
1. Introduction

In this work we deal with several joint spectra defined for representations of complex
solvable finite-dimensional Lie algebras in complex Banach spaces. Our main concern is
to study the behavior of some joint spectra with respect to the procedure of passing
from two given such representations, %1: L1 → L(X1) and %2: L2 → L(X2), to the tensor
product representation of the direct sum of the algebras, %: L1 × L2 → L(X1 ⊗̃ X2),
% = %1 ⊗ I + I ⊗ %2, where X1 ⊗̃ X2 is a tensor product of the Banach spaces X1 and
X2 in the sense of [14], and I denotes the identity operator of both X1 and X2. In
addition, we describe the spectral contributions of %1 and %2 to some joint spectra of
the multiplication representation %̃: L1 × Lop

2 → L(J), %̃(T ) = %1(l1)T + T%2(l2), where
J ⊆ L(X2, X1) is an operator ideal between the Banach spaces X1 and X2 in the sense of
[14], and Lop

2 is the opposite algebra of L2. In order to accurately present the problems
we are concerned with, we review how the theory of tensor products is placed within the
general theory of joint spectra. We first recall some of the best known joint spectra in
the commutative and non-commutative setting and their relation with tensor products.

Given a commutative complex Banach algebraA with unit element I, if a=(a1, . . . , an)
∈ An, n ≥ 1, then the joint spectrum of a is defined by

σA(a) = {(λ1, . . . , λn) ∈ Cn :

the elements ai − λiI, i = 1, . . . , n, generate a proper ideal in A}.
Another well known formula giving the same set is

σA(a) = {(f(a1), . . . , f(an)) ∈ Cn : f ∈M(A)},
where M(A) is the set of all non-zero multiplicative linear functionals on A.

The joint spectrum σA(a) is always a non-void compact subset of Cn. Moreover, the
joint spectrum is a fundamental concept in the theory of commutative Banach algebras,
for it provides an analytic functional calculus for several elements in such an algebra; see
[22], [3], [26] and [2]. For a general account of the joint spectrum see [11] and [17].

When A is a non-commutative unital Banach algebra, say A = L(X), where X is a Ba-
nach space, one could define the joint spectrum of a commutative n-tuple a = (a1, . . . , an)
in A as the joint spectrum σB(a) of a relative to a maximal abelian subalgebra B contain-
ing a1, . . . , an. Unfortunately, the joint spectrum so defined depends very strongly on the
choice of B. Indeed, if we consider two maximal abelian subalgebras B1 and B2 containing
ai, i = 1, . . . n, unlike the case n = 1 it is not generally true that σB1(a) = σB2(a); see [1].

So far we have considered a Banach algebra convention, i.e., all concepts are related
to a Banach algebra A. However, there is another way to introduce joint spectra, the
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so-called spatial convention, i.e., the joint spectra are defined for tuples of commuting
operators in the algebras L(X), with X a Banach space, and in the definitions elements
ofX are involved. For a given Banach algebraA, we putX = A and interpret the elements
of A as operators of left multiplication, i.e., to a ∈ A we associate the map La ∈ L(A),
where La(b) = a.b, b ∈ A. Thus, a joint spectrum defined for commutative tuples of
Banach space operators, σ(·), gives rise to a joint spectrum on A, σ(a,A) = σ(La),
where La = (La1 , . . . , Lan) and a = (a1, . . . , an) is a commutative tuple in A.

Among the most important joint spectra defined in the spatial convention, we have
the Taylor joint spectrum; see [24] and [11]. This joint spectrum is defined for commuting
systems of Banach space operators T = (T1, . . . , Tn), and it has the advantage that its def-
inition depends on the action of the maps T1, . . . , Tn. The Taylor joint spectrum, σT(T ),
is a compact non-void subset of Cn and it has several additional important properties,
such as an analytic functional calculus and the so-called projection property. When A
is a commutative Banach algebra, if a = (a1, . . . , an) ∈ An, then σT(a,A) = σA(a); see
[24] and [11]. Therefore, the joint spectrum σA(a) can be thought of as the Taylor joint
spectrum σT(a,A).

There are many other interesting joint spectra defined in the spatial convention, for
example, the Słodkowski joint spectra, [23], the Fredholm or essential joint spectra, [15]
and [19], and the split and essential split joint spectra, [13]. All these joint spectra are
related to the Taylor spectrum and have similar properties.

On the other hand, over the last years some of the joint spectra originally introduced
for commuting systems of operators have been extended to the non-commutative case.
Indeed, the Taylor, Słodkowski and split joint spectra have been extended to representa-
tions of complex solvable finite-dimensional Lie algebras in complex Banach spaces and
their main properties have been proved; see [5], [7], [16], [20] and [21].

One of the most deeply studied problems within the theory of joint spectra has been
the determination of the spectral contributions that two commuting systems of opera-
tors S = (S1, . . . , Sn) and T = (T1, . . . , Tm), defined in the Banach spaces X1 and X2

respectively, make to the joint spectra of the system (S⊗ I, I ⊗T ) = (S1⊗ I, . . . , Sn⊗ I,
I ⊗ T1, . . . , I ⊗ Tm) defined in X1 ⊗̃α X2, i.e., the completion of the algebraic tensor
product X1 ⊗X2 with respect to a quasi-uniform crossnorm α, and where the symbol I
stands for the identity map both in X1 and X2. For example, if X1 and X2 are Hilbert
spaces and X1 ⊗X2 is the canonical completion of X1⊗X2, then in [10] the Taylor joint
spectrum of (S ⊗ I, I ⊗ T ) in X1 ⊗X2 was characterized. Indeed, it was proved that

σT(S ⊗ I, I ⊗ T ) = σT(S)× σT(T );

see the related work [9]. In addition, the results of [9] and [10] were extended in [27] and
[28] to Banach spaces and quasi-uniform crossnorms.

Furthermore, in an operator ideal J ⊆ L(X2, X1) between the Banach spaces
X1 and X2, it is possible to consider tuples of left and right multiplication: LS =
(LS1 , . . . , LSn) and RT = (RT1 , . . . , RTm) respectively, induced by commuting systems
of operators S = (S1, . . . , Sn) and T = (T1, . . . , Tm) defined in X1 and X2 respectively,
where LU (A) = UA and RV (B) = BV , U ∈ L(X1), V ∈ L(X2) and A,B ∈ J . However,
the tuple (LS, RT ) is closely related to the system (S ⊗ I, I ⊗ T ′); see [12], [14]. Indeed,
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the completion H ⊗̃α H ′ of the algebraic tensor product of a Hilbert space H and its
dual relative to a uniform crossnorm α can be regarded as an operator ideal in L(H);
see [14]. As regards this identification the operators Si ⊗ I and I ⊗ T ′j correspond to
the operators LSi and RTj respectively, for i = 1, . . . , n and j = 1, . . . ,m. In particular,
the joint spectra of (LS , RT ) are closely related to the corresponding joint spectra of
(S ⊗ I, I ⊗ T ′). The Taylor joint spectrum and the essential joint spectrum of (LS , RT )
were studied in [12] and [14] in the Hilbert and Banach space setting respectively.

In addition, an axiomatic tensor product was introduced in [14]. This tensor product
is general and rich enough to allow, on the one hand, the description of the Taylor, split,
essential Taylor and essential split joint spectra of a system (S ⊗ I, I ⊗ T ) defined in the
tensor product of two Banach spaces, and on the other hand, the description of all the
above-mentioned joint spectra of tuples of left and right multiplications (LS , RT ) defined
in a class of operator ideals between Banach spaces introduced in [14].

Some of the main results in [9], [10], [12], [14], [27] and [28] were extended to the
non-commutative setting. In fact, the main result of [10] was extended in [6] to solvable
Lie algebras of operators defined in Hilbert spaces, and in [21] the descriptions from [14]
in connection with the Taylor and the split joint spectra of a system (S ⊗ I, I ⊗ T ) and
of a tuple of left and right multiplications (LS , RT ) were extended to the tensor product
representation of the direct sum of two solvable Lie algebras, and to the multiplication
representation respectively; see [21; 3]. This work aims at extending the central results
in [14] and [21; 3] to other joint spectra in the commutative and non-commutative set-
tings.

Indeed, one of our main objectives is to describe, by means of the tensor product intro-
duced in [14], the Słodkowski and split joint spectra of the tensor product representation
of the direct sum of two solvable Lie algebras, and of the multiplication representation in
an operator ideal between Banach spaces in the sense of [14]; see Sections 5 and 7. These
descriptions provide an extension, from the Taylor joint spectrum and the usual split
joint spectrum to the Słodkowski and split joint spectra, of two of the main results in
[21; 3] for the tensor product introduced in [14]. Moreover, we consider nilpotent systems
of operators, in particular commutative, and we describe the Słodkowski and split joint
spectra of a system (S⊗I, I⊗T ), and of a tuple of left and right multiplications (LS , RT )
in operator ideals between Banach spaces in the sense of [14]; see Sections 5 and 7.

Our second main objective is to describe the essential Słodkowski and essential split
joint spectra of the tensor product representation of the direct sum of two solvable Lie
algebras and of the multiplication representation in an operator ideal between Banach
spaces in the sense of [14]; see Sections 6 and 7. These results are an extension of the
description proved in [14], from the essential Taylor and essential split joint spectra to
the essential Słodkowski and essential split joint spectra, and from commuting tuples of
operators to representations of solvable Lie algebras. Furthermore, we consider nilpotent
systems of operators and we describe the essential Słodkowski and essential split joint
spectra of the systems mentioned in the last paragraph.

To prove our second main result, we need to introduce the essential Słodkowski and
essential split joint spectra of a representation of a complex solvable finite-dimensional
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Lie algebra in a complex Banach space, and to prove the main properties of these joint
spectra; see Section 3.

In addition, as an application, in Section 8 we describe all the above-mentioned joint
spectra of two particular representations of a nilpotent Lie algebra, one in a tensor product
of Banach spaces, where the tensor product is that introduced in [14], and the other in
an operator ideal between Banach spaces in the sense of [14].

This work is organized as follows. In Section 2 we recall the definitions and main
properties of the Słodkowski and split joint spectra; we also include a brief review of
Lie algebras. In Section 3 we introduce the essential Słodkowski and essential split joint
spectra, and we prove their main properties. In Section 4 we recall the axiomatic tensor
product introduced in [14] and we prove some results needed for our main theorems. In
Section 5 we describe the Słodkowski and split joint spectra of the tensor product rep-
resentation of the direct sum of two solvable Lie algebras. In Section 6 we describe the
essential Słodkowski and essential split joint spectra of the tensor product representation
of the direct sum of two solvable Lie algebras. In Section 7 we describe the Słodkowski,
split, essential Słodkowski and essential split joint spectra of the multiplication represen-
tation in an operator ideal between Banach spaces in the sense of [14]. In addition, in
Sections 5, 6 and 7 we consider nilpotent systems of operators and we obtain descriptions
of the corresponding joint spectra. Finally, in Section 8, we apply our main results to
some representations of nilpotent Lie algebras.

2. The Taylor, Słodkowski and split joint spectra

In this section we review the definitions and main properties of the Taylor, Słodkowski
and split joint spectra of a representation of a Lie algebra in a Banach space; see [24],
[23], [13], [14], [16], [7], [5], [20] and [21]. In order to make the exposition reasonably
self-contained, we first review some well known facts on Lie algebras used in this work.
Since we are interested in solvable Lie algebras acting on complex Banach spaces, we
limit our review to this case; for a complete exposition see [8].

A complex Lie algebra is a vector space over the complex field C provided with a
bilinear bracket, named the Lie product , [·, ·]: L×L→ L, which satisfies the Lie conditions

[x, x] = 0, [[x, y], z] + [[y, z], x] + [[z, x], y] = 0

for every x, y, z ∈ L. The second of these equations is called the Jacobi identity. By Lop

we denote the opposite Lie algebra of L, i.e., the algebra that coincides with L as a vector
space and has the bracket [x, y]op = −[x, y] = [y, x] for x, y ∈ L.

An example of a Lie algebra structure is given by the algebra L(X) of all bounded
linear maps defined in a Banach space X, and the bracket [·, ·]: L(X) × L(X) → L(X),
[S, T ] = ST − TS for S, T ∈ L(X).

Given two Lie algebras L1 and L2 with Lie brackets [·, ·]1 and [·, ·]2 respectively, a mor-
phism of Lie algebras H: L1 → L2 is a linear map such that H([x, y]1) = [H(x), H(y)]2 for
x, y ∈ L1. In particular, when L2 = L(X), X a Banach space, we say that H: L1 → L(X)
is a representation of L1.
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We say that a subspace I of L is a subalgebra when [I, I] ⊆ I, and an ideal when
[I, L] ⊆ I, where if M and N are two subsets of L, then [M,N ] denotes the set {[m,n] :
m ∈ M, n ∈ N}. In particular, L2 = [L,L] = {[x, y] : x, y ∈ L} is an ideal of L. In
addition, we say that a linear map f : L → C is a character when f(L2) = 0, i.e., when
f : L→ C is a Lie morphism.

For any Lie algebra L we can consider the following two series of ideals: the derived
series

L = L(1) ⊇ L(2) = [L,L] ⊇ L(3) = [L(2), L(2)] ⊇ . . . ⊇ L(k) = [L(k−1), L(k−1)],

and the descending central series

L = L1 ⊇ L2 = L(2) = [L,L] ⊇ L3 = [L,L2] ⊇ . . . ⊇ Lk = [L,Lk−1] ⊇ . . . .
A Lie algebra L is solvable or nilpotent if there is some positive integer k such that

L(k) = 0 or Lk = 0 respectively. Obviously all nilpotent Lie algebras are solvable.
One of the most useful properties of a complex solvable finite-dimensional Lie algebra

L is the existence of a Jordan–Hölder sequence, i.e., a sequence (Lk)0≤k≤n of ideals such
that

(i) L0 = 0, Ln = L,
(ii) Li ⊆ Li+1 for i = 0, . . . , n− 1,

(iii) dimLi = i, where n = dimL; see [8; 5.3].

Another important property of these algebras is the existence of polarizations. A po-
larization of a character f of L is a subalgebra P (f) of L maximal with respect to the
property f([I, I]) = 0, where I is a subalgebra of L. In fact, if (Lk)0≤k≤n is a Jordan–
Hölder sequence of ideals of L, then P (f ; (Lk)0≤k≤n) =

∑n
i=0Ni(fi) is a polarization

of f , where Ni(fi) = {x ∈ Li : f([x, Li]) = 0}; see [4; IV.4].
Next we review the definitions of the Taylor, Słodkowski and split joint spectra. From

now on L denotes a complex solvable finite-dimensional Lie algebra, X a complex Banach
space and %: L → L(X) a representation of L in X. We consider the Koszul complex of
the representation %, i.e., (X ⊗∧L, d(%)), where

∧
L denotes the exterior algebra of L,

and dp(%): X ⊗∧p L→ X ⊗∧p−1 L is the map defined by

dp(%)(x⊗ 〈l1 ∧ . . . ∧ lp〉)

=
p∑

k=1

(−1)k+1%(lk)(x)⊗ 〈l1 ∧ . . . ∧ l̂k ∧ . . . ∧ lp〉

+
∑

1≤i<j≤p
(−1)i+jx⊗ 〈[li, lj ] ∧ l1 ∧ . . . ∧ l̂i ∧ . . . ∧ l̂j ∧ . . . ∧ lp〉,

where ̂means deletion. For p such that p ≤ 0 or p ≥ n+ 1, where n = dimL, we define
dp(%) = 0.

If f is a character of L, then we consider the representation %− f ≡ %− f · I of L in
X, where I denotes the identity map of X. Now, if H∗(X ⊗

∧
L, d(% − f)) denotes the

homology of the Koszul complex of the representation %− f , then we consider the set

σp(%) = {f ∈ L∗ : f(L2) = 0, Hp(X ⊗
∧
L, d(%− f)) 6= 0}.
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Now we state the definition of the Taylor and Słodkowski joint spectra; see [5], [7],
[16], [20] and [21]. We follow the notation of [21; 2.11].

Definition 1. Let X be a complex Banach space, L a complex solvable finite-dimen-
sional Lie algebra, and %: L → L(X) a representation of L in X. Then the Taylor joint
spectrum of % is the set

σ(%) =
n⋃

p=0

σp(%) = {f ∈ L∗ : f(L2) = 0, H∗(X ⊗
∧
L, d(%− f)) 6= 0}.

Moreover, the kth δ-Słodkowski joint spectrum of % is the set

σδ,k(%) =
k⋃

p=0

σp(%),

and the kth π-Słodkowski joint spectrum of % is the set

σπ,k(%) =
n⋃

p=n−k
σp(%) ∪ {f ∈ L∗ : f(L2) = 0, R(dn−k(%− f)) is not closed}

for 0 ≤ k ≤ n = dimL.
We observe that σδ,n(%) = σπ,n(%) = σ(%).

The Taylor and S lodkowski joint spectra are compact non-void subsets of L∗. If L ⊆
L(X) is a commutative subalgebra of operators and the representation is the inclusion
ι: L → L(X), ι(T ) = T , T ∈ L, then σ(ι), σδ,k(ι) and σπ,k(ι) are reduced to the usual
Taylor and Słodkowski joint spectra respectively in the following sense. If l = (l1, . . . , ln)
is a basis of L and σ denotes either the Taylor joint spectrum or one of the Słodkowski
joint spectra of ι, then {(f(l1), . . . , f(ln)) : f ∈ σ} = σ(l1, . . . , ln), i.e., the joint spectrum
σ in terms of the basis l = (l1, . . . , ln) coincides with the spectrum of the n-tuple l. In
addition, these joint spectra have the so-called projection property. Since this property is
one of the most important results that all the joint spectra considered in this work have
in common, we give the explicit definition.

Definition 2. Let X be a complex Banach space and σ a function which assigns a
compact non-void subset of the characters of L to each representation %: L → L(X) of
a complex solvable finite-dimensional Lie algebra L in X. In addition, let I be an ideal
or a subalgebra of L, in the solvable or nilpotent case respectively, and consider the
representation %|I: I → L(X), i.e., the restriction of % to I. Then we say that σ has the
projection property if for each ideal or subalgebra I, in the solvable or nilpotent case
respectively, we have

π(σ(%)) = σ(%|I),

where π: L∗ → I∗ is the restriction map.

Next we review the definition of the split joint spectra, and we prove their most
important properties, the projection property among them.

A finite complex (X, d) of Banach spaces and bounded linear operators is a sequence

0→ Xn
dn−→ Xn−1 → . . .→ X1

d1−→ X0 → 0,
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where n ∈ N, each Xp is a Banach space, and the maps dp ∈ L(Xp, Xp−1) are such that
dp ◦ dp−1 = 0 for p = 0, . . . , n.

For a fixed integer p, 0 ≤ p ≤ n, we say that (X, d) is split in degree p if there are
continuous linear operators

Xp+1
hp← Xp

hp−1←− Xp−1

such that dp+1hp + hp−1dp = Ip, where Ip denotes the identity operator of Xp.
In addition, if L, X and % are as above, then for each p we consider the set

spp(%) = {f ∈ L∗ : f(L2) = 0, (X ⊗∧L, d(%− f)) is not split in degree p}.
Now we give the definition of split joint spectra; see [13] and [21].

Definition 3. Let X be a complex Banach space, L a complex solvable finite-dimen-
sional Lie algebra, and %: L → L(X) a representation of L in X. Then the split joint
spectrum of % is the set

sp(%) =
n⋃

p=0

spp(%).

Moreover, the kth δ-split joint spectrum of % is the set

spδ,k(%) =
k⋃

p=0

spp(%),

and the kth π-split joint spectrum of % is the set

spπ,k(%) =
n⋃

p=n−k
spp(%),

for 0 ≤ k ≤ n = dimL.
We observe that spδ,n(%) = spπ,n(%) = sp(%).

It is clear that σδ,k(%) ⊆ spδ,k(%), σπ,k(%) ⊆ spπ,k(%), and σ(%) ⊆ sp(%). Moreover, if
X is a Hilbert space, the above inclusions are equalities. In addition, when L ⊆ L(X)
is a commutative subalgebra of operators and the representation is the inclusion ι: L→
L(X), these joint spectra coincide with the ones introduced by J. Eschmeier in [13] for
commuting tuples of operators in the same sense explained for the Taylor and Słodkowski
joint spectra.

In the following theorem we consider the main properties of split joint spectra; for a
complete exposition see [21; 3].

Theorem 1. Let X be a complex Banach space, L a complex solvable finite-dimensional
Lie algebra, and %: L→ L(X) a representation of L in X. Then the sets sp(%), spδ,k(%),
and spπ,k(%) are compact non-void subsets of L∗ that have the projection property.

Proof. First of all, in [21; 3.1.9] it was proved that sp(%) is a compact non-void subset of
L∗ that has the projection property.

Furthermore, by [21; 3.1.5], [21; 3.1.7] and an argument similar to the one in [21;
3.1.9], it is easy to prove that spδ,k(%) and spπ,k(%) are compact non-void subsets of L∗

that have the projection property.
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3. The Fredholm joint spectra

In order to prove the main results in Sections 6 and 7 we need to study several essential
joint spectra. We first consider the essential joint spectra introduced by A. S. Făınshtĕın
[15] and by V. Müller [19] for commuting tuples of operators and we extend them to
representations of solvable Lie algebras in Banach spaces. In addition, we extend the
essential split joint spectra introduced by J. Eschmeier [13] to such representations. We
begin with the essential Taylor and Słodkowski joint spectra.

Let X, L, and %: L→ L(X) be as in Section 2, and for each p consider the set

σp,e(%) = {f ∈ L∗ : f(L2) = 0, dimHp(X ⊗
∧
L, d(%− f)) =∞}.

Definition 4. Let X be a complex Banach space, L a complex solvable finite-dimen-
sional Lie algebra, and %: L → L(X) a representation of L in X. Then the Fredholm or
essential Taylor joint spectrum of % is the set

σe(%) =
n⋃

p=0

σp,e(%).

Moreover, the kth Fredholm or essential δ-Słodkowski joint spectrum of % is the set

σδ,k,e(%) =
k⋃

p=0

σp,e(%),

and the kth Fredholm or essential π-Słodkowski joint spectrum of % is the set

σπ,k,e(%) =
n⋃

p=n−k
σp,e(%) ∪ {f ∈ L∗ : f(L2) = 0, R(dn−k(%)) is not closed}

for 0 ≤ k ≤ n = dimL.
We observe that σe(%) = σδ,n,e(%) = σπ,n,e(%).

Now we prove that these sets are really joint spectra. In fact, we first show the
properties of the sets σδ,k,e(%) and then by a duality argument we obtain the properties
of the sets σπ,k,e(%). Our proof of the properties of σδ,k,e(%) is a direct generalization of
the one in [15].

Theorem 2. Let X be a complex Banach space, L a complex solvable finite-dimensional
Lie algebra, and %: L → L(X) a representation of L in X. Then the sets σδ,k,e(%) are
compact non-void subsets of L∗ that have the projection property. In particular , σe(%) is
a compact non-void subset of L∗ that has the projection property.

Proof. It is clear that σδ,k,e(%) ⊆ σδ,k(%). Moreover, by [25; 2.11], σδ,k,e(%) is a closed set.
Thus, σδ,k,e(%) is a compact subset of L∗.

In order to prove the projection property for ideals of a solvable Lie algebra, by [8;
5.3] it is enough to consider an ideal I of L of codimension 1. Then, if we consider the
usual decomposition of the chain complex (X ⊗∧L, d(%)) associated to the ideal I and
the short exact sequence defined by this decomposition (see [7], [5] and [20]), an easy
calculation shows that

π(σδ,k,e(%)) ⊆ σδ,k,e(%|I).
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To prove the reverse inclusion we may apply A. S. Făınshtĕın’s argument in [15; 1], i.e.,
the essential version of [23; 1.6]; see also [19]. However, we have to verify the following
fact: if f̃ ∈ σδ,k,e(%|I), then for each f ∈ L∗ such that f |I = f̃ , f is a character of L, i.e.,
f(L2) = 0.

Indeed, since f̃ ∈ σδ,k,e(%|I) ⊆ σδ,k(%|I), f̃ is a character of I, i.e., f̃(I2) = 0. Moreover,
since I is an ideal of L, by the projection property of the joint spectrum σδ,k(%) (see [5;
4.5], [20; 3.4] and [21; 2.11]), there is f ∈ σδ,k,e(%) such that f |I = f̃ .

Now, since f is a character of L, L is a polarization for f (see [4; IV] or Section 2).
Moreover, as I is an ideal of codimension 1 in L and f̃ is a character of I, if there were
f ′ ∈ L∗ such that f ′|I = f̃ and such that f ′ was not a character of L, then I would be
a polarization of f ′ (see [4; IV]). However, if we considered f − f ′, by [8; 5.3] and [4;
IV.4.1.1.4] we would have I = L, which is impossible according to our assumption. Thus,
every extension of f̃ to L∗ is a character of L. So, we have shown the projection property
for ideals of a solvable Lie algebra.

Suppose that L is a nilpotent Lie algebra and that I is a subalgebra of L. As in [21;
0.3.7] we consider the sequence (Lk + I)k∈N of subalgebras of L, where (Lk)k∈N is the
descending central series of L. In particular, we have L1 + I = L + I = L. Moreover,
since L is a nilpotent Lie algebra, there is k0 ∈ N such that Lk = 0 for all k ≥ k0, which
implies that Lk + I = I for all k ≥ k0. In addition, since [L,Lk] = Lk+1 for all k ∈ N,
we have [Lk + I, Lk+1 + I] ⊆ [L,Lk+1] + [Lk, L] + [I, I] ⊆ Lk+1 + I, i.e., for each k ∈ N,
Lk+1 + I is an ideal of Lk + I. Thus, in view of the projection property for ideals, we get
the projection property for subalgebras of nilpotent Lie algebras.

We have proved the main properties of the joint spectra σδ,k,e(%). For σπ,k,e(%) we
proceed by a duality argument. We begin with the following proposition, which extends
a result of Z. Słodkowski (see [23; 2.1]).

Proposition 3. Let X A→ Y
B→ Z be a chain complex of Banach spaces and bounded

linear operators. Then the following conditions are equivalent :

(i) dim Ker(B)/R(A) <∞ and R(B) is closed ,
(ii) dim Ker(A∗)/R(B∗) <∞ and R(A∗) is closed.

Proof. First of all, if dim Ker(B)/R(A) < ∞, then R(A) is closed, and then R(A∗) is
closed.

Now, if N is a finite-dimensional subspace of Y such that R(A)⊕N = Ker(B) and if
i: N → Y is the inclusion map, then we consider the chain complex

X ⊕N A′→ Y
B→ Z,

where A′ = A⊕ i, i.e., for x ∈ X and n ∈ N ,

A′(x, n) = A(x) + i(n).

Since R(A′) = Ker(B) and R(B) is closed, by [23; 2.1] we have

R(B∗) = Ker(A′∗) = Ker(A∗) ∩Ker(i∗) = Ker(A∗) ∩N⊥ ⊆ Ker(A∗).
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Now we consider the inclusion map

ι1: Ker(A∗)→ Y ′,

where Y ′ denotes the dual Banach space of Y . Since ι1(R(B∗)) ⊆ N⊥, we may consider
the quotient map

ι̃1: Ker(A∗)/R(B∗)→ Y ′/N⊥.

But if M is a closed subspace of Y such that N ⊕M = Y , then

Y ′/N⊥ ∼= M⊥ ∼= N ′.

In particular, dimY ′/N⊥ <∞, and since ι−1
1 (N⊥) = R(B∗), we see that ι̃1 is an injection,

which implies that dim Ker(A∗)/R(B∗) <∞.
Conversely, if dim Ker(A∗)/R(B∗) <∞, then R(B∗) is closed and then R(B) is closed.
Now, if we identify Y and Z in the canonical way with subspaces of Y ′′ and Z ′′

respectively, then

R(A∗∗) ∩ Y = R(A), Ker(B∗∗) ∩ Y = N(B).

Thus,

dim Ker(B)/R(A) = dim Ker(B∗∗) ∩ Y/R(A∗∗) ∩ Y.
In addition, if we consider the inclusion map

ι2: Ker(B∗∗) ∩ Y → Ker(B∗∗),

since ι2(R(A∗∗) ∩ Y ) ⊆ R(A∗∗) and ι−1
2 (R(A∗∗)) = R(A∗∗) ∩ Y , the quotient map

ι̃2: Ker(B∗∗) ∩ Y/R(A∗∗) ∩ Y → Ker(B∗∗)/R(A∗∗)

is an injection. In particular, dim Ker(B)/R(A) ≤ dimN(B∗∗)/R(A∗∗).
Finally, from the first part of the proposition, which has just been proved, we know

that dimN(B∗∗)/R(A∗∗) <∞.

When %: L → L(X) is a representation of the Lie algebra L in the Banach space X,
we may consider the adjoint representation of %, i.e., %∗: Lop → L(X ′), %∗(l) = (%(l))∗,
where X ′ denotes the dual space of X. Now we relate the joint spectra σδ,k,e(%) and
σπ,k,e(%).

Theorem 4. Let X be a complex Banach space, L a complex solvable finite-dimensional
Lie algebra, and %: L → L(X) a representation of L in X. If %∗: Lop → L(X ′) is the
adjoint representation of %, then there is a character of L, h, depending only on the Lie
structure of L, such that , for 0 ≤ k ≤ n.

(i) σδ,k,e(%) + h = σπ,k,e(%∗),
(ii) σπ,k,e(%) + h = σδ,k,e(%∗).

Proof. This is a consequence of Proposition 3, [5; 1] and [21; 2.4.5].

Now we state the main properties of the joint spectra σπ,k,e(%).

Theorem 5. Let X be a complex Banach space, L a complex solvable finite-dimensional
Lie algebra, and %: L → L(X) a representation of L in X. Then the sets σπ,k,e(%) are
compact non-void subsets of L∗ that have the projection property.
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Proof. According to Theorems 2 and 4, σπ,k,e(%) are compact non-void subsets of L∗,
0 ≤ k ≤ n = dimL.

Furthermore, if L is a solvable Lie algebra and I an ideal of L, then by [8; 5.3] there
is a Jordan–Hölder sequence of ideals of L such that I is one of its terms. Thus we may
suppose that dim I = n−1. In addition, if h and hI are the characters of L and I involved
in formulas (i) and (ii) of Theorem 4 that correspond to the Lie algebra L and the ideal
I respectively, then by [5; 1] and [8; 5.3], or by [21; 2.4], h|I = hI . In particular,

σπ,k,e(%|I) + h|I = σδ,k,e(%∗|I).

Thus, according to Theorem 4 we have

π(σπ,k,e(%)) = π(σδ,k,e(%∗)− h) = σδ,k,e(%∗)− h|I = σπ,k,e(%|I).

So, we have proved the projection property for ideals of a solvable Lie algebra. To
prove it for subalgebras of a nilpotent Lie algebra, it is enough to apply the corresponding
proof of Theorem 2.

Now we study the essential split joint spectra. These are extensions to representations
of solvable Lie algebras in a Banach space of the corresponding joint spectra introduced
by J. Eschmeier in [13] for finite tuples of commuting Banach space operators. In order
to show their main properties, we use a characterization proved in [13].

As in Section 2, we now consider a finite complex (X, d) of Banach spaces and bounded
linear operators,

0→ Xn
dn−→ Xn−1 → . . .→ X1

d1−→ X0 → 0.

Given a fixed integer p, 0 ≤ p ≤ n, we say that (X, d) is Fredholm split in degree p if
there are continuous linear operators

Xp+1
hp←− Xp

hp−1←− Xp−1

and a compact operator kp defined in Xp such that dp+1hp + hp−1dp = Ip − kp, where Ip
denotes the identity operator of Xp.

Let X, L, and %: L→ L(X) be as in Section 2, and for each p consider the set

spp,e(%) = {f ∈ L∗ : f(L2) = 0, (X ⊗∧L, d(%− f)) is not Fredholm split in degree p}.
Now we state the definition of essential split joint spectra; see [13].

Definition 5. Let X be a complex Banach space, L a complex solvable finite-dimen-
sional Lie algebra, and %: L → L(X) a representation of L in X. Then the Fredholm or
essential split joint spectrum of % is the set

spe(%) =
n⋃

p=0

spp,e(%).

Moreover, the kth Fredholm or essential δ-split joint spectrum of % is the set

spδ,k,e(%) =
k⋃

p=0

spp,e(%),
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and the kth Fredholm or essential π-split joint spectrum of % is the set

spπ,k,e(%) =
n⋃

p=n−k
spp,e(%),

for 0 ≤ k ≤ n.
We observe that spδ,n,e(%) = spπ,n,e(%) = spe(%).

In order to show the main properties of these joint spectra, we need to prove some
technical results. We first review several facts related to complexes of Banach space
operators.

Given a finite complex (X, d) of Banach spaces and bounded linear operators and a
Banach space Y , we denote the complex

0→ L(Y,Xn)
Ldn−→ L(Y,Xn−1)→ . . .→ L(Y,X1)

Ld1−→ L(Y,X0)→ 0

by L(Y,X.), where Ldp denotes the induced operator of left multiplication with dp, i.e.,
for T ∈ L(Y,Xp), Ldp(T ) = dp ◦ T ∈ L(Y,Xp−1), 0 ≤ p ≤ n; see [13].

In addition, if X1 and X2 are two complex Banach spaces, and if K(X1, X2) denotes
the ideal of all compact operators in L(X1, X2), then it is clear that Ldp(K(Y,Xp)) ⊆
K(Y,Xp−1). Thus, we may consider the complex C(Y,X.) = (C(Y,Xp), L̃dp), where
C(Y,Xp) = L(Y,Xp)/K(Y,Xp) and L̃dp is the quotient operator associated to Ldp ;
see [13].

On the other hand, if L, X, and %: L → L(X) are as in Section 2, then we consider
the representation

L%: L→ L(L(X)), l 7→ L%(l),

where L%(l) denotes the left multiplication operator associated to %(l), l ∈ L; see [21; 3.1].
In addition, since L%(l)(K(X)) ⊆ K(X), it is possible to consider the representation

L̃%: L→ L(C(X)),

where C(X) = L(X)/K(X) and L̃%(l) is the quotient operator defined in C(X) associated
to L%(l).

In the following proposition we relate the complexes (C(X) ⊗ ∧L, d(L̃%)) and
C(X, (X ⊗∧L, d(%)).).

Proposition 6. Let X be a complex Banach space, L a complex solvable finite-dimen-
sional Lie algebra, and %: L → L(X) a representation of L in X. Then the complexes
(C(X)⊗∧L, d(L̃%)) and C(X, (X ⊗∧L, d(%)).) are naturally isomorphic.

Proof. First, we consider the complexes (L(X)⊗∧L, d(L%)) and L(X, (X⊗∧L, d(%)).).
In [21; 3.1.4] it was proved that these two complexes are naturally isomorphic. Indeed, if
Φp: L(X)⊗∧p L→ L(X,X ⊗∧p L) is the map

Φp(T ⊗ ξ)(x) = T (x)⊗ ξ,
T ∈ L(X), ξ ∈ ∧p L and x ∈ X, then Φ : (L(X)⊗∧L, d(L%))→ L(X, (X⊗∧L, d(%)).) is
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an isomorphism of chain complexes. In particular, the following diagram is commutative:

L(X)⊗∧p L L(X)⊗∧p−1 L

L(X,X ⊗∧p L) L(X,X ⊗∧p−1 L)

dp(L%) //

Φp

��
Φp−1

��Ldp //

Moreover, since Φp is an isomorphism, an easy calculation shows that Φp(K(X)⊗∧p L) =
K(X,X⊗∧p L). Thus, we may consider the associated quotient map Φ̃p: C(X)⊗∧p L→
C(X,X ⊗∧p L), which is an isomorphism.

In addition, it is clear that dp(L%)(K(X)⊗∧p L) ⊆ K(X)⊗∧p−1
L. Furthermore, if

πp: L(X)⊗∧p L→ C(X)⊗∧p L denotes the projection map, it is easy to prove that the
quotient map associated to dp(L%) coincides with dp(L̃%), i.e., we have the commutative
diagram

L(X)⊗∧p L L(X)⊗∧p−1 L

C(X)⊗∧p L C(X)⊗∧p−1 L

dp(L%) //

πp

��
πp−1

��
dp(L̃%) //

In particular, the family (πp)0≤p≤n: (L(X) ⊗ ∧L, d(L%)) → (C(X) ⊗ ∧L, d(L̃%)) is a
morphism of chain complexes.

Thus, we obtain the commutative diagram

C(X)⊗∧p L C(X)⊗∧p−1
L

C(X,X ⊗∧p L) C(X,X ⊗∧p−1
L)

dp(L̃%) //

Φ̃p

��
Φ̃p−1

��L̃dp //

Finally, since for each p, 0 ≤ p ≤ n, the map Φ̃p is an isomorphism, the family Φ̃ =
(Φ̃p)0≤p≤n: (C(X) ⊗ ∧L, d(L̃%)) → C(X, (X ⊗ ∧L, d(%)).) is an isomorphism of chain
complexes.

In order to show that the sets introduced in Definition 5 are really joint spectra, we
need to prove an isomorphism similar to the one in Proposition 6, but related to right
multiplication instead of left multiplication. We first review some results necessary for
our objective.

Let (X, d) be a finite complex of Banach spaces and bounded linear operators and Y

a complex Banach space. We denote the complex

0→ L(X0, Y )
Rd1−→ L(X1, Y )→ . . .→ L(Y,Xn−1)

Rdn−→ L(Xn, Y )→ 0

by L(X., Y ), where Rdp denotes the induced operator of right multiplication with dp, i.e.,
for T ∈ L(Xp−1, Y ), Rdp(T ) = T ◦ dp ∈ L(Xp, Y ), 0 ≤ p ≤ n; see [13].

It is clear that Rdp(K(Xp−1, Y )) ⊆ K(Xp, Y ). Thus, we may consider the complex
C(X., Y ) = (C(Xp, Y ), R̃dp), where C(Xp, Y ) = L(Xp, Y )/K(Xp, Y ) and R̃dp is the quo-
tient operator associated to Rdp ; see [13].
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On the other hand, if L, X, and %: L → L(X) are as in Section 2, then we consider
the representation

R%: Lop → L(L(X)), l 7→ R%(l),

where R%(l) denotes the right multiplication operator associated to %(l), l ∈ Lop; see [21;
3.1].

Furthermore, since R%(l)(K(X)) ⊆ K(X), it is possible to consider the representation

R̃%: Lop → L(C(X)),

where R̃%(l) is the quotient operator associated to R%(l).
Now we consider the Chevalley–Eilenberg cochain complex associated to the repre-

sentation R̃%: Lop → L(C(X)), i.e., ChE(R̃%) = (Hom(
∧
L,C(X)), δ(R̃%)), where δp(R̃%):

Hom(
∧p

L,C(X))→ Hom(
∧p+1

L,C(X)) is the map defined by

(δp(R̃%)f)(x1 . . . xp+1) =
p+1∑

i=1

(−1)i−1R̃%(xi)f(x1 . . . x̂i . . . xp+1)

+
∑

1≤i<k≤p+1

(−1)i+kf([xi, xk].x1 . . . x̂i . . . x̂k . . . xp+1)

for f ∈ Hom(
∧p L,C(X)) and xi ∈ Lop, 1 ≤ i ≤ p+ 1; see [21; 2.1.9].

In the next proposition we relate the complexes ChE(R̃%) and C((X⊗∧L, d(%))., X).

Proposition 7. The complexes ChE(R̃%) and C((X ⊗∧L, d(%))., X) are naturally iso-
morphic.

Proof. First of all, we consider the representation R%: Lop → L(L(X)) and the Chevalley–
Eilenberg cochain complex associated to it, i.e., ChE(R%) = (Hom(

∧
L,L(X)), δ(R%)),

where δp(R%): Hom(
∧p L,L(X))→ Hom(

∧p+1 L,L(X)) is the map defined by

(δp(R%)f)(x1 . . . xp+1) =
p+1∑

i=1

(−1)i−1R%(xi)f(x1 . . . x̂i . . . xp+1)

+
∑

1≤i<k≤p+1

(−1)i+kf([xi, xk].x1 . . . x̂i . . . x̂k . . . xp+1),

for f ∈ Hom(
∧p L,L(X)) and xi ∈ Lop, 1 ≤ i ≤ p+ 1; see [21; 2.1.9].

Now, in [21; 3.1.6] it was proved that ChE(R%) and L((X⊗∧L, d(%))., X) are naturally
isomorphic. Indeed, if Ψp: Hom(

∧p
L,L(X))→ L(X ⊗∧p L,X) is the map

(Ψp(f))(x⊗ ξ) = f(ξ)(x),

f ∈ Hom(
∧p L,L(X)), ξ ∈ ∧p L and x ∈ X, then Ψ : ChE(R%)→ L((X⊗∧L, d(%))., X)

is an isomorphism of chain complexes. In particular, the following diagram is commuta-
tive:

Hom(
∧p L,L(X)) Hom(

∧p+1
L,L(X))

L(X ⊗∧p L,X) L(X ⊗∧p+1
L,X)

δp(R%) //

Ψp

��
Ψp+1

��Rdp+1 //
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Since Ψp is an isomorphism, an easy calculation shows Ψp(Hom(
∧p L,K(X)) = K(X ⊗∧p

L,X). Thus, we may consider the associated quotient map Ψ̃p: Hom(
∧p
L,C(X)) →

C(X ⊗∧p L,X), which is an isomorphism.
In addition, it is clear that δp(R%)(Hom(

∧p L,K(X)) ⊆ Hom(
∧p+1 L,K(X)). Fur-

thermore, if πp: Hom(
∧p

L,L(X)) → Hom(
∧p

L,C(X)) denotes the projection map, it
is easy to prove that the quotient map associated to δp(R%) coincides with δp(R̃%), i.e.,
we have the commutative diagram

Hom(
∧p L,L(X)) Hom(

∧p+1
L,L(X))

Hom(
∧p

L,C(X)) Hom(
∧p+1

L,C(X))

δp(R%) //

πp

��
πp+1

��
δp(R̃%) //

In particular, the family (πp)0≤p≤n: ChE(R%) → ChE(R̃%) is a morphism of chain com-
plexes.

Thus, we obtain the commutative diagram

Hom(
∧p L,C(X)) Hom(

∧p+1
L,C(X))

C(X ⊗∧p L,X) C(X ⊗∧p+1
L,X)

δp(R̃%) //

Ψ̃p

��
Ψ̃p+1

��R̃dp //

Finally, since for each p, 0 ≤ p ≤ n, the map Ψ̃p is an isomorphism, the family Ψ̃ =
(Ψ̃p)0≤p≤n: ChE(R̃%)→ C((X ⊗∧L, d(%))., X) is an isomorphism of chain complexes.

Now we state the main spectral properties of essential split joint spectra.

Theorem 8. Let X be a complex Banach space, L a complex solvable finite-dimensional
Lie algebra, and %: L→ L(X) a representation of L in X. Then

(i) spδ,k,e(%) = σδ,k(L̃%),

(ii) spπ,k,e(%) = σδ,k(R̃%) + h,

(iii) spe(%) = σe(L̃%) = σe(R̃%) + h,

where h is the character of L considered in Theorem 4 and 0 ≤ k ≤ n.

Proof. Since the argument in [13; 2.4(a-iii)] applies in the non-commutative case, accord-
ing to Proposition 6 we have

spδ,k,e(%) = σδ,k(L̃%).

Next, since the argument in [13; 2.4(b-iii)] applies in the non-commutative case, if h
is the character of L considered in Theorem 4 (see [5; 1] and [21; 2.4.5]), then according
to Proposition 7 and [21; 2.4.4] we have

spπ,k,e(%) = σδ,k(R̃%) + h.

The third statement is clear.

Theorem 9. Let X be a complex Banach space, L a complex solvable finite-dimen-
sional Lie algebra, and %: L → L(X) a representation of L in X. Then the sets spe(%),
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spδ,k,e(%), and spπ,k,e(%) are compact non-void subsets of L∗ that have the projection
property.

Proof. The main properties of the essential split joint spectra may be deduced from the
corresponding ones of the Słodkowski and Taylor joint spectra, and from the particular
behavior of the character h with respect to Lie ideals of L; see the proof of Theorem 5.

Finally, in the following proposition we consider two nilpotent Lie algebras and two
representations of the algebras in a complex Banach space related by an epimorphism,
and we describe the connection between the joint spectra of the representations. We need
this result for nilpotent and commutative systems of operators. In addition, these results
provide an extension of [21; 2.7.4] and [21; 3.1.10] for representations of nilpotent Lie
algebras, from the Taylor to Słodkowski joint spectra and from the usual split spectrum
to the split joint spectra. Moreover, we consider the corresponding essential joint spectra
and prove similar characterizations.

Proposition 10. Let X be a complex Banach space, L1 and L2 two complex nilpotent
finite-dimensional Lie algebras , %1: L1 → L(X) a representation of L1, and f : L2 → L1 a
Lie algebra epimorphism. Then, if we consider the representation %2 = %1◦f : L2 → L(X),
we have

(i) σδ,k(%2) = σδ,k(%1) ◦ f , σπ,k(%2) = σπ,k(%1) ◦ f ,
(ii) σδ,k,e(%2) = σδ,k,e(%1) ◦ f , σπ,k,e(%2) = σπ,k,e(%1) ◦ f ,
(iii) spδ,k(%2) = spδ,k(%1) ◦ f , spπ,k(%2) = spπ,k(%1) ◦ f ,
(iv) spδ,k,e(%2) = spδ,k,e(%1) ◦ f , spπ,k,e(%2) = σπ,k,e(%1) ◦ f ,

where σ∗(%1) ◦ f = {α ◦ f : α ∈ σ∗(%1)} and sp∗(%1) ◦ f = {α ◦ f : α ∈ sp∗(%1)}.
Proof. A careful inspection of [16; 2.5] and [16; 2.6] shows that it is possible to refine the
arguments of these results in order to prove that the Koszul complex of %1 is exact for
p = 0, . . . , k if and only if the Koszul complex of %2 is exact for p = 0, . . . , k. In particular,
if α ∈ σδ,k(%1), then %2 − α ◦ f = (%1 − α) ◦ f , which implies that σδ,k(%1) ◦ f ⊆ σδ,k(%2).
On the other hand, since σδ,k(%2) ⊆ σ(%2), by [21; 2.7.4], if β ∈ σδ,k(%2), then there is
α ∈ σ(%1) such that β = α ◦ f . But by the above observation, since %2−β = (%1−α) ◦ f ,
we have α ∈ σδ,k(%1). Thus, σδ,k(%2) = σδ,k(%1) ◦ f .

In addition, a careful inspection of [16; 2.5] and [16; 2.6] shows that it is possible
to extend the arguments developed in these results to the essential δ-Słodkowski joint
spectra, i.e., it is possible to prove that the Koszul complex of %1 is Fredholm for p =
0, . . . , k if and only if the Koszul complex of %2 is Fredholm for p = 0, . . . , k. In particular,
we may apply the same argument that we developed for the joint spectra σδ,k to the joint
spectra σδ,k,e. Thus, σδ,k,e(%2) = σδ,k,e(%1) ◦ f .

Now if we consider the representations %∗1: Lop
1 → L(X ′) and %∗2: Lop

1 → L(X ′) defined
in Theorem 4, then %∗2 = %∗1 ◦ f . Moreover, by [5; 7], [21; 2.11.4] and Theorem 4 we have
σπ,k(%1) ◦ f = σπ,k(%2) and σπ,k,e(%2) = σπ,k,e(%1) ◦ f .

Furthermore, if we consider the representations L%i : Li → L(L(X)) and R%i : L
op
i →

L(L(X)), for i = 1, 2, then L%2 = L%1 ◦ f and R%2 = R%1 ◦ f . Then, by [21; 3.1.5] and [21;
3.1.7] we have spδ,k(%2) = spδ,k(%1) ◦ f and spπ,k(%2) = spπ,k(%1) ◦ f .



Joint spectra of the tensor product representation 21

Finally, if we consider the representations L̃%i : Li→L(C(X)) and R̃%i : L
op
i →L(C(X)),

for i = 1, 2, then L̃%2 = L̃%1 ◦ f and R̃%2 = R̃%1 ◦ f . Then, according to Theorem 8 we
have spδ,k,e(%2) = spδ,k,e(%1) ◦ f and spπ,k,e(%2) = spπ,k,e(%1) ◦ f .

4. Tensor products of Banach spaces

In this section we review the definition and main properties of the tensor product of
complex Banach spaces introduced by J. Eschmeier [14]. In addition, we prove some
propositions necessary for our main results.

A pair 〈X, X̃〉 of Banach spaces will be called a dual pairing if

(A) X̃ = X ′ or (B) X = X̃ ′.

In both cases, the canonical bilinear mapping is denoted by

X × X̃ → C, (x, u) 7→ 〈x, u〉.
If 〈X, X̃〉 is a dual pairing, we consider the subalgebra L(X) of L(X) consisting of all

operators T ∈ L(X) for which there is an operator T ′ ∈ L(X̃) with

〈Tx, u〉 = 〈x, T ′u〉
for all x ∈ X and u ∈ X̃. It is clear that if the dual pairing is 〈X,X ′〉, then L(X) = L(X),
and that if the dual pairing is 〈X ′, X〉, then L(X) = {T ∗ : T ∈ L(X̃)}. In particular,
each operator of the form

fy,v : X → X, x 7→ 〈x, v〉y,
is contained in L(X), for y ∈ X and v ∈ X̃.

Now we recall the definition of the tensor product introduced by J. Eschmeier [14].

Definition 6. Given two dual pairings 〈X, X̃〉 and 〈Y, Ỹ 〉, a tensor product of the Ba-
nach spaces X and Y relative to the dual pairings 〈X, X̃〉 and 〈Y, Ỹ 〉 is a Banach space Z
together with continuous bilinear mappings

X × Y → Z, (x, y) 7→ x⊗ y; L(X)× L(Y )→ L(Z), (T, S) 7→ T ⊗ S,
which satisfy the following conditions:

(T1) ||x⊗ y|| = ||x|| · ||y||,
(T2) T ⊗ S(x⊗ y) = (Tx)⊗ (Sy),
(T3) (T1 ⊗ S1) ◦ (T2 ⊗ S2) = (T1T2)⊗ (S1S2), I ⊗ I = I,
(T4) Im(fx,u ⊗ I) ⊆ {x⊗ y : y ∈ Y }, Im(fy,v ⊗ I) ⊆ {x⊗ y : x ∈ X}.
As in [14], we write X ⊗̃Y instead of Z. In addition, as in [14] we have two applications

of Definition 6, namely, the completion X ⊗̃α Y of the algebraic tensor product of the
Banach spaces X and Y with respect to a quasi-uniform crossnorm α (see [18]), and an
operator ideal between Banach spaces (see [14] and Section 7).

In order to prove our main results we need to study the behavior of a split and
Fredholm split complex of Banach spaces with respect to the procedure of tensoring
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it with a fixed Banach space. We begin with some preparation and then we prove our
characterization.

Let (X, d) be, as in Section 2, a complex of Banach spaces and bounded linear opera-
tors, and suppose that (X, d) is Fredholm split for p = 0, . . . , k. Then, by [13; 2.7] and its
proof, the complex (X, d) is Fredholm for p = 0, . . . , k, and Ker(dp) is a complemented
subspace of Xp for p = 1, . . . , k + 1. In addition, if for p = 1, . . . , k + 1 we decompose
Xp = Ker(dp) ⊕ Lp, then for p = 1, . . . , k we have Xp = R(dp+1) ⊕ Np ⊕ Lp, where
Np is a finite-dimensional subspace of Xp such that R(dp+1)⊕Np = Ker(dp). Moreover,
X0 = R(d1)⊕N0, where N0 is a finite-dimensional subspace of X0; in particular, we may
define L0 = 0. Thanks to these decompositions, for p = 0, . . . , k there are well defined
operators hp: Xp → Xp+1 such that

(i) hp|Lp = 0, hp|Np = 0, hp◦dp+1 = Ip|Lp+1, where Ip denotes the identity operator
of Xp,

(ii) dp+1hp + hp−1dp = Ip − kp, where kp is the projector of Xp with range Np and
null space R(dp+1)⊕ Lp,

(iii) hphp−1 = 0 for p = 1, . . . , k.

In addition, if the complex (X, d) is split for p = 0, . . . , k, then it is exact for p =
0, . . . , k, and in the above decompositions Np = 0 for p = 0, . . . , k. In particular, kp = 0
for p = 0, . . . , k.

If there is a Banach space Z such that for each p ∈ Z there is an np ∈ N0 with
Xp = Znp , and a Banach space Y such that there is a tensor product Y ⊗̃ Z relative to
〈Y, Y ′〉 and 〈Z,Z ′〉, then we may consider the chain complex

Y ⊗̃Xk+1
I⊗dk+1−−−→ Y ⊗̃Xk

I⊗dk−−→ Y ⊗̃Xk−1 → . . .→ Y ⊗̃X1
I⊗d1−−→ Y ⊗̃X0 → 0,

where I denotes the identity of Y . Moreover, if for p = 0, . . . , k we consider the maps
I ⊗ hp: Y ⊗̃Xp → Y ⊗̃Xp+1, then

(i) I ⊗ dp+1 ◦ I ⊗ hp + I ⊗ hp−1 ◦ I ⊗ dp = I − I ⊗ kp,
(ii) I ⊗ hp ◦ I ⊗ hp−1 = 0.

It is worth noticing that the properties of the tensor product and the fact that Xp =
Znp imply that the maps I ⊗ dp, p = 0, . . . , k + 1, and I ⊗ hp, p = 0, . . . , k, are well
defined and the compositions behave as usual.

Similarly, we consider a chain complex that is split or Fredholm split for p = k, . . . , n.

Let (X, d) be, as in Section 2, a complex of Banach spaces and bounded linear op-
erators, and suppose that (X, d) is Fredholm split for p = k, . . . , n. Then, by [13; 2.7]
and its proof, the complex (X, d) is Fredholm for p = k, . . . , n and R(dp+1) is a closed
complemented subspace of Xp for p = k − 1, . . . , n− 1. In addition, for p = k, . . . , n− 1
we may decompose Xp = R(dp+1) ⊕ Np ⊕ Lp, where Np is a finite-dimensional sub-
space of Ker(dp) such that Ker(dp) = R(dp+1)⊕Np. Moreover, for p = n we know that
Xn = Nn ⊕ Ln, where Nn = Ker(dn), and for p = k − 1 we define Nk−1 = 0 and Lk−1

such that Xk−1 = R(dk) ⊕ Lk−1. Thanks to these decompositions, for p = k − 1, . . . , n
there are well defined operators hp: Xp → Xp+1 such that
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(i) hp|Lp = 0, hp◦dp+1 = Ip|Lp+1, hp|Np = 0, where Ip denotes the identity operator
of Xp,

(ii) dp+1hp + hp−1dp = Ip− kp for p = k, . . . , n, where kp is the projector of Xp with
range Np and null space Lp ⊕R(dp+1),

(iii) hphp−1 = 0 for p = k, . . . , n.

In addition, if the complex (X, d) is split for p = k, . . . , n, it is exact for p = k, . . . , n,
and in the above decompositions Np = 0 for p = k, . . . , n. In particular, kp = 0 for
p = k, . . . , n.

If there is a Banach space Z such that for each p ∈ Z there is an np ∈ N0 with
Xp = Znp , and a Banach space Y such that there is a tensor product Y ⊗̃ Z relative to
〈Y, Y ′〉 and 〈Z,Z ′〉, then we may consider the chain complex

0→ Y ⊗̃Xn
I⊗dn−−→ Y ⊗̃Xn−1 → . . .→ Y ⊗̃Xk

I⊗dk−−→ Y ⊗̃Xk−1 → . . .

where I denotes the identity of Y . Moreover, if for p = k − 1, . . . , n− 1 we consider the
maps I ⊗ hp: Y ⊗̃Xp → Y ⊗̃Xp+1, for p = k, . . . , n we have

(i) I ⊗ dp+1 ◦ I ⊗ hp + I ⊗ hp−1 ◦ I ⊗ dp = I − I ⊗ kp,
(ii) I ⊗ hp ◦ I ⊗ hp−1 = 0.

As before, the maps I ⊗ dp, p = n, . . . k, and I ⊗ hp, p = k − 1, . . . n − 1, are well
defined and the compositions behave as usual.

Proposition 11. In the above conditions , for p = 0, . . . , k we have

(i) I ⊗ hp ◦ I ⊗ dp+1 = I ⊗ hpdp+1 is a projector defined in Y ⊗̃Xp+1. In particular ,
Y ⊗̃Xp+1 = Ker(I ⊗ hpdp+1)⊕R(I ⊗ hpdp+1).

(ii) Ker(I⊗hpdp+1) = Ker(I⊗dp+1), R(I⊗hpdp+1) = R(I⊗hp), and Ker(I⊗hp) =
R(I ⊗ hp−1)⊕R(I ⊗ kp).

Similarly , for p = k, . . . , n we have

(i) I ⊗ dp ◦ I ⊗ hp−1 = I ⊗ dphp−1 is a projector defined in Y ⊗̃Xp−1. In particular ,
Y ⊗̃Xp−1 = Ker(I ⊗ dphp−1)⊕ R(I ⊗ dphp−1).

(ii) Ker(I⊗dphp−1) = Ker(I⊗hp−1), R(I⊗dphp−1) = R(I⊗dp), and Ker(I⊗hp) =
R(I ⊗ hp−1)⊕R(I ⊗ kp).

Proof. We only prove the first part of the proposition; the proof of the second one is
similar.

It is easy to prove that hpdp+1: Xp+1 → Xp+1 is a projector. Thus, according to the
properties of the tensor product we obtain the first assertion.

Since I ⊗ hpdp+1 = I ⊗ hp ◦ I ⊗ dp+1, it is clear that R(I ⊗ hpdp+1) ⊆ R(I ⊗ hp).
On the other hand, since

I ⊗ hpdp+1 ◦ I ⊗ hp = I ⊗ hpdp+1hp = I ⊗ hp(Ip − kp − hp−1dp) = I ⊗ hp,
we have R(I ⊗ hp) ⊆ R(I ⊗ hpdp+1). Thus, the equality is proved.

Since I⊗hpdp+1 = I⊗hp ◦ I⊗dp+1, it is clear that Ker(I⊗dp+1) ⊆ Ker(I⊗hpdp+1).
On the other hand,
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I ⊗ dp+1 ◦ I ⊗ hpdp+1 = I ⊗ dp+1hpdp+1 = I ⊗ (Ip − kp − hp−1dp)dp+1 = I ⊗ dp+1.

Thus Ker(I ⊗ hpdp+1) ⊆ Ker(I ⊗ dp+1), and we have the equality.
In order to prove the decomposition of Ker(I⊗hp), we first suppose that p = 1, . . . , k.

We observe that I ⊗ hp ◦ I ⊗ hp−1 = I ⊗ hphp−1 = 0 and I ⊗ hp ◦ I ⊗ kp = I ⊗ hpkp = 0.
Thus, R(I ⊗ kp) +R(I ⊗ hp−1) ⊆ Ker(I ⊗ hp). Moreover, R(I ⊗ kp) ∩R(I ⊗ hp−1) = 0.

In fact, since kp is a projector, I ⊗ kp is a projector. In particular, we may suppose
that if z ∈ R(I ⊗ kp), then z = I ⊗ kp(z). In addition, if z = I ⊗ hp−1(w), then we have

z = I ⊗ kp(z) = I ⊗ kp(I ⊗ hp−1(w)) = I ⊗ kphp−1(w) = 0.

Therefore R(I ⊗ kp)⊕R(I ⊗ hp−1) ⊆ Ker(I ⊗ hp).
On the other hand, if z ∈ Ker(I ⊗ hp), then we have z = I ⊗ kp(z) + I ⊗ hp−1dp(z).

Thus, z ∈ R(I ⊗ hp−1)⊕R(I ⊗ kp), and we have the equality.
Now, if p = 0, it is clear that R(I⊗k0) ⊆ Ker(I⊗h0). On the other hand, I − I ⊗ k0 =

I ⊗ d1 ◦ I ⊗h0. In particular, if z ∈ Ker(I ⊗h0), then z ∈ R(I ⊗ k0). Thus, Ker(I ⊗h0) =
R(I ⊗ k0).

Remark 12. In the above conditions, if there is a Banach space Y and a tensor product
Z ⊗̃ Y relative to 〈Z,Z ′〉 and 〈Y, Y ′〉, then by similar arguments it is possible to obtain
similar results to the ones of Proposition 11, but in which the order of the spaces and
maps in the tensor products are interchanged.

Now we review the relation between the tensor product of J. Eschmeier and complexes
of Banach spaces; see [14; 3].

Let (〈Xi, X̃i〉)0≤i≤n be a system of dual pairings of Banach spaces such that X̃i = X ′i
for all i = 0, . . . , n, or Xi = X̃ ′i for all i = 0, . . . , n. Then, if X =

⊕n
p=0Xp and if

X̃ =
⊕n

p=0 X̃p, according to the observations in [14; 3], 〈X , X̃ 〉 is a dual pairing. Moreover,
if for all i = 1, . . . , n there is an operator d′i ∈ L(Xi, Xi−1) such that d′i−1 ◦ d′i = 0, then

0→ Xn
d′n−→ Xn−1 → . . .→ X1

d′1−→ X0 → 0

is a complex of Banach spaces and bounded linear operators; we denote it by (X, d′). In
addition, if ∂′ =

⊕n
p=1 d

′
p, then (X , ∂′) is the differential space associated to the complex

(X, d′) and ∂′ ∈ L(X ).
Now we consider another system of dual pairings (〈Yj , Ỹj〉)0≤j≤m with the property

stated above, i.e., Ỹj = Y ′j for all j = 0, . . . ,m, or Yj = Ỹ ′j for all j = 0, . . . ,m. As above,
we suppose that for all j = 1, . . . ,m there is an operator d′′j ∈ L(Yj , Yj−1) such that
d′′j−1 ◦ d′′j = 0. Thus, we have a differential complex

0→ Ym
d′′m−→ Ym−1 → . . .→ Y1

d′′1−→ Y0 → 0;

we denote it by (Y, d′′). In addition, if ∂′′ =
⊕m

q=1 d
′′
q , then (Y , ∂′′) is the differential

space associated to the complex (Y, d′′) and ∂′′ ∈ L(Y).
We suppose that for each i = 0, . . . , n and for each j = 0, . . . ,m there is a tensor

product Xi ⊗̃ Yj relative to 〈Xi, X̃i〉 and 〈Yj , Ỹj〉, in such a way that all these tensor
products are compatible in the sense described at the end of Section 1 in [14]. In particular,
it is possible to consider the tensor product X ⊗̃ Y relative to 〈X , X̃ 〉 and 〈Y , Ỹ〉; see
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[14; 1]. Moreover, if η ∈ L(X ) is the map defined by η|Xp = (−1)pIp, where Ip denotes
the identity of Xp, then the map ∂: X ⊗̃ Y → X ⊗̃ Y defined by

∂ = ∂′ ⊗ Iq + η ⊗ ∂′′

is such that ∂ ◦ ∂ = 0 and ∂ ∈ L(X ⊗̃ Y), where Iq denotes the identity of Yq.
Furthermore, if we consider the double complex

Xp−1 ⊗̃ Yq Xp ⊗̃ Yq

Xp−1 ⊗̃ Yq−1 Xp ⊗̃ Yq−1

(−1)p−1Ip−1⊗d′′q
��

d′p⊗Iqoo

(−1)pIp⊗d′′q
��d′p⊗Iq−1oo

then the differential space associated to the total complex of this double complex is
(X ⊗̃ Y , ∂).

Now, if L1 and L2 are two complex solvable finite-dimensional Lie algebras of dimen-
sions n and m respectively, X1 and X2 two complex Banach spaces, and %i: Li → L(Xi),
i = 1, 2, two representations of the Lie algebras, then we may consider the Koszul
complexes associated to the representations %1 and %2, i.e., (X1 ⊗

∧
L1, d(%1)) and

(X2 ⊗
∧
L2, d(%2)) respectively.

It is clear that for p = 0, . . . , n and for q = 0, . . . ,m, 〈X1 ⊗
∧p

L1, X1 ⊗
∧p

L′1〉 and
〈X2 ⊗

∧q
L2, X2 ⊗

∧q
L′2〉 are dual pairings. Moreover, dp(%1) ∈ L(X1 ⊗

∧p
L1, X1 ⊗∧p−1

L1) and dq(%2) ∈ L(X2 ⊗
∧q

L2, X2 ⊗
∧q−1

L2) for p = 0, . . . , n and q = 0, . . . ,m.
Thus, we may consider the differential spaces (X1, ∂1) and (X2, ∂2), where X1 = X1⊗

∧
L1,

X2 = X2 ⊗
∧
L2, ∂1 =

⊕n
p=1 dp(%1) and ∂2 =

⊕m
q=1 dq(%2).

We suppose that there is a tensor product X1 ⊗̃ X2 of X1 and X2 with respect to
〈X1, X

′
1〉 and 〈X2, X

′
2〉. Then, according to the considerations at the end of Section 1

in [14], for all p = 0, . . . , n and q = 0, . . . ,m there is a well defined tensor product
X1⊗

∧p
L1⊗̃X2⊗

∧q
L2 of X1⊗

∧p
L1 and X2⊗

∧q
L2 relative to 〈X1⊗

∧p
L1, X1⊗

∧p
L′1〉

and 〈X2 ⊗
∧q L2, X2 ⊗

∧q L′2〉. Furthermore, since for all p and q such that p = 0, . . . , n
and q = 0, . . . ,m, these tensor products are compatible in the sense described at the end
of Section 1 in [14], as above, we may consider the tensor product X1 ⊗̃ X2 of X1 and
X2, which is a differential space with differential ∂ ∈ L(X1 ⊗̃ X2), ∂ = ∂1 ⊗ I + η ⊗ ∂2.
Then (X1 ⊗̃ X2, ∂) is the differential space associated to the total complex of the double
complex

X1 ⊗
∧p−1

L1 ⊗̃X2 ⊗
∧q

L2 X1 ⊗
∧p L1 ⊗̃X2 ⊗

∧q L2

X1 ⊗
∧p−1 L1 ⊗̃X2 ⊗

∧q−1 L2 X1 ⊗
∧p L1 ⊗̃X2 ⊗

∧q−1 L2

(−1)p−1Ip−1⊗dq(%2)
��

dp(%1)⊗Iqoo

(−1)pIp⊗dq(%2)

��
dp(%1)⊗Iq−1oo

We recall that given the Koszul complexes (X1⊗
∧
L1, d(%1)) and (X2⊗

∧
L2, d(%2)),

according to the properties of the tensor product introduced in [14] and the considerations
of Sections 1 and 3 in [14], it is possible to consider the complex of Banach spaces
defined by the tensor product of (X1 ⊗

∧
L1, d(%1)) and (X2 ⊗

∧
L2, d(%2)), denoted by

(X1 ⊗
∧
L1, d(%1)) ⊗̃ (X2 ⊗

∧
L2, d(%2)). This complex is the total complex of the above
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double complex, i.e., for 0 ≤ k ≤ n+m, the kth space is
⊕

p+q=kX1⊗
∧p L1⊗̃X2⊗

∧q L2,

and the boundary map, dk, restricted to X1 ⊗
∧p L1 ⊗̃ X2 ⊗

∧q L2 is dk = dp(%1) ⊗
Iq + (−1)p ⊗ dq(%2). In particular, (X1 ⊗̃ X2, ∂) is the differential space of the complex
(X1 ⊗

∧
L1, d(%1)) ⊗̃ (X2 ⊗

∧
L2, d(%2)).

On the other hand, we may consider the direct sum L = L1 × L2 of the Lie algebras
L1 and L2, which is a complex solvable finite-dimensional Lie algebra, and the tensor
product representation of L in X1 ⊗̃X2, i.e.,

% = %1 × %2: L→ L(X1 ⊗̃X2), %1 × %2(l1, l2) = %1(l1)⊗ I + I ⊗ %2(l2),

where I denotes the identity operator of both X2 and X1. In particular, we may consider
the Koszul complex of the representation %: L→ L(X1 ⊗̃X2), i.e., (X1 ⊗̃X2⊗

∧
L, d(%)),

and the differential space associated to it, i.e., (X1⊗̃X2⊗
∧
L, ∂̃), where ∂̃ =

⊕n+m
k=1 dk(%).

In the following proposition we relate (X1 ⊗
∧
L1, d(%1)) ⊗̃ (X2 ⊗

∧
L2, d(%2)) and

(X1 ⊗̃X2 ⊗
∧
L, d(%)).

Proposition 13. Let X1 and X2 be two complex Banach spaces , L1 and L2 two complex
solvable finite-dimensional Lie algebras , and %i: Li → L(Xi), i = 1, 2, two representations
of the algebras. Then the complexes (X1 ⊗̃ X2 ⊗

∧
L, d(%)) and (X1 ⊗

∧
L1, d(%1)) ⊗̃

(X2⊗
∧
L2, d(%2)) are isomorphic. In particular , the differential spaces (X1 ⊗̃ X2, ∂) and

(X1 ⊗̃X2 ⊗
∧
L, ∂̃) are isomorphic.

Proof. First of all we consider the identification

Φ:
∧
L1 ⊗

∧
L2 →

∧
L, Φ(w1 ⊗ w2) = w1 ∧ w2,

for w1 ∈ L1, w2 ∈ L2. Now an easy calculation shows that for k = 0, . . . , n+m the map

Φ̃k:
⊕

p+q=k
X1 ⊗

∧p L1 ⊗̃X2 ⊗
∧q L2 → X1 ⊗̃X2 ⊗

∧k L,

Φ̃(x1 ⊗ w1 ⊗̃ x2 ⊗ w2) = x1 ⊗̃ x2 ⊗ w1 ∧ w2,

is a well defined isomorphism. Moreover, since L is the direct sum of L1 and L2, it is easy
to prove that Φ̃ = (Φ̃k)0≤k≤n+m is a chain map, i.e., Φ̃(d) = d(%)Φ̃.

5. Joint spectra of the tensor product representation

In this section we consider two representations of Lie algebras in two Banach spaces and a
tensor product of the Banach spaces in the sense of [14], and we describe the Słodkowski
and split joint spectra of the tensor product representation of the direct sum of the
algebras; see Section 4. Moreover, for Hilbert spaces, the joint spectra are characterized
in a precise manner. In addition, we apply our results to nilpotent systems of operators.
We start by recalling the objects we shall work with.

Let L1 and L2 be two complex solvable finite-dimensional Lie algebras, X1 and X2

two complex Banach spaces, and %i: Li → L(Xi), i = 1, 2, two representations of Lie
algebras. We suppose that there is a tensor product X1 ⊗̃X2 of X1 and X2 relative to
〈X1, X

′
1〉 and 〈X2, X

′
2〉. Thus, as in Section 4, we may consider the direct sum L = L1×L2
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of the Lie algebras L1 and L2, which is a complex solvable finite-dimensional Lie algebra,
and the tensor product representation of L in X1 ⊗̃X2, i.e.

% = %1 × %2: L→ L(X1 ⊗̃X2), %1 × %2(l1, l2) = %1(l1)⊗ I + I ⊗ %2(l2),

where I denotes the identity of X2 and X1 respectively. In particular, we may consider
the Koszul complex (X1 ⊗̃X2 ⊗

∧
L, d(%)) of the representation %: L→ L(X1 ⊗̃X2).

Now we state the most important result of this section. However, we first observe that
the set of characters of L may be naturally identified with the cartesian product of the
sets of characters of L1 and L2. Indeed, it is clear that L∗ ∼= L∗1 ×L∗2. Moreover, since as
Lie algebra, L is the direct sum of L1 and L2, if [·, ·] denotes the Lie bracket of L, then
the restriction of [·, ·] to L1 or L2 coincides with the bracket of L1 or L2 respectively, and
for l1 ∈ L1 and l2 ∈ L2, [l1, l2] = 0. Thus, the map

H: L∗ → L∗1 × L∗2, f 7→ (f ◦ ι1, f ◦ ι2),

defines an identification of the characters of L and the cartesian product of the characters
of L1 and L2, where ιj : Lj → L denotes the inclusion map, j = 1, 2. In the following
theorem we use this identification.

Theorem 14. Let L1 and L2 be two complex solvable finite-dimensional Lie algebras , X1

and X2 two complex Banach spaces , and %i: Li → L(Xi), i = 1, 2, two representations
of Lie algebras. Suppose that there is a tensor product X1 ⊗̃X2 of X1 and X2 relative
to 〈X1, X

′
1〉 and 〈X2, X

′
2〉. Consider the tensor product representation % = %1 × %2: L→

L(X1 ⊗̃X2) of L = L1 × L2. Then

(i)
⋃

p+q=k

σδ,p(%1)× σδ,q(%2) ⊆ σδ,k(%) ⊆ spδ,k(%) ⊆
⋃

p+q=k

spδ,p(%1)× spδ,q(%2),

(ii)
⋃

p+q=k

σπ,p(%1)× σπ,q(%2) ⊆ σπ,k(%) ⊆ spπ,k(%) ⊆
⋃

p+q=k

spπ,p(%1)× spπ,q(%2).

In particular , if X1 and X2 are Hilbert spaces , the above inclusions are equalities.

Proof. We begin with the first statement.
We consider α ∈ σδ,p(%1), β ∈ σδ,q(%2), p+q = k, and the Koszul complexes associated

to the representations %1−α: L1 → L(X1) and %2−β: L2 → L(X2), (X1⊗
∧
L1, d(%1−α))

and (X2⊗
∧
L2, d(%2−β)) respectively. Then there is p1, 0 ≤ p1 ≤ p, and q2, 0 ≤ q2 ≤ q,

such that Hp1(X1 ⊗
∧
L1, d(%1 − α)) 6= 0 and Hq2(X2 ⊗

∧
L2, d(%2 − β)) 6= 0.

In addition, if we consider the differential spaces associated to the Koszul complexes
of %1−α and %2−β, (X1, ∂1) and (X2, ∂2) respectively, then by [14; 2.2] we have H∗(X1 ⊗̃
X2) 6= 0. Moreover, since (X1 ⊗̃X2, ∂) is the differential space of (X1⊗

∧
L1, d(%1−α)) ⊗̃

(X2 ⊗
∧
L2, d(%2 − β)), according to the structure of the map ϕ in [14; 2.2], we have

Hp1+q2((X1 ⊗
∧
L1, d(%1 − α)) ⊗̃ (X2 ⊗

∧
L2, d(%2 − β))) 6= 0. Furthermore, according

to Proposition 13, since (%1 − α) × (%2 − β) = % − (α, β), we have Hp1+q2(X1 ⊗̃ X2 ⊗∧
L, d(%− (α, β))) 6= 0. In particular, since 0 ≤ p1 + q2 ≤ p+ q = k, (α, β) ∈ σδ,k(%).
The middle inclusion is clear.
For the rightmost inclusion, we prove that if (α, β) does not belong to

⋃
p+q=k spδ,p(%1)

× spδ,q(%2), then (α, β) does not belong to spδ,k(%). To this end, we shall construct a
homotopy operator. There are several cases to be considered.
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We first suppose that α 6∈ spδ,k(%1). Thus, the complex (X1⊗
∧
L1, d(%1−α)) is split

for p = 0, . . . , k, i.e., for p = 0, . . . , k there are bounded linear operators hp: X1⊗
∧p

L1 →
X1 ⊗

∧p+1
L1 such that hp−1dp(%1 − α) + dp+1(%1 − α)hp = Ip, where Ip denotes the

identity of X1 ⊗
∧p

L1. Then, if p and q are such that 0 ≤ p+ q ≤ k, we define

Hp,q: X1 ⊗
∧p L1 ⊗̃X2 ⊗

∧q L2 → X1 ⊗
∧p+1 L1 ⊗̃X2 ⊗

∧q L2, Hp,q = hp ⊗ Iq,
where Iq denotes the identity map of X2⊗

∧q
L2. We observe that since L(X1⊗

∧p
L1, X1

⊗∧p+1
L1) = L(X1⊗

∧p
L1, X1⊗

∧p+1
L1), Hp,q is a well defined map. Moreover, a direct

calculation shows that the maps Hr =
⊕

p+q=rHp,q, r = 0, . . . , k, define a homotopy
operator for the complex (X1 ⊗

∧
L1) ⊗̃ (X2 ⊗

∧
L2). Thus, according to Proposition 13

the complex (X1 ⊗̃X2 ⊗
∧
L, d(% − (α, β))) is split for r = 0, . . . , k, i.e., (α, β) does not

belong to spδ,k(%).
By a similar argument, it is possible to prove that if β 6∈ spδ,k(%2), then (α, β) does

not belong to spδ,k(%). Thus, we may suppose that α ∈ spδ,k(%1) and β ∈ spδ,k(%2).
Now, since (α, β) does not belong to

⋃
p+q=k spδ,p(%1) × spδ,q(%2) and α ∈ spδ,k(%1),

we have β 6∈ spδ,0(%2). Similarly, since β ∈ spδ,k(%2) we have α 6∈ spδ,0(%1). Thus, there is
p1, 1 ≤ p1 ≤ k, such that α 6∈ spδ,p1−1(%1), α ∈ spδ,p1

, and β 6∈ spδ,k−p1
(%2).

In order to construct a homotopy operator for the Koszul complex associated to
%− (α, β), for (α, β) as in the last paragraph, it is necessary to consider several cases. In
fact, we shall define the operator according to the relation of p and q with p1 and k− p1

respectively, and for each particular case, we shall prove that it is a homotopy. At the end
of the proof, it is clear that this map is a well defined homotopy for the Koszul complex
of % at r = 0, . . . , k.

Moreover, according to Proposition 13, it is enough to prove that the complex (X1 ⊗∧
L1, d(%1−α)) ⊗̃ (X2⊗

∧
L2, d(%2−β)) is split in dimension r = 0, . . . , k. Now, the rth

space of this complex is
⊕

p+q=kX1 ⊗
∧p L1 ⊗̃ X2 ⊗

∧q L2. We construct an operator
Hp,q satisfying the homotopy identity for p and q such that p+ q = r, and then we verify
that (Hr)0≤r≤k is a homotopy operator for the complex, where Hr =

⊕
p+q=rHp,q . The

construction of the maps Hp,q is divided into five cases.
We first suppose that 0 ≤ p ≤ p1 − 1 and 0 ≤ q ≤ k − p1. Then we have well defined

maps

X1 ⊗
∧p−1 L1

hp−1−→ X1 ⊗
∧p L1

hp−→ X1 ⊗
∧p+1 L1

such that dp+1(%1 − α)hp + hp−1dp(%1 − α) = Ip, where Ip denotes the identity of X1 ⊗∧p L1, and

X2 ⊗
∧q−1

L2
gq−1−→ X2 ⊗

∧q
L2

gq−→ X2 ⊗
∧q+1

L2

such that dq+1(%2−β)gq+gq−1dq(%2−β) = Iq, where Iq denotes the identity of X2⊗
∧q L2.

Thus, we may define the map

Hp,q: X1⊗
∧p

L1⊗̃X2⊗
∧q

L2 → X1⊗
∧p+1

L1⊗̃X2⊗
∧q

L2⊕X1⊗
∧p

L1⊗̃X2⊗
∧q+1

L2,

Hp,q = 1
2 (hp ⊗ Iq ⊕ (−1)pIp ⊗ gq).

We observe that according to the properties of the tensor product, Hp,q is a well defined
map.
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In addition, since p− 1 < p ≤ p1 − 1 and q− 1 < q ≤ k− p1, we may define the maps
Hp−1,q and Hp,q−1. A direct calculation shows that in X1⊗

∧p
L1 ⊗̃X2⊗

∧q
L2, we have

dr+1Hp,q + (Hp−1,q ⊕Hp,q−1)dr = I,

where d and I are the boundary and the identity of the complex (X1 ⊗
∧
L1, d(%1 − α))

⊗̃ (X2 ⊗
∧
L2, d(%2 − β)) respectively.

In the second case we suppose that p and q are such that p ≤ p1−1 and q = k−p1 +1.
Then we know that for q = 0, . . . , k − p1 there are bounded maps

X2 ⊗
∧q−1

L2
gq−1−→ X2 ⊗

∧q
L2

gq−→ X2 ⊗
∧q+1

L2

such that dq+1(%2 − β)gq + gq−1dq(%2 − β) = Iq.
In addition, we may suppose that the maps gq satisfy the preliminary facts recalled

before Proposition 11, for q = 0, . . . , k − p1. Moreover, according to Proposition 11, we
have X1 ⊗

∧p
L1 ⊗̃X2 ⊗

∧q
L2 = Ker(Ip ⊗ dq(%2 − β)) ⊕ R(Ip ⊗ gq−1) for p = 0, . . . , n

and q = 0, . . . , k − p1 + 1.
It is easy to prove that

(i) dp(%1 − α) ⊗ Iq(R(Ip ⊗ gq−1)) ⊆ R(Ip−1 ⊗ gq−1) and dp(%1 − α) ⊗ Iq(Ker(Ip ⊗
dq(%2 − β))) ⊆ Ker(Ip−1 ⊗ dq(%2 − β)),

(ii) Ip ⊗ dq(%2 − β)(Ker(Ip ⊗ dq(%2 − β))) = 0 and Ip ⊗ dq(%2 − β)(R(Ip ⊗ gq−1)) =
R(Ip ⊗ dq(%2 − β)) = Ker(Ip ⊗ dq−1(%2 − β)).

Furthermore, as in the first case, we have well defined maps (hp)0≤p≤p1−1 such that
hp: X1 ⊗

∧p
L1 → X1 ⊗

∧p+1
L1 and dp+1(%1 − α)hp + hpdp−1(%1 − α) = Ip for p =

0, . . . , p1 − 1. A straightforward calculation shows that

(iii) hp ⊗ Iq(R(Ip ⊗ gq−1)) ⊆ R(Ip+1 ⊗ gq−1) and hp ⊗ Iq(Ker(Ip ⊗ dq(%2 − β))) ⊆
Ker(Ip+1 ⊗ dq(%2 − β)).

Now, for p = 0, . . . , p1 − 1 and q = k − p1 + 1 we define Hp,q as follows:

Hp,q|R(Ip ⊗ gq−1) = 1
2 (hp ⊗ Iq), Hp,q|Ker(Ip ⊗ dq(%2 − β)) = hp ⊗ Iq.

According to the properties of the tensor product, the map Hp,q is well defined.
In addition, for p = 0, . . . , p1 − 1 and q − 1 = k − p1, according to the first case, we

have the well defined map Hp,q−1. On the other hand, for p − 1, p = 0, . . . , p1 − 1, and
q = k − p1 + 1, we may define Hp−1,q in a similar way to Hp,q .

Now, using (i)–(iii) it is easy to prove that

dr+1Hp,q + (Hp,q−1 ⊕Hp−1,q)dr = I,

where d and I are as above.
In the third case p = 0, . . . , p1 − 1 and q > k − p1 + 1. There are two subcases:

q − 1 > k − p1 + 1 and q − 1 = k − p1 + 1. We begin with the first subcase.
For p = 0, . . . , p1 − 1 and q > q − 1 > k − p1 + 1 we define

Hp,q |X1 ⊗
∧p L1 ⊗̃X2 ⊗

∧q L2 → X1 ⊗
∧p+1 L1 ⊗̃X2 ⊗

∧q L2, Hp,q = hp ⊗ Iq.
According to the properties of the tensor product, Hp,q is a well defined map.
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Moreover, since q− 1 > q > k− p1 + 1, we may define Hp−1,q and Hp,q−1 in a similar
way. Then an easy calculation shows that

dr+1Hp,q + (Hp,q−1 ⊕Hp−1,q)dr = I.

On the other hand, for p = 0, . . . , p1− 1 and q = k− p1 + 1, we define Hp,q = hp⊗ Iq.
Furthermore, for p − 1 and q = k − p1 + 1, we may define Hp−1,q = hp−1 ⊗ Iq, and for
p = 0, . . . , p1 − 1 and q − 1 = k − p1, Hp,q−1 was defined in the second case. A direct
calculation shows that

dr+1Hp,q + (Hp,q−1 ⊕Hp−1,q)dr = I.

In the fourth case p = p1 and q ≤ k − p1. This case is similar to the second one.
We consider the complex associated to the representation %1 − α, i.e., (X1 ⊗

∧
L1,

d(%1 − α)). We know that for p = 0, . . . , p1 − 1 there are bounded maps

X1 ⊗
∧p−1 L1

hp−1−→ X1 ⊗
∧p L1

hp−→ X1 ⊗
∧p+1 L1

such that dp+1(%1 − α)hp + hp−1dp(%1 − α) = Ip.
Moreover, as in the second case, we may suppose that the maps hp satisfy the prelim-

inary facts recalled before Proposition 11, for p = 0, . . . , p1 − 1. Furthermore, according
to Proposition 11 and Remark 12, X1 ⊗

∧p
L1 ⊗̃X2 ⊗

∧q
L2 = Ker(dp(%1 − α) ⊗ Iq) ⊕

R(hp−1 ⊗ Iq) for p = 0, . . . , p1 and q = 0, . . . ,m.
As in the second case, it is easy to prove that

(i) Ip⊗dq(%2−β)(R(hp−1⊗Iq))⊆R(hp−1⊗Iq−1) and Ip⊗dq(%2−β)(Ker(dp(%1−α)
⊗Iq))⊆Ker(dp(%1−α)⊗Iq−1),

(ii) dp(%1 − α) ⊗ Iq(Ker(dp(%1 − α)⊗ Iq)) = 0 and dp(%1 − α)⊗ Iq(R(hp−1 ⊗ Iq)) =
R(dp(%1 − α)⊗ Iq) = Ker(dp−1(%1 − α)⊗ Iq).

In addition, for q = 0, . . . , k − p1, we have well defined maps (gq)0≤q≤k−p1 such
that gq: X2 ⊗

∧q L2 → X2 ⊗
∧q+1 L2 and dq+1(%2 − β)gp + gq−1dq−1(%2 − β) = Iq.

A straightforward calculation shows

(iii) Ip ⊗ gq(R(hp−1 ⊗ Iq)) ⊆ R(hp−1 ⊗ Iq+1) and Ip ⊗ gq(Ker(dp(%1 − α) ⊗ Iq)) ⊆
Ker(dp(%1 − α)⊗ Iq+1).

Now for p = p1 and 0 ≤ q ≤ k − p1, we define Hp1,q as follows:

Hp1,q|R(hp1−1 ⊗ Iq) = (−1)p1/2(Ip ⊗ gq), Hp1,q|Ker(dp1(%1 − α)⊗ Iq) = (−1)pIp ⊗ gq.
According to the properties of the tensor product, Hp1,q is a well defined map.

In addition, according to the first case, we have the well defined map Hp1−1,q, p =
p1−1 and q = 0, . . . , k−p1. On the other hand, we may define Hp1,q−1 like Hp1,q, p = p1

and q − 1 = 0, . . . , k − p1.
Now, as in the second case, using (i)–(iii) it is easy to prove that

dr+1Hp1,q + (Hp1−1,q ⊕Hp1,q)dr = I.

In the last case, we have p ≥ p1 + 1 and q = 0, . . . , k − p1. Moreover, as in the third
case, there are two subcases: p − 1 ≥ p1 + 1 and p − 1 = p1. We begin with the first
subcase.
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For p > p− 1 ≥ p1 + 1 and q = 0, . . . , k − p1, we define

Hp,q : X1 ⊗
∧p L1 ⊗̃X2 ⊗

∧q L2 → X1 ⊗
∧p L1 ⊗̃X2 ⊗

∧q+1 L2, Hp,q = Ip ⊗ gq.
According to the properties of the tensor product, the map Hp,q is well defined.

Since p − 1 > p1 + 1, we may define Hp−1,q and Hp,q−1. Then an easy calculation
shows that

dr+1Hp,q + (Hp,q−1 ⊕Hp−1,q)dr = I.

On the other hand, for p − 1 = p1 and q = 0, . . . , k − p1, we define Hp,q = Ip ⊗ gq.
Moreover, for p−1 = p1 and q, Hp−1,q was defined in the fourth case, and for p and q−1,
we may define Hp,q−1 = Ip ⊗ gq−1. A direct calculation shows

dr+1Hp,q + (Hp−1,q ⊕Hp,q−1)dr = I.

Since we considered all the possible cases for p and q, 0 ≤ p + q ≤ k, if for r =
0, . . . , k we consider the map Hr =

⊕
p+q=rHp,q, then the above computations show that

(Hr)0≤r≤k is a homotopy for the complex (X1⊗
∧
L1, d(%1−α))⊗̃(X2⊗

∧
L2, d(%2−β)).

Thus, according to Proposition 13, (α, β) does not belong to spδ,k(%).
The second part of the theorem may be proved by a similar argument, using the

second half of Proposition 11 for the rightmost inclusion.

We recall that in [21; 3.3], the axiomatic tensor product of [14] was generalized.
However, as explained in [21; 3.3], the objective was to simplify the form of the axioms
rather than to generalize the definition of [14]; in addition, the known applications of
both tensor products coincide. Since for our proofs of the main results in this work, the
definition of [14] is more useful than the one of [21], we proved Theorem 14 and shall
prove the other results for the tensor product introduced in [14]. In particular, Theorem
14 may be seen as an extension of [21; 3.6.8] for the tensor product of [14]. However,
we believe that with the axiomatic tensor product introduced in [21; 3.3], it would be
possible to obtain results similar to ours.

Now we consider nilpotent systems of operators and we prove a variant of Theorem 14
for this case. This result extends [21; 3.7.2] for the tensor product of [14]. Moreover, the
following theorem is an extension of well known results for commuting tuples of operators;
see [9], [10], [28] and [14]. First we give a definition.

Let X be a complex Banach space and T = (T1, . . . , Tn) an n-tuple of operators
defined in X such that the linear subspace of L(X) generated by them, 〈Ti〉1≤i≤n = L,
is a nilpotent Lie subalgebra of L(X). We consider the representation defined by the
inclusion ιL: L → L(X). Then, if σ denotes a subset of a joint spectrum defined for
representations of complex solvable finite-dimensional Lie algebras, we denote the set
{(α(T1), . . . , α(Tn)) : α ∈ σ(ιL)} by σ(T ).

Theorem 15. Let X1 and X2 be two complex Banach spaces. Suppose that there is a
tensor product X1 ⊗̃X2 of X1 and X2 with respect to 〈X1, X

′
1〉 and 〈X2, X

′
2〉. Let a =

(a1, . . . , an) and b = (b1, . . . , bm) be two tuples of operators , ai ∈ L(X1), 1 ≤ i ≤ n, and
bj ∈ L(X2), 1 ≤ j ≤ m, such that the vector subspaces generated by them, 〈ai〉1≤i≤n and
〈bj〉1≤j≤m, are nilpotent Lie subalgebras of L(X1) and L(X2) respectively. Consider the
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(n+m)-tuple of operators defined in X1 ⊗̃X2, c = (a1⊗ I, . . . , an⊗ I, I⊗ b1, . . . , I⊗ bm),
where I denotes the identity of X2 and X1 respectively. Then

(i)
⋃

p+q=k

σδ,p(a)× σδ,q(b) ⊆ σδ,k(c) ⊆ spδ,k(c) ⊆
⋃

p+q=k

spδ,p(a)× spδ,q(b),

(ii)
⋃

p+q=k

σπ,p(a)× σπ,q(b) ⊆ σπ,k(c) ⊆ spπ,k(c) ⊆
⋃

p+q=k

spπ,p(a)× spπ,q(b).

In particular , if X1 and X2 are Hilbert spaces , the above inclusions are equalities.

Proof. We consider the nilpotent Lie algebras L1 = 〈ai〉1≤i≤n and L2 = 〈bj〉1≤j≤m, and
the representations of the above algebras defined by inclusion, i.e.,

ι1: L1 → L(X1), ι2: L2 → L(X2).

Then, if we consider the representation ι = ι1 × ι2: L1 ×L2 → L(X1 ⊗̃X2), according to
Theorem 14 we have

⋃

p+q=k

σδ,p(ι1)× σδ,q(ι2) ⊆ σδ,k(ι) ⊆ spδ,k(ι) ⊆
⋃

p+q=k

spδ,p(ι1)× spδ,q(ι2).

Now, if we consider the identification of the characters of L1 × L2 with the cartesian
product of the characters of L1 and L2, it is clear that σδ,p(a) × σδ,q(b) coincides with
the set

{(α(a1), . . . , α(an), β(b1), . . . , β(bm)) : (α, β) ∈ σδ,p(ι1)× σδ,q(ι2)}.

Similarly, spδ,p(a)× spδ,q(b) coincides with

{(α(a1), . . . , α(an), β(b1), . . . , β(bm)) : (α, β) ∈ spδ,p(ι1)× spδ,q(ι2)}.

On the other hand, we consider the nilpotent Lie subalgebra of L(X1 ⊗̃X2) generated
by the elements of the (n+m)-tuple c; we denote it by L. Then, if ι: L→ L(X1 ⊗̃X2) is
the representation defined by the inclusion, we have ι1× ι2 = ι◦h, where h: L1×L2 → L

is the epimorphism of Lie algebras that satisfies h(ai) = ai ⊗ I and h(bj) = I ⊗ bj for
i = 1, . . . , n and j = 1, . . . ,m. In particular, according to Proposition 10 we have

σδ,k(ι1 × ι2) = σδ,k(ι) ◦ h, spδ,k(ι1 × ι2) = spδ,k(ι) ◦ h.

Furthermore,

σδ,k(c) = {(γ ◦ h(a1), . . . , γ ◦ h(an), γ ◦ h(b1), . . . , γ ◦ h(bm)) : γ ∈ σδ,k(ι)}.

Moreover, according to Proposition 10, σδ,k(c) coincides with

{(α(a1), . . . , α(an), β(b1), . . . , β(bm)) : (α, β) ∈ σδ,k(ι1 × ι2)}.

Similarly,

spδ,k(c) = {(α(a1), . . . , α(an), β(b1), . . . , β(bm)) : (α, β) ∈ spδ,k(ι1 × ι2)}.

Thus, the above equalities prove the first part of the theorem. The second statement may
be proved by a similar argument.
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6. Fredholm joint spectra of the tensor product representation

In this section we consider two representations of Lie algebras in two Banach spaces and
a tensor product of the Banach spaces in the sense of [14], and we describe the essential
Słodkowski and essential split joint spectra of the tensor product representation of the
direct sum of the algebras; see Section 4. In addition, we apply our results to nilpotent
systems of operators. We first prove a result needed for the main theorem in this section.

Proposition 16. Let X1 and X2 be two Banach spaces. Suppose that there is a tensor
product X1 ⊗̃X2 of X1 and X2 relative to 〈X1, X

′
1〉 and 〈X2, X

′
2〉. Consider in X1 and

X2 two projectors with finite-dimensional range, k1 and k2 respectively. Then k1 ⊗ k2 ∈
L(X1 ⊗̃X2) is a projector with finite-dimensional range. In fact , R(k1 ⊗ k2) = R(k1) ⊗
R(k2).

Proof. According to the properties of the tensor product, it is clear that k1 ⊗ k2 is a
projector and that R(k1 ⊗ k2) ⊇ R(k1)⊗R(k2).

In order to prove the other inclusion, we consider a base (vi)1≤i≤n of R(k1), i.e.,
R(k1) = 〈vi〉1≤i≤n. Then we have X1 = Ker(k1) ⊕⊕n

i=1〈vi〉. Moreover, if for each s =
1, . . . , n we consider the map ls: X1 → C, ls|Ker(k1) ≡ 0, ls|〈vi〉 ≡ 0, i = 1, . . . , n, i 6= s,
and ls(vs) = 1, then we may define the maps fvili : X1 → X1, fvili(x1) = li(x1)vi for
x1 ∈ X1. Now, an easy calculation shows that k1 =

∑n
i=1 fvili .

Similarly, we may consider a base (v′j)1≤j≤m of R(k2), and then we have X2 =
Ker(k2) ⊕⊕m

j=1〈v′j〉. Moreover, if for j = 1, . . . ,m we consider the maps hj : X2 → C,
hj |Ker(k2) ≡ 0, hj(v′t) = 0, t = 1, . . . ,m, t 6= j, and hj(v′j) = 1, then we may define the
maps fv′jhj : X2 → X2, fv′jhj (x2) = hj(x2)v′j for x2 ∈ X2. As above, an easy calculation
shows that k2 =

∑m
j=1 fv′jhj .

Now, according to the properties of the tensor product, we have

k1 ⊗ k2 =
∑

i,j

fvili ⊗ fv′jhj =
∑

i,j

fvili ⊗ I ◦ I ⊗ fv′jhj .

Moreover, by [14; 1.1], for each li, i = 1, . . . , n, there is a map fli : X1 ⊗̃ X2 → X2

such that fx1li ⊗ I(z) = x1 ⊗ fli(z) for x1 ∈ X1 and z ∈ X1 ⊗̃X2, where fx1li : X1 → X1

is the map fx1li(x) = li(x)x1. In addition, for each hj , j = 1, . . . ,m, there is a map
ghj : X1 ⊗̃X2 → X1 such that I ⊗ fx2hj (z) = ghj (z)⊗ x2 for x2 ∈ X2 and z ∈ X1 ⊗̃X2,
where fx2hj has a definition similar to that of fx1li . In particular, for z ∈ X1 ⊗̃ X2 we
have

k1 ⊗ k2(z) =
∑

i,j

fvili ⊗ I ◦ I ⊗ fv′jhj (z) =
∑

i,j

fvili ⊗ I(ghj (z)⊗ v′j)

=
∑

i,j

vi ⊗ fli(ghj (z)⊗ v′j).

Thus, R(k1 ⊗ k2) ⊆ R(k1)⊗X2.
Moreover, since k2 is a projection, if for z ∈ X1 ⊗̃X2 we define zij = fli(ghj (z)⊗ v′j),

then we have zij = k2(zij) + (I − k2)(zij). In particular

k1 ⊗ k2(z) =
∑

i,j

vi ⊗ zij =
∑

i,j

vi ⊗ k2(zij) +
∑

i,j

vi ⊗ (I − k2)(zij).
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But since k1 ⊗ k2 is a projector in X1 ⊗̃X2, we have

k1 ⊗ k2(z) = (k1 ⊗ k2)2(z) =
∑

i,j

vi ⊗ k2(zij).

In particular, R(k1 ⊗ k2) ⊆ R(k1)⊗R(k2).

Now we state the main result of this section. The following theorem is an extension
of [14; 3.2].

Theorem 17. Let X1 and X2 be two complex Banach spaces , L1 and L2 two complex
solvable finite-dimensional Lie algebras , and %i: Li → L(Xi), i = 1, 2, two representations
of Lie algebras. Suppose that there is a tensor product X1 ⊗̃X2 of X1 and X2 relative to
〈X1, X

′
1〉 and 〈X2, X

′
2〉. Consider the tensor product representation % = %1×%2: L1×L2 →

L(X1 ⊗̃X2) of the direct sum of L1 and L2. Then

(i)
⋃

p+q=k

σδ,p,e(%1)× σδ,q(%2) ∪
⋃

p+q=k

σδ,p(%1)× σδ,q,e(%2) ⊆ σδ,k,e(%)

⊆ spδ,k,e(%) ⊆
⋃

p+q=k

spδ,p,e(%1)× spδ,q(%2) ∪
⋃

p+q=k

spδ,p(%1)× spδ,q,e(%2),

(ii)
⋃

p+q=k

σπ,p,e(%1)× σπ,q(%2) ∪
⋃

p+q=k

σπ,p(%1)× σπ,q,e(%2) ⊆ σπ,k,e(%)

⊆ spπ,k,e(%) ⊆
⋃

p+q=k

spπ,p,e(%1)× spπ,q(%2)
⋃ ⋃

p+q=k

spπ,p(%1)× spπ,q,e(%2).

In particular , if X1 and X2 are Hilbert spaces , the above inclusions are equalities.

Proof. First of all, in the proof of this theorem we use the notations and identifications
of Theorem 14. In particular, if α is a character of L1 and β is a character of L2 we work
with the complex (X1 ⊗

∧
L1, d(%1 − α)) ⊗̃ (X2 ⊗

∧
L2, d(%2 − β)) instead of the Koszul

complex associated to the representation % − (α, β): L1 × L2 → L(X1 ⊗̃ X2). We begin
with the first statement.

In order to prove the leftmost inclusion, the same argument used in Theorem 14 for the
σδ,k joint spectra may be applied to the essential δ-Słodkowski joint spectra. In fact, the
argument still works when we consider two homology spaces, one of which is non-null and
the other is infinite-dimensional, instead of considering two non-null homology spaces.

As in Theorem 14, the middle inclusion is clear.
For the rightmost inclusion, we shall use an induction argument.
First of all we study the case k = 0.
We consider a pair (α, β) ∈ spδ,0,e(%) \ (spδ,0,e(%1)× spδ,0(%2)∪ spδ,0(%1)× spδ,0,e(%2)).

Since by Theorem 14, (α, β) ∈ spδ,0(%1) × spδ,0(%2), we have α ∈ spδ,0(%1) \ spδ,0,e(%2)
and β ∈ spδ,0(%2) \ spδ,0,e(%2). In particular, there are bounded linear maps

h0: X1 → X1 ⊗
∧1

L1, g0: X2 → X2 ⊗
∧1

L2,

and finite range projectors

k0: X1 → X1, k′0: X2 → X2,

such that

d1(%1 − α)h0 = I0 − k0, d1(%2 − β)g0 = I0 − k′0.
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Now, if we consider the map

H0: X1 ⊗̃X2 → X1 ⊗̃X2 ⊗
∧1 L2 ⊕X1 ⊗

∧1 L1 ⊗̃X2, H0 = (I0 ⊗ g0, h0 ⊗ I0),

then it is easy to prove that

d1H0 = I − k0 ⊗ k′0,
where d and I are the boundary and the identity of the complex (X1 ⊗

∧
L1, d(%1 − α))

⊗̃ (X2 ⊗
∧
L2, d(%2 − β)) respectively.

By Proposition 16, the map k0 ⊗ k′0 is a projector with finite-dimensional range. In
particular, according to Proposition 13, (α, β) does not belong to spδ,k,e(%), which is
impossible according to our assumption.

Now we suppose that the rightmost inclusion is true for 0 and for all natural numbers
less than k, and we prove it for k. We proceed as in the case k = 0.

We consider a pair (α, β) ∈ spδ,k,e(%) which does not belong to
⋃
p+q=k spδ,p,e(%1)×

spδ,q(%2) ∪ ⋃p+q=k spδ,p(%1) × spδ,q,e(%2). In particular, (α, β) 6∈ ⋃p+q=k−1 spδ,p,e(%1) ×
spδ,q(%2) ∪ ⋃p+q=k−1 spδ,p(%1) × spδ,q,e(%2). Thus, by the inductive hypothesis (α, β) 6∈
spδ,k−1,e(%).

In addition, since according to Theorem 14, spδ,k,e(%) ⊆ spδ,k(%) ⊆ ⋃
p+q=k spδ,p(%1)×

spδ,q(%2), there are p0 and q0, p0 + q0 = k, such that α ∈ spδ,p0
(%1) and β ∈ spδ,q0(%2).

Moreover, we may suppose that p0 = min{p, 0 ≤ p ≤ k : α ∈ spδ,p(%1)}. It is easy to
prove that the following assertions are true:

(i) α ∈ spδ,p0
(%1), α 6∈ spδ,p(%1), p = 0, . . . , p0 − 1, and β 6∈ spδ,q0,e(%2),

(ii) β ∈ spδ,q0(%2), and either α 6∈ spδ,k,e(%1) and β ∈ spδ,0(%2), or there is p1,
p0 ≤ p1 ≤ k − 1, such that α 6∈ spδ,p1,e(%1), α ∈ spδ,p1+1,e(%1), and β 6∈ spδ,k−p1−1(%2).

By means of assertions (i) and (ii), we prove that dim Ker(dk)/R(dk+1) is finite, and
that Ker(dk+1) is a complemented subspace. Since (α, β) 6∈ spδ,k−1,e(%), by [13; 2.7], we
have (α, β) 6∈ spδ,k,e(%), which is impossible according to our assumption.

Before we begin the proof we observe the following point. Assertions (i) and (ii) in fact
consist of two different pairs of assertions, therefore, we should give two proofs. However,
we work only with assertion (i) and the second part of assertion (ii). The proof that needs
assertion (i) and the first part of assertion (ii) is easier and it is left to the reader.

By (i) and (ii) there are bounded linear operators hp: X1 ⊗
∧p L1 → X1 ⊗

∧p+1 L1,
p = 0, . . . , p1, and there are projectors with finite-dimensional range, kp: X1 ⊗

∧p L1 →
X1 ⊗

∧p
L1, p = p0, . . . , p1, such that for p = 0, . . . , p0 − 1,

hp−1dp(%1 − α) + dp+1(%1 − α)hp = Ip,

and for p = p0, . . . , p1,

hp−1dp(%1 − α) + dp+1(%− α)hp = Ip − kp.
In addition, by (i) and (ii) there are bounded linear maps gq: X2⊗

∧q L2 → X2⊗
∧q+1 L2,

q = 0, . . . , q0 = k − p0, and there are projectors with finite-dimensional range, k′q: X2 ⊗∧q
L2 → X2 ⊗

∧q
L2, q = k − p1, . . . , q0, such that for q = 0, . . . , k − p1 − 1,

gq−1dq(%2 − β) + dq+1(%2 − β)gq = Iq,
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and for q = k − p1, . . . , q0,

gq−1dq(%2 − β) + dq+1(%2 − β)gq = Iq − k′q.
In order to prove that Ker(dk+1) is a complemented subspace of

⊕
p+q=k+1 X1 ⊗∧p L1 ⊗̃X2 ⊗

∧q L2, we first characterize it and then exhibit a complement.
It is easy to prove that Ker(dk+1) is the set of all (xp,q), p + q = k + 1, xp,q ∈

X1 ⊗
∧p L1 ⊗̃X2 ⊗

∧q L2, such that in X1 ⊗
∧p−1 L1 ⊗̃X2 ⊗

∧q L2,

dp(%1 − α)⊗ Iq(xp,q) + (−1)p−1Ip−1 ⊗ dq+1(%2 − β)(xp−1,q+1) = 0.

According to Proposition 11, we know that for q = 0, . . . , k − p1 and p+ q = k + 1,

X1 ⊗
∧p L1 ⊗̃X2 ⊗

∧q L2 = R(Ip ⊗ gq−1)⊕Ker(Ip ⊗ dq(%2 − β)),

X1 ⊗
∧p−1

L1 ⊗̃X2 ⊗
∧q

L2 = R(Ip−1 ⊗ gq−1)⊕Ker(Ip−1 ⊗ dq(%2 − β)),

and for q = 0, . . . , k − p1 − 1,

X1 ⊗
∧p−1

L1 ⊗̃X2 ⊗
∧q+1

L2 = R(Ip−1 ⊗ gq)⊕Ker(Ip−1 ⊗ dq+1(%2 − β)).

In particular, we may represent each xp,q ∈ X1 ⊗
∧p

L1 ⊗̃X2 ⊗
∧q

L2, p+ q = k + 1,
q = 0, . . . , k − p1, as xp,q = (ap,q, bp,q), where ap,q ∈ Ker(Ip ⊗ dq(%2 − β)) and bp,q ∈
R(Ip ⊗ gq−1).

On the other hand, according to Proposition 11,

Ip−1 ⊗ gq: Ker(Ip−1 ⊗ dq(%2 − β))→ R(Ip−1 ⊗ gq)
is a topological isomorphism for q = 0, . . . , k − p1 − 1. Then an easy calculation shows
that xk+1,0 = ak+1,0, and that bp,q = (−1)p+1dp+1(%1 − α) ⊗ gq−1(ap+1,q−1) for q =
1, . . . , k − p1.

Thus, xp,q is described for q = 0, . . . , k−p1−1 and p such that p+q = k+1. However,
we may continue this procedure till q = k − p0.

In fact, according to Proposition 11 the above decompositions of the spaces X1 ⊗∧p
L1 ⊗̃ X2 ⊗

∧q
L2, X1 ⊗

∧p−1
L1 ⊗̃ X2 ⊗

∧q
L2 and X1 ⊗

∧p−1
L1 ⊗̃ X2 ⊗

∧q+1
L2

remain true for q = k−p1, . . . , q0 +1 = k−p0 +1. Moreover, according to Proposition 11,
it is easy to prove that Ker(Ip−1 ⊗ dq(%2− β)) = R(Ip−1 ⊗ k′q)⊕R(Ip−1 ⊗ dq+1(%2− β)),
q = k − p1, . . . , k − p0, and

Ip−1 ⊗ gq: R(Ip−1 ⊗ dq+1(%2 − β))→ R(Ip−1 ⊗ gq)
is a topological isomorphism. Then, if for q = k − p1, . . . , k − p0 + 1 we decompose
xp,q = ((a1

p,q, a
2
p,q), bp,q), where a1

p,q ∈ R(Ip ⊗ dq+1(%2 − β)), a2
p,q ∈ R(Ip ⊗ k′q) and

bp,q ∈ R(Ip ⊗ gq−1), an easy calculation shows that a2
p,q ∈ R(Ip ⊗ k′q) ∩ Ker(dp(%1 −

α) ⊗ Iq), q = k − p1, . . . , k − p0, and bp,q = (−1)p+1dp+1(%1 − α) ⊗ gq−1(a1
p+1,q−1),

q = k − p1, . . . , k − p0 + 1.
On the other hand, by a similar argument, it is possible to prove the following fact.

If we consider for p = 0, . . . , p0 the decomposition

X1 ⊗
∧p L1 ⊗̃X2 ⊗

∧q L2 = R(hp−1 ⊗ Iq)⊕Ker(dp(%1 − α)⊗ Iq),
and we represent xp,q as xp,q = (cp,q, dp,q), where cp,q ∈ Ker(dp(%1 − α)⊗ Iq) and dp,q ∈
R(hp−1 ⊗ Iq), then x0,k+1 = c0,k+1 and dp,q = (−1)php−1 ⊗ dq+1(%2 − β)(cp−1,q+1) for
p = 1, . . . , p0.
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Thus, if (xp,q), p + q = k + 1, belongs to Ker(dk+1), then xp,q is described for p =
0, . . . , p0− 1 and q = 0, . . . , k− p0. In order to characterize Ker(dk+1) in a complete way,
we have to consider X1 ⊗

∧p0 L1 ⊗̃X2 ⊗
∧k+1−p0 L2.

In X1 ⊗
∧p0 L1 ⊗̃X2 ⊗

∧k+1−p0 L2, we have two well defined projectors,

S = Ip0 ⊗ gk−p0dk−p0+1(%2 − β), T = hp0−1dp0(%1 − α)⊗ Ik−p0+1.

Moreover, since S commutes with T , X1 ⊗
∧p0 L1 ⊗̃ X2 ⊗

∧k+1−p0 L2 may be de-
composed as the direct sum of the ranges of the operators ST , S(I − T ), (I − S)T
and (I − S)(I − T ), and each x that belongs to this space may be decomposed as
x = (xST , xS(I−T ), x(I−S)T , x(I−S)(I−T )).

Now, if (xp,q), p+ q = k + 1, belongs to Ker(dk+1), in order to determine xp0,k−p0+1

it is enough to consider the equations in which it takes part, i.e.,

dp0+1(%1−α)⊗Ik−p0(xp0+1,k−p0)+(−1)p0Ip0⊗dk+1−p0(%2−β))(xp0,k+1−p0) = 0,

dp0(%1−α)⊗Ik+1−p0(xp0,k+1−p0)+(−1)p0−1Ip0−1⊗dk+2−p0(%2−β)(xp0−1,k+2−p0) = 0.

In addition, an easy calculation shows that if we decompose xp0,k−p0+1 = x as above,
then xST = 0, x(I−S)T = dp0,k+1−p0 , xS(I−T ) = bp0,k+1−p0 , and x(I−S)(I−T ) is an arbi-
trary element in the range of (I − S)(I − T ).

Thus, Ker(dk+1) may be represented as the direct sum of the following spaces:

(i) for q = 0, . . . , k− p0, the graph of (−1)pdp(%1−α)⊗ gq: R(Ip⊗ dq+1(%2− β))→
R(Ip−1 ⊗ gq), p+ q = k + 1;

(ii) for q = k − p1, . . . , k − p0, R(Ip ⊗ k′q) ∩Ker(dp(%1 − α)⊗ Iq), p+ q = k + 1;
(iii) for p = 0, . . . , p0− 1, the graph of (−1)php⊗ dq(%2− β): R(dp+1(%1−α)⊗ Iq)→

R(hp ⊗ Iq−1), p+ q = k + 1;
(iv) the range of the projector (I − S)(I − T ).

In order to construct a direct complement of Ker(dk+1) we need the following obser-
vations.

First, if X and Y are Banach spaces and T ∈ L(X,Y ), then X ⊕ Y = Graph(T )⊕ Y .
Second, an easy calculation shows R(Ip⊗ k′q)∩Ker(dp(%1 − α)⊗ Iq)⊕R(hp−1dp(%1 − α)
⊗ k′q) = R(Ip ⊗ k′q), for q = k − p1, . . . , k − p0.

Now, depending on p and q, p + q = k + 1, the space X1 ⊗
∧p

L1 ⊗̃ X2 ⊗
∧q

L2 is
equal to the direct sum of the following spaces:

(i) for p = 0, . . . , p0 − 1, R(dp+1(%1 − α)⊗ Iq) and R(hp−1 ⊗ Iq);
(ii) for q = 0, . . . , k − p0, R(Ip ⊗ dq+1(%2 − β)), R(Ip ⊗ gq−1) and R(Ip ⊗ k′q); when

q = 0, . . . , k − p1 − 1, we have k′q = 0;
(iii) for p = p0 and q = k−p0 + 1, the ranges of the operators ST , S(I−T ), (I−S)T

and (I − S)(I − T ).

Then, if we define V to be the direct sum of the spaces R(hp−1 ⊗ Iq), p = 0, . . . , p0,
R(Ip⊗gq−1), q = 0, . . . , k−p0+1, R(hp−1dp(%1−α)⊗k′q), q = k−p1, . . . , k−p0, and R(ST )
for p = p0 and q = k−p0+1, we have

⊕
p+q=k+1X1⊗

∧p
L1⊗̃X2⊗

∧q
L2 = Ker(dk+1)⊕V .

We now prove that dim Ker(dk)/R(dk+1) is finite.
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As with Ker(dk+1), we may represent Ker(dk) as the direct sum of the following
spaces:

(i) for q = 0, . . . , k−p0−1, the graph of (−1)pdp(%1−α)⊗gq: R(Ip⊗dq+1(%2−β))→
R(Ip−1 ⊗ gq), p+ q = k;

(ii) for q = k − p1, . . . , k − p0 − 1, R(Ip ⊗ k′q) ∩Ker(dp(%1 − α)⊗ Iq), p+ q = k;
(iii) for p = 0, . . . , p0− 1, the graph of (−1)php⊗ dq(%2− β): R(dp+1(%1−α)⊗ Iq)→

R(hp ⊗ Iq−1), p+ q = k;
(iv) for p = p0 and q = k − p0, the range of the projector (I − S)(I − T ), where

S = Ip0 ⊗ gk−p0−1dk−p0(%2 − β), T = hp0−1dp0(%1 − α)⊗ Ik−p0 .

Now we consider p and q such that p+q = k and q = 0, . . . , k−p0−1. Then, if we con-
sider (−1)pIp⊗gq(a), a ∈ R(Ip⊗dq+1(%2−β)), it is easy to prove that (a, (−1)pdp(%1 − α)
⊗ gq(a)) ∈ R(dk+1). Thus, the graph of (−1)pdp(%1 − α) ⊗ gq: R(Ip ⊗ dq+1(%2 − β)) →
R(Ip−1 ⊗ gq) is contained in R(dk+1).

In a similar way, we may prove that the graph of (−1)php⊗dq(%2−β): R(dp+1(%1 − α)
⊗ Iq)→ R(hp ⊗ Iq−1), p+ q = k, p = 0, . . . , p0 − 1, is contained in R(dk+1).

We denote the following spaces by Sp,q, p+ q = k:

(i) for q = k − p1, . . . , k − p0 − 1, Sp,q = R(Ip ⊗ k′q) ∩Ker(dp(%1 − α)⊗ Iq),
(ii) for p = p0 and q = k − p0, Sp,q = R(I − S)(I − T ).

Since k − p1 ≤ q ≤ k − p0 and p0 ≤ p ≤ p1, we may consider the well defined map

Hp,q: X1⊗
∧p L1⊗̃X2⊗

∧q L2 → X1⊗
∧p+1 L1⊗̃X2⊗

∧q L2⊕X1⊗
∧p L1⊗̃X2⊗

∧q+1 L2,

Hp,q = hp ⊗ Iq + kp ⊗ gq.
Moreover, if we define kp0−1 = 0 and k′k−p1−1 = 0, then we may define the corre-

sponding maps Hp−1,q and Hp,q−1, and an easy calculation shows that

(Hp−1,q ⊕Hp,q−1)dk + dk+1Hp,q = I − kp ⊗ k′q.
Since Sp,q is contained in Ker(dk),

dk+1(Hp,q(Sp,q)) + kp ⊗ k′q(Sp,q) = Sp,q.

Thus, according to Proposition 16, the codimension of R(dk+1) in Ker(dk) is finite.
The second statement of the theorem may be proved by a similar argument, using the

second part of Proposition 11.

As in the last section, we consider two nilpotent systems of operators and prove a
variant of Theorem 17 for this case. In particular, in the commuting case we obtain an
extension of [14; 3.2].

Theorem 18. Let X1 and X2 be two complex Banach spaces. Suppose that there is a
tensor product X1 ⊗̃ X2 of X1 and X2 with respect to 〈X1, X

′
1〉 and 〈X2, X

′
2〉. Let a =

(a1, . . . , an) and b = (b1, . . . , bm) be two tuples of operators , ai ∈ L(X1), 1 ≤ i ≤ n, and
bj ∈ L(X2), 1 ≤ j ≤ m, such that the vector subspaces generated by them, 〈ai〉1≤i≤n and
〈bj〉1≤j≤m, are nilpotent Lie subalgebras of L(X1) and L(X2) respectively. Consider the
(n+m)-tuple of operators defined in X1 ⊗̃X2, c = (a1⊗ I, . . . , an⊗ I, I⊗ b1, . . . , I⊗ bm),
where I denotes the identity of X2 and X1 respectively. Then
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(i)
⋃

p+q=k

σδ,p,e(a)× σδ,q(b) ∪
⋃

p+q=k

σδ,p(a)× σδ,q,e(b) ⊆ σδ,k,e(c)

⊆ spδ,k,e(c) ⊆
⋃

p+q=k

spδ,p,e(a)× spδ,q(b) ∪
⋃

p+q=k

spδ,p(a)× spδ,q,e(b),

(ii)
⋃

p+q=k

σπ,p,e(a)× σπ,q(b) ∪
⋃

p+q=k

σπ,p(a)× σπ,q,e(b) ⊆ σπ,k,e(c)

⊆ spπ,k,e(c) ⊆
⋃

p+q=k

spπ,p,e(a)× spπ,q(b) ∪
⋃

p+q=k

spπ,p(a)× spπ,q,e(b).

Proof. Adapt the argument in Theorem 15.

7. Joint spectra of the multiplication representation

In this section we deal with an operator ideal in the sense of J. Eschmaier (see [14] or
below). These operator ideals are naturally a tensor product of two Banach spaces, and
since the multiplication representation may be seen as a tensor product representation,
we shall extend the results of Sections 5 and 6 to the multiplication representation. We
begin with the definition of an operator ideal in the sense of J. Eschmeier.

Definition 7. An operator ideal J between Banach spaces X2 and X1 is a linear sub-
space of L(X2, X1) equipped with a space norm α such that

(i) x1 ⊗ x′2 ∈ J and α(x1 ⊗ x′2) = ||x1|| · ||x′2||,
(ii) SAT ∈ J and α(SAT ) ≤ ||S||α(A)||T ||,

where x1 ∈ X1, x′2 ∈ X ′2, A ∈ J , S ∈ L(X1), T ∈ L(X2), and x1 ⊗ x′2 is the usual rank
one operator X2 → X1, x2 7→ 〈x2, x

′
2〉x1.

Examples of this kind of ideals are given in [14; 1].
We recall that such an operator ideal J is naturally a tensor product relative to

〈X1, X
′
1〉 and 〈X ′2, X2〉, with the bilinear mappings

X1 ×X ′2 → J, (x1, x
′
2) 7→ x1 ⊗ x′2, L(X1)× L(X ′2)→ L(J), (S, T ′) 7→ S ⊗ T ′,

where S ⊗ T ′(A) = SAT .
Now, let L1 and L2 be two complex solvable finite-dimensional Lie algebras, X1 and

X2 two complex Banach spaces, and %i: Li → L(Xi), i = 1, 2, two representations of
Lie algebras. We consider the Lie algebra Lop

2 and the adjoint representation %∗2: Lop
2 →

L(X ′2). Now, if L is the direct sum of L1 and Lop
2 , L = L1 ×Lop

2 , then the multiplication
representation of L in J considered in [21; 3.6] is

%̃: L→ L(J), %̃(l1, l2)(T ) = %1(l1)T + T%2(l2).

According to [21; 3.6.10], %̃ is a representation of L in L(J), and when J is viewed as
a tensor product of X1 and X ′2 relative to 〈X1, X

′
1〉 and 〈X ′2, X2〉, %̃ coincides with the

representation

%1 × %∗2: L→ L(X1 ⊗̃X ′2), %1 × %∗2(l1, l2) = %1(l1)⊗ I + I ⊗ %∗2(l2).
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Moreover, by a similar argument to the one in Proposition 13, it is easy to prove
that the complex (X1 ⊗

∧
L1, d(%1)) ⊗̃ (X2 ⊗

∧
Lop

2 , d(%∗2)) is well defined, and that it is
isomorphic to the complex ((X1 ⊗̃X ′2)⊗∧L, d(%1 × %∗2)), which may be identified with
the complex (J ⊗∧L, d(%̃)) when J is viewed as a tensor product of X1 and X ′2 relative
to 〈X1, X

′
1〉 and 〈X ′2, X2〉.

In the following theorems we describe the joint spectra of the representation %̃.

Theorem 19. Let L1 and L2 be two complex solvable finite-dimensional Lie algebras , X1

and X2 two complex Banach spaces , and %i: Li → L(Xi), i = 1, 2, two representations of
Lie algebras. Suppose that there is an operator ideal J between X2 and X1 in the sense
of Definition 7, and represent it as the tensor product of X1 and X ′2 relative to 〈X1, X

′
1〉

and 〈X ′2, X2〉. Consider the multiplication representation %̃: L1 × Lop
2 → L(J). Then

(i)
⋃

p+q=k

σδ,p(%1)× (σπ,m−q(%2)− h2) ⊆ σδ,k(%̃)

⊆ spδ,k(%̃) ⊆
⋃

p+q=k

spδ,p(%1)× (spπ,m−q(%2)− h2),

(ii)
⋃

p+q=k

σπ,p(%1)× (σδ,m−q(%2)− h2) ⊆ σπ,k(%̃)

⊆ spπ,k(%̃) ⊆
⋃

p+q=k

spπ,p(%1)× (spδ,m−q(%2)− h2),

where h2 is the character of L2 considered in Theorem 4.
In particular , if X1 and X2 are Hilbert spaces , the above inclusions are equalities.

Proof. We begin with the first statement.
We consider the complexes (X1 ⊗

∧
L1, d(%1)) and (X ′2 ⊗

∧
Lop

2 , d(%∗2)). Since the
complex (J ⊗ ∧L, d(%̃)) is isomorphic to (X1 ⊗

∧
L1, d(%1)) ⊗̃ (X ′2 ⊗

∧
Lop

2 , d(%∗2)), we
work with the latter.

In addition, if we consider the differentiable spaces associated to the Koszul complexes
defined by the representations %1 and %∗2, (X1, ∂1) and (X ′2, ∂∗2) respectively, since ∂1 ∈
L(X1) and ∂∗2 ∈ L(X ′2), we may consider the tensor product (X1, ∂1) ⊗̃ (X ′2, ∂∗2 ) of (X1, ∂1)
and (X ′2, ∂∗2) relative to 〈X1,X ′1〉 and 〈X ′2,X2〉, which has the boundary ∂̃ = ∂1⊗I+η⊗∂∗2 ;
see [14] or Section 4. Moreover, (X1, ∂1) ⊗̃ (X ′2, ∂∗2 ) is the differentiable space associated
to the complex (X1 ⊗

∧
L1, d(%1)) ⊗̃ (X ′2 ⊗

∧
Lop

2 , d(%∗2)); see Section 4 or [14].
Now we consider α ∈ σδ,p(%1) and β ∈ σπ,m−q(%2)−h2, p+q = k. Then, by the duality

property of the Słodkowski joint spectra, [5; 7] and [21; 2.11.4], β ∈ σδ,q(%∗2). Now, if we
consider the Koszul complexes associated to the representations %1−α: L1 → L(X1) and
%∗2 − β: Lop

2 → L(X ′2), the differentiable spaces associated to them, (X1, ∂1) and (X2, ∂
∗
2 )

respectively, and the tensor product (X1, ∂1) ⊗̃ (X ′2, ∂∗2 ), then we may apply [14; 2.2], and
a similar argument to the one in Theorem 14 shows the leftmost inclusion.

The middle inclusion is clear.
For the rightmost inclusion, we adapt the corresponding argument in Theorem 14 to

the present situation.
We consider the complex (X2 ⊗

∧
L2, d(%2)). By the duality property of the Koszul

complex associated to %2 (see [5; 1] and [21; 2.4.5]), if β 6∈ spπ,m−q(%2) − h2, then β 6∈
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spδ,q(%
∗
2). In particular, if (α, β) 6∈ ⋃p+q=k spδ,p(%1) × (spπ,m−q(%2) − h2), then (α, β) 6∈⋃

p+q=k spδ,p(%1)× spδ,q(%
∗
2).

In addition, by the duality property of the Koszul complex of the representation %2

and by elementary properties of the adjoint of an operator, it is easy to prove that if
β 6∈ spπ,m−t(%2) − h2, then there is a homotopy for the complex (X ′2 ⊗ Lop

2 , d(%∗2 − β)),
(gs)0≤s≤t, which satisfies the preliminary facts recalled before Proposition 11. Besides,
if for each s = 0, . . . , t we think about each map gs as a matrix of operators, then each
component of this matrix is an adjoint operator.

Now, according to the properties of the axiomatic tensor product introduced in [14],
if there is a tensor product Y ⊗̃X ′ of a Banach space Y and X ′ relative to 〈Y, Y ′〉 and
〈X ′, X〉 then it is possible to prove similar results to those in Proposition 11. In particular,
it is possible to adapt the proof in Theorem 14 to the present case in order to prove the
rightmost inclusion.

The second statement may be proved by a similar argument.

Now we describe the essential Słodkowski and essential split joint spectra of the
multiplication representation %̃.

Theorem 20. Let L1 and L2 be two complex solvable finite-dimensional Lie algebras ,
X1 and X2 two complex Banach spaces , and %i: Li → L(X), i = 1, 2, two representations
of Lie algebras. Suppose that there is an operator ideal J between X2 and X1 in the sense
of Definition 7, and represent it as the tensor product of X1 and X ′2 relative to 〈X1, X

′
1〉

and 〈X ′2, X2〉. Consider the multiplication representation %̃: L1 × Lop
2 → L(J). Then

(i)
⋃

p+q=k

σδ,p,e(%1)× (σπ,m−q(%2)− h2) ∪
⋃

p+q=k

σδ,p(%1)× (σπ,m−q,e(%2)− h2)

⊆ σδ,k,e(%̃) ⊆ spδ,k,e(%̃)

⊆
⋃

p+q=k

spδ,p,e(%1)× (spπ,m−q(%2)− h2) ∪
⋃

p+q=k

spδ,p(%1)× (spπ,m−q,e(%2)− h2),

(ii)
⋃

p+q=k

σπ,p,e(%1)× (σδ,m−q(%2)− h2) ∪
⋃

p+q=k

σπ,p(%1)× (σδ,m−q,e(%2)− h2)

⊆ σπ,k,e(%̃) ⊆ spδ,k,e(%̃)

⊆
⋃

p+q=k

spπ,p,e(%1)× (spδ,m−q(%2)− h2) ∪
⋃

p+q=k

spπ,p(%1)× (spδ,m−q,e(%2)− h2),

where h2 is the character of L2 considered in Theorem 4.
In particular , if X1 and X2 are Hilbert spaces , the above inclusions are equalities.

Proof. Adapt the proof of Theorem 17.

As in Sections 5 and 6, we consider nilpotent systems of operators, and we obtain
variants of Theorems 19 and 20 for this case.

Theorem 21. Let X1 and X2 be two complex Banach spaces , and a = (a1, . . . , an) and
b = (b1, . . . , bm) two tuples of operators , ai ∈ L(X1), 1 ≤ i ≤ n, and bj ∈ L(X2),
1 ≤ j ≤ m, such that the vector subspaces generated by them, 〈ai〉1≤i≤n and 〈bj〉1≤j≤m,
are nilpotent Lie subalgebras of L(X1) and L(X2) respectively. Consider an operator ideal
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J ⊆ L(X2, X1) in the sense of Definition 7, and the (n+m)-tuple of operators defined in
L(J), c = (La1 , . . . , Lan , Rb1 , . . . , Rbm), where if S ∈ L(X1) and if T ∈ L(X2), the maps
LS , RT : J → J are defined by

LS(U) = SU, RT (U) = UT.

Then

(i)
⋃

p+q=k

σδ,p(a)× σπ,m−q(b) ⊆ σδ,k(c) ⊆ spδ,k(c) ⊆
⋃

p+q=k

spδ,p(a)× spπ,m−q(b),

(ii)
⋃

p+q=k

σπ,p(a)× σδ,m−q(b) ⊆ σπ,k(c) ⊆ spπ,k(c) ⊆
⋃

p+q=k

spπ,p(a)× spδ,m−q(b).

Proof. As in Theorem 15, we consider the Lie algebras L1 = 〈ai〉1≤i≤n and L2 =
〈bj〉1≤j≤m, the representations of the above algebras defined by inclusion, i.e., ι1:L1 →
L(X1) and ι2: L2 → L(X2), and the representation ι = ι1 × ι∗2: L1 × Lop

2 → L(X1 ⊗̃X ′2).
Then, if J is viewed as a tensor product of X1 and X2 relative to 〈X1, X

′
1〉 and 〈X ′2, X2〉,

ι coincides with the representation %: L1 × Lop
2 → L(J), %(A,B)(T ) = AT + TB.

Now, the argument in Theorem 15 may be adapted to the present situation using
Proposition 10 and Theorem 19 instead of Theorem 14.

Theorem 22. Under the assumptions of Theorem 21,

(i)
⋃

p+q=k

σδ,p,e(a)× σπ,m−q(b) ∪
⋃

p+q=k

σδ,p(a)× σπ,m−q,e(b) ⊆ σδ,k,e(c)

⊆ spδ,k,e(c) ⊆
⋃

p+q=k

spδ,p,e(a)× spπ,m−q(b) ∪
⋃

p+q=k

spδ,p(a)× spπ,m−q,e(b),

(ii)
⋃

p+q=k

σπ,p,e(a)× σδ,m−q(b) ∪
⋃

p+q=k

σπ,p(a)× σδ,m−q,e(b) ⊆ σπ,k,e(c)

⊆ spπ,k,e(c) ⊆
⋃

p+q=k

spπ,p,e(a)× spδ,m−q(b) ∪
⋃

p+q=k

spπ,p(a)× spδ,m−q,e(b).

Proof. Adapt the argument in Theorem 18, using Proposition 10 and Theorem 20 instead
of Theorem 17.

We observe that similar remarks to the ones in Sections 5 and 6 may be made for
the theorems in this section. In particular, Theorems 19 and 21 are extensions of [21;
3.6.10] and [21; 3.7.4] respectively for the tensor product introduced in [14]. In addition,
Theorems 20 and 22 extend [14; 3.1] and [14; 3.2] respectively for the essential joint
spectra.

8. Applications

In this section we apply the results that we obtained in Sections 5–7 to particular repre-
sentations of nilpotent Lie algebras.

We consider two complex Banach spaces X1 and X2, a complex nilpotent finite-dimen-
sional Lie algebra L, and two representations of L, %1: L → L(X1) and %2: L → L(X2).
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We suppose that there is a tensor product X1 ⊗̃ X2 of X1 and X2 relative to 〈X1, X
′
1〉

and 〈X2, X
′
2〉. Thus, we may consider the tensor product representation

% = %1 × %2: L× L→ L(X1 ⊗̃X2), % = %1 ⊗ I + I ⊗ %2.

Now we consider the diagonal map

∆: L→ L× L, ∆(l) = (l, l),

and we identify L with ∆(L). In addition, we may consider the representation

θ = % ◦∆: L→ L(X1 ⊗̃X2), θ(l) = %1(l)⊗ I + I ⊗ %2(l).

In the following theorem we describe the Słodkowski, split, essential Słodkowski and
essential split joint spectra of the representation θ.

Theorem 23. Let L be a complex nilpotent finite-dimensional Lie algebra, X1 and X2

two complex Banach spaces , and %i: L → L(Xi), i = 1, 2, two representations of L.
Suppose that there is a tensor product X1 ⊗̃ X2 of X1 and X2 relative to 〈X1, X

′
1〉 and

〈X2, X
′
2〉. Consider the representation θ: L→ L(X1 ⊗̃X2). Then

(i)
⋃

p+q=k

(σδ,p(%1) + σδ,q(%2)) ⊆ σδ,k(θ) ⊆ spδ,k(θ) ⊆
⋃

p+q=k

(spδ,p(%1) + spδ,q(%2)),

(ii)
⋃

p+q=k

(σπ,p(%1) + σπ,q(%2)) ⊆ σπ,k(θ) ⊆ spπ,k(θ) ⊆
⋃

p+q=k

(spπ,p(%1) + spπ,q(%2)),

(iii)
⋃

p+q=k

(σδ,p,e(%1) + σδ,q(%2)) ∪
⋃

p+q=k

(σδ,p(%1) + σδ,q,e(%2)) ⊆ σδ,k,e(θ)

⊆ spδ,k,e(θ) ⊆
⋃

p+q=k

(spδ,p,e(%1) + spδ,q(%2)) ∪
⋃

p+q=k

(spδ,p(%1) + spδ,q,e(%2)),

(iv)
⋃

p+q=k

(σπ,p,e(%1) + σπ,q(%2)) ∪
⋃

p+q=k

(σπ,p(%1) + σπ,q,e(%2)) ⊆ σπ,k,e(θ)

⊆ spπ,k,e(θ) ⊆
⋃

p+q=k

(spπ,p,e(%1) + spπ,q(%2))
⋃ ⋃

p+q=k

(spπ,p(%1) + spπ,q,e(%2)).

In particular , if X1 and X2 are Hilbert spaces , the above inclusions are equalities.

Proof. In order to prove the first statement we recall that according to Theorem 14 we
have

⋃

p+q=k

σδ,p(%1)× σδ,q(%2) ⊆ σδ,k(%) ⊆ spδ,k(%) ⊆
⋃

p+q=k

spδ,p(%1)× spδ,q(%2).

Now, the map ∆: L → L × L is an identification between L and ∆(L), which is a
subalgebra of the nilpotent Lie algebra L × L. Then, if we consider the representation
%|∆(L): ∆(L)→ L(X1⊗̃X2), since θ = %|∆(L) ◦∆, according to Proposition 10 we have

σδ,k(θ) = σδ,k(%|∆(L)) ◦∆ = {α ◦∆ : α ∈ σδ,k(%|∆(L))},
and

spδ,k(θ) = spδ,k(%|∆(L)) ◦∆ = {α ◦∆ : α ∈ spδ,k(%|∆(L))}.
In addition, since ∆(L) is a subalgebra of the nilpotent Lie algebra L × L, by the

projection property for the Słodkowski and split joint spectra, [21; 2.11.5], [21; 3.1.5] and
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Theorem 1, we have

π(σδ,k(%)) = σδ,k(%|∆(L)), π(spδ,k(%)) = spδ,k(%|∆(L)),

where π: (L× L)∗ → ∆(L)∗ denotes the restrictiton map.

Now, it is easy to prove that

π
( ⋃

p+q=k

σδ,p(%1)× σδ,q(%2)
)
◦∆ =

⋃

p+q=k

(σδ,p(%1) + σδ,q(%2)),

and that

π
( ⋃

p+q=k

spδ,p(%1)× spδ,q(%2)
)
◦∆ =

⋃

p+q=k

(spδ,p(%1) + spδ,q(%2)).

Thus, we proved the first part of the theorem.

The other statements may be proved by similar arguments, using for (ii) Theorem 14
and the projection property for the S lodkowski and split joint spectra, and for (iii) and
(iv) Theorem 17 and the projection property for the essential Słodkowski and essential
split joint spectra, Theorems 2, 5 and 9.

Now we consider two complex Banach spaces X1 and X2, an operator ideal between
X2 and X1 in the sense of [14], a complex nilpotent Lie algebra L, two representations
of L, %1: L→ L(X1) and %2: L→ L(X2), and the representation of Lop, ν = −%2: Lop →
L(X2). As in Section 7, we may consider the multiplication representation

%̃: L× L→ L(J), %̃(l1, l2)(T ) = %1(l1)T − T%2(l2).

As above, we may consider the representation

θ̃ = %̃ ◦∆: L→ L(J).

In the following theorem we describe the Słodkowski, split, essential Słodkowski and
essential split joint spectra of the representation θ̃: L→ L(J).

Theorem 24. Let L be a complex nilpotent finite-dimensional Lie algebra, X1 and X2

two complex Banach spaces , and %i: L → L(Xi), i = 1, 2, two representations of the Lie
algebra L. Suppose that there is an operator ideal J between X2 and X1 in the sense of
Definition 7. Consider the representation θ̃: L→ L(J). Then

(i)
⋃

p+q=k

(σδ,p(%1)− σπ,m−q(%2) + h2) ⊆ σδ,k(θ̃) ⊆ spδ,k(θ̃)

⊆
⋃

p+q=k

(spδ,p(%1)− spπ,m−q(%2) + h2),

(ii)
⋃

p+q=k

(σπ,p(%1)− σδ,m−q(%2) + h2) ⊆ σπ,k(θ̃) ⊆ spπ,k(θ̃)

⊆
⋃

p+q=k

(spπ,p(%1)− spδ,m−q(%2) + h2),
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(iii)
⋃

p+q=k

(σδ,p,e(%1)− σπ,m−q(%2) + h2) ∪
⋃

p+q=k

(σδ,p(%1)− σπ,m−q,e(%2) + h2)

⊆ σδ,k,e(θ̃) ⊆ spδ,k,e(θ̃)

⊆
⋃

p+q=k

(spδ,p,e(%1)− spπ,m−q(%2) + h2) ∪
⋃

p+q=k

(spδ,p(%1)− spπ,m−q,e(%2) + h2),

(iv)
⋃

p+q=k

(σπ,p,e(%1)− σδ,m−q(%2) + h2) ∪
⋃

p+q=k

(σπ,p(%1)− σδ,m−q,e(%2) + h2)

⊆ σπ,k,e(θ̃) ⊆ spδ,k,e(θ̃)

⊆
⋃

p+q=k

(spπ,p,e(%1)− spδ,m−q(%2) + h2) ∪
⋃

p+q=k

(spπ,p(%1)− spδ,m−q,e(%2) + h2),

where h2 is the character of L2 considered in Theorem 4.
In particular , if X1 and X2 are Hilbert spaces , the above inclusions are equalities.

Proof. The theorem may be proved by a similar argument to the one in Theorem 23,
using Theorems 19 and 20 instead of Theorems 14 and 17.

Finally, Theorems 23 and 24 provide an extension of two of the main results in [21;
3.8] for the tensor product introduced in [14].
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