1. INTRODUCTION

In 1973, Victor Klee posed the following question [43]: How many guards are always
sufficient and sometimes necessary to see every point in an art gallery with n walls? The
guard is assumed to be a stationary point which can see any other point that can be
connected to it by a line segment within the art gallery, i.e., the region bounded by a
simple polygon. In 1975, Vasek Chvatal established that |n/3] guards are occasionally
necessary and always sufficient to cover a polygon with n vertices [19]; Fig. 1.1 illustrates
this with a 15-sided gallery (in the form of a comb) which requires five guards. Chvatal’s
proof is entirely combinatorial, starting with an arbitrary triangulation of the polygon
and cutting off a small piece for the induction step. Three years later, in 1978, Steve
Fisk offered a simpler proof of Chvatal’s result based upon a 3-coloring of a triangulation
graph [28]. This proof is briefly described below.

Fig. 1.1. A comb-polygon that requires |n/3] guards; here n = 15, and the polygon requires 5
guards.

Let us consider the polygon P with n = 13 vertices shown in Fig. 1.2(a-b), its triangu-
lation 7', and its triangulation graph G. The graph G'r can be 3-colored using the three
colors {1,2,3}. We have four vertices of color “17, 5 of color “2”, and four of color “3”.
Now, let us place guards at every “1”-vertex. Since each triangle of the triangulation has
all three colors at its vertices, it has a guard in one of its corners. Since the triangles form
a partition of P, and triangles are convex, every point of P is covered by a “1’-guard.
Thus the “1”-guards cover the polygon, and there are at most |13/3| of them. Notice
that after removing all internal diagonals incident to any “1”-vertex we get a partition
of P into four star-shaped polygons (see Fig. 1.2(c)). As the same method of placing
guards works for an arbitrary polygon, |n/3| guards are always sufficient to cover the
interior of an n-vertex polygon, and guards can be placed at the vertices of the polygon
only.

[5]
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Fig. 1.2. (a) A polygon P and its triangulation T'. (b) 3-coloring of the triangulation graph Gr.
(c) A guard set for P (guards are placed at the black vertices); after removing all internal
diagonals incident to any “1”-vertex, we get a partition of P into four star-shaped polygons.

Since Chvatal’s result, many different variations of the art gallery problem have been
studied, including mobile guards, guards with limited visibility or mobility, guarding rec-
tilinear polygons, and others; many of these interesting results can be found in O’Rourke’s
monograph [73] and in survey articles by Shermer [85] and Urrutia [88].

1.1. Cooperative guards problem

In this dissertation, we investigate one variation of the art gallery problem posed by
Liaw, Huang and Lee [58]: the cooperative guards problem (CG problem for short), i.e.,
one wants to determine the minimum number of guards sufficient to see every point of
the interior of an n-vertex simple polygon, and such that the visibility graph of the set
of guards is connected; the wvisibility graph of a set S of points in a polygon is the graph
whose vertex set is S and two vertices are adjacent if the points see each other. The idea
behind this concept is that if something goes wrong with one guard, all the others can
be informed. It is worth pointing out that a variation of the CG problem had already
been raised before: in 1992, Ahlfeld and Hecker [3] studied the problem of determining
the minimum link number for polygons. These two problems are closely related, which
will be discussed in Section 1.3 in detail.

Chapter 2 investigates the cooperative guards problem for various classes of polygons.
Liaw et al. [58] established that the minimum cooperative guards problem for simple
polygons is NP-hard, but for spiral and 2-spiral polygons this problem can be solved
in linear time. Combinatorial bounds for arbitrary polygons were independently given
by Ahlfeld and Hecker [3], and Hernandez-Pefialver [39], who proved that |n/2] — 1
cooperative guards are always sufficient and occasionally necessary to guard a polygon
with n vertices. The necessity is established by the snake-polygon with n = 2m vertices
in Fig. 1.3. It is clear that it requires m — 1 guards. In addition, Chapter 2 deals with the
CG problem in polygons with holes, that is, polygons enclosing several other polygons.
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Some sufficiency bounds for both vertex and point guards are provided. For one-hole
polygons, these bounds are tight.

Fig. 1.3. A snake-polygon that requires |n/2] — 1 cooperative guards; here n = 14, and the
polygon requires 6 guards.

Chapter 3 is devoted to the study of the weakly cooperative guards problem (WCG
problem for short) in which we require the visibility graph of a set of guards to have no
isolated vertices [59]. In [39] Hernandez-Penalver claimed that |2n/5] weakly cooperative
guards always suffice to guard any polygon with n vertices. Unfortunately, this is not true.
Fig. 1.4 shows a polygon with 12 vertices that requires 5 weakly cooperative guards. Each
prong requires a guard, and these guards form a hidden set: they do not see each other.
As any additional guard will see at most two of these three guards, a fifth guard is needed.

Fig. 1.4. A polygon with 12 vertices that requires 5 weakly cooperative guards.

The weakly cooperative guards problem for general simple polygons was completely
settled by Michael and Pinciu [65, 66], and independently by Zyliniski [92], who proved
that | (3n — 1)/7] is a tight bound. The WCG problem for orthogonal polygons was solved
by Hernandez-Penalver [40], and by Michael and Pinciu [67], who proved the |n/3] bound
to be tight. Combinatorial bounds for star-shaped, spiral and monotone polygons were
given by Zylinski [97].
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The k-guarded guards problem (k-GG problem for short) is a generalization of the
weakly cooperative guards problem, and it was raised by Michael and Pinciu [67]. A set
of guards is called k-guarded if each guard is seen by at least k of its colleagues (the
minimum degree of the visibility graph of the set of guards is at least k). Of course,
the 1-guarded guards problem is equivalent to the weakly cooperative guards problem.
Chapter 4 investigates the k-GG problem for £ > 2. In 2001, Michael and Pinciu estab-
lished that (k|[n/6] + [(n+2)/6]) k-guarded guards always suffice and are sometimes
necessary to guard any orthogonal polygon with n vertices. The k-guarded guards prob-
lem for general simple polygons was completely settled by Zylinski [98], who showed
the (k|n/5] + [(n+2)/5])-bound to be tight. The author [95] also established that the
minimum k-guarded guards problem for simple polygons is NP-hard.

Possible extensions of the cooperative guards problem to fortresses and grids are
discussed in Chapters 5 and 6, respectively. The fortress problem, independently posed by
Joseph Malkelvitch and Derick Wood, asks about the number of guards sufficient to cover
the exterior of a polygon P. In [73] O’Rourke and Wood solved the fortress problem for
vertex guards—they showed that [n/2] vertex guards are sometimes necessary and always
sufficient. A tight bound of [n/3] point guards was given by O’Rourke and Aggarwal [73].
In Chapter 5, we provide tight bounds for both vertex and point cooperative guards in
the fortress problem.

In Chapter 6, we study the cooperative guards problem for grids, a special restricted
class of polygons introduced by Ntafos [71]. A grid P is a connected union of vertical
and horizontal line segments. Ntafos established that a minimum cover for a 2D-grid of n
segments has n —m guards, where m is the size of the maximum matching in the intersec-
tion graph of the grid, and it may be found in O(n?®) time [71]. However, in the case of
3D-grids, the problem of finding the minimum guard set is NP-hard [71]. For cooperative
guards, we show that the minimum cooperative guards problem (MinCG problem for
short) can be solved in polynomial time for both 2-dimensional and 3-dimensional grids.
In the first case, the MinCG problem corresponds to the problem of finding a minimum
spanning tree in the intersection graph of a grid, thus an O(n + k) time algorithm is
obtained, where n is the number of segments and k is the number of intersections in
the grid. In the latter case, an algorithm uses O(kn?®) time; the solution is obtained
from a spanning set of a 2-polymatroid constructed from the intersection graph of the
grid. When considering weakly cooperative guards, we show that a minimum coverage
for a grid of n segments has exactly n — p3 weakly cooperative guards, where p3 is the
size of the maximum Ps;-matching in the intersection graph of the grid. Consequently, it
makes the problem of determining the minimum number of weakly cooperative guards
NP-hard, as we prove that the maximum Ps;-matching problem in intersection graphs
is NP-hard. In Chapter 6, we also study cooperative mobile guards, where we allow a
guard to move along a selected grid segment. By reduction to domination problems,
we show that both the minimum cooperative mobile guards problem and the minimum
weakly cooperative mobile guards problem are NP-hard. However, we will show that there
exist certain classes of grids for which the latter problem can be solved in polynomial
time.
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In Chapter 7, we conclude with some remarks and indicate directions of the future
research. In the remainder of the present chapter, we give precise definitions of most
objects and some preliminary results that will be used throughout the dissertation.

1.2. Basic definitions

An art gallery is a simple polygon P, i.e., the region bounded by a simple polyline P
(together with P). P is said to be in general position if no three vertices are collinear. For
the sake of simplicity, we shall assume that the vertices of P are in general position. All
results hold even if the vertices are in special position; however, proving this is arduous
because the number of degenerate cases becomes quite large. Next, since we only deal
with simple polygons in the following, we will use the term polygon for a simple polygon.
A polygonal chain is a single chain of consecutive vertices of a polyline P.

A guard ¢ is any point of P. A point = € P is said to be seen by a guard g if the
line segment with endpoints x and ¢ is a subset of P: xg C P. A collection of guards
S={q1,...,9x} is said to cover P if every point = € P can be seen by some guard g € S.
A vertex guard is one that is placed at a vertex of the polygon.

Let S be a guard set of a polygon. We define the wvisibility graph VG(S) as follows:
the vertex set is .S and two vertices v; and v, are adjacent if they see each other. A guard
set is said to be cooperative if its visibility graph is connected; recall that a graph G is
connected if for any pair of vertices v, w, there is a path connecting v and w in G. For
a polygon P, define CG(P) to be the minimum cardinality of a cooperative guard set
for P. Next, define cg(n) to be the maximum value of CG(P) over all polygons with
n vertices. The function cg(n) represents the maximum number of cooperative guards
that are ever needed for an n-gon—cg(n) cooperative guards always suffice, and cg(n)
cooperative guards are necessary for at least one polygon with n vertices.

DEFINITION 1.1. The cooperative guards problem is to determine cg(n).

Similarly, a guard set is said to be k-guarded if the minimum degree of the visibility
graph is at least k; Liaw et al. [59] refer to a 1-guarded guard set as a weakly cooperative
guard set. For a polygon P, define GG(P, k) to be the minimum cardinality of a k-
guarded guard set for P. Next, define gg(n, k) to be the maximum value of GG(P, k) over
all polygons with n vertices.

DEFINITION 1.2. The k-guarded guards problem is to determine gg(n, k).
1.2.1. Guards in triangulation graphs. A triangulation T of a polygon P is a parti-

tioning of P into a set of triangles with pairwise disjoint interiors in such a way that the
edges of those triangles are either edges or diagonals of P joining pairs of vertices.

THEOREM 1.1 (Triangulation Theorem). A polygon with n vertices can be partitioned
into n — 2 triangles by adding n — 3 internal diagonals.

Proof. The proof is by induction on n. The theorem is trivial for n = 3. Let P be
a polygon with n > 4 vertices. Let v be a convex vertex of P, and consider the three
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consecutive vertices vy, va, v3. (We take it as obvious that there must exist at least one
convex vertex.) We seek an internal diagonal d.

If the segment v;v3 is completely interior to P (i.e., does not intersect the polyline P),
then let d = {v1, v3}. Otherwise, the closed triangle (v1, v2,v3) must contain at least one
vertex of P. Let x be the vertex of P closest to vy, where the distance is measured
perpendicularly to vivs (see Fig. 1.5), and let d = {vq,x}.

Fig. 1.5. The line segment vox is an internal diagonal.

In either case, d divides P into two smaller polygons P! and P2. If P? has n; vertices,
i = 1,2, then n; + ny = n + 2, since both endpoints of d are shared between P' and
P2. Clearly, n; > 3, i = 1,2, which implies that n; < n, i = 1,2. Applying the induction
hypothesis to each polygon results in a triangulation for P of (n; —2)+ (ng —2) =n —2
triangles, and (n; — 3) + (n2 — 3) + 1 = n — 3 diagonals, including d. =

Next, let us make an important observation about the way the triangles in a triangu-
lation fit together. Recall that a tree is a connected graph without cycles, and the degree
deg(v) of a vertex v € V in a graph G = (V, F) is the number of edges incident to v.

LEMMA 1.2. The weak dual graph of a triangulation of a polygon, that is, the graph with
a vertex for each triangle of the triangulation and an edge connecting two vertices whose
triangles share a diagonal, is a tree with each vertex of degree at most 3.

Proof. That each vertex has degree at most 3 follows immediately from the fact that a
triangle has three sides. Next, suppose that the weak dual graph is not a tree. Then it
must have a cycle. As this cycle encloses some vertices of the polygon, it encloses points
in the exterior of the polygon, but this contradicts the definition of a (simple) polygon. m

Note that the technical term used in the above lemma is the “weak dual”, as no vertex
is assigned to the exterior face—that is, the exterior of the polygon. However, as we shall
always encounter weak dual graphs, we will henceforth simply call them dual graphs.

A triangulation graph Gt of an n-vertex polygon P is the graph whose vertices cor-
respond to the n vertices of P and whose edges correspond to the edges of P and the
diagonals of a triangulation 7. We say that three consecutive vertices v1, vo, v3 form an
ear in Gr at v if {v1,v3} is an internal diagonal of the triangulation of P. Lemma 1.2
yields an easy proof of the “two ears” theorem of Meister [64].

THEOREM 1.3 ([64]). Every triangulation graph of a polygon with n > 4 vertices has
at least two ears.
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Proof. Leaves in the dual graph of a triangulation correspond to ears, and every tree of
two or more vertices must have at least two leaves (vertices of degree one). m

A vertex guard in a triangulation graph G is a single vertex of G. A set S of guards
is said to dominate G if every triangular face of Gr has at least one of its vertices
selected as a guard. A collection of guards S is said to be cooperative if the subgraph
of G induced by S is connected, and k-guarded if the minimum degree in the induced
subgraph is at least k; recall that for a graph G = (V, E), the subgraph induced by V' CV
is the graph with vertex set V'’ and with all edges of G whose endpoints are in V’. Guards
in a graph are called combinatorial to distinguish them from geometric guards introduced
earlier.

The reason for introducing triangulation graphs is that a proof of the sufficiency of
a certain number of combinatorial guards establishes the sufficiency of the same number
of geometric guards in a polygon, regardless of the cooperation model we consider.

LEMMA 1.4 ([39]). Let P be an n-vertez polygon, and let G be a triangulation graph
of P. If Gr can be dominated by f(n) cooperative guards, then P can be covered by
f(n) geometric cooperative vertex guards.

Proof. Since G is dominated, each triangle has at least one combinatorial guard at one of
its vertices. Placing geometric guards at the corresponding vertices of P ensures that each
triangular region is covered, and so is P. To establish that these guards are cooperative
observe that the connectedness of the subgraph induced by S implies the connectedness
of the visibility graph VG(S) in P as well. m

LEMMA 1.5 ([98]). Let P be an n-vertez polygon, and let G be a triangulation graph
of P. If Gr can be dominated by f(n,k) k-guarded guards, then P can be covered by
f(n, k) geometric k-guarded vertex guards.

Proof. Following the proof of Lemma 1.4, all we need is to show that a guard set S
is k-guarded, but this follows from the fact that the minimum degree in the subgraph
induced by S is no greater than the minimum degree in the visibility graph VG(S) in P.

Thus in general, the idea of most of the proofs is to solve guarding problems on
triangulation graphs, and then to extend these results to polygons.

1.3. Note on the link number of a polygon

Consider the plane embedding SG(S) of the visibility graph VG(S) of a cooperative guard
set S: the vertex set V(SG) consists of the guards and the edge set F(SG) consists of
segments (edges) connecting two guards that see each other; the graph SG is called the
segment graph of S. The link number 1k(SG) of the segment graph SG with exactly one
segment is 1. Let SG be a segment graph with link number k. Let V = {vy,...,v,} be
the set of vertices of SG and let E = {s1,..., s} be the set of segments (edges) of SG.
Let SG’ be the segment graph obtained from SG by inserting a new edge s,,41 (such
that $,,,4+1 meets endpoints of the edges of SG only). If one endpoint vy, 11 of $p41 is not
a vertex of SG, then let v; be the endpoint of s,,41 which is in V. If there is an edge
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s; = {vi,v;} € E such that v;,v; and v, 41 are collinear, then 1k(SG’) is k, otherwise
we define 1k(SG’) = k + 1. If both endpoints of s,,+1 are in V, then let v; and v; be
these vertices. If there exist two edges s; = {vf,v;} and s; = {vg,v;} such that vy, vg,v;
and v; are collinear, then we define 1k(SG’) = k — 1. If there exists exactly one edge (s
or s¢) such that v, v; and v; (v, v; and v, respectively) are collinear, then let 1k(SG')
be equal k. If there is no edge {v’,v"} in E with v' € {v;,v;} such that v",v; and v;
are collinear, then we define 1k(SG’) = k + 1. A cooperative guard set S for a polygon
P is said to be minimal if its link number is minimal among all cooperative guard sets
for P; for a polygon P, the cardinality of a minimal cooperative guard set is denoted by
Ik(P).

Fig. 1.6(a-b) explains the difference between a minimum cooperative guard set and
a minimal cooperative guard set. It is easy to see that S; forms a minimum cooperative
guard set with 1k(S7) = 4, but there exists a cooperative guard set S with a larger number
of guards, but with the smaller link number 1k(S5) = 3. Throughout this dissertation we
are interested in the minimum cooperative guard set problem rather than the minimal
cooperative guard set problem.

(a) (b)

Fig. 1.6. (a) A minimum cooperative guard set S1 has 5 guards, and 1k(S1) = 4. (b) A minimal
cooperative guard set S with 1k(S2) = 3 has 6 guards.

The idea of the link number for polygons was introduced by Ahlfeld and Hecker [3].
The key observation is that for any polygon P, Ik(P) < cg(P) — 1. According to this
observation, by using the concept of cooperative guards in triangulation graphs, Ahlfeld
and Hecker first showed that [n/2| —1 is a tight bound for cooperative guards in triangu-
lation graphs, and then they constructed a class of n-vertex polygons with the minimum
link number k() = |n/2] — 2, thus getting the following theorem.

THEOREM 1.6 ([3]). For any n-vertez polygon P without holes, we have Ik(P) < |n/2|—2,
and there exists a class of n-vertex polygons with 1k(-) = |n/2] — 2.

Finally, by reduction to 3-SAT [33], Ahlfeld and Hecker showed that the problem
of determining lk(P) for a given polygon P with holes is NP-hard (for the complexity
terminology see Section 1.5). This reduction is similar to an analogous reduction by
Fowler and Tanimoto [29], and Suppowit [86].
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1.4. Note on the pursuit and evasion problem

In general, in this dissertation we consider only guards which are not allowed to move,
thus here we only mention the pursuit and evasion problem. In contrast to stationary
guards, in the pursuit and evasion problem both a guard (pursuer) and a robber (evader)
are allowed to move freely within a polygon. The two primary questions which arise in
relation to capturing evaders are:

1. For a given polygon, what is the minimum number of pursuers necessary to capture
the evader?

2. Can we efficiently compute a successful strategy to guarantee that the pursuers
will capture the evader?

Capture is typically defined as occurring when a pursuer occupies the same position as
the evader, or comes to within a predefined distance of him. Interest in problems involving
pursuit and evasion is very recent, and variants of this game have been considered in the
literature—|[13, 36, 37, 44, 68, 78, 80], to cite a few—and involve multiple pursuers,
evaders, and various constraints on both the visibility and the space in which pursuit
takes place.

Herein we shall briefly discuss only one variation in which a cooperation restriction
on a set of pursuers is assumed. In [25] Efrat et al. consider the cooperative version of the
pursuit and evasion problem, i.e., they assume that guards must always form a simple
polygonal chain through a polygon; the guards at the ends of the chain are always on the
two edges of the polygon, while the rest are at internal vertices of the chain. All links in
the chain are segments inside the polygon. Thus the guards are mutually visible in pairs
and are linked together, that is, they form a cooperative guard set. The main results of
[25] are the following algorithms.

e An algorithm to compute the minimum number 7* of guards needed to sweep
an n-vertex polygon that runs in O(n?) time and uses O(n?) working space.

e A faster algorithm, using O(nlogn) time and O(n) space, to compute an integer r
such that max(r — 16,2) < r* < r and the polygon can be swept with a chain of r
guards.

The first algorithm is based upon the link diagram of a polygon which encodes the link
distance between all pairs of points on the boundary of the polygon. In the latter case,
the algorithm uses the link width of a polygon (see [25] for more details).

Recently, Tan [87] improved the first algorithm by a linear factor, namely, he presented
an O(n?) time algorithm to compute the minimum number r* of guards required to detect
the target, no matter how fast the target moves; a sweep schedule may be reported in

O(n?r*) time.
1.5. Algorithmic complexity

The definitions and terminology presented in this section are all standard in complexity
theory and have been included for the sake of completeness.
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DEFINITION 1.3. Let f: N — R and g : N — R be any functions. Then f(n) is O(g(n))
if there are constants ¢ and IV such that
|f(n)| < clg(n)] forall n > N.
For example, the function f(n) = >, i is O(n?), because for all n > 0,
n?+n

fln)= 5 <n?+n <20’

DEFINITION 1.4. Let f : N — R and ¢ : N — R. Then f(n) is Q(g(n)) if g(n) is O(f(n)).

DEFINITION 1.5. Let f: N — R and g : N — R. Then f(n) is ©(g(n)) if f(n) is both
Q(g(n)) and O(g(n)), that is, there are constants ¢, co and N such that

etlg(m)| < 1f(n)] < calg(n)|  for all n > N.

In the above example, the function f(n) = Y"1 i is ©(n?), as for all n > 0 we have
n?/2 < f(n) < 2n2.

An algorithm performs a sequence of operations on its input, the initial symbols and
real numbers that specify the instance of the problem to be solved. If I denotes the input,
we can let the function T4 (I) denote the number of operations the algorithm A uses until
it halts, with I as input. Thus we can associate a time complexity function T4 : N — N
to every algorithm A by

Ta(n) = max{Ta(D)},

that is, the worst case number of computation steps over all input instances that have

size n. The size of the input is the number of symbols and real numbers used to specify
the problem instance.

DEFINITION 1.6. A polynomial time algorithm is an algorithm whose time complexity
function (or just running time) is O(p(n)) for some polynomial p(n).

Thus a linear time algorithm is an algorithm with O(n) running time, and a quadratic
time algorithm is an algorithm with O(n?) running time.

DEFINITION 1.7. A decision problem is a problem that requires only a ‘yes’ or ‘no’ answer
regarding whether some element of its domain has a particular property.

DEFINITION 1.8. A decision problem class belongs to the class P if there is a polynomial
time algorithm to solve the problem.

For example, “Is a given graph connected?” is a decision problem and it is in the
class P.

DEFINITION 1.9. A decision problem belongs to the class NP if, for every ‘yes’-instance of
the problem, one can verify in polynomial time that the instance is indeed a ‘yes’-instance.

For example, “Does a given graph has a path which traverses all its vertices?” is in
the class NP. Clearly, P C NP, and it is believed that NP is much larger than P, but
there is not a single problem in NP for which it has been proved that the problem is not
in P. No polynomial time algorithms are known for many problems in NP, but no lower
bounds larger than polynomial ones have been proved for these problems.
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DEFINITION 1.10. A decision problem R is polynomially reducible to a decision problem
Q@ if there is a polynomial time transformation of each instance Ip of problem R to an
instance I of problem () such that the instances Iz and I have the same answer (‘yes’
or ‘no’).

DEFINITION 1.11. A decision problem is NP-hard if every problem in the class NP is
polynomially reducible to it.

DEFINITION 1.12. An NP-hard problem R is NP-complete if R is in the class NP.

The first major theorem establishing that the class of NP-complete problems is non-
empty, is due to Stephen Cook [20]. Cook proved that SATISFIABILITY is such a prob-
lem. SATISFIABILITY takes as input a logical formula expressed as a list of clauses;
each clause is a collection of literals (variables or their negations). A clause is considered
to be true when at least one of the literals is true. A formula is satisfiable if there is an
assignment of truth values to the variables that makes every clause true. The question is
whether such an assignment exists.

THEOREM 1.7 ([20]). SATISFIABILITY is NP-complete.

SATISFIABILITY remains NP-complete even when restricted by requiring that every
clause have three literals. The restricted problem is called 3SAT.

THEOREM 1.8 ([49]). 3SAT is NP-complete.



2. COOPERATIVE GUARDS

In this chapter, we investigate the cooperative guards problem. First, we give combinato-
rial bounds for arbitrary polygons. Both Ahlfeld and Hecker’s proof [3] and Hernandez-
Pefialver’s proof [39] of the sufficiency of |n/2| — 1 cooperative guards are based upon
combinatorial cooperative guards in triangulation graphs. In the first case, the proof fol-
lows from the deep analysis of all degree 2 vertex chains of maximal length in dual graphs
of triangulations, whereas Hernandez-Pefnalver uses a simple induction, starting with an
arbitrary triangulation of a polygon and cutting off a small piece for the induction step
(see [3, 39| for more details). Herein we shall present two other proofs: the first one, due
to the author [93], based upon a vertex cover of a diagonal graph, and another one, due
to Pinciu [76], based upon 3-coloring of a triangulation graph. Additionally, we consider
the cooperative guards problem in orthogonal, monotone, spiral and star-shaped poly-
gons. Next, we discuss the complexity of the problem of finding the minimum number of
cooperative guards in a given (arbitrary) polygon. Finally, we investigate the cooperative
guards problem in polygons with holes.

2.1. Arbitrary polygons

The diagonal graph Gp of a triangulation of an n-vertex polygon P is the graph obtained
only from n — 3 internal diagonals of the triangulation: the edges correspond to the
diagonals and the vertices correspond to all endpoints of the diagonals (see Fig. 2.1 for
an example).

Fig. 2.1. (a) A triangulation of a polygon. (b) Its diagonal graph.

LEMMA 2.1 ([93]). Let T be a triangulation of a polygon, and let Gp be the diagonal
graph of T. Then Gp is connected.

[16]
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Proof. The proof is by induction on n. As for any quadrilateral its triangulation requires
only one internal diagonal, the validity of the assertion for n = 4 is established. So assume
that n > 4, and that the assertion holds for all 4 < 74 < n. Let d = {z,y} be an edge of
G p. We have two distinct cases: either d cuts off only one vertex from P or it partitions
P into two polygons, each with at least four vertices.

CASE 1. Since the polygon P’ that results from cutting off one vertex has n — 1 ver-
tices, the diagonal graph G, of any of its triangulations is connected by the induction
hypothesis. As in any triangulation of P’ there must exist a diagonal with one of its
endpoints either at z or at y, the graph Gp with the diagonal d = {x,y} is connected
(see Fig. 2.2(a)).

(a) (b)

Fig. 2.2. The diagonal graph of a triangulation is connected.

CASE 2. Let P! and P? be the polygons that result from cutting P along the diagonal d.
By the induction hypothesis, the relevant diagonal graphs G}, and G¥ are connected. As
above, in any triangulation 7" of P! there must exist a diagonal with one of its endpoints
either at x or at y; analogously, in any triangulation 7% of P? there must exist a diagonal
with one of its endpoints either at = or at y. As the diagonal d connects G}, and G%
into Gp, the graph Gp with the diagonal d = {x,y} is connected (see Fig. 2.2(b)). m

Recall that a subset C' C V' of vertices is a vertex cover of a graph G = (V, E) if each
edge in F is incident to at least one vertex in C.

LEMMA 2.2 ([93]). Let m be the number of edges of a graph G. Then there ezists a vertex
cover of cardinality at most | (m +1)/2].

Proof. Let G* be a tree on n* vertices that results from splitting some vertices of G =
(V, E) without destroying the connectedness of the graph (if G is a tree, then G* = G).
For any vertex v of G, let S(v) denote the set of vertices of G* that results from splitting
the vertex v. As any tree is a bipartite graph, there exists a vertex cover C* of G* with
|C*| < |n*/2]; recall that a graph is bipartite if its vertex set can be partitioned into two
sets such that no two vertices in the same set are adjacent. Let

C={veV:(wel)or (Ipesw) v €C")}.
Of course, C is a vertex cover of G, and |C] < |C*|. Asn* =m+1,|C| < |(m+1)/2]. =
Thus by Lemma 2.2, we get
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COROLLARY 2.3 ([93]). Let Gp be the diagonal graph of a triangulation of an n-vertex
polygon. Then there exists a vertex cover of cardinality at most |n/2] — 1.

The crucial fact is the relation between a vertex cover of a diagonal graph and a co-
operative guard set of a triangulation graph.

THEOREM 2.4 ([93]). Let T, G, Gp be a triangulation of a polygon with n > 4 vertices,
the triangulation graph of T, and the diagonal graph of T, respectively. Then any vertex
cover of Gp is a cooperative guard set in Gr.

Proof. Let C = {¢1,...,9x} be a vertex cover of Gp. To show that C is a guard set in
G, all we need is to observe that for each (bounded) triangular face in G at least one
of its edges is an edge of Gp. As C is a vertex cover, any diagonal of Gp has at least one
of its endpoints in C', and thus each triangular face of G has at least one of its vertices
in C. Consequently, C' is a guard set.

The next step is to show that the subgraph induced by C' is connected, that is, for
any two guards g;, g; € C, there exists a path p = (g9; = i, Piy, - - -, Diy—1,Pi, = ¢;) In G
such that all p;, € C, t = 1,...,l. Without loss of generality, let the selected guards be
g1 and go. As Gp is connected, there exists a path p? = (g1,vP,...,vP, g2) in Gp. Our
purpose is to construct the required path p from p?.

As C covers Gp, either vP € C or vP ¢ C and vP € C.

Cask 1. If vP € C, we do not need any modification of p” between g; and vP.

CASE 2: vP ¢ C and v € C. Since G7 is a triangulation graph of a polygon, either g;
and v2 are connected in G, or there are some edges in G incident to v¥.

SUBCASE 2a. If g; and v£ are connected in G, we modify p” by removing the vertex v{.

SUBCASE 2b. Exactly two edges incident to v’ are edges of the polygon, and they are
located on the same side of p (see Fig. 2.3). All the other edges belong to the set of
edges of Gp. Let d; = {vP,x1},...,d;. = {vP, 21} be the diagonals of the triangulation
T lying on the opposite side to the edges of the polygon. As C covers Gp and vP ¢ C, all
vertices z1, ...,z are selected as guards. As G is a triangulation graph, there is a path
pl = (g1,21,...,25,v) from g; to v¥ in Gr. Now, we replace the subpath (g1, v, vP)
in p? with p”.

T2 Tk—1

Fig. 2.3. A modification of the path p.
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Applying the same construction to all successive vertices, we construct the required path
p = pP from g; to go that consists only of guards in C. Thus C is a cooperative guard
set in G7. m

We note in passing that any cooperative guard set in a triangulation graph is a vertex
cover of the diagonal graph.

LEMMA 2.5 ([93]). Let T, Gr, Gp be any triangulation of a polygon with n > 4 ver-
tices, the triangulation graph of T, and the diagonal graph of T, respectively. Then any
cooperative guard set C in G is a vertex cover of Gp.

Proof. Let C be a cooperative guard set in G, and let d = {v1,v2} be an edge of Gp.
Suppose, contrary to our claim, that neither v; € C nor vy € C. The edge d partitions
Gt into two graphs G and GZ. As both G% and G% are guarded by some guards in C,
there must be a path p from a guard in G to a guard in GZ% that consists only of guards.
Clearly, every path from G to G2 must consist of either v; or ve, and thus, if there are
no guards at v; nor vy, C' is not a cooperative guard set in Gp—a contradiction. =

We are thus led to the following theorem.

THEOREM 2.6 ([3, 39, 76, 93]). A triangulation graph of a polygon with n > 4 vertices
can always be dominated by |n/2| — 1 cooperative guards.

Proof. Let P be a polygon with n vertices, and let Gp be the diagonal graph of a tri-
angulation of P. By Corollary 2.3, there exists a vertex cover C' in Gp of cardinality
at most |n/2] — 1, and by Theorem 2.4, C is a cooperative guard set dominating the
triangulation graph. =

Thus by the theorem above and Lemma 1.4, we have

THEOREM 2.7 ([3, 39, 76, 93]). For n > 4, cg(n) = |n/2] — 1, and the guards can be
restricted to vertices of a polygon only.

2.1.1. 3-coloring argument. In this section, we present another proof of Theorem 2.7
proposed by Pinciu [76]. The proof is based upon 3-coloring and it is constructive, that
is, it can be easily converted into an algorithm. The algorithm is as follows:

1. Find a triangulation graph G of an n-vertex polygon P.

2. Find a 3-coloring for Gp, that is, a map from the vertex set to the color set
{1,2,3} such that adjacent vertices receive different colors (for the existence of
such a coloring, see for example [73]).

3. Delete every diagonal in G that connects a color 2 vertex with a color 3 vertex.
Let G’» be the resulting graph. G/ gives a partition of P into triangles and
quadrilaterals. Let 7" and @ be the sets of triangles and quadrilaterals in this
partition, respectively.

4. Find the dual graph of G/..

5. Since the dual graph of G/, is a tree (Lemma 1.2), we can assign a + or — sign
to each vertex so that any two adjacent vertices have opposite sings.



20

10.

2. Cooperative guards

. Assign + or — signs to each bounded face of G/, where each face is given the sign

of the corresponding vertex in the dual tree of G/.. We obtain the partitions
T=TTUT ,and Q=QTUQ".

Define a function f : T — {1,2,3} such that for all t € T, f(¢t) = 1 if ¢ is adjacent
to another triangle of T, and f(t) is the color of a 2- or 3-colored vertex that ¢
shares with an adjacent quadrilateral and is not colored 1, otherwise.

. Find the partition f~1({2,3}) = T1 U Ty, where

Ti=(TH 2 nTHu (BT,

L= {2HnT)u(f{3HnT).
Note that we can assume that |T7| < |T5|, otherwise we switch the + and — signs
for all faces of G7..

. For every triangle t € f~({1}) U Ty, we define g(t) to be the unique vertex of ¢

that has color 1. For every quadrilateral ¢ € Q", we define g(q) to be the unique
vertex of @ that has color 2. And, for every quadrilateral ¢ € Q—, we define g(q)
to be the unique vertex of () that has color 3.

Let S=g(f'({1HUT1UQ).

THEOREM 2.8 ([76]). S is a cooperative guard set in the polygon P, and |S| < [(n — 2)/2].

Proof. First, note that by construction the triangles and quadrilaterals in the partition

of P satisfy the following properties:

(1)
(i)
(iif)
(iv)
(v)

Let

Every triangle t € T has three vertices, colored 1, 2, and 3, respectively, and any
point inside ¢ is visible from any vertex of t.

Every quadrilateral ¢ € Q has two vertices of color 1, one vertex of color 2, and
one vertex of color 3. Every point inside ¢ is visible from a vertex of color 2 or 3.
In particular, every point inside ¢ is visible from g(q).

As there are no diagonals connecting vertices of color 2 and 3 in G/, it follows
that if two triangles are adjacent, then they share a vertex of color 1.

By the same argument, if a triangle and a quadrilateral are adjacent, they must
share a vertex of color 1 and a vertex of color 2 or 3.

Finally, if two quadrilaterals are adjacent, they must share a vertex of color 1
and a vertex of color 2 or 3.

x be a point in P. Then z is either in a triangle ¢ € T or in a quadrilateral ¢ € Q.

If + € Q, then x is visible from g(q) € S. If # € t, where t € f~1({1}) UT}, then z is
visible from ¢(t) € S. If « € ¢, where ¢ € Ty, then ¢ must be adjacent to a quadrilateral ¢

that has opposite sign to that of t. From the way T» and g(¢q) were defined, it is easy to
see that g(q) is a vertex of ¢, so x is visible from g(¢) € S. Therefore S is a guard set.
Next, we will show that any two adjacent faces of G share a vertex g such that

ges.

This together with properties (i) and (ii), and the fact that the dual graph of

G/ is connected, will imply that S is a cooperative guard set. Indeed, if both faces are
triangles, then they must be in f~1({1}), thus by (iii), they share a vertex of color 1,

and this vertex is in S. If both faces are quadrilaterals, say ¢; and go, they share a vertex

of color 2 or 3 by property (v). Since ¢; and ¢y are adjacent, they must have opposite
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signs, so the two quadrilaterals must share either g(q;) or g(g2), which are in S. Finally,
assume that one is a triangle t, and the other is a quadrilateral g. If ¢ € T}, then the
vertex of color 1 shared by t and ¢ is g(t) € S. Otherwise, if ¢ € T5, then ¢ and ¢ share
9(q). Therefore S is a cooperative guard set.

We finish the proof by showing that S < |(n — 2)/2]. Indeed,
(D UTIUQ) < lg(f ({1 + |9(T1)] + 9(Q)]

S 1 NI+ 19T +19(Q)] < 5 1 (1)) + 1T + @

S AN+ 5 T L 2D+ 1Q1 = 5171+ 1Q) = 5 (1T +21Q]) = 5 (- 2).

|51

IN

IN

2.2. Miscellaneous shapes

Five generic shapes of polygons have been distinguished in the literature: convex, orthog-
onal, monotone, spiral, and star-shaped. If any straight line segment joining two interior
points of a polygon lies entirely within the polygon, then the polygon is called convez.
Convex polygons obviously do not lead to interesting theorems: two cooperative guards
always suffice (1).

2.2.1. Orthogonal polygons. If each edge of a polyline P is parallel either to the
x-axis or to the y-axis, then the polygon P is called orthogonal (see Fig. 2.4(a)).

(a) (b)

]
L —

Fig. 2.4. (a) An orthogonal polygon. (b) An orthogonal polygon with n vertices that requires
[n/2] — 2 cooperative guards; here n = 16, and the polygon needs 6 guards.

]

THEOREM 2.9 ([45]). Every orthogonal polygon (with or without holes) (2) is convezly
quadrilateralizable, that is, it may be partitioned by internal diagonals between vertices
into interior disjoint convex quadrilaterals.

LEMMA 2.10 ([73]). For any quadrilateralization of an orthogonal polygon with n vertices
into q quadrilaterals, n = 2q + 2.

Proof. The sum of interior angles of an orthogonal polygon with n vertices is 180(n — 2)
degrees. But since there are ¢ quadrilaterals, each of 360 degrees, 360g = 180(n — 2), and
thusn=2¢+2. =

(*) We assume that a polygon requires at least two cooperative guards.
(®) A formal definition of a polygon with holes is introduced in Section 2.4.1.
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The CG problem in orthogonal polygons was solved by Hernandez-Pefialver [39].

THEOREM 2.11 ([39]). Forn > 6, cg, (n) = |n/2]—2, thatis, |[n/2|—2 cooperative guards
always suffice and are sometimes necessary to cover an n-vertex orthogonal polygon, and
the guards can be restricted to vertices only.

Proof. The necessity is established by the polygon from Fig. 2.4(b), an orthogonal version
of the snake-polygon from Fig. 1.3. For sufficiency, consider a convex quadrilateralization
Q of a polygon P, and let ¢ be the number of quadrilaterals (the existence of @ is guar-
anteed by Theorem 2.9). Let S be the set of guards obtained by placing a guard at every
diagonal of P that is shared by two quadrilaterals. Clearly, S covers all of P, as quadri-
laterals form a convex partition of the polygon. And it is easy to see that the visibility
graph VG(S) is connected. By Lemma 2.10, the cardinality of Sis¢—1= |[n/2] —2.

2.2.2. Monotone polygons. A polygonal chain vy,..., v, is called monotone with re-
spect to a line L if the projections of vy,...,v, onto L are in the same order as in the
chain, that is, there is no “doubling back” in the projection as the chain is traversed. Two
adjacent vertices p; and p;;1 may project to the same point on L without destroying
monotonicity. A chain is called monotone if it is monotone with respect to at least one
line. We will use the convention that the line of monotonicity is the xz-axis. A polygon P
is monotone if its polyline P can be partitioned into two chains monotone with respect
to the same line (see Fig. 2.5); we will call them the bottom and top chains.

line of monotonicity

Fig. 2.5. A monotone polygon.

As Hernandez-Pefalver’s polygon requires as many as [n/2] — 1 cooperative guards,
we have the following corollary.

COROLLARY 2.12 ([95]). Forn >4, ¢g, onotone() = |1/2] — 1, that is, |n/2] — 1 cooper-
ative guards always suffice and are sometimes necessary to cover an n-vertexr monotone
polygon, and the guards can be restricted to vertices only.

2.2.3. Spiral polygons. Recall that a vertex is called reflex if its interior angle is greater
than 7/2; otherwise, it is called convez. A chain (z,71,...,7%,y), where (r1,...,7%) is a
maximal chain of reflex vertices, is called a reflex chain. Note that x and y are convex
vertices. Similarly, a chain of vertices (z, ¢1,. .., ¢, y) is called a convex chain if (¢cq, ..., )
is a maximal chain of convex vertices (z and y are reflex vertices). A k-spiral polygon
is a polygon whose boundary chain has exactly k reflex chains and k convex chains (see

Fig. 2.6(b)).
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(a) ; j (b) M

Fig. 2.6. (a) A 1-spiral polygon. (b) A k-spiral polygon with n vertices that requires |n/2] — 1
cooperative guards; here n = 24, k = 3, and the polygon needs 11 guards.

Fig. 2.6(b) shows a k-spiral polygon that requires |n/2] — 1 cooperative guards. Thus
by Theorem 2.7, we have the following corollary.

COROLLARY 2.13 ([95]). Forn >4, cgyia(n) = [n/2] =1, that is, [n/2] —1 cooperative
guards always suffice and are sometimes necessary to cover a k-spiral polygon with n
vertices, and the guards can be restricted to vertices only.

2.2.4. Star-shaped polygons. A star-shaped polygon is a polygon whose kernel is non-
empty. The kernel of a polygon is the set of points in the interior of the polygon from
which the entire polygon is visible (see Fig. 2.7(a)). It is easy to see that the kernel is
the intersection of all interior half-planes determined by the edges of a polygon (interior
half-planes are towards the left in a counterclockwise traversal of the boundary). Thus
the kernel is a convex polygon.

(a) (®) o

T
kernel 2

....... T4
T5

z3

1

Fig. 2.7. (a) A star-shaped polygon. (b) A 6-vertex star-shaped polygon that requires 2 coop-
erative vertex guards.

Although every star-shaped polygon may be covered by two cooperative guards,
a more interesting question arises if guards are restricted to be vertex guards. Of course,
the proof of Theorem 2.7 gives us that |n/2]| —1 cooperative vertex guards always suffice
to cover any star-shaped polygon. Fig. 2.7(b) shows a star-shaped polygon P with six
vertices with cgg, . (P) = 2 if guards are restricted to vertices. A simple extension of this
polygon—the vertex x2; does not see any x;, for j > 2 + 3, and x2;41 does not see any
vertex x;, for j > 2i 4 4—1leads to a class of star-shaped polygons that require as many
as [n/2] — 1 cooperative vertex guards.



24 2. Cooperative guards

THEOREM 2.14 ([95]). For every n > 6, there ezists a star-shaped polygon that requires
[n/2] — 1 cooperative vertex guards.

Proof. First, note that we only have to treat the case n = 0 (mod 2), as this is the critical
value of n for which [n/2] —1 > [(n—1)/2] — 1; we may always add one vertex to our
polygon to deal with n =1 (mod 2).

The case of n = 6 is established by the polygon shown in Fig. 2.7(b). Before con-
structing a star-shaped polygon Py, with n = 2m vertices (m > 3) that satisfies the
m — 1 bound, we need some definitions.

Let P be a star polygon,  be a point of P, and d = {v1,v2} be an edge of P that
is entirely visible from = (see Fig. 2.8(a)). Denote by «(x,d) the set of all points from
the exterior of P that are visible from z after deleting d; a(x,d) is the open trapezoid
delimited by d and two lines with endpoints v; and vs.

Let 71, v9, 3 be three consecutive vertices of P, in counterclockwise order, of which
only vy is convex. Let d = {vy,73}. Denote by 3(d) the set of all vertices of P that are
visible from some point of d, excluding the endpoint 73 (see Fig. 2.8(b)).

(a) (b)

V2

Fig. 2.9. A polygon P°.

Again consider the polygon PY from Fig. 2.9. The idea of the construction of Pii.,
starts with some observations:
b 5(d0) = {T?,U%,Tg}.
e PY requires two cooperative vertex guards, and one of them must be located either
at r¥ or at rg.
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o None of these two cooperative vertex guards covering P° can be located at the end-
point v§ of d°, otherwise, a third guard is needed.

e Even with an additional point guard at an internal point of d°, the polygon PP still
requires two CooperativeTrtex guards.

Fig. 2.10. An illustration of the construction of the polygon Pitar.

Next, let = be a point from the kernel of PY. For each i = 1,...,m — 3 in turn, we
adjoin a 4-vertex polygon P C a(z,d"~!) at the diagonal d*~! of the polygon P!
(see Fig. 2.10). Each P() can be guarded from x, thus the polygon Pyar = U?:03 P i
star-shaped, and it has 2m vertices.

The necessity of m — 1 cooperative vertex guards is established by induction. Let S
be a minimum cooperative vertex guard set for Pyay = UZZBAI POy PM=3) ;> 4. The
following claim is crucial:

m—4
‘Sm U PO > (m-1)-1.
=0

Reason: suppose that there is a g € S located at vy'~®. Consider the guard set resulting
from moving g along the line I O zvy’ ~3 towards x to the new location p = I N d™ %,
Clearly, such a move increases the visibility area of g in U:i_04 P, However, by the
induction hypothesis, with the new guard g at the point p # rgn_‘l of d™~*, the polygon
U;’;B4 P® still requires (m — 1) — 1 cooperative vertex guards located in U;Zf P®,

A similar argument can be applied for a guard at Tgn_3.

Consequently, by the induction hypothesis and by the above claim:

o B3(dm*) = {rin_‘l,vgn_‘l,r?_‘l}, thus no point of the edge d™ 3 is seen from a
vertex of the polygon U?;B‘l PO except for vi*~* = r"73 hence B(d™3) =
{Tm—3 Um—3 ,rm—3

1 2 sy 13 .

e We do not need any additional guard only if there is a guard at vj' ~4 but this
case requires [(m — 1) — 1]+ 1 cooperative vertex guards for [ J/";* P(), thus we get
m — 1 cooperative vertex guards for Py, .

e We need one additional guard for P("~3) either at r"~% = vJ*~* or r§" 3. Together

with m — 2 cooperative vertex guards for U;l64 P we have m — 1 cooperative

vertex guards for Psiar.
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e If we require a guard at vg’b_g, then two additional guards are needed, as the guard

at v~

requires a guard either at r"~® = vJ"~* or r§* 3. Together with m — 2
cooperative vertex guards for U?:04 P we have m cooperative vertex guards
for Piiar.

e By similar arguments to the proof of the above claim, an additional point guard
at an internal point of the edge d™ > does not change the necessary number of

cooperative vertex guards for U;Z?f PO,
Hence Pytay with 2m vertices requires m — 1 = |n/2] — 1 cooperative vertex guards. m

COROLLARY 2.15 ([95]). For n > 6, cglin®X . ea(n) = [n/2] — 1, that is, [n/2] — 1
cooperative vertex guards always suffice and are sometimes necessary to cover an n-vertex

star-shaped polygon.

2.3. Minimum cooperative guards problem

The proof of Theorem 2.7 can be converted into an algorithm that covers an n-vertex
polygon with |n/2] — 1 cooperative vertex guards:

1. Triangulate the polygon (O(n), [16]);

2. Find a minimum vertex cover of the diagonal graph (O(n), [8]).

Although |n/2] —1 cooperative guards are necessary in some cases, this is often much
more than needed to cover a particular polygon.

EXAMPLE. Let Gp be a diagonal graph of an n-vertex polygon P. Let S(P) and Sopr(P)
denote the number of cooperative guards obtained by the above algorithm, and the min-
imum number of cooperative guards that cover P, respectively. It is natural to ask about
5(P)
lim max ————,
n—oo Sopr(P)

that is, how the result obtained can differ from the optimal solution.

(b)

Fig. 2.11. A (4k + 2)-vertex star-shaped polygon requires 2 cooperative vertex guards; (a) its
triangulation T, (b) a minimum vertex cover of Gp is of cardinality O(k).

Consider the polygon P with 4k+-2 vertices, its triangulation 7', and the corresponding
diagonal graph Gp shown in Fig. 2.11. It is clear that any minimal vertex cover of Gp
is of cardinality ©(k), and as P is a star-shaped polygon with one of its vertices in the
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kernel, it can be guarded by two cooperative vertex guards. Thus

lim ma: S(P) 00
X ————— = 00,
n—o0 Sopt(P)

that is, this algorithm performs arbitrarily badly.
It is then natural to seek a placement of the minimum number of cooperative guards
that cover a given polygon.

DEFINITION 2.1. Let P be a polygon. The minimum cooperative guards (MinCG for
short) problem is to find a cooperative guard set for P of the minimum cardinality.

The MinCG problem is fundamentally intractable: it is NP-hard. This fact immedi-
ately follows from the proof in [56] establishing the NP-hardness of the original art gallery
problem. In [56] an instance of the Boolean three satisfiability problem (3SAT) is reduced
to the minimum guard problem for simple polygons. There is a set S of minimum number
of guards stationed in the transformed polygon P if and only if the relevant instance of
3SAT is satisfiable. It can be seen that the visibility graph VG(S) is connected due to
the transformation itself.

THEOREM 2.16 ([58]). The minimum cooperative guards problem is NP-hard.

As in Chapter 4 we shall use Lee and Lin’s technique to prove NP-hardness of the
minimum k-guarded guards problem, we will not present the original proof here (for the
proof we refer the reader to [2] or [56]).

2.3.1. MinCG problem in spiral polygons. As the MinCG problem is NP-hard for
general polygons, it is natural to try to solve it on a restricted class of polygons. Liaw et
al. show that the minimum cooperative guards problem for 1-spiral and 2-spiral polygons
can be solved in linear time [58].

Let P be a 1-spiral polygon, and let RC and C'C be its reflex and convex chains,
respectively. Traversing the boundary of P counterclockwise, the starting (ending) vertex
of RC is vs (ve). Starting from v, (ve), let us draw a line along the first (last) edge of
RC, until it hits the boundary of P at {1 (r1). This line segment vsl; (ver1) and the first
(last) part of CC starting from v (v.) form a region called the starting (ending) region.
Fig. 2.12 shows an example. Note that there must be a guard stationed in both starting
and ending regions.

convex chain CC

reflex chain RC

starting region

ending region

T1

I

Fig. 2.12. A 1-spiral polygon.
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Let x be a point in P. Given a reflex chain RC, we can draw two tangents with respect
to RC from z. If the exterior of RC lies entirely to the right (left) of the tangent drawn
from z, we call it the left (right) tangent of x with respect to RC. Now, let us draw the
left (right) tangent of = with respect to RC until it hits the boundary of P at y. We call
xy the left (right) supporting line segment with respect to x, and we call y the ending
point.

The greedy algorithm MinCGA proceeds as follows. It starts by placing a guard at [;.
Then we find the point s on the convex chain such that [1l5 is the left supporting line
segment with respect to [;—the point I is selected as a guard. If /5 is in the ending
region, then we are done. Otherwise, we repeat the process until the ending point of our
newly created left supporting line segment is in the ending region (see Fig. 2.13).

Fig. 2.13. A minimum set of cooperative guards {l1,1l2,l3,l4} in a 1-spiral polygon.

THEOREM 2.17 ([58]). The algorithm MinCGA is optimal for the MinCG problem on
any 1-spiral polygon P.

Before commencing the proof, let us recall the following lemma.

LEMMA 2.18 ([70]). There exists an optimal guard placement for a 1-spiral polygon in
which all guards are stationed on the conver chain.

Proof. For an edge e = {z,y} from the reflex chain, we define essential line segments
as the line segments that are extensions of e (see Fig. 2.14). The extension defines two
essential line segments, the forward and backward essential line segments, zx; and yy,,
respectively.

X x

Fig. 2.14. The forward and backward essential line segments.

Now, let g be a guard taken from a cooperative guard cover. Then g is either to
the left of some forward essential line segment and to the right of some backward line
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segment or to the right of some forward essential line segment and to the left of some
backward line segment (these essential line segments are provided by two different edges).
The line passing through ¢g and the intersection point of these two essential line segments
intersects the convex chain at some point p. Let us move g to p. It is easy to see that
g sees all points that were seen from the previous location of g. Therefore the whole
polygon remains covered, and the visibility graph of the transformed guard placement is
connected. m

Proof of Theorem 2.17. Let P be a 1-spiral polygon, and let RC and C'C' be its reflex and
convex chains, respectively. Let S = {g1,...,¢m} be a minimum cooperative guard set
of P with all guards located at CC, as Lemma 2.18 guarantees, and with g1 < -+ < g,-
In any minimum cooperative guard set, there is a guard g; in the starting region of P.
It is easy to see that the guard set S' = {g},g2,...,9m}, where the guard ¢ is located
at lq, is a cooperative guard set for P, as the region covered by ¢} is at least as large as
that covered by g;. Consequently, by a simple induction proof, it is easy to show that
for all i = 1,...,m, the guard set S = {¢|,..., ¢}, 0ix1,---,9m}, Where g},..., g, are
located at [y,...,l;, is a cooperative guard set for P, as the region covered by ¢i, ..., ¢!
is at least as large as that covered by ¢1,...,¢9;. =

COROLLARY 2.19 ([58]). The algorithm MinCGA runs in linear time.

Note that by the symmetry of the starting and ending regions, we can start from rq
and successively find the right supporting line segments until the ending point of the last
one is in the starting region.

Liaw et al. [58] also proposed an optimal linear algorithm for 2-spiral polygons; the
algorithm is based upon the observation that we can divide a 2-spiral polygon into three
specific subpolygons, two of which are 1-spiral polygons, and positions of guards can be
determined by matching the partial solutions for these 1-spiral polygons. The complete
analysis of all cases can be found in [23].

THEOREM 2.20 ([23, 58]). The minimum cooperative guards problem for 2-spiral polygons
can be solved in linear time.

Finally, let us mention that Liaw et al. [568] also considered the constrained MinCG
problem for 1-spiral polygons. The constrained version of the problem is the same as the
original one except that a specified point must be included in the solution. By a slight
modification of the algorithm for the non-constrained case, they obtained the following
theorem.

THEOREM 2.21 ([58]). There is a linear time algorithm to solve the constrained MinCG
problem for 1-spiral polygons.

2.4. Polygons with holes
A polygon with holes is a polygon P enclosing several other polygons Hy, ..., H,, known

as holes. Hy, ..., Hy, P are mutually disjoint. Similarly to polygons without holes, define
CG(P) to be the minimum cardinality of a cooperative guard set for P. Next, define
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cg(n, h) to be the maximum value of CG(P) over all polygons with h holes and n vertices
in total, i.e., counting vertices on the holes as well as on the outer boundary of P. The
function cg(n, h) represents the maximum number of cooperative guards that are ever
needed for an n-gon with A holes.

2.4.1. Polygons with one hole. In this section, we give a tight bound for the case
of h = 1. We show that cg(n,1) = |(n — 1)/2], even for vertex guards. The idea of the
proof of the sufficiency of |(n — 1)/2] cooperative vertex guards for polygons with one
hole follows the main outline of Shermer’s proof for vertex (arbitrary) guards [82, 83|.

In [82, 83] Shermer establishes that |(n + 1)/3] is the tight bound for arbitrary ver-
tex guards in any one-hole polygon. To show the sufficiency of this bound, Shermer uses
an arbitrary triangulation (3) of the polygon. This triangulation must contain a cycle
of triangles, i.e., the cycle of triangles corresponding to the cycle in the dual graph sur-
rounding the hole. Shermer first shows that to prove the sufficiency of | (n + 1)/3] vertex
guards for any triangulation, it is enough to provide a proof for a reduced triangulation.
A reduced triangulation is a triangulation such that every subgraph of its dual graph G
that can be disconnected from G by the removal of a single edge, has exactly one vertex.
In some of these triangulations, it is not possible to pick |(n 4+ 1)/3] vertex guards so
that every triangle has a guard at one of its vertices. Shermer calls these configurations
tough triangulations and makes a case study to show that in each situation |(n + 1)/3]
vertex guards are still sufficient. Our approach is similar. Before commencing the proof,
let us establish the following lemma.

LEMMA 2.22 ([96]). Let G be a triangulation graph of a hole-free polygon P with n > 3
vertices, and let e = {v1,v2} be an edge of P. Then:

(a) if n is odd, then |(n —1)/2] cooperative guards with one guard placed at any
endpoint of e suffice to dominate G (*);

(b) otherwise, |(n —1)/2] cooperative guards with one guard placed either at vy or at
vo suffice to dominate Gr.

Proof. The validity of the assertion for odd n follows immediately from Theorem 2.6
establishing that [n/2]—1 cooperative vertex guards suffice to dominate any triangulation
graph of an n-vertex polygon. If n is odd, then |n/2] —1 = |[(n —1)/2] — 1 cooperative
guards dominate G, and with one additional guard at any endpoint of e, we get a
domination by |(n — 1)/2| cooperative guards.

Now, assume n to be even. Let G7. be the graph that results from adjoining a triangle
t at the edge e in Gr. It is clear that G%. is a triangulation graph of an (n + 1)-vertex
polygon, and by Theorem 2.6, it can be dominated by |(n — 1)/2]| cooperative vertex
guards. Any triangular face of G} has at least one of its vertices selected as a guard,
thus there is a guard either at v, or at vy. The same guard placement in G will domi-
nate Gr. m

(3) The existence of a triangulation of a polygon with holes is established by Lemma 2.32 in
Section 2.4.2, so in this section we take it for granted.
(*) Here we assume that a triangle may be covered by one cooperative guard.
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We say that a triangulation of a one-hole polygon is basic if the dual graph of the
triangulation is a cycle (surrounding the hole) (see Fig. 2.15(a)). Let P be a polygon with
one hole, and let T" be one of its triangulations. Suppose 7' to be basic. A cycle triangle
of T is based on the inner boundary if it has exactly one vertex, its apex, on the outer
boundary, and based on the outer boundary if its apex vertex is on the inner boundary.
Let us label a cycle triangle “¢”. Then T is represented by a string of characters over the
alphabet {t, /}, formed by concatenating all the labels of the cycle triangles, and inserting
“/” between labels ¢; and ¢y if the triangle ¢; is based on the inner boundary and the
triangle to is based on the outer boundary, or vice versa. Thus each “/” records a switch
in basing. This string of characters will be called the string associated with T.

(a) (b) (c)

Fig. 2.15. (a) A basic triangulation—its dual graph is a cycle. (b) A triangulation graph on
8 vertices with string (¢/)® that requires four combinatorial cooperative guards: the 3 shown
(dots) do not cover the shaded triangle. (c) A triangulation graph on 4 vertices with string (¢/)*
that requires 2 combinatorial cooperative guards: the 1 shown (dot) does not cover the shaded
triangle.

Fig. 2.15(b) shows an example. Starting at the indicated leftmost triangle and pro-
ceeding counterclockwise, we obtain the string t/t/t/t/t/t/t/t/. We employ the standard
regular expression notation to condense the strings: s* for k repetitions of a string s.
Thus the above string is equivalent to (t/)%. We consider two strings s; and sy to be
equivalent if s; is a cyclic shift of s, or a cyclic shift of the reverse of s5. Finally, note
that the strings make no distinction between the inner and outer boundaries.

The main difficulty in the sufficiency proof is the existence of triangulation graphs that
require as many as |n/2] combinatorial cooperative guards for a complete domination.

LEMMA 2.23 ([96]). The triangulation graph of a basic triangulation T of an n-vertex
polygon with one hole requires |n/2| combinatorial cooperative guards for a complete
domination if and only if the string for T has the form (t/)2*+4, k > 0.

We will call a string that is an instance of (t/)2** tough. Fig. 2.15(b) satisfies the con-
ditions of the lemma: n = 8 and it requires |8/2| = 4 combinatorial cooperative guards;
an attempted cover with three guards is shown in the figure. Note that even triangu-
lations whose strings are tough but do not correspond to any non-degenerate polygon
require |n/2| combinatorial cooperative guards. Fig. 2.15(c) shows the smallest possible
instance, (t/)*, which requires |4/2| = 2 combinatorial cooperative guards.

Proof of Lemma 2.23. We will first prove that a triangulation graph G with a tough
string requires |n/2| combinatorial cooperative guards.
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(a) (b)

It Tt [k <y

Fig. 2.16. A tough triangulation requires |n/2| combinatorial cooperative guards.

Let us consider the sequence s of triangles that is shown in Fig. 2.16(a). It is easy to
see that it has the following properties:

e it requires |m/2] combinatorial cooperative guards, where m is the number of
triangles;

e if a guard is required either at the vertex [; or 15, then the sequence requires
| (m + 2)/2] combinatorial cooperative guards, where m is the number of triangles;

e if guards are required at both [, and 7, then the sequence requires |(m + 2)/2|
combinatorial cooperative guards, where m is the number of triangles.

Next, if we close the sequence s with two triangles (see Fig. 2.16(b)), we will get
a tough string. The above properties ensure that at least |[(m + 2)/2| combinatorial
cooperative guards are required for a complete domination of the new string. As m+2 = n,
we are done.

Now we will prove the assertion in the other direction, in the contrapositive form: if
a triangulation T is not an instance of a tough string, then fewer than |n/2| combinatorial
cooperative guards suffice for a domination.

Each t in a tough triangulation must be followed by /. Thus any non-tough triangu-
lation must contain a fragment of the form ¢¢ with the apex at some vertex v. Without
loss of generality, we can assume that the sequence ¢/ is followed by tt. Otherwise, we
can remove triangles ttt from the graph G and split the vertex v into two. The resulting
hole-free triangulation graph can be dominated by |(n — 1)/2] — 1 combinatorial coop-
erative guards. The same guard placement in G with one additional guard at v yields a
domination of Gt by |[(n — 1)/2] combinatorial cooperative guards.

t1 | t2
t3

Fig. 2.17. An existence of a t¢t-fragment leads to domination by [(n — 1)/2] combinatorial co-
operative guards.

Therefore let the triangles from the fragment ¢t/ be labeled ¢1, t2 and t3, respectively,
and let {z,v} be the diagonal shared by the triangles ¢; and t;. Removing to and t5
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from Grp results in the triangulation graph G/, of a hole-free polygon with n vertices
(see Fig. 2.17). By Lemma 2.22, G/, can be dominated by [(n —1)/2] combinatorial
cooperative guards with one guard located either at = or at v. As t; and ¢ form the t¢-
fragment in G, without loss of generality, we can assume v to be selected as a guard. Then
the same guard placement in G yields a domination of G by [(n — 1)/2| combinatorial
cooperative guards, as the triangles ¢ and t3 are dominated by the guard at v. m

Now, let P be a one-hole polygon with n vertices, and let 7" be one of its triangulations.
The next lemma shows that the only triangulations “hard” to dominate by |(n — 1)/2]
combinatorial cooperative guards are the tough ones.

LEMMA 2.24 ([96]). Let P be a polygon with n vertices and one hole, and suppose that
there exists a non-tough triangulation T of P, that is, P has either a triangulation whose
dual graph is a cycle with at most one tree attached to the cycle, or P has a non-tough basic
triangulation. Then the triangulation graph of T can be dominated by |(n —1)/2| coop-
erative guards.

Proof. The proof is by induction on the number of trees attached to the cycle of the dual
graph of T. The initial step is established by Lemma 2.23: [(n — 1)/2] combinatorial
cooperative guards are sufficient to dominate a non-tough basic triangulation graph,
which by definition has no attached trees in the dual graph. For the inductive step, assume
that |(n — 1)/2] combinatorial cooperative guards suffice for any non-tough triangulation
with the dual graph of s’ < s attached trees.

Fig. 2.18. The graph G, attached at the diagonal {a, b} to a cycle triangle.

Let G be the triangulation graph of T, and let GG, be a triangulation graph whose
dual graph corresponds to a tree detachable from G by the removal of one arc r. This
situation is illustrated in Fig. 2.18. Let a and b be the endpoints of the diagonal whose
dual is r. Let m be the number of vertices in G,., not including a and b. The proof
proceeds in three cases, depending on the values n (mod2) and m (mod 2). The easiest
cases are considered first.

CASE 1: n = 2i + 1. The sufficiency of the |(n — 1)/2] bound follows immediately from
Corollary 2.35 (see Section 2.4.2): if n is odd, then |n/2| = |(n —1)/2].

CASE 2: n = 2{ and m = 2[. Augment G, to G¥ by adding the triangle on the other
side of {a,b}, whose apex is z. Next, by cutting G along the diagonals {z,a} and
{z, b}, we get two triangulation graphs G/» and G*, with n — m + 1 and m + 3 vertices,
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respectively. By Theorem 2.6, G» can be dominated by |(n —m — 1)/2] combinatorial
cooperative guards. With the same arguments, G can be dominated by |(m + 3)/2| —1
combinatorial cooperative guards, with a guard at one of the vertices a,b or z. As m is
even, [(m+3)/2| —1 = |m/2]. The same guard placement in G yields a domination
by [(n —m —1)/2| + |[m/2] < |(n —1)/2] combinatorial cooperative guards.

CASE 3: n = 2¢ and m = 2] 4+ 1. Again augment G, to GZ by adding a triangle on
the other side of {a,b}, whose apex is . By Lemma 2.22, GZ can be dominated by
|(m + 2)/2] combinatorial cooperative guards with one guard located either at a or at x.
If z is selected as a guard, it may be moved to a. Thus we can assume a to be selected
as a guard in G7. Let G’ be the result of removing all triangles of G7 and all triangles
incident to a. G/ has n — m — 1 vertices, since it misses m vertices of G¥ and the
vertex a. Note that G7. is not necessarily a triangulation graph of a polygon, as pieces
may be attached at vertices only. But now connect each vertex of G that was adjacent
to a in Gp to b. In Fig. 2.19 the vertices vy,...,vs are connected. These connections
are not always geometrically possible, but for this case we are only concerned with the
combinatorial structure of the graph. The reconnections do not increase the number of
vertices, but G/ becames a triangulation graph of a polygon with one hole, with a smaller
number of trees attached to the cycle of the dual graph of G

Gy ‘
U3 V4

b RS
/ - /v
xT V1 T

Fig. 2.19. Case 3: n = 2¢ and m = 2] + 1.

If G is not tough, then G’ can be dominated by

R

combinatorial cooperative guards by the induction hypothesis, as n — m is odd. And it

is easy to see that placing guards at vertices of G selected as guards either in G/ or in
G? yields a combinatorial cooperative domination of G by at most [(n — 1)/2] guards.
Otherwise, the toughness of G/, implies the following properties of G:

o the dual graph of G is a single cycle with one tree attached (corresponding to the
graph G7);

e since connecting b to the vertices to which a was adjacent results in a tough string
(t/)?k+4 by simple enumeration of cases, the cycle triangles of G (without triangles
of G,) must have been of the form t¢/t/(t/)?**2, and either a or b has belonged
only to triangles from the tt-fragment. Therefore without loss of generality, either
the configuration shown in Fig. 2.20(a) or Fig. 2.20(b) must hold.
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(a) (b)
V1 a /\ b a /\ b

Fig. 2.20. Subcases 3.a and 3.b.

SUBCASE 3.a: G is of the form shown in Fig. 2.20(a). Then instead of connecting b to v,
let us connect v1 with x, that is, we have to flip a diagonal in the quadrilateral (b, vy, vo, x)
in G.. Again note that this is only a combinatorial “procedure”. This flipping results in
a non-tough triangulation, and thus we can proceed as in the case of G/. non-tough.

SUBCASE 3.b: G is of the form shown in Fig. 2.20(b). Then instead of considering the
vertex a in the first step of the proof, we have to consider b. It is easy to see that this
will lead to Subcase 3.a. m

The next step is to invoke the geometry of the triangulation and use geometric guards
in the case of a tough triangulation. In particular, if a tough triangulation contains either
a “c-pair” or a “c-triplet”, then |(n — 1)/2] vertex cooperative guards suffice. The final
step is to show that every tough triangulation contains one of these two structures.

DEFINITION 2.2. A c-pair is a pair of adjacent cycle triangles that together form a convex
quadrilateral.

LEmMMA 2.25 ([96]). A polygon with a tough triangulation containing a c-pair can be
covered by |(n — 1)/2| vertex cooperative guards.

Proof. Flipping the diagonal of the c-pair will change the structure of the triangulation
to non-tough. By Lemma 2.24, the resulting triangulation graph can be dominated by
[(n —1)/2] combinatorial cooperative guards, and hence all of P can be covered by
|(n —1)/2] vertex cooperative guards. m

DEFINITION 2.3. A c-triplet is a triple (A, B, C) of consecutive triangles such that the
union of three triangles may be partitioned into two convex pieces.

LEMMA 2.26 ([96]). A polygon with a tough triangulation containing a c-triplet can be
covered by |(n — 1)/2| vertex cooperative guards.

Proof. Let a be a vertex common to the c-triplet triangles A, B and C, as shown in
Fig. 2.21(a). Deleting B and splitting the vertex a into two results in the hole-free polygon
with n + 1 vertices, which may therefore be covered by [(n —1)/2| vertex guards by
Theorem 2.7. In particular, both A and C must have a guard at one of its corners. Now
put back B. Because the three triangles form a c-triplet, B is also covered by the guards
covering A and C. Note that if the triangles did not form a c-triplet, as in Fig. 2.21(b),
B would not necessarily be covered. =
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(a) (b)

a

|\

Fig. 2.21. A c-triplet is covered if A and C are covered (a), but B would not be necessarily
covered if the triangles do not form a c-triplet (b).

We finally come to the last step of the proof. For a triangle t;, let (i) denote the
open cone delimited by the two edges of ¢; passing through the apex, and denote by (i)
the similar region of the right-hand base vertex (see Fig. 2.22).

Fig. 2.22. The apex cone a and the base cone [ for a triangle.

LEMMA 2.27 ([96]). Any tough triangulation of a polygon contains either a c-pair or
a c-triplet.

Proof. The proof is by contradiction and it is taken from [83]. Assume that a tough
triangulation 7' contains neither a c-pair nor a c-triplet. Then we will show that it cannot
close into a cycle, and so it is not the triangulation of a one-hole polygon.

Let us identify two adjacent cycle triangles of the form ¢/t; such a fragment must
exist, because the general form is (¢/)?*4. We will identify triangles by subscripts on
their labels. The selected fragment is labeled ¢ /t5. Let a string s end on the right with ¢;,
and let v; be the vertex at the tip of ¢;. An embedding of s is said to be nesting if v; is
in the base cone (i — 1) of the triangle ¢;_; adjacent to ¢;.

The general form of the fragment t; /t5 is as shown in Fig. 2.23(a). In order to avoid
a c-pair, either the configuration shown in Fig. 2.23(b) or Fig. 2.23(c) must hold. In
Fig. 2.23(c) we have vy € (1), and so the nesting condition is satisfied. As Fig. 2.23(c)
is just Fig. 2.23(b) reflected and rotated, we assume without loss of generality that
Fig. 2.23(c) holds.

The string t1/t; may be extended only with /¢ while remaining compatible with the
tough form; the general form is shown in Fig. 2.24(a). In order to avoid a c-pair in t/t3,
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Fig. 2.23. t1/t2 is nesting.

Fig. 2.24. t1/t2/ts is nesting.

either v € a(2) or vs € B(2). The former choice (Fig. 2.24(b)) leads to a c-triplet, and
the latter (Fig. 2.23(c)) is a nesting configuration.

Now the contradiction is immediate. By applying the above observation to all triangles
in turn, we conclude that every embedding of the string compatible with a tough string
having no c-pairs and no c-triplets is nesting. The repeated nesting forces v; € 5(i — 1),
and since these base cones are clearly inside one another (cf. Fig. 2.23(c) and Fig. 2.24(c)),
the embedding cannot wrap back around to permit v,41 =v;. m

THEOREM 2.28 ([96]). [(n — 1)/2] vertex cooperative guards suffice to cover any n-vertex
polygon with one hole.

Fig. 2.25. A one-hole polygon may require as many as |(n — 1)/2| cooperative guards.

Proof. Lemma 2.24 establishes that if there exists a non-tough triangulation, then
|(n —1)/2] vertex cooperative guards suffice. So we only need to consider polygons with
tough triangulations. Lemmas 2.25 and 2.26 show that if a tough triangulation contains
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either a c-pair or a c-triplet, then [(n —1)/2]| vertex cooperative guards suffice. And
Lemma 2.27 shows that every tough triangulation contains one of these structures. m

THEOREM 2.29 ([96]). For all n > 6, cg(n,1) = [(n—1)/2]|, even for vertex guards.

Proof. The necessity is established by the class of polygons shown in Fig. 2.25. It is easy
to see that they require as many as |(n — 1)/2] cooperative guards. Therefore cg(n,1) >
[(n —1)/2]. For sufficiency, we apply Theorem 2.28. m

2.4.2. Arbitrary number of holes. The cooperative guards problem for polygons with
an arbitrary number of holes remains unsolved. And it does not seem easy to extend the
proof of Theorem 2.28 to more than one hole. However, in this section we provide upper
bounds for cg(n, h) for both point and vertex guards.

In [12] Bjorling-Sachs and Souvaine show that |(n + h)/3] arbitrary guards are suf-
ficient in any polygon with n vertices and h holes. Their approach is to connect each
hole to the exterior by cutting away a quadrilateral channel ¢;, i = 1,..., h, such that
one vertex is introduced for each channel, and there is a triangle 7; in the remaining
polygon such that any point in it sees all of the channel ¢;, ¢ = 1,...,h. This tri-
angle is then forced to be in a triangulation of the hole-free version of the polygon.
A guard assignment based on 3-coloring will cover the hole-free polygon and all the
channels as well. Since the new polygon has n + h vertices, the number of guards is
[(n+ h)/3]. These guards are vertex guards in the hole-free polygon, but point guards
in the original polygon, since new vertices were added during the channel construc-
tions.

The main result of Bjorling-Sachs and Souvaine’s paper is the following theorem, which
we will use to provide an upper bound for cooperative guards. (As the proof involves a
long cascade of cases, we refer the reader to [12].)

THEOREM 2.30 ([12]). In any polygon P with n vertices and h holes, all channels c;,
i=1,...,h, can be removed in such a way that the remaining polygon has:

e n + h wvertices;

e no holes;

e a triangulation T with (disjoint) triangles t;, i = 1,...,h, as leaves in the dual
graph of T' from whose vertices the areas of the removed channels are visible in P.

Let P be a polygon with n vertices and h holes, and let T" be a triangulation whose
existence is guaranteed by the above theorem. By Theorem 2.6, G can be dominated by
[(n+ h)/2] — 1 combinatorial cooperative guards, and thus all of the hole-free polygon
can be covered by the same number of cooperative guards. Since each of the triangles ¢;
of T,i=1,...,h, has a guard at one of its vertices, these guards see all of the channels
by Theorem 2.30. Thus all of P is covered by [(n + h)/2| — 1 cooperative guards. Note
that the guards are point guards, since the hole-free polygon has vertices not present
in P. This proves the following theorem.

THEOREM 2.31 ([96]). For all h > 0 and n > 3+ 3h, cg(n,h) < [(n+ h)/2] — 1, that is,
[(n+ h)/2] — 1 cooperative guards are sufficient to cover the interior of a polygon with
n wvertices and h holes.
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The best sufficiency result for vertex guards follows the main outlines of O’Rourke’s
proof for arbitrary vertex guards in polygons with holes (cf. the proof of Theorem 5.1
of [73]), and it was established by Ahlfeld and Hecker [3].

LEMMA 2.32 ([73]). An n-vertex polygon P with h holes can be partitioned into t =
n + 2h — 2 triangles by adding n + 3h — 3 internal diagonals.

Proof. The proof is by a double induction: first on h, and then on n. Theorem 1.1 es-
tablishes the case of h = 0. For the inductive step, let d be an internal diagonal, whose
existence can be guaranteed by the same argument as used in Theorem 1.1. If d has one
endpoint on a hole, then cutting the polygon along this diagonal increases n by 2, but
decreases h by 1. If d has both endpoints on the outer boundary of P, then it partitions
P into two polygons P! with n; < n vertices and h; < h holes, i = 1,2. In either case,
the induction hypothesis applies and establishes the existence of a triangulation.

The number of triangles is obtained from Euler’s theorem. There are V = n vertices,
F = t+h+1 faces, one for each triangle and hole, plus the exterior face, and E = (3t+n)/2.
Then V —E+ F=2yieldst=n+2h—2. =

Thus by the above lemma, the triangulation graph of a triangulation is well defined.
Applying the same arguments as in the proof of Lemma 1.4, we have the following lemma.

LEMMA 2.33 ([95]). Let P be an n-vertex polygon with h holes, and let Gt be one of its
triangulation graphs. If Gr can be dominated by f(n,h) cooperative guards, then P can
be covered by f(n,h) geometric cooperative vertex guards.

THEOREM 2.34 ([3]). A triangulation graph of an n-vertex polygon with h holes can
always be dominated by |n/2] + h — 1 cooperative guards.

Proof. Let G be a triangulation graph of a polygon P with n vertices and /A holes.
The idea is to cut the polygon along internal diagonals so as to remove each hole by
connecting it to the exterior of P. Cutting along any such diagonal either merges the
hole with another or connects it to the outside. In either case, each cut reduces the
number of holes by one. All we need is to choose the cuts so that the result is a single
polygon.

Let Dr be the (weak) dual graph of the triangulation 7. Then Dy is a planar graph
of the maximum degree three, which, in its planar embedding, has h bounded faces
Fi, ..., Fp, one per hole of P. Let Fy be the exterior unbounded face. Choose any face
F; that shares at least one edge e with F. Note that there must be such a face because
there must be a diagonal of T' from the outer boundary to some hole, and the dual of
this diagonal in Dy is e. Removal of e from Dy merges F; with Fjy without disconnecting
the new graph Dp. See Fig. 2.26 for an example. Of course, removal of an edge in Dy is
equivalent to cutting P along the corresponding diagonal of T'. By continuing to remove
edges of D shared with the exterior face in this manner, a tree is obtained, and thus a
polygon without holes.

Let P’ be the polygon that results after all holes are cut in the above manner. Then
P’ has n + 2h vertices, since two new vertices are introduced per each cut, but because
the cuts do not create new triangles, the resulting triangulation graph G’ has n+ 2h — 2
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(a) (b)

Fig. 2.26. (a) A triangulation graph of a polygon with holes, and (b) its dual. Each hole in (a)
is surrounded by a cycle in (b).

triangular faces and n + 2h vertices. Applying Theorem 2.6 yields a domination of G/,
by [n/2| 4+ h+ 1 cooperative guards. The same guard placement in Gr will dominate all
triangular faces of G7. =

COROLLARY 2.35 ([3]). For verter guards, cg(n,h) < [n/2] +h — 1.

But this easily obtained corollary is weak as no one so far has found examples of
polygons that require so many guards. Fig. 2.27 shows an example from the class of n-
vertex polygons with h holes that requires |n/2] vertex cooperative guards. We conjecture
that this bound is tight.

vV V V

Fig. 2.27. A polygon with holes may require |n/2]| cooperative vertex guards.

CONJECTURE 2.36. |n/2] cooperative vertex guards are sometimes necessary and always
sufficient to guard an n-vertex polygon with h holes.

When considering point guards, surprisingly, it seems that increasing the number of
holes decreases the number of required cooperative guards. The best necessity bound
follows from the case of orthogonal polygons, and it will be discussed in the next section.

2.4.3. Orthogonal polygons with holes. We define an orthogonal polygon with holes
to be an orthogonal polygon with orthogonal holes, with all edges aligned with the same
pair of orthogonal axes. The case of one-hole orthogonal polygons was solved by the
author [95], who proved the following theorem.

THEOREM 2.37 ([95]). cg, (n,1) = |(n— (nmod 4))/2] — 1.

Proof. First, consider the case n = 0 (mod 4). The necessity is established by the polygon
shown in Fig. 2.28(a). For sufficiency, consider a quadrilateralization @ of a one-hole
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orthogonal polygon P. Now, by cutting P along a diagonal d in order to connect the
hole to the outside, we get a new hole-free polygon P’ with a new set D of diagonals.
Of course, |D| = |n/2| — 1. Now, by placing a guard on each diagonal from D, we get a
guard set for P’ of cardinality |[n/2] — 1. It is easy to see that S is cooperative, and it
covers the original polygon P as well (cf. the proof of Theorem 2.11).

(2) (b)

Fig. 2.28. (a) If n =0 (mod4) then cg, (n,1) > |n/2] — 1; here n = 20, and the polygon needs
9 guards. (b) Otherwise, cg, (n,1) > |n/2| — 2; here n = 16, and the polygon needs 6 guards.

If n = 2 (mod4), the necessity is established by the polygon shown in Fig. 2.28(b)
(due to Pinciu [77]). For sufficiency, all we need is to notice that if n = 2 (mod 4), then in
any quadrilateralization @) of P, there exist two diagonals d; and do that share a vertex.
So if we cut P along a diagonal d, where d # d; and d # dz, we can put a guard at the
common vertex of d; and dy. Hence the construction used in the case n = 0 (mod4) will
result in a cooperative guard set of cardinality [n/2] —2. m

Fig. 2.29. A 40-vertex orthogonal polygon with 5 holes can require as many as 16 > |40/2] —5 =
15 cooperative guards.

The case of orthogonal polygons with at least two holes remains open. In 2003, Pin-
ciu [77] sketched a proof that [n/2| — h cooperative guards always suffice to cover an
n-vertex orthogonal polygon with h holes. However, Fig. 2.29 shows an 40-vertex orthog-
onal polygon with five holes that requires as many as 16 > [40/2] — 5 = 15 cooperative
guards, thus Pinciu’s theorem is false. A simple extension of this polygon leads to a class
of orthogonal polygons that require as many as |n/2] —h+|(h — 1)/4] cooperative guards
(see Fig. 2.30).

COROLLARY 2.38 ([95]). cg, (n,h) > |n/2] —h+ [(h—1)/4], h > 2.
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Fig. 2.30. An n-vertex orthogonal polygon with h holes can require as many as |[n/2] — h +
[(h —1)/4] cooperative guards; here n = 88, h = 13, and the polygon requires 34 cooperative
guards.

The best sufficiency result for point guards follows from the result established by
Hoffman [42], who proved the following theorem.

THEOREM 2.39 ([42]). Any orthogonal polygon, possibly with holes, can be partitioned
into at most |n/4] rectilinear stars, each of size at most 12.

Recall that a rectilinear star is a union of rectangles with non-empty intersection.
So let P be an n-vertex orthogonal polygon with h holes, and consider a partitioning
{S1,...,Sk} of P into rectilinear stars with k& < [n/4|, as guaranteed by the the-
orem above. Let s;, i = 1,...,k, denote a point from the kernel of S;. Of course,
S = {s1,...,8;} is a guard set for P. Let G = (S, FE) be a graph whose vertex set
is § and whose two vertices s; and s; are adjacent if their stars S; and S; have a point
in common; for an edge ¢ € F, let p(e) denote any such point. Let T = (S, E’) be a
spanning tree of graph G. Then, by the same arguments as in the proof of Theorem 2.11,
S Up(E') is a cooperative guard set for P. Hence we have
THEOREM 2.40 ([95]). cg, (n,h) < |n/2] —1.

The best sufficiency result for vertex guards follows from the proof of Theorem 2.34.
Let @ be a quadrilateralization of an n-vertex orthogonal polygon P with h holes. By cut-
ting P along internal diagonals in order to connect the holes to the outside, we get a new

hole-free polygon P’ with a convex quadrilateralization of |(n + 2h)/2] — 2 diagonals
(Lemma 2.10). By applying the same reasoning as in the proof of Theorem 2.11, we get

COROLLARY 2.41 ([95]). For vertex guards, cg, (n,h) < [n/2| —2+ h.



3. WEAKLY COOPERATIVE GUARDS

In this chapter, we investigate the weakly cooperative guards problem [59] in which we
require the visibility graph of a set of guards to have no isolated vertices; the WCG
problem is also called the 1-guarded guards problem or watched guards problem. In [39]
Hernandez-Petialver claimed that [2n/5| weakly cooperative guards always sufficed to
guard any polygon with n vertices. However, Michael and Pinciu [65, 66], and indepen-
dently Zyliniski [97], presented a class of polygons that required more than |2n/5] weakly
cooperative guards and they established a new tight bound for weakly cooperative guards:
|(3n —1)/7]. In [40] Hernandez-Pefialver proved that [n/3] is a tight bound for orthog-
onal polygons, and tight bounds for polygons of miscellaneous shapes were provided by
Zyliniski [97]: |2n/5| watched guards for monotone and spiral polygons, and | (3n — 1)/7|
vertex watched guards for star polygons.

3.1. Arbitrary polygons

First, for every n > 5, we will construct a polygon P, that requires as many as | (3n—1)/7|
weakly cooperative guards; the construction is taken from [66]. Next, we will show this
bound to be tight. From now on, we refer to a weakly cooperative guard as a watched
guard.

3.1.1. Necessity of |[(3n —1)/7| watched guards. For convenience, write f(n) =
[(3n —1)/7], and note that we only have to treat the cases n =1,3,5 (mod 7), as these
are the critical values of n for which f(n) > f(n — 1); we may always add one or two
vertices to our polygons to deal with n =0,2,4,6 (mod 7).

Fig. 3.1. Polygons with n = 5,8,10 vertices, respectively, that require |(3n —1)/7| watched
guards.

Fig. 3.1 shows polygons with n = 5,8, 10 vertices, respectively, that require f(n)
watched guards. A polygon P, with n vertices is constructed from a polygon P,_7 by

[43]
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adjoining a special decagon Pj, with vertices x,..., 2%, x1, 22 on the side z1z2 with a
suitable orientation (see Fig. 3.2). At each step P, has the following properties:

(i) The segments x|} and x122 are congruent and parallel.

(ii) The angles Zafzhx} and Lzixox) are supplementary.
(iii) The line through 24 and ), intersects the interior of the segment x{z].
(iv) No point in P, is simultaneously visible from any two of x5, x5 and xj.

Properties (i) and (ii) guarantee that the construction is feasible at each step, while
(iii) and (iv) are crucial in the induction proof of the necessity of f(n) watched guards.

LEMMA 3.1 ([66]). Let P, be the n-vertex polygon defined inductively in the manner
described above. Then gg(P,,1) > [(3n —1)/7| for n > 5.

Fig. 3.2. The construction of a polygon P, that requires |(3n — 1)/7] watched guards.

Proof. The proof is by induction on n. The polygons from Fig. 3.1 establish the cases
n = 5,8,10. So assume that n > 12, and that the assertion holds for polygons with at
most n — 7 > 5 vertices. Let S,, = S,,_7 U S’ be a watched guard set for P,, where
Sn_7 = S, N P,_7 consists of all guards of S,, that are in P,_7, and S’ consists of all
guards in the decagon Pj,, excluding the segment xixo. Then |S,| = [Sn—7| + 5’|, of
course. We have the following claims:

CLAM 1. |S’| > 3. Reason: There exist distinct guards g5 and gg in S’ from which the

points z, and zg, respectively, are visible. Moreover, there exist (not necessarily distinct)
points ¢’ and ¢” in S,, from which ¢} and g§, respectively, are visible. Note that ¢’ € S’

CLAIM 2. |S,,_7| > f(n—7)—1. Reason: First, observe that if a point « in P,,_7 is visible
from a point of P/, then x is also visible from both x5 and ;. Next, as points on x3z4
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that are near x3 are visible from no point in Py, they must be visible to a guard g in S,,_7.
Of course, z3 is visible to g. Therefore S,,_7 U{z} is a watched guard set for P,,_7, where
z = x3. By the induction hypothesis, |S,,—7U{z}| > f(n—7), which establishes the claim.

If |S'| > 4, then by Claim 2, |S,| > f(n). Otherwise, if |S’| = 3, then we must have
¢’ = ¢” in the proof of Claim 1, and thus S’ = {¢4, g5, ¢'}. As points on xox3 near 3 are
not visible from any point in S, there is a guard g € S,,_7 that covers such points. Now,
Sn—7\ {9} U{z} is a watched guard set for P,_7, where z is defined as in the proof of
Claim 2. Therefore |S,_7| > f(n — 7), and this yields |S,| > f(n). »

3.1.2. Sufficiency proof. The proofis by induction and it follows the outline of O’Rour-
ke’s proof for mobile guards [72]. Before commencing the proof, we recall certain facts
that will be used in various cases of the proof.

Let P be a polygon, let G1 be a triangulation graph for P, let e be an edge of P,
and let v and v be the two vertices of G corresponding to the endpoints of e. The
contraction of e is a transformation that alters G by removing the vertices v and v and
replacing them with a new vertex adjacent to every vertex to which u or v was adjacent.
Note that an edge contraction is a graph transformation, not a polygon transformation:
the geometric equivalent could result in self-crossing polygons. Edge contractions are
nevertheless useful because of the following lemma.

LEMMA 3.2 ([72]). Let Gt be a triangulation graph of a polygon P with n > 4 ver-
tices, and let G'» be the graph resulting from an edge contraction of Gp. Then G is
a triangulation graph of an (n — 1)-vertex polygon P’.

Proof. The idea of the proof is to construct a figure with curved edges corresponding to
', and then straighten it to obtain P’.

Let Pr be a planar figure corresponding to the triangulation T', let e be the contracted
edge, and u and v its two endpoints in Pr. Let the vertices to which v and v are connected
by diagonals and edges be labeled wy, ..., u; and vy, ..., v;, respectively, with ug = v and
vg = u, and the remaining ones labeled according to their sorted angular order (see
Fig. 3.3(a)). Note that u; = v; is the apex of the triangle supported by e.

Next, introduce a new vertex x in the interior of e and connect the u-vertices and
v-vertices to = by the following procedure. Connect u; to x; this can be done without
crossing any diagonals because u; is the apex of the triangle on whose base x lies. Remove
the diagonal {u, u;}. Connect us to « within the region bounded by (z, w1, ug, u); the line
may need to be curved but again no crossings are necessary. Remove the diagonal {u, us}.
Continue in this manner (see Fig. 3.3(b)) until all u-vertices have been connected to x.
Then apply a similar procedure to all v-vertices. The result is a planar figure whose
connections are the same as those of 7" (see Fig. 3.3(c)).

Finally, we apply Fary’s theorem [35]: for any planar graph drawn in the plane, per-
haps with curved lines, there is a homeomorphism in the plane onto a straight-line graph
such that vertices are mapped to vertices and edges to edges. Applying such a homeo-
morphism to the figure constructed above yields P’, a polygon that has T’ as one of its
triangulations (see Fig. 3.3(d)). =
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(b)

(d)

us

Ugq

Fig. 3.3. If all the edges in a triangulation graph (a) incident to u and v are made incident to
z ((b) and (c)), the resulting graph may be transformed into a straight-line graph (d).

Next, we recall a lemma that establishes the existence of a special diagonal in a tri-
angulation graph that will allow us to make the induction step in most of the proofs.
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LEMMA 3.3 ([84]). Given a polygon triangulation graph G of n vertices and some posi-
tive integer t < n — 2, there ewists an edge d of G which separates G into two pieces G
and Gy (with d in both pieces) such that Gy has between t and 2t — 1 triangles, inclusive.
The degenerate case Go = d is allowed.

Proof. Let e be an arbitrary fixed edge of G that corresponds to an edge of a polygon.
Let ¢’ be the minimum number, greater than or equal to ¢, of triangles in any piece cut
off by an edge, and let d be an edge which cuts off a piece with ¢’ triangles (we use the
phrase ‘piece cut off by the edge d’ to indicate whichever piece that does not contain e).
Such a d exists as e cuts off n — 2 triangles, and ¢t < n — 2. Of the triangles cut off, let U
be the one containing d. Note that ¢’ is the total number of triangles cut off by the other
edges of U, plus one (for U). Each of the other edges may cut off at most ¢t — 1 triangles
(otherwise, t is not minimum), thus ¢/ <2(t —1)+1=2t—1. m

Now, following O’Rourke’s proof, we must establish the sufficiency of the | (3n — 1) /7]
bound for small triangulation graphs.

LEMMA 3.4 ([84]). Every triangulation graph of a pentagon can be dominated by two
watched guards with one guard placed at any selected vertex.

Proof. The proof is adapted from [72]. Let G be a triangulation graph of a pentagon,
and let the selected vertex be labeled 1. As there are only five distinct triangulations,
by a simple enumeration of cases, it is easy to see that two watched guards are always
sufficient to dominate G with one guard at vertex 1 (see Fig. 3.4). m

2 1 2 1 2

Fig. 3.4. A triangulation graph of a pentagon can be dominated by two watched guards with
one guard placed at any vertex.

LEMMA 3.5 ([66, 92]). Let G be a triangulation graph of a hezagon, and let x be a vertex
of degree at least 3. Then G can be dominated by two watched guards with one guard
placed at .

Proof. As z is of degree 3, there is a diagonal d with one of its endpoints at x. This
diagonal partitions the six boundary edges of G according to either 244 = 6 or 3+3 = 6.
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CasiE 1: 24+ 4 = 6. Let d = {1,3}. Then (1,3,4,5,6) is a triangulation graph of a
pentagon (see Fig. 3.5), and by Lemma 3.4, this graph can be dominated by two watched
guards with one placed at 1. The guard at 1 dominates the triangle (1,2, 3).

Fig. 3.5. A triangulation graph of a hexagon can be dominated by two watched guards with one
guard placed at any vertex of degree at least 3.

CASE 2: 3+ 3 = 6. Let d = {1,4}. Then (1,2,3,4) and (1,4,5,6) are triangulation
graphs of quadrilaterals (see Fig. 3.5). Placing guards at vertices 1 and 4 will dominate
all triangles, regardless of how the quadrilaterals are triangulated. m

LEMMA 3.6 ([66, 92]). Every triangulation graph of a septagon can be dominated by two
watched guards.

Proof. By Theorem 1.3, in any triangulation graph G of a septagon, there is at least
one vertex of degree 2. Let the vertices of the septagon be labeled 1,...,7, in a coun-
terclockwise manner, and assume vertex 2 to be of degree 2. By cutting off this vertex,
more precisely, the triangle A = (1,2, 3), we get the triangulation graph G%. of a hexagon
(see Fig. 3.6). By Lemma 3.5, the graph G%. can be dominated by two watched guards

Fig. 3.6. A triangulation graph of a septagon can be dominated by two watched guards.

with one guard placed either at vertex 1 or 3. This yields a domination of Gr by two
combinatorial watched guards, as the triangle /A is dominated. m

LEMMA 3.7 ([66, 92]). Let Gt be a triangulation graph of an octagon P, and let x be a
vertex of degree at least 3. Then G can be dominated by three watched guards, with one
guard placed at x.

Proof. As z is of degree 3, there is a diagonal d with one of its endpoints at . This
diagonal partitions the eight boundary edges of G according to either 2+6 = 8,3+5 =8
ord+4=8.

CaAsiE 1: 2+ 6 = 8. Let d = {1,3}. Then (1,3,4,5,6,7,8) is a triangulation graph of
a septagon (see Fig. 3.7), and by Lemma 3.6, the septagon can be dominated by two
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watched guards. Since one of them dominates vertex 1, by placing the additional guard
at 1, we will dominate the triangle (1,2,3), and thus G will be dominated by three
watched guards, with one guard placed at 1.

Fig. 3.7. A triangulation graph of an octagon can be dominated by three watched guards with
one guard placed at any vertex of degree at least 3.

CASE 2: 3+ 5 = 8. Let d = {1,4}. Then Q = (1,2,3,4) and H = (1,4,5,6,7,8) are
triangulation graphs of a quadrilateral and a hexagon, respectively (see Fig. 3.7). Place
guards at 1 and 4. Since in H either vertex 1 or 4 is of degree at least 3, one additional
watched guard will dominate H by Lemma 3.5. Regardless of how the quadrilateral @ is
triangulated, the guards at 1 and 4 will dominate it. Thus we get a domination of G by
three watched guards, with one guard at 1.

CASE 3: 4+ 4 = 8. Let d = {1,5}. Then P; = (1,2,3,4,5) and P, = (1,5,6,7,8) are
triangulation graphs of pentagons (see Fig. 3.7). Dominate P; by two watched guards,
with one guard at 1, and dominate P, by two watched guards, with one guard at 1, thus
getting a domination of G by three watched guards, with one guard at 1. =

LEMMA 3.8 ([66, 92]). Every triangulation graph of an enneagon can be dominated by
three watched guards.

Proof. The proof follows the idea of the proof of Lemma 3.6. By Theorem 1.3, in any
triangulation graph G'1 of an enneagon there is at least one vertex of degree 2. Let the ver-
tices of the enneagon be labeled 1,...,9, in counterclockwise manner, and assume vertex
2 to be of degree 2. By cutting off this vertex, more precisely, the triangle A = (1,2, 3),
we get the triangulation graph G7. of an octagon. By Lemma 3.7, G’ can be dominated
by three watched guards with one guard either at 1 or 3. This yields a domination of G
by three watched guards, as the triangle A is also dominated. m

LEMMA 3.9 ([66, 92]). FEvery triangulation graph G of a decagon can be dominated by
four watched guards with one guard placed at any vertex of degree at least 3.

Proof. As z is of degree 3, there is a diagonal d with one of its endpoints at x. This
diagonal partitions the ten boundary edges of G according to either 248 = 10, 3+7 = 10,
446 =10 or 5+ 5 = 10. Assume that d cuts off the minimal number of vertices.

CASE 1: 2+ 8 = 10. Let d = {1,3}. Then Eg = (1,3,4,5,6,7,8,9,10) is a triangulation
graph of an enneagon (see Fig. 3.8). By Lemma 3.8, Fy can be dominated by three

watched guards. One of these guards dominates vertex 1. Now, by placing one additional
guard at 1, we will dominate the triangle (1,2, 3), and the resulting guard set is watched.
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Fig. 3.8. A triangulation graph of a decagon can be dominated by four watched guards with one
guard placed at any vertex of degree at least 3.

CASE 2: 3+ 7 = 10. Let d = {1,4}. Then Os = (1,4,5,6,7,8,9,10) is a triangulation
graph of an octagon, and the minimality of d ensures that the quadrilateral (1,2,3,4)
has diagonal {2,4} (see Fig. 3.8). By Lemma 3.7, Og can be dominated by three watched
guards, with one guard either at 1 or at 4.

(1) Placing one additional guard at 4 will dominate all triangles in Gr, and the
resulting guard set is watched.

(4) All triangles of G are dominated. Now, we place one additional guard at vertex 0;
this guard is watched, as there is a guard at 4.

CASE 3: 446 = 10. Let d = {1,5}. Then S7 = (1,5,6,7,8,9,10) is a triangulation graph
of a septagon (see Fig. 3.8). By Lemmas 3.4 and 3.6, a triangulation graph (1,2,3,4,5)
of a pentagon can be dominated by two watched guards, with one guard at 1, and S7 can
be dominated by two watched guards.

CASE 4: 5+5=10. Let d = {1,6}. Then H} = (1,2,3,4,5,6), and H2 = (1,6,7,8,9, 10)
are triangulation graphs of hexagons, and the minimality of d ensures that HZ has diag-
onal {2,6} (see Fig. 3.8). By Lemma 3.5, H? can be dominated by two watched guards,
with one guard at vertex 6. Place one guard at 1. Now, again by Lemma 3.5, we need at
most one additional guard for hexagon H}, as either vertex 1 or 6 is of degree 3 in H}. =

LEMMA 3.10 ([66, 92]). Ewvery triangulation graph of an 11-vertex polygon can be domi-
nated by four watched guards.

Proof. By Theorem 1.3, in any triangulation graph G of an 11-vertex polygon P there
is at least one vertex of degree 2. Let the vertices of P be labeled 1,...,11, in coun-
terclockwise manner, and assume vertex 2 to be of degree 2. By cutting off the triangle
A = (1,2,3), we get a triangulation graph G of a decagon. By Lemma 3.9, G%. can
be dominated by four watched guards with one guard placed either at vertex 1 or 3.
This yields a domination of G by four watched guards, as the triangle A is domi-
nated. m

Finally, with all preceding lemmas available, the induction proof is a straightforward
enumeration of cases.

THEOREM 3.11 ([66, 92]). Every triangulation graph Gt of a polygon with n > 5 vertices
can be dominated by |(3n — 1)/7| watched guards.
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Proof. Lemmas 3.4-3.10 establish the validity of the assertion for n = 5,...,11, so as-
sume that n > 12, and that the assertion holds for all 5 < n < n. We have the following
lemma.

LEMMA 3.12 ([39]). Suppose that f(m) watched guards are always sufficient to dominate
any m-verter triangulation graph, with m < n. Then if G/ is a triangulation graph of
a polygon with n' vertices, with n’ < n, then a guard g placed at a vertex of G with
f(n' —1) additional watched guards are sufficient to dominate G (but, perhaps, g is not
watched).

Proof of Lemma 3.12. Suppose that f(m) watched guards are always sufficient to domi-
nate any m-vertex triangulation graph, with m < n, and let G/ be a triangulation graph
of a polygon P’ with n’ vertices, with n’ < n. Let u be the vertex at which a guard g is
placed, and let v be a vertex adjacent in G’ to u across the edge e corresponding to an
edge of P’. Edge-contraction of G’ across e produces a graph G’ of n’ — 1 vertices. By
Lemma 3.2, G is a triangulation graph, and so it can be dominated by f(n'—1) watched
guards, as n’ — 1 < n. Let = be the vertex that replaced v and v. Suppose that no guard
is placed at z in a domination of G7.. Then the same guard placement, with one guard
at u, will dominate all of G/, since the guard at © dominates the triangle supported by e,
and the remaining triangles of G’» have dominated counterparts in G%.. Otherwise, if a
guard is used at x in the domination of G7,, then he can be assigned to v in G, with
the remaining guards maintaining their positions. Again, with one additional guard at w,
every triangle of G/, is dominated. Note that all guards that were watched in G%., are
watched in G/ as well. Thus the only guard that may be unwatched is the one at u. m

Now, we return to the proof of the theorem. Lemma 3.3 guarantees the existence
of a diagonal d that partitions G into two graphs G and G%, where G contains k
boundary edges of G with 5 < k < 8. Assume k to be minimal. We must consider each
value of k separately.

CASE 1: k = 5. Let d = {0,5}. Then G% = (0,1,2,3,4,5) is a triangulation graph of a
hexagon. In GL., either vertex 0 or 5, say 0, is of degree at least 3. By Lemma 3.5, G1. can
be dominated by two watched guards, with one placed at 0. Next, by Lemma 3.12, the
guard at 0 permits the remainder of G2. to be dominated by f(n—4—1) = f(n—>5) watched
guards, where f(m) specifies the number of watched guards that are always sufficient to
dominate a triangulation graph on m < n vertices. By the induction hypothesis,

fn5) = {S(n—:)—lJ - {3717—1_4 _ fm;lJ L

watched guards suffice to dominate the remainder of G%. Together with the two watched
guards allocated to G, all of Gt is dominated by at most |(3n — 1)/7| watched guards.

CASE 2: k = 6. Let d = {0,6}. Then G% = (0,1,...,5,6) is a triangulation graph of a
septagon. By Lemma 3.6, G} can be dominated by two watched guards. Since G2 has
n — 5 vertices, it can be dominated by |(3(n —5) —1)/7] < [(3n —1)/7] — 2 watched
guards by the induction hypothesis. This yields a domination of Gy by [(3n —1)/7]
watched guards.
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CASE 3: k = 7. Let d = {0,7}. Then G} = (0,1,...,6,7) is a triangulation graph of
an octagon. In G, either vertex 0 or 7, say 0, is of degree at least 3. By Lemma 3.7,
G can be dominated by three watched guards with one placed at 0. Next, we proceed
as in Case 1 above. By Lemma 3.12, one guard at 0 permits the remainder of G2 to be
dominated by f(n —6 — 1) = f(n — 7) watched guards. By the induction hypothesis,

) = {S(n—:)—lJ _ Pn?_lJ L

watched guards suffice to dominate the remainder of G2.. Together with the three watched
guards allocated to GL., all of G is dominated by [(3n — 1)/7] watched guards.

Fig. 3.9. Case k = 8: three watched guards are sufficient to dominate the triangulation graph G7-.

CASE 4: k = 8 (see Fig. 3.9). Let d = {0, 8}. The presence of any of the diagonals {0, 7},
{1,8}, {0,6}, {2,8}, {0,5} or {3,8} would violate the minimality of k. Consequently,
the triangle A in GL. bounded by d is (0,4, 8). Dominate a 5-vertex triangulation graph
(0,1,2,3,4) by two watched guards with one at 4, and dominate a 5-vertex triangulation
graph (4,5,6,7,8) by two watched guards with one at 4, thus getting a domination of
G by three watched guards (the triangle A is dominated by the guard at 4). Since G2
has n — 7 vertices, it can be dominated by |(3(n —7) —1)/7] = |(3n — 1)/7] — 3 watched
guards by the induction hypothesis. This yields a domination of G by |(3n —1)/7]
watched guards. =

Thus by Lemma 1.5, we have

THEOREM 3.13 ([39]). For alln > 5, gg(n,1) = |(3n —1)/7], and guards can be located
at the vertices of a polygon.

3.1.3. The minimum watched guards problem

DEFINITION 3.1. Let P be a polygon. The minimum watched guards (MinWCG for short)
problem is to find a watched guard set for P of the minimum cardinality.

As the connectedness of the visibility graph VG implies that VG has no isolated ver-
tices, and of course, the cardinality of a minimum watched guard set is at least the car-
dinality of a minimum guard set, the transformation procedure in the NP-hardness proof
of the minimum guards problem can be directly applied in the NP-hardness proof of the
MinWCG problem [56, 58], which results in the following theorem.

THEOREM 3.14 ([59]). The minimum watched guards problem is NP-hard.
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In 1994, following the main idea of the paper [58], Liaw and Lee [59] considered
the MinWCG problem for 1-spiral polygons, and they proposed a linear optimal algorithm
for this problem. In general, their algorithm was based upon the following observations:
in a 1-spiral polygon, there exists an optimal guard placement such that:

e all watched guards are located on the convex chain (cf. Lemma 2.18);
e no connected component of the visibility graph contains more than three watched
guards (cf. the proof of Theorem 2.17).

THEOREM 3.15 ([59]). The MinWCG problem for 1-spiral polygons can be solved in linear
time.

3.2. Orthogonal polygons

In 1995, Hernandez-Penalver [40] gave the tight bound for the function gg, (n,1). He
proved that |n/3] watched guards are always sufficient and occasionally necessary to
guard any orthogonal polygon with n vertices. This result was established by induction,
using a similar idea to the proof of Theorem 3.11. A few years later, Michael and Pin-
ciu [66] proposed an entirely new proof based upon 3-coloring of a special triangulation
graph. This is the proof we shall present here.

Let Gg = (V, E) be the quadrilateralization graph of a quadrilateralization @) of an or-
thogonal polygon. We say that S C V is a watched guard set for G if each quadrilateral
face of G has a vertex in S and each vertex v in S is in a quadrilateral face with another
element of S. By arguments as in the proof of Lemmas 1.4 and 1.5, one can prove the
following lemma.

LEMMA 3.16 ([66]). Let P be an n-vertex orthogonal polygon, and Gg be any of its
quadrilateralization graphs. If Gg can be dominated by f(n) watched guards, then P can
be covered by f(n) geometric watched vertex guards.

THEOREM 3.17 ([66]). For every orthogonal polygon P with n > 6 vertices, any of its
quadrilateralization graphs can be dominated by |n/3] watched guards.

Proof. As any quadrilateralization graph is bipartite, and its (weak) dual is a tree with
each vertex of degree at most 4 (cf. Lemma 1.2), there is a partition V = VT UV~ of
the vertex set of G and a partition /' = F U F~ of the quadrilateral (face) set F
of Gg. Then in G, each edge joins a vertex in V' and a vertex in V™, and each face
(quadrilateral) f contains two vertices in V' and two vertices in ¥V ~. Next, we construct
a triangulation graph Gr as follows. If f € F'", then we connect the two vertices of f in
VT by an edge, otherwise, if f € F'~, we connect the two vertices of f in V'~ by an edge.
The resulting graph is a triangulation graph G of P. Fig. 3.10(a-b) shows an example.
We have two crucial properties of G; both follow directly from the construction.

(1) Let Egiag denote the set of diagonals added to G to obtain Gr, and suppose
that two diagonals {v,w} and {v,w’} in Egj.g are incident at the vertex v in Gr.
Then the two faces of G that contain the diagonals do not share an edge.
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Fig. 3.10. (a) A quadrilateralization graph G¢ with vertex and face bipartitions indicated by +
and —. (b) The triangulation graph resulting from Gg and its 3-coloring. (c) The guard set S;
guards at vertices of degree 3 have to be shifted along diagonals of quadrilaterals. (d) The final
watched guard set.

(2) Any vertex of degree 3 in G belongs to exactly one quadrilateral in Gg.

Following Fisk’s proof, the next step is to 3-color the vertices of Gr. Let S be the
set of vertices assigned the least frequently used color. Of course, |S| < [n/3]. Next,
as S dominates G'r, S dominates G as well. And if S is watched in G, we are done.
Otherwise, we have to shift some vertices of S along edges in Fgj.g to obtain a watched
guard set; again (see Fig. 3.10(c-d)) for an example.

Let Y denote the set of vertices in S that are of degree 3 in G, and let X be
the complement of Y in S. By property (2), for each y € Y there is exactly one edge
{y,y*} € Egiag incident to y, and the vertex y* is unique. Let Y* = {y* : y € Y}, and let
S* = X UY™*. Of course, |S*| < |n/3]. Next, as we have shifted y € Y to another vertex
y* along an internal diagonal of the unique quadrilateral (property (2)), S* is a guard
set for the quadrilateralization graph Gg. It remains to show that any vertex v in S* is
in a quadrilateral face of G with another element of S*. We have to consider two cases.
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CASE 1: v € X. Then by (1), v is contained in a quadrilateral f of G¢ with a diagonal
edge in Fgj,e that is not incident to v. Let U be a vertex opposite v in f. Then ¥ is assigned

the same color as v in our 3-coloring, and thus 7 € S*. As ¥ cannot be of degree 3 in G,
veX CSh.

CASE 2: v € Y*. Then v is the conjugate y* for some vertex y of degree 3 in Gr. By (2),
the diagonal {y, v} is in exactly one quadrilateral face of Gg, say f1 = (y,,v, 2). As y is
of degree 3, both {y,z} and {y, z} are edges of the polygon, and either {v,z} or {v, z},
say {v,z}, is a diagonal of the quadrilateralization, as n > 6. Then {v,x} is incident
to some other quadrilateral face of Gg, say f» = (v,z,u,w) (see Fig. 3.11). By (1),
{z,w} € Egjag, and then the vertex w is assigned the same color as y in our 3-coloring
of Gr. Hence w € S = X UY. If w € X then w € S*, and both v,w € f5. Otherwise, if
w €Y then w* € §* and both v,w* € f5. m

S

) xT u

Fig. 3.11. Case 2: v € Y".

THEOREM 3.18 ([66]). For all n > 6, gg, (n,1) = [n/3], and guards can be located at
the vertices of a polygon.

]

Fig. 3.12. An orthogonal polygon P with n vertices with gg, (P,1) = [n/3]; here n = 20, and
gg, (P,1) =8.

Proof. The necessity is established by the orthogonal gallery P shown in Fig. 3.12. Each
wave requires two watched guards, and it is clear that for n = 0 (mod 6), gg, (P, 1) =
|n/3]. The case of n = 2,4 (mod 6) is indicated with dashed lines. For sufficiency, we
apply Lemma 3.16 and Theorem 3.17. =

3.3. Monotone polygons

In this section, we prove that |2n/5| watched guards always suffice to cover any monotone
polygon with n vertices. Hernandez-Pefialver’s polygon [39] with 5k vertices requiring 2k
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Fig. 3.13. Hernandez-Penalver’s polygons of 5k vertices requiring 2k watched guards; here k = 3,
and the polygon requires 6 watched guards.

watched guards is a monotone polygon (see Fig. 3.13), thus this bound is tight. The case
of n=1,2,3,4 (mod 5) is indicated with dashed lines.

3.3.1. Monotone mountains. A monotone mountain is a monotone polygon one of
whose chains is a single edge, called the base edge. Although this is a severely restricted
class of polygons, it deserves our attention, for we use them to solve the problem for
general monotone polygons. Guards for monotone mountains are point guards.

LEMMA 3.19 ([97]). Suppose that f(n) watched guards placed at the base edge are always
sufficient to cover any n-vertex monotone mountain P. Then one vertex guard placed at
any endpoint of the base edge with an additional f(n — 1) watched guards are sufficient
to cover P.

Proof. We only give the proof for the left-hand vertex of the base edge, the other case can
be solved analogously. Let e, = {z,xr} be the base edge, and let (x1,ve,...,vn_1,ZR)
be the top chain of P.

CASE 1: vy is convex (see Fig. 3.14(a)). Then there is an ear at the vertex vq, otherwise
P is not a monotone mountain. Cutting off the triangle (xr, v3, v2) results in an (n — 1)-
vertex monotone mountain P with the same base edge e requiring at most f (n—1)
watched guards, all placed at e,. With one additional guard at =, we get a coverage of
P by f(n —1)+ 1 watched guards, and all guards are placed at the base edge of P.

(b)

TR

Fig. 3.14. (a) Case 1: there is an ear at vo. (b) Case 2: v is reflex.

CASE 2: v is reflex (see Fig. 3.14(b)). By moving vo to the base edge e, along the line
enclosing the edge {ve,vs3}, we get an (n — 1)-vertex monotone mountain P with base
edge é;, requiring at most f(n — 1) watched guards, all placed at é,. With one additional
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guard at xy,, we get a coverage of P by f(n — 1) + 1 watched guards, and all guards are
placed at e, as €, C €. m

THEOREM 3.20 ([97]). |n/3] watched guards always suffice to cover a monotone moun-
tain with n > 6 vertices, and all guards can be placed at the base edge.

Proof. Let P be a monotone mountain with n vertices. We leave it to the reader to verify
the validity of the assertion for n = 6,7,8. Assume that n > 9, and the theorem holds
for all 6 < 7 < n. Without loss of generality, assume e, = {z1,xr} to be the base edge
(the bottom chain), and U = (z1,vs,vs,...,0n—1,ZR) to be the top chain of P. Let x be
the projection of vz onto the base edge e, along the line perpendicular to the z-axis.

(b) Us

rL r V4

TR TR

Fig. 3.15. (a) Case 1: z sees vs. (b) Case 2: = does not see vs.

CASE 1: x sees vs (see Fig. 3.15(a)). Replacing the polyline (xp,v2,vs,v4,v5) with the
edge {z,vs} results in an (n — 3)-vertex monotone mountain P with base edge é, =
{z,2r}. By the induction hypothesis, P can be covered by |(n — 3)/3] watched guards,
all placed at é,. As one additional guard at x covers the hexagon (xr,x,vs,v4, v3,v2),
we get a coverage of P by |(n—3)/3] +1 = [n/3]| watched guards, and all guards are
placed at ey, as €, C ep.

CASE 2: z does not see vs (see Fig. 3.15(b)). By moving v4 to e, along the line en-
closing the edge {vy,vs}, we get an (n — 3)-vertex monotone mountain P with base edge
&y = {v4, 2R }. P requires | (n — 3)/3| watched guards, all placed at &, by the induction hy-
pothesis. With one additional guard at = we get a coverage of P by | (n — 3)/3]+1 = |n/3]
watched guards, and all guards are placed at the edge ey, as €, C €. m

Note that if a monotone mountain has five vertices, then it can be guarded by one
guard located at its base edge; this is a degenerate case, because the guard is unwatched.
Chvatal’s comb-polygons are examples of monotone mountains of 3%k vertices requiring
k = |n/3] watched guards, thus this bound is tight. Moreover, the proof of Theorem 3.20
shows that there is always a cooperative guard set of cardinality |n/3] for any monotone
mountain with all guards placed at the base edge.

COROLLARY 3.21 ([97]). For alln > 6, ¢g,ountain () = |1/3], that is, |n/3] cooperative
guards are sometimes necessary and always sufficient to cover a monotone mountain, and
all of them can be located at its base edge.

3.3.2. Monotone polygons. Now, we return to monotone polygons. Let P be a mono-
tone polygon. Call a vertex of P the left-hand or right-hand vertex if there are no other
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vertices of P to the left or to the right of it, respectively. If there are two left-hand
(right-hand) vertices, we choose anyone of them.

THEOREM 3.22 ([97]). For all n > 5, g8, onotone (7 1) = |2n/5], that is, |2n/5]| watched
guards always suffice to cover a monotone polygon with n vertices.

Proof. Let P be a monotone polygon with n vertices. By Theorem 3.13, the assertion
holds for n =5,...,11, so assume that n > 12, and that the assertion holds for all
5 < i < n. We have the following lemma (we omit the proof as it involves a long cascade
of cases; for details see [97]).

LEMMA 3.23 ([97]). Let P be a monotone polygon with N vertices, 5 < n < n, let x be

A

any verter of P, and let & be either the left-hand or the right-hand vertezx of P. Then:

(a) If we place one guard g at x, then |2(n — 1)/5] additional watched guards will be
sufficient to cover all of P (but, perhaps g is unwatched).

(b) If we place two guards g1 and g2 at the endpoints of any edge d = {Z,y}, then
|2(7 — 2)/5| additional watched guards will be sufficient to cover all of P.

By Lemma 3.3, there is a diagonal d that partitions P into two polygons P; and Ps,
where P contains k edges of P, with 5 < k < 8. Observe that P; and P, are monotone
polygons as well. Assume k to be minimal. We have to consider each value of k separately.

CaAsE 1: k = 5. Let d = {v1,v6}. P = (v1,v2,v3.04,05,06) is a hexagon, and by
Lemma 3.5, it can be covered by two watched guards, with one placed either at v, or vg.
Next, by Lemma 3.23, the guard either at v; or vg permits the remainder of P, to be
covered by |2[(n —4) — 1]/5] = [2n/5| — 2 watched guards by the induction hypothesis.
Together with the two guards allocated to Pj, all of P is covered by |2n/5] watched
guards.

CASE 2: k = 6. P is a septagon. By Lemma 3.6, it can be covered by two watched guards.
Since P, has n — 5 vertices, it can be covered by at most |2n/5| — 2 watched guards by
the induction hypothesis. This yields a coverage of P by |2n/5] watched guards.

CASE 3: k = 7. Let d = {v1,vg}. Then P = (v1,va,vs,v4, 05,06, V7, Vs) IS an octagon.
Let z;, and = be the left-hand and right-hand vertices of P, respectively. If both x
and zp are in P», then P; is a monotone mountain. By the induction hypothesis, P> can
be covered by |2(n — 6)/5] watched guards, and by Theorem 3.20, P; can be covered by
two watched guards. Thus all of P can be covered by at most |2n/5] watched guards.

If both z;, and xr are in P;, then P, is a monotone mountain with base edge d. By
Lemma 3.7, P; can be covered by three watched guards with one guard placed either at
v1 or vg, and by Lemma 3.19 and Theorem 3.20, the guard either at v; or vg permits the
remainder of P to be covered by |((n — 6) — 1)/3] watched guards. Since for all n > 12,
[(n—7)/3] +3 < |2n/5], |2n/5] watched guards will cover all of P.

Finally, we can assume that xr is in P; and x, is in P,. The minimality of k£ ensures
that both v; and vg see a vertex v of P;, more precisely, the diagonals d; = {vy,v4}
and dy = {vg,vs} cut off a quadrilateral and a pentagon from P;, respectively (see
Fig. 3.16).
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(b)

Fig. 3.16. (a) Case 3.a, (b) Case 3.b.

SUBCASE 3.a: v4 sees v3. Then by Lemma 3.4, two watched guards will cover the pentagon
(v4, v5, Vg, U7, vs), and one of them can be placed at v4. As the guard at vy will cover both
the quadrilateral (vq,vs,vs,v4) and the triangle (v1,v4,vs), we get a complete coverage
of P;. Together with |2(n — 6)/5] watched guards for P, by the induction hypothesis, we
get a coverage of P by at most |2n/5| watched guards.

SUBCASE 3.b: v4 does not see va, but v; sees vs. Then by Lemma 3.4, two watched
guards will cover the pentagon (v, vs, v, v7,vs), and one of them can be placed at vs.
One additional guard at v; will cover the quadrilateral (vq,vs,v3,v4) and the triangle
(v1,v4,v8), SO we get a complete coverage of P, with two guards placed at the edge
{v1,vs}. As P, is now a monotone polygon with the right-hand vertex either at v; or
at vs, two guards at the endpoints of the edge {v1,vg} permit the remainder of P to be
covered by [2(n —6—2)/5] < [2n/5] — 3 watched guards by Lemma 3.23 and by the
induction hypothesis. Together with the three watched guards allocated to Pj, all of P
is covered by |2n/5| watched guards.

CASE 4: k = 8 (see Fig. 3.17). Let d = {v1,vg}. Then P; = (v1,v2,v3, V4, U5, Vg, U7, Vs, Ug)
is an enneagon. The minimality of k& ensures that v; and vy sees a vertex v of P;, more
precisely, the diagonals di = {v1,v5} and dq = {vs, v9} cut off respectively two pentagons
from P;: P} = (v1,v2,v3,v4,v5) and P2 = (vs,v6,v7,vs,v9). Let 2, and zr be the left-
hand and right-hand vertices of P, respectively.

U3

Fig. 3.17. Case 4.
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If both x; and xr are in P,, then P; is a monotone mountain with base edge d.
By the induction hypothesis, P, can be covered by [2(n — 7)/5] watched guards. As P}
and P? are monotone mountains with base edges {v1, v5} and {vs, vg}, respectively, they
can be guarded by two guards g; and g, placed at some point of {v1,v5} and {vs,ve},
respectively. As g; and g see each other, and cover the triangle (v, vs, vg), the whole of Py
is covered by two watched guards. Thus all of P is covered by [2(n —7)/5]| +2 < [2n/5]
watched guards (note that these guards may be point guards).

If both x; and xr are in P;, then P, is a monotone mountain with base edge d.
Cover the pentagon P! by two watched guards with one guard at vs, and cover P2 by
two watched guards with one guard at vs, thus getting a coverage of P; by three watched
guards (the triangle (v1,vs,v9) is covered by the guard placed at vs). Since the mono-
tone mountain P, has n — 7 vertices, it can be covered by |(n — 7)/3] watched guards
by Theorem 3.20. This yields a coverage of P by at most [2n/5| watched guards, as
n > 12.

Finally, we can assume that xp is in P; and x, is in P5. It is obvious that either P51
or P? is a monotone mountain, so it can be guarded by one guard g placed at its base
edge e,. Cutting off this pentagon results in a monotone polygon P with n — 3 vertices
that can be covered by |2(n — 3)/5| watched guards by the induction hypothesis. As e
is one of the edges of ]3, each of its points is covered. Consequently, there is a guard in
P that sees g. Hence P can be covered by [2(n — 3)/5] + 1 < |2n/5| watched guards. m

Guards for monotone polygons are point guards, so it is natural to ask if we can
restrict guards to be located at vertices only. A slight change of the construction in the
case of star-shaped polygons presented in Section 3.4 shows that |(3n —1)/7| vertex
guards are sometimes needed for monotone polygons: the polygon P9 we add has to
be monotone with respect to the line L, too. Note that the star-shaped polygon with
five vertices shown in Fig. 3.20 is a monotone polygon with respect to the y-axis, and it
requires two vertex watched guards.

COROLLARY 3.24 ([97]). If guards are restricted to be located at the vertices of a polygon
only, then for each mn > 5, ggvertex = (n,1) = |(3n—1)/7].

3.3.3. Spiral polygons. For every £ > 1, there is a spiral polygon with 5k vertices
requiring 2k watched guards (see Fig. 3.18). The case of n = 1,2,3,4 (mod 5) is indicated
with dashed lines. Thus [2n/5] is a lower bound for watched guards in spiral polygons.
We will show this bound to be also an upper bound. First, we recall an important property
of any spiral polygon.

LEMMA 3.25 ([2]). There ezists a triangulation of a spiral polygon whose dual graph is a
path.

Proof. Let P be an n-vertex spiral polygon, and let (x,71,...,7rg,y) and (y,c1,..., ¢, )
be the reflex chain and the convex chain of P, respectively, traversing the boundary of P
in counterclockwise manner (see Chapter 2, Section 2.2.3). Then the segment r;¢; lies en-
tirely within P. Thus by joining r1 and ¢; and deleting « (and its associated edges) from P,
we get a spiral polygon P’ with n — 1 vertices. This polygon either has (¢1,71,...,7%,¥)
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Fig. 3.18. Spiral polygons of 5k vertices requiring 2k watched guards; here k¥ = 3, and the
polygon requires 6 watched guards.

as its reflex chain and (c1,..., ¢, y) as its convex chain or has (r1,...,7rg,y) as its reflex
chain and (ri,c¢1,..., ¢, y) as its convex chain (see Fig. 3.19). In both cases, this trian-
gulation process can be continued until the resulting polygon is a triangle. And it is easy
to see that all diagonals will form a triangulation whose dual graph is a path. =

Fig. 3.19. Every spiral polygon has a triangulation whose dual graph is a path.

THEOREM 3.26 ([97]). For every n > 5, ggia1(n, 1) = [2n/5], that is, |2n/5] watched
guards always suffice to cover a spiral polygon with n > 5 vertices, and the guards can be
vertex guards.

Proof. The proof uses a similar method to that for diagonal guards in spiral polygons [2].
By Theorem 3.13, the assertion holds for n = 5,6,7,8,9, so assume that n > 10, and
that the assertion holds for polygons with fewer than n vertices. Now, by choosing a
triangulation whose dual graph is a path on n — 2 vertices as guaranteed by Lemma 3.25,
there exists a diagonal d cutting off a septagon from a spiral polygon P. By Lemma 3.6,
this septagon can always be covered by two watched guards. By the induction hypothesis,
the remainder of P with n — 5 vertices can be covered by |2(n — 5)/5] watched guards,
therefore |2n/5] watched guards suffice to cover all of P. u

3.4. Star-shaped polygons

Similarly to the case of the cooperative guards problem in star-shaped polygons, we ask
about the number of watched vertex guards that are sometimes necessary but always
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sufficient to cover an n-vertex star-shaped polygon. Again, set f(n) = [(3n —1)/7], and
recall that we only have to treat the cases n = 1,3,5 (mod 7), as these are the critical
values of n for which f(n) > f(n — 1); we can always add one or two vertices to our
polygons to deal with n =0,2,4,6 (mod 7).

Figs. 3.20-3.21 show star-shaped polygons with n = 5, 8, 10 vertices, respectively, that
require |(3n —1)/7] watched vertex guards. Similarly to the case of cooperative guards,
a polygon P, with n vertices is constructed from a polygon P,_7 by adjoining a special
enneagon P at the distinguished edge d*~! with a suitable orientation (see Fig. 3.23).
The correctness proof for the construction uses the idea of the proof of Theorem 2.14.

Fig. 3.20. A 5-vertex star-shaped polygon may require 2 vertex watched guards.

Fig. 3.21. (a) An 8-vertex star-shaped polygon that requires 3 watched vertex guards. (b) A
10-vertex star-shaped polygon that requires 4 vertex watched guards.

THEOREM 3.27 ([97]). For every n > 5, there ezxists a star-shaped polygon that requires
|(3n —1)/7| watched vertex guards.

Proof. Here we only deal with the case n = 7k + 5, the other two cases can be solved in
a similar way. Consider the 5-vertex polygon P, shown in Fig. 3.22. The construction of a
star-shaped polygon Py, with n = 7k + 5 vertices starts with the following observations:
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Fig. 3.22. None of the two watched vertex guards covering P° can be simultaneously located at
the endpoints v3, 75 of the edge d°, otherwise a third guard is needed.

ﬁ(do) = {T(ljv Uga r??}
PO requires two watched vertex guards.

e Two watched vertex guards covering P° cannot be simultaneously located at the
endpoints v9, r$ of the edge d°, otherwise a third guard is needed.

Even with an additional point guard at an internal point of the edge d°, the polygon
PV still requires two watched vertex guards.

Next, let = be a point from the kernel of PY. For each i = 1,...,k, we sequentially
adjoin a 9-vertex polygon P C a(z,d*~!) at the diagonal d*~! of the polygon P(~1)
(see Fig. 3.23). Each of the polygons P can be guarded from z, hence the polygon
Piar = Uf:o P ig star-shaped.

i a(xvdiil)

Fig. 3.23. Illustration of the construction of the polygon P,.

The necessity of [(3n — 1)/7] vertex watched guards is established by induction. Let
S be a minimum watched vertex guard set for Py, = Ui:ol Py P®)_ Similarly to the
case of cooperative vertex guards, the following claim is crucial:

k-1
‘Sﬂ U PO =3k-1)+2.

i=0
Reason: we may suppose that there is a guard g € S at r¥. Consider the guard set
resulting by moving g along the line [ O 2} towards = to the new location p =[N d*~1.
Clearly, such a move increases the visibility area of ¢ in Ui:ol P, However, by the



64 3. Weakly cooperative guards

induction hypothesis, with the new guard ¢ at the point p # r];_l of d*~1, the polygon
Ui:ol P still requires 3(k — 1) + 2 watched vertex guards located in Ui:ol pa),

Consequently, by the induction hypothesis and by the above claim:

o B(d*1) = {rF71 vb71 711 thus no point of d* is seen from any vertex of
Uf:_ol P, Hence ((d*) = {r¥, vk, rk} and P*) needs additional guards.

e We need two new guards only if there are guards at both endpoints of d*~!, but
this requires [3(k — 1) 4+ 2] + 1 watched guards for Uf:_ol P®) thus we get 3k + 2
watched guards for Py, and no pair of them can be located at both endpoints
of d¥.

e Otherwise, we need three guards for P**), and no two of them can be located at
the endpoints of d*. Together with 3(k — 1) + 2 watched guards for Ui:ol PO, we
have 3k + 2 watched guards for Pit,;.

e If we require two guards at both endpoints of d*, 3k + 3 watched vertex guards for
Piar are needed.

e By similar arguments to the proof of the above claim, an additional point guard

at any internal point of edge d* does not change the necessary number of watched
k (@)
vertex guards for (J;_, P\").

Therefore Pyto, requires 3k + 2 = [(3n — 1)/7] vertex watched guards. m
COROLLARY 3.28 (|97|). For every n > 5, ggVertex (n,1) = [(83n—1)/7], that is,

= star-shaped
[(3n —1)/7]| vertex watched guards always suffice and are sometimes necessary to cover

an n-vertex star-shaped polygon.



4. ART GALLERIES WITH i-GUARDED GUARDS

The k-guarded guards problem is a generalization of the weakly cooperative guards prob-
lem, and it was raised by Michael and Pinciu [67]. A set of guards is called k-guarded
if each guard is himself seen by at least k of its colleagues (the minimum degree of the
visibility graph of the set of guards is at least k). Clearly, the 1-guarded guards prob-
lem is equivalent to the weakly cooperative guards problem, and it was discussed in
Chapter 3, thus herein we shall only deal with the case of k > 2, and we will show the
(k|n/5] + [(n+2)/5])-bound to be tight.

U3

z3

U1 X1 X2

V2
Fig. 4.1. For k > 2, a polygon with 12 vertices can be guarded by (2k + 2) k-guards.

Recall the 12-vertex polygon P shown in Fig. 4.1. It requires five watched guards,
but if we consider the k-guarded guards problem with k > 2, then (2k + 2) k-guards are
enough: we have to place kK — 1 guards at z1, kK — 1 guards at x2, and one guard per each
of the vertices vy, v, v3 and x3. This explains the discrepancy between the |(3n —1)/7]-
and (k|n/5] + [(n+ 2)/5])-bound.

Note that as we shall allow choosing a vertex many times for the location of a guard,
we have to modify the definition of the subgraph induced by a (multi)set S.

DEFINITION 4.1. Let G = (V, E) be a graph. The subgraph induced by a multiset S (with
elements in V) is the graph with vertex set S where two vertices v; and v are adjacent
if and only if either they correspond to the same vertex or they are adjacent in G.

Thus placing t guards at a vertex of a triangulation graph yields a clique of size ¢
spanned on all copies of this vertex in the induced subgraph. From now on, a k-guarded
guard is simply referred to as a k-guard.

(65]
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4.1. Arbitrary polygons

The idea of the proof follows the proof of Theorem 3.13: first, we have to establish the
sufficiency bound for small triangulation graphs.

LEMMA 4.1 ([98]).

(a) Ewvery triangulation graph of a pentagon can be dominated by (k + 1) k-guards
with k guards placed at any selected verter.

(b) Let Gt be a triangulation graph of a hezagon, and let x be a vertex of degree at
least 3. Then G can be dominated by (k + 1) k-guards, with k guards at x.

(¢c) Every triangulation graph of a septagon can be dominated by (k + 1) k-guards.
(d) Let Gt be a triangulation graph of an octagon, and let x be a vertex of degree at
least 3. Then G can be dominated by (k + 2) k-guards, with one guard at x.

(e) Ewvery triangulation graph of an enneagon can be dominated by (k + 2) k-guards.

Proof. We omit the proof, as it follows closely the lines of the proofs of Lemmas 3.4-3.10,
respectively. m

LEMMA 4.2 ([98]). Let Gt be a triangulation graph of an octagon and let x be any
degree 2 verter. Then one guard g at x with an additional k 4+ 1 combinatorial k-guards
are sufficient to dominate Gp (but, perhaps, g is not adjacent to any other guard).

Proof. Let the vertices of the octagon be labeled 1,...,8, in counterclockwise manner,
and assume 1 to be of degree 2. Placing a guard at 1 and cutting off the triangle (1,2, 8)
from G results in the triangulation graph G7%. of a septagon. By Corollary 4.1, G%. can
be dominated by k£ + 1 combinatorial k-guards, which completes the proof. m

LeEmMMA 4.3 ([98]). Every triangulation graph Gr of a decagon can be dominated by
(2k + 2) k-guards with a guard placed at any selected vertez.

Proof. Let the vertices of the decagon be labeled counterclockwise, assuming that 1 is
the selected vertex. First, suppose that vertex 1 is of degree at least 3. Then there is
a diagonal d with one of its endpoints at 1. This diagonal partitions the ten boundary
edges of G according to either 24+8 =10,3+7=10,4+6 = 10 or 5+ 5 = 10. Assume
that d cuts off the minimal number of vertices.

CaASE 1: 2+ 8 =10. Let d = {1,3}. Then Ey = (1,3,4,5,6,7,8,9,10) is a triangulation
graph of an enneagon (see Fig. 4.2(a)). By Lemma 4.1(d), F9 can be dominated by k + 2
combinatorial k-guards. One of these guards dominates vertex 1. By placing k& additional
guards at 1, we get a domination of the triangle (1,2, 3), and the resulting guard set is
k-guarded.

CASE 2: 3+ 7 = 10. Let d = {1,4}. Then Os = (1,4,5,6,7,8,9,10) is a triangulation
graph of an octagon, and the minimality of d ensures that the quadrilateral (1,2, 3,4) has

the diagonal {2,4} (see Fig. 4.2(b)). By Lemma 4.1(d), Og can be dominated by k + 2
combinatorial k-guards, with one guard either at 1 or at 4.

(1) By placing k — 1 additional guards at 1 and one guard at 4, we get a domination
of all triangles in G, and the resulting guard set is k-guarded.



4.1. Arbitrary polygons 67

(a) ; (b)

10 2
1

(a) ; (b) ;

7 5 7 5
8 4 8 4

H?
d

9 3 9 3

10 2 10 2

1 1

Fig. 4.3. A domination of a 10-vertex triangulation graph—Cases 3 and 4.

(4) All triangles of G are dominated. Now, we place k additional guards at 1; they
are k-guarded, as there is a guard at 4.

CASE 3: 4+ 6 = 10. Let d = {1,5}. Then S; = (1,5,6,7,8,9,10) is a triangulation
graph of a septagon (see Fig. 4.3(a)). By Lemma 4.1(c), S7 can be dominated by k + 1
combinatorial k-guards, and a 5-vertex triangulation graph (1,2, 3,4, 5) can be dominated
by k£ + 1 combinatorial k-guards, with k£ guards at 1.

CASE 4: 5+5 =10. Let d = {1,6}. Then H} = (1,2,3,4,5,6) and H? = (1,6,7,8,9,10)
are triangulation graphs of hexagons, and the minimality of d ensures that H¢ has diago-
nal {2,6} (see Fig. 4.3(b)). By Lemma 4.1(b), H{ can be dominated by k+1 combinatorial
k-guards, with k guards at 6. Place k guards at 1. As either vertex 1 or 6 is of degree 3
in HZ, we need at most one additional guard for H? to be k-guarded by Lemma 4.1.

Thus the lemma holds for all vertices of degree at least 3. Now, assume vertex 1 to
be of degree 2. Eg = (2,3,4,5,6,7,8,9,10) is a triangulation graph of an enneagon. We
proceed in four cases, depending on the triangle A in F9 bounded by the diagonal {2, 10}.
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CASE 5: A = (2,3,10) (see Fig. 4.4(a)). Os = (3,4,5,6,7,8,9,10) is a triangulation
graph of an octagon. Place k guards at vertex 1 and one guard at 10. By Lemma 4.2,
the guard at 10 permits the remainder of Os to be dominated by at most (k + 1)
k-guards.

CASE 6: A = (2,4,10) (see Fig. 4.4(b)). Then S; = (4,5,6,7,8,9,10) is a triangulation
graph of a septagon, and by Lemma 4.1(c), S7 can be dominated by k + 1 combinatorial
k-guards. Place k guards at 1 and one guard at 2; all of G is k-guarded.

(a) 6 (b) 6
7 5 7 5
8 4 8 4
9 r 3 9 A 3
10 ~V __— 2 10\/2
1 1

Fig. 4.4. A domination of a 10-vertex triangulation graph—Cases 5 and 6.

(a) 6 (b) 6
7 5 7 5
8 4 8 4
N
9 A 3 9 3
10 2 10 \/ 2
1 1

Fig. 4.5. A domination of a 10-vertex triangulation graph—Cases 7 and 8.

CASE 7: A = (2,5,10) (see Fig. 4.5(a)). Then Hg = (5,6,7,8,9,10) is a triangulation
graph of a hexagon, and by Lemma 4.1(b), Hg can be dominated by k + 1 combinatorial
k-guards, with k guards either at 5 or at 10.

(5) By placing k additional guards at 1 and one guard at 2, we get a domination of
all triangles in G, regardless of how the quadrilateral (2,3, 4,5) is triangulated;
the resulting guard set is k-guarded.
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(10) By placing k additional guards at 1 and one guard at either 2 or 5, depending
on how the quadrilateral (2,3,4,5) is triangulated, we get a domination of all
triangles in G, and the resulting guard set is k-guarded.

CASE 8: A = (2,6,10) (see Fig. 4.5(b)). Then P} = (2,3,4,5,6) and P2 = (6,7,8,9,10)
are triangulation graphs of pentagons. By placing one guard at 1, k —1 guards at 2, k—1
guards at 10, and one guard at 6, with one additional guard for P}, and one additional
guard for P2, we get a k-guarded domination of Gr. m

LEMMA 4.4 ([98]). Every triangulation graph of an 11-vertex polygon can be dominated
by (2k + 2) k-guards.

Proof. In any triangulation graph G'r of a polygon, there is at least one vertex of degree 2.
Let the vertices of an 11-vertex polygon be labeled 1, ..., 11, in counterclockwise manner,
and assume vertex 1 to be of degree 2. Cutting off the triangle A = (1,2,11) from
Gt results in the triangulation G of a 10-vertex polygon. By Lemma 4.3, G} can be
dominated by (2k 4 2) k-guards, with one guard placed at 2. This yields a domination of
Gt by 2k + 2 combinatorial k-guards, as the triangle A is dominated. m

LEMMA 4.5 ([98]). Let G be a triangulation graph of a 12-vertex polygon. Then G can
be dominated by (2k + 2) k-guards.

Proof. Lemma 3.3 guarantees the existence of a diagonal d that splits G into two graphs
G% and G2, where G contains [ boundary edges of G with 5 < < 8. Assume that [
is minimal. We consider each value of | separately.

CASE 1: | = 5. Let d = {1,6}. Then G% and G% are triangulation graphs of a hexagon
(1,2,3,4,5,6) and an octagon (1,6,7,8,9,10, 11, 12), respectively. By Lemma 4.1, G can
be dominated by (k+ 1) k-guards, with k guards either at 1 or at 6. By Lemma 4.2, those
k guards permit the remainder of Og to be dominated by at most (k + 1) k-guards.

CASE 2: [ = 6. Let d = {1,7}. Then G} and G?. are triangulation graphs of septagons,
and by Lemma 4.1, they can together be dominated by 2k + 2 combinatorial k-guards.

CASE 3: [ = 7. This case is equivalent to Case 1.

7
8 6
9//\\5
A
10 4
11 3
12 2
1

Fig. 4.6. A domination of a 12-vertex triangulation graph—Case 4.
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CASE 4: | = 8. Let d = {1,9}. The minimality of / ensures that the triangle A in G
bounded by d is (1,5,9) (see Fig. 4.6). By placing one guard at 1, k — 1 guards at 5,
k — 1 guards at 9, and one additional guard for (1,2,3,4,5), one additional guard for
(5,6,7,8,9), and one additional guard for (9, 10,11, 12, 1), we get a k-guarded domination
of GT- ]

Thus, with all preceding lemmas available, we have the following corollary.

COROLLARY 4.6 ([98]). Let Gt be a triangulation graph of an n-vertex polygon, 5 < n
< 12. For allk > 2, Gt can be dominated by k|n/5]+|(n + 2)/5] combinatorial k-guards,
with at most k guards at a vertex.

THEOREM 4.7 ([98]). For all n > 5 and k > 2, every triangulation graph Gt of an n-
vertex polygon can be dominated by k|n/5] + |(n + 2)/5] combinatorial k-guards with at
most k guards at a vertez.

Proof. Corollary 4.6 establishes the validity of the assertion for n = 5,...,12, so assume
that n > 13, and that the assertion holds for all 5 < n < n. The following lemma, is
obtained by the same method as Lemma 3.12.

LEMMA 4.8 ([98]). Suppose that for allm < n, f(m, k) combinatorial k-guards are always
sufficient to dominate any m-vertex triangulation graph, with at most k guards at a vertez.
Then if Gl is any triangulation graph of a polygon with n' vertices, n' < n, then:

(a) k guards g1, ..., g, placed at any vertex of G with f(n' —1,k) additional combi-
natorial k-guards are sufficient to dominate G (but, perhaps, g1, ..., g, are only
(k — 1)-guarded).

(b) There are at most k guards at a vertex of G/.

Proof of Lemma 4.8. Suppose that for all m < n, f(m,k) watched guards are always
sufficient to dominate any m-vertex triangulation graph, with at most k guards at a
vertex, and let G7. be a triangulation graph of a polygon P’ with n’ vertices, where
n’ < n. Let u be the vertex at which k guards are placed, and let v be a vertex adjacent
in G to u across an edge e corresponding to the edge of P’. Edge-contraction of G/,
across e produces the graph G% on n’ — 1 vertices. By Lemma 3.2, G’ is a triangulation
graph, and it can be dominated by f(n’ — 1, k) combinatorial k-guards by the induction
hypothesis, as n’ — 1 < n. Let x be the vertex that replaced v and v. Suppose that no
guard is placed at = in a domination of G7.. Then the same guard placement with k guards
at u will dominate all of G/, since the guards at u dominate the triangle supported by e,
and the remaining triangles of G’ have dominated counterparts in G%.. Otherwise, if a
guard is used at = in the domination of G, more precisely, at most k& guards are used
by the induction hypothesis, then these guards can be assigned to v in G, with the
remaining guards maintaining their positions. Again with k& guards at u, every triangle of
G/ is dominated. Note that all guards that were k-guarded in G% are k-guarded in G'»
as well. The only guards that could be non-k-guarded are the ones at u. And it is clear
that there are at most k guards at any vertex of G7.. m

Now, we return to the proof of the theorem. Lemma 3.3 guarantees the existence
of a diagonal d that partitions G into two graphs G} and G2, where G contains [
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boundary edges of G with 5 <[ < 8. Assume that [ is minimal. We consider each value
of [ separately.

CASE 1: | = 5. Let d = {0,5}. Then G% is a triangulation graph of the hexagon (0, 1,2,
3,4,5). In G1. either vertex 0 or 5, say 0, is of degree at least 3. By Lemma 4.6, G+ can be
dominated by k+1 combinatorial k-guards, with k guards at 0. Next, by Lemma 4.8, the k
guards at 0 permit the remainder of G to be dominated by f(n—4—1,k) = f(n—5,k)
k-guards, where f(fn,k) specifies the number of k-guards that are always sufficient to
dominate a triangulation graph on 7 vertices. By the induction hypothesis,

f<"5”“)’“V;5J . Vn—g)mJ kEJ . V;zJ o

k-guards suffice to dominate the remainder of G2.. Together with the (k + 1) k-guards
allocated to GL., all of G is dominated by at most (k|n/5] + |(n +2)/5]) k-guards.

CASE 2: | = 6. Let d = {0,6}. Then GL is a triangulation graph of the septagon
(0,1,...,5,6). By Corollary 4.6, G1. can be dominated by (k+ 1) k-guards. Since G2 has
n—5 vertices, it can be dominated by (k[ (n — 5)/5] + [((n — 5) + 2)/5]) k-guards by the
induction hypothesis. This yields a k-guarded domination of Gt by k|n/5| + | (n+ 2)/5]
guards.

(a) (b)

Fig. 4.7. (a) Case k = 7. (b) Case k = 8.

CaAsE3:1=7. Let d = {0, 7} (see Fig. 4.7(a)). The presence of any of the diagonals {0,6},
{1,6}, {0,5}, {2,5} would violate the minimality of [. Consequently, the triangle A in G,
bounded by d is either (0,3,7) or (0,4,7). Without loss of generality, let A = (0,3,7).
Form a graph GY by adjoining A to G2Z. As GJ has n — 6 + 1 vertices, it can be
dominated by (k[(n —5)/5] + [((n —5) 4+ 2)/5]) k-guards by the induction hypothesis.
In such a domination, at least one vertex of /A must be assigned a guard. There are three
possibilities:

(0) If there is a guard at 0, then by Corollary 4.6, k 4+ 1 additional k-guards with &
guards at 3 suffice to dominate a triangulation graph of the pentagon (3,4, 5,6, 7).
Regardless of how the quadrilateral (0, 1,2, 3) is triangulated, the guards at 0 and
3 will dominate it.
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(3) If there is a guard at 3, then we can move it to 0 without destroying the k-

guardness, thus getting case (0).

(7) If there is a guard at 7, then place one guard at 0, and k—1 guards at 3. Regardless
of how (0,1, 2, 3) is triangulated, the guards at 0 and 3 will dominate it. Next, it is

easy to check that there is a vertex v in a 5-vertex triangulation graph (3,4,5,6,7)

such that v is adjacent to both 3 and 7, and by placing one guard at v, together

with the k — 1 guards at 3 and one guard at 7, we get a domination of GL..

Thus all but the quadrilateral (0, 1,2,3) and pentagon (3,4,5,6,7) can be dominated
by (k|n/5]+|(n+ 2)/5] —k—1) k-guards, and the pentagon and the quadrilateral merely
require together k + 1 guards. As these k£ + 1 guards with one guard either at 0 or 7 in
GY. are k-guarded, all of Gt is dominated by (k|[n/5| + [(n+2)/5]) k-guards.

by

kr(t—;)—&—lJ .\ {[5(1&—1)54-1]4-2

k-guards by the induction hypothesis. Together with (k+2) k-guards allocated to

J:k(t—1)+t—1:tk+t—k—1

CASE 4: k = 8. Let d = {0,8} (see Fig. 4.7(b)). The presence of any of the diagonals
{0,7}, {1,8}, {0,6}, {2,8}, {0,5} or {3,8} would violate the minimality of I. Conse-
quently, the triangle A\ in G bounded by d is (0,4,8). Dominate a 5-vertex triangula-
tion graph (0,1,2,3,4) by (k + 1) k-guards with k guards at 4, and dominate a 5-vertex
triangulation graph (4,5,6,7,8) by (k + 1) k-guards with k guards at 4, thus getting a
domination of G% by (k + 2) k-guards (the triangle A is dominated by the guards at 4).
Next, the proof proceeds in five cases, depending on the value of n (mod 5).

(3) m =5t+3, t > 2. The graph G% has 5(¢ —2) +3 vertices, and it can be dominated

G, we get a domination of G by tk+t+1= (k|n/5]+ [(n +2)/5]) k-guards.

(4) n=5t+4, t > 2.

)42 4242 2
|22 IBEZD A2 o = k| R 4 | 2.
5 |7 5 ] 5 5

(0) n =5t t>3.
G 3= 43| | Be-2 32|
L 5 - . 5 .
:tk+t—k+1<tk+t:kEJJ{”;QJ, as k> 2.
(1) n=5t+1, t > 3.
N R I R e
5 5
tk+tk+1gtk+tkEJ+V;2J, as k> 2.

(2) n =5t +2, t > 3. First, consider the case ¢t = 3, that is, n = 17. Then GZ is a

triangulation graph of a 10-vertex polygon, but the minimality of [ ensures that
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Fig. 4.8. A 10-vertex triangulation graph without diagonals cutting off 4,5 or 6 vertices.

GZ has the form shown in Fig. 4.8. If we place k— 1 guards at z, and one guard at
each of x1 and x5, then it is easy to see that together with at most two additional
guards, we get a k-guarded guard set of G2 of cardinality at most k + 3. This
yields a domination of G by at most 2k + 5 < (3k + 3) k-guards, as k > 2.
Now, suppose that ¢t > 4. The minimality of k£ and Shermer’s proof of Lemma 3.3
give more, namely there is a diagonal d’ in G% such that d’ partitions G2 into
two pieces G2! and G2, one of which contains eight edges corresponding to the
external edges of G2, and vertices 0 and 8 are left in the remainder of G2.. Again
by the minimality of [, the piece GZ' can be dominated by (k +2) k-guards. Note
that G22, the remainder of G2., is now on n — 14 vertices. Thus we get

]{5@ —;) +3J N {[5(15 - 3)5+ 3] +2

J+2k+4

n—+2
5
That the number of guards at a vertex does not exceed k is established by noticing
that in the above construction either we have to place at most k£ guards at an “empty”
vertex or we just have to increase the number of guards at a vertex to k. m

THEOREM 4.9 ([98]). For alln >5 and k > 2, gg(n, k) = k|n/5] + [(n+2)/5], even for
verter guards.

:tk+t—k+2§tk+t:l{gJ+{ J as k> 2.

Fig. 4.9. A polygon P with n vertices with gg(P, k) = k|n/5] + [(n + 2)/5]; here n = 20, and
gg(P, k) = 4k + 4.

Proof. The necessity is established by the polygon P shown in Fig. 4.9. Each wave requires
(k+1) k-guards, and it is clear that for n = 0 (mod 5), gg(P, k) = k[n/5| + [(n +2)/5].
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The case of n = 1,2,3,4 (mod 5) is indicated with dashed lines. For sufficiency, we apply
Lemma 1.5 and Theorem 4.7. Note that if n = 3 or n = 4, then the (k|n/5]+|(n +2)/5])-
bound fails. Clearly, gg(3,k) = gg(4,k)=k+1. m

4.1.1. Guards at disjoint points. All k-guarded sets constructed in the previous
section are multisets, and they are satisfactory if we consider the graph theory only. But
geometrically speaking, they are not, as guards should not be placed at the same point.
Nevertheless, we will now show that guards at the same vertex can always be separated
without destroying the k-guardness.

Let S be a k-guarded guard set for a polygon P obtained by the method of proof
of Theorem 4.7, and let V(S) denote the set of vertices of P at which our k-guards are
placed. We start with simple observations.

(i) We have actually proved that for any vertex v € V(S), there are only three
possibilities: there is one guard at v, or there are either k — 1 or k guards at v.

(ii) Let n(v) denote the number of guards at v; we have to split off only those guards
that are located at those vertices v for which n(v) >k —1> 2.

(iii) Let C, be a set of guards located at the same vertex v. Choose a vertex from C,,,
say [(C}), and call it the leader of C,. Now, note that for any v,w € V(S) with
n(v) > k—12>2, v # w, aguard g € C, has to see at most [(Cy) to be k-
guarded. Thus by moving guards from C,,, except for I(C,,), we do not destroy
the k-guardness of g.

(iv) For any polygon, there exists a non-degenerate triangulation (there are no trian-
gles with three vertices on a line).

Now, with all preceding observations, it remains to prove the following lemma.

LEMMA 4.10 ([98]). Let Gr, S, and V(S) be the triangulation graph of a non-degenerate
triangulation of a polygon P, a k-guarded guard set for P, and the set of vertices of P at
which our k-guards are placed, respectively. Let v # w be two vertices from V(S) such that
n(v) > 2, and v is adjacent to w in Gt (v sees w). Then there exists a region R of points
in P, close to v, such that1(C,,) is visible from any point of R, that is, all guards from C,,,
except for the leader 1(C,), can be moved to R, and l(C,,) is still visible to any moved
guard.

Proof. Let v be a vertex from V() such that n(v) > 2, and let N(v) be the set of vertices
of Gr adjacent to v in Gr. Let y(v) be the sector interior to P delimited by the lines
enclosing the edges of P with endpoints at v (see Fig. 4.10); the radius r of y(v) is such
that y(v) N P = v(v). Let {l1,...,l,} C N(v) be a set of leaders that are adjacent to v
in G, ordered counterclockwise. For each [;,i = 1,...,m, in turn:

e rotate P in such a way that the line s; enclosing the line segment vl; is parallel to
the y-axis, and v is below [;;

e consider the vertex y; € N(v), closest to the right of s;, such that [; is visible in P
from y;, and consider the vertex x; € N(v), closest to the left of s;, such that [; is
visible in P from x;, respectively;
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Fig. 4.10. (a) The definition of the sector v(v). (b) The idea of the construction of the region R.

e let 6(l;) be the strip, interior to P, delimited by the lines enclosing z; and y;,
respectively, and parallel to s;;

o if v(v) C 4(l;), then [; is visible from any point of v(v) in P, otherwise, decrease
the radius r > 0 of v(v), thus getting v(v) C §(1;)-

Finally, all leaders are visible from any point of the sector v(v) in P. m

4.2. The minimum k-guarded guards problem

Let k be a constant integer. We are concerned with the following decision problem.
BOUNDED k-GUARDED GUARDS PROBLEM (Bk-GG problem for short)
Instance: A polygon P and a positive integer I.

Question: Does there exist a subset S C P such that S is a k-guarded guard set for P
and |S| < I?

We will show that 3SAT is polynomially reducible to the Bk-GG problem. The goal is
to accept an instance of 3SAT as an input and construct, in polynomial time, a polygon P
such that there is a k-guarded guard set of cardinality at most I in P if and only if the
instance of 3SAT is satisfiable. The proof is based upon the constructions proposed by
Aggarwal [2], and Lee and Lin [56] in the case of arbitrary guards.

We first introduce some basic constructions on which the polygon is built and identify
a number of distinguished points in this polygon such that no two different distinguished
points are visible from the same point. In the following construction, the dotted lines in
the figures indicate where these basic gadgets are adjoined to the main polygon. Let the
bound I used in the Bk-GG problem be (m + 1)(k + 1) + 3m + n.

Gutter Pattern: The gutter pattern is shown in Fig. 4.11(a). The black dot is a dis-
tinguished point associated with the pattern. Let [p1,...,ps] indicate that the points
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D1, .., pp are collinear. Thus in the pattern of Fig. 4.11(a), we have [z3, 24, 28], [22, 25, 2§),
and the lines [T, M and [P include the line segments 2§z, 227, and 2227, respectively.

(2) (b)

Fig. 4.11. (a) A gutter pattern. (b) A literal pattern.

The important characteristic of the pattern is that the shaded region requires k + 1
guards, as a guard covering the distinguished point has to be guarded by k of its col-
leagues. Moreover, at most k guards can see a point from the cone delimited by (7 and 17.
One pattern per clause will exist in the final construction.

Literal Pattern: The literal pattern is shown in Fig. 4.11(b). The black dot is a dis-
tinguished point associated with the pattern. Note that [a1,a4,as5] and [ag, as, as, ag).
Consequently, the kernel of the pattern is the shaded quadrilateral (a1, a},as,as), and
any guard located outside this pattern (to the left of the segment ajag) cannot cover this
pattern entirely. These three patterns per clause will exist in the final construction, each
of which will correspond to one literal.

Clause Pattern: Let U = {uy,...,u,} be a set of Boolean variables, and let ¢ =
{C4,...,Cy} be a set of clauses over U such that C; € ¢ is a disjunction of precisely
three literals, i = 1,..., m. Without loss of generality, let us consider the clause C}, € F,
where Cj, = AVBVC, A € {u;,u;}, B € {u;,u;}, C € {w,w} are literals, and u;, u; and
u; are variables in U. The basic pattern for the clause pattern C}, is shown in Fig. 4.12.
For simplification, let Aabc denote the triangle determined by points a,b and c.

In the clause pattern in Fig. 4.12, we have (21, ), Ch1, Ches D1, bhes A1, Gh6, Tha, Thal,
[Zho» Tha, Ths], [Ths:Tha, Thr,Th1l, [ThesTh7 Thals (202,207, 1] 206,207, Cn1), [2h6, 201, T o),
and a guard located at zj can see all points from the quadrilaterals (ap1,a},;, an3, ans),
(br1,b),1, bas,brs) and (cp1,Chy, Ch3, Chs), respectively. Finally, |zp12},| = |2},,ch1| and
lane)s| = |Z},52h2|, where |uv| denotes the length of the line segment uv.

Since no point from the gutter pattern or from the interior of Axp1xp2xk3 can cover
Aapiah;apa, Abpibl,bpa and Acpic),cha, they cannot be used to cover these triangles.
Hence we need at least three guards for distinguished points in literal patterns, as no
guard can see simultaneously two distinguished points. Furthermore, the gutter pattern
requires at least k£ 4+ 1 guards. Therefore we have the following corollary.

COROLLARY 4.11 ([95]). At least (k+4) k-guarded guards are required to cover the region
defined by the pattern Cj, shown in Fig. 4.12.

Next, it is easy to see that a point p from Azpi2}, 2,7 close to 2,1 can only be seen
from a point in Azpixpox,3. Moreover, no point outside the clause pattern can see p.
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Th2

Ths The

Fig. 4.12. A clause pattern C},.
Next, as none of the k + 1 guards covering the gutter pattern can see a point below the
line lhB , we have the following corollary.

COROLLARY 4.12 ([95]). In every minimum k-guarded guard set, among k + 4 guards for
Ch, there is a guard at one of the vertices ap1,bp1 or cp1, Tespectively.

tiz  tito ti1n

Fig. 4.13. Variable pattern.

Variable patterns: The pattern of a literal consists of two quadrilaterals called bins and
a quadrilateral with the distinguished point as shown in Fig. 4.13. Note that [t;2, t;3, ti12]
and [tq, ti5, tis, tig, ti12] so that all points of the quadrilateral (¢;o,t;3, ti4, t;5) are visible
only from the shaded region. Consequently, one guard has to be located at a point of
the shaded region to cover the associated quadrilateral. In the final polygon, there are
n variable patterns, one for each variable. These are denoted by t1,...,t,. Now, we will
consider how to put variable patterns and clause patterns together.

Complete Construction: Two steps are needed.

STEP 1. We put variable patterns and clause patterns together as shown in Fig. 4.14. In
Fig. 4.14:

(i) a guard at the vertex wg of the gutter pattern w can cover all bins of the variable
patterns tl, e ,tn, that iS, we have [’wétﬂ, tig, ti5, tiﬁ}, [wg, ti7, tig], [’U}g, tig, tilO}a
[’wé, tilla tilg}, fOI‘ all 7= 1, Lo,y and [U.)/6, wy, tnll; tnlg];

(11) [w1,$15,1’16, e ,xmg,,xmﬁ], [t11,$h5,1’h4,1’/h2}, [tnlg,xhg,l'h%l'%l}, for h= ]., ey, M.
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Ch Ch Cn

NN

t1 ti tn

Fig. 4.14. Putting variable patterns and clause patterns together.

STEP 2: augmenting variable patterns with “spikes”. Suppose that a literal A € {u;,u;}
appears in a clause Cy. If u; is itself in C}, then we add two spikes (s1, s2, $3,54) and
(g1,92,93,q4) to t; as shown in Fig. 4.15(a), where [s1, $2,an1] and [ss3, S4, tis, an1], and
[q1, G2, ans] and [g3, q4, ti12, ans]. If u; is negated (and occurs in C}), then we add two
spikes (s1, 82, $3,p4) and (q1, 92, g3, q4) to t; as shown in Fig. 4.15(b), where [s1, $2, ans)
and [ss, S4,tis,ans], and [q1, G2, ar1] and [gs, g4, ti12, an1]. We call these spikes the con-
sistency-check patterns.

(a) (b)

Fig. 4.15. (a) Spikes when A = u;. (b) Spikes when A = w;.

It follows that a guard placed close to ;g covers all the spikes of the left-hand bin and the
quadrilateral (¢;2,t;3,t:4,t;5), and a guard placed close to ;12 covers all the spikes of the
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right-hand bin and the quadrilateral (¢;2, 3, ti4, ti5). Note that these cases are disjoint.
This is equivalent to labeling ;3 as F' and t;15 as T'. That is, the vertices ¢;5 and ¢;1o will
represent the values false and true for the variable u;, respectively.

LEMMA 4.13 ([95]). At least I = ((m+1)(k+ 1)+ 3m+n) k-guarded guards are needed
to cover the constructed polygon.

Proof. At least 3m + (k + 1)m guards are needed to cover m clause patterns with their
gutter patterns. Next, we need at least n guards for the distinguished points in the n
variable patterns. Finally, at least k + 1 guards are needed for the gutter pattern w. m

LEMMA 4.14 ([95]). The constructed polygon can be covered with I = ((m+ 1)(k+ 1) +
3m + n) k-guarded guards if and only if ¢ is satisfiable, that is, there ezists a truth
assignment to the n variables in U such that the conjunctive normal form Cy A--- A Cy,
1s true.

Proof. (<) If ¢ is satisfiable, then there exists a truth assignment to the variables such
that each of the clauses in ¢ is true. Next, suppose a literal A € {u;,u;} is in a clause C},.
If w; is true, then we place a guard at the vertex t;15 of the variable pattern ¢;. Also, we
put a guard either at ap; or aps of the literal pattern A depending on whether A = u; or
A = 1u;, respectively. Otherwise, if u; is false, then we place a guard at the vertex t¢;3 of
the variable pattern ¢;, and also either at aj; or a5 of the literal pattern A depending on
whether A = u; or A = u;, respectively. Next, we put (k + 1) k-guarded guards per each
gutter pattern, with & guards at z}4, h = 1,...,m. From the construction it follows that
the regions defined by the consistency-check patterns and literal patterns are covered by
(m(k+1)43m+n) k-guarded guards. Finally, the remaining bins defined by the variable
patterns can be covered by (k + 1) k-guarded guards in the last gutter pattern w with
k guards at wg. Note that the k guards at w§ guarantee that the guards in the variable
patterns are k-guarded.

(=) Suppose there is a cover S with I = ((m+1)(k+1)+3m+n) k-guarded guards.
The gutter pattern w requires k + 1 guards and all gutter patterns in the clause patterns
require m(k + 1) guards. Thus I — (k+ 1) — m(k + 1) = 3m + n locations of guards are
left to be considered.

In the polygon, there exist 3m literal patterns and n quadrilaterals (¢;2,t;3, tia, tis),
i =1,...,n, each of which contains a distinguished point. We know that a guard that
covers a distinguished point cannot cover any other distinguished point. Therefore at least
3m + n guards are needed to cover the above 3m + n subregions. However, we cannot
arbitrarily include in S any 3m points in these 3m literal patterns for they make the n
variable patterns inconsistent. The definition of consistency is as follows.

We say that any variable pattern L is consistent if all consistency-check patterns
connected to one of its two bins are covered by the 3m points in literal patterns and
those connected to the other bin are not covered at all by the same 3m vertices; it is
inconsistent otherwise.

In any variable pattern L, the number of consistency-check patterns connected to the
first bin and the second bin is the same, say ¢. The total number of consistency-check
patterns in the variable pattern L is 2q. From the construction, the 3m points from literal
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patterns included in S can cover only ¢ consistency-check patterns. If L is not consistent,
then some of the consistency-check patterns connected to the first bin and some connected
to the second bin will not be covered. Then at least two extra points of L are needed to
cover L. On the other hand, if L is consistent, one extra guard is enough. Therefore, to
get an [-cover, the consistency of all variable patterns is required.

Next, the consistency of variable patterns implies that a guard that covers simulta-
neously a spike and a literal pattern A must be located either at aj; or at aps. Let us
label the vertices a1 and aps as follows. If A = w;, then ap; and a3 are labeled as
T and F (true and false), respectively; if A = @;, then ap; and apg are labeled as F
and T, respectively. In other words, aj; represents true for A, and ap3 represents false.
The vertices by and by3 of B, and c¢p1 and cp3 of C are labeled in the same manner.

We say that the truth assignment to variables u;,u; and u; in a clause C}, is a true
assignment if the resulting value of C, is true; otherwise it is a false assignment. The key
idea in the labeling of vertices in a clause pattern C}, is that the vertices that are selected
according to the truth assignment of {u;,u;, %} can cover the region Axpizpezys “for
free”, that is, without increasing the number of guards needed to cover the region defined
by the pattern C}, if and only if the assignment is a true assignment.

LEMMA 4.15 ([95]). Suppose that all variable patterns are consistent. Then three vertices
selected from the literal patterns A, B and C of a clause pattern C, = AV BV C' cover the
region Axp1Tpoths if and only if the truth values represented by the labels of the vertices
give a true assignment for Cj,.

Proof of Lemma 4.15. CY, is false if and only if the truth values of the literals A, B and
C are false. According to the vertex labels, this implies that the vertices selected must
be aps, bps and cp3. And this implies that Azpizhorh3 is not covered. m

Now, since our 3m guards in the literal patterns must satisfy the consistency require-
ment, the remaining n points chosen from the variable patterns can be determined, ac-
cording to the sequence of spike alignments. We know that these guards, and guards from
all gutter patterns, cannot cover any point from Axpizpexps close to xp1, h=1,...,m.
Therefore Axp1xnoxns, h =1,...,m, must be covered by these guards. By Lemma 4.15,
if they are covered for free, then each ¢; is satisfiable. This implies ¢ is satisfiable. Once
it has been known that the instance of 3SAT is satisfiable, the truth value assignment
to the variables can easily be determined from the consistency property possessed by the
minimum cover. m

Fig. 4.16 is an example for converting the Boolean formula
F=(u1 VuzaVuz)A (U VugVug)A(ug Vg VUs),

and the dots are guards in the minimum cover. From the minimum cover we can conclude
that the truth values of ui,us, and ug are true, true, and false, respectively.

THEOREM 4.16 ([95]). The bounded k-guarded guards problem is N P-complete.

Proof. A polynomial non-deterministic algorithm that solves the bounded k-guarded
guards problem is given below.
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Cq Co Cs

t1 t2 t3

Fig. 4.16. The complete polygon for F' = (u1 Vuz2 Vus) A (W1 Vuz Vus) A (u1 Ve Vus) and the
minimum k-guarded cover.

ALGORITHM Bk-GG(P, 1)

1.

If I > k(n —2), then put k guards at every triangle of a triangulation of the input
polygon P. Clearly, these guards will form a k-guarded guard set S for P with
|S| < I (the number of triangles is n — 2, Theorem 1.1).

For 1 < i < I, choose a point p; of P for the location of a guard g;. Let S be the
set of points chosen for guard locations.

For each p in S, compute its visibility polygon, that is, compute the region R(p)
of the given polygon that is visible from that point.

If Upes R(p) = P, go to Step 4. Otherwise, S is not a guard set for P.

Compute the visibility graph VG(S). If the minimum degree of the resulting graph
is at least k, then S is a k-guarded guard set, and |S| < I. Otherwise, S is not
k-guarded.

Steps 1-3 take O(nl) non-deterministic time, as the visibility polygon from a point
inside an n-vertex polygon can be computed in linear time [73]. Step 4 takes O(nl log?(I+

n)) time [18]. As the visibility graph can be computed in O(nI?) time using a greedy

algorithm (comparing all pairs of vertices), Step 5 takes O(nl?) time. Finally, Step 1

guarantees that I = O(n) (k is constant), thus the entire algorithm takes at most O(n?3)

time steps.

The NP-completeness follows from Lemma 4.14 and the fact that the polygon de-
scribed above can be constructed in a time that is proportional to the multiplication of
the number of vertices and clauses in a given instance of 3SAT. m

COROLLARY 4.17 ([95]). The minimum k-guarded guards problem is N P-hard.
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4.3. Miscellaneous shapes

4.3.1. Orthogonal polygons. Combinatorial bounds for k-guards in orthogonal poly-
gons were given by Michael and Pinciu [67]. They proved the following theorem.

THEOREM 4.18 ([67]). For all k > 6, gg, (n, k) = k|n/6] + [(n+2)/6].

Proof. Let S, VG(S), and F be a 1-guarded guard set for a given n-vertex polygon,
the visibility graph of S, and a spanning forest of VG(.S), respectively, as Theorem 3.18
guarantees. Let ST be a vertex cover of F. Of course, |S*| < ||S]/2], as F is bipar-

tite. Now, we insert k¥ — 1 additional guards at each vertex of St to obtain a set S*.
The cardinality of S* satisfies

157 = |S] + S| < m +(k1)w/3JJ km + {””J,

2 6 6

and S* is k-guarded. The necessity is established by the orthogonal polygon shown in
Fig. 3.12. m

The authors [67] also proved that guards can be located at disjoint points. Before
commencing the proof, let us present a lemma detailing the relationship between a diag-
onal of quadrilateralization and the local structure of an orthogonal polygon. Recall that
the orientation of an edge is horizontal or vertical, and we say that edges a and b are to
the same side of a diagonal d if they are in the same piece of P partitioned off by d; note
that @ and b may be in opposite half-planes defined by d, but still to the same side.

LEmMMA 4.19 ([2]). Let a and b be edges of an orthogonal polygon incident to a diagonal
d and to the same side of d. Then a and b have the same orientation.

Fig. 4.17. The five possible arrangements when a and b have opposite orientations. The dotted
lines represent possible orientations of the edges to the other side of d; the dashed lines indicate
an added right angle that forms a subpolygon.

Proof. Without loss of generality, let us orient d with the positive slope with the polygon
P, containing a and b below, and assume, contrary to our claim, that a and b have different
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orientations. Then there are five distinct possible combinations of a and b: hanging up,
down, left, or right from the endpoints of d, as shown in Fig. 4.17. The other three
possible combinations force a and b to be located to the different sides of d. Now, let
us assign types + and — to each vertex in such a way that they alternate in a traversal
of the boundary. In all five cases of Fig. 4.17, d connects two vertices of the same type,
thus P; has an odd number of vertices. But this contradicts the assumption that P; is
quadrilateralizable, since any polygon partitioned into quadrilaterals must have an even
number of vertices. m

The above lemma is useful in proving the following theorem.

THEOREM 4.20 ([66]). The k-guarded guard multiset S* constructed in Theorem 4.18 can
be relocated to disjoint points.

Proof. Let v be a vertex with & guards. Similarly to the proof of Lemma 4.10, we only
have to show that all k— 1 guards can be relocated close to the leader I(v) without loosing
the visibility with all other leaders, located only at vertices of quadrilaterals having v as
a corner.

If there are no degenerate quadrilaterals (with three points on a line) at v, then we
can proceed as for arbitrary polygons. Otherwise, we proceed in the following way.

If there is a 90° angle at v, one can easily check that there are no degenerate quadri-
laterals at v. So assume that there is a 270° angle at v. Next, without loss of generality,
let us assume that v is at the origin in the Cartesian plane, and let us order the quadri-

laterals g1, . . ., ¢, that contain v counterclockwise, as shown in Fig. 4.18. Let v, x, y, z be
type 0
type 2 o
z £
type O v
v
type 1

qm 42 —]

type O
v ql <o y

Fig. 4.18. Types of quadrilaterals.

the vertices (ordered counterclockwise) of a quadrilateral ¢ having v as a corner. There
are three types of quadrilaterals: type 0: neither x nor z lies on the segment vy; type 1:
x lies on vy; type 2: z lies on vy. All we need is to show that if both quadrilaterals of type
1 and 2 are incident to v, then they are unique and the quadrilateral of type 1 occurs
before the quadrilateral of type 2.

By Lemma 4.19, we have the following properties:
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(i) The slope of the line segment vy in a quadrilateral of type 1 is in [0°,90°).
(ii) The slope of vy in a quadrilateral of type 2 is in (0°,90°].

Now, assume that a quadrilateral of type 2 with vertices v, x2, y2, 22 precedes a quadri-
lateral of type 1 with vertices v, x1, y1, z1 in the list ¢, . .., ¢;,. Then the above properties
imply that the points y; and y2 are both in the interior of Quadrant I and the segment
vy; is above wvys,, as depicted in Fig. 4.19(a). Moreover, Lemma 4.19 implies that the

(b)

22

Fig. 4.19. (a) A quadrilateral of type 2 cannot precede a quadrilateral of type 1. (b) Ilustration
for the proof of Lemma 4.21.

diagonals vz, and vz, partition our polygon P into three polygons, each of which has
a convex quadrilateralization. Let P’ denote the polygon that has z;,v and 29 as con-
secutive vertices. Then the angles at z;,v and 25 in P’ must be acute. Thus P’ has a
convex quadrilateralization and each interior angle is either 90° or 270°, except for three
consecutive acute angles at x1,v and z5. However, by showing that such a polygon does
not exist, we contradict that a quadrilateral of type 2 precedes a quadrilateral of type 1.
Note that the same arguments can be applied to prove that the quadrilaterals of type 1
and 2 are unique.

LEMMA 4.21 ([66]). Let P’ be a polygon with each interior angle equal to 90° or 270°,
except for three consecutive acute angles. Then P’ does not have a conver quadrilateral-
1zation.

Proof of Lemma 4.21. Assume that P’ does have a convex quadrilateralization. We shall
obtain a contradiction by induction.

Suppose that m = 4. Then the one non-acute angle of P’ is equal to 270°, and hence P’
does not have a convex quadrilateralization. So assume that m > 6. Notice that the sum
a of these three acute angles must be 90°. For suppose that P’ has r angles equal to 270°.
Then 180(m — 2) = 270r + 90(m — 3 — ) + a, and hence a = 90(m — 2r — 1). The parity
of m yields a = 90°.

Next, let the convex quadrilateral ¢ containing the side vz; of P’ have vertices
v,21,y,u (see Fig. 4.19(b)), and let us partition the vertices of P’ into two alternat-
ing sets V' and V—, with v € V', as described in the proof of Lemma 4.19. Note that
u €V~ and u ¢ {21, 22}. Now, let us orient the edges of P’ counterclockwise so that the
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interior of P’ lies to the left of each edge. It is easy to see that each vertex in V'~ is exited
horizontally (except for z;) and is entered vertically (except for z2). By Lemma 4.19, y is
entered vertically and exited horizontally in a counterclockwise traversal of the boundary
of P’, and hence the only possibility is that y is entered from below and exited to the
right. Now, the diagonal vy partitions P’ into smaller convex-quadrilateralizable poly-
gons. One of these smaller polygons contains three consecutive acute angles at u, v, 29,
with all other angles equal to 90° or 270°, and this contradicts the inductive hypothesis. =

Hence the construction from Lemma 4.10 can also be applied to the orthogonal gallery,
thus yielding a disjoint k-guarded guard set. m

4.3.2. Star-shaped polygons. Theorem 4.9 shows that k|n/5] + [(n+2)/5] vertex
k-guards always suffice to cover any star-shaped polygon. Fig. 4.20(a) shows a star-
shaped polygon P on 15 vertices with gg. (P, k) = 3k + 3 if guards are restricted to
vertices. A simple extension of this polygon leads to a class of star-shaped polygons with
g8 (k) =k[n/5] + [(n+2)/5] for vertex guards.

COROLLARY 4.22 ([95]). For all n > 5, ggycrtex (n,k) =k|n/5] + [(n+2)/5].

star-shaped

4.3.3. Monotone and spiral polygons—open problems. The k-guarded guards
problem for monotone polygons remains open. Of course, if guards are restricted to
vertices (but we allow guards to be placed at the same point), then as many as (k|[n/5] +
|(n+2)/5]) k-guards may be required to cover a monotone polygon: Fig. 4.20(b) shows a
monotone version of the wave-polygon (cf. Fig. 4.9) with gg(-,n) = k[n/5]+ [(n+2)/5].

(a) (b)

Fig. 4.20. (a) A star-shaped polygon P with gg(P, k) = k|[n/5] + [(n + 2)/5] for vertex guards;
here n = 15, and the polygon requires 3k + 3 vertex k-guards. (b) A monotone polygon P with
gg(P, k) = k|n/5] + |(n + 2)/5] for vertex guards; here n = 15, and the polygon requires 3k + 3
vertex k-guards.

COROLLARY 4.23 ([95]). For alln > 5, ggyertex ' (n,k) =k|[n/5] + |(n+2)/5].

monotone

However, if guards are point guards, then no tight bound is known. Also, the k-guarded
guards problem for spiral polygons remains unsolved.



5. THE FORTRESS PROBLEM

A fortress is a (simple) polygon P. Let F(P) denote the set of all points of the plane
exterior to P or on the boundary of P. A guard is any point of F/(P). A point x € F(P)
is said to be seen by a guard g if the line segment xg C F(P). A collection S of guards
is said to cover the fortress P if every point x € F(P) can be seen by some guard g € S.

The fortress problem, independently posed by Joseph Malkelvitch and Derick Wood,
asks about the number of guards sufficient to cover a fortress. In 1983, O’Rourke and
Wood [73] solved the fortress problem for vertex guards—they showed that [n/2] vertex
guards are sometimes necessary and always sufficient. A tight bound of [n/3] point guards
was given by O’Rourke and Aggarwal [73].

As we remember, Hernandez-Penalver [39] proved that |[n/2| — 1 cooperative guards
are sometimes necessary and always sufficient to cover the interior of an n-vertex polygon
(Chapter 2, Theorem 2.7). One may ask whether this is still true for the fortress problem;
however, a convex n-gon requires n — 1 cooperative vertex guards.

In [91] Yiu considers the number of k-consecutive vertex guards that are required to
solve the fortress problem. A k-consecutive vertexr guard is a set of vertex guards located
at k consecutive vertices of the polygon. Yiu shows that [n/(k + 1)] k-consecutive vertex
guards always suffice to cover the exterior of any n-vertex polygon. Thus we have

COROLLARY 5.1 ([94]). n—1 cooperative verter guards always suffice to cover an n-vertez
fortress.

However, convex polygons constitute a severely restricted class of polygons, so it
is natural to investigate the fortress problem for cooperative guards as a function of
a variable other than n, which is the number of vertices of a polygon. First, we shall
consider the case of vertex guards; another case will be explored in Section 5.3.

Fig. 5.1. A fortress that requires ¢ — 1 + (|(np — 1)/2] — 1) cooperative vertex guards; here we
have ¢ = 11, n, = 17, and the polygon requires 17 cooperative vertex guards.

(86]
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Define a pocket p of a polygon as an exterior polygon interior to the convex hull of
the polygon and bounded by a hull edge; recall that the convezr hull of a polygon is the
smallest-area convex polygon which encloses the original polygon. Consider the polygon
P with one pocket p shown in Fig. 5.1; let n,, denote the number of vertices of p. One can
easily check that P requires ¢ — 1+ (|(n, — 1)/2| — 1) cooperative vertex guards, where
¢ is the number of vertices of the convex hull of P. A simple extension of this polygon
leads to a class of polygons of k pockets p1, ..., px that require

SENER

cooperative vertex guards, where n; is the number of vertices of p;, i« = 1,...,k (see
Fig. 5.2).

Fig. 5.2. A fortress that requires ¢ — 1+ 3% (|(ni — 1)/2] — 1) cooperative vertex guards; here
the polygon has three pockets, each of 11 vertices, ¢ = 8, and it requires 19 cooperative vertex
guards.

LEMMA 5.2 ([94]). Letc > 3 and 0 < k < ¢ be integers. Then there ezists a fortress with k
pockets p1, ..., pr and c vertices of the convex hull that requires c— 1—|—Zf:1(t(np -1)/2]
— 1) cooperative vertex guards, where n; is the number of vertices of p;, i =1,... k.

Fig. 5.3. A fortress with no edges on the boundary of the convex hull that requires
Zle |(n; — 2)/2] cooperative vertex guards; here the polygon has four pockets, each of 6 ver-
tices, and it requires 8 cooperative vertex guards.

Butif c=k and all n;, i=1,...,k, are even, then more than c—l—ﬁ—Zle(L(ni -1)/2|-1)
cooperative vertex guards may be required. Consider the fortress in Fig. 5.3: here we have
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c=k=4,alln; =6,i=1,...,4, and the fortress requires

k
1
8:2+2+2+2>c—1+zqn”2 J—1)

=1

cooperative vertex guards. Thus we have

LEMMA 5.3 ([94]). Let k be an integer, k > 3. Then there exists a fortress with k
pockets p1,...,pr and with no edges on the boundary of the conver hull that requires

Zle |(n; —2)/2| cooperative verter guards, where n; is the number of vertices of p;,
i=1,... k.

5.1. Sufficiency proof

We will show that the bounds in Lemmas 5.2 and 5.3 are tight. By Lemma 2.22, we have

COROLLARY 5.4 ([94]). Let p be a pocket of n, vertices, and let d = {x1,x2} be the pocket
lid of p. Then:

(a) if n, is odd, then |(n, — 1)/2] cooperative vertex guards with one guard placed at
any endpoint of d suffice to cover p;

(b) otherwise, |(n, —1)/2] cooperative vertex guards with one guard placed either at
1 or at xo suffice to cover p.

Note that if n, is 3 or 4, we assume that the set of cooperative guards may consist of
one guard only.

THEOREM 5.5 ([94]). Let P be a fortress of k pockets p1,...,px, and let ¢ be the number
of vertices of the convex hull of P. Then:

(a) if c =k and all k pockets have an even number of vertices, then Zle [(n; —2)/2]
cooperative vertex guards always suffice to cover F(P);

(b) otherwise, c— 1+ Zle(L(m —1)/2| — 1) cooperative vertex guards always suffice
to cover F(P).

Proof. The proof is by induction on k, the number of pockets. Corollary 5.1 establishes
the validity of the theorem for k = 0, so assume that k > 1, and that the assertion holds
for all 0 < k < k. We need to consider three cases.

CASE 1: ¢ = k and all k pockets have an even number of vertices. By Corollary 5.4,
k guards at all vertices of the convex hull permits the remainders of all k pockets to be

covered by Eo LTI
(12 -2 (2

i=1

cooperative vertex guards, as all n; are even, i = 1, ..., k. Therefore F/(P) can be covered

by X )
n; —
> "]

cooperative vertex guards in total.
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CASE 2: ¢ # k and all k pockets have an even number of vertices.

SUBCASE 2.a: there are two consecutive edges of the polygon on the boundary of the
convex hull. Let these edges be labeled e; = {1, 22} and eo = {22, 23}. Then by placing
¢ — 1 guards at all vertices of the convex hull, except for x5, and applying an argument
similar to that in Case 1, we get a coverage of F'(P) by

()

SUBCASE 2.b. Let the vertices of the convex hull be labeled z1, ..., z., in a counterclock-

cooperative vertex guards.

wise manner. Without loss of generality, we can assume e; = {z., 21} to be an edge of
the polygon on the boundary of the convex hull and {z1,z2} to be the pocket lid of the
pocket p;.

By Corollary 5.4, p; can be covered by |(n; — 1)/2] cooperative vertex guards, with
one guard either at z; or at xo. If there is a guard at x5, then by placing ¢ — 2 additional
guards at the vertices z3, ..., z. of the convex hull, and applying an argument similar to
that in Case 1, we get a coverage of F(P) by

()

cooperative vertex guards. Otherwise, if there are no guards at x2 and there is a guard

at x1, then let us consider the vertex x:

(1) x4 is one of the endpoints of the pocket lid {2, 23} of the next pocket ps, in a coun-
terclockwise order. Again by Corollary 5.4, ps can be covered by [(ne —1)/2]
cooperative vertex guards, with one guard either at x5 or at x3. If there is a
guard at xz3, then by placing ¢ — 3 additional guards at the vertices x4,...,z.
of the convex hull, together with |[(n; — 1)/2] guards allocated to the pocket pq,
|(na — 1)/2] guards allocated to ps, and by Lemma 5.4, Zfzg(L(ni -1)/2] -1
guards allocated to the remainders of p;, i = 3,...,k, we get a coverage of F'(P)
by

k
e=1+ Y (U= 1)/2) = 1)

cooperative vertex guards. Otherwise, we apply (1) at the pocket lid {x3, x4} or
(2) at the edge {x3,z4}.

(2) {x2,z3} is an edge of P on the boundary of the convex hull. Then we place the
next guard at x3, and apply the reasoning used in (1) in the case of a guard at z3.

It is clear that the above construction will stop either at (1) or when we have consid-
ered the last pocket p with the pocket lid {z._1,z.}, and a guard at z._1 in the pocket
pi is needed. But in this case, we have ¢ — 1 guards at the vertices z1,2o,..., 2.1 of
the convex hull and Zle(L(m —1)/2| — 1) guards in the remainders of pockets. Again,
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SRR

CASE 3: there is a pocket with an odd number of vertices. Let the pocket be py, and let
d = {x1, x5} be its pocket lid. Then replacing p; with a new edge d results in the fortress

F(P) is covered by

cooperative vertex guards.

P of k = k — 1 pockets and the same number ¢ of vertices of the convex hull. By the
induction hypothesis, F'(P) can be covered by c—1+ Zf;ll (l(n; = 1)/2] —1) cooperative
vertex guards. As there is a guard either at 1 or at xo, Corollary 5.4 shows that

c—1+§<{”"2—1J —1>+ V’“Q_lJ —1:c—1+§{”i;1J

cooperative vertex guards suffice to cover F(P). m

5.2. Orthogonal fortresses

Before considering the cooperative guards problem in orthogonal fortresses, let us focus
on covering the interior of 1-orthogonal polygouns.

5.2.1. 1-orthogonal polygons. A 1-orthogonal polygon is a hole-free polygon with a
distinguished edge e called the slanted edge such that the polygon satisfies four conditions:

(1) The number of edges is even.

(2) Except for possibly e, the edges are alternately horizontal and vertical in a traver-
sal of the boundary.

(3) All interior angles are less than or equal to 270°.

(4) The nose of the slanted edge contains no vertices.

Fig. 5.4. The nose of a slanted edge.

The nose of a slanted edge is the triangle towards the inside of the polygon whose
hypothenuse is e; the nose includes the interior of e but excludes the remainder of the
boundary (see Fig. 5.4). The concept of l-orthogonal polygons was introduced by Lu-
biv [61].

THEOREM 5.6 ([61]). Any 1-orthogonal polygon is convezly quadrilateralizable.
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The existence of a convex quadrilateralization for any 1-orthogonal polygon leads to
the following theorem.

THEOREM 5.7 ([94]). |n/2] — 2 cooperative vertex guards always suffice to cover the
interior of any 1-orthogonal polygon with n vertices.

Proof. We omit the proof as it follows the lines of the proof of Theorem 2.11. =

5.2.2. T-pockets, F-pockets and S-pockets. The convex hull of an orthogonal poly-
gon is bounded by four extremal edges (northernmost, westernmost, southernmost, east-
ernmost). As the pocket lid of a pocket with an even number of vertices is one of the
extremal edges, there are at most four pockets with an even number of vertices; all other
pockets have an odd number of vertices. Let p be a pocket with an odd number of ver-
tices. If p has three vertices, then p is of type T'; if p has five vertices, it is of type F; it
is otherwise, of type S.

REMARK 5.8 ([94]). Any F-pocket can be covered by two cooperative guards located at the
endpoints of its pocket lid.

LEMMA 5.9 ([94]). Any S-pocket with n vertices can be covered by |(n —1)/2] — 1 coop-
erative guards with one guard placed at one of the endpoints of its pocket lid.

Proof. Let p be a pocket with n > 7 vertices. We leave it to the reader to verify that the
assertion holds for n = 7. Assume that it holds for all pockets with 7 vertices, 7 < n < n.
Let d = {z,y} be the pocket lid of p, and let {z,z1} and {y,y1} be the edges of the
pocket incident to d. We have to consider two cases:

Fig. 5.5. (a) Case 1: the nose of a slanted edge {z,y1} is empty. (b) Case 2: there is a vertex in
the nose of {z,y}.

CASE 1: z sees y; and the nose of {y1,z} is empty (see Fig. 5.5(a)). By replacing the
polyline (y1,y,z) with the new edge {y1,z}, we get a l-orthogonal polygon P’ with
n — 1 vertices, with the slanted edge {y1,2}. By Theorem 5.7, P’ can be covered by
[(n —1)/2] — 2 cooperative vertex guards. The same guard placement in the pocket p
with one additional guard at x will cover p (the triangle (y1,y, x) is covered by the guard
at z), and the resulting guard set is cooperative.
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CASE 2: there is a vertex in the nose of {z,y} (see Fig. 5.5(b)). Let v be the closest
vertex to {x,y}. As v sees both z and y, the diagonals {z,v} and {y,v} partition the
pocket p into the triangle (z,v,y) and two pockets p; and ps with n; and ny vertices,
respectively.

SUBCASE 2.a: p; and py are both F-pockets; n; =5 and ny = 5. Due to Remark 5.8, by
placing three guards at x,v and y, we get a coverage of p by [(9 —1)/2] — 1 cooperative
vertex guards, asn =n; +ngs — 1 =9.

SUBCASE 2.b: p; is an S-pocket; ny > 7 and ny > 3. By the induction hypothesis, p; can
be covered by |(ny — 1)/2] — 1 cooperative vertex guards with one guard placed either at
x or at v. By Corollary 5.4, p, can be covered by |(n2 — 1)/2] cooperative vertex guards
with one guard placed at y. With the same guard placement in p, we get a coverage of p

B s e

cooperative vertex guards, as n; + no = n + 1, with one guard placed at y. =

5.2.3. Tight bounds. First, assume that there are no pockets with an even num-
ber of vertices. Fig. 5.6(a) shows a class of orthogonal fortresses that require 3 + ¢t +
[+ >0, ([(ni —1)/2] — 1) cooperative vertex guards, where ¢ is the number of 7-
pockets, f is the number of F-pockets, s is the number of S-pockets, and the S-pockets
p; have n; vertices, i = 1,...,s. Nevertheless, if f > 4 and t + s < f — 4, then
more guards may be required: Fig. 5.6(b) shows a class of orthogonal fortresses that

(a)

Fig. 5.6. (a) An orthogonal fortress that requires 3+¢+ f+3>"°_, ([(n;s — 1)/2] —1) cooperative
vertex guards; here ¢ = 2, f = 3, and s = 3, each S-pocket has 11 vertices, and the polygon
requires 20 cooperative vertex guards. (b) An orthogonal fortress that requires 4 + ¢ + f +
i ([(ni —1)/2] — 1) cooperative vertex guards, with f > 4 and t + s < f —4; here t = 1,
f =8, and s = 2, each S-pocket has 11 vertices, and the polygon requires 21 cooperative vertex
guards.

require 4 + ¢ + f + >0, ([(n; — 1)/2] — 1) cooperative vertex guards (note that any
T-pocket or S-pocket is between two F-pockets). We will show these bounds to be
tight.
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THEOREM 5.10 ([94]). Let P be an orthogonal fortress. Let t, f and s be the number
of T-pockets, F-pockets and S-pockets in P, respectively, and let the S-pockets have n;
vertices, 1t = 1,...,s. Then:

(a) if either f <3 ors+t> f—4, then3+t+f+> ;_,([(n; — 1)/2] —1) cooperative
vertez guards always suffice to cover F(P),

(b) otherwise, 4+t + f+ >.._,([(ni —1)/2] — 1) cooperative vertex guards always
suffice to cover F(P).

Proof. Let e,,e.,es and e, be the four extremal edges of P.

(a) As either f < 3 or s+t > f — 4, there are two “consecutive” extremal edges,
say e, and e,, such that between them there are ¢1, f; and s; pockets of type T, F
and S, respectively, and either f; = 0 or s; + t; > f1 — 4. Now, by applying similar
arguments to those in Case 2 of the proof of Theorem 5.5, we can show that there is a
vertex v of the convex hull between the edges e,, and e,, at which we do not need to place
a guard when we want to guard the whole of F(P) between e,, and e,. Therefore, with
¢ — 1 guards placed at all vertices of the convex hull, except at the vertex v, together
with >°7_,[(n; — 1)/2] — 2 cooperative guards for the remainders of all S-pockets (by
Lemma 5.9), we get a coverage of F(P) by

> n; — 1
3+t+f+;q 5 J —1)
cooperative guards, as c— 1 =3+t 4+ f + s.

(b) If f > 4 and s+t < f — 4, then with ¢ guards at all vertices of the convex
hull, together with >-7_, [(n; — 1)/2| — 2 cooperative guards for the remainders of all S-
pockets (by Lemma 5.9), we get a coverage of F'(P) by 4+t+ f+> :_ ([(n; —1)/2] —1)
cooperative guards, asc=4+t+ f+s. =

If there are (at most four) m pockets with an even number of vertices, then by similar
arguments to those in the case of no “even” pockets, by Corollary 5.4, and by the induction
on m, we get the following theorem.

THEOREM 5.11 ([94]). Let P be an orthogonal fortress. Lett, f, s and m be the number of
T-pockets, F-pockets, S-pockets, and pockets with an even number of vertices, respectively,
and let the S-pockets have n; vertices, © = 1,...,s, and let the even pockets have n;
vertices, 1t = 1,...,m. Then:

(a) if either f <3 or s+t > f—4, then

3+t+f+gqm2_lJ 1)+§Q%J 2>

cooperative vertex guards are sometimes necessary but always sufficient to cover
F(P),
(b) otherwise,

4+t+f+;qm2_lJ 1) +§Q%J 2>

cooperative vertex guards are sometimes necessary but always sufficient to cover

F(P).
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5.3. Point guards

We have restricted guards to be placed at vertices of a fortress. However, we can allow
guards to be placed at any point of F'(P). First, let us prove a reduced form of the
theorem.

LEMMA 5.12 ([94]). An n-vertex fortress with at most one triangle-pocket can be covered
by two cooperative guards.

Proof. Let P be a convex polygon. Rotate P so that a vertex a is uniquely highest and
a vertex b uniquely lowest. By adding two guards below the lowest vertex of P, both of
them far enough to see a, we will cover F'(P) by two cooperative guards.

Now, suppose P to be non-convex and that P has only one pocket (z,y, z) of three
vertices, with {z, z} as the pocket lid. Rotate P so that the edge {z,y} is horizontal, and
let d be the first edge, in clockwise order, that is not seen from any point of the line [
collinear to {z,y} (see Fig. 5.7). We have to consider two cases.

CASE 1: d is not parallel to [. Then by adding two guards, one at [, and the other one
at the line collinear to d, both of them sufficiently far away to see each other and all the
edges of P, we will get a cover of F(P) by two cooperative guards (see Fig. 5.7(a)).

Fig. 5.7. Two cooperative guards always suffice in a fortress with one triangular pocket.

CASE 2: d is parallel to [. Let o be the angle between the last edge visible from a point
at [ and the line collinear to the edge d. Let [, be the line with angle at y equal to
min{a/2, £(z,y, z)/2} (see Fig. 5.7(b)). Again, by adding two guards, one at [,, and the
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other one at the line collinear to d, both of them far enough to see each other and to see
all the edges of P, we will get a cover of F(P) by two cooperative guards. m

THEOREM 5.13 ([94]). Let P be a non-convez fortress of k pockets p1,...,pi, of respec-
tively n; vertices, i =1,...,k. Then 1+Zf:1 [(n; — 1)/2] cooperative point guards always
suffice to cover F(P).

Proof. Let us consider the pocket p;. If it has three vertices, then by Lemma 5.12,
p1 and the convex hull of P can be covered by two cooperative guards. Together with
ZLQ |(n; —1)/2] cooperative guards for the other pockets, with one guard per each
pocket lid (by Corollary 5.4), we get a cooperative coverage of F'(P) of cardinality

2+§V”2_1J :1+§k:vi2_1J.

=1

Next, suppose that ny > 3 and n; is odd. Let T be a triangulation of p;. Consider
the triangulation graph G of T, and the triangle ¢ of 7" with the pocket lid of p; as one
of its edges. By Theorem 2.7, |(n1 — 2)/2] cooperative guards suffice to dominate Gr,
and there is a guard at a vertex of . Again by Lemma 5.12, the pocket p; and the
convex hull of P can be covered by 2 + |(n,, —2)/2] = 1+ [(n1 —1)/2] cooperative
guards, as n; is odd (these guards are cooperative, as there is a guard in ¢). Together
with ZLQ |(n; — 1)/2] cooperative guards for the other pockets, with one guard per each
pocket lid (by Corollary 5.4), we get a cooperative coverage of F'(P) of cardinality

k ni—l
1+Z{ 5 J
i=1

Finally, suppose that n; is even, and let z1, ...,z be the consecutive vertices of the
pocket p1, in a clockwise manner, with {z,, z1} as the pocket lid (s = n1). Let us consider

the quadrilateral @ = (21,2, %s—1,%s). We have to consider three cases.

CASE 1: @ is empty and convex (see Fig. 5.8(a)). Then the subpocket (z2,...,25-1)
has n; — 2 vertices, and by Corollary 5.4, it can be covered by |(ny — 2 — 1)/2]| cooper-
ative guards, with one guard at x5 or zs_1, say at x,_;. By Lemma 5.12, the triangle
(21,25-1,25) and the convex hull of P can be covered by two cooperative guards. As the
guard at xs_1 covers the triangle (x1,x2,x5_1), the whole pocket p; is covered. As was
the case before, this leads to a cooperative coverage of F'(P) of cardinality

k

24 {4”1221 +ZV"21J :1+§1"i21J.

=2

CASE 2: () is empty and non-convex. Assume the vertex x;_; to be reflex. As in Case 1,
we cover the subpocket (zo,...,25_1) by applying Corollary 5.4. If there is a guard at
Zs—1 in a coverage of (xa,...,25-1), we proceed in the same way as in the above case:
the guard at x,_; will cover all of (). Otherwise, all we need is to notice that a guard at
the line collinear to the edge {x1,z2} (or close enough to it, the proof of Lemma 5.12,
Case 2) will always cover the triangle (1, 25_1, %), thus all of @ will be covered (see
Fig. 5.8(b)).
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(a) o (b)

o
h

Fig. 5.8. (a) The quadrilateral Q = (z1, 22, Ts—1,2s) is empty and convex. (b) The quadrilateral
Q is empty and non-convex.

Fig. 5.9. The quadrilateral @ = (x1,%2,%s—1,Zs) is not empty.

CASE 3: there is a vertex in (). Let y be the closest vertex in @ to the pocket lid {x, 21 }.
The pocket p; can be partitioned into two subpockets p} and p?, of ni and n? vertices,
respectively, and the triangle ¢t = (21,9, ;) (see Fig. 5.9). As n; is even, either ni or n?,
say ni, is odd. By Corollary 5.4, p? can be covered by |(n? — 1)/2] cooperative guards,
with one guard either at x; or at y. If there is a guard at y, then by Corollary 5.4, the
remainder of p} can be covered by [(n} —1)/2] — 1 cooperative guards, as n} is odd.
The same construction as in the proof of Lemma 5.12 (we consider the triangle ¢ as a
pocket) leads to a coverage of ¢ (thus the vertex y as well) and the convex hull of P by
two cooperative guards. As before, this leads to a coverage of F/(P) by

1 2 k k
ny —1 ni—1 n; — 1 n; — 1
_ <
24 [ M2 -1 | J@l S ML

cooperative guards, as ni+n? = n; + 1. If there is a guard at 1, then we have to consider

two subcases.

SUBCASE 3.a: the lines [; and [, pointing outward from the convex hull and collinear
respectively to the edges {z1,z2} and {z,_1,2,}, intersect at a point z* € F(P) (see
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Fig. 5.10(a)). Note that z* must see y. Consider the polygon pj that results from replacing
the polyline (zs_1, x5, 1, 22) in py by (zs_1, 2*, z2), pj has nj — 1 vertices. Next, consider
a triangulation of p; with {y,2*} as one of its internal diagonals. Then by Theorem 2.7,
pf can be covered by |(ny — 1 — 2)/2] cooperative guards, with one guard either at y or
at z*. If there is a guard at y, again we can proceed in a way similar to that in the proof
of Lemma 5.12 (we consider the triangle (z1,y,zs) as a pocket). Otherwise, if there is
a guard at x*, then it is clear that two additional cooperative guards will cover the whole
of the convex hull of P (and 2*). By Corollary 5.4, we will get a cooperative coverage of
F(P) of cardinality 1+ Y% | |(n; — 1)/2].

(a) (b)

Fig. 5.10. (a) Subcase 3.a. (b) Subcase 3.b.

SUBCASE 3.b: the relevant lines [y and [;, pointing outward from the convex hull, do not
cross. Move z7 along the line collinear to {x1, z2} far enough to see all possible edges, thus
transforming the subpocket p?, still with n? vertices (see Fig. 5.10(b)). By Corollary 5.4,
the new p? can be covered by |(n? — 1)/2] cooperative guards, with one guard either at
y or at the new x;. If there is a guard at y, then we can proceed as above. So assume
there is a guard at x1, and consider the polygon pl U (z1,y,xs) of n} + 1 vertices. By
Theorem 2.7, it can be covered by |(n} + 1 —2)/2| cooperative guards, with one guard
either at x4 or at y, and this guard is seen by the guard at the new 1, of course. Thus
the whole p U (z1,y, zs) Up? can be covered by at most |(n; — 1)/2] cooperative guards.
As the guard at x; is located far enough, with one additional guard we will cover the
pocket p; and all of the convex hull of P by 1+ |(n1 — 1)/2] cooperative guards, provided
that the first edge which is not visible from the new x; is not parallel to {z1,z2} (cf. the
proof of Lemma 5.12, Case 1). And again, F/(P) can be covered by 1+ Zle [(n; —1)/2]
cooperative guards.

Otherwise, if we consider the proof of Lemma 5.12, Case 2, then all we need is the pos-
sibility of moving the guard at x; a small distance ¢ > 0 from z; along the edge {y, z1}
without destroying the cooperation of the guards in the new p? (and hence without de-
stroying the cooperation of the guards in p} U (z1,y,75) U p?). This can be done by
the following argument.
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Let Gr be the triangulation graph of a non-degenerate triangulation of an n-vertex
polygon (there are no triangles with three points on a line), and let .S be a guard coverage
of this polygon, with |S| < |(n — 2)/2], constructed from a cooperative domination of
Gt (Theorem 2.7). Let = be a convex vertex with a guard at it. The vertex = with all
triangles ¢; incident to it forms a fan. Let {z;, 2} and {x, 2.} be the edges of P incident
to x, and let g1, ..., gr be the guards incident to x in the fan f. As S was obtained from
a cooperative domination of G, it is clear that we have to show that the guard at « can
be moved without destroying connectivity with these guards only.

For each g;, 2 =1,...,k, in a sequence:

e rotate P in such a way that the line s; collinear with the line segment xg; is parallel
to the y-axis, and z is below g;;

e consider the vertex r € f, closest to the right of the line s;, and the vertex [ € f,
closest to the left of s; (if g; = #; or g; = x,, then assume r = z;, and [ = z,.);

e let a(g;) be the strip, interior to P, delimited by the lines enclosing the vertices [
and r, respectively, and parallel to the line s; (see Fig. 5.11).

Fig. 5.11. The idea of the construction of the strip «(g;).

It is obvious that ﬂle a(gi) # {z}, and all g; are visible from any point in ﬂle a(gi)-
Furthermore, ﬂle a(g;) N {z,z} # {z}, and ﬂle a(g;)N{z,z,} # {x}. Thus the guard
g at © can be moved a small distance € > 0 either along the edge {x;,z} or {z,z,}, and
the guard set S will still remain cooperative.

Thus F(P) can be covered by 1+ Zle |(n; — 1)/2] cooperative guards. =

5.4. Open problems
We have considered the situation when a guard g; sees another guard gs if they can be

connected with a line segment outside the polygon. Nevertheless, we can restrict guards
(and only guards) to see each other only when they can be connected with a line segment
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within the polygon (guards are located at the vertices, of course). This problem seems to
be rather different from the one we have considered, and more realistic.

CONJECTURE 5.14. If guards can see each other only within a polygon P, then [n/2]
cooperative guards always suffice to cover F(P).

Weakly cooperative guards. Recall that a set S of guards is called weakly cooperative if the
visibility graph VG(.S) has no isolated vertices. A convex n-gon requires [2n/3] watched
vertex guards. From [91] we have

COROLLARY 5.15 ([94]). [2n/3] weakly cooperative vertex guards always suffice to cover
an n-vertexr fortress.

But, as in the case of cooperative guards, it would be desirable to find a more accurate
measure of the number of watched guards other than a function of n, the number of
vertices.

Fig. 5.12. If guards can see each other only within the polygon, then a non-convex fortress may
require as many as [n/2] cooperative guards; here n = 7 and the fortress requires 4 cooperative
guards.

The prison yard problem. Finally, it would be interesting to investigate the concept of
cooperative guards for the prison yard problem, i.e., one wants to determine the num-
ber of cooperative guards always sufficient to cover both the interior and the exterior
of a polygon. The original problem was solved in 1992 by Fiiredi and Kleitman [30],
who proved that [n/2] vertex guards (respectively |n/2]) are always sufficient and oc-
casionally necessary to simultaneously guard the interior and the exterior of a convex
(respectively non-convex) polygon with n vertices.



6. COOPERATIVE GUARDS IN GRIDS

In this chapter, we study the cooperative guards problem in grids, a special restricted
class of polygons introduced by Ntafos [71]. A grid P is a connected union of vertical and
horizontal line segments, an example of which is shown in Fig. 6.1. A grid can be thought

Fig. 6.1. A grid of 9 segments.

of as an orthogonal polygon with holes, consisting of very thin corridors. A point x € P
can see a point y € P if the line segment zy C P. Ntafos established that a minimum
cover for a (two-dimensional) grid of n segments has n — m guards, where m is the size
of the maximum matching in the intersection graph of the grid, and it can be found in
O(n?%) time [71]. However, in the case of three-dimensional grids, the problem of finding
the minimum guard set is NP-hard [71].

Fig. 6.2. A comb-grid of n segments that requires n — 1 cooperative guards (dots).

If we require a guard set to be cooperative, then more than n — m guards may be
required to cover a 2D-grid. Fig. 6.2 shows an example of an n-segment grid that requires
n—1 cooperative guards, and we will prove this bound to be tight. But first, let us discuss
an elementary property of a minimum cooperative guard set in a grid.

[100]
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LEMMA 6.1 ([69]). In any minimum cooperative guard set of an n-segment grid with
n > 2, guards are located only at the intersections of the line segments.

Proof. Let S be a minimum cooperative guard set for a grid P, and let VG(S) be the vis-
ibility graph of S. Suppose, contrary to our claim, that there is a guard g located at a
segment [, but not at an intersection of any segments. As the visibility graph VG(S) is
connected, there is at least one guard at some intersection on I. Moreover, all guards
visible to g are visible to each other as well. Consequently, the guard g is redundant, and
this contradicts the minimality of S. =

Now, let G = (P, E) be the intersection graph of a grid: each vertex of G corresponds to
a line segment and two vertices are connected by an edge if their corresponding segments
intersect. Fig. 6.3(a) shows the intersection graph for the grid in Fig. 6.1. By Lemma 6.1,
any minimum cooperative guard set S is equivalent to a subset of F, denoted by FEg,
and let G[Eg] denote the induced subgraph of G formed by the edges from Eg (and
their endpoints). By the definition of the minimum cooperative guard set S, it is easy
to check that any such subset Es has the property that (i) any vertex (line segment) of
the intersection graph G must be an endpoint of some edge e € Eg, and (ii) the graph
G[Es] must be connected and acyclic. This implies that G[Eg] is a spanning tree of the
intersection graph G. Thus we have

(a) (b)
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Fig. 6.3. (a) The intersection graph of the grid in Fig. 6.1, its spanning tree. (b) The cooperative
guard set corresponding to the edges of the spanning tree.

THEOREM 6.2 ([69]). For any 2D-grid of n > 2 segments, n — 1 cooperative guards
are necessary and always sufficient, and there is a one-to-one correspondence between a
minimum cooperative guard set and a spanning tree of the intersection graph of the grid.

The above theorem leads to a polynomial algorithm for finding a minimum cooperative
cover of an n-segment grid P:

1. Construct the intersection graph G of P;
2. Find a spanning tree T of G
3. Place guards at crossings of P that correspond to edges of T.
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By the definition, P can be partitioned into two sets of segments, say red segments
(horizontal segments) and blue segments (vertical segments), such that no two segments
from the same set intersect each other. This so-called red-blue line intersection problem
can be solved in O(n + k) time [27], as the grid is connected, where & is the number of
intersections. Thus the intersection graph G can be constructed in O(n + k) time. Next,
a spanning tree T of G can be found in O(n + k) time by the breadth-first search (BFS)
algorithm. Finally, placing guards at all intersections that correspond to edges of T' will
result in O(n + k) overall time complexity.

THEOREM 6.3 ([69]). The problem of determining the minimum number of cooperative
guards sufficient to guard an n-segment grid, n > 2, can be solved in O(n + k) time and
space, where k is the number of crossings in the grid.

Finally, it follows from Theorem 6.2 that we can always construct a minimum coop-
erative guard cover of a grid with a guard placed at any selected crossing of the grid.

6.1. Cooperative guards in 3D-grids

Similarly to the two-dimensional case, a three-dimensional grid is a connected union of
vertical and horizontal line segments in the three-dimensional space, but we additionally
require that any two segments are either parallel or orthogonal; an example of a 3D-grid
is shown in Fig. 6.4(a). When considering cooperative guards in 3D-grids, by similar
arguments to the proof of Lemma 6.1, it is easy to see that guards can be restricted to
be located at the vertices of a 3D-grid, which again motivates introducing intersection

graphs.

(b) 7

Fig. 6.4. (a) A three-dimensional grid P, and one of its cooperative guard sets (dots). (b) The
intersection hypergraph G(P, H).

Consider an exemplary three-dimensional grid P and the corresponding intersection
graph G = (P, E), shown in Fig. 6.4. As there are four intersections of three line seg-
ments, the intersection graph G has four hyperedges: {1, 2,3}, {1, 5,8}, {2,4,6}, {4, 5,9},
respectively. Next, it is easy to check that there are four different minimum cooperative
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guard sets, each of five guards; one of them,

S={{1,2,3},{1,5,8},{2,4,6},{4,5,9},{7,9}},

is shown in our exemplary grid ({4,j} and {l,k,t} correspond to the intersections of
segments 4, j and segments [, k, t, respectively). Now, if we consider a subset EFg C E of
edges that correspond to all crossings in S, we get a minimum spanning subhypergraph
of the intersection graph G.

By definition, the intersection graph G of a 3D-grid is a 3-restricted hypergraph: the
vertices correspond to segments and the edges correspond to intersections, but it may
now happen that three line segments have a point in common, thus such an intersection
corresponds to a hyperedge of rank 3 (in other words, the size of an edge, which is a subset
of vertices, is at most 3). The analysis similar to that in the case of two-dimensional grids
shows that any minimum cooperative guard set in P corresponds to a minimum span-
ning subhypergraph of the intersection graph G. Note that in a hypergraph, a minimum
spanning subgraph need not be acyclic any longer.

LEMMA 6.4 ([69]). There is a one-to-one correspondence between the minimum coopera-
tive guards problem in a three-dimensional grid and the minimum spanning subhypergraph
problem in the intersection hypergraph of the grid.

Thus, to find a minimum cooperative guards set, all we need is to find a minimum
spanning subhypergraph of the intersection hypergraph.

LEMMA 6.5 ([69]). Let G be the intersection hypergraph of an n-segment grid. Then the
minimum spanning subhypergraph problem for the hypergraph G can be solved in O(kn*?®)
time and O(kn) space, where k is the number of edges in G.

The proof of the above lemma is based upon the reduction to the minimum spanning
set problem in 2-polymatroids [7], and it will be presented in Subsection 6.1.1, where
polymatroids and the minimum spanning set problem are introduced.

As the intersection hypergraph can be constructed in O(n?) time by using the greedy
technique (by considering all pairs of segments), we get the following theorem.

THEOREM 6.6 ([69]). The minimum cooperative guards problem in a three-dimensional
grid can be solved in O(kn?®) time and O(kn) space, where n is the number of segments
and k is the number of crossings.

6.1.1. Polymatroids and hypergraphs—proof of Lemma 6.5. First, we show that
the minimum spanning subhypergraph problem in 3-restricted hypergraphs can be easily
reduced to the minimum spanning subset problem in 2-polymatroids.

6.1.1.1. Reduction. A polymatroid (H,d) consists of a finite set H and a dimension
function d. The dimension function maps each subset of H to an integer. It is non-
negative, increasing, and submodular, i.e.,

VX, Y CH:d(XNY)+dXUY)<dX)+dY).

If d({h}) < k for all h € H, then H is called a k-polymatroid. A set X C H is called a
spanning set if d(X) = d(H); the minimum cardinality of a spanning set of the polyma-
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troid (H,d) is denoted by p(H,d). A set X C H is called a matching if d(X) = k| X]|; the
size of the maximum matching of the polymatroid (H,d) is denoted by v(H, d).
Consider now a 3-restricted hypergraph HG = ([n], H) with vertex set [n] = {1,...,n}
and with edge set H. Let G = ([n], E') be the complete graph on the same vertex set, with
E = ([Z]); recall that for a set .S, (‘g) denotes the set of all 2-element subsets of S. Define
now the 1-polymatroid (E,r), where for each E' C E, r(E’) is the number of edges in a
spanning tree for E' ((E,r) is called the graphic matroid of G). Then, for a hyperedge
h € H, regarded as the edge subset (g) of E, we have r((g)) = |h| — 1, the number of
edges in a spanning tree for h. Therefore we obtain a 2-polymatroid (H,d) if we put

d(X) ::7«( U (;)) for X C H.

heX

By the definition of d, if ([n], H) is connected, then d(H) = n—1, and it is clear that there
is a one-to-one correspondence between minimum spanning sets of the 2-polymatroid

(H,d) and those of HG([n], H).

Algorithm. Let us recall the following fact, which generalizes Gallai’s identity [31]: For
any 2-polymatroid (H,d), we have v(H,d) + p(H,d) = d(H) [60]. Consequently, we get
the following lemma.

LEMMA 6.7 ([7]). A minimum spanning subhypergraph of a 3-restricted connected hyper-
graph HG = ([n], H) has n —v(H,d) — 1 edges.

Of course, we would like to know not only the number of edges, but also to determine
the minimum spanning subhypergraph. This can be done by the following algorithm:

1. S:= M, where M is a maximum matching in the input hypergraph HG = ([n], H);
2. While d(S) <n —1do

consider all edges ¢ M in turn:

if the number of connected components in HG[S U {e}]

is greater than in HG[S], then S := SU {e};
3 Return S.

All we need is to show that the output of this algorithm is a set of edges of a minimum
spanning subhypergraph of HG. It is clear that the spanning property follows from the
“while” condition d(S) < n — 1 (recall that HG is connected, and thus d(H) =n — 1).
The minimality is established with the following observations. First, note that the initial
induced subhypergraph HG[S] (S is a maximum matching) has exactly n — 2v(H,d)
connected components by the definition of the matching in a polymatroid. Secondly, any
edge added in the “while” step decreases the number of components exactly by one, thus
exactly n — 2v(H,d) — 1 edges are added to the initial set S. Hence the output is a
spanning set and it has v(H,d) +n —2v(H,d) — 1 =n — v(H,d) — 1 elements.

COROLLARY 6.8 ([69]). When the above algorithm halts, the output is the set of edges of
a minimum spanning subhypergraph of the input 3-restricted (connected) hypergraph.

Again consider an exemplary three-dimensional n-segment grid P and the correspond-
ing intersection graph HG = (P, H), shown in Fig. 6.4. It is easy to see that HG has
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four different maximal matchings; suppose that in the first step of the algorithm we have
M ={{1,2,3},{1,5,8},{2,4,6}}. Then in the “while” step, either the edges {7, 8}, {8, 9},
or {7,8},{4,5,9}, or {8,9}, {4, 5,9} are added to the initial set S, thus yielding three dif-
ferent spanning subgraphs, and consequently, three different cooperative guard sets; the
third one, corresponding to the spanning set

S=1{{1,2,3},{1,5,8},{2,4,6},{4,5,9}, {8,9}}

is shown in Fig. 6.4(a). Note that if we got the set {{1,2,3},{1,5,8},{2,4,6},{7,8},
{8,9}}, then the resulting spanning subhypergraph would be acyclic. Thus in general,
there is no guarantee that the algorithm returns an acyclic spanning subhypergraph of
the intersection graph, even if such a subgraph exists.

The algorithm spends most of the time on finding the maximum matching M in a
2-polymatroid (H,d). As far as we know, the best known algorithm solves this problem
in O(|H|d(H)*®) time and O(|H|d(H)) space [32], since by the following lemma, our
2-polymatroid (H,d) is linear.

LEMMA 6.9 ([69]). Every 2-polymatroid (H,d) is linear.

Proof. Recall that a polymatroid (H, d) is linear if there is a vector space V' (over a field
F) and a mapping ¢ of H into V that preserves the rank. We will construct a mapping
¢ that maps (H,d) into V = R".

Let e; = (0,...,0,1,0,...,0) denote the ith unit vector from V = R"™. The mapping
¢ is defined as follows. For each h = {i,j} € H, i < j, let ¢(h) := {e; —e;}; and, for each
h={i,j,k} € H,i<j <k, let ¢(h) :={e; — e;,er —e;}. Next, for each X C H we put
P(X) = Upex o(h).

CrLAamM. Let X C H. Then the subgraph T' of G = ([n], E) induced by the set | J, x (g)
18 a forest if and only if ¢(X) is linearly independent.

(=) The proof is by induction on m, the number of edges in the forest 7. The case
m = 1 is trivial. So assume that the claim holds for all forests with 1 < m’ < m edges.
As T is a forest with at least two edges, it has a leaf v. We assume that v = 1 and
h = {1,2} is an edge of T. Then v; = ¢(h) = ey — e; is an element of ¢(X). Let
Vo = €j, —€iyy ..., Um = €, —e; beall vectors of ¢(X)\ {v1} (notice that [¢(X)| = m).
Consider now the equation

a1v1 + oV + - - + AUy, = 0,

which, as v; = ey —e1,v2 = €5, —€iy,...,Um = €, — €;,., becomes
(6.1) ar(ea —e1) +as(ej, —ei,) + -+ amle;, —ei,.) =0.
As v is a leaf, we have e;, # e; (and ej, # €1, as j; > i;) forallt = 2,...,m. Consequently,

this forces @3 = 01in (6.1). As X \ {h} is a forest with m — 1 edges, and
PXN\A{R}) = {v2,.. om}

by the definition, the vectors vs,...,v,, are linearly independent by the induction hy-
pothesis. Therefore ayvy + asve + -+ + vy, =0 if and only if ; =0, i =1,...,m.
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(<) On the contrary, suppose that |J, .y (g) has a cycle C. We can assume that
C=(1,23,...,7), 3 <j <n. Consider the vector subset

{’Ul — €2 — €1,V =€3 —€2,...,Unp—-1 :ej—ej_l,vmzej—el} gqb(X)

As (ea—eq)+(e3—e2)+---+(ej—e;_1) = ej —eq, the vectors vy, ..., v, are not linearly
independent, which completes the proof of the claim.

Consider now X C H, and assume that d(X) = ¢, the number of edges in a spanning
forest of the subgraph induced by |J, .y (%) in the complete graph G = ([n], E). We have
to show that the rank of ¢(X) is equal to ¢; recall that for a subset S of a vector space, the
rank of S, denoted by rank(.S), is the maximum number of linearly independent vectors
in S.

If the subgraph ([n], Ex) induced by J,cx (g) is a forest then rank(¢(X)) = ¢ by
the above claim. Otherwise, remove the vector v = e; — e; from ¢(X), where {7,j} is on
a cycle in ([n], Ex). By similar arguments to the proof of the above claim, v is a linear
combination of all other cycle edges, and thus its removal does not change the rank, i.e.,
rank(¢(X)) = rank(¢p(X) \ {v}). We iterate this procedure until there are no more cycles.
Since d(X) = ¢, the graph ([n], Ex) has n — ¢ connected components, and thus exactly
n — (n — ¢) = ¢ vectors are left in ¢(X). As these vectors correspond to the edges of a
forest, they are linearly independent by the above claim, and thus rank(¢(X)) =c. =

COROLLARY 6.10 ([69]). Let HG = (P, H) be the intersection hypergraph of an n-segment
grid P. A minimum spanning subhypergraph of HG can be found in O(kn*®) time and
O(kn) space, where k is the number of crossings in the grid.

Consequently, we get the following theorem.

THEOREM 6.11 ([69]). A minimum cover of an n-segment 3D-grid has n — v — 1 coopera-
tive guards, where v is the size of the mazimum matching in the 2-polymatroid constructed
from the intersection hypergraph of the grid.

We emphasize that Theorem 6.11 generalizes the result of Theorem 6.2: if there are
no hyperedges, then v = 0.

6.2. Weakly cooperative guards

Recall that a set S of guards is called weakly cooperative if the visibility graph VG(S)
has no isolated vertices. An m-segment comb-grid requires as many as n — 1 weakly
cooperative guards (see Fig. 6.2), but in general, this is far too many. In this section, we
show that a minimum coverage for a grid of n segments has n — p3 weakly cooperative
guards, where p3 is the size of the maximum Ps;-matching in the intersection graph of the
grid. Consequently, it makes the minimum weakly cooperative guards problem in grids
NP-hard, as we prove that the maximum Ps-matching problem in subcubic bipartite
planar graphs is NP-hard.
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6.2.1. P;-matching in subcubic bipartite planar graphs. As the minimum weakly
cooperative guards problem in grids is solved using the matching techniques, in this
section we will look more closely at the Ps-matching problem in bipartite planar graphs.

Generalized matching problems have been studied in a wide variety of contexts [5,
11, 38, 46, 52, 89]. One of the generalizations is to find the maximum number of vertex-
disjoint copies of some fixed graph H in a given graph G (mazimum H-matching). In [38]
Kirkpatrick and Hell showed that any perfect matching problem is NP-complete for any
connected H with at least three vertices (the same holds for the maximum H-matching
problem). In [11] the authors showed that the maximum H-matching problem remains
NP-complete even if we restrict to planar graphs.

The perfect H-matching problem is also known as the {H }-factor problem. A nat-
ural generalization is the H-factor problem, where H = {H;,...,Hp} is a family of
connected graphs. In the H-factor problem, for a given graph G we ask whether there
exists a spanning subgraph F' of G such that every component of F' is isomorphic to
some H;, i = 1,...,h. A special case is if H consists only of all paths of order at least
3 (so called {P,>3}-factor). Observe that a graph has a {P,>3}-factor if and only if it
has a {Ps, Py, Ps}-factor, and the criterion for a graph to have such a factor was ob-
tained by Kaneko [46] (for bipartite graphs, such a criterion was given by Wang [89]).
Moreover, Kaneko proved that every r-regular graph with » > 3 has a {P,>3}-factor.
For 2-connected cubic graphs, Kawarabayashi et al. [52] showed that any such graph of
at least five vertices has a {Ps, P, }-factor. However, the following conjecture, posed by
Akiyama and Kano [5], is still open: Every 3-connected cubic graph of order divisible
by three has a {Ps}-factor. Finally, recall that Kaneko et al. [48] established that every
claw-free graph on n vertices has the maximum Ps-matching of cardinality |n/3|. For
more details concerning factor problems we refer the reader to [5, 47].

In this section, we show that the maximum P;-matching problem in subcubic bipar-
tite planar graphs is NP-hard; recall that a graph G is subcubic if its maximum degree
A(G) < 3. The proof proceeds by reduction from the three-dimensional matching prob-
lem (3DM for short) [33], which can be formulated in the way described below. Dyer and
Frieze [24] proved that the 3DM problem remains NP-complete even for bipartite planar
graphs. Hence from [24, 33], the following restricted 3DM problem is NP-complete.

Instance: A subcubic bipartite planar graph G = (V U M, FE), where V = X UY U Z,
|X| = |Y| = |Z] = q. For every vertex m € M we have deg(m) = 3 and m is
adjacent to exactly one vertex from each of the sets X, Y and Z.

Question: Is there a subset M’ C M of cardinality g covering all vertices in V'?

THEOREM 6.12 ([69]). The 3DM problem in subcubic bipartite planar graphs is NP-
complete.

Now, using the above result, we will show that the perfect Ps-matching problem in
subcubic bipartite planar graphs is NP-complete. Let G = (V U M, E) be a subcubic
bipartite planar graph, where V = X UY U Z, |X| = |Y| = |Z| = q, every vertex m € M
has degree 3, and is adjacent to exactly one vertex from each of the sets X,Y and Z.
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Let G* = (V*, E*) be the graph obtained from G by replacing each vertex v’ € M,
i =1,...,|M|, (and all edges incident to it) with the graph G; = (V;, E;) of Fig. 6.5.
Formally:

o Vi={pi}j=1,..0U{z},yt, 2} 1085

e E*=FE\ E~UET, where

B = J{' v o {2 '),
B = B0 ot ah ' b (2 41,

and 2%, y" and z* are neighbours of the vertex v’ in G.

Clearly, G* has |V| + 18| M| vertices and |E| + 17|M| edges, and A(G*) = 3.

(a) (b) 2

Fig. 6.5. The vertex v’ of (a) is replaced the graph G; of (b).

LEMMA 6.13 ([62]). There exists a solution of the 3DM problem in the graph G if and
only if there exists a perfect Ps-matching (of cardinality q + 6|M|) in the graph G*.

Proof. (=) Let M’ be a solution of the 3DM problem in G with |[M'| = ¢. A perfect
P;-matching in G* consists of the following 3-vertex paths:

o if the vertex v’ corresponding to the graph G; is in M’, then in G; with attached
vertices x%,y’ and z° (see Fig. 6.5) we choose the following 3-vertex paths: z}{x}z?,

Y1ysy', 21232", T5PLDY, Y3PsDy, 25P3P1, PEDePY;
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e otherwise, if the vertex v/ corresponding to the graph G; is not in M’, then in G,

with attached vertices 27,47 and 27 we choose the following 3-vertex paths: 2] z3x3,
Jodod 53,9,9 oJeded Jodad o J.0.]
Y1Y2Y3, #1%2%23, P1P2P3, PiP5Ps> P7P8Py-

(«<=) Let P be a maximum Ps-matching of cardinality ¢ + 6|M| in G* (P is perfect,
of course). Consider any subgraph G, together with vertices z?, y* and z’. Then either
there exist paths z¢242!, yiysy' and 2i2i2% in P or none of them, which is forced by the
following claims.

CrAM 1. In any perfect Ps-matching, ! cannot be the center of a 3-vertex path covering
x?, otherwise it is not possible to cover the vertex z%. The same observation can be drawn
for the vertices y* and 2.

CLAIM 2. If 2% is in a 3-vertex path in a perfect Ps-matching covering G*, then ! is
in the same path, otherwise it is not possible to cover z%. The same observation can be
drawn for y4 and z3.

CLAIM 3. It is not possible that 2% is covered by a 3-vertex path p and z% ¢ p, while
either 4 or 2% (by Claims 1 and 2) is covered by yiysy® or 2i2%2%, respectively. Otherwise,
without loss of generality, assume that only y' is covered by yiyiy® (by Claim 1, 2¢ is
covered from “outside” of G;). Then there does not exist a perfect Ps-matching that covers
Vi\ {yi,y%}, as |Vi \ {¢}, 95} = 16. The same conclusion can be drawn when only 2¢ is
covered by 2iz52% or for the case when both y* and 2% are covered by yiysy’ and zi2iz¢,
respectively. In general, similar observations apply to y’ and z°.

Therefore our perfect Ps-matching P of G* either (1) consists of the paths z%z%x?,
yiyty® and 2232 or (2) none of them is in P. Hence the set

M’ = {v' € M : G; is covered in the manner (1)}
is a solution to the 3DM problem in G. =

A non-deterministic polynomial algorithm for the perfect Ps-matching problem just
guesses triples of vertices and checks whether the subgraphs induced by these triples have
no isolated vertices. Consequently, by the above lemma and Theorem 6.12, we get the
following theorem.

THEOREM 6.14 ([62]). The perfect Ps-matching problem in subcubic bipartite planar
graphs is NP-complete.

As a consequence, we get the following theorem.

THEOREM 6.15 ([62]). The mazimum Ps-matching problem in subcubic bipartite planar
graphs is NP-hard.

6.2.2. Weakly cooperative guards and P;-matching. Following the proof of Lemma
6.1, it is easy to see that weakly cooperative guards can be restricted to be located at the
crossings of a grid, and therefore the placement of a guard at the crossing of two segments
s1 and sy in a grid corresponds to the edge {s1, s2} in the intersection graph G. Hence
there is a one-to-one correspondence between a minimum weakly cooperative guard set
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in the grid and a subset Eg of edges in G. The weak cooperation of a guard set implies
that the corresponding subset Eg of edges satisfies the following conditions:

(1) Es covers all vertices in V;
(2) in the induced subgraph G[Es] there are no connected components isomorphic to
a single edge.

Consequently, finding a minimum weakly cooperative guard set for a grid is equivalent
to finding a minimum edge subset Eg of G satisfying (1) and (2). Note that such a subset
always exists, as conditions (1) and (2) hold for any spanning tree of G.

As we are looking for a minimum subset Eg of edges satisfying (1) and (2), it is natural
to ask about the structure of a connected component in the graph G[Eg]. A complete
characterization is given by the following lemma. Recall that diam(G) is the maximum of
the shortest path distance over all vertex pairs in GG, and the center of G is a vertex with
the minimum eccentricity, where the eccentricity of a vertex v is the maximum distance
to other vertices.

LEMMA 6.16 ([62]). Let G = (V, E) be a graph and let Ey;, C E be a minimum subset
of edges satisfying (1)—(2). Let Gs = (Vs, Eg) be any connected component of the graph
G[Emin].- Then Gg has the following properties:

(a) Gg is acyclic;
(b) 2 < diam(Gg) < 4;
(c) there is at most one vertezx of degree at least 3 in Gg, and it is the center of Gg.

Proof. (a) Conversely, suppose that in Gg there is a cycle C = e ...ey, where e; =

{vi,v;41} for i=1,...,k — 1, and ey = {vg,v1}. Consider the edge e, and set E*, =
Emin \ {er}. We will show that E* . satisfies (1)—(2), thus contradicting the minimality
of Emin-

As all vertices still remain covered and the number of connected components does not
change, all we need is to show that the property (2) remains valid. Clearly, (2) can be
disturbed only in Gg, and moreover, only for an edge e in E(vy) U E(vy), where E(v)
denotes the set of edges incident to the vertex v. We give the reasoning only for e € E(v1);
the other case can be solved in a similar way.

If e = ey, then |e; Neg| = 1. Otherwise, |e Ney| = 1. Hence EY,  satisfies both (1)
and (2), and this contradicts the minimality of Fy,i,. Therefore Gg is acyclic.

(b) The inequality 2 < diam(Gg) follows from (2), so we only have to show that
diam(Gg) < 4. Suppose, on the contrary, that diam(Gg) > 4. This implies that there
is a path Ps of order 6 in Gg. Let Ps = ejeseseqes, where e; = {v;,v;11}, 4 =1,...,5.
Then applying a similar reasoning to that in (a), we find that the edge e3 is needless,
thus contradicting the minimality of Epi,-

(c) We have to consider two cases. First, suppose that there are at least two vertices
of degree at least 3 in G g, say v; and ve. Then by removing any edge from a path joining
vy and vy in Gg, we get a smaller subset of edges satisfying (1)—(2).

If there is only one vertex v of degree at least 3 and v is not the center of G g, then
by (b) there is a path P5 = vgvgvivvy with vz and vy as leaves in Gg. Clearly, v; is the
center of Gg. But then the edge {vi,v} is redundant. m
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From now on, a graph Gg satisfying conditions (a)—(c) will be called a spider. Note
that in the case diam(Gg) = 2, a spider is just a star-graph, a tree with at most one
non-leaf.

6.2.3. Maximum P;-matching and spider cover. Let us define the mazimum spider
cover problem (MaxSC problem for short) in a graph G = (V, E) as the problem of finding
the maximum number of vertex-disjoint spiders that cover V' (that is, each vertex of G
is a vertex of a spider).

LEMMA 6.17 ([62]). A family of spiders Si,...,S, is a solution to the MaxSC prob-
lem in the intersection graph of a grid P if and only if Uz‘:l,...,p E(S;) is a solution to
the MinWCG problem in P.

Proof. Because the number of edges of the spiders Si,...,S, is |[V| — p, by Lemma 6.16
it is easy to observe that maximizing the number of spiders is equivalent to minimizing
the number of guards. =

LEMMA 6.18 ([62]). Let p be the number of spiders in a mazimum spider cover of a
graph G and let ps be the cardinality of a marimum Ps-matching in G. Then p = ps and
solutions of these problems are equivalent in the sense that one can be constructed from
the other.

Proof. (p < p3) This inequality is obvious because all spiders are vertex-disjoint and
each spider has a 3-vertex path as its subgraph.

(p > p3) Let V' be a set of vertices covered by a maximum Ps;-matching P in G =
(V,E), and let £ C E be the set of edges of all paths in P. By the definition, E’
satisfies (2).

CLAIM. There is no vertex in G whose shortest distance to a vertex of P is 3 or more,
otherwise P is not maximum.

Now, let V1,V5 C V be subsets of vertices whose distance from V' is 1 and 2, re-
spectively. Let us connect vertices from V7 to V' by adding edges to E’, one edge per
each vertex in V. The resulting graph G[E’] is acyclic, and the diameter of any of its
connected components is at most 4; the new set E’ still satisfies (2). Next, let us connect
vertices from V, to the new V' by adding edges to the new E’, one edge per each vertex
in V5. It is easy to see that:

e the number of connected components in the new G[E’] remains ps;

e G[FE’] remains acyclic;

e the diameter of any connected component of G[E’| is at most 4, otherwise the
matching P is not maximum;

e in any connected component of G[E’] there is at most one vertex of degree three
which is the center, otherwise P is not maximum,;

o [ still satisfies (2).

By all these observations, the final E’ is a set of spiders. Moreover, G[E'] covers all
vertices of G by the above claim. =
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The above reductions can be done in O(|V| + |E|) time by checking the neighbours
of all vertices from the maximum Ps;-matching,

Recall that a minimum (arbitrary) guard cover and a minimum cooperative guard
cover of an n-segment grid have n — m and n — 1 guards, respectively, where m is the
cardinality of the maximum matching in the intersection graph of the grid. We have an
analogous formula for weakly cooperative guards.

THEOREM 6.19 ([62]). A minimum weakly cooperative guard cover for a grid P of n
segments has n — p3 guards, where p3 is the cardinality of a maximum Ps-matching in
the intersection graph of P.

Proof. By Lemma 6.18, the number of edges in a maximum spider cover is equal to
2p3 + (n — 3p3) = n — p3. By Lemma 6.17, the assertion follows. m

We have just proven that the minimum weakly cooperative guards problem in a grid
is equivalent to the maximum Ps-matching problem in the intersection graph of the
grid. Recall that any intersection graph is bipartite, but not every bipartite graph is the
intersection graph of a grid. Nevertheless, any bipartite planar graph is the intersection
graph of a grid [21], and hence by Theorems 6.15 and 6.19, we get the following theorem.

THEOREM 6.20 ([62]). The minimum weakly cooperative guards problem is NP-hard even
for grids in which any segment crosses at most three other segments.

6.2.4. Final remarks. Masuyama and Ibaraki [63] showed that the maximum P;-
matching problem in trees can be solved in linear time, for any ¢ > 3. The idea of
their algorithm is to treat a tree T as a rooted tree (T, r) (with an arbitrary vertex r as
the root) and to pack i-vertex paths while traversing (7', r) in the bottom-up manner.
Hence by Theorem 6.19, we get the following corollary.

COROLLARY 6.21 ([62]). The minimum weakly cooperative guards problem for grids with
trees as intersection graphs can be solved in linear time.

Finally, recall that the guards problem was also stated for three-dimensional grids. In
the case of arbitrary guards, the minimum guard problem is NP-complete (reduction from
the vertex cover problem), whereas for cooperative guards, the minimum cooperative
guards problem can be solved in polynomial time, and a solution is obtained from a
spanning set of a 2-polymatroid constructed from the intersection graph of a grid. Of
course, we can ask about the minimum weakly cooperative guards problem in three-
dimensional grids, but the MinWCG problem in this class of grids is NP-complete by
Theorem 6.20.

6.3. Mobile guards

In 1981, Toussaint introduced the idea of mobile guards in art galleries [6]: a mobile guard
was constrained to patrol either along an edge of a polygon or along a straight line wholly
contained within the polygon. Note that in the mobile guards problem, we do not require
that every point of a polygon is permanently covered, but we only need every point to
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be seen by at least one guard during his walk. Toussaint conjectured that except for a
small number of polygons, |n/4| edge guards are sufficient to guard a polygon, and this
problem still remains open.

In this section, we explore the problem of mobile guards in grids. Specifically, each
mobile guard is allowed to move along a grid segment, and then a point z in a grid P is
said to be seen by a guard g if there is a point y € g such that the segment zy C P. Thus
x is covered by the guard g if either © € g or = belongs to a grid segment crossing g.
Now by the definition, a mobile guard corresponds to a vertex in the intersection graph
G = (V,E) of P, and P is covered by a set S of mobile guards if and only if S dominates
all vertices in G, that is, every vertex in V'\ S is adjacent to at least one vertex in S. Thus
there is a one-to-one correspondence between a minimum mobile guard set in P and a
minimum dominating set in G. Consequently, if the domination number of G, denoted
by v(G), is defined to be the cardinality of a minimum dominating set in G, then a
minimum mobile guard set of P has 7(G) mobile guards. This crucial fact was used by
Katz et al. [51], who proved that the problem of finding the minimum number of mobile
guards covering a grid is NP-hard.

THEOREM 6.22 ([51]). The problem of finding the minimum number of mobile guards
covering a grid is NP-hard.

Before proceeding further, note that a grid is a geometrical object, and not a com-
binatorial one. In the previous sections, we did not focus on this fact, as no confusion
could arise. However, we have to be careful when we say a ‘segment’ of a grid, as geo-
metrically speaking, there are infinitely many (sub)segments of a grid. Thus a segment
of a grid which is not strictly contained in any other segment of the grid will be called
a grid segment, and consequently, by the number n of segments of a grid we shall mean
the number of grid segments.

In order to discuss cooperative mobile guards in grids, we first have to modify the
definition of cooperation. More precisely, a set .S of mobile guards is cooperative if the sub-
graph G[S] in the intersection graph G of the grid induced by S is connected. Moreover,
a set S of mobile guards is weakly cooperative if G[S] has no isolated vertices. Then the
cooperative mobile guards problem also has its counterparts in the theory of domination.
Recall that a connected dominating set is a dominating set which induces a connected
subgraph of G. The minimum cardinality of a connected dominating set is called the
connected domination number, and denoted by 7.(G). A dominating set is a total dom-
inating set if the subgraph induced by the set has no isolated vertices. The minimum
cardinality of a total dominating set, denoted by 7:(G), is called the total domination
number. Following [51], it is easy to see that the following properties hold.

REMARK 6.23 ([54]). A minimum cooperative mobile guard set of an n-segment grid has
v:(G) guards, where G is the intersection graph of the grid.

REMARK 6.24 ([564]). A minimum weakly cooperative mobile guard set of an n-segment
grid has v(G) guards, where G is the intersection graph of the grid.

In the next section, we establish that the problem of determining 7. for bipartite
planar graphs is NP-hard [90], which makes the problem of determining the minimum
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number of cooperative mobile guards intractable. Next, in Section 6.3.2, we show that the
problem of determining ~; for subcubic bipartite planar graphs is NP-hard as well, thus
getting the NP-hardness of the problem of determining the minimum number of weakly
cooperative mobile guards (MinWCMG problem for short). Next, in Section 6.3.3, we
discuss a restricted class of grids, so-called polygon-bounded grids, for which we propose
a quadratic time algorithm for solving the MinWCMG problem. The algorithm is based
upon the property that horizontal and vertical grid segments may be covered indepen-
dently, whereas the constructed guard set satisfies the condition of weak cooperation.
We then explore horizontally and vertically unobstructed grids for which we propose an
O(nlogn) time algorithm for the MinWCMG problem. Finally, we investigate complete
rectangular grids with obstacles. We show that as long as both dimensions of a grid are
larger than k, k + 2 weakly cooperative mobile guards are always sufficient to cover the
grid with k obstacles.

6.3.1. Cooperative mobile guards. Let us define the connected dominating set prob-
lem (CDS problem for short) as follows:

Instance: A bipartite planar graph G = (V, F) and a positive integer d.
Question: Is there a connected dominating set in G of cardinality at most d?
In 1985, White et al. [90] proved the following theorem.
THEOREM 6.25 ([90]). The CDS problem in bipartite planar graphs is NP-complete.

Proof. Let G = (V, E) be a planar graph, with £/ 7 0. Let G be a fixed planar embedding
of G, and let F' be the set of faces of G. Define the graph H = (V', E’), where V' =
VUEU(F x{1,2}), and {z,y} € E’ if one of the following conditions holds:

(i) x € V,y € E, and z is incident with y.
(ii) z € V, y = (f,1) for some f € F, and z is incident with f.
(iil) 2 = (f,1) and y = (f,2) for some f € F.
In other words, H is obtained from G by inserting an edge in each face, joining one
end of each such edge to every vertex on the face, and then subdividing each original
edge of G. Thus H is a bipartite planar graph with the bipartition

(VU(F x{2}),EU(F x {1})).

Now, let R = EU (F x {2}). Then R > 2, and R is independent. It is straightforward
to verify that a set D is a connected domination set in H if and only if D\ R is a connected
dominating set in H. Moreover, if S C V U (F x {1}), then the following conditions are
equivalent:

(i) S=S5"U(F x {1}), where S’ is a vertex cover of G.
(ii) S is a connected dominating set in H.
(iii) S U R is a connected, i.e., S U R is the vertex set of a Steiner tree of R in H.

Since a non-deterministic polynomial algorithm for the CDS problem just guesses the
subset S of vertices and checks whether the subgraph induced by set S is connected, and
the vertex cover problem is NP-complete for planar graphs [41], the assertion follows. m
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Thus by the theorem above, Remark 6.23, and the fact that any bipartite planar
graph is the intersection graph of a grid [21], we get the following theorem.

THEOREM 6.26 ([54]). The problem of finding the minimum number of cooperative mobile
guards covering a grid is NP-hard.

6.3.2. Weakly cooperative mobile guards. In this section, we will prove that the
problem of finding the minimum number of weakly cooperative mobile guards covering
a grid is NP-hard. The idea of the proof is based upon Remark 6.24 and proceeds by
reduction from the 3DM problem to the problem of determining the total domination
number in subcubic bipartite planar graphs. Let us define the total dominating set problem
(TDS problem for short) as follows:

Instance: A bipartite planar graph G and an integer d.

Question: Is there a total dominating set in G of cardinality at most d?

(a) (b)

Fig. 6.6. The vertex v° is replaced with the graph Gi.

Now, using the result of Theorem 6.12, we will show that the TDS problem on subcubic
bipartite planar graphs is NP-complete (cf. the proof of Lemma 6.13). Let G = (VUM, E)
be a subcubic bipartite planar graph, where V=X UY U Z, |X| =|Y| = |Z| = g, every
vertex m € M has degree 3, m is adjacent to exactly one vertex from each of sets X,Y
and Z. Let G* = (V*, E*) be the graph obtained from G by replacing each vertex v’ € M,
i =1,...,|M|, (and all edges incident to it) with the graph G; = (V;, E;) of Fig. 6.6.
Formally:

b Vz:{P; ;5=13
o V' =vVUUM vy
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e E*=FE\ E~UET", where

|M‘ . . . . . .
E = U{{xz7vl}>{ylvvl}7 {Zzavz}}>
|M‘ . . . . . .
BT = J@®E u{{a',pia}h Ay i} {2 pE1 ),
i=1

and z°, 7" and z* are the neighbours of the vertex v’ in G.
Clearly, G* has |V| + 15| M| vertices and |E| + 14|M| edges, and A(G*) = 3.
LEMMA 6.27 ([54]). There ezists a solution of the 3DM problem in G if and only if there
exists a total domination set of cardinality g + 8|M| in G*.

Proof. (=) Let M’ be a solution to the 3DM problem in G, |M’| = g. A total dominating
set in G* consists of the following vertices:

o if the vertex v’ corresponding to the graph G; is in M’, then in G; with attached
vertices %, 9y’ and z° (see Fig. 6.6) we choose the following vertices:

{pévpévpil} U {pl’?vpévpz)} U {pli2ap§37pli4};

e otherwise, if v/ corresponding to G ; is not in M’, then in G; with attached vertices

27,97 and 2/ we choose the vertices

{péapg} U {pzﬁapZ?} U {p1107p111} U {p1137p114}

<) First, note that the following properties are consequences of the structure of

) g Prop q
graph G;.
(i) Every graph G; is dominated by at least eight vertices from V;.

(ii) If at most eight vertices from pi,...,pi; form a solution that dominates the
graph G;, then none of z;,y;, z; is dominated by this solution.

Now, suppose that D C V* dominates V*, i.e., G*[D] has no isolated vertices, and
|D| < 8| M|+ g. Denote by p the number of graphs G; such that more than eight vertices
dominate V;. By (i), we have |D| > 8(|M| — p) + 9p, hence p < q.

Hence, by (ii), there are p < ¢ vertices which dominate all vertices from X UY U Z.
Because every vertex from X needs at least one adjacent vertex from any graph G; that
is in the domination set D, and no two different vertices from X have a common vertex
from any G;, exactly p = ¢ vertices from the graphs G; dominate set X. Analogously,
the same set of ¢ vertices must dominate ¥ and Z. Thus we have constructed a solution

M’ = {v': DNV, dominates three vertices from X UY U Z}
to the 3DM problem in polynomial time. m

A non-deterministic polynomial algorithm for the TDS problem just guesses a subset
S of vertices and checks whether the subgraph induced by S has no isolated vertices.
Therefore, by the above lemma and Theorem 6.12, we have the following theorem.

THEOREM 6.28 ([54]). The TDS problem in subcubic bipartite planar graphs is NP-
complete.
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And, as a consequence, we get

THEOREM 6.29 ([54]). The problem of determining the total domination number ~y; in
subcubic bipartite planar graphs is NP-hard.

Thus by Remark 6.24 and the theorem above, we have

THEOREM 6.30 ([54]). The problem of finding the minimum number of weakly cooperative
mobile guards is NP-hard even for grids in which any segment crosses at most three other
segments.

6.3.3. Polynomially solvable cases of the MinWCMG problem. Recall that the
minimum connected dominating set problem and the minimum total dominating set
problem can be solved in linear time for trees [55, 81], more precisely:

THEOREM 6.31 ([81]). If T is a tree with n > 3 vertices, then v.(T) = n — I(T), where
I(T) denotes the number of leaves in T.

THEOREM 6.32 ([65]). If T is a tree, then v(T) can be determined in linear time.
Thus we have the following corollary.

COROLLARY 6.33 ([64]). The MinCMG problem and the MinWCMG problem for grids
with trees as intersection graphs can be solved in linear time.

In this section, we will show that there exist a wider class of grids for which the opti-
mum placement of weakly cooperative mobile guards (and consequently, the total domi-
nation number of the intersection graph) can also be computed in polynomial time. Before
we characterize some of these classes, let us establish an elementary property of a total
dominating set in a bipartite graph.

LEMMA 6.34 ([54]). Let G = (V, E) be a bipartite graph with vertezr partitions Vi and V5.
The problem of determining a minimum total dominating set TD(G) C V is equivalent
to finding a solution to the following two independent problems:

1. Find a minimum vertex set TD1(G) C Vi which dominates V5.
2. Find a minimum vertex set T D2(G) C Vo which dominates V1.

In particular, for any pair of minimum sets TD1(G) dominating Vo and TDy(G)
dominating V1, the set TD1(G)UTDy(G) is a minimum total dominating set for G. On
the other hand, if TD(G) is a minimum total dominating set for G, then TD(G)NV; is
a minimum set dominating Vo, and TD(G) NV, is a minimum set dominating V1.

Proof. Consider any vertex set 77 C V; whose set of neighbours is V5, and any vertex set
Ty C V5 whose set of neighbours is V. The set 77 U Ty is obviously a total dominating
set for G.

Now, take any total dominating set " C V. We will show that the set of neighbours
of TNVj is V5. Conversely, assume that there exists v € V5 with no neighbours in 7N V;.
It is easy to observe that v must belong to 7" and since the dominating set T' is total,
there must exist a vertex in 7' N V; which is a neighbour of v, a contradiction. Similarly,
it is possible to show that the set of neighbours of TN V5 is V3.
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We have shown a natural one-to-one correspondence between total dominating sets
in bipartite graphs and pairs of sets covering the graph’s partitions. The nature of this
relation is such that it preserves the minimality of the discussed sets, which completes
the proof. m

Clearly, the above lemma has an immediate application to the minimum weakly co-
operative guards problem in grids—recall that intersection graphs of grids are bipartite,
as shown in [21]. More precisely, to solve the MinWCMG problem, all we need is to
find a minimum set of vertical segments covering all horizontal segments and vice versa;
that is, horizontal and vertical grid segments may be covered independently, whereas the
constructed guard set satisfies the condition of weak cooperation, and we shall use this
observation to construct exact algorithms in polygon-bounded grids, simple grids and
vertically (horizontally) unobstructed grids.

COROLLARY 6.35 ([54]). To solve the MinWCMG problem in a grid P, all we need is
to find a minimum set of vertical segments covering all horizontal segments of P and a
minimum set of horizontal segments covering all vertical segments of P.

Polygon-bounded grids. A complete rectangular grid is a grid in which all endpoints of
the grid segments are located on the boundary of a rectangle formed by four extremal
grid segments (northernmost, westernmost, southernmost, easternmost). We assume that
the set of intersections of segments of a rectangular grid is a subset of the integer point
grid Z?; an example of a complete rectangular grid is shown in Fig. 6.7(a).

(a) (b)

P P

Fig. 6.7. (a) A complete rectangular grid. (b) The grid P = P; U P> is not polygon-bounded as
P> is not complete rectangular.

Fig. 6.8. The orthogonal projection i of g onto h with respect to the orthogonal hull.

The class of polygon-bounded grids is constructed as follows:

(1) A grid consisting of a single segment is polygon-bounded.

(2) A complete rectangular grid is polygon-bounded.

(3) Any other grid P is polygon-bounded if it has induced polygon-bounded subgrids
P; and P; such that P = P U P, and P, N P; is a segment or a point.
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Examples of polygon-bounded grids are shows in Figs. 6.9-6.10; the grid in Fig. 6.7(b)
is not polygon-bounded as P; is not a complete rectangular grid. Thus a polygon-bounded
grid can be thought of as a grid which consists of all segments cut off by an orthogonal
polygon without holes from grid paper. Note that the class of polygon-bounded grids is a
subclass of simple grids introduced by Gewali and Ntafos [34]; we shall discuss this later.

The algorithm. Let H and S be arbitrary sets of segments. We say that H covers S if
for any segment p € S there exists a segment h € H such that p N h # (). We will now
construct an efficient algorithm for solving the MinWCMG problem in polygon-bounded
grids. Let a polygon-bounded grid P consist of a set Sy of horizontal grid segments
and a set Sy of vertical grid segments. The algorithm finds a minimum set of guards
in P by determining the minimum set of horizontal grid segments of P covering Sy
and the minimum set of vertical grid segments of P covering Sy (Corollary 6.35). We
assume that the input is in the form of an n-vertex sequence describing the orthogonal
hull of a polygon-bounded grid—this is important when speaking about complexity, as
for example a complete rectangular grid can be described by four points, but can have
arbitrarily many (an exponential number of) grid segments.

(a)

(b)

Fig. 6.9. (a) The initial set S in Step 1 of the algorithm (bold lines). (b) The segments g and h
are replaced with the segment (point) 7.

(@) (b)

o

Fig. 6.10. (a) An illustration of the algorithm: a polygon-bounded grid P, the corresponding
set S (bold line) and the neighbourhood graph G(S) (edges drawn with a dotted line). (b) The
resulting minimum set of vertical grid segments (gray lines) covering all horizontal line segments
after Step 3.

THEOREM 6.36 ([54]). There exists a quadratic time algorithm solving the MinWCMG
problem in polygon-bounded grids.
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Proof. To simplify the considerations, we confine ourselves to the description of the al-
gorithm for determining a minimum cover of horizontal grid segments with vertical grid
segments (Corollary 6.35). Let P be a polygon-bounded grid. Segments g and h belong-
ing to a set of segments S are regarded as neighbouring in S (with respect to P) if they
are parallel, both intersect a grid segment s, and there is no segment in S that inter-
sects s between g and h. Now, let Sy be a set of horizontal segments, and suppose that
Sp contains a segment g with exactly one neighbouring segment h in Sy with respect
to P. Define the segment set Sy = (Sy \ {g,h}) U {i}, where i is the orthogonal pro-
jection of g onto h with respect to the orthogonal hull of P (see Fig. 6.8; note that i
is connected by the definition of a polygon-bounded grid). Then S} has the following

property.
REMARK 6.37. Every minimum subset M of Sy covering St also covers set Sg.

Indeed, since all segments of S}, are covered by M C Sy, some segment s of M
intersects ¢, and thus it intersects h as well. Next, it is easy to see that s also intersects g by
the definition of a polygon-bounded grid. Hence s covers both g and h. The minimality of
M as a cover of Sy is a direct conclusion of M being a cover of S%;, which is geometrically
contained in Sg.

The idea of the algorithm is to construct a set S of horizontal segments whose min-
imum cover M with grid segments from Sy can be easily determined. By Remark 6.37,
M will cover Sy as well.

1. Given a polygon-bounded grid P in the form of its orthogonal hull, create S as
shown in Fig. 6.9, by dissecting P into the minimum possible number of complete
rectangular grids whose pairwise intersections are horizontal segments and selecting
at most two segments from all such rectangular grids as elements of S.

2. Take any segment g € S with only one neighbour h € S, and replace S with S’
by applying the construction used when discussing Remark 6.37. Repeat Step 2 as
long as S contains a segment with only one neighbour in S.

3. Construct the solution M by selecting one intersecting grid segment of Sy for every
segment of S.

It remains to show that M is a minimum set of segments covering S. Consider the
graph G(S) whose vertex set is .S, in which two vertices are neighbours if and only if the
corresponding segments of S are neighbours (with respect to P). At the end of Step 1 the
graph G(95) is a tree (see Fig. 6.10(a)). Throughout Step 2, the modifications of S result
in the iterated removal of leaves and edges from G(5), thus G(S) remains a forest until
the end of the algorithm. The algorithm proceeds to Step 3 when G(.S) has no leaves left,
or equivalently, when G(9) is a graph with no edges. Thus during Step 3 no two segments
of S are neighbouring (with respect to P) (see Fig. 6.10(b)). It transpires that a separate
vertical guard is required to cover every segment in S.

The operating time of Step 1 of the algorithm is linear with respect to the number
of sides n of the orthogonal hull of the grid P, since the hull of P can always be decom-
posed into no more rectangles (intersecting only at horizontal segments) than there are
horizontal sides in P. The set S and the neighbouring relation between segments can be
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represented in the form of the previously defined forest G(S), whose size and order are
bounded by 2n. Step 2 consists of O(n) iterations, each of which requires at most O(n)
time. Step 3 can be done in linear time. m

Simple grids. A grid is called simple if all the endpoints of its segments lie on the outer
face of the planar subdivision formed by the grid and if there exists € > 0 such that
each of the grid segments can be extended by ¢ in both directions provided that its new
endpoints still lie on the outer face (see [34] for more details). For example, the grid
shown in Fig. 6.11(a) is simple, whereas the grid shown in Fig. 6.11(b) is not. Of course,
by the definition, a polygon-bounded grid is a simple grid.

(a) | (b)

B JIES
i

Fig. 6.11. (a) An example of a simple grid. (b) A grid which is not simple, as the segment s
cannot be extended without losing the property that all segment endpoints lie on the outer face.

It is easy to see that the algorithm discussed above can be directly applied to the
MinWCMG problem in simple grids with the only difference that now the initial set S
during Step 1 consists of all horizontal segments (respectively, vertical segments), and
the complexity of the algorithm is quadratic in the number of grid segments. Thus we
have the following theorem.

THEOREM 6.38 ([54]). There exists a quadratic time algorithm solving the MinWCMG
problem for simple grids.

Horizontally and vertically unobstructed grids. A grid is called vertically (horizontally)
unobstructed if it can be constructed by removing some set of horizontal (vertical) seg-
ments of the plane from a complete rectangular grid. An example of a vertically unob-
structed grid is shown in Fig. 6.12(a). The problem of determining a minimum set of
weakly cooperative mobile guards covering a vertically unobstructed grid or a horizon-
tally unobstructed grid can also be solved in polynomial time. In the following, we shall
give an O(nlogn) algorithm which solves the problem for vertically unobstructed grids
consisting of n segments.

(a) . (b) —

Fig. 6.12. (a) A vertically unobstructed grid. (b) Its set of horizontal segments.
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The algorithm. For a given grid P = Sy U Sy, the algorithm returns a set of grid seg-
ments of P representing the positions of guards in some solution of MinWCMG, expressed
as the union of the following sets:

1. A minimum set of horizontal segments 7' C Sy such that the following inclusion
of segments of the real line holds:

U M6 e e M =172, 170)] +1/2]
sESyH teT
(I(h) and r(h) denote the horizontal coordinates of the left-hand and right-hand
endpoints of the segment h, respectively).

2. A set of vertical segments W C Sy such that W covers all segments of Sy and
the set of segments obtained from W by replacing any vertical segment of W with
its nearest neighbour to the right, or by removing a segment from W, does not
cover Sg.

By Corollary 6.35, both stages of the algorithm may be analysed separately. Stage 1
is equivalent to the solution of the problem of covering a sequence of points representing
consecutive integers with a minimum subset of a given set of segments of the real line (see
Fig. 6.12(b)), and can be solved with a simple O(nlogn) plane sweep algorithm. Stage 2
describes an O(nlogn) greedy left-to-right sweep approach to the problem of covering
Sy with a minimum number of segments from Sy . The correctness of this approach is
intuitively obvious and can be proven by induction on the number of vertical segments
of the grid.

6.3.4. Grids with obstacles. Consider a complete rectangular grid P. If we put an
obstacle b on a grid segment s of P, then b blocks the visibility on s, that is, the segment
s is divided into two grid segments (we assume that an obstacle is never placed at a
crossing). Consequently, a grid P with k obstacles is a complete rectangular grid in which
we put k obstacles. Note that if the obstacles are put only on horizontal (or vertical)
grid segments, then the resulting grid is vertically unobstructed (or resp., horizontally
unobstructed). Let wemg(n, k) denote the maximum number of weakly cooperative mobile
guards that are ever needed for an n-segment grid with k obstacles. Fig. 6.13 shows a

(a) ) I R 1=
e HE

i

H
--f--im o

Fig. 6.13. (a) A grid with k obstacles may require as many as k + 2 weakly cooperative mobile
guards. (b) wemg(n, k) < k + 2.

class of grids with k obstacles that requires as many as k + 2 weakly cooperative mobile
guards. Note that the exemplary grid requires k + 2 arbitrary and cooperative mobile
guards as well. Thus we have wemg(n, k) > k + 2.
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PROPOSITION 6.39 ([54]). As long as both the dimensions of the grid are larger than k,
wemg(n, k) < k+ 2.

Proof. Since the dimensions of the grid are sufficiently large, it is possible to find a vertical
grid segment and a horizontal grid segment in P which span from one of the sides of the
rectangle bounding P to the opposite side (these segments are marked with bold lines
in Fig. 6.13(b), and will be referred to as the backbone of the grid). We place guards in
both grid segments of the backbone of the grid, leaving k guards still to be placed. The
number of uncovered segments in P is at this point at most k. Consider any connected
partition D of the disjoint subgrid U of P consisting of all uncovered segments (one such
partition is marked with dashed lines in Fig. 6.13(b)). The grid D must be connected
to the backbone of P by some segment d (denoted by a dotted line in Fig. 6.13(b)). By
placing guards in d and in all segments of D but one (leaving out a segment corresponding
to one of the leaves in the spanning tree of the intersection graph of D U {d}), we obtain
a cover of D with |D| guards, and the set of guards is always connected to the backbone
of P. By repeating this procedure for all connected partitions of U, we finally obtain a
cooperative guard cover of P using two guards along the backbone and |U| guards to
cover U,and [U|+2<k+2. =



7. FINAL REMARKS

We are by no means able to mention all open art gallery problems ([73], [85], [88]), and
thus the cooperative version of them. A part of them was mentioned in the previous
chapters, now we shall present some others.

1. Restricted visibility. Let P be a polygon. A guard of a range of vision « (or a-guard
for short) is a point g € P and an angular domain H, of angle o with apex at g. An
a-guard (g, Hy) sees a point z if the line segment g C PN H,. Denote by cg(n, «)
the maximal number of a-guards required to cover a polygon with n vertices for
fixed « € [0°,360°).

Problem: Determine cg(n, «).

2. Ezterior visibility—other obstacles. In general, throughout this dissertation we have
concentrated on polygons, but the cooperative guards problem for the exterior
visibility may also be posed for other obstacles:

2.1. Line segment obstacles. Let L be a set of n non-intersecting line segments in
the plane. Visibility is defined as follows: a guard at a point x sees a point y
if the line segment xy does not cross the interior of any line segment obstacle;
zy may be collinear with a segment or touch one if its endpoints. Provide
necessity and sufficiency bounds for a complete cooperative coverage of all
points of the plane.

2.2. Convex polygon obstacles. Let C be a set of n disjoint convex polygons. Sim-
ilarly to the case above, a guard at = sees y if the line segment xy does not
cross the interior of any polygon. Provide necessity and sufficiency bounds for
a complete cooperative coverage of all points of the plane.

3. Protecting convez sets. Another variation of the original art gallery problem was
proposed by Czyzowicz et al. [22]. We say that a set S is protected by a guard g if
at least one point on the boundary of S is visible from g. A guard g sees a point p
if the line segment gp does not cross the interior of any other set. The idea behind
this concept is that as long as we can see a part of an object, we know it has not
been stolen. In [22] the authors established that |2(n —2)/3] guards are always
sufficient and occasionally necessary to protect any family of n disjoint convex sets,
n > 2.
Problem: Provide necessity and sufficiency bounds for complete cooperative pro-
tection of a family of n disjoint convex sets.

[124]
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7.1. Third dimension

Little is known about guarding of polyhedra in 3D, even for arbitrary guards. The reason
is that the main tool used for two-dimensional problems—triangulation—does not gener-
alize: Lennes [57] proved that there exist polyhedra whose interior cannot be partitioned
into tetrahedra whose vertices are selected from the polyhedra vertices. The smallest
example of an untetrahedralizable polyhedron, due to Schénhardt, is shown in Fig. 7.1.
Moreover, given a polyhedron P, the problem of determining whether P is tetrahedral-
izable is NP-complete [79].

e

Fig. 7.1. Schénhardt’s untetrahedralizable polyhedron.

Another surprising fact: one can expect that placing guards at every vertex of a poly-
hedron will cover the entire interior. But this would only be true if every polyhedron
were tetrahedralizable. In the absence of tetrahedralization, however, this method does
not provide a complete coverage. In fact, R. Seidel constructed a polyhedron with two
properties:

e Guards placed at every vertex do not cover the interior.
e Q(n3/?) guards are necessary, where n is the number of vertices.

Moreover, the polyhedron that realized these properties was orthogonal and of genus
zero (the complete construction can be found for example in [73]). Thus Q(n3/?) is
the lower bound. Up to now, the best upper bound for arbitrary guards has been O(n?),
and it is provided by the following theorem.

THEOREM 7.1 ([15]). If Steiner points (that is, vertices that are not vertices of the original
polyhedron) are allowed in the decomposition, then a polyhedron with n vertices can always
be partitioned into O(n?) convex pieces, and this bound is tight in the worst case.
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In the orthogonal case, the ©(n3/2) bound is tight, as Paterson and Yao [75| estab-
lished that an n-vertex orthogonal polyhedron can be decomposed into O(n3/ 2) convex
pieces.

To the best of our knowledge, apart from the results discussed in Chapter 6, noth-
ing is known for the cooperative guards problem in the case of more than two dimen-
sions. Of course, all lower bounds for arbitrary guards become bounds for cooperative
guards, and it would be desirable to investigate the cooperative guards problem in the
3D case.

7.2. Précis

We conclude with Tables 7.1-7.3 of the major art gallery theorems for cooperative guards
discussed in this dissertation. The bounds in the case of the fortress problem are not given
(see Chapter 5).

Table 7.1. The cooperative guards problem.

Guard Lower Upper

Polygon shape Holes type bound bound Section

arbitrary 0 v/p In/2] —1 2.1
1 l(n—1)/2] 2.4.1

>2 point [n/2] —h [(n+h—2)/2] 2.4.2

vertex [n/2] [(n+2h—2)/2] 2.4.2

orthogonal 0 v/p [n/2] —2 2.2.1
orthogonal 1 [(n — (n mod 4))/2] — 1 2.4.3
>2 point [n/2] —h+ [(h—1)/4] In/2] —1 2.4.3

vertex [n/2] —h+ [(h—1)/4] |[(n+2h)/2] —2  2.4.3

monotone 0 v/p [n/2] —1 2.2.2
spiral In/2] —1 2.2.3

star vertex [n/2] —1 2.2.4

Table 7.2. The k-guarded guards problem.

Guard Lower Upper

Polygon shape k type bound bound Section

arbitrary 1 v/p [(3n —1)/7] 3.1
orthogonal |n/3] 3.2
monotone point [2n/5] 3.3
vertex [(3n —1)/7] 33

spiral v/p [2n/5] 3.3.3
star vertex [(3n —1)/7] 3.4
arbitrary >2 v/p k|ln/5] + [(n+2)/5] 4.1

orthogonal k|n/6] + [(n+2)/6] 4.3.1

star vertex kln/5] + [(n+2)/5] 4.3.2

monotone k|ln/5] + [(n+2)/5] 4.3.3
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Table 7.3. Cooperative guards in grids.

Guard type Dimension Complexity Section
cooperative 2 O(n+m) 6
3 O(mn?*?®) 6.1
weakly cooperative 2 NPH 6.2
mobile cooperative 2 NPH 6.3.1
mobile weakly cooperative 2 NPH 6.3.2

in polygon-bounded grids O(n?) 6.3.3
in horizontally/vertically unobstructed grids O(nlogn) 6.3.3
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