf. KD g KLCM- n

Theorem 2.5 also applies to Hilbert cube manfolds, and in fact to manifolds over
[0,1]* for any cardinal \.

The class of Menger manifolds is also a subclass of Ki,cym, and hence it is faithful.
See Kawamura [K].

The finitely presented subgroups of H(R) defined by R. Thompson (see [Brl], [Br2]
and [BG]) also belong to Kpcum-

2.3. Faithfulness in normed and Banach spaces. We now turn to the context of
normed vector spaces and Banach spaces.

To avoid notational complications, we shall mainly deal with open subsets of normed
and Banach spaces and not with manifolds over such spaces. Nevertheless, all theorems
and proofs transfer (with a correct translation) to manifolds. In this section, Definition
2.29 and Theorem 2.30 deal with the setting of manifolds (and indeed with a somewhat
more general setting).

Manifolds are considered again at the end of Chapter 3 starting from Definition 3.46.

Recall that for a metric space X, LIP(X) = {h € H(X) | h is bilipschitz} and
LIPYC(X) = {h € H(X) | h is locally bilipschitz}.

For a normed space F, an open set S C E and a dense linear subspace F' C E, we shall
use the notations LIP(X; S, F), LIPYC(X; S, F), LIP(X; F) and LIP*®(X, F) introduced
in Definition 1.4.

We shall prove the faithfulness of the classes Ky and Ky defined below. However,
these faithfulness results do not suffice for some of the continuations. To this end we
define the bigger class Kgno and prove its faithfulness.

DEFINITION 2.7. Let E be a normed space, X C E be open, S be a set of open subsets
of X and F = {Fs | S € S} be a family of dense linear subspaces of F indexed by S.
Then F is called a subspace choice for S. If S is a cover of X, then (E, X, S, F) is called
a subspace choice system.

(a) LIP(X;S, F) is the subgroup of H(X) generated by |J{LIP(X; S, Fs) | S € S}.
LIP™®(X; S, F) denotes the subgroup of H(X) generated by | J{LIP*C(X; S, F5) | SeS}.
Also, LIP(X,S) denotes the subgroup of H(X) generated by | J{LIP(X,S) | S € S}. The
group LIP™(X,S) is defined analogously.

(b) Let Kp be the class of all (X, G)’s such that X is an open subset of some Banach
space, and LIP(X) < G < H(X).
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Let K be the class of all (X, G)’s such that X is an open subset of some normed
space, and LIP*Y(X) < G < H(X).
Let Kpo be the class of all (X, G)’s such that:

(1) X is an open subset of some Banach space E,
(2) there are an open cover S of X and a subspace choice F for S such that we have
LIP(X;S,F) < G < H(X).

Let Kno be the class of all (X, G)’s such that:

(1) X is an open subset of some normed space F,
(2) there are an open cover S of X and a subspace choice F for S such that we have

LIP'(X;S, F) < G < H(X).
Let Kpno = Kpo U Kno. If (X,G) € Kpno and E,S,F are as above, then the
system (E, X,S, F,G) is called a BNO-system. O

THEOREM 2.8. (a) Kp U K\ 1s faithful.
(b) KBNO 18 fazthful

Note that Kg U Ky € Kgno- So only (b) has to be proved.

REMARK 2.9. (a) Dealing with the larger but less natural classes of groups LIP(X; S, F)
and LIP"®(X; S, F) needs justification. Certainly the groups LIP(X) and LIPYC(X) are
those that come to mind first. There are two classes of groups which merit attention for
which Theorem 2.8(a) does not suffice, but Theorem 2.8(b) does.

Let E be a normed vector space and X C FE be open. The group of extendible
homeomorphisms of X is defined as follows:

EXT#(X) = {h|X | h€ H(c1”(X)) and h|X € H(X)}.

If E is a Banach space, then LIP(X) C EXT?(X). However, if E is not complete, then
LIP(X) ¢ EXT?(X).

For h € EXT(X) let h! denote the extension of h to c1”(X). Let I" be a modulus of
continuity. Define

H]QMP.LC (X) ={h € EXT(X) | for some a € T, R is locally a-bicontinuous}.

Then Theorem 2.8(a) does not apply to HSMP-XC(X) but Theorem 2.8(b) does.
Another such example is the following group. Let E be a finite-dimensional normed
space, X C E be open and

H={he HX)|cl({zx € X |h(x) #x}) is compact}.

Then G 2 LIP(X), but nevertheless X is reconstructible from G.

The reason for introducing the group LIP(X; F) is as follows. For an incomplete
normed space X, we give a proof that X is reconstructible from G’s which contain
LIP*®(X). But we do not know whether X is reconstructible from LIP(X). In fact,
every member of LIP(X) can be uniquely extended to a homeomorphism of X, the
completion of X. So LIP(X) can be regarded as a subgroup of H(X). By considering
LIP(X; X) we prove that X is reconstructible from LIP(X). It remains open (except for

spaces of the first category) whether X is reconstructible from LIP(X).
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(b) The groups LIP(X;S,F) and LIP(X) in Theorem 2.8 can be replaced by the
following smaller groups. Suppose that a normed or a Banach space E has an equivalent
norm which is C™, m < oo, that is, a norm which is m times continuously Fréchet
differentiable at every x # 0. We define Diff”*(X) to be the group of all homeomorphisms
g of X such that g,¢g~! are C™, and whose first derivative is bounded. The group
Diff " (X; F,S) is defined in analogy to LIP(X;S, F), and the classes Kgpm, Knyp= and
Kgnopm are defined in analogy to Ky, Ky and Kgno- Then Theorem 2.8 remains true.
The proof remains the same. The only difference is that the homeomorphisms which
are constructed in the proof of Theorem 2.8 have to be in this case C" and not just
bilipschitz.

This variant of Theorem 2.8 will be needed in a subsequent work where groups of
Fréchet differentiable homeomorphisms will be considered. [J

An explanation of the method of proof of Theorem 2.8. We show that there is a property
P(z,y) of pairs (x,y) which is expressible in terms of the operations of MR(X, G) such
that for every (X,G) € Kpno and U, V € Ro(X):

P(U,V) holds in MR(X,G) iff cl(U)Ncl(V) is a singleton.

A pair (U, V') satisfying P is called a point representing pair.
We shall then prove two similar facts.

(1) There is a property Q(z1,y1,22,y2) expressible in terms of the operations of
MR(X,G) such that for every (X,G) € Kpno and point representing pairs
<U1, Vi >, <U2, ‘/2> S (RO(X))2

Q(U1, Vi, Uy, Va) holds in MR(X,G) iff cl(Uy) N cl(Vy) = cl(Ua) N el(Va).

(2) There is a property S(x,y, z) expressible in terms of the operations of MR(X, G)
such that for every (X,G) € Kpno, a point representing pair (U, V) € (Ro(X))?
and W € Ro(X):

S(U,V,W) holds in MR(X,G) iff cl(U)Ncl(V) C W.

As in the proof of 2.5, the existence of properties P, ) and S implies that every iso-
morphism between MR(X, G) and MR(Y, H) is induced by a homeomorphism between
X and Y.

The following conventions are kept through Lemma 2.23 and the proof of Theorem 2.8.

(a) In what follows, (F, X,S,F,G) denotes a BNO-system. That is, E denotes a
normed vector space, X is an open subset of E, S is a cover of X, F is a subspace choice
for S and G < H(X). If E is a Banach space, then LIP(X;S,F) < G, and if E is
incomplete, then LIPYC(X;S, F) < G.

If X is an open subset of E and (X,G) € K U Ky, then (X,G) is regarded as a
BNO-system with S = {X} and Fx = E.

(b) Also, U, V, W denote members of Ro(X). If A C X, then cl*(A) and int™* (A) are
abbreviated by cl(A4) and int(A) respectively.
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DEFINITION 2.10. (a) For U, V € Ro(X) let U 2V denote that (3g € G)(g(U) = V).

(b) U is a small set if there is W # ) such that for every () # W’ C W thereis U’ = U
such that U’ C W".

(c) U is strongly small in V (U < V) if there is ) # W C V such that for every
) # Wy C W there is g € G|V such that g(U) C W;.

(d) U is strongly separated from W (U — W) if there is V € Ro(X) such that U < V/
and VNW =0. O

REMARK 2.11. The properties “U = V7, “U is a small set”, “U < V” and “U < W” are
expressible in terms of the operations of MR(X, ). Formally this means the following
statements.

(1) Let x.(z,y) = (3z € G)(Ap(z,2) = y). Then U,V satisfy x. in MR(X, G) iff

u=Vv.

(2) Let xc(z,y) =2 -y =x. Then U,V satisfy xc in MR(X,G) it U C V.

(3) Let xg(z) = (Vy € Ro(X))(x-y = z). Then U satisfies xp in MR(X, G) iff U = §.

(4) Let

Xsmi(®) = 3y € Ro(X))(=x0(y) A (VYY" € Ro(X))((xc (¥, y) A ~xo(y') —
(32" € Ro(X)) (x(2',2) A xc(2',9))))-

Then U satisfies x4, , in MR(X, G) iff U is small.
(5) Let Xg,a(:y) = (V2 € Ro(X))(xp(2 - y) — (Ap(z,2) = z)). Then g,V satisfy
in MR(X, G) iff g € G|V].

Similar formulas x , and x_,  can be written for U < V and for U i~ V. The

X,S'pprtd

above formulas use only the operations +, -, — and Ap. So if x is any of the above
formulas, ¢ : MR(X,G) 2 MR(Y, H) and U, V' € Ro(X), then U, V satisfy x in MR(X, G)
iff Y(U), (V) satisfy x in MR(Y, H). So smallness, <, < etc. are preserved under
isomorphisms. []

DEFINITION 2.12. (a) For a metric space (Z,d), € Z and r > 0 we define BZ(x,r) :=
{ye Z | d(z,y) <r}, SZ(x,r):={y€ Z | d(z,y) =r} and B?(z,r) :={y € Z | d(z,y)
<r}. If AC Z, then BZ(A,r) :=,c4 B?(z,7).

In the context of this section there are two metric spaces involved: a normed space
E and an open subset X C E. We use B(x,r), S(z,7) and B(z,r) as abbreviations of
BX(x,r), S*(x,r) and BX(z,7).

For z,y € E, [x,y] denotes the line segment connecting x and y. For v € F let
tr? : E — E be the translation by v, that is, trZ(z) = v + . Whenever E can be
understood from the context, tr” is abbreviated by tr,,.

(b) Let N = (E, X, S, F,G) be a BNO-system and B = BE(x,r) be a ball of E. Then
B is a manageable ball of X (with respect to N) if there are S € S and € > 0 such that
x € SNFg and BE(z,7+¢) C S. In such a case we say that B is based on S. Note that
if B = B¥(x,r) is a manageable ball, then BF(z,r) = BX(x,7) and cI*(B) = cI*(B).

(c) For a topological space Y and h € H(Y), the support of h is defined as

supp(h) ={y € Y | h(y) #y}. O
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PROPOSITION 2.13. (a) Suppose that Y is any topological space, and let H < H(Y'). For
k € H let ¢y : MR(Y, H) — MR(Y, H) be defined as follows. For every h € H, ¥p(h) =
Rk, and for every U € Ro(Y), ¥ (U) = {h(z) | x € U}. Then vy, € Aut(MR(Y, H)).

(b) Let Y be any topological space.

(i) If F CY is closed, then int(F) € Ro(Y).

(i) int(cl(A)) € Ro(Y) for every ACY.

(iii) int(cl(A)) is the minimal regular open set containing A.
(iv) If T,S CY are disjoint open sets, then int(cl(T)) NS = 0.

Proof. Trivial. m

We shall next construct certain homeomorphisms in LIP(X;S,F). Geometrically,
their existence is quite obvious. However, the formal proof requires some computation.

All balls mentioned in the next lemma are manageable. For such balls we write
BE(x,r) = B(z,r). Part (b)(ii) of the lemma will be used in Chapter 3. See Proposition
3.4.

LEMMA 2.14. (a) Suppose that B = B(xo,7) is a manageable ball based on S, xy € Fg
and 0 < sg < 81 < ro. Then there is h € LIP(X;S,F)|B] such that h(B(xg,s1)) =
B(CL‘(),SQ).

(b) Suppose that B = B(xzg,r0) is a manageable ball based on S, xo,v € BN Fg,
O0<r<rygand0<s<ry—|v—x|. Then

(i) There is h € LIP(X;S, F)|B| such that h(B(zo,r)) = B(v,s).

(i1) If also r=s, then h is (1+ #ﬂ”vﬂ)-bilipschitz and h|B(xzg,r)=tr, [ B(zo,r).

(c) Let B be a manageable ball based on S, x,y € BN Fs and r > 0. Assume that
B([z,y],r) C B. Then there is h € LIP(X;S,F)|B([z,y],r)| such that h|B(z,2r/3) =
try_o [B(z,2r/3). Moreover, there is a function Kees(C,t) increasing in ¢ and decreasing
in t such that the above h is Keog(||x — yl|, r)-bilpschitz.

(d) Let U C X be open, v : [0,1] — U be continuous and 1-1 and s € (0,1]. Then
there is h € LIP(X) such that h(y(0)) = v(0), h(y(s)) = ¥(1) and supp(h) CU.

Proof. (a) Assume for simplicity that g = 0. Let g € H(][0,00)) be the piecewise linear
function with breakpoints at sg and rg such that ¢g(sg) = s1 and g(t) = t for every ¢ > 7.
Then g is K-bilipschitz with K = max (f;, ﬁ)
We define h: £ — E
T

h(z) =9(H36||)”:EH

Let 2,y € E. We may assume that 0 # [jy|| < ||lz|. Let z = [jy[;35. Then ||lz — z|| =
2l = llyll < llz = yll and ||z = y[| < [z — 2] + [l — yl| < 2[lz —yl|. So

g(lyl)
lyl

ifx#0 and h(0)=

1h(z) = h(y)ll < [[P(z) = h(2)[| + [h(2) = h(Y)l] < K|z = 2] +
< Kllz =yl + K- 2|z — y[| = 3K||z — y]|.

|z —yll

An identical argument shows that h~! is 3K-Lipschitz.



Reconstruction of manifolds from subgroups of homeomorphism groups 33

It is obvious that h(F) = F and that h(B(0, s9)) = B(0,51). So h~![X is as required.
(b) Assume for simplicity that o = 0. By (a), we may assume that r = s. Define
g :]0,00) — [0,1] as follows:

1, 0<t<sr,
g(t) =< ro=, r<t<rq,
07 Togt.

Suppose that a > 7 and B(0,a) C X. We define h : B(0,a) — E by h(z) = z+g(||z|)-v.
Obviously, h(B(0,r)) = B(v, ).

We show that h is Lipschitz. At first we see that h[(B(0,79) — B(0,r)) is Lipschitz.
Let 2,y € B(0,70) — B(0,7). Then h(z) — h(y) =2 —y + M -v. It follows that

Yl — |© -y v
(@)~ < fa—yl+ LIy <oy B2l ”||( el )| yll
To r o — To —
Let z,y € B(0,a). If z,y € B(0,7) or x,3y € B(0,79)—B(0,r) or 2,y € B(0,a)— B(0,70),
then ||h(z) — <m<<r+ﬂw>u —yll.

If x € B(0,r) and y € B(0,79) — B(0,7), let z € [z,y] N S(0,7). Then

HM@—h@W<IM@—h@H+HMd—hwm<Hx—ﬂ+< +'”')|z—m

< (1 ) o st = o = (14 22 o -

The other cases are dealt with similarly. So h is (1 + H ol —)-Lipschitz.
In order to show that h is 1-1 and that h~! is Llpschltz, we first check that there is
K such that ||z —y|| < K - ||h(x) — h(y)|| for every z,y € B(0,79) — B(0,r). Indeed,

)~ hw)l > 1o — ) - LU= Y

[l ro =7 — vl
—(1- wu—yw=——f;——wu—yw
0 T To r

Clearly, °="=I"l > 0. Tet K = —To=r. Then |z — y| < K - ||h(z) — h(y)|. This
implies that 1 [(B(0,ro) — B(0,7)) is 1-1.
We next check that h(B(0,79) — B(0,7)) = B(0,79) — B(v,r). Let x € B(0,7q) —
B(0,7). There are 1,72 € bd(B(0,79) — B(0,7)) such that x € [v1,22] C B(0,7¢) —
B(0,7), and x9 = x1 + Av for some A > 0. Suppose first that x1,ze € S(0,79). Clearly,
h([xz1,z2]) is a line segment. Since hl[z1,x2] is 1-1 and h(x;) = x;, ¢ = 1,2, we have
h([w1, w2]) = [21, 2.

A similar argument shows that if z; € S(0,79) and x5 € S(0,r), then h([x1,z2]) =
[21, 22 +v] C B(0,79) — B(0,7). Also if z; € S(0,7) and x5 € S(0,7¢), then h([z1,z2]) =
[1 + v, 2] C B(0, ro) — B(0,r). ~

It follows that h(B(0,7¢)—B(0,7)) C B(0,79)—B(v,r). A similar consideration shows
that B(0,79) — B(v,7) C h(B(0,7¢) — B( 7)). Also, h(B(0,7)) = B(0,v), h(B(0,a) —
B(0,79)) = B(0,a) — B(0,79) and h[((B(0,a) — B(0,79) U B(0,7)) is 1-1. So h is a

[oll > llz =yl -

B
B
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bijection and Rng(h) = B(0, a). We have proved that h='[(B(0,79)—B(0,r)) is
To—T
ro—r—[v]

TO—T
Lipschitz. The argument that h~! is -Lipschitz is the same one usedoto sl‘llolx‘zv
that h is Lipschitz.

Clearly, —o=r :1+#j”v” and 1+ 1L §1+%JM. Sohisl—i—ro_l‘r%_
bilipschitz. As in the preceding arguments, this implies that h U Id[(X — B(0,a)) is
14 = bilipschitz.

For every x € B(0,a), h(z) — z € span({v}) C F. So = € F iff h(z) € F. Hence
hUIA[(X — B(0,a)) € LIP(X;F,S). Note also that h[B(0,r) = tr,[B(0,r). So h U
Id[(X — B(0,a)) fulfills the requirements of (i) and (ii).

(c) Let xqg,...,z, € [z,y] be such that zy = =, 1 = y and ||z; — z;41] < r/4 for
every i < n. By (b), for every i < n there is h; € LIP(X;S,F)|B(z;,r)| such that
hilB(x;,2r/3)) = try,  —o, [B(x;,2r/3). Let h = hgo --- oh,_1. Then h is as required.
Note that n can be chosen to be [4||x — y||/7] + 1. By (b) each h; is (1 + %)_
bilipschitz. That is, h; is 4-bilipschitz. Hence Ko (¢, t) = AL/t 41

(d) Let x = ~(s), y =~v(1), L =~([s,1]) and r = d(L, (X — U) U {s(0)}). There is a
sequence of balls B(z1,7), ..., B(zy,,r) such that x1,...,2, € L and J,_, B(xi,r) 2 L.
We may assume that z € B(z1,7), y € B(xy,r), and B(z;,7) N B(zi41,7) # 0 for every
i < mn. For every i < n let y; € B(z;,7) N B(xi41,7). Set yo = x and y, = y. By (b), for
every i = 1,...,n there is h; € LIP(X) such that h;(y;—1) = v; and supp(h;) C B(z;,).
Clearly, hy o --- ohy is as required. =

The following observation will be used in many arguments. Its proof is left to the
reader.

PROPOSITION 2.15. (a) Let X be a metric space, and T be a sequence in X. Then either
Z has a Cauchy subsequence, or there are r > 0 and a subsequence {y, | n € N} of &
such that for distinct i,j € N, d(y;,y;) > r.

(b) Let X be a metric space and {z; | i € N} C X be a bounded sequence. Then
either {x; | i € N} has a Cauchy subsequence, or there is a subsequence {y; | i € N} of
{z; | i € N} andr > 0 such that for every e > 0 there is N € N such that |d(y;,y;)—7r| < e
for distinct n,m > N.

PROPOSITION 2.16. (a) IfU; CU <V C Vy, then Uy < V.

(b) If U <V for some V, then U is small.

(c) Let B(z,r) and B(y, s) be manageable balls based on the same S. If cl(B(x,r)) C
B(y, s), then B(z,r) < B(y,s).

(d) If U € Ro(X) is a subset of a manageable ball, then U is small.

(e) IfU <V, then cl(U) C V.

(f) If B is a manageable ball of X, then B € Ro(X) and B is small.

Proof. Parts (a) and (b) follow trivially from the definitions.
(c) Note that if cl(B(z,r)) C B(y, s), then ||z —y|+r < s. So (c) follows from Lemma
2.14(Db).
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(d) Suppose that U C B, and B is a manageable ball. There is a manageable ball B’
with the same center as B such that cl(B) C B’. Obviously, B and B’ are based on the
same S. So by (¢), B < B’. By (a), U < B’. By (b), U is small.

(e) Suppose that € cl(U) — V. Let ) # W C V. Then there is ) # W' C W
such that cl(W’) C W. Let g € G|V]. Then g(x) = 2. Suppose by contradiction that
g(U) CW'. Then g(z) € g(cl(U)) C cl(W') CW Z x. A contradiction.

(f) B € Ro(E) and int(cl(B)) = int¥(c1”(B)). So B € Ro(X). =

Let U C Ro(X). We use > U to denote the supremum of ¢/ in the complete Boolean
algebra Ro(X). It is easy to check that Y U = int(cl(JU)).

DEFINITION 2.17. (a) Let U C V and U C Ro(X). U is called a V-small semicover of U
if > U=U and U" <V for every U’ € U.

(b) Let U be a V-small semicover of U, and let {U; | i € I} be a 1-1 enumeration
of U. We say that U is a V -good semicover of U if the following holds. For every J C I
and {W; | j € J} € Ro(X): if J is infinite and () # W; C U; for every j € J, then
there are pairwise disjoint infinite J;, J5 C J and {W’ |jeJiu Jg} C Ro(X) such that
0 # Wi C W; for every j € Jy U Jy and dDien Wi, W,

(c) For a normed vector space E let E denote the comp]etlon of E. So E is a Banach
space.

(d) Let Z be a topological space. Suppose that F' C H(Z) and supp(f)Nsupp(g) =0
for distinct f,g € F. We define

oF :=U{fIsupp(f) | f € FYUTd[(Z — U{supp(f) | f € F}).

Let F = {f, | n € N} C H(Z) be such that for any distinct m,n € N, Then o,en fn
= oF. O

LEMMA 2.18. Let V be a small set. Then for every U € Ro(X): cl(U) CV iff U has a

V' -good semicover.

Proof. Suppose that cl(U) € V. Let U be a V-small semicover of U; we show that U
is not V-good. The fact that V is small is not used in the proof of this direction. Let
x €cl(U)—V. U €U, then by 2.16(e), cl(U’) C V. By induction on i € N we define
U; € U and W; C U;. Let Uy be any member of Y and Wy = Uy. Suppose Uy, ...,U; 1
and Wy, ..., W;_1 have been defined. Let B; be a ball with center at « and radius < 1/i
such that B; N U]<z U; = 0. Let U; € U be such that B, N U; # 0, and let W; =
Ui Nint(cl(B;)). So W; € Ro(X). For every infinite J' C N and {W] | j € J'} C Ro(X):
if 0 # W C W; for every j € J', then x € cl(3 ;. Wj). Suppose by contradiction
that U is V-good. The family {U; | ¢ € N} is an infinite subset of U, and W; C U; for
every i € N. So let Ji,.Jo and {W] | j € Ji1 U Jz2} be as required in the definition of
V-goodness for {U; | i € N} and {W; | i € N}, and let W strongly separate >, ; Wi
from 7, ;, WJ. Since x € cI(32;c 5, Wj) and W N30, ; Wi =0, it follows that = ¢ W
But z € CI(ZJEJ 7). So by 2.16(e), > c;, Wi AW. A Contradlctlon.

Assume next that V is small and that cl(U) C V; we will construct a V-good semicover
U of U. Since V is small, there is g € G such that ¢g(V) is contained in a manageable
ball. Obviously cl(g(U)) C g(V). Clearly, g(U) has a g(V)-good semicover iff U has a
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V-good semicover. In fact, this follows from Proposition 2.13(a). We may thus assume
that V is contained in a manageable ball. This means that cl(U) = c1”(U).

We may further assume that there is a manageable ball B* = BE(x* r*) such that
V C B¥(z*,r*/16). Suppose that B* is based on S, and denote Fg« by F*. We may
assume that z* € F*. For every = € cl(U) let W, € Ro(X) be such that x € W, < V.
The existence of W, follows from Proposition 2.16(c), (a) and (f). Since cl(U) is para-
compact, there is an open locally finite refinement 7 of {W, | z € cl(U)} such that
c(U) CJT. Let U = {int(cl(T))NU | T € T}. By Proposition 2.13(b)(ii), & C Ro(X).
Clearly, U =U. So > U ="U.

We show that for every = € cl(U) there is a neighborhood S, such that {U’' € U |
U' NS, # 0} is finite. For z € cl(U) let S, be an open neighborhood of = such that
{T €T |TNS, # 0} is finite. By Proposition 2.13(b)(iv), {T' € 7 | int(cl(T))N S, # 0}
is finite. So {T" € T | (int(cl(T))NU) NS, # 0} is finite. That is, {U' e U | U' NS, # 0}
is finite.

We show that U is V-good. Let {U; | i € N} C U be such that U; # U, for every
i # j; and let () ## W; C U;. We shall find Ji, Jo and {W | j € J; U Ja} as required in
the definition of V-goodness. For every i € Nlet z; € W; N F*.

Cramm 1. {x; | i € N} does not contain a convergent subsequence.

Proof. If z is a limit of such a subsequence, then = € cl(U), but then S, intersects only
finitely many U;’s. So {i € N | x; € S, } is finite. A contradiction, so the claim is proved.

By Claim 1 and Proposition 2.15(b), either (i) or (ii) below happen:

(i) E is incomplete, there is an infinite J C N such that {z; | ¢ € J} is a Cauchy
sequence, and {z; | i € J} is not convergent in cI®(X).

(ii) There is infinite J C N and an r > 0 such that for any distinct 7,5 € J, r <
lz; — ;]| < 9r/8.

CasE (i). Let Z = lim/_ ; z;. Hence z € c1”(V) — X. Since V C BF(2*,7*/16), there
is 7 > 0 such that B¥(z,r) N E C BF(2*,r*/8). So # ¢ E. We may assume that
z; € BE(z,r/8) for every i € J. Let v € F* and ||v|| = r/2. Let L; = [;,z; + v]
and L = [Z,Z +v]. So L; C BF*(x*,r*/S) for every i € J. Also, L C E — E. One
can choose an infinite subset Jy C J and a sequence {r; | i € Jy} C (0,7/8) such that
BF (x;,7:) CW; for every i € Jy, and cl?(B(L;, 7)) N cl®(B(Lj,7;)) = 0 for distinct
i,J € Jo.

For every i € Jy let W/ = B(x;,7;/3). Let J; C Jy be such that J; and Jy — J; are
infinite, and let Jo = Jo — J;. For £ = 1,2 let W* = W!. We shall show that
Wt - w2,

For every i € J1, ||z; — Z|| < r/8 and r; < r/8, and for every u € L;, we have ||Ju — x|
< (@i 4+v) —z;|| = r/2. Tt follows that for every u € B(L;,7;), |lu—Z|| < r/8+r/2+1/8
=3r/4. So B(L;,r;) C B(z,r) C B(x*,r*) C S™.

By Lemma 2.14(c), for every i € Jy there is h; € LIP(X;S,F)|B(L;, ;)| such that
hi(B(zi,7:/3)) = B(x; + v,7:/3). Let h = ojeshi. We show that h € LIPYC(X; S, F).
Clearly, supp(h) = ;e supp(hi) C S*. We show that for every u € E, there is a

i€Jy
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neighborhood V,, of w such that |{i € J1 | B(L;,r;) NV, # 0}| < 1. Suppose that u is a
counter-example. Since {z; | ¢ € N} is a Cauchy sequence and the B(z;,7;)’s are pairwise
disjoint, lim; 7; = 0. Since for i # j, c1¥(B(Ly,7;)) Ncl®(B(L;,7;)) = 0, there is at most
one i such that u € c1”(B(L;,7;)). Hence there is an infinite set J5 C .J; and a sequence
{u; | i € J3} such that u; € B(L;,7;) for every i € J3, and lim;e s, u; = u. There are
y; € L; such that ||y; — u;|| < r;. Hence lim;e j, y; = u. Let y; = x; + t;v. Since {z;} and
{y;} converge in E, lim;c s, t; exists. Also, lim;e s, t; € [0,1]. So u € [Z#,Z + v]. Hence
u ¢ F, a contradiction.

Let u € X. Then there is ¢ € J; such that h[V, = h;[V,. So h[V, is bilipschitz.
This means that h € LIP*C(X;S, F). Since E is incomplete, LIP*“(X;S, F) C G. So
hed. B

We shall prove that h(W1) <= W?2. Let us first see that h(W?') C B¥(z + v,7/6).
We have h(W?) = U, s, hi(Wy) = Uiy, hi(B(wi,7i/3)) = Uies, Bzi +v,73/3). Also,
| (z; +v) — (Z+v)|| = ||a; — Z|| < r/8. Since ||z; —Z| < r/8 and & & BE (z;,r;), it follows
that r; < /8. So B(x; 4 v,7;/3) € BE(Z +v,r/6). That is, h(W}) C BE(z + v,7/6).
Hence h(W') C BE (& + v, 7/6).

Similarly, W2 C BZ(z,r/6). Since ||(z 4+ v) — Z|| = /2 > r/3, there are # € E and
0 < so < s1 such that BE(z + v,r/6) C BE(#,s¢) and BE(#,s,) N BE(z,7/6) = 0. So
h(W1') C B®(#,sp). By Propositions 2.16(c) and 2.16(a), h(W?') < BF(%,s1). Since
BE(%,51) N W?2 =0, it follows that h(W?) i W?2.

Note that h(W?2) = W2. By Proposition 2.13(a), h=*(h(W1)) < h=1(W?). But

h=Y(R(W1)) = W and W2 = b= (h(W?)). So W' —— W2.
CasE (ii). Since the x;’s belong to B¥(z*,7*/16) and r < |lz; — z;||, it follows that
r < r*/8. Let ig € J and J; and J5 be disjoint infinite subsets of J not containing iy. For
every i € J1UJy let B; = BE(x;,r/8) and W/ = B, N W,. Clearly, B; C BE(z*,3r*/16).
So B; C X, and hence W/ € Ro(X). For ¢ = 1,2 let W* = >icq, Wi, and let W =
B(x;,, 2r).

We shall show that:

(¥)  There is h € LIP(E; BE(x;,,3r), F*) such that h|W! = Id and h(W?) N W = .
But first we prove that () implies that W1 <~ W2. If 2 € BE(x;,,3r), then

lz —z*|| < ||l — 2| + 3r < r7*/16 + 3r*/8 = 7r*/16. So BE(x;,,3r) C B* C S".
Hence h|X € LIP(X;S*,F") C LIP(X;S,F). Now, W! C B(0,5r/4), so by 2.16(c)
and 2.16(a), W! < W. Also h(W?)N'W = (. Hence W strongly separates W! from
h(W?). That is, W <~ h(W?). By Proposition 2.13(a), h=*(W?) < h=L1(h(W?)).
But h= (W) = W' and W2 = h= (h(W?2)). So W' 4 W?2.

To complete the proof, it remains to show that (x) holds. For simplicity let us assume
that x;, = 0 and that » = 1. We define a function g : [0,3] x [0,00) — R as follows. For
every sg € [0, 3], g(so,t) will be a piecewise linear homeomorphism of [0, c0]. Let a(s) be
the linear function such that a(3/8) = 3/4 and a(5/8) = 2.

If s < 3/8, then g(sp,t) =t. If 3/8 < s9 < 5/8, then
<1,
<t<

4 2

o=

t,
S 7t - s _1
g(O ) {a(30)12(t—%)+%,

oY
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3—a(so) (4 _ 3
9(s0,t) = { 3-% (t=3)+3 3
3

<t <3,
t, <t.

If 5/8 < sg < 3, then g(so,t) = g(5/8,1).
Let F ={x;|i € J1} and

h(x) _ {g(d(T|7F>7 HxH) "=l €T 7é 0,
0, z =0.
We leave it to the reader to check that h € LIP(E; B¥(0,3), Fs-).
Ifi e JUJy and z € By, then ||ﬁ —x] < HH%H —x||+ ||z —xil| < 1/44+1/8 = 3/8.

Let x € WL. There is i € J; such that z € B;. Hence Al F) < g — =l < 3/8.

So g(d(”%”,F), |lz|l) = ||z||, and hence h(z) = x. Let x € W?2. There is i € J5 such that
x € B;. So d(”ﬁ—H,F) >d(x, F) — ”II%H — ;]| >1—-3/8=15/8. Also, ||z|| > 7/8. Hence

)l = Hg<d<ﬂF> lel) - o5 \
— o0 5 F ) el ) = o575, L) > o575, 30) = 2

We have proved (x), so the proof of the lemma is complete. =

LEMMA 2.19. Let V be a small set. Then for every U: cl(U) N cl(V) # O iff for every
small Vi: if (V) C V4, then Vi NU # (.

Proof. If cl(U) N cl(V) # 0, then clearly Vi N U # O for every Vi D cl(V). Conversely,
suppose that V is small and cl(V)Ncl(U) = 0. Let V' be a small set such that cl(V) C V’,
and let V4 = V' Nint(X — U). Since int(X —U) D cl(V), V1 D cl(V), hence V] is as

required. m
LEMMA 2.20. Let U and V be small sets. Then |cl(U)Ncl(V)| = 1 iff the following holds.
(i) cl(U)Nnel(V) # 0,
(i) for every small W1 and Wy: if (U NW1) Nc(V NW7) # 0 and cl(U N Ws) N
cl(VNWs) # 0, then cl(Wq) Ncl(Ws) # 0.

Proof. Suppose that 1,29 € cl(U) Ncl(V) and 21 # x3. For i = 1,2 let W; € Ro(X)
be a neighborhood of ; such that W; is small and W; C B*(x;, §||z2 — #1]]). Then
(UNWy)Nel(VNW;) #0 for i = 1,2, but cl(Wy) Necl(Wa) = 0.

Suppose that cl(U) Ncl(V) = {z} and let W, ¢ = 1,2, be such that cI(U N W;) N
c(VNW;) # 0. Hence x € cl(W7) Ncl(Wa). =

LEMMA 2.21. For i = 1,2 let U;, V; be small sets such that |cl(U;) Ncl(V;)| = 1. Then
cl(Uy)Nel(Vy) = cl(U2)Nel(Va) iff (%) for any small Wy, Wo: if (U;NW;)Nel(V;NW;) £ 0,
i =1,2, then cl(Wy) Ncl(Wa) # 0.

Proof. Similar to 2.20. =

LEMMA 2.22. Let U, V be small sets such that cl(U)Ncl(V) = {x} and W € Ro(X). Then
x € W iff (%) for any small U’, V': if l(U") Ncl(V') = cl(U) Ncl(V), then U' N W # (.

Proof. Tt is trivial that if 2 € W, then (x) holds.
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Suppose that ¢ W. Since W is regular open, z € cl(X — cl(W)). Let B be a
manageable ball containing x. So let {x; | i € N} C B be a 1-1 sequence converging
to z and disjoint from cl(W). Let r; = $min(1/i,d(z;, {z; | j # i} UW U (X — B))).
Let U = |J{B¥(z4,r;) | i is odd} and V' = |J{B¥(x;,r;) | i is even}. Then U’, V' C
B C X. Tt is easy to see that U’, V' € Ro(X). Also, since U’, V/ C B, they are small.
We have cl(U') N cl(V') = {z} = l(U)Ncl(V), and U' N W = B. So (%) does not
hold. =

LEMMA 2.23. For every x € X there are small U,V such that cl(U) Ncl(V) = {z}.
Proof. Use the construction of 2.22. u

Proof of Theorem 2.8. Recall that 2.8(a) is a special case of 2.8(b). We prove (b).
Let (X1,G1),(X2,G2) € Kpno and ¢ : G1 & Gy. It is trivial that (Ro(X;),G;) are
topological local movement systems. Indeed, this follows from Lemma 2.14(a). Hence by
Theorem 2.3, there is ) : Ro(X;) = Ro(X3) such that oUn : MR(X;,G1) & MR(X3, Ga).
Let v = @ Un.

As in Remark 2.11 the property of & being a V-small semicover of U is expressed
in terms of the operations of MR(X,G). That is, there is a formula @gm-sc(X, 2, y)
expressed in terms of the operations of MR(X, G) such that for every (X,G) € Kpno,
U CRo(X) and U,V € Ro(X), (U,U,V) satisfies psm-sc(X, x,y) in MR(X,G) iff U is a
V-small semicover of U. Hence, if U is a V-small semicover of U in MR(X1,G;), then
YU) = {pU') | U €U} is a (V)-small semicover of ¢»(U) in MR(X2, Ga).

The same fact is true for the property of being a V-good semicover.

Lemmas 2.18-2.22, and the existence of the formulas x, , etc. of Remark 2.11 imply
that the following properties are expressible in terms of the operations of MR(X, G).

(1) U and V are small, and cl(U) Ncl(V) is a singleton.

(2) Uy, Vi, Us, Va are small, cl(Uy) N cl(V1) is a singleton, and cl(Uy) Ncl(Vy) =
Cl(Ug) n Cl(‘/g)

(3) U and V are small, cl(U) Ncl(V) is a singleton, and cl(U) Ncl(V) C W.

A word of caution. In (1)—(3) smallness cannot be omitted. This is so, since in Lemmas
2.18-2.22 the equivalence of (1)—(3) to the expressible properties mentioned there was
proved only under the assumption that the sets in question are small.

We are ready to define 7: X7 — X5. Let x € X;. By Lemma 2.23, there are small U
and V such that {z} = cl(U) N cl(V). Since ¢ is an isomorphism between MR (X7, G1)
and MR(X3, G2), and by the expressibility of (1) above, cl(¢(U))Ncl(¢(V)) is a singleton.
Denote it by {y} and define 7(x) = y.

By the expressibility of (2) above: if U’, V' are small and {z} = cl(U’) Nncl(V”), then
cl((U")Nel(y(V')) = {y}. So the definition of 7 is valid. As in the proof of Theorem 2.5,
Lemma 2.23 and the expressibility of (1) and (2) imply that 7 is 1-1 and onto. As in the
proof of Theorem 2.5, the expressibility of (3) implies that 7 is a homeomorphism and
that 7 induces . This completes the proof of Theorem 2.8. m

Consider the class

Knr, = {{X,G) | X is an open subset of a normed space and LIP(X) < G < H(X)}.
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It is not known whether Ky, is faithful. But we can show the faithfulness of the subclass
of Kni, consisting of those (X, G )’s in which X is a first category topological space and
G is internally extendible. (See below.) To this end we have strengthened the original
statement of Theorem 2.8, and included G’s which are required to contain LIP(X; F')
rather than LIP(X). Since LIP(X; F') C LIP(X), this is a stronger result.

DEFINITION 2.24. Suppose that F is a normed vector space, and that X C F is open.

(a) The complete interior of X in E is defined by
int” (X) = U{BP(z,r) |« € E and BF(z,7) C X}.
Note that RE(X) is open in E.

(b) Let h € H(X). We say that h is internally extendible in E if there is h €
H(EE(X)) such that h extends h. Let IXT¥(X) denote the group of internally ex-
tendible homeomorphisms of X.

(c) Let X be an open subset of a normed space E, and U be a set of open subsets of
X. Then U is a complete cover of X if (J{int(U) | U € U} = int(X).

(d) For a subset A of a metric space denote the diameter of A by diam(A). That is,
diam(A) = sup, ,c 4 d(2,y). So diam(A) € RU {oo}. O

The following proposition is known. See [BP], the chapter on incomplete norms. We
present a proof here.

PROPOSITION 2.25. (a) Let E be a normed space and x,y € BE(0,a) — E. Then there is
h € LIP(E; E)|BE(0,a)| such that h(z) = y.

(b) Let E be a normed space, v € BE(0,a) and y € BF(0,a) — E. Then there is
h € LIP(E)|BZ(0,a)| such that h(E — {z}) = E and h(z) = y.

Proof. (a) We leave the straightforward proof of the following claim to the reader.

CrLamM 1. Let E be a normed space. Let {K, | n € N} C (1,00) be such that [], .y Kn
< 00 and {g, | n € N} C LIP(E; E) be such that:

(1) gn is K,,-bilipschitz;

(2) 32, en diam(supp(gn)) < oo;

(3) there is xo € E — E and a sequence {r,, | n € N} C (0,00) converging to 0 such
that for every n € N, supp(gn) € gn_1° -+ ©go(B¥(x0,7))-

Let hy, = gn_1°---°go. Then for every x € E, lim, .o hn(x) exists. Define h(x) =
lim,, o0 Ay (z). Then h € LIP(E; E).

We construct g,’s which satisfy the assumptions of Claim 1. Let {M, | n € N}
C (3,00) be such that [, (1 + 1/(M, — 3)) < oco. We may assume that ||z — y||
- My < a. Set © = x¢ and ||z — y|| = do. Define d,, by induction as follows: d,+1 =
dyy /My s1.

We shall apply Proposition 2.14(b)(ii). The normed space F of 2.14 is taken to be
E, S8 = {E}, F; = E and a of 2.14(b) is a here. The homeomorphism h constructed in
Proposition 2.14(b) depended on the vectors zg and v and on the radii 79 and r. Denote
that h by hzgv.rg,r-
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We define g,, and x,, 41 by induction. Suppose that z,, has been defined. Let

Y—Tn

Up, = dpt1 - and  fn = ha, u, M, d,2d, -
ly — znl

So supp(f,) C B(zn, M,d,). Note that f, is (1 + m)-bilipschitz. Since

dn 1
dp+1 < dyn, we have Modo—2dn—dnry ~ Ma=3 So

(1'1) Hy - fn(xn)H = dnJrl < 2dn+17

(1.2)  fulB(xn,2d,) = try, [B(zn, 2d,),

(1.3) for some € >0, f, is (1 + ﬁ + £)-bilipschitz,

(1.4) if n > 0, then for some £ > 0, supp(f,,) C B(zp,dn—1 — ).

Choose y,,v, € E close enough to z, and wu, respectively so that for g, defined by
In = Ry, v, M, d,,2d, the following holds:

(2.1) ly = gn(xn)ll < 2dny1,
(22) gn TB(ﬂfn, dn) = try,, TB(ﬂfn, dn)a
(2.3) gnis (14 :73)-bi1ipschitz,

(2.4)  if n > 0, then supp(g,) C B(Zn,dn—1)-
Let Zp11 = gn(2n). SO Tyt = T, + v,. Also, g, € LIP(E; E)

We check that (1)~(3) of Claim 1 are fulfilled. Clearly, K,, = 1+ 377, n € N fulfill
clause (1). Since d,y1 < dn/3, we have ) _d, < oo. So ) ydiam(supp(gn)) <
> nen 2d, < 00, proving (2).

Let h, = gno---ogo and w,, = ZKn v;. We show by induction that

(2.5)  hp!B(xo,dy) = try, [B(zg,d,) for every n € N.

By (2.2), this is true for n = 0. Assume it is true for n. Hence x,,11 = hy(20) = xo + wp,-

For n + 1 we have

hn+1 TB(3307 d7z+1) = (gn+1 ©° hn) TB(JJO, dn+1) = On+1 fhn(B(xm d7z+1)) oty TB(ﬂfo, dn+1)
= On+1 [B(I’O + Wn, dn—i—l) otrwn rB(l’o, dn+1) = gn+1 rB(l’n+1, dn+1) otrwn fB(fo, dn—i—l)

=ty [B(@nt1, dnt1) o trw, [ B(wo, dyt1) = tru, , [B(%0, dny1)-

It follows from (2.4) and (2.5) that supp(gn+1) C B(Znt1,dn) = hn(B(xo,d,)). Since
lim,, o d,, = 0, clause (3) of Claim 1 holds. Let h be as constructed in Claim 1. So
h € LIP(E; E).

Since ||y— || = dy, and lim,, o d,, = 0, we have h(z) = y. We show that supp(g,) C
B(z,a) for every n € N. For n = 0, supp(go) € B(z, Mody) C B(z,a). Suppose that
n > 0. Then supp(g,) C B(xy, Mpd,) C B(z, Mpd,, + ||z, — z||). Since

M, d, + ||37n - 37” < M,d, + ||1'n — y|| + ||y — QJH <dp_1+42d, +dy < 3dy < Mydy < a,

we have supp(g,) C B(z,a). It follows that supp(h) C B(z,a). So h is as required.
(b) The proof is very similar to the proof of (a). m

COROLLARY 2.26. Let Knrop be the class of all space-group pairs (X, G) for which there
18 a normed space E such that X is an open subset of E and

(1) E is of the first category, or E is a Banach space;
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(2) There is a complete cover U of X such that LIP(X,U) < G < IXT(X).
Then Knrcep 18 faithful.

Proof. Let (X,G) € Knpcp. For g € G let g be the extension of g to int(X) and
G={g|ge G} Then (int" (X),G) € Kpo.

Let O(X,G) be the set of orbits of G. That is, O(X,G) = {G(z) | z € int(X)}. Tt
follows from Proposition 2.25(a) that if X is an open subset of an incomplete normed
space, then for every O € O(X,G) there is a set C of connected components of int(X)
such that O = ENJC or O = (E— E)N|JC. Clearly, if X is an open subset of a Banach
space, then for every O € O(X, G) there is a set of connected components of X such that
O = JC. Let FC(X,G) = U{O € O(X,Q) | O is a first category set}. If X is of the
first category, then X = FC(X, Q).

For i = 1,2 let (E;,G;) € Knrcs, and let ¢ : G & G3. Let ¢ : G1 — G5 be
defined by %(g) = ¢(g). Then @ : G; = G5. By Theorem 2.8(b), there is 7 : B} = Ey
which induces @. Obviously, 7 takes orbits of G to orbits of G3. So O(X,G) contains
members of the first category iff O(X, G3) contains members of the first category.

It is obvious that 7 takes every first category orbit of G to a first category orbit of
Go. So if X is of the first category, then 7(X;) = 7(FC(Xy,G1)) = FC(X3,G2) = Xa,
and hence 7 : X; & X,. If X is an open subset of a Banach space, then 7 = 7 and hence
T X1 = X2. ]

REMARK 2.27. If E has a countable Hamel basis, then it is of the first category. The
space {1 is a linear subspace of /5, and it is of the first category in /5.

This is a special case of the following fact. If T': ' — E is a bounded linear operator
from a Banach space F' to a Banach space E, and Rng(T') is a proper dense subset of
E, then Rng(T) is of the first category in E. This follows from the proof of the Open
Mapping Theorem. If Rng(T) is of the second category, then for some ball B = B¥ (0, n),
T(B) is somewhere dense. Hence T'(B) is dense in some ball of the form B (0,r). It can
then be proved that T(B) 2 B¥(0,r). This implies that Rng(T) = E. [J

In Corollary 2.26 the assumptions that E is of the first category, and that G is
completely extendible are undesirable. We do not know whether they can be dispensed
with.

The final reconstruction results of Chapter 5 are proved for open subsets of first
category normed vector spaces and for open subsets of Banach spaces. The proofs of all
intermediate theorems are valid for open subsets of any normed space. If Parts (c) or (d)
of the following question have a negative answer, then the final results of Chapter 5 will
be true for open subsets of any normed vector space.

On the other hand, examples answering (c) or (d) below in the affirmative imply that
certain results in Chapter 5 are not true for arbitrary normed spaces.

QUESTION 2.28. (a) Is Ky, faithful?

(b) Let Knr1x be the subclass of Ky, consisting of all (E, G )’s in which G is internally
extendible. Is Kny1x faithful?

(c) Are there normed spaces E and F' and a homeomorphism 7 : £ = F such that
7(E)=F — F?
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Note that the answer to (b) is positive iff the answer to (c) is negative.

(d) Are there normed spaces F and F and a uniformly bicontinuous homeomorphism
7:E = F such that 7(E) = F — F? [

2.4. Faithfulness of normed manifolds. As has been mentioned, the proof of The-
orem 2.8 extends without change to manifolds over normed vector spaces. This class
contains some new instances. The unit sphere of a normed space is one, and spaces
which are a finite product of manifolds are another.

We extend the results a bit further, in order to allow the inclusion of manifolds
with boundary over a normed vector space. To this end we introduce the notion of a
“regionally normed manifold”. By combining Remark 2.31 with the various results on
extendible homeomorphism groups appearing in Chapter 5, one obtains reconstruction
theorems for manifolds with boundary.

It should be pointed out that no new arguments are needed for this new framework,

DEFINITION 2.29. (a) Let X be a topological space. A family of mappings @ is called a
regional normed atlas for X if the following holds.

(1) U{Rng(y) | ¢ € @} is a dense subset of X.
(2) For every ¢ € & there is a normed space £ = E,, t =z, € Eandr =1, >0
such that:
(G) ¢: B¥(z,r) — X,
(ii) ¢ is a homeomorphism between Dom(y) and Rng(y),
(iii) Rng(y) is closed in X, and ¢(B¥(z,)) is open in X.
If @ is a regional normed atlas for X, then (X, @) is called a regionally normed manifold
(RNM). If X = J{p(BP#(zy,7,)) | ¢ € @}, then (X, @) is called a normed manifold.
Let (X, @) be an RNM. If for every ¢ € &, E, is a Banach space, then (X, &) is said to
be a regional Banach manifold (RBM). A normed manifold which is an RBM is called a
Banach manifold.
(b) Recall that for a metric space (Y,d), z € Y and r > 0, SY (z,7) denotes {y € Y |
d(x,y) = r}. For a normed space E, x € E and r > 0 let

Li(E,z,r):={h € H(BY(x,r)) | h is bilipschitz, and h|S(x,r) = Id},
LYC(B,z,r) == {h € H(BF(x,7)) | h is locally bilipschitz, and h[S(z,r) = Id}.
Let F be a dense linear subspace of E. Define
Li(E,z,r; F):={h € Li(E,z,r) | (B (z,r)NF) = B¥(x,r)N F},
LYC(E, z,r; F) := {h € LY°(E,z,r) | (BF(z,r) N F) = BE(z,r)n F}.

If (X, ®)isan RNM, ¢ € dand h € LYC(E,, x,,7,), then hl¥! ;= h#UId[(X —Rng(p)) €
H(X). Suppose that F := {F, | ¢ € &} is a family of linear spaces such that for every
p € &, F, is a dense subspace of E,. Then F is called a subspace choice for (X, ®).

Let LIP(X; &, F) denote the subgroup of H(X) generated by {rl¥! | ¢ € &, h €
Li(Eg,xp,rp; Fy)}. Let LIP*C(X; &, F) denote the subgroup of H(X) generated by
(W€l | p € &, h € LYC(E,,x,,7,; F,)}. If F, = E, for every ¢ € &, then LIP(X; ¢, F)
and LIP*®(X; @, F) are denoted by LIP(X; &) and LIP®(X; &) respectively.
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Remark: Even though the groups considered below contain LIP(X; @, F), we do not
have to require at this point that the transition maps in the atlas be Lipschitz. That is,
we do not require that ¢! is bilipschitz for every ¢, € .

(c) Let Kpum be the class of all (X, G )’s which satisfy the following: There are ¢ and
F such that

(1) (X, @) is a Banach manifold and F is a subspace choice for &,
(2) LIP(X; &, F) < G < H(X).

Let K be the class of all (X, G )’s which satisfy the following: There are ¢ and F such
that

(1) (X, @) is a normed manifold and F is a subspace choice for @,
(2) LIPYC(X; ¢, F) < G < H(X).

Let KBNM = KBM @] KNM-

(d) Let (X, &) be an RNM. The set NI(X, @) := | J{p(BF(z,,1,)) | ¢ € ¢} is called
the normed interior of (X, ).

Let G < H(X). The extended normed interior of (X, ®,G) is defined as

ENI(X, ¢,G) := {g(z) | x € NI(X, @) and g € G}.

Also, ENI(X, ¢, H(X)) is denoted by ENI(X, &).

If X is a subset of a normed space F and intE(X) is dense in X, then X is a regional
normed manifold. As a regional normed atlas for X we take the set ¢ = {Id[|BZ(z,7) |
BE(z,r) C X}. We denote ENI(X, &) by ENI(X). Hence we have ENI(X) = {h(z) | z €
int?(X), h e H(X)}. O

THEOREM 2.30. (a) Kpnwm is faithful.

(b) Fori=0,1 let (X;, &;) be an RNM and F; be a subspace choice for (X;, ®;). Let

G; < H(X;). Suppose that for i =0, 1:

(1) if (X;, &;) is an RBM, then LIP(X,, &;; F;) < G,

(2) if (X;, ;) is not an RBM, then LIPYC(X;, &;; F;) < G;.
Let ¢ : G = Go. Then there is T : ENI(X1, ¢1,G1) =& ENI(Xso, §o,Go) such that T
induces . That is, ©(g)[ENI(Xs, &, Gs) = (¢]ENI(X1, &1,G1))" for every g € G;.

(c) Let X be a subset of a normed space E and 'Y be a subset of a normed space F such
that int” (X) is dense in X and int” (Y) is dense in Y. Suppose that o : H(X) = H(Y).
Then there is 7 : ENI(X) =2 ENI(Y') such that T induces p. That is, for every g € H(X),
¢ (9) [ENI(Y) = (9[ENI(X))T.

Proof. (a) If (X,G) € Kpnum and @ is a normed regional atlas for X which demonstrates
that X is a normed manifold, then NI(X, #) = X. So ENI(X, &,G) = X. Hence (b)
implies (a).

(b) The proof of Theorem 2.8 applies without change.

(c) This is a special case of (b). m

REMARK 2.31. The proof of the above theorem applies to RNM’s too. The state-
ment that is proved for RNM’s is as follows. If ¢ : G; = (G5, then there is 7 :
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ENI(X1, ¢1,G1) = ENI(X3, @3, G2) such that 7 induces ¢. That is, for every g € Gy,
©(g)[ENI(X2, 92,G2) = (¢|ENI(X4, ¢1,G1))7. O

Manifolds with boundary, closures of open subsets of a normed space and closures of
open subsets of a normed manifold are obviously RNM’s. Note that in the above theorem,
the groups G; are not assumed to preserve the boundary of X;. Indeed, when the X;’s
are infinite-dimensional, it may happen that their boundary is not preserved.

2.5. The faithfulness of some smaller subgroups. The homeomorphisms con-
structed in Lemma 2.14(b) suggest some new types of subgroups of H(X) which may be
interesting in the context of reconstruction and in other contexts involving homeomor-
phisms of infinite-dimensional spaces.

DEFINITION 2.32. Let X be an open subset of a normed vector space E and g € H(X).

(a) We call g a “finite-dimensional difference” homeomorphism if there is a finite-
dimensional subspace F' of E such that g(x) — x € F for every z € X.

Let FD(X) denote the set of “finite-dimensional difference” homeomorphisms of X
and FD.LIP(X) := FD(X) N LIP(X).

(b) We call g a weakly “finite-dimensional difference” homeomorphism, if there is a
finite-dimensional subspace F' of E such that for every z € X there is a € R — {0} such
that g(z) —ax € F.

Let WFD(X) denote the set of weakly “finite-dimensional difference” homeomor-
phisms of X and WFD.LIP(X) := WFD(X) N LIP(X). For a subspace choice system
(E,X,S,F) define WFD.LIP(X;S, F) and WFD.LIP"®(X; S, F) in analogy to the def-
inition of LIP(X;S, F). See Definition 2.7(a). Also, define Kwrp pno in analogy to the
definition of Kgno. O O

It is easy to check that FD(X) and WFD(X) are groups. The following is a corollary
of the proof of Theorem 2.8.

COROLLARY 2.33. Kwrp.BNO %8 faithful.

Proof. The proof of Theorem 2.8 applies, since it uses only homeomorphisms belonging

to WFD(X). m

By Lemma 2.14(b), FD.LIP(X) is locally moving. In fact, the construction of 2.14(b)
can be used to show that FD.LIP(X) is transitive in the following sense. There is an
open base B of X such that for every B € B and for every finite injective function p
whose domain and range are subsets of B there is ¢ € G|B| such that g extends p. In
fact, B can be taken to be {B¥(z,r) | B¥(x,r) C X}.

QUESTION 2.34. Are any of the classes related to FD(X) faithful? For example, is the
class Kprp := {(E,G) | E is a Banach space, and FD(F) < G < H(E)} faithful? O



3. The local ['-continuity of a conjugating homeomorphism

3.1. General description. The Main Result of this section is the statement that if
X1, X5 are open subsets of normed spaces E; and E5 respectively, I'] and I's are countably
generated moduli of continuity, and 7 : X1 = X» is such that (HFC(X1))™ = HEC(X2),
then It = I and 7 is locally I'i-bicontinuous. This is proved in Theorem 3.19(a).
Equally central are the four results stated in Corollary 3.43.

The conjunction of the final results of Chapters 2 and 3 is stated in Theorem 3.42. It
says that the existence of an isomorphism ¢ between the groups H}:C(X1) and HES (X)
implies that I'; = I's, and that ¢ is induced by a locally I';-bicontinuous homeomorphism
7 between X; and Xs.

As in Chapter 2, the results quoted above are in fact special cases of a more general
setting. The groups which are actually being considered are of the type H}:C (X;S,F).
See Definition 3.17.

There are two methods of proving the Main Result. The central intermediate lemma
in Method I roughly says that if X7, X5 are normed vector spaces, 7 : X1 = X5, and for
every translation tr, of Xy, (tr,)” € HII:S(XQ), then 77! is locally I'y-continuous. This
is in fact the hidden content of Theorem 3.15. A variant of this statement which works
only for second category spaces, but yields a slightly stronger result is proved in Theorem
3.26.

The main lemma in Method II says roughly that if X;, X5 are normed vector spaces,
7: X1 & X5, and for every bounded affine isomorphism 7" of X, T7 € HII:ZC (X32), then T
is locally I';-bicontinuous.

Going back to the Main Result, we in fact prove a stronger statement. Suppose that
(E,X,S8,€) and (F,Y,T,F) are subspace choice systems, I', A are countably generated
moduli of continuity, 7: X =Y, and the following holds:

(Hr(X;8,F))" CHEC(Y) and (Ha(Y;T,F))" C HK(X).

Then I' = A and 7 is locally I'-bicontinuous. This is proved in Theorem 3.19(b). See
Definitions 2.7 and 3.17(a).

Part of this strengthening is needed in the proof that if 7 : cl(X) = cl(Y) and
(HEC(cl(X)))™ = HYC(Y), then I' = A and 7 is locally I'-bicontinuous.

There are two situations in which we use Method I and we cannot use Method II. The
first one appears in Chapter 11, where the reconstruction of the closure of an open set
is considered. Method I is used again in the proof that the derivative of a conjugating
homeomorphism is I'-continuous. Such results will appear in a subsequent work.

[46]
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3.2. Partial actions and decayability. If X is a proper open subset of a normed space
E, then X is not closed under the group of translations T(E) of E. So there is no natural
action of T(EF) on X. But for every x € X there are neighborhoods B, and V, of x in
X and Id” in T(E) respectively such that the action of every tr, € V, on B, is defined.
Moreover, H(X) contains a homeomorphism which coincides with tr, on B, and which is
the identity outside some bigger neighborhood of x. Indeed, even LIP(X) contains such
a homeomorphism. We shall use such homeomorphisms. To this end we introduce two
notions: the notion of a partial action of a topological group on a topological space, and
the notion of decayability of partial actions.

DEFINITION 3.1. (a) Let X be a topological space and # € X. Set Nbr™ (z) := {U |
r € U C X and U is open} and MBC = {a € MC | Idjp) < a}. Let a € MBC,
X,Y be metric spaces and 7 : X 2 Y. We say that 7 is a-bicontinuous if 7 and
77! are a-continuous. Let x € X. We say that 7 is a-continuous at z if for some
U € Nbr(z), 7]U is a-continuous. Also, 7 is said to be a-bicontinuous at x if for some
U € Nbr(z), 7|U is a-bicontinuous. Let I' C MC. We say that 7 is I'-continuous
(resp. I'-bicontinuous) at x if for some o € I', 7 is a-continuous (resp. a-bicontinuous)
at .

If H is a group, then ey denotes the unit of H.

(b) Let H be a topological group, X be a topological space and A be a function such
that Dom(\) C H x X and Rng(\) C X. We say that A is a partial action of H on X if

the following conditions hold.

(1) X is continuous.

(2) Dom(A) is open in H x X.

(3) For g € H let g be the function defined by gx(x) = A(g,z). Then g, is a
homeomorphism between Dom(gy) and Rng(gy).

(4) (ex)x = Idpom((en)y)-

(5) For every g € H, (97" )x = (92) "

(6) For every g,h € H and = € X: if gx(x) and hy(gx(z)) are defined, then
(hg)a(z) is defined and (hg)x(x) = ha(gx(z)).

Define Fld(\) := Dom((ex)x). Note that by (5) and (6), Dom(gx) C Fld()) for every
ge H.

(c) Let « € MBC, a € (0,1), H be a topological group, A be a partial action of H
on a metric space X, G < H(X) and « € FId(\). Then X is called an (a, a, G)-decayable
action at x if there is r, > 0 such that for every r € (0,7;) there is V =V, , € Nbr(ey)
such that:

(i) V x B(x,ar) C Dom(\);
(ii) for every h € V there is g € G such that: ¢ is a-bicontinuous, g[B(z,ar) =
halB(x,ar) and supp(g) C B(z,r).

Let A C Fld(\). We say that A is an (a, o, G)-decayable action in A if it is (a, o, G)-
decayable at every x € A; X is (a, «, G)-decayable if it is (a, «, G)-decayable in FI1d(\).
Suppose that I' is a modulus of continuity. Then A is called (a, I', G)-decayable if X is
(a, a, G)-decayable for some a € I'.
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If in the above a = 1/2, then we omit its mention. So “\ is (a, G)-decayable at
2” means “\ is (1/2,a, G)-decayable at 2”7 etc. If a = 1/2 and G = H(X), then we
omit the mention of a and G. So “) is a-decayable at 7 means “\ is (1/2,a, H(X))-
decayable at 2”, “A is a-decayable in A” means “X is (1/2,a, H(X))-decayable in A”
etc.

(d) Let A be a partial action of a topological group H on a topological space X,
AC H and z € X. We write Ay(z) = {ha(z) | h € A}. We say that z is a A\-limit-point
if x € acc(Va(z)) for every V € Nbr(egy). O

Note that if A is (a,a, G) decayable partial action of H at x, then there are V €
Nbr(eff) and U € Nbr(z) such that hy[U is a-bicontinuous for every h € V.

The partial actions appearing in this section are obtained by restricting a full group
action on a space E to an open subset of E. This is described in (a) below.

PROPOSITION 3.2. (a) Suppose that X\ is a partial action of a topological group H on a
topological space E. Let X C F1d(\) be open, and define \}X by setting Dom(A}X) =
{{h,z) | h € H and z,hy(z) € X} and (AX)(h,x) = A(h,z). Then A\}X is a partial
action of H on X.

(b) Let A be a partial action of H on X, G < H(X), D C C C Fld()\), a € (0,1),
a € MBC, rg > 0 and let V,. € Nbr(egy) for every r € (0,79). Assume that: (i) D is a
dense subset of C, (ii) A is (a, «, G)-decayable in D, (iii) r, > r¢ for every x € D, (iv)
Vor 2V, for every x € D and v € (0,79). Then X is (a,«, G)-decayable in C, r, > rg
for every x € C, and V., DV, for every x € C and r € (0,r9).

Proof. The proof of both parts is trivial. m

Suppose that X is an open subset of a normed space E. We shall be interested in two
partial actions on X: the partial action of the group T(E) of translations of E, and the
partial action of the group A(F) of affine transformations of E. We need to know that
these partial actions are decayable. In fact, we shall show that A(E) is («, G)-decayable,
where «(t) = 15¢, and G is any group containing LIP(X).

Obviously, the decayability of A(E) implies the decayability of both T(F) and the
group of bounded linear automorphisms of E. Because we deal with groups containing
LIP(X; F'), we shall really need to show that {T" € A(F) | T(F) = F'} is decayable with
respect to any group G containing LIP(X; F)).

DEFINITION 3.3. (a) Let E be a normed space and v € E. Define tr”(z) := v + x and
T(E) = {tr¥ | v € E}. Whenever E can be understood from the context, we abbreviate
trE by tr,. We define d(tr,,tr,) = |lu — v

(b) Let F be a normed space and z € X. Denote the group of bounded linear
automorphisms of F by L(F) and set L(E,z) = (L(E))“f. For S,T € L(FE) define
d(S,T) = ||S=T||+||S~*=T7. Let A(E) := {ttFoT |v e E, T € L(E)}. Thatis, A(E)
is the group of bounded affine transformations of E. Suppose that A = trZ T € A(E).
Then v and T are uniquely determined by A. We set v = v4 and T'= T4. We may thus
define

d(A1, Az) = va, = vay | + 1 Ta, = T, | + T4 = T |l
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Then d is a metric on A(E), (A(F),d) is a topological group, and the action of A(E) on
E is continuous. Note that L(E,z) < A(E) and the function T+ T"= T € L(E), is a
topological isomorphism between L(E) and L(E, ).

Let A\E, \E, )\f’z, )\E’x denote respectively the natural actions of T(F), L(E), L(E, x)
and A(E) on E.

(c) Suppose that E is a normed space, F is a linear subspace of F and x € F. Define

T(E; F) = {tr] |[ve F}, L(E;F)={T €L(E)|T(F)=F},
A(B;F)={A€ A(E) | A(F) =F}, L(E,z;F)= (L(E;F))".

The groups T(E; F), L(E; F), L(E,z; F) and A(E; F) equipped with the metric they
inherit from T(E), L(E), L(E, z) and A(F) respectively are metric topological groups.

If ) is a partial action of H on X and H; < H, let A\}H; denote the restriction of A
to Hy. Let )\%;F = \EIT (E; F); )\f;F, /\f’m;F and )\f;F are defined in a similar way.

(d) Suppose that X is a topological space and F is a set. Define
HX;F)={he HX)|W(XNF)=XNF}.O

PROPOSITION 3.4. Let E be a normed space, X C E be open, S be an open cover of X,
F be a subspace choice for S, S € S, G = LIP(X; S, Fs) and «(t) = 3t. Then )\%;FS 1S
is (5/8, a, G)-decayable. In particular, )\.?;FS kS is (o, G)-decayable.

Proof. We show that if z € SN Fg, then )\%;FS 1S is (5/8,a, G)-decayable at z, r, =
d(z,E — S), and for every r € (0,7,), V,, = BT FEFs) (1dg, r/4).

Let r < ry. Let tr¥ € V,,. So v € Fg and |jv|| < r/4. We apply Lemma 2.14(b).
Choose 7 of 2.14(b) to be r, choose r and s of 2.14(b) to be 5r/8 and v of 2.14(b) to

be v. Let h be as ensured by 2.14(b). By 2.14(b)(ii), h is (1 + %)—bi]ipschitz.
(1 + ;= 5dy) < 3. Hence h is 3-bilipschitz. Tt follows from 2.14(b)(ii) that / is as
required. By Proposition 3.2(b), )\%;FS }S is (a, G)-decayable. m

PROPOSITION 3.5. Letn : [0,00) — [0, 1]. Suppose thatn is K-Lipschitz and that n(t) = a
for every t > a. Let E be a normed space. Define g: E — E by g(x) = n(||z||) - z. Then
g is (1 + Ka)-Lipschitz.

Proof. Let z,y € E. If ||z|, |ly|ll > a, then g(z) = = and g(y) = y, and hence ||g(z) —
9(y)|| = ||l — y||. Assume that ||z]| < a or ||y|| < a. Without loss of generality |y|| < a.
Hence
lg(@) = gl = lInCllzl]) - = = n(lyl) - vl

< lnlill) - = = ndlzl) - yll + InCl=l) - v = alyl) -yl

=n(llzll) - lz =yl + InCll=l) = nCllyiDI- vl

Slle—yl+ K-z -yl -yl <1+ Ka)- |z -yl =
PROPOSITION 3.6. Let E be a normed space, T € L(E), n : [0,00) — [0,1] and a > 0. Set

Idg = I. Suppose that n is K-Lipschitz, n(t) =t for everyt > a and || I-T||(1+ Ka) < 1.
Define h: E — E by
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W) = (1 =n(lzl) - T(x) +n([]) - «

Then
(i) he H(E), his (|IT|| +|[I = T| - (1 + Ka))-Lipschitz, and h=! is
1
max(%, 1) LZpSCh'LtZ

(ii) If F is a linear subspace of E, and T € L(E; F), then h € H(E; F).
Proof. (i) We prove that h is Lipschitz. Let 2,y € E. Then

h(z) = h(y) = (L =n(lz])) - T(x) +n(lz]]) - = = (1 =0(lyl})) - T(y) +0lyl}) - y)
=T(x—y)+ T =T)n(l]) -2 =n(lyl) - v)-

By Proposition 3.5,
[h(2) =h(W)Il < [T lz=yll+ [ =TI-(1+Ka)- o=yl < UTI+[I=T|-(1+Ka))-[x=y].

Hence h is (||T']] + ||[I — T|| - (1 + Ka))-Lipschitz.
We prove that A~! is Lipschitz. Let z,y € E. By the above,

T~ (h(z) = h(y)) = (z —y) + T (I =T)(n(|=l|) - = = nllyl) - v)
= (x—y)+ T = Hn(lzl) -z —nlyl) - y).
So

1T~ Ih() =Rl = 1T~ () = h)| = =yl =T =Dl () -z =0yl -»)ll
Zllz =yl =T =Dl - A+ Ka) - [le =yl = A= T = 1[| - (1 + Ka)) - [z — y]|

That is, [l — y|| < =l - I17() = h(»)]l-
(ii) Let z € F. Set T, = (1—n(||z|)T+n(||x]|)I. Then h(z) = T,(z) and T,,(F) = F. =

LEMMA 3.7. Let E be a normed space, X C E be open, S be an open cover of X, F be
a subspace choice for S, S € S, x € SN Fs, G = LIP(X; S, Fs) and «(t) = 5t. Then
APeEs S s (o, G)-decayable at x, rp = d(z, E — S), and Vy, = (BXEF)(Idp, 1/4)7
for every r € (0,7,).

Proof. We may assume that 0¥ € S and = 0¥, Set I = Idg. Let ro = d(0¥, E — S)
and V = BHMEFs)(11/4). Let r < rg and T € V. We show that T is “decayable”. Define
n(t) : [0,00) — [0,1] to be the following piecewise linear function. The breakpoints of n
are r/2 and r; n(t) = 0 for every t € [0,7/2] and n(t) = 1 for every t > r. Clearly, 7 is
2/r-Lipschitz.

Define h : E — E by h(y) = (1 —n(|lyl)) - T(y) +n(||lyll) - y. We check that Propo-
sition 3.6 applies to h. Set K = 2/r. So 7 is K-Lipschitz. Since || — T|| < 1/4 and
Ka=2.r=2,it follows that |[I — T||- (1+ Ka) < 1 - (1+2) =3/4 < 1. It thus follows
from 3.6(i) that h € H(F) and h is |T|| + || — T|| - (1 + Ka)-Lipschitz. By the above,
|T||+ | I-T|-(1+Ka) < 5/4+3/4 = 2. So his 2-Lipschitz. Since || T!|| < 5/4, it follows

that — T ”TH (‘1|+Ka) < 15/34;4 = 5. By 3.6(i), h~! is 5-Lipschitz. So h is 5-bilipschitz.
Clearly, supp(h) € B(0F r) C X. So h|X € H(X). Also, h|B(0E r/2) = T1B(0F,

r/2). By 3.6(ii), h(E N Fs) = Fs. Hence h[X is as required. m
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LEMMA 3.8. Let E be a normed space, X C E be open, S be an open cover of X, F be
a subspace choice for S, LIP(X;S,F) < G < H(X) and a(t) = 15t. Let S € S. Then
/\K;FS 1S is (o, G)-decayable.

Proof. Set I = Idg. Let z € SN Fg, rp, = d(z,E — S) and r € (0,7,). If z # 07 let
a, =min(1/4,7/8 ) and if z = 0F let a, = min(1/4,7/8). Let V,.,, = BAE) ([ a,).
We show that

*) Vi © BYEFS (1 1/ 4) 0 (BHEF)(1,1/4))F

If A e A(E;F), then A can be uniquely represented in the form A = tr,, , o (Ta,q)"",
where Ty , € L(E;F). Let A = tr,, T4, where T4 € L(E;F). Then T4, = T4 and
Uag =va+ (Tag —I)(x). Set T =T4, v=v4 and u = uy 4. Suppose that A € V, ,.
Then d(T,1) < a, < 1/4. So T € BYFFs)([,1/4). Hence T%+ € (BXF:Fs)(1,1/4))t=.
Suppose that @ # 0. Then ||ul| < [jv|[ + |7 = I|| - =[] < r/8 + g7y - 2l = r/4. i 2 = 0,
then u = v. So |ju|| < r/4. In both cases u € BT(F¥s) (I r/4). This proves (x).

Let A € V, ;.. Let T and u be as above. By Lemma 3.7, thereis hy € H(X; Fg)|B(z,r)
such that hy[B(z,r/2) = T"=|B(z,r/2) and hs is 5-bilipschitz. By Proposition 3.4,
there is hy € H(X; Fg)|B(x, )| such that hoB(x,5r/8) = tr,|B(x,5r/8) and h; is 3-
bilipschitz. Let h = haohy. So h € H(X' FS), supp(h) C B(z,r) and h is 15-bilipschitz.
It remains to show that h[B(z,r/2) = A|B(x,r/2). Let y € B(x,r/2). Then hi(y) =
Ttz (y). Since T € BMEiFs)(1,1/4), ||T|| < 5/4. So |T(y — )| < 2|ly — «||. That is,
d(T(y—x),0) < 3||y—z||. Since tr, is an isometry, d(T"= (tr,(y—z)), tr,(0)) < 2|jy—z|.
That is, |T%=(y) — z|| < 3|y — z|. Since y € B(z,r/2), |T%=(y) — z|| < 5r/8. Hence
ho(T'= (y)) = tr,(T%=(y)). So h(y) = ha(hi(y)) = A(y). We have shown that if z €
SN Fg, then AY51S is (o, G)-decayable at z.

Let z € S — Fs. Then z € acc(S N Fs). Define r, = 1d(z,E — S). For r € (0,7,)
let a, = min(1/4,r/8, SHwH) and V,, = BAEF) (. q,). Let D = B(z,r/3) N Fs. By
the above argument, for every y € D: )\f;FS 1S is (o, G)-decayable at y, 7, > r,, and
Vyr 2 Vi, for every 7 € (0,7,). By Proposition 3.2(b), A\Y"*1S is (o, G)-decayable
at x. m

’ 8|| x|

Recall that in this section we prove that if (HEC(E))"™ = HEC(F), then 7 is locally
I'-bicontinuous. If I' is countably generated or if I = MC, then the above is true for any
FE and F. For I'’s which are not countably generated, we have only a partial answer. We
know how to prove that 7 is locally I'-bicontinuous only for I"’s which are x(FE)-generated.
See the definition below.

DEFINITION 3.9. (a) Let X be a metric space and r > 0. A family A of subsets of X
is r-spaced if d(A, B) > r for any distinct A, B € A. A subset C C X is r-spaced if
{{z} | z € C} is r-spaced. A set C'is spaced if C is r-spaced for some r > 0.

(b) Let X be a metric space z € X and A C X. We define the set of cardinals
KX (z,A) as follows: k € kK~ (z, A) iff for every U € Nbr(x) there is B C ANU such that
|B| = k and B is spaced. Let

X(ajaA) = sup(I{X($,A)), K(X) = gél)lgl IiX(l’,X).
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(c) Let I be a modulus of continuity. We say that I'y generates I' if I' = cl<(Ip).
We say that I' is (<k)-generated if there is I'y such that || < x and I" = cl<([)).

(d) Let v € MC and a,b € [0,00). Then a =7 b means that a < y(b) and b < y(a).

(e) Let X be a metric space, x € X, G < H(X) and o € MBC. We say that G is
a-infinitely-closed at x if there is U € Nbr(x) such that if F' C G and F' satisfies:

(1) for every f € F, f is a-bicontinuous,

(2) for every f € F, supp(f) C U and z ¢ cl(supp(f)),

(3) for any distinct f,g € G, cl(supp(f)) Ncl(supp(g)) = 0,
(4) MUsepsupp(f)) = {z} UU;ep cl(supp(f)),

then oF € G.

Note that if F' is as above, then oF € H(X). So H(X) is a-infinitely-closed at x for
every a € MBC.

(f) When dealing with partial actions, we often wish to perform a composition go f,
where Rng(f) € Dom(g). Such a composition is considered to be legal. The domain of
the resulting function is f~*(Rng(f) N Dom(g)).

If f, g are functions and g is a 1-1 function, then f ~¢ g means that

Dom(f) URng(f) € Dom(g), g=o0foo .0

PROPOSITION 3.10. (a) If X is a metric space, A C X and x € acc(A), then k(z, A) > V.
(b) If E is a normed space, then k(x, E) = min({|D| | D is a dense subset of E}) for
every x € E.
(c) If E = ly, then k(E) = 2%,
(d) If E is a Hilbert space with an orthonormal base of cardinality v, then x(E) = v.

Proof. The proof is trivial. =

The next lemma says roughly that if for every h € H, (hy)" is I'-bicontinuous at z,
then there are v € I" and neighborhoods T,V of x and ey respectively such that (hy)" [T
is 7y-bicontinuous for every h € V. This is proved under the assumption that H is
G-decayable, where G is an infinitely-closed subgroup of H(X).

For countably generated I'’s the conclusion of the lemma is true for every metric
space X. If however, I' is not countably generated, then we need to assume that I" has
a generating set of size < k(X ). The lemma will be applied to T(E; F) and A(E; F).

LEMMA 3.11. Suppose that:
(i) X is a metric space, G < H(X), H 1is a topological group, X is a partial action of
H on X, xz € FId(\), z is a A-limit-point, o € MBC, G is a-infinitely-closed at
x, and for some N € Nbr(z), X is (a, G)-decayable at every pointy € Hy(x)NN.
Set
k =min({x(xz, Va(z)) | V € Nbr(eg)}).

(ii) Y is a metric space and 7: X 2 Y.

(iii) I' is a modulus of continuity, and I' is (<k)-generated.

(iv) There is U € Nbr(z) such that for every g € G|U|: if g is aoa-bicontinuous,
then g™ is I'-bicontinuous at 7(x).
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Then P(x) holds, where

P(x):  There are T € Nbr(x), V € Nbr(ey) and v € I' such that for every h € V,
T C Dom(hy) and (h))"|7(T) is y-bicontinuous.

Proof. Let U; € Nbr(z) be as ensured by the a-infinite-closedness of G at z. Let r,
be as ensured by the decayability of H at «. Let r € (0,7,) be such that B(z,r) C
UiNUNN, and W =V, , be as ensured by the decayability of H at z. So W € Nbr(eg),
W x B(z,r) € Dom(\) and Wy (z) C B(x,r). First we prove the following claim.

CLAIM 1. There isy € B(z,r/2) N Wx(x) such that P(y) holds.

Proof. Suppose by contradiction that there is no such y. Let Iy be as ensured by
clause (iii). We distinguish two cases.

CASE 1: |Io] = Ng. Let & = {z; | i € N} be a 1-1 sequence tending to x and contained in
B(z,r/2)NWx(z) —{z}. Let {v; | ¢ € N} be an enumeration of I such that {j | v; = v}
is infinite for every i. Let 75, > 0 be as ensured by the decayability of A\ at z;. Let
{r; | © € N} be a sequence such that for any distinct ¢,j € N we have 0 < r; < 74,,
B(xi, i) C B(x,r), d(x;, x) > r; and cl(B(x;, 7)) N cl(B(zj, ;) = 0.

Let W; = V,, », be as ensured by the decayability of A at ;. That is, W; € Nbr(ey)
and Dom(hy) 2 B(zy,7;/2) for every h € W;, and there is ¢ € G such that ¢ is a-
bicontinuous, g[B(x;,7;/2) = h)[B(x;,7;/2) and supp(g) C B(x;,r;).

Let V; = B(x;,7;/2). Then Dom(hy) 2 V; for every h € W;. Since —P(x;) holds, there
is h; € W; such that ((h;)»)7[7(V;) is not 7;-bicontinuous. Let g; € G be such that g;
is a-bicontinuous, g;[B(x;,r:/2) = (hi)Ax[B(xs,7:/2) and supp(g;) € B(z;,7;). Clearly,
F := {g; | i € N} satisfies clauses (1)—(4) in the definition of a-infinite-closedness, so
g := ojen gi € G. For every u,v € X there are i,j € N such that g(u) = g;°og;(u)
and g(v) = g;°g;(v). So g is aoa-continuous. Similarly, g~!
supp(g) C U, by clause (iv), ¢" is I'-bicontinuous at 7(x). That is, there are v € I' and
T € Nbr(7(z)) such that

is «o a-continuous. Since

(1.1) g" T is y-bicontinuous.

Let ¢ be such that v < ;, and let ¢ > 0 be such that v[[0,¢] < ~;1[0,¢]. There is j such
that v; = v;, 7(B(zj,7;)) € T and

(1) diam(7(B(zj,7;))) < t.
Set k = (hj)x. Now, g|V; = g;V; = k[V;. So
(1.2) g 1T (Vy) = (g;)"I7(V;) = kT I7(V;).

Recall that k7 [7(V}) is not 7;-bicontinuous. So there are u,v € 7(Vj) such that

dY (k7 (u), k™ (v)) %% dY (u,v). By (1.2),
(1.3) d" (g7 (u), g7 (v)) " d" (u,0).
Let vy = 77 '(u) and v; = 77*(v). So ui,vi € B(zj,r;/2). Since k[B(zj,r;/2) =
gjIB(xj,r;/2) and supp(g;) € B(xzj,r;), we have k(u1),k(vi) € B(zj;,rj). By (1),
d¥ (7(k(u1)), 7(k(v1))) < t. Also, 7(k(u1)) = k™ (u), and the same holds for v and v;. So
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d¥ (u,v) <t and d¥ (k7 (u), k™ (v)) < t. By (1.2),

(1.4) d¥ (u,v) <t, d¥(g"(u),g"(v)) < t.
Recall that v[[0,t] < ~;[[0,t]. Hence by (1.3) and (1.4),
(1.5) d" (g7 (u), g7 (v)) #" d” (u,v).

Recall that u,v € 7(V;) C T. Hence (1.1) and (1.5) are contradictory. So there is
y € B(x,r/2) N Wx(z) such that P(y) holds.

CASE 2: |[Ty| > Rg. Let L = W (z) and k = s~ (2, L). We prove that there are sequences
{ri |1 € N} C (0,00) and {L; | i € N} such that:

(i) 7o =r/2 and {r; | i € N} is a strictly decreasing sequence converging to 0;

(ii) for every i € N, L, C LN (B(x,r;) — B(x,r;4+1)) and L; is spaced,;

(i) | UL | i € N}| = .

Suppose first that cf(k) = Ry. (That is, there is a countable set of cardinals K such
that for every ¥’ € Kk, K’ < Kk and > K = k.) Let kK = {x; | i € N} and ro = r/2. We may
assume that each k; is infinite. We define L; and r;; by induction on i. Suppose that r;
has been defined. Since x; < k™~ (z, L) there is L; C L N B(x,r;) such that L; is spaced
and |L;| = k;. Suppose that L; is s;-spaced. There is at most one member y € L; such
that d(x,y) < s;/2. So by removing this member we may assume that d(L;,x) > s;/2.
Let 741 = min(%, 7). Evidently, {r; | i € N}, {L; | i € N} fulfill (i)—(iii).

Suppose that cf(k) > Rg. First we show that

(¥)  For every s > 0 there is M C L N B(z,s) such that |M| = x and M is spaced.

Suppose not, and let s be a counter-example. For every n > 0 let k,, be the set of all
k' such that there is M C L N B(x,s) such that |[M| = " and M is 1/n-spaced. Then
there is n such that x,, is unbounded in x. Let N be a maximal %-Spaced subset of
LN B(z,s). Then |N| < k. So there is ' € K, such that |[N| < x’. Let M be a
1/n-spaced subset of L N B(x, s) of cardinality «’. Then there are y € N and 21,29 € M
such that 21,20 € B(y, 5). A contradiction, so (*) holds.

As in the case that cf(k) = Ny we define a sequence {x; | i« € N}. Indeed, we set
k; = k for every i € N. The L;’s and r;’s are now constructed as in the case cf(k) = R,
and they obviously fulfill clauses (i)-(iii).

We really need sequences {r; | ¢ € N} C (0,00) and {L; | ¢ € N} which fulfill the
following conditions:

(i) 7o =7/2 and {r; | i € N} is a strictly decreasing sequence converging to 0;
(ii) for every ¢ € N, L; C LN (B(x,r;/2) — B(x,2r;4+1)) and L; is spaced, and
|L;| < |Lj| for every i < j;

(iif) [U{Li | i € N} = [I0]-
Such sequences can be obtained from the original {r; | i € N} and {L; | i € N} by taking
an appropriate subsequence of {r; | @ € N} and by replacing L; by a subset of L; if
necessary.

Let s; > 0 be such that L; is s;-spaced. Set M = |J{L; | i € N}, and let ¢« : M — I
be a function such that for every v € I there is n € N such that v € «(L,,) for every
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m > n. Define v, = ¢(y). Let r, be as ensured by the decayability of H at y. For every
y € M we define s, > 0. If y € L;, choose s, < min(ry, r;y1, s;/3). Note that for distinct
y,z € L;, B(y,sy) € B(z,r;) — B(z,ri+1) and cl(B(y,sy)) Ncl(B(z,s.)) = 0. So for
distinet y,z € M, cl(B(y, sy)) Ncl(B(z, s5)) = 0.

For every y € M let W, =V, s be as ensured by the decayability of A at y. That is,
W, € Nbr(ey), Dom(hy) 2 B(y, s,/2) for every h € W, and there is g € G such that ¢
is a-bicontinuous, g[B(y, sy/2) = halB(y, sy/2) and supp(g) C B(y, sy)-

Let Vy, = B(y,sy/2). So Dom(hy) 2 V,, for every h € W,. Since =P(y) holds, there
is h, € W, such that ((hy)x)7[7(V}) is not ~,-bicontinuous. Let g, € G be such that
gy is a-bicontinuous, g, [B(y,s,/2) = (hy)AlB(y, sy/2) and supp(gy) € B(y,sy). For
any distinct y,z € M, supp(gy) Nsupp(g.) = 0. Clearly, F := {g, | y € M} satisfies
clauses (1)—(4) in the definition of a-infinite-closedness, so g = oyenr gy € G. The rest
of the argument is identical to the one given in Case 1. We have proved Claim 1.

Let y be as ensured by Claim 1. Since y € W) (), there is h € W such that y = h, (z).
Since W = V,, ., there is g € G such that g is a-bicontinuous, g[B(z,7/2) = R [B(x,r/2)
and supp(g) C B(z,r). So g(x) = y. Since « € MBC, we have a@ < o, and hence g
is avo -bicontinuous. The bicontinuity of ¢ and the fact supp(g) C B(z,r) C U imply
that ¢7 is I'-bicontinuous at 7(z). Let R € Nbr(7(x)) and 8 € I" be such that ¢g" R is
[B-bicontinuous. We may assume that

(2.1) 7 YR) C B(z,7/2).
Hence ¢"[R = (iALA)T[R. So
(2.2) (ha)"R is B-bicontinuous.

Note that if 77, V’,+/ fulfill the requirements of P(y) and 7/ O T” € Nbr(y), then
T", V', fulfill the requirements of P(y). Since P(y) holds, there are S; € Nbr(y),
V1 € Nbr(ey) and 1 € I' such that for every h € V7,

(2.3) S1 C Dom(hy),  (hx)7[7(S1) is 71-bicontinuous.
Since hy(z) = y and 7~ (R) € Nbr(z), we may assume that

(2.4) Sy C ha(r7H(R).

So S C hy(B(x,7/2)). Let Sy € Nbr(y) and Vs € Nbr(ey) be such that
(2.5) SpC S, VaCVi, AVaxSp)CSh.

Note that Sy C Rng(hy). We define T = (hy) "' (S2), V. =h"1-Vo-hand y = o043
and show that TV, satisfy the requirements of P(x). Since 3,1 € I', we have

(2.6) vyel.
We verify that if h € V, then
(2.7) T CDom(hy) and (A")A]Sy ~2 ' hy|T, where o= hy|7 (R).

Let h = h*. Then h € Vy and h = h=' - h - h. We show that hx(2), ha(hx(z)) and
(h=1(hx(hx(2))) are defined for every z € T. Clearly, T'C Dom(hy) and hy(T) = Ss.
So by (2.5),
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(i) for every z € T, ha(hyx(2)) is defined and hy(hx(2)) € Si.

By (2.4), S C Rng(hy). So (hy)"1(hx(hx(2))) is defined. Since h = A" and by the
definition of a partial action, it follows that

(ii) for every z € T, hy(z) is defined and hy(z) = (hy) "o hyohy(2).

By (ii), 7' C Dom(h,), and by (2.1), 7 *(R) C Dom(hy). So Dom(o~') = Rng(o) =
ha(77Y(R)). Since h € V,, we have Sy C Dom(hy), hence Dom(hy[S2) = So. By (2.4
and (2.5), So C ha(77Y(R)). So Dom(hy[S2) € Dom(p~!). We have Rng(hA[SQ) =
hx(S2), and from (2.5) and the fact that h € Va, it follows that hy(S2) C S;. By (2.4),
S1 C ha(t7Y(R)), so Rng(hx[S2) € Dom(p~!). Note that T C 7~!(R); indeed, this
follows from the definition of T, (2.4) and (2.5). So

(iii) for every z € T, ha(z) = (hx]7 1 (R))(2) = o(2).

Also,

(iv) for every z € T, hy(ha(z ))
Let z € T and denote u = B hy
Dom(p~"). Hence (hy)~'(u) = o~ (u

(v) for every z € T, (hy)™* ( hix(ha
It follows from (ii)—(v) that h)[T =
conjugate (2.7) by 7. We obtain

(hal )( A(2))-

(2)). By (i) and (2.4), u € S; C ]Al)\(T_l(R)) =
). We conclude that
(z

))) “Hha(ha(2)))-
0 (h)\[SQ) 0. We have verified (2.7). Next

—1y7

(2.8) ("M)A1S2)™ ~@ 7 (h\IT)".

Clearly, ((h;L)ArSQ)T = ((hh),\)T [7(S2). Since h € V, we have hh e Vi =V, So by (2.3),
(2.9) ((hE)A [S2)" is v1-bicontinuous.

Fact (2.8) has the form f ~° 'k, where f = ((hh)A[Sg)T, k = (hx]T)™ and o =
0" = (iALA)T[R. By (2.9), f is v1-bicontinuous, and by (2.2) o is S-bicontinuous. Since
k=o0"1ofoo, it follows that k is 3o, o -bicontinuous. Recall that v = Fov; o3 and
k= (halT)™ = (hx)"[7(T). Hence (hy)7[7(T) is -bicontinuous.

We have shown that for every h € V, Dom(hy) 2 T and (hy)” [7(T) is v-bicontinuous.
So T, V,~ satisfy the requirements of the lemma. =

3.3. Translation-like partial actions. We have isolated the properties of T(E) and
A(F) which are used in the proof that 7 is I’-continuous. The following definition deals
with the properties of T(FE). Partial actions having these properties are called translation-
like partial actions. In fact, the definition captures the properties of T(E; F'), where F' is
any dense linear subspace of E. The properties of A(E) to be used appear in Definition
3.28(b).
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DEFINITION 3.12. Suppose that X is a metric space, H is a topological group, and A is
a partial action of H on X. Let = € Fld(\). We say that A is a translation-like partial
action at « if for every V' € Nbr(eg) there are:

(i) U =U,,y € Nbr(z), and a dense subset of U, D = D, v,
(ii) a radius r = rgy > 0 and a constant K = K, v > 0,

such that the following holds. For any distinct Zy,Z; € D there are n < K - @ z a

Z0,%1)’
sequence Ty = Zo,Z1,...,Z, € X and hq,...,h, € V such that z,, ¢ B(z,r), and for
every i = 1,...,n, Zo,z1 € Dom((h;)xr), (hi)a(Zo) = xi—1 and (h;)A(Z1) = ;.

A partial action \ is translation-like if X is translation-like at x for all z € Fld(A). O

PROPOSITION 3.13. Let E be a normed space, F' be a dense linear subspace of E and
X C FE be open. Then )\%;FFX 18 a translation-like partial action.

Proof. Forz € X and V € Nbr T (E:F) (Id) we define U = U, v, D = D, vy etc. as follows.
Let 79 > 0 be such that B¥(z,ry) € X and {tr, | v € B¥(0,79)} € V. Now define
U=DB(z,r0/4), D=FNU,r=ry/2and K = 2.

For distinct %y, Z; € D we define n, xg,...,x, and hq,...,h, as required in Defini-
tion 3.12. Let n be the least integer such that n - ||Zy — Zg|| > r. For i = 0,...,n let
x; = To + (%1 — To) and for i = 1,...,n let hy = tr;_1)(z,—z,)- It is easily checked that
n, the x;’s and the h;’s are as required. m

We let X and Y denote metric spaces. Their metrics are denoted by dX and dY .
However, in most cases we write d(z,y) as an abbreviation of both d* (z,y) and d¥ (x,y).

LEMMA 3.14. Let X be a metric space and A be a partial action of H on X. Suppose
that x € FId(\) and X is translation-like at x. Let Y be a metric space and 7 : X 2 Y.
Let I' C MC, and suppose that for every v € I' and K > 0, K -y € I'. Suppose that
P(z) of Lemma 3.11 holds. That is, there are T € Nbr(z), V € Nbr(ey) and v € I’
such that for every h € V, T C Dom(hy) and (hy)"|7(T) is y-bicontinuous. Then 7!
is I'-continuous at 7(x).

Proof. Let U = Upv, D = Dgy, r = rgy and K = K,y be as ensured by the
translation-likeness of H at z. Set y = 7(x), B = B(z,r) and C = 7(B). Since C €
Nbr(y), we have e :=d(y,Y —C) > 0. Let R=7(TNU)N B(y,e/2) and M = 2Kr/e.
Since v € I', we have M -~y € I'.

We show that 7~ '[R is M - y-continuous. Suppose by way of contradiction that this
is not true. Hence there are 9,7, € R such that d(771 (%), 7 (1)) > M - v(d(o, §1))-
Since D is dense in U and %o, 41 € 7(U), we may assume that o, 91 € 7(D). For every
h € H let h denote hy, and for £ = 0,1 let 7, = 771(4%). Hence Zg,Z1 € D. So there
are n < Kr/d(Zo,Z1), To = xo,%1,.-.,%, and hy,..., h, €V such that x,, € B, and for
every i = 1,...,n, Zg,Z1 € Dom(h;), ]Ali(jo) = x;,_1 and izi(fl) =x;. Fori=1,...,nlet
yi = 7(z5).

In the space Y we thus have the following situation:

() dyw) <e/ A
(ii) for every i =1,...,n, h7 (7o) = yi—1 and h](§1) = yi;
(ii) yn & C.
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Every h; belongs to V, hence szT [ 7(T') is y-bicontinuous. Also, 3o, %1 € 7(T), so
(iv) d(yi-1,vi) <v(d(Yo,¥1))-

Hence
n

e=d(y,Y —C) < d(y,yn) < d(y,90) + Y _ d(yi1,9:) < e/2+n-v(d(Fo, 1))

Kr o = Kr o
S 6/2 + d(i‘o,.f1> : ’}/(d(yanl)) < 6/2 + M - V(d@mﬂl)) : ’Y(d(ymyl))
Kr
=2t e ¢

A contradiction, so the lemma is proved. =

The following theorem is the conjunction of Lemmas 3.11 and 3.14. It will be used in
Theorem 3.16. The statement of Theorem 3.15 is rather technical. So it seems worthwhile
to explain its main application. Let X be an open subset of a normed space F and
G < H(X). Suppose that for every x € X and r > 0 there are s € (0,r) and K > 0
such that for every v € Bg(0,s) there is g € G such that g[B(x,s) = tr,[B(z,s), g is
K-bilipschitz and supp(g) € B(x,r). Assume further that G is a-infinitely-closed for
every « of the form y = M¢. Then if 7 is a homeomorphism between X and a metric
space Y, I is a countably generated modulus of continuity and G C LIP];C(Y), then
771 is locally I'-continuous.

THEOREM 3.15. Suppose that:

(i) X is a metric space, G < H(X), H is a topological group, \ is a partial action
of H on X, x € F1d(\) and o € MBC;
(ii) G is a-infinitely-closed at x;
(i) x is a A-limit-point;
(iv) for some N € Nbr(z), A is (o, G)-decayable in Hy(z) N N;
(v) A is translation-like at x;
(vi) I' is a modulus of continuity and I' is (<k)-generated, where k = min({k(z,
Va(2)) [V € Nbr(en))});
(vii) Y is a metric space and 7 : X 2 Y
(viii) there is U € Nbr(z) such that for every g € G|U|: if g is aoa-bicontinuous,
then g7 is I'-bicontinuous at 7(x).

Then 71 is I'-continuous at 7(z).
Proof. Combine Lemmas 3.11 and 3.14. m

The above lemma will be used in the proof that the derivative of a diffeomorphism 7
is locally I'-continuous. For groups of type HE®(X), Theorem 3.15 yields a result which
is slightly weaker than the result obtained in Theorem 3.27, where the action is assumed
to be “affine-like” rather than just “translation-like”.

THEOREM 3.16. Let (E, X, S,F) be a subspace choice system, I' be a (<k(FE))-generated
modulus of continuity, Y be a metric space and 7 : X =Y. Suppose that (LIP(X;S,F))"
C HEC(Y). Then 7= is locally I'-continuous.
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Proof. Let x € X and S € S be such that x € S. Write H = T(E; Fg), A = )\?FS 1S,
G =LIP(X; S, Fs) and «(t) = 3t. We shall apply Theorem 3.15.

By Lemma 3.4, A is (a, G)-decayable. So 3.15(iv) holds. Let V € Nbr(ey). Then
there is 7 > 0 such that Vy(z) 2 B¥S(z,r). Since Fs is dense in E, x(Fs) = x(E). So
k(z, Va(z)) = k(Fs) = (E). It follows that min({x(z, Va(z)) | V € Nbr(egy)}) = w(E).
Since I' is (<k(E))-generated, 3.15(vi) holds.

Take U in the definition of a-infinite-closedness to be S. Let L be a subset of G which
satisfies clauses (1)—(4) in the definition of a-infinite-closedness (see Definition 3.9(e)).
Then oL is aoa-bicontinuous, which implies that oL € G. So G is a-infinitely-closed
at . That is, 3.15(ii) holds.

Since for every V € Nbr(ey) there is r > 0 such that Vy(z) 2 Bfs(z,r), z is a
A-limit-point. That is, 3.15(iii) holds. By Proposition 3.13, A is translation-like at .
That is, 3.15(v) holds. By the assumptions of this theorem, 3.15(vii) and (viii) hold.

We have seen that all the assumptions of Theorem 3.15 are fulfilled, so 7! is I'-
continuous at 7(z). m

DEFINITION 3.17. (a) Let E be a normed space, S C X C E be open subsets and F be
a dense linear subspace of E. Let I' be a modulus of continuity. We define

Hr(X)={h € H(X) | there is v € I' such that h is 7-bicontinuous},
Hr(X,S)=Hr(X)ls],
Hp(X;F)={he Hr(X)| (XNF)=XNF}
and
Hp(X: S, F) = Hp(X,8) N Hp(X; F).
Similarly, let HEC(X, S) = HEC(X)|S|, HXC(X; F) = {h € HXC(X) | h(XNF) = XNF}
and HXC(X; S, F) = HXC(X, S) N HYXC(X; F).

Let (E,X,S,F) be a subspace choice system. We define Hp(X;S,F) to be the
subgroup of H(X) generated by |J{Hr(X;S,Fs) | S € S}. Analogously, the group
HEC(X; S, F) is defined to be the subgroup of H(X) generated by U{HRC(X; S, Fs) |
S e St

(b) Let F be a normed space, z € E and n € H([0,00)). Define h = Rad,]iz as follows:

T —z

T TFE
[l — 2|

and h(z) = z. Clearly, h € H(FE). We call h the radial homeomorphism based on 7, z.
Also, denote RadiOE by RadnE, and call it the radial homeomorphism based on n. O

W) =z +n(llz - =)

REMARK. Note the following facts.

(1) Hp(X) is a special case of Hp(X;S,F), where S = {X} and Fx = E. The same
holds for H:C(X).
(2) Hr(X,S),Hr(X; F), Hp(X; S, F), Hp(X; S, F) € Hp(X).
(3) HYC(X, 8), HEC(X; F), HEC(X; 8, F), HEO(X;.S, F) € HEO(X). O
PROPOSITION 3.18. Let E be a normed space, z € E and n € H([0,00)). Suppose that n
is a-bicontinuous. Then h,, . is 3 - a-bicontinuous.
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Proof. Set h = Rad, ;. We may assume that z = 0. Note that 5(t) < «(t) for every
t > 0. Since « is concave, it follows that a(t) -5 < afs) for every 0 < s < t.

Let u,v € E — {0}. Assume that ||u|| < ||v]| and set w = Hv. Then ||w — u|| <
[ull + flwll = 2[jull. So 5| < [lull. Also, [l —w[l = [jo]f = [lull < [[v— ull.
lw = ul] < flv—ull + [lv = w|| <2|jv - ul|. Hence

[A(v) = h(w)[| < [[R(v) = h(w) || + [|A(w) — h(u)|

= (et = o) + P o = = o) — g + 2. 20

o] — flul)) + 2a(' ”) < a(flo — ul) + 20(v — ul) = 3a(v — ul)).

So h is 3a-continuous. Since h~! = Rad,,-1 ., it follows that h~! is 3a-continuous. m

The main result of the next theorem is part (a). It is a more readable special case
of (b). Part (b) is a trivial corollary of (c). The proof of (c) is more than just collecting
some of the previous lemmas together. It requires an additional argument.

THEOREM 3.19. (a) Let X,Y be open subsets of the normed spaces E and F respectively.
Write k = k(FE) and let I', A be (<k)-generated moduli of continuity. Let 7 : X =2 Y,
and suppose that (HXC (X)) = HZC(Y). Then I' = A and 7 is locally I'-bicontinuous.

(b) Let (E, X,S,E) and (F,Y,T,F) be subspace choice systems. Write k = k(E) and
let I'; A be (< k)-generated moduli of continuity. Let 7: X =Y, and suppose that:

(i) (Hr(X:8,7)" € H5O(Y), (i) (Ha(Y3T,F))" € HFE(X).
Then I' = A and 7 is locally I'-bicontinuous.

(c) Let (E, X,S,E) and (F,Y, T, F) be subspace choice systems. Write k = k(E) and
let I', A be (<k)-generated moduli of continuity. Let 7: X 2Y | and suppose that:

(i) (LIP(X;S, 7)) C H5O(Y),
(i) (Ha(Y;T,F)” ' C HEC(X).

Then A C I' and 7 is locally I'-bicontinuous.

Proof. Part (a) is a special case of (b), and (b) is concluded by applying (c) twice: once
to X,Y and once to Y, X. So it suffices prove (c).

(c) Since X and Y are homeomorphic, «(F) = k(F) = k. Suppose by way of contra-
diction that A ¢ I'. Pick any T € 7 and y € TN Fr, and set z = 7 (y). (Recall that
Fr denotes the dense subspace of F' assigned to T by the subspace choice system). Let
r € S €S. By Theorem 3.16 and clause (c)(i), for some § € A, 71 is §-continuous at
7(x). There is o € (A — I') N MBC such that § < . So 77! is a-continuous at 7(z).
Choose 7 > 0 be such that 7=![B¥(y,r) is a-continuous and B¥ (y,r) C 7(S) N T, and
let e be such that aca(e) = /2. We define 7 : [0,00) — [0, 00) as follows. For t € [0, €],
n(t) = aca(t), for t € [r,00), n(t) = t, nlle,r] is a linear function, and 7 is continuous.
Clearly, n € H([0,00)), and it is easily seen that 7 is 4 - a0 a-continuous and that ! is
2-Lipschitz. So 7 is 4 - a o a-bicontinuous. Let h = Rad, Y. By Proposition 3.18, A is
12 - avo a-bicontinuous, hence h € HA(Y). Since y € Fr, we have h(Y N Fr) =Y N Fr,
and so h € Hao(Y;7,F). By clause (c)(ii), g := h™ " is locally I'-bicontinuous, and
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by Theorem 3.16 and clause (c)(ii), 7 is locally I'-continuous. This implies that 70g¢ is
locally I'-continuous. Since hoT = 7og, we conclude that ho7 is locally I'-continuous.
Let v € I' be such that hor is y-continuous at z, and choose s such that ho7[BF(z,s)
is y-continuous. We may assume that 7(B¥(z,s)) C B¥ (y,7/2).

Since « & I, there is ¢ < s such that a(t) > (¢). Choose w such that ||w — z| =t
and set z = 7(w). Then z € B (y,r/2) and hence ||h(z) — h(y)|| = aca(||z — y||). Now,
lw =2 = 7= () = 7@l < a2 — yll)- So = (Jlw — z]}) < |12 — y]] and hence

Ih(2) = ()]l = aca(llz = yll) = acala™ (Jw - zl)) = a(|w — ).

That is, [|[heT(w) — heT(z)|| > a(||lw — 2||) > v(]]lw — z||). This contradicts the fact that
ho7|B¥(z,s) is y-continuous. So A C I'.

Since 77! is locally A-continuous, 77! is locally I'-continuous. Recall also that 7 is
locally I'-continuous. So 7 is locally I'-bicontinuous. =

REMARK 3.20. The assumptions of Theorem 3.19(c) probably imply that 7 is locally
A-bicontinuous. We do not know how to prove this fact. However, the final result is not
affected. We also do not know how to prove Theorem 3.19(a) without the assumption
that I', A are (<k(FE))-generated. (J

There is a variant of translation-likeness which we shall use in the context of diffeo-
morphisms. Suppose that f, g € Diff ([0, 1]). If the derivative f’ of f is a-continuous and
¢’ is B-continuous, then (i) for some K,L > 0, (fog)' is (K -a+ L - 3)-continuous. Also,
(ii) for some M > 0, (f~!)" is M - a-continuous. (iii) A similar fact holds for higher
derivatives.

Let I' € MC, and assume that K -a+ L -3 € I for every ,3 € I' and K,L > 0.
Consider G = {f € Diff(]0, 1]) | for some o € I', f’ is a-continuous}. By (i)-(ii), G is
a group, and by (iii), the analogous fact for Diff " ([0, 1]) is also true. So I' need not be a
modulus of continuity in order for G to be a group. Let us call such a I' a modulus of
differentiability.

We do not deal with differentiability in this work, but we shall show here that if I" is a
modulus of differentiability and (LIP(X))"™ C HEC(Y), then 7~ is locally I'-continuous.
This is the analogue of Theorem 3.16, and Theorem 3.15 has an analogue too. The
proofs use the additional assumptions that X is of the second category, and that I" is
countably generated. On the other hand, the infinite-closedness of G is not needed, and
the assumption of decayability is replaced by a much weaker property.

DEFINITION 3.21. Let X be a topological space, A be a partial action of a topological
group H on X and G < H(X). Let x € X. We say that X\ is compatible with G at x if
there is W € Nbr(eg) such that for every h € W there are U € Nbr(z) and g € G such
that U C Dom(hy) and hy[U = g|U.

We say that A is compatible with G if A is compatible with G at every = € Fld(\). O

The following lemma replaces Lemma 3.11.

LEMMA 3.22. Suppose that:
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(i) X is a metric space, G < H(X), H is a topological group and H is of the second
category, X\ is a partial action of H on X, x € F1d()\), and X is compatible with
G at x.
(ii) Y 14s a metric space and 7 : X 2 Y.
(iii) I' is a countably generated subset of MC, cl<({~v}) CI" and K -y € I' for every
vyeI and K > 0.
(iv) For every g € G, g7 is I'-bicontinuous at 7(x).

Then Q(x) holds, where

Q(z): For every W € Nbr(ep) there are T € Nbr(z), a nonempty open subset V.C W
and v € I' such that for every h € V: T C Dom(hy) and (hy)"I7(T) is y-bicontinuous.

Proof. For every h € H denote hy by h. Let W € Nbr(ey). We may assume that
for every h € W there are U, € Nbr(z) and g, € G such that U, C Dom(h) and
hatU = gnlU.

We verify that () for every h € W there are r,, > 0 and ~, € I" such that B(z,rp) C
Dom(h) and h7|7(B(x,r1)) is v4-bicontinuous. Let Uy, g, be as above. Then (gn)”
is I'-bicontinuous at 7(x). Let 7, € I' and T € Nbr(7(z)) be such that (gn)7 [T is vyp-

bicontinuous, and let r; > 0 be such that B(z,r,) C Uy and 7(B(z,7,)) C T. Obviously,
W17 (B(x,mh)) = (WIB(x,m1))" = (g B(@,))" = (gn)" IT(B(x,71)).

So A7 |7(B(z,ry) is -bicontinuous. That is, (*) holds.

Let Iy = {vi | i € N} be such that I' = cl<(Iy), and assume that {j | v; = v} is
infinite for every ¢ € N. Set
K; = {h eWw ‘ B(m, H—Ll) C Dom(ﬁ) and h" |7 (B (m, H_%)) is ’yi—bicontinuous}.
By (%), U;en Ko = W. We show that for every i, K is closed in W. Set B; = B(x, HLI))
Let h € W —K;. So there are yy,y, € 7(B;) such that (i) d(h™ (y1), h™(y2)) > ~i(d(y1, y2))
or (i) d(h7(y1), A" (y2)) < 7, *(d(y1,y2)). We may assume that (i) happens. For £ = 1,2
let T; be an open neighborhood of A7 (y,) such that d(Ty,T5) > ~;(d(y1,y2)). Set Sp =
7 Y(Ty) and 2y = 77 (y;). Let Vo = {k € W | 21,25 € Dom(k), k(z1) € S1 and k(zs) €
Sa}. So Vp is open. We show that V) contains h and is disjoint from K;. Clearly,
h(ze) = 7= Y(h™(ye)) € 77 H(Ty) = S¢, hence h € Vy. If k € Vp, then k(z;) € S; and
so k() € 7(S¢) = Ty. Hence k™ |7(B;) is not ~;-continuous, namely, k ¢ K;. Since
W is of the second category and every K, is closed, there is n such that int(K,) # 0.
Define V = int(K,,), T = B(x, n+r1) and v = 7,. Then V, T and + are as required in the
lemma. =
DEFINITION 3.23. Let X be a metric space, H be a topological group A be a partial
action of H on X and x € Fld(\). The action A is said to be regionally translation-like
at x if there is W, € Nbr(eg) such that for every nonempty open V' C W, such that
V x {z} C Dom(\) there are:

(i) U =U,,y € Nbr(z) and a dense subset of U, D = D, v;
(ii) a point z = 2z, v, a radius r = r, y > 0, and a constant K = K,y > 0;
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such that for any distinct Zo,Z; € U N D there are n < K - m, a sequence z =
20,21, --52n € X and hq,..., hy, € V such that z, € B(z,r), and for every i = 1,...,n,
Zo, Z1 € Dom((hi)x), (hi)a(Zo) = zi—1 and (h;)A(Z1) = 2.

If \ is regionally translation-like at every x € F1d(\), then A is said to be a regionally
translation-like action. [

The next proposition is a counterpart of Proposition 3.13.

PROPOSITION 3.24. Let E be a normed vector space, F' be a dense linear subspace of E
and X be an open subset of E. Then )\%;FFX is regionally translation-like.

Proof. Write A = A?FFX and define W, = T(E; F'). Let V. C W, be open and nonempty,
and suppose that V x {2} C Dom()). Choose v € F and s > 0 such that V; := {trZ |
u € BF(v,8)} CV and Vi x B¥(z,s) C Dom(\). Define z, v =v+z,r =1,y = 5/2,
Usv = B(z,s/4), Dyv =Up v N(z+ F) and K, v = 2. Tt is left to the reader to verify
that the above satisfy the requirements of regional translation-likeness of A at . =

The following lemma is a counterpart of Lemma 3.14.

LEMMA 3.25. Let X be a metric space, and A be a partial action of H on X. Suppose
that x € Fld(X), and X is regionally translation-like at x. Let Y be a metric space and
T: X 2Y. Let I' C MC, and suppose that for every vy € I' and K > 0, K -~y € I'.
Also assume that Q(x) of Lemma 3.22 holds. That is, for every W € Nbr(ey) there are
U € Nbr(z), a nonempty open subset V.C W and v € I' such that U C Dom(hy) and
(hx)TI7(U) is y-bicontinuous for every h € V.. Then 71 is I'-continuous at 7(x).

Proof. Let W, be as ensured by the regional translation-likeness of A at . By Q(z),
there are U € Nbr(x), a nonempty open V C W, and v € I such that for every h € V:
U C Dom(hy) and (hy)7[7(U) is y-bicontinuous. So V' C W, and V x {z} C Dom(\).
We apply the definition of regional translation-likeness to V. Write S = U, v, D = D, v,
z2=2yv, T =1y and K = K, y.

Let w = 7(z), B = B(z,r) and C = 7(B). Since C € Nbr(w), we conclude that
e :=dwY —-C) >0 Let R=7(UnNS)and M = Kr/e. Since v € I', we have
M-~vel.

We show that 77| R is M - y-continuous. Suppose by contradiction that this is not
true. For h € H denote hy by h. Hence there are jjo, 71 € R such that d(7—1(5o), 7 (1))
> M - y(d(Jo,91)). Since D is dense in S and §o,§1 € 7(S), we may assume that
Y0,91 € T(D). For £ = 0,1 let , = 7 (). Hence Zo,Z; € D. So there are n < %,
z = 20,21,.--,2n and hy,...,h, € V such that z, € B, and for every i = 1,...,n,
Zo,T1 € DOHl(iLi>, iLl(.’i‘Q) = z;_1 and iLl(.’i‘l) =z. Fori=1,...,nlet w; = T(Zﬁ)

In the space Y we have: wg = w; for every i = 1,...,n, fALZ(QO) = w;_; and h{(gl) =
w;; and w, ¢ C. Every h; belongs to V, hence iL[ [7(U) is ~-bicontinuous. Also,
Fo, 71 € T(U), so d(w;—1,w;) < v(d(Fo,71)). Hence

e=dw,Y - C) < dw,wy,) = d(wo, wn) <> _ d(wi_y,w;) < n-y(d(5o, 1))

Kr =t Kr

Kr o o
< d(.fo,fil) : W(d(yanl)) < M- ’Y(d(ﬂo,%)) : ’V(d(y()vyl)) = Kr/e =e

A contradiction, so the lemma is proved. =
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THEOREM 3.26. Assume the following facts.

(i) X is a metric space, G < H(X), H is a topological group and H is of the second
category, X is a partial action of H on X and x € F1d()\).

(ii) X is compatible with G at x.

(iii) A is regionally translation-like at x.

(iv) I' is a countably generated subset of MC, cl<({y}) C I', and K -y € I' for every
vyelI and K > 0.

(v) Y is a metric space and 7: X 2 Y.

(vi) For every g € G, g7 is I'-bicontinuous at 7(x).

Then 71 is I'-continuous at 7(z).

Proof. Combine Lemmas 3.22 and 3.25. =

3.4. Affine-like partial actions. The goal of this part of the chapter is the following
final theorem.

THEOREM 3.27. Let (E,X,S,&) be a subspace choice system with dim(E) > 1, Y be an
open subset of a normed space F, I' be a (<k(FE))-generated modulus of continuity and
7: X 2Y. Suppose that (LIP(X,S,E))” C HXC(Y). Then T is locally I'-bicontinuous.

This parallels Theorem 3.16, but has a stronger conclusion. Whereas in 3.16 the
conclusion is that 7! is locally I'-continuous, 3.27 says that 7 is locally I'-bicontinuous.

DEFINITION 3.28. (a) A subset D of a metric space X is called a metrically dense subset
of X if for any x,y € X and € > 0 there are 1 € B(x,e) N D and y; € B(y,&) N D such
that d(z1,y1) = d(z,y). Note that metric density implies density.

(b) Let X be a metric space, H be a topological group and A be a partial action
of H on X. For h € H denote h) by h. Let z € X. We say that \ is an affine-like
partial action at z if the following holds. For every V € Nbr(ey) and U € Nbr(zx)
there are n = n(z,V,U) € N, Uy = Uy(z,V,U) € Nbr(z) and D = D(z,V,U) C Uy
such that Uy C U, D is metrically dense in Uy, and for every z1,y1,x2,y2 € D: if
d(z1,11) = d(z2,y2), then there are hy,...,h, € V such that hio--- szn(ml) = Io,
hio--- Oﬁ7l(y1) = y9 and iLiOili+10 Oizn({ml,yl}) CU forevery 1 <i<n.

If \ is affine-like at every € Fld()\), then X is said to be an affine-like partial action.

(c) If H is a group, A C H and n € N, then A" ={ay---a, | a1,...,a, € A}. Let A
be a partial action of a topological group H on a topological space X. If h € H then h)
is denoted by h. For U C H and Wy, W5 C X define

UrWeWel — fhy o ohy | hy,... by € U, Wy C Dom(hjo -+ oh,) and
hio--- Oiln(Wl) C Wy for every i =1,...,n}. O
We shall prove two intermediate main facts. They roughly say the following.

(a) If X is an open subset of a normed space F, and F is a dense linear subspace of
E, then AYF}X is affine-like.

(b) Suppose that A is a decayable affine-like partial action of H on X, 7: X 2 Y, I' is
a countably generated modulus of continuity, and (k)7 is locally I'-bicontinuous
for every h € H. Then 7 is locally I'-bicontinuous.
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We start with the proof of (a). When proving the affine-likeness of )\f;FfX at z,
it is easier to deal first with z’s which belong to F N X. To conclude that AL }1X is
affine-like at every x € X, we use the observation that if A is affine-like at every x € C,
and Uy(z,V,U) and n(z,V,U) depend on z € C' and V in some uniform way, then X is
affine-like at every x € cl(C).

PROPOSITION 3.29. Assume the following facts.

(i) X is a metric space, X\ is a partial action of H on X, C C FId(N), ro > 0,
t: Nbr(eg)xC — Nbr(eg), i : Nbr(eg)x(0,79) — N and s : Nbr(ey)x(0,79) —
(0,00). Denote o(V,y) by V.

(ii) For everyy € C, X is affine-like at y, and for every V € Nbr(eg) and r € (0,7q),
n(y,Vy, B(y,r)) < a(V,r) and Uy(y, Vyy, B(y,r)) 2 B(y,5(V,r)).

(iii) For every x € cl(C) and W € Nbr(ey) there are Uy € Nbr(z) and V € Nbr(ey)
such that for every y € CNUy, V, CW.

Then for every x € cl(C), X is affine-like at x. Also, if r < rq, then n(z,V, B(z,r)) and
Uo(z,V, B(z,r)) can be taken to be ii(V,r/2) and B(z, 15(V,r/2)) respectively.

Proof. Let = € cl(C), W € Nbr(eg), r € (0,79) and U = B(z,r). There is V €
Nbr(ep) and U; € Nbr(z) such that for every y € Uy NC, V, C W. Define Uy =
Uo(z,W,U) to be B(z,%5(V,r/2)). Let y € CNUyNU;. Then Uy C B(y,5(V,r/2)) C
Uo(y,Vy, B(y,7/2)). Hence D(y,Vy, B(y,r/2)) N Uy is metrically dense in U. Let D =
D(z,W,V) = D(y,Vy,B(y,r/2)) N Uy and n = n(z,W,U) = a(V,r/2). We show that
Up, D and n fullfill the requirements of affine-likeness.

Let x1,22,91,y2 € D be such that d(z1,y1) = d(x2,92). Let hy,...,h, €V, be as
ensured by the affine-likeness of  at y. So for every i =1,...,n, h;o --- ohy({z1,31}) C
B(y,r/2). Clearly, 5(V,r/2) < r/2 and d(z,y) < 3(V,7/2). So B(y,r/2) C B(z,r) =U.
Since y € Uy, V,, € W. So hy, ..., h, fulfill the requirements needed to demonstrate that
A is affine-like at . m

If X is an open subset of R, then A(R)[X is not affine-like. So in what follows we
assume that dim(E) > 1.

The group L(E) has a property similar to affine-likeness. But the “affine-likeness” of
L(E) applies only to pairs of pairs 1, y1, 22, y2 in which z; = 25 = 0%,

LEMMA 3.30. Let E¥ be a normed space with dimension > 1, E1 be a dense linear subspace
of E andV € Ner‘(E;El)(Id). Then there is n = n(V) € N with the following property:
(¥) For every Wi € Nbr?(0) there is Wy € Nbr”(0) such that Wy C Wy and for every
Ty, 29 € Wo N Ey: if |z1]| = |22, then there is S € VI"W2Wil sych that S(x1) = xo.

Moreover, if in the above V. = BYFF)(1d,r) and W, = B¥(0,s), then Wy can be
taken to be BZ(0,s/(1+r)"V)),

Proof. The proof of the lemma relies on three easy claims.

CLAM 1. Let H? be the 2-dimensional Hilbert space. For every K > 1 and V €
2

NbrH )(Id) there is n = n(V,K) € N such that for every x1,z, € H?: if 1/K <

lz1|l/llx2]] < K, then there is T € V™ such that T'(x1) = 5.
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Proof. We may assume that VV = V' ~1. For some angle vy > 0, U contains all rotations
Rot.,, v € [0,70]. For some g9 > 0, U contains all isomorphisms T (x) = (1 + ) where
e € [0,e0]. It is left to the reader to verify that n(U, K) = [r/70] + log K /log(ep + 1) + 2
is as required.

We do not prove Claim 2 which is well-known and easy. In fact, the best possible
constant in Claim 2 is v/2.

CrLAIM 2. For every 2-dimensional normed space E there is an isomorphism T between
E and the 2-dimensional Hilbert space H? such that |T|| <1 and ||T~'|| < 3v/2.

CrAamM 3. Let E be a normed space, E1 be a dense linear subspace of E, F be a 2-
dimensional linear subspace of E1 and T € IL(F), then there is Ty € L(E; E;) extending
T such that d(T1,1dg) < 3d(T,1dF).

Proof. Let x1, 22 be a basis for F' such that ||z1| = d(z1,span({z2})). For i = 1,2 let
©1,2 € F* be such that ¢;(z;) = d;; - ||z}, and let ¥; € E* be such that 1; extends
w; and ||| = ||¢ill. Set Fy = ﬂle ker(p;), hence F@ Iy = E. For x € E let & € F and
T € Fi denote the components of x in F' and Fj respectively. If £ = ax; +bxo, denote ax
and bxy by ! and 22 respectively. Let x € F. Then |p1(2)| = ||2}]| = d(, span({z2})) <
2. So [[¢1]] < 1. Hence [|¢1|| < 1. It follows that ||#!]| = [¢1(z)] < ||z|. Also,
122 < 2] + [|&*] < 2[|2[|. Hence [2(2)] = [|42[| < 2[|2]|. So [[¢2]] = [l2|l < 2. Hence
18] = [a(2)] < 2lall. So 3] < 2] + 3] < 3lje].

Let T} be defined by Ty (x) = T(Z) + Z. Hence Ty *(z) = T~*(2) + Z. Then for every
ze B, |(Ty —ldp)(2)|| = (T —1dp)(@)[| < |T = 1dp| - [[&] < 3T —Idp| - [l«]. That is,
|y —Idg|| < 3|T—1dp||. A similar computation shows that || 7, * —Idg|| < 3|7~ —Idp||.
So d(Tl,IdE> S 3d(T, IdF)

Also for every x € E, Ti(x) —x € F C Fy. So T1(FE1) = Eq, that is, T1 € L(E; E4).
This proves Claim 3.

We return to the proof of the lemma. Let V € Ner‘(E;El)(Id). We may assume that
V = BYEE)(Idg, 7). Let n = n(BH‘(HQ)(Ide,T/Q\/E),?)\/i) be as ensured by Claim 1.

Let 1,29 € E; be such that ||1]] = ||z2] # 0. We show that there is S € V" such
that S(z1) = z2. Let F be a 2-dimensional subspace of F; containing z; and x2, and
T : F — H? be as ensured by Claim 2. Since ||T|| < 1 and |7~ < 3v/2, it follows that
1/3v2 < |T(z1)||/|T(z2)|| < 3v2. Hence there is Sy € (BXH") (Idg2,7/9v/2))" such
that So(T(z1)) = T(x2). Let So = Spq© -+ ©Son, where So; € BXH) (Idg2,r/9v/2),
and define Sy = T71SoT and S;; = T1Sp,;T. Then Si(z1) = x5 and S; = Syq0 -
081 n. Clearly, S1; —Idr =T 1(Sp; — Idg=)T, and hence

1S =Idpll < 77| 1(So,s — Tdg=)l| - 1T < 3V2 - [[(So,i —Idpz)]-
The same inequality holds for (S;,;)~!. So
d(1dp, S1:) = [[S1: = 1dp| + [1(S1:) " = 1dg|
< 3V2-[[(Soi — Tdg2) || +3v2- [[((So.0) ™"~ Tdge)|
=3v2-d(Sos,Idg2) < 7/3.
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By Claim 3, there are Sy ; € L(E; E;) extending S ; such that d(Idg, S2;) <3-d(Idp, S1,)-
Hence Sy ; € BL(E;El)(IdE,r), andso S :=S8310---085, € (BH‘(E?El)(IdE,r))” =Vn.

Let Wy € Nbr?(0), and suppose that W; D B¥(0,s). Set Wy = BF(0,s/(1 4 r)").
For any L € V, ||L|]] < 1+ r, hence for every i < n and L' € V¢, |L’|| < (1 +7)% So
L'(Wy) C W, for every i < n and L' € V. This proves that n fulfills the requirements
of the lemma. m

The following lemma is analogous to Proposition 3.13.

LEMMA 3.31. Let E be a normed space with dimension > 1, F' be a dense linear subspace
of E and X C E be open. Then )\i;FfX is an affine-like partial action.

Proof. First we show that for every x € XN F, )\E;FFX is affine-like at x. Let Y = X —x.
The function y from A(E; F')U X to A(E; F)UY defined by: x(u) =u—x, z € X; and
x(h) = h¥"==, h € A(E; F), is an isomorphism between the partial actions \Y**}X and
)\f;FFY. Also, x[X is an isometry. So it suffices to prove that )\f;FfY is affine-like at 0%.
We rename Y and call it X.

Denote A(E; F) by A, T(E; F) by T and L(E; F) by L. Let r,s > 0, V = B*(Id, ),
U = B¥(0, s), and assume that U C X. We shall find n = n(0¥,V,U), Uy = Uy(0F,V,U)
and D = D(0F,V,U) which demonstrate that A is affine-like at 0F. Let m = n(B%(Id, r)
be as ensured by Lemma 3.30. Define ¢t = min(r,s)/2, Wi = B¥(0,t) and Wy =
BE(0,t/(1+r)™), and set n =m +2, Uy = W, and D = Uy N F.

It is obvious that D is metrically dense in Uy. Let z1,y1,22,y2 € D be such that
|z1 — w1l = [lez — y2l|. For £ = 1,2 let g = tr¥, . Since |[z1|, [|22] < %, it fol-
lows that g,90 € BT(Id,r). Clearly, g;(z¢) = 0, and since zy,y, € Uy = %Wg, it
follows that gy(y¢) € Wo. By Lemma 3.30, there are hy,...,h,, € B“(Id,r) such that
hio -+ ohm(g1(y1)) = 92(y2) and for every i = 1,...,m, hjo - ochp(g1(y1)) € Wi. Tt
follows that g;l, h1,...,hm, g1 are as required in the definition of affine-likeness.

To show that A is affine-like at points that do not belong to F' we shall apply Propo-
sition 3.29. Let z € X. Choose ry > 0 such that B(z,2ry) C X and set C = B(x,rg)NF.
By the preceding argument, A is affine-like at every y € C. Fory € C and V € NbrA(Id)
we define V,, = Vv,

We next define functions 7 : Nbr® (Id) x (0, 79) — N and 5 : Nbr® (Id) x (0, 79) — (0, 00)
as needed in 3.29. Let V = B“(Id,r) and s € (0,79). Set m = n(B(Id,r)), where
n(BY(1d,r)) is as ensured by Lemma 3.30. Define n(V,s) = m + 2, set ¢t = min(r, s)/2
and define 5(V,s) = t/2(1 + r)™. It was proved in the preceding argument that

n(0F,V, B(0¥,5)) = n(V,s) and Uy(0¥,V,B(0F, s)) = B(0¥,5(V,s)).
Since tr, defines an isomorphism of partial actions, which is an isometry on X, and since
tr, takes 0% to y, it can be concluded that

n(y, V™, BE(y,s)) =n(V,s) and Uy(y, V™, BE(y,s)) = B(y,5(V,s)).

We have shown that clauses (i) and (ii) of Proposition 3.29 hold.

Recall that z € X, B(z,2ry) € X and C = B(x,79)NF. Letr > 0and W = B*(Id, r).
We shall find U; and V as required in clause (iii) of 3.29. Let A = T(E)-L(E; F). Clearly,
A < A(E). Also, A is dense in A. Let W = B&(Id,r), g=try and V; = W9 . Note that
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W =W NA. Let t > 0 be such that (B*(1d,¢))3 C V; and set V = B(Id, t). Define
V =B%Id,t) and U; =z + BF(0,t).
Let y € Uy. Then tr, € g - V and so

(V) Cg V-V (V) gt =g (V) g7 C (V)7 =TT

That is, (V)" C W. If y € F, then V% C A. In particular, if y € U; N F, then
V& C WNA = W. This implies that clause (iii) of Proposition 3.29 holds. By
Proposition 3.29, A is affine-like at . =

DEFINITION 3.32. (a) Let X be a metric space and = € X. We say that X has the
discrete path property at (X is DPT at x) if the following holds. There is U € Nbr(z)
and K > 1 such that (%) for every y,z € U and d € (0,d(y, z)) there are n € N and
Ug, - .., Up € X such that n < K -d(y, z)/d, d(y,ug), d(un, z) < d and d(u;—1,u;) = d for
everyt =1,...,n.

If X is DPT at every x € X, then X is called a DPT space.

(b) Let X be a metric space and z € X. X has connectivity property 1 at x (X
is CP1 at x) if for every r > 0 there is r* € (0,r) such that for every ' € X and
" > 0: if B(z',r") C B(z,r*) and C is a connected component of B(z,r) — B(z',r'),
then C N (B(z,r) — B(z,r*)) # 0.

If X is CP1 at every € X, then X is called a CP1 space. [

PROPOSITION 3.33. Let X be an open subset of a normed space E. Then X is DPT and
CP1.

Proof. Let z € X and s > 0 be such that B¥(z,s) C X. First we show that X is DPT
at z. Let y,2 € BE(x,s) and d € (0,]|z — y||). The points u; =y +1i-d(z —y)/||z — |,
i=0,...,[|lz — yl||/d] demonstrate the DPT-ness at . So K = 1.

Let r > 0. Take r* to be any member of (0, min(r,s)). Let 2’ and v’ < r* be such
that BE(2',r") C B¥(z,r*). It is trivial that BF(z,s) — B¥(2',r') is connected. So
there is only one component C' of B(x,r) — BE (2’ ,r’) which intersects BZ(z,s), and
C contains BE(z,s) — BE(2',r'"). So C intersects B(z,r) — B¥(z*,r). Trivially, any
connected component of B(z,r) — BF(2/,r") which is disjoint from B¥(x,s) intersects
B(z,r)— BE(z*,r). m

Suppose that X is an open subset of a normed space £, G < H(X), 7: X =Y
and GT C HEC(Y). Loosely speaking we shall prove that if (1) A(E)[X C G, then
7 is locally I'-bicontinuous. Obviously, (1) is flawed because A(F)[X is not a set of
homeomorphisms of X, and hence not a subset of G. The correct statement which
replaces (1) has the assumption that A¥ is compatible with G. We do not know if this
assumption suffices unless F is a normed space of the second category, or in particular, a
Banach space. Instead we assume that )\g is G-decayable, and that G is infinitely closed.
These assumptions work for every normed space E.

The following remains open.



Reconstruction of manifolds from subgroups of homeomorphism groups 69

QUESTION 3.34. Let E, F be normed spaces of the first category, 7 : E = F and I' be
a countably generated modulus of continuity. Suppose that A(E)™ C HXC(F). Are T or
771 or both locally I'-continuous? O

The core fact that leads to the final result of 3.27 is stated in the following theorem.
THEOREM 3.35. Assume the following facts.

(i) X and Y are metric spaces, x € X and 7 : X £ Y. Also, X is DPT at x, and
Y is DPT and CP1 at 7(x).

(il) G < H(X), X is a partial action of a topological group H on X, a € MBC,
z € Fld(N), z is a A-limit-point, G is a-infinitely-closed at x and for some
N € Nbr(z), A is (o, G)-decayable in Hx(x) N N.

(i) I" is a modulus of continuity, and I' is (<k)-generated, where k = min({x(z,
Va(z)) |V € Nbr(eg)}).

(iv) There is U € Nbr(z) such that for every g € G|U|: if g is aoa-bicontinuous,
then g7 is I'-bicontinuous at 7(x).

Then 7 1s I'-bicontinuous at x.

We next introduce the notion of almost I'-continuity. The proof of Theorem 3.35 is
broken into two claims. The first one, Lemma 3.37(b), says that if G fulfills assumptions
(1)—(iv) of 3.35 and G™ C HEC(Y), then 7 is locally almost I'-continuous. This part of
the proof does not use the DPT-ness or the CP1l-ness of X or Y. The second claim is
stated in Theorem 3.40. It says that if X and Y are DPT and PC1 metric spaces, and
7: X 2Y is locally almost I'-continuous, then 7 is locally I'-bicontinuous.

DEFINITION 3.36. (a) Let X, Y be metric spaces, « € MC, I" be a modulus of continuity
and f: X — Y. We say that f is almost a-continuous if f is continuous, and for every
211,02, € X: i d(1,91) = (@3, 32), then d(f(x2), f(y2)) < a(d(f(21), f(31))). The
notion f is almost a-continuous at x means that there is U € Nbr(z) such that f|U is
almost a-continuous. We say that f is almost I'-continuous at x if for some v € I', f
is almost vy-continuous at x, and f is said to be locally almost I'-continuous if for every

x € X, f is almost I'-continuous at x.
n

(b) If g: A — A, then g°" denotes go ---og. [

The following lemma has also a variant in which H is assumed to be of the second
category, but decayability is replaced by compatibility, and infinite-closedness is dropped.

LemmA 3.37.
(a) Suppose that the following facts hold.
(i) X andY are metric spaces, v € X and 7: X 2Y.
(ii) A is a partial action of a topological group H on X, x € Fld()\) and X is
affine-like at x.
(iii) I' is a modulus of continuity and v € I.
(iv) T € Nbr(z), V € Nbr(eg), VT C Dom(\) and for every h € V, (hy)" [7(T)

is y-bicontinuous.

Then T s almost I'-continuous at x.
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(b) Suppose that the following facts hold.

(i) X and Y are metric spaces, v € X and 7: X 2 Y.

(il) G < H(X), A is a partial action of a topological group H on X and o € MBC.
Also, x € F1d()\), z is a A\-limit-point, G is a-infinitely-closed at x, for some
N e Nbr(x), A is (o, G)-decayable in Hx(x) NN, and X is affine-like at x.

(i) I" is a (<k)-generated modulus of continuity, where k = min({x(z, Va(x)) |
V € Nbr(en)}).

(iv) There is U € Nbr(x) such that for every g € G|U|: if g is oo a-bicontinuous,
then g™ is I'-bicontinuous at 7(x).

Then 7 s almost I'-continuous at x.

Proof. (a) Let n = n(z,V,T), Uy = Up(x,V,T) and D = D(x,V,T) be as ensured by
the definition of affine-likeness (Definition 3.28(a)). For h € H denote hy by h. Set
B =~v°" so 3 € I'. Suppose that x1,y1,22,y2 € D and d(x1,y1) = d(x2,y2). Choose
hi,...,h, €V as ensured by the definition affine-likeness, and define h = o}, h;. So
fl(ml) = To, iL(yl) = yy and hio - OiLn({.’El,IQ}) C T foreveryi=1,...,n. Also, for ev-
eryi=1,...,n, (h;)"|7(T) is v-continuous. Hence d(7(22), 7(y2)) :d((T(.’El))iL, (T(yg))ﬁ)
< B(d(r(x2),7(y2))). We have shown that 7D is almost S-continuous. Relying on the
fact that D is metrically dense in U, we conclude that 7[Uj is almost [-continuous. So
7 is almost I'-continuous at z.

(b) By Lemma 3.11, there are T' € Nbr(z), V € Nbr(ey) and v € I" such that for
every h € V: T C Dom(hy) and (hy)7[7(T) is 7-bicontinuous. By part (a), 7 is almost
I'-continuous at . m

The next two propositions are ingredients in the proof of Theorem 3.40.

PROPOSITION 3.38. Let x belong to a metric space X, and suppose that X is DPT at x,
that K and U satisfy condition (%) of Definition 3.32(a) and that W € Nbr(z). Then
there is T € Nbr(z) such that: (xx) T C W, and for every y,z € T and d € (0,d(y, z))
there are n € N and ug,...,u, € W such that n < K -d(z,y)/d, d(z,ug), d(un,y) < d,
and d(u;,u;41) = d for every i =0,...,n— 1.

Proof. Let s > 0 be such that B(xz, (2K + 3)s) C U NW. We show that T := B(z, s) is
as required. Let y,z € T and d € (0,d(y, 2)). Let n € N and wy, ..., u, be as ensured in
(%) of 3.32(a). Then for every i = 1,...,n,
d(ug, ) < d(ug, ug) + d(ug, y) + d(y,z) <id+d+s<nd+d+s
< Kd(z,y) +2s+s< K-2s+2s+s < (2K + 3)s.
Sou; e W. m

PROPOSITION 3.39. Let X,Y be metric spaces and 7 : X =Y. Suppose that x € X, 7 is
almost a-continuous at x, and 'Y is CP1 at 7(z). Then there is U € Nbr(z) such that for

all x1,y1, 22,92 € U: if d(x2,y2) < d(x1,y1), then d(T(x2),7(y2)) < a(d(r(z1),7(y1))).

Proof. Let T € Nbr(x) be such that 7|7 is almost a-continuous, and s > 0 be such
that B(7(x),s) C 7(T). Choose s* € (0,s) such that for every y € Y and ¢ > 0: if



Reconstruction of manifolds from subgroups of homeomorphism groups 71

B(y,t) € B(7(x), s*), then every connected component of B(7(z),s) — B(y,t) intersects
B(7(x),s) — B(1(x),s*). Let r* > 0 be such that
() m(B(z,r)) C B(r(x), s*),
and let 7 € (0,7*/3) be such that U := B(x,r) satisfies the following condition:
(if) diam(7(U)) + a(diam(7(U))) < s*.
We show that U is as required. Let x1,y1,22,y2 € U and d(z9,y2) < d(x1,y1). If

d(x2,y2) = d(x1,y1), then by the choice of T, and since U C T, d(7(z2),7(y2)) <
a(d(T(x1),7(y1))). Suppose next that d(z2,y2) < d(x1,y1). Let r1 = d(x1,31), and set
s1 = a(d(m(x1),7(y1))). By the almost a-continuity of 7T,

(ii) 7(S(z2,7m1)) C B(r(x2), 1 + €) for every € > 0.
Since r < r*/3, d(z2,x) < r and r; = d(z1,y1) < 2r, we have

(iv) B(z2,71) C B(z, 7).
The following three facts: d(7(z),7(x2)) < diam(r(U)), s1 < a(diam(r(U))) and
diam(7(U)) + a(diam(7(U))) < s*, imply that

(v) for all sufficiently small €, B(7(z2),s1 +¢) C B(7(x), s*).
Let z € Y — B((z2),51 + ). We show that 7-1(2) ¢ B(x2,71). If 2 & B((z), s), then

~Y(2) € B(x,r*) D B(xo,71). Suppose that z € B(7(x), s), and let C' be the connected

component of z in B(7(z),s) — B(7(z2),s1 +¢). Hence

(vi) €N (B(r(x),s) — B(7(x),5%)) # 0.
Since 7(B(x2,71)) C 7(B(x,r*)) C B(7(x), s*), it follows that

(vii) 77HC)N (X — B(wa,71)) # 0.
From the facts: 7(S(za,71)) C B(7(%2),s1+¢) and CNB(7(x2), 51 +¢) = (), we conclude
that

(viii) 771(C) N S(xa, 1) = 0.
The connectedness of C' and hence of 771(C) and facts (vii) and (viii) imply that

(ix) 77Y(C) N B(xa,7) = 0.
This implies that 771(z) & B(x2,71). Since the above argument holds for all sufficiently
small ¢, it follows that for every 2 € Y: if 2 ¢ B(7(x2),51), then 771(2) ¢ B(xa,71). But
y2 € B(x2,71), so 7(y2) € B(7(x2),s1). That is, d(7(x2),7(y2)) < $1 = a(d(x1,91)). =
THEOREM 3.40. Let X and Y be metric spaces, xg € X, 7 : X 2Y and a € MBC.

Suppose that X is DPT at xo, Y is DPT and CP1 at 7(xg), and T is almost a-continuous
at xog. Then there is M > 0 such that T is M - a-bicontinuous at xg.

Proof. We first show that there is some M > 0 such that 77! is M -a-continuous at 7(zp).
By Proposition 3.39, by the fact that Y is CP1, and since 7 is almost a-continuous at
xo, there is U € Nbr(zg) such that for every x1,y1,x2,y2 € U: if d(z2,y2) < d(z1,11),
then d(7(z2),7(y2)) < a(d(r(x1),7(y1))). It is assumed that X is DPT at xg, so there
are W € Nbr(zg) and K > 1 such that W C U, and W, K satisfy condition (x) of
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Definition 3.32(a). Let V' C W be an open neighborhood of z satisfying condition () of
Proposition 3.38. Fix any distinct 1,31 € V and set dy = d(z1,y1), e1 = d(7(x1), 7(y1)),
Vi = B(xo,d1/2) NV and V5 = 7(V4).

We show that 7 Vo is dy/er - (K + 2) - a-continuous. Let u,v € V5 be distinct and
set d = d(77(u), 771(v)). Since 771 (u), 77 (v) € Vi, d < dy = d(x1,91). So there are
n< K- M and 2, ..., 2, € U such that d(z1, 20), d(zn,v1) < d and d(z;,2;4+1) = d
forall i =0,...,n — 1. By the choice of U,

d(r(21),7(20)), d(7(zn), 7(41)), d(7(2:), 7(2i11)) < ald(r7™ (u), 7771 (v))) = a(d(u,v)).

Hence

n—1

d(r(21),7(41)) < d(7(21),7(20)) + D d(7(2:),7(2i1)) + d((z0), 7(41))

< (n+2)a(d(u,v)) < (Kd(T_‘ngv 3711_)1(1))) + 2>a(d(u, v)).

It follows from the above inequality that

d(t7Hu), 77 (v)) < Kd(xl?yjj)(vijf)(TT_(y(l?))’T_ =
§ KdleJlr 21 ) — @

21
€1

a(d(u,v))

(K +2)a(d(u,v)).
So 771 V; is ‘ei—i - (K + 2) - a-continuous, and hence 7! is locally I’-continuous.

Note that in the above proof we only used the facts that X is DPT at xg, and that
Y is CP1 at 7(zo).

We now turn to the proof that there is M > 0 such that 7 is M - a-continuous at x.
In this part we use the facts that Y is DPT and CP1 at 7(z¢). Let U; € Nbr(zo) and
K > 1 be such that 7(Uy) and K satisfy condition () of 3.32(a) applied to 7(z¢). By
Proposition 3.39, there is Uy € Nbr(zg) such that Uy C Uy, and

(1) for every x1,y1,22,y2 € Up: if d(z2,y2) < d(z1,y1), then d(7(z2),7(y2)) <
a(d(r(z1),7(y1)))-
We apply Proposition 3.38 to 7(z) and 7(Uy), and obtain T' C Y satisfying condition
(x*) of Proposition 3.38. Let U = 7~ }(T). We may assume that

(2) K >2.

Let z,y € U be distinct. Set N = 4Kd(r(x),7(y))/d(z,y) and M = max(1,N). We
show that if 2’3y’ € U and d(2/,y") < d(z,y)/4K, then d(7(2'),7(y")) < M - a(d(z',y')).
Obviously, this implies that 7[(B(zg, d(z,y)/8K)NU) is M - a-continuous.

Let a’,y" € U be such that d(«',y") < d(z,y)/4K and n = [d(z,y)/Kd(z',y")] — 2.
Hence n > 2. Let d = d(7(z),7(y))/n. So there are m < Kn and zg, ..., zm € 7(Up) such
that d(7(z),20), d(zm,7(y)) < d and d(z;—1,2;) = d, i = 1,...,m. Let z; = 771(2).
Denote « by x_1 and y by @,11. For £ € {=1,m + 1} let zp = 7(x¢). The number of
x;’s is m + 3. So the number of distances between consecutive x;’s is m + 2. Hence for
some i € {0,...,m+ 1},
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Jdwy) o dy)

- d(x,
M2 T K ([ - 2) + 2

d(z,y) o dz,y)

R [CX) 2 i)
Kz +1-2+ K K- z5aty

=d(z',y").

That is,
(4) d(=',y") < d(xi—1,x;).

Since the z;’s belong to 7(Up), the x;’s belong to Uy. This is also true for z_; =«
and 2,411 = y because they belong to U C Uy. By (1) and (4),

(5) d(7(«), 7(y")) < a(d(zi-1,2)) = a(d).

Also,
1 1 1
d= ﬁd(T(x)’T(y)) - Wd(T(x),T(y)) < Wd(T(.r),T(y))
[Kd(z’,y’)] -2 Kd(z'y) 1-2
Kd(x',y’) Kd(l'/,y/)

- d(r(z),7(y)) < d(r(z),7(y))

d(x,y) —3Kd(a',y’)

_AKd(r(2),7(y))
d(z,y)

By (5), by the fact M > 1, N and by the concavity of a,

d(r(2), 7(y)) < a(d) < a(Nd(2',y)) < a(M - d(2’,y)) < M - a(d(2’, y)).

We have thus shown that 7[(B(zo, d(sxi’{y)) NU)is M - a-continuous. m

Proof of Theorem 8.35. Let X, x, Y, 7, I' etc. fulfill the premises of 3.35. Then the
assumptions of Lemma 3.37(b) are satisfied. So 7 is almost I'-continuous at z. By
Theorem 3.40, 7 is I'-bicontinuous at z. m

Proof of Theorem 3.27. Let (E, X, S, ) be a subspace choice system, Y be an open subset
of a normed space F, I' be a (<x(FE))-generated modulus of continuity and 7: X 2 Y.
Suppose that (LIP(X,S,&))” € HEC(Y), and we prove that 7 is locally I'-bicontinuous.

For x € X choose S € S such that x € S and denote Eg by D. We wish to apply
Theorem 3.35 to G = LIP(X,S,&), H = A(E; D), a(t) = 15t and A = A\L°}S, so we
check that clauses (i)—(iv) of Theorem 3.35 hold.

In clause (i) we have to check that X is DPT at x and that Y is DPT and CP1 at 7(z),
and this was proved in Proposition 3.33. In clause (ii) we have to check: (1) z is a A-limit-
point; (2) G is a-infinitely-closed at x; (3) for some N € Nbr(x), A is (a, G)-decayable in
NN Hy (x)

(1) Obviously, for every V € Nbr (Id), V) (z) contains a ball with center at z. So z
is a A-limit-point.

(2) Suppose that 3 € MC, K C Hp(Z) and for any distinct &y, ko € K, supp(k1) N
supp(ke) = 0. Then k := oK € H(Z), and k is o (-bicontinuous. Also, if M C Z,

d(x,
d(z,y) — 3K(4—}’(y)

d(z',y') = Nd(2',y).
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and k'(M) = M for every k' € K, then k(M) = M. These observations imply that G is
a-infinitely-closed.
(3) The («, G)-decayability of A at every point of S was proved in Lemma 3.8.
Clause (iii) is given, and clause (iv) holds, since it is assumed that G C HEC(Y).
By Theorem 3.35, 7 is I'-bicontinuous at . We have shown that 7 is locally I"-bicon-
tinuous. m

In Theorem 3.26 we have presented an alternative argument for showing the local I'-
continuity of 7. This method used the Baire Category Theorem, but did not require the
assumptions of decayability of A and the infinite-closedness of G. The same alternative
argument can be employed in the context of affine-like partial actions. It is presented in
the following theorem.

THEOREM 3.41. Assume that the following facts hold.

(i) X is a metric space, G < H(X), H is a topological group and H is of the second
category, A is a partial action of H on X and x € Fld()\).
(i) A is compatible with G at x.
(iii) A is affine-like at x.
(iv) I' is a countably generated modulus of continuity.
(v) Y is a metric space and 7: X 2 Y.
(vi) For every g € G, g7 is I'-bicontinuous at 7(x).
(vii) X is DPT at x andY is DPT and CP1 at 7(x).

Then 1 is I'-bicontinuous at x.

Proof. For h € H write hy = h. The assumptions of Lemma 3.22 hold, so there are
T € Nbr(x), a nonempty open subset V' C H and v € I" such that V' x T C Dom(\) and
h77(T) is y-bicontinuous for every h € V. Note that (h=2)7|7(h(T)) is y-bicontinuous
for every h € V.

Let hg € V. There are S € Nbr(z) and V; € Nbr(hg) such that V3 CV, S C T and
A(Vi x S) C ho(T). Set W = hg'-Vi. Clearly, W € Nbr(ey) and W x S C Dom(\).
Let h € W. So for some h; € V; we have h = hgl - h1. From the facts hy € V4 CV and
S C T, it follows that (1) (h;)7|7(S) is ~-bicontinuous, and since hi(S) C ho(T) and
hi' € V=1, we conclude that (2) (ﬁal)"[T(ﬁl(S)) is y-bicontinuous. (1) and (2) imply
that A7 [7(S) is 7 o y-bicontinuous.

We have shown that there are W € Nbr(ey) and S € Nbr(z) such that W x S C
Dom()), and for every h € W, h7|7(W) is ~y o4-bicontinuous. By Lemma 3.37(a), 7 is
almost I'-continuous at z, and by Theorem 3.40, 7 is I'-bicontinuous at z. =

3.5. Summary and questions. The following final theorem combines the results of
Chapters 2 and 3. Note that part (a) of 3.42 is not a special case of (b).

THEOREM 3.42. (a) Let X,Y be open subsets of the normed spaces E and F respectively,
I'; A be moduli of continuity and ¢ : HXC(X) =2 H5C(Y). Suppose that I' is (<k(E))-
generated. Then I' = A, there is 7 : X =Y such that p(h) = h7 for every h € HKC(X)
and T is locally I'-bicontinuous.

3
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(b) Let (E,X,S,E) and (F,Y,T,F) be subspace choice systems, I'y A be moduli of
continuity and ¢ : HXC(X;S,€) = HYC(Y;T,F). Suppose that I' and A are (<k(E))-
generated. Then I' = A, there is 7 : X =2 Y such that ¢(h) = h7 for every h €
HEC(X;S,E), and T is locally I'-bicontinuous.

Proof. (a) LIPYC(X) € HEC(X) C H(X) and the same holds for Y. So by Theorem
2.8(a) there is 7 : X 2 Y such that 7 induces ¢. Hence (HEC(Y))'F1 = H:C(X). In
particular, (LIP(Y))™ = C HEC(X). Since X 2 Y, k(F) = k(E). So I' is (<k(F))-
generated. By Theorem 3.27, 7~ ! is locally I-bicontinuous. That is, 7 is locally I'-
bicontinuous. Hence H5Y(Y) = (HEC(X))™ € HEC(Y). It is easy to see that if a €
A — I'; then there is h € H(Y') such that h is a-bicontinuous and h is not locally I'-
continuous. This implies that A C I,

Suppose by contradiction that I'—A#(. It is easy to see that there is hEHIIiC(Y)—
HEC(Y). So g:=h™ '€ HC(X). However, g"=hgH%C(Y). A contradiction. So I'=A.

(b) LIPYC(X;S,€) € HEC(X;S,€) C H(X) and the same holds for Y. So by The-
orem 2.8(b) there is 7 : X = Y such that 7 induces ¢. Hence (HXC(X;S,£))" =
HEC(Y;T,F). In particular, (LIP(X;S,€))” € HEC(Y) and (LIP(Y;7, F)T L C
HEC(X). By Theorem 3.19(b), I' = A and 7 is locally I'-bicontinuous. m

The technical and abstract formulation of Theorems 3.15, 3.26, 3.35 and 3.41 hinders

the understanding of their essence. The above theorems are better understood through
their application to normed spaces, as stated in the following corollary.

COROLLARY 3.43. Suppose that
(1) (E,X,S,E) is a subspace choice system and G < H(X),
(2) @« € MBC and I C MC,
(3) F is a normed space, Y C F is open and 7: X 2 Y,
(4) for every g € G, g™ is locally I'-bicontinuous.

(a) Assume that in addition to (1)—(4) the following conditions are fulfilled.

(al) For everyx € X, if x € S € S, then )\%;ES 1S is (o, G)-decayable at x.
(a2) For every x € X, G is a-infinitely-closed at x.
(a3) I' is a modulus of continuity.
(ad) T is (<k(E))-generated.

Then 7= 4s locally I'-continuous.
(b) Assume that in addition to (1)—(4) the following conditions are fulfilled.

(b1) For every x € X, if v € S € S, then A\E7"S1S is compatible with G at x.
(b2) For every S € S, Eg is of the second category.

(b3) For everyye€ I and K >0, K-y e T.

(b4) I' is countably generated.

Then 71 4s locally I'-continuous.
(¢) Assume that in addition to (1)—(4) the following conditions are fulfilled.

(cl) For everyx € X, ifx € S €S, then /\f;ES 1S is (a, G)-decayable at x.
(c2) For every xz € X, G 1is a-infinitely closed at x.



76 M. Rubin and Y. Yomdin

(¢3) I' is a modulus of continuity.
(c4) T is (<k(FE))-generated.

Then 7 s locally I'-bicontinuous.
(d) Assume that in addition to (1)—(4) the following conditions are fulfilled.

(d1) For every xz € X, ifx € S € S, then )\f;Es }S is compatible with G at x.
(d2) For every S € S, Eg is of the second category.

(d3) I' is a modulus of continuity.

(d4) I is countably generated.

Then T is locally I'-bicontinuous.

Proof. Parts (a), (b), (c) and (d) follow respectively from Theorems 3.15, 3.26, 3.35 and
3.41. =

There are cases in which the action is translation-like but not affine-like. In such
situations parts (a) or (b) are applicable but (c) and (d) are not, and hence we can only
prove the I'-continuity of 7~ 1.

For spaces of the first category only (a) and (c) are applicable. Part (c) has a con-
clusion stronger than that of (a). However, the final theorem about groups of the form
HEC(X) (Theorem 3.19) can be inferred from either (a) or (c).

The conclusion of (c¢) is stronger than that of (d). But the assumptions of (c¢) are
stronger in some respects than those of (d). Nevertheless, we do not know how to con-
struct a group G to which the reconstruction methods of Chapter 2 apply, and for which
(d) can be applied but (c) cannot.

There are two outstanding open questions. The first is whether the assumption that I’
is (<k(FE))-generated is needed. The second is whether translation-likeness of the action
implies the I'-continuity of 7.

QUESTION 3.44. Let X,Y be open subsets of the normed spaces E,F, and I' be a
modulus of continuity. Suppose that 7: X =Y and that (HX°(X))" = HEC(Y). Is 7

locally I'-bicontinuous? [J

QUESTION 3.45. Let E and F be normed space, 7 : X =2 Y and I' be a countably
generated modulus of continuity. Suppose that (T(E))” € HEC(Y). Is 7 locally I'-
continuous? Is the above true when E, F' are Banach spaces? [

3.6. Normed manifolds. As in Chapter 2, the results of this section extend to normed
manifolds. Also, the proofs presented to this point transfer without change to this new
context. We now state some of these results explicitly.

DEFINITION 3.46. (a) Let (X, &) be a normed manifold. We say that (X, ¢) is a locally
Lipschitz normed manifold if for every o, € &, ¢~ !o4) is a bilipschitz function.

(b) Let (X, ®) and (Y, ¥) be locally Lipschitz normed manifolds and 7 : X & Y.
We say that 7 is Lipschitz with respect to @ and W if there is K such that for every
x € X there are ¢ € @ and ¢ € ¥ such that « € int(Rng(y)), 7(x) € int(Rng(y))) and
Y~ lorop is K-Lipschitz. We say that 7 is bilipschitz with respect to @ and ¥ if both 7
and 77! are Lipschitz. Define



Reconstruction of manifolds from subgroups of homeomorphism groups 7

LIP(X, ) = {h € H(X) | h is bilipschitz with respect to @}.

(c) Let (X, @) and (Y, ¥) be locally Lipschitz normed manifolds and I" be a modulus
of continuity. A homeomorphism 7 : X = Y is locally I'-continuous with respect to ®
and ¥ if for every x € X there are ¢ € @, € ¥, U € Nbr(¢~!(x)) and v € I' such that
z € int(Rng(p)), 7(z) € int(Rng()), U € Dom(p) and ()" teT0¢)|U is y-continuous.
We say that 7 is locally I'-bicontinuous if 7 and 71 are locally I'-continuous. Define

HEC(X, ®) = {h € H(X) | his locally I'-bicontinuous with respect to @}.

(d) Let (X, ®) be a locally Lipschitz normed manifold, S be an open cover of X
and I be a modulus of continuity. Define LIP(X, #,S) to be the group generated by
U{LIP(X, )|S] | S € S} and H=C(X, &, 8S) to be the group generated by J{HXC (X, ©)
19| | S €S} O

THEOREM 3.47. Let (X, @) and (Y, ¥) be normed manifolds with locally Lipschitz atlases
and 7: X 2Y. Let I' be a countably generated modulus of continuity.

(a) Suppose that (LIP(X, &))" C H=C(Y, ¥). Then 7 is locally I -bicontinuous with
respect to ® and V.

(b) Let S be an open cover of X, and suppose that (LIP(X, ®,5))” C HEC(Y, ¥).
Then 7 is locally I'-bicontinuous with respect to ¢ and V.

Note that (a) is a special case of (b).
We simplify the notation below by omitting the mention of @ and V.

COROLLARY 3.48. Let (X, ®) and (Y, ¥) be normed manifolds with locally Lipschitz
atlases.

~

(a) Let I' and A be countably generated moduli of continuity, and ¢ : HEC(X) =
HEC(Y). Then I' = A and there is 7 : X =Y such that T induces o, and 7 is locally
I'-bicontinuous.

(b) Let I' be a countably generated modulus of continuity, S an open cover of X, and
G < H(X). Assume that if (X, ®) is a Banach manifold, then LIP(X,S) < G, and if
(X, ®) is not a Banach manifold, then LIP*°(X,S) < G. Suppose that ¢ : G = HEC(Y).

Then G = HIEC(X) and there is 7 : X 2Y such that 7 induces ¢, and T s locally
I'-bicontinuous.

Proof. (a) Note that if H:C(X) = HY®(X), then I = A. Hence (a) can be concluded
from (b).

(b) We shall apply Theorem 2.30(a). Clearly, LIPYC(Y; #) < HKC(Y) (see Defini-
tion 2.29(b)). There is an atlas ¢’ for X such that if (X, &) is a Banach manifold, then
LIP(X, ') < G, and if (X, &) is not a Banach manifold, then LIP*®(X, #') < G. Indeed,
o' = {¢|B(z,r) | Y € &, B(x,r) C Dom(z)) and there is U € S with ¢(B(z,7)) C U}.
By Theorem 2.30(a), there is 7 : X = Y such that 7 induces . So G™ = HEC(Y). In
particular, (LIP(X,S))” C H:C(Y). By Theorem 3.47(b), 7 is locally I'-bicontinuous.
So G =H:(X). m
QUESTION. In the above theorem does it suffice to assume that LIP(X,S) < G, regard-
less of whether (X, @) is a Banach manifold? O



4. The local uniform continuity of conjugating homeomorphisms

To complete the picture of the local I'-bicontinuity of conjugating homeomorphisms, we
now deal with the group HL%(X) of locally bi-uniformly-continuous homeomorphisms.
(Note that MC is a modulus of continuity, so the notation HLG(X) is a special case of
Definition 1.12(c).) The methods employed in dealing with HL% (X) are quite different
from those used in the previous section.

We shall prove the following extension of Theorem 3.42:

THEOREM 4.1. (a) Let X,Y be open subsets of the normed spaces E and F respectively,
I'y A be moduli of continuity and ¢ : HEC(X) = HYC(Y). Suppose that I' is (k(E))-
generated or I' = MC. Then I' = A, there is 7 : X 2 Y such that p(h) = h™ for every
h € HEC(X), and 7 is locally I'-bicontinuous.

(b) Let (E,X,S,E) and (F,Y,T,F) be subspace choice systems, I'y A be moduli of
continuity and ¢ : H=C(X;S,8) = H5C(Y; T, F). Suppose that I is (<k(E))-generated
or I' = MC, and the same holds for A. Then I' = A, there is 7 : X =2 Y such that
@(h) = h™ for every h € H=C(X;S, &), and 7 1is locally I'-bicontinuous.

Note that (a) is not a special case of (b), since in (b) A is assumed to be (<x(E))-
generated or equal to MC, and this is not assumed in (a). The key intermediate step in
the proof of Theorem 4.1 is Theorem 4.8.

There are several ways of defining uniform continuity. We sort this matter out in the
next definition and proposition.

DEFINITION 4.2. (a) Let (X,d* ) and (Y,d¥ ) be metric spaces, and f: X — Y.

We say that f is uniformly continuous (f is UC) if for every € > 0 there is § > 0 such
that for every z,y € X: if d¥(x,y) < 6, then d¥ (f(x), f(y)) <e. If f: X = f(X) and
both f and f~! are uniformly continuous, then f is said to be bi-uniformly-continuous
(b:-UC).

(b) Let &« € MC and r > 0. We say that f: X — Y is (r, «)-continuous if for every
z,y € X: if d¥(x,y) < r, then d¥ (f(z), f(y)) < a(d*(z,y)).

(c) We say that f : X — Y is uniformly continuous for all distances if there is o € MC
such that f is a-continuous.

(d) Let f: X — Y and = € X. Say that f is uniformly continuous at x (f is UC
at x) if there is U € Nbr(z) such that fU is UC, and [ is bi-uniformly-continuous at x
(bi-UC at ) if there is U € Nbr(z) such that f[U is bi-UC.

(e) Let f: X — Y. Say that f is locally uniformly continuous (locally UC) if f is UC
at every x € X, and f is locally bi-uniformly-continuous (locally bi-UC) if f is bi-UC at
every ¢ € X.

[78]
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(f) Let (X, d) be a metric space. The discrete path property for large distances is the
following property of X. There are a,b > 0 such that for every z,y € X and r > 0 there
are n € Nand « = zg, 21,...,2, =y in X such that for every i < n, d(z;,x;11) < r and
Yien (i, 2i1) < ad(x,y) +b. O

PROPOSITION 4.3. (a) Let f : X — Y. Then f is UC iff for some o € MC and r > 0,
f s (r, @)-continuous.

(b) Suppose that X has the discrete path property for large distances. Let f : X — Y.
Then f is UC iff f is uniformly continuous for all distances.

(c) Suppose that f : X — Y, f is UC and Rug(f) is bounded. Then f is uniformly
continuous for all distances.

(d) Let f : X =Y and z € X. Then f is UC at x iff for some a € MC, f is

a-continuous at x.

Proof. All parts are trivial. However, the proof of the implication = in (a) requires the
following fact. If i : (0,a] — [0,00), and limy_.o7n(t) = 0, then there is @ € MC such
that 7 < a[(0,a]. The verification of this fact is left to the reader. m

DEFINITION 4.4. (a) Suppose that X, Y are topological spaces D C X. Define H(X,Y) =
{h|h:X=2Y}and HX;D)={h € HX) | h(D) = D}.

(b) For metric spaces X,Y define UC(X,Y) = {h € H(X,Y) | his UC}, UCH(X,Y)
= {he H(X,Y) | his bi-UC} and UC(X) = UC*(X, X). For € X let PNT.UC(X, z)
={h € H(X) | h(z) =« and h is bi-UC at x}.

(c) Let X be an open subset of a normed space E, S C X be open, and F be a
dense linear subspace of E. Define UC(X;F) ={h € UC(X) | (X NF)=XNF} and
UC(X; S, F) = UC(X)ISINUC(X; F). Forz € Slet UC(X; S, F,z) = {h € UC(X; S, F) |
h(z) = x}.

(d) Let (E,X,S,F) be a subspace choice system. Then UC(X,S) denotes the sub-
group of H(X) generated by [J{UC(X)|S| | S € S}, and UC(X;S,F) denotes the sub-
group of H(X) generated by | J{UC(X; S, Fs) | S € S}.

(e) For metric spaces X,Y let LUC(X,Y) = {h € H(X,Y) | hislocally UC}. As
usual we define LUCE(X,Y) = {h € H(X,Y) | hislocally bi-UC} and LUC(X) =
LUC*(X, X). O

REMARK. Note that Hyc(X) < UC(X) but equality need not hold. See Proposition
4.3. Tt is the group Hyc(X) that fits into the framework better, but the group which
has been traditionally considered is UC(X). We based the above definitions on UC(X)
rather than on Hyc(X). As for local uniform continuity, the two ways of defining this
notion are equivalent. Hence LUC(X) = Hy% (X) for every metric space X. This fact is
a triviality. O

The following easy proposition will be used extensively.

PROPOSITION 4.5. Let X be a metric space and {U, | n € N} be a sequence of open sets
in X such that lim,,_,o diam(U,) = 0, and for any distinct m,n € N, d(U,,,U,) > 0.
For every n € N let h,, € UC(X) be such that supp(hy) C U,. Then onen h, € UC(X).
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Proof. Let h = openhyp. Let € > 0. Let N € N be such that for every m > N,
diam(U,,) < €/3. Let 61 > 0 be such that for every i« < N and z,y € X: if d(x,y) < 41,
then d(h;(z),hi(y)) < /3. Let 6o = min({d(U;,U;) | ¢ < j < N}), and let § =
min(dy, dz,€/3).

Suppose that d(z,y) < J, and we show that d(h(x),h(y)) < €. Since for any distinct
i,j < N, d(z,y) < d(U;,U;), there are no distinct 7, j < N such that € U; and y € Uj.
So we may assume that one of the following occurs: (i) for some i < N, x € U; and
y € U{U; | j # i}; (ii) for some ¢ < N and j > N, z € U; and y € Ujy; (iii) for some
i> N,z eU;and y ¢ \J{U; | j # i}; (iv) for some distinct 4,5 > N, x € U; and y € Uj;
(v) z,y & U{U: | i € N}

In case (i), h(z) = h;(z) and h(y) = h;(y), so since d(z,y) < 01, it follows that
d(h(z),h(y)) < e. In case (ii),

d(h(z), h(y)) < d(h(z),y) + d(y, h(y)) = d(hi(x), hi(y)) + d(y, h;(y)) <e/3+¢/3 <e.
In case (iii),
d(h(x), h(y)) = d(hi(x), hi(y)) < d(hi(z), ) +d(z,y) +d(y, hi(y)) <e/3+e/3+e/3=¢.
Case (iv) is similar to case (iii), and case (v) is trivial. m
DEFINITION 4.6. Let M be a topological space and N be a Hausdorff space.

(a) Let AC M and g: A — N be continuous. For every z € c1™ (A) there is at most
one y € N such that g U {(z,y)} is a continuous function. Let

gf\}[’N ={(z,y) |z € d™(A),y € N and gU {{z,y)} is a continuous function}.

Obviously, g]C\ILN extends g, and Rng(g]C\ILN) C 1™ (Rng(g)). When possible, 9?\}1,1\{ is
abbreviated by ¢°, and if M = N, then 9?\14,N is denoted by ¢$,. If H is a set of
continuous functions from A to B, then H denotes {h°! | h € H}.

(b) Let X C M and Y C N. We define

EXTY"N(X,Y) = {h € H(X,Y) | Dom(h$ ) = 1™ (X)}.

When possible, we abbreviate EXT*" (X, Y) by EXT(X,Y). The notation EXT (X))
stands for (EXTM M)+ (X, X). O

PROPOSITION 4.7. (a) (i) Let X be a topological space, D C X be dense, Y be a regular
topological space and h : D — Y be continuous. Suppose that for every x € X there is a
continuous function h, : DU {x} =Y extending h. Then |J{h, | x € X} is continuous.

(ii) Let M be a topological space, N be a regular space A C M and g : A — N be
continuous. Then g]C\ILN s continuous.

(b) Let X be a metric space, Y be a complete metric space, AC X, andg: A —Y
be a uniformly continuous function. Then Dom(g®') = cl(A).

(c) Let E be a normed space, D be a dense linear subspace of E, X C E be open, u €
D, BE(u,p) C X, z,y € DNBE(u,p), z € BE(u,p), e > 0,0 < s < min(||z—z|, |ly—z||)
and max(||z — z|, ||y — z||) <t < ||z —u| +p. Then there is h € UC(X; D) such that: (i)
supp(hs) € BE(z,t) — BP(z,s), (ii) h(z) = 2 and (iii) h(y) € B(x,e).

Proof. The proofs of parts (a) and (b) are trivial.
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(c) Write ' = ||z — u|| +¢. For every a € (0,1) there is h € LIP(X; D)|B(u, p)
such that h[B¥ (u,r’) is the multiplication by the scalar a/r’, that is, h(w) = Sw for
every w € BE(u,r’). So we may assume that BF(z,t) C BF(u,ap). Let s < 5 <
min(||z — z||, ||y — z||), t >t > max(||z — z||,|ly — #||) and Z € D be such that ||z — z| <
min(t — ,5 — s). Since trf is an isometry belonging to H(E; D), we may shift z to the
origin. That is, we may assume that Z = 0. We have ||z|| > ||z —z||—||z]| > s—(s—3) = 3.
The same computation applies to y. We conclude that ||z||,||y]| > 5. Another similar
computation shows that ||z, ||y|| < £ It is also obvious that BZ(z,s) C BZ(0,5) and
that BF(z,t) 2 BZ(0,%). It thus remains to show that there is h € UC(X; D) such that
supp(h) C B(0,t) — B(0,5), and h fulfills clauses (ii) and (iii). The construction of such
a homeomorphism is routine but long, so we skip some details.

In the inclusion BZ(z,t) C BE (u,ap), choose a so small that BZ (0,6 max(||z|, [|y]))
C X. By an argument similar to the choice of a above, we may also assume that (1)
t > 5max(||z[|,[lyl]) and § < L min(||z|, |ly|). Let F = span({z,y}). As in the proof of
Claim 3 in Lemma 3.30, there is F; such that '@ E; = E, and ||vg| + ||v1]] < 3|lvo +v1]]
for every vy € F and v; € E;. Let || ||®! be a Hilbert norm on F such that (2) |jv| <
|| < 3v/2||v]| for every v € F.

For v € F let vp and vg, be such that v = vp +vp, and define |v| = ||vp||® + ||lvg, |-
We may assume that |y||H # ||z||H. Let S = {v € F | |o|® = |y|®}. By (1)
and (2), S € B¥(0,%) — B¥(0,5). So there is b > 0 such that ¢ B0 (S p) C
BE(0,t) — B¥(0, ).

Suppose that the angle between x and y in (F,| [|®1) is 6. Let 1 : [0,00) — [0, 00)
be the piecewise linear function with a unique breakpoint at b such that n(0) = 6 and
n(b) = 0. For v € X define hy(v) = Rot, (1) (vr) + vg,, where Roty is rotation through
angle ¢ in F. Obviously, hy € LIP(E; D), supp(h1) € BF(0,%) — B¥(0,3), hi(z) = =
and for some ¢ > 0, hi(y) = cz. It is easy to construct a radial homeomorphism hs €
LIP(E; D) such that supp(ha) € BE(0,%) — BE(0,5), ha(z) = z and ha(cy) € B(z,e¢).
So h = hyohy is as required. m

Theorem 4.8 is phrased in a way that part (a) is easiest to read, (b) is the main
statement of the theorem, and (c) is the “pointwise” version of (b). So (c)=-(b)=-(a), and
we actually prove (c).

Note that Theorem 4.8(b) is analogous to Theorem 3.27, but the assumption here is
that (UC(X))™ C LUC(Y), whereas in 3.27 the weaker assumption that (LIP(X))” C
HEC(Y) did suffice.

THEOREM 4.8. (a) Let X,Y be open subsets of the normed spaces E and F, and T €
H(X,Y) be such that (UC(X))™ C LUC(Y). Then 7 € LUCE(X,Y).
(b) Let (E, X,S,D) be a subspace choice system, Y an open subset of a normed space
F and 7 € H(X,Y). Suppose that (UC(X;S, D))" C LUC(Y). Then 7 € LUCE(X,Y).
(c) Let X,Y be open subsets of the normed spaces E and F;, S C X be open, D be a
dense linear subspace of E, z* € S and 7 € H(X,Y). Suppose that (UC(X; S, D,z*))” C
PNT.UC(Y, 7(z*)). Then 7 is bi-UC at x*.

Proof. (c) Let X, Y etc. be as in (c).
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Parr 1. 7 is UC at z*.

Suppose by contradiction that for every U € Nbr™ (z*), 7|U is not UC. The trivial
proof of the following claim is left to the reader.
CrAM 1. For every r > 0 there are sequences @,y and d,e > 0 such that:

(1) Rng(#) U Rng(y) € BX(z*,7/2) N D;

(2) limp— oo [|[Tn — ynll = 0;

(3) either (i) for any distinct m,n € N, d{@m,ym} {Tn,yn}) > e, or (ii) ¥ is a

Cauchy sequence;

(4) d(Rng(¥) URng(7), ") > e

(5) for everyn € N, ||7(zn) — 7(yn)|| > d.

Let e_; > 0 be such that B (z*,e_1) C S. It is easy to define by induction on i € N
a radius r;, sequences 7' = {:L' | n € N}, ¢ = {y) | n € N} and d;,e; > 0 such that
r; = e;_1/8 and such that &', §", d;, e; satisfy (1 ) (5) of Claim 1 for r = r;. By deleting,
if necessary, initial segments from each of the #*’s and /%’s, we may further assume that
for every i,n € N, ||z, — ¢! || < e;/4. We may further assume that either for every i € N,
clause (3)(i) of Claim 1 holds, or for every i € N, clause (3)(ii) of Claim 1 holds.
Cask 1: Clause (3)(i) of Claim 1 holds Let {(i(k),n(k)) | k € N} C N2 be a 1-1 sequence
of pairs such that limy_, o ||x;((kk) n(k) H =0, and for every i € N, {k | i(k) = ¢} is infinite.

For every k € N set uy, = x;((kk)) v = yz(( K)r Sk = 2||ug — vg|| and By, = B(ug, sx). Then it

can be easily checked that for any distinct &,/ € N, By C S and d(By, B;) > e;(y)/4. Also,
limy_, oo diam(By) = 0. Let wy, € [ug, vg] —{ur} be such that ||7(wg) —7(uk)|| < 1/(k+1).
So wy € BpyND. By Lemma 2.14(c), there is hy, € LIP(X; S, D) such that supp(hi) C By,
hk(uk) = UL and hk(wk) = V-

By Proposition 4.5, h := ogen hy € UC(X), and indeed h € UC(X; S, D, z*). How-
ever, we shall now see that for every V € Nbr” (r(x*)), A"V is not uniformly continuous
and hence h™ € PNT.UC(Y, 7(z*)) which is a contradiction.

Write h™ = h, h(ug) = @y, h(vy) = 0 and h(wg) = wg. Then h(ig) =
Wy, = 5. There is i such that for every n, 7([z%,4%]) C V. Define o = {keN| i(k)
Then iy, 0%, g € V for every k € 0. Now, limpe, ||ty — g || = 0, but ||A(d) — h(iy
||iix — || > d; for every k € 0. So h|V is not uniformly continuous.

CaASE 2: Clause (3)(ii) of Claim 1 holds. Let z; = lim Z’. Note that z; € £ — E. Clearly,
%z € BE(2*,r;) — B (a*,¢;). Fix i€ Nand for j € N set ti ;= max(||z% -z, ||v; — Z|) and
sij = min([|lz} — Z]|, ly; — zil|). By taking a subsequence of {(z%,y%) | j € N}, we may
assume that for every Js tij+1 < 8ij. Let £;; > 0 be such that for every u € B(a:;,sw)

and

= i}.
)=

|7 (u) — 7 (25| < g+1 Choose §; ;,t; ; such that for every j, s; j > 8 ; > t; j41 > tij11-.
We may also assume that for any distinct ¢ and 4’ d(BE(zz,tl 0), BE (zy ,tir0)) > 0 and
that BF (20, 2?070) - cl? (S)

By Proposition 4.7(c), for every 4, j there is h; ; € UC(X; D) such that supp(h; ;) C
BE(z,1;) — BE(z,5;), hij(x}) = «% and h; j(y}) € B(x},ei5). Let hi = ojenhij. By
Proposition 4.5, h; € UC(X). So h; € UC(X; D). Also, supp(h;) € S. Let h = ojen -
Applying again Proposition 4.5, we conclude that h € UC(X; S, D, z*).
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We check that A7 is not bi-UC at 7(z*). Let V € Nbr (r(z*)). For some i,
supp((h;)7) C V. Define uz = T(%;) and v§ = T(y;) So

(1) for every j, [[u} — vl > d;.
Since hl(y;) € B(xé,si,j), it follows that lim;_ o ||7'(£L';) - T(hl(y;)H = 0. That is,
lim; oo || (R)7 (uf) — (hl)T(v;)H = 0. Hence

(2) Tim; oo |07 () — B (01| = 0.
(1) and (2) imply that A7V is not bi-UC. That is, b7 ¢ PNT.UC(Y, 7(z*)). A con-
tradiction. We have reached a contradiction in both Case 1 and Case 2. So 7 is UC
at x*.

PART 2. 771 is UC at 7(*).
Suppose by contradiction that this is not true. So for every V & NbrY(T(:L‘*)), v

is not UC.

CrAaM 2. For every k € N there are positive numbers r’f, .. .,T’Ef and sequences T

§*® which fulfill the following requirements.

k and

(1) 78 >k > 7k >k > ok = ophtl
2) lim; o ||2F — 2*|| = r§ and lim; o ||yF — 2*|| = r5.
) There is e, > 0 such that ||zf — y¥|| > es. for every i € N,
4) Rng(7") URng(y*) C D.
) Define si = sup({[[7(z) — 7(z*)|| | = € B(z*,r})}) and tx = |7(z*) — 7(z*)||.
Then s < ty.
(6) lim; oo || 7(2F) — 7(yf)Il = 0.
(7) Either ¥ is a Cauchy sequence or ¥ is spaced, and either if* is a Cauchy sequence

w

—~ —~ —~
()

or ¥ is spaced.

Proof. Let r{ > 0 be such that B(z*,r}) C S. Suppose that 7} has been defined, and
we define 75, ..., 7F and r¥T1. Let r = r¥/2. Since 7=!|7(B(«*,r)) is not uniformly
continuous, there are e > 0 and sequences Z,§ C B(z*,r) such that for every ¢ € N,
|z —vil| > ex and lim;_,o0 ||7(2;) —7(y;)|| = 0. Since DN S is dense in S, we may assume
that Rng(#) U Rng(y) C D. We may also assume that z* ¢ Rng(Z) U Rng(7).

By interchanging some x;’s with their corresponding y;’s, we may assume that ||z; —z*||

> |ly; — =*|. Taking subsequences we may assume that r§ := lim; .. ||z; — z*|| and
7% = lim; o ||ly; — 2*|| exist. Hence r%¥ < r%. Taking subsequences again, we may as-

sume that either & is a Cauchy sequence or Z is spaced, and that either ¢ is a Cauchy
sequence or ¥ is spaced.

Note that ¥ does not contain a convergent subsequence, since if 2’ is a limit of a
subsequence of #, then 71 is not continuous at 7(2’). Also recall that * ¢ Rng(Z). Tt
thus follows that t := ||7(2*), 7(2*)|| > 0. Next define #* = # and §* = ¢. Let 7§ < r}
be such that si, := sup({||7(z) — 7(z*)|| | z € B(z*,7§)}) < tx. Finally, let rf¥ = r}/2

and r’lﬁ'l = r¥ /2. This concludes the construction which proves Claim 2.
Since lim; ., ||[2¥|| = r§ and lim; . ||y¥|| = 7%, we may assume that

(8) for every i € N, r§ < |lzF — a*|| < (r§ +77¥)/2 and v} < ||y — 2*|| < (v +F) /2.
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We may also assume that either for every k € N, #* is spaced, or for every k € N, * is a
Cauchy sequence.

CASE 1: For every k € N, #* is spaced. Fix k € N and denote Tf, ZF, §* and ey by 7,
Z, ¥ and e respectively.

n € N} {y;, | n € N} of & and ¥ respectively,
n € N}, {y;,, | mneN}) > 0.

Proof. The claim is trivial if Z is a Cauchy sequence. So suppose T is spaced. We show
that there is a sequence {i,, | n € N} such that (i) lim,>m—oo ||%i,, — ¥i,,

CLAIM 3. There are subsequences {x;,
such that d({z;,

exists, and (ii)

lmy, s m—oo ||¥s,, — 24, || exists. By repeatedly applying the Ramsey Theorem, we obtain
a decreasing sequence Ag 2O A; O --- of infinite subsets of N such that for every ¢ € N
and m,n,m’,n’ € Ag: if m < n and m’ <0/, then ||z — yn| — |Zm: — yn ||| <27 Let
{in | n € N} be a 1-1 sequence such that for every n € N, i,, € A,,. Then (i) holds for
{in | n € N}. The same argument is applied to show that (ii) holds.

Let 51 = limy>m—oo ||, — ¥i, || and So = limy,sim—oo ||Yi,, — @4, ||- It is easy to see
that if 51 = 0 or 5 = 0, then 7 is a Cauchy sequence. So §1,5; > 0. By removing an
initial segment from the sequences {z; }nen and {y; }nen we may assume that for every
n>m, ||z, —yi, || > 51/2and ||z;, —vy;,. || > 52/2. Recall also that ||z;—y;|| > e for every
i € N. So d({z;, | n € N},{y;, | n € N}) > min(51/2,52/2,e). So Claim 3 is proved.

We may thus assume that dj := d(Rng(z*), Rng(7*)) > 0.

CrLAM 4. For every k € N there is hy, € LIP(X; D) with the following properties: (i)
supp(hg) C B(z*,r¥) — B(x*,rE); and (ii) there is ny € N such that for every i > ny,
hi(zF) = 2% and hy(yF) € B(x*,rk).

Proof. Fix k, for j = 1,...,5 set 7‘;’? = rj, write =2z g =7, xf = xy, yf = y; and
define w; = z;—x*, z; = y; —a*, u; = 2;/||2i||. Note that lim;ey || (z* +rsu;) —y;]| = 0, and
recall that d(Rng(Z), Rng(¥)) > 0. From these facts it follows that by removing an initial
segment of Z and of ¢/, we may assume that there is @ > 0 such that ||z; — (z* +rsu;)|| > a
for every i,j € N. Similarly, since ¢ is spaced, we may assume that {z* + rsu; }ien is
spaced too. Certainly we may choose a to be smaller than r3 — r4 and r; — r3, and we
may assume that for every i, ||w;| > r3 —a/8 and r3 — a/4 < ||z;]| < r3 + a/4. Let
L; = [x* + rqu;,* + (r3 + a/4)u;]. Note that y; € L,. We show that for every i, 7,
d(z;,Lj) > a/4. Let y € L;. If y € [z* + (r3 — a/2)u;, z* + (13 + a/4)u;], then

i = yll = s — (2% +rsuy)|| = [I(&" +rsu;) =yl = a —a/2 = a/2,
and if y € [z*,2* + (r3 — a/2)w;], then
i —yll = llzs — 2*|| = lly — ™[] = rs — a/8 — (rs — a/2) = 3a/8.
It follows that d(x;, L;) > a/4.

Let v; = 2* + rqu;, and let b > 0 be such that for every i # j, |[v; — v;|| > b. We
show that if 7 # j, then d(L;, L;) > b/2. It is easy to see that d(L;, L;) = d(v;, L;). Let
¥+ tu; € Lj. Ifte [T4,T4 + b/Q], then

o — (& tug) | 2 s — vyl — o + tug — vyl > b= b/2 = b/2,
If ¢t > ry+ b/2, then
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l[vi = (" + tuy) || = lltus || = lloi — 2" > ra +b/2 =74 = b/2.

It follows that there is d > 0 such that:
(1) for every i # j, 2d < d(L;, Lj);
(2) for every ¢ # j, d < d(x;,Lj);
(3) rs+a/d+d<ry
(4) ra —d>rs.
Let L! = [v;,y:]. So L} C L;. Hence
(1.1) for every i # j, 2d < d(L},L});
(1.2) for every i # j, d < d(x;, L});
(L1.3) [lyi —vill <73 —ra+a/d.
By (3), d(B(L},d), X—B(z*,r1)) >r1—(rs+a/4+d) >0 and by (4), d(B(L},d), B(z*,75))
>rs—15—d>0. So

(1.4) d(B(L},d), X — (B(z*,r1) — B(z*,r5))) > 0 for every i € N.

Recall that y; € D, but v; need not be in D. For every 4, choose v, € D sufficiently close
to v; and define L, = [v}, y;]. This can be done in such a way that L] satisfy (1.1)—(1.4).
So indeed choose v; € DN B(z*,ry) in such a way that the L!’s fulfill (1.1)—(1.4). Write
Vi = V).

Let K = Kgeg(rs —ra + a/4,d) be as in 2.14(c) and ¢ € N. By 2.14(c), there is
h; € LIP(X; D) such that: supp(h}) C B(L},d), h; is K-bilipschitz, and h}(y;) = v;.
Since the L;’s satisfy (1.1), it follows that for every i # j, d(supp(h;),supp(h})) > 0. So
hi := ojen b} is well defined. Also, hy, is 2K-bilipschitz.

For every i, hi(y:;) = hi(y:) = v; € B(2*,r4). By (1.2) applied to the L'’s, x; ¢
supp(hx). So hi(w;) = x;. By (1.4) applied to L;, for every i, supp(h}) C B(z*,71) —
B(x*,r5). So supp(hg) C B(x*,r1) — B(z*,r5). Recall that for every 4, h, € H(X; D).
So hy, € H(X; D). We have shown that hy, fulfills the requirements of Claim 4.

Let h = ogen h. By Proposition 4.5, h € UC(X). Since B(z*,r{) C S, we obtain
that supp(h) C S, and since for every k, hy € H(X; D), we conclude that h € H(X; D).
Also for every k, x* & supp(hg). So h(xz*) = x*, that is, h € UC(X; S, D, z*).

We shall reach a contradiction by showing that h™ ¢ PNT.UC(Y7(z*)). Let V €
Nbr¥ (7(z*)). Let k be such that 7(B(z*,7¥)) C V. Hence

(i) for every i € N, 7(z¥), 7(yF) € V, and lim; o ||7(2F) — 7(yF)| = 0.
Now A7 (7(zF)) = 7(zF) and h7(7(yF)) = 7(h(yF)) € 7(B(z*,7%)). So for every i € N,

() N7 (r@h)) = 7(2") = (W7 (r(y7) — 7))l
= |[(r(2}) = 7(2*)) = (r(h(y)) = 7@ = lI7(2F) = 7(*)|| = I (h(yF)) — 7(z")]I
Recall that h(yF) = vy, € B(z*,7%). Let si,t; be as in clause (5) of Claim 2. Then

IT(h(yF)) — 7(z*)|| < sg and ||7(2¥) — 7(2*)|| > t;. Denote the right hand side of (1)
by A. So A >ty — si. By clause (5) in Claim 2, t; — s; > 0. We have proved that

(ii) for every i € N, |7 (7(2F)) — k" (7(yF))|| >tk — sk > 0.



86 M. Rubin and Y. Yomdin

(i) and (ii) demonstrate that A"V is not bi-UC. We have shown that for every V €
Nbr(7(z*)), A7 [V is not UC. That is, h™ ¢ PNT.UC(Y, 7(2*)). A contradiction.

CASE 2: For every k € N, §/* is a Cauchy sequence.

CLAIM 5. For every k € N there is hy, € LIP(X; D) with the following properties: (i)
supp(hg) C B(x*,r¥) — B(x*,7E); and (ii) there is ny € N such that for every i > ny,
hi(xF) = z¥ and hi(yF) € B(z*,r}).

Proof. Fix k, and denote 2%, &*, rf etc. by &, ¥, r; etc. Let y = lim” . Since 77! is

continuous, § € CIE(S) —S. Also, || —z*|| = r3. Since § ¢ E and Rng(#) C E, Rng(Z) N
[x*, 7] contains at most one element. By removing this element we may assume that é :=
d(Rng(%), [z*,9]) > 0. Let b = (ra+7s)/2, a = (r4—rs)/2 and ¢ = min(a, é,m —r3). Let
w € [z*, §] be such that ||w—z*|| = b. Let u,v € D be such that ||u—7g||, ||v—w]| < ¢/12.
By Lemma 2.14(c), there is h € LIP(X; D) such that supp(h) C B([u,v],c/4), h(u) = v
and h(B(u,c/12)) = B(v,c/12). Since h is bilipschitz,iDom(hd) = CIE(X); Denote
h = he'. We show that h(j) € BE(z*,r4). Since § € B (u,¢/12), h(j) € BE(v,c/12).
So

1A(5) — 2*|| < |R(@) — vl + v —w]| + ||w —2*|| < ¢/124¢/124+b<b+a/6 < b+a=ry.
It follows that

(1) for all but finitely many i’s, h(y;) € B(x*,14).

For every i, d(x;, [u,v]) > d(z;, [, w]) — (¢/124 ¢/12) > é — ¢/6 > ¢/4. So x; & supp(h)
and hence

(2) h(z;) = x; for all i € N.

flu —2*|| < ¢/12 4+ r3 < 11 —¢/4. Tt easily follows that B([u,v],c/4) C B(z*,r1).
lv—a*|| > b—c/12 > r5 + a/4. Next we have

d(B([u,v],c/4),2*) > d(B([y,w],c/4),2") — ¢/6 — ¢/4 = b — 5c/12 > r;.
So B([u,v],¢/4) N B(x*,r5) = (). Similarly, for every y € B([u,v], ¢/4),
lyll < max({[ul], [v]]) + ¢/4 < max([|g]], lw])) + ¢/12 4 ¢/4 = 5 + 5¢/12 < 71
That is, supp(h) C B(z*,71). So
(3) supp(h) € B(z*,r1) — B(a",rs).
It follows that hy := h fulfills the requirements of Claim 5. So Claim 5 is proved.

The remaining steps in the proof are identical to those in Case 1. So both Case 1 and
Case 2 lead to a contradiction. This means that 7! is UC at 7(z*). m

QUESTION 4.9. Let X, Y be open subsets of the normed spaces E and F and 7 € H(X,Y)
be such that (LIP(X))” C LUC(Y). Is 7 locally UC? Is 7~ locally UC? [J

Note that by Theorem 3.27, the answer to both parts of the question is positive for
E’s such that x(E) > 2%. Hence the answer is positive for open subsets of /...

Proof of Theorem 4.1. (a) Let X,Y, I') A and ¢ be as in part (a). Suppose that I is
(<k(E))-generated. Then by Theorem 3.42, I' = A and there is 7 € H(X,Y') as required.
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Note that for every metric space X, LUC(X) = HEZ(X).

Suppose that I’ = MC. By Theorem 2.8(a), there is 7 € H(X,Y) such that 7
induces ¢. We have (UC(X))™ C LUC(Y). So by Theorem 4.8(a), 7 is locally bi-UC.
So (LUC(X))™ = LUC(Y). Hence HLG(X) = H5Y(Y). We have seen that the above
equality implies that MC = A. So (a) is proved.

(b) Let (E,X,S,E), (F,Y,T,F), I'y A be and ¢ be as in (b). If both I" and A are
(<k(E))-generated, then by Theorem 3.42, I' = A, and there is 7 which induces .

Suppose that A or I' are not (<k(FE))-generated. By Theorem 2.8(a), there is 7 €
H(X,Y) such that 7 induces ¢.

Suppose by contradiction that I" = MC and A # MC. Hence A is (<x(F))-generated.
Clearly, (LIP(X;S,&))” € H5C(Y). By Theorem 3.27, 7 is locally A-bicontinuous.
Hence (HBC(Y;T,]:))"_1 C HEC(X). However, (HBC(Y;T,]:))T_1 = HLG(X;8,€).
Hence HLS(X;S,€) € HEC(X). A contradiction. It follows that I' = A = MC. m

As in Chapter 3, the analogous statement for manifolds is also true.

COROLLARY 4.10. Let (X, ®) and (Y, ¥) be normed manifolds with locally Lipschitz
atlases. Let I' and A be moduli of continuity, Suppose that I' is countably generated or
I' = MC, and the same holds for A.

(a) If p : HXC(X, ®) = HEC(Y). Then I' = A and there is 7 : X =Y such that T
induces o, and T is locally I'-bicontinuous.

(b) Let S be an open cover of X, T be an open cover of Y and ¢ : H%C(X, P,8) =
HEC(Y, ¥, T). Then I' = A, there is 7 : X =Y such that p(h) = h™ for every h €
HEC(X;8,€), and T is locally I'-bicontinuous.



5. Other groups defined by properties related to uniform
continuity

5.1. General description. The results we have obtained on groups of type HII:C(X)
are more comprehensive than those obtained for other types of groups. We have presented
the results on HX°(X) in the quite general framework of “subspace choice systems”. We
now abandon this framework, and restrict the discussion to the class of open subsets of
normed spaces.

Recall the following notations which were introduced in the introduction.

DEFINITION 5.1. (a) For a set F' of 1-1 functions let F~! = {f~! | f € F'}. Suppose that
P is used as an abbreviation for some property of maps, and let X and Y be topological
spaces. We shall use the notation P(X,Y) to denote the set of all homeomorphisms
between X and Y which have property P. We define

PEX,Y) :=P(X,Y)N(P(Y,X))"! and P(X):=PH(X, X).

Usually but not always this convention will be used for P’s which are “closed under
composition”. (P is closed under composition if for every f : X - Y and g: Y — Z: if
f and g fulfill P, then go f fulfills P.) In such cases P(X) is a group.

(b) Let (X,d) be a metric space. X is wuniformly-in-diameter arcwise-connected
(UD.AC) if for every € > 0 there is § > 0 such that for every z,y € X: if d(z,y) < 4,
then there is an arc L C X connecting  and y such that diam(L) < .

(c) Let Kz be the class of all spaces X such that X is an open subset of a normed
space. Let KSNC be the class of all spaces X such that X is an open subset of a Banach
space. Let KIS)FCB be the class of all spaces X such that X is an open subset of a normed
space of the first category, or X is an open subset of a Banach space. [

Note that a disconnected space may be UD.AC. The space [0,1] U [2,3] is such an
example.

The following statement is a typical example of some of the final results obtained in
this chapter. It is restated in Corollary 5.6.

THEOREM A. Let X,Y € Kgpcp. Suppose that X and Y are UD.AC spaces. Let
¢ : UC(X) = UC(Y). Then there is T € UCE(X,Y) such that T induces .

The reason that Theorem A can be proved only for members of KB(?FCB and not for
all members of Kf\?RM is that Theorem 2.8 cannot be used. This is so, since in Theorem
2.8 we need to know that LIP"“(X) < G. However, LIP*°(X) £ UC(X).

Theorem A assumes that the open sets X and Y are UD.AC. Different extra as-
sumptions on the open sets in question are often used in proving other reconstruction

(88]
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results. We make sure, though, that these extra assumptions do not exclude the known
well-behaved open subsets of a normed space. For example, convex bounded open sets
are always included. Usually the classes for which reconstruction is proved do contain
some complicated open sets.

Theorem A has the following corollary.

THEOREM 5.2. Let F' and K be the closures of UD.AC bounded open subsets of R™ and
R™ respectively. Let ¢ : H(F) = H(K). Then ¢ is induced by a homeomorphism between
F and K.

The proof of Theorem 5.2 appears after Example 5.7. The boundedness of F' and K
above is necessary: see Example 5.8. The analogue of Theorem 5.2 for open subsets of
infinite-dimensional normed spaces is proved in 6.22. The boundedness of F' and K is
not required in the infinite-dimensional case.

Let us point out that the closure of a UD.AC open subset of R™ does not have to
be a Euclidean manifold with boundary, neither does it have to be a polyhedron. The
reconstruction theorems for polyhedra and for Euclidean manifolds with boundary were
proved in [Rul, 3.34 and 3.43]. Theorem 5.2 is not a special case of these theorems.

DEFINITION 5.3. (a) Throughout this section, if not otherwise stated, X and Y denote
nonempty open subsets of normed spaces E and F respectively. The metrics d¥ and
d¥' are both abbreviated by d. For A C X, cl(A), bd(A), acc(A), B(A,r) etc. are
abbreviations for c1”(A), bd®(A), acc?(A), BF(A,r) etc. Let &, ¢, Z° etc. denote the
infinite sequences {z,, | n € N}, {y, | n € N}, {22 | n € N} etc. So Z C X means that
{zn, |n e N} C X.

(b) For A C X define 6% (A) := d(A, E—X). The notation 6% () abbreviates 6% ({z})
and 0% (A) and 6% () are abbreviated by 6(A) and &(z).

(c) If L is a rectifiable arc, then Ingth(L) denotes the length of L.

(d) Let A C X. We say that A is a positively distanced set (PD set) if §(A) > 0.
A bounded PD set is called a BPD set. A sequence & is a BPD sequence if Rng(Z) is a
BPD set.

(e) Let {A; | i € N} be a sequence of sets. We define lim; ., A; = z if for every
U € Nbr(z) there is iy such that for every i > ig, 4; C U.

(f) Let f: X — Y. We say that f is positive distance preserving (f is PD.P) if for
every PD set A C X, f(A) is a PD subset of Y. The function f is boundedness preserving
(f is BDD.P) if for every bounded A C X, f(A) is a bounded set, and f is boundedness
positive distance preserving (f is BPD.P) if for every bounded PD set A C X, f(A4) is a
bounded PD subset of Y.

(h) Let UCo(X) := {f € UC(X) | Dom(f') = cI(X) and f!|bd(X) =1d}. O

The following definition lists some subgroups of H(X) for which reconstruction can
be proved.

DEFINITION 5.4. Let f: X — Y.

(a) f is boundedly UC (f is BUC) if f is boundedness preserving, and for every
bounded set B C X, f|B is UC. According to Definition 5.1(a), BUC(X,Y) = {f €
H(X,Y)| f is BUC}.
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(b) f is extendible if Dom(f') = cl(X). According to Definition 4.6(b), EXT(X,Y) :=
{f € HX,Y) | f is extendible}.
f 1is bounded positive distance UC (f is BPD.UC) if f is BPD.P, and for every
et AC X, flAis UC.
(d) f is positive distance UC (f is PD.UC) if f is PD.P, and for every PD set A C X

—
e
n —

(e) f is LUC on bd(X) (f is BR.LUC) if f is extendible, and for every z € bd(X)
there is U € Nbr'®)(z) such that f<|U is UC.

(f) f is completely LUC (f is CMP.LUC) if f is extendible, and f<! is UC at every
2 € cl(X). That is, for every z € cl(X) there is U € Nbr™) () such that f'|U is UC.

(g) f is UC around bd(X) (f is BDR.UC) if f is extendible, and for some d > 0,
U x € c(X) | 6(z) < d} is UC.

(h) Let A,B C X. We say that f is (A, B)-UC if for every € > 0 there is § > 0
such that for every x € A and y € B: if d(z,y) < 6, then d(f(z), f(y)) < e. The
function f is BL.UC if f is extendible, and f¢' is (bd(X), X)-UC. Note that f is BL.UC
iff for every € > 0 there is § > 0 such that for every z,y € X: if §(z),d(x,y) < 4, then

d(f(x), f(y))) <e. O
Note that if P is one of the properties defined in (a)—(h), that is, if

P = BUC, EXT, BPD.UC, PD.UC, BR.LUC, CMP.LUC, BDR.UC, BL.UC,

then P(X) is a group.

For each P appearing above we can prove the following statement. If ¢ : P(X) =
P(Y), then there is 7 € P¥(X,Y) such that 7 induces ¢. More precisely, the above
statement can be proved, provided that some additional restrictions are imposed on X
and Y.

We shall prove the above statement only for UC(X) and the groups BUC(X), EXT(X),
BPD.UC(X) and CMP.LUC(X) defined in 5.4(a), (b), (c) and (f). Recall that the group
LUC(X) has already been dealt with in Chapter 4. We omit the proof for the remaining
groups, since the arguments used are similar to those employed in the proofs that we do
present fully. Also, the groups that we do deal with are defined by properties that seem
to have played a role in other contexts in analysis and topology.

The group UC(X) and each of the groups in Definition 5.4 except for EXT(X) has a
generalization in which “uniform continuity” is replaced by “I'-continuity”. This type of
generalization is demonstrated by the following three examples.

EXAMPLE 1. The generalization of UC(X) is defined as follows. Let I" be a modulus of
continuity. We say that f : X — Y is nearly I'-continuous if there are &« € I" and r > 0
such that f is (r, «)-continuous. Let HN®(X,Y) be the set of f € H(X,Y) such that f
is nearly I'-continuous. In view of Proposition 4.3(a), UC(X) = HNR(X). O

ExAMPLE 2. The generalization of CMP.LUC(X) is defined as follows. For a mod-
ulus of continuity I' let HEMPLC(X) = {h € EXT(X) | for every z € cl(X), h is
I'-bicontinuous at z}. O
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EXAMPLE 3. The generalization of BPD.UC(X) is the following group. For a modulus
of continuity I” let

HNBPD(X) = {h € H(X) | h and h~! are BPD.P, and for every BPD set A C X,
hlA is nearly I'-bicontinuous}. O

The reconstruction problem for these generalizations has not been investigated thor-
oughly. However, an answer for the groups in Example 3 is given in Theorem 5.32.
Example 2 is considerably more difficult to sort out. It is dealt with in Chapters 8-12.
The generalization in Example 1 is not true. A counter-example is presented in Example
5.11.

So far, the reconstruction question arising from Example 2 has only a partial answer.
It is proved only for principal moduli of continuity (see M6 in Definition 1.9), and only
for X’s with a “well-behaved” boundary. This is proved in Theorem 12.20.

5.2. The group of uniformly continuous homeomorphisms. The first group to
be considered is UC(X). The final reconstruction theorem for such groups is stated in
Corollary 5.6. The following is the main intermediate theorem.

THEOREM 5.5. Let X,Y € KI(\?RM. Suppose that X is UD.AC. Let 7 € H(X,Y) be such
that (UCy(X))™ CUC(Y). Then 7 € UC(X,Y).

Proof. Variants of the argument used in this proof will be applied in several other proofs.

Suppose by contradiction that 7 ¢ UC(X,Y). Let d > 0 and &, % C X be such that
lim;, 00 d(%p,yn) = 0, and for every n € N, d(7(z,),7(yn)) > d. Since 7 is continuous,
there is no z € X such that {n | z,, = z} is infinite. So we may assume that Z is 1-1. We
may further assume that for any distinct m,n € N, {z,, ym } N {zn, yn} = 0. By 2.15(a),
we may assume that either (i) # is Cauchy sequence, or (ii) there is e > 0 such that Z is
e-spaced.

CasE 1: (i) holds. Let z* = lim* #. So z* € E — X. Note that either z* € EE(X)
or z* € cI¥(bd(X)). By the UD.AC-ness of X and since lim, .o d(zy, yn) = 0, we may
assume that for every n € N there is an arc L, C X connecting z,, and y, such that
lim,, o, diam(L,) = 0. By induction on k, we define n; € N and r; > 0. Let ng = 0.
Suppose that ny has been defined. Let r, = idE(Lnk, {z*}U(F — X)) and ng1 be such
that L,,,, C BE(x*,rk). We denote x,,, yn, and L,, by ug, vy and Jj respectively.

Let U, = BX(Jy, 7). Clearly, limy_.o, diam(Uy) = 0, and for every k € N, §(Uy) > 73,
and d(Uy, {Unm | m # k}) > ri. Let wy € Ji — {u} be such that d(7(ug), 7(wg)) <
1/(k+1). By Lemma 2.14(d), there is hj, € LIP(X) such that supp(hi) C Uk, hi(ur) = uk
and hy(wg) = vg.

Let h = ogenhi. By Proposition 4.5, h € UC(X). Since d(supp(hy)) > 0, h €
UCy(X). We check that h™ ¢ UC(Y). Clearly, h™(7(ug)) = 7(ug) and A" (7(wg)) = 7(vg)-
However, limg_, o d(7(ug), 7(wy)) = 0, whereas for every k € N, d(7(uy),7(vg)) > d. So
hT € UC(Y).

CASE 2: (ii) holds. By the UD.AC-ness of X, and since lim,, o, d(z,,y,) = 0, there is
N € N such that for every n > N there is an arc L,, C X connecting x, and y, such
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that diam(L,,) < e/6 and lim,,_,, diam(L,,) = 0. We may assume that N = 0. Let r,, =
min(diam(L,), §(L,)/2) and U,, = B(Ly,r,). So 6(U,) > 0, lim,,_, o diam(U,,) = 0, and
for any distinct m,n € N, d(U,,,U,) > ¢/3. The proof now proceeds as in Case 1. m

The final result for groups of type UC(X) is at this stage as follows.

COROLLARY 5.6. Let X,Y € Kf\?FCB. Suppose that X and Y are UD.AC spaces. Let
¢ : UC(X) 2 UC(Y). Then there is T € UCE(X,Y) such that T induces ¢.

Proof. Combine Corollary 2.26 and Theorem 5.5. =»

In the case of local uniform continuity, we deduced from the fact that (UC(X))™ C
LUC(Y) that both 7 and 7~! are LUC. The analogue of this fact for uniform continuity
is not true.

ExAMPLE 5.7. (a) Let X =Y = (1,00), and 7 : X — Y be defined by 7(x) = \/z. Then
(UC(X))” CUC(Y), but 71 is not UC.

(b) There are bounded open subsets X andY of the Hilbert space {5 and T € H(X,Y)
such that (UC(X))™ C UC(Y), but 7= is not uniformly continuous. The boundary of
both X andY is the union of a spaced family of spheres.

Proof. (a) Clearly 771 ¢ UC(X). Let f € UC(X). By Proposition 4.3(b), f is a-
continuous for some o € MC. By the uniform continuity of f~!, there is C such that for
every y € X, f~ Y (y+1)— f1(y) <C. Set K =C + 1. We check that f(x) > x/K for
every v € X. Let y € X. Then f~1(y) -1 < f X[y +1) - f1(1) <[y]-C<y-C.
Hence f~1(y) < Cy+ 1< (C+1)y. That is, y < f((C + 1)y). Write z = (C + 1)y. We
conclude that if x > C + 1, then z/K < f(z). The above inequality holds automatically
for x < C + 1 since f(z) > 1.

We show that f7 is (1,2v/Ka)-continuous. This trivially implies that f7 is UC. Let
y > x > 1 be such that y — 2 < 1. We have 77 1(y) — 771(2) = y? — 22 < 2y(y — ).
So f(r71(y)) — f(r7(z)) < a(2y(y — x)) < 2ya(y — x). The last inequality follows
from the fact that 2y > 1. Now, 7f7 '(y) — 7fr Y(x) = /f(¥?) — /f(22). There
is ¢ € (f(2?), f(y?)) such that \/f(y?) — \/f(22) = 2%(f(y2) — f(2?)). Recall that
f(z?) > 2?/K. So

W) = @) = 77 ) = e ) = () - f67) < ﬁ() 2yaly — )
1

2zaly — ) = 2VKa(y — x).

1
< el —a) S

(b) In 45 let e; = (0,...,0, i, 0,...) and a; = 3v2e;. Let X = B(0,6) — U, B(a;, 1)
and Y = B(0,6) — |U,~, B(ai, 1/n). For every n > 0 let h, : [0,00) — [0,00) be the
piecewise linear function with two breakpoints which takes 0 to 0, 1 to 1/n, and such
that h,(t) =t for every t > 2. Let 7, : X — Y be defined by

T — Qn
Tn(I> = ap + hn(”I - an”)m,

and T = op>0 Tn- It is left to the reader to check that 7 is as required. m
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We shall later see a finite-dimensional example in which (UC(X))™ C UC(Y), but
771 is not uniformly continuous. In Example 6.7(a) we construct two bounded domains
X,Y CR? and 7 € H(X,Y) with these properties.

However, for some sets X, which are very well behaved, the fact that (UC(X))” C
UC(Y) does imply that 7! is uniformly continuous. Theorems 7.1 and 7.7(a) and
Remark 7.8(b) and (c) prove the above implication in some special cases involving subsets
of a Banach space or a Banach manifold. For example, the above implication holds when

X and Y are spheres of a Banach space.

Proof of Theorem 5.2. Let X’ and Y’ be UD.AC open subsets of R™ and R™ respectively,
F =c(X'), K=cl(Y') and ¢ : H(F) 2 H(K). Let X = int(F) and Y = int(K).
Clearly, X and Y are regular open sets, F' = cl(X) and K = cl(Y). It is trivial to check
that X and Y are UD.AC. It is also trivial to check that if Z is a bounded regular open
subset of R¥, then H(cl(Z)) = {f | f € UC(Z)}. Let v : H(X) — H(Y) be defined by
B(F) = ()Y So - UC(X) = UC(Y).

By Theorem 2.8, there is 7 € H(X,Y') such that for every h € UC(X), (h) = h".
Obviously, (UC(X))™ = UC(Y). Applying Theorem 5.5 to 7 and 7~! one concludes that
7 and 77! are uniformly continuous. It follows that 7¢ : F' = K. It is trivial that for
every h € H(F), p(h) = R

Part (a) of the next example shows that in Theorem 5.2, the requirement that F' and
K are bounded cannot be dropped, and (b) shows that in Theorem 5.2, the requirement
that F and K are closures of UD.AC open sets cannot be dropped.

EXAMPLE 5.8. (a) There are regular open connected subsets X,Y C R? such that X,Y
are UD.AC, X is bounded, cl(X) 2 cl(Y) but H(cl(X)) = H(cl(Y)).

(b) There are regular open connected subsets X,Y C R? such that X is UD.AC,
X and Y are bounded, c1(X) 2 cl(Y) but H(cl(X)) = H(cl(Y)).

Proof. (a) Let z € S(0,1) and B; = B(z/2%%2 1/2?"+3). So |
every i # j, cl(B;) Ncl(B;) = 0 and lim; o B; = 0.

Let F = cl(B(0,1)) — U,ey Bi- Let 7(z) := x/||z[|* be the inversion map in R? and
K = 7(F —{0}). Let X = int(F) and Y = int(K). Then F = cl(X) and K = cl(Y).
Clearly, X,Y are UD.AC. It is easy to see that H(K) = {(h[(F — {0}))” | h € H(F)}.
So H(F) = H(K). It is obvious F 2 K.

(b) Let

Xo={(0—mt)|6€(0,2m), t € (1— 1Jsin(6/2)],1+ 1|sin(6/2)])}

;en Bi € B(0,1/2), for

and
Yo = {t- (cos,sin) | 0 € (0,27), t € (1 — %[sin(6/2), 1+ 1[sin(6/2))}.

Note that X is a strip surrounding the line segment ((—,0), (7, 0)) with width tending
to 0 as (,0) approaches (—m,0) and (7,0), and Yy is a strip surrounding the circular
arc {(cosf,sinf) | 6 € (0,27)} with width tending to 0 as 6 approaches 0 and 27. Let
T : Xo — Yo be defined by 7((6 — 7,t)) =t (cos,sind). Then 7 € H(Xo, Yp).

For every n € Z let x,, = (‘nﬁ_l -m,0), 7 = 5 min(6%0(2y,), d(2p, {z; | i € Z—{n}}))
and B,, = B(z,,r,). So B, C Xq, for n # m, B, N B, =0, lim,, .., B,, = (7,0) and
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lim,—,_oo By = (—7,0). Let X = Xq — J,,cz Bn and Y = 7(X). Clearly, X and Y
are bounded, connected and regular open. Hence H(cl(X)) = (H(X))%, and the same
holds for Y. It is also obvious that cl(X) 2 cl(Y). Note that for every h € H(cl(X)),
h((m,0)) € {(,0), (—m,0)} and the same holds for (—,0). Also, for every h € H(cl(Y)),
h((1,0)) = (1,0). Tt follows that h°' — (h7)\, h € H(X), is an isomorphism between
H(cl(X)) and H(cl(Y)). m

Example 5.8(b) leads to the following questions.

QUESTION 5.9. A topological space Z has the Perfect Orbit Property if for every z € Z,
z € acc({h(z) | h € H(Z)}). Is it true that for every open X C R™ and ¥ C R™: if cl(X)
and cl(Y') have the Perfect Orbit Property and ¢ : H(cl(X)) = H(cl(Y)), then there is
T € H(cl(X),cl(Y)) such that 7 induces ¢?

If the above is not true, is the conclusion in the above question true for open subsets
of R™ that have the following stronger property: For every z € bd(X) the orbit of z
under H(cl(X)) is locally arcwise connected?

Is the same true for open subsets of infinite-dimensional normed spaces? [

The generalization of Corollary 5.6 is not true for all moduli of continuity. As shown

FLIP

in the next example, is a counter-example. The question whether Theorem 5.6 is

true for any countably generated I" is open.

QUESTION 5.10. Is there a countably generated modulus of continuity I" such that for
every normed space E and 7 € H(E): if (Hp(FE))" = Hp(FE), then 7 € Hp(E)? O

EXAMPLE 5.11. Let E be a normed space and 7 € H(E) be defined by: 7(x) = x if
lz]| <1 and 7(x) = ||z|| - = if ||z|| > 1. Then (LIP(E))” = LIP(E) and 7 ¢ LIP(E, E).

Proof. Let g € LIP(X, X). We show that ¢7 is Lipschitz. Let r be such that r > 1,|g(0)]|
and g(B(0,7)) 2 B(0,1). We show that ¢"[(E — B(0,7?)) is Lipschitz. Suppose that g
is K-Lipschitz. Let v € E — B(0,7). Then

lg(u)ll < llg(w) = g(O)Il + lg(O) < Klull + [lg(O)] < Kfull + [lu]l = (K + 1)[|u].-
That is,

(i) gl < (K + D)full.
For u,v € E—{0} write w(u,v) = Wl oy, and for u, v # g=1(0) set wy(u, v) = w(g(u), g(v)).

[ull

Clearly,

(if) [lu —w(w, v)[| = [[lu]] = [Jo[l] < [lu— o],
(iif) [Jw(u,v) = of] < flw(u, v) = ull + flu =] <2[ju -],

and it follows that
(iv) llg(u) = wy(u,v)|| < Kllu—wvl,
(v) llwg(u, v) = g(v)|| < 2K]ju —v]|.
CrLAIM 1. There is M such that for every x,y € E — B(0,72): if y = \v for some \ > 1,
then |lg7(y) — g7 (x)|| < M|y — =|.
Proof. Let x = az and y = (a + €)z, where ||z|| =1 and a > 0. Clearly, e > 0 and hence

ly — || = e. Also, a > 2. Then |77 ((a+e€)z) — 77 az)| = Va+e—a<e/a+te.
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Set u = 7"1((a +e)z) and v = 77 (az). So |[u —v|| < e/v/a+e. The next inequality
uses the definitions of 7 and wg, the K-Lipschitzness of g and (i):

I7(g(w)) = 7wy (u, )|l = [g(w)1* = llwg (u, v)I*] = g(w)||* = lg(v)||
= (lgC)ll + llg) D) - gl = llg()Il < gl + lg()]) - llg(w) = g(v)l]
< (lg@@)ll +llg()[) - Kllu = [l < (lg(w)I] + llg(v)I]) - \/i%
Ke Ke
< (KA D[l + {fol]) - Jate (K+1D)(Va+e+a)- N
<2AK+1)2Vate- Wf? = 2K +1)% = 2(K +1)%||y — 2|
We next find a bound for ||7(wg(u,v)) —7(g(v))||. Since g is K-Lipschitz and by (v),

I (wg(u, v)) = 7(g()I| = llg(@) - [wg(u,v) = g(V) || < (K +1) - [|vf| - 2K - [Ju — v]|

e
<(K+1)-va-2K - <2K+1)?2 |y —z|.
SE+1) va Jate SAKHDT -y - o]

Note that ¢"(y) = 7(g(u)) and ¢7(z) = 7(g(v)). It follows that
lg™ () = g™ (@)I| < lI7(g(w)) = (g (u, v)) | + |7 (wg (u, v)) = 7(g(v) | < 4K +1)*- |y —].

So Claim 1 is proved.

CLAIM 2. There is M such that for every x,y € E — B(0,72): if ||z|| = |lyll, then
lg7(z) = 9" (W)l < M|z = y]|.
Proof. Let ||z|| = ||yl = a > r%. Set u = 771(z) and v = 77 !(y). Then by (iv),

l9(u) = wg(u, v)|| < Klju —wvl|. So

I7(g(w)) = 7(wg (u, )| = [llg(W)|* = llwg (w, )] = [llg(u)]* = llg(v)|]
= (lg)ll + lg@)1) - lllg(@ I = lg()lll < (K + D) ([lull + [[v]]) - llg(u) = g()||
< 2K+ 1)a- Klu—v| =2(K +1)K+/a- ”“””\/ay” < 2K + 1)z — y].
We next find a bound for ||7(wy(u,v)) — 7(g(v))|. By (iv) we have |lwy(u,v) — g(v)|| <
2K ||u — v]||. So
17 (wg (u, v)) = 7(g()]| = llg)l - llwg(u, v) = g(v)[| < (K + 1)va - [lwg(u,v) = g(v)]|

< (4 Va2 = ol = (K + 1)va-26 - 220 <o 2 -,

It follows that ||g7(x) — g7 (y)|| < 4(K + 1)?||z — y||. We have proved Claim 2.
Let 7,y € E — B(0,7?). By Claims 1 and 2 and by (ii) and (iii),
lg™ (@) —g" W) < llg™ (=) — g7 (w(z,y))[| + [lg" (w(z,y)) — g7 (W)
<AK + 1)z — w(z,y)|| + 4K + 1) w(z,y) -yl < 120K +1)[lz -y

We have shown that if g is Lipschitz, then ¢" [(E — B(0,72)) is Lipschitz. Since for
every bounded set B, 7| B is bilipschitz, it follows that ¢ [B(0,72) is Lipschitz. It is now
esay to conclude that ¢g” is Lipschitz.
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1

The proof that (LIP(E))” C LIP(E) is slightly different. Denote 7=1 by 1. We
prove that if g is bilipschitz, then ¢" is Lipschitz. Let g € LIP(X), suppose that g is
K-bilipschitz and let r be such that » > max(1,2K|g(0)|]) and g(B(0,7)) 2 B(0,1). We
show that ¢"[(E — B(0, /7)) is Lipschitz.

We shall use facts (ii)—(v) from the preceding part of the proof. In addition, we need
the following fact. Let w € E — B(0,r). Then

lg(u)ll = llg(w) = g(O) = Ng(O)I| = [lull/K = lg(O)[| = [[ull/K — |lull /2K = [lull/(2K).
That is,

(vi) [lg(w)]l > [|lull/(2K).
CrAIM 3. There is M such that for every x,y € E— B(0,/7): if y = \x for some X\ > 1,
then ||g"(y) — g"(2)|| < Mlly — «|.

Proof. Let x = az and y = (a + €)z, where ||z|| = 1 and a,e > 0. Then ||y — z|| = ¢ and
a>+/r. Set u=n"1((a+e)z) and v = ! (az). We skip the verification of the following
facts:

(1) I97() ~ (w0 )] < VEEH2]z — ],

2 Iy ) — "(0)]| < 4VIK o — ).

From (1) and (2) it follows that

9" () = g" W)l < lIn(g(v)) = 0wy (v, w)| + [n(wy (v, w) = ngw)| < 52K 2|z —y].
This proves Claim 3.

CrAM 4. There is M such that for every x,y € E — B(0,+/r): if ||z|]| = |lyll, then
lg"(z) = g" (W)l < Mz —y]|.

Proof. Let ||z|| = |ly|| > /7. Set u =n"'(z) and v = n~1(y). We skip the verification of
the following facts:

(3) (9" (y)) = n(wy (v, w)|| < (V2/2) K32y — ],
(4) In(wg(v, ) = g" ()| < 2V2K/2|ly — x|
We conclude that

19" (y) — 9" (@)]| < (5V2/2)K*?|ly — .
This proves Claim 4.

The rest of the argument is the same as in the preceding part of the proof. m

5.3. The group of homeomorphisms which are uniformly continuous on every
bounded set. We now turn to the group BUC(X) of all homeomorphisms f of X such
that f and f~! are boundedness preserving, and f and f~! are uniformly continuous on
every bounded subset of X. The final reconstruction result for such groups is stated in
Theorem 5.20. The conclusion of 5.20 is the statement: (%) if ¢ : BUC(X) = BUC(Y),
then there is 7 € BUCT(X,Y) such that 7 induces ¢. However, () is not true for
general open subsets of a normed space, so we shall make some extra assumptions on
X and Y. These assumptions are (roughly): (1) X and Y are uniformly-in-diameter
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arcwise-connected; (2) the orbit of every member of bd(X) under the action of BUC(X)
contains an arc, and the same holds for Y.

Let ABUC(X,Y) = {h € H(X,Y) | for every bounded set A C X, h[A is UC}.
Recall that ABUC(X) = ABUC*(X, X). While BUC(X) is a group, it is not always
true that ABUC(X) is a group. It is easy to construct an open set X in a normed
space and f € ABUC(X) such that f takes a bounded set to an unbounded set. We can
then choose another ¢ € ABUC(X) such that go f ¢ ABUC(X). However, if X has the
discrete path property for large distances (see 4.2(f)), then every member of ABUC(X)
is boundedness preserving, and hence ABUC(X) = BUC(X). So ABUC(X) is a group.

PROPOSITION 5.12. Let X have the discrete path property for large distances.

(a) There are ay,by > 0 such that, for every xz,y € X and 0 < t < d(x,y), there are
n €N and x = x0,21,...,2, =y such that n < (a1d(z,y) + b1)/t, and for every i < n,
d(mi,$i+1) S t.

(b) If Y is a metric space, and 7 € ABUC(X,Y), then 7 is boundedness preserving.
(Hence 7 € BUC(X,Y).)

(c) BUC(X) = ABUC(X).

Proof. (a) Let = 20,21,...,2m = y be such that d(z;, z;11) < t/2 for every i < m,
and 37, d(2,2i41) < ad(z,y) +b. There are n € Nand 0 = ip < --- < i, < m
such that for every j < n, t/2 < d(zi;,2i,,,) < t and d(z,,2,) < t/2. It follows
that n - & < > j<in Az, zj41) < ad(z,y) +b. Hence n < (2ad(z,y) + 2b)/t and so
n+1 < ((2a+ 1)d(z,y) + 2b)/t. For j < n define x; = 2;; and define x,, 11 = zy,. Then
n+1 and xg,...,x,41 are as required. That is, we may take a; and b; to be 2a + 1 and
2b. So (a) is proved.

(b) Let a1,b; be the numbers obtained by applying (a) to X. Let C' C X be bounded.
Define r = diam(C) and B = B(C,air + by). Since B is bounded, there is § > 0
such that for every z,y € B: if d(z,y) < 0, then d(7(x),7(y)) < 1. Let z,y € C. If
d(xz,y) < 6, then d(7(z),7(y)) < 1. Otherwise, let n € N and = = zp,...,2, = y be
such that n < (a1d(x,y) + b1)/0 and d(z;, zi+1)) < 0 for every i < n. So for every i < n,
d(z,z;) <né < %-5 < ai;r+b1. So z; € B and hence d(7(2;),7(zi+1)) < 1. Then
d(r(2), 7(y)) < 3icn d(7(20), 7(2i41)) < n < (ard(z,y) +b1)/0 < (a1 - diam(C) + b1) /0.
So 7(C) is bounded.

(c) By (b), if f € ABUC(X, X), then f € BUC(X, X). So ABUC(X) =BUC(X). =

REMARK. Part (b) of the above proposition follows trivially from Proposition 4.3(b).
However, the proof of 4.3 was left to the reader. [J

Suppose that 7 € H(X,Y) and (UC(X))” C ABUC(Y). Assuming that 7 is bound-
edness preserving, the proof that 7 € ABUC(X,Y) is just as the proof of 5.5. This is the
content of the next lemma. The main problem will be to deduce that 7 is boundedness
preserving.

DEFINITION 5.13. Let X be a metric space. X is boundedly uniformly-in-diameter
arcwise-connected (X is BUD.AC) if for every bounded set B C X and ¢ > 0 there
is § > 0 such that for every z,y € B: if d(x,y) < J, then there is an arc L C X
connecting = and y such that diam(L) < e. O
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LEMMA 5.14. Let X be BUD.AC, and 7 € H(X,Y) be boundedness preserving. Suppose
that (UC(X))™ C BUC(Y). Then 7 € BUC(X,Y).

Proof. The proof is the same as that of 5.5. m

The following example is a preparation for Theorem 5.18. It shows that the assump-
tions of that theorem are “correct”.

ExampPLE 5.15. (a) Let X = BF(0,1) — {0}, Y = E — cI(B¥(0,1)), and 7(x) := FE
be the inversion map from X to Y. Then (BUC(X))™ = BUC(Y), but 7 is not ABUC.
Note that 0 € bd(X) and for every h € BUC(X), h(0) = 0. In part (b) we get rid of
this pathology.

(b) Let X, Y and 7 be as in part (a). Let X; = X xR, Y7 =Y X R and 71(z,y) =
(t(z),y). Then (BUC(X;))™ C BUC(Y1), but 71 is not ABUC. In this example, X
does not have boundary points fixed under BUC(X), but we have containment and not

equality between (BUC(X;))™ and BUC(Y1). O

We next formulate the movability property of X, which will be used in the proof that
T is boundedness preserving. It is rather technical but it includes many open sets whose
boundary is not so well-behaved.

DEFINITION 5.16. For h : [0,1] x X — X and t € [0,1] we define h(x) := h(t,x). We
say that X has Property MV1 if for every bounded B C X there are r = rg > 0 and
a = ap € MC such that for every z € B and 0 < s < r, there is an a-continuous function
h:[0,1] x X — X such that: (1) for every t € [0,1], by € H(X) and h; ' is a-continuous;
(2) ho =1d and d(z, hi(x)) = s; and (3) for every t € [0,1], supp(hs) C B(z,2s). O

Note that if there is € bd(X) such that f(z) = z for every f € BUC(X), then
X does not have Property MV1. On the other hand, Property MV1 holds for sets
whose boundary is, in a certain sense, well-behaved. Open half spaces, open balls, and
complements of closed subspaces fulfill MV1.

The following family of examples contains open sets X such that cl(X) is not a
manifold with boundary. Let U be any nonempty open subset of a normed space Fy and
X = U x R. Then X has Property MV1. More generally, X has Property MV1 if the
following happens. Let Ej be a normed space, E = Ey xR, s > 0 and « € MBC. Suppose
that X is an open subset of E with the following property. For every = € bd(X) there are:
an open subset U C Ey, 29 € bd(U) and a homeomorphism ¢ from B (zg,s) x [-1,1]
into E, such that:

( ) (x07 ) =7,

(2) Rng(y) is closed in E, and ¢(B¥°(xg,s) x (—1,1)) is open in E,

(3) X NRug() = o((U N B (z,5)) x [~1,1]),

(4) ¢ is a-bicontinuous.

PROPOSITION 5.17. (a) Let X be a metric space, « € MC and {h,, | n € N} C H(X).

Suppose that for any distinct m,n € N, h,, is a-continuous and supp(h,,)Nsupp(h,) = 0.
Then open by 18 a0 a-continuous.
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(b) Let X be a subset of a normed space E, o € MC and {h,, | n € N} C H(X).
Suppose that for any distinct m,n € N, h,, is a-continuous, c1”(supp(h,)) € X and
supp(hm) Nsupp(hy,) = 0. Then open by 18 2a-continuous.

Proof. (a) Define h = open hpn. Let 2,y € X. Then there are m,n € N such that z,y €
supp (A ) Usupp(hp ) U(X —U;cn supp(hi)). So h(x) = Ay, o hy(x) and h(y) = A, 0 by (y)-
Since Ay, © hy, is a0 a-continuous, d(h(z), h(y)) < aca(d(x,y)).

(b) Define h = open hp. Let z,y € X. Then there are m,n € N such that z,y
supp () U supp(hn) U (X — U,ensupp(hi)). If 2 or y belong to X — (J, oy supp(hs),
or z,y € supp(hn,), or z,y € supp(hy), then either d(h(x),h(y)) = d(hpm(x), hm(y)) <
a(d(z,)), or d(h(z), h(y)) = d(hn(2), hn(y)) < a(d(z,)).

So we may assume that « € supp(h,,) and y € supp(h,,). Let z € [z, y]Nbd(supp(hm)).
Then z € X and z ¢ supp(h,,). Hence h,,,(2) = hp(2) = 2. So

d(h(x), h(y)) < d(h(x), h(z)) + d(h(z), h(y)) = A (), b (2)) + Al (2), ha(y))
< a(d(z, 2)) + a(d(z,9)) < 2a(d(x,1)). =

THEOREM 5.18. Let X,Y € KI(\?RM. Suppose that X has Property MV1, and let 7 €
H(X,Y) be such that (UC(X))™ C BUC(Y) C (BUC(X))". Then 7 is boundedness

preserving.

€
)

Proof. Suppose otherwise. Let £ C X be a bounded sequence such that 7(Z) is un-
bounded. We may assume that either 7 is a Cauchy sequence or ¥ is spaced.

CAsE 1: Z'is a Cauchy sequence. Applying MV1 to the bounded set Rng(Z) we obtain r =
TRng(z) > 0 and & = agyg(z) € MC. Set 2* = = lim®” #, and choose § > 0 such that , a(d) <
r/4, and m such that d(x,,z*) < J. Let h:[0,1] x X — X be the isotopy provided by
MV1 when = and s are taken to be x,, and r, and let h = h¢! 7 (See Definition 4.6.)

[0,1]x
From the fact that h is a-continuous it follows that 7 : c1(*!] XE([ 1IxX)— clE(X) and
h is a-continuous. Since h; is a-continuous, d(h(z*), hl(xm)) ald(z*, xm)) < a(d) <

r/4. So d(z*, hi(2*)) = d(@m, b1 (2m)) = d(@m, ©*) = d(h(2m), i (@¥) > r—r/4=1/4 =
r/2. That is, d(z*, hy(z*)) > r/2. For n € N define L,, = h(x,, [0,1]).

Cram 1. limy, o d(7(Ly),0) = 0.

Proof. Suppose otherwise. Then there are a 1-1 sequence {nj | £ € N} and a sequence
{tx | k¥ € N} C [0,1] such that {7(h(zn,,tx)) | & € N} is bounded. We may assume
that {t; | ¥ € N} converges to t*. Since hy» € UC(X), (h«)™ € BUC(Y). In particular,
(ht+)™ € BDD.P(Y). It follows that {7(h¢(2n,)) | kK € N} = (he)"({7(2n,) | K € N}) is
unbounded. Let Ij; be the interval whose endpoints are ¢ and t* and L}, = h(Iy x {zn, }).
By the a-continuity of h, limy_,. diam(L}) = 0. Proceeding as in the proof of Case 1
of Theorem 5.5, we construct a 1-1 sequence {k; | i € N} and g € UC(X) such that
g(h(ty; n,,)) = h(t*,n, ). The fact that g € UC(X) implies that g” € BUC(Y), so
in particular, ¢g” is boundedness preserving. However, g7 takes the bounded sequence
7(h(tk;: ¥n,,)) to the unbounded sequence 7(h(t*, n,, )). A contradiction, so Claim 1 is
proved.
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Let u, = h(1,z,) and U,, = BY (7(L,), 1). There is a subsequence {U,, | k € N} of
{Un | n € N} such that for every k € N, U,,, € B(0,d(0,Uy,_,))/2. For every k € N, let
gr € UC(Y) be such that supp(gx) C Uy, and gi(7(zn,)) = 7(un, ). Let ¢ = oken g2k
and f=g"

Clearly, g € BUC(Y). So f must belong to BUC(X). Note that lim,ey u, = hi(z*) #
2" = limpen &n. So since f(ny,) = tny, and f(Znyy.,) = Tngpys {f(2n,) | £ € N} is
not convergent in E. However, {z,, | ¥ € N} is convergent in £. Hence f takes a
Cauchy sequence to a sequence which is not a Cauchy sequence. So f ¢ BUC(X), a

contradiction.

CASE 2: Z is spaced. Let g > 0 be such that & is 5rp-spaced. Applying MV1 to
the bounded set Rng(#) we obtain r; = 7gpgm) > 0 and o = appe@) € MC. Let
s = min(rg,r1). For every n € Nlet h,, : [0,1] x X — X be the function ensured by MV1
for x,, and s. Recall that for ¢ € [0, 1], h, ¢(x) is the homeomorphism of X taking every
x € X to hy(t,z). Set L, = h,([0,1] x {z,}).

CrLAmM 2. limy, o d(7(Ly,),0) = 0.

Proof. Suppose otherwise. Then there are a 1-1 sequence {nj | & € N} and a sequence
{tx | K € N} C [0,1] such that {7(hn, (tk,Zn,)) | k¥ € N} is bounded. Clearly, for any
distinct m,n € N and ¢,t € [0,1], d(supp(hm,q), sSupp(hne)) > ro. So by 5.17(a), f :=
okeN Py t, € UC(X). So f7 € BUC(Y) C BDD.P(Y). We shall reach a contradiction by
showing that f7 takes an unbounded sequence to a bounded sequence. {7(z,,) | k € N}
is unbounded, whereas f7({7(zy,) | k¥ € N}) = {7(hpn, (tk,2n,)) | & € N} is bounded.
Claim 2 is thus proved.

Let u,, = h,(1,7,), vp = hy(1/n,2,) and U,, = BY (7(L,,), 1). There is a subsequence
{Un, | k € N} of {U,, | n € N} such that for every k € N, Uy, € B(0,d(0,U,,_.,))/2.
For every k € N, let g, € UC(Y) be such that supp(gr) C Un,., 9k (7(2n,)) = 7(2y, ) and
9i(T(vny,)) = 7(Un,, ). Let g = orengr and f = g

Clearly, g € BUC(Y). So f must belong to BUC(X). By the a-continuity of all &;,’s,
limy 00 d(2n, , Un, ) = 0, whereas for every k € N, d(f(zn,), f(n,)) = d(@n,, Un,) = S.
So f ¢ BUC(X), a contradiction. m

Recall the convention that X and Y denote open subsets of the normed spaces FE
and F.

COROLLARY 5.19. Let X, Y € KI(\?RM. Suppose that X is BUD.AC, and X has Prop-
1

erty MVI1. Let 7 € H(X,Y) be such that (UC(X))™ C BUC(Y) and (BUC(Y))" C
BUC(X). Then 7 € BUC(X,Y).
Proof. Combine Lemma 5.14 and Theorem 5.18. =

The following theorem is the final result for groups of type BUC(X).

THEOREM 5.20. Let X, Y € Kg)FCB. Suppose that X and Y are BUD.AC, and X and
Y have Property MV1. Let ¢ : BUC(X) = BUC(Y). Then there is 7 € BUCT(X,Y)

such that T induces .

Proof. Combine Corollaries 2.26 and 5.19. =
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5.4. Groups of homeomorphisms which are uniformly continuous on every
bounded positively distanced set. We next deal with the group BPD.UC(X) and
with some related groups. Recall that BPD.UC(X) is the group of all homeomorphisms
f such that f and f~! take every subset of X whose distance from the boundary of X
is positive to a set whose distance from the boundary of X is positive, and such that f
and f~! are uniformly continuous on every such set. The generalization of BPD.UC(X)
to arbitrary moduli of continuity is denoted by HNEPP(X). That is, BPD.UC(X) is the
group HNYBPP(X) when I' = MC. These groups are explained in the next definition. The
final reconstruction result for such groups appears in Theorem 5.32, and this result is
obtained for countably generated I"’s and for I' = MC. The main intermediate result for
countably generated I'’s appears in Theorem 5.24(b), and it says that if (LIPg(X))™ C
HNBPD(X) then 7 € HNBPP(X,Y). The intermediate result fot I' = MC appears in
Theorem 5.31. The analogous statement here is: if (UCyo(X))” € BPD.UC(Y'), then
7 € BPD.UC(X,Y). The groups LIPyy(X) and UCy(X) are defined in 5.23.

For open subsets of a Banach space we can also conclude that 7=! € BPD.UC(X,Y).
That is, if (BUC(X))” € BPD.UC(Y), then 7=! € BPD.UC(Y, X). This is done in
Theorem 5.41(a).

A weaker variant of uniform continuity pops up, and is also dealt with. Groups arising
from this variant are defined in 5.21(c) and are denoted by HYBP(X). The final result
for such groups is stated in Theorem 5.36. The main intermediate results for such groups
appear in Theorem 5.24(a) and Proposition 5.35.

We next define the groups HEFP(X), HNBPD (X)) and H)VBPP(X).
DEFINITION 5.21. (a) Define
HEFPP(X,Y) = {f € BPD.P(X,Y) | for every BPD set A C X, f[A is I-continuous}.

(b) Let I" be a modulus of continuity and f : X — Y. We say that f is nearly
I'-continuous on BPD sets if for every BPD set A C X there are o € I' and r > 0 such
that f] A is (r, )-continuous. See Definition 4.2(b). We denote by HNEPP(X|Y) the set
of all h € BPD.P(X,Y) such that h is nearly I'-continuous on BPD sets.

(c) Let @« € MC, and f : X — Y be a function between metric spaces. Recall that
according to Definition 1.12(a), f is locally {a}-continuous if for every x € X there is
U e Nbl“X(CC) such that f[U is a-continuous. Let f : X — Y be a function between
metric spaces and I' be a modulus of continuity. Call f weakly I'-continuous if there is
a € I such that f is locally {a}-continuous. If f € H(X,Y) and both f and f~! are
weakly I'-continuous, then f is said to be weakly I'-bicontinuous.

Let X and Y be open subsets of normed spaces E and F respectively, I' be a modulus
of continuity and f: X — Y. Call f weakly I"-continuous on BPD sets if for every BPD
set A C X, flA is weakly I'-continuous. We denote by H}YBFPP(X Y) the set of all
h € BPD.P(X,Y) such that h is weakly I'-continuous on BPD sets.

(d) Let X be a subset of a metric space E. X has the discrete path property for BPD
sets if for every BPD subset A C X there are d > 0 and K > 1 such that for every z,y € A
and r > 0 there are n € N and « = xg,...,2, =y € X such that n < K - d(x,y)/r, and
for every i < n, d(z;) > d and d(z;, zi41) < 7. O
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Note that HEFP(X), HNBPD(X) and HYYBPP (X)) are groups. It is easy to check that
for X’s which are open subsets of a finite-dimensional normed space, X has the discrete
path property for BPD sets iff X is connected. For infinite-dimensional normed spaces
neither of the above implications is true. In any case, “well-behaved” open subsets of
a normed space have the discrete path property for BPD sets. For example, an open
ball has this property. We first observe the following easy facts. Part (a) follows from
Proposition 4.3(a), and the proof of (b) is left to the reader.

PROPOSITION 5.22. (a) BPD.UC(X) = HYEFP(X).

(b) Suppose that X has the discrete path property for BPD sets. Then HEFP(X) =
HNBFD (X)),

DEFINITION 5.23. (a) X is BPD-arcwise-connected (X is BPD.AC) if for every BPD set
A C X there are C, D > 0 such that for every x,y € A there is a rectifiable arc L C X
connecting x and y such that Ingth(L) < D and §(L) > C.

(b) In some of the subsequent lemmas it will be convenient to regard a sequence as a
function whose domain is an infinite subset of N. So if ¢ C N is infinite, then the object
{z; | i € o} is considered to be a sequence. The notions of a subsequence, a convergent
sequence etc. are easily modified to fit into this setting.

(c) Let LIPgo(X) = {h € LIP(X) | supp(h) is a BPD set} and UCy(X) = {h €
UC(X) | supp(h) is a BPD set}.

(d) For x € X let 6; (z) = max(||z||,1/6% (x)). We abbreviate 6; (z) by 6; ().
(e) Let A C Nand n € N. Define A" = {m € A | m > n}. The notations A",
AS" A<™ etc. are defined analogously. O

Note that if X is BPD.AC, then X is connected. Note that a subset A C X is BPD
iff sup({0:%(x) | z € A}) < o0.

THEOREM 5.24. Let I' be a countably generated modulus of continuity. Suppose that
X and Y are open subsets of normed spaces E and F respectively, X is BPD.AC and
T€ HX,Y).

(a) If (LIPgo(X))™ C HYBPD(Y), then 7 € HVBPP(X|Y).

(b) If (LIPy(X))™ C HNBPD(Y), then 7 € HNBFD (X Y).

The argument of Claim 3 in the proof below is repeated in some other proofs.

LEMMA 5.25. Suppose that X is BPD.AC, 7 € H(X,Y) and (LIPyy(X))” C BPD.P(Y).
Then T € BPD.P(X,Y).

Proof. Let X,Y and 7 be as in the lemma.

CrAmM 1. Suppose that u € X, 0 <r < s, B(u,s) C X and & C B(u,r). Then 7(Z) is
BPD inY.

Proof. Suppose by contradiction that 7(Z) is not BPD in Y. Let a € (0, 1) be such that
T(B(u,ar)) is BPD in Y. Let 7 : [0,00) — [0,00) be the piecewise linear function with
breakpoints at ar and (r + s)/2 such that n(ar) = r and for every ¢ > (r+s)/2, n(t) = t.
Let h = Radf,u [X. (See Definition 3.17(b).) Then h € LIPgy(X). Let ¢ = h~1(%).
Clearly, ¥ C B(u,ar). So 7(¥) is BPD in Y. Obviously, A7 (7(¢)) = 7(Z). Hence h" takes
a BPD set to a set which is not BPD. That is, h” ¢ BPD.P(Y), a contradiction.
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Cram 2. If & is a BPD sequence in X and & is a Cauchy sequence, 7(Z) is a BPD
sequence in Y .

Proof. Suppose by contradiction that & is a counter-example. Let x* = limE(a?). Clearly,
2* € int(X). Let u € X and r > 0 be such that z* € BE(u,r) and BZ(u,2r) C X. Let
¥ be a final segment of & such that ¥ C B(u,r). Then § is a counter-example to Claim 1.
This proves Claim 2.

Suppose by contradiction that 7 ¢ BPD.P(X,Y"). Let & be a BPD 1-1 sequence such
that 7(Z) is not BPD. We may assume that lim, . d1(7(z,)) = co. Hence for every
subsequence ¥ of Z, 7(%) is not BPD.

It follows from Claim 2 that & has no Cauchy subsequences. Let z* € X — Rng(Z)
and A = Rng(Z) U {z*}. Let C an D be as ensured by the property BPD.AC. For ev-
ery n € Nlet L, C X be a rectifiable arc connecting z* and z,, such that §(L,) > C
and Ingth(L,) < D. Note that (J,.yLn is a BPD set. Let v, : [0,1] — L, be a
parametrization of L, such that +,(0) = z*, v,(1) = z,, and for every ¢t € [0, 1],
Ingth(v,([0,¢])) = ¢ - Ingth(L,,).

For every infinite 0 C Nand ¢t € [0,1] let A[o,t] = {.(¢) | n € 0}. We regard Ao, t] as
a sequence whose domain is 0. Clearly, for every t € [0,1], A[N,t] C cl(B(z*,tD)). So by
the continuity of 7, there is to > 0 such that for every ¢ € [0, ], and 0 C N, 7(A[o,t]) is a
BPD set. For every infinite 0 C N let s, = inf({t € [0,1] | 7(A[o, t]) is not a BPD set}).
So s, > 0.

For 0,1 C N let 0 €7 mean that o — 7 is finite.

CrAmm 3. There is an infinite 0 C N such that for every infinite n C 0, s, = s,.

Proof. Suppose by contradiction that no such o exists. Clearly if n C o, then s, > s5,.
We define by transfinite induction on v < w; an infinite subset o, C N such that for
every v < u: 0, C o, and s,, > Sy,. If 0, has been defined, let 0,11 C 0, be such
that sy,,, > s,,. If pis a limit ordinal, and o, has been defined for every v < u, let
0, be an infinite set such that for every v < p, o, C 0,. By the induction hypothesis, if
v < u, then s, , > s, . Hence s,, > s,, > s5,. So the induction assertion holds. The
set {sy, | ¥ < wi} is a subset of R order isomorphic to wy, a contradiction. Claim 3 is
proved.

Let o be as ensured by Claim 3 and write s = s,.
CrAmM 4. Alo, s] does not have Cauchy subsequences.

Proof. Suppose by contradiction that n C o is infinite, and A[n, s] is a Cauchy sequence.
Since A[N, 1] = # does not contain Cauchy subsequences, s < 1. Let & = lim A[n, s].
Since A[n, s] is a BPD sequence # € int(X). So there are u € X and r > 0 such that
& € BE(u,r) and BE(u,3r) C X. We may assume that A[n,s] C B(u,r). For every i
and t, [|v;(t) — v(s)|]| < (t —s) - D. So for every t € (s,s+ /D), An,t] C B(u,2r). By
the definition of o, s, = s, = s. So there is t € (s, s+ r/D) such that 7(A[n,t]) is not a
BPD subset of Y. But A[n,t] C B(u,2r) and B(u,3r) C X. This contradicts Claim 1.
So Claim 4 is proved.
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By Proposition 2.15(a) and Claim 4, we may assume that there is d > 0 such that
Alo, 5] is d-spaced. Let r = min(C,d)/4. §(A[o,s]) > C, and so BE(A[o,s],7) C X and
§(BE(A[o,s],7)) > 0. Also for any distinct m,n € o, d(B(7m(s),7), B(va(s),7)) > d/2.
Let t; € (s — 55,5). Since t; < s, it follows that 7(A[o,¢1]) is a BPD set. Let ty €
[s,5 + 555) be such that 7(A[o,t5]) is not a BPD set.

By Lemma 2.14(b), there is K > 1 such that for every normed space F, u € E, r > 0
and z,y € B (u,r/2) there is h € H(E) such that h is K-bilipschitz, supp(h) C B (u,r)
and h(z) =

Clearly, for every n € o, v,(t1), Yn(t2) € B(vn(s),7/2). So by the above fact, there
is hy, € H(X) such that h,, is K-bilipschitz, supp(h,) C B(y.(s),r) and h,(y.(t1)) =
Y (t2)-

By Proposition 5.17(b), h := oneo by € LIP(X). Since supp(h) € B¥ (Ao, s],7), and
§(BE(A[o,s],7)) > 0, h € LIPgy(X). Hence h™ € BPD.P(Y). However, 7(A[n,]) is a
BPD set, 7(A[n,t2]) is not a BPD set, and h7(7(A[n,t1])) = 7(A[n,t2]). A contradic-
tion. m

PROPOSITION 5.26. For a compact metric space C andt > 0 let v (t) denote the minimal
cardinality of a cover of C' consisting of subsets of C with diameter < t. Let C = {C; |
i € N} be a sequence of compact subsets of a metric space X, and let v : (0,00) — N.
Suppose that for every i € N, vo, < v. Suppose further that there is no infinite set n C N
and a sequence {c; | i € n} such that for ¢ every i €1, ¢; € C’Z, and {c; | ¢ € n} is a Cauchy
sequence. Then there is a subsequence D ofC such that D is spaced.

Proof. Suppose that C has no spaced subsequences, and we show that there are an infinite
set A C N and a Cauchy sequence ¢ = {¢; | i € A} such that for every i € A, ¢; € C;.
There are a subsequence C' of €' and r € R U {oo} such that lim; ;.o d(C’},C;) =r
Since C' has no spaced subsequences, 7 = 0. We may assume that c=C

For p C N let T be the tree of finite sequences 7 such that for every ¢ < Ingth(7),
ni < pi. Let Sy = [[;en N<P7.

Let p; = [[;<;v(1/4), T = Tyand S = Sp. Then for every i € Nthereis {C; 7 |71 € T'}
such that for every @ € T, C; 7 is closed and diam(C}; ) < 1/Ingth(7); for every ¢ € N,

= |U{Ciz | @ € T and Ingth(7) = ¢}; and for every m,7 € T: if m is an initial

segment of 77, then C; 5 C Cj .

By the Ramsey Theorem, there are a sequence of infinite subsets of N, Ag D A; D ,
and ¢,7 € S such that for every £ and i,j € A, if i < j, then d(C; gn<e, Cjrn<e) =

d(C;, Cj).
Let A C N be an infinite set such that for every i, A — A; is finite. For every i € A
let D; = ﬂjEN qin<s and E; = njeN C; sin<i- Clearly, D;, E; are singletons, denote

them by z; and yz respectively. We check that lim; .o ;<; d(zi,y;) = 0. Let ¢ > 0.
Then there is N; such that for every 4,5 > Ny, d(C;,C;) < €/3. Let Ny be such that
1/Ny < €/3, N3 be such that AZNs C Ay, and N = max(Ny, N3). Let i < j and
i,j € AZN. Soi,j € An,. Hence d(C; gyn<nz, C; synenz) = d(Cy,Cj) < £/3. Tt follows
that

d(xi7 y]) S diam(ci7§rN§N2> + d(Cr“ Cj) + diam(ijTNSN2) < 5/3 + 5/3 + 8/3 = E£.



Reconstruction of manifolds from subgroups of homeomorphism groups 105

We have proved that lim; o ;<; d(2;,y;) = 0. Let € > 0. Choose N such that for every
i,j € AZN: if i < j, then d(z;,y;) < /2. Suppose that i1,i; € A=Y and let j be such
that i1,ip < j € A. Then d(z;,,2;,) < d(z;,,y;) + d(yj,z;,) < e. So{z; | i € A} is a
Cauchy sequence. =

LEMMA 5.27. There is Kuc(¢,t) > 0 such that for every normed space E, L,r > 0, and
a rectifiable arc v C E with endpoints x,y: if lngth(v) < L, then there is h € H(E) such
that:

(1) supp(h) € B(y,7);
(2) hIB(z,r/2) =try_,|B(z,r/2);
(3) h is Karc(L,7)-bilipschitz.

Proof. Let n = [%] + 1. Suppose that v : [0,1] — X. There are 0 = tg,t1,...,t, =1
such that for every i < n, Ingth(y[[t;,ti+1]) < /2. Let x; = ~(¢;). Then for every
2 € [, wiy], d(z,7[[ti, tiv1]) < r/4. So U<, B([7i, 2i41],3r/4) C B(v,r). By Lemma
2.14(c), there are hy,...,h, € H(FE) such that for every i = 1,... n:

(1.1) supp(hi) € B([i-1, ], 3r/4);

(12) hl [B(!’Ezfl, % . %TT) = tfri,Ii_lIB(CEi,h % . %TT)

(1.3) hy; is Kgeg(r/2, 3r/4)-bilipschitz.
Let h = hpo---ohy. Then h satisfies requirements (1) and (2) in the lemma. Also,
h is Kgeg(r/2,3r/4)"-bilipschitz. Since n = [2L/r] + 1, we may define K, ({,t) =
Koeg(t/2,3t/4)24/0+1 u

If L is a rectifiable arc let vz, : [0,1] — L be a parametrization of L such that for
every t € [0,1], Ingth(y.1[0,¢]) =t - Ingth(L).

LEMMA 5.28. Let X be an open subset of a normed space E. Forn € N let L,, C X be
a rectifiable arc with Ingth(L,) < M and §(L,) > d > 0. Let v, = yr,, and x, = 7,(0).
Suppose that {x,, | n € N} is spaced and 1-1 and that there is ©* € X such that for every
n € N, v,(1) = z*. Then there are & € X, r > 0, an infinite n C N and t € (0,1] such
that:

(1) B(&,r) C X, B(&,r) is a BPD set, and for every n € 1, &, & cl¥(B(z,r));
(2) for every n € n, vu(t) € B(2,7);
(3) {vnl1]0,t] | n € n} is spaced.

Proof. For n C N and t € [0,1] let A[n,t] = {7,(t) | n € N}. We regard A[n,t] both as a
set and as a sequence. For every infinite n C N let

sy, = inf({s € [0,1] | A[n, s] contains a Cauchy sequence}).

Since for every n € N, 7,,(1) = z*, s, is well defined. Clearly, if n C o, then s, > s,.
As in 5.25, there is an infinite 0 C N such that for every infinite n C o, s, = s,. Let
s = 8,. We show that if ¢ € [0, s), then

(*) there is no infinite set n C o and a sequence {¢; | i € n} such that for every i € n,
t; € [0,t], and {v;(¢;) | ¢ € n} is a Cauchy sequence.
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Suppose otherwise. We may assume that {¢; | ¢ € n} is a convergent sequence. Let ¢* be
the limit of this sequence. So t* < s. Let I; be the interval whose endpoints are ¢; and t*.
Recall that Ingth(v;[1;) = [t* —t;]-Ingth(v;) < [t* —¢;]- M. So lim;e, d(7;(t:), vi(t*)) = 0.
Hence {v;(t*) | ¢ € n} is a Cauchy sequence. This contradicts the definition of s.

Suppose by contradiction that there is an infinite 7 C o such that A[n, s] is spaced.
Let e > 0 be such that A[n, s] is e-spaced. Then for every t € [s,s + e/3M|, A[n,t] is
spaced. So s, > s,. This contradicts the definition of o.

It follows that Ao, s] contains a Cauchy sequence. Hence we may assume that Ao, s]
is a Cauchy sequence. Let # = lim” Ao, s]. Since {z, | n € o} is 1-1, we may as-
sume that for every n, # # z,. Since 6(L,) > d > 0, d¥(z,E — X) > d > 0. Since
{2, | n € N} is spaced, there is 0 < r < d such that {z, | n € o} N BE(z,r) = 0.
Let t = s — r/2M. There is ip such that for every ig < i € o, d(vi(s),Z) < r/4. We
may assume that ig = 0. So for every i € o, d(v;(t),z) < d(v:(t),vi(s)) + d(v:(s),Z) <
Ingth(v; [[t,s]) + r/4 < (s —t) - M +r/4 < 3r/4. Let 2 € EN BZ(z,r/8). So for every
i€o,d(y(t),z) <Tr/8.

By (%) and Proposition 5.26, there is an infinite 7 C o such that {v;[[0,¢] | ¢ € n} is
spaced. Also, since 0(&) > d —r/8, 6(B(&,7r/8)) > d—r > 0. So B(&,7r/8) is a BPD
set. Hence 2, r, n and t are as required in the lemma. =

PROPOSITION 5.29. Let I' be a countably generated modulus of continuity, and let a > 0.
Then there is {a,, | n € N} C I' such that

(1) for every aw € I' there is n € N such that o = an, that is, {ay, | n € N}
generates I
(2) for every m <mn, anl[0,a] < a,][0,al.

Proof. Let {f,, | n € N} be a generating set for I" such that for every m < n, 8, < [p.
We define by induction K,, > 0 and a,, € I'. We assume by induction that a,, = K, (3,.
Let Ko =1 and a9 = [y. Suppose that K,, and a,, have been defined. Let i < n. Since
Bi 2 Bnt1 and a; = K;f3;, it follows that M; := sup,cjgq a;(x)/Bnr1(x) < oco. Let
K,11 = max(My,...,M,)+1 and a1 = Kp+18041. Obviously, {a, | n € N} C I" and
{a, | n € N} is as required. =

Proof of Theorem 5.24. (a) Let I'; X, Y and 7 be as in (a). We have LIPyy(X) C
HYBPD(X) and HYBFP(Y) C BPD.P(Y), hence (LIPgy(X))™ € BPD.P(Y). So by
Lemma 5.25, 7 € BPD.P(X,Y).

Using the notation of Definition 2.7(a), LIPgo(X) = LIP(X;U), where U is the set of
all open BPD subsets of X. Clearly, H)YBPP(Y) C HEC(Y) so (LIP(X;U))™ C HEC(Y).
Hence by Theorem 3.27, 7 is locally I'-continuous.

Suppose by contradiction that there is an open BPD set U C X such that for no
a € I', 7|U is locally {a}-continuous. Let {a, | n € N} generate I". We may assume
that for every m <n € N, a,, < a,,. For every n € Nlet 8, = a,ca, and x, € U be
such that for every V € Nbr™ (z,,), 7|V is not 3,-continuous. Let & = {z, | n € N}.

Suppose by contradiction that Z has a Cauchy subsequence ¢. Let § = lim” §. Since
U is a BPD set and Rng(7) C U, § € int(X). Let u € X and r > 0 be such that

B (u,2r) C X and §j € B¥(u,r). Since 7 is locally I'-continuous, there are V € Nbr™ (u)
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and § € I' such that 7V is [-continuous. There is h € LIP(X)|B(u,r)| such that
he(y) € int(V). Since h € LIPoo(X), b7 € HPBPP(Y).

Recall that 7 € BPD.P(X,Y). Since B(u,r) is a BPD set in X, W := 7(B(u,r)) is a
BPD set in Y. So there is a € I" such that (h™)~![W is locally {a}-continuous. Since
limy = g and h%(g) € int(V), we may assume that h(7) C V. Let K be such that h
is K-bilipschitz, and define v(t) = Kt. So v € I'. We show that for every n € N, 7 is
a0 Bo~-bicontinuous at y,,. Note that 7 = (h7) "1 o70h. We have

(i) h is y-bicontinuous at y,.
Since h(yn) € B(u,r), we have

(ii) 7 is O-bicontinuous at h(yy,).
Also, 7(h(yn)) € 7(B(u,r)) = W. So

(iii) (h7)~! is a-bicontinuous at 7(h(y,)).

It follows from (i)—(iii) that 7 is ao[(o~-bicontinuous at y,. Clearly, ooy € I, so
there is n such that ooy < 3,,. Hence 7 is [3,-bicontinuous at y,,. This contradicts
the choice of y,. So & does not have Cauchy subsequences.

We may thus assume that  is spaced. Let z* € U. Since X is BPD.AC, there are
M,d > 0 and rectifiable arcs {L,, | n € N} such that for every n € N, L,, connects z,
with *, §(L,,) > d and Ingth(L, ) < M. Applying Lemma 5.28 to z* and {L,, | n € N}
we obtain Z € X, r > 0, an infinite  C N and ¢ € (0, 1] as ensured by that lemma. So
for the parametrization =, of L, defined in Lemma 5.28 the following holds:

(1.1) B(#,r) € X, B(&,r) is a BPD set, and for every n € n, x,, ¢ clE(B(fcm));
(1.2) for every n € n, v, (t) € B(&,7);
(1.3) {v![0,t] | n € n} is spaced.

We may assume that n = N. For every n € N let ¢, be the least ¢’ such that 7, (') €
Ad?(B(&,7)). Let v, = v,1[0,t,] and y,, = Y (tn). So d(yn,#) = r and Rng(y,) N
B(z,r) = 0.

Since 7 is locally I'-continuous, there is a* € I' and r1 < r such that 7[B(&,r) is
a*-continuous. Let z, = & + 5 - (yn — )/||yn — 2|| and L;, = Rng(v7,) U [Yn, za]. So L,
is a rectifiable arc. Clearly, there are M*,d*, D* > 0 such that for any distinct m,n € N,

(2.1) Ingth(L?,) < M*;

(2.2) o(Ly,) = d*;

(23) d(Lh, L3) > D"
Let r* > 0 be such that r* < d*/2,D*/3,r1/2. For every n € N we apply Lemma 5.27
with L = M*, r=r*, y= L}, x = x, and y = z,. We obtain h,, € H(X) such that:

(3.1) supp(hn) € B(Ly,, ");

(3.2) hp|B(xp,7*/2) = try, —p, [B(xn, 7*/2);

(3.3) hy is Kapc(M™, r*)-bilipschitz.
Clearly, {h,, | n € N} and {h,;! | n € N} satisfy the conditions of Proposition 5.17(b) with
a(z) = Kae(M*,r*) - 2. Define h = openhy, and g = h~1. So by Proposition 5.17(b),
h and g are 2K (M*,r*)-Lipschitz. Also d(supp(h)) > d* —r* > 0. So h,g € LIPyy(X).
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Since 7 € BPD.P(X,Y), 7(U) is a BPD subset of Y. We shall thus reach a contradiction
by proving the following statement:

(¥) There is no « € I' such that ¢" [7(U) is locally {a}-continuous.

Let o € I'. Choose n such that a,a* < «a,, and set © = 7(z,). For s > 0 define
Us = B(u,s), Ts = 77 }(Us) and S5 = h™(Ts). There is s > 0 such that:

(4.1) «0,2s] < ][0, 2s];

(4.2) Ts C B(zn,7*/2);

(4.3) o*[[0, diam(Ty)] < a, [0, diam(T5)].
Let s’ < s. We show that A" [B(u, s’) is not a-continuous. Since S is a neighborhood
of x,,, there are 2', 22 € S,/ such that

(5.1) d(r(z'),7(z?)) > Bn(d(z!, 2?)).
For i = 1,2 let 2* = h(z%) and u' = 7(2%). So 2!,22 € Ty and so u',u? € Uy. By
(4.2), the choice of z, and the choice of r*, Ty C B(z,,r*/2) C B(Z,r1). So 7|Ts is
a*-continuous. Hence a*(d(z1,22)) > d(ut,u?). By (4.3), an(d(z!,22)) > a*(d(2}, 2?)).
So ay,(d(z1, 2%)) > d(ul,u?). Hence

(5.2) d(2',2%) > (a,) " H(d(ut, u?)).
Since Ty C B(z,,7*/2) and by property (3.2) of h,, h=![Uy is an isometry. So

(5.3) d(z!,2%) = d(z*, 2?).
By (5.1) and (5.3),

(5.4) d(r(z),7(2) > Bu(d(z", 2).
Combining (5.2) and (5.4) we obtain

(5.5) d(r(z'),7(2%)) > Bu((an) " (d(u', u?))).
But 8, = a,ca,. So

(5.6) d(7(x1),7(2?)) > an(d(ut,u?)).
By clause (4.1) in the definition of s, and since uy, us € B(u, s),

(5.7) d(r(z),7(z?)) > a(d(ul,u?)).
But 7(z%) = (h=1)7(u?) = g7 (u?). So

(5.8) d(g™(u'), g7 (u?)) > a(d(u', u?)).
We have proved (x), and this contradicts the fact that g € HBFPP(Y). So (a) is
proved.

(b) Let I, X, Y and 7 be as in (b). As in the proof of (a), we conclude that
7 € BPD.P(X,Y) and 7 is locally I'-continuous.

Suppose by contradiction that there is an open BPD set U C X such that fornoa € I
and r > 0, 7|U is (r,a)-continuous. By Proposition 5.29, there is a set {«, | n € N}
which generates I' and such that «,,[[0,1] < «,[[0,1] for every m < n. For every n € N
let 8, = ayoay, and x,, 2, € U be such that d(z,,z}) < 1/n and d(7(z,),7(z,)) >
Bn(d(xnal)). Let & = {x, | n € N}.
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Suppose by contradiction that {z,, | i € N} is a Cauchy subsequence Z. Set y; = zp,
and y; = 2, . Let y = lim” 7. Since U is a BPD set and Rng(¢) C U, 7 € nt(X).
Let v € X and 7 > 0 be such that B®(u,2r) C X and § € B (u,r). Since 7 is locally
I'-continuous, there are V' € NbrX(u) and 3 € I' such that 7[V is §-continuous. There
is h € LIP(X)|B(u, )| such that h%(g) € int(V). Since h € LIPg(X), h™ € HYBPD(Y).

Recall that 7 € BPD.P(X,Y). Since B(u,r) is a BPD set in X, it follows that
W = 7(B(u,r)) is a BPD set in Y. So there are & € I' and s > 0 such that A7 [W
is (s, a)-continuous, and (h7)~'|W is (s, )-continuous. Since lim§ = lim§ = ¢ and
h%(gj) € int(V), we may assume that h(3), h(i’) C V.

From the fact h € LIP(X) it follows that lim; .. d(h(y;),h(y})) = 0. Set u; =
h(y;) and u, = h(y;). Since h(¥),h(y’) C V and 7]V is (-continuous, it follows that
lim; oo d(7(u;), 7(u})) = 0. We may thus assume that for every i € N, d(7(u;), 7(u})) < s.

Let K be such that h is K-bilipschitz, define v(¢) = Kt and ¢ = acfSoy. Soy € I
and hence ¢ € I'. We show that for every i € N

(1) d(r(ya); m(¥7) < e(d(yi, y7))-
Note that 7(y;) = (™)L o7roh(y;), and the same holds for y/. So

(1) d(h(ya); h(y;) < ~(d(yi, y7)-
Now, h(y;),h(y;) € V and 7|V is B-continuous, so

(2) d(r(h(y:), T(h(y:))) < BOy(d(yi, 47))-
Since d(7(u;), 7(u;)) < s and 7(u;), 7(u}) € W, it follows that

(3) d((h7) =M (7 (ui)), (A7)~ (7(w))) < eld(T(ws), 7(u7))-
Obviously, (1)=(3) imply (1). R

Define 3; = f3,,. There is j such that o < ;. Let ¢ € N be such that 9][0,1/¢] <
3;110,1/€). Let i = max(j,£). So d(yi,y,) < 1/n; < 1/¢. From (1) and the fact
3;1[0,1] < B;1[0,1] we conclude that d((y:), 7(y.)) < o(d(yi,y.)) < Bi(d(yi,y.)). That
is,

A(7(wn,), 7(27,)) < B, (d(@n,, 70,,)-

This contradicts the way that x,, and x;, were chosen. So Z has no Cauchy subse-
quences.

We may thus assume that & is spaced. Let x* € U. Since X is BPD.AC, there are
M, d > 0 and rectifiable arcs {L,, | n € N} such that for every n € N, L,, connects z,, with
x*, 8(Ly) > d and Ingth(L,) < M. From Lemma 5.28 we obtain & € X, r > 0, an infinite
7 C N and ¢ € (0,1] such that for the parametrization v, of L, defined in Lemma 5.28
the following holds: B(i,r) is a BPD subset of X, for every n € n, z, & cl?(B(&,r))
and 7, (t) € B(Z,r) and the set of arcs {7,[[0,t] | n € n} is spaced. We may assume that
n=N.

For every n € N let t, be the least ¢’ such that v,(t') € cl”(B(Z,r)). Let v/, =
Y110, tn] and ypn = vu(¢n). So d(yn,2) = r and Rng(y,) N B(Z,r) = 0.

Since 7 is locally I'-continuous, there is o € I' and 71 < r such that 7[B(&,r;)
is a*-continuous. Let z, = & + 5 - (yn — 2)/|lyn — 2| and L}, = Rng(y7,) U [Yn, 2n-
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So L7 is a rectifiable arc. Clearly, there are M*,d*, D* > 0 such that for any distinct
m,n € N, Ingth(L?,) < M*, 6(L},) > d* and d(L},, L) > D*. Let r* > 0 be such that
r* <d*/2, D*/3, r1/2.

For every n € N we apply Lemma 5.27 with L = M*, r =r*, v = L}, v = z,
and y = z,. We obtain h,, € H(X) such that supp(h,) C B(L%, "), hp|B(xn,7*/2) =
try, o, [B(2n, 7*/2) and hy,, is Ko (M*, r*)-bilipschitz.

The families {h, | n € N} and {h,' | n € N} satisfy the conditions of Proposi-
tion 5.17(b) with a(x) = Kape(M*,7*) - 2. Let h = openhy, and g = A1, So by Propo-
sition 5.17(b), h is 2K . (M*, r*)-bilipschitz. Also, §(supp(h)) > d* — r* > 0, and hence
h,g € LIPy(X). Since 7 € BPD.P(X,Y), 7(U) is a BPD subset of Y. From the fact
(LIPgo(X))™ C HNBPD(Y) it follows that for some o € I" and r > 0, g7 [7(U) is (r,a)-
bicontinuous. We shall thus reach a contradiction by proving the following statement:

(¥) There are no r > 0 and « € I" such that g7 [7(U) is (r, a)-continuous.

Let r > 0 and a € I'. For n € N set 2], = h(x},), un, = 7(25,) and u,, = 7(z;,). Choose
m € N and b € (0,1) such that «[[0,b], a*[[0,b] < a,, 1[0,b]. So for every n > m,

(1) O‘[[Oab] < anr[oab];

(2) a™110,0] < o [[0,8].

There is n > m such that:

(3) 1/n <

(4) a*(1/n) <r;

(5) a*(1/n) <b;

(6) 1/n < r*/2.
By the choice of z, and r*, B(z,,r*) C B(&,71). So 7[B(z,,7*) is a*-continuous. Since
d(zy,x}) < 1/n <r*/2 and by the definition of h,, and h,

(7) d(za. ) = d(zn,2).
Hence 2], € B(zy,r*), and so
(8) d(un, ) < 0*(d(z0. ).
By (3) and (7), d(zn,2},) < 1/n < b, so by (2) and (8), d(un,ul,) < an(d(zn,2)). Tt
follows that

(9) d(z0.23) > o (A, ).

By (7) and (9), d(zn,2)) > o, (d(un,ul,)). By the definition of 3,, x, and z/,
d(1(xy), T(x),)) > an o an(d(zn, z),)). So

(10) d(7(zpn), 7(x],)) > an(d(tn,ul,)).

Note that 7(x,) = ¢" (u,) and 7(z),) = g7 (u),). So

(1) dlg™ (un). 47(0) > 00 (s 1),

Since d(zpn,2,,) < 1/n, by (8) and (5), d(un,ul,) < b. So by (1), an(d(un,ul,)) >

n

a(d(un,u)). It now follows from (11) that
(12) d(g™ (un), g7 (uy)) > a(d(un, uy,)).
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By (8), d(un,u;,) < a*(1/n). So by (4),
(13) d(up,u,) <r.

Facts (12), (13) mean that ¢" [7(U) is not (r, @)-continuous. This was proved for arbitrary
r and «, that is, we have proved (x). We have a contradiction to the fact that g7 €
HYBPD(Y). So (b) is proved. =

QUESTION 5.30. Does Theorem 5.24 remain true when the assumption that I" is count-
ably generated is dropped or replaced by the assumption that I" is generated by a set
whose cardinality is < x(X)? O

Note that the use of the countable generatedness of I" in the proof of 5.24 was essential.

THEOREM 5.31. Let X,Y € K{py- Suppose that X is BPD.AC. Let 7 € H(X,Y) be
such that (UCy(X))™ € BPD.UC(Y). Then 7 € BPD.UC(X,Y).

Proof. By definition, BPD.UC(Y) CBPD.P(Y), hence by Lemma 5.25, 7€ BPD.P(X,Y).

Suppose by contradiction that 7 ¢ BPD.UC(X,Y). Then there are d > 0 and Z, ¥
C X such that Rng(Z) URng(y) is a BPD set, lim,,_o, d(zy, y,) = 0, and for every n € N,
A (), () > d.

Suppose by contradiction that 7 has a Cauchy subsequence. We may then assume
that Z is a Cauchy sequence. Let Z = lim” #Z. Since Rng(Z) is a BPD set, T € int(X).
Let u € X and r > 0 be such that BE(u,2r) C X and z € BE (u,r).

We have BPD.UC(X) C LUC(X) and UCy(X) = UC(X,U), where U is the set
of all open BPD subsets of X. So by Theorem 4.8(b), 7 € LUC(X,Y). So there is
V € Nbr™ (u) such that 7]V is uniformly continuous. There is h € LIP(X)|B(u,r)| such
that h%(y) € int(V'). Since h € UCyo(X), h™ € BPD.UC(X).

Recall that 7 € BPD.P(X,Y). Since B(u,r) is a BPD set in X, W := 7(B(u,r)) is
a BPD set in Y. So A7[W is bi-UC. Since lim# = limy = Z and h%(:ﬁ) € int(V), we
may assume that h(Z), () C V. Since h is uniformly continuous and 7[V is uniformly
continuous,

(1) lim; o0 d(7(h(2i)), 7(h(y:))) = 0.
Note that (h™)~1(7(h(x;))) = 7(x;), and the same holds for y;. So for every i,

(2) d((7)~ (7 (h(x:))), ()77 (M(w:)))) = d.

(1) and (2) contradict the fact that A™[W is bi-UC. So & has no Cauchy subsequences.

We may thus assume that there is s> 0 such that & is s-spaced. Let r=min(s, §(%))/3.
We may assume that for every n € N, d(y,,z,) < r/3. Let r, = 2d(yn,z,). Hence
BE(z,,r,) C X, and lim,,_,, diam(B¥(z,,,)) = 0. Also, for any distinct m,n € N,
d(BE (2, 7)), BE (z0,70)) > 5/3.

For every n € N, let z, € [x,,y,] be such that d(7(z,),7(z,)) < d/(n + 2), and
hn, € UC(X) be such that supp(h,) C B(zp,n), hn(2n) = x, and hyp(zn) = yn. By
Proposition 4.5, h := openhn € UC(X). Also 6(supp(h)) > 7/3. So h € UCpyy(X).
Hence h™ € BPD.UC(Y). ZU U 7 is a BPD set. So since 7 € BPD.P(X,Y), it follows
that 7(Z)U7(7)UT(2) is a BPD set. However, h™ [(7(Z)UT(¢)UT(Z)) is not UC. This is so,
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because lim,, . d(7(zy,), 7(25)) = 0, whereas for every n € N, d(h™(7(z,,)), h"(7(2,))) =
d(7(x),7(yn)) > d. A contradiction. m

THEOREM 5.32. Let I', A be moduli of continuity. Suppose that I' is countably generated
or I' = MC, and that the same holds for A. Let X,Y € K{pcp, and assume that X and
Y are BPD.AC. Suppose that ¢ : HNBPP(X) = HYBPD(Y). Then I' = A and there is
7 € (HRBPDYE(X|Y) which induces ¢.

Proof. Let U denote the set of all open BPD subsets of X. Note that
(1) LIPgo(X) < HNBPD(X) < IXT(X) and LIPgo(X) = LIP(X,U).

Hence by Corollary 2.26, there is 7 € H(X,Y) such that 7 induces ¢. Suppose that A is
countably generated. Clearly,

(2) HYPPP(Y) C HZO(Y).
By (1) and (2), (LIP(X,U))” € H{C(Y). By Theorem 3.27, 7 is locally A-bicontinuous.
Suppose by contadiction that « € A — I'. Let B be an open ball in E such that B is
a BPD subset of X and such that for some g € A, 7[B is (§-bicontinuous. There is
g € H(X)|B| such that g is a-bicontinuous, and for every v € I', g is not ~-bicontinuous.
So g ¢ HNBPD(X), but g* € HYBYP(Y), a contradiction. So A C I'. An identical
argument shows that I' C A. Hence I' = A. Applying Theorem 5.24 to 7 and 77!, we
conclude that 7 € (HNBPD)*(XY).

Suppose next that I' = A = MC. Since UCqo(X) < HNEFP(X), we have (UCqo(X))"
C HI\I\/I[%PD (X), and the same holds for Y. Hence Theorem 5.31 may be applied to 7 and
7=1. We conclude that 7 € BPD.UC*(X,Y). That is, 7 € (HNEFP)*(X,Y). =

We now turn to the group HY/F"P(X). We shall reach the same final result as for
the groups of type Hyjer P (X). But here we need the extra assumption that X is fillable.
This notion is defined below.

DEFINITION 5.33. Let X be a topological space and G < H(X). A sequence ¥ C X is
called a G-filling of X if the following holds. For every sequence {U; | i € N} such that
for every i, U; € Nbr(x;), there is a sequence {g; | i € N} C G such that | J, .y g:(U;) = X.
We say that X is G-fillable if X has a G-filling. O

The trivial verification of the following observation is left to the reader.
PROPOSITION 5.34. Let E be a normed space.

(a) If E is separable and X C E is open, then X is LIPyo(X)-fillable.

(b) If r > 0, then BE(0,r) is LIPgo(X)-fillable.

The following observation gives some answer for the groups of type HyG P (X).

PROPOSITION 5.35. Suppose that X is BPD.AC, UCy(X) < G < HWEFPP(X) and X is
G-fillable. Let 7 € H(X,Y) be such that G™ C HWEPP(Y). Then 7 € HYETP (X, Y).

Proof. Let U be the set of all open BPD subsets of X. Then UCy(X) = UC(X,U).
Note that HyGFP(Y) € LUC(Y). So (UC(X,U))” € LUC(Y). By Theorem 4.8(b),
7 € LUCH(X,Y). Similarly, (LIPg(X))” C (UCgo(X))” € HWEPP(Y) C BPD.P(Y).
So by Lemma 5.25, 7 € BPD.P(X,Y).
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Let & be a G-filling for X. For every i € N let U; € Nbr(z;) and «; be such that 7[U;
is a;-bicontinuous. Let {g; | ¢ € N} C G be such that |J{g;(U;) | i € N} = X.

Let A C X be a BPD set. We show that 7[A is weakly MC-bicontinuous. Since
7 € BPD.P(X,Y), 7(A) is a BPD set. For every i € N let 3; be such that g;[A is locally
{B;}-bicontinuous and ~; be such that g7 [T(A) is locally {;}-bicontinuous. Next note
that

T19i(Ui) = (97 I7(Ui)) o (71Us) © ((9:) " 19:(Us))-
Hence 7[(g;(U;) N A) is locally {~; o a; o 3; }-bicontinuous.
There is o € MC such that for every i € N, y;0a;008; < p. Hence for every i € N,

7[(9:(U;) N A) is locally {o}-bicontinuous, and from the fact | J;cy(9:(Us) N A) = A we
conclude that 7[A is {o}-bicontinuous. So 7 € HYWE P (X,Y). m

THEOREM 5.36. Let I'; A be moduli of continuity. Suppose that I' is countably generated
or I' = MC, and that the same holds for A. Let X,Y € KSpcp- Assume that

(1) X and Y are BPD.AC,
(2) If I = MC, then X is HWSFP(X)-fillable, and the same holds for A and Y.

Suppose that p : HYBPP(X) = HWBPD(Y). Then I' = A and there is T € H)YBPP(X,Y)
which induces .

Proof. The proof is very similar to the proof of Theorem 5.32. u

In some cases we reach a final reconstruction result of the following strong form:
(1) If p : P(X) = Q(Y), then either P(X) = Q(X) and there is 7 € Q*(X,Y) which
induces ¢, or P(Y) = Q(Y) and there is 7 € P*(X,Y") which induces ¢.
In other cases we are able to reach only the following weaker conclusion:
(2) If  : P(X) = P(Y), then there is 7 € PT(X,Y) which induces ¢.
Roughly speaking, in order to prove results of the first form, we need to prove the following
intermediate claim:
(3) If r € H(X,Y) and (P(X))™ C P(Y), then 7 € P*(X,Y),
and in order to prove a result of the second form, the following intermediate claim suffices:
(4) If r € H(X,Y) and (P(X))” CP(Y), then 7 € P(X,Y).

For example, Theorem 4.8 which deals with the group LUC(X) has the stronger form (3),
and Theorem 5.5 which deals with the group UC(X) has the weaker form (4).

The strong intermediate claim is not always true. Example 5.7 shows that (3) is false
for UC(X), and also false for BPD.UC(X), as is shown in Example 5.38(a). However, if
X is an open subset of a Banach space, and X fulfills some additional requirements, then
the implication

(BPD.UC(X))” € BPD.UC(Y) = r € BPD.UC*(X,Y)

is true. This will be proved in Theorem 5.41(a). Later, in Theorem 7.7 we shall prove an
analogous statement for UC(X). Namely, if X satisfies certain additional requirements,

then (UC(X))” CUC(Y) = 7 € UCH(X,Y).
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We need yet another notion of weak uniform arcwise connectedness. This will be the
additional assumption in Theorem 5.41(a).

DEFINITION 5.37. Let E be a metric space, X C E and z € bd¥(X). We say that X
is locally arcwise connected at x if for every £ > 0 there is § > 0 such that for every
y,z € X: if d(z,y),d(z,2z) < 0, then there is an arc L C X connecting y and z such
that diam(L) < e. We then call x a simple boundary point of X. We say that X is
locally arcwise connected at its boundary with respect to E (BR.LC.AC with respect to E)
if every boundary point of X is simple. O

An equivalent formulation of simplicity is as follows. For every ¢ > 0 there is § > 0
such that for every y,z € X N B(x,d) there is an arc L connecting y and z such that
L C X N B(x,e). Note that being locally arcwise connected at = € bd(X) implies but is
not equivalent to the fact that X U {z} is locally arcwise connected at z.

The following example shows that the completeness requirement in Lemma 5.39 can-
not be dropped.

EXAMPLE 5.38. Let E be an incomplete normed space, K C [0,1/2) be a closed nowhere
dense perfect set containing 0, X' = BE(0,2) — BE(0,1), u € S¥(0,1), C = {(1+1t)-u|
te K—{0}}, X =X -C,Y =BF0,1), D={(1—-t)-u |t € K—-{0}}, and
Y=Y -D.

(a) X andY are BPD.AC, BR.LC.AC and UD.AC.

(b) There is 7 € H(X,Y) such that (BPD.UC(X))™ C BPD.UC(Y) and 77! ¢
BPD.UC(Y, X).

(c) There is T € H(X,Y) such that

(1) (BPD.UC(X))” € BPD.UC(Y),
(2) 7~ ¢ BPD.P(Y, X),
(3) for every BPD set A C X, T[A is bilipschitz.

Proof. (a) This part is trivial, so we leave its verification to the reader. In any case, (a)
shows that the fact that the boundaries of X and Y are well-behaved does not by itself
imply that 7=! € BPD.UC(Y, X).

(b) This follows from (c). So it suffices to prove (c).

(c) Note the following facts: C' C B¥(0,3/2) — B¥(0,1), D C B¥(0,1) — B¥(0,1/2),
u € acc(C) and u € acc(D).

Let y € BE(0,1/2) — B¥(0,1/2). Proposition 2.25(b) yields o € LIP(E)|BZ(0,1/2)
such that p(0) = y and o(F — {0}) = E. So o(D ) = D and hence o(Y — {0}) =Y. Let
n: X — Y —{0} be defined by n(z) = (2—||z|)- oy @nd 7 = gen. Clearly, 7 € H(X,Y),
and it is easy to check that 7 satisfies clause (3).

Let 7 > 0 be such that B¥(y,r) C BF(0,1/2) and M = BE(y,r) N E. Then M is a
BPD subset of Y. However, 771(M) contains a set of the form B¥(0,2) — B(0,2 — ¢),
where € > 0. So 771(M) is not a BPD subset of X. Hence clause (2) is fulfilled.

We show that 7 fulfills clause (1). It is easy to check that (BPD.P(X))” C BPD.P(Y).
So it remains to show that if h € BPD.UC(X) and M C Y is a BPD set, then A7 [M is
bi-UC.



Reconstruction of manifolds from subgroups of homeomorphism groups 115

Since p is bilipschitz it suffices to show that for every h € BPD.UC(X) and M C
Y —{0}: if d(M,D U S(0,1)) > 0, then A" M is bi-UC. (Indeed we show that h"[M is
bi-UC, even for M’s which satisfy M C Y — {0} and d(M, D) > 0.)

CramM 1. Let Z,W be metric spaces, z € Z, and f : Z — W. Suppose that f is
continuous at z, and for every r > 0, f[(Z — B(z,r)) is UC. Then f is UC.

Proof. Let ¢ > 0. There is §; > 0 such that diam(f(B(z,01))) < . Let do > 0
be such that for every x,y € Z — B(z,61/2): if d(z,y) < 02, then d(f(z), f(y)) < e.
Let 6 = min(d;/2,d2). Suppose that d(xz,y) < 6. Either x,y € Z — B(z,61/2) or
z,y € B(z,01). In either case d(f(z), f(y)) < e. Claim 1 is proved.

CLam 2. Let h € BPD.P(X) and ¥ C X be such that lim, . ||z,|| = 2. Then
lim,, o |2 ()| = 2.

Proof. Suppose by way of contradiction that this is not true, and let Z be a counter-
example. Since h € BPD.P(X), for every subsequence & of &, h(Z') is not a BPD se-
quence. It follows easily that either # has a subsequence &’ such that lim,, . ||h(z],)] = 1,
or T has a subsequence ¥’ which converges to a member of C. Taking & to be ' we may
assume that either (i) lim, o ||h(zy)] = 1 or (ii) for some @ € C, lim h(Z) = 4.

Suppose that (i) happens. Then for every n € N there are u,, € C, s, > r,, > 0 and
an arc L,, C X such that the following hold:

(1) h(zy) € L, and L,, intersects both S(uy,r,) and S(uy, sp).
(2) Set S, = S(un,7) U S(uyn,s,). Then 6%(S,) > 0. (Hence S,, C X.)
(3) Define d,, = sup({d(z,5(0,1)) | z € L, US,}). Then lim,,_,o d,, = 0.

(4) (B(unasn) - B(Unﬂ"n)) NC # 0.

Suppose that (ii) happens. Then for every n € N there are s, > r,, > 0 and an arc
L,, C X such that the following hold:

(5) h(zy) € Ly, and L, intersects both S(4,r,) and S(d, sp)-

(6) Set S, = S(@i,r,) U S(,sy,). Then §%(S,) > 0. (Hence S,, C X.)
(7) Define d,, = sup({d(z,@) | z € L, US,}). Then lim,,_,o d, = 0.
(8) (B(i,s,) — B(i,rn))NC # 0.

In both case (i) and case (ii) set A,, = L,,US,, and B,, = h~!(A,,). Let Zbe a sequence
such that z, € B, for every n € N. By (3) and (7), lim,, .00 6 (h(2,)) = 0. From the fact
that h € BPD.P(X) it follows that lim,, o, 6% (2,) = 0. There is a subsequence {n; |
i € N} such that either lim, o, d(zn,,5(0,2)) = 0 or lim, o d(zn,,S(0,1) UC) = 0.
We may assume that n; = i for every i. Suppose by contradiction that the latter hap-
pens. Now, x,, 2, € By, B, is connected and lim,,_. d(x,, S(0,2)) = 0. We also have
d(5(0,2),5(0,1)UC) > 0. Choose y,, € B, such that ||y, — x| = |zn — Zn||/2. Then
d({yn | n € N},bd(X)) > 0, a contradiction. So lim,,_,« d(zn,S(0,2)) = 0.

Let e, = sup({d(z,5(0,2)) | z € B,}). It follows that lim,,_,~ e, = 0. Let n be such
that e, < 1/4. Define S = S,, and T = h~!(S). Since S is a BPD set, T is a BPD
set. Let d = d(T,5(0,2)). It is obvious that X — S has three connected components,
and neither of them is a BPD set. So the same holds for T. However, since e, < 1/4,
T C B(0,2) — B(0,3/2) and so X N B(0,3/2) is contained in a component of X — T, and
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B(0,2) — B(0,2 — d) is also contained in a component of X — 7. It follows that one of
the components of X — T is contained in W := B(0,2 — d) — B(0,3/2). But W is a BPD
subset of X. A contradiction, so Claim 2 is proved.

Let h € BPD.UC(X) and define g = h".

Cramn 3. 0 € Dom(g%) and g°(0) = 0.

Proof. Let ¥ C B(0,1) — {0} be such that lim # = 0. Then lim,, ., [|n~!(z,)| = 2. Note
that h € BPD.P(X). Applying Claim 2 to h, we conclude that lim,, . ||h(n~(z,))| = 2.
Hence lim,, o [|[n(h(n~(x,)))|| = 0. That is, lim,, . ||g(z)|| = 0. So Claim 3 is proved.

Let M CY — {0} be such that d(M, D) > 0. Let r > 0 and N = n~ (M — B(0,r)).
Then d(N, S(0,2)) > r. So [N is bilipschitz, hence (i) n=*[(M — B(0,r)) is bilipschitz.
N is a BPD subset of X. So (ii) h|N is bi-UC. Also, A(N) is a BPD subset of X. In
particular, d(h(N), S(0,2)) > 0. So (iii) n[h(V) is bilipschitz.

gl(M = B(0,r)) = nehon™ [(M — B(0,r))
= (nlh(n~" (M = B(0,7)))) e (hIn™ (M — B(0,r))) o (= [(M — B(0,7)))
=nIh(N)o (h[N)e (n~" (M = B(0,r))).

By (i)-(iii), g[(M — B(0,7)) is bi-UC. By Claim 3 and Claim 1, g°'M is UC. Applying
the same argument to h~! we conclude that (g¢')~![g(M) is UC. So g[ M is bi-UC. That
is, K[ M is bi-UC. It has already been argued that this implies that h” € BPD.UC(Y). =

LEMMA 5.39. Suppose that X is an open subset of a Banach space E.

(a) BUC(X) C BPD.UC(X).
(b) Suppose that X is BR.LC.AC, T € H(X,Y) and (BUC(X))” C BPD.P(Y). Then
7~ € BPD.P(Y, X).

Proof. (a) Let h € BUC(X). Suppose that x € bd(X), & C X and lim# = x. Then h(Z)
is a Cauchy sequence. Let y = lim h(&). Clearly, y € bd”(X)Uint(X) and y ¢ X. Since
E is complete, int(X) = X. Hence y € bd(X). We have shown that Dom(h<!) = cl(X)
and that h°(bd(X)) C bd(X). Applying the same argument to h~! one concludes that
(1) hY(bd(X)) = bd(X). It is trivial that ~°! € BUC(cl(X)).

Suppose by contradiction that A is a BPD set and h(A) is not a BPD set. By
definition, h is boundedness preserving. So h(A) is bounded and hence §(h(A)) = 0.
Let # C h(A) and ¢ C bd(X) be such that lim, o d(zn,y,) = 0. By (1), (b))~} (%) C
bd(X). So for every n, d(h~1(x,), h"1(yn)) > §(A) > 0. Hence (b))~ [(Rng(Z)URng(7))
is not uniformly continuous. A contradiction.

(b) Let X, E|Y and 7 be as in part (b), and suppose that Y is an open subset of the
normed space F. Then F is a Banach space. To see this note that an open ball B of F
is homeomorphic to an open subset of E. So B is completely metrizable. But F' = B,
so F'is completely metrizable. So F is a dense G subset of I/, and so is every coset of
F in F. Since F has no disjoint dense Gj subsets, F' = F. Suppose by contradiction
771 ¢ BPD.P(Y, X). Then there is a 1-1 sequence ¥ C X such that ¥ is not a BPD
sequence, but 7(7) is a BPD sequence. We may assume that lim,, . 6; (z,,) = oco.
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Since 7(Z) is a BPD set, it does not have convergent subsequences in F', hence 7(Z)
does not have a Cauchy subsequence. So we may assume that there is d > 0 such that
7(Z) is d-spaced.

CramM 1. % is not a Cauchy sequence.

Proof. Suppose otherwise, and let * = limZ. Then z* € bd(X), for if 2* ¢ X, then ¥ is
a BPD sequence.

By the simplicity of z*, we can find a subsequence § of Z, arcs {L,, | n € N} and
open sets {U,, | n € N} such that yo,, yon+1 € L, C U, C cl(U,,) C X, for any distinct
m,n € N, d(Up,,Up,) > 0, and lim,,_, o, diam(U,,) = 0.

Let z, € L, — {y2n} be such that lim,, o, d(7(y2n), 7(2,)) = 0. It follows that

(1) 7(¥) UT(2) is a BPD set.

Let h,, € UC(X) be such that hy,(y2n) = Yan, hn(zn) = y2n+1 and supp(h,) C U,. By
Proposition 4.5, h := open by € UC(X). However,

(2) A™1(7(7) U T(2)) is not UC.
To see this recall that lim,, .o d(7(y2n), 7(2n)) = 0. However, d(h7 (7(ya2n)), A7 (7(2,))) =

d(7(y2n), T(Y2n+1)) > d. Facts (1) and (2) mean that h™ ¢ BPD.UC(Y'). A contradiction,
so Claim 1 is proved.

CLAIM 2. It is not true that lim,, o 6(z,) = 0.

Proof. Suppose otherwise. By Claim 1, we may assume that there is e; > 0 such that
Z is ej-spaced. For every n € N let b, € bd(X) be such that d(z,,b,) < 26(z,), and
[zn,bn) C X.

For every n € N let ™ = {«} | i € N} C [z,,b,) be a sequence converging to b,,.
By Claim 1, 7(2™) is not a BPD set. It follows that there is a sequence {i,, | n € N}
such that {7(z} ) | n € N} is not a BPD set. Let y, = 2} . Since & is e;-spaced and
limy,— 00 d(xp, yn) = 0, we may assume that there is e > 0 such that {[z,,y,] | n € N} is
e-spaced.

Let {U, | n € N} be a sequence of open subsets of X such that [x,,y,] C U,,
lim,, o diam(U,,) = 0 and for any distinct m,n € N, d(U,,,U,,) > 0. Let h,, € UC(X) be
such that supp(h,) C U, and h,(z,) = y,. By Proposition 4.5, h := onen hy € UC(X),
but A ¢ BPD.P(Y'). This is so, because h” (7(Z)) = 7(¥), and 7(Z) is a BPD set, whereas
7(%) is not. A contradiction. This proves Claim 2.

From Claims 1 and 2 and the fact that Z is not a BPD sequence, it follows that &
is unbounded. So we may assume that {||z,|| | n € N} is a strictly increasing sequence
converging to oo. Recall also that 7(Z) is d-spaced. We now deal with two cases.

CAsE 1: F — X is bounded. We may assume that £ — X C B(0, ||zo|/2). Set z_; = 0.
Choose Y, € (Tan, Tant1] wWith d(7(x2,), 7(yn)) <1/(n+1). Define r,, =min(||z2n, —z2n—1],
|x2nt2 — Zont1l])/2 and let h,, € UC(X) be such that h,(x2,) = Zan, hn(Yn) = Tant1
and supp(h,) C B([zan, Tant1],7n). Clearly, supp(hy,) Nsupp(hy,) = 0 for every n # m
and hence h := open by, € BUC(X). Since limy, o d(7(22,), 7(yn)) = 0, it follows that
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7(Z) U 7(¥) is a BPD set. But A7 [(7(Z) U 7(%)) is not UC. So k™ ¢ BPD.UC(Y). A
contradiction, so Case 1 does not occur.

CASE 2: E — X is unbounded. We define by induction on n € N: u,, € Rng(Z), v, € X,
h, € UC(X) and r, > 0. Let r_; = 0. Suppose that r,_; has been defined. Let
un, € Rng(Z) —cl(B(0,r,—1)) and Let b, € bd(X) —cl(B(0,r,—_1)). We may assume that
there is an arc L,, C (X U{b,}) — cl(B(0,7,_1)) connecting u,, and b,. Let 7" := {v™" |
i € N} C L, — {b,} be a sequence converging to b,. So ¢" is a Cauchy sequence. So by
Claim 1, 7(9") is not a BPD set. Hence there is v, € L,, — {b,} such §;1(7(v,)) > n.

Let r,, be such that L, C B(0,7,) and h,, € UC(X) be such that h,(u,) = v, and
supp(hn) € B(0,7,) —cl(B(0,r,—1)). Clearly, supp(h,,) Nsupp(h,) = 0 for every m # n,
and hence h := open hy, € BUC(X). However, since 7() is a BPD sequence, 7(%) is not
a BPD sequence, and A" (7(%)) = 7(7), h™ ¢ BPD.P(Y). A contradiction, so Case 2 does
not happen. It follows that 7=! € BPD.P(Y, X). m

If X is BPD.AC, and we remove from X a spaced set, then the resulting open set is
also BPD.AC. This is proved in the next proposition. Although this fact is quite trivial,
a complete proof requires much writing.

PROPOSITION 5.40. (a) Let E be a normed space which is not 1-dimensional. Let u, v, w
€ E be such that ||u —w| = ||v —w| = r > 0. Then there is an arc L C X connecting u
and v such that L N B(w,r) = 0, and Ingth(L) < 8r.

(b) Suppose that X is BPD.AC, and is not 1-dimensional. If A C X 1is spaced, then
X — A is BPD.AC.

Proof. (a) We may assume that E is 2-dimensional, w = 0 and r = 1. Let z € S(0,1) be
such that ¢ := {u+tz | t € R} is a supporting line for B(0,1). Represent v as v = au+bz,
and choose z in such a way that b > 0. Let L; = [u,u + 2z], Ly = [22 + u, 2z — u],
L3 =[2z—wu,—u] and Ly = L1 U Ly U L3. Since ¢ is a supporting line of B(0, 1) it follows
that L, and L3 are disjoint from B(0,1). Suppose that w € Ls. So w = 2z + tu, where
|t| < 1. We may assume that ¢ > 0. Then ||w| > 2||z|| — ¢||u|]| > 1. So Ly N B(0,1) = 0.
Recall that v = au + bz € S(0,1). From the fact that ¢ supports B(0,1) it follows that
a<1. Thenl=|v| >b—a>b—1. Sob<2. Let A =min(1/|al,2/b) and L, = [v, \v].
Clearly, L, N B(0,1) = (. Either Av = u+ b1z, where b; € [0,2], or A\v = —u+ by 2z, where
by € [0,2], or Av = aju+ 2z, where ay € [—1,1]. Hence Av € Ly U L3 U Ly = Lg. The set
Lo U L, is disjoint from B(0,1) and contains an arc L connecting v and v. Obviously,
for i = 1,...,3, Ingth(L;) = 2 and Ingth(L,) = || \v|| — ||v]| < 2||2]| + |lul| = 1 = 2. So
Ingth(L) < 8.

(b) We prove Claim 1 stated below, and leave it to the reader to verify that (b) is
implied by Claim 1.

CrAam 1. For every r,C,D > 0 there are r1,C1,D1 > 0 such that for every normed
space E, an open subset X C FE and an r-spaced subset A C X the following holds. If
x,x* € X — A are such that d({x,z*}, A) > r, and L C X is an arc connecting x and =*
such that 6% (L) > C and Ingth(L) < D, then there is an arc M C X — A connecting ©
and x* such that d(M, A) > ry, 6 (M) > Cy and Ingth(M) < D;.
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Proof. Let D1 =8D, Cy = C/2 and 1 = min(r,C)/64. Let E, X, A, z, z* and L be as
in the claim and v : [0, 1] — L be a parametrization of L which satisfies Ingth(v[[0,t]) =
t - Ingth(L) for every t € [0,1]. For every a € Alet T, = {t € [0,1] | v(t) € B(w, 2r1)}.
Clearly, T, is an open subset of (0,1), and cl(7,) Ncl(T) = @ for any distinct a,b € A.
Define T'= |J{T, | a € A}, and let 7 be a set of pairwise disjoint open intervals of (0, 1)
such that |JZ = T. For an open interval I in (0,1) denote by s; and ¢; the left and
right endpoints of I, and if I € Z denote by a; that member of A such that I C T,.
Clearly, s;,t; € S(ay,2r1). For every I € T let Ly = ~([s1,t7]) and M; be a rectifiable
arc connecting ay and by such that M; N B(as,2r1) = 0 and Ingth(M7) < 16r;. The
existence of M7 is ensured by part (a). Let Zo = {I € Z | d(Ly,ar) < r1}. Let

M=L-JLru M.
IE€T, I€T,
Certainly, M is an arc whose endpoints are z and z*. It is trivial that if I € Z;, then
Ingth(L;) > 2ry, and so for every I € Ty, lngth(M;)/Ingth(L;) < 8. It follows that M is
rectifiable and that Ingth(M) < 8 - Ingth(L) < 8D.
Let we M. If w € L — Uz, L1, then d(w, A) > 2ry. If there is I € Z such that
w € My, then d(w,ay) > 2r; and for every b € A — {as},

d(w,b) > d(b,a;) —d(w,ar) > r —8ry — 2ry > 64r1 — 1071 = 54ry.

It follows that d(M, A) > ry.
It remains to show that §% (M) > C/2. Obviously, 6% (L — Urez, L) > §X(L) > C.
Let I € 7y and be such that w € M;. Then

d(w,E—X) >d(ar, E — X) —d(w,a;) >C —=8ry —2ry =C — 10r; > C — 16r; > C/2.
It follows that 0 (M) > C/2. We have proved Claim 1. m

We are ready to prove that for open subsets of Banach spaces, if (BUC(X))™ C
BPD.UC(Y), then 7=! € BPD.UC(Y, X). This is the content of part (a) of the next
theorem. The main argument lies though in part (b), and once it is proved, (a) follows
easily. So we shall start with the proof of (b).

THEOREM 5.41. Let E be a Banach space and X be an open subset of E.

(a) Suppose that X is BPD.AC and BR.LC.AC, and that 7 € H(X,Y) is such that
(BUC(X))™ C BPD.UC(Y). Then r—! € BPD.UC(Y, X).

(b) Suppose that X is BPD.AC, and that 7 € H(X,Y) is such that (LIPyo(X))" C
BPD.UC(Y). Assume further that 7=! € BPD.P(Y, X). Then 7—! € BPD.UC(Y, X).

Proof. (b) We shall see that the proof of (b) can be reduced to an instance of Lemma 5.25.
Suppose by contradiction that 77! ¢ BPD.UC(Y, X). So there are sequences Z’, % in Y’
and e > 0 such that Rng(Z') URng(¢") is a BPD subset of Y, lim,,— d(z},,y,,) = 0, and
d(r=(2)), 77 X(y),)) > e for every n € N. We may assume that 7’ is either a Cauchy
sequence or Z is spaced. However, ' cannot be a Cauchy sequence because in that case
its limit belongs to Y, and this violates the continuity of 77!. So we may assume that
¥ is spaced. Set ¥ = 71(7') and ¥ = 77 1(¢). From the fact that 7= € BPD.P(Y, X)
it follows that Rng(Z) is a BPD set. We may assume that & is either spaced or is a
Cauchy sequence. But if it is a Cauchy sequence then its limit belongs to X, and by the
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continuity of 7 at z, Z’ is a Cauchy sequence, which we have already excluded. So we
may assume that & is spaced. Let d > 0 be such that & is d-spaced. Then for every n € N
there is at most one m such that ||y, —z,,[| < d/2. Tt follows that there is an infinite set
n C N such that ||y, — @, || > min(e, d/2) for every m,n € . We may thus assume that
d(Rng(&), Rng(7)) > 0.

We denote Rng(%), Rng(7), Rng(#’) and Rug(y’) by A, B, A’ and B’ respectively. Let
X=X-AY=Y-Aand?=r1X.So7 € H()A( )A/) We shall prove that

(i) X is BPD.AC,

(i) (LIPgo(X)) C BPD.P(Y), i

(ili) B is a BPD subset of X, whereas 7(B) is not a BPD subset of Y.
(

Facts (i)—(iii) contradict Lemma 5.25.

(i) By Proposition 5.40(b), X is BPD.AC.

(i) Let h € LIPgy(X). Then h is extendible, and h¢'[bd(X) = Id. So h°(4) = A.
Hence h* := h*'|X € H(X) and clearly, i € LIPo(X). So (h*)” € BPD.UC(Y).
We show that if C is a BPD subset of Y, then h7(C) is a BPD subset of Y. Clearly,
h* = (h*)"]Y. Obviously, C U A’ is a BPD subset of Y, and hence (h*)"[(C U A’) is
bi-UC. So since d(C, A’) > 0, d((h*)"(C), (h*)7(A")) > 0. Since (h*)7(A’) = A, it follows
that (1) d((h*)7(C), A’) > 0. Since (h*)™ € BPD.P(Y), and C is a BPD subset of Y, we
also have (11) (h*)7(C) is a BPD subset of Y. From (1) and (}1) it follows that (h*)7(C)
is a BPD subset of Y. That is, h7(C) is a BPD subset of Y. We have shown that for
every h € LIPgo(X), h* is BPD.P. The same holds for h=!, so (LIPgo(X))" C BPD.P(Y).

(iii) Since 7= € BPD.P(Y, X) and B’ is a BPD subset of Y, we see that B is a BPD
subset of X. From the fact that d(A4, B) > 0 we conclude that B is a BPD subset of
X — A = X. On the other hand, d(A’, B') = d(Rng(#), Rng(7/')) = 0, so B’ is not a
BPD subset of ¥

Facts (i)—(iii) contradict Lemma 5.25, so 7=! € BPD.UC(Y, X). Part (b) is thus
proved.

(a) Let X,Y,7 be as in (a). Then (BUC(X))” C BPD.P(Y). So by Lemma 5.39(b),
771 € BPD.P(Y, X). We also have (LIPy(X))” € BPD.UC(Y). So by part (b) of this
theorem, 7! € BPD.UC(Y, X). m



6. Groups of extendible homeomorphisms and
reconstruction of the closure of open sets

6.1. General description. This chapter deals with the homeomorphism groups of
closed sets which are the closures of open subsets of a normed space and with groups of
extendible homeomorphisms. Under appropriate assumptions on the open sets X and Y
we prove that if ¢ : H(cl(X)) = H(cl(Y)), then there is 7 € H(cl(X),cl(Y)) which
induces ¢. Under the same assumptions we also prove that if ¢ : EXT(X) & EXT(Y),
then there is 7 € EXT*(X,Y) which induces ¢. The definitions of EXT(X,Y) and
EXT(X) appear in 4.6(b) and 5.1(a).

The results about H(cl(X)) appear in Theorems 6.22 and 6.24, and those about
EXT(X) appear in Theorems 6.3, 6.12 and 6.18. These theorems cover open subsets of a
normed space whose boundary may be quite complicated. So they go far beyond the class
of open sets whose closure is a manifold with boundary. Nevertheless, the statements

Every ¢ : H(cl(X)) = H(cl(Y)) is induced by some 7 € H(cl(X),cl(Y))

and
Every ¢ : EXT(X) = EXT(Y) is induced by some 7 € EXT*(X,Y)

are not true for every pair of open subsets of a normed space, not even in the finite-
dimensional case. Example 5.8 exhibits two different trivial reasons why the above state-
ments are not true in their full generality.

The proofs of the theorems about EXT(X) and about H(cl(X)) are essentially identi-
cal. Moreover, for finite-dimensional normed spaces the question about the faithfulness of
{H(cl(X)) | X is open} is a special case of the question about the EXT-determinedness
of {X | X is open}. To see this, notice the following facts.

(1) If U is a regular open subset of R™, then EXT(U) = H(cl(U)).

(2) If X C R" is open and X = int(cl(X)), then X is regular open and cl(X) = cl(X).

Suppose now that ¢ : H(cl(X)) = H(cl(Y)). By (2), ¢ : H(cl(X)) = H(cl (A)), and
by (1), ¢ : EXT(X) = EXT(Y). So if it can be proved that there is T € EXT*(X,Y)
which induces ¢, then this 7 indeed belongs to H(cl(X), cl(Y)).

Theorems 6.3 and 6.18 prove the EXT-determinedness of certain classes. In 6.3 it is
assumed that the members of the EXT-determined class are BR.LC.AC (see 5.37). This
property is a weakening of uniform-in-diameter arcwise connectedness. It may happen
though that every point in the boundary of such a set is fixed under EXT(X). In 6.18, on
the other hand, the EXT-determinedness is derived from the property that the EXT(X)-
orbit of every member of bd(X) contains an arc, but X need not be BR.LC.AC.

[121]
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In Corollary 6.6(a) we prove that if X and Y satisfy certain weak assumptions on
arcwise connectedness, and (EXT(X))” = EXT(Y), then 7 € EXT(X,Y). A statement
of the form: “(EXT(X))” C EXT(X) = 7 € EXT(X,Y)” is also proved, but only under
rather restrictive assumptions on X and Y. See Corollary 6.6(b).

Suppose that X is an open subset of R”. Then EXT(X) = BUC(X). If in addition,
X is bounded, then EXT(X) = UC(X). So for finite-dimensional bounded X’s Corollary
5.6 which deals with BUC(X) is indeed about EXT(X). However, Theorems 6.12 and
6.18 are stronger than 5.6 even for finite-dimensional bounded X'’s.

Groups of completely locally uniformly continuous homeomorphisms are dealt with
in Theorem 6.20. (See Definition 5.3(f).) The I'-continuous version of these groups is
the subject of Chapters 8-12.

At the end of this chapter in items 6.25—6.30, we discuss two generalizations of these
results. The first generalization deals with subsets Z of a normed space such that Z C
cl(int(Z)). The second generalization deals with sets which are the closures of open
subsets in a normed manifold.

Recall that unless otherwise stated, X and Y denote respectively open subsets of the
normed spaces F and F.

6.2. Groups of extendible homeomorphisms. The following definition contains
some notions related to arcwise connectedness. These notions are used in the statement
of Theorem 6.3 which deals with EXT-determinedness. In the next definition only, F
denotes a general metric space.

DEFINITION 6.1. Let E be a metric space and X C F.

(a) A set of pairwise disjoint sets is called a pairwise disjoint family. Let A be a
pairwise disjoint family of subsets of X. A is completely discrete with respect to E if for
every z € E there is U € Nbr(z) such that {A € A| ANU # 0} is finite. A set AC X is
completely discrete with respect to E if A does not have accumulation points in E. The
mention of E in the above definition is often omitted, since E is usually understood from
the context. A sequence ¥ C X is a completely discrete sequence if it is 1-1, and its range
is completely discrete.

(b) X is said to be boundedly arcwise connected (BD.AC) if for every bounded A C X
there is d > 0 such that for every x,y € A there is a rectifiable arc L C X connecting x
and y such that Ingth(L) < d.

(¢) X is said to be a wide set if for every infinite completely discrete set A C X
there is an infinite B C A, a set {y, | b € B} and a set of arcs {L; | b € B} such that:
{y» | b € B} is bounded; for every b € B, yp,b € L, C X; and {L; | b € B} is completely
discrete.

(d) Let ¥ C X be a completely discrete sequence. Let z* € cl(X), {L,, | n € N} be a
sequence of arcs and § C X. Assume that

(1) L, C X for every n € N,
(2) L,, connects z, with y,, for every n € N,
(3) imy = a*,
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(4) L, N L, =0 for any distinct m,n € N,
(5) for every r > 0, {L,, — BE(z*,r) | n € N} is completely discrete.

Then (Z,2*,{L, | n € N}, ) is called a joining system for & with respect to E.
(e) X is jointly arcwise connected (JN.AC) with respect to E if for every completely
discrete sequence & C X there is a subsequence Z’ of Z such that 7’ has a joining system. [J

In (a)—(d) of the next proposition we infer joint arcwise connectedness from various
simpler properties of X. Part (e) is a trivial observation, so we do not prove it.

PROPOSITION 6.2. (a) Suppose that ZC X is a Cauchy sequence and lim* Zeint(X)—X.
Then & has a subsequence & such that ' has a joining system.

(b) Suppose that X is an open subset of a finite-dimensional normed space. Then X
is JN.AC iff X is bounded.

(c) Suppose that X is an open subset of a Banach space and X is BD.AC. Then every
bounded completely discrete sequence © C X has a subsequence ¥ such that T has a
joining system. In particular, if in addition X is bounded, then X is JN.AC.

(d) If X is an open subset of a Banach space, X is wide and X is BD.AC, then X
is JN.AC.

(e) Let X be a bounded subset of a finite-dimensional normed space. Then X is
BR.LC.AC iff X is UD.AC.

Proof. (a) Let # = lim*#. Let w € F and r > 0 be such that B(u,7) C E and
z € BE(u,r). Let v € B(u,r). There is a subsequence 7 of Z such that § C B(u,r) and
{lyn,v) | n € N} is a pairwise disjoint family. Let v, € [yn,v) be such that lim¥ = v.
Then (¥, v, {[yn,vn] | n € N}, ¥) is a joining system for .

(b) If X is a bounded open subset of a finite-dimensional space, then X does not
contain an infinite completely discrete set. So X is JN.AC.

Suppose that X is an unbounded open subset of a finite-dimensional space, Let & C X
be a 1-1 sequence such that lim,,_, ||2,|| = co. Then Z is completely discrete, and it is
trivial that £ has no joining system.

(c) Let X be as in (c). Let Z C X be completely discrete. Since X is an open subset
of a Banach space, we may assume that & is spaced. Let u € X. For every n € N let
L, C X be a rectifiable arc connecting z, with « such that lngth(L,) < d. Let ~,(t)
be the parametrization of L,, satisfying v,(0) = u, v,(1) = =, and Ingth(y,([0,])) =
t - Ingth(L,,).

For every 0 C N and t € [0,1] set Ao, t] = {yx(t) | n € 0}, and if o is infinite define
to = inf({t | Afo,] is spaced}). There is an infinite o such that for every infinite 5 C o,
t, = t,. It is easy to see that there is no infinite n C o such that A[n,t,] is spaced. So
there is 7 C o such that A[n,t,] is a Cauchy sequence. Then A[n, 1] is a subsequence of
Z and (A[n, 1], lim A[n, t,], {vn([t;. 1]) | n € n}, A[n, t,]) is a joining system for A[n, 1].

(d) This part follows easily from (c). =

In the next theorem, (a) is a special case of (b). It seems worthwhile to state (a)
separately, because the class considered there is more understandable than the class
dealt with in (b).



124 M. Rubin and Y. Yomdin

THEOREM 6.3. (a) Let KSox denote the class of all X € KSyc such that X is wide,
BR.LC.AC and BD.AC. Suppose that X,Y € K§ax and ¢ : EXT(X) 2 EXT(Y). Then
there is T € EXTi(X, Y) which induces ¢. Note that KSox contains the class of all
bounded members of K¢ which are BR.LC.AC and BD.AC.

(b) Let KQux denote the class of all X € Kggy such that X is BR.LC.AC and
JN.AC. Let XY € KQyux- Suppose that ¢ : EXT(X) = EXT(Y). Then there is
T € EXTH(X,Y) which induces ¢.

The proof of Theorem 6.3 appears after Corollary 6.6.

REMARK. (a) By Proposition 6.2(c), K§ox € KSux- So 6.3(b) is a special case of 6.3(a).

(b) Note that all members of K-y which are subsets of a finite-dimensional normed
space are bounded. This is so, since for finite-dimensional spaces, wideness implies bound-
edness. Yet Kgcx contains unbounded subsets of infinite-dimensional Banach spaces.

(c) There is a regular open subset X C R? such that X € KS-x and ¢g°'[bd(X) = Id
for every g € EXT(X). This is maybe somewhat unexpected, since it means that bd(X)
is recoverable from EXT(X) even though every member of EXT(X) is the identity on
bd(X). See Example 6.7(d). O

Recall that UCy(X) = {f € UC(X) | Dom(f!) = cl(X) and f']bd(X) = Id}.

PROPOSITION 6.4. Suppose that X is BR.LC.AC, and let 7 € H(X,Y) be such that
(UCo(X))™ C EXT(Y). Let x € bd(X), y € bd(Y) and & C X be such that lim# = x
and im 7(Z) =y. Then 7U {{x,y)} is continuous.

Proof. Let @ C X be such that lim @ = 2. Suppose by contradiction that 7(%) does not
converge to y. We may assume that y is not a limit point of 7().

We now repeat the construction appearing in the proof of Case 1 in Theorem 5.5.
Using the fact that X is BR.LC.AC, by induction on ¢ € N we construct n; € N and
L; C X such that: (i) L; is an arc connecting x,, and w,,; (i) lim;_, . diam(L;) = 0;
and (iii) for every i € N, d(L;, Uj# L;) > 0. For every i € Nlet U; C X be an open set
such that L; C U;, lim;_, o diam(U;) = 0, and for every i # j, d(U;, U;) > 0.

Let h; € UC(X) be such that supp(h;) C Uy; and hi(2p,;) = Un,,;. By Proposition 4.5,
h:= ojen h; € UC(X). It is also obvious that h € UC((X). However, h7 is not exendible,
since 7(&) is convergent, whereas h7 (7(Z)) is not convergent. A contradiction. m

Our next goal is to show that if (EXT(X))” C EXT(Y), then for every y € bd(Y)
there is a sequence 7/ converging to y such that 7~1() is a convergent sequence. This holds
automatically when X is bounded and finite-dimensional, but in that case extendibility
is equivalent to uniform continuity, and so Theorem 5.2 already answers our question. In
the general case we have to make an additional arcwise connectedness assumption on X.

For a metric space F and X C FE define

LUCy1(X) ={h € LUC(X) | there is an E-open set U 2 bd(X)
such that Al(U N X) =1d}.

LEMMA 6.5. Assume that X is JN.AC, T € H(X,Y) and (LUCy1(X))” C EXT(Y), and
let y € bd(Y).
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(a) Suppose that T C X is completely discrete, (Z,z*,{L,, | n € N},Z') is a joining
system for & and lim 7(Z) = y. Then there is a sequence @ C X such that im @ = x* and
lim (@) = y.

(b) There is a sequence @ C X such that @ converges to a member of bd(X) and
lim 7 (%) = y.

Proof. (a) Suppose that Z is completely discrete, (Z,2*,{L, | n € N},Z’) is a joining
system for #, and 7(Z) converges to y. We may assume that * & {x,, | n € N}. Hence
since & is completely discrete, d := d(&,z2*) > 0. Also assume that L, (0) = z, and
L,(1)=x,.

CLAIM 1. For everyr > 0 there is a sequence @™ C B(x*,7)NX such that 7(4") converges
to y.

Proof. Let r € (0,d). For every n € N we define v,,. If n is even and d(z/,,2*) < r/2,
let ¢, = min{t € [0,1] | d(Ln(t),2*) = r/2} and v, = L,(t,). Otherwise, let v, = .
Let ¥ = {v, | n € N}. Let L], be the subarc of L, connecting z, with v,. Clearly L/ N
B(z*,7/2) = 0, and hence by Definition 6.1(d)(5), {L/, | n € N} is completely discrete.
It is easy to see that there is a completely discrete family of open sets {U, | n € N}
such that for every n € N, LI, C U,, C cl(U,) C X. Let h, € UC(X) be such that
supp(hy) C U, and hy,(x,) = vy. It is easy to see that h:= o{h, | n € N} € LUCq;(X).
Hence A7 € EXT(Y).

The facts that 7(Z) is convergent in cl(Y) and that h™ € EXT(Y) imply that A7 (7(Z))
is also convergent in cl(Y). Note that h™(7(Z)) = 7(¥). So 7(¥) is convergent in cl(Y).
Recall that for every n € N, vg, 411 = x2,41. So lim7(0) = hmT( 7) =y. Let N, € N
be such that for every n > N, d(«},,2*) < r/2 and define @" = {va, | 2n > N, }. Then
4" C B(z*,7) N X and hence @" is as required in Claim 1.

Let 7, = 1/n. For every n € N let k,, be such that d(y,7(u;")) < 1/n. Then
i := {u;" | n € N} converges to z* and lim 7 (%) = y.

(b) Suppose by contradiction that y is a counter-example to the claim of (b). Let 5 C
Y be a 1-1 sequence converging to y and z = 7~ 1(#). If Z has a convergent subsequence,
then this subsequence converges to a member of bd(X), so y is not a counter-example.
Hence 7' is completely discrete.

Since X is JN.AC, there is a subsequence 7 of Z' such that ¥ has a joining system
(@, 2*,{L, | n € N},@'). By (a) there is a sequence & C X such that lim@ = z* and
lim7(4@) =y. If 2* € X, then y = lim 7(¥) = 7(z*) € Y, a contradiction. So z* € bd(X).
This means that y is not a counter-example to (b). A contradiction, so (b) is proved. »

The fact (EXT(X))” C EXT(X) does not imply that 7 € EXT(X,Y). To deduce
that 7 € EXT(X,Y), we need to assume that (EXT(X))” = EXT(X). This is shown in
part (a) of the next corollary. In (b) we show that if EXT(X) acts transitively on bd(X),
then the assumption (EXT(X))™ C EXT(X) does suffice.

COROLLARY 6.6. (a) Suppose that X is BR.LC.AC, and Y is JN.AC. Let T € H(X,Y)

be such that (1) (UCo(X))™ C EXT(Y) and (1) (LUCe(Y))™ C EXT(X). Then
7€ EXT(X,Y).
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(b) Suppose that X is BR.LC.AC, X is JN.AC, and that the boundary of X has the
following transitivity property: (x) for every x,y € bd(X) there is h € EXT(X) such that
hl(z) = y. Let T € H(X,Y) be such that (EXT(X))™ C EXT(Y). Then T € EXT(X,Y).

Proof. The two parts of the corollary will be proved by combining Lemma 6.5(b) and
Propositions 6.4 and 4.7(a).

(a) Let # € bd(X). By Lemma 6.5(b) applied to 7!, there is £ C X converging to
x such that 7(Z) converges to a point in bd(Y). Let y = lim7(Z). By Proposition 6.4,
TU{(z,y)} is continuous. So by Proposition 4.7(a), 7 is extendible.

(b) By Lemma 6.5(b) applied to 7, there are oy € bd(X) and ¥ C X converging to xg
such that 7(&) converges to a member of bd(Y). Let € bd(X). There is h € EXT(X)
such that h(zg) = x. Since h™ € EXT(Y), A" (7(Z)) converges to a member of bd(Y"). But
T(h(Z)) = h7(7(Z)). It follows that for every x € bd(X) there is a sequence @ converging
to x such that 7(%) is convergent. By Propositions 6.4 and 4.7(a), 7 € EXT(X,Y). n

Proof of Theorem 6.3. (a) This is a special case of (b), because by Proposition 6.2(d), a
BD.AC wide open subset of a Banach space is JN.AC.

(b) LIPgo(X) € EXT(X) and LIPgo(X) = LIP(X,S), where S is the set of all
open BPD subsets of X. The same holds for Y. So by Theorem 2.8(b), there is 7 €
H(X,Y) such that 7 induces ¢. From the fact that UCy(X) C EXT(X) we conclude
that (UCo(X))™ € EXT(Y). So 6.6(a) can be applied to 7 and 7. We conclude that
7 € EXT*(X,Y). This proves (b). =

Part (a) of the next example is designed to show that the condition (}) of 6.6(a) is
needed. Indeed, for Y, X and 77! of (a), ({f) holds but the conclusion of 6.6(a) does
not. Part (b) shows that assumption () in Corollary 6.6(a) cannot be omitted. The
example is infinite-dimensional. Indeed, for finite-dimensional normed spaces () does
suffice. This follows from Theorem 5.5 and Proposition 6.2(e). Part (c) shows that the
transitivity assumption () in Corollary 6.6(b) is indeed needed. Part (d) shows that
there is X € K-y such that EXT(X) fixes bd(X) pointwise. The set X is a regular
open subset of R3, therefore EXT(X) = H(cl(X)).

Let Cmp(X) denote the set of connected components of a topological space X.

EXAMPLE 6.7. (a) There are bounded regular open connected sets X and Y in R? and
7 € H(X,Y) such that X and Y are BR.LC.AC, (EXT(X))"™ C EXT(Y), but 7! ¢
EXT(Y, X). Note that by Proposition 6.2(b), X and Y are JN.AC.

(b) There are regular open bounded domains X andY in an infinite-dimensional Ba-
nach space and 7 € H(X,Y') such that X andY are BR.LC.AC and JN.AC, (EXT(X))"
CEXT(Y), but 7 ¢ EXT(X,Y).

(¢) There are bounded domains X andY in an infinite-dimensional Banach space and
T € H(X,Y) such that X andY are BR.LC.AC and JN.AC, bd(X) has two connected
components, bd(Y) is connected, EXT(X) and EXT(Y) act very transitively on bd(X)
and bd(Y) respectively, (EXT(X))™ C EXT(Y), but 7 ¢ EXT(X,Y).

(d) There is X € KSox such that X is a regular open bounded subset of R®, and
g Ibd(X) =1d for every g € EXT(X).
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Proof. (a) Let X’ C R? be the open square whose vertices are (0,0), (1,0), (0,1) and
(1,1), and Y’ C R? be the open triangle whose vertices are (0,0), (0,1) and (1,1). Let
7' € H(X',Y’) be defined by 7/((z,y)) = (zy,y). Let A =[(0,0),(1,0)].

Clearly, 7' € EXT(X',Y"), (7")'[(cl(X) — A) € H(cl(X') — A, cl(Y’) — {(0,0)}) and
(7')(A) = {(0,0)}. Also, if g € EXT(X’, X’) and ¢°'(A) = A, then g" € EXT(Y").

Forn > 1and 1 < k < nlet z,5, = (k/27,1/2"), By = cl(B(znx,1/8")) and
B={Bnir|n>1, 1<k<n} Notethat B is a pairwise disjoint family of closed balls
contained in X’ and cl(B) —UB=A. Let X =X'—JB,Y =7(X) and 7 = 7' X.
Clearly, for every g € EXT(X), g°'(A) = A. It follows that X, Y and 7 are as required.
Note also that for every z,y € A—{(0,0), (1,0)} there is ¢ € EXT(X) such that g(x) = y.

(b) Let E be the Hilbert space £2, Y’/ be the open cylinder defined by

(o)
V! — {(56073017...) } |zo| < 3 and fo < 9}
i=1

and X' =Y'—BF(0,1). Let 7 : X’ =2 Y’ —{0} be such that 71 [(Y'— B¥(0,2)) = Id. Let
75 : Y’ —{0} 2 Y’ be such that 72 [(Y' — BF(0,2)) = Id and 7/ = 7 0 71. The existence of
7o follows from the facts that a point in RY is a strongly negligible set, and that £y = RN,
See [BP, Chapter IV, Definition 5.1 and Chapter V, Proposition 2.2(c)] and Theorem 6.4.

Note that 7’ cannot be continued to a continuous function defined on S(0,1). Hence
7' ¢ EXT(X',Y’). It is trivial that bd(Y”) is homeomorphic to a sphere, and that bd(X")
has two components: bd(Y’) and S(0,1). It can be easily checked that for every h €
EXT(X"): if h(S(0,1)) = S(0,1), then 27 € EXT(Y”). However, there is h € EXT(X")
such that A(S(0,1)) = bd(Y’). This implies that (EXT(X’))"” ¢ EXT(Y"), contrary to
what is required in this example.

For a pairwise disjoint family C of subsets a topological space Z define

accZ(C) = {z € Z | for every U € Nbr?(z), {C € C|UNC # 0} is infinite}.
To define X we construct a pairwise disjoint family F of closed sets such that (i) |JF C

Y’'—B(0,2) and (ii) acc(F) C bd(Y")U|JF. We then define X, Y and T to be respectively
X' —UZF, 7(X) and 7’| X. Tt follows from (ii) that X is open, and the construction of
F will ensure that S(0,1) is the unique connected component of bd(X) which is clopen
in bd(X) and which is also strongly connected (a notion to be defined later). It will thus
follow that for every h € EXT(X), h°'(S(0,1)) = S(0,1), and this in turn implies that
(EXT(X))” C EXT(Y).

Let {e; | i € N} be the standard basis of {3, denote by T the set of finite sequences of
natural numbers, let f: T — N — {0} be a 1-1 function, and for € T define d,, = ey ().
Let A denote the empty sequence and T* = T — {A}. The relation “v is a proper initial
segment of 7” is denoted by n < v. Suppose that n = v " (i), ( = v (j) and i # j. In
that case we write v = pred(n), n € Suc(v) and ¢ € Brthr(n).

Let <T be the relation on T defined by v < 7 if either < v or there is n €
Dom(v) N Dom(n) such that v[N<" = [N<" and v(n) < n(n). It is easy to check that
<7 is a dense linear ordering with maximum A and with no minimum. Denote by T},
the set of all n € T such that Dom(n) = N<™ for some m < n. Then T;, is well-ordered
by <T.
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We define a line segment L, for every n € T*. If n = v”"(m), then L, has the
form [d, + a, - €o,d, + a; - €], where 2 < a,, < 3. So for L, to be defined we need
to define a,. We define a, by induction. Let {n, | n € N} be a 1-1 enumeration
of T such that for every n € N and v < n,, there is m < n such that 7,, = v. Define
Sp = {nm (i) | m < n and ¢ € N}. We define by induction on n the set {a, | v € S, }. So
at stage n we need to define the set {a,, ~(;) | i € N}. Since {v | v <0} C {0 | m < n}
for every n, it follows that 19 = A. Let {a(;)}ien be a strictly increasing sequence
converging to 3 such that a(oy = 5/2. So

L<1> = [dA + a<1> . Go,d“‘) + CL<,L> . 60}.
Let n > 0 and suppose that a, has been defined for every v € S,,. Let 0 = (0, ...) denote

the infinite sequence of 0’s. It is convenient to define az = 2. We assume by induction
that

(1) 2 < a, < 3 for every v € Sy,

(2) {ay,,~(sy | © € N} is a strictly increasing sequence converging to a,,, for every
0<m<n,

(3) ifv,0 € S, and v <T g, then a, < a,.

Note that for n = 1 the induction hypotheses hold. Clearly, S,, C T),+1, so {a, | v € S, }
is well-ordered. Obviously, n,, € S,,. If n, = (0,...,0), then 1, = min(S,). In this case
set 0, = 0. Otherwise, write 7, as v" (k)" (0,...,0), where £ > 0, and the sequence of
0’s at the end of 1, may be the empty sequence. Define g, = v"(k — 1). It is easy to
check that in this case o, is the predecessor of 7, in S,. Choose {a,, ~(;) | i € N} to be
a strictly increasing sequence converging to a,,, such that a, -0y = (a,, +ay,)/2. It is
left to the reader to verify that the induction hypotheses hold.

Let L = {L, | n € T*}, set ay = 3, for n € T define ¢, = d,, + a,eo and let
C ={c, | n € T}. Note that cy, € bd(Y"). For n =v" (i) € T* define b, = d,, + aneo. So
Ly = [by, cy]-

We first establish some facts about the distance between the members of L.
Cram 1. If v # pred(n), n # pred(v) and pred(v) # pred(n), then d(L,,L,) > 1.
Proof. L, and L, can be written as L, = ayeq + [b,c] and L, = a,eq + [d, €], where
b,c,d,e € {e; | i€ N} and {b,c} N{d,e} =0. So (d(L,, Ly))* = (ay —ay)?+4- > 1.
CLAIM 2. Suppose that v = pred(n) or n = pred(v) or v € Brthr(n) and write L, =
aveo + [b,c] and L, = ayeq + [b,d], where b,c,d € {e; | i € NZ'}. Let x € L, and write
z =ayeg+b+e. Then d(z,L,) > @He“
Proof. Clearly, e can be written as e = ¢t(c — b) and so

d(z, Ln)2 = (an - au)2 +d(b+e, b, d])2 > d(b+e,[b, dD2 =d(t(c—1b),[0,d - b])2
Also,

d(t(c—1),[0,d = b]) = d(t(c = b),{s(d = b) | s € R}) = [[t(c — D) 'Sing = ?IISII-

So d(z, L,)) > @He” This proves Claim 2.
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If we define Xo = X' —J L, Yy = 7/(Xo) and 79 = 7/[ X, then all the requirements
of part (b) are fulfilled except that X is not regular open. To achieve that X be regular
open, we replace every L, by a set I}, such that F;,, = cl(int(F;,)). This will ensure that
X is regular open. The verification of the following trivial fact is left to the reader.

Cramm 3. C is \/E-spaced.

Let n,v € T*. For distinct z,y € {3 define H,, = ({t(y —x) | t € R})L. Let 6 be
such that tanf = 1/8 and define the “closed double cone” of x,y to be

deone(z,y) = {z € [z,y] + Hyy | d(z, [z,y]) < d(z,{z,y}) -sinb}.

Note that dcone(z,y) is the union of two cones with vertices x,y. The common base of
the two cones is B((z +y)/2,7) N ((z +y)/2+ H,,y), where r = £|jy — x| - tan 6, and the
opening angle of the cones is 6. The verification of the following fact is omitted.

CrAaM 4. There is K > 1 such that for any distinct x,y,u,v € l3 and € > 0: if u,v &
dcone(z,y) and d(u,dcone(x,y)), d(v,dcone(x,y)) < €, then there is a rectifiable arc J
connecting u,v such that J C {z | d(z,dcone(x,y)) < e} — dcone(x,y), d(J,{z,y}) =
d({u,v},{z,y}) and Ingth(J) < K||u — v||.

Note that in order to prove Claim 4 it suffices to consider the affine subspace of /5
generated by x,y,u,v. So the proof can be carried out in a 3-dimensional Euclidean
space.

Define F,, = dcone(by, ¢,), F = {F, |ne T*}, F=JF, X = X'—F,Y =Y'—F and
7 =7'X. Clearly, 7 € H(X,Y). Since 7/ cannot be continued to a continuous function
defined on S(0,1), neither can 7. Hence 7 ¢ EXT(X,Y). The next claim contains the
central fact about F.

CramM 5. Letn € T* and r > 0. Then d(F;, — B(cn,r),}?' - F,) > 0.

Proof. Let n =v"(i). If i > 0 define §,, = min(a,-(i41) — Gv-(i), Qv-(5) — Gy~(i—1)) and
if i = 0 define 6, = a,~(i41) — a,-(s). Let &, = min(3/4,3r/4,9,/3). Let ¢ € T* — {n}.
We show that d(F,, — B(cy,r), F¢) > eyr. If ¢ & Brthr(n) U Suc(n) U {pred(n)}, then by
Claim 1, d(Ly, L¢) > 1. So d(Fy, Fe) > 1—2-1¥2 > 3/4,

Suppose that ¢ € Suc(n). Recall that ¢, = ayep + d,,. Let © € F,, — B(c,,7)
and let y be the nearest point to x in L,. Then y = a,eo + d; + e, where e has the
form e = s(d, — d,). Since ||z —y| < [le]|/8 and |z — (ayeo + d,)|| > r, we have
lle]| > 8r/9. Take a point z € F¢, let w be the nearest point to z in L; and suppose that
|lw—(aceo+dy,)|| =t. Then |[y—w| > /|e||? + t? and hence ||y —z| > +/|le]|? + t2—1/8.
The minimal value of the function g(t) = /|le]|2 +t2 — t/8 is > |le|]| — |le||/56. This
implies that d(y, F¢) > |le|| — |le]||/56. Since ||z —y|| < |le]|/8, it follows that d(x, F¢) >
lell  llell/36 — llll/8 = 6llell/7. Hence d(z, Fy) > & $r > 3r/4.

Assume that ¢ € Brthr(n) U{pred(n)}. Define f = a,eo+d,. Let x € F,, and suppose

first that ||z — f|| < 6,/2. fw € L¢ and [|w — (aceo +d,)|| = t, then d(f,w) > /02 + 12,
So the distance between f and a general point in F¢ is > /02 +12 —t/8. So d(f, F¢) >
9, — 6,/56 and hence d(z, F¢) > 6, — 0,/56 — 0,/2 > 6, /3.
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Suppose that z € F;, and ||z — f|| > J,/2. Let y be the nearest point to = in L, and
0 =|ly—f|l. Then d(y, F¢) > 6 — /56 and hence d(z, F¢) > §—9/56—0/8 = 65/7. Also,

0> % . %". So d(z, F¢) > g . % . %’ > 6—3“. The proof of Claim 5 is complete.

CrLAM 6. (i) F is a pairwise disjoint family and acc?(F) = C.
(ii) Let n € T, {F,, | n € N} C F be a 1-1 sequence, x, € F,, and lim, .o z, = ¢,.
Then {F,, | n € N} —{F,-(;y | i € N} is finite.

Proof. By Claim 5, (F,, — {¢, }) N F; = () for any distinct 7, { € T*. Since ¢, # c¢ for any
n # ¢, it follows that F is pairwise disjoint.

We show that C' C acc(F). Recall that C' = {¢, | n € T}, where ¢, = d;, + aeo
and ay = 3. We start with c,. By the construction, a(,)-eo+da € Ly C F(,) and
ca = 3eg +dy = limy, o0 @y - €0 +dy. So ¢y € acc(F). Suppose now that 1 # A. Then
Gp~(n) - €0 + d, € LnA<n) - Fﬁ”(n) and ¢, = ayeg +dy, = lim,_o Qp~(n) - €0 + d,. So
¢y € acc(F). We have shown that C' C acc(F).

Let {v; | i € N} C T* be a 1-1 sequence, z; € F,,, and suppose that {z;};cn is
convergent. Let x = lim; ., ;. We shall show that for some n € T, x = ¢, and {F,, |
i € N} —{F,-(4y | i € N} is finite. This will imply both that acc(F) C C and (ii). We color
the unordered pairs of N in three colors. The pair {i, j} has Color 1 if v; € Brthr(v;), and
{t,7} has Color 2 if v; = pred(v;) or v; = pred(r;). The remaining unordered pairs have
Color 3. By the Ramsey Theorem we may assume that N is monochromatic. Color 2
has no infinite monochromatic sets, and if N has Color 3, then by the first paragraph in
the proof of Claim 5 the sequence {z;};cn is %—spaced. It follows that for some n € T,
{vi | i € N} C Suc(n).

Let y; be the nearest point to x; in L,,, and write y; = a,, - eg + d,, + f;, where
fi = ti(dy-(n,y — dy) for some t; € [0,1]. We may assume that {f;};cn is convergent and
let f =lim; .~ f;- Suppose by way of contradiction that f # 0. Let n be such that for
every i,j > n, ||z; — x| < e, where € is to be chosen later, and 3| f|| < || fil| < 2| f]|. Let
ij > n be distinct. Then |z — yill < |Ifil/8 < |I£1/4 and |lz; — 51| < I£1/8 < IFIl/4.
So

lyi = ysll < llyi = ill + [l — 25 + lle; — g5l < A Sill /8 + 1 £5l1/8 + & <[ f[l/2 + e
On the other hand, by Claim 2,

V3 2v/3
I =) > dlw L) > 22050 = 22 5.
If £ is sufficiently small, then the last two inequalities are contradictory. So f = 0. Now,
llz: — vill < |f:ll/8- So lim; oo ||#; — yi]| = 0 and hence
lim z; = lim y; = lim ay,e0 +dy + f; = lim ay,e0 + dy = ayeo +d, = ¢, € C.

We have proved that acc(F) C C. We have also shown that if {F}, |n € N} C Fisa 1-1
sequence, T, € F, and lim, .o &, = ¢, then {F}, | n € N} N {F,~;y | i € N} is infinite.
Obviously, this implies (ii). This completes the proof of Claim 6.

Denote F'U {c,} by F. Since every member of F is closed and acc(F) = C C F, it
follows that F' is closed. Recall that ¢y, € bd(Y”’) and hence ¢, € X’. It follows that
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X = X' — F, so X is open. Clearly, F = cl(int(F)) for every F € F. So F = cl(int(F)).
This implies that E — F is regular open, and hence X = X' N (E — F) is regular open.
An identical argument shows that Y is regular open in F.

CLAIM 7. Let K be the constant mentioned in Claizm 4. Then for every x,y € Y there is
a rectifiable arc J CY connecting x and y such that Ingth(J) < 2K||z — y||. Similarly,
let K1 = max(2K,m). Then for every x,y € X there is a rectifiable arc J C X connecting
x and y such that Ingth(J) < Ki|z —y|.

Proof. Let z,y € Y. By Claim 3, C is spaced, so for every ¢ > 0 there is z € B(y, ) such
that [z, 2z]NC = (. Choose such a z for a small € which will be determined later. Since Y’
is open, we may choose z such that [z,y] C Y, and since Y is convex, [z,z] C Y. Since
[,2]NC =0 and acc(F) = C, Fo :={F € F | F N[z, z] # 0} is finite. The fact that C
is spaced implies that r := d([z, 2], C) > 0. Let Fy = {Fo,..., Fh_1}, F; = F,,, b; = by,
¢ = ¢y, FiN [z, 2] = [x50, 1] and

§; = Y min(d(F; — B(e;,r/2), F — F;), 7,8 (U Fo))-

By Claim 5, §; > 0. Let &; ; € [x,z2] be such that ||Z;; — z, ;|| < 6; and [&; ;,2; ;) N
F; = (. By Claim 4, there is a rectifiable arc .J; connecting 240 and &; 1 such that
lngth(Ji) < KH.’%Z"Q — ji71H, J; C {Z € fo ‘ d(Z,Fi) < (Sz} — F; and d(J“{b“Cl}> =
d({ii,o,i‘iJ}, {bi,Ci}). Since d({ii,o,i‘i71}, {bi,ci}) > r, it follows that d(Ji,Ci) > r. Let
u € J; and v be the nearest point to w in F;. Then ||¢; —v|| > ||¢; —u|| — [Jlu—v|| > r/2. So
v € F;—B(c;,r/2), and hence d(v, F — F;) > 26;. From the fact that |Ju—v]|| < 8; it follows
that u & F — F, so J; N F = . Also, since for every u € J;, d(u,|J Fo) < Y (U Fo), we
have J; CY'. Let J' = [z, 2] U, ,, Ji — U;cp[®i0, 1] and J = J U [2,9]. It is easily
seen that J' and J are rectifiable arcs, and it follows that J C Y’ — F =Y. From the
fact that Ingth(J;) < K||&;0 — &;,1]|, it follows that Ingth(J’) < K|z — z||. Recall that
lly — z|| < e. So if € is sufficiently small, then Ingth(J) < 2K ||y — z||.
The proof of the analogous fact for X is almost identical. We have proved Claim 7.

We now show that X and Y are BR.LC.AC and JN.AC. Claim 7 implies that Y is
UD.AC and BD.AC. It follows directly from the definitions that if F' is any metric space,
Z C F and Z is UD.AC, then Z is BR.LC.AC with respect to F'. Hence Y is BR.LC.AC
with respect to ¢3. The bounded arcwise connectedness of Y and Proposition 6.2(c)
imply that Y is JN.AC. The same arguments apply to X, hence X too is BR.LC.AC and
JN.AC.

Our next goal is to show (x) h(S(0,1)) = S(0,1) for every h € EXT(X). It may
very well be true that (1) S(0,1) is the only clopen component of bd(X). This would
imply (*), but we do not know how to prove this. So instead we prove (tf) S(0,1) is
the only clopen component of bd(X) which is strongly connected in bd(X). This also
implies ().

Let Z be a connected space. We say that Z is strongly connected if for every z € Z
and U € Nbr(z), there is V' € Nbr(z) such that V C U and Z — V is connected. Clearly,
S(0,1) is strongly connected.

For ) € T* let S, = bd"(F,). It is easy to see that bd(X) = S(0,1) U S(0,3) U
U, er~ Sn- Obviously, S(0,1) is a component of bd(X), and S(0,1) is clopen in bd(X).
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Let K denote the set of components of bd(X) which are clopen in bd(X) and which are
different from $(0,1). Let € T and T’ C T. We say that T” is n-large if n € T/ C T 2",
and for every v € T, {i | v" (i) ¢ T'} is finite. Define S, = S(0,3) and for 77 C T set
St = UueT/ Sy-

CLAIM 8. For every K € K there are a finite set 0 C T and a family {T,, | v € o} such
that T, is v-large for every v € o, and K =, ST, -

Proof. Note that S, is connected for every n € T'. Hence for every K € K and n € T,
either S, C K or S, N K = (. Also, for every n € T and an infinite 0 C N, S, N
acc({Sy~(sy | i € o}) # 0. This implies that (1) if K € K and S, N K # 0, then S, C K
and {i | S,~(;y € K} is finite. The fact that the members of K are closed implies that
(t1) if K € K and {i | S,-(;y € K} is infinite, then S, C K. Facts (f) and () imply
that Claim 8 is true.

Let K € K and suppose that 0 C T and {7, | v € o} are as ensured by Claim 8.
So there are n € T* and an infinite 77 C T such that Sy € K = Sp. By Claim 5,
d(S, — B(cy, ), F- F,) > 0 for every r > 0. Since S,, and S, are closed and disjoint, it
follows that d(S,, Sx) > 0, and from the facts that K C ﬁUSA and S,, C F), we conclude
that d(S,, — B(c,,r), K —S,) > 0. So S, — B(c,, ) is clopen in K. This implies that
K is not strongly connected. We have shown that S(0,1) is the unique clopen strongly
connected component of bd(X). Hence h(S5(0,1)) = S(0,1) for every h € EXT(X). It
follows that (EXT(X))” C EXT(Y). This completes the proof of (b).

(c) Let S C {5 be a two-dimensional sphere with radius 1 and center at 0. Let
X = B(0,3) — S and Y = B(0,3). Then there is 7 € H(X,Y) such that 7[(B(0,3) —
B(0,2)) = Id. It is trivial that X and Y are BR.LC.AC and JN.AC, and it is easy to see
that (EXT(X))” CEXT(Y) and 7 ¢ H(X,Y).

(d) We construct a set X with the following properties:

(1) X is a regular open bounded subset of R?,

(2) there is K > 1 such that for every z,y € X there is a rectifiable arc L C X
such that Ingth(L) < K|z — ¥,

(3) for every g € EXT(X), ¢ [bd(X) = Id.

It is easy to verify that if X satisfies (1)—(3), then it fulfills the requirements of the
example.

We turn to the construction of X. Let ﬁn be the n-fold solid torus and fn denote
its boundary. A subset A C R3 is K-bypassable if for every z,y € R® — A there is a
rectifiable arc L C R3 — A connecting z and y such that Ingth(L) < K|z — y| and
d(z, A) < d(z,A),d(y, A) for every z € L. Obviously, there is K > 1 such that for every
n there is a K-bypassable F' C R? such that F = ﬁn Let D be a countable dense subset
of B(0,1), E be a countable dense subset of S(0,1) and {{a,,b,} | n € N} be a list of
all 2-element subsets of D and all singletons from D U E. Also assume that ag = by € E.
We define by induction a finite family of open sets U, and a finite family of closed sets
F., such that for any distinct A € U,, UF,, and F € F,, cl(A) C B(0,1), cl(A)NEF =0
and F is K-bypassable. Let Uy = Fo = (). Suppose that i/,, and F,, have been defined.
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CASE 1: a, # by. If {an, by} NYF, # 0 define U1 = U,, and F,41 = F,,. Suppose
otherwise. Define F,, .1 = F,. Since F,, is a finite pairwise disjoint family of closed
K-bypassable sets there is a rectifiable arc L, € B(0,1) — |JF, connecting a, and
b, such that Ingth(L,) < K|a, — b,||. Let r = d(L,,S(0,1) U UF,) and Uy =
U, U{B(L,,r/2)}.
CAsE 2! ap = by. If @y € D let ¢, € Upcr, bd(F)) be such that [lc, — an| =
d(an,Uper, PA(F)) and H, € F, be such that ¢, € bd(H,). If a, € E let ¢, =
an, and H, = S(0,1). Let F,, C B(cp, n+1) N (B(0,1) — UFn — Upey, cl(U)) be
such that F,, = En and F,, is K-bypassable. Define F,; = F, U {F,}. Let r, =
d(H,,S(0,1)UJFn41 — Hy,) and U, o = B(0,1)N(B(Hy, 1 /2) — cl(B(Hy, rn/4))). Let
xn € B(0,1)N(B(cn, 1 /2)— Hy), sn € (0,7,/2) be such that U,, 1 := B(xy, s, is disjoint
from H,, and U,,+1 = U, U {U,0,U,. 1}. This concludes the inductive construction.

Let X = B(0,1) — cl({U,,cny Fn)- Since any two members of D N X lie in the same
member of Cmp(X) and D N X is dense in X, it follows that X is connected.

Set A={n|a, =b,}, for every n € A let f, : Rn ~ F,and T, = fn( n) and define

= 5(0,1) UU,,ca Tn- The verification of the following facts is left to the reader.

(1) d(X) =cl(T) and T C cl(int(R? — X)).
(2) For every n € A, T}, € Cmp(bd(X)), and S(0,1) € Cmp(bd(X)).
(3) For every C' € Cmp(bd(X)) — {T}, | n € A} — {S(0,1)}, R® — C is connected.

Fact (1) implies that X is regular open. It follows from (3) and Alexander’s Duality
Theorem that for every C' € Cmp(bd(X))—{T}, | n € A} —{S(0,1)} and n € N, C % T,,.
Let « € T. Then there is a sequence {k,, | n € N} C A such that limy, .o T, = z. Hence
x has the following property:

There is a sequence {C,, | n € N} of members of Cmp(bd(X)) such that C,, = T},
and lim,,_,., C), = .

However, if y € bd(X)—{«}, then y does not have this property. Since bd(X) is invariant
under EXT(X), it follows that g(x) = x for every g € EXT(X). That is, g|T = Id for
every g € EXT(X). Since T is dense in bd(X), it follows that ¢g[bd(X) = Id for every
g € EXT(X). u

REMARK. Recall that in Corollary 6.6(b) it was assumed that for every z,y € bd(X)
there is h € EXT(X) such that h'(z) = y. In part (c) of the above example bd(X)
has two connected components K, K1, neither is a singleton, and for every i = 0,1
and z,y € K; there is h € EXT(X) such that h(z) = y. The space Y in the above
example has the property that bd(Y) is connceted, bd(Y") is not a singleton, and for every
z,y € bd(Y), there is h € EXT(X) such that h°(z) = y. These transitivity properties
of bd(X) and bd(Y), though quite strong, do not imply the conclusion of 6.6(b). O

In Theorem 6.3 it was shown that if ¢ : EXT(X) = EXT(Y), then ¢ is induced by
some T € EXTi(X7 Y). But Theorem 6.3 applies only to sets X with finitely many
connected components. To see this let X be BR.LC.AC and JN.AC as was assumed in
6.3, and suppose by contradiction that X has infinitely many connected components. Let
Z be a sequence of members of X which lie in distinct components of X. Let (Z, z*, {L,, |
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n € N} &) be a joining system for some subsequence & of Z. Then Z’ is a convergent
sequence, but each member of Rng(Z”) lies in a different component of X. This contradicts
the fact that X is BR.LC.AC. So X has only finitely many connected components.

Our next goal is to extend 6.3 to sets X that may have infinitely many connected
components. We have four test cases X for which EXT(X) seems to be sufficiently well
behaved to imply a reconstruction theorem for EXT(X), but which are not covered by
Theorem 6.3. The first example which is defined below, has infinitely many components.
The three others appear in Example 6.15, and they are connected.

ExAMPLE 6.8. Let E be a Banach space. We define

1 _ 1
E _ E _ _ RE _
RY = <B (0,1 2n+3> B <0,1 2n+2>>

neN

The set R¥ is the union of a sequence of pairwise disjoint open rings converging to
SE(0,1). O

We shall prove a reconstruction theorem for a class which contains R¥. The definition
of this class is rather technical, but it contains quite complicated sets. This class will
be denoted by Kgx- For simplicity, we consider only subsets of Banach spaces and not
subsets of general normed spaces. Hence only 6.3(a) is extended. That is, Kgcx - Kgx.

DEFINITION 6.9. (a) Recall that Cmp(X) denotes the set of connected components of a
topological space X. For z,y € X, x ~% y denotes that z and y lie in the same connected
component of X. The notation £ ~* ¢ means that z,, ~~ y,, for every n € N.

(b) Let X be a metric space. We say that X is boundedly component-wise arcwise
connected (BD.CW.AC) if for every bounded set A C X there is d = d4 such that for
every x,y € A: if x ~X y, then there is a rectifiable arc L C X connecting = and y such
that Ingth(L) < d.

(c) Let X € KSgy and = € bd(X). We say that X is component-wise locally arcwise
connected at z if for every € > 0 there is § > 0 such that for every y,z € B(z,0) N X:
if y ~% 2z, then there is an arc L C B(z,e) N X connecting y and z. We say that
X is component-wise locally arcwise connected at its boundary (BR.CW.LC.AC) if X is
component-wise locally arcwise connected at every x € bd(X).

(d) Let X € K¢z Call X a component-wise wide space if for every r > 0, [ J{C €
Cmp(X) | C N B(0,7) # 0} is wide.

(e) Let X C E. A point x € bd(X) is called a multiple boundary point of X if for
every C' € Cmp(X), € bd(X — C), and z is a double boundary point of X if there are
distinct C1,Cy € Cmp(X) such that 2 € bd(C1) Nbd(Cy).

(f) A subspace X C E is locally movable at its multiple boundary if for every £ C X
which converges in F to a multiple boundary point and U € Nbrd(X)(lim %) there is a
subsequence i’ of # and g € EXT(X) such that: g(z’) ~* #, ¢?'(lim %) # lim# and
supp(g) C U.

(g) Let KSx be the class of all X € K§y such that:

(1) X is component-wise wide, BR.CW.LC.AC and BD.CW.AC,
(2) X is locally movable at its multiple boundary. O
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PROPOSITION 6.10. (a) Let R¥ be as defined in Example 6.8. Then RY € K.
(b) Kfox € Kgx-

Proof. The proofs of both parts are trivial. Anyway, we indicate the proof of (b). Suppose
that X € Kgcx- It is easily seen that the multiple boundary of X is empty, hence X
is locally movable at its multiple boundary. The fact that X is wide implies that it is
component-wise wide. Similarly, since X is BR.LC.AC and BD.AC, it is BR.CW.LC.AC
and BD.CW.AC. So X € K&x. =

PROPOSITION 6.11. (a) Let X € K§x. Then for every C € Cmp(X), C is BR.LC.AC
and JN.AC.

(b) Let X,Y € K& and 7 € H(X,Y) be such that (EXT(X))” = EXT(Y). Let
C € Cmp(X), D =7(C) andn=7|C. Then D € Cmp(Y) and n € EXT*(C, D).

Proof. (a) The fact that X is component-wise wide implies that C is wide. The fact that
X is BD.CW.AC implies that C' is BD.AC. So by Proposition 6.2(d), C' is JN.AC.

Let € bd(C). The fact that X is component-wise locally arcwise connected at x
implies that C' is locally arcwise connected at z. So C' is BR.LC.AC.

(b) Tt is trivial that C' is an open subset of FE and that D € Cmp(Y). So by (a),
C is JN.AC and BR.LC.AC, and the same holds for D. We wish to apply Corollary
6.6(a) to 1, so we need to check that (UCy(C))" C EXT(D) and that (LUCy; (D))" C
EXT(C). Let g € UCy(C). Set h = gUId[(X — C). Then h € UCy(X) C EXT(X).
So h™ € EXT(Y). Hence g7 = h"[D € EXT(D). A similar argument shows that
(LUCo1 (D))" " € EXT(C). By Corollary 6.6(a), n € EXT(C, D). The same argument
can be applied to n~!. Hence n € EXTi(C’, D). =

THEOREM 6.12. Let X,Y € KS§y and ¢ : EXT(X) = EXT(Y). Then there is T €
EXTE(X,Y) such that T induces .

Proof. By Theorem 2.8(b), there is 7 € H(X,Y) such that 7 induces ¢.

—

CrAamm 1. Let Z, 4 C X. Suppose that Z,u,7(Z),7(d) are convergent sequences and
lim# = lim @ € bd(X). Then lim7(&) = lim 7().

Proof. Let x =1limZ, y = lim 7(%) and v = lim 7(&), and suppose by contradiction that
y # v. Clearly, y,v € bd(Y'). Assume first that either y or v is a multiple boundary point
of Y, and assume without loss of generality that y is such a point. Since Y is locally
movable at its multiple boundary, there are h € EXT(Y') and a subsequence i’ of 7(Z)
such that h(y) # y, h(7) ~¥ ¥ and for some W € Nbr¥)(v), (W NY) = 1d. By

removing an initial segment of T( ) we may assume that 7(@) C W. So h, ¥ and W
satisfy
(x) h € EXT(Y), § is a subsequence of 7(Z), W € Nbr*'Y) (v), hel(y) £y, 7(7) C W
and he [W = 1d.

Now assume that y, v are not multiple boundary points of Y. Then there are C7,C5 €
Cmp(X) such that all but finitely members of Z belong to Cy, and all but finitely members
of @ belong to C3. From Proposition 6.11(b) and the fact that lim7(Z) # lim7(@)
it follows that C; # Cs. So z is a double boundary point of X. Let D; = 7(C1)
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and set D = Y — D;. Then by 6.11(b), D; € Cmp(Y), and since y is not a multiple
boundary point of Y, it follows that y € bd(D;) — cl(ﬁ) Let V € Nbr'(y) be such that
(V) Nel(D) =0, and let U € Nbr”(z) be such that 7(U N Cy) C V. Since X is locally
movable at its multiple boundary, there is k € EXT(X) and a subsequence z’ of Z such
that k°(z) # z, supp(k) C U and k(Z') ~ z’. Let h = (k[Cy)" UId[(Y — D;1). Then
hID; € EXT(D;). Also,

supp(h) = supp(h[D1) = 7(supp(k[C1)) CT(UNCy) C V.

So supp((h[D1)%) C cl(V). From the fact that cl(V) N cl( D) = 0, it follows that h €
EXT(Y). Let ¢ = 7(z'). Then h(y) # y and h(y’) ~ Clearly, v € cl(7(C3)) and
7(Cy) € D. So v € cl(D), and hence for some W € NbrCl Y)( ), AW NY) =1d. By
removing an initial segment of 7(%) we may assume that 7(&) C W. It follows that h,
¢ and W satisfy (*). So whether or not {u,v} contains a multiple boundary point, we
have found h,y and W satisfying (x).

Let g =h™  and & = 771(7"). So g € EXT(X) and g|@ = Id. Since @ U ¥ converges
to x and g € EXT(X), limg(z') = z. Since h(y') ~Y i, it follows that g(&') ~X &'
Since X is BR.CW.AC, there is {fx | k € N} C UC(X) and subsequences {nj}ren and
{my }ren such that: (i) for every k, fk(x;lk) = g(x3,, ), cl(supp(fx)) € X and fi[{z},, |
k € N} =1d, (ii) limg_, oo diam(supp(fx)) = 0, (iii) for any ¢ # k, supp(f¢)Nsupp(fi) = @
Let f = ogen fx- So f € UCy(X) C EXT(X), and hence f™ must belong to EXT(Y).
Let us see that this does not happen. Recall that limy" = y. However, limg f7(y;,, ) =
limy, 2(y;,, ) = h(y) # y, and on the other hand, limy f7(y,,, ) = limg y,, =y. So ¢ is
convergent, but f7 (%) is not, and hence f7 ¢ EXT(Y). A contradiction, so Claim 1 is
proved.

CraiM 2. Let T C X be a convergent sequence in E. Then there is a subsequence T’ of
@ such that T(Z') is convergent in F.

Proof. Let x = lim#. We may assume that = € bd(X). If for some C € Cmp(X),
{n | x, € C} is infinite, then by Proposition 6.11(b), there is a subsequence as required
in the claim.

Hence we may assume that for every m # n, x,, %% z,, and so z is a multiple
boundary point. For every n let y, = 7(z,), and C,, and D,, be such that z,, € C,, €
Cmp(X) and y,, € D,, € Cmp(Y).

Suppose by contradiction that {D,, | n € N} is completely discrete. Let @ € [],, .y C
Define ¥ = 7(). There is k € EXT(Y') such that for every n, k(y2,) = vapn and k(yon+1) =
Yoni1. Let g =k™ . Then g € EXT(X). Since 7 is convergent, g() is convergent. For
every n, g(xan) = U2, and g(Tant1) = Tapt1- S0 limy, 0o Ugy = limy, o0 Top 41 = x. This
implies that lim,, .o, Ca, = x. Hence for every f € EXT(X): if {n € N| f(z2,) =% 72, }
is infinite, then f(z) = z. Clearly, = is a multiple boundary point. So the above fact is in
contradiction with the fact that X is locally movable at its multiple boundary. It follows
that {D,, | n € N} is not completely discrete. By choosing a subsequence of ¥ we may
assume that there is v € [, D

Suppose by way of contradiction that  does not contain a convergent subsequence.

» such that ¢ is convergent in F'. Let v = lim ¥.

We show that if 3 is unbounded, then there is another counter-example to Claim 2 in
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which 7 is bounded. Let 7 be such that v € B (0,r). Then for every n, D,,NB¥(0,r) # 0.
Since Y is component-wise wide, there are a subsequence ¢ of ¢, s > 0 and a completely
discrete sequence of arcs {L,, | n € N} such that for every n, L, C D,, and L,, connects
y., with a member of B (0,s). We may assume that /' = .

Denote the endpoint of Lo, which is not ya,, by @,. Let k € EXT(Y) be such that for
every 1, I%(ygn) = 0, and ]%(anJrl) = Yonr1 and set g = 7", Then g € EXT(X) and
hence lim g(Z) exists. So lim, e §(2+1) = lim, o G(x2,) = x. Since l%(ygn) = Wy,
it follows that §(z2,) = 771(,). That is, 7(§(z2,)) = Wn. So {T(g9(x2,)) | n € N}
is bounded and completely discrete. By replacing & by {§(z2,) | » € N} we obtain a
counter-example to Claim 2 in which ¥ is bounded. Since E is a Banach space, we may
also assume that ¢/ is spaced.

Since Y is BR.CW.AC, there are d and rectifiable arcs L,, C D,, such that L,, connects
yn, with v, and Ingth(L,,) < d. Let 7, (t) be a parametrization of L,, such that v, (1) = yn,
Yn(0) = vy, and for every ¢, Ingth(v,,([0,¢])) = t - Ingth(L,,). For every infinite 0 C N let
se = inf({t € [0,1] | {yn([t,1]) | n € o} is spaced}). Let o be an infinite set such that
for every infinite  C o, s, = 5. Then {7,(s,) | n € o} contains a Cauchy sequence,
and for every t > s, {7n([t,1]) | » € o} is spaced. Set s = s,. It can be assumed that
{¥n(s) | n € o} is a Cauchy sequence, that 0 = N and that s = 0. So v,(1) = y, for
every n € N, {7,(0) | n € N} is a Cauchy sequence, and {7, ([t,1]) | n € N} is spaced for
every t € (0,1]. Let w, = v,(0) and w = lim .

For every t > 0 let W' = {y2,(¢) | n € N}. Let 5° = {yo, | n € N} and §* = {y2,41 |
n € N}. For every t > 0 there is k; € EXT(Y) such that k;(7°) = @' and ki(7') = 7.
This follows from the fact that for ¢ > 0, {y,([¢,1]) | n € N} is completely discrete. We
check that for every t € (0,1], lim 71 (&) = 2. Let hy = k[_l. Then hy(T2,41) = Tont1
and h¢(wa,) = 77 1(w!). Clearly, h; € EXT(X), so h; takes ¥ to a convegent sequence.
fz) = Z.

Note that for every € > 0 there are t. > 0 and m. such that for every ¢ < ¢. and
n > me, |[wh —w|| < e. Also, z9, ~* 77 1(w}) for every n and t. It follows that there are
sequences Z and {n }3°, such that lim 7 = z, lim 7(Z) = w, and for every k, 2, ~* za,,.
To see this, take z; to be T_l(wﬁfk), where {t;}%2, is any sequence converging to 0 and
ny is such that ng > myy, and |71 (wik) — x| < 1/k.

From the facts X is BR.CW.AC, z;, ~~ Zop, and lim 2’ = limy, x9,, , we conclude that
there is g € EXT(X) such that for infinitely many k’s, g(z2n,) = 2zr. We now check
that ¢” ¢ EXT(Y), and this is of course a contradiction. Using the fact that 7(Z) = ¢,
it is evident that ¢g” takes an infinite subsequence of ¥ to an infinite subsequence of

But h¢(z2,) = T2,, hence lim hy(F) = lim,, 22, = 2. So lim,, 7~ (w

7(Z). However, ¥ is spaced, and 7(Z) is converges to w, that is, g7 takes a spaced se-
quence to a convergent sequence. Hence g7 ¢ EXT(Y). A contradiction. This proves
Claim 2.

We prove that 7 € EXT(X,Y). Suppose by contradiction that £ C X is a convergent
sequence and 7(7) is not a convergent sequence. By Claim 2, there is a subsequence #°
of 7 such that 7(#°) is convergent. Since 7(Z) is not convergent, there is a subsequence
#? of & such that d(7(7?),7(z%)) > 0. By Claim 2, there is a subsequence #! of 7’2
such that 7(Z!) is convergent. But lim 7(Z°) # lim 7(Z'). This contradicts Claim 1. So
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7 € EXT(X,Y). The assumptions on X, Y and 7 were symmetric with respect to X
and Y. So 7 € EXTE(X,Y). u

REMARK 6.13. The requirement that X be locally movable at its multiple boundary,
which appears in Theorem 6.12 is stronger than what is really needed in the proof of
that theorem. However, the exact assumption needed in that proof is longer and more
complicated, so we include it only as a remark. Thus in Theorem 6.12 the assumption
that X is locally movable at its multiple boundary can be replaced by the following
weaker requirement. The proof remains essentially unchanged.

Let X C E. Then

(1) For every # C X which is convergent to a multiple boundary point and z €
bd(X) — {lim Z}, there is a subsequence & of Z and g € EXT(X) such that:
g(#) ~X &, g (lim &) # lim & and for some U € Nbr?(z), gI(U N X) = Id.

(2) For every & C X which converges to a double boundary point and U € Nbr” (lim 7)
there is a subsequence 7’ of ¥ and g € EXT(X) such that: g(z') ~* 7/, ¢°!(lim %)
# lim & and supp(g) CU. O

The requirement that X be locally movable at its multiple boundary which appears
in Definition 6.9(g) cannot be entirely omitted. This is demonstrated by the following
trivial example.

EXAMPLE 6.14. There are reqular open subsets X,Y C R? which satisfy clause 1 in the
definition of KSx such that EXT(X) = EXT(Y) and cl(X) 2 cl(Y).

Proof. Let u € R? and Fy, ..., F3 C R? be closed solid triangles such that for any i # j,
F,NF; ={u}. Fort =1,2,3let {D; ; | j < i} be a set of pairwise disjoint closed balls such
that D; ; C int(F;) for every j <i. Let X = J,_,int(F3) —(H{Dsj | i =1,2,3, j <i}.

Let v,w € R? and Gy, ..., G3 C R? be closed solid triangles such that Go NGy = {v},
G2 NG3 = {w} and G; NGy = () for every i € {0,1} and ¢ € {2,3}. For i = 1,2,3 let
{E;; |i=1,2,3, j <i} be a set of pairwise disjoint closed balls such that E; ; C int(G;)
for every j <i. Let Y = J,_,int(G;) —U{E:; | i =1,2,3, j <i}. Then X and Y are
as required in the example. =m

For open subsets of finite-dimensional spaces we have Theorem 5.2 which says that the
class of bounded sets which are the closures of open UD.AC subsets of a Euclidean space
is faithful. We shall next define another faithful class of spaces which are not required
to be UD.AC. This class, denoted by K&X, is defined in 6.16(b). Loosely speaking,
we replace the assumption that X is UD.AC by the assumption that the orbit of every
x € bd(X) under EXT(X) contains an arc. This gives rise to a rather large class. See
Proposition 6.17.

The next example contains finite- and infinite-dimensional sets which belong to K $;x
but do not belong to any of the previously defined EXT-determined classes. The three
examples are connected. The first example is a subset of R? which is not UD.AC. The
second set is infinite-dimensional. It is quite similar to the set RY defined in 6.8, yet it
does not belong to K](39x- Note the second example is BD.AC, and the first two examples
are regular open.
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EXAMPLE 6.15. (a) Let Ro = {(r,0) | # € (7,00) and 1 — 97—% <r<l- ﬁ} (Rz is
described in polar coordinates). So Rs is an open spiral strip converging to S(0,1). Note
that Ry is connected, Ry is not UD.AC and Ry & KSx.

(b) Let E = /5 and R¥ be as in Example 6.8. So the set R¥ is the union of a
sequence of pairwise disjoint open rings converging to S¥(0,1). We connect any two
consecutive rings by an open tube whose closure is disjoint from the closure of any other
ring. The set of tubes is to be spaced. Let {e,}nen be the standard basis of ¢5 and
L, =[(1- ﬁ)en7 (1-— ﬁ)en]. So each L,, connects two consecutive rings in R¥.
For some d > 0, {L,, | n € N} is d-spaced. Let s,, = ﬁ - ﬁ and r,, = min(d/3, s,,)
and R3 = RF U Unen B(Ln, 7). It follows that R3 is connected, R3 is not UD.AC and
R3 ¢ KSy. However, Rz is JN.AC.

(c) Let E be a normed space with dimension > 2 and F be a subspace of F with
co-dimension 1. Let RF = B¥(0,2) — BF(0,1). O

DEFINITION 6.16. (a) Let h : [a,b] X Z1 — Z3 and t € [a, b]. We denote by h; the function
g(2) = h(t,z). Let X € Kz and z € bd(X). We say that x is isotopically movable with
respect to X if for every r > 0 there is a continuous function & : [0, 1] xcl(X) — cl(X) such
that ho = Id, hy(x) # =, and for every ¢ € [0, 1], h¢[X € EXT(X) and supp(h¢) C B(z,r).
We say that X is isotopically movable at its boundary (BR.IS.MV) if every x € bd(X)
is isotopically movable with respect to X.

(b) Let KQx be the class of all open subsets X of a normed space such that X is
JN.AC and BR.IS.MV. O

The next observation and Proposition 6.2 show that KI%X is a large class. Let E be
a normed space and X C FE x (0,00) be open and Z = {z € E' | a ((z,a) € X)}. The
body of revolution of X is defined as follows:

revb(X) = {(z,u,v) | (z, Vu? +v?) € X}.
So revb(X) is an open subset of E x R2. If inf({a | (z,a)) € X}) > 0 for every z € Z,
then revb(X) is called a hollow body of revolution. Clearly if revb(X) is hollow, then
revb(X) = X x St

PROPOSITION 6.17. Let X,Y € K{pu-

(1) If Y is BR.IS.MV, then X xY is BR.IS.MV.

(2) If X and Y are JN.AC, then X xY is JN.AC.

(3) If X CR™, Y CR™, X,Y are bounded, andY is BR.IS.MV , then X xY € K&x-
(4) If X and Y are JN.AC and Y is BR.IS.MV, then X x Y € K&x-

(5) If X CR", X is bounded and revb(X) is hollow, then revb(X) € KQx-

Proof. The proof is trivial. For (3) and (5) see 6.2(b). m

REMARK. The class KI%X does not contain any of the classes Klﬁ?MX, K]g)cx and Kgx
defined in 6.3 and 6.9(g). Recall that Koy C KSx, Kiux- Example 6.8 belongs to
KSox but not to K. O

THEOREM 6.18. Suppose that X,Y € KQx and ¢ : EXT(X) =2 EXT(Y). Then there is
T € EXT(X,Y) which induces ¢.
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Proof. By Theorem 2.8(b), there is 7 € H(X,Y) which induces ¢.

CramM 1. For every x € bd(X) there is a sequence T converging to x such that 7(Z)
converges to a member of bd(Y).

Proof. This claim follows from Lemma 6.5(b) applied to 7%

CLAIM 2. Let x € bd(X) and Z,@ C X. Suppose that limZ = lim @ = x and that 7(%)
and 7(@) are convergent. Then lim7(Z) = lim 7 ().

Proof. Set § = 7(&), ¥ = 7(&), y = lim ¢, v = lim ¥, and suppose by contradiction that
y # v. Obviously, y,v € bd(Y). Let r = ||y — v||/2. We may assume that v C B(v,r)
and that ¥ N B(v,7) = 0. Let h: [0,1] x cl(Y) — cl(Y) be an isotopy as ensured by the
fact that v is isotopically movable with respect to Y, and such that for every ¢ € [0, 1],
supp(hs) C B(v,7).

For every t € [0,1] let u, s = 77 (h(t,v,)). We first prove the following fact. (*) For
every t € [0,1], limy, oo Un¢ = o. Let t € [0,1]. Let h = hy|Y and g = h™'. Then
g € EXT(X). Also g7 = Id. So g°(x) = z. Hence lim, o0 up = limy, 00 §(u,) =
g(limy,— o0 un) = g(x) = . So (*) is proved.

Let L, = h([0,1] x {v,}) and K, = 77!(L,). We prove that lim, .., K, = .
Suppose by contradiction that this is not true. Then there are d > 0, £ C [0,1] and a
1-1 sequence {n; | ¢ € N} such that d(x,uy, ) > d for every i € N. We may assume
that ¢ is convergent. Set t* = lim#. Let I; be the closed interval whose endpoints are
t; and t* and J; = h(I; x {vp,}). Then lim; .o J; = h(t*,v). Since for every ¢ € [0, 1],
hY € EXT(Y) and v € bd(Y), it follows that h(t*,v) € bd(Y). The fact ¥ C Y
implies that J; C Y, and hence h(t*,v) & J; for every i« € N. Since J; is compact,
d(J;, h(t*,v)) > 0. We may thus replace {n;};cny by a subsequence and deduce that
max({d(z, h(t*,v)) | z € Jiy1}) < d(J;, h(t*,v)) for every i € N. There is a sequence
{Vi}ien of open sets such that for any distinct i,5 € N, J; CV; Ccl(V;) CY N B(v,7r),
VinV; =0 and lim; . V; = lim; . J;. From the fact that J; connects h(v,,,t*) and
h(vn ,t;), it follows that there is h; € UC( )|[Vi] such that h;(h(vn,,t*)) = h(vn,,t;). Let
h = oienhi. Then by Proposition 4.5, h € UCy(Y) C EXT(Y). Clearly, supp(h) C
B(v,r) and so h|j =Id. Let § = h™ . So § € EXT(X). Since h]§j = 1d, it follows that
§!Z = 1d and hence §°!(z) = x. Clearly, for every i, §(un, ¢+) = Un,+,, and from () it
follows that lim; oo Up, ++ = . So

g, = lim g (up, o) = §°(m up,4) = §°(2) = .

11— 00

This contradicts the fact that d(z,u,, ;) > d. So lim,, . K,, = z.

There is an infinite set o C N such that K; N K; = ) for any distinct i,j € 0. Let
{U; | i € o} be such that K; C U; C X, U; is open, U; NU; = ) for any i # j and
lim;je, U; = z. Let 7 C o be such that 7 and ¢ — n are infinite. For every i € n let
gi € UC(X |_| be such that g;(u;) = u;1. Let § = o;ey g; and h = g". By Proposition
4.5, g€ UCO( ) € EXT(X), hence it follows that h € EXT(Y).

For every i € 1, h(v;) = h(v;, 1), so lim;e, h(v;) = h(v,1). For every i € o — 7,
h(v;) = v;, so lim;eo—rpy h(v;) = v. Recall that h(v,1) # v. Also, lim; .., v; = v. So ¥ is
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convergent and k(%) is not convergent. Hence h ¢ EXT(Y). A contradiction, so Claim 2
is proved.

Suppose by contradiction that € bd(X) and z ¢ Dom(7%'). By Claim 1, there
is a sequence £ C X such that limZ = z and 7(Z) is convergent. Set y = lim 7(Z).
There are a 1-1 sequence @ C X and d > 0 such that lim«@ = z and d(7(%),y) > d.
Define ¢ = 7(&). By Claim 2, ¥ does not have a convergent subsequence. That is, ¥ is
completely discrete. Since Y is JN.AC, there is a subsequence w of ¢ such that w has a
joining system. Let (@, w*, {L, | n € N}, ') be a joining system for w. We may assume
that w* ¢ Rng(w).

We show that it can be assumed that w* # y. Suppose that w* = y. Let r = d(, y).
Since Y is BR.IS.MV and y € bd(Y), there is h € EXT(Y) such that supp(h) C B(y, )
and h°(y) # y. So h|w = Id. It follows that (), h(y), {h(L,) | n € N}, h(&')) is
joining system for @. So we may assume that w* # y.

Recall that Y is JN.AC. So we may apply Lemma 6.5(b) to 7—1. Recall also that
lim7=1(w) = lim7}(¥) = x. Hence there is # C Y such that limz = w* and
lim771(2) = 2. We now have two sequences: # and 77 !(Z), both converge to z, and
7(Z) and 7(771(%)) are convergent, but not to the same point. This contradicts Claim 2,
so x € Dom(7%).

We have shown that 7 € EXT(X,Y), and an identical argument shows that 71 €
EXT(Y, X). That is, 7 € EXTH(X,Y). =

6.3. Completely locally uniformly continuous homeomorphism groups. Having
obtained the results about EXT(X) and LUC(X), only little extra work is needed to prove
CMP.LUC-determinedness. See Definition 5.3(f). This faithfulness result will complete
the picture of groups of type HSMP-LC(X) discussed in Chapters 8-12.

The following is a strengthening of property BR.LC.AC.

DEFINITION 6.19. X is locally uniformly-in-diameter arcwise connected (LC.UD.AC) if
for every x € bd(X) there is U € Nbr(z) such that for every € > 0 there is 6 > 0 such
that for every u,v € U: if d(u,v) < J, then there is an arc L C X connecting u and v
such that diam(L) < e. O

THEOREM 6.20. (a) Let X,Y € KI(\?RM. Suppose that X and Y are LC.UD.AC and
JN.AC. Let ¢ : CMP.LUC(X) = CMP.LUC(Y). Then there is 7 € CMP.LUC*(X,Y)
which induces .

(b) Suppose that X is LC.UD.AC and Y is JN.AC, and let 7 € H(X,Y) be such
that (UCo(X))™ € CMP.LUC(Y) and (LUCq(Y))” = C CMP.LUC(X). Then 7 €
CMP.LUC(X, Y).

Proof. We shall see that (b) implies (a). So we start by proving (b).

(b) It is trivial that X is BR.LC.AC. We first show that 7 € EXT(X,Y’). By definition,
CMP.LUC(X) C EXT(X). So (UCo(X))” € EXT(Y) and (LUCo;(Y))™ = C EXT(X).
By Corollary 6.6(a), 7 € EXT(X,Y).
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We show that 7 € LUC(X,Y). Let S be the set of BPD-subsets of X. Then
UC(X,S) C UCy(X) and CMP.LUC(Y) C LUC(Y). So (UC(X,S))” C LUC(Y). By
Theorem 4.8(b), 7 € LUCE(X,Y).

Let z* € bd(X). We show that there is U € Nbr(z*) such that 7[(U N X) is UC. The
proof is very much a repetition of the proof of part 1 of Theorem 4.8(c).

Suppose by contradiction that for every U € Nbr™ (z*), 7|U is not UC. The following
claim is an easy consequence of the fact that 7[B(z*,r) N X is not UC. Its proof is left
to the reader.

CrAM 1. For every r > 0 there are sequences &,4y and d,e > 0 such that:

(1) Rug(#) URng(5) C BX (%, /2);

(2) limp—oo l2n — yull = 0;

(3) either (i) for any distinct m,n € N, d{@m,ym} {Tn,yn}) > e, or (ii) ¥ is a

Cauchy sequence;

(4) d(Rng(7) U Rng(y), ") > e;

(5) for every n € N, ||7(x,) — 7(yn)|| > d.

Let U € Nbr(z*) be as ensured by the LC.UD.AC-ness of X. There is a > 0 and a
function 7 : (0,a] — R such that lim;_.o 7(t) = 0 and for every u,v € UNX, if ||lu—v| <,
then there is an arc L C X connecting u and v sucu that diam(L) < n(t).

Let e_; > 0 be such that BF(z*,e_;) C U. It is easy to define by induction on i € N,
r; > 0, sequences %, §* and d;,e; > 0 such that: (i) &%, ¢, d;,e; satisfy the conclusion
of Claim 1 for r;; and (ii) for every i € N, r; = ¢;_1/8. Clearly ei+1 < e;/4. By deleting
initial segments from the Z%’s and ¢/*’s, we may further assume that for every i,n € N,
n(||zf, — yi|) < e;/8. We may further assume that either for every i € N clause (3)(i) of
Claim 1 holds, or for every i € N clause (3)(ii) of Claim 1 holds.

CAsE 1: Clause (3)(i) of Claim 1 holds. Let {(i(k),n(k)) | kK € N} be a 1-1 enumeration
of N2. Then limy o0 () —t) || = 0. Set up =1\, v =y} and let Ly, € X bean
arc connecting uy and vy, such that diam(Ly) < n(|lux —vk||). Let By = B(Lx, €j(k)41/4)-
Then

diam(Bk) < diam(Lk) + 6i(k)+1/2 < 77(||7.Lk — Uk”) + ei(k)+1/2
< ey /8 + €iky+1/2 < eiry /4.

It follows that if i(k) = i(£), then d(Bg, By) > e;x)/2. Suppose that i(k) < i(£). Then
lwe —ur|| > Tes, /8, diam(By) < e;k)/4 < e;(e)/4 and diam(By) < e;(4) /4. So d(By, By) >
3e;, /8. Obviously, limy_,o diam(By) = 0. Let wy € Ly — {ux} be such that ||7(wy) —
T(ug)l| < k+r1 By Lemma 2.14(d), there is hy € LIP(X) such that supp(hi) C By,
hi(ug) = ug and hg(wg) = vg. By Proposition 4.5, h := ogen b € UC(X) and indeed
h e UCo(X)

Let us see that for every V € Nbr(7%(2*)), A" [(V NY) is not UC. For i € N define
o; ={k | i(k) =i}. Soif k € o, then Ly C B(xz*,n(2rg)). Since lim;_,o, n(2r;) = 0, and
since 7¢ is continuous at z*, there is ¢ such that for every k € o, T(Ly) C V.

For every k € o;, 7(u;), 7(w;) € V. Clearly, limye,, ||[7(ug) — 7(wg)|| = 0. However,
for every k € oy, |h7(T(ug)) — A7 (7 (wi)|| = ||7(w;)) — 7(v:))|| > di So A" [(V NY) is not
UC. Hence h™ ¢ CMP.LUC(Y) even though h € UCy(X), a contradiction.
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CASE 2: Clause (3)(ii) of Claim 1 holds. Let z; = limZ%. Clearly, z; € BE(z*,r;) —

BE(x*,ei). So {2 | i € N} is 1-1 and lim; .o, %, = z*. Also, zZ; € E — E. This is so,

because if z; € F, then either Z; € X and 7 is not continuous at z;, or z; € de(X) and

z; ¢ Dom(7"). Both situations are impossible. For every i and n let L;, C X be an

arc connecting x%, and y! such that diam(L;,,) < (|| — y||). Note that for every i,

lim,, 00 L; », = Z;. From the facts z; ¢ E and L, , C E we conclude that d(z;, L; ,,) > 0.
It follows easily that there is a sequence {(i(k),n(k)) | kK € N} such that

(1) for every i € N, {k | i(k) =4} is infinite,

(2) for every k € N, ¢ := d(Li(k),n(k)v Um;ék Li(m),n(m)) > 0.
It is also clear from the construction that

(3) limy— oo diam(Lie),n(x)) = 0

Set L = Li)n(k), Uk = a:i((kk)), v = yfl((% and By = B(Lg,cx/3). Clearly, for every
£+ k, d(By, Bg) > ¢ and limy_, diam(By) = 0. From this point on the proof proceeds
exactly as in Case 1. So in Case 2 too, a contradiction is reached.

It follows that there is U € Nbr(z*) such that 7[(U N X) is UC, and this implies that
7°lis UC at x*. Recall that we have already shown before that 7 € EXT(X,Y) and that
7€ LUC(X,Y). So 7 € CMP.LUC(X,Y).

(a) Let ¢ : CMP.LUC(X) = CMP.LUC(Y). Clearly, LIPY®(X) < CMP.LUC(X) <
H(X), and the same holds for Y. So by Theorem 2.8(a), there is 7 € H(X,Y) such
that 7 induces ¢. Hence (CMP.LUC(X))” = CMP.LUC(Y). Obviously, UC((X) C
CMP.LUC(X) and LUCy(Y) € CMP.LUC(Y). So part (b) of this lemma can be
applied. Hence 7 € CMP.LUC(X,Y). Similarly, 7! € CMP.LUC(Y, X). That is,
7€ CMP.LUC(X,Y). u

6.4. The reconstruction of cl(X) from H(cl(X)). The next two theorems 6.22 and
6.24 deal with the reconstruction of F' from H(F), when F is the closure of an open
subset of a normed space. The sets to which these theorems apply may have rather
complicated boundaries. It is not true though that for any F, K which are the closures of
open subsets of a normed space, H(F) = H(K) implies that FF = K. See Example 5.8.

Recall that if A C E has a nonempty interior, then ENI(A) := {h(z) | z € int¥(A)
and h € H(A)}. For f € UCy(X), define f = fIIENI(cl(X)). Hence fei €
H(ENI(cl(X))). Also define UCS™ (X) = {f™ | f € UCo(X)}.

Parts (a) and (b) of the next proposition are analogous to Proposition 6.4 and
Lemma 6.5(a). The proofs of (a) and (b) are essentially identical to the proofs of their
counterparts, so they are omitted. Part (c) is analogous to Lemma 6.5(b), but (c) is

stated for ! rather than for 7.

PROPOSITION 6.21. (a) Let X be BR.LC.AC and 7 € H(ENI(cl(X)),ENI(cl(Y))). As-
sume that (UCS™(X))™ € EXT(ENI(cl(Y))). Let = € bd(X) — ENI(cl(X)), y € bd(Y)
and ¥ C X be such that limZ = x and lim 7(Z) = y. Then (71 X)U{(z,y)} is continuous.

(b) Let X be JN.AC and 7 € H(ENI(cl(X)), ENI(cl(Y))) be such that (LUCy;(X))™ C
H(ENI(cl(Y))). Let y € bd(Y) —ENI(cl(Y)). Suppose that & C X is completely discrete,
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(@, x*,{L, | n € N}, @) is a joining system for & and im7(Z) = y. Then there is a
sequence @ C X such that im @ = z* and lim7(%) = y.

(c) Let X,Y € KQgy- Assume that Y is JN.AC. Set K = cl(X) and M = cl(Y),
and let n € H(ENI(K), ENI(M)) be such that for every h € H(M), ((R[ENI(M))" ')l €
H(K). Then for every x € K — ENI(K) there is a sequence £ C X converging to x such

that n(¥) CY, and n(Z) is convergent in M.

Proof. (c) Let x € K — ENI(K). Let & C X be a sequence converging to z. For every
n € Nlet r, = min(&(z,), d(z!,, x)). So BE(x!,,r,) is a nonempty open subset of ENI(K).
Clearly, bd(Y) NENI(M) is nowhere dense in ENI(M). So there is z,, € B¥(2/,,7,) such
that n(x,) € bd(Y) N ENI(M). That is, n(z,) € Y. So Z C X, imZ = z and n(Z) C Y.

Define i = n(Z). Suppose that % has a subsequence ¢’ such that i is convergent in
cl(Y). Then n~1(¢') is as required in the proposition. Suppose that such a ' does not
exist. Hence ¢/ is completely discrete.

Let (7,v*,{L, | n € N},¢') be a joining system for §. By 6.21(b) applied to ¥
and 1!, there is ¥ C Y such that limo = y* and limn~!(¥) = z. It is obvious that
y* € bd(Y) — ENI(cl(Y)).

As at the beginning of the proof, there is a sequence @' C Y such that lim o' = y*,
n~H#") C X and limn~Y(7) = limn~}(¥) = x. So n~1(¥) is as required. =

The following theorem is analogous to Theorem 6.3(b). The proofs are essentially the
same.

THEOREM 6.22. Let X,Y € KQyx (see 6.3(b)). If p: H(cl(X)) = H(cl(Y)), then there
is 7 : cl(X) = cl(Y) such that T induces .

Proof. Let K = cl(X) and M = cl(Y). From Theorem 2.30(c) it follows that there is
n € H(ENI(K),ENI(M)) which induces ¢.

For every x € bd(X) — ENI(cl(X)) let £ C X be such that lim# = = and n(Z
is convergent in M. The existence of Z is ensured by Proposition 6.21(c). Let y, =
limn(Z). Since Rng(n) 2 Y, y, € bd(Y). Since n induces ¢, for every g € H(K),
((¢|ENI(K))")! € EXT(ENI(M)). In particular, (UCE™(X))" C EXT(ENI(M)). Hence
by Proposition 6.21(a), n[X U {{(z,y;)} is continuous. Also, for every z € bd(X) N
ENI(cl(X)), n1X U {{x,n(x))} is continuous. We thus have

(1) for every z € bd(X) — ENI(cl(X)), n[X U {(x,y, )} is continuous,
(2) for every x € bd(X) NENI(cl(X)), n[X U {(z,n(x))} is continuous.

So by Proposition 4.7(a), nU{{(z,y,) | * € bd(X) —ENI(cl(X))} is continuous. So 7 can
be extended to a continuous function 7 from cl(X) to cl(Y).

Similarly, n~! can be extended to a continuous function ¢ from cl(Y) to cl(X). It
follows easily that 7 is 1-1 and that 77! = p. So 7 € H(cl(X),cl(Y)). Since n induces ¢
and Dom(n) is dense in Dom(7), it follows that 7 induces ¢. m

PROPOSITION 6.23. (a) Let X € K{py, K = cl(X), U C ENI(K) be open in K, L CU
be an arc and x,y be the endpoints of L. Then there is h € H(K)|U| such that h(x) = y.

(b) Let Z be a topological space z € Z and {h; | i € N} C H(Z) be such that for any
i # j, supp(h;) Nsupp(h;) = 0 and lim;_.o supp(h;) = z. Then o;enh; € H(Z).
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Proof. (a) Let v : [0,1] — L be a parametrization of L such that v(0) = z and v(1) = y.
There are n € N, {U; | i < n}and 0 =ty < --- < t, = 1 such that for every i < n:
U; is open in K, U; is homeomorphic to an open ball of a normed space, U; C U and
Y([tis tix1]) € U;. So for every i < n there is h; € H(K)M such that h;(z;) = zi11.
Clearly, h,,—1 0 -+ ohg is as required.

(b) The proof is trivial. m

The following theorem is analogous to Theorem 6.18. The proofs are essentially the
same.

THEOREM 6.24. Let X,Y € KQx and ¢ : H(cl(X)) = H(cl(Y)). Then there is T €
H(cl(X),cl(Y))) which induces ¢.

Proof. Set K = cl(X)and M = cl(Y'). Then by Theorem 2.30(c), thereis n € H(ENI(K),
ENI(M)) which induces ¢. So for every g € H(K), ((¢|ENL(K))") = ¢(g) € H(M).
We shall prove that n<! € H(K, M).

CramM 1. Let x € K — ENI(K) and Z,4 C X. Suppose that imZ = lim @ = = and that
n(Z) and n(@) are convergent in M. Then limn(Z) = limn ().

Proof. Let § = n(Z), ¥ = n(d), y = limy, v = lim ¥, and suppose by contradiction that
y # v. Obviously, y,v € bd(Y). Let r = [y — v||/2. We may assume that v C B(v,r)
and that ¥ N B(v,7) = 0. Let h: [0,1] x cl(Y) — cl(Y) be an isotopy as ensured by the
fact that v is isotopically movable with respect to Y, and such that for every ¢ € [0, 1],
supp(ht) € B(v, ).

For every t € [0,1] let u,; = n~*(h(t,v,)). We prove the following fact. (*) For
every t € [0,1], lim, oo Uy = z. Let t € [0,1]. Let h = hy[ENI(M) and g = h" .
Then g € EXT(ENI(K)). Clearly, g[# = Id and so g°'(z) = z. Hence lim,, oo tupn ¢ =
limy, 00 G(un) = glimy,— 0o ) = g(x) = 2. So (*) is proved.

Let L, = h([0,1] x {v,}) and K,, = n~*'(L,). We prove that lim, .. K,, = z.
Suppose by contradiction that this is not true. Then there are d > 0, ¢ C [0,1] and a
1-1 sequence {n; | i € N} such that for every ¢ € N, d(x,up,+,) > d. We may assume
that i is convergent. Let t* = lim#. Let I; be the closed interval whose endpoints are
t; and t* and J; = h(I; X {vn,}). Then lim; ,o J; = h(¢*,v). Since for every ¢t € [0, 1],
ht]Y € EXT(Y) and v € bd(Y), it follows that h(t*,v) € bd(Y). The fact that v,, € Y
implies that J; C Y. Hence for every i € N, h(t*,v) € J;. We may thus assume that for
anyi;éj, JiﬂJj :(Z).

There is a sequence {V;};cn of pairwise disjoint open sets such that for every i € N,
Ji CV; Ccl(V;) € YNB(vr) and lim;_o V; = h(t*,v). Let h; € UC(Y)|Vi| be
such that h;(h(vn,,t*)) = h(vn,,t;) and h = osen hs. Then h € UCy(Y). Hence h :=
heri ¢ EXT(ENL(M)). Let § = ' So g € EXT(ENI(K)). Clearly, §/# = Id and
hence §°'(z) = x. Also, for every i € N, §(un, 1+) = un, . It follows from (x) that
lim; o0 Up, ¢+ = = and so

lim Uty = lim g(unut*) = gd(.hm uniﬂf*) = gd(m) =T
1— 00 71— 00 71— 00

This contradicts the fact that d(z,un, ;) > d, so lim, .. K,, = .
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Recall that 2 € K — ENI(K), and note that K; = n~(L;) € n~1(Y) C ENI(K).
So = ¢ K;. Hence there is an infinite set ¢ C N such that for any distinct 4,5 € o,
K, N K; = (. There is a sequence {U; | i € o} of pairwise disjoint sets such that
K; CU; C ENI(K), U; is open in ENI(K) and lim;ec, U; = . Let ¢ C o be such that o
and o — p are infinite.

By Proposition 6.23(a), for every i € o there is g; € H(K)Iﬂ] such that g;(u;) = u; 1.
By Proposition 6.23(b), § := oic,9; € H(K). Let g = g|ENI(K) and h = g". Then
%' = g € H(K). From the fact that 7 induces ¢ it follows that A € H(M).

For every i € g, h(v;) = h(v;,1). So lim;e, h(v;) = h(v,1). For every i € o — p,
h(vi) = v;. So limjey—, h(v;) = v. Recall that h(v,1) # v and that lim; oo v; = v.
So ¥ is convergent and h(%) is not convergent. Hence h°! ¢ H(M). A contradiction, so

Claim 1 is proved.

Suppose by contradiction that z € K — ENI(K) and = ¢ Dom((n[X)!). Recall that
Y € K&x and hence Y is JN.AC. So by Proposition 6.21(c), for every v € K — ENI(K)
there is a sequence & C X converging to x such that n(Z) C Y, and 7(Z) is convergent
in M. Set y = limn(Z). Obviously, y € bd(Y). Since = ¢ Dom((n] X)), there are a 1-1
sequence & C X and d > 0 such that lim ¢ = x and d(n(%), y) > d. Define ¢ = n(i&). Then
by Claim 1, ¥ does not have a convergent subsequence. That is, ¥ is completely discrete.
Since Y is JN.AC, there is a subsequence w of ¥ such that w has a joining system. Let
(W, w*,{L, | n € N},4') be a joining system for . We may assume that w* & Rng(w).

It can be assumed that w* # y. For suppose that w* = y. Let r = d(&,y). Since
Y is BRIS.MV and y € bd(Y), there is h € EXT(Y") such that supp(h) C B(y,r) and
h(y) # y. So hlw = Id. It follows that (), h (y), {h(L,) | n € N}, h(&")) is a joining
system for w, and if we redefine w* to be h°(y), then w* # y.

Recall that Y is JN.AC. So we may apply Lemma 6.21(b) to n~!'. Recall also
that limn~1 (@) = limn~1(¥) = z. Hence there is # C Y such that limZ = w* and
limn~!(z) = 2. The two sequences & and 7~ !(Z) converge to x, however, n(Z) and
n(n~1(Z)) are convergent, but they do not converge to the same point. This contra-
dicts Claim 1, so Dom((n | X)) O K — ENI(K). Since Dom(n) = ENI(K), we have
Dom(n®) = K.

We have shown that n € EXT(ENI(X),ENI(Y)). An identical argument shows
that n~! € EXT(ENI(Y),ENI(X)). Hence n° € H(K,M). Since n induces ¢, n°
induces ¢. =

6.5. Generalizations to manifolds and to nearly open sets. The results of this
chapter are true in two other settings, which are more general than the present setting.
The proofs remain exactly the same.

REMARK 6.25. (a) Let Z be a subset of the normed space E. Z is a nearly open set if
Z C cl®(int?(Z)). The results of this chapter can be extended to the class of nearly open
subsets of a normed space. Let

KNS, ={(X,Z) | X € K&z and X C Z C cl(X)}.
Note that {(X,cl(X)) | X € Kfru} € K-
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(b) The analogy with Ky, is as follows. Let (X, Z) € K{Q;. The group
EXT?(X)={h|X | h € H(Z) and h(X) = X}
is the analogue of EXT¥(X), and the group H(Z) is the analogue of H(cl(X)).

(c) Suitable reformulations of Theorem 6.3, Corollary 6.6 and Theorems 6.18, 6.20,
6.22 and 6.24 are true for K{Q;. O

We demonstrate the generalization discussed in Remark 6.25 by describing the ana-
logues of Theorem 6.3(b) and 6.22. The faithful class captured by this generalization
contains 22" subsets of R3.

Let Ky be the class of all (X, Z) € K9, such that X is BR.LC.AC with respect
to Z, and X is JN.AC with respect to Z. Evidently, this is the analogue of Kg)Mx defined
in 6.3(b). Let us first see that Klj\\Ifl\?X is a large class. Write X = (0,1)3, that is, X is
an open cube in R?. We construct sets Z such that (X,Z) € K%, and in fact, we
show that |[{Z | (X, Z) € K%} = 22" We skip the easy proof of part (b) of the next
example.

EXAMPLE 6.26. Let X = (0,1)3.

(a) For x,y € R let L, , = [(,0,0), (x,y,0)]. Let 0 # A C [0,1] and o : A — [0,1).
(We do not assume that o is continuous.) Let Z, = X UJyc g Lo o). Then (X,Z,) €
K-

(b) Let F be a closed nonempty subset of bd®’ (X). Then (X, X UF) € K{%.
Proof. (a) Let X, A, p and Z be as above. It is trivial that X is BR.LC.AC with respect
to Z. We show that X is JN.AC with respect to Z. Let @ = {uy, }nen C X be a completely
discrete sequence with respect to Z. It may be assumed that @ is convergent in R3, and
we denote its limit by 4. So @ € o® (X) — Z. Write up, = (Zp, Yn, 2n) and 4 = (&, 7, 2).

CASE 1: Assume that Z = 0. Suppose first that there is a € A such that {n | z,, = a}
is infinite. So we may assume that z,, = a for every n € N. It follows that for some
b > p(a), lim@ = (a,b,0). Hence @& has a subsequence ¢ such that [v,,, (a, o(a),0)] N
[Um, (a, 0(a),0)] = {(a,0(a),0)} for any m # n. Choose w, € [vn, (a,b,0)) such that
lim,, 0o w, = (a,b,0) and define L, = [v,,wy]. It is easy to see that (7, (a,o(a),0),
L, {wn }nen) is a joining system for ¢
Suppose next that for every a € A, {n | z,, = a} is finite. Choose any a € A and
remove from « all u,’s such that x,, = a. Then a # x, for every n € N. We may also
assume that zp < 1/2 and that {2, },en is strictly decreasing. Let y], = max(1 — zn, Yn),
! = (&, ¥, 2n) and LY = [u,, u/,]. We show that L° := {L},cy is completely discrete
with respect to Z. Since {z,}nen is 1-1, I%is a pairwise disjoint sequence, that is,
L% NLY =0 for any m # n. If (x,y,2) € aCCRg(I_;O), then x = &, z = 0 and y > ¢, and
since (Z,9,0) ¢ Z, it follows that (#,y,0) ¢ Z. The sequence {y}, }nen converges to 1, so
we may assume that it is strictly increasing. Let v, = (z,,y),,1/2) and L. = [u},, v,].
It is trivial that L' := {L!},cy is a pairwise disjoint sequence. If (z,7,2) € aCCR3(E1),
then y = 1 and so (z,y,2) € Z. So Ltis completely discrete with respect to Z. Suppose
that m < n. Then L2, N L. = 0, since the y-coordinate of any member of LY is <y ,
and the y-coordinate of any member of L} is equal to y/, which is > y/,. Similarly,

u
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L, NLY% = (), since members of L! and LY differ in their z-coordinate. We conclude that
(LS, ULL)YN (L2 N L) = for any m # n.

Let wy, = (a,y,,1/2) and L2 = [v,, w,]. The sequence L? := {L2},cy is a pairwise
disjoint sequence, since members of L2, and L? differ in their y-coordinate. Also, L2 N
(L% ULL) = () for any m # n. This follows from the fact that the only point in L% ULl
whose z-coordinate is 1/2 is v,, and v,, & L?. The y-coordinate of any member of
acc®’(L2) is 1, so acc®’(L2) N Z = () and hence L? is completely discrete with respect
to Z. Let w* = (a,0(a),0), choose w), € [w,,w*) such that lim, .. w, = w* and
define L? = [w,,w)]. Clearly, L3 := {L3},cy is a pairwise disjoint sequence. Since
lim,, o wy, = (a,1,0), it follows that acc®’ (L3) = [w*, (a,1,0)]. So acc?(L3) = {w*}. It
follows that for every r > 0, {L3 — B(w*,r) | n € N} is completely discrete with respect
to Z. Note that w,, is the only point in |J,, L}, whose z-coordinate is a. So since
for n # m, w,, &€ L3, L2 N (Ui<z L) = (. Define L, = Ui<s Li @ = {w! }nen and
L= {Ln}nen- It follows that Lisa pairwise disjoint sequence and that for every r > 0,
{L, — B(w*,r) | n € N} is completely discrete with respect to Z. So (@, w*,L,&') is a
joining system for .

The case that 2 # 0 is divided into several subcases. Their proofs are similar to the
proof of Case 1, but simpler. =

THEOREM 6.27. For £ = 1,2 let (X;, Z,) € KhSx-

(a) If p: Zy = Zy, then there is T € H(Zy, Z2) which induces p.
(b) If ¢ : EXT?(X,) = EXT?(X,), then there is 7 € EXT?"%2(X,, Xy) which
induces .

Proof. The proof of (a) is identical to the proof of Theorem 6.22. The proof of (b) is
identical to the proof of Theorem 6.3. =»

REMARK 6.28. The second generalization is motivated by the following example. Let
E =R x S¥(0,1), Y = [0,1] x S¥(0,1) and X = (0,1) x S¥°(0,1). X is a normed
manifold. So its reconstruction from subgroups of H(X) is included in Theorem 2.30(a).
The local I'-continuity of conjugating homeomorphisms of X is proved in 3.47(a), 3.48(a)
and 4.10. The space Y, however, is not covered by any of the above theorems because
it is not a normed manifold. Also, Y is not the closure of an open subset of a normed
space. So the theorems proved so far in Chapter 6 do not apply to Y. However, Y is
a well-behaved space and is very similar to the spaces which have already been dealt
with. O

The above remark calls for the setting in which F is a normed manifold, X is an open
subset of E and Y = cl?(X). This setting will yield reconstruction results for Y.

DEFINITION 6.29. (a) Let (X, @,d) be such that (X, &) is a normed manifold, (X,d)
is a metric space, and there is K such that for every ¢ € &, ¢ is K-bilipschitz. Then
(X, @,d) is called a normed Lipschitz manifold.

(b) Let K py = {Y | Y is an open subset of a normed Lipschitz manifold}. O

Chapter 6 in its entirety can be proved for K py-
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THEOREM 6.30. In Definitions 6.1, 6.9, 6.16, 6.19 and in Remark 6.25 change every
mention of Kpy to a mention of Ky py- Then the variants obtained in this way from
Theorem 6.3 and Theorems 6.12, 6.18, 6.20, 6.22, 6.24 and 6.27 are true.

Proof. The proofs of all the above theorems are identical to the proofs of their counter-

parts. m



7. Groups which are not of the same type are not isomorphic

In the previous chapters we considered several properties of homeomorphisms, for in-
stance, UC homeomorphisms, LUC homeomorphisms, extendible homeomorphisms and
homeomorphisms which are uniformly continuous on every bounded positively distanced
set. In this chapter we prove that for properties P and Q as above, if P(X) = 9Q(Y),
then either P(X) = Q(X) or P(Y) = Q(Y). But before we deal with these questions,
we prove some additional facts about the group UC(X).

7.1. The group UC(X) revisited. We have seen in Theorem 5.5 that if XY €
K&y X is UD.AC and (UC(X))™ C UC(Y), then 7 is uniformly continuous. We next

reconsider the problem of deducing that 7! is uniformly continuous from the fact that

(UC(X))™ CUC(Y). Recall that the implication
() (UC(X))" CUC(Y) = 7' is uniformly continuous

is not true for every X, Y € Kf\?RM. Counter-examples appear in 5.7 and 6.7(a). Yet,
(1) holds when X and Y are well-behaved. Theorem 7.1 below deals with finite-dimen-
sional spaces for which (}) is true. The infinite-dimensional case is considered in 7.7. The
result of 7.7 is needed in the proof of Corollary 7.11(d) and (e).

THEOREM 7.1. Let X,Y € KI(\?RM. Suppose that X is finite-dimensional and bounded,
X is UD.AC, |Cmp(bd(X))| < Ry and (x) for every C € Cmp(bd(X)), distinct z,y € C,
and z € bd(X) — {z,y}, there is f € UC(X) such that either f'(z) =y and f(z) = z,
or fU(z) = y and f(x) = x. Suppose that for every C € Cmp(bd(Y)), |C| > 1. Let
T € H(X,Y) be such that (UC(X))™ CUC(Y). Then 71 is uniformly continuous.

Proof. By Theorem 5.5, 7 is uniformly continuous, and hence 7¢! maps cl(X) onto cl(Y).
It thus suffices to show that 7! is injective. Suppose otherwise. For x € bd(X) let C,
denote the connected component of bd(X) containing x. It follows from (x) that if for
some z # x, 79 (x) = 7(2), then for every y € Cy, 7% (y) = 7°'(x). The argument is as
follows. Suppose indeed that z # z, 7¢(z) = 7°(2) and y € C, — {z, 2}. Let f € UC(X)
be as ensured by (x). We assume first that f°(z) = x and f(z) = y, Let &, C X
converge respectively to x and y, and let 7’ = f~1(Z) and Z = f~!(%). Then

m(y) = lim7(§) = lim fToro f1(g) = lim f7(7(2)) = (f7) (lim7(2)) = (f7)(7°(2))-

Similarly,
7(z) = im 7(Z) = lim fTo7o f~1(Z) = lim f7 (7(Z"))

= (fN) " (lim7(2)) = (f7) (v (lim &")).

[150]



Reconstruction of manifolds from subgroups of homeomorphism groups 151

Since f!(z) = = and lim Z = x, we have lim# = x. So
() = (f)N (! lim @) = (f1) (7 (@) = (f)(79(2)) = 7°(y)-

The same argument applies to the case that f°'(z) = z and f°!(z) = y. It follows that
for any distinct C, D € Cmp(bd(X)), either 7¢(C) = 7¢(D) and 7¢ (C’) is a singleton,
or 7°4(C) N YD) = 0.

Let  and y be distinct members of bd(X) such that 7¢!(x) = 7¢!(y), and C be the
component of 7°(z) in bd(Y). The family {r/(C,) N C | v € bd(X)} is a partition
of C into more than one and at most countably many closed sets. This contradicts
the theorem of Sierpinski that a continuum cannot be partitioned into countably many
nonempty closed sets. See [En, Theorem 6.1.27]. =

We do not know whether in the above theorem, the requirement that bd(X) has at
most countably many components can be dropped. Here is an easy example of a bounded
regular open subset X C R? such that X is UD.AC, X satisfies (x) of Theorem 7.1,
every connected component of bd(X) has cardinality > 1, and bd(X) has 2% connected
components.

EXAMPLE 7.2. Let C C [0, 1] be the Cantor set. Let K = C x {1}. So K C B¥*(0,2) and
B®(0,2)— K is connected. Let A = {a, | n € N} C B¥*(0,2) be such that cl(4)— A4 = K,
and every member of A is an isolated point in A. Let r,, > 0 and D,, = B(ay,,7,). Assume
that D,, C B(0,2) N {(z,y) | « > 0} and B(ay,, 2ry,) N B(ay,2r,) = 0 for any m # n,
and that cl(U,cy Dn) — Upen Dn = K. Let U = B(0,3) — cl(U,,cy Dn)- Let X C R? be
the set obtained by rotating U about the z-axis. Note that if z,y € U, then there is an
arc L C U connecting x and y such that Ingth(L) < 27 - ||z — y||. It follows easily that X
is as required. [

We next deal with infinite-dimensional open sets for which the fact that (UC(X))™ C
UC(Y) implies that 77! is uniformly continuous.

DEFINITION 7.3. (a) For A C X define AXF(A4) = sup,c4d(a, E — X). As usual, we
abbreviate AXE(A) by A(A).

(b) Let h € H(X). We say that h is strongly extendible if for every ¢ > 0 there is
h € H(E) such that h extends h and supp(h) C B(supp(h), ). Define UC(X) := {h €
UC(X) | h is strongly extendible}.

(c) A simple arc is a space homeomorphic to [0, 1]. For a simple arc L and z,y € L
let [x,y]” denote the subarc of L whose endpoints are z and y. Let a € MBC and
7 : (0,00) — (0,00) be such that n is monotonic and lim—,07(¢) = 0. Let X be a metric
space and L C X be a simple arc. We say that L is an (o, n)-track if for every x,y € L
there is h € UC(X) such that h is a-bicontinuous, h(x) = y and supp(h) C B([z,y]",r),
where r = n(diam([x,y]*). If in the above definition we require that h € UC.(X), then
L is called an {«,n)-e-track.

(d) We define the notion of a track system for . Let £ C X be a completely discrete
sequence, y* € bd(X), 7C X and L = {L, | n € N} be a sequence of simple arcs such

that limy = y*, L, C X, L,, connects z,, with y,, and |J L,, is bounded. Assume that

neN
(1) there are o and 7 such that L,, is an {«,n)-track for every n € N,
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(2) there are 8 € MC and for every n a parametrization v, of L, such that
Dom(vyy,) = [0, 1], v, is 8-UC for every n € N and v,(0) = y,, and v, (1) = .

Then T = (Z, y*, E, y) is called a track system for &, and =, is called a legal parametriza-
tion of L, in T. Note that (2) just means that {7, | n € N} is equicontinuous. If in (1)
we require that L, be an e-track, then T is called an e-track system.

Let T = (Z,y*, L, i) be a track system. If for every r > 0, {L, — B(y*,r) | n € N}
is completely discrete, then T is called a completely discrete track system. If for every
r >0, {L, — B(y*,r) | n € N} is spaced, then T is called a spaced track system.

(f) X is jointly track connected (JN.TC) if for every completely discrete bounded
sequence ¥ C X: if lim, o d(x,) = 0, then Z has a subsequence 7 such that 7 has a
track system. X is jointly e-track connected (JN.ETC) if the above subsequence ¥ is
required to have an e-track system. []

REMARK 7.4. We explain the notion of a track system by an example. Let X be the
unit ball of the Hilbert space /5 and S be the unit sphere. Let & be a completely discrete
sequence in X such that §(Z) = 0. We construct a track system for a subsequence of Z.
Let eg = (1,0,0,...). Take a subsequence ¥ of & such that {eg } URng(¥) is an independent
set. For n € N let z, = [|ynlleo, Sn = S(0, ||ynl]) Nspan({yn,eo}) and L,, be any of the
two subarcs of S,, connecting y,, with z,. Then T = (¥, e, {Ln }nen, {#n tnen ) is a track
system for ¢. Indeed, T is an e-track system.

The property JN.ETC is needed in the proof that UC(X) 2 EXT(X). O

PROPOSITION 7.5. (a) Let {hy | n € N} C UC(X), and suppose that {supp(h,) | n € N}
is spaced. Then open hy € UC(X).

(b) Let x,y € E be such that ||z| = ||y|| and ||x —y|| =d > 0. Let L = {tx | t > 0}.
Then d(y, L) > d/2.

(c) If T = (&, y*, ﬂg’) a track system, then the following hold.

(i) For every t € (0,1), T3 := ({vn(®) }nen, ¥, {1 ([0,t]) bnen, ¥) is a track sys-
tem, and if T is completely discrete, so is T;.
(ii) lim,—eo A(Ly) = 0.

(d) Let (Z,y*, L ) be a completely discrete track system. Then there is an infinite
o C N such that (Z|o, y L[U ylo) is a spaced track system.

(e) Let T = (Z,y * L, ¥) be a track system. Let 7, be legal parametrization of L,, in T .
Then there are t € [0,1), z* € bd(X) and an infinite 0 C N such that (Z]o, z*, {yn([t, 1]) |
ne€ ot {m(t)|ne€o}) is a spaced track system.

(f) Let T = (Z,y*, L, ) be a completely discrete track system and C € Cmp(bd(X))
be such that d(Z, C) = 0. Then y* € C.

(g) Let T = (Z,y*, L, ) be a track system, h € UC(X) and T := (h(Z), b (y*), h(L),
h(y)). Then T' is a track system.

Proof. (a) The proof is trivial and is left to the reader.

(b) We may assume that ||z|| = 1. Let tz € L. If |1 —¢| < d/2, then use the
triangle with vertices z, tz and y to conclude that ||y — tz|| > ||y — z|| — ||z — tz| > d/2;
and if |1 — ¢| > d/2, then use the triangle with vertices 0, tx and y to conclude that
ly —tzll > [lly = Ol — [t = Ol | = |1 — ¢] = d/2.
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(c) The first part of (c) follows from the definition of a track system. To prove the
second part, suppose by way of contradiction that for some d > 0, {n | A(L,) > d}
is infinite. Let o and 7 be as ensured by the fact that T is a track system. Since
limy = y* € bd(X), there is n such that «(dé(y,)) < d and A(L,,) > d. Choose z € L,
such that §(z) > d and w € bd(X) such that a(||y, —wl|| < d. Since L,, is an {a, n)-track,
there is h € H(X) such that h is a-bicontinuous and h(y,) = z. Then

17(yn) — R(w)|| = ||z = h(w)]| = d(z,bd(X)) > d > a(|ly, — wl]),
and this contradicts the a-continuity of h.

(d) For every r > 0, {L; — B(y*,r) | ¢« € N} is completely discrete. So by Propo-
sition 5.26, for every r > 0 and an infinite 7 C N there is an infinite v C 7 such that
{L; — B(y*,r) | i € v} is spaced. We define by induction ¢, C N. Let g = N. For
every n € N let g,11 be an infinite subset of g, such that {L; — B(z*, n+1) | i € ont1}
is spaced. Let o = {min(p, NN2") | n € N} It is easy to see that for every r > 0,
{L; — B(z*,r) | i € 0} is spaced. So (Z|o,y*, L]o,§lo) is a spaced track system.

(e) For every infinite n C N and t € [0,1] let A[n,t] = {v.(t) | n € n}. Let s, =
sup({t | A[n,t] is not completely discrete}). Let ¢ C N be an infinite set such that for
every infinite n C g, s, = s,. Set s = s,. Suppose by contradiction that Afp, s|] does not
contain a Cauchy sequence. Then for some infinite 7 C p and d > 0, Aln, s] is d-spaced.
There is € > 0 such that for every t > s — ¢, A[n, ] is spaced. The existence of ¢ follows
from the equicontinuity of {7, | n € N}, that is, from the existence of 3 appearing in
clause (2) of the definition of a track system. So s, < s. A contradiction. So Alp, s]
contains a Cauchy sequence. We may thus assume that Afp, s] is a Cauchy sequence. Let
z* = lim Alp, s].

Let J; = 7([s,1]). We show that there are no r > 0, an infinite n C g and @ €
[Lic,(Ji — B(2*,7)) such that @ is a Cauchy sequence. Suppose otherwise. Let t; €
[s,1] be such that u; = ~;(t;). We may assume that £ = {t; | i € 5} is a Cauchy
sequence. Let t* = lim. Since Rng(@) N B(z*,7) = 0, it follows that t* # s, and since
lim;ey, d(7y:(ti),7:(t*)) = 0, we find that {v;(¢t*) | ¢ € n} is a Cauchy sequence. That is,
sy > s, a contradiction. We have shown that ({z,, | n € o}, 2", {vn([s,1]) | n € 0}, Alo, s])
is a completely discrete track system. By (d), there is an infinite ¢ C p such that
{xn | n€al},z*, {vn([s,1]) | n € o}, Alo, s]) is a spaced track system.

(f) Suppose by contradiction that y* ¢ C. By (d), we may assume that T is a spaced
track system. Let «,7n be as ensured by the fact that T is a track system. Clearly,
a = d(y*,C) > 0. Choose u € C, and for every n € N choose z, € (B(y*,a/2) —
B(y*,a/4)) N Ly, and set J,, = [y, 2,)5". Then by := d(u,U,, ey Jn) > 0, and there is
by such that {J, | n € N} is be-spaced. Set b = min(by,b3)/3, and let ¢ > 0 be such
that ¢+ n(c) < b. From the equicontinuity of {, },cn it follows that there is k¥ € N and
{#zni | n € N, i < k} such that for every n € N, 2,0 = @y, 2nk = 2, and z,; € Ly,
and diam([2p , 2ni+1]5") < ¢ for every i < k. So for every n € N and i < k there
is hy; € UC(X) such that h, ; is a-bicontinuous, Ay ;(2n;) = Zn,+1 and supp(h, ;) C
B([2n.is Zn,it1)Fm,¢). Let hy = ojck hyyi. Clearly, h, € UC(X), and it is easily seen
that {supp(hy) | n € N} is by/3-spaced and d(u,supp(hy)) > b1/2 > 0. It follows that
h = oj<k hni € UC(X), h(u) = u and h(x,) = z, for every n € N. Since h(u) = u,
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it follows that h(C) = C. However, d(Z,C) = 0 and d(h(Z), h(C)) = d(Z,C) > a/2 > 0.
This contradicts the fact that h is uniformly continuous.

(g) By Proposition 4.3(c), there is v € MBC such that h is y-bicontinuous. Let a, 7
and (8 be as in the definition of a track system. Define @' = yoaoy, ' = yonoy and
B =~ofB. Then o/,n' and 3 demonstrate that 7" is a track system. m

PROPOSITION 7.6. Let Z be a metric space, and {F,, | n € N} and {K,, | n € N} be
sequences of compact subsets of Z such that: (i) {F, | n € N} is spaced; (ii) for every
e > 0 there is . € N such that for every n € N and a subset A C K, if |A| > L., then
there are distinct x,y € A such that d(x,y) < ; and (iii) inf({d(F,, K,) | n € N}) > 0.
Then there is an infinite o C N such that d((J{F, | n € o}, J{K, | n € c}) > 0.

Proof. Write Nt = {n € N | n > 0}. We define by induction on i € N* a sequence of
infinite subsets of N, 0g D 01 D --- . Let 09 = N. Suppose that o; has been defined. We
color the increasing pairs (m,n) of members of o; in four colors, according to whether
d(Fp,, K,,) < 1/i or not, and according to whether d(K,,, F,) < 1/i or not. By the
Ramsey Theorem, there is a monochromatic infinite o;41 C o;. If there is i € N* such
that for any distinct m,n € o4, d(F,,, K,,) > 1/i and d(K,,, F},) > 1/, then o := 05 is as
required. Otherwise, for every i € N either (1) for every m < n in oy, d(Fy,,, K,,) < 1/4,
or (2) for every m < n in oy, d(K,, F),) < 1/i.

Let i € N and ¢ = /,,; be as ensured by clause (ii). Let ky < --- < k¢ be members of
;. Suppose that case (1) occurs. For every j < ¢ let z; € F; and y; € K, be such that
d(zj,y;) < 1/i. Hence for some j1 < jo < ¥, d(y;,,¥y;,) < 1/i. So d(F},,F},) < 3/i. The
same argument is repeated in case (2). Hence for every i € NT there are distinct j; and
Jjo such that d(F},, F},) < 3/i, contradicting the fact that {F,, | n € N} is spaced. m

The properties that X is required to fulfill in the next theorem are quite restrictive.
However, they are shared by “well-behaved” open sets. For example, if X = B—J,_, B,
where B is an open ball and {By,...,B;_1} is a pairwise disjoint family of closed balls
contained in B, then X fulfills the requirements of the theorem. Part (b) of the theorem
is a slight modification of its first part. This modification is needed in the proof that
UC(X) and EXT(X) are not isomorphic unless they coincide.

THEOREM 7.7. (a) Let X € KS\q- Suppose that the following hold.

(1) X is bounded and X is UD.AC,

(2) bd(X) has finitely many connected components,

(3) if C € Cmp(bd(X)), x,y € C are distinct and z € bd(X) — {z,y}, then there
is f € UC(X) such that either f(x) = y and f(z) = z, or f(2) = y and
f(z) ==,

(4) X is JN.TC,

Let Y € K§ye and assume that
(6) if C is a component of bd(Y), then |C| > 1.

Let 7 € H(X,Y) be such that (UC(X))™ C UC(Y). Then 7~ is uniformly continu-
ous.
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(b) Modify clause (3) of (a) by requiring that f € UCc(X), and modify (4) by requiring
that X is JN.ETC. Let 7 € H(X,Y) be such that (UC.(X))™ C UC(Y). Then 71 is

uniformly continuous.

Proof. The proofs of (a) and (b) are identical. We prove (a). Recall that X and Y are
subsets of the Banach spaces F and F' respectively. By Theorem 5.5, 7 is uniformly
continuous.

Cramm 1. Let ¥ C X be a completely discrete sequence such that T(") is a Cauchy
sequence. Then there is a sequence & C X such that lim,,_. §(z),) = 0, &' is completely
discrete, and lim,_,o, 7(Z') = lim,,_, o 7(Z).

Proof. 1If §(Z) = 0, then we take Z’ to be a subsequence of # such that lim,,_, . d(z,) = 0.
Suppose otherwise. Since X € KBNC, we may assume that for some d > 0, Z is d-spaced,
and since X is bounded, we may also assume that for every n € N*, d(z,,x¢) < d+d/8.
Without loss of generality, 2y = 0. For every n € NJr let t, = min({t > 1| tz,, € bd(X)}),

Yn = tnTpny, Ly = [Tn, yn] and v, (t) = 2, + t(yn — , t €10,1]. If m # n, then
m n n 3d
H L B | S H ‘ d- I |l =22
[zl [ H mH ||$n|| 4

Hence by Proposition 7.5(b), d(Ly,, L,) > 3d/8.

Define 7(t) = 6({vn(t) | n € NT}). Since {||lz, — yn|| | » € N} is bounded, 7 is
continuous. Also, (1) = 0. Let s = min(p~1(0)). We may assume that for every
n € NT, §(yn(s)) < 1/n. Tt follows that for every ¢ € (0,s), the family {v,([0,¢]) |
n € Nt} is spaced, and 6(|J{7.([0,¢]) | » € NT}) > 0. Also, since X is bounded,
{d(xp, ¥, (t)) | n € NT} is bounded. So for every ¢ < s there is hy € UC(X) such that for
every n € NT, hy(x9,) = Y2, (t) and hy(22,_1) = T2,_1. Let 2* = lim 7(Z). Let ¢ € (0, s).
Clearly, 7({y2n(t) | n € N*} U {z2,-1 | n € N*}) = (h;)7 (&), and since (h:)™ € UC(Y)
and 7(Z) is a Cauchy sequence, 7({V2n(t) | n € Nt} U {z2,-1 | n € NT}) is a Cauchy
sequence. Denote this sequence by 4. Then 7({z2,_1 | n € NT}) is a subsequence of i@
converging to z*. So @ converges to z*, and hence 7({72,(t) | n € NT}) converges to z*.
Let 5 C (0,s) be a sequence converging to s. For every n € NT let k, > n be such that
d(T(vak, (n)), 2%) < 1/n. Let z!, = ya, (sn). So lim7(Z’) = 2*, lim, o §(x},) = 0 and
7’ is spaced. Claim 1 is thus proved.

Cramm 2. Let T = (y,y*,{Ln | n € N}, Z) be a completely discrete track system in X,
and suppose that lim () = w*. Then 7 (y*) = w*.

Proof. Suppose by contradiction that 7¢!(y*) # w*. Let 7, be a legal parametrization
of L, and 8 € MC be such that for every ¢1,t3 € [0,1] and n € N, v,,(t1) — yn(t2) <
B(ltr —t2]).

We now follow the proof of Lemma 5.25. For every infinite ¢ C N and ¢ € [0, 1] let
Alo,t] = {v(t) | n € o} and s, = inf({t € [0,1] | 7(A[o,t]) converges to w*}). Since
7 (y*) # w*, there is U € Nbr(y*) such that d(w*,7(U N X)) > 0. Thus there is ty > 0
such that for every ¢ < to, d(w*, 7(A[N,t])) > 0. So for every infinite 0 C N, s, > 0. As
in Lemma 5.25, there is an infinite ¢ C N such that for every infinite  C o, s, = s5,.
Write s = s,
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*

Suppose by contradiction that d(A[o, s, y*) =0. We may assume that lim A[o, s] =y*.
Let 7 > 0. Then there is m such that A[o=™, s] C B(y*,7/2). By the definition of s, there
is t > s such that 8(t — s) < r/2 and lim7(A[o,t]) = w*. Then A[oc=™,t] C B(y*,r).
Hence for every 7, & > 0 there are m € N and t € [s, s +¢) such that A[c=™,t] C B(y*,r)
and lim7(A[o,t]) = w*. It follows that there is a sequence @ C X such that lim 4 = y*
and lim 7(#) = w*, and hence 7¢!(y*) = w*. A contradiction, so d(A[o, s],y*) > 0.

From the fact that {L,, — B(y*,r) | n € N} is completely discrete for every r > 0, it
follows that A[o, s] is completely discrete. So we may assume that for some d > 0, A[o, s]
is d-spaced. Let a and 7 be as ensured by the fact that T is a track system. It follows
from the equicontinuity of {7, }nen that there is § > 0 such that for every n € N and
t1,t9 € [O, 1] o<ty —t1 < 5, then

diam (v, ([t1, t2])) + n(diam(yn ([t1, t2]))) < d/3.

Choose t; € [s,s+3/2)N[0, 1] such that lim 7(A[o, ¢1]) = w* and t3 € (s—§/2,5) N[0, 1].
For every n € o let 2, = Y,(t1), un = Ynu(t2) and J, = [2n,u,]l", that is, J, =
Yn([t2,t1]). Since |t1 — t2]| < J, it follows that

diam(B(J,,n(diam(J,)))) < diam(J,) + n(diam(J,)) < d/3.

We may assume that 0 = N. Since T is a track system, there is h,, € H(X) such that
hn(zyn) = Uy, supp(hy,) € B(J,,n(diam(J,))) and h,, is a-bicontinuous. We check that
{supp(h,) | n € N} is d/3-spaced. Let m # n. Then v,,(s),¥(s) € Alo,s] and so
lvm (8) = vn(s)]] > d. Since v, (s) € Jy,, and the same holds for n, it follows that

d(B(J, n(diam(J,))), B(Jn, n(diam(J,)))) > d — 2d/3 = d/3.

So {supp(hy) | n € N} is d/3-spaced.

By Proposition 5.17(a), h := open ho, € UC(X). It follows that A7 € UC(Y"). Let
Wy, = Ty, if n is odd, and w,, = u, if n is even. Hence h” (7(Z)) = 7(w). By the choice of
t1, 7(Z) converges to w*. By the choice of o and ty, 7({ug, | n € N}) does not converge
to w*. So 7(w) is not a Cauchy sequence. This contradicts the fact that h™ € UC(Y).
We have thus proved Claim 2.

Cram 3. bd(Y) C Rng(r).

Proof. Suppose by contradiction that z* € bd(Y) — Rng(7!). Let zZ C Y converge
to 2*. So ¥ := 7 1(2) is completely discrete. By Claim 1, we may assume that
lim;, o 6(zy,) = 0. Let ¢ be a subsequence of & which has a track system. By Proposition
7.5(e), ¥ has a completely discrete track system (¥,y*,{L, | n € N},%). By Claim 2,
7°(y*) = 2z*. A contradiction, so Claim 3 is proved.

Cra 4. If C € Cmp(bd(X)), then 7(C) is closed in F.

Proof. Let C € Cmp(bd(X)) and v €cl(7°(C)). Let @ C C be such that lim,, . 7(z,)
= v. If # has a Cauchy subsequence 7, then lim ¢/ € C and 7¢!(lim %) = v. Suppose that
7' does not have Cauchy subsequences, that is, &’ is completely discrete. There is ¥ C X
such that lim, . d(z,,2),) = 0 and lim,, o 7(z,) = v. So & is completely discrete.
Since X is JN.TC, there are a subsequence ¢ of Z and a track system T = (¥, z*, [_:, Z).

n
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By Proposition 7.5(e), we may assume that T is a spaced track system, and by 7.5(f),
z* € C. By Claim 2, 79(z*) = v, so 7¢(C) is closed.

CrLaM 5. 7 45 1-1.

Proof. By (3), for every component C' € Cmp(bd(X)), either 7¢![C is 1-1 or 7¢/(C) is a
singleton; and for any distinct C, D € Cmp(bd(X)), either 7¢/(C') = 7°(D) and 7°(C) is
a singleton, or 7°(C) N 7¢(D) = (). The argument is as in the proof of Theorem 7.1.
Suppose by contradiction that 7¢! is not 1-1. Then there is C € Cmp(bd(X)) and
y € bd(Y) such that 7¢/(Cy) = {y}. Let D be the component of y in bd(Y). Then
|D| > 1. By Claims 3 and 4, {7°!(C) | C € Cmp(bd(X)) and 7¢}(C) C D} is a partition
of D into finitely many and more than 1 closed sets. This contradicts the connectivity

of D.

CLamM 6. Let T = (&, y*,E,gﬂ be a track system in X. Then for every d > 0 there is
h € UC(X) such that h°(y*) # y* and supp(h) C B(y*,d).

Proof. Let o and 1 be as ensured by the fact that 7 is a track system. We may assume
that y* ¢ Rng(Z), and hence we may also assume that d < d(Z,y*). Let a > 0 be such
that 2a + n(a) < d and b be such that a(b) < a —b. Clearly, b < a. Let n be such
that ||y, — y*|| < b. Then ||z, — y,|| > d — b > a, and hence there is z € L,, such
that ||z — y,| = diam([z,y,]*") = a. Since L,, is an (o, n)-track, there is h € H(X)
such that h is a-bicontinuous, h(y,) = z and supp(h) C B([z,yn]*",n(a)). Clearly,
B([z,ya]",n(a)) € B(y*,b+a+n(a)) € B(y*,d). So supp(h) C B(y*,d). Suppose by
way of contradiction that h(y*) = y*. Then ||z —y*|| = ||h(yn) — h(y*)| < a(llyn —y*]| <
a(b). However, ||z — y*|| > |1z — ynll — llyn — y*|| > a — b. That is, a(b) > a — b,
a contradiction. So h(y*) # y*. So Claim 6 is proved.

CLAIM 7. There is no sequence T C X such that & is completely discrete, and 7(Z) is a
Cauchy sequence.

Proof. Suppose otherwise, and let & be a counter-example to the claim. By Claim 1, we
may assume that lim, ., 6(x,) = 0. Since X is JN.TC, there are a subsequence % of
#, y*, L and 7 such that T = (¥, y*, L, Z) is a track system. By Proposition 7.5(e), we
may assume that T is a spaced track system. Let w = lim7(Z). So w = lim7(%). By
Claim 2, (i) 7%(y*) = w. Since y* € bd(X) and i C X, it follows that y* ¢ Rng(),
and since ¢ is completely discrete, d(,y*) > 0. By Claim 6, there is h € UC(X) such
that (i) h(y*) # y* and supp(h) C B(y*,d(7,y*)). So h|§ = Id. By Proposition 7.5(g),
T := (h(§), h(y*), h(L), h(Z)) is a track system. Since T is spaced and h € UC(X) it
follows that 7" is also spaced. Recall that h(y) = ¥ and so lim h(y) = w. So by Claim 2
applied to 77, (iii) 7°'(h!(y*)) = w. Facts (i)-(iii) contradict the fact that 7¢' is 1-1.
This proves Claim 7.

Suppose by contradiction that 7! is not uniformly continuous. Then there are se-
quences Z, ¥ € X and d > 0 such that for every n € N, d(z,,,y,) > d and lim,,_, d(7(z),

T(yn)) = 0. We may assume that each of the sequences &, 7, 7(Z) and 7(¥) is either spaced
or is a Cauchy sequence.

CLAIM 8. The sequences @, §, 7(Z) and 7(¥) are spaced.
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1

Proof. Suppose by contradiction that Z is a Cauchy sequence. Since 7¢ is uniformly

continuous and Dom(7!) = cl(X), it follows that 7(Z) is a Cauchy sequence. Hence 7(%)

I is not 1-1, contradicting

is also a Cauchy sequence. If i is a Cauchy sequence, then 7
Claim 5; and if ¢/ is completely discrete, then Claim 7 is contradicted. So Z is not a
Cauchy sequence. The same is true for §. By Claim 7, 7(Z) and 7(%) are completely

discrete. Claim 8 is proved.

We call a pair of sequences (#,¥) in X a counter-ezample if @ and ¥ are spaced,
inf ({d(un,vyn) | n € N}) > 0 and lim,, o d(7(un), 7(v,)) = 0.

CLAIM 9. There is a counter-example (U, 0) such that 6(@) = 0.

Proof. By Claim 8, there is a counter-example (Z, 7). If §(&) = 0 or §(y) = 0, then
there is nothing to prove. Suppose otherwise. By Proposition 7.6, we may assume that
d(Z,4) > 0. Let d > 0 be such that Z is d-spaced and d(Z, ¢) > d. By possibly interchang-
ing & and ¢, we may also assume that there are e; > e5 > 0 such that lim,, . ||z,] = e1
and lim, o ||yn|| = e2. Let 2/, = (e1/||xn||)Zn. Since §(F) > 0, there is a > 0 such that
for every n € N, B(z!,,a) C X. We may further assume that a < d/8, and that for every
n €N, d(z,,z)) <a/2. So (U{B(z),a) | n € N})N{y, | n € N} =0, and for any distinct
m,n € N, d(B(z),,a), B(z},,a)) > d/2. Let 2, = (1+ a/2)z},. It follows that there is
h € LIP(X) such that for every n € N, h(z,) =z}, and supp(h) C |J{B(z],,a) | n € N}.
Since h(Z) = &’ and h(y) = ¥, it follows that (&, ) is a counter-example. So we may
assume that e; > e, and that ||x,| = e; for every n € N. We still assume that & is
d-spaced and that d(Z,¥) > d.

We now proceed as in the proof of Claim 1. For n € N* let ¢, = min({¢t > 1 | tz,, €
bd(X)}), zn = th®n, Ln = [T, 2n] and y,(t) = 2, + t(zn, — zp), t € [0,1]. By Propo-
sition 7.5(b), for any distinct m,n € N, d(L,, L,,) > d/2, and clearly, d(L.,,7) > e1 — ea.

Let s = min({¢ | 6({7.(t) | n € NT}) = 0}). We may assume that for every n € NT,
5(vn(s)) < 1/n. It follows that for every ¢t € (0,s), the family {v,([0,t]) | n € NT}
is spaced, d(|J{7.([0,?]) | n € NT},%) > 0 and 6(IU{vn([0,?]) | n € NT}) > 0. Also,
since X is bounded, {d(x,,v,(t)) | n € NT} is bounded. So for every ¢ < s there
is hy € UC(X) such that for every n € N, hy(x,) = 7,(t) and hi(y,) = yn. Since
h € UC(Y), limy oo d(7(z),7(yn)) = 0 and Al (7(x,)) = 7(7n(t)), it follows that
litt o d(7 (30 (£)), 7(3)) = 0.

Let § C (0,s) be a sequence converging to s. For every n € NT let k,, > n be such
that d(7 (&, ($n)), 7(yn)) < 1/n. Define x, = 7(vk, (sn)). It follows that d(z',7) > 0,
limy, 0o d(7(x),), 7(yn)) = 0, lim,,_, oo 6(2],) = 0 and 7" is spaced. Claim 9 is thus proved.

Let T = (y, y*, E, Z) be a track system, and -, be a legal parametrization of L,. We
say that T is good if for every ¢ € [0,1), inf({d(yn, 1. ([0,t])) | n € N}) > 0.

Cram 10. If {y, y*,E, Z) is a track system, and 7, is a legal parametrization of L,,
then there is s € (0,1] and an infinite 0 C N such that ({vn(s) | n € o}, y*, {7 ([0, s]) |
n € o}, Z) is a good track system, and lim,ec, d(7(yn), 7(7n(s))) = 0.

Proof. For every infinite n C N let s, = inf({t € [0,1] | limyey d(yn, Vn(t)) = 0}).
As in previous analogous arguments, there is an infinite  C N such that for every in-
finite ( € 7, s¢ = s,. Let s = s, and  be a sequence converging to s such that
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for every i € N, limpc, d(yn,7n(ti)) = 0. Let 0 = {n; | ¢ € N} C n be an increas-
ing sequence such that lim; oo d(Yn,, Vn;(t;)) = 0. By the equicontinuity of {7, }nen,
lim; oo d(Yn, (8:),7n; () = 0. So limyeqs d(Yn,vn(s)) = 0. Hence since 7 is uniformly
continuous, lim,c, d(7(yn), 7(7n(s))) = 0. Now suppose by contradiction that there
is t < s such that liminf,c, d(Yn, 7([0,¢])) = 0. So there is an increasing sequence
¢(={ki|ieN}CoandtC |01t such that lim;_, d(yx,, V&, (t;)) = 0. We may as-
sume that  converges, say to s*. Hence s* <t < s, and limpec d(Yn, vn(s*)) = 0. So
s¢ < s < s, a contradiction. So for every t € [0, s), liminf, ¢, d(yn, 7, ([0,1])) > 0. Since
limy,eq d(Yn, ¥ (s)) =0, it follows that for every t € [0, s), liminf,c, d(7n (), 1 ([0,])) >0;
and the fact that L, is a simple arc implies that v,(s) € 7,([0,s)). So inf({d(y.(s),
¥n([0,2])) | n € }) > 0. Claim 10 is proved.

CrLamM 11. There are a counter-example (i,V) and a completely discrete track system
(@, u*, J,d") such that inf,en d(J,, vy,) > 0.

Proof. By Claim 9, there is a counter-example (Z,¢) such that §(¥) = 0. Let T =
(%, x*, E, Z') be a completely discrete track system for Z. By Claim 10, we may assume
that T is a good track system.

Suppose first that d := liminf, o d(Ly,yn) > 0. Let {¢; | i € N} be a subsequence
of N such that d(Ly,,ye,) > d/2. Hence @ = {xy, | i € N}, u* = 2*, ¥ = {y,, | i € N} and
J={L,, | i € N} are as required in the claim.

Assume next that liminf,, o, d(L,,y,)=0. So we may assume that lim, . d(Ly,, yn)
= 0. Let 7, be a legal parametrization of L,,. Hence there is ¢ C [0,1] such that
limy, 00 (Y (tn), yn) = 0. We may assume that ¢ is convergent. Let t = lim7. Tt easily
follows that lim,, o, d(75(t),yn) = 0. Clearly t < 1, for otherwise lim,,_,, d(zy,y,) = 0.
For every n € N let u,, = v, (t), v, = x,, and J,, = v,([0, t]).

Since 7 is uniformly continuous, we know that lim, . d(7(u,),7(yn)) = 0. Also,
limy— o0 d(7(vn), 7(yn)) = 0. Hence lim, oo d(7(un), 7(vn)) = 0. Since (Z,z*, L, ) is
a good track system, inf,end(2,, 7, ([0,t])) > 0. That is, inf,end(vn,J,) > 0. By
Proposition 7.5(c)(i) applied to T and ¢, (i, x*, j,f’) is a track system. So , ¥,

J are as required. Claim 11 is proved.

z* and

CLAM 12. There are a counter-example (i,V') and a completely discrete track system
(@, u*, J,d") such that d(J{J, | n € N}, ) > 0.

Proof. Let (4,7) and (@, u*, J, @'} be as ensured by the previous claim. We show that
there is an infinite ¢ C N such that (@[o, o) and (U], u*, Jlo, @ o) are as required
in the claim. We shall apply Proposition 7.6 with F), taken to be {v,} and K, taken
to be J,. By our assumptions, clauses (i) and (iii) of 7.6 hold. We show that (ii) holds.
Let ~, be a legal parametrization of J,,. Suppose that € > 0. Then by the equicontinuity
of {Vn}nen, there is § > 0 such that for every n € N and ¢1,t5 € [0,1]: if |[t; — 2] < 0,
then ||, (t1) — vn(t2)|| < €. Define ¢, = [1/6] + 1. Then £, fulfills the requirement of
clause (ii) of 7.6. The set o obtained from 7.6 is as required. This proves Claim 12.

Conclusion of the proof of the theorem. Let (Z,¢) and T = (Z, z*, L, Z') be as ensured by
Claim 12. By Claim 7, 7() is completely discrete. So we may assume that 7(¥) is spaced.
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Write d; = d({L» | n € N}, ). Let ~, be a legal parametrization of L,. For every infi-
nite 0 C Nlet s, = inf({t € [0,1] | limyeo d(T(yn(t)), 7(yn)) = 0}). Let o be such that for
every infinite ) C 0, s, = s,. Since 7(&') is convergent and 7(%) is spaced, s := s, > 0.
As in previous analogous arguments, {7, (s) | n € o} is completely discrete. So we may as-
sume that for some dy > 0, {7,(s) | n € o} is dz-spaced. Set d = min(d;, dz). Let o, n be
as ensured by the fact that T is a track system. Let a > 0 be such that a+n(a) < d/3. By
the equicontinuity of {7y, }nen, there is & > 0 such that for every n € N and ¢1,t2 € [0, 1]:
if [t; —to] < 0§, then ||, (t1) —vn(t2)|| < a. By the choice of s, there is t; € [s,s+0d/2) such
that lim,c, d(7(yn(t1)), 7(yn)) = 0. Also, choose t3 € (s—3/2, s). Then by the choice of &
and s, inf,e, d(T7(7n(t2)), 7(yn)) >0. For n € o write u,, = v, (t1), vn = Vu(t2) and J,, =
Yn([t2;t1]). Let n € 0. Then since L,, is an {a, n)-track, there is h,, € H(X) such that h,
is a-bicontinuous, h,(u,) = v, and supp(h,) C B(J,,n(diam(J,))). Since |t; — t2] < 0,
it follows that diam(J,,) < a. So for every x € supp(hy,), ||z — vn(s)|| < a +n(a) < da2/3.
This implies that d(supp(hm,),supp(hy,)) > d2/3 for any m # n. We conclude that h :=
Oneo, hn is well defined and belongs to UC(X). Clearly, supp(h) € B(U,,cy Ln,n(a)).
Since d(J,,eny Ln, %) = di1 and n(a) < di, we infer that supp(h) N Rng(i) = 0 and hence
hly = 1d. It follows that inf,c, d(h7(7(yn)), A" (7(uy))) = infpes d(7(yn), 7(vn))) > 0.
But limyeq d(7(yn), 7(un)) = 0. So ™ ¢ UC(Y). A contradiction. m

REMARK 7.8. (a) Clause (2) in Theorem 7.7 can be relaxed. In that case (5) has to be
strengthened. Replace (2) and (5) by (2.1) and (5.1) stated below.

(2.1) bd(X) has countably many components.
(56.1) If C is a component of bd(Y'), then C is not a singleton, and either C is arcwise
connected or C' is locally connected.

The proof of 7.7 is changed only in one place. In the proof of Claim 5, the component D
of bd(Y") is partitioned into countably many closed sets. By (5.1), this is impossible. So
a contradiction is reached.

There are spaces X which satisfy (1), (2.1), (3) and (4), but do not satisfy (2).
However, such examples are rare.

(b) Let K§ pyy = {Y | Y is an open subset of a Banach Lipschitz manifold} (see Def-
inition 6.29). In Theorem 7.7 replace the assumption that X € K](39NC by the assumption
that X € K§ py- Then parts (a) and (b) of 7.7 remain true, and the proof remains as
is.

(c) The sphere of a Banach space satisfies the assumptions of (b). See Remark 7.4. OJ

QUESTION 7.9. (a) Prove Theorem 7.7 for incomplete normed spaces.

(b) Let E be a Banach space. Let {B,, | n € N} be a spaced set of closed balls such
that for every n, B, C B¥(0,1). Let X = B¥(0,2) — ey Bn. Let Y € Ky and
7€ H(X,Y). Suppose that (UC(X))” C UC(Y). Is 7! uniformly continuous?

Note that X is not JN.TC, but it satisfies all the other assumptions of Theorem 7.7. OJ

PROPOSITION 7.10. Suppose that X is an open ball of a Banach space. Then X satisfies
clauses (1)—(4) of Theorem 7.7(b).

Proof. The proof is easy and is left to the reader. m
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7.2. The nonexistence of isomorphisms between groups of different types. In
the previous chapters we considered groups of various types. We now show that groups of
different types cannot be isomorphic unless they coincide. We shall deal with the groups
UC(X), LUC(X), BUC(X), BPD.UC(X) and EXT(X), and we add to this list the group
H(X). Let P, Q denote one of the above properties and P(X), Q(X) be the groups they
define. We describe the situation precisely. It may happen that for distinct properties P
and Q, there is ¢ such that ¢ : P(X) = Q(Y). But in that case either P(X) = Q(X) and
¢ is induced by a homeomorphism belonging to QT (X,Y), or P(Y) = Q(Y), and ¢ is
induced by a homeomorphism belonging to P*(X,Y’). The situation with regard to such
questions is not sorted out completely, and we only state results which follow directly
from the theorems that have been proved so far. Only some of the possible consequences
are stated and proved.

Let X € K¢ry and h € H(X). Recall that h is said to be internally extendible if
there is h € H(int(X)) such that i D h. Denote h by hi™. If P = UC,BUC, BPD.UC,
then P(X) C IXT(X). See Definition 2.24(b). For these P’s define X* = int(X) and
PBNO(X) = {hi™ | h € P(X)}. So (XP,PBNO(X)) € Kpo. See Definition 2.7(b).
For P = LUC,EXT, write X” = X and PBNO(X) = P(X). So (X7, PBNO(X))
€ Kno.

COROLLARY 7.11. Let X,Y € Kgpu-
(a) If ¢ : LUC(X) = P(Y), then P(Y) = LUC(Y), and there is 7 € LUCH(X,Y)

which induces .

(b) Let X,Y € KSpcp- Assume that X is BUD.AC and MV1,Y is UD.AC and that
¢ : UC(X) = BUC(Y). Then BUC(X) = UC(X), and there is 7 € BUCT(X,Y) which
induces ¢. (X may be unbounded, and X need not be UC-equivalent to Y.)

(c) Let X,Y € K&pcp- Suppose that X is BPD.AC, Y is UD.AC, and Y has
the discrete path property for large distances. Let ¢ : UC(X) = BPD.UC(Y). Then
BPD.UC(X) = UC(X), and there is 7 € BPD.UC*(X,Y) which induces .

(d) Let X,Y € K8y Suppose that X is BPD.AC and BR.LC.AC. Let ¢ : BUC(X)
BPD.UC(Y). Then BUC(X) = BPD.UC(X), and there is € BPD.UCH(X,Y) which
induces .

(e) Suppose that XY € K](39NCa and X orY is infinite-dimensional. Then there is no
¢ : UC(X) 2 EXT(Y). (Since EXT(X) = BUC(X) whenever X is finite-dimensional,
such cases are included in (c).)

(f) Suppose that X,Y € KSNC, and X orY is infinite-dimensional. Then there is no
p:UCX)=H(Y).

Proof. (a) Since PBNO(Y) = P(Y), there is ¢ : LUC(X) = PBENO(Y). We have
(YP PBNO(Y)) € Kpno- Also (X,LUC(X)) € Kgno- So by Theorem 2.8(b), there
is 7 € H(X,Y") which induces @. Since (X,LUC(X)) is transitive, (Y” , PENO(Y)) is
transitive. Since Y is an orbit of (Y7, PENO(Y)), Y =Y. Hence ¢ = ¢, and hence 7
induces ¢.

Note that if P = UC, LUC, BUC, BPD.UC, then UCq(Y) € P(Y). So (UCoo(Y))™

1

C (P(Y))™  C LUC(X). Also, UCyo(Y) = UC(Y,U), where U is the set of all open
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BPD subsets of Y. So by Theorem 4.8(b), 7=! € LUC*(Y, X), that is, 7 € LUCT(X,Y).
So P(Y) = (LUC(X))™ = LUC(Y).

(b) By Corollary 2.26 there is 7 € H(X,Y) which induces ¢. So () (UC(X))" =
BUC(Y). We show that 7€ BUC(X,Y). By (1), (UC(X))” CBUC(Y) and (BUC(Y))™
C BUC(X). Recall that X is BUD.AC and MV1. So by Corollary 5.19, 7 € BUC(X,Y).

We show that 7=1 € UC(Y,X). By (1), UCO(Y))F1 C UC(X). Recall that Y
is UD.AC. So by Theorem 5.5, 7~' € UC(Y, X), and hence 7 € BUC(X,Y). Then
UC(X) = (BUC(Y))” ' = BUC(X).

(c) Let ¢ : UC(X) = BPD.UC(Y). By Corollary 2.26, there is 7 € H(X,Y) which
induces ¢. So (*) (UC(X))™ = BPD.UC(Y). By (x), (UCpo(X))” = BPD.UC(Y). Recall
that X is BPD.AC. Hence by Theorem 5.31, 7 € BPD.UC(X,Y).

Obviously, UCy(Y) € BPD.UC(Y). So by (%), (UCy(Y))™ <C UC(X). Recall
that Y is UD.AC. Hence by Theorem 5.5, 7=! € UC(Y, X). Since Y has the discrete
path property for large distances, by Proposition 4.3(b), 7=! is uniformly continuous
for all distances. That is, for some o € MC, 7~! is a-continuous. In particular, 7~ is
boundedness preserving. So 7-! € BPD.UC(Y, X). In summary, 7! € BPD.UCi(Y, X).
It follows that UC(X) = (BPD.UC(Y))™ ' = BPD.UC(X).

(d) By Theorem 2.8(a), there is 7 € H(X,Y) which induces ¢. This means that
(BUC(X))™ = BPD.UC(Y). By Theorem 5.31, 7 € BPD.UC(X,Y), and by Theo-
rem 5.41(a), 7=! € BPD.UC(Y, X). Hence 7= € BPD.UC*(Y, X). It follows that
BUC(X) = (BPD.UC(Y))™ ' = BPD.UC(X).

(e) Suppose by contradiction that ¢ : UC(X) = EXT(Y). By Theorem 2.8(a), there
is 7 € H(X,Y) which induces ¢. So (UC(X))” = EXT(Y).

Suppose that Y is an open subset of the Banach space F. Let B be a ball in F such
that I (B) C Y. Clearly, for every h € UC,(B) there is h € EXT(Y)) which extends h.
Let n = 71|B and C = n(B). Since (EXT(Y))”  C UC(X), (UC.(B))" C UC(C). So
also (UCqy(B))" C UC(C). So by Theorem 5.5, 7 is UC. It follows that C' is bounded, and
hence bd(C) is not a singleton. Clearly, bd(C) = n°(bd(B)), and so bd(C) is connected.
So no component of bd(C') is a singleton. By Proposition 7.10, B satisfies clauses (1)—(4)
of Theorem 7.7(b). By Theorem 7.7(b) applied to B, C and 7, ! is UC. In summary,
n e UCE(B,0).

Choose h € H(B) — UC(B) which is strongly extendible. So there is h € EXT(Y)
extending h. So k7' € UC(X). Hence h" = h™ ' |C € UC(C). Since ! € UCH(C, B)
h=(hm)"" € UC(B). A contradiction.

(f) The proof is identical to that of (e). m

—1

3

The following trivial examples show that the conclusions of Corollary 7.11(b), (c¢) and
(f) cannot be strengthened.
EXAMPLE 7.12. (a) There are reqular open sets X,Y C R? such that

(1) UC(X) =BUC(X) 2 BUC(Y) 2 UC(Y).
(2) X is BUD.AC and MV1, andY is UD.AC.

(b) Let X = (0,1). Then UC(X) = BPD.UC(X).
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(c) Let E be a Banach space. Let Y = B¥(0,1). Let 7: E — Y be defined by 7(x) =
z/(1+ ||z||). Then 7 € BPD.UC*(E,Y), BUC(E) = BPD.UC(E) and BPD.UC(Y) 2
BUC(Y).
Proof. (a) For n € N we define an open set B,, by
B, = B(0,1) — | B((i/n,0),1/3n).
i<n
So B, is obtained by removing from B(0,1) n pairwise disjoint closed balls each of
which contained in B(0,1). For every n € N let X,, = (n,0) + nLH - B, and Y, =
(n,0) + § - Bn. Let X = (J,cnXn and Y = (J, o Ya. Note that for every n # m,
A(Xn, Xm),dY,,Y) > 1/2 and X,, 2 Y, % Y,,. Note that lim, . diam(X,) = 0
and for every n, diam(Y,) = 1/2. It is easy to check that X and Y have the required
properties.
The proofs of (b) and (c) are trivial. m

QUESTION 7.13. For n > 1, construct an open subset X C R™ such that UC(X) =
BPD.UC(X). Note that if X is such an example, then every connected component of X
is an example. Note that every example which is a connected set is bounded. [



8. The group of locally /'-continuous homeomorphisms of the
closure of an open set

8.1. General description. Lipschitz equivalence between open subsets of R™ is relevant
in the theory of function spaces. Suppose that U,V are open subsets of R™. The fact
that U,V are homeomorphic by a bilipschitz homeomorphism or by a quasiconformal
homeomorphism is equivalent to the fact that certain Sobolev spaces of functions from U
to R and from V to R are isomorphic as lattice ordered vector spaces. These results
appear in [GV1], [GV2] and [GRo]. We consider the analogous question for the setting
in which the Sobolev function spaces are replaced by homeomorphism groups.

The simplest question of this kind is as follows. Let X C R™ and Y € R™ be open
sets. Suppose that ¢ : LIP(cl(X)) = LIP(cl(Y)). Prove that there is 7 € LIP¥(X,Y)
which induces .

We shall prove the above statement for bounded open subsets of R™ which have a
well-behaved boundary. In fact, we shall deal with a different group of homeomorphisms,
namely, the group LIP*“(cl(X)) of locally bilipschitz homeomorphisms of cI(X). But for
bounded subsets of R™ this group coincides with LIP(cl(X)).

The group of bilipschitz homeomorphisms is only a special case. It is generalized
to the setting of I'-bicontinuous homeomorphisms, where I' is any principal modulus of
continuity. (See Property M6 in Definition 1.9.)

The open sets for which we can prove such results at this point, have a very well-
behaved boundary. They are called locally I'-LIN-bordered sets. See Definition 8.1(c).
Essentially these are the open subsets of a normed space whose closure is a manifold
with boundary. For such sets we define the group of completely locally I'-bicontinuous
homeomorphisms. This group is denoted by HIQMP'LC (X), and is defined in Definition 8.2.
We give here an equivalent definition. Let X be an open subset of a metric space £ and
I' be a modulus of continuity. Define

HEMPLC (XY = {g € H(cI(X)) | g is locally I'-bicontinuous and g(X) = X}.

Suppose that I'; A are moduli of continuity and I" is principal, E, F' are normed spaces,
X C E, Y C F and X,Y are locally I'-LIN-bordered sets. We shall prove that
if o @ HSMPLO(X) = gEMPLC(Y) then I' = A and there is 7 : cl(X) = cl(Y)
such that 7(X) = Y, 7 is locally I'-bicontinuous and ¢(g) = Togor ! for every g €
HEMPLC (X)),

The above statement is also true when X and Y are open subsets of a normed Lipschitz
manifold; see Theorem 8.4(b). The argument for manifolds is essentially identical, so
proofs will be given only for the class of open subsets of normed spaces.

[164]
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8.2. Statement of the main theorems and the plan of the proof. We shall now
define the class of open sets with a well-behaved boundary.

DEFINITION 8.1. (a) Let E be a normed space, A C E and 7 > 0. The set BCD” (A4, r) :=
BE(0,r)— Ais called the boundary chart domain based on E and A with radius r. We say
that A C F is a closed half space of E if there is ¢ € E* such that A = {z € E | p(z) > 0}.
Suppose that dim(F) > 1, and A is either a closed subspace of F different from {0} or a
closed half space of E. Then BCD? (A, r) is called a linear boundary chart domain.

(b) Let (Y, @,d) be a normed manifold, X C Y be open, z € bd(X) and o € MBC.
We say that X is a-linearly-bordered at x (c-LIN-bordered) if there are a linear boundary
chart domain BCD¥ (A, r) and a function 1 : B¥(0,r) — Y such that:

(i) ¥ : B(0,7) = Rng(v),
(ii) v takes open subsets of E to open subsets of Y and closed subsets of E to
closed subsets of Y,
(iii) ¥(BCD®(A, 7)) = Rng(¢) N X,
(iv) ¥|BCD¥ (A, r) is a-bicontinuous,
(v) $(0) ==
(1, A, r) is called a boundary chart element for .
(c) Let I' € MC. We say that X is locally I'-LIN-bordered if for every x € bd(X)
there is a € I' such that X is a-LIN-bordered at x. O

The open sets that we had in mind when defining LIN-borderedness are described
below. Take an open subset U of R™ whose boundary is a smooth submanifold. Let
Ky, ..., K, be pairwise disjoint subsets of U, and assume that for every i, K; is a compact
smooth submanifold of R™ which is not a singleton. Then U — |J;_, K; is I"“'P-LIN-
bordered.

We recall the definition of the group H&MP-LC(X).

DEFINITION 8.2. Suppose that E, F' are metric spaces, X C Fand Y C F, I' C MC.

Let f : X — Y. Then f is completely locally I'-continuous if f € EXTE’F(X7 Y),
and for every z € cl¥(X) there are o € I" and T € Nbr¥(z) such that f[(7 N X) is
a-continuous. Complete local I'-bicontinuity is defined analogously.

HIQI\/IP‘LC(X7 Y; E, F') denotes the set of completely locally I'-continuous homeomor-
phisms between X and Y. We use the notation HEMP-LC(X V) as an abbreviation of
HEMPLC(X Vi E F). The notations (HEMPLC)E(X V) and HEMPLC(X) are derived
in the usual way. [

REMARK 8.3. (a) Note that in the above definition, if F and F are complete metric
spaces, then the requirement that f € EXT(X,Y) is not needed.

(b) In the above definition assume that E, F are finite-dimensional normed spaces,
and X,Y are bounded. Let g € H(X,Y). Then g € (HEMPLO)E(X V) iff thereis o € I’
such that ¢g¢! is a-bicontinuous.

(c) The motivation for dealing with groups of the type HSMP-LC(X) is the finite-
dimensional special case described in (b). However, the proof of Theorem 8.4 below
covers other types of groups. The following is an example. Let F be a normed space,
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and E be its completion. Let X C E be open. Write
bd(X) = cIP(X) — Imt(X).

See Definition 2.24(a). Let cl(X) = X Ubd(X). Let HEMP-LC(X) = FEMPLO( X c](X)).
The proof of Theorem 8.4 carries over to the group ﬁ%MP‘LC(X) except for a slight
change in the construction of homeomorphisms in Chapter 11. [

The next theorem is our main final goal. Tt is proved in 12.20(a).

THEOREM 8.4. (a) Let I' be a principal modulus of continuity and A be a modulus of
continuity. Let E,F be normed spaces, X C E be a locally I'-LIN-bordered open set,
and Y C F be a locally A-LIN-bordered open set. Suppose that o : HSZMPLC(X) =
HSMPLC(Y). Then I' = A, and there is 7 € (HEMPLOYE (X Y) such that ¢(g) = g" for
every g € HEMPLO(X).

(b) In (a) assume that E and F are normed Lipschitz manifolds. Then the claim of
(a) is true.

Part (a) is a special case of (b). But we shall prove only (a), since the setting of (b)
is more complicated and the proofs are essentially identical.

In the special case of bounded finite-dimensional spaces, Theorem 8.4 has a more
natural formulation, which we state in the next corollary.

COROLLARY 8.5. Let I be a principal modulus of continuity, A be a modulus of continuity
and (X,d) and (Y, e) be compact metric Euclidean manifolds with boundary. Assume that
(X,d) has an atlas consisting of I'-bicontinuous charts, (Y,e) has an atlas consisting of
A-bicontinuous charts and ¢ : Hp(X) 2 HA(Y). Then I' = A and there is 7 : X 2Y
such that 7 is I'-bicontinuous and ¢(g) = g" for every g € Hp(X).

Proof. The corollary follows from Theorem 8.4(b) and Remark 8.3(b). m

Plan of the proof of Theorem 8.4(a). The proof of Theorem 8.4(a) has four main steps:

Step 1: There is 7 € H(X,Y) such that ¢(g) = g7 for every g € HSMP-LC(X).
Step 2: I' = A, and 7 is locally I'-bicontinuous.

Step 3: 7 € EXT*(X,Y).

Step 4: 7 is completely locally I'-bicontinuous.

The first two steps have already been accomplished. Step 1 follows from Theorem 2.8
and Step 2 from Theorem 3.27. The exact statement of Step 3 is given in Theorem 8.8.
The proof of this theorem takes all of Chapters 811, and the conclusion of the proof
appears at the end of Chapter 11. Chapter 12 is devoted to the proof of Step 4.

Theorem 8.8 has two variants. Part (a) is indeed the main goal. However, the strength
of the argument is partially lost when dealing only with groups of the type HSMP-LC(X).
Part (b) is stated in order to later reveal the full strength of the argument. See further
explanation after the statement of Theorem 8.8.

DEFINITION 8.6. (a) Suppose that X C Eis open. A subset H C EXTE(X) is E/-discrete
if {supp(h) | h € H} is completely discrete with respect to E. (See Definition 6.1(a).)
Note that if H is E-discrete, then o{h | h € H} € EXT¥(X).
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(b) A subgroup G < EXT(X) is closed under E-discrete composition if o{h | h € H}
€ G for every E-discrete set H C G.

(c) Let E be a metric space, X C E be open, and G < EXT(X). We say that G is of
boundary type I if for every x € bd(X):

(i) there is U € Nbr¥(z) such that G[U N X| D HEMPLC(X)|[U N X],
(ii) for every g € G, there is V € Nbr” (z) such that g[(V N X) is I'-bicontinuous.

A subgroup G < EXT(X) is I'-appropriate if G is closed under E-discrete composition,
and G is of boundary type I'.

(d) Let HEPRLC(X) = {g € EXT(X) | for every x € bd(X), g is I'-bicontinuous
at x}. Let A be amodulus of continuity. Define G (X)=H{“(X)NHPPREC(X). O

ExAaMpLE 8.7. HEMP-LC(X) and HEPRLC(X) are I'-appropriate, and if I' C A, then
HS%&P'LC(X) is I'-appropriate. (J

THEOREM 8.8. Let I', A be countably generated moduli of continuity, E and F' be normed
spaces and X C E, Y C F be open. Suppose that X is locally I'-LIN-bordered, and Y is
locally A-LIN-bordered and let 7 € H(X,Y).

(a) If (HSMPLC(X))T = HGMPLC(Y) then 7 € EXTE(X,Y).
(b) Suppose that G < EXT(X), H < EXT(Y) are respectively I'- and A-appropriate
and G™ = H. Then 7 € EXT(X,Y).

The proof of Theorem 8.8 appears at the end of Chapter 11.

Ezplanation. Suppose that (HEMPLCO(X))T = HGMPLC(Y). Then I' = A. This is
easily concluded in the following way. Let U C X be an open set such cl(U) C X and
c(r(U)) C Y. Since cl(U) C X, HSMPLC(X) U] = HEC(X)|U]. Since cl(r(U)) C Y,
HSMP'LC(Y)M = HBC(Y)M. So (HEC(X)|U|)™ = H5C(Y |_] It now follows
easily from Theorem 3.27 or from Theorem 3.42(b) that I = A.

When dealing with HIE’DR'LC(X), the above argument is no longer valid. Instead one
has to infer that I' = A from the behavior of 7 at bd(X). This is more difficult, and we
have a proof only in special cases. Part (b) of 8.8 prepares the ground for this argument.

As a consequence of Step 2, at the time that we reach Step 4, we already know that
I' = A. So the statement of Step 4 is as follows.

THEOREM 8.9. Let I' be a principal modulus of continuity, X C E and Y C F be open
subsets of the normed spaces E and F and T € EXTi(X, Y). Suppose that X and Y are
I'-LIN-bordered and (HEMP-LC(X))™ = HAMPLO(Y), Then 7 € (HEMPLO)£(X,Y).

Chapter 12 is devoted to the proof of Theorem 8.9. Actually, the main result of
Chapter 12 is Theorem 12.19, and 8.9 is just a corollary of that theorem. At the end of
Chapter 12 we prove Theorem 8.4(a). At that point it is only a matter of combining the
intermediate results from Chapters 11 and 12. This is done in Theorem 12.20, and 8.4(a)
is the first part of that theorem.

Certain types of boundary points have to be treated differently than others. These
types are defined below.
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DEFINITION 8.10. If in part (b) of Definition 8.1, A is a closed subspace of E and
dim(A) = 1, or dim(E) = 2 and A is a half space of E, then we say that bd(X) is
1-dimensional at x.

If in part (b) of Definition 8.1, A is a closed subspace of E and co-dim(A) =1, or A
is a half space of E, then we say that bd(X) has co-dimension 1 at .

If in part (b) of 8.1, A is a closed subspace of E with co-dimension 1, then we
say that X is two-sided at x. Hence Rng(v)) N X has two connected components. Let
u,v € Rng(y) N X. We say that u,v € X are on the same side of bd(X) with respect
to (¢, A,r) if u,v are in the same connected component of Rng(¢) N X. We say that
u,v € X are on different sides of bd(X) with respect to (1, A,r) if u,v are in different
connected components of Rng(y) N X.

If in part (b) of 8.1, (i) dim(E) > 2, and (ii) A is a closed subspace of E of dimension
> 1 or A is a closed half space of F, then we say that X is «-simply-linearly-bordered
(a-SLIN-bordered) at z. O

Let z € bd(X). Note that if bd(X) is 1-dimensional at z, and (¢, A, r) is any boundary
chart element for z, then either (i) A is a 1-dimensional subspace, or (ii) dim(F) = 2 and
A is a closed half space. Similarly, if X is two-sided at z, and (), A, r) is any boundary
chart element for z, then A is a closed subspace with co-dimension 1.

QUESTION 8.11. A subset A C F is called a closed half subspace of E if there is a closed
subspace F' of E such that F' # {0} and A is a half space of F. Let BCD¥(A,r) be a
boundary chart domain. We call BCDE(A,T) an almost linear boundary chart domain
if either it is a linear boundary chart domain, or A is a closed half subspace of E. Let
I' C MC. Define the notion “X is locally I'-almost-linearly-bordered” (locally I'-ALIN-
bordered) in analogy with Definition 8.1(c).

Are Theorems 8.8 and 8.9 true for locally ALIN-bordered sets?

In order to prove the analogues of 8.8 and 8.9 for locally ALIN-bordered sets, only
Lemma 9.13 needs to be generalized. All other ingredients in the proof remain essentially
the same. [J

Some ALIN-bordered sets are described below. Take an open subset U of R™ whose
boundary is a smooth submanifold. Let K, ..., K, be pairwise disjoint subsets of U,
and assume that for every i, K; is a compact manifold with a boundary which is not
a singleton, and K; is smoothly embedded in R™. Then U — ULI K; is I'"'P_ALIN-
bordered.



9. The Uniform Continuity Constant

9.1. Preliminary lemmas about the existence of certain constants. In preparing
the ground for the proof of Theorem 8.8, we need to characterize the pairs of convergent
sequences &, 7 in X for which there is an a-bicontinuous homeomorphism g € H(X) and
subsequences 7', ' of Z and ¥ such that g(Z’) = ¢'. Stated more precisely, let z € bd(X)
and lim ¥ = lim ¢ = 2, and assume that for every n € N,

(1) Jlen — 2] < alllgn — =1) and g — 2]l < a2, — I,
(2) d(2a,bd(X)) < a(d(ya, bA(X))) and d(y,, bd(X)) < ald(zy, bd(X))).

We shall prove that there are g € H(X) and subsequences & and ¢ of & and ¢ respec-
tively such that g(#') = ¢ and g is N - «ocaoa o a-bicontinuous. In fact, this is only an
approximation of what we really prove. The exact statement to be proved is the equiv-
alence between the conjunction of (1) and (2) above and the fact that # =V . The
relation =® is defined in 11.1(c), and in Proposition 11.3(a) we prove this equivalence.
The Uniform Continuity Constant Lemma 9.13 is the main fact needed in the proof
of the above. It says that there is K > 0 for which A = B, where A and B are the

following statements.

(A) E is a normed vector space, F' is a closed subspace of E with dimension > 1,
a € MBC, 2,y € E—F, ||z|| < |ly|l < a(||lz|)) and o~ (d(x, F)) < d(y, F) < a(d(z, F)).

(B) There is an K - « o a-bicontinuous homeomorphism g such that: g(z) =y, g(F) =
F and supp(g) € B(0,2[|yl)) — B(0, ||=[|/2).

This chapter is devoted to the proof of this lemma. The geometric content of the
lemma is simple, but a detailed proof seems to require much work. When the claim of
the lemma is restricted to pre-Hilbert spaces and not to general normed spaces, the proof
is easier.

We shall also need a statement analogous to A = B for subspaces F' of E with
dim(F) = 1. In this case statements A and B need to be slightly modified. Chapter 10
deals with this situation.

Before turning to the proof of the Uniform Continuity Constant Lemma we quote
some well-known basic facts from functional analysis, and we also establish the existence
of various types of homeomorphisms which will be used in the proof of 9.13. These
preparations are carried out in 9.1-9.10. We start with some notation.

NoTaTiONS 9.1. (a) For K > 1 and a,b > 0 let a ~® b mean that a/K < b < Ka. If
Il I*, |l |I* are norms on a vector space E, then || ||* =~ | ||
for every u € E.

means that [jul|! =% |u?

[169]
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(b) The notation E = L®*#S means that L+S5 = E and LNS = {0}. If E = L8 S,
then (x)r,s, (x)s, denote the components of z in L and S respectively. In what follows
we sometimes abbreviate ()7 s by (z)r, and ()s.1 by (z)s. Suppose that E = L &8 S.
We define |[u|%® = ||(u)s|| +|/(u)L||. The notation E = L& S means that £ = L ®*8 S,
and that for some K > 1, || |*¥ ~% || ||. In such a case S is called a complement of L
in E.

(c) Let L be a linear subspace of E. Then co-dim® (L) denotes the co-dimension of L
in E. This is abbreviated by co-dim(L).

(d) Let F' and H be linear subspaces of a normed space E and M > 1. We define
H LM Fifd(h,F) > |h||/M for every h € H.

(e) Let E = F ®"¢ H. Then Proj, ;; denotes the function u — (u)pu, u € E.

(f) Let X be a metric space, z € X and 0 < r < s. The ring with center at 2 and
with radii r, s is defined as

B(z;r,s) ={y e X |r <d(z,y) < s}
We quote without proof some basic and well-known facts from functional analysis.

PROPOSITION 9.2. (a) For every n > 0 there is M = M?°°(n) > 1 such that for every
normed space E and an n-dimensional subspace L of E there is a complement S of L in
E such that M||z|| > |[(z)r.s]l + ||(z)s,L]| for every x € E. A subspace S satisfying the
above is called an almost orthogonal complement of L.

(b) For every n > 0 there is M = M™% (n) > 1 such that for every normed n-
dimensional space E there is a Hilbert norm || || on E such that ||z| < ||z]|® < M|z||
for every x € E. The norm || |2 is called a tight Hilbert norm on E. We denote M*'""(2)
by Mthn

(c) For every n > 0 there is M = M™P(n) > 1 such that for every normed space E
and an n-dimensional linear subspace L of E there are a Euclidean norm || |2 on L and
a complement S of L such that for every x € E,

()8l + [l (@)s,zll = fll.

Also, if m < n, then MMP(m) < MMP(n). A pair (|| |2, S) satisfying the above is called
a tight Hilbert complementation for L. We denote M (2) by M"P,
(d) Let E=F & H and M > 1. Then H LM F iff |Projy p|| < M.
e) Let E=F @ H and suppose that H AIM F. Then F LM+ H.
f) Let E = F @ H and suppose that H 1™ F. Then || |F"7 =2M+1 | |.
g) Let E = F & H and suppose that || ||F"H ~M || ||. Then H LM F.
h) Let T : E — E be a bounded linear projection with a closed range. Then
ker(T) LITI+1 Rng(T).

(i) Let x,y € E — {0} be such that ||z| < ||ly||. Let z = %y Then ||y — z|| < |ly — ||

(
(
(
(

and ||z — z[| <2y —«].

PROPOSITION 9.3. Let F be a closed subspace of a normed vector space E, x,y € E — F
ande > 0. Then there is a closed subspace H of E such that F C H, span(HU{z,y}) = E,

d(x, H) > =d(z, F) and d(y, H) > =d(y, F).



Reconstruction of manifolds from subgroups of homeomorphism groups 171

Proof. Let A =1+¢ and 2 € F be such that ||z — &|| < Ad(z, F). Write 2= =  — 2. Let
¢ be the linear functional on span(F U {z}) defined by ¢ (z%) = ||z~ || and ¥ (F) = {0}.
We check that ||| < A. Let z € span(F U {z}). If z € F, then [¢)(z)] = 0 < Az].
Suppose that z = u + )\:cﬁ where v € F' and A # 0. We may assume that A = 1. Then

L " L
[W(2)] = [la7]| < Ad(z, F) < Al[(u — &) + || = Allu+ 27| = A 2.
Let ¢ € E* extend ¢ and ||¢|| = |[¢]|. Let Hy = ker(p). So F C Hy. Since z = & + 2+
and & € Hy, d(x, Hy) = d(z*, Hy). Let u € Hy. Then

L L
L lp(x™ —w)| _ [z~ _ d(z, F)

— > = > .
| ull 2 A A T A

Hence d(x, Hy) = d(a™, Hy) > %55,

Similarly, there is a closed linear subspace Hy with co-dimension 1 such that d(y, Ha) >

d(lyT’f). Let H = Hi N Hy. Then H is as required. m

The next proposition contains some additional basic and well-known facts from func-
tional analysis. The proofs are again omitted.

PROPOSITION 9.4. (a) For everyn € N there is MP"(n) such that for every normed space
E and a closed linear subspace F' C E: if co-dimE(F) = n, then there is a projection
T:E — F such that |T|| < MP%(n).

(b) For every n € N there is M = M°"*(n) such that for every normed space E and a
closed linear subspace F C E: if Co-dimE(F) < n, then there is a closed linear subspace
H C E such that F® H = E and H 1™ F. One can take M°"(n) to be 2" — 1 + ¢ for
any € > 0. We denote M°"(2) by M°*.

(c) Let M (n) = (14 M*™™"(n))- M°*(n)+1. Let E be a normed space, F C E be a
closed subspace with co-dimension < n and H be such that F®&H = FE and H J_Mm(") F.
Let || || be a Hilbert norm on H such that || |2 M () Il ITH. Define a new norm on
B by [[ull™ = [[(u) |+ || Then | [N <00 | | We denote M (2) by 2.

DEFINITION 9.5. (a) Let H be a 2-dimensional Hilbert space and § € R. Then Rotg
denotes the rotation by an angle of § in H. Let £ = F' @& H be normed spaces. Suppose
that H is a 2-dimensional Hilbert space. For 6 € R let Rotg’H € H(E) be defined by
Roty " (u) = (u)r + Rot (w)), wueE.
(b) Let h = Radiz be a radial homeomorphism. (See Definition 3.17(b).) We say
that h is piecewise linearly radial if 7 is piecewise linear. [

Part (a) of the following proposition is a variant of Lemma 2.14(c).

PROPOSITION 9.6. (a) There is M€ > 1 such that for every normed space E, x,y € E
and r > 0, there is h € H(E) such that

(1) supp(h) € B([z,y],7),
(2) h(z) =y,
(3) his M=°8 - (||x — y||/r + 1)-bilipschitz.

(b) For every t > O there is M®*°(t) > 1 such that for every normed space E, a
rectifiable arc L C E with endpoints x,y and r > 0 there is h € H(E) such that
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(1) supp(h) € B(L, ),
(2) h(z) =y,
(3) h is M*(Ingth(L)/r)-bilipschitz.

(c) There is M™* > 1 such that the following holds. Let E = F & H be normed
spaces. Suppose that H is a 2-dimensional Hilbert space, and that for every u € E,
lull = [(w)rll + [(w)u||. Let S be a closed subset of E, n: [0,00) — R, and K,r > 0
be such that: (1) S C B(0,r); (i) for every u € S and § € R, Rot, " (u) € S; (iii) 7
is K-Lipschitz; (iv) n(s) = 0 for every s > r. Let g : E — E be defined by g(u) =
Rotj&ﬁu7s))(u). Then g € H(E) and g is (M™"Kr + 1)-bilipschitz.

(d) Suppose that F, H are normed spaces, E = F & H, and ||u + v|| = ||u]| + ||v|| for
everyu€ Fandve H. Leti €e F,z € Hya> 1,2 =32+2x and 2" = &+ ax. Then
there is g € H(E) such that

(1) g(a') = 2",

(2) glF =1d,

(3) for every uw € F we have supp(g) C B(u;s,t), where s = ||z’ — ul|/2 and
t=3ljz" —ul|/2.

(4) g is 2M*®a-bilipschitz.

Proof. (a) Set Z = z/||z|| and a = ||z — y||. We may place the origin in such a way that
x=(r/2)-Zand y = (r/2+a)-Z. We may assume that r < a. Write M = M?°°(1). Let
L = span({z}) and S be a complement of L such that M||u|| > ||(u)r 5|l + ||(v)s,z] for
every u € E. So for every u € S, ||u| < M - d(u, L). Write (u)r.g = @ and (u)s, = u".
For every u € F let A\, be such that « = A\,Z. So u = A\, % + ut

Let g(s,t) = gs(t), s > 0, t € R, be defined as follows. For every s > 0, gs(t) is a
piecewise linear function satisfying the following.

(1) The breakpoints of gs(t) are 0, /2 and a + r.

(2) If s € [0,7/2M], then g4 (r/2) = T/f/;fﬂf -(a +17/2), and if s > r/2M, then

gs(r/2) =r/2.

(3) If t <0Oort>a+r, then g4 (t) =t.

So go(r/2) = a+1r/2 and g; = 1d for every s > r/2M. Define

h(w) = u" + gagu.ry(hu) - 2.

Clearly, h(z) = y. Let u € E — B([z,y],r), and we prove that h(u) = u. If d(u,L) >
r/2M, then gq¢, 1) = Id. So h(u) = u" + A\yZ = u. Assume that d(u, L) < r/2M. If
Ay < 0, then for every s, gs(A,) = Ay and hence h(u) = u. Assume that A\, > 0. Since
d(u, L) < r/2M, it follows that ||u"|| < r/2. Hence

~ €
D= (a+7/2)] = Il — gl = llu—yll = ) > 7 —r/2 = /2.

That is, either (i) A\, — (a +7/2) > r/2 or (ii) A\, — (a + 7/2) < —r/2. Suppose by
contradiction that (ii) happens. Then 0 < A, < a. If A\, > 7/2, then & = A\, T € [z,y],
and hence d(u, [z,y]) < |lu—a| = |lu"|| < r/2. So u € B([z,y],r), a contradiction. If
Ay < 7/2, then d(u, [x,y]) < |lz—u| < ||z—a||+|u"| < r/247/2 =r. Sou e B([z,y],r).
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A contradiction. Hence A\, — (a +7/2) > r/2. So A\, > a + r, and hence for every s
gs(Ay) = Ay. So h(u) = u. We have shown that h[(E — B([z,y],r)) = Id.

For every s > 0 let f, = g; %, and let f(s,t) = fs(t). Note that for every u € E, ut =
(h(u))", and hence d(h(u), L) = d(u, L). So if w = h(u), then u = w™ + Ja(w,)(Aw) - Z.
Hence h~! exists and is continuous, and so h € H(E).

We show that h and h~! are Lipschitz. Note that for every s, the three slopes of g,

—a:f/g/Q. Also, for every s1,s2 > 0 and ¢ € R,

are <

a
195, (1) — g5, (1)] < I |s1 — sal.

For f,, the maximal slope is again aj;z/ 2 and

) = JoaO) <

- |s1 — sa.
Now
h(u) = h(v) = u =07 + (Gagu,r)Ma) = Gagu,)(Mo))Z + (Gau,£)A\o) = Gago,0) (M)
Write w = u — v. So
1h(u) = h)]| < llu™ = 0™ || + |gagu,ry ) = Gagu,) o)l + 9agu,Ly M) = gago,) ()

a+r/2, . a
- ol + o (Al ) )

L
< lw |l +

1 ~
< lw™ [l + (2a/r + 1) - lof] + lu — o
< Mllu—vl[+ (2a/r + )M |lu — o] + [lu — vl < (3M + 1)(a/r + 1)[lu — o]

An identical computation shows that h~! is (3M + 1)(a/r + 1)-Lipschitz. So M =
3M +1.

(b) Let E be a normed space, L C FE be a rectifiable arc with endpoints z,y and
r > 0. Set £ = Ingth(L) and n = [¢/r] + 1. There are x; € L, i = 0,...,n, such that
xo =z, T, =y and for every i < n, ||x; — z;41]| < 7. For i < nlet L; = [z;,2;41]. Then
B(L;,r/2) C B(L,r). By (a), there is g; € H(FE) such that

(1) supp(g:) € B(Ls,7/2),

(2) gi(wi) = @iy,

(3) g; is M=°s . (”wl:/#l” + 1)-bilipschitz.
Since ||z; — z;11]| < r and by (3), ¢; is 3Me-bilipschitz. Let M®°(t) = (3M%°8)H+1,
Define ¢ = ggo -+ ogn—1. It is easily seen that g(z) = y, supp(g) C B(L,r) and g is
Mare(¢/r)-bilipschitz.

(¢) Suppose that some function f : E — FE has the property that for some a > 0,
IIf (w)—f(v)]| < M||lu—v]| for every u,v € E such that ||[u—v|| < a. Then f is M-Lipschitz.
For the function g we take a to be r. Let u,v € E be such that [[u—v| <r. Ifv & B(0, 3r),
then u & B(0,2r). So g(u) = u and g(v) = v. We may thus assume that ||v|| < 3r. Denote
(w) g, (w)F, (V) g, (V) F by w1, us, v1,ve respectively and 0(w) := n(d(w, S)). Then

9(v) = g(u) = (Rotig(y) (v1) = Roti(y (v1)) + (Rotgy) (v1) — Rotg(, (ur)) + (vz2 — u2).
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lg(v) = g(w)]| < [(Rotg(yy (v1) — Rotg(y, (v1))]l
+ [[(Rotg{y (v1) — Rotg(y) (u1)) + (v2 — u2)||
= [ (Rotg(y) (v1) — Rotgl, (v1)[| + [lv = ull.

We estimate the first summand in the last expression:

I(Rotg(y) (v1) — Rot(y (v1))]| < [8(v) = 8(w)] - or]| < 18(v) — O(w)] - [lv]]
= [n(d(v, 5)) = n(d(u, )| - [lv]} < K -|d(v, S) = d(u, S)| - [[]
<K -lo—ull - flof] < 3K7 - flv—u].
It follows that ||g(v) — g(u)|| < BKr +1) - ||v — ull.

Note that ¢~1(u) = Rot ’:(Id (u,5)) (). Since (iii) and (iv) of (c¢) hold for —n, we also
find that ¢! is (3Kr + 1)-Lipschitz. So M™* = 3.

(d) Let E,F,H,%,x,a be as in (d). It suffices to prove (d) for & = 0, since if g
satisfies the requirements of (d) for F, F,0, x,a, then g**# satisfies those requirements for
E,F,%,x,a. So 2’ =z and " = azx. Let L = [x,ax] and r = ||z|/2. So

mgth(L) | . (a= D]
r /2

It follows from (a) that there is g € H(E) such that supp(g) C B(L,r), g(x) = ax and g
is 2aM®°8-bilipschitz. A trivial computation shows that g fulfills (d)(2) and (d)(3). =

PROPOSITION 9.7. For every K > 1 there is Mb“d(K) > 1 such that the following holds.
Suppose that E is a normed space and F is a closed linear subspace of E. Letx € E — F
be such that d(x,F) > ||z||/K and y € F — {0}. Then there is g € H(E) and a,b > 0
such that

(1) g(x) = ax + by,
2) llg()ll = ll=lI,

(2)
(3) d(g(2), F) = llg(=)[I/ K,
(4) gIF =1d,
(5)

)

+1=2@a—1)+1<2a.

supp(g) € B(0; [|||/2,3]|z(|/2),
(6) g is MP4(K)-bilipschitz.

Proof. Let x,y be as in the proposition. We may assume that ||y|| = ||z|. Let L; =
[z,y]. We find D(K) such that d(L;,0) > D(K)|x|. Let F; = span({x,y}) and F; =
span({y}). So ||lz|| < Kd(z, F}). Set M = M*""(2), and let || | be a Hilbert norm on
E; such that ||ul| < ||lul|® < M|u| for every u € Ey, Hence ||z||®/M < Kd¥(z, E}).
Also, ||z||H, ||ly||® > ||z||/M. Let a be the angle between z and F;. Hence sin(a) =
d®(z, Ey)/||z|® > 1/MK. 1t follows that
d2(0,Ly)  sin(a/2)|z|®

sin(a) [
d L > — > .
(0,L1) > Wi M = oM (K H*2M2K

So D(K) = 1/2M?K

Since d(z, F)/||z|| > 1/K and d(y, F)/|ly|ll = 0 < 1/K, there is zy € [z,y] such that
d(z0, F)/||20] = 1/K. Obviously, [|zo|| < [lz]. Let z = ([|lz[|/llz0ll) - z0- So [|2]| = ||]|
and d(z, F)/|z|| = 1/K. Obviously, for some a,b > 0, z = ax + by. Let L = [z, z]. For
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some A > 1, z = Azy. This implies that for every u € L there are v € [z, 2] and p > 1
such that v = pv. It follows that d(L,0) > d([z, 2], 0), and since [z, z9] C L1, we have
A(L,0) > d(L1,0) > ] /2M°K.

Obviously, ||z — z|| < 2||z||. Let r = |jz||/4M?K. By Proposition 9.6(a), there is
h € H(E) such that h(z) = z, supp(h) C B(L,r) and h is M8 . (||l — z||/r + 1)-
bilipschitz. By the above,

lz — 2] 2|l
R FEIR

So h is 9M5°8 M2 K-bilipschitz.

Recall that d(z, F) = |z||/K, d(z,F) > |z||/K and for some u € F and ¢ > 0,
x = u + cz. This implies that d(L, F) = ||z||/K. Hence

+1=8M?K +1<9M?K.

Il ll=ll el

WBL).F) =" ~r="F " IeR

> 0.

So h|F = 1d.

From the fact that ||z|| = ||z|, it follows that L C B(0, |lz|). Therefore B(L,r) C
B(0,||z|| + 7). Hence supp(h) C B(0, (1 + 1/4AM?K)||z|). But 1+ 1/4M?K < 3/2, so
supp(h) C B(0, 3||z||). Clearly, h| B(0,d(L,0)—r) = Id. Hence h|B(0, ||z||/4M*K) = Id.

Let n € H([0,00)) be the piecewise linear function such that: (i) the breakpoints of
p are |l2]/AM2K and |jo]l; (i) nle]l/AM?K) = 2]l /2, and n(t) = ¢ for every t > ||
The slopes of the pieces of n are 2M?K, 4M?K/2(4M?K — 1) and 1. So n is 2M?K-
bilipschitz.

Let k be the radial homeomorphism based on 1. Then by Proposition 3.18, k is 6 M2 K-
bilipschitz. Also, k(B(0,||z||/4M?*K)) = B(0, ||z||/2), k(B(0,3|z|/2)) = B(0,3|z|/2),
kE(F)=F, k(z) =z and k(z) = 2.

Let g = hk. Then g(z) = 2, supp(g) C B(0;||z||/2,3||z||/2), gIF = 1d, and g has
bilipschitz constant (6M2K)? - 9M*8 M2 K. So MP*(K) = 324M**¢ MO K>, m

PROPOSITION 9.8. There is M“™P > 1 such that the following holds. Suppose that E =
FoH, dm(H) <2 and H LM F. Letz € E—F, = i+a%, & € F, |o*| < 4d(x, F)
and d(x, F) < &||z||. Then there is g € H(E) such that

(1) g is M™P-bilipschitz,

(2) 9(z) =2+ (2)n

(3) glF =1d,

(4) supp(g) € B(0; [|=[|/2, 3]l /2)-

Proof. Note that & + 2~ =z = () + (2)g. So (z)y — 2~ = & — (z)p € F. Hence
dz+A(z)g—2*), F ) (z, F) for every A € R. Consider the interval L = [z, 2+ (x)g].
Then L = {z 4+ A((z)g —2~) | A € [0,1]} and so d(L, F) = d(z, F). It follows that

Ingth(L) = ||(2)r —2~ || < [|@)u ]|+~ || < M**-d(w, F)+3d(x, F) = (M +3)d(x, F)

and hence Ingth(L)/d(z, F)+1 < M°*4+4/34+1 < M°*+3. We shall now find min, ¢z, ||ul|
and maxycy, ||ul|. Let u € L. Then for some A € [0,1], u = 4 A((x) g —2~). Recall that
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d((x)m, F) = |[(2)u || /M. So
lull = fl2]l = &~ = l|@) | = ll2] - %d(x,F) — M- d((x)m, F)

4 4
ol = gte. F) = M e, ) = ol = (34 + 3 ), )

AN
> ol - (3 + 3 ) B >

For the maximum of ||u|| we have

ort
Jul < ol + -+ W@l < e+ 222+ 2 ) < 1.

It follows that B(L,d(z, F)) C B(L,||z||/16) C B(0; ||=||/2, 3||z||/2). So by Proposition

9.6(a), there is g € H(E) such that supp(g) C B(L,d(z, F)), g(r) = & + (x)g and g

is M®°¢ . (M°™ + 3)-bilipschitz. It follows that g satisfies requirements (3)—(4) of the

proposition. So we may define M™P = M5e8( M 4 3). m

DEFINITION 9.9. (a) Let « € MBC and s,t € [0,00). Then s ~% ¢ means that ¢t < a(s)
and s < «(t).

(b) Let &« € MBC, n € N and g : [0,00) — [0,00) be continuous. We say that o is
(n, a)-continuous if there are 0 = ag < -+ < ap—1 < a, = oo such that

0i(t) = ot +ai—1), te€l0,a;—a;1),
is a-continuous for every 0 < ¢ < n. [J
The four parts of the next proposition are trivial. Their proofs are omitted.

ProOPOSITION 9.10. (a) Let « € MBC, n € N and ¢ : [0,00) — [0,00). If ¢ is (n,a)-
continuous, then g is n - a-continuous.

(b) Let o : [0,00) — [0,00) and a > 0. Define n(s,t) as follows. If s > a, then
n(s,t) = t; and if s € [0,al, then n(s,t) = (1 — s/a)o(t) + (s/a)t. Suppose that 5 € MC
and o is [B-continuous. Then ns(t) := n(s,t) is G-continuous for every s € [0,00). We
denote (s, t) by 1¢p.q)(s,1).

(c) Let 5 € MC, a >0 and 0 <m < ((a)/a. Then the function f(t) =mt, t € [0, a],
18 [B-continuous.

(d) If B € MC, M > 1, and 7 is the function defined by v(t) = B(Mt), then v < Mf.

9.2. The main construction

DEFINITION 9.11. (a) Let 0 < a < 1 and b,M > 1. We say that M is a Uniform
Continuity constant for {(a,b) (M is UC-constant for {(a,b)) if the following holds.
Suppose that E, F, «, z,y satisfy the following assumptions.

Al FE is a normed space, F' is a closed linear proper subspace of FE, dim(F) > 1,
aeMBCand z,yc E—F,

A2 |lo)] < Ilyll and Jl2]) ~* [yl

A3 d(z, F) =*d(y, F),

A4 if co-dim” (F) = 1, then z,y are on the same side of F.

Then there are g;, 9o € H(E) such that
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B1 g, g, are M a-bicontinuous,
B2 9o Ogl(x) =Y,
B3 9i(F) = F and g(F) = F,
B4 for every i = 1,2, supp(9;) € B(0;allz|, blly|).
(b) We define a relation R(u,v,g;a,a,b, F). Let F be a closed linear subspace of a

normed space E, u,v € E—F, g€ H(F),0<a<1,b>1and a € MBC. The notation
R(u,v, g;a,a,b, F) means that

R1 g(u) =,
R2 g is a-bicontinuous,
R3 g(F) =F,

R4 g[B(0; allul, bllv]|) = Id.
Let M > 1. Then R(u,v,g; M, a,b, ') means that R(u,v,g; M -Idp ), a,b, F') holds. [J
The trivial proof of part (b) in the next proposition is omitted.
ProposITION 9.12.

(a) (R(u,v,g;a,a,b, F) AN R(v,w, h; 3,¢,d, F)) = R(u,w,hog;Boa,ac,bd, F).
(b) R(u’ U’ g; M7 a) b7 F) :> R(U7u7 gil;M’ a/M7 Mb7 F)'

Proof. (a) It is obvious that hog is 3¢ a-bicontinuous, hog(u) = w and hog(F) = F.

If v = w, then callul]| < ¢|lul]| = ¢||v||. So h[B(0,callu||) = Id. If v # u, then v €
supp(g). This implies that |[v|| > al|u|| and hence c||v|| > callu|. So h[B(0, calul]) = Id.
Clearly, ca|lu|| < allu]|. So g1 B(0, cal|lu||) = Id. It follows that hog[B(0, acllu|) = Id.

If v = w, then bd|w|| = bd||v]| > b||v]|. So supp(g) C B(0,bd||w]||). If v # w, then
v € supp(g) C B(0,d||w||). This implies that ||v]] < d||w|| and hence b|jv|| < bd||w]|]. So
supp(g) € B(0,b||v||) € B(0,bd||w]||). It follows that supp(g) C B(0,bd||w||). From the fact
that bd > d it follows that supp(h) C B(0,bd||w||). So supp(heg) C B(0,bd||w]||). We have
shown that supp(he g C B(0;ac||u||,bd||w]|]). So R(u,w,hog;5°a,ac,bd,F) holds. m

LEMMA 9.13 (The Uniform Continuity Constant Lemma).

(a) There are 0 <a <1,b>1 and M > 1 such that M is a UC-constant for (a,b).
(b) For every 0 < a < 1, b > 1 there is M > 1 such that M is a UC-constant for
(a,b).

Proof. (a) The proof is long and has many steps. The survey below may help guide the
reader through the proof.

Plan of the proof. Let E, F, «, Xy,Y, satisfy conditions A1-A4 in the definition of a
UC-constant. We construct two bilipschitz homeomorphisms e and h. Set e(xp) = x and
y = h_l(yo). Next we construct N - a-bicontinuous homeomorphisms f, f and v € E
such that fi(x) = vand f5(v) = y. Here N is a fixed number independent of E, F', a, Xy
and , y¥y. So we have

e(x0)=x, A(xX)=v, f(v)=y, h(y) = y.

The homeomorphisms g; := fi o€ and g, := ho f; are the ones required in the definition
of a UC-constant. To explain what each homeomorphism does, we take the simpler
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situation in which FE is a pre-Hilbert space. Let F' be a closed linear subspace of E.
For any z € E, denote (2)ppr by Z and (2)pL g by z*. The homeomorphism e is a
composition of four actions. So € = €40 --- oey. Similarly, h is a composition of two
actions. We shall define homeomorphisms h; and h,, and h will be hfl o h;l.

The first action € is needed only if d(Xo, F') > ||Xo||/3. Otherwise, ¢, = Id. If the
former happens, then €;(Xp) = X1, where d(x1, F) = ||x1]|/3 and ||x1|| = ||Xo]|. A similar
action is performed by the homeomorphism h; on y;, and we denote h;i(yy) by y;. We
now have the points x; and y; with the properties ||xi]| = [|xoll, d(x1, F) < ||x1]|/3,
il = o]l and d(vs, F) < [lva/3.

Now, e, takes X; to Ay, + X, where A > 0 and |[A¥;| = ||X1|. The action of e,
can be roughly described as a rotation in the plane F; generated by X; and ¥, and the
identity on Fi-. Tt is at this stage that we need F to be of dimension > 2. Denote €3(x;)
by Xa.

The homeomorphism €3 takes X3 to a vector X3 of the form aXy +bX2£, where a,b > 0,
Ixs]| = [Ixz]l, d(x3, F) < ||x3]|/4, and A is a fixed number > 1 independent of E, F, «,
Xo and V. Similarly, hy takes y; to a vector y of the form cy; + dyf, where ¢,d > 0,
¥l = lly1]| and d(y, F)) < ||¥]|/A. Denote y by y,.

Note that the subspace K := span(xj,y~) is orthogonal to F. (This is not true
when E is a general normed space.) Set x¥ = (||x;|/|ly*]|)y~ and define X = X3 + xV.
Clearly, x* = xV. The homeomorphism e takes X3 to X. The action of €4 can be roughly
described as a rotation in the plane X3 + K and the identity on K. Define x; = x.

We have the following situation: X = X + X{ yv=y+ yé, X,y € F and for some
Ap >0, ¥ = Akxand y© = puxt. I |§]| > ||X]| define v = ¥+ x—, and if || < ||X]
define v = Ax. We shall define f; such that fi(x) = v and f; is N - a-bicontinuous for
some fixed N. If v = y+ x*, then f; has the form f,(z) = z + a(2) - X, and a(z) tends
to zero as d(z,[X,V]) tends to A. In the case that v = AX, f; is a piecewise linearly
radial homeomorphism and f; is N-bilipschitz. This of course implies that f; is NV - a-
bicontinuous.

Now we have V= y+ v- and y = ¥ + yé, where for some v > 0, yt = v, We
shall define f; which takes v to y. The homeomorphism f; will have the form f;3(z) =
z+a(z) - v*, and it will be N - a-bicontinuous.

Along the construction described above, but independently of the particular choice of
E, F, a, Xp, Yy, we shall define numbers

My, a1,b1; fori=1,...,4
Msi,as,ba; fori=1,2;
Ms;,a3,:,b3,; fori=1,2.
These numbers satisfy the following conditions.
Cl1 for every i = 1,...,4, R(X;_1,X;, €; My i, a1, b1, F);
C2 for every i = 1,2, R(Y;_1, i, hi; M2, a2,i,b24, F);
C3 R(x4,V, f1; M3 1 - a,a3,1,b31, F);
C4 R(V, ¥y, fo; M3 2 - ¢, a32,b3 9, F).
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We thus have the following conclusion. There are M, j;,a; ;, b; ; such that for every
E, F, a, Xy, Y, satisfying conditions A1-A4 in the definition of a UC-constant, there are
e €HE),x,i=1,...,4; h € HE), y;,1 =1,2; fi, f € H(F) and v such that C1-C4
hold.

We now find a, b, M such that M is a UC-constant for (a,b). Let E, F, «, Xg, ¥, fulfill
conditions A1-A4 in the definition of a UC-constant. Then there are ¢;’s, f;’s, h;, etc.
which satisfy C1-C4. Define e = e40 ---oe;, h=h; ohy', g, = ficeand g, = hof,.

Let M; = H?Zl My, Al = H?Zl a1; and B = H?Zl b1,;. Then by Proposi-
tion 912(3.), R(X07 X4, € Ml, Al, Bl, F) holds. By 912(b), R(yl,yo, h;l, M271, ag,l/MQ,l,
Mg,lbgyl, F) and R(yz,yl, h2_1; MQ’Q, (12,2//\/72,2, M2,2b272, F) hold. Let Ay = (GQ’Q/MQ’Q)
(ag)l/Mg)l), BQ == M2)2b272 M2,lb2,1 and Mg = M2’2M2’1. Then by PI‘OpOSitiOH 912(3,),
R(yg,y(),h; MQ,AQ,BQ,F) holds. Let M = M1M371, A = Alag,l and B = Blb371.
Note that if « € MC and M > 1, then a(Mt) < Ma. So by Proposition 9.12(a),

(1) R(Xo, vV, 91; M - a, A’, B', F) holds.
Let M" = M3 My, A” = a35A; and B” = b3 2Bs. Then by Proposition 9.12(a),
(2) R(V, Yy, go; M" -, A", B" | F) holds.

Let M = max(M', M"), a = A’A” and b = B'B"”. Then (1) and (2) imply that B1-B4
of Definition 9.11(a) hold. So M is a UC-constant for {(a,b).

C1 is the conjunction of four requirements. Denote them by C1.1,... C1.4. Similarly,
denote the two conjuncts of C2 by C2.1 and C2.2.

The construction

PART 1: The construction of e; and h;. Let E, F, a, Xy, Yo satisfy conditions A1-A4 in
the definition of a UC-constant. Write x = Xy and y = yo. If d(z, F) < ||z||/3, let
e; = Id. Otherwise let u € F — {0} and e; € H(E) be such that

(1) ei(z) € span({z, u}),
2) llev(@)ll = [l=,

) d(ei(z), F) = [lex(z)]|/3,
4) e |F = Id;

) supp(er) C B(0; [|z||/2, 3[|z[/2),
6) e is MP"4(3) bilipschitz.
The existence of e; is ensured by Proposition 9.7. Let x; = f(z), My = MP"(3),
a1 = 1/2 and b171 = 3/2 Recall that Xo = . By (1)*(6), R(XQ,Xl, €1, M171, a1, b171, F)
holds. So C1.1 is fulfilled.

Let hy € H(E) have the same role for y as €; had for z. Let y; = hi(y), M2 =

Mbnd(?)), az1 = 1/2 and b271 = 3/2 Recall that Vo = ¥. Then R(_\/O,yl, hl; MQ’l,a,271,
ba,1, F') holds. So C2.1 is fulfilled.

w

AAAAA
()]

PART 2: The construction of e;. Since ||e;(z)]| = ||z|| and ||h1(v)]| = llyll, ||e1(x)] ==
Ilh1(y)]]. We check that

d(ei(x), F) ~* d(hi(y), F).
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If & = h;y = Id, then there is nothing to check. Suppose that €; # Id # h;. Then
d(ey(x), F) = [lz[|/3 and d(hy(y), F') = |lyll/3. So

dim(y), ) _ llyll _ ezl _ allzl/3) _ ald(e(z), F))

dler(@), F) |zl = fl=l = ll=ll/3 d(er (), F)
Hence d(hi(y), F) < a(d(e(x), F)). Since o]l < |yl d(m(z),F) < d(ei(y), F)
a(d(ey(y), F).

Suppose that e; # Id = h;. Then d(hi(y), F) < |lyll/3 and d(ei(x), F) = ||z||/3.
So d(hi(y), F) < alllz])/3 < a(l=)/3) = a(d(ey(x), F)). Also, d(e\(x), F) < d(z, F) <
a(d(y, F)) = a(d(h1(y), F)). The argument in the case e; = Id # h; is identical.

Let e;(x) take the role of z and hy(y) take the role of y. That is, e;(x), h1(y) are
renamed and are now denoted by x and y. Hence d(z, F) < ||z||/3 and d(y, F) < ||ly|l/3.
Let &,y € F be such that ||z — || < (1 +¢)d(z, F) and |ly — 9]| < (1 +¢e)d(y, F). ¢ will
be determined later. Let 2= = 2 — & and yé =y — ¢. Then e, will take x to a vector of
the form Ay + xé, where A > 0. It is in this part that F’ needs to be of dimension > 1.
We may assume that:

IN

21 T=3+a" andy:g)—!—yé,

22 z,9€F,

2.3 |lz=| < (1 +e)d(z, F) and and [y~ < (1 +e)d(y, F),

2.4 d(x, F) <|lz||/3 and d(y, F) <ly[|/3,

2.5 |lzf| = [ly| and d(z, F) =* d(y, F),

2.6 if co-dim”(F) = 1, then = and y are on the same side of F.

We define a functional ¢ on span(F U {z=}): ¢¥(z~) = ||z*]|, and 1 (u) = 0 for every
u e F. Let ¢ € E* extend ¥ and ||| = |[¢||. Let L = span({z*}) and H = ker(¢). So
F C H. For every u € F,

Wp(u+z5)| = |lz=|| < (1 +e)d(=x, F) = (1 +e)dx™, F) < (1+¢)|u+z™.

So [loll = ([l <1 +e.
Let u € E. Define v = u — ¢(u)z=/||z=||. Then (u)y = v and (u); = p(u)z=/||z~|.
So

rt
= e

l(wall = [lvll =

< lull + lellllull < 2+ &)lful

<l + |sa<u>|H|jiH = bl + )

and |(u) )] = llp(e) ey | = ()] < lellul] < (14 )]l So
)l 4+ )] < (3 -+ 22) Jull

Let F be a 2-dimensional subspace of F' such that Z,9 € F;. Such a subspace exists
since F' is not 1-dimensional. Let H; be an almost orthogonal complement of F; in H.
That is, Hy @ F1 = H, and for every u € H, |[(u)p | + [[(w)m, || < M?°°(2) - ||lul|. Let
| || be a tight Hilbert norm on Fy. So || ||H M | 1152

We define an equivalent norm || |N on E. Let u € E and suppose that u = uj +us+us,
where u; € Fy, up € Hy and uz € L. Define |[u||N := |Jui||® + ||uz| + |luz||. Then

lull =22 Jlus + ol + [lus[| and [luy + wa|| &M [lur]|™ + [luz||. Note that if £ =
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By @ By, for £,i = 1,2, || ||*® is a norm on E, and || ||' ~M¢ || ||£’2, then for every
u € B, (g + (@[> Amax(MLM2) | (u) gy 12 + [ (u) B, So [lur + ug|l +
Jeasl] A<D g [ B 4 sgl| + [ | That is, [l + ol + losgl) =M [l [+ [zl +
lus|. Let M = (3 +2¢) M. Then [[uf| ~M" ux [¥ + [fus]| + [[us]l = [[ul|N. Let a~

denote the metric on E obtained from || |N.

Let 2 = (||2]|®/]|9]|®)¢. Then [|2||* = ||2||". The homeomorphism e, will take = to
24 2%, Let r = ||&)H, Sy = SH(0,r) and S = {u+p- (z)* |u € Sy and 0 < p < 1}.
Let 6y be the angle from % to . That is, Rotg;l () =2

Let By = Hy + L. Then F} @ Ey = E. We first define a function 7 : [0,00) — [0, 6],
and the homeomorphism €, will be defined by means of 7 as follows:

ex(u) = Rot% - ((w)r) + (),
Define 7 to be the piecewise linear function with one breakpoint at /2 such that 1(0) = 6,
and 7(s) = 0 for every s > r/2.

Note that & € Fy, 2~ € Land 2 = # + 2—. So (#)p, = # and (z ) = z*. Also,
z € S. It follows that e,(z) = 24z~ Hence for some A > 0, €;(z) = Aj+z>. Obviously,
e (Fy) = Fy. We verify that

(2.1) e(F)=F.
Suppose that w € F. So u = (u)p, + (u)g,. Hence (u)g, € F. For some angle j,

e (u) = Rotgl((u)pl) + (u)g,. Since F; C F, Rotgl((u)Fl) € F. So ey(u) € F.
Note that dN(BN(u, s),S) = r/2. Hence e;BN(0,7/2) = Id. By 2.3 and 2.4,
T 1 1

> s (a1 > s el — (1 + €)d(e, )

1 2| 1 /2 1
> (1 - —
> 3w (II I=0+e)57 ) = 3 (3 —¢) el > 55 2

The last inequality holds when ¢ is sufficiently small. So e,[BN(0, W;spHxH) = Id.

Recall that | |1F =~ ~MT | IN. So B(0,s/M™) C BN(0, s) for every s. It follows that
e[ B(0, 4(M5p s|lz|]) = Id. Let a; = 1/4(M*")2. We have shown that

= 121N >

(2.2) e [B(0, ar||z) = Id.

Now, supp(ez) € BN(0, [[«[|N +r/2) € B(0, M*P(||z|N +7/2)) and r/2 = [|&[|N /2 <
M®|]/2 < M- 4af/2 = 2MPja]l. So supp(es) C B(0,2(MP)?|z]). Define
by = 2(M?®P)2. Then

(2.3) e:[(E — B(0,by[|z]])) = 1d.

We next show that there is M; > 0 which is independent of x, F' and 6, such that &, is
M, -bilipschitz. Indeed, we shall find M such that for every u,v € E: if ||u —v||N < r/2,
then ||ex(u) — e (v)|[|N < M7 - ||u—v||N. This fact implies that e, is M/-Lipschitz in the
metric dN.

Obviously, |n(t) — n(s)| < r/2 it —s| < 22|t — s| for every s,t € [0,00). Define
0(u) = n(d™ (u, 5)). So |0(u) — 0(v)| = |77(dN(u75)) n(d™ (v, 8))| < 2F[lu — ol
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Clearly, ||z~ < ||z]|/2. So ||lz|| < 2||#|. Hence ||z=| < ||Z||. Tt follows that ||z=|N <
(MeP)?[|2[[N. Hence max({[|ul|™ | u € S}) < (14 (MP)?) - [|2]|N = 2(1 + (M*P)?) - 7.

Let u,v € E be such that ||u —o||N < r/2. If [|u||N > 2(1 + (M*")2) -7 + 1,
then [[v||N > 2(1 + (M*P)?) - r +r/2. So ey(u) = u and e€y(v) = v. Suppose that
lu||N < 2(1+ (M®P)2) - r +r. Define M*P* = 4+ 2(M*P)2. Then |[u||N,|v||N < M*PL.r.
We have

ex(v) — e (u) = (Rotyl, ((v)r,) — Rotgf,y () )
<Rothu><< o)) - Rothu)(( W) + ()5 — (W)s,).
So
lex(v) — eI < [RotEh ((v)r,) — RotE, ((0)r,) N
+ (Rt (0)7) — Rotfs () ) + (o), — ()Y
— IRotZ ((0)r,) — ot () )N + [l — wlN.

We deal with the first summand in the last expression:
2
R0ty ((0) ) = Rotylyy (@) ) IIN < 16(v) = O(u)] - (o] < v = u[N - [N
2 ‘ .
< Lo —ulN - ML = 2o — N - ML
r

It follows that for every u,v € E, ||€2(v) — ex(u)||N < (2 MP! + 1) - ||v — u||N.
Obviously, for every u € E, €;*(u) = Rot™ @ S))((u)pl) + (u)g,- So
—n(d> (u,

lex ' (v) — & (W)Y < @r Mt +1) - o — ™.
Let My = (2nM®P* + 1) - (M*P)2. Then
(2.4) €, is M;-bilipschitz in the norm || ||.

Set X9 = e9(x) and recall that x; = z. Hence by (2.1)—(2.4), R(Xx1, X2, €3; M1, a1,b1, F)
holds. That is, C1.2 is fulfilled with M, 2 = M1, a12 = a; and by 2 = b;.

Since €, is M;-bilipschitz and €,(0) = 0, it follows that ||ey(z)| ~* ||z||. From the
fact that ey(F) = F, it follows that d(ey(z), F) ~™1 d(x, F). So

(2.5) lex(@)l| = |lyll and  d(es(x), F) =" d(y, F).

PART 3: The construction of €3, hy and €4. Recall that X, has the form )\erx% Rename
Xo and call it x, and denote Ay by . We now have:

3.1 r==%+az" and y:g)—kyé,

3.2 &,y € F and for some \ > 0, & = Ay,

g5 |lz=| < (1+e)d(z, F) and [y~ || < (1+e)d(y, F),

.50 o] &M [ly|| and d(@, F) M d(y, F),

3.6 if co-dim”(F) = 1, then 2 and y are on the same side of F.

Property 3.4 which is analogous to 2.4 is missing. Only after applying €3 to x and hs
to y, we shall retain this property.

For the next step in the construction we choose some A > 1. The value of A will be
determined later, and it will be independent of E, F, a, Xy and Y. The definition of e3
and hy depends on A.
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We first define e3. If d(z, F) < ||z||/ A, then define e3 = Id. Suppose that d(z, F) >
lz]|/A. Then there are e3 € H(E) and a,b > 0 such that

(1) es3(x) = at + bz,

(2) lles(@)ll = =,

(3) ( ( ), F) = lles(@)/ 4,
(4) e3]F =1d,

(5) Supp(es) C B(O; [lz]l/2,3]|x[l/2),
(6) ez is MP"d(A)-bilipschitz.

The existence of e3 follows from Proposition 9.7.

Recall that x; = 2 and define x3 = €3(z). Then R(Xo, X3, €3; MP?4(A),1/2,3/2, F)
holds. That is, C1.3 is fulfilled with My 3 = M®(A), a; 3 = 1/2 and by 3 = 3/2.

There is hy € H(FE) which acts on y in the way that es acts on x. That is, if
d(y, F) < |ly||/4, then hy = Id, and if d(y, F') > ||y||/4, then there are ¢,d > 0 such
that (1)—(6) above hold when y, hs, ¢, d replace x, €3, a,b. Recall that y; = y and define
Vo = ho(y). Then R(yi, Vs, ho; MPP4(A),1/2,3/2, F) holds. That is, C2.2 is fulfilled
with M272 = Mbnd(A), a2,2 = 1/2 and bg,g = 3/2

Suppose that €3 # Id. Then (%) 3(z) = aAj + b(Aj + 2%) = (a + b)AJ + ba™. By
3.1°-3.5, ||z~ || < (1+e)d(z=, F). So from (%) it follows that ||bz*|| < (1+¢)d(es(z), F).
Denote (a + b)A\§ by X3 and ba™ by XP%. In 3.7*-3.3" and in 3.6* replace z, & and z~ by
X3, X3 and X3, and denote the resulting statements by .1%(x3,y) etc. Then 3.1% (X3, y)—
3.8°(X3,y) and 2.6*(x3,y) hold. Also,

(t) d(x3, F) < [|x3]|/A.

If e3 = Id and we define X3 to be % and X3£ to be 2=, then again (1) holds.
Applying the same argument to Y, and defining y», and yf in analogy with X3 and
X3 we conclude that 3.1%(z, ¥5)—5.5" (2, y») and 3.6*(x, y5) hold. Also, (1) holds for ys.
From 3.5* and from (6) applied to €3 and hy it follows that

bnd bnd
I ] (A | M Yyl =M lyg

bnd
and so (1) [[xs ]| A (A)%a lyll- Similaly, (1) (xg, F) MO AN gy, Y.
We now rename Xz, X, X3 , Y, Vo, y2 asw, T, z* 9,9, y— - We also denote Ml(Mb“d(A))2-
a by a;. From the above we conclude that

3.1 r=2+2" and y:g}—l—y{
3.2 2,9 € F and for some A > 0, T = Ay,
2.3 [a7|| < (1+&)d(z, F) and |ly~|| < (1 +e)d(y, F),
3.4 d(z,F) < [lz||/A and d(y, F) < |[yll/ 4,
3.5 |z[ =** [ly| and d(z, F') =** d(y, F),
3.6 if co-dim”(F) = 1, then = and y are on the same side of F.
Property 3.1 follows from 3.1%(X3, y) and 3.1*(x, ¥»), and the same is true for Properties 3.2,

5.8 and 3.6. Property 3.4 is the conjunction of ({) applied to X3 and to y, and 3.6 is the
conjunction of (11) and (f1t).
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Set 2= = ||z~ - . We next define e4. It will take = to z. So after

H
applying €4 we shall reach the following situation: Xy = X4 —|—Xf, Vo =¥ —|—y§, X1 = Ay
for some A > 0 and Xf = ,uyf for some p > 0.

There are two cases: co-dim”(F) =1 and co-dim” (F) > 1.

CASE 1: co-dim”(F) = 1. Since 2 and y are on the same side of F, there are v > 0
and u € F such that 2 = u + va®. Let L = [z,2 + 2*]. We may assume that in 3.3,
e < 1/2. We show that Ingth(L)/d(L, F) + 1 < 19. Clearly, Ingth(L) = ||& 4+ 2= — z| =
l=* — 2| < 2]lz*|. So

(3.1) Ingth(L) < 2||x£||
Since for some ¢, z* = ty*, we have [|z*|| < (1 +)d(z", F). So
o = l1=] < (1 4+ e)du+ va™, F) = (14 )vd(a™, F) < (1 +)vfa].

Hence 1 < (1 + ¢)v. In the above argument we interchange the roles of 2= and 2.
That is, for some v’ € F, rt o=+ %z{ and hence 1 < (1 + E)% We conclude that

ﬁ <v <1l+e Letv € L. Then for some t € [0,1],v=£+x£+t(2£—x£) =

i+t +t((u+veT —z7). So

dv, F) =d((1+t(v —1))a", F) = 1+ t(v—1)|-d(x=, F) > (1 — t|ly — 1|) - d(z™, F)
>(1—|v—1|)-dz*,F)> (1 - (l—i—a— ﬁ)) -d(z=, F)
— (s - o)t ) 2 et ) 2 ol 2 gl
Hence
(3.2) d(L,F) > =" /9.
It follows from (3.1) and (3.2) that Ingth(L)/d(L,F) + 1 < 19.
Set A = 8. Then d(L,F) < d(z,F) < ||z|//8. Hence ||z*| < Sd(z, F) < || So
Ingth(L) < 3||z|. Let B = B(L,d(L,F)). Then
(3-3) min [[v]] > [|z]| — Ingth(L) — d(L, F) > [|z]|/2.
Similarly,
(3.4) max [[v]| < ]| + Ingth(L) + d(L, F) < 3| /2.

The endpoints of L are z and & + zé, so by Proposition 9.6(a), there is ¢, € H(F) such
that

(35) supp(e4) - B(Lad(LvF))a

(3.6) eyz)=2+ 2",

(3.7) ey is 19M=°¢-bilipschitz.

By (3.5), e4]F = Id. By (3.3), (3.4) and (3.5), supp(es) C B(0; ||z||/2, 3]|z||/2). Recall
that X3 = z and define x4 = e4(x). It follows that R(Xs, Xy, €4;19M5°8,1/2,3/2, F)
holds.
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CASE 2: co—dimE(F) > 1. Let T > 1. By Proposition 9.3, there is a closed subspace
Fy of E such that F C Fy, span(Fy U {z,y}) = E, d(z, F}) > +d(z,F) and d(y, Fy) >
+d(y, F). Obviously, either co-dim”(Fy) = 1 or co-dim®(F}) = 2. If co-dim®(F}) = 1,
let F* C Iy C F) be a closed subspace such that co—dimE(Fz) = 2. Otherwise let Fy = F7.
It follows that co-dim” (Fy) = 2, d(z, Fy) > +d(z,F) and d(y, F») > 5d(y, F).

In 3.4, choose A = 24. Hence d(z, F3) < d(z, F') < ||z||/24. In 3.3, choose € = 1/9, and
choose T = 1%. So [|2™|| < (1+e)d(x, F) < Y(1+e)d(z, F) < (13)%d(x, Fy) < 2d(z, F).
In summary,

(3.8) ||a:;|| <d4d(z,F»)/3 and d(z,F>) < |z|/24.

Recall that z* = (||lz*[|/|ly*|)y~ and z = &+ 2=. We have |ly~|| < 3d(y, F»). This is
shown in the same way as the analogous fact for . Obviously, d(y, F») = d(yé, F»). So
ly*| < %d(yé,Fg). Since 2= is a multiple of y*, ||z=|| < %d(zé,Fg). Also, d(z, Fy) =
d(z=, F). So |27 < 2d(z, ).

Note that z = 2 — 2~ + z=. So ||z]| > ||z|| — |l==| = |z=|| = ||lz|| — 2/|==||. Also,
L
l2= [ < 3d(z, F2) < 3+ 5ll2ll = || Hence
L L
deF) et et flelas 1
Izl = M=l el =20z~ lel = llzll/9 16

In summary,
(3.9) 27| < 4d(z, F»)/3 and d(z, F») < |z/16.

Let H be such that ¥ = F;, & H and H J_Mort F,. We apply Proposition 9.8 to
x and to z. Note that by (3.8) and (3.9), x and z satisfy the assumptions of 9.8. So
there is f; € H(FE) such that: f; is M°™P-bilipschitz, f1(z) = & + (z)m, filF2 = Id
and supp(fi1) C B(0;]||z]|/2,3||z]|/2). Similarly, there is hy € H(FE) such that: hy is
Me™P-bilipschitz, hi(z) = & + (2)m, h1|F2 = Id and supp(hy1) C B(0; ||2]|/2, 3]|2]|/2)-

We now translate what we have obtained for f; and h; to statements of the form
R(.,., f1;...) and R(.,., hy;...). Since f is M°™P-bilipschitz fi(x) = &+ () and f1(0)
=0, it follows that ||z[| < M°™P||Z+(z)g|. So supp(f1) € B(0; 5|z, SM;mp |Z+ () g ]])-
This implies that

(3.10) R(z, &+ (x) g, f1; MP,1/2,3M P /2] F) holds.
Similarly,
(3.11) R(z,& + (2) g, ha; MM, 1/2,3M™P /2, F') holds.

Let || ||[H be a tight equivalent Hilbert norm on H, and define a new norm on E by
™ = [[(w) e, | + (@) el So || || =™ || |N. This follows from Proposition 9.4(c).
Let dN denote the metric induced by || |N on E.

Set v* = (2) g, 2* = (2)g and 27 = (||2*||N/||z*||N)z*. We define a homeomorphism
g2,1 which takes £ + z* to & + 2#. A second homeomorphism g2,2 will take & + 2# to
4 z*. So o

r=d+a" gi‘—i—(x)Hgi}i‘—i—z# L2+ (2)m Mgt =

Finally, we shall define g4 := hfl °g2,2°02,1° fi.
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Let 6 be the angle from z* to z#. That is, § € [0,7] and Rot) (z*) = z#. Let 5 :
[0,00) — [0, 8] be the piecewise linear function with one breakpoint at so = ||z*||N /2M ™™
such that 1(0) = @ and 7(s) = 0 for every s > sg. Let Sy be the circle in (H, || [|[H) with
center at 0 and radius ||z*||H, and let S = & + Sp. Let go1 be defined as follows. For
u € E set uy = (u)g and ug = (u)g,. Define

g21(u) = ug + ROt,’I,]_I(dN(u7s))(u1).
Since for every u € E, dN(u,S) = dN(g2.1(u), S), it follows that g» ; € H(E). Clearly,
g2 (& +a%) =a+ 7.

Also, supp(g2.1) € BN(S, s0). If u € Fy then dN(u, S) = ||u — 2| + [|Jz*||® > s and so
g2.1(u) = u. That is, g2 1 [F2 = Id. Since F C Fy,

g2,1 [F = 1d.

Note that sg = ||33*||N/2Mthn <||z*||/2. So supp(gz,1) C BN(S, ||z*[|/2).
Let u € BN(0, [|Z]| = [|2*[|/2). So [Jug| < [|Z]| = [|2*[|/2. Then

d(u,S) = [lup — & + d™ (u1, 80) 2 [luz — 2| = [|2]] — [Juz]
> (2] = (N2l = lle"]l/2) = [l«"][/2.

It follows that go 1 [BN(0, ||| — ||=*||/2) = Id.

Let r = ||#|| + 2||=*||N. Suppose that v € E — BN(0,7). Either |Jui|| > 3[|z*||N/2 or
lluz|l > [|2]|+ |z |N/2. If v € S then v = & +w, where w € H and ||w||N = ||z*||N. Hence
lu—vl|N = Jlus — wl|™ + [Juz — &[|. If [lus]| > 3[|l*[[N/2, then [u — v[[N > flug —w|N >
Bla*[N/2 — |a*||N = J|l2*[|N/2. So u & supp(gz,1). If [luz| > [[Z] + [|2*(|N/2, then

lu =l > fluz = &) > [|&]| + [l2*[N/2 = [|2]] = &*[|N/2. So u & supp(g2,1). It follows
that supp(g2.1) € BN(0,7).
By (3.8), ||z < = llz[, and since z = & + x=, we have Lzl < [12]] < Bl

Since H LM™" Fy, ||lz*| < M°™d(z*, Fy). Also, M°" < 4. By the above and (3.8),
lo*|| < Med(a*, Fy) = M°d(x, Fo) < glz]|. Hence ||z]| — [|2*[|/2 > +572||z] and
r=|2] + 2/l ||N < (1 + M*™/3)||z|. Tt follows that

supp(ga,1) C B(0; ||z]| /2, 2M ™|z ]).

Next we find a Lipschitz constant for g, ;. By its definition, n is -Lipschitz.

6
) llo*|IN /20"
So 7 is 2r M /||z*||N-Lipschitz. Obviously, S C # 4+ BN(0, [|2*||N). By 9.6(c), go.1 is
thn
(Mrot-ﬂg‘f”l\, -||z*||N +1)-Lipschitz in the norm || |N. That is, go ; is (2 M™t- M0 4 1)-
Lipschitz in the norm || |N. The same is true for gi} So go.1 is (2w MTot . MER 4 1)-
fdn —~

bilipschitz in the norm || ||N. Recall that || || =~ || [|N. Write My = (Mfdn)2(27er°t-
M*™® + 1), Then go; is My ;-bilipschitz.

We may now write an R(...) statement for gs 1. Since f; is M°™P-bilipschitz, fi(x) =
&+ (x)g and f1(0) = 0, it follows that ||z| > ||& + (x) g /M ™P. Similarly, g1 20 f1(z) =
&+ 2%, g1a0f1(0) = 0 and goqof1 is Mo M P-bilipschitz. Consequently, ||z| <
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Mo M™P||3: + 2#||. Tt follows that

1 o n/\ m ol
supp(g2,1) B(O; WH»’U + (@) g], 2M™P My ; ME™P || 4 z#||)

Hence
(3.12) R(& + (2)m, & + 2%, go.1; Moy, 1/2M™ 2M ™™ My ; M F) holds.

Our next goal is to define go 2. Recall that fi(2) = & and f1(Z + %) = & + x*.
Also, fi is Me™P-bilipschitz. So [l ™" ||z*||. Similarly, ||z =" ||z*]. Also,
2= = [|z=]|. Let My = (M™P)2 and My o = My - (M%)2, Tt follows that ||z* | =21

L. fdn .
|lz*||. By Proposition 9.4(c), || || ~* || ||V, and hence [|z*||N ~Mz2 ||z*||N. Since
1IN = [N, [l2# [N~z 25N, Let a = [|2*]|N/[|l=*||N. So

(i) z* = az?,

(ii) E=F, ® H and |Ju + v|[|N = |Ju]| + ||v||® for every u € F5 and v € H,
(ii) # € Fy and 27 € H,
(IV) 1/M272 S a S M272.

Assume first that a > 1. Let #,2%, a,0 take the roles of #,2,a and v in Proposi-
tion 9.6(d). By (i)—(iii), the assumptions of 9.6(d) are fulfilled. So relying also on (iv),
we conclude that there is go o € H(E) such that (1) goo(#+2%) = &+2%; (2) ga2 [ Fo = Id;
(3) supp(ga.2) € BN(0; (|2 + 27(|N/2, 3|2 + 2*[|N/2); (4) ga,2 is 2M*°® - M o-bilipschitz
in the norm || ||N.

If a < 1 then we apply 9.6(d) to Z,2*,1/a and 0, thus obtaining a homeomorphism
952 € H(E) such that gy (% + 2*) = & + z#. Define goo = (952)"". Then (1), (2)
and (4) remain true. Instead of (3) we now have supp(g22) C BN(0; |2 + 2*|N/2,
3||& + 2#|N/2). Note that by (i)-(iv), || + 2#||N < Mas||# + 2*||N. So supp(g22) C

BN(0; || + 27N /2M22,3Ma 5@ + 2*[|N/2). Recall that 2* = (z)g. What we have
shown implies that

(3.13) R(:;; + 2% &+ (2) 1,y g2.2; 2(M )2 ME M, 2M M, o, F) holds.

2Mfd“M2)2 ’
Note that in deducing (3.13) we used the fact that || || M Il [|- This concludes the
construction of gg .

Define ¢4 = hl_loggg ogoiofi and x4 = 2. Recall that X3 = z. So x4 = z =
e4(X3). We now apply Proposition 9.12(a) and (b). It follows from (3.10)—(3.13) and
from 9.12 that there are M, AL, B} which do not depend on E, F, «, X, ¥y such that
R(Xg, X4, €4, Mé, AIQ, Bé, F) holds.

In Case 1 too, we found M;, A}, B} such that R(xs, X4, e4; M{, A}, B{,F) holds.
Define My 4 = max(M{, M}), a14 = min(A4}, A5) and b4 = max(B{,Bj). Then
M 4, a1,4,b1 4 fulfill C1.4 in both Case 1 and Case 2.

PART 4: The construction of f;. We have shown that for ¢ = 1,...,4 there is M;;
which does not depend on E, F,a, Xp, Yy such that €; is M, ;-bilipschitz. We define
€ = €0 ---0e;. Then e(Xo) = X4 = z and e(O) = 0. Let M371 = H?:l Ml,i' So eis
M 1-bilipschitz. It follows that ||z|| ~*2:1 ||xo||. Similarly, for i = 1,2 there is My ; such
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that h; is My ;-bilipschitz. We define h = hyo hy. Then h(Yy) = y» = y and h(0) = 0.
Let Mg’g = Mg,l MQ’Q. So his Mg,g—bilipschitz. Let Mg,o = M3’1M372. Then

41 |lz]l =M ||

Since e(F) = F, we have d(z, F) ~M31 d(xp, F). Similarly, d(y, F) ~M32 d(y,, F).
Hence
4.2 ||z]| =Moo |ly|| and d(z, F) =Moo d(y, F).
The construction also implies that
48 2 =442, Yy = g)—l—yé, where 2,9 € F, and for some A\, u > 0, § = AZ and
L n
Yy~ =pzT
If Case 1 of Part 3 happens, let F=F. Suppose that Case 2 of Part 3 happens. Let
Fj be as defined in Case 2 of Part 3. So by (3.9), ||z~ < 3d(z, F»). By Proposition 9.3

applied to F» and taking z and y to be zé, there is a closed subspace F such that
22 < %d(zé,F), F, C F and span(E U {z*}) = E. In both cases we have

44 FCF, ﬁ@span({z$}) = F and ||z$|| < I%d(z{ﬁ).

CasE 1: [|§|| > ||2]. In this case A > 1. Let v = § + 2—. We shall construct a
homeomorphism f; such that fi(z) = v. (Recall that z = X4.) Denote v by v. So
v=MN 4z IfA=1let fi = Id. Assume that \ > 1.

Let H = span({g,y~}), H, = span({7j}) and Hy = span({y~}). Let Fj be a subspace
of F such that for some ¢ € F*, H(pH =1, p(2) = ||Z|]| and F5 = ker(p). It follows that
Hy®F3=F, F®& Hy=F and F = H; ® Hy, & F3. Clearly, IProj, |l = llpll = 1. So
by Proposition 9.2(d), H; 1! F3.

Let S = {aZ+bz" |a € R, be[0,1]}. We define 7 : [0,00) x [0,00) — [0,00). For
every s, 1s(t) := (s, t) is a piecewise linear function of ¢t. For s > (A —1)]|2]|, n, = Id. If
s < (A=1)||2]l, then n,(t) has breakpoints at ||2||/2, ||2]] and 2)\||Z||; ns(t) =t for every
t € [0,]121/2) U 23], 00); and

) = (1= o=z ) AN+ =y el

Denote (A — 1)||2|| by a. Then in particular, ng(||2]]) = A||Z]| and n,(]|2]]) = ||2]|-

For u € E we denote (u)m,, (u)m,, (u)r, by (u)1, (u)2 and (u)s respectively, and we
abbreviate (u); by u; when the notation (u); is too cumbersome. Set E+* = {tZ + w |
t >0, we Hy ® F3}. Let f; be defined by

fo(u) = § MW S), ||Ul||)|| et s, ue BT,
u, weE—-ET.
Note that fi[Hy @ F3 =1d, so fi € H(E). We shall define the constants mentioned in C3

and show that C3 holds. Recall that C3 = R(X4,V, fi; M3 1 - o,a31,b31, F). We verify
R1-R4 in the definition of R(...).

R1: Clearly, fi(x4) = fi(2) =v =V



Reconstruction of manifolds from subgroups of homeomorphism groups 189

R3: We verify that fi(F) = F. For every v € E and in particular for every u € F,
fi(u) —u € Hy =span({g}) C F. So fi(u) = u—+ (fi(u) —u) € F. An identical argument
shows that f; !(F) C F. Hence R3 holds.

R2: We find Ms; and prove that f; is M3 ; - a-bicontinuous. Note that if g € H(E),
K C E is closed, supp(g) C K and ¢[K is S-continuous, then g is 23-continuous. Since
supp(fi) € E*, we may consider only points which belong to E™. Let u,w € ET. Then

1fi(w) = Alw)|| < [nd(w, S), [[wil]) = n(d(u, S), [lur)] + [[(w = w)al| + || (w — w)s|
< [n(d(w, S), [lwr[]) = n(d(w, S), [wr )] + [n(d(u, S), lwill) = nd(w, S), [Ju]])]
+ [ (w = ws| + [[(w = w)s]-
That is,
@) i) fi(w)] < n(dw,S). fur ) - n(de. ). Jus )
(s, ), ) = n(d(u ), s )]+ 10 — )+ e~ )],

The first summand on the right hand side of (4.1) has the form |n(s1,t) — n(sz2,t)|. If
51,82 € [0, (A —1)||2]|], then

fo1.) = s 0] = (2 00,0) = (O - D] )
Mal—llEl
< e s1 = s2| = [s1 — s2].

The inequality between the first and last expression above is true for every sy, s3 € [0, 00).
So [i(d(w, S), wn]) - n(d(u, S), |wi )] < |d(w, ) — d(u, $)] < |w - ull. That is,
(4.2)  [n(d(w,S), lwill) = n(d(u, S), lwi]))] < [d(w,S) = d(u, S)| < [lw — ull.

The next computations are needed in order to estimate the second summand on the
right hand side of (4.1). We find A, B, C such that A||z| < ||Z]| < B||z|| and ||z=| < C|z]|.

There are different computations corresponding to Cases 1 and 2 of Part 3.

In Case 1 of Part 3, A =8 and ¢ = 1/2. So d(z, F) < ||z||/8 and |z=| < 13d(x, F).

Hence ||z*] = [z=| < 3.3zl = &llz|. We have z = z — 2% 4 z=. Hence |z|| >
L L L
[l = l= =1 = I~ = [l — 2[|==||. Hence |[z[| > ||z]| - §llll = Zll[. It follows that
|25l < & - £||z]. That is,
L
(4.4.1) 12711 < 55l=1l

From the fact that 2 = z — zé, we conclude
(4.5.1) w2l < N2l < 2=l

Recall that in Case 2 of Part 3, A = 24 and € = 1/9. We carry out a computation
similar to the one in Case 1. So d(z, F) < ||z||/24 and |z=| < 13d(z, F). So %] =

L L
Izl < gzllzll = wogllzll. We have [l2]| > flz]| — 2|27 > ||zl - g;ll=ll = 53[l=[| and
hence |27 < 105 - 32||2||. That is,
L
(4.4.2) 271 < s5llzll
and hence
(4.5.2) slzll < Izl < G ll=ll.
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By (4.4.1) and (4.4.2),

L
(4.4) 12711 < $ll=1)
and by (4.5.1) and (4.5.2),
(4.5) woll2ll < N2l < il

Since y also obeys 3.3, 3.4, in Case 1 of Part 3 we obtain 12||y|| < [|7]| < 13|ly|| and in

Case 2, 12 ||y|| < ||g]| < L3|y||. The following is thus true in both cases:

(4.6) syl < 19l < 5llyl-

By 4.3, (4.6), 4.2, (4.5), the monotonicity of « and the fact that a(At) < A«(t) for
A>1,

Mzl =119l < 1gllyll < 1§Mso - a(llz]) < §Mso - a(F2])
<2 Mz - a(|l2]]) < 2Msp - a(]|2]).
So
(4.7) A2 < 2M3z0 - a(]|2])-

Let o = ng. So p is the piecewise linear function with breakpoints at ||Z]|/2, ||Z]|
and 2M||Z]|; o(t) =t for every t € [0,]|2]|/2) U [2A||2]|, 00); and o(||Z|]) = A||Z||. Clearly,
0 € H([0,00)). Using the notations of Proposition 9.10(b), 7 = 1,,(x—1)-|2|))-

We show that g is 1603 - a-continuous. The linear pieces of ¢ have the slopes: 1,

AZIIZI/2  2MIZI=NIEL 5 1, That is, the slopes of the linear pieces of p are 1, 2\ — 1

N21/2 0 2X[zl-12]

and T)\—l We use the notations of Definition 9.9(b). Let aq, ..., a4 denote 0, ||2]|/2, ||Z]|,
2X||2|| and co. Then g1, ..., 04 are the functions

1dT(0, [|211/2],

y= A=t +|2l/2,  te[0]2]/2],

A
= t+ A2 te 0,2 —=1)||2z
y= gt Al e 0.@A— D],
y=1t+2X|Z|, t € [0, 00).

For 1 = 1,3,4, for every tl,tQ, |Q1(t1) - Ql(t2)| § |t1 - tz‘ S 4M3’0 . Oé(|t1 — t2|) Hence 0;
is 4Ms o - a-continuous. We deal with gs. By (4.7), 2A — 1 < 2X < 4Mj3 - o(||2]))/]1Z]|-
So (2A —1)/4M50 < a(||2]))/]12]]- Let 05(t) be the function

22 -1

4Ms o

Then by Proposition 9.10(c), ¢5(t) is a-continuous. Clearly, g2(t) = 4M3 - 05(¢) + || 2] /2.
So g2 is 4Mj3 o - a-continuous. We have shown that o is (4,4Mj3 0 - )-continuous. By
Proposition 9.10(a), ¢ is 16M3 o - a-continuous. Define v = 16M3 ¢ - cv.

We next deal with the second summand on the right hand side of inequality (4.1).
It has the form |n(s,t1) — n(s,t2)|. Recall that 7 = 71, (x—1).)z|)- Then by Proposi-
tion 9.10(b), for every s € [0,00), 15 is y-continuous. So

In(d(w, S), [lwi]l) = n(d(u, S), ur )] < y([llwill = fuall) = v(Il(w = u)l).

y = t, te[0]2]].
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That is,

(4.8) n(d(u, S), [[will) = n(d(u, S), [ur)] < ([ (w = w)s])-

We shall now bound the expressions |[(w — u);|| appearing in (4.1) and (4.8) by a
multiple of ||w—u)||. For @ € E let @ 5 = @ +13. Recall that Hy = span({y*}). By 4.4,
ly=| < 3d(y*, F). Hence ||ao]| < 2d(tig, F) < 3|/@||. From the fact that @3 = @ — @,
it follows that [|uy 3] < |||l + ||gz|| < 5[al|. So we have

(%) sl < 3llall.

From the fact that H; L' Fj, it follows that ||| < ||u1,3]/, and this implies that
llas|| < 2||u1,3]]- It follows that

(4.9) el < Slall,  flusll < Slal,  llas| < 5lja-
Substituting (4.2) and (4.8) into (4.1), we obtain
(4.10) 1fi(w) = Ai(w)]| < flw = ull +y(([[(w = whl]) + [ (w = wsl| + [|(w = w)s]|-
We substitute (4.9) into (4.10) and use Proposition 9.10(d). So
I (w) = Al < 75w —ull + 257(|lw — ul)).

This means that fi[E™ is (40Ms50 - o + 7%Id)-continuous. Hence fi|E™ is 50M3 - a-
continuous. It follows that f; is 100M3 o - a-continuous.

The computation which shows that for some M, f?l is M - a-continuous is analogous.
However, for ffl there is M which does not depend on E, F, «, Xy, Yy such that ffl is
even M-Lipschitz. For this M it is also true that f;* is M - a-continuous. We now carry
out the computation for f;'. For s € [0,00) let 6, = n;'. Write 6(s,t) = 0,(t). Note
that for every u € E, d(fi(u),S) = d(u, S). This implies that

U1
i () = Gagu,s) (Juall) T T2t us:
The analogues (4.1%) of (4.1) and (4.2*) of (4.2) obtained by replacing 7 by 8 are still

true. Let u = 0. So u = o=t

and 6 = 71, (x—1)z|))- The slopes of the linear pieces of
1 are the inverses of the slopes of the linear pieces of p. Hence the slopes of the linear
pieces of u are: 1, ﬁ and L}\_l Clearly, 1, ﬁ, L}\_l < 2. So p is 2-Lipschitz. By
Proposition 9.10(b), for every s € [0,00), 0, is 2-Lipschitz. Hence

10(d(w, S), [lwill) = 8(d(w, S), lus )] < 2- [l ]l = [fuall] = 2 - || (w = w]].
So (4.8) is replaced by

(4.11) 10(d(u, ), [[wi]]) = 0(d(u, S), [[ua[)] < 2 - [|(w = w)a ]
Substituting (4.9) into (4.11) we get
(4.12) 0(d(u, S), [lwill) = 0(d(u, S), [lua )] < 5]|w —u].

Replace the first summand of the right hand side of (4.1*) by (4.2*) and the second
summand by (4.12). Use (4.9) to estimate the last two summands of (4.1*). So

17 (w) = @) < Jlw = ull +5llw =l + 3w = ul| + 5llw — ul.
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That is, ||f; "(w) — ' (u)|| < 123|w — u||. From the fact that o > Id, it follows that
fiMET s 123 - a-continuous. It follows that fi! is 25 - a-continuous. Hence f; is
100M3 o - a-bicontinuous. So M3 1 = 100Ms3 0.

R4: We next find a3, such that f;1B(0,a31]/2]|) = Id. For every ¢t < ||2]|/2 and for
every s, 1(s,t) = t. So for every u € E, if ||ui|| < [|2]|/2, then fi(u) = u. By (4.9) and
the above, if [|ul < £[|2], then fi(u) = u. By (4.5), 55llz|| < |2]. So if ul < &=,
then fi(u) = u. Let ag1 = =5, then f;[B(0,as,|2||) = Id.

We now find b3 ; such that supp(fi) C B(0,b31]|v||). We shall find A;, i = 1,2,3,
such that for every u € E: if ||u;|| > A;, then fi(u) = u. For every ¢ > 2AZ and every s,

n(s,t) =t. So

(4.13) If |lua || > 2A)|Z|l, then fi(u) = .

For every s > (A — 1)||2||, ns = Id. So for every u € E, if d(u,S) > (A — 1)||Z||, then
fi(u) = u. Let u € E. By the second part of (4.9), |lul| > Z|lug|. Let a > 0. If
[luz|| > a+ ||z£||, then for every w € S, ||(u — w)2|| > a. Hence |ju — w]|| > %H(u —w)sl|
> 2a. Take a = 3(A — 1)||2]|. Soif [Juzg|| > 3(A — 1) 2] t”Zﬂ" then for every w € S,
lu—wl| > (A=1)|12]]. That is, if uz] > F(A = D[l + ||z~ |, then d(u, S) > (A= 1)]12].
Hence

(4.14) If usl| = 5(A = 1)[[2] + [|z7||, then fi(u) = u.

The third part of (4.9) says that ||@|| > 1||as]|| for every @ € E. Let u € E be such that
|lus]] > 5(A — 1)||2||. For every w € S, (v — w)s = us. So ||(u—w)| > %H(u —w)3|| =
sllusll = (A = 1)|[2]|. That is, d(u, S) > (X —1)||2[|. Hence

(4.15) If ||usl| = 5(A = 1)]|2]|, then fi(u) = u.

Combining (4.13)—(4.15) we conclude that

(4.16) If un || + [luall + [[us|| > (83X = 63)[|2[| + [|=~ |, then fi(u) = u.

By 44, |2l < 13d(=*, F) = 13d(z, F) < 15|z, and by (4.5), [12]| < 3]l=].. So

(417)  (BIA— 612l + 124 < (33 (83— 61) + 11)]J2] < 10]z]].

Note that z = 2 + 2= = tv— %zé 42t = Tv4+(1- %)z£ Hence [|z| < +[|v| + [
By (4.4), [l < vl + 55l=l. So

(4.18) 2]l < % lv]l-

From (4.16), (4.17) and (4.18) we conclude that
(4.19) If ||lul| > 292 - ||v]|, then fi(u) = u.
That is, supp(f) € B(0,222 - [|v]|). So b3 := 12 is as required in R4.

CASE 2: |||l < ||2]]. So A < 1. Let v=wv = Az, and we construct f; such that fi(z) = v.
By (4.6), [l = llyll, and by (4.5), [|I2]| < Fll=ll. So (i) A = [lgll/l2]l = Zlyll/Il=]- By
the construction of hy and hy, (ii) ||y|| = |[Yoll- By 4.1, (iii) ||z| &30 ||x0||. Since Xo, Yo
satisfy conditions A1-A4 appearing in the definition of a UC-constant, (iv) ||Voll > [|X%o]|-
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So by (i)-(iv),
5 [yl 1

4.20 A > — .
(4.20) 8 Mszpl[xoll T 2Msp

Let n : [0,00) — [0,00) be a piecewise linear function with breakpoints at A||z||/2, ||z||
and 2||z|| such that n]([0, \|z]|/2] U [2]|z]|,o0)) = Id and 7(]|z||) = A||z||. Define f; to be
the piecewise linearly radial homeomorphism based on 7. (See Definition 9.5(b).) Recall
that z = x4, v = v. We shall define M3, a’1,3 and b} 3 such that R(xs, Vv, fi, M]3 -
@, ay 3,0 3, F) holds.

R1 and R3: Obviously, fi(x4) = vand fi(F) = F.

1
R2: The slopes of the linear pieces of n are 1 22zl

2zl = Al
» Tai—tamp and T That

, ﬁ < 1 and by (4.20), 4M30 < ﬁ That is,

m < ﬁ < 1. Also, 1 < 2 — X < 2. Hence the slopes of all linear pieces of 1 and
n~! are < 4Ms3 . So n is 4Ms o-bilipschitz. By Proposition 3.18, f; is 12M3 o-bilipschitz.
Since o > Id, fi is 12M3 - a-bicontinuous. We may thus define IVI3 1 =12M3.

R4: Obviously, supp(fl) C B(0; >‘” L 2||z|)). By (4.20), B(0 ,4M30 lIz]l) € B(0, ‘ Iy,
So we may define a3 ; = 4M . Recall that v = Az. So by (4.20), ||v]| = A||z| >

Hence 2||z|| < 4M3oljv||. It follows that B(0,2]/z]|) € B(0,

is, they are 1, ﬁ and 2 — A\. Now

2M3OHZII-

). So we may take

B, ) = 4Ms.
We have shown that R(x4, Vv, fi, M1 3-a,a) 3,b] 3, F) holds. Taking in account Case 1
and Case 2, we define M3, = max(Ms, M5,), a4, = min(as,a};) and by, =

max (bs,1,b5 ;). Then M5 |, a4 1, b3, are as required in C3.

PART 5: The construction of f;. Let v be as in Part 4. Remember that v was defined
in two different ways. In the case that [|2]| < ||9]|, v = § + 2z, and in the case that
2]l > 14|, v = Az. Define v* = v — §j. The following holds:

51y=04+y ,v=9+v",y" =vv’, € F and v > 0.

If v =11et f; = Id. Assume that v # 1. The vector y£ is as in Part 4, and in both
Cases 1 and 2 of Part 4, vhis a multiple of yé. So the analogue of clause 4.4 in Part 4
holds for gﬁ and v*. That is,

50 FCF, Fa& span({y*}) = E and |y~|| < I%d(yé,ﬁ) and equivalently |[v™| <
L~
12d(v™, F).
Recall that g; = fi o €. We shall next show that there is N; which does not depend on
E F, a, Xy, Yo such that

(%) for every u € E, d(g,(u), F) =Nt d(u, F). In particular, d(v, F) ~™ d(xo, F),

Recall that M3 ; = Hle M ;. Then by C1, d(e(u), F) ~M31 d(u, F) for every u € E.
In Case 1 of Part 4, fi(u) —u € F for every u € E, so d(fi(u), F) = d(u, F'). So in Case
1 of Part 4, d(g;(u), F) =Nt d(u, F) for every u € E.

In Case 2 of Part 4, f; is the piecewise linearly radial homeomorphism based on 7,
and for any slope a of a piece of 1, 1/4Mso < a < 2 < 4M34. So for every u € E,
d(u, F) ~*Ms0 d(fi(u), F). Now, define Ny = 4M31M3g. Then in both Case 1 and
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Case 2 of Part 4, d(g; (u), F) &N d(u, F) for every u € E. The fact d(v, F) ~N' d(xo, F)
is a special case of the above, since v = g;(Xp).

It is given that d(xp, F') = d(¥o, F'). Let Ny = My 1Mz 5. Then from C2 it follows
that d(yy, F) =~z d(y, F). So

(#4) d(xo, F) "> d(y, F).

Let N = N;Ny and 3 = N a. It follows from (#) and (##) that d(v, F) ~* d(y, F).
By 5.1, d(v, F) = d(vé,F) and d(y, F) = d(yé,F). Hence

dly™, F) ~® d(v*, F).

Clause 3.3 in Part 3 says that [[y~|| < (1 + s)d y,F) In Cases 1 and 2 of Part 3, € was
taken to be 1/2 and 1/9 respectively. So ||ly~|| < 2d(y~, F). Hence

(
||y-||<—- Bldw*, F)) < 2. B([lo*|)-

Since v™ is a multiple of 3=, it follows that [|v=|| < 3d d(v=,F). So

L

L L L L
™Il < 5 - Bd(v™, F)) < 5 - Bldy™, F)) < 5-B(ly~ -
Let v = 3(/2. Hence
L L

(5.1) Iy~ I = o™ l-
From the fact that y= = vv= and (5.1), it follows that
(52)  Ifv>1,then v [o|| < (o™ ]); and if v < 1, then 2 -y~ || < y(|ly~[])-

Let L = {;g + tgﬁ | t € R}. So L is the straight line connecting y and v. Recall that
Hy = span({y }). By 5.2, Hy 1'2 F. So by Proposition 9.2(f), || |F-H2 ~22 || ||. By 5.1

and 5.2, § € F. So for every t € R, ||§ + ty~| > 2 - 2. (gl + |y~ > 2. |||l That is,
(5.3) d(L,0) > % - H?JH-
We show that
L N
(5.4) o1l < 213ll-

Let §, 2 be as in Part 4. Suppose first that ||§|| > [|Z]. In this case v= = z*. By (4.4),
1 . Ll oL . . N 5 L N
Izl < 5llzll. Since z = 2+ 27, ||=7|| < 3I|2], and since [[gl| > [I2]l, =71 < 3lI]-
That is, if ||| > ||Z], then |[o=| < 2119l]. Next supposej-that ||%|| < |IZ|l- In this case
J4+v- =v=Az=AZ+2") =3+ Az. Thatis, v= = Az~ and § = A5. Hence

Ly s L0 /115 Ly s Lii /11 . 5
lo= /1131 = == 11/ By (4.4), lo=ll/1gll = ==/l < 3. So, if [[g]l < ||2]], then
v < 3||g]l. We conclude that (5.4) holds in both cases.
. LoL N L N
Since v = § + v, 1thollows that [lo < [|9] + [lv=]l. So by (5.4), [lv]| < 29|
Similarly, || < [jv]| + [[v=] < [lv]l + Z[|7ll. So 2[|7]] < [|v]. Hence

(5.5) wllvl < 19l < Zlll.
Fact (5.3) and the first inequality in (5.5) imply that
(5.6) d(L,0) = gllvll

In Case 1 of Part 3 we chose ¢ = £ and A = 8. So by 3.3 and 3.4, ly=| < 3d(y,F) <

. L - . ~ L N .
% . %||y|| That is, ||y=| < 1‘3—6||y|| Since y = g+ y~, ||9|| > %Hy” Hence in Case 1,
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and

Rel[E

ly=| < 2||9]l. In Case 2 of Part 3 we follow the same computation with ¢ =

A = .. We obtain ly™ | < 25 [ly|l and hence [y~ < o 52 119]l. So in both cases

(5.7) ly=Il < gl

We shall next define g4. The required f; will be either g4 or g4_1. Recall that F' and
H; were defined in Part 4, and that v was defined in 5.1. For u € E set u; := (u)z and

ug = () g,.

Ifv>1let
_ 1 L 4 L _
l/:l/ﬂ U _,Uﬂ y :y7 UZU? y:y7
and if v < 1 let
I L L L _
v=— v =Yy, Yy =v, V=Y, Y=90
12
So >0,y =u-0- and by (5.2),
_1
o=l

Let o € H([0,00)) be the piecewise linear function with breakpoints at l5=11/2, ||~ ||
and 20][o™* | such that o1([0, [7*]/2) U [27]5" [}, 00)) = Id and o(}o*[) = pljo* | Define
n(s,t) to be the function

n(s,t) = (1 - ||g||/5>9(t) + th s € [0, [|g]l/5],
b s > [19l/5.

So 1 = 1(,,|4|l/5) as defined in Proposition 9.10(b). Let E~ = {u € E | up > 0}. Define
ot

U1+7I(d(U,L),||U2||) ||’l_)£||’ UGEA,
u, ueklE—FE".
If ug = 0 then g4(u) = u, so g[ = Id. and hence g4 € H(FE). Note that if v > 1,
then g4(v) = y, and if v < 1, then g, ( ) = y. Next we find M3, a32,b32 indepen-
dent of E, F, a, X, Yo such that R(v,y, ga; Ms 2 - v, a32,b3 2, F') holds or R(y, v, ga; M3 2 -
«, as 2, b372, F) holds.

R3: Clearly, g4[F = Id and hence g4(F) = ggl(F) =F.

R2: We shall next find M3, such that g4 is Ms o - a-bicontinuous. The slopes of

ga(u) =

L _ L [ S
the linear pieces of ¢ are: 1, Zl I=lv I/2 200w I=7[v || 4nq 1. That is, the four
~Ae=l=le=i/2 o 2ol = o=l

slopes of ¢ are 1, 20 — 1, 5=*5 and 1. We apply Proposition 9.10(a) to ¢ taking ag
to be 0, a1, a9,a3 to be the breakpoints of g, and a4 to be co. Using the notation of

Definition 9.9(b), the functions g1, g3 and g4 are linear function with slopes 1 and

s 3T T
1 respectively. So they are 1-Lipschitz. Clearly, o5(t) = (20 — 1)t + ¢, t € [0, 57| /2).
By (5.8) and Proposition 9.10(c), g2 is 2 - y-continuous, and so ¢ is (4, 2 - v)-continuous.

By Proposition 9.10(a),

(5.9) 0 is 8 - y-continuous.
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Let u,w € E". Then

(5.10)  lga(w) = ga(u) || < [[(w = wrll + In(d(w, L), lwa|[) — n(d(u, L), [[w2]])]

+ [n(d(u, L), lw2l]) = n(d(u, L), [[uz]])]-
Denote the three summands on the right hand of inequality (5.10) by D;, Do and D3. If
d(w, L),d(u, L) € [0,]|§]|/5), then

|d(w, L) — d(u, L)| [w — ul|
Dy < - ~(e(llwall) = flwll) < F=r7z= - (el([wal]) — [lwal])
1911/5 1911/5
lw—ul T ]| [ /
<ol Gyt < v 7] = Dj.
1911/5 lall/5 ’
The above is true for every u,w € E". Since 7 -5~ = v* or 7- 9~ =y, by (5.4) and
(5.7), 7+ o [|/I|5]l < 2. Hence, Dy < %5 - lw — ul|. That s,
(5.11) n(d(w, T), [w])) = n(d(w, L), Jwal)] < 2 - o — .

By (5.9) and Proposition 9.10(b), Dy < 8 -~(|[lws] — [uslll) < 8- (|(w — wps])) = D},
and by the second inequality in (4.9) and Proposition 9.10(d), D} < 2 -8 - v(|lw — ul|.
Hence

(5.12) n(d(u, L), ||wsl]) = n(d(u, L), [luz|)] <12 -y ([lw = ul).

Note that for every u € E, @ of Part 5 is u; + u3 of Part 4. So by the first and third
inequalities in (4.9),

(5.13) 1w = wh ]| < 73 [lw — ul].

Substitute into (5.10) inequalities (5.13), (5.11) and (5.12). We obtain the inequality
|g4(w) — ga(u)|| < 9 ||w — ul| + 12 - y(||w — ul|). Recall that v = 23 and that 8 = Nev.
Hence, since o > Id,

g4[E" is (18 N + 10) - a-continuous.

The computation which shows that for some M independent of F,F, «a, Xy, Yo,
gZI[EA is M - a-continuous is analogous. But for g;l there is M which does not de-
pend on E. F, a, Xy, Yo such that g;l [E" is M-Lipschitz. So we conclude that g;l [E~ is
M - a-continuous. This computation is analogous to the proof that 7"1_1 is Lipschitz.

For s € [0,00) let 6, = ;. Write (s, t) = 04(t). As in Part 4, for every u € E,

ot

lo=

The analogues (5.10%) of (5.10) and (5.11*) of (5.11) obtained by replacing n by 6 are
true. Let = 60y. So pu= o ! and 0 = N(u,l9ll/5)- The slopes of the linear pieces of u are
the inverses of the slopes of the linear pieces of 9. Hence the slopes are 1, 21/ 7 and 2” L
The first two slopes are < 1 and the third is < 2. So p is 2-Lipschitz. By Proposmon
9.10(b), for every s € [0,00), 6 is 2-Lipschitz. Hence

|0(d(u, L), [[wa]) — 0(d(u, L), [[uz])| <2 [[lwa]| — lluzll] = 2- [[(w — u)a]].
Applying the second inequality in (4.9) we conclude that
(5.14) |0(d(u, L), ||wz]]) = 0(d(u, L), [|uz])] < 3|lw — ul].

91 ' (w) = w1 + g (Juzl)) ——
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Substituting (5.13), (5.11*) and (5.14) into (5.10*) we conclude that
lgz " (w) — g5 (W)l < (75 + F + 3) Jw — ul| < 13w — ul|.

Since 13 -I1d < (18N + 10) - a, g; '[E" is (18N + 10) - a-continuous. Hence g4[E" is
(18 N+ 10) - a-bicontinuous and so g4 is 2(18 N+ 10) - a-bicontinuous. So Ms o := 60N is
as required. That is, g and g~! are M3 5 - a-bicontinuous.

R4: We shall find ¢/ and b’ independent of E, F, a, Xg and ¥, such that supp(g4) C
B(0;d||9]l,0']|5]]). Let w € B(0,]|g]/5). By (5.3), d(u,L) > ||g||/5. So for every ¢ €
[0,00), n(d(u, L),t) = t. In particular, n(d(u, L), ||uz||) = ||uz||. Hence

L

v
ga(u) = us +n(d(u, L), ||uz]|) - H =u; + Uy = Uu.

That is, g41B(0, ||7]|/5) = Id and hence o' = 1/5.

Let u € E. 1f d(u, L) > |||l/5 or |[us|| > 2707, then n(d(u L), Jluzll) = |luz| and

hence g4(u) = u. Recall that 7 -5~ = v* or 7- 0~ = y=. So if |lus| > 2|57 and
luz|| > 2[5 ||, then ga(u) = u. So by (5.4) and (5.7),
(5.15) If [luz|| > £[13l, then ga(u) = u.

Fact (%) in Part 4 (which precedes (4.9)) says that @3 < 21 for every & € E. But
ti1,3 of Part 4 is @ of Part 5. So ||| < 3||al| for every 4 € E. We show that

(5.16) If ]| > 12[7], then ga(u) = u.

Suppose that |lu; || > 11|/§|| and let w € L. Then (u—w); = uy—§ and hence ||(u—w); || >
lurll =171 = 5171l So lu—w|| > 2[[(u—w)|l > 2-3[17ll = [§]|/5. Hence d(u, L) > [§l|/5.
This implies that g4(u) = u. Suppose that ||u|| > 3||g|| and we show that g4(u) = w.
Clearly, [Ju1|| + [[uz]| > [[ull > 3]l So either [lu[| > 15]|7] or [luz]| > $]g]|. By (5.16)
and (5.15), g4(u) = u. It follows that g4[(E — B(0, 3||g]])) =1Id. So b := 3 is as desired.
Recall that (4.6) said that l9]] < 16Hy||, and that (5.5) said that -|lv|| < [|9].
follows that supp(ga) € B( 5 10llvll;3- 55 1lyll)- That is, supp(ga) B(O, s v, 16||y||)
and the same is true for g; Let aso = 7/50 and bz o = 57/16. Then supp(g2),supp(g; *)
C B(0; I, bs.2llyll). So R3 is proved.

The definition of fy: If v > 1 define 5 = g4, and if v < 1 define 5, = g;l.

R1: Clearly, f(v) =y, and since v=v and y, = y, we have (V) = y,.

We have found M, ;’s, a;;’s and b; ;’s which fulfill C1-C4. It follows from the first
part of the proof of the lemma that there exist M, a,b such that M is a UC-constant for
{(a,b).

(b) Let M,a,b be as ensured by (a), and let ¢’ < 1 and & > 1. We may assume
that @’ > a and that V' < b. Let 2,y € E — F be as in the definition of a UC-constant.
Let g1, g2 be as ensured in (a) for the numbers a and b. (See Definition 9.11(a).) Let
n € H(]0,00)) be a piecewise linear function with breakpoints at: a - ||z, ||z, ||y, -
Iy, 26~ ly]| and such that: n(0) = 05 na- flel) = o’ - el n(ll) = e mCll) = 1y

n(b-llyll) =¥ |lyll; n1[2b- ||y||, 00) = Id. The slopes of the linear pieces of 1 are: %, 1=
1, l}: 11, 21’— nd 1. These slopes depend only on a,a’,b,b’ and not on = and y. Let L
be the maximum of all the above slopes and their inverses. So 1 is L-bilipschitz.
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Let k be the piecewise linearly radial homeomorphism based on 7. That is, for every
u € E— {0}, k(u) = 77(||u||)H1””:—” and k(0) = 0. By Proposition 3.18, k is 3L-bilipschitz.
For i = 1,2, let g} = kog;ok™!. Then ¢, is (3L - Id)oao (3L - Id)-bicontinuous. So by
Proposition 9.10(d), g, is 9L%M - a-bicontinuous. Define M’ = 9L%M. Tt is easy to verify
that clauses B1-B4 in the definition of a UC-constant (Definition 9.11(a)) are fulfilled by
a, b, g), gh and M. Hence M is a UC-constant for (a’,0’). =



10. 1-dimensional boundaries

Chapter 9 dealt with the following situation. F is a normed space, F' is a closed subspace
of F with dimension > 2, z,y € E — F, and ||z|| =* ||ly|| and d(z, F) = d(y, F'). It was
shown that there is an M - oo a-bicontinuous g € H(E) such that g(z) =y, g(F) = F
and supp(g) is contained in the ring B(0;al|z||,b||y||)- When F is 1-dimensional, such a
g does not always exist. The reason for this is that in order to move x to y we need to
rotate x about an axis perpendicular to F. See the construction of g; in Part 2 of the
proof of Lemma 9.13(a). When F' is 1-dimensional, such a rotation does not exist.

Whereas Part 2 of the proof of Lemma 9.13(a) fails for a 1-dimensional subspace,
Parts 1 and 3-5 remain without change. In these parts, the fact that dim(F’) > 2 is not
used. By skipping Part 2 in the proof of Lemma 9.13(a) one obtains the following lemma.

Let F, K be linear subspaces of a normed space F and u € E. Then u | F denotes
the fact that ||u| = d(u, F), and K L F means that u L F for every u € K.

LEMMA 10.1. Let M be a UC-constant for {a,b). Let E be a normed space and F be a
1-dimensional linear subspace of E. Let o € MBC and x,y € E — F be such that:
(i) [lzll < llyll and [lz]| = [[y]l,
(i) d(z, F) =~ d(y, F),
(iii) :r::j:—i—xL, yz;&—i—yL, T,9 € F, xL,yL L F, and for some A > 0, T = Ay,
(iv) if dim(E) = 2, then x,y are on the same side of F.
Then there are g1, 9o € H(E) such that:

(1)
(2) g1og2(z) =,

(3) 91(F) = F and g2(F) = F,

(4) for every i = 1,2, supp(g:) € B(0;allz|, [yl

Proof. Parts 1, 3-5 of the proof of Lemma 9.13(a) constitute the proof of this lemma. =

g1, 92 are Ma-bicontinuous,

DEFINITION 10.2. Let 0 <a < 1,b>1and M > 1. We say that M is a 1-dimensional
Uniform Continuity constant for a and b (abbreviated by “M is a 1UC-constant for
(a,b)”) if the following holds. Suppose that E, F, a, z, y satisfy the following assumptions.

A1l F is a normed space and F is a proper linear subspace of E such that dim(F) = 1,
a€eMBCand z,y€ F—F,

A2 [lz]| < [lyll < a(ll=]),

A3 d(z, F) ~* d(y, F),

A4 |[z]| < a(d(z, F)) and [y[| < a(d(y, F)),

A5 if dim(FE) = 2, then z,y are on the same side of F.

[199]
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Then there are g1, g2, g5 € H(FE) such that:
B1 for every i = 1,2,3, g; is M - a-bicontinuous,
B2 gsegzog1(x) =y,
B3 for every i = 1,2,3, ¢;(F) = F,
B4 for every i = 1,2,3, supp(g;) € B(0;allz[],b]ly|)). O
REMARK. Note that in the definition of a 1UC-constant there is an extra assumption on

x and y which did not appear in the definition of a UC-constant, namely, Assumption
A4 which says that ||z]| < a(d(z, F)) and ||y|| < a(d(y, F)). O

The rest of the chapter is devoted to the proof of the following lemma.
LEMMA 10.3. (a) There are a,b, M such that M is a 1UC-constant for a and b.

(b) For every 0 < a <1 and b > 1 there is M such that M is a 1UC-constant for a
and b.

Items 10.4-10.9 are needed in the proof of the above lemma.

PRrROPOSITION 10.4. Let F' be a finite-dimensional linear subspace of a normed space
E and uw ¢ F. Then there is a 1-dimensional subspace L C span(F U {u}) such that
L1F.

PROPOSITION 10.5. Let X be a metric space, « € MBC, ¢ > 0, D,K > 1, g € H(X),
diam(supp(g)) < Da(c) and g is K - a(c)/c-Lipschitz. Then g is (D + K + 1) - a-
continuous.

Proof. Note that if « € MC, then the function «(t)/t is decreasing. Let z,y € X.
Suppose first that d(z,y) < ¢. Then

afc a(d(z,
d(o@).90) < KD a@y) < k2 g0 ) Ka(d(a,y)
¢ d(z,y)
<(D+K+1)-a(dz,y)).
Next assume that d(z,y) > c. If 2,y € supp(g), then
d(g(x),9(y)) <D ( ) < Da(d(z,y)) < (D+ K + 1) - afd(z,y)).
If ¢ supp(g) and y € supp(g), then
d(g(x),9(y)) < d(z,y) + d(y, 9(y)) < a(d(z,y)) + Da(c)
< ald(z,y)) + Da(d(z,y)) = (D + K + 1a(d(z, y)).
The case that = € supp(g) and y & supp(g) is identical, and the case that =,y & supp(g)
is trivial. m
PRrOPOSITION 10.6. There are b > 1,0 < a <1 and M > 1 such that the following holds.
Suppose that:

(1) o € MBC,

(2) E is a normed space, and L is a 1-dimensional linear subspace of E,
(3) ue E— L and ||ul]| < a(d(u, L)),

(4) u=a+u", where i€ L and v~ L L, and v = (||u]|/|ju"|)u"

Then there is g € H(E) such that:
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g(u) =

EQ; 18 M a-bicontinuous,

(3) supp(g) € B(0; allul], bf|ul),

(4) g(L) = L.

Define M = M, o' = a and b = b. Note that the conjunction of clauses (1)-(4) is
the relation R(u,v,g; M - o, a,b, L) defined in Definition 9.11(b).

Proof. Let A = [u,v]. Clearly, d(u, L) = |[u"|. So |[u"|| < |lu||. We find an upper bound
for |lu — vl:

1

€1 L ~
lu = ol < flu = || + [l = ol = [|a]] + ([Ju] = d(u, L))

< (lull + ™) + (Jfull = d(u, L))

= (Jull + d(u, L)) + ([lull — d(u, L)) = 2|jul] < 2a(d(u, L)).
We show that d(A4,L) = d(u,L). For every z € A there are A € [0,1] and p > 1 such
that z = MG+ pu”. So d(z, L) = pllu”| > |[u"| = d(u,L). Since u € A, we have
d(A, L) = d(u,L). We show that d(A,0) > |lul|/4. Let w =4+ v and C = [u, w] U [w, v].
We first show that d(C,0) > |ju||/2. If z € [v,w], then for some t € R, z = v + ti. So
12l = d(z, L) = d(v, L) = [[v]| = ||ul|. Hence d([v, w],0) = [[ul]

Note that [u,w] = {u+tv |0 <t < 1—|u"||/||v||}. Let z = u+tv € [u,w]. Ift <1/2,

then [[u -+ tv] > llull — tlol] > ull — Jull/2 = Jull /2. T2 > 1/2, then

|+ tv|| > d(u+tv, L) = d(@+u " +tv,L) = d(u" +tv, L)
= d((t+ [[u"[I/Ilv]})v, L) > d(tv, L) > d(v, L) /2 = |Jul|/2.

Hence d([u,w],0) > ||u||/2. It follows that d(C,0) > ||lu||/2.
We next prove that (%) for every € A there are z € C and p € [1/2,1] such that
x = pz. Recall that w = 4 + v. The equation pw = Au + (1 — A\)v has the solution

w=A= m So 1 € (0,1). That is, there are z € A, z € C and p € (0,1) such
that © = pz, and hence for every x € A there are z € C and p € (0,1) such that x = pz.
Let z € [u,w]. Then z = u + tHHu”H , where 0 < ¢t < 1 — ””“u””. The equation

pz = Au+ (1 — Mo has the solution A\ = p = 35. Since t € (0,1), p € [1/2,1]. Let
z € [v,w]. Then z = ””“”H +t(u—u"), where 0 < t < 1. The equation pz = Au+(1—\)v

has the solution
flull

[l + £(llull = w1
It follows that € (1/2,1]. So (%) is proved. Hence d(A,0) > d(C,0)/2 > ||lu| /4.

Let » = d(u,L)/8. By Proposition 9.6(a), there is ¢ € H(E) such that g(u) = v,
supp(g) € B(A,r) and ¢ is M*®°¢ - (Ingth(A)/r + 1)-bilipschitz. Hence requirement (1)
holds. Moreover

e (Ingth(4) s (160000 1)) | e 170(d(1, 1)
s (B 1) <o (B ) < e SRR

So g is 17M5°8 - %-bilipschitz. Also,

diam(B(A4,r)) < Ingth(A4) + 2r < 2a(d(u, L)) + d(u, L)/4 < 3a(d(u, L)).
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We apply Proposition 10.5 to g and to g=! with ¢ = d(u, L), D = 3 and K = 17M>®.
It follows that g is (4 + 17M*®°8) - a-bicontinuous. So requirement (2) holds with M =
44 17M>8. Since d(A,L) = d(u, L) and r < d(u, L), it follows that d(B(A,r),L) > 0.
So gIL = Id. Requirement (4) thus holds.

We find the a and b of requirement (3). Let ro = d(B(A,r),0). So g[B(0,7) = Id.
But 7o = d(A,0) =7 > ||lul|/4—d(u, L)/8 > ||ul[/8. So a =1/8. Let 71 = sup,epa,n 1zl
Then supp(g) € B(0,71). For every x € A, ||z|| < max(|ull,||v]]) = |lu|]. So r1 <
lu]] + 7 < 2||u||. Define b = 2. Then supp(g) C B(0;allul|,bl|u|]). So requirement (3) is
fulfilled with a =1/8 and b=2. u

ProrosITION 10.7. Let E be a 3-dimensional Hilbert space, L be a 1-dimensional syb-
space of E, u,v € E— L and M > 1. Suppose that ||u]|, ||v|| < Md(u, L) and ||ul], ||v] <
Md(v,L). Then there is a rectifiable arc A connecting u and v such that:

(1) Ingth(A) < (4 + m) Mlfu],

(2) d(A, L) = |[u]| /M,

(3) max({jz[| | z € A}) < M|lul|.

L owy = vt and ws = (|lut||/||v|)vt. Let S be a subarc of
S(0, |lwy||) N L™ whose endpoints are wy and ws and such that Ingth(S) < 7 |jw;|. Define
A = [u,w1] U S U [ws, wa] U [wa,v]. Then d(A, L) = min(d(u, L),d(v, L)) > |lul]|/M. Tt is
obvious that max({||z| | z € A}) = max(||ul], ||v|]) < M||u|. Now,

Ingth(A) < [[(w)L ]| +wllu | + [[lu” || = o ] + [I(v) ]
< lull + wllwll + flull + [lof] < (4 + 7) M[ul].

Proof. Let wy = u

So A is as required. =

ProproSITION 10.8. There are M > 1,0 < a <1 and b > 1 such that the following holds.
Suppose that:

(1) E is a normed space, and L is a 1-dimensional linear subspace of E,
(2) uyve E—L, |lul| =v|,v L L andv L L,
(3) if FE is 2-dimensional, then u,v are on the same side of L.

Then there is g € H(E) such that R(u,v,g; M, a,b,L) holds. (See Definition 9.11(b).)
We write MPP = M, aP'P = a and bP°'P = b.

Proof. If E is 2-dimensional, then [u, v] C S(0, ||u||). So d([u,v], L)=|u|| and Ingth([u, v])
< |lu|]l + |v]] = 2||u||. By Proposition 9.6(a), there is ¢ € H(E) such that: g(u) = v,
supp(g) € B([u, ], ||u]|/2), and g is M58 . HQHTL/H -bilipschitz. So for 2-dimensional E’s,
M, a,b can be taken to be 4M*°€  1/2 and 3/2.

Suppose that dim(F) > 2. Let F be a 3-dimensional linear subspace of E containing
L, u and v, and let || | be a tight Hilbert norm on F. Define N = M'"%(3). (See
Proposition 9.2(b).) So for every z € F, ||z|| < [|z||H < N|z||. Obviously, [lu|/®, |Jv|® <
Nd¥(u, L), and ||u|®,||v||? < Nd"(v, L). By Proposition 10.7, there is a rectifiable arc
Ain F connecting u and v such that: Ingth™(A) < (4 + 7)N||u|¥, d¥ (A, L) > + flul®
and max({||z||® | z € A}) < N|ju|®. So
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(1) Ingth(A) < (4+ m)N?||ul],

(2) d(A, L) > wzllull,

(3) max({||z]| | » € A}) < N?Jul.

s+ ||ul|, By Proposition 9.6(b), there is g € H(E) such that:

(4) supp(g) € B(A,7),
(5) g(u) = v,

(6) gis M a“(%ﬁjv”;;”) bilipschitz.

So g is M (16 N*)-bilipschitz.
Since d(B(A,7),L) > (1/2N?)|u||, g|L = Id. Define M = M*¢(16N*), a = 1/2N?
and b = N? + 1. Then M, a,b are as required in the proposition. m

Let r =

PropoOSITION 10.9. There are M > 1, 0 < a < 1 and b > 1 such that the following
holds. Suppose that E is a normed space, u € E — {0}, « € MBC, 1 < A < a(]|u|])/| ]
and v = M. Then there is a radial homeomorphism g € H(E) such that: g(u) = v,
g is M - a-bicontinuous and supp(g) C B(0;al|ull,b||v|]). Note that this implies that
R(u,v,9; M - a,a,b, L) holds. Denote M, a,b by M ad'* and pd'*.

Proof. Let n € H([0,00)) be the piecewise linear function which is determined by the
following equalities: 7(0) = 0, n(||u||/2) = ||u||/2, n(||u|]) = Alju||, and for every ¢ >
Mul| + |lull, n(t) =t. The slopes of the linear parts of n are 1, 2\ and 1/A. Since 1 <
A < a(|lu])/l|wll, nis 2-a(||u|])/||w]-bilipschitz. Let g be the radial homeomorphism of F
based on 7. By Proposition 3.18, g is 6- a(]|u||)/||u|-bilipschitz. Also, Aljul|+ ||u] < 2|vl,
hence supp(g) C B(0, 2||v||). By Proposition 10.5, g is (6 +2 + 1) - a-bicontinuous. So we
may define M =9, a=1/2and b=2. =

Proof of Lemma 10.3. (a) Let E, F,x,y be as in the definition of a 1UC-constant (Def-
inition 10.2). There are & and 2 such that z = & + :CL, i€ Fanda LF. Similarly,
there are § and y= such that y = §+y, § € F and y~ L F. Let 21 = (||z]|/[|="|)a"
and y1 = (||y|l/|ly"|)y". By Proposition 10.6, there are fi, hy € H(E) such that

R(Jf, 1, fla Mlift . Oé,(llift, blift, F) and R(y, 1, hla Mlift . Oé,(llift, blift7F).

Let yo = (Jlz1]l/llv1l)y1. Note that ||z1]| = |ly2ll, 21 L F and yo L F, and if F is
2-dimensional then x1, yo are on the same side of F. By Proposition 10.8, there is
fo € H(E) such that

R(x1,ya, fo; MPEP PP pPeP F).

Since [[y2fl = =]l and [lyall = Iy, it follows that [yaf| < [lsall < a(llyal)). So by
Proposition 10.9, there is go € H(E) such that

R(y27y1;92§ Mdlt T Q, adlta bdlta F)

Let gy =foo f; and g3 :hfl. Clearly, g3 o gz°g1(7)=y. Let M =max(M!ft preere prdit),
Note that ||z1]| = ||z, so f2[B(0,aP*?||z||) = Id. Set a = min(a"f, aP*'? a¥*) and
b = max(plift pPerP pdlt). Tt is obvious that clauses B1-B4 in the definition of a 1UC-
constant hold for M, a,b,x,y, g1, 92,93 and F.

(b) Part (b) is deduced from (a) in the same way that part (b) of Lemma 9.13 is
deduced from (a) of that lemma. m



11. Extending the inducing homeomorphism to the boundary

A sequence means a function whose domain is an infinite subset of N. If o C N is infinite,
then {z; | i € o} is abbreviated by #(°). Suppose that #(°) is a sequence in X and
g € H(X,Y). Then g(Z(?) denotes the sequence {g(x;) | i € 0}. For n € N and an
infinite 0 C N let 02" := {k € o | k > n}. For a sequence & let #=" := Z[Dom(%)=".

Recall that if & : A — A, then «°" denotes ao --- o, n times. Let X,Y be open
sets in metric spaces F and F respectively and g : X — Y. If 2 € Dom(g), then we
sometimes abbreviate ¢°'(x) by g(x).

DEFINITION 11.1. (a) Let X,Y be open sets in metric spaces F and F respectively.
Suppose that z € cl(X) and g € H(X,Y). We say that g is a-continuous at x if there is
T € Nbr(x) such that ¢g[(T' N X) is a-continuous.

Obviously, if F' is a complete metric space, and g is a-continuous at z, then = €
Dom(g!). We say that g is a-bicontinuous at z if g is a-continuous at x, x € Dom(g%)

is a-continuous at ¢°!(z). We say that g is I'-bicontinuous at x if for some o € I,

and g~
g is a-bicontinuous at z.

(b) Suppose that E is a metric space X C E is open, b € bd(X), o € MBC and
x,y € X. Recall that we write 6% ¥ (x) = d(x, E— X). Superscripts © and X are omitted

when they are understood from the context. The notation x z&’b};) y means that

d(z,b) ~* d(y,b) and &% (z) =~ 6% (y).

(O(,b)
E

Suppose that #(°) and ¢(°) are sequences in X. Then Z(*) ~ X8 7°) means that for

every n € o, Tn %E‘;{%) Yn. We abbreviate %E‘;{%) by ~(®b)_ Note that the notation
# =) 7 entails that Dom(&) = Dom(%).

(c) Let X be a topological space, A C H(X), o C N be infinite and (@, 7(© be
sequences in X. We define the relation #(© =4 7@, The relation #©@ =4 §(© means
that for any infinite 0,7 C o there is g € A such that {i € o | g(x;) = y;} and {i € n |
g(x;) = x;} are infinite. If @ € MBC, then #(® =% 7(® means that 7(® =4 7(¢ where
A={g€ H(X) | g is a-bicontinuous}.

(d) Let E be a metric space, X C E be open, a € MBC and I" be a modulus of
continuity. A sequence Z in X is called an a-abiding sequence if

(i) & is convergent and b := lim # € bd(X);
(i) there is n = n(Z,a) € N such that for every k¥ € Dom(%)=", d(x,,b) <
a(d(zy,)).

A sequence ¥ in X is called a I'-evasive sequence if

[204]
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(i) & is convergent and b := lim & € bd(X);
(ii) for every subsequence ¢ of ¥ and « € I', / is not a-abiding.

Equivalently, & is I'-evasive iff (i) holds and for every a € I" there is n € N such that for
every m € Dom(%)2", d(xy,,b) > a(§(xy,)).

(e) Let X be an open subset of a normed space F, and € bd(X). Suppose that X
is two-sided at x, and let (¢, A, r) be a boundary chart element for z. Let U,V € Nbr(z)
and h € EXTE(U N X,V N X) be such that h'(x) = 2. We say that & is side preserving
at x if there is U’ € Nbr(z) such that for every v € U’ N X, u and h(u) are on the
same side of bd(X) with respect to (¢, A,r). See Definition 8.10. We say that h is side
reversing at x if there is U’ € Nbr(z) such that for every u € U' N X, u and h(u) are on
different sides of bd(X) with respect to (1, A, 7). Note that the properties of being side
preserving or side reversing do not depend on the choice of (1, A, 7).

(f) Let X be an open subset of a normed space E, and x € bd(X). Suppose that
bd(X) is 1-dimensional at z, and let (¢, A, ) be a boundary chart element for z. Let L =
bd(X) NRng(¢)). So L is an open arc. Let U,V € Nbr(z) and h € EXTH(UN X,V N X)
be such that h°!(z) = x. We say that h is order preserving at z if there is U’ € Nbr(z)
such that for every u € U’ N L, u and h°(u) are in the same connected component of
L — {z}. We say that h is order reversing at x if there is U’ € Nbr(z) such that for every
u € U'NX, v and h(u) are in different connected components of L — {z}. Note that the
properties of being order preserving or order reversing are independent of the choice of
(b, A,7).

Let G < EXT(X). We say that bd(X) is G-order-reversible at x if there is g € G
such that g is order reversing at x, and if X is two-sided at x, then g is side preserving.
If such a g does not exist, then we say that bd(X) is G-order-irreversible at x. O

ProPOSITION 11.2. Let E, F normed spaces. Suppose that X C E, Y C F are open,
o € MBC and g € EXTE(X,Y). Let b € bd(X), and suppose that g is a-bicontinuous
at x.

(a) There is ro > 0 such that for every x € B(b,19) N X, §(x) =% §(g(x)).

(b) Assume that E = F, Y = X and g(b) = b. Suppose that T is a sequence in X
converging to b. Then for some n € N, 22" ~(®b) g(7)2".

(c) Assume that E = F, Y = X and g(b) = b. Suppose that X is two-sided at b.
Let (¢, A,r) be a boundary chart element for b. Then there is U € Nbr(b) such that
U,g9(U) C Rng(y), and for every u,v € UNX: u,v are on the same side of bd(X) with
respect to (v, A,r) iff g(u),g(v) are on the same side bd(X) with respect to (¢, A, r).

Proof. (a) Let r > 0 be such that g[(B(b,r) N X) is a-continuous. Choose s > 0 such

that gt 1(B(g(b),s)NY) is a-continuous, and let 7 be such that 79 < 7/2 and g(B(b, )
X) C B(g(b),s/2)NY. Let « € B(b,r9) N X. Suppose that € € (0,7/2 — ||z — b|). Let

u € bd(X) be such that ||u — x| < §(z) + ¢. Since 6(z) < ||z — b|| < 7o, it follows that

lu =0l < llu—zl|+llz = bl <d(x)+r/2— |z =b]+ [ =0l <ro+r/2<r
Hence ¢°'[{x,u} is a-continuous. So

3(g(2)) < llg”(2) = g (u)|| < ez —ull) < a(é(z) +e).
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Since this argument is valid for any € € (0,7/2—||z—0]|), it follows that §(g(z)) < a(d(x)).
We apply the analogous argument to g(x). This can be done, since g(z) € B(g(b), s/2)NY".
So §(g(g(x))) < a(d(g(x))). That is, §(x) < a(d(g(x))). We conclude that

o(z) = 8(g(x)).

(b) This follows trivially from (a).

(c) There is s € (0,7) such that g(¢(B(0,s))) € Rng(y). Let U = ¢(B(0,s)).
Let u,v € U N X be on the same side of bd(X). Let L = [t~ 1(u),v 1(1})] Then
L C B(0,r)—Aand thus (L) € X. So g(¥(L)) C X. Hence ! (g(3 ( (L)) € (0 r)—A
That is, there is an arc in B(0,7) — A connecting ¥~ (g(u)) and ¥ ~*(g(v)). So ¥~ (g(u ))
and ¢~ 1(g(v)) are on the same side of A. This means that g(u) and g(v) are
side of bd(X). m

on the same

PROPOSITION 11.3. (a) There is N > 1 such that (al) and (a2) below hold. Let o, 3 €
MBC, X be an open subset of a normed space. Suppose that b € bd(X), X is 3-LIN-
bordered at b, and bd(X) is not 1-dimensional at b. Define & = Boao 3.

(al) Let Z,7 be sequences in X converging to b. Suppose that & ~(*?) . Also assume
that if X is two-sided at b, then for every n € Dom(Z), z,, and y, are on the same side
of bd(X). Then &=NA°a*" 28 g

(a2) Let g € EXT(X) be a-bicontinuous at b. Suppose that g(b) = b. Suppose further
that if X is two-sided at b, then g is side preserving at b. Let T be a sequence in X
converging to b. Then ¥ = FaNBoattos 9(Z).

(b) Let X be an open subset of a normed space and 3 € MBC. Suppose that b € bd(X),
X is B-LIN-bordered at b, and X is two-sided at b. Let g € EXT(X) be such that

g(b) = b, and g is side reversing at b. Let T be a sequence in X converging to b. Then
# /T g(3).

Proof. (a) Let M be a UC-constant for (1/2,2), M= M? and N = M?. (See Definition
9.11(a).) We shall prove that N is as required in (a).

(al) Let X,b,Z,4 and « be as in (al). Let (¢, A,7) be a boundary chart element
for b, and assume that 1 is -bicontinuous. We show that & sN-Beactep y. We may
assume that Z,7 C Rng(z). Set @ = ¢~ () and Z = ¢~ (%). Clearly, @ ~(®0) 7. Let
o,mn C N be infinite. We may assume that either for every i € o, ||w;|| < ||z, or for every
i € g, ||2]] < ||w;||- Let us assume that the former happens. The case that ||z;|| < [Jw;]|
is dealt with in a similar way. Let {m; | i € N} and {m} | i € N} be respectively 1-1
enumerations of o and 1 and set u; = Wy,,, V; = 2, and u} = Wy So 7 ~(@0) g,

We define by induction i, j, € N and h,, € H(BE(0,r)) such that:

2 hn(uin) = Vi,
h, is M - & o a-bicontinuous,

(

(2)

(3)

(4) supp(hn) € B(0; 3 lus, I, 2[lvs, II),
(5)

(6)

g, | < llus, [1/2 and [lvg, I <, 11/2,
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That the construction is possible follows from Lemma 9.13(b). Facts (4) and (5) imply
that supp(h.,) Nsupp(hy,) = 0 for any m # n. So h:= oy hy, is well defined.

Let v = M- a&oa. We verify that h is yo~v-bicontinuous. Let u,v € B¥(0,7). Then
there are m,n € N such that u, h,,(u) € BE(0,r) — Uz supp(hy) and v, by (u) €
BE(0,r) — Ugzn supp(he). If m # n, then h(u) = hpyohy(u) and h(v) = hp o hy(v),
and if m = n, then h(u) = hy,(u) and h(v) = hy,(v). Since hy, o h, and h,, are yo~y-
continuous, ||h(u) — h(v)]] < yevy(|lu — v||). So h is yov-continuous. The same argu-
ment holds for h~'. Tt follows that h is o~-bicontinuous. Since yoy < M?* . a°4,
we infer that h is M? - @°*bicontinuous. By (4) and (5), h(uj ) = uj for every
n € N. Let ¢ = ¢pohotp~'[BCD¥(A,r). Then Dom(g’) = Rng(¢)) N X. Clearly, ¢’
is fo (/\/l2 - @ °%) o B-bicontinuous, and hence ¢’ is M? . 3o&°% o 3-bicontinuous. Define
g = ¢ UId](X — Rng(¢))). From (1) and (4) it follows that ¢ € H(X). The fact
that M? - foa°*o 8 € MBC implies that ¢ too is M? - fo@a°*o S-bicontinuous. Clearly,
;= 1p(uj ) € {z; | i € n} and h(z,) = x},. For every n € N there is k(n) € o such
that ¢ (u;,) = Tg(n) and ¢¥(v;,) = Yg(n). From the fact that h(u;,) = v;, it follows that
9(Tr(n)) = Yrn)- So g fulfills the requirements which are needed in order to show that
gF=NBeaes g
(a2) Tt follows trivially from Proposition 11.2(b) and (al) that N is as required.

(b) Suppose by contradiction that & ="XT(X) ¢(Z). Then (%) there is h € EXT(X)
such that {i € N| h(z;) = g(z;)} and {i € N | h(z;) = z;} are infinite. Since im# =b
and g is side reversing, (%) contradicts Proposition 11.2(c). m

ProprosSITION 11.4. There is N > 1 such that the following holds. Let a,3 € MBC,
and X be an open subset of a normed space E. Suppose that b € bd(X), X is 3-LIN-
bordered at b, and bd(X) is 1-dimensional at b. Define & = foao 3.

(a) Let Z,7 be a-abiding sequences in X converging to b and ¥ ~(*Y) . Also assume
that if X is two-sided at b, then for every n € Dom(Z), x, and y, are on the same side
of bd(X). Then =NA°a" 8

(b) Let g € EXT(X) be a-bicontinuous at b. Suppose that g(b) = b. Suppose further
that if X is two-sided at b, then g is side preserving at b. Let ¥ be an a-abiding sequence
in X converging to b. Then FaNBoactop 9(Z).

Proof. (a) The proof follows the same steps as the proof of Proposition 11.3(al). But
here Lemma 10.3 replaces the use of Lemma 9.13 in the proof of 11.3(al).
(b) The proof follows the same steps as the proof of Proposition 11.3(a2). m

PROPOSITION 11.5. (a) There is N > 1 such that (al) and (a2) below hold. Let o, 3 €
MBC, and X be an open subset of a normed space E. Suppose that b € bd(X), X is
B-LIN-bordered at b, and bd(X) is 1-dimensional at b. Let (1, A,r) be boundary chart
element for b with ¢ being (-bicontinuous. If A is a subspace of E, let F' = A. If
dim(E) = 2 and A is a half space of E, let F = bd(A). (So F is a 1-dimensional
subspace of E.) Define @ = foacf3.

(al) Let #,ij C Rng(v)) be sequences which converge to b, and set @ = ¢~ (Z) and
7=~ (7). Assume that
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() &l g
(i) for everyn € Dom(Z) there are fiy,, u, , On, vy and A, such that u, = ,+u,,

Up = O + U, Gy O € F, w0y L F, Ay > 0 and 9y, = Ay,
(iii) if X is two-sided at b, then for every n € Dom(Z), x, and y, are on the

same side of bd(X).
Then 7 =N-B°a°* o8
(a2) Let I' be a modulus of continuity, o, 3 € I', and & be a I'-evasive sequence in
X converging to b. Let g € EXT(X) be a-bicontinuous at b, and assume that: g(b) = b,

g 1s order preserving at b, and if X is two-sided at b then g is side preserving at b. Then
gsNBeaos 9(Z).

In parts (b)—(d) below we assume that I" is a modulus of continuity, 3 € ' NMBC, X
is an open subset of a normed space E, b € bd(X), X is -LIN-bordered at b, and bd(X)
is 1-dimensional at b. We also assume that G < EXTT (X)), and G is of boundary type I'.

(b) Let (¢, A,r) be boundary chart element for b with v being 3-bicontinuous. If A is
a subspace of E set F' = A, and if diim(F) = 2 and A is a half space of E, set F' = bd(A).
(So F is a 1-dimensional subspace of E.) Let ¥, C Rng(v) be sequences which converge
to b, and set @ = 1~ (Z) and ¥ = ¢~ 1(). Assume that

(i) #,y are I'-evasive,
(ii) for everyn € Dom(Z) there are iy, ui, U, vi and Xy, such that u,, = 4, —i—ui,
Up = O 4 Uy, Gy O € F, w0 L, Ay <0 and 0, = Ay,
Then % € 7.
(c) Let & be a I'-evasive sequence in X converging to b. Let g € G. Suppose that
g(b) = b, and g is order reversing at b. Then & %% g(7).
(d) Let Z be a sequence in X converging to b. Let g € G be such that g(b) = b and
g 1s order preserving at b. Assume further that if X is two-sided at b, then g is side

preserving. Then ¥ =" g(7).

Proof. (al) The proof follows the same steps as the proof of Proposition 11.3(al). But
here Lemma 10.1 replaces the use of Lemma 9.13 in the proof of 11.3(al).

(a2) Let (v, A,r) be boundary chart element for b such that v is S-bicontinuous. If A
is a half space set F' = bd(A). Otherwise, set ' = A. Let B be an open ball with center at
b such that ¢g°'[(cl(B)Ncl(X)) is a-bicontinuous, and cl(B), ¢ (cl(B)Ncl(X)) C Rng(z)).
Let U =4~ (BNX)and h = (g[(BNX))¥ .

We may assume that # C B and that Dom(%) = N. Set @ = ¢ ~!(Z), and for every
n € Nlet u, = @y, + u,, where @, € F and u, L F. Denote h(ii) by ¥, and for
every n € N let v, = 0y, —|—vi, where 0,, € F and vi 1 F. Let s > 0 be such that
B(0,s) N (E — A) C U, h(U). We may assume that ty,, @, Uy, Un, 0, v, € B(0,s) for
every n € N. In order to apply (al), we need to show that v, = A, where \,, > 0.
From Proposition 11.2(a) and the facts that Z is I-evasive, § € I'" and 1 is -bicontinuous,
it follows that « is I'-evasive.

Define &@ = Boaco 3. Then h is a-bicontinuous. This implies that ¥/ too is I'-evasive. So
lim d(un, F)/||un|| = 0 and lim d(v,, F')/||vs|| = 0. We may thus assume that d(u,, F) <
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lunll/2 and d(vy,, F) < ||v,||/2 for every n € N. It follows that for every n, 4, # 0. Let A,
be such that ©,, = A\, 7, It is trivial that 2! is a-bicontinuous, and that h°'[(F N B(0, s))
is order preserving, that is, for every u € F'1 B(0, s), u and h°'(u) are on the same side
of 0. Tt follows that for every n there is u,, > 0 such that h°(i,) = p,,. Suppose by
contradiction that for infinitely many n’s, A,, < 0. Take such an n. Then

15 () = B (i) | < @l = itnll) = g 1)

But
hCl(un) — hd(dn) = Uy — fply, = vi + Aty — fnly = v: — (i, — An) .
So
1R () — B (i) || = ([0 = (pimn — An)inl| = (pin — M) iin| = [l |
> il | = o | = [12(@) | = llon | > & (lnl) = oy 1| = & (unll/2) = @]l |)-

Note that a(||u;, ||) = a@(||un — @nll) > A% (un) — b (@)|. Tt follows that

™ (lunll/2) = alllun ) < o )-
So lunll < 2aea(ut )+ 2a(Jui]) < 4aoa(lui]). That is, Jusl| < daea(d(un, F)).
Since 4aca € I', and since the above holds for infinitely many n’s, @ is not I'-evasive.
A contradiction. Hence for all but finitely many n’s, A,, > 0. Recall that ¥ = h(@). So
7 =~ 1(g(Z)). Obviously, # ~(*) g(&). Hence by (a), Z=NF°a""°8 (7).

(b) Suppose by contradiction that there are infinite o, C Dom(Z) and g € G such
that for every i € o, g(z;) = yi, and for every i € n, g(z;) = z;. Let h = gw_l. So for
some v € I', h is y-bicontinuous at 0. Let Y = E — A. Then « is I'-evasive with respect
to Y and E. Note that for every i € o, h(u;) = v;, and for every i € n, h(u;) = u;. We
abbreviate h! by h. Define h(a;) = u;i;. Assume by contradiction that for infinitely
many i’s in 7, p; < 0. Since i is I'-evasive, there is n such that for every i € n=",
uy || < 1{|ug||. Let i € n=", and assume that p; < 0. Then

1 1 ~ ~
Y(6(ui)) = y(llug ) = v(lui ) = v(llus = @all) = [[A(ui) = h(@s)]|
N 1. . . i
= lJui — patil| = [lug” + G — patii|| = (1 = pa) 8] = Jlug |
~ 1
> [l = llug | = Flluill = glluill = 3wl
So  is not ['-evasive, a contradiction. It follows that there is 7 such that u; > 0. This
implies that h is order preserving at 0. In particular, for every ¢ € o, u; > 0. We claim
that ¢/ is I'-evasive.
This is so, since (i) ¥ = h(@), (ii) v € I, (iii) h is y-continuous and (iv) @ is [-evasive.
Let n be such that for every i € Dom(%)=", §(v;) < ||v;||. Let i € 0=". Then

72 (6(vi) 2 Y(0(ui)) = y(lwi — ) = 1h(ui) — h(@)|| = llvi — pa|

L ~ N 1 ~ 1
= [lvi + (A = pa)tiall = [N = pal 1G]] = flvi | = Al [ al| = [log ||
. L
= 0ll = llvg | > Fllvall = Fllvill = llvsll-
So @#]o=" is 2 - yoy-abiding. This contradicts the fact that ¥ is I'-evasive.

(c) Let (¢, A, ) be a boundary chart element for b such that ¢ is 5-bicontinuous. Since
g € G there is o € I and U € Nbr”(b) such that g[(U N X) is a-bicontinuous. We may
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assume that & C Rng(¢¥) NU. Let h = ng1 and v = Boaof. Then h is «y-bicontinuous.
Let @ = v~ }(%) and ¥ = h(%). So 7@ = ¢~ 1(g(¥)). Also, let u; = ﬁiJruj and v; = 7; +vj,
where ;,0; € F and uil,vi L F. Since @ is I'-evasive, and ¥ = h(&), ¢ is '-evasive. We
may thus assume that for every i € Dom(@), ||u} || < [Jui]|/4 and |[v; || < ||vi|l/4. Let A;
be such that ©; = Ai;. Suppose by contradiction that for infinitely many i’s, A; > 0. We
abbreviate h¢l by h. Let u; be such that h(d;) = p4;. Since g is order reversing at b,

h is order reversing at 0. So pu; < 0. Let ¢ be such that A\; > 0. Then
L " 1 . . " L
Y(llug 1) = 1h(wi) — h(@:)|| = llo; + Xithy — patis]| = (As — pa) sl — vy ||
. L . 1
2 [pal ]l = llog | = sl = lloi 1] = [lvill/2-

But |uy || = 6(u;) < v(6(v;)). So 2-yoy(8(v;)) > |lvi||. That is, 7 is not I-evasive, a
contradiction. It follows that for all but finitely many 4’s, A\; < 0. By (b), %% ¢(Z).

(d) Let o,n be infinite subsets of Dom(Z). Either (i) there is an infinite ¢ C ¢ and
~v € I such that Z[p is v-abiding; or (ii) there is an infinite ¢ C o such that Z[p is
I'-evasive.

Suppose that case (i) happens. To get an f € G such that {i € o | f(z;) = g(x;)} and
{i € n| f(z;) = x;} are infinite, follow the construction in Proposition 11.3(a). However,
Lemma 9.13 which was used in 11.3(a) is replaced here by Lemma 10.3. In case (ii),
follow the proof of (a2) in this proposition. m

Recall that we deal with the setting where we have a normed space E and an open
subset X C E. In this setting, when we write cI(A) we mean c1”(A). If we wish to denote
the closure of A with respect to other sets, e.g. the closure of A with respect to X, then
we write cl¥ (A).

PROPOSITION 11.6. For a topological space X and a subgroup G < H(X), we define the
property Pempet(Z) of sequences & in X as follows.

Peripet(Z) = For every infinite 0 C Dom(Z) and a sequence {U; | i € o} € [[{Nbr(z;) |
i € o} consisting of pairwise disjoint sets, there is a sequence {g; | i € o} € [[{G|Uj] |
i € o} such that ofg; |i €0} & G.

Let E be a normed space and X C E be open. Let I' be a countably generated modulus
of continuity and G < EXT(X) be I'-appropriate. (See Definition 8.6(c).) Let T be a 1-1
sequence in X. Then cl(Rug(Z)) is compact iff Pempes () holds.

Proof. Suppose first that cl(Rng(Z)) is not compact. Then there is an infinite o C
Dom(Z) such that either {z; | i € o} is spaced, or {z; | i € o} is a nonconvergent Cauchy
sequence. For every i € o let r; = finf{||z; — x| | j € o — {i}} and U; = BX(z;,1;).
Hence d(U;,U;) > r;/3 for any i # j in o. It is easily seen that {U; | i € N} is cl(X)-
discrete. Let {g; | i € o} € [[{G|Ui| | i € o}. So {g; | i € o} is cl(X)-discrete. Since G is
I'-appropriate, o{g; | i € 0} € G. So = Pempet(T) holds.

Suppose that # is 1-1 and that cl(Rng(Z)) is compact. Let {a; | ¢ € N} C I' be a
generating sequence for I'. That is, for every a € I there is ¢ € N such that a <X ;.
We also assume that for every ¢ € N, {j | a; = «;} is infinite. Let ¢ C Dom(Z) be
infinite, and for every i € o let U; € Nbr™ (z;). Assume that for any i # j, U; N U; =0.
Since cl(Rng(Z)) is compact, {x; | i € o} contains a 1-1 convergent subsequence {z;
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n € N}. Define y,, = z;, and V,, = U;, N B(yn,n%rl). For every n let g;, € G|V
be such that g; [V, is not ay-continuous. It is easy to see that such a g; exists. For
i€o—{i, | neN}let gg =1d. Let y = lim, y, and g = o{g; | i € o}. Then there is
no o € I' and U € Nbr(y) such that ¢g[(U N X) is a-continuous. We justify this claim.
Let o € I'. Then for some i € N, a < «;. Let r > 0 be such that «f[0,7) < o;][0,7).
There is n such that «;, = «;, diam(V,,) < r and V;, C U. There are u,v € V,, such that
19:, (W) = g3, (V)| > ci([lu —v[]). Since |lu —v| <r, we have o;([lu —v[|) = a(|lu —v[).
So ||gi,, (u) = gi, (V)| > a([lu—vl]). That is, [[g(u) — g(v)[| > a([u—wvl]). Hence g[(UNX)
is not a-continuous. It follows that ¢ € G. So Pempet(Z) holds. m

Ezplanation. For a topological space (X,7X) and G < H(X) let Ap : G x X — X
be the application function, that is, Ap(g,x) = g(z) and let M (X, G) be the structure
(X,7%,G;€, 0,Ap). Note that Penpet(¥) is a property of # which can be expressed
in M(X,G). Hence if ¥ C X, Pompets(Z) holds and ¢ : M(X,G) = M(Y,H), then
Peripet (¥(Z)) holds. So in the case that X is an open subset of a normed space E and
G is I-appropriate, and a similar fact holds for Y, then the property “cl(Rng(%)) is
compact” is preserved under . In what follows we shall define additional properties
of & which are expressible in M(X,G). So they too are preserved under isomorphisms
between M (X,G) and M (Y, H).

DEFINITION 11.7. Let X be a topological space, G < H(X) and Z be a sequence in X.

(a) Let Pprerep(Z) be the following property of &
(i) Dom(Z) = N and Z is 1-1,
(ii) no subsequence of Z is convergent in X,
(iii) Pempet(Z) holds.
A sequence Z which fulfills Pperep is called a point pre-representative.
(b) Let Pepyrg(Z) and Py (%) be the following properties:

Penvrg(Z) = For every infinite ¢ C Dom(Z) and g € G,
if Z]o =% g(%)]o, then ¥ =% g(&).
Pont(7) = Porerep() A Penerg (). O

LEMMA 11.8. Let I' be a countably generated modulus of continuity. Suppose that E is
a normed space, X C FE is open, X is locally I'-LIN-bordered, and G < EXT(X) is
I'-appropriate. Let & be a point pre-representative in X. Then Penyg(Z) holds iff & is
convergent, and (i), (ii), (iii), (iv) or (v) below happen. Set b = lim Z.

(i) For some § € I', X is 3-SLIN-bordered at b.
(ii) For some B € I', X is $-LIN-bordered at b, X is two-sided at b, and bd(X) is
not 1-dimensional at b.
(i) bd(X) is 1-dimensional and G-order-reversible at b, and for some o € I', T is
a-abiding.
(iv) bd(X) is 1-dimensional and G-order-reversible at b, and ¥ is I'-evasive.
(v) bd(X) is 1-dimensional and G-order-irreversible at b.

Proof. We shall use the following trivial facts.
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Cram 1. If =4 Z, then for every infinite o C Dom(¥)), ijlo = Z]o.

CLAIM 2. Suppose that § is a sequence in X converging to a point in bd(X). Assume
further that bd(X) is 1-dimensional at imy. Then either § is I'-evasive, or for some
a € I, ¥ has an a-abiding subsequence.

CLAaM 3. Suppose that § is a sequence in X converging to a point in bd(X). Assume
further that bd(X) is two-sided at lim . Let g € EXT(X) be such that g°'(lim i) = lim ¢,
and suppose that g is side reversing. Then g(7) #*XT(X) 4.

Proof. The claim follows trivially from Proposition 11.2(c).

CLAM 4. Let § be a sequence in X such that § is convergent in cl(X). Suppose that
g € EXT(X) and ¢ (lim ) # lim¢. Then g(if) =<7 ¢.

The following fact does require a proof.
CrAM 5. Let & be a point pre-representative. If Penurg(Z) holds, then Z is convergent.

Proof. Suppose that Z is not convergent. Let ¢/, 2 be convergent subsequences of ¥ such
that lim ¢ # lim 2. Assume further that (x) if bd(X) is 1-dimensional at lim ¢/, then either
iy is I'-evasive, or for some « € I', i/ is a-abiding. Since X is locally I'-LIN-bordered,
there is g € G such that

(1) ¢¢'(lim %) = lim i and ¢g°'(lim 2) # lim Z,

(2) if X is two-sided at lim ¢, then g is side preserving,

(3) if bd(X) is 1-dimensional at lim ¢, then g is order preserving.

By Propositions 11.3(a2), 11.4(b) and 11.5(a2) and by (x), g(7) = . By Claim 4,
g(2) £ Z, and by Claim 1, g(%) # #. Hence = Pepyrg(Z) holds. This proves Claim 5.

Suppose that & satisfies clause (i) in the statement of the lemma. We show that
Penvrg(%) holds. Let g € G. If ¢g°(b) # b, then by Claim 4, g(7') #“ &, for every
subsequence of # of #. If ¢°(b) = b, then by Proposition 11.3(a2), ¢g(Z) = #. So
Prenvrg (Z) holds.

Suppose that 7 satisfies clause (ii) in the statement of the lemma. Let g € G. If
g°'(b) # b, then by Claim 4, g(z') #¢ &’ for every subsequence of Z’ of Z. Suppose that
g°'(b) = b. If g is side reversing, then by Claim 3, g(7’) #“ &’ for every subsequence of i’
of . If g is side preserving, then by Proposition 11.3(a2), g(¥) =% #. So Penyrg(¥) holds.

Suppose that ¥ satisfies clause (iii) above. Let g € G. The case g°(b) # b, is
treated as in (i) and (ii). Suppose that g°!(b) = b. If X is two-sided at = and g is side
reversing, then by Claim 3, g(#') # &, for every subsequence of &’ of #. Suppose that
either X is not two-sided at b, or X is two-sided at b and g is side preserving. Then by
Proposition 11.4(b), g(Z) =¢ Z. So Peyyrg(¥) holds.

Suppose that & satisfies clause (iv). As above, we may assume that g<!(b) = b, and
that if X is two-sided at b, then g is side preserving. If g is order reversing at b, then by
Proposition 11.5(c), g(z’) #% &, for every subsequence of & of #. If g is order preserving
at b, then by Proposition 11.5(a2), g(Z) =€ Z. So Peyyrg(¥) holds.
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Suppose that ¥ satisfies clause (v). We may assume that ¢°'(b) = b, and that if X is
two-sided at b, then g is side preserving. Since bd(X) is G-order-irreversible at b, g must
be order preserving at b. Then by Proposition 11.5(d), g(Z) =% #. So Pepyrg(7) holds.

We have shown that if £ is point pre-representative, & is convergent, and & satisfies
one of the clauses (i)—(v), then Pgyyrg(Z) holds.

Let Z be a point pre-representative, and suppose that Peyyrg(Z) holds. By Claim 5,
Z is convergent. Suppose by contradiction that Z does not satisfy any of the clauses
(i)—(v). Let b = limZ. Then bd(X) is 1-dimensional and G-order-reversible at b, and
(1) Z is not I'-evasive; (2) there is no « € I" such that & is a-abiding. There is vy € I’
and a subsequence ¥ of ¥ such that ¢ is y-abiding. Since I" is countably generated, there
is a subsequence 2’ of ¥ such that 2’ is I'-evasive. Let g € G be such that g is order
reversing at b, and if X is two-sided at x, then g is side preserving. By Proposition
11.5(c), g(2) #¢ z. So g(7¥) #¢ # By Proposition 11.4(b), (%) =% §. S0 = Penyrg(T)
holds. A contradiction. m

We represent points in bd(X) by sequences & in X which satisfy Ppn¢(Z). Such
sequences are called point representatives. By the above proposition, for every x € bd(X),
there is & such that lim & = x and P, (%) holds. So every point of bd(X) is represented.

We shall find a property @pnteq(Z, %) which for point representatives &,y expresses
the fact that lim# = limy. Let & be a point representative. The weak stabilizer of X is
defined as follows:

wstab(7) = {g € G | g(%) = &}.

Define

Ponteq(Z, ) = (wstab(Z) C wstab(y)) V (wstab(y) C wstab(Z)).

For an open subset U of X define opcl(U) = U U (bd(X) — acc®X)(X — U)). Then
opcl(U) is open in cl(X). Also, if V € Ro(cl(X)), then V = opcl(V N X). Let B =
{opcl(U) | U is open in X }. Hence Ro(cl(X)) C B, and so B is an open base for cl(X).
Every open subset U of X will represent opcl(U). So the set of open subsets of cl(X)
which are represented forms an open base for cl(X).

We next define property Pping(Z, U). For a point representative & and an open subset
U of X, Pong (%, U) will express the fact that lim & € opcl(U). Let

Poing(Z,U) = For every sequence §f: if Pyue () and Ppnteq(%, ), then Rng(7)U is finite.

PROPOSITION 11.9. Let I' be a countably generated modulus of continuity. Suppose that
FE is a normed space, X C FE is open, and X is locally I'-LIN-bordered. Let G be a
I'-appropriate subgroup of EXT(X).

(a) Suppose that ¥,y are point representatives. Then ImZ = lUm ¥ iff Pponteq(T,Y)
holds.

(b) Let T be a point representative, and U C X be open. Then limZ € opcl(U) iff
Pblng(fa U) holds.

Proof. (a) Let &,y be point representatives. If lim Z # lim ¢, then there is g € G such
that ¢ is the identity on some neighborhood of lim# and g(limy) # limy. So g €
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wstab(Z) — wstab(g). Similarly, wstab(y) € wstab(Z). So wstab(Z) and wstab(y) are
incomparable.

Suppose that lim# = lim . Define b = limZ. If for some a € I', bd(X) is a-SLIN-
bordered at b, then by Proposition 11.3(a2), wstab(Z) = wstab(y) = {g € G | g(b) = b}.

Suppose that X is two-sided at b and bd(X) is not 1-dimensional at b. Then wstab(Z)
= wstab(y) = {g € G | g(b) = b and g is side preserving at b}. This follows from Propo-
sition 11.3(a2) and (b).

Suppose that bd(X) is 1-dimensional at b. If bd(X) is G-order-irreversible at b, and X
is not two-sided at b, then wstab(Z) = wstab(y) = {g € G | g(b) = b}. This follows from
Proposition 11.5(d). Next assume that bd(X) is G-order-irreversible at b, and X is two-
sided at b. Then wstab(Z) = wstab(y) = {g € G | g(b) = b and g is side preserving at b}.
This follows from Propositions 11.5(d) and 11.3(b).

Suppose that G-order-reversible at b. Then by Lemma 11.8, & is I'-evasive, or there
is @ € I' such that & is a-abiding. The same holds for . If both & and ¥ are evasive
or both are abiding, then wstab(Z) = wstab(y). This follows from Propositions 11.4(b),
11.5(a2), 11.5(c) and 11.3(b). Suppose that & is evasive and ¥ is abiding. Then wstab(Z)
consists of all g € G such g(b) = b, g is order preserving at b, and if X is two-sided at
b, then ¢ is side preserving at b. wstab(y) consists of all g € G such that g(b) = b, and
if X is two-sided at b, then g is side preserving at b. So wstab(Z) C wstab(y). We have
shown that if lim & = lim ¢, then wstab(Z) and wstab(y) are comparable.

(b) Let & be a point representative, U C X be open in X and b = lim Z. If b € opcl(U),
then for every sequence % in X such that lim i/ = b there is n such that Rng(y=") C U.
So Poing(Z,U) holds. If b & opcl(U), then there is a sequence % in X which converges
to b and such that Rng(y) is disjoint from U. There is a subsequence Z of % such that
Ppyn(Z) holds. So Pynteq(Z, Z) holds. Hence = Pying (£, U) holds. =

Proof of Theorem 8.8. Part (a) of 8.8 is a special case of (b), so we prove (b). Let
X,Y,G, H and 7 be as in (b). Then 7 induces an isomorphism 7 between M (X, G) and
M(Y, H). Clearly, properties Ppn(Z), Ppnteq(Z) and Poing(Z) are preserved by 7. This
implies the bi-extendability of 7. m



12. The complete [-bicontinuity of the inducing homeomorphism

In the previous chapter we have shown that if (HEMP-LC(X))™ = HGMPLC(Y), then
T E EXTi(X, Y'). Further, by Theorem 3.27, 7 is locally I'-bicontinuous. In this chapter
we finally conclude that 7 is completely locally I'-bicontinuous. However, at this point
we can only show this for principal I'’s.

12.1. I'-continuity in directions parallel to the boundary of X

DEFINITION 12.1. (a) Let S be a set and P be a partition of S, that is, P is a pairwise
disjoint family whose union is S. Denote S by Sp. For T C S'let P|T := {PNT | P € P}.
Let a ~F b mean that there is P € P such that a,b € P. If X is a topological space, and
S C X is an open set, then P is called an open sum partition with respect to X.

In (b)—(d) assume that (X,d),(Y,e) are metric spaces, 7 : X 2 Y, o € MC and
I' € MC. Let P be an open sum partition with respect to X and S = Sp.

(b) Call T an (a, P )-continuous function if for every P € P and x1, 22 € P, e(7(z1),
T(x2)) < a(d(x1,z2)), and call 7 an («a, P)-inversely-continuous if for every P € P
and 1,22 € P, d(x1,22) < ale(r(z1),7(x2))). We say that 7 is (o, P )-bicontinuous
if for every P € P and z1,22 € P, e(7(21),7(z2)) < ald(zy,22)) and d(z1,z2) <
ale(r(z1), 7(x2)))-

(c) We say that 7 is («, P)-continuous at x if there is T' € Nbr(z) such that T'C S
and 7 is (o, P|T )-continuous, and 7 is said to be (I", P)-continuous at x if thereis o € I’
such that 7 is (@, P)-continuous at x. The notions of («, P )-inverse-continuity at z,
{(ar, P )-bicontinuity at z, (I", P )-inverse-continuity at = and (I", P )-bicontinuity at x are
defined analogously.

(d) Call 7 a locally (I',P)-continuous function if for every v € S, 7 is (I',P)-
continuous at x. The notions of local (I, P )-inverse-continuity and local (I",P)-bi-
continuity are defined analogously. [J

The partitions P that will be used here are of the following form. Let F be a closed
linear subspace of E. Then P is the partition of E into the cosets of F.

The next goal is to show that if (HEMPLC(X))™ € HEMPLC(Y) | then for every
x € bd(X) there is @ € I" and a neighborhood of the identity in the group of translations
parallel to the boundary of X such that for every h in this neighborhood, A" is a-
bicontinuous at 7 (x).

Recall that the notion of decayability was defined in Definition 3.1(c). We shall use
it now again for the following situation. Let BCD¥(A,r) be a linear boundary chart
domain, X = cI®©"(BCDF(A,r)), H = {tr, | v € bd®(A)} and A be the natural action
of H on X. Then ) is decayable.

[215]
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When dealing with partial actions, it is often the case that we wish to perform a
composition go f, where Rng(f) Z Dom(g). Such a composition is considered to be
legal. The domain of the resulting function is f~!(Rng(f) N Dom(g)).

PROPOSITION 12.2. (a) Suppose that BCD® (A1) is a linear boundary chart domain
and L = bd¥(A). So L is a closed subspace of E. Let L' = LN B(0,7). So L' =
bdP@™ ) (BCDP(A,1")). Let X = BCDP(A,r') UL and H = {trF | v € L}. We equip H
with the norm topology of L. Let \ be defined as follows:

Dom(A) = {{h,z) | h € H and z,h(z) € X} and A(h,z) = h(z).

Then X is a partial action of H on X.
(b) Let BCD¥ (A, 1) etc. be as in (a) and o(t) = 2t. Then X is a-decayable in X .
(c) Let BCD¥(A,r") etc. be as in (a). Then for every x € L', x is a A-limit-point.

Proof. (a) This is trivial.

(b) It suffices to check that X is a-decayable at 0. We take ry to be r/. For r € (0,7")
we take V = Vj,. to be {tr¥ | v € BX(0,7/4}. So indeed V x B(0,ar) C Dom(}).
(Recall that a = 1/2.) It thus suffices to show that for every normed space E, r > 0 and
v € B(0,7/4) there is g € H(E) such that

(i) supp(g) € B(0,7),
(ii) for every x € E, g(x) — x € span({v}),
(ii) ¢g/B(0,7/2) = tr, [B(0,7/2),
(iv) g is 2-bilipschitz.
[0,00) — [0, 00) be the piecewise linear function such that k(t) = 1 for ¢ € [0,7/2],
0 for ¢ > r, and k is linear in [r/2,7]. So (k[[r/2,r])(t) =2 — 2t/r. Let

g9(x) =z + k() - v.

It is trivial that (i)—(iii) hold. We check that (iv) holds. Let =,y € E. If ||z, ||y|| > 7 or
[, [lyll < 7/2, then [lg(x) — g(y)|| = [z = yl|- Let u = g(x) and w = g(y). Assume first
that [|z[|, [ly]| € [r/2,7]. Then u —w = (z —y) — 2(||z[| — lyl)) - v. So

Let £ :
k(t) =

2 2 r 3
_ < g — e — oyl - 1422 —gll = 2 —
= wll < e =il + 2o =l Boll < (1+ % 5 1o = = Fllo =

and

2 2 r 1
—wll >z —all = 2l — ull - 12~ —ull = Zllz — ll.
=l > e =l = 2o =yl ol > (1= - 5 )lo =1 = 3llo -
That is, ||z — y|| < 2|lu —w|].
Suppose that r/2 < ||z|| < r and ||y|| < /2. Let z € [x,y] be such that ||z| = r/2.
Let f € {g,97'}. Then

1 (@) = FWIl < 1f (=) = FEI + 1 (2) = F@) < 2lle = 2]l + ]|z — vl
<2(flz = 2l + Iz = yll) = 2]z — y.
The case that 7/2 < ||z|| < r and ||y|| > r is dealt with in a similar way. The case that

lz|| < r/2 and |ly|| > r too is dealt with in a similar way.
(c) It is trivial that every x € X, and in particular every « € L', is a A-limit-point. m
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DEFINITION 12.3. Let (X, d) be a metric space, P be an open sum partition with S = Sp,
H be a topological group and A be a partial action of H on X. Denote the unit of H by
eq, and for g € H set § = g».

(a) Let z € S. We say that (H, \) is P-translation-like at x if for every M € Nbr(eg)
and U € Nbr(z) there are:

(i) N € Nbr(eg) such that N C M,
(ii) T, B € Nbr(x) such that T C BC SNU and N x B C Dom(\),
(iii) K > 0;
such that for every P € P and distinct zg,z; € PN T there are n < K/d(xg,z1) and
g1s---,9n € N which satisfy:

(1) 91 =em,
(2) foreveryi=1,...,n—1, §;(z1) = §i+1(x0),
(3) gn(z1) & B.
(b) Let L C S. We say that (H, \) is P-translation-like in L if for every x € L, (H, \)
is P-translation-like at z. [

The notion of a P-translation-like action will be used in the following setting. Let
BCD®(4,r) be a linear boundary chart domain, X = cI®"(BCD?(A,r)) and H =
{tr, | v € bd”(A)}. The natural partial action of H on X is translation-like.

PROPOSITION 12.4. Let BCD¥(A,r) be a linear boundary chart domain, L = bd¥(A).

So L is a closed subspace of E. Let L' = LN B(0,r). So L' = bd®®"(BCD®(A,r)).

Let X = BCDP(A,r) UL, P={XN(w+L)|ve X} and H={trF |ve L}. We equip

H with the norm topology of L. Let A be the following partial action of H on X:
Dom(A) = {(h,z) | h € H and z,h(z) € X} and A(h,z) = h(z).

Then A is P-translation-like in X.

Proof. The proof is trivial. =

The following lemma will be applied to the group of translations in a direction parallel
to the boundary of a linear boundary chart domain. This lemma captures the main
argument in the proof of Lemma 12.6.

LEMMA 12.5. Let (X,dX) and (Y,d¥) be metric spaces, and 7 : X =Y. Let I' be a
countably generated modulus of continuity, and let o € MBC. Let S C X be open, and
P be a partition of S. Let H be a topological group and X\ be a partial action of H on X.
Let x € §. Assume that:

() S C Fld(),

(ii) A is P-translation-like at x,

(iii) A is a-decayable in S,

(iv) x is a A-limit-point,

(v) there is U € Nbr(z) such that for every g € H(X), if supp(g) C U and g is

aoa-bicontinuous, then g™ is I'-bicontinuous at 7(x).

Then T is inversely (I', P )-continuous at x.
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Proof. Suppose by contradiction that 7 is not inversely (I’,P)-continuous at x. The
conditions of Lemma 3.11 hold for z, according to the following correspondence. The
group G of 3.11 is H(X) here, and N of 3.11 is S here. Also, since z is a A-limit-point,
& :=min({k(z, Va(z)) | V € Nbr(eg)}) > Ro. Hence I' is (<k)-generated. It follows from
3.11 that there are V € Nbr(z), M € Nbr(ey) and v € I" such that M x V C Dom()),
and

(i) for every h € M, (hy)7[7(V) is y-bicontinuous.
For g € H denote § = g). Since )\ is P-translation-like at z, there are:

(ii) N € Nbr(eg) such that N C M,

(ifi) T, B € Nbr(z) such that T C BC SNV,

(iv) K >0,
such that for every P € P and distinct z9,z1 € P N T there are n < K/d(zg, 1) and
ey = gi,.-.,9n € N which satisfy: §;(z1) = §i+1(x0) for every i = 1,...,n — 1, and
gn(z1) & B.

Let C = 7(B) and y = 7(x). Since C is a neighborhood of y, d := d(y,Y — C) > 0.
Let t > 0 be such that 7(B(z,t)) C B(y,d/2) and B(z,t) C T. Set K* = 2K/d. By
clause M2 in Definition 1.9, K* -y € I'. We have assumed that 7! is not (I",7(P))-
continuous at y. Hence there are P € P and yo,y1 € 7(B(x,t) N P) such that

d(r (yo), 7 (y1)) > K y(d(yo, y1))-

For ¢ = 0,1 let #; = 7~ (y,), hence xg,r1 € B(x,t) CT. So there are n < K/d(xg,z1)
and ey = g1,...,9n € N such that for every i = 1,...,n — 1, g;(z1) = gi+1(x0) and
gn(x1) & B. For i = 2,...,nlet x; = g;(x1) and y; = 7(x;). Since yo € 7(B(x,t)) C
B(y,d/2), we have d(yo,y) < d/2. Note that

(1) Forevery i =1,...,n, g (y0) = yi-1 and g7 (y1) = ¥,
and recall that

(2) yo,y1 € T(B(x,1)) C 7(V),

(3) g1,--.,90n € N C M.

So by (i) and (1)-(3), d(yi—1,¥:) < Y(d(yo,y1)) for every i« = 1,...,n. Recall that
d(zo, 1) > K*v(d(yo,y1)). Also, z,, & B and hence y,, € C. So

d(y,Y — C) < d(y,yn) < d(y,0) Z Yie1,9i) < d/2+ ny(d(yo, y1))

<d/2+ K )~7(d(yo,y1))

d(.’L‘Q, T

<d/2+ “v(d(yo,y1))

N S
K*v(d(yo, y1))

=d/2+ 57

m 'W(d(ymyl)) =d.
d » Y1

But d(y,Y — C) = d, a contradiction. =
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LEMMA 12.6. Assume the following situation.

(1) I', A are countably generated moduli of continuity.

(2) X CFE andY C F are open subsets of the normed spaces E and F, X is I'-LIN-
bordered and 'Y is A-LIN-bordered.

(3) T € EXTi(X7 Y), G is a I'-appropriate subgroup of EXT(X), H is a A-appro-
priate subgroup of EXT(Y) and GT = H

(4) € bd(X), {(p,A,r) is a boundary chart element for x, v € I' and ¢ is -

bicontinuous.

(5) y € bd(Y), (¢,B,s) is a boundary chart element for y, 6 € A and v is §-
bicontinuous.

(6) 79(x) = y and 7(p(BCDE (4, 1)) C $(BCDF (B, 5)).

(7) Set L =bd(A), X = BCD®(A,r)U(LNB(0,7)), 7 = ¢y Lorop, ¥ = #(X) and

P={(w+L)NnX|veX}
Then 7 is inversely (A, P)-continuous at 0.

Proof. We may assume that X — Rng(yp) # 0. From the fact that G has boundary type
I it follows that there is Z € Nbr”(z) such that G|Z N X| D HEMPLC(X)|Z N X]|. We
may also assume that p(BCD¥(A,r)) C Z.

We wish to apply Lemma 12.5 to )? Y and 7. More specifically, the roles of the
objects mentioned in 12.5 are taken by the followmg objects here. The role of I" in 12.5
is taken by A here, the e spaces X,Y in 12.5 are X Y here, 7 of 12.5 is 7, a of 12.5 is the
function y = 2z, S is X and P of 12.5 is P here. The topological group H appearing in
12.51s {trZ |v € L} equ1pped with the norm topology of L, and ) is the natural partial
action of {trZ | v € L} on X.

Our next goal is to define the open set U appearlng in clause (v) of 12.5. We first
check that go(X) = cl(X )ﬁ Rng(yp) and that <p(X) is open in cl(X). Clearly, X c
¥(BCD¥(4,r)). Soifu € X, then by the continuity of ¢, ¢ o(u) € cl?(p(BCD?(A,r))) C
cl(X). That is, gp(X) C cl(X). Now, X is closed in B(0,r) and so B(0,r) — X is open in
B(0,r). So B(0,r) ~Xis open in F. Since ¢ takes open subsets of E to open subsets of E,
©(B(0,r)—X) is open in E. Also, (B(0,7)—X)NX = 0. So o(B(0,7)—X)Ncl(X) = 0.
It follows that Rng(p) Ncl(X) = QD(X) From the fact that Rng(y) is open in E it follows
that o(X) is open in cl(X).

Since # = ¢(0) and 0 € X, it follows that o(X) € Nbr®)(2). So d(,cl(X) —
©(X)) > 0. Let ' € (0,r) be such that diam(p(X N B(0,7'))) < d(z,cl(X) — p(X))/2.
The open set U appearing in clause (v) of 12.5 is X N BZ(0, ).

We have to show that clauses (i)—(v) of 12.5 hold. It follows from Proposition 12.2(b)
that X\ is a-decayable in X and from Proposition 12.2(c) that 0 is a A\-limit-point. It
follows from Proposition 12.4 that A is P-translation-like at 0.

We check that U satisfies clause (v) of 12.5. Note that X = 1?7 (BCD?(4,r)).
We shall also use the fact that if c1”(A) C Dom(e), then cl”(p(A)) = ¢(cI¥(A)). This
follows from the fact that ¢ takes closed subsets of E to closed subsets of F.

Let § = aca. So ((t) = 4t. Let g € H()?) be (-bicontinuous and supp(g) C U. In
order to prove that clause (v) is fulfilled, it has to be shown that g is A-bicontinuous at



220 M. Rubin and Y. Yomdin

#(0F). Recall that 7 = ¢y Lor%op. So g" = ((gW)TCl)wil. Set h = g? and o = o Bon.
Since g is [-bicontinuous and ¢ is 7-bicontinuous, it follows that h is o-bicontinuous.
Also, e TP CI'andvy€e ', s0op€ .

Note that Dom(g) = X C Dom(y). So Dom(h) = ¢(X) and hence Dom(h) is open
in cl(X). It follows trivially from the definitions of X and U that cI®(U/) C X. Hence

clE(supp(g)) cXc Dom(y) and so clE(go(supp(g))) = go(clE(supp(g))). So
cl®(supp(h)) = 1" (p(supp(g))) = (cl”(supp(g))) € ¢(cI”(U) € o(X) = Dom(h).
Let h = hUTd[(cl(X) — Dom(h)). We show that i € Hp(cl(X)). That is, h € H(cl(X))

and h is I'-bicontinuous. Let u € cl(X). If u € Dom(h), then since Dom(h) is open
in cl(X) and h is continuous, we infer that h is continuous at u. If u ¢ Dom(h), then
since cl?(supp(h)) C Dom(h), it follows that u € cl(X) — cl®(supp(h)). So there is
Ve Nbrd(X)(u) such that AV = Id. Hence h is continuous at u. The same argument
applies to h™1. So h € H(cl(X)).
We now show that h is I'-bicontinuous. Recall that X — Rng(y) # () and hence
X —Dom(h) # 0. Since ¢ is y-continuous, it follows that Dom(h) and hence supp(h) are
bounded. Set ¢ = d(supp(h), cl(X) — Dom(h)) and e = diam(supp(h)). Clearly, e < occ.
We show that ¢ > 0. Recall that supp(g) C U, and hence supp(h) = p(supp(g)) C »(U).
Also, z = ¢(0) € p(U). So
¢ = d(supp(h), c1(X) — Dom(R) = d((V), cl(X) - ()
> d(a, cl(X) — (X)) — diam(p(U))
> d(z,cd(X) — p(X)) — d(z,l(X) — X)/2 = d(z,cl(X) — X)/2 > 0.

Let u,v € cl(X). If u,v € supp(h), then ||h(u) — h(v)|| < o(||u — v|). If u,v €
cl(X)—supp(h), then ||h(u)—h(v)|| = ||u—v]||. Suppose that u € supp(h) and v ¢ supp(h).
If v € Dom(h), then ||h(u) — h(v)|| < o(||u — v||). Otherwise,

1h(u) = h()]| < [Ih(u) = ull + [lu = || < e+ [lu—v]

e+c

e e
=—etllu—v <= fu—ofl + flu—vl = Ju =l

It follows that h is (1+e/c) - o-continuous. The same argument applies to A ~'. Since
(1+e/c) o€ I, it follows that h is I-bicontinuous.

Let h = h[X. Then supp(h) C ZNX. Hence h € HEMPLC(X)[Z N X|. Tt follows that
h € G. By assumption (3) in the statement of the lemma, h™ € H. So h™ € EXT(Y') and
h™ is A-bicontinuous at y. That is, for some v € A, h” is v-bicontinuous at y. So (h7)!
is v-bicontinuous at y. Now, h = h°!, hence R = (h™)! and so h™" is v-bicontinuous
at 3. Recall that 1 is é-bicontinuous, where 6 € A. Also, ¥~ !(y) = 0. It follows
that (A" )% is §ov o d-bicontinuous at 0F. That is, (h™")¥ " is A-bicontinuous at 0F.
Finally, g¥ = h C h and y € Dom((g”)Td). So ((g‘fo)Td)ﬂ’_1 is A-bicontinuous at 0F.
That is, g* is A-bicontinuous at 7(0F).

We have checked that the conditions of Lemma 12.5 hold. So 7 is inversely (A, P )-
continuous at 0. m
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12.2. [-continuity for submerged pairs and the star operation. The next in-
termediate goal is to show that in the above setting, 7 is inversely A-continuous at 0¥
(Lemma 12.17(b)). Unfortunately, we are able to prove this only under additional asump-
tions on I and A. The assumptions I' = A and I" principal suffice. (See clause M6 in
Definition 1.9.) The exact extra assumptions use the notion of star-closedness which is
defined in Definition 12.11(d). They are: I' C A and A is I'-star-closed.

PROPOSITION 12.7. Recall that for o € H([0,00)) and a normed space E, the homeomor-
phism Radf € H(E) was defined as follows: for u # 0, Radf(u) = o(|lul]) - w/||ul| and
Radf(O) =0. If « € MC and ¢ is a-continuous, then RaudgJ 18 b - a-continuous.

Proof. Let ,y € E' and y # 0. Define z = |[z|| - y/|ly[l. Then [ly —z[| = [[ly| — [l=[]] <

ly — [ So ||z —z| < [|lz =yl + |y — 2|| <2||y —z[|. Let h = Radf. Suppose that = # 2.
Then

() — h@)]| < 1) — A + () — h(@)] < allly — =) + 9‘||'§|") e — 2
< aly—al)+ =L o - i < adly - ofy + S o 1)

— a(ly— =) *“(H%‘D < a(lly— 2l + 2a(lz - =) < a(lly - ] + 2a(2ly — ]}

< a(lly — =) + 4a(lly — 2[]) = 5a(lly — z|).
If x = 2, then ||h(y) — h(z)]| < a(||ly — z||). So Radf is 5 - a-continuous. m

PROPOSITION 12.8. There is M™™ such that the following holds. Let o € MBC and a > 0.
Let E be a normed space, x,y € E and ||z| = |ly|| = a(a). Then there is g € H(E) such
that g(0) = 0, g(z) =y, supp(g) € B(0,a(a) + a/2), and g is M™™ - a0 a-bicontinuous.
Proof. Let b = a(a), ¢ = a(a) + a/2 and N = M"P. (See Proposition 9.2(c).) Let
o € H([0,00)) be the piecewise linear function with breakpoints at b and ¢ such that
o(b) = b/2N and o(t) = t for every ¢t > c. The slope of p on [0, a(a)] is 1/2N < 1. The
slope of ¢ on [a(a), a(a) + a/2] is

c—0b/2N  2a(a)+a—ala)/N < 3a(a)

ala)/2 a -~ a

The slope of g on [a(a) + a/2,00) is 1. So g is (3,3a)-continuous. (See Definition
9.9(b).) By Proposition 9.10(a), g is 9a-continuous. By Proposition 12.7, RaudgJ is 45 - a-
continuous. Clearly, (RaudgE)_1 = Radffl. The slope of o=! on [0,a(a)/2N] is 2N. The
slope of ¢! on [a(a)/2N,a(a) + «/2] is < a/a(a) < 1. So o' is (3,2Na)-continuous.
It follows that (Raudf)_1 is 30N - a-continuous. Let M; = max(30N,45). Then Radf is
M - a-bicontinuous. Let h = Radf. Then

(1) supp(h) € B(0,a(a) + a/2),

(2) h(z) = z/2N,

(3) his M - a-bicontinuous.
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Let L = span({z,y}). By Proposition 9.2(c), there are a Euclidean norm || || on L
hlb
and a complement S of L such that for every u € E, ||(u)z|®+||(u)s| =~  ||ul|. Define

|u| = ||(u) || +|(u)s]||. We shall apply Proposition 9.6(c). Let & = z/2N, § = |21 /1yly,
and 6 be the angle from 2 to § in (L, || |®). So |§]| = |2|. Let S = BX(0,]%|). Let n be
the piecewise linear function with breakpoint at |&| such that n(0) = 6 and n(|Z|) = 0.
So n is 0/]%|-Lipschitz. Hence the conditions of Proposition 9.2(c) hold with r = |Z|
and K = 0/|#|. Let d denote the distance function obtained from | |. Let g; be defined
by g1(u) = Rot:(’;u’s))(u). Then g; € H(E) and gy is (M*™" - Kr + 1)-bilipschitz with
respect to d. Note that Kr = 0 < 7. So g1 is M™*!(r + 1)-bilipschitz with respect to d.
Write My = (M™MP)2M™t(7 + 1). Hence

(4) g1 is My-bilipschitz in (E, || | ).

Let u € E — B(0, ||z||). Then |u| > |lu||/M™ > ||z||/N. So d(u,S) > |2|. Hence
g1(u) = u. That is,

(5) supp(g1) € B(O, [|z]]).
It is also obvious that

(6) 91(2) =9

hlb
Let § = y/2N. Then ||g]| = ||#|. Recall that |§| = |2]. Since [2] =M  ||Z|,
hlb

gl =M ||g|l. That is, (1/M"™) -7l < |7 < M™P . ||g|. We construct go which

takes § to §. Let p: [0,00) — [0,00) be the piecewise linear function with breakpoints
|lg]| and ||z|| such that o(0) = 0, o(||7|]) = ||y|| and o(t) = t for every t > |lz||. Since

gl gl < llzll, o € H([0,00)). The slopes of o are ”—g“, ”:H:Hg” and 1, and the slopes
of o~ ! are %, Hi”:”g” and 1. Clearly, ||7]|/|9]] < M™P = N. Note that ||7|| < ||9]|® =
19 =12 < M"™ - ||i] = N - 55 = [l2]}/2. So

=l —llgll _ A =1/2N)ll=f] _ =l _

]l = 191l el =gl = llall = flll/2
Hence g is max(N, 2)-Lipschitz.

As to the slopes of o~ !, clearly, ||7||/||7]| < N and
R

el =Mzl = @ =1/2N)[lz =
So 07! is max(N, 2)-Lipschitz. Let M3 = 3max(N,2) and gy = Radf. By Proposition
3.18,
(7) g2 is Ms-bilipschitz.
It follows trivially from the definitions of ¢ and g5 that

(9) supp(g2) € B(0, [|lz[)).-

Let g = h=logyog; oh. Note that
(10) = (y) = ™' (y/2N) = y.



Reconstruction of manifolds from subgroups of homeomorphism groups 223

It follows from (1)—(10) that g is M?MyM3 - oo a-bicontinuous, g(z) = y and supp(g) C
B(0,a(a) + a/2). Define M™ = MZM,Ms. Then M is as required. m

DEFINITION 12.9. (a) Let E be a metric space, z,y € X C E and o € MC. We say that
(x,y) is a-submerged in X with respect to E if 6% (z) > ||z — y|| + o~ (||l — y|).

(b) Let X C E, Y C F be open subsets of the metric spaces E,F, V C X, z €
bd(X), a, 8 € MC, I'y A C MC and 7 € EXTi(X, Y). We say that 7 is 3-continuous
for a-submerged pairs in V if for every a-submerged pair (y,z) in V., d¥ (7(y),7(z)) <
B(dX(y, 2)).

We say that 7 is 5-continuous for a-submerged pairs at © (7 is (3; a)-continuous at x)
if there is U € Nbr”(z) such that 7 is B-continuous for a-submerged pairs in U N X. We
say that 7 is A-continuous for I'-submerged pairs at x (7 is (4; I')-continuous at x) if for
any « € I there is 8 € A such that 7 is (3; a)-continuous at x.

(c) Let X C E,Y C F be open subsets of the metric spaces E, F, V C X, «, 8 € MC
and 7 € EXTi(X, Y). We say that 7 is almost 3-continuous for a-submerged pairs in V
(7 is (B; @)-almost-continuous in V) if for any a-submerged pairs (y, z1 ), (y, z2) in V: if
Ay, 21) = d(y, 2), then & (r(y), 7(=2)) < A ((y), 7(21))). O

Under assumptions similar to Lemma 12.6, we prove the submerged continuity of 77!

LEMMA 12.10. Assume the following facts.

(1) I', X are countably generated moduli of continuity, and 2 is the modulus of con-
tinuity generated by I' U Y.
(2) X CE andY C F are open subsets of the normed spaces E and F, X is I'-LIN-
bordered and 'Y 1is X'-LIN-bordered.
(3) T € EXTi(X, Y), G is a I'-appropriate subgroup of EXT(X), H is a A-appro-
priate subgroup of EXT(Y) and GT = H
(4) z € bd(X), (¢, A,r) is a boundary chart element for x, v € I' and ¢ is -
bicontinuous.
(5) y € bd(Y), (¥, B,s) is a boundary chart element for y, o € X and v is o-
bicontinuous.
(6) 7(x) =y and T(p(BCD®(A,1))) C ¢(BCD (B, s)).
(7) Set X = BCDP(A,r), 7 = ¢ lorop and Y = 7(X).
Then 71 is (£2; X)-continuous at 7(0).
Proof. There is Z € Nbr’ (y) such that H|ZNY] D HEMPLC(Y)[Z N Y], and we may
assume that ¢/(BCD"(B,s)) C Z. Set L = bd(A), X = BCD¥(4,r) U (L N BE(0,r)),
F=9¢lor%op ¥ =#(X)and P = {(v+L)NX | v € X}. Note that 7 = TBE(O ). BF(0,5)"
By Lemma 12.6, 7 is inversely (X, P )-continuous at 0. Let o € (0,7) and o € X' be
such that 7[(BZ(0,r9) N X) is inversely (o, P )-continuous. Let Ly C L be any ray whose
endpoint is 0. For every u € B(0,79) N X let x, be the intersection point of the ray
u+ Lo with the sphere 5(0,79). Clearly, lim, .oz, = or. So lim, g d¥ (7(u), 7(z4)) =
d¥ (7(0F), #(x¢r)) > 0. Also, hmuHO 5Y(?(u)) = 0. Hence there is 1 € (0,79) such
that for every u € B(0,71) N X, d¥ (7(u), 7(x,)) > (5?(%(u)). Let V = 7(B(0,r1) N X).
So for every v € V and ¢ € [0,6?(1))] there is y(v,t) € 7([7~!(v),25-1(,]) such that
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d¥ (y(v,t),v) = t. Denote 7~ by 7). By the inverse (o, P )-bicontinuity of 7, for every v
and t as above d¥(7j(y(v,t)),7(v)) < o(d¥ (y(v,t),v)).

CLAIM 1. Let o € ¥ N MBC. Then there are W € Nbr? (0) and v € I' such that 7j is
(v; @) -almost-continuous in W NY.

Proof. Suppose by contradiction this is not so. Let {v; | ¢ € N} be a generating
set for I', and assume that for every ¢, {j | 7; = <7} is infinite. There is a se-
quence {(yi,u;,v;) | i € N} such that: (i) for every i, (y;,u;) is a-submerged in ¥
and us — wil) = os — wills ) imgy; = OF; (i) 0 (yia) < o= (lys — wal)/4: (iv)
I73(vi) = Ay | > Yi(lli(ui) = Aya)ll). Let ri = |lui — yill + o~ ([lui — yill)/2. Note that
from (iii) and the fact that (y;, u;) is a-submerged it follows that B(y;,r;) N\ B(y;,rj) =0
for any i # j. By Proposition 12.8, there is g; € H(Y) such that g;(y;) = i, 9(us) = vi,
supp(gi;) € B(y;,ri), and g; is M™ - avo a-bicontinuous. Since supp(g;) N supp(g;) = 0
for any i # j, we infer that § = o; g; is well-defined, and § is (M**")2 . o °*-bicontinuous.
We shall reach a contradiction by showing that § is XY-bicontinuous at 0, whereas g7
is not I'-bicontinuous at 0F.

Define i = g% and h = l~L UIdN(Y — ¢(Y)). We shall show that h € H. Recall that
y = ¥(0F) and set h; = 91 . Then h = ojen hi- Recall that supp(g;) € B (y;,r;) and
note that lim;eny B (y;,r;) = 0F. Since {07} U U,y BY (yi,7i) € Dom(v), it follows
that lim;en (B (y5,73)) = y. Also, supp(h;) = ¢(supp(g;)). Hence cl(supp(h;)) =
Y(cl(supp(g;))) € (B (yi,7;)) and so lim;ey cl(supp(h;)) = y. We thus conclude that:
(1) cl(supp(h)) = {y}UU;en cl(supp(hi)). It also follows that: (2) if Z C Y and lim 2’ = y,
then lim h(Z) = y. Note that: (3) for every i € N, cl(supp(hs)) € (B (yi,7:)) C ¥ (Y).
Let z € cl(Y). If z & cl(supp(h)), then h U {(z,2)} is continuous. If z € cl(supp(h)),
then z € cl(supp(h)). So by (1) and (3), either z =y or z € Y(Y). If z = y, then by (2),
hU{(z, z)} is continuous. If z € (Y’ Y), then h(z) = h(z). From the facts: h is continuous,
hlY = = h and ¢( ) is open in F, it follows that h is continuous at z. We have shown
that h is extendible in F The same argument applies to h~!, so h € EXT(Y). Clearly,
supp(h) = supp(h) C ¢(Y) C (BCDY (B, s)) C Z. That is, (4) supp(h) C Z.

We now show that h € HEMPLC(Y), Write @ = (M™")2.a°* and = coaco. Then
0 € Y. We have seen that ¢ is a-bicontinuous. So since ¥ is o-bicontinuous, it follows
that h is [B-bicontinuous. This implies that helis (B-bicontinuous. We show that for every
z € cl(Y), h is S-bicontinuous at z. This is certainly true if z ¢ cl(supp(h)). So suppose
that z € cl(supp(h)). Then z € cl(supp(iz)) By (1) and (3), either z € (Y) or z = y. If
z € p(Y), then (Y) € Nbrf' (2) and h(Y) = h]9(Y). So h is B-bicontinuous at z.

Assume that z = y. Recall that z = ¢(0F) and y = ¢(0F') and define Xy = X U {z}
and Yy = Y U {y}. Note that ¢(Y) = 7(o(BCDF(4,r))). Since o(BCDF(A,r)) =
©(BF(0,7)) N X and @(BF(0,r)) is open in E, it follows that o(BCD¥(A,r)) U {z} €
NbrX°(z). From the fact that 7 € EXT*(X,Y)) it follows that 7(o(BCD¥ (A, r)))U{y} €
Nbr¥°(y). That is, 1»(Y) U {y} € Nbr¥(y). So there is W € Nbr' () such that WNY =
¢(Y). Thus h|W = h|W. It follows that h is 3-bicontinuous at y. So h € HEMPLO(y),
By (4), h € HEMPLC(Y)|ZNY]. Also recall that H|ZNY| > HEMPLC(Y)[ZNY]. So
heH.
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We conclude that h™ ' € G. Now, G is of boundary type I, so R " is I'-bicontinuous
at x. Since ¢ is I'-bicontinuous and ¢(0F) = z, we see that (hT_l)S"_1 is I'-bicontinuous
at 0F. The following steps show that (h™ )¢ = §:

1 ~ ~ B Syt JAES | ~
hT = (hUIdN(Y = Dom(h)))™ = (§* VIA[(Y —=¢(Y)))" = (3¥)7 UIdI(X —p(X)).

Since Rng(y) is disjoint from X — ¢(X),

—1

SRS ~ —1 B
((g")7 UIANX —(X)))? =((g")" )*
That is,
(W) = (@) =g
We conclude that §7 is I'-bicontinuous at 0%.

We shall now show that §” is not I-continuous at 0¥, thus reaching a contradiction.
Let T € Nbr”(0) and 4/ € I'. Then there are i € N and @ > 0 such that /][0,a] <

7110, al, 7(us),7(ys) € T and ||7(u;) —7(ys)|| < a. So
g™ ((ui)) = g7 @yl = I7(vi) = Ayl > il (i) = Cya)ll) =+ (17 (us) = 7y D)-

This shows that ¢” is not I-continuous at 0¥. A contradiction, so Claim 1 is proved.

Let W and 7 be as in Claim 1. We may assume that W C V. There is U € Nbr’ (0)
such that for every u,v € UNY: if (u,v) is a-submerged in Y, then B(u, |Jv —u|) C W.
Let u,v € UNY be such that (u,v) is a-submerged in V. Let w = y(u, ||[v — u||). Then
w € U. Hence

17(v) = ()l < y([[7(w) = w)l) < yeo(llw —wull) = yeo(fv—ull).
Clearly, yoo € §2, and we have just shown that 7 is (7o o; a)-continuous at 0. m
DEFINITION 12.11. (a) Let o € H([0,00)). For every t € [0,00) we define a sequence
t= {tn | n € N}. Define tg =t and for every n € N, let t,,11 satisfy the equation
tn+1 + a(tn+1) =1n
and define
pa,n(t> = tn and qa,n(t) = tn - tn+1-

Note that po,o0 = Id.

(b) Let o, 5 € H([0,00)). We define the function B« : [0,00) — [0,00) U {o0} by

Bra(®) = 3 Aldan(t)):

(c) For a« € MC let I, = cl<({a°™ | n € N}).

(d) Let I' € MC and o € MC. We say that I' is a-star-closed if for every 3 € I" there
is v € I' such that fxa < . Let A C MC. We say that I' is A-star-closed if there is
0 € A such that I' is d-star-closed. [J

The next proposition contains some trivial observations about the operation “~”. For
the continuation of the proof of the main theorems we need only parts (a)-(c) of the
proposition. The other parts are mentioned in order to familiarize the reader with this
operation. Part (a) was proved by Wiestaw Kubis.
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PROPOSITION 12.12. Let o, 3,7 € H([0,00)).

(a) For every n € N, a°"+a < na°" +1d.

(b) If v <X 33, then v~a =< f*a.

(c) For every n € N, qo.n and pant1 are strictly increasing functions.

(d) If s < t, then Bra(s) < Braf(t).

(e) Either f+af(0,00) is the constant function f(t) = oo, or fra € H([0,00)).

Proof. (a) Let t € [0,00). Define p, ,(t) = pn, and qu.,(t) = ¢,. Hence ¢, = a(p,) and
Pn+ qn =pn_1. Let K >n > 1. Then

a°™(qr) < @ (pr_1) = a° V(1) < - < Oéo(n_(n_l))(pk—n)) = a(Pk—n) = Qk—n-
Note that > >~ q; =t. Let n > 1. Then

axalt) =Y a(g) =Y a(a)+ Y a ()
k=0

k<n k>n

< Z a°™(t) + Z Qh—n = na°"(t) + t.
k<n k>n

(b) This is immediate.

(c) Note that pan+1 + Ga,n = Pa,n- This equality together with the facts that « is
strictly increasing and p, o = Id implies by induction that ¢, , and p,n41 are strictly
increasing for every n € N,

(d) This follows from the facts that g, , and § are increasing functions.

(e) Note that go k(Pa,n(t)) = ¢ak+n(t). Hence Bxa(pa,n(t)) is a tail of Gxa(t). So
for every n, B*a(pan(t)) < oo iff Bxa(t) < co. Note also that lim,, p, ,,(t) = 0. Suppose
that for some ¢, Sxa(t) = co and let s > 0. Then there is n such that p, ,(t) < s. So
00 = Bxa(pan(t)) < Bra(s). Hence Bxaf(0,00) is the constant function with value oco.

Suppose that Sxaf(0,00) is not the constant co. So Rng(f*a) C [0,00). Note that
Qo0 = @°Pao = ao(Id+a)™t. So lim¢ e ga,0(t) = 0o. For 8 we have lim;_.» B(t) = oo.
It follows that lim; o, B*a(t) > limy—  5(ga,0(t)) = 0.

The strict increasingness of § and all the ¢, ,,’s together with the fact that Sxa(t) < oo
for every t, implies that S*« is strictly increasing.

It remains to show that Bx« is continuous. Let a € (0,00), and we show that
> n B(Gan(t)) is uniformly convergent in [0,a]. Let ¢ > 0. There is n such that
Y k>nB(Gak(a)) < e. From the increasingness of § and all the g, ,’s it follows that
> pon BGak(t)) < e forall t € [0,a]. So Y, B3(qan(t)) is uniformly convergent in [0, al.
Hence S+ is continuous. =

QUESTION 12.13. (a) Let o, 8 € MC. Is it true that either Sxa[(0,00) is the constant
function oo, or G« belongs to MC?

(b) Let oy, 9,8 € MC. Is the following statement true: if a3 < g, then Sxagy <
6*0&1?

(c) Let oo € MC. Is there § € MC — I',, such that I's is a-star-closed? O
ProPOSITION 12.14. Let K > 0, r € (0,1), a(t) = Kt and 3(t) = t". Then there is C
such that Bxa = C - (3.
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Proof. Abbreviate g4, (t) by gn. Let £ > 0. Then

B 1 1 L1 Kt
hm\ 0+ K G+ x) ) T A+ K 1+ K

and hence
S 1 Kt \"  (1+K) K" . K"
6*a;(1+K’")n'(1+K> *(1+K)r—1'(1+K)r't *(1+K)r—1'ﬂ(t)'

SoC=K"J(1+K) —1). m

Lemma 12.17(b) is our next main step. It is preceded by two propositions. Part (a) of
12.17 is also a step in the proof of 12.17(b). For & € MC, a normed space E and z,y € E
let prt,,(x,y) be the point z in the line segment [z, y] such that a(||z — y||) = ||l — z||

PropoOsSITION 12.15. Let o € MC and a > 0. Then there is € = €4, such that the
following holds. If F' is a normed space, M is a closed subspace of F' or a closed half
space of F, x € F — M and d(x, M) = a, then for every y € bd(M): if d(z,y) < a + ¢,
then (z,prt, (z,y)) is 2a-submerged in F — M.

Proof. Let q(t) = qa,o(t) and f(t) = q(t)+(20) " (q(t)). Then f(t) = q(t)+a"(3q(t)) <

q(t) + a=Y(q(t)). In particular, f(a) < g(a) + a~'(g(a)) = a. So there is £ > 0 such
that for every ¢: if |t — a| < e, then f(¢ ) < (f(a )+a)/2. Let y € bd(M) be such that
d(z,y) < a+e. Then

Iz = prég (@, y)ll + (20) 7 (o = prtg (@, 9)l) = allz — ) + 20) " (g(llz — )
= eyl < L0 < am 5PN,
So (z,prt,(z,y)) is 2a-submerged in F — M. u

PROPOSITION 12.16. Let v € MC, F' be a normed space, M be a closed subspace of F' or
a closed half space of F, v € F — M and y € M. Then there is a sequence {z; | i € N}
such that:

(i) zo ==z,

(i) for everyi € N, (x;, x;41) is 2a-submerged in F — M,

(iii) for every i € N, |lz; — 11| < qasi(|lz — yl)),

(iv) lim; x; exists and lim; x; € bd(M),

(v) [[1im; 2 —y|| < 2[lz —y].
Note that the convergence of {x; | i € N} follows from (iii), and need not be required.

Proof. Write p,,; = p; and ¢n,; = ¢;. Note that p;op; = p;y1 and that goop; = ¢;. Let
xg = = and yo = y. We define by induction z; € F — M and y; € bd(M). Suppose that
x;,y; have been defined. Let y; 11 € bd(M) be such that ||z; — yir1|| < ||z — vil| and
(@i, prt, (i, Yitr1) ) i 2a-submerged in F' — M. The existence of such y;41 is ensured by
Proposition 12.15. Let x;41 = prt, (2;,yi+1). (Note that if for some § € M, d(x, M) =
lz — g||, then y; can be chosen to be g for every i > 1.)

By the definitions, clauses (i) and (ii) hold. We prove (iii). We prove by induction
on i that ||z; — x| < ¢ (||l —y||) and ||zi11 — yit1l] < pis1(||lz — yl|). It is trivial that
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the induction hypotheses hold for i = 0. Suppose that the induction hypotheses hold for
i — 1. Then

lzi = zitall = qo(llzi — yir1ll) < qolllzi — will) < @ @i(llz —yl)) = ¢:(llz — yl)),
lziv1 — virall = pr(llzs — visal]) < pallles — will) < pr(pilllz —yll)) = pica(llz — yll)-

So (iii) holds.

We prove (iv). Obviously, > :=, ¢:(||[z—yl|) = ||z —y||. Since ||z; —zit1]| < ¢ ([|lz—yl)),
it follows that > :° |lz; — z;41| is convergent. So {z; | i € N} is convergent. Let
Z = lim; x;. The facts lim; p;(||z — y||) = 0 and ||2; — || < pi(||z — y|) imply that
lim; ||z; — y;|| = 0. Since y; € bd(M), it follows that Z € bd(M).

We prove (v):

o0 o0
12 =2 <D e =zl <D ailllz —yll) = [l= —y].
i=0 i=0

So |z —yl <[z =zl + [z —y)l <2[z—y|. =
LEMMA 12.17. Assume that clauses (1)~(7) of Lemma 12.10 hold. That is,

(1) I', X are countably generated moduli of continuity, and 2 is the modulus of con-
tinuity generated by I' U Y.
(2) X CE andY C F are open subsets of the normed spaces E and F, X is I'-LIN-
bordered and Y is X -LIN-bordered.
(3) T € EXTi(X, Y), G is a I'-appropriate subgroup of EXT(X), H is a A-appro-
priate subgroup of EXT(Y) and GT = H.
(4) z € bd(X), (¢, A,r) is a boundary chart element for x, v € I' and ¢ is -
bicontinuous.
(5) y € bd(Y), (¥, B,s) is a boundary chart element for y, o € X and v is o-
bicontinuous.
(6) 7%(x) =y and T(p(BCD¥(A,r))) C ¢(BCD (B, s)).
(7) Set L = bd(A), X = BCD¥(A,7) U (LN B(0,r)), # = ¢ torvep, ¥ = #(X),
Y = #(BCD®(A, 7)) and P = {(v+ L) N X |v e X}.
Assume further that
(8) 12 is X-star-closed.
The the following hold:

(a) Let M = bd(B). Then there is W € Nbr' (0) and w € 2 such that for every
ze(Y-M)NW andyeYNMNW, |77 (z) =77 (y)| <w(|jz—yl).
(b) 771 is 2-continuous at 7(0).

Proof. (a) Let @ € X be such that 2 is a-star-closed. It is easy to see that « may
be chosen to be in MBC. Note that ¥ = Y — M. Let 7 = #7!. By Lemma 12.10,
there are o € £2 and Wy € Nbr(0F) such that for every u,v € Wi NY: if (u,v) is
2a-submerged in Y, then ||7j(u) — A(v)| < o(||u — v||). Let v € £2 and a > 0 be such that
o*al[0,a] < v[[0,a].
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Let P={(v+L)NX |ve€ X} By Lemma 12.6, 7 is inversely (A, P )-continuous
at 0F. Note that 7(L N X) MNY, thatis, MNY € T(P) So there are o € ¥ and
Wy € Nbr? (0F) such that for every u,v € Wo N M N Y, ||A(u) — A)|| < o(|ju — v]]).
Choose so € (0,a/2) such that B(0F,6s0) N BCDY(B,s) C Y N Wy N W, and let
W = B(0F, s9).

Let z € (Y —M)NW and y € Y "M NW. Let {z; | i € N} be the sequence ensured
by Proposition 12.16 and z = lim; z;. Note that by (iii) of 12.16, >, yllzi — Zsy1||
< lz =yl < 2s0. So |||l < |zl + >, ' |lz; — 241 < 3so for every n € N. Similarly,
IZ]| < 3sp. Hence {z; | i € N} C W; C Dom(A) and Z € Wy C Dom(7)). We conclude
that

|7 (x

3)

Z @) | + 19(@) - Ay)] = A,

Since z,y € Wo N M NY, we have ||7(z) — 7(y)|| < o(||z — y|)-

By (ii) of 12.16, (x;, ;11 ) is 2a-submerged in F' — M. Using the facts that z; €
B(0,3s0) and that B(0F, 6s0)NBCDY (B, s) C Y, it is easily seen that 5?(:@) ="M (g,)
for every i € N. So (x;,x;41) is 2a-submerged in Y. This, together with the fact that
X, Tip1 € Wy, implies that ||7(x;) — 7(zi41)]] < o(||zi — zi41]|). Hence

oo

<Y olws — i) + oIz —yl) = B.
i=0
By the increasingness of g, ; and clause (iii) in Proposition 12.16,

o0 oo

Y olllzi = zinall) <Y oailllz = yl) = exallz - yl)).

i=0 =0

Clause (v) in 12.16 implies that o(||Z — y||) < o(2]|z — y||). Hence
B <oxa(llz —yl) + o (2-1d)([lz - yl)).

Recall that v € £2, pxal[0,a] < v[[0,a] and sy < a/2. Let w = v + o0 (2-1d). It follows
from the above that w € 2 and ||/)(x) — H(y)|| < w(||z — y||). This proves (a).

(b) We use the notations of (a). Let z,y € WNY. If 2,y € M, then |i(z) — A(y)|| <
o(llt—y|). If x & M and y € M or vice versa, then [|7j(x) —7(y)|| < w(||x—y]||). Suppose
that =,y ¢ M and write 3 = 2a. If (z,y) is B-submerged in Y or (y,z) is -submerged
in ¥, then l(x) — ()| < e(llz — o). )

Suppose that neither (x,y) nor (y,z) are S-submerged in Y. Since z,y € B(0, so)
and B(0,6s0) N BCD¥(B,s) C Y, 6F~M(z) = 6¥ (z) and 6¥—M(y) = 6¥ (). So by the
non-submergedness of (z,y) and (y,z), 6" M (z),5F"M(y) < ||z — y|| + B~ (||]z — y]))-
Since 3 € MBC, 371(t) < t for every t. So 6" M (z),57=M(y) < 2|z — y|.

Let 7,4 € M be such that ||z — z| < 267~ (z) and ||y — 9| < 208~ (y). Clearly,
|1Z]| < 3[|z|| < 3so. Hence € Wo N M NY. Similarly, § € Wo N M NY. We also have

1z = gl < |z = =] + |z = yll + lly = gll <207 (@) + [lo =yl + 267 () < 9l — o

and ||z — Z|, [y — 9|l < 4[|z — y||. The final estimate is
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I(x) = 2|l < () = 2@ + 19(@) = 2@ + [19(@) — )|
<w(lle = zl) +o(lz = gl) +wlly - vl)
<w(@llz —yl) +oOllz —yl) +wldle - yl)) < 8w(llz —yl) + 9o (| =yl

Clearly, v := 8w+ 90 € 2. Obviously, o,w, ¢ <. We have thus shown that for every
v,y € WNY, ||Ax) — 2| < y(l|lz —yl|). So 7 is 2-continuous at 0. m

We make a last trivial observation before proving the main theorem.

PROPOSITION 12.18. (a) Let I' be a modulus of continuity and o« € MBC — I'. Let X be
an open subset of a normed space E and x € bd(X). Then there is g € H(E)|X]| such
that g is 9 - ao a-bicontinuous and g is not I'-bicontinuous at x.

(b) Let I';) A be moduli of continuity, E,F be normed spaces, X G E be an open
I'-LIN-bordered set, Y C F be an open A-LIN-bordered set, G < EXT(X) and H <
EXT(Y) be respectively I'-appropriate and A-appropriate, 7 € (HEPRLOE(XY) and
G" =H. Then I' = A.

Proof. (a) For r > 0 define g, : E 2 F as follows: ¢,.(0) =0,
r z

gr(2) = ——=-a(|lz])

e if |2 € (0,7),

2]
and g,(z) = z if ||z]| > r. Obviously, supp(g,) = B(0,7), and it is left to the reader to
check that g, is % -a-bicontinuous, and that if v € MC is such that g, is y-bicontinuous,

then v[[0,r] > 7 - @[[0,7]. For y € E define g, = g, Let {B(z;,7;) | i € N} be a
sequence of pairwise disjoint balls such that for every i, B(z;,r;) C X and lim; z; = z,
and let g = 0 gz, »,1X. Then g is as required.

(b) First we show that A C I'. Suppose otherwise. Let 2 € bd(X) and y = 7°(x).
So y € bd(Y). There are W € Nbr(y) and 8 € A such that 7= 1|{(W NY) is 3-
bicontinuous. Let V' € Nbr(y) such that V C W and HGMPLC(Y)[V N Y| C H. Choose
a € ANMBC — I' and define @ = 9-aca and § = Boao 3. Let U = 7 1(VNY). Hence
x € bd(U).

Let X’ be an open subset of U N X such that cI(X’) Nbd(X) = {z}. By (a), there
is ¢/ € H(FE)|X'| such that ¢’ is a-bicontinuous, and ¢’ is not I-bicontinuous at x. Let
g =¢'1X and h = ¢". Since g is E-biextendible and 7 is (E, F')-biextendible, h is F-
biextendible. From the fact that 7[(U N X) is B-bicontinuous, it follows that h[(V NY)
is d-bicontinuous. We wish to conclude that h is d-bicontinuous. Indeed, this follows
from the facts: cl (supp(h)) € (VNY)U {y} and y € cI(V NY). (The same argument
appears in the proof 12.10, where it is proved that h € HSMPLC(Y').) Obviously, 6 € A,
so h € H(MPLC(Y)[V.NnY| C H. Recall that G™ = H, hence g = hm € G. Butyg
is not I'-bicontinuous at x. This contradicts the fact that G is I'-appropriate. Hence
ACT.

It follows that 7 € (HEPR-LC)(X V) and hence 771 € (HEPR-LC)%(Y] X). We now
repeat the above argument for 771,
conclude that ' C A. =

So the roles of I' and A are interchanged, and we
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12.3. Final results
THEOREM 12.19 (Main Theorem of Chapter 12). Assume that

(1) I', A are countably generated moduli of continuity, I' C A and A is I'-star-closed.
(Or assume the special cases: (i) I is principal and A = T', or (ii) I' = I'*'Y and
A = [HLD )

(2) X g E andY C F are open subsets of the normed spaces E and F, X is I'-LIN-
bordered, and Y is A-LIN-bordered.

(3) G <EXT(X) is I'-appropriate, and H < EXT(Y) is A-appropriate.

(4) 7 € EXTE(X,Y) and G™ = H.

Then I' = A and 7 € (HEPRLOF(X|Y).

Proof. That (i) is a special case of (1) follows from Proposition 12.12(a) and (b), and
that (ii) is a special case follows from Proposition 12.14.

Since I' C A, the modulus of continuity {2 which is generated by I'U A is A, and since
A is I'-star-closed and I' C A, we see that A is A-star-closed. So {2 is A-star-closed. Let
x € bd(X). There are a boundary chart element for z, (¢, A,r), and v € I" such that ¢
is y-bicontinuous. Let y = 7°!(z). Choose a boundary chart element for ¥, (4, B, s), and
o € X such that 1 is o-bicontinuous. Also assume 7(o(BCD¥(A4,7))) C (BCD¥ (B, s)).
Set L = bd(A), X = BCDP(A,r) U(LNB(0,7)), # =t Lor%epand ¥ = #(X).

By Theorem 12.17(b), 77! is f2-continuous at 0. That is, 7! is A-continuous at 0%
Since @, are A-bicontinuous at 0¥ and 0% respectively, o7 1ot)~! is A-continuous
at y. Note that there is V € Nbr’(y) such that Dom(po7 teoty=1) D V NY. Also,
por toy I (VNY)=7"1(VNY). Hence 7~! is A-continuous at y. Since it is also
given that 7 € EXTE(X,Y), it follows that 7=! € HRPR-LC (Y, X).

We now reverse the roles of X and Y. Let n=7"1. Son:Y = X, H” = G and the
modulus of continuity {2 generated by AU I is again A. So {2 is I'-star-closed.

Let y € bd(Y) and z = n(y). We choose ¢ and ¢ and define 7} in the same way
that ¢, 1) and 7 were defined in the preceding argument. We thus conclude that 7! is
-continuous at z. That is, 77! is A-continuous at z. There is U € Nbr”(z) such that
oo~ I(UNX) =7(UNX). Hence 7 is A-continuous at z. We also need to know
that 7 € EXTi(X, Y), and this is indeed given. Hence 7 € HEPR-LC(X|Y"). We proved
that 7 € (HRPRLC)*(X,Y). By Proposition 12.18(b), I' = A. =

Proof of Theorem 8.9. If X = E then Y = F and hence HEMPLC(X) = HLC(X), and
the same holds for Y. So in this case the claim of 8.9 is implied by Theorem 3.27.

Assume that X # E. We apply Theorem 12.19 to the special case that I' = A
and I is principal, and take G, H to be H&MPLC(X) and HGMPLC(Y) respectively.
So 7 € (HEPRLCY: (X Y). By Theorem 3.27, 7 is locally I'-bicontinuous. Hence 7 €
(HIQMP‘LC):I:(X,Y). -

The final reconstruction theorems of Chapters 8—12. Combining the results of the pre-
vious sections in different ways, one obtains various reconstruction theorems. Parts (a)
and (b) of the following theorem are such corollaries. Part (a) is a restatement of Theo-
rem 8.4(a). Indeed, the special case of (a) in which I' = I'L;p motivated the whole work
presented in Chapters 8-12.
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The reconstruction theorem for the group HEPR-LC(X) which appears in (b) is a
byproduct of the proof of the main result. We thought it was worth mentioning.

In (c) we tried to capture the essence of the argument. Part (c) can be further
strengthened. But it seems to be a natural stopping point.

THEOREM 12.20. Let I') A be moduli of continuity, E and F be normed spaces and
X CE, Y C F be open. Suppose that X is locally I'-LIN-bordered, and Y 1is locally
A-LIN-bordered.

(a) Suppose that I' is principal. If ¢ : HEMPLO(X) =2 FGMPLO(Y), Then I' = A
and there is 7 € (HEMPLOYE (XY such that ¢(g) = g™ for every g € HEMPLO(X).

(b) Suppose that I is principal. If p : HEPR-LC(X) = gEPRLC(Y)  Then there is
7 € (HEPRLOVE (XY such that ¢(g) = g™ for every g € HEPR-LC(X).

(c) Suppose that I' and A are countably generated, I' C A and A is I'-star-closed.
Let G < EXT(X) be I'-appropriate and H < EXT(Y) be A-appropriate. Assume further
that LIPYC(X) < G and LIPYC(Y) < H, and suppose that o : G = H. Then I = A, and
there is T € (HEPR-LOYE(X|Y) such that ¢(g) = g" for every g € G.

Proof. (a) By Theorem 2.8(b), there is 7 € H(X,Y') such that 7 induces ¢. By Theo-
rem 3.27, ' = A and 7 € (HEC)*(X,Y). By Theorem 8.8(a), 7 € EXT*(X,Y). By
Theorem 8.9, 7 € (HEMP-LOYE (X 7).

(b) The proof is similar to the proof of (a). However, we use Theorem 8.8(b) and not
8.8(a).

(c) By Theorem 2.8(b), there is 7 € H(X,Y) which induces ¢. By Theorem 8.8(b),
7 € EXTH(X,Y). By Theorem 12.19, I' = A and 7 € (HEPRIC)E(X V). u

Proof of Theorem 8.4(a). Theorem 8.4(a) is restated as part (a) of 12.20 above.
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Index of symbols

(in order of appearance)

f: X 2Y. This means f is a homeomorphism between X and Y 7
@ : G = H. This means ¢ is an isomorphism between G and H 7
(a,b). Notation of an ordered pair 7
G < H. G is a subgroup of H 10
f < g. This means for every ¢, f(t) < g(t) 12
a=xp = forsomet>0, «afl0,t] <A[[0,¢] 12
g°". Notation for go --- og (n times) 12
H'={h'|heH} 14
n: MR(X, G) = MR(Y, H) 25
G(z) ={g(z) | g € G} 26
GBl. GC{g|g: A— A}, then G|B] :={g€ G| g[(A— B) =1d} 26
U 2 V. This means (3g € G)(g(U) =V) 31
U < V. This means U is strongly small in V' 31
U = V. This means U is strongly separated from V' 31
[z,y]. The line segment with endpoints = and y 31
E. The completion of a normed vector space E 35
oF =U{fIsupp(f) | f € F}UId[(Z — U{supp(f) | f € F}) 35
Onen hn 35
Ax(z) = {ha(z) | h € A} 48
AfX. The restriction of a partial group action A to an open set X 48
AfHi. The restriction of a partial action A of H to a subgroup Hy of H 49
a =" b. This means that a < ~(b) and b < v(a) 52
f ~? g. This means that Dom(f) URng(f) C Dom(g) and g = go foo * 52
Ulwi,we) 64
girn = {(z,y) |z € 1M(A), y € N and gU {(z,y)} is a continuous function} 81
¢. Abbreviation of gf\}[,N 81
¢Sy, Abbreviation of gﬁlmM 81
He = {r" | h € H} 81
AZ" ={m e A|m>n} 103
A" ={me A|m>n} 103
AS" ={m e A|m <n} 103
A<t ={me A|m < n} 103
x ~% y. This means that = and y lie in the same connected component of X 135
& ~* §. This means that for every n, z, ~% yn 135

[235]
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e = FENI(cl(X)) 144
a ~¥ b. This means %a <b< Ka 170
It ~® || ||°>. This means for every u € E, ||u||* =% ||u|? 170
E = L ®"# S. The algebraic direct sum 170
(z)r,s. The L-component of z in L & S 171
(z)r. Abbreviation of (z)r,s 171
l[ull 5 = [I(w)s]| + [(u)z] 171
H 1™ F. This means for every u € H, d(u, F) > 2 |ul| 171
s~ t. This means t < a(s) and s < «a(t) 177
u L F. This means: F is a linear subspace of a normed space E, u € E and ||u| = d(u, F)) 200
K | F. This means: K, F are linear subspaces of F and for every u € K, u L F 200
£, A sequence whose domain is o C N 205
o= ={ke€o|k>n} 205
#2" = #[Dom(&)=" 205
x zg‘(’g) y. This means d(x,b) ~ d(y,b) and 6~ (z) =~ §*(y) 205
@ zg’z) 7(?). This means: for every n € o, z», zﬁéil’é) Yn 205
A~ Abbreviation of %E;’%) 205
gl 4 g‘(g) 205
7@ g g‘(g) 205
PIT={PNT|PeP} 216
a ~F b. This means: there is P € P such that a,b € P 216
Bra(t) =370 B(gan(t) 226

Index of notations

(in alphabetical order)

A(FE). The group of affine automorphisms of F 48
A(E;F)={AcA(E) | A(F)=F} 49
ABUC(X,Y) ={h € H(X,Y) | for every bounded set A C X, h|A is UC} 98
acc™ (U). The set of accumulation points of U in X 25
B%(z,r)={y € Z | d(z,y) <7} 31
B(z,r) = {y € B | d(z,y) <1} 31
B?(A,r) =U,ea B (z,1) 31
B(z,r). Abbreviation of BX (x,7) 31
B(z;r,s) ={ye X |r <d(z,y) < s} 171
BCD®(A,r) = BF(0,r) — A. A boundary chart domain based on E and A with radius r 166
bd* (U). The boundary of U in X 25
BUC(X,Y)={g € H(X,Y) | g is boundedness preserving and g[A is UC for every

bounded set A C X} 14
cl<(I') ={a € MC | for some y € I', o =7} 12
cl* (U). The closure of U in X 25

CMP.LUC(X). The group of biextendible homeomorphisms of X which are bi-uniformly

continuous at every z € cl(X) 9
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Cmp(X). The set of connected components of X

co-dim®”(L). The co-dimension of L in E. Abbreviation co-dim(L)

8% (A) =d(AE - X)

6% () = 6* ({a})

§(A). Abbreviation of 6% (A)

§(x). Abbreviation of 6% (x)

a1 ()

A(A) = sup, 4 d(a, E - X)

6%E(z) = d(x, E — X). Abbreviations: 6% (z), §(x)

diam(A) = sup,, ,c 4 d(z,y)

er. The unit of a group H

ENI(X, @,G) = {g(z) | € NI(X, @) and g € G}. The extended normed interior
of (X, d,G)

ENI(X, &) = ENI(X, &, H(X))

ENI(X) = {h(z) | z € nt*(X), h € H(X)}

N(o,a) (8, 1)

EXT(X)={g€ H(X) | g and g~' are extendible}

EXTYN(X,Y) = {h € H(X,Y) | Dom(h$; y) = I (X)}

EXT(X,Y). Abbreviation of EXT*"V (XY

EXTM(X). Abbreviation of (EXTMM)*(X, X)

FD.LIP(X)

FD(X)

F1d(\) = Dom(ey)

Iy =clz({a°" | neN})

THMD — Lo € MC| for some K >0, a < K2}

LD — (J{THEP | ¢ € (0,1]}. The Holder modulus

I = fo, € MC | for some K >0, a < Kz}

H(X). The group of all auto-homeomorphisms of X

Hpr(X). The group of all I'-bicontinuous auto-homeomorphisms of X

H(X;F)={he HX)|h(XNF)=XnF}

Hr(X)={h € H(X) | there is v € I" such that h is y-bicontinuous}

Hr(X;F)={he Hr(X) | (FNX)=FnX}

Hr(X;S,F) = Hr(X,S) N Hr(X; F)

Hp(X;S,F). The subgroup of H(X) generated by U{Hr(X;S,Fs)|S € S}

HX,Y)={h|h: X 2Y}

H(X; D) = {h € H(X) | h(D) = D}

Hr(X,S) = Hr(X)|S|

HFP(X)

HEPRLC(X) = {g € EXT(X) | for every x € bd(X), g is I'-bicontinuous at =}

HSMPLC(X) = H5C(X) N HEPRLC(X)

HEPP(X,Y) = {f € BPD.P(X,Y) | for every BPD set A C X, f| A is I'-continuous}

HEMPLC(X) = {g € EXT(X) | (Vo € cl?(X))(3U € Nbr®(X))(3a € ) (g[(U N X)

is a-bicontinuous)}
HEMPLO(X V) = {g € EXT(X,Y) | g% is locally I'-continuous}
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HIIiC(X). The group of locally I'-bicontinuous auto-homeomorphisms of X

HEC(X). The group of locally I'-bicontinuous homeomorphisms of X

HEC(X, 8) = HE(X)13]

HEC(X;F)={h € HF°(X) | h(FNX)=FNX}

HEC(X;S F) = HFS(X,S) N HEC(X; F)

HEC(X;S,F). The subgroup of H(X) generated by J{HEC(X;S, Fs) | S € S}

HEC (X, ®) ={h € H(X) | Vz(3p, ¥ € &)(z € int(Rng(p)), h(z) € int(Rng(1))
and ¢~ oho is I'-bicontinuous at ¢~ '(z)}

HEC(X, ®,5)

HYBPP(X Y) = {h € BPD.P(X,Y) | h is nearly I'-continuous on BPD sets}

HEY(X)

HFC(X)

HYYBPP(XY) ={h € BPD.P(X,Y) | h is weakly I'-continuous on BPD sets}

intX (U). The interior of U in X

mt”(X) = U{B"(z,r) | € X and B®(z,7) C X}

IXT®(X). The group of bi-externally-extendible auto-homeomorphisms of X

K p,p. The category (M, {g|g: X =Y, X,Y € M and g,¢g~ " have property P})

Kr

KX (z,A) = {x | (YU € Nbr(z))(3B C ANU)(|B| = x and B is spaced}
k¥ (z, A) = sup(K™~ (z, A))

#(X) = mingex &~ (z, X)

Karc (¢, 1)

Kg = {(X,G) | X is an open subset of a Banach space and LIP(X) < G < H(X)}

Kpm

Kpnum

Kgno

Kgo

Kiem = {{X,G) | X is Hausdorff, perfect locally compact and for every
open V C X and z € V, G|V](z) is somewhere dense}

KxNreB

Kx = {(X,G) | X is an open subset of a normed space and LIP"*“(X) < G < H(X)}

KL

Knm

Kno

K = {(X, 7)) € K& | X is BR.LC.AC and JN.AC with repect to Z}
KN = {(X, Z) | X € Ky and X C Z C cl(X)}

Kiox

K& pnv = {Y | Y is an open subset of a Banach Lipschitz manifold}
K&xc. The class of all spaces which are open subsets of Banach spaces
Kgx

K&ix. The class of open finite-dimensional BR.IS.MV open sets

K&rcp- The class of open subsets of first category or complete normed spaces
K&.pv = {Y | Y is an open subset of a normed Lipschitz manifold}

O
KN]\/IX
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KgRM. The class of all spaces which are open subsets of normed spaces

Kwrp.BNO

L(E). The group of bounded linear automorphisms of E

L(E,z) = (L(E))"~

L(E; F) = {T € L(E) | T(F) = F}

AP = MR A (B F)

lim; o A; = z. The limit of a sequence of sets

LIP(X). The group of bilipschitz auto-homeomorphisms of a metric space X

LIP(X,S). For S C X, LIP(X,S) = {h € LIP(X) | h[(X — S) =1d}

LIP(X; F). For a normed space F, X C F and a dense linear subspace
Fof E, LIP(X;F)={heLIP(X) | h(XNF)=XNF}

LIP(X; S, F) = LIP(X; F) N LIP(X, S)

LIP(X;S,F). The subgroup of H(X) generated by | J{LIP(X; S, Fs) | S € S}

LIP(X,S). The subgroup of H(X) generated by | J{LIP(X,S) | S € S}

LIP(X o, F)

LIP(X; &)

LIP(X @) ={h € H(X) | 3KVz(3p,9 € ?)(z € int(Rng(p)), h(z) € int(Rng(e))) and

Y~ ohoy is K-bilipschitz}
LIP(X, &,S)
LIPgo(X) = {f € LIP(X) | supp(f) is a BPD set}
LIP™C(X). The group of locally bilipschitz auto-homeomorphisms of X
LIPYC(X,S). For S C X, LIP(X,S)"° = {h € LIP*®(X) | h[(X — S) = Id}
LIPYC(X; F). For a normed space E, X C F and a dense linear subspace
Fof E, LIP*(X;F) = {h € LIP**(X) | (X NF)= XN F}
LIP*(X; S, F) = LIP(X; F) N LIP(X, S)
LIPY(X;S, F). The subgroup of H(X) generated by J{LIP*®(X; S, Fs) | S € S}
LIPYC(X,S). The subgroup of H(X) generated by | J{LIPYC(X,S) | S € S}
LIPYC(X; &, F)
LIPLC(X; &)
AT = MR L(B; F)
ATE = APP L (B, 2 F)
Ingth(L). The length of an arc
NN, AP®, AP, The actions of T(E), L(E), A" and A(E) on E
APE = MR T (B F)
LUC(X,Y)={h € H(X,Y) | h is locally UC}
LUCE(X,Y) = {h € H(X,Y) | h is locally bi-UC}

LUCo1(X) ={h € LUC(X) | (3U)(U is E-open, U D bd(X) and supp(h) C X —U)}

LUC(X) = LUC*(X, X)
M(X,G) = (X,7%,G; €, o, Ap)
Maoc(n)

MarC(t)

MBC = {a € MC | Idjg,o0) < a}
MP(K)

Memp
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MC = {h € H([0,00)) | h is concave}

MEn — ppfn(9)

M ()

M — b (2)

MY ()

BV

MDI‘E — Mort (2)

MO (n)

MPTI (n)

Aot

MR(X,G) = (Ro(X), G, +,,—, Ap)

Mrtn

M

Mt — ppthn(2)

M ()

Nt ={neN|n>0}

Nbr¥(z) = {U | € U C X and U is open}

NI(X, &) = U{o(B"¢(x4,7,)) | ¢ € &}. The normed interior of (X, &)
opcl(U) = intX) (1) (1))

P(X,Y)={h|h:X 2Y and h has property P}

PEX,Y) =P(X,Y)N (P, X))

P(X) =PE(X,X)

Pam(®) = ((1d +0)™1) " (2)

PNT.UC(X,z) ={h € H(X) | h(z) = z and h is bi-UC at z}

Ga,n(t) = Pan(t) = Pant1(t)

R(u,v,g;a,a,b, F)
R(u,v,g9; M,a,b, F)
Rad;. =z +n(lle - 2l) 3=
Rad; = Rad, ;x
Ro(X). The set of regular open subsets of X

To—a] . The radial homeomorphism based on 7, z

Rot#. In a 2-dimensional Hilbert space H, rotation by the angle 6

Rotg’H. For a 2-dimensional Hilbert space H and a normed space F’, the operator on

H @ F which is Rot}’ on H and Id on F
Sz, r) ={y € Z| d(z,y) =r}
Sp=UP
supp(h) = {y € Y | h(y) # y}
T(E) = {tr7 | v € E}. The group of translations of E
T(E; F) = {ttF |ve F}
tr?. Translation by v. For v,z € E, trf(x) =v +«
tr,. Abbreviation of trUE
UC(X,Y) = {h € H(X) | his UC}
UCH(X,Y) ={h € H(X) | his bi-UC}
UC(X) = UC*H(X, X)
UC(X;F) = {h € UC(X) | (XN F)=XNF}
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Reconstruction of manifolds from subgroups of homeomorphism groups

UC(X: S, F) = UC(X)IS] N UC(X; F)

UC(X; S, F,z) ={h € UC(X; S, F) | h(z) = x}

UC(X;8,F). The subgroup of H(X) generated by | J{UC(X; S, Fs)| S € S}
UC(X,S). The subgroup of H(X) generated by [ J{UC(X)|S| | S € S}
UCo(X) = {f € UC(X) NEXT(X) | f91bd(X) =1d}

UCgo(X) = {f € UC(X) | supp(f) is a BPD set}

UCS™(X) = (/" | f € UCH(X))

UCe(X) ={h € UC(X) | h is strongly extendible}

WFD.LIPYC(X; S, F)

WFD.LIP(X)

WFD.LIP(X; S, F)

WFD(X)

Index of definitions
(in alphabetical order)

abiding sequence. a-abiding sequence

affine-like partial action

affine-like partial action at x

almost a-continuous

almost a-continuous at =

almost (-continuous for a-submerged pairs. Abbreviation: (3;«a)-almost-continuous
almost I'-continuous at x

almost linear boundary chart domain

almost orthogonal complement

appropriate. A I'-appropriate group

Banach manifold

BD.AC. Abbreviation of boundedly arcwise connected

BD.CW.AC. Abbreviation of boundedly component-wise arcwise connected
BDD.P function. A function which takes bounded sets to bounded sets
BDR.UC function

bicontinuous. a-bicontinuous at x

bicontinuous. a-bicontinuous at x € cl(X))

bicontinuous. a-bicontinuous homeomorphism

bicontinuous. I'-bicontinuous at x

bicontinuous. I’-bicontinuous at z € cl(X)

bicontinuous. I'-bicontinuous. h is I'-bicontinuous if (3y € I')(h, h™! are y-continuous)
bicontinuous. (K, P )-bicontinuous

bilipschitz homeomorphism

bilipschitz homeomorphism between locally Lipschitz normed manifolds
bi-UC. Abbreviation of bi-uniformly-continuous

bi-UC at x. Abbreviation of bi-uniformly-continuous at x

BI.UC function
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80
80
90
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144
152
45
45
45
45

205
64
64
70
70

224
70

169

171

168
43

123

135
90
91
47

205
47
47

205
14

216
10
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bi-uniformly-continuous

bi-uniformly-continuous at x

BNO-system

boundary chart domain based on E and A with radius r. A set of the form BCDF (A, T)

boundary chart element

boundary type. A group of boundary type I’

boundedly arcwise connected. Abbreviated by BD.AC

boundedly component-wise arcwise connected

boundedly I'-continuous

boundedly UC function. A function which is uniformly continuous on every bounded set

boundedly uniformly-in-diameter arcwise-connected

boundedness preserving function. A function which takes bounded sets to bounded sets

bounded positive distance UC function

BPD.AC. Abbreviation of BPD-arcwise-connected

BPD-arcwise-connected

BPD.P function. A function which takes BPD sets to BPD sets

BPD sequence. A sequence & such that Rng(Z) is a BPD set

BPD set. A bounded subset of X whose distance from the boundary of X is positive

BPD.UC function. A function which is uniformly continuous on every BPD set

BR.CW.LC.AC. Abbreviation of component-wise locally arcwise connected at
the boundary

BR.IS.MV. Abbreviation of isotopically movable at the boundary

BR.LC.AC. Abbreviation of locally arcwise connected at the boundary

BR.LUC function

BUC function. A function which is uniformly continuous on every bounded set

BUD.AC. Abbreviation of boundedly uniformly-in-diameter arcwise-connected

closed half space. A set of the form {z € E | ¢(x) > 0}, where ¢ € E*

closed half subspace of a normed space

closed under E-discrete composition

CMP.LUC function. An extendible function which is UC at every z € cl(X)

co-dimension 1 at z. bd(X) has co-dimension 1 at =

compatible. \ is compatible with GG

compatible. A is compatible with G at =

complete cover. U is a complete cover of X if [ J{int(U) | U € U} = int(X)

completely discrete family of sets. A set A of pairwise disjoint sets such that
VB((VA € A)(|BN A| <1) — acc(B) = 0)

completely discrete sequence

completely discrete set

completely discrete track system

completely locally I'-bicontinuous

completely locally I'-continuous

completely LUC function

component-wise locally arcwise connected at the boundary

component-wise locally arcwise connected at x
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79
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166
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90
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135
140
115
91
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61
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40

123
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166
166

91
135
135



Reconstruction of manifolds from subgroups of homeomorphism groups

component-wise wide

continuous.
continuous.
continuous.
continuous.
continuous.
continuous.
continuous.
continuous.
continuous.
continuous.

continuous.

a-continuous at z € cl(X)

a-continuous at . There is U € Nbr(x) such that f|U is a-continuous
a-continuous. f is a-continuous if for every z,y, d(f(z), f(y)) < a(d(z,y))
[B-continuous for a-submerged pairs. Abbreviation: (3; «)-continuous
A-continuous for I'-submerged pairs. Abbreviation: (A;I")-continuous
I'-continuous at z. There is a € I" such that f is a-continuous at x

(a, P )-continuous

(cv, P )-continuous at x

(I", P )-continuous at x

(r, &)-continuous

¢ is (n, @)-continuous

countably generated. I" is countably generated if for some countable Iy C I,
I'c{aeMC|(3y € lo)(a =)}
CP1. X is CP1 at x

CP1 space

decayable action. a-decayable at x. This means (1/2, o, H(X))-decayable at =

decayable action. \ is an (a, a, G)-decayable action

decayable action. A is an (a, a, G)-decayable action at x

decayable action. A is an (a, a, G)-decayable action in A

decayable action. \ is an (a, I', G)-decayable action

decayable action. («, G)-decayable at z. This means (1/2, o, G)-decayable at x

determined class. P-determined class of topological spaces

determining category

dimension 1 at z. bd(X) is 1-dimensional at x

discrete path property for BPD sets

discrete path property for large distances
discrete subset. E-discrete subset of EXTF (X)
distinguishable categories

double boundary point

DPT. A metric space is DPT

DPT. A metric space X is DPT at z € X
e-track. (o,n)-e-track

e-track system

evasive sequence. ['-evasive sequence

extendible function. A function from X to Y that can be extended to a continuous
function from cl(X) to cl(Y)

extendible homeomorphism

faithful class of space-group pairs

faithful class of topological spaces

fillable. G-fillable

filling. G-filling

finite-dimensional difference homeomorphism

generated. I' is (<x)-generated. This means 31 (|Io| < k and I" = cl<(10))
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47
47
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152

153

205
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generates. [ generates I'. This means I = cl<([)) 52
good semicover. V-good semicover 35
infinitely-closed. a-infinitely-closed at x 52
internally extendible in £. A homeomorphism of X C E which extends to a

continuous function on int" (X) 40
inversely (K, P )-continuous 216
isotopically movable at the boundary 140
isotopically movable with respect to X 140
JN.AC. Abbreviation of jointly arcwise connected 124
JN.ETC 153
JN.TC 153
joining system 124
jointly arcwise connected 124
legal parametrization 153
limit-point. A-limit-point 48
LIN-bordered. a-LIN-bordered at x 166
linear boundary chart domain. A set of the form BCD¥ (A, r), where A is a closed

subspace of E different from {0} or a closed half space of E 166
Lipschitz function between locally Lipschitz normed manifolds 78
Lipschitz homeomorphism 10
locally almost I'-continuous 70
locally arcwise connected at a boundary point 115
locally arcwise connected at the boundary. Abbreviated by BR.LC.AC 115
locally bilipschitz homeomorphism 10
locally bi-UC. Abbreviation of locally bi-uniformly-continuous 79
locally bi-uniformly-continuous 79
locally I'-bicontinuous 12
locally I'-bicontinuous with respect to ¢ and ¥ 78
locally I'-continuous 12
locally I'-continuous with respect to ¢ and ¥ 78
locally-LIN-bordered. Locally I'-LIN-bordered 166
locally Lipschitz homeomorphism 10
locally Lipschitz normed manifold 77
locally movable at the multiple boundary 135
locally moving subgroup of H(X) 25
locally (a, P )-continuous 216
locally UC. Abbreviation of locally uniformly continuous 79
locally uniformly continuous 79
LUC on bd(X) function 91
manageable ball B based on S 31
manageable ball (with respect to a BNO-system) 31
metrically dense subset 64
modulus of continuity 12

multiple boundary point 135
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nearly I'-continuous on BPD sets

nearly open set. Z is nearly open if Z C cl(int(Z))

normed Lipschitz manifold

normed manifold

on different sides. u,v are on different sides of bd(X) with respect to (¢, A, r)
on the same side. u, v are on the same side of bd(X) with respect to (¢, A, r)
open sum partition with respect to X

order-irreversible. bd(X) is G-order-irreversible at x

order preserving at x

order-reversible. bd(X) is G-order-reversible at

order reversing at x

pairwise disjoint family. A set of pairwise disjoint sets

partial action of a topological group on a topological space

PD.P function. A function which takes PD sets to PD sets

PD set. A subset of X whose distance from the boundary of X is > 0

PD.UC function. A function which is uniformly continuous on every PD set

piecewise linearly radial. A radial homeomorphism RadnE in which 7 is piecewise linear

point pre-representative
pointwise I'-continuous

positive distance UC function

positively distanced set. A subset of X whose distance from the boundary of X is > 0

prinicipal. I is principal if for some a € I', I' C cl<({a°" | n € N})
Property MV1

radial homeomorphism based on 7. Radf.

radial homeomorphism. Radfiz. The radial homeomorphism based on 7, z
RBM. A regional Banach manifold

regional Banach manifold (RBM)

regionally I'-continuous

regionally normed manifold (RNM)

regionally translation-like action

regionally translation-like at x

regional normed atlas for X

regular open. A set is regular open if it is equal to the interior of its closure
restricted topological category

RNM. A regionally normed manifold

side preserving at x

side reversing at x

simple boundary point

SLIN-bordered. a-simply-linearly-bordered at x (a-SLIN-bordered at )
small semicover. V-small semicover

small set

somewhere dense set. A set whose closure contains a nonempty open set
spaced set of sets. r-spaced set of sets

spaced subset of X. A C X is spaced if (3r > 0)(Vz,y € A)((z # y) — (d(z,y) > 1))
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spaced track system

space-group pair. (X, G) is a space-group pair if X is a topological space and G < H(X)

star-closed. I' is a-star-closed
star-closed. I is A-star-closed

strongly extendible

strongly separated. U is strongly separated from V if 3W (U < W and W NV = 0)

strongly small set

submerged. (z,y) is a-submerged in X. This means 6~ (z) > ||z — y|| + a ' (||lz — v

subspace choice

subspace choice for (X, )

subspace choice system

tight Hilbert complementation

tight Hilbert norm

topological local movement system

track. («,n)-track

track system

translation-like. (H,\) is P-translation-like at z
translation-like. (H,\) is P-translation-like in L
translation-like partial action

translation-like partial action at x

two-sided. X is two-sided at x

UC around bd(X)

UC at z. Abbreviation of uniformly continuous at x
UC-constant. M is a 1UC-constant for (a,b)
UC-constant. M is a UC-constant for (a,b)

UC. Abbreviation of uniformly continuous

UD.AC. Abbreviation of uniformly-in-diameter arcwise-connected
uniformly continuous

uniformly continuous at =

uniformly continuous for all distances
uniformly-in-diameter arcwise-connected

weakly “finite-dimensional difference” homeomorphism
weakly I'-bicontinuous function

weakly I'-continuous function

weakly I'-continuous on BPD sets

wide set
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