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Abstract

General position properties play a crucial role in geometric and infinite-dimensional topologies.
Often such properties provide convenient tools for establishing various universality results. One
of well-known general position properties is DDn, the property of disjoint n-cells. Each Polish
LCn−1-space X possessing DDn contains a topological copy of each n-dimensional compact met-
ric space. This fact implies, in particular, the classical Lefschetz–Menger–Nöbeling–Pontryagin–
Tolstova embedding theorem which says that any n-dimensional compact metric space embeds
into the (2n+ 1)-dimensional Euclidean space R2n+1. A parametric version of this result was
recently proved by B. Pasynkov: any n-dimensional map p : K → M between metrizable com-
pacta with dimM = m embeds into the projection prM : M × R2n+1+m → M in the sense
that there is an embedding e : K → M × R2n+1+m with prM ◦ e = p. This feature of R2n+1+m

can be derived from the fact that the space R2n+1+m satisfies the general position property
m-DDn = m-DD{n,n}, which is a particular case of the 3-parameter general position property
m-DD{n,k} introduced and studied in this paper. We shall give convenient “arithmetic” tools for
establishing the m-DD{n,k}-property and on this base obtain simple proofs of some classical and
recent results on (fiber) embeddings. In particular, the Pasynkov theorem mentioned above, as
well as the results of P. Bowers and Y. Sternfeld on embedding into a product of dendrites, follow
from our general approach. Moreover, the arithmetic of the m-DD{n,k}-properties established in
our paper generalizes some results of W. Mitchell, R. Daverman and D. Halverson.

The paper consists of two parts. In the first part we survey the principal results proved in
this paper and discuss their applications and interplay with existing results in this area. The
second part contains the proofs of the principal results announced in the first part.

Acknowledgements. The authors would like to express their sincere thanks to N. Brodsky,
R. Cauty, R. Daverman, A. Dranishnikov, D. Halverson, A. Karassev, S. Melikhov, H. Toruńczyk,
M. Tuncali, Yu. Turygin and E. Tymchatyn for fruitful and stimulating discussions. The inves-
tigations that resulted in this publication were started during the visit of the first author to
Nipissing University (North Bay, Canada) in the 2003/2004 academic year. The first author is
grateful to the Department of Mathematics of Nipissing University for hospitality and creating
a kind atmosphere stimulating mathematical research.

The second author was partially supported by NSERC Grant 261914-03.

2010 Mathematics Subject Classification: Primary 57N75, 57Q65, 55R70, 54C25; Secondary
54C55, 54C60, 54C65, 54H25, 55M10, 55M15, 55M20, 55U25.

Key words and phrases: disjoint n-cells property, embedding, Zn-set, Zn-point.
Received 28.9.2011; revised version 20.3.2013.

[5]



Part I. SURVEY OF PRINCIPAL RESULTS

First, we fix some notation that will be often used in the subsequent text. Throughout
the paper m,n, k will stand for non-negative integers or ∞. We extend the arithmetic
operations from ω = {0, 1, 2, . . . } onto ω∪{∞} letting ∞ =∞+∞ =∞+n = n+∞ =

∞− n for any n ∈ ω. I denotes the unit interval [0, 1] and Q the set of rational numbers
on the real line R. By a simplicial complex we shall always mean the geometric realization
of an abstract simplicial complex equipped with the CW -topology. All topological spaces
are assumed to be Tychonoff and all maps continuous.

A topological space X is called submetrizable if it admits a continuous metric (equiva-
lently, admits a bijective continuous map onto a metrizable space). A topological space X
is called completely metrizable if its topology is generated by a complete metric. A Polish
space is a separable completely metrizable topological space.

By an ANR-space we mean a metrizable spaceX which is a retract of every metrizable
space M containing X as a closed subspace. It is well-known (see [12] or [41]) that a
metrizable space X is an ANR if and only if it is an ANE[∞] for the class of metrizable
spaces. We recall that a space X is called an ANE[n] for a class C of spaces if every map
f : A→ X defined on a closed subset of a space C ∈ C with dimC ≤ n can be extended
to a continuous map f̄ : U → X defined on some neighborhood U of A in X.

Following [31], we define a subset A of a space X to be relative LCn in X if given
x ∈ X, k < n + 2, and a neighborhood U of x there is a neighborhood V ⊂ U of x
such that each map f : ∂Ik → A ∩ V extends to a map f̄ : Ik → U ∩ A. A space X is
an LCn-space if it is relative LCn in X. According to [41, V.2.1], a metrizable space X
is LCn for a finite number n if and only if X is ANE[n + 1] for the class of metrizable
spaces.

By dim(X) we denote the covering dimension of a topological space X. For a map
f : X → Y between topological spaces its dimension dim(f) is defined as dim(f) =

sup{dim(f−1(y)) : y ∈ Y }. Maps f with dim(f) = 0 are called light.
Other (undefined here) notions can be found in the corresponding sections of Part II.

1. m-DDn-property and fiber embeddings

We recall that a space X has the DDnP-property, the disjoint n-disks property, if any
two maps f, g : In → X from the n-dimensional cube In = [0, 1]n can be approximated
by maps with disjoint images. A parametric version of this property says that the same
can be done for a continuous family fz, gz : In → X of maps parameterized by points z

[6]



General position properties 7

of some space M . More precisely, given a compact space M , we shall say that a space X
has the M -parametric disjoint n-disk property (briefly, the M -DDn-property) if any two
maps f, g : M × In → X can be uniformly approximated by maps f ′, g′ : M × In → X

such that for any z ∈M the images f ′({z} × In) and g′({z} × In) are disjoint.
We are mostly interested in the particular case of this property with M = Im being

them-dimensional cube. In this case we writem-DDn instead of Im-DDn. In the extremal
cases when m or n is zero, the m-DDn-property turns out to be very familiar. Namely,
the 0-DDn-property is nothing other than the classical disjoint n-disks property, while
the m-DD0-property is well-known to specialists in fixed point and coincidence theories:
a space X has the m-DD0-property iff any two maps f, g : Im → X can be approximated
by maps with disjoint graphs!

It is well known (see [68] or [30]) that all one-to-one maps from a metrizable n-
dimensional compactum K into a completely metrizable LCn−1-space X possessing the
DDn-property form a dense Gδ-set in the function space C(K,X). Our first principal
result is just a parametric version of this embedding theorem.

Theorem 1.1. A completely metrizable LCm+n-space X has the m-DDn-property if and
only if for every perfect map p : K → M between finite-dimensional metrizable spaces
with dimM ≤ m and dim(p) ≤ n the function space C(K,X) contains a dense Gδ-set of
maps f : K → X that are injective on each fiber p−1(z), z ∈M .

The function space C(K,X) appearing in this theorem is endowed with the source
limitation topology whose neighborhood base at a given f ∈ C(K,X) consists of the sets

Bρ(f, ε) = {g ∈ C(K,X) : ρ(g, f) < ε},

where ρ runs over all continuous pseudometrics on X and ε : K → (0,∞) runs over con-
tinuous positive functions on K. Here, the symbol ρ(f, g) < ε means that ρ(f(x), g(x)) <

ε(x) for all x ∈ K. To the best of our knowledge, the notion of source limitation topology
was introduced in the literature (see, for example, [44], [55], [50]) only for metrizable
spaces X. In this case, for a fixed compatible metric ρ on X, the sets Bρ(f, ε) with
ε ∈ C(K, (0,∞) and f ∈ C(K,X) form a base for a topology Tρ on C(K,X). If K is
paracompact, then the topology Tρ does not depend on the metric ρ [44]. Moreover, Tρ
has the Baire property provided K is paracompact and X is completely metrizable [55].
According to Lemma 18.4 below, Tρ coincides with the topology obtained from our def-
inition provided K is paracompact and X metrizable. Therefore, the source limitation
topology on C(K,X) also has the Baire property if K is paracompact and X is com-
pletely metrizable. We will use our more general definition (in terms of pseudometrics)
and, unless stated otherwise, all function spaces will be considered with this topology.

In fact, finite-dimensionality of the spaces K,M in Theorem 1.1 can be replaced by
the C-space property. We recall that a topological space X is defined to be a C-space if
for any sequence {Vn : n ∈ ω} of open covers of X there exists a sequence {Un : n ∈ ω}
of disjoint families of open sets in X such that each Un refines Vn and

⋃
{Un : n ∈ ω}

is a cover of X. It is known that every finite-dimensional paracompact space (as well as
every hereditarily paracompact countable-dimensional space) is a C-space and normal
C-spaces are weakly infinite-dimensional (see [32, §6.3]).
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Theorem 1.2. A completely metrizable locally contractible space X has the m-DDn-
property if and only if for every perfect map p : K → M between metrizable C-spaces
with dimM ≤ m and dim(p) ≤ n the function space C(K,X) contains a dense Gδ-set of
maps f : K → X that are injective on each fiber p−1(z), z ∈M .

2. 4-dimension of maps

There is a natural temptation to remove the dimensional restrictions on the spaces K,M
from Theorems 1.1 and 1.2. This indeed can be done if we replace the usual dimension
dim(p) of the map p with the so-called 4-dimension dim4(p) (coinciding with dim(p) for
perfect maps p between finite-dimensional metrizable spaces.)

By definition, the 4-dimension dim4(p) of a map p : X → Y between Tychonoff
spaces is equal to the smallest cardinal number τ for which there exists a map g :

X → Iτ such that the diagonal product f 4 g : X → Y × Iτ has dim(f 4 g) = 0.
The 4-dimension dim4(p) is a well-defined cardinal function not exceeding the weight
w(X) of X (because we always can take g to be an embedding in the Tychonoff cube
Iw(X)).

The following important result describing the interplay between the dimension and4-
dimension of perfect maps is actually a reformulation of results due to B. Pasynkov [58],
M. Tuncali and V. Valov [71], and M. Levin [47] (see Section 19).

Proposition 2.1. Let f : X → Y be a perfect map between paracompact spaces. Then

(1) dim(f) ≤ dim4(f);
(2) dim4(f) = 0 if and only if f is a light map;
(3) dim4(f) ≤ ω if X is submetrizable;
(4) dim4(f) = dim(f) if X is submetrizable and Y is a C-space;
(5) dim4(f) ≤ dim(f) + 1 if the spaces X,Y are compact and metrizable.

We know no example of a map f : X → Y between compacta with dim(f) < dim∆(f)

(cf. [47]). The following theorem is a version of Theorem 1.1 with dim(p) replaced by
dim4(p).

Theorem 2.2. A completely metrizable ANR-space X has the m-DDn-property if and
only if for every perfect map p : K →M between submetrizable paracompact spaces with
dimM ≤ m and dim4(p) ≤ n the function space C(K,X) contains a dense Gδ-set of
maps f : K → X that are injective on each fiber p−1(z), z ∈M .

3. The m-DDn-property and a general fiber embedding theorem

In fact, it is more convenient to work not with the m-DDn-property, but with its homo-
topical version defined as follows:

Definition 3.1. A space X has the m-DDn-property if for any open cover U of X and
any two maps f, g : Im × In → X there are maps f ′, g′ : Im × In → X such that
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• f ′ is U-homotopic to f ;
• g′ is U-homotopic to g;
• f ′({z} × In) ∩ g′({z} × In) = ∅ for all z ∈ Im.

We recall that two maps f, g : K → X are said to be U-homotopic (briefly, f ∼
U
g),

where U is a cover of X, if there is a homotopy h : K × [0, 1] → X such that for every
x ∈ K we have h(x, 0) = f(x), h(x, 1) = g(x) and h({x} × [0, 1]) is contained in some
U ∈ U . It is clear that any U-homotopic maps f, g : K → X are U-near (i.e., for each
point z ∈ K the set {f(z), g(z)} is contained in some U ∈ U).

The notion of a U-homotopy has a pseudometric counterpart. Given a continuous
pseudometric ρ on X and a continuous map ε : K → (0,∞) we shall say that two maps
f, g : K → X are ε-homotopic if there is a homotopy h : K × [0, 1] → X such that
h(z, 0) = f(z), h(z, 1) = g(z) and diamρ h({z} × [0, 1]) < ε(z) for all z ∈ K. In this case
h is called an ε-homotopy.

The relation between the m-DDn-property and its homotopical version is described
in the next proposition.

Proposition 3.2. Each space X with the m-DDn-property has the m-DDn-property.
Conversely, each LCn+m-space X with the m-DDn-property has the m-DDn-property.

Proposition 3.2 follows from the well-known property of LCn-spaces which asserts
that for any open cover U of an LCn-space X with n <∞ there is another open cover V
of X such that two maps f, g : In → X are U-homotopic provided they are V-near (see
Lemma 21.2).

Thus, in the realm of LCm+n-spaces both the m-DDn-property and the m-DDn-
property are equivalent. The advantage of the m-DDn-property is that it works for spaces
without a nice local structure, while the m-DDn-property is applicable only for LCk-
spaces with sufficiently large k. In particular, using them-DDn-property, we can establish
the following general result implying Theorems 1.1, 1.2 and 2.2.

Theorem 3.3. Let p : K →M be a perfect map defined on a paracompact submetrizable
space K. If a subspace X of a completely metrizable space Y possesses the m-DDn-
property for m = dimM and n = dim4(p), then

E(p, Y ) = {f ∈ C(K,Y ) : p4 f : K →M × Y is an embedding}

is a Gδ-set in C(K,Y ) whose closure E(p, Y ) contains all simplicially factorizable maps
from K to X. More precisely, for any continuous pseudometric ρ on Y , a continuous
function ε : K → (0,+∞) and a simplicially factorizable map f : K → X there is a
map g ∈ E(p, Y ) and an ε-homotopy h : K × [0, 1] → Y connecting f and g so that
h(K × [0, 1)) ⊂ X.

A map f : K → X is called simplicially factorizable if there exist a simplicial complex
L and maps α : K → L and β : L → X such that f = β ◦ α. It turns out that in many
important cases simplicially factorizable maps form a dense set in the function space
C(K,X). To describe such cases, we need the notion of a Lefschetz ANE[n]-space that is
a parameterized version of a space satisfying the Lefschetz condition (see [12, V.8]).
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Let U be a cover of a spaceX andK be a simplicial complex. By a partial U-realization
of K in X we understand any continuous map f : L → X defined on a geometric
subcomplex L ⊂ K containing all vertices of K and such that diam f(σ ∩ L) < U for
every simplex σ of K. If L = K, then the map f is called a full U-realization of K in X.

A topological space X is defined to be a Lefschetz ANE[n] if for every open cover U of
X there is an open cover V ofX such that each partial V-realization f : L→ X of a simpli-
cial complex K with dimK ≤ n can be extended to a full U-realization f̃ : K → X of K.

Lefschetz ANE[n]-spaces are tightly connected with both ANR’s and LCn-spaces and
have all basic properties of such spaces.

Proposition 3.4. Let n be a non-negative integer or infinity.

(1) A metrizable space X is a Lefschetz ANE[n] if and only if X is an ANE[n] for the
class of metrizable spaces.

(2) If n is finite, then a regular (paracompact) space X is a Lefschetz ANE[n] (if and)

only if X is LCn−1.
(3) Each convex subset X of a (locally convex) linear topological space L is a Lefschetz

ANE[n] for any finite n (is a Lefschetz ANE[∞]).
(4) There exists a metrizable σ-compact linear topological space that fails to be a Lefschetz

ANE[∞].
(5) A neighborhood retract of a Lefschetz ANE[n]-space is a Lefschetz ANE[n]-space.
(6) A functionally open subspace of a Lefschetz ANE[n] is a Lefschetz ANE[n].
(7) A topological space X is a Lefschetz ANE[n] if X has a uniform open cover by

Lefschetz ANE[n]-spaces.
(8) A metric space (X, ρ) is a Lefschetz ANE[n] if for every ε > 0 there is δ > 0 such that

each partial Bρ(δ)-realization f : L→ X of a simplicial complex K with dimK ≤ n
extends to a full Bρ(ε)-realization f̄ : K → X of K in X.

(9) For each continuous pseudometric η on a paracompact Lefschetz ANE[n]-space X
there is a continuous pseudometric ρ ≥ η such that for every r ∈ (0, 1/2] each
partial Dρ(r/8)-realization f : L → X of a simplicial complex K with dimK ≤ n

extends to a full Dρ(r)-realization f̄ : K → X of K in X.
(10) Each map f : X → Y from a paracompact Lefschetz ANE[n]-space to a metrizable

space Y factorizes through a metrizable Lefschetz ANE[n]-space Z in the sense that
f = g ◦ h for some maps h : X → Z and g : Z → Y .

Here by Dρ(ε) we denote the cover of a metric space (X, ρ) by all open sets of diameter
< ε. With the notion of Lefschetz ANE[n]-space at hand, we can return to simplicially
factorizable maps.

Proposition 3.5. The simplicially factorizable maps from a paracompact space K into a
Tychonoff space X form a dense set in the function space C(K,X) if one of the following
conditions is satisfied:

(1) X is a Lefschetz ANE[k] for k = dimK;
(2) K is a C-space and X is a locally contractible paracompact space.

Observe that Theorems 1.1, 1.2, and 2.2 follow immediately from Theorem 3.3 and
Propositions 3.5, 3.4 and 2.1.
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Combining Theorem 3.3 with Propositions 3.5(1), 3.4(2) and 2.1(4), we obtain another
generalization of Theorem 1.1.

Theorem 3.6. Let p : K →M be a perfect map between finite-dimensional paracompact
spaces with K being submetrizable. If X is a completely metrizable LCk−1-space possessing
the m-DDn-property, where k = dimK, m = dimM and n = dim(p), then the function
space C(K,X) contains a dense Gδ-set of maps injective on each fiber of p.

4. Approximating perfect maps by perfect PL-maps

The proof of Theorem 3.3 heavily exploits the technique of approximation by PL-maps.
By a PL-map (resp., a simplicial map) we understand a map f : K → M between
simplicial complexes which maps each simplex σ of K into (resp., onto) some simplex τ
of M and f is linear on σ.

Theorem 4.1. If p : X → Y is a perfect map between paracompact spaces, then for any
open cover U of X there exists an open cover V of Y such that for any V-map β : Y →M

into a simplicial complex M there are an U-map α : X → K into a simplicial complex K
and a perfect PL-map f : K →M with f ◦α = β ◦ p and dim4(f) = dim(f) ≤ dim4(p).

Since for each open cover V of a paracompact space Y there is a V-map β : Y →
M into a simplicial complex with dimM ≤ dimY , Theorem 4.1 implies the following
approximation result.

Corollary 4.2. If p : X → Y is a perfect map between paracompact spaces, then for
any open covers U and V of X and Y , respectively, there exist a U-map α : X → K

into a simplicial complex K with dimK ≤ dimY + dim4(p), a V-map β : Y → M to
a simplicial complex M with dimM ≤ dimY , and a perfect PL-map f : K → M with
dim(f) ≤ dim4(p) making the following diagram commutative:

X
α−−−−→ K

p

y yf
Y

β−−−−→ M
For light maps p : X → Y between metrizable compacta this corollary was proved

by A. Dranishnikov and V. Uspenskij in [27] and for arbitrary maps between metrizable
compacta by Yu. Turygin [72].

Let us mention that Theorem 4.1 can be applied in different situations (see for example
[8], [9], [76]).

5. m-DD{n,k}-properties

Because of the presence of the m-DDn-property in Theorems 3.3–3.6, it is important
to have convenient methods for detecting that property. To establish such methods, we
introduce the following three-parametrer version of the m-DDn-property.
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Definition 5.1. A space X is defined to have the m-DD{n,k}-property if for any open
cover U of X and two maps f : Im × In → X, g : Im × Ik → X there exist maps f ′ :

Im×In → X, g′ : Im×Ik → X such that f ′ ∼
U
f , g′ ∼

U
g, and f ′({z}×In)∩g′({z}×Ik) = ∅

for all z ∈ Im.

By m-DD{n,k} we shall denote the class of all spaces with the m-DD{n,k}-property. It
is clear that the m-DDn-property coincides with the m-DD{n,n}-property. If some of the
numbers m,n, k are infinite, the detection of the m-DD{n,k}-property can be reduced to
the detection of m-DD{n,k} with finite m,n, k.

Proposition 5.2. A Tychonoff space X has the m-DD{n,k}-property if and only if it has
the a-DD{b,c}-property for all a < m+ 1, b < n+ 1, c < k + 1.

The proof of Theorem 3.3 is based on the following simplicial characterization of the
m-DD{n,k}-property.

Theorem 5.3. A submetrizable space X has the m-DD{n,k}-property if and only if for
any

• simplicial maps pN : N → M , pK : K → M between finite simplicial complexes with
dimM ≤ m, dim(pN ) ≤ n, dim(pK) ≤ k,

• open cover U of X, and
• maps f : N → X, g : K → X,

there exist maps f ′ : N → X, g′ : K → X such that f ′ ∼
U
f , g′ ∼

U
g and, for every z ∈M

we have f ′(p−1
N (z)) ∩ g′(p−1

K (z)) = ∅.

Using the above simplicial characterization, we can establish the local nature of the
m-DD{n,k}-property.

Proposition 5.4. Let m,n, k be non-negative integers or ∞.

(1) If a space X has the m-DD{n,k}-property, then so does each open subspace of X.
(2) A paracompact submetrizable space X has the m-DD{n,k}-property if and only if it

admits a cover by open subspaces with that property.

Them-DD{n,k}-property is also preserved by taking homotopically n-dense subspaces.
We define a subset A of a topological space X to be homotopically n-dense in X if the
following conditions are satisfied:

• for every map f : In → X and an open cover U of X there is a map f ′ : In → A that
is U-homotopic to f ;
• for every open cover U of X there is an open cover V of X such that if two maps
f, g : In → A are V-homotopic in X, then they are U-homotopic in A.

By Toruńczyk’s Theorem 2.8 in [67], each dense relative LCn-subset X of a metrizable
space X̃ is homotopically n-dense in X̃. The following useful proposition follows imme-
diately from the definitions and the above mentioned theorem of Toruńczyk.

Proposition 5.5. A homotopically max{m+n,m+k}-dense subspace X of a topological
space X̃ has the m-DD{n,k}-property if and only if X̃ does. Consequently, a dense relative
LCm+max{n,k}-set X in a space X̃ has the m-DD{n,k}-property if and only if X̃ does.
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This fact will be often applied in combination with Proposition 2.8 from [22] asserting
that each metrizable LCn-spaceX embeds into a completely metrizable LCn-space X̃ as a
dense relative LCn-set. This enables us to apply Baire category arguments for establishing
the m-DD{n,k}-properties in arbitrary (not necessarily complete) metric spaces.

Next, we elaborate tools for detecting the m-DD{n,k}-properties. Recall that a space
X has no free arcs if X contains no open subset homeomorphic to a non-empty connected
subset of the real line. In particular, a space without free arcs has no isolated points.

Proposition 5.6.

(1) A topological space X has the 0-DD{0,0}-property if and only if each path-connected
component of X is non-degenerate.

(2) An LC0-space X has the 0-DD{0,0}-property if and only if X has no isolated point.
(3) A metrizable LC1-space X has the 0-DD{0,1}-property if and only if X has the

1-DD{0,0}-property if and only if X has no free arc.
(4) Any metrizable LCn-space X with the 0-DD{0,n}-property and with dimX ≤ n has

the 0-DD{0,∞}-property.
(5) A Polish ANE[max{n, k}+1]-space X has the 0-DD{n,k}-property if and only if there

are two disjoint dense σ-compact subsets A,B of X such that A is relative LCn−1

and B is relative LCk−1 in X.

Items (3) and (4) of Proposition 5.6 imply that each one-dimensional LC1-space with-
out free arcs has the 0-DD{0,∞}-property. In particular, each dendrite with a dense set
of end-points has that property.

The last item of Proposition 5.6 is a particular case of a more general characterization
of the m-DD{n,k}-property in terms of mapping absorption properties.

LetM,X be topological spaces. We shall say that a subset A ⊂M×X has the absorp-
tion property for n-dimensional maps in M (briefly, M -MAPn) if for any n-dimensional
map p : K → M with K being a finite-dimensional compact space, a closed subset
C ⊂ K, a map f : K → X, and an open cover U of X there is a map f ′ : K → X such
that f ′ is U-homotopic to f , f ′|C = f |C and (p4 f ′)(K \ C) ⊂ A. If M = Im, then we
write m-MAPn instead of Im-MAPn.

Theorem 5.7. Let m,n, k be non-negative integers or infinity and d = 1+m+max{n, k}.
A (Polish ANE[d]-)space X has the m-DD{n,k}-property if (and only if ) for any separable
polyhedron M with dimM ≤ m there are two disjoint (σ-compact) sets E,F ⊂ M ×X
such that E has M -MAPn and F has M -MAPk.

Let us observe that the existence of such disjoint sets E,F is not obvious even for a
dendrite with a dense set of end-points. Such a dendrite D has the 1-DD{0,0}-property
and thus the product I×D contains two disjoint σ-compact subsets with 1-MAP0.

6. A selection theorem for Zn-set-valued functions

Many results on m-DD{n,k}-properties are based on a selection theorem for Zn-valued
functions, discussed in this subsection.
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A subset A of a topological space X is called a (homotopical) Zn-set in X if A is closed
in X and for any an open cover U of X and a map f : In → X there is a map g : In → X

such that g(In) ∩ A = ∅ and g is U-near (U-homotopic) to f . Each homotopical Zn-set
in a topological space X is a Zn-set in X. The converse is true if X is an LCn-space (see
Theorem 10.1).

A set-valued function Φ : X ( Y is defined to be compactly semicontinuous if for
every compact subset K ⊂ Y the preimage Φ−1(K) = {x ∈ X : Φ(x) ∩K 6= ∅} is closed
in X.

Theorem 6.1. Let Φ : X ( Y be a compactly semicontinuous set-valued function from
a paracompact C-space X into a topological space Y , assigning to each point x ∈ X a
homotopical Zn-set Φ(x), where n = dimX ≤ ∞. If X is a retract of an open subset of a
locally convex linear topological space, then for any map f : X → Y and any continuous
pseudometric ρ on Y there is a map f ′ : X → Y such that f ′(x) /∈ Φ(x) for all x ∈ X
and f ′ is 1-homotopic to f with respect to ρ.

In particular, this theorem is true for stratifiable ANR’s X (which are neighborhood
retracts of stratifiable locally convex spaces, see [62]). Theorem 6.1 can be seen as a
generalization of Selection Theorem 1.4 of Uspenskij [75].

7. Homotopical Zn-sets and m-DD{n,k}-properties

It turns out that homotopical Zn-sets are tightly connected with the m-DD{n,k}-proper-
ties. A point x of a topological space X is called a (homotopical) Zn-point if the singleton
{x} is a (homotopical) Zn-set in X. By Zn(X) we shall denote the set of all homotopical
Zn-points of a space X.

Let

• Zn be the class of Tychonoff spaces X with Zn(X) = X;
• Zn be the class of Tychonoff spaces X with Zn(X) = X;
• ∆Zn be the class of Tychonoff spaces X whose diagonal ∆X is a homotopical Zn-set

in X2.

For example, Rn+1 ∈ Zn ∩∆Zn.
Besides the classes of spaces related to Z-sets, we also need some other (more familiar)

classes of topological spaces:

• Br, the class of metrizable separable Baire spaces;
• Π0

2, the class of Polish spaces;
• LCn, the class of all LCn-spaces.

Theorem 7.1. Let m,n, k be non-negative integers or infinity.

(1) A space X has the n-DD{0,0}-property if and only if the diagonal of X2 is a homo-
topical Zn-set in X2. This can be written as

∆Zn = n-DD{0,0}
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(2) An LC0-space X has the 0-DD{0,n}-property provided the set Zn(X) is dense in X.
This can be written as

LC0 ∩ Zn ⊂ 0-DD{0,n}

(3) If a metrizable separable Baire (LCn-)space X has the 0-DD{0,n}-property then the
set of (homotopical) Zn-points is a dense Gδ-set in X:

Br ∩ LCn ∩ 0-DD{0,n} ⊂ Zn

(4) If each point of a space X is a homotopical Zm+k-point, then X has the m-DD{0,k}-
property:

Zm+k ⊂ m-DD{0,k}

(5) If a topological space X has either the n-DD{n,0}- or the 0-DD{n,n}-property, then
each point of X is a homotopical Zn-point:

0-DD{n,n} ∪ n-DD{n,0} ⊂ Zn

(6) If a Tychonoff space X has the 2-DD{0,0}-property, then each point of X is a homo-
topical Z1-point:

2-DD{0,0} ⊂ Z1

8. Arithmetic of m-DD{n,k}-properties

In this subsection we study the behavior of the m-DD{n,k}-properties under arithmetic
operations. The combination of the results from this subsection and Propositions 5.4–5.6
provides convenient tools for detecting the m-DD{n,k}-properties of more complex spaces
(like products or manifolds).

For a better visual presentation of our subsequent results, let us introduce the following
operations on subclasses A,B ⊂ Top of the class Top of topological spaces:

A× B = {A×B : A ∈ A, B ∈ B},
A
B

= {X ∈ Top : ∃B ∈ B with X ×B ∈ A},

Ak = {Ak : A ∈ A} and k
√
A = {A ∈ Top : Ak ∈ A}.

A space X will be identified with the one-element class {X}. So X × A and A
X mean

{X} × A and A
{X} .

We recall that m-DD{n,k} stands for the class of all spaces possessing the m-DD{n,k}-
property and LCn is the class of LCn-spaces.

Theorem 8.1 (Multiplication formulas). Let X,Y be metrizable spaces and k1, k2, k, n1,
n2, n, m1,m2,m be non-negative integers or infinity.
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(1) (First multiplication formula) If X has the m-DD{n,k1}-property and Y has the
m-DD{n,k2}-property, then the product X × Y has the m-DD{n,k1+k2+1}-property.
This can be written as

m-DD{n,k1} ×m-DD{n,k2} ⊂ m-DD{n,k1+k2+1}

(2) (Second multiplication formula) If X has the m-DD{n1,k1}-property and Y has the
properties m-DD{n,k2} and m-DD{n2,k} for n = n1 + n2 + 1 and k = k1 + k2 + 1,
then the product X × Y has the m-DD{n,k}-property. This can be written as

m-DD{n1,k1} ×
(
m-DD{n,k2} ∩m-DD{n2,k}

)
⊂ m-DD{n,k}

(3) (Multiplication by a cell) If X has the m-DD{n,k}-property, then for any d < m+ 1

the product Id ×X has the (m− d)-DD{d+n,d+k}-property. This can be written as

Id ×m-DD{n,k} ⊂ (m− d)-DD{d+n,d+k}

Remark 8.2. Let us mention that, since R ∈ 0-DD{0,0}, the second multiplication for-
mula implies the following result of W. Mitchell [54, Theorem 4.3(3)] (see also R. Daver-
man [16, Proposition 2.8]): If X is a compact metric ANR-space with X ∈ 0-DD{p,p+1},
then X × R ∈ 0-DD{p+1,p+1}. Moreover, by Theorem 8.1(2), for any metrizable space
X ∈ m-DD{n,k} ∩ m-DD{n+p+1,k−1} we get X × Rm+p+1 ∈ m-DD{n+p+1,k}. The par-
ticular case of this result when m = 0 and p = 1 was proved by W. Mitchell in [54,
Theorem 4.3(2)]. Similarly, we can see that Theorem 8.1(3) generalizes the following re-
sult of D. Halverson [39]: If X is a locally compact ANR with X ∈ 1-DD{1,1}, then
X × R ∈ 0-DD{2,2}.

We can express the m-DD{n,k}-property via 0-DD{n
′,k′}-properties for sufficiently

large n′, k′.

Theorem 8.3 (Base enlargement formulas). Let X be a metrizable space and n, k, m,
m1, m2 be non-negative integers or infinity.

(1) If X has the 0-DD{n+m1,k+m2}-, m1-DD{n,k+m−m1}-, and m2-DD{n+m−m2,k}-pro-
perties simultaneously with m = m1 + m2 + 1, then X has the m-DD{n,k}-property.
This can be written as

0-DD{n+m1,k+m2} ∩m1-DD{n,k+m−m1} ∩m2-DD{n+m−m2,k} ⊂ m-DD{n,k}

(2) If X ∈ 0-DD{n,k+m+1} ∩ m-DD{n+1,k}, then X has the (m+ 1)-DD{n,k}-property.
This can be written as

0-DD{n,k+m+1} ∩m-DD{n+1,k} ⊂ (m+ 1)-DD{n,k}

(3) X has the m-DD{n,k}-property if X has the 0-DD{n+i,k+j}-property for all i, j ∈ ω
with i+ j < m+ 1. This can be written as⋂

i+j<m+1 0-DD{n+i,k+j} ⊂ m-DD{n,k}
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The second base enlargement formula implies that if X is a metrizable space with
X ∈ 0-DD{1,2}, then X ∈ 1-DD{1,1}. This result was established by D. Halverson [39] in
the particular case when X is a separable locally compact ANR.

9. m-DD{n,k}-properties of products

In this subsection we apply the arithmetic formulas from the previous subsection to
establish the m-DD{n,k}-properties of products.

Theorem 9.1. Let m,n, k, d, l be non-negative integers and L,D be metrizable spaces
such that L has the 0-DD{0,0}-property and D has the 0-DD{0,d+l}-property. If m+n+k <

2d+ l, then the product Dd × Ll has the m-DD{n,k}-property. This can be written as(
0-DD{0,0}

)l × (0-DD{0,d+l})d ⊂ ⋂
m+n+k<2d+l

m-DD{n,k}

Combining Theorem 9.1 with Theorem 3.3, Proposition 3.2 and Proposition 5.6 we
obtain

Theorem 9.2. Let l, d be non-negative integers or infinity and L, D be completely
metrizable locally path-connected spaces such that L has no isolated points and D is 1-
dimensional without free arcs. Then the product Dd×Ll has the m-DDn-property for all
m,n ∈ ω with m + 2n < l + 2d. Consequently, if p : K → M is a perfect map between
paracompact submetrizable spaces with dimM +2 dim4(p) < l+2d, then any simplicially
factorizable map f : K → Dd × Ll can be approximated by maps which are injective on
each fiber of p.

The case m = 0 from Theorem 9.2 yields

Corollary 9.3. Let L,D be completely metrizable ANR’s such that L has no isolated
points and D is 1-dimensional without free arcs. Then the product Dd×Ll has the DDnP

for all n < d+ l/2. Consequently, for any compact space X with dimX < d+ l/2 the set
of all embeddings is a dense Gδ in the function space C(X,Dd × Ll).

Remark 9.4. Corollary 9.3 generalizes many (if not all) results on embeddings into
products. Indeed, letting L = R be the real line and D be a dendrite with a dense set of
end-points we obtain the following well known results:

• the case d = 0 and l = 2n+1 is the Lefschetz–Menger–Nöbeling–Pontrjagin embedding
theorem that R2n+1 has DDnP;

• the case d = n + 1 and l = 0 is the embedding theorem of P. Bowers [13] that Dn+1

has DDnP;
• the case d = n and l = 1 is the embedding theorem of Y. Sternfeld [66] that Dn × I

has DDnP;

Also, for d = 0 and m = 0 Theorem 9.2 is close to the embedding theorem of T. Banakh
and Kh. Trushchak [7] while for l = 0 and m = 0 it is close to the one of T. Banakh,
R. Cauty, Kh. Trushchak and L. Zdomskyy [5].
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Remark 9.5. Letting d = 0 and L = R in Theorem 9.2, we obtain Pasynkov’s result [57]
asserting that for a map p : X → Y between finite-dimensional metrizable compacta the
function space C(X,RdimY+2 dim(p)+1) contains a dense Gδ-set of maps that are injective
on each fiber of the map p.

Therefore, Theorem 9.2 can be considered as a generalization of [57]. However, Theo-
rem 9.2 does not cover another generalization of Pasynkov’s result due to H. Toruńczyk
[70]: If p : X → Y is a map between compacta, then the space C(X,RdimX+dim(p)+1)

contains a dense Gδ-set of maps that are injective on each fiber of the map p.
Taking into account that the Euclidean space Rd has the m-DD{n,k}-properties for

all m,n, k with m+n+ k < d, we may ask whether this theorem of H. Toruńczyk is true
in the following more general form.

Problem 9.6. Let p : K → M be a map between finite-dimensional compact metrizable
spaces and X be a Polish AR-space possessing the m-DD{n,k}-property for all m,n, k with
m+ n+ k ≤ dimK + dim(p). Does p embed into the projection pr : M ×X →M?

Let us also note that the above mentioned result of H. Toruńczyk would follow from
our Theorem 1.1 if the following problem had an affirmative answer.

Problem 9.7. Let f : X → Y be a k-dimensional map between finite-dimensional metriz-
able compacta. Is it true that there is a map g : Y → Z to a compact space Z with
dimZ ≤ dimX − k such that the map g ◦ f is still k-dimensional?

10. A short survey on homological Zn-sets

The most exciting results on m-DD{n,k}-properties (like multiplication and k-root formu-
las) are obtained by using homological Zn-sets. In this subsection we survey some basic
facts about such sets, and refer the interested reader to [4] where all these results are
established. We use singular homology with coefficients in an Abelian group G. If G = Z,
we write Hk(X) instead of Hk(X;Z). By H̃∗(X;G) we denote the singular homology of
X reduced in dimension zero.

It can be shown that a closed subset A of a topological spaceX is a homotopical Zn-set
in X if and only if for every open set U ⊂ X the inclusion U \A→ U is a weak homotopy
equivalence, which means that the relative homotopy groups πk(U,U \ A) vanish for all
k < n + 1. Replacing the relative homotopy groups by relative homology groups, we
obtain the notion of a homological Zn-set.

A closed subset A of a space X is defined to be

• a G-homological Zn-set in X for a coefficient group G if Hk(U,U \ A;G) = 0 for all
open sets U ⊂ X and all k < n+ 1;
• an ∃G-homological Zn-set if A is a G-homological Zn-set in X for some coefficient

group G;
• a homological Zn-set if A is a Z-homological Zn-set in X (equivalently, if A is a G-

homological Zn-set for every coefficient group G).
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In [19] homological Z∞-sets are referred to as closed sets of infinite codimension. On the
other hand, the term “homological Zn-set” has been used in [42], [4], [3], and [6].

The following theorem whose proof can be found in [4, Theorems 3.2-3.3] describes
the interplay between various sorts of Zn-sets.

Theorem 10.1. Let X be a topological space.

(1) Each homotopical Zn-set in X is both a Zn-set and a homological Zn-set.
(2) Each Zn-set in an LCn-space is a homotopical Zn-set.
(3) A set is a homotopical Z0-set in X iff it is a ∃G-homological Z0-set.
(4) Each ∃G-homological Z1-set in X is a Z1-set.
(5) If X is an LC1-space, then a homotopical Z2-set in X is a homotopical Zn-set if and

only if it is a homological Zn-set.

The last item of this theorem has fundamental importance since it allows application
of powerful tools of algebraic topology for studying homotopical Zn-sets and related
m-DD{n,k}-properties. The study of G-homological Zn-sets for an arbitrary group G can
be reduced to considering Bockstein groups. Denote by Π the set of all prime numbers
and consider the following groups:

• Q, the group of rational numbers;
• Zp = Z/pZ, the cyclic group of a prime order p ∈ Π;
• Qp = {z ∈ C : ∃k ∈ N zp

k

= 1}, the quasicyclic p-group;
• Rp = {m/n : m ∈ Z and n ∈ N is not divisible by p}.

The Bockstein family σ(G) of a group G is a subfamily of {Q,Zp,Qp, Rp : p ∈ Π}
such that:

• Q ∈ σ(G) iff G/Tor(G) 6= 0 is divisible;
• Zp ∈ σ(G) iff the p-torsion part p-Tor(G) is not divisible by p;
• Qp ∈ σ(G) iff p-Tor(G) 6= 0 is divisible by p;
• Rp ∈ σ(G) iff the group G/p-Tor(G) is not divisible by p.

Here

Tor(G) = {x ∈ G : ∃n ∈ N n · x = 0} and p-Tor(G) = {x ∈ G : ∃k ∈ Z pk · x = 0}

are the torsion and p-torsion parts of G. In particular, σ(Z) = {Rp : p ∈ Π}.

Theorem 10.2. Let A be a closed subset of a space X, G be a coefficient group, and p
be a prime number.

(1) A is a G-homological Zn-set in X if and only if A is an H-homological Zn-set in X
for all groups H ∈ σ(G).

(2) If A is a Rp-homological Zn-set in X, then A is a Q-homological and Zp-homological
Zn-set in X.

(3) If A is a Zp-homological Zn-set in X, then A is a Qp-homological Zn-set in X.
(4) If A is a Qp-homological Zn+1-set in X, then A is a Zp-homological Zn-set in X.
(5) A is a Rp-homological Zn-set in X provided A is a Q-homological Zn-set in X and

a Qp-homological Zn+1-set in X.
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By analogy with multiplication formulas for the m-DD{n,k}-properties, there are mul-
tiplication formulas for homotopical and homological Zn-sets (see [4, Theorem 6.1]).

Theorem 10.3. Let A ⊂ X, B ⊂ Y be closed subsets in Tychonoff spaces X,Y .

(1) If A is a homotopical Zn-set in X and B is a homotopical Zm-set in X then A×B
is a homotopical Zn+m+1-set in X × Y .

(2) If A is a homological Zn-set in X and B is a homological Zm-set in X then A × B
is a homological Zn+m+1-set in X × Y .

Surprisingly, the multiplication formulas for homological Zn-sets can be reversed:

Theorem 10.4. Let n,m ∈ ω ∪ {∞}, k ∈ ω, and A ⊂ X, B ⊂ Y be closed subsets of
Tychonoff spaces X and Y . Let D = {Q,Qp : p ∈ Π} and for every group G ∈ D let
BG ⊂ Y be a closed subset which fails to be a G-homological Zm-set in Y .

(1) A is a homological Zn-set in X if and only if Ak is a homological Zkn+k−1-set in Xk.
(2) If A× B is an F-homological Zn+m-set in X × Y for some field F, then either A is

an F-homological Zn-set in X or B is an F-homological Zm-set in Y .
(3) If A×B is a homological Zn+m-set in X × Y , then either A is a homological Zn-set

in X or B is an ∃G-homological Zm-set in Y .
(4) A is a homological Zn-set in X provided A×BG is a homological Zn+m-set in X×Y

for every group G ∈ D.

Theorem 10.4 is the principal tool in the proof of the k-root and multiplication for-
mulas for the classes m-DD{n,k}. We first discuss these formulas for the classes Zn, Zn,
and ZZ

n because they are tightly connected with the classes m-DD{n,k}.
Let us start with some definitions. A point x of a spaceX is defined to be a homological

Zn-point if the singleton {x} is a homological Zn-set in X. By analogy, we define G-
homological and ∃G-homological Zn-points.

Let ZGn (X) denote the set of all G-homological Zn-points in the space X and let ZGn
(resp., ZGn ) be the class of Tychonoff spaces X such that the set ZGn (X) is dense in (resp.,
coincides with) X. We also recall that Zn (resp., Zn) stands for the class of Tychonoff
spaces X such that the set Zn(X) of homotopical Zn-points of X is dense in (resp.,
coincides with) X. Using these notations, Theorem 10.1 can be written in the following
form.

Theorem 10.5. Let n ∈ ω ∪ {∞} and G be a non-trivial Abelian group. Then:

(1) Zn ⊂ ZZ
n ⊂ ZGn ;

(2) Z0 = ZZ
0 = ZG0 ;

(3) LC1 ∩ ZG1 ⊂ Z1;
(4) LC1 ∩ Z2 ∩ ZZ

n ⊂ Zn;
(5) LC1 ∩ Br ∩ Z2 ∩ Z

Z
n ⊂ Zn.

The last item of Theorem 10.5 follows from the fact that each of the sets Zn(X) and
ZZ
n(X) is Gδ in X provided X is a separable metrizable LCn-space [4, Theorem 9.2].
In its turn, Theorem 10.3 implies multiplication formulas for the classes Zn, Zn,

and ZZ
n :
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Theorem 10.6 (Multiplication formulas). Let n,m ∈ ω ∪ {∞}. Then:

(1) Zn ×Zm ⊂ Zm+n+1;
(2) ZZ

n ×ZZ
m ⊂ ZZ

n+m+1;
(3) Zn ×Zm ⊂ Zm+n+1;
(4) ZZ

n ×Z
Z
m ⊂ Z

Z
n+m+1.

The multiplication formulas can be reversed, which yields division and k-root formulas
for the classes ZZ

n (we recall that, for a class A, we put k
√
A = {X : Xk ∈ A}).

Theorem 10.7 (k-root formulas). Let n ∈ ω ∪ {∞} and k ∈ N.

(1) A space X belongs to the class ZZ
n if and only if Xk belongs to ZZ

kn+k−1:

ZZ
n = k

√
ZZ
kn+k−1

(2) A metrizable separable Baire LCkn+k−1-space X belongs to the class ZZ
n if and only

if Xk belongs to ZZ
kn+k−1:

ZZ
n ⊃

k

√
ZZ
kn+k−1 ∩ LCnk+k−1 ∩ Br

To state the division formula for the classes ZZ
n and ZZ

n we need some more notations
(which will be used for the classes m-DD{n,k} as well). Consider the following classes of
topological spaces:

•
⋃
GZGn =

⋃
{ZGn : G is a non-trivial Abelian group};

•
⋃
GZ

G

n =
⋃
{ZGn : G is a non-trivial Abelian group};

• ∃◦
⋃
GZ

G

n , the class of spaces containing a non-empty open subspace U ∈
⋃
GZ

G

n .

For example, the space Rn belongs to none of these classes.

Now, we can state the division formulas for the classes ZZ
n and ZZ

n (recall that if A
and B are two classes, then AB stands for the class {X ∈ Top : ∃B ∈ B with X×B ∈ A}).

Theorem 10.8 (Division formulas). Let n ∈ ω ∪ {∞} and k ∈ ω.

(1) A space X belongs to the class ZZ
n if and only if X × Y ∈ ZZ

n+k for some space
Y /∈

⋃
GZGk . This can be written as

ZZ
n+k

Top \
⋃
GZGk

= ZZ
n

(2) A metrizable separable Baire LCn-space X belongs to the class ZZ
n if and only if

X × Y ∈ ZZ
n+k for some space Y /∈ ∃◦

⋃
GZ

G

n . This can be written as

Br ∩ LCn ∩
ZZ
n+k

Top \ ∃◦
⋃
GZ

G

k

⊂ ZZ
n
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Because of the division formulas, it is important to detect spaces X /∈
⋃
GZGn . It

turns out that this happens for every metrizable space X with dimX ≤ n, or more
generally with transfinite separation dimension trt(X) < n+ 1. The latter dimension can
be introduced inductively (see [2]):

• trt(X) = −1 iff X = ∅;
• trt(X) ≤ α for an ordinal α if each closed subset A ⊂ X with |A| > 1 contains a closed

subset B ⊂ A such that trt(B) < α and A \B is disconnected.

A space X is called trt-dimensional if trt(X) ≤ α for some ordinal α. For a trt-dimensional
space X we let trt(X) be the smallest ordinal α with trt(X) ≤ α.

By [2], each compact metrizable trt-dimensional space is a C-space. On the other
hand, a Čech-complete space is trt-dimensional if it can be written as the countable
union of hereditarily disconnected subspaces (see [59]). It is easy to see that for a finite-
dimensional metrizable separable space X we get trt(X) ≤ dim(X). Moreover, if X is
finite-dimensional and compact, then trt(X) = dim(X) (see [65]).

The following theorem was proved in [4] and [3].

Theorem 10.9. Let X ∈
⋃
GZGn for some n ∈ ω ∪ {∞}.

(1) If n <∞, then trt(X) > n.
(2) If n =∞, then X is not trt-dimensional.
(3) If n =∞ and X is locally compact and locally contractible, then X is not a C-space.

Consequently, for any metrizable separable space X ∈
⋃
GZGn we have

dimX ≥ trt(X) > n.

A similar inequality holds for cohomological and extension dimensions of X. We recall
their definitions.

For a space X and a CW -complex L we write e-dimX ≤ L if each map f : A → L

defined on a closed subset A ⊂ X admits a continuous extension f̄ : X → L; see [25]
and [26] for more information on extension dimension theory. It follows from the classical
Hurewicz–Wallman Theorem [32, 1.9.3] that e-dimX ≤ Sn iff dimX ≤ n. The cohomo-
logical dimension with respect to a given Abelian group G can be expressed via extension
dimension as follows: define

dimGX ≤ n if e-dimX ≤ K(G,n),

where K(G,n) is the Eilenberg–MacLane complex of type (G,n), and let dimGX be the
smallest non-negative integer with dimGX ≤ n. If there is no such integer n, we put
dimGX =∞.

Theorem 10.10. Let n ∈ ω and X ∈ ZZ
n be a locally compact LCn-space. Then:

(1) dimGX > n for any Abelian group G.
(2) e-dimX 6≤ L for any CW -complex L with a non-trivial homotopy group πk(L) for

some k ≤ n.
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11. Homological Zn-sets and m-DD{n,k}-properties

In this subsection we discuss the interplay between the classes ZGn and m-DD{n,k}. The
following two theorems present homological counterparts of the formulas

n-DD{n,0} ⊂ Zn ⊂
⋂

m+k≤n

m-DD{0,k} and

Br ∩ LCn ∩ 0-DD{0,n} ⊂ LC0 ∩ Zn ⊂ 0-DD{0,n}

from Theorem 7.1.

Theorem 11.1. Let X be a Tychonoff space and n ∈ ω ∪ {∞}.

(1) If an LC1-space X has the 2-DD{0,2}-property, then each homological Zn-point in X
is a homotopical Zn-point:

LC1 ∩ 2-DD{0,2} ∩ ZZ
n ⊂ Zn

(2) If a metrizable separable Baire LCn-space X has the 0-DD{0,2}-property and contains
a dense set of homological Zn-points, then X contains a dense set of homotopical Zn-
points and X ∈ 0-DD{0,n}:

LCn ∩ Br ∩ 0-DD{0,2} ∩ ZZ
n ⊂ Zn ∩ 0-DD{0,n}

(3) If X has the (2n+ 1)-DD{0,0}-property, then each point of X is a homological Zn-
point:

(2n+ 1)-DD{0,0} ⊂ ZZ
n

(4) If X has the 2n-DD{0,0}-property, then each point of X is a G-homological Zn-point
for any group G with divisible quotient G/Tor(G). Consequently,

2n-DD{0,0} ⊂ ZQ
n ∩

⋂
p(Z

Zp
n ∩ ZQp

n )

Theorem 11.2. Let m,m, k be non-negative integers or infinity.

(1) If each point of an LC1-space X with the 2-DD{0,2}-property is a homological Zm+k-
point, then X has the m-DD{0,k}-property. This can be written as

LC1 ∩ ZZ
m+k ∩ 2-DD{0,2} ⊂ m-DD{0,k}

(2) If a metrizable separable LCk-space X has the 0-DD{0,2}-property and contains a
dense set of homological Zk-points, then X has the 0-DD{0,k}-property. This can be
written as

LCk ∩ ZZ
k ∩ 0-DD{0,2} ⊂ 0-DD{0,k}

(3) If each point of a metrizable separable LC2-space X is a homological Zm+n+k-point
and X has the m-DD{n,max{n,2}}-property, then X has the m-DD{n,k}-property. This
can be written as
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LC2 ∩ ZZ
m+n+k ∩m-DD{n,max{2,n}} ⊂ m-DD{n,k}

(4) If each point of an LC1-space X is a homological Zm-point and X ∈ 2-DD{0,0}, then
X has the m-DD{0,0}-property. This can be written as

LC1 ∩ ZZ
m ∩ 2-DD{0,0} ⊂ m-DD{0,0}

(5) If each point of an LC0-space X is a G-homological Z2-point for some group G, then
X has the DD1P. If in addition X is a metrizable LC1-space containing a dense set
of homotopical Z2-points, then X ∈ 2-DD{0,0}.

LC0 ∩ (
⋃
GZG2 ) ⊂ 0-DD{1,1} and LC1 ∩ Z2 ∩ (

⋃
GZG2 ) ⊂ 2-DD{0,0}

12. Homological characterization of the 0-DD{n,k}-property

In this subsection we prove a quantified version of the homological characterization of
the 0-DD{∞,∞}-property due to Daverman and Walsh [19].

First, we provide a homotopical version of the Daverman–Walsh result.

Theorem 12.1. Let n, k be finite or infinite integers (with n ≤ k). A Polish (LCk)-
space X has the 0-DD{n,k}-property if (and only if ) there is a countable family F of
(n-dimensional compact) homotopical Zk-sets in X such that each compact subset K ⊂
X \

⋃
F is a homotopical Zn-set in X.

Under some mild assumptions onX it is possible to replace the homotopical conditions
in Theorem 12.1 by homological ones.

Theorem 12.2. A Polish LCmax{n,k}-space X ∈ 0-DD{2,2} has the 0-DD{n,k}-property
provided each point of X is a homological Z2+max{n,k}-point and there is a countable
family F of homological Zk-sets in X such that each compact subset K ⊂ X \

⋃
F is a

homological Zn-set in X.

This theorem implies another characterization of 0-DD{n,k}-properties in terms of
approximation properties defined as follows. We shall say that a topological space has
the n-dimensional approximation property (briefly, AP[n]) if for any open cover U of X
and a map f : In → X there is a map g : In → X such that g is U-homotopic to f and
trt(g(In)) < n+ 1. Here we assume that α <∞+ 1 for each ordinal α (which is essential
if n =∞).

Observe that each LC0-space has AP[0] and each LC1-space has AP[1].

Theorem 12.3. If each point of a Polish LCmax{n,k}-space X is a homological Zn+k-point
and X has the properties AP[n] and 0-DD{2,min{2,n}}, then X has the 0-DD{n,k}-property.
This can be written as

Π0
2 ∩ LCmax{n,k} ∩ ZZ

n+k ∩AP[n] ∩ 0-DD{2,min{2,n}} ⊂ 0-DD{n,k}
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13. m-DD{n,k}-properties of locally rectifiable spaces

There is a non-trivial interplay between m-DD{n,k}-properties for spaces having a kind
of homogeneity property. We recall that a space X is topologically homogeneous if for
any two points x0, x ∈ X there is a homeomorphism hx : X → X such that hx(x0) = x.
If the homeomorphism hx can be chosen to depend continuously on x then X is called
rectifiable at x0.

More precisely, we define a topological space X to be locally rectifiable at a point
x0 ∈ X if there exists a neighborhood U of x0 such that for every x ∈ U there is a
homeomorphism hx : X → X such that hx(x0) = x and hx continuously depends on x in
the sense that the map H : U ×X → U ×X, (x, z) 7→ (x, hx(z)), is a homeomorphism.
If U = X, then the space X is called rectifiable at x0.

A space X is called (locally) rectifiable if it is (locally) rectifiable at each point
x ∈ X. Rectifiable spaces were introduced in [37] and studied in [48]. The class of
rectifiable spaces contains the underlying spaces of topological groups but also con-
tains spaces not homeomorphic to topological groups. A simplest such example is the
7-dimensional sphere S7 (see [74]). It should be mentioned that all finite-dimensional
spheres Sn are locally rectifiable but only S1, S3 and S7 are rectifiable (this follows
from Adams’ famous result [1] detecting H-spaces among the spheres). It can be shown
that each connected locally rectifiable space is topologically homogeneous. On the other
hand, the Hilbert cube is topologically homogeneous but fails to be (locally) rectifiable
(see [37]).

By LR we denote the class of Tychonoff locally rectifiable spaces.

Theorem 13.1. Let X be a locally rectifiable Tychonoff space.

(1) If X has the m-DD{0,k}-property, then each point of X is a homotopical Zm+k-point:

LR ∩m-DD{0,k} ⊂ Zm+k

(2) If X has the m-DD{0,k}-property, then X has i-DD{0,j}-properties for all i, j with
i+ j ≤ m+ k:

LR ∩m-DD{0,k} ⊂
⋂
i+j≤m+k i-DD{0,j}

(3) If either X∈Zm+p or X∈Z
Z
m+p∩LC1, then the product X×Y has them-DD{n,k+p+1}-

property for each separable metrizable LCk-space Y possessing the m-DD{n,k}-pro-
perty with n ≤ k. This can be written as(

LR ∩ LC1 ∩ ZZ
m+p

)
×
(
LCk ∩m-DD{n,k}

)
⊂ m-DD{n,k+p+1}

Remark 13.2. Since Rq ∈ Zq−1 is rectifiable, Theorem 13.1(3) implies that the product
X×Rm+p has the m-DD{n,k+p}-property for any separable metrizable LCk-space having
the m-DD{n,k}-property with n ≤ k. This result was established by W. Mitchell [54,
Theorem 4.3(1)] in the case X is a compact ANR and m = 0. Moreover, a particular case
of Theorem 13.1(1) when X is an ANR and m = 0 was also established in [54].
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14. k-Root and division formulas for the m-DD{n,k}-properties

In this section we discuss k-root and division formulas for the m-DD{n,k}-properties, one
of the most surprising features of these properties.

Theorem 14.1 (k-Root formulas). Let n be a non-negative integer or infinity and k be
a positive integer.

(1) If X is an LC1-space with X ∈ 2-DD{0,0} and Xk ∈ (kn+k−1)-DD{0,0}, then X has
the n-DD{0,0}-property. This can be written as

LC1 ∩ 2-DD{0,0} ∩ k

√
(kn+ k − 1)-DD{0,0} ⊂ n-DD{0,0}

(2) If X is a separable metrizable LCkn+k−1-space with the 0-DD{0,2}-property and Xk

has the 0-DD{0,kn+k−1}-property, then X has the 0-DD{0,n}-property. This can be
written as

LCkn+k−1 ∩ 0-DD{0,2} ∩ k
√

0-DD{0,kn+k−1} ⊂ 0-DD{0,n}

To write down division formulas for the m-DD{n,k}-property, let us introduce two new
classes in addition to the classes

⋃
GZGn and ∃◦

⋃
GZ

G

n :

• Z∃Gn , the class of spaces X with all x ∈ X being ∃G-homological Zn-points in X;
• ∆Z∃Gn , the class of spaces X whose diagonal ∆X is an ∃G-homological Zn-set in X2.

Note that any at most n-dimensional polyhedron belongs to none of the last two classes.

Theorem 14.2 (Division formulas). Let n ≤ k be non-negative integers or infinity and
m a non-negative integer.

(1) An LC1-space with the 2-DD{0,0}-property has the n-DD{0,0}-property provided X×Y
has the (n+m)-DD{0,0}-property for some space Y whose diagonal ∆Y fails to be a
∃G-homological Zm-set in Y 2. This can be written as

LC1 ∩ 2-DD{0,0} ∩ (n+m)-DD{0,0}

Top \∆Z∃Gm
⊂ n-DD{0,0}

(2) A separable metrizable LCn+m-space X ∈ 0-DD{0,2} has the 0-DD{0,n}-property
provided X × Y has the 0-DD{0,n+m}-property for some metrizable separable Baire
LCn+m-space Y that contains no non-empty open set U ∈

⋃
GZ

G

m.

LCn+m ∩ 0-DD{0,2} ∩ 0-DD{0,n+m}

Br ∩ LCn+m \ ∃◦
⋃
GZ

G

m

⊂ 0-DD{0,n}

(3) A separable metrizable LCk+m-space X ∈ ZZ
k+2 with X ∈ 0-DD{2,2} has the

0-DD{n,k}-property provided X×Y ∈ 0-DD{n+m,k+m} for some metrizable separable
LCk+m-space Y /∈ Z∃Gm . This can be written as
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LCk+m ∩ 0-DD{2,2} ∩ ZZ
k+2 ∩

0-DD{n+m,k+m}

LCk+m \ Z∃Gm
⊂ 0-DD{n,k}

(4) A separable metrizable LCk+m-space X ∈ ZZ
n+k+m with X ∈ 0-DD{2,2} has the

0-DD{n,k}-property provided X×Y ∈ 0-DD{n+m,n+m} for some metrizable separable
LCn+m-space Y /∈

⋃
GZGm. This can be written as

LCk+m ∩ 0-DD{2,2} ∩ ZZ
n+k+m ∩

0-DD{n+m,n+m}

LCn+m \
⋃
GZGm

⊂ 0-DD{n,k}

15. Characterizing m-DD{n,k}-properties with m,n, k ∈ {0,∞}

In this subsection we apply the results obtained in the preceding subsections to the
case of m-DD{n,k}-properties with m,n, k ∈ {0,∞}. Let us note that 0-DD{0,0} has
been characterized in Proposition 5.6 while ∞-DD{∞,∞} is equivalent to 0-DD{∞,∞}.
So, it suffices to consider only the properties: 0-DD{0,∞}, ∞-DD{0,0}, ∞-DD{0,∞}, and
0-DD{∞,∞}. These can be characterized in terms of homotopical or homological Z∞-
points as follows:

Corollary 15.1.

(1) A topological (LC1-)space X has the ∞-DD{0,∞}-property if and only if all points of
X are homotopical Z∞-points (resp., if and only if all points of X are homotopical
Z2-points and X ∈ ∞-DD{0,0}):

Z2 ∩∞-DD{0,0} ∩ LC1 ⊂ ∞-DD{0,∞} = Z∞

(2) An LC1-space X has the ∞-DD{0,0}-property if and only if X ∈ 2-DD{0,0} and all
points of X are homological Z∞-points:

ZZ
∞ ∩ 2-DD{0,0} ∩ LC1 ⊂ ∞-DD{0,0} ⊂ ZZ

∞

(3) A Polish LC∞-space X has the 0-DD{0,∞}-property if and only if X has a dense set
of homotopical Z∞-points if and only if X ∈ 0-DD{0,2} and X has a dense set of
homological Z∞-points:

ZZ
∞ ∩ 0-DD{0,2} ∩ LC∞ ⊂ 0-DD{0,∞} and 0-DD{0,∞} ∩ LC∞ ∩Π0

2 ⊂ Z∞

(4) If each point of a metrizable separable LC∞-space X is a homological Z∞-point and
X has the properties AP[∞] and 0-DD{2,2}, then X has the 0-DD{∞,∞}-property:

ZZ
∞ ∩ 0-DD{2,2} ∩ LC∞ ∩AP[∞] ⊂ ∞-DD{∞,∞} = 0-DD{∞,∞}

According to the famous characterization of Hilbert cube manifolds due to Toruńczyk
[68], a locally compact ANR-space X is a Q-manifold if and only if X has the 0-DD{∞,∞}-
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property. Combining this characterization with the last item of Corollary 15.1 we obtain
a new characterization of Q-manifolds.

Corollary 15.2. A locally compact ANR is a Q-manifold if and only if

• X has the disjoint disk property;
• each point of X is a homological Z∞-point;
• each map f : I∞ → X can be uniformly approximated by maps with trt-dimensional
image.

Next, we discuss k-root formulas for m-DD{n,k}-properties with m,n, k ∈ {0,∞}.

Corollary 15.3 (k-Root formulas).

(1) An LC1-space X has the ∞-DD{0,0}-property if and only if X ∈ 2-DD{0,0} and
Xk ∈ ∞-DD{0,0} for some finite k. This can be written as

∞-DD{0,0} ⊃ k
√
∞-DD{0,0} ∩ 2-DD{0,0} ∩ LC1

(2) A metrizable separable LC∞-space X has the 0-DD{0,∞}-property if and only if X ∈
0-DD{0,2} and Xk ∈ 0-DD{0,∞} for some finite k. This can be written as

0-DD{0,∞} ⊃ k
√

0-DD{0,∞} ∩ 0-DD{0,2} ∩ LC∞

(3) An LC1-space X has the ∞-DD{0,∞}-property iff X has the 2-DD{0,2}-property and
Xk ∈ ∞-DD{0,∞} for some finite k. This can be written as

∞-DD{0,∞} ⊃ k
√
∞-DD{0,∞} ∩ 2-DD{0,2} ∩ LC1

(4) A metrizable separable LC∞-space X has the 0-DD{∞,∞}-property if X has the
0-DD{2,2}-property, X ∈ AP[∞] and Xk ∈ 0-DD{∞,∞} for some finite k. This can
be written as

0-DD{∞,∞} ⊃ k
√

0-DD{∞,∞} ∩ 0-DD{2,2} ∩ LC∞ ∩AP[∞]

Finally, we turn to division formulas for the m-DD{n,k}-properties with m,n, k ∈
{0,∞}.

Corollary 15.4 (Division formulas).

(1) An LC1-space X has the∞-DD{0,0}-property provided X ∈ 2-DD{0,0} and the product
X × Y has the ∞-DD{0,0}-property for some space Y /∈

⋃
GZG∞. This can be written

as

∞-DD{0,0} ⊃ ∞-DD{0,0}

Top \
⋃
GZG∞

∩ 2-DD{0,0} ∩ LC1

(2) An LC1-space X has the ∞-DD{0,∞}-property provided X ∈ 2-DD{0,2} and the prod-
uct X × Y has the ∞-DD{0,∞}-property for some space Y /∈

⋃
GZG∞. This can be

written as
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∞-DD{0,∞} ⊃ ∞-DD{0,∞}

Top \
⋃
GZG∞

∩ 2-DD{0,2} ∩ LC1

(3) A metrizable separable LC∞-space X has the 0-DD{∞,∞}-property provided X ∈
0-DD{2,2} and X × Y has the 0-DD{∞,∞}-property for some separable metrizable
LC∞-space Y /∈

⋃
GZG∞. This can be written as

0-DD{∞,∞} ⊃ LC∞ ∩ 0-DD{∞,∞}

Top \
⋃
GZG∞

∩ 0-DD{2,2}

(4) A metrizable separable LC∞-space X has the 0-DD{0,∞}-property provided X ∈
0-DD{0,2} and the product X × Y has the 0-DD{0,∞}-property for some metrizable
separable LC∞-space Y /∈ ∃◦

⋃
GZ

G

∞. This can be written as

0-DD{0,∞} ⊃ LC∞ ∩ 0-DD{0,∞}

Top \ ∃◦
⋃
GZ

G

∞

∩ 0-DD{0,2}

The third item of Corollary 15.4 combined with Toruńczyk’s characterization of Q-
manifolds implies the following division theorem for Q-manifolds proven in [3] and im-
plicitly in [19].

Corollary 15.5. A space X is a Q-manifold if and only if the product X × Y is a
Q-manifold for some space Y /∈

⋃
GZG∞.

16. Dimension of spaces with the m-DDn-property

In this section we study the dimensional properties of spaces possessing the m-DDn-
property.

Theorem 16.1. If a metrizable separable space X has the m-DDn-property, then dimX

≥ n+ (m+ 1)/2.

This theorem combined with Theorem 9.1 allows us to calculate the smallest possible
dimension of a space X with m-DDn. For a real number r let

brc = max{n ∈ Z : n ≤ r}, dre = min{n ∈ Z : n ≥ r}.

Corollary 16.2. Let n,m be non-negative integers and D be a dendrite with a dense
set of end-points.

(1) If m is odd and d = n + (m+ 1)/2, then the power Dd is a d-dimensional absolute
retract with the m-DDn-property.

(2) If m is even and d = n + (m+ 2)/2, then the product Dd−1 × I is a d-dimensional
absolute retract with the m-DDn-property.

Consequently, n + d(m+ 1)/2e is the smallest possible dimension of a compact absolute
retract with the m-DDn-property.
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Theorem 16.1 implies that dim(X) ≥ m + 1 for each metrizable separable space X
with the (2m+ 1)-DD0-property. A similar inequality also holds also for cohomological
dimension.

Theorem 16.3. Let X be a locally compact metrizable LCm-space having the property
(2m+ 1)-DD0. Then dimGX ≥ m+ 1 for any non-trivial Abelian group G.

In some cases the condition X ∈ (2m+ 1)-DD0 from Theorem 16.3 can be weakened
to X ∈ 2m-DD0.

Theorem 16.4. Let X be a locally compact LC2m-space with the 2m-DD0-property and
let G be a non-trivial Abelian group. The inequality dimGX ≥ m+ 1 holds in each of the
following cases:

(1) G fails to be both divisible and periodic;
(2) G is a field;
(3) X is an ANR-space.

Theorem 16.4 implies the following estimation for the extension dimension of spaces
X ∈ m-DD{0,0}:

Theorem 16.5. Let X be a locally compact LCm-space such that e-dimX ≤ L for some
CW -complex L. If X ∈ m-DD0, then we have:

(1) The homotopy groups πi(L) are trivial for all i < m/2.
(2) For n = bm/2c the group πn(L) is both divisible and periodic, and πn(L) = H̃n(L).
(3) πi(L) = 0 for all i ≤ m/2 provided X is an ANR-space.

Finally, we discuss the dimension properties of spaces X ∈ ∞-DD{0,0}.

Theorem 16.6. Let X be a locally compact metrizable LC∞-space possessing the property
∞-DD{0,0}.

(1) All points of X are homological Z∞-points.
(2) X fails to be trt-dimensional.
(3) If e-dimX ≤ L for some CW -complex L, then L is contractible.
(4) If X is locally contractible, then X is not a C-space.

The first item of this theorem follows from Theorem 7.1(7). The last three items follow
from Theorems 10.9(1) and 10.10.

17. Some examples and open problems

First, we discuss the problem of distinguishing between the m-DD{n,k}-properties for
various m,n, k. Let us note that if an Euclidean space E has the m-DD{n,k}-property for
some m,n, k, then E has the a-DD{b,c}-property for all non-negative integers a, b, c with
a + b + c ≤ n + m + k. This feature is specific for Euclidean spaces and does not hold
in the general case. For example, each dendrite D with a dense set of end-points has the
0-DD{0,2}-property (and in fact, 0-DD{0,∞}) but does not have the 0-DD{1,1}-property.
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The next example from Daverman’s book [17] shows that the properties 0-DD{0,2} and
0-DD{1,1} are completely incomparable.

Example 17.1. There is a 2-dimensional absolute retract Λ ⊂ R3 with 0-DD{1,1}-pro-
perty that fails to have the 0-DD{0,2}-property.

Question 17.2. Does the space Λ from Example 17.1 have the 2-DD{0,0}-property?

It follows from Theorem 14.2(1) that a Polish LC∞-space X has the ∞-DD{0,0}-
property provided X ×R ∈ ∞-DD{0,0} and X ∈ 2-DD{0,0}. We do not know if the latter
condition is essential.

Question 17.3. Does a compact absolute retract X possess the ∞-DD{0,0}-property
provided X × I has that property? (Let us observe that X × I ∈ ∞-DD{0,0} implies
X × I ∈ ∞-DD{1,∞}.)

This question is equivalent to another intriguing one.

Question 17.4. Does a compact absolute retract X contain a Z2-point provided all points
of the product X × I are Z∞-points?

Problem 17.5. Let X be a compact AR with the ∞-DD{0,0}-property.

(1) Is there any Z2-point in X?

(2) Is X strongly infinite-dimensional?
(3) Is X × I homeomorphic to the Hilbert cube?

Problem 17.6. Is a space X ∈ 0-DD{2,2} homeomorphic to the Hilbert cube Q provided
some finite power of X is homeomorphic to Q?

There are three interesting examples relevant to these questions. The first of them
was constructed by Singh in [63], the second by Daverman and Walsh in [19] and the
third by Banakh and Repovš in [6].

Example 17.7 (Singh). There is a space X with the following properties:

(1) X is a compact absolute retract;
(2) X contains no topological copy of the 2-disk I2;
(3) X × I is homeomorphic to the Hilbert cube;
(4) all but countably many points of X are Z2-points;
(5) X ∈ ∞-DD{0,0};
(6) X /∈ 2-DD{0,2} ∪ 0-DD{2,2};
(7) X × I ∈ ∞-DD{∞,∞}.

Example 17.8 (Daverman–Walsh). There is a space X with the following properties:

(1) X is a compact absolute retract;
(2) X × I is homeomorphic to the Hilbert cube;
(3) each point of X is a Z∞-point;
(4) X ∈ ∞-DD{0,∞} ∩ 0-DD{1,∞};
(5) X /∈ 0-DD{2,2};
(6) X × I ∈ ∞-DD{∞,∞}.
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Example 17.9 (Banakh–Repovš). There is a countable family X of spaces such that

(1) the product X × Y of any two different spaces X,Y ∈ X is homeomorphic to the
Hilbert cube;

(2) no finite power Xk of any space X ∈ X is homeomorphic to Q.

Note that there is no uncountable family X possessing the properties (1) and (2) from
Example 17.9 (see [6]).

It may be convenient to describe the m-DD{n,k}-properties of a space X using the
following sets:

∗-DD{∗,∗}(X) = {(m,n, k) ∈ ω3 : X has the m-DD{n,k}-property},

0-DD{∗,∗}(X) = {(n, k) ∈ ω2 : X has the 0-DD{n,k}-property},
∗-DD∗(X) = {(m,n) ∈ ω2 : X has the m-DDn-property}.

Problem 17.10. Describe the geometry of the sets ∗-DD{∗,∗}(X), 0-DD{∗,∗}(X) and
∗-DD∗(X) for a given space X. Which subsets of ω3 or ω2 can be realized as the sets
∗-DD{∗,∗}(X), 0-DD{∗,∗}(X) or ∗-DD∗(X) for a suitable X?

In fact, we can consider the following partial pre-order ⇒
DD

on ω3: (m,n, k)⇒
DD

(a, b, c)

if each space X with the m-DD{n,k}-property also has the a-DD{b,c}-property.

Problem 17.11. Describe the properties of the partial preorder ⇒
DD

on ω3.

By Proposition 3.4(2), a paracompact space X is Lefschetz ANE[n] for a finite n if
and only if X is an LCn−1-space. Consequently, the product of two paracompact ANE[n]-
spaces is an ANE[n]-space for every finite n.

Problem 17.12. Is the product of two (paracompact) Lefschetz ANE[∞]-spaces a Lef-
schetz ANE[∞]-space?



Part II. PROOFS

18. Preliminaries

This section is of a preliminary character and collects some notion, conventions and
auxiliary results.

18.1. Topological spaces. Since we often deal with perfect maps, let us describe their
interplay with the class of proper maps. We recall that a map p : X → Y between
topological spaces is called perfect if p is closed and the preimages p−1(y), y ∈ Y , are
compact; p is proper if the preimage p−1(K) of each compact subset K ⊂ Y is compact.
Each perfect map is proper [33, 3.7.2]. Conversely, each proper map f : X → Y into a
k-space Y is perfect [33, 3.7.18].

We recall that a topological space X is a k-space if a subset F ⊂ X is closed if and
only if its intersection F ∩K with each compact subset K ⊂ X is closed in X. It is well-
known that each first countable (in particular, metrizable) space is a k-space. On the
other hand, CW -complexes also are k-spaces. Therefore, to check that a map f : X → K

into a CW -complex is perfect it suffices to check that the preimage of each compact
subset of K is compact.

For a subset A ⊂ X and a cover U ofX we write diamA < U if A ⊂ U for some U ∈ U .
Sometimes, we also write A ≺ U to denote that diamA < U . For two families U ,V of sub-
sets of X we write U ≺ V if diamU < V for all U ∈ U . In this case we say that U refines V,
or U is inscribed in V. For two covers U ,V of X let U ∧ V = {U ∩ V : U ∈ U , V ∈ V}.

A partition of unity on a space X is a family of continuous functions {λi : X →
[0, 1]}i∈I such that the family {λ−1

i (0, 1]}i∈I is locally finite and
∑
i∈I λi(x) = 1 for all

x ∈ X. Let U be a cover of X. A partition of unity {λU : X → [0, 1]}U∈U is subordinated
to U if λ−1

U (0, 1] ⊂ U for all U ∈ U . We shall often use the fact that for each open cover
U of a paracompact space X there is a partition of unity {λU}U∈U subordinated to U
and such that for any x ∈ X at most dimX + 1 values λU (x) are strictly positive.

A subset A of a topological space X is called functionally open (resp., functionally
closed) if A = f−1(B) for some continuous function f : X → R and some open (resp.,
closed) subset B ⊂ R. A subset A of a normal space is functionally open if and only if A
is an open Fσ-set in X.

18.2. Uniform covers. For a cover U of X and a subset A ⊂ X let St(A,U) =⋃
{U ∈ U : U ∩ A 6= ∅} be the star of A and St(U) = {St(U,U) : U ∈ U} be the

star of the cover U . Also we put St0(U) = U and Stn+1(U) = St(Stn(U)) for n ≥ 0.

[33]
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Given a pseudometric ρ on a set X, by Bρ(x0, ε) = {x ∈ X : ρ(x, x0) < ε} we
denote the open ε-ball centered at a point x0 ∈ X. For a family U of subsets of a
set X and a pseudometric ρ on X we let meshρ U = sup{diamρ U : U ∈ U}, where
diamρ U = supx,y∈U ρ(x, y) is the ρ-diameter of U .

An open cover U of a topological space X is called a uniform cover of X if there exists
a continuous pseudometric ρ on X such that U is refined by the cover {Bρ(x, 1) : x ∈ X}.

The following fundamental result is due to J. Tukey (see [33, 5.4.H]).

Lemma 18.1. Each open cover of a paracompact spaces X is uniform.

This result can be partly generalized for Tychonoff spaces.

Lemma 18.2. For any open cover U of a Tychonoff space X and any compact set K ⊂ X
there is a continuous pseudometric ρ on X such that the family {Bρ(x, 1) : x ∈ K} is
inscribed in the cover U .

Proof. Embed X into a Tychonoff cube Iκ for a suitable cardinal κ. For each x ∈ K find
a finite index set F (x) ⊂ κ and an open setWx ⊂ IF (x) whose preimage Vx = pr−1

F (x)(Wx)

under the projection prF (x) : X → IF (x) contains the point x and lies in some U ∈ U .
By the compactness of K, the open cover {Vx : x ∈ K} of K has a finite subcover
{Vx1

, . . . , Vxm
}. Now, consider the finite set F =

⋃m
i=1 F (xi) and note that each set Vxi

is the preimage of some open set Wi under the projection prF : X → IF . Let d be any
metric on the finite-dimensional cube IF . By the compactness of C = prF (K) ⊂

⋃m
i=1Wi,

there is ε > 0 such that each ε-ball centered at a point z ∈ C lies in some Wi. Finally,
define the pseudometric ρ on X letting ρ(x, x′) = (1/ε) · d(prF (x),prF (x′)) for x, x′ ∈ X.
It is easy to see that each 1-ball centered at any point x ∈ K lies in some U ∈ U .

18.3. Homotopies. When working with U-homotopies it is convenient to consider their
metric counterpart, ε-homotopies. If ρ is a continuous pseudometric on a space M , then
two maps f, g : X →M are called ε-homotopic if there is a homotopy h : X × [0, 1]→M

linking f and g such that for each x ∈ X the set h({x} × [0, 1]) has diameter < ε. Thus
ε-homotopies are precisely U-homotopies for the cover of M by open sets of diameter
< ε. Conversely, for any open cover U of a Tychonoff space M and a map f : X → M

with f(X) ⊂ K for some compact set K ⊂ M , we can find a continuous pseudometric
ρ on X such that each map g : X → M which is 1-homotopic to f is U-homotopic to f
(see Lemma 18.2).

The following standard fact from the theory of retracts allows us to extend homotopies.

Lemma 18.3 (Borsuk’s homotopy extension lemma). Let K be a normal space and L be
a neighborhood retract of K. Let f : K → X be a map into a space X and U be an open
cover of X. Then any map g : L → X U-homotopic to f |L can be extended to a map
ḡ : K → X U-homotopic to f .

Usually, this lemma will be applied to pairs (K,L) consisting of a simplicial complex
K and its subcomplex L.

18.4. Function spaces. In this subsection we collect some information concerning the
function spaces C(K,X). Let us observe that in the definition of the source limitation
topology we can consider only positive functions ε with ε(x) ≤ 1 for all x ∈ K, i.e., ε ∈
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C(K, (0, 1]). This restriction implies another one: we can suppose that all pseudometrics
ρ on X are ≤ 1. In the case of metrizable X and paracompact K there is an equivalent
description of the source limitation topology on C(K,X).

Lemma 18.4. Let f ∈ C(K,X), where X is a metrizable space and K paracompact.
Then, for every metric d on X generating its topology, the neighborhood base at f in the
source limitation topology consists of the sets Bd(f, ε), ε ∈ C(K, (0, 1]).

Proof. Let Metr(X) denote all compatible metrics ρ for X with ρ ≤ 1 and E(K) be the
collection of all continuous positive functions ε ≤ 1 on K. We are going first to show
that the sets Bρ(f, ε), ρ ∈ Metr(X) and ε ∈ E(K), form a base for the source limitation
topology on C(K,X). It suffices to prove that for any continuous pseudometric ρ1 ≤ 1 on
X there exists a metric ρ ∈ Metr(X) such that Bρ(f, ε) ⊂ Bρ1(f, ε) for all f ∈ C(K,X)

and all ε ∈ E(K). Indeed, just take ρ = max{ρ1, d}, where d is any metric from Metr(X).
Let us prove now that, under our hypotheses, the source limitation topology coincides

with the graph topology τΓ on C(K,X). The graph topology was introduced in [56] and
its base consists of all sets of the form UG = {f ∈ C(K,X) : Γ(f) ⊂ G}, where G is an
open set inK×X and Γ(f) denotes the graph of f . Let V ⊂ C(K,X) be open with respect
to the source limitation topology and f ∈ V . Then there exists a metric ρ ∈ Metr(X)

and ε ∈ E(K) with Bρ(f, ε) ⊂ V . Obviously, G = {(x, y) ∈ K ×X : ρ(y, f(x)) < ε(x)}
is open in K × X and f ∈ UG ⊂ Bρ(f, ε). Next, suppose V ⊂ C(K,X) is open with
respect to τΓ and f ∈ V . So, there is an open set G in K × X with f ∈ UG ⊂ V . We
fix a metric ρ ∈ Metr(X) and, as in the proof of Theorem 2.11 from [21], we can find a
function ε ∈ E(K) such that Bρ(f, ε) ⊂ UG.

Hence, the source limitation topology on C(K,X) coincides with the topology τΓ.
On the other hand, according to [21, Theorem 2.11], for any metric d ∈ Metr(X), the
topology τd on C(K,X) whose base consists of all sets Bd(f, ε), ε ∈ E(K), coincides
with τΓ. Therefore, for any metric d ∈ Metr(X) the family of all sets Bd(f, ε), ε ∈ E(K),
is a base for the source limitation topology on C(K,X).

Lemma 18.4 implies that, for a metric space (X, d) and a compact space K, the
source limitation topology on C(K,X) coincides with the uniform convergence topology
generated by the metric d. In particular, we have the following lemma.

Lemma 18.5. For a compact (metrizable) space K and a metrizable (separable) space X
the function space C(K,X) is metrizable (and separable).

18.5. V-maps. This subsection contains some information on V-maps.
A map f : X → Y between topological spaces is called a (uniform) V-map, where V is a

cover ofX, if there is a (uniform) open cover U of Y such that f−1(U) = {f−1(U) : U ∈ U}
refines the cover V. This notion has a metric counterpart: a map f : M → Y from a metric
space (M,d) is an ε-map if each point y ∈ Y has a neighborhood Uy whose preimage
f−1(Uy) is of diameter < ε.

The following characterization of closed V-maps is well known.

Lemma 18.6. A closed map f : X → Y is a V-map with respect to an open cover V of
X if and only if diam f−1(y) < V for any point y ∈ Y .
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The next lemma shows that, in some situations, V-maps between topological spaces
X and Y form an open set in the function space C(X,Y ) endowed with the uniform
topology. A neighborhood base of this topology at a given f ∈ C(X,Y ) consists of the
sets

Bρ(f, ε) = {g ∈ C(X,Y ) : ρ(f, g) < ε}

where ρ runs over the continuous pseudometrics on Y and ε over the positive real numbers.
It is clear that the source limitation topology on C(X,Y ) is stronger than the uniform
topology. So, a subset of C(X,Y ) is open in the source limitation topology if it is open
is the uniform topology.

Lemma 18.7. Let V be an open cover of a space X. Then, for any space Y , the set of all
uniform V-maps from X into Y is open in C(X,Y ) equipped with the uniform topology.
In particular, if Y is paracompact, the same conclusion is true for the set of all V-maps.

Proof. Suppose that f : X → Y is a uniform V-map. Then there exists a uniform
open cover U of Y with f−1(U) refining the cover V. Since U is uniform, there is a
continuous pseudometric ρ on Y such that diamBρ(y, 1) < U for any point y ∈ Y . We
claim that Bρ(f, 1/2) consists of uniform V-maps. Obviously, it suffices to prove that for
any g ∈ Bρ(f, 1/2) each set g−1(Bρ(y, 1/2)), y ∈ Y , is contained in some Vy ∈ V. By
the choice of ρ, for every y ∈ Y there exists Uy ∈ U containing Bρ(y, 1). Consequently,
f−1(Bρ(y, 1)) ⊂ f−1(Uy) ⊂ Vy for some Vy ∈ V. To show that g−1(Bρ(y, 1/2)) ⊂ Vy, take
any point x ∈ g−1(Bρ(y, 1/2)) and note that ρ(f(x), y) ≤ ρ(f(x), g(x)) + ρ(g(x), y) <

1/2 + 1/2 = 1, i.e., x ∈ f−1(Bρ(y, 1)) ⊂ Vy.
The second half of the lemma follows from the fact that every open cover of Y is

uniform provided Y is paracompact (see Lemma 18.1).

18.6. Abelian groups. In this subsection we collect some information on Abelian
groups. Recall that an Abelian group G is divisible by a prime number p if for any
g ∈ G the equation p · x = g has a solution in G. A group G is divisible if it is divisible
by any prime number p. By Tor(G) = {x ∈ G : nx = 0 for some n ∈ N} we denote the
torsion part of G. A group G is periodic if G = Tor(G). The torsion part decomposes into
the direct sum Tor(G) =

⊕
p p-Tor(G), where p-Tor(G) = {x ∈ G : pkx = 0 for some

k ∈ N} is the p-torsion part of G. It is easy to see that each group p-Tor(G) is divisible
by any prime number q 6= p.

A subgroup H of an Abelian group G is complemented in G if there is a subgroup
H⊥ ⊂ G such that H ∩ H⊥ = {0} and H + H⊥ = G. A subgroup H ⊂ G is servant
provided, for any h ∈ H and n ∈ N, the equation nx = h has a solution in H if and
only if it has a solution in G. By [34, 27.5], if G is an Abelian group and H its cyclic
subgroup generated by any element from Tor(G), then H is complemented in G provided
H is servant.

In the following notations of some standard Abelian groups, p is always a prime
number:

• Z denotes the group of integer numbers;
• Q is the group of rational numbers;
• Zp = Z/pZ is the cyclic group of order p;
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• Qp = {z ∈ C : zp
k

= 1 for some k ∈ N} is the quasicyclic p-group;
• Rp = {m/n ∈ Q : n is not divisible by p}.

Next, we need to recall some information on the tensor product G⊗H and the torsion
product G ∗H of Abelian groups G,H. The definitions of these operations can be found
in any textbook on homological algebra or algebraic topology (see e.g. [64] or [40]). In
some textbooks (e.g. [40]) the torsion product G ∗H is denoted by Tor(G,H).

The only information about torsion products we need is that the torsion product G∗H
contains an element of order n iff both groups G and H contain such an element (see
Exercise 6 on [40, p. 267]). We need a bit more information on tensor products.

Lemma 18.8. For any non-trivial Abelian groups G and H we have:

(1) G⊗ Z is isomorphic to G;
(2) G⊗H is periodic if either G or H is periodic;
(3) G⊗H 6= 0 if both G and H contain elements of infinite order;
(4) G⊗H 6= 0 if G,H are cyclic groups of the same order;
(5) if ϕ : G → H is an epimorphism with a periodic kernel and H contains an element

of a prime order p, then G also contains an element of order p;
(6) if H ⊗H = 0, then H is a periodic divisible group;
(7) if G/Tor(G) is divisible and H is periodic and divisible, then H ⊗G = 0.

Proof. The first four items are well known and can be found in [40, Exercises, p. 267].
The fifth item follows easily from the definitions. To prove (6), let H ⊗ H = 0. Then
H is periodic according to (3). Assuming H = Tor(H) =

⊕
p p-Tor(H) is not divisible,

we conclude that the p-torsion group p-Tor(H) is not divisible by p for some prime p.
This means that there is an element h ∈ p-Tor(H) such that the equation h = px has no
solution in H. Then the cyclic group C generated by h is servant in H, and consequently
complemented in p-Tor(H) by [34, 27.5]. Since C is a quotient group of H, the equality
H ⊗H = 0 would imply that C ⊗ C = 0, which contradicts (4).

To prove (7), suppose that H and G/Tor(G) are divisible and H is periodic. To show
that H ⊗ G = 0, take any x ∈ H, y ∈ G and consider their tensor product x ⊗ y. If
y ∈ Tor(G), then ny = 0 for some n ∈ N. Since H is divisible, there exists z ∈ H with
nz = x. Then x⊗ y = (nz)⊗ y = z ⊗ (ny) = 0. If y /∈ Tor(G), then the periodicity of H
implies the existence of m ∈ N with mx = 0. Because G/Tor(G) is divisible, there exists
z ∈ G such that mz − y = g ∈ Tor(G). Repeating the preceding argument, we can show
that x⊗ g = 0. Then x⊗ y = x⊗ (mz − g) = x⊗ (mz)− x⊗ g = (mx)⊗ z − 0 = 0.

19. 4-dimension of maps

In this section we discuss dimensional properties of maps and will prove Proposition 2.1.
This proof is divided into several lemmas. Our first lemma provides the proof of item (1)
of Proposition 2.1.

Lemma 19.1. dim(f) ≤ dim4(f) for any perfect map f : X → Y between Hausdorff
topological spaces.
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Proof. The inequality is trivial if dim4(f) ≥ ω. So assume that dim4(f) = n < ω and
take a map g : X → In such that the diagonal map f 4 g : X → Y × In is light.
Then for every y ∈ Y the preimage f−1(y) = (f 4 g)−1({y} × In) is a compact space of
dimension ≤ dim({0} × In) + dim(f 4 g) = n by Theorem 3.3.10 on dimension-lowering
mappings from [32]. This yields the desired inequality dim(f) = supy∈Y dim f−1(y) ≤
n = dim4(f).

The second item of Proposition 2.1 is trivial and follows from the definition of dim4(f).

The proof of the third item is provided by the following lemma [58].

Lemma 19.2. For any perfect map f : X → Y defined on a paracompact submetrizable
space X we have dim4(f) ≤ ω.

Proof. Pasynkov [58, Proposition 9.1] proved this fact in the case X is metrizable, but
his proof remains valid also for paracompact submetrizable spaces.

The fourth item of Proposition 2.1 follows from a result of M. Tuncali and V. Valov
[71, Theorem 1.3]. This result concerns the so-called σ-perfect maps. Following [71], we
call a map f : K →M σ-perfect ifK can be written as the countable unionK =

⋃∞
n=1Kn

of closed subspaces such that each restriction f |Kn : Kn →M , n ∈ N, is a perfect map.
In particular, every map defined on a σ-compact space is σ-perfect.

Lemma 19.3. Let f : K → M be a σ-perfect n-dimensional map from a paracom-
pact submetrizable space K onto a paracompact C-space M . Then the function space
C(K, In) contains a dense Gδ-set of maps g : K → In such that f 4 g : K → M × In is
0-dimensional.

This lemma has been established in [71] for metrizable space K. But the proof works
for submetrizable K as well.

The final item of Proposition 2.1 can be easily derived from the following result of M.
Levin [47]:

Lemma 19.4 (Levin). Let f : K → M be an n-dimensional map between metrizable
compacta. Then C(K, In+1) contains a dense Gδ-set of maps g : K → In+1 such that
f 4 g : K →M × In+1 is light.

20. Simplicial complexes and PL-maps

Since simplicial complexes and PL-maps play a significant role in our further considera-
tions, we collect the necessary information on this topic.

By an abstract simplicial complex we understand any set K such that each element
σ ∈ K is a finite non-empty set with all non-empty subsets of σ being also in K. Elements
of the set K are called simplexes while elements of the set

⋃
K are called vertices of K.

A subset L ⊂ K is a subcomplex of K if L itself is an abstract simplicial complex. The n-
skeleton, n ≥ 0, of the abstract complex K is its subcomplex K(n) = {σ ∈ K : card(σ) ≤
n + 1}. Identifying each vertex v ∈

⋃
K with the singleton {v} ∈ K(0), we can identify⋃

K with the 0-skeleton K(0) of K.
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The geometric realization |K| of a simplicial complex K is the set |K| of all functions
x :
⋃
K → [0, 1] such that there is a simplex σ ∈ K with

∑
v∈σ x(v) = 1 and x(v) = 0

if v /∈ σ. Hence, each function x ∈ |K| takes non-zero values only on a finite subset
of
⋃
K which necessarily is a simplex of K. Because of that, the geometric realization

|K| of K can be considered as a subset of the Banach space l1(
⋃
K) of all functions

x :
⋃
K → R with norm ‖x‖ =

∑
v∈

⋃
K |x(v)| < ∞. For each vertex v ∈

⋃
K of K we

denote by prv : |K| → [0, 1] the canonical projection assigning to a function x ∈ |K|
its value x(v) at v. It is clear that each projection prv : |K| → [0, 1] is continuous with
respect to the metric topology on |K| inherited from the Banach space l1(

⋃
K). The set

St(v) = pr−1
v (0, 1] is called the open star of v in |K|.

If L is a subcomplex of K, then we can identify the geometric realization |L| of L
with the set {x ∈ |K| : x(v) = 0 for all v ∈

⋃
K \

⋃
L}. Thus, for each simplex σ ∈ K

we can consider its geometric realization |σ| ⊂ |K| which is called a geometric simplex. It
is clear that |σ| is a compact subset of |K| with respect to the metric topology inherited
from l1(

⋃
K). The combinatorial interior of a geometric simplex |σ| is the set

|̊σ| = {x ∈ |σ| : x(v) > 0 for all v ∈ σ}.

The complement ∂|σ| = |σ| \ |̊σ| is called the combinatorial boundary of |σ|. Let us
observe that the star of any vertex v ∈

⋃
K is the union of the combinatorial interiors of

all simplexes containing v, i.e., St(v) =
⋃
v∈σ∈K |̊σ|.

Each geometric simplicial complex |K| contains a canonical dense setQK = |K|∩Q
⋃
K

consisting of all functions x ∈ |K| with rational values. Such functions x ∈ |K| will be
called rational points of |K|. Observe that, for any countable subcomplex L ⊂ K, the set
|L| ∩QM = QL is countable and dense in |L|.

The geometric realization of any abstract simplicial complex K can be described
more geometrically as follows. Identifying finite subsets of

⋃
K with their characteristic

functions, we can consider the complex K as a subset of l1(
⋃
K). In this description, the

0-skeleton K(0) of K coincides with the standard unit basis of the Banach space l1(
⋃
K).

Now, it is easy to see that
|K| =

⋃
σ∈K

conv(σ(0)),

where conv(A) stands for the convex hull of a given set A ⊂ l1(
⋃
K).

Besides the metric topology, every geometric simplicial complex |K| carries the CW -
topology which is the strongest topology on |K| inducing the original metric topology on
each geometric simplex |σ| ⊂ |K|, σ ⊂ K.

Unless stated otherwise, all geometric simplicial complexes |K| will always be equipped
with the CW -topology. This topology has many nice properties. For example:

• |K| is a stratifiable space [35], and hence it is hereditarily paracompact;
• |K| is submetrizable (because the l1-metric is continuous on |K|);
• |K| is a k-space;
• each compact subset of |K| is contained in the geometric realization |L| of some finite

subcomplex L ⊂ K.
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A typical example of an abstract simplicial complex is the nerve N(U) of a cover U
for a given space X. By definition, N(U) consists of all finite subsets F ⊂ U such that⋂
F 6= ∅. Thus, the non-empty sets U ∈ U are the vertices of the complex N(U). Every

partition of unity {λU : X → [0, 1]}U∈U subordinated to the cover U determines a map

λ : X → |N(U)|, x 7→ (λU (x))U∈U ,

called the canonical map into the nerve of U . This map is continuous with respect to the
CW -topology on |N(U)| because {λ−1

U (0, 1]}U∈U is a locally finite cover of X. Moreover,
since λ−1(St(U)) ⊂ U for all U ∈ U , the canonical map λ : X → N(U) is a U-map.

A map f : |K| → L from a geometric simplicial complex to a linear space L is called
a PL-map if it is linear on each geometric simplex |σ| ⊂ |K|, i.e.,

f(x) =
∑
v∈σ

x(v)f(v)

for all x ∈ |σ|. We recall that each vertex v ∈
⋃
K is identified with the characteristic

function of the singleton {v}. In particular, the identity inclusion i : |K| → l1(
⋃
K)

is a PL-map. Every PL-map is uniquely determined by its values on the set |K(0)| of
geometric vertices of |K|. Conversely, each map f :

⋃
K → L to a linear space induces

the canonical PL-map |f | : |K| → L, x 7→
∑
v∈

⋃
K x(v) · f(v).

A map f : |K| → |M | between two geometric complexes is said to be a PL-map
if its composition with the embedding |M | ⊂ l1(

⋃
M) is a PL-map. It can be shown

that if f : |K| → |M | is a PL-map and |σ| a geometric simplex of K, then f(|σ|) is
contained in some geometric simplex |τ | ofM . A PL-map f : |K| → |M | is called rational
if f(QK) ⊂ QM , where QK and QM are the rational points of |K| and |M |, respectively.

The next lemma is very useful when working with PL-maps.

Lemma 20.1. Let f : |K| → |M | be a PL-map and L a subcomplex of M . Then f−1(|L|)
is a subcomplex of |K|.

Proof. It suffices to show that f−1(|L|) is the union of all simplexes |σ| from |K| with
f(|σ|) ⊂ |L|. So, let x ∈ f−1(|L|) and |σ| ∈ |K|, |τ | ∈ |L| be the unique simplexes
such that x belongs to the combinatorial interior of |σ| and f(x) is contained in the
combinatorial interior of |τ |. Since f is a PL-map, there exists a simplex |τ ′| from |M |
which contains f(|σ|). Observe that |τ ′| contains also |τ |. Taking into account that x lies
in the combinatorial interior of |σ|, we conclude that f(v) ∈ |τ | for every vertex v of |σ|,
and hence f(|σ|) ⊂ |τ |, which completes the proof.

A PL-map f : |K| → |M | is called a simplicial map if f(|σ|) is a geometric simplex of
|M | for each geometric simplex |σ| of K, i.e., f maps each geometric simplex of |K| onto
a geometric simplex of |M |. It can be shown that a PL-map f : |K| → |M | is simplicial
if and only if f(|K(0)|) ⊂ |M (0)|. Hence, every simplicial map is uniquely determined
by its restriction f (0) : |K(0)| → |M (0)|. Obviously, f (0) can be identified with a map
f (0) :

⋃
K →

⋃
M . Moreover, a map f (0) :

⋃
K →

⋃
M induces a simplicial map
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f : |K| → |M | if and only if f (0)(σ) ∈M for each simplex σ ∈ K. Clearly, any simplicial
map is a rational PL-map.

Next, we discuss some formalism related to subdivisions of simplicial complexes. By
a subdivision of a geometric simplicial complex |K| we understand an abstract simplicial
complexM such that

⋃
M ⊂ |K| and the canonical PL-map |e| : |M | → l1(

⋃
K) induced

by the embedding e :
⋃
M ⊂ |K| ⊂ l1(

⋃
K) is a homeomorphism between the geometric

complexes |M | and |K| endowed with the CW -topologies. Using the properties of these
topologies, one can check that the preimage |e|−1(|σ|) of each geometric simplex of K
coincides with the geometric realization of some finite subcomplex of M . A subdivision
M of |K| is called a rational subdivision if

⋃
M ⊂ QK .

We shall say that the triangulation of a geometric simplicial complex |K| refines a
cover U of |K| if each geometric simplex |σ| of K is contained in some set U ∈ U .

We need the following well-known fact concerning the existence of fine subdivisions.

Lemma 20.2. For each open cover U of a geometric simplicial complex |K| there is a
rational subdivision M of |K| such that the cover {St(v) : v ∈

⋃
M} refines the cover

h−1(U) = {h−1(U) : U ∈ U}, where h : |M | → |K| is the canonical homeomorphism.

We recall some information on dual skeleta of geometric simplicial complexes. To this
end, we need the notion of barycentric subdivision.

The barycenter of a geometric simplex |σ| is the function bσ = 1
n

∑
v∈σ χv, where

card(σ) = n and χv are the characteristic functions of the singletons {v}. The barycentric
subdivision Bσ of a geometric simplex |σ| is defined by induction on the cardinality of σ.
If card(σ) ≤ 1, then Bσ = {|σ(0)|}. Assume that the barycentric subdivision Bσ is defined
for all simplexes of size card(σ) ≤ n. Given a simplex σ with card(σ) = n+ 1, let

Bσ = {τ, τ ∪ {bσ} : τ ∈ Bς for a proper subset ς ⊂ σ}.

Let |σ| be a geometric simplex and n ∈ ω. The dual skeleton to the n-skeleton σ(n) of
σ is the complex

σ(n) = {τ ∈ Bσ : τ ∩ |σ(n)| = ∅}

consisting of all simplexes of the barycentric subdivision of σ which are disjoint from the
geometric n-skeleton of σ.

The dual skeleton K(n) to the n-skeleton K(n) of a simplicial complex K is the com-
plex K(n) =

⋃
σ∈K σ(n). The geometric dual skeleton to the n-skeleton K(n) of K is the

subcomplex
|K(n)| =

⋃
σ∈K(n)

conv(σ)

of the barycentric subdivision (the latter is simplicially homeomorphic to the geometric
realization of K(n)—that is the reason we use the same symbol |K(n)| for both of them).

In the following figure we draw two possible pairs of dual (non-empty) skeleta of the
two-dimensional simplex.
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The importance of dual skeleta |σ(n)| and |σ(n)| lies in the possibility to write each
point z ∈ |σ| as a convex combination z = (1 − t)zn + tzn, where zn ∈ |σ(n)| and
zn ∈ |σ(n)|. The parameter t is uniquely determined, t = 0 iff z ∈ |σ(n)|, and t = 1 iff
z ∈ |σ(n)|. Moreover the point zn (resp. zn) is also uniquely determined iff z /∈ |σ(n)|
(resp. z /∈ |σ(n)|). This means that the simplex |σ| has the join structure |σ(n)| ∗ |σ(n)|.

We recall that the join X ∗Y of two topological spaces is the quotient space X ×Y ×
[0, 1]/∼, where ∼ is the equivalence relation whose non-degenerate equivalence classes are
the set {x} × Y × {0} and X × {y} × {1} for x, y ∈ Y .

We finish this section with a lemma describing a property of the l1-metric on simplicial
complexes.

Lemma 20.3. Let f : |∆| → |σ| be a surjective simplicial map between geometric sim-
plexes. Then

(1) the map f is non-expanding, i.e., dist(f(x), f(x′)) ≤ dist(x, x′) for all x, x′ ∈ |∆|;
(2) for any points x ∈ |∆| and y, y′ ∈ |σ| with y = f(x) there is a point x′ ∈ |∆| such

that f(x′) = y′ and dist(x, x′) = dist(y, y′).

Proof. Denote by f0 :
⋃

∆→
⋃
σ the map on vertices of the simplexes ∆ and σ, induced

by the simplicial map f .
The map f , being simplicial, maps a point x ∈ |∆| to the point y ∈ |σ| such that

y(w) =
∑
v∈f−1

0 (w) x(v) for w ∈
⋃
σ. Then for any points x, x′ ∈ ∆ we have

dist(f(x), f(x′)) =
∑
w∈

⋃
σ

|y(w)− y′(w)| =
∑
w∈

⋃
σ

∣∣∣ ∑
v∈f−1

0 (w)

x(v)−
∑

v∈f−1
0 (w)

x′(v)
∣∣∣

≤
∑
w∈

⋃
σ

∑
v∈f−1

0 (w)

|x(v)− x′(v)| =
∑
v∈

⋃
∆

|x(v)− x′(v)| = dist(x, x′),

which proves the non-expanding property of f .
Now, take any points x ∈ |∆| and y, y′ ∈ |σ| with f(x) = y. Since f(x) = y, y(w) =∑
v∈f−1

0 (w) x(v) for all w ∈
⋃
σ. For each w ∈

⋃
σ find non-negative real numbers x′(v),

v ∈ f−1
0 (w), such that

•
∑
v∈f−1

0 (w) x
′(v) = y′(v);

• x′(v) ≤ x(v) for v ∈ f−1
0 (w) iff y′(w) ≤ y(w).
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Since
∑
v∈

⋃
∆ x′(v) =

∑
w∈

⋃
σ

∑
v∈f−1

0 (w) x
′(v) =

∑
w∈

⋃
σ y
′(w) = 1, the function x′ :⋃

∆→ [0, 1] belongs to the geometric simplex |∆|. Then

dist(x′, x) =
∑
v∈

⋃
∆

|x′(v)− x(v)| =
∑
w∈

⋃
σ

∑
v∈f−1

0 (w)

|x′(v)− x(v)|

=
∑
w∈

⋃
σ

∣∣∣ ∑
v∈f−1

0 (w)

(x′(v)− x(v))
∣∣∣ =

∑
w∈

⋃
σ

|y′(w)− y(w)| = dist(y′, y).

A topological space X is called a polyhedron if for some simplicial complex K there
is a homeomorphism h : |K| → X. In this case the family T = {h(|σ|) : σ ∈ K} is called
a triangulation of X while h(|K(n)|) is the n-skeleton of the triangulation.

A map f : X → Y between topological spaces is called a PL-map if there is a PL-map
g : |K| → |M | between two simplicial complexes and two homeomorphisms α : X → |K|
and β : Y → |M | such that g ◦ α = β ◦ f .

In the proofs below we shall not distinguish between abstract simplicial complexes
and their geometric realizations. So, by a simplicial complex we shall always understand
the geometric realization |K| of an abstract simplicial complex K equipped with the
CW -topology. Let us also mention the following well-known fact: each (rational) PL-map
p : K → M between finite simplicial complexes is simplicial with respect to suitable
(rational) subdivisions of the complexes K,M .

21. LCn-spaces

In this subsection we provide the necessary information on LCn-spaces. U-near and
U-homotopic maps into LCn-spaces are closely related according to the following stan-
dard lemma that can be found in [41, V.5.1] (recall that two maps f, g : K → X are
U-near with respect to a cover U of X if diam{f(x), g(x)} < U for any x ∈ X).

Lemma 21.1. For any open cover U of a metrizable LCn-space X there is an open cover
V of X such that any two V-near maps f, g : K → X defined on a metrizable space K
with dimK ≤ n are U-homotopic.

The following Tychonoff version of Lemma 21.1 is a key ingredient of the proof of
Proposition 3.2.

Lemma 21.2. For any open cover U of a Tychonoff LCn-space X and a map f : K → X,
where K is a compact polyhedron with dimK ≤ n, there is an open cover V of X such
that any V-near map g : K → X to f is U-homotopic to f .

Proof. Let U0 = U and k = dimK. Since X has the LCk-property, there is an open cover
V0 of X such that each map α : ∂Ik+1 → X with diamα(∂Ik+1) < V0 has a continuous
extension ᾱ : Ik+1 → X with diam ᾱ(Ik+1) < U0. By Lemma 18.2, there is a continuous
pseudometric ρ0 on X such that diamBρ0(x, 1) < V0 for all x ∈ f(K). Let U1 be the
cover of X by open ρ0-balls of radius 1/8.

By a finite induction of length k, we can construct sequences (Ui)i≤k, (Vi)i≤k of open
covers of X and a sequence (ρi)i≤k of continuous pseudometrics on X such that the
following conditions hold for every i ≤ k:
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(1i) Ui+1 = {Bρi(x, 1/8) : x ∈ X};
(2i) each map α : ∂Ik+1−i → X with diamα(∂Ik+1−i) < Vi has a continuous extension

ᾱ : Ik+1−i → X with diam ᾱ(Ik+1−i) < Ui;
(3i) diamBρi(x, 1) < Vi for all x ∈ f(K).

We claim that the cover V = Vk satisfies our requirements. Let g : K → X be a map
V-near to f . We should prove that g is U-homotopic to f .

Select a triangulation T of the complex K so fine that for any simplex σ of this
triangulation and for every i ≤ k we have diamρi f(σ) < 1/4 and diamρi g(σ) < 1/4. By
K(i) we denote the i-skeleton of K (with respect to the triangulation T ). It is convenient
to assume that K(−1) = ∅. Consider the map H(−1) : K × {0, 1} → X defined by
H(−1)(x, 0) = f(x) and H(−1)(x, 1) = g(x) for x ∈ K.

We shall construct by induction a sequence of maps

H(i) : (K(i) × I) ∪ (K × {0, 1})→ X, i ≤ k,

such that

(4i) H(i)(x, t) = H(i−1)(x, t) for any (x, t) ∈ (K(i−1) × I) ∪ (K × {0, 1});
(5i) diamH(i)(σ × I) < Uk−i for any i-dimensional simplex σ of K.

Assume that for some i ≤ k the map H(i−1) has been constructed. We need to extend
this map to a map H(i) defined on (K(i) × I) ∪ (K × {0, 1}). Take any i-dimensional
simplex σ ∈ K(i) and let σ(i−1) = σ ∩K(i−1) be the (i− 1)-dimensional skeleton of σ. It
is the union of all (i − 1)-dimensional faces of σ. By the inductive assumption, for each
(i− 1)-dimensional face τ of σ we have diamH(i−1)(τ × I) < Uk−(i−1) and hence

diamρk−i
H(i−1)(τ × I) < 1/4

according to condition (1k−i). The product σ × I can be considered as an (i + 1)-
dimensional cube with boundary ∂(σ × I) = (σ(i−1) × I) ∪ (σ × {0, 1}). Observe that

diamρk−i
H(i−1)(∂(σ × I)) ≤ diamρk−i

H(i−1)(σ × {0}) + diamρk−i
H(i−1)(σ × {1})

+ 2 max
τ⊂σ(i−1)

diamρk−i
H(i−1)(τ × I)

≤ diamρk−i
f(σ) + diamρk−i

g(σ) + 2 1
4 ≤

1
4 + 1

4 + 2
4 = 1.

Then, by condition (3k−i), diamH(i−1)
(
∂(σ× I)

)
< Vk−i. So, condition (2k−i) shows

that the map H(i−1)|∂(σ × I) admits a continuous extension H
(i)
σ : σ × I → X with

diamH
(i)
σ (σ × I) < Uk−i.

Finally, define a map H(i) : (K(i) × I) ∪ (K × {0, 1})→ X letting

H(i)(x, t) =


f(x) if t = 0,

g(x) if t = 1,

H
(i)
σ (x, t) if (x, t) ∈ σ × I.

It is clear that the map H(i) satisfies conditions (4i) and (5i).
Completing the inductive construction, we obtain a map H = H(k) : K× I→ X such

that



General position properties 45

• H(x, 0) = f(x) and H(x, 1) = g(x) for x ∈ K and
• for any x ∈ K diamH({x} × I) < U0 = U .

Hence, H is a U-homotopy linking the maps f and g.

We also need the following completion result (see [22, Theorem 2.8]).

Lemma 21.3. For any metrizable LCn-space X there is a completely metrizable LCn-
space X̃ containing X as a relative LCn-set.

Relative LCn-sets are tightly connected with locally n-negligible sets in the sense of
H. Toruńczyk [67]. A subset A ⊂ X is called locally n-negligible in X if given k < n+ 1,
x ∈ X, and a neighborhood U ⊂ X of x there is another neighborhood V ⊂ U of x
such that for each map f : (Ik, ∂Ik) → (V, V \ A) there is a homotopy (ht) : (Ik, ∂Ik) →
(U,U \ A) such that h0 = f and h1(Ik) ⊂ U \ A. The metrizable case of the next result
is due to Toruńczyk [67, Theorem 2.8]. The general case has a similar proof.

Lemma 21.4. If X is a dense relative LCn-subset of a Tychonoff space X̃, then the
complement X̃ \X is locally n-negligible in X̃.

The following property of locally n-negligible sets, established in [67, Theorem 2.3],
indicates their importance.

Lemma 21.5. A subset A of a Tychonoff space X is locally n-negligible if and only if given
a simplicial pair (K,L) with dimK ≤ n, a continuous pseudometric ρ on X, a continuous
function ε : K → (0, 1] and a map f : K×{0}∪L× I→ X with ρ(f(x, 0), f(x, t)) < ε(x)

and f(x, 1) ∈ X \A for all (x, t) ∈ L× I, there is a map f̃ : K × I→ X which extends f
and satisfies ρ(f̃(x, 0), f̃(x, t)) < ε(x) and f̃(x, 1) /∈ A for all (x, t) ∈ K × I.

This lemma implies the following one which is the second part of Proposition 5.5.

Lemma 21.6. Each dense relative LCn-subset X of a Tychonoff space X̃ is homotopically
n-dense in X̃.

22. Constructing pseudometrics with nice local properties

In this section we shall establish that paracompact spaces with nice local properties also
admit nice pseudometrics (see also [22] for a similar result in the realm of metrizable
spaces).

For a metric space (X, ρ) and a real number ε > 0 let

• Bρ(ε) = {Bρ(x, ε) : x ∈ X} be the cover of X by open ε-balls;
• Dρ(ε) be the cover of X by open subsets of diameter < ε.

Let X be a space and � be a binary relation on the set cov(X) of open covers of X.
We say that � is admissible if it satisfies the following conditions:

• V � U implies V ≺ U for any covers U ,V ∈ cov(X);
• if V ≺ V ′ � U ′ ≺ U , then V � U for any U ,U ′,V ′,V ∈ cov(X);
• for every U ∈ cov(X) there exists V ∈ cov(X) such that V � U .
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Lemma 22.1. Let X be a paracompact space and � be an admissible binary relation on
cov(X). Then, for any continuous pseudometric η on X there is a continuous pseudo-
metric ρ ≥ η such that Bρ(r/4)� Dρ(r) for every r ∈ (0, 1/2].

Proof. Using the paracompactness ofX and the properties of the relation�, we construct
inductively a sequence (Vi)∞i=0 of open covers of X so that the following conditions are
satisfied:

(1) meshη Vi < 2−i−1, i ≥ 0;
(2) St(Vi)� Vi−1, i ≥ 1.

Let V0 = X ×X and Vi =
⋃
{V ×V : V ∈ Vi} for i > 0. Since St(Vi) ≺ Vi−1, we have

3Vi ⊂ Vi−1, where

3Vi = {(x, y) ∈ X2 : ∃a, b ∈ X with (x, a), (a, b), (b, y) ∈ Vi}.

By Theorem 8.1.10 of [33], there is a continuous pseudometric d on X such that

{(x, y) ∈ X2 : d(x, y) < 2−i} ⊂ Vi ⊂ {(x, y) ∈ X2 : d(x, y) ≤ 2−i}

for all i ∈ ω.
We claim that Bd(r/4)� Bd(r) for every r ∈ (0, 1]. Choose i ∈ N with

2−i−1 < r/4 ≤ 2−i

and note that i ≥ 2 because 2−i−1 < r/4 ≤ 1/4. It follows from the inclusion {(x, y) ∈
X2 : d(x, y) < 2−i} ⊂ Vi that Bd(x, r/4) ⊂ Bd(x, 2

−i) ⊂ St(x,Vi) for every x ∈ X. So,
by (2), we have Bd(r/4) ≺ St(Vi)� Vi−1. On the other hand, the inclusion

Vi−1 ⊂ {(x, y) ∈ X2 : d(x, y) ≤ 2−(i−1)} ⊂ {(x, y) ∈ X2 : d(x, y) < r}

implies that Vi−1 ≺ Dd(r). Hence, Bd(r/4) ≺ St(Vi)� Vi−1 ≺ Dd(r).
Therefore, from the properties of �, we obtain

(3) Bd(r/4)� Dd(r).

We claim that the pseudometric ρ = max{d, η} satisfies our requirements. This will follow
from (3) if ρ(x, y) = d(x, y) for any points x, y ∈ X with ρ(x, y) ≤ 1/2 (indeed, in such a
situation we would have Bρ(r/4) = Bd(r/4)� Dd(r) = Dρ(r) for every positive r ≤ 1/2).
Assume there are two points x, y ∈ X with d(x, y) < ρ(x, y) = η(x, y) ≤ 1/2 and choose
i ∈ ω with 2−i < η(x, y) ≤ 2−i+1. Note that i > 1. Then d(x, y) < 2−i+1, so (x, y) ∈ Vi−1

and hence diam{x, y} < Vi−1. Since meshη(Vi−1) < 2−i, we conclude that η(x, y) < 2−i.
The last inequality is not possible by the choice of i. Therefore, ρ(x, y) = d(x, y) for all
x, y ∈ X with ρ(x, y) ≤ 1/2.

Applying Lemma 22.1 to LCn-spaces or locally contractible spaces, we obtain

Lemma 22.2. For any continuous pseudometric η on a paracompact LCn-space there
exists a continuous pseudometric ρ ≥ η such that any map f : ∂Ik → X with k < n+1 and
diamρ f(∂Ik) ≤ 1/10 extends to a map f̄ : Ik → X with diamρ f̄(Ik) < 5 diamρ f(∂Ik). If,
in addition, X is locally contractible, ρ can be chosen such that Bρ(x, r/4) is contractible
in Bρ(x, r) for every x ∈ X and every r ≤ 1/2.
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Proof. Suppose X is LCn and consider the following binary relation �n on cov(X):
V �n U iff V ≺ U and any map f : ∂Ik → X with k < n+1 and diam f(∂Ik) < V extends
to a map f̄ : Ik → X with diam f̄(Ik) < U . Obviously,�n is admissible. So, we can apply
Lemma 22.1 to find a continuous pseudometric ρ ≥ η on X such that Bρ(r/4)�n Dρ(r)
for every positive r ≤ 1/2. Let us show that this pseudometric satisfies our requirements.
Take any map f : ∂Ik → X with k < n+1 and diamρ f(∂Ik) ≤ 1/10. If diamρ f(∂Ik) = 0,
then f is a constant map and hence admits a constant extension. So we can assume that
diamρ f(∂Ik) > 0 and choose a real number r < 1/2 with

diamρ f(∂Ik) < r < 5
4 diamρ f(∂Ik) ≤ 1

8 .

Then diam f(∂Ik) < Bρ(r). Since Bρ(r) �n Dρ(4r), the map f admits a continuous
extension f̄ : Ik → X with

diamρ f̄(Ik) < 4r < 5 diamρ f(∂Ik).

If X is locally contractible, then we can produce the pseudometric ρ applying The-
orem 22.1 to the relation U �c V on cov(X) defined by U �c V iff each set U ∈ U is
contractible in some set V ∈ V.

23. Lefschetz ANE[n]-spaces

In this section we study Lefschetz ANE[n]-spaces and prove Proposition 3.4. We recall
that a topological space X is called a Lefschetz ANE[n] if for every open cover U of
X there is an open cover V of X such that each partial V-realization f : L → X of a
simplicial complex K with dimK ≤ n can be extended to a full U-realization f̃ : K → X

of K.
The items of Proposition 3.4 will be established in the next 12 lemmas (Lemma 23.7

and Lemma 23.11 are auxiliary for the proof of Lemma 23.8 and Lemma 23.12, respec-
tively).

Lemma 23.1. A metrizable space X is a Lefschetz ANE[n] if and only if X is an ANE[n]

for the class of metrizable spaces.

Proof. For n finite this lemma follows from Theorems 2.1 and 4.1 of [41, Ch. V] charac-
terizing metrizable LCn−1-spaces as both ANE[n]’s and Lefschetz ANE[n]’s.

For n =∞ this lemma is due to Lefschetz and can be found in [41, Theorem IV.4.1].

Lemma 23.2. A regular (paracompact) space X is a Lefschetz ANE[n] for a finite n (if
and) only if X is LCn−1.

In the realm of metrizable spaces this lemma has been proved in [41, V.4.1] but the
proof remains true for regular (paracompact) spaces as well.

The following lemma (establishing the third item of Proposition 3.4) is also known
and can be proved by a standard method due to J. Dugundji (see [41, §II.14]).

Lemma 23.3. Each convex subset of a (locally convex ) linear topological space is a Lef-
schetz ANE[n] for every n (a Lefschetz ANE[∞]).
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Answering an old problem of Borsuk in the negative, R. Cauty [15] has constructed a
σ-compact metrizable linear topological space L which is not an ANR. By Lemma 23.1,
Cauty’s space is not ANE[∞]. Thus, we have

Lemma 23.4. There exists a metrizable σ-compact linear topological space that fails to be
a Lefschetz ANE[∞].

Following [12] we define a subset A of a space X to be a neighborhood retract of X if
A is closed in X and A is a retract of some open set U ⊂ X containing A.

Lemma 23.5. Each neighborhood retract of a Lefschetz ANE[n]-space is a Lefschetz
ANE[n]-space.

Proof. Let X be a Lefschetz ANE[n]-space and Y a neighborhood retract of X. Fix a
retraction r : OY → Y of an open neighborhood OY of Y in X. Given an open cover U of
Y consider the open cover Ũ = {X\Y }∪r−1(U) of X, where r−1(U) = {r−1(U) : U ∈ U}.
Since X is a Lefschetz ANE[n], there is an open cover Ṽ of X such that any partial Ṽ-
realization f : L → X of a simplicial complex K with dimK ≤ n extends to a full
Ũ-realization of K in X. Consider the open cover V = {Y ∩ V : V ∈ Ṽ} of Y . The proof
will be completed if we check that every partial V-realization f : L → Y of a simplicial
complex K with dimK ≤ n can be extended to a full U-realization f̃ : K → Y of K
in Y . We may consider the map f as a partial Ṽ-realization of K in X. Then the choice
of the cover Ṽ guarantees that it extends to a full Ũ-realization f̃ : K → X of K in X.
It easy to see that f̃(K) ⊂ OY and f̄ = r ◦ f̃ : K → Y is a full U-realization of K in Y
extending the partial realization f .

Lemma 23.6. A functionally open subspace of a Lefschetz ANE[n]-spaces is a Lefschetz
ANE[n]-space.

Proof. Given two open covers U ,V of a Lefschetz ANE[n]-space X we write V � U if
V ≺ U and any partial V-realization f : L→ X of a simplicial complexK with dimK ≤ n
extends to a full U-realization f̄ : K → X of K.

Let U be a functionally open subspace of X and U be an open cover of U . Since U is
functionally open, there is a sequence (Ui)i≥0 of open subsets of X such that U =

⋃
i∈ω Ui

and clX(Ui) ⊂ Ui+1 for all i. It will also be convenient to put Ui = ∅ for negative i. For
any i < j consider the “ring” U ji = Uj \ Ui and note that R = {U i+1

i−1 : i ∈ ω} is an open
cover of U .

For every i ∈ ω consider the open cover

Ui = {X \ U i+2} ∪ (U ∧R)

of X and find an open cover Vi of X with Vi � Ui. The covers Vi can be chosen so
that Vi+1 ≺ Vi for all i ∈ ω. Using the Lefschetz ANE[n]-property of X, find an open
cover Wi of X with Wi � Vi+3. Finally, take an open cover V ≺ R of U such that
{V ∈ V : V ⊂ U i+4

i−4} ≺ Wi for all i ∈ ω.
We claim that each partial V-realization f : L → U of a simplicial complex K with

dimK ≤ n extends to a full U-realization f̄ : K → U of K in U . For every i < j consider
the subcomplex Kj

i = {σ ∈ K : f(σ(0)) ⊂ U ji } and observe that K =
⋃
i∈ωK

i+1
i−1 because

f is a partial R-realization of K.
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Next, we show that for every i ∈ ω the map f restricted to L∩Ki+3
i−3 is a partialWi-rea-

lization of the complex Ki+3
i−3 in X. Given any simplex σ ∈ Ki+3

i−3 , note that f(σ∩L) ⊂ V
for some V ∈ V because f is a partial V-realization of K. Since f(σ(0)) ⊂ V ∩ U i+3

i−3 and
V ≺ R, we conclude that V ⊂ U i+4

i−4 . Now, the choice of V implies that V ⊂ W for some
W ∈ Wi, which means that f restricted to L ∩Ki+3

i−3 is a partial Wi-realization of Ki+3
i−3

in X.
Since Wi � Vi+3, the partial Wi-realization f |(L ∩ Ki+3

i−3) extends to a full Vi+3-
realization fi : Ki+3

i−3 → X of Ki+3
i−3 in X for every i ∈ ω. Now let L′ = L ∪

⋃
i∈ωK

5i+2
5i−2

and consider the map g : L′ → X defined by g(x) = f(x) if x ∈ L and g(x) = f5i(x) if
x ∈ K5i+2

5i−2 , i ∈ ω. Because K
5i+2
5i−2 ⊂ K

5i+3
5i−3 for every i and K5i+2

5i−2 ∩K
5j+2
5j−2 = ∅ for distinct

i, j, the map g is well-defined.
We claim that for every i ∈ ω the map g restricted to Ki+1

i−2 ∩ L′ is a partial Vi-
realization of Ki+1

i−2 in X. Indeed, given any simplex σ ∈ Ki+1
i−2 there exists a number j ∈ ω

with σ ∈ Kj+1
j−1 (recall thatK =

⋃
j∈ωK

j+1
j−1). Observe that |i−j| ≤ 1 and there is a unique

number m ∈ ω such that 5m− 2 ≤ j ≤ 5m+ 2. Then 5m− 3 ≤ j − 1 < j + 1 ≤ 5m+ 3.
So, σ ∈ K5m+3

5m−3 . Since L
′ is the union of L and all K5p+2

5p−2 and p ∈ ω, we have

K5m+3
5m−3 ∩ L′ = (K5m+3

5m−3 ∩ L) ∪ (K5m+3
5m−3 ∩ ∪p∈ωK

5p+2
5p−2) = (K5m+3

5m−3 ∩ L) ∪K5m+2
5m−2 .

Consequently, g(σ∩L′) = f5m(σ∩L′) ⊂ f5m(σ) with f5m(σ) being a subset of an element
of V5m+3. Because i ≤ j + 1 ≤ 5m+ 3, V5m+3 ≺ Vi. Hence, g restricted to Ki+1

i−2 ∩L′ is a
partial Vi-realization of Ki+1

i−2 in X.
By the choice of Vi, each partial realization g|Ki+1

i−2 ∩L′ extends to a full Ui-realization
gi : Ki+1

i−2 → X, i ∈ ω. It follows from K =
⋃
j∈ωK

j+1
j−1 that K = L′ ∪

⋃
i∈ωK

5i+4
5i+1 .

Moreover, for distinct i, j the complexes K5i+4
5i+1 and K5j+4

5j+1 are disjoint. So, the map
f̄ : K → U , f̄(x) = g(x) for every x ∈ L′ and f̄(x) = g5i+3(x) for every x ∈ K5i+4

5i+1 , is
well-defined.

It remains to prove that f̄ is a full U-realization of K in U . Take any simplex σ ∈ K.
Since K =

⋃
i∈ωK

i+1
i−1 there is i ∈ ω such that either σ ∈ K5i+2

5i−2 or σ ∈ K5i+4
5i+1 . In the

first case
f̄(σ) = f5i(σ) ≺ V5i+3 ≺ U5i+3 = {X \ U5i+5} ∪ (R∧ U).

On the other hand, σ ∈ K5i+2
5i−2 implies f(σ(0)) ⊂ U5i+2

5i−2 ⊂ U5i+5. Hence, f̄(σ) ≺ R ∧ U
≺ U . In the second case f̄(σ) = g5i+3(σ) ≺ U5i+3 and f(σ(0)) ⊂ U5i+4

5i+1 ⊂ U5i+5, which
again implies f̄(σ) ≺ U .

Lemma 23.7. A space X is a Lefschetz ANE[n] if X = X0 ∪ X1 is the union of two
functionally open subspaces that are Lefschetz ANE[n]-spaces.

Proof. The complements Fi = X \ X1−i, i ∈ {0, 1}, are disjoint functionally closed
subsets of X. So, we can find continuous functions ξi : X → [0, 1] such that Fi = ξ−1

i (0)

for i ∈ {0, 1}. Letting
ξ(x) =

ξ0(x)

ξ0(x) + ξ1(x)
,

we obtain a continuous function ξ : X → [0, 1] such that Fi = ξ−1(i) for i ∈ {0, 1}. For a
real number t ∈ R let Ut = ξ−1

(
[0, t)

)
. Define also a continuous pseudometric ρ on X by

ρ(x, y) = |ξ(x)− ξ(y)|, x, y ∈ X.
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To show that X is a Lefschetz ANE[n], fix any open cover U of X. Take an open cover
U1 ofX1 such that U1 ≺ U and meshρ U1 < 1/8. Since the spaceX1 is a Lefschetz ANE[n],
there is an open cover V1 of X1 such that each partial V1-realization f : L→ X1 of a sim-
plicial complexK with dimK ≤ n extends to a full U1-realization f̃ : K → X1. Next, take
an open cover U0 of X0 such that U0 ≺ U , meshρ U0 < 1/8, and U0 ≺ V1∪{U1/8}. Choose
an open cover V0 of X0 such that each partial V0-realization f : L → X0 of a simplicial
complex K with dimK ≤ n extends to a full U0-realization f̃ : K → X0 of K in X0.

Finally choose an open cover V of X such that

• meshρ V < 1/8;
• V ≺ V0 ∪ {X \ U7/8};
• V ≺ V1 ∪ {U1/8}.

We claim that each partial V-realization f : L → X of a simplicial complex K with
dimK ≤ n extends to a full U-realization f̃ : K → X of K in X. Let

K0 = {σ ∈ K : f(σ(0)) ⊂ U1/2},

K+
0 = {σ ∈ K : f(σ(0)) ⊂ U3/4},

K1 = {σ ∈ K : f(σ(0)) ⊂ X \ U1/4}.

It follows from meshρ V < 1/8 that K = K0 ∪ K1 and f(L ∩ K+
0 ) ⊂ U7/8. Since V ≺

V0 ∪ {X \U7/8}, the map f restricted to L∩K+
0 is a partial V0-realization of K+

0 in X0.
By the choice of the cover V0, this map extends to a full U0-realization g : K+

0 → X0 of
K+

0 in X0. Now let L′ = L ∪K0 and h : L′ → X be a map defined by h(x) = f(x) for
x ∈ L and h(x) = g(x) for x ∈ K0.

It can be shown that h restricted to L′ ∩K1 is a partial V1-realization of K1 in X1.
By the choice of the cover V1, this map extends to a full U1-realization h̃ : K1 → X1 of
K1 in X1. Finally, define a full U-realization f̃ : K → X of K in X letting f̃(x) = g(x)

for x ∈ K0 and f̃(x) = h̃(x) for x ∈ K1.

Lemma 23.8. A topological space X is a Lefschetz ANE[n]-space provided X has a uni-
form open cover by Lefschetz ANE[n]-spaces.

Proof. Assume that W is a uniform open cover of X by Lefschetz ANE[n]-spaces. Then
there exists a continuous pseudometric ρ on X such that the cover {Bρ(x, 1) : x ∈ X}
refinesW. Consequently, there is a metric space (M, ρ̃) and a continuous map p : X →M

with ρ(x, y) = ρ̃(p(x), p(y)) for all x, y ∈ X. So, without loss of generality, we can
assume that every W ∈ W is of the form W = p−1(UW ), where UW is open in (M, ρ̃).
Moreover, since the cover {UW : W ∈ W} ∈ cov(M) admits a σ-discrete open refinement,
according to Lemma 23.6, we can additionally assume that the cover W is σ-discrete
in X and consists of functionally open subsets. Write W =

⋃
i∈ωWi as the countable

union of discrete collections of functionally open sets. It is easy to see that the union
Wi =

⋃
Wi, being a topological sum of Lefschetz ANE[n]-spaces, is a Lefschetz ANE[n]-

space. Hence, X =
⋃
i∈ωWi is a countable union of functionally open subspaces Wi that

are Lefschetz ANE[n]-spaces. Then Lemma 23.7 guarantees that for every i ∈ ω the space
Xi =

⋃
j≤iWj is a Lefschetz ANE[n]. Since the sets Xi are functionally open, we can find

an increasing sequence (Ui)i∈ω of functionally open subspaces of X such that Ui ⊂ Xi,
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U i+1 ⊂ Ui, i ∈ ω, and X =
⋃
i∈ω Ui. Arguing as in Lemma 23.6, we prove that X is a

Lefschetz ANE[n]-space.

The following lemma due to Lefschetz is proved in [12, V.8.1] for compact metric
spaces. The proof still remains true for arbitrary metric spaces.

Lemma 23.9. A metric space X is a Lefschetz ANE[n]-space if for every ε > 0 there
is δ such that each partial Dρ(δ)-realization f : L → X of a simplicial complex K with
dimK ≤ n extends to a full Dρ(ε)-realization f̄ : K → X of K in X.

We recall that Dρ(ε) stands for the cover of X by all open subsets of ρ-diameter < ε.
According to Lemma 22.1, the above lemma can be reversed:

Lemma 23.10. Let η be a continuous pseudometric on a paracompact Lefschetz ANE[n]-
space X. Then there is a continuous pseudometric ρ ≥ η such that any partial Dρ(r/4)-
realization f : L→ X of a simplicial complex K with r ∈ (0, 1/2] and dimK ≤ n extends
to a full Dρ(r)-realization f̄ : K → X of K.

To prove the last item of Proposition 3.4 we shall need the following technical lemma.

Lemma 23.11. Let ρ be a continuous pseudometric on a topological space X such that
for every r ∈ (0, 1/2] any partial Dρ(r/4)-realization of an n-dimensional simplicial com-
plex into X extends to a full Dρ(r)-realization. Suppose K is a simplicial complex with
dimK ≤ n, ε : K(0) → (0, 2−8) a function, and f : K(0) → X a partial realization of K
such that

sup ε(σ(0)) < 2 inf ε(σ(0)) and diamρ f(σ(0)) < 4 sup ε(σ(0))

for every simplex σ of K. Then f extends to a full realization f̄ : K → X such that

diamρ f̄(σ) < 213 sup ε(σ(0))

for every simplex σ of K.

Proof. For every i < j consider the subcomplex

Kj
i = {σ ∈ K : ε(σ(0)) ⊂ (2−j , 2−i)}

and note that K = K∞8 =
⋃
i≥9K

i+1
i−1 because sup ε(σ(0)) < 2 inf ε(σ(0)) for all σ ∈ K.

According to our hypothesis, for every simplex σ of Kj
i we have

diamρ f(σ(0)) ≤ 4 sup ε(σ(0)) < 4 · 2−i = 2−i+2.

This means that the map f restricted to K(0) ∩Kj
i is a partial Dρ(2−i+2)-realization of

the complex Kj
i . In particular, f |K(0) ∩Ki+3

i−3 is a partial Dρ(2−i+5)-realization of Ki+3
i−3

for all i ≥ 8. Hence, by the choice of the pseudometric ρ, f |K(0) ∩Ki+3
i−3 extends to a full

Dρ(2−i+7)-realization gi : Ki+3
i−3 → X of Ki+3

i−3 , i ≥ 8. Let

L = K(0) ∪
∞⋃
m=2

K5m+2
5m−2

and consider the map g : L → X defined by g(x) = f(x) if x ∈ K(0) and g(x) = g5m(x)

if x ∈ K5m+2
5m−2 . Since K

5i+2
5i−2 ∩K

5j+2
5j−2 = ∅ for distinct i, j, the map g is well-defined.

We claim that for every i ≥ 10 the map g restricted to L∩Ki+4
i+1 is a partial Dρ(2−i+7)-

realization of Ki+4
i+1 . Indeed, any simplex σ of Ki+4

i+1 lies in Kj+1
j−1 for some j ∈ ω with
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i+1 < j < i+4. Find a number m ≥ 2 such that 5m−2 ≤ j ≤ 5m+2. Then σ ⊂ K5m+3
5m−3

and g coincides with g5m on σ ∩L. Since g5m is a full Dρ(2−5m+8)-realization of K5m+3
5m−3 ,

we have
diamρ g(σ ∩ L) ≤ diamρ g5m(σ) < 2−5m+7 ≤ 2−j+9 ≤ 2−i+7.

Now we can extend the partial Dρ(2−i+7)-realization g|L ∩Ki+4
i+1 → X of Ki+4

i+1 to a
full Dρ(2−i+9)-realization fi : Ki+4

i+1 → X. It follows that K = L ∪
⋃∞
m=2K

5m+4
5m+1 . Since

for distinct i, j the complexes K5i+4
5i+1 and K5j+4

5j+1 are disjoint, the map f̄ : K → X defined
by f̄(x) = g(x) if x ∈ L and f̄(x) = f5i(x) if x ∈ K5i+4

5i+1 is well-defined.
It remains to check that diamρ f̄(σ) < 213 sup ε(σ(0)) for every simplex σ of K. To this

end, choose i ≥ 9 with σ ⊂ Ki+1
i−1 , which implies ε(σ(0)) ⊂ (2−i−1, 2−i+1). There exists

m ≥ 2 such that either 5m+1 ≤ i−1 ≤ i+1 ≤ 5m+4 or 5m−2 ≤ i−1 ≤ i+1 ≤ 5m+2.
Then

diamρ f̄(σ) = diamρ f5m(σ) ≤ 2−5m+9 ≤ 2−i+12 < 213 sup ε(σ(0))

in the first case, and

diamρ f̄(σ) = diamρ g5m(σ) ≤ 2−5m+7 ≤ 2−i+8 < 29 sup ε(σ(0))

in the second case.

Finally, we can prove the last item of Proposition 3.4.

Lemma 23.12. Let g : X → Y be a map from a paracompact Lefschetz ANE[n]-space
to a metric space Y . Then there exist a metrizable Lefschetz ANE[n]-space X̃ and maps
π : X → X̃, g̃ : X̃ → Y such that g = g̃ ◦ π.

Proof. The metric of Y induces a continuous pseudometric η onX defined by η(x, y) =

dist(g(x), g(y)), x, y ∈ X. By Lemma 23.10, there is a continuous pseudometric ρ ≥ η

such that any partial Dρ(r/4)-realization f : L → X of a simplicial complex K, where
r ∈ (0, 1/2] and dimK ≤ n, extends to a full Dρ(r)-realization f̄ : K → X of K in X.
Consider the metric space (X̃, ρ̃), where X̃ = X/∼ is the quotient set with respect to the
equivalence relation x ∼ y iff ρ(x, y) = 0 and ρ̃ is the quotient metric. The metric topology
on X̃ may not coincide with the quotient topology, but the quotient map π : X → X̃

is continuous. Since ρ ≥ η, the map g : X → Y induces a non-expanding (and hence
continuous) map g̃ : X̃ → Y such that g = g̃ ◦ π.

It remains to prove that the metric space (X̃, ρ̃) is a Lefschetz ANE[n]. According
to Lemma 23.1, this is equivalent to showing that X̃ is an ANE[n]-space for metrizable
spaces. Let A be a metrizable space with dimA ≤ n and h : B → X̃ be a continuous
map defined on a closed subspace B of A. Using the Hausdorff Theorem [33, 4.5.20(c)]
on extension of metrics, we can choose a metric d on A turning f : B → X̃ into a
non-expanding map. Let h̃ : B → X be any (not necessarily continuous) function with
π ◦ h̃ = h. Then h̃ is still non-expanding with respect to the pseudometric ρ on X.

To construct a neighborhood extension h̄ of h we use the classical approach of Dugun-
dji (see [28]). Choose a locally finite open cover U of A \B of order ≤ n+ 1 = dimA+ 1

such that for every U ∈ U ,

diamU < 1
2 dist(U,B) and dist(U, bU ) < 3

2 dist(U,B)
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for some point bU ∈ B. Consider the subcollection V = {U ∈ U : dist(U,B) < 2−8} and
note that the union O(B) =

⋃
V is an open neighborhood of B in A. Since the cover

U has order ≤ n + 1, the nerve K = N(V) of V has dimK ≤ n. Let λ : O(B) → K

be the canonical map induced by some partition of unity {λV : O(B) → [0, 1]}V ∈V
subordinated to V. Next, define two functions f : K(0) → X and ε : K(0) → (0, 2−8)

letting f(U) = h̃(bU ) and ε(U) = dist(U,B) for every U ∈ K(0) = V.
We claim that the functions f and ε satisfy the conditions of Lemma 23.11. Take any

simplex σ in K and fix a point x ∈
⋂
U∈σ(0) U . Choose two vertices V,W ∈ σ(0) with

ε(V ) = inf ε(σ(0)) and ε(W ) = sup ε(σ(0)) and observe that

sup ε(σ(0)) = ε(W ) = dist(W,B) ≤ dist(x,B) ≤ dist(V,B) + diamV

≤ dist(V,B) + 1
2 dist(V,B) < 2 dist(V,B) = 2ε(V ) = 2 inf ε(σ(0)).

Observe also that for every vertex U ∈ σ(0) we have

dist(x, bU ) ≤ dist(U, bU ) + diamU ≤ 3
2 dist(U,B) + 1

2 dist(U,B) = 2ε(U) ≤ 2 sup ε(σ(0)).

Thus,

diamd{bU : U ∈ σ(0)} ≤ 4 sup ε(σ(0)).

Taking into account that the map h̃ is non-expanding, we conclude that

diamρ f(σ(0)) = diamρ{h̃(bU ) : U ∈ σ(0)} ≤ diamd{bU : U ∈ σ(0)} ≤ 4 sup ε(σ(0)).

Now, we can apply Lemma 23.11 to find a full realization f̄ : K → X of K such that

diamρ f̄(σ) ≤ 213 sup ε(σ(0))

for every simplex σ of K. Finally, define a map h̄ : O(B) → X̃ letting h̄(x) = h(x) for
x ∈ B and h̄(x) = π ◦ f̄ ◦ λ(x) for x ∈ O(B) \ B. It is clear that h̄ is continuous at the
points of O(B) \ B. It remains to check that h̄ is also continuous at each point b ∈ B.
Given an arbitrary positive δ < 3−12−8, it suffices to show that ρ̃(h̄(x), h(b)) < (214 +5)δ

for any point x ∈ O(B) with d(x, b) < δ. To this end, fix x ∈ O(B) with d(x, b) < δ and
consider the simplex σ = {U ∈ V : λU (x) > 0} of K whose geometric realization contains
the point λ(x). Observe that

inf ε(σ(0)) = inf
U∈σ

distd(U,B) ≤ d(x, b) < δ and sup ε(σ(0)) < 2δ.

For any U ∈ σ the choice of bU guarantees that

dist(x, bU ) ≤ dist(U, bU ) + diamU < 3
2 dist(U,B) + 1

2 dist(U,B)

= 2ε(U) ≤ 2 sup ε(σ(0)) < 4 inf ε(σ(0)) < 4δ.

Then

ρ̃(h̄(x), h(b)) = ρ(f̄ ◦ λ(x), h̃(b)) ≤ ρ(f̄ ◦ λ(x), h̃(bU )) + ρ(h̃(bU ), h̃(b))

≤ diamρ f̄(σ) + d(bU , b) ≤ 213 sup ε(σ(0)) + d(x, b) + d(x, bU )

≤ 213 · 2 · δ + δ + 4δ = (214 + 5)δ.
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24. Density of simplicially factorizable maps in function spaces

The aim of this section is to prove Proposition 3.5. The first item of this proposition will
be derived from

Lemma 24.1. Let f : Z → X be a map from a space Z into a Lefschetz ANE[n]-space X
and O(f) be its neighborhood in C(Z,X). Then there is an open cover V of Z such that
for any V-map α : Z → P into a paracompact space P with dimP ≤ n there is a map
β : G → X with β ◦ α ∈ O(f), where G ⊂ P is an open neighborhood of the closure of
α(Z) in P .

Proof. Since O(f) is a neighborhood of f in C(Z,X), there exist a continuous pseudo-
metric ρ on X and a positive function ε : Z → (0, 1] such that Bρ(f, ε) = {g ∈ C(Z,X) :

ρ(f, g) < ε} ⊂ O(f). We may assume that ε(x) < 1 for all x ∈ X. Using the Lefschetz
ANE[n]-property of X construct inductively a sequence (Uk)k∈ω of open covers of X such
that:

• meshρ Uk < 2−k−2;
• Uk+1 ≺ Uk;
• each partial Uk+1-realization of a simplicial complex K with dimK ≤ n extends to a

full Uk-realization of K.

Let V =
⋃
k∈ω Vk be an open cover of Z, where the Vk are open families in Z satisfying:

•
⋃
V ∈Vk V = ε−1((2−k−1, 2−k+1)), k ∈ ω;

• f(Vk) ≺ Uk+8 and meshρ f(Vk) < 2−k−2 for every k ∈ ω.
We claim that the cover V of Z satisfies our requirements. Take any V-map α : Z → P

to a paracompact space P with dimP ≤ n and find a locally finite open cover W of P
such that α−1(St(W)) ≺ V. Since dimP ≤ n, we may additionally assume that the order
of W is ≤ n + 1. Hence, the nerve N(W) of W is of dimension ≤ n. Replacing P by a
suitable closed neighborhood of α(Z), we can also assume that each set W ∈ W meets
the image α(Z). So, there exists a point zW ∈ α−1(W ) for each W ∈ W.

Let {λW : P → [0, 1]}W∈W be a partition of unity subordinated to the cover W
and let λ = (λW ) : P → N(W) be the canonical map. It suffices to construct a map
β : N(W)→ X with ρ(f, β ◦ λ ◦ α) < ε.

Denote by K the nerve N(W), and for any integers i < j let

Kj
i =

{
σ = {W1, . . . ,Wm} ∈ K : ε(α−1(

⋃
σ)) ⊂ (2−j , 2−i)

}
,

where
⋃
σ =

⋃m
k=1Wk. It follows from α−1(St(W)) ≺ V ≺ {ε−1(2−i−1, 2−i+1) : i ∈ ω}

that K =
⋃
i∈ωK

i+1
i−1 .

Letting r({W}) = f(zW ) for W ∈ W, we define a partial realization r : K(0) → X

of the complex K = N(W). We shall extend this partial realization to a full realization
β : K → X of K in X such that for every i ∈ ω the map β restricted to Ki+1

i−1 is a full
Ui-realization of Ki+1

i−1 in X.
First, we show that for every i ∈ ω the map r restricted to K(0) ∩Ki+3

i−3 is a partial
Ui+5-realization of the complex Ki+3

i−3 in X. Given any simplex σ ∈ Ki+3
i−3 , note that

α−1(
⋃
σ) ≺ α−1(St(W)) ≺ V and hence α−1(

⋃
σ) ⊂ Vσ for some Vσ ∈ V. So, ε(Vσ)
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intersects the interval (2−i−3, 2−i+3). Since
⋃i+2
k=i−2{V : V ∈ Vk} = ε−1((2−i−3, 2−i+3))

and ε(Vk) ⊂ (2−k−1, 2−k+1) for every V ∈ Vk and k ∈ ω, ε(Vσ) ⊂ (2−i−4, 2−i+4). Then
Vσ ∈

⋃i+3
k=i−3 Vk and, by the choice of the covers Uk and V, we have f(Vσ) ≺ Ui+5.

Consequently,

r(σ(0)) = f({zW : W ∈ σ}) ⊂ f(α−1(
⋃
σ)
)
⊂ f(Vσ) ≺ Ui+5.

Hence, r restricted to Ki+3
i−3 ∩ K(0) = (Ki+3

i−3)(0) is a partial Ui+5-realization of the
complex Ki+3

i−3 in X. So, by the choice of Ui+5, r|(Ki+3
i−3)(0) can be extended to a full

Ui+4-realization ri : Ki+3
i−3 → X of Ki+3

i−3 . Let L = K(0) ∪
⋃
i∈ωK

5i+2
5i−2 and consider the

map r̃ : L→ X defined by r̃(x) = r(x) if x ∈ K(0) and r̃(x) = r5i(x) if x ∈ K5i+2
5i−2 . This

map is well-defined because K5i+2
5i−2 ⊂ K

5i+3
5i−3 and K5i+2

5i−2 ∩K
5j+2
5j−2 = ∅ for distinct i, j.

Let us show that for every i ∈ ω the map r̃ restricted to Ki+1
i−2 ∩ L is a partial Ui+1-

realization of Ki+1
i−2 in X. Indeed, given any simplex σ ∈ Ki+1

i−2 there exists a number
j ∈ ω with σ ∈ Kj+1

j−1 (recall that K =
⋃
j∈ωK

j+1
j−1). Observe that |i − j| ≤ 1 and

there is a unique number m ∈ ω such that 5m − 2 ≤ j ≤ 5m + 2. Then 5m − 3 ≤
j − 1 < j + 1 ≤ 5m + 3. So, σ ∈ K5m+3

5m−3 . Since L is the union of K(0) and all K5k+2
5k−2 ,

k ∈ ω, K5m+3
5m−3 ∩ L = (K5m+3

5m−3 ∩K(0)) ∪ (K5m+3
5m−3 ∩

⋃
k∈ωK

5k+2
5k−2) = (K5m+3

5m−3)(0) ∪K5m+2
5m−2 .

Consequently, r̃(σ ∩L) = r5m(σ ∩L) ⊂ r5m(σ) ≺ U5m+4 (recall that r5m is a full U5m+4-
realization of K5m+3

5m−3). Because i+1 ≤ j+2 ≤ 5m+4, U5m+4 ≺ Ui+1. Hence, r̃ restricted
to Ki+1

i−2 ∩ L is a partial Ui+1-realization of Ki+1
i−2 in X.

Therefore, r̃|Ki+1
i−2 ∩L extends to a full Ui-realization r̃i : Ki+1

i−2 → X of Ki+1
i−2 . Finally

define a map β : K → X by β(x) = r̃(x) for every x ∈ L and β(x) = r̃5i+3(x) for every
x ∈ K5i+4

5i+1 . Since K = L ∪
⋃
i∈ωK

5i+4
5i+1 and the complexes K5i+4

5i+1 and K5j+4
5j+1 are disjoint

for distinct i, j, the map β is well-defined. It is easy to check that for every i ∈ ω the
map β restricted to Ki+1

i−1 is a full Ui-realization of the complex Ki+1
i−1 in X.

We claim that the map γ = β ◦ λ : P → X has the required property: ρ(γ ◦α, f) < ε.
Indeed, take any point z ∈ Z and put a = α(z) ∈ P , b = λ(a) ∈ K. Let σ = {W ∈ W :

a ∈ W} be the simplex of K = N(W) whose geometric realization contains the point b.
Since α−1(St(W)) ≺ V, there is a set V0 ∈ V with α−1(

⋃
σ) ⊂ V0. By the choice of

the cover V there is a number k ∈ ω such that ε(V0) ⊂ (2−k−1, 2−k+1). For this k we
also have σ ∈ Kk+1

k−1 and diamρ f(V0) < 2−k−2. Since meshρ Uk < 2−k−2 and β(σ) ≺ Uk,
diamρ β(σ) < 2−k−2.

Take any vertex W ∈ σ of σ and let w ∈ σ(0) be its geometric realization. Note
that {z, zW } ⊂ α−1(W ) ⊂ V0 and hence ρ(f(z), f(zW )) ≤ diamρ f(V0) < 2−k−2. Since
β(w) = r(w) = f(zW ) and γ ◦ α(z) = β(b), we obtain

ρ(f(z), γ ◦ α(z)) ≤ ρ(f(z), f(zW )) + ρ(β(w), β(b)) ≤ 2−k−2 + diamρ r̄(σ)

< 2−k−2 + 2−k−2 = 2−k−1 ≤ inf ε(V0) ≤ ε(z).

We are now able to prove the first item of Proposition 3.5.

Lemma 24.2. If X is a paracompact space and Y is a Lefschetz ANE[k]-space with k =

dimX, then the simplicially factorizable maps g ∈ C(X,Y ) form a dense set in C(X,Y ).

Proof. Take any map f ∈ C(X,Y ) and a neighborhood O(f) of f in C(X,Y ). By
Lemma 24.1, there exists an open cover V of X such that for any V-map α : X → K
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into a paracompact space K we can find a map β : G → Y defined on an open neigh-
borhood G of α(X) in K with β ◦ α ∈ O(f). Because of the paracompactness of X,
the cover V can be assumed locally finite and of order ≤ k + 1, where k = dimX.
Take any partition of unity {λV : X → [0, 1]}V ∈V subordinated to the cover V and
consider the canonical map λ : X → N(V) to the nerve of V. It is clear that λ is a
V-map. Now, the choice of the cover V implies the existence of a map β : G → Y

defined on an open neighborhood G of α(X) in N(V) such that β ◦ α ∈ O(f). The
space G, being an open subspace of a simplicial complex, is homeomorphic to a simplicial
complex [49, p. 473]. So, β ◦ α is a simplicially factorizable map, which completes the
proof.

Our final lemma in this section provides a proof of the second item of Proposition 3.5.

Lemma 24.3. Simplicially factorizable maps from a paracompact C-space X into a locally
contractible paracompact space Y form a dense subset in C(X,Y ).

Proof. We fix a map f ∈ C(X,Y ) and its neighborhood Bρ(f, ε) in C(X,Y ), where
ε : X → (0, 1] is a continuous function and ρ is a continuous pseudometric on Y . By
Lemma 22.2, we can suppose that ρ has the following property: for every y ∈ Y and
every r ∈ (0, 1/2] the ball Bρ(y, r/4) is contractible in Bρ(y, r) to the point y. For any
point x∈X choose a neighborhood Gx⊂X of x such that sup ε(Gx)< 2εx, where εx =

inf ε(Gx)>0. Now, for every n ≥ 1 consider the open families α′n = {Bρ(f(x), εx/12n−1) :

x ∈ X} and β′n = {Bρ(f(x), 3εx/12n) : x ∈ X} in Y , and the open covers αn = {Gx ∩
f−1(Bρ(f(x), εx/12n−1)) : x ∈ X} and βn = {Gx ∩ f−1(Bρ(f(x), 3εx/12n)) : x ∈ X}
of X.

For simplicity, we denote the balls Bρ(f(x), εx/12n−1) and Bρ(f(x), 3εx/12n) by
Un(x) and Vn(x), respectively. By the choice of the pseudometric ρ , for every x ∈ X and
every n ≥ 1 there exists a homotopy Hx,n : Vn(x)× I→ Un(x) such that:

• each Hx,n contracts Vn(x) in Un(x) to the point f(x), i.e.,Hx,n(y, 0) = y andHx,n(y, 1)

= f(x) for all y ∈ Vn(x).

Since X is a paracompact C-space, there exists a sequence (µn)n≥3 of open disjoint
families in X such that

• each µn refines βn;
• µ =

⋃
n≥3 µn is a locally finite open cover of X.

For every n ≥ 3 andW ∈ µn fix a point xW ∈ X such thatW ⊂ GxW
∩f−1(Vn(xW )).

Claim 24.4. Let W ∈ µn and W ′ ∈ µn′ , where n < n′. If W ∩W ′ 6= ∅, then

εxW ′ ≤ 2εxW
and ρ(f(xW ′), f(xW )) ≤ 4εxW

12n
.

Proof. Indeed, suppose that z ∈ W ∩W ′. Then z ∈ GxW
∩GxW ′ . Hence, εxW ′ ≤ ε(z) ≤

sup ε(GxW
) < 2εxW

.
To show the second part of this claim, observe that z ∈ f−1(Vn(xW ))∩f−1(Vn′(xW ′)).

Thus, f(z) ∈ Vn(xW ) ∩ Vn′(xW ′). The last inclusion implies that ρ(f(z), f(xW )) ≤
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3εxW
/12n and ρ(f(z), f(xW ′)) ≤ 3εxW ′/12n

′
. Since εxW ′ ≤ 2εxW

and n′ ≥ n + 1, we
finally obtain

ρ
(
f(xW ), f(xW ′)

)
≤ 3εxW

12n
+

3εxW ′

12n′
≤ 3εxW

12n
+

6εxW

12n+1
<

4εxW

12n
.

Now, consider the nerve N(µ) of the cover µ and the canonical map θ : X → |N(µ)|
generated by some partition of unity subordinated to µ. Observe that any simplex σ =

{W0,W1, . . . ,Wk} from N(µ), where Wi ∈ µni
, can be ordered so that n0<n1< · · ·<nk.

This is possible because
⋂k
i=0Wi 6= ∅, so ni 6= nj for i 6= j (recall that each µn is disjoint).

We are going to define a map g : |N(µ)| → Y with g ◦ θ ∈ Bρ(f, ε). To this end, we define
by induction maps gk : |N(µ)(k)| → Y such that gk

∣∣|N(µ)(k−1)| = gk−1 and for every
simplex σ = {W0,W1, . . . ,Wk} ⊂ N(µ)(k) and its face σ0 = σ \ {W0} we get:

• f(W0) ∪ gk(|σ|) ⊂ Un0−1(xW0
);

• gk(|σ0|) ⊂ Vn0−1(xW0
);

• for any z ∈ |σ0| and t ∈ [0, 1] we get gk
(
t{W0}+ (1− t)z

)
= HxW0

,n0−1(gk−1(z), t).

To start the inductive construction, define a map g0 : |N(µ)(0)| → Y by g0({W}) =

f(xW ) for each vertex W ∈ µ of N(µ). Suppose that for some k ∈ ω a map gk satisfying
the above conditions has been defined. Fix a simplex σ = {W0,W1, . . . ,Wk,Wk+1} ⊂
N(µ)(k+1) withWi ∈ µni

, i ∈ {0, . . . , k+1}. Then its combinatorial boundary σ∩N(µ)(k)

consists of the simplexes σi = {W0, . . . ,Wi−1,Wi+1, . . . ,Wk+1}, 1 ≤ i ≤ k + 1, and the
simplex σ0 = {W1,W2, . . . ,Wk+1}.

Claim 24.5. f(W0) ∪ gk(|σi|) ⊂ Un0−1(xW ) for every i ∈ {1, 2, . . . , k + 1} and f(W ) ∪
gk(σ0) ⊂ Vn0−1(xW0

).

Proof. The first part of the claim follows from the inductive hypotheses. By the same
reason, f(W1) ∪ gk(|σ0|) ⊂ Un1−1(xW1). To prove the second part, observe that W0 ⊂
f−1(Vn0

(xW0
)). Hence, f(W0) ⊂ Vn0

(xW0
) ⊂ Vn0−1(xW0

).
So, it remains to show that gk(|σ0|) ⊂ Vn0−1(xW0

). To this end, let y ∈ gk(|σ0|).
Then y ∈ Un1−1(xW1

) and hence ρ(y, f(xW1
)) ≤ εxW1

/12n1−2. Since W0 ∩ W1 6= ∅,
Claim 24.4 yields εxW1

≤ 2εxW0
. Consequently, ρ(y, f(xW1)) ≤ 2εxW0

/12n1−2. Moreover,
again by Claim 24.4, we have ρ(f(xW1

), f(xW0
)) ≤ 4εxW0

/12n0 . Combining the last two
inequalities and taking into account that n0 ≤ n1 − 1, we obtain

ρ(y, f(xW0
)) ≤

2εxW0

12n1−2
+

4εxW0

12n0
≤

24εxW0

12n0
+

4εxW0

12n0
=

28εxW0

12n0
<

3εxW0

12n0−1
.

Therefore, y ∈ Vn0−1(xW0).

Let us return to the definition of the map gk+1. It suffices to define gk+1 on the
geometric realization of every (k + 1)-dimensional simplex σ = {W0,W1, . . . ,Wk+1}. We
fix such a geometric simplex and observe that its points are of the form t{W0}+ (1− t)z
for some t ∈ [0, 1] and z ∈ |σ0|, where σ0 = {W1, . . . ,Wk+1}. Now, we define

gk+1(t{W0}+ (1− t)z) = HxW0
,n0−1

(
gk(z), t

)
.

This definition is correct because gk(|σ0|) ⊂ Vn0−1(xW0) according to Claim 24.5. Since
HxW0

,n0−1(Vn0−1(xW0
)× I) ⊂ Un0−1(xW0

), we get f(W0) ∪ gk+1(|σ|) ⊂ Un0−1(xW0
).
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To complete the inductive step, it remains to show that gk+1

∣∣|σ(k)| = gk
∣∣|σ(k)| and

gk+1(|σ0|) ⊂ Vn0−1(xW0
). Fix any point x ∈ |σ(k)|. If x ∈ |σ0|, then x = 0 · {W0}+ 1 · x

and hence gk+1(x) = HxW0
,n0−1(gk(x), 0) = gk(x) ∈ Vn0−1(xW0) according to Claim 24.5.

This implies gk+1(|σ0|) ⊂ Vn0−1(xW0
) and gk+1

∣∣|σ0| = gk.
If x /∈ |σ0|, then x = t{W0} + (1 − t)z ∈ σ0 for some t ∈ (0, 1] and some z ∈

|σ0 ∩ σi| ⊂ |σ(k−2)| where i ∈ {1, . . . , k + 1}. The inductive assumption guarantees that
gk(z) = gk−1(z) and hence

gk+1(x) = HxW0
,n0−1(gk(z), t) = HxW0

,n0−1(gk−1(z), t) = gk(x).

Therefore, gk+1

∣∣|σ(k−1) = gk
∣∣|σ(k−1).

After completing the inductive construction we obtain a sequence of maps (gk)k∈ω
composing a map g : |N(µ)| → Y defined by g

∣∣|N(µ)(k)| = gk for k ∈ ω. We claim that
g ◦ θ ∈ Bρ(f, ε). This is equivalent to

ρ(gk(θ(x)), f(x)) < ε(x)

for any k ≥ 0 and x ∈ θ−1(N(µ)(k)). Let σ = {W0,W1, . . . ,Wk} = {W ∈ µ : θ(x)

∈ W} be the largest simplex of the nerve N(µ) whose geometric realization |σ| con-
tains the point θ(x). The inclusionW0 ⊂ GxW0

∩f−1(Vn0
(xW0

)) implies f(x) ∈ Vn0
(xW0

)

and ρ(f(x), f(xW0)) < 3εxW0
/12n0 . On the other hand, according to our construction,

gk(σ) ⊂ Un0−1(xW0
) and hence, ρ(gk(θ(x)), f(xW0

)) < εxW0
/12n0−2. Combining the last

two inequalities, we get

ρ(f(x), gk(θ(x))) <
εxW0

(3 + 122)

12n0
< ε(x)

because n0 ≥ 3 and x ∈ GxW0
.

25. Proof of Theorem 4.1

This section is devoted to the proof of Theorem 4.1 on approximation of n-dimensional
maps by PL-maps.

Recall that a PL-map (resp., a simplicial map) is a map f : K →M between simplicial
complexes that maps each simplex σ of K into (resp., onto) a simplex τ ofM and is linear
on σ. A PL-map f : K →M is rational if f(K ∩Q

⋃
K) ⊂M ∩Q

⋃
M .

The proof of Theorem 4.1 will be established in three steps: for light maps p, then for
maps p with dim4(p) < ω and finally for maps p with dim4(p) ≥ ω.

To prove the initial step we need a simplicial version of the notion of V-map. Let V
be a cover of a space X. A map f : X → K to a simplicial complex K is called a strong
V-map if for each vertex v ∈

⋃
K of K the preimage f−1(St(v)) of the open star of v lies

in some V ∈ V.

Lemma 25.1. Let p : X → Y be a perfect U-disjoint map between paracompact spaces,
where U is an open cover of X. Then there exists an open cover V of Y satisfying the
following condition: for any strong V-map β : Y →M into a simplicial complex M there
are a strong U-map α : X → K into a simplicial complex K and a perfect light simplicial
map f : K →M such that f ◦ α = β ◦ p.
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Proof. Since p is U-disjoint, every y ∈ Y has a neighborhood Gy in Y such that p−1(Gy)

is the union of a disjoint open in X family Uy refining U . Since the fibers p−1(y), y ∈ Y ,
are compact and p is a perfect map, we can assume that Uy is finite. Now, using the
paracompactness of Y , we choose a locally finite open cover V of Y refining the cover
{Gy : y ∈ Y }. Obviously, the preimage p−1(V ) of each set V ∈ V is the union

⋃
UV of a

finite disjoint collection UV of open subsets of X which refines the cover U .
We are going to show that the cover V satisfies our requirements. Take any strong

V-map β : Y → M into a simplicial complex M . Then for any vertex v of M we have
Vv = β−1(St(v)) ⊂ V for some V ∈ V. The choice of V guarantees that p−1(Vv) is the
union of a finite disjoint collection Uv of open subsets of X inscribed in the cover U . Then
U ′ =

⋃
v∈

⋃
M Uv is a cover of X refining U . Write U ′ as the disjoint union U ′ =

⋃
v∈∪M U ′v

of finite families U ′v ⊂ Uv and consider the finite-to-one map f∗ : U ′ →
⋃
M assigning to

each set U ∈ U ′ the vertex v ∈
⋃
M such that U ∈ U ′v.

Now, let K = N(U ′) be the nerve of the cover U ′. We claim that if {U1, . . . , Un}
form a simplex in N(U ′), then {f∗(U1), . . . , f∗(Un)} form a simplex in M . For every
i ≤ n let vi = f∗(Ui). The sets U1, . . . , Un form a simplex in N(U ′) and hence, have a
common point x ∈ U1 ∩ · · · ∩ Un. Consider the point z = β(p(x)) ∈ M and note that
p(x) ∈

⋂
j≤n p(Uj) ⊂ β−1(St(vi)) for all i ≤ n. Thus, z ∈ St(vi), i ≤ n. Moreover, z can

be treated as a function z :
⋃
M → [0, 1] such that there is a simplex σ ⊂M with v ∈ σ

provided z(v) 6= 0. Since z ∈ St(vi) is equivalent to z(vi) > 0, all vertices v1, . . . , vn lie in
the simplex σ. Therefore, {f∗(U1), . . . , f∗(Un)}) = {v1, . . . , vn} form a simplex in M and
the map f∗ : U ′ →

⋃
M determines a simplicial map f : N(U ′)→M .

The map f is perfect since f∗ is finite-to-one. Let us show that f is light. This will
follow as soon as we show that f∗ is injective on the vertices of any simplex of N(U ′).
Take any simplex σ of N(U ′) with vertices U1, . . . , Un and let vi = f∗(Ui) for i ≤ n.
Assuming that vi = vj for some indices i 6= j, we deduce that Ui, Uj are two intersecting
elements of the disjoint family U ′vi , a contradiction. So, f : N(U ′)→M is a perfect light
simplicial map between the simplicial complexes N(U ′) and M .

It remains to define a map α : X → K = N(U ′) so that f ◦ α = β ◦ p. For every
vertex U ∈ U ′ of K let v = f∗(U) and consider the map µU : X → [0, 1] defined by
µU (x) = prv(β(p(x))) if x ∈ U and µU (x) = 0 otherwise (here prv : M → [0, 1] is
the coordinate projection). It can be shown that µU is a well-defined function and the
cover {µ−1

U (0, 1]}U∈U ′ of X is point-finite and subordinated to the cover U ′. Moreover,∑
U∈U ′ µU ≡ 1. So, we can consider the map

α : X → N(U ′), x 7→ (µU (x))U∈U ′ .

It is easy to check that f ◦ α = β ◦ p.
Let us show that the map α is continuous. For any z ∈ N(U ′) consider the canon-

ical open neighborhood N(z) =
⋂
{St(U) : U ∈ U ′ and z ∈ St(U)} and note that

α−1(N(z)) =
⋂
{U ∈ U ′ : z ∈ St(U)} is an open subset of X. Fix any point x0 ∈ X and

take any open neighborhood O(z0) of z0 = α(x0) in K. Replacing O(z0) with a smaller
neighborhood, if necessary, we can assume that O(z0) ⊂ N(z0). Consider the open neigh-
borhood N = O(z0) ∪

⋃
{N(z) : z ∈ f−1(f(z0)) and z 6= z0} of the fiber f−1(f(z0)).

Then K \N is a closed subset of K and f(K \N) is a closed subset of M , not containing
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t0 = f(z0). The complement O(t0) = M \ f(K \N) is an open neighborhood of t0. Now,
the continuity of the map β : Y →M at y0 = p(x0) yields the existence of a neighborhood
O(y0) ⊂ Y of y0 such that β(O(y0)) ⊂ O(t0). Then O(x0) = p−1(O(y0)) ∩ α−1(N(z0)) is
an open neighborhood of x0 with α(O(x0)) ⊂ N(z0) ∩ f−1(O(t0)) ⊂ N(z0) ∩N ⊂ O(z0)

because the sets N(z) are pairwise disjoint for distinct points z ∈ f−1(f(z0)).
The continuity of the map α is established. Finally, since α−1(St(U)) ⊂ U for any

U ∈ U ′, α : X → K = N(U ′) is a strong U-map.

The following PL-version of Lemma 25.1 provides a proof of Theorem 4.1 for light
maps.

Lemma 25.2. Let p : X → Y be a perfect U-disjoint map between paracompact spaces,
where U is an open cover of X. Then there is an open cover V of Y satisfying the following
condition: for any V-map β : Y → M into a simplicial complex M there exist a U-map
α : X → K into a simplicial complex K and a perfect light rational PL-map f : K →M

such that f ◦ α = β ◦ p.

Proof. We apply Lemma 25.1 to find a cover V of Y such that for any strong V-map
β′ : Y → M ′ into a simplicial complex M ′ there exist a U-map α : X → K into a
simplicial complex K and perfect light simplicial map f ′ : K →M ′ with f ′ ◦ α = β′ ◦ p.

We claim that the cover V satisfies our requirements. Indeed, if β : Y →M is a V-map
into a simplicial complex M , then there exists an open cover W of M whose preimage
β−1(W) refines V. By Lemma 20.2, the complex M admits a rational subdivision M ′

such that the cover {St(v) : v ∈
⋃
M ′} of M ′ by open stars refines h−1(W), where

h : M ′ → M is the canonical homeomorphism. Then β′ = h−1 ◦ β : Y → M ′ is a
strong V-map. So, the choice of V guarantees the existence of a U-map α : X → K

into a simplicial complex K and perfect light simplicial map f ′ : K → M ′ such that
f ′ ◦ α = β′ ◦ p. Then f = h ◦ f ′ : K → M is a perfect light rational PL-map with
f ◦ α = β ◦ p.

Next, we prove Theorem 4.1 for maps p with dim4(p) < ω.

Lemma 25.3. Let p : X → Y be a perfect map between paracompact spaces with dim4(p)

= n < ω. Then for every open cover U of X there is an open cover V of Y satisfying
the following condition: for any V-map β : Y → M into a simplicial complex M there
exist a U-map α : X → K into a simplicial complex K and a perfect rational PL-map
f : K →M with p ◦ α = β ◦ f and dim(f) = dim4(f) ≤ dim4(p).

Proof. Let U be an open cover of X. According to the definition of dim4(p), there is a
map g : X → In such that the diagonal product p4 g : X → Y × In is U-disjoint.

Applying Lemma 25.2 for the perfect map p4 g : X → Y × In, we find an open cover
V ′ of Y × In satisfying the following property: for any V ′-map β′ : Y × In → M into a
simplicial complex M there exist an U-map α : X → K into a simplicial complex K and
a perfect light rational PL-map f : K →M such that f ◦ α = β′ ◦ (p4 g).

Since for every y ∈ Y the set {y}× In is compact, there exists a neighborhood Vy ⊂ Y
of y such that every point z ∈ In has a neighborhood Wz with Vy ×Wz being a subset of
some V ∈ V ′. Choose V to be a locally finite open cover of Y refining {Vy : y ∈ Y }.
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Let us show that the cover V satisfies our requirements. Take any V-map β : Y →M

to a simplicial complexM and consider the map β×id : Y ×In →M×In, β×id : (y, t) 7→
(β(y), t). It is easy to see that β × id is a V ′-map. Next, choose a triangulation of the
product M × In such that the projection pr : M × In →M is a rational PL-map. Then,
by the choice of the cover V ′, there exist a U-map α : X → K into a simplicial complex K
and a perfect light rational PL-map h : K →M × In such that h ◦α = (β× id) ◦ (p4 g).
Finally, let f = pr ◦ h : K → M . It is clear that f ◦ α = β ◦ p. Since f is a composition
of the light map h and the perfect n-dimensional map pr : M × In → M , dim(f) ≤ n.
According to Proposition 1(4), dim4(f) ≤ n (we can apply Proposition 1(4) because K
is submetrizable and M is a C-space). Moreover, f , being a composition of two rational
PL-maps, is a rational PL-map as well.

Finally, we treat the case dim4(p) ≥ ω.

Lemma 25.4. Let p : X → Y be a perfect map between paracompact spaces. Then for
every open cover U of X there is an open cover V of Y satisfying the following condition:
for any V-map β : Y →M into a simplicial complex M there exist a U-map α : X → K

into a simplicial complex K and a perfect rational PL-map f : K →M with p◦α = β ◦f .

Proof. Let U be an open cover of X. Fix a cardinal τ and an injective continuous map
g : X → Iτ . Then p4 g : X → Y × Iτ is a perfect embedding. So, p4 g is a U -disjoint
map. By Lemma 25.2, there is an open cover W of Y × Iτ such that for any W-map
β′ : Y × Iτ → M into a simplicial complex M there exist a U-map α : X → K into a
simplicial complex K and a perfect rational PL-map h : K →M with h◦α = β′ ◦ (p4g).

Next, for any y ∈ Y take an open neighborhood Vy ⊂ Y of y and a finite open cover
Wy of Iτ such that the family {Vy ×W : W ∈ Wy} refines W. Let V ′ be a locally finite
open cover of Y refining {Vy : y ∈ Y }. For every V ∈ V ′ there exists y(V ) ∈ Y with
V ⊂ Vy(V ) and let WV = Wy(V ). Then W ′ = {V ×W : W ∈ WV , V ∈ V ′} is a locally
finite open cover of Y × Iτ refining W. Let {λW : Y × Iτ → [0, 1]}W∈W′ be a partition of
unity subordinated to W ′ and let

λ : Y × Iτ → N(W ′), (y, t) 7→ (λW (y, t))W∈W′ ,

be the canonical map into the nerve of W ′. It is easy to check that λ is a W-map.
Let V be a locally finite open cover of Y refining V ′ and such that each V ∈ V meets

only finitely many sets V ′ ∈ V ′.
We claim that the cover V satisfies our requirements. Take any V-map β : Y →M into

a simplicial complexM . According to Lemma 20.2, we may assume that the triangulation
of M is so fine that the preimage β−1(σ) of any simplex σ ⊂M lies in some V ∈ V. Then

β′ : Y × Iτ →M ×N(W ′), (y, t) 7→ (β(y), λ(y, t)),

is a W-map because so is λ. Now, triangulate the product M × N(W ′) such that the
projections onto M and onto N(W ′) are both simplicial maps, and consider the sub-
complex L ⊂ M × N(W ′) of all simplexes intersecting β′(Y × Iτ ). Let us show that
the projection pr : L → M is a perfect map. It suffices to check that the preimage
pr−1(σ) of any simplex σ ⊂ M is a finite subcomplex of L. By assumption, β−1(σ) is
contained in some V0 ∈ V, so it meets only finitely many sets V ∈ V ′. Consequently,
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Wσ = {V ×WV : V ∈ V ′, β−1(σ) ∩ V 6= ∅} is finite and so is the subcomplex N(Wσ)

of N(W ′) consisting of all simplexes whose vertices belong to Wσ. Now, it is easy to see
that pr−1(σ) ⊂ σ ×N(Wσ), which implies that pr : L→M is perfect.

Since β′ : Y × Iτ → L is a W-map, the choice of W implies the existence of a U-map
α : X → K to a simplicial complex K and perfect rational PL-map h : K → L such that
h ◦ α = β′ ◦ (p4 g). Finally, consider the perfect rational PL-map f = pr ◦ h : K → M

and note that f ◦ α = pr ◦ h ◦ α = pr ◦ β′ ◦ (p4 g) = β ◦ p.

26. Simplicial characterization of the m-DD{n,k}-property

This section is devoted to the proof of Theorem 5.3. The “if” part is trivial. To prove
the “only if” part, we suppose that X is a submetrizable space having the m-DD{n,k}-
property, U is an open cover of X, pN : N → M and pK : K → M are simplicial
maps between compact simplicial complexes such that m = dimM , n = dim(pN ) and
k = dim(pK). For any maps f : N → X, g : K → X we are going to construct two maps
f ′ : N → X, g′ : K ′ → X such that f ′ ∼

U
f , g′ ∼

U
g and f ′(p−1

N (z)) ∩ g′(p−1
K (z)) = ∅ for

all z ∈M .
By Lemma 18.2, we can assume that U consists of open ε-balls with respect to a

suitable continuous pseudometric ρ on X. Since X is submetrizable, we can also assume
that ρ is a metric. So, it suffices to construct maps f ′ : N → M and g′ : K → M ,
ε-homotopic to f and g, respectively, such that f ′(p−1

N (z))∩g′(p−1
K (z)) = ∅ for all z ∈M .

This will be done in three steps.
First, we assume thatM,N,K are simplexes and pN , pK are affine functions mapping

vertices of N,K to vertices of M . Let M (0), N (0), K(0) be the sets of vertices of the
simplexes M,N,K, respectively, and σn, σk simplexes with dimσn = dim(pN ) = n and
dimσk = dim(pK) = k.

Since dim(pN ) = n, the preimage p−1
N (z) ∩N (0) of each vertex z ∈ M (0) contains at

most n + 1 points. Consequently, we can find a map en : N (0) → σ
(0)
n which is injective

on each set p−1
N (z)∩N (0), z ∈M (0). This map induces an affine map ēn : N → σn. Then

ēN = pN 4 ēn : N →M × σn is an affine embedding. So, ēN (N) is a retract of M × σn.
Hence, there exists a map rN : M × σn → N such that rN ◦ ēN is the identity.

We can do the same for the simplex K to find an affine map ēk : K → σk such that
the diagonal map ēK = pK 4 ēk : K → M × σk is an affine embedding, and a map
rK : M × σk → K with rK ◦ ēK being the identity.

Now, consider the maps f◦rN : M×σn → X and g◦rK : M×σk → X. Them-DD{n,k}-
property of X allows us to find two maps f̃ : M × σn → X and g̃ : M × σk → X such
that f̃ ∼

U
f ◦ rN , g̃ ∼

U
g ◦ rK and f̃({z} × σn) ∩ g̃({z} × σk) = ∅ for all z ∈ M . Then the

maps f ′ = f̃ ◦ (pN 4 ēn) : N → X and g′ = g̃ ◦ (pK 4 ēk) : K → X have the desired
properties: f ′ ∼

U
f , g′ ∼

U
g and f̃(p−1

N (z)) ∩ g′(p−1
K (z)) = ∅ for all z ∈ M . This completes

the proof of the particular case with M,N,K being simplexes.
At the second step we consider the case whenM,N,K are disjoint unions of simplexes.

Write M =
⊔
M as a disjoint union of a family M of simplexes. We can find similar
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representations for the complexes N and K: N =
⊔
N and K =

⊔
K. Enumerate the

productM×N ×K asM×N ×K = {(Mi, Ni,Ki) : 1 ≤ i ≤ l}, where l = |M×N ×K|.
Let ε1 = ε/2, f0 = f and g0 = g. Using the implication of the m-DD{n,k}-property of

X established at the first step, we can construct (by finite induction of length l) sequences
of maps fi : N → X, gi : K → X, i ≤ l, and a sequence (εi)i≤l+1 of real numbers such
that

(1) fi is εi-homotopic to fi−1 and gi is εi-homotopic to gi−1;
(2) minz∈Mi

dist
(
fi(p

−1
N (z) ∩Ni), gi(p−1

K (z) ∩Ki)
)
≥ 5εi+1;

(3) εi+1 < εi/2.

Then the final maps fl : N → X, gl : K → X have the desired properties:

(4) fl is ε-homotopic to f0 and gl is ε-homotopic to g0;
(5) minz∈Mi

dist
(
fl(p

−1
N (z) ∩Ni), gl(p−1

K (z) ∩Ki)
)
≥ εi+1 for all i ≤ l.

Since for each triple (z, x, y) ∈ M × N × K there is a number i ≤ l with (z, x, y) ∈
(Mi, Ni,Ki), the latter condition implies fl(p−1

N (z)) ∩ gl(p−1
K (z)) = ∅ for all z ∈M .

At the third step we prove the general case by induction on s = dimM + dimN +

dimK. The second step allows us to start the induction with s = 0.
Now, suppose the assertion has already been proved for all triples M,N,K with

dimM + dimN + dimK < s for some s. Assume that dimM + dimN + dimK = s > 0

and X has the m-DD{n,k}-property for m = dimM , n = dim(pN ), k = dim(pK). Given
any ε > 0 we should construct maps f ′ : N → X, g′ : K → X such that f ′ is ε-homotopic
to f , g′ is ε-homotopic to g and f(p−1

N (z)) ∩ g(p−1
K (z)) = ∅ for all z ∈M .

Let ε1 = ε/2 and M ′, N ′,K ′ be the codimension one skeleta of the simplicial com-
plexes M,N,K, respectively. If one of the complexes, say M , is zero-dimensional, then
we set M ′ = ∅.

In case M ′ = ∅, let f1 = f and g1 = g. Otherwise apply the inductive hypothesis
and the fact that dimM ′ + dimN + dimK < s to find two maps f1 : p−1

N (M ′) → X,
g1 : p−1

K (M ′)→ X such that

(6) f1 is ε1-homotopic to f |p−1
N (M ′),

(7) g1 is ε1-homotopic to g|p−1
K (M ′) and

(8) f1(p−1
N (z)) ∩ g1(p−1

K (z)) = ∅ for all z ∈M ′.

By the Borsuk homotopy extension lemma 18.3, the maps f1, g1 can be extended to
maps f̄1 : N → X, ḡ1 : K → X such that f̄1 is ε1-homotopic to f and ḡ1 is ε1-homotopic
to g. Take any positive real number ε2 ≤ ε1/2 with

(9) 5ε2 < minz∈M ′ dist
(
f1(p−1

N (z), g1(p−1
K (z)

)
.

Applying the inductive hypothesis to the maps f̄1|N ′ : N ′ → X, ḡ1 : K → X combined
with Lemma 18.3, we find two maps f̄2 : N → X, ḡ2 : K → X such that

(10) f̄2 is ε2-homotopic to f̄1, ḡ2 is ε2-homotopic to ḡ1 and
(11) f̄2(p−1

N (z) ∩N ′) ∩ ḡ2(p−1
K (z)) = ∅ for all z ∈M .
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Next, take any positive real number ε3 ≤ ε2/2 with

(12) 5ε3 < minz∈M dist
(
f̄2(p−1

N (z) ∩N ′), ḡ2(p−1
K (z))

)
.

Applying the inductive hypothesis to the maps f̄2 and g2|K ′ and using Lemma 18.3, we
find two maps f̄3 : N → X, ḡ3 : K → X such that

(13) f̄3 is ε3-homotopic to f̄2, ḡ3 is ε3-homotopic to ḡ2 and
(14) f̄3(p−1

N (z)) ∩ ḡ3(p−1
K (z) ∩K ′) = ∅ for all z ∈M .

Now, take any positive real number ε4 < ε3/2 with

(15) 5ε4 < minz∈M dist
(
f̄3(p−1

N (z)), ḡ3(p−1
K (z) ∩K ′)

)
.

Let M be the family of open simplexes of dimension dimM in the complex M . Ob-
serve that the simplexes from M are disjoint and

⋃
M = M \M ′. For each σ ∈ M

denote by σ̄ its closure in M and set M = {σ̄ : σ ∈ M}. Let
⊔
M be the disjoint

topological sum of the closed simplexes from M and prM :
⊔
M → M be the natural

surjective map (whose restriction to
⊔
M is a homeomorphism between

⊔
M ⊂

⊔
M

and M \M ′).
Having defined the familyM, we define families of simplexes N and K:

N = {σ ⊂ N : σ 6⊂ N ′, pN (σ) 6⊂M ′},
K = {σ ⊂ K : σ 6⊂ K ′, pK(σ) 6⊂M ′}.

Let also N = {σ̄ : σ ∈ N}, K = {σ̄ : σ ∈ K}, and prN :
⊔
N → N , prK :

⊔
K → K be

the natural maps.
The simplicial maps pN : N → M and pK : K → M induce simplicial maps p̄N :⊔
N →

⊔
M and p̄K :

⊔
K →

⊔
M making the following diagrams commutative:⊔

N prN−→ N
⊔
K prK−→ K

p̄N

y ypN and p̄K

y ypK⊔
M prM−→ M

⊔
M prM−→ M

Since
⊔
M,

⊔
N ,

⊔
K are disjoint unions of cells, we may apply the implication of

the m-DD{n,k}-property, established at the second step, to find maps f4 :
⊔
N → X,

g4 :
⊔
K → X such that

(16) f4 is ε4-homotopic to f̄3 ◦ prN ,
(17) g4 is ε4-homotopic to ḡ3 ◦ prK ,
(18) f4(p̄−1

N (z)) ∩ g4(p̄−1
K (z)) = ∅ for all z ∈

⊔
M.

Let ρM , ρN , ρK be the canonical l1-metrics on the geometric simplicial complexes
M,N,K, respectively. By the uniform continuity of the maps f̄i, ḡi, i ≤ 3, there is δ ∈
(0, 1/2) such that

max
i≤3
{dist(f̄i(x), f̄i(x

′)),dist(ḡi(y), ḡi(y
′))} < ε4

for any points x, x′ ∈ N and y, y′ ∈ K with ρN (x, x′) < 4δ, ρK(y, y′) < 4δ. Consider the
δ-neighborhood Oδ(M \

⋃
M) = {z ∈M : ∃z′ ∈M \

⋃
M with ρM (z, z′) < δ}. Similarly,

we define neighborhoods Oδ(N \
⋃
N ) and Oδ(K \

⋃
K).
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Using (16), (17) we construct maps f ′ : N → X and g′ : K → X such that

(19) f ′ is ε4-homotopic to f̄3;
(20) f ′|N \

⋃
N = f̄3|N \

⋃
N ;

(21) f ′|N \Oδ(N \
⋃
N ) = f4|N \Oδ(N \

⋃
N );

and

(22) g′ is ε4-homotopic to ḡ3;
(23) g′|K \

⋃
K = ḡ3|K \

⋃
K;

(24) g′|K \Oδ(K \
⋃
K) = g4|K \Oδ(K \

⋃
K).

The choice of the numbers εi and the conditions (6), (10), (13), (16), (19) imply that
the map f ′ is ε-homotopic to f . Similarly, g′ is ε-homotopic to g. It remains to prove that
f ′(p−1

N (z)) ∩ g′(p−1
K (z)) = ∅ for any z ∈ M . Take any points x ∈ p−1

N (z) and y ∈ p−1
K (z)

and find maximal simplexes σz ⊂ M , σx ⊂ N , σy ⊂ K containing the points z, x, y,
respectively. Now, consider the following cases:

(i) z ∈M ′. Then
dist(f ′(x), g′(y)) ≥ dist(f1(p−1

N (z)), g1(p−1
K (z)))− dist(f ′, f1)− dist(g′, g1)

≥ 5ε2 − 2(ε2 + ε3 + ε4) ≥ ε2 > 0

(ii) z ∈ Oδ(M
′) \ M ′. Then the maximal simplex σz containing z belongs to the

family M and ρM (z, z′) < δ for some z′ ∈ σz ∩M ′. Taking into account that pN (x) =

z ∈ σz \ M ′ we conclude that pN (σ
(0)
x ) = σ

(0)
z . By Lemma 20.3, there exists a point

x′ ∈ σx such that pN (x′) = z′ and ρN (x, x′) = ρM (z, z′) < δ. Analogously, there
exists a point y′ ∈ σy such that pK(y′) = z′ and ρK(y, y′) = ρM (z, z′) < δ. Then
max{dist(f̄1(x), f̄1(x′)),dist(ḡ1(y), ḡ1(y′))} < ε4 by the choice of δ. Now,

dist(f ′(x), g′(y)) ≥ dist(f̄1(x), ḡ1(y))− dist(f ′, f̄1)− dist(g′, ḡ1)

≥ dist(f̄1(x′), ḡ1(y′))− dist(f̄1(x′), f̄1(x))− dist(ḡ1(y′), ḡ1(y))− 2(ε4 + ε3 + ε2)

≥ dist
(
f̄1(p−1

N (z′)), ḡ1(p−1
K (z′))

)
− 2ε4 − 2(ε2 + ε3 + ε4) ≥ 5ε2 − 4ε2 > 0.

(iii) z /∈ Oδ(M ′) and x ∈ N \
⋃
N . Then x ∈ N ′ (because pN (x) = z /∈M ′) and

dist(f ′(x), g′(y)) ≥ dist(f̄2(x), ḡ2(y))− dist(f ′, f̄2)− dist(g′, ḡ2)

≥ 5ε3 − 2(ε3 + ε4) > 0.

(iv) z /∈ Oδ(M ′) and x ∈ Oδ(N \∪N ). In this case we can find x′ ∈ N ′ with ρN (x, x′)

< δ. Then letting z′ = pN (x′), Lemma 20.3 implies ρM (z, z′) = ρM (pN (x), pN (x′)) ≤
ρN (x, x′) < δ. Applying again Lemma 20.3, we find a point y′ ∈ σy with ρK(y, y′) =

ρM (z, z′) < δ. Hence,

max{dist(f̄2(x′), f̄2(x)),dist(ḡ2(y), ḡ2(y′))} < ε4

and

dist(f ′(x), g′(y)) ≥ dist(f̄2(x), ḡ2(y))− dist(f ′, f̄2)− dist(g′, ḡ2)

≥ dist(f̄2(x′), f̄2(y′))− dist(f̄2(x′), f̄2(x))− dist(ḡ2(y′), ḡ2(y))− 2(ε4 + ε3)

≥ dist(f̄2(p−1
N (z′) ∩N ′), ḡ2(p−1

K (z′)))− 2ε4 − 2(ε3 + ε4) ≥ 5ε3 − 4ε3 > 0.
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(v) z /∈ Oδ(M ′), x /∈ Oδ(N\
⋃
N ), y ∈ Oδ(K\

⋃
K). In this case, we can choose y′ ∈ K ′

with ρK(y′, y′) < δ. Then letting z′ = pK(y′), we have ρM (z, z′) = ρM (pK(y), pK(y′)) ≤
ρK(y, y′) < δ. According to Lemma 20.3, there exists a point x′ ∈ σx with ρN (x, x′) =

ρM (z, z′) < δ. Therefore,
dist(f ′(x), g′(y)) ≥ dist(f̄3(x), ḡ3(y))− dist(f ′, f̄3)− dist(g′, ḡ3)

≥ dist(f̄3(x′), f̄3(y′))−dist(f̄3(x′), f̄3(x))−dist(ḡ3(y′), ḡ3(y))−2ε4

≥ dist
(
f̄3(p−1

N (z′)), ḡ3(p−1
K (z′) ∩K ′)

)
− 4ε4 ≥ 5ε4 − 4ε4 > 0.

(vi) z /∈ Oδ(M ′), x /∈ Oδ(N \
⋃
N ), y /∈ Oδ(K \

⋃
K). In this case f ′(x) = f4(x) 6=

g4(y) = g′(y) by (18), (21) and (24).

27. Approximations by simplicially factorizable V-maps

The main result of this section is Lemma 27.4 which is the principal (and technically
the most difficult) ingredient of the proof of Theorem 3.3. This lemma asserts that if
p : K → M is a perfect map between paracompact spaces, V is an open cover of K
and X is a submetrizable space possessing the m-DDn-property with m = dimM and
n = dim4(p), then each simplicially factorizable map f : K → X can be approximated
by simplicially factorizable V-maps.

Lemma 27.4 has a technical proof preceded by three other lemmas.

Lemma 27.1. Let p : K →M be a PL-map between compact polyhedra and let f : K → X

be a map into a submetrizable space X possessing the m-DDn-property with m = dimM

and n = dim(p). Then for any continuous pseudometric ρ on X and any open cover V
of K there is a map f̃ : K → X such that f̃ is 1-homotopic to f (with respect to ρ) and
p4 f̃ : K →M ×X is a V-map.

Proof. Since X is submetrizable, we can suppose that ρ is a continuous metric on X.
Fix a continuous metric d on K such that the cover {Bd(y, 1) : y ∈ K} refines V. We
assume that T is a triangulation of the polyhedron K so fine that each simplex σ ∈ T
is of diameter < 1/3 with respect to the metric d. Moreover, we also assume that p is a
simplicial map, where K carries the triangulation T and M is equipped with a suitable
triangulation. Let {σi : 1 ≤ i ≤ l} be an enumeration of maximal closed simplexes of K.
The star St(σ) of any simplex σ ∈ T in K is the set St(σ) =

⋃
v∈σ St(v). Since the

diameter of each σ ∈ T is < 1/3, St(σ) is of diameter < 1.
Let f0 = h0 = g0 = f and ε0 = 1, ε1 = 1/2. Using Theorem 5.3 and Lemma 18.3, by

finite induction of length l, one can construct three sequences (fi, gi, hi : K → X)i≤l of
maps and a sequence (εi)i≤l of positive real numbers satisfying the following conditions
for each i ≥ 1:

• fi and gi are εi-homotopic to hi−1;
• minz∈M ρ

(
fi(p

−1(z), gi(p
−1(z))

)
> 5εi+1;

• εi+1 ≤ εi/2;
• hi(x) = fi(x) for each x ∈ σi;
• hi(x) = gi(x) for each x ∈ K \ St(σi);
• hi is εi-homotopic to hi−1.
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Then f̃ = hl : K → X is ε0-homotopic to f0 = f . It remains to show that p4 f̃ : K →
M ×X is a V-map. This will follow as soon as we show that it is a 1-map with respect
to d. Assuming that this is not the case, we could find x, x′ ∈ K with distd(x, x

′) ≥ 1 and
(p(x), f̃(x)) = (p(x′), f̃(x′)) = (z, y) for some (z, y) ∈ M ×X. The point x lies in some
simplex σi, i ≤ l. Since diamd(St(σi)) < 1 ≤ distd(x, x

′), x′ /∈ St(σi). Then hi(x) = fi(x)

and hi(x′) = gi(x
′). It follows from the inductive construction that distρ(hi(x), hi(x

′)) =

distρ(fi(x), gi(x
′)) ≥ distρ(fi(p

−1(z)), gi(p
−1(z))) > 5εi+1. Hence,

ρ(f̃(x), f̃(x′)) = ρ(hl(x), hl(x
′)) ≥ ρ(hi(x), hi(x

′))− 2ρ(hl, hi) ≥ 5εi+1 − 4εi+1 > 0.

On the other hand, ρ(f̃(x), f̃(x′)) = 0 because f̃(x) = f̃(x′). This contradiction completes
the proof.

Lemma 27.2. Let p : K →M be a PL-map between compact polyhedra and let f : K → X

be a map into a submetrizable space X possessing the m-DDn-property with m = dimM

and n = dim(p). Assume that for some open cover V of K and some closed subset F ⊂ K
with F = p−1(p(F )) the restriction p4f |F : F →M×X is a V-map. Then, for any open
cover U of X, there is a map f̃ : K → X such that f̃ is U-homotopic to f , f̃ |F = f |F ,
and p4 f̃ : K →M ×X is a V-map.

Proof. Since p 4 f |F is a V-map, there exists a closed neighborhood O(F ) ⊂ K of F
such that the restriction (p4 f)|O(F ) is also a V-map (this follows from the closedness
of the map p4 f). Because F = p−1(p(F )) is a complete preimage, we can assume that
so is O(F ) = p−1(p(O(F )). By Lemma 18.7, the V-maps form an open set in the function
space C(O(F ),M × X). Consequently, we can find a continuous metric ρ on M × X

such that any map g : O(F ) → M × X with ρ(g, p4 f |O(F )) < 1 is a V-map. By the
compactness of O(F ), there is an open cover U ′ of X such that for any z ∈ O(F ) and
any U ∈ U ′ the set {p(z)} × U has ρ-diameter < 1. Without loss of generality, we may
assume that the initial cover U of X refines U ′.

Now, using Lemma 18.2 and Lemma 27.1, we find a V-map f ′ : K → X, U-homotopic
to f and such that p 4 f ′ : K → M × X is a V-map. Let h : K × [0, 1] → X be an
U-homotopy linking the maps f and f ′. Take any continuous function λ : K → [0, 1] such
that λ(F ) = {0} and λ(K \O(F )) ⊂ {1}, and define a U-homotopy h̃ : K× [0, 1]→ X by
the formula h̃(x, t) = h(x, λ(x)t). Finally, consider the map f̃ : K → X, f̃(x) = h̃(x, 1). It
is clear that f̃ is U-homotopic to f and f̃ |F = f |F . It remains to show that p4 f̃ : K →
M ×X is a V-map. Since K is compact, it suffices to check that for any (z, x) ∈M ×X
the set (p4 f̃)−1(z, x) = p−1(z) ∩ f̃−1(x) lies in some V ∈ V.

Since f and f̃ are U-homotopic, (p4 f̃)|O(F ) is 1-near to (p4 f)|O(F ) with respect
to ρ. Hence, by the choice of ρ, (p4 f̃)|O(F ) is a V-map. Consequently, (p4 f̃)−1(z, x) ⊂
O(F ) lies in some V ∈ V provided z ∈ p(O(F )). If z /∈ p(O(F )), then (p4 f̃)−1(z, x) =

(p4 f ′)−1(z, x) is also contained in some V ∈ V because p4 f ′ is a V-map.

Lemma 27.3. Let p : K → M be a perfect PL-map between polyhedra and f : K → X

be a map into a submetrizable space X possessing the m-DDn-property with m = dimM

and n = dim(p). Then, for any continuous pseudometric ρ on X, any continuous map
ε : K → (0, 1] and any open cover V of K, there is a map f̃ : K → X which is ε-homotopic
to f and p4 f̃ : K →M ×X is a V-map.
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Proof. Let M (i), i ≥ 0, denote the i-dimensional skeleton of M and M (−1) = ∅. We put
f−1 = f and construct inductively a sequence (fi : K → X)i≥0 of maps such that

• fi|p−1(M (i−1)) = fi−1|p−1(M (i−1));
• fi is ε/2i+2-homotopic to fi−1;
• p4 fi restricted to p−1(M (i)) is a V-map.

Assuming that the map fi−1 : K → X has been constructed, consider the complement
M (i) \M (i−1) =

⊔
j∈Ji σ̊j , which is the discrete union of open i-dimensional simplexes.

According to Lemma 20.1 the preimage p−1(σj) of any simplex σj is a compact subpoly-
hedron of K. Therefore, we can apply Lemma 27.2 to find maps gj : p−1(σj)→ X, j ∈ Ji,
such that

• gj coincides with fi−1 on the set p−1(σ
(i−1)
j );

• gj is ε/2i+2-homotopic to fi−1|p−1(σj);
•
(
p|p−1(σj)

)
4 gj is a V-map.

Now, define a map g : p−1(M (i))→ X by the formula

g(x) =

{
fi−1(x) if x ∈ p−1(M (i−1)),
gj(x) if x ∈ p−1(σj) for some j ∈ Ji.

It can be shown that g is ε/2i+2-homotopic to fi−1|p−1(M (i)). Moreover, it follows from
Lemma 18.6 that the diagonal product

(
p|p−1(M (i))

)
4 g is a V-map. Since p−1(M (i))

is a subpolyhedron of K (see Lemma 20.1), it is a neighborhood retract of K. So, we
can apply the Borsuk homotopy extension lemma 18.3 to find a continuous extension
fi : K → X of g which is ε/2i+2-homotopic to fi−1. This completes the inductive step.

Then the limit map f̃ = limi→∞ fi : K → X is well-defined, continuous and ε-
homotopic to f (the last two properties of f hold because f |σ has these properties for
any simplex σ ⊂ K and because of the definition of the CW-topology on K). Moreover,
p4 f̃ : K →M ×X is a V-map since it is perfect and, for each point (z, x) ∈M (i)×X ⊂
M ×X, the preimage (p4 f̃)−1(z, x) = (p4 fi)

−1(z, x) lies in some set V ∈ V.

Lemma 27.4. Let p : K → M be a perfect map between paracompact spaces, V be an
open cover of K and X be a submetrizable space possessing the m-DDn-property with
m = dimM and n = dim4(p). Then, for any simplicially factorizable map f : K → X,
any continuous pseudometric ρ on X and any function ε ∈ C(K, (0, 1]) there exists a
simplicially factorizable map f̃ : K → X such that p4 f̃ : K →M ×X is a V-map and
f̃ is ε-homotopic to f .

Proof. Since f is simplicially factorizable, it can be written as f = fL ◦ fL for some
maps fL : K → L and fL : L → X and a polyhedron L. The pseudometric ρ induces a
continuous pseudometric d : (x, y) 7→ ρ(fL(x), fL(y)) on L.

By [62] and [14], the polyhedron L is a neighborhood retract of a locally convex space.
Hence, L is a Lefschetz ANE[∞]. Taking into account that sufficiently near maps to L
can be linked by a small homotopy and applying Lemma 24.1, we can find an open cover
V1 ≺ V of K such that for each V1-map α : K → K ′ into a paracompact space K ′ there
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is a map γ : O(α(K))→ L defined on a neighborhood of the closure of α(K) in K ′ such
that γ ◦α is ε/2-homotopic to fL with respect to the pseudometric d. Moreover, the cover
V1 can be chosen so fine that inf ε(V ) > 0 for each V ∈ V1.

Next, applying Corollary 4.2, we choose a V1-map α : K → K ′ into a polyhedron K ′,
a map β : M →M ′ into a polyhedron M ′ with dimM ′ ≤ dimM , and a perfect PL-map
p′ : K ′ → M ′ with dim(p′) ≤ dim4(p) such that p′ ◦ α = β ◦ p. The choice of the cover
V1 guarantees the existence of a map γ : O(α(K))→ L defined on a neighborhood of the
closure of α(K) in K ′ such that γ ◦α is ε/2-homotopic to fL. Replacing the triangulation
of K ′ by a suitable subdivision, we may assume that no simplex of the triangulation of
K ′ meets both the set α(K) and the complement of O(α(K)). Then the union N of all
simplexes of K ′ meeting α(K) is a subpolyhedron of K ′ containing α(K) and lying in
O(α(K)).

Now, we are going to construct a continuous function δ : N → (0, 1] with δ ◦ α ≤ ε.
Since α is a V1-map, there is an open cover V ′ of K ′ such that the cover α−1(V ′) =

{α−1(V ) : V ∈ V ′} refines V1. So, for each V ∈ V ′ the number inf ε(α−1(V )) is
strictly positive (we put inf ∅ = 1). Then, using the paracompactness of the simpli-
cial complex N , we may construct a positive continuous function δ : N → (0, 1] such
that δ(y) ≤ inf ε(α−1(y)) for all y ∈ N . Indeed, we can assume that V ′ is locally fi-
nite and consider the lower semicontinuous set-valued map ϕ : N → (0, 1] defined by
ϕ(y) =

⋃
{(0, inf ε(α−1(V ))] : y ∈ V ∈ V ′}. Then, by [60, Theorem 6.2, p. 116], ϕ ad-

mits a continuous selection δ : N → (0, 1]. Obviously, δ is the required function with
δ ◦ α ≤ ε.

According to Lemma 27.3, we can approximate the map fL ◦ γ : N → X by a map
g : N → X such that p′4 g : N →M ′×X is a V ′-map and g is δ/2-homotopic to fL ◦ γ
(with respect to ρ). Since δ ◦ α ≤ ε, the maps f̃ = g ◦ α : K → X and fL ◦ γ ◦ α are
ε/2-homotopic. On the other hand, since fL and γ ◦ α are ε/2-homotopic with respect
to d, so are f = fL ◦ fL and fL ◦ γ ◦ α. Consequently, f̃ and f are ε-homotopic.

M ′

M
Q
Qsβ

K

?
p

-fL

Q
Qsα
N

?
p′

��>
γ
���

���:

g

L -fL
X

It remains to verify that p4 f̃ : K →M ×X is a V-map. Since this map is perfect, it
suffices to check that the preimage (p4 f̃)−1(z, x) = p−1(z)∩ f̃−1(x) of any point (z, x) ∈
M×X is contained in an element of V. Indeed, since p′4g is a V ′-map, (p′4g)−1(β(z), x)

lies in some set V ′ ∈ V ′. Then, by the choice of the cover V ′, α−1(V ′) ⊂ V for some V ∈ V.
So, α−1((p′ 4 g)−1(β(z), x)) ⊂ α−1(V ′) ⊂ V and consequently,

(p4 f̃)−1(z, x) = p−1(z) ∩ f̃−1(x) ⊂
⊂ (β ◦ p)−1(β(z)) ∩ (g ◦ α)−1(x) = (p′ ◦ α)−1(β(z)) ∩ (g ◦ α)−1(x)

= α−1((p′)−1(β(z)) ∩ g−1(x)) = α−1((p′ 4 g)−1(β(z), x)) ⊂ V.
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28. Proof of Theorem 3.3

Suppose p : K →M is a perfect map with K being a submetrizable paracompact space,
Y a completely metrizable space and X ⊂ Y a subspace with the m-DDn-property, where
m = dimY and n = dim4(p). We need to prove that the set

E(p, Y ) = {f ∈ C(K,Y ) : p4 f : K →M × Y is an embedding}

is a Gδ-set in C(K,Y ) having the approximation property from Theorem 3.3.
BecauseK is submetrizable, it admits a continuous metric d. Everywhere in this proof,

when considering ε-maps defined on K, we shall always refer to the metric d.
Since p is perfect, so is p4 f : K →M × Y for any f : K → Y . Consequently, p4 f

is a closed embedding if and only if it is injective. Therefore, E(p, Y ) =
⋂∞
k=1 Ek, where

Ek = {f ∈ C(K,Y ) : p4 f is a 1/k-map}, k ≥ 1.
The following lemma implies that each Ek is open in C(K,Y ), so E(p,X) =

⋂∞
k=1 Ek

is a Gδ-set in C(K,Y ).

Lemma 28.1. For any open cover V of K the set {f ∈ C(K,Y ) : p4 f is a V-map} is
open in C(K,Y ).

Proof. Let ρ be a metric on Y generating its topology. Fix any map f : K → Y such
that p4 f : K →M ×Y is a V-map and take an open cover U of M ×Y whose preimage
(p4 f)−1(U) refines the cover V.

By the continuity of the maps p and f , for every point z ∈ K there exists an
open neighborhood Wz ⊂ K of z and a positive real number εz such that p(Wz) ×
Bρ(f(Wz), 2εz) ⊂ Uz for some Uz ∈ U . Let W be a locally finite open cover of the
paracompact space K refining {Wz : z ∈ K}. For each W ∈ W choose z(W ) ∈ K

with W ⊂ Wz(W ) and let εW = εz(W ). Then p(W ) × Bρ(f(W ), 2εW ) ⊂ Uz(W ). Let
{λW : K → [0, 1]}W∈W be a partition of unity subordinated to W, i.e.,

∑
W∈W λW ≡ 1

and λ−1
W (0, 1] ⊂W for all W ∈ W. Finally, consider the continuous function

ε : K → (0, 1], x 7→
∑
W∈W

λW (x) · εW .

We claim that for every x ∈ K there exists a neighborhood U(x) ∈ U containing
the product {p(x)} × Bρ(f(x), 2ε(x)). Indeed, use the definition of ε(x) to find W ∈ W
containing x with ε(x) ≤ εW . Then {p(x)} × Bρ(f(x), 2ε(x)) ⊂ p(W ) × Bρ(f(W ), 2εW )

⊂ Uz(W ).
Let us show that p4 g : K → M × X is a V-map for any g ∈ Bρ(f, ε). Because of

Lemma 18.6, it suffices to check that the preimage (p4g)−1(z, y) = p−1(z)∩g−1(y) of any
(z, y) ∈ M ×X lies in some V ∈ V. There is nothing to prove if this preimage is empty.
So, assume that p−1(z) ∩ g−1(y) 6= ∅. Since the last set is compact, there exists a point
x0 ∈ p−1(z) ∩ g−1(y) such that ε(x0) = max{ε(x) : x ∈ p−1(z) ∩ g−1(y)}. As we already
proved, there is U(x0) ∈ U such that {p(x0)} × Bρ(f(x0), 2ε(x0)) ⊂ U(x0). Then the
choice of U implies that (p4f)−1(U(x0)) lies in some set V0 ∈ V. We are going to establish
that (p4 g)−1(z, y) ⊂ V0, which will complete the proof. Fix any x ∈ p−1(z) ∩ g−1(y)

and observe that g(x) = g(x0). Then ρ(f(x), f(x0)) ≤ ρ(f(x), g(x)) + ρ(g(x0), f(x0)) <
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ε(x)+ε(x0) ≤ 2ε(x0). Consequently, (p(x), f(x)) ∈ {p(x0)}×Bρ(f(x0), 2ε(x0)) ⊂ U(x0).
Hence, x ∈ (p4 f)−1(U(x0)) ⊂ V0.

Therefore the set E(p, Y ) is of type Gδ in C(K,Y ). It remains to prove that for any
continuous pseudometric ρ on Y , a continuous map ε : K → (0, 1] and a simplicially
factorizable map f : K → X there is a map f∞ ∈ E(p, Y ) and an ε-homotopy h :

K × [0, 1] → Y connecting f and f∞ so that h(K × [0, 1)) ⊂ X. Since Y is completely
metrizable, replacing the pseudometric ρ by a larger complete metric, we may assume
that ρ is a complete metric on Y generating its topology.

Let f0 = f and ε0 = ε/3. We shall construct by induction a sequence (fi : K → X)i≥1

of simplicially factorizable maps, a sequence (εi : K → (0, 1])i≥1 of positive continuous
functions, and a sequence (hi : K × [0, 1]→ X)i≥1 of εi−1-homotopies satisfying

• hi+1(z, 0) = fi(z) and hi+1(z, 1) = fi+1(z) for every z ∈ K;
• p4 fi+1 : K →M ×X is a 1

i+1 -map;
• εi+1 ≤ εi/2;
• for each map g ∈ Bρ(fi+1, 3εi+1) the diagonal product p4 g is a 1

i+1 -map.

Suppose for some i we have already constructed simplicially factorizable functions
f1, . . . , fi, positive functions ε1, . . . , εi, and homotopies h1, . . . , hi satisfying the above
conditions. By Lemma 27.4, there exists a simplicially factorizable map fi+1 : K → X εi-
homotopic to fi such that p4fi+1 : K →M ×X is a 1

i+1 -map. Let hi+1 : K× [0, 1]→ X

be an εi-homotopy connecting the maps fi and fi+1. According to Lemma 28.1, the set
O(fi+1) = {g ∈ C(K,X) : p4 g is a 1

i+1 -map} is open in C(K,X). Consequently, there
is a positive function εi+1 ≤ εi/2 such that Bρ(fi+1, 3εi+1) ⊂ O(fi+1). This completes
the inductive step.

It follows from the construction that (fi)i≥1 converges uniformly to some continuous
function f∞ : K → Y . Obviously, ρ(f∞, fi) ≤

∑∞
j=i εj ≤ 2εi for every i. Hence, by

the choice of the sequences (εi) and (fi), p4 f∞ : K → M × Y is a 1/i-map for every
i ≥ 1. So, p4 f∞ is injective. Moreover, the εi−1-homotopies hi lead to an ε-homotopy
h : K × [0, 1]→ X,

h(z, t) =

{
hi
(
z, 2i(t− 1 + 1

2i−1 )
)

if t ∈ [1− 1
2i−1 , 1− 1

2i ] for some i ≥ 1,

f∞(z) if t = 1,

connecting f and f∞ and having the property h(K × [0, 1)) ⊂ X.

29. Proof of Proposition 5.2

The aim of this section is to prove Proposition 5.2. This proposition asserts that a Ty-
chonoff spaceX has them-DD{n,k}-property if and only ifX ∈ a-DD{b,c} for all a < m+1,
b < n+1 and c < k+1. This is trivial if all three numbers m,n, k are finite. The “only if”
part of this assertion is also trivial. To prove the “if” part, assume that a space X has the
a-DD{b,c}-property for all a < m+1, b < n+1 and c < k+1, and fix maps f : Im×In → X,
g : Im × Ik → X and an open cover U of X. By Lemma 18.2, there is a continuous pseu-
dometric ρ on X such that diamBρ(x, 1) < U for any x ∈ f(Im × In) ∪ g(Im × Ik).



72 T. Banakh and V. Valov

For any integers i < j + 1 we identify the i-dimensional cube Ii with the subset
Ii×{0}j−i of the j-dimensional cube Ij and denote by prji : Ij → Ii the natural projection
of Ij onto Ii.

Fix any continuous metric d in Im×In having convex balls with respect to the natural
convex structure of Im × In ⊂ Rm ×Rn and find δ > 0 such that ρ(f(x), f(y)) < 1/2 for
any x, y ∈ Im × In with d(x, y) < δ.

If a < m+ 1 and b < n+ 1, we also consider the product map

prmnab : Im × In → Ia × Ib, (x, y) 7→ (prma (x),prnb (y)),

which tends to the identity map of Im × In in C(Im × In, Im × In) as a→ m and b→ n

(recall that Ia× Ib is a subset of Im× In). Using this convergence, we find a0 < m+1 and
b < n + 1 such that dist(x, prm,na,b (x)) < δ for any x ∈ Im × In and any a ∈ [a0,m + 1).
Since prm,nab is homotopic to the identity of Im× In, the choice of δ implies that f ◦ prm,nab

is 1/2-homotopic to f (with respect to the pseudometric ρ on X) for any a ∈ [a0,m+ 1).
By analogy, we find a ∈ [a0,m+ 1) and c < k+ 1 such that g ◦prmkac is 1/2-homotopic

to g, where prmkac = prma × prkc : Im × Ik → Ia × Ic is the projection corresponding to a
and c.

Since X has the a-DD{b,c}-property, there exist maps f ′ : Ia × Ib → X and g′ :

Ia× Ic → X such that f ′ and g′ are 1/2-homotopic to f |Ia× Ib and g|Ia× Ic, respectively,
and f ′({z}× Ib)∩g′({z}× Ic) = ∅ for all z ∈ Ia. Then f̃ = f ′ ◦prmnab and g̃ = g′ ◦prmkac are
1-homotopic to f, g, respectively. It remains to prove that f̃({z} × In) ∩ g̃({z} × Ik) = ∅
for all z ∈ Im. Assuming that this is not the case, we find x ∈ In and y ∈ Ik such that
f̃(z, x) = g̃(z, y). Let z′ = prma (z), x′ = prnb (x), and y′ = prkc (y). Then

f ′(z′, x′) = f ′ ◦ prmnab (z, x) = f̃(z, x) = g̃(z, y) = g′ ◦ prmkac (z, y) = g′(z′, y′),

which contradicts the choice of the maps f ′, g′.

30. Local nature of the m-DD{n,k}-property

The aim of this section is to prove Proposition 5.4 on the local nature of the m-DD{n,k}-
property. According to Michael’s theorem on local properties [52] this will be done as
soon as we check the following three conditions:

(1) Any open subspace of a space with the m-DD{n,k}-property has this property.
(2) A space has the m-DD{n,k}-property provided it is a discrete topological sum of

spaces with the m-DD{n,k}.
(3) A paracompact submetrizable space has the m-DD{n,k}-property if it is the union of

two open subspaces with the m-DD{n,k}.

The first two conditions trivially hold. So, it remains to check the last one.
Assume that a paracompact submetrizable space X is the union X = X0 ∪ X1 of

two open subspaces X0, X1 ⊂ X with the m-DD{n,k}-property. To check the m-DD{n,k}-
property of X, fix an open cover U of X and two maps f : Im× In → X, g : Im× Ik → X.

Choose two open sets W0,W1 ⊂ X such that X = W0 ∪W1 and Wi ⊂ W i ⊂ Xi for
i ∈ {0, 1}. Using Lemma 18.1, we can find a continuous metric ρ on X such that
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• dist(X \W0, X \W1) ≥ 1;
• Bρ(W i, 1) ⊂ Xi for i ∈ {0, 1};
• each set of diameter < 1 in (X, ρ) lies in some U ∈ U .

Let Tn, Tk be triangulations of the cubes Im × In and Im × Ik, respectively, such that
diamρ f(σn) < 1/2 and diamρ g(σk) < 1/2 for all σn ∈ Tn and σk ∈ Tk.

For every i ∈ {0, 1} consider the sets

Ni =
⋃
{σn ∈ Tn : f(σn) ∩W i 6= ∅}, Ki =

⋃
{σk ∈ Tk : g(σk) ∩W i 6= ∅}.

It is clear that N0 ∪ N1 = Im × In, K0 ∪ K1 = Im × Ik, and f(Ni) ∪ g(Ki) ⊂ Xi for
i ∈ {0, 1}. Moreover, Ni and Ki, i ∈ {0, 1}, are polyhedra.

Since X0 possesses the m-DD{n,k}-property, we can apply Theorem 5.3 to find two
maps f0 : N0 → X0, g0 : K0 → X0 such that f0 is 1/4-homotopic to f |N0, g0 is 1/4-
homotopic to g|K0 and f0(z, x) 6= g0(z, y) for any (z, x) ∈ N0, (z, y) ∈ K0. Take a positive
number δ < 1/4 such that

3δ < min{dist(f0(z, x), g0(z, y)) : (z, x) ∈ N0, (z, y) ∈ K0}.

Next, using the Borsuk homotopy extension lemma 18.3, we extend the maps f0, g0 to
maps f̄0 : Im × In → X and ḡ0 : Im × Ik → X such that f̄0 is 1/4-homotopic to f and ḡ0

is 1/4-homotopic to g.
We claim that f̄0(N1) ∪ ḡ0(K1) ⊂ X1. Indeed, given any point x ∈ N1 we can find a

simplex σn ∈ Tn containing x such that f(σn) intersects W 1. Take a point z ∈ σn with
f(z) ∈ W 1. Then dist(f̄0(x), f(z)) ≤ dist(f̄0(x), f(x)) + dist(f(x), f(z)) < dist(f̄0, f) +

diam f(σn) < 1/4+1/2 < 1. Consequently, f̄0(x) lies in the 1-neighborhood of W 1. Since
W 1 ⊂ X1, f̄0(x) ∈ X1. Thus, f̄0(N1) ⊂ X1. By analogy, ḡ0(K1) ⊂ X1.

Now, applying Theorem 5.3 to the space X1 and the maps f̄0|N1 and ḡ0|K1, we find
f1 : N1 → X1, g1 : K1 → X1 such that f1 is δ-homotopic to f̄0|N1, g1 is δ-homotopic to
ḡ0|K1 and f1(z, x) 6= g1(z, y) for any (z, x) ∈ N1 and (z, y) ∈ K1. Using again the Borsuk
homotopy extension lemma, we extend f1, g1 to f ′ : Im × In → X and g′ : Im × Ik → X

such that f ′ is δ-homotopic to f̄0 and g′ is δ-homotopic to ḡ0.
Then f ′ is (δ+ 1/4)-homotopic to f and g′ is (δ+ 1/4)-homotopic to g. The choice of

the metric for X ensures that the map f ′ is U-homotopic to f while g′ is U-homotopic
to g. It remains to check that f ′(z, x) 6= g′(z, y) for all (x, y, z) ∈ In × Ik × Im. To this
end, we consider all possible cases for (z, x) and (z, y).

1. If (z, x) ∈ N1, (z, y) ∈ K1, then f ′(z, x) = f1(z, x) 6= g1(z, y) = g′(z, y) according
to the construction of the maps f1, g1.

2. If (z, x) ∈ N0, (z, y) ∈ K0, then

dist(f ′(z, x), g′(z, y)) ≥ dist(f̄0(z, x), ḡ0(z, y))− dist(f̄0, f
′)− dist(ḡ0, g

′) ≥ 3δ − 2δ > 0.

3. If (z, x) /∈ N1 and (z, y) /∈ K0, then f(z, x) ∈ X \W1 and g(z, y) ∈ X \W0. Thus,

dist(f ′(z, x), g′(z, x)) ≥ dist(f(z, x), g(z, y))− dist(f ′, f)− dist(g′, g)

≥ dist(X \W1, X \W0)− dist(f ′, f)− dist(g′, g)

≥ 1− 2(δ + 1/4) > 0.

4. The case (z, x) /∈ N0 and (z, y) /∈ K1 is analogous to the third one.
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31. Proof of Theorem 5.7

The “if” part follows from the definition of the M -MAPn-property. To prove the “only
if” part, take any finite or infinite numbers m and k ≤ n, and assume that X is a Polish
ANE[m + n + 1]-space possessing the m-DD{n,k}-property. Given a separable simplicial
complex M with dimM ≤ m we should construct disjoint σ-compact subsets E,F ⊂
M ×X such that E has M -MAPn and F has M -MAPk.

Fix any complete metric ρ generating the topology of X and consider the open cover

W = {Bρ(x, t/18)× (2t/3, 4t/3) : (x, t) ∈ X × (0, 1]}

of the product X × (0, 1]. Since X × (0, 1] is a metrizable (Lefschetz) ANE[m+ n]-space,
there is a coverW0 of X×(0, 1] such that each partialW0-realization f : L(0) → X×(0, 1]

of an at most (m + n)-dimensional simplicial complex L extends to a full W-realization
f̄ : L→ X × (0, 1] of L. Let W1 be an open cover of X × (0, 1] with St(W1) ≺ W0.

Let Q denote the set of rational numbers on (0, 1] and let QM = {χ ∈M : χ(
⋃
M) ⊂

{0}∪Q} be the canonical countable dense subset in the complex M (recall that we iden-
tify the abstract complexM with its geometrical realization |M |). Fix also any countable
dense set QX in X. Let J = (0, 1] and denote by prM ,prX ,prJ,prX×J the natural projec-
tions of M ×X × (0, 1] onto M , X, (0, 1], and X × (0, 1], respectively.

Consider the abstract simplicial complex L of dimension m + n consisting of all at
most (m+n+1)-element finite subsets σ ⊂ QM ×QX ×Q such that prX×J(σ) ≺ W0 and
prM (σ) ⊂ τ for some simplex τ ∈M . The geometric realization of the abstract simplicial
complex L will be denoted by the same letter L.

Define a function Ψ(0) : L(0) →M ×X× (0, 1] assigning to each singleton {(y, x, t)} ∈
L(0) the point (y, x, t) ∈ QM × QX × Q. This map can be represented as Ψ(0) =

(Ψ
(0)
M ,Ψ

(0)
X ,Ψ

(0)
J ), where Ψ

(0)
M : L → M , Ψ

(0)
X : L → X and Ψ

(0)
J : L → (0, 1] are the

coordinate maps of Ψ(0). Extend the maps Ψ
(0)
M and Ψ

(0)
J to PL-maps ΨM : L→M and

ΨJ : L → (0, 1] by linearity (which means that the maps ΨM and ΨJ are affine on each
geometric simplex of L).

Next, we extend the partial realization Ψ
(0)
X to a full realization ΨX : L → X of L

such that

(1) diamρ ΨX(σ) < 1
6 min ΨJ(σ) for every simplex σ of L.

This can be done as follows: According to the definition of the complex L, the function
prX×J ◦ Ψ(0) : L(0) → X × (0, 1] is a partial W0-realization of L. So, it can be extended
to a full W-realization Ψ : L → X × (0, 1] of L. Let ΨX : L → X and ΨJ : L → (0, 1]

be the coordinate functions of Ψ. We claim that the map ΨX = ΨX satisfies (1). Indeed,
for every geometric simplex σ of L, we can find W ∈ W containing Ψ(σ). The element
W is of the form W = Bρ(x, t/18) × (2t/3, 4t/3) for some (x, t) ∈ X × (0, 1]. Then
ΨX(σ) = ΨX(σ) ⊂ Bρ(x, t/18) and hence

diamρ ΨX(σ) < 2
18 t <

1
6 min ΨJ(σ

(0)) = 1
6 min ΨJ(σ

(0)) = 1
6 min ΨJ(σ).
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Next, we consider the subcomplexes N and K of L defined by

N = {σ ∈ L : dimσ − dim(ΨM (σ)) ≤ n}, K = {σ ∈ L : dimσ − dim(ΨM (σ)) ≤ k}.

Let pN : N → M and pK : K → M be the restrictions of the PL-map ΨM the subcom-
plexes N and K. It is clear that dim(pN ) ≤ n and dim(pK) ≤ k.

For any two simplexes σ ∈ N and τ ∈ K consider the open subset

Dσ,τ = {(f, g) ∈ C(N,X)× C(K,X) : (pN 4 f)(σ) ∩ (pK 4 g)(τ) = ∅}

of C(N,X)×C(K,X). By Theorem 5.3, this set is dense in C(N,X)×C(K,X). The space
C(N,X)×C(K,X), being homeomorphic to C(N tK,X), is a Baire space. Here, N tK
is the disjoint topological sum of N and K. Since the complexes N,K are countable, the
intersection D =

⋂
σ∈N,τ∈K Dσ,τ is dense in C(N,X)×C(K,X). Consequently, there are

functions ψN : N → X and ψK : K → X such that

(2) (ψN , ψK) ∈ D,
(3) ρ(ψN (x),ΨX(x)) < 1

6ΨJ(x) for all x ∈ N,
(4) ρ(ψK(x),ΨX(x)) < 1

6ΨJ(x) for all x ∈ K.

Finally, let E = (pN 4 ψN )(N) and F = (pK 4 ψK)(K). Note that E,F are disjoint
σ-compact subsets of M × X. It remains to check that E has the M -MAPn-property
in M × X and F has M -MAPk-property in M × X. We shall only prove that E has
M -MAPn; the M -MAPk-property of F can be established similarly.

To prove the M -MAPn-property of the set E, take any at most n-dimensional map
p : A → M of a finite-dimensional metrizable compactum A, a closed subset B ⊂ A,
a map f : A → X, and an open cover U of X. We need to find a map ḡ : A → X,
U-homotopic to f , such that ḡ|B = f |B and (p 4 ḡ)(A \ B) ⊂ E. The image p(A),
being a compact subset of M , lies in some compact subcomplex M ′ of M . Observe
that dimA ≤ dim(p) + dim(M ′) ≤ n + m. Since X is an ANE[m + n + 1]-space, there
exists ε ≤ 1 such that a map f ′ : A → X is U-homotopic to f provided f ′ is ε-near
to f .

Claim. There is a map ξ : A → [0, ε] such that ξ−1(0) = B and the diagonal map
p4 ξ : A→M × [0, ε] restricted to A\B is (n′−1)-dimensional, where n′ = dim(p) ≤ n.

Indeed, take any map ξ̃ : A → [0, ε] with ξ̃−1(0) = B and put ξ̃′ = ξ̃|(A \ B).
Since the restriction p′ = p|(A \ B) is a σ-perfect n′-dimensional map, we may apply
Lemma 19.3 to conclude that the function space C(A \B, [0, ε]) contains a dense subset
of maps ξ : A \B → [0, ε] such that p′4 ξ is (n′ − 1)-dimensional. Consequently, there is
a map ξ : A \ B → [0, ε] such that p′ 4 ξ : A \ B → M × I is (n′ − 1)-dimensional and
|ξ(a) − ξ̃′(a)| < 1

2 ξ̃
′(a) for all a ∈ A \ B. Then ξ(A \ B) ⊂ (0, ε] and ξ can be extended

to a continuous map from A to [0, ε] (which is denoted again by ξ) with ξ(B) = {0}.
Obviously, ξ−1((0, ε]) = A \B. Hence, ξ|(A \B) is a perfect map.

Being a metrizable ANE[m+n]-space, X is a Lefschetz ANE[m+n]-space (see Propo-
sition 3.4). So, by Lemma 24.1, there exists an open cover V of A \B with the following
property: for any V-map α : A \B → P into a paracompact space P with dimP ≤ m+n
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there is a map γ : O(α(A \B))→ X defined on a neighborhood of the closure of α(A\B)

in P such that ρ(γ ◦ α, f |A \B) < ξ/6.
Because ξ|(A\B) is a perfect map, so is p4ξ|(A\B) : A\B →M ′× (0, 1]. Moreover,

(p4 ξ)|(A \B) is an (n′ − 1)-dimensional map. Consequently, we can apply Lemma 25.3
(for the map (p 4 ξ)|(A \ B) and the identity map on M ′ × (0, 1]) to find a V-map
α : A \ B → S to a simplicial complex S and a perfect (n′ − 1)-dimensional rational
PL-map p̃ : S →M ′ × (0, 1] such that p̃ ◦ α = p4 ξ. Then

dimS ≤ dim(M ′ × (0, 1]) + dim(p̃) ≤ m+ 1 + (n′ − 1) ≤ m+ n.

Represent p̃ as p̃ = q 4 δ for two rational PL-maps q : S → M and δ : K → (0, 1].
The choice of V guarantees that there is a map γ : O(α(A \B)) → X defined on a
neighborhood of the closure of α(A \B) in S such that

(5) ρ(γ ◦ α, f |A \B) < ξ/6.

Replacing S by a polyhedral neighborhood of α(A\B) with respect to a suitable rational
subdivision of S, we can assume that S = O(α(A \B)). Thus, γ is defined on the whole
space S. Moreover, taking a finer rational subdivision of S, we may also assume that for
any simplex σ ∈ S we have

(6) (γ 4 δ)(σ) ≺ W1.

Since W1 ≺ W, the condition (6) implies that (γ 4 δ)(σ) ⊂ Bρ(x, t/18) × (2t/3, 4t/3).
Hence,

(7) diamρ γ(σ) < 2t/18 < 1
6 min δ(σ) and max δ(σ) < 2 min δ(σ).

Consider the map β(0) : S(0) → L(0) assigning to each vertex v ∈ S(0) the triple
(q(v), xv, δ(v)) ∈ QM ×QX ×Q (recall that δ is a rational PL-map, so δ(v) ∈ Q), where
a point xv ∈ QX is chosen so that

(8) {(xv, δ(v)), (γ(v), δ(v))} ≺ W1.

Taking into account that W1 ≺ W and repeating the preceding argument we can check
that

(9) ρ(xv, γ(v)) < δ(v)/6.

We claim that β(0) extends to a simplicial map β : S → L. To prove this claim, it
suffices to check that β(0)(σ(0)) is a simplex of L for any σ ∈ S. Since pM (β(0)(σ(0))) =

q(σ(0)) lies in some simplex of M , we need only show that prX×J
(
β(0)(σ(0))

)
lies in some

element of the coverW0. This follows from (6), (8) and St(W1) ≺ W0. Thus, β(0) extends
to a simplicial map β : S → L. Since both q4 δ and (ΨM 4ΨJ) ◦ β are PL-maps whose
restrictions on S(0) coincide, they are identical. Hence,

(10) ΨJ ◦ β(b) = δ(b) and ΨM ◦ β(b) = q(b) for all b ∈ S.

Recall that q 4 δ is (n′ − 1)-dimensional, so q : S → M is n′-dimensional. This,
according to the definition of the complex N , implies that β(S) ⊂ N . Hence, we obtain
the following diagram which is commutative except for the arrows going to X:
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M × (0, 1] L

6

ΨX

�
ΨM 4ΨJ

N

Z
ZZ~









�

ψN
S

Z
ZZ~

β








�

q4 δ

��
��

��1γ
A \B

?

p4 ξ

-
f

Z
Z~α

X

Consider the map g = ψN ◦ β ◦ α : A \ B → X. It is easily seen that (10) and the
equality p|(A \ B) = q ◦ α imply (p4 g)(A \ B) ⊂ (pN 4 ψN )(N) = E. It remains to
show that ρ(g(a), f(a)) ≤ ξ(a) for each a ∈ A \ B. Indeed, then we could extend g to a
continuous map ḡ : A→ X letting ḡ|B = f |B. Moreover, since ξ(a) ≤ ε for all a ∈ A \B,
the map ḡ would be U-homotopic to f by the choice of ε. So, the proof will be complete.

To prove that ρ(f(a), g(a)) ≤ ξ(a) for a given a ∈ A \ B, find a simplex σ ∈ S with
b = α(a) ∈ σ and fix any vertex v of σ. Observe that ΨJ ◦ β(b) = ξ(a). Taking into
account (5), (1), (3), (7), (10), we obtain

ρ(f(a), g(a)) = ρ(f(a), ψN ◦ β(b)

≤ ρ(f(a), γ ◦ α(a)) + ρ(γ(b), γ(v)) + ρ(γ(v),ΨX ◦ β(v))

+ ρ(ΨX ◦ β(v),ΨX ◦ β(b)) + ρ(ΨX ◦ β(b), ψN ◦ β(b))

≤ 1
6ξ(a) + diam γ(σ) + ρ(γ(v), xv) + 1

6ΨJ ◦ β(b) + 1
6ΨJ ◦ β(b)

≤ 1
6ξ(a) + 1

6 min δ(σ) + 1
6δ(v) + 2

6ξ(a) ≤
≤ 3

6ξ(a) + 1
6 min δ(σ) + 1

6 max δ(σ)

≤ 1
2ξ(a) + 1

6 min δ(σ) + 2
6 min δ(σ) ≤ 1

2ξ(a) + 3
6δ(b) = ξ(a).

32. Proof of the multiplication formulas

In this section we shall prove the multiplication formulas from Theorem 8.1. Let X0, X1

be two metrizable spaces and ρ0, ρ1 metrics generating their topologies. The metric
ρ((x0, x1), (x′0, x

′
1)) = max{ρ0(x0, x1), ρ1(x′0, x

′
1)} on X0 ×X1 will be considered.

The next lemma provides the proof of the first multiplication formula.

Lemma 32.1. If X0 has the m-DD{n,k0}-property and X1 has the m-DD{n,k1}-property,
then X0 ×X1 has the m-DD{n,k}-property for k = k0 + k1 + 1.

Proof. Given any ε > 0 and maps f = (f0, f1) : Im × In → X0 × X1, g = (g0, g1) :

Im × Ik → X0 × X1, we need to find f ′ = (f ′0, f
′
1) : Im × In → X0 × X1 and g′ =

(g′0, g
′
1) : Im× Ik → X0×X1 such that f ′ is ε-homotopic to f , g′ is ε-homotopic to g and

f ′({z} × In) ∩ g′({z} × Ik) = ∅ for all z ∈ Im.
Take a triangulation T of the cube Ik so fine that, for any simplex σ ∈ T and any

points z ∈ Im, the image g({z} × σ) is of diameter < ε/3 (with respect to the metric ρ).
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Let K0 be the k0-dimensional skeleton of the triangulation T and K1 be the dual to K0

skeleton in the barycentric subdivision of T . Obviously, K1 is k1-dimensional.
Since each Xi, i ∈ {0, 1}, has the m-DD{n,ki}-property, by Theorem 5.3 combined

with the Borsuk homotopy extension lemma, there exist two maps f ′i : Im × In → Xi

and g′′i : Im × Ik → Xi such that f ′i is ε-homotopic to fi, g′′i is ε/6-homotopic to gi and
f ′i({z} × In)× g′′i ({z} ×Ki) = ∅ for all z ∈ Im.

Since Ik is a subset of the join K0 ∗ K1, each point x ∈ Ik contained in a maximal
(closed) simplex σ ∈ T can be written as x = (1 − λ(x))x0 + λ(x)x1 for some points
xi ∈ Ki ∩ σ, i ∈ {0, 1}, and a unique number λ(x) ∈ [0, 1] called the join-parameter of x.

The numbers λ0(x) = λ(x), λ1(x) = 1− λ(x) will be called the join-coordinates of x.
Note that x = λ0(x)x1 + λ1(x)x0 with xi ∈ Ki for i ∈ {0, 1}. Moreover, a point x ∈ Ik
belongs to Ki iff λ0(x) = i for i ∈ {0, 1}.

Consider the piecewise-linear map ` : [0, 1] → [0, 1] determined by the conditions
`(0) = 0 = `(1/2) and `(1) = 1. For every i ∈ {0, 1} define the piecewise-linear map
hi : Ik → Ik, assigning to a point x = λ1x0 + λ0x1 with join-coordinates (λ0, λ1) the
point hi(x) = µ1x0 + µ0x1 with join-coordinates µi = `(λi) and µ1−i = 1− µi.

The crucial property of the map hi is that for any point x with λi(x) ≤ 1/2 its image
hi(x) belongs toKi. Moreover, the map hi is S-homotopic to the identity map with respect
to the cover S of Ik consisting of all maximal simplexes of the triangulation T . Observe
that, for each maximal simplex σ ∈ T , we have diam g′′i (σ) ≤ 2 dist(g′′i , gi)+diam gi(σ) <

2ε/6 + ε/3 = 2ε/3.
Finally, for every i ∈ {0, 1} and (z, x) ∈ Im × Ik, let g′i(z, x) = g′′i (z, hi(x)). Then

g′i is 2ε/3-homotopic to g′′i because hi is S-homotopic to the identity map on Ik and
diam g′′i (σ) < 2ε/3, σ ∈ S. Since g′′i is ε/6-homotopic to gi, the map g′i is ε-homotopic
to gi. So, the diagonal map g′ = (g′0, g

′
1) : Im × Ik → X0 × X1 is ε-homotopic to g.

Moreover, by the choice of f ′0, f ′1, the diagonal map f ′ = (f ′0, f
′
1) : Im × In → X0 ×X1 is

also ε-homotopic to f .
It remains to show that, for any z ∈ Im, the sets g′({z} × Ik) and f ′({z} × In) do

not intersect. Take any point x ∈ Ik and consider its join-parameter λ(x). If λ(x) ≤ 1/2,
then h0(x) ∈ K0 which yields g′0(z, x) = g′′0 (z, h0(x)) /∈ f ′0({y} × In). If λ(x) ≥ 1/2, then
λ1(x) = 1−λ(x) ≤ 1/2. Hence, h1(x) ⊂ K1 and g′1(z, x) = g′′1 (z, h1(x)) /∈ f ′1({y}× In).

We turn now to the second multiplication formula.

Lemma 32.2. Let m, k0, k1, n0, n1 be non-negative integers with k = k0 + k1 + 1 and
n = n0 + n1 + 1. Assume that X0 has the m-DD{n0,k0}-property and X1 has both the
m-DD{n,k1}- and m-DD{n1,k}-properties. Then X0 ×X1 has the m-DD{n,k}-property.

Proof. Given any ε > 0 and two maps f = (f0, f1) : Im × In → X0 × X1 and g =

(g0, g1) : Im × Ik → X0 × X1, we have to find f ′ = (f ′0, f
′
1) : Im × In → X0 × X1 and

g′ = (g′0, g
′
1) : Im × Ik → X0 ×X1 such that f ′ is ε-homotopic to f , g′ is ε-homotopic to

g and f ′({z} × In) ∩ g′({z} × Ik) = ∅ for all z ∈ Im.
Take triangulations Tn, Tk of the cubes In, Ik so fine that, for any simplexes σn ∈ Tn,

σk ∈ Tk and for any point z ∈ Im, the images f({z}×σn) and g({z}×σk) have diameter
< ε/3 (with respect to the metric ρ on X0 ×X1). Let K0 be the k0-dimensional skeleton
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of the triangulation Tk and K1 be the skeleton in the barycentric subdivision of Tk, dual
to K0. Also, let N0 be the n0-dimensional skeleton of the triangulation Tn and N1 its
dual skeleton in the barycentric subdivision of Tn. Clearly, K1 is k1-dimensional and N1

is n1-dimensional.
Since X0 has the m-DD{n0,k0}-property, by Theorem 5.3 and the Borsuk homotopy

extension lemma 18.3, there exist f ′′0 : Im× In → X0 and g′′0 : Im× Ik → X0 such that f ′′0
is ε/6-homotopic to f0, g′′0 is ε/6-homotopic to g0 and f ′′0 ({z} ×N0) ∩ g′′0 ({z} ×K0) = ∅
for all z ∈ Im.

Similarly, since X1 has the m-DD{n,k1}-property, we can find f ′′′1 : Im× In → X1 and
g′′′1 : Im × Ik → X1 such that f ′′′1 is ε/12-homotopic to f1, g′′′1 is ε/12-homotopic to g1

and
ε1 = min

z∈Im
dist(f ′′′1 ({z} × In), g′′′1 ({z} ×K1)),

is strictly positive. Let ε2 = min{ε1/3, ε/12}. Using again Theorem 5.3, Lemma 18.3 and
the m-DD{n1,k}-property of X1, we choose f ′′1 : Im × In → X1 and g′′1 : Im × Ik → X1

such that f ′′1 is ε2-homotopic to f ′′′1 , g′′1 is ε2-homotopic to g′′′1 and f ′′1 ({z} × N1) ∩
g′′1 ({z} × Ik) = ∅ for any z ∈ Im. Then f ′′1 , g′′1 are ε/6-homotopic to f1, g1, respectively,
and

min
z∈Im

dist(f ′′1 ({z} × In), g′′1 ({z} ×K1)) ≥ ε1 − 2ε2 ≥ 1
3ε1 > 0.

Using the join structure of In ⊂ N0 ∗N1, we represent each point x ∈ In contained in
a maximal simplex σn ∈ Tn in the form x = (1− ν(x))x0 + ν(x)x1, where xi ∈ Ni ∩ σn,
i = 0, 1, and ν(x) ∈ [0, 1] is the join-parameter of x. Let ν0(x) = ν(x) and ν1(x) = 1−ν(x).
Observe that a point x ∈ In belongs to the subcomplex Ni, i ∈ {0, 1} iff νi(x) = 0.

Similarly, since Ik ⊂ K0 ∗ K1, we represent each point y ∈ Ik which is contained
in a maximal simplex σk ∈ Tk in the form y = (1 − κ(y))y0 + κ(y)y1 for some points
yi ∈ Ki ∩ σk, i = 0, 1, and some number κ(y) ∈ [0, 1], the join-parameter of y. Let
κ0(y) = κ(y) and κ1(y) = 1− κ(y). Then a point y ∈ Ik belongs to the subcomplex Ki,
i ∈ {0, 1}, iff κi(y) = 0.

Let ` : [0, 1]→ [0, 1] be the piecewise-linear map determined by the conditions `(0) =

0 = `(1/2) and `(1) = 1. For every i ∈ {0, 1} consider the piecewise-linear map hni :

In → In assigning to a point x = ν1x0 + ν0x1 with join-coordinates (ν0, ν1) the point
hni (x) = ν′1x0 + ν′0x1 with join-coordinates ν′i = `(νi) and ν′1−i = 1− ν′i.

The crucial property of the map hni is that hni (x) belongs to Ki for any x ∈ In with
νi(x) ≤ 1/2. Moreover, hni is S-homotopic to the identity map with respect to the cover
S of In consisting of all maximal simplexes of the triangulation Tn. Observe also that,
for each maximal simplex σ ∈ Tn, we have diam f ′′i (σ) ≤ 2 dist(f ′′i , fi) + diam fi(σ) <

2ε/6 + ε/3 = 2ε/3.
Finally, for every i ∈ {0, 1}, let f ′i = f ′′i ◦ (id× hni ) : Im × In → Xi, i.e., f ′i : (z, x) 7→

f ′′i (z, hni (x)). Note that f ′i is 2ε/3-homotopic to f ′′i . Since f ′′i is ε/6-homotopic to fi, the
map f ′i is ε-homotopic to fi. Then the diagonal map f ′ = (f ′0, f

′
1) : Im × In → X0 ×X1

is ε-homotopic to f .
As above, for every i ∈ {0, 1}, we consider the piecewise-linear map hki : Ik → Ik,

assigning to a point y = κ1y0 + κ0y1 with join-coordinates (κ0, κ1) the point hki (y) =
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κ′1y0 + κ′0y1 with join-coordinates κ′i = `(κi) and κ′1−i = 1 − `(κi). Put g′i = g′′i ◦
(id × hki ) : Im × Ik → Xi, g′i : (z, y) 7→ g′′i (z, hki (y)), and check that the diagonal map
g′ = (g′0, g

′
1) : Im × Ik → X0 ×X1 is ε-homotopic to g.

It remains to show that, for any z ∈ Im, the sets f ′({z}× In) and g′({z}× Ik) do not
intersect. Take any points x ∈ In, y ∈ Ik and consider their join-parameters ν(x) = ν0(x)

and κ(y) = κ0(y).
If ν0(x) ≤ 1/2 and κ0(y) ≤ 1/2, then hn0 (x) ∈ N0 and hk0(y) ∈ K0. The definition of

f ′i and g′i yields f ′0(z, x) = f ′′0 (z, hn0 (x)) 6= g′′0 (z, hk0(y)) = g′0(z, y) because f ′′0 ({z}×N0)∩
g′′0 ({z} ×K0) = ∅. Hence, f ′(z, x) 6= f ′(z, y).

If ν0(x) > 1/2, then ν1(x) < 1/2 and hn1 (x) ∈ N1. So, f ′1(z, x) = f ′′1 (z, hn1 (x)) 6=
g′′1 (z, hk1(y)) = g′1(z, y) because f ′′1 ({z} ×N1) ∩ g′′1 ({z} × Ik) = ∅. Similarly, we can show
that f ′1(z, x) 6= g′(z, y) provided κ0(y) > 1/2.

The next lemma yields the final item of Theorem 8.1.

Lemma 32.3. If a submetrizable space X has the m-DD{n,k}-property, then the product
Id ×X has the (m− d)-DD{d+n,d+k}-property for any d < m+ 1.

Proof. By Proposition 5.2, it suffices to consider the case of finite m,n, k. To this end, we
fix an open cover U of Id×X and two maps f : Im+n → Id×X, g : Im+k → Id×X. Here,
we identify the cubes Im+n and Im+k with the products Im−d × Id+n and Im−d × Id+k.

Write the maps f and g in the form f = f1 4 f2, g = g1 4 g2 for suitable maps
f1 : Im+n → Id, g1 : Im+k → Id, f2 : Im+n → X, g2 : Im+k → X.

By a standard compactness argument, find an open cover U1 of Id and an open
cover U2 of X such that diam(U1 × U2) < U for any U1 ∈ U1, U2 ∈ U2. According
to Lemma 18.2, there is a continuous metric ρ on X (recall that X is submetrizable) such
that diamBρ(x, 1) < U2 for each x ∈ f2(Im+n) ∪ g2(Im+k).

Fix any continuous metric of Im+n whose balls are convex and find ε > 0 such that the
images f2(B(x, ε)) and g2(B(x, ε)) of any ε-ball have ρ-diameter < 1/2. By Lemma 24.1,
there is an open cover V of Im+n such that for any V-map α : Im+n → K into a para-
compact space K there is a map β : α(Im+n)→ Im+n such that the composition β ◦ α is
ε-homotopic to the identity map of Im+n.

Consider the projection prm+n
m−d : Im+n → Im−d. Since dim(prm+n

m−d ) = d + n, we can
apply Lemma 19.3 to find a map f ′1 : Im+n → Id which is U1-homotopic to f1 and such
that the diagonal product prm+n

m−d 4 f ′1 : Im+n → Im−d × Id = Im is n-dimensional.
Fix a triangulation of Im. By Theorem 4.1 (applied for the n-dimensional map prm+n

m−d4
f ′1 : Im+n → Im), there is a V-map αf : Im+n → Kf into a compact polyhedron and
an n-dimensional PL-map pf : Kf → Im such that pf ◦ αf = prm+n

m−d 4 f ′1. The choice
of the cover V guarantees the existence of a map β : αf (Im+n) → Im+n such that the
composition β ◦ αf is ε-homotopic to the identity. Since Im+n is an AR, we may extend
the map β to a map βf : Kf → Im+n. Finally, consider the map γf = f2 ◦ βf : Kf → X.
Since βf ◦αf is ε-homotopic to the identity on Im+n, the choice of ε implies that γf ◦αf
is 1/2-homotopic to f2. In this way, we have constructed:

• a map f ′1 : Im+n → Id which is U1-homotopic to f1;
• a map αf : Im+n → Kf into a compact polyhedron Kf ;
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• an n-dimensional PL-map pf : Kf → Im such that pf ◦ αf = prm+n
m−d 4 f ′1;

• a map γf : Kf → X such that γf ◦ αf is 1/2-homotopic to f2 with respect to the
pseudometric ρ.

Similarly, considering the projection prm+k
m−d : Im+k → Im−d and the maps g1, g2

instead of prm+n
m−d , f1 and f2, respectively, we can construct:

• a map g′1 : Im+k → Id which is U1-homotopic to g1;
• a map αg : Im+k → Kg into a compact polyhedron Kg;
• a k-dimensional PL-map pg : Kg → Im such that pg ◦ αg = prm+k

m−d 4 g′1;
• a map γg : Kg → X such that γg ◦ αg is 1/2-homotopic to g2 with respect to ρ.

Replacing the triangulations of the polyhedra Kf , Kg and Im with suitable subdi-
visions, we may assume that the maps pf and pg are simplicial. Hence, we can apply
Theorem 5.3 (recall that X has the m-DD{n,k}-property) to find two maps γ′f : Kf → X,
γ′g : Kg → X such that γ′f is 1/2-homotopic to γf , γ′g is 1/2-homotopic to γg and
γ′f (p−1

f (z)) ∩ γ′g(p−1
g (z)) = ∅ for all z ∈ Im. Consider the compositions f ′2 = γ′f ◦ αf

and g′2 = γ′g ◦ αg. Since γ′f is 1/2-homotopic to γf and γf ◦ αf is 1/2-homotopic to f2,
f ′2 is 1-homotopic to f2. Similarly, g′2 is 1-homotopic to g2. Then, by the choice of the
pseudometric ρ, f ′2 is U2-homotopic to f2 and g′2 is U2-homotopic to g2.

Finally, consider the maps f ′ = f ′1 4 f ′2 : Im+n → Id × X and g′ = g′1 4 g′2 :

Im+k → Id × X. Observe that f ′ is U-homotopic to f and g′ is U-homotopic to g.
To prove that Id × X has the (m− d)-DD{d+n,d+k}-property, we need to show that
f ′({z} × Id+n) ∩ g′({z} × Id+k) = ∅ for any z ∈ Im−d.

Assuming that this is not the case, we find two points x ∈ Id+n, y ∈ Id+k with
f ′(z, x) = g′(z, y) for some z ∈ Im−d. So, f ′1(z, x) = g′1(z, y) and f ′2(z, x) = g′2(z, y). Let
x′ = αf (z, x) ∈ Kf and y′ = αg(z, y) ∈ Kg. Since

(prm+n
m−d 4 f ′1)(z, x) = (z, f ′1(z, x)) = (z, g′1(z, y)) = (prm+k

m−d 4 g′1)(z, y)

we have
pf (x′) = (pf ◦ αf )(x, z) = (prm+n

m−d 4 f ′1)(z, x)

= (prm+k
m−d 4 g′1)(z, y) = (pg ◦ αg)(y, z) = pg(y

′).

The last equality and the choice of the maps γ′f , γ
′
g imply that γ′f (x′) 6= γ′g(y

′). Therefore,

f ′2(z, x) = (γ′f ◦ αf )(z, x) = γ′f (x′) 6= γ′g(y
′) = (γ′g ◦ αg)(z, x) = g′2(z, y),

which contradicts f ′2(z, x) = g′2(z, y).

33. Proof of base enlargement formulas

This section is devoted to the proof of Theorem 8.3. The first item of this theorem follows
from the next lemma.

Lemma 33.1. Let n, k,m0,m1 be non-negative integer numbers and m = m0 + m1 + 1.
A metrizable space X has the property m-DD{n,k} provided X ∈ 0-DD{n+m0,k+m1}, X ∈
m0-DD{n,k+1+m1} and X ∈ m1-DD{n+1+m0,k}.
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Proof. Let ρ be a metric generating the topology of X. Given any ε > 0 and maps
f : Im × In → X, g : Im × Ik → X we are going to construct two other maps f ′ :

Im × In → X, g′ : Im × Ik → X such that f ′ is ε-homotopic to f , g′ is ε-homotopic to
g and f ′({z} × In) ∩ g′({z} × Ik) = ∅ for all z ∈ Im. These maps will be constructed in
four steps using the join structure of Im.

Select a triangulation T of the cube Im so fine that, for any simplex σ ∈ T and points
x ∈ In, y ∈ Ik, the sets f(σ × {x}) and g(σ × {y}) have diameter < ε/3. Let M0 be the
m0-dimensional skeleton of the triangulation T and M1 be the dual (m1-dimensional)
skeleton of the barycentric subdivision of T . Since Im is a subset of the join M0 ∗M1,
each point z ∈ Im lying in a maximal simplex σ ∈ T can be represented in the form
z = (1 − µ(z))z0 + µ(z)z1 for some points zi ∈ Mi ∩ σ, i ∈ {0, 1}, where µ(z) ∈ [0, 1] is
the join-parameter of z. If z /∈M1, then the point z0 is uniquely determined and will be
denoted by pr0(z); if z /∈M0, then the point z1 is unique and will be denoted by pr1(z).
Thus, each point z ∈ Im \ (M0∪M1) can be written as z = (1−µ(z))pr0(z) +µ(z)pr1(z).
For a point z ∈ Im, let µ0(z) = µ(z) and µ1(z) = 1− µ0(z).

Since X has the 0-DD{m0+n,m1+k}-property, by Theorem 5.3 and Lemma 18.3, there
exist maps f1 : Im × In → X and g1 : Im × Ik → X such that

f1 is ε/18-homotopic to f , g1 is ε/18-homotopic to g (33.1)

and f1(M0 × In) ∩ g1(M1 × Ik) = ∅.
The continuity of f1, g1 implies the existence of closed neighborhoods O(M0) and

O(M1) of the subcomplexes M0 and M1 in Im, respectively, such that

ε1 = dist(f1(O(M0)× In), g1(O(M1)× Ik)) > 0.

Put ε2 = min{ε1/5, ε/18} and find a positive δ < 1/2 such that each point z ∈ Im with
join-parameter µ(z) < δ (resp., µ(z) > 1− δ) belongs to the neighborhood O(M0) (resp.,
O(M1)).

Consider the cone Cone(M1) = M1×[0, 1−δ]/(M1×{0}) overM1 and observe that the
subspace M≤1−δ = {z ∈ Im : µ(z) ≤ 1− δ} ⊂ Im is homeomorphic to the product M0 ×
Cone(M1) via the homeomorphism z 7→ (z0, (z1, µ(z))∼), where (z1, µ(z))∼ ∈ Cone(M1)

stands for the equivalence class of the pair (z1, µ(z)). This homeomorphism maps the set
M≤1−δ ∩ pr−1

0 (z0) onto the fiber {z0} × Cone(M1) for each z0 ∈M0.
Now, since X has the m0-DD{n,k+1+m1}-property, by Theorem 5.3, there exist two

maps f̃2 : M0 × In → X and g̃2 : M≤1−δ × Ik → X such that

• f̃2 is ε2-homotopic to f1|M0 × In;
• g̃2 is ε2-homotopic to g1|(M≤1−δ × Ik);
• f̃2({z} × In) ∩ g̃2

(
(M≤1−δ ∩ pr−1

0 (z))× Ik
)

= ∅ for each z ∈M0.

By the Borsuk homotopy extension lemma, the maps f̃2, g̃2 can be extended to maps
f2 : Im × In → X and g2 : Im × Ik → X such that

f2 is ε2-homotopic to f1 and g2 is ε2-homotopic to g1. (33.2)
Then

ε3 = min
z∈M0

dist
(
f2({z} × In), g2((M≤1−δ ∩ pr−1

0 (z))× Ik)
)
> 0

and let ε4 = min{ε3/3, ε2}.
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Consider the subspace M≥δ = {z ∈ Im : µ(z) ≥ δ} and note that it is naturally hom-
eomorphic to the product M1×Cone(M0). Since X has the m1-DD{k,n+1+m0}-property,
we can repeat the arguments from the construction of the maps f2, g2 to find two maps
f3 : Im × In → X, g3 : Im × Ik → X such that

f3 is ε4-homotopic to f2, g3 is ε4-homotopic to g2 (33.3)

and f3

(
(M≥δ ∩ pr−1

1 (z))× In
)
∩ g3({z} × Ik) = ∅ for all z ∈M1.

Now, we estimate the distance from f3 to f1 and f . Recall that ε4 + ε2 ≤ 2ε2 ≤
2 min{ε1/5, ε/18}. Taking into account the homotopical nearness from (33.1)–(33.3), we
conclude that the map f3 is (ε4 + ε2)-homotopic to f1 and ε/6-homotopic to f . Conse-
quently, for any point x ∈ In and any simplex σ of the triangulation of Im, the image
f3(σ × {x}) has diameter

diam f3(σ × {x}) ≤ diam f(σ × {x}) + 2 dist(f3, f) <
ε

3
+ 2

ε

6
=

2

3
ε. (33.4)

Similar estimates hold for the map g3.
Next, consider the piecewise-linear map ` : [0, 1]→ [0, 1] determined by the conditions

`(0) = `(1/2) = 0 and `(1) = 1. Define two piecewise-linear maps h0, h1 : Im → Im such
that the map hi assigns to any point z = µ1z0 +µ0z1 ∈ Im with join-coordinates (µ0, µ1)

the point hi(z) = µ′1z0 + µ′0z1, where µ′i = `(µi) and µ′1−i = 1 − µ′i. Note that each
map hi : Im → Im is S-homotopic to the identity map with respect to the cover S of Im
consisting of all maximal simplexes of the triangulation T .

Finally, define maps f ′ : Im × In → X and g′ : Im × Ik → X by letting f ′(z, x) =

f3(h0(z), x) for (z, x) ∈ Im × In and g′(z, y) = g3(h1(z), y) for (z, y) ∈ Im × Ik. We
claim that they have the desired properties. Observe that, according to (33.4), f ′ is 2ε/3-
homotopic to f3. Hence, f ′ is ε-homotopic to f because f3 is ε/6-homotopic to f . The
same argument yields that g′ is ε-homotopic to g.

It remains to check that for any z ∈ Im the sets f ′({z} × In) and g′({z} × Ik) do not
intersect, or equivalently, that f ′(z, x) 6= g′(z, y) for any x ∈ In and y ∈ Ik. We consider
separately two cases.

1. µ(z) = µ0(z) ≤ 1/2. In this case, since h0(z) = (1− l(µ(z)))z0 + l(µ(z))z1, we have
µ(h0(z)) = l(µ(z)) = 0. So, h0(z) = pr0(z) = z0 ∈M0 and f ′(z, x) = f3(z0, x).

Next, we consider the point h1(z) = l(µ1(z))z0 + (1− l(µ1(z)))z1. If µ(h1(z)) ≤ 1− δ,
then h1(z) ∈M≤1−δ ∩ pr−1

0 (z0). Thus, dist(f2(z0, x), g2(h1(z), y)) ≥ ε3. Then

dist(f ′(z, x), g′(z, y)) = dist(f3(z0, x), g3(h1(z), y))

≥ dist(f2(z0, x), g2(h1(z), y))− dist(f3, f2)− dist(g2, g3)

≥ ε3 − 2ε4 ≥ ε3/3 > 0.

If µ(h1(z)) > 1− δ, then h1(z) ∈ O(M1) by the choice of δ. Hence,

dist(f ′(z, x), g′(z, y)) = dist(f3(z0, x), g3(h1(z), y))

≥ dist(f1(z0, x), g1(h1(z), y))− dist(f1, f3)− dist(g1, g3)

≥ ε1 − 2(ε4 + ε2) ≥ ε1 − 4ε2 ≥ ε1/5 > 0.
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2. µ(z) ≥ 1/2. In this case µ1(z) ≤ 1/2, so l(µ1(z)) = 0 and h1(z) = l(µ1(z))z0 +

(1− l(µ1(z)))z1 = z1 ∈M1. Hence, g′(z, y) = g3(z1, y).
Consider now the point h0(z). If µ(h0(z)) ≥ δ, then h0(z) ∈M≥δ ∩ pr−1

1 (z1). Thus,

dist(f ′(z, x), g′(z, y)) = dist(f3(h0(z), x), g3(z1, y)) > 0.

If µ(h0(z)) < δ, then h0(z) ∈ O(M0) by the choice of δ, and hence

dist(f ′(z, x), g′(z, y)) = dist(f3(h0(z), x), g3(z1, y))

≥ dist(f1(h0(z), x), g1(z1, y))− dist(f1, f3)− dist(g1, g3)

≥ ε1 − 2(ε4 + ε2) ≥ ε1 − 4ε2 ≥ ε1/5 > 0.

The particular case of Lemma 33.1 when m0 = m and m1 = 0 provides the second
item of Theorem 8.3.

Lemma 33.2. Let n, k,m be non-negative integers. If a metrizable space X has both the
0-DD{n+m+1,k}- and m-DD{n,k+1}-properties, then it has the (m+ 1)-DD{n,k}-property.

The final item of Theorem 8.3 will be derived from Lemma 33.3 below.

Lemma 33.3. If a metrizable space X has the 0-DD{n+i,k+j}-property for all i, j ∈ ω

with i+ j < m+ 1, then it has the m-DD{n,k}-property.

Proof. Because of Proposition 5.2, it suffices to consider the case of finite m,n, k. By
induction on m′ ≤ m, we shall prove that the space X has the m′-DD{n+i,k+j}-property
for all integers i, j ∈ ω with m′ + i + j < m + 1. Observe that our lemma follows from
the above statement with m′ = m and i = j = 0.

Let us prove this statement. For m′ = 0 it follows from our hypothesis. Assume that
for some m0 ≤ m the statement has been established for all m′ < m0. We shall prove it
form′ = m0. Take any integers i, j ∈ ω withm0+i+j < m+1. According to Lemma 33.2,
them0-DD{n+i,k+j}-property ofX will be proved as soon as we check thatX has both the
0-DD{n+i+m0,k+j}-property and the (m0 − 1)-DD{n+i,k+j+1}-property. But this follows
from the inductive hypothesis since i+m0 +j < m+1 and (m0−1)+ i+j+1 < m+1.

34. Proof of Theorem 9.1

The proof of Theorem 9.1 is divided into a few lemmas.

Lemma 34.1. Let L be a metrizable space with the 0-DD{0,0}-property. Then, for any
non-negative integer i < l, Ll has the 0-DD{i,l−1−i}-property.

Proof. The statement is obviously true if l = 1. Assume that, for some number l− 1, the
power Ll−1 has the 0-DD{i,l−2−i}-property for all i < l − 1. We are going to show that
the power Ll = L× Ll−1 has the 0-DD{i,l−1−i}-property for all i < l.

If i = 0, then L has the 0-DD{0,0}-property and Ll−1 has the 0-DD{0,l−2}-property. So,
by the first multiplication formula, L×Ll−1 has the 0-DD{0,0+(l−2)+1}-property. Because
{0, l − 1} = {l − 1, 0}, Ll has the 0-DD{i,l−1−i} property for i ∈ {0, l − 1}.
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If 0 < i < l − 1, then the 0-DD{i,l−1−i}-property of the product Ll = L × Ll−1

follows from the second multiplication formula and the fact that L has the 0-DD{0,0}-
property and Ll−1, according to the inductive hypothesis, has both the 0-DD{i−1,l−i−1}-
and 0-DD{i,l−i−2}-properties.

Lemma 34.2. Let d, k be non-negative integers with d > 0 and D be a metrizable space
with the 0-DD{0,k}-property. Then Dd has the 0-DD{i,(d−i)(k+1)−1}-property for all i < d.

Proof. The proof is by induction with respect to d. The statement is trivial for d = 1.
Assume that, for some d > 1, Dd−1 has the 0-DD{i,(d−1−i)(k+1)−1}-property for all
i < d− 1.

Let us check that Dd = D×Dd−1 has the 0-DD{i,(d−i)(k+1)−1}-property for all i < d.
We shall consider separately the cases i = 0, i = d− 1, and 0 < i < d− 1.
For i = 0, we use the inductive assumption to conclude that Dd−1 possesses the

0-DD{0,(d−1)(k+1)−1}-property. Since D has the 0-DD{0,k}-property and k+(d−1)(k+1)

− 1 + 1 = d(k + 1)− 1, by the first multiplication formula, the product Dd = D ×Dd−1

has the 0-DD{0,d(k+1)−1}-property.
The case i = d − 1 is treated similarly. By the inductive assumption, Dd−1 has the

0-DD{d−2,k}-property. Taking into account the 0-DD{0,k}-property of D and applying
the first multiplication formula, we conclude that Dd = D ×Dd−1 has the 0-DD{d−1,k}-
property.

For 0 < i < d − 1, we use the inductive assumption to conclude that Dd−1 has
both the 0-DD{i,(d−1−i)(k+1)−1}- and 0-DD{i−1,(d−i)(k+1)−1}-properties. Since D has the
0-DD{0,k}-property, the second multiplication formula implies that Dd has the property
0-DD{i,(d−i)(k+1)−1} (here, we use that k+((d−1−i)(k+1)−1)+1 = (d−i)(k+1)−1).

Lemma 34.3. Let d ∈ N, l ∈ ω and L, D be metrizable spaces with L ∈ 0-DD{0,0} and
D ∈ 0-DD{0,d+l}. Then, for any non-negative integer i ≤ l + 1, the product Dd × Ll has
the 0-DD{d−1+i,d+l−i}-property.

Proof. The proof is by induction on l.
To start the induction, consider the case l = 0. By Lemma 34.2 (with k = d and

i = d− 1), the power Dd has the 0-DD{d−1,d}-property. This completes the proof of the
assertion when l = 0.

Assume that for some l > 1 the product Dd × Ll−1 has 0-DD{d−1+i,d+(l−1)−i} for
all 0 ≤ i ≤ l. We should prove that the product Dd × Ll = (Dd × Ll−1) × L has the
0-DD{d−1+i,d+l−i}-property for all 0 ≤ i ≤ l + 1.

Let i = 0. Then applying Lemma 34.2 (with k = d + l and i = d − 1), we find that
Dd has the 0-DD{d−1,d+l}-property. So does the product Dd × Ll. This also yields the
0-DD{d−1+i,d+l−i}-property of Dd×Ll for i = l+1 because {d−1+(l+1), d+l−(l+1)} =

{d+ l, d− 1}.
Assume that 1 ≤ i ≤ l. Then, by the inductive hypothesis, the product Dd ×

Ll−1 has both 0-DD{d−1+i,d+(l−1)−i} and 0-DD{d−1+(i−1),d+(l−1)−(i−1)}. Since L has the
0-DD{0,0}-property, applying the second multiplication formula to the product Dd×Ll ∼=
L× (Dd × Ll−1), we conclude that Dd × Ll has the 0-DD{d−1+i,d+l−i}-property.

Finally, we are in a position to complete the proof of Theorem 9.1.
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Lemma 34.4. Let m,n, k, d, l be non-negative integers, L be a metrizable space with the
0-DD{0,0}-property and D be a metrizable space with the 0-DD{0,d+l}-property. If m +

n+ k < 2d+ l, then the product Dd × Ll has the m-DD{n,k}-property.

Proof. Suppose first that d = 0. By Lemma 34.1, Ll has the 0-DD{i,l−i−1}-property
for every i < l. Let us show that Ll has the 0-DD{n+i,k+j}-property for all i, j with
i + j ≤ m. Indeed, fix i, j with i + j ≤ m. Then n + 1 < l and, by Lemma 34.1,
Ll ∈ 0-DD{n+i,l−n−i−1}. Since m+ n+ k < l, k + j ≤ l − n− i− 1. The last inequality
and Ll ∈ 0-DD{n+i,l−n−i−1} imply that Ll ∈ 0-DD{n+i,k+j} for all i, j with i + j ≤ m.
Consequently, Lemma 33.3 implies that Ll has the m-DD{n,k}-property.

If d ≥ 1, according to Lemma 33.3, it suffices to show that Dd×Ll has the 0-DD{n,k}-
property for all n, k ∈ ω with n + k < 2d + l. To this end, we fix integers n, k with
n+ k < 2d+ l and assume that k ≥ n. There are two cases: n ≤ d− 1 or n ≥ d.

Suppose n ≤ d−1. By Lemma 34.2, Dd has the 0-DD{n,(d−n)(d+l+1)−1}-property. This
implies thatDd has the 0-DD{n,k}-property because k ≤ 2d+l−1−n ≤ (d−n)(d+l+1)−1.
Hence, the productDd×Ll also has the 0-DD{n,k}-property for all n, k with n+k < 2d+l.

When n ≥ d, we have n = d − 1 + i for some i ≥ 1. The last equality yields i ≤ l.
Indeed, otherwise we would obtain n ≥ d−1+(l+1) = d+l. Hence, k+n ≥ 2n ≥ 2(d+l),
which contradicts n + k < 2d + l. Since i ≤ l, we can apply Lemma 34.3 to conclude
that Dd × Ll has the 0-DD{d−1+i,d+l−i}-property. Finally, since k ≤ 2d + l − 1 − n =

2d+ l − 1− (d− 1 + i) = d+ l − i, Dd × Ll also has the 0-DD{n,k}-property.

35. Proof of Proposition 5.6

The first two items of Proposition 5.6 are trivial and their proofs are left to the reader.
To prove the third item, we need to show the equivalence of the following statements,

where X is a given metrizable LC1-space:

(a) X has the 0-DD{0,1}-property;
(b) X has the 1-DD{0,0}-property;
(c) X has no free arc.

The implication (a)⇒(b) follows from the second base enlargement formula, while
(b)⇒(c) trivially follows from the fact that the interval (0, 1) fails to have the 1-DD{0,0}-
property. To prove that (c)⇒(a), take an open cover U of X and two maps f : I0 → X,
g : I1 → X. By Lemma 21.1, X admits an open cover V ≺ U such that every map
g′ : I → X is U-homotopic to g provided it is V-near to g. For every point x ∈ X fix a
set Vx ∈ V containing x and its open neighborhood Wx ⊂ Vx such that any two points
y, z ∈ Wx can be linked by an arc in Vx (recall that X being LC1 is an LC0-space). By
the uniform continuity of g : I → X, there is a partition 0 = t0 < t1 < · · · < tn = 1 of
[0, 1] such that for every i ≤ n the image g([ti−1, ti]) lies in Wxi

for some point xi ∈ X.
The choice of the set Wxi guarantees the existence of an embedding g′i : [ti−1, ti] → Vxi

such that g′i(ti−1) = g(ti−1) and g′(ti) = g(ti). The maps g′i compose a single continuous
map g′ : [0, 1]→ X equal to g′i on each interval [ti−1, ti]. It is easy to see that g′ is V-near
to g. Hence, g′ is U-homotopic to g.
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Let us now construct a map f ′ : I0 → X such that f ′ is U-homotopic to f and
f ′(I0) 6∈ g′(I1). Observe that g′(I) is a finite union of arcs. Since X contains no free arc,
g′(I) is nowhere dense in X. Therefore, there exists x′ ∈Wx \ g′(I), where x is the point
f(I0). Consider the constant map f ′ : I0 → {x′} ⊂ X. The choice of the neighborhood
Wx guarantees that f ′ is V-homotopic to f . Moreover, f ′(I0) ∩ g′(I1) = ∅. So, X has the
0-DD{0,1}-property.

To prove the fourth item, assume that X is a metrizable n-dimensional LCn-space
possessing the 0-DD{0,n}-property. We are going to show that X has the 0-DD{0,∞}-
property. To this end, take any open cover U of X and two maps f : I0 → X and
g : I∞ → X. By Lemma 21.1, X admits an open cover U ′ ≺ U such that any two
St(U ′)-near maps from an n-dimensional polyhedron into X are U-homotopic.

The space X, being an n-dimensional LCn-space, is an ANR (see [41, V.7.1]). Hence,
X is a Lefschetz ANE[∞] (see Proposition 3.4), and we may apply Lemma 24.1 to find
an open cover W of X with the following property: for any W-map α : X → K into
a paracompact space K there is a map β : O(α(X)) → X, defined on a neighborhood
of α(X), such that the composition β ◦ α : X → X is U ′-near to the identity map.
Choose now a W-map α : X → K to an n-dimensional polyhedron K (recall that
dimX ≤ n, so such a map α exists). The choice of the cover W guarantees the existence
of a map β : O(α(X)) → X with β ◦ α being U ′-near to the identity map. Consider the
compact set C = α ◦ g(I∞) ⊂ K and find a compact polyhedral subset N ⊂ K with
C ⊂ N ⊂ O(α(X)). It is clear that dimN ≤ dimK ≤ n. Since X has the 0-DD{0,n}-
property, we may apply Theorem 5.3 to find maps f ′ : I0 → X and β′ : N → X such
that f ′ is U-homotopic to f , β′ is U ′-homotopic to β|N and f ′(I0)∩β′(N) = ∅. Then the
composition g′ = β′ ◦α◦g : I∞ → X is U ′-near to the map β ◦α◦g which is U ′-near to g.
Thus, g′ is St(U ′)-near to g and by the choice of U ′, g′ is U-homotopic to g. Obviously,
f ′(I0) 6∈ g′(I∞), which completes the proof of the fourth item.

Let us prove the fifth item of Proposition 5.6. The “only if” part follows from Theo-
rem 5.7 with M being a single point.

To prove the “if” part, assume that A and B are disjoint dense subsets of X such that
A is relative LCn−1 in X and B is relative LCk−1 in X. We also assume that k ≤ n, so X
is LCn. Given any open cover U of X and two maps f : In → X, g : Ik → X, it suffices to
find U-homotopic maps f ′ : In → A, g′ : Ik → B to f and g, respectively. Since X is LCn,
there exists an open cover V of X such that any two St(V)-near maps from In to X are
U-homotopic. The set A, being relative LCn−1 in X, is LCn−1. Then, by Proposition 3.4,
A is a Lefschetz ANE[n]-space. Hence, A has an open cover VA refining V such that if KA

is a simplicial complex of dimension ≤ n, then any partial VA-realization hA : LA → A of
KA extends to a full V-realization h̄A : KA → A of KA. Similarly, B has an open cover
VB refining V such that if KB is a simplicial complex of dimension ≤ k, then any partial
VB-realization hB : LB → B of KB can be extended to a full V-realization h̄B : KB → B

of KB . Now, we choose a triangulation TA of In so small that f(σ) is contained in some
Vσ ∈ V for all σ ∈ TA. Let KA be In with the triangulation TA and take any map
hA : K

(0)
A → A which is VA-near to f |K(0)

A (this can be done because A is dense in X).
Obviously, hA is a partial VA-realization of KA. Hence, by the choice of VA, hA extends
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to a full V-realization h̄A : KA → A. It is easily seen that f ′ = h̄A and f are St(V)-close.
Hence, the choice of V implies that f and f ′ are U-homotopic in X. The same procedure
applied to Ik and g produces a map g′ : Ik → B which is U-homotopic to g.

36. Proof of Selection Theorem 6.1

This section is devoted to the proof of Theorem 6.1 for homotopical Zn-sets. Let us recall
that a closed subset A of a topological space X is a homotopical Zn-set if for any open
cover U of X and a map f : In → X there is a map g : In → X \ A, U-homotopic to
f . The following property of homotopical Zn-sets can be proved by a standard inductive
argument (see [67]).

Lemma 36.1. Let A be a homotopical Zn-set in X, and (K,L) be a pair of compact
polyhedra L ⊂ K with dimK ≤ n. Then for any open cover U of X and any map
f : K → X with f(L) ∩ A = ∅ there is a U-homotopy h : K × [0, 1] → X such that
h(K × {1}) ∩A = ∅ and h(x, t) = f(x) for all (x, t) ∈ K × {0} ∪ L× [0, 1].

Everywhere in this section, for a sequence U0, . . . ,Um of open covers of X, we denote
by N(U0, . . . ,Um) the simplicial complex consisting of finite subsets σ ⊂

⋃
i≤m{i} × Ui

such that

• |σ ∩ ({i} × Ui)| ≤ 1 for all i ≤ m and
• the set Rg∩(σ) =

⋂
{U : (i, U) ∈ σ for some i ≤ m} is not empty.

It is convenient to consider the simplexes σ ∈ N(U0, . . . ,Um) as functions with domain
dom(σ) ⊂ {0, . . . ,m}, assigning to each number i ∈ dom(σ) some element σ(i) ∈ Ui.
In this case Rg∩(σ) =

⋂
i∈dom(σ) σ(i). It is important to observe that the complex

N(U0, . . . ,Um) has dimension at most m.
As usual, for a set-valued map Φ : X ( Y and a setA ⊂ X we put Φ(A) =

⋃
x∈A Φ(x).

Now, we are ready to prove Theorem 6.1. Let X be a paracompact C-space and
Φ : X ( Y be a compactly semicontinuous set-valued map into a topological space Y
assigning to each point x ∈ X a homotopical Zn-set Φ(x) in Y , where n = dimX is finite
or infinity. Assume that X is a retract of an open subset W0 ⊃ X of a locally convex
linear topological space L and fix a retraction r : W0 → X.

Given a map f : X → Y and a continuous pseudometric ρ on Y , we need to find a
map f ′ : X → Y which is 1-homotopic to f and f ′(x) /∈ Φ(x) for all x ∈ X.

Fix a cover W of W0 by open convex subsets such that diamρ(f ◦ r(W )) < 1/2 for
all W ∈ W. According to Lemma 18.1, the space X admits a continuous pseudometric d
such that the cover {Bd(x, 1) : x ∈ X} of X refines W.

By induction, we shall construct for every m < n + 1, m ≥ 0, a locally finite open
cover Um of X and two maps pm : Km → W0 and hm : Km × [0,m + 1] → Y , where
Km = N(U0, . . . ,Um), such that the following conditions are satisfied:

(1) pm : Km →W0 is a PL-map with pm
∣∣Km−1 = pm−1;

(2) U ⊂ Bd(pm(m,U), 1) for every vertex (m,U) of Km;
(3) hm(x, t) = hm−1(x,min{t,m}) for (x, t) ∈ Km−1 × [0,m+ 1];
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(4) hm(x, 0) = f ◦ r ◦ pm(x) for all x ∈ Km;
(5) hm is a (1/2− 1/2m+2)-homotopy;
(6) hm(σ × {m+ 1}) ∩ Φ(σ(m)) = ∅ for every simplex σ ∈ Km with m ∈ dom(σ).

To start the construction, for every x ∈ X fix a path hx : [0, 1]→ Y with diamρ hx(I)
< 1/4, hx(0) = f(x) and hx(1) /∈ Φ(x). Such a path exists because Φ(x) is a homotopical
Z0-set. Since Φ is compactly semicontinuous, every point x ∈ X has a neighborhood
Ox ⊂ Bd(x, 1) such that hx(1) /∈ Φ(Ox). Let U0 be an open locally finite cover of X
refining {Ox : x ∈ X}. For every U ∈ U0 fix a point x(U) with U ⊂ Ox(U) and let
p0(0, U) = xU . Then U ⊂ Ox(U) ⊂ Bd(x(U), 1), which completes the construction of U0

and p0.
As for the map h0 : K0 × [0, 1] → Y , just let h0((0, U), t) = hx(U)(t) for (0, U) ∈ K0

= N(U0). Then h0((0, U), 0) = hx(U)(0) = f(x(U)) = f ◦ r ◦ p0(0, U), demonstrating (4).
Moreover, because diamρ hx(I) < 1/4 for all x ∈ X, h0 is a 1/4-homotopy. So, (5) is also
satisfied for m = 0. On the other hand, h0((0, U), 1) = hx(U)(1) /∈ Φ(Ox(U)) ⊃ Φ(U),
demonstrating (6).

Now, assume that the covers U0, . . . ,Um−1 and the maps pm−1, hm−1 have been
constructed for some m < n+1. For every x ∈ X consider the subcomplex Bm(x) = {σ ∈
Km−1 : x ∈ Rg∩(σ)} of Km−1, where Rg∩(σ) =

⋂
i∈dom(σ) σ(i). This complex is finite

because the covers U0, . . . ,Um−1 are locally finite. Moreover, its geometric realization
Bm(x) is a compact subset of Km−1. Condition (6) from the inductive construction
guarantees that hm−1(Bm(x)× {m}) ∩ Φ(x) = ∅.

Consider the simplicial complex Cm(x) = Bm(x) ∪ {{x} ∪ σ : σ ∈ Bm(x)} whose
geometric realization Cm(x) is a cone over Bm(x) with vertex {x}. Unifying those cones
we obtain the simplicial complex Km(X) = Km−1 ∪

⋃
x∈X Cm(x).

Let p̃m : Km(X)→ L be the PL-map determined by the following conditions:

• p̃m
∣∣Km−1 = pm−1;

• p̃m({x}) = x (here {x} with the vertex of the cone Cm(x)).

We claim that p̃m(Km(X)) ⊂ W0, which is equivalent to p̃m(σ) ⊂ W0 for every
σ ∈ Km. This is true if σ ∈ Km−1 because p̃m(σ) = pm−1(σ). If σ ∈ Km \Km−1, then
σ ∈ Cm(x) for some x ∈ X. Consequently, σ = τ ∪ {x} with τ ∈ Bm(x). So, x ∈ Rg∩(τ)

and, by (2), for any (i, U) ∈ τ we have x ∈ U ⊂ Bd(p̃m(i, U), 1) (here we use that
p̃m(i, U) = pm−1(i, U) for all (i, U) ∈ τ). Hence, p̃m(i, U) ∈ Bd(x, 1) and p̃m(τ (0)) ⊂
Bd(x, 1) ⊂ Wσ for some convex set Wσ ∈ W. Since p̃m({x}) = x, p̃m(σ(0)) ⊂ Wσ. Then
p̃m(σ) ⊂ conv(p̃m(σ(0))) ⊂Wσ ⊂W0. So, p̃m is a map from Km(X) into W0.

Since p̃m coincides with pm−1 on Km−1, condition (4) implies that hm−1(z, 0) =

f ◦ r ◦ pm−1(z) = f ◦ r ◦ p̃m(z) for all z ∈ Km−1. Applying the Borsuk extension lemma
to each pair (Cm(x), Cm(x) ∩ Km−1), we extend the (1/2 − 1/2m+1)-homotopy hm−1 :

Km−1 × [0,m] → Y to a (1/2 − 1/2m+1)-homotopy h′ : Km(X) × [0,m] → Y such that
h′(z, 0) = f ◦ r ◦ p̃m(z) for all z ∈ Km(X).

Condition (6) yields h′((Cm(x)∩Km−1)×{m})∩Φ(x) = ∅ for any x ∈ X. Therefore,
since each Φ(x) is a homotopical Zn-set in Y and Km(X) is a simplicial complex of
dimension ≤ m ≤ n, we can apply Lemma 36.1 to any pair (Cm(x), Cm(x) ∩Km−1) to
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obtain a (1/2− 1/2m+2)-homotopy h̃ : Km(X)× [0,m+ 1]→ Y such that:

• h̃ extends h′;
• h̃(z, t) = h′(z,m) = hm−1(z,m) for all (z, t) ∈ Km−1 × [m,m+ 1];
• h̃(Cm(x)× {m+ 1}) ∩ Φ(x) = ∅.

For every x ∈ X, the compact semicontinuity of Φ yields a neighborhood Vx ⊂ X of
x with h̃(Cm(x) × {m + 1}) ∩ Φ(V x) = ∅. We can take Vx so small that V x ⊂ Bd(x, 1)

and V x ∩ Rg∩(τ) = ∅ for any simplex τ ∈ Km−1 with x /∈ Rg∩(τ) (at this point we use
the local finiteness of the covers U0, . . .Um−1).

Let Um be a locally finite open cover of X refining the cover {Vx : x ∈ X}. For every
U ∈ Um pick a point x(U) ∈ X with U ⊂ Vx(U) and consider the map e : K

(0)
m →

Km(X)(0) which is identity on K(0)
m−1 and assigns to each new vertex (m,U) ∈ {m}×Um

of Km the vertex x(U) of Km(X). Let us verify that the image e(σ) of any simplex
σ ∈ Km is a simplex in Km(X). This is obviously true if σ ∈ Km−1. If σ ∈ Km \Km−1,
then σ = τ ∪ {(m,U)}, where τ is a simplex from Km−1 and U ∈ Um. If suffices to show
that τ ∪{x(U)} forms a simplex in Km(X) because in that case e(σ) = τ

⋃
{x(U)}. This

is equivalent to x(U) ∈
⋂

Rg(τ). Assuming x(U) 6∈
⋂

Rg(τ), we have ∅ 6= Rg∩(σ) =

U ∩ Rg∩(τ) ⊂ V x(U) ∩ Rg∩(τ) = ∅, a contradiction. So, e(σ) ∈ Km(X).
The map e : K

(0)
m → Km(X)(0) induces a PL-map ẽ : Km → Km(X) between the

corresponding geometric realizations. Now, we can define the maps pm : Km → X and
hm : Km× [0,m+ 1]→ Y letting pm(z) = p̃m ◦ ẽ(z) and hm(z, t) = h̃(ẽ(z), t) for z ∈ Km.

Let us check that the maps pm and hm satisfy conditions (1)–(6). Since p̃m maps
Km(X) into W0, pm is a map into W0. Moreover, p̃m|Km−1 = pm−1 and ẽ|Km−1 is
the identity. So, the first condition is satisfied. For the second one, take any vertex
(m,U) ∈ Km and note that U ⊂ V x(U) ⊂ Bd(x(U), 1) = Bd(pm(m,U), 1). So, (2)
holds as well. Conditions (3)–(5) follow immediately from the definition of hm and h̃.
It remains to check (6). Take any simplex σ ∈ Km with m ∈ dom(σ) and observe that
(m,U) ∈ σ, where U = σ(m). Let us first show that ẽ(σ) ⊂ Cm(x(U)). This is true if σ is
the single vertex (m,U) because ẽ(σ) = x(U) ∈ Cm(x(U)). Suppose τ = σ\{(m,U)} 6= ∅.
It follows from the preceding discussion (concerning the map e) that τ ∈ Bm(x(U)). Then
the definition of ẽ yields ẽ(σ) ⊂ Cm(x(U)). Hence, in both cases we have

hm(σ × {m+ 1}) ∩ Φ(σ(m)) = h̃(ẽ(σ)× {m+ 1}) ∩ Φ(U)

⊂ h̃(Cm(x(U)))× {m+ 1}) ∩ Φ(V x(U)) = ∅,
which witnesses (6) and completes the inductive step.

Completing the inductive construction, we let

• Kn =
⋃
m<n+1Km;

• p =
⋃
m<n+1 pm : Kn →W0;

• h =
⋃
m<n+1 hm :

⋃
m<n+1Km × [0,m+ 1]→ Y .

Observe that p and h are well defined because Km−1 ⊂ Km, hm
∣∣(Km−1× [0,m]

)
= hm−1

and pm|Km−1 = pm−1 (see (1) and (3)). Moreover, h is defined on Kn × Jn, where
Jn = [0, n + 1] if n is finite and J = [0,∞) if n is infinite. The vertices of the complex
Kn are pairs (m,U) with U ∈ Um and m < n+ 1.
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Since X is a paracompact C-space of dimension n, according to a generalized version
of the Ostrand theorem [38, Theorem 5.2], there exists a sequence (Vm)m<n+1 of discrete
families of open sets in X such that each Vm refines Um and

⋃
m<n+1 Vm is a locally finite

cover of X. The sequence (Vm) enables us to construct a partition of unity {λ(m,U) : X →
[0, 1] : (m,U) ∈ K(0)

n } such that

• λ−1
(m,U)(0, 1] ⊂ U for every (m,U) ∈ K(0)

n ;

• the family {λ−1
(m,U)(0, 1] : (m,U) ∈ K(0)

n } is locally finite in X;
• for every m < n+ 1 the family {λ−1

(m,U)(0, 1] : U ∈ Um} is discrete in X.

Observe that for any x ∈ X the set σx = {(m,U) ∈ K(0)
n : λ(m,U)(x) > 0} is a simplex

of Kn. Hence, the canonical map

λ : X → Kn, x 7→ (λ(m,U)(x))
(m,U)∈K(0)

n
,

is well-defined.
Finally we can define the desired map f ′ : X → Y . If n is finite, we let f ′(x) =

h(λ(x), n+ 1), x ∈ X.
Suppose n is infinite. First, we show that there exists a continuous function ξ : X →

[0,∞) with σx ∈ K[ξ(x)] for every x ∈ X, where [ξ(x)] stands for the integer part of the
real number ξ(x). To this end, for every x ∈ X we put m(x) = max{m : x ∈ λ−1

(m,U)(0, 1]}.
Since the cover {λ−1

(m,U)(0, 1]} of X is locally finite, so is {λ−1
(m,U)(0, 1]}. Hence, m(x) is a

finite integer for every x ∈ X. Next, consider the set-valued map φ : X ( [0,∞) defined
by φ(x) = [m(x),∞), x ∈ X. It is easily seen that φ is lower semicontinuous. Hence, by
the Michael selection theorem [53], φ has a continuous selection ξ : X → [0,∞). Because
σx ∈ Km(x) and ξ(x) ≥ m(x) for every x ∈ X, we have σx ∈ K[ξ(x)]. Now, we define
f ′ : X → Y by f ′(x) = h(λ(x), ξ(x) + 1).

It remains to check that the map f ′ : X → Y has the desired properties, i.e, f ′ is
1-homotopic to f and f ′(x) /∈ Φ(x) for all x ∈ X. In order to unify both cases (n <∞ and
n =∞), we consider the constant function ξ : X → [0,∞), ξ(x) = n, provided n <∞.

To prove that f ′ is 1-homotopic to f , consider the intermediate map f0 : X → Y

defined by f0(x) = h(λ(x), 0). It follows from (5) that f0 is 1/2-homotopic to f ′. So, it
suffices to check that f0 is 1/2-homotopic to f . By (4), f0(x) = h(λ(x), 0) = f ◦r◦p◦λ(x).
We define a map H : X × [0, 1]→ Y by

H(x, t) = f ◦ r((1− t)x+ t · p ◦ λ(x)).

Obviously, H(x, 0) = f(x) and H(x, 1) = f0(x) for all x ∈ X. So, H is a homotopy
connecting f and f0. Let us check that H is a 1/2-homotopy. Given any x ∈ X consider
the simplex σx = {(i, U) ∈ K(0)

n : λ(i,U)(x) > 0}, which obviously contains the point λ(x).
According to (2), for every (i, U) ∈ σx we have x ∈ U ⊂ Bd(p(i, U), 1). Consequently,
p(i, U) ⊂ Bd(x, 1) for all i with (i, U) ∈ σx. Hence, p(σ(0)

x ) ⊂ Bd(x, 1) ⊂ Wx for some
convex set Wx ∈ W. Then p ◦ λ(x) ∈ conv(p(σ

(0)
x )) ⊂ Wx. Moreover, Wx contains x.

So, (1 − t)x + tp ◦ λ(x) ∈ Wx and H({x} × [0, 1]) ⊂ f ◦ r(Wx). Thus, H({x} × [0, 1])

has diameter < 1/2 by the choice of W. Therefore, f and f0 are 1/2-homotopic, which
implies that f and f ′ are 1-homotopic.
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Finally, we verify that f ′(x) /∈ Φ(x) for any x ∈ X. Suppose m ≤ ξ(x) < m + 1 for
some m ≤ n. Then K[ξ(x)] = Km. Since σx is a simplex of K[ξ(x)] and contains λ(x),
λ(x) ∈ Km ⊂ Km+1. On the other hand m + 1 ≤ ξ(x) + 1 < m + 2. Hence, f ′(x) =

h(λ(x), ξ(x) + 1) = hm+1(λ(x), ξ(x) + 1). Then, by (3), we have hm+1(λ(x), ξ(x) + 1) =

hm(λ(x),m+ 1). Now, let mx = max dom(σx). Since K[ξ(x)] = Km contains σx, mx ≤ m.
Moreover, for every (i, U) ∈ σx we have x ∈ U . Ifmx < m, we choose an element Ux ∈ Um
containing x and consider the simplex τx = σx ∪ {(m,Ux)} from Km. If mx = m, we
just take τx to be σx. In both cases τx is a simplex from Km containing λ(x) such that
m ∈ dom τx and x ∈ τx(m). Then, by (6), hm(τx × {m+ 1}) ∩Φ(τx(m)) = ∅. Therefore,
f ′(x) = hm(λ(x),m+ 1) 6∈ Φ(x) for all x ∈ X.

37. Proof of Theorem 7.1

In this section we provide a proof of Theorem 7.1.

Lemma 37.1. A Hausdorff space X has the m-DD{0,0}-property if and only if the diagonal
of X2 is a homotopical Zm-set in X2.

Proof. Assume that X has the m-DD{0,0}-property. To show that the diagonal ∆X is
a homotopical Zm-set in X2, fix a cover V of X2 and a map (f, g) : Im → X2. By a
standard compactness argument, we can find open covers U1,U2 of X such that for any
U1 ∈ U1, U2 ∈ U2 the product U1×U2 lies in some U ∈ V provided U1×U2 meets the set
f(Im) × g(Im). Let U be an open cover of X refining both U1 and U2. The m-DD{0,0}-
property of X yields two maps f ′, g′ : Im → X such that f ′ ∼

U
f , g′ ∼

U
g and f ′(x) 6= g′(x)

for all x ∈ Im. Then the diagonal product (f ′, g′) : Im → X2 maps Im to X2 \∆X and is
V-homotopic to (f, g), demonstrating that ∆X is a homotopical Zm-set in X2.

Now, assume that ∆X is a homotopical Zm-set in X2. To show that X has the
m-DD{0,0}-property, fix an open cover U of X and two maps f, g : Im → X. Consider
the open cover W = {U ×V : U, V ∈ U} of X2. Since ∆X is a homotopical Zn-set in X2,
there is a map (f ′, g′) : Im → X2 \ ∆X which is W-homotopic to (f, g). Then f ′ ∼

U
f ,

g′ ∼
U
g and f ′(x) 6= g′(x) for all x ∈ Im, demonstrating the m-DD{0,0}-property of X.

Lemma 37.2. An LC0-space X has the 0-DD{0,n}-property provided the set of its homo-
topical Zn-points is dense in X.

Proof. To prove that X has the 0-DD{0,n}-property, we take an open cover U of X and
two maps f : In → X and g : I0 → X. Fix a set U ∈ U containing the singleton
{x} = g(I0). Because X is LC0, there is a neighborhood V ⊂ X of x such that any point
x′ ∈ V can be linked with x by a path lying in U . Since the set of homotopical Zn-points
is dense in X, there exists a homotopical Zn-point x′ ∈ V in X. By the choice of V , the
constant map g′ : I0 → {x′} is U-homotopic to g. Moreover, x′ being a homotopical Zn-
point implies that f is U-homotopic to a map f ′ : In → X \{x′}. Then f ′(In)∩g′(I0) = ∅,
demonstrating the 0-DD{0,n}-property of X.
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Lemma 37.3. If a metrizable separable Baire (LCn) space X has the property 0-DD{0,n}

then the set of (homotopical) Zn-points is dense and Gδ in X.

Proof. Let ρ be a metric generating the topology of X. By Lemma 18.5, the function
space C(In, X) is separable, and hence contains a countable dense subset {fk : k ∈ N}.

For every m, k ∈ N consider the set Uk,m of all points x ∈ X satisfying the following
condition: there is a map f ′ : In → X \{x} such that f ′ is 2−m-near to fk. It is clear that
the Uk,m are open in X. The 0-DD{0,n}-property of X implies that each Uk,m is dense
in X. Since X is a Baire space, the intersection U =

⋂
k,m∈N Uk,m is a dense Gδ-set in X.

It is easily seen that every x ∈ U is a Zn-point in X and each Zn-point belongs to U .
Thus the set U of all Zn-points is dense Gδ in X.

If, in addition, X is an LCn-space, then Theorem 10.1(2) implies that each Zn-set is
a homotopical Zn-set. So, the set of all homotopical Zn-points in X coincides with the
set U of all Zn-points, which completes the proof.

Lemma 37.4. A Tychonoff space X has the m-DD{0,k}-property provided each x ∈ X is
a homotopical Zm+k-point.

Proof. Assume that each point x of X is a homotopical Zm+k-point. To check the
m-DD{0,k}-property for X, fix an open cover U of X and two maps f : Im → X,
g : Im × Ik → X. By Lemma 18.2, there exists a continuous pseudometric ρ on X

such that each ball Bρ(x, 1), x ∈ g(Im × Ik), is contained in some set U ∈ U .
Consider the map Φ : Im × Ik → X assigning to each (z, x) ∈ Im × Ik the singleton

Φ(z, x) = {f(z)}. Since each Φ(z, x) is a homotopical Zm+k-set in X, we may apply
Selection Theorem 6.1 to find a map g′ : Im × Ik → X which is 1-homotopic to g

and such that g′(x, z) 6= Φ(z, x) = {f(z)} for all (z, x) ∈ Im × Ik. The choice of the
pseudometric ρ ensures that g′ is U-homotopic to g. Then the maps f ′ = f and g′

witness the m-DD{0,k}-property for X.

Lemma 37.5. If X has either the 0-DD{n,n}-property or the n-DD{n,0}-property, then
each point of X is a homotopical Zn-point.

Proof. First assume that X has the 0-DD{n,n}-property. Given a point x0 ∈ X, an open
cover U of X and a map f : In → X, use the 0-DD{n,n}-property of X to find two maps
f0, f1 : In → X that are U-homotopic to f and have disjoint images. Then for some
i ∈ {0, 1} the image fi(In) does not contain x0, demonstrating that x0 is a homotopical
Zn-point.

Next, assume that X has the n-DD{0,n}-property. Suppose there exists x0 ∈ X which
is not a homotopical Zn-point in X. So, we can find a map g : In → X and an open
cover U of X such that x0 ∈ g′(In) for any map g′ : In → X which is U-homotopic to g.
Consider now the map f : In×In → X defined by f(z, y) = g(y), (z, y) ∈ In×In. Since X
has the n-DD{n,0}-property, there are two maps f ′ : In × In → X and g′ : In → X which
are U-homotopic to f and g, respectively, and g′(z) 6∈ f ′({z} × In) for every z ∈ In. By
the choice of g and U , we have g′(z0) = x0 for some z0 ∈ In. Hence, x0 6∈ f ′({z0} × In).
On the other hand, the map h : In → X, h(y) = f ′(z0, y), is U-homotopic to g because f
and f ′ are U-homotopic. Therefore, h(In) = f ′({z0}× In) contains x0, a contradiction.
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Lemma 37.6. If a Tychonoff space X has the 2-DD{0,0}-property, then each point of X
is a homotopical Z1-point.

Proof. Assume that some point x0 ∈ X fails to be a homotopical Z1-point. Then there
is a cover U of X and a map f0 : I → X such that x0 ∈ f ′(I) for any map f ′ : I → X

which is U-homotopic to f0. By Lemma 18.2, we can find a continuous pseudometric ρ
on X such that the family {Bρ(x, 1) : x ∈ f0(I)} refines U .

By the uniform continuity of the map f0 : I → (X, ρ), there is a sequence 0 = t0 <

t1 < · · · < tm = 1 such that each set f0([ti−1, ti]), i ≤ m, is of ρ-diameter < 1/4.
Obviously, X, being a space with the 2-DD{0,0}-property, also has the 0-DD{0,0}-

property. So, for every point x ∈ X and its neighborhood U , there exists a path γ :

[0, 1]→ U with γ(0) = x and γ(1) 6= x. Then, we can find a map f1 : I→ X such that f1

is 1/16-homotopic to f0 and f1(ti) 6= x0 for all i ≤ m. Choose a pseudometric d ≥ ρ on
X such that d(x0, f1(ti)) 6= 0 for all i ≤ m and choose a positive number ε < 1/16 with
d(f1(ti), x0) > ε, i ≤ m.

Let pr1,pr2 : I2 → I be the coordinate projections and f = f1 ◦ pr1 : I2 → X,
g = f1 ◦ pr2 : I2 → X. The 2-DD{0,0}-property of X implies the existence of maps
f ′, g′ : I2 → X such that f ′(z) 6= g′(z) for all z ∈ I2 and f ′ and g′ are ε-homotopic to f
and g, respectively, with respect to the pseudometric d.

For every i ≤ m consider the sets

Ai = {(x, y) ∈ I2 : x ∈ [ti−1, ti], f
′(x, y) = x0},

Bi = {(x, y) ∈ I2 : y ∈ [ti−1, ti], g
′(x, y) = x0}.

By the choice of ε and f ′, g′, Ai ∩ ({ti−1, ti} × I) = ∅ and Bi ∩ (I× {ti−1, ti}) = ∅ for all
i ≤ m. So, Ai ⊂ (ti−1, ti)× I and Bi ⊂ I× (ti−1, ti), i ≤ m.

Let us show that the set Ai separates the sets {ti−1}×I and {ti}×I for some i ≤ m. If
this is not the case, then for every i ≤ m we could find a path γi : [ti−1, ti]→ [ti−1, ti]× I
such that γi(ti−1) = (ti−1, 0), γi(ti) = (ti, 0) and γi([ti−1, ti])∩Ai = ∅. The maps γi, i ≤ m
compose a single continuous map γ : [0, 1]→ [0, 1]×I such that γ|[ti−1, ti] = γi. Then, the
composition f ′′ = f ′ ◦γ : [0, 1]→ X is a continuous map with f ′′(I) ⊂ X \{x0}. We claim
that f ′′ is 1-homotopic to f0. Indeed, the map γ : I→ I×I is homotopic to the embedding
e : I→ I× {0} ⊂ I2 via the homotopy h : I× [0, 1]→ I2, h : (x, t) 7→ (1− t)γ(x) + t e(x).
Hence, f ′ ◦h : I× [0, 1]→ X is a homotopy between f ′′ and f ′ ◦ e. Observe that, for each
x ∈ [ti−1, ti], the set h({x}× I) ⊂ [ti−1, ti]× I and thus f ′ ◦ h({x}× I) ⊂ f ′([ti−1, ti]× I).
Therefore,

diam f ′ ◦ h({x} × I) ≤ diam f ′([ti−1, ti]× I) ≤ diam f([ti−1, ti]× I) + 2 dist(f ′, f)

= diam f1([ti−1, ti]) + 2
16 < diam f0([ti−1, ti]) + 2 dist(f1, f0) + 1

8

< 1
4 + 2

16 + 1
8 = 1

2 .

This means that f ′◦h is a 1/2-homotopy between f ′′ and f ′◦e. Since f ′ is 1/6-homotopic
to f1 ◦pr1, the map f ′′ is (1/2 + 1/16)-homotopic to f1 ◦pr1 ◦ e = f1. On the other hand,
f1 being 1/16-homotopic to f0 implies that f ′′ is (1/2 + 1/8)-homotopic to f0. Hence, f ′′

is U-homotopic to f0. Finally, the choice of f0 and U implies that x0 ∈ f ′′(I), which is
not the case.
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This contradiction shows that, for some i ≤ m, the set Ai separates the sets {ti−1}×I
and {ti} × I. For the same reason, there exists j ≤ m such that Bj separates the sets
I × {tj−1} and I × {tj}. It is well known from dimension theory that Ai and Bj must
intersect at some point (x∗, y∗) ∈ [ti−1, ti]× [tj−1, tj ]. Then f ′(x∗, y∗) = x0 = g′(x∗, y∗),
which contradicts the choice of f ′, g′. Therefore, x0 is a homotopical Z1-point in X.

38. Homological Zn-sets

In our subsequent proofs we heavily rely on the machinery of homological Zn-sets. Some-
times it will be necessary to consider homologies with an arbitrary coefficient group G.
This leads to two specifications of homological Zn-sets, G-homological and ∃G-homolo-
gical Zn-sets.

In what follows we consider singular (relative) homologies with coefficients in a non-
trivial Abelian group G called a coefficient group. If G = Z we shall write Hk(X) and
Hk(X,Y ) instead of Hk(X;G) and Hk(X,Y ;G). By H̃k(X) we denote the homology
groups of X, reduced in dimension zero. Below, n will stand for a non-negative integer
or infinity.

Definition 38.1. A closed subset A of a topological space X is defined to be

• a G-homological Zn-set in X if for any open set U ⊂ X and any k < n+ 1 the relative
homology group Hk(U,U \A;G) is trivial;

• a ∃G-homological Zn-set in X if A is a G-homological Zn-set for some coefficient
group G;

• a homological Zn-set in X if A is a Z-homological set in X (equivalently, A is a G-
homological Zn-set in X for all coefficient groups G).

The following fact concerning homotopical and homological Zn-sets is of crucial im-
portance (see Theorem 10.1(5)): a homotopical Z2-set in an LC1-space is a homotopical
Zn if and only if it is a homological Zn-set.

The following lemma was established in [4, Proposition 3.5, Proposition 3.6, Theo-
rem 4.3 and Theorem 4.4] using the methods of R. Daverman and J. Walsh [19].

Lemma 38.2. Let X be an arbitrary space.

(1) Any closed subset F of a G-homological Zn-set in X is a G-homological Zn-set in X.
(2) The union of any two (homotopical) G-homological Zn-sets in X is a (homotopical)

G-homological Zn-set in X.
(3) A closed set A ⊂ X is a G-homological Zn-set in X if and only if Hk(U,U \A;G) = 0

for all k < n+1 and all sets U which belong to some fixed base for the topology of X.
(4) A closed trt-dimensional subset A ⊂ X is a G-homological Zn-set in X provided each

point a ∈ A is a G-homological Zn+d-point in X with d = trt(A).
(5) If X is a homotopically n-dense subset of a space X̃, then a closed subset A ⊂ X̃ is

a (homotopical) G-homological Zn-set in X̃ if and only if A ∩X is a (homotopical)
G-homological Zn-set in X.
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Theorem 10.1 reduces the study of homotopical Zn-sets to detecting homological Zn-
sets. In the latter case there is a wide arsenal of powerful tools of algebraic topology.
Among these tools, two are the most important in our subsequent study: the universal
coefficients formula and the Künneth formula.

The universal coefficients formula expresses homology with an arbitrary coefficient
group via homology with coefficients in the group Z of integers. The following form of
this formula is taken from [40, 3A.4].

Lemma 38.3 (Universal coefficients formula). For each pair (X,A) and all n ≥ 1 there
is a natural exact sequence

0→ Hn(X,A)⊗G→ Hn(X,A;G)→ Hn−1(X,A) ∗G→ 0.

The relative Künneth formula expresses relative homologies of a product pair via
relative homologies of the factors. The following form of this formula is taken from [64,
5.3.10].

Lemma 38.4 (Relative Künneth formula). For open sets U ⊂ X, V ⊂ Y in topological
spaces and a non-negative integer n the following exact sequence holds:

0→ [H(X,U)⊗H(Y, V )]n → Hn(X×Y,X×V ∪U×Y )→ [H(X,U)∗H(Y, V )]n−1 → 0.

Here,
[H(X,U)⊗H(Y, V )]n =

⊕
i+j=n

Hi(X,U)⊗Hj(Y, V ),

[H(X,U) ∗H(Y, V )]n−1 =
⊕

i+j=n−1

Hi(X,U) ∗Hj(Y, V ),

where G⊗H and G ∗H stand for the tensor and torsion products of the Abelian groups
G and H, respectively.

We also need the Künneth formula for fields.

Lemma 38.5 (Künneth formula for fields). Let A ⊂ X and B ⊂ Y be closed subsets of the
topological spaces X and Y , and let F be a field. Then for every integer n the homology
group Hn(X × Y,X × Y \A×B;F) is isomorphic to⊕

i+j=n

Hi(X,X \A;F)⊗F Hj(Y, Y \B;F),

where each Hi(X,X \A;F)⊗F Hj(Y, Y \B;F) is the tensor product over F.

Our final lemma, proven in [4, Theorem 9.2], describes the set of all (homotopical or
G-homological) Zn-points in LCn-spaces.

Lemma 38.6. Let X be a metrizable separable space and G be a coefficient group.

(1) The set of Zn-points in X is a Gδ-set in X.
(2) If X is an LCn-space, then the set of homotopical (resp., G-homological) Zn-points

is a Gδ-set in X.
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39. Proof of Theorem 11.1

The items of Theorem 11.1 follow from the following four lemmas.

Lemma 39.1. If each point of an LC1-space X is a homological Zn-point, and X has the
2-DD{0,2}-property, then each point of X is a homotopical Zn-point.

Proof. By Theorem 7.1(5), the 2-DD{0,2}-property of X implies that each point of X is a
homotopical Z2-point. Theorem 10.1(5) shows that each point of X, being a homological
Zn-point and a homotopical Z2-point, is a homological Zn-point in X.

Lemma 39.2. If a metrizable separable Baire LCn-space X has the 0-DD{0,2}-property
and contains a dense set of homological Zn-points, then it contains a dense set of homo-
topical Zn-points and X ∈ 0-DD{0,n}.

Proof. For n ≤ 2 the assertion follows from Theorem 7.1(3). So, we assume that n > 2.
By Theorem 7.1(3), the set Z2(X) of homotopical Z2-points is dense and Gδ in X and
by Lemma 38.6, the dense set ZZ

n(X) of homological Zn-points is Gδ in X. Moreover,
according to Theorem 10.1(5), each point of Z2(X)∩ZZ

n(X) is a homotopical Zn-point in
X. Since X is a Baire space, Z2(X)∩ZZ

n(X) is dense in X. Hence, X contains a dense set
of homotopical Zn-points. Finally, by Theorem 7.1(2), X has the 0-DD{0,n}-property.

Lemma 39.3. If X has the (2n+ 1)-DD{0,0}-property, then each point of X is a homo-
logical Zn-point.

Proof. By Theorem 7.1(1), the diagonal ∆X is a homotopical (and hence homological)
Z2n+1-set in X ×X. Then each (x, x), being a point of the homological Z2n+1-set ∆X in
X×X, is a homological Z2n+1-point in X×X. Hence, by Theorem 10.4(1), every x ∈ X
is a homological Zn-point in X.

Lemma 39.4. If X has the 2n-DD{0,0}-property with n ≥ 1, then each point of X is a
G-homological Zn-point for any group G having a divisible quotient G/Tor(G).

Proof. Let G be a non-trivial group with a divisible quotient G/Tor(G) and X be a space
possessing the 2n-DD{0,0}-property. We need to prove that each x ∈ X is a G-homological
Zn-point, i.e., the homology group Hk(U,U \ {x};G) is trivial for every k ≤ n and every
open neighborhood U ⊂ X of x.

The triviality of the above groups will follow from the universal coefficients formula
as soon as we prove that Hi(U,U \ {x})⊗G = 0 and Hj(U,U \ {x}) ∗G = 0 for all i ≤ n
and j < n. Since X has the (2n− 1)-DD{0,0}-property, according to Lemma 39.3, every
x ∈ X is a homological Zn−1-point in X. Hence,

0 = Hj(U,U \ {x}) = Hj(U,U \ {x}) ∗G = Hj(U,U \ {x})⊗G

for all j < n. So, it remains to check that Hn(U,U \ {x})⊗G = 0.
By Theorem 7.1(1), the 2n-DD{0,0}-property of X implies that the diagonal ∆X is a

homotopical Z2n-set in X2. Consequently, (x, x) is a homological Z2n-point in X2. Hence,
Hn(U,U \ {x}) ⊗ Hn(U,U \ {x}) = 0 by the Künneth formula 38.4. Since G/Tor(G) is
divisible, items (6) and (7) of Lemma 18.8 imply Hn(U,U \ {x})⊗G = 0.
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40. Proof of Theorem 11.2

The first item of Theorem 11.2 follows immediately from Theorems 7.1(5), 10.1(5) and
7.1(4). The second item has been proved in Lemma 39.2

The proof of the third item is more complicated and requires some preliminary work.

Lemma 40.1. Let p : K → M be a map between compact polyhedra, X be a metrizable
separable space with m-DD{n,k}-property for m = dimM and k ≥ n = dim(p), and (X̃, ρ)

be a complete metric space containing X. Then for every map f : K → X there are a
map f∞ : K → X̃ and a 1-homotopy (ht) : K → X such that

(1) h0 = f , h1 = f∞, ht(K) ⊂ X for t ∈ [0, 1);
(2) the restriction f∞|p−1(z) is injective and f∞(p−1(z))∩X is a Zk-set in X for every

z ∈M .

Proof. The proof follows the idea of the proof of Theorem 3.3. Since X is separable, the
function space C(Ik, X) is also separable and contains a countable dense subset D. Let
D = {gi : i ∈ ω} be an enumeration of D such that for every g ∈ D the set {i ∈ ω : gi = g}
is infinite.

Let f0 = f , ε0 = 1/3, and let pr : M × Ik → Ik stand for the natural projection.
By induction, we shall construct sequences {fi : K → X}i≥1, {ḡi : M × Ik → X}i≥1,
a sequence {εi}i≥1 of positive real numbers and a sequence {hi : K × [0, 1] → X}i≥1 of
εi-homotopies satisfying the conditions:

(a) hi+1(z, 0) = fi(z) and hi+1(z, 1) = fi+1(z) for every z ∈ K;
(b) ḡi+1 and gi+1 ◦ pr are εi-homotopic;
(c) fi+1(p−1(z)) ∩ ḡi+1({z} × Ik) = ∅ for all z ∈M ;
(d) p4 fi+1 : K →M ×X is a

(
1/(i+ 1)

)
-map;

(e) εi+1 ≤ εi/2 and εi+1 ≤ 1
2 minz∈M dist

(
fi(p

−1(z), ḡi({z} × Ik)
)
;

(f) for each map g ∈ Bρ(fi+1, 3εi+1) the diagonal product p4 g is a (1/(i+ 1))-map.

Assume that, for some i, we have already constructed functions f1, . . . , fi, ḡ1, . . . , ḡi,
positive numbers ε1, . . . , εi, and homotopies h1, . . . , hi satisfying the above conditions. By
Theorem 5.3, there are maps f ′i+1 : K → X, ḡi+1 : M×Ik → X which are εi/2-homotopic
to fi and gi+1 ◦ pr, respectively, and are such that f ′i+1(p−1(z)) ∩ ḡi+1({z} × Ik) = ∅ for
every z ∈M . Pick a positive number ε′i < εi/2 such that

ε′i ≤ 1
2 min
z∈M

dist
(
f ′i+1(p−1(z)), ḡi+1({z} × Ik)

)
.

Since k ≥ n, X has the m-DD{n}-property. Then, by Lemma 27.4, there exists a map
fi+1 : K → X ε′i-homotopic to f ′i+1 such that the diagonal product p4fi+1 : K →M×X
is a (1/(i+1))-map. It follows from the choice of ε′i that fi+1 has property (c) and can be
connected with fi by an εi-homotopy hi+1 : K × [0, 1] → X. According to Lemma 28.1,
the set O(fi+1) = {g ∈ C(K,X) : p 4 g is a (1/(i + 1))-map} is open in C(K,X).
Consequently, there is a positive number εi+1 ≤ ε′i such that Bρ(fi+1, 3εi+1) ⊂ O(fi+1).
This completes the inductive step.

Repeating the argument from the proof of Theorem 3.3, we can show that the sequence
{fi}i≥1 converges uniformly to some continuous function f∞ : K → X̃ which is 1-
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homotopic to f0 via a homotopy (ht) : K → X̃ satisfying condition (a) of our lemma
and such that f∞ is injective on each fiber p−1(z), z ∈M . The choice of the numbers εi
implies also that f∞(p−1(z)) ∩ ḡi+1({z} × Ik) = ∅ for all z ∈M and i ∈ N.

We claim that for every z ∈ M the intersection X ∩ f∞(p−1(z)) is a Zk-set in X.
Indeed, given g : Ik → X and ε > 0, there exists i ≥ 2 such that εi < ε/2 and ρ(gi+1, g) <

ε/2 (such an i exists due to the choice of the enumeration of D). Then the map ḡi+1 is
(ε/2)-near to gi+1 ◦ pr. Consequently, the map g′ : Ik → X defined by g′(y) = ḡi+1(z, y)

is (ε/2)-near to gi+1. So, g′ is ε-near to g. Moreover, we have g′(Ik) ∩ f∞(p−1(z)) =

ḡi+1({z} × Ik) ∩ f∞(p−1(z)) = ∅, demonstrating the Zk-property of X ∩ f∞(p−1(z)).

The following lemma yields the third item of Theorem 11.2.

Lemma 40.2. If each point of a metrizable separable LC2-space X is a homological
Zm+n+k-point and X has the m-DD{n,max{n,2}}-property, then it has the m-DD{n,k}-
property.

Proof. The lemma is trivial if k ≤ max{n, 2}. So assume that k > max{n, 2}. Given an
open cover U and two maps f : Im × In → X and g : Im × Ik → X we have to find maps
f ′ : Im × In → X and g′ : Im × Ik → X which are U-homotopic to f and g, respectively,
and such that f ′({z} × In) ∩ g′({z} × Ik) = ∅ for all z ∈ Im. By Lemma 18.1, there is
a metric ρ on X such that any two 1-homotopic maps are U-homotopic. Let X̃ be the
completion of the metric space (X, ρ).

By Lemma 40.1, there is a 1-homotopy (ht) : Im × In × [0, 1]→ X̃ such that

• h0 = f , ht(Im × In) ⊂ X for all t ∈ [0, 1);
• the restriction h1|{z}× In is injective and the intersection h1({z}× In)∩X is a Z2-set

in X for every z ∈ Im.

Since X ∈ LC2, the last condition implies that h1({z} × In) ∩ X is a homotopical
Z2-set in X for all z ∈ Im.

Consider the set-valued map Φ : Im× Ik ( X assigning to each point (z, y) ∈ Im× Ik
the homotopical Z2-set Φ(z, y) = X ∩ h1({z} × In) in X. The continuity of h1 implies
the compact semicontinuity of Φ. Since h1|{z} × In is an embedding, dim Φ(z, y) ≤ n

for every (z, y) ∈ Im × Ik. As all points of X are homological Zn+m+k-points, we can
apply Lemma 38.2(4) to conclude that Φ(z, y) is a homological Zm+k-set in X. Being a
homotopical Z2-set and a homological Zm+k-set, Φ(z, y) is a homotopical Zm+k-set in X
according to Theorem 10.1(5).

Now, we can apply Selection Theorem 6.1 to find a map g′ : Im × Ik → X which is
1-homotopic to g and such that g′(z, y) /∈ Φ(z, y) for all (z, y) ∈ Im × Ik. So, g′({z}× Ik)

∩h1({z}× In) = ∅ for every z ∈ Im and δ = minz∈Im dist(g′({z}× Ik), h1({z}× In)) > 0.
Pick t < 1 so large that ρ(ht, h1) < δ/2. Then the maps f ′ = ht and g′ are 1-homotopic
to f and g, respectively, and f ′({z}× In)∩g′({z}× Ik) = ∅. Thus, X has the m-DD{n,k}-
property.

Next, we prove the fourth item of Theorem 11.2.

Lemma 40.3. Suppose that X is an LC1-space with the 2-DD{0,0}-property and each point
of X is a homological Zn-point. Then X has the n-DD{0,0}-property.
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Proof. According to Theorem 7.1(1), it suffices to check that the diagonal ∆X is a ho-
motopical Zn-set in X2. By Theorem 10.1(5), this will be done as soon as we prove
that ∆X is both a homotopical Z2-set and a homological Zn-set in X2. Since X has the
2-DD{0,0}-property, ∆X is a homotopical Z2-set in X2 by Theorem 7.1(1).

So, it remains to prove that ∆X is a homological Zn-set in X2. Since each point of
X is a homological Zn-point, Theorems 10.1(3), 10.3, and 10.1(5) imply that each point
of X × I is a homotopical Zn+1-point. Then, by Theorem 7.1(4), the space X × I has
the (n+ 1)-DD{0,0}-property. So, according to Theorem 7.1(1), the diagonal ∆X×I of the
square (X×I)2 is a homotopical Zn+1-set in (X×I)2. Consequently, ∆X×I is a homological
Zn+1-set in X2× I2. Since ((X × I)2,∆X×I) is homeomorphic to (X2× I2,∆X ×∆I), the
product ∆X ×∆I is a homological Zn+1-set in X2 × I2.

Since H1(I2, I2 \ ∆I;G) = H0(I2 \ ∆I;G) = G for every coefficient group G, the
diagonal ∆I fails to be a ∃G-homological Z1-set in X2, so we can apply Theorem 10.4(3)
to conclude that ∆X is a homological Zn-set in X2.

Our next lemma yields the first part of Theorem 11.2(5).

Lemma 40.4. Let G be a non-trivial Abelian group. If each point of an LC0-space X is
a G-homological Z2-point, then X has the DD1P.

Proof. To show that X has DD1P, fix an open cover U = {Ux : x ∈ X} and two maps
f, g : I → X. Since X is LC0, it admits an open cover V = {Vx : x ∈ X} refining U
with the following property: any two points y, z ∈ Vx can be linked by an arc in Ux for
every x ∈ X. Now, take a partition 0 = t0 < t1 < · · · < tn = 1 of [0, 1] such that the
family {[ti−1, ti] : 0 ≤ i ≤ n} refines f−1(V). Then f([ti−1, ti]) lies in Vxi for some point
xi ∈ X, 0 ≤ i ≤ n. The choice of the set Vxi

guarantees the existence of an embedding
f ′i : [ti−1, ti]→ Uxi such that f ′i(ti−1) = f(ti−1) and f ′(ti) = f(ti). The maps f ′i compose
a continuous map f ′ : [0, 1]→ X. Obviously, f ′ is U-near to f and f ′(I) is a finite union
of arcs and hence dim f ′(I) ≤ 1. Since all points of X are G-homological Z2-points, we
may apply Lemma 38.2(4) to conclude that f ′(I) is a G-homological Z1-set in X. So, by
Theorem 10.1(4), f ′(I) is a Z1-set inX. Consequently, there exists a map g′ : I→ X\f ′(I)
which is U-near to g.

Lemma 40.4 yields the following non-trivial statement.

Lemma 40.5. Let X be a metrizable LC1-space with the 0-DD{0,2}-property and any point
of X is a G-homological Z2-point in X for some coefficient group G. Then X has the
2-DD{0,0}-property.

Proof. By Lemma 40.4, X has the DD1P-property. Then, being an LC1-space, X has
the 0-DD{1,1}-property. So, X has both the 0-DD{0,2}-property and 0-DD{1,1}-property.
Now, we can apply the base enlargement formula from Theorem 8.3(3) to conclude that
X has the 2-DD{0,0}-property.

Combining Lemma 40.5 with Theorem 7.1(2), we obtain the next lemma providing a
proof of the second part of Theorem 11.2(5).
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Lemma 40.6. Let X be a metrizable LC1-space containing a dense set of homotopical
Z2-points. If for some group G each point of X is a G-homological Z2-point, then X has
the 2-DD{0,0}-property.

41. Proof of Theorem 12.1

The proof of Theorem 12.1 is divided into two lemmas.

Lemma 41.1. Let (X, ρ) be a complete metric space containing a countable family F of
homotopical Zk-sets such that each compact set K ⊂ X \F is a homotopical Zn-set in X.
Then X has the 0-DD{n,k}-property.

Proof. Fix two maps f : Ik → X and g : In → X. We have to show that these maps are
1-homotopic to maps f ′ : Ik → X, g′ : In → X with disjoint images.

Using that F is a countable family of homotopical Zk-sets in X, we can construct a
map f ′ : Ik → X \

⋃
F which is 1-homotopic to f . Then f ′(Ik) is a homotopical Zn-set

in X. Consequently, g is 1-homotopic to a map g′ : In → X \ f ′(Ik).

Lemma 41.2. Let X be a separable (complete) metric LCk-space X possessing the
0-DD{n,k}-property with n ≤ k. Then there exists a countable family F of at most n-
dimensional (compact) Zk-sets in X such that each compact (closed) subset K \

⋃
F is a

homotopical Zn-set in X.

Proof. The separability of X implies the separability of C(In, X), so we can fix a count-
able dense subset D = {fi : i ∈ ω} in C(In, X). By Lemma 21.3, X embeds into a Polish
LCk-space X̃ as a dense relative LCk-subset. If X is complete, then we may assume that
X̃ = X. Let ρ be a complete metric on X̃. According to Proposition 40.1, for every
i, j ∈ ω there exists a 2−j-homotopy (hi,jt )t∈I : In → X̃ such that

• hi,j0 = fi;
• hi,jt (In) ⊂ X for all t ∈ [0, 1);
• hi,j1 : In → X̃ is an embedding with X ∩ hi,j1 (In) being a Zk-set in X.

Since hi,j1 are embeddings, each set Xi,j = X ∩ hi,j1 (In) is of dimension ≤ n.
We claim that each compact subset K ⊂ X \

⋃
i,j Xi,j is a Zn-set in X. Given any

map f : In → X and ε > 0, find i, j ∈ ω with ρ(f, fi) < ε/2 and 2−j < ε/2. Since
hi,j1 (In)∩K = ∅, there is a δ ∈ [0, 1) such that hi,jδ (In)∩K = ∅. Then the map f ′ = hi,jδ :

In → X is ε-near to f and the image f ′(In) misses K. This means that K is a Zn-set.
Since X is an LCn-space, K is a homotopical Zn-set in X.

If X is complete, then X̃ = X and the same argument shows that each closed subset
K ⊂ X missing

⋃
i,j Xi,j is a homotopical Zn-set in X.

42. Proof of Theorem 12.2

We shall closely follow the proof of the homological characterization of the 0-DD{∞,∞}-
property due to Daverman and Walsh [19]. Their technique is based on the notion of a
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Čech carrier for a homology element z ∈ Hq(U, V ) where V ⊂ U are open subsets of a
metrizable LCn-space X. For such a space X every singular homology group Hq(U, V ),
q ≤ n, coincides with the Čech homology group Ȟq(U, V ). So, for any compact pair
(C, ∂C) ⊂ (U, V ) we have an inclusion homomorphism i∗ : Ȟq(C, ∂C) → Ȟq(U, V ) =

Hq(U, V ). If z ∈ Hq(U, V ) belongs to Im(i∗), then the pair (C, ∂C) is called a Čech
carrier for z.

The following lemma is a quantified version of Lemma 3.1 from [19] and its proof is
analogous.

Lemma 42.1. Let X be a metrizable LCn-space and B be a base of the topology of X
which is closed under finite unions. A closed subset A of X is a homological Zn-set in X
if and only if for any open sets V ⊂ U from B each z ∈ Hk(U, V ) with k ≤ n has a Čech
carrier (C, ∂C) with C ∩A = ∅.

We also need Lemma 42.2 below which is a counterpart of [19, Lemma 3.3] and has a
similar proof.

Lemma 42.2. Let F be a countable family of homological Zn-sets in a Polish LCn-space
X. Then for any pair (U, V ) of open subsets of X any element z ∈ Hk(U, V ), k ≤ n, has
a Čech carrier (C, ∂C) with C ⊂ U \

⋃
F .

With Lemmas 42.1 and 42.2 in hand, we are now ready to prove Theorem 12.2. Let X
be a Polish LCm-space each of whose points is a homological Zm+2-point and let n, k ≤ m
be any (finite or infinite) numbers. Suppose that X has the 0-DD{2,2}-property and F is
a countable family of homological Zn-sets in X such that each compact subset of X \

⋃
F

is a homological Zk-set. We have to prove that X has the 0-DD{n,k}-property. There is
nothing to prove if m ≤ 2. So, we suppose that m > 2.

It follows from Proposition 40.1 (and the 0-DD{2,2}-property of X) that C(I2, X)

contains a countable dense subset D consisting of embeddings such that f(I2) is a Z2-
set in X for every f ∈ D. Since each point of X is a homological Zm+2-point, any set
f(I2), f ∈ D, being a 2-dimensional Z2-set in X, is a homological Zm-set in X (see
Lemma 38.2(4)). Hence, by Theorem 10.1(5), all f(I2), f ∈ D, are homotopical Zm-sets.
Thus, the countable family E = {f(I2) : f ∈ D} consists of homotopical Zm-sets in X.

Let B be a countable base for the topology of X, closed under finite unions. Since
X is an LCn-space, the set {(U, V, q, z) : V ⊂ U, V, U ∈ B, q ≤ n, z ∈ Hq(U, V )}
is countable and can be enumerated as {(Ui, Vi, q(i), zi) : i ∈ ω}. By Lemma 42.2, each
zi ∈ Hq(i)(Ui, Vi) has a Čech carrier (Ci, ∂Ci) ⊂ (Ui, Vi) such that Ci misses

⋃
F and

⋃
E .

Then every Ci is both a homological Zk-set (because it misses
⋃
F) and a Z2-set (because

it misses
⋃
E). Since X is an LC2-space, each Ci is a homotopical Z2-set in X, and hence

a homotopical Zk-set (by Theorem 10.1(5)). Thus, C = {Ci : i ∈ ω} is a countable family
of homotopical Zk-sets in X.

We claim that each compact subset K ⊂ X \
⋃
C is a homological Zn-set. According

to Lemma 42.1, this will follow as soon as we show that, for any open pair (U, V ) with
U, V ∈ B and any z ∈ Hq(U, V ) with q ≤ n, there exists a Čech carrier (C, ∂C) for z
such that C ∩K = ∅. To this end, we choose i with (Ui, Vi, q(i), zi) = (U, V, q, z). Then
(Ci, ∂Ci) is a Čech carrier for zi = z with Ci ∩K = ∅.
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Now consider the family C ∪E consisting of homotopical Zk-sets in X. Note that each
compact set K ⊂ X disjoint from

⋃
(C ∪ E) is a homological Zn-set in X (because K is

disjoint
⋃
C) and a homotopical Z2-set (because K is disjoint

⋃
E). Hence, K is a homo-

topical Zn-set in X. Finally, Theorem 12.1 implies that X has the 0-DD{n,k}-property.

43. Proof of Theorem 12.3

Assume that each point of a separable metrizable LCmax{n,k}-space X is a homological
Zn+k-point and X has the properties AP[n] and 0-DD{2,min{2,n}}. We have to check that
X has the 0-DD{n,k}-property. Let m = max{n, k}. By Lemma 21.3, X embeds as a
dense relative LCm-subset in a Polish LCm-space X̃. Fix a complete metric ρ on X̃.

We consider three cases depending on the value of n.
Assume that n = 0. There is nothing to prove if k ≤ 2. So, we assume that k > 2.

In this case the 0-DD{0,2}-property of X yields the same property for X̃ because X is
homotopically m-dense in X̃ and m ≥ k ≥ 2. By Theorem 7.1(3), the set Z2(X̃) of
homotopical Z2-points is dense in X̃. Since X ∈ ZZ

k and X is homotopically k-dense in
X̃ (see Lemma 21.6), Lemma 38.2(6) implies that X̃ ∈ ZZ

k . Applying Theorem 11.2(2),
we conclude that X̃ has the 0-DD{0,k}-property. Then, by Proposition 5.5, the space X,
being homotopically k-dense in X̃, has also the 0-DD{0,k}-property.

Next, assume that n = 1. In this case X has the 0-DD{2,1}-property. If k ≤ 1, then
we are done. So, let m ≥ k > 1. Then X is an LC2-space. According to Proposition 5.5,
the space X̃ has the 0-DD{2,1}-property. Consequently, by Theorem 12.1, X̃ contains a
countable family F = {Fi : i ∈ ω} of at most one-dimensional closed Z2-subsets such
that each compact K ⊂ X̃ \F is a homotopical Z1-set in X̃. The homotopy 2-negligibility
of X in X̃ implies that any intersection X ∩ Fi is a homotopical Z2-set in X. Since each
point of X is a homological Z1+k-point, Lemma 38.2(4) shows that every Fi ∩ X is a
homological Zk-set in X. Therefore, the sets Fi∩X, being homotopical Z2-sets in X, are
homotopical Zk-sets in X. Then, according to Lemma 38.2(6), every Fi is a homotopical
Zk-set in X̃. Because each compact subset of X̃ \

⋃
F is a homotopical Z1-set in X̃,

we can apply Theorem 12.1 to conclude that X̃ has the 0-DD{1,k}-property. Hence, by
Proposition 5.5, X also has the 0-DD{1,k}-property.

Finally, consider the case n ≥ 2. In this case X has AP[n] and 0-DD{2,2}. Fix a
countable dense set {fi : i ∈ ω} in C(In, X). Using AP[n], for every i ∈ ω and j ∈ ω we
can find a map fi,j : In → X which is 2−j-homotopic to fi and trt fi,j(In) < n+ 1. Since
each point of X is a homological Zn+k-point, all fi,j(In) are homological Zk-sets in X

(see Lemma 38.2(4)). It is clear now that each compact set K ⊂ X missing
⋃
i,j∈ω fi,j(In)

is a homotopical Zn-set in X. Hence, by Theorem 12.2, X has the 0-DD{n,k}-property.

44. Proof of Theorem 13.1

The first item of Theorem 13.1 follows from the next lemma.

Lemma 44.1. If a Tychonoff space X with the m-DD{0,k}-property is locally rectifiable
at a point x0 ∈ X, then x0 is a homotopical Zm+k-point in X.
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Proof. Being locally rectifiable at x0, the space X possesses a homeomorphism H : U×X
→ U × X, where U is a neighborhood of x0, such that for any point x ∈ U there
is a homeomorphism Hx : X → X with Hx(x0) = x and H(x, z) = (x,Hx(z)). The
homeomorphism H generates the map

H̃ : U × U ×X → X, (x, y, z) 7→ Hy ◦H−1
x (z),

such that H̃(x, y, x) = y and H̃(x, x, z) = z for all (x, y, z) ∈ U × U ×X.
To show that x0 is a homotopical Zm+k-point, assume that X has the m-DD{0,k}-

property and fix an open cover U of X and a map f : Im× Ik → X. We have to construct
a map f ′ : Im × Ik → X \ {x0} which is U-homotopic to f . To this end, consider the
constant map g : Im → {x0} and observe that the map

hg,f : Im × Ik → X, (z, y) 7→ H̃(g(z), x0, f(z, y)),

coincides with f . By a standard argument, using the continuity of H and the compactness
of g(Im) = {x0} and f(Im × Ik), we can find an open cover V of X with St(x0,V) ⊂ U

and such that for any g′ : Im → X and f ′ : Im × Ik → X that are V-near to g and f ,
respectively, hg′,f ′ is U-near to f = hg,f .

Since X has the m-DD{0,k}-property, g and f can be approximated by g′ : Im → X

and f ′ : Im × Ik → X that are V-homotopic to g and f , respectively, so that g′({z}) ∩
f ′({z} × Ik) = ∅ for every z ∈ Im. Let (gt)t∈I : Im → X be a V-homotopy linking g
and g′ and (ft) : Im × Ik → X be a V-homotopy linking f and f ′. Then the homotopy
(ht) : Im × Ik → X defined by

ht(z, y) = H̃(gt(z), x0, ft(z, y)) for (z, y) ∈ Im × Ik

is a U-homotopy connecting h0 = f with h1 = hg′,f ′ . The homotopy (ht) is well-defined
because gt(In) ⊂ St(x0,V) ⊂ U for all t ∈ [0, 1]. We claim that x0 /∈ h1(Im × Ik). Indeed,
if x0 = h1(z, y) for some (z, y) ∈ Im × Ik, then according to the definition of H̃, we
would have x0 = H̃(g′(z), x0, f

′(z, y)) = Hx0
◦H−1

g′(z)(f
′(z, y)). Applying to this equality

the homeomorphisms H−1
x0

and then Hg′(z) we obtain x0 = H−1
x0

(x0) = H−1
g′(z)(f

′(z, y))

and then g′(z) = Hg′(z)(x0) = Hg′(z) ◦H−1
g′(z)(f

′(z, y)) = f ′(z, y), which contradicts the
choice of g′, f ′. Thus, h1 : Im × Ik → X is U-homotopic to f and its image misses x0,
demonstrating that x0 is a homotopical Zm+k-point in X.

Combining the above lemma with Theorem 7.1(2), we obtain the second item of
Theorem 13.1:

Lemma 44.2. If a locally rectifiable Tychonoff space X has the m-DD{0,k}-property, then
it has the i-DD{0,j}-properties for all i, j with i+ j ≤ m+ k.

We need an auxiliary result for the proof of Theorem 13.1(3).

Lemma 44.3. Let K̃ be a compact polyhedron in a Tychonoff space X̃ and f : K̃ → Y be
a continuous map into a Tychonoff space Y . Assume that Y is locally rectifiable at each
point y ∈ f(K̃) and satisfies one of the following conditions:

• each y ∈ f(K̃) is a homotopical Zm-point in Y ;
• Y is an LC1-space and each y ∈ f(K̃) is a homological Zm-point in Y .
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If X is a subset of X̃ such that K = K̃ ∩X is a homotopical Zk-set in X, then the graph
Gr(f |K) = {(x, f(y) : x ∈ K} of f |K is a homotopical Zk+m+1-set in X × Y .

Proof. First we check that K × {y0} is a homotopical Zk+m+1-set in X × Y for every
y0 ∈ f(K̃). When y0 is a homotopical Zm-point in Y , this follows immediately from
Theorem 10.3(1). When Y is an LC1-space and y0 is a homological Zm-point, we argue
as follows. If k = m = 0, then y0, being a homological Z0-point in Y , is a homotopical
Z0-set in Y by Theorem 10.1(3). Consequently, according to Theorem 10.3(1), K × {y0}
is a homotopical Z1-set in X×Y and we are done. If k+m ≥ 1, then both K and {y0} are
homotopical Z0-sets (being homological Z0-sets) and one of them is a homotopical Z1-set
(K is such a set in case k ≥ 1, andm ≥ 1 implies that {y0} is a homotopical Z1-set in Y as
a homological Z1-point in the LC1-space Y , see Theorem 10.1(2,4)). By Theorem 10.3(1),
the product K × {y0} is a homotopical Z2-set. Taking into account that the latter set
is a homological Zk+m+1-set (by Theorem 10.3(2)) and applying Theorem 10.1(5), we
conclude that K × {y0} is a homotopical Zk+m+1-set in X × Y .

Now, we are ready to prove that Gr(f |K) is a homotopical Zk+m+1-set in X × Y .
By Lemma 38.2(2), it suffices to construct a closed finite cover of Gr(f |K) consisting
of homotopical Zn+m+1-sets in X × Y . The existence of such a cover will follow from
the compactness of K̃ as soon as, for every x0 ∈ K̃, we construct a closed neighborhood
C̃ ⊂ K̃ of x0 such that Gr(f |C) = Gr(f |K)∩C̃×Y is a homotopical Zn+m+1-set inX×Y ,
where C = C̃ ∩X. To this end, fix x0 ∈ K̃ and use the continuous homogeneity of Y at
y0 = f(x0) to find a neighborhood U ⊂ Y of y0 and a homeomorphismH : U×Y → U×Y
such that for every y ∈ U there is a homeomorphism Hy : Y → Y with Hy(y) = y0 and
H(y, z) = (y,Hy(z)) for all (y, z) ∈ U × Y . By continuity of f , the point x0 has a closed
neighborhood C̃ ⊂ K̃ with f(C̃) ⊂ U . Since K̃ is a polyhedron, we can additionally
assume that C̃ is a compact absolute retract, so there is a retraction r : X → C̃. Obviously,
the range of g = r◦f : X → Y is contained in U . Hence, the homeomorphism h : X×Y →
X × Y , (x, y) 7→ (x,Hg(x)(y)), is well defined. Observe that for every x ∈ C we have

h(x, f(x)) = (x,Hg(x)(f(x))) = (x,Hf(x)(f(x))) = (x, y0).

Therefore, h(Gr(f |C)) ⊂ C × {y0} ⊂ K × {y0}. As we already proved, the latter set is a
homotopical Zk+m+1-set in X × Y .

Since (X × Y,Gr(f |C)) and
(
X × Y, h(Gr(f |C))

)
are homeomorphic, Gr(f |C) is a

homotopical Zk+m+1-set in X × Y .

Lemma 44.4. Let X be a Tychonoff locally rectifiable (LC1-)space with X ∈ Zm+p

(resp., X ∈ ZZ
m+p). Then, for any n ≤ k and any separable metrizable LCk-space

Y ∈ m-DD{n,k}, the product X × Y has the m-DD{n,k+p+1}-property.

Proof. To show that X × Y has the m-DD{n,k+p+1}-property, fix an open cover U and
maps f = (fX , fY ) : Im × In → X × Y , g : Im × Ik+p+1 → X × Y . Let ρ be any metric
generating the topology of Y . The compactness of Im×In implies the existence of an ε > 0

such that for any f ′Y : Im×In → Y ε-homotopic to fY the map (fX , f
′
Y ) : Im×In → X×Y

is U-homotopic to f = (fX , fY ).
Let Ỹ be the completion of the metric space (Y, ρ). Since Y has the m-DD{n,k}-

property, Proposition 40.1 yields an ε-homotopy (ht) : Im × In → Ỹ such that
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• h0 = fY ,
• ht(Im × In) ⊂ Y for all t ∈ [0, 1);
• h1|{z} × In is injective and Kz = Y ∩ h1({z} × In) is a Zk-set in Y for every z ∈ Im.

Because Y is an LCk-space, the latter intersection is a homotopical Zk-set in Y .
For every t ∈ [0, 1] consider ft = (fX , ht) : Im×In → X× Ỹ and note that f0 = f . We

claim that for every z ∈ Im the intersection Bz = (X×Y )∩f1({z}× In) is a homotopical
Zk+m+p+1-set in X × Y .

The subspace K̃z = h1({z} × In) of Ỹ , being homeomorphic to In, is an absolute
retract. Consider the continuous function ξ = fX ◦ h−1

1 : K̃z → X and observe that Bz
is the intersection of X × Y with the graph Gr(ξ). Since Kz = K̃z ∩ Y is a homotopical
Zk-set in Y and X ∈ Zm+p ∪ (ZZ

m+p ∩LC1), we may apply Lemma 44.3 to conclude that
Bz is a homotopical Zk+m+p+1-set in X × Y .

Now consider the set-valued map Φ : Im × Ik+p+1 ( X × Y assigning to each pair
(z, t) ∈ Im × Ik+p+1 the homotopical Zm+k+p+1-set Bz = (X × Y ) ∩ f1({z} × In). The
continuity of f1 implies the compact semicontinuity of Φ. Applying Selection Theorem 6.1,
we can find a map g′ : Im × Ik+p+1 → X × Y which is U-homotopic to g and such that
g′(z, t) /∈ Φ(z) for every (z, t) ∈ Im × Ik+p+1. This means g′({z}× Ik+p+1)∩ f1({z}× In)

= ∅ for every z ∈ In. By continuity of the homotopy (ht), there is a δ < 1 such that
g′({z}×Ik+p+1)∩fδ({z}×In) = ∅ for every z ∈ In, where fδ = (fX , hδ) : Im×In → X×Y .
Then g′ and f ′ = fδ are the required maps demonstrating the m-DD{n,k+p+1}-property
of X × Y .

45. Proof of the kth root formulas from Theorem 14.1

In this section we establish the k-root formulas from Theorem 14.1.

Lemma 45.1. Let X be a space whose power Xk has the (nk + k − 1)-DD{0,0}-property.
Then

(1) the diagonal ∆X is a homological Zn-set in X2;
(2) X has the n-DD{0,0}-property provided X is an LC1-space having the 2-DD{0,0}-

property.

Proof. According to Theorem 7.1(1), the (nk + k − 1)-DD{0,0}-property of Xk implies
that the diagonal ∆Xk of Xk ×Xk is a homotopical (and hence, homological) Znk+k−1-
set in Xk × Xk. Since (Xk × Xk,∆Xk) is homeomorphic to ((X × X)k,∆k

X), ∆k
X is a

homological Znk+k−1-set in (X ×X)k. Applying Theorem 10.4(1), we conclude that ∆X

is a homological Zn-set in X ×X.
Now, assuming that X is an LC1-space with the 2-DD{0,0}-property, we shall prove

thatX has the n-DD{0,0}-property. By Theorem 7.1(1), the diagonal ∆X is a homotopical
Z2-set in X2. Then ∆X , being a homological Zn-set in X2, is a homotopical Zn-set in X2

(see Theorem 10.1(5)). The last conclusion, according to Theorem 7.1(1), implies that X
has the n-DD{0,0}-property.

Now, we turn to the second item of Theorem 14.1.
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Lemma 45.2. Let k, n ∈ N and X be a metrizable separable LCnk+k−1-space with the
0-DD{0,2}-property such that Xk has the 0-DD{0,nk+k−1}-property. Then X has the
0-DD{0,n}-property.

Proof. The lemma is trivial if n ≤ 2 or k = 1. So, let n > 2 and k > 1. Let us note
that, since X is an LCnk+k−1-space, so is Xk. By Lemma 21.3, X can be embedded
into a Polish LCnk+k−1-space X̃ as a relative LCnk+k−1-subset. Then Xk is a relative
LCnk+k−1-subset in X̃k. Consequently, the Polish space X̃k has the (nk + k − 1)-DD{0,0}-
property according to Proposition 5.5. For the same reason, X̃ has the 0-DD{0,2}-property.
Then Theorem 7.1(3) implies the following two facts: the set Z2(X̃) of all homotopical
Z2-sets is dense Gδ in X̃, and X̃k ∈ Znk+k−1. Applying Theorem 10.7(2), we conclude
that X ∈ ZZ

n. This means that the set ZZ
n(X̃) of homological Zn-points is dense in X̃.

By Lemma 38.6, ZZ
n(X̃) is of type Gδ in X̃. Then Z2(X̃) ∩ ZZ

n(X̃) is also a dense Gδ
in X̃. Since X̃ is an LC1-space, the latter intersection coincides with the set Zn(X̃) of
all homotopical Zn-points in X̃. Hence, X̃ ∈ Zn and, by Theorem 7.1(2), X̃ has the
0-DD{0,n}-property. Since X is a relative LCn-set in X̃, Proposition 5.5 guarantees that
X also has the 0-DD{0,n}-property.

46. Proof of the division formulas from Theorem 14.2

We divide the proof into four lemmas corresponding to the division formulas from The-
orem 14.2.

Lemma 46.1. Let n ∈ ω∪{∞}, m ∈ ω, X be a topological space, and Y be a space whose
diagonal ∆Y fails to be a ∃G-homological Zm-set in Y 2. If the product X × Y has the
(n+m)-DD{0,0}-property, then:

(1) the diagonal ∆X of X is a homological Zn-set in X2;
(2) X has the n-DD{0,0}-property provided X is an LC1-space with 2-DD{0,0}-property.

Proof. Because X × Y has the (n+m)-DD{0,0}-property, its diagonal ∆X×Y is a homo-
topical Zn+m-set in (X × Y )2 (see Theorem 7.1(1)). Since ((X × Y )2,∆X×Y ) is home-
omorphic to (X2 × Y 2,∆X × ∆Y ), the product ∆X × ∆Y is a homotopical Zn+m-set
in X2 × Y 2. Taking into account that ∆Y is not an ∃G-homological Zm-set in Y 2 and
applying Theorem 10.4(3), we conclude that ∆X is a homological Zn-set in X2. This
proves the first item.

To prove the second item, assume thatX is an LC1-space with the 2-DD{0,0}-property.
Consequently, ∆X is a homotopical Z2-set in X2 according to Theorem 7.1(1). Then ∆X ,
being a homotopical Z2-set and a homological Zn-set in X2 ∈ LC1, is a homotopical Zn-
set in X2 by Theorem 10.1. This implies that X has the n-DD{0,0}-property, in view of
Theorem 7.1(1).

We turn now to the proof of the second division formula from Theorem 14.2.

Lemma 46.2. Let X be a separable metrizable LCn+m-space such that X × Y has the
0-DD{0,n+m}-property for some metrizable separable Baire LCn+m-space Y containing
no non-empty open set U ∈

⋃
GZ

G

m.
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(1) If X is a Polish space, then it contains a dense set of homological Zn-points.
(2) If X has the 0-DD{0,2}-property, then it has the 0-DD{0,n}-property.

Proof. The spaces X and Y , being LCn+m, can be embedded as relative LCn+m-subsets
into Polish LCn+m-spaces X̃ and Ỹ , respectively (we assume that X̃ = X if X is Polish).

Then X×Y is a relative LCn+m-set in X̃×Ỹ and the 0-DD{0,n+m}-property of X×Y
implies the same property for X̃ × Ỹ (see Proposition 5.5). Hence, by Theorem 7.1(3),
the set Zn+k(X̃ × Ỹ ) of all homotopical Zn+k-points is dense and Gδ in X̃ × Ỹ .

Next, we shall show that the set Z∃Gm (Ỹ ) of ∃G-homological Zm-points is meager in Ỹ .
By Theorem 10.2, a point y ∈ Y is a ∃G-homological Zm-point if and only if it

is a G-homological Zm-point for some Bockstein group G from the countable family
B = {Q,Zp,Qp, Rp : p ∈ Π}. Thus, Z∃Gm (Ỹ ) =

⋃
G∈BZGm(Ỹ ), where ZGm(Ỹ ) stands for

the set of all G-homological Zm-points in Ỹ . By Lemma 38.6(2), the latter set is Gδ in Ỹ .
We claim that ZGm(Ỹ ) is nowhere dense in Ỹ for any group G ∈ B. Indeed, otherwise
we could find an open set U ⊂ Ỹ such that U ∩ ZGm(Ỹ ) is dense Gδ in U . Since Y is a
Baire space, Y ∩ U ∩ ZGm(Ỹ ) is dense in U ∩ Y and consists of G-homological Zm-points
in Y (see Lemma 38.2(5)). Consequently, U ∈ ZGm, which is a contradiction. Therefore,
all ZGm(Ỹ ), G ∈ D, are nowhere dense sets in Ỹ and Z∃Gm (Ỹ ) =

⋃
G∈BZGm(Ỹ ) is a meager

subset of Ỹ . Then X̃×Z∃Gm (Ỹ ) is meager in X̃× Ỹ . Hence, Zn+m(X̃× Ỹ )\(X̃×Z∃Gm (Ỹ ))

is dense in X̃ × Ỹ .
To show that the set ZZ

n(X̃) of homological Zn-points is dense in X̃, fix any non-empty
open set U ⊂ X̃ and pick (x, y) ∈ (U × Ỹ ) ∩ Zn+m(X̃ × Ỹ ) \ X̃ × Z∃Gm (Ỹ ). Taking into
account that (x, y) ∈ Zn+m(X̃ × Ỹ ) while y /∈ Z∃Gm (Ỹ ) and applying Theorem 10.4(3),
we find that x is a homological Zn-point in X̃. Thus, the set of homological Zn-points is
dense in X̃. This completes the proof of the first item of our lemma because X = X̃.

To prove the second item, assume that X has the 0-DD{0,2}-property. If n ≤ 2, then
X has the 0-DD{0,n}-property and we are done. So, let n > 2. Since X is a relative
LC2-set in X̃, by Proposition 5.5, the completion X̃ of X has the 0-DD{0,2}-property.
Then Theorem 7.1(3) implies that the set Z2(X̃) of homotopical Z2-points is dense and
Gδ in X̃. As we have already established, ZZ

n(X̃) is also dense in X̃ and Gδ according
to Lemma 38.6. Then the Baire theorem implies that Z2(X̃) ∩ ZZ

n(X̃) is dense in X̃,
while Theorem 10.1(5) ensures that this intersection coincides with the set Zn(X̃) of
homotopical Zn-points in X̃. Finally, by Theorem 7.1(2), X̃ has the 0-DD{0,n}-property.
So, X also has the 0-DD{0,n}-property (see Proposition 5.5).

Lemma 46.3. Let X ∈ ZZ
k+2 be a separable metrizable LCk+m-space with the 0-DD{2,2}-

property. Then X has the 0-DD{n,k}-property with n ≤ k provided the product X×Y has
the 0-DD{n+m,k+m}-property for some metrizable separable LCk+m-space Y /∈ Z∃Gm .

Proof. In light of Proposition 5.5 and Lemma 38.2(6), we may assume that X and Y are
Polish spaces. Since X × Y has the 0-DD{n+m,k+m}-property, we apply Theorem 12.1 to
find a countable family F = {Fi : i ∈ ω} of homological Zn+m-sets in X × Y such that
any compact subset K ⊂ X×Y that misses

⋃
F is a homological Zk+m-set in X×Y . By

our hypothesis, Y contains a point y0 which is not a ∃G-homological Zm-point in Y . For
every i ∈ ω consider the closed subset Ei = {x ∈ X : (x, y0) ∈ Fi} which is a homological
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Zn-set in X according to Theorem 10.4(3). We claim that each compact subset K ⊂ X

disjoint from
⋃
i∈ω Ei is a homological Zk-set in X. Indeed, otherwise Theorem 10.4(3)

would imply that K × {y0} fails to be a homological Zk+m-set in X × Y , which is not
the case because K ×{y0} misses

⋃
F . Now, we apply Theorem 12.2 to conclude that X

has the 0-DD{n,k}-property.

Lemma 46.4. Let n,m, k be finite or infinite numbers with n ≤ k. A separable metriz-
able LCk+m-space X ∈ ZZ

n+k+m with the 0-DD{2,2}-property has the 0-DD{n,k}-property
provided X × Y has the 0-DDn+m-property for some metrizable separable LCn+m-space
Y /∈

⋃
GZGm.

Proof. By Theorem 10.2,
⋃
GZGm coincides with the countable union

⋃
G∈BZGm, where

B = {Q,Zp,Qp, Rp : p ∈ Π}. Because of Proposition 5.5 and Lemma 21.3, we may
assume that X and Y are Polish. Since Y /∈

⋃
GZGm, for every group G ∈ B there exists

a point yG ∈ Y \ ZGm(Y ).
SinceX×Y has the 0-DDn+m-property, we can apply Theorem 12.1 to find a countable

family {Fi : i ∈ ω} of compact (n + m)-dimensional subsets in X × Y such that any
compact subset K ⊂ X × Y that misses

⋃
i Fi is a homological Zn+m-set in X × Y .

For every i ∈ ω and G ∈ B consider the set Ei,G = {x ∈ X : (x, yG) ∈ Fi}. Then
E = {Ei,G : i ∈ ω, G ∈ B} is a countable family of at most (n + m)-dimensional
compacta. We claim that each compact K ⊂ X \

⋃
E is a homological Zn-set in X. This

follows from Theorem 10.4(4) and the fact that, for every G ∈ B, the product K ×{yG}
is a homological Zn+m-set in X × Y (because K × {yG} is disjoint from

⋃
i Fi) while yG

is not a G-homological Zm-point in Y .
Since X ∈ ZZ

n+m+k and dimEi,G ≤ dimFi ≤ n + m, Lemma 21.2(4) implies that
each set Ei,G is a homological Zk-set in X. So, E is a countable family of homological
Zk-sets in X such that each compact subset of X \

⋃
E is a homological Zn-set in X.

Now, the 0-DD{n,k}-property of X follows from Theorem 12.2 provided X ∈ ZZ
k+2. The

last condition holds if n+m ≥ 2. If k +m ≥ 2 and n ≤ 2, then the 0-DD{n,k}-property
of X follows from Theorem 11.2(3). If k+m ≤ 1 and n ≤ 2, then X ∈ 0-DD{2,2} implies
the 0-DD{n,k}-property of X.

47. Proof of Corollaries 15.1–15.4

Proof of Corollary 15.1. The first item of this corollary follows from Theorems 7.1(4,5),
11.1(3) and 10.1.

The second item follows from Theorems 11.1(3) and 11.2(4).
The third item follows from Theorems 7.1(3) and 11.2(1).
The fourth item can be derived from Theorem 12.2 and Lemma 38.2(5) using the

argument from the proof of Theorem 12.3.

Proof of Corollary 15.3. The first two items are particular cases of Theorem 14.1(1,2).
To prove the third item, assume that X is an LC1-space with the 2-DD{0,2}-property

and some finite power Xk of X has the ∞-DD{0,0}-property. By Theorem 14.1(1), X
has the ∞-DD{0,0}-property, and by Theorem 11.1(3), all points of X are homological
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Z∞-points. On the other hand, the 2-DD{0,2}-property of X implies that all points of X
are homotopical Z2-points (see Theorem 7.1(5)). Hence, according to Theorem 10.1(5),
all points of X are homotopical Z∞-points, being homotopical Z2-points and homological
Z∞-points. Finally, Theorem 7.1(4) implies that X has the ∞-DD{0,∞}-property.

To prove the fourth item, assume that X is a metrizable separable LC∞-space with
AP[∞] and 0-DD{2,2} and suppose that some finite power Xk of X has the 0-DD{∞,∞}-
property. Then Xk has the ∞-DD{∞,∞}-property and, by Theorem 14.1(1), X has the
∞-DD{0,0}-property. Consequently, Theorem 11.1(3) shows that all points ofX are homo-
logical Z∞-points. Applying Theorem 15.1(4), we conclude that X has the 0-DD{∞,∞}-
property.

Proof of Corollary 15.4. The first item of Corollary 15.4 will follow from Theorem 14.2(1)
as soon as we prove that if Y /∈

⋃
GZG∞ then Y does not belong to ∆Z∃G∞ . Assuming the

converse, find a coefficient group G such that ∆Y is a G-homological Z∞-set in Y 2. By
Theorem 10.2, we can assume that G ∈ {Q,Zp : p is prime} is a field. Since Y /∈ ZG∞,
there is a point yG which is not a G-homological Zk-point in Y for some k. The Künneth
formula 38.5 for coefficients in a field implies that (y0, y0) is not a G-homological Z2k-
point in Y 2. This is not possible because (y0, y0) is a point of the G-homological Z∞-set
∆Y in Y 2.

To prove the second item, assume that X is an LC1-space with 2-DD{0,2} and X ×Y
has the ∞-DD{0,∞}-property for some Y /∈

⋃
GZG∞. Then X has the ∞-DD{0,0} by the

preceding item. So, each point of X is a homological Z∞-point by Theorem 11.1(3).
The 2-DD{0,2}-property of X implies that all points of X are homotopical Z2-points
(see Theorem 7.1(5)). Hence, all points of X are homotopical Z∞-points according to
Theorem 10.1(5). Finally, by Theorem 7.1(4), X has the ∞-DD{0,∞}-property.

To prove the third item, assume that X is a metrizable separable LC∞-space with the
0-DD{2,2}-property and X × Y has the 0-DD{∞,∞}-property for some LC∞-space Y /∈⋃
GZG∞. Consequently, X × Y has the ∞-DD{∞,∞} property and X has the 2-DD{0,0}-

property. Then the first item of this corollary implies that X has ∞-DD{0,0}. Hence,
X ∈ ZZ

∞ by Theorem 11.1(3). Now, we can apply Theorem 14.2(4) to conclude that X
has the 0-DD{∞,∞}-property.

The fourth item is a particular case of Theorem 14.2(2).

48. Proof of Theorem 16.1

We need to show that any separable metrizable space X with the m-DDn-property has
dimX ≥ n + (m+ 1)/2. Assuming the converse, find a metrizable compactification X̃

of X with dim X̃ = dimX < n + (m+ 1)/2. By Theorem 8.1(3), the m-DDn-property
of X implies the 0-DDn+m-property of the product X × Im. Applying Theorem 3.3, we
conclude that the product X̃×Im contains a topological copy of each (n+m)-dimensional
compactum.
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Now consider two cases.
If m is odd, then dim X̃ = dimX ≤ n + (m+ 1)/2 − 1 = n + (m− 1)/2 and hence

the compactum X̃ embeds into Rk where k = 2(n + (m− 1)/2) + 1 = 2n + m. Then
X̃ × Im embeds into R2n+2m, and consequently R2n+2m contains a topological copy of
each (n+m)-dimensional compactum, which is not true (see [32, 1.11.H]).

If m = 2k, them dim X̃ ≤ n + m/2 = n + k and hence X̃ embeds into the
(n + k)-dimensional Menger cube µn+k. Since X̃ × Im contains a copy of each (n + m)-
dimensional compactum, so does µn+k × I2k. By [61], the latter product quasi-embeds
into R2n+4k in the sense that for every open cover V of µn+k × I2k there is a V-map
f : µn+k × I2k → R2n+4k. Since µn+k × I2k contains a topological copy of each (n+ 2k)-
dimensional polyhedron, we conclude that all (n+2k)-dimensional polyhedra quasi-embed
into R2n+4k, which is not true because of a classical example due to Flores (see [32,
1.11.H]).

Remark 48.1. For n = 0 the fact that µn+2k does not embed into µn+k×I2k was proved
by Melikov and Shchepin in [51, 4.1].

49. Cohomological and extension dimension of spaces with m-DD0

In this section we shall prove Theorems 16.3–16.5. All spaces in this section are supposed
to be metrizable.

In some case the results are true not only for LCn-spaces but also for the wider class
of lcn-spaces.

We recall that a space X is called an lcn-space if for each x ∈ X and a neighborhood
U ⊂ X of x there is a neighborhood V ⊂ U of x such that the homomorphism Hk(V )→
Hk(U) is trivial for every k ≤ n. This property is a homological version of the LCn-
property. It is known that a space (resp., an LC1-space) X is an lcn-space if (resp., and
only if) X is an LCn-space (see [73]).

We need the following property of locally compact lcn-spaces, established in [4, Lem-
ma 1.6].

Lemma 49.1. Let X be a locally compact lcn-space and x be a homological Zn-point in X.
Then, for any neighborhood U ⊂ X of x and any k < n+ 1, there exists a neighborhood
V ⊂ U of x such that the homomorphism Hk(X,X \ U) → Hk(X,X \ V ) induced by
inclusion is trivial.

The next lemma provides a proof of a bit more general statement than Theorem 16.3.

Lemma 49.2. Let X be a locally compact lcm-space having the (2m+ 1)-DD0-property
for some m ∈ ω. Then dimGX > m for any coefficient group G.

Proof. Assume that dimGX ≤ m and let n = dimGX. Then, by Theorem 2 of [45] (or
Theorem 1.8 of [24]), the space X contains a point x∗ having an open neighborhood
U ⊂ X with compact closure satisfying the following property: for any neighborhood
W ⊂ U of x∗ the homomorphism iW,U : Ȟn(X,X \W ;G) → Ȟn(X,X \ U ;G) in the
relative Čech cohomology groups, induced by the inclusion (X,X \ U) ⊂ (X,X \W ),
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is non-trivial. Since X is an lcn-space, the Čech cohomology groups in this assertion can
be replaced by singular cohomology groups (see [64, VI.§9]).

Singular cohomology groups relate to singular homology groups via the following exact
sequence which splits (not naturally, see [40, §3.1]):

0→ Ext(Hn−1(X,A), G)→ Hn(X,A;G)→ Hom(Hn(X,A), G)→ 0.

Since X has the (2m+ 1)-DD0-property, according to Theorem 11.1(3), x∗ is a homo-
logical Zm-point in X. Then, by Lemma 49.1, there are neighborhoodsW ⊂ V of x∗ such
that V ⊂ U and the inclusion-induced homomorphisms Hk(X,X \ U) → Hk(X,X \ V )

and Hk(X,X \ V )→ Hk(X,X \W ) are trivial for all k ≤ m.
These trivial homomorphisms induce trivial homomorphisms

eV,U : Ext(Hn−1(X,X \ V ), G)→ Ext(Hn−1(X,X \ U), G)

and
hW,V : Hom(Hn(X,X \W ), G)→ Hom(Hn(X,X \ V ), G).

Now, consider the commutative diagram

Ext(Hn−1(X,X \W ), G) −−−−→ Hn(X,X \W ;G) −−−−→ Hom(Hn(X,X \W ), G)yeW,V

yiW,V

yhW,V

Ext(Hn−1(X,X \ V ), G) −−−−→ Hn(X,X \ V ;G) −−−−→ Hom(Hn(X,X \ V ), G)yeV,U

yiV,U

yhV,U

Ext(Hn−1(X,X \ U), G) −−−−→ Hn(X,X \ U ;G) −−−−→ Hom(Hn(X,X \ U), G)

The rows in this diagram are exact sequences and the homomorphisms eV,U and
hW,V are trivial. Therefore, the homomorphism iW,U = iV,U ◦ iW,V : Hn(X,X \W ;G)→
Hn(X,X \ U ;G) is also trivial. The last conclusion contradicts the choice of x∗ and its
neighborhood U .

Next, we turn to the proof of Theorem 16.4. First, we prove a particular case of this
theorem with G ∈ {Q,Zp, Rp : p ∈ Π}.

Lemma 49.3. Let X be a locally compact lc2m-space possessing the 2m-DD0-property for
some m ∈ ω. Then dimGX > m for any group G ∈ {Q,Zp, Rp : p ∈ Π}.

Proof. Assume that dimGX ≤ m for some group G ∈ {Q,Zp, Rp : p ∈ Π}. Since X ∈
(2m− 1)-DD0, Lemma 49.2 implies dimGX > m − 1. Consequently, dimGX = m. As
in the proof of Lemma 49.2, we can find a point x∗ ∈ X and an open neighborhood
U of x∗ having compact closure in X such that for any neighborhood W ⊂ U of x∗

the inclusion-induced homomorphism iW,U : Hm(X,X \W ;G) → Hm(X,X \ U ;G) is
non-trivial.

By Theorem 11.1(3), the (2m− 1)-DD0-property ofX implies that x∗ is a homological
Zm−1-point in X. Since X is a locally compact lcm−1-space, we may apply Lemma 49.1 to
find a neighborhood V ⊂U so small that the homomorphismHk(X,X\U)→ Hk(X,X\V )

is trivial for every k < m.
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Because X ∈ 2m-DD0, according to Theorem 7.1(1), the diagonal ∆X is a Z2m-
homological set in X2. So is the point (x∗, x∗). Hence, H2m(X2, X2 \ {(x∗, x∗)}) = 0.
Since X2 is a locally compact lc2m-space, we can apply Lemma 49.1 to find an open
neighborhood W ⊂ V of x∗ such that the inclusion-induced homomorphism

h2m : H2m(X2, X2 \ V 2)→ H2m(X2, X2 \W 2)

is trivial.
Now, let us consider the commutative diagram

Ext(Hm−1(X,X \W ), G) −−−−→ Hm(X,X \W ;G) −−−−→ Hom(Hm(X,X \W ), G)yeW,V

yiW,V

yhW,V

Ext(Hm−1(X,X \ V ), G) −−−−→ Hm(X,X \ V ;G) −−−−→ Hom(Hm(X,X \ V ), G)yeV,U

yiV,U

yhV,U

Ext(Hm−1(X,X \ U), G) −−−−→ Hm(X,X \ U ;G) −−−−→ Hom(Hm(X,X \ U), G)

In this diagram the homomorphism eV,U is trivial because it is induced by the trivial
homomorphism Hm−1(X,X \ U) → Hm−1(X,X \ V ), while iW,U = iV,U ◦ iW,V is non-
trivial. Therefore,

hW,V : Hom(Hm(X,X \W ), G)→ Hom(Hm(X,X \ V ), G)

is also non-trivial. This means that, for some homomorphism ξ : Hm(X,X \W ) → G,
the composition ξ ◦ i of ξ with the inclusion-induced homomorphism i : Hm(X,X \ V )

→ Hm(X,X \W ) is not trivial. Since for any non-zero element x ∈ G the tensor product
x⊗ x is non-zero (at this point we use the special feature of the group G ∈ {Q,Zp, Rp :

p ∈ Π}), the tensor product
(ξ ◦ i)⊗ (ξ ◦ i) : Hm(X,X \ V )⊗Hm(X,X \ V )→ G⊗G

of the homomorphism ξ ◦ i with itself is non-trivial. Moreover,
(ξ ◦ i)⊗ (ξ ◦ i) = (ξ ⊗ ξ) ◦ (i⊗ i).

So, we will obtain a contradiction as soon as we check that the homomorphism
i⊗ i : Hm(X,X \ V )⊗Hm(X,X \ V )→ Hm(X,X \W )⊗Hm(X,X \W )

is trivial.
The triviality of this homomorphism follows from the diagram

0 −−−−→ Hm(X,X \ V )⊗Hm(X,X \ V ) −−−−→ H2m(X2, X2 \ V 2)y yi⊗i yh2m

0 −−−−→ Hm(X,X \W )⊗Hm(X,X \W ) −−−−→ H2m(X2, X2 \W 2)

having exact rows with h2m being a trivial homomorphism.

We are now in a position to derive Theorem 16.4 from Lemma 49.3 using the Bockstein
formula for cohomological dimension (see [24]). This formula asserts that

dimGX = sup
H∈σ(G)

dimH X

for any locally compact space X, where σ(G) is the Bockstein family of the group G.
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The following lemma provides the proof of a stronger version of Theorem 16.4(1).

Lemma 49.4. Let X be a locally compact lc2m-space X with the 2m-DD0-property and
G be a non-trivial Abelian group. Then dimGX ≥ m+ 1 in each of the following cases:

(1) G fails to be both divisible and periodic;
(2) G is the additive group of a ring with non-zero multiplication;
(3) X is an ANR-space.

Proof. SupposeG is either not divisible or not periodic. If dimGX ≤ m, then applying the
Bockstein formula, we obtain dimH X ≤ m for any group H ∈ σ(G). Now, Lemma 49.3
implies that the Bockstein family σ(G) of G contains only quasicyclic groups Qp. It
follows from the definition of σ(G) that Tor(G) = G and all p-torsion parts p-Tor(G) of
G are divisible by p. Since each p-group is divisible by any prime q 6= p, we infer that
G =

⊕
p p-Tor(G) is both divisible and torsion, a contradiction.

To prove the second item, suppose that G is the additive group of a ring with non-
zero multiplication G × G → G. This multiplication determines a non-trivial bilinear
form on G, and hence G⊗G 6= 0. Then, by Lemma 18.8, G is either not divisible or not
periodic. So, we can apply the preceding item to obtain dimGX ≥ m+ 1.

If X is an ANR-space, then dimGX ≥ dimQX by Theorem 12.3 from [24] (Dranish-
nikov established this theorem in [24] only for ANR-compacta, but without any changes
his proof holds also for locally compact ANR-spaces). Since, according to Lemma 49.3,
dimQX ≥ m+ 1, we are done.

Finally, we shall prove Theorem 16.5 on extension dimension of spaces possessing the
m-DD{0,0}-property. We recall its formulation:

Lemma 49.5. Let X be a locally compact LCm-space such that e-dimX ≤ L for some
non-contractible CW -complex L. If X ∈ m-DD0, then:

(1) the homotopy groups πi(L) are trivial for all i < m/2;
(2) the group πn(L) = H̃n(L) is divisible and periodic for n = bm/2c;
(3) πi(L) = 0 for all i ≤ m/2 provided X is an ANR-space.

Proof. We consider separately the cases m ≤ 1 and m ≥ 2.
If m ≤ 1, then it suffices to check that L is connected. By Proposition 5.6(1), X con-

tains an arc C connecting two distinct point a, b ∈ X. Assuming that L is disconnected,
consider any map f : {a, b} → L sending a, b to different components of L. Because
C ⊂ X is connected, f does not extend to X, which contradicts e-dimX ≤ L.

Next, consider the case of m ≥ 2. First, we prove that L is simply connected. Since X
is an LC2-space with the 2-DD{0,0}-property, dimX ≥ 2 by Theorem 16.1. Consequently,
there is a point x ∈ X such that any neighborhood U ⊂ X of x has dimU ≥ 2. Since X
is a locally compact LC1-space, x has a closed compact neighborhood N such that any
map f : S1 → N is null homotopic in X. Moreover, we can assume that N is a Peano
continuum because X is an LC0-space. Then N , being a continuum with dimN > 1,
is not a dendrite. Consequently, it contains a simple closed curve S ⊂ N which is null-
homotopic in X. Assuming that the CW-complex L is not simply connected, we can find
a map f : S1 → L that is not homotopic to a constant map. Since e-dimX ≤ L, f extends
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to a map f̄ : X → L. This fact, combined with the contractibility of S in X, implies that
f is null-homotopic in L. This contradiction shows that L is simply connected.

Since L is not contractible, πi(L) 6= 0 for some i ∈ N. Let n be the smallest number i
with this property. The simple connectedness of L yields n > 1. Consequently, Hn(L) =

πn(L) 6= 0 according to the Hurewicz isomorphism theorem. Finally, because e-dimX

≤ L, we may apply a result of A. Dranishnikov [23, Theorem 9] (see also Theorem 7.14
of [29]) to conclude that dimHn(L)X ≤ n. Then Theorem 16.4 completes the proof.



References

[1] J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. 72
(1960), 20–104.

[2] F. G. Arenas, V. A. Chatyrko and M. L. Puertas, Transfinite extension of Steinke’s di-
mension, Acta Math. Hungar. 88 (2000), 105–112.

[3] T. Banakh and R. Cauty, A homological selection theorem implying a division theorem for
Q-manifolds, in: Banach Center Publ. 77, Inst. Math., Polish Acad. Sci., 2007, 11–22.

[4] T. Banakh, R. Cauty and A. Karassev, On homotopical and homological Zn-sets, Topology
Proc. 38 (2011), 29–82.

[5] T. Banakh, R. Cauty, Kh. Trushchak and L. Zdomskyy, On universality of finite products
of Polish spaces, Tsukuba J. Math. 28 (2004), 455–471.

[6] T. Banakh and D. Repovš, Division and k-th root theorems for Q-manifolds, Sci. China
Ser. A. 50 (2007), 313–324.

[7] T. Banakh and Kh. Trushchak, Zn-sets and the disjoint n-cells property in products of
ANR’s, Mat. Stud. 13 (2000), 74–78.

[8] T. Banakh and V. Valov, Spaces with fibered approximation property in dimension n, Cent.
Eur. J. Math. 8 (2010), 411–420.

[9] T. Banakh and V. Valov, Approximation by light maps and parametric Lelek maps, Topol-
ogy Appl. 157 (2010), 2325–2341.

[10] C. Bessaga and A. Pełczyński, Selected Topics in Infinite-Dimensional Topology, PWN,
Warszawa, 1975.

[11] C. Borges, On stratifiable spaces, Pacific J. Math. 17 (1966), 1–16.
[12] K. Borsuk, Theory of Retracts, PWN, Warszawa, 1967.
[13] P. Bowers,General position properties satisfied by finite products of dendrites, Trans. Amer.

Math. Soc. 288 (1985), 739–753.
[14] R. Cauty, Convexité topologique et prolongement des fonctions continues, Compos. Math.

27 (1973), 233–273.
[15] R. Cauty, Un espace métrique linéaire qui n’est pas un rétracte absolu, Fund. Math. 146

(1994), 85–99.
[16] R. Daverman, Detecting the disjoint disks property, Pacific J. Math. 93 (1981), 277–298.
[17] R. Daverman, Decompositions of Manifolds, Academic Press, Orlando, FL, 1986.
[18] R. Daverman and D. Halverson, Path concordances as detectors of codimension-one man-

ifold factors, Geom. Topol. Monographs 9 (2006), 7–15.
[19] R. Daverman and J. Walsh, Čech homology characterizations of infinite dimensional man-

ifolds, Amer. J. Math. 103 (1981), 411–435.
[20] G. Di Maio and S. Naimpally, Proximal graph topologies, Questions Answers Gen. Topology

10 (1992), 97–125.
[21] G. Di Maio, L. Holá, D. Holý and R. McCoy, Topologies on the space of continuous func-

tions, Topology Appl. 86 (1998), 105–122.

[116]

http://dx.doi.org/10.2307/1970147
http://dx.doi.org/10.1023/A:1006756611844
http://dx.doi.org/10.1007/s11425-007-0008-5
http://dx.doi.org/10.2478/s11533-010-0027-2
http://dx.doi.org/10.1016/j.topol.2010.07.004
http://dx.doi.org/10.2140/pjm.1966.17.1
http://dx.doi.org/10.1090/S0002-9947-1985-0776401-5
http://dx.doi.org/10.2140/pjm.1981.93.277
http://dx.doi.org/10.2307/2374099
http://dx.doi.org/10.1016/S0166-8641(97)00114-4


General position properties 117

[22] T. Dobrowolski and W. Marciszewski, Rays and the fixed point property in non-compact
spaces, Tsukuba J. Math. 21 (1997), 97–112.

[23] A. Dranishnikov, Extension of maps into CW complexes, Math. USSR-Sb. 74 (1993), 47–
56.

[24] A. Dranishnikov, Cohomological dimension theory of compact metric spaces, Topology
Atlas invited Contributions 6 (2001).

[25] A. Dranishnikov and J. Dydak, Extension dimension and extension types, Proc. Steklov
Inst. Math. 212 (1996), 55–88.

[26] A. Dranishnikov and J. Dydak, Extension theory of separable metrizable spaces with ap-
plications to dimension theory, Trans. Amer. Math. Soc. 353 (2001), 133–156.

[27] A. Dranishnikov and V. Uspenskij, Light maps and extension dimension, Topology Appl.
80 (1997), 91–99.

[28] J. Dugundji, An extension of Tietze’s theorem, Pacific J. Math. 1 (1951) 353–367.
[29] J. Dydak, Cohomological dimension theory, in: Handbook of Geometric Topology, R. Dav-

erman and R. B. Sher (eds.), North-Holland, Amsterdam, 2002, 423–470.
[30] R. Edwards, Characterizing infinite dimensional manifolds topologically, in: Séminaire

Bourbaki 31e année, n. 540 (1978/79), 278–302.
[31] S. Eilenberg and R. L. Wilder, Uniform local connectedness and contractibility, Amer. J.

Math. 64 (1942), 613–622.
[32] R. Engelking, Theory of Dimensions: Finite and Infinite, Heldermann, 1995.
[33] R. Engelking, General Topology, Heldermann, Berlin, 1989.
[34] L. Fuchs, Infinite Abelian Groups, Vol. 1, Academic Press, New York and London, 1970.
[35] P. Gartside, Generalized Metric Spaces, Part I, in: K. P. Hart et al. (eds.), Encyclopedia

of General Topology, Elsevier, 2004, 273–275.
[36] G. Gruenhage, Generalized metric spaces, in: K. Kunen and J. E. Vaughan (eds.), Hand-

book of Set-Theoretic Topology, Elsevier, 1984, 423–501.
[37] A. S. Gul’ko, Rectifiable spaces, Topology Appl. 68 (1996), 107–112.
[38] V. Gutev and V. Valov, Dense families of selections and finite-dimensional spaces, Set-

Valued Anal. 11 (2003), 373–391.
[39] D. Halverson, Detecting codimension one manifold factors with the disjoint homotopy prop-

erty, Topology Appl. 117 (2002), 231–258.
[40] A. Hatcher, Algebraic Topology, Cambridge Univ. Press, 2002.
[41] S. T.-Hu, Theory of Retracts, Wayne State Univ. Press, Detroit, 1965.
[42] R. Jiménez and E. Ščepin, On linking of cycles in locally connected spaces, Topology Appl.

113 (2001), 69–79.
[43] A. Kechris, Classical Descriptive Set Theory, Springer, 1995.
[44] N. Krikorian, A note concerning the fine topology on function spaces, Compos. Math. 21

(1969), 343–348.
[45] V. I. Kuz’minov, Homological dimension theory, Russian Math. Surveys 23 (1968), 1–45.
[46] S. Lefschetz, On locally connected and related sets, II, Duke Math. J. 2 (1936), 435–442.
[47] M. Levin, Bing maps and finite-dimensional maps, Fund. Math. 151 (1996), 47–52.
[48] F. Lin and R. Shen, On rectifiable spaces and paratopological groups, Topology Appl. 158

(2011), 597–610.
[49] S. Mardešić, Polyhedra and Complexes, in: K. P. Hart et al. (eds.), Encyclopedia of General

Topology, Elsevier, 2004, 470–473.
[50] R. McCoy, Fine topology on function spaces, Int. J. Math. Math. Sci. 9 (1986), 417–427.

http://dx.doi.org/10.1070/SM1993v074n01ABEH003333
http://dx.doi.org/10.1090/S0002-9947-00-02536-8
http://dx.doi.org/10.1016/S0166-8641(96)00164-2
http://dx.doi.org/10.2140/pjm.1951.1.353
http://dx.doi.org/10.2307/2371708
http://dx.doi.org/10.1016/0166-8641(95)00027-5
http://dx.doi.org/10.1023/A:1025679902969
http://dx.doi.org/10.1016/S0166-8641(01)00022-0
http://dx.doi.org/10.1016/S0166-8641(00)00041-9
http://dx.doi.org/10.1215/S0012-7094-36-00234-X
http://dx.doi.org/10.1016/j.topol.2010.12.008
http://dx.doi.org/10.1155/S0161171286000534


118 T. Banakh and V. Valov

[51] S. A. Melikhov and E. V. Shchepin, The telescope approach to embeddability of compacta,
arXiv:math/0612085.

[52] E. Michael, Local properties of topological spaces, Duke Math. J. 21 (1954), 163–171.
[53] E. Michael, Continuous selections I, Ann. of Math. 63 (1956), 361–382.
[54] W. J. R. Mitchell, General position properties of ANR’s, Math. Proc. Cambridge Philos.

Soc. 92 (1982), 451–466.
[55] J. Munkres, Topology, Prentice-Hall, Englewood Cliffs, NJ, 1975.
[56] S. Naimpally, Graph topology for function spaces, Trans. Amer. Math. Soc. 123 (1966),

267–271.
[57] B. Pasynkov,On geometry of continuous maps of finite-dimensional compact metric spaces,

Proc. Steklov Inst. Math. 212 (1996), 138–162.
[58] B. Pasynkov, On geometry of continuous maps of countable functional weight, Fundam.

Prikl. Mat. 4 (1998), 155–164 (in Russian).
[59] T. Radul, On the classification of sigma hereditarily disconnected spaces, Mat. Stud. 26

(2006), 97–100.
[60] D. Repovš and P. Semenov, Continuous Selections of Multivalued Mappings, Math. Appl.

455, Kluwer, Dordrecht, 1998.
[61] D. Repovš, A. B. Skopenkov and E. V. Ščepin, On embeddability of X × I into Euclidean

space, Houston J. Math. 21 (1995), 1999–2004.
[62] O. Sipachëva, On a class of free locally convex spaces, Mat. Sb. 194 (2003), 25–52 (in

Russian); English transl.: Sb. Math. 194 (2003), 333–360.
[63] S. Singh, Exotic ANR’s via null decompositions of Hilbert cube manifolds, Fund. Math.

125 (1985), 175–183.
[64] E. Spanier, Algebraic Topology, McGraw-Hill, 1966.
[65] G. Steinke, A new dimension by means of separating sets, Arch. Math. (Basel) 40 (1983),

273–282.
[66] Y. Sternfeld, Mappings in dendrites and dimension, Houston J. Math. 19 (1993), 483–497.
[67] H. Toruńczyk, Concerning locally homotopy negligible sets and characterization of l2-

manifolds, Fund. Math. 101 (1978), 93–110.
[68] H. Toruńczyk, On CE-images of the Hilbert cube and characterization of Q-manifolds,

Fund. Math. 106 (1980), 31–40.
[69] H. Toruńczyk, Finite-to-one restrictions of continuous functions, Fund. Math. 125 (1985),

237–249.
[70] H. Toruńczyk, On a conjecture of T. R. Rushing and the structure of finite-dimensional

mappings, in: Geometric Topology, Discrete Geometry and Set-Theory, Moscow, 2004.
[71] M. Tuncali and V. Valov, On dimensionally restricted maps, Fund. Math. 175 (2002),

35–52.
[72] Y. Turygin, Approximation of k-dimensional maps, Topology Appl. 139 (2004), 227–235.
[73] Š. Ungar, On locally homotopy and homology pro-groups, Glas. Mat. 34 (1979), 151–158.
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