Let v < u < Kk be infinite cardinal numbers. As usual, every ordinal is considered as the
set of all smaller ordinals, and cardinals are defined to be ordinals which cannot be put
in one-one correspondence with smaller ordinals. We will study the size of families .% of
subsets of £ such that .% is maximal with respect to the following properties: |A| = p for
all A e #, and |[AN B| < v for all distinct A, B € .%. We consider the most important
cases to be those in which v = u = &, especially for k regular, the case with v = p < &,
and the case v < u = k.

There has been a considerable amount of work done on this subject. Many of the
main results are found in Baumgartner [76], where results are given on almost disjoint
subsets which have many implications for maximal almost disjoint subsets. Another gen-
eral source of results is Milner—Prikry [87]. Theorems of a more specialized nature can
be found in Blass [93], Erdés—Hechler [75], Wage [79], Kojman—Kubi§-Shelah [oc], and
Monk [96b] and [01].

Almost disjoint sets have been studied in many other papers in which the focus is not
on the size of maximal almost disjoint families.

The purpose of these notes is to survey all of the results on this topic, giving proofs for
many of them. In the course of doing this we indicate some generalizations of consistency
results of Baumgartner and of Blass. Some open problems will be mentioned.

The notes are divided into two parts. The first part, entitled ZFC results, is mainly a
survey of known results, with, however, some new facts and proofs; several problems are
mentioned here. The second part, entitled Consistency results, begins with a statement
of what is known and what is proved in these notes, and then in four sections gives some
detailed consistency results. These results are more-or-less straightforward extensions
of theorems of Baumgartner and Blass. Section 6 shows that a complete description of
possibilities is obtained if one assumes GCH (implicitly this is due to Baumgartner).
Sections 7 through 9 give the indicated consistency proofs, described more thoroughly in
the introduction to the second part. These proofs are given in rather full detail.

The concepts studied in this paper

Unless otherwise mentioned, throughout these notes x, v, u are infinite cardinals with v <
i < k. For ordinals o < 3, we write (a, 3)cara for the collection of all cardinal numbers x
such that o < kK < (; similarly for other intervals. Denumerable means countably infinite.
For any infinite cardinal x, the smallest cardinal greater than « is denoted by ~T, and if
m € w is any infinite cardinal, then k™™ is the mth cardinal successor of .

5]



6 J. D. Monk

Sets A and B are v-almost disjoint (v-ad) if |AN B| < v. A family & of sets is
v-almost disjoint, for brevity v-ad, if any two distinct members of &7 are v-ad. Now let
Z be a family of sets each of size at least v. We say that & is f v almost disjoint
(for brevity .#,v-ad) if & C .F and it is v-ad. Furthermore, &7 is .#,v mazimal almost
disjoint (for brevity .#,v-mad) if in addition it is maximal among 5ubsets of # which
are v-ad. Equivalently, 7 is %, v-maximal almost disjoint if &/ C .#, it is v-ad, and for
each X € .7 there is a Y € & such that |X NY| > v. Instead of [k]", k-mad we say
k-mad or k-mazximal almost disjoint.

If I and A are sets of ordinals, we write I" < A if every member of I" is < than some
member of A. And we write I" J A if every member of I" is > some member of A. Note
that this is not quite the same as saying that I" > A.

The basic definitions of the concepts we will be working with are as follows. Assume
that v < p < k. Then:

D 103) = (- 3 v
AD(k) = AD(k, k, K);
MAD(k, p,v) = {| /| : & is [k]*,v-mad};
MAD(k) = MAD(k, &, k);
v)=

MAD; (k, A\, i, v) = {|<7| : there is a partition Z of k into A sets of size u

such that 2N/ =0 and 2U & is [k]*, v-mad};
MAD; (k) = MADq (., &, K, K);
MADy(k, p,v) ={|| : & C [k x p]* and Va < k ({a} X p & &)
and & U{{a} x p:a < k}is [k x p]*, v-mad};
Ay = min(MAD(k, p, v) N [cf K, 00));
Ok = Okrk;
Aerpw1 = min(MADq (&, A, 1, v));
Okl = Okkrkl-

The last definitions, concerning a, are valid iff the minimums apply to non-empty sets.
MAD:; turns out to coincide with a special case of MAD{, so we do not have extensive
notation for it. The intersection in the definition of a,, is there to make the function
non-trivial, as we shall see.

Baumgartner’s notation A(k, A, u, ) corresponds to A € AD(k, u, V), and his notation
A(r, A, p) to A € AD(k, p, ).

In terms of these definitions, we can briefly state some of the main ZFC results in this
paper; for consistency results, see the second part. Proposition 2.4: AD(k, u,v) C [1,£"].
Proposition 3.2: If k™ < X and A € AD(k",x",v), then A\ € AD(k,k,v). Example
3.9: There is a singular cardinal s such that cfk = w, k = R, k¥ € AD(k, k,w), and
there is no ¢ € (w, K)cara such that k¥ € AD(p, o, w). Theorem 4.7: Let u be a singular
cardinal. Suppose that v € MAD(cf ) and ¢ € MAD(k, i, ). Then ¢-v € MAD(k, , f1).
Proposition 4.10: If u < &, then MAD(k, p, ) 2 MAD(p) N [it,00). Hence a, < ey
Proposition 5.5: MAD(k, u, 1) = MADy (k, k, i1, ) if k is regular and p < k. Proposition
5.6: If  is regular, then MAD(k) N [k,00) C MAD(k™, , k).
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ZFC RESULTS

1. Simple facts

In this section we give very elementary facts about the notions.
ProroSITION 1.1. Assume that v < p < k. Then:

(i) MAD(k, p, v) N [k, 00) # 0. Hence the definition of a,,, always makes sense.
(ii) If p < K, then MAD(k, p, v) C [K,00) and so a,,, > . Hence the intersection in
the definition of 6k, s superfluous if p < k.
(iii) If v < K, then [1,k) C MAD(k, K, v).
(iv) [1,cf k) € MAD(k).
(v) If v < o < p < R, then MAD(k, p,v) < MAD(k, i, 0).
(vi) If v < u < k < g, then MAD(k, p, v) < MAD(p, i, v).

Proof. For (i), one can take a partition of size k of x into sets of size u and extend it to
a [k]*, v-mad set.

(ii) is clear.

For (iii), for any o € [1,k), let &7 be a partition of x into g parts, each of size .
Then  is [k]",v-mad, as desired. In fact, suppose that B € [k]". If |BN A| < v for
all A € o/, then B = (J, (BN A) would have size at most ¢ - v < &, contradic-
tion.

For (iv), let v € [1,cf k). Let &7 be a partition of k into v sets, each of size k. Clearly
if B € [r]" then |BN A| = & for some A € &7.

For (v), let 0 € MAD(k, i, v). Say o = |#7|, where & is [k]*, v-mad. Then & is p-ad,
and so can be extended to a set which is [k]#, p-mad, as desired.

Finally, for (vi), suppose that & is [k]*,v-mad. Then & C [g]* and it is v-ad, so it
can be extended to a set Z which is [g]*, v-mad. =

The following is the first part of Theorem 2.2(b) of Baumgartner [76].

PROPOSITION 1.2. Suppose that v < p < k, v/ <y <K', k <k, v <V, and p/ < p.
Then AD(k,pu,v) C AD(K',u/, V).

Proof. Suppose that F' C [k]* is v-ad. For every X € F choose Yx € [X]*. Then Y is
one-one, and {Yx : X € F} C [¢/]* is V/-ad. So |F| € AD(x/, 1/, 1/). =

This result is similar to the second part of Theorem 2.2(b) of Baumgartner [76],
which says that if p < k < A\, ¢/ <k < N,k <K, N < X and ¢/ < p, then
from A € AD(k,u,p) it follows that X € AD(x’,u/, 1’). However, this claim is not
correct, at least under CH. In fact, take K = k' = w1, A = X = ws, p = wy, and
' = w. Assume CH. By Theorem 2.8 of Baumgartner [76], wy € AD(wi,wi,w;1). By
2.7 of Baumgartner [76], wy € AD(w;,w,w) would imply that wy < w¥, contradicting
CH.

PROPOSITION 1.3. AD(k, t,v) X MAD(k, pu,v). m
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2. Fundamental results

In this section we give several results which establish some of the fundamental facts about

our notions. This will enable us to describe more coherently the special cases above.
First we give a general “decreasing” theorem of Baumgartner, which depends on the

following interesting combinatorial lemma (Theorem 3.1 of Baumgartner [76]).

PROPOSITION 2.1. Suppose that u < k < X\, F C [k]*, |F| = X\, cfpp # cf k # cf X, Then
there is an oo < K such that [{X € F: | X Nal=u}| = A.

Proof. Since p < k and cf p # cf k, we have u < k. Next, note:
(1) For every X € F there is an ax < k such that | X Nax]| = u.

For, let (B¢ : & < v) enumerate X in increasing order (v an ordinal). Thus v < & since
w < k. If p < v, then 8, is as desired. If v = p, then note that X is not cofinal in &, since
cf p # cf k. Hence sup X is as desired.

(2) There is an « < & such that [{X € F: ax < a}| = A

For, suppose not. So for all « < s, {X € F': ax < a}| < A. Note that F' =, {X€F:
ax < a}. Let B¢ 1 & for £ < cfk, B continuous, Sy = 0. (If £ is regular, we can simply
take B¢ = ¢ for all { < k.) Then F' = (J; 4, {X € F': ax < f¢}. Since cf A # cf k and
|F| = A, we get

(3) cf A < cf k.

Now for all @ < k thereisa 8 € (o, k) suchthat {X € F:ax <a} C{X € F:ax < f}.
Define § : cfx — cf & by: £(0) = 0, {(v + 1) minimum such that {X € F': ax < B¢}
C{X e Frax < B¢+t €7) = Us<, &(6) for 7 limit. Then choose X, € F' such that
Bey) < ax, < Be(y+1)- Thus X is a one-one function from cf x into F', so cf £ < A. Hence
A is singular by (3). Let ¢ T A for £ < cf A, the v¢’s being cardinals. Then

(4) For every £ < cf X there is an ¢ < cf  such that {X € F': ax < 8.} > 7e.

For, otherwise there is a £ < cf A such that for all n < cf k we have |[{X € F: ax < 3,
< v¢. Hence
|F|:‘ U {XeF:ax <8} <cir e <,
n<cfr

contradiction. So (4) holds.

Since cf A < cf k, we have g := sup .y e < cf . Hence {X € F': ax < By} = A,
contradicting the “suppose not” for (2).

This contradiction shows that (2) holds. Hence |[{X € F : |X Na| = p}| = A, as
desired. m

COROLLARY 2.2. Suppose that v < u < k < X\, cf A # cfk # cfp, and A € AD(k, pu,v).
Then there is a cardinal p with p < ¢ < Kk such that A € AD(o, u,v). m

COROLLARY 2.3. Suppose that « is a limit ordinal, m € w, w < v <Ny <N <A A
is reqular, and A € AD(Rqqmm, Ra,v). Then A € AD(R,, R4, v). n

The following result is due to Tarski; see Baumgartner [76, Theorem 2.7].
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PROPOSITION 2.4. AD(k,u,v) C[1,k"]. m
Proof. Suppose that & C []* is v-ad. For all X € & choose f(X) € [X]”. Then f is a
one-one function from & into [k]”, so || < K”. m

As a corollary, we mention some trivial cases.
PROPOSITION 2.5. Suppose that w < o < v < p < (2Y)T™, with m € w. Then:

(i) MAD((2")*"™, u, 0) = {(2")"™}.

(i) MAD((2")™™, (2)7™, 0) = [1,(2)*™].

The following result comes from the proof of 2.8 of Baumgartner [76]:
PROPOSITION 2.6. If k is regular, o C []", || = Kk, and & is k-ad, then it is not
k-mad. So ¢ MAD(k). Hence k* € AD(k), MAD(k) N (k,00) # 0, and k < a.
Proof. Let & = {A, : o < k}. By induction define

xaeAa\( U Aﬁu{xﬁ;5<a});
B<a

then [{z, : @ < K} N Ay| < k for all a < k, showing that 7 is not maximal. =

The following is part of 2.2(c) of Baumgartner [76):

PROPOSITION 2.7. If Ao, € AD(k,pu,v) for all @ < o, where o < k, then E(KQ Ao €
AD(k, p, v).

Proof. Let k = Ua<g I, each I, of size k and the I',’s pairwise disjoint. Let o7, C [[]*
be of size A\, and v-ad. Then % := o, is as desired. m

a<po
The following is Theorem 2.10 of Baumgartner [76]:

PROPOSITION 2.8. Suppose that v,o, u,k, A\ are cardinals, and v < o <

<
Suppose that A € AD(k, u,v), and for all « < A\, Aoy € AD(p,0,v). Then Z
AD(k,0,v).
Proof. Let o be []*,v-ad with |«/| = A Let (X, : @ < A) enumerate &/ without
repetitions. For each o < A let B, be [X,]7,v-ad, with |B,| = As. Then |J B, is
[k]7,v-ad and has size )\ Ao ®

COROLLARY 2.9. If k is an infinite cardinal, A € AD(k), and k < Ay € AD(k) for all
a < A, then >, _\ Aa € AD(K). u

K

>’I/\

A
a €

a<A

a<A

3. Concerning AD(k, k,v)

PROPOSITION 3.1. Suppose that w < k < A\, A singular, and {o < \: 0 € AD(k, k,v)} is
unbounded in X. Then A € AD(k, k,v).

Proof. Let (g, : a < cf A) be a strictly increasing sequence of cardinals with limit A such
that oo € AD(k, k,v) for all @ < cf X. Let &7 C [k]" be v-ad, |&/| = cf X. Let (X, : oo < )
be a one-one enumeration of .&7. For all a < p, let @7, C [X,]" be of size g, and be v-ad.
Then | _, o, is as desired. m

a<p
PROPOSITION 3.2. Ifv <k, kT <\, and A € AD(xT, k¥, v), then A € AD(k, k, V).
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Proof. First we prove the special case of the proposition in which kT < cf \.

Let «/ C [kF]%" be v-ad, with |«/| = . For every X € « there is an ax < x* such
that | X Nax| = k. In fact, one can enumerate X as (z, : @ < k) in increasing order,
and then let ax = x,. Now

o = U {X e :ax =a},
a<nt
so there exist an o < k* and an &/’ € [&/]* such that ax = « for all X € &’. Then
{XNa:X ey} is as desired (since |a| = k).

This finishes the proof of the special case.

In the general case, we may assume that cf A < x*. If p is regular and kT < p < A,
then u € AD(k*,xT,v). So by the special case, u € AD(k, k,v). It follows by 3.1 that
A € AD(k,k,v). =

COROLLARY 3.3. If m € w, v < K, k7™ < A\, and A € AD(k™™, k™™ v), then \ €
AD(k,k,v). =

Part of the proof of Theorem 3.7 of Baumgartner [76] can be generalized to give the
following.

PROPOSITION 3.4. Suppose that cfA > k > v, cfk > w, Kk is a limit cardinal, and
X € AD(k, k,v). Then {o: 0 is a cardinal, o0 € (v,k), A € AD(p, 0,v)} is unbounded in k.

Proof. Suppose that § < k, 0 a cardinal; we want to find a ¢ as above in the interval
(0,k). Let & C [k]" be v-ad and of size A.

(1) For every X € & there is an ordinal ax € (max(v, ), k) such that | X Nax| = |ax]|.

For, enumerate X as (8¢ : £ < k) in increasing order. Choose ¢y < k such that max(v, 9)
< op. Define aj11 = B4, + 1 for all ¢ < w, and let o, = sup,, a;. Thus a,, < & since
cfk > w. For all £ < oy, let f(§) = B¢. For any such { choose i < w such that { < a;.
Then B¢ < Ba, < atit1 < . Thus f(€) € X Nay,. Since f is clearly one-one, it follows
that |a,| < |X Naygl, and (1) is established.

By (1), @ = Use(max(,6),1X € & + ax = a}, so since cf X > &, there is a § €
(max(v, ), k) such that {X € o7 : ax = } has size \. Hence {X NG : X € &} C [5]°!
is v-ad and of size \. m

Another part of the proof of Theorem 3.7 in Baumgartner [76] generalizes to give the
following.

PROPOSITION 3.5. Suppose that k,v, A are infinite cardinals, cfX > k > v, cf kK = w,
Kk # Ry, K is a limit cardinal, and A € AD(k, k,v). Then {o: 0 is a cardinal, ¢ € (v, k),
A € AD(p, 0,v)} is unbounded in k.

Proof. Let an ordinal 0 < k be given. From the assumption x # X,; we get:
(1) There is an uncountable regular cardinal ¢ € (max(J,v), x) such that k£ < N,,.

Thus by 1.2, A € AD(k, 0,v). Let o be minimum such that ¢ < o and A € AD(o, g, v).
Suppose that ¢ # 0. By 2.2, ¢fo = c¢f X or ¢cfo = p. Since ¢cf A > k > o, we have
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cfo # cfA So cfo = p > w. Say 0 = Ng. Then cfo = cff = p, so p < 3, and
N, < Ng =0 < K, contradiction. =

PROPOSITION 3.6. Suppose that cf X > k > v and A € AD(k, k,v). Then there is a o < &
such that ¥ > .

Proof. Choose o € [v, k) such that cf o # cf k. (If & is regular, let o = v. If & is singular,
let o = vt if vt # cf K, and 9 = v1 otherwise.) Then A € AD(k, o,v) by 1.2. Let o
be minimum such that A\ € AD(o, o,v). Then by 2.2, cfo = cf XA or cfo = cf p. Since
cf A > Kk > o, we have cf o # cf A. Hence cf 0 = cf p. By the choice of ¢ we then have
c<k.And A< c”"by24. u

PROPOSITION 3.7. Suppose that A > k > v, K is a limit cardinal, K # N, and \ €
AD(k, k,v). Then {o: o is a cardinal, o0 € (v,k), A € AD(p, 0,v)} is unbounded in k.

Proof. For X regular the result follows by 3.4 and 3.5. Now suppose that A is singular.
It suffices to show that A € AD(p, g,v) for any regular ¢ € [v, k) such that Kk < R,. By
3.1 it suffices to take any regular o € (k,)\) and show that o € AD(p, 0,v). We have
o € AD(k, o,v) by 1.2. Let 7 be minimum such that ¢ € AD(r, g, v). Suppose that ¢ < 7.
By 2.2, ¢f7 = cfo or ¢f 7 = c¢fp. Now ¢ > k > 7 and o is regular, so cf7 # cfo.
Thus cf 7 = p. Say 7 = R,. Then p = c¢f7 = cfa, so o < a. Hence X, < R, =7 < &,
contradiction. m

As an application, if N,11 € AD(X,,R,,w), then N,1; € AD(X,,R,,w) for some
«a < w, and hence by 3.3, X, € AD(w).

Another useful fact about singular x is as follows.

PROPOSITION 3.8. Suppose that k is singular, (ue : £ < cf k) is an increasing sequence
of infinite cardinals with supremum K, and X\ is some cardinal > k. Suppose that v is
regular, v < po, v < cf k. Assume that X\ € AD(pe, pe,v) for all & < cfk, and also
A € AD(cf k,cf k,v). Then X\ € AD(k, k, V).

Proof. Write k = g, L¢, the I¢’s pairwise disjoint, [I¢| = pe. For each § < cf i let
AS be a one-one function from A onto a subset of [I¢]#¢ which is v-ad, and let B be a
one-one function from \ onto a subset of [cf k]*!* which is v-ad. For each o < ), let

Co= [J 45
§€Ba

Clearly {C, : @ < A} is the desired family. m

The following result shows that Proposition 3.5 cannot be generalized by merely
dropping the hypothesis “x # R,.”.

EXAMPLE 3.9. There is a singular cardinal k such that cf k=w, k=N, k¥ € AD(k, k,w),
and there is no 9 € (W, K)cara such that k* € AD(g, o,w).

Proof. We define, by recursion, po = w and, for any m € w,

Pomt1 = Rye 1.

m
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Let k = sup,,c,, #m- Clearly x is singular with cofinality w. Suppose that x < X,;. Choose
a < K such that k < W,. Say a < pi,. then

E< Ny <Ry < g1 < Ky

contradiction. Thus x = N,.

Now a standard construction yields a family (A4, : @ < k“) of denumerable subsets
of x such that any two have a finite intersection. Write x = |J, ..
pairwise disjoint and of size . For each 8 < & let f3 be a bijection from x onto I's. Now
we set, for each o < K%,

I, where the I',’s are

Bo= |J fslAa]
BeAa
So each B, is a subset of k of size k. If o,y < k¥ and « # ~, then

BonBy=( | foldd)n (U fsla]) = U foldanay),
BEAL BEA, BEALNA,
and this set is finite, as desired.
Now suppose that ¢ € (w, k) and k“ € AD(p, p,w). Then by Proposition 2.4 we have
kY < o“. Since g < K, choose m € w such that ¢ < pi,,. Then
0% < oy, SNy < pimyr < K < 0%,
contradiction. m

Concerning all these results we mention two problems. 3.7 and 3.9 suggest

PROBLEM 1. If A > k > v, k is a limit cardinal, kK = N, A < o for some 0 < Kk, and
A € AD(k, k,v), is there a o € (v, k) such that A € AD(p, 0,v)?

In turn, 3.1 suggests

PROBLEM 2. Suppose that w < K < A, X is weakly inaccessible, and {o < X\ : p €
AD(k, k,v)} is unbounded in X. Does it follow that A € AD(k, k,v)?

4. On MAD(k) and MAD(x, u, )

Theorem 2.9 of Baumgartner [76] gives:
PROPOSITION 4.1. Suppose that p is singular, p < k, and cf p < cf k. Then:

(1) If o C [k]" is cf p-ad and |o/| > k, then there is a B C [r]* of size || which
s p-ad.

(ii) MAD(k, cf u, cf 1) N (K, 00) < MAD(k, p, ).
Proof. Without loss of generality, each member of &/ has order type cf u. For all o < &
let iy ={X € & :supX = a}. So & =<, Fa, and the F,,’s are pairwise disjoint. By
Proposition 2.7, it is enough to show that |F,| € AD(k, u, p) for all a < k with F,, # 0.
Fix o with F,, # 0. Let v¢ T p for € < cf p, and let (g¢ : £ < cf ) be a continuous strictly
increasing sequence of ordinals with supremum «, and with g9 = 0. Let (Y, : n < «)
be pairwise disjoint subsets of k, with |Y,| = v¢ if g¢ < n < geq1. For each X € F, let
X' =U,ex Yy Then {X'": X € F,} is as desired. m
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The following theorem generalizes a result of Erd6s and Hechler; see Milner—Prikry
[87, Theorem 3.1].

THEOREM 4.2. Suppose that o < 7 € MAD(k, i, i), f maps T onto g, and (o, : a < 9) €
°MAD(u). Then ), ., 0¢@a) € MAD(k, p, p1).

Proof. Let & be []*, p-mad with |<7| = 7, and let g be a one-one function from & onto 7.
For each A € o/ let 4 be [A]*, p-mad with | B 4| = 04(4(a)). Let € = U ey Ba. Clearly
€| = 3 ner Tf(a)- It is also clear that 4 is p-ad. Now suppose that X € [x]*. Choose
A € o such that |AN X| = p. Then choose Y € By such that |[ANX NY| = p. So
|X NY| = p. Hence ¥ is [k]*, p-mad, as desired. m

COROLLARY 4.3. Suppose that o € MAD(k, u, p) and (o4 : a < g) € ®MAD(u). Then
Y a<oTa € MAD(K, pi,p1). m
COROLLARY 4.4. If p € MAD(k, u, 1) and o € MAD(), then ¢o-0 € MAD(K, i, ). m

COROLLARY 4.5. Suppose that § is singular and is a limit of cardinals in MAD(u). Fur-
ther, assume that [cf §,0) "MAD(k, u, ) # 0. Then § € MAD(k, i, it). m

COROLLARY 4.6 (Milner—Prikry [87, Theorem 3.1]). If ¢ is a singular cardinal which is
a limit of members of MAD(k), then 6 € MAD(k). m

This corollary naturally leads to the following questions.

PROBLEM 3. If ¢ is a regular limit cardinal which is a limit of members of MAD(k), is
also § € MAD(k)?

PROBLEM 4. If ¢ is a limit cardinal which is a limit of members of MAD(k, i, V), is also
0 € MAD(k, pu,v)?

The following result generalizes Theorem 3.6 in Milner—Prikry [87], also due to Erdés
and Hechler.

THEOREM 4.7. Let p be a singular cardinal. Suppose that v € MAD(cf ) and o €
MAD(k, p, pt). Then o -v € MAD(K, p1, ).

Proof. Let o be [k]*, p-mad, with |«7| = g. For each A € &, let (S2 : a < cfpu) be a
partition of A into sets of size less than p, with (|S2 : o < cf p) strictly increasing. Let
2 be cf p-mad, with |2| = v. Then we define

%:{ U S&“:AEQK,BEQ}.
a€B
Clearly each member of % has size u. Suppose that X, Y € ¥ with X # Y. Say X =
Unes, S and ¥ = U,epp, SA41, with By, By € 2 and A, Ay € . Tf Ag # Ay, then
XNY C AgnN Ay, and the latter has size less than u. If Ay = A; and By # Bi,
then X NY = U,ep,np, Sa° and [By N Bi| < cf y1, and hence | X NY| < p. Thus ¢
is p-ad. Now suppose that X € [k]*. Choose A € & such that |X N A] = u. Hence
sup{|X N SA| : @ < cf u} = p, so there is a strictly increasing sequence (ag : & < cf ) of
ordinals less than cf 1 such that the sequence (| X NS, £§| : & < cf p) is strictly increasing
with supremum p. Let ¥ = {a¢ : £ < cf u}. Choose B € # such that |Y N B| = cf .

Clearly, then, |[X N cp S&|=p. =
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THEOREM 4.8 (Milner—Prikry [87, Theorem 3.6]). MAD(cf k) C MAD(k). =

Recall from 1.1(i) that MAD(x) N [k, 00) # 0. So the other inclusion in 4.8 does not
hold for singular cardinals, at least in ZFC. Also, MAD(cf k) C [1, cf k**] by Proposition
2.4. Thus the following problem is the natural “converse” of 4.8:

PROBLEM 5. If k is singular, does the inclusion MAD(k) N [1,2°%] C MAD(cf k) hold?

In this connection we mention some related results which will not be proved here. In
Kunen [80] it is shown that

(%) MA + MAD(w) = {2¢}.

In Kojman—Kubis-Shelah [oo] the following two results are shown:

() MA 4 2% > R, R, ¢ MAD(R,,),

(k) (in ZFC) if p is singular and 2°* <y, then p € MAD(p).

PROPOSITION 4.9. If k is singular and o/ C [k]'* is cf k-ad with || = K, then it is not
mad. Hence k € MAD(k, cf k,cf k), 0 £ MAD(k, cf k,cf k) C (k,00), and k < Gxefrctr -

Proof. Say e 1 & for a < cf k. Let o = {A, : a < k}. For each a < cf k choose

xaEAa\< U Aﬁu{mg:ﬁ<a}).
B<pra
Let X = {aq:a<cfk}. m

PROPOSITION 4.10. If p < k, then MAD(x, pt, 1) 3 MAD(p) N [, 00). Hence a,, < aypy,.

Proof. Note by Proposition 1.1(ii) that MAD(x, p, ) C [k, 00). Fix a family &/ which
is [s]*, p-mad. Fix &' € [&]'. Let I' = Uyc A, and let Z = {X NI : X e,
|X NI = p}. Thus || = p, #is p-ad, and p < |B| < |«/|. Hence it suffices to show
that Z is [I']*, p-mad. Suppose that Y € [I']*. Since & is [k]*, u-mad, there is an X € &/
such that | X NY| = p. Thus there is a Z € 2 such that |Y N Z| = p, as desired. =

For the next result we need a simple set-theoretic lemma.

LEMMA 4.11. Suppose that k < v are infinite cardinals, 8 is an ordinal, and ([, : o < 3)
is a sequence of subsets of v such that if o <y < 3 then I'y, C I,. Further, assume that
[\ Un<p Lol <v. Then there is an o < 8 such that |I's| > k.

Proof. Suppose not: Va < § (|I'y| < ). Then
() Va< pIye(a,p) I,CIy).

For, otherwise we get an a < 8 such that I'y = (U, 5. Hence |U, 5 I5| = [[u| < &
and so v\ U, .5 I’y| = v, contradiction. So (1) holds.

Now define o € 3 by setting oy = 0, Qg1 minimum such that I'y, C I,
tinuous. For each { < 3 let n¢ be the least element of I'n,,, \ I'n,. Now |, _5Iy| = v and

|I’y| < & for all v < 3, so B > v. Hence k < . Now n[k is a one-one function mapping

Q. Ccon-

into I, , so |I,, | > K, contradiction. m

PROPOSITION 4.12. If w < p < Kk < v, then MAD(v, p, p) 3 MAD(k, p, 1) N [k, 00).
Hence agpup < Guppe
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Proof. Let <7 be [v]*, p-mad. By 1.1(ii), |<7| > v.
(1) There is a I' € [v]" such that |{A € & : |ANT| = pu}| > k.

To see this, let (A, : @ < 7) enumerate & without repetitions, and for each a < 7 let
I'y =Ug<q Ap- Now since (v \ I7) N A, =0 for all a < 7 and & is [v]#, p-mad, we have
v\ I'-| < p. Hence by Lemma 4.11, there is an o < 7 such that |I,| > k; choose the
least such . If @« = B+1, then I', = [ U Ag, and |I,| < [Ig]+|Ag| < k, contradiction.
So a is a limit ordinal. Let A = {{ < a: It C Iey1}. So I = Ugea(Te41 \ Ie), and
|Teq1 \ Ie| < |A¢| = p. Hence |A] > k. If |A] > k, then there is a £ € A such that
{n € A:n <&} =k Hence I'eh1 = U,en e In+1 \ Iy, and each I3 \ Iy # 0,
80 |Iz41] > K, contradicting the minimality of a. So |A| = k, and hence || = k and
HAe o |[ANT,| = p}| > {Ae : £ € A} > k. So (1) holds.

Let Z={ANT:Aec o, |ANT| = u}. So k < |B| < |#|. We claim that B is
[[*, p-mad. Clearly it is [I']*, u-ad. Suppose that X € [I']*. Then X € [v]*, so choose
A € of such that |[ANX| = pu. So ANI" € B and |[ANT'NX| =|ANX| = p, as desired. m

The following is Theorem 3.2 in Milner—Prikry [87].

THEOREM 4.13. Suppose that k and v are infinite cardinals, k is singular, and v < K.
Then there is a § € MAD(k) such that v < § < v°t~,

Proof. Let Ay T K for a < cf i, with v,cfk < Ao. Let (Sap : o < cfk, B < v) be a
partition of k such that |S,5| = A, for all a, 5. Let
F ={f: fisafunction, f Cctk x v, |f| =cfk}.
Let & be a maximal cf k-almost disjoint subset of #
(1) v < | 8| < vefe,

In fact, clearly |#| = v°* and so |%| < v°'*. Now suppose that |%| < v. For each
a < cfk let f(a) be the smallest ordinal 8 such that 8 # g(«) for all g € %A. Thus
f(a) < v by supposition. So f € &, and fNg =0 for all g € &, contradiction.
For each f € £ let
= |J Sas

(a,B)ef
and let & = {X; : f € #}. We claim that & is k-mad, and X is one-one. Clearly
| X | =k for all f € Z. Suppose that f,g € Z and f # g. Then

X;nX,= |J  Sos
(.B)efng
and this set has fewer than x elements.
Finally, suppose that Y € [k]*. Then

(2) Va <cfr 30 € [a,cf k) Iy <v [[Y NSy > Al
In fact, otherwise we get a < cf & such that V5 € [a, cf k) Vy < v [[Y N Ssy| < Aa]. So

|Y\_’ U UYHSM‘_‘U<UYHSM>+‘ (UYnSﬁy)‘gAa,

B<cfr y<v a<lpf<ctk y<v

contradiction. So (2) holds.
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By (2), let {a, : 0 < cf k) and (G, : 0 < cf k) be such that (a, : ¢ < cf k) is strictly
increasing, and [Y N Sy,5,] > Ap. Let f = {(ay,3,) : 0 < cfr}. Thus f € .#. Choose
g € % such that |f Ng| = cf k. Then |Y N X,| = &, as desired. m

COROLLARY 4.14. If k is singular and Vv < k (v°I* < k), then Kk € MAD(k).
Proof. By 4.13 and 4.6. =
COROLLARY 4.15. If k is strong limit singular, then kK € MAD(k). m

In connection with these corollaries, see the results of Kojman—Kubis-Shelah [o0]
mentioned above.

Here is a generalization of Proposition 4.9.

PROPOSITION 4.16. Suppose that k is singular, p < k, and cfxk = cf u. Suppose that
o C [k]* is p-ad and || = k. Then it is not mad. So k ¢ MAD(k, i, p); hence 0 #
MAD(k, pt, ) € (K,00). Moreover, ey, > K.

Proof. Assume the hypothesis. Say &/ = {X, : @ < k}. By Proposition 4.9 we may
assume that p is singular. Let v, T p for a < cf p and g, T & for a < cf k. We now define
subsets Y, of k of size at most u for each a < cf u. Suppose that we have done this for
all 8 <a. Then U;_, XpUUps-, Y5 has size less than x, so we can choose

Yo S\ (U Xsu U ¥s)
B<0a B<a

of size vq. Let Z =J,—cp, Yo Then [Z] = pand |[ZN Xp| < pforall B < k. m

As an special case of Proposition 4.16 we have N, 1, € MAD(R, ., N, Ry).
COROLLARY 4.17. If K is singular, then MAD(x) N (k, 00) # 0.

Proof. By Propositions 1.1(i) and 4.9, MAD(k, cf &, cf k) N (k,00) # 0, so the corollary
follows by 4.1. =

The next result is in Milner—Prikry [87, p. 165].

PROPOSITION 4.18. Suppose that k is singular, of C []* is k-ad, and |/| = cf k. Then
o is not mad. Hence cf k € MAD(k), and so a, > cf k.

Proof. Assume the hypothesis; say & = {A¢ : { < cfk}. Let k¢ T & for § < cf k, with
Ko = w. By induction, for each £ < cf k choose

B&QA§\<UA7;U UBn>
n<¢ n<¢
of size r¢. Clearly e, Be has size £ and its intersection with each Ag is of size less
than &, for each £ < cf k. m

The following is due to Tarski; see Baumgartner [76, Theorem 2.3].

PROPOSITION 4.19. Suppose that 1 < v < k > w, and let p be minimum such that
Kk < vH. Then MAD(k, p, 1) and MAD(k, cf u, cf p) both have members > vH.
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Proof. First statement: Let T' = J,., “v. Thus |T] < . It suffices to exhibit a family
F C [T]* which is p-ad and of size v*. Let

F={{fla:a<pu}: fetv}
Second statement: this follows from the first if p is regular. Suppose that p is singular,

and let (v, : a < cf u) be a strictly increasing sequence of cardinals with supremum pu.

Let 7" = Yay, and let

F={{flva:a<cfup}:fetv} n
The following is Corollary 2.11 of Baumgartner [76].

a<cfp

COROLLARY 4.20. If k is an infinite cardinal and X is the least cardinal such that A > k
and A & AD(k), then X is regular.

Proof. Obviously k € AD(k). So the result follows by Corollary 2.9. m

COROLLARY 4.21. Suppose that x, \, N, u are cardinals, with x, X', u infinite. Also sup-
pose that cf p < k, k = No, A < Ropopp, AW < AN < M and cf N > ASF. Then
N € AD(k,cf p, cf p).

Proof. Apply 4.19 with v and & replaced by A and A<# respectively. Then the u of 4.19
is our p as well, and so \* € AD(A<¥, cf u,cf ). Hence N\ € AD(A<H, cf p,cf p). Let o
be minimum such that A € AD(p, cf p,cf ). So g < A<H. Now cf u < o < X, so by 2.2,
cf N =cfpor cf p = cf p. Since cf N > A<H > o, we have cf X # cf g, so cf o = cf p. But
0 < AH < Ryiepu, s0 0 < k. Hence N € AD(k, cf pr,cf pi). m

5. The notion MAD;,
PROPOSITION 5.1.

(i) If v =1, then MAD1 (s, \, i, v) C {0}.

(ii) If k > p and & > A, then MAD (&, A, p,v) = 0.
(iii) If A < cf K, then MADq(k, A, k,v) = {0}.

Ifcf k <A <k and v < K, then MADq(k, A\, k,v) = {0}.

If cf k < X < K, then MADq (5, A\, 5, 5) C [(cf )T, 00).
If cf k < X < K, then MADq (k, A\, k, k) N [k, 00) # 0.
If u < k and 1 < v, then MADq(k, K, 1, V) C [k, 0).
If 1 <v < K, then MAD1(k, K, k,v) C [k, 00).
If k is regular, then MAD; (k) C [rkT, 00).

(iv
(v
(vi
(vii
(vii

~— O~ N~ N~

(ix
Proof. (i) is clear.

Under the assumptions of (ii), there is no partition of k into A sets, each of power p.
For (iii), if & is a partition of x into A sets each of power &, then 2 is [«]*, v-mad. The
same is true under the assumptions of (iv). In fact, suppose that I" € [5]” and |['NX| < v
for all X € 2. Then I' = [Jx ¢4 (I"'N X), which has size at most A - v < &, contradiction.

We turn to (v). Assume that c¢f x < A < k. Suppose that ¢ € MAD; (s, \, k, k). Ac-
cordingly, let 2 be a partition of k into A sets, each of size x; say that ¥ = {D,, : a < A},
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without repetitions, and let & be such that |&/| =9, 2N =0, P U is k-mad. Say
of = {A¢ : £ < o} without repetitions. Say k¢ 1 & for £ < cf k.

First suppose that ¢ < cfk. Now |[AN D,| < k for all A € & and a < A, so
|Da MU per Al < & for all @ < . For each § < cf & choose C¢ € D¢ \ U,y A such that
|Ce| = ke. Let B =Jgop,, Ce- Then B € [k]", BNA=0forall A€ o/, and [BND¢| < K
for all a < A, contradiction.

Second, suppose that ¢ = cf k. We claim

(1) V¢,n,0 < cfk Jao € A\ max{{+ 1,7+ 1,0 + 1} [[Ae N Dy| > k).

For, assume otherwise; choose £, 7,0 < cf k such that for all « € A\ max{{+1,7+1,0+1}
we have |A¢ N Dy| < k,. Hence

’U{AEODQ:ae)\\max{§+1,n+1,0+1}}‘ <A By < K.
So
‘U{AgﬂDa:a<max{§—|—1,n+1,9+1)}}‘ =K.

But |[A:ND,| < k for all & < max{{+1,n+1,0+1}, and max{é+1,n+1,0+1} < cfk,
contradiction. So (1) holds.

Now we define By C k and a¢ < cf k for £ < cf k so that always |Bg| = k¢. Suppose
defined for all n < £. Then

EE::UAEQA UB Uli£
n<¢ n<g
has size less than x; say that its size is less than k., where £ < 7 < cf k. By (1), choose
ag € M\ max{n+1,sup{a, : 7 <&} +1} so that [A¢ N Dy, | > k7. Choose Be € A N Dy,
so that |B£| = K¢ and Bg NE; =0.

Let B = Ug_cpy, Be- Then [B| = £k, [BN A¢| < & for all £ < cfx (since for n > £ we
have B,NA¢s = B,NA:NA, C B,NE, =0), BND,, = Bg, which has size less than &,
for each £ < cfk, and BN Dg =0 for all € A\ {ae : £ < cfr}. Thus 2 U & is not
k-mad, contradiction. So (v) holds.

Next, we take (vi); assume that cf kK < X\ < k. Let w < k4 T & for a < cf k. Let 2 be
a partition of k into A sets each of size k; say 2 = {D,, : @ < A}. For each o < cf &, let
(Eap : B < k) be a partition of D, into sets of size . For all § < k let Ag be defined by
requiring that Az N D, is a subset of E,g of size x4 for each o < cf x, while AgN D, =0
if cf k < o < A. Thus |Ag| = &, the Ag’s are pairwise disjoint, and |Ag N D,| < & for all
B < k and o < cf k, as desired.

For (vii), assume that 2 is a partition of & into k sets each of size u < K, & C [K]*,
9N =0, 2V isv-ad, and |o7| < k. Foreach X € &/ let Mx ={Y € 2 : XNY # 0}.
Clearly |Mx| < p for each X € «/. Hence |Jy ., Mx has fewer than « elements. So there
is a subset Z of k \ JUyecy Mx of size p which has at most one element in common
with each member of &, and is disjoint from each member of /. Thus 2 U &/ is not
[k]*, v-mad.

For (viii), assume that 2 is a partition of k into s sets each of size k, & C [k]",
9N =0, 92U is v-ad, and | 7| < k. For each D € & the set {DNA: A€ &/} has
size less than «, and each set DN A has size less than v, so J 4., (DN A) has fewer than
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# elements; so choose ap € D\ J e (DN A). Let E = {ap : D € }. Now |Z| = &, so
|E| = k. Since |[ENX| < v for all X € P U .o/, this shows that 2 U & is not [«]", v-mad.
Finally, (ix) holds by Proposition 2.6. =

PROPOSITION 5.2. MADs(k, u,v) = MAD4 (K, K, i, V).

Proof. For C, let f : k X 4 — K be one-one and onto. Let o € MADy(k, u,v); say
0 = ||, where Va < k ({a} x p & &), and & U {{a} x p:a < k}is [k x p|*, v-mad.
Let 2 = {f[{a} x u] : a < k} and B = {f[X]: X € o&/}. Thus A is as in the definition
of MAD (k, k, p,v), and |7 | = |A)|, as desired.

For the other direction, suppose that ¢ € MAD;(k, &, u,v); say || = o, 2 is a
partition of  into & sets of size u, /NP =0, and & U Z is [k]*, v-mad. Say Z = {X, :
a < k} without repetitions. Let g : K — & X p be such that g[X,] = {a} x p for all @ < &.
Then set Z={g]Y]:Y € &/} =

PROPOSITION 5.3. MAD;(k, &, 1, A) € MAD(k, pu,v) if 1 < v, and (p < K, v < K, or K
is regular).

Proof. By Proposition 5.1(vii)—(ix). m
PROPOSITION 5.4. If k is regular, then MAD(k) N [k, 00) = MAD; (k).

Proof. By Propositions 5.1(ix) and 5.3, it only remains to prove C. Suppose that & is
[]", k-mad and |&/| > k. By 2.6 we have |&/| > k. Let X € "/ be one-one. We define
(e 1 ¢ < k). Let ¢ < k be given. For every £ < ( choose B¢ < & such that X, N X, C .
Let a¢ = (supe B¢) U (¢ +1). Thus

(x) For all €,¢ < K, if £ < ¢, then X¢ N X¢ C a¢; moreover, ¢ < ag.

Now define, for any ¢ < &,

Y, = {(Xc\ac)U{C} if ¢ & Ueoe e

X\ a otherwise.
If £ < ( < &, there are two possibilities. If ( € [, Y, then
YenYe € ((Xe \ag) U{E}) N (X \ ) =0.
If ¢ ¢ Uy, Ya, then
YeNYe C ((Xe \ag) U{EH) N (X \a) U{CH =0.

It follows that (Y; : ¢ < k) is a partition. Let &’ = &/ \ {X¢ : ( < k}. Clearly &' U {Y¢ :
¢ < k}is [K]", k-mad. m

PROPOSITION 5.5. MAD(k, pt, p) = MAD1 (K, k, i1, 1) if K is reqular and p < k.
Proof. Again, we only need to prove C. Let & be [k]*, y-mad.
(1) We may assume that Voo < k 3X € &7 (| X Nal < p).

To prove this, we consider two cases.
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CaskE I:Va< k3B >adX € & (|IXNF| =pand | X\ G| = pn). Now we define X € o7
and B¢ < k by induction, for each ¢ < k. Suppose defined for all § < ¢. Choose

B¢ > U Be U U sup X¢
£<¢ £<¢
and X¢ € & such that | X¢NG¢| = pand | X\ B¢| = p. The second part of the definition
of B¢ ensures that the X ’s are distinct. In &7, replace each X by X N G¢ and X\ fe¢.
The resulting set o7’ is still [k]*, yg-mad, and (1) now holds.

CASE 2: Ja <k VB >aVX € & (| X NG| < por |X\ G| < u). We show that (1)
holds for « itself. Let v < k be given. Choose 8 > v,«, and let Y € [k \ B]*. Choose
X € & such that [ X NY| > u. Hence | X \ 8] > p. It follows that | X NG| < u, and hence
|X Nv| < p, as desired.

Thus (1) holds, and we make the indicated assumption.

Now we define X € &7 for all £ < k. Suppose that X, has been defined for all £ < (.
Let Ye = g (Xe U (). Note that sup(Y¢) < &, since p < k. Choose X¢ € &/ such that
| X¢ Nsup(Ye)| < p. This finishes the definition of the X’s. Clearly they are all distinct.
Next, define

Xe=(Xcu{hH\Ye
Then

(2) If £ < ¢ < K, then X{N X[ =0.

For, suppose that a € X{ N X{. Then a € X¢ U{{} C Y, because a € X{, and this
contradicts a € X{. So (2) holds.

Now
(3) € € Ug< X¢ for all ¢ < k.

In fact, suppose that ¢ & (J., X¢. Now ¢ € X U{(} but ¢ & X[, so ¢ € Y¢. Hence there
is a £ < ¢ such that ¢ € X¢; take the least such £. Then ¢ ¢ Y, so ¢ € X[, contradiction.

Now let @' = (& \ {X¢ : ¢ < w}) U{X{ : ( < r}. Clearly &' is still p-ad. Suppose
that Y € [k]*. Choose Z € & such that Y NZ| = p. If Z ¢ {X; : ¢ < Kk}, this is
fine. Suppose that Z = X with { < k. Now X\ Y: C Xé, so X¢ \Xé C Y;. Clearly
| X¢eNYe| < g, s0 [ Xe \ X7| < pe Since [Y N X¢| = p, it follows that [Y N X[| = pu.

So &’ is [k, p-mad, and it includes a partition € of k into  sets of size p, as desired
(see also Proposition 5.1(vii)). m

PROPOSITION 5.6. If k is regular, then MAD(k) N [k,00) C MAD(x™, &, k).
Proof. Let A € MAD(k) N [k, 00). Note by Proposition 2.6 that £ < A. Now we construct
y, for k < a < kT so that the following conditions hold:

(1) #, is [a]®, k-mad.
(2) If K < 8 < a, then o3 C .
(3) |al = A
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To start with, let «7; be obtained by the definition of MAD(k) so that (1) and (3) hold;
(2) does not apply yet. Now suppose that k < a < T and /3 has been defined for all
B € [k, a).

CASE 1: a is a successor ordinal 3+ 1. Let o, = /3. Clearly (1)-(3) continue to hold.

CASE 2: « is a limit ordinal, and cfa < k. Let @ = U,<5., @3- By (2) it is clear
that o7, is k-ad. Suppose now that I' € [a]”. Let (B¢ : £ < cfa) be a strictly increasing
sequence of ordinals with supremum «, and with By > k. Then there is a £ < cf « such
that |[I' N fB¢| = k. It follows that there is an X € 73, such that [I'N X| = k. Thus <7,
is [a]", k-mad. So (1) holds. Clearly (2) holds, as does (3).

CASE 3: « is a limit ordinal, cfa = &, and 36 < a Vy € (B,a) [cfy < K]. Then «
must have the form v + & for some 7. Note that &5 = 7, for all § € a'\ . Let &7 be
[a\ 7], k-mad and of size . Then we set o7, = 7, U.o/. Clearly (1)-(3) hold.

CASE 4: « is a limit ordinal, cf @ = &k, and VB8 < a Iy € (8, ) [cf v = k]. Then there is
a continuous strictly increasing sequence (f¢ : § < k) of ordinals with supremum «, with
k = o, and with |Geq1 \ Be| = & for every £ < k. By Proposition 5.4, A € MAD1 (k).
Hence let & and 2 be as in the definition of MAD;(k), with |2| = k and |«7| = A. Let
(D¢ : € < k) be a one-one enumeration of Z. Let f be a one-one function mapping x
onto a such that f[Dg] = k and f[D11¢] = Bet1 \ Be for every £ < k. Then we define

do= |J #U{fld:aca}

r<y<a
(5) , is k-ad.

For, suppose that = and y are distinct elements of <7,. If both are in UH§7 <a P, then
they are both in <7, for some 7y € [k, ), and so |z Ny| < k. Suppose that x € 7, with
v € [k, ), and y = fla] with a € &7. Choose £ < k so that v < §¢. Then

w0y B\ g0y cr[(UDy)nal,
n<g

n<g
which has size less than x. If z = f[a] and y = f[b] with a,b € &7, clearly |z Ny| < k. By
symmetry, these are all possibilities.

(6) “y is [a]®, k-mad.
For, let z € [a]”.
SUBCASE 1: |20 (Bey1 \ Be)| = & for some § < k. Choose y € &3, ,, such that [xNy| = k.

SUBCASE 2: 2 N (Be1 \ Be) has size less than « for all £ < k. So, |f~1[x] N D¢| < & for
all £ < k. Choose a €  such that |f~[z] Na| = k. So |z N fla]| = k.

The construction is completed. Clearly |, .+ “ is [x7]", k-mad, as desired. =
COROLLARY 5.7. If K is regular, then 6, = 0+ ,p-

Proof. By Proposition 5.6 we have a, > a,+,,., and by Proposition 4.10, a,.+,, > ¢ for
some 0 € MAD(k) N [k, 00), SO alSO A+, > Gy. W
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CONSISTENCY RESULTS

There are several natural consistency questions and results concerning the existence of
models of ZFC with special MAD properties. These concern:

(1) Models where [MAD(k, pi, )| is small and all members of MAD(k, p1, v) are small.
(2) Models with |[MAD(k, p, v)| small, but the members of MAD(k, u, v) large.

(3) Models where MAD(x, i, v) has large members.

(4) Models where [IMAD(k, u, )| is large.

(5) Models in which MAD(k, i, v) is specified in advance.

As will be seen, there are several open questions in connection with the known results.
We survey the various consistency results now. Those given with details in the literature
will not be reproved here, but several of the consistency proofs for the countable case can
be easily generalized, and we give the details.

e First, the notions can be completely described under GCH, and we give this de-
scription in Section 6. Models of GCH are of type (1).
e MA gives models of type (2). The following theorem is due to Wage [79].

THEOREM. (MA) Assume that w < p < 2%, and (Ty : o < p) is a system of countable
almost disjoint subsets of some cardinal k. Then there is an M C k such that |[M| = k
and M NT, is finite for all o < . m

COROLLARY. (MA)
(i) If A € MAD(k, w,w), then A > 2%.
(ii)) MAD(w) = (0,w) U {2¥}. =
PROBLEM 6. Is there a model in which for every infinite cardinal k, if K > Kk,2% then
MAD(k,w,w) = {k“}?
PROBLEM 7. What can one say along these lines for the general notion MAD(k, u, v)?
e Theorem 6.1 of Baumgartner [76] is relevant to (3). That theorem implies that if M
is a model of GCH, and A < u < k < p are cardinals in M such that A and x are
regular, then there is a generic extension preserving cofinalities in which a,,\ > o.
e Modifying the argument of this theorem of Baumgartner, we can give a result of
type (4) for MAD(k, k, v); this is done in Section 7.
e Blass [93] gave a result of type (5) for the case of all three cardinals equal to w. We
generalize this to MAD(k) for x regular, and to MAD(k, p1, i), in Sections 8 and 9.

6. MAD families under GCH

GCH treats question (1) in the above list. Theorem 3.4 of Baumgartner [76] implies the
following:

PROPOSITION 6.1. (GCH) MAD(%, 1, v) N (K, 00) # 0 iff v = p and cf pp = cf k.
Proof. =: Say A € MAD(k, i1, v) N (k,00). Then k™ € AD(k, u, v).
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Suppose that v < p. Then there is a p/ € [v, p] with cf @/ # cf k. In particular,
' < k. By 1.2, Kt € AD(k, i/, v). Thus cf k # cf kT and cf k # cf i/, so by 2.2 there is
a o € [, k) such that k* € AD(o, 1/, v). Now kt < o by 2.4, ¢¥ < o by GCH, and
0T < k, contradiction. Thus v = p.

Suppose that cf u # cf k. By 2.2, there is a o € [y, ) such that kT € AD(o, u,v).
Hence kt < ¢” by 2.4, and ¢ < o+ < k by GCH, contradiction.

<: If k is regular, then p < k and cf p = cf x imply that p = x. We then have
MAD(k, K, k)N (K, 00) # 0 by 2.6. Suppose that & is singular. Then the desired conclusion
holds by 4.16 and 4.17. m

Together with other results above, this gives a complete description of MAD under
GCH, where the sets are as small as possible:

PROPOSITION 6.2. (GCH)

(i) If k is regular and p < K, then MAD (&, u,v) = {k}.
(i) If k is singular and v < p < Kk, then MAD(k, 1, v) = {k}.
(iii) If k is singular, pu < k, and cf p # cf k, then MAD(k, p, u) = {k}.
(iv) If Kk is singular, u < k, and cf p = cf K, then MAD(k, u, 1) = {kT}.
(v) If v < K, then MAD(k, k,v) = [1, K.
(vi) If k is regular, then MAD(k) = [1,x) U {skT}.
(vii) If K is singular, then MAD(k) = [1,cf k) U (cf K, k7).
Proof. (i): By 1.1(ii) and 6.1.
(ii): By 1.1(ii) and 6.1.
(iii): By 1.1(ii) and 6.1.
(iv): By 1.1(ii), 2.4, 4.16, and 6.1.
(v): By 1.1(iii) and 6.1.
(vi): By 1.1(iv), 2.4, and 2.6.
(vii): By 1.1(iv) we have [1,cf k) C MAD(k). By 4.18, cf k € MAD(k). If v is regular
and cf k < v < K, by 4.13 choose § € MAD(k) such that v < § < vefr . But vefe = v by
GCH, so v € MAD(k). By 4.6, all singular cardinals in (cf %, x) are in MAD(k). By 4.15,
also K € MAD(k). Finally, k* € MAD(x) by 6.1. m

7. Many members of MAD(k, k, )

For the remainder of the notes we shall refer to Kunen [80] for basic notions and results
concerning forcing.

THEOREM 7.1. Suppose that M is a model of GCH, and in M we have infinite cardinals
K, v, and X\ with v < kK < X\, where v and k are reqular. Then there is a generic extension
MIG] of M preserving cofinalities and cardinals such that in M[G], every reqular cardinal
in (k,A] is a member of MAD(k, k, V).

The proof of this theorem will occupy all of this section. As mentioned above, it is a
generalization of Theorem 6.1 of Baumgartner [76], and the proof also follows the lines of
his proof. He worked with only one cardinal A and produced a generic extension preserving
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cofinalities such that in the extension A € AD(k, k,v). This was done by starting with
an extension in which A € AD(k, k, k) and thinning out the almost disjoint family. So,
we do something similar, except in starting with a whole set of cardinals.

To start with, we work in ZFC. Assume that , v, A are infinite cardinals with v and &
regular, v < kK < A\. We define

O = {a: ais a limit ordinal and o < A and k < cfa}.

This is the set which takes the place of Baumgartner’s \. Let F := (F(«, ) : « € O,
B < a) be a sequence of subsets of k, possibly with repetitions. Now for u regular and
v < p < K, let Q(k,u, F) be the set of all functions f such that the following two
conditions hold:

(1) dmn(f) € [O]<#;
(2) for all @ € dmn(f), fo is a function, dmn(f,) € [a]<#, and for all § € dmn(f,),

fa(B) € [F(a, B)] <.
For f,g € Q'(k,p, F) we write f < g iff the following conditions hold:

(3) dmn(g) € dmn(f);
(4) for every o € dmn(g),

(a) dmn(ga) € dmn(fa);
(b) ga(ﬂ) - fa(ﬁ) for all 8 € dmn(ga)§
(©) ga(B) Nga(y) = fo(B) N fol(y) for all distinet 3,7 € dmn(g,,)-

Let K be the set of all regular cardinals p such that v < p < k. Suppose that p € K.
Then Q(k, p1, F) is the set of all functions f € [[ < ¢ ;¢ Q' (5, 0, F) such that the following
condition holds (where for clarity the value of f at g is written as f9):

(5)If 0,0/ € K and p < ¢ < ¢/, then dmn(f2) C dmn(f?), and for all a € dmn(f®),
dmn(fg) € dmn(f¢), and for any § € dmn(£8), f&(8) € 1 (8).

For f,g € Q(k,u, F) we write f < g iff f¢ < g2 for all p € K such that pu < o. For any
u € K we let

Qu(s, F) ={fllv,n] N K) : f € Q(k,v, F)}.
For f,g € Qu(k, F) we define f < g iff fe <geforall pe v,y NK.
Finally, Q(k, ) stands for Q(k, u, F') with F(a, ) = k for all 8 < a € O; similarly
for Q'(k, 1) and Q. (k).

LEMMA 7.2. If p € K, p~* = p, and |F(a,8) N Fla,v)| < p whenever « € O and
B < X< a, then Qu(k,F) has the " -chain condition. In particular, if k<% = K, then
Q(k,v) has the kT -chain condition.

Proof. Suppose to the contrary that I is a set of pairwise incompatible elements of
Qu(k,F), with |I| = pt. Now for any f € I we have f = g[([v,pu] N K) for some
g € Q(k,v, F), and so f* = g* € Q'(k,u, F), and hence the function f* is a member
of Q' (k,u, F), and so its domain has size < u. By the A-system theorem, we may as-
sume that (dmn(f*) : f € I) is a A-system, say with kernel D. For all f € I we have
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| Uaedmn( gy dmn(f£)] < p, so we may assume that

U dmn(f®):fe 1>
acdmn(f*)
is a A-system, say with kernel D’. And for each f € I the set Uaedmn(f“) Uﬁedmn(féf) fE(B)
has size less than p, so we may assume that

U U #oirern)

acdmn(f*) Bedmn(fE)

is a A-system, say with kernel R. Let

X = U F(a,B8) N F(a,7).
a€D,ByeD’, f#y
Since |D| < p, |D'| < p, and each |F(a,B) N F(a,v)| < u, we have |X| < pu. Let
Y =X UR. So |[Y]| < u. Now we claim:

(%) There exist I’ € [IJ*" and a function f € J := Hoep nx D(D'([y]<#)) such that
Vg € I' Vo € dmn(g) Vo € D Ndmn(g?) V3 € D' ndmn(g2) [¢2(8) NY = f2(8)].

To prove this, first suppose that g = ot for some o. For every g € I define a function ,f
as follows: dmn(yf) = K N [v, ). For each ¢ € [v,u] N K let dmn(,f?) = D, and for any
a € D let dmn(,f2) = D’. Then for ¢ € [v,u| N K, a € D, and § € D’ let

Jf28) = {gg(ﬁ) nY ifac (.hnn(g@) and § € dmn(g2),
0 otherwise.

Note that g € Q,(x, F'), and hence there is a k € Q(x, v, F) such that g = k[([v, u] N K).
Hence g2 = ke € Q'(k, 0, F), and g2(8) € [F(a, 8)]<". So ,f2(8) € [Y]<".

Thus 4f € J. Note that J has size at most p since |[v, u]| < o < p. Hence (x) follows
in the case that p is a successor cardinal.

Now assume that y is a limit cardinal, and hence is weakly inaccessible. Temporarily
fix g € I. We claim:

(¥) There is a 7(g) € [v, ) such that g7(9) = ¢ for all £ € [7(g), ).

We can see this step by step as follows. If v < o <7 < p and 0,7 € K, then dmn(g?) C

dmn(g”) C dmn(g#) and |dmn(g")| < u. Hence there is a 0(0,g) < p with 0(0,9) € K

such that dmn(g(9)) = dmn(g7) for all 7 € [0(0, g), u)NK. Now for all & € dmn(g?(*:9))

and any 7 € [0(0,g),u) N K we have dmn(gg(o’g)) C dmn(g]) C dnlm(gg) and |[dmn(g#)|
g , O, g

<, so there is a o(1,a,9) € [0(0,9), ) N K such that dmn(ga ) = dmn(g7) for
all 7 € [o(1,, 9), ). Let 0(2,9) = SuP,edmn(ge0.0) 0(1, @, 9). So 0(2,9) < p, and for
all & € dmn(g°29) and all 7 € [0(2,g), 1) Wwe have dmn(g3*?) = dmn(g7). For all
a € dmn(g°?9), 7 € [0(2,9), 1), and § € dmn(gg(Q’g)) we have gg@’g)(ﬂ) C gr(p) C
g“(B3), and |g*(B)| < p, so there is a 0(3,a, 3,9) € [0(2,9), 1) N K such that ¢5(3) =
gg(?”a’ﬁ’g) (B) for all € € [0(3,,8,9), 1), @ € dmn(g"(&a’ﬁ’g)), and 0 € dmn(gg(g’a’ﬁ’g)).
Let 7(g) = Supaedmn(ga(z,m)supﬁedmn(gg@‘g))0(3,04,/6’,9). Then 7(g) < u, and for all
¢ € [r(g),p), a € dmn(g™¥), and 3 € dmn(ga'?) we have gol?(8) = g5(3). Hence
g™9) = ¢¢ for all £ € [1(g), ), as desired in (¥x).
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Now we unfix g. Let I’ € [I]*" be a subset of I on which 7(g) has a constant value .
Now for any g € I" define ,f € J = [] D(D'([Y]<H)) as follows. For any
o€, TINK,a €D, feD, let

_fg2(B)NY if o € dmn(g?) and 5 € dmn(g2),
gfo‘g(ﬁ) N {O otherwise.

o€ v, TINK

Since |.J'| < p, let I” € [I""]*" be such that of is constant, say with value f’, on I"”.

For any g € I" define 4h € D(D'([Y]<H)) by setting, for any a € D and g € D',

Jha(B) = {gg(ﬁ) Ny ifac c.imn(g“) and € dmn(gh),
0 otherwise.

Now |P(P'([Y]<#))| < u, so there is an I’ € [I"]<* such that ,h is constant, say equal
to h, on I'.

Define f € J by: f¢ = (f")2 for o € [v,7], f¢ = (f")" for o € (7,1), and f* = h. Then
(%) holds. Namely, if g € I’, p € dmn(g), « € D Ndmn(g?), and 3 € D’ Ndmn(g2), then

o f8(B) = (f)a(B) = f&(B) ifv<op<r,
gB)NY =9 gh(B)NY =, f2(B) = (f)L(B) = fe(B) ifT<o<u,
gha(B8) = ha(B) = f2(3) if 0= p.

Thus, indeed, () holds also when p is inaccessible.

Choose I’ and f as in (). Take any two distinct g,h € I’. We claim that they are
compatible (contradiction!). To see this, for ¢ € [v,u] N K let dmn(k?) = dmn(g?) U
dmn(h?). For each o € dmn(k?) let

g2 if a € dmn(g?) \ dmn(h?),

k¢ =< he if a € dmn(h®) \ dmn(g?),

s if @ € dmn(g?) N dmn(h?),
where dmn(s) = dmn(g2) U dmn(h2), and for every 8 € dmn(s),

95(B) if # € dmn(gg) \ dmn(hg),
s(8) = § h&(B) if 8 € dmn(hg) \ dmn(g4),
95(B) Ung(B) if B € dmn(gs) N dmn(hf).

For any o € (u,k] N K let k¢ = k*. Clearly k € Q(k,v, F). Let | = k[([v,u] N K). By
symmetry it suffices to show that | < g. Take any ¢ € [v, ] N K. Only condition (4)(c) is
problematic. Take any o € dmn(g?) and distinct 3, € dmn(g2).

CASE 1: o € dmn(h?). Clear.
CASE 2: o € dmn(h?). Thus a € D.
SUBCASE 2.1: 3,7 ¢ hg. Clear.

SUBCASE 2.2: § ¢ dmn(h2) but v € dmn(h2). So v € D', and g2(8) Nh2(y) CRCY.
Hence

12(8)NIE(y) = g5(8) N [g2(v) URL ()] = [95(8) N g5 (] U [92(8) N AL (V)]
= [98(8) Ng& (MU [92(B) Nhe(v) NY]
[9a(8) N ga(M] U [9a(B) N fE(V)] (by () for h)
=[92(B) N g2 (MU [ga(B)Ngd(v)NY] (by () for g)
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SUBCASE 2.3: (3,7 € dmn(hg). So 8,7 € D', g&(B)Nh&(7) SR CY, g2(v)Nh&(B) C Y,
and h2(8) Nhe(y) C X CY. Hence

12(8) NIE(7) = [98(B) URZ(B)] N [g8(7) U hS (V)]
= [98(8) N g& (M U [92(8) NhE (V)] U [RE(B) Nga (7] U [h&(8) N hE(7)]
= [98(8) Ng& (V] U [92(B) Nhe(y) NY]
Urg(B) Nga(v) NYTU[RE(B) NhE(v) NY]
= [98(8) Ng& (MU [g2(B) N fEMMTU [£3(B) N ga (MU [fE(B) N fE()]
l9a(B) N ga(M]U[g2(B) Ngg(v) NY]=g2(B) Ngd(y). =

LEMMA 7.3. If p € K, then Q(k, ) is p-closed.

Proof. Suppose that v < p and (¢f : £ < v) is a sequence of members of Q(k, u) such
that ,f < ¢f whenever £ < n < v. For any g € [, k] N K let dmn(g?) = U£<y dmn(¢ £9).
For each a € dmn(g?) let dmn(g2) = U§<”ya€dmn(§fg) dmn(¢ £2). For each § € dmn(g2)
let

= (Hef28) : € < v, a € dmn( f9), B € dmn(e f2)}.

Clearly g € Q(k, ). We check (4)(c). Suppose that £ < v, o € [, k] N K, o € dmn(¢ f9),
and § and v are distinct members of dmn(¢ f2). Suppose that 6 € g2(8) N ¢g2(7y). Then
there is an n € (£, v) such that a € dmn(, f9), 3,7 € dmn(, f2), and 6 € , f&(3) Ny, f2(7).
So 6 € ¢ f3(B) Nef&(7) since ,f <¢f. m

At a certain point in the proof of the next lemma we will need the following general
fact about forcing. Recall from Kunen [80, VII.2.12] the definition of the standard name
for a generic filter.

FacT 7.4. Let I' be the standard name for a generic filter. Then s |- 3f € I' [x(f)] iff
the set
{r:3f [r < f andrIFx()]}

is dense below s.

Proof. =: Assume the lhs, and suppose that ¢ < s. Let G be generic with t € G. By
the lhs, choose f € G such that M[G] = x(f). Choose k € G such that k I x(f). Take
r < f,k,t. Clearly r is as desired.

<: Assume the rhs. Let s € G, with G generic. By the rhs, choose r in the indicated
set with » < s and r € G. Then choose f as indicated. Then f € G and MI[G] = x(f),
as desired. m

LEMMA 7.5. Let G be Q(x,v)M -generic over M, and suppose that u is a regular cardinal
of M such that v < u < k. Let

H={fl(u",kINK): feG}, J={fl(v,u]NnK):feG}
Then

(6) M[G] = M[H][J];
(7) H is Q(k, uT)M-generic over M;
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(8) J is Q. (r, F)YMWH_generic over M[H], where

Fla,8) = {2 (8) - f € H, a € dmn(f*"), § € dmn(f47)}
forall B < ae€O.

Proof. First we check (7). Clearly if f,g € H then there is an h € H such that h < f, g.
Now suppose that f € H and f < g € Q(k,u™); we want to show that g € H. Say
f=f"1([p", k] N K) with f’ € G. It suffices to define an h € Q(k,v) such that f' < h
and h[([u*,s] N K) = g. So we let g C h, and for ¢ € [v,u] N K define dmn(h?) =
dmn(g”" ) N dmn(f’2), and for any o € dmn(he) let dmn(hg) = dmn(gt" ) N dmn(f/2),
and for every 8 € dmn(h2) let he(8) = gg+ (B) N fle(B).

Take any o € K; we check that h¢ € Q'(k,v). For ¢ € [u",x] we have he = g2,
so this is given. Suppose that ¢ € [v,u]. Then (1) and (2) are clear for h?. So always
he € Q' (k,v).

Next, we check (5). Suppose that 9,0 € K and ¢ < 0. If u* < p, then (5) is OK
since h? = g2 and h? = ¢°. If o < p, then (5) holds since f' € Q(k, V). So, suppose that
0<pu<pt <o. Then

dmn(h?) = dmn(g"+) Ndmn(f?) C dmn(g“+) C dmn(g?) = dmn(h?).
For o € dmn(h?),
dmn(hg) = dmn(g") N dmn(f¢) € dmn(g4”) € dmn(g7) = dmn(hY).
For § € dmn(h2),
n

he(B) =g (8) N £2(8) € g (B) < 92(B) = h(B).

So h € Q(k,v).

Now we check that f' < h. Let 9 € K. If p € [uT, k], then f'¢ = f¢ < g2 = he,
as desired. Suppose that o € [v,u] N K. Then dmn(h?) C dmn(f’?). Suppose that o €
dmn(h?). Then dmn(h2) C dmn(f/2). If 8 € dmn(hg), then h2(8) C f/2(3). Finally, to
check (4)(c), suppose that § and  are distinct members of dmn(h2). Then

RE(B) NhE(Y) = gh (B) N F22(8) Mgl () N 12 ()
=gk (B) N gk (%) N FE(B) N 122 ()
= (BN () N FAB) N £2(7)  (using (4)(c), since f < g)
= f2(B) N fe£ ().
So, indeed, f’ < h. It follows that g € H.
Now suppose that D is a dense subset of Q(x,u™) in M. Let
D'={feQkv): fl([u*,k]NK) €D} (in M)

We claim that D’ is dense in Q(k,v). For, let ¢ € Q(xk,v). Choose f € D so that
f <gl(ut,s]NK). Define f’ with domain K by: f C f/ and for g € [v, u|N K, f'? = g°.
To show that f' € Q(k,v), the only questionable point is (5) for v < p < p < pt <o < k.
Then

dmn(f'?) = dmn(g?) C dmn(g”) € dmn(f%) = dmn(f"7),
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and for any o € dmn(f'?),
dmn(f!?) = dmn(g2) C dmn(g7) C dmn(fJ) = dmn(f.7),

«

and for any 3 € dmn(f/2),

S(8) = 92(B) C g2(B) € f2(B) = f&7(B).
So f' € Q(k,v), hence f' € D'. Clearly f’ < g. This shows that D’ is dense in Q(k, V).
Hence choose f € D' NG. So f[([uT,xk] N K) e DN H. So (7) is proved.
Now we turn to (8). Let 6 be a name in M for Q,(x, F'). Note
(a) GMU C M.
In fact, work in M[H]. Let f € M Tet

L={(¢0.a,B): 0 € dmn(f), & € dmn(f?), § € dmn(fg)}.
Thus L C K x A x A\, and |L| < p. Let g be a mapping of u onto L.
We no longer work in M[H]. By (7), 7.3 and Kunen [80, VII.6.14], g € M, and hence
L € M. Now we claim that if (9, a, §) € L, then f2(5) € M. If f&(8) = 0, this is obvious.
If f2(8) # 0, let h be a mapping of u onto f2(5). By (7), 7.3 and Kunen [80, VII.6.14],
h € M and hence f2(3) € M. This proves our claim. Now define f'(p,a,8) = f&(5)
for any (o, ,8) € L. Then f’ maps L into 2™ (k), and so by (7), 7.3 and Kunen [80,
VIL.6.14], f' € M. Hence f € M, proving (a).
Now let I' be the standard name for a generic filter. Then the following formula
o(x, o, B) expresses that x C F(a, 5):
VyezIf el [aedmn(f* )ABedmn(f~ ) Ay e 47 (B)).
Thus oM (z, a, ) iff z C F(a, B).
Now let ¢(2) be the following formula:
dmn(z) = v, N K AJw [w € Q(k,v) AVo € v, u] N K (22 =w?)
AVa € dmn(wt) V6 € dumm(wt) o(w?(8), 0, 5)).
Thus »MHl(2) iff 2 € Q,(k, F). Now we claim:
(b) In M, if f € Q(k,put) and g € M, then f IF ¢(g) iff g € Q,(x) and the set {h €
Q(k,uT): gUR € Q(k,v)} is dense below f.
For =, suppose that f € Q(x,u™), g € M, and f IF +(g). Take any h < f. Choose w
and k < h so that w € Q(k,v), g = w[([v,u] N K), and for all & € dmn(w*), and all
B € dmn(wh), k IF p(wl(B), a, 3). Clearly then g € @, (x). Note that dmn(g) = [v, y]NK,
while for each h € Q(k, u*) we have dmn(h) = [u™, k] N K. Now for all & € dmn(g*) and
all 8 € dmn(g#) we have
kb vy € gh(B) A el [aedmn(® )ABedmn(” ) Ay e " (B)).
Fix a € dmn(g"), § € dmn(g#), and v € g(5). Then
kIF3 el [aedmn( )ABedmn(” ) Ay el (B).
By Fact 7.4,
{r:3fr<Inaedm(®)ABedmn(l ) Ay el (B)]}
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is dense below k. Note that if 7 < I, o € dmn(i*"), 8 € dmn(i*"), and v € I/ (3), then
o€ dmn(r*), B € dmn(r”"), and v € r*"(3). So
{r:ac dmn(r’ﬁ), B e dmn(rng), v E r5+ (8)}
is dense below k. By pt-closedness, it follows that for each a € dmn(g#) and 3 € dmn(g¥)
the set
{rea€dun(r), § € dmn(rt’), gi(8) Crl (8)}

is dense below k. By pT-closedness two more times,
{r : dmn(g") C dmn(r"+)
and Vo € dmn(g*) [dmn(g?) C dmn(r5+) and V8 € dmn(g") [gh(3) C rng OGN}
is dense below k. For [ in this set, g Ul € Q(k,v), as desired in (b).

For the other direction, assume the condition, and suppose that f € L, with L
Q(k, uT)-generic. Choose h < f in the indicated set, h € L. So for all o € dmn(g*)
and all 8 € dmn(g#) we have a € dmn(h*"), 8 € dmn(hﬁf), and g~ (B) C hﬁf (8). Thus
w(gh (), a, B) holds. Hence 1(g) holds, as desired.

Now we start actually proving (8). Clearly if f,g € J, then there is an h € J such
that h < f,g. Now suppose that f € J and f < g € Q,.(k, F)MH]. Choose h € H such
that h IF (g). So by (b), there is a k € H with k¥ < h such that gUk € Q(k,v). Say
k=kK[([u", k)N K) with ¥ € G, and say f = f'[([v,u] N K) with f' € G. Choose |l € G
with I < &', f’. We claim that | < g Uk (hence gUk € G and so g € J). In fact, if
o€ v,u]NK, then [2 < f'¢ = fe < g2 and for p € [uT, k]| N K, 12 < k' = k°.

Next, suppose that D is Q,(x, F)MHl_-dense in M[H]. Let 7 be a term such that
7H = D. Now we introduce some notation for an arbitrary f € Q(k,v):

f(M):fr([MJF’K]mK)’ f(u):ff([’/,#]mK)
Now in M[H] we have: D C Q,(k,F) AVh € Q,(x,F) 3k € D (k < h). Hence choose
f € H such that
(c) fIFVE €T (k) AVh [¢p(h) — Tk e T (kK < h)].
Say f = ¢ with g € G. We now claim (in M):
(d) {h € Q(k,v) : KW IF b, € 7} is dense below g.
To prove this, take any r < g. Now r(®) < f. so
(e) 7 I-VE € 7 p(k) AV [(h) — Tk € 7 (k < h)].
Now
(f) 7(u) € Qu(k) and {h € Q(k, 1) : v,y Uh € Q(k,v)} is dense below r#).
For, the first statement is clear. Now suppose that s < 7(*). Then Ty Us € Q(k,v). For,
dmn((r,))") = dmn(r#) C dmn(r“+) C dmn(s’ﬁ)
and for any a € dmn((r(,)*),
dmn((r(,))%) = dmn(r#) € dmn(rt ") C dmn(s"),

and for any § € dmn((r(l‘))g)’
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(r10)4(8) = ri(8) Crti” () C st ().
So, (f) holds.

By (f) and (b) we have r(*) I 1(r(,,)). Hence by (e), 7 |- 3k € 7 [k < r(,) Ap(k)].
Let L be Q(k, uT)-generic over M such that 7(#) € L. Choose k € 7, such that k < T(1)
and 9% (k). Note that kK € M by the version of (a) for M|[L]. Choose s € L such that
sl-ke7Ay(k)and s < ™. By (b), choose | < s such that ¢t :== kUl € Q(k,v). Thus
tW) =11 y(k), and k = t(u)» SO t) |- Y(t()). Moreover, t < r since if ¢ € [v, u] N K
then ¢ = k¢ < (r(,))? = r?, while if ¢ € [u*, K] N K then t¢ =2 <52 < (riW)ye = re. So
(d) holds.

By (d), there is a u € G such that v < g and u(* |- u(y) € 7. Hence u®) € H, so
u(y) € J N D, as desired.

Thus (8) holds.

Finally, we turn to (6), where we apply Kunen [80, VII.2.9]. We have M C M[G] and
H € M[G], so M[H] C M[G]. And J € M[G], so M[H][J] C M[G].

For the other inclusion it suffices to show that G € M[H][J]. For any function f,

feG iff fl(ut k]NK) € H and f[([v,u] N K) € J and dmn(f*) € dmn(f*")
and Vo € dmn(f*) [dmn(f£) C dmn(féﬁ)

and VG € dmn(f7) [f5(8) € f& (D))
This finishes the proof of (6) and of Lemma 7.5. =

LEMMA 7.6. Cofinalities are preserved in M |G|, where G is Q(k,v)-generic over M.

Proof. By Kunen [80, VIL5.9] it suffices to get a contradiction upon assuming that 7 is
regular in M but singular in M[G]. Let u = c¢f 7 in M[G]. Thus p is a cardinal in M. If
i < v, this contradicts Lemma 7.3 and Kunen [80, VIL.6.14]. If k < u, then Q(k,v) has
the kT-cc by Lemma 7.2, hence the " -cc, so this contradicts Kunen [80, VIL.6.9] since
cf(1)M =7 > pt. So, assume that v < p < k.

Let H, J, and F be as in Lemma 7.5. By Lemma 7.3, Q(x, u™) is puT-closed. Hence
by Kunen [80, VIL.6.14], ¢cf7 > p* in M[H]. Also, u~* = p in M[H] by Kunen [80,
VII.6.14]. Next,

(1) |F(a, B) N F(ar,7y)| < p whenever 8 < v < a € 0.
To prove this, we may assume that F(«, 3) N F(a,v) # 0. Then we claim
(2) There is a k € H such that o € dmn(k*") and 3,7 € dmn(k~ ).

In fact, take any € € F(a, ) N F (e, 7). Then there are s,t € H such that o € dmn(s‘ﬁ),
Bedmn(st ), and € € s (3); and a € dmn(t*" ), v € dmn(¢ "), and € € t#" (7). Take
k € H such that k < s,t. Clearly (2) holds for this k.

Now take any § € F(«a,8) N F(a,7). Then there exist f,g € H such that a €
dmn(f*"), a € dmn(g""), B € dmn(ngr), v € dmng{7 and § € f5+ (B)N gg+ (7). Take
h € H such that h < f,g,k. Then

n

Se (B Ngt (v) ChE (B)NRE (1) = kLT (B) N kL ().
This proves (1).
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By Lemma 7.2, Q,(k,F) has the p*-cc. So cf7 > pt in M[H][J] by Kunen [80,
VIIL.6.9], contradiction. m

Proof of Theorem 7.1. Preservation of cardinalities and cofinalities follows from Lemma
7.6. Now for a € O and 8 < «, let
Gj = U 1&(8)-
feG, aedmn(fv), Sedmn(fY)
We claim that for each o € O, the system (G§ : 8 < a) is [k]", v-mad. (This will finish
the proof.) To prove this, first fix & and 8, with 8 < « € O. Then the following set is
dense:
D :={feQk,v):acdnn(f”) and 8 € dmn(f?)}.
To see this, let g € Q(k,v) be arbitrary. For each 4 € K let dmn(f#*) = dmn(g") U {a}.
Then let
dmn(gt) U{B} if o € dmn(g")
1y — o J
dmn(fz) = { {5} otherwise.
Finally, define

_ fg“(B) if @ € dmn(g") and 8 € dmn(g"),
fa(B) = {0 otherwise.

It is clear that f € D and f < g. So D is dense.
Now for each v < k the following set is dense:

E:={f€Q(k,v):acdmn(f”) and § € dmn(f%) and f2(8) N (v, ) # 0}.
For, given g € Q(k,v), by the density of D we may assume that o € dmn(g”) and 5 €
dmn(gg). Choose 0 € (7, %) \ Uredmn(gr) Urng(gs). Now define f by setting dmn(f*) =
dmn(g#) for all 4 € K, and for any ¢ € dmn(f*), dmn(f{') = dmn(gf), and for any
1 € dmn(f¢),
fg(n)_{gé’(ﬁ) %fﬁ#aorfl#ﬁ,
ga(B)U{o} if{=aandn=p.

Clearly f € Q(k,v). To show that f < g, only (4)(c) is a problem. Suppose that n #
and ¢ € fH(8) N f£(n). Thus ¢ € g¥(n), so ¢ # J, and hence also ¢ € g~ (), as desired.

By the density of £ we have [G§| = .

Next, suppose that 3 <y < a € O. We claim that |GF N GS| < v. For, choose f € G
with o € dmn(f") and 8,7 € dmn(fy). Then |G5 N GS| < [f4(8) N f5(v)| < v. In fact,
suppose that § € G§ N GY. Then there exist g,h € G such that a € dmn(g”) N dmn(h”),
B € dmn(gy), v € dmn(gg), 6 € go(3), and ¢ € h(y). Choose k € G so that k < f, g, h.
Then

6 € go(B) Nhe(v) € kG (B) Nkg () = fo(B) N fa ()
It only remains to show that for each a € O, (G§ : B < a) is maximal. First, some
notation. We write ©F for the term

U FLB),
fer, aedmn(fv), Bedmn(fy)

where I is the standard name for a generic filter. Note that (0F)c = G§.
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(9) If o € dmn(f"), B € dmn(fy), and v € f7(3), then f I~ € 6F.

For, suppose that f € H with H generic. Then f € I'y. So (9) holds.

Now suppose that X € [s]” and |X N GF| < v for all B < a; we want to get a
contradiction. Let 7 be a nice name for a subset of x such that 7¢ = X. Say 7 =
U e 17} x By, where each B, is a collection of pairwise incompatible elements of Q(x, v).
So |B,| < & for all v € k, by 7.2. Choose

pgea\lJ U dmn(f5).

Y€K fEB,,aEdmn(f*)

Now X NG§ € [k]<, so by Kunen [80, VIL.6.14] we have X NG§ € M. Let 2 = X NG3.
Choose f € G such that

flF ‘T|ZI€/\V’Y€T(’Y€@§<—>VEQ),
Let g < f with g € G, a € dmn(g”), and § € dmn(g}). Define
—ou U amu U xne,

v€dmn(g% ) ~yE€dmn(g)

[n

Note that |Z] < k. Hence we can choose § € X \ =. Since § € X, there is an r € B; N G.
Hence also there is an h € G such that h < g,r.

(10) If @ € dmn(r*), then § ¢ dmn(rk).

This holds by the choice of 5.

(11) If @ € dmn(r") and 7 € dmn(r%) N dmn(g5), then 6 & r2 (7).

For, otherwise we get r |- 6 € ©% by (9); also 7 IF § € 7. Since r € G, this implies that
0 € X NG, contradicting the choice of 4.
Now we define a function [ as follows: dmn(!) = K, dmn(/*) = dmn(g#) U dmn(r*)
for all 4 € K, and for any € € dmn(I*),
gt if e € dmn(g*) \ dmn(r*) and € # «,
. t*  if € € dmn(g*) \ dmn(r*) and € = «,
¢ ) rt ife € dmn(r”) )\ dmn(gh),
st if e € dmn(g”) N dmn(r*),
where dmn(t*) = dmn(g#) and for all § € dmn(¢*),
" .
t“(&) _ {gﬁ(Q) ?f 0 # 3,
ga(B)U{d} if 6 =0,
and dmn(s*) = dmn(g#) U dmn(r#), and for any 6 € dmn(s*),

gt (9) if € dmn(g#) \ dmn(r#) and (0 # 3 or € # ),
gy — ri(0) if € dmn(r#) \ dmn(g#),
s1(0) = gt(@) Urk(6) if 8 € dmn(g#) Ndmn(rt),

“w
€

gr(BYU{d} ife=aandd=p.

It is a straightforward but lengthy matter to check that I € Q(k,v). We claim that | < g

and [ < r. Again the hard part of checking this is condition (4)(c), and we do one of the

harder cases here. Suppose that p € K, a € dmn(g”) N dmn(r#), and 6,8 € dmn(g*),
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6 € dmn(r#), and 6 # 3; we want to show that [%(6) NI (8) C g (6) N g~ (B). We have

15(0) N1 (8) = (9a(0) Ura(0)) N (g6 (8) U{d}).
Since § & gk (0) Urk(0) by construction and (11), we get
15(0) NI5(B) = (g4(0) Urk(6)) Ngh(B) = (95(0) N gh(B)) U (r&(0) N gh(B))
€ (g4(0) Ng&(B)) U (R (0) N he(B)) € ga(0) N gh(B),
as desired.
Now we can finish the proof. Since [ < r and r I § € 7, we have [ IF § € 7. But also
1 <g,s0llF0€0f — e 2 By construction, § € I4(3), so by (9) we get I IF 6 € OF.
These facts contradict § & (2.
The proof of Theorem 7.1 is finished. =

8. Specifying MAD(k)

Let k be a regular cardinal, and let C' be a set of cardinals satisfying the following
conditions:

(1) each member of C is greater than x;

(2) C is closed;

(3) C contains the immediate successor of each of its members of cofinality between w
and k inclusive;

(4) C contains all cardinals in [T, |C|];

(5) kT e C.

The aim of this section is to prove the following theorem, which generalizes a theorem in

Blass [93].

THEOREM. Assume the above about k and C, in a countable transitive model M of GCH.
Then there is a partial ordering P such that if G is P-generic over M, then cofinalities
and cardinalities are preserved in M|G], and in M|G], MAD(k) = C.

Note that the set C' is not quite arbitrary. We do not know to what extent this theorem
can be generalized to other sets.
The proof of the theorem follows Blass [93] as well. We begin by defining the partial
order P.
Let P be the set of all functions p such that
(6) dmn(p) € [C]<";
(7) for all A € dmn(p), px is a function, dmn(py) € [A]<¥, and for all § € dmn(p,),
pA(B) € [K]=".
For p,q € P we write p < ¢ iff
(8) dmn(q) € dmn(p);
(9) for all A € dmn(q),
(a) dmn(gx) € dmn(py);
(b) for all 5 € dmn(gx), gA(8) S PA(B);
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(c) for all distinct 8, € dmn(gy),

A (B) Nax(v) = pa(B) Npa(7)-
LEMMA 8.1. If k<F = K, then P has the k¥ -chain condition.
Proof. Suppose that I C P is pairwise incompatible and |I| = x*. Without loss of
generality,

(dmn(p) : p € I)
is a A-system, say with kernel D, and
U dmn(py) :p € I>
A€dmn(p)

is a A-system, say with kernel E. Then
(10) there is an f € P(¥([k]<*)) such that

I''={pel:YAeDVBEE p\(B) = fr(B)]}

has size k1.

We now claim that any two distinct members p, g of I’ are compatible (contradiction!).
Define r as follows: dmn(r) = dmn(p) U dmn(g). For any A € dmn(r),

px if A € dmn(p) \ dmn(g),

)

ra=1< g if A€ dmn(g)\ dmn(p
s if A € dmn(p) N dmn(q),

)

)
where dmn(s) = dmn(py) U dmn(gy ), and for any 8 € dmn(s),

(

pa(B) if 8 € dmn(py) \ dmn(gy),

ax(B) if 8 € dmn(gy) \ dmn(py),

pA(B)Ugx(B) if f € dmn(py) Ndmn(gy).

Clearly r € P. By symmetry we show only that r < p. Only (9)(c) is a problem. Suppose
that A € dmn(p) and S and « are distinct members of dmn(py). If A € dmn(gq) the
conclusion is clear. Assume that A € dmn(q). If 8,7 & dmn(gy) the conclusion is clear.
Suppose that § € dmn(gy) and v & dmn(gy). Then A € D and 8 € E, so g\(8) = pA(B)
and the conclusion is clear. The other cases are similar. m

s(8) =

LEMMA 8.2. P is k-closed. m

THEOREM 8.3. Assume the above about k and C, in a countable transitive model M of
GCH. Let G be P-generic over M. Then cofinalities and cardinalities are preserved in
MIG], and in M|G], MAD(x) = C.

Proof. By the lemmas, cofinalities and cardinalities are preserved. Now for A € C' and
B < A, let

Ay ={y<r:3peG[Xedmn(p), B € dmn(py), v € pr(B)]}.
(1) IfAeCand B <A, then D:={pe P:\ecdmn(p),l € dmn(py)} is dense.

In fact, let p € P be given. If A & dmn(p), let ¢ = pU {(A,{(3,0)})}. Clearly ¢ € D and
g <p.If A € dmn(p) but 8 &€ dmn(p,) one proceeds similarly.
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(12) If A e C, B < A, and v < K, then
{p € P: X €dmn(p), 8 € dmn(py), pA(B) N (7,K) # 0}

is dense.

For, suppose that ¢ € P. By (11) we may assume that A € dmn(g) and § € dmn(gy).
Choose

setnm\ U o

£€dmn(gx)
Let p be like ¢ except that px(8) = gx(§) U{d}. Clearly p € P. To show that p < ¢, the
only sticky point is to prove that if € is a member of dmn(g,) different from 3, then
ax(8) Nax(e) = pa(B) N pale).
Since § € gy (¢), this is clear.
So (12) holds. Hence |Ag| =xforall A e, g <A
(13) If A € C and 3 and v are distinct members of X, then [A} N AJ| < k.
For, by (11) choose p € G such that A € dmn(p) and 5,y € dmn(py). We claim that
A3 N A =pa(B) Npa(r).

In fact, D is clear. Now suppose that J is in the lhs. Then there is a ¢ € G such that

g <pandd € q\(B)Ngr(y). Hence & € px(B) Npar(y) by (9)(c). So (13) holds.

Now fix A € C; we show that {Ag : 0 < A} is maximal. Suppose that X € [x]" and
|X N Ag\ < k for all B < . Let 7 be a nice name for a subset of x such that 7¢ = X.
Say 7 = U, {7} x By, each B, pairwise incompatible. By (11) we may assume for all
v € k that A € dmn(r) for all r € B,. Now |B| < & for all v € k, by Lemma 8.1. Choose

Be A\ U U dmn(py).

YEK pEBy

This is possible by (1). Let I" be the standard name for a generic filter. For each v < A
let

6, = Jipa(7) : p€ I, A € dmn(p), 7 € dmn(py)}.
Choose p € G such that

plE|T| =AYy <A [[TNO,| <Kl
So
plFI0<kVyerT (yeBOz—~<0).
Hence choose 6 < k and ¢ € G, ¢ < p, such that
glEVyerT (yeBs —v<0).
By (11) we may assume that A € dmn(g) and § € dmn(gy). Let

Z=0U U ax(7)-

v€dmn(gx)
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So |Z| < k. Now |U7€dmn (@) A} N X| < &, hence there is a § € X such that § ¢ = and
6 ¢ Uwedmn (an) A7 So there is a k € G and an r € Bg such that k < r ¢ and for all
v € dmn(gy), kIF 6 ¢ ©,,. Then
(14) if v € dmn(gy) and v € dmn(ry), then § & ra(7y).
For, otherwise r I § € ©,,, contradicting k < r.

Now define [ as follows: dmn(!) = dmn(g) U dmn(r). For any p € dmn(l),

qu if p € dmn(q) \ dmn(r),
l,=1% r, if p € dmn(r)\ dmn(q),
s if u € dmn(q) N dmn(r),

where dmn(s) = dmn(g,) Udmn(r,), and for any v € dmn(s),

au(7) if v € dmn(qy) \ dmn(r,,) and (u,7) # (A, B),
s(y) = () if v € dmn(ry) \ dmn(q),
gu(y)Uru(y) if v € dmn(g,) Ndmn(r,),
a(B)u{s} if (g,7) = (A B).

Note that 3 ¢ dmn(m) by the choice of 3. Clearly [ € P.
(15) I < q.

To prove this, only (9)(c) is problematic. Suppose that € dmn(g), and ¢, ¢ are distinct
members of dmn(g,). To show

QM(S@) n qu(w) = lu(@) N lu(w)

let e € [, ()N (W) If (1, 9), (1, ) # (A, 5), then € € g, (¢) Nqu(t), as desired. Suppose

that (u,¢) = (A, B). Thus ¢ # . If ¢ € dmn(ry), by (14), 6 € rA(¥). Now & & g ()
since & € =, so € # §, and the desired conclusion follows as before.

(16) I <.

Since 8 ¢ dmn(r)), this holds since k < ¢, r.
Now gl-de7AN0 <§— & Og. Sol forces the same thing. Now 6 < 4, rlFd € 7,
and ! <r,soll-6 € 7A0 <¢. HencellF § ¢ Og. This is a contradiction, since § € [5(5).
We have thus shown that {Ag : 8 < A} is maximal.

Now suppose that A > k and A € C. Suppose that, in M[G], (X, : @ < A) is a mad
family of members of [x]"; we want to get a contradiction. Choose p° € G so that

p° IF X is a MAD A-sequence of members of []*.

Let g = sup(C' N A). This is well defined since ™ € C, and so kT < A. Since C is closed,
it follows that p € C, and hence p < A. By (3), cf 4 > k. Hence p* = p.
Next, for each o < A and 3 < r let AF be such that

(17) for all g € A%, qIF 5 € X4
(18) A is pairwise incompatible;
(19) A§ is maximal such that (17) and (18) hold.

For each v < A let 7, = U{{B} x A : B < k}. Then

(20) for each o < A, 7, is a nice name for a subset of k and 7¢ = X,,.
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For, let a < \. Clearly 7, is a nice name for a subset of x. Now suppose that 3 € 7&.
Then there is a q € Ag NG. So B € X,. Conversely, suppose that 8 € X,. Choose q € G

such that ¢ IF 3 € X,. Then
(21) {s: 3r € A§ (s < r)} is dense below g.

For, if t < ¢, then ¢ IF 3 € X, so there is an r € A% such that r and ¢ are compatible.
Say s < r,t. Thus s is as desired. So (21) holds.
Choose s € G, s < q, s <r € Aj. Sor € G, hence §§ € 78, Thus (20) holds.
We define some sets needed below:
L={(v,7):vedmn(p®) and v € dmn(p°%)};
I, ={(v,a) :a<v} foreachveC,
I=JL;
vel
Jo ={(v,7) : 3B <k Ip € AF [v € dmn(p) and v € dmn(p, )]} for each a < A;

S=LU U JQUU{IVSZ/S[L,VEC}.
a<

Clearly |Jo| <k foralla < A, |I,|=vforallve C, |L| <k, S CI,and |S| <A\

We say that a subset J of I is a support of an element p € P if v € dmn(p) and
a € dmn(p,) imply that (v,a) € J. Thus L supports p°, and .J, supports each member
of Uz, 45-

Now we will define a sequence (N¢ : & < k™) of subsets of A, each of size at most p.
We define Ny = ), and for & limit, N¢ = UT<5 N;. Now assume that V¢ has been defined.

Temporarily fix K C S such that |K| < p and I, C K for all v € C with v < p.

A special set is a subset J C I such that:

(22) |J| < K;
(23) forallv e C,if JNI, \ K #0, then |J NI, \ K| = &.
Ifo= U5<N{ﬁ} x Bg is a nice name for a subset of k, a support for o is a special set J

which supports each member of | B<s Bg.
Then we have:

(24) Every nice name for a subset of x has a support.
In fact, let o = (J; {8} x Bs be a nice name for a subset of . We define
R={(v,o) : 36 < k Ip € B [v € dmn(p) and a € dmn(p,)]}.
Clearly |R| < k. Now if v € C and RN 1, \ K # 0, then |I,| = v > k, so there is a
Q. C I, \ K such that |Q,| = k. We then define
J=RU| J{Q,:RNI,\ K #0}.

Clearly J is a support for o.

Let ¢ be the group of all permutations of I that map each I, to itself and fix all
members of K. For each g € 4 and v € C define ¢" : v — v by g(v,a) = (v,¢"(a)). Now

each g € ¢ induces an automorphism g of P. Namely, if p € P, we define dmn(g(p)) =
dmn(p), for any v € dmn(p), dmn(g(p),) = ¢"[{a : @ € dmn(p,)}], and for any o €
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dmn(p,), §(p). (9" (@) = p,(a). Tt is straightforward to check that g is an automorphism
of P. For example, suppose that p,q € P and p < ¢; we check condition (9)(c) for showing
that g(p) < g(q). So, suppose that v € dmn(g(q)) (thus v € dmn(g)) and 5 and v are
distinct members of dmn(g(q),). Say 6 = ¢¥(8’) and v = ¢g”(v’), with 8" and ' distinct
members of dmn(g, ). Then

a®)u(B)Ng(p)(v) =aP)(g"(B) Ng®)(g" () = . (8) N (V) = @ (B) Na(v')
=9(0).(9"(8") N G(a)u (9" (") = 9(0)(B) N G(q). (7)-

Also ~ clearly takes inverses to inverses. So g is indeed an automorphism of P.
(25) If J is a special subset of I and g € ¥, then g[J] is a special subset of I.

For, |g[J]| = |J| < k. Now suppose that g[J] NI, \ K # 0; choose (v,a) € g[J] NI, \ K.
Write (v, o) = g(v, 8) with (v, 8) € J. Then (v, 5) € JNI,\ K, since ¢ is the identity on K.
Thus JNI,\ K # 0. Hence |JNI,\ K| = &, and so also |g[J]N[,\ K| = |g[JN[,wK]| = k.
So (25) holds.
Given J C I, let
J={veC:JnI,\K #0}.

If J,J' are special sets, JNK = J N K, and J = J', then there is a g € % such that
glJ] = J". Now |[JNK| < k and | K| < p, so there are only u* = p possibilities for JN K.

Also, J € [C]=% and |C| < pu (if |C| > p, then X € C by (4), contradiction). So there are
only p = p possibilities for J. So there are at most u %-orbits of special sets.

(26) For each special set J' there is a special set J in the same %-orbit such that JN.S =
JNK.

In fact, we define g € ¥ as follows. Let v € C. If J'NI, NS C K, let g1, be the identity.
Now suppose that J' NI, NS € K. Then A < v, as otherwise v < A, hence v < pu, and
hence I, C K, contradiction. Now |K| <y <wvand |J NI, \ K| <|J| <k <v,so we
can take g[v to be a permutation of I, that is the identity on I, N K and maps J' N1, \ K
out of S. This finishes the definition of g; clearly g € %.

Now set J = g[J']. If (v,a) € JN S, then (v,a) € JNI,NS. Choose (v,0) € J'
such that g(v, ) = (v, ). Thus (v,8) € J' N1, and g(v, B) € S, hence by construction,
(v,B8) € K, hence a = 8 and (v, ) € K. So (26) holds.

Let S be the set of all orbits of special sets. By the remark before (26) we have [S| < p.
For each @ € S let Lg € @ be such that Lo NS = Lo N K; it exists by (26). The set of
all Lq is called the set of standard sets; so there are at most i standard sets.

If o = Us..{B} x Bg is a nice name for a subset of , and g € %, we define

g* (o) = ([ J {8} x 4Bs].
B<k

Clearly ¢g*(o) is a nice name for a subset of k.

27) If J C I supports a nice name o for a subset of k, and g € ¥, then g[J] supports
3
the nice name g*(o).
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For, suppose that § < &, p € g[Bgs|, v € dmn(p), and o € dmn(p, ). Write p = g(g) with
g € Bg. Thus v € dmn(gq). Choose v so that o = ¢”(7y) and v € dmn(g,). So (v,7) € J
since J supports o, and (v, ) = (v, g% (y)) = g(v,7) € g[J], as desired in (27).
(28) If ¢ is a nice name for a member of [x]®, then there is an A € [\]<* such that
P’ IF3a e AlflonX,| =]
For, let B be a maximal pairwise incompatible subset of
{g<p®:3Fa<AglF|onXy|=r]}

Now {r : 3¢ € B (r < q)} is dense below p°. For, suppose that s < p°. Then we have
slF3a < A|loNX,| = K], so there exist a ¢ < s and an o < A such that ¢ IF |eNX,| = k.
Say q,r compatible, r € B. Then say t < ¢,r. Then ¢ is as desired.

For all ¢ € B choose ay < A such that ¢ IF [o N Xaq| = k. Let A = {a, : ¢ € B}.
So A € [\]=". Now let p° € H, H generic. Choose ¢ € H N B; this is possible by the
indicated denseness. Then ¢ |- |o N X, | = &, so [o7 N qu| = k. Thus A is as desired
in (28).

Let J be a standard set. Suppose that Q € [J]<". Let

so={peP:dmn(p) ={r e C: (v,a) € Q for some a}
and for all v € dmn(p), dmn(p,) = {a<v: (v,a) € Q}}.

There is a one-one function F from sq into [], ,)cq[r]", namely one can let F'(p),o =
py(a). It follows that |sg| < k. Now if p € P and J supports p, let Q = {(v,a) : v €
dmn(p) and o € dmn(p,)}; then @ € [J]<" and p € sq. It follows that there are at most
u elements p € P with support contained in J, hence at most p pairwise incompatible
sets all members of which have support contained in J, hence at most p nice names for
members of [k]* with support contained in J. For each nice name o for a member of
[]® with standard support, choose A, as in (28). Let Bx be the union of all such. So
|Br| < u since there are at most p standard sets.

We now define Ne¢yq: let Neyy = Bk, U N¢, where

Ke=LU U Ja U U I,.
a€Ne u>veC

(Note that |K¢| < p.)

Let @ = Ugc,r Ne. Thus also [Q < p < A Choose B € A\ Q. Recall that Jg
is a support for 75, and |Jg| < k. Define Koo = |J, ..+ K7. Fix 7 < &T such that

Js N Ko C K. Now consider the step from N, to N-41. Choose g € ¢, such that g[J3]
is standard. Thus g is the identity on K. By Jg N K C K-,

(29) Jg N (K71 \ K7) = 0;
(30) g[Jﬁ] N (KT+1 \KT) =0.

This is true since g[Jg] NS = g[Jg] N K, and K41 C S.
Choose h € ¢ such that h[J = g[J and h is the identity on K 11 \ K. So h fixes
K41 pointwise. Now

po IF3Ja € Ah*(Tﬂ) Hh*(Tg) ﬂ7"OC| = IQ],
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SO
pO IF 3o € Ah*(‘rﬂ) [|Tg ﬂi’a| = H].
This is true since Ap«(;,) € B, € Nr41, and hence J, C K; 41, so h fixes J, pointwise.

Recall that J, is a support of 7,. Also, K41 supports p°. Thus p° IF Ja € Q [|75 N 74|
= k|. But « # (3, contradiction. m

9. Specifying MAD(k, p, )

THEOREM 9.1. Suppose that M is a countable transitive model of GCH, and in M, p < k
are infinite reqular cardinals. Suppose that C is a set of cardinals satisfying the following
conditions:

(i) kT € C;
(ii) C is closed;
(iii) C' contains the immediate successor of each of its members of cofinality between

w and Kk inclusive;
(iv) [+, ]C] € C.
Then there is a generic extension M[G] preserving cofinalities such that in M[G], we

have MAD (k, u, 1) N [+, 00) = C.

Proof. The proof is similar to that in the previous section, so some details will be omitted.
We work within M for a while. Let (B, : o < k) enumerate [x]*. For all o < &, let 4
be a one-one function mapping B, onto u. Let P consist of all functions f such that

(1) dmn(f) € [C]<H;
(2) for all v € dmn(f), f, is a function, dmn(f,) € [k]<#, and

(a) for all @ € dmn(f,), fua is a function, dmn(f,q) € [v]<#, and
() for all 8 € dmn(fya), fra(B) € [Ba]<H.

For f,g € P, we define f < ¢ iff

(3) dmn(g) C dmn(f), for all v € dmn(g), dmn(g,) C dmn(f,), for all & € dmn(g,),
dmn(gya) g dmn(fua)a for all ﬂ € dmn(gua)a gua(ﬂ) g fl/a(ﬂ)a and
(a) for all v, € dmn(g, ) and all 8 € dmn(g,q) and ¢ € dmn(g,,), if (o, 8) # (¢, ¥),

then

(4) gua(ﬂ) n gmp(w) = fua(ﬂ) N fvw(qu)'
Clearly

(5) P is p-closed;

(6) P has the uT-chain condition.

For, suppose that I is a collection of pairwise incompatible conditions with |I| = pu+. We
may assume:

(dmn(f) : f € 1)
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is a A-system, say with kernel Dy, and

U dmn(fy):f61>

vedmn(f)
is a A-system, say with kernel Dy, and
U ( U dmn(f,,a)) 1 fe I>
vedmnf ac&dmn(f,)

is a A-system, say with kernel Ds. Then we may assume that if g and h are in I, v € Dy,
a € Dy, B € Da, then t4[gva(8)] = ta[hva(B)], and hence guq(8) = hua(B). Then any
two distinct members g and h of I are compatible (contradiction). We omit the proof.

Now let G be P-generic over M. By (5) and (6), M[G] preserves cofinalities and
cardinals. Now if v € C, a € K, and 8 < v, define

(7) s = UHfoa(B) 1 f € G, v e dmn(f), a € dmn(f,), B € dmn(fua)}-
We claim that for each v € C,

(8) (Apgia€r, fer)

is the desired [k]*, u-mad family.

(9) For any v € C, {f € P: v € dmn(f)} is dense.

In fact, if g € P, assume that v ¢ dmn(g). Then let f be like g except that v € dmn(f)
and f, = 0. Clearly f € P and f < g, proving (9).

(10) For any v € C and « € k&, the set
{f € P:vedmn(f)and o € dmn(f,)}
is dense.

For, let g be given. By (9) we may assume that v € dmn(g). And we may assume that
a ¢ dmn(g,). Let f be like g except that a € dmn(f,) and f,, = (. Clearly f € P and
f<g.
Similarly,
(11) for any v € C, « € K, and [ € v, the set
{f € P:vedmn(f) and a € dmn(f,) and § € dmn(f,.)}

is dense;
(12) for any v € C, a € k, B € v, and v < p the set

{f € P:vedmn(f), a € dmn(f,), 8 € dmn(foa), and ta[foa(B8)] N (v,n) # 0}
is dense.

For, assume the hypotheses of (12), and suppose that ¢ € P. We may assume that
v € dmn(g), a € dmn(g, ), and § € dmn(g,). Choose

b€ (1) \ o U (Ba Ngupl())].

gaedmn(g,,), ¢Edm11(gu<p)
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Now let f be like g except that f,o(3) = gua(8)U{t;1(6)}. Clearly f € P. To show that
f < g, only (3)(a) is a problem. So suppose that o € dmng, ¢, % € dmng,, £ € dmn(gs,),
n € dmn(gyy), and (¢, &) # (¥,n); we want to show

goso(f) ﬂgmp(n) = foga(f) N fo'w(n)-

This is clear unless one of the triples (o, ¢, &), (0,,n) is equal to (v, a, ). Say (o, p,&) =
(v, B). Now t51(8) & guy(n), so the equality follows. Hence (12) holds. By (12), each
set Ap 5 has size p.

(13) frvel, a,pck, &nev, and (o, &) # (¢,n), then \Agf NAZ,| < p.

To see this, assume the hypotheses. Clearly there is an f € G such that v € dmn(f),
a, € dmn(f,), £ € dmn(f,q), and 7 € dmn(f,,). We claim that

Z{ n A;n = fva(§) N fw(U%

which will prove (13). To see this, D is clear. Now take any § € Age N AL, Then there is
a g€ G with g < fand 8 € gua(§)Ngup(n). Clearly then 8 € f,q0(§)N fup(n), as desired.
So (13) holds.

Next, we show maximality. Suppose that v € C, X € [k]*, and | XNA} 45| < pr whenever
a € k and B € v; we want to get a contradiction. Now by the pt-chain condition, X
is contained in some subset in M of k of size u. One can see this by applying Kunen
[80, VIL.6.8], as follows. Let f : 4 — k be one-one. By Kunen [80, VIIL.6.8] there is an
F:pu— P(k)such that F € M, f(a) € F(a) for all @ < p, and |F(«)| < p for all
o < pt. Then |, ., F'(@) is the desired set in M. Let B, be such a subset. Let 7 be a nice
name for a subset of B, such that ¢ = X. Say 7 =, cp_ {7} x Cy, each C, pairwise
incompatible. So each C,, has size at most p. Choose

sev\ | ( U dmn(fm)).

YEBa  feC,,vedmn(f), aedmn(f,)

For any ¢ € r and v € v let ©F_ be the term

UtFe(r) : £ € I, v € dmn(f), @ € dmn(f,), v € dmn(fu,)}-
Here I" is the standard name for a generic filter; see Kunen [80, VI1.2.12]. Thus (07, )¢ =
AL
Choose f € G such that

fIFlTl=pAVYe e nVyev [[TNOY,| < pul.

Hence
fIF30<puVyerTlyeOi; — taly) <0
So, choose # < i and g < f such that g € G and
glEVy et [y ey —ta(y) <]

Without loss of generality v € dmn(g), o € dmn(g, ), and 5 € dmn(gyq). Let

Z=0uU U talgup(7) N Bal

pedmn(g, ), yedmn(g,,)
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So |Z| < p. Now

‘ U AY, N X| <,
pedmn(g, ), vedmn(g,,)
so there is a 0 € X such that t,(J) € = and

5 ¢ U AL, NX.

pedmn(gy,), pedmn(gy,)

Hence there exist h < g with h € G and
hl-6 €1 AYp € dmn(g,) Vi € dmn(g,,) (0 € 7).

So there exist k € G and r € Cs such that £ < h,r and for all ¢ € dmn(g,) and
Y € dmn(gyy), k 16 ¢ 67, Now

(14) if ¢ € dmn(g,), ¢ € dmn(g,,), ¥ € dmn(r), ¢ € dmn(r, ), and ¢ € dmn(r,,), then
d ¢ rl/c,o(¢)'

For, otherwise 7 I- 6 € O, contradicting k < r.

Now we define [. It is “g U r” except that 1,4 (8) = gva(6) U {0}. Note that it is not
the case that (v € dmn(r) and o € dmn(r) and 8 € dmn(r,,)), by the choice of 3.

[ < g: Assume that ¢ € dmn(g,), ¥ € dmn(g,,), and (o, 8) # (¢, ¢). Now § € g, (¢)
since to(6) ¢ =. And § & r,,(¢) by (14). Hence it is clear that [,o(8) N l,(¥) =
Gva(B) N Guep (V).

I < r: This is clear by the choice of 3.

Now glFd € 7AE <t,(6) — § & OF5. So I forces the same thing. Now ¢ < ¢,(5) by
the choice of §, and I < r,sollFd e 7AN0 <t4(6). Soll-4d ¢ ©y,5- This contradicts
[ <r.

Thus we have shown maximality.

Now suppose that A > k and A € C. Suppose that, in M[G], (X, : @ < A) is a mad
family of members of [x]*; we want to get a contradiction. Choose p° € G so that

p° IF X is a MAD A-sequence of members of [x]#.

Let L = {(v,v) : v € dmn(p®) and v € dmn(p?)}. Let ¢ = sup(C'N ). This is well defined
since kT € C, and so kT < A. Since C is closed, ¢ < A, and by (iii), cf o > . It follows
that ¢ =k in M.

Now we will define a sequence (N¢ : & < k) of subsets of A, each of size at most o.

We define Ny = 0, and for ¢ limit, N¢ = UT<§ N.. Now assume that V¢ has been defined.
(15) There is a function 7 € M with domain A such that for each o < A, 7, is a nice
name for a subset of x and 7¢ = X,,.

To see this, for each a < A and 8 < k let Aj be such that

(16) for all ¢ € A%, qIF B € X,;
(17) A§ is pairwise incompatible;
(18) Af§ is maximal such that (16) and (17) hold.
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Let 7o = U{{B} x Af : B < r}. Suppose that 8 € 7&. Then there is a ¢ € AFNG. So
B € X,. Conversely, suppose that 8 € X,. Choose ¢ € G such that ¢ IF 3 € X,.Then

{s:3IrecAjz(s<r)}

is dense below ¢. For, if t < ¢, then ¢ IF 3 € X, so there is an r € Af such that r and ¢
are compatible. Say s < r,t. Thus s is as desired.

Choose s € G, s <¢q, s <r € AF. Sor € G, hence 3 € 78, Thus (15) holds.

We take the sets A3 as in the proof of (15). Thus [AZ] < p.

Now for each v € C'let I, = {(v,a) : a < v}, and let I = J, . 1. For each a < A
let

Jo ={(v,7): 38 <k Ip € A [v € dmn(p) and v € dmn(p, )]}
Then we set
S=LuU U JaUU{L,ZVSQ,l/EC}.
a<A

Thus |S] < A

Temporarily fix K C S such that |K| < g and I, C K for all v € C with v < p.

A special set is a subset J C I such that:

(19) |J| < k;
(20) forallv € C,if JNI,\ K #0, then |J NI, \ K| = &.

Ifo= UB<K{[3} x Bg is a nice name for a subset of , a support for o is a special set J
such that

(21) if B < Kk, p € Bg, v € dmn(p), and « € dmn(p, ), then (v,a) € J.

Clearly every nice name for a subset of k has a support. Also, we say that a subset J of I
is a support of an element p € P if v € dmn(p) and o € dmn(p,) imply that (v,a) € J.

Let % be the group of all permutations of I that map each I, to itself and fix all
members of K. For each v € C define ¢” : v — v by: g(v,a) = (v,¢"(«a)). Clearly each
g € 9 induces an automorphism of P. Namely, if p € P, we define dmn(g(p)) = dmn(p),
for any v € dmn(g(p)), dmn(g(p),) = dmn(p,), for any a € dmn(g(p),), dmn(g(p)va) =
g”[dmn(pyq )], and for any § € dmn(pya), (9(p)va)(9”(8)) = Pva(B)-

Given J C I, let

J={veC:JnI,\ K #0}.

If J,J' are special sets, JNK = J N K, and J = J', then there is a g € % such that
glJ] = J'. Now |[JN K| < k and |K| < p, so there are only ¢® = p possibilities for
JN K (since cf o > k). Also, J € [C]=F and |C] < o (if |C| > o, then A € C by (4),
contradiction). So there are only ¢ = p possibilities for .J. So there are at most o Ge-
orbits of special sets.

(22) For each special set J' there is a special set J in the same %-orbit such that JN.S =
JNK.

For,if v € C and J NI, NS\ K # 0, then A < v (otherwise I, C K), so |I,| > A,

and hence there is a permutation of I, fixing I, N K and mapping J' N I, \ K out of S.

Let g combine all such, and set J = g[J']. If (v,a) € JN S, then (v,a) € JNI,NS.
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Choose (v,03) € J' such that g(v,3) = (v,«). Thus (v,5) € J' NI, and g(v,5) € S, so
by construction, (v, 3) € K, hence a =  and (v,a) € K. So (22) holds.

For each orbit Q) of special sets, choose Lg € @ satisfying (24). Each set L is called
a standard set. There are at most ¢ standard sets.

If g € 9 and J is a support for a nice name o for a subset of «, then g[J] is the
support for the nice name g(o).

(23) If o is a nice name for a member of [x]*, then there is an A € [\]<* such that
P IF3a e Allon X, > pul.
For, let B be a maximal pairwise incompatible subset of
{g<p:3a<X[glF|on Xy > pul}.

Now {r : 3¢ € B (r < q)} is dense below p°. For, suppose that s < p°. Then we have
sl 3o < X [JoNX,| > p), so there exist a ¢ < s and an o < A such that ¢ IF [oNX,| > p.
Say q,r compatible, r € B. Then say t < ¢,r. Then ¢t is as desired.

For all ¢ € B choose oy < A such that ¢ IF |0 N X,| > p. Let A= {a, : ¢ € B}. So
A € [N]=". Now let p° € H, H generic. Choose ¢ € H N B. Then ¢ IF |0 N X,,| > p, so
lof N X(i\ > u. Thus A is as desired in (23).

Let J be a standard set. Suppose that Q € [J]<#. Let

sq={p€ P:dmn(p) ={r e C: (v,a) € Q for some a}
and for all v € dmn(p), dmn(p,) = {a<v:(r,a) € Q}}.

There is a one-one function F from sq into [], . cq[r]=", namely one can let F'(p)yo =
py(a). It follows that |sg| < k. Hence there are at most g elements p € P with support
contained in .J, hence at most ¢ pairwise incompatible sets all members of which have
support contained in J, hence at most ¢ nice names for members of [k]# with support
contained in J. For each nice name o for a member of []* with standard support, choose
A, as in (23). Let B be the union of all such. So |B| < g.

Now we unfix K. So B = Bk depends on K. We now define Myyq: let Myyy =

By, U M,, where
K,=LU U Jy U U I,.
a€EM, o>veC
(Note that |K,| < o.)

Let M = {,.,.+ M. Thus also |[M| < po. Now suppose that o is a nice name for a
member of [k]*. Let J be a support for o. Define Koo = U, .+ Kr. Fix 7 < x* such
that J N K C K. Now consider the step from M, to M, ;. Choose g € ¥4, such that
g[J] is standard. By J N Ko, C K,

(24) J N (Krp1 \ Kr) =0
(25) glJ]1 N (K741 \ K7) = 0.
This is true since g[J]NS = g[J]N K, and K11 C S.
Choose h € ¥ such that h[J = ¢g[J and h is the identity on K 11 \ K. So h fixes
K41 pointwise. Now

P’ IF 3a € Ay [[h(o) N Xa| > 4,
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SO
P’ Ik 3a € Ay [lonN Xo| > .

This is true since Aoy € Br, © M;i1, and hence J, C K,y for each a € Ay (o),

so h fixes J, pointwise. Thus p° IF 3a € M [jo N X,| > p]. Since |M| < A, this is a

contradiction, as o is arbitrary.
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